TeX
stringlengths 8
256
|
|---|
\displaystyle B\times k^{\prime}\times\underbrace{(n_{L}+n_{R})}_{=n-(k+k^{%
\prime})}=B\times k^{\prime}\times(n-(k+k^{\prime}))
|
P^{\prime}\subset P
|
0\leq i\leq k
|
e_{i},e_{j}
|
C\leq y\leq B+C
|
c_{i}\neq c_{j}
|
\alpha_{1}=B
|
\displaystyle\xrightarrow{\text{setting }x=A+B,y=C}=
|
v\in V_{s}
|
\mathcal{E}_{1}
|
|w^{*}-(c_{2}\times w^{*}+c_{j}\times w^{*}-\epsilon\times w^{*})|-|w^{*}-(c_{%
2}\times w^{*}+c_{j}\times w^{*})|\leq\epsilon\times w^{*}
|
e^{*}\in S
|
c^{\prime}_{2}=c_{2}-\epsilon
|
f\in\mathcal{F}=\{\text{MARK\_LEFT},\text{UNMARK\_RIGHT}\}
|
|w_{1}+w^{*}+w_{3}+w^{*}-w_{1}-w^{*}-w_{3}|=w^{*}
|
M_{L}^{*}\xleftarrow[]{}M_{L}^{*}\cup\{e_{i}\}
|
\mathcal{E}^{v_{i},u_{j}}_{1}=\left|\pi_{v_{i},u_{j}}-\pi^{\prime}_{v_{i},u_{j%
}}\right|=\left|\pi^{\prime}_{v_{i},u_{j}}-\pi_{v_{i},u_{j}}\right|=\left|%
\mathcal{W}^{\prime}(E^{(v_{i},u_{j})})-\mathcal{W}^{*}(E^{(v_{i},u_{j})})\right|
|
\alpha_{1}=x-A+A+B-x<B\xrightarrow{}0<0
|
(u,v),\;\;u\in V_{m},\;v\in\overline{V_{m}}
|
|\Delta E|\geq B(n_{L}+n_{R})+n_{L}n_{R}|x+y-A-B-C|
|
v^{\prime}_{1}
|
\operatorname{d}_{G^{\prime}}(u,v)\geq\varphi\left(\operatorname{d}_{G}(u,v)\right)
|
S\xleftarrow[]{}E_{m}
|
7-21\leq 3=L_{3}
|
{n^{2}_{R}}\times 2\big{(}{j-1\choose 2}-{j\choose 2}\big{)}={n^{2}_{R}}\times%
(-2(j-1))
|
\mathcal{E}_{LR}=0
|
w^{\prime}(e_{i})=w(e_{i})+\epsilon_{i},\epsilon_{i}\in[0,w^{*}]
|
\displaystyle+
|
i+1-k+i<0\xrightarrow[]{}2i<k-1\xrightarrow[]{}i<\frac{k}{2}-\frac{1}{2}%
\xrightarrow[\text{since }k\text{ is even}]{}i\leq\frac{k}{2}-1
|
\alpha_{1}
|
V_{m}=\{v_{2},v_{3}\}
|
\Delta({\text{MARK\_LEFT}})={n^{2}_{L}}\times(2i+{\mathcal{L}}-2i-1)+{n_{L}}{n%
_{R}}(j+j-{\mathcal{R}})={n^{2}_{L}}\times({\mathcal{L}}-1)+{n_{L}}{n_{R}}(2j-%
{\mathcal{R}})
|
E^{(v_{1},u_{5})}=\{e_{1},e^{*}_{1},e_{2},e_{3},e^{*}_{2},e_{4}\}
|
x=\sum_{k=i}^{n_{1}}\epsilon_{k}
|
v_{i},v_{j}\in V_{R}
|
G^{\prime}
|
c_{i+1},\dots,c_{k}
|
S_{R}-R_{i}-S_{L}\leq 0
|
w_{i}=w(e_{i})\;\forall i\in\{0,\dots,k+1\}
|
u_{1}\in T_{1}^{L},u_{2}\in T_{2}^{L}
|
\displaystyle\mathcal{E}_{L}^{(i+1)}=
|
i\geq\frac{{\mathcal{L}}}{2}+\frac{{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}
|
\displaystyle\mathcal{E}(M)=
|
n_{L}n_{R}|x+y-A-B-C|
|
V^{\prime}\subset V
|
R_{i}={n_{R}},\;1\leq i\leq{\mathcal{R}}
|
\pi_{v_{i},u_{j+1}}=\pi_{v_{i},u_{j}}+w^{*}_{k}\text{, }\pi^{\prime}_{v_{i},u_%
{j}}=\pi^{\prime}_{v_{i},u_{j+1}}\text{, and }\pi^{\prime\prime}_{v_{i},u_{j}}%
=\pi^{\prime\prime}_{v_{i},u_{j+1}}
|
u_{1}\in T_{i}^{L},u_{2}\in T_{j}^{L}
|
\epsilon=0.4
|
e\in E_{m}
|
e_{i},w_{i}=w(e_{i})
|
\displaystyle\mathcal{E}^{(x<w_{0})}_{L}
|
V_{m}=\{u_{1},\dots,u_{2k}\}
|
\displaystyle\underbrace{n_{L}\times n_{R}\times|x+y-A-B-C|}_{\text{between %
the subpath of }w_{1}\text{ and }w_{2}}
|
\mathcal{E}^{v_{i},u_{j}}_{2}=\left|\pi^{\prime\prime}_{v_{i},u_{j}}-\pi_{v_{i%
},u_{j}}\right|=\left|w^{*}_{k}\right|
|
\frac{\mathcal{E}^{(\frac{k}{2})}_{L}}{n_{L}}-\frac{\mathcal{E}_{L}}{n_{L}}\leq
0
|
\mathcal{E}^{v_{i},u_{j+1}}_{2}=0
|
\displaystyle\xrightarrow[]{}\mathcal{E}(M)\geq\mathcal{E}(M_{L}^{*})
|
|x+y-A-B-C|
|
E^{(u,v)}
|
x=w_{0}+w_{1}+\dots+w_{\frac{k}{2}}
|
w_{1}+w_{2}+w_{3}
|
j\xleftarrow[]{}0
|
S_{R}=S_{RU}+S_{RM}
|
c_{1}+c_{2}=0.6+0.8=1.4>1
|
S_{L}=\sum_{i=1}^{{\mathcal{L}}}L_{i}
|
c_{1}+c_{2}=1+\epsilon
|
w^{\prime}(e_{i})=w(e_{i})+w^{*}
|
\{e_{1},e_{3}\}
|
G^{{}^{\prime}}
|
i\xleftarrow{}i+1
|
\Delta(f)
|
\displaystyle n_{L}\times k^{\prime}\times\underbrace{\big{(}|x-A|+|x-A-B|\big%
{)}}_{\geq B\text{ (Lemma \ref{l12})}}+n_{R}\times k^{\prime}\times\underbrace%
{\big{(}|y-C|+|y-B-C|\big{)}}_{\geq B\text{ (Lemma \ref{l12})}}
|
i<\frac{{\mathcal{L}}}{2}+\frac{{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}
|
\epsilon_{2}\in\{0,w^{*}\}
|
\displaystyle\mathcal{E}(M)
|
V_{L}=\{u|(u,v_{1})\in E^{\prime}\},{\mathcal{L}}=|V_{L}|
|
n_{L}+n_{R}=n-2=\left|\overline{V_{m}}\right|
|
T_{i}^{L}
|
i={\mathcal{L}}
|
\epsilon>0
|
E^{\prime}\subseteq E
|
S_{R}^{\prime}\geq S_{L}^{\prime}
|
u_{1}\in T_{i}^{R},u_{2}\in T_{j}^{R}
|
\displaystyle|\Delta E|=
|
V_{L},V_{R}\subset V
|
\displaystyle=\mathcal{E}(M_{0})+(\epsilon_{1}+\epsilon_{2})\times\sum_{e_{i}%
\in E_{L}}L_{i}\times w^{*}\times(S_{L}-L_{i}-S_{R})\xrightarrow[S_{L}-L_{i}-S%
_{R}\leq 0]{\epsilon_{1}+\epsilon_{2}\leq 1}
|
\{u_{1},v_{1}\}
|
\Delta({\text{UNMARK\_RIGHT}})=R_{i}\times\bigg{(}-(S_{RM}-R_{i})-S_{RU}-S_{LM%
}+S_{LU}\bigg{)}
|
\alpha_{1}=|x-A|+|x-A-B|
|
|z|\leq|x|+|z-x|\xrightarrow[]{}|z|-|x|\leq|z-x|
|
n_{R}\geq 0
|
21-7>1=R_{2}
|
v^{*}=\{v_{2},v_{3},\dots,v_{k+2}\}
|
w:E\rightarrow\mathbb{R}_{\geq 0}
|
i=\{1,\dots,{\mathcal{L}}\}
|
\Delta_{1}({\text{MARK\_LEFT}})<0
|
0-\left|\sum_{k=i}^{j-1}\epsilon_{k}\right|
|
u,v\in G
|
V_{m}=\{v_{1},v_{2}\}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.