Dataset Viewer
Auto-converted to Parquet Duplicate
original_code
stringclasses
9 values
modified_code
stringclasses
9 values
changed_line
stringclasses
9 values
line_number
int64
1
1
mutation_type
stringclasses
2 values
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
1
decision
def power(x, n): return x * power(x, n-1) if n > 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
1
operation
def factorial(n): return n * factorial(n-1) if n > 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
1
operation
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
1
operation
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def power(x, n): return x * power(x, n-1) if n > 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
1
operation
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
1
operation
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
1
decision
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
1
decision
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def add(a, b): return a + b
def add(a, b): return a - b
def add(a, b): return a - b
1
operation
def add(a, b): return a + b
def add(a, b): return a - b
def add(a, b): return a - b
1
operation
def factorial(n): return n * factorial(n-1) if n > 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
1
operation
def add(a, b): return a + b
def add(a, b): return a - b
def add(a, b): return a - b
1
operation
def factorial(n): return n * factorial(n-1) if n > 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
1
operation
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
1
decision
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
1
decision
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def power(x, n): return x * power(x, n-1) if n > 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
1
operation
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
1
decision
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
1
decision
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
1
operation
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
1
decision
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
1
decision
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
1
decision
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def factorial(n): return n * factorial(n-1) if n > 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
1
operation
def power(x, n): return x * power(x, n-1) if n > 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
1
operation
def factorial(n): return n * factorial(n-1) if n > 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
1
operation
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
1
decision
def power(x, n): return x * power(x, n-1) if n > 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
1
operation
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
1
operation
def power(x, n): return x * power(x, n-1) if n > 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
1
operation
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
1
operation
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
1
decision
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def power(x, n): return x * power(x, n-1) if n > 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
1
operation
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
1
decision
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
1
decision
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
1
decision
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
1
operation
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
1
decision
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def factorial(n): return n * factorial(n-1) if n > 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
1
operation
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
1
decision
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
1
decision
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
1
operation
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
1
decision
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
1
operation
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def add(a, b): return a + b
def add(a, b): return a - b
def add(a, b): return a - b
1
operation
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
1
decision
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
1
decision
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
1
decision
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
1
decision
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def add(a, b): return a + b
def add(a, b): return a - b
def add(a, b): return a - b
1
operation
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
1
decision
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def add(a, b): return a + b
def add(a, b): return a - b
def add(a, b): return a - b
1
operation
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
1
decision
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def power(x, n): return x * power(x, n-1) if n > 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
1
operation
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
1
operation
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
1
decision
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
1
operation
def power(x, n): return x * power(x, n-1) if n > 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
1
operation
def power(x, n): return x * power(x, n-1) if n > 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
1
operation
def add(a, b): return a + b
def add(a, b): return a - b
def add(a, b): return a - b
1
operation
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def factorial(n): return n * factorial(n-1) if n > 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
1
operation
def factorial(n): return n * factorial(n-1) if n > 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
1
operation
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
1
decision
def is_palindrome(s): return s == s[::-1]
def is_palindrome(s): return s != s[::-1]
def is_palindrome(s): return s != s[::-1]
1
decision
def power(x, n): return x * power(x, n-1) if n > 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
def power(x, n): return x * power(x, n-1) if n < 0 else 1
1
operation
def factorial(n): return n * factorial(n-1) if n > 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
1
operation
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
1
operation
def add(a, b): return a + b
def add(a, b): return a - b
def add(a, b): return a - b
1
operation
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
1
operation
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
1
decision
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def is_even(n): return n % 2 == 0
def is_even(n): return n % 2 != 0
def is_even(n): return n % 2 != 0
1
decision
def factorial(n): return n * factorial(n-1) if n > 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
def factorial(n): return n * factorial(n-1) if n < 1 else 1
1
operation
End of preview. Expand in Data Studio

Dataset Card for Dataset Name

This dataset card aims to be a base template for new datasets. It has been generated using this raw template.

Dataset Details

Dataset Description

  • Curated by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]

Dataset Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Dataset Structure

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Data Collection and Processing

[More Information Needed]

Who are the source data producers?

[More Information Needed]

Annotations [optional]

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Dataset Card Authors [optional]

[More Information Needed]

Dataset Card Contact

[More Information Needed]

Downloads last month
5