prefix
stringlengths 65
1.8k
| suffix
stringclasses 839
values | solution
stringlengths 6
859
| test_cases
listlengths 0
100
| import_str
listlengths 0
1
| demos
listlengths 0
8
| entry_func
stringclasses 158
values | data_id
stringlengths 36
40
| doc_string
stringclasses 164
values | dataset_name
stringclasses 1
value | task_name
stringclasses 1
value | compare_func
listlengths 0
0
| src_lang
stringclasses 1
value | tgt_lang
stringclasses 1
value |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
|
return ans
|
evens.sort()
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L2_L7
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
|
evens.sort()
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L2_L8
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
|
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
ans = []
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L3_L3
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
|
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
ans = []
for e, o in zip(evens, odds):
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L3_L4
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
|
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L3_L5
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
|
ans.append(evens[-1])
return ans
|
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L3_L6
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
|
return ans
|
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L3_L7
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
|
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L3_L8
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
|
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
for e, o in zip(evens, odds):
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L4_L4
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
|
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
for e, o in zip(evens, odds):
ans.extend([e, o])
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L4_L5
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
|
ans.append(evens[-1])
return ans
|
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L4_L6
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
|
return ans
|
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L4_L7
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
|
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L4_L8
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
|
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
ans.extend([e, o])
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L5_L5
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
|
ans.append(evens[-1])
return ans
|
ans.extend([e, o])
if len(evens) > len(odds):
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L5_L6
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
|
return ans
|
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L5_L7
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
|
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L5_L8
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
|
ans.append(evens[-1])
return ans
|
if len(evens) > len(odds):
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L6_L6
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
|
return ans
|
if len(evens) > len(odds):
ans.append(evens[-1])
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L6_L7
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
|
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L6_L8
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
|
return ans
|
ans.append(evens[-1])
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L7_L7
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
|
ans.append(evens[-1])
return ans
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L7_L8
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
|
return ans
|
[] |
[] |
[
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] |
sort_even
|
MultiLineInfilling/HumanEval/37/L8_L8
|
This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
|
return encode_cyclic(encode_cyclic(s))
|
[
[
"'eaztdrcpoojjs'",
"'zeartdocpjojs'"
],
[
"'fcsasgmhiqc'",
"'sfcgasimhqc'"
],
[
"'avmirjdeqbylxuau'",
"'mavjirqdelbyaxuu'"
],
[
"'azhacmsfsnfsg'",
"'hazmacssfsnfg'"
],
[
"'zbvkvwoatdccvw'",
"'vzbwkvtoacdcvw'"
],
[
"'mqzfshjknuz'",
"'zmqhfsnjkuz'"
],
[
"'bgpjjqmghur'",
"'pbgqjjhmgur'"
],
[
"'skuuqfixmobqarshlnfv'",
"'uskfuqmixqobsarnhlfv'"
],
[
"'bwcoqbjzilceuidscgn'",
"'cbwboqijzelcduigscn'"
],
[
"'lpoyfvzavtysssduxn'",
"'olpvyfvzastydssnux'"
],
[
"'rguzukgsizsrmvrnt'",
"'urgkzuigsrzsrmvnt'"
],
[
"'orjrnmyozyhwc'",
"'jormrnzyowyhc'"
],
[
"'egkdzdeufufsupt'",
"'kegddzfeusuftup'"
],
[
"'kuqnvecsetyvdfero'",
"'qkuenvecsvtyedfro'"
],
[
"'rglvlgjtgesicfkcmkm'",
"'lrggvlgjtieskcfkcmm'"
],
[
"'jpdxznnaqylzmmh'",
"'djpnxzqnazylhmm'"
],
[
"'zwmgzcntpbawwlfbex'",
"'mzwcgzpntwbafwlxbe'"
],
[
"'unjdpwbxpxkpqdopaalb'",
"'junwdppbxpxkoqdapalb'"
],
[
"'zeukiguxndy'",
"'uzegkinuxdy'"
],
[
"'sjnaktdnbnokqjg'",
"'nsjtakbdnknogqj'"
],
[
"'vrmtirlygzhf'",
"'mvrrtiglyfzh'"
],
[
"'mhtgmpslldrhjl'",
"'tmhpgmlslhdrjl'"
],
[
"'mpvjpdatrmhtdx'",
"'vmpdjprattmhdx'"
],
[
"'jimzixallctnnsg'",
"'mjixzilalnctgns'"
],
[
"'gahjootuomivad'",
"'hgaojootuvmiad'"
],
[
"'ulilcmoplpsqqoyrppbh'",
"'iulmlclopqpsyqoprpbh'"
],
[
"'oznykgwonynglp'",
"'nozgyknwogynlp'"
],
[
"'fzvyarmdbmeogatu'",
"'vfzryabmdometgau'"
],
[
"'mfnngxdggewb'",
"'nmfxnggdgbew'"
],
[
"'qvacnekscjxe'",
"'aqvecncksejx'"
],
[
"'nmcapqndnkuh'",
"'cnmqapnndhku'"
],
[
"'nnennffezagabnfa'",
"'ennfnnzfeaagfbna'"
],
[
"'ifgknbekvs'",
"'gifbknveks'"
],
[
"'drtekkfffj'",
"'tdrkekfffj'"
],
[
"'tswtymazbcejja'",
"'wtsmtybazjceja'"
],
[
"'vlcyvzwvjbrc'",
"'cvlzyvjwvcbr'"
],
[
"'jvlybcuhdjhoixz'",
"'ljvcybduhojhzix'"
],
[
"'gtpwuynlrwoimpersbri'",
"'pgtywurnliwoempbrsri'"
],
[
"'gxkyyxeiltkdiuq'",
"'kgxxyyleidtkqiu'"
],
[
"'lsxrlnsbrxispzf'",
"'xlsnrlrsbsxifpz'"
],
[
"'hkwqbehapilpgesmj'",
"'whkeqbphapilsgemj'"
],
[
"'qgxkrqvsvsrwesnwot'",
"'xqgqkrvvswsrnestwo'"
],
[
"'tkjskkxoqalpnajqidr'",
"'jtkkskqxopaljnadqir'"
],
[
"'djekkirzcafg'",
"'edjikkcrzgaf'"
],
[
"'srfgcpgexwdbajohros'",
"'fsrpgcxgebwdoajohrs'"
],
[
"'sfckdzevjqezdxmcso'",
"'csfzkdjevzqemdxocs'"
],
[
"'aaikokcghtbyunigyq'",
"'iaakkohcgytbiunqgy'"
],
[
"'jaldcwbuxzqvlsff'",
"'ljawdcxbuvzqflsf'"
],
[
"'hyjfibztlplww'",
"'jhybfilztwplw'"
],
[
"'irsuppaksqoxgkyak'",
"'sirpupsakxqoygkak'"
],
[
"'rvhlirxndd'",
"'hrvrlidxnd'"
],
[
"'fwofairkckdyffng'",
"'ofwifacrkykdnffg'"
],
[
"'idmgovtowjfmf'",
"'midvgowtomjff'"
],
[
"'ovfdtilllkla'",
"'fovidtlllakl'"
],
[
"'kmmlbgisttsjhpgeo'",
"'mkmglbtisjtsghpeo'"
],
[
"'wvnqidnuhafydcdqqbzv'",
"'nwvdqihnuyafddcbqqzv'"
],
[
"'suhgzhdxuwp'",
"'hsuhgzudxwp'"
],
[
"'wovjwmvixtut'",
"'vwomjwxvittu'"
],
[
"'cghripgisjeihgsbkme'",
"'hcgprisgiijeshgmbke'"
],
[
"'vpnnwihekt'",
"'nvpinwkhet'"
],
[
"'oakdzvyxwcubs'",
"'koavdzwyxbcus'"
],
[
"'yiizrtxhhmazu'",
"'iyitzrhxhzmau'"
],
[
"'ykzsucdlyah'",
"'zykcsuydlah'"
],
[
"'wikxqjfoudburqasd'",
"'kwijxqufoudbarqsd'"
],
[
"'cssoeuoaspnhxaeipsc'",
"'scsuoesoahpnexasipc'"
],
[
"'yiztlakgbpfqpnvrwxl'",
"'zyiatlbkgqpfvpnxrwl'"
],
[
"'faljwqdqsyeghhccnrvz'",
"'lfaqjwsdqgyechhrcnvz'"
],
[
"'okdezkfuvnml'",
"'dokkezvfulnm'"
],
[
"'klkbfzkqofdmtcg'",
"'kklzbfokqmfdgtc'"
],
[
"'uqzurwhizdjvr'",
"'zuqwurzhivdjr'"
],
[
"'jrgrscrapvjpfqj'",
"'gjrcrsprapvjjfq'"
],
[
"'nwenxrwcrfaeb'",
"'enwrnxrwcefab'"
],
[
"'pldrrczxefqs'",
"'dplcrrezxsfq'"
],
[
"'ksvouegvkjyfecan'",
"'vkseoukgvfjyaecn'"
],
[
"'ijqaxfmbwjkevttzbxk'",
"'qijfaxwmbejktvtxzbk'"
],
[
"'irewkmbwkh'",
"'eirmwkkbwh'"
],
[
"'mhqhodamvtgiev'",
"'qmhdhovamitgev'"
],
[
"'ryjpgtgwucmyeulwhydh'",
"'jrytpgugwycmleuywhdh'"
],
[
"'ttkwvupppyakk'",
"'kttuwvpppkyak'"
],
[
"'dsgidvchdrln'",
"'gdsviddchnrl'"
],
[
"'nklhmphxejdcwx'",
"'lnkphmehxcjdwx'"
],
[
"'plwenneudaqxtwheh'",
"'wplnendeuxaqhtweh'"
],
[
"'pasolfzaalcs'",
"'spafolazaslc'"
],
[
"'mvohmjdjtvggijdbxbnh'",
"'omvjhmtdjgvgdijbbxnh'"
],
[
"'olbcwcvbnhh'",
"'bolccwnvbhh'"
],
[
"'nttkuqayrlcuxioymcl'",
"'tntqkurayulcoxicyml'"
],
[
"'jxhrreunodmezni'",
"'hjxerrounedmizn'"
],
[
"'wsrxjpqyzkxhbxc'",
"'rwspxjzqyhkxcbx'"
],
[
"'kxkqlaosighdfirrgd'",
"'kkxaqliosdghrfidrg'"
],
[
"'jwlphbvzsosmfdq'",
"'ljwbphsvzmosqfd'"
],
[
"'osdfiyiitm'",
"'dosyfitiim'"
],
[
"'yndqfrdeuthbcwhhvizq'",
"'dynrqfudebthhcwihvzq'"
],
[
"'cmqnxmwxnrv'",
"'qcmmnxnwxrv'"
],
[
"'qvfdfgsgqkwa'",
"'fqvgdfqsgakw'"
],
[
"'zzuimcybadfunvwd'",
"'uzzcimaybudfwnvd'"
],
[
"'bsrzyntvnvsppnz'",
"'rbsnzyntvpvszpn'"
],
[
"'mjrvpbrpqemkws'",
"'rmjbvpqrpkemws'"
],
[
"'ekwvxxlganvrot'",
"'wekxvxalgrnvot'"
],
[
"'onlzsrfkdqfuvl'",
"'lonrzsdfkuqfvl'"
],
[
"'rcwvivhovywyfnqsefv'",
"'wrcvvivhoyywqfnfsev'"
]
] |
[] |
[
[
"group",
"3 else group for group in groups]"
]
] |
decode_cyclic
|
MultiLineInfilling/HumanEval/38/L0_L0
|
returns encoded string by cycling groups of three characters.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
import math
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L0
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
import math
def is_prime(p):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L2
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
import math
def is_prime(p):
if p < 2:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L3
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
import math
def is_prime(p):
if p < 2:
return False
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L4
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L5
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L6
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L7
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L8
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L9
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L10
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L11
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
n -= 1
if n == 0:
return f[-1]
|
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L12
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
if n == 0:
return f[-1]
|
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L13
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
return f[-1]
|
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L14
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L0_L15
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
def is_prime(p):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L2
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
def is_prime(p):
if p < 2:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L3
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
def is_prime(p):
if p < 2:
return False
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L4
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L5
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L6
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L7
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L8
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L9
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L10
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L11
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
n -= 1
if n == 0:
return f[-1]
|
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L12
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
if n == 0:
return f[-1]
|
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L13
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
return f[-1]
|
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L14
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
|
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L2_L15
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p < 2:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L3
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p < 2:
return False
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L4
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L5
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L6
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L7
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L8
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L9
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L10
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L11
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
n -= 1
if n == 0:
return f[-1]
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L12
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
if n == 0:
return f[-1]
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L13
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
return f[-1]
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L14
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
|
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L3_L15
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
return False
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L4_L4
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
|
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L4_L5
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
|
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L4_L6
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
|
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L4_L7
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
|
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L4_L8
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
|
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L4_L9
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
|
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L4_L10
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
|
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L4_L11
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
|
n -= 1
if n == 0:
return f[-1]
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L4_L12
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
|
if n == 0:
return f[-1]
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L4_L13
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
|
return f[-1]
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L4_L14
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
|
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L4_L15
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
|
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L5_L5
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
|
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L5_L6
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
|
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L5_L7
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
|
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L5_L8
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
|
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L5_L9
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
|
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L5_L10
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
|
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L5_L11
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
|
n -= 1
if n == 0:
return f[-1]
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L5_L12
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
|
if n == 0:
return f[-1]
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L5_L13
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
|
return f[-1]
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L5_L14
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
|
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L5_L15
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p % k == 0:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L6_L6
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p % k == 0:
return False
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L6_L7
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p % k == 0:
return False
return True
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L6_L8
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p % k == 0:
return False
return True
f = [0, 1]
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L6_L9
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p % k == 0:
return False
return True
f = [0, 1]
while True:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L6_L10
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L6_L11
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
n -= 1
if n == 0:
return f[-1]
|
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L6_L12
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
if n == 0:
return f[-1]
|
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L6_L13
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
return f[-1]
|
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L6_L14
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
|
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L6_L15
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
|
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
return False
|
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] |
[] |
[
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] |
prime_fib
|
MultiLineInfilling/HumanEval/39/L7_L7
|
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
|
HumanEval_MultiLineInfilling
|
code_infilling
|
[] |
python
|
python
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.