Investigating Language Model Capabilities to Represent and Process Formal Knowledge: A Preliminary Study to Assist Ontology Engineering
Paper
•
2509.10249
•
Published
story_id
int64 1
486
| premises
stringlengths 41
1.12k
| premises-FOL
stringlengths 41
1.43k
| conclusion
stringlengths 13
378
| conclusion-FOL
stringlengths 8
340
| label
stringclasses 3
values | example_id
int64 3
1.43k
| premises-CLIF
stringlengths 53
1.67k
| conclusion-CLIF
stringlengths 8
367
| premises-CLINGO
stringlengths 46
1.52k
| conclusion-CLINGO
stringlengths 8
345
| premises-CGIF
stringlengths 59
1.59k
| conclusion-CGIF
stringlengths 12
369
| premises-MINIFOL2
stringlengths 45
1.46k
| conclusion-MINIFOL2
stringlengths 8
341
| premises-TFLPLUS
stringlengths 13
292
| conclusion-TFLPLUS
stringlengths 4
108
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
36
|
Tyga is a rapper.
Rappers release rap albums.
Tyga released the Well Done 3 album.
Rappers are not opera singers.
|
IsRapper(tyga)
∀x ∀y ((IsRapper(x) ∧ ReleasedAlbum(x, y)) → IsRapAlbum(y))
ReleasedAlbum(tyga, wellDone3)
∀x (IsRapper(x) → ¬IsOperaSinger(x))
|
Well Done 3 is worth listening to.
|
IsWorthListening(wellDone3)
|
Uncertain
| 106
|
israpper(tyga)
forall x forall y ((israpper(x) and releasedalbum(x, y)) implies israpalbum(y))
releasedalbum(tyga, welldone3)
forall x (israpper(x) implies not isoperasinger(x))
|
isworthlistening(welldone3)
|
israpper(tyga)
forall forall ((israpper(x) , releasedalbum(x, y)) -: israpalbum(y))
releasedalbum(tyga, welldone3)
forall (israpper(x) -: notisoperasinger(x))
|
isworthlistening(welldone3)
|
[israpper[(tyga)]
@every *x @every *y [([(israpper[(?x)] releasedalbum[(?x y)])] israpalbum[(?y)])]
releasedalbum[(tyga welldone3)]
@every *x [(israpper[(?x)] ~isoperasinger[(?x)])]]
|
[isworthlistening[(welldone3)]]
|
israpper(tyga)
all:x all:y ((israpper(x) & releasedalbum(x, y)) :- israpalbum(y))
releasedalbum(tyga, welldone3)
all:x (israpper(x) :- ~isoperasinger(x))
|
isworthlistening(welldone3)
|
+I2(+t2)
--((+I0++R0)-+I0)
+R2
-(+I0--+I0)
|
+I2(+w2)
|
376
|
All people in this tech company who are consistent and enjoy sticking to their regular routines do not like surprises.
People in this tech company who wear the same flannel shirts every day are consistent and enjoy sticking to their regular routines.
People in this tech company who do not like shopping for clothes wear the same flannel shirts every day.
Old people living in stable homes do not like surprises.
People in this tech company who have very high energy and are impulsive like surprises.
Mike works in this tech company.
If Mike is not a person who wears the same flannel shirts every day, has very high energy, and is impulsive, then Mike either is very consistent and enjoys sticking to his regular routines or does not like surprises.
|
∀x (InThisTechCompany(x) ∧ Consistent(x) ∧ StickTo(x, theirRegularRoutine) → ¬Like(x, surprise))
∀x (InThisTechCompany(x) ∧ ∃y (flannelShirt(y) ∧ WearEveryday(x, y)) → Consistent(x) ∧ StickTo(x, theirRegularRoutine))
∀x (InThisTechCompany(x) ∧ ¬LikeShoppingFor(x, clothes) → ∃y (flannelShirt(y) ∧ WearEveryday(x, y)))
∀x (InThisTechCompany(x) ∧ Old(x) ∧ LiveIn(x, stableHome) → ¬Like(x, surprise))
∀x (InThisTechCompany(x) ∧ Have(x, highEnergy) ∧ Impulsive(x) → ¬Like(x, surprise))
InThisTechCompany(mike)
¬(∃y (flannelShirt(y) ∧ WearEveryday(x, y)) ∧ Have(mike, highEnergy) ∧ Impulsive(mike)) → (Consistent(mike) ∧ StickTo(mike, theirRegularRoutine)) ⊕ ¬Like(mike, surprise)
|
Mike is an old person living in a stable home.
|
Old(mike) ∧ LiveIn(mike, stableHome)
|
Uncertain
| 1,002
|
forall x (inthistechcompany(x) and consistent(x) and stickto(x, theirregularroutine) implies not like(x, surprise))
forall x (inthistechcompany(x) and exists y (flannelshirt(y) and weareveryday(x, y)) implies consistent(x) and stickto(x, theirregularroutine))
forall x (inthistechcompany(x) and not likeshoppingfor(x, clothes) implies exists y (flannelshirt(y) and weareveryday(x, y)))
forall x (inthistechcompany(x) and old(x) and livein(x, stablehome) implies not like(x, surprise))
forall x (inthistechcompany(x) and have(x, highenergy) and impulsive(x) implies not like(x, surprise))
inthistechcompany(mike)
not (exists y (flannelshirt(y) and weareveryday(x, y)) and have(mike, highenergy) and impulsive(mike)) implies (consistent(mike) and stickto(mike, theirregularroutine)) xor not like(mike, surprise)
|
old(mike) and livein(mike, stablehome)
|
forall (inthistechcompany(x) , consistent(x) , stickto(x, theirregularroutine) -: notlike(x, surprise))
forall (inthistechcompany(x) , (flannelshirt(y) , weareveryday(x, y)) -: consistent(x) , stickto(x, theirregularroutine))
forall (inthistechcompany(x) , notlikeshoppingfor(x, clothes) -: (flannelshirt(y) , weareveryday(x, y)))
forall (inthistechcompany(x) , old(x) , livein(x, stablehome) -: notlike(x, surprise))
forall (inthistechcompany(x) , have(x, highenergy) , impulsive(x) -: notlike(x, surprise))
inthistechcompany(mike)
not( (flannelshirt(y) , weareveryday(x, y)) , have(mike, highenergy) , impulsive(mike)) -: (consistent(mike) , stickto(mike, theirregularroutine)) ^ notlike(mike, surprise)
|
old(mike) , livein(mike, stablehome)
|
[@every *x [(inthistechcompany[(?x)] consistent[(?x)] stickto[(?x theirregularroutine)] ~like[(?x surprise)])]
@every *x [(inthistechcompany[(?x)] *y [(flannelshirt[(?y)] weareveryday[(?x y)])] consistent[(?x)] stickto[(?x theirregularroutine)])]
@every *x [(inthistechcompany[(?x)] ~likeshoppingfor[(?x clothes)] *y [(flannelshirt[(?y)] weareveryday[(?x y)])])]
@every *x [(inthistechcompany[(?x)] old[(?x)] livein[(?x stablehome)] ~like[(?x surprise)])]
@every *x [(inthistechcompany[(?x)] have[(?x highenergy)] impulsive[(?x)] ~like[(?x surprise)])]
inthistechcompany[(mike)]
~[(*y [(flannelshirt[(?y)] weareveryday[(?x y)])] have[(mike highenergy)] impulsive[(mike)])] [(consistent[(mike)] stickto[(mike theirregularroutine)])] ~like[(mike surprise)]]
|
[old[(mike)] livein[(mike stablehome)]]
|
all:x (inthistechcompany(x) & consistent(x) & stickto(x, theirregularroutine) :- ~like(x, surprise))
all:x (inthistechcompany(x) & y (flannelshirt(y) & weareveryday(x, y)) :- consistent(x) & stickto(x, theirregularroutine))
all:x (inthistechcompany(x) & ~likeshoppingfor(x, clothes) :- y (flannelshirt(y) & weareveryday(x, y)))
all:x (inthistechcompany(x) & old(x) & livein(x, stablehome) :- ~like(x, surprise))
all:x (inthistechcompany(x) & have(x, highenergy) & impulsive(x) :- ~like(x, surprise))
inthistechcompany(mike)
~(y (flannelshirt(y) & weareveryday(x, y)) & have(mike, highenergy) & impulsive(mike)) :- (consistent(mike) & stickto(mike, theirregularroutine)) ^ ~like(mike, surprise)
|
old(mike) & livein(mike, stablehome)
|
-(+I0++C0++S0--+L0)
-(+I0++(+f1++W1)-+C1++S1)
-(+I0+-+L0-+(+f1++W1))
-(+I0++O0++L0--+L0)
-(+I0++H0++I0--+L0)
+I2(+m2)
-(+(+f1++W1)++H1++I1(+m1))-(+C1(+m1)++S1)--+L1
|
+O2(+m2)++L2
|
408
|
No trick-shot artist in Yale's varsity team struggles with half court shots.
Everyone on Yale's varsity team is someone who struggles with half court shots or who successfully shoots a high percentage of 3-pointers.
Everyone on Yale's varsity team who successfully shoots a high percentage of 3-pointers is solid at shooting 2-pointers.
No one on Yale's varsity team who is solid at shooting 2-pointers is bad at mid-range shots.
Jack is on Yale's varsity team, and he is either a trick-shot artist or he successfully shoots a high percentage of 3-pointers.
|
∀x ((In(x, yaleSVarsityTeam) ∧ TrickShotArtist(x)) → ¬StruggleAt(x, halfCourtShot))
∀x (In(x, yaleSVarsityTeam) → (StruggleAt(x, halfCourtShot) ∨ GoodAt(x, threes)))
∀x ((In(x, yaleSVarsityTeam) ∧ GoodAt(x, threes)) → GoodAt(x, twos))
∀x ((In(x, yaleSVarsityTeam) ∧ GoodAt(x, twos)) → BadAt(x, midRangeShot))
In(jack, yaleSVarsityTeam) ∧ (TrickShotArtist(jack) ⊕ GoodAt(jack, threes))
|
Jack is solid at shooting 2-pointers or bad at mid-range shots.
|
GoodAt(jack, twos) ∨ BadAt(jack, midRangeShot)
|
True
| 1,135
|
forall x ((in(x, yalesvarsityteam) and trickshotartist(x)) implies not struggleat(x, halfcourtshot))
forall x (in(x, yalesvarsityteam) implies (struggleat(x, halfcourtshot) or goodat(x, threes)))
forall x ((in(x, yalesvarsityteam) and goodat(x, threes)) implies goodat(x, twos))
forall x ((in(x, yalesvarsityteam) and goodat(x, twos)) implies badat(x, midrangeshot))
in(jack, yalesvarsityteam) and (trickshotartist(jack) xor goodat(jack, threes))
|
goodat(jack, twos) or badat(jack, midrangeshot)
|
forall ((in(x, yalesvarsityteam) , trickshotartist(x)) -: notstruggleat(x, halfcourtshot))
forall (in(x, yalesvarsityteam) -: (struggleat(x, halfcourtshot) | goodat(x, threes)))
forall ((in(x, yalesvarsityteam) , goodat(x, threes)) -: goodat(x, twos))
forall ((in(x, yalesvarsityteam) , goodat(x, twos)) -: badat(x, midrangeshot))
in(jack, yalesvarsityteam) , (trickshotartist(jack) ^ goodat(jack, threes))
|
goodat(jack, twos) | badat(jack, midrangeshot)
|
[@every *x [([(in[(?x yalesvarsityteam)] trickshotartist[(?x)])] ~struggleat[(?x halfcourtshot)])]
@every *x [(in[(?x yalesvarsityteam)] [(struggleat[(?x halfcourtshot)] goodat[(?x threes)])])]
@every *x [([(in[(?x yalesvarsityteam)] goodat[(?x threes)])] goodat[(?x twos)])]
@every *x [([(in[(?x yalesvarsityteam)] goodat[(?x twos)])] badat[(?x midrangeshot)])]
in[(jack yalesvarsityteam)] [(trickshotartist[(jack)] goodat[(jack threes)])]]
|
[goodat[(jack twos)] badat[(jack midrangeshot)]]
|
all:x ((in(x, yalesvarsityteam) & trickshotartist(x)) :- ~struggleat(x, halfcourtshot))
all:x (in(x, yalesvarsityteam) :- (struggleat(x, halfcourtshot) | goodat(x, threes)))
all:x ((in(x, yalesvarsityteam) & goodat(x, threes)) :- goodat(x, twos))
all:x ((in(x, yalesvarsityteam) & goodat(x, twos)) :- badat(x, midrangeshot))
in(jack, yalesvarsityteam) & (trickshotartist(jack) ^ goodat(jack, threes))
|
goodat(jack, twos) | badat(jack, midrangeshot)
|
-((+I0++T0)--+S0)
-(+I0-(+S0-+G0))
-((+I0++G0)-+G0)
-((+I0++G0)-+B0)
+I2+(+T2(+j2)-+G2)
|
+G2-+B2
|
78
|
Ableton has an office in Germany.
Ableton has an office in the USA.
USA and Germany are different countries.
Any company that has offices in different countries is a multinational company.
Ableton makes music software.
|
OfficeIn(ableton, germany)
OfficeIn(ableton, unitedStates)
¬SameCountry(germany, unitedStates)
∀x ∀y ∀z (OfficeIn(x, y) ∧ OfficeIn(x, z) ∧ (¬SameCountry(y, z)) → MultinationalCompany(x))
MakesMusicSoftware(ableton)
|
Ableton makes AI software.
|
MakesAISoftware(ableton)
|
Uncertain
| 238
|
officein(ableton, germany)
officein(ableton, unitedstates)
not samecountry(germany, unitedstates)
forall x forall y forall z (officein(x, y) and officein(x, z) and (not samecountry(y, z)) implies multinationalcompany(x))
makesmusicsoftware(ableton)
|
makesaisoftware(ableton)
|
officein(ableton, germany)
officein(ableton, unitedstates)
notsamecountry(germany, unitedstates)
forall forall forall (officein(x, y) , officein(x, z) , (notsamecountry(y, z)) -: multinationalcompany(x))
makesmusicsoftware(ableton)
|
makesaisoftware(ableton)
|
[officein[(ableton germany)]
officein[(ableton unitedstates)]
~samecountry[(germany unitedstates)]
@every *x @every *y @every *z [(officein[(?x y)] officein[(?x z)] [(~samecountry[(?y z)])] multinationalcompany[(?x)])]
makesmusicsoftware[(ableton)]]
|
[makesaisoftware[(ableton)]]
|
officein(ableton, germany)
officein(ableton, unitedstates)
~samecountry(germany, unitedstates)
all:x all:y all:z (officein(x, y) & officein(x, z) & (~samecountry(y, z)) :- multinationalcompany(x))
makesmusicsoftware(ableton)
|
makesaisoftware(ableton)
|
+O2
+O2
-+S2
---(+O0++O0+(-+S0)-+M0)
+M2(+a2)
|
+M2(+a2)
|
345
|
All kids are young.
All toddlers are kids.
If someone is young, then they are not elderly.
All pirates are seafarers.
If Nancy is not a pirate, then Nancy is young.
If Nancy is not a toddler, then Nancy is a seafarer.
|
∀x (Kid(x) → Young(x))
∀x (Toddler(x) → Kid(x))
∀x (Young(x) → ¬Elderly(x))
∀x (Pirate(x) → Seafarer(x))
¬Pirate(nancy) → Young(nancy)
¬Toddler(nancy) → Seafarer(nancy)
|
Nancy is either both a pirate and a toddler, or neither a pirate nor a toddler.
|
¬(Pirate(nancy) ⊕ Toddler(nancy))
|
False
| 911
|
forall x (kid(x) implies young(x))
forall x (toddler(x) implies kid(x))
forall x (young(x) implies not elderly(x))
forall x (pirate(x) implies seafarer(x))
not pirate(nancy) implies young(nancy)
not toddler(nancy) implies seafarer(nancy)
|
not (pirate(nancy) xor toddler(nancy))
|
forall (kid(x) -: young(x))
forall (toddler(x) -: kid(x))
forall (young(x) -: notelderly(x))
forall (pirate(x) -: seafarer(x))
notpirate(nancy) -: young(nancy)
nottoddler(nancy) -: seafarer(nancy)
|
not(pirate(nancy) ^ toddler(nancy))
|
[@every *x [(kid[(?x)] young[(?x)])]
@every *x [(toddler[(?x)] kid[(?x)])]
@every *x [(young[(?x)] ~elderly[(?x)])]
@every *x [(pirate[(?x)] seafarer[(?x)])]
~pirate[(nancy)] young[(nancy)]
~toddler[(nancy)] seafarer[(nancy)]]
|
~[[(pirate[(nancy)] toddler[(nancy)])]]
|
all:x (kid(x) :- young(x))
all:x (toddler(x) :- kid(x))
all:x (young(x) :- ~elderly(x))
all:x (pirate(x) :- seafarer(x))
~pirate(nancy) :- young(nancy)
~toddler(nancy) :- seafarer(nancy)
|
~(pirate(nancy) ^ toddler(nancy))
|
-(+K0-+Y0)
-(+T0-+K0)
-(+Y0--+E0)
-(+P0-+S0)
-+P2(+n2)-+Y2(+n2)
-+T2(+n2)-+S2(+n2)
|
-(+P2(+n2)-+T2(+n2))
|
427
|
If a person pays their taxes, then they contribute to the country.
Everyone who works for a government department pays a tax on their salary.
Everyone in the army is an employee of a government department.
Everyone convicted of murder goes to prison.
Everyone who has been to prison has a criminal record.
James was either once convicted of murder, or spent time in prison.
James either has a criminal record, or pays his taxes.
|
∀x (Taxpayer(x) → ContributeTo(x, country))
∀x (WorkFor(x, governmentAgency) → Taxpayer(x))
∀x (ServesIn(x, theArmy) → WorkFor(x, governmentAgency))
∀x (SentencedForMurder(x) → Imprisoned(x))
∀x (Imprisoned((x) → Has(x, criminalRecord))
SentencedForMurder(james) ⊕ Imprisoned(james)
Has(james, criminalRecord) ⊕ Taxpayer(james)
|
James contributes to the country.
|
ContributeToCountry(james)
|
Uncertain
| 1,211
|
forall x (taxpayer(x) implies contributeto(x, country))
forall x (workfor(x, governmentagency) implies taxpayer(x))
forall x (servesin(x, thearmy) implies workfor(x, governmentagency))
forall x (sentencedformurder(x) implies imprisoned(x))
forall x (imprisoned((x) implies has(x, criminalrecord))
sentencedformurder(james) xor imprisoned(james)
has(james, criminalrecord) xor taxpayer(james)
|
contributetocountry(james)
|
forall (taxpayer(x) -: contributeto(x, country))
forall (workfor(x, governmentagency) -: taxpayer(x))
forall (servesin(x, thearmy) -: workfor(x, governmentagency))
forall (sentencedformurder(x) -: imprisoned(x))
forall (imprisoned((x) -: has(x, criminalrecord))
sentencedformurder(james) ^ imprisoned(james)
has(james, criminalrecord) ^ taxpayer(james)
|
contributetocountry(james)
|
[@every *x [(taxpayer[(?x)] contributeto[(?x country)])]
@every *x [(workfor[(?x governmentagency)] taxpayer[(?x)])]
@every *x [(servesin[(?x thearmy)] workfor[(?x governmentagency)])]
@every *x [(sentencedformurder[(?x)] imprisoned[(?x)])]
@every *x [(imprisoned[([(?x)] has[(?x criminalrecord)])]
sentencedformurder[(james)] imprisoned[(james)]
has[(james criminalrecord)] taxpayer[(james)]]
|
[contributetocountry[(james)]]
|
all:x (taxpayer(x) :- contributeto(x, country))
all:x (workfor(x, governmentagency) :- taxpayer(x))
all:x (servesin(x, thearmy) :- workfor(x, governmentagency))
all:x (sentencedformurder(x) :- imprisoned(x))
all:x (imprisoned((x) :- has(x, criminalrecord))
sentencedformurder(james) ^ imprisoned(james)
has(james, criminalrecord) ^ taxpayer(james)
|
contributetocountry(james)
|
-(+T0-+C0)
-(+W0-+T0)
-(+S0-+W0)
-(+S0-+I0)
-(+I0(-+H0)
+S2(+j2)-+I2(+j2)
+H2-+T2(+j2)
|
+C2(+j2)
|
123
|
Businesses are either sanctioned or unsanctioned.
Sanctioned businesses are limited.
Unsanctioned businesses are free.
The Crude Oil Data Exchange is a business that isn't free.
|
∀x (Buisness(x) → Sanctioned(x) ⊕ ¬Sanctioned(x))
∀x (Buisness(x) ∧ Sanctioned(x) → Limited(x))
∀x (Buisness(x) ∧ ¬Sanctioned(x) → Free(x))
Buisness(crudeOilDataExchange) ∧ ¬Free(crudeOilDataExchange)
|
Crude Oil Data Exchange is limited.
|
Limited(crudeOilDataExchange)
|
True
| 369
|
forall x (buisness(x) implies sanctioned(x) xor not sanctioned(x))
forall x (buisness(x) and sanctioned(x) implies limited(x))
forall x (buisness(x) and not sanctioned(x) implies free(x))
buisness(crudeoildataexchange) and not free(crudeoildataexchange)
|
limited(crudeoildataexchange)
|
forall (buisness(x) -: sanctioned(x) ^ notsanctioned(x))
forall (buisness(x) , sanctioned(x) -: limited(x))
forall (buisness(x) , notsanctioned(x) -: free(x))
buisness(crudeoildataexchange) , notfree(crudeoildataexchange)
|
limited(crudeoildataexchange)
|
[@every *x [(buisness[(?x)] sanctioned[(?x)] ~sanctioned[(?x)])]
@every *x [(buisness[(?x)] sanctioned[(?x)] limited[(?x)])]
@every *x [(buisness[(?x)] ~sanctioned[(?x)] free[(?x)])]
buisness[(crudeoildataexchange)] ~free[(crudeoildataexchange)]]
|
[limited[(crudeoildataexchange)]]
|
all:x (buisness(x) :- sanctioned(x) ^ ~sanctioned(x))
all:x (buisness(x) & sanctioned(x) :- limited(x))
all:x (buisness(x) & ~sanctioned(x) :- free(x))
buisness(crudeoildataexchange) & ~free(crudeoildataexchange)
|
limited(crudeoildataexchange)
|
-(+B0-+S0--+S0)
-(+B0++S0-+L0)
-(+B0+-+S0-+F0)
+B2(+c2)+-+F2(+c2)
|
+L2(+c2)
|
398
|
All mind-reading is either brain reading or brain decoding.
All brain decoding that is mind-reading is extracting information from BOLD signals.
No studies that are mind-reading and extract information from BOLD signals are without statistical pattern analysis.
Writing a novel is without statistical pattern analysis.
If multivoxel (pattern) analysis is without statistical pattern analysis and a brain reading, then multivoxel (pattern) analysis is without statistical pattern analysis and brain decoding.
Multivoxel (pattern) analysis is a type of mind-reading.
|
∀x (MindReading(x) ∧ (BrainReading(x) ⊕ BrainDecoding(x)))
∀x ((MindReading(x) ∧ BrainDecoding(x)) → ExtractingFrom(x, information, bOLDSignals))
∀x ((MindReading(x) ∧ ExtractingFrom(x, information, bOLDSignals)) → Uses(x, statisticalPatternAnalysis))
∀x (NovelWriting(x) → ¬Uses(x, statisticalPatternAnalysis))
MindReading(multivoxelPatternAnalysis) ∧ (¬Uses(multivoxelPatternAnalysis, statisticalPatternAnalysis) ∧ BrainReading(multivoxelPatternAnalysis)) → (¬Uses(multivoxelPatternAnalysis, statisticalPatternAnalysis) ∧ (¬BrainDecoding(multivoxelPatternAnalysis)))
MindReading(multivoxelPatternAnalysis)
|
Multivoxel (pattern) analysis is a brain decoding.
|
MindReading(multivoxelPatternAnalysis) ∧ BrainDecoding(multivoxelPatternAnalysis)
|
Uncertain
| 1,084
|
forall x (mindreading(x) and (brainreading(x) xor braindecoding(x)))
forall x ((mindreading(x) and braindecoding(x)) implies extractingfrom(x, information, boldsignals))
forall x ((mindreading(x) and extractingfrom(x, information, boldsignals)) implies uses(x, statisticalpatternanalysis))
forall x (novelwriting(x) implies not uses(x, statisticalpatternanalysis))
mindreading(multivoxelpatternanalysis) and (not uses(multivoxelpatternanalysis, statisticalpatternanalysis) and brainreading(multivoxelpatternanalysis)) implies (not uses(multivoxelpatternanalysis, statisticalpatternanalysis) and (not braindecoding(multivoxelpatternanalysis)))
mindreading(multivoxelpatternanalysis)
|
mindreading(multivoxelpatternanalysis) and braindecoding(multivoxelpatternanalysis)
|
forall (mindreading(x) , (brainreading(x) ^ braindecoding(x)))
forall ((mindreading(x) , braindecoding(x)) -: extractingfrom(x, information, boldsignals))
forall ((mindreading(x) , extractingfrom(x, information, boldsignals)) -: uses(x, statisticalpatternanalysis))
forall (novelwriting(x) -: notuses(x, statisticalpatternanalysis))
mindreading(multivoxelpatternanalysis) , (notuses(multivoxelpatternanalysis, statisticalpatternanalysis) , brainreading(multivoxelpatternanalysis)) -: (notuses(multivoxelpatternanalysis, statisticalpatternanalysis) , (notbraindecoding(multivoxelpatternanalysis)))
mindreading(multivoxelpatternanalysis)
|
mindreading(multivoxelpatternanalysis) , braindecoding(multivoxelpatternanalysis)
|
[@every *x [(mindreading[(?x)] [(brainreading[(?x)] braindecoding[(?x)])])]
@every *x [([(mindreading[(?x)] braindecoding[(?x)])] extractingfrom[(?x information boldsignals)])]
@every *x [([(mindreading[(?x)] extractingfrom[(?x information boldsignals)])] uses[(?x statisticalpatternanalysis)])]
@every *x [(novelwriting[(?x)] ~uses[(?x statisticalpatternanalysis)])]
mindreading[(multivoxelpatternanalysis)] [(~uses[(multivoxelpatternanalysis statisticalpatternanalysis)] brainreading[(multivoxelpatternanalysis)])] [(~uses[(multivoxelpatternanalysis statisticalpatternanalysis)] [(~braindecoding[(multivoxelpatternanalysis)])])]
mindreading[(multivoxelpatternanalysis)] ]
|
[mindreading[(multivoxelpatternanalysis)] braindecoding[(multivoxelpatternanalysis)]]
|
all:x (mindreading(x) & (brainreading(x) ^ braindecoding(x)))
all:x ((mindreading(x) & braindecoding(x)) :- extractingfrom(x, information, boldsignals))
all:x ((mindreading(x) & extractingfrom(x, information, boldsignals)) :- uses(x, statisticalpatternanalysis))
all:x (novelwriting(x) :- ~uses(x, statisticalpatternanalysis))
mindreading(multivoxelpatternanalysis) & (~uses(multivoxelpatternanalysis, statisticalpatternanalysis) & brainreading(multivoxelpatternanalysis)) :- (~uses(multivoxelpatternanalysis, statisticalpatternanalysis) & (~braindecoding(multivoxelpatternanalysis)))
mindreading(multivoxelpatternanalysis)
|
mindreading(multivoxelpatternanalysis) & braindecoding(multivoxelpatternanalysis)
|
-(+M0+(+B0-+B0))
-((+M0++B0)-+E0)
-((+M0++E0)-+U0)
-(+N0--+U0)
+M2(+m2)+(-+U2++B2(+m2))-(-+U2+(-+B2(+m2)))
+M2(+m2)
|
+M2(+m2)++B2(+m2)
|
403
|
There's a person in Benji's family who likes eating cheese or is a francophile.
There is no francophile in Benji's family whose favorite country is Spain.
There is a person in Benji's family who likes eating cheese or whose favorite country is Spain.
Fabien is in Benji's family and does not both study Spanish and also like eating cheese.
Fabien studies Spanish.
|
∃x (InBenjiSFamily(x) → (LikeEating(x, cheese) ∨ Francophile(x)))
∀x ((InBenjiSFamily(x) ∧ Francophile(x)) → ¬Favor(x, spain))
∃x (InBenjiSFamily(x) ∧ (Favor(x, spain) ∨ LikeEating(x, cheese)))
InBenjiSFamily(fabien) ∧ (¬(LikeEating(fabien, cheese) ∧ Study(fabien, spanish)))
Study(fabien, spanish)
|
Fabien is a person who likes eating cheese.
|
LikeEating(fabien, cheese)
|
Uncertain
| 1,117
|
exists x (inbenjisfamily(x) implies (likeeating(x, cheese) or francophile(x)))
forall x ((inbenjisfamily(x) and francophile(x)) implies not favor(x, spain))
exists x (inbenjisfamily(x) and (favor(x, spain) or likeeating(x, cheese)))
inbenjisfamily(fabien) and (not (likeeating(fabien, cheese) and study(fabien, spanish)))
study(fabien, spanish)
|
likeeating(fabien, cheese)
|
(inbenjisfamily(x) -: (likeeating(x, cheese) | francophile(x)))
forall ((inbenjisfamily(x) , francophile(x)) -: notfavor(x, spain))
(inbenjisfamily(x) , (favor(x, spain) | likeeating(x, cheese)))
inbenjisfamily(fabien) , (not(likeeating(fabien, cheese) , study(fabien, spanish)))
study(fabien, spanish)
|
likeeating(fabien, cheese)
|
[*x [(inbenjisfamily[(?x)] [(likeeating[(?x cheese)] francophile[(?x)])])]
@every *x [([(inbenjisfamily[(?x)] francophile[(?x)])] ~favor[(?x spain)])]
*x [(inbenjisfamily[(?x)] [(favor[(?x spain)] likeeating[(?x cheese)])])]
inbenjisfamily[(fabien)] [(~[(likeeating[(fabien cheese)] study[(fabien spanish)])])]
study[(fabien spanish)]]
|
[likeeating[(fabien cheese)]]
|
x (inbenjisfamily(x) :- (likeeating(x, cheese) | francophile(x)))
all:x ((inbenjisfamily(x) & francophile(x)) :- ~favor(x, spain))
x (inbenjisfamily(x) & (favor(x, spain) | likeeating(x, cheese)))
inbenjisfamily(fabien) & (~(likeeating(fabien, cheese) & study(fabien, spanish)))
study(fabien, spanish)
|
likeeating(fabien, cheese)
|
+(+I1-(+L1-+F1))
-((+I0++F0)--+F0)
+(+I1+(+F1-+L1))
+I2(+f2)+(-(+L2++S2))
+S2
|
+L2
|
111
|
Aberdeen won the cup in the 2013 final.
Rangers won the cup in the 2014 final.
Aberdeen and Rangers are different teams.
Different teams cannot win the cup in the same year's final.
|
WonCup(aberdeen, year2013Final)
WonCup(rangers, year2014Final)
¬(aberdeen=rangers)
∀x ∀y ∀z ∀w (¬(x=y) ∧ WonCup(x, z) ∧ WonCup(y, w) → ¬(z=w))
|
Aberdeen has once won a cup.
|
∃x (WonCup(aberdeen, x))
|
True
| 338
|
woncup(aberdeen, year2013final)
woncup(rangers, year2014final)
not (aberdeen=rangers)
forall x forall y forall z forall w (not (x=y) and woncup(x, z) and woncup(y, w) implies not (z=w))
|
exists x (woncup(aberdeen, x))
|
woncup(aberdeen, year2013final)
woncup(rangers, year2014final)
not(aberdeen=rangers)
forall forall forall forall (not(x=y) , woncup(x, z) , woncup(y, w) -: not(z=w))
|
(woncup(aberdeen, x))
|
[woncup[(aberdeen year2013final)]
woncup[(rangers year2014final)]
~[(aberdeen=rangers)]
@every *x @every *y @every *z @every *w [(~[(?x=y)] woncup[(?x z)] woncup[(?y w)] ~[(?z=w)])]]
|
[*x [(woncup[(aberdeen x)])]]
|
woncup(aberdeen, year2013final)
woncup(rangers, year2014final)
~(aberdeen=rangers)
all:x all:y all:z all:w (~(x=y) & woncup(x, z) & woncup(y, w) :- ~(z=w))
|
x (woncup(aberdeen, x))
|
+W2
+W2
-(+a2+e2)
----(-(+x0)++W0++W0--(+z0))
|
+(+W1)
|
376
|
All people in this tech company who are consistent and enjoy sticking to their regular routines do not like surprises.
People in this tech company who wear the same flannel shirts every day are consistent and enjoy sticking to their regular routines.
People in this tech company who do not like shopping for clothes wear the same flannel shirts every day.
Old people living in stable homes do not like surprises.
People in this tech company who have very high energy and are impulsive like surprises.
Mike works in this tech company.
If Mike is not a person who wears the same flannel shirts every day, has very high energy, and is impulsive, then Mike either is very consistent and enjoys sticking to his regular routines or does not like surprises.
|
∀x (InThisTechCompany(x) ∧ Consistent(x) ∧ StickTo(x, theirRegularRoutine) → ¬Like(x, surprise))
∀x (InThisTechCompany(x) ∧ ∃y (flannelShirt(y) ∧ WearEveryday(x, y)) → Consistent(x) ∧ StickTo(x, theirRegularRoutine))
∀x (InThisTechCompany(x) ∧ ¬LikeShoppingFor(x, clothes) → ∃y (flannelShirt(y) ∧ WearEveryday(x, y)))
∀x (InThisTechCompany(x) ∧ Old(x) ∧ LiveIn(x, stableHome) → ¬Like(x, surprise))
∀x (InThisTechCompany(x) ∧ Have(x, highEnergy) ∧ Impulsive(x) → ¬Like(x, surprise))
InThisTechCompany(mike)
¬(∃y (flannelShirt(y) ∧ WearEveryday(x, y)) ∧ Have(mike, highEnergy) ∧ Impulsive(mike)) → (Consistent(mike) ∧ StickTo(mike, theirRegularRoutine)) ⊕ ¬Like(mike, surprise)
|
If Mike is not an old person living in a stable home and does not like shopping for clothes, then Mike does not like shopping for clothes.
|
¬(Old(mike) ∧ LiveIn(mike, stableHome)) ∧ ¬LikeShoppingFor(mike, clothes)) → ¬LikeShoppingFor(mike, clothes)
|
False
| 1,004
|
forall x (inthistechcompany(x) and consistent(x) and stickto(x, theirregularroutine) implies not like(x, surprise))
forall x (inthistechcompany(x) and exists y (flannelshirt(y) and weareveryday(x, y)) implies consistent(x) and stickto(x, theirregularroutine))
forall x (inthistechcompany(x) and not likeshoppingfor(x, clothes) implies exists y (flannelshirt(y) and weareveryday(x, y)))
forall x (inthistechcompany(x) and old(x) and livein(x, stablehome) implies not like(x, surprise))
forall x (inthistechcompany(x) and have(x, highenergy) and impulsive(x) implies not like(x, surprise))
inthistechcompany(mike)
not (exists y (flannelshirt(y) and weareveryday(x, y)) and have(mike, highenergy) and impulsive(mike)) implies (consistent(mike) and stickto(mike, theirregularroutine)) xor not like(mike, surprise)
|
not (old(mike) and livein(mike, stablehome)) and not likeshoppingfor(mike, clothes)) implies not likeshoppingfor(mike, clothes)
|
forall (inthistechcompany(x) , consistent(x) , stickto(x, theirregularroutine) -: notlike(x, surprise))
forall (inthistechcompany(x) , (flannelshirt(y) , weareveryday(x, y)) -: consistent(x) , stickto(x, theirregularroutine))
forall (inthistechcompany(x) , notlikeshoppingfor(x, clothes) -: (flannelshirt(y) , weareveryday(x, y)))
forall (inthistechcompany(x) , old(x) , livein(x, stablehome) -: notlike(x, surprise))
forall (inthistechcompany(x) , have(x, highenergy) , impulsive(x) -: notlike(x, surprise))
inthistechcompany(mike)
not( (flannelshirt(y) , weareveryday(x, y)) , have(mike, highenergy) , impulsive(mike)) -: (consistent(mike) , stickto(mike, theirregularroutine)) ^ notlike(mike, surprise)
|
not(old(mike) , livein(mike, stablehome)) , notlikeshoppingfor(mike, clothes)) -: notlikeshoppingfor(mike, clothes)
|
[@every *x [(inthistechcompany[(?x)] consistent[(?x)] stickto[(?x theirregularroutine)] ~like[(?x surprise)])]
@every *x [(inthistechcompany[(?x)] *y [(flannelshirt[(?y)] weareveryday[(?x y)])] consistent[(?x)] stickto[(?x theirregularroutine)])]
@every *x [(inthistechcompany[(?x)] ~likeshoppingfor[(?x clothes)] *y [(flannelshirt[(?y)] weareveryday[(?x y)])])]
@every *x [(inthistechcompany[(?x)] old[(?x)] livein[(?x stablehome)] ~like[(?x surprise)])]
@every *x [(inthistechcompany[(?x)] have[(?x highenergy)] impulsive[(?x)] ~like[(?x surprise)])]
inthistechcompany[(mike)]
~[(*y [(flannelshirt[(?y)] weareveryday[(?x y)])] have[(mike highenergy)] impulsive[(mike)])] [(consistent[(mike)] stickto[(mike theirregularroutine)])] ~like[(mike surprise)]]
|
~[[(old[(mike)] livein[(mike stablehome)])] ~likeshoppingfor[(mike clothes)])] ~likeshoppingfor[(mike clothes)]]
|
all:x (inthistechcompany(x) & consistent(x) & stickto(x, theirregularroutine) :- ~like(x, surprise))
all:x (inthistechcompany(x) & y (flannelshirt(y) & weareveryday(x, y)) :- consistent(x) & stickto(x, theirregularroutine))
all:x (inthistechcompany(x) & ~likeshoppingfor(x, clothes) :- y (flannelshirt(y) & weareveryday(x, y)))
all:x (inthistechcompany(x) & old(x) & livein(x, stablehome) :- ~like(x, surprise))
all:x (inthistechcompany(x) & have(x, highenergy) & impulsive(x) :- ~like(x, surprise))
inthistechcompany(mike)
~(y (flannelshirt(y) & weareveryday(x, y)) & have(mike, highenergy) & impulsive(mike)) :- (consistent(mike) & stickto(mike, theirregularroutine)) ^ ~like(mike, surprise)
|
~(old(mike) & livein(mike, stablehome)) & ~likeshoppingfor(mike, clothes)) :- ~likeshoppingfor(mike, clothes)
|
-(+I0++C0++S0--+L0)
-(+I0++(+f1++W1)-+C1++S1)
-(+I0+-+L0-+(+f1++W1))
-(+I0++O0++L0--+L0)
-(+I0++H0++I0--+L0)
+I2(+m2)
-(+(+f1++W1)++H1++I1(+m1))-(+C1(+m1)++S1)--+L1
|
-(+O2(+m2)++L2)+-+L2)--+L2
|
29
|
Gasteren is a village located in the province of Drenthe.
Drenthe is a Dutch province.
No cities are villages.
The population of a village in Drenthe was 155 people.
|
Village(gasteren) ∧ Province(drenthe) ∧ In(gasteren, drenthe)
Province(drenthe) ∧ In(drenthe, netherlands)
∀x (City(x) → ¬Village(x))
∃x (Population(x, num155) ∧ Village(x) ∧ In(x, drenthe))
|
Gasteren has a population of 155.
|
Population(gasteren, num155)
|
Uncertain
| 85
|
village(gasteren) and province(drenthe) and in(gasteren, drenthe)
province(drenthe) and in(drenthe, netherlands)
forall x (city(x) implies not village(x))
exists x (population(x, num155) and village(x) and in(x, drenthe))
|
population(gasteren, num155)
|
village(gasteren) , province(drenthe) , in(gasteren, drenthe)
province(drenthe) , in(drenthe, netherlands)
forall (city(x) -: notvillage(x))
(population(x, num155) , village(x) , in(x, drenthe))
|
population(gasteren, num155)
|
[village[(gasteren)] province[(drenthe)] in[(gasteren drenthe)]
province[(drenthe)] in[(drenthe netherlands)]
@every *x [(city[(?x)] ~village[(?x)])]
*x [(population[(?x num155)] village[(?x)] in[(?x drenthe)])]]
|
[population[(gasteren num155)]]
|
village(gasteren) & province(drenthe) & in(gasteren, drenthe)
province(drenthe) & in(drenthe, netherlands)
all:x (city(x) :- ~village(x))
x (population(x, num155) & village(x) & in(x, drenthe))
|
population(gasteren, num155)
|
+V2(+g2)++P2(+d2)++I2
+P2(+d2)++I2
-(+C0--+V0)
+(+P1++V1++I1)
|
+P2
|
187
|
European soccer clubs can attend UCL, UEL, and UECL.
A soccer club eligible to attend UCL has a higher ranking than a soccer club eligible to attend UEL.
A soccer club eligible to attend UEL has a higher ranking than a soccer club eligible to attend UECL.
Manchester United and Machester City are both European soccer clubs.
Manchester United is eligible to attend UEL next season.
Manchester City is eligible to attend UCL next season.
|
∀x (EuropeanSoccerClub(x) → Attend(x, ucl) ∨ Attend(x, uel) ∨ Attend(x, uecl))
∀x ∀y (EuropeanSoccerClub(x) ∧ EuropeanSoccerClub(y) ∧ Attend(x, ucl) ∧ Attend(y, uel) → HigherRank(x, y))
∀x ∀y (EuropeanSoccerClub(x) ∧ EuropeanSoccerClub(y) ∧ Attend(x, uel) ∧ Attend(y, uecl) → HigherRank(x, y))
EuropeanSoccerClub(manchesterUnited) ∧ EuropeanSoccerClub(manchesterCity)
Attend(manchesterunited, uel)
Attend(manchestercity, ucl)
|
Manchester City has a higher ranking than Manchester United.
|
HigherRank(manchesterCity, manchesterUnited)
|
True
| 539
|
forall x (europeansoccerclub(x) implies attend(x, ucl) or attend(x, uel) or attend(x, uecl))
forall x forall y (europeansoccerclub(x) and europeansoccerclub(y) and attend(x, ucl) and attend(y, uel) implies higherrank(x, y))
forall x forall y (europeansoccerclub(x) and europeansoccerclub(y) and attend(x, uel) and attend(y, uecl) implies higherrank(x, y))
europeansoccerclub(manchesterunited) and europeansoccerclub(manchestercity)
attend(manchesterunited, uel)
attend(manchestercity, ucl)
|
higherrank(manchestercity, manchesterunited)
|
forall (europeansoccerclub(x) -: attend(x, ucl) | attend(x, uel) | attend(x, uecl))
forall forall (europeansoccerclub(x) , europeansoccerclub(y) , attend(x, ucl) , attend(y, uel) -: higherrank(x, y))
forall forall (europeansoccerclub(x) , europeansoccerclub(y) , attend(x, uel) , attend(y, uecl) -: higherrank(x, y))
europeansoccerclub(manchesterunited) , europeansoccerclub(manchestercity)
attend(manchesterunited, uel)
attend(manchestercity, ucl)
|
higherrank(manchestercity, manchesterunited)
|
[@every *x [(europeansoccerclub[(?x)] attend[(?x ucl)] attend[(?x uel)] attend[(?x uecl)])]
@every *x @every *y [(europeansoccerclub[(?x)] europeansoccerclub[(?y)] attend[(?x ucl)] attend[(?y uel)] higherrank[(?x y)])]
@every *x @every *y [(europeansoccerclub[(?x)] europeansoccerclub[(?y)] attend[(?x uel)] attend[(?y uecl)] higherrank[(?x y)])]
europeansoccerclub[(manchesterunited)] europeansoccerclub[(manchestercity)]
attend[(manchesterunited uel)]
attend[(manchestercity ucl)]]
|
[higherrank[(manchestercity manchesterunited)]]
|
all:x (europeansoccerclub(x) :- attend(x, ucl) | attend(x, uel) | attend(x, uecl))
all:x all:y (europeansoccerclub(x) & europeansoccerclub(y) & attend(x, ucl) & attend(y, uel) :- higherrank(x, y))
all:x all:y (europeansoccerclub(x) & europeansoccerclub(y) & attend(x, uel) & attend(y, uecl) :- higherrank(x, y))
europeansoccerclub(manchesterunited) & europeansoccerclub(manchestercity)
attend(manchesterunited, uel)
attend(manchestercity, ucl)
|
higherrank(manchestercity, manchesterunited)
|
-(+E0-+A0-+A0-+A0)
--(+E0++E0++A0++A0-+H0)
--(+E0++E0++A0++A0-+H0)
+E2(+m2)++E2(+m2)
+A2
+A2
|
+H2
|
417
|
Some monitors made by LG have a type-c port.
Monitors that have a type-c port were not made before 2010.
All monitors in the library are made before 2010.
The L-2021 monitor is either used in the library or has a type-c port.
The L-2021 monitor is either both produced before 2010 and made by LG, or neither is true.
|
∃x (Monitor(x) ∧ ProducedBy(x, lG) ∧ Have(x, typeCPort) ∧ (¬(x=y)) ∧ Monitor(y) ∧ ProducedBy(y, lG) ∧ Have(y, typeCPort))
∀x (Have(x, typeCPort) → ¬ProducedBefore(x, yr2010))
∀x ((Monitor(x) ∧ In(x, library)) → ProducedBefore(x, yr2010))
Monitor(l-2021) ∧ (In(l-2021, library) ⊕ Have(l-2021, typeCPort))
¬(ProducedBefore(l-2021, yr2010) ⊕ ProducedBy(l-2021, lG))
|
The L-2021 monitor either has a type-c port or is produced by LG.
|
Have(l-2021, typeCPort) ⊕ ProducedBy(l-2021, lG)
|
True
| 1,175
|
exists x (monitor(x) and producedby(x, lg) and have(x, typecport) and (not (x=y)) and monitor(y) and producedby(y, lg) and have(y, typecport))
forall x (have(x, typecport) implies not producedbefore(x, yr2010))
forall x ((monitor(x) and in(x, library)) implies producedbefore(x, yr2010))
monitor(l-2021) and (in(l-2021, library) xor have(l-2021, typecport))
not (producedbefore(l-2021, yr2010) xor producedby(l-2021, lg))
|
have(l-2021, typecport) xor producedby(l-2021, lg)
|
(monitor(x) , producedby(x, lg) , have(x, typecport) , (not(x=y)) , monitor(y) , producedby(y, lg) , have(y, typecport))
forall (have(x, typecport) -: notproducedbefore(x, yr2010))
forall ((monitor(x) , in(x, library)) -: producedbefore(x, yr2010))
monitor(l-2021) , (in(l-2021, library) ^ have(l-2021, typecport))
not(producedbefore(l-2021, yr2010) ^ producedby(l-2021, lg))
|
have(l-2021, typecport) ^ producedby(l-2021, lg)
|
[*x [(monitor[(?x)] producedby[(?x lg)] have[(?x typecport)] [(~[(?x=y)])] monitor[(y)] producedby[(y lg)] have[(y typecport)])]
@every *x [(have[(?x typecport)] ~producedbefore[(?x yr2010)])]
@every *x [([(monitor[(?x)] in[(?x library)])] producedbefore[(?x yr2010)])]
monitor[(l-2021)] [(in[(l-2021 library)] have[(l-2021 typecport)])]
~[(producedbefore[(l-2021 yr2010)] producedby[(l-2021 lg)])]]
|
[have[(l-2021 typecport)] producedby[(l-2021 lg)]]
|
x (monitor(x) & producedby(x, lg) & have(x, typecport) & (~(x=y)) & monitor(y) & producedby(y, lg) & have(y, typecport))
all:x (have(x, typecport) :- ~producedbefore(x, yr2010))
all:x ((monitor(x) & in(x, library)) :- producedbefore(x, yr2010))
monitor(l-2021) & (in(l-2021, library) ^ have(l-2021, typecport))
~(producedbefore(l-2021, yr2010) ^ producedby(l-2021, lg))
|
have(l-2021, typecport) ^ producedby(l-2021, lg)
|
+(+M1++P1++H1+(-(+x1))++M1++P1++H1)
-(+H0--+P0)
-((+M0++I0)-+P0)
+M2(+l2)+(+I2-+H2)
-(+P2-+P2)
|
+H2-+P2
|
146
|
Catullus 4 is a poem written by the ancient Roman writer Catullus.
Catullus 4 is a story about the retirement of a well-traveled ship.
There is a strong analogy of human aging in the poem Catullus 4.
Catullus 4 is written in an unusual iambic trimeter to convey a sense of speed over the waves.
|
Poem(catullus4) ∧ WrittenBy(catullus4, catullus) ∧ AncientRomanWriter(catullus)
Story(catullus4) ∧ About(catullus4, retirementOfAWellTraveledShip)
Poem(catullus4) ∧ StrongAgingAnalogy(catullus4)
Poem(catullus4) ∧ WrittenIn(catullus4, iambicTrimeter) ∧ Convey(catullus4, aSenseOfSpeedOverTheWaves)
|
Callus 4 is written in an unusual iambic trimeter to convey a strong analogy of human aging.
|
Poem(catullus4) ∧ WrittenIn(catullus4, iambicTrimeter) ∧ StrongAgingAnalogy(catullus4)
|
True
| 429
|
poem(catullus4) and writtenby(catullus4, catullus) and ancientromanwriter(catullus)
story(catullus4) and about(catullus4, retirementofawelltraveledship)
poem(catullus4) and strongaginganalogy(catullus4)
poem(catullus4) and writtenin(catullus4, iambictrimeter) and convey(catullus4, asenseofspeedoverthewaves)
|
poem(catullus4) and writtenin(catullus4, iambictrimeter) and strongaginganalogy(catullus4)
|
poem(catullus4) , writtenby(catullus4, catullus) , ancientromanwriter(catullus)
story(catullus4) , about(catullus4, retirementofawelltraveledship)
poem(catullus4) , strongaginganalogy(catullus4)
poem(catullus4) , writtenin(catullus4, iambictrimeter) , convey(catullus4, asenseofspeedoverthewaves)
|
poem(catullus4) , writtenin(catullus4, iambictrimeter) , strongaginganalogy(catullus4)
|
[poem[(catullus4)] writtenby[(catullus4 catullus)] ancientromanwriter[(catullus)]
story[(catullus4)] about[(catullus4 retirementofawelltraveledship)]
poem[(catullus4)] strongaginganalogy[(catullus4)]
poem[(catullus4)] writtenin[(catullus4 iambictrimeter)] convey[(catullus4 asenseofspeedoverthewaves)]]
|
[poem[(catullus4)] writtenin[(catullus4 iambictrimeter)] strongaginganalogy[(catullus4)]]
|
poem(catullus4) & writtenby(catullus4, catullus) & ancientromanwriter(catullus)
story(catullus4) & about(catullus4, retirementofawelltraveledship)
poem(catullus4) & strongaginganalogy(catullus4)
poem(catullus4) & writtenin(catullus4, iambictrimeter) & convey(catullus4, asenseofspeedoverthewaves)
|
poem(catullus4) & writtenin(catullus4, iambictrimeter) & strongaginganalogy(catullus4)
|
+P2(+c2)++W2++A2(+c2)
+S2(+c2)++A2
+P2(+c2)++S2(+c2)
+P2(+c2)++W2++C2
|
+P2(+c2)++W2++S2(+c2)
|
419
|
Some employees in James's town who work in business analysis are good at math.
All of the employees in James's town who work in business analysis are working for this company.
None of the employees in James's town who work for this company are from China.
All of the employees in James's town working in software engineering are from China.
Leif is an employee in James's town, and he is working in software engineering.
|
∃x ∃y (EmployeeIn(x, jamesSTown) ∧ WorkIn(x, businessAnalysis) ∧ GoodAt(x, math) ∧ (¬(x=y)) ∧ EmployeeIn(y, jamesSTown) ∧ WorkIn(y, businessAnalysis) ∧ GoodAt(y, math))
∀x ((EmployeeIn(x, jamesSTown) ∧ WorkIn(x, businessAnalysis)) → WorkFor(x, thisCompany))
∀x ((EmployeeIn(x, jamesSTown) ∧ WorkFor(x, thisCompany)) → ¬From(x, china))
∀x (EmployeeIn(x, jamesSTown) ∧ WorkIn(x, softwareEngineering) → From(x, china))
EmployeeIn(leif, jamesSTown) ∧ WorkIn(leif, softwareEngineering)
|
Leif is good at math.
|
EmployeesInJamesSTown(leif) ∧ GoodAt(leif, math)
|
Uncertain
| 1,181
|
exists x exists y (employeein(x, jamesstown) and workin(x, businessanalysis) and goodat(x, math) and (not (x=y)) and employeein(y, jamesstown) and workin(y, businessanalysis) and goodat(y, math))
forall x ((employeein(x, jamesstown) and workin(x, businessanalysis)) implies workfor(x, thiscompany))
forall x ((employeein(x, jamesstown) and workfor(x, thiscompany)) implies not from(x, china))
forall x (employeein(x, jamesstown) and workin(x, softwareengineering) implies from(x, china))
employeein(leif, jamesstown) and workin(leif, softwareengineering)
|
employeesinjamesstown(leif) and goodat(leif, math)
|
(employeein(x, jamesstown) , workin(x, businessanalysis) , goodat(x, math) , (not(x=y)) , employeein(y, jamesstown) , workin(y, businessanalysis) , goodat(y, math))
forall ((employeein(x, jamesstown) , workin(x, businessanalysis)) -: workfor(x, thiscompany))
forall ((employeein(x, jamesstown) , workfor(x, thiscompany)) -: notfrom(x, china))
forall (employeein(x, jamesstown) , workin(x, softwareengineering) -: from(x, china))
employeein(leif, jamesstown) , workin(leif, softwareengineering)
|
employeesinjamesstown(leif) , goodat(leif, math)
|
[*x *y [(employeein[(?x jamesstown)] workin[(?x businessanalysis)] goodat[(?x math)] [(~[(?x=y)])] employeein[(?y jamesstown)] workin[(?y businessanalysis)] goodat[(?y math)])]
@every *x [([(employeein[(?x jamesstown)] workin[(?x businessanalysis)])] workfor[(?x thiscompany)])]
@every *x [([(employeein[(?x jamesstown)] workfor[(?x thiscompany)])] ~from[(?x china)])]
@every *x [(employeein[(?x jamesstown)] workin[(?x softwareengineering)] from[(?x china)])]
employeein[(leif jamesstown)] workin[(leif softwareengineering)]]
|
[employeesinjamesstown[(leif)] goodat[(leif math)]]
|
x y (employeein(x, jamesstown) & workin(x, businessanalysis) & goodat(x, math) & (~(x=y)) & employeein(y, jamesstown) & workin(y, businessanalysis) & goodat(y, math))
all:x ((employeein(x, jamesstown) & workin(x, businessanalysis)) :- workfor(x, thiscompany))
all:x ((employeein(x, jamesstown) & workfor(x, thiscompany)) :- ~from(x, china))
all:x (employeein(x, jamesstown) & workin(x, softwareengineering) :- from(x, china))
employeein(leif, jamesstown) & workin(leif, softwareengineering)
|
employeesinjamesstown(leif) & goodat(leif, math)
|
++(+E1++W1++G1+(-(+x1))++E1++W1++G1)
-((+E0++W0)-+W0)
-((+E0++W0)--+F0)
-(+E0++W0-+F0)
+E2++W2
|
+E2(+l2)++G2
|
169
|
All volunteers receive intangible benefits for their work.
Volunteers work regularly or on an as-needed basis.
Some volunteers are trained.
Volunteers work in groups or individually.
Environmental volunteers contribute toward environmental management or conservation.
Participating in natural disaster response is an example of volunteers working in groups on an as-needed basis.
|
∀x (Volunteer(x) → Receive(x, intangibleBenefit))
∀x (Volunteer(x) → WorkRegularly(x) ⊕ WorkAsNeeded(x))
∃x (Volunteer(x) → Trained(x))
∀x (Volunteer(x) → (WorkInGroup(x) ∨ WorkIndividually(x)))
∀x (Volunteer(x) ∧ Environmental(x) → (ContributeTo(x, environmentalManagement) ∨ ContributeTo(x, environmentalConservation)))
∃x (Volunteer(x) ∧ ContributeTo(x, naturalDisasterResponse) → WorkInGroup(x) ∧ WorkAsNeeded(x))
|
Volunteers who participate in natural disaster response receive intangible benefits for their work.
|
∀x (Volunteer(x) ∧ ContributeTo(x, naturalDisasterResponse) → Receive(x, intangibleBenefit))
|
True
| 485
|
forall x (volunteer(x) implies receive(x, intangiblebenefit))
forall x (volunteer(x) implies workregularly(x) xor workasneeded(x))
exists x (volunteer(x) implies trained(x))
forall x (volunteer(x) implies (workingroup(x) or workindividually(x)))
forall x (volunteer(x) and environmental(x) implies (contributeto(x, environmentalmanagement) or contributeto(x, environmentalconservation)))
exists x (volunteer(x) and contributeto(x, naturaldisasterresponse) implies workingroup(x) and workasneeded(x))
|
forall x (volunteer(x) and contributeto(x, naturaldisasterresponse) implies receive(x, intangiblebenefit))
|
forall (volunteer(x) -: receive(x, intangiblebenefit))
forall (volunteer(x) -: workregularly(x) ^ workasneeded(x))
(volunteer(x) -: trained(x))
forall (volunteer(x) -: (workingroup(x) | workindividually(x)))
forall (volunteer(x) , environmental(x) -: (contributeto(x, environmentalmanagement) | contributeto(x, environmentalconservation)))
(volunteer(x) , contributeto(x, naturaldisasterresponse) -: workingroup(x) , workasneeded(x))
|
forall (volunteer(x) , contributeto(x, naturaldisasterresponse) -: receive(x, intangiblebenefit))
|
[@every *x [(volunteer[(?x)] receive[(?x intangiblebenefit)])]
@every *x [(volunteer[(?x)] workregularly[(?x)] workasneeded[(?x)])]
*x [(volunteer[(?x)] trained[(?x)])]
@every *x [(volunteer[(?x)] [(workingroup[(?x)] workindividually[(?x)])])]
@every *x [(volunteer[(?x)] environmental[(?x)] [(contributeto[(?x environmentalmanagement)] contributeto[(?x environmentalconservation)])])]
*x [(volunteer[(?x)] contributeto[(?x naturaldisasterresponse)] workingroup[(?x)] workasneeded[(?x)])]]
|
[@every *x [(volunteer[(?x)] contributeto[(?x naturaldisasterresponse)] receive[(?x intangiblebenefit)])]]
|
all:x (volunteer(x) :- receive(x, intangiblebenefit))
all:x (volunteer(x) :- workregularly(x) ^ workasneeded(x))
x (volunteer(x) :- trained(x))
all:x (volunteer(x) :- (workingroup(x) | workindividually(x)))
all:x (volunteer(x) & environmental(x) :- (contributeto(x, environmentalmanagement) | contributeto(x, environmentalconservation)))
x (volunteer(x) & contributeto(x, naturaldisasterresponse) :- workingroup(x) & workasneeded(x))
|
all:x (volunteer(x) & contributeto(x, naturaldisasterresponse) :- receive(x, intangiblebenefit))
|
-(+V0-+R0)
-(+V0-+W0-+W0)
+(+V1-+T1)
-(+V0-(+W0-+W0))
-(+V0++E0-(+C0-+C0))
+(+V1++C1-+W1++W1)
|
-(+V0++C0-+R0)
|
109
|
Phuoc Binh national park is a national park in Vietnam.
Any national park in Vietnam is classified as a nature reserve.
There is a national park in Vietnam classified as a UNESCO World Heritage Site.
All national parks in Vietnam are either managed by the Ministry of Agriculture or managed by the People's Committee.
Phuoc Binh is not managed by the Ministry of Agriculture.
|
NationalPark(phuocBinh) ∧ Locatedin(phuocBinh, vietnam)
∀x ((NationalPark(x) ∧ Locatedin(x, vietnam)) → NatureReserve(x))
∃x (NationalPark(x) ∧ Locatedin(x, vietnam) ∧ UNESCOWorldHeritageSite(x))
∀x ((NationalPark(x) ∧ Locatedin(x, vietnam)) → (Mangedby(x, ministryofAgriculture) ⊕ Managedby(x, peoplesCommittee)))
¬Mangedby(phuocBinh, ministryofAgriculture)
|
Phuoc Binh is a UNESCO Heritage Site.
|
UNESCOWorldHeritageSite(phuocBinh))
|
Uncertain
| 331
|
nationalpark(phuocbinh) and locatedin(phuocbinh, vietnam)
forall x ((nationalpark(x) and locatedin(x, vietnam)) implies naturereserve(x))
exists x (nationalpark(x) and locatedin(x, vietnam) and unescoworldheritagesite(x))
forall x ((nationalpark(x) and locatedin(x, vietnam)) implies (mangedby(x, ministryofagriculture) xor managedby(x, peoplescommittee)))
not mangedby(phuocbinh, ministryofagriculture)
|
unescoworldheritagesite(phuocbinh))
|
nationalpark(phuocbinh) , locatedin(phuocbinh, vietnam)
forall ((nationalpark(x) , locatedin(x, vietnam)) -: naturereserve(x))
(nationalpark(x) , locatedin(x, vietnam) , unescoworldheritagesite(x))
forall ((nationalpark(x) , locatedin(x, vietnam)) -: (mangedby(x, ministryofagriculture) ^ managedby(x, peoplescommittee)))
notmangedby(phuocbinh, ministryofagriculture)
|
unescoworldheritagesite(phuocbinh))
|
[nationalpark[(phuocbinh)] locatedin[(phuocbinh vietnam)]
@every *x [([(nationalpark[(?x)] locatedin[(?x vietnam)])] naturereserve[(?x)])]
*x [(nationalpark[(?x)] locatedin[(?x vietnam)] unescoworldheritagesite[(?x)])]
@every *x [([(nationalpark[(?x)] locatedin[(?x vietnam)])] [(mangedby[(?x ministryofagriculture)] managedby[(?x peoplescommittee)])])]
~mangedby[(phuocbinh ministryofagriculture)]]
|
[unescoworldheritagesite[(phuocbinh)])]]
|
nationalpark(phuocbinh) & locatedin(phuocbinh, vietnam)
all:x ((nationalpark(x) & locatedin(x, vietnam)) :- naturereserve(x))
x (nationalpark(x) & locatedin(x, vietnam) & unescoworldheritagesite(x))
all:x ((nationalpark(x) & locatedin(x, vietnam)) :- (mangedby(x, ministryofagriculture) ^ managedby(x, peoplescommittee)))
~mangedby(phuocbinh, ministryofagriculture)
|
unescoworldheritagesite(phuocbinh))
|
+N2(+p2)++L2
-((+N0++L0)-+N0)
+(+N1++L1++U1)
-((+N0++L0)-(+M0-+M0))
-+M2
|
+U2(+p2))
|
395
|
All velvet-finish lipsticks in the Rouge Dior set, Lunar New Year Limited Edition are refillable.
Lipsticks in the Rouge Dior set, Lunar New Year Limited Edition have either a velvet-finish or a satin-finish.
No satin-finish lipsticks in the set do not have "rosewood" in its offical description.
Lipstcks in the Rouge Dior set, Lunar New Year Limited Edition either does not have "rosewood" in its offical description or it has "rosewood" in its official description.
ROUGE Dior Colored Lip Balm 999 is a lipstick in the set, and it either has "rosewood" in its official description or has a velvet finish.
|
∀x ((Lipstick(x) ∧ In(x, rougeDiorSet) ∧ In(x, lunarNewYearLimitedEdition) ∧ VelvetFinish(x)) → Refillable(x))
∀x ((Lipstick(x) ∧ In(x, rougeDiorSet) ∧ In(x, lunarNewYearLimitedEdition)) → (VelvetFinish(x) ⊕ SatinFinish(x))
∀x ((Lipstick(x) ∧ In(x, rougeDiorSet) ∧ In(x, lunarNewYearLimitedEdition) ∧ SatinFinish(x)) → ¬RosewoodInDescription(x))
∀x ((Lipstick(x) ∧ In(x, rougeDiorSet) ∧ In(x, lunarNewYearLimitedEdition)) → (RosewoodInDescription(x) ⊕ ¬RosewoodInDescription(x)))
Lipstick(rougeDiorColoredLipBalm999) ∧ In(rougeDiorColoredLipBalm999, rougeDiorSet) ∧ In(rougeDiorColoredLipBalm999, lunarNewYearLimitedEdition) ∧ (RosewoodInDescription(rougeDiorColoredLipBalm999) ⊕ VelvetFinish(rougeDiorColoredLipBalm999))
|
ROUGE Dior Colored Lip Balm 999 has a satin finish.
|
SatinFinish(rougeDiorColoredLipBalm999)
|
Uncertain
| 1,068
|
forall x ((lipstick(x) and in(x, rougediorset) and in(x, lunarnewyearlimitededition) and velvetfinish(x)) implies refillable(x))
forall x ((lipstick(x) and in(x, rougediorset) and in(x, lunarnewyearlimitededition)) implies (velvetfinish(x) xor satinfinish(x))
forall x ((lipstick(x) and in(x, rougediorset) and in(x, lunarnewyearlimitededition) and satinfinish(x)) implies not rosewoodindescription(x))
forall x ((lipstick(x) and in(x, rougediorset) and in(x, lunarnewyearlimitededition)) implies (rosewoodindescription(x) xor not rosewoodindescription(x)))
lipstick(rougediorcoloredlipbalm999) and in(rougediorcoloredlipbalm999, rougediorset) and in(rougediorcoloredlipbalm999, lunarnewyearlimitededition) and (rosewoodindescription(rougediorcoloredlipbalm999) xor velvetfinish(rougediorcoloredlipbalm999))
|
satinfinish(rougediorcoloredlipbalm999)
|
forall ((lipstick(x) , in(x, rougediorset) , in(x, lunarnewyearlimitededition) , velvetfinish(x)) -: refillable(x))
forall ((lipstick(x) , in(x, rougediorset) , in(x, lunarnewyearlimitededition)) -: (velvetfinish(x) ^ satinfinish(x))
forall ((lipstick(x) , in(x, rougediorset) , in(x, lunarnewyearlimitededition) , satinfinish(x)) -: notrosewoodindescription(x))
forall ((lipstick(x) , in(x, rougediorset) , in(x, lunarnewyearlimitededition)) -: (rosewoodindescription(x) ^ notrosewoodindescription(x)))
lipstick(rougediorcoloredlipbalm999) , in(rougediorcoloredlipbalm999, rougediorset) , in(rougediorcoloredlipbalm999, lunarnewyearlimitededition) , (rosewoodindescription(rougediorcoloredlipbalm999) ^ velvetfinish(rougediorcoloredlipbalm999))
|
satinfinish(rougediorcoloredlipbalm999)
|
[@every *x [([(lipstick[(?x)] in[(?x rougediorset)] in[(?x lunarnewyearlimitededition)] velvetfinish[(?x)])] refillable[(?x)])]
@every *x [([(lipstick[(?x)] in[(?x rougediorset)] in[(?x lunarnewyearlimitededition)])] [(velvetfinish[(?x)] satinfinish[(?x)])]
@every *x [([(lipstick[(?x)] in[(?x rougediorset)] in[(?x lunarnewyearlimitededition)] satinfinish[(?x)])] ~rosewoodindescription[(?x)])]
@every *x [([(lipstick[(?x)] in[(?x rougediorset)] in[(?x lunarnewyearlimitededition)])] [(rosewoodindescription[(?x)] ~rosewoodindescription[(?x)])])]
lipstick[(rougediorcoloredlipbalm999)] in[(rougediorcoloredlipbalm999 rougediorset)] in[(rougediorcoloredlipbalm999 lunarnewyearlimitededition)] [(rosewoodindescription[(rougediorcoloredlipbalm999)] velvetfinish[(rougediorcoloredlipbalm999)])]]
|
[satinfinish[(rougediorcoloredlipbalm999)]]
|
all:x ((lipstick(x) & in(x, rougediorset) & in(x, lunarnewyearlimitededition) & velvetfinish(x)) :- refillable(x))
all:x ((lipstick(x) & in(x, rougediorset) & in(x, lunarnewyearlimitededition)) :- (velvetfinish(x) ^ satinfinish(x))
all:x ((lipstick(x) & in(x, rougediorset) & in(x, lunarnewyearlimitededition) & satinfinish(x)) :- ~rosewoodindescription(x))
all:x ((lipstick(x) & in(x, rougediorset) & in(x, lunarnewyearlimitededition)) :- (rosewoodindescription(x) ^ ~rosewoodindescription(x)))
lipstick(rougediorcoloredlipbalm999) & in(rougediorcoloredlipbalm999, rougediorset) & in(rougediorcoloredlipbalm999, lunarnewyearlimitededition) & (rosewoodindescription(rougediorcoloredlipbalm999) ^ velvetfinish(rougediorcoloredlipbalm999))
|
satinfinish(rougediorcoloredlipbalm999)
|
-((+L0++I0++I0++V0)-+R0)
-((+L0++I0++I0)-(+V0-+S0)
-((+L0++I0++I0++S0)--+R0)
-((+L0++I0++I0)-(+R0--+R0))
+L2(+r2)++I2++I2+(+R2(+r2)-+V2(+r2))
|
+S2(+r2)
|
341
|
No battery-powered watch is automatic.
All digital watches are battery-powered.
Some mechanical watches are automatic.
All smart watches are digital.
Moonwatch is either a digital watch and an automatic, or it is neither.
|
∀x (BatteryPoweredWatch(x) → ¬AutomaticWatch(x))
∀x (DigitalWatch(x) → BatteryPoweredWatch(x))
∃x (MechanicalWatch(x) ∧ AutomaticWatch(x))
∀x (SmartWatch(x) → DigitalWatch(x))
¬(DigitalWatch(moonwatch) ⊕ AutomaticWatch(moonwatch))
|
Moonwatch is a smartwatch and a mechanical watch.
|
SmartWatch(moonwatch) ∧ MechanicalWatch(moonwatch)
|
False
| 897
|
forall x (batterypoweredwatch(x) implies not automaticwatch(x))
forall x (digitalwatch(x) implies batterypoweredwatch(x))
exists x (mechanicalwatch(x) and automaticwatch(x))
forall x (smartwatch(x) implies digitalwatch(x))
not (digitalwatch(moonwatch) xor automaticwatch(moonwatch))
|
smartwatch(moonwatch) and mechanicalwatch(moonwatch)
|
forall (batterypoweredwatch(x) -: notautomaticwatch(x))
forall (digitalwatch(x) -: batterypoweredwatch(x))
(mechanicalwatch(x) , automaticwatch(x))
forall (smartwatch(x) -: digitalwatch(x))
not(digitalwatch(moonwatch) ^ automaticwatch(moonwatch))
|
smartwatch(moonwatch) , mechanicalwatch(moonwatch)
|
[@every *x [(batterypoweredwatch[(?x)] ~automaticwatch[(?x)])]
@every *x [(digitalwatch[(?x)] batterypoweredwatch[(?x)])]
*x [(mechanicalwatch[(?x)] automaticwatch[(?x)])]
@every *x [(smartwatch[(?x)] digitalwatch[(?x)])]
~[(digitalwatch[(moonwatch)] automaticwatch[(moonwatch)])]]
|
[smartwatch[(moonwatch)] mechanicalwatch[(moonwatch)]]
|
all:x (batterypoweredwatch(x) :- ~automaticwatch(x))
all:x (digitalwatch(x) :- batterypoweredwatch(x))
x (mechanicalwatch(x) & automaticwatch(x))
all:x (smartwatch(x) :- digitalwatch(x))
~(digitalwatch(moonwatch) ^ automaticwatch(moonwatch))
|
smartwatch(moonwatch) & mechanicalwatch(moonwatch)
|
-(+B0--+A0)
-(+D0-+B0)
+(+M1++A1)
-(+S0-+D0)
-(+D2(+m2)-+A2(+m2))
|
+S2(+m2)++M2(+m2)
|
71
|
Herodicus was a Greek physician, dietician, sophist, and gymnast.
Herodicus was born in the city of Selymbria.
Selymbria is a colony of the city-state Megara.
One of the tutors of Hippocrates was Herodicus.
Massages were recommended by Herodicus.
Some of the theories of Herodicus are considered to be the foundation of sports medicine.
|
Greek(herodicus) ∧ Physician(herodicus) ∧ Dietician(herodicus) ∧ Sophist(herodicus) ∧ Gymnast(herodicus)
Born(herodicus, selymbia) ∧ City(selymbia)
Colony(selymbia, megara) ∧ CityState(megara)
Tutor(herodicus, hippocrates)
Recommend(herodicus, massages)
∃x ∃y (Theory(x) ∧ From(x, herodicus) ∧ FoundationOf(x, sportsMedicine) ∧ (¬(x=y)) ∧ Theory(y) ∧ From(y, herodicus) ∧ FoundationOf(y, sportsMedicine))
|
Herodicus tutored Hippocrates.
|
Tutor(herodicus, hippocrates)
|
True
| 213
|
greek(herodicus) and physician(herodicus) and dietician(herodicus) and sophist(herodicus) and gymnast(herodicus)
born(herodicus, selymbia) and city(selymbia)
colony(selymbia, megara) and citystate(megara)
tutor(herodicus, hippocrates)
recommend(herodicus, massages)
exists x exists y (theory(x) and from(x, herodicus) and foundationof(x, sportsmedicine) and (not (x=y)) and theory(y) and from(y, herodicus) and foundationof(y, sportsmedicine))
|
tutor(herodicus, hippocrates)
|
greek(herodicus) , physician(herodicus) , dietician(herodicus) , sophist(herodicus) , gymnast(herodicus)
born(herodicus, selymbia) , city(selymbia)
colony(selymbia, megara) , citystate(megara)
tutor(herodicus, hippocrates)
recommend(herodicus, massages)
(theory(x) , from(x, herodicus) , foundationof(x, sportsmedicine) , (not(x=y)) , theory(y) , from(y, herodicus) , foundationof(y, sportsmedicine))
|
tutor(herodicus, hippocrates)
|
[greek[(herodicus)] physician[(herodicus)] dietician[(herodicus)] sophist[(herodicus)] gymnast[(herodicus)]
born[(herodicus selymbia)] city[(selymbia)]
colony[(selymbia megara)] citystate[(megara)]
tutor[(herodicus hippocrates)]
recommend[(herodicus massages)]
*x *y [(theory[(?x)] from[(?x herodicus)] foundationof[(?x sportsmedicine)] [(~[(?x=y)])] theory[(?y)] from[(?y herodicus)] foundationof[(?y sportsmedicine)])]]
|
[tutor[(herodicus hippocrates)]]
|
greek(herodicus) & physician(herodicus) & dietician(herodicus) & sophist(herodicus) & gymnast(herodicus)
born(herodicus, selymbia) & city(selymbia)
colony(selymbia, megara) & citystate(megara)
tutor(herodicus, hippocrates)
recommend(herodicus, massages)
x y (theory(x) & from(x, herodicus) & foundationof(x, sportsmedicine) & (~(x=y)) & theory(y) & from(y, herodicus) & foundationof(y, sportsmedicine))
|
tutor(herodicus, hippocrates)
|
+G2(+h2)++P2(+h2)++D2(+h2)++S2(+h2)++G2(+h2)
+B2++C2(+s2)
+C2++C2(+m2)
+T2
+R2
++(+T1++F1++F1+(-(+x1))++T1++F1++F1)
|
+T2
|
212
|
If you have room for dessert, you have room for broccoli.
Everyone at Luis's dinner party has room for dessert, including Luis.
Mauricia does not have room for broccoli.
Luis's dinner party is the first ever dinner party that Allison has attended.
Gustave has room for both broccoli and asparagus.
Broccoli and asparagus are both vegetables.
|
∀x (RoomFor(x, dessert) → RoomFor(x, broccoli))
∀x (AtLuisParty(x) → RoomFor(x, dessert))
¬RoomFor(mauricia, broccoli)
AtLuisParty(allison) ∧ FirstDinnerPartyFor(luisparty, allison)
RoomFor(gustave, broccoli) ∧ RoomFor(gustave, asparagus)
Vegetable(broccoli) ∧ Vegetable(asparagus)
|
Gustav has room for dessert.
|
RoomFor(gustave, dessert)
|
Uncertain
| 607
|
forall x (roomfor(x, dessert) implies roomfor(x, broccoli))
forall x (atluisparty(x) implies roomfor(x, dessert))
not roomfor(mauricia, broccoli)
atluisparty(allison) and firstdinnerpartyfor(luisparty, allison)
roomfor(gustave, broccoli) and roomfor(gustave, asparagus)
vegetable(broccoli) and vegetable(asparagus)
|
roomfor(gustave, dessert)
|
forall (roomfor(x, dessert) -: roomfor(x, broccoli))
forall (atluisparty(x) -: roomfor(x, dessert))
notroomfor(mauricia, broccoli)
atluisparty(allison) , firstdinnerpartyfor(luisparty, allison)
roomfor(gustave, broccoli) , roomfor(gustave, asparagus)
vegetable(broccoli) , vegetable(asparagus)
|
roomfor(gustave, dessert)
|
[@every *x [(roomfor[(?x dessert)] roomfor[(?x broccoli)])]
@every *x [(atluisparty[(?x)] roomfor[(?x dessert)])]
~roomfor[(mauricia broccoli)]
atluisparty[(allison)] firstdinnerpartyfor[(luisparty allison)]
roomfor[(gustave broccoli)] roomfor[(gustave asparagus)]
vegetable[(broccoli)] vegetable[(asparagus)]]
|
[roomfor[(gustave dessert)]]
|
all:x (roomfor(x, dessert) :- roomfor(x, broccoli))
all:x (atluisparty(x) :- roomfor(x, dessert))
~roomfor(mauricia, broccoli)
atluisparty(allison) & firstdinnerpartyfor(luisparty, allison)
roomfor(gustave, broccoli) & roomfor(gustave, asparagus)
vegetable(broccoli) & vegetable(asparagus)
|
roomfor(gustave, dessert)
|
-(+R0-+R0)
-(+A0-+R0)
-+R2
+A2(+a2)++F2
+R2++R2
+V2(+b2)++V2(+a2)
|
+R2
|
34
|
Rafa Nadal was born in Mallorca.
Rafa Nadal is a professional tennis player.
Nadal's win ratio is high.
All players in the Big 3 are professionals who have a high win ratio.
|
BornIn(rafaNadal, mallorca)
ProfessionalTennisPlayer(rafaNadal)
HighWinRatio(rafaNadal)
∀x ((ProfessionalTennisPlayer(x) ∧ HighWinRatio(x)) → InBig3(x))
|
Nadal is the greatest player of all time.
|
GreatestOfAllTime(rafaNadal)
|
Uncertain
| 100
|
bornin(rafanadal, mallorca)
professionaltennisplayer(rafanadal)
highwinratio(rafanadal)
forall x ((professionaltennisplayer(x) and highwinratio(x)) implies inbig3(x))
|
greatestofalltime(rafanadal)
|
bornin(rafanadal, mallorca)
professionaltennisplayer(rafanadal)
highwinratio(rafanadal)
forall ((professionaltennisplayer(x) , highwinratio(x)) -: inbig3(x))
|
greatestofalltime(rafanadal)
|
[bornin[(rafanadal mallorca)]
professionaltennisplayer[(rafanadal)]
highwinratio[(rafanadal)]
@every *x [([(professionaltennisplayer[(?x)] highwinratio[(?x)])] inbig3[(?x)])]]
|
[greatestofalltime[(rafanadal)]]
|
bornin(rafanadal, mallorca)
professionaltennisplayer(rafanadal)
highwinratio(rafanadal)
all:x ((professionaltennisplayer(x) & highwinratio(x)) :- inbig3(x))
|
greatestofalltime(rafanadal)
|
+B2
+P2(+r2)
+H2(+r2)
-((+P0++H0)-+I0)
|
+G2(+r2)
|
54
|
A roundel is a rounded artillery fortification.
A roundel is not higher than adjacent walls.
Cannons can be deployed on artillery fortifications.
Roundels are the oldest artillery fortifications.
Battery towers are artillery fortifications.
|
∀x (Roundel(x) → (Rounded(x) ∧ ArtilleryFortification(x)))
∀x ∀y ((Roundel(x) ∧ AdjacentWalls(x,y)) → ¬Higher(x, y))
∀x (ArtilleryFortification(x) → DeployCannons(x))
∀x ∀y ((Roundel(x) ∧ ArtilleryFortification(y)) → Older(x, y))
∀x (BatteryTower(x) → ArtilleryFortification(x))
|
Roundels are older than battery towers.
|
∀x ∀y ((Roundel(x) ∧ BatteryTower(y)) → Older(x, y))
|
True
| 159
|
forall x (roundel(x) implies (rounded(x) and artilleryfortification(x)))
forall x forall y ((roundel(x) and adjacentwalls(x,y)) implies not higher(x, y))
forall x (artilleryfortification(x) implies deploycannons(x))
forall x forall y ((roundel(x) and artilleryfortification(y)) implies older(x, y))
forall x (batterytower(x) implies artilleryfortification(x))
|
forall x forall y ((roundel(x) and batterytower(y)) implies older(x, y))
|
forall (roundel(x) -: (rounded(x) , artilleryfortification(x)))
forall forall ((roundel(x) , adjacentwalls(x,)) -: nothigher(x, y))
forall (artilleryfortification(x) -: deploycannons(x))
forall forall ((roundel(x) , artilleryfortification(y)) -: older(x, y))
forall (batterytower(x) -: artilleryfortification(x))
|
forall forall ((roundel(x) , batterytower(y)) -: older(x, y))
|
[@every *x [(roundel[(?x)] [(rounded[(?x)] artilleryfortification[(?x)])])]
@every *x @every *y [([(roundel[(?x)] adjacentwalls[(?x ?y)])] ~higher[(?x y)])]
@every *x [(artilleryfortification[(?x)] deploycannons[(?x)])]
@every *x @every *y [([(roundel[(?x)] artilleryfortification[(?y)])] older[(?x y)])]
@every *x [(batterytower[(?x)] artilleryfortification[(?x)])]]
|
[@every *x @every *y [([(roundel[(?x)] batterytower[(?y)])] older[(?x y)])]]
|
all:x (roundel(x) :- (rounded(x) & artilleryfortification(x)))
all:x all:y ((roundel(x) & adjacentwalls(x,y)) :- ~higher(x, y))
all:x (artilleryfortification(x) :- deploycannons(x))
all:x all:y ((roundel(x) & artilleryfortification(y)) :- older(x, y))
all:x (batterytower(x) :- artilleryfortification(x))
|
all:x all:y ((roundel(x) & batterytower(y)) :- older(x, y))
|
-(+R0-(+R0++A0))
--((+R0++A0)--+H0)
-(+A0-+D0)
--((+R0++A0)-+O0)
-(+B0-+A0)
|
--((+R0++B0)-+O0)
|
391
|
All imaginative processes that Dan knows are results of creative processes.
All science fiction that Dan knows comes from an imaginative process.
Everthing that Dan knows comes from either science-fiction or realistic fiction.
No facts that Dan knows have proven to be false.
Dan knows that Dune is science fiction or has proven to be false.
|
∀x ((Knows(dan, x) ∧ ImaginativeProcess(x)) → ResultOf(x, creativeProcess))
∀x ((Knows(dan, x) ∧ ScienceFiction(x)) → ImaginativeProcess(x))
∀x (Knows(dan, x) → (ScienceFiction(x) ⊕ RealisticFiction(x)))
∀x ((Knows(dan, x) ∧ Fact(x)) → ¬ProvedToBe(x, false))
(Knows(dan, dune) ∧ ScienceFiction(dune)) ∨ ProvedToBe(dune, false))
|
If Dune is a result of creative and imaginative processes, then Dune is not a result of creative processes and science-fiction.
|
(ResultOf(dune, creativeProcess) ∧ ImaginativeProcess(dune)) → (¬ResultOf(dune, creativeProcess) ∧ ¬ScienceFiction(dune))
|
False
| 1,052
|
forall x ((knows(dan, x) and imaginativeprocess(x)) implies resultof(x, creativeprocess))
forall x ((knows(dan, x) and sciencefiction(x)) implies imaginativeprocess(x))
forall x (knows(dan, x) implies (sciencefiction(x) xor realisticfiction(x)))
forall x ((knows(dan, x) and fact(x)) implies not provedtobe(x, false))
(knows(dan, dune) and sciencefiction(dune)) or provedtobe(dune, false))
|
(resultof(dune, creativeprocess) and imaginativeprocess(dune)) implies (not resultof(dune, creativeprocess) and not sciencefiction(dune))
|
forall ((knows(dan, x) , imaginativeprocess(x)) -: resultof(x, creativeprocess))
forall ((knows(dan, x) , sciencefiction(x)) -: imaginativeprocess(x))
forall (knows(dan, x) -: (sciencefiction(x) ^ realisticfiction(x)))
forall ((knows(dan, x) , fact(x)) -: notprovedtobe(x, false))
(knows(dan, dune) , sciencefiction(dune)) | provedtobe(dune, false))
|
(resultof(dune, creativeprocess) , imaginativeprocess(dune)) -: (notresultof(dune, creativeprocess) , notsciencefiction(dune))
|
[@every *x [([(knows[(dan x)] imaginativeprocess[(?x)])] resultof[(?x creativeprocess)])]
@every *x [([(knows[(dan x)] sciencefiction[(?x)])] imaginativeprocess[(?x)])]
@every *x [(knows[(dan x)] [(sciencefiction[(?x)] realisticfiction[(?x)])])]
@every *x [([(knows[(dan x)] fact[(?x)])] ~provedtobe[(?x false)])]
[(knows[(dan dune)] sciencefiction[(dune)])] provedtobe[(dune false)])]]
|
[[(resultof[(dune creativeprocess)] imaginativeprocess[(dune)])] [(~resultof[(dune creativeprocess)] ~sciencefiction[(dune)])]]
|
all:x ((knows(dan, x) & imaginativeprocess(x)) :- resultof(x, creativeprocess))
all:x ((knows(dan, x) & sciencefiction(x)) :- imaginativeprocess(x))
all:x (knows(dan, x) :- (sciencefiction(x) ^ realisticfiction(x)))
all:x ((knows(dan, x) & fact(x)) :- ~provedtobe(x, false))
(knows(dan, dune) & sciencefiction(dune)) | provedtobe(dune, false))
|
(resultof(dune, creativeprocess) & imaginativeprocess(dune)) :- (~resultof(dune, creativeprocess) & ~sciencefiction(dune))
|
-((+K0++I0)-+R0)
-((+K0++S0)-+I0)
-(+K0-(+S0-+R0))
-((+K0++F0)--+P0)
(+K2++S2(+d2))-+P2)
|
(+R2++I2(+d2))-(-+R2+-+S2(+d2))
|
49
|
Quincy McDuffie is an American professional wide receiver in Canadian Football.
People who can catch balls are good wide receivers.
Quincy McDuffie can catch some footballs easily.
Good wide receivers play professionally.
Good wide receivers can catch with both their left and right hand.
All footballs are balls.
|
American(quincyMcduffie) ∧ Professional(quincyMcduffie) ∧ WideReciever(quincyMcduffie) ∧ PlaysIn(quincyMcduffie, cFL)
∀x ((∃y(CanCatch(x, y) ∧ Ball(y))) → GoodWideReceiver(x))
∃x ∃y (Football(x) ∧ CanCatch(quincymcduffie, x)) ∧ (¬(x=y) ∧ (Football(y) ∧ CanCatch(quincymcduffie, y))
∀x (GoodWideReceiver(x) → Professional(x))
∀x (GoodWideReceiver(x) → (CanCatchWith(x, lefthand) ∧ CanCatchWith(x, righthand)))
∀x (Football(x) → Ball(x))
|
Quincy McDuffie is a good wide receiver.
|
GoodWideReceiver(quincyMcduffie)
|
True
| 141
|
american(quincymcduffie) and professional(quincymcduffie) and widereciever(quincymcduffie) and playsin(quincymcduffie, cfl)
forall x ((exists y(cancatch(x, y) and ball(y))) implies goodwidereceiver(x))
exists x exists y (football(x) and cancatch(quincymcduffie, x)) and (not (x=y) and (football(y) and cancatch(quincymcduffie, y))
forall x (goodwidereceiver(x) implies professional(x))
forall x (goodwidereceiver(x) implies (cancatchwith(x, lefthand) and cancatchwith(x, righthand)))
forall x (football(x) implies ball(x))
|
goodwidereceiver(quincymcduffie)
|
american(quincymcduffie) , professional(quincymcduffie) , widereciever(quincymcduffie) , playsin(quincymcduffie, cfl)
forall (((cancatch(x, y) , ball(y))) -: goodwidereceiver(x))
(football(x) , cancatch(quincymcduffie, x)) , (not(x=y) , (football(y) , cancatch(quincymcduffie, y))
forall (goodwidereceiver(x) -: professional(x))
forall (goodwidereceiver(x) -: (cancatchwith(x, lefthand) , cancatchwith(x, righthand)))
forall (football(x) -: ball(x))
|
goodwidereceiver(quincymcduffie)
|
[american[(quincymcduffie)] professional[(quincymcduffie)] widereciever[(quincymcduffie)] playsin[(quincymcduffie cfl)]
@every *x [([(*y[(cancatch[(?x y)] ball[(?y)])])] goodwidereceiver[(?x)])]
*x *y [(football[(?x)] cancatch[(quincymcduffie x)])] [(~[(?x=y)] [(football[(?y)] cancatch[(quincymcduffie y)])]
@every *x [(goodwidereceiver[(?x)] professional[(?x)])]
@every *x [(goodwidereceiver[(?x)] [(cancatchwith[(?x lefthand)] cancatchwith[(?x righthand)])])]
@every *x [(football[(?x)] ball[(?x)])]]
|
[goodwidereceiver[(quincymcduffie)]]
|
american(quincymcduffie) & professional(quincymcduffie) & widereciever(quincymcduffie) & playsin(quincymcduffie, cfl)
all:x ((y(cancatch(x, y) & ball(y))) :- goodwidereceiver(x))
x y (football(x) & cancatch(quincymcduffie, x)) & (~(x=y) & (football(y) & cancatch(quincymcduffie, y))
all:x (goodwidereceiver(x) :- professional(x))
all:x (goodwidereceiver(x) :- (cancatchwith(x, lefthand) & cancatchwith(x, righthand)))
all:x (football(x) :- ball(x))
|
goodwidereceiver(quincymcduffie)
|
+A2(+q2)++P2(+q2)++W2(+q2)++P2
-((+(+C1++B1))-+G1)
++(+F1++C1)+(-(+x1)+(+F1++C1)
-(+G0-+P0)
-(+G0-(+C0++C0))
-(+F0-+B0)
|
+G2(+q2)
|
59
|
Some monitors equipped in the lab are produced by the company named AOC.
All monitors equipped in the lab are cheaper than their original prices.
If a monitor is cheaper than its original price, then its resolution is 1080p.
If a monitor has a resolution of 1080p, then it does not support the type-c port.
LG34 is equipped in the lab.
|
∃x ∃y (LabMonitor(x) ∧ AOC(x) ∧ (¬(x=y)) ∧ LabMonitor(y) ∧ AOC(y))
∀x (LabMonitor(x) → Discounted(x))
∀x (Discounted(x) → A1080p(x))
∀x (A1080p(x) → ¬TypeC(x))
LabMonitor(lg-34)
|
LG34 is not with a resolution of 1080p.
|
¬A1080p(lg-34)
|
False
| 176
|
exists x exists y (labmonitor(x) and aoc(x) and (not (x=y)) and labmonitor(y) and aoc(y))
forall x (labmonitor(x) implies discounted(x))
forall x (discounted(x) implies a1080p(x))
forall x (a1080p(x) implies not typec(x))
labmonitor(lg-34)
|
not a1080p(lg-34)
|
(labmonitor(x) , aoc(x) , (not(x=y)) , labmonitor(y) , aoc(y))
forall (labmonitor(x) -: discounted(x))
forall (discounted(x) -: a1080p(x))
forall (a1080p(x) -: nottypec(x))
labmonitor(lg-34)
|
nota1080p(lg-34)
|
[*x *y [(labmonitor[(?x)] aoc[(?x)] [(~[(?x=y)])] labmonitor[(?y)] aoc[(?y)])]
@every *x [(labmonitor[(?x)] discounted[(?x)])]
@every *x [(discounted[(?x)] a1080p[(?x)])]
@every *x [(a1080p[(?x)] ~typec[(?x)])]
labmonitor[(lg-34)]]
|
~[a1080p[(lg-34)]]
|
x y (labmonitor(x) & aoc(x) & (~(x=y)) & labmonitor(y) & aoc(y))
all:x (labmonitor(x) :- discounted(x))
all:x (discounted(x) :- a1080p(x))
all:x (a1080p(x) :- ~typec(x))
labmonitor(lg-34)
|
~a1080p(lg-34)
|
++(+L1++A1+(-(+x1))++L1++A1)
-(+L0-+D0)
-(+D0-+A0)
-(+A0--+T0)
+L2(+l2)
|
-+A2(+l2)
|
261
|
All nuclear-powered submarines are warships.
No nuclear-powered submarines are commercial vessels.
|
∀x (NuclearPoweredSubmarine(x) → Warship(x))
∀x (NuclearPoweredSubmarine(x) → ¬CommercialVessel(x))
|
No warships are commercial vessels.
|
∀x (Warship(x) → ¬CommercialVessel(x))
|
Uncertain
| 705
|
forall x (nuclearpoweredsubmarine(x) implies warship(x))
forall x (nuclearpoweredsubmarine(x) implies not commercialvessel(x))
|
forall x (warship(x) implies not commercialvessel(x))
|
forall (nuclearpoweredsubmarine(x) -: warship(x))
forall (nuclearpoweredsubmarine(x) -: notcommercialvessel(x))
|
forall (warship(x) -: notcommercialvessel(x))
|
[@every *x [(nuclearpoweredsubmarine[(?x)] warship[(?x)])]
@every *x [(nuclearpoweredsubmarine[(?x)] ~commercialvessel[(?x)])]]
|
[@every *x [(warship[(?x)] ~commercialvessel[(?x)])]]
|
all:x (nuclearpoweredsubmarine(x) :- warship(x))
all:x (nuclearpoweredsubmarine(x) :- ~commercialvessel(x))
|
all:x (warship(x) :- ~commercialvessel(x))
|
-(+N0-+W0)
-(+N0--+C0)
|
-(+W0--+C0)
|
311
|
No payment cards issued by Russian banks can be used with ApplePay.
All MIR payment cards are issued by Russian banks.
Some international payment cards can be used with ApplePay.
Social payments in Russia can only be transferred to MIR payment cards.
Bank of America payment cards can be used with ApplePay.
|
∀x ∀y (PaymentCard(x) ∧ RussianBank(y) ∧ IssuedBy(x, y) → ¬UsedWith(x, applePay))
∀x ∀y (PaymentCard(x) ∧ MIR(x) → RussianBank(y) ∧ IssuedBy(x, y))
∃x (PaymentCard(x) ∧ International(x) → UsedWith(x, applePay))
∀x ∀y (SocialPayment(x) ∧TransferredTo(x, y) → PaymentCard(y) ∧ MIR(y))
PaymentCard(bankOfAmerica) ∧ UsedWith(bankOfAmerica, applePay)
|
Bank of America payment cards are international and can be used to transfer social payments in Russia.
|
∀x (PaymentCard(bankOfAmerica) ∧ International(bankOfAmerica) ∧ SocialPayment(x) ∧TransferredTo(x, bankOfAmerica))
|
False
| 774
|
forall x forall y (paymentcard(x) and russianbank(y) and issuedby(x, y) implies not usedwith(x, applepay))
forall x forall y (paymentcard(x) and mir(x) implies russianbank(y) and issuedby(x, y))
exists x (paymentcard(x) and international(x) implies usedwith(x, applepay))
forall x forall y (socialpayment(x) andtransferredto(x, y) implies paymentcard(y) and mir(y))
paymentcard(bankofamerica) and usedwith(bankofamerica, applepay)
|
forall x (paymentcard(bankofamerica) and international(bankofamerica) and socialpayment(x) andtransferredto(x, bankofamerica))
|
forall forall (paymentcard(x) , russianbank(y) , issuedby(x, y) -: notusedwith(x, applepay))
forall forall (paymentcard(x) , mir(x) -: russianbank(y) , issuedby(x, y))
(paymentcard(x) , international(x) -: usedwith(x, applepay))
forall forall (socialpayment(x) ,transferredto(x, y) -: paymentcard(y) , mir(y))
paymentcard(bankofamerica) , usedwith(bankofamerica, applepay)
|
forall (paymentcard(bankofamerica) , international(bankofamerica) , socialpayment(x) ,transferredto(x, bankofamerica))
|
[@every *x @every *y [(paymentcard[(?x)] russianbank[(?y)] issuedby[(?x y)] ~usedwith[(?x applepay)])]
@every *x @every *y [(paymentcard[(?x)] mir[(?x)] russianbank[(?y)] issuedby[(?x y)])]
*x [(paymentcard[(?x)] international[(?x)] usedwith[(?x applepay)])]
@every *x @every *y [(socialpayment[(?x)] transferredto[(?x y)] paymentcard[(?y)] mir[(?y)])]
paymentcard[(bankofamerica)] usedwith[(bankofamerica applepay)]]
|
[@every *x [(paymentcard[(bankofamerica)] international[(bankofamerica)] socialpayment[(?x)] transferredto[(?x bankofamerica)])]]
|
all:x all:y (paymentcard(x) & russianbank(y) & issuedby(x, y) :- ~usedwith(x, applepay))
all:x all:y (paymentcard(x) & mir(x) :- russianbank(y) & issuedby(x, y))
x (paymentcard(x) & international(x) :- usedwith(x, applepay))
all:x all:y (socialpayment(x) &transferredto(x, y) :- paymentcard(y) & mir(y))
paymentcard(bankofamerica) & usedwith(bankofamerica, applepay)
|
all:x (paymentcard(bankofamerica) & international(bankofamerica) & socialpayment(x) &transferredto(x, bankofamerica))
|
--(+P0++R0++I0--+U0)
--(+P0++M0-+R0++I0)
+(+P1++I1-+U1)
--(+S0++T0-+P0++M0)
+P2(+b2)++U2
|
-(+P0(+b0)++I0(+b0)++S0++T0)
|
366
|
People in Franny's family drink kombucha every day or drink Coca-Cola or a Pepsi product.
If people in Franny's family drink Coca-Cola or a Pepsi product every day, then they grew up with extremely busy parents who did not have time to pack them lunch.
If people in Franny's family drink Coca-Cola or another Pepsi product every day, then they have to visit the dentist frequently.
If people in Franny's family grew up with extremely busy parents who did not have time to pack them lunch, then they have erratic and diverse eating habits.
If people in Franny's family have erratic and diverse eating habits, then they do not have consistent everyday routines and like sticking to a solid schedule.
Damon is in Franny's family.
Damon either both grow up with extremely busy parents who did not have time to pack her lunch and have consistent everyday routines and like sticking to a solid schedule, or Damon did neither.
|
∀x (In(x, frannysFamily) ∧ (Drink(x, kombucha) ∨ (∃y (Drink(x, cocaCola) ∨ (PepsiProduct(y) ∧ Drink(x, y))))))
∀x (In(x, frannysFamily) ∧ (∃y (Drink(x, cocaCola) ∨ (PepsiProduct(y) ∧ Drink(x, y)))) → (∃y ∃z (¬(y=z) ∧ BusyParent(y) ∧ BusyParent(z) ∧ ¬Pack(y, lunch) ∧ ¬Pack(z, lunch) ∧ GrowUpWith(x, y) ∧ GrowUpWith(x, z))))
∀x (In(x, frannysFamily)) ∧ (∃y (Drink(x, cocaCola) ∨ (PepsiProduct(y) ∧ Drink(x, y)))) → HaveToVisitFrequently(x, dentist))
∀x (In(x, frannysFamily) ∧ (∃y ∃z (¬(y=z) ∧ BusyParent(y) ∧ BusyParent(z) ∧ ¬Pack(y, lunch) ∧ ¬Pack(z, lunch) ∧ GrowUpWith(x, y) ∧ GrowUpWith(x, z))) → ∃y (Have(x, y) ∧ Erratic(y) ∧ Diverse(y) ∧ EatingHabit(y)))
∀x (In(x, frannysFamily) ∧ ∃y (Have(x, y) ∧ Erratic(y) ∧ Diverse(y) ∧ EatingHabit(y))) → ¬(ConsistentEverydayRoutine(x) ∧ StickTo(damon, solidSchedule)))
In(damon, frannysFamily)
¬((∃y ∃z(¬(y=z) ∧ BusyParent(y) ∧ BusyParent(z) ∧ ¬Pack(y, lunch) ∧ ¬Pack(z, lunch) ∧ GrowUpWith(damon, y) ∧ GrowUpWith(damon, z))) ⊕ (ConsistentEverydayRoutine(damon) ∧ StickTo(damon, solidSchedule)))
|
If Damon is in Franny's family and he either visits the dentist frequently or drinks kombucha, then Damon both visits the dentist frequently and drinks Coca-Cola or Pepsi products every day.
|
HaveToVisitFrequently(damon, dentist) ∨ Drink(damon, kombucha, everyDay) → HaveToVisitFrequently(damon, dentist) ∧ (∃y (Drink(x, cocaCola) ∨ (PepsiProduct(y) ∧ Drink(x, y))))
|
False
| 975
|
forall x (in(x, frannysfamily) and (drink(x, kombucha) or (exists y (drink(x, cocacola) or (pepsiproduct(y) and drink(x, y))))))
forall x (in(x, frannysfamily) and (exists y (drink(x, cocacola) or (pepsiproduct(y) and drink(x, y)))) implies (exists y exists z (not (y=z) and busyparent(y) and busyparent(z) and not pack(y, lunch) and not pack(z, lunch) and growupwith(x, y) and growupwith(x, z))))
forall x (in(x, frannysfamily)) and (exists y (drink(x, cocacola) or (pepsiproduct(y) and drink(x, y)))) implies havetovisitfrequently(x, dentist))
forall x (in(x, frannysfamily) and (exists y exists z (not (y=z) and busyparent(y) and busyparent(z) and not pack(y, lunch) and not pack(z, lunch) and growupwith(x, y) and growupwith(x, z))) implies exists y (have(x, y) and erratic(y) and diverse(y) and eatinghabit(y)))
forall x (in(x, frannysfamily) and exists y (have(x, y) and erratic(y) and diverse(y) and eatinghabit(y))) implies not (consistenteverydayroutine(x) and stickto(damon, solidschedule)))
in(damon, frannysfamily)
not ((exists y exists z(not (y=z) and busyparent(y) and busyparent(z) and not pack(y, lunch) and not pack(z, lunch) and growupwith(damon, y) and growupwith(damon, z))) xor (consistenteverydayroutine(damon) and stickto(damon, solidschedule)))
|
havetovisitfrequently(damon, dentist) or drink(damon, kombucha, everyday) implies havetovisitfrequently(damon, dentist) and (exists y (drink(x, cocacola) or (pepsiproduct(y) and drink(x, y))))
|
forall (in(x, frannysfamily) , (drink(x, kombucha) | ( (drink(x, cocacola) | (pepsiproduct(y) , drink(x, y))))))
forall (in(x, frannysfamily) , ( (drink(x, cocacola) | (pepsiproduct(y) , drink(x, y)))) -: ( (not(y=z) , busyparent(y) , busyparent(z) , notpack(y, lunch) , notpack(z, lunch) , growupwith(x, y) , growupwith(x, z))))
forall (in(x, frannysfamily)) , ( (drink(x, cocacola) | (pepsiproduct(y) , drink(x, y)))) -: havetovisitfrequently(x, dentist))
forall (in(x, frannysfamily) , ( (not(y=z) , busyparent(y) , busyparent(z) , notpack(y, lunch) , notpack(z, lunch) , growupwith(x, y) , growupwith(x, z))) -: (have(x, y) , erratic(y) , diverse(y) , eatinghabit(y)))
forall (in(x, frannysfamily) , (have(x, y) , erratic(y) , diverse(y) , eatinghabit(y))) -: not(consistenteverydayroutine(x) , stickto(damon, solidschedule)))
in(damon, frannysfamily)
not(( (not(y=z) , busyparent(y) , busyparent(z) , notpack(y, lunch) , notpack(z, lunch) , growupwith(damon, y) , growupwith(damon, z))) ^ (consistenteverydayroutine(damon) , stickto(damon, solidschedule)))
|
havetovisitfrequently(damon, dentist) | drink(damon, kombucha, everyday) -: havetovisitfrequently(damon, dentist) , ( (drink(x, cocacola) | (pepsiproduct(y) , drink(x, y))))
|
[@every *x [(in[(?x frannysfamily)] [(drink[(?x kombucha)] [(*y [(drink[(?x cocacola)] [(pepsiproduct[(?y)] drink[(?x y)])])])])])]
@every *x [(in[(?x frannysfamily)] [(*y [(drink[(?x cocacola)] [(pepsiproduct[(?y)] drink[(?x y)])])])] [(*y *z [(~[(?y=z)] busyparent[(?y)] busyparent[(?z)] ~pack[(?y lunch)] ~pack[(?z lunch)] growupwith[(?x y)] growupwith[(?x z)])])])]
@every *x [(in[(?x frannysfamily)])] [(*y [(drink[(?x cocacola)] [(pepsiproduct[(?y)] drink[(?x y)])])])] havetovisitfrequently[(?x dentist)])]
@every *x [(in[(?x frannysfamily)] [(*y *z [(~[(?y=z)] busyparent[(?y)] busyparent[(?z)] ~pack[(?y lunch)] ~pack[(?z lunch)] growupwith[(?x y)] growupwith[(?x z)])])] *y [(have[(?x y)] erratic[(?y)] diverse[(?y)] eatinghabit[(?y)])])]
@every *x [(in[(?x frannysfamily)] *y [(have[(?x y)] erratic[(?y)] diverse[(?y)] eatinghabit[(?y)])])] ~[(consistenteverydayroutine[(?x)] stickto[(damon solidschedule)])])]
in[(damon frannysfamily)]
~[([(*y *z[(~[(?y=z)] busyparent[(?y)] busyparent[(?z)] ~pack[(?y lunch)] ~pack[(?z lunch)] growupwith[(damon y)] growupwith[(damon z)])])] [(consistenteverydayroutine[(damon)] stickto[(damon solidschedule)])])]]
|
[havetovisitfrequently[(damon dentist)] drink[(damon kombucha everyday)] havetovisitfrequently[(damon dentist)] [(*y [(drink[(x cocacola)] [(pepsiproduct[(?y)] drink[(x y)])])])]]
|
all:x (in(x, frannysfamily) & (drink(x, kombucha) | (y (drink(x, cocacola) | (pepsiproduct(y) & drink(x, y))))))
all:x (in(x, frannysfamily) & (y (drink(x, cocacola) | (pepsiproduct(y) & drink(x, y)))) :- (y z (~(y=z) & busyparent(y) & busyparent(z) & ~pack(y, lunch) & ~pack(z, lunch) & growupwith(x, y) & growupwith(x, z))))
all:x (in(x, frannysfamily)) & (y (drink(x, cocacola) | (pepsiproduct(y) & drink(x, y)))) :- havetovisitfrequently(x, dentist))
all:x (in(x, frannysfamily) & (y z (~(y=z) & busyparent(y) & busyparent(z) & ~pack(y, lunch) & ~pack(z, lunch) & growupwith(x, y) & growupwith(x, z))) :- y (have(x, y) & erratic(y) & diverse(y) & eatinghabit(y)))
all:x (in(x, frannysfamily) & y (have(x, y) & erratic(y) & diverse(y) & eatinghabit(y))) :- ~(consistenteverydayroutine(x) & stickto(damon, solidschedule)))
in(damon, frannysfamily)
~((y z(~(y=z) & busyparent(y) & busyparent(z) & ~pack(y, lunch) & ~pack(z, lunch) & growupwith(damon, y) & growupwith(damon, z))) ^ (consistenteverydayroutine(damon) & stickto(damon, solidschedule)))
|
havetovisitfrequently(damon, dentist) | drink(damon, kombucha, everyday) :- havetovisitfrequently(damon, dentist) & (y (drink(x, cocacola) | (pepsiproduct(y) & drink(x, y))))
|
-(+I0+(+D0-(+(+D1-(+P1++D1)))))
-(+I0+(+(+D1-(+P1++D1)))-(++(-(+y1)++B1++B1+-+P1+-+P1++G1++G1)))
-(+I0)+(+(+D1-(+P1++D1)))-+H1)
-(+I0+(++(-(+y1)++B1++B1+-+P1+-+P1++G1++G1))-+(+H1++E1++D1++E1))
-(+I0++(+H1++E1++D1++E1))--(+C0++S0))
+I2
-((++(-(+y1)++B1++B1+-+P1+-+P1++G1++G1))-(+C1(+d1)++S1))
|
+H2-+D2-+H2+(+(+D1-(+P1++D1)))
|
108
|
The world's only major large passenger aircraft manufacturers are Boeing and Airbus.
All American Airlines planes are from the world's major large passenger aircraft manufacturers.
Airbus made more revenue than Boeing last year.
|
∀x (WorldMajorLargePassengerAircraftManufacturer(x) → x=boeing ⊕ x=airbus)
∀x (AmericanAirlinesAircraft(x) → WorldMajorLargePassengerAircraftManufacturer(x))
MoreInRevenue(airbus, boeing)
|
There does not exist a United Airlines plane produced by Boeing.
|
∀x (UnitedAirlinesAircraft(x) → ¬(x=boeing))
|
Uncertain
| 328
|
forall x (worldmajorlargepassengeraircraftmanufacturer(x) implies x=boeing xor x=airbus)
forall x (americanairlinesaircraft(x) implies worldmajorlargepassengeraircraftmanufacturer(x))
moreinrevenue(airbus, boeing)
|
forall x (unitedairlinesaircraft(x) implies not (x=boeing))
|
forall (worldmajorlargepassengeraircraftmanufacturer(x) -: x=boeing ^ x=airbus)
forall (americanairlinesaircraft(x) -: worldmajorlargepassengeraircraftmanufacturer(x))
moreinrevenue(airbus, boeing)
|
forall (unitedairlinesaircraft(x) -: not(x=boeing))
|
[@every *x [(worldmajorlargepassengeraircraftmanufacturer[(?x)] x=boeing x=airbus)]
@every *x [(americanairlinesaircraft[(?x)] worldmajorlargepassengeraircraftmanufacturer[(?x)])]
moreinrevenue[(airbus boeing)]]
|
[@every *x [(unitedairlinesaircraft[(?x)] ~[(?x=boeing)])]]
|
all:x (worldmajorlargepassengeraircraftmanufacturer(x) :- x=boeing ^ x=airbus)
all:x (americanairlinesaircraft(x) :- worldmajorlargepassengeraircraftmanufacturer(x))
moreinrevenue(airbus, boeing)
|
all:x (unitedairlinesaircraft(x) :- ~(x=boeing))
|
-(+W0-+x0+b0-+x0+a0)
-(+A0-+W0)
+M2
|
-(+U0--(+x0+b0))
|
92
|
Adventures of Rusty is a drama film and children's film.
Columbia Pictures produced Adventures of Rusty.
Tintin was produced by Paramount.
Tintin is an adventure film.
|
DramaFilm(adventuresOfRusty) ∧ ChildrensFilm(adventuresOfRusty)
Produces(columbiaPictures, adventuresOfRusty)
Produces(paramount, tintin)
AdventureFilm(tintin)
|
Paramount produces adventure films.
|
∃x (AdventureFilm(x) ∧ Produces(paramount, x))
|
True
| 282
|
dramafilm(adventuresofrusty) and childrensfilm(adventuresofrusty)
produces(columbiapictures, adventuresofrusty)
produces(paramount, tintin)
adventurefilm(tintin)
|
exists x (adventurefilm(x) and produces(paramount, x))
|
dramafilm(adventuresofrusty) , childrensfilm(adventuresofrusty)
produces(columbiapictures, adventuresofrusty)
produces(paramount, tintin)
adventurefilm(tintin)
|
(adventurefilm(x) , produces(paramount, x))
|
[dramafilm[(adventuresofrusty)] childrensfilm[(adventuresofrusty)]
produces[(columbiapictures adventuresofrusty)]
produces[(paramount tintin)]
adventurefilm[(tintin)]]
|
[*x [(adventurefilm[(?x)] produces[(paramount x)])]]
|
dramafilm(adventuresofrusty) & childrensfilm(adventuresofrusty)
produces(columbiapictures, adventuresofrusty)
produces(paramount, tintin)
adventurefilm(tintin)
|
x (adventurefilm(x) & produces(paramount, x))
|
+D2(+a2)++C2(+a2)
+P2
+P2
+A2(+t2)
|
+(+A1++P1)
|
373
|
All hodophiles who enjoy eating gelato ice cream would enjoy a vacation to Italy.
No hodophiles can resist the hallmark delectable desserts famous in Italy.
Hodophiles enjoy eating gelato ice cream or love to travel and vacation often, or both.
No hodophiles who study abroad in Europe regret their college experiences.
If hodophiles love to travel and vacation often, then they study abroad in Europe.
Robert is a hodophile, and he either enjoys eating gelato ice cream and loves to travel and vacation often, or does not enjoy eating gelato ice cream and does not love to travel and vacation often.
|
∀x (Hodophiles(x) ∧ EnjoyEating(x, gelato) → Enjoy(x, vacationToItaly))
∀x (Hodophiles(x) ∧ ¬(∃y (Resist(x, y) ∧ Hallmark(y) ∧ Delectabl(y) ∧ Dessert(y) ∧ FamousIn(y, italy))))
∀x (Hodophiles(x) → (EnjoyEating(x, gelato) ∨ LoveToTravelOften(x))
∀x (Hodophiles(x) ∧ TakeIn(x, studyAbroadSemester, europe) → ¬Regret(x, collegeExperience))
∀x (Hodophiles(x) ∧ LoveToTravelOften(x) → TakeIn(x, studyAbroadSemester, europe))
Hodophiles(robert) ∧ ¬(EnjoyEating(robert, gelato) ⊕ LoveToTravelOften(robert))
|
If Robert either would both enjoy a vacation to Italy and regrets his college experiences or neither would enjoy a vacation to Italy nor regrets his college experiences, then Robert would either enjoy a vacation to Italy or he can resist the hallmark delectable desserts that are famous in Italy.
|
¬((Enjoy(robert, vacation) ∧ In(vacation, italy)) ⊕ Regret(x, collegeExperiences)) → Enjoy(robert, vacation) ∧ In(vacation, italy) ⊕ (∃y (Resist(robert, y) ∧ Hallmark(y) ∧ Delectabl(y) ∧ Dessert(y) ∧ FamousIn(y, italy))
|
True
| 994
|
forall x (hodophiles(x) and enjoyeating(x, gelato) implies enjoy(x, vacationtoitaly))
forall x (hodophiles(x) and not (exists y (resist(x, y) and hallmark(y) and delectabl(y) and dessert(y) and famousin(y, italy))))
forall x (hodophiles(x) implies (enjoyeating(x, gelato) or lovetotraveloften(x))
forall x (hodophiles(x) and takein(x, studyabroadsemester, europe) implies not regret(x, collegeexperience))
forall x (hodophiles(x) and lovetotraveloften(x) implies takein(x, studyabroadsemester, europe))
hodophiles(robert) and not (enjoyeating(robert, gelato) xor lovetotraveloften(robert))
|
not ((enjoy(robert, vacation) and in(vacation, italy)) xor regret(x, collegeexperiences)) implies enjoy(robert, vacation) and in(vacation, italy) xor (exists y (resist(robert, y) and hallmark(y) and delectabl(y) and dessert(y) and famousin(y, italy))
|
forall (hodophiles(x) , enjoyeating(x, gelato) -: enjoy(x, vacationtoitaly))
forall (hodophiles(x) , not( (resist(x, y) , hallmark(y) , delectabl(y) , dessert(y) , famousin(y, italy))))
forall (hodophiles(x) -: (enjoyeating(x, gelato) | lovetotraveloften(x))
forall (hodophiles(x) , takein(x, studyabroadsemester, europe) -: notregret(x, collegeexperience))
forall (hodophiles(x) , lovetotraveloften(x) -: takein(x, studyabroadsemester, europe))
hodophiles(robert) , not(enjoyeating(robert, gelato) ^ lovetotraveloften(robert))
|
not((enjoy(robert, vacation) , in(vacation, italy)) ^ regret(x, collegeexperiences)) -: enjoy(robert, vacation) , in(vacation, italy) ^ ( (resist(robert, y) , hallmark(y) , delectabl(y) , dessert(y) , famousin(y, italy))
|
[@every *x [(hodophiles[(?x)] enjoyeating[(?x gelato)] enjoy[(?x vacationtoitaly)])]
@every *x [(hodophiles[(?x)] ~[(*y [(resist[(?x y)] hallmark[(?y)] delectabl[(?y)] dessert[(?y)] famousin[(?y italy)])])])]
@every *x [(hodophiles[(?x)] [(enjoyeating[(?x gelato)] lovetotraveloften[(?x)])]
@every *x [(hodophiles[(?x)] takein[(?x studyabroadsemester europe)] ~regret[(?x collegeexperience)])]
@every *x [(hodophiles[(?x)] lovetotraveloften[(?x)] takein[(?x studyabroadsemester europe)])]
hodophiles[(robert)] ~[(enjoyeating[(robert gelato)] lovetotraveloften[(robert)])]]
|
~[[([(enjoy[(robert vacation)] in[(vacation italy)])] regret[(x collegeexperiences)])] enjoy[(robert vacation)] in[(vacation italy)] [(*y [(resist[(robert y)] hallmark[(?y)] delectabl[(?y)] dessert[(?y)] famousin[(?y italy)])]]
|
all:x (hodophiles(x) & enjoyeating(x, gelato) :- enjoy(x, vacationtoitaly))
all:x (hodophiles(x) & ~(y (resist(x, y) & hallmark(y) & delectabl(y) & dessert(y) & famousin(y, italy))))
all:x (hodophiles(x) :- (enjoyeating(x, gelato) | lovetotraveloften(x))
all:x (hodophiles(x) & takein(x, studyabroadsemester, europe) :- ~regret(x, collegeexperience))
all:x (hodophiles(x) & lovetotraveloften(x) :- takein(x, studyabroadsemester, europe))
hodophiles(robert) & ~(enjoyeating(robert, gelato) ^ lovetotraveloften(robert))
|
~((enjoy(robert, vacation) & in(vacation, italy)) ^ regret(x, collegeexperiences)) :- enjoy(robert, vacation) & in(vacation, italy) ^ (y (resist(robert, y) & hallmark(y) & delectabl(y) & dessert(y) & famousin(y, italy))
|
-(+H0++E0-+E0)
-(+H0+-(+(+R1++H1++D1++D1++F1)))
-(+H0-(+E0-+L0)
-(+H0++T0--+R0)
-(+H0++L0-+T0)
+H2(+r2)+-(+E2-+L2(+r2))
|
-((+E2++I2)-+R2)-+E2++I2-(+(+R1++H1++D1++D1++F1)
|
316
|
There are no mansion houses in an urban area.
All skyscrapers are in urban areas.
Every creepy haunted house is a mansion house.
Every terrifying building on Halloween is a creepy haunted house.
The LaLaurie House is a creepy haunted house or a terrifying building on Halloween.
|
∀x (InUrbanArea(x) → ¬MansionHouse(x))
∀x (Skyscraper(x) → InUrbanArea(x))
∀x (CreepyHauntedHouse(x) → MansionHouse(x))
∀x (TerrifyingBuilding(x) ∧ OnHalloween(x) → CreepyHauntedHouse(x))
CreepyHauntedHouse(laLaurieHouse) ∨ TerrifyingBuilding(laLaurieHouse) ∧ OnHalloween(laLaurieHouse)
|
The LaLaurie House is a skyscraper.
|
Skyscraper(laLaurieHouse)
|
False
| 789
|
forall x (inurbanarea(x) implies not mansionhouse(x))
forall x (skyscraper(x) implies inurbanarea(x))
forall x (creepyhauntedhouse(x) implies mansionhouse(x))
forall x (terrifyingbuilding(x) and onhalloween(x) implies creepyhauntedhouse(x))
creepyhauntedhouse(lalauriehouse) or terrifyingbuilding(lalauriehouse) and onhalloween(lalauriehouse)
|
skyscraper(lalauriehouse)
|
forall (inurbanarea(x) -: notmansionhouse(x))
forall (skyscraper(x) -: inurbanarea(x))
forall (creepyhauntedhouse(x) -: mansionhouse(x))
forall (terrifyingbuilding(x) , onhalloween(x) -: creepyhauntedhouse(x))
creepyhauntedhouse(lalauriehouse) | terrifyingbuilding(lalauriehouse) , onhalloween(lalauriehouse)
|
skyscraper(lalauriehouse)
|
[@every *x [(inurbanarea[(?x)] ~mansionhouse[(?x)])]
@every *x [(skyscraper[(?x)] inurbanarea[(?x)])]
@every *x [(creepyhauntedhouse[(?x)] mansionhouse[(?x)])]
@every *x [(terrifyingbuilding[(?x)] onhalloween[(?x)] creepyhauntedhouse[(?x)])]
creepyhauntedhouse[(lalauriehouse)] terrifyingbuilding[(lalauriehouse)] onhalloween[(lalauriehouse)]]
|
[skyscraper[(lalauriehouse)]]
|
all:x (inurbanarea(x) :- ~mansionhouse(x))
all:x (skyscraper(x) :- inurbanarea(x))
all:x (creepyhauntedhouse(x) :- mansionhouse(x))
all:x (terrifyingbuilding(x) & onhalloween(x) :- creepyhauntedhouse(x))
creepyhauntedhouse(lalauriehouse) | terrifyingbuilding(lalauriehouse) & onhalloween(lalauriehouse)
|
skyscraper(lalauriehouse)
|
-(+I0--+M0)
-(+S0-+I0)
-(+C0-+M0)
-(+T0++O0-+C0)
+C2(+l2)-+T2(+l2)++O2(+l2)
|
+S2(+l2)
|
6
|
Boves is a railway station located in France.
The preceding station of Boves is Longueau.
The preceding station of Dommartin is Boves.
France is a European country.
Dommartin is situated on the Paris–Lille railway.
Any two contiguous stations are on the same railway.
Boves is served by regional TER Hauts-de-France trains.
If place A is located in place B and place B is located in place C, then place A is located in place C.
If place A precedes place B and place B precedes place C, then place A precedes place C.
|
RailwayStation(boves) ∧ In(boves, france)
Precede(longueau, boves)
Precede(boves, dommartin)
In(france, europe)
SituatedOn(dommartin, pairsLille)
∀x ∀y ∀z ((SituatedOn(x, z) ∧ (Precede(x, y) ∨ Precede(y, x)) → SituatedOn(y, z))
Serve(boves, hautsDeFrance)
∀x ∀y ∀z ((In(x, y) ∧ In(y, z)) → In(x, z))
∀x ∀y ∀z ((Precede(x, y) ∧ Precede(y, z)) → Precede(x, z))
|
Longueau is situated on the Paris–Lille railway.
|
SituatedOn(longueau, pairsLille)
|
True
| 14
|
railwaystation(boves) and in(boves, france)
precede(longueau, boves)
precede(boves, dommartin)
in(france, europe)
situatedon(dommartin, pairslille)
forall x forall y forall z ((situatedon(x, z) and (precede(x, y) or precede(y, x)) implies situatedon(y, z))
serve(boves, hautsdefrance)
forall x forall y forall z ((in(x, y) and in(y, z)) implies in(x, z))
forall x forall y forall z ((precede(x, y) and precede(y, z)) implies precede(x, z))
|
situatedon(longueau, pairslille)
|
railwaystation(boves) , in(boves, france)
precede(longueau, boves)
precede(boves, dommartin)
in(france, europe)
situatedon(dommartin, pairslille)
forall forall forall ((situatedon(x, z) , (precede(x, y) | precede(y, x)) -: situatedon(y, z))
serve(boves, hautsdefrance)
forall forall forall ((in(x, y) , in(y, z)) -: in(x, z))
forall forall forall ((precede(x, y) , precede(y, z)) -: precede(x, z))
|
situatedon(longueau, pairslille)
|
[railwaystation[(boves)] in[(boves france)]
precede[(longueau boves)]
precede[(boves dommartin)]
in[(france europe)]
situatedon[(dommartin pairslille)]
@every *x @every *y @every *z [([(situatedon[(?x z)] [(precede[(?x y)] precede[(?y x)])] situatedon[(?y z)])]
serve[(boves hautsdefrance)]
@every *x @every *y @every *z [([(in[(?x y)] in[(?y z)])] in[(?x z)])]
@every *x @every *y @every *z [([(precede[(?x y)] precede[(?y z)])] precede[(?x z)])]]
|
[situatedon[(longueau pairslille)]]
|
railwaystation(boves) & in(boves, france)
precede(longueau, boves)
precede(boves, dommartin)
in(france, europe)
situatedon(dommartin, pairslille)
all:x all:y all:z ((situatedon(x, z) & (precede(x, y) | precede(y, x)) :- situatedon(y, z))
serve(boves, hautsdefrance)
all:x all:y all:z ((in(x, y) & in(y, z)) :- in(x, z))
all:x all:y all:z ((precede(x, y) & precede(y, z)) :- precede(x, z))
|
situatedon(longueau, pairslille)
|
+R2(+b2)++I2
+P2
+P2
+I2
+S2
---((+S0+(+P0-+P0)-+S0)
+S2
---((+I0++I0)-+I0)
---((+P0++P0)-+P0)
|
+S2
|
212
|
If you have room for dessert, you have room for broccoli.
Everyone at Luis's dinner party has room for dessert, including Luis.
Mauricia does not have room for broccoli.
Luis's dinner party is the first ever dinner party that Allison has attended.
Gustave has room for both broccoli and asparagus.
Broccoli and asparagus are both vegetables.
|
∀x (RoomFor(x, dessert) → RoomFor(x, broccoli))
∀x (AtLuisParty(x) → RoomFor(x, dessert))
¬RoomFor(mauricia, broccoli)
AtLuisParty(allison) ∧ FirstDinnerPartyFor(luisparty, allison)
RoomFor(gustave, broccoli) ∧ RoomFor(gustave, asparagus)
Vegetable(broccoli) ∧ Vegetable(asparagus)
|
Allison has room for broccoli.
|
RoomFor(allison, broccoli)
|
True
| 605
|
forall x (roomfor(x, dessert) implies roomfor(x, broccoli))
forall x (atluisparty(x) implies roomfor(x, dessert))
not roomfor(mauricia, broccoli)
atluisparty(allison) and firstdinnerpartyfor(luisparty, allison)
roomfor(gustave, broccoli) and roomfor(gustave, asparagus)
vegetable(broccoli) and vegetable(asparagus)
|
roomfor(allison, broccoli)
|
forall (roomfor(x, dessert) -: roomfor(x, broccoli))
forall (atluisparty(x) -: roomfor(x, dessert))
notroomfor(mauricia, broccoli)
atluisparty(allison) , firstdinnerpartyfor(luisparty, allison)
roomfor(gustave, broccoli) , roomfor(gustave, asparagus)
vegetable(broccoli) , vegetable(asparagus)
|
roomfor(allison, broccoli)
|
[@every *x [(roomfor[(?x dessert)] roomfor[(?x broccoli)])]
@every *x [(atluisparty[(?x)] roomfor[(?x dessert)])]
~roomfor[(mauricia broccoli)]
atluisparty[(allison)] firstdinnerpartyfor[(luisparty allison)]
roomfor[(gustave broccoli)] roomfor[(gustave asparagus)]
vegetable[(broccoli)] vegetable[(asparagus)]]
|
[roomfor[(allison broccoli)]]
|
all:x (roomfor(x, dessert) :- roomfor(x, broccoli))
all:x (atluisparty(x) :- roomfor(x, dessert))
~roomfor(mauricia, broccoli)
atluisparty(allison) & firstdinnerpartyfor(luisparty, allison)
roomfor(gustave, broccoli) & roomfor(gustave, asparagus)
vegetable(broccoli) & vegetable(asparagus)
|
roomfor(allison, broccoli)
|
-(+R0-+R0)
-(+A0-+R0)
-+R2
+A2(+a2)++F2
+R2++R2
+V2(+b2)++V2(+a2)
|
+R2
|
476
|
All phones are things.
All cell phones are phones.
All iPhones are cell phones.
All employees are wage earners.
All wage earners are human.
Jack is either an employee or a wage earner.
Jack is either a human or a phone.
|
∀x (Phone(x) → Thing(x))
∀x (Cellphone(x) → Phone(x))
∀x (Iphone(x) → Cellphone(x))
∀x (Employee(x) → WageEarner(x))
∀x (WageEarner(x) → Human(x))
Employee(jack) ⊕ WageEarner(jack)
Human(jack) ⊕ Phone(jack)
|
Jack is a thing.
|
Thing(jack)
|
Uncertain
| 1,381
|
forall x (phone(x) implies thing(x))
forall x (cellphone(x) implies phone(x))
forall x (iphone(x) implies cellphone(x))
forall x (employee(x) implies wageearner(x))
forall x (wageearner(x) implies human(x))
employee(jack) xor wageearner(jack)
human(jack) xor phone(jack)
|
thing(jack)
|
forall (phone(x) -: thing(x))
forall (cellphone(x) -: phone(x))
forall (iphone(x) -: cellphone(x))
forall (employee(x) -: wageearner(x))
forall (wageearner(x) -: human(x))
employee(jack) ^ wageearner(jack)
human(jack) ^ phone(jack)
|
thing(jack)
|
[@every *x [(phone[(?x)] thing[(?x)])]
@every *x [(cellphone[(?x)] phone[(?x)])]
@every *x [(iphone[(?x)] cellphone[(?x)])]
@every *x [(employee[(?x)] wageearner[(?x)])]
@every *x [(wageearner[(?x)] human[(?x)])]
employee[(jack)] wageearner[(jack)]
human[(jack)] phone[(jack)]]
|
[thing[(jack)]]
|
all:x (phone(x) :- thing(x))
all:x (cellphone(x) :- phone(x))
all:x (iphone(x) :- cellphone(x))
all:x (employee(x) :- wageearner(x))
all:x (wageearner(x) :- human(x))
employee(jack) ^ wageearner(jack)
human(jack) ^ phone(jack)
|
thing(jack)
|
-(+P0-+T0)
-(+C0-+P0)
-(+I0-+C0)
-(+E0-+W0)
-(+W0-+H0)
+E2(+j2)-+W2(+j2)
+H2(+j2)-+P2(+j2)
|
+T2(+j2)
|
163
|
There are eight federal districts of Russia: Central, Northwestern, Southern, North Caucasian, Volga, Ural, Siberian, and Far Eastern.
The Central federal district has the largest population among all federal districts in Russia.
Moscow is the administrative center of the Central federal district.
Yekaterinburg is the administrative center of the Ural federal district.
Vladivostok is the administrative center of the Far Eastern federal district.
The Far Eastern federal district has the largest area among all federal districts in Russia.
Some federal districts in Russia were established in 2000.
|
FederalDistrictOf(central, russia) ∧ FederalDistrictOf(northwestern, russia) ∧ FederalDistrictOf(southern, russia) ∧ FederalDistrictOf(northcaucasian, russia) ∧ FederalDistrictOf(volga, russia) ∧ FederalDistrictOf(ural, russia) ∧ FederalDistrictOf(siberian, russia) ∧ FederalDistrictOf(fareastern, russia)
LargestPopulation(central)
AdministrativeCenterOf(moscow, central)
AdministrativeCenterOf(yekaterinburg, ural)
AdministrativeCenterOf(vladivostok, farEastern)
LargestArea(farEastern)
∃x (FederalDistrictOf(x, russia) ∧ EstablishedIn(x, 2000))
|
The Northwestern federal district was established in 2000.
|
EstablishedIn(northwestern, 2000)
|
Uncertain
| 469
|
federaldistrictof(central, russia) and federaldistrictof(northwestern, russia) and federaldistrictof(southern, russia) and federaldistrictof(northcaucasian, russia) and federaldistrictof(volga, russia) and federaldistrictof(ural, russia) and federaldistrictof(siberian, russia) and federaldistrictof(fareastern, russia)
largestpopulation(central)
administrativecenterof(moscow, central)
administrativecenterof(yekaterinburg, ural)
administrativecenterof(vladivostok, fareastern)
largestarea(fareastern)
exists x (federaldistrictof(x, russia) and establishedin(x, 2000))
|
establishedin(northwestern, 2000)
|
federaldistrictof(central, russia) , federaldistrictof(northwestern, russia) , federaldistrictof(southern, russia) , federaldistrictof(northcaucasian, russia) , federaldistrictof(volga, russia) , federaldistrictof(ural, russia) , federaldistrictof(siberian, russia) , federaldistrictof(fareastern, russia)
largestpopulation(central)
administrativecenterof(moscow, central)
administrativecenterof(yekaterinburg, ural)
administrativecenterof(vladivostok, fareastern)
largestarea(fareastern)
(federaldistrictof(x, russia) , establishedin(x, 2000))
|
establishedin(northwestern, 2000)
|
[federaldistrictof[(central russia)] federaldistrictof[(northwestern russia)] federaldistrictof[(southern russia)] federaldistrictof[(northcaucasian russia)] federaldistrictof[(volga russia)] federaldistrictof[(ural russia)] federaldistrictof[(siberian russia)] federaldistrictof[(fareastern russia)]
largestpopulation[(central)]
administrativecenterof[(moscow central)]
administrativecenterof[(yekaterinburg ural)]
administrativecenterof[(vladivostok fareastern)]
largestarea[(fareastern)]
*x [(federaldistrictof[(?x russia)] establishedin[(?x 2000)])]]
|
[establishedin[(northwestern 2000)]]
|
federaldistrictof(central, russia) & federaldistrictof(northwestern, russia) & federaldistrictof(southern, russia) & federaldistrictof(northcaucasian, russia) & federaldistrictof(volga, russia) & federaldistrictof(ural, russia) & federaldistrictof(siberian, russia) & federaldistrictof(fareastern, russia)
largestpopulation(central)
administrativecenterof(moscow, central)
administrativecenterof(yekaterinburg, ural)
administrativecenterof(vladivostok, fareastern)
largestarea(fareastern)
x (federaldistrictof(x, russia) & establishedin(x, 2000))
|
establishedin(northwestern, 2000)
|
+F2++F2++F2++F2++F2++F2++F2++F2
+L2(+c2)
+A2
+A2
+A2
+L2(+f2)
+(+F1++E1)
|
+E2
|
19
|
Thomas Barber was an English professional footballer.
Thomas Barber played in the Football League for Aston Villa.
Thomas Barber played as a halfback and inside left.
Thomas Barber scored the winning goal in the 1913 FA Cup Final.
|
English(thomasBarber) ∧ ProfessionalFootballer(thomasBarber)
PlayedFor(thomasBarber, astonVilla) ∧ PlayedIn(astonVilla,theFootballLeague)
PlayedAs(thomasBarber, halfBack) ∧ PlayedAs(thomasBarber, insideLeft)
ScoredTheWinningGoalIn(thomasBarber, facupfinal1913)
|
Thomas Barber played in the Football League for Bolton Wanderers
|
PlayedFor(thomasBarber, boltonWanderers) ∧ PlayedIn(boltonWanderers,theFootballLeague)
|
Uncertain
| 54
|
english(thomasbarber) and professionalfootballer(thomasbarber)
playedfor(thomasbarber, astonvilla) and playedin(astonvilla,thefootballleague)
playedas(thomasbarber, halfback) and playedas(thomasbarber, insideleft)
scoredthewinninggoalin(thomasbarber, facupfinal1913)
|
playedfor(thomasbarber, boltonwanderers) and playedin(boltonwanderers,thefootballleague)
|
english(thomasbarber) , professionalfootballer(thomasbarber)
playedfor(thomasbarber, astonvilla) , playedin(astonvilla,thefootballleague)
playedas(thomasbarber, halfback) , playedas(thomasbarber, insideleft)
scoredthewinninggoalin(thomasbarber, facupfinal1913)
|
playedfor(thomasbarber, boltonwanderers) , playedin(boltonwanderers,thefootballleague)
|
[english[(thomasbarber)] professionalfootballer[(thomasbarber)]
playedfor[(thomasbarber astonvilla)] playedin[(astonvilla thefootballleague)]
playedas[(thomasbarber halfback)] playedas[(thomasbarber insideleft)]
scoredthewinninggoalin[(thomasbarber facupfinal1913)]]
|
[playedfor[(thomasbarber boltonwanderers)] playedin[(boltonwanderers thefootballleague)]]
|
english(thomasbarber) & professionalfootballer(thomasbarber)
playedfor(thomasbarber, astonvilla) & playedin(astonvilla,thefootballleague)
playedas(thomasbarber, halfback) & playedas(thomasbarber, insideleft)
scoredthewinninggoalin(thomasbarber, facupfinal1913)
|
playedfor(thomasbarber, boltonwanderers) & playedin(boltonwanderers,thefootballleague)
|
+E2(+t2)++P2(+t2)
+P2++P2
+P2++P2
+S2
|
+P2++P2
|
392
|
All prime numbers are natural numbers.
All integers are real numbers.
All real numbers are complex numbers.
One is a prime number or a natural number or both.
If one is not a complex number, then one is a prime number and an integer.
|
∀x (PrimeNumber(x) → NaturalNumber(x))
∀x (Integer(x) → RealNumber(x))
∀x (RealNumber(x) → ComplexNumber(x))
PrimeNumber(one) ∨ NaturalNumber(one)
¬ComplexNumber(one) → (PrimeNumber(one) ∧ Integer(one))
|
One is a real number.
|
RealNumber(one)
|
Uncertain
| 1,057
|
forall x (primenumber(x) implies naturalnumber(x))
forall x (integer(x) implies realnumber(x))
forall x (realnumber(x) implies complexnumber(x))
primenumber(one) or naturalnumber(one)
not complexnumber(one) implies (primenumber(one) and integer(one))
|
realnumber(one)
|
forall (primenumber(x) -: naturalnumber(x))
forall (integer(x) -: realnumber(x))
forall (realnumber(x) -: complexnumber(x))
primenumber(one) | naturalnumber(one)
notcomplexnumber(one) -: (primenumber(one) , integer(one))
|
realnumber(one)
|
[@every *x [(primenumber[(?x)] naturalnumber[(?x)])]
@every *x [(integer[(?x)] realnumber[(?x)])]
@every *x [(realnumber[(?x)] complexnumber[(?x)])]
primenumber[(one)] naturalnumber[(one)]
~complexnumber[(one)] [(primenumber[(one)] integer[(one)])]]
|
[realnumber[(one)]]
|
all:x (primenumber(x) :- naturalnumber(x))
all:x (integer(x) :- realnumber(x))
all:x (realnumber(x) :- complexnumber(x))
primenumber(one) | naturalnumber(one)
~complexnumber(one) :- (primenumber(one) & integer(one))
|
realnumber(one)
|
-(+P0-+N0)
-(+I0-+R0)
-(+R0-+C0)
+P2(+o2)-+N2(+o2)
-+C2(+o2)-(+P2(+o2)++I2(+o2))
|
+R2(+o2)
|
81
|
Quiksilver sells sportswear, clothing, footwear, and accessories.
Flannels are a type of clothing.
Joe owns an item from Quiksilver.
|
∀x (Sells(quiksilver, x) → (Sportswear(x) ∨ Clothing(x) ∨ Footwear(x) ∨ Accessory(x)))
Clothing(flannel)
∃x (Sells(quiksilver, x) ∧ Owns(joe, x))
|
Joe owns at least one piece of sportswear, clothing, footwear, or accessory
|
∃x (Owns(joe, x) ∧ Sportswear(x) ∨ Clothing(x) ∨ Footwear(x) ∨ Accessory(x))
|
True
| 248
|
forall x (sells(quiksilver, x) implies (sportswear(x) or clothing(x) or footwear(x) or accessory(x)))
clothing(flannel)
exists x (sells(quiksilver, x) and owns(joe, x))
|
exists x (owns(joe, x) and sportswear(x) or clothing(x) or footwear(x) or accessory(x))
|
forall (sells(quiksilver, x) -: (sportswear(x) | clothing(x) | footwear(x) | accessory(x)))
clothing(flannel)
(sells(quiksilver, x) , owns(joe, x))
|
(owns(joe, x) , sportswear(x) | clothing(x) | footwear(x) | accessory(x))
|
[@every *x [(sells[(quiksilver x)] [(sportswear[(?x)] clothing[(?x)] footwear[(?x)] accessory[(?x)])])]
clothing[(flannel)]
*x [(sells[(quiksilver x)] owns[(joe x)])]]
|
[*x [(owns[(joe x)] sportswear[(?x)] clothing[(?x)] footwear[(?x)] accessory[(?x)])]]
|
all:x (sells(quiksilver, x) :- (sportswear(x) | clothing(x) | footwear(x) | accessory(x)))
clothing(flannel)
x (sells(quiksilver, x) & owns(joe, x))
|
x (owns(joe, x) & sportswear(x) | clothing(x) | footwear(x) | accessory(x))
|
-(+S0-(+S0-+C0-+F0-+A0))
+C2(+f2)
+(+S1++O1)
|
+(+O1++S1-+C1-+F1-+A1)
|
430
|
Hermès bags are not made in Italy.
All Birkin bags are Hermès bags.
All Ferraris are made in Italy.
All cars that carry a Ferrari V12 engine are Ferraris.
All cars that are made in Maranello carry a Ferrari V12 engine.
A Lamborghini SUV is not both a Ferrari and made in Maranello.
A Kelly bag is a Hermès bag, or it is a car that carries a Ferrari V12 engine.
|
∀x ((Bag(x) ∧ Hermès(x)) → ¬MadeIn(x, italy))
∀x ((Bag(x) ∧ Birkin(x)) → Hermès(x))
∀x (Ferrari(x) → MadeIn(x, italy))
∀x ((Car(x) ∧ Carry(x, ferrariV12Engine)) → Ferrrari(x))
∀x ((Car(x) ∧ MadeIn(x, maranello)) → Carry(x, ferrariV12Engine))
¬(Ferrari(lamborghiniSUV) ∧ MadeIn(lamborghiniSUV, maranello))
(Bag(kelly) ∧ Hermès(kelly)) ∨ (Bag(kelly) ∧ Car(kelly) ∧ Carry(kelly, ferrariV12Engine))
|
A Kelly bag is a Birkin bag made in Maranello.
|
Bag(kelly) ∧ MadeIn(kelly, maranello) ∧ Birkin(kelly)
|
False
| 1,225
|
forall x ((bag(x) and hermès(x)) implies not madein(x, italy))
forall x ((bag(x) and birkin(x)) implies hermès(x))
forall x (ferrari(x) implies madein(x, italy))
forall x ((car(x) and carry(x, ferrariv12engine)) implies ferrrari(x))
forall x ((car(x) and madein(x, maranello)) implies carry(x, ferrariv12engine))
not (ferrari(lamborghinisuv) and madein(lamborghinisuv, maranello))
(bag(kelly) and hermès(kelly)) or (bag(kelly) and car(kelly) and carry(kelly, ferrariv12engine))
|
bag(kelly) and madein(kelly, maranello) and birkin(kelly)
|
forall ((bag(x) , hermès(x)) -: notmadein(x, italy))
forall ((bag(x) , birkin(x)) -: hermès(x))
forall (ferrari(x) -: madein(x, italy))
forall ((car(x) , carry(x, ferrariv12engine)) -: ferrrari(x))
forall ((car(x) , madein(x, maranello)) -: carry(x, ferrariv12engine))
not(ferrari(lamborghinisuv) , madein(lamborghinisuv, maranello))
(bag(kelly) , hermès(kelly)) | (bag(kelly) , car(kelly) , carry(kelly, ferrariv12engine))
|
bag(kelly) , madein(kelly, maranello) , birkin(kelly)
|
[@every *x [([(bag[(?x)] hermès[(?x)])] ~madein[(?x italy)])]
@every *x [([(bag[(?x)] birkin[(?x)])] hermès[(?x)])]
@every *x [(ferrari[(?x)] madein[(?x italy)])]
@every *x [([(car[(?x)] carry[(?x ferrariv12engine)])] ferrrari[(?x)])]
@every *x [([(car[(?x)] madein[(?x maranello)])] carry[(?x ferrariv12engine)])]
~[(ferrari[(lamborghinisuv)] madein[(lamborghinisuv maranello)])]
[(bag[(kelly)] hermès[(kelly)])] [(bag[(kelly)] car[(kelly)] carry[(kelly ferrariv12engine)])]]
|
[bag[(kelly)] madein[(kelly maranello)] birkin[(kelly)]]
|
all:x ((bag(x) & hermès(x)) :- ~madein(x, italy))
all:x ((bag(x) & birkin(x)) :- hermès(x))
all:x (ferrari(x) :- madein(x, italy))
all:x ((car(x) & carry(x, ferrariv12engine)) :- ferrrari(x))
all:x ((car(x) & madein(x, maranello)) :- carry(x, ferrariv12engine))
~(ferrari(lamborghinisuv) & madein(lamborghinisuv, maranello))
(bag(kelly) & hermès(kelly)) | (bag(kelly) & car(kelly) & carry(kelly, ferrariv12engine))
|
bag(kelly) & madein(kelly, maranello) & birkin(kelly)
|
-((+B0++H0)--+M0)
-((+B0++B0)-+H0)
-(+F0-+M0)
-((+C0++C0)-+F0)
-((+C0++M0)-+C0)
-(+F2(+l2)++M2)
(+B2(+k2)++H2(+k2))-(+B2(+k2)++C2(+k2)++C2)
|
+B2(+k2)++M2++B2(+k2)
|
396
|
A neuroimaging technique is either an invasive neuroimaging technique or a noninvasive neuroimaging technique.
All noninvasive neuroimaging techniques provide a spatial resolution of brains.
If a technique provides a spatial resolution of brains, then it is a measurement of brain activity.
All measurements of brain activity are used by neuroscience researchers.
FMRI is either a measurement of brain activity or a noninvasive neuroimaging technique.
FMRI is a neuroimaging technique.
|
∀x (NeuroimagingTechnique(x) → (Invasive(x) ⊕ Noninvasive(x)))
∀x (Noninvasive(x) → Provides(x, spatialResolutionOfBrains))
∀x (Provides(x, spatialResolutionOfBrains) → Measure(x, brainActivity))
∀x (Measure(x, brainActivity) → UsedBy(x, neuroscienceResearchers))
Measure(fMRI, brainActivity) ⊕ Noninvasive(fMRI)
NeuroimagingTechnique(fMRI)
|
FMRI is either an invasive neuroimaging technique or is used by neuroscience researchers.
|
Invasive(fMRI) ⊕ UsedBy(fMRI, neuroscienceResearchers)
|
False
| 1,078
|
forall x (neuroimagingtechnique(x) implies (invasive(x) xor noninvasive(x)))
forall x (noninvasive(x) implies provides(x, spatialresolutionofbrains))
forall x (provides(x, spatialresolutionofbrains) implies measure(x, brainactivity))
forall x (measure(x, brainactivity) implies usedby(x, neuroscienceresearchers))
measure(fmri, brainactivity) xor noninvasive(fmri)
neuroimagingtechnique(fmri)
|
invasive(fmri) xor usedby(fmri, neuroscienceresearchers)
|
forall (neuroimagingtechnique(x) -: (invasive(x) ^ noninvasive(x)))
forall (noninvasive(x) -: provides(x, spatialresolutionofbrains))
forall (provides(x, spatialresolutionofbrains) -: measure(x, brainactivity))
forall (measure(x, brainactivity) -: usedby(x, neuroscienceresearchers))
measure(fmri, brainactivity) ^ noninvasive(fmri)
neuroimagingtechnique(fmri)
|
invasive(fmri) ^ usedby(fmri, neuroscienceresearchers)
|
[@every *x [(neuroimagingtechnique[(?x)] [(invasive[(?x)] noninvasive[(?x)])])]
@every *x [(noninvasive[(?x)] provides[(?x spatialresolutionofbrains)])]
@every *x [(provides[(?x spatialresolutionofbrains)] measure[(?x brainactivity)])]
@every *x [(measure[(?x brainactivity)] usedby[(?x neuroscienceresearchers)])]
measure[(fmri brainactivity)] noninvasive[(fmri)]
neuroimagingtechnique[(fmri)]]
|
[invasive[(fmri)] usedby[(fmri neuroscienceresearchers)]]
|
all:x (neuroimagingtechnique(x) :- (invasive(x) ^ noninvasive(x)))
all:x (noninvasive(x) :- provides(x, spatialresolutionofbrains))
all:x (provides(x, spatialresolutionofbrains) :- measure(x, brainactivity))
all:x (measure(x, brainactivity) :- usedby(x, neuroscienceresearchers))
measure(fmri, brainactivity) ^ noninvasive(fmri)
neuroimagingtechnique(fmri)
|
invasive(fmri) ^ usedby(fmri, neuroscienceresearchers)
|
-(+N0-(+I0-+N0))
-(+N0-+P0)
-(+P0-+M0)
-(+M0-+U0)
+M2-+N2(+f2)
+N2(+f2)
|
+I2(+f2)-+U2
|
349
|
All disposables are designed to be used only once.
Some items used in Tom's house are eco-friendly.
Every item used in Tom's house is either disposable or reusable.
If something is made from metal, then it is not made from plastic.
All reusable items used in Tom's house are made from metal.
The chopsticks used in Tom's house are either made from metals and plastics, or that they are neither made from metals nor plastics.
|
∀x (Disposable(x) → DesignedToBeOnlyUsedOnce(x))
∃x (EcoFriendly(x))
∀x (UsedIn(x, tomsHouse) → Disposable(x) ⊕ Reusable(x))
∀x (MadeFrom(x, metal) → ¬MadeFrom(x, plastic))
∀x (Reusable(x) → MadeFrom(x, metal))
¬(MadeFrom(chopsticksUsedInTomsHouse, metal) ⊕ MadeFrom(chopsticksUsedInTomsHouse, plastic))
|
The chopsticks used in Tom's house are eco-friendly or designed to be used only once.
|
EcoFriendly(chopsticks) ∨ DesignedToBeOnlyUsedOnce(chopsticks)
|
True
| 925
|
forall x (disposable(x) implies designedtobeonlyusedonce(x))
exists x (ecofriendly(x))
forall x (usedin(x, tomshouse) implies disposable(x) xor reusable(x))
forall x (madefrom(x, metal) implies not madefrom(x, plastic))
forall x (reusable(x) implies madefrom(x, metal))
not (madefrom(chopsticksusedintomshouse, metal) xor madefrom(chopsticksusedintomshouse, plastic))
|
ecofriendly(chopsticks) or designedtobeonlyusedonce(chopsticks)
|
forall (disposable(x) -: designedtobeonlyusedonce(x))
(ecofriendly(x))
forall (usedin(x, tomshouse) -: disposable(x) ^ reusable(x))
forall (madefrom(x, metal) -: notmadefrom(x, plastic))
forall (reusable(x) -: madefrom(x, metal))
not(madefrom(chopsticksusedintomshouse, metal) ^ madefrom(chopsticksusedintomshouse, plastic))
|
ecofriendly(chopsticks) | designedtobeonlyusedonce(chopsticks)
|
[@every *x [(disposable[(?x)] designedtobeonlyusedonce[(?x)])]
*x [(ecofriendly[(?x)])]
@every *x [(usedin[(?x tomshouse)] disposable[(?x)] reusable[(?x)])]
@every *x [(madefrom[(?x metal)] ~madefrom[(?x plastic)])]
@every *x [(reusable[(?x)] madefrom[(?x metal)])]
~[(madefrom[(chopsticksusedintomshouse metal)] madefrom[(chopsticksusedintomshouse plastic)])]]
|
[ecofriendly[(chopsticks)] designedtobeonlyusedonce[(chopsticks)]]
|
all:x (disposable(x) :- designedtobeonlyusedonce(x))
x (ecofriendly(x))
all:x (usedin(x, tomshouse) :- disposable(x) ^ reusable(x))
all:x (madefrom(x, metal) :- ~madefrom(x, plastic))
all:x (reusable(x) :- madefrom(x, metal))
~(madefrom(chopsticksusedintomshouse, metal) ^ madefrom(chopsticksusedintomshouse, plastic))
|
ecofriendly(chopsticks) | designedtobeonlyusedonce(chopsticks)
|
-(+D0-+D0)
+(+E1)
-(+U0-+D0-+R0)
-(+M0--+M0)
-(+R0-+M0)
-(+M2-+M2)
|
+E2(+c2)-+D2(+c2)
|
468
|
All drinks on the counter are edible.
All juices on the counter are drinks.
Orange juice is a type of juice.
Everything on the counter is either orange juice or apple juice.
All apple juices on the counter are sweet.
The coke is on the counter and if the coke is apple juice, then the coke is a drink.
If the coke is not apple juice, then the coke is not edible.
|
∀x (OnCounter(x) ∧ Drink(x) → Edible(x))
∀x (OnCounter(x) ∧ Juice(x) → Drink(x))
∀x (OrangeJuice(x) → Juice(x))
∀x (OnCounter(x) → OrangeJuice(x) ⊕ AppleJuice(x))
∀x (OnCounter(x) ∧ AppleJuice(x) → Sweet(x))
OnCounter(coke) ∧ (AppleJuice(coke) → Drink(coke))
¬AppleJuice(coke) → ¬Edible(coke)
|
The coke is edible and sweet.
|
Edible(coke) ∧ Sweet(coke)
|
True
| 1,352
|
forall x (oncounter(x) and drink(x) implies edible(x))
forall x (oncounter(x) and juice(x) implies drink(x))
forall x (orangejuice(x) implies juice(x))
forall x (oncounter(x) implies orangejuice(x) xor applejuice(x))
forall x (oncounter(x) and applejuice(x) implies sweet(x))
oncounter(coke) and (applejuice(coke) implies drink(coke))
not applejuice(coke) implies not edible(coke)
|
edible(coke) and sweet(coke)
|
forall (oncounter(x) , drink(x) -: edible(x))
forall (oncounter(x) , juice(x) -: drink(x))
forall (orangejuice(x) -: juice(x))
forall (oncounter(x) -: orangejuice(x) ^ applejuice(x))
forall (oncounter(x) , applejuice(x) -: sweet(x))
oncounter(coke) , (applejuice(coke) -: drink(coke))
notapplejuice(coke) -: notedible(coke)
|
edible(coke) , sweet(coke)
|
[@every *x [(oncounter[(?x)] drink[(?x)] edible[(?x)])]
@every *x [(oncounter[(?x)] juice[(?x)] drink[(?x)])]
@every *x [(orangejuice[(?x)] juice[(?x)])]
@every *x [(oncounter[(?x)] orangejuice[(?x)] applejuice[(?x)])]
@every *x [(oncounter[(?x)] applejuice[(?x)] sweet[(?x)])]
oncounter[(coke)] [(applejuice[(coke)] drink[(coke)])]
~applejuice[(coke)] ~edible[(coke)]]
|
[edible[(coke)] sweet[(coke)]]
|
all:x (oncounter(x) & drink(x) :- edible(x))
all:x (oncounter(x) & juice(x) :- drink(x))
all:x (orangejuice(x) :- juice(x))
all:x (oncounter(x) :- orangejuice(x) ^ applejuice(x))
all:x (oncounter(x) & applejuice(x) :- sweet(x))
oncounter(coke) & (applejuice(coke) :- drink(coke))
~applejuice(coke) :- ~edible(coke)
|
edible(coke) & sweet(coke)
|
-(+O0++D0-+E0)
-(+O0++J0-+D0)
-(+O0-+J0)
-(+O0-+O0-+A0)
-(+O0++A0-+S0)
+O2(+c2)+(+A2(+c2)-+D2(+c2))
-+A2(+c2)--+E2(+c2)
|
+E2(+c2)++S2(+c2)
|
10
|
Thick as Thieves is a young adult fantasy novel written by Megan Whalen Turner.
Thick as Thieves was published by Greenwillow Books.
If a book was published by a company, then the author of that book worked with the company that published the book.
The fictional Mede Empire is where Thick as Thieves is set.
The Mede Empire plots to swallow up some nearby countries.
Attolia and Sounis are countries near the Mede Empire.
Thick as Thieves was sold both as a hardcover and an e-book.
|
YoungAdultFantasy(thickAsTheives) ∧ Novel(thickAsTheives) ∧ WrittenBy(thickAsTheives, meganWhalenTurner)
PublishedBy(thickAsTheives, greenWillowBooks)
∀x ∀y ∀z ((WrittenBy(x, y) ∧ PublishedBy(x, z)) → WorkedWith(y, z))
Fictional(medeEmpire) ∧ SetIn(thickAsTheives, medeEmpire)
∃x ∃y ((Country(x) ∧ Near(x, medeEmpire) ∧ PlotsToSwallowUp(medeEmpire, x)) ∧ (¬(x=y) ∧ Near(y, medeEmpire) ∧ PlotsToSwallowUp(medeEmpire, y)))
Country(attolia) ∧ Near(attolia, medeEmpire) ∧ Country(sounis) ∧ Near(sounis, medeEmpire)
SoldAs(thickAsTheives, hardCover) ∧ SoldAs(thickAsTheives, softCover)
|
Thick as Thieves is not set in the Mede Empire.
|
¬SetIn(thickAsTheives, medeEmpire)
|
False
| 27
|
youngadultfantasy(thickastheives) and novel(thickastheives) and writtenby(thickastheives, meganwhalenturner)
publishedby(thickastheives, greenwillowbooks)
forall x forall y forall z ((writtenby(x, y) and publishedby(x, z)) implies workedwith(y, z))
fictional(medeempire) and setin(thickastheives, medeempire)
exists x exists y ((country(x) and near(x, medeempire) and plotstoswallowup(medeempire, x)) and (not (x=y) and near(y, medeempire) and plotstoswallowup(medeempire, y)))
country(attolia) and near(attolia, medeempire) and country(sounis) and near(sounis, medeempire)
soldas(thickastheives, hardcover) and soldas(thickastheives, softcover)
|
not setin(thickastheives, medeempire)
|
youngadultfantasy(thickastheives) , novel(thickastheives) , writtenby(thickastheives, meganwhalenturner)
publishedby(thickastheives, greenwillowbooks)
forall forall forall ((writtenby(x, y) , publishedby(x, z)) -: workedwith(y, z))
fictional(medeempire) , setin(thickastheives, medeempire)
((country(x) , near(x, medeempire) , plotstoswallowup(medeempire, x)) , (not(x=y) , near(y, medeempire) , plotstoswallowup(medeempire, y)))
country(attolia) , near(attolia, medeempire) , country(sounis) , near(sounis, medeempire)
soldas(thickastheives, hardcover) , soldas(thickastheives, softcover)
|
notsetin(thickastheives, medeempire)
|
[youngadultfantasy[(thickastheives)] novel[(thickastheives)] writtenby[(thickastheives meganwhalenturner)]
publishedby[(thickastheives greenwillowbooks)]
@every *x @every *y @every *z [([(writtenby[(?x y)] publishedby[(?x z)])] workedwith[(?y z)])]
fictional[(medeempire)] setin[(thickastheives medeempire)]
*x *y [([(country[(?x)] near[(?x medeempire)] plotstoswallowup[(medeempire x)])] [(~[(?x=y)] near[(?y medeempire)] plotstoswallowup[(medeempire y)])])]
country[(attolia)] near[(attolia medeempire)] country[(sounis)] near[(sounis medeempire)]
soldas[(thickastheives hardcover)] soldas[(thickastheives softcover)]]
|
~[setin[(thickastheives medeempire)]]
|
youngadultfantasy(thickastheives) & novel(thickastheives) & writtenby(thickastheives, meganwhalenturner)
publishedby(thickastheives, greenwillowbooks)
all:x all:y all:z ((writtenby(x, y) & publishedby(x, z)) :- workedwith(y, z))
fictional(medeempire) & setin(thickastheives, medeempire)
x y ((country(x) & near(x, medeempire) & plotstoswallowup(medeempire, x)) & (~(x=y) & near(y, medeempire) & plotstoswallowup(medeempire, y)))
country(attolia) & near(attolia, medeempire) & country(sounis) & near(sounis, medeempire)
soldas(thickastheives, hardcover) & soldas(thickastheives, softcover)
|
~setin(thickastheives, medeempire)
|
+Y2(+t2)++N2(+t2)++W2
+P2
---((+W0++P0)-+W0)
+F2(+m2)++S2
++((+C1++N1++P1)+(-(+x1)++N1++P1))
+C2(+a2)++N2++C2(+s2)++N2
+S2++S2
|
-+S2
|
65
|
If a person coaches a football club, the person is a football coach.
If a person has a position in a club in a year, and the club is in NFL in the same year, the person plays in NFL.
Minnesota Vikings is a football club.
Dennis Green coached Minnesota Vikings.
Cris Carter had 13 touchdown receptions.
Minnesota Vikings were in the National Football League in 1997.
John Randle was Minnesota Vikings defensive tackle in 1997.
|
∀x ∀y ((Coach(x, y) ∧ FootballClub(y)) → FootballCoach(x))
∀w ∀x ∀y ∀z ((PlayPositionFor(x, w, y, z) ∧ InNFL(y, z)) → PlayInNFL(x))
FootballClub(minnesotaVikings)
Coach(dennisGreen, minnesotaVikings)
ReceiveTD(crisCarter, num13)
InNFL(minnesotaVikings, yr1997)
PlayPositionFor(johnRandle, defensiveTackle, minnesotaVikings, yr1997)
|
Dennis Green is a football coach.
|
FootballCoach(dennisGreen)
|
True
| 192
|
forall x forall y ((coach(x, y) and footballclub(y)) implies footballcoach(x))
forall w forall x forall y forall z ((playpositionfor(x, w, y, z) and innfl(y, z)) implies playinnfl(x))
footballclub(minnesotavikings)
coach(dennisgreen, minnesotavikings)
receivetd(criscarter, num13)
innfl(minnesotavikings, yr1997)
playpositionfor(johnrandle, defensivetackle, minnesotavikings, yr1997)
|
footballcoach(dennisgreen)
|
forall forall ((coach(x, y) , footballclub(y)) -: footballcoach(x))
forall forall forall forall ((playpositionfor(x, w, y, z) , innfl(y, z)) -: playinnfl(x))
footballclub(minnesotavikings)
coach(dennisgreen, minnesotavikings)
receivetd(criscarter, num13)
innfl(minnesotavikings, yr1997)
playpositionfor(johnrandle, defensivetackle, minnesotavikings, yr1997)
|
footballcoach(dennisgreen)
|
[@every *x @every *y [([(coach[(?x y)] footballclub[(?y)])] footballcoach[(?x)])]
@every *w @every *x @every *y @every *z [([(playpositionfor[(?x w y z)] innfl[(?y z)])] playinnfl[(?x)])]
footballclub[(minnesotavikings)]
coach[(dennisgreen minnesotavikings)]
receivetd[(criscarter num13)]
innfl[(minnesotavikings yr1997)]
playpositionfor[(johnrandle defensivetackle minnesotavikings yr1997)]]
|
[footballcoach[(dennisgreen)]]
|
all:x all:y ((coach(x, y) & footballclub(y)) :- footballcoach(x))
all:w all:x all:y all:z ((playpositionfor(x, w, y, z) & innfl(y, z)) :- playinnfl(x))
footballclub(minnesotavikings)
coach(dennisgreen, minnesotavikings)
receivetd(criscarter, num13)
innfl(minnesotavikings, yr1997)
playpositionfor(johnrandle, defensivetackle, minnesotavikings, yr1997)
|
footballcoach(dennisgreen)
|
--((+C0++F0)-+F0)
----((+P0++I0)-+P0)
+F2(+m2)
+C2
+R2
+I2
+P2
|
+F2(+d2)
|
333
|
If people have a lot of music decorations in their rooms, they cannot pack and move out of their rooms very easily.
If people have high ambitions and future career goals, then they can pack and move out of their rooms very easily.
If people are big fans of pop bands and singers, then they have a lot of music decorations in their room.
All young teenage girls who attend music festival frequently are big fans of pop bands and singers.
If Sam has high ambitions and future career goals, then Sam is a big fan of pop bands and singers.
|
∀x (HaveIn(x, aLotOfMusicDecoration, room) → ¬MoveOutEasily(x))
∀x (Ambitious(x) → MoveOutEasily(x))
∀x (BigFanOfMusic(x) → MusicDecorations(x, room))
∀x (AttendFrequently(x, musicFestival) ∧ YoungTeenageGirl(x) → BigFanOfPopBand(x) ∧ BigFanOfPopSinger(x))
Ambitious(sam) → BBigFanOfPopBand(sam) ∧ BigFanOfPopSinger(sam)
|
Sam has high ambitions and future career goals and is a young teenage girl attending music festival frequently.
|
Ambitious(sam) ∧ Attend(sam, festival) ∧ YoungTeenageGirl(sam)
|
False
| 867
|
forall x (havein(x, alotofmusicdecoration, room) implies not moveouteasily(x))
forall x (ambitious(x) implies moveouteasily(x))
forall x (bigfanofmusic(x) implies musicdecorations(x, room))
forall x (attendfrequently(x, musicfestival) and youngteenagegirl(x) implies bigfanofpopband(x) and bigfanofpopsinger(x))
ambitious(sam) implies bbigfanofpopband(sam) and bigfanofpopsinger(sam)
|
ambitious(sam) and attend(sam, festival) and youngteenagegirl(sam)
|
forall (havein(x, alotofmusicdecoration, room) -: notmoveouteasily(x))
forall (ambitious(x) -: moveouteasily(x))
forall (bigfanofmusic(x) -: musicdecorations(x, room))
forall (attendfrequently(x, musicfestival) , youngteenagegirl(x) -: bigfanofpopband(x) , bigfanofpopsinger(x))
ambitious(sam) -: bbigfanofpopband(sam) , bigfanofpopsinger(sam)
|
ambitious(sam) , attend(sam, festival) , youngteenagegirl(sam)
|
[@every *x [(havein[(?x alotofmusicdecoration room)] ~moveouteasily[(?x)])]
@every *x [(ambitious[(?x)] moveouteasily[(?x)])]
@every *x [(bigfanofmusic[(?x)] musicdecorations[(?x room)])]
@every *x [(attendfrequently[(?x musicfestival)] youngteenagegirl[(?x)] bigfanofpopband[(?x)] bigfanofpopsinger[(?x)])]
ambitious[(sam)] bbigfanofpopband[(sam)] bigfanofpopsinger[(sam)]]
|
[ambitious[(sam)] attend[(sam festival)] youngteenagegirl[(sam)]]
|
all:x (havein(x, alotofmusicdecoration, room) :- ~moveouteasily(x))
all:x (ambitious(x) :- moveouteasily(x))
all:x (bigfanofmusic(x) :- musicdecorations(x, room))
all:x (attendfrequently(x, musicfestival) & youngteenagegirl(x) :- bigfanofpopband(x) & bigfanofpopsinger(x))
ambitious(sam) :- bbigfanofpopband(sam) & bigfanofpopsinger(sam)
|
ambitious(sam) & attend(sam, festival) & youngteenagegirl(sam)
|
-(+H0--+M0)
-(+A0-+M0)
-(+B0-+M0)
-(+A0++Y0-+B0++B0)
+A2(+s2)-+B2(+s2)++B2(+s2)
|
+A2(+s2)++A2++Y2(+s2)
|
418
|
Some monitors equipped in the library are produced by AOC.
All monitors equipped in the library are cheaper than 800 dollars.
All monitors cheaper than 800 dollars are with a resolution lower than 1080p.
If a monitor has a resolution lower than 1080p, then it does not support the type-c port.
A-2017 supports the type-c port.
|
∃x ∃y(Monitor(x) ∧ ProducedBy(x, aOC) ∧ In(x, library) ∧ (¬(x=y)) ∧ Monitor(y) ∧ ProducedBy(y, aOC) ∧ In(y, library))
∀x ((Monitor(x) ∧ In(x, library)) → CheaperThan(x, dollars800))
∀x ((Monitor(x) ∧ CheaperThan(x, dollars800)) → ResolutionLessThan(x, p1080))
∀x ((Monitor(x) ∧ ResolutionLessThan(x, p1080)) → ¬Supports(x, type-CPort))
Supports(a-2017, type-CPort)
|
A-2017 is produced by AOC.
|
ProducedBy(x, aOC)
|
Uncertain
| 1,178
|
exists x exists y(monitor(x) and producedby(x, aoc) and in(x, library) and (not (x=y)) and monitor(y) and producedby(y, aoc) and in(y, library))
forall x ((monitor(x) and in(x, library)) implies cheaperthan(x, dollars800))
forall x ((monitor(x) and cheaperthan(x, dollars800)) implies resolutionlessthan(x, p1080))
forall x ((monitor(x) and resolutionlessthan(x, p1080)) implies not supports(x, type-cport))
supports(a-2017, type-cport)
|
producedby(x, aoc)
|
(monitor(x) , producedby(x, aoc) , in(x, library) , (not(x=y)) , monitor(y) , producedby(y, aoc) , in(y, library))
forall ((monitor(x) , in(x, library)) -: cheaperthan(x, dollars800))
forall ((monitor(x) , cheaperthan(x, dollars800)) -: resolutionlessthan(x, p1080))
forall ((monitor(x) , resolutionlessthan(x, p1080)) -: notsupports(x, type-cport))
supports(a-2017, type-cport)
|
producedby(x, aoc)
|
[*x *y[(monitor[(?x)] producedby[(?x aoc)] in[(?x library)] [(~[(?x=y)])] monitor[(?y)] producedby[(?y aoc)] in[(?y library)])]
@every *x [([(monitor[(?x)] in[(?x library)])] cheaperthan[(?x dollars800)])]
@every *x [([(monitor[(?x)] cheaperthan[(?x dollars800)])] resolutionlessthan[(?x p1080)])]
@every *x [([(monitor[(?x)] resolutionlessthan[(?x p1080)])] ~supports[(?x type-cport)])]
supports[(a-2017 type-cport)]]
|
[producedby[(x aoc)]]
|
x y(monitor(x) & producedby(x, aoc) & in(x, library) & (~(x=y)) & monitor(y) & producedby(y, aoc) & in(y, library))
all:x ((monitor(x) & in(x, library)) :- cheaperthan(x, dollars800))
all:x ((monitor(x) & cheaperthan(x, dollars800)) :- resolutionlessthan(x, p1080))
all:x ((monitor(x) & resolutionlessthan(x, p1080)) :- ~supports(x, type-cport))
supports(a-2017, type-cport)
|
producedby(x, aoc)
|
++(+M1++P1++I1+(-(+x1))++M1++P1++I1)
-((+M0++I0)-+C0)
-((+M0++C0)-+R0)
-((+M0++R0)--+S0)
+S2
|
+P2
|
481
|
All biodegradable things are environment-friendly.
All woodware is biodegradable.
All paper is woodware.
Nothing is a good thing and also a bad thing.
All environment-friendly things are good.
A worksheet is either paper or environment-friendly.
|
∀x (Biodegradable(x) → EnvironmentFriendly(x))
∀x (Woodware(x) → Biodegradable(x))
∀x (Paper(x) → Woodware(x))
¬(∃x (Good(x) ∧ Bad(x)))
∀x (EnvironmentFriendly(x) → Good(x))
Paper(worksheet) ⊕ EnvironmentFriendly(worksheet)
|
A worksheet is not biodegradable.
|
¬Bioegradable(worksheet)
|
Uncertain
| 1,403
|
forall x (biodegradable(x) implies environmentfriendly(x))
forall x (woodware(x) implies biodegradable(x))
forall x (paper(x) implies woodware(x))
not (exists x (good(x) and bad(x)))
forall x (environmentfriendly(x) implies good(x))
paper(worksheet) xor environmentfriendly(worksheet)
|
not bioegradable(worksheet)
|
forall (biodegradable(x) -: environmentfriendly(x))
forall (woodware(x) -: biodegradable(x))
forall (paper(x) -: woodware(x))
not( (good(x) , bad(x)))
forall (environmentfriendly(x) -: good(x))
paper(worksheet) ^ environmentfriendly(worksheet)
|
notbioegradable(worksheet)
|
[@every *x [(biodegradable[(?x)] environmentfriendly[(?x)])]
@every *x [(woodware[(?x)] biodegradable[(?x)])]
@every *x [(paper[(?x)] woodware[(?x)])]
~[(*x [(good[(?x)] bad[(?x)])])]
@every *x [(environmentfriendly[(?x)] good[(?x)])]
paper[(worksheet)] environmentfriendly[(worksheet)]]
|
~[bioegradable[(worksheet)]]
|
all:x (biodegradable(x) :- environmentfriendly(x))
all:x (woodware(x) :- biodegradable(x))
all:x (paper(x) :- woodware(x))
~(x (good(x) & bad(x)))
all:x (environmentfriendly(x) :- good(x))
paper(worksheet) ^ environmentfriendly(worksheet)
|
~bioegradable(worksheet)
|
-(+B0-+E0)
-(+W0-+B0)
-(+P0-+W0)
-(+(+G1++B1))
-(+E0-+G0)
+P2(+w2)-+E2(+w2)
|
-+B2(+w2)
|
406
|
All people who regularly drink coffee are dependent on caffeine.
People regularly drink coffee, or they don't want to be addicted to caffeine, or both.
No one who doesn't want to be addicted to caffeine is unaware that caffeine is a drug.
Rina is either a student who is unaware that caffeine is a drug, or she is not a student and is she aware that caffeine is a drug.
Rina is either a student who is dependent on caffeine, or she is not a student and not dependent on caffeine.
|
∀x (DrinkRegularly(x, coffee) → IsDependentOn(x, caffeine))
∀x (DrinkRegularly(x, coffee) ∨ (¬WantToBeAddictedTo(x, caffeine)))
∀x (¬WantToBeAddictedTo(x, caffeine) → ¬AwareThatDrug(x, caffeine))
¬(Student(rina) ⊕ ¬AwareThatDrug(rina, caffeine))
¬(IsDependentOn(rina, caffeine) ⊕ Student(rina))
|
Rina eith doesn't want to be addicted to caffeine or is unaware that caffeine is a drug.
|
¬WantToBeAddictedTo(rina, caffeine) ⊕ ¬AwareThatDrug(rina, caffeine)
|
True
| 1,127
|
forall x (drinkregularly(x, coffee) implies isdependenton(x, caffeine))
forall x (drinkregularly(x, coffee) or (not wanttobeaddictedto(x, caffeine)))
forall x (not wanttobeaddictedto(x, caffeine) implies not awarethatdrug(x, caffeine))
not (student(rina) xor not awarethatdrug(rina, caffeine))
not (isdependenton(rina, caffeine) xor student(rina))
|
not wanttobeaddictedto(rina, caffeine) xor not awarethatdrug(rina, caffeine)
|
forall (drinkregularly(x, coffee) -: isdependenton(x, caffeine))
forall (drinkregularly(x, coffee) | (notwanttobeaddictedto(x, caffeine)))
forall (notwanttobeaddictedto(x, caffeine) -: notawarethatdrug(x, caffeine))
not(student(rina) ^ notawarethatdrug(rina, caffeine))
not(isdependenton(rina, caffeine) ^ student(rina))
|
notwanttobeaddictedto(rina, caffeine) ^ notawarethatdrug(rina, caffeine)
|
[@every *x [(drinkregularly[(?x coffee)] isdependenton[(?x caffeine)])]
@every *x [(drinkregularly[(?x coffee)] [(~wanttobeaddictedto[(?x caffeine)])])]
@every *x [(~wanttobeaddictedto[(?x caffeine)] ~awarethatdrug[(?x caffeine)])]
~[(student[(rina)] ~awarethatdrug[(rina caffeine)])]
~[(isdependenton[(rina caffeine)] student[(rina)])]]
|
~[wanttobeaddictedto[(rina caffeine)] ~awarethatdrug[(rina caffeine)]]
|
all:x (drinkregularly(x, coffee) :- isdependenton(x, caffeine))
all:x (drinkregularly(x, coffee) | (~wanttobeaddictedto(x, caffeine)))
all:x (~wanttobeaddictedto(x, caffeine) :- ~awarethatdrug(x, caffeine))
~(student(rina) ^ ~awarethatdrug(rina, caffeine))
~(isdependenton(rina, caffeine) ^ student(rina))
|
~wanttobeaddictedto(rina, caffeine) ^ ~awarethatdrug(rina, caffeine)
|
-(+D0-+I0)
-(+D0-(-+W0))
-(-+W0--+A0)
-(+S2(+r2)--+A2)
-(+I2-+S2(+r2))
|
-+W2--+A2
|
48
|
Douglas Adams is an author who created the book collection called The Salmon of Doubt.
The Salmon of Doubt is about life experiences and technology.
All authors are writers.
Writers create innovative ideas.
Some books that contain innovative ideas are about technology.
|
Author(douglasAdams) ∧ Authored(douglasAdams, theSalmonOfDoubt) ∧ Book(theSalmonOfDoubt)
About(theSalmonOfDoubt, lifeExperience) ∧ About(theSalmonOfDoubt, technology)
∀x (Author(x) → Writer(x))
∀x (Writer(x) → Create(x, innovativeIdea))
∃x ∃y (Contain(x, innovativeIdea) ∧ About(x, technology) ∧ (¬(x=y)) ∧ (Contain(y, innovativeIdea) ∧ About(y, technology)))
|
The Salmon of Doubt has no innovative Ideas.
|
¬Contain(theSalmonOfDoubt, innovativeIdea)
|
Uncertain
| 140
|
author(douglasadams) and authored(douglasadams, thesalmonofdoubt) and book(thesalmonofdoubt)
about(thesalmonofdoubt, lifeexperience) and about(thesalmonofdoubt, technology)
forall x (author(x) implies writer(x))
forall x (writer(x) implies create(x, innovativeidea))
exists x exists y (contain(x, innovativeidea) and about(x, technology) and (not (x=y)) and (contain(y, innovativeidea) and about(y, technology)))
|
not contain(thesalmonofdoubt, innovativeidea)
|
author(douglasadams) , authored(douglasadams, thesalmonofdoubt) , book(thesalmonofdoubt)
about(thesalmonofdoubt, lifeexperience) , about(thesalmonofdoubt, technology)
forall (author(x) -: writer(x))
forall (writer(x) -: create(x, innovativeidea))
(contain(x, innovativeidea) , about(x, technology) , (not(x=y)) , (contain(y, innovativeidea) , about(y, technology)))
|
notcontain(thesalmonofdoubt, innovativeidea)
|
[author[(douglasadams)] authored[(douglasadams thesalmonofdoubt)] book[(thesalmonofdoubt)]
about[(thesalmonofdoubt lifeexperience)] about[(thesalmonofdoubt technology)]
@every *x [(author[(?x)] writer[(?x)])]
@every *x [(writer[(?x)] create[(?x innovativeidea)])]
*x *y [(contain[(?x innovativeidea)] about[(?x technology)] [(~[(?x=y)])] [(contain[(?y innovativeidea)] about[(?y technology)])])]]
|
~[contain[(thesalmonofdoubt innovativeidea)]]
|
author(douglasadams) & authored(douglasadams, thesalmonofdoubt) & book(thesalmonofdoubt)
about(thesalmonofdoubt, lifeexperience) & about(thesalmonofdoubt, technology)
all:x (author(x) :- writer(x))
all:x (writer(x) :- create(x, innovativeidea))
x y (contain(x, innovativeidea) & about(x, technology) & (~(x=y)) & (contain(y, innovativeidea) & about(y, technology)))
|
~contain(thesalmonofdoubt, innovativeidea)
|
+A2(+d2)++A2++B2(+t2)
+A2++A2
-(+A0-+W0)
-(+W0-+C0)
++(+C1++A1+(-(+x1))+(+C1++A1))
|
-+C2
|
473
|
All pets in my house are either cats or dogs.
All the dogs in my house bark.
Ghosts do not exist.
If some pet in my house barks, then it is not dead.
All of the pets in my house are either dead or alive.
Jojo is a pet in my house, and it is not alive.
|
∀x (Pet(x) ∧ In(x, myHouse) → Cat(x) ⊕ Dog(x))
∀x (Dog(x) ∧ In(x, myHouse) → Bark(x))
∀x (¬Ghost(x))
∀x (Bark(x) ∧ Pet(x) ∧ In(x, myHouse) → ¬Dead(x))
∀x (Pet(x) ∧ In(x, myHouse) → Dead(x) ⊕ Alive(x))
Pet(jojo) ∧ InMyHouse(jojo)∧ ¬Alive(jojo)
|
Jojo is a ghost.
|
Ghost(jojo)
|
False
| 1,369
|
forall x (pet(x) and in(x, myhouse) implies cat(x) xor dog(x))
forall x (dog(x) and in(x, myhouse) implies bark(x))
forall x (not ghost(x))
forall x (bark(x) and pet(x) and in(x, myhouse) implies not dead(x))
forall x (pet(x) and in(x, myhouse) implies dead(x) xor alive(x))
pet(jojo) and inmyhouse(jojo)and not alive(jojo)
|
ghost(jojo)
|
forall (pet(x) , in(x, myhouse) -: cat(x) ^ dog(x))
forall (dog(x) , in(x, myhouse) -: bark(x))
forall (notghost(x))
forall (bark(x) , pet(x) , in(x, myhouse) -: notdead(x))
forall (pet(x) , in(x, myhouse) -: dead(x) ^ alive(x))
pet(jojo) , inmyhouse(jojo), notalive(jojo)
|
ghost(jojo)
|
[@every *x [(pet[(?x)] in[(?x myhouse)] cat[(?x)] dog[(?x)])]
@every *x [(dog[(?x)] in[(?x myhouse)] bark[(?x)])]
@every *x [(~ghost[(?x)])]
@every *x [(bark[(?x)] pet[(?x)] in[(?x myhouse)] ~dead[(?x)])]
@every *x [(pet[(?x)] in[(?x myhouse)] dead[(?x)] alive[(?x)])]
pet[(jojo)] inmyhouse[(jojo)] ~alive[(jojo)]]
|
[ghost[(jojo)]]
|
all:x (pet(x) & in(x, myhouse) :- cat(x) ^ dog(x))
all:x (dog(x) & in(x, myhouse) :- bark(x))
all:x (~ghost(x))
all:x (bark(x) & pet(x) & in(x, myhouse) :- ~dead(x))
all:x (pet(x) & in(x, myhouse) :- dead(x) ^ alive(x))
pet(jojo) & inmyhouse(jojo)& ~alive(jojo)
|
ghost(jojo)
|
-(+P0++I0-+C0-+D0)
-(+D0++I0-+B0)
-(-+G0)
-(+B0++P0++I0--+D0)
-(+P0++I0-+D0-+A0)
+P2(+j2)++I2(+j2)+-+A2(+j2)
|
+G2(+j2)
|
233
|
Deng Xiaoping served as the paramount leader of the People's Republic of China.
Deng Xiaoping was praised for his reaffirmation of the reform program, as well as the reversion of Hong Kong to Chinese control and the return of Macau.
As the party's Secretary-General under Mao and Vice Premier in the 1950s, Deng Xiaoping presided over the Anti-Rightist Campaign launched by Mao.
Deng Xiaoping became instrumental in China's economic reconstruction following the disastrous Great Leap Forward.
Mao Zedong died in 1976.
After Mao Zedong's death, Deng Xiaoping gradually rose to supreme power.
|
ParamountLeaderOf(dengXiaoping, peoplesRepublicOfChina)
PraisedFor(dengXiaoping, reaffirmationOfReformProgram) ∧ PraisedFor(dengXiaoping, reversionOfHongKong) ∧ PraisedFor(dengXiaoping, returnOfMacau)
PartysSecretaryGeneral(dengXiaoping) ∧ Under(dengXiaoping, mao) ∧ VicePremierInThe1950s(dengXiaoping) ∧ PresidedOver(dengXiaoping, antiRightistCampaign) ∧ LaunchedBy(antiRightistCampaign, mao)
InstrumentalIn(dengXiaoping, chinasEconomicReconstruction) ∧ Following(chinasEconomicReconstruction, greatLeapForward) ∧ Disastrous(greatLeapForward)
DiedIn(mao, year1976)
GraduallyRoseTo(dengXiaoping, supremePower)
|
Deng Xiaoping presided over something launched by someone he was under.
|
∃x ∃y (PresidedOver(dengxiaoping, x) ∧ Under(dengxiaoping, y) ∧ LaunchedBy(x, y))
|
True
| 661
|
paramountleaderof(dengxiaoping, peoplesrepublicofchina)
praisedfor(dengxiaoping, reaffirmationofreformprogram) and praisedfor(dengxiaoping, reversionofhongkong) and praisedfor(dengxiaoping, returnofmacau)
partyssecretarygeneral(dengxiaoping) and under(dengxiaoping, mao) and vicepremierinthe1950s(dengxiaoping) and presidedover(dengxiaoping, antirightistcampaign) and launchedby(antirightistcampaign, mao)
instrumentalin(dengxiaoping, chinaseconomicreconstruction) and following(chinaseconomicreconstruction, greatleapforward) and disastrous(greatleapforward)
diedin(mao, year1976)
graduallyroseto(dengxiaoping, supremepower)
|
exists x exists y (presidedover(dengxiaoping, x) and under(dengxiaoping, y) and launchedby(x, y))
|
paramountleaderof(dengxiaoping, peoplesrepublicofchina)
praisedfor(dengxiaoping, reaffirmationofreformprogram) , praisedfor(dengxiaoping, reversionofhongkong) , praisedfor(dengxiaoping, returnofmacau)
partyssecretarygeneral(dengxiaoping) , under(dengxiaoping, mao) , vicepremierinthe1950s(dengxiaoping) , presidedover(dengxiaoping, antirightistcampaign) , launchedby(antirightistcampaign, mao)
instrumentalin(dengxiaoping, chinaseconomicreconstruction) , following(chinaseconomicreconstruction, greatleapforward) , disastrous(greatleapforward)
diedin(mao, year1976)
graduallyroseto(dengxiaoping, supremepower)
|
(presidedover(dengxiaoping, x) , under(dengxiaoping, y) , launchedby(x, y))
|
[paramountleaderof[(dengxiaoping peoplesrepublicofchina)]
praisedfor[(dengxiaoping reaffirmationofreformprogram)] praisedfor[(dengxiaoping reversionofhongkong)] praisedfor[(dengxiaoping returnofmacau)]
partyssecretarygeneral[(dengxiaoping)] under[(dengxiaoping mao)] vicepremierinthe1950s[(dengxiaoping)] presidedover[(dengxiaoping antirightistcampaign)] launchedby[(antirightistcampaign mao)]
instrumentalin[(dengxiaoping chinaseconomicreconstruction)] following[(chinaseconomicreconstruction greatleapforward)] disastrous[(greatleapforward)]
diedin[(mao year1976)]
graduallyroseto[(dengxiaoping supremepower)]]
|
[*x *y [(presidedover[(dengxiaoping x)] under[(dengxiaoping y)] launchedby[(?x y)])]]
|
paramountleaderof(dengxiaoping, peoplesrepublicofchina)
praisedfor(dengxiaoping, reaffirmationofreformprogram) & praisedfor(dengxiaoping, reversionofhongkong) & praisedfor(dengxiaoping, returnofmacau)
partyssecretarygeneral(dengxiaoping) & under(dengxiaoping, mao) & vicepremierinthe1950s(dengxiaoping) & presidedover(dengxiaoping, antirightistcampaign) & launchedby(antirightistcampaign, mao)
instrumentalin(dengxiaoping, chinaseconomicreconstruction) & following(chinaseconomicreconstruction, greatleapforward) & disastrous(greatleapforward)
diedin(mao, year1976)
graduallyroseto(dengxiaoping, supremepower)
|
x y (presidedover(dengxiaoping, x) & under(dengxiaoping, y) & launchedby(x, y))
|
+P2
+P2++P2++P2
+P2(+d2)++U2++V2(+d2)++P2++L2
+I2++F2++D2(+g2)
+D2
+G2
|
++(+P1++U1++L1)
|
316
|
There are no mansion houses in an urban area.
All skyscrapers are in urban areas.
Every creepy haunted house is a mansion house.
Every terrifying building on Halloween is a creepy haunted house.
The LaLaurie House is a creepy haunted house or a terrifying building on Halloween.
|
∀x (InUrbanArea(x) → ¬MansionHouse(x))
∀x (Skyscraper(x) → InUrbanArea(x))
∀x (CreepyHauntedHouse(x) → MansionHouse(x))
∀x (TerrifyingBuilding(x) ∧ OnHalloween(x) → CreepyHauntedHouse(x))
CreepyHauntedHouse(laLaurieHouse) ∨ TerrifyingBuilding(laLaurieHouse) ∧ OnHalloween(laLaurieHouse)
|
If the LaLaurie House is either a skyscraper or a mansion house, then it is in an urban area.
|
Skyscraper(laLaurieHouse) ⊕ MansionHouse(laLaurieHouse) → InUrbanArea(laLaurieHouse)
|
False
| 796
|
forall x (inurbanarea(x) implies not mansionhouse(x))
forall x (skyscraper(x) implies inurbanarea(x))
forall x (creepyhauntedhouse(x) implies mansionhouse(x))
forall x (terrifyingbuilding(x) and onhalloween(x) implies creepyhauntedhouse(x))
creepyhauntedhouse(lalauriehouse) or terrifyingbuilding(lalauriehouse) and onhalloween(lalauriehouse)
|
skyscraper(lalauriehouse) xor mansionhouse(lalauriehouse) implies inurbanarea(lalauriehouse)
|
forall (inurbanarea(x) -: notmansionhouse(x))
forall (skyscraper(x) -: inurbanarea(x))
forall (creepyhauntedhouse(x) -: mansionhouse(x))
forall (terrifyingbuilding(x) , onhalloween(x) -: creepyhauntedhouse(x))
creepyhauntedhouse(lalauriehouse) | terrifyingbuilding(lalauriehouse) , onhalloween(lalauriehouse)
|
skyscraper(lalauriehouse) ^ mansionhouse(lalauriehouse) -: inurbanarea(lalauriehouse)
|
[@every *x [(inurbanarea[(?x)] ~mansionhouse[(?x)])]
@every *x [(skyscraper[(?x)] inurbanarea[(?x)])]
@every *x [(creepyhauntedhouse[(?x)] mansionhouse[(?x)])]
@every *x [(terrifyingbuilding[(?x)] onhalloween[(?x)] creepyhauntedhouse[(?x)])]
creepyhauntedhouse[(lalauriehouse)] terrifyingbuilding[(lalauriehouse)] onhalloween[(lalauriehouse)]]
|
[skyscraper[(lalauriehouse)] mansionhouse[(lalauriehouse)] inurbanarea[(lalauriehouse)]]
|
all:x (inurbanarea(x) :- ~mansionhouse(x))
all:x (skyscraper(x) :- inurbanarea(x))
all:x (creepyhauntedhouse(x) :- mansionhouse(x))
all:x (terrifyingbuilding(x) & onhalloween(x) :- creepyhauntedhouse(x))
creepyhauntedhouse(lalauriehouse) | terrifyingbuilding(lalauriehouse) & onhalloween(lalauriehouse)
|
skyscraper(lalauriehouse) ^ mansionhouse(lalauriehouse) :- inurbanarea(lalauriehouse)
|
-(+I0--+M0)
-(+S0-+I0)
-(+C0-+M0)
-(+T0++O0-+C0)
+C2(+l2)-+T2(+l2)++O2(+l2)
|
+S2(+l2)-+M2(+l2)-+I2(+l2)
|
105
|
Show Your Love is a song recorded by the South Korean boy band BtoB 4u.
The lead single of the extended play Inside is Show Your Love.
Show Your Love contains a hopeful message.
BtoB 4u member Hyunsik wrote Show Your Love.
There is a music video for Show Your Love.
|
Song(showYourLove) ∧ RecordedBy(showYourLove, bToB4u) ∧ SouthKorean(bToB4u) ∧ BoyBand(bToB4u)
ExtendedPlay(inside) ∧ LeadSingleOf(showYourLove, inside)
Contains(showYourLove, hopefulMessage)
Member(hyunsik, btob4u) ∧ Wrote(hyunsik, showYourLove)
Have(showYourLove, musicVideo)
|
Hyunsik is Korean.
|
Korean(hyunsik)
|
Uncertain
| 320
|
song(showyourlove) and recordedby(showyourlove, btob4u) and southkorean(btob4u) and boyband(btob4u)
extendedplay(inside) and leadsingleof(showyourlove, inside)
contains(showyourlove, hopefulmessage)
member(hyunsik, btob4u) and wrote(hyunsik, showyourlove)
have(showyourlove, musicvideo)
|
korean(hyunsik)
|
song(showyourlove) , recordedby(showyourlove, btob4u) , southkorean(btob4u) , boyband(btob4u)
extendedplay(inside) , leadsingleof(showyourlove, inside)
contains(showyourlove, hopefulmessage)
member(hyunsik, btob4u) , wrote(hyunsik, showyourlove)
have(showyourlove, musicvideo)
|
korean(hyunsik)
|
[song[(showyourlove)] recordedby[(showyourlove btob4u)] southkorean[(btob4u)] boyband[(btob4u)]
extendedplay[(inside)] leadsingleof[(showyourlove inside)]
contains[(showyourlove hopefulmessage)]
member[(hyunsik btob4u)] wrote[(hyunsik showyourlove)]
have[(showyourlove musicvideo)]]
|
[korean[(hyunsik)]]
|
song(showyourlove) & recordedby(showyourlove, btob4u) & southkorean(btob4u) & boyband(btob4u)
extendedplay(inside) & leadsingleof(showyourlove, inside)
contains(showyourlove, hopefulmessage)
member(hyunsik, btob4u) & wrote(hyunsik, showyourlove)
have(showyourlove, musicvideo)
|
korean(hyunsik)
|
+S2(+s2)++R2++S2(+b2)++B2(+b2)
+E2(+i2)++L2
+C2
+M2++W2
+H2
|
+K2(+h2)
|
73
|
Ambiortus is a prehistoric bird genus.
Ambiortus Dementjevi is the only known species of Ambiortus.
Mongolia was where Ambiortus Dementjevi lived.
Yevgeny Kurochkin was the discoverer of Ambiortus.
|
Prehistoric(ambiortus) ∧ BirdGenus(ambiortus)
∀x(KnownSpeciesOf(x, ambiortus) → IsSpecies(x, ambiortusDementjevi))
LiveIn(ambiortusDementjevi, mongolia)
Discover(yevgenykurochkin, ambiortus)
|
Yevgeny Kurochkin lived in Mongolia.
|
LiveIn(yevgenykurochkin, mongolia)
|
Uncertain
| 223
|
prehistoric(ambiortus) and birdgenus(ambiortus)
forall x(knownspeciesof(x, ambiortus) implies isspecies(x, ambiortusdementjevi))
livein(ambiortusdementjevi, mongolia)
discover(yevgenykurochkin, ambiortus)
|
livein(yevgenykurochkin, mongolia)
|
prehistoric(ambiortus) , birdgenus(ambiortus)
forall(knownspeciesof(x, ambiortus) -: isspecies(x, ambiortusdementjevi))
livein(ambiortusdementjevi, mongolia)
discover(yevgenykurochkin, ambiortus)
|
livein(yevgenykurochkin, mongolia)
|
[prehistoric[(ambiortus)] birdgenus[(ambiortus)]
@every *x[(knownspeciesof[(?x ambiortus)] isspecies[(?x ambiortusdementjevi)])]
livein[(ambiortusdementjevi mongolia)]
discover[(yevgenykurochkin ambiortus)]]
|
[livein[(yevgenykurochkin mongolia)]]
|
prehistoric(ambiortus) & birdgenus(ambiortus)
all:x(knownspeciesof(x, ambiortus) :- isspecies(x, ambiortusdementjevi))
livein(ambiortusdementjevi, mongolia)
discover(yevgenykurochkin, ambiortus)
|
livein(yevgenykurochkin, mongolia)
|
+P2(+a2)++B2(+a2)
-(+K0-+I0)
+L2
+D2
|
+L2
|
180
|
Sam is doing a project.
A project is written either in C++ or Python.
If Sam does a project written in Python, he will not use a Mac.
Sam is using a Mac.
If Sam uses a Mac, he will play a song.
If a song is not titled "Perfect," Sam will never play it.
|
∃x (Project(x) ∧ Do(sam, x))
∀x (Project(x) → (WrittenIn(x, cplusplus) ⊕ WrittenIn(x, python)))
∀x (Project(x) ∧ WrittenIn(x, python) ∧ Do(sam, x) → ¬Use(sam, mac))
Use(sam, mac)
∃x (Use(sam, mac) ∧ Song(x) → Play(sam, x))
∀x (Song(x) ∧ Play(sam, x) → Titled(x, perfect))
|
The project Sam is doing is written in C++.
|
∀x (Project(x) ∧ Do(sam, x) ∧ WrittenIn(x, cplusplus))
|
True
| 518
|
exists x (project(x) and do(sam, x))
forall x (project(x) implies (writtenin(x, cplusplus) xor writtenin(x, python)))
forall x (project(x) and writtenin(x, python) and do(sam, x) implies not use(sam, mac))
use(sam, mac)
exists x (use(sam, mac) and song(x) implies play(sam, x))
forall x (song(x) and play(sam, x) implies titled(x, perfect))
|
forall x (project(x) and do(sam, x) and writtenin(x, cplusplus))
|
(project(x) , do(sam, x))
forall (project(x) -: (writtenin(x, cplusplus) ^ writtenin(x, python)))
forall (project(x) , writtenin(x, python) , do(sam, x) -: notuse(sam, mac))
use(sam, mac)
(use(sam, mac) , song(x) -: play(sam, x))
forall (song(x) , play(sam, x) -: titled(x, perfect))
|
forall (project(x) , do(sam, x) , writtenin(x, cplusplus))
|
[*x [(project[(?x)] do[(sam x)])]
@every *x [(project[(?x)] [(writtenin[(?x cplusplus)] writtenin[(?x python)])])]
@every *x [(project[(?x)] writtenin[(?x python)] do[(sam x)] ~use[(sam mac)])]
use[(sam mac)]
*x [(use[(sam mac)] song[(?x)] play[(sam x)])]
@every *x [(song[(?x)] play[(sam x)] titled[(?x perfect)])]]
|
[@every *x [(project[(?x)] do[(sam x)] writtenin[(?x cplusplus)])]]
|
x (project(x) & do(sam, x))
all:x (project(x) :- (writtenin(x, cplusplus) ^ writtenin(x, python)))
all:x (project(x) & writtenin(x, python) & do(sam, x) :- ~use(sam, mac))
use(sam, mac)
x (use(sam, mac) & song(x) :- play(sam, x))
all:x (song(x) & play(sam, x) :- titled(x, perfect))
|
all:x (project(x) & do(sam, x) & writtenin(x, cplusplus))
|
+(+P1++D1)
-(+P0-(+W0-+W0))
-(+P0++W0++D0--+U0)
+U2
+(+U1++S1-+P1)
-(+S0++P0-+T0)
|
-(+P0++D0++W0)
|
378
|
All people who attend weddings are getting married or know the people who are getting married.
No preteens or young children are getting married or know the people who are getting married.
People who enjoy celebrating life milestone events with other people attend weddings.
People who are fond of large group functions enjoy celebrating life milestone events with other people.
All people who are outgoing and spirited are fond of large group functions.
If Carol is not both a pre-teen or young child and attends a wedding, then Carol is not getting married or knows the people who are getting married.
|
∀x (Attend(x, wedding) → GettingMarried(x) ∨ (∃y (Know(x, y) ∧ GettingMarried(y)))
∀x (PreTeen(x) ∨ YoungChild(x) → ¬(GettingMarried(x) ⊕ (∃y (Know(x, y) ∧ GettingMarried(y)))))
∀x (∃y ∃z (¬(x=y) ∧ ¬(x=z) ∧ ¬(y=z) ∧ Enjoy(x, celebratingLifeMileStoneEvent, y) ∧ Enjoy(x, celebratingLifeStoneEvent, z)) → Attend(x, wedding))
∀x (FondOf(x, largeGroupFunction) → ∃y ∃z (¬(x=y) ∧ ¬(x=z) ∧ ¬(y=z) ∧ Enjoy(x, celebratingLifeMileStoneEventWith, y) ∧ Enjoy(x, celebratingLifeStoneEvent, z)))
∀x (Outgoing(x) ∧ Sprited(x) → FondOf(x, largeGroupFunction))
¬((PreTeen(carol) ∨ YoungChildren(carol)) ∧ Attend(carol, wedding)) → ¬(GettingMarried(carol) ∨ (∃y (Know(carol, y) ∧ GettingMarried(y))))
|
Carol is a preteen or a young child.
|
PreTeen(carol) ∨ YoungChild(carol)
|
Uncertain
| 1,009
|
forall x (attend(x, wedding) implies gettingmarried(x) or (exists y (know(x, y) and gettingmarried(y)))
forall x (preteen(x) or youngchild(x) implies not (gettingmarried(x) xor (exists y (know(x, y) and gettingmarried(y)))))
forall x (exists y exists z (not (x=y) and not (x=z) and not (y=z) and enjoy(x, celebratinglifemilestoneevent, y) and enjoy(x, celebratinglifestoneevent, z)) implies attend(x, wedding))
forall x (fondof(x, largegroupfunction) implies exists y exists z (not (x=y) and not (x=z) and not (y=z) and enjoy(x, celebratinglifemilestoneeventwith, y) and enjoy(x, celebratinglifestoneevent, z)))
forall x (outgoing(x) and sprited(x) implies fondof(x, largegroupfunction))
not ((preteen(carol) or youngchildren(carol)) and attend(carol, wedding)) implies not (gettingmarried(carol) or (exists y (know(carol, y) and gettingmarried(y))))
|
preteen(carol) or youngchild(carol)
|
forall (attend(x, wedding) -: gettingmarried(x) | ( (know(x, y) , gettingmarried(y)))
forall (preteen(x) | youngchild(x) -: not(gettingmarried(x) ^ ( (know(x, y) , gettingmarried(y)))))
forall ( (not(x=y) , not(x=z) , not(y=z) , enjoy(x, celebratinglifemilestoneevent, y) , enjoy(x, celebratinglifestoneevent, z)) -: attend(x, wedding))
forall (fondof(x, largegroupfunction) -: (not(x=y) , not(x=z) , not(y=z) , enjoy(x, celebratinglifemilestoneeventwith, y) , enjoy(x, celebratinglifestoneevent, z)))
forall (outgoing(x) , sprited(x) -: fondof(x, largegroupfunction))
not((preteen(carol) | youngchildren(carol)) , attend(carol, wedding)) -: not(gettingmarried(carol) | ( (know(carol, y) , gettingmarried(y))))
|
preteen(carol) | youngchild(carol)
|
[@every *x [(attend[(?x wedding)] gettingmarried[(?x)] [(*y [(know[(?x y)] gettingmarried[(?y)])])]
@every *x [(preteen[(?x)] youngchild[(?x)] ~[(gettingmarried[(?x)] [(*y [(know[(?x y)] gettingmarried[(?y)])])])])]
@every *x [(*y *z [(~[(?x=y)] ~[(?x=z)] ~[(?y=z)] enjoy[(?x celebratinglifemilestoneevent y)] enjoy[(?x celebratinglifestoneevent z)])] attend[(?x wedding)])]
@every *x [(fondof[(?x largegroupfunction)] *y *z [(~[(?x=y)] ~[(?x=z)] ~[(?y=z)] enjoy[(?x celebratinglifemilestoneeventwith y)] enjoy[(?x celebratinglifestoneevent z)])])]
@every *x [(outgoing[(?x)] sprited[(?x)] fondof[(?x largegroupfunction)])]
~[([(preteen[(carol)] youngchildren[(carol)])] attend[(carol wedding)])] ~[(gettingmarried[(carol)] [(*y [(know[(carol y)] gettingmarried[(?y)])])])]]
|
[preteen[(carol)] youngchild[(carol)]]
|
all:x (attend(x, wedding) :- gettingmarried(x) | (y (know(x, y) & gettingmarried(y)))
all:x (preteen(x) | youngchild(x) :- ~(gettingmarried(x) ^ (y (know(x, y) & gettingmarried(y)))))
all:x (y z (~(x=y) & ~(x=z) & ~(y=z) & enjoy(x, celebratinglifemilestoneevent, y) & enjoy(x, celebratinglifestoneevent, z)) :- attend(x, wedding))
all:x (fondof(x, largegroupfunction) :- y z (~(x=y) & ~(x=z) & ~(y=z) & enjoy(x, celebratinglifemilestoneeventwith, y) & enjoy(x, celebratinglifestoneevent, z)))
all:x (outgoing(x) & sprited(x) :- fondof(x, largegroupfunction))
~((preteen(carol) | youngchildren(carol)) & attend(carol, wedding)) :- ~(gettingmarried(carol) | (y (know(carol, y) & gettingmarried(y))))
|
preteen(carol) | youngchild(carol)
|
-(+A0-+G0-(+(+K1++G1))
-(+P0-+Y0--(+G0-(+(+K1++G1))))
-(++(-(+x1)+-(+x1)+-(+y1)++E1++E1)-+A1)
-(+F0-++(-(+x0)+-(+x0)+-(+y0)++E0++E0))
-(+O0++S0-+F0)
-((+P2(+c2)-+Y2(+c2))++A2)--(+G2(+c2)-(+(+K1++G1)))
|
+P2(+c2)-+Y2(+c2)
|
7
|
Six, seven and eight are real numbers.
If a real number equals another real number added by one, the first number is larger.
If the number x is larger than the number y, then y is not larger than x.
Seven equals six plus one.
Eight equals seven plus one.
Two is positive.
If a number is positive, then the double of it is also positive.
Eight is the double of four.
Four is the double of two.
|
RealNum(num6) ∧ RealNum(num7) ∧ RealNum(num8)
∀x ∀y ((RealNum(x) ∧ RealNum(y) ∧ IsSuccessorOf(x, y)) → Larger(x, y))
∀x ∀y (Larger(x, y) → ¬Larger(y, x))
∃y(IsSuccessorOf(y, num6) ∧ Equals(num7, y))
∃y(IsSuccessorOf(y, num7) ∧ Equals(num8, y))
Positive(num2)
∀x ∀y ((Positive(x) ∧ IsDouble(y, x)) → Positive(y))
IsDouble(num8, num4)
IsDouble(num4, num2)
|
Eight is larger than seven.
|
Larger(eight, seven)
|
True
| 17
|
realnum(num6) and realnum(num7) and realnum(num8)
forall x forall y ((realnum(x) and realnum(y) and issuccessorof(x, y)) implies larger(x, y))
forall x forall y (larger(x, y) implies not larger(y, x))
exists y(issuccessorof(y, num6) and equals(num7, y))
exists y(issuccessorof(y, num7) and equals(num8, y))
positive(num2)
forall x forall y ((positive(x) and isdouble(y, x)) implies positive(y))
isdouble(num8, num4)
isdouble(num4, num2)
|
larger(eight, seven)
|
realnum(num6) , realnum(num7) , realnum(num8)
forall forall ((realnum(x) , realnum(y) , issuccessorof(x, y)) -: larger(x, y))
forall forall (larger(x, y) -: notlarger(y, x))
(issuccessorof(y, num6) , equals(num7, y))
(issuccessorof(y, num7) , equals(num8, y))
positive(num2)
forall forall ((positive(x) , isdouble(y, x)) -: positive(y))
isdouble(num8, num4)
isdouble(num4, num2)
|
larger(eight, seven)
|
[realnum[(num6)] realnum[(num7)] realnum[(num8)]
@every *x @every *y [([(realnum[(?x)] realnum[(?y)] issuccessorof[(?x y)])] larger[(?x y)])]
@every *x @every *y [(larger[(?x y)] ~larger[(?y x)])]
*y[(issuccessorof[(?y num6)] equals[(num7 y)])]
*y[(issuccessorof[(?y num7)] equals[(num8 y)])]
positive[(num2)]
@every *x @every *y [([(positive[(?x)] isdouble[(?y x)])] positive[(?y)])]
isdouble[(num8 num4)]
isdouble[(num4 num2)]]
|
[larger[(eight seven)]]
|
realnum(num6) & realnum(num7) & realnum(num8)
all:x all:y ((realnum(x) & realnum(y) & issuccessorof(x, y)) :- larger(x, y))
all:x all:y (larger(x, y) :- ~larger(y, x))
y(issuccessorof(y, num6) & equals(num7, y))
y(issuccessorof(y, num7) & equals(num8, y))
positive(num2)
all:x all:y ((positive(x) & isdouble(y, x)) :- positive(y))
isdouble(num8, num4)
isdouble(num4, num2)
|
larger(eight, seven)
|
+R2(+n2)++R2(+n2)++R2(+n2)
--((+R0++R0++I0)-+L0)
--(+L0--+L0)
+(+I1++E1)
+(+I1++E1)
+P2(+n2)
--((+P0++I0)-+P0)
+I2
+I2
|
+L2
|
439
|
No fish are birds.
An osprey is a bird.
A carp is a fish.
All goldfish are carp.
If Bubbles is either an osprey or a goldfish, then Bubbles is not also a fish.
|
∀x (Fish(x) → ¬Bird(x))
∀x (Osprey(x) → Bird(x))
∀x (Carp(x) → Fish(x))
∀x (Goldfish(x) → Carp(x))
Osprey(bubbles) ⊕ Goldfish(bubbles) → ¬Fish(bubbles)
|
Bubbles is an Osprey.
|
Osprey(bubbles)
|
Uncertain
| 1,261
|
forall x (fish(x) implies not bird(x))
forall x (osprey(x) implies bird(x))
forall x (carp(x) implies fish(x))
forall x (goldfish(x) implies carp(x))
osprey(bubbles) xor goldfish(bubbles) implies not fish(bubbles)
|
osprey(bubbles)
|
forall (fish(x) -: notbird(x))
forall (osprey(x) -: bird(x))
forall (carp(x) -: fish(x))
forall (goldfish(x) -: carp(x))
osprey(bubbles) ^ goldfish(bubbles) -: notfish(bubbles)
|
osprey(bubbles)
|
[@every *x [(fish[(?x)] ~bird[(?x)])]
@every *x [(osprey[(?x)] bird[(?x)])]
@every *x [(carp[(?x)] fish[(?x)])]
@every *x [(goldfish[(?x)] carp[(?x)])]
osprey[(bubbles)] goldfish[(bubbles)] ~fish[(bubbles)]]
|
[osprey[(bubbles)]]
|
all:x (fish(x) :- ~bird(x))
all:x (osprey(x) :- bird(x))
all:x (carp(x) :- fish(x))
all:x (goldfish(x) :- carp(x))
osprey(bubbles) ^ goldfish(bubbles) :- ~fish(bubbles)
|
osprey(bubbles)
|
-(+F0--+B0)
-(+O0-+B0)
-(+C0-+F0)
-(+G0-+C0)
+O2(+b2)-+G2(+b2)--+F2(+b2)
|
+O2(+b2)
|
103
|
Palstaves are a type of early bronze axe.
Palstaves are found in northern, western, and southwestern Europe and are cast in molds.
John Evans is an archeologist who popularized the term "palstave."
Paalstabs are not a type of axe but rather a digging shovel.
|
EarlyBronzeAge(palstave) ∧ Axe(palstave)
FoundIn(palstave, northernEurope) ∨ FoundIn(palstave, westernEurope) ∨ FoundIn(palstave, southWesternEurope)) ∧ CastIn(palstave, molds)
Archeologist(johnEvans) ∧ Popularize(johnEvans, termPalstave)
¬Axe(paalstab) ∧ DiggingShovel(paalstab)
|
There is an axe that is found in Western Europe.
|
∃x (Axe(x) ∧ FoundIn(x, westernEurope))
|
Uncertain
| 314
|
earlybronzeage(palstave) and axe(palstave)
foundin(palstave, northerneurope) or foundin(palstave, westerneurope) or foundin(palstave, southwesterneurope)) and castin(palstave, molds)
archeologist(johnevans) and popularize(johnevans, termpalstave)
not axe(paalstab) and diggingshovel(paalstab)
|
exists x (axe(x) and foundin(x, westerneurope))
|
earlybronzeage(palstave) , axe(palstave)
foundin(palstave, northerneurope) | foundin(palstave, westerneurope) | foundin(palstave, southwesterneurope)) , castin(palstave, molds)
archeologist(johnevans) , popularize(johnevans, termpalstave)
notaxe(paalstab) , diggingshovel(paalstab)
|
(axe(x) , foundin(x, westerneurope))
|
[earlybronzeage[(palstave)] axe[(palstave)]
foundin[(palstave northerneurope)] foundin[(palstave westerneurope)] foundin[(palstave southwesterneurope)])] castin[(palstave molds)]
archeologist[(johnevans)] popularize[(johnevans termpalstave)]
~axe[(paalstab)] diggingshovel[(paalstab)]]
|
[*x [(axe[(?x)] foundin[(?x westerneurope)])]]
|
earlybronzeage(palstave) & axe(palstave)
foundin(palstave, northerneurope) | foundin(palstave, westerneurope) | foundin(palstave, southwesterneurope)) & castin(palstave, molds)
archeologist(johnevans) & popularize(johnevans, termpalstave)
~axe(paalstab) & diggingshovel(paalstab)
|
x (axe(x) & foundin(x, westerneurope))
|
+E2(+p2)++A2(+p2)
+F2-+F2-+F2)++C2
+A2(+j2)++P2
-+A2(+p2)++D2(+p2)
|
+(+A1++F1)
|
76
|
Asa Hoffmann was born in New York City.
Asa Hoffman lives in Manhattan.
Asa Hoffman is a chess player.
Some chess players are grandmasters.
People born and living in New York City are New Yorkers.
People living in Manhattan live in New York City.
|
BornIn(asaHoffmann, newYorkCity)
LiveIn(asaHoffmann, manhattan)
ChessPlayer(asaHoffmann)
∃x ∃y (ChessPlayer(x) ∧ GrandMaster(x) ∧ (¬(x=y)) ∧ ChessPlayer(y) ∧ GrandMaster(y))
∀x ((BornIn(x, newYorkCity) ∧ LiveIn(x, newYorkCity)) → NewYorker(x))
∀x (LiveIn(x, manhattan) → LiveIn(x, newYorkCity))
|
Asa Hoffmann is a New Yorker.
|
NewYorker(asaHoffmann)
|
True
| 231
|
bornin(asahoffmann, newyorkcity)
livein(asahoffmann, manhattan)
chessplayer(asahoffmann)
exists x exists y (chessplayer(x) and grandmaster(x) and (not (x=y)) and chessplayer(y) and grandmaster(y))
forall x ((bornin(x, newyorkcity) and livein(x, newyorkcity)) implies newyorker(x))
forall x (livein(x, manhattan) implies livein(x, newyorkcity))
|
newyorker(asahoffmann)
|
bornin(asahoffmann, newyorkcity)
livein(asahoffmann, manhattan)
chessplayer(asahoffmann)
(chessplayer(x) , grandmaster(x) , (not(x=y)) , chessplayer(y) , grandmaster(y))
forall ((bornin(x, newyorkcity) , livein(x, newyorkcity)) -: newyorker(x))
forall (livein(x, manhattan) -: livein(x, newyorkcity))
|
newyorker(asahoffmann)
|
[bornin[(asahoffmann newyorkcity)]
livein[(asahoffmann manhattan)]
chessplayer[(asahoffmann)]
*x *y [(chessplayer[(?x)] grandmaster[(?x)] [(~[(?x=y)])] chessplayer[(?y)] grandmaster[(?y)])]
@every *x [([(bornin[(?x newyorkcity)] livein[(?x newyorkcity)])] newyorker[(?x)])]
@every *x [(livein[(?x manhattan)] livein[(?x newyorkcity)])]]
|
[newyorker[(asahoffmann)]]
|
bornin(asahoffmann, newyorkcity)
livein(asahoffmann, manhattan)
chessplayer(asahoffmann)
x y (chessplayer(x) & grandmaster(x) & (~(x=y)) & chessplayer(y) & grandmaster(y))
all:x ((bornin(x, newyorkcity) & livein(x, newyorkcity)) :- newyorker(x))
all:x (livein(x, manhattan) :- livein(x, newyorkcity))
|
newyorker(asahoffmann)
|
+B2
+L2
+C2(+a2)
++(+C1++G1+(-(+x1))++C1++G1)
-((+B0++L0)-+N0)
-(+L0-+L0)
|
+N2(+a2)
|
143
|
Video Gag is a French television series that airs weekly.
Video Gag airs on the French broadcast channel TF1.
If viewers send funny videos to the French broadcast channel TF1, then Video Gag airs them weekly.
All videos aired on Video Gag are in French.
|
FrenchTelevision(videoGag) ∧ AirWeekly(videoGag)
AirOn(videoGag, frenchBroadcastChannelTF1)
∀x (Funny(x) ∧ Video(x) ∧ SendIn(viewers, x, frenchBroadcastChannelTF1) → AirWeekly(x) ) ∧ AirOn(videoGag, x))
∀x (Video(x) ∧ AirOn(videoGag, x) → In(x, french))
|
Viewers send funny videos to the French broadcast channel TF1 that are in French.
|
∃x (SendIn(viewers, x, frenchBroadcastChannelTF1) ∧ French(x))
|
Uncertain
| 419
|
frenchtelevision(videogag) and airweekly(videogag)
airon(videogag, frenchbroadcastchanneltf1)
forall x (funny(x) and video(x) and sendin(viewers, x, frenchbroadcastchanneltf1) implies airweekly(x) ) and airon(videogag, x))
forall x (video(x) and airon(videogag, x) implies in(x, french))
|
exists x (sendin(viewers, x, frenchbroadcastchanneltf1) and french(x))
|
frenchtelevision(videogag) , airweekly(videogag)
airon(videogag, frenchbroadcastchanneltf1)
forall (funny(x) , video(x) , sendin(viewers, x, frenchbroadcastchanneltf1) -: airweekly(x) ) , airon(videogag, x))
forall (video(x) , airon(videogag, x) -: in(x, french))
|
(sendin(viewers, x, frenchbroadcastchanneltf1) , french(x))
|
[frenchtelevision[(videogag)] airweekly[(videogag)]
airon[(videogag frenchbroadcastchanneltf1)]
@every *x [(funny[(?x)] video[(?x)] sendin[(viewers x frenchbroadcastchanneltf1)] airweekly[(?x)] )] airon[(videogag x)])]
@every *x [(video[(?x)] airon[(videogag x)] in[(?x french)])]]
|
[*x [(sendin[(viewers x frenchbroadcastchanneltf1)] french[(?x)])]]
|
frenchtelevision(videogag) & airweekly(videogag)
airon(videogag, frenchbroadcastchanneltf1)
all:x (funny(x) & video(x) & sendin(viewers, x, frenchbroadcastchanneltf1) :- airweekly(x) ) & airon(videogag, x))
all:x (video(x) & airon(videogag, x) :- in(x, french))
|
x (sendin(viewers, x, frenchbroadcastchanneltf1) & french(x))
|
+F2(+v2)++A2(+v2)
+A2
-(+F0++V0++S0-+A0)++A0)
-(+V0++A0-+I0)
|
+(+S1++F1)
|
444
|
All birds have wings.
Animals with wings aren't reptiles.
Some animals that fly are birds.
If something is an iguana, then it is a reptile. Simeng: All iguanas are reptiles.
John is either both an iguana and a bird, or he is neither.
John is an animal.
|
∀x (Bird(x) → ∃y ∃z (¬(y=z) ∧ Wing(y) ∧ Wing(z) ∧ Have(x, y) ∧ Have(x, z)))
∀x (Animal(x) ∧ (∃y ∃z (¬(y=z) ∧ Wing(y) ∧ Wing(z) ∧ Have(x, y) ∧ Have(x, z))) → ¬Reptile(x))
∃x (Animal(x) ∧ Fly(x) ∧ Bird(x))
∀x (Iguana(x) → Reptile(x))
¬(Iguana(john) ⊕ Bird(john))
Animal(john)
|
John is a reptile.
|
Reptile(john)
|
Uncertain
| 1,277
|
forall x (bird(x) implies exists y exists z (not (y=z) and wing(y) and wing(z) and have(x, y) and have(x, z)))
forall x (animal(x) and (exists y exists z (not (y=z) and wing(y) and wing(z) and have(x, y) and have(x, z))) implies not reptile(x))
exists x (animal(x) and fly(x) and bird(x))
forall x (iguana(x) implies reptile(x))
not (iguana(john) xor bird(john))
animal(john)
|
reptile(john)
|
forall (bird(x) -: (not(y=z) , wing(y) , wing(z) , have(x, y) , have(x, z)))
forall (animal(x) , ( (not(y=z) , wing(y) , wing(z) , have(x, y) , have(x, z))) -: notreptile(x))
(animal(x) , fly(x) , bird(x))
forall (iguana(x) -: reptile(x))
not(iguana(john) ^ bird(john))
animal(john)
|
reptile(john)
|
[@every *x [(bird[(?x)] *y *z [(~[(?y=z)] wing[(?y)] wing[(?z)] have[(?x y)] have[(?x z)])])]
@every *x [(animal[(?x)] [(*y *z [(~[(?y=z)] wing[(?y)] wing[(?z)] have[(?x y)] have[(?x z)])])] ~reptile[(?x)])]
*x [(animal[(?x)] fly[(?x)] bird[(?x)])]
@every *x [(iguana[(?x)] reptile[(?x)])]
~[(iguana[(john)] bird[(john)])]
animal[(john)]]
|
[reptile[(john)]]
|
all:x (bird(x) :- y z (~(y=z) & wing(y) & wing(z) & have(x, y) & have(x, z)))
all:x (animal(x) & (y z (~(y=z) & wing(y) & wing(z) & have(x, y) & have(x, z))) :- ~reptile(x))
x (animal(x) & fly(x) & bird(x))
all:x (iguana(x) :- reptile(x))
~(iguana(john) ^ bird(john))
animal(john)
|
reptile(john)
|
-(+B0-++(-(+y0)++W0++W0++H0++H0))
-(+A0+(++(-(+y1)++W1++W1++H1++H1))--+R1)
+(+A1++F1++B1)
-(+I0-+R0)
-(+I2(+j2)-+B2(+j2))
+A2(+j2)
|
+R2(+j2)
|
FOLIO-KR (FOLIO Knowledge Representation) is a dataset generated from the original FOLIO dataset spanning several KR notations from First-Order Logic (FOL).
The gold train, test and valid splits are provided. It is the fataset used in "Investigating Language Model Capabilities to Represent and Process Formal Knowledge: A Preliminary Study to Assist Ontology Engineering".
The dataset currently supports the following KR notations: