|
|
<!DOCTYPE html> |
|
|
<html> |
|
|
<head> |
|
|
<title>MathJax Example</title> |
|
|
<script> |
|
|
MathJax = { |
|
|
tex: { |
|
|
inlineMath: [['$', '$'], ['\(', '\)']] |
|
|
}, |
|
|
svg: { |
|
|
fontCache: 'global' |
|
|
} |
|
|
}; |
|
|
</script> |
|
|
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> |
|
|
</head> |
|
|
<body> |
|
|
<p> $\operatorname{Inst}(\emptyset)$ </p> |
|
|
<p> $\prod_{s=1}^{t}2^{p_{s}-1}$ </p> |
|
|
<p> ${\rm D}_{\rm NP}\leq_{0\hbox{-}T}{\rm D}_{\rm P}$ </p> |
|
|
<p> $\p^{A}=\np^{A}$ </p> |
|
|
<p> $\p^{L}=\p$ </p> |
|
|
<p> $\langle M^{\prime},\epsilon\rangle$ </p> |
|
|
<p> $\np^{\mathcal{O}}$ </p> |
|
|
<p> $\langle M,1^{n},1^{t}\rangle\in{\rm U}_{\rm NP}$ </p> |
|
|
<p> $\np^{L}=\np$ </p> |
|
|
<p> $x\notin{\rm HP}$ </p> |
|
|
<p> $\np^{\p}=\np$ </p> |
|
|
<p> $\p$ </p> |
|
|
<p> $A\leq_{f(n)\hbox{-}T}B$ </p> |
|
|
<p> ${\rm D}_{\rm NP}\not\in\p^{{\rm D}_{\rm P}}$ </p> |
|
|
<p> $x\in\mathcal{O}$ </p> |
|
|
<p> $L\in{\rm\Sigma_{1}^{0}}$ </p> |
|
|
<p> $n,t\in{\mathbb{N}^{+}}$ </p> |
|
|
<p> $t^{\prime}\in{\mathbb{N}}$ </p> |
|
|
<p> $\Theta(2^{n})$ </p> |
|
|
<p> ${\rm D}_{\rm NP}=\{\langle M,1^{n}\rangle\mid n\in{\mathbb{N}}\land(\exists x% |
|
|
\in\{0,1\}^{n})[M$ </p> |
|
|
<p> $\langle M,1^{n}\rangle\in{\rm D}_{\rm NP}$ </p> |
|
|
<p> ${\rm U}_{\rm P}=\{\langle M,x,1^{t}\rangle\mid t\in{\mathbb{N}^{+}}\land M$ </p> |
|
|
<p> $M^{\mathcal{O}}$ </p> |
|
|
<p> ${\rm HP}=\{\langle M,w\rangle\mid M\text{ halts on input }w\}.$ </p> |
|
|
<p> $(\forall x)[x\in A\iff f(x)\in B]$ </p> |
|
|
<p> $z\notin{\rm D}_{\rm NP}$ </p> |
|
|
<p> $(\forall L\in{\rm\Sigma_{1}^{0}})[L\leq_{m}A]$ </p> |
|
|
<p> $\p^{\p}=\p$ </p> |
|
|
<p> $A\leq_{m}B$ </p> |
|
|
<p> ${\mathbb{N}^{+}}=\{1,2,3,\ldots\}$ </p> |
|
|
<p> ${\rm D}_{\rm NP}\in{\rm\Sigma_{1}^{0}}$ </p> |
|
|
<p> $\Omega(2^{n})$ </p> |
|
|
<p> $\p^{X}\neq\np^{X}$ </p> |
|
|
<p> $\p^{A}\neq\np^{A}\iff\p\neq\np$ </p> |
|
|
<p> $\p\neq\np$ </p> |
|
|
<p> $]\}$ </p> |
|
|
<p> ${\rm U}_{\rm NP}$ </p> |
|
|
<p> $L\leq_{m}{\rm D}_{\rm NP}$ </p> |
|
|
<p> $x]\}$ </p> |
|
|
<p> $\p^{\mathcal{O}}$ </p> |
|
|
<p> $\min(c,2^{n})$ </p> |
|
|
<p> ${\rm D}_{\rm NP}\leq_{m}{\rm D}_{\rm P}$ </p> |
|
|
<p> $z\not\in{\rm D}_{\rm NP}$ </p> |
|
|
<p> $y=\epsilon$ </p> |
|
|
<p> $\p^{\p}$ </p> |
|
|
<p> ${\rm U}_{\rm P}$ </p> |
|
|
<p> $\{0,1\}^{n}\cap L(M)$ </p> |
|
|
<p> $A\leq_{T}B$ </p> |
|
|
<p> ${\rm D}_{\rm P}$ </p> |
|
|
<p> $U_{\text{\bf P}}$ </p> |
|
|
<p> ${\rm PSPACE}$ </p> |
|
|
<p> $x\in L(M)$ </p> |
|
|
<p> $\p^{B}\neq\np^{B}$ </p> |
|
|
<p> $A\in\p$ </p> |
|
|
<p> $\langle M,x\rangle\in{\rm D}_{\rm P}\iff(\exists t>0)[\langle M,x,1^{t}\rangle% |
|
|
\in{\rm U}_{\rm P}]$ </p> |
|
|
<p> ${\mathbb{N}}=\{0,1,2,\ldots\}$ </p> |
|
|
<p> $A=L(M^{B})$ </p> |
|
|
<p> $\mathcal{C}^{\mathcal{D}}=\bigcup_{A\in\mathcal{D}}\mathcal{C}^{A}$ </p> |
|
|
<p> $\np$ </p> |
|
|
<p> ${\rm U}_{\rm NP}\not\in\p^{{\rm U}_{\rm P}}$ </p> |
|
|
<p> $\np^{\p}$ </p> |
|
|
<p> $f:{\mathbb{N}}\rightarrow{\mathbb{N}}$ </p> |
|
|
<p> $\p=\np$ </p> |
|
|
<p> $f(x)\in{\rm D}_{\rm NP}$ </p> |
|
|
<p> ${\rm\Sigma_{0}^{0}}$ </p> |
|
|
<p> ${\rm\Sigma_{0}^{0}}^{\mathcal{O}}$ </p> |
|
|
<p> $A\in{\rm\Sigma_{1}^{0}}$ </p> |
|
|
<p> $x\not\in\mathcal{O}$ </p> |
|
|
<p> $\p^{A}=\p$ </p> |
|
|
<p> ${\rm U}_{\rm NP}=\{\langle M,1^{n},1^{t}\rangle\mid n\in{\mathbb{N}}\land t\in% |
|
|
{\mathbb{N}^{+}}\land(\exists x\in\{0,1\}^{n})[M$ </p> |
|
|
<p> $\langle M,1^{n}\rangle$ </p> |
|
|
<p> $x\in{\rm HP}$ </p> |
|
|
<p> $\langle M,1^{n}\rangle\in{\rm D}_{\rm NP}\iff(\exists t>0)[\langle M,1^{n},1^{% |
|
|
t}\rangle\in{\rm U}_{\rm NP}]$ </p> |
|
|
<p> $x\}$ </p> |
|
|
<p> $w\in\{0,1\}^{n}$ </p> |
|
|
<p> $\epsilon\notin L(M^{\prime})$ </p> |
|
|
<p> $A\leq_{1\hbox{-}T}B$ </p> |
|
|
<p> ${\rm HP}\leq_{m}{\rm D}_{\rm NP}$ </p> |
|
|
<p> $\np^{A}=\np$ </p> |
|
|
<p> $(\forall x)[x\notin{\rm HP}\implies f(x)\notin{\rm D}_{\rm NP}]$ </p> |
|
|
<p> ${\rm\Sigma_{1}^{0}}$ </p> |
|
|
<p> ${\rm HP}$ </p> |
|
|
<p> $\langle M,w\rangle$ </p> |
|
|
<p> $(\forall x)[x\in{\rm HP}\iff f(x)\in{\rm D}_{\rm NP}]$ </p> |
|
|
<p> $\mathcal{C},\mathcal{D}$ </p> |
|
|
<p> $\epsilon\in L(M^{\prime})$ </p> |
|
|
<p> ${\rm D}_{\rm NP}$ </p> |
|
|
<p> ${\rm D}_{\rm NP}\leq_{h\hbox{-}T}{\rm D}_{\rm P}$ </p> |
|
|
<p> $L\in\p$ </p> |
|
|
<p> ${\rm D}_{\rm P}=\{\langle M,x\rangle\mid M$ </p> |
|
|
<p> ${\rm D}_{\rm NP}\leq_{1\hbox{-}T}{\rm D}_{\rm P}$ </p> |
|
|
<p> $c\in{\mathbb{N}^{+}}$ </p> |
|
|
<p> $(S^{\prime}\setminus\{x,y\})\cup\{v^{xy}\}$ </p> |
|
|
<p> $G\setminus X:=G[V(G)\setminus X]$ </p> |
|
|
<p> $V(C_{2})$ </p> |
|
|
<p> $p_{j}\in B$ </p> |
|
|
<p> $H\setminus u$ </p> |
|
|
<p> $\chi(G)\leq k$ </p> |
|
|
<p> $u\in V(H)$ </p> |
|
|
<p> $\{\overline{K_{2}\cup C_{2k+1}}\mid k\in\mathbb{N}\}$ </p> |
|
|
|
|
|
</body> |
|
|
</html> |
|
|
|