contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
172
B
Pseudorandom Sequence Period
PROGRAMMING
1,200
[ "*special", "implementation", "number theory" ]
null
null
Polycarpus has recently got interested in sequences of pseudorandom numbers. He learned that many programming languages generate such sequences in a similar way: (for *i*<=≥<=1). Here *a*, *b*, *m* are constants, fixed for the given realization of the pseudorandom numbers generator, *r*0 is the so-called *randseed* (this value can be set from the program using functions like RandSeed(r) or srand(n)), and denotes the operation of taking the remainder of division. For example, if *a*<==<=2,<=*b*<==<=6,<=*m*<==<=12,<=*r*0<==<=11, the generated sequence will be: 4,<=2,<=10,<=2,<=10,<=2,<=10,<=2,<=10,<=2,<=10,<=.... Polycarpus realized that any such sequence will sooner or later form a cycle, but the cycle may occur not in the beginning, so there exist a preperiod and a period. The example above shows a preperiod equal to 1 and a period equal to 2. Your task is to find the period of a sequence defined by the given values of *a*,<=*b*,<=*m* and *r*0. Formally, you have to find such minimum positive integer *t*, for which exists such positive integer *k*, that for any *i*<=≥<=*k*: *r**i*<==<=*r**i*<=+<=*t*.
The single line of the input contains four integers *a*, *b*, *m* and *r*0 (1<=≤<=*m*<=≤<=105,<=0<=≤<=*a*,<=*b*<=≤<=1000,<=0<=≤<=*r*0<=&lt;<=*m*), separated by single spaces.
Print a single integer — the period of the sequence.
[ "2 6 12 11\n", "2 3 5 1\n", "3 6 81 9\n" ]
[ "2\n", "4\n", "1\n" ]
The first sample is described above. In the second sample the sequence is (starting from the first element): 0, 3, 4, 1, 0, 3, 4, 1, 0, ... In the third sample the sequence is (starting from the first element): 33, 24, 78, 78, 78, 78, ...
1,000
[ { "input": "2 6 12 11", "output": "2" }, { "input": "2 3 5 1", "output": "4" }, { "input": "3 6 81 9", "output": "1" }, { "input": "10 11 12 3", "output": "3" }, { "input": "4 4 5 4", "output": "2" }, { "input": "0 1 6 5", "output": "1" }, { "input": "1 0 7 3", "output": "1" }, { "input": "25 154 200 68", "output": "4" }, { "input": "0 0 1 0", "output": "1" }, { "input": "1 1 100000 0", "output": "100000" }, { "input": "73 778 36193 20163", "output": "1064" }, { "input": "65 101 43738 16242", "output": "3450" }, { "input": "177 329 83469 5951", "output": "9274" }, { "input": "452 53 51476 50033", "output": "3024" }, { "input": "900 209 34129 21607", "output": "4266" }, { "input": "137 936 79151 3907", "output": "79150" }, { "input": "687 509 56521 48466", "output": "3409" }, { "input": "977 461 14937 9343", "output": "2292" }, { "input": "545 541 43487 31725", "output": "43486" }, { "input": "550 5 88379 9433", "output": "44189" }, { "input": "173 105 24791 23343", "output": "5718" }, { "input": "239 695 50503 18287", "output": "25251" }, { "input": "397 24 21491 18004", "output": "21490" }, { "input": "887 265 55829 22027", "output": "55828" }, { "input": "821 163 39195 20770", "output": "660" }, { "input": "491 3 64907 3847", "output": "115" }, { "input": "503 233 5683 3462", "output": "1894" }, { "input": "367 701 18523 11701", "output": "882" }, { "input": "349 673 81953 56773", "output": "81952" }, { "input": "619 37 37223 877", "output": "18611" }, { "input": "643 863 77551 25943", "output": "38775" }, { "input": "937 859 7333 2141", "output": "7332" }, { "input": "271 761 99991 75353", "output": "49995" }, { "input": "1 1 10000 0", "output": "10000" }, { "input": "0 0 16709 12233", "output": "1" }, { "input": "0 1 55305 6822", "output": "1" }, { "input": "1 0 54062 35990", "output": "1" }, { "input": "0 0 23896 0", "output": "1" }, { "input": "0 1 53172 0", "output": "1" }, { "input": "1 0 54652 0", "output": "1" }, { "input": "6 0 99991 1", "output": "99990" }, { "input": "101 0 100000 1", "output": "1000" }, { "input": "2 0 99989 1", "output": "99988" }, { "input": "2 0 54539 1", "output": "54538" }, { "input": "3 0 42953 1", "output": "42952" }, { "input": "7 0 67129 1", "output": "67128" }, { "input": "2 0 89261 1", "output": "89260" }, { "input": "11 0 35311 1", "output": "35310" }, { "input": "0 0 2 0", "output": "1" }, { "input": "1 0 2 0", "output": "1" }, { "input": "0 1 2 0", "output": "1" }, { "input": "1 1 2 0", "output": "2" }, { "input": "0 0 2 1", "output": "1" }, { "input": "1 0 2 1", "output": "1" }, { "input": "0 1 2 1", "output": "1" }, { "input": "1 1 2 1", "output": "2" } ]
1,645,188,595
2,147,483,647
PyPy 3-64
OK
TESTS
56
716
26,624,000
import poplib import string import math def main_function(): a, b, m, r_0 = [int(i) for i in input().split(" ")] current_index = 1 hash_ = {r_0: 0} while True: r_0 = (a * r_0 + b) % m if r_0 in hash_: print(current_index - hash_[r_0]) break else: hash_[r_0] = current_index current_index += 1 if __name__ == '__main__': main_function()
Title: Pseudorandom Sequence Period Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus has recently got interested in sequences of pseudorandom numbers. He learned that many programming languages generate such sequences in a similar way: (for *i*<=≥<=1). Here *a*, *b*, *m* are constants, fixed for the given realization of the pseudorandom numbers generator, *r*0 is the so-called *randseed* (this value can be set from the program using functions like RandSeed(r) or srand(n)), and denotes the operation of taking the remainder of division. For example, if *a*<==<=2,<=*b*<==<=6,<=*m*<==<=12,<=*r*0<==<=11, the generated sequence will be: 4,<=2,<=10,<=2,<=10,<=2,<=10,<=2,<=10,<=2,<=10,<=.... Polycarpus realized that any such sequence will sooner or later form a cycle, but the cycle may occur not in the beginning, so there exist a preperiod and a period. The example above shows a preperiod equal to 1 and a period equal to 2. Your task is to find the period of a sequence defined by the given values of *a*,<=*b*,<=*m* and *r*0. Formally, you have to find such minimum positive integer *t*, for which exists such positive integer *k*, that for any *i*<=≥<=*k*: *r**i*<==<=*r**i*<=+<=*t*. Input Specification: The single line of the input contains four integers *a*, *b*, *m* and *r*0 (1<=≤<=*m*<=≤<=105,<=0<=≤<=*a*,<=*b*<=≤<=1000,<=0<=≤<=*r*0<=&lt;<=*m*), separated by single spaces. Output Specification: Print a single integer — the period of the sequence. Demo Input: ['2 6 12 11\n', '2 3 5 1\n', '3 6 81 9\n'] Demo Output: ['2\n', '4\n', '1\n'] Note: The first sample is described above. In the second sample the sequence is (starting from the first element): 0, 3, 4, 1, 0, 3, 4, 1, 0, ... In the third sample the sequence is (starting from the first element): 33, 24, 78, 78, 78, 78, ...
```python import poplib import string import math def main_function(): a, b, m, r_0 = [int(i) for i in input().split(" ")] current_index = 1 hash_ = {r_0: 0} while True: r_0 = (a * r_0 + b) % m if r_0 in hash_: print(current_index - hash_[r_0]) break else: hash_[r_0] = current_index current_index += 1 if __name__ == '__main__': main_function() ```
3
127
A
Wasted Time
PROGRAMMING
900
[ "geometry" ]
null
null
Mr. Scrooge, a very busy man, decided to count the time he wastes on all sorts of useless stuff to evaluate the lost profit. He has already counted the time he wastes sleeping and eating. And now Mr. Scrooge wants to count the time he has wasted signing papers. Mr. Scrooge's signature can be represented as a polyline *A*1*A*2... *A**n*. Scrooge signs like that: first it places a pen at the point *A*1, then draws a segment from point *A*1 to point *A*2, then he draws a segment from point *A*2 to point *A*3 and so on to point *A**n*, where he stops signing and takes the pen off the paper. At that the resulting line can intersect with itself and partially repeat itself but Scrooge pays no attention to it and never changes his signing style. As Scrooge makes the signature, he never takes the pen off the paper and his writing speed is constant — 50 millimeters per second. Scrooge signed exactly *k* papers throughout his life and all those signatures look the same. Find the total time Scrooge wasted signing the papers.
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Each of the following *n* lines contains the coordinates of the polyline's endpoints. The *i*-th one contains coordinates of the point *A**i* — integers *x**i* and *y**i*, separated by a space. All points *A**i* are different. The absolute value of all coordinates does not exceed 20. The coordinates are measured in millimeters.
Print one real number — the total time Scrooges wastes on signing the papers in seconds. The absolute or relative error should not exceed 10<=-<=6.
[ "2 1\n0 0\n10 0\n", "5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0\n", "6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0\n" ]
[ "0.200000000", "6.032163204", "3.000000000" ]
none
500
[ { "input": "2 1\n0 0\n10 0", "output": "0.200000000" }, { "input": "5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0", "output": "6.032163204" }, { "input": "6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0", "output": "3.000000000" }, { "input": "10 95\n-20 -5\n2 -8\n14 13\n10 3\n17 11\n13 -12\n-6 11\n14 -15\n-13 14\n19 8", "output": "429.309294877" }, { "input": "30 1000\n4 -13\n14 13\n-14 -16\n-9 18\n17 11\n2 -8\n2 15\n8 -1\n-9 13\n8 -12\n-2 20\n11 -12\n19 8\n9 -15\n-20 -5\n-18 20\n-13 14\n-12 -17\n-4 3\n13 -12\n11 -10\n18 7\n-6 11\n10 13\n10 3\n6 -14\n-1 10\n14 -15\n2 11\n-8 10", "output": "13629.282573522" }, { "input": "2 1\n-20 -10\n-10 -6", "output": "0.215406592" }, { "input": "2 13\n13 -10\n-3 -2", "output": "4.651021393" }, { "input": "2 21\n13 8\n14 10", "output": "0.939148551" }, { "input": "2 75\n-3 12\n1 12", "output": "6.000000000" }, { "input": "2 466\n10 16\n-6 -3", "output": "231.503997374" }, { "input": "2 999\n6 16\n-17 -14", "output": "755.286284531" }, { "input": "2 1000\n-17 -14\n-14 -8", "output": "134.164078650" }, { "input": "3 384\n-4 -19\n-17 -2\n3 4", "output": "324.722285390" }, { "input": "5 566\n-11 8\n2 -7\n7 0\n-7 -9\n-7 5", "output": "668.956254495" }, { "input": "7 495\n-10 -13\n-9 -5\n4 9\n8 13\n-4 2\n2 10\n-18 15", "output": "789.212495576" }, { "input": "10 958\n7 13\n20 19\n12 -7\n10 -10\n-13 -15\n-10 -7\n20 -5\n-11 19\n-7 3\n-4 18", "output": "3415.618464093" }, { "input": "13 445\n-15 16\n-8 -14\n8 7\n4 15\n8 -13\n15 -11\n-12 -4\n2 -13\n-5 0\n-20 -14\n-8 -7\n-10 -18\n18 -5", "output": "2113.552527680" }, { "input": "18 388\n11 -8\n13 10\n18 -17\n-15 3\n-13 -15\n20 -7\n1 -10\n-13 -12\n-12 -15\n-17 -8\n1 -2\n3 -20\n-8 -9\n15 -13\n-19 -6\n17 3\n-17 2\n6 6", "output": "2999.497312668" }, { "input": "25 258\n-5 -3\n-18 -14\n12 3\n6 11\n4 2\n-19 -3\n19 -7\n-15 19\n-19 -12\n-11 -10\n-5 17\n10 15\n-4 1\n-3 -20\n6 16\n18 -19\n11 -19\n-17 10\n-17 17\n-2 -17\n-3 -9\n18 13\n14 8\n-2 -5\n-11 4", "output": "2797.756635934" }, { "input": "29 848\n11 -10\n-19 1\n18 18\n19 -19\n0 -5\n16 10\n-20 -14\n7 15\n6 8\n-15 -16\n9 3\n16 -20\n-12 12\n18 -1\n-11 14\n18 10\n11 -20\n-20 -16\n-1 11\n13 10\n-6 13\n-7 -10\n-11 -10\n-10 3\n15 -13\n-4 11\n-13 -11\n-11 -17\n11 -5", "output": "12766.080247922" }, { "input": "36 3\n-11 20\n-11 13\n-17 9\n15 9\n-6 9\n-1 11\n12 -11\n16 -10\n-20 7\n-18 6\n-15 -2\n20 -20\n16 4\n-20 -8\n-12 -15\n-13 -6\n-9 -4\n0 -10\n8 -1\n1 4\n5 8\n8 -15\n16 -12\n19 1\n0 -4\n13 -4\n17 -13\n-7 11\n14 9\n-14 -9\n5 -8\n11 -8\n-17 -5\n1 -3\n-16 -17\n2 -3", "output": "36.467924851" }, { "input": "48 447\n14 9\n9 -17\n-17 11\n-14 14\n19 -8\n-14 -17\n-7 10\n-6 -11\n-9 -19\n19 10\n-4 2\n-5 16\n20 9\n-10 20\n-7 -17\n14 -16\n-2 -10\n-18 -17\n14 12\n-6 -19\n5 -18\n-3 2\n-3 10\n-5 5\n13 -12\n10 -18\n10 -12\n-2 4\n7 -15\n-5 -5\n11 14\n11 10\n-6 -9\n13 -4\n13 9\n6 12\n-13 17\n-9 -12\n14 -19\n10 12\n-15 8\n-1 -11\n19 8\n11 20\n-9 -3\n16 1\n-14 19\n8 -4", "output": "9495.010556306" }, { "input": "50 284\n-17 -13\n7 12\n-13 0\n13 1\n14 6\n14 -9\n-5 -1\n0 -10\n12 -3\n-14 6\n-8 10\n-16 17\n0 -1\n4 -9\n2 6\n1 8\n-8 -14\n3 9\n1 -15\n-4 -19\n-7 -20\n18 10\n3 -11\n10 16\n2 -6\n-9 19\n-3 -1\n20 9\n-12 -5\n-10 -2\n16 -7\n-16 -18\n-2 17\n2 8\n7 -15\n4 1\n6 -17\n19 9\n-10 -20\n5 2\n10 -2\n3 7\n20 0\n8 -14\n-16 -1\n-20 7\n20 -19\n17 18\n-11 -18\n-16 14", "output": "6087.366930474" }, { "input": "57 373\n18 3\n-4 -1\n18 5\n-7 -15\n-6 -10\n-19 1\n20 15\n15 4\n-1 -2\n13 -14\n0 12\n10 3\n-16 -17\n-14 -9\n-11 -10\n17 19\n-2 6\n-12 -15\n10 20\n16 7\n9 -1\n4 13\n8 -2\n-1 -16\n-3 8\n14 11\n-12 3\n-5 -6\n3 4\n5 7\n-9 9\n11 4\n-19 10\n-7 4\n-20 -12\n10 16\n13 11\n13 -11\n7 -1\n17 18\n-19 7\n14 13\n5 -1\n-7 6\n-1 -6\n6 20\n-16 2\n4 17\n16 -11\n-4 -20\n19 -18\n17 16\n-14 -8\n3 2\n-6 -16\n10 -10\n-13 -11", "output": "8929.162822862" }, { "input": "60 662\n15 17\n-2 -19\n-4 -17\n10 0\n15 10\n-8 -14\n14 9\n-15 20\n6 5\n-9 0\n-13 20\n13 -2\n10 9\n7 5\n4 18\n-10 1\n6 -15\n15 -16\n6 13\n4 -6\n2 5\n18 19\n8 3\n-7 14\n-12 -20\n14 19\n-15 0\n-2 -12\n9 18\n14 4\n2 -20\n3 0\n20 9\n-5 11\n-11 1\n2 -19\n-14 -4\n18 6\n16 16\n15 3\n-1 -5\n9 20\n12 -8\n-1 10\n-4 -9\n3 6\n3 -12\n14 -10\n-8 10\n-18 6\n14 -2\n-14 -12\n-10 -7\n10 -6\n14 1\n6 14\n15 19\n4 14\n3 -14\n-9 -13", "output": "16314.207721932" }, { "input": "61 764\n-9 15\n11 -8\n-6 -7\n-13 -19\n16 -16\n-5 -1\n20 -19\n-14 -1\n-11 4\n7 -2\n-3 2\n-14 -17\n15 18\n20 15\n-13 -2\n15 8\n3 13\n19 -10\n2 -6\n15 -3\n-12 11\n4 -16\n-14 20\n0 2\n11 -7\n-6 -11\n16 7\n8 -3\n16 -10\n-3 9\n9 5\n4 -1\n-17 9\n14 -4\n8 6\n-19 12\n10 -17\n-5 7\n7 -3\n5 3\n6 -14\n9 9\n-16 -19\n11 -16\n-17 15\n8 5\n16 -19\n-7 10\n14 -15\n15 19\n-20 -16\n6 -2\n-4 6\n7 -15\n1 -8\n20 -17\n3 7\n10 12\n10 -11\n-19 10\n0 -11", "output": "22153.369189802" } ]
1,594,398,503
2,147,483,647
Python 3
OK
TESTS
42
218
6,656,000
import math n,k=map(int,input().split()) prev1,prev2 = map(int,input().split()) total = 0 for i in range(1,n): tmp1,tmp2=map(int,input().split()) total+=math.sqrt((tmp1-prev1)**2+(tmp2-prev2)**2) prev1,prev2 = tmp1,tmp2 print(total*k*0.02)
Title: Wasted Time Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mr. Scrooge, a very busy man, decided to count the time he wastes on all sorts of useless stuff to evaluate the lost profit. He has already counted the time he wastes sleeping and eating. And now Mr. Scrooge wants to count the time he has wasted signing papers. Mr. Scrooge's signature can be represented as a polyline *A*1*A*2... *A**n*. Scrooge signs like that: first it places a pen at the point *A*1, then draws a segment from point *A*1 to point *A*2, then he draws a segment from point *A*2 to point *A*3 and so on to point *A**n*, where he stops signing and takes the pen off the paper. At that the resulting line can intersect with itself and partially repeat itself but Scrooge pays no attention to it and never changes his signing style. As Scrooge makes the signature, he never takes the pen off the paper and his writing speed is constant — 50 millimeters per second. Scrooge signed exactly *k* papers throughout his life and all those signatures look the same. Find the total time Scrooge wasted signing the papers. Input Specification: The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Each of the following *n* lines contains the coordinates of the polyline's endpoints. The *i*-th one contains coordinates of the point *A**i* — integers *x**i* and *y**i*, separated by a space. All points *A**i* are different. The absolute value of all coordinates does not exceed 20. The coordinates are measured in millimeters. Output Specification: Print one real number — the total time Scrooges wastes on signing the papers in seconds. The absolute or relative error should not exceed 10<=-<=6. Demo Input: ['2 1\n0 0\n10 0\n', '5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0\n', '6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0\n'] Demo Output: ['0.200000000', '6.032163204', '3.000000000'] Note: none
```python import math n,k=map(int,input().split()) prev1,prev2 = map(int,input().split()) total = 0 for i in range(1,n): tmp1,tmp2=map(int,input().split()) total+=math.sqrt((tmp1-prev1)**2+(tmp2-prev2)**2) prev1,prev2 = tmp1,tmp2 print(total*k*0.02) ```
3
336
A
Vasily the Bear and Triangle
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
Vasily the bear has a favorite rectangle, it has one vertex at point (0,<=0), and the opposite vertex at point (*x*,<=*y*). Of course, the sides of Vasya's favorite rectangle are parallel to the coordinate axes. Vasya also loves triangles, if the triangles have one vertex at point *B*<==<=(0,<=0). That's why today he asks you to find two points *A*<==<=(*x*1,<=*y*1) and *C*<==<=(*x*2,<=*y*2), such that the following conditions hold: - the coordinates of points: *x*1, *x*2, *y*1, *y*2 are integers. Besides, the following inequation holds: *x*1<=&lt;<=*x*2; - the triangle formed by point *A*, *B* and *C* is rectangular and isosceles ( is right); - all points of the favorite rectangle are located inside or on the border of triangle *ABC*; - the area of triangle *ABC* is as small as possible. Help the bear, find the required points. It is not so hard to proof that these points are unique.
The first line contains two integers *x*,<=*y* (<=-<=109<=≤<=*x*,<=*y*<=≤<=109,<=*x*<=≠<=0,<=*y*<=≠<=0).
Print in the single line four integers *x*1,<=*y*1,<=*x*2,<=*y*2 — the coordinates of the required points.
[ "10 5\n", "-10 5\n" ]
[ "0 15 15 0\n", "-15 0 0 15\n" ]
<img class="tex-graphics" src="https://espresso.codeforces.com/a9ea2088c4294ce8f23801562fda36b830df2c3f.png" style="max-width: 100.0%;max-height: 100.0%;"/> Figure to the first sample
500
[ { "input": "10 5", "output": "0 15 15 0" }, { "input": "-10 5", "output": "-15 0 0 15" }, { "input": "20 -10", "output": "0 -30 30 0" }, { "input": "-10 -1000000000", "output": "-1000000010 0 0 -1000000010" }, { "input": "-1000000000 -1000000000", "output": "-2000000000 0 0 -2000000000" }, { "input": "1000000000 1000000000", "output": "0 2000000000 2000000000 0" }, { "input": "-123131 3123141", "output": "-3246272 0 0 3246272" }, { "input": "-23423 -243242423", "output": "-243265846 0 0 -243265846" }, { "input": "123112 4560954", "output": "0 4684066 4684066 0" }, { "input": "1321 -23131", "output": "0 -24452 24452 0" }, { "input": "1000000000 999999999", "output": "0 1999999999 1999999999 0" }, { "input": "54543 432423", "output": "0 486966 486966 0" }, { "input": "1 1", "output": "0 2 2 0" }, { "input": "-1 -1", "output": "-2 0 0 -2" }, { "input": "-1 1", "output": "-2 0 0 2" }, { "input": "1 -1", "output": "0 -2 2 0" }, { "input": "42 -2", "output": "0 -44 44 0" }, { "input": "2 -435", "output": "0 -437 437 0" }, { "input": "76 -76", "output": "0 -152 152 0" }, { "input": "1000000000 1", "output": "0 1000000001 1000000001 0" }, { "input": "1000000000 -1", "output": "0 -1000000001 1000000001 0" }, { "input": "-1000000000 1", "output": "-1000000001 0 0 1000000001" }, { "input": "-1000000000 -1", "output": "-1000000001 0 0 -1000000001" }, { "input": "1000000000 -999999999", "output": "0 -1999999999 1999999999 0" }, { "input": "-1000000000 999999999", "output": "-1999999999 0 0 1999999999" }, { "input": "-1000000000 -999999999", "output": "-1999999999 0 0 -1999999999" }, { "input": "999999999 1000000000", "output": "0 1999999999 1999999999 0" }, { "input": "-999999999 1000000000", "output": "-1999999999 0 0 1999999999" }, { "input": "999999999 -1000000000", "output": "0 -1999999999 1999999999 0" }, { "input": "-999999999 -1000000000", "output": "-1999999999 0 0 -1999999999" } ]
1,596,875,859
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
248
20,172,800
def f(l): x,y = l yy = y+x if y*x>0 else y-x xx = x+y if y*x>0 else x-y return [xx,0,0,yy] if xx<0 else [0,yy,xx,0] l = list(map(int,input().split())) print(f(l))
Title: Vasily the Bear and Triangle Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasily the bear has a favorite rectangle, it has one vertex at point (0,<=0), and the opposite vertex at point (*x*,<=*y*). Of course, the sides of Vasya's favorite rectangle are parallel to the coordinate axes. Vasya also loves triangles, if the triangles have one vertex at point *B*<==<=(0,<=0). That's why today he asks you to find two points *A*<==<=(*x*1,<=*y*1) and *C*<==<=(*x*2,<=*y*2), such that the following conditions hold: - the coordinates of points: *x*1, *x*2, *y*1, *y*2 are integers. Besides, the following inequation holds: *x*1<=&lt;<=*x*2; - the triangle formed by point *A*, *B* and *C* is rectangular and isosceles ( is right); - all points of the favorite rectangle are located inside or on the border of triangle *ABC*; - the area of triangle *ABC* is as small as possible. Help the bear, find the required points. It is not so hard to proof that these points are unique. Input Specification: The first line contains two integers *x*,<=*y* (<=-<=109<=≤<=*x*,<=*y*<=≤<=109,<=*x*<=≠<=0,<=*y*<=≠<=0). Output Specification: Print in the single line four integers *x*1,<=*y*1,<=*x*2,<=*y*2 — the coordinates of the required points. Demo Input: ['10 5\n', '-10 5\n'] Demo Output: ['0 15 15 0\n', '-15 0 0 15\n'] Note: <img class="tex-graphics" src="https://espresso.codeforces.com/a9ea2088c4294ce8f23801562fda36b830df2c3f.png" style="max-width: 100.0%;max-height: 100.0%;"/> Figure to the first sample
```python def f(l): x,y = l yy = y+x if y*x>0 else y-x xx = x+y if y*x>0 else x-y return [xx,0,0,yy] if xx<0 else [0,yy,xx,0] l = list(map(int,input().split())) print(f(l)) ```
0
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,634,031,461
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
92
0
m,n = map(int , input().split()) if 1 <= m <= 16 and 1 <= n <= 16 and m < n: print((m * n) // 2)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python m,n = map(int , input().split()) if 1 <= m <= 16 and 1 <= n <= 16 and m < n: print((m * n) // 2) ```
0
490
E
Restoring Increasing Sequence
PROGRAMMING
2,000
[ "binary search", "brute force", "greedy", "implementation" ]
null
null
Peter wrote on the board a strictly increasing sequence of positive integers *a*1,<=*a*2,<=...,<=*a**n*. Then Vasil replaced some digits in the numbers of this sequence by question marks. Thus, each question mark corresponds to exactly one lost digit. Restore the the original sequence knowing digits remaining on the board.
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=105) — the length of the sequence. Next *n* lines contain one element of the sequence each. Each element consists only of digits and question marks. No element starts from digit 0. Each element has length from 1 to 8 characters, inclusive.
If the answer exists, print in the first line "YES" (without the quotes). Next *n* lines must contain the sequence of positive integers — a possible variant of Peter's sequence. The found sequence must be strictly increasing, it must be transformed from the given one by replacing each question mark by a single digit. All numbers on the resulting sequence must be written without leading zeroes. If there are multiple solutions, print any of them. If there is no answer, print a single line "NO" (without the quotes).
[ "3\n?\n18\n1?\n", "2\n??\n?\n", "5\n12224\n12??5\n12226\n?0000\n?00000\n" ]
[ "YES\n1\n18\n19\n", "NO\n", "YES\n12224\n12225\n12226\n20000\n100000\n" ]
none
2,000
[ { "input": "3\n?\n18\n1?", "output": "YES\n1\n18\n19" }, { "input": "2\n??\n?", "output": "NO" }, { "input": "5\n12224\n12??5\n12226\n?0000\n?00000", "output": "YES\n12224\n12225\n12226\n20000\n100000" }, { "input": "10\n473883\n3499005\n4?74792\n58146??\n8?90593\n9203?71\n?39055?\n1?692641\n11451902\n?22126?2", "output": "YES\n473883\n3499005\n4074792\n5814600\n8090593\n9203071\n9390550\n10692641\n11451902\n12212602" }, { "input": "8\n?\n2\n3\n4\n?\n?\n?\n9", "output": "YES\n1\n2\n3\n4\n5\n6\n7\n9" }, { "input": "98\n?\n?0\n2?\n6?\n6?\n69\n??\n??\n96\n1?2\n??3\n104\n??4\n1?9\n??2\n18?\n?01\n205\n?19\n244\n??8\n?5?\n?5?\n276\n??3\n???\n???\n?28\n?3?\n3??\n??8\n355\n4?0\n4??\n?10\n??1\n417\n4?9\n?3?\n4?4\n?61\n?8?\n???\n507\n?2?\n???\n??6\n5?7\n540\n5?9\n???\n?7?\n5??\n591\n?9?\n6?0\n620\n??4\n??1\n?35\n65?\n65?\n6?8\n6??\n68?\n7?4\n7??\n718\n?2?\n??9\n???\n7??\n?7?\n776\n7??\n788\n???\n?0?\n803\n83?\n846\n84?\n853\n85?\n87?\n?8?\n89?\n9?1\n91?\n929\n??0\n??6\n??3\n9??\n98?\n9?5\n9??\n995", "output": "YES\n1\n10\n20\n60\n61\n69\n70\n71\n96\n102\n103\n104\n114\n119\n122\n180\n201\n205\n219\n244\n248\n250\n251\n276\n283\n284\n285\n328\n330\n331\n338\n355\n400\n401\n410\n411\n417\n419\n430\n434\n461\n480\n481\n507\n520\n521\n526\n527\n540\n549\n550\n570\n571\n591\n592\n600\n620\n624\n631\n635\n650\n651\n658\n659\n680\n704\n705\n718\n720\n729\n730\n731\n770\n776\n777\n788\n789\n800\n803\n830\n846\n847\n853\n854\n870\n880\n890\n901\n910\n929\n930\n936\n943\n944\n980\n985\n986\n995" }, { "input": "10\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10", "output": "YES\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10" }, { "input": "3\n18\n19\n1?", "output": "NO" }, { "input": "3\n20\n19\n21", "output": "NO" }, { "input": "3\n19\n2?\n20", "output": "NO" }, { "input": "2\n99999999\n99999999", "output": "NO" }, { "input": "2\n140\n?40", "output": "YES\n140\n240" }, { "input": "11\n?\n?\n?\n?\n?\n?\n?\n?\n?\n?\n?", "output": "NO" }, { "input": "4\n100\n???\n999\n???", "output": "NO" }, { "input": "1\n????????", "output": "YES\n10000000" }, { "input": "2\n100\n???", "output": "YES\n100\n101" }, { "input": "2\n100\n?00", "output": "YES\n100\n200" }, { "input": "2\n?00\n100", "output": "NO" }, { "input": "3\n100\n?00\n200", "output": "NO" }, { "input": "2\n50\n5", "output": "NO" }, { "input": "3\n99999998\n????????\n99999999", "output": "NO" }, { "input": "3\n99999998\n99999999\n????????", "output": "NO" }, { "input": "3\n99999997\n99999998\n???????", "output": "NO" }, { "input": "4\n????????\n10000001\n99999998\n????????", "output": "YES\n10000000\n10000001\n99999998\n99999999" }, { "input": "2\n13300\n12?34", "output": "NO" } ]
1,689,224,739
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
0
77
2,867,200
def check(a, b, n): for i in range(n): if not (b[i] == '?' or a[i] == b[i]): return False return True def process(a, b): for i in range(len(a)-1, -1, -1): if ((b[i] == '?' and a[i] != '9') or (b[i] != '?' and a[i] < b[i])) and check(a, b, i): for j in range(0, i): if b[j] == '?': b[j] = a[j] if b[i] == '?': b[i] = chr(ord(a[i])+1) for j in range(i+1, len(a)): if b[j] == '?': b[j] = '0' return False return True def solve(n, arr): if arr[0][0] == '?': arr[0][0] = '1' for i in range(1, len(arr[0])): if arr[0][i] == '?': arr[0][i] = '0' for i in range(1, n): if len(arr[i-1]) > len(arr[i]): return [] b = list(arr[i]) if len(arr[i-1]) < len(arr[i]): if arr[i][0] == '?': arr[i][0] = '1' for j, c in enumerate(arr[i]): if c == '?': arr[i][j] = '0' elif process(list(arr[i-1]), b): return [] else: arr[i] = ''.join(b) return arr n = int(input()) a = [] for _ in range(n): a.append(input()) a = solve(a,n) if len(a) == 0: print('NO') else: print('YES') for b in a: print(b)
Title: Restoring Increasing Sequence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Peter wrote on the board a strictly increasing sequence of positive integers *a*1,<=*a*2,<=...,<=*a**n*. Then Vasil replaced some digits in the numbers of this sequence by question marks. Thus, each question mark corresponds to exactly one lost digit. Restore the the original sequence knowing digits remaining on the board. Input Specification: The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=105) — the length of the sequence. Next *n* lines contain one element of the sequence each. Each element consists only of digits and question marks. No element starts from digit 0. Each element has length from 1 to 8 characters, inclusive. Output Specification: If the answer exists, print in the first line "YES" (without the quotes). Next *n* lines must contain the sequence of positive integers — a possible variant of Peter's sequence. The found sequence must be strictly increasing, it must be transformed from the given one by replacing each question mark by a single digit. All numbers on the resulting sequence must be written without leading zeroes. If there are multiple solutions, print any of them. If there is no answer, print a single line "NO" (without the quotes). Demo Input: ['3\n?\n18\n1?\n', '2\n??\n?\n', '5\n12224\n12??5\n12226\n?0000\n?00000\n'] Demo Output: ['YES\n1\n18\n19\n', 'NO\n', 'YES\n12224\n12225\n12226\n20000\n100000\n'] Note: none
```python def check(a, b, n): for i in range(n): if not (b[i] == '?' or a[i] == b[i]): return False return True def process(a, b): for i in range(len(a)-1, -1, -1): if ((b[i] == '?' and a[i] != '9') or (b[i] != '?' and a[i] < b[i])) and check(a, b, i): for j in range(0, i): if b[j] == '?': b[j] = a[j] if b[i] == '?': b[i] = chr(ord(a[i])+1) for j in range(i+1, len(a)): if b[j] == '?': b[j] = '0' return False return True def solve(n, arr): if arr[0][0] == '?': arr[0][0] = '1' for i in range(1, len(arr[0])): if arr[0][i] == '?': arr[0][i] = '0' for i in range(1, n): if len(arr[i-1]) > len(arr[i]): return [] b = list(arr[i]) if len(arr[i-1]) < len(arr[i]): if arr[i][0] == '?': arr[i][0] = '1' for j, c in enumerate(arr[i]): if c == '?': arr[i][j] = '0' elif process(list(arr[i-1]), b): return [] else: arr[i] = ''.join(b) return arr n = int(input()) a = [] for _ in range(n): a.append(input()) a = solve(a,n) if len(a) == 0: print('NO') else: print('YES') for b in a: print(b) ```
-1
227
B
Effective Approach
PROGRAMMING
1,100
[ "implementation" ]
null
null
Once at a team training Vasya, Petya and Sasha got a problem on implementing linear search in an array. According to the boys, linear search works as follows. The array elements in a pre-selected order are in turn compared with the number that you need to find. Once you find the array element that is equal to the required one, the search ends. The efficiency of the algorithm is the number of performed comparisons. The fewer comparisons the linear search has made, the more effective it is. Vasya believes that a linear search would work better if it sequentially iterates through the elements, starting with the 1-st one (in this problem we consider the elements of the array indexed from 1 to *n*) and ending with the *n*-th one. And Petya says that Vasya is wrong: the search will need less comparisons if it sequentially iterates the elements starting from the *n*-th and ending with the 1-st one. Sasha argues that the two approaches are equivalent. To finally begin the task, the teammates decided to settle the debate and compare the two approaches on an example. For this, they took an array that is a permutation of integers from 1 to *n*, and generated *m* queries of the form: find element with value *b**i* in the array. They want to calculate for both approaches how many comparisons in total the linear search will need to respond to all queries. If the first search needs fewer comparisons, then the winner of the dispute is Vasya. If the second one does, then the winner is Petya. If both approaches make the same number of comparisons, then Sasha's got the upper hand. But the problem is, linear search is too slow. That's why the boys aren't going to find out who is right before the end of the training, unless you come in here. Help them to determine who will win the dispute.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of elements in the array. The second line contains *n* distinct space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the elements of array. The third line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. The last line contains *m* space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*) — the search queries. Note that the queries can repeat.
Print two integers, showing how many comparisons Vasya's approach needs and how many comparisons Petya's approach needs. Separate the numbers by spaces. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
[ "2\n1 2\n1\n1\n", "2\n2 1\n1\n1\n", "3\n3 1 2\n3\n1 2 3\n" ]
[ "1 2\n", "2 1\n", "6 6\n" ]
In the first sample Vasya's approach will make one comparison (it starts with the 1-st element and immediately finds the required number), and Petya's approach makes two comparisons (first he compares with the 2-nd array element, doesn't find the search item and compares with the 1-st element). In the second sample, on the contrary, Vasya's approach will need two comparisons (first with 1-st element, and then with the 2-nd), and Petya's approach will find the required value in one comparison (the first comparison with the 2-nd element).
1,000
[ { "input": "2\n1 2\n1\n1", "output": "1 2" }, { "input": "2\n2 1\n1\n1", "output": "2 1" }, { "input": "3\n3 1 2\n3\n1 2 3", "output": "6 6" }, { "input": "9\n2 9 3 1 6 4 7 8 5\n9\n5 1 5 2 8 4 4 4 5", "output": "58 32" }, { "input": "10\n3 10 9 2 7 6 5 8 4 1\n1\n4", "output": "9 2" }, { "input": "10\n5 2 10 8 3 1 9 7 6 4\n9\n2 5 9 2 3 2 5 9 8", "output": "31 68" }, { "input": "9\n3 8 4 7 1 2 5 6 9\n3\n2 7 1", "output": "15 15" }, { "input": "9\n5 3 8 4 2 6 1 7 9\n4\n6 1 9 2", "output": "27 13" }, { "input": "4\n1 3 2 4\n4\n3 1 2 3", "output": "8 12" }, { "input": "3\n1 2 3\n8\n3 2 1 1 2 3 1 2", "output": "15 17" } ]
1,620,907,260
2,147,483,647
Python 3
OK
TESTS
34
374
21,708,800
n = input() a = input().split(" ") m = input() b = input().split(" ") x = {} for i in range(0, len(a)): x[a[i]] = i; Vasyla = 0 Petya = 0 for query in b: index = x[query] Vasyla += (len(a) - index) Petya += (index + 1) print(str(Petya) + " " + str(Vasyla))
Title: Effective Approach Time Limit: None seconds Memory Limit: None megabytes Problem Description: Once at a team training Vasya, Petya and Sasha got a problem on implementing linear search in an array. According to the boys, linear search works as follows. The array elements in a pre-selected order are in turn compared with the number that you need to find. Once you find the array element that is equal to the required one, the search ends. The efficiency of the algorithm is the number of performed comparisons. The fewer comparisons the linear search has made, the more effective it is. Vasya believes that a linear search would work better if it sequentially iterates through the elements, starting with the 1-st one (in this problem we consider the elements of the array indexed from 1 to *n*) and ending with the *n*-th one. And Petya says that Vasya is wrong: the search will need less comparisons if it sequentially iterates the elements starting from the *n*-th and ending with the 1-st one. Sasha argues that the two approaches are equivalent. To finally begin the task, the teammates decided to settle the debate and compare the two approaches on an example. For this, they took an array that is a permutation of integers from 1 to *n*, and generated *m* queries of the form: find element with value *b**i* in the array. They want to calculate for both approaches how many comparisons in total the linear search will need to respond to all queries. If the first search needs fewer comparisons, then the winner of the dispute is Vasya. If the second one does, then the winner is Petya. If both approaches make the same number of comparisons, then Sasha's got the upper hand. But the problem is, linear search is too slow. That's why the boys aren't going to find out who is right before the end of the training, unless you come in here. Help them to determine who will win the dispute. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of elements in the array. The second line contains *n* distinct space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the elements of array. The third line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. The last line contains *m* space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*) — the search queries. Note that the queries can repeat. Output Specification: Print two integers, showing how many comparisons Vasya's approach needs and how many comparisons Petya's approach needs. Separate the numbers by spaces. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier. Demo Input: ['2\n1 2\n1\n1\n', '2\n2 1\n1\n1\n', '3\n3 1 2\n3\n1 2 3\n'] Demo Output: ['1 2\n', '2 1\n', '6 6\n'] Note: In the first sample Vasya's approach will make one comparison (it starts with the 1-st element and immediately finds the required number), and Petya's approach makes two comparisons (first he compares with the 2-nd array element, doesn't find the search item and compares with the 1-st element). In the second sample, on the contrary, Vasya's approach will need two comparisons (first with 1-st element, and then with the 2-nd), and Petya's approach will find the required value in one comparison (the first comparison with the 2-nd element).
```python n = input() a = input().split(" ") m = input() b = input().split(" ") x = {} for i in range(0, len(a)): x[a[i]] = i; Vasyla = 0 Petya = 0 for query in b: index = x[query] Vasyla += (len(a) - index) Petya += (index + 1) print(str(Petya) + " " + str(Vasyla)) ```
3
278
A
Circle Line
PROGRAMMING
800
[ "implementation" ]
null
null
The circle line of the Berland subway has *n* stations. We know the distances between all pairs of neighboring stations: - *d*1 is the distance between the 1-st and the 2-nd station;- *d*2 is the distance between the 2-nd and the 3-rd station;...- *d**n*<=-<=1 is the distance between the *n*<=-<=1-th and the *n*-th station;- *d**n* is the distance between the *n*-th and the 1-st station. The trains go along the circle line in both directions. Find the shortest distance between stations with numbers *s* and *t*.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — the number of stations on the circle line. The second line contains *n* integers *d*1,<=*d*2,<=...,<=*d**n* (1<=≤<=*d**i*<=≤<=100) — the distances between pairs of neighboring stations. The third line contains two integers *s* and *t* (1<=≤<=*s*,<=*t*<=≤<=*n*) — the numbers of stations, between which you need to find the shortest distance. These numbers can be the same. The numbers in the lines are separated by single spaces.
Print a single number — the length of the shortest path between stations number *s* and *t*.
[ "4\n2 3 4 9\n1 3\n", "4\n5 8 2 100\n4 1\n", "3\n1 1 1\n3 1\n", "3\n31 41 59\n1 1\n" ]
[ "5\n", "15\n", "1\n", "0\n" ]
In the first sample the length of path 1 → 2 → 3 equals 5, the length of path 1 → 4 → 3 equals 13. In the second sample the length of path 4 → 1 is 100, the length of path 4 → 3 → 2 → 1 is 15. In the third sample the length of path 3 → 1 is 1, the length of path 3 → 2 → 1 is 2. In the fourth sample the numbers of stations are the same, so the shortest distance equals 0.
500
[ { "input": "4\n2 3 4 9\n1 3", "output": "5" }, { "input": "4\n5 8 2 100\n4 1", "output": "15" }, { "input": "3\n1 1 1\n3 1", "output": "1" }, { "input": "3\n31 41 59\n1 1", "output": "0" }, { "input": "5\n16 13 10 30 15\n4 2", "output": "23" }, { "input": "6\n89 82 87 32 67 33\n4 4", "output": "0" }, { "input": "7\n2 3 17 10 2 2 2\n4 2", "output": "18" }, { "input": "3\n4 37 33\n3 3", "output": "0" }, { "input": "8\n87 40 96 7 86 86 72 97\n6 8", "output": "158" }, { "input": "10\n91 94 75 99 100 91 79 86 79 92\n2 8", "output": "348" }, { "input": "19\n1 1 1 1 2 1 1 1 1 1 2 1 3 2 2 1 1 1 2\n7 7", "output": "0" }, { "input": "34\n96 65 24 99 74 76 97 93 99 69 94 82 92 91 98 83 95 97 96 81 90 95 86 87 43 78 88 86 82 62 76 99 83 96\n21 16", "output": "452" }, { "input": "50\n75 98 65 75 99 89 84 65 9 53 62 61 61 53 80 7 6 47 86 1 89 27 67 1 31 39 53 92 19 20 76 41 60 15 29 94 76 82 87 89 93 38 42 6 87 36 100 97 93 71\n2 6", "output": "337" }, { "input": "99\n1 15 72 78 23 22 26 98 7 2 75 58 100 98 45 79 92 69 79 72 33 88 62 9 15 87 17 73 68 54 34 89 51 91 28 44 20 11 74 7 85 61 30 46 95 72 36 18 48 22 42 46 29 46 86 53 96 55 98 34 60 37 75 54 1 81 20 68 84 19 18 18 75 84 86 57 73 34 23 43 81 87 47 96 57 41 69 1 52 44 54 7 85 35 5 1 19 26 7\n4 64", "output": "1740" }, { "input": "100\n33 63 21 27 49 82 86 93 43 55 4 72 89 85 5 34 80 7 23 13 21 49 22 73 89 65 81 25 6 92 82 66 58 88 48 96 1 1 16 48 67 96 84 63 87 76 20 100 36 4 31 41 35 62 55 76 74 70 68 41 4 16 39 81 2 41 34 73 66 57 41 89 78 93 68 96 87 47 92 60 40 58 81 12 19 74 56 83 56 61 83 97 26 92 62 52 39 57 89 95\n71 5", "output": "2127" }, { "input": "100\n95 98 99 81 98 96 100 92 96 90 99 91 98 98 91 78 97 100 96 98 87 93 96 99 91 92 96 92 90 97 85 83 99 95 66 91 87 89 100 95 100 88 99 84 96 79 99 100 94 100 99 99 92 89 99 91 100 94 98 97 91 92 90 87 84 99 97 98 93 100 90 85 75 95 86 71 98 93 91 87 92 95 98 94 95 94 100 98 96 100 97 96 95 95 86 86 94 97 98 96\n67 57", "output": "932" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 97 100 100 100 100 100 99 100 100 99 99 100 99 100 100 100 100 100 100 100 100 100 97 99 98 98 100 98 98 100 99 100 100 100 100 99 100 98 100 99 98 99 98 98 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 98 100 99 99 100 96 100 96 100 99 100 100 99 100 99 100 100 100 99 100 100 100 100 98 98 97 100 100 99 98\n16 6", "output": "997" }, { "input": "100\n3 6 23 4 23 1 2 14 2 3 3 9 17 8 10 5 1 14 8 5 7 4 13 8 5 6 24 3 12 3 4 9 2 8 2 1 2 1 3 2 1 6 14 23 8 6 3 5 7 8 18 9 2 5 22 6 13 16 2 4 31 20 4 3 3 6 6 1 1 18 5 11 1 14 4 16 6 37 11 1 8 3 7 11 21 14 3 3 12 2 5 1 9 16 3 1 3 4 4 2\n98 24", "output": "195" }, { "input": "100\n1 1 3 1 1 2 1 2 1 1 2 2 2 1 1 1 1 1 1 3 1 1 1 3 1 3 3 1 1 2 1 1 1 1 1 2 1 1 1 4 1 1 3 3 2 1 1 1 1 1 2 2 1 3 1 1 1 2 4 1 1 2 5 2 1 1 2 1 1 1 2 3 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 2 3 1 7 3 1 3 1 2 1 2 1\n49 10", "output": "60" }, { "input": "100\n75 62 31 96 62 76 93 96 72 67 88 35 67 34 60 56 95 86 82 48 64 61 74 100 56 98 76 98 78 55 53 10 12 78 58 45 86 90 93 77 69 73 88 66 92 88 33 50 95 69 89 12 93 57 93 89 59 53 71 86 15 13 61 93 24 100 58 76 46 95 76 82 50 20 79 38 5 72 99 81 55 90 90 65 85 44 63 39 6 34 98 72 88 30 59 73 84 61 25 67\n86 25", "output": "2523" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100\n1 51", "output": "5000" }, { "input": "4\n1 1 1 1\n2 4", "output": "2" }, { "input": "4\n1 1 2 1\n2 4", "output": "2" } ]
1,563,475,180
2,147,483,647
Python 3
OK
TESTS
23
248
0
n = int(input()) d = list(map(int,input().split())) s,t = map(int,input().split()) k = d[min(s,t)-1:max(s,t)-1] print(min(sum(k),sum(d)-sum(k)))
Title: Circle Line Time Limit: None seconds Memory Limit: None megabytes Problem Description: The circle line of the Berland subway has *n* stations. We know the distances between all pairs of neighboring stations: - *d*1 is the distance between the 1-st and the 2-nd station;- *d*2 is the distance between the 2-nd and the 3-rd station;...- *d**n*<=-<=1 is the distance between the *n*<=-<=1-th and the *n*-th station;- *d**n* is the distance between the *n*-th and the 1-st station. The trains go along the circle line in both directions. Find the shortest distance between stations with numbers *s* and *t*. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — the number of stations on the circle line. The second line contains *n* integers *d*1,<=*d*2,<=...,<=*d**n* (1<=≤<=*d**i*<=≤<=100) — the distances between pairs of neighboring stations. The third line contains two integers *s* and *t* (1<=≤<=*s*,<=*t*<=≤<=*n*) — the numbers of stations, between which you need to find the shortest distance. These numbers can be the same. The numbers in the lines are separated by single spaces. Output Specification: Print a single number — the length of the shortest path between stations number *s* and *t*. Demo Input: ['4\n2 3 4 9\n1 3\n', '4\n5 8 2 100\n4 1\n', '3\n1 1 1\n3 1\n', '3\n31 41 59\n1 1\n'] Demo Output: ['5\n', '15\n', '1\n', '0\n'] Note: In the first sample the length of path 1 → 2 → 3 equals 5, the length of path 1 → 4 → 3 equals 13. In the second sample the length of path 4 → 1 is 100, the length of path 4 → 3 → 2 → 1 is 15. In the third sample the length of path 3 → 1 is 1, the length of path 3 → 2 → 1 is 2. In the fourth sample the numbers of stations are the same, so the shortest distance equals 0.
```python n = int(input()) d = list(map(int,input().split())) s,t = map(int,input().split()) k = d[min(s,t)-1:max(s,t)-1] print(min(sum(k),sum(d)-sum(k))) ```
3
903
C
Boxes Packing
PROGRAMMING
1,200
[ "greedy" ]
null
null
Mishka has got *n* empty boxes. For every *i* (1<=≤<=*i*<=≤<=*n*), *i*-th box is a cube with side length *a**i*. Mishka can put a box *i* into another box *j* if the following conditions are met: - *i*-th box is not put into another box; - *j*-th box doesn't contain any other boxes; - box *i* is smaller than box *j* (*a**i*<=&lt;<=*a**j*). Mishka can put boxes into each other an arbitrary number of times. He wants to minimize the number of visible boxes. A box is called visible iff it is not put into some another box. Help Mishka to determine the minimum possible number of visible boxes!
The first line contains one integer *n* (1<=≤<=*n*<=≤<=5000) — the number of boxes Mishka has got. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the side length of *i*-th box.
Print the minimum possible number of visible boxes.
[ "3\n1 2 3\n", "4\n4 2 4 3\n" ]
[ "1\n", "2\n" ]
In the first example it is possible to put box 1 into box 2, and 2 into 3. In the second example Mishka can put box 2 into box 3, and box 4 into box 1.
0
[ { "input": "3\n1 2 3", "output": "1" }, { "input": "4\n4 2 4 3", "output": "2" }, { "input": "10\n58 58 58 58 58 58 58 58 58 58", "output": "10" }, { "input": "10\n86 89 89 86 86 89 86 86 89 89", "output": "5" }, { "input": "100\n981 288 186 186 292 876 341 288 981 360 783 907 292 186 341 292 360 876 360 360 981 398 783 288 292 398 876 981 398 907 783 360 288 981 907 186 360 288 186 981 186 288 907 876 288 907 876 360 341 292 907 783 907 783 292 981 907 292 876 398 783 876 398 341 876 186 288 186 981 341 398 360 907 981 341 186 292 981 292 398 876 783 292 186 360 292 288 292 876 398 288 292 341 288 398 360 360 292 981 360", "output": "14" }, { "input": "1\n1", "output": "1" }, { "input": "1\n9", "output": "1" }, { "input": "1\n5", "output": "1" }, { "input": "1\n2", "output": "1" }, { "input": "1\n131", "output": "1" }, { "input": "9\n1 1 1 1 1 1 1 1 1", "output": "9" }, { "input": "11\n1 1 1 1 1 1 1 1 1 1 1", "output": "11" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "1" }, { "input": "8\n1 1 1 1 1 1 1 1", "output": "8" }, { "input": "5\n1 1 1 1 1", "output": "5" } ]
1,666,766,078
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
46
409,600
import sys import sys import threading from math import * from bisect import * from collections import * from heapq import * from functools import lru_cache def gl():return list(map(int, input().split())) def gi():return int(input()) def gc():return input() dd = defaultdict dq = deque hp = heappush hpp = heappop hpf = heapify # dic = {chr(i): i-ord('a') + 1 for i in range(ord('a'), ord('z') + 1)} def solution(): n = gi() arr = gl() ans = n arr.sort() i = 0 while i<n-1: if arr[i]<arr[i+1]: ans-=1 i+=1 print(ans) def main(): solution() main() # if __name__ == "__main__": # threading.stack_size(1 << 27) # sys.setrecursionlimit(1 << 30) # main_thread = threading.Thread(target=main) # main_thread.start() # main_thread.join()
Title: Boxes Packing Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mishka has got *n* empty boxes. For every *i* (1<=≤<=*i*<=≤<=*n*), *i*-th box is a cube with side length *a**i*. Mishka can put a box *i* into another box *j* if the following conditions are met: - *i*-th box is not put into another box; - *j*-th box doesn't contain any other boxes; - box *i* is smaller than box *j* (*a**i*<=&lt;<=*a**j*). Mishka can put boxes into each other an arbitrary number of times. He wants to minimize the number of visible boxes. A box is called visible iff it is not put into some another box. Help Mishka to determine the minimum possible number of visible boxes! Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=5000) — the number of boxes Mishka has got. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the side length of *i*-th box. Output Specification: Print the minimum possible number of visible boxes. Demo Input: ['3\n1 2 3\n', '4\n4 2 4 3\n'] Demo Output: ['1\n', '2\n'] Note: In the first example it is possible to put box 1 into box 2, and 2 into 3. In the second example Mishka can put box 2 into box 3, and box 4 into box 1.
```python import sys import sys import threading from math import * from bisect import * from collections import * from heapq import * from functools import lru_cache def gl():return list(map(int, input().split())) def gi():return int(input()) def gc():return input() dd = defaultdict dq = deque hp = heappush hpp = heappop hpf = heapify # dic = {chr(i): i-ord('a') + 1 for i in range(ord('a'), ord('z') + 1)} def solution(): n = gi() arr = gl() ans = n arr.sort() i = 0 while i<n-1: if arr[i]<arr[i+1]: ans-=1 i+=1 print(ans) def main(): solution() main() # if __name__ == "__main__": # threading.stack_size(1 << 27) # sys.setrecursionlimit(1 << 30) # main_thread = threading.Thread(target=main) # main_thread.start() # main_thread.join() ```
0
810
A
Straight <<A>>
PROGRAMMING
900
[ "implementation", "math" ]
null
null
Noora is a student of one famous high school. It's her final year in school — she is going to study in university next year. However, she has to get an «A» graduation certificate in order to apply to a prestigious one. In school, where Noora is studying, teachers are putting down marks to the online class register, which are integers from 1 to *k*. The worst mark is 1, the best is *k*. Mark that is going to the certificate, is calculated as an average of all the marks, rounded to the closest integer. If several answers are possible, rounding up is produced. For example, 7.3 is rounded to 7, but 7.5 and 7.8784 — to 8. For instance, if Noora has marks [8,<=9], then the mark to the certificate is 9, because the average is equal to 8.5 and rounded to 9, but if the marks are [8,<=8,<=9], Noora will have graduation certificate with 8. To graduate with «A» certificate, Noora has to have mark *k*. Noora got *n* marks in register this year. However, she is afraid that her marks are not enough to get final mark *k*. Noora decided to ask for help in the internet, where hacker Leha immediately responded to her request. He is ready to hack class register for Noora and to add Noora any number of additional marks from 1 to *k*. At the same time, Leha want his hack be unseen to everyone, so he decided to add as less as possible additional marks. Please help Leha to calculate the minimal number of marks he has to add, so that final Noora's mark will become equal to *k*.
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*k*<=≤<=100) denoting the number of marks, received by Noora and the value of highest possible mark. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*k*) denoting marks received by Noora before Leha's hack.
Print a single integer — minimal number of additional marks, that Leha has to add in order to change Noora's final mark to *k*.
[ "2 10\n8 9\n", "3 5\n4 4 4\n" ]
[ "4", "3" ]
Consider the first example testcase. Maximal mark is 10, Noora received two marks — 8 and 9, so current final mark is 9. To fix it, Leha can add marks [10, 10, 10, 10] (4 marks in total) to the registry, achieving Noora having average mark equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1b961585522f76271546da990a6228e7c666277f.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Consequently, new final mark is 10. Less number of marks won't fix the situation. In the second example Leha can add [5, 5, 5] to the registry, so that making average mark equal to 4.5, which is enough to have 5 in the certificate.
500
[ { "input": "2 10\n8 9", "output": "4" }, { "input": "3 5\n4 4 4", "output": "3" }, { "input": "3 10\n10 8 9", "output": "3" }, { "input": "2 23\n21 23", "output": "2" }, { "input": "5 10\n5 10 10 9 10", "output": "7" }, { "input": "12 50\n18 10 26 22 22 23 14 21 27 18 25 12", "output": "712" }, { "input": "38 12\n2 7 10 8 5 3 5 6 3 6 5 1 9 7 7 8 3 4 4 4 5 2 3 6 6 1 6 7 4 4 8 7 4 5 3 6 6 6", "output": "482" }, { "input": "63 86\n32 31 36 29 36 26 28 38 39 32 29 26 33 38 36 38 36 28 43 48 28 33 25 39 39 27 34 25 37 28 40 26 30 31 42 32 36 44 29 36 30 35 48 40 26 34 30 33 33 46 42 24 36 38 33 51 33 41 38 29 29 32 28", "output": "6469" }, { "input": "100 38\n30 24 38 31 31 33 32 32 29 34 29 22 27 23 34 25 32 30 30 26 16 27 38 33 38 38 37 34 32 27 33 23 33 32 24 24 30 36 29 30 33 30 29 30 36 33 33 35 28 24 30 32 38 29 30 36 31 30 27 38 31 36 15 37 32 27 29 24 38 33 28 29 34 21 37 35 32 31 27 25 27 28 31 31 36 38 35 35 36 29 35 22 38 31 38 28 31 27 34 31", "output": "1340" }, { "input": "33 69\n60 69 68 69 69 60 64 60 62 59 54 47 60 62 69 69 69 58 67 69 62 69 68 53 69 69 66 66 57 58 65 69 61", "output": "329" }, { "input": "39 92\n19 17 16 19 15 30 21 25 14 17 19 19 23 16 14 15 17 19 29 15 11 25 19 14 18 20 10 16 11 15 18 20 20 17 18 16 12 17 16", "output": "5753" }, { "input": "68 29\n29 29 29 29 29 28 29 29 29 27 29 29 29 29 29 29 29 23 29 29 26 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 26 29 29 29 29 29 29 29 29 29 29 29 29 22 29 29 29 29 29 29 29 29 29 29 29 29 29 28 29 29 29 29", "output": "0" }, { "input": "75 30\n22 18 21 26 23 18 28 30 24 24 19 25 28 30 23 29 18 23 23 30 26 30 17 30 18 19 25 26 26 15 27 23 30 21 19 26 25 30 25 28 20 22 22 21 26 17 23 23 24 15 25 19 18 22 30 30 29 21 30 28 28 30 27 25 24 15 22 19 30 21 20 30 18 20 25", "output": "851" }, { "input": "78 43\n2 7 6 5 5 6 4 5 3 4 6 8 4 5 5 4 3 1 2 4 4 6 5 6 4 4 6 4 8 4 6 5 6 1 4 5 6 3 2 5 2 5 3 4 8 8 3 3 4 4 6 6 5 4 5 5 7 9 3 9 6 4 7 3 6 9 6 5 1 7 2 5 6 3 6 2 5 4", "output": "5884" }, { "input": "82 88\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1", "output": "14170" }, { "input": "84 77\n28 26 36 38 37 44 48 34 40 22 42 35 40 37 30 31 33 35 36 55 47 36 33 47 40 38 27 38 36 33 35 31 47 33 30 38 38 47 49 24 38 37 28 43 39 36 34 33 29 38 36 43 48 38 36 34 33 34 35 31 26 33 39 37 37 37 35 52 47 30 24 46 38 26 43 46 41 50 33 40 36 41 37 30", "output": "6650" }, { "input": "94 80\n21 19 15 16 27 16 20 18 19 19 15 15 20 19 19 21 20 19 13 17 15 9 17 15 23 15 12 18 12 13 15 12 14 13 14 17 20 20 14 21 15 6 10 23 24 8 18 18 13 23 17 22 17 19 19 18 17 24 8 16 18 20 24 19 10 19 15 10 13 14 19 15 16 19 20 15 14 21 16 16 14 14 22 19 12 11 14 13 19 32 16 16 13 20", "output": "11786" }, { "input": "96 41\n13 32 27 34 28 34 30 26 21 24 29 20 25 34 25 16 27 15 22 22 34 22 25 19 23 17 17 22 26 24 23 20 21 27 19 33 13 24 22 18 30 30 27 14 26 24 20 20 22 11 19 31 19 29 18 28 30 22 17 15 28 32 17 24 17 24 24 19 26 23 22 29 18 22 23 29 19 32 26 23 22 22 24 23 27 30 24 25 21 21 33 19 35 27 34 28", "output": "3182" }, { "input": "1 26\n26", "output": "0" }, { "input": "99 39\n25 28 30 28 32 34 31 28 29 28 29 30 33 19 33 31 27 33 29 24 27 30 25 38 28 34 35 31 34 37 30 22 21 24 34 27 34 33 34 33 26 26 36 19 30 22 35 30 21 28 23 35 33 29 21 22 36 31 34 32 34 32 30 32 27 33 38 25 35 26 39 27 29 29 19 33 28 29 34 38 26 30 36 26 29 30 26 34 22 32 29 38 25 27 24 17 25 28 26", "output": "1807" }, { "input": "100 12\n7 6 6 3 5 5 9 8 7 7 4 7 12 6 9 5 6 3 4 7 9 10 7 7 5 3 9 6 9 9 6 7 4 10 4 8 8 6 9 8 6 5 7 4 10 7 5 6 8 9 3 4 8 5 4 8 6 10 5 8 7 5 9 8 5 8 5 6 9 11 4 9 5 5 11 4 6 6 7 3 8 9 6 7 10 4 7 6 9 4 8 11 5 4 10 8 5 10 11 4", "output": "946" }, { "input": "100 18\n1 2 2 2 2 2 1 1 1 2 3 1 3 1 1 4 2 4 1 2 1 2 1 3 2 1 2 1 1 1 2 1 2 2 1 1 4 3 1 1 2 1 3 3 2 1 2 2 1 1 1 1 3 1 1 2 2 1 1 1 5 1 2 1 3 2 2 1 4 2 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 2 1 2 2 2 1 1 3 1 1 2 1 1 2", "output": "3164" }, { "input": "100 27\n16 20 21 10 16 17 18 25 19 18 20 12 11 21 21 23 20 26 20 21 27 16 25 18 25 21 27 12 20 27 18 17 27 13 21 26 12 22 15 21 25 21 18 27 24 15 16 18 23 21 24 27 19 17 24 14 21 16 24 26 13 14 25 18 27 26 22 16 27 27 17 25 17 12 22 10 19 27 19 20 23 22 25 23 17 25 14 20 22 10 22 27 21 20 15 26 24 27 12 16", "output": "1262" }, { "input": "100 29\n20 18 23 24 14 14 16 23 22 17 18 22 21 21 19 19 14 11 18 19 16 22 25 20 14 13 21 24 18 16 18 29 17 25 12 10 18 28 11 16 17 14 15 20 17 20 18 22 10 16 16 20 18 19 29 18 25 27 17 19 24 15 24 25 16 23 19 16 16 20 19 15 12 21 20 13 21 15 15 23 16 23 17 13 17 21 13 18 17 18 18 20 16 12 19 15 27 14 11 18", "output": "2024" }, { "input": "100 30\n16 10 20 11 14 27 15 17 22 26 24 17 15 18 19 22 22 15 21 22 14 21 22 22 21 22 15 17 17 22 18 19 26 18 22 20 22 25 18 18 17 23 18 18 20 13 19 30 17 24 22 19 29 20 20 21 17 18 26 25 22 19 15 18 18 20 19 19 18 18 24 16 19 17 12 21 20 16 23 21 16 17 26 23 25 28 22 20 9 21 17 24 15 19 17 21 29 13 18 15", "output": "1984" }, { "input": "100 59\n56 58 53 59 59 48 59 54 46 59 59 58 48 59 55 59 59 50 59 56 59 59 59 59 59 59 59 57 59 53 45 53 50 59 50 55 58 54 59 56 54 59 59 59 59 48 56 59 59 57 59 59 48 43 55 57 39 59 46 55 55 52 58 57 51 59 59 59 59 53 59 43 51 54 46 59 57 43 50 59 47 58 59 59 59 55 46 56 55 59 56 47 56 56 46 51 47 48 59 55", "output": "740" }, { "input": "100 81\n6 7 6 6 7 6 6 6 3 9 4 5 4 3 4 6 6 6 1 3 9 5 2 3 8 5 6 9 6 6 6 5 4 4 7 7 3 6 11 7 6 4 8 7 12 6 4 10 2 4 9 11 7 4 7 7 8 8 6 7 9 8 4 5 8 13 6 6 6 8 6 2 5 6 7 5 4 4 4 4 2 6 4 8 3 4 7 7 6 7 7 10 5 10 6 7 4 11 8 4", "output": "14888" }, { "input": "100 100\n30 35 23 43 28 49 31 32 30 44 32 37 33 34 38 28 43 32 33 32 50 32 41 38 33 20 40 36 29 21 42 25 23 34 43 32 37 31 30 27 36 32 45 37 33 29 38 34 35 33 28 19 37 33 28 41 31 29 41 27 32 39 30 34 37 40 33 38 35 32 32 34 35 34 28 39 28 34 40 45 31 25 42 28 29 31 33 21 36 33 34 37 40 42 39 30 36 34 34 40", "output": "13118" }, { "input": "100 100\n71 87 100 85 89 98 90 90 71 65 76 75 85 100 81 100 91 80 73 89 86 78 82 89 77 92 78 90 100 81 85 89 73 100 66 60 72 88 91 73 93 76 88 81 86 78 83 77 74 93 97 94 85 78 82 78 91 91 100 78 89 76 78 82 81 78 83 88 87 83 78 98 85 97 98 89 88 75 76 86 74 81 70 76 86 84 99 100 89 94 72 84 82 88 83 89 78 99 87 76", "output": "3030" }, { "input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "19700" }, { "input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "0" }, { "input": "100 100\n1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "19696" }, { "input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99", "output": "0" }, { "input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 98 100 100 100 100 98 100 100 100 100 100 100 99 98 100 100 93 100 100 98 100 100 100 100 93 100 96 100 100 100 94 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 95 88 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "0" }, { "input": "100 100\n95 100 100 100 100 100 100 100 100 100 100 100 100 100 87 100 100 100 94 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 90 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 96 100 98 100 100 100 100 100 96 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 100", "output": "2" }, { "input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "100 2\n2 1 1 2 1 1 1 1 2 2 2 2 1 1 1 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 2 2 2 2 1 2 2 1 1 1 1 1 1 2 2 1 2 1 1 1 2 1 2 2 2 2 1 1 1 2 2 1 2 1 1 1 2 1 2 2 1 1 1 2 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2 1 1", "output": "16" }, { "input": "3 5\n5 5 5", "output": "0" }, { "input": "7 7\n1 1 1 1 1 1 1", "output": "77" }, { "input": "1 1\n1", "output": "0" }, { "input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "19700" }, { "input": "4 10\n10 10 10 10", "output": "0" }, { "input": "1 10\n10", "output": "0" }, { "input": "10 1\n1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "3 10\n10 10 10", "output": "0" }, { "input": "2 4\n3 4", "output": "0" }, { "input": "1 2\n2", "output": "0" }, { "input": "3 4\n4 4 4", "output": "0" }, { "input": "3 2\n2 2 1", "output": "0" }, { "input": "5 5\n5 5 5 5 5", "output": "0" }, { "input": "3 3\n3 3 3", "output": "0" }, { "input": "2 9\n8 9", "output": "0" }, { "input": "3 10\n9 10 10", "output": "0" }, { "input": "1 3\n3", "output": "0" }, { "input": "2 2\n1 2", "output": "0" }, { "input": "2 10\n10 10", "output": "0" }, { "input": "23 14\n7 11 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14", "output": "0" }, { "input": "2 10\n9 10", "output": "0" }, { "input": "2 2\n2 2", "output": "0" }, { "input": "10 5\n5 5 5 5 5 5 5 5 5 4", "output": "0" }, { "input": "3 5\n4 5 5", "output": "0" }, { "input": "5 4\n4 4 4 4 4", "output": "0" }, { "input": "2 10\n10 9", "output": "0" }, { "input": "4 5\n3 5 5 5", "output": "0" }, { "input": "10 5\n5 5 5 5 5 5 5 5 5 5", "output": "0" }, { "input": "3 10\n10 10 9", "output": "0" }, { "input": "5 1\n1 1 1 1 1", "output": "0" }, { "input": "2 1\n1 1", "output": "0" }, { "input": "4 10\n9 10 10 10", "output": "0" }, { "input": "5 2\n2 2 2 2 2", "output": "0" }, { "input": "2 5\n4 5", "output": "0" }, { "input": "5 10\n10 10 10 10 10", "output": "0" }, { "input": "2 6\n6 6", "output": "0" }, { "input": "2 9\n9 9", "output": "0" }, { "input": "3 10\n10 9 10", "output": "0" }, { "input": "4 40\n39 40 40 40", "output": "0" }, { "input": "3 4\n3 4 4", "output": "0" }, { "input": "9 9\n9 9 9 9 9 9 9 9 9", "output": "0" }, { "input": "1 4\n4", "output": "0" }, { "input": "4 7\n1 1 1 1", "output": "44" }, { "input": "1 5\n5", "output": "0" }, { "input": "3 1\n1 1 1", "output": "0" }, { "input": "1 100\n100", "output": "0" }, { "input": "2 7\n3 5", "output": "10" }, { "input": "3 6\n6 6 6", "output": "0" }, { "input": "4 2\n1 2 2 2", "output": "0" }, { "input": "4 5\n4 5 5 5", "output": "0" }, { "input": "5 5\n1 1 1 1 1", "output": "35" }, { "input": "66 2\n1 2 2 2 2 1 1 2 1 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 2 2 1 2 2 1 1 2 1 2 2 1 1 1 2 1 2 1 2 1 2 1 2 2 2 2 1 2 2 1 2 1 1 1 2 2 1", "output": "0" }, { "input": "2 2\n2 1", "output": "0" }, { "input": "5 5\n5 5 5 4 5", "output": "0" }, { "input": "3 7\n1 1 1", "output": "33" }, { "input": "2 5\n5 5", "output": "0" }, { "input": "1 7\n1", "output": "11" }, { "input": "6 7\n1 1 1 1 1 1", "output": "66" }, { "input": "99 97\n15 80 78 69 12 84 36 51 89 77 88 10 1 19 67 85 6 36 8 70 14 45 88 97 22 13 75 57 83 27 13 97 9 90 68 51 76 37 5 2 16 92 11 48 13 77 35 19 15 74 22 29 21 12 28 42 56 5 32 41 62 75 71 71 68 72 24 77 11 28 78 27 53 88 74 66 1 42 18 16 18 39 75 38 81 5 13 39 40 75 13 36 53 83 9 54 57 63 64", "output": "10077" }, { "input": "8 7\n1 1 1 1 1 1 1 1", "output": "88" }, { "input": "3 2\n2 2 2", "output": "0" }, { "input": "6 5\n5 5 5 5 5 5", "output": "0" }, { "input": "10 5\n5 5 5 5 5 5 5 4 1 1", "output": "8" }, { "input": "1 5\n1", "output": "7" }, { "input": "10 10\n10 10 10 10 10 10 10 10 10 10", "output": "0" }, { "input": "2 3\n2 3", "output": "0" }, { "input": "1 9\n9", "output": "0" }, { "input": "74 2\n2 2 2 2 1 2 2 1 1 1 2 2 1 2 2 2 2 1 2 1 1 1 2 1 1 2 2 1 2 1 1 2 1 1 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 1 1 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 2 1 2", "output": "0" }, { "input": "5 5\n5 5 5 5 4", "output": "0" } ]
1,559,495,761
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
11
108
0
a,b = map(int,input().split()) t = list(map(int,input().split())) k = sum(t) print(int(2*(a*b-a/2-k)))
Title: Straight <<A>> Time Limit: None seconds Memory Limit: None megabytes Problem Description: Noora is a student of one famous high school. It's her final year in school — she is going to study in university next year. However, she has to get an «A» graduation certificate in order to apply to a prestigious one. In school, where Noora is studying, teachers are putting down marks to the online class register, which are integers from 1 to *k*. The worst mark is 1, the best is *k*. Mark that is going to the certificate, is calculated as an average of all the marks, rounded to the closest integer. If several answers are possible, rounding up is produced. For example, 7.3 is rounded to 7, but 7.5 and 7.8784 — to 8. For instance, if Noora has marks [8,<=9], then the mark to the certificate is 9, because the average is equal to 8.5 and rounded to 9, but if the marks are [8,<=8,<=9], Noora will have graduation certificate with 8. To graduate with «A» certificate, Noora has to have mark *k*. Noora got *n* marks in register this year. However, she is afraid that her marks are not enough to get final mark *k*. Noora decided to ask for help in the internet, where hacker Leha immediately responded to her request. He is ready to hack class register for Noora and to add Noora any number of additional marks from 1 to *k*. At the same time, Leha want his hack be unseen to everyone, so he decided to add as less as possible additional marks. Please help Leha to calculate the minimal number of marks he has to add, so that final Noora's mark will become equal to *k*. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*k*<=≤<=100) denoting the number of marks, received by Noora and the value of highest possible mark. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*k*) denoting marks received by Noora before Leha's hack. Output Specification: Print a single integer — minimal number of additional marks, that Leha has to add in order to change Noora's final mark to *k*. Demo Input: ['2 10\n8 9\n', '3 5\n4 4 4\n'] Demo Output: ['4', '3'] Note: Consider the first example testcase. Maximal mark is 10, Noora received two marks — 8 and 9, so current final mark is 9. To fix it, Leha can add marks [10, 10, 10, 10] (4 marks in total) to the registry, achieving Noora having average mark equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1b961585522f76271546da990a6228e7c666277f.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Consequently, new final mark is 10. Less number of marks won't fix the situation. In the second example Leha can add [5, 5, 5] to the registry, so that making average mark equal to 4.5, which is enough to have 5 in the certificate.
```python a,b = map(int,input().split()) t = list(map(int,input().split())) k = sum(t) print(int(2*(a*b-a/2-k))) ```
0
660
C
Hard Process
PROGRAMMING
1,600
[ "binary search", "dp", "two pointers" ]
null
null
You are given an array *a* with *n* elements. Each element of *a* is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in *a*, consisting of only numbers one, as *f*(*a*). You can change no more than *k* zeroes to ones to maximize *f*(*a*).
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=3·105,<=0<=≤<=*k*<=≤<=*n*) — the number of elements in *a* and the parameter *k*. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1) — the elements of *a*.
On the first line print a non-negative integer *z* — the maximal value of *f*(*a*) after no more than *k* changes of zeroes to ones. On the second line print *n* integers *a**j* — the elements of the array *a* after the changes. If there are multiple answers, you can print any one of them.
[ "7 1\n1 0 0 1 1 0 1\n", "10 2\n1 0 0 1 0 1 0 1 0 1\n" ]
[ "4\n1 0 0 1 1 1 1\n", "5\n1 0 0 1 1 1 1 1 0 1\n" ]
none
0
[ { "input": "7 1\n1 0 0 1 1 0 1", "output": "4\n1 0 0 1 1 1 1" }, { "input": "10 2\n1 0 0 1 0 1 0 1 0 1", "output": "5\n1 0 0 1 1 1 1 1 0 1" }, { "input": "1 0\n0", "output": "0\n0" }, { "input": "1 0\n0", "output": "0\n0" }, { "input": "7 0\n0 1 0 0 0 1 0", "output": "1\n0 1 0 0 0 1 0" }, { "input": "7 2\n1 0 1 1 0 0 0", "output": "5\n1 1 1 1 1 0 0" }, { "input": "7 3\n1 0 0 0 0 1 0", "output": "4\n1 1 1 1 0 1 0" }, { "input": "3 0\n1 1 1", "output": "3\n1 1 1" }, { "input": "1 0\n1", "output": "1\n1" }, { "input": "2 0\n0 1", "output": "1\n0 1" }, { "input": "1 1\n0", "output": "1\n1" }, { "input": "3 1\n0 0 1", "output": "2\n0 1 1" }, { "input": "2 0\n0 0", "output": "0\n0 0" }, { "input": "3 1\n0 0 0", "output": "1\n1 0 0" }, { "input": "7 7\n1 0 1 0 0 0 0", "output": "7\n1 1 1 1 1 1 1" }, { "input": "1 1\n1", "output": "1\n1" }, { "input": "3 0\n0 0 0", "output": "0\n0 0 0" }, { "input": "7 3\n1 1 1 1 1 1 1", "output": "7\n1 1 1 1 1 1 1" }, { "input": "10 3\n0 0 1 0 0 1 0 0 1 1", "output": "6\n0 0 1 0 1 1 1 1 1 1" }, { "input": "2 1\n0 0", "output": "1\n1 0" }, { "input": "2 2\n1 0", "output": "2\n1 1" } ]
1,692,194,703
2,147,483,647
Python 3
OK
TESTS
38
436
9,830,400
def maximize_segment(n, k, arr): left = 0 right = 0 max_length = 0 best_left = 0 num_zeroes = 0 while right < n: if arr[right] == 0: num_zeroes += 1 while num_zeroes > k: if arr[left] == 0: num_zeroes -= 1 left += 1 if right - left + 1 > max_length: max_length = right - left + 1 best_left = left right += 1 # Update the array with the changes for i in range(best_left, best_left + max_length): arr[i] = 1 return max_length, arr # Read input n, k = map(int, input().split()) arr = list(map(int, input().split())) # Calculate and print the result max_length, updated_arr = maximize_segment(n, k, arr) print(max_length) print(*updated_arr)
Title: Hard Process Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an array *a* with *n* elements. Each element of *a* is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in *a*, consisting of only numbers one, as *f*(*a*). You can change no more than *k* zeroes to ones to maximize *f*(*a*). Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=3·105,<=0<=≤<=*k*<=≤<=*n*) — the number of elements in *a* and the parameter *k*. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1) — the elements of *a*. Output Specification: On the first line print a non-negative integer *z* — the maximal value of *f*(*a*) after no more than *k* changes of zeroes to ones. On the second line print *n* integers *a**j* — the elements of the array *a* after the changes. If there are multiple answers, you can print any one of them. Demo Input: ['7 1\n1 0 0 1 1 0 1\n', '10 2\n1 0 0 1 0 1 0 1 0 1\n'] Demo Output: ['4\n1 0 0 1 1 1 1\n', '5\n1 0 0 1 1 1 1 1 0 1\n'] Note: none
```python def maximize_segment(n, k, arr): left = 0 right = 0 max_length = 0 best_left = 0 num_zeroes = 0 while right < n: if arr[right] == 0: num_zeroes += 1 while num_zeroes > k: if arr[left] == 0: num_zeroes -= 1 left += 1 if right - left + 1 > max_length: max_length = right - left + 1 best_left = left right += 1 # Update the array with the changes for i in range(best_left, best_left + max_length): arr[i] = 1 return max_length, arr # Read input n, k = map(int, input().split()) arr = list(map(int, input().split())) # Calculate and print the result max_length, updated_arr = maximize_segment(n, k, arr) print(max_length) print(*updated_arr) ```
3
265
A
Colorful Stones (Simplified Edition)
PROGRAMMING
800
[ "implementation" ]
null
null
There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively. Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times. Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move. You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction. Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence.
The input contains two lines. The first line contains the string *s* (1<=≤<=|*s*|<=≤<=50). The second line contains the string *t* (1<=≤<=|*t*|<=≤<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence.
Print the final 1-based position of Liss in a single line.
[ "RGB\nRRR\n", "RRRBGBRBBB\nBBBRR\n", "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n" ]
[ "2\n", "3\n", "15\n" ]
none
500
[ { "input": "RGB\nRRR", "output": "2" }, { "input": "RRRBGBRBBB\nBBBRR", "output": "3" }, { "input": "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB", "output": "15" }, { "input": "G\nRRBBRBRRBR", "output": "1" }, { "input": "RRRRRBRRBRRGRBGGRRRGRBBRBBBBBRGRBGBRRGBBBRBBGBRGBB\nB", "output": "1" }, { "input": "RRGGBRGRBG\nBRRGGBBGGR", "output": "7" }, { "input": "BBRRGBGGRGBRGBRBRBGR\nGGGRBGGGBRRRRGRBGBGRGRRBGRBGBG", "output": "15" }, { "input": "GBRRBGBGBBBBRRRGBGRRRGBGBBBRGR\nRRGBRRGRBBBBBBGRRBBR", "output": "8" }, { "input": "BRGRRGRGRRGBBGBBBRRBBRRBGBBGRGBBGGRGBRBGGGRRRBGGBB\nRGBBGRRBBBRRGRRBRBBRGBBGGGRGBGRRRRBRBGGBRBGGGRGBRR", "output": "16" }, { "input": "GGRGGBRRGRGBRRGGRBBGGRRGBBBGBBBGGRBGGBRBBRGBRRRBRG\nGGRGRRRRRRRRRGBBBBRGBRGRGRRGBBRGGBRBBRBGBRGRRRRGGR", "output": "18" }, { "input": "RBBRBGBBGGGBRRBGBRGRRGGRBBBBGRBGGBRRBGBBRBRGBBGGGG\nBRRGRBGRBGBRGBRBGGBBBGBBRGRBGRGRBGRBGGRRBGBRGRRBBG", "output": "23" }, { "input": "RRGGRRBRGRGBRGBRGBBRGGGBRBGBRGBRGGBRBRGBGRRBBGGRBR\nBRGRBBBGRBGRRGGRRRRRRRRGGGGGGGGBGGGGGGGRGRBBRGRGBR", "output": "14" }, { "input": "RBRBRRRRRGGR\nBBBBRRGGBGRBRGBBRGGGRGGBRRBRBRBGGG", "output": "12" }, { "input": "GGRGGGBRGRGRBBRGGGRBGRRR\nGBBBBGBGBGBBBRGGRGGBGRRGRRRGBGB", "output": "12" }, { "input": "RGRBGBRBBGBRRGGGBBGBRRBGRGBBBBBGRRRGGRBB\nBGR", "output": "2" }, { "input": "R\nB", "output": "1" }, { "input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR", "output": "50" }, { "input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "1" }, { "input": "R\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "1" } ]
1,664,897,313
2,147,483,647
Python 3
OK
TESTS
19
92
0
import sys def inp() : return sys.stdin.readline().strip() def get_ints(): return map(int, inp().split()) def get_arr(): return list(map(int, inp().split())) def get_int(): return int(inp()) s=inp() t=inp() j=0 for c in t: if(c==s[j]): j+=1 print(j+1)
Title: Colorful Stones (Simplified Edition) Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively. Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times. Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move. You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction. Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence. Input Specification: The input contains two lines. The first line contains the string *s* (1<=≤<=|*s*|<=≤<=50). The second line contains the string *t* (1<=≤<=|*t*|<=≤<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence. Output Specification: Print the final 1-based position of Liss in a single line. Demo Input: ['RGB\nRRR\n', 'RRRBGBRBBB\nBBBRR\n', 'BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n'] Demo Output: ['2\n', '3\n', '15\n'] Note: none
```python import sys def inp() : return sys.stdin.readline().strip() def get_ints(): return map(int, inp().split()) def get_arr(): return list(map(int, inp().split())) def get_int(): return int(inp()) s=inp() t=inp() j=0 for c in t: if(c==s[j]): j+=1 print(j+1) ```
3
906
A
Shockers
PROGRAMMING
1,600
[ "implementation", "strings" ]
null
null
Valentin participates in a show called "Shockers". The rules are quite easy: jury selects one letter which Valentin doesn't know. He should make a small speech, but every time he pronounces a word that contains the selected letter, he receives an electric shock. He can make guesses which letter is selected, but for each incorrect guess he receives an electric shock too. The show ends when Valentin guesses the selected letter correctly. Valentin can't keep in mind everything, so he could guess the selected letter much later than it can be uniquely determined and get excessive electric shocks. Excessive electric shocks are those which Valentin got after the moment the selected letter can be uniquely determined. You should find out the number of excessive electric shocks.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of actions Valentin did. The next *n* lines contain descriptions of his actions, each line contains description of one action. Each action can be of one of three types: 1. Valentin pronounced some word and didn't get an electric shock. This action is described by the string ". w" (without quotes), in which "." is a dot (ASCII-code 46), and *w* is the word that Valentin said. 1. Valentin pronounced some word and got an electric shock. This action is described by the string "! w" (without quotes), in which "!" is an exclamation mark (ASCII-code 33), and *w* is the word that Valentin said. 1. Valentin made a guess about the selected letter. This action is described by the string "? s" (without quotes), in which "?" is a question mark (ASCII-code 63), and *s* is the guess — a lowercase English letter. All words consist only of lowercase English letters. The total length of all words does not exceed 105. It is guaranteed that last action is a guess about the selected letter. Also, it is guaranteed that Valentin didn't make correct guesses about the selected letter before the last action. Moreover, it's guaranteed that if Valentin got an electric shock after pronouncing some word, then it contains the selected letter; and also if Valentin didn't get an electric shock after pronouncing some word, then it does not contain the selected letter.
Output a single integer — the number of electric shocks that Valentin could have avoided if he had told the selected letter just after it became uniquely determined.
[ "5\n! abc\n. ad\n. b\n! cd\n? c\n", "8\n! hello\n! codeforces\n? c\n. o\n? d\n? h\n. l\n? e\n", "7\n! ababahalamaha\n? a\n? b\n? a\n? b\n? a\n? h\n" ]
[ "1\n", "2\n", "0\n" ]
In the first test case after the first action it becomes clear that the selected letter is one of the following: *a*, *b*, *c*. After the second action we can note that the selected letter is not *a*. Valentin tells word "b" and doesn't get a shock. After that it is clear that the selected letter is *c*, but Valentin pronounces the word *cd* and gets an excessive electric shock. In the second test case after the first two electric shocks we understand that the selected letter is *e* or *o*. Valentin tries some words consisting of these letters and after the second word it's clear that the selected letter is *e*, but Valentin makes 3 more actions before he makes a correct hypothesis. In the third example the selected letter can be uniquely determined only when Valentin guesses it, so he didn't get excessive electric shocks.
500
[ { "input": "5\n! abc\n. ad\n. b\n! cd\n? c", "output": "1" }, { "input": "8\n! hello\n! codeforces\n? c\n. o\n? d\n? h\n. l\n? e", "output": "2" }, { "input": "7\n! ababahalamaha\n? a\n? b\n? a\n? b\n? a\n? h", "output": "0" }, { "input": "4\n! abcd\n! cdef\n? d\n? c", "output": "0" }, { "input": "1\n? q", "output": "0" }, { "input": "15\n. r\n? e\n. s\n. rw\n? y\n. fj\n. zftyd\n? r\n! wq\n? w\n? p\n. ours\n. dto\n. lbyfru\n? q", "output": "2" }, { "input": "3\n. abcdefghijklmnopqrstuvwxy\n? a\n? z", "output": "1" }, { "input": "3\n. abcdefghijklmnopqrstuvwxy\n! z\n? z", "output": "1" } ]
1,516,738,784
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
5,632,000
n=int(input()) d={} a=[] c=0 k=0 for i in range(n): s=input().split() if s[0]=='!' and c==0: for j in s[1]: if j not in d: a.append(j) d[j]=1 c=1 elif s[0]=='!' and c==1: for j in a: if j not in s[1]: del d[j] elif s[0]=='.': for j in s[1]: if j in d: del d[j] elif s[0]=='?' and i!=n-1: if s[1] in d: del d[s[1]] if len(d)==1: break if i<n-1: for j in range(i,n-1): s=input().split() if (s[0]=='!' or s[0]=='?') and j!=n-1: k+=1 print(k)
Title: Shockers Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valentin participates in a show called "Shockers". The rules are quite easy: jury selects one letter which Valentin doesn't know. He should make a small speech, but every time he pronounces a word that contains the selected letter, he receives an electric shock. He can make guesses which letter is selected, but for each incorrect guess he receives an electric shock too. The show ends when Valentin guesses the selected letter correctly. Valentin can't keep in mind everything, so he could guess the selected letter much later than it can be uniquely determined and get excessive electric shocks. Excessive electric shocks are those which Valentin got after the moment the selected letter can be uniquely determined. You should find out the number of excessive electric shocks. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of actions Valentin did. The next *n* lines contain descriptions of his actions, each line contains description of one action. Each action can be of one of three types: 1. Valentin pronounced some word and didn't get an electric shock. This action is described by the string ". w" (without quotes), in which "." is a dot (ASCII-code 46), and *w* is the word that Valentin said. 1. Valentin pronounced some word and got an electric shock. This action is described by the string "! w" (without quotes), in which "!" is an exclamation mark (ASCII-code 33), and *w* is the word that Valentin said. 1. Valentin made a guess about the selected letter. This action is described by the string "? s" (without quotes), in which "?" is a question mark (ASCII-code 63), and *s* is the guess — a lowercase English letter. All words consist only of lowercase English letters. The total length of all words does not exceed 105. It is guaranteed that last action is a guess about the selected letter. Also, it is guaranteed that Valentin didn't make correct guesses about the selected letter before the last action. Moreover, it's guaranteed that if Valentin got an electric shock after pronouncing some word, then it contains the selected letter; and also if Valentin didn't get an electric shock after pronouncing some word, then it does not contain the selected letter. Output Specification: Output a single integer — the number of electric shocks that Valentin could have avoided if he had told the selected letter just after it became uniquely determined. Demo Input: ['5\n! abc\n. ad\n. b\n! cd\n? c\n', '8\n! hello\n! codeforces\n? c\n. o\n? d\n? h\n. l\n? e\n', '7\n! ababahalamaha\n? a\n? b\n? a\n? b\n? a\n? h\n'] Demo Output: ['1\n', '2\n', '0\n'] Note: In the first test case after the first action it becomes clear that the selected letter is one of the following: *a*, *b*, *c*. After the second action we can note that the selected letter is not *a*. Valentin tells word "b" and doesn't get a shock. After that it is clear that the selected letter is *c*, but Valentin pronounces the word *cd* and gets an excessive electric shock. In the second test case after the first two electric shocks we understand that the selected letter is *e* or *o*. Valentin tries some words consisting of these letters and after the second word it's clear that the selected letter is *e*, but Valentin makes 3 more actions before he makes a correct hypothesis. In the third example the selected letter can be uniquely determined only when Valentin guesses it, so he didn't get excessive electric shocks.
```python n=int(input()) d={} a=[] c=0 k=0 for i in range(n): s=input().split() if s[0]=='!' and c==0: for j in s[1]: if j not in d: a.append(j) d[j]=1 c=1 elif s[0]=='!' and c==1: for j in a: if j not in s[1]: del d[j] elif s[0]=='.': for j in s[1]: if j in d: del d[j] elif s[0]=='?' and i!=n-1: if s[1] in d: del d[s[1]] if len(d)==1: break if i<n-1: for j in range(i,n-1): s=input().split() if (s[0]=='!' or s[0]=='?') and j!=n-1: k+=1 print(k) ```
0
965
A
Paper Airplanes
PROGRAMMING
800
[ "math" ]
null
null
To make a paper airplane, one has to use a rectangular piece of paper. From a sheet of standard size you can make $s$ airplanes. A group of $k$ people decided to make $n$ airplanes each. They are going to buy several packs of paper, each of them containing $p$ sheets, and then distribute the sheets between the people. Each person should have enough sheets to make $n$ airplanes. How many packs should they buy?
The only line contains four integers $k$, $n$, $s$, $p$ ($1 \le k, n, s, p \le 10^4$) — the number of people, the number of airplanes each should make, the number of airplanes that can be made using one sheet and the number of sheets in one pack, respectively.
Print a single integer — the minimum number of packs they should buy.
[ "5 3 2 3\n", "5 3 100 1\n" ]
[ "4\n", "5\n" ]
In the first sample they have to buy $4$ packs of paper: there will be $12$ sheets in total, and giving $2$ sheets to each person is enough to suit everyone's needs. In the second sample they have to buy a pack for each person as they can't share sheets.
500
[ { "input": "5 3 2 3", "output": "4" }, { "input": "5 3 100 1", "output": "5" }, { "input": "10000 10000 1 1", "output": "100000000" }, { "input": "1 1 10000 10000", "output": "1" }, { "input": "300 300 21 23", "output": "196" }, { "input": "300 2 37 51", "output": "6" }, { "input": "2 400 23 57", "output": "1" }, { "input": "1 1 1 1", "output": "1" }, { "input": "10000 10000 3 2", "output": "16670000" }, { "input": "1 2 1 2", "output": "1" }, { "input": "1 1 2 2", "output": "1" }, { "input": "1 1 10 10", "output": "1" }, { "input": "5324 5439 32 13", "output": "69622" }, { "input": "9000 1 2432 1", "output": "9000" }, { "input": "230 1234 9124 23", "output": "10" }, { "input": "11 1 1 1", "output": "11" }, { "input": "6246 8489 1227 9", "output": "4858" }, { "input": "9 20 5 7", "output": "6" } ]
1,524,715,276
2,147,483,647
Python 3
OK
TESTS
18
93
7,065,600
from math import ceil k,n,s,p = map(int,input().split()) sheetsperperson = ceil(n / s) print(ceil((k*sheetsperperson)/p))
Title: Paper Airplanes Time Limit: None seconds Memory Limit: None megabytes Problem Description: To make a paper airplane, one has to use a rectangular piece of paper. From a sheet of standard size you can make $s$ airplanes. A group of $k$ people decided to make $n$ airplanes each. They are going to buy several packs of paper, each of them containing $p$ sheets, and then distribute the sheets between the people. Each person should have enough sheets to make $n$ airplanes. How many packs should they buy? Input Specification: The only line contains four integers $k$, $n$, $s$, $p$ ($1 \le k, n, s, p \le 10^4$) — the number of people, the number of airplanes each should make, the number of airplanes that can be made using one sheet and the number of sheets in one pack, respectively. Output Specification: Print a single integer — the minimum number of packs they should buy. Demo Input: ['5 3 2 3\n', '5 3 100 1\n'] Demo Output: ['4\n', '5\n'] Note: In the first sample they have to buy $4$ packs of paper: there will be $12$ sheets in total, and giving $2$ sheets to each person is enough to suit everyone's needs. In the second sample they have to buy a pack for each person as they can't share sheets.
```python from math import ceil k,n,s,p = map(int,input().split()) sheetsperperson = ceil(n / s) print(ceil((k*sheetsperperson)/p)) ```
3
999
C
Alphabetic Removals
PROGRAMMING
1,200
[ "implementation" ]
null
null
You are given a string $s$ consisting of $n$ lowercase Latin letters. Polycarp wants to remove exactly $k$ characters ($k \le n$) from the string $s$. Polycarp uses the following algorithm $k$ times: - if there is at least one letter 'a', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - if there is at least one letter 'b', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - ... - remove the leftmost occurrence of the letter 'z' and stop the algorithm. This algorithm removes a single letter from the string. Polycarp performs this algorithm exactly $k$ times, thus removing exactly $k$ characters. Help Polycarp find the resulting string.
The first line of input contains two integers $n$ and $k$ ($1 \le k \le n \le 4 \cdot 10^5$) — the length of the string and the number of letters Polycarp will remove. The second line contains the string $s$ consisting of $n$ lowercase Latin letters.
Print the string that will be obtained from $s$ after Polycarp removes exactly $k$ letters using the above algorithm $k$ times. If the resulting string is empty, print nothing. It is allowed to print nothing or an empty line (line break).
[ "15 3\ncccaabababaccbc\n", "15 9\ncccaabababaccbc\n", "1 1\nu\n" ]
[ "cccbbabaccbc\n", "cccccc\n", "" ]
none
0
[ { "input": "15 3\ncccaabababaccbc", "output": "cccbbabaccbc" }, { "input": "15 9\ncccaabababaccbc", "output": "cccccc" }, { "input": "5 2\nzyzyx", "output": "zzy" }, { "input": "4 3\nhack", "output": "k" }, { "input": "4 3\nzzzz", "output": "z" }, { "input": "6 5\naaccdd", "output": "d" }, { "input": "2 1\nzz", "output": "z" }, { "input": "14 5\nhxehmvkybeklnj", "output": "xmvkyklnj" } ]
1,681,473,497
2,147,483,647
PyPy 3-64
OK
TESTS
44
140
8,704,000
a,b = map(int,input().split()) string = input() for x in range(b): string = string.replace(min(string),"",b-a+len(string)) if a-len(string)==b: break print(string)
Title: Alphabetic Removals Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a string $s$ consisting of $n$ lowercase Latin letters. Polycarp wants to remove exactly $k$ characters ($k \le n$) from the string $s$. Polycarp uses the following algorithm $k$ times: - if there is at least one letter 'a', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - if there is at least one letter 'b', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - ... - remove the leftmost occurrence of the letter 'z' and stop the algorithm. This algorithm removes a single letter from the string. Polycarp performs this algorithm exactly $k$ times, thus removing exactly $k$ characters. Help Polycarp find the resulting string. Input Specification: The first line of input contains two integers $n$ and $k$ ($1 \le k \le n \le 4 \cdot 10^5$) — the length of the string and the number of letters Polycarp will remove. The second line contains the string $s$ consisting of $n$ lowercase Latin letters. Output Specification: Print the string that will be obtained from $s$ after Polycarp removes exactly $k$ letters using the above algorithm $k$ times. If the resulting string is empty, print nothing. It is allowed to print nothing or an empty line (line break). Demo Input: ['15 3\ncccaabababaccbc\n', '15 9\ncccaabababaccbc\n', '1 1\nu\n'] Demo Output: ['cccbbabaccbc\n', 'cccccc\n', ''] Note: none
```python a,b = map(int,input().split()) string = input() for x in range(b): string = string.replace(min(string),"",b-a+len(string)) if a-len(string)==b: break print(string) ```
3
629
A
Far Relative’s Birthday Cake
PROGRAMMING
800
[ "brute force", "combinatorics", "constructive algorithms", "implementation" ]
null
null
Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird! The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be? Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column.
In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake. Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'.
Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column.
[ "3\n.CC\nC..\nC.C\n", "4\nCC..\nC..C\n.CC.\n.CC.\n" ]
[ "4\n", "9\n" ]
If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are: 1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3)
500
[ { "input": "3\n.CC\nC..\nC.C", "output": "4" }, { "input": "4\nCC..\nC..C\n.CC.\n.CC.", "output": "9" }, { "input": "5\n.CCCC\nCCCCC\n.CCC.\nCC...\n.CC.C", "output": "46" }, { "input": "7\n.CC..CC\nCC.C..C\nC.C..C.\nC...C.C\nCCC.CCC\n.CC...C\n.C.CCC.", "output": "84" }, { "input": "8\n..C....C\nC.CCC.CC\n.C..C.CC\nCC......\nC..C..CC\nC.C...C.\nC.C..C..\nC...C.C.", "output": "80" }, { "input": "9\n.C...CCCC\nC.CCCC...\n....C..CC\n.CC.CCC..\n.C.C..CC.\nC...C.CCC\nCCC.C...C\nCCCC....C\n..C..C..C", "output": "144" }, { "input": "10\n..C..C.C..\n..CC..C.CC\n.C.C...C.C\n..C.CC..CC\n....C..C.C\n...C..C..C\nCC.CC....C\n..CCCC.C.C\n..CC.CCC..\nCCCC..C.CC", "output": "190" }, { "input": "11\nC.CC...C.CC\nCC.C....C.C\n.....C..CCC\n....C.CC.CC\nC..C..CC...\nC...C...C..\nCC..CCC.C.C\n..C.CC.C..C\nC...C.C..CC\n.C.C..CC..C\n.C.C.CC.C..", "output": "228" }, { "input": "21\n...CCC.....CC..C..C.C\n..CCC...CC...CC.CCC.C\n....C.C.C..CCC..C.C.C\n....CCC..C..C.CC.CCC.\n...CCC.C..C.C.....CCC\n.CCC.....CCC..C...C.C\nCCCC.C...CCC.C...C.CC\nC..C...C.CCC..CC..C..\nC...CC..C.C.CC..C.CC.\nCC..CCCCCCCCC..C....C\n.C..CCCC.CCCC.CCC...C\nCCC...CCC...CCC.C..C.\n.CCCCCCCC.CCCC.CC.C..\n.C.C..C....C.CCCCCC.C\n...C...C.CCC.C.CC..C.\nCCC...CC..CC...C..C.C\n.CCCCC...C.C..C.CC.C.\n..CCC.C.C..CCC.CCC...\n..C..C.C.C.....CC.C..\n.CC.C...C.CCC.C....CC\n...C..CCCC.CCC....C..", "output": "2103" }, { "input": "20\nC.C.CCC.C....C.CCCCC\nC.CC.C..CCC....CCCC.\n.CCC.CC...CC.CCCCCC.\n.C...CCCC..C....CCC.\n.C..CCCCCCC.C.C.....\nC....C.C..CCC.C..CCC\n...C.C.CC..CC..CC...\nC...CC.C.CCCCC....CC\n.CC.C.CCC....C.CCC.C\nCC...CC...CC..CC...C\nC.C..CC.C.CCCC.C.CC.\n..CCCCC.C.CCC..CCCC.\n....C..C..C.CC...C.C\nC..CCC..CC..C.CC..CC\n...CC......C.C..C.C.\nCC.CCCCC.CC.CC...C.C\n.C.CC..CC..CCC.C.CCC\nC..C.CC....C....C...\n..CCC..CCC...CC..C.C\n.C.CCC.CCCCCCCCC..CC", "output": "2071" }, { "input": "17\nCCC..C.C....C.C.C\n.C.CC.CC...CC..C.\n.CCCC.CC.C..CCC.C\n...CCC.CC.CCC.C.C\nCCCCCCCC..C.CC.CC\n...C..C....C.CC.C\nCC....CCC...C.CC.\n.CC.C.CC..C......\n.CCCCC.C.CC.CCCCC\n..CCCC...C..CC..C\nC.CC.C.CC..C.C.C.\nC..C..C..CCC.C...\n.C..CCCC..C......\n.CC.C...C..CC.CC.\nC..C....CC...CC..\nC.CC.CC..C.C..C..\nCCCC...C.C..CCCC.", "output": "1160" }, { "input": "15\nCCCC.C..CCC....\nCCCCCC.CC.....C\n...C.CC.C.C.CC.\nCCCCCCC..C..C..\nC..CCC..C.CCCC.\n.CC..C.C.C.CC.C\n.C.C..C..C.C..C\n...C...C..CCCC.\n.....C.C..CC...\nCC.C.C..CC.C..C\n..CCCCC..CCC...\nCC.CC.C..CC.CCC\n..CCC...CC.C..C\nCC..C.C..CCC..C\n.C.C....CCC...C", "output": "789" }, { "input": "1\n.", "output": "0" }, { "input": "3\n.CC\nC..\nC.C", "output": "4" }, { "input": "13\nC.C...C.C.C..\nCC.CCCC.CC..C\n.C.CCCCC.CC..\nCCCC..C...C..\n...CC.C.C...C\n.CC.CCC...CC.\nCC.CCCCCC....\n.C...C..CC..C\nCCCC.CC...C..\n.C.CCC..C.CC.\n..C...CC..C.C\n..C.CCC..CC.C\n.C...CCC.CC.C", "output": "529" }, { "input": "16\n.C.C.C.C.C...C.C\n..C..C.CCCCCC...\n..C.C.C.C..C..C.\n.CC....C.CCC..C.\n.C.CCC..C....CCC\nCC..C.CC..C.C.CC\n...C..C..CC..CC.\n.CCC..C.CC.C.C..\n.CC.C..........C\nC...C....CC..C..\nC.CCC.C..C..C...\n.CCCCCCCCCCCC..C\n..C.C.CC.CC.CCC.\nCC..C.C....C..CC\nC.CCC..C..C.C.CC\n.C.CCC.CC..CCC.C", "output": "874" }, { "input": "2\nCC\nCC", "output": "4" }, { "input": "3\nC..\nC..\nC..", "output": "3" } ]
1,455,986,587
487
Python 3
OK
TESTS
48
77
0
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import time n = int(input()) a = [ 0 for i in range(n) ] ans = 0 for i in range(n): str = input() m = 0 for j in range(n): if str[j] == 'C': m += 1 a[j] += 1 ans += m*(m-1) start = time.time() for i in range(n): ans += a[i]*(a[i]-1) print(ans//2) finish = time.time() #print(finish - start)
Title: Far Relative’s Birthday Cake Time Limit: None seconds Memory Limit: None megabytes Problem Description: Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird! The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be? Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column. Input Specification: In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake. Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'. Output Specification: Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column. Demo Input: ['3\n.CC\nC..\nC.C\n', '4\nCC..\nC..C\n.CC.\n.CC.\n'] Demo Output: ['4\n', '9\n'] Note: If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are: 1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3)
```python #!/usr/bin/env python3 # -*- coding: utf-8 -*- import time n = int(input()) a = [ 0 for i in range(n) ] ans = 0 for i in range(n): str = input() m = 0 for j in range(n): if str[j] == 'C': m += 1 a[j] += 1 ans += m*(m-1) start = time.time() for i in range(n): ans += a[i]*(a[i]-1) print(ans//2) finish = time.time() #print(finish - start) ```
3
237
A
Free Cash
PROGRAMMING
1,000
[ "implementation" ]
null
null
Valera runs a 24/7 fast food cafe. He magically learned that next day *n* people will visit his cafe. For each person we know the arrival time: the *i*-th person comes exactly at *h**i* hours *m**i* minutes. The cafe spends less than a minute to serve each client, but if a client comes in and sees that there is no free cash, than he doesn't want to wait and leaves the cafe immediately. Valera is very greedy, so he wants to serve all *n* customers next day (and get more profit). However, for that he needs to ensure that at each moment of time the number of working cashes is no less than the number of clients in the cafe. Help Valera count the minimum number of cashes to work at his cafe next day, so that they can serve all visitors.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), that is the number of cafe visitors. Each of the following *n* lines has two space-separated integers *h**i* and *m**i* (0<=≤<=*h**i*<=≤<=23; 0<=≤<=*m**i*<=≤<=59), representing the time when the *i*-th person comes into the cafe. Note that the time is given in the chronological order. All time is given within one 24-hour period.
Print a single integer — the minimum number of cashes, needed to serve all clients next day.
[ "4\n8 0\n8 10\n8 10\n8 45\n", "3\n0 12\n10 11\n22 22\n" ]
[ "2\n", "1\n" ]
In the first sample it is not enough one cash to serve all clients, because two visitors will come into cafe in 8:10. Therefore, if there will be one cash in cafe, then one customer will be served by it, and another one will not wait and will go away. In the second sample all visitors will come in different times, so it will be enough one cash.
500
[ { "input": "4\n8 0\n8 10\n8 10\n8 45", "output": "2" }, { "input": "3\n0 12\n10 11\n22 22", "output": "1" }, { "input": "5\n12 8\n15 27\n15 27\n16 2\n19 52", "output": "2" }, { "input": "7\n5 6\n7 34\n7 34\n7 34\n12 29\n15 19\n20 23", "output": "3" }, { "input": "8\n0 36\n4 7\n4 7\n4 7\n11 46\n12 4\n15 39\n18 6", "output": "3" }, { "input": "20\n4 12\n4 21\n4 27\n4 56\n5 55\n7 56\n11 28\n11 36\n14 58\n15 59\n16 8\n17 12\n17 23\n17 23\n17 23\n17 23\n17 23\n17 23\n20 50\n22 32", "output": "6" }, { "input": "10\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30", "output": "10" }, { "input": "50\n0 23\n1 21\n2 8\n2 45\n3 1\n4 19\n4 37\n7 7\n7 40\n8 43\n9 51\n10 13\n11 2\n11 19\n11 30\n12 37\n12 37\n12 37\n12 37\n12 37\n12 37\n12 37\n12 37\n12 54\n13 32\n13 42\n14 29\n14 34\n14 48\n15 0\n15 27\n16 22\n16 31\n17 25\n17 26\n17 33\n18 14\n18 16\n18 20\n19 0\n19 5\n19 56\n20 22\n21 26\n22 0\n22 10\n22 11\n22 36\n23 17\n23 20", "output": "8" }, { "input": "10\n0 39\n1 35\n1 49\n1 51\n5 24\n7 40\n7 56\n16 42\n23 33\n23 49", "output": "1" }, { "input": "15\n0 16\n6 15\n8 2\n8 6\n8 7\n10 1\n10 1\n10 3\n10 12\n13 5\n14 16\n14 16\n14 16\n14 16\n14 16", "output": "5" }, { "input": "2\n0 24\n1 0", "output": "1" }, { "input": "1\n0 0", "output": "1" }, { "input": "1\n1 5", "output": "1" }, { "input": "1\n1 1", "output": "1" }, { "input": "3\n0 0\n0 0\n0 0", "output": "3" }, { "input": "1\n5 0", "output": "1" }, { "input": "5\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "5" }, { "input": "1\n10 10", "output": "1" }, { "input": "1\n8 0", "output": "1" }, { "input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "10" }, { "input": "2\n0 0\n0 1", "output": "1" }, { "input": "2\n8 5\n8 5", "output": "2" } ]
1,596,165,552
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
8
2,000
7,270,400
n=int(input()) l=[] while(n): h,m=map(int,input().split()) l.append([h,m]) n-=1 c=[1] for i in range(len(l)): if l.count(l[i])>1: c.append(l.count(l[i])) m=0 for i in range(len(c)): if c[i]>m: m=c[i] print(m)
Title: Free Cash Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera runs a 24/7 fast food cafe. He magically learned that next day *n* people will visit his cafe. For each person we know the arrival time: the *i*-th person comes exactly at *h**i* hours *m**i* minutes. The cafe spends less than a minute to serve each client, but if a client comes in and sees that there is no free cash, than he doesn't want to wait and leaves the cafe immediately. Valera is very greedy, so he wants to serve all *n* customers next day (and get more profit). However, for that he needs to ensure that at each moment of time the number of working cashes is no less than the number of clients in the cafe. Help Valera count the minimum number of cashes to work at his cafe next day, so that they can serve all visitors. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), that is the number of cafe visitors. Each of the following *n* lines has two space-separated integers *h**i* and *m**i* (0<=≤<=*h**i*<=≤<=23; 0<=≤<=*m**i*<=≤<=59), representing the time when the *i*-th person comes into the cafe. Note that the time is given in the chronological order. All time is given within one 24-hour period. Output Specification: Print a single integer — the minimum number of cashes, needed to serve all clients next day. Demo Input: ['4\n8 0\n8 10\n8 10\n8 45\n', '3\n0 12\n10 11\n22 22\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample it is not enough one cash to serve all clients, because two visitors will come into cafe in 8:10. Therefore, if there will be one cash in cafe, then one customer will be served by it, and another one will not wait and will go away. In the second sample all visitors will come in different times, so it will be enough one cash.
```python n=int(input()) l=[] while(n): h,m=map(int,input().split()) l.append([h,m]) n-=1 c=[1] for i in range(len(l)): if l.count(l[i])>1: c.append(l.count(l[i])) m=0 for i in range(len(c)): if c[i]>m: m=c[i] print(m) ```
0
1,006
B
Polycarp's Practice
PROGRAMMING
1,200
[ "greedy", "implementation", "sortings" ]
null
null
Polycarp is practicing his problem solving skill. He has a list of $n$ problems with difficulties $a_1, a_2, \dots, a_n$, respectively. His plan is to practice for exactly $k$ days. Each day he has to solve at least one problem from his list. Polycarp solves the problems in the order they are given in his list, he cannot skip any problem from his list. He has to solve all $n$ problems in exactly $k$ days. Thus, each day Polycarp solves a contiguous sequence of (consecutive) problems from the start of the list. He can't skip problems or solve them multiple times. As a result, in $k$ days he will solve all the $n$ problems. The profit of the $j$-th day of Polycarp's practice is the maximum among all the difficulties of problems Polycarp solves during the $j$-th day (i.e. if he solves problems with indices from $l$ to $r$ during a day, then the profit of the day is $\max\limits_{l \le i \le r}a_i$). The total profit of his practice is the sum of the profits over all $k$ days of his practice. You want to help Polycarp to get the maximum possible total profit over all valid ways to solve problems. Your task is to distribute all $n$ problems between $k$ days satisfying the conditions above in such a way, that the total profit is maximum. For example, if $n = 8, k = 3$ and $a = [5, 4, 2, 6, 5, 1, 9, 2]$, one of the possible distributions with maximum total profit is: $[5, 4, 2], [6, 5], [1, 9, 2]$. Here the total profit equals $5 + 6 + 9 = 20$.
The first line of the input contains two integers $n$ and $k$ ($1 \le k \le n \le 2000$) — the number of problems and the number of days, respectively. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2000$) — difficulties of problems in Polycarp's list, in the order they are placed in the list (i.e. in the order Polycarp will solve them).
In the first line of the output print the maximum possible total profit. In the second line print exactly $k$ positive integers $t_1, t_2, \dots, t_k$ ($t_1 + t_2 + \dots + t_k$ must equal $n$), where $t_j$ means the number of problems Polycarp will solve during the $j$-th day in order to achieve the maximum possible total profit of his practice. If there are many possible answers, you may print any of them.
[ "8 3\n5 4 2 6 5 1 9 2\n", "5 1\n1 1 1 1 1\n", "4 2\n1 2000 2000 2\n" ]
[ "20\n3 2 3", "1\n5\n", "4000\n2 2\n" ]
The first example is described in the problem statement. In the second example there is only one possible distribution. In the third example the best answer is to distribute problems in the following way: $[1, 2000], [2000, 2]$. The total profit of this distribution is $2000 + 2000 = 4000$.
0
[ { "input": "8 3\n5 4 2 6 5 1 9 2", "output": "20\n4 1 3" }, { "input": "5 1\n1 1 1 1 1", "output": "1\n5" }, { "input": "4 2\n1 2000 2000 2", "output": "4000\n2 2" }, { "input": "1 1\n2000", "output": "2000\n1" }, { "input": "1 1\n1234", "output": "1234\n1" }, { "input": "3 2\n1 1 1", "output": "2\n2 1" }, { "input": "4 2\n3 5 1 1", "output": "8\n1 3" }, { "input": "5 3\n5 5 6 7 1", "output": "18\n2 1 2" }, { "input": "6 4\n1 1 1 1 2 2", "output": "6\n3 1 1 1" }, { "input": "5 3\n5 5 6 6 4", "output": "17\n2 1 2" }, { "input": "16 15\n14 4 9 12 17 1 1 8 12 13 6 9 17 2 18 12", "output": "154\n1 1 1 1 1 2 1 1 1 1 1 1 1 1 1" }, { "input": "1 1\n1996", "output": "1996\n1" }, { "input": "5 3\n5 5 5 9 10", "output": "24\n3 1 1" }, { "input": "18 15\n18 2 13 1 18 3 2 18 18 20 9 2 20 20 4 20 9 12", "output": "204\n1 2 2 1 2 1 1 1 1 1 1 1 1 1 1" }, { "input": "5 3\n1 20 20 50 50", "output": "120\n3 1 1" }, { "input": "8 3\n15 14 11 19 17 14 14 8", "output": "51\n1 3 4" }, { "input": "5 2\n15 20 6 19 6", "output": "39\n2 3" }, { "input": "6 3\n5 5 5 5 6 9", "output": "20\n4 1 1" }, { "input": "5 3\n2 2 2 3 3", "output": "8\n3 1 1" }, { "input": "7 3\n2 2 2 2 2 3 3", "output": "8\n5 1 1" }, { "input": "6 5\n1 1 6 6 6 6", "output": "25\n2 1 1 1 1" }, { "input": "8 4\n1 2 2 2 2 3 4 5", "output": "14\n5 1 1 1" }, { "input": "6 4\n1 1 1 5 5 5", "output": "16\n3 1 1 1" }, { "input": "6 3\n1 2 2 2 4 5", "output": "11\n4 1 1" }, { "input": "18 6\n17 17 19 14 10 20 18 16 6 7 2 15 14 16 13 6 12 11", "output": "107\n1 1 1 3 1 11" }, { "input": "6 3\n1 1 2 2 3 4", "output": "9\n4 1 1" }, { "input": "8 3\n5 4 2 5 6 1 9 2", "output": "20\n4 1 3" } ]
1,623,914,633
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
0
n, k = list(map(int, input().split())) a = list(map(int, input().split())) if k == n: print(sum(n)) print(' '.join(['1']*len(n))) else: a = sorted(a, reverse=True) b = [(i, x) for i, x in enumerate(a)] b = sorted(b, key=lambda x: x[1], reverse=True) topk = b[:k] topk_idxs = [i for i,x in topk] ans = [] num = 0 last = -1 total = 0 for_last_left = len(a) for i in range(len(a)): if i in topk_idxs and num < k-1: ans.append(i-last) for_last_left -= (i-last) last = i num += 1 total += a[i] elif i in topk_idxs and num == k-1: total += a[i] ans.append(for_last_left) print(total) print(' '.join(map(str,ans)))
Title: Polycarp's Practice Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp is practicing his problem solving skill. He has a list of $n$ problems with difficulties $a_1, a_2, \dots, a_n$, respectively. His plan is to practice for exactly $k$ days. Each day he has to solve at least one problem from his list. Polycarp solves the problems in the order they are given in his list, he cannot skip any problem from his list. He has to solve all $n$ problems in exactly $k$ days. Thus, each day Polycarp solves a contiguous sequence of (consecutive) problems from the start of the list. He can't skip problems or solve them multiple times. As a result, in $k$ days he will solve all the $n$ problems. The profit of the $j$-th day of Polycarp's practice is the maximum among all the difficulties of problems Polycarp solves during the $j$-th day (i.e. if he solves problems with indices from $l$ to $r$ during a day, then the profit of the day is $\max\limits_{l \le i \le r}a_i$). The total profit of his practice is the sum of the profits over all $k$ days of his practice. You want to help Polycarp to get the maximum possible total profit over all valid ways to solve problems. Your task is to distribute all $n$ problems between $k$ days satisfying the conditions above in such a way, that the total profit is maximum. For example, if $n = 8, k = 3$ and $a = [5, 4, 2, 6, 5, 1, 9, 2]$, one of the possible distributions with maximum total profit is: $[5, 4, 2], [6, 5], [1, 9, 2]$. Here the total profit equals $5 + 6 + 9 = 20$. Input Specification: The first line of the input contains two integers $n$ and $k$ ($1 \le k \le n \le 2000$) — the number of problems and the number of days, respectively. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2000$) — difficulties of problems in Polycarp's list, in the order they are placed in the list (i.e. in the order Polycarp will solve them). Output Specification: In the first line of the output print the maximum possible total profit. In the second line print exactly $k$ positive integers $t_1, t_2, \dots, t_k$ ($t_1 + t_2 + \dots + t_k$ must equal $n$), where $t_j$ means the number of problems Polycarp will solve during the $j$-th day in order to achieve the maximum possible total profit of his practice. If there are many possible answers, you may print any of them. Demo Input: ['8 3\n5 4 2 6 5 1 9 2\n', '5 1\n1 1 1 1 1\n', '4 2\n1 2000 2000 2\n'] Demo Output: ['20\n3 2 3', '1\n5\n', '4000\n2 2\n'] Note: The first example is described in the problem statement. In the second example there is only one possible distribution. In the third example the best answer is to distribute problems in the following way: $[1, 2000], [2000, 2]$. The total profit of this distribution is $2000 + 2000 = 4000$.
```python n, k = list(map(int, input().split())) a = list(map(int, input().split())) if k == n: print(sum(n)) print(' '.join(['1']*len(n))) else: a = sorted(a, reverse=True) b = [(i, x) for i, x in enumerate(a)] b = sorted(b, key=lambda x: x[1], reverse=True) topk = b[:k] topk_idxs = [i for i,x in topk] ans = [] num = 0 last = -1 total = 0 for_last_left = len(a) for i in range(len(a)): if i in topk_idxs and num < k-1: ans.append(i-last) for_last_left -= (i-last) last = i num += 1 total += a[i] elif i in topk_idxs and num == k-1: total += a[i] ans.append(for_last_left) print(total) print(' '.join(map(str,ans))) ```
0
439
B
Devu, the Dumb Guy
PROGRAMMING
1,200
[ "implementation", "sortings" ]
null
null
Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously. Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours. Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour. You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy. Please be careful that answer might not fit in 32 bit data type.
The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105).
Output a single integer representing the answer to the problem.
[ "2 3\n4 1\n", "4 2\n5 1 2 1\n", "3 3\n1 1 1\n" ]
[ "11\n", "10\n", "6\n" ]
Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours. Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours. So overall, minimum of both the cases is 11 hours. Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
1,000
[ { "input": "2 3\n4 1", "output": "11" }, { "input": "4 2\n5 1 2 1", "output": "10" }, { "input": "3 3\n1 1 1", "output": "6" }, { "input": "20 4\n1 1 3 5 5 1 3 4 2 5 2 4 3 1 3 3 3 3 4 3", "output": "65" }, { "input": "20 10\n6 6 1 2 6 4 5 3 6 5 4 5 6 5 4 6 6 2 3 3", "output": "196" }, { "input": "1 1\n9273", "output": "9273" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 2\n1", "output": "2" }, { "input": "1 2\n2", "output": "4" }, { "input": "2 1\n1 2", "output": "3" } ]
1,626,244,047
2,147,483,647
Python 3
OK
TESTS
31
155
14,438,400
from sys import * from math import * #from collections import Counter input = lambda:stdin.readline() int_arr = lambda : list(map(int,stdin.readline().strip().split())) str_arr = lambda :list(map(str,stdin.readline().split())) get_str = lambda : map(str,stdin.readline().strip().split()) get_int = lambda: map(int,stdin.readline().strip().split()) get_float = lambda : map(float,stdin.readline().strip().split()) mod = 1000000007 setrecursionlimit(1000) n,x = get_int() arr = int_arr() arr.sort() ct = 0 for i in range(n): ct += arr[i] * x if x > 1: x -= 1 print(ct)
Title: Devu, the Dumb Guy Time Limit: None seconds Memory Limit: None megabytes Problem Description: Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously. Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours. Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour. You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy. Please be careful that answer might not fit in 32 bit data type. Input Specification: The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105). Output Specification: Output a single integer representing the answer to the problem. Demo Input: ['2 3\n4 1\n', '4 2\n5 1 2 1\n', '3 3\n1 1 1\n'] Demo Output: ['11\n', '10\n', '6\n'] Note: Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours. Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours. So overall, minimum of both the cases is 11 hours. Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
```python from sys import * from math import * #from collections import Counter input = lambda:stdin.readline() int_arr = lambda : list(map(int,stdin.readline().strip().split())) str_arr = lambda :list(map(str,stdin.readline().split())) get_str = lambda : map(str,stdin.readline().strip().split()) get_int = lambda: map(int,stdin.readline().strip().split()) get_float = lambda : map(float,stdin.readline().strip().split()) mod = 1000000007 setrecursionlimit(1000) n,x = get_int() arr = int_arr() arr.sort() ct = 0 for i in range(n): ct += arr[i] * x if x > 1: x -= 1 print(ct) ```
3
501
A
Contest
PROGRAMMING
900
[ "implementation" ]
null
null
Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points. Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.
The first line contains four integers *a*, *b*, *c*, *d* (250<=≤<=*a*,<=*b*<=≤<=3500, 0<=≤<=*c*,<=*d*<=≤<=180). It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round).
Output on a single line: "Misha" (without the quotes), if Misha got more points than Vasya. "Vasya" (without the quotes), if Vasya got more points than Misha. "Tie" (without the quotes), if both of them got the same number of points.
[ "500 1000 20 30\n", "1000 1000 1 1\n", "1500 1000 176 177\n" ]
[ "Vasya\n", "Tie\n", "Misha\n" ]
none
500
[ { "input": "500 1000 20 30", "output": "Vasya" }, { "input": "1000 1000 1 1", "output": "Tie" }, { "input": "1500 1000 176 177", "output": "Misha" }, { "input": "1500 1000 74 177", "output": "Misha" }, { "input": "750 2500 175 178", "output": "Vasya" }, { "input": "750 1000 54 103", "output": "Tie" }, { "input": "2000 1250 176 130", "output": "Tie" }, { "input": "1250 1750 145 179", "output": "Tie" }, { "input": "2000 2000 176 179", "output": "Tie" }, { "input": "1500 1500 148 148", "output": "Tie" }, { "input": "2750 1750 134 147", "output": "Misha" }, { "input": "3250 250 175 173", "output": "Misha" }, { "input": "500 500 170 176", "output": "Misha" }, { "input": "250 1000 179 178", "output": "Vasya" }, { "input": "3250 1000 160 138", "output": "Misha" }, { "input": "3000 2000 162 118", "output": "Tie" }, { "input": "1500 1250 180 160", "output": "Tie" }, { "input": "1250 2500 100 176", "output": "Tie" }, { "input": "3500 3500 177 178", "output": "Tie" }, { "input": "3000 3250 16 34", "output": "Tie" }, { "input": "1750 3000 137 49", "output": "Vasya" }, { "input": "500 1500 179 71", "output": "Vasya" }, { "input": "1250 2000 101 180", "output": "Misha" }, { "input": "250 750 180 176", "output": "Vasya" }, { "input": "2250 2250 163 145", "output": "Vasya" }, { "input": "3000 3000 176 78", "output": "Vasya" }, { "input": "250 3500 8 178", "output": "Vasya" }, { "input": "1750 1250 179 180", "output": "Misha" }, { "input": "2750 1750 13 164", "output": "Misha" }, { "input": "1750 2250 178 53", "output": "Vasya" }, { "input": "2500 2750 73 179", "output": "Misha" }, { "input": "1000 3500 178 175", "output": "Vasya" }, { "input": "1000 500 7 162", "output": "Misha" }, { "input": "1000 250 175 48", "output": "Misha" }, { "input": "1750 500 166 177", "output": "Misha" }, { "input": "250 250 0 0", "output": "Tie" }, { "input": "250 3500 0 0", "output": "Vasya" }, { "input": "250 3500 0 180", "output": "Vasya" }, { "input": "3500 3500 180 180", "output": "Tie" }, { "input": "3500 250 0 180", "output": "Misha" } ]
1,674,301,833
2,147,483,647
Python 3
OK
TESTS
40
46
0
a,b,c,d = map(int, input().split()) def point(p,t): return int(max((.1*3*p), (p-(.004*t*p)))) if point(a,c) == point(b,d): print ("Tie") else: print(["Misha","Vasya"][point(b,d)>point(a,c)])
Title: Contest Time Limit: None seconds Memory Limit: None megabytes Problem Description: Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points. Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth. Input Specification: The first line contains four integers *a*, *b*, *c*, *d* (250<=≤<=*a*,<=*b*<=≤<=3500, 0<=≤<=*c*,<=*d*<=≤<=180). It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round). Output Specification: Output on a single line: "Misha" (without the quotes), if Misha got more points than Vasya. "Vasya" (without the quotes), if Vasya got more points than Misha. "Tie" (without the quotes), if both of them got the same number of points. Demo Input: ['500 1000 20 30\n', '1000 1000 1 1\n', '1500 1000 176 177\n'] Demo Output: ['Vasya\n', 'Tie\n', 'Misha\n'] Note: none
```python a,b,c,d = map(int, input().split()) def point(p,t): return int(max((.1*3*p), (p-(.004*t*p)))) if point(a,c) == point(b,d): print ("Tie") else: print(["Misha","Vasya"][point(b,d)>point(a,c)]) ```
3
186
A
Comparing Strings
PROGRAMMING
1,100
[ "implementation", "strings" ]
null
null
Some dwarves that are finishing the StUDY (State University for Dwarven Youngsters) Bachelor courses, have been told "no genome, no degree". That means that all dwarves should write a thesis on genome. Dwarven genome is far from simple. It is represented by a string that consists of lowercase Latin letters. Dwarf Misha has already chosen the subject for his thesis: determining by two dwarven genomes, whether they belong to the same race. Two dwarves belong to the same race if we can swap two characters in the first dwarf's genome and get the second dwarf's genome as a result. Help Dwarf Misha and find out whether two gnomes belong to the same race or not.
The first line contains the first dwarf's genome: a non-empty string, consisting of lowercase Latin letters. The second line contains the second dwarf's genome: a non-empty string, consisting of lowercase Latin letters. The number of letters in each genome doesn't exceed 105. It is guaranteed that the strings that correspond to the genomes are different. The given genomes may have different length.
Print "YES", if the dwarves belong to the same race. Otherwise, print "NO".
[ "ab\nba\n", "aa\nab\n" ]
[ "YES\n", "NO\n" ]
- First example: you can simply swap two letters in string "ab". So we get "ba". - Second example: we can't change string "aa" into string "ab", because "aa" does not contain letter "b".
500
[ { "input": "ab\nba", "output": "YES" }, { "input": "aa\nab", "output": "NO" }, { "input": "a\nza", "output": "NO" }, { "input": "vvea\nvvae", "output": "YES" }, { "input": "rtfabanpc\natfabrnpc", "output": "YES" }, { "input": "mt\ntm", "output": "YES" }, { "input": "qxolmbkkt\naovlajmlf", "output": "NO" }, { "input": "b\ng", "output": "NO" }, { "input": "ab\naba", "output": "NO" }, { "input": "ba\na", "output": "NO" }, { "input": "a\nab", "output": "NO" }, { "input": "a\naa", "output": "NO" }, { "input": "a\nz", "output": "NO" }, { "input": "aabb\nbbaa", "output": "NO" }, { "input": "ab\nbd", "output": "NO" }, { "input": "bac\ndae", "output": "NO" }, { "input": "abc\nakl", "output": "NO" }, { "input": "cb\naa", "output": "NO" }, { "input": "abaab\naabba", "output": "NO" }, { "input": "aab\naaa", "output": "NO" }, { "input": "abcde\nedcba", "output": "NO" }, { "input": "abab\nbaba", "output": "NO" }, { "input": "ab\nbac", "output": "NO" }, { "input": "abcd\naqcb", "output": "NO" }, { "input": "abc\nbad", "output": "NO" }, { "input": "ab\nca", "output": "NO" }, { "input": "abc\nab", "output": "NO" }, { "input": "ab\nbae", "output": "NO" }, { "input": "aaaabcccca\naaaadccccb", "output": "NO" }, { "input": "acaa\nabca", "output": "NO" }, { "input": "aba\naab", "output": "YES" }, { "input": "ah\nla", "output": "NO" }, { "input": "aab\naa", "output": "NO" }, { "input": "abab\nabcd", "output": "NO" }, { "input": "ed\nab", "output": "NO" } ]
1,589,650,971
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
218
6,656,000
s1 = input() s2 = input() count = 0 flag = True if len(s1)!=len(s2): flag = False for i in range(len(s1)): if s1[i]!=s2[i]: count+=1 if count>2: flag = False if flag: print('YES') else: print('NO')
Title: Comparing Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: Some dwarves that are finishing the StUDY (State University for Dwarven Youngsters) Bachelor courses, have been told "no genome, no degree". That means that all dwarves should write a thesis on genome. Dwarven genome is far from simple. It is represented by a string that consists of lowercase Latin letters. Dwarf Misha has already chosen the subject for his thesis: determining by two dwarven genomes, whether they belong to the same race. Two dwarves belong to the same race if we can swap two characters in the first dwarf's genome and get the second dwarf's genome as a result. Help Dwarf Misha and find out whether two gnomes belong to the same race or not. Input Specification: The first line contains the first dwarf's genome: a non-empty string, consisting of lowercase Latin letters. The second line contains the second dwarf's genome: a non-empty string, consisting of lowercase Latin letters. The number of letters in each genome doesn't exceed 105. It is guaranteed that the strings that correspond to the genomes are different. The given genomes may have different length. Output Specification: Print "YES", if the dwarves belong to the same race. Otherwise, print "NO". Demo Input: ['ab\nba\n', 'aa\nab\n'] Demo Output: ['YES\n', 'NO\n'] Note: - First example: you can simply swap two letters in string "ab". So we get "ba". - Second example: we can't change string "aa" into string "ab", because "aa" does not contain letter "b".
```python s1 = input() s2 = input() count = 0 flag = True if len(s1)!=len(s2): flag = False for i in range(len(s1)): if s1[i]!=s2[i]: count+=1 if count>2: flag = False if flag: print('YES') else: print('NO') ```
0
298
A
Snow Footprints
PROGRAMMING
1,300
[ "greedy", "implementation" ]
null
null
There is a straight snowy road, divided into *n* blocks. The blocks are numbered from 1 to *n* from left to right. If one moves from the *i*-th block to the (*i*<=+<=1)-th block, he will leave a right footprint on the *i*-th block. Similarly, if one moves from the *i*-th block to the (*i*<=-<=1)-th block, he will leave a left footprint on the *i*-th block. If there already is a footprint on the *i*-th block, the new footprint will cover the old one. At the beginning, there were no footprints. Then polar bear Alice starts from the *s*-th block, makes a sequence of moves and ends in the *t*-th block. It is known that Alice never moves outside of the road. You are given the description of Alice's footprints. Your task is to find a pair of possible values of *s*,<=*t* by looking at the footprints.
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=1000). The second line contains the description of the road — the string that consists of *n* characters. Each character will be either "." (a block without footprint), or "L" (a block with a left footprint), "R" (a block with a right footprint). It's guaranteed that the given string contains at least one character not equal to ".". Also, the first and the last character will always be ".". It's guaranteed that a solution exists.
Print two space-separated integers — the values of *s* and *t*. If there are several possible solutions you can print any of them.
[ "9\n..RRLL...\n", "11\n.RRRLLLLL..\n" ]
[ "3 4\n", "7 5\n" ]
The first test sample is the one in the picture.
500
[ { "input": "11\n.RRRLLLLL..", "output": "7 5" }, { "input": "4\n.RL.", "output": "3 2" }, { "input": "3\n.L.", "output": "2 1" }, { "input": "3\n.R.", "output": "2 3" } ]
1,657,943,873
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
60
0
n=int(input()) a=input() if(a.count('R')==0): s=a.find('L')+1 elif(a.count('L')==0): s=a.find('R')+1 else: s=min(a.find('L'),a.find('R'))+1 t=s for i in a: if(i=='R'): t= t + 1 elif(i=='L'): t= t - 1 if(t<s): t=s print(s,t)
Title: Snow Footprints Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a straight snowy road, divided into *n* blocks. The blocks are numbered from 1 to *n* from left to right. If one moves from the *i*-th block to the (*i*<=+<=1)-th block, he will leave a right footprint on the *i*-th block. Similarly, if one moves from the *i*-th block to the (*i*<=-<=1)-th block, he will leave a left footprint on the *i*-th block. If there already is a footprint on the *i*-th block, the new footprint will cover the old one. At the beginning, there were no footprints. Then polar bear Alice starts from the *s*-th block, makes a sequence of moves and ends in the *t*-th block. It is known that Alice never moves outside of the road. You are given the description of Alice's footprints. Your task is to find a pair of possible values of *s*,<=*t* by looking at the footprints. Input Specification: The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=1000). The second line contains the description of the road — the string that consists of *n* characters. Each character will be either "." (a block without footprint), or "L" (a block with a left footprint), "R" (a block with a right footprint). It's guaranteed that the given string contains at least one character not equal to ".". Also, the first and the last character will always be ".". It's guaranteed that a solution exists. Output Specification: Print two space-separated integers — the values of *s* and *t*. If there are several possible solutions you can print any of them. Demo Input: ['9\n..RRLL...\n', '11\n.RRRLLLLL..\n'] Demo Output: ['3 4\n', '7 5\n'] Note: The first test sample is the one in the picture.
```python n=int(input()) a=input() if(a.count('R')==0): s=a.find('L')+1 elif(a.count('L')==0): s=a.find('R')+1 else: s=min(a.find('L'),a.find('R'))+1 t=s for i in a: if(i=='R'): t= t + 1 elif(i=='L'): t= t - 1 if(t<s): t=s print(s,t) ```
0
665
B
Shopping
PROGRAMMING
1,400
[ "brute force" ]
null
null
Ayush is a cashier at the shopping center. Recently his department has started a ''click and collect" service which allows users to shop online. The store contains *k* items. *n* customers have already used the above service. Each user paid for *m* items. Let *a**ij* denote the *j*-th item in the *i*-th person's order. Due to the space limitations all the items are arranged in one single row. When Ayush receives the *i*-th order he will find one by one all the items *a**ij* (1<=≤<=*j*<=≤<=*m*) in the row. Let *pos*(*x*) denote the position of the item *x* in the row at the moment of its collection. Then Ayush takes time equal to *pos*(*a**i*1)<=+<=*pos*(*a**i*2)<=+<=...<=+<=*pos*(*a**im*) for the *i*-th customer. When Ayush accesses the *x*-th element he keeps a new stock in the front of the row and takes away the *x*-th element. Thus the values are updating. Your task is to calculate the total time it takes for Ayush to process all the orders. You can assume that the market has endless stock.
The first line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*k*<=≤<=100,<=1<=≤<=*m*<=≤<=*k*) — the number of users, the number of items each user wants to buy and the total number of items at the market. The next line contains *k* distinct integers *p**l* (1<=≤<=*p**l*<=≤<=*k*) denoting the initial positions of the items in the store. The items are numbered with integers from 1 to *k*. Each of the next *n* lines contains *m* distinct integers *a**ij* (1<=≤<=*a**ij*<=≤<=*k*) — the order of the *i*-th person.
Print the only integer *t* — the total time needed for Ayush to process all the orders.
[ "2 2 5\n3 4 1 2 5\n1 5\n3 1\n" ]
[ "14\n" ]
Customer 1 wants the items 1 and 5. *pos*(1) = 3, so the new positions are: [1, 3, 4, 2, 5]. *pos*(5) = 5, so the new positions are: [5, 1, 3, 4, 2]. Time taken for the first customer is 3 + 5 = 8. Customer 2 wants the items 3 and 1. *pos*(3) = 3, so the new positions are: [3, 5, 1, 4, 2]. *pos*(1) = 3, so the new positions are: [1, 3, 5, 4, 2]. Time taken for the second customer is 3 + 3 = 6. Total time is 8 + 6 = 14. Formally *pos*(*x*) is the index of *x* in the current row.
0
[ { "input": "2 2 5\n3 4 1 2 5\n1 5\n3 1", "output": "14" }, { "input": "4 4 4\n1 2 3 4\n3 4 2 1\n4 3 2 1\n4 1 2 3\n4 1 2 3", "output": "59" }, { "input": "1 1 1\n1\n1", "output": "1" }, { "input": "10 1 100\n1 55 67 75 40 86 24 84 82 26 81 23 70 79 51 54 21 78 31 98 68 93 66 88 99 65 20 52 35 85 16 12 94 100 59 56 18 33 47 46 71 8 38 57 2 92 3 95 6 4 87 22 48 80 15 29 11 45 72 76 44 60 91 90 39 74 41 36 13 27 53 83 32 5 30 63 89 64 49 17 9 97 69 14 50 77 37 96 10 42 28 34 61 19 73 7 62 43 58 25\n33\n69\n51\n7\n68\n70\n1\n35\n24\n7", "output": "335" }, { "input": "100 1 1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1", "output": "100" }, { "input": "3 2 3\n3 1 2\n1 2\n2 1\n2 3", "output": "13" }, { "input": "10 10 10\n3 4 1 2 8 9 5 10 6 7\n9 10 7 8 6 1 2 3 4 5\n2 5 3 6 1 4 9 7 8 10\n2 9 1 8 4 7 5 10 6 3\n10 9 7 1 3 6 2 8 5 4\n2 5 1 3 7 10 4 9 8 6\n6 1 8 7 9 2 3 5 4 10\n1 3 2 8 6 9 4 10 5 7\n5 2 4 8 6 1 10 9 3 7\n5 1 7 10 4 6 2 8 9 3\n2 1 3 9 7 10 6 4 8 5", "output": "771" } ]
1,689,653,267
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
print("_RANDOM_GUESS_1689653267.534639")# 1689653267.5346591
Title: Shopping Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ayush is a cashier at the shopping center. Recently his department has started a ''click and collect" service which allows users to shop online. The store contains *k* items. *n* customers have already used the above service. Each user paid for *m* items. Let *a**ij* denote the *j*-th item in the *i*-th person's order. Due to the space limitations all the items are arranged in one single row. When Ayush receives the *i*-th order he will find one by one all the items *a**ij* (1<=≤<=*j*<=≤<=*m*) in the row. Let *pos*(*x*) denote the position of the item *x* in the row at the moment of its collection. Then Ayush takes time equal to *pos*(*a**i*1)<=+<=*pos*(*a**i*2)<=+<=...<=+<=*pos*(*a**im*) for the *i*-th customer. When Ayush accesses the *x*-th element he keeps a new stock in the front of the row and takes away the *x*-th element. Thus the values are updating. Your task is to calculate the total time it takes for Ayush to process all the orders. You can assume that the market has endless stock. Input Specification: The first line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*k*<=≤<=100,<=1<=≤<=*m*<=≤<=*k*) — the number of users, the number of items each user wants to buy and the total number of items at the market. The next line contains *k* distinct integers *p**l* (1<=≤<=*p**l*<=≤<=*k*) denoting the initial positions of the items in the store. The items are numbered with integers from 1 to *k*. Each of the next *n* lines contains *m* distinct integers *a**ij* (1<=≤<=*a**ij*<=≤<=*k*) — the order of the *i*-th person. Output Specification: Print the only integer *t* — the total time needed for Ayush to process all the orders. Demo Input: ['2 2 5\n3 4 1 2 5\n1 5\n3 1\n'] Demo Output: ['14\n'] Note: Customer 1 wants the items 1 and 5. *pos*(1) = 3, so the new positions are: [1, 3, 4, 2, 5]. *pos*(5) = 5, so the new positions are: [5, 1, 3, 4, 2]. Time taken for the first customer is 3 + 5 = 8. Customer 2 wants the items 3 and 1. *pos*(3) = 3, so the new positions are: [3, 5, 1, 4, 2]. *pos*(1) = 3, so the new positions are: [1, 3, 5, 4, 2]. Time taken for the second customer is 3 + 3 = 6. Total time is 8 + 6 = 14. Formally *pos*(*x*) is the index of *x* in the current row.
```python print("_RANDOM_GUESS_1689653267.534639")# 1689653267.5346591 ```
0
362
B
Petya and Staircases
PROGRAMMING
1,100
[ "implementation", "sortings" ]
null
null
Little boy Petya loves stairs very much. But he is bored from simple going up and down them — he loves jumping over several stairs at a time. As he stands on some stair, he can either jump to the next one or jump over one or two stairs at a time. But some stairs are too dirty and Petya doesn't want to step on them. Now Petya is on the first stair of the staircase, consisting of *n* stairs. He also knows the numbers of the dirty stairs of this staircase. Help Petya find out if he can jump through the entire staircase and reach the last stair number *n* without touching a dirty stair once. One has to note that anyway Petya should step on the first and last stairs, so if the first or the last stair is dirty, then Petya cannot choose a path with clean steps only.
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=109, 0<=≤<=*m*<=≤<=3000) — the number of stairs in the staircase and the number of dirty stairs, correspondingly. The second line contains *m* different space-separated integers *d*1,<=*d*2,<=...,<=*d**m* (1<=≤<=*d**i*<=≤<=*n*) — the numbers of the dirty stairs (in an arbitrary order).
Print "YES" if Petya can reach stair number *n*, stepping only on the clean stairs. Otherwise print "NO".
[ "10 5\n2 4 8 3 6\n", "10 5\n2 4 5 7 9\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "10 5\n2 4 8 3 6", "output": "NO" }, { "input": "10 5\n2 4 5 7 9", "output": "YES" }, { "input": "10 9\n2 3 4 5 6 7 8 9 10", "output": "NO" }, { "input": "5 2\n4 5", "output": "NO" }, { "input": "123 13\n36 73 111 2 92 5 47 55 48 113 7 78 37", "output": "YES" }, { "input": "10 10\n7 6 4 2 5 10 8 3 9 1", "output": "NO" }, { "input": "12312 0", "output": "YES" }, { "input": "9817239 1\n6323187", "output": "YES" }, { "input": "1 1\n1", "output": "NO" }, { "input": "5 4\n4 2 5 1", "output": "NO" }, { "input": "5 3\n4 3 5", "output": "NO" }, { "input": "500 3\n18 62 445", "output": "YES" }, { "input": "500 50\n72 474 467 241 442 437 336 234 410 120 438 164 405 177 142 114 27 20 445 235 46 176 88 488 242 391 28 414 145 92 206 334 152 343 367 254 100 243 155 348 148 450 461 483 97 34 471 69 416 362", "output": "NO" }, { "input": "500 8\n365 313 338 410 482 417 325 384", "output": "YES" }, { "input": "1000000000 10\n2 3 5 6 8 9 123 874 1230 1000000000", "output": "NO" }, { "input": "1000000000 10\n1 2 3 5 6 8 9 123 874 1230", "output": "NO" }, { "input": "10 1\n1", "output": "NO" }, { "input": "10 4\n1 2 4 5", "output": "NO" }, { "input": "50 20\n22 33 17 23 27 5 26 31 41 20 8 24 6 3 4 29 40 25 13 16", "output": "NO" }, { "input": "50 40\n14 27 19 30 31 20 28 11 37 29 23 33 7 26 22 16 1 6 18 3 47 36 38 2 48 9 41 8 5 50 4 45 44 25 39 12 43 42 40 46", "output": "NO" }, { "input": "123 12\n35 95 47 99 79 122 58 94 31 57 18 10", "output": "YES" }, { "input": "10 5\n1 3 5 7 9", "output": "NO" }, { "input": "100 7\n2 3 5 6 8 9 100", "output": "NO" }, { "input": "100 3\n98 99 100", "output": "NO" }, { "input": "100 3\n97 98 99", "output": "NO" }, { "input": "100 3\n96 98 99", "output": "YES" }, { "input": "10 6\n2 3 5 6 8 9", "output": "YES" }, { "input": "1000000000 10\n2 4 10 18 40 42 49 58 59 60", "output": "NO" }, { "input": "10 3\n1 4 6", "output": "NO" }, { "input": "8 3\n2 3 4", "output": "NO" }, { "input": "100 3\n4 5 6", "output": "NO" }, { "input": "10 2\n10 1", "output": "NO" }, { "input": "10 1\n10", "output": "NO" }, { "input": "4 2\n2 3", "output": "YES" }, { "input": "2 1\n1", "output": "NO" }, { "input": "2 0", "output": "YES" }, { "input": "4 3\n2 3 4", "output": "NO" }, { "input": "5 3\n4 2 3", "output": "NO" } ]
1,663,083,819
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
4
62
1,228,800
n,m=map(int,input().split()) # matrix=[list(map(int,input().split())) for i in range(m)] arr=list(map(int,input().split())) start=1 arr.sort() fin=arr[-1] sta=arr[0] if sta==1 or fin==n or sta-1>3: print("NO") else: cnt=0 for i in range(1,m): if (arr[i]-arr[i-1])==1: cnt+=1 if cnt==2: print("NO") exit() else: cnt=0 print("YES")
Title: Petya and Staircases Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little boy Petya loves stairs very much. But he is bored from simple going up and down them — he loves jumping over several stairs at a time. As he stands on some stair, he can either jump to the next one or jump over one or two stairs at a time. But some stairs are too dirty and Petya doesn't want to step on them. Now Petya is on the first stair of the staircase, consisting of *n* stairs. He also knows the numbers of the dirty stairs of this staircase. Help Petya find out if he can jump through the entire staircase and reach the last stair number *n* without touching a dirty stair once. One has to note that anyway Petya should step on the first and last stairs, so if the first or the last stair is dirty, then Petya cannot choose a path with clean steps only. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=109, 0<=≤<=*m*<=≤<=3000) — the number of stairs in the staircase and the number of dirty stairs, correspondingly. The second line contains *m* different space-separated integers *d*1,<=*d*2,<=...,<=*d**m* (1<=≤<=*d**i*<=≤<=*n*) — the numbers of the dirty stairs (in an arbitrary order). Output Specification: Print "YES" if Petya can reach stair number *n*, stepping only on the clean stairs. Otherwise print "NO". Demo Input: ['10 5\n2 4 8 3 6\n', '10 5\n2 4 5 7 9\n'] Demo Output: ['NO', 'YES'] Note: none
```python n,m=map(int,input().split()) # matrix=[list(map(int,input().split())) for i in range(m)] arr=list(map(int,input().split())) start=1 arr.sort() fin=arr[-1] sta=arr[0] if sta==1 or fin==n or sta-1>3: print("NO") else: cnt=0 for i in range(1,m): if (arr[i]-arr[i-1])==1: cnt+=1 if cnt==2: print("NO") exit() else: cnt=0 print("YES") ```
0
729
B
Spotlights
PROGRAMMING
1,200
[ "dp", "implementation" ]
null
null
Theater stage is a rectangular field of size *n*<=×<=*m*. The director gave you the stage's plan which actors will follow. For each cell it is stated in the plan if there would be an actor in this cell or not. You are to place a spotlight on the stage in some good position. The spotlight will project light in one of the four directions (if you look at the stage from above) — left, right, up or down. Thus, the spotlight's position is a cell it is placed to and a direction it shines. A position is good if two conditions hold: - there is no actor in the cell the spotlight is placed to; - there is at least one actor in the direction the spotlight projects. Count the number of good positions for placing the spotlight. Two positions of spotlight are considered to be different if the location cells or projection direction differ.
The first line contains two positive integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the number of rows and the number of columns in the plan. The next *n* lines contain *m* integers, 0 or 1 each — the description of the plan. Integer 1, means there will be an actor in the corresponding cell, while 0 means the cell will remain empty. It is guaranteed that there is at least one actor in the plan.
Print one integer — the number of good positions for placing the spotlight.
[ "2 4\n0 1 0 0\n1 0 1 0\n", "4 4\n0 0 0 0\n1 0 0 1\n0 1 1 0\n0 1 0 0\n" ]
[ "9\n", "20\n" ]
In the first example the following positions are good: 1. the (1, 1) cell and right direction; 1. the (1, 1) cell and down direction; 1. the (1, 3) cell and left direction; 1. the (1, 3) cell and down direction; 1. the (1, 4) cell and left direction; 1. the (2, 2) cell and left direction; 1. the (2, 2) cell and up direction; 1. the (2, 2) and right direction; 1. the (2, 4) cell and left direction. Therefore, there are 9 good positions in this example.
1,000
[ { "input": "2 4\n0 1 0 0\n1 0 1 0", "output": "9" }, { "input": "4 4\n0 0 0 0\n1 0 0 1\n0 1 1 0\n0 1 0 0", "output": "20" }, { "input": "1 5\n1 1 0 0 0", "output": "3" }, { "input": "2 10\n0 0 0 0 0 0 0 1 0 0\n1 0 0 0 0 0 0 0 0 0", "output": "20" }, { "input": "3 1\n1\n0\n0", "output": "2" }, { "input": "5 7\n0 0 0 0 0 0 1\n0 0 0 0 0 0 1\n0 0 0 1 0 0 0\n0 0 0 0 0 0 0\n0 0 0 0 0 0 0", "output": "25" }, { "input": "10 20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "4" }, { "input": "5 7\n0 0 0 0 0 0 0\n0 1 1 1 1 0 1\n0 1 1 1 1 1 1\n0 0 0 0 0 0 0\n0 1 1 1 1 0 1", "output": "26" }, { "input": "10 20\n0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "121" }, { "input": "1 2\n0 1", "output": "1" }, { "input": "1 2\n1 0", "output": "1" }, { "input": "1 2\n1 1", "output": "0" }, { "input": "2 1\n1\n0", "output": "1" }, { "input": "2 1\n0\n1", "output": "1" }, { "input": "2 1\n1\n1", "output": "0" }, { "input": "1 1\n1", "output": "0" }, { "input": "4 4\n1 1 1 1\n1 0 0 1\n1 0 0 1\n1 1 1 1", "output": "16" } ]
1,653,097,945
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
6
1,000
5,734,400
n,m = map(int,input().split()) values, a_i, a_j = [],{},{} for _ in range(n): values.append(input().split()) total = 0 for i in range(n): for j in range(m): sj = a_j.get(j) si = a_i.get(i) if values[i][j] == '1': if sj is None: a_j[j] = 1 else: a_j[j] += 1 if si is None: a_i[i] = 1 else: a_i[i] += 1 else: d1 = 1 if si is not None else 0 d2 = 1 if sj is not None else 0 total += d1+d2 a_i,a_j = {},{} for i in range(n-1,-1,-1): for j in range(m-1,-1,-1): sj = a_j.get(j) si = a_i.get(i) if values[i][j] == '1': if sj is None: a_j[j] = 1 else: a_j[j] += 1 if si is None: a_i[i] = 1 else: a_i[i] += 1 else: d3 = 1 if si is not None else 0 d4 = 1 if sj is not None else 0 total += d3+d4 print(total)
Title: Spotlights Time Limit: None seconds Memory Limit: None megabytes Problem Description: Theater stage is a rectangular field of size *n*<=×<=*m*. The director gave you the stage's plan which actors will follow. For each cell it is stated in the plan if there would be an actor in this cell or not. You are to place a spotlight on the stage in some good position. The spotlight will project light in one of the four directions (if you look at the stage from above) — left, right, up or down. Thus, the spotlight's position is a cell it is placed to and a direction it shines. A position is good if two conditions hold: - there is no actor in the cell the spotlight is placed to; - there is at least one actor in the direction the spotlight projects. Count the number of good positions for placing the spotlight. Two positions of spotlight are considered to be different if the location cells or projection direction differ. Input Specification: The first line contains two positive integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the number of rows and the number of columns in the plan. The next *n* lines contain *m* integers, 0 or 1 each — the description of the plan. Integer 1, means there will be an actor in the corresponding cell, while 0 means the cell will remain empty. It is guaranteed that there is at least one actor in the plan. Output Specification: Print one integer — the number of good positions for placing the spotlight. Demo Input: ['2 4\n0 1 0 0\n1 0 1 0\n', '4 4\n0 0 0 0\n1 0 0 1\n0 1 1 0\n0 1 0 0\n'] Demo Output: ['9\n', '20\n'] Note: In the first example the following positions are good: 1. the (1, 1) cell and right direction; 1. the (1, 1) cell and down direction; 1. the (1, 3) cell and left direction; 1. the (1, 3) cell and down direction; 1. the (1, 4) cell and left direction; 1. the (2, 2) cell and left direction; 1. the (2, 2) cell and up direction; 1. the (2, 2) and right direction; 1. the (2, 4) cell and left direction. Therefore, there are 9 good positions in this example.
```python n,m = map(int,input().split()) values, a_i, a_j = [],{},{} for _ in range(n): values.append(input().split()) total = 0 for i in range(n): for j in range(m): sj = a_j.get(j) si = a_i.get(i) if values[i][j] == '1': if sj is None: a_j[j] = 1 else: a_j[j] += 1 if si is None: a_i[i] = 1 else: a_i[i] += 1 else: d1 = 1 if si is not None else 0 d2 = 1 if sj is not None else 0 total += d1+d2 a_i,a_j = {},{} for i in range(n-1,-1,-1): for j in range(m-1,-1,-1): sj = a_j.get(j) si = a_i.get(i) if values[i][j] == '1': if sj is None: a_j[j] = 1 else: a_j[j] += 1 if si is None: a_i[i] = 1 else: a_i[i] += 1 else: d3 = 1 if si is not None else 0 d4 = 1 if sj is not None else 0 total += d3+d4 print(total) ```
0
518
B
Tanya and Postcard
PROGRAMMING
1,400
[ "greedy", "implementation", "strings" ]
null
null
Little Tanya decided to present her dad a postcard on his Birthday. She has already created a message — string *s* of length *n*, consisting of uppercase and lowercase English letters. Tanya can't write yet, so she found a newspaper and decided to cut out the letters and glue them into the postcard to achieve string *s*. The newspaper contains string *t*, consisting of uppercase and lowercase English letters. We know that the length of string *t* greater or equal to the length of the string *s*. The newspaper may possibly have too few of some letters needed to make the text and too many of some other letters. That's why Tanya wants to cut some *n* letters out of the newspaper and make a message of length exactly *n*, so that it looked as much as possible like *s*. If the letter in some position has correct value and correct letter case (in the string *s* and in the string that Tanya will make), then she shouts joyfully "YAY!", and if the letter in the given position has only the correct value but it is in the wrong case, then the girl says "WHOOPS". Tanya wants to make such message that lets her shout "YAY!" as much as possible. If there are multiple ways to do this, then her second priority is to maximize the number of times she says "WHOOPS". Your task is to help Tanya make the message.
The first line contains line *s* (1<=≤<=|*s*|<=≤<=2·105), consisting of uppercase and lowercase English letters — the text of Tanya's message. The second line contains line *t* (|*s*|<=≤<=|*t*|<=≤<=2·105), consisting of uppercase and lowercase English letters — the text written in the newspaper. Here |*a*| means the length of the string *a*.
Print two integers separated by a space: - the first number is the number of times Tanya shouts "YAY!" while making the message, - the second number is the number of times Tanya says "WHOOPS" while making the message.
[ "AbC\nDCbA\n", "ABC\nabc\n", "abacaba\nAbaCaBA\n" ]
[ "3 0\n", "0 3\n", "3 4\n" ]
none
1,000
[ { "input": "AbC\nDCbA", "output": "3 0" }, { "input": "ABC\nabc", "output": "0 3" }, { "input": "abacaba\nAbaCaBA", "output": "3 4" }, { "input": "zzzzz\nZZZZZ", "output": "0 5" }, { "input": "zzzZZZ\nZZZzzZ", "output": "5 1" }, { "input": "abcdefghijklmnopqrstuvwxyz\nABCDEFGHIJKLMNOPQRSTUVWXYZ", "output": "0 26" }, { "input": "abcdefghijklmnopqrstuvwxyz\nqrsimtabuvzhnwcdefgjklxyop", "output": "26 0" }, { "input": "l\nFPbAVjsMpPDTLkfwNYFmBDHPTDSWSOUlrBHYJHPM", "output": "1 0" }, { "input": "ncMeXssLHS\nuwyeMcaFatpInZVdEYpwJQSnVxLK", "output": "6 1" }, { "input": "DpiNBmCRFWxpdbfGOzvvOcemjructoAdEwegTvbVbfWWRPGyEAxGdDRWVlqNyGWMWHMrHAIZpyxvgaflrsVZhhZRouvpxrKXFZam\nwwPLFtNfPtJXvMLuHjKfYyaRhreNSWSzOvDpqHCGcqllACNPGHxReeFUCmAqIKXYytsSQwIxJzNiiUtgebVuwRmWpRALLyKAzyDPvgIGxALSaeeTIqm", "output": "66 12" }, { "input": "CCAE\ndcecc", "output": "0 3" }, { "input": "Dccb\nbeeeb", "output": "1 0" }, { "input": "Adc\neadeabcad", "output": "2 1" }, { "input": "DBAdeb\ndeeabcddadaa", "output": "3 2" }, { "input": "EDCED\neebeacdba", "output": "0 4" }, { "input": "CdAbD\ndecbde", "output": "2 2" }, { "input": "a\nB", "output": "0 0" }, { "input": "r\nqA", "output": "0 0" } ]
1,579,823,643
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
155
307,200
from collections import * s, t = deque(input()), input() mem, a1, a2 = Counter(t), 0, 0 for i in range(len(s)): if mem[s[0]]: a1 += 1 mem[s[0]] -= 1 s.popleft() else: s.rotate(-1) # print(s) for i in s: if i.isupper() and mem[i.lower()]: a2 += 1 mem[i.lower()] = 0 elif i.islower() and mem[i.upper()]: a2 += 1 mem[i.upper()] = 0 print(a1, a2)
Title: Tanya and Postcard Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Tanya decided to present her dad a postcard on his Birthday. She has already created a message — string *s* of length *n*, consisting of uppercase and lowercase English letters. Tanya can't write yet, so she found a newspaper and decided to cut out the letters and glue them into the postcard to achieve string *s*. The newspaper contains string *t*, consisting of uppercase and lowercase English letters. We know that the length of string *t* greater or equal to the length of the string *s*. The newspaper may possibly have too few of some letters needed to make the text and too many of some other letters. That's why Tanya wants to cut some *n* letters out of the newspaper and make a message of length exactly *n*, so that it looked as much as possible like *s*. If the letter in some position has correct value and correct letter case (in the string *s* and in the string that Tanya will make), then she shouts joyfully "YAY!", and if the letter in the given position has only the correct value but it is in the wrong case, then the girl says "WHOOPS". Tanya wants to make such message that lets her shout "YAY!" as much as possible. If there are multiple ways to do this, then her second priority is to maximize the number of times she says "WHOOPS". Your task is to help Tanya make the message. Input Specification: The first line contains line *s* (1<=≤<=|*s*|<=≤<=2·105), consisting of uppercase and lowercase English letters — the text of Tanya's message. The second line contains line *t* (|*s*|<=≤<=|*t*|<=≤<=2·105), consisting of uppercase and lowercase English letters — the text written in the newspaper. Here |*a*| means the length of the string *a*. Output Specification: Print two integers separated by a space: - the first number is the number of times Tanya shouts "YAY!" while making the message, - the second number is the number of times Tanya says "WHOOPS" while making the message. Demo Input: ['AbC\nDCbA\n', 'ABC\nabc\n', 'abacaba\nAbaCaBA\n'] Demo Output: ['3 0\n', '0 3\n', '3 4\n'] Note: none
```python from collections import * s, t = deque(input()), input() mem, a1, a2 = Counter(t), 0, 0 for i in range(len(s)): if mem[s[0]]: a1 += 1 mem[s[0]] -= 1 s.popleft() else: s.rotate(-1) # print(s) for i in s: if i.isupper() and mem[i.lower()]: a2 += 1 mem[i.lower()] = 0 elif i.islower() and mem[i.upper()]: a2 += 1 mem[i.upper()] = 0 print(a1, a2) ```
0
483
A
Counterexample
PROGRAMMING
1,100
[ "brute force", "implementation", "math", "number theory" ]
null
null
Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one. Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime. You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*. More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime.
The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50).
Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order. If the counterexample does not exist, print the single number -1.
[ "2 4\n", "10 11\n", "900000000000000009 900000000000000029\n" ]
[ "2 3 4\n", "-1\n", "900000000000000009 900000000000000010 900000000000000021\n" ]
In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are. In the second sample you cannot form a group of three distinct integers, so the answer is -1. In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
500
[ { "input": "2 4", "output": "2 3 4" }, { "input": "10 11", "output": "-1" }, { "input": "900000000000000009 900000000000000029", "output": "900000000000000009 900000000000000010 900000000000000021" }, { "input": "640097987171091791 640097987171091835", "output": "640097987171091792 640097987171091793 640097987171091794" }, { "input": "19534350415104721 19534350415104725", "output": "19534350415104722 19534350415104723 19534350415104724" }, { "input": "933700505788726243 933700505788726280", "output": "933700505788726244 933700505788726245 933700505788726246" }, { "input": "1 3", "output": "-1" }, { "input": "1 4", "output": "2 3 4" }, { "input": "1 1", "output": "-1" }, { "input": "266540997167959130 266540997167959164", "output": "266540997167959130 266540997167959131 266540997167959132" }, { "input": "267367244641009850 267367244641009899", "output": "267367244641009850 267367244641009851 267367244641009852" }, { "input": "268193483524125978 268193483524125993", "output": "268193483524125978 268193483524125979 268193483524125980" }, { "input": "269019726702209402 269019726702209432", "output": "269019726702209402 269019726702209403 269019726702209404" }, { "input": "269845965585325530 269845965585325576", "output": "269845965585325530 269845965585325531 269845965585325532" }, { "input": "270672213058376250 270672213058376260", "output": "270672213058376250 270672213058376251 270672213058376252" }, { "input": "271498451941492378 271498451941492378", "output": "-1" }, { "input": "272324690824608506 272324690824608523", "output": "272324690824608506 272324690824608507 272324690824608508" }, { "input": "273150934002691930 273150934002691962", "output": "273150934002691930 273150934002691931 273150934002691932" }, { "input": "996517375802030516 996517375802030524", "output": "996517375802030516 996517375802030517 996517375802030518" }, { "input": "997343614685146644 997343614685146694", "output": "997343614685146644 997343614685146645 997343614685146646" }, { "input": "998169857863230068 998169857863230083", "output": "998169857863230068 998169857863230069 998169857863230070" }, { "input": "998996101041313492 998996101041313522", "output": "998996101041313492 998996101041313493 998996101041313494" }, { "input": "999822344219396916 999822344219396961", "output": "999822344219396916 999822344219396917 999822344219396918" }, { "input": "648583102513043 648583102513053", "output": "648583102513044 648583102513045 648583102513046" }, { "input": "266540997167959130 266540997167959131", "output": "-1" }, { "input": "267367244641009850 267367244641009850", "output": "-1" }, { "input": "268193483524125978 268193483524125979", "output": "-1" }, { "input": "269019726702209402 269019726702209402", "output": "-1" }, { "input": "269845965585325530 269845965585325530", "output": "-1" }, { "input": "270672213058376250 270672213058376254", "output": "270672213058376250 270672213058376251 270672213058376252" }, { "input": "271498451941492378 271498451941492379", "output": "-1" }, { "input": "272324690824608506 272324690824608508", "output": "272324690824608506 272324690824608507 272324690824608508" }, { "input": "273150934002691930 273150934002691931", "output": "-1" }, { "input": "996517375802030516 996517375802030518", "output": "996517375802030516 996517375802030517 996517375802030518" }, { "input": "997343614685146644 997343614685146644", "output": "-1" }, { "input": "2147483647 2147483649", "output": "-1" }, { "input": "3 5", "output": "-1" }, { "input": "1 7", "output": "2 3 4" }, { "input": "9 12", "output": "9 11 12" }, { "input": "4 4", "output": "-1" }, { "input": "11 13", "output": "-1" }, { "input": "2 2", "output": "-1" } ]
1,602,245,003
2,147,483,647
Python 3
OK
TESTS
42
124
307,200
def gcd(a,b): if b==0: return a return gcd(b,a%b) l,r=map(int,input().split()) if r-l==0 or r-l==1: print(-1) else: if r-l==2: if l%2==0: print(l,l+1,r) else: print(-1) elif r-l > 2: if l%2==0: print(l,l+1,l+2) else: l+=1 print(l,l+1,l+2)
Title: Counterexample Time Limit: None seconds Memory Limit: None megabytes Problem Description: Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one. Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime. You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*. More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime. Input Specification: The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50). Output Specification: Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order. If the counterexample does not exist, print the single number -1. Demo Input: ['2 4\n', '10 11\n', '900000000000000009 900000000000000029\n'] Demo Output: ['2 3 4\n', '-1\n', '900000000000000009 900000000000000010 900000000000000021\n'] Note: In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are. In the second sample you cannot form a group of three distinct integers, so the answer is -1. In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
```python def gcd(a,b): if b==0: return a return gcd(b,a%b) l,r=map(int,input().split()) if r-l==0 or r-l==1: print(-1) else: if r-l==2: if l%2==0: print(l,l+1,r) else: print(-1) elif r-l > 2: if l%2==0: print(l,l+1,l+2) else: l+=1 print(l,l+1,l+2) ```
3
485
B
Valuable Resources
PROGRAMMING
1,300
[ "brute force", "greedy" ]
null
null
Many computer strategy games require building cities, recruiting army, conquering tribes, collecting resources. Sometimes it leads to interesting problems. Let's suppose that your task is to build a square city. The world map uses the Cartesian coordinates. The sides of the city should be parallel to coordinate axes. The map contains mines with valuable resources, located at some points with integer coordinates. The sizes of mines are relatively small, i.e. they can be treated as points. The city should be built in such a way that all the mines are inside or on the border of the city square. Building a city takes large amount of money depending on the size of the city, so you have to build the city with the minimum area. Given the positions of the mines find the minimum possible area of the city.
The first line of the input contains number *n* — the number of mines on the map (2<=≤<=*n*<=≤<=1000). Each of the next *n* lines contains a pair of integers *x**i* and *y**i* — the coordinates of the corresponding mine (<=-<=109<=≤<=*x**i*,<=*y**i*<=≤<=109). All points are pairwise distinct.
Print the minimum area of the city that can cover all the mines with valuable resources.
[ "2\n0 0\n2 2\n", "2\n0 0\n0 3\n" ]
[ "4\n", "9\n" ]
none
500
[ { "input": "2\n0 0\n2 2", "output": "4" }, { "input": "2\n0 0\n0 3", "output": "9" }, { "input": "2\n0 1\n1 0", "output": "1" }, { "input": "3\n2 2\n1 1\n3 3", "output": "4" }, { "input": "3\n3 1\n1 3\n2 2", "output": "4" }, { "input": "3\n0 1\n1 0\n2 2", "output": "4" }, { "input": "2\n-1000000000 -1000000000\n1000000000 1000000000", "output": "4000000000000000000" }, { "input": "2\n1000000000 -1000000000\n-1000000000 1000000000", "output": "4000000000000000000" }, { "input": "5\n-851545463 -208880322\n-154983867 -781305244\n293363100 785256340\n833468900 -593065920\n-920692803 -637662144", "output": "3077083280271860209" }, { "input": "10\n-260530833 169589238\n-681955770 -35391010\n223450511 24504262\n479795061 -26191863\n-291344265 21153856\n714700263 -328447419\n-858655942 161086142\n-270884153 462537328\n-501424901 977460517\n115284904 -151626824", "output": "2475449747812002025" }, { "input": "10\n917139470 819990899\n-69828590 691215072\n-846815289 112372447\n560780737 -890423729\n243241705 284240970\n-47397355 -263709479\n759162072 709456353\n-330469400 -597545533\n436509256 728506920\n133368867 668789238", "output": "3111536391798748081" }, { "input": "10\n-200157522 -824574736\n299208799 -287211553\n-160170880 148363130\n103709327 245344406\n482860382 547328085\n895537733 -545816336\n671947380 910981768\n-43209851 585461399\n-573679087 427675821\n151452830 27262384", "output": "3012156378576702016" }, { "input": "2\n-2 -2\n-3 -3", "output": "1" }, { "input": "2\n-1000 -1000\n-1100 -1100", "output": "10000" }, { "input": "2\n-5 -5\n-4 -4", "output": "1" }, { "input": "2\n-10 0\n-9 0", "output": "1" }, { "input": "2\n-10 -10\n-20 -20", "output": "100" }, { "input": "2\n-1000000 -1000000\n-100 -100", "output": "999800010000" }, { "input": "2\n100000000 100000000\n200000000 200000000", "output": "10000000000000000" }, { "input": "2\n-10 10\n-2 3", "output": "64" }, { "input": "2\n-999999999 -999999999\n-999999991 -999999991", "output": "64" }, { "input": "2\n-1000 -1000\n-999 -999", "output": "1" }, { "input": "2\n-3 0\n-5 0", "output": "4" }, { "input": "2\n999999999 999999999\n999999991 999999991", "output": "64" }, { "input": "2\n100000012 100000012\n100000012 100000013", "output": "1" } ]
1,415,207,551
2,551
Python 3
RUNTIME_ERROR
PRETESTS
0
46
0
#fin = open("input.txt") n = int(input()) n = int(fin.readline()) X1, Y1, X2, Y2 = 10 ** 9 * 2, 10 ** 9 * 2, -10 ** 9 * 2, -10 ** 9 * 2 for i in range(n): x, y = map(int, input().split()) #x, y = map(int, fin.readline().split()) X1, Y1, X2, Y2 = min(X1, x), min(Y1, y), max(X2, x), max(Y2, y) print(max((X2 - X1), (Y2 - Y1)) ** 2)
Title: Valuable Resources Time Limit: None seconds Memory Limit: None megabytes Problem Description: Many computer strategy games require building cities, recruiting army, conquering tribes, collecting resources. Sometimes it leads to interesting problems. Let's suppose that your task is to build a square city. The world map uses the Cartesian coordinates. The sides of the city should be parallel to coordinate axes. The map contains mines with valuable resources, located at some points with integer coordinates. The sizes of mines are relatively small, i.e. they can be treated as points. The city should be built in such a way that all the mines are inside or on the border of the city square. Building a city takes large amount of money depending on the size of the city, so you have to build the city with the minimum area. Given the positions of the mines find the minimum possible area of the city. Input Specification: The first line of the input contains number *n* — the number of mines on the map (2<=≤<=*n*<=≤<=1000). Each of the next *n* lines contains a pair of integers *x**i* and *y**i* — the coordinates of the corresponding mine (<=-<=109<=≤<=*x**i*,<=*y**i*<=≤<=109). All points are pairwise distinct. Output Specification: Print the minimum area of the city that can cover all the mines with valuable resources. Demo Input: ['2\n0 0\n2 2\n', '2\n0 0\n0 3\n'] Demo Output: ['4\n', '9\n'] Note: none
```python #fin = open("input.txt") n = int(input()) n = int(fin.readline()) X1, Y1, X2, Y2 = 10 ** 9 * 2, 10 ** 9 * 2, -10 ** 9 * 2, -10 ** 9 * 2 for i in range(n): x, y = map(int, input().split()) #x, y = map(int, fin.readline().split()) X1, Y1, X2, Y2 = min(X1, x), min(Y1, y), max(X2, x), max(Y2, y) print(max((X2 - X1), (Y2 - Y1)) ** 2) ```
-1
770
A
New Password
PROGRAMMING
800
[ "*special", "implementation" ]
null
null
Innokentiy decides to change the password in the social net "Contact!", but he is too lazy to invent a new password by himself. That is why he needs your help. Innokentiy decides that new password should satisfy the following conditions: - the length of the password must be equal to *n*, - the password should consist only of lowercase Latin letters, - the number of distinct symbols in the password must be equal to *k*, - any two consecutive symbols in the password must be distinct. Your task is to help Innokentiy and to invent a new password which will satisfy all given conditions.
The first line contains two positive integers *n* and *k* (2<=≤<=*n*<=≤<=100, 2<=≤<=*k*<=≤<=*min*(*n*,<=26)) — the length of the password and the number of distinct symbols in it. Pay attention that a desired new password always exists.
Print any password which satisfies all conditions given by Innokentiy.
[ "4 3\n", "6 6\n", "5 2\n" ]
[ "java\n", "python\n", "phphp\n" ]
In the first test there is one of the appropriate new passwords — java, because its length is equal to 4 and 3 distinct lowercase letters a, j and v are used in it. In the second test there is one of the appropriate new passwords — python, because its length is equal to 6 and it consists of 6 distinct lowercase letters. In the third test there is one of the appropriate new passwords — phphp, because its length is equal to 5 and 2 distinct lowercase letters p and h are used in it. Pay attention the condition that no two identical symbols are consecutive is correct for all appropriate passwords in tests.
500
[ { "input": "4 3", "output": "abca" }, { "input": "6 6", "output": "abcdef" }, { "input": "5 2", "output": "ababa" }, { "input": "3 2", "output": "aba" }, { "input": "10 2", "output": "ababababab" }, { "input": "26 13", "output": "abcdefghijklmabcdefghijklm" }, { "input": "100 2", "output": "abababababababababababababababababababababababababababababababababababababababababababababababababab" }, { "input": "100 10", "output": "abcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij" }, { "input": "3 3", "output": "abc" }, { "input": "6 3", "output": "abcabc" }, { "input": "10 3", "output": "abcabcabca" }, { "input": "50 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcab" }, { "input": "90 2", "output": "ababababababababababababababababababababababababababababababababababababababababababababab" }, { "input": "6 2", "output": "ababab" }, { "input": "99 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc" }, { "input": "4 2", "output": "abab" }, { "input": "100 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca" }, { "input": "40 22", "output": "abcdefghijklmnopqrstuvabcdefghijklmnopqr" }, { "input": "13 8", "output": "abcdefghabcde" }, { "input": "16 15", "output": "abcdefghijklmnoa" }, { "input": "17 17", "output": "abcdefghijklmnopq" }, { "input": "19 4", "output": "abcdabcdabcdabcdabc" }, { "input": "100 26", "output": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv" }, { "input": "100 25", "output": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxy" }, { "input": "26 26", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "27 26", "output": "abcdefghijklmnopqrstuvwxyza" }, { "input": "2 2", "output": "ab" }, { "input": "26 25", "output": "abcdefghijklmnopqrstuvwxya" }, { "input": "99 2", "output": "abababababababababababababababababababababababababababababababababababababababababababababababababa" }, { "input": "99 26", "output": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstu" }, { "input": "4 4", "output": "abcd" }, { "input": "5 3", "output": "abcab" }, { "input": "5 4", "output": "abcda" }, { "input": "5 5", "output": "abcde" }, { "input": "24 22", "output": "abcdefghijklmnopqrstuvab" }, { "input": "26 14", "output": "abcdefghijklmnabcdefghijkl" }, { "input": "26 15", "output": "abcdefghijklmnoabcdefghijk" }, { "input": "30 12", "output": "abcdefghijklabcdefghijklabcdef" }, { "input": "35 4", "output": "abcdabcdabcdabcdabcdabcdabcdabcdabc" }, { "input": "79 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca" }, { "input": "79 14", "output": "abcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghi" }, { "input": "85 13", "output": "abcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefg" }, { "input": "90 25", "output": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmno" }, { "input": "90 19", "output": "abcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmn" }, { "input": "26 24", "output": "abcdefghijklmnopqrstuvwxab" }, { "input": "100 17", "output": "abcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmno" }, { "input": "26 2", "output": "ababababababababababababab" } ]
1,627,581,686
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
61
6,963,200
n,k=map(int,input().split()) al="abcdefghijklmnopqrstuvwxyz" ch=k pas="" j=0 for i in range(len(al)): if len (pas)< n: if ch: pas=pas+al[i] ch=ch-1 else: pas=pas+pas[j] if j<len(pas)-1: j=j+1 else: j=0 else: break print(pas)
Title: New Password Time Limit: None seconds Memory Limit: None megabytes Problem Description: Innokentiy decides to change the password in the social net "Contact!", but he is too lazy to invent a new password by himself. That is why he needs your help. Innokentiy decides that new password should satisfy the following conditions: - the length of the password must be equal to *n*, - the password should consist only of lowercase Latin letters, - the number of distinct symbols in the password must be equal to *k*, - any two consecutive symbols in the password must be distinct. Your task is to help Innokentiy and to invent a new password which will satisfy all given conditions. Input Specification: The first line contains two positive integers *n* and *k* (2<=≤<=*n*<=≤<=100, 2<=≤<=*k*<=≤<=*min*(*n*,<=26)) — the length of the password and the number of distinct symbols in it. Pay attention that a desired new password always exists. Output Specification: Print any password which satisfies all conditions given by Innokentiy. Demo Input: ['4 3\n', '6 6\n', '5 2\n'] Demo Output: ['java\n', 'python\n', 'phphp\n'] Note: In the first test there is one of the appropriate new passwords — java, because its length is equal to 4 and 3 distinct lowercase letters a, j and v are used in it. In the second test there is one of the appropriate new passwords — python, because its length is equal to 6 and it consists of 6 distinct lowercase letters. In the third test there is one of the appropriate new passwords — phphp, because its length is equal to 5 and 2 distinct lowercase letters p and h are used in it. Pay attention the condition that no two identical symbols are consecutive is correct for all appropriate passwords in tests.
```python n,k=map(int,input().split()) al="abcdefghijklmnopqrstuvwxyz" ch=k pas="" j=0 for i in range(len(al)): if len (pas)< n: if ch: pas=pas+al[i] ch=ch-1 else: pas=pas+pas[j] if j<len(pas)-1: j=j+1 else: j=0 else: break print(pas) ```
0
598
B
Queries on a String
PROGRAMMING
1,300
[ "implementation", "strings" ]
null
null
You are given a string *s* and should process *m* queries. Each query is described by two 1-based indices *l**i*, *r**i* and integer *k**i*. It means that you should cyclically shift the substring *s*[*l**i*... *r**i*] *k**i* times. The queries should be processed one after another in the order they are given. One operation of a cyclic shift (rotation) is equivalent to moving the last character to the position of the first character and shifting all other characters one position to the right. For example, if the string *s* is abacaba and the query is *l*1<==<=3,<=*r*1<==<=6,<=*k*1<==<=1 then the answer is abbacaa. If after that we would process the query *l*2<==<=1,<=*r*2<==<=4,<=*k*2<==<=2 then we would get the string baabcaa.
The first line of the input contains the string *s* (1<=≤<=|*s*|<=≤<=10<=000) in its initial state, where |*s*| stands for the length of *s*. It contains only lowercase English letters. Second line contains a single integer *m* (1<=≤<=*m*<=≤<=300) — the number of queries. The *i*-th of the next *m* lines contains three integers *l**i*, *r**i* and *k**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=|*s*|,<=1<=≤<=*k**i*<=≤<=1<=000<=000) — the description of the *i*-th query.
Print the resulting string *s* after processing all *m* queries.
[ "abacaba\n2\n3 6 1\n1 4 2\n" ]
[ "baabcaa\n" ]
The sample is described in problem statement.
0
[ { "input": "abacaba\n2\n3 6 1\n1 4 2", "output": "baabcaa" }, { "input": "u\n1\n1 1 1", "output": "u" }, { "input": "p\n5\n1 1 5\n1 1 9\n1 1 10\n1 1 10\n1 1 4", "output": "p" }, { "input": "ssssssssss\n5\n5 7 9\n3 9 3\n2 7 1\n7 7 10\n1 9 6", "output": "ssssssssss" }, { "input": "tcpyzttcpo\n10\n2 3 6\n2 4 1\n2 6 9\n7 10 5\n2 3 5\n4 5 6\n3 4 5\n7 9 4\n9 10 7\n1 10 8", "output": "zctycopttp" }, { "input": "yywlblbblw\n10\n4 7 2\n3 8 2\n4 10 6\n4 7 1\n3 9 6\n1 7 3\n3 7 3\n3 7 1\n1 8 7\n2 7 5", "output": "bylwlwylbb" }, { "input": "thisisahacktest\n1\n1 2 1", "output": "htisisahacktest" }, { "input": "ozozumuhackleyan\n1\n1 4 1", "output": "zozoumuhackleyan" }, { "input": "lacongaithattuyet\n1\n1 1 1", "output": "lacongaithattuyet" } ]
1,668,514,648
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
1
61
2,867,200
def oi(): return int(input()) def os(): return input().rstrip() def mi(): return list(map(int, input().split())) # import sys # input = sys.stdin.readline # import sys # sys.setrecursionlimit(10**8) # import pypyjit # pypyjit.set_param('max_unroll_recursion=-1') input_count = 0 S = os() S = list(S) M = oi() for _ in range(M): l, r, k = mi() k = k%(r-l) temp = S[l-1:r] temp_r = temp[-k:] temp_l = temp[:-k] S[l-1:r] = temp_r + temp_l print("".join(S))
Title: Queries on a String Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a string *s* and should process *m* queries. Each query is described by two 1-based indices *l**i*, *r**i* and integer *k**i*. It means that you should cyclically shift the substring *s*[*l**i*... *r**i*] *k**i* times. The queries should be processed one after another in the order they are given. One operation of a cyclic shift (rotation) is equivalent to moving the last character to the position of the first character and shifting all other characters one position to the right. For example, if the string *s* is abacaba and the query is *l*1<==<=3,<=*r*1<==<=6,<=*k*1<==<=1 then the answer is abbacaa. If after that we would process the query *l*2<==<=1,<=*r*2<==<=4,<=*k*2<==<=2 then we would get the string baabcaa. Input Specification: The first line of the input contains the string *s* (1<=≤<=|*s*|<=≤<=10<=000) in its initial state, where |*s*| stands for the length of *s*. It contains only lowercase English letters. Second line contains a single integer *m* (1<=≤<=*m*<=≤<=300) — the number of queries. The *i*-th of the next *m* lines contains three integers *l**i*, *r**i* and *k**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=|*s*|,<=1<=≤<=*k**i*<=≤<=1<=000<=000) — the description of the *i*-th query. Output Specification: Print the resulting string *s* after processing all *m* queries. Demo Input: ['abacaba\n2\n3 6 1\n1 4 2\n'] Demo Output: ['baabcaa\n'] Note: The sample is described in problem statement.
```python def oi(): return int(input()) def os(): return input().rstrip() def mi(): return list(map(int, input().split())) # import sys # input = sys.stdin.readline # import sys # sys.setrecursionlimit(10**8) # import pypyjit # pypyjit.set_param('max_unroll_recursion=-1') input_count = 0 S = os() S = list(S) M = oi() for _ in range(M): l, r, k = mi() k = k%(r-l) temp = S[l-1:r] temp_r = temp[-k:] temp_l = temp[:-k] S[l-1:r] = temp_r + temp_l print("".join(S)) ```
-1
812
A
Sagheer and Crossroads
PROGRAMMING
1,200
[ "implementation" ]
null
null
Sagheer is walking in the street when he comes to an intersection of two roads. Each road can be represented as two parts where each part has 3 lanes getting into the intersection (one for each direction) and 3 lanes getting out of the intersection, so we have 4 parts in total. Each part has 4 lights, one for each lane getting into the intersection (*l* — left, *s* — straight, *r* — right) and a light *p* for a pedestrian crossing. An accident is possible if a car can hit a pedestrian. This can happen if the light of a pedestrian crossing of some part and the light of a lane that can get to or from that same part are green at the same time. Now, Sagheer is monitoring the configuration of the traffic lights. Your task is to help him detect whether an accident is possible.
The input consists of four lines with each line describing a road part given in a counter-clockwise order. Each line contains four integers *l*, *s*, *r*, *p* — for the left, straight, right and pedestrian lights, respectively. The possible values are 0 for red light and 1 for green light.
On a single line, print "YES" if an accident is possible, and "NO" otherwise.
[ "1 0 0 1\n0 1 0 0\n0 0 1 0\n0 0 0 1\n", "0 1 1 0\n1 0 1 0\n1 1 0 0\n0 0 0 1\n", "1 0 0 0\n0 0 0 1\n0 0 0 0\n1 0 1 0\n" ]
[ "YES\n", "NO\n", "NO\n" ]
In the first example, some accidents are possible because cars of part 1 can hit pedestrians of parts 1 and 4. Also, cars of parts 2 and 3 can hit pedestrians of part 4. In the second example, no car can pass the pedestrian crossing of part 4 which is the only green pedestrian light. So, no accident can occur.
500
[ { "input": "1 0 0 1\n0 1 0 0\n0 0 1 0\n0 0 0 1", "output": "YES" }, { "input": "0 1 1 0\n1 0 1 0\n1 1 0 0\n0 0 0 1", "output": "NO" }, { "input": "1 0 0 0\n0 0 0 1\n0 0 0 0\n1 0 1 0", "output": "NO" }, { "input": "0 0 0 0\n0 0 0 1\n0 0 0 1\n0 0 0 1", "output": "NO" }, { "input": "1 1 1 0\n0 1 0 1\n1 1 1 0\n1 1 1 1", "output": "YES" }, { "input": "0 1 1 0\n0 1 0 0\n1 0 0 1\n1 0 0 0", "output": "YES" }, { "input": "1 0 0 0\n0 1 0 0\n1 1 0 0\n0 1 1 0", "output": "NO" }, { "input": "0 0 0 0\n0 1 0 1\n1 0 1 1\n1 1 1 0", "output": "YES" }, { "input": "1 1 0 0\n0 1 0 1\n1 1 1 0\n0 0 1 1", "output": "YES" }, { "input": "0 1 0 0\n0 0 0 0\n1 0 0 0\n0 0 0 1", "output": "NO" }, { "input": "0 0 1 0\n0 0 0 0\n1 1 0 0\n0 0 0 1", "output": "NO" }, { "input": "0 0 1 0\n0 1 0 1\n1 0 1 0\n0 0 1 0", "output": "YES" }, { "input": "1 1 1 0\n0 1 0 1\n1 1 1 1\n0 0 0 1", "output": "YES" }, { "input": "0 0 1 0\n0 0 0 0\n0 0 0 1\n0 0 0 1", "output": "NO" }, { "input": "0 0 0 0\n0 0 0 1\n0 0 0 1\n0 0 0 1", "output": "NO" }, { "input": "0 0 0 0\n0 1 0 1\n1 0 1 1\n0 0 0 1", "output": "YES" }, { "input": "1 1 0 0\n0 1 0 0\n1 1 1 0\n1 0 1 0", "output": "NO" }, { "input": "0 0 0 0\n0 0 0 0\n0 0 0 1\n0 0 0 1", "output": "NO" }, { "input": "1 0 1 0\n1 1 0 0\n1 1 0 0\n0 0 0 0", "output": "NO" }, { "input": "0 0 1 0\n1 1 0 0\n1 0 1 0\n1 0 0 0", "output": "NO" }, { "input": "0 0 1 0\n1 0 0 0\n0 0 0 1\n0 0 0 1", "output": "NO" }, { "input": "0 1 1 0\n1 1 0 1\n1 0 0 1\n1 1 1 0", "output": "YES" }, { "input": "1 0 0 0\n1 1 0 0\n1 1 0 1\n0 0 1 0", "output": "YES" }, { "input": "0 0 0 0\n1 1 0 0\n0 0 0 1\n0 0 1 0", "output": "NO" }, { "input": "0 1 0 0\n0 0 0 1\n0 1 0 0\n0 0 0 1", "output": "NO" }, { "input": "0 1 0 0\n1 1 0 1\n1 0 0 1\n1 1 0 1", "output": "YES" }, { "input": "1 0 0 1\n0 0 0 0\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 1 0 1\n0 0 0 0\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 1 1\n0 0 0 0\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 1\n1 0 0 0\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 1\n0 1 0 0\n0 0 0 0\n0 0 0 0", "output": "NO" }, { "input": "0 0 0 1\n0 0 1 0\n0 0 0 0\n0 0 0 0", "output": "NO" }, { "input": "0 0 0 1\n0 0 0 0\n1 0 0 0\n0 0 0 0", "output": "NO" }, { "input": "0 0 0 1\n0 0 0 0\n0 1 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 1\n0 0 0 0\n0 0 1 0\n0 0 0 0", "output": "NO" }, { "input": "0 0 0 1\n0 0 0 0\n0 0 0 0\n1 0 0 0", "output": "NO" }, { "input": "0 0 0 1\n0 0 0 0\n0 0 0 0\n0 1 0 0", "output": "NO" }, { "input": "0 0 0 1\n0 0 0 0\n0 0 0 0\n0 0 1 0", "output": "YES" }, { "input": "1 0 0 0\n0 0 0 1\n0 0 0 0\n0 0 0 0", "output": "NO" }, { "input": "0 1 0 0\n0 0 0 1\n0 0 0 0\n0 0 0 0", "output": "NO" }, { "input": "0 0 1 0\n0 0 0 1\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 0\n1 0 0 1\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 0\n0 1 0 1\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 0\n0 0 1 1\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 0\n0 0 0 1\n1 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 0\n0 0 0 1\n0 1 0 0\n0 0 0 0", "output": "NO" }, { "input": "0 0 0 0\n0 0 0 1\n0 0 1 0\n0 0 0 0", "output": "NO" }, { "input": "0 0 0 0\n0 0 0 1\n0 0 0 0\n1 0 0 0", "output": "NO" }, { "input": "0 0 0 0\n0 0 0 1\n0 0 0 0\n0 1 0 0", "output": "YES" }, { "input": "0 0 0 0\n0 0 0 1\n0 0 0 0\n0 0 1 0", "output": "NO" }, { "input": "1 0 0 0\n0 0 0 0\n0 0 0 1\n0 0 0 0", "output": "NO" }, { "input": "0 1 0 0\n0 0 0 0\n0 0 0 1\n0 0 0 0", "output": "YES" }, { "input": "0 0 1 0\n0 0 0 0\n0 0 0 1\n0 0 0 0", "output": "NO" }, { "input": "0 0 0 0\n1 0 0 0\n0 0 0 1\n0 0 0 0", "output": "NO" }, { "input": "0 0 0 0\n0 1 0 0\n0 0 0 1\n0 0 0 0", "output": "NO" }, { "input": "0 0 0 0\n0 0 1 0\n0 0 0 1\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 0\n0 0 0 0\n1 0 0 1\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 0\n0 0 0 0\n0 1 0 1\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 0\n0 0 0 0\n0 0 1 1\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 0\n0 0 0 0\n0 0 0 1\n1 0 0 0", "output": "YES" }, { "input": "0 0 0 0\n0 0 0 0\n0 0 0 1\n0 1 0 0", "output": "NO" }, { "input": "0 0 0 0\n0 0 0 0\n0 0 0 1\n0 0 1 0", "output": "NO" }, { "input": "1 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 1", "output": "YES" }, { "input": "0 1 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 1", "output": "NO" }, { "input": "0 0 1 0\n0 0 0 0\n0 0 0 0\n0 0 0 1", "output": "NO" }, { "input": "0 0 0 0\n1 0 0 0\n0 0 0 0\n0 0 0 1", "output": "NO" }, { "input": "0 0 0 0\n0 1 0 0\n0 0 0 0\n0 0 0 1", "output": "YES" }, { "input": "0 0 0 0\n0 0 1 0\n0 0 0 0\n0 0 0 1", "output": "NO" }, { "input": "0 0 0 0\n0 0 0 0\n1 0 0 0\n0 0 0 1", "output": "NO" }, { "input": "0 0 0 0\n0 0 0 0\n0 1 0 0\n0 0 0 1", "output": "NO" }, { "input": "0 0 0 0\n0 0 0 0\n0 0 1 0\n0 0 0 1", "output": "YES" }, { "input": "0 0 0 0\n0 0 0 0\n0 0 0 0\n1 0 0 1", "output": "YES" }, { "input": "0 0 0 0\n0 0 0 0\n0 0 0 0\n0 1 0 1", "output": "YES" }, { "input": "0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 1 1", "output": "YES" }, { "input": "0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0", "output": "NO" }, { "input": "1 1 1 1\n1 1 1 1\n1 1 1 1\n1 1 1 1", "output": "YES" }, { "input": "1 0 0 0\n0 1 0 0\n0 0 1 0\n0 0 0 1", "output": "YES" }, { "input": "1 1 1 1\n0 0 0 0\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "1 0 0 1\n0 0 0 0\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 1 1\n0 0 0 0\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 1 0 1\n0 0 0 0\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 1\n1 0 0 0\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 1 0 0\n0 0 0 0\n0 0 0 1\n0 0 0 0", "output": "YES" }, { "input": "0 1 1 0\n1 0 1 0\n1 1 1 0\n0 0 0 1", "output": "YES" }, { "input": "1 1 0 1\n0 0 0 0\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "1 1 1 0\n1 1 1 0\n1 1 1 0\n0 0 0 1", "output": "YES" }, { "input": "1 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 1", "output": "YES" }, { "input": "0 0 0 1\n0 0 0 0\n0 1 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 1\n0 0 1 1\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 1\n0 1 1 1\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 1\n0 1 0 1\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "0 0 0 1\n0 0 0 1\n0 0 0 0\n0 1 0 0", "output": "YES" }, { "input": "0 0 0 1\n0 0 0 1\n1 0 0 0\n0 0 0 0", "output": "YES" } ]
1,497,028,042
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
46
307,200
l1=list(map(int,input().split())) l2=list(map(int,input().split())) l3=list(map(int,input().split())) l4=list(map(int,input().split())) count=0 if(l1[3]==1 and (l1[0]==1 or l1[1]==1 or l1[2]==1 or l2[0]==1 or l3[1]==1 or l4[2]==1)): count=1 elif(l2[3]==1 and (l1[2]==1 or l2[0]==1 or l2[1]==1 or l2[2]==1 or l3[0]==1 or l4[1]==1)): count=1 print("okay") elif(l3[3]==1 and(l1[1]==1 or l2[2]==1 or l3[0]==1 or l3[1]==1 or l3[2]==1 or l4[0]==1)): count=1 elif(l4[3]==1 and(l1[0]==1 or l2[1]==1 or l3[2]==1 or l4[0]==1 or l4[1]==1 or l4[2]==1)): count=1 if(count==1): print("YES") else: print("NO")
Title: Sagheer and Crossroads Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sagheer is walking in the street when he comes to an intersection of two roads. Each road can be represented as two parts where each part has 3 lanes getting into the intersection (one for each direction) and 3 lanes getting out of the intersection, so we have 4 parts in total. Each part has 4 lights, one for each lane getting into the intersection (*l* — left, *s* — straight, *r* — right) and a light *p* for a pedestrian crossing. An accident is possible if a car can hit a pedestrian. This can happen if the light of a pedestrian crossing of some part and the light of a lane that can get to or from that same part are green at the same time. Now, Sagheer is monitoring the configuration of the traffic lights. Your task is to help him detect whether an accident is possible. Input Specification: The input consists of four lines with each line describing a road part given in a counter-clockwise order. Each line contains four integers *l*, *s*, *r*, *p* — for the left, straight, right and pedestrian lights, respectively. The possible values are 0 for red light and 1 for green light. Output Specification: On a single line, print "YES" if an accident is possible, and "NO" otherwise. Demo Input: ['1 0 0 1\n0 1 0 0\n0 0 1 0\n0 0 0 1\n', '0 1 1 0\n1 0 1 0\n1 1 0 0\n0 0 0 1\n', '1 0 0 0\n0 0 0 1\n0 0 0 0\n1 0 1 0\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: In the first example, some accidents are possible because cars of part 1 can hit pedestrians of parts 1 and 4. Also, cars of parts 2 and 3 can hit pedestrians of part 4. In the second example, no car can pass the pedestrian crossing of part 4 which is the only green pedestrian light. So, no accident can occur.
```python l1=list(map(int,input().split())) l2=list(map(int,input().split())) l3=list(map(int,input().split())) l4=list(map(int,input().split())) count=0 if(l1[3]==1 and (l1[0]==1 or l1[1]==1 or l1[2]==1 or l2[0]==1 or l3[1]==1 or l4[2]==1)): count=1 elif(l2[3]==1 and (l1[2]==1 or l2[0]==1 or l2[1]==1 or l2[2]==1 or l3[0]==1 or l4[1]==1)): count=1 print("okay") elif(l3[3]==1 and(l1[1]==1 or l2[2]==1 or l3[0]==1 or l3[1]==1 or l3[2]==1 or l4[0]==1)): count=1 elif(l4[3]==1 and(l1[0]==1 or l2[1]==1 or l3[2]==1 or l4[0]==1 or l4[1]==1 or l4[2]==1)): count=1 if(count==1): print("YES") else: print("NO") ```
0
58
A
Chat room
PROGRAMMING
1,000
[ "greedy", "strings" ]
A. Chat room
1
256
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
If Vasya managed to say hello, print "YES", otherwise print "NO".
[ "ahhellllloou\n", "hlelo\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "ahhellllloou", "output": "YES" }, { "input": "hlelo", "output": "NO" }, { "input": "helhcludoo", "output": "YES" }, { "input": "hehwelloho", "output": "YES" }, { "input": "pnnepelqomhhheollvlo", "output": "YES" }, { "input": "tymbzjyqhymedasloqbq", "output": "NO" }, { "input": "yehluhlkwo", "output": "NO" }, { "input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello", "output": "YES" }, { "input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq", "output": "YES" }, { "input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi", "output": "YES" }, { "input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo", "output": "YES" }, { "input": "lqllcolohwflhfhlnaow", "output": "NO" }, { "input": "heheeellollvoo", "output": "YES" }, { "input": "hellooo", "output": "YES" }, { "input": "o", "output": "NO" }, { "input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv", "output": "YES" }, { "input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk", "output": "YES" }, { "input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry", "output": "NO" }, { "input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq", "output": "NO" }, { "input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi", "output": "YES" }, { "input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm", "output": "YES" }, { "input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac", "output": "NO" }, { "input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok", "output": "YES" }, { "input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz", "output": "YES" }, { "input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb", "output": "YES" }, { "input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla", "output": "YES" }, { "input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz", "output": "YES" }, { "input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti", "output": "YES" }, { "input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli", "output": "YES" }, { "input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo", "output": "YES" }, { "input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk", "output": "NO" }, { "input": "loee", "output": "NO" }, { "input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo", "output": "NO" }, { "input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi", "output": "YES" }, { "input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv", "output": "NO" }, { "input": "hello", "output": "YES" }, { "input": "oohell", "output": "NO" }, { "input": "hell", "output": "NO" }, { "input": "eloellohoelo", "output": "NO" }, { "input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo", "output": "YES" } ]
1,541,492,752
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
109
0
w=list(input()) s=len(w) for i in range(s): if w[i]=='h': a=i break for i in range(s): if w[i]=='e': b=i break for i in range(s): if w[i]=='l': c=i w.remove("l") break for i in range(s-1): if w[i]=="l": d=i break for i in range(s-1): if w[i]=="o": e=i if a<b<c<=d<e: print('YES') else: print('NO')
Title: Chat room Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*. Input Specification: The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters. Output Specification: If Vasya managed to say hello, print "YES", otherwise print "NO". Demo Input: ['ahhellllloou\n', 'hlelo\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python w=list(input()) s=len(w) for i in range(s): if w[i]=='h': a=i break for i in range(s): if w[i]=='e': b=i break for i in range(s): if w[i]=='l': c=i w.remove("l") break for i in range(s-1): if w[i]=="l": d=i break for i in range(s-1): if w[i]=="o": e=i if a<b<c<=d<e: print('YES') else: print('NO') ```
0
907
B
Tic-Tac-Toe
PROGRAMMING
1,400
[ "implementation" ]
null
null
Two bears are playing tic-tac-toe via mail. It's boring for them to play usual tic-tac-toe game, so they are a playing modified version of this game. Here are its rules. The game is played on the following field. Players are making moves by turns. At first move a player can put his chip in any cell of any small field. For following moves, there are some restrictions: if during last move the opposite player put his chip to cell with coordinates (*x**l*,<=*y**l*) in some small field, the next move should be done in one of the cells of the small field with coordinates (*x**l*,<=*y**l*). For example, if in the first move a player puts his chip to lower left cell of central field, then the second player on his next move should put his chip into some cell of lower left field (pay attention to the first test case). If there are no free cells in the required field, the player can put his chip to any empty cell on any field. You are given current state of the game and coordinates of cell in which the last move was done. You should find all cells in which the current player can put his chip. A hare works as a postman in the forest, he likes to foul bears. Sometimes he changes the game field a bit, so the current state of the game could be unreachable. However, after his changes the cell where the last move was done is not empty. You don't need to find if the state is unreachable or not, just output possible next moves according to the rules.
First 11 lines contains descriptions of table with 9 rows and 9 columns which are divided into 9 small fields by spaces and empty lines. Each small field is described by 9 characters without spaces and empty lines. character "x" (ASCII-code 120) means that the cell is occupied with chip of the first player, character "o" (ASCII-code 111) denotes a field occupied with chip of the second player, character "." (ASCII-code 46) describes empty cell. The line after the table contains two integers *x* and *y* (1<=≤<=*x*,<=*y*<=≤<=9). They describe coordinates of the cell in table where the last move was done. Rows in the table are numbered from up to down and columns are numbered from left to right. It's guaranteed that cell where the last move was done is filled with "x" or "o". Also, it's guaranteed that there is at least one empty cell. It's not guaranteed that current state of game is reachable.
Output the field in same format with characters "!" (ASCII-code 33) on positions where the current player can put his chip. All other cells should not be modified.
[ "... ... ...\n... ... ...\n... ... ...\n\n... ... ...\n... ... ...\n... x.. ...\n\n... ... ...\n... ... ...\n... ... ...\n6 4\n", "xoo x.. x..\nooo ... ...\nooo ... ...\n\nx.. x.. x..\n... ... ...\n... ... ...\n\nx.. x.. x..\n... ... ...\n... ... ...\n7 4\n", "o.. ... ...\n... ... ...\n... ... ...\n\n... xxx ...\n... xox ...\n... ooo ...\n\n... ... ...\n... ... ...\n... ... ...\n5 5\n" ]
[ "... ... ... \n... ... ... \n... ... ... \n\n... ... ... \n... ... ... \n... x.. ... \n\n!!! ... ... \n!!! ... ... \n!!! ... ... \n\n", "xoo x!! x!! \nooo !!! !!! \nooo !!! !!! \n\nx!! x!! x!! \n!!! !!! !!! \n!!! !!! !!! \n\nx!! x!! x!! \n!!! !!! !!! \n!!! !!! !!! \n\n", "o!! !!! !!! \n!!! !!! !!! \n!!! !!! !!! \n\n!!! xxx !!! \n!!! xox !!! \n!!! ooo !!! \n\n!!! !!! !!! \n!!! !!! !!! \n!!! !!! !!! \n\n" ]
In the first test case the first player made a move to lower left cell of central field, so the second player can put a chip only to cells of lower left field. In the second test case the last move was done to upper left cell of lower central field, however all cells in upper left field are occupied, so the second player can put his chip to any empty cell. In the third test case the last move was done to central cell of central field, so current player can put his chip to any cell of central field, which is already occupied, so he can move anywhere. Pay attention that this state of the game is unreachable.
1,000
[ { "input": "... ... ...\n... ... ...\n... ... ...\n\n... ... ...\n... ... ...\n... x.. ...\n\n... ... ...\n... ... ...\n... ... ...\n6 4", "output": "... ... ... \n... ... ... \n... ... ... \n\n... ... ... \n... ... ... \n... x.. ... \n\n!!! ... ... \n!!! ... ... \n!!! ... ... " }, { "input": "xoo x.. x..\nooo ... ...\nooo ... ...\n\nx.. x.. x..\n... ... ...\n... ... ...\n\nx.. x.. x..\n... ... ...\n... ... ...\n7 4", "output": "xoo x!! x!! \nooo !!! !!! \nooo !!! !!! \n\nx!! x!! x!! \n!!! !!! !!! \n!!! !!! !!! \n\nx!! x!! x!! \n!!! !!! !!! \n!!! !!! !!! " }, { "input": "o.. ... ...\n... ... ...\n... ... ...\n\n... xxx ...\n... xox ...\n... ooo ...\n\n... ... ...\n... ... ...\n... ... ...\n5 5", "output": "o!! !!! !!! \n!!! !!! !!! \n!!! !!! !!! \n\n!!! xxx !!! \n!!! xox !!! \n!!! ooo !!! \n\n!!! !!! !!! \n!!! !!! !!! \n!!! !!! !!! " }, { "input": ".o. .o. ..x\n..x .xx ..o\n... ... ...\n\n... ... xxo\n..x o.o oxo\n.x. .o. xoo\n\n... o.. ...\n..o .xx ..x\n... ... ...\n5 9", "output": "!o! !o! !!x \n!!x !xx !!o \n!!! !!! !!! \n\n!!! !!! xxo \n!!x o!o oxo \n!x! !o! xoo \n\n!!! o!! !!! \n!!o !xx !!x \n!!! !!! !!! " }, { "input": "... .o. ...\n... ... ...\n... ... ...\n\n... ... ...\n... ... ...\n... .x. ..x\n\n.x. ... ...\n..o ... .o.\n... o.o xx.\n1 5", "output": "... !o! ... \n... !!! ... \n... !!! ... \n\n... ... ... \n... ... ... \n... .x. ..x \n\n.x. ... ... \n..o ... .o. \n... o.o xx. " }, { "input": "ooo oxx xxo\nx.x oox xox\noox xo. xxx\n\nxxo xxx o.o\nxoo xo. oxo\nooo xox ox.\n\nxoo xoo .oo\nxox xox ox.\noxx xox oxo\n1 3", "output": "ooo oxx xxo \nx!x oox xox \noox xo! xxx \n\nxxo xxx o!o \nxoo xo! oxo \nooo xox ox! \n\nxoo xoo !oo \nxox xox ox! \noxx xox oxo " }, { "input": "... ... ...\n..o ... ..o\n... .x. ..x\n\nx.. ... ...\n.x. .ox oo.\n... .xo ..x\n\n... ... .ox\n... ox. ..x\n... ..o .o.\n2 3", "output": "... ... ... \n..o ... ..o \n... .x. ..x \n\nx.. ... !!! \n.x. .ox oo! \n... .xo !!x \n\n... ... .ox \n... ox. ..x \n... ..o .o. " }, { "input": "xox o.x xxo\nxox xox oxo\nxxx .xx xoo\n\nooo oox o.x\n.xx xx. oo.\nooo xox ooo\n\nooo oxo xox\nx.x xox xox\noxo x.o xxo\n1 7", "output": "xox o!x xxo \nxox xox oxo \nxxx !xx xoo \n\nooo oox o!x \n!xx xx! oo! \nooo xox ooo \n\nooo oxo xox \nx!x xox xox \noxo x!o xxo " }, { "input": "ox. x.o ..x\n... ..o .o.\n.o. ... x.o\n\nx.x .oo ...\n..o ox. .xx\n..x o.x .o.\n\n... ... .x.\nox. xx. .o.\n... ... ..o\n9 9", "output": "ox. x.o ..x \n... ..o .o. \n.o. ... x.o \n\nx.x .oo ... \n..o ox. .xx \n..x o.x .o. \n\n... ... !x! \nox. xx. !o! \n... ... !!o " }, { "input": "xx. oxx .xo\nxxx o.o xox\nxoo xoo xoo\n\nooo o.x xox\no.. xoo .xo\noxx .x. xoo\n\nooo oxo oxx\nxxx xox ..o\noo. oxx xx.\n3 8", "output": "xx! oxx !xo \nxxx o!o xox \nxoo xoo xoo \n\nooo o!x xox \no!! xoo !xo \noxx !x! xoo \n\nooo oxo oxx \nxxx xox !!o \noo! oxx xx! " }, { "input": "... xo. o..\noo. ..o xx.\n..x x.. ..o\n\n.ox .xx ...\no.x xox xo.\nxox .xo ..o\n\n..o ... xxo\no.. .o. oxo\n..o x.. ..x\n8 9", "output": "... xo. o.. \noo. ..o xx. \n..x x.. ..o \n\n.ox .xx !!! \no.x xox xo! \nxox .xo !!o \n\n..o ... xxo \no.. .o. oxo \n..o x.. ..x " }, { "input": "oox xoo xxx\nooo xxo oxo\nxxx xoo xxo\n\noxo oxx xoo\nxoo oox xox\nxox oox oox\n\nxxo xoo oxo\noxx xxx xxx\noxo oxo oo.\n1 5", "output": "oox xoo xxx \nooo xxo oxo \nxxx xoo xxo \n\noxo oxx xoo \nxoo oox xox \nxox oox oox \n\nxxo xoo oxo \noxx xxx xxx \noxo oxo oo! " }, { "input": ".oo x.o xoo\n.o. xxx .x.\n..o x.o xxx\n\n..o .oo .xx\n.x. xox o.o\n.xo o.o .x.\n\n.o. xo. xxx\n.xo o.. .xo\n..o ..o xox\n1 8", "output": ".oo x!o xoo \n.o. xxx .x. \n..o x!o xxx \n\n..o .oo .xx \n.x. xox o.o \n.xo o.o .x. \n\n.o. xo. xxx \n.xo o.. .xo \n..o ..o xox " }, { "input": "xxo xoo xxo\nooo ooo xxx\noox oxo oxx\n\noxo oxo xxx\nxoo oxx oxo\nxxx oxx ooo\n\noxx xoo xxo\nxxx oox xox\nxxo o.o oxo\n9 6", "output": "xxo xoo xxo \nooo ooo xxx \noox oxo oxx \n\noxo oxo xxx \nxoo oxx oxo \nxxx oxx ooo \n\noxx xoo xxo \nxxx oox xox \nxxo o!o oxo " }, { "input": "ox. o.x .o.\nxxo xoo .oo\n.xx oox o..\n\nxx. oox oxx\noox oxx xxo\nxo. oxo x.x\n\no.x .x. xx.\n.xo ox. ooo\n.ox xo. ..o\n6 2", "output": "ox. o.x .o. \nxxo xoo .oo \n.xx oox o.. \n\nxx. oox oxx \noox oxx xxo \nxo. oxo x.x \n\no.x !x! xx. \n.xo ox! ooo \n.ox xo! ..o " }, { "input": "oxo xoo ox.\nxxx xoo xxo\nxoo xxx xox\n\nxxx xxx xoo\nooo o.o oxx\nxxo ooo xxx\n\nooo oox ooo\nooo oxo xxx\nxxo xox xxo\n6 1", "output": "oxo xoo ox! \nxxx xoo xxo \nxoo xxx xox \n\nxxx xxx xoo \nooo o!o oxx \nxxo ooo xxx \n\nooo oox ooo \nooo oxo xxx \nxxo xox xxo " }, { "input": ".xo oxx xoo\nooo .xo xxx\noxo oox xoo\n\nx.o xoo xxx\nxo. oxo oxx\nx.x xoo o.o\n\nxoo xox oxx\nooo .x. .xx\nxox x.. xoo\n6 5", "output": ".xo oxx xoo \nooo .xo xxx \noxo oox xoo \n\nx.o xoo xxx \nxo. oxo oxx \nx.x xoo o.o \n\nxoo xox oxx \nooo !x! .xx \nxox x!! xoo " }, { "input": "oxo xox ooo\n.xo xxo oxx\nxxx oxo xxx\n\nxxo oxx .xx\nxo. xoo oxx\noxo oxx xox\n\nxoo ooo oox\nooo ooo xxo\nxxx x.o oxo\n2 2", "output": "oxo xox ooo \n!xo xxo oxx \nxxx oxo xxx \n\nxxo oxx !xx \nxo! xoo oxx \noxo oxx xox \n\nxoo ooo oox \nooo ooo xxo \nxxx x!o oxo " }, { "input": "xox xxx xoo\nxoo xxx oxo\nxoo oox xoo\n\noxo oox xox\noxo xox xox\noox xoo oox\n\no.o xox oox\noox xxo xxo\nxox xxx oxo\n3 4", "output": "xox xxx xoo \nxoo xxx oxo \nxoo oox xoo \n\noxo oox xox \noxo xox xox \noox xoo oox \n\no!o xox oox \noox xxo xxo \nxox xxx oxo " }, { "input": "ooo xxx .x.\nxxo oox ooo\n.o. oox xxx\n\nxox oxx xxo\nxxx oxx oxx\noxx ooo ooo\n\n.oo xoo xo.\nxxo oox ooo\nxox xxx xxo\n5 1", "output": "ooo xxx !x! \nxxo oox ooo \n!o! oox xxx \n\nxox oxx xxo \nxxx oxx oxx \noxx ooo ooo \n\n!oo xoo xo! \nxxo oox ooo \nxox xxx xxo " } ]
1,614,697,222
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
93
819,200
import itertools import bisect import collections import math import sys from collections import * import os import sys from io import BytesIO, IOBase ii = lambda: int(input()) lmii = lambda: list(map(int, input().split())) li = lambda: list(input()) mii = lambda: map(int, input().split()) msi = lambda: map(str, input().split()) def main(): lst = [] for i in range(11): lst.append(li()) x, y = mii() s1, s2, s3, s4, s5, s6, s7, s8, s9 = "", "", "", "", "", "", "", "", "" for i in range(len(lst)): for j in range(len(lst[i])): if i <= 2 and j <= 2: s1 += lst[i][j] if 4 <= i <= 6 and j <= 2: s4 += lst[i][j] if 8 <= i <= 10 and j <= 2: s7 += lst[i][j] if i <= 2 and 4 <= j <= 6: s2 += lst[i][j] if 4 <= i <= 6 and 4 <= j <= 6: s5 += lst[i][j] if 8 <= i <= 10 and 4 <= j <= 6: s8 += lst[i][j] if i <= 2 and 8 <= j <= 10: s3 += lst[i][j] if 4 <= i <= 6 and 8 <= j <= 10: s6 += lst[i][j] if 8 <= i <= 10 and 8 <= j <= 10: s9 += lst[i][j] if x >= 1 and (x - 1) % 3 == 0 and y >= 1 and (y - 1) % 3 == 0: if s1.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if i <= 2 and j <= 2 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif x >= 1 and (x - 1) % 3 == 0 and y >= 2 and (y - 2) % 3 == 0: if s2.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if i <= 2 and 4 <= j <= 6 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif x >= 1 and (x - 1) % 3 == 0 and y % 3 == 0: if s3.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if i <= 2 and 8 <= j <= 10 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif x >= 2 and (x - 2) % 3 == 0 and y >= 1 and (y - 1) % 3 == 0: if s4.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if 4 <= i <= 6 and j <= 2 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif x >= 2 and (x - 2) % 3 == 0 and y >= 2 and (y - 2) % 3 == 0: if s5.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if 4 <= i <= 6 and 4 <= j <= 6 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif x >= 2 and (x - 2) % 3 == 0 and (y - 0) % 3 == 0: if s6.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if 4 <= i <= 6 and 8 <= j <= 10 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif (x - 0) % 3 == 0 and y >= 1 and (y - 1) % 3 == 0: if s7.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if 8 <= i <= 10 and j <= 2 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif (x - 0) % 3 == 0 and y >= 2 and (y - 2) % 3 == 0: if s8.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if 8 <= i <= 10 and 4 <= j <= 6 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" else: if s9.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if 8 <= i <= 10 and 8 <= j <= 10 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" for i in range(len(lst)): print(*lst[i]) return BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion if __name__ == "__main__": main()
Title: Tic-Tac-Toe Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two bears are playing tic-tac-toe via mail. It's boring for them to play usual tic-tac-toe game, so they are a playing modified version of this game. Here are its rules. The game is played on the following field. Players are making moves by turns. At first move a player can put his chip in any cell of any small field. For following moves, there are some restrictions: if during last move the opposite player put his chip to cell with coordinates (*x**l*,<=*y**l*) in some small field, the next move should be done in one of the cells of the small field with coordinates (*x**l*,<=*y**l*). For example, if in the first move a player puts his chip to lower left cell of central field, then the second player on his next move should put his chip into some cell of lower left field (pay attention to the first test case). If there are no free cells in the required field, the player can put his chip to any empty cell on any field. You are given current state of the game and coordinates of cell in which the last move was done. You should find all cells in which the current player can put his chip. A hare works as a postman in the forest, he likes to foul bears. Sometimes he changes the game field a bit, so the current state of the game could be unreachable. However, after his changes the cell where the last move was done is not empty. You don't need to find if the state is unreachable or not, just output possible next moves according to the rules. Input Specification: First 11 lines contains descriptions of table with 9 rows and 9 columns which are divided into 9 small fields by spaces and empty lines. Each small field is described by 9 characters without spaces and empty lines. character "x" (ASCII-code 120) means that the cell is occupied with chip of the first player, character "o" (ASCII-code 111) denotes a field occupied with chip of the second player, character "." (ASCII-code 46) describes empty cell. The line after the table contains two integers *x* and *y* (1<=≤<=*x*,<=*y*<=≤<=9). They describe coordinates of the cell in table where the last move was done. Rows in the table are numbered from up to down and columns are numbered from left to right. It's guaranteed that cell where the last move was done is filled with "x" or "o". Also, it's guaranteed that there is at least one empty cell. It's not guaranteed that current state of game is reachable. Output Specification: Output the field in same format with characters "!" (ASCII-code 33) on positions where the current player can put his chip. All other cells should not be modified. Demo Input: ['... ... ...\n... ... ...\n... ... ...\n\n... ... ...\n... ... ...\n... x.. ...\n\n... ... ...\n... ... ...\n... ... ...\n6 4\n', 'xoo x.. x..\nooo ... ...\nooo ... ...\n\nx.. x.. x..\n... ... ...\n... ... ...\n\nx.. x.. x..\n... ... ...\n... ... ...\n7 4\n', 'o.. ... ...\n... ... ...\n... ... ...\n\n... xxx ...\n... xox ...\n... ooo ...\n\n... ... ...\n... ... ...\n... ... ...\n5 5\n'] Demo Output: ['... ... ... \n... ... ... \n... ... ... \n\n... ... ... \n... ... ... \n... x.. ... \n\n!!! ... ... \n!!! ... ... \n!!! ... ... \n\n', 'xoo x!! x!! \nooo !!! !!! \nooo !!! !!! \n\nx!! x!! x!! \n!!! !!! !!! \n!!! !!! !!! \n\nx!! x!! x!! \n!!! !!! !!! \n!!! !!! !!! \n\n', 'o!! !!! !!! \n!!! !!! !!! \n!!! !!! !!! \n\n!!! xxx !!! \n!!! xox !!! \n!!! ooo !!! \n\n!!! !!! !!! \n!!! !!! !!! \n!!! !!! !!! \n\n'] Note: In the first test case the first player made a move to lower left cell of central field, so the second player can put a chip only to cells of lower left field. In the second test case the last move was done to upper left cell of lower central field, however all cells in upper left field are occupied, so the second player can put his chip to any empty cell. In the third test case the last move was done to central cell of central field, so current player can put his chip to any cell of central field, which is already occupied, so he can move anywhere. Pay attention that this state of the game is unreachable.
```python import itertools import bisect import collections import math import sys from collections import * import os import sys from io import BytesIO, IOBase ii = lambda: int(input()) lmii = lambda: list(map(int, input().split())) li = lambda: list(input()) mii = lambda: map(int, input().split()) msi = lambda: map(str, input().split()) def main(): lst = [] for i in range(11): lst.append(li()) x, y = mii() s1, s2, s3, s4, s5, s6, s7, s8, s9 = "", "", "", "", "", "", "", "", "" for i in range(len(lst)): for j in range(len(lst[i])): if i <= 2 and j <= 2: s1 += lst[i][j] if 4 <= i <= 6 and j <= 2: s4 += lst[i][j] if 8 <= i <= 10 and j <= 2: s7 += lst[i][j] if i <= 2 and 4 <= j <= 6: s2 += lst[i][j] if 4 <= i <= 6 and 4 <= j <= 6: s5 += lst[i][j] if 8 <= i <= 10 and 4 <= j <= 6: s8 += lst[i][j] if i <= 2 and 8 <= j <= 10: s3 += lst[i][j] if 4 <= i <= 6 and 8 <= j <= 10: s6 += lst[i][j] if 8 <= i <= 10 and 8 <= j <= 10: s9 += lst[i][j] if x >= 1 and (x - 1) % 3 == 0 and y >= 1 and (y - 1) % 3 == 0: if s1.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if i <= 2 and j <= 2 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif x >= 1 and (x - 1) % 3 == 0 and y >= 2 and (y - 2) % 3 == 0: if s2.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if i <= 2 and 4 <= j <= 6 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif x >= 1 and (x - 1) % 3 == 0 and y % 3 == 0: if s3.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if i <= 2 and 8 <= j <= 10 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif x >= 2 and (x - 2) % 3 == 0 and y >= 1 and (y - 1) % 3 == 0: if s4.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if 4 <= i <= 6 and j <= 2 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif x >= 2 and (x - 2) % 3 == 0 and y >= 2 and (y - 2) % 3 == 0: if s5.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if 4 <= i <= 6 and 4 <= j <= 6 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif x >= 2 and (x - 2) % 3 == 0 and (y - 0) % 3 == 0: if s6.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if 4 <= i <= 6 and 8 <= j <= 10 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif (x - 0) % 3 == 0 and y >= 1 and (y - 1) % 3 == 0: if s7.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if 8 <= i <= 10 and j <= 2 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" elif (x - 0) % 3 == 0 and y >= 2 and (y - 2) % 3 == 0: if s8.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if 8 <= i <= 10 and 4 <= j <= 6 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" else: if s9.count("."): for i in range(len(lst)): for j in range(len(lst[i])): if 8 <= i <= 10 and 8 <= j <= 10 and lst[i][j] == ".": lst[i][j] = "!" else: for i in range(len(lst)): for j in range(len(lst[i])): if lst[i][j] == ".": lst[i][j] = "!" for i in range(len(lst)): print(*lst[i]) return BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion if __name__ == "__main__": main() ```
0
960
C
Subsequence Counting
PROGRAMMING
1,700
[ "bitmasks", "constructive algorithms", "greedy", "implementation" ]
null
null
Pikachu had an array with him. He wrote down all the non-empty subsequences of the array on paper. Note that an array of size *n* has 2*n*<=-<=1 non-empty subsequences in it. Pikachu being mischievous as he always is, removed all the subsequences in which Maximum_element_of_the_subsequence <=-<= Minimum_element_of_subsequence <=≥<=*d* Pikachu was finally left with *X* subsequences. However, he lost the initial array he had, and now is in serious trouble. He still remembers the numbers *X* and *d*. He now wants you to construct any such array which will satisfy the above conditions. All the numbers in the final array should be positive integers less than 1018. Note the number of elements in the output array should not be more than 104. If no answer is possible, print <=-<=1.
The only line of input consists of two space separated integers *X* and *d* (1<=≤<=*X*,<=*d*<=≤<=109).
Output should consist of two lines. First line should contain a single integer *n* (1<=≤<=*n*<=≤<=10<=000)— the number of integers in the final array. Second line should consist of *n* space separated integers — *a*1,<=*a*2,<=... ,<=*a**n* (1<=≤<=*a**i*<=&lt;<=1018). If there is no answer, print a single integer -1. If there are multiple answers, print any of them.
[ "10 5\n", "4 2\n" ]
[ "6\n5 50 7 15 6 100", "4\n10 100 1000 10000" ]
In the output of the first example case, the remaining subsequences after removing those with Maximum_element_of_the_subsequence  -  Minimum_element_of_subsequence  ≥ 5 are [5], [5, 7], [5, 6], [5, 7, 6], [50], [7], [7, 6], [15], [6], [100]. There are 10 of them. Hence, the array [5, 50, 7, 15, 6, 100] is valid. Similarly, in the output of the second example case, the remaining sub-sequences after removing those with Maximum_element_of_the_subsequence  -  Minimum_element_of_subsequence  ≥ 2 are [10], [100], [1000], [10000]. There are 4 of them. Hence, the array [10, 100, 1000, 10000] is valid.
1,500
[ { "input": "10 5", "output": "6\n1 1 1 7 13 19 " }, { "input": "4 2", "output": "3\n1 1 4 " }, { "input": "4 1", "output": "3\n1 1 3 " }, { "input": "1 1", "output": "1\n1 " }, { "input": "63 1", "output": "21\n1 1 1 1 1 3 3 3 3 5 5 5 7 7 9 11 13 15 17 19 21 " }, { "input": "98 88", "output": "15\n1 1 1 1 1 1 90 90 90 90 90 179 268 357 446 " }, { "input": "746 173", "output": "37\n1 1 1 1 1 1 1 1 1 175 175 175 175 175 175 175 349 349 349 349 349 349 523 523 523 523 523 697 697 697 871 1045 1219 1393 1567 1741 1915 " }, { "input": "890 553", "output": "43\n1 1 1 1 1 1 1 1 1 555 555 555 555 555 555 555 555 1109 1109 1109 1109 1109 1109 1663 1663 1663 1663 1663 2217 2217 2217 2217 2771 2771 2771 3325 3879 4433 4987 5541 6095 6649 7203 " }, { "input": "883 1000", "output": "40\n1 1 1 1 1 1 1 1 1 1002 1002 1002 1002 1002 1002 1002 1002 2003 2003 2003 2003 2003 2003 3004 3004 3004 3004 3004 4005 4005 4005 4005 5006 6007 7008 8009 9010 10011 11012 12013 " }, { "input": "1 1000", "output": "1\n1 " }, { "input": "695 188", "output": "35\n1 1 1 1 1 1 1 1 1 190 190 190 190 190 190 190 379 379 379 379 379 568 568 568 568 757 757 946 1135 1324 1513 1702 1891 2080 2269 " }, { "input": "2060 697", "output": "19\n1 1 1 1 1 1 1 1 1 1 1 699 699 699 1397 1397 2095 2793 3491 " }, { "input": "70 3321", "output": "12\n1 1 1 1 1 1 3323 3323 6645 9967 13289 16611 " }, { "input": "6358 1646", "output": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1648 1648 1648 1648 1648 1648 1648 1648 1648 1648 1648 3295 3295 3295 3295 3295 3295 3295 4942 4942 4942 4942 4942 4942 6589 6589 6589 6589 8236 8236 9883 11530 13177 14824 16471 18118 19765 21412 " }, { "input": "167959139 481199252", "output": "154\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 481199254 962398507 962398507 962398507 962398507 962398507 962398507 962398507 962398507 962398507 962398507 962398507 962398507 962398507 962398507 962398507 962398507 962398507 1443597760 1443597760 1443597760..." }, { "input": "641009859 54748096", "output": "192\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 54748098 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 109496195 1094..." }, { "input": "524125987 923264237", "output": "289\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 923264239 1846528477 1846528477 1846528477 1846528477 1846528477 1846528477 1846528477 1846528477 1846528477 1846528477 1846528477 1846528477 1846528477 1846528477 1846528477 1846528477 1846..." }, { "input": "702209411 496813081", "output": "276\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 496813083 993626165 993626165 993626165 993626165 993626165 993626165 993626165 993626165 993626165 993626165 993626165 993626165 993626165 993626165 993626165 993626165 993626165 99362616..." }, { "input": "585325539 365329221", "output": "243\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 365329223 730658445 730658445 730658445 730658445 730658445 730658445 730658445 730658445 730658445 730658445 730658445 730658445 730658445 730658445 730658445 730658445 730658445 730658445 730658445 73065844..." }, { "input": "58376259 643910770", "output": "196\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 643910772 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821543 1287821..." }, { "input": "941492387 72235422", "output": "194\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 72235424 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470847 144470..." }, { "input": "824608515 940751563", "output": "192\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 940751565 1881503129 1881503129 1881503129 1881503129 1881503129 1881503129 1881503129 1881503129 1881503129 1881503129 1881503129 1881503129 1881503129 1881503129 1881503129 188..." }, { "input": "2691939 514300407", "output": "107\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 514300409 514300409 514300409 514300409 514300409 514300409 514300409 514300409 514300409 514300409 514300409 514300409 514300409 514300409 514300409 514300409 514300409 514300409 514300409 1028600817 1028600817 1028600817 1028600817 1028600817 1028600817 1028600817 1028600817 1028600817 1028600817 1028600817 1028600817 1028600817 1028600817 1028600817 1028600817 1542901225 1542901225 1542901225 1542901225 1542901225 1542901225 1542901225 1542901225 1542901225..." }, { "input": "802030518 598196518", "output": "283\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 598196520 1196393039 1196393039 1196393039 1196393039 1196393039 1196393039 1196393039 1196393039 1196393039 1196393039 1196393039 1196393039 1196393039 1196393039 1196393039 1196393039 11..." }, { "input": "685146646 26521171", "output": "199\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 26521173 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 53042345 5304234..." }, { "input": "863230070 895037311", "output": "290\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 895037313 1790074625 1790074625 1790074625 1790074625 1790074625 1790074625 1790074625 1790074625 1790074625 1790074625 1790074625 1790074625 1790074625 1790074625 1790074625 179..." }, { "input": "41313494 468586155", "output": "194\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 468586157 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 937172313 1405758469 1405758469 1405..." }, { "input": "219396918 747167704", "output": "226\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 747167706 1494335411 1494335411 1494335411 1494335411 1494335411 1494335411 1494335411 1494335411 1494335411 1494335411 1494335411 1494335411 1494335411 1494335411 1494335411 1494335411 1494335411 14943..." }, { "input": "102513046 615683844", "output": "179\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 615683846 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 1231367691 123136..." }, { "input": "985629174 189232688", "output": "310\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 189232690 378465379 378465379 378465379 378465379 378465379 378465379 378465379 378465379 378465379 378465379 378465379 378465379 378465379 378465379 378465379 378465379 37846537..." }, { "input": "458679894 912524637", "output": "272\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 912524639 1825049277 1825049277 1825049277 1825049277 1825049277 1825049277 1825049277 1825049277 1825049277 1825049277 1825049277 1825049277 1825049277 1825049277 1825049277 1825049277 1825..." }, { "input": "341796022 486073481", "output": "238\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 486073483 972146965 972146965 972146965 972146965 972146965 972146965 972146965 972146965 972146965 972146965 972146965 972146965 972146965 972146965 972146965 972146965 972146965 972146965 972146965 ..." }, { "input": "519879446 764655030", "output": "323\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 764655032 1529310063 1529310063 1529310063 1529310063 1529310063 1529310063 1529310063 1529310063 1529310063 1529310063 1529310063 1529310063 1529310063 1529310063 1529310063 1529310063 1529..." }, { "input": "452405440 586588704", "output": "268\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 586588706 1173177411 1173177411 1173177411 1173177411 1173177411 1173177411 1173177411 1173177411 1173177411 1173177411 1173177411 1173177411 1173177411 1173177411 1173177411 1173177411 1173..." }, { "input": "335521569 160137548", "output": "311\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 160137550 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 320275099 ..." }, { "input": "808572289 733686393", "output": "192\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 733686395 1467372789 1467372789 1467372789 1467372789 1467372789 1467372789 1467372789 1467372789 1467372789 1467372789 1467372789 1467372789 1467372789 1467372789 1467372789 146..." }, { "input": "691688417 162011045", "output": "233\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 162011047 324022093 324022093 324022093 324022093 324022093 324022093 324022093 324022093 324022093 324022093 324022093 324022093 324022093 324022093 324022093 324022093 324022093 32402209..." }, { "input": "869771841 30527185", "output": "292\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 30527187 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 61054373 6105437..." }, { "input": "752887969 604076030", "output": "195\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 604076032 1208152063 1208152063 1208152063 1208152063 1208152063 1208152063 1208152063 1208152063 1208152063 1208152063 1208152063 1208152063 1208152063 1208152063 1208152063 1208152063 12..." }, { "input": "930971393 177624874", "output": "344\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 177624876 355249751 355249751 355249751 355249751 355249751 355249751 355249751 355249751 355249751 355249751 355249751 355249751 355249751 355249751 355249751 355249751 35524975..." }, { "input": "109054817 751173719", "output": "122\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 751173721 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 1502347441 150234..." }, { "input": "992170945 324722563", "output": "258\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 324722565 649445129 649445129 649445129 649445129 649445129 649445129 649445129 649445129 649445129 649445129 649445129 649445129 649445129 649445129 649445129 649445129 64944512..." }, { "input": "170254369 48014511", "output": "164\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 48014513 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 96029025 144043537 144043537 144043537 14404353..." }, { "input": "248004555 280013594", "output": "239\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 280013596 560027191 560027191 560027191 560027191 560027191 560027191 560027191 560027191 560027191 560027191 560027191 560027191 560027191 560027191 560027191 560027191 560027191 560027191 560027191 56..." }, { "input": "131120683 148529734", "output": "235\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 148529736 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 297059471 2970..." }, { "input": "604171403 722078578", "output": "158\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 722078580 1444157159 1444157159 1444157159 1444157159 1444157159 1444157159 1444157159 1444157159 1444157159 1444157159 1444157159 1444157159 1444157159 1444157159 1444157159 1444157159 1444157159 2..." }, { "input": "487287531 295627423", "output": "243\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 295627425 591254849 591254849 591254849 591254849 591254849 591254849 591254849 591254849 591254849 591254849 591254849 591254849 591254849 591254849 591254849 591254849 591254849 591254849 ..." }, { "input": "665370955 18919371", "output": "228\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 18919373 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 37838745 3783874..." }, { "input": "843454379 297500920", "output": "209\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 297500922 595001843 595001843 595001843 595001843 595001843 595001843 595001843 595001843 595001843 595001843 595001843 595001843 595001843 595001843 595001843 595001843 59500184..." }, { "input": "21537803 166017060", "output": "116\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 166017062 332034123 332034123 332034123 332034123 332034123 332034123 332034123 332034123 332034123 332034123 332034123 332034123 332034123 332034123 332034123 332034123 332034123 332034123 332034123 498051184 498051184 498051184 498051184 49805118..." }, { "input": "904653932 739565904", "output": "323\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 739565906 1479131811 1479131811 1479131811 1479131811 1479131811 1479131811 1479131811 1479131811 1479131811 1479131811 1479131811 1479131811 1479131811 1479131811 1479131811 147..." }, { "input": "787770060 313114749", "output": "293\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 313114751 626229501 626229501 626229501 626229501 626229501 626229501 626229501 626229501 626229501 626229501 626229501 626229501 626229501 626229501 626229501 626229501 626229501 62622950..." }, { "input": "260820780 181630889", "output": "271\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 181630891 363261781 363261781 363261781 363261781 363261781 363261781 363261781 363261781 363261781 363261781 363261781 363261781 363261781 363261781 363261781 363261781 363261781 363261781 363261781 36..." }, { "input": "43603670 268405779", "output": "182\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 268405781 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 536811561 805217341 805217341 805217..." }, { "input": "1000000000 1000000000", "output": "274\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 1000000002 2000000003 2000000003 2000000003 2000000003 2000000003 2000000003 2000000003 2000000003 2000000003 2000000003 2000000003 2000000003 20000000..." }, { "input": "15000 1", "output": "66\n1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9 11 11 11 11 13 13 13 15 17 19 21 23 25 27 " }, { "input": "1048576 1", "output": "21\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 " }, { "input": "1000000000 1", "output": "274\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 19 ..." }, { "input": "100000000 1", "output": "232\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 19 19 19 19 19 19 19 19 19 19 19 19 19 19 21 21 21 21 21 21 21 21 2..." }, { "input": "1000000 1", "output": "106\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11 11 11 11 13 13 13 13 13 13 15 17 19 21 23 25 27 " }, { "input": "536870911 1", "output": "435\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 ..." }, { "input": "10009 1", "output": "54\n1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 9 9 9 9 11 11 11 13 15 17 19 21 23 25 " }, { "input": "10001 1", "output": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 9 9 9 9 11 13 15 17 19 21 " } ]
1,574,098,615
2,147,483,647
PyPy 3
OK
TESTS
63
171
512,000
from math import * from collections import * import sys sys.setrecursionlimit(10**9) l = [2**i-1 for i in range(40)] x,d = map(int,input().split()) a = [] ct = 1 while(x != 0): for i in range(39): if l[i+1] > x: ind = i break x -= l[ind] for i in range(ind): a.append(ct) ct += d print(len(a)) for i in a: print(i,end = " ")
Title: Subsequence Counting Time Limit: None seconds Memory Limit: None megabytes Problem Description: Pikachu had an array with him. He wrote down all the non-empty subsequences of the array on paper. Note that an array of size *n* has 2*n*<=-<=1 non-empty subsequences in it. Pikachu being mischievous as he always is, removed all the subsequences in which Maximum_element_of_the_subsequence <=-<= Minimum_element_of_subsequence <=≥<=*d* Pikachu was finally left with *X* subsequences. However, he lost the initial array he had, and now is in serious trouble. He still remembers the numbers *X* and *d*. He now wants you to construct any such array which will satisfy the above conditions. All the numbers in the final array should be positive integers less than 1018. Note the number of elements in the output array should not be more than 104. If no answer is possible, print <=-<=1. Input Specification: The only line of input consists of two space separated integers *X* and *d* (1<=≤<=*X*,<=*d*<=≤<=109). Output Specification: Output should consist of two lines. First line should contain a single integer *n* (1<=≤<=*n*<=≤<=10<=000)— the number of integers in the final array. Second line should consist of *n* space separated integers — *a*1,<=*a*2,<=... ,<=*a**n* (1<=≤<=*a**i*<=&lt;<=1018). If there is no answer, print a single integer -1. If there are multiple answers, print any of them. Demo Input: ['10 5\n', '4 2\n'] Demo Output: ['6\n5 50 7 15 6 100', '4\n10 100 1000 10000'] Note: In the output of the first example case, the remaining subsequences after removing those with Maximum_element_of_the_subsequence  -  Minimum_element_of_subsequence  ≥ 5 are [5], [5, 7], [5, 6], [5, 7, 6], [50], [7], [7, 6], [15], [6], [100]. There are 10 of them. Hence, the array [5, 50, 7, 15, 6, 100] is valid. Similarly, in the output of the second example case, the remaining sub-sequences after removing those with Maximum_element_of_the_subsequence  -  Minimum_element_of_subsequence  ≥ 2 are [10], [100], [1000], [10000]. There are 4 of them. Hence, the array [10, 100, 1000, 10000] is valid.
```python from math import * from collections import * import sys sys.setrecursionlimit(10**9) l = [2**i-1 for i in range(40)] x,d = map(int,input().split()) a = [] ct = 1 while(x != 0): for i in range(39): if l[i+1] > x: ind = i break x -= l[ind] for i in range(ind): a.append(ct) ct += d print(len(a)) for i in a: print(i,end = " ") ```
3
498
A
Crazy Town
PROGRAMMING
1,700
[ "geometry" ]
null
null
Crazy Town is a plane on which there are *n* infinite line roads. Each road is defined by the equation *a**i**x*<=+<=*b**i**y*<=+<=*c**i*<==<=0, where *a**i* and *b**i* are not both equal to the zero. The roads divide the plane into connected regions, possibly of infinite space. Let's call each such region a block. We define an intersection as the point where at least two different roads intersect. Your home is located in one of the blocks. Today you need to get to the University, also located in some block. In one step you can move from one block to another, if the length of their common border is nonzero (in particular, this means that if the blocks are adjacent to one intersection, but have no shared nonzero boundary segment, then it are not allowed to move from one to another one in one step). Determine what is the minimum number of steps you have to perform to get to the block containing the university. It is guaranteed that neither your home nor the university is located on the road.
The first line contains two space-separated integers *x*1, *y*1 (<=-<=106<=≤<=*x*1,<=*y*1<=≤<=106) — the coordinates of your home. The second line contains two integers separated by a space *x*2, *y*2 (<=-<=106<=≤<=*x*2,<=*y*2<=≤<=106) — the coordinates of the university you are studying at. The third line contains an integer *n* (1<=≤<=*n*<=≤<=300) — the number of roads in the city. The following *n* lines contain 3 space-separated integers (<=-<=106<=≤<=*a**i*,<=*b**i*,<=*c**i*<=≤<=106; |*a**i*|<=+<=|*b**i*|<=&gt;<=0) — the coefficients of the line *a**i**x*<=+<=*b**i**y*<=+<=*c**i*<==<=0, defining the *i*-th road. It is guaranteed that no two roads are the same. In addition, neither your home nor the university lie on the road (i.e. they do not belong to any one of the lines).
Output the answer to the problem.
[ "1 1\n-1 -1\n2\n0 1 0\n1 0 0\n", "1 1\n-1 -1\n3\n1 0 0\n0 1 0\n1 1 -3\n" ]
[ "2\n", "2\n" ]
Pictures to the samples are presented below (A is the point representing the house; B is the point representing the university, different blocks are filled with different colors):
500
[ { "input": "1 1\n-1 -1\n2\n0 1 0\n1 0 0", "output": "2" }, { "input": "1 1\n-1 -1\n3\n1 0 0\n0 1 0\n1 1 -3", "output": "2" }, { "input": "841746 527518\n595261 331297\n10\n-946901 129987 670374\n-140388 -684770 309555\n-302589 415564 -387435\n-565799 -72069 -395358\n-523453 -511446 854898\n-846967 -749453 -341866\n-622388 434663 264157\n-638453 625357 344195\n-255265 -676356 -772398\n-824723 -319141 33585", "output": "0" }, { "input": "454379 373644\n-665078 -385892\n2\n-530 -468 -379786\n-173 -275 -100376", "output": "2" }, { "input": "841746 527518\n595261 331297\n10\n936 -209 -790797\n898 1240 -36994\n759 285 -413562\n174 323 34281\n662 400 -284846\n298 520 42086\n-36 -27 12861\n462 631 -22515\n-499 1105 919372\n582 1490 319884", "output": "0" }, { "input": "-537 648838\n227 -51454\n1\n678 0 235266", "output": "1" }, { "input": "-940 -984641\n403 -942522\n2\n530 0 -63600\n-439 0 95263", "output": "2" }, { "input": "-867 -465880\n793 -581568\n5\n73 0 57743\n-818 0 -635586\n-804 0 -415668\n-383 0 -52854\n1258 0 155992", "output": "5" }, { "input": "-632 -387435\n942 798117\n10\n249 0 135705\n536 0 271752\n750 0 375750\n799 0 -206142\n1102 0 -437494\n-453 0 197055\n-581 0 260288\n-322 0 161322\n1317 0 -878439\n-811 0 594463", "output": "10" }, { "input": "527189 -306471\n-998939 648838\n1\n-950717 -549267 -820616", "output": "1" }, { "input": "454379 373644\n-665078 -385892\n2\n-984641 503905 -909460\n-767954 -468772 -942522", "output": "2" }, { "input": "-589794 344286\n532652 -230711\n5\n-2919 -179425 -546698\n-465880 342737 794428\n-230739 -687865 713836\n-932054 513357 -97639\n-559361 -75096 -581568", "output": "5" }, { "input": "0 1\n2 2\n1\n1 1 2", "output": "0" }, { "input": "0 2\n-2 0\n2\n2 3 -1\n4 0 3", "output": "2" }, { "input": "1 -4\n1 5\n1\n0 1 0", "output": "1" }, { "input": "1 0\n2 0\n1\n1 0 0", "output": "0" }, { "input": "0 0\n0 2\n4\n1 0 1\n1 0 -1\n-2 0 1\n0 1 -1", "output": "1" }, { "input": "100000 100000\n-100000 100000\n1\n10000 0 7", "output": "1" }, { "input": "1 1\n-1 -1\n1\n1 1 0", "output": "1" }, { "input": "1 1\n3 3\n1\n1 0 2", "output": "0" }, { "input": "1 3\n1 1\n1\n1 1 3", "output": "0" }, { "input": "5 0\n15 0\n1\n10 0 -100", "output": "1" }, { "input": "3 4\n2 6\n1\n0 -2 5", "output": "0" }, { "input": "1 0\n1 2\n1\n0 1 -1", "output": "1" }, { "input": "0 0\n0 2\n1\n0 1 -1", "output": "1" }, { "input": "0 0\n0 1\n1\n1 0 10000", "output": "0" }, { "input": "0 0\n0 1\n1\n0 2 2", "output": "0" }, { "input": "10 18\n10 0\n2\n1 -1 0\n0 1 -5", "output": "2" }, { "input": "10 10\n8 8\n1\n1 1 19", "output": "0" }, { "input": "0 1\n1000000 1\n1\n1000000 1 0", "output": "0" } ]
1,538,022,605
2,147,483,647
Python 3
OK
TESTS
51
140
0
if __name__ == '__main__': xhome, yhome = [int(x) for x in input().split()] xuni, yuni = [int(x) for x in input().split()] n_roads = int(input()) n_steps = 0 for i in range(n_roads): a, b, c = [int(x) for x in input().split()] hline = (a*xhome) + (b*yhome) + c uline = (a*xuni) + (b*yuni) + c if hline * uline < 0: n_steps += 1 print(n_steps)
Title: Crazy Town Time Limit: None seconds Memory Limit: None megabytes Problem Description: Crazy Town is a plane on which there are *n* infinite line roads. Each road is defined by the equation *a**i**x*<=+<=*b**i**y*<=+<=*c**i*<==<=0, where *a**i* and *b**i* are not both equal to the zero. The roads divide the plane into connected regions, possibly of infinite space. Let's call each such region a block. We define an intersection as the point where at least two different roads intersect. Your home is located in one of the blocks. Today you need to get to the University, also located in some block. In one step you can move from one block to another, if the length of their common border is nonzero (in particular, this means that if the blocks are adjacent to one intersection, but have no shared nonzero boundary segment, then it are not allowed to move from one to another one in one step). Determine what is the minimum number of steps you have to perform to get to the block containing the university. It is guaranteed that neither your home nor the university is located on the road. Input Specification: The first line contains two space-separated integers *x*1, *y*1 (<=-<=106<=≤<=*x*1,<=*y*1<=≤<=106) — the coordinates of your home. The second line contains two integers separated by a space *x*2, *y*2 (<=-<=106<=≤<=*x*2,<=*y*2<=≤<=106) — the coordinates of the university you are studying at. The third line contains an integer *n* (1<=≤<=*n*<=≤<=300) — the number of roads in the city. The following *n* lines contain 3 space-separated integers (<=-<=106<=≤<=*a**i*,<=*b**i*,<=*c**i*<=≤<=106; |*a**i*|<=+<=|*b**i*|<=&gt;<=0) — the coefficients of the line *a**i**x*<=+<=*b**i**y*<=+<=*c**i*<==<=0, defining the *i*-th road. It is guaranteed that no two roads are the same. In addition, neither your home nor the university lie on the road (i.e. they do not belong to any one of the lines). Output Specification: Output the answer to the problem. Demo Input: ['1 1\n-1 -1\n2\n0 1 0\n1 0 0\n', '1 1\n-1 -1\n3\n1 0 0\n0 1 0\n1 1 -3\n'] Demo Output: ['2\n', '2\n'] Note: Pictures to the samples are presented below (A is the point representing the house; B is the point representing the university, different blocks are filled with different colors):
```python if __name__ == '__main__': xhome, yhome = [int(x) for x in input().split()] xuni, yuni = [int(x) for x in input().split()] n_roads = int(input()) n_steps = 0 for i in range(n_roads): a, b, c = [int(x) for x in input().split()] hline = (a*xhome) + (b*yhome) + c uline = (a*xuni) + (b*yuni) + c if hline * uline < 0: n_steps += 1 print(n_steps) ```
3
58
A
Chat room
PROGRAMMING
1,000
[ "greedy", "strings" ]
A. Chat room
1
256
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
If Vasya managed to say hello, print "YES", otherwise print "NO".
[ "ahhellllloou\n", "hlelo\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "ahhellllloou", "output": "YES" }, { "input": "hlelo", "output": "NO" }, { "input": "helhcludoo", "output": "YES" }, { "input": "hehwelloho", "output": "YES" }, { "input": "pnnepelqomhhheollvlo", "output": "YES" }, { "input": "tymbzjyqhymedasloqbq", "output": "NO" }, { "input": "yehluhlkwo", "output": "NO" }, { "input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello", "output": "YES" }, { "input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq", "output": "YES" }, { "input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi", "output": "YES" }, { "input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo", "output": "YES" }, { "input": "lqllcolohwflhfhlnaow", "output": "NO" }, { "input": "heheeellollvoo", "output": "YES" }, { "input": "hellooo", "output": "YES" }, { "input": "o", "output": "NO" }, { "input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv", "output": "YES" }, { "input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk", "output": "YES" }, { "input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry", "output": "NO" }, { "input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq", "output": "NO" }, { "input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi", "output": "YES" }, { "input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm", "output": "YES" }, { "input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac", "output": "NO" }, { "input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok", "output": "YES" }, { "input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz", "output": "YES" }, { "input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb", "output": "YES" }, { "input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla", "output": "YES" }, { "input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz", "output": "YES" }, { "input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti", "output": "YES" }, { "input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli", "output": "YES" }, { "input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo", "output": "YES" }, { "input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk", "output": "NO" }, { "input": "loee", "output": "NO" }, { "input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo", "output": "NO" }, { "input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi", "output": "YES" }, { "input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv", "output": "NO" }, { "input": "hello", "output": "YES" }, { "input": "oohell", "output": "NO" }, { "input": "hell", "output": "NO" }, { "input": "eloellohoelo", "output": "NO" }, { "input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo", "output": "YES" } ]
1,697,143,895
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
6
46
0
from collections import * def solve(s): if s=='hello': return 'YES' elif len(s)>5 : st=set() sts='' flag=0 for i in s: if i in st: pass else: st.add(i) if i=='l' and flag==0: st.remove(i) flag=1 sts+=i # print(sts) c=0 for i in sts: if i in {'h','e','l','o'}: c+=1 if c==5:return 'YES' return 'NO' return 'NO' pass s=input() print(solve(s))
Title: Chat room Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*. Input Specification: The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters. Output Specification: If Vasya managed to say hello, print "YES", otherwise print "NO". Demo Input: ['ahhellllloou\n', 'hlelo\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python from collections import * def solve(s): if s=='hello': return 'YES' elif len(s)>5 : st=set() sts='' flag=0 for i in s: if i in st: pass else: st.add(i) if i=='l' and flag==0: st.remove(i) flag=1 sts+=i # print(sts) c=0 for i in sts: if i in {'h','e','l','o'}: c+=1 if c==5:return 'YES' return 'NO' return 'NO' pass s=input() print(solve(s)) ```
0
712
A
Memory and Crow
PROGRAMMING
800
[ "implementation", "math" ]
null
null
There are *n* integers *b*1,<=*b*2,<=...,<=*b**n* written in a row. For all *i* from 1 to *n*, values *a**i* are defined by the crows performing the following procedure: - The crow sets *a**i* initially 0. - The crow then adds *b**i* to *a**i*, subtracts *b**i*<=+<=1, adds the *b**i*<=+<=2 number, and so on until the *n*'th number. Thus, *a**i*<==<=*b**i*<=-<=*b**i*<=+<=1<=+<=*b**i*<=+<=2<=-<=*b**i*<=+<=3.... Memory gives you the values *a*1,<=*a*2,<=...,<=*a**n*, and he now wants you to find the initial numbers *b*1,<=*b*2,<=...,<=*b**n* written in the row? Can you do it?
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of integers written in the row. The next line contains *n*, the *i*'th of which is *a**i* (<=-<=109<=≤<=*a**i*<=≤<=109) — the value of the *i*'th number.
Print *n* integers corresponding to the sequence *b*1,<=*b*2,<=...,<=*b**n*. It's guaranteed that the answer is unique and fits in 32-bit integer type.
[ "5\n6 -4 8 -2 3\n", "5\n3 -2 -1 5 6\n" ]
[ "2 4 6 1 3 \n", "1 -3 4 11 6 \n" ]
In the first sample test, the crows report the numbers 6, - 4, 8, - 2, and 3 when he starts at indices 1, 2, 3, 4 and 5 respectively. It is easy to check that the sequence 2 4 6 1 3 satisfies the reports. For example, 6 = 2 - 4 + 6 - 1 + 3, and  - 4 = 4 - 6 + 1 - 3. In the second sample test, the sequence 1,  - 3, 4, 11, 6 satisfies the reports. For example, 5 = 11 - 6 and 6 = 6.
500
[ { "input": "5\n6 -4 8 -2 3", "output": "2 4 6 1 3 " }, { "input": "5\n3 -2 -1 5 6", "output": "1 -3 4 11 6 " }, { "input": "10\n13 -2 532 -63 -23 -63 -64 -23 12 10", "output": "11 530 469 -86 -86 -127 -87 -11 22 10 " }, { "input": "10\n0 0 0 0 0 0 0 0 0 0", "output": "0 0 0 0 0 0 0 0 0 0 " }, { "input": "10\n1 -1 1 -1 1 -1 1 -1 1 -1", "output": "0 0 0 0 0 0 0 0 0 -1 " }, { "input": "10\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000", "output": "0 0 0 0 0 0 0 0 0 1000000000 " }, { "input": "10\n124 532 -642 6482 -124 952 -235 7594 34 -12", "output": "656 -110 5840 6358 828 717 7359 7628 22 -12 " }, { "input": "10\n1294 35852 32749 537295 12048 53729 29357 58320 64739 1240", "output": "37146 68601 570044 549343 65777 83086 87677 123059 65979 1240 " } ]
1,474,898,557
2,147,483,647
Python 3
OK
TESTS
49
202
10,035,200
n = int(input()) al = list(map(int, input().split()))+[0] bl = [] # Bi = Ai + Ai+1 for i in range(n): bl+=[str(al[i]+al[i+1])] print(" ".join(bl))
Title: Memory and Crow Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* integers *b*1,<=*b*2,<=...,<=*b**n* written in a row. For all *i* from 1 to *n*, values *a**i* are defined by the crows performing the following procedure: - The crow sets *a**i* initially 0. - The crow then adds *b**i* to *a**i*, subtracts *b**i*<=+<=1, adds the *b**i*<=+<=2 number, and so on until the *n*'th number. Thus, *a**i*<==<=*b**i*<=-<=*b**i*<=+<=1<=+<=*b**i*<=+<=2<=-<=*b**i*<=+<=3.... Memory gives you the values *a*1,<=*a*2,<=...,<=*a**n*, and he now wants you to find the initial numbers *b*1,<=*b*2,<=...,<=*b**n* written in the row? Can you do it? Input Specification: The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of integers written in the row. The next line contains *n*, the *i*'th of which is *a**i* (<=-<=109<=≤<=*a**i*<=≤<=109) — the value of the *i*'th number. Output Specification: Print *n* integers corresponding to the sequence *b*1,<=*b*2,<=...,<=*b**n*. It's guaranteed that the answer is unique and fits in 32-bit integer type. Demo Input: ['5\n6 -4 8 -2 3\n', '5\n3 -2 -1 5 6\n'] Demo Output: ['2 4 6 1 3 \n', '1 -3 4 11 6 \n'] Note: In the first sample test, the crows report the numbers 6, - 4, 8, - 2, and 3 when he starts at indices 1, 2, 3, 4 and 5 respectively. It is easy to check that the sequence 2 4 6 1 3 satisfies the reports. For example, 6 = 2 - 4 + 6 - 1 + 3, and  - 4 = 4 - 6 + 1 - 3. In the second sample test, the sequence 1,  - 3, 4, 11, 6 satisfies the reports. For example, 5 = 11 - 6 and 6 = 6.
```python n = int(input()) al = list(map(int, input().split()))+[0] bl = [] # Bi = Ai + Ai+1 for i in range(n): bl+=[str(al[i]+al[i+1])] print(" ".join(bl)) ```
3
930
D
Game with Tokens
PROGRAMMING
2,500
[ "data structures", "games", "implementation" ]
null
null
Consider the following game for two players. There is one white token and some number of black tokens. Each token is placed on a plane in a point with integer coordinates *x* and *y*. The players take turn making moves, white starts. On each turn, a player moves all tokens of their color by 1 to up, down, left or right. Black player can choose directions for each token independently. After a turn of the white player the white token can not be in a point where a black token is located. There are no other constraints on locations of the tokens: positions of black tokens can coincide, after a turn of the black player and initially the white token can be in the same point with some black point. If at some moment the white player can't make a move, he loses. If the white player makes 10100500 moves, he wins. You are to solve the following problem. You are given initial positions of all black tokens. It is guaranteed that initially all these positions are distinct. In how many places can the white token be located initially so that if both players play optimally, the black player wins?
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of black points. The (*i*<=+<=1)-th line contains two integers *x**i*, *y**i* (<=-<=105<=≤<=*x**i*,<=*y**i*,<=<=≤<=105) — the coordinates of the point where the *i*-th black token is initially located. It is guaranteed that initial positions of black tokens are distinct.
Print the number of points where the white token can be located initially, such that if both players play optimally, the black player wins.
[ "4\n-2 -1\n0 1\n0 -3\n2 -1\n", "4\n-2 0\n-1 1\n0 -2\n1 -1\n", "16\n2 1\n1 2\n-1 1\n0 1\n0 0\n1 1\n2 -1\n2 0\n1 0\n-1 -1\n1 -1\n2 2\n0 -1\n-1 0\n0 2\n-1 2\n" ]
[ "4\n", "2\n", "4\n" ]
In the first and second examples initial positions of black tokens are shown with black points, possible positions of the white token (such that the black player wins) are shown with white points. The first example: <img class="tex-graphics" src="https://espresso.codeforces.com/5054b8d2df2fac92c92f96fae82d21c365d12983.png" style="max-width: 100.0%;max-height: 100.0%;"/> The second example: <img class="tex-graphics" src="https://espresso.codeforces.com/eb795dd6abb95cfafb1d1cb7d8c8798825dcc180.png" style="max-width: 100.0%;max-height: 100.0%;"/> In the third example the white tokens should be located in the inner square 2 × 2, to make the black player win. <img class="tex-graphics" src="https://espresso.codeforces.com/6dfd863f649b92860dfd6b446ea004abc01b71a6.png" style="max-width: 100.0%;max-height: 100.0%;"/>
2,000
[ { "input": "4\n-2 -1\n0 1\n0 -3\n2 -1", "output": "4" }, { "input": "4\n-2 0\n-1 1\n0 -2\n1 -1", "output": "2" }, { "input": "16\n2 1\n1 2\n-1 1\n0 1\n0 0\n1 1\n2 -1\n2 0\n1 0\n-1 -1\n1 -1\n2 2\n0 -1\n-1 0\n0 2\n-1 2", "output": "4" }, { "input": "1\n1 2", "output": "0" }, { "input": "4\n0 99999\n-99999 0\n99999 0\n0 -99999", "output": "9999800001" }, { "input": "10\n-1 3\n-1 7\n-8 -4\n5 14\n-6 -7\n11 -8\n-11 0\n5 -1\n9 4\n-2 -14", "output": "110" }, { "input": "50\n-15 -80\n-80 21\n90 38\n-100 27\n-64 -75\n-10 59\n38 44\n-31 -91\n97 76\n87 43\n5 43\n-73 74\n-45 42\n31 -100\n-87 19\n-21 -13\n-71 38\n-54 -39\n-89 -32\n-18 99\n-44 -78\n9 76\n-69 -40\n-29 23\n-88 42\n-95 86\n45 15\n-39 100\n17 -33\n5 -48\n-4 -22\n-19 54\n-13 -64\n-86 68\n-52 -95\n-73 -29\n-24 -93\n-60 96\n41 57\n55 43\n-64 15\n-43 9\n29 88\n44 -2\n67 -94\n-20 -81\n-75 -74\n-80 -44\n-49 -7\n39 -59", "output": "17145" }, { "input": "2\n-3 0\n3 2", "output": "0" }, { "input": "3\n-5 3\n4 -5\n-3 2", "output": "0" }, { "input": "4\n-5 1\n0 -3\n-1 4\n5 -5", "output": "0" }, { "input": "4\n-1 4\n-3 2\n-2 1\n-5 3", "output": "0" }, { "input": "5\n-3 -5\n5 2\n-4 1\n-2 0\n1 2", "output": "0" }, { "input": "5\n2 3\n1 -1\n0 2\n0 5\n3 2", "output": "0" }, { "input": "6\n-1 2\n5 -4\n0 4\n3 0\n-4 -1\n-3 -2", "output": "3" }, { "input": "6\n-3 4\n-1 -3\n1 -4\n1 -1\n-5 -1\n1 4", "output": "0" }, { "input": "7\n0 4\n0 3\n-1 3\n4 3\n1 3\n-4 4\n5 4", "output": "0" }, { "input": "7\n4 4\n2 3\n5 -2\n-1 1\n2 2\n-2 -2\n-1 2", "output": "0" }, { "input": "8\n2 -4\n-4 -2\n-3 3\n-3 -1\n4 -4\n2 3\n4 -5\n0 0", "output": "4" }, { "input": "8\n4 -4\n5 -5\n3 2\n-2 5\n-4 -2\n2 5\n-5 5\n5 4", "output": "2" }, { "input": "9\n4 -5\n-4 -3\n4 -4\n1 0\n5 -1\n-3 1\n5 -4\n2 -4\n4 -3", "output": "4" }, { "input": "9\n-2 0\n-4 -4\n0 4\n2 2\n-3 -2\n1 3\n-5 5\n-3 -3\n-1 1", "output": "5" }, { "input": "10\n-1 -2\n-5 2\n-5 0\n-1 0\n4 0\n4 5\n0 -3\n-3 -3\n-5 5\n3 -4", "output": "2" }, { "input": "10\n2 -3\n-3 3\n-1 -1\n3 -5\n5 -3\n0 5\n-4 -4\n2 -4\n-2 -5\n-2 4", "output": "11" }, { "input": "10\n2 -4\n0 -3\n3 2\n-1 3\n1 -1\n4 -5\n-4 2\n1 0\n-2 -5\n-2 2", "output": "3" }, { "input": "10\n-4 -2\n-1 0\n1 -3\n2 5\n3 1\n3 -3\n2 4\n-2 -1\n-3 3\n5 2", "output": "7" }, { "input": "10\n2 0\n1 2\n4 0\n3 -1\n4 3\n-5 4\n-4 -1\n1 -1\n2 -1\n-5 -4", "output": "3" }, { "input": "10\n3 4\n-2 -3\n-2 5\n-2 1\n5 4\n2 -1\n5 -4\n0 1\n4 4\n3 -1", "output": "6" }, { "input": "10\n-1 3\n2 3\n3 2\n-4 -3\n-2 -5\n5 -5\n-4 -4\n0 1\n4 -1\n3 3", "output": "11" }, { "input": "10\n1 -3\n0 4\n-1 3\n-2 3\n4 1\n-1 5\n5 4\n-5 5\n-4 -2\n-5 1", "output": "5" }, { "input": "10\n5 -1\n-2 5\n-5 -1\n-3 -3\n-5 -4\n-3 -2\n-1 -4\n2 5\n4 -5\n1 -4", "output": "5" }, { "input": "10\n-1 0\n5 -1\n-4 1\n-3 0\n-5 -1\n-3 -4\n3 3\n-2 2\n-3 -2\n3 -1", "output": "2" }, { "input": "20\n-16 24\n9 13\n-1 -3\n5 7\n-20 17\n21 5\n-10 8\n0 -14\n17 -5\n7 1\n-6 16\n-18 -9\n-7 -8\n-13 -23\n4 4\n10 -3\n2 -5\n-18 24\n19 -19\n12 -25", "output": "268" }, { "input": "20\n-4 23\n-10 3\n20 25\n24 -23\n1 18\n-23 -24\n-20 -6\n7 22\n11 -18\n-25 -19\n7 -6\n-9 22\n-24 -2\n-9 -17\n-1 12\n-20 -21\n-19 -24\n10 -20\n20 8\n25 -14", "output": "312" }, { "input": "20\n21 20\n23 -21\n-22 24\n-18 -2\n-6 -15\n-20 -10\n-15 21\n-18 5\n13 10\n-11 15\n-6 -1\n17 6\n-13 -23\n8 -9\n-24 21\n8 11\n21 9\n22 12\n-2 -21\n-12 -10", "output": "459" }, { "input": "20\n-5 -7\n-17 22\n13 -4\n19 8\n2 6\n-4 1\n7 -15\n-5 -15\n-14 -13\n14 8\n-13 -23\n8 4\n-13 18\n-17 3\n9 3\n7 -11\n6 -16\n-15 9\n-24 -17\n-20 -18", "output": "227" }, { "input": "20\n-9 5\n-25 -4\n14 -22\n-17 23\n-20 -8\n19 22\n23 -3\n-23 -11\n-2 -15\n22 -4\n-10 -16\n16 22\n9 9\n-18 16\n-25 6\n8 -10\n-2 -17\n-12 6\n20 -10\n17 -6", "output": "529" }, { "input": "20\n-13 15\n1 14\n-12 7\n-18 -15\n-19 -11\n-7 6\n7 -15\n4 18\n-4 10\n-23 16\n-8 -15\n-3 14\n-8 1\n17 19\n15 19\n-3 -12\n-25 16\n-7 -1\n-14 1\n18 3", "output": "295" }, { "input": "20\n-17 7\n0 -21\n15 -10\n-5 12\n18 -12\n-19 11\n24 -19\n-25 -1\n-5 -25\n20 -23\n-4 9\n7 -15\n8 -9\n23 -15\n-2 5\n10 -4\n12 -24\n25 2\n5 -6\n2 25", "output": "577" }, { "input": "20\n17 23\n-7 8\n3 9\n9 -22\n-9 -14\n-18 -10\n-4 2\n10 -3\n-9 19\n-7 9\n-22 4\n6 14\n-9 -18\n2 0\n-17 4\n6 20\n24 13\n22 4\n-14 -1\n-6 -14", "output": "454" }, { "input": "20\n-10 16\n24 18\n-1 -22\n1 4\n4 -19\n-22 8\n-20 -20\n25 24\n-4 8\n7 -11\n-17 -14\n25 -12\n24 23\n-18 15\n23 -1\n-11 -14\n-4 -6\n-14 18\n-10 18\n2 -17", "output": "487" }, { "input": "20\n11 1\n-15 23\n5 24\n7 -13\n-13 -13\n-25 20\n22 -16\n-23 -2\n11 -21\n12 1\n2 3\n-3 -17\n4 21\n-17 12\n13 -14\n1 4\n23 -22\n-18 9\n14 5\n-23 -3", "output": "502" } ]
1,531,142,175
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
109
0
from sys import* from itertools import* def solve(a): inf = 1001001001 C = 400010 lmn = [inf] * 400010 lmx = [-inf] * 400010 for x, y in a: x = (x - 1) / 2 + 100005 if lmn[x] > y: lmn[x] = y if lmx[x] < y: lmx[x] = y rmn = lmn[:] rmx = lmx[:] for i in xrange(200009): if lmn[i+1] > lmn[i]: lmn[i+1] = lmn[i] for i in xrange(200009): if lmx[i+1] < lmx[i]: lmx[i+1] = lmx[i] for i in xrange(200009, 0, -1): if rmn[i-1] > rmn[i]: rmn[i-1] = rmn[i] for i in xrange(200009, 0, -1): if rmx[i-1] < rmx[i]: rmx[i-1] = rmx[i] for i in xrange(200010): if lmn[i] < rmn[i]: lmn[i] = rmn[i] for i in xrange(200010): if lmx[i] > rmx[i]: lmx[i] = rmx[i] ans = 0 for i in xrange(200009): if lmn[i] < lmn[i+1]: lmn[i] = lmn[i+1] for i in xrange(200009): if lmx[i] > lmx[i+1]: lmx[i] = lmx[i+1] for i in xrange(200009): if lmn[i] < lmx[i]: ans += (lmx[i] - lmn[i]) / 2 return ans def main(): n = int(stdin.readline()) dat = map(int, stdin.read().split(), repeat(10, 2 * n)) s = [[], []] for i in xrange(n): x, y = dat[i*2:i*2+2] s[(x+y)&1].append((-x+y, x+y)) print(solve(s[0]) + solve(s[1])) main()
Title: Game with Tokens Time Limit: None seconds Memory Limit: None megabytes Problem Description: Consider the following game for two players. There is one white token and some number of black tokens. Each token is placed on a plane in a point with integer coordinates *x* and *y*. The players take turn making moves, white starts. On each turn, a player moves all tokens of their color by 1 to up, down, left or right. Black player can choose directions for each token independently. After a turn of the white player the white token can not be in a point where a black token is located. There are no other constraints on locations of the tokens: positions of black tokens can coincide, after a turn of the black player and initially the white token can be in the same point with some black point. If at some moment the white player can't make a move, he loses. If the white player makes 10100500 moves, he wins. You are to solve the following problem. You are given initial positions of all black tokens. It is guaranteed that initially all these positions are distinct. In how many places can the white token be located initially so that if both players play optimally, the black player wins? Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of black points. The (*i*<=+<=1)-th line contains two integers *x**i*, *y**i* (<=-<=105<=≤<=*x**i*,<=*y**i*,<=<=≤<=105) — the coordinates of the point where the *i*-th black token is initially located. It is guaranteed that initial positions of black tokens are distinct. Output Specification: Print the number of points where the white token can be located initially, such that if both players play optimally, the black player wins. Demo Input: ['4\n-2 -1\n0 1\n0 -3\n2 -1\n', '4\n-2 0\n-1 1\n0 -2\n1 -1\n', '16\n2 1\n1 2\n-1 1\n0 1\n0 0\n1 1\n2 -1\n2 0\n1 0\n-1 -1\n1 -1\n2 2\n0 -1\n-1 0\n0 2\n-1 2\n'] Demo Output: ['4\n', '2\n', '4\n'] Note: In the first and second examples initial positions of black tokens are shown with black points, possible positions of the white token (such that the black player wins) are shown with white points. The first example: <img class="tex-graphics" src="https://espresso.codeforces.com/5054b8d2df2fac92c92f96fae82d21c365d12983.png" style="max-width: 100.0%;max-height: 100.0%;"/> The second example: <img class="tex-graphics" src="https://espresso.codeforces.com/eb795dd6abb95cfafb1d1cb7d8c8798825dcc180.png" style="max-width: 100.0%;max-height: 100.0%;"/> In the third example the white tokens should be located in the inner square 2 × 2, to make the black player win. <img class="tex-graphics" src="https://espresso.codeforces.com/6dfd863f649b92860dfd6b446ea004abc01b71a6.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python from sys import* from itertools import* def solve(a): inf = 1001001001 C = 400010 lmn = [inf] * 400010 lmx = [-inf] * 400010 for x, y in a: x = (x - 1) / 2 + 100005 if lmn[x] > y: lmn[x] = y if lmx[x] < y: lmx[x] = y rmn = lmn[:] rmx = lmx[:] for i in xrange(200009): if lmn[i+1] > lmn[i]: lmn[i+1] = lmn[i] for i in xrange(200009): if lmx[i+1] < lmx[i]: lmx[i+1] = lmx[i] for i in xrange(200009, 0, -1): if rmn[i-1] > rmn[i]: rmn[i-1] = rmn[i] for i in xrange(200009, 0, -1): if rmx[i-1] < rmx[i]: rmx[i-1] = rmx[i] for i in xrange(200010): if lmn[i] < rmn[i]: lmn[i] = rmn[i] for i in xrange(200010): if lmx[i] > rmx[i]: lmx[i] = rmx[i] ans = 0 for i in xrange(200009): if lmn[i] < lmn[i+1]: lmn[i] = lmn[i+1] for i in xrange(200009): if lmx[i] > lmx[i+1]: lmx[i] = lmx[i+1] for i in xrange(200009): if lmn[i] < lmx[i]: ans += (lmx[i] - lmn[i]) / 2 return ans def main(): n = int(stdin.readline()) dat = map(int, stdin.read().split(), repeat(10, 2 * n)) s = [[], []] for i in xrange(n): x, y = dat[i*2:i*2+2] s[(x+y)&1].append((-x+y, x+y)) print(solve(s[0]) + solve(s[1])) main() ```
-1
794
A
Bank Robbery
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
A robber has attempted to rob a bank but failed to complete his task. However, he had managed to open all the safes. Oleg the bank client loves money (who doesn't), and decides to take advantage of this failed robbery and steal some money from the safes. There are many safes arranged in a line, where the *i*-th safe from the left is called safe *i*. There are *n* banknotes left in all the safes in total. The *i*-th banknote is in safe *x**i*. Oleg is now at safe *a*. There are two security guards, one of which guards the safe *b* such that *b*<=&lt;<=*a*, i.e. the first guard is to the left of Oleg. The other guard guards the safe *c* so that *c*<=&gt;<=*a*, i.e. he is to the right of Oleg. The two guards are very lazy, so they do not move. In every second, Oleg can either take all the banknotes from the current safe or move to any of the neighboring safes. However, he cannot visit any safe that is guarded by security guards at any time, becaues he might be charged for stealing. Determine the maximum amount of banknotes Oleg can gather.
The first line of input contains three space-separated integers, *a*, *b* and *c* (1<=≤<=*b*<=&lt;<=*a*<=&lt;<=*c*<=≤<=109), denoting the positions of Oleg, the first security guard and the second security guard, respectively. The next line of input contains a single integer *n* (1<=≤<=*n*<=≤<=105), denoting the number of banknotes. The next line of input contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=109), denoting that the *i*-th banknote is located in the *x**i*-th safe. Note that *x**i* are not guaranteed to be distinct.
Output a single integer: the maximum number of banknotes Oleg can take.
[ "5 3 7\n8\n4 7 5 5 3 6 2 8\n", "6 5 7\n5\n1 5 7 92 3\n" ]
[ "4\n", "0\n" ]
In the first example Oleg can take the banknotes in positions 4, 5, 6 (note that there are 2 banknotes at position 5). Oleg can't take the banknotes in safes 7 and 8 because he can't run into the second security guard. Similarly, Oleg cannot take the banknotes at positions 3 and 2 because he can't run into the first security guard. Thus, he can take a maximum of 4 banknotes. For the second sample, Oleg can't take any banknotes without bumping into any of the security guards.
500
[ { "input": "5 3 7\n8\n4 7 5 5 3 6 2 8", "output": "4" }, { "input": "6 5 7\n5\n1 5 7 92 3", "output": "0" }, { "input": "3 2 4\n1\n3", "output": "1" }, { "input": "5 3 8\n12\n8 3 4 5 7 6 8 3 5 4 7 6", "output": "8" }, { "input": "7 3 10\n5\n3 3 3 3 3", "output": "0" }, { "input": "3 2 5\n4\n1 3 4 5", "output": "2" }, { "input": "3 2 4\n1\n1", "output": "0" }, { "input": "6 4 8\n1\n4", "output": "0" }, { "input": "2 1 3\n1\n3", "output": "0" } ]
1,644,247,569
2,147,483,647
PyPy 3-64
TIME_LIMIT_EXCEEDED
TESTS
4
2,000
15,769,600
a,b,c = map(int, input().split()) n = int(input()) l = list(map(int, input().split())) ans = 0 for j in range(b+1,c): ans += l.count(j) print(ans)
Title: Bank Robbery Time Limit: None seconds Memory Limit: None megabytes Problem Description: A robber has attempted to rob a bank but failed to complete his task. However, he had managed to open all the safes. Oleg the bank client loves money (who doesn't), and decides to take advantage of this failed robbery and steal some money from the safes. There are many safes arranged in a line, where the *i*-th safe from the left is called safe *i*. There are *n* banknotes left in all the safes in total. The *i*-th banknote is in safe *x**i*. Oleg is now at safe *a*. There are two security guards, one of which guards the safe *b* such that *b*<=&lt;<=*a*, i.e. the first guard is to the left of Oleg. The other guard guards the safe *c* so that *c*<=&gt;<=*a*, i.e. he is to the right of Oleg. The two guards are very lazy, so they do not move. In every second, Oleg can either take all the banknotes from the current safe or move to any of the neighboring safes. However, he cannot visit any safe that is guarded by security guards at any time, becaues he might be charged for stealing. Determine the maximum amount of banknotes Oleg can gather. Input Specification: The first line of input contains three space-separated integers, *a*, *b* and *c* (1<=≤<=*b*<=&lt;<=*a*<=&lt;<=*c*<=≤<=109), denoting the positions of Oleg, the first security guard and the second security guard, respectively. The next line of input contains a single integer *n* (1<=≤<=*n*<=≤<=105), denoting the number of banknotes. The next line of input contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=109), denoting that the *i*-th banknote is located in the *x**i*-th safe. Note that *x**i* are not guaranteed to be distinct. Output Specification: Output a single integer: the maximum number of banknotes Oleg can take. Demo Input: ['5 3 7\n8\n4 7 5 5 3 6 2 8\n', '6 5 7\n5\n1 5 7 92 3\n'] Demo Output: ['4\n', '0\n'] Note: In the first example Oleg can take the banknotes in positions 4, 5, 6 (note that there are 2 banknotes at position 5). Oleg can't take the banknotes in safes 7 and 8 because he can't run into the second security guard. Similarly, Oleg cannot take the banknotes at positions 3 and 2 because he can't run into the first security guard. Thus, he can take a maximum of 4 banknotes. For the second sample, Oleg can't take any banknotes without bumping into any of the security guards.
```python a,b,c = map(int, input().split()) n = int(input()) l = list(map(int, input().split())) ans = 0 for j in range(b+1,c): ans += l.count(j) print(ans) ```
0
94
B
Friends
PROGRAMMING
1,300
[ "graphs", "implementation", "math" ]
B. Friends
1
256
One day Igor K. stopped programming and took up math. One late autumn evening he was sitting at a table reading a book and thinking about something. The following statement caught his attention: "Among any six people there are either three pairwise acquainted people or three pairwise unacquainted people" Igor just couldn't get why the required minimum is 6 people. "Well, that's the same for five people, too!" — he kept on repeating in his mind. — "Let's take, say, Max, Ilya, Vova — here, they all know each other! And now let's add Dima and Oleg to Vova — none of them is acquainted with each other! Now, that math is just rubbish!" Igor K. took 5 friends of his and wrote down who of them is friends with whom. Now he wants to check whether it is true for the five people that among them there are either three pairwise acquainted or three pairwise not acquainted people.
The first line contains an integer *m* (0<=≤<=*m*<=≤<=10), which is the number of relations of acquaintances among the five friends of Igor's. Each of the following *m* lines contains two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=5;*a**i*<=≠<=*b**i*), where (*a**i*,<=*b**i*) is a pair of acquainted people. It is guaranteed that each pair of the acquaintances is described exactly once. The acquaintance relation is symmetrical, i.e. if *x* is acquainted with *y*, then *y* is also acquainted with *x*.
Print "FAIL", if among those five people there are no either three pairwise acquainted or three pairwise unacquainted people. Otherwise print "WIN".
[ "4\n1 3\n2 3\n1 4\n5 3\n", "5\n1 2\n2 3\n3 4\n4 5\n5 1\n" ]
[ "WIN\n", "FAIL\n" ]
none
1,000
[ { "input": "4\n1 3\n2 3\n1 4\n5 3", "output": "WIN" }, { "input": "5\n1 2\n2 3\n3 4\n4 5\n5 1", "output": "FAIL" }, { "input": "1\n4 3", "output": "WIN" }, { "input": "6\n1 3\n2 3\n1 2\n5 3\n4 2\n4 5", "output": "WIN" }, { "input": "2\n1 3\n2 5", "output": "WIN" }, { "input": "3\n5 3\n4 3\n4 5", "output": "WIN" }, { "input": "5\n1 3\n3 2\n2 4\n5 4\n1 5", "output": "FAIL" }, { "input": "7\n1 3\n5 1\n1 4\n2 1\n5 3\n4 5\n2 5", "output": "WIN" }, { "input": "5\n5 1\n4 1\n2 3\n4 5\n3 1", "output": "WIN" }, { "input": "0", "output": "WIN" }, { "input": "10\n1 2\n1 3\n1 4\n1 5\n2 3\n2 4\n2 5\n3 4\n3 5\n4 5", "output": "WIN" }, { "input": "4\n1 2\n2 3\n3 4\n4 1", "output": "WIN" }, { "input": "1\n2 1", "output": "WIN" }, { "input": "1\n2 5", "output": "WIN" }, { "input": "2\n2 1\n1 5", "output": "WIN" }, { "input": "2\n4 2\n1 5", "output": "WIN" }, { "input": "2\n3 4\n5 2", "output": "WIN" }, { "input": "2\n1 5\n4 3", "output": "WIN" }, { "input": "3\n4 1\n4 5\n2 1", "output": "WIN" }, { "input": "3\n5 1\n5 3\n2 5", "output": "WIN" }, { "input": "3\n1 2\n4 2\n1 3", "output": "WIN" }, { "input": "3\n3 2\n1 5\n5 3", "output": "WIN" }, { "input": "3\n1 2\n2 4\n3 2", "output": "WIN" }, { "input": "3\n2 1\n1 3\n5 4", "output": "WIN" }, { "input": "4\n4 2\n2 5\n1 4\n4 5", "output": "WIN" }, { "input": "4\n5 2\n2 4\n5 3\n1 5", "output": "WIN" }, { "input": "4\n2 5\n1 3\n4 3\n4 2", "output": "WIN" }, { "input": "4\n1 4\n3 1\n2 3\n1 2", "output": "WIN" }, { "input": "4\n5 4\n2 3\n1 5\n5 2", "output": "WIN" }, { "input": "4\n2 5\n5 4\n1 4\n5 3", "output": "WIN" }, { "input": "4\n2 1\n2 4\n5 1\n4 1", "output": "WIN" }, { "input": "4\n1 2\n1 5\n4 5\n2 3", "output": "WIN" }, { "input": "5\n4 1\n2 4\n3 2\n5 3\n1 5", "output": "FAIL" }, { "input": "5\n1 3\n4 1\n5 2\n2 4\n3 5", "output": "FAIL" }, { "input": "5\n3 5\n4 2\n1 3\n2 1\n5 4", "output": "FAIL" }, { "input": "5\n5 2\n1 3\n4 5\n2 1\n3 4", "output": "FAIL" }, { "input": "5\n2 3\n3 5\n1 2\n4 1\n5 4", "output": "FAIL" }, { "input": "5\n1 2\n4 5\n5 3\n3 1\n2 4", "output": "FAIL" }, { "input": "5\n5 3\n3 2\n2 4\n1 5\n4 1", "output": "FAIL" }, { "input": "5\n3 2\n4 1\n2 5\n1 3\n5 4", "output": "FAIL" }, { "input": "5\n3 5\n1 4\n5 1\n2 3\n4 2", "output": "FAIL" }, { "input": "5\n4 2\n5 3\n2 1\n3 4\n1 5", "output": "FAIL" }, { "input": "5\n3 1\n5 1\n4 5\n2 4\n5 3", "output": "WIN" }, { "input": "5\n5 4\n5 3\n3 1\n1 4\n2 3", "output": "WIN" }, { "input": "5\n4 1\n3 5\n3 4\n5 4\n5 2", "output": "WIN" }, { "input": "5\n4 1\n5 2\n3 1\n4 2\n5 1", "output": "WIN" }, { "input": "5\n2 3\n1 5\n5 3\n2 4\n1 4", "output": "FAIL" }, { "input": "5\n5 4\n5 3\n2 3\n5 2\n5 1", "output": "WIN" }, { "input": "5\n2 4\n3 4\n1 4\n2 1\n3 2", "output": "WIN" }, { "input": "5\n2 3\n3 4\n1 3\n4 1\n5 2", "output": "WIN" }, { "input": "5\n1 2\n2 5\n4 2\n4 3\n3 1", "output": "WIN" }, { "input": "5\n2 1\n2 5\n4 5\n2 3\n3 5", "output": "WIN" }, { "input": "5\n4 1\n5 1\n5 4\n4 3\n5 2", "output": "WIN" }, { "input": "5\n1 3\n2 4\n1 5\n5 2\n4 1", "output": "WIN" }, { "input": "5\n1 5\n3 5\n2 3\n4 1\n3 1", "output": "WIN" }, { "input": "5\n5 2\n3 2\n2 1\n4 3\n4 2", "output": "WIN" }, { "input": "5\n1 3\n4 5\n3 4\n3 5\n5 1", "output": "WIN" }, { "input": "5\n4 5\n2 5\n5 3\n4 2\n4 1", "output": "WIN" }, { "input": "5\n2 5\n1 5\n1 3\n3 5\n1 2", "output": "WIN" }, { "input": "5\n2 4\n1 2\n5 2\n5 3\n4 5", "output": "WIN" }, { "input": "5\n2 1\n4 5\n5 3\n1 5\n1 4", "output": "WIN" }, { "input": "5\n1 3\n2 5\n4 2\n3 4\n4 1", "output": "WIN" }, { "input": "6\n3 2\n2 4\n3 1\n3 5\n5 2\n1 2", "output": "WIN" }, { "input": "6\n2 1\n5 1\n5 4\n3 5\n3 4\n4 1", "output": "WIN" }, { "input": "6\n3 1\n1 4\n5 4\n2 1\n4 2\n1 5", "output": "WIN" }, { "input": "6\n5 1\n5 4\n3 4\n1 3\n1 4\n4 2", "output": "WIN" }, { "input": "6\n1 3\n5 4\n4 2\n2 1\n4 1\n2 3", "output": "WIN" }, { "input": "6\n4 3\n5 3\n4 1\n1 3\n1 2\n2 4", "output": "WIN" }, { "input": "6\n4 1\n3 5\n4 5\n3 1\n4 3\n5 2", "output": "WIN" }, { "input": "6\n2 1\n1 4\n4 5\n5 2\n1 3\n3 2", "output": "WIN" }, { "input": "7\n5 1\n3 5\n2 5\n4 5\n2 3\n3 1\n4 3", "output": "WIN" }, { "input": "7\n5 3\n5 1\n4 2\n4 5\n3 2\n3 4\n1 3", "output": "WIN" }, { "input": "7\n3 5\n1 4\n5 2\n1 5\n1 3\n4 2\n4 3", "output": "WIN" }, { "input": "7\n5 1\n5 4\n2 4\n2 3\n3 5\n2 5\n4 1", "output": "WIN" }, { "input": "7\n1 3\n2 5\n4 3\n2 1\n2 3\n4 5\n2 4", "output": "WIN" }, { "input": "7\n3 1\n4 5\n3 5\n5 1\n2 4\n1 2\n1 4", "output": "WIN" }, { "input": "8\n1 5\n3 1\n2 5\n4 2\n2 1\n4 5\n4 3\n4 1", "output": "WIN" }, { "input": "8\n4 2\n3 1\n4 3\n2 5\n3 2\n4 5\n1 2\n3 5", "output": "WIN" }, { "input": "8\n2 4\n3 2\n2 5\n3 4\n3 1\n5 1\n4 5\n5 3", "output": "WIN" }, { "input": "8\n2 3\n1 5\n1 3\n4 5\n2 4\n1 4\n3 5\n3 4", "output": "WIN" }, { "input": "9\n3 5\n3 2\n1 5\n4 3\n5 4\n1 4\n1 3\n4 2\n5 2", "output": "WIN" }, { "input": "9\n3 5\n2 5\n5 1\n4 5\n1 3\n3 2\n1 4\n4 3\n4 2", "output": "WIN" }, { "input": "3\n3 4\n4 5\n5 3", "output": "WIN" }, { "input": "3\n1 2\n1 3\n4 5", "output": "WIN" }, { "input": "3\n2 3\n3 5\n2 5", "output": "WIN" } ]
1,637,080,097
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
46
0
import sys import math from sys import stdin, stdout # TAKE INPUT def get_ints_in_variables(): return map(int, sys.stdin.readline().strip().split()) def get_int(): return int(input()) def get_ints_in_list(): return list( map(int, sys.stdin.readline().strip().split())) def get_list_of_list(n): return [list( map(int, sys.stdin.readline().strip().split())) for _ in range(n)] def get_string(): return sys.stdin.readline().strip() def main(): # Write Your Code Here m = int(input()) adjList = {1:[],2:[],3:[],4:[],5:[]} for _ in range(0, m): ai, bi = get_ints_in_variables() adjList[ai].append(bi) adjList[bi].append(ai) # print(adjList) count_unacquainted = 0 for key, val in adjList.items(): if len(val) >= 3: print("WIN") return if len(val) == 0: count_unacquainted += 1 if count_unacquainted >= 3: print("WIN") else: print("FAIL") return # calling main Function if __name__ == "__main__": main()
Title: Friends Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: One day Igor K. stopped programming and took up math. One late autumn evening he was sitting at a table reading a book and thinking about something. The following statement caught his attention: "Among any six people there are either three pairwise acquainted people or three pairwise unacquainted people" Igor just couldn't get why the required minimum is 6 people. "Well, that's the same for five people, too!" — he kept on repeating in his mind. — "Let's take, say, Max, Ilya, Vova — here, they all know each other! And now let's add Dima and Oleg to Vova — none of them is acquainted with each other! Now, that math is just rubbish!" Igor K. took 5 friends of his and wrote down who of them is friends with whom. Now he wants to check whether it is true for the five people that among them there are either three pairwise acquainted or three pairwise not acquainted people. Input Specification: The first line contains an integer *m* (0<=≤<=*m*<=≤<=10), which is the number of relations of acquaintances among the five friends of Igor's. Each of the following *m* lines contains two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=5;*a**i*<=≠<=*b**i*), where (*a**i*,<=*b**i*) is a pair of acquainted people. It is guaranteed that each pair of the acquaintances is described exactly once. The acquaintance relation is symmetrical, i.e. if *x* is acquainted with *y*, then *y* is also acquainted with *x*. Output Specification: Print "FAIL", if among those five people there are no either three pairwise acquainted or three pairwise unacquainted people. Otherwise print "WIN". Demo Input: ['4\n1 3\n2 3\n1 4\n5 3\n', '5\n1 2\n2 3\n3 4\n4 5\n5 1\n'] Demo Output: ['WIN\n', 'FAIL\n'] Note: none
```python import sys import math from sys import stdin, stdout # TAKE INPUT def get_ints_in_variables(): return map(int, sys.stdin.readline().strip().split()) def get_int(): return int(input()) def get_ints_in_list(): return list( map(int, sys.stdin.readline().strip().split())) def get_list_of_list(n): return [list( map(int, sys.stdin.readline().strip().split())) for _ in range(n)] def get_string(): return sys.stdin.readline().strip() def main(): # Write Your Code Here m = int(input()) adjList = {1:[],2:[],3:[],4:[],5:[]} for _ in range(0, m): ai, bi = get_ints_in_variables() adjList[ai].append(bi) adjList[bi].append(ai) # print(adjList) count_unacquainted = 0 for key, val in adjList.items(): if len(val) >= 3: print("WIN") return if len(val) == 0: count_unacquainted += 1 if count_unacquainted >= 3: print("WIN") else: print("FAIL") return # calling main Function if __name__ == "__main__": main() ```
0
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,640,286,703
2,147,483,647
Python 3
OK
TESTS
102
61
0
n1=input() n2=input() c=[str(int(n1[i])^int(n2[i])) for i in range(len(n1))] c="".join(c) print(c)
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python n1=input() n2=input() c=[str(int(n1[i])^int(n2[i])) for i in range(len(n1))] c="".join(c) print(c) ```
3.98475
110
A
Nearly Lucky Number
PROGRAMMING
800
[ "implementation" ]
A. Nearly Lucky Number
2
256
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number *n* is a nearly lucky number.
The only line contains an integer *n* (1<=≤<=*n*<=≤<=1018). Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use the cin, cout streams or the %I64d specificator.
Print on the single line "YES" if *n* is a nearly lucky number. Otherwise, print "NO" (without the quotes).
[ "40047\n", "7747774\n", "1000000000000000000\n" ]
[ "NO\n", "YES\n", "NO\n" ]
In the first sample there are 3 lucky digits (first one and last two), so the answer is "NO". In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is "YES". In the third sample there are no lucky digits, so the answer is "NO".
500
[ { "input": "40047", "output": "NO" }, { "input": "7747774", "output": "YES" }, { "input": "1000000000000000000", "output": "NO" }, { "input": "7", "output": "NO" }, { "input": "4", "output": "NO" }, { "input": "474404774", "output": "NO" }, { "input": "4744000695826", "output": "YES" }, { "input": "10000000004744744", "output": "YES" }, { "input": "446486416781684178", "output": "YES" }, { "input": "999999999", "output": "NO" }, { "input": "7777", "output": "YES" }, { "input": "87414417444", "output": "NO" }, { "input": "111222333444555667", "output": "YES" }, { "input": "1", "output": "NO" }, { "input": "4700", "output": "NO" }, { "input": "3794555488744477", "output": "NO" }, { "input": "444444444444444444", "output": "NO" }, { "input": "474447447774444774", "output": "NO" }, { "input": "777777777777777", "output": "NO" }, { "input": "34777745021000000", "output": "NO" }, { "input": "963", "output": "NO" }, { "input": "855474448854788540", "output": "NO" }, { "input": "999999999999994744", "output": "YES" }, { "input": "400000000474", "output": "YES" }, { "input": "123456789123456789", "output": "YES" }, { "input": "740577777584945874", "output": "NO" }, { "input": "7777777", "output": "YES" }, { "input": "4444000111222333", "output": "YES" }, { "input": "9847745885202111", "output": "YES" }, { "input": "123456000000", "output": "NO" }, { "input": "4744447444444", "output": "NO" }, { "input": "7477", "output": "YES" }, { "input": "4747477", "output": "YES" }, { "input": "777777777444444444", "output": "NO" } ]
1,699,172,766
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
62
0
def isLuckyNum(s): for ch in s: if ch not in ['4','7']: return "NO" return "YES" s = input() print(isLuckyNum(s))
Title: Nearly Lucky Number Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number *n* is a nearly lucky number. Input Specification: The only line contains an integer *n* (1<=≤<=*n*<=≤<=1018). Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use the cin, cout streams or the %I64d specificator. Output Specification: Print on the single line "YES" if *n* is a nearly lucky number. Otherwise, print "NO" (without the quotes). Demo Input: ['40047\n', '7747774\n', '1000000000000000000\n'] Demo Output: ['NO\n', 'YES\n', 'NO\n'] Note: In the first sample there are 3 lucky digits (first one and last two), so the answer is "NO". In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is "YES". In the third sample there are no lucky digits, so the answer is "NO".
```python def isLuckyNum(s): for ch in s: if ch not in ['4','7']: return "NO" return "YES" s = input() print(isLuckyNum(s)) ```
0
0
none
none
none
0
[ "none" ]
null
null
Alice and Bob begin their day with a quick game. They first choose a starting number *X*0<=≥<=3 and try to reach one million by the process described below. Alice goes first and then they take alternating turns. In the *i*-th turn, the player whose turn it is selects a prime number smaller than the current number, and announces the smallest multiple of this prime number that is not smaller than the current number. Formally, he or she selects a prime *p*<=&lt;<=*X**i*<=-<=1 and then finds the minimum *X**i*<=≥<=*X**i*<=-<=1 such that *p* divides *X**i*. Note that if the selected prime *p* already divides *X**i*<=-<=1, then the number does not change. Eve has witnessed the state of the game after two turns. Given *X*2, help her determine what is the smallest possible starting number *X*0. Note that the players don't necessarily play optimally. You should consider all possible game evolutions.
The input contains a single integer *X*2 (4<=≤<=*X*2<=≤<=106). It is guaranteed that the integer *X*2 is composite, that is, is not prime.
Output a single integer — the minimum possible *X*0.
[ "14\n", "20\n", "8192\n" ]
[ "6\n", "15\n", "8191\n" ]
In the first test, the smallest possible starting number is *X*<sub class="lower-index">0</sub> = 6. One possible course of the game is as follows: - Alice picks prime 5 and announces *X*<sub class="lower-index">1</sub> = 10 - Bob picks prime 7 and announces *X*<sub class="lower-index">2</sub> = 14. In the second case, let *X*<sub class="lower-index">0</sub> = 15. - Alice picks prime 2 and announces *X*<sub class="lower-index">1</sub> = 16 - Bob picks prime 5 and announces *X*<sub class="lower-index">2</sub> = 20.
0
[ { "input": "14", "output": "6" }, { "input": "20", "output": "15" }, { "input": "8192", "output": "8191" }, { "input": "1000000", "output": "998677" }, { "input": "959806", "output": "239958" }, { "input": "1452", "output": "1206" }, { "input": "4", "output": "3" }, { "input": "6", "output": "3" }, { "input": "8", "output": "7" }, { "input": "9", "output": "7" }, { "input": "10", "output": "4" }, { "input": "12", "output": "6" }, { "input": "15", "output": "8" }, { "input": "16", "output": "11" }, { "input": "110880", "output": "55440" }, { "input": "166320", "output": "110879" }, { "input": "221760", "output": "110880" }, { "input": "277200", "output": "138600" }, { "input": "332640", "output": "166320" }, { "input": "498960", "output": "332639" }, { "input": "554400", "output": "415798" }, { "input": "665280", "output": "498958" }, { "input": "720720", "output": "540538" }, { "input": "510510", "output": "255248" }, { "input": "570570", "output": "285282" }, { "input": "690690", "output": "460455" }, { "input": "959818", "output": "239958" }, { "input": "959878", "output": "239978" }, { "input": "959902", "output": "239978" }, { "input": "974847", "output": "324954" }, { "input": "974859", "output": "324978" }, { "input": "974931", "output": "324980" }, { "input": "885481", "output": "442272" }, { "input": "896809", "output": "447944" }, { "input": "908209", "output": "453632" }, { "input": "935089", "output": "467064" }, { "input": "720721", "output": "355298" }, { "input": "690691", "output": "342864" }, { "input": "959903", "output": "479702" }, { "input": "974932", "output": "470060" }, { "input": "935090", "output": "463950" }, { "input": "524288", "output": "524287" }, { "input": "524289", "output": "174768" }, { "input": "524286", "output": "262110" }, { "input": "531441", "output": "526737" }, { "input": "531442", "output": "262490" }, { "input": "531440", "output": "265704" }, { "input": "81", "output": "76" }, { "input": "999958", "output": "250008" }, { "input": "2048", "output": "1959" } ]
1,520,771,769
2,147,483,647
Python 3
OK
TESTS
50
858
30,105,600
# -*- coding: utf - 8 -*- """"""""""""""""""""""""""""""""""""""""""""" | author: mr.math - Hakimov Rahimjon | | e-mail: [email protected] | | created: 10.03.2018 20:50 | """"""""""""""""""""""""""""""""""""""""""""" # inp = open("input.txt", "r"); input = inp.readline; out = open("output.txt", "w"); print = out.write TN = 1 # =========================================== def resheto(l, k, n): i=0 while i<len(l): if l[i]%k == 0: l=l[:i]+l[i+1:] i+=1 lst = [] for i in l: if n % i == 0: lst.append(i) return lst # =========================================== def solution(): x2 = int(input()) n = 1000001 max_prime = [0] * n s = list(range(n)) s[1] = 0 for i in s: if i > 1 and s[i]: for j in range(2 * i, n, i): s[j] = 0 max_prime[j] = i min_x0 = n for x in range(x2 - max_prime[x2] + 1, x2 + 1): max_div = max_prime[x] tmp = x - max_div + 1 if max_div and tmp < min_x0: min_x0 = tmp print(min_x0) # =========================================== while TN != 0: solution() TN -= 1 # =========================================== # inp.close() # out.close()
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Alice and Bob begin their day with a quick game. They first choose a starting number *X*0<=≥<=3 and try to reach one million by the process described below. Alice goes first and then they take alternating turns. In the *i*-th turn, the player whose turn it is selects a prime number smaller than the current number, and announces the smallest multiple of this prime number that is not smaller than the current number. Formally, he or she selects a prime *p*<=&lt;<=*X**i*<=-<=1 and then finds the minimum *X**i*<=≥<=*X**i*<=-<=1 such that *p* divides *X**i*. Note that if the selected prime *p* already divides *X**i*<=-<=1, then the number does not change. Eve has witnessed the state of the game after two turns. Given *X*2, help her determine what is the smallest possible starting number *X*0. Note that the players don't necessarily play optimally. You should consider all possible game evolutions. Input Specification: The input contains a single integer *X*2 (4<=≤<=*X*2<=≤<=106). It is guaranteed that the integer *X*2 is composite, that is, is not prime. Output Specification: Output a single integer — the minimum possible *X*0. Demo Input: ['14\n', '20\n', '8192\n'] Demo Output: ['6\n', '15\n', '8191\n'] Note: In the first test, the smallest possible starting number is *X*<sub class="lower-index">0</sub> = 6. One possible course of the game is as follows: - Alice picks prime 5 and announces *X*<sub class="lower-index">1</sub> = 10 - Bob picks prime 7 and announces *X*<sub class="lower-index">2</sub> = 14. In the second case, let *X*<sub class="lower-index">0</sub> = 15. - Alice picks prime 2 and announces *X*<sub class="lower-index">1</sub> = 16 - Bob picks prime 5 and announces *X*<sub class="lower-index">2</sub> = 20.
```python # -*- coding: utf - 8 -*- """"""""""""""""""""""""""""""""""""""""""""" | author: mr.math - Hakimov Rahimjon | | e-mail: [email protected] | | created: 10.03.2018 20:50 | """"""""""""""""""""""""""""""""""""""""""""" # inp = open("input.txt", "r"); input = inp.readline; out = open("output.txt", "w"); print = out.write TN = 1 # =========================================== def resheto(l, k, n): i=0 while i<len(l): if l[i]%k == 0: l=l[:i]+l[i+1:] i+=1 lst = [] for i in l: if n % i == 0: lst.append(i) return lst # =========================================== def solution(): x2 = int(input()) n = 1000001 max_prime = [0] * n s = list(range(n)) s[1] = 0 for i in s: if i > 1 and s[i]: for j in range(2 * i, n, i): s[j] = 0 max_prime[j] = i min_x0 = n for x in range(x2 - max_prime[x2] + 1, x2 + 1): max_div = max_prime[x] tmp = x - max_div + 1 if max_div and tmp < min_x0: min_x0 = tmp print(min_x0) # =========================================== while TN != 0: solution() TN -= 1 # =========================================== # inp.close() # out.close() ```
3
84
A
Toy Army
PROGRAMMING
900
[ "math", "number theory" ]
A. Toy Army
2
256
The hero of our story, Valera, and his best friend Arcady are still in school, and therefore they spend all the free time playing turn-based strategy "GAGA: Go And Go Again". The gameplay is as follows. There are two armies on the playing field each of which consists of *n* men (*n* is always even). The current player specifies for each of her soldiers an enemy's soldier he will shoot (a target) and then all the player's soldiers shot simultaneously. This is a game world, and so each soldier shoots perfectly, that is he absolutely always hits the specified target. If an enemy soldier is hit, he will surely die. It may happen that several soldiers had been indicated the same target. Killed soldiers do not participate in the game anymore. The game "GAGA" consists of three steps: first Valera makes a move, then Arcady, then Valera again and the game ends. You are asked to calculate the maximum total number of soldiers that may be killed during the game.
The input data consist of a single integer *n* (2<=≤<=*n*<=≤<=108, *n* is even). Please note that before the game starts there are 2*n* soldiers on the fields.
Print a single number — a maximum total number of soldiers that could be killed in the course of the game in three turns.
[ "2\n", "4\n" ]
[ "3\n", "6\n" ]
The first sample test: 1) Valera's soldiers 1 and 2 shoot at Arcady's soldier 1. 2) Arcady's soldier 2 shoots at Valera's soldier 1. 3) Valera's soldier 1 shoots at Arcady's soldier 2. There are 3 soldiers killed in total: Valera's soldier 1 and Arcady's soldiers 1 and 2.
500
[ { "input": "2", "output": "3" }, { "input": "4", "output": "6" }, { "input": "6", "output": "9" }, { "input": "8", "output": "12" }, { "input": "10", "output": "15" }, { "input": "140", "output": "210" }, { "input": "500", "output": "750" }, { "input": "1000", "output": "1500" }, { "input": "2000", "output": "3000" }, { "input": "50000", "output": "75000" }, { "input": "10000", "output": "15000" }, { "input": "25460", "output": "38190" }, { "input": "54646", "output": "81969" }, { "input": "59790", "output": "89685" }, { "input": "578456", "output": "867684" }, { "input": "56798056", "output": "85197084" }, { "input": "8457980", "output": "12686970" }, { "input": "5687986", "output": "8531979" }, { "input": "10984932", "output": "16477398" }, { "input": "99999994", "output": "149999991" }, { "input": "99999996", "output": "149999994" }, { "input": "99999998", "output": "149999997" }, { "input": "100000000", "output": "150000000" } ]
1,570,519,478
2,147,483,647
Python 3
OK
TESTS
23
216
0
n=int(input()) r=2*n-(n//2) print(r)
Title: Toy Army Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The hero of our story, Valera, and his best friend Arcady are still in school, and therefore they spend all the free time playing turn-based strategy "GAGA: Go And Go Again". The gameplay is as follows. There are two armies on the playing field each of which consists of *n* men (*n* is always even). The current player specifies for each of her soldiers an enemy's soldier he will shoot (a target) and then all the player's soldiers shot simultaneously. This is a game world, and so each soldier shoots perfectly, that is he absolutely always hits the specified target. If an enemy soldier is hit, he will surely die. It may happen that several soldiers had been indicated the same target. Killed soldiers do not participate in the game anymore. The game "GAGA" consists of three steps: first Valera makes a move, then Arcady, then Valera again and the game ends. You are asked to calculate the maximum total number of soldiers that may be killed during the game. Input Specification: The input data consist of a single integer *n* (2<=≤<=*n*<=≤<=108, *n* is even). Please note that before the game starts there are 2*n* soldiers on the fields. Output Specification: Print a single number — a maximum total number of soldiers that could be killed in the course of the game in three turns. Demo Input: ['2\n', '4\n'] Demo Output: ['3\n', '6\n'] Note: The first sample test: 1) Valera's soldiers 1 and 2 shoot at Arcady's soldier 1. 2) Arcady's soldier 2 shoots at Valera's soldier 1. 3) Valera's soldier 1 shoots at Arcady's soldier 2. There are 3 soldiers killed in total: Valera's soldier 1 and Arcady's soldiers 1 and 2.
```python n=int(input()) r=2*n-(n//2) print(r) ```
3.946
166
E
Tetrahedron
PROGRAMMING
1,500
[ "dp", "math", "matrices" ]
null
null
You are given a tetrahedron. Let's mark its vertices with letters *A*, *B*, *C* and *D* correspondingly. An ant is standing in the vertex *D* of the tetrahedron. The ant is quite active and he wouldn't stay idle. At each moment of time he makes a step from one vertex to another one along some edge of the tetrahedron. The ant just can't stand on one place. You do not have to do much to solve the problem: your task is to count the number of ways in which the ant can go from the initial vertex *D* to itself in exactly *n* steps. In other words, you are asked to find out the number of different cyclic paths with the length of *n* from vertex *D* to itself. As the number can be quite large, you should print it modulo 1000000007 (109<=+<=7).
The first line contains the only integer *n* (1<=≤<=*n*<=≤<=107) — the required length of the cyclic path.
Print the only integer — the required number of ways modulo 1000000007 (109<=+<=7).
[ "2\n", "4\n" ]
[ "3\n", "21\n" ]
The required paths in the first sample are: - *D* - *A* - *D* - *D* - *B* - *D* - *D* - *C* - *D*
1,000
[ { "input": "2", "output": "3" }, { "input": "4", "output": "21" }, { "input": "1", "output": "0" }, { "input": "3", "output": "6" }, { "input": "5", "output": "60" }, { "input": "6", "output": "183" }, { "input": "7", "output": "546" }, { "input": "8", "output": "1641" }, { "input": "9", "output": "4920" }, { "input": "10", "output": "14763" }, { "input": "15", "output": "3587226" }, { "input": "30", "output": "782663359" }, { "input": "10000000", "output": "192336614" }, { "input": "100", "output": "721510432" }, { "input": "300", "output": "327873818" }, { "input": "900", "output": "295068084" }, { "input": "1500", "output": "451187545" }, { "input": "3000", "output": "645417275" }, { "input": "5000", "output": "755610910" }, { "input": "10000", "output": "723907367" }, { "input": "50000", "output": "969527595" }, { "input": "90000", "output": "548978368" }, { "input": "99999", "output": "909741855" }, { "input": "100000", "output": "729225554" }, { "input": "300000", "output": "93822635" }, { "input": "800000", "output": "178940616" }, { "input": "1000000", "output": "266233856" }, { "input": "4000000", "output": "882155933" }, { "input": "9000000", "output": "295060537" }, { "input": "9999999", "output": "730778875" }, { "input": "1000000", "output": "266233856" }, { "input": "9999999", "output": "730778875" }, { "input": "10000000", "output": "192336614" }, { "input": "9999998", "output": "576926295" }, { "input": "30", "output": "782663359" }, { "input": "31", "output": "347990060" } ]
1,633,805,212
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
12
2,000
90,726,400
def main(): n = int(input()) M = 1000000007 dp = [0] * (n + 1) for i in range(2, n + 1): if i % 2 == 0: dp[i] = (3*dp[i-1] + 3) % M else: dp[i] = (3*dp[i-1] - 3) % M print(dp[n]) main()
Title: Tetrahedron Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a tetrahedron. Let's mark its vertices with letters *A*, *B*, *C* and *D* correspondingly. An ant is standing in the vertex *D* of the tetrahedron. The ant is quite active and he wouldn't stay idle. At each moment of time he makes a step from one vertex to another one along some edge of the tetrahedron. The ant just can't stand on one place. You do not have to do much to solve the problem: your task is to count the number of ways in which the ant can go from the initial vertex *D* to itself in exactly *n* steps. In other words, you are asked to find out the number of different cyclic paths with the length of *n* from vertex *D* to itself. As the number can be quite large, you should print it modulo 1000000007 (109<=+<=7). Input Specification: The first line contains the only integer *n* (1<=≤<=*n*<=≤<=107) — the required length of the cyclic path. Output Specification: Print the only integer — the required number of ways modulo 1000000007 (109<=+<=7). Demo Input: ['2\n', '4\n'] Demo Output: ['3\n', '21\n'] Note: The required paths in the first sample are: - *D* - *A* - *D* - *D* - *B* - *D* - *D* - *C* - *D*
```python def main(): n = int(input()) M = 1000000007 dp = [0] * (n + 1) for i in range(2, n + 1): if i % 2 == 0: dp[i] = (3*dp[i-1] + 3) % M else: dp[i] = (3*dp[i-1] - 3) % M print(dp[n]) main() ```
0
0
none
none
none
0
[ "none" ]
null
null
Поликарп мечтает стать программистом и фанатеет от степеней двойки. Среди двух чисел ему больше нравится то, которое делится на большую степень числа 2. По заданной последовательности целых положительных чисел *a*1,<=*a*2,<=...,<=*a**n* требуется найти *r* — максимальную степень числа 2, на которую делится хотя бы одно из чисел последовательности. Кроме того, требуется вывести количество чисел *a**i*, которые делятся на *r*.
В первой строке записано целое число *n* (1<=≤<=*n*<=≤<=100) — длина последовательности *a*. Во второй строке записана последовательность целых чисел *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109).
Выведите два числа: - *r* — максимальную степень двойки, на которую делится хотя бы одно из чисел заданной последовательности, - количество элементов последовательности, которые делятся на *r*.
[ "5\n80 7 16 4 48\n", "4\n21 5 3 33\n" ]
[ "16 3\n", "1 4\n" ]
В первом тестовом примере максимальная степень двойки, на которую делится хотя бы одно число, равна 16 = 2<sup class="upper-index">4</sup>, на неё делятся числа 80, 16 и 48. Во втором тестовом примере все четыре числа нечётные, поэтому делятся только на 1 = 2<sup class="upper-index">0</sup>. Это и будет максимальной степенью двойки для данного примера.
0
[ { "input": "5\n80 7 16 4 48", "output": "16 3" }, { "input": "4\n21 5 3 33", "output": "1 4" }, { "input": "10\n8 112 52 86 93 102 24 24 100 826791168", "output": "256 1" }, { "input": "3\n458297759 18 104", "output": "8 1" }, { "input": "7\n12 14 40 8 74 104 11", "output": "8 3" }, { "input": "11\n35 16 664311776 46 48 52 63 82 84 80 23", "output": "32 1" }, { "input": "7\n67 68 58 24 96 73 72", "output": "32 1" }, { "input": "8\n48 112 40 8 112 14 80 36", "output": "16 4" }, { "input": "10\n14 6 68 8 84 949689614 91 26 80 56", "output": "16 1" }, { "input": "4\n39 56 939117699 56", "output": "8 2" }, { "input": "5\n90 18 56 64 32", "output": "64 1" }, { "input": "9\n64 95 32 64 96 80 100 96 66", "output": "64 2" }, { "input": "20\n105407881 735510073 587127085 111067442 126807503 250859170 778634763 919694130 592496831 462347734 532487590 475786023 951527598 183635985 612791353 447723541 409812454 900700354 801564406 532793851", "output": "2 9" }, { "input": "20\n850632510 530517796 700510265 454664263 131947796 418444926 921278498 251889644 705327498 892480283 884422799 479219117 399278535 80826412 496934492 448261193 39033930 49426174 621130971 808191947", "output": "4 5" }, { "input": "20\n780355354 620754888 193377552 463211662 46248927 312489308 472238901 823707535 138518748 267363170 19751630 193171944 411443343 858525221 458019868 490268043 7864848 218005780 744553112 83590041", "output": "16 2" }, { "input": "20\n29023024 579267278 217400978 121454376 235087976 154574217 708760940 84623652 195299056 329204104 527952531 822521791 513319036 285749488 292843688 389260660 498981613 835987320 444201058 251639011", "output": "16 3" }, { "input": "20\n267784376 576420580 392773522 296581728 508523192 812838532 920098710 624114448 194991560 850559568 29915376 785467756 490019770 524237000 871021232 970867040 769417893 210139479 445850586 333230268", "output": "32 2" }, { "input": "20\n860654784 630481952 430211228 13468621 33985780 279050728 782571295 83521731 818343376 508318323 550168944 763113524 152970477 502262855 934672824 712697136 451447464 732781790 71573907 50381000", "output": "64 1" }, { "input": "20\n673865536 152236510 957204496 401364096 969402746 287701920 768559538 642049008 736330680 179648832 480094052 225156558 957671104 726304328 612058916 257008256 173639040 673864512 431405191 454360662", "output": "128 3" }, { "input": "20\n706678380 597303020 176804438 146220776 485004772 799346560 692789954 737954674 398118372 231976240 957701828 556811840 74342144 966291136 893909760 745234360 44276827 878935416 975182148 322390872", "output": "256 2" }, { "input": "20\n442107036 883530112 852749824 997931232 902004480 838557324 186049792 827163136 3843737 603467472 383038751 548720704 843680384 906511492 591629504 41722624 79778650 839163077 880599104 456148480", "output": "512 3" }, { "input": "20\n667815852 318176276 693849088 724201296 188710200 39249152 929966576 651876056 580647856 575425536 367972188 647585808 833274694 578646160 593232968 747635620 973200384 608104976 754724885 832141532", "output": "1024 3" }, { "input": "20\n448394296 216942008 573160113 728121900 769966592 164290016 721604576 970539238 338262776 947927236 587084928 648622584 194610176 435895128 896641600 70371299 323855936 292543040 28980004 787518144", "output": "1024 1" }, { "input": "20\n269609216 130664082 366702720 254341120 817371149 791314720 886888448 933572608 411407552 86828928 280842240 259838684 821718144 131427072 316135424 189065544 173073728 20176393 508466777 927373184", "output": "4096 3" }, { "input": "20\n620004352 728068096 230808280 347805952 153777664 828290048 941633792 681387488 689396208 283672752 130113536 124222464 425923944 365087488 68677632 957876224 86529928 278224896 516674048 203400656", "output": "8192 2" }, { "input": "20\n957116416 938908864 254662656 28720000 829892752 344974528 22716709 493757015 729003570 868597760 675246081 648372096 233462945 949382272 600301600 979810000 695847936 383948336 388551600 125714432", "output": "16384 2" }, { "input": "20\n793801200 316289782 968725504 765722788 172605440 945717248 613921792 54457344 725727714 598109120 390593416 438184064 245627755 91785071 855031808 778218454 34154240 686966990 736207232 674856960", "output": "32768 2" }, { "input": "20\n356744192 260087808 498705408 60572928 360008038 968932864 66422016 929599488 973047264 426826855 483623936 826974208 487705600 787624960 951492608 343212032 661494459 244741040 409686016 20327511", "output": "65536 1" }, { "input": "20\n775136472 720896 585826304 479121408 116085124 608963940 286154752 103731391 192445952 745342784 887373824 351469568 201183616 579608192 26928128 861796540 579858432 30678450 359436288 476635136", "output": "65536 3" }, { "input": "20\n962265088 792592384 175088192 998003136 645410688 697606715 918541862 551100416 247733780 770750336 264468484 185550848 201588736 989953440 799341904 355386616 611975168 792208864 272619608 239038496", "output": "262144 1" }, { "input": "20\n420610048 361879464 11984896 648474908 567803904 811903488 777519104 677117952 794312704 362283008 946274304 824280862 716753756 318224096 114032640 470286336 153747456 698417152 410143376 577402584", "output": "524288 4" }, { "input": "20\n916422656 61941502 755804160 993386496 371458048 361240704 791150592 218434752 532807680 517277964 158990336 877143936 263469056 339735363 438097920 842006528 200088380 651153211 932184064 443051520", "output": "1048576 2" }, { "input": "20\n855113728 457249360 705319632 368396992 886571008 261505024 647304078 73518537 749228480 194262008 148995424 860356608 950009856 649068544 430006272 363153728 105360192 37648488 426766453 565502131", "output": "2097152 1" }, { "input": "20\n283119671 29874944 739246080 972336073 468233952 926107648 665047794 354091008 141526171 529537472 937811232 970178560 948105794 433304784 186908672 912261120 858259456 972472320 4889883 76907904", "output": "2097152 1" }, { "input": "20\n386375302 77596672 411041792 683671552 667767296 625737728 947733007 612950256 129715876 813694976 782385152 164455808 647131408 385566720 65880960 96010240 484900864 385339335 533303296 660648928", "output": "8388608 2" }, { "input": "20\n786432000 123007744 351391826 216719360 391303168 920693440 652456192 715653120 915090432 26559797 680345413 346423296 401288334 437510144 122224640 652606928 182370304 683278336 656773980 316229632", "output": "2097152 1" }, { "input": "20\n850523026 993052212 100663296 830207504 281863570 426977070 803471360 796327936 369098752 842702848 526319616 785973248 501219328 801245229 853162496 689842176 292886257 859104512 631656960 512295035", "output": "33554432 2" }, { "input": "20\n694157312 375128064 494927872 199980576 823836320 358259440 950409408 215242336 126689280 697139200 471849008 854435840 935337515 589698048 157286400 161334770 738197504 594549920 416464896 690872320", "output": "67108864 1" }, { "input": "20\n785580032 987226112 398458880 437531712 335544320 676369664 533876736 181598976 117440512 924319744 469762048 443505526 949904673 710590464 533015579 17793024 781975552 803666112 973078528 866337472", "output": "67108864 2" }, { "input": "20\n558266065 720866235 285275468 139607080 150235150 855638016 815792128 358744064 620756992 438077440 73404848 892534480 939524096 195793792 838860800 364010680 931135488 254242133 374493422 578846720", "output": "134217728 1" }, { "input": "20\n909362176 291766272 557318144 348389376 426770432 526614528 213516288 932012606 344981504 138412032 6291456 354007477 536870912 557842432 536870912 668205056 398003707 609566463 893207232 83886080", "output": "536870912 2" }, { "input": "1\n167959139", "output": "1 1" }, { "input": "2\n641009859 54748095", "output": "1 2" }, { "input": "10\n1000000 1 1000000 1 1000000 1 1000000 1 1000000 1", "output": "64 5" }, { "input": "5\n1000000000 1000000000 1000000000 1000000000 1000000000", "output": "512 5" }, { "input": "8\n1 1 1 1 1 1 1 1", "output": "1 8" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "64 1" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1 100" }, { "input": "100\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "2 100" }, { "input": "100\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3", "output": "1 100" }, { "input": "1\n536870912", "output": "536870912 1" } ]
1,458,977,084
1,484
Python 3
WRONG_ANSWER
PRETESTS
4
61
4,608,000
n = int(input()) z = input().split() a = [] r = 0 k = 0 max = 0 for i in range(n): a.append(int(z[i])) if a[i] > max: max = a[i] for i in range(n): j = 0 num = a[i] while num % 2 ** j == 0: j += 1 if j > r : r = j - 1 r = 2 ** r for i in range(n): if a[i] % r == 0 : k += 1 print(r,' ',k)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Поликарп мечтает стать программистом и фанатеет от степеней двойки. Среди двух чисел ему больше нравится то, которое делится на большую степень числа 2. По заданной последовательности целых положительных чисел *a*1,<=*a*2,<=...,<=*a**n* требуется найти *r* — максимальную степень числа 2, на которую делится хотя бы одно из чисел последовательности. Кроме того, требуется вывести количество чисел *a**i*, которые делятся на *r*. Input Specification: В первой строке записано целое число *n* (1<=≤<=*n*<=≤<=100) — длина последовательности *a*. Во второй строке записана последовательность целых чисел *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109). Output Specification: Выведите два числа: - *r* — максимальную степень двойки, на которую делится хотя бы одно из чисел заданной последовательности, - количество элементов последовательности, которые делятся на *r*. Demo Input: ['5\n80 7 16 4 48\n', '4\n21 5 3 33\n'] Demo Output: ['16 3\n', '1 4\n'] Note: В первом тестовом примере максимальная степень двойки, на которую делится хотя бы одно число, равна 16 = 2<sup class="upper-index">4</sup>, на неё делятся числа 80, 16 и 48. Во втором тестовом примере все четыре числа нечётные, поэтому делятся только на 1 = 2<sup class="upper-index">0</sup>. Это и будет максимальной степенью двойки для данного примера.
```python n = int(input()) z = input().split() a = [] r = 0 k = 0 max = 0 for i in range(n): a.append(int(z[i])) if a[i] > max: max = a[i] for i in range(n): j = 0 num = a[i] while num % 2 ** j == 0: j += 1 if j > r : r = j - 1 r = 2 ** r for i in range(n): if a[i] % r == 0 : k += 1 print(r,' ',k) ```
0
551
A
GukiZ and Contest
PROGRAMMING
800
[ "brute force", "implementation", "sortings" ]
null
null
Professor GukiZ likes programming contests. He especially likes to rate his students on the contests he prepares. Now, he has decided to prepare a new contest. In total, *n* students will attend, and before the start, every one of them has some positive integer rating. Students are indexed from 1 to *n*. Let's denote the rating of *i*-th student as *a**i*. After the contest ends, every student will end up with some positive integer position. GukiZ expects that his students will take places according to their ratings. He thinks that each student will take place equal to . In particular, if student *A* has rating strictly lower then student *B*, *A* will get the strictly better position than *B*, and if two students have equal ratings, they will share the same position. GukiZ would like you to reconstruct the results by following his expectations. Help him and determine the position after the end of the contest for each of his students if everything goes as expected.
The first line contains integer *n* (1<=≤<=*n*<=≤<=2000), number of GukiZ's students. The second line contains *n* numbers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=2000) where *a**i* is the rating of *i*-th student (1<=≤<=*i*<=≤<=*n*).
In a single line, print the position after the end of the contest for each of *n* students in the same order as they appear in the input.
[ "3\n1 3 3\n", "1\n1\n", "5\n3 5 3 4 5\n" ]
[ "3 1 1\n", "1\n", "4 1 4 3 1\n" ]
In the first sample, students 2 and 3 are positioned first (there is no other student with higher rating), and student 1 is positioned third since there are two students with higher rating. In the second sample, first student is the only one on the contest. In the third sample, students 2 and 5 share the first position with highest rating, student 4 is next with third position, and students 1 and 3 are the last sharing fourth position.
500
[ { "input": "3\n1 3 3", "output": "3 1 1" }, { "input": "1\n1", "output": "1" }, { "input": "5\n3 5 3 4 5", "output": "4 1 4 3 1" }, { "input": "7\n1 3 5 4 2 2 1", "output": "6 3 1 2 4 4 6" }, { "input": "11\n5 6 4 2 9 7 6 6 6 6 7", "output": "9 4 10 11 1 2 4 4 4 4 2" }, { "input": "1\n2000", "output": "1" }, { "input": "2\n2000 2000", "output": "1 1" }, { "input": "3\n500 501 502", "output": "3 2 1" }, { "input": "10\n105 106 1 1 1 11 1000 999 1000 999", "output": "6 5 8 8 8 7 1 3 1 3" }, { "input": "6\n1 2 3 4 5 6", "output": "6 5 4 3 2 1" }, { "input": "7\n6 5 4 3 2 1 1", "output": "1 2 3 4 5 6 6" }, { "input": "8\n153 100 87 14 10 8 6 5", "output": "1 2 3 4 5 6 7 8" }, { "input": "70\n11 54 37 62 1 46 13 17 38 47 28 15 63 5 61 34 49 66 32 59 3 41 58 28 23 62 41 64 20 5 14 41 10 37 51 32 65 46 61 8 15 19 16 44 31 42 19 46 66 25 26 58 60 5 19 18 69 53 20 40 45 27 24 41 32 23 57 56 62 10", "output": "62 18 35 7 70 23 61 56 34 22 42 58 6 66 10 37 21 2 38 13 69 29 14 42 48 7 29 5 50 66 60 29 63 35 20 38 4 23 10 65 58 52 57 27 41 28 52 23 2 46 45 14 12 66 52 55 1 19 50 33 26 44 47 29 38 48 16 17 7 63" }, { "input": "5\n1 2000 1 1 2000", "output": "3 1 3 3 1" } ]
1,619,516,399
2,147,483,647
Python 3
OK
TESTS
36
77
102,400
n = int(input()) arr = list(map(int,input().split()[:n])) li = sorted(arr,reverse = True) for ele in arr: res = li.index(ele) print(res + 1,end=" ")
Title: GukiZ and Contest Time Limit: None seconds Memory Limit: None megabytes Problem Description: Professor GukiZ likes programming contests. He especially likes to rate his students on the contests he prepares. Now, he has decided to prepare a new contest. In total, *n* students will attend, and before the start, every one of them has some positive integer rating. Students are indexed from 1 to *n*. Let's denote the rating of *i*-th student as *a**i*. After the contest ends, every student will end up with some positive integer position. GukiZ expects that his students will take places according to their ratings. He thinks that each student will take place equal to . In particular, if student *A* has rating strictly lower then student *B*, *A* will get the strictly better position than *B*, and if two students have equal ratings, they will share the same position. GukiZ would like you to reconstruct the results by following his expectations. Help him and determine the position after the end of the contest for each of his students if everything goes as expected. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=2000), number of GukiZ's students. The second line contains *n* numbers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=2000) where *a**i* is the rating of *i*-th student (1<=≤<=*i*<=≤<=*n*). Output Specification: In a single line, print the position after the end of the contest for each of *n* students in the same order as they appear in the input. Demo Input: ['3\n1 3 3\n', '1\n1\n', '5\n3 5 3 4 5\n'] Demo Output: ['3 1 1\n', '1\n', '4 1 4 3 1\n'] Note: In the first sample, students 2 and 3 are positioned first (there is no other student with higher rating), and student 1 is positioned third since there are two students with higher rating. In the second sample, first student is the only one on the contest. In the third sample, students 2 and 5 share the first position with highest rating, student 4 is next with third position, and students 1 and 3 are the last sharing fourth position.
```python n = int(input()) arr = list(map(int,input().split()[:n])) li = sorted(arr,reverse = True) for ele in arr: res = li.index(ele) print(res + 1,end=" ") ```
3
285
A
Slightly Decreasing Permutations
PROGRAMMING
1,100
[ "greedy", "implementation" ]
null
null
Permutation *p* is an ordered set of integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. We'll denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size or the length of permutation *p*1,<=<=*p*2,<=<=...,<=<=*p**n*. The decreasing coefficient of permutation *p*1,<=*p*2,<=...,<=*p**n* is the number of such *i* (1<=≤<=*i*<=&lt;<=*n*), that *p**i*<=&gt;<=*p**i*<=+<=1. You have numbers *n* and *k*. Your task is to print the permutation of length *n* with decreasing coefficient *k*.
The single line contains two space-separated integers: *n*,<=*k* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*k*<=&lt;<=*n*) — the permutation length and the decreasing coefficient.
In a single line print *n* space-separated integers: *p*1,<=*p*2,<=...,<=*p**n* — the permutation of length *n* with decreasing coefficient *k*. If there are several permutations that meet this condition, print any of them. It is guaranteed that the permutation with the sought parameters exists.
[ "5 2\n", "3 0\n", "3 2\n" ]
[ "1 5 2 4 3\n", "1 2 3\n", "3 2 1\n" ]
none
500
[ { "input": "5 2", "output": "1 5 2 4 3" }, { "input": "3 0", "output": "1 2 3" }, { "input": "3 2", "output": "3 2 1" }, { "input": "1 0", "output": "1" }, { "input": "2 0", "output": "1 2" }, { "input": "2 1", "output": "2 1" }, { "input": "10 4", "output": "10 9 8 7 1 2 3 4 5 6" }, { "input": "56893 5084", "output": "56893 56892 56891 56890 56889 56888 56887 56886 56885 56884 56883 56882 56881 56880 56879 56878 56877 56876 56875 56874 56873 56872 56871 56870 56869 56868 56867 56866 56865 56864 56863 56862 56861 56860 56859 56858 56857 56856 56855 56854 56853 56852 56851 56850 56849 56848 56847 56846 56845 56844 56843 56842 56841 56840 56839 56838 56837 56836 56835 56834 56833 56832 56831 56830 56829 56828 56827 56826 56825 56824 56823 56822 56821 56820 56819 56818 56817 56816 56815 56814 56813 56812 56811 56810 56809 5..." }, { "input": "6 3", "output": "6 5 4 1 2 3" }, { "input": "1 0", "output": "1" }, { "input": "310 186", "output": "310 309 308 307 306 305 304 303 302 301 300 299 298 297 296 295 294 293 292 291 290 289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271 270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 240 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183..." }, { "input": "726 450", "output": "726 725 724 723 722 721 720 719 718 717 716 715 714 713 712 711 710 709 708 707 706 705 704 703 702 701 700 699 698 697 696 695 694 693 692 691 690 689 688 687 686 685 684 683 682 681 680 679 678 677 676 675 674 673 672 671 670 669 668 667 666 665 664 663 662 661 660 659 658 657 656 655 654 653 652 651 650 649 648 647 646 645 644 643 642 641 640 639 638 637 636 635 634 633 632 631 630 629 628 627 626 625 624 623 622 621 620 619 618 617 616 615 614 613 612 611 610 609 608 607 606 605 604 603 602 601 600 599..." }, { "input": "438 418", "output": "438 437 436 435 434 433 432 431 430 429 428 427 426 425 424 423 422 421 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402 401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379 378 377 376 375 374 373 372 371 370 369 368 367 366 365 364 363 362 361 360 359 358 357 356 355 354 353 352 351 350 349 348 347 346 345 344 343 342 341 340 339 338 337 336 335 334 333 332 331 330 329 328 327 326 325 324 323 322 321 320 319 318 317 316 315 314 313 312 311..." }, { "input": "854 829", "output": "854 853 852 851 850 849 848 847 846 845 844 843 842 841 840 839 838 837 836 835 834 833 832 831 830 829 828 827 826 825 824 823 822 821 820 819 818 817 816 815 814 813 812 811 810 809 808 807 806 805 804 803 802 801 800 799 798 797 796 795 794 793 792 791 790 789 788 787 786 785 784 783 782 781 780 779 778 777 776 775 774 773 772 771 770 769 768 767 766 765 764 763 762 761 760 759 758 757 756 755 754 753 752 751 750 749 748 747 746 745 744 743 742 741 740 739 738 737 736 735 734 733 732 731 730 729 728 727..." }, { "input": "214 167", "output": "214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 ..." }, { "input": "85705 56268", "output": "85705 85704 85703 85702 85701 85700 85699 85698 85697 85696 85695 85694 85693 85692 85691 85690 85689 85688 85687 85686 85685 85684 85683 85682 85681 85680 85679 85678 85677 85676 85675 85674 85673 85672 85671 85670 85669 85668 85667 85666 85665 85664 85663 85662 85661 85660 85659 85658 85657 85656 85655 85654 85653 85652 85651 85650 85649 85648 85647 85646 85645 85644 85643 85642 85641 85640 85639 85638 85637 85636 85635 85634 85633 85632 85631 85630 85629 85628 85627 85626 85625 85624 85623 85622 85621 8..." }, { "input": "11417 4583", "output": "11417 11416 11415 11414 11413 11412 11411 11410 11409 11408 11407 11406 11405 11404 11403 11402 11401 11400 11399 11398 11397 11396 11395 11394 11393 11392 11391 11390 11389 11388 11387 11386 11385 11384 11383 11382 11381 11380 11379 11378 11377 11376 11375 11374 11373 11372 11371 11370 11369 11368 11367 11366 11365 11364 11363 11362 11361 11360 11359 11358 11357 11356 11355 11354 11353 11352 11351 11350 11349 11348 11347 11346 11345 11344 11343 11342 11341 11340 11339 11338 11337 11336 11335 11334 11333 1..." }, { "input": "53481 20593", "output": "53481 53480 53479 53478 53477 53476 53475 53474 53473 53472 53471 53470 53469 53468 53467 53466 53465 53464 53463 53462 53461 53460 53459 53458 53457 53456 53455 53454 53453 53452 53451 53450 53449 53448 53447 53446 53445 53444 53443 53442 53441 53440 53439 53438 53437 53436 53435 53434 53433 53432 53431 53430 53429 53428 53427 53426 53425 53424 53423 53422 53421 53420 53419 53418 53417 53416 53415 53414 53413 53412 53411 53410 53409 53408 53407 53406 53405 53404 53403 53402 53401 53400 53399 53398 53397 5..." }, { "input": "79193 77281", "output": "79193 79192 79191 79190 79189 79188 79187 79186 79185 79184 79183 79182 79181 79180 79179 79178 79177 79176 79175 79174 79173 79172 79171 79170 79169 79168 79167 79166 79165 79164 79163 79162 79161 79160 79159 79158 79157 79156 79155 79154 79153 79152 79151 79150 79149 79148 79147 79146 79145 79144 79143 79142 79141 79140 79139 79138 79137 79136 79135 79134 79133 79132 79131 79130 79129 79128 79127 79126 79125 79124 79123 79122 79121 79120 79119 79118 79117 79116 79115 79114 79113 79112 79111 79110 79109 7..." }, { "input": "42607 42144", "output": "42607 42606 42605 42604 42603 42602 42601 42600 42599 42598 42597 42596 42595 42594 42593 42592 42591 42590 42589 42588 42587 42586 42585 42584 42583 42582 42581 42580 42579 42578 42577 42576 42575 42574 42573 42572 42571 42570 42569 42568 42567 42566 42565 42564 42563 42562 42561 42560 42559 42558 42557 42556 42555 42554 42553 42552 42551 42550 42549 42548 42547 42546 42545 42544 42543 42542 42541 42540 42539 42538 42537 42536 42535 42534 42533 42532 42531 42530 42529 42528 42527 42526 42525 42524 42523 4..." }, { "input": "100000 0", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..." }, { "input": "100000 99999", "output": "100000 99999 99998 99997 99996 99995 99994 99993 99992 99991 99990 99989 99988 99987 99986 99985 99984 99983 99982 99981 99980 99979 99978 99977 99976 99975 99974 99973 99972 99971 99970 99969 99968 99967 99966 99965 99964 99963 99962 99961 99960 99959 99958 99957 99956 99955 99954 99953 99952 99951 99950 99949 99948 99947 99946 99945 99944 99943 99942 99941 99940 99939 99938 99937 99936 99935 99934 99933 99932 99931 99930 99929 99928 99927 99926 99925 99924 99923 99922 99921 99920 99919 99918 99917 99916 ..." }, { "input": "100000 53860", "output": "100000 99999 99998 99997 99996 99995 99994 99993 99992 99991 99990 99989 99988 99987 99986 99985 99984 99983 99982 99981 99980 99979 99978 99977 99976 99975 99974 99973 99972 99971 99970 99969 99968 99967 99966 99965 99964 99963 99962 99961 99960 99959 99958 99957 99956 99955 99954 99953 99952 99951 99950 99949 99948 99947 99946 99945 99944 99943 99942 99941 99940 99939 99938 99937 99936 99935 99934 99933 99932 99931 99930 99929 99928 99927 99926 99925 99924 99923 99922 99921 99920 99919 99918 99917 99916 ..." }, { "input": "4 0", "output": "1 2 3 4" }, { "input": "4 1", "output": "4 1 2 3" }, { "input": "4 2", "output": "4 3 1 2" }, { "input": "4 3", "output": "4 3 2 1" }, { "input": "3 1", "output": "3 1 2" } ]
1,559,805,522
2,147,483,647
Python 3
OK
TESTS
28
310
7,782,400
def input_ints(): return list(map(int, input().split())) def output_list(v): print(' '.join(str(x) for x in v)) def main(): n, k = input_ints() ans = [] for i in range(k + 1): ans.append(k + 1 - i) for i in range(k + 2, n + 1): ans.append(i) output_list(ans) if __name__ == '__main__': main()
Title: Slightly Decreasing Permutations Time Limit: None seconds Memory Limit: None megabytes Problem Description: Permutation *p* is an ordered set of integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. We'll denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size or the length of permutation *p*1,<=<=*p*2,<=<=...,<=<=*p**n*. The decreasing coefficient of permutation *p*1,<=*p*2,<=...,<=*p**n* is the number of such *i* (1<=≤<=*i*<=&lt;<=*n*), that *p**i*<=&gt;<=*p**i*<=+<=1. You have numbers *n* and *k*. Your task is to print the permutation of length *n* with decreasing coefficient *k*. Input Specification: The single line contains two space-separated integers: *n*,<=*k* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*k*<=&lt;<=*n*) — the permutation length and the decreasing coefficient. Output Specification: In a single line print *n* space-separated integers: *p*1,<=*p*2,<=...,<=*p**n* — the permutation of length *n* with decreasing coefficient *k*. If there are several permutations that meet this condition, print any of them. It is guaranteed that the permutation with the sought parameters exists. Demo Input: ['5 2\n', '3 0\n', '3 2\n'] Demo Output: ['1 5 2 4 3\n', '1 2 3\n', '3 2 1\n'] Note: none
```python def input_ints(): return list(map(int, input().split())) def output_list(v): print(' '.join(str(x) for x in v)) def main(): n, k = input_ints() ans = [] for i in range(k + 1): ans.append(k + 1 - i) for i in range(k + 2, n + 1): ans.append(i) output_list(ans) if __name__ == '__main__': main() ```
3
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,680,728,454
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
while True: n = int(input('enter n:)) if (1<=n<=100): break words=[] for i in range(n): while True: word = str(input("enter a word:")) if 1<=len(word)<=100: words +=[word] break for i in range(n): str='' if len(words[i])>10: str=words[1]+ str(len(words[i])-2)+words[-1] print(words[i]) else: print(words[i])
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python while True: n = int(input('enter n:)) if (1<=n<=100): break words=[] for i in range(n): while True: word = str(input("enter a word:")) if 1<=len(word)<=100: words +=[word] break for i in range(n): str='' if len(words[i])>10: str=words[1]+ str(len(words[i])-2)+words[-1] print(words[i]) else: print(words[i]) ```
-1
25
A
IQ test
PROGRAMMING
1,300
[ "brute force" ]
A. IQ test
2
256
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
[ "5\n2 4 7 8 10\n", "4\n1 2 1 1\n" ]
[ "3\n", "2\n" ]
none
0
[ { "input": "5\n2 4 7 8 10", "output": "3" }, { "input": "4\n1 2 1 1", "output": "2" }, { "input": "3\n1 2 2", "output": "1" }, { "input": "3\n100 99 100", "output": "2" }, { "input": "3\n5 3 2", "output": "3" }, { "input": "4\n43 28 1 91", "output": "2" }, { "input": "4\n75 13 94 77", "output": "3" }, { "input": "4\n97 8 27 3", "output": "2" }, { "input": "10\n95 51 12 91 85 3 1 31 25 7", "output": "3" }, { "input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46", "output": "4" }, { "input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36", "output": "26" }, { "input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83", "output": "48" }, { "input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25", "output": "1" }, { "input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46", "output": "25" }, { "input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73", "output": "13" }, { "input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76", "output": "99" }, { "input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14", "output": "1" }, { "input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22", "output": "93" }, { "input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23", "output": "1" }, { "input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98", "output": "1" }, { "input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94", "output": "93" }, { "input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29", "output": "32" }, { "input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47", "output": "26" }, { "input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72", "output": "56" }, { "input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86", "output": "97" }, { "input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42", "output": "79" }, { "input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52", "output": "25" }, { "input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86", "output": "78" }, { "input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68", "output": "70" }, { "input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81", "output": "39" }, { "input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83", "output": "88" }, { "input": "3\n100 100 1", "output": "3" } ]
1,555,183,113
2,147,483,647
PyPy 3
OK
TESTS
32
248
0
n=int(input()) s=list(map(int,input().split())) s1=[] s2=[] for i in range(n): if s[i]%2!=0: s1.append(s[i]) else: s2.append(s[i]) if len(s1)==1: print(s.index(s1[0])+1) if len(s2)==1: print(s.index(s2[0])+1)
Title: IQ test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness. Output Specification: Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order. Demo Input: ['5\n2 4 7 8 10\n', '4\n1 2 1 1\n'] Demo Output: ['3\n', '2\n'] Note: none
```python n=int(input()) s=list(map(int,input().split())) s1=[] s2=[] for i in range(n): if s[i]%2!=0: s1.append(s[i]) else: s2.append(s[i]) if len(s1)==1: print(s.index(s1[0])+1) if len(s2)==1: print(s.index(s2[0])+1) ```
3.938
337
A
Puzzles
PROGRAMMING
900
[ "greedy" ]
null
null
The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces). The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on. Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*.
The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop.
Print a single integer — the least possible difference the teacher can obtain.
[ "4 6\n10 12 10 7 5 22\n" ]
[ "5\n" ]
Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
500
[ { "input": "4 6\n10 12 10 7 5 22", "output": "5" }, { "input": "2 2\n4 4", "output": "0" }, { "input": "2 10\n4 5 6 7 8 9 10 11 12 12", "output": "0" }, { "input": "4 5\n818 136 713 59 946", "output": "759" }, { "input": "3 20\n446 852 783 313 549 965 40 88 86 617 479 118 768 34 47 826 366 957 463 903", "output": "13" }, { "input": "2 25\n782 633 152 416 432 825 115 97 386 357 836 310 530 413 354 373 847 882 913 682 729 582 671 674 94", "output": "3" }, { "input": "4 25\n226 790 628 528 114 64 239 279 619 39 894 763 763 847 525 93 882 697 999 643 650 244 159 884 190", "output": "31" }, { "input": "2 50\n971 889 628 39 253 157 925 694 129 516 660 272 738 319 611 816 142 717 514 392 41 105 132 676 958 118 306 768 600 685 103 857 704 346 857 309 23 718 618 161 176 379 846 834 640 468 952 878 164 997", "output": "0" }, { "input": "25 50\n582 146 750 905 313 509 402 21 488 512 32 898 282 64 579 869 37 996 377 929 975 697 666 837 311 205 116 992 533 298 648 268 54 479 792 595 152 69 267 417 184 433 894 603 988 712 24 414 301 176", "output": "412" }, { "input": "49 50\n58 820 826 960 271 294 473 102 925 318 729 672 244 914 796 646 868 6 893 882 726 203 528 498 271 195 355 459 721 680 547 147 631 116 169 804 145 996 133 559 110 257 771 476 576 251 607 314 427 886", "output": "938" }, { "input": "50 50\n374 573 323 744 190 806 485 247 628 336 491 606 702 321 991 678 337 579 86 240 993 208 668 686 855 205 363 177 719 249 896 919 782 434 59 647 787 996 286 216 636 212 546 903 958 559 544 126 608 993", "output": "937" }, { "input": "6 50\n6 8 7 8 5 4 4 5 7 8 6 5 7 4 7 7 7 8 6 4 6 6 8 8 7 7 8 7 5 8 5 4 4 7 8 4 4 6 6 6 8 7 4 7 6 6 5 8 4 7", "output": "0" }, { "input": "37 50\n14 5 11 17 8 20 19 16 20 11 17 20 16 9 14 14 13 18 11 20 8 8 8 5 19 17 6 18 10 20 9 7 12 6 14 17 4 4 10 13 7 4 11 6 20 19 12 12 15 19", "output": "12" }, { "input": "40 50\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4", "output": "0" }, { "input": "40 50\n17 20 43 26 41 37 14 8 30 35 30 24 43 8 42 9 41 50 41 35 27 32 35 43 28 36 31 16 5 7 23 16 14 29 8 39 12 16 36 18 49 39 33 37 38 6 6 27 23 17", "output": "31" }, { "input": "2 2\n1000 4", "output": "996" }, { "input": "2 3\n4 502 1000", "output": "498" }, { "input": "3 3\n4 1000 4", "output": "996" } ]
1,683,028,963
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
62
0
n,m=map(int,input().split()) l=list(map(int,input().split())) l.sort() min=1001 for i in range(m-n): if (l[i+n-1]-l[i])<min: min=l[i+n-1]-l[i] print(min)
Title: Puzzles Time Limit: None seconds Memory Limit: None megabytes Problem Description: The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces). The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on. Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*. Input Specification: The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop. Output Specification: Print a single integer — the least possible difference the teacher can obtain. Demo Input: ['4 6\n10 12 10 7 5 22\n'] Demo Output: ['5\n'] Note: Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
```python n,m=map(int,input().split()) l=list(map(int,input().split())) l.sort() min=1001 for i in range(m-n): if (l[i+n-1]-l[i])<min: min=l[i+n-1]-l[i] print(min) ```
0
919
B
Perfect Number
PROGRAMMING
1,100
[ "binary search", "brute force", "dp", "implementation", "number theory" ]
null
null
We consider a positive integer perfect, if and only if the sum of its digits is exactly $10$. Given a positive integer $k$, your task is to find the $k$-th smallest perfect positive integer.
A single line with a positive integer $k$ ($1 \leq k \leq 10\,000$).
A single number, denoting the $k$-th smallest perfect integer.
[ "1\n", "2\n" ]
[ "19\n", "28\n" ]
The first perfect integer is $19$ and the second one is $28$.
750
[ { "input": "1", "output": "19" }, { "input": "2", "output": "28" }, { "input": "13", "output": "136" }, { "input": "101", "output": "1432" }, { "input": "1023", "output": "100270" }, { "input": "9999", "output": "10800010" }, { "input": "10000", "output": "10800100" }, { "input": "2333", "output": "310060" }, { "input": "9139", "output": "10134010" }, { "input": "9859", "output": "10422001" }, { "input": "5987", "output": "2221201" }, { "input": "3", "output": "37" }, { "input": "4", "output": "46" }, { "input": "5", "output": "55" }, { "input": "7", "output": "73" }, { "input": "9", "output": "91" }, { "input": "10", "output": "109" }, { "input": "15", "output": "154" }, { "input": "51", "output": "613" }, { "input": "99", "output": "1414" }, { "input": "138", "output": "2224" }, { "input": "233", "output": "5050" }, { "input": "666", "output": "27100" }, { "input": "1234", "output": "110206" }, { "input": "3567", "output": "1033003" }, { "input": "4445", "output": "1221301" }, { "input": "5689", "output": "2114002" }, { "input": "6666", "output": "3102004" }, { "input": "7777", "output": "5300200" }, { "input": "8888", "output": "10110061" }, { "input": "9411", "output": "10214200" }, { "input": "5539", "output": "2101114" }, { "input": "6259", "output": "2511100" }, { "input": "2387", "output": "312220" }, { "input": "8515", "output": "10030114" } ]
1,635,212,591
2,147,483,647
Python 3
OK
TESTS
35
1,637
4,505,600
import sys k = int(sys.stdin.readline()) current = 19 def digitsum(n): total = 0 while n != 0: total += n%10 n = n//10 return total == 10 while k > 1: current += 9 while digitsum(current) == False: current += 9 k -= 1 print(current)
Title: Perfect Number Time Limit: None seconds Memory Limit: None megabytes Problem Description: We consider a positive integer perfect, if and only if the sum of its digits is exactly $10$. Given a positive integer $k$, your task is to find the $k$-th smallest perfect positive integer. Input Specification: A single line with a positive integer $k$ ($1 \leq k \leq 10\,000$). Output Specification: A single number, denoting the $k$-th smallest perfect integer. Demo Input: ['1\n', '2\n'] Demo Output: ['19\n', '28\n'] Note: The first perfect integer is $19$ and the second one is $28$.
```python import sys k = int(sys.stdin.readline()) current = 19 def digitsum(n): total = 0 while n != 0: total += n%10 n = n//10 return total == 10 while k > 1: current += 9 while digitsum(current) == False: current += 9 k -= 1 print(current) ```
3
25
A
IQ test
PROGRAMMING
1,300
[ "brute force" ]
A. IQ test
2
256
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
[ "5\n2 4 7 8 10\n", "4\n1 2 1 1\n" ]
[ "3\n", "2\n" ]
none
0
[ { "input": "5\n2 4 7 8 10", "output": "3" }, { "input": "4\n1 2 1 1", "output": "2" }, { "input": "3\n1 2 2", "output": "1" }, { "input": "3\n100 99 100", "output": "2" }, { "input": "3\n5 3 2", "output": "3" }, { "input": "4\n43 28 1 91", "output": "2" }, { "input": "4\n75 13 94 77", "output": "3" }, { "input": "4\n97 8 27 3", "output": "2" }, { "input": "10\n95 51 12 91 85 3 1 31 25 7", "output": "3" }, { "input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46", "output": "4" }, { "input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36", "output": "26" }, { "input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83", "output": "48" }, { "input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25", "output": "1" }, { "input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46", "output": "25" }, { "input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73", "output": "13" }, { "input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76", "output": "99" }, { "input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14", "output": "1" }, { "input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22", "output": "93" }, { "input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23", "output": "1" }, { "input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98", "output": "1" }, { "input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94", "output": "93" }, { "input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29", "output": "32" }, { "input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47", "output": "26" }, { "input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72", "output": "56" }, { "input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86", "output": "97" }, { "input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42", "output": "79" }, { "input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52", "output": "25" }, { "input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86", "output": "78" }, { "input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68", "output": "70" }, { "input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81", "output": "39" }, { "input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83", "output": "88" }, { "input": "3\n100 100 1", "output": "3" } ]
1,526,474,616
2,147,483,647
Python 3
OK
TESTS
32
186
7,372,800
n = int(input()) ev=od=0 a = list(map(int,input().split())) for i in range(len(a)): if(a[i]%2):od+=1 else : ev+=1 if(od>1)and ev: break if(ev>1)and od: break for i in range(len(a)): if(ev==1 and not a[i]%2): print(i+1) break; elif od==1 and a[i]%2: print(i+1) break
Title: IQ test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness. Output Specification: Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order. Demo Input: ['5\n2 4 7 8 10\n', '4\n1 2 1 1\n'] Demo Output: ['3\n', '2\n'] Note: none
```python n = int(input()) ev=od=0 a = list(map(int,input().split())) for i in range(len(a)): if(a[i]%2):od+=1 else : ev+=1 if(od>1)and ev: break if(ev>1)and od: break for i in range(len(a)): if(ev==1 and not a[i]%2): print(i+1) break; elif od==1 and a[i]%2: print(i+1) break ```
3.939767
596
B
Wilbur and Array
PROGRAMMING
1,100
[ "greedy", "implementation" ]
null
null
Wilbur the pig is tinkering with arrays again. He has the array *a*1,<=*a*2,<=...,<=*a**n* initially consisting of *n* zeros. At one step, he can choose any index *i* and either add 1 to all elements *a**i*,<=*a**i*<=+<=1,<=... ,<=*a**n* or subtract 1 from all elements *a**i*,<=*a**i*<=+<=1,<=...,<=*a**n*. His goal is to end up with the array *b*1,<=*b*2,<=...,<=*b**n*. Of course, Wilbur wants to achieve this goal in the minimum number of steps and asks you to compute this value.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the length of the array *a**i*. Initially *a**i*<==<=0 for every position *i*, so this array is not given in the input. The second line of the input contains *n* integers *b*1,<=*b*2,<=...,<=*b**n* (<=-<=109<=≤<=*b**i*<=≤<=109).
Print the minimum number of steps that Wilbur needs to make in order to achieve *a**i*<==<=*b**i* for all *i*.
[ "5\n1 2 3 4 5\n", "4\n1 2 2 1\n" ]
[ "5", "3" ]
In the first sample, Wilbur may successively choose indices 1, 2, 3, 4, and 5, and add 1 to corresponding suffixes. In the second sample, Wilbur first chooses indices 1 and 2 and adds 1 to corresponding suffixes, then he chooses index 4 and subtract 1.
1,000
[ { "input": "5\n1 2 3 4 5", "output": "5" }, { "input": "4\n1 2 2 1", "output": "3" }, { "input": "3\n1 2 4", "output": "4" }, { "input": "6\n1 2 3 6 5 4", "output": "8" }, { "input": "10\n2 1 4 3 6 5 8 7 10 9", "output": "19" }, { "input": "7\n12 6 12 13 4 3 2", "output": "36" }, { "input": "15\n15 14 13 1 2 3 12 11 10 4 5 6 9 8 7", "output": "55" }, { "input": "16\n1 2 3 4 13 14 15 16 9 10 11 12 5 6 7 8", "output": "36" }, { "input": "6\n1000 1 2000 1 3000 1", "output": "11995" }, { "input": "1\n0", "output": "0" }, { "input": "5\n1000000000 1 1000000000 1 1000000000", "output": "4999999996" }, { "input": "5\n1000000000 0 1000000000 0 1000000000", "output": "5000000000" }, { "input": "10\n1000000000 0 1000000000 0 1000000000 0 1000000000 0 1000000000 0", "output": "10000000000" }, { "input": "10\n1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000", "output": "19000000000" }, { "input": "7\n0 1000000000 0 1000000000 0 1000000000 0", "output": "6000000000" }, { "input": "4\n1000000000 -1000000000 1000000000 -1000000000", "output": "7000000000" }, { "input": "20\n1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000", "output": "39000000000" }, { "input": "11\n1000000000 0 1000000000 0 1000000000 0 1000000000 0 1000000000 0 1000000000", "output": "11000000000" }, { "input": "5\n1000000000 -1000000000 1000000000 -1000000000 1000000000", "output": "9000000000" }, { "input": "22\n1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000", "output": "43000000000" } ]
1,447,608,325
3,025
Python 3
WRONG_ANSWER
PRETESTS
10
202
8,806,400
n = int(input()) arr = [int(x) for x in input().split()] ans = [0] * n ans[0] = arr[0] for i in range(1, n): ans[i] = ans[i - 1] + abs(arr[i] - arr[i - 1]) print(ans[n - 1])
Title: Wilbur and Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: Wilbur the pig is tinkering with arrays again. He has the array *a*1,<=*a*2,<=...,<=*a**n* initially consisting of *n* zeros. At one step, he can choose any index *i* and either add 1 to all elements *a**i*,<=*a**i*<=+<=1,<=... ,<=*a**n* or subtract 1 from all elements *a**i*,<=*a**i*<=+<=1,<=...,<=*a**n*. His goal is to end up with the array *b*1,<=*b*2,<=...,<=*b**n*. Of course, Wilbur wants to achieve this goal in the minimum number of steps and asks you to compute this value. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the length of the array *a**i*. Initially *a**i*<==<=0 for every position *i*, so this array is not given in the input. The second line of the input contains *n* integers *b*1,<=*b*2,<=...,<=*b**n* (<=-<=109<=≤<=*b**i*<=≤<=109). Output Specification: Print the minimum number of steps that Wilbur needs to make in order to achieve *a**i*<==<=*b**i* for all *i*. Demo Input: ['5\n1 2 3 4 5\n', '4\n1 2 2 1\n'] Demo Output: ['5', '3'] Note: In the first sample, Wilbur may successively choose indices 1, 2, 3, 4, and 5, and add 1 to corresponding suffixes. In the second sample, Wilbur first chooses indices 1 and 2 and adds 1 to corresponding suffixes, then he chooses index 4 and subtract 1.
```python n = int(input()) arr = [int(x) for x in input().split()] ans = [0] * n ans[0] = arr[0] for i in range(1, n): ans[i] = ans[i - 1] + abs(arr[i] - arr[i - 1]) print(ans[n - 1]) ```
0
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,607,258,894
2,147,483,647
Python 3
OK
TESTS
102
109
307,200
s1=input() s2=input() n=int(s1,2) h=int(s2,2) r=n^h le=len(str(bin(r).replace("0b",""))) if(le<len(s1)): print('0'*(len(s1)-le)+str(bin(r).replace("0b",""))) else: print(str(bin(r).replace("0b","")))
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python s1=input() s2=input() n=int(s1,2) h=int(s2,2) r=n^h le=len(str(bin(r).replace("0b",""))) if(le<len(s1)): print('0'*(len(s1)-le)+str(bin(r).replace("0b",""))) else: print(str(bin(r).replace("0b",""))) ```
3.972178
306
A
Candies
PROGRAMMING
800
[ "implementation" ]
null
null
Polycarpus has got *n* candies and *m* friends (*n*<=≥<=*m*). He wants to make a New Year present with candies to each friend. Polycarpus is planning to present all candies and he wants to do this in the fairest (that is, most equal) manner. He wants to choose such *a**i*, where *a**i* is the number of candies in the *i*-th friend's present, that the maximum *a**i* differs from the least *a**i* as little as possible. For example, if *n* is divisible by *m*, then he is going to present the same number of candies to all his friends, that is, the maximum *a**i* won't differ from the minimum one.
The single line of the input contains a pair of space-separated positive integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100;*n*<=≥<=*m*) — the number of candies and the number of Polycarpus's friends.
Print the required sequence *a*1,<=*a*2,<=...,<=*a**m*, where *a**i* is the number of candies in the *i*-th friend's present. All numbers *a**i* must be positive integers, total up to *n*, the maximum one should differ from the minimum one by the smallest possible value.
[ "12 3\n", "15 4\n", "18 7\n" ]
[ "4 4 4 ", "3 4 4 4 ", "2 2 2 3 3 3 3 " ]
Print *a*<sub class="lower-index">*i*</sub> in any order, separate the numbers by spaces.
500
[ { "input": "12 4", "output": "3 3 3 3 " }, { "input": "15 6", "output": "2 2 2 3 3 3 " }, { "input": "18 8", "output": "2 2 2 2 2 2 3 3 " }, { "input": "1 1", "output": "1 " }, { "input": "2 1", "output": "2 " }, { "input": "100 1", "output": "100 " }, { "input": "100 100", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " }, { "input": "100 10", "output": "10 10 10 10 10 10 10 10 10 10 " }, { "input": "64 8", "output": "8 8 8 8 8 8 8 8 " }, { "input": "81 27", "output": "3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " }, { "input": "100 99", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 " }, { "input": "100 51", "output": "1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 " }, { "input": "100 49", "output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 " }, { "input": "100 13", "output": "7 7 7 7 8 8 8 8 8 8 8 8 8 " }, { "input": "97 11", "output": "8 8 9 9 9 9 9 9 9 9 9 " }, { "input": "19 3", "output": "6 6 7 " }, { "input": "99 10", "output": "9 10 10 10 10 10 10 10 10 10 " }, { "input": "88 5", "output": "17 17 18 18 18 " }, { "input": "87 34", "output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " }, { "input": "97 55", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 " } ]
1,690,129,374
2,147,483,647
Python 3
OK
TESTS
20
92
0
n, m = map(int, input().split()) for x in range(m): if x<m-(n%m): print(n//m, end=" ") else: print(n//m+1)
Title: Candies Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus has got *n* candies and *m* friends (*n*<=≥<=*m*). He wants to make a New Year present with candies to each friend. Polycarpus is planning to present all candies and he wants to do this in the fairest (that is, most equal) manner. He wants to choose such *a**i*, where *a**i* is the number of candies in the *i*-th friend's present, that the maximum *a**i* differs from the least *a**i* as little as possible. For example, if *n* is divisible by *m*, then he is going to present the same number of candies to all his friends, that is, the maximum *a**i* won't differ from the minimum one. Input Specification: The single line of the input contains a pair of space-separated positive integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100;*n*<=≥<=*m*) — the number of candies and the number of Polycarpus's friends. Output Specification: Print the required sequence *a*1,<=*a*2,<=...,<=*a**m*, where *a**i* is the number of candies in the *i*-th friend's present. All numbers *a**i* must be positive integers, total up to *n*, the maximum one should differ from the minimum one by the smallest possible value. Demo Input: ['12 3\n', '15 4\n', '18 7\n'] Demo Output: ['4 4 4 ', '3 4 4 4 ', '2 2 2 3 3 3 3 '] Note: Print *a*<sub class="lower-index">*i*</sub> in any order, separate the numbers by spaces.
```python n, m = map(int, input().split()) for x in range(m): if x<m-(n%m): print(n//m, end=" ") else: print(n//m+1) ```
3
489
B
BerSU Ball
PROGRAMMING
1,200
[ "dfs and similar", "dp", "graph matchings", "greedy", "sortings", "two pointers" ]
null
null
The Berland State University is hosting a ballroom dance in celebration of its 100500-th anniversary! *n* boys and *m* girls are already busy rehearsing waltz, minuet, polonaise and quadrille moves. We know that several boy&amp;girl pairs are going to be invited to the ball. However, the partners' dancing skill in each pair must differ by at most one. For each boy, we know his dancing skills. Similarly, for each girl we know her dancing skills. Write a code that can determine the largest possible number of pairs that can be formed from *n* boys and *m* girls.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of boys. The second line contains sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100), where *a**i* is the *i*-th boy's dancing skill. Similarly, the third line contains an integer *m* (1<=≤<=*m*<=≤<=100) — the number of girls. The fourth line contains sequence *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**j*<=≤<=100), where *b**j* is the *j*-th girl's dancing skill.
Print a single number — the required maximum possible number of pairs.
[ "4\n1 4 6 2\n5\n5 1 5 7 9\n", "4\n1 2 3 4\n4\n10 11 12 13\n", "5\n1 1 1 1 1\n3\n1 2 3\n" ]
[ "3\n", "0\n", "2\n" ]
none
1,000
[ { "input": "4\n1 4 6 2\n5\n5 1 5 7 9", "output": "3" }, { "input": "4\n1 2 3 4\n4\n10 11 12 13", "output": "0" }, { "input": "5\n1 1 1 1 1\n3\n1 2 3", "output": "2" }, { "input": "1\n1\n1\n1", "output": "1" }, { "input": "2\n1 10\n1\n9", "output": "1" }, { "input": "4\n4 5 4 4\n5\n5 3 4 2 4", "output": "4" }, { "input": "1\n2\n1\n1", "output": "1" }, { "input": "1\n3\n2\n3 2", "output": "1" }, { "input": "1\n4\n3\n4 4 4", "output": "1" }, { "input": "1\n2\n4\n3 1 4 2", "output": "1" }, { "input": "1\n4\n5\n2 5 5 3 1", "output": "1" }, { "input": "2\n2 2\n1\n2", "output": "1" }, { "input": "2\n4 2\n2\n4 4", "output": "1" }, { "input": "2\n4 1\n3\n2 3 2", "output": "2" }, { "input": "2\n4 3\n4\n5 5 5 6", "output": "1" }, { "input": "2\n5 7\n5\n4 6 7 2 5", "output": "2" }, { "input": "3\n1 2 3\n1\n1", "output": "1" }, { "input": "3\n5 4 5\n2\n2 1", "output": "0" }, { "input": "3\n6 3 4\n3\n4 5 2", "output": "3" }, { "input": "3\n7 7 7\n4\n2 7 2 4", "output": "1" }, { "input": "3\n1 3 3\n5\n1 3 4 1 2", "output": "3" }, { "input": "4\n1 2 1 3\n1\n4", "output": "1" }, { "input": "4\n4 4 6 6\n2\n2 1", "output": "0" }, { "input": "4\n3 1 1 1\n3\n1 6 7", "output": "1" }, { "input": "4\n2 5 1 2\n4\n2 3 3 1", "output": "3" }, { "input": "4\n9 1 7 1\n5\n9 9 9 8 4", "output": "2" }, { "input": "5\n1 6 5 5 6\n1\n2", "output": "1" }, { "input": "5\n5 2 4 5 6\n2\n7 4", "output": "2" }, { "input": "5\n4 1 3 1 4\n3\n6 3 6", "output": "1" }, { "input": "5\n5 2 3 1 4\n4\n1 3 1 7", "output": "3" }, { "input": "5\n9 8 10 9 10\n5\n2 1 5 4 6", "output": "0" }, { "input": "1\n48\n100\n76 90 78 44 29 30 35 85 98 38 27 71 51 100 15 98 78 45 85 26 48 66 98 71 45 85 83 77 92 17 23 95 98 43 11 15 39 53 71 25 74 53 77 41 39 35 66 4 92 44 44 55 35 87 91 6 44 46 57 24 46 82 15 44 81 40 65 17 64 24 42 52 13 12 64 82 26 7 66 85 93 89 58 92 92 77 37 91 47 73 35 69 31 22 60 60 97 21 52 6", "output": "1" }, { "input": "100\n9 90 66 62 60 9 10 97 47 73 26 81 97 60 80 84 19 4 25 77 19 17 91 12 1 27 15 54 18 45 71 79 96 90 51 62 9 13 92 34 7 52 55 8 16 61 96 12 52 38 50 9 60 3 30 3 48 46 77 64 90 35 16 16 21 42 67 70 23 19 90 14 50 96 98 92 82 62 7 51 93 38 84 82 37 78 99 3 20 69 44 96 94 71 3 55 27 86 92 82\n1\n58", "output": "0" }, { "input": "10\n20 87 3 39 20 20 8 40 70 51\n100\n69 84 81 84 35 97 69 68 63 97 85 80 95 58 70 91 100 65 72 80 41 87 87 87 22 49 96 96 78 96 97 56 90 31 62 98 89 74 100 86 95 88 66 54 93 62 41 60 95 79 29 69 63 70 52 63 87 58 54 52 48 57 26 75 39 61 98 78 52 73 99 49 74 50 59 90 31 97 16 85 63 72 81 68 75 59 70 67 73 92 10 88 57 95 3 71 80 95 84 96", "output": "6" }, { "input": "100\n10 10 9 18 56 64 92 66 54 42 66 65 58 5 74 68 80 57 58 30 58 69 70 13 38 19 34 63 38 17 26 24 66 83 48 77 44 37 78 97 13 90 51 56 60 23 49 32 14 86 90 100 13 14 52 69 85 95 81 53 5 3 91 66 2 64 45 59 7 30 80 42 61 82 70 10 62 82 5 34 50 28 24 47 85 68 27 50 24 61 76 17 63 24 3 67 83 76 42 60\n10\n66 74 40 67 28 82 99 57 93 64", "output": "9" }, { "input": "100\n4 1 1 1 3 3 2 5 1 2 1 2 1 1 1 6 1 3 1 1 1 1 2 4 1 1 4 2 2 8 2 2 1 8 2 4 3 3 8 1 3 2 3 2 1 3 8 2 2 3 1 1 2 2 5 1 4 3 1 1 3 1 3 1 7 1 1 1 3 2 1 2 2 3 7 2 1 4 3 2 1 1 3 4 1 1 3 5 1 8 4 1 1 1 3 10 2 2 1 2\n100\n1 1 5 2 13 2 2 3 6 12 1 13 8 1 1 16 1 1 5 6 2 4 6 4 2 7 4 1 7 3 3 9 5 3 1 7 4 1 6 6 8 2 2 5 2 3 16 3 6 3 8 6 1 8 1 2 6 5 3 4 11 3 4 8 2 13 2 5 2 7 3 3 1 8 1 4 4 2 4 7 7 1 5 7 6 3 6 9 1 1 1 3 1 11 5 2 5 11 13 1", "output": "76" }, { "input": "4\n1 6 9 15\n2\n5 8", "output": "2" }, { "input": "2\n2 4\n2\n3 1", "output": "2" }, { "input": "3\n2 3 5\n3\n3 4 6", "output": "3" }, { "input": "3\n1 3 4\n3\n2 1 5", "output": "3" }, { "input": "2\n5 5\n4\n1 1 1 5", "output": "1" }, { "input": "2\n3 2\n2\n3 4", "output": "2" }, { "input": "2\n3 1\n2\n2 4", "output": "2" }, { "input": "2\n2 3\n2\n2 1", "output": "2" }, { "input": "2\n10 12\n2\n11 9", "output": "2" }, { "input": "3\n1 2 3\n3\n3 2 1", "output": "3" }, { "input": "2\n1 3\n2\n2 1", "output": "2" }, { "input": "2\n4 5\n2\n5 3", "output": "2" }, { "input": "2\n7 5\n2\n6 8", "output": "2" }, { "input": "4\n4 3 2 1\n4\n1 2 3 4", "output": "4" }, { "input": "2\n2 3\n2\n3 1", "output": "2" }, { "input": "2\n2 4\n3\n3 1 8", "output": "2" }, { "input": "3\n3 1 1\n3\n2 4 4", "output": "2" }, { "input": "2\n5 3\n2\n4 6", "output": "2" }, { "input": "4\n1 1 3 3\n4\n2 2 1 1", "output": "4" }, { "input": "3\n3 2 1\n3\n2 4 3", "output": "3" }, { "input": "5\n1 2 3 4 5\n5\n2 3 4 5 1", "output": "5" }, { "input": "3\n3 2 1\n3\n1 2 3", "output": "3" }, { "input": "2\n5 4\n2\n4 6", "output": "2" }, { "input": "4\n3 3 5 5\n4\n4 4 2 2", "output": "4" }, { "input": "3\n2 7 5\n3\n2 4 8", "output": "3" }, { "input": "100\n2 3 3 4 2 1 4 4 5 5 2 1 5 2 3 3 5 4 3 2 4 2 3 3 2 2 3 4 2 2 2 3 1 2 3 2 2 3 5 3 3 3 3 4 5 2 2 1 1 1 3 1 2 2 3 5 5 2 5 1 3 4 5 3 5 4 1 1 2 3 4 4 5 3 2 4 5 5 5 2 1 4 2 4 5 4 4 5 5 3 2 5 1 4 4 2 2 2 5 3\n100\n4 5 3 3 2 2 4 3 1 5 4 3 3 2 2 4 5 2 5 2 1 4 3 4 2 3 5 3 4 4 1 2 3 5 2 2 1 5 4 2 4 3 4 3 4 2 3 1 3 3 4 1 1 1 4 4 5 3 1 4 2 3 2 1 3 3 2 3 2 1 1 2 3 2 1 3 3 4 3 3 1 1 3 3 3 1 1 3 5 3 3 3 3 4 4 5 2 5 4 5", "output": "100" }, { "input": "1\n3\n2\n2 3", "output": "1" }, { "input": "2\n5 6\n3\n1 5 100", "output": "1" }, { "input": "2\n2 7\n2\n6 8", "output": "1" }, { "input": "4\n4 10 15 17\n4\n3 12 16 16", "output": "3" }, { "input": "2\n2 3\n2\n1 2", "output": "2" } ]
1,678,288,252
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
4
61
0
import sys n = int(input()) a = list(map(int, input().split())) m = int(input()) b = list(map(int, input().split())) a.sort() b.sort() p = 0 q = 0 count = 0 r = min(n,m) while (p < r and q < r): if (abs(a[p]-b[q]) <= 1): count += 1 p += 1 q += 1 elif (a[p] > b[q]+1): q += 1 elif (b[q] > a[p]+1): p += 1 print(count)
Title: BerSU Ball Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Berland State University is hosting a ballroom dance in celebration of its 100500-th anniversary! *n* boys and *m* girls are already busy rehearsing waltz, minuet, polonaise and quadrille moves. We know that several boy&amp;girl pairs are going to be invited to the ball. However, the partners' dancing skill in each pair must differ by at most one. For each boy, we know his dancing skills. Similarly, for each girl we know her dancing skills. Write a code that can determine the largest possible number of pairs that can be formed from *n* boys and *m* girls. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of boys. The second line contains sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100), where *a**i* is the *i*-th boy's dancing skill. Similarly, the third line contains an integer *m* (1<=≤<=*m*<=≤<=100) — the number of girls. The fourth line contains sequence *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**j*<=≤<=100), where *b**j* is the *j*-th girl's dancing skill. Output Specification: Print a single number — the required maximum possible number of pairs. Demo Input: ['4\n1 4 6 2\n5\n5 1 5 7 9\n', '4\n1 2 3 4\n4\n10 11 12 13\n', '5\n1 1 1 1 1\n3\n1 2 3\n'] Demo Output: ['3\n', '0\n', '2\n'] Note: none
```python import sys n = int(input()) a = list(map(int, input().split())) m = int(input()) b = list(map(int, input().split())) a.sort() b.sort() p = 0 q = 0 count = 0 r = min(n,m) while (p < r and q < r): if (abs(a[p]-b[q]) <= 1): count += 1 p += 1 q += 1 elif (a[p] > b[q]+1): q += 1 elif (b[q] > a[p]+1): p += 1 print(count) ```
0
534
B
Covered Path
PROGRAMMING
1,400
[ "dp", "greedy", "math" ]
null
null
The on-board computer on Polycarp's car measured that the car speed at the beginning of some section of the path equals *v*1 meters per second, and in the end it is *v*2 meters per second. We know that this section of the route took exactly *t* seconds to pass. Assuming that at each of the seconds the speed is constant, and between seconds the speed can change at most by *d* meters per second in absolute value (i.e., the difference in the speed of any two adjacent seconds does not exceed *d* in absolute value), find the maximum possible length of the path section in meters.
The first line contains two integers *v*1 and *v*2 (1<=≤<=*v*1,<=*v*2<=≤<=100) — the speeds in meters per second at the beginning of the segment and at the end of the segment, respectively. The second line contains two integers *t* (2<=≤<=*t*<=≤<=100) — the time when the car moves along the segment in seconds, *d* (0<=≤<=*d*<=≤<=10) — the maximum value of the speed change between adjacent seconds. It is guaranteed that there is a way to complete the segment so that: - the speed in the first second equals *v*1, - the speed in the last second equals *v*2, - the absolute value of difference of speeds between any two adjacent seconds doesn't exceed *d*.
Print the maximum possible length of the path segment in meters.
[ "5 6\n4 2\n", "10 10\n10 0\n" ]
[ "26", "100" ]
In the first sample the sequence of speeds of Polycarpus' car can look as follows: 5, 7, 8, 6. Thus, the total path is 5 + 7 + 8 + 6 = 26 meters. In the second sample, as *d* = 0, the car covers the whole segment at constant speed *v* = 10. In *t* = 10 seconds it covers the distance of 100 meters.
1,000
[ { "input": "5 6\n4 2", "output": "26" }, { "input": "10 10\n10 0", "output": "100" }, { "input": "87 87\n2 10", "output": "174" }, { "input": "1 11\n6 2", "output": "36" }, { "input": "100 10\n10 10", "output": "550" }, { "input": "1 1\n100 10", "output": "24600" }, { "input": "1 1\n5 1", "output": "9" }, { "input": "1 1\n5 2", "output": "13" }, { "input": "100 100\n100 0", "output": "10000" }, { "input": "100 100\n100 10", "output": "34500" }, { "input": "1 100\n100 1", "output": "5050" }, { "input": "1 100\n100 10", "output": "29305" }, { "input": "100 1\n100 1", "output": "5050" }, { "input": "100 1\n100 10", "output": "29305" }, { "input": "1 10\n2 10", "output": "11" }, { "input": "1 1\n2 1", "output": "2" }, { "input": "1 1\n2 10", "output": "2" }, { "input": "1 2\n2 1", "output": "3" }, { "input": "1 2\n2 10", "output": "3" }, { "input": "1 5\n3 2", "output": "9" }, { "input": "2 1\n2 2", "output": "3" }, { "input": "2 1\n2 10", "output": "3" }, { "input": "1 11\n2 10", "output": "12" }, { "input": "11 1\n2 10", "output": "12" }, { "input": "1 1\n3 5", "output": "8" }, { "input": "1 10\n3 5", "output": "17" }, { "input": "1 21\n3 10", "output": "33" }, { "input": "21 1\n3 10", "output": "33" }, { "input": "100 100\n99 1", "output": "12301" }, { "input": "100 100\n100 1", "output": "12450" }, { "input": "99 99\n99 1", "output": "12202" }, { "input": "99 99\n99 10", "output": "33811" }, { "input": "1 100\n99 10", "output": "28764" }, { "input": "13 31\n7 5", "output": "182" }, { "input": "88 78\n8 5", "output": "719" }, { "input": "34 48\n47 4", "output": "4030" }, { "input": "91 29\n78 3", "output": "8806" }, { "input": "90 81\n21 6", "output": "2391" }, { "input": "95 89\n45 3", "output": "5589" }, { "input": "48 54\n84 2", "output": "7724" }, { "input": "72 31\n59 7", "output": "8865" }, { "input": "51 13\n47 3", "output": "2970" }, { "input": "97 91\n82 2", "output": "10984" }, { "input": "71 71\n9 5", "output": "719" }, { "input": "16 49\n40 3", "output": "2350" }, { "input": "22 41\n68 4", "output": "6608" }, { "input": "13 71\n72 6", "output": "10444" }, { "input": "77 78\n46 3", "output": "5083" }, { "input": "36 60\n54 2", "output": "3924" }, { "input": "55 39\n93 2", "output": "8571" }, { "input": "34 7\n48 6", "output": "4266" }, { "input": "80 88\n79 3", "output": "11193" }, { "input": "34 62\n15 4", "output": "866" }, { "input": "81 40\n73 2", "output": "6798" }, { "input": "13 38\n97 6", "output": "16271" }, { "input": "84 87\n45 2", "output": "4814" }, { "input": "42 65\n76 3", "output": "8240" }, { "input": "55 6\n24 4", "output": "1110" }, { "input": "41 16\n43 2", "output": "2029" }, { "input": "99 93\n78 1", "output": "8961" }, { "input": "10 7\n44 2", "output": "1297" }, { "input": "72 54\n91 3", "output": "11781" }, { "input": "48 34\n80 2", "output": "6376" }, { "input": "92 85\n70 1", "output": "7373" } ]
1,645,183,190
2,147,483,647
PyPy 3-64
OK
TESTS
64
140
6,963,200
''' intially you have a starting speed let it be 5 and ending time let it be 6 then 5 _ _ _ _ _ _ 6 and between them there are moments of time in which stuff happens there is a value d given which changes the speed by +d or -d in 1 second. 5 (5+d) or (5-d) _ _ _ _ _ 6 at t==2 now we want o figure out the maximum possible sum of numbers that is the path. Trying to figure out a state that fully represents the problem. say that we are at a index i which means we have solveed for i-1 ammd at the same time the speed e can have here (i) is solely dpenedent on the speed at i-1 index. so in we basically care about the poisition and previous speed. # push dp (dp(i,prev) ----> dp[i+1,prev-d] or dp[i+1,prev+d]) or dp(i,prev) ---> dp(i-1,prev-d) or dp[i-1,prev+d] the prev can vary between these two values prev-d to prev+d maximum possible sum is to found. base case the first element with maximum sum. as we want to maximize the sum there is no point in going below 0 v1,v2>1 assume that all values >=0 and t=100 and d<=10 and prev or our speed would be around <=1000 dp(i,prev) --> i value is atmost a 100 and prev value is atmost a 1000; and the transitions are 21 as +d and -d can happen for a value atmost 10 times so 2*10 -> 20 times. ''' start,end=map(int,input().split(" ")) n,d=map(int,input().split(" ")) inf=1e17 dp=[[-inf for i in range(1000)] for j in range(n)] dp[0][start]=0 for i in range(n-1): for j in range(0,1000): for k in range(-d,d+1): if(j+k>=0 and j+k<1000): dp[i+1][j+k]=max(dp[i+1][j+k],dp[i][j]+j) print(dp[n-1][end]+end)
Title: Covered Path Time Limit: None seconds Memory Limit: None megabytes Problem Description: The on-board computer on Polycarp's car measured that the car speed at the beginning of some section of the path equals *v*1 meters per second, and in the end it is *v*2 meters per second. We know that this section of the route took exactly *t* seconds to pass. Assuming that at each of the seconds the speed is constant, and between seconds the speed can change at most by *d* meters per second in absolute value (i.e., the difference in the speed of any two adjacent seconds does not exceed *d* in absolute value), find the maximum possible length of the path section in meters. Input Specification: The first line contains two integers *v*1 and *v*2 (1<=≤<=*v*1,<=*v*2<=≤<=100) — the speeds in meters per second at the beginning of the segment and at the end of the segment, respectively. The second line contains two integers *t* (2<=≤<=*t*<=≤<=100) — the time when the car moves along the segment in seconds, *d* (0<=≤<=*d*<=≤<=10) — the maximum value of the speed change between adjacent seconds. It is guaranteed that there is a way to complete the segment so that: - the speed in the first second equals *v*1, - the speed in the last second equals *v*2, - the absolute value of difference of speeds between any two adjacent seconds doesn't exceed *d*. Output Specification: Print the maximum possible length of the path segment in meters. Demo Input: ['5 6\n4 2\n', '10 10\n10 0\n'] Demo Output: ['26', '100'] Note: In the first sample the sequence of speeds of Polycarpus' car can look as follows: 5, 7, 8, 6. Thus, the total path is 5 + 7 + 8 + 6 = 26 meters. In the second sample, as *d* = 0, the car covers the whole segment at constant speed *v* = 10. In *t* = 10 seconds it covers the distance of 100 meters.
```python ''' intially you have a starting speed let it be 5 and ending time let it be 6 then 5 _ _ _ _ _ _ 6 and between them there are moments of time in which stuff happens there is a value d given which changes the speed by +d or -d in 1 second. 5 (5+d) or (5-d) _ _ _ _ _ 6 at t==2 now we want o figure out the maximum possible sum of numbers that is the path. Trying to figure out a state that fully represents the problem. say that we are at a index i which means we have solveed for i-1 ammd at the same time the speed e can have here (i) is solely dpenedent on the speed at i-1 index. so in we basically care about the poisition and previous speed. # push dp (dp(i,prev) ----> dp[i+1,prev-d] or dp[i+1,prev+d]) or dp(i,prev) ---> dp(i-1,prev-d) or dp[i-1,prev+d] the prev can vary between these two values prev-d to prev+d maximum possible sum is to found. base case the first element with maximum sum. as we want to maximize the sum there is no point in going below 0 v1,v2>1 assume that all values >=0 and t=100 and d<=10 and prev or our speed would be around <=1000 dp(i,prev) --> i value is atmost a 100 and prev value is atmost a 1000; and the transitions are 21 as +d and -d can happen for a value atmost 10 times so 2*10 -> 20 times. ''' start,end=map(int,input().split(" ")) n,d=map(int,input().split(" ")) inf=1e17 dp=[[-inf for i in range(1000)] for j in range(n)] dp[0][start]=0 for i in range(n-1): for j in range(0,1000): for k in range(-d,d+1): if(j+k>=0 and j+k<1000): dp[i+1][j+k]=max(dp[i+1][j+k],dp[i][j]+j) print(dp[n-1][end]+end) ```
3
400
A
Inna and Choose Options
PROGRAMMING
1,000
[ "implementation" ]
null
null
There always is something to choose from! And now, instead of "Noughts and Crosses", Inna choose a very unusual upgrade of this game. The rules of the game are given below: There is one person playing the game. Before the beginning of the game he puts 12 cards in a row on the table. Each card contains a character: "X" or "O". Then the player chooses two positive integers *a* and *b* (*a*·*b*<==<=12), after that he makes a table of size *a*<=×<=*b* from the cards he put on the table as follows: the first *b* cards form the first row of the table, the second *b* cards form the second row of the table and so on, the last *b* cards form the last (number *a*) row of the table. The player wins if some column of the table contain characters "X" on all cards. Otherwise, the player loses. Inna has already put 12 cards on the table in a row. But unfortunately, she doesn't know what numbers *a* and *b* to choose. Help her win the game: print to her all the possible ways of numbers *a*,<=*b* that she can choose and win.
The first line of the input contains integer *t* (1<=≤<=*t*<=≤<=100). This value shows the number of sets of test data in the input. Next follows the description of each of the *t* tests on a separate line. The description of each test is a string consisting of 12 characters, each character is either "X", or "O". The *i*-th character of the string shows the character that is written on the *i*-th card from the start.
For each test, print the answer to the test on a single line. The first number in the line must represent the number of distinct ways to choose the pair *a*,<=*b*. Next, print on this line the pairs in the format *a*x*b*. Print the pairs in the order of increasing first parameter (*a*). Separate the pairs in the line by whitespaces.
[ "4\nOXXXOXOOXOOX\nOXOXOXOXOXOX\nXXXXXXXXXXXX\nOOOOOOOOOOOO\n" ]
[ "3 1x12 2x6 4x3\n4 1x12 2x6 3x4 6x2\n6 1x12 2x6 3x4 4x3 6x2 12x1\n0\n" ]
none
500
[ { "input": "4\nOXXXOXOOXOOX\nOXOXOXOXOXOX\nXXXXXXXXXXXX\nOOOOOOOOOOOO", "output": "3 1x12 2x6 4x3\n4 1x12 2x6 3x4 6x2\n6 1x12 2x6 3x4 4x3 6x2 12x1\n0" }, { "input": "2\nOOOOOOOOOOOO\nXXXXXXXXXXXX", "output": "0\n6 1x12 2x6 3x4 4x3 6x2 12x1" }, { "input": "13\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX\nXXXXXXXXXXXX", "output": "6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1\n6 1x12 2x6 3x4 4x3 6x2 12x1" } ]
1,625,672,051
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
0
for i in range(int(input())): s=input() c=0 for i in s: if i=='X': c+=1 if c==0: print(0) elif c==12: print("6 1x12 2x6 3x4 4x3 6x2 12x1") else: c,l=1,[1,0,0,0,0,0] if (s[0]=='X' and s[6]=='X' ) or (s[1]=='X' and s[7]=='X' ) or (s[2]=='X' and s[8]=='X' ) or (s[3]=='X' and s[9]=='X' ) or (s[4]=='X' and s[10]=='X' ) or (s[5]=='X' and s[11]=='X' ): l[1]=1 c+=1 if (s[0]=='X' and s[4]=='X' and s[8]=='X') or (s[1]=='X' and s[5]=='X' and s[9]=='X') or (s[2]=='X' and s[6]=='X' and s[10]=='X') or (s[3]=='X' and s[7]=='X' and s[11]=='X'): l[2]=1 c+=1 if (s[0]=='X' and s[3]=='X' and s[6]=='X' and s[9]=='X') or (s[1]=='X' and s[4]=='X' and s[7]=='X' and s[10]=='X') or (s[2]=='X' and s[5]=='X' and s[8]=='X' and s[11]=='X'): l[3]=1 c+=1 if (s[0]=='X' and s[2]=='X' and s[4]=='X' and s[6]=='X' and s[8]=='X' and s[10]=='X') or (s[1]=='X' and s[3]=='X' and s[5]=='X' and s[7]=='X' and s[9]=='X' and s[11]=='X'): l[4]=1 c+=1 print(c,"1x12",end=" ") if l[1]==1: print("2x6",end=" ") if l[2]==1: print("3x4",end=" ") if l[3]==1: print("4x3",end=" ") if l[4]==1: print("6x2",end=" ") print()
Title: Inna and Choose Options Time Limit: None seconds Memory Limit: None megabytes Problem Description: There always is something to choose from! And now, instead of "Noughts and Crosses", Inna choose a very unusual upgrade of this game. The rules of the game are given below: There is one person playing the game. Before the beginning of the game he puts 12 cards in a row on the table. Each card contains a character: "X" or "O". Then the player chooses two positive integers *a* and *b* (*a*·*b*<==<=12), after that he makes a table of size *a*<=×<=*b* from the cards he put on the table as follows: the first *b* cards form the first row of the table, the second *b* cards form the second row of the table and so on, the last *b* cards form the last (number *a*) row of the table. The player wins if some column of the table contain characters "X" on all cards. Otherwise, the player loses. Inna has already put 12 cards on the table in a row. But unfortunately, she doesn't know what numbers *a* and *b* to choose. Help her win the game: print to her all the possible ways of numbers *a*,<=*b* that she can choose and win. Input Specification: The first line of the input contains integer *t* (1<=≤<=*t*<=≤<=100). This value shows the number of sets of test data in the input. Next follows the description of each of the *t* tests on a separate line. The description of each test is a string consisting of 12 characters, each character is either "X", or "O". The *i*-th character of the string shows the character that is written on the *i*-th card from the start. Output Specification: For each test, print the answer to the test on a single line. The first number in the line must represent the number of distinct ways to choose the pair *a*,<=*b*. Next, print on this line the pairs in the format *a*x*b*. Print the pairs in the order of increasing first parameter (*a*). Separate the pairs in the line by whitespaces. Demo Input: ['4\nOXXXOXOOXOOX\nOXOXOXOXOXOX\nXXXXXXXXXXXX\nOOOOOOOOOOOO\n'] Demo Output: ['3 1x12 2x6 4x3\n4 1x12 2x6 3x4 6x2\n6 1x12 2x6 3x4 4x3 6x2 12x1\n0\n'] Note: none
```python for i in range(int(input())): s=input() c=0 for i in s: if i=='X': c+=1 if c==0: print(0) elif c==12: print("6 1x12 2x6 3x4 4x3 6x2 12x1") else: c,l=1,[1,0,0,0,0,0] if (s[0]=='X' and s[6]=='X' ) or (s[1]=='X' and s[7]=='X' ) or (s[2]=='X' and s[8]=='X' ) or (s[3]=='X' and s[9]=='X' ) or (s[4]=='X' and s[10]=='X' ) or (s[5]=='X' and s[11]=='X' ): l[1]=1 c+=1 if (s[0]=='X' and s[4]=='X' and s[8]=='X') or (s[1]=='X' and s[5]=='X' and s[9]=='X') or (s[2]=='X' and s[6]=='X' and s[10]=='X') or (s[3]=='X' and s[7]=='X' and s[11]=='X'): l[2]=1 c+=1 if (s[0]=='X' and s[3]=='X' and s[6]=='X' and s[9]=='X') or (s[1]=='X' and s[4]=='X' and s[7]=='X' and s[10]=='X') or (s[2]=='X' and s[5]=='X' and s[8]=='X' and s[11]=='X'): l[3]=1 c+=1 if (s[0]=='X' and s[2]=='X' and s[4]=='X' and s[6]=='X' and s[8]=='X' and s[10]=='X') or (s[1]=='X' and s[3]=='X' and s[5]=='X' and s[7]=='X' and s[9]=='X' and s[11]=='X'): l[4]=1 c+=1 print(c,"1x12",end=" ") if l[1]==1: print("2x6",end=" ") if l[2]==1: print("3x4",end=" ") if l[3]==1: print("4x3",end=" ") if l[4]==1: print("6x2",end=" ") print() ```
0
195
D
Analyzing Polyline
PROGRAMMING
1,900
[ "geometry", "math", "sortings" ]
null
null
As Valeric and Valerko were watching one of the last Euro Championship games in a sports bar, they broke a mug. Of course, the guys paid for it but the barman said that he will let them watch football in his bar only if they help his son complete a programming task. The task goes like that. Let's consider a set of functions of the following form: Valeric and Valerko really want to watch the next Euro Championship game, so they asked you to help them.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of functions. Each of the following *n* lines contains two space-separated integer numbers *k**i*,<=*b**i* (<=-<=109<=≤<=*k**i*,<=*b**i*<=≤<=109) that determine the *i*-th function.
Print a single number — the number of angles that do not equal 180 degrees in the graph of the polyline that equals the sum of the given functions.
[ "1\n1 0\n", "3\n1 0\n0 2\n-1 1\n", "3\n-2 -4\n1 7\n-5 1\n" ]
[ "1\n", "2\n", "3\n" ]
none
2,000
[ { "input": "1\n1 0", "output": "1" }, { "input": "3\n1 0\n0 2\n-1 1", "output": "2" }, { "input": "3\n-2 -4\n1 7\n-5 1", "output": "3" }, { "input": "10\n9 9\n-5 2\n-2 9\n0 6\n6 7\n-1 -10\n-8 6\n3 6\n-3 -9\n0 4", "output": "8" }, { "input": "10\n-4 -9\n5 9\n-4 -1\n6 -1\n-10 -10\n3 4\n3 5\n3 10\n9 7\n4 -7", "output": "10" }, { "input": "5\n3 3\n2 2\n2 -3\n-3 3\n-1 1", "output": "3" }, { "input": "4\n0 2\n-1 -2\n1 0\n-2 2", "output": "3" }, { "input": "10\n-1 2\n0 1\n-2 0\n1 1\n-1 -1\n-2 1\n-2 2\n2 -1\n0 -1\n-1 0", "output": "5" }, { "input": "15\n0 3\n-1 -3\n0 -2\n1 3\n1 0\n1 3\n0 3\n-2 -1\n2 -1\n-3 -2\n-1 -1\n2 -3\n-1 3\n3 -3\n0 1", "output": "9" }, { "input": "10\n32 -84\n-24 -21\n-4 26\n67 -34\n22 50\n-15 20\n3 -39\n-86 62\n56 -81\n34 -91", "output": "10" }, { "input": "2\n0 5\n0 -5", "output": "0" }, { "input": "3\n1 1000000000\n1 1000000000\n1 1000000000", "output": "1" }, { "input": "4\n1000000000 -1000000000\n-1000000000 1000000000\n-200000000 200000000\n200000000 -200000000", "output": "1" }, { "input": "1\n3 5", "output": "1" }, { "input": "1\n1 1", "output": "1" }, { "input": "2\n1 1000000000\n-1 1000000000", "output": "2" }, { "input": "5\n79 49\n72 40\n-5 0\n-70 26\n-98 23", "output": "5" }, { "input": "10\n148 134\n145 140\n105 144\n196 199\n195 166\n110 175\n140 198\n112 188\n147 145\n153 196", "output": "10" }, { "input": "6\n1000000000 1\n-1000000000 -1\n999999999 1\n-999999999 -1\n7 22\n318181815 999999990", "output": "3" }, { "input": "5\n1000000000 1000000000\n1000000000 1000000000\n1000000000 1000000000\n1000000000 1000000000\n294967296 294967296", "output": "1" } ]
1,692,458,113
2,147,483,647
PyPy 3-64
OK
TESTS
75
280
14,540,800
from math import gcd import sys n = int(sys.stdin.readline()) res = set() for _ in range(n): k,b = map(int,sys.stdin.readline().split()) if k!=0: a = gcd(k,b) if k*b>0: res.add((abs(b//a),abs(k//a))) else: res.add((-abs(b//a),abs(k//a))) print(len(res))# 1692458113.5249596
Title: Analyzing Polyline Time Limit: None seconds Memory Limit: None megabytes Problem Description: As Valeric and Valerko were watching one of the last Euro Championship games in a sports bar, they broke a mug. Of course, the guys paid for it but the barman said that he will let them watch football in his bar only if they help his son complete a programming task. The task goes like that. Let's consider a set of functions of the following form: Valeric and Valerko really want to watch the next Euro Championship game, so they asked you to help them. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of functions. Each of the following *n* lines contains two space-separated integer numbers *k**i*,<=*b**i* (<=-<=109<=≤<=*k**i*,<=*b**i*<=≤<=109) that determine the *i*-th function. Output Specification: Print a single number — the number of angles that do not equal 180 degrees in the graph of the polyline that equals the sum of the given functions. Demo Input: ['1\n1 0\n', '3\n1 0\n0 2\n-1 1\n', '3\n-2 -4\n1 7\n-5 1\n'] Demo Output: ['1\n', '2\n', '3\n'] Note: none
```python from math import gcd import sys n = int(sys.stdin.readline()) res = set() for _ in range(n): k,b = map(int,sys.stdin.readline().split()) if k!=0: a = gcd(k,b) if k*b>0: res.add((abs(b//a),abs(k//a))) else: res.add((-abs(b//a),abs(k//a))) print(len(res))# 1692458113.5249596 ```
3
546
A
Soldier and Bananas
PROGRAMMING
800
[ "brute force", "implementation", "math" ]
null
null
A soldier wants to buy *w* bananas in the shop. He has to pay *k* dollars for the first banana, 2*k* dollars for the second one and so on (in other words, he has to pay *i*·*k* dollars for the *i*-th banana). He has *n* dollars. How many dollars does he have to borrow from his friend soldier to buy *w* bananas?
The first line contains three positive integers *k*,<=*n*,<=*w* (1<=<=≤<=<=*k*,<=*w*<=<=≤<=<=1000, 0<=≤<=*n*<=≤<=109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants.
Output one integer — the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.
[ "3 17 4\n" ]
[ "13" ]
none
500
[ { "input": "3 17 4", "output": "13" }, { "input": "1 2 1", "output": "0" }, { "input": "1 1 1", "output": "0" }, { "input": "1 5 6", "output": "16" }, { "input": "1 1000000000 1", "output": "0" }, { "input": "1000 0 1000", "output": "500500000" }, { "input": "859 453892 543", "output": "126416972" }, { "input": "1000 1000000000 1000", "output": "0" }, { "input": "1000 500500000 1000", "output": "0" }, { "input": "1000 500500001 1000", "output": "0" }, { "input": "1000 500499999 1000", "output": "1" }, { "input": "634 87973 214", "output": "14497197" }, { "input": "432 10000 241", "output": "12587552" }, { "input": "111 111111111 111", "output": "0" }, { "input": "20 43 3", "output": "77" } ]
1,694,640,486
2,147,483,647
Python 3
OK
TESTS
15
61
0
k , n, w= map(int,input().split()) for i in range(1,w+1): n-=(k*i) if n<0 : print(abs(n)) else: print(0)
Title: Soldier and Bananas Time Limit: None seconds Memory Limit: None megabytes Problem Description: A soldier wants to buy *w* bananas in the shop. He has to pay *k* dollars for the first banana, 2*k* dollars for the second one and so on (in other words, he has to pay *i*·*k* dollars for the *i*-th banana). He has *n* dollars. How many dollars does he have to borrow from his friend soldier to buy *w* bananas? Input Specification: The first line contains three positive integers *k*,<=*n*,<=*w* (1<=<=≤<=<=*k*,<=*w*<=<=≤<=<=1000, 0<=≤<=*n*<=≤<=109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants. Output Specification: Output one integer — the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0. Demo Input: ['3 17 4\n'] Demo Output: ['13'] Note: none
```python k , n, w= map(int,input().split()) for i in range(1,w+1): n-=(k*i) if n<0 : print(abs(n)) else: print(0) ```
3
476
B
Dreamoon and WiFi
PROGRAMMING
1,300
[ "bitmasks", "brute force", "combinatorics", "dp", "math", "probabilities" ]
null
null
Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them. Each command is one of the following two types: 1. Go 1 unit towards the positive direction, denoted as '+' 1. Go 1 unit towards the negative direction, denoted as '-' But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5). You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands?
The first line contains a string *s*1 — the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}. The second line contains a string *s*2 — the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command. Lengths of two strings are equal and do not exceed 10.
Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9.
[ "++-+-\n+-+-+\n", "+-+-\n+-??\n", "+++\n??-\n" ]
[ "1.000000000000\n", "0.500000000000\n", "0.000000000000\n" ]
For the first sample, both *s*<sub class="lower-index">1</sub> and *s*<sub class="lower-index">2</sub> will lead Dreamoon to finish at the same position  + 1. For the second sample, *s*<sub class="lower-index">1</sub> will lead Dreamoon to finish at position 0, while there are four possibilites for *s*<sub class="lower-index">2</sub>: {"+-++", "+-+-", "+--+", "+---"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5. For the third sample, *s*<sub class="lower-index">2</sub> could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position  + 3 is 0.
1,500
[ { "input": "++-+-\n+-+-+", "output": "1.000000000000" }, { "input": "+-+-\n+-??", "output": "0.500000000000" }, { "input": "+++\n??-", "output": "0.000000000000" }, { "input": "++++++++++\n+++??++?++", "output": "0.125000000000" }, { "input": "--+++---+-\n??????????", "output": "0.205078125000" }, { "input": "+--+++--+-\n??????????", "output": "0.246093750000" }, { "input": "+\n+", "output": "1.000000000000" }, { "input": "-\n?", "output": "0.500000000000" }, { "input": "+\n-", "output": "0.000000000000" }, { "input": "-\n-", "output": "1.000000000000" }, { "input": "-\n+", "output": "0.000000000000" }, { "input": "+\n?", "output": "0.500000000000" }, { "input": "++++++++++\n++++++++++", "output": "1.000000000000" }, { "input": "++++++++++\n++++-+++++", "output": "0.000000000000" }, { "input": "----------\n++++++++++", "output": "0.000000000000" }, { "input": "++++++++++\n++++??++++", "output": "0.250000000000" }, { "input": "----------\n+++?++++-+", "output": "0.000000000000" }, { "input": "++++++++++\n++++++++?+", "output": "0.500000000000" }, { "input": "--++++--+\n?-+?-??+-", "output": "0.250000000000" }, { "input": "----------\n??????????", "output": "0.000976562500" }, { "input": "+--++\n+--+-", "output": "0.000000000000" }, { "input": "-----++---\n????????+?", "output": "0.017578125000" }, { "input": "------+--+\n??????????", "output": "0.043945312500" }, { "input": "---++--\n???????", "output": "0.164062500000" }, { "input": "-----++\n???????", "output": "0.164062500000" }, { "input": "+---+--\n???????", "output": "0.164062500000" }, { "input": "---+-+\n??????", "output": "0.234375000000" }, { "input": "+++-+\n---++", "output": "0.000000000000" }, { "input": "++-+--+\n?-?+??+", "output": "0.375000000000" }, { "input": "----+++--\n-+?+++?--", "output": "0.000000000000" }, { "input": "+-----\n+?----", "output": "0.500000000000" } ]
1,689,427,437
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
print("_RANDOM_GUESS_1689427436.963162")# 1689427436.9631834
Title: Dreamoon and WiFi Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them. Each command is one of the following two types: 1. Go 1 unit towards the positive direction, denoted as '+' 1. Go 1 unit towards the negative direction, denoted as '-' But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5). You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands? Input Specification: The first line contains a string *s*1 — the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}. The second line contains a string *s*2 — the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command. Lengths of two strings are equal and do not exceed 10. Output Specification: Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9. Demo Input: ['++-+-\n+-+-+\n', '+-+-\n+-??\n', '+++\n??-\n'] Demo Output: ['1.000000000000\n', '0.500000000000\n', '0.000000000000\n'] Note: For the first sample, both *s*<sub class="lower-index">1</sub> and *s*<sub class="lower-index">2</sub> will lead Dreamoon to finish at the same position  + 1. For the second sample, *s*<sub class="lower-index">1</sub> will lead Dreamoon to finish at position 0, while there are four possibilites for *s*<sub class="lower-index">2</sub>: {"+-++", "+-+-", "+--+", "+---"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5. For the third sample, *s*<sub class="lower-index">2</sub> could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position  + 3 is 0.
```python print("_RANDOM_GUESS_1689427436.963162")# 1689427436.9631834 ```
0
378
A
Playing with Dice
PROGRAMMING
800
[ "brute force" ]
null
null
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw. The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
[ "2 5\n", "2 4\n" ]
[ "3 0 3\n", "2 1 3\n" ]
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct. You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| &lt; |*b* - *x*|.
500
[ { "input": "2 5", "output": "3 0 3" }, { "input": "2 4", "output": "2 1 3" }, { "input": "5 3", "output": "2 1 3" }, { "input": "1 6", "output": "3 0 3" }, { "input": "5 1", "output": "3 1 2" }, { "input": "6 3", "output": "2 0 4" }, { "input": "2 3", "output": "2 0 4" }, { "input": "5 6", "output": "5 0 1" }, { "input": "4 4", "output": "0 6 0" }, { "input": "1 1", "output": "0 6 0" }, { "input": "6 4", "output": "1 1 4" }, { "input": "1 4", "output": "2 0 4" }, { "input": "5 5", "output": "0 6 0" }, { "input": "4 5", "output": "4 0 2" }, { "input": "4 3", "output": "3 0 3" }, { "input": "1 5", "output": "2 1 3" }, { "input": "6 5", "output": "1 0 5" }, { "input": "2 2", "output": "0 6 0" }, { "input": "1 3", "output": "1 1 4" }, { "input": "3 6", "output": "4 0 2" }, { "input": "3 1", "output": "4 1 1" }, { "input": "3 2", "output": "4 0 2" }, { "input": "3 5", "output": "3 1 2" }, { "input": "3 3", "output": "0 6 0" }, { "input": "6 2", "output": "2 1 3" }, { "input": "4 1", "output": "4 0 2" }, { "input": "5 2", "output": "3 0 3" }, { "input": "4 2", "output": "3 1 2" }, { "input": "2 1", "output": "5 0 1" }, { "input": "6 1", "output": "3 0 3" }, { "input": "4 6", "output": "4 1 1" }, { "input": "2 6", "output": "3 1 2" }, { "input": "3 4", "output": "3 0 3" }, { "input": "1 2", "output": "1 0 5" }, { "input": "6 6", "output": "0 6 0" }, { "input": "5 4", "output": "2 0 4" }, { "input": "3 3", "output": "0 6 0" }, { "input": "1 1", "output": "0 6 0" } ]
1,675,321,850
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
46
0
p1,p2=map(int,input().split()) w=d=l=0 for x in range(1,7): if(abs(p1-x)<abs(p2-x)): w=w+1 elif(abs(p1-x)==(p2-x)): d=d+1 else: l=l+1 print(w,d,l)
Title: Playing with Dice Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw. The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins? Input Specification: The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly. Output Specification: Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly. Demo Input: ['2 5\n', '2 4\n'] Demo Output: ['3 0 3\n', '2 1 3\n'] Note: The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct. You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| &lt; |*b* - *x*|.
```python p1,p2=map(int,input().split()) w=d=l=0 for x in range(1,7): if(abs(p1-x)<abs(p2-x)): w=w+1 elif(abs(p1-x)==(p2-x)): d=d+1 else: l=l+1 print(w,d,l) ```
0
145
C
Lucky Subsequence
PROGRAMMING
2,100
[ "combinatorics", "dp", "math" ]
null
null
Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya has sequence *a* consisting of *n* integers. The subsequence of the sequence *a* is such subsequence that can be obtained from *a* by removing zero or more of its elements. Two sequences are considered different if index sets of numbers included in them are different. That is, the values ​of the elements ​do not matter in the comparison of subsequences. In particular, any sequence of length *n* has exactly 2*n* different subsequences (including an empty subsequence). A subsequence is considered lucky if it has a length exactly *k* and does not contain two identical lucky numbers (unlucky numbers can be repeated any number of times). Help Petya find the number of different lucky subsequences of the sequence *a*. As Petya's parents don't let him play with large numbers, you should print the result modulo prime number 1000000007 (109<=+<=7).
The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105). The next line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — the sequence *a*.
On the single line print the single number — the answer to the problem modulo prime number 1000000007 (109<=+<=7).
[ "3 2\n10 10 10\n", "4 2\n4 4 7 7\n" ]
[ "3\n", "4\n" ]
In the first sample all 3 subsequences of the needed length are considered lucky. In the second sample there are 4 lucky subsequences. For them the sets of indexes equal (the indexation starts from 1): {1, 3}, {1, 4}, {2, 3} and {2, 4}.
1,500
[ { "input": "3 2\n10 10 10", "output": "3" }, { "input": "4 2\n4 4 7 7", "output": "4" }, { "input": "7 4\n1 2 3 4 5 6 7", "output": "35" }, { "input": "7 4\n7 7 7 7 7 7 7", "output": "0" }, { "input": "10 1\n1 2 3 4 5 6 7 8 9 10", "output": "10" }, { "input": "10 7\n1 2 3 4 5 6 7 8 9 10", "output": "120" }, { "input": "20 7\n1 4 5 8 47 777777777 1 5 4 8 5 9 5 4 7 4 5 7 7 44474", "output": "29172" }, { "input": "5 2\n47 47 47 47 47", "output": "0" }, { "input": "13 5\n44 44 44 44 44 44 44 44 77 55 66 99 55", "output": "41" }, { "input": "3 2\n1 47 47", "output": "2" }, { "input": "2 2\n47 47", "output": "0" }, { "input": "2 2\n44 44", "output": "0" } ]
1,639,584,158
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
4
216
4,915,200
p = 10**9+7 def power(x, y, p): b = bin(y)[2:] start = x % p answer = 1 for i in range(len(b)): if b[len(b)-i-1]=='1': answer = (start*answer) % p start = (start*start) % p return answer fact_dict = [1, 1] for i in range(2, 10**5+2): fact_dict.append((fact_dict[-1]*i) % p) def binom(n, m): if m > n: return 0 if n < 0: return 0 num = fact_dict[n] den = (fact_dict[m]*fact_dict[n-m]) % p den1 = power(den, p-2, p) return (num*den1) % p def process(A, k): d = {} other = 0 for x in A: s = set(str(x)) if s==set(['4', '7']) or s==set(['4']) or s==set(['7']): if x not in d: d[x] = 0 d[x]+=1 else: other+=1 #at most 32 lucky numbers curr = [1] for x in d: new_curr = [0 for i in range(len(curr)+1)] for i in range(len(curr)-1, -1, -1): new_curr[i+1]+=curr[i]*d[x] new_curr[i]+=curr[i] curr = new_curr answer = 0 for i in range(len(curr)): answer = (answer+binom(other, k-i)*curr[i]) % p return answer n, k = [int(x) for x in input().split()] A = [int(x) for x in input().split()] print(process(A, k)) #d[0] choose k #d[0] choose k-1 times (sum of the others)
Title: Lucky Subsequence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya has sequence *a* consisting of *n* integers. The subsequence of the sequence *a* is such subsequence that can be obtained from *a* by removing zero or more of its elements. Two sequences are considered different if index sets of numbers included in them are different. That is, the values ​of the elements ​do not matter in the comparison of subsequences. In particular, any sequence of length *n* has exactly 2*n* different subsequences (including an empty subsequence). A subsequence is considered lucky if it has a length exactly *k* and does not contain two identical lucky numbers (unlucky numbers can be repeated any number of times). Help Petya find the number of different lucky subsequences of the sequence *a*. As Petya's parents don't let him play with large numbers, you should print the result modulo prime number 1000000007 (109<=+<=7). Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105). The next line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — the sequence *a*. Output Specification: On the single line print the single number — the answer to the problem modulo prime number 1000000007 (109<=+<=7). Demo Input: ['3 2\n10 10 10\n', '4 2\n4 4 7 7\n'] Demo Output: ['3\n', '4\n'] Note: In the first sample all 3 subsequences of the needed length are considered lucky. In the second sample there are 4 lucky subsequences. For them the sets of indexes equal (the indexation starts from 1): {1, 3}, {1, 4}, {2, 3} and {2, 4}.
```python p = 10**9+7 def power(x, y, p): b = bin(y)[2:] start = x % p answer = 1 for i in range(len(b)): if b[len(b)-i-1]=='1': answer = (start*answer) % p start = (start*start) % p return answer fact_dict = [1, 1] for i in range(2, 10**5+2): fact_dict.append((fact_dict[-1]*i) % p) def binom(n, m): if m > n: return 0 if n < 0: return 0 num = fact_dict[n] den = (fact_dict[m]*fact_dict[n-m]) % p den1 = power(den, p-2, p) return (num*den1) % p def process(A, k): d = {} other = 0 for x in A: s = set(str(x)) if s==set(['4', '7']) or s==set(['4']) or s==set(['7']): if x not in d: d[x] = 0 d[x]+=1 else: other+=1 #at most 32 lucky numbers curr = [1] for x in d: new_curr = [0 for i in range(len(curr)+1)] for i in range(len(curr)-1, -1, -1): new_curr[i+1]+=curr[i]*d[x] new_curr[i]+=curr[i] curr = new_curr answer = 0 for i in range(len(curr)): answer = (answer+binom(other, k-i)*curr[i]) % p return answer n, k = [int(x) for x in input().split()] A = [int(x) for x in input().split()] print(process(A, k)) #d[0] choose k #d[0] choose k-1 times (sum of the others) ```
0
13
A
Numbers
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Numbers
1
64
Little Petya likes numbers a lot. He found that number 123 in base 16 consists of two digits: the first is 7 and the second is 11. So the sum of digits of 123 in base 16 is equal to 18. Now he wonders what is an average value of sum of digits of the number *A* written in all bases from 2 to *A*<=-<=1. Note that all computations should be done in base 10. You should find the result as an irreducible fraction, written in base 10.
Input contains one integer number *A* (3<=≤<=*A*<=≤<=1000).
Output should contain required average value in format «X/Y», where X is the numerator and Y is the denominator.
[ "5\n", "3\n" ]
[ "7/3\n", "2/1\n" ]
In the first sample number 5 written in all bases from 2 to 4 looks so: 101, 12, 11. Sums of digits are 2, 3 and 2, respectively.
0
[ { "input": "5", "output": "7/3" }, { "input": "3", "output": "2/1" }, { "input": "1000", "output": "90132/499" }, { "input": "927", "output": "155449/925" }, { "input": "260", "output": "6265/129" }, { "input": "131", "output": "3370/129" }, { "input": "386", "output": "857/12" }, { "input": "277", "output": "2864/55" }, { "input": "766", "output": "53217/382" }, { "input": "28", "output": "85/13" }, { "input": "406", "output": "7560/101" }, { "input": "757", "output": "103847/755" }, { "input": "6", "output": "9/4" }, { "input": "239", "output": "10885/237" }, { "input": "322", "output": "2399/40" }, { "input": "98", "output": "317/16" }, { "input": "208", "output": "4063/103" }, { "input": "786", "output": "55777/392" }, { "input": "879", "output": "140290/877" }, { "input": "702", "output": "89217/700" }, { "input": "948", "output": "7369/43" }, { "input": "537", "output": "52753/535" }, { "input": "984", "output": "174589/982" }, { "input": "934", "output": "157951/932" }, { "input": "726", "output": "95491/724" }, { "input": "127", "output": "3154/125" }, { "input": "504", "output": "23086/251" }, { "input": "125", "output": "3080/123" }, { "input": "604", "output": "33178/301" }, { "input": "115", "output": "2600/113" }, { "input": "27", "output": "167/25" }, { "input": "687", "output": "85854/685" }, { "input": "880", "output": "69915/439" }, { "input": "173", "output": "640/19" }, { "input": "264", "output": "6438/131" }, { "input": "785", "output": "111560/783" }, { "input": "399", "output": "29399/397" }, { "input": "514", "output": "6031/64" }, { "input": "381", "output": "26717/379" }, { "input": "592", "output": "63769/590" }, { "input": "417", "output": "32002/415" }, { "input": "588", "output": "62723/586" }, { "input": "852", "output": "131069/850" }, { "input": "959", "output": "5059/29" }, { "input": "841", "output": "127737/839" }, { "input": "733", "output": "97598/731" }, { "input": "692", "output": "87017/690" }, { "input": "69", "output": "983/67" }, { "input": "223", "output": "556/13" }, { "input": "93", "output": "246/13" }, { "input": "643", "output": "75503/641" }, { "input": "119", "output": "2833/117" }, { "input": "498", "output": "1459/16" }, { "input": "155", "output": "4637/153" }, { "input": "305", "output": "17350/303" }, { "input": "454", "output": "37893/452" }, { "input": "88", "output": "1529/86" }, { "input": "850", "output": "32645/212" }, { "input": "474", "output": "20581/236" }, { "input": "309", "output": "17731/307" }, { "input": "762", "output": "105083/760" }, { "input": "591", "output": "63761/589" }, { "input": "457", "output": "38317/455" }, { "input": "141", "output": "3832/139" }, { "input": "385", "output": "27232/383" }, { "input": "387", "output": "27628/385" }, { "input": "469", "output": "40306/467" }, { "input": "624", "output": "35285/311" }, { "input": "330", "output": "487/8" }, { "input": "31", "output": "222/29" }, { "input": "975", "output": "171679/973" }, { "input": "584", "output": "62183/582" }, { "input": "668", "output": "81127/666" }, { "input": "331", "output": "20297/329" }, { "input": "189", "output": "6789/187" }, { "input": "251", "output": "11939/249" }, { "input": "876", "output": "69196/437" }, { "input": "615", "output": "68987/613" }, { "input": "451", "output": "37258/449" }, { "input": "499", "output": "45727/497" }, { "input": "699", "output": "89117/697" }, { "input": "619", "output": "70019/617" }, { "input": "413", "output": "10515/137" }, { "input": "197", "output": "7399/195" }, { "input": "794", "output": "14281/99" }, { "input": "659", "output": "79403/657" }, { "input": "653", "output": "77695/651" }, { "input": "23", "output": "45/7" }, { "input": "430", "output": "16985/214" }, { "input": "249", "output": "11659/247" }, { "input": "837", "output": "126869/835" }, { "input": "258", "output": "12373/256" }, { "input": "995", "output": "59665/331" }, { "input": "102", "output": "504/25" }, { "input": "989", "output": "177124/987" }, { "input": "376", "output": "13008/187" }, { "input": "657", "output": "15715/131" }, { "input": "746", "output": "50509/372" }, { "input": "602", "output": "13177/120" } ]
1,629,106,071
2,147,483,647
Python 3
OK
TESTS
99
156
6,963,200
n,num = int(input()),0 for i in range(2,n): m = n while m: num += m % i m -= m % i m //= i n -= 2 for i in range(2,int(num ** 0.5)): while num % i == 0 and n % i == 0: num //= i n //= i print(f'{num}/{n}')
Title: Numbers Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Little Petya likes numbers a lot. He found that number 123 in base 16 consists of two digits: the first is 7 and the second is 11. So the sum of digits of 123 in base 16 is equal to 18. Now he wonders what is an average value of sum of digits of the number *A* written in all bases from 2 to *A*<=-<=1. Note that all computations should be done in base 10. You should find the result as an irreducible fraction, written in base 10. Input Specification: Input contains one integer number *A* (3<=≤<=*A*<=≤<=1000). Output Specification: Output should contain required average value in format «X/Y», where X is the numerator and Y is the denominator. Demo Input: ['5\n', '3\n'] Demo Output: ['7/3\n', '2/1\n'] Note: In the first sample number 5 written in all bases from 2 to 4 looks so: 101, 12, 11. Sums of digits are 2, 3 and 2, respectively.
```python n,num = int(input()),0 for i in range(2,n): m = n while m: num += m % i m -= m % i m //= i n -= 2 for i in range(2,int(num ** 0.5)): while num % i == 0 and n % i == 0: num //= i n //= i print(f'{num}/{n}') ```
3.87012
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,609,706,920
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
11
218
307,200
a,n=['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','r','u','v','w','x','y','z'],input() b=[i.upper() for i in a] if sum([n.count(i) for i in a]) >= sum([n.count(i) for i in b]): print(n.lower()) else: print(n.upper())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python a,n=['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','r','u','v','w','x','y','z'],input() b=[i.upper() for i in a] if sum([n.count(i) for i in a]) >= sum([n.count(i) for i in b]): print(n.lower()) else: print(n.upper()) ```
0
688
B
Lovely Palindromes
PROGRAMMING
1,000
[ "constructive algorithms", "math" ]
null
null
Pari has a friend who loves palindrome numbers. A palindrome number is a number that reads the same forward or backward. For example 12321, 100001 and 1 are palindrome numbers, while 112 and 1021 are not. Pari is trying to love them too, but only very special and gifted people can understand the beauty behind palindrome numbers. Pari loves integers with even length (i.e. the numbers with even number of digits), so she tries to see a lot of big palindrome numbers with even length (like a 2-digit 11 or 6-digit 122221), so maybe she could see something in them. Now Pari asks you to write a program that gets a huge integer *n* from the input and tells what is the *n*-th even-length positive palindrome number?
The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=10100<=000).
Print the *n*-th even-length palindrome number.
[ "1\n", "10\n" ]
[ "11\n", "1001\n" ]
The first 10 even-length palindrome numbers are 11, 22, 33, ... , 88, 99 and 1001.
1,000
[ { "input": "1", "output": "11" }, { "input": "10", "output": "1001" }, { "input": "11", "output": "1111" }, { "input": "12", "output": "1221" }, { "input": "100", "output": "100001" }, { "input": "1321", "output": "13211231" }, { "input": "2", "output": "22" }, { "input": "3", "output": "33" }, { "input": "4", "output": "44" }, { "input": "5", "output": "55" }, { "input": "6", "output": "66" }, { "input": "7", "output": "77" }, { "input": "8", "output": "88" }, { "input": "9", "output": "99" }, { "input": "13", "output": "1331" }, { "input": "14", "output": "1441" }, { "input": "15", "output": "1551" }, { "input": "16", "output": "1661" }, { "input": "17", "output": "1771" }, { "input": "18", "output": "1881" }, { "input": "19", "output": "1991" }, { "input": "20", "output": "2002" }, { "input": "26550", "output": "2655005562" }, { "input": "16137", "output": "1613773161" }, { "input": "91471", "output": "9147117419" }, { "input": "41242", "output": "4124224214" }, { "input": "30866", "output": "3086666803" }, { "input": "4442231232741003009964183199713851566466079882929007253443848371978048610682180431295671905105980116", "output": "44422312327410030099641831997138515664660798829290072534438483719780486106821804312956719051059801166110895015091765921340812860168408791738483443527009292889706646651583179913814699003001472321322444" }, { "input": "7806526084732010742850470902979267046151204705563201965818390803445852115032119297648697933316807252", "output": "78065260847320107428504709029792670461512047055632019658183908034458521150321192976486979333168072522527086133397968467929112305112585443080938185691023655074021516407629792090740582470102374806256087" }, { "input": "2244399823612183124978103773977739948197709395321563148611877999503840818596183803323258317041875913", "output": "22443998236121831249781037739777399481977093953215631486118779995038408185961838033232583170418759133195781407138523233083816958180483059997781168413651235939077918499377793773018794213812163289934422" }, { "input": "123451", "output": "123451154321" } ]
1,622,129,470
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
7
1,000
13,004,800
# https://codeforces.com/contest/688/problem/B def split(word): return [char for char in word] def listToString(s): # initialize an empty string str1 = "" # traverse in the string for ele in s: str1 += ele # return string return str1 s = split(input()) n = len(s) # for i in range(n): # s[i] = int(s[i]) for i in range(n): s.append(s[n-1-i]) print(listToString(s))
Title: Lovely Palindromes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Pari has a friend who loves palindrome numbers. A palindrome number is a number that reads the same forward or backward. For example 12321, 100001 and 1 are palindrome numbers, while 112 and 1021 are not. Pari is trying to love them too, but only very special and gifted people can understand the beauty behind palindrome numbers. Pari loves integers with even length (i.e. the numbers with even number of digits), so she tries to see a lot of big palindrome numbers with even length (like a 2-digit 11 or 6-digit 122221), so maybe she could see something in them. Now Pari asks you to write a program that gets a huge integer *n* from the input and tells what is the *n*-th even-length positive palindrome number? Input Specification: The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=10100<=000). Output Specification: Print the *n*-th even-length palindrome number. Demo Input: ['1\n', '10\n'] Demo Output: ['11\n', '1001\n'] Note: The first 10 even-length palindrome numbers are 11, 22, 33, ... , 88, 99 and 1001.
```python # https://codeforces.com/contest/688/problem/B def split(word): return [char for char in word] def listToString(s): # initialize an empty string str1 = "" # traverse in the string for ele in s: str1 += ele # return string return str1 s = split(input()) n = len(s) # for i in range(n): # s[i] = int(s[i]) for i in range(n): s.append(s[n-1-i]) print(listToString(s)) ```
0
678
C
Joty and Chocolate
PROGRAMMING
1,600
[ "implementation", "math", "number theory" ]
null
null
Little Joty has got a task to do. She has a line of *n* tiles indexed from 1 to *n*. She has to paint them in a strange pattern. An unpainted tile should be painted Red if it's index is divisible by *a* and an unpainted tile should be painted Blue if it's index is divisible by *b*. So the tile with the number divisible by *a* and *b* can be either painted Red or Blue. After her painting is done, she will get *p* chocolates for each tile that is painted Red and *q* chocolates for each tile that is painted Blue. Note that she can paint tiles in any order she wants. Given the required information, find the maximum number of chocolates Joty can get.
The only line contains five integers *n*, *a*, *b*, *p* and *q* (1<=≤<=*n*,<=*a*,<=*b*,<=*p*,<=*q*<=≤<=109).
Print the only integer *s* — the maximum number of chocolates Joty can get. Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
[ "5 2 3 12 15\n", "20 2 3 3 5\n" ]
[ "39\n", "51\n" ]
none
0
[ { "input": "5 2 3 12 15", "output": "39" }, { "input": "20 2 3 3 5", "output": "51" }, { "input": "1 1 1 1 1", "output": "1" }, { "input": "1 2 2 2 2", "output": "0" }, { "input": "2 1 3 3 3", "output": "6" }, { "input": "3 1 1 3 3", "output": "9" }, { "input": "4 1 5 4 3", "output": "16" }, { "input": "8 8 1 1 1", "output": "8" }, { "input": "15 14 32 65 28", "output": "65" }, { "input": "894 197 325 232 902", "output": "2732" }, { "input": "8581 6058 3019 2151 4140", "output": "10431" }, { "input": "41764 97259 54586 18013 75415", "output": "0" }, { "input": "333625 453145 800800 907251 446081", "output": "0" }, { "input": "4394826 2233224 609367 3364334 898489", "output": "9653757" }, { "input": "13350712 76770926 61331309 8735000 9057368", "output": "0" }, { "input": "142098087 687355301 987788392 75187408 868856364", "output": "0" }, { "input": "1000000000 1 3 1000000000 999999999", "output": "1000000000000000000" }, { "input": "6 6 2 8 2", "output": "12" }, { "input": "500 8 4 4 5", "output": "625" }, { "input": "20 4 6 2 3", "output": "17" }, { "input": "10 3 9 1 2", "output": "4" }, { "input": "120 18 6 3 5", "output": "100" }, { "input": "30 4 6 2 2", "output": "20" }, { "input": "1000000000 7171 2727 191 272", "output": "125391842" }, { "input": "5 2 2 4 1", "output": "8" }, { "input": "1000000000 2 2 3 3", "output": "1500000000" }, { "input": "24 4 6 5 7", "output": "48" }, { "input": "216 6 36 10 100", "output": "900" }, { "input": "100 12 6 1 10", "output": "160" }, { "input": "1000 4 8 3 5", "output": "1000" }, { "input": "10 2 4 3 6", "output": "21" }, { "input": "1000000000 1000000000 1000000000 1000000000 1000000000", "output": "1000000000" }, { "input": "10 5 10 2 3", "output": "5" }, { "input": "100000 3 9 1 2", "output": "44444" }, { "input": "10 2 4 1 100", "output": "203" }, { "input": "20 6 4 2 3", "output": "19" }, { "input": "1200 4 16 2 3", "output": "675" }, { "input": "7 2 4 7 9", "output": "23" }, { "input": "24 6 4 15 10", "output": "100" }, { "input": "50 2 8 15 13", "output": "375" }, { "input": "100 4 6 12 15", "output": "444" }, { "input": "56756 9 18 56 78", "output": "422502" }, { "input": "10000 4 6 10 12", "output": "36662" }, { "input": "20 2 4 3 5", "output": "40" }, { "input": "24 4 6 10 100", "output": "440" }, { "input": "12 2 4 5 6", "output": "33" }, { "input": "100 2 4 1 100", "output": "2525" }, { "input": "1000 4 6 50 50", "output": "16650" }, { "input": "60 12 6 12 15", "output": "150" }, { "input": "1000 2 4 5 6", "output": "2750" }, { "input": "1000000000 1 1 9999 5555", "output": "9999000000000" }, { "input": "50 2 2 4 5", "output": "125" }, { "input": "14 4 2 2 3", "output": "21" }, { "input": "100 3 9 1 2", "output": "44" }, { "input": "1000000000 4 6 1 1000000000", "output": "166666666166666667" }, { "input": "12 3 3 45 4", "output": "180" }, { "input": "12 2 4 5 9", "output": "42" }, { "input": "1000000000 2 2 1000000000 1000000000", "output": "500000000000000000" }, { "input": "50 4 8 5 6", "output": "66" }, { "input": "32 4 16 6 3", "output": "48" }, { "input": "10000 2 4 1 1", "output": "5000" }, { "input": "8 2 4 100 1", "output": "400" }, { "input": "20 4 2 10 1", "output": "55" }, { "input": "5 2 2 12 15", "output": "30" }, { "input": "20 2 12 5 6", "output": "51" }, { "input": "10 2 4 1 2", "output": "7" }, { "input": "32 4 16 3 6", "output": "30" }, { "input": "50 2 8 13 15", "output": "337" }, { "input": "12 6 4 10 9", "output": "38" }, { "input": "1000000000 999999998 999999999 999999998 999999999", "output": "1999999997" }, { "input": "20 2 4 10 20", "output": "150" }, { "input": "13 4 6 12 15", "output": "54" }, { "input": "30 3 6 5 7", "output": "60" }, { "input": "7 2 4 2 1", "output": "6" }, { "input": "100000 32 16 2 3", "output": "18750" }, { "input": "6 2 6 1 1", "output": "3" }, { "input": "999999999 180 192 46642017 28801397", "output": "399129078526502" }, { "input": "12 4 6 1 1", "output": "4" }, { "input": "10 2 4 10 5", "output": "50" }, { "input": "1000000 4 6 12 14", "output": "4333328" }, { "input": "2000 20 30 3 5", "output": "531" }, { "input": "1000000000 1 2 1 1", "output": "1000000000" }, { "input": "30 3 15 10 3", "output": "100" }, { "input": "1000 2 4 1 100", "output": "25250" }, { "input": "6 3 3 12 15", "output": "30" }, { "input": "24 4 6 1 1", "output": "8" }, { "input": "20 2 12 4 5", "output": "41" }, { "input": "1000000000 9 15 10 10", "output": "1555555550" }, { "input": "16 2 4 1 2", "output": "12" }, { "input": "100000 4 6 12 14", "output": "433328" }, { "input": "24 6 4 1 1", "output": "8" }, { "input": "1000000 4 6 12 15", "output": "4499994" }, { "input": "100 2 4 5 6", "output": "275" }, { "input": "10 3 9 12 15", "output": "39" }, { "input": "1000000000 1 1 999999999 999999999", "output": "999999999000000000" }, { "input": "6 2 4 2 3", "output": "7" }, { "input": "2 2 2 2 2", "output": "2" }, { "input": "6 6 2 1 1", "output": "3" }, { "input": "100 2 4 3 7", "output": "250" }, { "input": "1000000 32 16 2 5", "output": "312500" }, { "input": "100 20 15 50 25", "output": "375" }, { "input": "1000000000 100000007 100000013 10 3", "output": "117" }, { "input": "1000000000 9999999 99999998 3 3", "output": "330" }, { "input": "10077696 24 36 10 100", "output": "30792960" }, { "input": "392852503 148746166 420198270 517065752 906699795", "output": "1034131504" }, { "input": "536870912 60000 72000 271828 314159", "output": "4369119072" }, { "input": "730114139 21550542 204644733 680083361 11353255", "output": "22476810678" }, { "input": "538228881 766493289 791886544 468896052 600136703", "output": "0" }, { "input": "190 20 50 84 172", "output": "1188" }, { "input": "1000 5 10 80 90", "output": "17000" }, { "input": "99999999 999999998 1 271828 314159", "output": "31415899685841" }, { "input": "22 3 6 1243 1", "output": "8701" }, { "input": "15 10 5 2 2", "output": "6" }, { "input": "1000000000 1000000000 1 1000000000 1000000000", "output": "1000000000000000000" }, { "input": "62 62 42 78 124", "output": "202" }, { "input": "2 2 2 2 1", "output": "2" }, { "input": "864351351 351 313 531 11", "output": "1337898227" }, { "input": "26 3 6 1244 1", "output": "9952" }, { "input": "1000 4 6 7 3", "output": "1999" }, { "input": "134312 3 6 33333 1", "output": "1492318410" }, { "input": "100 4 6 17 18", "output": "577" }, { "input": "6 2 4 5 6", "output": "16" }, { "input": "8 2 4 10 1", "output": "40" }, { "input": "10 2 4 3 3", "output": "15" }, { "input": "1000 1000 1000 1000 1000", "output": "1000" }, { "input": "123123 3 6 34312 2", "output": "1408198792" }, { "input": "1000000000 25 5 999 999", "output": "199800000000" }, { "input": "100 4 2 5 12", "output": "600" }, { "input": "50 2 4 4 5", "output": "112" }, { "input": "24 4 6 100 333", "output": "1732" }, { "input": "216 24 36 10 100", "output": "660" }, { "input": "50 6 4 3 8", "output": "108" }, { "input": "146 76 2 178 192", "output": "14016" }, { "input": "55 8 6 11 20", "output": "224" }, { "input": "5 2 4 6 16", "output": "22" }, { "input": "54 2 52 50 188", "output": "1488" }, { "input": "536870912 60000000 72000000 271828 314159", "output": "4101909" }, { "input": "1000000000 1000000000 1 1 100", "output": "100000000000" }, { "input": "50 4 2 4 5", "output": "125" }, { "input": "198 56 56 122 118", "output": "366" }, { "input": "5 1000000000 1 12 15", "output": "75" }, { "input": "1000 6 12 5 6", "output": "913" }, { "input": "50 3 6 12 15", "output": "216" }, { "input": "333 300 300 300 300", "output": "300" }, { "input": "1 1000000000 1 1 2", "output": "2" }, { "input": "188 110 110 200 78", "output": "200" }, { "input": "100000 20 10 3 2", "output": "25000" }, { "input": "100 2 4 1 10", "output": "275" }, { "input": "1000000000 2 1000000000 1 1000000", "output": "500999999" }, { "input": "20 3 6 5 7", "output": "36" }, { "input": "50 4 6 4 5", "output": "72" }, { "input": "96 46 4 174 156", "output": "3936" }, { "input": "5 2 4 12 15", "output": "27" }, { "input": "12 3 6 100 1", "output": "400" }, { "input": "100 4 2 10 32", "output": "1600" }, { "input": "1232 3 6 30000 3", "output": "12300000" }, { "input": "20 3 6 5 4", "output": "30" }, { "input": "100 6 15 11 29", "output": "317" }, { "input": "10000000 4 8 100 200", "output": "375000000" }, { "input": "1000000000 12 24 2 4", "output": "249999998" }, { "input": "123 3 6 3000 1", "output": "123000" }, { "input": "401523968 1536 2664 271828 314159", "output": "117768531682" }, { "input": "9 2 4 3 5", "output": "16" }, { "input": "999999999 724362018 772432019 46201854 20017479", "output": "66219333" }, { "input": "100 2 4 1 1000", "output": "25025" }, { "input": "50 2 4 1 1000", "output": "12013" }, { "input": "1000000000 2 1 2 1", "output": "1500000000" }, { "input": "1000000000 2005034 2005046 15 12", "output": "13446" }, { "input": "1000000000 999999999 1000000000 1 1", "output": "2" }, { "input": "999999999 500000000 1 100 1000", "output": "999999999000" }, { "input": "50 8 6 3 4", "output": "44" }, { "input": "1000000000 1 1 1000000000 1000000000", "output": "1000000000000000000" }, { "input": "1000000000 999999862 999999818 15 12", "output": "27" }, { "input": "1000000000 10000019 10000019 21 17", "output": "2079" }, { "input": "20 6 4 8 2", "output": "32" }, { "input": "1000000000 1000000000 1 1 1", "output": "1000000000" }, { "input": "1000000000 12345678 123456789 1000000000 999999999", "output": "88999999992" }, { "input": "1000000000 2 999999937 100000000 100000000", "output": "50000000100000000" }, { "input": "1000000000 1 1 1000000000 999999999", "output": "1000000000000000000" }, { "input": "1000000000 50001 100003 10 10", "output": "299980" }, { "input": "1000000000 1000000000 3 1 1", "output": "333333334" }, { "input": "10000 44 49 114 514", "output": "130278" }, { "input": "30 5 15 2 1", "output": "12" }, { "input": "20 2 4 1 1", "output": "10" }, { "input": "100 8 12 5 6", "output": "88" } ]
1,694,467,788
2,147,483,647
PyPy 3-64
OK
TESTS
185
62
0
from math import lcm n,a,b,p,q=[int(e) for e in input().split()] print(max(p*(n//a)+q*(n//b-n//lcm(a,b)),q*(n//b)+p*(n//a-n//lcm(a,b))))
Title: Joty and Chocolate Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Joty has got a task to do. She has a line of *n* tiles indexed from 1 to *n*. She has to paint them in a strange pattern. An unpainted tile should be painted Red if it's index is divisible by *a* and an unpainted tile should be painted Blue if it's index is divisible by *b*. So the tile with the number divisible by *a* and *b* can be either painted Red or Blue. After her painting is done, she will get *p* chocolates for each tile that is painted Red and *q* chocolates for each tile that is painted Blue. Note that she can paint tiles in any order she wants. Given the required information, find the maximum number of chocolates Joty can get. Input Specification: The only line contains five integers *n*, *a*, *b*, *p* and *q* (1<=≤<=*n*,<=*a*,<=*b*,<=*p*,<=*q*<=≤<=109). Output Specification: Print the only integer *s* — the maximum number of chocolates Joty can get. Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type. Demo Input: ['5 2 3 12 15\n', '20 2 3 3 5\n'] Demo Output: ['39\n', '51\n'] Note: none
```python from math import lcm n,a,b,p,q=[int(e) for e in input().split()] print(max(p*(n//a)+q*(n//b-n//lcm(a,b)),q*(n//b)+p*(n//a-n//lcm(a,b)))) ```
3
586
B
Laurenty and Shop
PROGRAMMING
1,300
[ "implementation" ]
null
null
A little boy Laurenty has been playing his favourite game Nota for quite a while and is now very hungry. The boy wants to make sausage and cheese sandwiches, but first, he needs to buy a sausage and some cheese. The town where Laurenty lives in is not large. The houses in it are located in two rows, *n* houses in each row. Laurenty lives in the very last house of the second row. The only shop in town is placed in the first house of the first row. The first and second rows are separated with the main avenue of the city. The adjacent houses of one row are separated by streets. Each crosswalk of a street or an avenue has some traffic lights. In order to cross the street, you need to press a button on the traffic light, wait for a while for the green light and cross the street. Different traffic lights can have different waiting time. The traffic light on the crosswalk from the *j*-th house of the *i*-th row to the (*j*<=+<=1)-th house of the same row has waiting time equal to *a**ij* (1<=≤<=*i*<=≤<=2,<=1<=≤<=*j*<=≤<=*n*<=-<=1). For the traffic light on the crossing from the *j*-th house of one row to the *j*-th house of another row the waiting time equals *b**j* (1<=≤<=*j*<=≤<=*n*). The city doesn't have any other crossings. The boy wants to get to the store, buy the products and go back. The main avenue of the city is wide enough, so the boy wants to cross it exactly once on the way to the store and exactly once on the way back home. The boy would get bored if he had to walk the same way again, so he wants the way home to be different from the way to the store in at least one crossing. Help Laurenty determine the minimum total time he needs to wait at the crossroads.
The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=50) — the number of houses in each row. Each of the next two lines contains *n*<=-<=1 space-separated integer — values *a**ij* (1<=≤<=*a**ij*<=≤<=100). The last line contains *n* space-separated integers *b**j* (1<=≤<=*b**j*<=≤<=100).
Print a single integer — the least total time Laurenty needs to wait at the crossroads, given that he crosses the avenue only once both on his way to the store and on his way back home.
[ "4\n1 2 3\n3 2 1\n3 2 2 3\n", "3\n1 2\n3 3\n2 1 3\n", "2\n1\n1\n1 1\n" ]
[ "12\n", "11\n", "4\n" ]
The first sample is shown on the figure above. In the second sample, Laurenty's path can look as follows: - Laurenty crosses the avenue, the waiting time is 3; - Laurenty uses the second crossing in the first row, the waiting time is 2; - Laurenty uses the first crossing in the first row, the waiting time is 1; - Laurenty uses the first crossing in the first row, the waiting time is 1; - Laurenty crosses the avenue, the waiting time is 1; - Laurenty uses the second crossing in the second row, the waiting time is 3. In the last sample Laurenty visits all the crossings, so the answer is 4.
1,000
[ { "input": "4\n1 2 3\n3 2 1\n3 2 2 3", "output": "12" }, { "input": "3\n1 2\n3 3\n2 1 3", "output": "11" }, { "input": "2\n1\n1\n1 1", "output": "4" }, { "input": "2\n1\n1\n2 1", "output": "5" }, { "input": "3\n1 100\n1 1\n100 100 100", "output": "204" }, { "input": "4\n5 6 7\n8 9 10\n1 8 8 1", "output": "47" }, { "input": "4\n1 2 3\n2 2 3\n2 3 4 3", "output": "18" }, { "input": "48\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "96" }, { "input": "48\n2 1 1 2 1 1 1 1 2 2 2 1 2 2 2 1 1 2 1 2 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 2 2 1 2 1 1 1 1 1\n1 1 1 1 1 1 2 1 2 1 1 2 2 1 2 2 2 1 2 2 2 2 1 1 1 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 1 2 2\n2 1 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 1 1 1 2 1 1 2 1 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1", "output": "143" }, { "input": "48\n7 3 1 5 3 8 5 6 4 6 8 7 7 6 9 6 4 1 10 3 2 7 6 9 4 9 1 10 6 10 9 1 5 7 8 8 1 1 3 2 2 10 3 7 8 4 7\n4 9 9 4 2 6 2 4 3 9 2 9 7 3 10 1 5 2 2 10 2 1 6 2 10 5 4 6 10 2 5 10 3 1 8 1 2 6 5 2 3 5 8 1 1 8 4\n4 6 4 3 10 4 8 9 1 10 4 2 2 10 4 7 4 5 4 1 10 6 10 8 4 9 4 10 8 5 3 2 10 10 1 10 10 10 6 10 1 7 6 10 5 8 6 4", "output": "435" }, { "input": "48\n47 3 47 2 29 33 39 16 27 34 31 9 2 40 16 28 15 8 37 9 25 36 14 5 24 48 49 26 43 47 46 23 31 27 30 44 34 12 41 21 2 9 27 49 42 27 9\n6 46 24 12 19 6 39 50 37 30 39 44 14 9 39 47 13 13 1 28 36 22 15 28 43 22 2 19 36 48 34 45 44 9 24 28 41 20 39 8 19 23 25 36 37 16 21\n1 35 9 12 25 39 4 27 26 20 15 4 28 30 21 46 34 30 39 22 6 2 31 2 27 44 3 16 47 12 8 32 37 37 47 8 40 2 2 4 33 38 20 25 3 43 45 45", "output": "2404" }, { "input": "48\n25 48 43 29 32 6 22 4 33 17 25 2 50 19 39 45 38 8 5 3 23 14 24 31 35 11 20 37 10 13 14 43 18 6 42 44 14 37 29 28 2 20 12 3 30 11 24\n46 14 32 22 21 37 6 42 26 20 10 45 18 20 2 36 41 44 17 17 10 21 45 23 26 41 6 45 16 4 16 48 2 6 26 8 15 1 48 30 20 27 39 24 49 27 36\n10 29 17 21 21 13 27 43 27 3 33 20 22 39 37 21 9 41 7 23 30 17 31 4 45 49 9 43 41 42 38 30 5 49 45 30 43 3 2 43 29 35 11 47 12 12 15 43", "output": "2243" }, { "input": "48\n3 42 46 11 44 25 1 42 38 49 14 42 44 10 4 12 2 20 27 44 14 50 33 10 42 27 41 48 26 42 40 18 9 42 1 2 47 8 20 39 45 42 47 8 19 41 32\n36 32 45 48 26 26 38 38 10 7 31 50 23 23 15 17 18 25 24 44 29 12 29 30 16 14 18 20 50 10 3 1 10 7 32 35 43 36 20 40 16 26 12 8 20 38 5\n19 15 33 18 13 29 50 17 28 48 2 36 13 2 12 43 47 6 17 40 8 28 27 15 14 9 10 37 47 25 10 19 11 11 32 3 45 9 11 33 18 35 43 14 13 27 31 34", "output": "2202" }, { "input": "48\n26 55 85 65 66 16 31 85 42 78 14 83 42 52 22 32 73 68 30 92 82 18 43 40 43 36 87 77 64 61 46 79 88 86 92 16 28 47 89 34 58 47 76 24 100 27 80\n78 15 79 90 84 28 98 65 60 65 5 65 89 9 72 9 52 52 85 77 66 9 78 76 4 76 3 26 77 91 58 76 76 17 50 83 64 83 40 1 6 61 37 20 55 7 82\n61 19 9 30 98 19 6 4 36 32 54 99 18 46 28 24 12 1 21 15 38 23 39 82 66 92 95 88 65 97 98 4 22 62 96 79 1 8 85 82 38 71 50 82 4 81 58 57", "output": "4754" }, { "input": "48\n54 99 43 46 23 80 6 77 2 60 54 26 32 93 45 41 92 23 49 33 31 100 52 19 4 61 4 38 89 27 72 58 79 22 5 20 58 14 30 49 55 69 65 79 97 15 92\n22 41 46 100 36 13 14 61 94 56 26 12 93 12 77 48 34 83 38 66 86 100 16 25 90 91 15 2 12 48 45 25 84 68 98 14 88 22 16 65 53 11 56 54 68 10 39\n74 17 18 74 36 43 75 82 41 15 73 65 17 9 45 95 88 66 93 78 70 88 88 39 35 60 100 70 63 27 75 10 78 78 90 2 57 14 97 29 88 72 45 99 55 46 24 6", "output": "4262" }, { "input": "48\n82 39 88 16 77 57 94 61 57 42 93 70 26 26 60 58 14 85 67 85 83 78 57 3 61 69 25 91 97 97 94 24 66 55 10 24 88 85 68 60 52 80 46 33 85 98 3\n58 59 5 18 92 6 46 57 36 47 51 67 5 24 94 83 7 15 3 42 13 98 50 78 76 6 19 77 42 8 28 78 88 22 54 40 12 56 76 37 95 53 74 92 88 22 100\n83 8 34 25 78 60 48 57 42 10 91 35 8 72 69 71 75 31 65 28 2 45 30 87 91 16 1 55 64 56 55 99 46 93 89 24 6 15 97 72 39 73 24 24 14 15 86 47", "output": "4664" }, { "input": "48\n2 92 42 94 30 34 65 53 13 24 37 14 17 63 83 79 37 31 93 26 28 60 67 74 22 77 42 52 17 67 20 95 54 91 15 36 18 60 6 62 45 94 31 92 78 82 15\n2 73 72 31 32 92 67 49 75 30 72 22 13 31 3 22 89 50 69 27 33 89 84 26 59 33 34 48 72 64 15 35 4 65 10 70 36 91 48 4 46 2 93 26 1 29 69\n92 2 42 76 12 84 29 19 43 93 10 97 3 31 86 42 51 96 29 87 26 10 79 40 64 79 7 49 66 90 27 93 7 5 83 38 50 21 6 11 85 77 14 41 69 83 52 95", "output": "4018" }, { "input": "48\n30 36 96 71 92 99 48 41 72 3 77 61 7 97 98 96 51 93 11 67 76 45 84 57 79 85 63 13 34 38 39 77 53 23 27 32 39 35 43 81 42 13 16 46 75 66 22\n46 91 30 49 88 81 95 45 9 13 93 69 17 42 20 57 79 73 34 16 57 88 18 83 57 44 46 24 2 20 2 80 12 20 66 97 59 34 12 68 92 56 16 64 17 32 34\n97 100 50 24 58 100 99 93 45 88 24 66 93 98 10 17 38 72 98 46 50 83 21 100 32 35 4 34 60 20 7 95 59 12 73 60 2 27 10 55 35 74 9 58 32 48 18 36", "output": "4492" }, { "input": "49\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "98" }, { "input": "49\n1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 1 2 1 2 1 1 1 1 1 2 2 2 1 2 1 2 2 2 2 2 2 1 2\n2 2 2 1 1 2 1 1 2 2 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1 1 2 1 2 1 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1\n2 2 1 2 2 1 1 1 2 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 2 2 2 2 1 2 2 1 1 1 2 1 2 2 2 1 2 2 1 1 1", "output": "136" }, { "input": "49\n5 1 1 2 6 1 10 9 5 5 1 3 6 7 2 3 4 5 7 10 6 7 1 1 5 10 7 5 5 8 6 3 6 5 8 10 4 8 2 1 6 7 3 3 2 6 1 9\n9 7 2 1 10 9 9 4 10 5 9 8 1 7 7 4 6 5 6 4 3 3 3 10 7 8 9 3 6 6 1 8 8 6 7 7 2 5 4 9 5 10 8 5 8 8 4 2\n9 10 9 9 7 3 10 5 7 8 2 6 3 1 7 3 1 3 6 4 4 5 10 2 7 9 7 10 1 2 6 2 2 8 9 9 10 10 8 10 9 7 8 9 3 8 8 3 7", "output": "476" }, { "input": "49\n9 3 7 10 7 8 5 1 10 7 10 2 2 8 7 2 7 9 6 9 7 1 10 2 2 7 8 6 1 8 2 6 3 8 3 6 3 9 4 2 9 1 4 10 1 3 5 9\n7 6 9 7 3 8 5 8 7 6 8 2 2 10 6 2 3 10 1 2 4 7 8 7 2 9 8 7 8 3 6 6 9 8 8 1 5 2 3 2 4 9 6 7 9 3 1 3\n8 1 1 3 10 7 1 2 4 10 10 9 8 1 6 8 3 4 8 7 4 2 10 2 2 4 1 10 3 6 8 3 4 10 1 4 3 4 8 7 1 4 9 3 3 6 2 4 2", "output": "523" }, { "input": "49\n37 26 4 44 25 50 32 7 34 46 49 12 7 41 26 30 17 1 27 50 35 48 42 29 30 21 17 26 16 36 13 22 49 17 38 21 11 9 5 36 44 47 17 36 13 28 29 15\n29 42 5 42 1 43 22 15 34 35 42 13 41 40 2 35 35 35 30 4 35 6 13 19 10 25 4 8 50 14 36 33 45 43 7 1 42 44 10 30 12 48 30 4 28 33 31 43\n27 36 12 11 35 41 36 14 5 39 30 39 46 3 46 10 46 47 2 21 12 43 1 2 26 14 24 19 8 29 16 45 7 19 2 50 49 46 20 45 39 2 35 43 46 4 41 20 20", "output": "2472" }, { "input": "49\n11 20 15 26 29 19 7 45 43 28 39 9 47 24 49 1 32 13 45 49 38 26 5 12 41 37 38 33 32 3 39 4 36 3 35 29 45 30 42 43 49 11 10 49 1 16 45 1\n47 9 19 36 32 18 14 49 25 10 47 26 45 49 41 13 9 50 15 31 34 32 7 9 25 37 29 46 2 1 39 48 50 49 33 25 23 12 24 30 11 16 10 20 35 48 40 42\n43 37 4 35 12 8 37 9 19 5 28 2 21 25 26 24 6 6 34 36 12 50 19 8 32 41 18 49 34 26 22 11 5 37 4 2 15 43 13 42 22 23 40 8 16 49 48 31 29", "output": "2542" }, { "input": "49\n35 14 11 50 36 42 45 37 49 10 28 49 45 4 14 10 4 13 17 44 28 12 15 41 48 49 5 44 49 23 7 21 36 35 48 30 21 5 26 50 42 30 37 3 2 49 2 45\n19 18 36 37 30 42 10 34 16 27 2 34 6 16 27 45 44 15 50 5 25 20 6 41 48 2 50 30 8 38 46 2 50 5 17 48 16 30 45 23 11 35 44 29 39 13 49 28\n1 39 4 2 36 32 38 42 42 25 19 11 37 50 9 35 28 10 7 47 3 6 42 26 29 27 16 29 11 24 37 26 42 9 11 11 16 36 9 39 17 44 49 26 32 47 1 29 37", "output": "2612" }, { "input": "49\n75 32 47 38 45 100 90 67 82 21 4 16 61 69 49 86 95 13 79 70 92 98 92 48 64 1 95 47 90 31 41 12 89 98 22 95 62 54 94 57 43 1 72 8 12 71 98 41\n40 31 71 13 20 32 48 81 17 13 68 6 48 50 44 17 37 8 76 100 57 65 91 15 51 33 83 64 44 66 22 20 44 69 18 32 50 91 43 25 95 42 28 20 16 68 69 70\n52 51 67 93 7 99 59 90 53 66 35 25 8 89 80 64 49 80 87 76 3 38 71 86 88 18 41 91 55 27 12 84 44 81 14 51 35 82 33 93 1 50 62 30 65 60 41 12 85", "output": "4518" }, { "input": "49\n99 77 96 11 98 68 62 59 38 4 44 64 51 6 60 3 10 71 97 18 44 75 9 28 25 9 16 4 7 9 63 90 84 31 35 91 96 29 31 60 32 16 57 66 8 55 6 77\n54 98 89 57 9 52 40 15 99 34 23 10 52 59 79 99 72 66 56 24 56 99 48 2 66 45 58 95 1 53 75 36 94 22 45 60 85 63 14 71 41 72 65 37 20 33 82 65\n60 98 13 18 76 61 60 85 63 28 34 84 32 64 60 29 21 39 15 37 53 94 40 41 94 3 39 21 35 17 77 92 42 7 58 53 39 30 79 93 96 68 25 94 31 9 48 26 35", "output": "4427" }, { "input": "49\n27 21 50 89 60 45 49 47 1 82 88 11 49 43 87 20 32 26 19 63 93 61 14 11 82 22 33 61 23 76 81 61 79 67 36 99 30 4 69 70 37 38 34 21 1 38 21 21\n72 57 11 8 2 81 44 49 90 55 70 18 63 72 18 73 3 27 41 47 47 33 93 88 85 49 29 29 61 44 32 44 53 78 75 84 24 23 86 18 91 91 3 53 31 2 91 59\n68 49 48 34 49 40 57 76 82 90 32 43 49 31 48 89 89 93 43 9 94 55 97 1 99 89 45 54 7 7 33 15 37 22 10 59 48 73 25 90 87 85 76 63 1 57 55 25 94", "output": "4541" }, { "input": "49\n51 65 96 71 14 18 24 31 56 68 27 51 40 81 98 29 55 84 41 4 41 43 28 90 39 38 55 22 35 46 8 31 66 95 48 3 55 79 6 85 30 49 19 75 90 22 29 65\n90 23 25 64 88 1 40 96 77 76 25 22 66 81 53 54 27 92 26 67 46 71 41 74 100 60 5 55 21 31 77 60 95 38 5 8 59 99 50 65 40 10 29 66 38 63 9 53\n84 100 94 58 22 14 58 63 4 60 19 2 73 7 23 58 61 52 67 74 48 3 65 65 1 82 38 84 95 13 1 27 27 44 58 64 48 8 80 86 77 10 35 28 59 98 62 36 53", "output": "4447" }, { "input": "49\n75 14 49 48 71 87 8 23 20 50 75 95 30 14 25 50 77 38 59 57 82 21 45 69 100 46 80 83 56 16 34 9 57 32 57 7 89 50 44 96 31 71 12 34 86 10 40 1\n4 82 38 4 73 33 32 30 68 1 80 35 77 98 89 28 62 54 7 95 37 5 94 61 24 76 80 89 65 18 30 64 50 90 40 27 94 59 22 11 94 28 67 82 49 28 14 47\n92 48 28 74 4 88 59 58 23 21 18 73 90 78 7 23 26 14 3 31 90 56 22 20 98 68 36 18 71 3 57 35 21 66 2 70 56 51 18 99 60 27 98 97 29 51 69 38 12", "output": "4688" }, { "input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100" }, { "input": "50\n19 43 43 6 20 8 25 17 19 22 27 30 50 1 16 18 6 48 28 26 15 12 38 6 11 13 4 9 24 47 38 11 27 15 3 7 17 40 32 25 38 21 7 20 23 19 44 13 25\n40 21 42 10 13 34 13 8 39 13 29 43 7 4 22 47 50 45 10 1 43 5 44 11 46 40 24 44 27 9 26 18 24 34 25 49 19 39 24 36 32 6 2 25 33 35 44 6 41\n37 48 32 4 4 41 5 5 30 15 48 11 6 29 5 45 40 13 16 34 19 10 44 24 42 27 3 11 29 8 13 12 25 43 14 36 2 1 48 4 24 42 5 4 22 19 25 21 8 41", "output": "2189" }, { "input": "50\n47 38 39 30 32 23 9 5 28 4 17 20 36 31 35 39 29 6 46 20 14 40 47 35 18 21 13 23 40 18 14 32 18 1 16 12 43 11 19 40 31 32 38 16 12 48 9 7 39\n3 35 43 7 33 30 43 49 14 19 37 46 13 39 4 32 16 30 30 42 27 4 39 34 7 7 9 4 10 12 34 15 34 14 49 38 45 3 21 36 47 44 15 29 48 44 35 15 42\n29 14 5 20 5 28 19 21 17 24 14 29 40 40 15 4 26 28 15 37 38 15 38 10 36 11 29 1 43 23 11 27 23 49 23 29 49 47 39 22 33 11 17 45 33 34 34 41 36 32", "output": "2553" }, { "input": "50\n30 98 29 67 86 51 9 45 25 85 75 2 91 37 7 29 14 92 46 14 8 4 98 40 62 90 10 41 77 95 16 74 11 4 86 64 66 21 33 99 74 1 29 31 66 20 91 14 15\n28 41 39 21 17 86 46 45 41 52 62 9 93 44 26 18 97 81 57 97 68 65 2 58 30 54 96 68 20 18 78 56 84 43 92 33 66 60 25 97 8 71 55 79 58 33 47 59 63\n90 82 54 3 42 44 43 71 16 93 91 64 43 51 30 3 87 22 60 83 13 24 64 3 9 73 64 24 29 60 63 49 61 63 9 34 85 83 23 80 17 63 53 100 70 20 19 92 66 63", "output": "4675" }, { "input": "50\n55 51 83 45 43 16 84 33 80 71 23 46 82 74 34 46 28 43 68 59 60 90 8 23 19 99 32 98 85 61 42 56 6 40 95 72 100 92 71 18 67 24 6 89 55 8 3 50 41\n90 59 91 11 45 78 81 35 58 7 70 12 98 79 8 53 54 66 80 88 6 17 88 73 45 29 26 24 7 71 82 2 44 74 16 76 38 28 72 43 34 5 72 90 23 43 41 76 14\n24 94 31 77 43 27 62 25 7 52 8 39 26 16 94 58 11 83 9 39 77 92 62 96 3 3 36 22 94 71 53 71 13 69 18 77 32 80 14 1 76 23 19 45 77 23 73 66 44 58", "output": "4620" }, { "input": "50\n83 91 33 26 97 92 67 25 36 49 62 89 72 7 45 56 54 5 86 100 1 68 17 6 80 11 53 55 9 28 60 26 1 72 7 68 22 67 9 24 68 34 99 44 52 91 14 94 55\n53 81 43 92 66 74 19 18 79 58 83 23 15 14 90 85 16 50 4 87 32 66 74 88 57 96 60 84 94 16 98 53 92 4 36 11 10 96 18 96 57 43 84 94 84 52 35 84 62\n66 14 4 51 44 22 80 94 2 15 32 6 6 81 66 21 43 43 55 88 46 47 63 82 8 36 24 20 54 87 48 94 53 75 18 16 70 77 9 22 31 92 85 93 80 30 32 36 23 45", "output": "4859" }, { "input": "50\n3 35 86 4 51 65 51 9 95 31 6 29 66 36 68 77 73 59 4 49 49 50 34 86 37 27 74 16 22 98 91 93 93 9 8 80 52 38 46 35 60 49 84 2 40 79 26 38 74\n16 99 87 89 98 66 53 5 100 9 87 27 24 53 63 8 81 31 28 86 66 15 61 3 69 76 90 32 77 69 6 7 44 30 60 46 70 68 61 46 76 81 5 5 45 61 29 92 9\n4 31 74 17 49 5 95 56 100 82 49 82 89 46 38 79 67 4 4 40 7 11 65 67 2 66 100 14 10 3 46 8 5 81 30 55 24 81 96 39 90 61 47 42 91 36 87 6 6 44", "output": "4472" }, { "input": "50\n31 80 40 85 12 38 30 97 51 18 45 81 56 82 91 94 95 13 26 93 98 35 44 69 98 39 83 77 38 68 13 71 80 41 21 80 81 17 88 46 61 67 65 49 29 55 37 74 88\n71 8 42 74 14 70 100 96 25 56 95 38 41 88 45 43 46 16 55 77 100 68 51 30 73 51 25 88 64 26 22 50 4 57 88 85 45 32 11 96 94 19 9 12 10 66 24 8 60\n46 55 55 95 50 96 13 26 91 41 74 53 65 10 11 30 99 77 46 93 71 67 70 44 100 96 73 8 74 14 32 30 62 87 31 3 71 78 82 60 41 26 17 87 98 39 45 80 84 39", "output": "4804" }, { "input": "50\n55 24 86 55 70 15 9 89 6 96 85 20 47 11 6 11 18 75 44 34 50 13 53 40 59 48 4 30 54 34 31 46 75 73 26 85 15 92 21 56 58 81 54 3 26 42 53 18 6\n37 22 90 56 39 67 34 83 46 11 7 49 58 27 23 74 100 1 83 76 38 17 41 45 84 26 51 48 47 75 26 4 60 87 7 20 13 3 58 45 13 57 22 23 79 75 18 17 7\n80 71 24 69 51 91 35 92 90 100 90 28 52 71 67 89 31 42 92 53 40 26 75 38 98 30 53 6 34 30 31 52 6 92 43 46 17 75 73 74 4 95 79 35 5 46 4 58 63 26", "output": "3834" } ]
1,444,643,830
2,830
Python 3
OK
TESTS
40
62
0
n = int(input()) H1 = list(map(int, input().split())) H2 = list(map(int, input().split())) av = list(map(int, input().split())) ans = [] for i in range(n - 1): ans.append(sum(H1[:i]) + av[i] + sum(H2[i:])) ans.append(sum(H1) + av[-1]) ans.sort() print(ans[0] + ans[1])
Title: Laurenty and Shop Time Limit: None seconds Memory Limit: None megabytes Problem Description: A little boy Laurenty has been playing his favourite game Nota for quite a while and is now very hungry. The boy wants to make sausage and cheese sandwiches, but first, he needs to buy a sausage and some cheese. The town where Laurenty lives in is not large. The houses in it are located in two rows, *n* houses in each row. Laurenty lives in the very last house of the second row. The only shop in town is placed in the first house of the first row. The first and second rows are separated with the main avenue of the city. The adjacent houses of one row are separated by streets. Each crosswalk of a street or an avenue has some traffic lights. In order to cross the street, you need to press a button on the traffic light, wait for a while for the green light and cross the street. Different traffic lights can have different waiting time. The traffic light on the crosswalk from the *j*-th house of the *i*-th row to the (*j*<=+<=1)-th house of the same row has waiting time equal to *a**ij* (1<=≤<=*i*<=≤<=2,<=1<=≤<=*j*<=≤<=*n*<=-<=1). For the traffic light on the crossing from the *j*-th house of one row to the *j*-th house of another row the waiting time equals *b**j* (1<=≤<=*j*<=≤<=*n*). The city doesn't have any other crossings. The boy wants to get to the store, buy the products and go back. The main avenue of the city is wide enough, so the boy wants to cross it exactly once on the way to the store and exactly once on the way back home. The boy would get bored if he had to walk the same way again, so he wants the way home to be different from the way to the store in at least one crossing. Help Laurenty determine the minimum total time he needs to wait at the crossroads. Input Specification: The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=50) — the number of houses in each row. Each of the next two lines contains *n*<=-<=1 space-separated integer — values *a**ij* (1<=≤<=*a**ij*<=≤<=100). The last line contains *n* space-separated integers *b**j* (1<=≤<=*b**j*<=≤<=100). Output Specification: Print a single integer — the least total time Laurenty needs to wait at the crossroads, given that he crosses the avenue only once both on his way to the store and on his way back home. Demo Input: ['4\n1 2 3\n3 2 1\n3 2 2 3\n', '3\n1 2\n3 3\n2 1 3\n', '2\n1\n1\n1 1\n'] Demo Output: ['12\n', '11\n', '4\n'] Note: The first sample is shown on the figure above. In the second sample, Laurenty's path can look as follows: - Laurenty crosses the avenue, the waiting time is 3; - Laurenty uses the second crossing in the first row, the waiting time is 2; - Laurenty uses the first crossing in the first row, the waiting time is 1; - Laurenty uses the first crossing in the first row, the waiting time is 1; - Laurenty crosses the avenue, the waiting time is 1; - Laurenty uses the second crossing in the second row, the waiting time is 3. In the last sample Laurenty visits all the crossings, so the answer is 4.
```python n = int(input()) H1 = list(map(int, input().split())) H2 = list(map(int, input().split())) av = list(map(int, input().split())) ans = [] for i in range(n - 1): ans.append(sum(H1[:i]) + av[i] + sum(H2[i:])) ans.append(sum(H1) + av[-1]) ans.sort() print(ans[0] + ans[1]) ```
3
118
A
String Task
PROGRAMMING
1,000
[ "implementation", "strings" ]
null
null
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it: - deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones. Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string. Help Petya cope with this easy task.
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
Print the resulting string. It is guaranteed that this string is not empty.
[ "tour\n", "Codeforces\n", "aBAcAba\n" ]
[ ".t.r\n", ".c.d.f.r.c.s\n", ".b.c.b\n" ]
none
500
[ { "input": "tour", "output": ".t.r" }, { "input": "Codeforces", "output": ".c.d.f.r.c.s" }, { "input": "aBAcAba", "output": ".b.c.b" }, { "input": "obn", "output": ".b.n" }, { "input": "wpwl", "output": ".w.p.w.l" }, { "input": "ggdvq", "output": ".g.g.d.v.q" }, { "input": "pumesz", "output": ".p.m.s.z" }, { "input": "g", "output": ".g" }, { "input": "zjuotps", "output": ".z.j.t.p.s" }, { "input": "jzbwuehe", "output": ".j.z.b.w.h" }, { "input": "tnkgwuugu", "output": ".t.n.k.g.w.g" }, { "input": "kincenvizh", "output": ".k.n.c.n.v.z.h" }, { "input": "xattxjenual", "output": ".x.t.t.x.j.n.l" }, { "input": "ktajqhpqsvhw", "output": ".k.t.j.q.h.p.q.s.v.h.w" }, { "input": "xnhcigytnqcmy", "output": ".x.n.h.c.g.t.n.q.c.m" }, { "input": "jfmtbejyilxcec", "output": ".j.f.m.t.b.j.l.x.c.c" }, { "input": "D", "output": ".d" }, { "input": "ab", "output": ".b" }, { "input": "Ab", "output": ".b" }, { "input": "aB", "output": ".b" }, { "input": "AB", "output": ".b" }, { "input": "ba", "output": ".b" }, { "input": "bA", "output": ".b" }, { "input": "Ba", "output": ".b" }, { "input": "BA", "output": ".b" }, { "input": "aab", "output": ".b" }, { "input": "baa", "output": ".b" }, { "input": "femOZeCArKCpUiHYnbBPTIOFmsHmcpObtPYcLCdjFrUMIyqYzAokKUiiKZRouZiNMoiOuGVoQzaaCAOkquRjmmKKElLNqCnhGdQM", "output": ".f.m.z.c.r.k.c.p.h.n.b.b.p.t.f.m.s.h.m.c.p.b.t.p.c.l.c.d.j.f.r.m.q.z.k.k.k.z.r.z.n.m.g.v.q.z.c.k.q.r.j.m.m.k.k.l.l.n.q.c.n.h.g.d.q.m" }, { "input": "VMBPMCmMDCLFELLIISUJDWQRXYRDGKMXJXJHXVZADRZWVWJRKFRRNSAWKKDPZZLFLNSGUNIVJFBEQsMDHSBJVDTOCSCgZWWKvZZN", "output": ".v.m.b.p.m.c.m.m.d.c.l.f.l.l.s.j.d.w.q.r.x.r.d.g.k.m.x.j.x.j.h.x.v.z.d.r.z.w.v.w.j.r.k.f.r.r.n.s.w.k.k.d.p.z.z.l.f.l.n.s.g.n.v.j.f.b.q.s.m.d.h.s.b.j.v.d.t.c.s.c.g.z.w.w.k.v.z.z.n" }, { "input": "MCGFQQJNUKuAEXrLXibVjClSHjSxmlkQGTKZrRaDNDomIPOmtSgjJAjNVIVLeUGUAOHNkCBwNObVCHOWvNkLFQQbFnugYVMkJruJ", "output": ".m.c.g.f.q.q.j.n.k.x.r.l.x.b.v.j.c.l.s.h.j.s.x.m.l.k.q.g.t.k.z.r.r.d.n.d.m.p.m.t.s.g.j.j.j.n.v.v.l.g.h.n.k.c.b.w.n.b.v.c.h.w.v.n.k.l.f.q.q.b.f.n.g.v.m.k.j.r.j" }, { "input": "iyaiuiwioOyzUaOtAeuEYcevvUyveuyioeeueoeiaoeiavizeeoeyYYaaAOuouueaUioueauayoiuuyiuovyOyiyoyioaoyuoyea", "output": ".w.z.t.c.v.v.v.v.z.v" }, { "input": "yjnckpfyLtzwjsgpcrgCfpljnjwqzgVcufnOvhxplvflxJzqxnhrwgfJmPzifgubvspffmqrwbzivatlmdiBaddiaktdsfPwsevl", "output": ".j.n.c.k.p.f.l.t.z.w.j.s.g.p.c.r.g.c.f.p.l.j.n.j.w.q.z.g.v.c.f.n.v.h.x.p.l.v.f.l.x.j.z.q.x.n.h.r.w.g.f.j.m.p.z.f.g.b.v.s.p.f.f.m.q.r.w.b.z.v.t.l.m.d.b.d.d.k.t.d.s.f.p.w.s.v.l" }, { "input": "RIIIUaAIYJOiuYIUWFPOOAIuaUEZeIooyUEUEAoIyIHYOEAlVAAIiLUAUAeiUIEiUMuuOiAgEUOIAoOUYYEYFEoOIIVeOOAOIIEg", "output": ".r.j.w.f.p.z.h.l.v.l.m.g.f.v.g" }, { "input": "VBKQCFBMQHDMGNSGBQVJTGQCNHHRJMNKGKDPPSQRRVQTZNKBZGSXBPBRXPMVFTXCHZMSJVBRNFNTHBHGJLMDZJSVPZZBCCZNVLMQ", "output": ".v.b.k.q.c.f.b.m.q.h.d.m.g.n.s.g.b.q.v.j.t.g.q.c.n.h.h.r.j.m.n.k.g.k.d.p.p.s.q.r.r.v.q.t.z.n.k.b.z.g.s.x.b.p.b.r.x.p.m.v.f.t.x.c.h.z.m.s.j.v.b.r.n.f.n.t.h.b.h.g.j.l.m.d.z.j.s.v.p.z.z.b.c.c.z.n.v.l.m.q" }, { "input": "iioyoaayeuyoolyiyoeuouiayiiuyTueyiaoiueyioiouyuauouayyiaeoeiiigmioiououeieeeyuyyaYyioiiooaiuouyoeoeg", "output": ".l.t.g.m.g" }, { "input": "ueyiuiauuyyeueykeioouiiauzoyoeyeuyiaoaiiaaoaueyaeydaoauexuueafouiyioueeaaeyoeuaueiyiuiaeeayaioeouiuy", "output": ".k.z.d.x.f" }, { "input": "FSNRBXLFQHZXGVMKLQDVHWLDSLKGKFMDRQWMWSSKPKKQBNDZRSCBLRSKCKKFFKRDMZFZGCNSMXNPMZVDLKXGNXGZQCLRTTDXLMXQ", "output": ".f.s.n.r.b.x.l.f.q.h.z.x.g.v.m.k.l.q.d.v.h.w.l.d.s.l.k.g.k.f.m.d.r.q.w.m.w.s.s.k.p.k.k.q.b.n.d.z.r.s.c.b.l.r.s.k.c.k.k.f.f.k.r.d.m.z.f.z.g.c.n.s.m.x.n.p.m.z.v.d.l.k.x.g.n.x.g.z.q.c.l.r.t.t.d.x.l.m.x.q" }, { "input": "EYAYAYIOIOYOOAUOEUEUOUUYIYUUMOEOIIIAOIUOAAOIYOIOEUIERCEYYAOIOIGYUIAOYUEOEUAEAYPOYEYUUAUOAOEIYIEYUEEY", "output": ".m.r.c.g.p" }, { "input": "jvvzcdcxjstbbksmqjsngxkgtttdxrljjxtwptgwwqzpvqchvgrkqlzxmptzblxhhsmrkmzzmgdfskhtmmnqzzflpmqdctvrfgtx", "output": ".j.v.v.z.c.d.c.x.j.s.t.b.b.k.s.m.q.j.s.n.g.x.k.g.t.t.t.d.x.r.l.j.j.x.t.w.p.t.g.w.w.q.z.p.v.q.c.h.v.g.r.k.q.l.z.x.m.p.t.z.b.l.x.h.h.s.m.r.k.m.z.z.m.g.d.f.s.k.h.t.m.m.n.q.z.z.f.l.p.m.q.d.c.t.v.r.f.g.t.x" }, { "input": "YB", "output": ".b" }, { "input": "fly", "output": ".f.l" }, { "input": "YyyYYYyyYxdwdawdDAWDdaddYYYY", "output": ".x.d.w.d.w.d.d.w.d.d.d.d" } ]
1,695,531,349
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
14
62
0
n=input() n=n.lower() vow="aeiou" str="" for i in n: if i not in vow: str+="."+i print(str)
Title: String Task Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it: - deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones. Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string. Help Petya cope with this easy task. Input Specification: The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive. Output Specification: Print the resulting string. It is guaranteed that this string is not empty. Demo Input: ['tour\n', 'Codeforces\n', 'aBAcAba\n'] Demo Output: ['.t.r\n', '.c.d.f.r.c.s\n', '.b.c.b\n'] Note: none
```python n=input() n=n.lower() vow="aeiou" str="" for i in n: if i not in vow: str+="."+i print(str) ```
0
43
A
Football
PROGRAMMING
1,000
[ "strings" ]
A. Football
2
256
One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams.
Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner.
[ "1\nABC\n", "5\nA\nABA\nABA\nA\nA\n" ]
[ "ABC\n", "A\n" ]
none
500
[ { "input": "1\nABC", "output": "ABC" }, { "input": "5\nA\nABA\nABA\nA\nA", "output": "A" }, { "input": "2\nXTSJEP\nXTSJEP", "output": "XTSJEP" }, { "input": "3\nXZYDJAEDZ\nXZYDJAEDZ\nXZYDJAEDZ", "output": "XZYDJAEDZ" }, { "input": "3\nQCCYXL\nQCCYXL\nAXGLFQDD", "output": "QCCYXL" }, { "input": "3\nAZID\nEERWBC\nEERWBC", "output": "EERWBC" }, { "input": "3\nHNCGYL\nHNCGYL\nHNCGYL", "output": "HNCGYL" }, { "input": "4\nZZWZTG\nZZWZTG\nZZWZTG\nZZWZTG", "output": "ZZWZTG" }, { "input": "4\nA\nA\nKUDLJMXCSE\nA", "output": "A" }, { "input": "5\nPHBTW\nPHBTW\nPHBTW\nPHBTW\nPHBTW", "output": "PHBTW" }, { "input": "5\nPKUZYTFYWN\nPKUZYTFYWN\nSTC\nPKUZYTFYWN\nPKUZYTFYWN", "output": "PKUZYTFYWN" }, { "input": "5\nHH\nHH\nNTQWPA\nNTQWPA\nHH", "output": "HH" }, { "input": "10\nW\nW\nW\nW\nW\nD\nW\nD\nD\nW", "output": "W" }, { "input": "19\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nTGACNIH\nTGACNIH\nXBCP", "output": "XBCP" }, { "input": "33\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS", "output": "PYPAS" }, { "input": "51\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC", "output": "NC" }, { "input": "89\nH\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nVOCI\nVOCI\nH\nH\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nH\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI", "output": "VOCI" }, { "input": "100\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nM\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA", "output": "HA" }, { "input": "100\nG\nG\nS\nS\nG\nG\nS\nS\nG\nS\nS\nS\nG\nS\nG\nG\nS\nG\nS\nS\nG\nS\nS\nS\nS\nS\nG\nS\nG\nS\nS\nG\nG\nG\nS\nS\nS\nS\nG\nS\nS\nG\nG\nG\nG\nG\nS\nG\nG\nS\nS\nS\nS\nS\nG\nG\nS\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nS\nS\nG\nS\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nG\nG\nS\nG\nG\nG\nS", "output": "G" }, { "input": "100\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nOBH\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL", "output": "WL" } ]
1,592,302,978
2,147,483,647
Python 3
OK
TESTS
34
248
307,200
n = int(input()) team_dict = {} for i in range(n): scoring_team =str(input().strip()) if scoring_team not in list(team_dict.keys()): team_dict[scoring_team]=0 team_dict[scoring_team]=team_dict[scoring_team]+1 winning_team = sorted([(k,v) for k,v in list(team_dict.items())],key=lambda x:x[1],reverse=True)[0][0] print(winning_team)
Title: Football Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams. Output Specification: Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner. Demo Input: ['1\nABC\n', '5\nA\nABA\nABA\nA\nA\n'] Demo Output: ['ABC\n', 'A\n'] Note: none
```python n = int(input()) team_dict = {} for i in range(n): scoring_team =str(input().strip()) if scoring_team not in list(team_dict.keys()): team_dict[scoring_team]=0 team_dict[scoring_team]=team_dict[scoring_team]+1 winning_team = sorted([(k,v) for k,v in list(team_dict.items())],key=lambda x:x[1],reverse=True)[0][0] print(winning_team) ```
3.937428
439
B
Devu, the Dumb Guy
PROGRAMMING
1,200
[ "implementation", "sortings" ]
null
null
Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously. Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours. Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour. You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy. Please be careful that answer might not fit in 32 bit data type.
The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105).
Output a single integer representing the answer to the problem.
[ "2 3\n4 1\n", "4 2\n5 1 2 1\n", "3 3\n1 1 1\n" ]
[ "11\n", "10\n", "6\n" ]
Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours. Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours. So overall, minimum of both the cases is 11 hours. Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
1,000
[ { "input": "2 3\n4 1", "output": "11" }, { "input": "4 2\n5 1 2 1", "output": "10" }, { "input": "3 3\n1 1 1", "output": "6" }, { "input": "20 4\n1 1 3 5 5 1 3 4 2 5 2 4 3 1 3 3 3 3 4 3", "output": "65" }, { "input": "20 10\n6 6 1 2 6 4 5 3 6 5 4 5 6 5 4 6 6 2 3 3", "output": "196" }, { "input": "1 1\n9273", "output": "9273" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 2\n1", "output": "2" }, { "input": "1 2\n2", "output": "4" }, { "input": "2 1\n1 2", "output": "3" } ]
1,564,379,786
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
186
2,560,000
from sys import stdin stdin = open("sum.in", 'r') hat = stdin.readlines() n, x = map(int, hat[0].split()) lst = [int(x) for x in hat[1].split()] newlst = [] lst.sort() halfway = int(0.5*n) #print(lst) houres = 0 for i in range(n): #print(i) if x != 1: houres += x * lst[i] x -= 1 else: houres += lst[i] print(houres)
Title: Devu, the Dumb Guy Time Limit: None seconds Memory Limit: None megabytes Problem Description: Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously. Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours. Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour. You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy. Please be careful that answer might not fit in 32 bit data type. Input Specification: The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105). Output Specification: Output a single integer representing the answer to the problem. Demo Input: ['2 3\n4 1\n', '4 2\n5 1 2 1\n', '3 3\n1 1 1\n'] Demo Output: ['11\n', '10\n', '6\n'] Note: Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours. Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours. So overall, minimum of both the cases is 11 hours. Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
```python from sys import stdin stdin = open("sum.in", 'r') hat = stdin.readlines() n, x = map(int, hat[0].split()) lst = [int(x) for x in hat[1].split()] newlst = [] lst.sort() halfway = int(0.5*n) #print(lst) houres = 0 for i in range(n): #print(i) if x != 1: houres += x * lst[i] x -= 1 else: houres += lst[i] print(houres) ```
-1
449
B
Jzzhu and Cities
PROGRAMMING
2,000
[ "graphs", "greedy", "shortest paths" ]
null
null
Jzzhu is the president of country A. There are *n* cities numbered from 1 to *n* in his country. City 1 is the capital of A. Also there are *m* roads connecting the cities. One can go from city *u**i* to *v**i* (and vise versa) using the *i*-th road, the length of this road is *x**i*. Finally, there are *k* train routes in the country. One can use the *i*-th train route to go from capital of the country to city *s**i* (and vise versa), the length of this route is *y**i*. Jzzhu doesn't want to waste the money of the country, so he is going to close some of the train routes. Please tell Jzzhu the maximum number of the train routes which can be closed under the following condition: the length of the shortest path from every city to the capital mustn't change.
The first line contains three integers *n*,<=*m*,<=*k* (2<=≤<=*n*<=≤<=105; 1<=≤<=*m*<=≤<=3·105; 1<=≤<=*k*<=≤<=105). Each of the next *m* lines contains three integers *u**i*,<=*v**i*,<=*x**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*; *u**i*<=≠<=*v**i*; 1<=≤<=*x**i*<=≤<=109). Each of the next *k* lines contains two integers *s**i* and *y**i* (2<=≤<=*s**i*<=≤<=*n*; 1<=≤<=*y**i*<=≤<=109). It is guaranteed that there is at least one way from every city to the capital. Note, that there can be multiple roads between two cities. Also, there can be multiple routes going to the same city from the capital.
Output a single integer representing the maximum number of the train routes which can be closed.
[ "5 5 3\n1 2 1\n2 3 2\n1 3 3\n3 4 4\n1 5 5\n3 5\n4 5\n5 5\n", "2 2 3\n1 2 2\n2 1 3\n2 1\n2 2\n2 3\n" ]
[ "2\n", "2\n" ]
none
1,000
[ { "input": "5 5 3\n1 2 1\n2 3 2\n1 3 3\n3 4 4\n1 5 5\n3 5\n4 5\n5 5", "output": "2" }, { "input": "2 2 3\n1 2 2\n2 1 3\n2 1\n2 2\n2 3", "output": "2" }, { "input": "5 4 3\n1 2 999999999\n2 3 1000000000\n3 4 529529529\n5 1 524524524\n5 524444444\n5 529999999\n2 1000000000", "output": "2" }, { "input": "3 2 5\n1 2 2\n2 3 4\n3 5\n3 5\n3 5\n3 6\n3 7", "output": "4" }, { "input": "5 5 3\n1 2 999999999\n2 3 1000000000\n3 4 529529529\n5 1 524524524\n5 3 1000000000\n5 524444444\n5 529999999\n2 1000000000", "output": "2" }, { "input": "2 1 5\n1 2 4\n2 3\n2 5\n2 4\n2 4\n2 5", "output": "4" }, { "input": "3 3 6\n1 2 499999999\n2 3 500000000\n1 3 999999999\n2 499999999\n2 500000000\n2 499999999\n3 999999999\n3 1000000000\n3 1000000000", "output": "6" }, { "input": "2 1 1\n1 2 1\n2 1000000000", "output": "1" }, { "input": "3 2 2\n1 2 4\n2 3 4\n2 2\n3 6", "output": "1" }, { "input": "5 5 2\n1 2 100\n2 3 100\n3 4 100\n4 5 20\n2 5 5\n5 50\n4 1", "output": "1" }, { "input": "3 2 2\n1 2 100\n2 3 1\n2 1\n3 3", "output": "1" } ]
1,667,208,985
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
3
2,000
56,729,600
from collections import deque n, m, k = map(int, input().split()) graph = [[] for _ in range(n)] for i in range(m): u, v, cost = map(int, input().split()) graph[u-1].append([v-1, cost]) graph[v-1].append([u-1, cost]) visited = set() queue = deque([[0,0]]) min_cost = [float('inf') for i in range(n)] min_cost[0] = 0 while queue: u, cost_u = queue.popleft() visited.add(u) for v, cost_v in graph[u]: min_cost[v] = min(min_cost[v], cost_u + cost_v) if v not in visited: queue.append([v, cost_u + cost_v]) unnecessary = 0 for i in range(k): v, cost_v = map(int, input().split()) if min_cost[v-1] <= cost_v: unnecessary += 1 print(unnecessary)
Title: Jzzhu and Cities Time Limit: None seconds Memory Limit: None megabytes Problem Description: Jzzhu is the president of country A. There are *n* cities numbered from 1 to *n* in his country. City 1 is the capital of A. Also there are *m* roads connecting the cities. One can go from city *u**i* to *v**i* (and vise versa) using the *i*-th road, the length of this road is *x**i*. Finally, there are *k* train routes in the country. One can use the *i*-th train route to go from capital of the country to city *s**i* (and vise versa), the length of this route is *y**i*. Jzzhu doesn't want to waste the money of the country, so he is going to close some of the train routes. Please tell Jzzhu the maximum number of the train routes which can be closed under the following condition: the length of the shortest path from every city to the capital mustn't change. Input Specification: The first line contains three integers *n*,<=*m*,<=*k* (2<=≤<=*n*<=≤<=105; 1<=≤<=*m*<=≤<=3·105; 1<=≤<=*k*<=≤<=105). Each of the next *m* lines contains three integers *u**i*,<=*v**i*,<=*x**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*; *u**i*<=≠<=*v**i*; 1<=≤<=*x**i*<=≤<=109). Each of the next *k* lines contains two integers *s**i* and *y**i* (2<=≤<=*s**i*<=≤<=*n*; 1<=≤<=*y**i*<=≤<=109). It is guaranteed that there is at least one way from every city to the capital. Note, that there can be multiple roads between two cities. Also, there can be multiple routes going to the same city from the capital. Output Specification: Output a single integer representing the maximum number of the train routes which can be closed. Demo Input: ['5 5 3\n1 2 1\n2 3 2\n1 3 3\n3 4 4\n1 5 5\n3 5\n4 5\n5 5\n', '2 2 3\n1 2 2\n2 1 3\n2 1\n2 2\n2 3\n'] Demo Output: ['2\n', '2\n'] Note: none
```python from collections import deque n, m, k = map(int, input().split()) graph = [[] for _ in range(n)] for i in range(m): u, v, cost = map(int, input().split()) graph[u-1].append([v-1, cost]) graph[v-1].append([u-1, cost]) visited = set() queue = deque([[0,0]]) min_cost = [float('inf') for i in range(n)] min_cost[0] = 0 while queue: u, cost_u = queue.popleft() visited.add(u) for v, cost_v in graph[u]: min_cost[v] = min(min_cost[v], cost_u + cost_v) if v not in visited: queue.append([v, cost_u + cost_v]) unnecessary = 0 for i in range(k): v, cost_v = map(int, input().split()) if min_cost[v-1] <= cost_v: unnecessary += 1 print(unnecessary) ```
0
424
A
Squats
PROGRAMMING
900
[ "implementation" ]
null
null
Pasha has many hamsters and he makes them work out. Today, *n* hamsters (*n* is even) came to work out. The hamsters lined up and each hamster either sat down or stood up. For another exercise, Pasha needs exactly hamsters to stand up and the other hamsters to sit down. In one minute, Pasha can make some hamster ether sit down or stand up. How many minutes will he need to get what he wants if he acts optimally well?
The first line contains integer *n* (2<=≤<=*n*<=≤<=200; *n* is even). The next line contains *n* characters without spaces. These characters describe the hamsters' position: the *i*-th character equals 'X', if the *i*-th hamster in the row is standing, and 'x', if he is sitting.
In the first line, print a single integer — the minimum required number of minutes. In the second line, print a string that describes the hamsters' position after Pasha makes the required changes. If there are multiple optimal positions, print any of them.
[ "4\nxxXx\n", "2\nXX\n", "6\nxXXxXx\n" ]
[ "1\nXxXx\n", "1\nxX\n", "0\nxXXxXx\n" ]
none
500
[ { "input": "4\nxxXx", "output": "1\nXxXx" }, { "input": "2\nXX", "output": "1\nxX" }, { "input": "6\nxXXxXx", "output": "0\nxXXxXx" }, { "input": "4\nxXXX", "output": "1\nxxXX" }, { "input": "2\nXx", "output": "0\nXx" }, { "input": "22\nXXxXXxxXxXxXXXXXXXXXxx", "output": "4\nxxxxxxxXxXxXXXXXXXXXxx" }, { "input": "30\nXXxXxxXXXXxxXXxxXXxxxxXxxXXXxx", "output": "0\nXXxXxxXXXXxxXXxxXXxxxxXxxXXXxx" }, { "input": "104\nxxXxXxxXXXxxXxXxxXXXxxxXxxXXXxxXXXxXxXxXXxxXxxxxxXXXXxXXXXxXXXxxxXxxxxxxxXxxXxXXxxXXXXxXXXxxXXXXXXXXXxXX", "output": "4\nxxxxxxxxxXxxXxXxxXXXxxxXxxXXXxxXXXxXxXxXXxxXxxxxxXXXXxXXXXxXXXxxxXxxxxxxxXxxXxXXxxXXXXxXXXxxXXXXXXXXXxXX" }, { "input": "78\nxxxXxxXxXxxXxxxxxXxXXXxXXXXxxxxxXxXXXxxXxXXXxxxxXxxXXXxxxxxxxxXXXXxXxXXxXXXxXX", "output": "3\nXXXXxxXxXxxXxxxxxXxXXXxXXXXxxxxxXxXXXxxXxXXXxxxxXxxXXXxxxxxxxxXXXXxXxXXxXXXxXX" }, { "input": "200\nxxXXxxXXxXxxXxxXxXxxXxXxXxXxxxxxXXxXXxxXXXXxXXXxXXxXxXxxxxXxxXXXxxxXxXxxxXxxXXxXxXxxxxxxxXxxXxXxxXxXXXxxXxXXXXxxXxxxXxXXXXXXxXxXXxxxxXxxxXxxxXxXXXxXxXXXXxXXxxxXxXXxxXXxxxXxXxXXxXXXxXxXxxxXXxxxxXXxXXXX", "output": "4\nXXXXXXXXxXxxXxxXxXxxXxXxXxXxxxxxXXxXXxxXXXXxXXXxXXxXxXxxxxXxxXXXxxxXxXxxxXxxXXxXxXxxxxxxxXxxXxXxxXxXXXxxXxXXXXxxXxxxXxXXXXXXxXxXXxxxxXxxxXxxxXxXXXxXxXXXXxXXxxxXxXXxxXXxxxXxXxXXxXXXxXxXxxxXXxxxxXXxXXXX" }, { "input": "198\nxXxxXxxXxxXXxXxXxXxxXXXxxXxxxxXXXXxxXxxxxXXXXxXxXXxxxXXXXXXXxXXXxxxxXXxXXxXxXXxxxxXxXXXXXXxXxxXxXxxxXxXXXXxxXXxxXxxxXXxXxXXxXxXXxXXXXxxxxxXxXXxxxXxXXXXxXxXXxxXxXXxXxXXxxxXxXXXXxXxxXxXXXxxxxXxXXXXxXx", "output": "5\nxxxxxxxxxxxxxXxXxXxxXXXxxXxxxxXXXXxxXxxxxXXXXxXxXXxxxXXXXXXXxXXXxxxxXXxXXxXxXXxxxxXxXXXXXXxXxxXxXxxxXxXXXXxxXXxxXxxxXXxXxXXxXxXXxXXXXxxxxxXxXXxxxXxXXXXxXxXXxxXxXXxXxXXxxxXxXXXXxXxxXxXXXxxxxXxXXXXxXx" }, { "input": "200\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", "output": "100\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" }, { "input": "198\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", "output": "99\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" }, { "input": "200\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "output": "100\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" }, { "input": "198\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "output": "99\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" }, { "input": "2\nxx", "output": "1\nXx" }, { "input": "2\nXx", "output": "0\nXx" }, { "input": "2\nxX", "output": "0\nxX" }, { "input": "4\nXXXX", "output": "2\nxxXX" }, { "input": "4\nxxxx", "output": "2\nXXxx" }, { "input": "4\nxxXX", "output": "0\nxxXX" }, { "input": "4\nXXxx", "output": "0\nXXxx" }, { "input": "4\nxXxx", "output": "1\nXXxx" }, { "input": "4\nXxxx", "output": "1\nXXxx" }, { "input": "4\nxxxX", "output": "1\nXxxX" }, { "input": "4\nxxXx", "output": "1\nXxXx" }, { "input": "4\nXXXx", "output": "1\nxXXx" }, { "input": "4\nxXXX", "output": "1\nxxXX" }, { "input": "4\nXxXX", "output": "1\nxxXX" }, { "input": "4\nXXxX", "output": "1\nxXxX" }, { "input": "4\nXxXx", "output": "0\nXxXx" }, { "input": "6\nxXXxXX", "output": "1\nxxXxXX" } ]
1,531,066,397
2,147,483,647
Python 3
OK
TESTS
32
109
0
n=int(input()) a=list(input()) z=a.count('X') p=n//2 print(abs(p-z)) if z>p: t=0 for i in range(n): if t<abs(p-z): if a[i]=='X': a[i]='x' t+=1 else: break for i in range(n): print(a[i],end='') elif z==p: for i in range(n): print(a[i],end='') else: t=0 for i in range(n): if t<abs(p-z): if a[i]=='x': a[i]='X' t+=1 else: break for i in range(n): print(a[i],end='')
Title: Squats Time Limit: None seconds Memory Limit: None megabytes Problem Description: Pasha has many hamsters and he makes them work out. Today, *n* hamsters (*n* is even) came to work out. The hamsters lined up and each hamster either sat down or stood up. For another exercise, Pasha needs exactly hamsters to stand up and the other hamsters to sit down. In one minute, Pasha can make some hamster ether sit down or stand up. How many minutes will he need to get what he wants if he acts optimally well? Input Specification: The first line contains integer *n* (2<=≤<=*n*<=≤<=200; *n* is even). The next line contains *n* characters without spaces. These characters describe the hamsters' position: the *i*-th character equals 'X', if the *i*-th hamster in the row is standing, and 'x', if he is sitting. Output Specification: In the first line, print a single integer — the minimum required number of minutes. In the second line, print a string that describes the hamsters' position after Pasha makes the required changes. If there are multiple optimal positions, print any of them. Demo Input: ['4\nxxXx\n', '2\nXX\n', '6\nxXXxXx\n'] Demo Output: ['1\nXxXx\n', '1\nxX\n', '0\nxXXxXx\n'] Note: none
```python n=int(input()) a=list(input()) z=a.count('X') p=n//2 print(abs(p-z)) if z>p: t=0 for i in range(n): if t<abs(p-z): if a[i]=='X': a[i]='x' t+=1 else: break for i in range(n): print(a[i],end='') elif z==p: for i in range(n): print(a[i],end='') else: t=0 for i in range(n): if t<abs(p-z): if a[i]=='x': a[i]='X' t+=1 else: break for i in range(n): print(a[i],end='') ```
3
63
A
Sinking Ship
PROGRAMMING
900
[ "implementation", "sortings", "strings" ]
A. Sinking Ship
2
256
The ship crashed into a reef and is sinking. Now the entire crew must be evacuated. All *n* crew members have already lined up in a row (for convenience let's label them all from left to right with positive integers from 1 to *n*) and await further instructions. However, one should evacuate the crew properly, in a strict order. Specifically: The first crew members to leave the ship are rats. Then women and children (both groups have the same priority) leave the ship. After that all men are evacuated from the ship. The captain leaves the sinking ship last. If we cannot determine exactly who should leave the ship first for any two members of the crew by the rules from the previous paragraph, then the one who stands to the left in the line leaves the ship first (or in other words, the one whose number in the line is less). For each crew member we know his status as a crew member, and also his name. All crew members have different names. Determine the order in which to evacuate the crew.
The first line contains an integer *n*, which is the number of people in the crew (1<=≤<=*n*<=≤<=100). Then follow *n* lines. The *i*-th of those lines contains two words — the name of the crew member who is *i*-th in line, and his status on the ship. The words are separated by exactly one space. There are no other spaces in the line. The names consist of Latin letters, the first letter is uppercase, the rest are lowercase. The length of any name is from 1 to 10 characters. The status can have the following values: rat for a rat, woman for a woman, child for a child, man for a man, captain for the captain. The crew contains exactly one captain.
Print *n* lines. The *i*-th of them should contain the name of the crew member who must be the *i*-th one to leave the ship.
[ "6\nJack captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman\n" ]
[ "Teddy\nAlice\nBob\nJulia\nCharlie\nJack\n" ]
none
500
[ { "input": "6\nJack captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman", "output": "Teddy\nAlice\nBob\nJulia\nCharlie\nJack" }, { "input": "1\nA captain", "output": "A" }, { "input": "1\nAbcdefjhij captain", "output": "Abcdefjhij" }, { "input": "5\nA captain\nB man\nD woman\nC child\nE rat", "output": "E\nD\nC\nB\nA" }, { "input": "10\nCap captain\nD child\nC woman\nA woman\nE child\nMan man\nB child\nF woman\nRat rat\nRatt rat", "output": "Rat\nRatt\nD\nC\nA\nE\nB\nF\nMan\nCap" }, { "input": "5\nJoyxnkypf captain\nDxssgr woman\nKeojmnpd rat\nGdv man\nHnw man", "output": "Keojmnpd\nDxssgr\nGdv\nHnw\nJoyxnkypf" }, { "input": "11\nJue rat\nWyglbyphk rat\nGjlgu child\nGi man\nAttx rat\nTheorpkgx man\nYm rat\nX child\nB captain\nEnualf rat\nKktsgyuyv woman", "output": "Jue\nWyglbyphk\nAttx\nYm\nEnualf\nGjlgu\nX\nKktsgyuyv\nGi\nTheorpkgx\nB" }, { "input": "22\nWswwcvvm woman\nBtmfats rat\nI rat\nOcmtsnwx man\nUrcqv rat\nYghnogt woman\nWtyfc man\nWqle child\nUjfrelpu rat\nDstixj man\nAhksnio woman\nKhkvaap woman\nSjppvwm rat\nEgdmsv rat\nDank rat\nNquicjnw rat\nLh captain\nTdyaqaqln rat\nQtj rat\nTfgwijvq rat\nNbiso child\nNqthvbf woman", "output": "Btmfats\nI\nUrcqv\nUjfrelpu\nSjppvwm\nEgdmsv\nDank\nNquicjnw\nTdyaqaqln\nQtj\nTfgwijvq\nWswwcvvm\nYghnogt\nWqle\nAhksnio\nKhkvaap\nNbiso\nNqthvbf\nOcmtsnwx\nWtyfc\nDstixj\nLh" }, { "input": "36\nKqxmtwmsf child\nIze woman\nDlpr child\nK woman\nF captain\nRjwfeuhba rat\nBbv rat\nS rat\nMnmg woman\nSmzyx woman\nSr man\nQmhroracn rat\nSoqpuqock rat\nPibdq man\nIlrkrptx rat\nZaecfyqka man\nMmersfs child\nVvvocqi man\nHjeqxvq rat\nMpmb woman\nWmgu woman\nCerelmhoxi child\nA man\nDylv man\nXrdgmmtcpq woman\nXj woman\nCeh child\nOfccguo man\nNevr man\nAknkwdkq child\nBmo man\nLqo woman\nVej child\nT child\nRlijc man\nNsdtpdg woman", "output": "Rjwfeuhba\nBbv\nS\nQmhroracn\nSoqpuqock\nIlrkrptx\nHjeqxvq\nKqxmtwmsf\nIze\nDlpr\nK\nMnmg\nSmzyx\nMmersfs\nMpmb\nWmgu\nCerelmhoxi\nXrdgmmtcpq\nXj\nCeh\nAknkwdkq\nLqo\nVej\nT\nNsdtpdg\nSr\nPibdq\nZaecfyqka\nVvvocqi\nA\nDylv\nOfccguo\nNevr\nBmo\nRlijc\nF" }, { "input": "2\nA captain\nB man", "output": "B\nA" }, { "input": "2\nB woman\nA captain", "output": "B\nA" }, { "input": "2\nX child\nY captain", "output": "X\nY" }, { "input": "2\nX captain\nY rat", "output": "Y\nX" }, { "input": "6\nAbdelrhman captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman", "output": "Teddy\nAlice\nBob\nJulia\nCharlie\nAbdelrhman" }, { "input": "4\nAratos captain\nMind child\nAman woman\nCarrot man", "output": "Mind\nAman\nCarrot\nAratos" } ]
1,619,387,518
2,147,483,647
Python 3
OK
TESTS
26
154
204,800
n = int(input()) crew = [] for _ in range(n): crew.append(input()) for member in crew: member = member.split(' ') if member[1] == "rat": print(member[0]) for member in crew: member = member.split(' ') if member[1] == "woman" or member[1] == "child": print(member[0]) for member in crew: member = member.split(' ') if member[1] == "man": print(member[0]) for member in crew: member = member.split(' ') if member[1] == "captain": print(member[0])
Title: Sinking Ship Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The ship crashed into a reef and is sinking. Now the entire crew must be evacuated. All *n* crew members have already lined up in a row (for convenience let's label them all from left to right with positive integers from 1 to *n*) and await further instructions. However, one should evacuate the crew properly, in a strict order. Specifically: The first crew members to leave the ship are rats. Then women and children (both groups have the same priority) leave the ship. After that all men are evacuated from the ship. The captain leaves the sinking ship last. If we cannot determine exactly who should leave the ship first for any two members of the crew by the rules from the previous paragraph, then the one who stands to the left in the line leaves the ship first (or in other words, the one whose number in the line is less). For each crew member we know his status as a crew member, and also his name. All crew members have different names. Determine the order in which to evacuate the crew. Input Specification: The first line contains an integer *n*, which is the number of people in the crew (1<=≤<=*n*<=≤<=100). Then follow *n* lines. The *i*-th of those lines contains two words — the name of the crew member who is *i*-th in line, and his status on the ship. The words are separated by exactly one space. There are no other spaces in the line. The names consist of Latin letters, the first letter is uppercase, the rest are lowercase. The length of any name is from 1 to 10 characters. The status can have the following values: rat for a rat, woman for a woman, child for a child, man for a man, captain for the captain. The crew contains exactly one captain. Output Specification: Print *n* lines. The *i*-th of them should contain the name of the crew member who must be the *i*-th one to leave the ship. Demo Input: ['6\nJack captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman\n'] Demo Output: ['Teddy\nAlice\nBob\nJulia\nCharlie\nJack\n'] Note: none
```python n = int(input()) crew = [] for _ in range(n): crew.append(input()) for member in crew: member = member.split(' ') if member[1] == "rat": print(member[0]) for member in crew: member = member.split(' ') if member[1] == "woman" or member[1] == "child": print(member[0]) for member in crew: member = member.split(' ') if member[1] == "man": print(member[0]) for member in crew: member = member.split(' ') if member[1] == "captain": print(member[0]) ```
3.961119
818
C
Sofa Thief
PROGRAMMING
2,000
[ "brute force", "implementation" ]
null
null
Yet another round on DecoForces is coming! Grandpa Maks wanted to participate in it but someone has stolen his precious sofa! And how can one perform well with such a major loss? Fortunately, the thief had left a note for Grandpa Maks. This note got Maks to the sofa storehouse. Still he had no idea which sofa belongs to him as they all looked the same! The storehouse is represented as matrix *n*<=×<=*m*. Every sofa takes two neighbouring by some side cells. No cell is covered by more than one sofa. There can be empty cells. Sofa *A* is standing to the left of sofa *B* if there exist two such cells *a* and *b* that *x**a*<=&lt;<=*x**b*, *a* is covered by *A* and *b* is covered by *B*. Sofa *A* is standing to the top of sofa *B* if there exist two such cells *a* and *b* that *y**a*<=&lt;<=*y**b*, *a* is covered by *A* and *b* is covered by *B*. Right and bottom conditions are declared the same way. Note that in all conditions *A*<=≠<=*B*. Also some sofa *A* can be both to the top of another sofa *B* and to the bottom of it. The same is for left and right conditions. The note also stated that there are *cnt**l* sofas to the left of Grandpa Maks's sofa, *cnt**r* — to the right, *cnt**t* — to the top and *cnt**b* — to the bottom. Grandpa Maks asks you to help him to identify his sofa. It is guaranteed that there is no more than one sofa of given conditions. Output the number of Grandpa Maks's sofa. If there is no such sofa that all the conditions are met for it then output -1.
The first line contains one integer number *d* (1<=≤<=*d*<=≤<=105) — the number of sofas in the storehouse. The second line contains two integer numbers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=105) — the size of the storehouse. Next *d* lines contains four integer numbers *x*1, *y*1, *x*2, *y*2 (1<=≤<=*x*1,<=*x*2<=≤<=*n*, 1<=≤<=*y*1,<=*y*2<=≤<=*m*) — coordinates of the *i*-th sofa. It is guaranteed that cells (*x*1,<=*y*1) and (*x*2,<=*y*2) have common side, (*x*1,<=*y*1) <=≠<= (*x*2,<=*y*2) and no cell is covered by more than one sofa. The last line contains four integer numbers *cnt**l*, *cnt**r*, *cnt**t*, *cnt**b* (0<=≤<=*cnt**l*,<=*cnt**r*,<=*cnt**t*,<=*cnt**b*<=≤<=*d*<=-<=1).
Print the number of the sofa for which all the conditions are met. Sofas are numbered 1 through *d* as given in input. If there is no such sofa then print -1.
[ "2\n3 2\n3 1 3 2\n1 2 2 2\n1 0 0 1\n", "3\n10 10\n1 2 1 1\n5 5 6 5\n6 4 5 4\n2 1 2 0\n", "2\n2 2\n2 1 1 1\n1 2 2 2\n1 0 0 0\n" ]
[ "1\n", "2\n", "-1\n" ]
Let's consider the second example. - The first sofa has 0 to its left, 2 sofas to its right ((1, 1) is to the left of both (5, 5) and (5, 4)), 0 to its top and 2 to its bottom (both 2nd and 3rd sofas are below). - The second sofa has *cnt*<sub class="lower-index">*l*</sub> = 2, *cnt*<sub class="lower-index">*r*</sub> = 1, *cnt*<sub class="lower-index">*t*</sub> = 2 and *cnt*<sub class="lower-index">*b*</sub> = 0. - The third sofa has *cnt*<sub class="lower-index">*l*</sub> = 2, *cnt*<sub class="lower-index">*r*</sub> = 1, *cnt*<sub class="lower-index">*t*</sub> = 1 and *cnt*<sub class="lower-index">*b*</sub> = 1. So the second one corresponds to the given conditions. In the third example - The first sofa has *cnt*<sub class="lower-index">*l*</sub> = 1, *cnt*<sub class="lower-index">*r*</sub> = 1, *cnt*<sub class="lower-index">*t*</sub> = 0 and *cnt*<sub class="lower-index">*b*</sub> = 1. - The second sofa has *cnt*<sub class="lower-index">*l*</sub> = 1, *cnt*<sub class="lower-index">*r*</sub> = 1, *cnt*<sub class="lower-index">*t*</sub> = 1 and *cnt*<sub class="lower-index">*b*</sub> = 0. And there is no sofa with the set (1, 0, 0, 0) so the answer is -1.
0
[ { "input": "2\n3 2\n3 1 3 2\n1 2 2 2\n1 0 0 1", "output": "1" }, { "input": "3\n10 10\n1 2 1 1\n5 5 6 5\n6 4 5 4\n2 1 2 0", "output": "2" }, { "input": "2\n2 2\n2 1 1 1\n1 2 2 2\n1 0 0 0", "output": "-1" }, { "input": "1\n1 2\n1 1 1 2\n0 0 0 0", "output": "1" }, { "input": "1\n2 1\n2 1 1 1\n0 0 0 0", "output": "1" }, { "input": "1\n1000 1000\n63 902 63 901\n0 0 0 0", "output": "1" }, { "input": "6\n10 10\n3 6 3 7\n4 9 5 9\n5 4 5 3\n7 1 8 1\n9 10 8 10\n7 7 7 8\n0 5 2 3", "output": "1" }, { "input": "2\n4 4\n3 1 3 2\n2 2 2 1\n0 0 0 0", "output": "-1" }, { "input": "2\n2 2\n1 1 1 2\n2 1 2 2\n0 1 1 1", "output": "1" }, { "input": "2\n2 2\n1 1 1 2\n2 1 2 2\n1 0 1 1", "output": "2" }, { "input": "2\n2 2\n1 1 1 2\n2 1 2 2\n0 1 1 0", "output": "-1" }, { "input": "1\n1 2\n1 2 1 1\n0 0 0 0", "output": "1" }, { "input": "1\n1 3\n1 2 1 3\n0 0 0 0", "output": "1" }, { "input": "1\n1 4\n1 2 1 1\n0 0 0 0", "output": "1" }, { "input": "1\n1 5\n1 4 1 3\n0 0 0 0", "output": "1" }, { "input": "1\n1 6\n1 6 1 5\n0 0 0 0", "output": "1" }, { "input": "1\n1 7\n1 6 1 7\n0 0 0 0", "output": "1" }, { "input": "1\n2 1\n2 1 1 1\n0 0 0 0", "output": "1" }, { "input": "1\n2 2\n2 2 2 1\n0 0 0 0", "output": "1" }, { "input": "1\n2 3\n1 2 1 1\n0 0 0 0", "output": "1" }, { "input": "1\n2 4\n2 3 2 4\n0 0 0 0", "output": "1" }, { "input": "1\n2 5\n2 4 1 4\n0 0 0 0", "output": "1" }, { "input": "1\n2 6\n2 1 1 1\n0 0 0 0", "output": "1" }, { "input": "1\n2 7\n2 7 2 6\n0 0 0 0", "output": "1" }, { "input": "1\n3 1\n2 1 3 1\n0 0 0 0", "output": "1" }, { "input": "1\n3 2\n1 1 2 1\n0 0 0 0", "output": "1" }, { "input": "1\n3 3\n3 2 3 3\n0 0 0 0", "output": "1" }, { "input": "1\n3 4\n2 1 2 2\n0 0 0 0", "output": "1" }, { "input": "1\n3 5\n2 2 2 1\n0 0 0 0", "output": "1" }, { "input": "1\n3 6\n1 4 2 4\n0 0 0 0", "output": "1" }, { "input": "1\n3 7\n2 2 1 2\n0 0 0 0", "output": "1" }, { "input": "1\n4 1\n1 1 2 1\n0 0 0 0", "output": "1" }, { "input": "1\n4 2\n1 1 1 2\n0 0 0 0", "output": "1" }, { "input": "1\n4 3\n4 3 4 2\n0 0 0 0", "output": "1" }, { "input": "1\n4 4\n3 2 3 3\n0 0 0 0", "output": "1" }, { "input": "1\n4 5\n1 2 2 2\n0 0 0 0", "output": "1" }, { "input": "1\n4 6\n4 3 4 4\n0 0 0 0", "output": "1" }, { "input": "1\n4 7\n3 6 4 6\n0 0 0 0", "output": "1" }, { "input": "1\n5 1\n2 1 1 1\n0 0 0 0", "output": "1" }, { "input": "1\n5 2\n5 1 4 1\n0 0 0 0", "output": "1" }, { "input": "1\n5 3\n4 2 3 2\n0 0 0 0", "output": "1" }, { "input": "1\n5 4\n2 4 3 4\n0 0 0 0", "output": "1" }, { "input": "1\n5 5\n4 1 3 1\n0 0 0 0", "output": "1" }, { "input": "1\n5 6\n3 3 3 2\n0 0 0 0", "output": "1" }, { "input": "1\n5 7\n1 6 1 7\n0 0 0 0", "output": "1" }, { "input": "1\n6 1\n6 1 5 1\n0 0 0 0", "output": "1" }, { "input": "1\n6 2\n4 2 5 2\n0 0 0 0", "output": "1" }, { "input": "1\n6 3\n1 2 1 1\n0 0 0 0", "output": "1" }, { "input": "1\n6 4\n2 2 3 2\n0 0 0 0", "output": "1" }, { "input": "1\n6 5\n6 1 6 2\n0 0 0 0", "output": "1" }, { "input": "1\n6 6\n4 1 3 1\n0 0 0 0", "output": "1" }, { "input": "1\n6 7\n6 7 6 6\n0 0 0 0", "output": "1" }, { "input": "1\n7 1\n6 1 7 1\n0 0 0 0", "output": "1" }, { "input": "1\n7 2\n4 2 4 1\n0 0 0 0", "output": "1" }, { "input": "1\n7 3\n7 1 7 2\n0 0 0 0", "output": "1" }, { "input": "1\n7 4\n3 3 3 4\n0 0 0 0", "output": "1" }, { "input": "1\n7 5\n6 4 7 4\n0 0 0 0", "output": "1" }, { "input": "1\n7 6\n2 2 2 3\n0 0 0 0", "output": "1" }, { "input": "1\n7 7\n1 3 2 3\n0 0 0 0", "output": "1" }, { "input": "1\n1 4\n1 4 1 3\n0 0 0 0", "output": "1" }, { "input": "2\n1 5\n1 5 1 4\n1 1 1 2\n0 0 1 0", "output": "1" }, { "input": "1\n1 6\n1 2 1 3\n0 0 0 0", "output": "1" }, { "input": "2\n1 7\n1 7 1 6\n1 4 1 5\n0 0 1 0", "output": "1" }, { "input": "1\n2 2\n2 1 2 2\n0 0 0 0", "output": "1" }, { "input": "2\n2 3\n2 3 1 3\n1 2 2 2\n0 0 0 1", "output": "-1" }, { "input": "2\n2 4\n2 2 2 1\n2 4 1 4\n0 1 1 0", "output": "2" }, { "input": "2\n2 5\n2 2 2 1\n1 3 1 4\n1 0 0 1", "output": "1" }, { "input": "2\n2 6\n1 2 1 1\n2 1 2 2\n1 0 1 1", "output": "2" }, { "input": "2\n2 7\n2 4 2 5\n2 7 1 7\n0 0 1 0", "output": "-1" }, { "input": "2\n3 2\n1 2 2 2\n1 1 2 1\n0 0 1 0", "output": "-1" }, { "input": "2\n3 3\n2 1 1 1\n1 2 2 2\n0 0 0 1", "output": "-1" }, { "input": "1\n3 4\n1 3 1 4\n0 0 0 0", "output": "1" }, { "input": "2\n3 5\n1 2 1 1\n3 1 2 1\n0 1 0 0", "output": "-1" }, { "input": "2\n3 6\n3 2 3 1\n3 6 2 6\n0 0 0 1", "output": "-1" }, { "input": "2\n3 7\n3 6 3 5\n2 4 2 3\n0 1 0 1", "output": "2" }, { "input": "2\n4 1\n3 1 4 1\n1 1 2 1\n0 1 0 0", "output": "2" }, { "input": "1\n4 2\n4 1 3 1\n0 0 0 0", "output": "1" }, { "input": "2\n4 3\n3 1 2 1\n1 2 1 1\n1 0 0 1", "output": "1" }, { "input": "1\n4 4\n4 1 3 1\n0 0 0 0", "output": "1" }, { "input": "2\n4 5\n3 1 4 1\n4 2 4 3\n0 1 0 1", "output": "1" }, { "input": "2\n4 6\n2 3 2 4\n2 6 2 5\n0 0 0 1", "output": "1" }, { "input": "2\n4 7\n1 7 2 7\n4 1 3 1\n1 0 0 1", "output": "2" }, { "input": "2\n5 1\n2 1 1 1\n5 1 4 1\n1 0 0 0", "output": "2" }, { "input": "2\n5 2\n1 1 1 2\n2 2 3 2\n1 0 1 0", "output": "2" }, { "input": "2\n5 3\n1 1 1 2\n5 2 5 3\n0 1 0 1", "output": "1" }, { "input": "2\n5 4\n4 4 4 3\n4 2 5 2\n0 0 0 1", "output": "-1" }, { "input": "2\n5 5\n3 4 3 5\n4 1 3 1\n1 0 0 1", "output": "2" }, { "input": "2\n5 6\n2 4 3 4\n5 2 5 1\n0 1 1 0", "output": "1" }, { "input": "2\n5 7\n2 7 1 7\n2 4 3 4\n0 0 0 1", "output": "-1" }, { "input": "1\n6 1\n3 1 4 1\n0 0 0 0", "output": "1" }, { "input": "1\n6 2\n5 1 6 1\n0 0 0 0", "output": "1" }, { "input": "2\n6 3\n2 2 2 1\n3 2 3 1\n0 1 0 0", "output": "-1" }, { "input": "2\n6 4\n6 4 5 4\n4 3 4 2\n1 0 1 0", "output": "1" }, { "input": "2\n6 5\n2 4 2 3\n5 4 4 4\n1 0 0 0", "output": "-1" }, { "input": "2\n6 6\n6 6 5 6\n1 3 1 2\n1 0 1 0", "output": "1" }, { "input": "2\n6 7\n1 3 1 4\n5 2 5 1\n0 1 1 0", "output": "1" }, { "input": "1\n7 1\n6 1 7 1\n0 0 0 0", "output": "1" }, { "input": "2\n7 2\n5 2 4 2\n2 1 2 2\n0 1 0 1", "output": "2" }, { "input": "2\n7 3\n7 2 6 2\n1 2 2 2\n0 1 0 0", "output": "2" }, { "input": "2\n7 4\n6 1 6 2\n2 3 1 3\n1 0 0 1", "output": "1" }, { "input": "2\n7 5\n2 3 1 3\n4 3 3 3\n1 0 0 0", "output": "2" }, { "input": "2\n7 6\n5 1 6 1\n2 5 3 5\n0 1 1 0", "output": "2" }, { "input": "2\n7 7\n2 3 2 4\n5 4 5 5\n0 1 0 1", "output": "1" }, { "input": "1\n1 6\n1 4 1 5\n0 0 0 0", "output": "1" }, { "input": "1\n1 7\n1 1 1 2\n0 0 0 0", "output": "1" }, { "input": "1\n2 3\n1 1 2 1\n0 0 0 0", "output": "1" }, { "input": "3\n2 4\n1 3 1 4\n2 4 2 3\n2 2 1 2\n0 0 0 2", "output": "-1" }, { "input": "3\n2 5\n2 5 1 5\n2 3 2 2\n1 1 2 1\n0 0 1 1", "output": "-1" }, { "input": "1\n2 6\n1 3 1 2\n0 0 0 0", "output": "1" }, { "input": "3\n2 7\n2 6 2 7\n1 4 1 5\n2 2 2 3\n1 0 0 2", "output": "3" }, { "input": "1\n3 2\n3 2 2 2\n0 0 0 0", "output": "1" }, { "input": "1\n3 3\n2 3 3 3\n0 0 0 0", "output": "1" }, { "input": "2\n3 4\n3 1 3 2\n3 4 2 4\n0 1 1 0", "output": "2" }, { "input": "3\n3 5\n3 4 3 5\n3 2 3 1\n1 3 2 3\n1 0 0 2", "output": "2" }, { "input": "2\n3 6\n1 1 2 1\n1 3 2 3\n0 0 1 0", "output": "-1" }, { "input": "1\n3 7\n2 1 3 1\n0 0 0 0", "output": "1" }, { "input": "3\n4 2\n1 2 2 2\n3 1 4 1\n3 2 4 2\n0 2 1 0", "output": "1" }, { "input": "2\n4 3\n4 3 3 3\n2 2 2 1\n1 0 1 0", "output": "1" }, { "input": "3\n4 4\n2 3 2 4\n4 4 4 3\n2 2 1 2\n0 2 0 2", "output": "3" }, { "input": "3\n4 5\n2 4 1 4\n1 3 1 2\n2 1 1 1\n2 1 2 0", "output": "1" }, { "input": "2\n4 6\n3 3 4 3\n4 6 3 6\n0 0 1 0", "output": "-1" }, { "input": "3\n4 7\n2 7 3 7\n4 4 4 5\n3 4 3 3\n2 0 0 1", "output": "-1" }, { "input": "1\n5 2\n1 1 1 2\n0 0 0 0", "output": "1" }, { "input": "3\n5 3\n1 2 1 3\n5 2 5 3\n1 1 2 1\n1 1 0 2", "output": "3" }, { "input": "3\n5 4\n4 1 4 2\n1 1 1 2\n5 1 5 2\n0 2 2 2", "output": "2" }, { "input": "2\n5 5\n3 3 4 3\n5 2 4 2\n0 0 0 1", "output": "-1" }, { "input": "3\n5 6\n5 2 4 2\n1 1 1 2\n5 1 4 1\n2 1 2 0", "output": "1" }, { "input": "3\n5 7\n5 4 4 4\n1 2 1 1\n2 5 2 4\n0 2 0 2", "output": "2" }, { "input": "2\n6 1\n3 1 2 1\n4 1 5 1\n1 0 0 0", "output": "2" }, { "input": "3\n6 2\n5 2 5 1\n6 1 6 2\n3 2 2 2\n2 0 0 0", "output": "-1" }, { "input": "3\n6 3\n2 1 2 2\n6 2 6 1\n1 2 1 1\n1 1 0 0", "output": "-1" }, { "input": "3\n6 4\n1 2 2 2\n3 1 3 2\n2 3 2 4\n0 2 0 1", "output": "-1" }, { "input": "3\n6 5\n2 2 2 1\n5 4 6 4\n4 4 4 3\n2 0 1 0", "output": "-1" }, { "input": "3\n6 6\n4 4 4 5\n2 3 1 3\n3 4 3 3\n0 2 0 1", "output": "-1" }, { "input": "3\n6 7\n3 4 3 5\n5 4 6 4\n4 5 4 4\n1 1 1 0", "output": "-1" }, { "input": "3\n7 1\n4 1 5 1\n3 1 2 1\n6 1 7 1\n2 0 0 0", "output": "3" }, { "input": "3\n7 2\n7 1 7 2\n5 1 4 1\n3 1 3 2\n0 2 2 1", "output": "3" }, { "input": "3\n7 3\n2 3 3 3\n5 1 6 1\n7 2 7 1\n0 2 2 0", "output": "1" }, { "input": "3\n7 4\n5 4 6 4\n6 1 6 2\n5 1 4 1\n0 2 0 1", "output": "-1" }, { "input": "3\n7 5\n2 2 2 3\n7 1 7 2\n1 4 1 3\n2 0 0 2", "output": "2" }, { "input": "3\n7 6\n2 6 2 5\n2 2 1 2\n4 4 3 4\n0 1 0 2", "output": "-1" }, { "input": "1\n7 7\n5 4 6 4\n0 0 0 0", "output": "1" }, { "input": "1\n2 4\n1 1 1 2\n0 0 0 0", "output": "1" }, { "input": "3\n2 5\n2 4 2 5\n2 1 1 1\n2 2 1 2\n0 1 1 1", "output": "-1" }, { "input": "3\n2 6\n1 3 1 2\n2 2 2 1\n2 5 2 6\n1 0 0 1", "output": "-1" }, { "input": "1\n2 7\n2 1 1 1\n0 0 0 0", "output": "1" }, { "input": "4\n3 3\n3 1 2 1\n3 3 2 3\n1 3 1 2\n3 2 2 2\n0 3 2 1", "output": "3" }, { "input": "4\n3 4\n2 4 3 4\n3 3 3 2\n1 2 2 2\n3 1 2 1\n0 3 1 1", "output": "-1" }, { "input": "4\n3 5\n2 3 1 3\n1 5 1 4\n2 5 2 4\n2 2 1 2\n1 0 3 1", "output": "-1" }, { "input": "2\n3 6\n1 5 1 6\n3 5 3 4\n1 0 0 1", "output": "2" }, { "input": "4\n3 7\n1 2 1 1\n3 3 3 4\n2 1 3 1\n2 6 3 6\n1 1 3 0", "output": "-1" }, { "input": "3\n4 2\n2 2 3 2\n1 1 1 2\n4 2 4 1\n2 0 0 0", "output": "-1" }, { "input": "2\n4 3\n1 2 1 1\n3 1 3 2\n0 1 0 0", "output": "-1" }, { "input": "2\n4 4\n3 1 4 1\n3 4 4 4\n0 0 1 0", "output": "-1" }, { "input": "2\n4 5\n3 1 3 2\n2 1 2 2\n1 0 0 0", "output": "-1" }, { "input": "4\n4 6\n1 5 2 5\n3 4 3 5\n1 1 1 2\n4 1 4 2\n2 1 2 0", "output": "-1" }, { "input": "3\n4 7\n4 2 4 3\n1 4 1 3\n1 2 1 1\n0 1 0 2", "output": "3" }, { "input": "3\n5 2\n1 1 2 1\n3 1 4 1\n3 2 2 2\n1 1 2 0", "output": "3" }, { "input": "1\n5 3\n2 1 1 1\n0 0 0 0", "output": "1" }, { "input": "2\n5 4\n1 2 1 3\n5 4 5 3\n1 0 0 0", "output": "-1" }, { "input": "4\n5 5\n5 1 4 1\n3 3 3 4\n1 3 2 3\n2 1 2 2\n0 2 0 2", "output": "-1" }, { "input": "3\n5 6\n4 6 4 5\n1 5 1 6\n5 5 5 4\n0 2 1 0", "output": "-1" }, { "input": "3\n5 7\n1 5 1 4\n2 5 3 5\n4 4 3 4\n2 0 0 1", "output": "-1" }, { "input": "2\n6 2\n1 1 2 1\n6 1 5 1\n0 1 0 0", "output": "1" }, { "input": "2\n6 3\n3 3 4 3\n5 3 6 3\n1 0 0 0", "output": "2" }, { "input": "4\n6 4\n3 2 3 1\n4 1 5 1\n6 1 6 2\n2 2 1 2\n2 1 0 3", "output": "2" }, { "input": "3\n6 5\n5 4 5 3\n1 3 1 2\n2 1 1 1\n1 1 0 2", "output": "3" }, { "input": "3\n6 6\n1 2 2 2\n1 5 1 6\n6 6 6 5\n0 1 1 0", "output": "-1" }, { "input": "4\n6 7\n5 4 5 5\n4 4 3 4\n2 1 1 1\n6 3 6 2\n1 2 2 0", "output": "-1" }, { "input": "3\n7 2\n5 1 6 1\n2 2 3 2\n2 1 1 1\n2 0 0 1", "output": "1" }, { "input": "4\n7 3\n6 1 7 1\n3 1 4 1\n6 2 5 2\n2 1 1 1\n2 1 3 0", "output": "3" }, { "input": "4\n7 4\n4 2 3 2\n5 2 5 3\n3 4 2 4\n6 2 6 1\n3 0 0 3", "output": "4" }, { "input": "1\n7 5\n6 5 7 5\n0 0 0 0", "output": "1" }, { "input": "3\n7 6\n2 6 1 6\n2 4 2 5\n3 2 2 2\n1 0 0 2", "output": "-1" }, { "input": "4\n7 7\n4 6 5 6\n7 4 7 5\n7 1 7 2\n2 6 2 5\n1 2 2 0", "output": "-1" }, { "input": "4\n2 5\n1 3 2 3\n1 5 1 4\n1 2 2 2\n1 1 2 1\n0 0 3 0", "output": "-1" }, { "input": "2\n2 6\n2 1 2 2\n1 2 1 1\n1 0 0 0", "output": "-1" }, { "input": "4\n2 7\n1 2 2 2\n2 6 2 5\n2 3 1 3\n1 5 1 4\n0 3 2 1", "output": "4" }, { "input": "3\n3 4\n2 2 3 2\n1 2 1 3\n3 1 2 1\n1 0 0 2", "output": "-1" }, { "input": "4\n3 5\n3 1 3 2\n2 3 2 2\n2 5 1 5\n3 4 3 3\n2 0 2 1", "output": "4" }, { "input": "4\n3 6\n3 1 2 1\n1 2 2 2\n2 3 3 3\n1 5 1 4\n0 2 3 0", "output": "-1" }, { "input": "3\n3 7\n3 2 2 2\n3 5 2 5\n3 7 2 7\n0 0 1 1", "output": "-1" }, { "input": "4\n4 3\n3 2 3 3\n4 2 4 1\n1 2 1 3\n3 1 2 1\n0 3 1 0", "output": "-1" }, { "input": "4\n4 4\n2 4 1 4\n1 2 1 3\n4 3 4 4\n3 3 3 2\n0 2 0 2", "output": "-1" }, { "input": "3\n4 5\n4 5 3 5\n4 2 3 2\n2 1 3 1\n0 1 0 2", "output": "-1" }, { "input": "5\n4 6\n4 3 3 3\n4 2 4 1\n3 6 2 6\n2 4 2 3\n1 1 1 2\n1 2 2 1", "output": "-1" }, { "input": "2\n4 7\n2 6 2 7\n2 5 2 4\n0 0 1 0", "output": "1" }, { "input": "1\n5 2\n2 2 2 1\n0 0 0 0", "output": "1" }, { "input": "1\n5 3\n4 2 3 2\n0 0 0 0", "output": "1" }, { "input": "2\n5 4\n3 1 2 1\n3 4 3 3\n0 0 1 0", "output": "-1" }, { "input": "1\n5 5\n3 4 2 4\n0 0 0 0", "output": "1" }, { "input": "4\n5 6\n5 3 5 2\n4 5 3 5\n1 2 1 3\n1 1 2 1\n3 0 1 1", "output": "-1" }, { "input": "5\n5 7\n5 5 5 6\n2 4 2 5\n2 3 1 3\n4 7 3 7\n4 1 5 1\n0 3 2 2", "output": "-1" }, { "input": "2\n6 2\n5 2 5 1\n4 2 4 1\n1 0 1 1", "output": "1" }, { "input": "3\n6 3\n2 2 2 3\n3 3 4 3\n4 2 4 1\n1 1 1 0", "output": "-1" }, { "input": "4\n6 4\n2 3 1 3\n4 4 3 4\n5 4 6 4\n1 4 2 4\n0 2 1 0", "output": "-1" }, { "input": "5\n6 5\n1 5 1 4\n4 2 4 3\n2 2 1 2\n2 3 1 3\n3 2 3 3\n0 2 0 3", "output": "-1" }, { "input": "4\n6 6\n4 3 4 2\n2 3 2 4\n4 4 5 4\n5 2 5 3\n0 3 2 0", "output": "-1" }, { "input": "5\n6 7\n1 6 1 5\n3 6 2 6\n5 1 4 1\n2 5 3 5\n5 3 5 2\n3 0 0 4", "output": "-1" }, { "input": "2\n7 2\n3 1 4 1\n7 1 7 2\n0 1 0 1", "output": "1" }, { "input": "2\n7 3\n6 3 7 3\n4 1 3 1\n0 1 0 1", "output": "2" }, { "input": "5\n7 4\n3 1 2 1\n5 2 5 1\n4 2 3 2\n7 3 6 3\n4 3 5 3\n1 2 2 2", "output": "-1" }, { "input": "5\n7 5\n5 3 5 2\n3 5 2 5\n1 3 1 4\n3 3 3 4\n4 1 3 1\n1 2 4 0", "output": "-1" }, { "input": "5\n7 6\n5 5 5 4\n6 1 7 1\n5 2 5 1\n1 1 2 1\n4 6 3 6\n1 3 4 0", "output": "5" }, { "input": "3\n7 7\n2 6 1 6\n7 2 6 2\n3 1 3 2\n2 0 1 1", "output": "2" } ]
1,498,758,224
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
16
763
26,828,800
from sys import stdin, stdout k = int(stdin.readline()) n, m = map(int, stdin.readline().split()) left, right, down, up = [], [], [], [] challengers = [] for i in range(k): x1, y1, x2, y2 = map(int, stdin.readline().split()) if x1 == x2: if y1 < y2: challengers.append((x1, y1, x2, y2, i)) else: challengers.append((x2, y2, x1, y1, i)) else: if x1 < x2: challengers.append((x1, y1, x2, y2, i)) else: challengers.append((x2, y2, x1, y1, i)) left.append(challengers[-1]) right.append(challengers[-1]) up.append(challengers[-1]) down.append(challengers[-1]) left.sort(key = lambda x: (x[0], x[2])) down.sort(key = lambda x: (x[1], x[3])) challengers = [[], [], [], []] cntl, cntr, cntd, cntu = map(int, stdin.readline().split()) if cntl: for i in range(cntl, -1, -1): if (left[i][0], left[i][2]) == (left[cntl][0], left[cntl][2]): challengers[0].append(left[i][-1]) else: break for i in range(cntl + 1, k): if (left[i][0], left[i][2]) == (left[cntl][0], left[cntl][2]): challengers[0].append(left[i][-1]) else: break else: for i in range(k): if (left[i][0], left[i][2]) == (left[0][0], left[0][2]): challengers[0].append(left[i][-1]) else: break if cntr: for i in range(k - 1 - cntr, k): if (left[i][0], left[i][2]) == (left[k - 1 - cntr][0], left[k - 1 - cntr][2]): challengers[1].append(left[i][-1]) else: break for i in range(k - 2 - cntr, -1, -1): if (left[i][0], left[i][2]) == (left[k - 1 - cntr][0], left[k - 1 - cntr][2]): challengers[1].append(left[i][-1]) else: break else: for i in range(k - 1, -1, -1): if (left[i][0], left[i][2]) == (left[k - 1][0], left[k - 1][2]): challengers[1].append(left[i][-1]) else: break #!!!!!!!!!!! if cntd: for i in range(cntd, -1, -1): if (down[i][1], down[i][3]) == (down[cntd][1], down[cntd][3]): challengers[2].append(down[i][-1]) else: break for i in range(cntd + 1, k): if (down[i][1], down[i][3]) == (down[cntd][1], down[cntd][3]): challengers[2].append(down[i][-1]) else: break else: for i in range(k): if (down[i][1], down[i][3]) == (down[0][1], down[0][3]): challengers[2].append(down[i][-1]) else: break if cntu: for i in range(k - 1 - cntu, k): if (down[i][1], down[i][3]) == (down[k - 1 - cntu][1], down[k - 1 - cntu][3]): challengers[3].append(down[i][-1]) else: break for i in range(k - 2 - cntu, -1, -1): if (down[i][1], down[i][3]) == (down[k - 1 - cntu][1], down[k - 1 - cntu][3]): challengers[3].append(down[i][-1]) else: break else: for i in range(k - 1, -1, -1): if (down[i][1], down[i][3]) == (down[k - 1][1], down[k - 1][3]): challengers[3].append(down[i][-1]) else: break ans = set(challengers[0]) & set(challengers[1]) & set(challengers[2]) & set(challengers[3]) if not len(ans): stdout.write('-1') else: stdout.write(str(list(ans)[0] + 1))
Title: Sofa Thief Time Limit: None seconds Memory Limit: None megabytes Problem Description: Yet another round on DecoForces is coming! Grandpa Maks wanted to participate in it but someone has stolen his precious sofa! And how can one perform well with such a major loss? Fortunately, the thief had left a note for Grandpa Maks. This note got Maks to the sofa storehouse. Still he had no idea which sofa belongs to him as they all looked the same! The storehouse is represented as matrix *n*<=×<=*m*. Every sofa takes two neighbouring by some side cells. No cell is covered by more than one sofa. There can be empty cells. Sofa *A* is standing to the left of sofa *B* if there exist two such cells *a* and *b* that *x**a*<=&lt;<=*x**b*, *a* is covered by *A* and *b* is covered by *B*. Sofa *A* is standing to the top of sofa *B* if there exist two such cells *a* and *b* that *y**a*<=&lt;<=*y**b*, *a* is covered by *A* and *b* is covered by *B*. Right and bottom conditions are declared the same way. Note that in all conditions *A*<=≠<=*B*. Also some sofa *A* can be both to the top of another sofa *B* and to the bottom of it. The same is for left and right conditions. The note also stated that there are *cnt**l* sofas to the left of Grandpa Maks's sofa, *cnt**r* — to the right, *cnt**t* — to the top and *cnt**b* — to the bottom. Grandpa Maks asks you to help him to identify his sofa. It is guaranteed that there is no more than one sofa of given conditions. Output the number of Grandpa Maks's sofa. If there is no such sofa that all the conditions are met for it then output -1. Input Specification: The first line contains one integer number *d* (1<=≤<=*d*<=≤<=105) — the number of sofas in the storehouse. The second line contains two integer numbers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=105) — the size of the storehouse. Next *d* lines contains four integer numbers *x*1, *y*1, *x*2, *y*2 (1<=≤<=*x*1,<=*x*2<=≤<=*n*, 1<=≤<=*y*1,<=*y*2<=≤<=*m*) — coordinates of the *i*-th sofa. It is guaranteed that cells (*x*1,<=*y*1) and (*x*2,<=*y*2) have common side, (*x*1,<=*y*1) <=≠<= (*x*2,<=*y*2) and no cell is covered by more than one sofa. The last line contains four integer numbers *cnt**l*, *cnt**r*, *cnt**t*, *cnt**b* (0<=≤<=*cnt**l*,<=*cnt**r*,<=*cnt**t*,<=*cnt**b*<=≤<=*d*<=-<=1). Output Specification: Print the number of the sofa for which all the conditions are met. Sofas are numbered 1 through *d* as given in input. If there is no such sofa then print -1. Demo Input: ['2\n3 2\n3 1 3 2\n1 2 2 2\n1 0 0 1\n', '3\n10 10\n1 2 1 1\n5 5 6 5\n6 4 5 4\n2 1 2 0\n', '2\n2 2\n2 1 1 1\n1 2 2 2\n1 0 0 0\n'] Demo Output: ['1\n', '2\n', '-1\n'] Note: Let's consider the second example. - The first sofa has 0 to its left, 2 sofas to its right ((1, 1) is to the left of both (5, 5) and (5, 4)), 0 to its top and 2 to its bottom (both 2nd and 3rd sofas are below). - The second sofa has *cnt*<sub class="lower-index">*l*</sub> = 2, *cnt*<sub class="lower-index">*r*</sub> = 1, *cnt*<sub class="lower-index">*t*</sub> = 2 and *cnt*<sub class="lower-index">*b*</sub> = 0. - The third sofa has *cnt*<sub class="lower-index">*l*</sub> = 2, *cnt*<sub class="lower-index">*r*</sub> = 1, *cnt*<sub class="lower-index">*t*</sub> = 1 and *cnt*<sub class="lower-index">*b*</sub> = 1. So the second one corresponds to the given conditions. In the third example - The first sofa has *cnt*<sub class="lower-index">*l*</sub> = 1, *cnt*<sub class="lower-index">*r*</sub> = 1, *cnt*<sub class="lower-index">*t*</sub> = 0 and *cnt*<sub class="lower-index">*b*</sub> = 1. - The second sofa has *cnt*<sub class="lower-index">*l*</sub> = 1, *cnt*<sub class="lower-index">*r*</sub> = 1, *cnt*<sub class="lower-index">*t*</sub> = 1 and *cnt*<sub class="lower-index">*b*</sub> = 0. And there is no sofa with the set (1, 0, 0, 0) so the answer is -1.
```python from sys import stdin, stdout k = int(stdin.readline()) n, m = map(int, stdin.readline().split()) left, right, down, up = [], [], [], [] challengers = [] for i in range(k): x1, y1, x2, y2 = map(int, stdin.readline().split()) if x1 == x2: if y1 < y2: challengers.append((x1, y1, x2, y2, i)) else: challengers.append((x2, y2, x1, y1, i)) else: if x1 < x2: challengers.append((x1, y1, x2, y2, i)) else: challengers.append((x2, y2, x1, y1, i)) left.append(challengers[-1]) right.append(challengers[-1]) up.append(challengers[-1]) down.append(challengers[-1]) left.sort(key = lambda x: (x[0], x[2])) down.sort(key = lambda x: (x[1], x[3])) challengers = [[], [], [], []] cntl, cntr, cntd, cntu = map(int, stdin.readline().split()) if cntl: for i in range(cntl, -1, -1): if (left[i][0], left[i][2]) == (left[cntl][0], left[cntl][2]): challengers[0].append(left[i][-1]) else: break for i in range(cntl + 1, k): if (left[i][0], left[i][2]) == (left[cntl][0], left[cntl][2]): challengers[0].append(left[i][-1]) else: break else: for i in range(k): if (left[i][0], left[i][2]) == (left[0][0], left[0][2]): challengers[0].append(left[i][-1]) else: break if cntr: for i in range(k - 1 - cntr, k): if (left[i][0], left[i][2]) == (left[k - 1 - cntr][0], left[k - 1 - cntr][2]): challengers[1].append(left[i][-1]) else: break for i in range(k - 2 - cntr, -1, -1): if (left[i][0], left[i][2]) == (left[k - 1 - cntr][0], left[k - 1 - cntr][2]): challengers[1].append(left[i][-1]) else: break else: for i in range(k - 1, -1, -1): if (left[i][0], left[i][2]) == (left[k - 1][0], left[k - 1][2]): challengers[1].append(left[i][-1]) else: break #!!!!!!!!!!! if cntd: for i in range(cntd, -1, -1): if (down[i][1], down[i][3]) == (down[cntd][1], down[cntd][3]): challengers[2].append(down[i][-1]) else: break for i in range(cntd + 1, k): if (down[i][1], down[i][3]) == (down[cntd][1], down[cntd][3]): challengers[2].append(down[i][-1]) else: break else: for i in range(k): if (down[i][1], down[i][3]) == (down[0][1], down[0][3]): challengers[2].append(down[i][-1]) else: break if cntu: for i in range(k - 1 - cntu, k): if (down[i][1], down[i][3]) == (down[k - 1 - cntu][1], down[k - 1 - cntu][3]): challengers[3].append(down[i][-1]) else: break for i in range(k - 2 - cntu, -1, -1): if (down[i][1], down[i][3]) == (down[k - 1 - cntu][1], down[k - 1 - cntu][3]): challengers[3].append(down[i][-1]) else: break else: for i in range(k - 1, -1, -1): if (down[i][1], down[i][3]) == (down[k - 1][1], down[k - 1][3]): challengers[3].append(down[i][-1]) else: break ans = set(challengers[0]) & set(challengers[1]) & set(challengers[2]) & set(challengers[3]) if not len(ans): stdout.write('-1') else: stdout.write(str(list(ans)[0] + 1)) ```
0
556
A
Case of the Zeros and Ones
PROGRAMMING
900
[ "greedy" ]
null
null
Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones. Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result. Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number.
First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=2·105), the length of the string that Andreid has. The second line contains the string of length *n* consisting only from zeros and ones.
Output the minimum length of the string that may remain after applying the described operations several times.
[ "4\n1100\n", "5\n01010\n", "8\n11101111\n" ]
[ "0\n", "1\n", "6\n" ]
In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
250
[ { "input": "4\n1100", "output": "0" }, { "input": "5\n01010", "output": "1" }, { "input": "8\n11101111", "output": "6" }, { "input": "1\n0", "output": "1" }, { "input": "1\n1", "output": "1" }, { "input": "2\n00", "output": "2" }, { "input": "2\n01", "output": "0" }, { "input": "2\n10", "output": "0" }, { "input": "2\n11", "output": "2" }, { "input": "3\n001", "output": "1" }, { "input": "6\n110110", "output": "2" }, { "input": "7\n0000011", "output": "3" }, { "input": "6\n110010", "output": "0" }, { "input": "6\n110100", "output": "0" }, { "input": "3\n100", "output": "1" }, { "input": "6\n010111", "output": "2" }, { "input": "8\n01011100", "output": "0" }, { "input": "6\n001011", "output": "0" }, { "input": "7\n1110000", "output": "1" }, { "input": "9\n011111101", "output": "5" } ]
1,673,408,817
2,147,483,647
Python 3
OK
TESTS
49
62
409,600
b=input() c=input() un=c.count("1") zero=c.count("0") print(abs(zero-un))
Title: Case of the Zeros and Ones Time Limit: None seconds Memory Limit: None megabytes Problem Description: Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones. Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result. Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number. Input Specification: First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=2·105), the length of the string that Andreid has. The second line contains the string of length *n* consisting only from zeros and ones. Output Specification: Output the minimum length of the string that may remain after applying the described operations several times. Demo Input: ['4\n1100\n', '5\n01010\n', '8\n11101111\n'] Demo Output: ['0\n', '1\n', '6\n'] Note: In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
```python b=input() c=input() un=c.count("1") zero=c.count("0") print(abs(zero-un)) ```
3
172
C
Bus
PROGRAMMING
1,500
[ "*special", "implementation", "sortings" ]
null
null
There is a bus stop near the university. The lessons are over, and *n* students come to the stop. The *i*-th student will appear at the bus stop at time *t**i* (all *t**i*'s are distinct). We shall assume that the stop is located on the coordinate axis *Ox*, at point *x*<==<=0, and the bus goes along the ray *Ox*, that is, towards the positive direction of the coordinate axis, and back. The *i*-th student needs to get to the point with coordinate *x**i* (*x**i*<=&gt;<=0). The bus moves by the following algorithm. Initially it is at point 0. The students consistently come to the stop and get on it. The bus has a seating capacity which is equal to *m* passengers. At the moment when *m* students get on the bus, it starts moving in the positive direction of the coordinate axis. Also it starts moving when the last (*n*-th) student gets on the bus. The bus is moving at a speed of 1 unit of distance per 1 unit of time, i.e. it covers distance *y* in time *y*. Every time the bus passes the point at which at least one student needs to get off, it stops and these students get off the bus. The students need 1<=+<=[*k*<=/<=2] units of time to get off the bus, where *k* is the number of students who leave at this point. Expression [*k*<=/<=2] denotes rounded down *k*<=/<=2. As soon as the last student leaves the bus, the bus turns around and goes back to the point *x*<==<=0. It doesn't make any stops until it reaches the point. At the given point the bus fills with students once more, and everything is repeated. If students come to the stop when there's no bus, they form a line (queue) and get on the bus in the order in which they came. Any number of students get on the bus in negligible time, you should assume that it doesn't take any time. Any other actions also take no time. The bus has no other passengers apart from the students. Write a program that will determine for each student the time when he got off the bus. The moment a student got off the bus is the moment the bus stopped at the student's destination stop (despite the fact that the group of students need some time to get off).
The first line contains two space-separated integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=105) — the number of students and the number of passengers the bus can transport, correspondingly. Next *n* lines contain descriptions of the students, one per line. Each line contains a pair of integers *t**i*,<=*x**i* (1<=≤<=*t**i*<=≤<=105,<=1<=≤<=*x**i*<=≤<=104). The lines are given in the order of strict increasing of *t**i*. Values of *x**i* can coincide.
Print *n* numbers *w*1,<=*w*2,<=...,<=*w**n*, *w**i* — the moment of time when the *i*-th student got off the bus. Print the numbers on one line and separate them with single spaces.
[ "1 10\n3 5\n", "2 1\n3 5\n4 5\n", "5 4\n3 5\n4 5\n5 5\n6 5\n7 1\n", "20 4\n28 13\n31 13\n35 6\n36 4\n52 6\n53 4\n83 2\n84 4\n87 1\n93 6\n108 4\n113 6\n116 1\n125 2\n130 2\n136 13\n162 2\n166 4\n184 1\n192 2\n" ]
[ "8\n", "8 19\n", "11 11 11 11 20\n", "51 51 43 40 93 89 86 89 114 121 118 121 137 139 139 152 195 199 193 195\n" ]
In the first sample the bus waits for the first student for 3 units of time and drives him to his destination in additional 5 units of time. So the student leaves the bus at the moment of time 3 + 5 = 8. In the second sample the capacity of the bus equals 1, that's why it will drive the first student alone. This student is the same as the student from the first sample. So the bus arrives to his destination at the moment of time 8, spends 1 + [1 / 2] = 1 units of time on getting him off, and returns back to 0 in additional 5 units of time. That is, the bus returns to the bus stop at the moment of time 14. By this moment the second student has already came to the bus stop. So he immediately gets in the bus, and is driven to his destination in additional 5 units of time. He gets there at the moment 14 + 5 = 19. In the third sample the bus waits for the fourth student for 6 units of time, then drives for 5 units of time, then gets the passengers off for 1 + [4 / 2] = 3 units of time, then returns for 5 units of time, and then drives the fifth student for 1 unit of time.
1,500
[ { "input": "1 10\n3 5", "output": "8" }, { "input": "2 1\n3 5\n4 5", "output": "8 19" }, { "input": "5 4\n3 5\n4 5\n5 5\n6 5\n7 1", "output": "11 11 11 11 20" }, { "input": "20 4\n28 13\n31 13\n35 6\n36 4\n52 6\n53 4\n83 2\n84 4\n87 1\n93 6\n108 4\n113 6\n116 1\n125 2\n130 2\n136 13\n162 2\n166 4\n184 1\n192 2", "output": "51 51 43 40 93 89 86 89 114 121 118 121 137 139 139 152 195 199 193 195" }, { "input": "1 1\n109 15", "output": "124" }, { "input": "2 1\n43 5\n102 1", "output": "48 103" }, { "input": "4 2\n7 1\n12 14\n90 15\n176 1", "output": "13 27 192 177" }, { "input": "8 8\n48 14\n74 12\n94 4\n127 14\n151 11\n173 4\n190 14\n191 9", "output": "210 207 195 210 205 195 210 202" }, { "input": "16 1\n29 10\n48 13\n53 10\n54 5\n59 6\n67 9\n68 10\n95 13\n132 5\n148 6\n150 6\n154 6\n169 10\n171 10\n185 6\n198 6", "output": "39 63 87 103 115 131 151 175 194 206 219 232 249 270 287 300" }, { "input": "32 3\n9 2\n12 4\n13 7\n14 7\n15 4\n19 10\n20 10\n29 2\n38 7\n58 4\n59 1\n61 4\n73 4\n90 1\n92 4\n95 7\n103 4\n107 7\n119 4\n121 4\n122 10\n123 10\n127 2\n134 10\n142 7\n144 7\n151 10\n160 7\n165 10\n191 1\n197 1\n199 7", "output": "15 18 22 38 34 42 65 55 61 81 77 81 97 93 97 115 111 115 128 128 136 158 149 158 177 177 182 201 205 194 217 224" }, { "input": "32 4\n4 6\n7 5\n13 6\n27 6\n39 5\n48 5\n57 11\n62 13\n64 11\n68 11\n84 9\n86 5\n89 6\n91 6\n107 13\n108 13\n113 11\n120 13\n126 5\n130 6\n134 9\n136 6\n137 5\n139 9\n143 5\n154 9\n155 5\n157 13\n171 11\n179 11\n185 13\n190 5", "output": "34 32 34 34 67 67 75 78 105 105 102 97 124 124 133 133 161 164 153 155 189 185 183 189 205 211 205 216 242 242 246 235" }, { "input": "32 5\n12 11\n17 14\n21 2\n24 2\n35 7\n41 15\n51 11\n52 2\n53 2\n61 14\n62 14\n75 2\n89 15\n90 14\n95 7\n102 7\n104 2\n105 14\n106 14\n109 2\n133 2\n135 2\n143 14\n151 11\n155 14\n168 15\n169 15\n179 14\n180 7\n181 15\n186 7\n198 14", "output": "49 53 37 37 44 87 81 70 70 85 119 105 122 119 111 147 140 155 155 140 173 173 188 184 188 221 221 219 211 221 245 253" }, { "input": "32 6\n15 12\n24 6\n30 13\n35 6\n38 6\n46 6\n47 12\n60 6\n66 9\n71 15\n74 6\n76 15\n104 6\n105 6\n110 15\n124 12\n126 12\n129 9\n131 12\n134 15\n135 15\n141 12\n154 13\n167 9\n171 9\n179 15\n181 15\n185 12\n189 12\n191 6\n192 6\n196 12", "output": "61 52 63 52 52 52 92 83 88 96 83 96 135 135 149 144 144 140 180 186 186 180 183 176 213 222 222 217 217 209 245 252" }, { "input": "32 7\n4 14\n6 14\n17 4\n22 3\n29 4\n32 4\n39 10\n40 11\n44 11\n51 11\n57 10\n76 4\n82 4\n87 14\n88 10\n118 10\n121 10\n136 14\n141 3\n143 4\n159 10\n162 10\n163 11\n165 10\n171 4\n172 10\n175 4\n176 3\n179 10\n196 10\n197 3\n198 10", "output": "57 57 44 42 44 44 52 101 101 101 99 91 91 106 171 171 171 178 162 164 171 206 209 206 198 206 198 196 232 232 224 232" }, { "input": "32 8\n12 9\n26 8\n27 8\n29 9\n43 11\n44 9\n45 5\n48 5\n50 8\n53 8\n57 9\n69 8\n76 11\n86 1\n88 9\n103 5\n116 9\n131 8\n139 8\n142 5\n148 1\n152 8\n154 8\n167 1\n170 5\n172 5\n173 5\n181 8\n183 1\n185 1\n190 1\n200 5", "output": "61 58 58 61 65 61 53 53 113 113 116 113 120 104 116 109 182 178 178 174 168 178 178 168 207 207 207 213 201 201 201 207" } ]
1,519,094,678
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
15
1,000
12,595,200
a=input().split() n=int(a[0]) m=int(a[1]) t=[] c=[] time=int(0) time=int(time) answer="" for i in range(n): a=input().split() t.append(int(a[0])) c.append(int(a[1])) f=0 if int(n/m)-n/m!=0: f=int(n/m)+1 else: f=int(n/m) maxx=0 for j in range(f): pas=j q=(pas+1)*m if q>n: q=n c1=c[pas*m:q] t1=t[pas*m:q] ans=[0 for i in range(len(c1))] time=time+maxx if time<t1[len(t1)-1]: time=t1[len(t1)-1] c12=c1.copy() c14=c1.copy() c12.sort() maxx=c12[len(c12)-1] s=0 while(s<len(t1)): r=c12.count(c12[0]) c13=c14.copy() for i in range(r): index=c13.index(c12[0]) ans[index+i]=int(time)+int(c12[0]) c1.remove(c12[0]) c13.remove(c12[0]) c12.remove(c12[0]) time=int(time)+int(1)+int(r/2) s=s+r for i in ans: answer=answer+str(i)+" " sd=ans.copy() sd.sort() time=sd[len(sd)-1]+int(1)+int(r/2) print(answer)
Title: Bus Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a bus stop near the university. The lessons are over, and *n* students come to the stop. The *i*-th student will appear at the bus stop at time *t**i* (all *t**i*'s are distinct). We shall assume that the stop is located on the coordinate axis *Ox*, at point *x*<==<=0, and the bus goes along the ray *Ox*, that is, towards the positive direction of the coordinate axis, and back. The *i*-th student needs to get to the point with coordinate *x**i* (*x**i*<=&gt;<=0). The bus moves by the following algorithm. Initially it is at point 0. The students consistently come to the stop and get on it. The bus has a seating capacity which is equal to *m* passengers. At the moment when *m* students get on the bus, it starts moving in the positive direction of the coordinate axis. Also it starts moving when the last (*n*-th) student gets on the bus. The bus is moving at a speed of 1 unit of distance per 1 unit of time, i.e. it covers distance *y* in time *y*. Every time the bus passes the point at which at least one student needs to get off, it stops and these students get off the bus. The students need 1<=+<=[*k*<=/<=2] units of time to get off the bus, where *k* is the number of students who leave at this point. Expression [*k*<=/<=2] denotes rounded down *k*<=/<=2. As soon as the last student leaves the bus, the bus turns around and goes back to the point *x*<==<=0. It doesn't make any stops until it reaches the point. At the given point the bus fills with students once more, and everything is repeated. If students come to the stop when there's no bus, they form a line (queue) and get on the bus in the order in which they came. Any number of students get on the bus in negligible time, you should assume that it doesn't take any time. Any other actions also take no time. The bus has no other passengers apart from the students. Write a program that will determine for each student the time when he got off the bus. The moment a student got off the bus is the moment the bus stopped at the student's destination stop (despite the fact that the group of students need some time to get off). Input Specification: The first line contains two space-separated integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=105) — the number of students and the number of passengers the bus can transport, correspondingly. Next *n* lines contain descriptions of the students, one per line. Each line contains a pair of integers *t**i*,<=*x**i* (1<=≤<=*t**i*<=≤<=105,<=1<=≤<=*x**i*<=≤<=104). The lines are given in the order of strict increasing of *t**i*. Values of *x**i* can coincide. Output Specification: Print *n* numbers *w*1,<=*w*2,<=...,<=*w**n*, *w**i* — the moment of time when the *i*-th student got off the bus. Print the numbers on one line and separate them with single spaces. Demo Input: ['1 10\n3 5\n', '2 1\n3 5\n4 5\n', '5 4\n3 5\n4 5\n5 5\n6 5\n7 1\n', '20 4\n28 13\n31 13\n35 6\n36 4\n52 6\n53 4\n83 2\n84 4\n87 1\n93 6\n108 4\n113 6\n116 1\n125 2\n130 2\n136 13\n162 2\n166 4\n184 1\n192 2\n'] Demo Output: ['8\n', '8 19\n', '11 11 11 11 20\n', '51 51 43 40 93 89 86 89 114 121 118 121 137 139 139 152 195 199 193 195\n'] Note: In the first sample the bus waits for the first student for 3 units of time and drives him to his destination in additional 5 units of time. So the student leaves the bus at the moment of time 3 + 5 = 8. In the second sample the capacity of the bus equals 1, that's why it will drive the first student alone. This student is the same as the student from the first sample. So the bus arrives to his destination at the moment of time 8, spends 1 + [1 / 2] = 1 units of time on getting him off, and returns back to 0 in additional 5 units of time. That is, the bus returns to the bus stop at the moment of time 14. By this moment the second student has already came to the bus stop. So he immediately gets in the bus, and is driven to his destination in additional 5 units of time. He gets there at the moment 14 + 5 = 19. In the third sample the bus waits for the fourth student for 6 units of time, then drives for 5 units of time, then gets the passengers off for 1 + [4 / 2] = 3 units of time, then returns for 5 units of time, and then drives the fifth student for 1 unit of time.
```python a=input().split() n=int(a[0]) m=int(a[1]) t=[] c=[] time=int(0) time=int(time) answer="" for i in range(n): a=input().split() t.append(int(a[0])) c.append(int(a[1])) f=0 if int(n/m)-n/m!=0: f=int(n/m)+1 else: f=int(n/m) maxx=0 for j in range(f): pas=j q=(pas+1)*m if q>n: q=n c1=c[pas*m:q] t1=t[pas*m:q] ans=[0 for i in range(len(c1))] time=time+maxx if time<t1[len(t1)-1]: time=t1[len(t1)-1] c12=c1.copy() c14=c1.copy() c12.sort() maxx=c12[len(c12)-1] s=0 while(s<len(t1)): r=c12.count(c12[0]) c13=c14.copy() for i in range(r): index=c13.index(c12[0]) ans[index+i]=int(time)+int(c12[0]) c1.remove(c12[0]) c13.remove(c12[0]) c12.remove(c12[0]) time=int(time)+int(1)+int(r/2) s=s+r for i in ans: answer=answer+str(i)+" " sd=ans.copy() sd.sort() time=sd[len(sd)-1]+int(1)+int(r/2) print(answer) ```
0
911
A
Nearest Minimums
PROGRAMMING
1,100
[ "implementation" ]
null
null
You are given an array of *n* integer numbers *a*0,<=*a*1,<=...,<=*a**n*<=-<=1. Find the distance between two closest (nearest) minimums in it. It is guaranteed that in the array a minimum occurs at least two times.
The first line contains positive integer *n* (2<=≤<=*n*<=≤<=105) — size of the given array. The second line contains *n* integers *a*0,<=*a*1,<=...,<=*a**n*<=-<=1 (1<=≤<=*a**i*<=≤<=109) — elements of the array. It is guaranteed that in the array a minimum occurs at least two times.
Print the only number — distance between two nearest minimums in the array.
[ "2\n3 3\n", "3\n5 6 5\n", "9\n2 1 3 5 4 1 2 3 1\n" ]
[ "1\n", "2\n", "3\n" ]
none
0
[ { "input": "2\n3 3", "output": "1" }, { "input": "3\n5 6 5", "output": "2" }, { "input": "9\n2 1 3 5 4 1 2 3 1", "output": "3" }, { "input": "6\n4 6 7 8 6 4", "output": "5" }, { "input": "2\n1000000000 1000000000", "output": "1" }, { "input": "42\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1" }, { "input": "2\n10000000 10000000", "output": "1" }, { "input": "5\n100000000 100000001 100000000 100000001 100000000", "output": "2" }, { "input": "9\n4 3 4 3 4 1 3 3 1", "output": "3" }, { "input": "3\n10000000 1000000000 10000000", "output": "2" }, { "input": "12\n5 6 6 5 6 1 9 9 9 9 9 1", "output": "6" }, { "input": "5\n5 5 1 2 1", "output": "2" }, { "input": "5\n2 2 1 3 1", "output": "2" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "1" }, { "input": "3\n100000005 1000000000 100000005", "output": "2" }, { "input": "5\n1 2 2 2 1", "output": "4" }, { "input": "3\n10000 1000000 10000", "output": "2" }, { "input": "3\n999999999 999999998 999999998", "output": "1" }, { "input": "6\n2 1 1 2 3 4", "output": "1" }, { "input": "4\n1000000000 900000000 900000000 1000000000", "output": "1" }, { "input": "5\n7 7 2 7 2", "output": "2" }, { "input": "6\n10 10 1 20 20 1", "output": "3" }, { "input": "2\n999999999 999999999", "output": "1" }, { "input": "10\n100000 100000 1 2 3 4 5 6 7 1", "output": "7" }, { "input": "10\n3 3 1 2 2 1 10 10 10 10", "output": "3" }, { "input": "5\n900000000 900000001 900000000 900000001 900000001", "output": "2" }, { "input": "5\n3 3 2 5 2", "output": "2" }, { "input": "2\n100000000 100000000", "output": "1" }, { "input": "10\n10 15 10 2 54 54 54 54 2 10", "output": "5" }, { "input": "2\n999999 999999", "output": "1" }, { "input": "6\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000", "output": "1" }, { "input": "5\n1000000000 100000000 1000000000 1000000000 100000000", "output": "3" }, { "input": "4\n10 9 10 9", "output": "2" }, { "input": "5\n1 3 2 3 1", "output": "4" }, { "input": "5\n2 2 1 4 1", "output": "2" }, { "input": "6\n1 2 2 2 2 1", "output": "5" }, { "input": "7\n3 7 6 7 6 7 3", "output": "6" }, { "input": "8\n1 2 2 2 2 1 2 2", "output": "5" }, { "input": "10\n2 2 2 3 3 1 3 3 3 1", "output": "4" }, { "input": "2\n88888888 88888888", "output": "1" }, { "input": "3\n100000000 100000000 100000000", "output": "1" }, { "input": "10\n1 3 2 4 5 5 4 3 2 1", "output": "9" }, { "input": "5\n2 2 1 2 1", "output": "2" }, { "input": "6\n900000005 900000000 900000001 900000000 900000001 900000001", "output": "2" }, { "input": "5\n41 41 1 41 1", "output": "2" }, { "input": "6\n5 5 1 3 3 1", "output": "3" }, { "input": "8\n1 2 2 2 1 2 2 2", "output": "4" }, { "input": "7\n6 6 6 6 1 8 1", "output": "2" }, { "input": "3\n999999999 1000000000 999999999", "output": "2" }, { "input": "5\n5 5 4 10 4", "output": "2" }, { "input": "11\n2 2 3 4 1 5 3 4 2 5 1", "output": "6" }, { "input": "5\n3 5 4 5 3", "output": "4" }, { "input": "6\n6 6 6 6 1 1", "output": "1" }, { "input": "7\n11 1 3 2 3 1 11", "output": "4" }, { "input": "5\n3 3 1 2 1", "output": "2" }, { "input": "5\n4 4 2 5 2", "output": "2" }, { "input": "4\n10000099 10000567 10000099 10000234", "output": "2" }, { "input": "4\n100000009 100000011 100000012 100000009", "output": "3" }, { "input": "2\n1000000 1000000", "output": "1" }, { "input": "2\n10000010 10000010", "output": "1" }, { "input": "10\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000", "output": "1" }, { "input": "8\n2 6 2 8 1 9 8 1", "output": "3" }, { "input": "5\n7 7 1 8 1", "output": "2" }, { "input": "7\n1 3 2 3 2 3 1", "output": "6" }, { "input": "7\n2 3 2 1 3 4 1", "output": "3" }, { "input": "5\n1000000000 999999999 1000000000 1000000000 999999999", "output": "3" }, { "input": "4\n1000000000 1000000000 1000000000 1000000000", "output": "1" }, { "input": "5\n5 5 3 5 3", "output": "2" }, { "input": "6\n2 3 3 3 3 2", "output": "5" }, { "input": "4\n1 1 2 2", "output": "1" }, { "input": "5\n1 1 2 2 2", "output": "1" }, { "input": "6\n2 1 1 2 2 2", "output": "1" }, { "input": "5\n1000000000 1000000000 100000000 1000000000 100000000", "output": "2" }, { "input": "7\n2 2 1 1 2 2 2", "output": "1" }, { "input": "8\n2 2 2 1 1 2 2 2", "output": "1" }, { "input": "10\n2 2 2 2 2 1 1 2 2 2", "output": "1" }, { "input": "11\n2 2 2 2 2 2 1 1 2 2 2", "output": "1" }, { "input": "12\n2 2 2 2 2 2 2 1 1 2 2 2", "output": "1" }, { "input": "13\n2 2 2 2 2 2 2 2 1 1 2 2 2", "output": "1" }, { "input": "14\n2 2 2 2 2 2 2 2 2 1 1 2 2 2", "output": "1" }, { "input": "15\n2 2 2 2 2 2 2 2 2 2 1 1 2 2 2", "output": "1" }, { "input": "16\n2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2", "output": "1" }, { "input": "17\n2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2", "output": "1" }, { "input": "18\n2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2", "output": "1" }, { "input": "19\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2", "output": "1" }, { "input": "20\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2", "output": "1" }, { "input": "4\n1000000000 100000000 100000000 1000000000", "output": "1" }, { "input": "21\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2", "output": "1" }, { "input": "4\n1 2 3 1", "output": "3" }, { "input": "8\n5 5 5 5 3 5 5 3", "output": "3" }, { "input": "7\n2 3 2 1 4 4 1", "output": "3" }, { "input": "6\n3 3 1 2 4 1", "output": "3" }, { "input": "3\n2 1 1", "output": "1" }, { "input": "5\n3 3 2 8 2", "output": "2" }, { "input": "5\n1 2 1 2 2", "output": "2" }, { "input": "4\n1 2 1 2", "output": "2" }, { "input": "5\n3 1 1 3 2", "output": "1" }, { "input": "4\n1 1 2 1", "output": "1" }, { "input": "4\n2 2 1 1", "output": "1" }, { "input": "5\n1 2 2 1 2", "output": "3" }, { "input": "7\n2 1 2 1 1 2 1", "output": "1" }, { "input": "9\n200000 500000 500000 500000 200000 500000 500000 500000 500000", "output": "4" }, { "input": "3\n1 1 2", "output": "1" }, { "input": "85\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 1", "output": "84" }, { "input": "5\n1000000000 1000000000 999999999 1000000000 999999999", "output": "2" }, { "input": "5\n2 1 2 2 1", "output": "3" }, { "input": "3\n1 1 1", "output": "1" }, { "input": "4\n1 2 1 1", "output": "1" }, { "input": "6\n1 3 4 2 4 1", "output": "5" }, { "input": "9\n2 2 5 1 6 8 7 9 1", "output": "5" }, { "input": "10\n1000000000 1000000000 1000000000 999999999 1000000000 1000000000 1000000000 1000000000 1000000000 999999999", "output": "6" }, { "input": "7\n3 3 1 2 4 1 2", "output": "3" }, { "input": "7\n3 3 1 2 3 4 1", "output": "4" }, { "input": "8\n10 5 10 1 10 10 10 1", "output": "4" } ]
1,515,983,834
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
77
7,372,800
n = int(input()) a = list(map(int, input().split())) m = min(a) index = -1 dist = 0 for i in range(n): if a[i] == m: if index != -1: dist = i - index index = i print(dist)
Title: Nearest Minimums Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an array of *n* integer numbers *a*0,<=*a*1,<=...,<=*a**n*<=-<=1. Find the distance between two closest (nearest) minimums in it. It is guaranteed that in the array a minimum occurs at least two times. Input Specification: The first line contains positive integer *n* (2<=≤<=*n*<=≤<=105) — size of the given array. The second line contains *n* integers *a*0,<=*a*1,<=...,<=*a**n*<=-<=1 (1<=≤<=*a**i*<=≤<=109) — elements of the array. It is guaranteed that in the array a minimum occurs at least two times. Output Specification: Print the only number — distance between two nearest minimums in the array. Demo Input: ['2\n3 3\n', '3\n5 6 5\n', '9\n2 1 3 5 4 1 2 3 1\n'] Demo Output: ['1\n', '2\n', '3\n'] Note: none
```python n = int(input()) a = list(map(int, input().split())) m = min(a) index = -1 dist = 0 for i in range(n): if a[i] == m: if index != -1: dist = i - index index = i print(dist) ```
0
192
A
Funky Numbers
PROGRAMMING
1,300
[ "binary search", "brute force", "implementation" ]
null
null
As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where *k* is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers. A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number *n*, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)!
The first input line contains an integer *n* (1<=≤<=*n*<=≤<=109).
Print "YES" (without the quotes), if *n* can be represented as a sum of two triangular numbers, otherwise print "NO" (without the quotes).
[ "256\n", "512\n" ]
[ "YES\n", "NO\n" ]
In the first sample number <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/92095692c6ea93e9e3b837a0408ba7543549d5b2.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample number 512 can not be represented as a sum of two triangular numbers.
500
[ { "input": "256", "output": "YES" }, { "input": "512", "output": "NO" }, { "input": "80", "output": "NO" }, { "input": "828", "output": "YES" }, { "input": "6035", "output": "NO" }, { "input": "39210", "output": "YES" }, { "input": "79712", "output": "NO" }, { "input": "190492", "output": "YES" }, { "input": "5722367", "output": "NO" }, { "input": "816761542", "output": "YES" }, { "input": "1", "output": "NO" }, { "input": "2", "output": "YES" }, { "input": "3", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "5", "output": "NO" }, { "input": "6", "output": "YES" }, { "input": "7", "output": "YES" }, { "input": "8", "output": "NO" }, { "input": "9", "output": "YES" }, { "input": "10", "output": "NO" }, { "input": "12", "output": "YES" }, { "input": "13", "output": "YES" }, { "input": "14", "output": "NO" }, { "input": "15", "output": "NO" }, { "input": "16", "output": "YES" }, { "input": "17", "output": "NO" }, { "input": "18", "output": "YES" }, { "input": "19", "output": "NO" }, { "input": "20", "output": "YES" }, { "input": "41", "output": "NO" }, { "input": "11", "output": "YES" }, { "input": "69", "output": "YES" }, { "input": "82", "output": "NO" }, { "input": "85", "output": "NO" }, { "input": "736", "output": "NO" }, { "input": "895", "output": "YES" }, { "input": "934", "output": "YES" }, { "input": "6213", "output": "YES" }, { "input": "7405", "output": "NO" }, { "input": "9919", "output": "NO" }, { "input": "40942", "output": "YES" }, { "input": "41992", "output": "NO" }, { "input": "68535", "output": "NO" }, { "input": "405718", "output": "NO" }, { "input": "1046146", "output": "YES" }, { "input": "3761248", "output": "YES" }, { "input": "6195181", "output": "YES" }, { "input": "35354345", "output": "NO" }, { "input": "81282830", "output": "NO" }, { "input": "187719774", "output": "NO" }, { "input": "296798673", "output": "NO" }, { "input": "938938476", "output": "NO" }, { "input": "1000000000", "output": "NO" }, { "input": "999887464", "output": "YES" }, { "input": "999111944", "output": "NO" }, { "input": "999966520", "output": "YES" }, { "input": "999912080", "output": "NO" }, { "input": "999992017", "output": "YES" }, { "input": "999990474", "output": "NO" }, { "input": "999999190", "output": "YES" }, { "input": "999999125", "output": "NO" }, { "input": "999999940", "output": "YES" }, { "input": "999999995", "output": "NO" }, { "input": "1000000000", "output": "NO" }, { "input": "1", "output": "NO" }, { "input": "999999999", "output": "YES" }, { "input": "83495494", "output": "NO" }, { "input": "968022000", "output": "YES" }, { "input": "399980000", "output": "YES" }, { "input": "4", "output": "YES" }, { "input": "999999998", "output": "NO" } ]
1,611,562,131
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
11
902
1,331,200
n = int(input()) k = 1 done = False if n < 1000: limit = n elif n in range(1000, 10000): limit = 75 elif n in range(10000, 100000): limit = 225 elif n in range(100000, 1000000): limit = 725 elif n in range(1000000, 10000000): limit = 2250 elif n in range(10000000, 100000000): limit = 7250 else: limit = 22500 while(k < limit): x = k * (k + 1) for i in range(k, n // 2): y = i * (i + 1) if (x + y) // 2 == n: print("YES") exit() elif (x + y) // 2 > n: break; k += 1 print("NO")
Title: Funky Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where *k* is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers. A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number *n*, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)! Input Specification: The first input line contains an integer *n* (1<=≤<=*n*<=≤<=109). Output Specification: Print "YES" (without the quotes), if *n* can be represented as a sum of two triangular numbers, otherwise print "NO" (without the quotes). Demo Input: ['256\n', '512\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first sample number <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/92095692c6ea93e9e3b837a0408ba7543549d5b2.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample number 512 can not be represented as a sum of two triangular numbers.
```python n = int(input()) k = 1 done = False if n < 1000: limit = n elif n in range(1000, 10000): limit = 75 elif n in range(10000, 100000): limit = 225 elif n in range(100000, 1000000): limit = 725 elif n in range(1000000, 10000000): limit = 2250 elif n in range(10000000, 100000000): limit = 7250 else: limit = 22500 while(k < limit): x = k * (k + 1) for i in range(k, n // 2): y = i * (i + 1) if (x + y) // 2 == n: print("YES") exit() elif (x + y) // 2 > n: break; k += 1 print("NO") ```
0
466
A
Cheap Travel
PROGRAMMING
1,200
[ "implementation" ]
null
null
Ann has recently started commuting by subway. We know that a one ride subway ticket costs *a* rubles. Besides, Ann found out that she can buy a special ticket for *m* rides (she can buy it several times). It costs *b* rubles. Ann did the math; she will need to use subway *n* times. Help Ann, tell her what is the minimum sum of money she will have to spend to make *n* rides?
The single line contains four space-separated integers *n*, *m*, *a*, *b* (1<=≤<=*n*,<=*m*,<=*a*,<=*b*<=≤<=1000) — the number of rides Ann has planned, the number of rides covered by the *m* ride ticket, the price of a one ride ticket and the price of an *m* ride ticket.
Print a single integer — the minimum sum in rubles that Ann will need to spend.
[ "6 2 1 2\n", "5 2 2 3\n" ]
[ "6\n", "8\n" ]
In the first sample one of the optimal solutions is: each time buy a one ride ticket. There are other optimal solutions. For example, buy three *m* ride tickets.
500
[ { "input": "6 2 1 2", "output": "6" }, { "input": "5 2 2 3", "output": "8" }, { "input": "10 3 5 1", "output": "4" }, { "input": "1000 1 1000 1000", "output": "1000000" }, { "input": "1000 3 1000 1000", "output": "334000" }, { "input": "1 1 1 1", "output": "1" }, { "input": "10 2 1 1", "output": "5" }, { "input": "1 1000 1 2", "output": "1" }, { "input": "1 1000 3 2", "output": "2" }, { "input": "10 3 1 2", "output": "7" }, { "input": "995 1 2 1", "output": "995" }, { "input": "556 2 16 15", "output": "4170" }, { "input": "477 2 16 14", "output": "3346" }, { "input": "101 110 1 100", "output": "100" }, { "input": "9 3 3 10", "output": "27" }, { "input": "100 8 10 1", "output": "13" }, { "input": "6 4 1 3", "output": "5" }, { "input": "8 5 2 8", "output": "14" }, { "input": "1000 2 1 1000", "output": "1000" } ]
1,694,259,437
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
46
1,843,200
from dataclasses import dataclass import math @dataclass class Underground: quantity_to_trips: int season_tickets: int coast_ticket: float coast_season_ticket: float def price_season_one_trip(self): if self.quantity_to_trips < self.season_tickets: return self.coast_season_ticket if self.quantity_to_trips >= self.season_tickets and self.quantity_to_trips % self.season_tickets == 0: return (self.season_tickets / self.coast_season_ticket) * self.quantity_to_trips else: return math.ceil((self.coast_season_ticket / self.season_tickets) * quantity_to_trips) def one_time_ticket(self): return self.coast_ticket * self.quantity_to_trips def best_price(self): season_price = self.price_season_one_trip() price = self.one_time_ticket() if season_price < price: print(season_price) else: print(price) quantity_to_trips, season_tickets, coast_ticket, coast_season_ticket = map(int, input().split()) d = Underground(quantity_to_trips, season_tickets, coast_ticket, coast_season_ticket) d.best_price()
Title: Cheap Travel Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ann has recently started commuting by subway. We know that a one ride subway ticket costs *a* rubles. Besides, Ann found out that she can buy a special ticket for *m* rides (she can buy it several times). It costs *b* rubles. Ann did the math; she will need to use subway *n* times. Help Ann, tell her what is the minimum sum of money she will have to spend to make *n* rides? Input Specification: The single line contains four space-separated integers *n*, *m*, *a*, *b* (1<=≤<=*n*,<=*m*,<=*a*,<=*b*<=≤<=1000) — the number of rides Ann has planned, the number of rides covered by the *m* ride ticket, the price of a one ride ticket and the price of an *m* ride ticket. Output Specification: Print a single integer — the minimum sum in rubles that Ann will need to spend. Demo Input: ['6 2 1 2\n', '5 2 2 3\n'] Demo Output: ['6\n', '8\n'] Note: In the first sample one of the optimal solutions is: each time buy a one ride ticket. There are other optimal solutions. For example, buy three *m* ride tickets.
```python from dataclasses import dataclass import math @dataclass class Underground: quantity_to_trips: int season_tickets: int coast_ticket: float coast_season_ticket: float def price_season_one_trip(self): if self.quantity_to_trips < self.season_tickets: return self.coast_season_ticket if self.quantity_to_trips >= self.season_tickets and self.quantity_to_trips % self.season_tickets == 0: return (self.season_tickets / self.coast_season_ticket) * self.quantity_to_trips else: return math.ceil((self.coast_season_ticket / self.season_tickets) * quantity_to_trips) def one_time_ticket(self): return self.coast_ticket * self.quantity_to_trips def best_price(self): season_price = self.price_season_one_trip() price = self.one_time_ticket() if season_price < price: print(season_price) else: print(price) quantity_to_trips, season_tickets, coast_ticket, coast_season_ticket = map(int, input().split()) d = Underground(quantity_to_trips, season_tickets, coast_ticket, coast_season_ticket) d.best_price() ```
0
455
A
Boredom
PROGRAMMING
1,500
[ "dp" ]
null
null
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it. Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player. Alex is a perfectionist, so he decided to get as many points as possible. Help him.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105).
Print a single integer — the maximum number of points that Alex can earn.
[ "2\n1 2\n", "3\n1 2 3\n", "9\n1 2 1 3 2 2 2 2 3\n" ]
[ "2\n", "4\n", "10\n" ]
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
500
[ { "input": "2\n1 2", "output": "2" }, { "input": "3\n1 2 3", "output": "4" }, { "input": "9\n1 2 1 3 2 2 2 2 3", "output": "10" }, { "input": "5\n3 3 4 5 4", "output": "11" }, { "input": "5\n5 3 5 3 4", "output": "16" }, { "input": "5\n4 2 3 2 5", "output": "9" }, { "input": "10\n10 5 8 9 5 6 8 7 2 8", "output": "46" }, { "input": "10\n1 1 1 1 1 1 2 3 4 4", "output": "14" }, { "input": "100\n6 6 8 9 7 9 6 9 5 7 7 4 5 3 9 1 10 3 4 5 8 9 6 5 6 4 10 9 1 4 1 7 1 4 9 10 8 2 9 9 10 5 8 9 5 6 8 7 2 8 7 6 2 6 10 8 6 2 5 5 3 2 8 8 5 3 6 2 1 4 7 2 7 3 7 4 10 10 7 5 4 7 5 10 7 1 1 10 7 7 7 2 3 4 2 8 4 7 4 4", "output": "296" }, { "input": "100\n6 1 5 7 10 10 2 7 3 7 2 10 7 6 3 5 5 5 3 7 2 4 2 7 7 4 2 8 2 10 4 7 9 1 1 7 9 7 1 10 10 9 5 6 10 1 7 5 8 1 1 5 3 10 2 4 3 5 2 7 4 9 5 10 1 3 7 6 6 9 3 6 6 10 1 10 6 1 10 3 4 1 7 9 2 7 8 9 3 3 2 4 6 6 1 2 9 4 1 2", "output": "313" }, { "input": "100\n7 6 3 8 8 3 10 5 3 8 6 4 6 9 6 7 3 9 10 7 5 5 9 10 7 2 3 8 9 5 4 7 9 3 6 4 9 10 7 6 8 7 6 6 10 3 7 4 5 7 7 5 1 5 4 8 7 3 3 4 7 8 5 9 2 2 3 1 6 4 6 6 6 1 7 10 7 4 5 3 9 2 4 1 5 10 9 3 9 6 8 5 2 1 10 4 8 5 10 9", "output": "298" }, { "input": "100\n2 10 9 1 2 6 7 2 2 8 9 9 9 5 6 2 5 1 1 10 7 4 5 5 8 1 9 4 10 1 9 3 1 8 4 10 8 8 2 4 6 5 1 4 2 2 1 2 8 5 3 9 4 10 10 7 8 6 1 8 2 6 7 1 6 7 3 10 10 3 7 7 6 9 6 8 8 10 4 6 4 3 3 3 2 3 10 6 8 5 5 10 3 7 3 1 1 1 5 5", "output": "312" }, { "input": "100\n4 9 7 10 4 7 2 6 1 9 1 8 7 5 5 7 6 7 9 8 10 5 3 5 7 10 3 2 1 3 8 9 4 10 4 7 6 4 9 6 7 1 9 4 3 5 8 9 2 7 10 5 7 5 3 8 10 3 8 9 3 4 3 10 6 5 1 8 3 2 5 8 4 7 5 3 3 2 6 9 9 8 2 7 6 3 2 2 8 8 4 5 6 9 2 3 2 2 5 2", "output": "287" }, { "input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8", "output": "380" }, { "input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8", "output": "380" }, { "input": "100\n10 5 8 4 4 4 1 4 5 8 3 10 2 4 1 10 8 1 1 6 8 4 2 9 1 3 1 7 7 9 3 5 5 8 6 9 9 4 8 1 3 3 2 6 1 5 4 5 3 5 5 6 7 5 7 9 3 5 4 9 2 6 8 1 1 7 7 3 8 9 8 7 3 2 4 1 6 1 3 9 4 2 2 8 5 10 1 8 8 5 1 5 6 9 4 5 6 5 10 2", "output": "265" }, { "input": "100\n7 5 1 8 5 6 6 2 6 2 7 7 3 6 2 4 4 2 10 2 2 2 10 6 6 1 5 10 9 1 5 9 8 9 4 1 10 5 7 5 7 6 4 8 8 1 7 8 3 8 2 1 8 4 10 3 5 6 6 10 9 6 5 1 10 7 6 9 9 2 10 10 9 1 2 1 7 7 4 10 1 10 5 5 3 8 9 8 1 4 10 2 4 5 4 4 1 6 2 9", "output": "328" }, { "input": "100\n5 6 10 7 1 7 10 1 9 1 5 1 4 1 3 3 7 9 1 6 1 6 5 7 1 6 3 1 3 6 3 8 2 4 1 5 2 10 7 3 10 4 10 1 5 4 2 9 7 9 5 7 10 4 1 4 8 9 3 1 3 7 7 4 3 7 7 10 6 9 5 5 6 5 3 9 8 8 5 5 4 10 9 4 10 4 1 8 3 5 4 10 9 3 10 4 10 7 10 9", "output": "324" }, { "input": "10\n7 4 5 3 9 1 10 3 4 5", "output": "34" }, { "input": "10\n8 9 6 5 6 4 10 9 1 4", "output": "39" }, { "input": "10\n1 7 1 4 9 10 8 2 9 9", "output": "40" }, { "input": "1\n100000", "output": "100000" } ]
1,672,710,062
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
46
0
n=int(input()) l=[int(i) for i in input().split()] l1=[0 for i in range(max(l)+1)] for i in l: l1[i]+=1 m1=0 for i in range(0,len(l1),2): m1+=l1[i]*i m2=0 for i in range(1,len(l1),2): m2+=l1[i]*i print(max(m1,m2))
Title: Boredom Time Limit: None seconds Memory Limit: None megabytes Problem Description: Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it. Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player. Alex is a perfectionist, so he decided to get as many points as possible. Help him. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105). Output Specification: Print a single integer — the maximum number of points that Alex can earn. Demo Input: ['2\n1 2\n', '3\n1 2 3\n', '9\n1 2 1 3 2 2 2 2 3\n'] Demo Output: ['2\n', '4\n', '10\n'] Note: Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
```python n=int(input()) l=[int(i) for i in input().split()] l1=[0 for i in range(max(l)+1)] for i in l: l1[i]+=1 m1=0 for i in range(0,len(l1),2): m1+=l1[i]*i m2=0 for i in range(1,len(l1),2): m2+=l1[i]*i print(max(m1,m2)) ```
0
228
A
Is your horseshoe on the other hoof?
PROGRAMMING
800
[ "implementation" ]
null
null
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades. Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has. Consider all possible colors indexed with integers.
Print a single integer — the minimum number of horseshoes Valera needs to buy.
[ "1 7 3 3\n", "7 7 7 7\n" ]
[ "1\n", "3\n" ]
none
500
[ { "input": "1 7 3 3", "output": "1" }, { "input": "7 7 7 7", "output": "3" }, { "input": "81170865 673572653 756938629 995577259", "output": "0" }, { "input": "3491663 217797045 522540872 715355328", "output": "0" }, { "input": "251590420 586975278 916631563 586975278", "output": "1" }, { "input": "259504825 377489979 588153796 377489979", "output": "1" }, { "input": "652588203 931100304 931100304 652588203", "output": "2" }, { "input": "391958720 651507265 391958720 651507265", "output": "2" }, { "input": "90793237 90793237 90793237 90793237", "output": "3" }, { "input": "551651653 551651653 551651653 551651653", "output": "3" }, { "input": "156630260 609654355 668943582 973622757", "output": "0" }, { "input": "17061017 110313588 434481173 796661222", "output": "0" }, { "input": "24975422 256716298 337790533 690960249", "output": "0" }, { "input": "255635360 732742923 798648949 883146723", "output": "0" }, { "input": "133315691 265159773 734556507 265159773", "output": "1" }, { "input": "28442865 741657755 978106882 978106882", "output": "1" }, { "input": "131245479 174845575 497483467 131245479", "output": "1" }, { "input": "139159884 616215581 958341883 616215581", "output": "1" }, { "input": "147784432 947653080 947653080 947653080", "output": "2" }, { "input": "94055790 756126496 756126496 94055790", "output": "2" }, { "input": "240458500 511952208 240458500 511952208", "output": "2" }, { "input": "681828506 972810624 972810624 681828506", "output": "2" }, { "input": "454961014 454961014 454961014 454961014", "output": "3" }, { "input": "915819430 915819430 915819430 915819430", "output": "3" }, { "input": "671645142 671645142 671645142 671645142", "output": "3" }, { "input": "132503558 132503558 132503558 132503558", "output": "3" }, { "input": "5 5 999999 6", "output": "1" }, { "input": "1 1 2 5", "output": "1" }, { "input": "2 1 2 3", "output": "1" }, { "input": "1 1 3 5", "output": "1" }, { "input": "1 1 3 3", "output": "2" }, { "input": "2 2 2 1", "output": "2" }, { "input": "3 1 1 1", "output": "2" }, { "input": "1 2 2 2", "output": "2" } ]
1,691,678,342
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
while True: try: a=list(map(int,input().split())) print(max(0,len(set(a))-1) except Exception as e: break
Title: Is your horseshoe on the other hoof? Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades. Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party. Input Specification: The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has. Consider all possible colors indexed with integers. Output Specification: Print a single integer — the minimum number of horseshoes Valera needs to buy. Demo Input: ['1 7 3 3\n', '7 7 7 7\n'] Demo Output: ['1\n', '3\n'] Note: none
```python while True: try: a=list(map(int,input().split())) print(max(0,len(set(a))-1) except Exception as e: break ```
-1
1
B
Spreadsheet
PROGRAMMING
1,600
[ "implementation", "math" ]
B. Spreadsheets
10
64
In the popular spreadsheets systems (for example, in Excel) the following numeration of columns is used. The first column has number A, the second — number B, etc. till column 26 that is marked by Z. Then there are two-letter numbers: column 27 has number AA, 28 — AB, column 52 is marked by AZ. After ZZ there follow three-letter numbers, etc. The rows are marked by integer numbers starting with 1. The cell name is the concatenation of the column and the row numbers. For example, BC23 is the name for the cell that is in column 55, row 23. Sometimes another numeration system is used: RXCY, where X and Y are integer numbers, showing the column and the row numbers respectfully. For instance, R23C55 is the cell from the previous example. Your task is to write a program that reads the given sequence of cell coordinates and produce each item written according to the rules of another numeration system.
The first line of the input contains integer number *n* (1<=≤<=*n*<=≤<=105), the number of coordinates in the test. Then there follow *n* lines, each of them contains coordinates. All the coordinates are correct, there are no cells with the column and/or the row numbers larger than 106 .
Write *n* lines, each line should contain a cell coordinates in the other numeration system.
[ "2\nR23C55\nBC23\n" ]
[ "BC23\nR23C55\n" ]
none
0
[ { "input": "2\nR23C55\nBC23", "output": "BC23\nR23C55" }, { "input": "1\nA1", "output": "R1C1" }, { "input": "5\nR8C3\nD1\nR7C2\nR8C9\nR8C9", "output": "C8\nR1C4\nB7\nI8\nI8" }, { "input": "4\nR4C25\nR90C35\nAP55\nX83", "output": "Y4\nAI90\nR55C42\nR83C24" }, { "input": "10\nR50C12\nR23C47\nY96\nR44C13\nR19C21\nR95C73\nBK12\nR51C74\nAY34\nR63C25", "output": "L50\nAU23\nR96C25\nM44\nU19\nBU95\nR12C63\nBV51\nR34C51\nY63" } ]
1,683,755,427
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
5
278
6,656,000
def calculate(x): p=ord('A')-1 c=0 s=0 x=x[::-1] for i in x: s+=(ord(i)-p)*(26**c) c+=1 return s def calc(x): j=int(x) p=ord('A')-1 y="" while j!=0: y=chr(p+j%26)+y j=j//26 return y for _ in range(int(input())): s=input() if s[0]=='R' and ord(s[1])>=ord('0') and ord(s[1])<=ord('9'): x="" y="" boo=False for j in s: if j=='C': boo=True elif j=="R": continue elif boo: y+=j else: x+=j print(calc(y)+x) else: x="" y="" for j in s: if ord(j)>=ord('0') and ord(j)<=ord('9'): y+=j else: x+=j print("R"+y+"C"+str(calculate(x)))
Title: Spreadsheet Time Limit: 10 seconds Memory Limit: 64 megabytes Problem Description: In the popular spreadsheets systems (for example, in Excel) the following numeration of columns is used. The first column has number A, the second — number B, etc. till column 26 that is marked by Z. Then there are two-letter numbers: column 27 has number AA, 28 — AB, column 52 is marked by AZ. After ZZ there follow three-letter numbers, etc. The rows are marked by integer numbers starting with 1. The cell name is the concatenation of the column and the row numbers. For example, BC23 is the name for the cell that is in column 55, row 23. Sometimes another numeration system is used: RXCY, where X and Y are integer numbers, showing the column and the row numbers respectfully. For instance, R23C55 is the cell from the previous example. Your task is to write a program that reads the given sequence of cell coordinates and produce each item written according to the rules of another numeration system. Input Specification: The first line of the input contains integer number *n* (1<=≤<=*n*<=≤<=105), the number of coordinates in the test. Then there follow *n* lines, each of them contains coordinates. All the coordinates are correct, there are no cells with the column and/or the row numbers larger than 106 . Output Specification: Write *n* lines, each line should contain a cell coordinates in the other numeration system. Demo Input: ['2\nR23C55\nBC23\n'] Demo Output: ['BC23\nR23C55\n'] Note: none
```python def calculate(x): p=ord('A')-1 c=0 s=0 x=x[::-1] for i in x: s+=(ord(i)-p)*(26**c) c+=1 return s def calc(x): j=int(x) p=ord('A')-1 y="" while j!=0: y=chr(p+j%26)+y j=j//26 return y for _ in range(int(input())): s=input() if s[0]=='R' and ord(s[1])>=ord('0') and ord(s[1])<=ord('9'): x="" y="" boo=False for j in s: if j=='C': boo=True elif j=="R": continue elif boo: y+=j else: x+=j print(calc(y)+x) else: x="" y="" for j in s: if ord(j)>=ord('0') and ord(j)<=ord('9'): y+=j else: x+=j print("R"+y+"C"+str(calculate(x))) ```
-1
20
C
Dijkstra?
PROGRAMMING
1,900
[ "graphs", "shortest paths" ]
C. Dijkstra?
1
64
You are given a weighted undirected graph. The vertices are enumerated from 1 to *n*. Your task is to find the shortest path between the vertex 1 and the vertex *n*.
The first line contains two integers *n* and *m* (2<=≤<=*n*<=≤<=105,<=0<=≤<=*m*<=≤<=105), where *n* is the number of vertices and *m* is the number of edges. Following *m* lines contain one edge each in form *a**i*, *b**i* and *w**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=1<=≤<=*w**i*<=≤<=106), where *a**i*,<=*b**i* are edge endpoints and *w**i* is the length of the edge. It is possible that the graph has loops and multiple edges between pair of vertices.
Write the only integer -1 in case of no path. Write the shortest path in opposite case. If there are many solutions, print any of them.
[ "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n", "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n" ]
[ "1 4 3 5 ", "1 4 3 5 " ]
none
1,500
[ { "input": "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1", "output": "1 4 3 5 " }, { "input": "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1", "output": "1 4 3 5 " }, { "input": "2 1\n1 2 1", "output": "1 2 " }, { "input": "3 1\n1 2 1", "output": "-1" }, { "input": "3 3\n1 2 1\n1 3 2\n2 3 1", "output": "1 3 " }, { "input": "10 10\n1 5 12\n2 4 140\n2 10 149\n3 6 154\n3 7 9\n3 8 226\n3 10 132\n4 10 55\n5 8 33\n7 8 173", "output": "1 5 8 7 3 10 " }, { "input": "10 10\n1 5 178\n1 8 221\n2 7 92\n2 8 159\n3 5 55\n3 6 179\n3 10 237\n4 8 205\n5 6 191\n8 10 157", "output": "1 8 10 " }, { "input": "10 10\n1 4 200\n1 9 197\n3 4 79\n3 5 213\n3 6 149\n5 8 3\n5 9 189\n6 7 130\n6 9 51\n8 10 135", "output": "1 9 5 8 10 " }, { "input": "10 10\n1 4 201\n2 3 238\n3 4 40\n3 6 231\n3 8 45\n4 5 227\n4 6 58\n4 9 55\n5 7 14\n6 10 242", "output": "1 4 6 10 " } ]
1,660,874,801
2,147,483,647
PyPy 3-64
OK
TESTS
33
295
28,876,800
import sys from heapq import heappop, heappush input = sys.stdin.readline def dijkstra(graph, start=0): n = len(graph) dist, parents = [float('inf')] * n, [-1] * n dist[start] = 0.0 queue = [(0.0, start)] while queue: path_len, v = heappop(queue) if path_len == dist[v]: for (w, edge_len) in graph[v]: if edge_len + path_len < dist[w]: dist[w], parents[w] = edge_len + path_len, v heappush(queue, (edge_len + path_len, w)) return dist, parents n, m = map(int, input().split()) graph = [[] for _ in range(n)] for i in range(m): a, b, w = map(int, input().split()) graph[a-1].append((b-1, w)) graph[b-1].append((a-1, w)) _, parents = dijkstra(graph) if parents[n - 1] == -1: print(-1) else: res, parent = [], n - 1 while parent != parents[0]: res.append(parent + 1) parent = parents[parent] res.reverse() print(*res)
Title: Dijkstra? Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: You are given a weighted undirected graph. The vertices are enumerated from 1 to *n*. Your task is to find the shortest path between the vertex 1 and the vertex *n*. Input Specification: The first line contains two integers *n* and *m* (2<=≤<=*n*<=≤<=105,<=0<=≤<=*m*<=≤<=105), where *n* is the number of vertices and *m* is the number of edges. Following *m* lines contain one edge each in form *a**i*, *b**i* and *w**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=1<=≤<=*w**i*<=≤<=106), where *a**i*,<=*b**i* are edge endpoints and *w**i* is the length of the edge. It is possible that the graph has loops and multiple edges between pair of vertices. Output Specification: Write the only integer -1 in case of no path. Write the shortest path in opposite case. If there are many solutions, print any of them. Demo Input: ['5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n', '5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n'] Demo Output: ['1 4 3 5 ', '1 4 3 5 '] Note: none
```python import sys from heapq import heappop, heappush input = sys.stdin.readline def dijkstra(graph, start=0): n = len(graph) dist, parents = [float('inf')] * n, [-1] * n dist[start] = 0.0 queue = [(0.0, start)] while queue: path_len, v = heappop(queue) if path_len == dist[v]: for (w, edge_len) in graph[v]: if edge_len + path_len < dist[w]: dist[w], parents[w] = edge_len + path_len, v heappush(queue, (edge_len + path_len, w)) return dist, parents n, m = map(int, input().split()) graph = [[] for _ in range(n)] for i in range(m): a, b, w = map(int, input().split()) graph[a-1].append((b-1, w)) graph[b-1].append((a-1, w)) _, parents = dijkstra(graph) if parents[n - 1] == -1: print(-1) else: res, parent = [], n - 1 while parent != parents[0]: res.append(parent + 1) parent = parents[parent] res.reverse() print(*res) ```
3.637351
499
B
Lecture
PROGRAMMING
1,000
[ "implementation", "strings" ]
null
null
You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes. You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning. You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language. You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes.
The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages. The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once. The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}. All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters.
Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input.
[ "4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n", "5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n" ]
[ "codeforces round letter round\n", "hbnyiyc joll joll un joll\n" ]
none
500
[ { "input": "4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest", "output": "codeforces round letter round" }, { "input": "5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll", "output": "hbnyiyc joll joll un joll" }, { "input": "5 5\nqueyqj f\nb vn\ntabzvk qpfzoqx\nytnyonoc hnxsd\njpggvr lchinjmt\nqueyqj jpggvr b ytnyonoc b", "output": "f jpggvr b hnxsd b" }, { "input": "10 22\nazbrll oen\ngh vdyayei\njphveblohx vfglv\nmfyxib jepnvhcuwo\nrpikazqj uam\nl rx\nokjenof qpnyi\nj tixqrno\nod itozmfct\nikkdxmirx ev\nqexftojc p\nkdazb zjs\nmbk ykvqjrxaxu\nhbcwhouzq pwt\nmirpsz zfaegpl\nuhkkvcj rlvwj\nef iqnnwtolrc\npjzfcpmeag ecdayth\nsa qcthz\ncbfhfxi qrnbvdryz\nwqel tj\natx smkbid\nef hbcwhouzq cbfhfxi hbcwhouzq mirpsz cbfhfxi cbfhfxi okjenof pjzfcpmeag kdazb", "output": "ef pwt cbfhfxi pwt mirpsz cbfhfxi cbfhfxi qpnyi ecdayth zjs" }, { "input": "1 1\namit am\namit", "output": "am" }, { "input": "1 1\na c\na", "output": "a" } ]
1,676,703,143
2,147,483,647
Python 3
OK
TESTS
37
46
307,200
n , m = map(int,input().split()) d = dict() for _ in range(m): a , b = input().split() if(len(a)<=len(b)): d[a] = a else: d[a] = b s = list(input().split()) for i in s : print(d[i],end=" ")
Title: Lecture Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes. You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning. You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language. You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes. Input Specification: The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages. The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once. The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}. All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters. Output Specification: Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input. Demo Input: ['4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n', '5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n'] Demo Output: ['codeforces round letter round\n', 'hbnyiyc joll joll un joll\n'] Note: none
```python n , m = map(int,input().split()) d = dict() for _ in range(m): a , b = input().split() if(len(a)<=len(b)): d[a] = a else: d[a] = b s = list(input().split()) for i in s : print(d[i],end=" ") ```
3
514
A
Chewbaсca and Number
PROGRAMMING
1,200
[ "greedy", "implementation" ]
null
null
Luke Skywalker gave Chewbacca an integer number *x*. Chewbacca isn't good at numbers but he loves inverting digits in them. Inverting digit *t* means replacing it with digit 9<=-<=*t*. Help Chewbacca to transform the initial number *x* to the minimum possible positive number by inverting some (possibly, zero) digits. The decimal representation of the final number shouldn't start with a zero.
The first line contains a single integer *x* (1<=≤<=*x*<=≤<=1018) — the number that Luke Skywalker gave to Chewbacca.
Print the minimum possible positive number that Chewbacca can obtain after inverting some digits. The number shouldn't contain leading zeroes.
[ "27\n", "4545\n" ]
[ "22\n", "4444\n" ]
none
500
[ { "input": "27", "output": "22" }, { "input": "4545", "output": "4444" }, { "input": "1", "output": "1" }, { "input": "9", "output": "9" }, { "input": "8772", "output": "1222" }, { "input": "81", "output": "11" }, { "input": "71723447", "output": "21223442" }, { "input": "91730629", "output": "91230320" }, { "input": "420062703497", "output": "420032203402" }, { "input": "332711047202", "output": "332211042202" }, { "input": "3395184971407775", "output": "3304114021402224" }, { "input": "8464062628894325", "output": "1434032321104324" }, { "input": "164324828731963982", "output": "134324121231033012" }, { "input": "384979173822804784", "output": "314020123122104214" }, { "input": "41312150450968417", "output": "41312140440031412" }, { "input": "2156", "output": "2143" }, { "input": "1932", "output": "1032" }, { "input": "5902", "output": "4002" }, { "input": "5728", "output": "4221" }, { "input": "8537", "output": "1432" }, { "input": "55403857", "output": "44403142" }, { "input": "270739", "output": "220230" }, { "input": "28746918", "output": "21243011" }, { "input": "10279211", "output": "10220211" }, { "input": "40289679", "output": "40210320" }, { "input": "545203238506", "output": "444203231403" }, { "input": "461117063340", "output": "431112033340" }, { "input": "658492686568", "output": "341402313431" }, { "input": "857373361868", "output": "142323331131" }, { "input": "429325660016", "output": "420324330013" }, { "input": "9894448650287940", "output": "9104441340212040" }, { "input": "6354510839296263", "output": "3344410130203233" }, { "input": "6873575462224593", "output": "3123424432224403" }, { "input": "4237951492601449", "output": "4232041402301440" }, { "input": "2680352384836991", "output": "2310342314133001" }, { "input": "606187734191890310", "output": "303112234101100310" }, { "input": "351499943576823355", "output": "341400043423123344" }, { "input": "180593481782177068", "output": "110403411212122031" }, { "input": "999999999999999999", "output": "900000000000000000" }, { "input": "1000000000000000000", "output": "1000000000000000000" }, { "input": "9999", "output": "9000" }, { "input": "99", "output": "90" }, { "input": "9991", "output": "9001" } ]
1,674,303,183
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
7
62
0
from itertools import combinations if __name__ == '__main__': s = input() t = "" for el in s: t += str(min(int(el), 9 - int(el))) print(int(t) * (int(t) != 0) + 9 *(int(t) == 0))
Title: Chewbaсca and Number Time Limit: None seconds Memory Limit: None megabytes Problem Description: Luke Skywalker gave Chewbacca an integer number *x*. Chewbacca isn't good at numbers but he loves inverting digits in them. Inverting digit *t* means replacing it with digit 9<=-<=*t*. Help Chewbacca to transform the initial number *x* to the minimum possible positive number by inverting some (possibly, zero) digits. The decimal representation of the final number shouldn't start with a zero. Input Specification: The first line contains a single integer *x* (1<=≤<=*x*<=≤<=1018) — the number that Luke Skywalker gave to Chewbacca. Output Specification: Print the minimum possible positive number that Chewbacca can obtain after inverting some digits. The number shouldn't contain leading zeroes. Demo Input: ['27\n', '4545\n'] Demo Output: ['22\n', '4444\n'] Note: none
```python from itertools import combinations if __name__ == '__main__': s = input() t = "" for el in s: t += str(min(int(el), 9 - int(el))) print(int(t) * (int(t) != 0) + 9 *(int(t) == 0)) ```
0
527
C
Glass Carving
PROGRAMMING
1,500
[ "binary search", "data structures", "implementation" ]
null
null
Leonid wants to become a glass carver (the person who creates beautiful artworks by cutting the glass). He already has a rectangular *w* mm <=×<= *h* mm sheet of glass, a diamond glass cutter and lots of enthusiasm. What he lacks is understanding of what to carve and how. In order not to waste time, he decided to practice the technique of carving. To do this, he makes vertical and horizontal cuts through the entire sheet. This process results in making smaller rectangular fragments of glass. Leonid does not move the newly made glass fragments. In particular, a cut divides each fragment of glass that it goes through into smaller fragments. After each cut Leonid tries to determine what area the largest of the currently available glass fragments has. Since there appear more and more fragments, this question takes him more and more time and distracts him from the fascinating process. Leonid offers to divide the labor — he will cut glass, and you will calculate the area of the maximum fragment after each cut. Do you agree?
The first line contains three integers *w*,<=*h*,<=*n* (2<=≤<=*w*,<=*h*<=≤<=200<=000, 1<=≤<=*n*<=≤<=200<=000). Next *n* lines contain the descriptions of the cuts. Each description has the form *H* *y* or *V* *x*. In the first case Leonid makes the horizontal cut at the distance *y* millimeters (1<=≤<=*y*<=≤<=*h*<=-<=1) from the lower edge of the original sheet of glass. In the second case Leonid makes a vertical cut at distance *x* (1<=≤<=*x*<=≤<=*w*<=-<=1) millimeters from the left edge of the original sheet of glass. It is guaranteed that Leonid won't make two identical cuts.
After each cut print on a single line the area of the maximum available glass fragment in mm2.
[ "4 3 4\nH 2\nV 2\nV 3\nV 1\n", "7 6 5\nH 4\nV 3\nV 5\nH 2\nV 1\n" ]
[ "8\n4\n4\n2\n", "28\n16\n12\n6\n4\n" ]
Picture for the first sample test:
1,500
[ { "input": "4 3 4\nH 2\nV 2\nV 3\nV 1", "output": "8\n4\n4\n2" }, { "input": "7 6 5\nH 4\nV 3\nV 5\nH 2\nV 1", "output": "28\n16\n12\n6\n4" }, { "input": "2 2 1\nV 1", "output": "2" }, { "input": "2 2 1\nH 1", "output": "2" }, { "input": "2 2 2\nV 1\nH 1", "output": "2\n1" }, { "input": "2 2 2\nH 1\nV 1", "output": "2\n1" }, { "input": "10 10 10\nV 6\nH 8\nV 4\nV 8\nH 2\nH 5\nV 9\nH 7\nH 3\nV 7", "output": "60\n48\n32\n32\n24\n12\n12\n12\n8\n8" }, { "input": "5 15 10\nH 8\nH 9\nV 1\nH 2\nH 6\nH 4\nH 1\nV 2\nH 13\nV 3", "output": "40\n40\n32\n24\n24\n24\n24\n18\n12\n8" }, { "input": "15 5 10\nV 13\nV 10\nV 3\nH 2\nV 9\nV 7\nV 2\nH 1\nV 4\nH 3", "output": "65\n50\n35\n21\n18\n12\n12\n12\n9\n6" }, { "input": "2 3 1\nH 1", "output": "4" }, { "input": "200000 200000 1\nH 1", "output": "39999800000" }, { "input": "2 4 1\nH 2", "output": "4" } ]
1,588,173,314
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
93
307,200
from heapq import heappush, heapify w, h, n = map(int, input().split()) H_cuts = [0, h] V_cuts = [0, w] # heapify(H_cuts) # heapify(V_cuts) last_big_H = h last_big_V = w for i in range(n): direction, dist = input().split() distance = int(dist) if direction == "H": # heappush(H_cuts, distance) # H_cuts.append(distance) # H_cuts.sort(reverse=True) inserted = False big_H = 0 for j in range(len(H_cuts)-1): if not inserted and H_cuts[j+1] > distance and distance > H_cuts[j]: H_cuts.insert(j+1, distance) inserted = True diff = H_cuts[j+1] - H_cuts[j] if diff > big_H: big_H = diff if big_H == last_big_H: break last_big_H = big_H elif direction == "V": # heappush(V_cuts, distance) # V_cuts.append(distance) # V_cuts.sort(reverse=True) inserted = False big_V = 0 for j in range(len(V_cuts)-1): if not inserted and V_cuts[j+1] > distance and distance > V_cuts[j]: V_cuts.insert(j+1, distance) inserted = True diff = V_cuts[j+1] - V_cuts[j] if diff > big_V: big_V = diff if big_V == last_big_V: break last_big_V = big_V print(last_big_H*last_big_V)
Title: Glass Carving Time Limit: None seconds Memory Limit: None megabytes Problem Description: Leonid wants to become a glass carver (the person who creates beautiful artworks by cutting the glass). He already has a rectangular *w* mm <=×<= *h* mm sheet of glass, a diamond glass cutter and lots of enthusiasm. What he lacks is understanding of what to carve and how. In order not to waste time, he decided to practice the technique of carving. To do this, he makes vertical and horizontal cuts through the entire sheet. This process results in making smaller rectangular fragments of glass. Leonid does not move the newly made glass fragments. In particular, a cut divides each fragment of glass that it goes through into smaller fragments. After each cut Leonid tries to determine what area the largest of the currently available glass fragments has. Since there appear more and more fragments, this question takes him more and more time and distracts him from the fascinating process. Leonid offers to divide the labor — he will cut glass, and you will calculate the area of the maximum fragment after each cut. Do you agree? Input Specification: The first line contains three integers *w*,<=*h*,<=*n* (2<=≤<=*w*,<=*h*<=≤<=200<=000, 1<=≤<=*n*<=≤<=200<=000). Next *n* lines contain the descriptions of the cuts. Each description has the form *H* *y* or *V* *x*. In the first case Leonid makes the horizontal cut at the distance *y* millimeters (1<=≤<=*y*<=≤<=*h*<=-<=1) from the lower edge of the original sheet of glass. In the second case Leonid makes a vertical cut at distance *x* (1<=≤<=*x*<=≤<=*w*<=-<=1) millimeters from the left edge of the original sheet of glass. It is guaranteed that Leonid won't make two identical cuts. Output Specification: After each cut print on a single line the area of the maximum available glass fragment in mm2. Demo Input: ['4 3 4\nH 2\nV 2\nV 3\nV 1\n', '7 6 5\nH 4\nV 3\nV 5\nH 2\nV 1\n'] Demo Output: ['8\n4\n4\n2\n', '28\n16\n12\n6\n4\n'] Note: Picture for the first sample test:
```python from heapq import heappush, heapify w, h, n = map(int, input().split()) H_cuts = [0, h] V_cuts = [0, w] # heapify(H_cuts) # heapify(V_cuts) last_big_H = h last_big_V = w for i in range(n): direction, dist = input().split() distance = int(dist) if direction == "H": # heappush(H_cuts, distance) # H_cuts.append(distance) # H_cuts.sort(reverse=True) inserted = False big_H = 0 for j in range(len(H_cuts)-1): if not inserted and H_cuts[j+1] > distance and distance > H_cuts[j]: H_cuts.insert(j+1, distance) inserted = True diff = H_cuts[j+1] - H_cuts[j] if diff > big_H: big_H = diff if big_H == last_big_H: break last_big_H = big_H elif direction == "V": # heappush(V_cuts, distance) # V_cuts.append(distance) # V_cuts.sort(reverse=True) inserted = False big_V = 0 for j in range(len(V_cuts)-1): if not inserted and V_cuts[j+1] > distance and distance > V_cuts[j]: V_cuts.insert(j+1, distance) inserted = True diff = V_cuts[j+1] - V_cuts[j] if diff > big_V: big_V = diff if big_V == last_big_V: break last_big_V = big_V print(last_big_H*last_big_V) ```
0
624
B
Making a String
PROGRAMMING
1,100
[ "greedy", "sortings" ]
null
null
You are given an alphabet consisting of *n* letters, your task is to make a string of the maximum possible length so that the following conditions are satisfied: - the *i*-th letter occurs in the string no more than *a**i* times; - the number of occurrences of each letter in the string must be distinct for all the letters that occurred in the string at least once.
The first line of the input contains a single integer *n* (2<=<=≤<=<=*n*<=<=≤<=<=26) — the number of letters in the alphabet. The next line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — *i*-th of these integers gives the limitation on the number of occurrences of the *i*-th character in the string.
Print a single integer — the maximum length of the string that meets all the requirements.
[ "3\n2 5 5\n", "3\n1 1 2\n" ]
[ "11\n", "3\n" ]
For convenience let's consider an alphabet consisting of three letters: "a", "b", "c". In the first sample, some of the optimal strings are: "cccaabbccbb", "aabcbcbcbcb". In the second sample some of the optimal strings are: "acc", "cbc".
1,000
[ { "input": "3\n2 5 5", "output": "11" }, { "input": "3\n1 1 2", "output": "3" }, { "input": "2\n1 1", "output": "1" }, { "input": "3\n1 1000000000 2", "output": "1000000003" }, { "input": "26\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000", "output": "25999999675" }, { "input": "2\n559476582 796461544", "output": "1355938126" }, { "input": "2\n257775227 621811272", "output": "879586499" }, { "input": "10\n876938317 219479349 703839299 977218449 116819315 752405530 393874852 286326991 592978634 155758306", "output": "5075639042" }, { "input": "26\n72 49 87 47 94 96 36 91 43 11 19 83 36 38 10 93 95 81 4 96 60 38 97 37 36 41", "output": "1478" }, { "input": "26\n243 364 768 766 633 535 502 424 502 283 592 877 137 891 837 990 681 898 831 487 595 604 747 856 805 688", "output": "16535" }, { "input": "26\n775 517 406 364 548 951 680 984 466 141 960 513 660 849 152 250 176 601 199 370 971 554 141 224 724 543", "output": "13718" }, { "input": "26\n475 344 706 807 925 813 974 166 578 226 624 591 419 894 574 909 544 597 170 990 893 785 399 172 792 748", "output": "16115" }, { "input": "26\n130 396 985 226 487 671 188 706 106 649 38 525 210 133 298 418 953 431 577 69 12 982 264 373 283 266", "output": "10376" }, { "input": "26\n605 641 814 935 936 547 524 702 133 674 173 102 318 620 248 523 77 718 318 635 322 362 306 86 8 442", "output": "11768" }, { "input": "26\n220 675 725 888 725 654 546 806 379 182 604 667 734 394 889 731 572 193 850 651 844 734 163 671 820 887", "output": "16202" }, { "input": "26\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "25675" }, { "input": "26\n1001 1001 1000 1000 1001 1000 1001 1001 1001 1000 1000 1001 1001 1000 1000 1000 1000 1001 1000 1001 1001 1000 1001 1001 1001 1000", "output": "25701" }, { "input": "26\n1000 1001 1000 1001 1000 1001 1001 1000 1001 1002 1002 1000 1001 1000 1000 1000 1001 1002 1001 1000 1000 1001 1000 1002 1001 1002", "output": "25727" }, { "input": "26\n1003 1002 1002 1003 1000 1000 1000 1003 1000 1001 1003 1003 1000 1002 1002 1002 1001 1003 1000 1001 1000 1001 1001 1000 1003 1003", "output": "25753" }, { "input": "26\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1" }, { "input": "26\n8717 9417 1409 7205 3625 6247 8626 9486 464 4271 1698 8449 4551 1528 7456 9198 4886 2889 7534 506 7867 9410 1635 4955 2580 2580", "output": "137188" }, { "input": "26\n197464663 125058028 622449215 11119637 587496049 703992162 219591040 965159268 229879004 278894000 841629744 616893922 218779915 362575332 844188865 342411376 369680019 43823059 921419789 999588082 943769007 35365522 301907919 758302419 427454397 807507709", "output": "12776400142" }, { "input": "26\n907247856 970380443 957324066 929910532 947150618 944189007 998282297 988343406 981298600 943026596 953932265 972691398 950024048 923033790 996423650 972134755 946404759 918183059 902987271 965507679 906967700 982106487 933997242 972594441 977736332 928874832", "output": "24770753129" }, { "input": "26\n999999061 999999688 999999587 999999429 999999110 999999563 999999120 999999111 999999794 999999890 999999004 999999448 999999770 999999543 999999460 999999034 999999361 999999305 999999201 999999778 999999432 999999844 999999133 999999342 999999600 999999319", "output": "25999984927" }, { "input": "3\n587951561 282383259 612352726", "output": "1482687546" }, { "input": "4\n111637338 992238139 787658714 974622806", "output": "2866156997" }, { "input": "5\n694257603 528073418 726928894 596328666 652863391", "output": "3198451972" }, { "input": "6\n217943380 532900593 902234882 513005821 369342573 495810412", "output": "3031237661" }, { "input": "7\n446656860 478792281 77541870 429682977 85821755 826122363 563802405", "output": "2908420511" }, { "input": "8\n29278125 778590752 252847858 51388836 802299938 215370803 901540149 242074772", "output": "3273391233" }, { "input": "9\n552962902 724482439 133182550 673093696 518779120 604618242 534250189 847695567 403066553", "output": "4992131258" }, { "input": "10\n600386086 862479376 284190454 781950823 672077209 5753052 145701234 680334621 497013634 35429365", "output": "4565315854" }, { "input": "11\n183007351 103343359 164525146 698627979 388556391 926007595 483438978 580927711 659384363 201890880 920750904", "output": "5310460657" }, { "input": "12\n706692128 108170535 339831134 320333838 810063277 20284739 821176722 481520801 467848308 604388203 881959821 874133307", "output": "6436402813" }, { "input": "13\n525349200 54062222 810108418 237010994 821513756 409532178 158915465 87142595 630219037 770849718 843168738 617993222 504443485", "output": "6470309028" }, { "input": "14\n812998169 353860693 690443110 153688149 537992938 798779618 791624505 282706982 733654279 468319337 568341847 597888944 649703235 667623671", "output": "8107625477" }, { "input": "15\n336683946 299752380 865749098 775393009 959499824 893055762 365399057 419335880 896025008 575845364 529550764 341748859 30999793 464432689 19445239", "output": "7772916672" }, { "input": "16\n860368723 540615364 41056086 692070164 970950302 282304201 998108096 24957674 999460249 37279175 490759681 26673285 412295352 671298115 627182888 90740349", "output": "7766119704" }, { "input": "17\n148018692 545442539 980325266 313776023 687429485 376580345 40875544 925549764 161831978 144805202 451968598 475560904 262583806 468107133 60900936 281546097 912565045", "output": "7237867357" }, { "input": "18\n966674765 786305522 860659958 935480883 108937371 60800080 673584584 826142855 560238516 606238013 413177515 455456626 643879364 969943855 963609881 177380550 544192822 864797474", "output": "11417500634" }, { "input": "19\n490360541 496161402 330938242 852158038 120387849 686083328 247359135 431764649 427637949 8736336 843378328 435352349 494167818 766752874 161292122 368186298 470791896 813444279 170758124", "output": "8615711557" }, { "input": "20\n654616375 542649443 729213190 188364665 238384327 726353863 974350390 526804424 601329631 886592063 734805196 275562411 861801362 374466292 119830901 403120565 670982545 63210795 130397643 601611646", "output": "10304447727" }, { "input": "21\n942265343 252505322 904519178 810069524 954862509 115602302 548124942 132426218 999736168 584061682 696014113 960485837 712089816 581331718 317512142 593926314 302610323 716885305 477125514 813997503 535631456", "output": "12951783229" }, { "input": "22\n465951120 788339601 784853870 726746679 376370396 504849742 180834982 33019308 867135601 455551901 657223030 940381560 93386374 378140736 161286599 548696254 934237100 75589518 764917898 731412064 205669368 630662937", "output": "11305256638" }, { "input": "23\n989635897 498195481 255132154 643423835 387820874 894097181 223601429 228583694 265543138 153021520 618431947 684241474 943673829 174949754 358967839 444530707 801900686 965299835 347682577 648826625 406714384 129525158 958578251", "output": "12022378269" }, { "input": "24\n277285866 739058464 135466846 265129694 104300056 519381429 856310469 834204489 132942572 260547547 343605057 664137197 619941683 676786476 497713592 635336455 138557168 618975345 635474960 861212482 76752297 923357675 517046816 274123722", "output": "11607648357" }, { "input": "25\n95942939 979921447 310772834 181806850 525806942 613657573 194049213 734797579 531349109 721980358 304813974 113025815 470230137 473595494 695394833 590106396 770183946 567622150 218239639 778627043 41761505 127248600 134450869 860350034 901937574", "output": "11937672853" }, { "input": "26\n619627716 984748623 486078822 98484005 537257421 2906012 62795060 635390669 103777246 829506385 971050595 92921538 851525695 680460920 893076074 780912144 401811723 221297659 269996214 991012900 242806521 626109821 987889730 682613155 209557740 806895799", "output": "14070510187" }, { "input": "26\n10 1 20 2 23 3 14 6 7 13 26 21 11 8 16 25 12 15 19 9 17 22 24 18 5 4", "output": "351" }, { "input": "3\n1 1 1", "output": "1" }, { "input": "5\n5 3 3 3 1", "output": "11" }, { "input": "5\n2 2 2 2 2", "output": "3" }, { "input": "10\n10 10 10 10 10 10 10 10 1 1", "output": "53" }, { "input": "10\n100 100 10 10 10 10 10 1 1 1", "output": "240" }, { "input": "6\n5 3 3 3 3 1", "output": "11" }, { "input": "4\n4 3 2 1", "output": "10" }, { "input": "5\n1 1 1 1 1", "output": "1" } ]
1,496,338,433
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
46
0
dicio = {} def vernodicio(x): if x not in dicio: dicio[x] = True return x else: return vernodicio(x-1) k = 0 x = int(input()) lista = map(int,raw_input().split()) dicio={} for i in range(x): v = vernodicio(lista[i]) k += v print (k)
Title: Making a String Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an alphabet consisting of *n* letters, your task is to make a string of the maximum possible length so that the following conditions are satisfied: - the *i*-th letter occurs in the string no more than *a**i* times; - the number of occurrences of each letter in the string must be distinct for all the letters that occurred in the string at least once. Input Specification: The first line of the input contains a single integer *n* (2<=<=≤<=<=*n*<=<=≤<=<=26) — the number of letters in the alphabet. The next line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — *i*-th of these integers gives the limitation on the number of occurrences of the *i*-th character in the string. Output Specification: Print a single integer — the maximum length of the string that meets all the requirements. Demo Input: ['3\n2 5 5\n', '3\n1 1 2\n'] Demo Output: ['11\n', '3\n'] Note: For convenience let's consider an alphabet consisting of three letters: "a", "b", "c". In the first sample, some of the optimal strings are: "cccaabbccbb", "aabcbcbcbcb". In the second sample some of the optimal strings are: "acc", "cbc".
```python dicio = {} def vernodicio(x): if x not in dicio: dicio[x] = True return x else: return vernodicio(x-1) k = 0 x = int(input()) lista = map(int,raw_input().split()) dicio={} for i in range(x): v = vernodicio(lista[i]) k += v print (k) ```
-1
906
A
Shockers
PROGRAMMING
1,600
[ "implementation", "strings" ]
null
null
Valentin participates in a show called "Shockers". The rules are quite easy: jury selects one letter which Valentin doesn't know. He should make a small speech, but every time he pronounces a word that contains the selected letter, he receives an electric shock. He can make guesses which letter is selected, but for each incorrect guess he receives an electric shock too. The show ends when Valentin guesses the selected letter correctly. Valentin can't keep in mind everything, so he could guess the selected letter much later than it can be uniquely determined and get excessive electric shocks. Excessive electric shocks are those which Valentin got after the moment the selected letter can be uniquely determined. You should find out the number of excessive electric shocks.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of actions Valentin did. The next *n* lines contain descriptions of his actions, each line contains description of one action. Each action can be of one of three types: 1. Valentin pronounced some word and didn't get an electric shock. This action is described by the string ". w" (without quotes), in which "." is a dot (ASCII-code 46), and *w* is the word that Valentin said. 1. Valentin pronounced some word and got an electric shock. This action is described by the string "! w" (without quotes), in which "!" is an exclamation mark (ASCII-code 33), and *w* is the word that Valentin said. 1. Valentin made a guess about the selected letter. This action is described by the string "? s" (without quotes), in which "?" is a question mark (ASCII-code 63), and *s* is the guess — a lowercase English letter. All words consist only of lowercase English letters. The total length of all words does not exceed 105. It is guaranteed that last action is a guess about the selected letter. Also, it is guaranteed that Valentin didn't make correct guesses about the selected letter before the last action. Moreover, it's guaranteed that if Valentin got an electric shock after pronouncing some word, then it contains the selected letter; and also if Valentin didn't get an electric shock after pronouncing some word, then it does not contain the selected letter.
Output a single integer — the number of electric shocks that Valentin could have avoided if he had told the selected letter just after it became uniquely determined.
[ "5\n! abc\n. ad\n. b\n! cd\n? c\n", "8\n! hello\n! codeforces\n? c\n. o\n? d\n? h\n. l\n? e\n", "7\n! ababahalamaha\n? a\n? b\n? a\n? b\n? a\n? h\n" ]
[ "1\n", "2\n", "0\n" ]
In the first test case after the first action it becomes clear that the selected letter is one of the following: *a*, *b*, *c*. After the second action we can note that the selected letter is not *a*. Valentin tells word "b" and doesn't get a shock. After that it is clear that the selected letter is *c*, but Valentin pronounces the word *cd* and gets an excessive electric shock. In the second test case after the first two electric shocks we understand that the selected letter is *e* or *o*. Valentin tries some words consisting of these letters and after the second word it's clear that the selected letter is *e*, but Valentin makes 3 more actions before he makes a correct hypothesis. In the third example the selected letter can be uniquely determined only when Valentin guesses it, so he didn't get excessive electric shocks.
500
[ { "input": "5\n! abc\n. ad\n. b\n! cd\n? c", "output": "1" }, { "input": "8\n! hello\n! codeforces\n? c\n. o\n? d\n? h\n. l\n? e", "output": "2" }, { "input": "7\n! ababahalamaha\n? a\n? b\n? a\n? b\n? a\n? h", "output": "0" }, { "input": "4\n! abcd\n! cdef\n? d\n? c", "output": "0" }, { "input": "1\n? q", "output": "0" }, { "input": "15\n. r\n? e\n. s\n. rw\n? y\n. fj\n. zftyd\n? r\n! wq\n? w\n? p\n. ours\n. dto\n. lbyfru\n? q", "output": "2" }, { "input": "3\n. abcdefghijklmnopqrstuvwxy\n? a\n? z", "output": "1" }, { "input": "3\n. abcdefghijklmnopqrstuvwxy\n! z\n? z", "output": "1" } ]
1,587,168,892
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
202
2,150,400
import sys input=sys.stdin.readline A=ord('a') left=set([chr(i+A) for i in range(26)]) bad=0 q=int(input()) for i in range(q-1): op,s = input().split() if op=='!': left=left&set(op) else: left=left-op bad += len(left)==1 print(bad)
Title: Shockers Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valentin participates in a show called "Shockers". The rules are quite easy: jury selects one letter which Valentin doesn't know. He should make a small speech, but every time he pronounces a word that contains the selected letter, he receives an electric shock. He can make guesses which letter is selected, but for each incorrect guess he receives an electric shock too. The show ends when Valentin guesses the selected letter correctly. Valentin can't keep in mind everything, so he could guess the selected letter much later than it can be uniquely determined and get excessive electric shocks. Excessive electric shocks are those which Valentin got after the moment the selected letter can be uniquely determined. You should find out the number of excessive electric shocks. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of actions Valentin did. The next *n* lines contain descriptions of his actions, each line contains description of one action. Each action can be of one of three types: 1. Valentin pronounced some word and didn't get an electric shock. This action is described by the string ". w" (without quotes), in which "." is a dot (ASCII-code 46), and *w* is the word that Valentin said. 1. Valentin pronounced some word and got an electric shock. This action is described by the string "! w" (without quotes), in which "!" is an exclamation mark (ASCII-code 33), and *w* is the word that Valentin said. 1. Valentin made a guess about the selected letter. This action is described by the string "? s" (without quotes), in which "?" is a question mark (ASCII-code 63), and *s* is the guess — a lowercase English letter. All words consist only of lowercase English letters. The total length of all words does not exceed 105. It is guaranteed that last action is a guess about the selected letter. Also, it is guaranteed that Valentin didn't make correct guesses about the selected letter before the last action. Moreover, it's guaranteed that if Valentin got an electric shock after pronouncing some word, then it contains the selected letter; and also if Valentin didn't get an electric shock after pronouncing some word, then it does not contain the selected letter. Output Specification: Output a single integer — the number of electric shocks that Valentin could have avoided if he had told the selected letter just after it became uniquely determined. Demo Input: ['5\n! abc\n. ad\n. b\n! cd\n? c\n', '8\n! hello\n! codeforces\n? c\n. o\n? d\n? h\n. l\n? e\n', '7\n! ababahalamaha\n? a\n? b\n? a\n? b\n? a\n? h\n'] Demo Output: ['1\n', '2\n', '0\n'] Note: In the first test case after the first action it becomes clear that the selected letter is one of the following: *a*, *b*, *c*. After the second action we can note that the selected letter is not *a*. Valentin tells word "b" and doesn't get a shock. After that it is clear that the selected letter is *c*, but Valentin pronounces the word *cd* and gets an excessive electric shock. In the second test case after the first two electric shocks we understand that the selected letter is *e* or *o*. Valentin tries some words consisting of these letters and after the second word it's clear that the selected letter is *e*, but Valentin makes 3 more actions before he makes a correct hypothesis. In the third example the selected letter can be uniquely determined only when Valentin guesses it, so he didn't get excessive electric shocks.
```python import sys input=sys.stdin.readline A=ord('a') left=set([chr(i+A) for i in range(26)]) bad=0 q=int(input()) for i in range(q-1): op,s = input().split() if op=='!': left=left&set(op) else: left=left-op bad += len(left)==1 print(bad) ```
-1
115
A
Party
PROGRAMMING
900
[ "dfs and similar", "graphs", "trees" ]
null
null
A company has *n* employees numbered from 1 to *n*. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee *A* is said to be the superior of another employee *B* if at least one of the following is true: - Employee *A* is the immediate manager of employee *B* - Employee *B* has an immediate manager employee *C* such that employee *A* is the superior of employee *C*. The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager. Today the company is going to arrange a party. This involves dividing all *n* employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees *A* and *B* such that *A* is the superior of *B*. What is the minimum number of groups that must be formed?
The first line contains integer *n* (1<=≤<=*n*<=≤<=2000) — the number of employees. The next *n* lines contain the integers *p**i* (1<=≤<=*p**i*<=≤<=*n* or *p**i*<==<=-1). Every *p**i* denotes the immediate manager for the *i*-th employee. If *p**i* is -1, that means that the *i*-th employee does not have an immediate manager. It is guaranteed, that no employee will be the immediate manager of him/herself (*p**i*<=≠<=*i*). Also, there will be no managerial cycles.
Print a single integer denoting the minimum number of groups that will be formed in the party.
[ "5\n-1\n1\n2\n1\n-1\n" ]
[ "3\n" ]
For the first example, three groups are sufficient, for example: - Employee 1 - Employees 2 and 4 - Employees 3 and 5
500
[ { "input": "5\n-1\n1\n2\n1\n-1", "output": "3" }, { "input": "4\n-1\n1\n2\n3", "output": "4" }, { "input": "12\n-1\n1\n2\n3\n-1\n5\n6\n7\n-1\n9\n10\n11", "output": "4" }, { "input": "6\n-1\n-1\n2\n3\n1\n1", "output": "3" }, { "input": "3\n-1\n1\n1", "output": "2" }, { "input": "1\n-1", "output": "1" }, { "input": "2\n2\n-1", "output": "2" }, { "input": "2\n-1\n-1", "output": "1" }, { "input": "3\n2\n-1\n1", "output": "3" }, { "input": "3\n-1\n-1\n-1", "output": "1" }, { "input": "5\n4\n5\n1\n-1\n4", "output": "3" }, { "input": "12\n-1\n1\n1\n1\n1\n1\n3\n4\n3\n3\n4\n7", "output": "4" }, { "input": "12\n-1\n-1\n1\n-1\n1\n1\n5\n11\n8\n6\n6\n4", "output": "5" }, { "input": "12\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n2\n-1\n-1\n-1", "output": "2" }, { "input": "12\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1", "output": "1" }, { "input": "12\n3\n4\n2\n8\n7\n1\n10\n12\n5\n-1\n9\n11", "output": "12" }, { "input": "12\n5\n6\n7\n1\n-1\n9\n12\n4\n8\n-1\n3\n2", "output": "11" }, { "input": "12\n-1\n9\n11\n6\n6\n-1\n6\n3\n8\n6\n1\n6", "output": "6" }, { "input": "12\n7\n8\n4\n12\n7\n9\n-1\n-1\n-1\n8\n6\n-1", "output": "3" }, { "input": "12\n-1\n10\n-1\n1\n-1\n5\n9\n12\n-1\n-1\n3\n-1", "output": "2" }, { "input": "12\n-1\n7\n9\n12\n1\n7\n-1\n-1\n8\n5\n4\n-1", "output": "3" }, { "input": "12\n11\n11\n8\n9\n1\n1\n2\n-1\n10\n3\n-1\n8", "output": "5" }, { "input": "12\n-1\n8\n9\n-1\n4\n2\n11\n1\n-1\n6\n-1\n10", "output": "6" }, { "input": "12\n7\n4\n4\n-1\n6\n7\n9\n7\n-1\n7\n4\n1", "output": "4" }, { "input": "12\n-1\n6\n10\n6\n1\n11\n5\n9\n11\n5\n1\n9", "output": "4" }, { "input": "12\n8\n6\n6\n8\n6\n-1\n6\n6\n8\n6\n8\n8", "output": "3" }, { "input": "12\n3\n8\n9\n12\n2\n8\n11\n12\n2\n9\n-1\n11", "output": "7" }, { "input": "7\n7\n6\n-1\n-1\n4\n4\n-1", "output": "3" }, { "input": "77\n53\n-1\n48\n-1\n51\n-1\n54\n43\n70\n19\n64\n31\n45\n58\n6\n61\n41\n56\n34\n-1\n54\n-1\n66\n65\n74\n16\n38\n1\n2\n61\n-1\n34\n-1\n-1\n7\n19\n57\n13\n61\n42\n-1\n34\n65\n16\n31\n61\n6\n5\n34\n15\n-1\n13\n4\n22\n74\n7\n-1\n70\n38\n61\n45\n53\n46\n22\n-1\n65\n34\n19\n43\n48\n33\n58\n36\n-1\n47\n24\n34", "output": "6" }, { "input": "5\n2\n3\n4\n5\n-1", "output": "5" } ]
1,645,789,990
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
60
0
n=int(input()) p=[] for i in range(n): p.append(int(input())) print(len(set(p)))
Title: Party Time Limit: None seconds Memory Limit: None megabytes Problem Description: A company has *n* employees numbered from 1 to *n*. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee *A* is said to be the superior of another employee *B* if at least one of the following is true: - Employee *A* is the immediate manager of employee *B* - Employee *B* has an immediate manager employee *C* such that employee *A* is the superior of employee *C*. The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager. Today the company is going to arrange a party. This involves dividing all *n* employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees *A* and *B* such that *A* is the superior of *B*. What is the minimum number of groups that must be formed? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=2000) — the number of employees. The next *n* lines contain the integers *p**i* (1<=≤<=*p**i*<=≤<=*n* or *p**i*<==<=-1). Every *p**i* denotes the immediate manager for the *i*-th employee. If *p**i* is -1, that means that the *i*-th employee does not have an immediate manager. It is guaranteed, that no employee will be the immediate manager of him/herself (*p**i*<=≠<=*i*). Also, there will be no managerial cycles. Output Specification: Print a single integer denoting the minimum number of groups that will be formed in the party. Demo Input: ['5\n-1\n1\n2\n1\n-1\n'] Demo Output: ['3\n'] Note: For the first example, three groups are sufficient, for example: - Employee 1 - Employees 2 and 4 - Employees 3 and 5
```python n=int(input()) p=[] for i in range(n): p.append(int(input())) print(len(set(p))) ```
0
887
C
Solution for Cube
PROGRAMMING
1,500
[ "brute force", "implementation" ]
null
null
During the breaks between competitions, top-model Izabella tries to develop herself and not to be bored. For example, now she tries to solve Rubik's cube 2x2x2. It's too hard to learn to solve Rubik's cube instantly, so she learns to understand if it's possible to solve the cube in some state using 90-degrees rotation of one face of the cube in any direction. To check her answers she wants to use a program which will for some state of cube tell if it's possible to solve it using one rotation, described above. Cube is called solved if for each face of cube all squares on it has the same color. https://en.wikipedia.org/wiki/Rubik's_Cube
In first line given a sequence of 24 integers *a**i* (1<=≤<=*a**i*<=≤<=6), where *a**i* denotes color of *i*-th square. There are exactly 4 occurrences of all colors in this sequence.
Print «YES» (without quotes) if it's possible to solve cube using one rotation and «NO» (without quotes) otherwise.
[ "2 5 4 6 1 3 6 2 5 5 1 2 3 5 3 1 1 2 4 6 6 4 3 4\n", "5 3 5 3 2 5 2 5 6 2 6 2 4 4 4 4 1 1 1 1 6 3 6 3\n" ]
[ "NO", "YES" ]
In first test case cube looks like this: In second test case cube looks like this: It's possible to solve cube by rotating face with squares with numbers 13, 14, 15, 16.
1,500
[ { "input": "2 5 4 6 1 3 6 2 5 5 1 2 3 5 3 1 1 2 4 6 6 4 3 4", "output": "NO" }, { "input": "5 3 5 3 2 5 2 5 6 2 6 2 4 4 4 4 1 1 1 1 6 3 6 3", "output": "YES" }, { "input": "2 6 3 3 5 5 2 6 1 1 6 4 4 4 2 4 6 5 3 1 2 5 3 1", "output": "NO" }, { "input": "3 4 2 3 5 5 6 6 4 5 4 6 5 1 1 1 6 2 1 3 3 2 4 2", "output": "NO" }, { "input": "5 5 2 5 3 3 2 6 6 4 2 4 6 1 4 3 1 6 2 1 3 4 5 1", "output": "NO" }, { "input": "6 6 1 2 6 1 1 3 5 4 3 4 3 5 5 2 4 4 6 2 1 5 3 2", "output": "NO" }, { "input": "2 2 1 1 5 5 5 5 3 3 4 4 1 4 1 4 2 3 2 3 6 6 6 6", "output": "YES" }, { "input": "1 1 1 1 5 5 3 3 4 4 4 4 3 3 2 2 6 6 5 5 2 2 6 6", "output": "YES" }, { "input": "1 1 1 1 3 3 3 3 5 5 5 5 2 2 2 2 4 4 4 4 6 6 6 6", "output": "NO" }, { "input": "5 4 5 4 4 6 4 6 6 3 6 3 1 1 1 1 2 2 2 2 5 3 5 3", "output": "YES" }, { "input": "3 3 5 5 2 2 2 2 6 6 4 4 6 3 6 3 4 5 4 5 1 1 1 1", "output": "YES" }, { "input": "6 6 6 6 2 2 5 5 1 1 1 1 4 4 2 2 5 5 3 3 3 3 4 4", "output": "YES" }, { "input": "4 6 4 6 6 1 6 1 1 3 1 3 2 2 2 2 5 5 5 5 4 3 4 3", "output": "YES" }, { "input": "6 6 2 2 3 3 3 3 4 4 5 5 4 6 4 6 5 2 5 2 1 1 1 1", "output": "YES" }, { "input": "3 3 3 3 4 4 5 5 1 1 1 1 2 2 4 4 5 5 6 6 6 6 2 2", "output": "YES" }, { "input": "2 5 2 5 4 2 4 2 1 4 1 4 6 6 6 6 3 3 3 3 1 5 1 5", "output": "YES" }, { "input": "4 4 3 3 5 5 5 5 1 1 6 6 3 6 3 6 4 1 4 1 2 2 2 2", "output": "YES" }, { "input": "5 5 5 5 6 6 2 2 3 3 3 3 2 2 1 1 4 4 6 6 1 1 4 4", "output": "YES" }, { "input": "1 4 3 4 2 6 5 2 1 5 1 6 3 4 3 6 5 5 1 3 2 6 4 2", "output": "NO" }, { "input": "4 4 2 5 3 2 4 2 5 3 6 4 6 5 1 3 1 5 6 3 1 1 6 2", "output": "NO" }, { "input": "4 5 3 4 5 5 6 3 2 5 1 6 2 1 6 3 1 4 2 3 2 6 1 4", "output": "NO" }, { "input": "3 3 2 3 6 4 4 4 1 2 1 3 2 5 6 6 1 2 6 5 4 5 1 5", "output": "NO" }, { "input": "5 6 1 1 4 5 6 5 4 6 2 1 4 2 6 5 3 2 3 2 3 1 3 4", "output": "NO" }, { "input": "4 4 4 5 2 3 4 1 3 3 1 5 6 5 6 6 1 3 6 2 5 2 1 2", "output": "NO" }, { "input": "3 2 5 6 1 4 3 4 6 5 4 3 2 3 2 2 1 4 1 1 6 5 6 5", "output": "NO" }, { "input": "5 4 6 2 5 6 4 1 6 3 3 1 3 2 4 1 1 6 2 3 5 2 4 5", "output": "NO" }, { "input": "6 6 3 1 5 6 5 3 2 5 3 1 2 4 1 6 4 5 2 2 4 1 3 4", "output": "NO" }, { "input": "6 5 4 1 6 5 2 3 3 5 3 6 4 2 6 5 4 2 1 1 4 1 3 2", "output": "NO" }, { "input": "1 3 5 6 4 4 4 3 5 2 2 2 3 1 5 6 3 4 6 5 1 2 1 6", "output": "NO" }, { "input": "3 6 5 4 4 6 1 4 3 2 5 2 1 2 6 2 5 4 1 3 1 6 5 3", "output": "NO" }, { "input": "5 2 6 1 5 3 5 3 1 1 3 6 6 2 4 2 5 4 4 2 1 3 4 6", "output": "NO" }, { "input": "2 5 6 2 3 6 5 6 2 3 1 3 6 4 5 4 1 1 1 5 3 4 4 2", "output": "NO" }, { "input": "4 5 4 4 3 3 1 2 3 1 1 5 2 2 5 6 6 4 3 2 6 5 1 6", "output": "NO" }, { "input": "5 2 5 2 3 5 3 5 4 3 4 3 6 6 6 6 1 1 1 1 4 2 4 2", "output": "YES" }, { "input": "2 4 2 4 4 5 4 5 5 1 5 1 3 3 3 3 6 6 6 6 2 1 2 1", "output": "YES" }, { "input": "3 5 3 5 5 1 5 1 1 4 1 4 6 6 6 6 2 2 2 2 3 4 3 4", "output": "YES" }, { "input": "2 1 2 1 4 2 4 2 6 4 6 4 5 5 5 5 3 3 3 3 6 1 6 1", "output": "YES" }, { "input": "4 4 2 2 1 1 1 1 5 5 6 6 2 6 2 6 4 5 4 5 3 3 3 3", "output": "YES" }, { "input": "1 1 2 2 4 4 4 4 5 5 6 6 5 1 5 1 6 2 6 2 3 3 3 3", "output": "YES" }, { "input": "2 2 6 6 4 4 4 4 1 1 5 5 1 2 1 2 5 6 5 6 3 3 3 3", "output": "YES" }, { "input": "2 2 3 3 6 6 6 6 4 4 1 1 3 1 3 1 2 4 2 4 5 5 5 5", "output": "YES" }, { "input": "6 6 6 6 4 4 3 3 5 5 5 5 3 3 1 1 2 2 4 4 1 1 2 2", "output": "YES" }, { "input": "2 2 2 2 4 4 5 5 3 3 3 3 6 6 4 4 5 5 1 1 1 1 6 6", "output": "YES" }, { "input": "1 1 1 1 5 5 6 6 3 3 3 3 4 4 5 5 6 6 2 2 2 2 4 4", "output": "YES" }, { "input": "4 4 4 4 2 2 3 3 1 1 1 1 3 3 6 6 5 5 2 2 6 6 5 5", "output": "YES" }, { "input": "1 1 1 1 2 2 3 3 6 6 6 6 5 5 4 4 3 3 2 2 4 4 5 5", "output": "NO" }, { "input": "1 1 2 2 3 3 1 1 2 2 3 3 4 4 4 4 5 5 5 5 6 6 6 6", "output": "NO" }, { "input": "5 5 5 5 1 1 2 2 6 6 6 6 4 4 3 3 3 3 4 4 2 2 1 1", "output": "NO" } ]
1,665,458,923
2,147,483,647
Python 3
OK
TESTS
48
46
0
import sys input = sys.stdin.readline def f(a1, b1, c1, d1, e1, f1, g): a, b, c, d, e, f = a1.copy(), b1.copy(), c1.copy(), d1.copy(), e1.copy(), f1.copy() if len(set(a)) == len(set(b)) == 1: if g == 1: for i in [c, d, e, f]: i[1], i[2] = i[2], i[1] elif g == 2: d[1], d[2] = d[2], d[1] e[0], e[1], e[2], e[3] = e[2], e[3], e[0], e[1] f[0], f[3] = f[3], f[0] if f[0] == f[1]: x = f[0] for i1, i2, i3, i4 in [c,d,e,f]: if x == i3 == i4: if i1 == i2: x = i1 else: break else: break else: return 1 x = f[0] for i1, i2, i3, i4 in [e,d,c,f]: if x == i3 == i4: if i1 == i2: x = i1 else: break else: break else: return 1 return 0 w = list(map(int, input().split())) a1 = w[:4] a2 = w[4:8] a3 = w[8:12] a4 = w[12:16] a5 = w[16:20] a6 = [w[21], w[20], w[23], w[22]] if sum([f(a1, a3, a4, a2, a5, a6, 0), f(a2, a6, a1, a4, a3, a5, 2), f(a4, a5, a1, a2, a3, a6, 1)]) >= 1: print('YES') else: print('NO')
Title: Solution for Cube Time Limit: None seconds Memory Limit: None megabytes Problem Description: During the breaks between competitions, top-model Izabella tries to develop herself and not to be bored. For example, now she tries to solve Rubik's cube 2x2x2. It's too hard to learn to solve Rubik's cube instantly, so she learns to understand if it's possible to solve the cube in some state using 90-degrees rotation of one face of the cube in any direction. To check her answers she wants to use a program which will for some state of cube tell if it's possible to solve it using one rotation, described above. Cube is called solved if for each face of cube all squares on it has the same color. https://en.wikipedia.org/wiki/Rubik's_Cube Input Specification: In first line given a sequence of 24 integers *a**i* (1<=≤<=*a**i*<=≤<=6), where *a**i* denotes color of *i*-th square. There are exactly 4 occurrences of all colors in this sequence. Output Specification: Print «YES» (without quotes) if it's possible to solve cube using one rotation and «NO» (without quotes) otherwise. Demo Input: ['2 5 4 6 1 3 6 2 5 5 1 2 3 5 3 1 1 2 4 6 6 4 3 4\n', '5 3 5 3 2 5 2 5 6 2 6 2 4 4 4 4 1 1 1 1 6 3 6 3\n'] Demo Output: ['NO', 'YES'] Note: In first test case cube looks like this: In second test case cube looks like this: It's possible to solve cube by rotating face with squares with numbers 13, 14, 15, 16.
```python import sys input = sys.stdin.readline def f(a1, b1, c1, d1, e1, f1, g): a, b, c, d, e, f = a1.copy(), b1.copy(), c1.copy(), d1.copy(), e1.copy(), f1.copy() if len(set(a)) == len(set(b)) == 1: if g == 1: for i in [c, d, e, f]: i[1], i[2] = i[2], i[1] elif g == 2: d[1], d[2] = d[2], d[1] e[0], e[1], e[2], e[3] = e[2], e[3], e[0], e[1] f[0], f[3] = f[3], f[0] if f[0] == f[1]: x = f[0] for i1, i2, i3, i4 in [c,d,e,f]: if x == i3 == i4: if i1 == i2: x = i1 else: break else: break else: return 1 x = f[0] for i1, i2, i3, i4 in [e,d,c,f]: if x == i3 == i4: if i1 == i2: x = i1 else: break else: break else: return 1 return 0 w = list(map(int, input().split())) a1 = w[:4] a2 = w[4:8] a3 = w[8:12] a4 = w[12:16] a5 = w[16:20] a6 = [w[21], w[20], w[23], w[22]] if sum([f(a1, a3, a4, a2, a5, a6, 0), f(a2, a6, a1, a4, a3, a5, 2), f(a4, a5, a1, a2, a3, a6, 1)]) >= 1: print('YES') else: print('NO') ```
3
982
A
Row
PROGRAMMING
1,200
[ "brute force", "constructive algorithms" ]
null
null
You're given a row with $n$ chairs. We call a seating of people "maximal" if the two following conditions hold: 1. There are no neighbors adjacent to anyone seated. 1. It's impossible to seat one more person without violating the first rule. The seating is given as a string consisting of zeros and ones ($0$ means that the corresponding seat is empty, $1$ — occupied). The goal is to determine whether this seating is "maximal". Note that the first and last seats are not adjacent (if $n \ne 2$).
The first line contains a single integer $n$ ($1 \leq n \leq 1000$) — the number of chairs. The next line contains a string of $n$ characters, each of them is either zero or one, describing the seating.
Output "Yes" (without quotation marks) if the seating is "maximal". Otherwise print "No". You are allowed to print letters in whatever case you'd like (uppercase or lowercase).
[ "3\n101\n", "4\n1011\n", "5\n10001\n" ]
[ "Yes\n", "No\n", "No\n" ]
In sample case one the given seating is maximal. In sample case two the person at chair three has a neighbour to the right. In sample case three it is possible to seat yet another person into chair three.
500
[ { "input": "3\n101", "output": "Yes" }, { "input": "4\n1011", "output": "No" }, { "input": "5\n10001", "output": "No" }, { "input": "1\n0", "output": "No" }, { "input": "1\n1", "output": "Yes" }, { "input": "100\n0101001010101001010010010101001010100101001001001010010101010010101001001010101001001001010100101010", "output": "Yes" }, { "input": "4\n0100", "output": "No" }, { "input": "42\n011000100101001001101011011010100010011010", "output": "No" }, { "input": "3\n001", "output": "No" }, { "input": "64\n1001001010010010100101010010010100100101001001001001010100101001", "output": "Yes" }, { "input": "3\n111", "output": "No" }, { "input": "4\n0000", "output": "No" }, { "input": "4\n0001", "output": "No" }, { "input": "4\n0010", "output": "No" }, { "input": "4\n0011", "output": "No" }, { "input": "4\n0101", "output": "Yes" }, { "input": "4\n0110", "output": "No" }, { "input": "4\n0111", "output": "No" }, { "input": "4\n1000", "output": "No" }, { "input": "4\n1001", "output": "Yes" }, { "input": "4\n1010", "output": "Yes" }, { "input": "4\n1100", "output": "No" }, { "input": "4\n1101", "output": "No" }, { "input": "4\n1110", "output": "No" }, { "input": "4\n1111", "output": "No" }, { "input": "2\n00", "output": "No" }, { "input": "2\n01", "output": "Yes" }, { "input": "2\n10", "output": "Yes" }, { "input": "2\n11", "output": "No" }, { "input": "3\n000", "output": "No" }, { "input": "3\n010", "output": "Yes" }, { "input": "3\n011", "output": "No" }, { "input": "3\n100", "output": "No" }, { "input": "3\n110", "output": "No" }, { "input": "100\n0111001010101110001100000010011000100101110010001100111110101110001110101010111000010010011000000110", "output": "No" }, { "input": "357\n100101010010010010010100101001001010101010100100100100101001010101001010010100101001010100101001010010100100101001010101010101001001010100101010010100101001010100100100101010010010010100101010010010101001010010010101001001010010010101010100100101010010100100101001010100101001010100101001010010010010100101001010100100100100100100100101010101010010010100101", "output": "Yes" }, { "input": "459\n000111000101010000100001001010111110011011010001100101111010111011101110111101111101100101100011011001100110001001111001101000111001011100110100011111011111000010000110010011100110011011111110011100001101001111000100111011001000001011111100110100001001001100101011100001110110100101011011110100100111101011000101110000100110100100010000000100001001111111000011101010010011001111010111001100000100111001010111011010000011000011100101101011101000011011000110011", "output": "No" }, { "input": "3\n001", "output": "No" }, { "input": "4\n0010", "output": "No" }, { "input": "3\n111", "output": "No" }, { "input": "4\n0110", "output": "No" }, { "input": "2\n11", "output": "No" }, { "input": "2\n10", "output": "Yes" }, { "input": "2\n01", "output": "Yes" }, { "input": "4\n1101", "output": "No" }, { "input": "2\n00", "output": "No" }, { "input": "4\n1111", "output": "No" }, { "input": "15\n000010101010000", "output": "No" }, { "input": "8\n10010100", "output": "No" }, { "input": "5\n00100", "output": "No" }, { "input": "6\n100100", "output": "No" }, { "input": "7\n1000001", "output": "No" }, { "input": "98\n10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010", "output": "Yes" } ]
1,584,792,261
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
3
186
2,048,000
def main(): n = int(input()) s = input() flag = False for i in range(n): if s[i] == '1' and i+1 < n: if s[i+1] == '1': flag = True break if s[i] == '0': if 1 <= i < n-1: if s[i-1] == '0' and s[i+1] == '0': flag = True break elif i==0 and s[i+1]=='0': flag = True break elif i==n-1 and s[i-1]=='0': flag=True break if flag: print("No") else: print("Yes") if __name__ == '__main__': main()
Title: Row Time Limit: None seconds Memory Limit: None megabytes Problem Description: You're given a row with $n$ chairs. We call a seating of people "maximal" if the two following conditions hold: 1. There are no neighbors adjacent to anyone seated. 1. It's impossible to seat one more person without violating the first rule. The seating is given as a string consisting of zeros and ones ($0$ means that the corresponding seat is empty, $1$ — occupied). The goal is to determine whether this seating is "maximal". Note that the first and last seats are not adjacent (if $n \ne 2$). Input Specification: The first line contains a single integer $n$ ($1 \leq n \leq 1000$) — the number of chairs. The next line contains a string of $n$ characters, each of them is either zero or one, describing the seating. Output Specification: Output "Yes" (without quotation marks) if the seating is "maximal". Otherwise print "No". You are allowed to print letters in whatever case you'd like (uppercase or lowercase). Demo Input: ['3\n101\n', '4\n1011\n', '5\n10001\n'] Demo Output: ['Yes\n', 'No\n', 'No\n'] Note: In sample case one the given seating is maximal. In sample case two the person at chair three has a neighbour to the right. In sample case three it is possible to seat yet another person into chair three.
```python def main(): n = int(input()) s = input() flag = False for i in range(n): if s[i] == '1' and i+1 < n: if s[i+1] == '1': flag = True break if s[i] == '0': if 1 <= i < n-1: if s[i-1] == '0' and s[i+1] == '0': flag = True break elif i==0 and s[i+1]=='0': flag = True break elif i==n-1 and s[i-1]=='0': flag=True break if flag: print("No") else: print("Yes") if __name__ == '__main__': main() ```
-1
32
B
Borze
PROGRAMMING
800
[ "expression parsing", "implementation" ]
B. Borze
2
256
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output the decoded ternary number. It can have leading zeroes.
[ ".-.--\n", "--.\n", "-..-.--\n" ]
[ "012", "20", "1012" ]
none
1,000
[ { "input": ".-.--", "output": "012" }, { "input": "--.", "output": "20" }, { "input": "-..-.--", "output": "1012" }, { "input": "---..", "output": "210" }, { "input": "..--.---..", "output": "0020210" }, { "input": "-.....----.", "output": "10000220" }, { "input": ".", "output": "0" }, { "input": "-.", "output": "1" }, { "input": "--", "output": "2" }, { "input": "..", "output": "00" }, { "input": "--.", "output": "20" }, { "input": ".--.", "output": "020" }, { "input": ".-.-..", "output": "0110" }, { "input": "----.-.", "output": "2201" }, { "input": "-..--.-.", "output": "10201" }, { "input": "..--..--.", "output": "0020020" }, { "input": "-.-.---.--..-..-.-.-..-..-.--.", "output": "112120010111010120" }, { "input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.", "output": "21112220010101011012011011221011" }, { "input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------", "output": "11020111110111222212021020002022111100201121222020012022110010222" }, { "input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..", "output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110" }, { "input": ".-..-.-.---.-----.--.---...-.--.-.-....-..", "output": "01011212212021001201100010" }, { "input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..", "output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210" }, { "input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.", "output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220" }, { "input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----", "output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122" }, { "input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..", "output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110" }, { "input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.", "output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020" }, { "input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..", "output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200" }, { "input": "-.---...----...--.--...-.--.----", "output": "121002200020200012022" }, { "input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.", "output": "202020212012111010201021100001021221200011222112012201012220" } ]
1,595,401,290
2,147,483,647
Python 3
OK
TESTS
30
216
6,758,400
def borze(): s=input() size=len(s) i=0 ans='' while i<size: if s[i]=='.': ans=ans+'0' i=i+1 elif s[i]=='-': if s[i:i+2]=='-.': ans=ans+'1' i=i+2 elif s[i:i+2]=='--': ans=ans+'2' i=i+2 print(ans) borze()
Title: Borze Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet. Input Specification: The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes). Output Specification: Output the decoded ternary number. It can have leading zeroes. Demo Input: ['.-.--\n', '--.\n', '-..-.--\n'] Demo Output: ['012', '20', '1012'] Note: none
```python def borze(): s=input() size=len(s) i=0 ans='' while i<size: if s[i]=='.': ans=ans+'0' i=i+1 elif s[i]=='-': if s[i:i+2]=='-.': ans=ans+'1' i=i+2 elif s[i:i+2]=='--': ans=ans+'2' i=i+2 print(ans) borze() ```
3.933411
110
A
Nearly Lucky Number
PROGRAMMING
800
[ "implementation" ]
A. Nearly Lucky Number
2
256
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number *n* is a nearly lucky number.
The only line contains an integer *n* (1<=≤<=*n*<=≤<=1018). Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use the cin, cout streams or the %I64d specificator.
Print on the single line "YES" if *n* is a nearly lucky number. Otherwise, print "NO" (without the quotes).
[ "40047\n", "7747774\n", "1000000000000000000\n" ]
[ "NO\n", "YES\n", "NO\n" ]
In the first sample there are 3 lucky digits (first one and last two), so the answer is "NO". In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is "YES". In the third sample there are no lucky digits, so the answer is "NO".
500
[ { "input": "40047", "output": "NO" }, { "input": "7747774", "output": "YES" }, { "input": "1000000000000000000", "output": "NO" }, { "input": "7", "output": "NO" }, { "input": "4", "output": "NO" }, { "input": "474404774", "output": "NO" }, { "input": "4744000695826", "output": "YES" }, { "input": "10000000004744744", "output": "YES" }, { "input": "446486416781684178", "output": "YES" }, { "input": "999999999", "output": "NO" }, { "input": "7777", "output": "YES" }, { "input": "87414417444", "output": "NO" }, { "input": "111222333444555667", "output": "YES" }, { "input": "1", "output": "NO" }, { "input": "4700", "output": "NO" }, { "input": "3794555488744477", "output": "NO" }, { "input": "444444444444444444", "output": "NO" }, { "input": "474447447774444774", "output": "NO" }, { "input": "777777777777777", "output": "NO" }, { "input": "34777745021000000", "output": "NO" }, { "input": "963", "output": "NO" }, { "input": "855474448854788540", "output": "NO" }, { "input": "999999999999994744", "output": "YES" }, { "input": "400000000474", "output": "YES" }, { "input": "123456789123456789", "output": "YES" }, { "input": "740577777584945874", "output": "NO" }, { "input": "7777777", "output": "YES" }, { "input": "4444000111222333", "output": "YES" }, { "input": "9847745885202111", "output": "YES" }, { "input": "123456000000", "output": "NO" }, { "input": "4744447444444", "output": "NO" }, { "input": "7477", "output": "YES" }, { "input": "4747477", "output": "YES" }, { "input": "777777777444444444", "output": "NO" } ]
1,694,527,303
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
60
0
inp=input() st='' for i in inp: if i=="4" or i =="7": st+=i if len(inp)==len(st): print("YES") else: print("NO")
Title: Nearly Lucky Number Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number *n* is a nearly lucky number. Input Specification: The only line contains an integer *n* (1<=≤<=*n*<=≤<=1018). Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use the cin, cout streams or the %I64d specificator. Output Specification: Print on the single line "YES" if *n* is a nearly lucky number. Otherwise, print "NO" (without the quotes). Demo Input: ['40047\n', '7747774\n', '1000000000000000000\n'] Demo Output: ['NO\n', 'YES\n', 'NO\n'] Note: In the first sample there are 3 lucky digits (first one and last two), so the answer is "NO". In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is "YES". In the third sample there are no lucky digits, so the answer is "NO".
```python inp=input() st='' for i in inp: if i=="4" or i =="7": st+=i if len(inp)==len(st): print("YES") else: print("NO") ```
0
567
A
Lineland Mail
PROGRAMMING
900
[ "greedy", "implementation" ]
null
null
All cities of Lineland are located on the *Ox* coordinate axis. Thus, each city is associated with its position *x**i* — a coordinate on the *Ox* axis. No two cities are located at a single point. Lineland residents love to send letters to each other. A person may send a letter only if the recipient lives in another city (because if they live in the same city, then it is easier to drop in). Strange but true, the cost of sending the letter is exactly equal to the distance between the sender's city and the recipient's city. For each city calculate two values ​​*min**i* and *max**i*, where *min**i* is the minimum cost of sending a letter from the *i*-th city to some other city, and *max**i* is the the maximum cost of sending a letter from the *i*-th city to some other city
The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of cities in Lineland. The second line contains the sequence of *n* distinct integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=109<=≤<=*x**i*<=≤<=109), where *x**i* is the *x*-coordinate of the *i*-th city. All the *x**i*'s are distinct and follow in ascending order.
Print *n* lines, the *i*-th line must contain two integers *min**i*,<=*max**i*, separated by a space, where *min**i* is the minimum cost of sending a letter from the *i*-th city, and *max**i* is the maximum cost of sending a letter from the *i*-th city.
[ "4\n-5 -2 2 7\n", "2\n-1 1\n" ]
[ "3 12\n3 9\n4 7\n5 12\n", "2 2\n2 2\n" ]
none
500
[ { "input": "4\n-5 -2 2 7", "output": "3 12\n3 9\n4 7\n5 12" }, { "input": "2\n-1 1", "output": "2 2\n2 2" }, { "input": "3\n-1 0 1", "output": "1 2\n1 1\n1 2" }, { "input": "4\n-1 0 1 3", "output": "1 4\n1 3\n1 2\n2 4" }, { "input": "3\n-1000000000 0 1000000000", "output": "1000000000 2000000000\n1000000000 1000000000\n1000000000 2000000000" }, { "input": "2\n-1000000000 1000000000", "output": "2000000000 2000000000\n2000000000 2000000000" }, { "input": "10\n1 10 12 15 59 68 130 912 1239 9123", "output": "9 9122\n2 9113\n2 9111\n3 9108\n9 9064\n9 9055\n62 8993\n327 8211\n327 7884\n7884 9122" }, { "input": "5\n-2 -1 0 1 2", "output": "1 4\n1 3\n1 2\n1 3\n1 4" }, { "input": "5\n-2 -1 0 1 3", "output": "1 5\n1 4\n1 3\n1 3\n2 5" }, { "input": "3\n-10000 1 10000", "output": "10001 20000\n9999 10001\n9999 20000" }, { "input": "5\n-1000000000 -999999999 -999999998 -999999997 -999999996", "output": "1 4\n1 3\n1 2\n1 3\n1 4" }, { "input": "10\n-857422304 -529223472 82412729 145077145 188538640 265299215 527377039 588634631 592896147 702473706", "output": "328198832 1559896010\n328198832 1231697178\n62664416 939835033\n43461495 1002499449\n43461495 1045960944\n76760575 1122721519\n61257592 1384799343\n4261516 1446056935\n4261516 1450318451\n109577559 1559896010" }, { "input": "10\n-876779400 -829849659 -781819137 -570920213 18428128 25280705 121178189 219147240 528386329 923854124", "output": "46929741 1800633524\n46929741 1753703783\n48030522 1705673261\n210898924 1494774337\n6852577 905425996\n6852577 902060105\n95897484 997957589\n97969051 1095926640\n309239089 1405165729\n395467795 1800633524" }, { "input": "30\n-15 1 21 25 30 40 59 60 77 81 97 100 103 123 139 141 157 158 173 183 200 215 226 231 244 256 267 279 289 292", "output": "16 307\n16 291\n4 271\n4 267\n5 262\n10 252\n1 233\n1 232\n4 215\n4 211\n3 195\n3 192\n3 189\n16 169\n2 154\n2 156\n1 172\n1 173\n10 188\n10 198\n15 215\n11 230\n5 241\n5 246\n12 259\n11 271\n11 282\n10 294\n3 304\n3 307" }, { "input": "10\n-1000000000 -999999999 -999999997 -999999996 -999999995 -999999994 -999999992 -999999990 -999999988 -999999986", "output": "1 14\n1 13\n1 11\n1 10\n1 9\n1 8\n2 8\n2 10\n2 12\n2 14" }, { "input": "50\n-50000 -49459 -48875 -48456 -48411 -48096 -47901 -47500 -47150 -46808 -46687 -46679 -46337 -45747 -45604 -45194 -44752 -44242 -44231 -44122 -43636 -43274 -42916 -42881 -42386 -42095 -41830 -41618 -41145 -40897 -40534 -40007 -39761 -39389 -39104 -38909 -38630 -38561 -38364 -38255 -38214 -38084 -37959 -37607 -37202 -36890 -36681 -36136 -36123 -35886", "output": "541 14114\n541 13573\n419 12989\n45 12570\n45 12525\n195 12210\n195 12015\n350 11614\n342 11264\n121 10922\n8 10801\n8 10793\n342 10451\n143 9861\n143 9718\n410 9308\n442 8866\n11 8356\n11 8345\n109 8236\n362 7750\n358 7388\n35 7084\n35 7119\n291 7614\n265 7905\n212 8170\n212 8382\n248 8855\n248 9103\n363 9466\n246 9993\n246 10239\n285 10611\n195 10896\n195 11091\n69 11370\n69 11439\n109 11636\n41 11745\n41 11786\n125 11916\n125 12041\n352 12393\n312 12798\n209 13110\n209 13319\n13 13864\n13 13877\n237 141..." }, { "input": "3\n-1000000000 999999999 1000000000", "output": "1999999999 2000000000\n1 1999999999\n1 2000000000" } ]
1,671,531,545
2,147,483,647
PyPy 3-64
TIME_LIMIT_EXCEEDED
TESTS
10
3,000
16,998,400
a = int(input()) c = list(map(int, input().split())) l = [] for i in c: lc = [] for d in range(a): lc.append(abs(i-c[d])) if 0 in lc: lc.remove(0) print(min(lc),max(lc))
Title: Lineland Mail Time Limit: None seconds Memory Limit: None megabytes Problem Description: All cities of Lineland are located on the *Ox* coordinate axis. Thus, each city is associated with its position *x**i* — a coordinate on the *Ox* axis. No two cities are located at a single point. Lineland residents love to send letters to each other. A person may send a letter only if the recipient lives in another city (because if they live in the same city, then it is easier to drop in). Strange but true, the cost of sending the letter is exactly equal to the distance between the sender's city and the recipient's city. For each city calculate two values ​​*min**i* and *max**i*, where *min**i* is the minimum cost of sending a letter from the *i*-th city to some other city, and *max**i* is the the maximum cost of sending a letter from the *i*-th city to some other city Input Specification: The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of cities in Lineland. The second line contains the sequence of *n* distinct integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=109<=≤<=*x**i*<=≤<=109), where *x**i* is the *x*-coordinate of the *i*-th city. All the *x**i*'s are distinct and follow in ascending order. Output Specification: Print *n* lines, the *i*-th line must contain two integers *min**i*,<=*max**i*, separated by a space, where *min**i* is the minimum cost of sending a letter from the *i*-th city, and *max**i* is the maximum cost of sending a letter from the *i*-th city. Demo Input: ['4\n-5 -2 2 7\n', '2\n-1 1\n'] Demo Output: ['3 12\n3 9\n4 7\n5 12\n', '2 2\n2 2\n'] Note: none
```python a = int(input()) c = list(map(int, input().split())) l = [] for i in c: lc = [] for d in range(a): lc.append(abs(i-c[d])) if 0 in lc: lc.remove(0) print(min(lc),max(lc)) ```
0
980
A
Links and Pearls
PROGRAMMING
900
[ "implementation", "math" ]
null
null
A necklace can be described as a string of links ('-') and pearls ('o'), with the last link or pearl connected to the first one. You can remove a link or a pearl and insert it between two other existing links or pearls (or between a link and a pearl) on the necklace. This process can be repeated as many times as you like, but you can't throw away any parts. Can you make the number of links between every two adjacent pearls equal? Two pearls are considered to be adjacent if there is no other pearl between them. Note that the final necklace should remain as one circular part of the same length as the initial necklace.
The only line of input contains a string $s$ ($3 \leq |s| \leq 100$), representing the necklace, where a dash '-' represents a link and the lowercase English letter 'o' represents a pearl.
Print "YES" if the links and pearls can be rejoined such that the number of links between adjacent pearls is equal. Otherwise print "NO". You can print each letter in any case (upper or lower).
[ "-o-o--", "-o---\n", "-o---o-\n", "ooo\n" ]
[ "YES", "YES", "NO", "YES\n" ]
none
500
[ { "input": "-o-o--", "output": "YES" }, { "input": "-o---", "output": "YES" }, { "input": "-o---o-", "output": "NO" }, { "input": "ooo", "output": "YES" }, { "input": "---", "output": "YES" }, { "input": "--o-o-----o----o--oo-o-----ooo-oo---o--", "output": "YES" }, { "input": "-o--o-oo---o-o-o--o-o----oo------oo-----o----o-o-o--oo-o--o---o--o----------o---o-o-oo---o--o-oo-o--", "output": "NO" }, { "input": "-ooo--", "output": "YES" }, { "input": "---o--", "output": "YES" }, { "input": "oo-ooo", "output": "NO" }, { "input": "------o-o--o-----o--", "output": "YES" }, { "input": "--o---o----------o----o----------o--o-o-----o-oo---oo--oo---o-------------oo-----o-------------o---o", "output": "YES" }, { "input": "----------------------------------------------------------------------------------------------------", "output": "YES" }, { "input": "-oo-oo------", "output": "YES" }, { "input": "---------------------------------o----------------------------oo------------------------------------", "output": "NO" }, { "input": "oo--o--o--------oo----------------o-----------o----o-----o----------o---o---o-----o---------ooo---", "output": "NO" }, { "input": "--o---oooo--o-o--o-----o----ooooo--o-oo--o------oooo--------------ooo-o-o----", "output": "NO" }, { "input": "-----------------------------o--o-o-------", "output": "YES" }, { "input": "o-oo-o--oo----o-o----------o---o--o----o----o---oo-ooo-o--o-", "output": "YES" }, { "input": "oooooooooo-ooo-oooooo-ooooooooooooooo--o-o-oooooooooooooo-oooooooooooooo", "output": "NO" }, { "input": "-----------------o-o--oo------o--------o---o--o----------------oooo-------------ooo-----ooo-----o", "output": "NO" }, { "input": "ooo-ooooooo-oo-ooooooooo-oooooooooooooo-oooo-o-oooooooooo--oooooooooooo-oooooooooo-ooooooo", "output": "NO" }, { "input": "oo-o-ooooo---oo---o-oo---o--o-ooo-o---o-oo---oo---oooo---o---o-oo-oo-o-ooo----ooo--oo--o--oo-o-oo", "output": "NO" }, { "input": "-----o-----oo-o-o-o-o----o---------oo---ooo-------------o----o---o-o", "output": "YES" }, { "input": "oo--o-o-o----o-oooo-ooooo---o-oo--o-o--ooo--o--oooo--oo----o----o-o-oooo---o-oooo--ooo-o-o----oo---", "output": "NO" }, { "input": "------oo----o----o-oo-o--------o-----oo-----------------------o------------o-o----oo---------", "output": "NO" }, { "input": "-o--o--------o--o------o---o-o----------o-------o-o-o-------oo----oo------o------oo--o--", "output": "NO" }, { "input": "------------------o----------------------------------o-o-------------", "output": "YES" }, { "input": "-------------o----ooo-----o-o-------------ooo-----------ooo------o----oo---", "output": "YES" }, { "input": "-------o--------------------o--o---------------o---o--o-----", "output": "YES" }, { "input": "------------------------o------------o-----o----------------", "output": "YES" }, { "input": "------oo----------o------o-----o---------o------------o----o--o", "output": "YES" }, { "input": "------------o------------------o-----------------------o-----------o", "output": "YES" }, { "input": "o---o---------------", "output": "YES" }, { "input": "----------------------o---o----o---o-----------o-o-----o", "output": "YES" }, { "input": "----------------------------------------------------------------------o-o---------------------", "output": "YES" }, { "input": "----o---o-------------------------", "output": "YES" }, { "input": "o----------------------oo----", "output": "NO" }, { "input": "-o-o--o-o--o-----o-----o-o--o-o---oooo-o", "output": "NO" }, { "input": "-o-ooo-o--o----o--o-o-oo-----------o-o-", "output": "YES" }, { "input": "o-------o-------o-------------", "output": "YES" }, { "input": "oo----------------------o--------------o--------------o-----", "output": "YES" }, { "input": "-----------------------------------o---------------------o--------------------------", "output": "YES" }, { "input": "--o--o----o-o---o--o----o-o--oo-----o-oo--o---o---ooo-o--", "output": "YES" }, { "input": "---------------o-o----", "output": "YES" }, { "input": "o------ooo--o-o-oo--o------o----ooo-----o-----o-----o-ooo-o---o----oo", "output": "YES" }, { "input": "----o----o", "output": "YES" }, { "input": "o--o--o--o--o--o--o--o--o--o--o--o--", "output": "YES" }, { "input": "o---o---o---o---o----o----o----o---o---o---o", "output": "YES" }, { "input": "o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-", "output": "YES" }, { "input": "-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o", "output": "YES" }, { "input": "o----------o----------o----------o----------o----------o----------o----------o----------o----------o", "output": "YES" }, { "input": "o---------o---------o---------o---------o---------o---------o---------o---------o", "output": "YES" }, { "input": "--------o--------o--------o--------o--------o--------o--------o--------o--------", "output": "YES" }, { "input": "o---o----", "output": "NO" }, { "input": "---o----o", "output": "NO" }, { "input": "-o-", "output": "YES" }, { "input": "------oooo", "output": "NO" }, { "input": "oo--", "output": "YES" }, { "input": "---o", "output": "YES" }, { "input": "ooo-", "output": "NO" }, { "input": "oooooooo----------", "output": "NO" }, { "input": "oooo--", "output": "NO" }, { "input": "o-ooooo", "output": "NO" }, { "input": "-oo", "output": "NO" }, { "input": "ooooo-", "output": "NO" }, { "input": "ooo---------", "output": "YES" }, { "input": "oo-", "output": "NO" }, { "input": "---ooo", "output": "YES" } ]
1,525,967,804
2,147,483,647
Python 3
OK
TESTS
69
93
7,065,600
s = [x for x in input().lower()] b = s.count('o') v = s.count('-') if b == 0 or v % b == 0: print("YES") else: print("NO")
Title: Links and Pearls Time Limit: None seconds Memory Limit: None megabytes Problem Description: A necklace can be described as a string of links ('-') and pearls ('o'), with the last link or pearl connected to the first one. You can remove a link or a pearl and insert it between two other existing links or pearls (or between a link and a pearl) on the necklace. This process can be repeated as many times as you like, but you can't throw away any parts. Can you make the number of links between every two adjacent pearls equal? Two pearls are considered to be adjacent if there is no other pearl between them. Note that the final necklace should remain as one circular part of the same length as the initial necklace. Input Specification: The only line of input contains a string $s$ ($3 \leq |s| \leq 100$), representing the necklace, where a dash '-' represents a link and the lowercase English letter 'o' represents a pearl. Output Specification: Print "YES" if the links and pearls can be rejoined such that the number of links between adjacent pearls is equal. Otherwise print "NO". You can print each letter in any case (upper or lower). Demo Input: ['-o-o--', '-o---\n', '-o---o-\n', 'ooo\n'] Demo Output: ['YES', 'YES', 'NO', 'YES\n'] Note: none
```python s = [x for x in input().lower()] b = s.count('o') v = s.count('-') if b == 0 or v % b == 0: print("YES") else: print("NO") ```
3
442
D
Adam and Tree
PROGRAMMING
2,600
[ "data structures", "trees" ]
null
null
When Adam gets a rooted tree (connected non-directed graph without cycles), he immediately starts coloring it. More formally, he assigns a color to each edge of the tree so that it meets the following two conditions: - There is no vertex that has more than two incident edges painted the same color. - For any two vertexes that have incident edges painted the same color (say, *c*), the path between them consists of the edges of the color *c*. Not all tree paintings are equally good for Adam. Let's consider the path from some vertex to the root. Let's call the number of distinct colors on this path the cost of the vertex. The cost of the tree's coloring will be the maximum cost among all the vertexes. Help Adam determine the minimum possible cost of painting the tree. Initially, Adam's tree consists of a single vertex that has number one and is the root. In one move Adam adds a new vertex to the already existing one, the new vertex gets the number equal to the minimum positive available integer. After each operation you need to calculate the minimum cost of coloring the resulting tree.
The first line contains integer *n* (1<=≤<=*n*<=≤<=106) — the number of times a new vertex is added. The second line contains *n* numbers *p**i* (1<=≤<=*p**i*<=≤<=*i*) — the numbers of the vertexes to which we add another vertex.
Print *n* integers — the minimum costs of the tree painting after each addition.
[ "11\n1 1 1 3 4 4 7 3 7 6 6\n" ]
[ "1 1 1 1 1 2 2 2 2 2 3 " ]
The figure below shows one of the possible variants to paint a tree from the sample at the last moment. The cost of the vertexes with numbers 11 and 12 equals 3. <img class="tex-graphics" src="https://espresso.codeforces.com/3e0ae59416472763f3e14b7c4a5094de154d3b50.png" style="max-width: 100.0%;max-height: 100.0%;"/>
2,000
[]
1,689,642,754
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
print("_RANDOM_GUESS_1689642754.0613358")# 1689642754.0613556
Title: Adam and Tree Time Limit: None seconds Memory Limit: None megabytes Problem Description: When Adam gets a rooted tree (connected non-directed graph without cycles), he immediately starts coloring it. More formally, he assigns a color to each edge of the tree so that it meets the following two conditions: - There is no vertex that has more than two incident edges painted the same color. - For any two vertexes that have incident edges painted the same color (say, *c*), the path between them consists of the edges of the color *c*. Not all tree paintings are equally good for Adam. Let's consider the path from some vertex to the root. Let's call the number of distinct colors on this path the cost of the vertex. The cost of the tree's coloring will be the maximum cost among all the vertexes. Help Adam determine the minimum possible cost of painting the tree. Initially, Adam's tree consists of a single vertex that has number one and is the root. In one move Adam adds a new vertex to the already existing one, the new vertex gets the number equal to the minimum positive available integer. After each operation you need to calculate the minimum cost of coloring the resulting tree. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=106) — the number of times a new vertex is added. The second line contains *n* numbers *p**i* (1<=≤<=*p**i*<=≤<=*i*) — the numbers of the vertexes to which we add another vertex. Output Specification: Print *n* integers — the minimum costs of the tree painting after each addition. Demo Input: ['11\n1 1 1 3 4 4 7 3 7 6 6\n'] Demo Output: ['1 1 1 1 1 2 2 2 2 2 3 '] Note: The figure below shows one of the possible variants to paint a tree from the sample at the last moment. The cost of the vertexes with numbers 11 and 12 equals 3. <img class="tex-graphics" src="https://espresso.codeforces.com/3e0ae59416472763f3e14b7c4a5094de154d3b50.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python print("_RANDOM_GUESS_1689642754.0613358")# 1689642754.0613556 ```
0
987
A
Infinity Gauntlet
PROGRAMMING
800
[ "implementation" ]
null
null
You took a peek on Thanos wearing Infinity Gauntlet. In the Gauntlet there is a place for six Infinity Gems: - the Power Gem of purple color, - the Time Gem of green color, - the Space Gem of blue color, - the Soul Gem of orange color, - the Reality Gem of red color, - the Mind Gem of yellow color. Using colors of Gems you saw in the Gauntlet determine the names of absent Gems.
In the first line of input there is one integer $n$ ($0 \le n \le 6$) — the number of Gems in Infinity Gauntlet. In next $n$ lines there are colors of Gems you saw. Words used for colors are: purple, green, blue, orange, red, yellow. It is guaranteed that all the colors are distinct. All colors are given in lowercase English letters.
In the first line output one integer $m$ ($0 \le m \le 6$) — the number of absent Gems. Then in $m$ lines print the names of absent Gems, each on its own line. Words used for names are: Power, Time, Space, Soul, Reality, Mind. Names can be printed in any order. Keep the first letter uppercase, others lowercase.
[ "4\nred\npurple\nyellow\norange\n", "0\n" ]
[ "2\nSpace\nTime\n", "6\nTime\nMind\nSoul\nPower\nReality\nSpace\n" ]
In the first sample Thanos already has Reality, Power, Mind and Soul Gems, so he needs two more: Time and Space. In the second sample Thanos doesn't have any Gems, so he needs all six.
500
[ { "input": "4\nred\npurple\nyellow\norange", "output": "2\nSpace\nTime" }, { "input": "0", "output": "6\nMind\nSpace\nPower\nTime\nReality\nSoul" }, { "input": "6\npurple\nblue\nyellow\nred\ngreen\norange", "output": "0" }, { "input": "1\npurple", "output": "5\nTime\nReality\nSoul\nSpace\nMind" }, { "input": "3\nblue\norange\npurple", "output": "3\nTime\nReality\nMind" }, { "input": "2\nyellow\nred", "output": "4\nPower\nSoul\nSpace\nTime" }, { "input": "1\ngreen", "output": "5\nReality\nSpace\nPower\nSoul\nMind" }, { "input": "2\npurple\ngreen", "output": "4\nReality\nMind\nSpace\nSoul" }, { "input": "1\nblue", "output": "5\nPower\nReality\nSoul\nTime\nMind" }, { "input": "2\npurple\nblue", "output": "4\nMind\nSoul\nTime\nReality" }, { "input": "2\ngreen\nblue", "output": "4\nReality\nMind\nPower\nSoul" }, { "input": "3\npurple\ngreen\nblue", "output": "3\nMind\nReality\nSoul" }, { "input": "1\norange", "output": "5\nReality\nTime\nPower\nSpace\nMind" }, { "input": "2\npurple\norange", "output": "4\nReality\nMind\nTime\nSpace" }, { "input": "2\norange\ngreen", "output": "4\nSpace\nMind\nReality\nPower" }, { "input": "3\norange\npurple\ngreen", "output": "3\nReality\nSpace\nMind" }, { "input": "2\norange\nblue", "output": "4\nTime\nMind\nReality\nPower" }, { "input": "3\nblue\ngreen\norange", "output": "3\nPower\nMind\nReality" }, { "input": "4\nblue\norange\ngreen\npurple", "output": "2\nMind\nReality" }, { "input": "1\nred", "output": "5\nTime\nSoul\nMind\nPower\nSpace" }, { "input": "2\nred\npurple", "output": "4\nMind\nSpace\nTime\nSoul" }, { "input": "2\nred\ngreen", "output": "4\nMind\nSpace\nPower\nSoul" }, { "input": "3\nred\npurple\ngreen", "output": "3\nSoul\nSpace\nMind" }, { "input": "2\nblue\nred", "output": "4\nMind\nTime\nPower\nSoul" }, { "input": "3\nred\nblue\npurple", "output": "3\nTime\nMind\nSoul" }, { "input": "3\nred\nblue\ngreen", "output": "3\nSoul\nPower\nMind" }, { "input": "4\npurple\nblue\ngreen\nred", "output": "2\nMind\nSoul" }, { "input": "2\norange\nred", "output": "4\nPower\nMind\nTime\nSpace" }, { "input": "3\nred\norange\npurple", "output": "3\nMind\nSpace\nTime" }, { "input": "3\nred\norange\ngreen", "output": "3\nMind\nSpace\nPower" }, { "input": "4\nred\norange\ngreen\npurple", "output": "2\nSpace\nMind" }, { "input": "3\nblue\norange\nred", "output": "3\nPower\nMind\nTime" }, { "input": "4\norange\nblue\npurple\nred", "output": "2\nTime\nMind" }, { "input": "4\ngreen\norange\nred\nblue", "output": "2\nMind\nPower" }, { "input": "5\npurple\norange\nblue\nred\ngreen", "output": "1\nMind" }, { "input": "1\nyellow", "output": "5\nPower\nSoul\nReality\nSpace\nTime" }, { "input": "2\npurple\nyellow", "output": "4\nTime\nReality\nSpace\nSoul" }, { "input": "2\ngreen\nyellow", "output": "4\nSpace\nReality\nPower\nSoul" }, { "input": "3\npurple\nyellow\ngreen", "output": "3\nSoul\nReality\nSpace" }, { "input": "2\nblue\nyellow", "output": "4\nTime\nReality\nPower\nSoul" }, { "input": "3\nyellow\nblue\npurple", "output": "3\nSoul\nReality\nTime" }, { "input": "3\ngreen\nyellow\nblue", "output": "3\nSoul\nReality\nPower" }, { "input": "4\nyellow\nblue\ngreen\npurple", "output": "2\nReality\nSoul" }, { "input": "2\nyellow\norange", "output": "4\nTime\nSpace\nReality\nPower" }, { "input": "3\nyellow\npurple\norange", "output": "3\nSpace\nReality\nTime" }, { "input": "3\norange\nyellow\ngreen", "output": "3\nSpace\nReality\nPower" }, { "input": "4\ngreen\nyellow\norange\npurple", "output": "2\nSpace\nReality" }, { "input": "3\nyellow\nblue\norange", "output": "3\nTime\nReality\nPower" }, { "input": "4\norange\npurple\nblue\nyellow", "output": "2\nReality\nTime" }, { "input": "4\nblue\norange\nyellow\ngreen", "output": "2\nReality\nPower" }, { "input": "5\ngreen\nyellow\norange\nblue\npurple", "output": "1\nReality" }, { "input": "3\nyellow\npurple\nred", "output": "3\nTime\nSoul\nSpace" }, { "input": "3\nred\ngreen\nyellow", "output": "3\nPower\nSoul\nSpace" }, { "input": "4\nred\npurple\ngreen\nyellow", "output": "2\nSpace\nSoul" }, { "input": "3\nred\nyellow\nblue", "output": "3\nPower\nSoul\nTime" }, { "input": "4\nblue\nyellow\nred\npurple", "output": "2\nTime\nSoul" }, { "input": "4\nblue\nyellow\nred\ngreen", "output": "2\nSoul\nPower" }, { "input": "5\nred\nyellow\ngreen\nblue\npurple", "output": "1\nSoul" }, { "input": "3\nred\nyellow\norange", "output": "3\nPower\nSpace\nTime" }, { "input": "4\norange\ngreen\nyellow\nred", "output": "2\nPower\nSpace" }, { "input": "5\norange\nred\ngreen\nyellow\npurple", "output": "1\nSpace" }, { "input": "4\nyellow\nred\norange\nblue", "output": "2\nTime\nPower" }, { "input": "5\npurple\nblue\norange\nyellow\nred", "output": "1\nTime" }, { "input": "5\norange\nblue\nyellow\nred\ngreen", "output": "1\nPower" } ]
1,623,135,323
2,147,483,647
PyPy 3
OK
TESTS
64
140
0
n=int(input()) l=[] m=[] j=0 for i in range(n): s=str(input()) l.append(s) d={'purple':'Power','green':'Time','blue':'Space','orange':'Soul','red':'Reality', 'yellow':'Mind'} for x in d: if x not in l: m.append(d[x]) j=j+1 print(j) for x in m: print(x)
Title: Infinity Gauntlet Time Limit: None seconds Memory Limit: None megabytes Problem Description: You took a peek on Thanos wearing Infinity Gauntlet. In the Gauntlet there is a place for six Infinity Gems: - the Power Gem of purple color, - the Time Gem of green color, - the Space Gem of blue color, - the Soul Gem of orange color, - the Reality Gem of red color, - the Mind Gem of yellow color. Using colors of Gems you saw in the Gauntlet determine the names of absent Gems. Input Specification: In the first line of input there is one integer $n$ ($0 \le n \le 6$) — the number of Gems in Infinity Gauntlet. In next $n$ lines there are colors of Gems you saw. Words used for colors are: purple, green, blue, orange, red, yellow. It is guaranteed that all the colors are distinct. All colors are given in lowercase English letters. Output Specification: In the first line output one integer $m$ ($0 \le m \le 6$) — the number of absent Gems. Then in $m$ lines print the names of absent Gems, each on its own line. Words used for names are: Power, Time, Space, Soul, Reality, Mind. Names can be printed in any order. Keep the first letter uppercase, others lowercase. Demo Input: ['4\nred\npurple\nyellow\norange\n', '0\n'] Demo Output: ['2\nSpace\nTime\n', '6\nTime\nMind\nSoul\nPower\nReality\nSpace\n'] Note: In the first sample Thanos already has Reality, Power, Mind and Soul Gems, so he needs two more: Time and Space. In the second sample Thanos doesn't have any Gems, so he needs all six.
```python n=int(input()) l=[] m=[] j=0 for i in range(n): s=str(input()) l.append(s) d={'purple':'Power','green':'Time','blue':'Space','orange':'Soul','red':'Reality', 'yellow':'Mind'} for x in d: if x not in l: m.append(d[x]) j=j+1 print(j) for x in m: print(x) ```
3
1,004
E
Sonya and Ice Cream
PROGRAMMING
2,400
[ "binary search", "data structures", "dp", "greedy", "shortest paths", "trees" ]
null
null
Sonya likes ice cream very much. She eats it even during programming competitions. That is why the girl decided that she wants to open her own ice cream shops. Sonya lives in a city with $n$ junctions and $n-1$ streets between them. All streets are two-way and connect two junctions. It is possible to travel from any junction to any other using one or more streets. City Hall allows opening shops only on junctions. The girl cannot open shops in the middle of streets. Sonya has exactly $k$ friends whom she can trust. If she opens a shop, one of her friends has to work there and not to allow anybody to eat an ice cream not paying for it. Since Sonya does not want to skip an important competition, she will not work in shops personally. Sonya wants all her ice cream shops to form a simple path of the length $r$ ($1 \le r \le k$), i.e. to be located in different junctions $f_1, f_2, \dots, f_r$ and there is street between $f_i$ and $f_{i+1}$ for each $i$ from $1$ to $r-1$. The girl takes care of potential buyers, so she also wants to minimize the maximum distance between the junctions to the nearest ice cream shop. The distance between two junctions $a$ and $b$ is equal to the sum of all the street lengths that you need to pass to get from the junction $a$ to the junction $b$. So Sonya wants to minimize $$\max_{a} \min_{1 \le i \le r} d_{a,f_i}$$ where $a$ takes a value of all possible $n$ junctions, $f_i$ — the junction where the $i$-th Sonya's shop is located, and $d_{x,y}$ — the distance between the junctions $x$ and $y$. Sonya is not sure that she can find the optimal shops locations, that is why she is asking you to help her to open not more than $k$ shops that will form a simple path and the maximum distance between any junction and the nearest shop would be minimal.
The first line contains two integers $n$ and $k$ ($1\leq k\leq n\leq 10^5$) — the number of junctions and friends respectively. Each of the next $n-1$ lines contains three integers $u_i$, $v_i$, and $d_i$ ($1\leq u_i, v_i\leq n$, $v_i\neq u_i$, $1\leq d\leq 10^4$) — junctions that are connected by a street and the length of this street. It is guaranteed that each pair of junctions is connected by at most one street. It is guaranteed that you can get from any junctions to any other.
Print one number — the minimal possible maximum distance that you need to pass to get from any junction to the nearest ice cream shop. Sonya's shops must form a simple path and the number of shops must be at most $k$.
[ "6 2\n1 2 3\n2 3 4\n4 5 2\n4 6 3\n2 4 6\n", "10 3\n1 2 5\n5 7 2\n3 2 6\n10 6 3\n3 8 1\n6 4 2\n4 1 6\n6 9 4\n5 2 5\n" ]
[ "4\n", "7\n" ]
In the first example, you can choose the path 2-4, so the answer will be 4. In the second example, you can choose the path 4-1-2, so the answer will be 7.
2,500
[ { "input": "6 2\n1 2 3\n2 3 4\n4 5 2\n4 6 3\n2 4 6", "output": "4" }, { "input": "10 3\n1 2 5\n5 7 2\n3 2 6\n10 6 3\n3 8 1\n6 4 2\n4 1 6\n6 9 4\n5 2 5", "output": "7" }, { "input": "8 4\n8 7 4\n5 6 7\n7 3 4\n8 4 3\n1 2 1\n2 3 5\n5 4 4", "output": "10" }, { "input": "1 1", "output": "0" } ]
1,530,834,168
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
155
0
import heapq class Node: def __init__(self): self.edges = {} self.longest_apendage = 0 #self.id = id def __lt__(self, other): for d0 in self.edges.values(): break for d1 in other.edges.values(): return d0 < d1 # def __repr__(self): # return "Node({}, {})".format(self.id, self.longest_apendage) def main(): n, k = map(int, input().split()) nodes = [Node() for i in range(n)] for i in range(n-1): u, v, d = map(int, input().split()) u -= 1 v -= 1 u = nodes[u] v = nodes[v] u.edges[v] = d v.edges[u] = d leafs = [v for v in nodes if len(v.edges) == 1] heapq.heapify(leafs) remaining = n while remaining > k: remaining -= 1 v = heapq.heappop(leafs) edges = v.edges.items() if not edges: break for u, d in edges: break u.longest_apendage = max(u.longest_apendage, v.longest_apendage + d) del u.edges[v] if len(u.edges) == 1: heapq.heappush(leafs, u) print(max(v.longest_apendage for v in nodes)) main()
Title: Sonya and Ice Cream Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sonya likes ice cream very much. She eats it even during programming competitions. That is why the girl decided that she wants to open her own ice cream shops. Sonya lives in a city with $n$ junctions and $n-1$ streets between them. All streets are two-way and connect two junctions. It is possible to travel from any junction to any other using one or more streets. City Hall allows opening shops only on junctions. The girl cannot open shops in the middle of streets. Sonya has exactly $k$ friends whom she can trust. If she opens a shop, one of her friends has to work there and not to allow anybody to eat an ice cream not paying for it. Since Sonya does not want to skip an important competition, she will not work in shops personally. Sonya wants all her ice cream shops to form a simple path of the length $r$ ($1 \le r \le k$), i.e. to be located in different junctions $f_1, f_2, \dots, f_r$ and there is street between $f_i$ and $f_{i+1}$ for each $i$ from $1$ to $r-1$. The girl takes care of potential buyers, so she also wants to minimize the maximum distance between the junctions to the nearest ice cream shop. The distance between two junctions $a$ and $b$ is equal to the sum of all the street lengths that you need to pass to get from the junction $a$ to the junction $b$. So Sonya wants to minimize $$\max_{a} \min_{1 \le i \le r} d_{a,f_i}$$ where $a$ takes a value of all possible $n$ junctions, $f_i$ — the junction where the $i$-th Sonya's shop is located, and $d_{x,y}$ — the distance between the junctions $x$ and $y$. Sonya is not sure that she can find the optimal shops locations, that is why she is asking you to help her to open not more than $k$ shops that will form a simple path and the maximum distance between any junction and the nearest shop would be minimal. Input Specification: The first line contains two integers $n$ and $k$ ($1\leq k\leq n\leq 10^5$) — the number of junctions and friends respectively. Each of the next $n-1$ lines contains three integers $u_i$, $v_i$, and $d_i$ ($1\leq u_i, v_i\leq n$, $v_i\neq u_i$, $1\leq d\leq 10^4$) — junctions that are connected by a street and the length of this street. It is guaranteed that each pair of junctions is connected by at most one street. It is guaranteed that you can get from any junctions to any other. Output Specification: Print one number — the minimal possible maximum distance that you need to pass to get from any junction to the nearest ice cream shop. Sonya's shops must form a simple path and the number of shops must be at most $k$. Demo Input: ['6 2\n1 2 3\n2 3 4\n4 5 2\n4 6 3\n2 4 6\n', '10 3\n1 2 5\n5 7 2\n3 2 6\n10 6 3\n3 8 1\n6 4 2\n4 1 6\n6 9 4\n5 2 5\n'] Demo Output: ['4\n', '7\n'] Note: In the first example, you can choose the path 2-4, so the answer will be 4. In the second example, you can choose the path 4-1-2, so the answer will be 7.
```python import heapq class Node: def __init__(self): self.edges = {} self.longest_apendage = 0 #self.id = id def __lt__(self, other): for d0 in self.edges.values(): break for d1 in other.edges.values(): return d0 < d1 # def __repr__(self): # return "Node({}, {})".format(self.id, self.longest_apendage) def main(): n, k = map(int, input().split()) nodes = [Node() for i in range(n)] for i in range(n-1): u, v, d = map(int, input().split()) u -= 1 v -= 1 u = nodes[u] v = nodes[v] u.edges[v] = d v.edges[u] = d leafs = [v for v in nodes if len(v.edges) == 1] heapq.heapify(leafs) remaining = n while remaining > k: remaining -= 1 v = heapq.heappop(leafs) edges = v.edges.items() if not edges: break for u, d in edges: break u.longest_apendage = max(u.longest_apendage, v.longest_apendage + d) del u.edges[v] if len(u.edges) == 1: heapq.heappush(leafs, u) print(max(v.longest_apendage for v in nodes)) main() ```
0
950
A
Left-handers, Right-handers and Ambidexters
PROGRAMMING
800
[ "implementation", "math" ]
null
null
You are at a water bowling training. There are *l* people who play with their left hand, *r* people, who play with their right hand, and *a* ambidexters, who can play with left or right hand. The coach decided to form a team of even number of players, exactly half of the players should play with their right hand, and exactly half of the players should play with their left hand. One player should use only on of his hands. Ambidexters play as well with their right hand as with their left hand. In the team, an ambidexter can play with their left hand, or with their right hand. Please find the maximum possible size of the team, where equal number of players use their left and right hands, respectively.
The only line contains three integers *l*, *r* and *a* (0<=≤<=*l*,<=*r*,<=*a*<=≤<=100) — the number of left-handers, the number of right-handers and the number of ambidexters at the training.
Print a single even integer — the maximum number of players in the team. It is possible that the team can only have zero number of players.
[ "1 4 2\n", "5 5 5\n", "0 2 0\n" ]
[ "6\n", "14\n", "0\n" ]
In the first example you can form a team of 6 players. You should take the only left-hander and two ambidexters to play with left hand, and three right-handers to play with right hand. The only person left can't be taken into the team. In the second example you can form a team of 14 people. You have to take all five left-handers, all five right-handers, two ambidexters to play with left hand and two ambidexters to play with right hand.
500
[ { "input": "1 4 2", "output": "6" }, { "input": "5 5 5", "output": "14" }, { "input": "0 2 0", "output": "0" }, { "input": "30 70 34", "output": "128" }, { "input": "89 32 24", "output": "112" }, { "input": "89 44 77", "output": "210" }, { "input": "0 0 0", "output": "0" }, { "input": "100 100 100", "output": "300" }, { "input": "1 1 1", "output": "2" }, { "input": "30 70 35", "output": "130" }, { "input": "89 44 76", "output": "208" }, { "input": "0 100 100", "output": "200" }, { "input": "100 0 100", "output": "200" }, { "input": "100 1 100", "output": "200" }, { "input": "1 100 100", "output": "200" }, { "input": "100 100 0", "output": "200" }, { "input": "100 100 1", "output": "200" }, { "input": "1 2 1", "output": "4" }, { "input": "0 0 100", "output": "100" }, { "input": "0 100 0", "output": "0" }, { "input": "100 0 0", "output": "0" }, { "input": "10 8 7", "output": "24" }, { "input": "45 47 16", "output": "108" }, { "input": "59 43 100", "output": "202" }, { "input": "34 1 30", "output": "62" }, { "input": "14 81 1", "output": "30" }, { "input": "53 96 94", "output": "242" }, { "input": "62 81 75", "output": "218" }, { "input": "21 71 97", "output": "188" }, { "input": "49 82 73", "output": "204" }, { "input": "88 19 29", "output": "96" }, { "input": "89 4 62", "output": "132" }, { "input": "58 3 65", "output": "126" }, { "input": "27 86 11", "output": "76" }, { "input": "35 19 80", "output": "134" }, { "input": "4 86 74", "output": "156" }, { "input": "32 61 89", "output": "182" }, { "input": "68 60 98", "output": "226" }, { "input": "37 89 34", "output": "142" }, { "input": "92 9 28", "output": "74" }, { "input": "79 58 98", "output": "234" }, { "input": "35 44 88", "output": "166" }, { "input": "16 24 19", "output": "58" }, { "input": "74 71 75", "output": "220" }, { "input": "83 86 99", "output": "268" }, { "input": "97 73 15", "output": "176" }, { "input": "77 76 73", "output": "226" }, { "input": "48 85 55", "output": "188" }, { "input": "1 2 2", "output": "4" }, { "input": "2 2 2", "output": "6" }, { "input": "2 1 2", "output": "4" }, { "input": "2 2 1", "output": "4" }, { "input": "3 2 1", "output": "6" }, { "input": "1 2 3", "output": "6" }, { "input": "1 3 2", "output": "6" }, { "input": "2 1 3", "output": "6" }, { "input": "2 3 1", "output": "6" }, { "input": "3 1 2", "output": "6" }, { "input": "99 99 99", "output": "296" }, { "input": "99 99 100", "output": "298" }, { "input": "99 100 99", "output": "298" }, { "input": "99 100 100", "output": "298" }, { "input": "100 99 99", "output": "298" }, { "input": "100 99 100", "output": "298" }, { "input": "100 100 99", "output": "298" }, { "input": "89 32 23", "output": "110" }, { "input": "4 5 0", "output": "8" }, { "input": "3 0 3", "output": "6" }, { "input": "0 0 2", "output": "2" }, { "input": "97 97 0", "output": "194" }, { "input": "1 4 0", "output": "2" }, { "input": "5 2 0", "output": "4" }, { "input": "0 5 10", "output": "14" }, { "input": "0 1 2", "output": "2" }, { "input": "5 2 3", "output": "10" }, { "input": "5 5 0", "output": "10" }, { "input": "0 0 10", "output": "10" }, { "input": "0 1 1", "output": "2" }, { "input": "0 0 1", "output": "0" } ]
1,564,205,990
2,147,483,647
PyPy 3
OK
TESTS
79
140
0
inp = list(map(int,input().split())) l=inp[0] r=inp[1] a=inp[2] if(l==r): print (2*(l+a//2)) elif(l<r): if(r-l<=a): a=a-(r-l) l=r print (2*(l+a//2)) else: l=l+a print (2*min(r,l)) else: if(l-r<=a): a=a-(l-r) r=l print (2*(l+a//2)) else: r=r+a print (2*min(r,l))
Title: Left-handers, Right-handers and Ambidexters Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are at a water bowling training. There are *l* people who play with their left hand, *r* people, who play with their right hand, and *a* ambidexters, who can play with left or right hand. The coach decided to form a team of even number of players, exactly half of the players should play with their right hand, and exactly half of the players should play with their left hand. One player should use only on of his hands. Ambidexters play as well with their right hand as with their left hand. In the team, an ambidexter can play with their left hand, or with their right hand. Please find the maximum possible size of the team, where equal number of players use their left and right hands, respectively. Input Specification: The only line contains three integers *l*, *r* and *a* (0<=≤<=*l*,<=*r*,<=*a*<=≤<=100) — the number of left-handers, the number of right-handers and the number of ambidexters at the training. Output Specification: Print a single even integer — the maximum number of players in the team. It is possible that the team can only have zero number of players. Demo Input: ['1 4 2\n', '5 5 5\n', '0 2 0\n'] Demo Output: ['6\n', '14\n', '0\n'] Note: In the first example you can form a team of 6 players. You should take the only left-hander and two ambidexters to play with left hand, and three right-handers to play with right hand. The only person left can't be taken into the team. In the second example you can form a team of 14 people. You have to take all five left-handers, all five right-handers, two ambidexters to play with left hand and two ambidexters to play with right hand.
```python inp = list(map(int,input().split())) l=inp[0] r=inp[1] a=inp[2] if(l==r): print (2*(l+a//2)) elif(l<r): if(r-l<=a): a=a-(r-l) l=r print (2*(l+a//2)) else: l=l+a print (2*min(r,l)) else: if(l-r<=a): a=a-(l-r) r=l print (2*(l+a//2)) else: r=r+a print (2*min(r,l)) ```
3