Dataset Viewer
Auto-converted to Parquet Duplicate
declaration
stringlengths
27
11.3k
file
stringlengths
52
114
context
dict
tactic_states
listlengths
1
1.24k
theorem Nat.Prime.sq_add_sq' {p : ℕ} [h : Fact p.Prime] (hp : p % 4 = 1) : ∃ a b : ℕ, a ^ 2 + b ^ 2 = p := by rw [← div_add_mod p 4] at h ⊢ rw [hp] at h ⊢ let k := p / 4 apply sq_add_sq_of_nonempty_fixedPoints have key := (Equiv.Perm.card_fixedPoints_modEq (p := 2) (n := 1) (obvInvo_sq k)).symm.trans (Equiv.Perm.card_fixedPoints_modEq (p := 2) (n := 1) (complexInvo_sq k)) contrapose key rw [Set.not_nonempty_iff_eq_empty] at key simp_rw [k, key, Fintype.card_eq_zero, card_fixedPoints_eq_one] decide
/root/DuelModelResearch/mathlib4/Archive/ZagierTwoSquares.lean
{ "open": [ "Set", "Function", "Zagier" ], "variables": [ "(k : ℕ) [hk : Fact (4 * k + 1).Prime]", "(k : ℕ)", "[hk : Fact (4 * k + 1).Prime]" ] }
[ { "line": "rw [← div_add_mod p 4] at h ⊢", "before_state": "p : ℕ\nh : Fact (Prime p)\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = p", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4" }, { "line": "rewrite [← div_add_mod p 4] at h ⊢", "before_state": "p : ℕ\nh : Fact (Prime p)\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = p", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4" }, { "line": "try (with_reducible rfl)", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4" }, { "line": "with_reducible rfl", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4" }, { "line": "rfl", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4" }, { "line": "apply_rfl", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4" }, { "line": "skip", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4" }, { "line": "rw [hp] at h ⊢", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "rewrite [hp] at h ⊢", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + p % 4))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + p % 4", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "try (with_reducible rfl)", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "with_reducible rfl", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "rfl", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "apply_rfl", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "skip", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "let k := p / 4", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\nk : ℕ := p / 4\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "refine_lift\n let k := p / 4;\n ?_", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\nk : ℕ := p / 4\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "focus\n (refine\n no_implicit_lambda%\n (let k := p / 4;\n ?_);\n rotate_right)", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\nk : ℕ := p / 4\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "refine\n no_implicit_lambda%\n (let k := p / 4;\n ?_)", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\nk : ℕ := p / 4\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "rotate_right", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\nk : ℕ := p / 4\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\nk : ℕ := p / 4\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1" }, { "line": "apply sq_add_sq_of_nonempty_fixedPoints", "before_state": "p : ℕ\nh : Fact (Prime (4 * (p / 4) + 1))\nhp : p % 4 = 1\nk : ℕ := p / 4\n⊢ ∃ a b, a ^ 2 + b ^ 2 = 4 * (p / 4) + 1", "after_state": "No Goals!" } ]
example : ¬ LucasLehmerTest 2 := by norm_num
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ ¬LucasLehmerTest 2", "after_state": "No Goals!" } ]
example : (mersenne 2).Prime := by decide
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "decide", "before_state": "⊢ Nat.Prime (mersenne 2)", "after_state": "No Goals!" } ]
example : (mersenne 3).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 3", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 3", "after_state": "No Goals!" } ]
example : (mersenne 5).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 5", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 5", "after_state": "No Goals!" } ]
example : (mersenne 7).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 7", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 7", "after_state": "No Goals!" } ]
example : (mersenne 13).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 13", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 13", "after_state": "No Goals!" } ]
example : (mersenne 17).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 17", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 17", "after_state": "No Goals!" } ]
example : (mersenne 19).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 19", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 19", "after_state": "No Goals!" } ]
example : (mersenne 31).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 31", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 31", "after_state": "No Goals!" } ]
example : (mersenne 61).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 61", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 61", "after_state": "No Goals!" } ]
example : (mersenne 89).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 89", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 89", "after_state": "No Goals!" } ]
example : (mersenne 107).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 107", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 107", "after_state": "No Goals!" } ]
example : (mersenne 127).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 127", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 127", "after_state": "No Goals!" } ]
example : (mersenne 521).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 521", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 521", "after_state": "No Goals!" } ]
example : (mersenne 607).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 607", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 607", "after_state": "No Goals!" } ]
example : (mersenne 1279).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 1279", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 1279", "after_state": "No Goals!" } ]
example : (mersenne 2203).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 2203", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 2203", "after_state": "No Goals!" } ]
example : (mersenne 2281).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 2281", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 2281", "after_state": "No Goals!" } ]
example : (mersenne 3217).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 3217", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 3217", "after_state": "No Goals!" } ]
example : (mersenne 4253).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 4253", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 4253", "after_state": "No Goals!" } ]
example : (mersenne 4423).Prime := lucas_lehmer_sufficiency _ (by norm_num) (by norm_num)
/root/DuelModelResearch/mathlib4/Archive/Examples/MersennePrimes.lean
{ "open": [], "variables": [] }
[ { "line": "norm_num", "before_state": "⊢ 1 < 4423", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "⊢ LucasLehmerTest 4423", "after_state": "No Goals!" } ]
theorem calculation (n k : ℕ) (h1 : k ∣ 21 * n + 4) (h2 : k ∣ 14 * n + 3) : k ∣ 1 := have h3 : k ∣ 2 * (21 * n + 4) := h1.mul_left 2 have h4 : k ∣ 3 * (14 * n + 3) := h2.mul_left 3 have h5 : 3 * (14 * n + 3) = 2 * (21 * n + 4) + 1 := by ring (Nat.dvd_add_right h3).mp (h5 ▸ h4)
/root/DuelModelResearch/mathlib4/Archive/Imo/Imo1959Q1.lean
{ "open": [ "Nat" ], "variables": [] }
[ { "line": "ring", "before_state": "n k : ℕ\nh1 : k ∣ 21 * n + 4\nh2 : k ∣ 14 * n + 3\nh3 : k ∣ 2 * (21 * n + 4)\nh4 : k ∣ 3 * (14 * n + 3)\n⊢ 3 * (14 * n + 3) = 2 * (21 * n + 4) + 1", "after_state": "No Goals!" }, { "line": "first\n| ring1\n|\n try_this ring_nf\"\\n\\nThe `ring` tactic failed to close the goal. Use `ring_nf` to obtain a normal form.\n \\nNote that `ring` works primarily in *commutative* rings. \\\n If you have a noncommutative ring, abelian group or module, consider using \\\n `noncomm_ring`, `abel` or `module` instead.\"", "before_state": "n k : ℕ\nh1 : k ∣ 21 * n + 4\nh2 : k ∣ 14 * n + 3\nh3 : k ∣ 2 * (21 * n + 4)\nh4 : k ∣ 3 * (14 * n + 3)\n⊢ 3 * (14 * n + 3) = 2 * (21 * n + 4) + 1", "after_state": "No Goals!" }, { "line": "ring1", "before_state": "n k : ℕ\nh1 : k ∣ 21 * n + 4\nh2 : k ∣ 14 * n + 3\nh3 : k ∣ 2 * (21 * n + 4)\nh4 : k ∣ 3 * (14 * n + 3)\n⊢ 3 * (14 * n + 3) = 2 * (21 * n + 4) + 1", "after_state": "No Goals!" } ]
theorem Imo1961Q3 {n : ℕ} {x : ℝ} (h₀ : n ≠ 0) : (cos x) ^ n - (sin x) ^ n = 1 ↔ (∃ k : ℤ, k * π = x) ∧ Even n ∨ (∃ k : ℤ, k * (2 * π) = x) ∧ Odd n ∨ (∃ k : ℤ, -(π / 2) + k * (2 * π) = x) ∧ Odd n := by constructor · intro h rcases eq_or_ne (sin x) 0 with hsinx | hsinx · rw [hsinx, zero_pow h₀, sub_zero, pow_eq_one_iff_of_ne_zero h₀, cos_eq_one_iff, cos_eq_neg_one_iff] at h rcases h with ⟨k, rfl⟩ | ⟨⟨k, rfl⟩, hn⟩ · cases n.even_or_odd with | inl hn => refine .inl ⟨⟨k * 2, ?_⟩, hn⟩; simp [mul_assoc] | inr hn => exact .inr <| .inl ⟨⟨_, rfl⟩, hn⟩ · exact .inl ⟨⟨2 * k + 1, by push_cast; ring⟩, hn⟩ · rcases eq_or_ne (cos x) 0 with hcosx | hcosx · right; right rw [hcosx] at h rw [zero_pow h₀] at h rw [zero_sub] at h rw [← neg_inj] at h rw [neg_neg] at h rw [pow_eq_neg_one_iff] at h rw [sin_eq_neg_one_iff] at h simpa only [eq_comm] using h · have hcos1 : |cos x| < 1 := by rw [abs_cos_eq_sqrt_one_sub_sin_sq] rw [sqrt_lt' one_pos] simp [sq_pos_of_ne_zero hsinx] have hsin1 : |sin x| < 1 := by rw [abs_sin_eq_sqrt_one_sub_cos_sq] rw [sqrt_lt' one_pos] simp [sq_pos_of_ne_zero hcosx] match n with | 1 => rw [pow_one] at h rw [pow_one] at h rw [sub_eq_iff_eq_add] at h have : 2 * sin x * cos x = 0 := by simpa [h, add_sq, add_assoc, ← two_mul, mul_add, mul_assoc, ← sq] using cos_sq_add_sin_sq x simp [hsinx, hcosx] at this | 2 => rw [← cos_sq_add_sin_sq x] at h rw [sub_eq_add_neg] at h rw [add_right_inj] at h rw [neg_eq_self ℝ] at h exact absurd (pow_eq_zero h) hsinx | (n + 1 + 2) => set m := n + 1 refine absurd ?_ h.not_lt calc (cos x) ^ (m + 2) - (sin x) ^ (m + 2) ≤ |cos x| ^ (m + 2) + |sin x| ^ (m + 2) := by simp only [← abs_pow] simp only [sub_eq_add_neg] gcongr exacts [le_abs_self _, neg_le_abs _] _ = |cos x| ^ m * cos x ^ 2 + |sin x| ^ m * sin x ^ 2 := by simp [pow_add] _ < 1 ^ m * cos x ^ 2 + 1 ^ m * sin x ^ 2 := by gcongr _ = 1 := by simp · rintro (⟨⟨k, rfl⟩, hn⟩ | ⟨⟨k, rfl⟩, -⟩ | ⟨⟨k, rfl⟩, hn⟩) · rw [sin_int_mul_pi, zero_pow h₀, sub_zero, ← hn.pow_abs, abs_cos_int_mul_pi, one_pow] · have : sin (k * (2 * π)) = 0 := by simpa [mul_assoc] using sin_int_mul_pi (k * 2) simp [h₀, this] · simp [hn.neg_pow, h₀]
/root/DuelModelResearch/mathlib4/Archive/Imo/Imo1961Q3.lean
{ "open": [ "Real" ], "variables": [] }
[ { "line": "constructor", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\n⊢ cos x ^ n - sin x ^ n = 1 ↔\n (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\n⊢ cos x ^ n - sin x ^ n = 1 →\n (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\n---\ncase mpr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n →\n cos x ^ n - sin x ^ n = 1" }, { "line": "intro h", "before_state": "case mp\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\n⊢ cos x ^ n - sin x ^ n = 1 →\n (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rcases eq_or_ne (sin x) 0 with hsinx | hsinx", "before_state": "case mp\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\n---\ncase mp.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rw [hsinx, zero_pow h₀, sub_zero, pow_eq_one_iff_of_ne_zero h₀, cos_eq_one_iff, cos_eq_neg_one_iff] at h", "before_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rewrite [hsinx, zero_pow h₀, sub_zero, pow_eq_one_iff_of_ne_zero h₀, cos_eq_one_iff, cos_eq_neg_one_iff] at h", "before_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "try (with_reducible rfl)", "before_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_reducible rfl", "before_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rfl", "before_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "apply_rfl", "before_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "skip", "before_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rcases h with ⟨k, rfl⟩ | ⟨⟨k, rfl⟩, hn⟩", "before_state": "case mp.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ n, ↑n * (2 * π) = x) ∨ (∃ k, π + ↑k * (2 * π) = x) ∧ Even n\nhsinx : sin x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inl.inl.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nhsinx : sin (↑k * (2 * π)) = 0\n⊢ (∃ k_1, ↑k_1 * π = ↑k * (2 * π)) ∧ Even n ∨\n (∃ k_1, ↑k_1 * (2 * π) = ↑k * (2 * π)) ∧ Odd n ∨ (∃ k_1, -(π / 2) + ↑k_1 * (2 * π) = ↑k * (2 * π)) ∧ Odd n\n---\ncase mp.inl.inr.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\nhsinx : sin (π + ↑k * (2 * π)) = 0\n⊢ (∃ k_1, ↑k_1 * π = π + ↑k * (2 * π)) ∧ Even n ∨\n (∃ k_1, ↑k_1 * (2 * π) = π + ↑k * (2 * π)) ∧ Odd n ∨ (∃ k_1, -(π / 2) + ↑k_1 * (2 * π) = π + ↑k * (2 * π)) ∧ Odd n" }, { "line": "cases n.even_or_odd with\n| inl hn => refine .inl ⟨⟨k * 2, ?_⟩, hn⟩; simp [mul_assoc]\n| inr hn => exact .inr <| .inl ⟨⟨_, rfl⟩, hn⟩", "before_state": "case mp.inl.inl.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nhsinx : sin (↑k * (2 * π)) = 0\n⊢ (∃ k_1, ↑k_1 * π = ↑k * (2 * π)) ∧ Even n ∨\n (∃ k_1, ↑k_1 * (2 * π) = ↑k * (2 * π)) ∧ Odd n ∨ (∃ k_1, -(π / 2) + ↑k_1 * (2 * π) = ↑k * (2 * π)) ∧ Odd n", "after_state": "No Goals!" }, { "line": "cases n.even_or_odd with\n| inl hn => refine .inl ⟨⟨k * 2, ?_⟩, hn⟩; simp [mul_assoc]\n| inr hn => exact .inr <| .inl ⟨⟨_, rfl⟩, hn⟩", "before_state": "case mp.inl.inl.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nhsinx : sin (↑k * (2 * π)) = 0\nx✝ : Even n ∨ Odd n\n⊢ (∃ k_1, ↑k_1 * π = ↑k * (2 * π)) ∧ Even n ∨\n (∃ k_1, ↑k_1 * (2 * π) = ↑k * (2 * π)) ∧ Odd n ∨ (∃ k_1, -(π / 2) + ↑k_1 * (2 * π) = ↑k * (2 * π)) ∧ Odd n", "after_state": "case mp.inl.inl.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nhsinx : sin (↑k * (2 * π)) = 0\nx✝ : Even n ∨ Odd n\n⊢ (∃ k_1, ↑k_1 * π = ↑k * (2 * π)) ∧ Even n ∨\n (∃ k_1, ↑k_1 * (2 * π) = ↑k * (2 * π)) ∧ Odd n ∨ (∃ k_1, -(π / 2) + ↑k_1 * (2 * π) = ↑k * (2 * π)) ∧ Odd n" }, { "line": "refine .inl ⟨⟨k * 2, ?_⟩, hn⟩", "before_state": "case mp.inl.inl.intro.inl\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nhsinx : sin (↑k * (2 * π)) = 0\nhn : Even n\n⊢ (∃ k_1, ↑k_1 * π = ↑k * (2 * π)) ∧ Even n ∨\n (∃ k_1, ↑k_1 * (2 * π) = ↑k * (2 * π)) ∧ Odd n ∨ (∃ k_1, -(π / 2) + ↑k_1 * (2 * π) = ↑k * (2 * π)) ∧ Odd n", "after_state": "case mp.inl.inl.intro.inl\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nhsinx : sin (↑k * (2 * π)) = 0\nhn : Even n\n⊢ ↑(k * 2) * π = ↑k * (2 * π)" }, { "line": "simp [mul_assoc]", "before_state": "case mp.inl.inl.intro.inl\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nhsinx : sin (↑k * (2 * π)) = 0\nhn : Even n\n⊢ ↑(k * 2) * π = ↑k * (2 * π)", "after_state": "No Goals!" }, { "line": "exact .inr <| .inl ⟨⟨_, rfl⟩, hn⟩", "before_state": "case mp.inl.inl.intro.inr\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nhsinx : sin (↑k * (2 * π)) = 0\nhn : Odd n\n⊢ (∃ k_1, ↑k_1 * π = ↑k * (2 * π)) ∧ Even n ∨\n (∃ k_1, ↑k_1 * (2 * π) = ↑k * (2 * π)) ∧ Odd n ∨ (∃ k_1, -(π / 2) + ↑k_1 * (2 * π) = ↑k * (2 * π)) ∧ Odd n", "after_state": "No Goals!" }, { "line": "exact .inl ⟨⟨2 * k + 1, by push_cast; ring⟩, hn⟩", "before_state": "case mp.inl.inr.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\nhsinx : sin (π + ↑k * (2 * π)) = 0\n⊢ (∃ k_1, ↑k_1 * π = π + ↑k * (2 * π)) ∧ Even n ∨\n (∃ k_1, ↑k_1 * (2 * π) = π + ↑k * (2 * π)) ∧ Odd n ∨ (∃ k_1, -(π / 2) + ↑k_1 * (2 * π) = π + ↑k * (2 * π)) ∧ Odd n", "after_state": "No Goals!" }, { "line": "push_cast", "before_state": "n : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\nhsinx : sin (π + ↑k * (2 * π)) = 0\n⊢ ↑(2 * k + 1) * π = π + ↑k * (2 * π)", "after_state": "n : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\nhsinx : sin (π + ↑k * (2 * π)) = 0\n⊢ (2 * ↑k + 1) * π = π + ↑k * (2 * π)" }, { "line": "ring", "before_state": "n : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\nhsinx : sin (π + ↑k * (2 * π)) = 0\n⊢ (2 * ↑k + 1) * π = π + ↑k * (2 * π)", "after_state": "No Goals!" }, { "line": "first\n| ring1\n|\n try_this ring_nf\"\\n\\nThe `ring` tactic failed to close the goal. Use `ring_nf` to obtain a normal form.\n \\nNote that `ring` works primarily in *commutative* rings. \\\n If you have a noncommutative ring, abelian group or module, consider using \\\n `noncomm_ring`, `abel` or `module` instead.\"", "before_state": "n : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\nhsinx : sin (π + ↑k * (2 * π)) = 0\n⊢ (2 * ↑k + 1) * π = π + ↑k * (2 * π)", "after_state": "No Goals!" }, { "line": "ring1", "before_state": "n : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\nhsinx : sin (π + ↑k * (2 * π)) = 0\n⊢ (2 * ↑k + 1) * π = π + ↑k * (2 * π)", "after_state": "No Goals!" }, { "line": "rcases eq_or_ne (cos x) 0 with hcosx | hcosx", "before_state": "case mp.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\n---\ncase mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "right", "before_state": "case mp.inr.inl\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "right", "before_state": "case mp.inr.inl.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rw [hcosx] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rewrite [hcosx] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "try (with_reducible rfl)", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_reducible rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "apply_rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rw [zero_pow h₀] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rewrite [zero_pow h₀] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "try (with_reducible rfl)", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_reducible rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "apply_rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rw [zero_sub] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rewrite [zero_sub] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : 0 - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "try (with_reducible rfl)", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_reducible rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "apply_rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rw [← neg_inj] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rewrite [← neg_inj] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : -sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "try (with_reducible rfl)", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_reducible rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "apply_rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rw [neg_neg] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rewrite [neg_neg] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : - -sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "try (with_reducible rfl)", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_reducible rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "apply_rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rw [pow_eq_neg_one_iff] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rewrite [pow_eq_neg_one_iff] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x ^ n = -1\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "try (with_reducible rfl)", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_reducible rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "apply_rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rw [sin_eq_neg_one_iff] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rewrite [sin_eq_neg_one_iff] at h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : sin x = -1 ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "try (with_reducible rfl)", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_reducible rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "apply_rfl", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "skip", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "simpa only [eq_comm] using h", "before_state": "case mp.inr.inl.h.h\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n\nhsinx : sin x ≠ 0\nhcosx : cos x = 0\n⊢ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "No Goals!" }, { "line": "have hcos1 : |cos x| < 1 := by\n rw [abs_cos_eq_sqrt_one_sub_sin_sq]\n rw [sqrt_lt' one_pos]\n simp [sq_pos_of_ne_zero hsinx]", "before_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "focus\n refine\n no_implicit_lambda%\n (have hcos1 : |cos x| < 1 := ?body✝;\n ?_)\n case body✝ =>\n with_annotate_state\"by\"\n ( rw [abs_cos_eq_sqrt_one_sub_sin_sq]\n rw [sqrt_lt' one_pos]\n simp [sq_pos_of_ne_zero hsinx])", "before_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "refine\n no_implicit_lambda%\n (have hcos1 : |cos x| < 1 := ?body✝;\n ?_)", "before_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case body\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ |cos x| < 1\n---\ncase mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "case body✝ =>\n with_annotate_state\"by\"\n ( rw [abs_cos_eq_sqrt_one_sub_sin_sq]\n rw [sqrt_lt' one_pos]\n simp [sq_pos_of_ne_zero hsinx])", "before_state": "case body\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ |cos x| < 1\n---\ncase mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_annotate_state\"by\"\n ( rw [abs_cos_eq_sqrt_one_sub_sin_sq]\n rw [sqrt_lt' one_pos]\n simp [sq_pos_of_ne_zero hsinx])", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ |cos x| < 1", "after_state": "No Goals!" }, { "line": "rw [abs_cos_eq_sqrt_one_sub_sin_sq]", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ |cos x| < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1" }, { "line": "rewrite [abs_cos_eq_sqrt_one_sub_sin_sq]", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ |cos x| < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1" }, { "line": "try (with_reducible rfl)", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1" }, { "line": "with_reducible rfl", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1" }, { "line": "rfl", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1" }, { "line": "apply_rfl", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1" }, { "line": "rw [sqrt_lt' one_pos]", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2" }, { "line": "rewrite [sqrt_lt' one_pos]", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ √(1 - sin x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2" }, { "line": "try (with_reducible rfl)", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2" }, { "line": "with_reducible rfl", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2" }, { "line": "rfl", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2" }, { "line": "apply_rfl", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2" }, { "line": "simp [sq_pos_of_ne_zero hsinx]", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\n⊢ 1 - sin x ^ 2 < 1 ^ 2", "after_state": "No Goals!" }, { "line": "have hsin1 : |sin x| < 1 := by\n rw [abs_sin_eq_sqrt_one_sub_cos_sq]\n rw [sqrt_lt' one_pos]\n simp [sq_pos_of_ne_zero hcosx]", "before_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "focus\n refine\n no_implicit_lambda%\n (have hsin1 : |sin x| < 1 := ?body✝;\n ?_)\n case body✝ =>\n with_annotate_state\"by\"\n ( rw [abs_sin_eq_sqrt_one_sub_cos_sq]\n rw [sqrt_lt' one_pos]\n simp [sq_pos_of_ne_zero hcosx])", "before_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "refine\n no_implicit_lambda%\n (have hsin1 : |sin x| < 1 := ?body✝;\n ?_)", "before_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case body\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ |sin x| < 1\n---\ncase mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "case body✝ =>\n with_annotate_state\"by\"\n ( rw [abs_sin_eq_sqrt_one_sub_cos_sq]\n rw [sqrt_lt' one_pos]\n simp [sq_pos_of_ne_zero hcosx])", "before_state": "case body\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ |sin x| < 1\n---\ncase mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n" }, { "line": "with_annotate_state\"by\"\n ( rw [abs_sin_eq_sqrt_one_sub_cos_sq]\n rw [sqrt_lt' one_pos]\n simp [sq_pos_of_ne_zero hcosx])", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ |sin x| < 1", "after_state": "No Goals!" }, { "line": "rw [abs_sin_eq_sqrt_one_sub_cos_sq]", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ |sin x| < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1" }, { "line": "rewrite [abs_sin_eq_sqrt_one_sub_cos_sq]", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ |sin x| < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1" }, { "line": "try (with_reducible rfl)", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1" }, { "line": "with_reducible rfl", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1" }, { "line": "rfl", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1" }, { "line": "apply_rfl", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1" }, { "line": "rw [sqrt_lt' one_pos]", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2" }, { "line": "rewrite [sqrt_lt' one_pos]", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ √(1 - cos x ^ 2) < 1", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2" }, { "line": "try (with_reducible rfl)", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2" }, { "line": "with_reducible rfl", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2" }, { "line": "rfl", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2" }, { "line": "apply_rfl", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2", "after_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2" }, { "line": "simp [sq_pos_of_ne_zero hcosx]", "before_state": "n : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\n⊢ 1 - cos x ^ 2 < 1 ^ 2", "after_state": "No Goals!" }, { "line": "match n with\n| 1 =>\n rw [pow_one] at h\n rw [pow_one] at h\n rw [sub_eq_iff_eq_add] at h\n have : 2 * sin x * cos x = 0 := by\n simpa [h, add_sq, add_assoc, ← two_mul, mul_add, mul_assoc, ← sq] using cos_sq_add_sin_sq x\n simp [hsinx, hcosx] at this\n| 2 =>\n rw [← cos_sq_add_sin_sq x] at h\n rw [sub_eq_add_neg] at h\n rw [add_right_inj] at h\n rw [neg_eq_self ℝ] at h\n exact absurd (pow_eq_zero h) hsinx\n| (n + 1 + 2) =>\n set m := n + 1\n refine absurd ?_ h.not_lt\n calc\n (cos x) ^ (m + 2) - (sin x) ^ (m + 2) ≤ |cos x| ^ (m + 2) + |sin x| ^ (m + 2) :=\n by\n simp only [← abs_pow]\n simp only [sub_eq_add_neg]\n gcongr\n exacts [le_abs_self _, neg_le_abs _]\n _ = |cos x| ^ m * cos x ^ 2 + |sin x| ^ m * sin x ^ 2 := by simp [pow_add]\n _ < 1 ^ m * cos x ^ 2 + 1 ^ m * sin x ^ 2 := by gcongr\n _ = 1 := by simp", "before_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "No Goals!" }, { "line": "refine\n no_implicit_lambda%\n (match n with\n | 1 => ?rhs✝\n | 2 => ?rhs✝¹\n | (n + 1 + 2) => ?rhs✝²)", "before_state": "case mp.inr.inr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\nh : cos x ^ n - sin x ^ n = 1\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n", "after_state": "case rhs\nn : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x ^ 1 - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1\n---\ncase rhs\nn : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2\n---\ncase rhs\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)" }, { "line": "case rhs✝ =>\n with_annotate_state[\"|\" \"=>\"] skip\n rw [pow_one] at h\n rw [pow_one] at h\n rw [sub_eq_iff_eq_add] at h\n have : 2 * sin x * cos x = 0 := by\n simpa [h, add_sq, add_assoc, ← two_mul, mul_add, mul_assoc, ← sq] using cos_sq_add_sin_sq x\n simp [hsinx, hcosx] at this", "before_state": "case rhs\nn : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x ^ 1 - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1\n---\ncase rhs\nn : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2\n---\ncase rhs\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)", "after_state": "case rhs\nn : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2\n---\ncase rhs\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)" }, { "line": "with_annotate_state[\"|\" \"=>\"] skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x ^ 1 - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x ^ 1 - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x ^ 1 - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x ^ 1 - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "rw [pow_one] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x ^ 1 - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "rewrite [pow_one] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x ^ 1 - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "try (with_reducible rfl)", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "with_reducible rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "apply_rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "rw [pow_one] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "rewrite [pow_one] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x ^ 1 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "try (with_reducible rfl)", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "with_reducible rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "apply_rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "rw [sub_eq_iff_eq_add] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "rewrite [sub_eq_iff_eq_add] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x - sin x = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "try (with_reducible rfl)", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "with_reducible rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "apply_rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "have : 2 * sin x * cos x = 0 := by\n simpa [h, add_sq, add_assoc, ← two_mul, mul_add, mul_assoc, ← sq] using cos_sq_add_sin_sq x", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\nthis : 2 * sin x * cos x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "focus\n refine\n no_implicit_lambda%\n (have : 2 * sin x * cos x = 0 := ?body✝;\n ?_)\n case body✝ =>\n with_annotate_state\"by\"\n (simpa [h, add_sq, add_assoc, ← two_mul, mul_add, mul_assoc, ← sq] using cos_sq_add_sin_sq x)", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\nthis : 2 * sin x * cos x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "refine\n no_implicit_lambda%\n (have : 2 * sin x * cos x = 0 := ?body✝;\n ?_)", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "case body\nn : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ 2 * sin x * cos x = 0\n---\nn : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\nthis : 2 * sin x * cos x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "case body✝ =>\n with_annotate_state\"by\" (simpa [h, add_sq, add_assoc, ← two_mul, mul_add, mul_assoc, ← sq] using cos_sq_add_sin_sq x)", "before_state": "case body\nn : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ 2 * sin x * cos x = 0\n---\nn : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\nthis : 2 * sin x * cos x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\nthis : 2 * sin x * cos x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1" }, { "line": "with_annotate_state\"by\" (simpa [h, add_sq, add_assoc, ← two_mul, mul_add, mul_assoc, ← sq] using cos_sq_add_sin_sq x)", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ 2 * sin x * cos x = 0", "after_state": "No Goals!" }, { "line": "simpa [h, add_sq, add_assoc, ← two_mul, mul_add, mul_assoc, ← sq] using cos_sq_add_sin_sq x", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\n⊢ 2 * sin x * cos x = 0", "after_state": "No Goals!" }, { "line": "simp [hsinx, hcosx] at this", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 1 ≠ 0\nh : cos x = 1 + sin x\nthis : 2 * sin x * cos x = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 1 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 1 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 1", "after_state": "No Goals!" }, { "line": "case rhs✝ =>\n with_annotate_state[\"|\" \"=>\"] skip\n rw [← cos_sq_add_sin_sq x] at h\n rw [sub_eq_add_neg] at h\n rw [add_right_inj] at h\n rw [neg_eq_self ℝ] at h\n exact absurd (pow_eq_zero h) hsinx", "before_state": "case rhs\nn : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2\n---\ncase rhs\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)", "after_state": "case rhs\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)" }, { "line": "with_annotate_state[\"|\" \"=>\"] skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "rw [← cos_sq_add_sin_sq x] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "rewrite [← cos_sq_add_sin_sq x] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "try (with_reducible rfl)", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "with_reducible rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "apply_rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "rw [sub_eq_add_neg] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "rewrite [sub_eq_add_neg] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 - sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "try (with_reducible rfl)", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "with_reducible rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "apply_rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "rw [add_right_inj] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "rewrite [add_right_inj] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : cos x ^ 2 + -sin x ^ 2 = cos x ^ 2 + sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "try (with_reducible rfl)", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "with_reducible rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "apply_rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "rw [neg_eq_self ℝ] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "rewrite [neg_eq_self ℝ] at h", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : -sin x ^ 2 = sin x ^ 2\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "try (with_reducible rfl)", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "with_reducible rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "apply_rfl", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "skip", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2" }, { "line": "exact absurd (pow_eq_zero h) hsinx", "before_state": "n : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nh₀ : 2 ≠ 0\nh : sin x ^ 2 = 0\n⊢ (∃ k, ↑k * π = x) ∧ Even 2 ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd 2 ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd 2", "after_state": "No Goals!" }, { "line": "case rhs✝ =>\n with_annotate_state[\"|\" \"=>\"] skip\n set m := n + 1\n refine absurd ?_ h.not_lt\n calc\n (cos x) ^ (m + 2) - (sin x) ^ (m + 2) ≤ |cos x| ^ (m + 2) + |sin x| ^ (m + 2) :=\n by\n simp only [← abs_pow]\n simp only [sub_eq_add_neg]\n gcongr\n exacts [le_abs_self _, neg_le_abs _]\n _ = |cos x| ^ m * cos x ^ 2 + |sin x| ^ m * sin x ^ 2 := by simp [pow_add]\n _ < 1 ^ m * cos x ^ 2 + 1 ^ m * sin x ^ 2 := by gcongr\n _ = 1 := by simp", "before_state": "case rhs\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)", "after_state": "No Goals!" }, { "line": "with_annotate_state[\"|\" \"=>\"] skip", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)", "after_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)" }, { "line": "skip", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)", "after_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)" }, { "line": "set m := n + 1", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)", "after_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (m + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (m + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (m + 2)" }, { "line": "try rewrite [show ?m✝ = m from rfl✝] at *", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\nm : ℕ := n + 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)", "after_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (m + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (m + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (m + 2)" }, { "line": "first\n| rewrite [show ?m✝ = m from rfl✝] at *\n| skip", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\nm : ℕ := n + 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)", "after_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (m + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (m + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (m + 2)" }, { "line": "rewrite [show ?m✝ = m from rfl✝] at *", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nh₀ : n + 1 + 2 ≠ 0\nh : cos x ^ (n + 1 + 2) - sin x ^ (n + 1 + 2) = 1\nm : ℕ := n + 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (n + 1 + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (n + 1 + 2)", "after_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (m + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (m + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (m + 2)" }, { "line": "refine absurd ?_ h.not_lt", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ (∃ k, ↑k * π = x) ∧ Even (m + 2) ∨\n (∃ k, ↑k * (2 * π) = x) ∧ Odd (m + 2) ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd (m + 2)", "after_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ cos x ^ (m + 2) - sin x ^ (m + 2) < 1" }, { "line": "calc\n (cos x) ^ (m + 2) - (sin x) ^ (m + 2) ≤ |cos x| ^ (m + 2) + |sin x| ^ (m + 2) :=\n by\n simp only [← abs_pow]\n simp only [sub_eq_add_neg]\n gcongr\n exacts [le_abs_self _, neg_le_abs _]\n _ = |cos x| ^ m * cos x ^ 2 + |sin x| ^ m * sin x ^ 2 := by simp [pow_add]\n _ < 1 ^ m * cos x ^ 2 + 1 ^ m * sin x ^ 2 := by gcongr\n _ = 1 := by simp", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ cos x ^ (m + 2) - sin x ^ (m + 2) < 1", "after_state": "No Goals!" }, { "line": "simp only [← abs_pow]", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ cos x ^ (m + 2) - sin x ^ (m + 2) ≤ |cos x| ^ (m + 2) + |sin x| ^ (m + 2)", "after_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ cos x ^ (m + 2) - sin x ^ (m + 2) ≤ |cos x ^ (m + 2)| + |sin x ^ (m + 2)|" }, { "line": "simp only [sub_eq_add_neg]", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ cos x ^ (m + 2) - sin x ^ (m + 2) ≤ |cos x ^ (m + 2)| + |sin x ^ (m + 2)|", "after_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ cos x ^ (m + 2) + -sin x ^ (m + 2) ≤ |cos x ^ (m + 2)| + |sin x ^ (m + 2)|" }, { "line": "gcongr", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ cos x ^ (m + 2) + -sin x ^ (m + 2) ≤ |cos x ^ (m + 2)| + |sin x ^ (m + 2)|", "after_state": "case h₁\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ cos x ^ (m + 2) ≤ |cos x ^ (m + 2)|\n---\ncase h₂\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ -sin x ^ (m + 2) ≤ |sin x ^ (m + 2)|" }, { "line": "exacts [le_abs_self _, neg_le_abs _]", "before_state": "case h₁\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ cos x ^ (m + 2) ≤ |cos x ^ (m + 2)|\n---\ncase h₂\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ -sin x ^ (m + 2) ≤ |sin x ^ (m + 2)|", "after_state": "No Goals!" }, { "line": "exact le_abs_self _", "before_state": "case h₁\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ cos x ^ (m + 2) ≤ |cos x ^ (m + 2)|\n---\ncase h₂\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ -sin x ^ (m + 2) ≤ |sin x ^ (m + 2)|", "after_state": "case h₂\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ -sin x ^ (m + 2) ≤ |sin x ^ (m + 2)|" }, { "line": "exact neg_le_abs _", "before_state": "case h₂\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ -sin x ^ (m + 2) ≤ |sin x ^ (m + 2)|", "after_state": "No Goals!" }, { "line": "simp [pow_add]", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ |cos x| ^ (m + 2) + |sin x| ^ (m + 2) = |cos x| ^ m * cos x ^ 2 + |sin x| ^ m * sin x ^ 2", "after_state": "No Goals!" }, { "line": "gcongr", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ |cos x| ^ m * cos x ^ 2 + |sin x| ^ m * sin x ^ 2 < 1 ^ m * cos x ^ 2 + 1 ^ m * sin x ^ 2", "after_state": "No Goals!" }, { "line": "gcongr_discharger", "before_state": "case h₁.bc.ha\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ 0 ≤ |cos x|", "after_state": "No Goals!" }, { "line": "positivity", "before_state": "case h₁.bc.ha\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ 0 ≤ |cos x|", "after_state": "No Goals!" }, { "line": "gcongr_discharger", "before_state": "case h₁.bc.a\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ m ≠ 0", "after_state": "No Goals!" }, { "line": "positivity", "before_state": "case h₁.bc.a\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ m ≠ 0", "after_state": "No Goals!" }, { "line": "gcongr_discharger", "before_state": "case h₁.a0\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ 0 < cos x ^ 2", "after_state": "No Goals!" }, { "line": "positivity", "before_state": "case h₁.a0\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ 0 < cos x ^ 2", "after_state": "No Goals!" }, { "line": "gcongr_discharger", "before_state": "case h₂.bc.ha\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ 0 ≤ |sin x|", "after_state": "No Goals!" }, { "line": "positivity", "before_state": "case h₂.bc.ha\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ 0 ≤ |sin x|", "after_state": "No Goals!" }, { "line": "gcongr_discharger", "before_state": "case h₂.bc.a\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ m ≠ 0", "after_state": "No Goals!" }, { "line": "positivity", "before_state": "case h₂.bc.a\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ m ≠ 0", "after_state": "No Goals!" }, { "line": "gcongr_discharger", "before_state": "case h₂.a0\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ 0 < sin x ^ 2", "after_state": "No Goals!" }, { "line": "positivity", "before_state": "case h₂.a0\nn✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ 0 < sin x ^ 2", "after_state": "No Goals!" }, { "line": "simp", "before_state": "n✝ : ℕ\nx : ℝ\nhsinx : sin x ≠ 0\nhcosx : cos x ≠ 0\nhcos1 : |cos x| < 1\nhsin1 : |sin x| < 1\nn : ℕ\nm : ℕ := n + 1\nh₀ : m + 2 ≠ 0\nh : cos x ^ (m + 2) - sin x ^ (m + 2) = 1\n⊢ 1 ^ m * cos x ^ 2 + 1 ^ m * sin x ^ 2 = 1", "after_state": "No Goals!" }, { "line": "rintro (⟨⟨k, rfl⟩, hn⟩ | ⟨⟨k, rfl⟩, -⟩ | ⟨⟨k, rfl⟩, hn⟩)", "before_state": "case mpr\nn : ℕ\nx : ℝ\nh₀ : n ≠ 0\n⊢ (∃ k, ↑k * π = x) ∧ Even n ∨ (∃ k, ↑k * (2 * π) = x) ∧ Odd n ∨ (∃ k, -(π / 2) + ↑k * (2 * π) = x) ∧ Odd n →\n cos x ^ n - sin x ^ n = 1", "after_state": "case mpr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\n⊢ cos (↑k * π) ^ n - sin (↑k * π) ^ n = 1\n---\ncase mpr.inr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\n⊢ cos (↑k * (2 * π)) ^ n - sin (↑k * (2 * π)) ^ n = 1\n---\ncase mpr.inr.inr.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Odd n\nk : ℤ\n⊢ cos (-(π / 2) + ↑k * (2 * π)) ^ n - sin (-(π / 2) + ↑k * (2 * π)) ^ n = 1" }, { "line": "rw [sin_int_mul_pi, zero_pow h₀, sub_zero, ← hn.pow_abs, abs_cos_int_mul_pi, one_pow]", "before_state": "case mpr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\n⊢ cos (↑k * π) ^ n - sin (↑k * π) ^ n = 1", "after_state": "No Goals!" }, { "line": "rewrite [sin_int_mul_pi, zero_pow h₀, sub_zero, ← hn.pow_abs, abs_cos_int_mul_pi, one_pow]", "before_state": "case mpr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\n⊢ cos (↑k * π) ^ n - sin (↑k * π) ^ n = 1", "after_state": "case mpr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\n⊢ 1 = 1" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "case mpr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\n⊢ 1 = 1", "after_state": "No Goals!" }, { "line": "try (with_reducible rfl)", "before_state": "case mpr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\n⊢ 1 = 1", "after_state": "No Goals!" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "case mpr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\n⊢ 1 = 1", "after_state": "No Goals!" }, { "line": "with_reducible rfl", "before_state": "case mpr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\n⊢ 1 = 1", "after_state": "No Goals!" }, { "line": "rfl", "before_state": "case mpr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\n⊢ 1 = 1", "after_state": "No Goals!" }, { "line": "eq_refl", "before_state": "case mpr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Even n\nk : ℤ\n⊢ 1 = 1", "after_state": "No Goals!" }, { "line": "have : sin (k * (2 * π)) = 0 := by simpa [mul_assoc] using sin_int_mul_pi (k * 2)", "before_state": "case mpr.inr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\n⊢ cos (↑k * (2 * π)) ^ n - sin (↑k * (2 * π)) ^ n = 1", "after_state": "case mpr.inr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nthis : sin (↑k * (2 * π)) = 0\n⊢ cos (↑k * (2 * π)) ^ n - sin (↑k * (2 * π)) ^ n = 1" }, { "line": "focus\n refine\n no_implicit_lambda%\n (have : sin (k * (2 * π)) = 0 := ?body✝;\n ?_)\n case body✝ => with_annotate_state\"by\" (simpa [mul_assoc] using sin_int_mul_pi (k * 2))", "before_state": "case mpr.inr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\n⊢ cos (↑k * (2 * π)) ^ n - sin (↑k * (2 * π)) ^ n = 1", "after_state": "case mpr.inr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nthis : sin (↑k * (2 * π)) = 0\n⊢ cos (↑k * (2 * π)) ^ n - sin (↑k * (2 * π)) ^ n = 1" }, { "line": "refine\n no_implicit_lambda%\n (have : sin (k * (2 * π)) = 0 := ?body✝;\n ?_)", "before_state": "case mpr.inr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\n⊢ cos (↑k * (2 * π)) ^ n - sin (↑k * (2 * π)) ^ n = 1", "after_state": "case body\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\n⊢ sin (↑k * (2 * π)) = 0\n---\ncase mpr.inr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nthis : sin (↑k * (2 * π)) = 0\n⊢ cos (↑k * (2 * π)) ^ n - sin (↑k * (2 * π)) ^ n = 1" }, { "line": "case body✝ => with_annotate_state\"by\" (simpa [mul_assoc] using sin_int_mul_pi (k * 2))", "before_state": "case body\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\n⊢ sin (↑k * (2 * π)) = 0\n---\ncase mpr.inr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nthis : sin (↑k * (2 * π)) = 0\n⊢ cos (↑k * (2 * π)) ^ n - sin (↑k * (2 * π)) ^ n = 1", "after_state": "case mpr.inr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nthis : sin (↑k * (2 * π)) = 0\n⊢ cos (↑k * (2 * π)) ^ n - sin (↑k * (2 * π)) ^ n = 1" }, { "line": "with_annotate_state\"by\" (simpa [mul_assoc] using sin_int_mul_pi (k * 2))", "before_state": "n : ℕ\nh₀ : n ≠ 0\nk : ℤ\n⊢ sin (↑k * (2 * π)) = 0", "after_state": "No Goals!" }, { "line": "simpa [mul_assoc] using sin_int_mul_pi (k * 2)", "before_state": "n : ℕ\nh₀ : n ≠ 0\nk : ℤ\n⊢ sin (↑k * (2 * π)) = 0", "after_state": "No Goals!" }, { "line": "simp [h₀, this]", "before_state": "case mpr.inr.inl.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nk : ℤ\nthis : sin (↑k * (2 * π)) = 0\n⊢ cos (↑k * (2 * π)) ^ n - sin (↑k * (2 * π)) ^ n = 1", "after_state": "No Goals!" }, { "line": "simp [hn.neg_pow, h₀]", "before_state": "case mpr.inr.inr.intro.intro\nn : ℕ\nh₀ : n ≠ 0\nhn : Odd n\nk : ℤ\n⊢ cos (-(π / 2) + ↑k * (2 * π)) ^ n - sin (-(π / 2) + ↑k * (2 * π)) ^ n = 1", "after_state": "No Goals!" } ]
theorem solve_cos2_half {x : ℝ} : cos x ^ 2 = 1 / 2 ↔ ∃ k : ℤ, x = (2 * ↑k + 1) * π / 4 := by rw [cos_sq] simp only [add_eq_left] simp only [div_eq_zero_iff] norm_num rw [cos_eq_zero_iff] constructor <;> · rintro ⟨k, h⟩ use k linarith
/root/DuelModelResearch/mathlib4/Archive/Imo/Imo1962Q4.lean
{ "open": [ "Real", "scoped Real" ], "variables": [] }
[ { "line": "rw [cos_sq]", "before_state": "x : ℝ\n⊢ cos x ^ 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "rewrite [cos_sq]", "before_state": "x : ℝ\n⊢ cos x ^ 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "try (with_reducible rfl)", "before_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "with_reducible rfl", "before_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "rfl", "before_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "apply_rfl", "before_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "skip", "before_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "simp only [add_eq_left]", "before_state": "x : ℝ\n⊢ 1 / 2 + cos (2 * x) / 2 = 1 / 2 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ cos (2 * x) / 2 = 0 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "simp only [div_eq_zero_iff]", "before_state": "x : ℝ\n⊢ cos (2 * x) / 2 = 0 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ cos (2 * x) = 0 ∨ 2 = 0 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "norm_num", "before_state": "x : ℝ\n⊢ cos (2 * x) = 0 ∨ 2 = 0 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ cos (2 * x) = 0 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "rw [cos_eq_zero_iff]", "before_state": "x : ℝ\n⊢ cos (2 * x) = 0 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "rewrite [cos_eq_zero_iff]", "before_state": "x : ℝ\n⊢ cos (2 * x) = 0 ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "try (with_reducible rfl)", "before_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "with_reducible rfl", "before_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "rfl", "before_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "apply_rfl", "before_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "skip", "before_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "focus\n constructor\n with_annotate_state\"<;>\" skip\n all_goals\n · rintro ⟨k, h⟩\n use k\n linarith", "before_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "No Goals!" }, { "line": "constructor", "before_state": "x : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "case mp\nx : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) → ∃ k, x = (2 * ↑k + 1) * π / 4\n---\ncase mpr\nx : ℝ\n⊢ (∃ k, x = (2 * ↑k + 1) * π / 4) → ∃ k, 2 * x = (2 * ↑k + 1) * π / 2" }, { "line": "with_annotate_state\"<;>\" skip", "before_state": "case mp\nx : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) → ∃ k, x = (2 * ↑k + 1) * π / 4\n---\ncase mpr\nx : ℝ\n⊢ (∃ k, x = (2 * ↑k + 1) * π / 4) → ∃ k, 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "case mp\nx : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) → ∃ k, x = (2 * ↑k + 1) * π / 4\n---\ncase mpr\nx : ℝ\n⊢ (∃ k, x = (2 * ↑k + 1) * π / 4) → ∃ k, 2 * x = (2 * ↑k + 1) * π / 2" }, { "line": "skip", "before_state": "case mp\nx : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) → ∃ k, x = (2 * ↑k + 1) * π / 4\n---\ncase mpr\nx : ℝ\n⊢ (∃ k, x = (2 * ↑k + 1) * π / 4) → ∃ k, 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "case mp\nx : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) → ∃ k, x = (2 * ↑k + 1) * π / 4\n---\ncase mpr\nx : ℝ\n⊢ (∃ k, x = (2 * ↑k + 1) * π / 4) → ∃ k, 2 * x = (2 * ↑k + 1) * π / 2" }, { "line": "all_goals\n · rintro ⟨k, h⟩\n use k\n linarith", "before_state": "case mp\nx : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) → ∃ k, x = (2 * ↑k + 1) * π / 4\n---\ncase mpr\nx : ℝ\n⊢ (∃ k, x = (2 * ↑k + 1) * π / 4) → ∃ k, 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "No Goals!" }, { "line": "rintro ⟨k, h⟩", "before_state": "case mp\nx : ℝ\n⊢ (∃ k, 2 * x = (2 * ↑k + 1) * π / 2) → ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "case mp.intro\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ ∃ k, x = (2 * ↑k + 1) * π / 4" }, { "line": "use k", "before_state": "case mp.intro\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ ∃ k, x = (2 * ↑k + 1) * π / 4", "after_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4" }, { "line": "refine without_cdot(k : ?m✝)", "before_state": "case w\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ ℤ", "after_state": "No Goals!" }, { "line": "try with_reducible use_discharger", "before_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4", "after_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4" }, { "line": "first\n| with_reducible use_discharger\n| skip", "before_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4", "after_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4" }, { "line": "with_reducible use_discharger", "before_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4", "after_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4" }, { "line": "use_discharger", "before_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4", "after_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4" }, { "line": "focus\n apply exists_prop.mpr✝\n with_annotate_state\"<;>\" skip\n all_goals use_discharger", "before_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4", "after_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4" }, { "line": "apply exists_prop.mpr✝", "before_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4", "after_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4" }, { "line": "skip", "before_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4", "after_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4" }, { "line": "linarith", "before_state": "case h\nx : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 4", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 4\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 4\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 4\n⊢ 4 / 4 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 4\n⊢ 1 * 4 = 4", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 4\n⊢ 4 > 0", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 4\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 4\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 4\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 4\n⊢ 2 / 2 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 4\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 4\n⊢ 2 > 0", "after_state": "No Goals!" }, { "line": "ring1", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 4\n⊢ -(1 * 2 * (2 * x) - (1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π)) + (4 * x - (1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π)) = 0", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 4 < x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 4 < x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 4 < x\n⊢ 4 / 4 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 4 < x\n⊢ 1 * 4 = 4", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 4 < x\n⊢ 4 > 0", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 4 < x\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 4 < x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 4 < x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 4 < x\n⊢ 2 / 2 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 4 < x\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 4 < x\n⊢ 2 > 0", "after_state": "No Goals!" }, { "line": "ring1", "before_state": "x : ℝ\nk : ℤ\nh : 2 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 4 < x\n⊢ 1 * 2 * (2 * x) - (1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π) + ((1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π) - 4 * x) = 0", "after_state": "No Goals!" }, { "line": "rintro ⟨k, h⟩", "before_state": "case mpr\nx : ℝ\n⊢ (∃ k, x = (2 * ↑k + 1) * π / 4) → ∃ k, 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "case mpr.intro\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ ∃ k, 2 * x = (2 * ↑k + 1) * π / 2" }, { "line": "use k", "before_state": "case mpr.intro\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ ∃ k, 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2" }, { "line": "refine without_cdot(k : ?m✝)", "before_state": "case w\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ ℤ", "after_state": "No Goals!" }, { "line": "try with_reducible use_discharger", "before_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2" }, { "line": "first\n| with_reducible use_discharger\n| skip", "before_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2" }, { "line": "with_reducible use_discharger", "before_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2" }, { "line": "use_discharger", "before_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2" }, { "line": "focus\n apply exists_prop.mpr✝\n with_annotate_state\"<;>\" skip\n all_goals use_discharger", "before_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2" }, { "line": "apply exists_prop.mpr✝", "before_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2" }, { "line": "skip", "before_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2" }, { "line": "linarith", "before_state": "case h\nx : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\n⊢ 2 * x = (2 * ↑k + 1) * π / 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : 2 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : 2 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : 2 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : 2 * x < (2 * ↑k + 1) * π / 2\n⊢ 2 / 2 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : 2 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : 2 * x < (2 * ↑k + 1) * π / 2\n⊢ 2 > 0", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : 2 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : 2 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : 2 * x < (2 * ↑k + 1) * π / 2\n⊢ 4 / 4 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : 2 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 4 = 4", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : 2 * x < (2 * ↑k + 1) * π / 2\n⊢ 4 > 0", "after_state": "No Goals!" }, { "line": "ring1", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : 2 * x < (2 * ↑k + 1) * π / 2\n⊢ -(4 * x - (1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π)) + (1 * 2 * (2 * x) - (1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π)) = 0", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : (2 * ↑k + 1) * π / 2 < 2 * x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : (2 * ↑k + 1) * π / 2 < 2 * x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : (2 * ↑k + 1) * π / 2 < 2 * x\n⊢ 2 / 2 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : (2 * ↑k + 1) * π / 2 < 2 * x\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : (2 * ↑k + 1) * π / 2 < 2 * x\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : (2 * ↑k + 1) * π / 2 < 2 * x\n⊢ 2 > 0", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : (2 * ↑k + 1) * π / 2 < 2 * x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : (2 * ↑k + 1) * π / 2 < 2 * x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : (2 * ↑k + 1) * π / 2 < 2 * x\n⊢ 4 / 4 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : (2 * ↑k + 1) * π / 2 < 2 * x\n⊢ 1 * 4 = 4", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : (2 * ↑k + 1) * π / 2 < 2 * x\n⊢ 4 > 0", "after_state": "No Goals!" }, { "line": "ring1", "before_state": "x : ℝ\nk : ℤ\nh : x = (2 * ↑k + 1) * π / 4\na✝ : (2 * ↑k + 1) * π / 2 < 2 * x\n⊢ 4 * x - (1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π) + ((1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π) - 1 * 2 * (2 * x)) = 0", "after_state": "No Goals!" } ]
theorem solve_cos3x_0 {x : ℝ} : cos (3 * x) = 0 ↔ ∃ k : ℤ, x = (2 * ↑k + 1) * π / 6 := by rw [cos_eq_zero_iff] refine exists_congr fun k => ?_ constructor <;> intro <;> linarith
/root/DuelModelResearch/mathlib4/Archive/Imo/Imo1962Q4.lean
{ "open": [ "Real", "scoped Real" ], "variables": [] }
[ { "line": "rw [cos_eq_zero_iff]", "before_state": "x : ℝ\n⊢ cos (3 * x) = 0 ↔ ∃ k, x = (2 * ↑k + 1) * π / 6", "after_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6" }, { "line": "rewrite [cos_eq_zero_iff]", "before_state": "x : ℝ\n⊢ cos (3 * x) = 0 ↔ ∃ k, x = (2 * ↑k + 1) * π / 6", "after_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6" }, { "line": "with_annotate_state\"]\" (try (with_reducible rfl))", "before_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6", "after_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6" }, { "line": "try (with_reducible rfl)", "before_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6", "after_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6" }, { "line": "first\n| (with_reducible rfl)\n| skip", "before_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6", "after_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6" }, { "line": "with_reducible rfl", "before_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6", "after_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6" }, { "line": "rfl", "before_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6", "after_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6" }, { "line": "apply_rfl", "before_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6", "after_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6" }, { "line": "skip", "before_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6", "after_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6" }, { "line": "refine exists_congr fun k => ?_", "before_state": "x : ℝ\n⊢ (∃ k, 3 * x = (2 * ↑k + 1) * π / 2) ↔ ∃ k, x = (2 * ↑k + 1) * π / 6", "after_state": "x : ℝ\nk : ℤ\n⊢ 3 * x = (2 * ↑k + 1) * π / 2 ↔ x = (2 * ↑k + 1) * π / 6" }, { "line": "focus\n constructor <;> intro\n with_annotate_state\"<;>\" skip\n all_goals linarith", "before_state": "x : ℝ\nk : ℤ\n⊢ 3 * x = (2 * ↑k + 1) * π / 2 ↔ x = (2 * ↑k + 1) * π / 6", "after_state": "No Goals!" }, { "line": "focus\n constructor\n with_annotate_state\"<;>\" skip\n all_goals intro", "before_state": "x : ℝ\nk : ℤ\n⊢ 3 * x = (2 * ↑k + 1) * π / 2 ↔ x = (2 * ↑k + 1) * π / 6", "after_state": "case mp\nx : ℝ\nk : ℤ\na✝ : 3 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\na✝ : x = (2 * ↑k + 1) * π / 6\n⊢ 3 * x = (2 * ↑k + 1) * π / 2" }, { "line": "constructor", "before_state": "x : ℝ\nk : ℤ\n⊢ 3 * x = (2 * ↑k + 1) * π / 2 ↔ x = (2 * ↑k + 1) * π / 6", "after_state": "case mp\nx : ℝ\nk : ℤ\n⊢ 3 * x = (2 * ↑k + 1) * π / 2 → x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\n⊢ x = (2 * ↑k + 1) * π / 6 → 3 * x = (2 * ↑k + 1) * π / 2" }, { "line": "with_annotate_state\"<;>\" skip", "before_state": "case mp\nx : ℝ\nk : ℤ\n⊢ 3 * x = (2 * ↑k + 1) * π / 2 → x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\n⊢ x = (2 * ↑k + 1) * π / 6 → 3 * x = (2 * ↑k + 1) * π / 2", "after_state": "case mp\nx : ℝ\nk : ℤ\n⊢ 3 * x = (2 * ↑k + 1) * π / 2 → x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\n⊢ x = (2 * ↑k + 1) * π / 6 → 3 * x = (2 * ↑k + 1) * π / 2" }, { "line": "skip", "before_state": "case mp\nx : ℝ\nk : ℤ\n⊢ 3 * x = (2 * ↑k + 1) * π / 2 → x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\n⊢ x = (2 * ↑k + 1) * π / 6 → 3 * x = (2 * ↑k + 1) * π / 2", "after_state": "case mp\nx : ℝ\nk : ℤ\n⊢ 3 * x = (2 * ↑k + 1) * π / 2 → x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\n⊢ x = (2 * ↑k + 1) * π / 6 → 3 * x = (2 * ↑k + 1) * π / 2" }, { "line": "all_goals intro", "before_state": "case mp\nx : ℝ\nk : ℤ\n⊢ 3 * x = (2 * ↑k + 1) * π / 2 → x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\n⊢ x = (2 * ↑k + 1) * π / 6 → 3 * x = (2 * ↑k + 1) * π / 2", "after_state": "case mp\nx : ℝ\nk : ℤ\na✝ : 3 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\na✝ : x = (2 * ↑k + 1) * π / 6\n⊢ 3 * x = (2 * ↑k + 1) * π / 2" }, { "line": "intro", "before_state": "case mp\nx : ℝ\nk : ℤ\n⊢ 3 * x = (2 * ↑k + 1) * π / 2 → x = (2 * ↑k + 1) * π / 6", "after_state": "case mp\nx : ℝ\nk : ℤ\na✝ : 3 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 6" }, { "line": "intro", "before_state": "case mpr\nx : ℝ\nk : ℤ\n⊢ x = (2 * ↑k + 1) * π / 6 → 3 * x = (2 * ↑k + 1) * π / 2", "after_state": "case mpr\nx : ℝ\nk : ℤ\na✝ : x = (2 * ↑k + 1) * π / 6\n⊢ 3 * x = (2 * ↑k + 1) * π / 2" }, { "line": "with_annotate_state\"<;>\" skip", "before_state": "case mp\nx : ℝ\nk : ℤ\na✝ : 3 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\na✝ : x = (2 * ↑k + 1) * π / 6\n⊢ 3 * x = (2 * ↑k + 1) * π / 2", "after_state": "case mp\nx : ℝ\nk : ℤ\na✝ : 3 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\na✝ : x = (2 * ↑k + 1) * π / 6\n⊢ 3 * x = (2 * ↑k + 1) * π / 2" }, { "line": "skip", "before_state": "case mp\nx : ℝ\nk : ℤ\na✝ : 3 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\na✝ : x = (2 * ↑k + 1) * π / 6\n⊢ 3 * x = (2 * ↑k + 1) * π / 2", "after_state": "case mp\nx : ℝ\nk : ℤ\na✝ : 3 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\na✝ : x = (2 * ↑k + 1) * π / 6\n⊢ 3 * x = (2 * ↑k + 1) * π / 2" }, { "line": "all_goals linarith", "before_state": "case mp\nx : ℝ\nk : ℤ\na✝ : 3 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 6\n---\ncase mpr\nx : ℝ\nk : ℤ\na✝ : x = (2 * ↑k + 1) * π / 6\n⊢ 3 * x = (2 * ↑k + 1) * π / 2", "after_state": "No Goals!" }, { "line": "linarith", "before_state": "case mp\nx : ℝ\nk : ℤ\na✝ : 3 * x = (2 * ↑k + 1) * π / 2\n⊢ x = (2 * ↑k + 1) * π / 6", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 6\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 6\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 6\n⊢ 6 / 6 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 6\n⊢ 1 * 6 = 6", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 6\n⊢ 6 > 0", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 6\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 6\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 6\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 6\n⊢ 2 / 2 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 6\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 6\n⊢ 2 > 0", "after_state": "No Goals!" }, { "line": "ring1", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : x < (2 * ↑k + 1) * π / 6\n⊢ -(1 * 3 * (2 * x) - (1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π)) + (6 * x - (1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π)) = 0", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 6 < x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 6 < x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 6 < x\n⊢ 6 / 6 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 6 < x\n⊢ 1 * 6 = 6", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 6 < x\n⊢ 6 > 0", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 6 < x\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 6 < x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 6 < x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 6 < x\n⊢ 2 / 2 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 6 < x\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 6 < x\n⊢ 2 > 0", "after_state": "No Goals!" }, { "line": "ring1", "before_state": "x : ℝ\nk : ℤ\na✝¹ : 3 * x = (2 * ↑k + 1) * π / 2\na✝ : (2 * ↑k + 1) * π / 6 < x\n⊢ 1 * 3 * (2 * x) - (1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π) + ((1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π) - 6 * x) = 0", "after_state": "No Goals!" }, { "line": "linarith", "before_state": "case mpr\nx : ℝ\nk : ℤ\na✝ : x = (2 * ↑k + 1) * π / 6\n⊢ 3 * x = (2 * ↑k + 1) * π / 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : 3 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : 3 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : 3 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : 3 * x < (2 * ↑k + 1) * π / 2\n⊢ 2 / 2 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : 3 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : 3 * x < (2 * ↑k + 1) * π / 2\n⊢ 2 > 0", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : 3 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : 3 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : 3 * x < (2 * ↑k + 1) * π / 2\n⊢ 6 / 6 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : 3 * x < (2 * ↑k + 1) * π / 2\n⊢ 1 * 6 = 6", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : 3 * x < (2 * ↑k + 1) * π / 2\n⊢ 6 > 0", "after_state": "No Goals!" }, { "line": "ring1", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : 3 * x < (2 * ↑k + 1) * π / 2\n⊢ -(6 * x - (1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π)) + (1 * 3 * (2 * x) - (1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π)) = 0", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : (2 * ↑k + 1) * π / 2 < 3 * x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : (2 * ↑k + 1) * π / 2 < 3 * x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : (2 * ↑k + 1) * π / 2 < 3 * x\n⊢ 2 / 2 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : (2 * ↑k + 1) * π / 2 < 3 * x\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : (2 * ↑k + 1) * π / 2 < 3 * x\n⊢ 1 * 2 = 2", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : (2 * ↑k + 1) * π / 2 < 3 * x\n⊢ 2 > 0", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : (2 * ↑k + 1) * π / 2 < 3 * x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : (2 * ↑k + 1) * π / 2 < 3 * x\n⊢ 1 * 1 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : (2 * ↑k + 1) * π / 2 < 3 * x\n⊢ 6 / 6 = 1", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : (2 * ↑k + 1) * π / 2 < 3 * x\n⊢ 1 * 6 = 6", "after_state": "No Goals!" }, { "line": "norm_num", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : (2 * ↑k + 1) * π / 2 < 3 * x\n⊢ 6 > 0", "after_state": "No Goals!" }, { "line": "ring1", "before_state": "x : ℝ\nk : ℤ\na✝¹ : x = (2 * ↑k + 1) * π / 6\na✝ : (2 * ↑k + 1) * π / 2 < 3 * x\n⊢ 6 * x - (1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π) + ((1 * 2 * (1 * ↑k) + 1 * 1) * (1 * π) - 1 * 3 * (2 * x)) = 0", "after_state": "No Goals!" } ]
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
11