original_code
stringclasses 9
values | modified_code
stringclasses 9
values | changed_line
stringclasses 9
values | line_number
int64 1
1
| mutation_type
stringclasses 2
values |
|---|---|---|---|---|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
| 1
|
decision
|
def power(x, n): return x * power(x, n-1) if n > 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
| 1
|
operation
|
def factorial(n): return n * factorial(n-1) if n > 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
| 1
|
operation
|
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
| 1
|
operation
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def power(x, n): return x * power(x, n-1) if n > 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
| 1
|
operation
|
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
| 1
|
operation
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
| 1
|
decision
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
| 1
|
decision
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def add(a, b): return a + b
|
def add(a, b): return a - b
|
def add(a, b): return a - b
| 1
|
operation
|
def add(a, b): return a + b
|
def add(a, b): return a - b
|
def add(a, b): return a - b
| 1
|
operation
|
def factorial(n): return n * factorial(n-1) if n > 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
| 1
|
operation
|
def add(a, b): return a + b
|
def add(a, b): return a - b
|
def add(a, b): return a - b
| 1
|
operation
|
def factorial(n): return n * factorial(n-1) if n > 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
| 1
|
operation
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
| 1
|
decision
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
| 1
|
decision
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def power(x, n): return x * power(x, n-1) if n > 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
| 1
|
operation
|
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
| 1
|
decision
|
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
| 1
|
decision
|
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
| 1
|
operation
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
| 1
|
decision
|
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
| 1
|
decision
|
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
| 1
|
decision
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def factorial(n): return n * factorial(n-1) if n > 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
| 1
|
operation
|
def power(x, n): return x * power(x, n-1) if n > 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
| 1
|
operation
|
def factorial(n): return n * factorial(n-1) if n > 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
| 1
|
operation
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
| 1
|
decision
|
def power(x, n): return x * power(x, n-1) if n > 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
| 1
|
operation
|
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
| 1
|
operation
|
def power(x, n): return x * power(x, n-1) if n > 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
| 1
|
operation
|
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
| 1
|
operation
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
| 1
|
decision
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def power(x, n): return x * power(x, n-1) if n > 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
| 1
|
operation
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
| 1
|
decision
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
| 1
|
decision
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
| 1
|
decision
|
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
| 1
|
operation
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
| 1
|
decision
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def factorial(n): return n * factorial(n-1) if n > 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
| 1
|
operation
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
| 1
|
decision
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
| 1
|
decision
|
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
| 1
|
operation
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
| 1
|
decision
|
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
| 1
|
operation
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def add(a, b): return a + b
|
def add(a, b): return a - b
|
def add(a, b): return a - b
| 1
|
operation
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
| 1
|
decision
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
| 1
|
decision
|
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
| 1
|
decision
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x == pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
|
def quick_sort(arr): if len(arr) <= 1: return arr; pivot = arr[len(arr) // 2]; left = [x for x in arr if x < pivot]; middle = [x for x in arr if x != pivot]; right = [x for x in arr if x > pivot]; return quick_sort(left) + middle + quick_sort(right)
| 1
|
decision
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def add(a, b): return a + b
|
def add(a, b): return a - b
|
def add(a, b): return a - b
| 1
|
operation
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
| 1
|
decision
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def add(a, b): return a + b
|
def add(a, b): return a - b
|
def add(a, b): return a - b
| 1
|
operation
|
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
| 1
|
decision
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def power(x, n): return x * power(x, n-1) if n > 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
| 1
|
operation
|
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
| 1
|
operation
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] == target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
|
def binary_search(arr, target): left, right = 0, len(arr) - 1; while left <= right: mid = (left + right) // 2; if arr[mid] != target: return mid; elif arr[mid] < target: left = mid + 1; else: right = mid - 1; return -1
| 1
|
decision
|
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
| 1
|
operation
|
def power(x, n): return x * power(x, n-1) if n > 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
| 1
|
operation
|
def power(x, n): return x * power(x, n-1) if n > 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
| 1
|
operation
|
def add(a, b): return a + b
|
def add(a, b): return a - b
|
def add(a, b): return a - b
| 1
|
operation
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def factorial(n): return n * factorial(n-1) if n > 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
| 1
|
operation
|
def factorial(n): return n * factorial(n-1) if n > 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
| 1
|
operation
|
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
| 1
|
decision
|
def is_palindrome(s): return s == s[::-1]
|
def is_palindrome(s): return s != s[::-1]
|
def is_palindrome(s): return s != s[::-1]
| 1
|
decision
|
def power(x, n): return x * power(x, n-1) if n > 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
|
def power(x, n): return x * power(x, n-1) if n < 0 else 1
| 1
|
operation
|
def factorial(n): return n * factorial(n-1) if n > 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
| 1
|
operation
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
| 1
|
operation
|
def add(a, b): return a + b
|
def add(a, b): return a - b
|
def add(a, b): return a - b
| 1
|
operation
|
def fibonacci(n): return 1 if n <= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
|
def fibonacci(n): return 1 if n >= 1 else fibonacci(n-1) + fibonacci(n-2)
| 1
|
operation
|
def gcd(a, b): return a if b == 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
|
def gcd(a, b): return a if b != 0 else gcd(b, a % b)
| 1
|
decision
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def is_even(n): return n % 2 == 0
|
def is_even(n): return n % 2 != 0
|
def is_even(n): return n % 2 != 0
| 1
|
decision
|
def factorial(n): return n * factorial(n-1) if n > 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
|
def factorial(n): return n * factorial(n-1) if n < 1 else 1
| 1
|
operation
|
End of preview. Expand
in Data Studio
Dataset Card for Dataset Name
This dataset card aims to be a base template for new datasets. It has been generated using this raw template.
Dataset Details
Dataset Description
- Curated by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
Dataset Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Dataset Structure
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Data Collection and Processing
[More Information Needed]
Who are the source data producers?
[More Information Needed]
Annotations [optional]
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Dataset Card Authors [optional]
[More Information Needed]
Dataset Card Contact
[More Information Needed]
- Downloads last month
- 5