TeX_htmls / htmls /output_mathjax_example_1004.html
Kyudan's picture
Upload 100 files
5e28378 verified
raw
history blame
4.23 kB
<!DOCTYPE html>
<html>
<head>
<title>MathJax Example</title>
<script>
MathJax = {
tex: {
inlineMath: [['$', '$'], ['\(', '\)']]
},
svg: {
fontCache: 'global'
}
};
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<p> $G\setminus\{a_{1},b_{1}\}$ </p>
<p> $y\in V(F)$ </p>
<p> $q_{1}=c$ </p>
<p> $v\in V(G)\setminus V(H)$ </p>
<p> $G[q_{j},\dots,,q_{t},b_{1},a_{1},a_{2}]$ </p>
<p> $N_{G}(q_{t})\cap V(H)=B$ </p>
<p> $G[S]=H[S]$ </p>
<p> $\omega<2.3728596$ </p>
<p> $x\in A$ </p>
<p> $G_{i}-v_{i}$ </p>
<p> $H\in\mathcal{C}$ </p>
<p> $\{2K_{1}\vee H\mid H\in\mathcal{M}_{\mathcal{C}_{1}}\}=\{2K_{1}\vee 2K_{1}\}=%
\{C_{4}\}$ </p>
<p> $N_{G}(v)\cap V(H)\subseteq B$ </p>
<p> $a_{2},a_{3},b_{1}$ </p>
<p> $Q=q_{0},\dots,q_{t}$ </p>
<p> $H\cong 2K_{1}$ </p>
<p> $\mathcal{G}_{k}$ </p>
<p> $V(G)\setminus V(H)$ </p>
<p> $E(H_{1})\cup E(H_{2})\cup\{v_{1}v_{2}\mid v_{1}\in V(H_{1}),v_{2}\in V(H_{2})\}$ </p>
<p> $G[S^{\prime}]\in\mathcal{C}$ </p>
<p> $G_{A}:=G[A\cup C]$ </p>
<p> $\bigcup_{v\in V(H)}X_{v}\subseteq V(2K_{1})$ </p>
<p> $\mathcal{O}(n^{2}(n+m))$ </p>
<p> $K_{2,3}$ </p>
<p> $p_{1},\dots,p_{i},q_{j},\dots,q_{t}$ </p>
<p> $K_{p,q}$ </p>
<p> $\mathcal{F}_{\mathcal{C}}$ </p>
<p> $S^{\prime}\subseteq S^{*}$ </p>
<p> $G\in\mathcal{C}_{k}$ </p>
<p> $\mathcal{O}(n^{4})$ </p>
<p> $r_{1},\dots,r_{i},c$ </p>
<p> $S=V(G)$ </p>
<p> $\mathcal{O}(n^{2k+2})$ </p>
<p> $S\subseteq A\cup C$ </p>
<p> $S^{\prime}\subseteq S\cap(A\cup C)$ </p>
<p> $S\subseteq V(G^{\prime})\setminus\{a,b,v^{xy}\}=V(G)\setminus\{a,b,x,y\}$ </p>
<p> $A=\{a_{1},a_{2},a_{3}\}$ </p>
<p> $G/e$ </p>
<p> $p_{s}=c$ </p>
<p> $S\subseteq V(G^{\prime})\setminus\{v^{xy}\}=V(G)\setminus\{x,y\}$ </p>
<p> $a_{i},a_{j},a_{k}\in A$ </p>
<p> $G[a_{1},a_{2},b_{1},b_{2},p_{0},\dots,p_{s}]$ </p>
<p> $x,y\in V(G^{\prime})$ </p>
<p> $S\subseteq V(G)\setminus\{a,b\}$ </p>
<p> $\sum_{x\in X}w(x)$ </p>
<p> $S_{v}=\{v,z^{v}\}$ </p>
<p> $\mathcal{O}(n^{2+\epsilon})$ </p>
<p> $p_{1},\ldots,p_{k}$ </p>
<p> $r_{1}=x$ </p>
<p> $K_{2,k+1}\notin\mathcal{G}_{k}$ </p>
<p> $p_{1},\dots,p_{i-1},p_{j+1},\dots,p_{s}$ </p>
<p> $P^{3}$ </p>
<p> $p_{1},\dots,p_{i},q_{j+1},\dots,q_{t}$ </p>
<p> $\chi(\overline{G})\leq k$ </p>
<p> $r_{i},c\in C$ </p>
<p> $G[S^{*}]\in\mathcal{C}$ </p>
<p> $F\in{\mathcal{C}}$ </p>
<p> $\overline{C_{6}}$ </p>
<p> $|V(H)|-1$ </p>
<p> $G\setminus S^{\prime}$ </p>
<p> $S^{*}\cap V(H)\subseteq S$ </p>
<p> $G^{\prime}[S]=G[S]$ </p>
<p> $\overline{K_{2}\cup C_{2k+1}}\cong 2K_{1}\vee\overline{C_{2k+1}}$ </p>
<p> $S\cap B=\emptyset$ </p>
<p> $h_{1},\dots,h_{i}$ </p>
<p> $y=b$ </p>
<p> $a_{2},q_{j},b_{1}$ </p>
<p> $K_{2,k}$ </p>
<p> $a,b\in V(G)\setminus S$ </p>
<p> $y\in B$ </p>
<p> $N_{G}(q_{t})\cap V(H)=\{b_{1}\}$ </p>
<p> $\mathcal{M}_{\mathcal{G}_{0}}=\{P_{3}\}$ </p>
<p> $\mathcal{O}(n^{3+\epsilon})$ </p>
<p> $K_{k-1}$ </p>
<p> $\mathcal{O}(n^{2+\epsilon}).$ </p>
<p> $p_{i}\in C$ </p>
<p> $r_{k}=y$ </p>
<p> $K_{2,k+1}$ </p>
<p> $V(C_{1})$ </p>
<p> $N_{G}[y]\setminus N_{G}[x]$ </p>
<p> $p_{s}\in N_{B}$ </p>
<p> ${\mathcal{C}}$ </p>
<p> $N_{G}[x]:=\{x\}\cup N_{G}(x)$ </p>
<p> $N_{B}=\emptyset$ </p>
<p> $\alpha(G^{*})=\alpha(G)+|E(G)|$ </p>
<p> $G[v,a_{i},a_{j},a_{k}]$ </p>
<p> $p_{1}\in A$ </p>
<p> $G[x_{1},\dots,x_{t}]$ </p>
<p> $G^{\prime}\in\mathcal{G}_{\mathcal{C}}$ </p>
<p> $K_{\ell}\notin\mathcal{C}$ </p>
<p> $V(H)\setminus U$ </p>
<p> $G\in\mathcal{C}$ </p>
<p> $uw\in E(H)$ </p>
<p> $a_{2}\in N_{G}(p_{s})\cap V(H)\subseteq\{a_{2},b_{2}\}$ </p>
<p> $G[A\cup B\cup\{q_{0},q_{1}\}]$ </p>
<p> $\{a_{i},b_{i}\}$ </p>
<p> $|N_{G}(v)\cap V(H)|\geq 2$ </p>
<p> $a,b\in V(G^{\prime})\setminus S$ </p>
<p> $X=\{x\}$ </p>
<p> $E(H_{1})\cup E(H_{2})$ </p>
</body>
</html>