Hang917's picture
UPDATE:init mppi file and infra, loaded model success
4c61b7c
"""
Multi-Layer Perceptron with Custom Initialization
"""
import torch
import torch.nn as nn
# --- Added activation registry with custom sine (supports autograd) ---
class SinActFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.sin()
@staticmethod
def backward(ctx, grad_out):
(x,) = ctx.saved_tensors
return grad_out * x.cos()
class Sine(nn.Module):
def forward(self, x):
return SinActFunc.apply(x)
ACTIVATION_REGISTRY = {
'relu': lambda: nn.ReLU(),
'tanh': lambda: nn.Tanh(),
'sin': lambda: Sine(),
}
def get_activation(name: str):
key = name.lower()
if key not in ACTIVATION_REGISTRY:
raise ValueError(f"Unknown activation '{name}'. Available: {list(ACTIVATION_REGISTRY.keys())}")
return ACTIVATION_REGISTRY[key]()
def act_prime(mod, a):
"""
Unified activation derivative for manual Jacobian.
a: pre-activation tensor.
"""
if isinstance(mod, nn.ReLU):
return (a > 0).to(a.dtype)
if isinstance(mod, nn.LeakyReLU):
ns = getattr(mod, "negative_slope", 0.01)
return torch.where(a > 0, torch.ones_like(a), torch.full_like(a, ns))
if isinstance(mod, nn.Tanh):
ta = torch.tanh(a)
return 1.0 - ta * ta
if isinstance(mod, nn.Sigmoid):
s = torch.sigmoid(a)
return s * (1.0 - s)
if isinstance(mod, nn.Softplus):
beta = getattr(mod, "beta", 1.0)
return torch.sigmoid(beta * a)
if isinstance(mod, nn.SiLU): # Swish
s = torch.sigmoid(a)
return s * (1.0 + a * (1.0 - s))
if isinstance(mod, nn.ELU):
alpha = getattr(mod, "alpha", 1.0)
return torch.where(a > 0, torch.ones_like(a), alpha * torch.exp(a))
if isinstance(mod, nn.Identity):
return torch.ones_like(a)
if isinstance(mod, Sine):
return torch.cos(a)
raise NotImplementedError(f"Jacobian for activation {mod.__class__.__name__} not implemented.")
class MLPWithCustomInit(nn.Module):
def __init__(self, input_dim, hidden_dims, output_dim, activation=nn.ReLU, init_type='kaiming', activation_per_layer=None, dim_in_linear=[0, 0], dim_out_linear=0, hidden_dim_linear=[]):
super().__init__()
layers = []
# Store linear branch parameters
self.dim_in_linear = dim_in_linear
self.dim_out_linear = dim_out_linear
self.hidden_dim_linear = hidden_dim_linear
# Validate dim_in_linear format
if not isinstance(dim_in_linear, (list, tuple)) or len(dim_in_linear) != 2:
raise ValueError(f"dim_in_linear must be a list/tuple of length 2 [start_idx, end_idx], got {dim_in_linear}")
start_idx, end_idx = dim_in_linear
linear_input_size = end_idx - start_idx
# Create linear/MLP branch if specified
if linear_input_size > 0 and dim_out_linear > 0:
if start_idx < 0 or end_idx > input_dim or start_idx >= end_idx:
raise ValueError(f"Invalid dim_in_linear {dim_in_linear}: must satisfy 0 <= start < end <= {input_dim}")
if dim_out_linear > output_dim:
raise ValueError(f"dim_out_linear ({dim_out_linear}) cannot be larger than output_dim ({output_dim})")
# Create branch network (linear or MLP)
if len(hidden_dim_linear) == 0:
# Simple linear branch
self.linear_branch = nn.Linear(linear_input_size, dim_out_linear)
branch_type = 'linear_branch'
else:
# MLP branch
branch_layers = []
branch_dims = [linear_input_size] + hidden_dim_linear + [dim_out_linear]
for i, (in_dim, out_dim) in enumerate(zip(branch_dims[:-1], branch_dims[1:])):
branch_layers.append(nn.Linear(in_dim, out_dim))
# Add activation for all layers except the last one
if i < len(branch_dims) - 2:
branch_layers.append(activation())
self.linear_branch = nn.Sequential(*branch_layers)
branch_type = 'mlp_branch'
# MLP output dimension is total minus branch output
mlp_output_dim = output_dim - dim_out_linear
total_output_dim = output_dim
else:
self.linear_branch = None
mlp_output_dim = output_dim
total_output_dim = output_dim
linear_input_size = 0
branch_type = None
dims = [input_dim] + hidden_dims
# Record layer information for debugging/analysis
self.layer_info = {
'input_dim': input_dim,
'hidden_dims': hidden_dims,
'output_dim': output_dim,
'mlp_output_dim': mlp_output_dim,
'total_output_dim': total_output_dim,
'dim_in_linear': dim_in_linear,
'linear_input_size': linear_input_size,
'dim_out_linear': dim_out_linear,
'hidden_dim_linear': hidden_dim_linear,
'branch_type': branch_type,
'total_layers': len(hidden_dims) + 1,
'layer_details': []
}
# Add branch info if exists
if self.linear_branch is not None:
if branch_type == 'linear_branch':
# Simple linear branch
self.layer_info['layer_details'].append({
'layer_idx': -1, # Special index for branch
'type': 'linear_branch',
'input_dim': linear_input_size,
'input_slice': f"[{start_idx}:{end_idx}]",
'output_dim': dim_out_linear,
'activation': 'None',
'parameters': linear_input_size * dim_out_linear + dim_out_linear
})
else:
# MLP branch - record each layer
branch_dims = [linear_input_size] + hidden_dim_linear + [dim_out_linear]
total_branch_params = 0
for i, (in_dim, out_dim) in enumerate(zip(branch_dims[:-1], branch_dims[1:])):
layer_params = in_dim * out_dim + out_dim
total_branch_params += layer_params
if i < len(branch_dims) - 2:
# Hidden layer in branch
self.layer_info['layer_details'].append({
'layer_idx': f"b{i}", # Branch layer index
'type': 'branch_hidden',
'input_dim': in_dim,
'output_dim': out_dim,
'input_slice': f"[{start_idx}:{end_idx}]" if i == 0 else None,
'activation': activation().__class__.__name__,
'parameters': layer_params
})
else:
# Output layer in branch
self.layer_info['layer_details'].append({
'layer_idx': f"b{i}",
'type': 'branch_output',
'input_dim': in_dim,
'output_dim': out_dim,
'input_slice': f"[{start_idx}:{end_idx}]" if i == 0 and len(branch_dims) == 2 else None,
'activation': 'None',
'parameters': layer_params
})
# Handle activation per layer
if activation_per_layer is None:
activation_fns = [activation() for _ in hidden_dims]
else:
if len(activation_per_layer) != len(hidden_dims):
raise ValueError(f"Number of activations ({len(activation_per_layer)}) must match number of hidden layers ({len(hidden_dims)})")
activation_fns = [get_activation(a) for a in activation_per_layer]
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
layer_linear = nn.Linear(in_dim, out_dim)
activation_fn = activation_fns[i]
layers.append(layer_linear)
layers.append(activation_fn)
# Record layer details
self.layer_info['layer_details'].append({
'layer_idx': i,
'type': 'hidden',
'input_dim': in_dim,
'output_dim': out_dim,
'activation': activation_fn.__class__.__name__,
'parameters': in_dim * out_dim + out_dim
})
# Output layer - use mlp_output_dim instead of output_dim
output_layer = nn.Linear(dims[-1], mlp_output_dim)
layers.append(output_layer)
# Record output layer details
self.layer_info['layer_details'].append({
'layer_idx': len(hidden_dims),
'type': 'output',
'input_dim': dims[-1],
'output_dim': mlp_output_dim,
'activation': 'None',
'parameters': dims[-1] * mlp_output_dim + mlp_output_dim
})
# Calculate total parameters
self.layer_info['total_parameters'] = sum(detail['parameters'] for detail in self.layer_info['layer_details'])
self.net = nn.Sequential(*layers)
self.activation = activation
self.init_type = init_type
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
if self.init_type == 'xavier':
if isinstance(self.activation(), (nn.Tanh, nn.ReLU)):
gain = nn.init.calculate_gain('tanh' if isinstance(self.activation(), nn.Tanh) else 'relu')
nn.init.xavier_uniform_(module.weight, gain=gain)
else:
nn.init.xavier_uniform_(module.weight)
elif self.init_type == 'kaiming':
nn.init.kaiming_uniform_(module.weight, nonlinearity='relu')
elif self.init_type == 'orthogonal':
nn.init.orthogonal_(module.weight, gain=1.0)
elif self.init_type == 'small_normal':
nn.init.normal_(module.weight, mean=0.0, std=0.01)
if module.bias is not None:
nn.init.zeros_(module.bias)
def _apply_network(self, x):
"""Apply the complete network with linear branch if present"""
if self.linear_branch is not None:
# Extract slice from input for linear branch
start_idx, end_idx = self.dim_in_linear
x1 = x[..., start_idx:end_idx]
# Apply linear branch
linear_out = self.linear_branch(x1)
# Apply MLP to full input
mlp_out = self.net(x)
# Concatenate outputs: [linear_out; mlp_out]
return torch.cat([linear_out, mlp_out], dim=-1)
else:
# No linear branch, just apply MLP
return self.net(x)
def forward(self, t=None, x=None, u=None):
"""
Forward pass - handle both (t, x) and single argument calls, plus external input u
IMPORTANT: This must maintain compatibility with:
1. Hybrid models: encoder([], x_flat) and decoder([], z_flat)
2. Vector fields in torchdiffeq: vector_field(t, z) or vector_field(t, z, u)
3. Autoregressive models: ag_function(None, ag_input)
4. NEW: External input conditioning: vector_field(t, z, u)
"""
if x is None and u is None:
# Single argument call: forward(input)
# This handles autoregressive case: ag_function(ag_input)
return self._apply_network(t) # t is actually the input
elif u is None:
# Two argument call: forward(t, x)
# This handles hybrid case: encoder([], x_flat) where t=[] and x=x_flat
# And vector field case: vector_field(t, z) where we use z
return self._apply_network(x)
else:
# Three argument call: forward(t, x, u) - NEW for external conditioning
# Concatenate x and u for input to network
if isinstance(u, (int, float)):
# Scalar u, expand to match batch size
u_expanded = torch.full((x.shape[0], 1), u, device=x.device, dtype=x.dtype)
else:
u_expanded = u
xu_input = torch.cat([x, u_expanded], dim=-1)
return self._apply_network(xu_input)
def forward_Jac(self, t=None, x=None, u=None):
"""
Manual forward + Jacobian for the MLP with branch support.
Returns:
y: [B, total_out_dim] where total_out_dim = dim_out_linear + mlp_output_dim
J: [B, total_out_dim, in_dim_eff], where in_dim_eff is the actual input fed to the network
The Jacobian accounts for the branch structure: output = [branch(x1); MLP(x)]
"""
# --- 1) Parse inputs to match your forward conventions ---
if x is None and u is None:
inp = t
elif u is None:
inp = x
else:
if isinstance(u, (int, float)):
u = torch.full((x.shape[0], 1), u, device=x.device, dtype=x.dtype)
inp = torch.cat([x, u], dim=-1)
B, Din = inp.shape
if self.linear_branch is not None:
# Extract slice from input for branch
start_idx, end_idx = self.dim_in_linear
x1 = inp[..., start_idx:end_idx]
# Apply branch network
if len(self.hidden_dim_linear) == 0:
# Simple linear branch: y_branch = A @ x1 + b
branch_out = self.linear_branch(x1) # [B, dim_out_linear]
# Construct Jacobian for linear branch
W_branch = self.linear_branch.weight # [dim_out_linear, linear_input_size]
J_branch = torch.zeros(B, self.dim_out_linear, Din, device=inp.device, dtype=inp.dtype)
J_branch[:, :, start_idx:end_idx] = W_branch.unsqueeze(0).expand(B, -1, -1)
else:
# MLP branch - need to compute Jacobian through the branch network
y_branch = x1
J_branch = None
is_first_branch = True
a_cache_branch = None
# Propagate through branch layers
for i, module in enumerate(self.linear_branch):
if isinstance(module, nn.Linear):
W = module.weight # [out, in]
b = module.bias # [out]
a = y_branch @ W.t() + b # pre-activation
Wb = W.unsqueeze(0).expand(B, -1, -1) # [B, out, in]
if is_first_branch:
J_branch = Wb # [B, out, linear_input_size]
is_first_branch = False
else:
J_branch = torch.bmm(Wb, J_branch) # [B, out, linear_input_size]
y_branch = a
a_cache_branch = a
else:
# Activation function in branch
ap = act_prime(module, a_cache_branch) # [B, dim]
y_branch = module(y_branch)
J_branch = ap.unsqueeze(-1) * J_branch
branch_out = y_branch
# Expand J_branch to full input dimensions
J_branch_full = torch.zeros(B, self.dim_out_linear, Din, device=inp.device, dtype=inp.dtype)
J_branch_full[:, :, start_idx:end_idx] = J_branch
J_branch = J_branch_full
# MLP branch: apply full network to full input
y_mlp = inp
J_mlp = None
is_first = True
a_cache = None
# Propagate through MLP layers
for module in self.net:
if isinstance(module, nn.Linear):
W = module.weight # [out, in]
b = module.bias # [out]
a = y_mlp @ W.t() + b # pre-activation
Wb = W.unsqueeze(0).expand(B, -1, -1) # [B, out, in]
if is_first:
J_mlp = Wb # [B, out, Din]
is_first = False
else:
J_mlp = torch.bmm(Wb, J_mlp) # [B, out, Din]
y_mlp = a
a_cache = a
else:
# Activation function
ap = act_prime(module, a_cache) # [B, dim]
y_mlp = module(y_mlp)
if J_mlp is None:
I = torch.eye(Din, device=y_mlp.device, dtype=y_mlp.dtype)
J_mlp = I.unsqueeze(0).expand(B, Din, Din).clone()
is_first = False
J_mlp = ap.unsqueeze(-1) * J_mlp
# Combine outputs and Jacobians
y = torch.cat([branch_out, y_mlp], dim=-1) # [B, total_out_dim]
J = torch.cat([J_branch, J_mlp], dim=1) # [B, total_out_dim, Din]
else:
# No linear branch, use original implementation
y = inp
J = None
is_first = True
a_cache = None
for module in self.net:
if isinstance(module, nn.Linear):
W = module.weight
b = module.bias
a = y @ W.t() + b
Wb = W.unsqueeze(0).expand(B, -1, -1)
if is_first:
J = Wb
is_first = False
else:
J = torch.bmm(Wb, J)
y = a
a_cache = a
else:
ap = act_prime(module, a_cache)
y = module(y)
if J is None:
I = torch.eye(Din, device=y.device, dtype=y.dtype)
J = I.unsqueeze(0).expand(B, Din, Din).clone()
is_first = False
J = ap.unsqueeze(-1) * J
return y, J
def __call__(self, *args):
"""
Allow flexible calling - CRITICAL for compatibility
This ensures all calling patterns work correctly
"""
if len(args) == 1:
# Single argument: autoregressive case
return self._apply_network(args[0])
elif len(args) == 2:
# Two arguments: hybrid/ODE case - use second argument (actual data)
return self._apply_network(args[1])
elif len(args) == 3:
# Three arguments: external input case - concatenate second and third
x, u = args[1], args[2]
if isinstance(u, (int, float)):
u_expanded = torch.full((x.shape[0], 1), u, device=x.device, dtype=x.dtype)
else:
u_expanded = u
xu_input = torch.cat([x, u_expanded], dim=-1)
return self._apply_network(xu_input)
else:
raise ValueError(f"Expected 1, 2, or 3 arguments, got {len(args)}")
def get_layer_info(self):
"""Return detailed layer information"""
return self.layer_info
def print_architecture(self, name="MLP"):
"""Print a summary of the network architecture"""
print(f"\n{name} Architecture:")
print(f" Input dimension: {self.layer_info['input_dim']}")
if self.linear_branch is not None:
start_idx, end_idx = self.dim_in_linear
if self.layer_info['branch_type'] == 'linear_branch':
print(f" Linear branch: input[{start_idx}:{end_idx}] ({self.layer_info['linear_input_size']}) -> {self.layer_info['dim_out_linear']}")
else:
print(f" MLP branch: input[{start_idx}:{end_idx}] ({self.layer_info['linear_input_size']}) -> {self.layer_info['hidden_dim_linear']} -> {self.layer_info['dim_out_linear']}")
print(f" Total layers: {self.layer_info['total_layers']}")
print(f" MLP output dimension: {self.layer_info['mlp_output_dim']}")
print(f" Total output dimension: {self.layer_info['total_output_dim']}")
print(f" Total parameters: {self.layer_info['total_parameters']}")
print(" Layer details:")
for detail in self.layer_info['layer_details']:
if 'branch' in detail['type']:
layer_type = detail['type'].replace('_', ' ').title()
slice_info = f" {detail['input_slice']}" if detail.get('input_slice') else ""
print(f" {layer_type} {detail['layer_idx']}: "
f"{detail['input_dim']}{slice_info} -> {detail['output_dim']}, "
f"activation: {detail['activation']}, "
f"params: {detail['parameters']}")
else:
print(f" Layer {detail['layer_idx']} ({detail['type']}): "
f"{detail['input_dim']} -> {detail['output_dim']}, "
f"activation: {detail['activation']}, "
f"params: {detail['parameters']}")
# --- Example usage (adapt constructor to your class) ---
if __name__ == "__main__":
import time
def _batch_jacobian_autograd(model, x, *, mode="x"):
"""
Compute Jacobian batch-wise using torch.autograd.functional.jacobian
Returns: J_auto [B, out_dim, in_dim]
mode:
- "x": calls model.forward(inp) where inp=x
- "tx": calls model.forward(t=None, x=inp)
"""
x = x.detach()
B, Din = x.shape
if mode == "x":
def f_single(x_single): # x_single: [Din]
y_single = model.forward(x_single.unsqueeze(0)).squeeze(0) # [Dout]
return y_single
elif mode == "tx":
def f_single(x_single):
y_single = model.forward(None, x_single.unsqueeze(0)).squeeze(0)
return y_single
else:
raise NotImplementedError
J_list = []
for b in range(B):
xb = x[b].clone().requires_grad_(True)
Jb = torch.autograd.functional.jacobian(
f_single, xb, create_graph=False, vectorize=True
) # [Dout, Din]
J_list.append(Jb)
return torch.stack(J_list, dim=0) # [B, Dout, Din]
@torch.no_grad()
def check_manual_jacobian(model, x, *, atol=1e-6, rtol=1e-5, mode="x", verbose=True):
"""
Compare manual Jacobian (forward_Jac) vs. autograd Jacobian.
Args:
model: your MLP instance (with .forward and .forward_Jac)
x: [B, in_dim] input
atol, rtol: tolerances for allclose
mode: see _batch_jacobian_autograd; default assumes forward(x)
Prints max abs diff and raises AssertionError if mismatch.
"""
start_manual = time.time()
y_man, J_man = model.forward_Jac(x) if mode == "x" else model.forward_Jac(None, x)
end_manual = time.time()
print(f"Manual Jacobian time: {end_manual - start_manual:.4f} seconds")
J_auto = _batch_jacobian_autograd(model, x, mode=mode)
start_auto = time.time()
J_auto = _batch_jacobian_autograd(model, x, mode=mode)
end_auto = time.time()
print(f"Autograd Jacobian time: {end_auto - start_auto:.4f} seconds")
# print(J_man)
# print(J_auto)
if J_auto.shape != J_man.shape:
raise RuntimeError(f"Shape mismatch: auto {J_auto.shape} vs manual {J_man.shape}")
max_abs = (J_auto - J_man).abs().max().item()
ok = torch.allclose(J_auto, J_man, atol=atol, rtol=rtol)
if verbose:
print(f"[Jacobian check] shape={tuple(J_man.shape)}, max|Δ|={max_abs:.3e}, "
f"allclose(atol={atol}, rtol={rtol})={ok}")
assert ok, f"Jacobian mismatch: max|Δ|={max_abs:.3e} exceeds tolerances."
torch.manual_seed(0)
# Test with MLP branch using slice [1, 4] - total output dim is 7 (3 from branch + 4 from MLP)
model = MLPWithCustomInit(6, [64] * 3, 7, dim_in_linear=[1, 4], dim_out_linear=3, hidden_dim_linear=[8, 6]).to('cuda')
x = torch.randn(512, 6).to('cuda')
_ = model(x) # warmup
print(f"Input shape: {x.shape}")
print(f"Output shape: {model(x).shape}")
model.print_architecture("MLP with MLP Branch (slice [1:4])")
check_manual_jacobian(model, x, mode="x")
# Test with linear branch (empty hidden_dim_linear)
model_linear = MLPWithCustomInit(6, [64] * 3, 7, dim_in_linear=[1, 4], dim_out_linear=3, hidden_dim_linear=[]).to('cuda')
model_linear.print_architecture("MLP with Linear Branch")
check_manual_jacobian(model_linear, x, mode="x")
# Test without branch (original behavior)
model_orig = MLPWithCustomInit(6, [64] * 3, 4).to('cuda')
_ = model_orig(x)
print(f"Original output shape: {model_orig(x).shape}")
check_manual_jacobian(model_orig, x, mode="x")
# Test with legacy int format (should work as [0, 2])
model_legacy = MLPWithCustomInit(6, [64] * 3, 7, dim_in_linear=[0, 2], dim_out_linear=3).to('cuda')
print(f"Legacy format dim_in_linear=2 -> {model_legacy.dim_in_linear}")
model_legacy.print_architecture("MLP with Linear Branch (legacy format)")
# Test without linear branch (original behavior)
model_orig = MLPWithCustomInit(6, [64] * 3, 4).to('cuda')
_ = model_orig(x)
print(f"Original output shape: {model_orig(x).shape}")
check_manual_jacobian(model_orig, x, mode="x")