contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
38
A
Army
PROGRAMMING
800
[ "implementation" ]
A. Army
2
256
The Berland Armed Forces System consists of *n* ranks that are numbered using natural numbers from 1 to *n*, where 1 is the lowest rank and *n* is the highest rank. One needs exactly *d**i* years to rise from rank *i* to rank *i*<=+<=1. Reaching a certain rank *i* having not reached all the previous *i*<=-<=1 ranks is impossible. Vasya has just reached a new rank of *a*, but he dreams of holding the rank of *b*. Find for how many more years Vasya should serve in the army until he can finally realize his dream.
The first input line contains an integer *n* (2<=≤<=*n*<=≤<=100). The second line contains *n*<=-<=1 integers *d**i* (1<=≤<=*d**i*<=≤<=100). The third input line contains two integers *a* and *b* (1<=≤<=*a*<=&lt;<=*b*<=≤<=*n*). The numbers on the lines are space-separated.
Print the single number which is the number of years that Vasya needs to rise from rank *a* to rank *b*.
[ "3\n5 6\n1 2\n", "3\n5 6\n1 3\n" ]
[ "5\n", "11\n" ]
none
0
[ { "input": "3\n5 6\n1 2", "output": "5" }, { "input": "3\n5 6\n1 3", "output": "11" }, { "input": "2\n55\n1 2", "output": "55" }, { "input": "3\n85 78\n1 3", "output": "163" }, { "input": "4\n63 4 49\n2 3", "output": "4" }, { "input": "5\n93 83 42 56\n2 5", "output": "181" }, { "input": "6\n22 9 87 89 57\n1 6", "output": "264" }, { "input": "7\n52 36 31 23 74 78\n2 7", "output": "242" }, { "input": "8\n82 14 24 5 91 49 94\n3 8", "output": "263" }, { "input": "9\n12 40 69 39 59 21 59 5\n4 6", "output": "98" }, { "input": "10\n95 81 32 59 71 30 50 61 100\n1 6", "output": "338" }, { "input": "15\n89 55 94 4 15 69 19 60 91 77 3 94 91 62\n3 14", "output": "617" }, { "input": "20\n91 1 41 51 95 67 92 35 23 70 44 91 57 50 21 8 9 71 40\n8 17", "output": "399" }, { "input": "25\n70 95 21 84 97 39 12 98 53 24 78 29 84 65 70 22 100 17 69 27 62 48 35 80\n8 23", "output": "846" }, { "input": "30\n35 69 50 44 19 56 86 56 98 24 21 2 61 24 85 30 2 22 57 35 59 84 12 77 92 53 50 92 9\n1 16", "output": "730" }, { "input": "35\n2 34 47 15 27 61 6 88 67 20 53 65 29 68 77 5 78 86 44 98 32 81 91 79 54 84 95 23 65 97 22 33 42 87\n8 35", "output": "1663" }, { "input": "40\n32 88 59 36 95 45 28 78 73 30 97 13 13 47 48 100 43 21 22 45 88 25 15 13 63 25 72 92 29 5 25 11 50 5 54 51 48 84 23\n7 26", "output": "862" }, { "input": "45\n83 74 73 95 10 31 100 26 29 15 80 100 22 70 31 88 9 56 19 70 2 62 48 30 27 47 52 50 94 44 21 94 23 85 15 3 95 72 43 62 94 89 68 88\n17 40", "output": "1061" }, { "input": "50\n28 8 16 29 19 82 70 51 96 84 74 72 17 69 12 21 37 21 39 3 18 66 19 49 86 96 94 93 2 90 96 84 59 88 58 15 61 33 55 22 35 54 51 29 64 68 29 38 40\n23 28", "output": "344" }, { "input": "60\n24 28 25 21 43 71 64 73 71 90 51 83 69 43 75 43 78 72 56 61 99 7 23 86 9 16 16 94 23 74 18 56 20 72 13 31 75 34 35 86 61 49 4 72 84 7 65 70 66 52 21 38 6 43 69 40 73 46 5\n28 60", "output": "1502" }, { "input": "70\n69 95 34 14 67 61 6 95 94 44 28 94 73 66 39 13 19 71 73 71 28 48 26 22 32 88 38 95 43 59 88 77 80 55 17 95 40 83 67 1 38 95 58 63 56 98 49 2 41 4 73 8 78 41 64 71 60 71 41 61 67 4 4 19 97 14 39 20 27\n9 41", "output": "1767" }, { "input": "80\n65 15 43 6 43 98 100 16 69 98 4 54 25 40 2 35 12 23 38 29 10 89 30 6 4 8 7 96 64 43 11 49 89 38 20 59 54 85 46 16 16 89 60 54 28 37 32 34 67 9 78 30 50 87 58 53 99 48 77 3 5 6 19 99 16 20 31 10 80 76 82 56 56 83 72 81 84 60 28\n18 24", "output": "219" }, { "input": "90\n61 35 100 99 67 87 42 90 44 4 81 65 29 63 66 56 53 22 55 87 39 30 34 42 27 80 29 97 85 28 81 22 50 22 24 75 67 86 78 79 94 35 13 97 48 76 68 66 94 13 82 1 22 85 5 36 86 73 65 97 43 56 35 26 87 25 74 47 81 67 73 75 99 75 53 38 70 21 66 78 38 17 57 40 93 57 68 55 1\n12 44", "output": "1713" }, { "input": "95\n37 74 53 96 65 84 65 72 95 45 6 77 91 35 58 50 51 51 97 30 51 20 79 81 92 10 89 34 40 76 71 54 26 34 73 72 72 28 53 19 95 64 97 10 44 15 12 38 5 63 96 95 86 8 36 96 45 53 81 5 18 18 47 97 65 9 33 53 41 86 37 53 5 40 15 76 83 45 33 18 26 5 19 90 46 40 100 42 10 90 13 81 40 53\n6 15", "output": "570" }, { "input": "96\n51 32 95 75 23 54 70 89 67 3 1 51 4 100 97 30 9 35 56 38 54 77 56 98 43 17 60 43 72 46 87 61 100 65 81 22 74 38 16 96 5 10 54 22 23 22 10 91 9 54 49 82 29 73 33 98 75 8 4 26 24 90 71 42 90 24 94 74 94 10 41 98 56 63 18 43 56 21 26 64 74 33 22 38 67 66 38 60 64 76 53 10 4 65 76\n21 26", "output": "328" }, { "input": "97\n18 90 84 7 33 24 75 55 86 10 96 72 16 64 37 9 19 71 62 97 5 34 85 15 46 72 82 51 52 16 55 68 27 97 42 72 76 97 32 73 14 56 11 86 2 81 59 95 60 93 1 22 71 37 77 100 6 16 78 47 78 62 94 86 16 91 56 46 47 35 93 44 7 86 70 10 29 45 67 62 71 61 74 39 36 92 24 26 65 14 93 92 15 28 79 59\n6 68", "output": "3385" }, { "input": "98\n32 47 26 86 43 42 79 72 6 68 40 46 29 80 24 89 29 7 21 56 8 92 13 33 50 79 5 7 84 85 24 23 1 80 51 21 26 55 96 51 24 2 68 98 81 88 57 100 64 84 54 10 14 2 74 1 89 71 1 20 84 85 17 31 42 58 69 67 48 60 97 90 58 10 21 29 2 21 60 61 68 89 77 39 57 18 61 44 67 100 33 74 27 40 83 29 6\n8 77", "output": "3319" }, { "input": "99\n46 5 16 66 53 12 84 89 26 27 35 68 41 44 63 17 88 43 80 15 59 1 42 50 53 34 75 16 16 55 92 30 28 11 12 71 27 65 11 28 86 47 24 10 60 47 7 53 16 75 6 49 56 66 70 3 20 78 75 41 38 57 89 23 16 74 30 39 1 32 49 84 9 33 25 95 75 45 54 59 17 17 29 40 79 96 47 11 69 86 73 56 91 4 87 47 31 24\n23 36", "output": "514" }, { "input": "100\n63 65 21 41 95 23 3 4 12 23 95 50 75 63 58 34 71 27 75 31 23 94 96 74 69 34 43 25 25 55 44 19 43 86 68 17 52 65 36 29 72 96 84 25 84 23 71 54 6 7 71 7 21 100 99 58 93 35 62 47 36 70 68 9 75 13 35 70 76 36 62 22 52 51 2 87 66 41 54 35 78 62 30 35 65 44 74 93 78 37 96 70 26 32 71 27 85 85 63\n43 92", "output": "2599" }, { "input": "51\n85 38 22 38 42 36 55 24 36 80 49 15 66 91 88 61 46 82 1 61 89 92 6 56 28 8 46 80 56 90 91 38 38 17 69 64 57 68 13 44 45 38 8 72 61 39 87 2 73 88\n15 27", "output": "618" }, { "input": "2\n3\n1 2", "output": "3" }, { "input": "5\n6 8 22 22\n2 3", "output": "8" }, { "input": "6\n3 12 27 28 28\n3 4", "output": "27" }, { "input": "9\n1 2 2 2 2 3 3 5\n3 7", "output": "9" }, { "input": "10\n1 1 1 1 1 1 1 1 1\n6 8", "output": "2" }, { "input": "20\n1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3\n5 17", "output": "23" }, { "input": "25\n1 1 1 4 5 6 8 11 11 11 11 12 13 14 14 14 15 16 16 17 17 17 19 19\n4 8", "output": "23" }, { "input": "35\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2\n30 31", "output": "2" }, { "input": "45\n1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 8 8 8 9 9 9 9 9 10 10 10\n42 45", "output": "30" }, { "input": "50\n1 8 8 13 14 15 15 16 19 21 22 24 26 31 32 37 45 47 47 47 50 50 51 54 55 56 58 61 61 61 63 63 64 66 66 67 67 70 71 80 83 84 85 92 92 94 95 95 100\n4 17", "output": "285" }, { "input": "60\n1 2 4 4 4 6 6 8 9 10 10 13 14 18 20 20 21 22 23 23 26 29 30 32 33 34 35 38 40 42 44 44 46 48 52 54 56 56 60 60 66 67 68 68 69 73 73 74 80 80 81 81 82 84 86 86 87 89 89\n56 58", "output": "173" }, { "input": "70\n1 2 3 3 4 5 5 7 7 7 8 8 8 8 9 9 10 12 12 12 12 13 16 16 16 16 16 16 17 17 18 18 20 20 21 23 24 25 25 26 29 29 29 29 31 32 32 34 35 36 36 37 37 38 39 39 40 40 40 40 41 41 42 43 44 44 44 45 45\n62 65", "output": "126" }, { "input": "80\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12\n17 65", "output": "326" }, { "input": "90\n1 1 3 5 8 9 10 11 11 11 11 12 13 14 15 15 15 16 16 19 19 20 22 23 24 25 25 28 29 29 30 31 33 34 35 37 37 38 41 43 43 44 45 47 51 54 55 56 58 58 59 59 60 62 66 67 67 67 68 68 69 70 71 72 73 73 76 77 77 78 78 78 79 79 79 82 83 84 85 85 87 87 89 93 93 93 95 99 99\n28 48", "output": "784" }, { "input": "95\n2 2 3 3 4 6 6 7 7 7 9 10 12 12 12 12 13 14 15 16 17 18 20 20 20 20 21 21 21 21 22 22 22 22 22 23 23 23 25 26 26 27 27 27 28 29 29 30 30 31 32 33 34 36 37 37 38 39 39 39 42 43 43 43 45 47 48 50 50 51 52 53 54 54 54 55 55 55 58 59 60 61 61 61 61 62 62 63 64 65 66 67 67 67\n64 93", "output": "1636" }, { "input": "96\n1 1 2 3 3 5 8 9 9 10 10 10 11 11 11 11 11 12 13 13 13 14 15 15 16 16 17 17 17 17 18 18 20 20 20 21 21 21 23 24 24 25 25 26 27 27 27 27 29 29 29 30 30 30 32 32 32 32 32 32 33 33 34 34 34 35 35 35 36 36 37 37 37 38 39 40 41 41 41 41 42 42 43 43 45 45 45 46 46 47 47 49 50 52 52\n76 96", "output": "898" }, { "input": "98\n2 3 4 4 5 7 8 10 10 10 11 11 12 12 12 12 13 14 15 15 16 16 18 19 19 20 21 21 21 21 22 23 24 25 26 26 27 27 27 27 29 29 30 30 31 31 37 40 40 40 41 41 41 42 43 44 44 44 46 46 47 49 49 50 50 50 51 53 55 55 56 56 56 56 56 57 57 58 59 60 60 60 62 62 63 64 64 64 65 66 66 67 68 70 70 71 71\n8 90", "output": "3016" }, { "input": "99\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n66 95", "output": "29" }, { "input": "100\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 17\n39 52", "output": "82" }, { "input": "51\n5 7 9 16 19 25 26 29 29 30 31 32 32 41 43 44 47 49 50 50 51 52 54 55 56 63 64 66 67 70 74 74 77 78 79 80 80 85 86 87 89 89 90 92 93 94 94 95 95 97\n3 44", "output": "2268" } ]
1,597,574,856
2,147,483,647
Python 3
OK
TESTS
50
218
0
# import sys # sys.stdin=open('input.in','r') # sys.stdout=open('output.out','w') n=int(input()) years=list(map(int,input().strip().split()[:n-1])) a,b=map(int,input().strip().split()[:2]) print(sum(years[a-1:b-1]))
Title: Army Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The Berland Armed Forces System consists of *n* ranks that are numbered using natural numbers from 1 to *n*, where 1 is the lowest rank and *n* is the highest rank. One needs exactly *d**i* years to rise from rank *i* to rank *i*<=+<=1. Reaching a certain rank *i* having not reached all the previous *i*<=-<=1 ranks is impossible. Vasya has just reached a new rank of *a*, but he dreams of holding the rank of *b*. Find for how many more years Vasya should serve in the army until he can finally realize his dream. Input Specification: The first input line contains an integer *n* (2<=≤<=*n*<=≤<=100). The second line contains *n*<=-<=1 integers *d**i* (1<=≤<=*d**i*<=≤<=100). The third input line contains two integers *a* and *b* (1<=≤<=*a*<=&lt;<=*b*<=≤<=*n*). The numbers on the lines are space-separated. Output Specification: Print the single number which is the number of years that Vasya needs to rise from rank *a* to rank *b*. Demo Input: ['3\n5 6\n1 2\n', '3\n5 6\n1 3\n'] Demo Output: ['5\n', '11\n'] Note: none
```python # import sys # sys.stdin=open('input.in','r') # sys.stdout=open('output.out','w') n=int(input()) years=list(map(int,input().strip().split()[:n-1])) a,b=map(int,input().strip().split()[:2]) print(sum(years[a-1:b-1])) ```
3.9455
158
A
Next Round
PROGRAMMING
800
[ "*special", "implementation" ]
null
null
"Contestant who earns a score equal to or greater than the *k*-th place finisher's score will advance to the next round, as long as the contestant earns a positive score..." — an excerpt from contest rules. A total of *n* participants took part in the contest (*n*<=≥<=*k*), and you already know their scores. Calculate how many participants will advance to the next round.
The first line of the input contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50) separated by a single space. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100), where *a**i* is the score earned by the participant who got the *i*-th place. The given sequence is non-increasing (that is, for all *i* from 1 to *n*<=-<=1 the following condition is fulfilled: *a**i*<=≥<=*a**i*<=+<=1).
Output the number of participants who advance to the next round.
[ "8 5\n10 9 8 7 7 7 5 5\n", "4 2\n0 0 0 0\n" ]
[ "6\n", "0\n" ]
In the first example the participant on the 5th place earned 7 points. As the participant on the 6th place also earned 7 points, there are 6 advancers. In the second example nobody got a positive score.
500
[ { "input": "8 5\n10 9 8 7 7 7 5 5", "output": "6" }, { "input": "4 2\n0 0 0 0", "output": "0" }, { "input": "5 1\n1 1 1 1 1", "output": "5" }, { "input": "5 5\n1 1 1 1 1", "output": "5" }, { "input": "1 1\n10", "output": "1" }, { "input": "17 14\n16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0", "output": "14" }, { "input": "5 5\n3 2 1 0 0", "output": "3" }, { "input": "8 6\n10 9 8 7 7 7 5 5", "output": "6" }, { "input": "8 7\n10 9 8 7 7 7 5 5", "output": "8" }, { "input": "8 4\n10 9 8 7 7 7 5 5", "output": "6" }, { "input": "8 3\n10 9 8 7 7 7 5 5", "output": "3" }, { "input": "8 1\n10 9 8 7 7 7 5 5", "output": "1" }, { "input": "8 2\n10 9 8 7 7 7 5 5", "output": "2" }, { "input": "1 1\n100", "output": "1" }, { "input": "1 1\n0", "output": "0" }, { "input": "50 25\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "50" }, { "input": "50 25\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "25" }, { "input": "50 25\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "26" }, { "input": "50 25\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "50" }, { "input": "11 5\n100 99 98 97 96 95 94 93 92 91 90", "output": "5" }, { "input": "10 4\n100 81 70 69 64 43 34 29 15 3", "output": "4" }, { "input": "11 6\n87 71 62 52 46 46 43 35 32 25 12", "output": "6" }, { "input": "17 12\n99 88 86 82 75 75 74 65 58 52 45 30 21 16 7 2 2", "output": "12" }, { "input": "20 3\n98 98 96 89 87 82 82 80 76 74 74 68 61 60 43 32 30 22 4 2", "output": "3" }, { "input": "36 12\n90 87 86 85 83 80 79 78 76 70 69 69 61 61 59 58 56 48 45 44 42 41 33 31 27 25 23 21 20 19 15 14 12 7 5 5", "output": "12" }, { "input": "49 8\n99 98 98 96 92 92 90 89 89 86 86 85 83 80 79 76 74 69 67 67 58 56 55 51 49 47 47 46 45 41 41 40 39 34 34 33 25 23 18 15 13 13 11 9 5 4 3 3 1", "output": "9" }, { "input": "49 29\n100 98 98 96 96 96 95 87 85 84 81 76 74 70 63 63 63 62 57 57 56 54 53 52 50 47 45 41 41 39 38 31 30 28 27 26 23 22 20 15 15 11 7 6 6 4 2 1 0", "output": "29" }, { "input": "49 34\n99 98 96 96 93 92 90 89 88 86 85 85 82 76 73 69 66 64 63 63 60 59 57 57 56 55 54 54 51 48 47 44 42 42 40 39 38 36 33 26 24 23 19 17 17 14 12 7 4", "output": "34" }, { "input": "50 44\n100 100 99 97 95 91 91 84 83 83 79 71 70 69 69 62 61 60 59 59 58 58 58 55 55 54 52 48 47 45 44 44 38 36 32 31 28 28 25 25 24 24 24 22 17 15 14 13 12 4", "output": "44" }, { "input": "50 13\n99 95 94 94 88 87 81 79 78 76 74 72 72 69 68 67 67 67 66 63 62 61 58 57 55 55 54 51 50 50 48 48 42 41 38 35 34 32 31 30 26 24 13 13 12 6 5 4 3 3", "output": "13" }, { "input": "50 30\n100 98 96 94 91 89 88 81 81 81 81 81 76 73 72 71 70 69 66 64 61 59 59 56 52 50 49 48 43 39 36 35 34 34 31 29 27 26 24 22 16 16 15 14 14 14 9 7 4 3", "output": "30" }, { "input": "2 1\n10 10", "output": "2" }, { "input": "2 2\n10 10", "output": "2" }, { "input": "2 2\n10 0", "output": "1" }, { "input": "2 2\n10 1", "output": "2" }, { "input": "2 1\n10 0", "output": "1" }, { "input": "2 1\n10 2", "output": "1" }, { "input": "50 13\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "50 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "50 50\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "10 1\n5 5 5 3 3 3 0 0 0 0", "output": "3" }, { "input": "10 2\n5 5 5 3 3 3 0 0 0 0", "output": "3" }, { "input": "10 3\n5 5 5 3 3 3 0 0 0 0", "output": "3" }, { "input": "10 4\n5 5 5 3 3 3 0 0 0 0", "output": "6" }, { "input": "10 5\n5 5 5 3 3 3 0 0 0 0", "output": "6" }, { "input": "10 6\n5 5 5 3 3 3 0 0 0 0", "output": "6" }, { "input": "10 7\n5 5 5 3 3 3 0 0 0 0", "output": "6" }, { "input": "10 8\n5 5 5 3 3 3 0 0 0 0", "output": "6" }, { "input": "10 9\n5 5 5 3 3 3 0 0 0 0", "output": "6" }, { "input": "10 10\n5 5 5 3 3 3 0 0 0 0", "output": "6" } ]
1,699,510,754
2,147,483,647
Python 3
OK
TESTS
50
92
0
n,k=list(map(int,input().split())) nums=list(map(int,input().split())) ans=k if nums[k-1]>0: for i in range(k,n): if nums[i]!=nums[k-1]: break ans+=1 else: for i in range(k-1,-1,-1): if nums[i]==0: ans-=1 else: break print(ans)
Title: Next Round Time Limit: None seconds Memory Limit: None megabytes Problem Description: "Contestant who earns a score equal to or greater than the *k*-th place finisher's score will advance to the next round, as long as the contestant earns a positive score..." — an excerpt from contest rules. A total of *n* participants took part in the contest (*n*<=≥<=*k*), and you already know their scores. Calculate how many participants will advance to the next round. Input Specification: The first line of the input contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50) separated by a single space. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100), where *a**i* is the score earned by the participant who got the *i*-th place. The given sequence is non-increasing (that is, for all *i* from 1 to *n*<=-<=1 the following condition is fulfilled: *a**i*<=≥<=*a**i*<=+<=1). Output Specification: Output the number of participants who advance to the next round. Demo Input: ['8 5\n10 9 8 7 7 7 5 5\n', '4 2\n0 0 0 0\n'] Demo Output: ['6\n', '0\n'] Note: In the first example the participant on the 5th place earned 7 points. As the participant on the 6th place also earned 7 points, there are 6 advancers. In the second example nobody got a positive score.
```python n,k=list(map(int,input().split())) nums=list(map(int,input().split())) ans=k if nums[k-1]>0: for i in range(k,n): if nums[i]!=nums[k-1]: break ans+=1 else: for i in range(k-1,-1,-1): if nums[i]==0: ans-=1 else: break print(ans) ```
3
567
A
Lineland Mail
PROGRAMMING
900
[ "greedy", "implementation" ]
null
null
All cities of Lineland are located on the *Ox* coordinate axis. Thus, each city is associated with its position *x**i* — a coordinate on the *Ox* axis. No two cities are located at a single point. Lineland residents love to send letters to each other. A person may send a letter only if the recipient lives in another city (because if they live in the same city, then it is easier to drop in). Strange but true, the cost of sending the letter is exactly equal to the distance between the sender's city and the recipient's city. For each city calculate two values ​​*min**i* and *max**i*, where *min**i* is the minimum cost of sending a letter from the *i*-th city to some other city, and *max**i* is the the maximum cost of sending a letter from the *i*-th city to some other city
The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of cities in Lineland. The second line contains the sequence of *n* distinct integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=109<=≤<=*x**i*<=≤<=109), where *x**i* is the *x*-coordinate of the *i*-th city. All the *x**i*'s are distinct and follow in ascending order.
Print *n* lines, the *i*-th line must contain two integers *min**i*,<=*max**i*, separated by a space, where *min**i* is the minimum cost of sending a letter from the *i*-th city, and *max**i* is the maximum cost of sending a letter from the *i*-th city.
[ "4\n-5 -2 2 7\n", "2\n-1 1\n" ]
[ "3 12\n3 9\n4 7\n5 12\n", "2 2\n2 2\n" ]
none
500
[ { "input": "4\n-5 -2 2 7", "output": "3 12\n3 9\n4 7\n5 12" }, { "input": "2\n-1 1", "output": "2 2\n2 2" }, { "input": "3\n-1 0 1", "output": "1 2\n1 1\n1 2" }, { "input": "4\n-1 0 1 3", "output": "1 4\n1 3\n1 2\n2 4" }, { "input": "3\n-1000000000 0 1000000000", "output": "1000000000 2000000000\n1000000000 1000000000\n1000000000 2000000000" }, { "input": "2\n-1000000000 1000000000", "output": "2000000000 2000000000\n2000000000 2000000000" }, { "input": "10\n1 10 12 15 59 68 130 912 1239 9123", "output": "9 9122\n2 9113\n2 9111\n3 9108\n9 9064\n9 9055\n62 8993\n327 8211\n327 7884\n7884 9122" }, { "input": "5\n-2 -1 0 1 2", "output": "1 4\n1 3\n1 2\n1 3\n1 4" }, { "input": "5\n-2 -1 0 1 3", "output": "1 5\n1 4\n1 3\n1 3\n2 5" }, { "input": "3\n-10000 1 10000", "output": "10001 20000\n9999 10001\n9999 20000" }, { "input": "5\n-1000000000 -999999999 -999999998 -999999997 -999999996", "output": "1 4\n1 3\n1 2\n1 3\n1 4" }, { "input": "10\n-857422304 -529223472 82412729 145077145 188538640 265299215 527377039 588634631 592896147 702473706", "output": "328198832 1559896010\n328198832 1231697178\n62664416 939835033\n43461495 1002499449\n43461495 1045960944\n76760575 1122721519\n61257592 1384799343\n4261516 1446056935\n4261516 1450318451\n109577559 1559896010" }, { "input": "10\n-876779400 -829849659 -781819137 -570920213 18428128 25280705 121178189 219147240 528386329 923854124", "output": "46929741 1800633524\n46929741 1753703783\n48030522 1705673261\n210898924 1494774337\n6852577 905425996\n6852577 902060105\n95897484 997957589\n97969051 1095926640\n309239089 1405165729\n395467795 1800633524" }, { "input": "30\n-15 1 21 25 30 40 59 60 77 81 97 100 103 123 139 141 157 158 173 183 200 215 226 231 244 256 267 279 289 292", "output": "16 307\n16 291\n4 271\n4 267\n5 262\n10 252\n1 233\n1 232\n4 215\n4 211\n3 195\n3 192\n3 189\n16 169\n2 154\n2 156\n1 172\n1 173\n10 188\n10 198\n15 215\n11 230\n5 241\n5 246\n12 259\n11 271\n11 282\n10 294\n3 304\n3 307" }, { "input": "10\n-1000000000 -999999999 -999999997 -999999996 -999999995 -999999994 -999999992 -999999990 -999999988 -999999986", "output": "1 14\n1 13\n1 11\n1 10\n1 9\n1 8\n2 8\n2 10\n2 12\n2 14" }, { "input": "50\n-50000 -49459 -48875 -48456 -48411 -48096 -47901 -47500 -47150 -46808 -46687 -46679 -46337 -45747 -45604 -45194 -44752 -44242 -44231 -44122 -43636 -43274 -42916 -42881 -42386 -42095 -41830 -41618 -41145 -40897 -40534 -40007 -39761 -39389 -39104 -38909 -38630 -38561 -38364 -38255 -38214 -38084 -37959 -37607 -37202 -36890 -36681 -36136 -36123 -35886", "output": "541 14114\n541 13573\n419 12989\n45 12570\n45 12525\n195 12210\n195 12015\n350 11614\n342 11264\n121 10922\n8 10801\n8 10793\n342 10451\n143 9861\n143 9718\n410 9308\n442 8866\n11 8356\n11 8345\n109 8236\n362 7750\n358 7388\n35 7084\n35 7119\n291 7614\n265 7905\n212 8170\n212 8382\n248 8855\n248 9103\n363 9466\n246 9993\n246 10239\n285 10611\n195 10896\n195 11091\n69 11370\n69 11439\n109 11636\n41 11745\n41 11786\n125 11916\n125 12041\n352 12393\n312 12798\n209 13110\n209 13319\n13 13864\n13 13877\n237 141..." }, { "input": "3\n-1000000000 999999999 1000000000", "output": "1999999999 2000000000\n1 1999999999\n1 2000000000" } ]
1,600,085,413
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
10
3,000
7,372,800
import math length = int(input()) data = input().split(' ') data = [int(item) for item in data] for i in data: max, min = 0, 99999999999999 for j in data: if i == j: continue temp = abs(i - j) if max < temp: max = temp if min > temp: min = temp print(str(min) + ' ' + str(max))
Title: Lineland Mail Time Limit: None seconds Memory Limit: None megabytes Problem Description: All cities of Lineland are located on the *Ox* coordinate axis. Thus, each city is associated with its position *x**i* — a coordinate on the *Ox* axis. No two cities are located at a single point. Lineland residents love to send letters to each other. A person may send a letter only if the recipient lives in another city (because if they live in the same city, then it is easier to drop in). Strange but true, the cost of sending the letter is exactly equal to the distance between the sender's city and the recipient's city. For each city calculate two values ​​*min**i* and *max**i*, where *min**i* is the minimum cost of sending a letter from the *i*-th city to some other city, and *max**i* is the the maximum cost of sending a letter from the *i*-th city to some other city Input Specification: The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of cities in Lineland. The second line contains the sequence of *n* distinct integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=109<=≤<=*x**i*<=≤<=109), where *x**i* is the *x*-coordinate of the *i*-th city. All the *x**i*'s are distinct and follow in ascending order. Output Specification: Print *n* lines, the *i*-th line must contain two integers *min**i*,<=*max**i*, separated by a space, where *min**i* is the minimum cost of sending a letter from the *i*-th city, and *max**i* is the maximum cost of sending a letter from the *i*-th city. Demo Input: ['4\n-5 -2 2 7\n', '2\n-1 1\n'] Demo Output: ['3 12\n3 9\n4 7\n5 12\n', '2 2\n2 2\n'] Note: none
```python import math length = int(input()) data = input().split(' ') data = [int(item) for item in data] for i in data: max, min = 0, 99999999999999 for j in data: if i == j: continue temp = abs(i - j) if max < temp: max = temp if min > temp: min = temp print(str(min) + ' ' + str(max)) ```
0
439
E
Devu and Birthday Celebration
PROGRAMMING
2,100
[ "combinatorics", "dp", "math" ]
null
null
Today is Devu's birthday. For celebrating the occasion, he bought *n* sweets from the nearby market. He has invited his *f* friends. He would like to distribute the sweets among them. As he is a nice guy and the occasion is great, he doesn't want any friend to be sad, so he would ensure to give at least one sweet to each friend. He wants to celebrate it in a unique style, so he would like to ensure following condition for the distribution of sweets. Assume that he has distributed *n* sweets to his friends such that *i**th* friend is given *a**i* sweets. He wants to make sure that there should not be any positive integer *x*<=&gt;<=1, which divides every *a**i*. Please find the number of ways he can distribute sweets to his friends in the required way. Note that the order of distribution is important, for example [1, 2] and [2, 1] are distinct distributions. As the answer could be very large, output answer modulo 1000000007 (109<=+<=7). To make the problem more interesting, you are given *q* queries. Each query contains an *n*, *f* pair. For each query please output the required number of ways modulo 1000000007 (109<=+<=7).
The first line contains an integer *q* representing the number of queries (1<=≤<=*q*<=≤<=105). Each of the next *q* lines contains two space space-separated integers *n*, *f* (1<=≤<=*f*<=≤<=*n*<=≤<=105).
For each query, output a single integer in a line corresponding to the answer of each query.
[ "5\n6 2\n7 2\n6 3\n6 4\n7 4\n" ]
[ "2\n6\n9\n10\n20\n" ]
For first query: *n* = 6, *f* = 2. Possible partitions are [1, 5] and [5, 1]. For second query: *n* = 7, *f* = 2. Possible partitions are [1, 6] and [2, 5] and [3, 4] and [4, 3] and [5, 3] and [6, 1]. So in total there are 6 possible ways of partitioning.
2,500
[ { "input": "5\n6 2\n7 2\n6 3\n6 4\n7 4", "output": "2\n6\n9\n10\n20" }, { "input": "10\n1 1\n1 1\n1 1\n7 2\n6 3\n9 5\n4 1\n2 1\n3 1\n2 2", "output": "1\n1\n1\n6\n9\n70\n0\n0\n0\n1" }, { "input": "40\n37 15\n48 10\n16 5\n25 23\n32 20\n24 4\n46 19\n16 13\n1 1\n37 22\n44 29\n24 6\n27 10\n39 16\n28 13\n5 4\n31 22\n9 2\n30 26\n23 16\n16 12\n43 5\n29 1\n20 5\n40 12\n18 14\n22 15\n29 2\n3 2\n6 3\n45 28\n42 34\n43 32\n10 10\n12 8\n10 8\n4 1\n17 17\n16 7\n8 7", "output": "796297179\n361826943\n1330\n276\n141120525\n1572\n884475620\n455\n1\n567902525\n532655639\n33166\n3124550\n471286455\n17383847\n4\n14307150\n6\n23751\n170544\n1365\n111930\n0\n3750\n675980455\n2380\n116280\n28\n2\n9\n353793174\n95548245\n280561348\n1\n330\n36\n0\n1\n4998\n7" }, { "input": "10\n201 98\n897 574\n703 669\n238 199\n253 71\n619 577\n656 597\n827 450\n165 165\n17 5", "output": "161386475\n287013046\n190482739\n953794468\n858506105\n813510912\n157101041\n44730040\n1\n1820" }, { "input": "5\n5 1\n5 2\n5 3\n5 4\n5 5", "output": "0\n4\n6\n4\n1" }, { "input": "1\n1 1", "output": "1" }, { "input": "2\n2 1\n2 2", "output": "0\n1" }, { "input": "3\n3 1\n3 2\n3 3", "output": "0\n2\n1" }, { "input": "15\n4 1\n4 2\n4 3\n4 4\n5 1\n5 2\n5 3\n5 4\n5 5\n6 1\n6 2\n6 3\n6 4\n6 5\n6 6", "output": "0\n2\n3\n1\n0\n4\n6\n4\n1\n0\n2\n9\n10\n5\n1" } ]
1,630,740,142
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
498
49,254,400
import bisect import copy import decimal import fractions import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factorize=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factorize[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factorize[p]+=1 if N<p*p: if N!=1: factorize[N]+=1 break if N<=len(self.smallest_prime_factor)-1: while N!=1: factorize[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] break else: if N!=1: factorize[N]+=1 return factorize def Divisors(self,N): assert N>0 divisors=[1] for p,e in self.Factorize(N).items(): A=[1] for _ in range(e): A.append(A[-1]*p) divisors=[i*j for i in divisors for j in A] return divisors def Is_Prime(self,N): return N==self.smallest_prime_factor[N] def Totient(self,N): for p in self.Factorize(N).keys(): N*=p-1 N//=p return N def Mebius(self,N): fact=self.Factorize(N) for e in fact.values(): if e>=2: return 0 else: if len(fact)%2==0: return 1 else: return -1 def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=1): self.p=p self.e=e self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] self.cnt=[0]*(N+1) for i in range(1,N+1): ii=i self.cnt[i]=self.cnt[i-1] while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append((self.factorial[-1]*ii)%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Fact(self,N): return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod def Fact_Inve(self,N): if self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu Q=int(readline()) mod=10**9+7 MD=MOD(mod) MD.Build_Fact(2*10**5) P=Prime(10**5) for _ in range(Q): N,F=map(int,readline().split()) divisors=sorted(P.Divisors(N)) cnt={d:MD.Comb(N//d-1,F-1) for d in divisors} for p in P.Factorize(N).keys(): for d in divisors: if d%p==0: cnt[d//p]-=cnt[d] ans=cnt[1] print(ans)
Title: Devu and Birthday Celebration Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today is Devu's birthday. For celebrating the occasion, he bought *n* sweets from the nearby market. He has invited his *f* friends. He would like to distribute the sweets among them. As he is a nice guy and the occasion is great, he doesn't want any friend to be sad, so he would ensure to give at least one sweet to each friend. He wants to celebrate it in a unique style, so he would like to ensure following condition for the distribution of sweets. Assume that he has distributed *n* sweets to his friends such that *i**th* friend is given *a**i* sweets. He wants to make sure that there should not be any positive integer *x*<=&gt;<=1, which divides every *a**i*. Please find the number of ways he can distribute sweets to his friends in the required way. Note that the order of distribution is important, for example [1, 2] and [2, 1] are distinct distributions. As the answer could be very large, output answer modulo 1000000007 (109<=+<=7). To make the problem more interesting, you are given *q* queries. Each query contains an *n*, *f* pair. For each query please output the required number of ways modulo 1000000007 (109<=+<=7). Input Specification: The first line contains an integer *q* representing the number of queries (1<=≤<=*q*<=≤<=105). Each of the next *q* lines contains two space space-separated integers *n*, *f* (1<=≤<=*f*<=≤<=*n*<=≤<=105). Output Specification: For each query, output a single integer in a line corresponding to the answer of each query. Demo Input: ['5\n6 2\n7 2\n6 3\n6 4\n7 4\n'] Demo Output: ['2\n6\n9\n10\n20\n'] Note: For first query: *n* = 6, *f* = 2. Possible partitions are [1, 5] and [5, 1]. For second query: *n* = 7, *f* = 2. Possible partitions are [1, 6] and [2, 5] and [3, 4] and [4, 3] and [5, 3] and [6, 1]. So in total there are 6 possible ways of partitioning.
```python import bisect import copy import decimal import fractions import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factorize=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factorize[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factorize[p]+=1 if N<p*p: if N!=1: factorize[N]+=1 break if N<=len(self.smallest_prime_factor)-1: while N!=1: factorize[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] break else: if N!=1: factorize[N]+=1 return factorize def Divisors(self,N): assert N>0 divisors=[1] for p,e in self.Factorize(N).items(): A=[1] for _ in range(e): A.append(A[-1]*p) divisors=[i*j for i in divisors for j in A] return divisors def Is_Prime(self,N): return N==self.smallest_prime_factor[N] def Totient(self,N): for p in self.Factorize(N).keys(): N*=p-1 N//=p return N def Mebius(self,N): fact=self.Factorize(N) for e in fact.values(): if e>=2: return 0 else: if len(fact)%2==0: return 1 else: return -1 def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=1): self.p=p self.e=e self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] self.cnt=[0]*(N+1) for i in range(1,N+1): ii=i self.cnt[i]=self.cnt[i-1] while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append((self.factorial[-1]*ii)%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Fact(self,N): return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod def Fact_Inve(self,N): if self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu Q=int(readline()) mod=10**9+7 MD=MOD(mod) MD.Build_Fact(2*10**5) P=Prime(10**5) for _ in range(Q): N,F=map(int,readline().split()) divisors=sorted(P.Divisors(N)) cnt={d:MD.Comb(N//d-1,F-1) for d in divisors} for p in P.Factorize(N).keys(): for d in divisors: if d%p==0: cnt[d//p]-=cnt[d] ans=cnt[1] print(ans) ```
0
32
A
Reconnaissance
PROGRAMMING
800
[ "brute force" ]
A. Reconnaissance
2
256
According to the regulations of Berland's army, a reconnaissance unit should consist of exactly two soldiers. Since these two soldiers shouldn't differ much, their heights can differ by at most *d* centimeters. Captain Bob has *n* soldiers in his detachment. Their heights are *a*1,<=*a*2,<=...,<=*a**n* centimeters. Some soldiers are of the same height. Bob wants to know, how many ways exist to form a reconnaissance unit of two soldiers from his detachment. Ways (1,<=2) and (2,<=1) should be regarded as different.
The first line contains two integers *n* and *d* (1<=≤<=*n*<=≤<=1000,<=1<=≤<=*d*<=≤<=109) — amount of soldiers in Bob's detachment and the maximum allowed height difference respectively. The second line contains *n* space-separated integers — heights of all the soldiers in Bob's detachment. These numbers don't exceed 109.
Output one number — amount of ways to form a reconnaissance unit of two soldiers, whose height difference doesn't exceed *d*.
[ "5 10\n10 20 50 60 65\n", "5 1\n55 30 29 31 55\n" ]
[ "6\n", "6\n" ]
none
500
[ { "input": "5 10\n10 20 50 60 65", "output": "6" }, { "input": "5 1\n55 30 29 31 55", "output": "6" }, { "input": "6 10\n4 6 4 1 9 3", "output": "30" }, { "input": "7 100\n19 1694 261 162 1 234 513", "output": "8" }, { "input": "8 42\n37 53 74 187 568 22 5 65", "output": "20" }, { "input": "10 4\n11 6 76 49 28 20 57 152 5 32", "output": "4" }, { "input": "100 100\n51 93 101 960 2 477 213 129 663 925 254 78 1486 274 160 481 132 156 412 372 5 57 152 298 1771 7 359 468 254 406 202 929 221 366 552 97 555 29 822 118 539 140 992 854 7 163 134 103 940 30 409 1003 398 43 555 79 107 40 23 103 643 171 310 382 770 337 18 189 570 177 29 54 855 171 205 291 299 935 620 180 114 358 88 292 118 400 218 537 369 60 683 192 13 537 59 824 264 191 3 300", "output": "2404" } ]
1,660,887,731
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
n, d = list((map(int, input().split()))) a = list((map(int, input().split()))) count = 0 for i in range(len(a)): for j in range(i, len(a)): if(abs(a[i] - a[j]) <= d and i = j): count += 1 elif(abs(a[i] - a[j]) <= d): count += 2 print(count)
Title: Reconnaissance Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: According to the regulations of Berland's army, a reconnaissance unit should consist of exactly two soldiers. Since these two soldiers shouldn't differ much, their heights can differ by at most *d* centimeters. Captain Bob has *n* soldiers in his detachment. Their heights are *a*1,<=*a*2,<=...,<=*a**n* centimeters. Some soldiers are of the same height. Bob wants to know, how many ways exist to form a reconnaissance unit of two soldiers from his detachment. Ways (1,<=2) and (2,<=1) should be regarded as different. Input Specification: The first line contains two integers *n* and *d* (1<=≤<=*n*<=≤<=1000,<=1<=≤<=*d*<=≤<=109) — amount of soldiers in Bob's detachment and the maximum allowed height difference respectively. The second line contains *n* space-separated integers — heights of all the soldiers in Bob's detachment. These numbers don't exceed 109. Output Specification: Output one number — amount of ways to form a reconnaissance unit of two soldiers, whose height difference doesn't exceed *d*. Demo Input: ['5 10\n10 20 50 60 65\n', '5 1\n55 30 29 31 55\n'] Demo Output: ['6\n', '6\n'] Note: none
```python n, d = list((map(int, input().split()))) a = list((map(int, input().split()))) count = 0 for i in range(len(a)): for j in range(i, len(a)): if(abs(a[i] - a[j]) <= d and i = j): count += 1 elif(abs(a[i] - a[j]) <= d): count += 2 print(count) ```
-1
835
A
Key races
PROGRAMMING
800
[ "math" ]
null
null
Two boys decided to compete in text typing on the site "Key races". During the competition, they have to type a text consisting of *s* characters. The first participant types one character in *v*1 milliseconds and has ping *t*1 milliseconds. The second participant types one character in *v*2 milliseconds and has ping *t*2 milliseconds. If connection ping (delay) is *t* milliseconds, the competition passes for a participant as follows: 1. Exactly after *t* milliseconds after the start of the competition the participant receives the text to be entered. 1. Right after that he starts to type it. 1. Exactly *t* milliseconds after he ends typing all the text, the site receives information about it. The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw. Given the length of the text and the information about participants, determine the result of the game.
The first line contains five integers *s*, *v*1, *v*2, *t*1, *t*2 (1<=≤<=*s*,<=*v*1,<=*v*2,<=*t*1,<=*t*2<=≤<=1000) — the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant.
If the first participant wins, print "First". If the second participant wins, print "Second". In case of a draw print "Friendship".
[ "5 1 2 1 2\n", "3 3 1 1 1\n", "4 5 3 1 5\n" ]
[ "First\n", "Second\n", "Friendship\n" ]
In the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant — in 14 milliseconds. So, the first wins. In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant — in 5 milliseconds. So, the second wins. In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant — in 22 milliseconds. So, it is be a draw.
500
[ { "input": "5 1 2 1 2", "output": "First" }, { "input": "3 3 1 1 1", "output": "Second" }, { "input": "4 5 3 1 5", "output": "Friendship" }, { "input": "1000 1000 1000 1000 1000", "output": "Friendship" }, { "input": "1 1 1 1 1", "output": "Friendship" }, { "input": "8 8 1 1 1", "output": "Second" }, { "input": "15 14 32 65 28", "output": "First" }, { "input": "894 197 325 232 902", "output": "First" }, { "input": "1 2 8 8 5", "output": "Friendship" }, { "input": "37 261 207 1 1000", "output": "Friendship" }, { "input": "29 344 406 900 1", "output": "Friendship" }, { "input": "1 2 8 9 8", "output": "First" }, { "input": "2 9 8 8 9", "output": "Friendship" }, { "input": "213 480 811 134 745", "output": "First" }, { "input": "2 313 856 964 421", "output": "Friendship" }, { "input": "1 10 2 6 10", "output": "Friendship" }, { "input": "2 7 6 2 3", "output": "Friendship" }, { "input": "637 324 69 612 998", "output": "Second" }, { "input": "13 849 819 723 918", "output": "Friendship" }, { "input": "9 5 7 8 7", "output": "First" }, { "input": "6 5 7 10 4", "output": "Friendship" }, { "input": "61 464 623 89 548", "output": "First" }, { "input": "641 31 29 161 802", "output": "Friendship" }, { "input": "3 3 1 6 9", "output": "Friendship" }, { "input": "2 3 9 8 2", "output": "Friendship" }, { "input": "485 117 368 567 609", "output": "First" }, { "input": "4 202 512 995 375", "output": "Friendship" }, { "input": "424 41 41 909 909", "output": "Friendship" }, { "input": "884 913 263 641 265", "output": "Second" }, { "input": "12 462 8 311 327", "output": "Second" }, { "input": "436 306 266 493 580", "output": "Second" }, { "input": "69 1 2 1 2", "output": "First" } ]
1,635,941,911
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
4,300,800
s,v1,v2,t1,t2=map(int, input().split()) x=s*v1+2*t1 y=s*v2+2*t2 if x<y: print("Frist") if y<x: print("Second") if x==y: print("Friendship")
Title: Key races Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two boys decided to compete in text typing on the site "Key races". During the competition, they have to type a text consisting of *s* characters. The first participant types one character in *v*1 milliseconds and has ping *t*1 milliseconds. The second participant types one character in *v*2 milliseconds and has ping *t*2 milliseconds. If connection ping (delay) is *t* milliseconds, the competition passes for a participant as follows: 1. Exactly after *t* milliseconds after the start of the competition the participant receives the text to be entered. 1. Right after that he starts to type it. 1. Exactly *t* milliseconds after he ends typing all the text, the site receives information about it. The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw. Given the length of the text and the information about participants, determine the result of the game. Input Specification: The first line contains five integers *s*, *v*1, *v*2, *t*1, *t*2 (1<=≤<=*s*,<=*v*1,<=*v*2,<=*t*1,<=*t*2<=≤<=1000) — the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant. Output Specification: If the first participant wins, print "First". If the second participant wins, print "Second". In case of a draw print "Friendship". Demo Input: ['5 1 2 1 2\n', '3 3 1 1 1\n', '4 5 3 1 5\n'] Demo Output: ['First\n', 'Second\n', 'Friendship\n'] Note: In the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant — in 14 milliseconds. So, the first wins. In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant — in 5 milliseconds. So, the second wins. In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant — in 22 milliseconds. So, it is be a draw.
```python s,v1,v2,t1,t2=map(int, input().split()) x=s*v1+2*t1 y=s*v2+2*t2 if x<y: print("Frist") if y<x: print("Second") if x==y: print("Friendship") ```
0
479
A
Expression
PROGRAMMING
1,000
[ "brute force", "math" ]
null
null
Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets: - 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9 Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2. It's easy to see that the maximum value that you can obtain is 9. Your task is: given *a*, *b* and *c* print the maximum value that you can get.
The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10).
Print the maximum value of the expression that you can obtain.
[ "1\n2\n3\n", "2\n10\n3\n" ]
[ "9\n", "60\n" ]
none
500
[ { "input": "1\n2\n3", "output": "9" }, { "input": "2\n10\n3", "output": "60" }, { "input": "1\n1\n1", "output": "3" }, { "input": "1\n2\n1", "output": "4" }, { "input": "10\n10\n10", "output": "1000" }, { "input": "5\n1\n3", "output": "20" }, { "input": "3\n1\n5", "output": "20" }, { "input": "6\n7\n1", "output": "48" }, { "input": "1\n8\n3", "output": "27" }, { "input": "9\n7\n2", "output": "126" }, { "input": "1\n1\n10", "output": "20" }, { "input": "9\n1\n1", "output": "18" }, { "input": "10\n5\n6", "output": "300" }, { "input": "8\n9\n7", "output": "504" }, { "input": "4\n2\n10", "output": "80" }, { "input": "2\n8\n3", "output": "48" }, { "input": "3\n5\n7", "output": "105" }, { "input": "1\n10\n1", "output": "12" }, { "input": "2\n2\n2", "output": "8" }, { "input": "5\n6\n1", "output": "35" }, { "input": "10\n1\n1", "output": "20" }, { "input": "1\n6\n1", "output": "8" }, { "input": "1\n9\n1", "output": "11" }, { "input": "2\n1\n2", "output": "6" }, { "input": "2\n6\n1", "output": "14" }, { "input": "9\n2\n1", "output": "27" }, { "input": "1\n9\n2", "output": "20" }, { "input": "1\n3\n1", "output": "5" }, { "input": "2\n1\n1", "output": "4" } ]
1,688,022,620
2,147,483,647
Python 3
OK
TESTS
29
46
0
# Read input a = int(input()) b = int(input()) c = int(input()) # Calculate different combinations of expressions expression1 = a + b + c expression2 = a * b * c expression3 = a * (b + c) expression4 = (a + b) * c # Find the maximum value among the expressions max_value = max(expression1, expression2, expression3, expression4) # Print the maximum value print(max_value)
Title: Expression Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets: - 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9 Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2. It's easy to see that the maximum value that you can obtain is 9. Your task is: given *a*, *b* and *c* print the maximum value that you can get. Input Specification: The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10). Output Specification: Print the maximum value of the expression that you can obtain. Demo Input: ['1\n2\n3\n', '2\n10\n3\n'] Demo Output: ['9\n', '60\n'] Note: none
```python # Read input a = int(input()) b = int(input()) c = int(input()) # Calculate different combinations of expressions expression1 = a + b + c expression2 = a * b * c expression3 = a * (b + c) expression4 = (a + b) * c # Find the maximum value among the expressions max_value = max(expression1, expression2, expression3, expression4) # Print the maximum value print(max_value) ```
3
456
A
Laptops
PROGRAMMING
1,100
[ "sortings" ]
null
null
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop. Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops. Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality). All *a**i* are distinct. All *b**i* are distinct.
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
[ "2\n1 2\n2 1\n" ]
[ "Happy Alex\n" ]
none
500
[ { "input": "2\n1 2\n2 1", "output": "Happy Alex" }, { "input": "2\n1 1\n2 2", "output": "Poor Alex" }, { "input": "3\n2 2\n3 3\n1 1", "output": "Poor Alex" }, { "input": "3\n3 3\n1 2\n2 1", "output": "Happy Alex" }, { "input": "1\n1 1", "output": "Poor Alex" }, { "input": "3\n2 3\n1 1\n3 2", "output": "Happy Alex" }, { "input": "4\n4 1\n3 2\n2 3\n1 4", "output": "Happy Alex" }, { "input": "2\n2 1\n1 2", "output": "Happy Alex" }, { "input": "3\n3 2\n1 1\n2 3", "output": "Happy Alex" }, { "input": "3\n1 2\n2 3\n3 1", "output": "Happy Alex" }, { "input": "3\n1 2\n2 1\n3 3", "output": "Happy Alex" }, { "input": "3\n1 2\n2 3\n3 1", "output": "Happy Alex" } ]
1,674,443,135
2,147,483,647
PyPy 3-64
OK
TESTS
46
904
31,436,800
n = int(input()) data = dict() for i in range(1, n+1): price , quality = [int(number) for number in input().split()] data[i] = [price, quality] sort_by_price = sorted(data.items(), key=lambda laptop: laptop[1][0]) sort_by_quality = sorted(data.items(), key=lambda laptop: laptop[1][1]) if sort_by_price == sort_by_quality: print("Poor Alex") else: print("Happy Alex")
Title: Laptops Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop. Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops. Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality). All *a**i* are distinct. All *b**i* are distinct. Output Specification: If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes). Demo Input: ['2\n1 2\n2 1\n'] Demo Output: ['Happy Alex\n'] Note: none
```python n = int(input()) data = dict() for i in range(1, n+1): price , quality = [int(number) for number in input().split()] data[i] = [price, quality] sort_by_price = sorted(data.items(), key=lambda laptop: laptop[1][0]) sort_by_quality = sorted(data.items(), key=lambda laptop: laptop[1][1]) if sort_by_price == sort_by_quality: print("Poor Alex") else: print("Happy Alex") ```
3
16
A
Flag
PROGRAMMING
800
[ "implementation" ]
A. Flag
2
64
According to a new ISO standard, a flag of every country should have a chequered field *n*<=×<=*m*, each square should be of one of 10 colours, and the flag should be «striped»: each horizontal row of the flag should contain squares of the same colour, and the colours of adjacent horizontal rows should be different. Berland's government asked you to find out whether their flag meets the new ISO standard.
The first line of the input contains numbers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100), *n* — the amount of rows, *m* — the amount of columns on the flag of Berland. Then there follows the description of the flag: each of the following *n* lines contain *m* characters. Each character is a digit between 0 and 9, and stands for the colour of the corresponding square.
Output YES, if the flag meets the new ISO standard, and NO otherwise.
[ "3 3\n000\n111\n222\n", "3 3\n000\n000\n111\n", "3 3\n000\n111\n002\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
0
[ { "input": "3 3\n000\n111\n222", "output": "YES" }, { "input": "3 3\n000\n000\n111", "output": "NO" }, { "input": "3 3\n000\n111\n002", "output": "NO" }, { "input": "10 10\n2222222222\n5555555555\n0000000000\n4444444444\n1111111111\n3333333393\n3333333333\n5555555555\n0000000000\n8888888888", "output": "NO" }, { "input": "10 13\n4442444444444\n8888888888888\n6666666666666\n0000000000000\n3333333333333\n4444444444444\n7777777777777\n8388888888888\n1111111111111\n5555555555555", "output": "NO" }, { "input": "10 8\n33333333\n44444444\n11111115\n81888888\n44444444\n11111111\n66666666\n33330333\n33333333\n33333333", "output": "NO" }, { "input": "5 5\n88888\n44444\n66666\n55555\n88888", "output": "YES" }, { "input": "20 19\n1111111111111111111\n5555555555555555555\n0000000000000000000\n3333333333333333333\n1111111111111111111\n2222222222222222222\n4444444444444444444\n5555555555555555555\n0000000000000000000\n4444444444444444444\n0000000000000000000\n5555555555555555555\n7777777777777777777\n9999999999999999999\n2222222222222222222\n4444444444444444444\n1111111111111111111\n6666666666666666666\n7777777777777777777\n2222222222222222222", "output": "YES" }, { "input": "1 100\n8888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888", "output": "YES" }, { "input": "100 1\n5\n7\n9\n4\n7\n2\n5\n1\n6\n7\n2\n7\n6\n8\n7\n4\n0\n2\n9\n8\n9\n1\n6\n4\n3\n4\n7\n1\n9\n3\n0\n8\n3\n1\n7\n5\n3\n9\n5\n1\n3\n5\n8\n1\n9\n3\n9\n0\n6\n0\n7\n6\n5\n2\n8\n3\n7\n6\n5\n1\n8\n3\n6\n9\n6\n0\n5\n8\n5\n2\n9\n1\n0\n1\n8\n3\n2\n1\n0\n3\n9\n0\n5\n1\n0\n4\n9\n3\n0\n4\n8\n4\n8\n6\n3\n0\n4\n6\n8\n4", "output": "YES" }, { "input": "1 1\n2", "output": "YES" }, { "input": "1 100\n1111111111111111111111111111111111111111111111111111111111111111111111111111181111111111111111111111", "output": "NO" }, { "input": "100 1\n3\n6\n4\n3\n0\n2\n8\n7\n3\n2\n1\n7\n1\n3\n2\n3\n6\n9\n0\n8\n5\n9\n7\n9\n2\n1\n4\n5\n1\n9\n2\n5\n1\n4\n6\n4\n9\n1\n0\n2\n1\n4\n7\n1\n4\n8\n0\n9\n2\n1\n6\n2\n8\n6\n9\n5\n8\n6\n4\n5\n9\n2\n7\n4\n1\n5\n8\n0\n9\n5\n4\n6\n5\n0\n6\n3\n6\n9\n7\n2\n0\n9\n7\n3\n2\n4\n9\n4\n7\n1\n2\n3\n1\n7\n9\n1\n9\n0\n4\n0", "output": "YES" } ]
1,585,408,774
2,147,483,647
PyPy 3
OK
TESTS
35
372
1,638,400
r, c = [int(x) for x in input().split()] list_2 = [] index = 0 previous = -1 for i in range(r): list_2.append(list(input())) for i in range(r): index = list_2[i][0] for j in range(c): if index != list_2[i][j] or list_2[i][j]==previous: print("NO") exit() previous = index print("YES")
Title: Flag Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: According to a new ISO standard, a flag of every country should have a chequered field *n*<=×<=*m*, each square should be of one of 10 colours, and the flag should be «striped»: each horizontal row of the flag should contain squares of the same colour, and the colours of adjacent horizontal rows should be different. Berland's government asked you to find out whether their flag meets the new ISO standard. Input Specification: The first line of the input contains numbers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100), *n* — the amount of rows, *m* — the amount of columns on the flag of Berland. Then there follows the description of the flag: each of the following *n* lines contain *m* characters. Each character is a digit between 0 and 9, and stands for the colour of the corresponding square. Output Specification: Output YES, if the flag meets the new ISO standard, and NO otherwise. Demo Input: ['3 3\n000\n111\n222\n', '3 3\n000\n000\n111\n', '3 3\n000\n111\n002\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python r, c = [int(x) for x in input().split()] list_2 = [] index = 0 previous = -1 for i in range(r): list_2.append(list(input())) for i in range(r): index = list_2[i][0] for j in range(c): if index != list_2[i][j] or list_2[i][j]==previous: print("NO") exit() previous = index print("YES") ```
3.894793
656
A
Da Vinci Powers
PROGRAMMING
1,900
[ "*special" ]
null
null
The input contains a single integer *a* (0<=≤<=*a*<=≤<=35). Output a single integer.
The input contains a single integer *a* (0<=≤<=*a*<=≤<=35).
Output a single integer.
[ "3\n", "10\n" ]
[ "8\n", "1024\n" ]
none
0
[ { "input": "3", "output": "8" }, { "input": "10", "output": "1024" }, { "input": "35", "output": "33940307968" }, { "input": "0", "output": "1" }, { "input": "1", "output": "2" }, { "input": "2", "output": "4" }, { "input": "4", "output": "16" }, { "input": "5", "output": "32" }, { "input": "6", "output": "64" }, { "input": "7", "output": "128" }, { "input": "8", "output": "256" }, { "input": "9", "output": "512" }, { "input": "11", "output": "2048" }, { "input": "12", "output": "4096" }, { "input": "13", "output": "8092" }, { "input": "14", "output": "16184" }, { "input": "15", "output": "32368" }, { "input": "16", "output": "64736" }, { "input": "17", "output": "129472" }, { "input": "18", "output": "258944" }, { "input": "19", "output": "517888" }, { "input": "20", "output": "1035776" }, { "input": "21", "output": "2071552" }, { "input": "22", "output": "4143104" }, { "input": "23", "output": "8286208" }, { "input": "24", "output": "16572416" }, { "input": "25", "output": "33144832" }, { "input": "26", "output": "66289664" }, { "input": "27", "output": "132579328" }, { "input": "28", "output": "265158656" }, { "input": "29", "output": "530317312" }, { "input": "30", "output": "1060634624" }, { "input": "31", "output": "2121269248" }, { "input": "32", "output": "4242538496" }, { "input": "33", "output": "8485076992" }, { "input": "34", "output": "16970153984" } ]
1,617,263,877
2,147,483,647
PyPy 3
MEMORY_LIMIT_EXCEEDED
TESTS
0
1,060
67,072,000
n = int(input()) print( int( 2**n - (n>12)*2**(n-13)**100 ))
Title: Da Vinci Powers Time Limit: None seconds Memory Limit: None megabytes Problem Description: The input contains a single integer *a* (0<=≤<=*a*<=≤<=35). Output a single integer. Input Specification: The input contains a single integer *a* (0<=≤<=*a*<=≤<=35). Output Specification: Output a single integer. Demo Input: ['3\n', '10\n'] Demo Output: ['8\n', '1024\n'] Note: none
```python n = int(input()) print( int( 2**n - (n>12)*2**(n-13)**100 )) ```
0
41
A
Translation
PROGRAMMING
800
[ "implementation", "strings" ]
A. Translation
2
256
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
[ "code\nedoc\n", "abb\naba\n", "code\ncode\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "code\nedoc", "output": "YES" }, { "input": "abb\naba", "output": "NO" }, { "input": "code\ncode", "output": "NO" }, { "input": "abacaba\nabacaba", "output": "YES" }, { "input": "q\nq", "output": "YES" }, { "input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk", "output": "NO" }, { "input": "z\na", "output": "NO" }, { "input": "asd\ndsa", "output": "YES" }, { "input": "abcdef\nfecdba", "output": "NO" }, { "input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu", "output": "NO" }, { "input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf", "output": "NO" }, { "input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp", "output": "NO" }, { "input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb", "output": "NO" }, { "input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom", "output": "NO" }, { "input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh", "output": "NO" }, { "input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy", "output": "NO" }, { "input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko", "output": "NO" }, { "input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv", "output": "NO" }, { "input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd", "output": "NO" }, { "input": "w\nw", "output": "YES" }, { "input": "vz\nzv", "output": "YES" }, { "input": "ry\nyr", "output": "YES" }, { "input": "xou\nuox", "output": "YES" }, { "input": "axg\ngax", "output": "NO" }, { "input": "zdsl\nlsdz", "output": "YES" }, { "input": "kudl\nldku", "output": "NO" }, { "input": "zzlzwnqlcl\nlclqnwzlzz", "output": "YES" }, { "input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv", "output": "YES" }, { "input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar", "output": "NO" }, { "input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn", "output": "YES" }, { "input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum", "output": "YES" }, { "input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv", "output": "YES" }, { "input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm", "output": "NO" }, { "input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd", "output": "NO" }, { "input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg", "output": "YES" }, { "input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis", "output": "YES" }, { "input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy", "output": "NO" }, { "input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw", "output": "YES" }, { "input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi", "output": "YES" }, { "input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib", "output": "YES" } ]
1,614,876,844
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
124
307,200
x = input() k = input() lst = [] lstO = [] cnt = 0 for i in range(len(x)): lst.append(x[i]) if(lst[i] == 't'): lst[i] = 's' else: pass lst.reverse() for i in range(len(x)): lstO.append((k[i])) for i in range(0, len(x)): if(lstO[i] != lst[i]): print("NO") break else: cnt +=1 if(cnt>0): print("YES")
Title: Translation Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. Input Specification: The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. Output Specification: If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. Demo Input: ['code\nedoc\n', 'abb\naba\n', 'code\ncode\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python x = input() k = input() lst = [] lstO = [] cnt = 0 for i in range(len(x)): lst.append(x[i]) if(lst[i] == 't'): lst[i] = 's' else: pass lst.reverse() for i in range(len(x)): lstO.append((k[i])) for i in range(0, len(x)): if(lstO[i] != lst[i]): print("NO") break else: cnt +=1 if(cnt>0): print("YES") ```
0
996
A
Hit the Lottery
PROGRAMMING
800
[ "dp", "greedy" ]
null
null
Allen has a LOT of money. He has $n$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $1$, $5$, $10$, $20$, $100$. What is the minimum number of bills Allen could receive after withdrawing his entire balance?
The first and only line of input contains a single integer $n$ ($1 \le n \le 10^9$).
Output the minimum number of bills that Allen could receive.
[ "125\n", "43\n", "1000000000\n" ]
[ "3\n", "5\n", "10000000\n" ]
In the first sample case, Allen can withdraw this with a $100$ dollar bill, a $20$ dollar bill, and a $5$ dollar bill. There is no way for Allen to receive $125$ dollars in one or two bills. In the second sample case, Allen can withdraw two $20$ dollar bills and three $1$ dollar bills. In the third sample case, Allen can withdraw $100000000$ (ten million!) $100$ dollar bills.
500
[ { "input": "125", "output": "3" }, { "input": "43", "output": "5" }, { "input": "1000000000", "output": "10000000" }, { "input": "4", "output": "4" }, { "input": "5", "output": "1" }, { "input": "1", "output": "1" }, { "input": "74", "output": "8" }, { "input": "31", "output": "3" }, { "input": "59", "output": "8" }, { "input": "79", "output": "9" }, { "input": "7", "output": "3" }, { "input": "55", "output": "4" }, { "input": "40", "output": "2" }, { "input": "719", "output": "13" }, { "input": "847", "output": "13" }, { "input": "225", "output": "4" }, { "input": "4704", "output": "51" }, { "input": "1132", "output": "15" }, { "input": "7811", "output": "80" }, { "input": "7981", "output": "84" }, { "input": "82655", "output": "830" }, { "input": "6364", "output": "70" }, { "input": "74611", "output": "748" }, { "input": "45391", "output": "459" }, { "input": "620448", "output": "6210" }, { "input": "265145", "output": "2654" }, { "input": "671704", "output": "6721" }, { "input": "365173", "output": "3658" }, { "input": "7130872", "output": "71314" }, { "input": "9628747", "output": "96292" }, { "input": "8898399", "output": "88993" }, { "input": "9497953", "output": "94985" }, { "input": "19070947", "output": "190714" }, { "input": "20185520", "output": "201856" }, { "input": "91402248", "output": "914028" }, { "input": "27035533", "output": "270360" }, { "input": "22717528", "output": "227180" }, { "input": "24403439", "output": "244041" }, { "input": "163565555", "output": "1635659" }, { "input": "152541908", "output": "1525423" }, { "input": "668439837", "output": "6684403" }, { "input": "20", "output": "1" }, { "input": "999999999", "output": "10000009" }, { "input": "10", "output": "1" }, { "input": "7", "output": "3" }, { "input": "6", "output": "2" }, { "input": "99999999", "output": "1000009" }, { "input": "1000001", "output": "10001" }, { "input": "2521", "output": "27" } ]
1,691,655,495
2,147,483,647
Python 3
OK
TESTS
49
46
0
n = int(input()) count_100 = n // 100 n %= 100 count_20 = n // 20 n %= 20 count_10 = n // 10 n %= 10 count_5 = n // 5 n %= 5 count_1 = n total_bills = count_100 + count_20 + count_10 + count_5 + count_1 print(total_bills)
Title: Hit the Lottery Time Limit: None seconds Memory Limit: None megabytes Problem Description: Allen has a LOT of money. He has $n$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $1$, $5$, $10$, $20$, $100$. What is the minimum number of bills Allen could receive after withdrawing his entire balance? Input Specification: The first and only line of input contains a single integer $n$ ($1 \le n \le 10^9$). Output Specification: Output the minimum number of bills that Allen could receive. Demo Input: ['125\n', '43\n', '1000000000\n'] Demo Output: ['3\n', '5\n', '10000000\n'] Note: In the first sample case, Allen can withdraw this with a $100$ dollar bill, a $20$ dollar bill, and a $5$ dollar bill. There is no way for Allen to receive $125$ dollars in one or two bills. In the second sample case, Allen can withdraw two $20$ dollar bills and three $1$ dollar bills. In the third sample case, Allen can withdraw $100000000$ (ten million!) $100$ dollar bills.
```python n = int(input()) count_100 = n // 100 n %= 100 count_20 = n // 20 n %= 20 count_10 = n // 10 n %= 10 count_5 = n // 5 n %= 5 count_1 = n total_bills = count_100 + count_20 + count_10 + count_5 + count_1 print(total_bills) ```
3
339
A
Helpful Maths
PROGRAMMING
800
[ "greedy", "implementation", "sortings", "strings" ]
null
null
Xenia the beginner mathematician is a third year student at elementary school. She is now learning the addition operation. The teacher has written down the sum of multiple numbers. Pupils should calculate the sum. To make the calculation easier, the sum only contains numbers 1, 2 and 3. Still, that isn't enough for Xenia. She is only beginning to count, so she can calculate a sum only if the summands follow in non-decreasing order. For example, she can't calculate sum 1+3+2+1 but she can calculate sums 1+1+2 and 3+3. You've got the sum that was written on the board. Rearrange the summans and print the sum in such a way that Xenia can calculate the sum.
The first line contains a non-empty string *s* — the sum Xenia needs to count. String *s* contains no spaces. It only contains digits and characters "+". Besides, string *s* is a correct sum of numbers 1, 2 and 3. String *s* is at most 100 characters long.
Print the new sum that Xenia can count.
[ "3+2+1\n", "1+1+3+1+3\n", "2\n" ]
[ "1+2+3\n", "1+1+1+3+3\n", "2\n" ]
none
500
[ { "input": "3+2+1", "output": "1+2+3" }, { "input": "1+1+3+1+3", "output": "1+1+1+3+3" }, { "input": "2", "output": "2" }, { "input": "2+2+1+1+3", "output": "1+1+2+2+3" }, { "input": "2+1+2+2+2+3+1+3+1+2", "output": "1+1+1+2+2+2+2+2+3+3" }, { "input": "1+2+1+2+2+2+2+1+3+3", "output": "1+1+1+2+2+2+2+2+3+3" }, { "input": "2+3+3+1+2+2+2+1+1+2+1+3+2+2+3+3+2+2+3+3+3+1+1+1+3+3+3+2+1+3+2+3+2+1+1+3+3+3+1+2+2+1+2+2+1+2+1+3+1+1", "output": "1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3" }, { "input": "1", "output": "1" }, { "input": "2+1+2+2+1+3+2+3+1+1+2+1+2+2+3+1+1+3+3+3+2+2+3+2+2+2+1+2+1+2+3+2+2+2+1+3+1+3+3+3+1+2+1+2+2+2+2+3+1+1", "output": "1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3" }, { "input": "2+2+1+1+1+3+1+1+3+3+2+3+1+3+1+1+3+1+1+2+2+2+2+1+2+1+2+1+1+1+3+1+3+2+3+2+3+3+1+1+1+2+3+2+1+3+1+3+2+2", "output": "1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3" }, { "input": "3+2+3+3+2+2+1+2+1+2+3+1+2+3+2+3+2+1+2+2+1+1+2+2+3+2+1+3+1+1+3+2+2+2+2+3+3+2+2+3+3+1+1+2+3+3+2+3+3+3", "output": "1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3" }, { "input": "3", "output": "3" }, { "input": "1+1", "output": "1+1" }, { "input": "1+2", "output": "1+2" }, { "input": "1+3", "output": "1+3" }, { "input": "2+1", "output": "1+2" }, { "input": "2+2", "output": "2+2" }, { "input": "2+3", "output": "2+3" }, { "input": "3+1", "output": "1+3" }, { "input": "3+2", "output": "2+3" }, { "input": "3+3", "output": "3+3" } ]
1,698,887,366
2,147,483,647
PyPy 3-64
OK
TESTS
21
124
0
a = str(input()) b = a.split("+") c = [int(x) for x in b] c.sort() d = '+'.join(map(str, c)) print(d)
Title: Helpful Maths Time Limit: None seconds Memory Limit: None megabytes Problem Description: Xenia the beginner mathematician is a third year student at elementary school. She is now learning the addition operation. The teacher has written down the sum of multiple numbers. Pupils should calculate the sum. To make the calculation easier, the sum only contains numbers 1, 2 and 3. Still, that isn't enough for Xenia. She is only beginning to count, so she can calculate a sum only if the summands follow in non-decreasing order. For example, she can't calculate sum 1+3+2+1 but she can calculate sums 1+1+2 and 3+3. You've got the sum that was written on the board. Rearrange the summans and print the sum in such a way that Xenia can calculate the sum. Input Specification: The first line contains a non-empty string *s* — the sum Xenia needs to count. String *s* contains no spaces. It only contains digits and characters "+". Besides, string *s* is a correct sum of numbers 1, 2 and 3. String *s* is at most 100 characters long. Output Specification: Print the new sum that Xenia can count. Demo Input: ['3+2+1\n', '1+1+3+1+3\n', '2\n'] Demo Output: ['1+2+3\n', '1+1+1+3+3\n', '2\n'] Note: none
```python a = str(input()) b = a.split("+") c = [int(x) for x in b] c.sort() d = '+'.join(map(str, c)) print(d) ```
3
742
A
Arpa’s hard exam and Mehrdad’s naive cheat
PROGRAMMING
1,000
[ "implementation", "math", "number theory" ]
null
null
There exists an island called Arpa’s land, some beautiful girls live there, as ugly ones do. Mehrdad wants to become minister of Arpa’s land. Arpa has prepared an exam. Exam has only one question, given *n*, print the last digit of 1378*n*. Mehrdad has become quite confused and wants you to help him. Please help, although it's a naive cheat.
The single line of input contains one integer *n* (0<=<=≤<=<=*n*<=<=≤<=<=109).
Print single integer — the last digit of 1378*n*.
[ "1\n", "2\n" ]
[ "8", "4" ]
In the first example, last digit of 1378<sup class="upper-index">1</sup> = 1378 is 8. In the second example, last digit of 1378<sup class="upper-index">2</sup> = 1378·1378 = 1898884 is 4.
500
[ { "input": "1", "output": "8" }, { "input": "2", "output": "4" }, { "input": "1000", "output": "6" }, { "input": "3", "output": "2" }, { "input": "4", "output": "6" }, { "input": "1000000000", "output": "6" }, { "input": "5", "output": "8" }, { "input": "6", "output": "4" }, { "input": "999999999", "output": "2" }, { "input": "1378", "output": "4" }, { "input": "13781378", "output": "4" }, { "input": "51202278", "output": "4" }, { "input": "999999998", "output": "4" }, { "input": "999999997", "output": "8" }, { "input": "12193721", "output": "8" }, { "input": "0", "output": "1" }, { "input": "989898989", "output": "8" }, { "input": "7", "output": "2" }, { "input": "8", "output": "6" }, { "input": "9", "output": "8" }, { "input": "10", "output": "4" }, { "input": "11", "output": "2" }, { "input": "12", "output": "6" }, { "input": "13", "output": "8" }, { "input": "14", "output": "4" }, { "input": "15", "output": "2" }, { "input": "16", "output": "6" }, { "input": "999999996", "output": "6" }, { "input": "999999995", "output": "2" }, { "input": "999999994", "output": "4" } ]
1,692,473,337
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
15
46
0
n=int(input()) if (3*n-1)%4==0: print(2) elif (3*n-1)%4==1: print(4) elif (3*n-1)%4==2: print(8) else: print(6)
Title: Arpa’s hard exam and Mehrdad’s naive cheat Time Limit: None seconds Memory Limit: None megabytes Problem Description: There exists an island called Arpa’s land, some beautiful girls live there, as ugly ones do. Mehrdad wants to become minister of Arpa’s land. Arpa has prepared an exam. Exam has only one question, given *n*, print the last digit of 1378*n*. Mehrdad has become quite confused and wants you to help him. Please help, although it's a naive cheat. Input Specification: The single line of input contains one integer *n* (0<=<=≤<=<=*n*<=<=≤<=<=109). Output Specification: Print single integer — the last digit of 1378*n*. Demo Input: ['1\n', '2\n'] Demo Output: ['8', '4'] Note: In the first example, last digit of 1378<sup class="upper-index">1</sup> = 1378 is 8. In the second example, last digit of 1378<sup class="upper-index">2</sup> = 1378·1378 = 1898884 is 4.
```python n=int(input()) if (3*n-1)%4==0: print(2) elif (3*n-1)%4==1: print(4) elif (3*n-1)%4==2: print(8) else: print(6) ```
0
798
A
Mike and palindrome
PROGRAMMING
1,000
[ "brute force", "constructive algorithms", "strings" ]
null
null
Mike has a string *s* consisting of only lowercase English letters. He wants to change exactly one character from the string so that the resulting one is a palindrome. A palindrome is a string that reads the same backward as forward, for example strings "z", "aaa", "aba", "abccba" are palindromes, but strings "codeforces", "reality", "ab" are not.
The first and single line contains string *s* (1<=≤<=|*s*|<=≤<=15).
Print "YES" (without quotes) if Mike can change exactly one character so that the resulting string is palindrome or "NO" (without quotes) otherwise.
[ "abccaa\n", "abbcca\n", "abcda\n" ]
[ "YES\n", "NO\n", "YES\n" ]
none
500
[ { "input": "abccaa", "output": "YES" }, { "input": "abbcca", "output": "NO" }, { "input": "abcda", "output": "YES" }, { "input": "kyw", "output": "YES" }, { "input": "fccf", "output": "NO" }, { "input": "mnlm", "output": "YES" }, { "input": "gqrk", "output": "NO" }, { "input": "glxlg", "output": "YES" }, { "input": "czhfc", "output": "YES" }, { "input": "broon", "output": "NO" }, { "input": "rmggmr", "output": "NO" }, { "input": "wvxxzw", "output": "YES" }, { "input": "ukvciu", "output": "NO" }, { "input": "vrnwnrv", "output": "YES" }, { "input": "vlkjkav", "output": "YES" }, { "input": "guayhmg", "output": "NO" }, { "input": "lkvhhvkl", "output": "NO" }, { "input": "ffdsslff", "output": "YES" }, { "input": "galjjtyw", "output": "NO" }, { "input": "uosgwgsou", "output": "YES" }, { "input": "qjwmjmljq", "output": "YES" }, { "input": "ustrvrodf", "output": "NO" }, { "input": "a", "output": "YES" }, { "input": "qjfyjjyfjq", "output": "NO" }, { "input": "ysxibbixsq", "output": "YES" }, { "input": "howfslfwmh", "output": "NO" }, { "input": "ekhajrjahke", "output": "YES" }, { "input": "ucnolsloncw", "output": "YES" }, { "input": "jrzsfrrkrtj", "output": "NO" }, { "input": "typayzzyapyt", "output": "NO" }, { "input": "uwdhkzokhdwu", "output": "YES" }, { "input": "xokxpyyuafij", "output": "NO" }, { "input": "eusneioiensue", "output": "YES" }, { "input": "fuxpuajabpxuf", "output": "YES" }, { "input": "guvggtfhlgruy", "output": "NO" }, { "input": "cojhkhxxhkhjoc", "output": "NO" }, { "input": "mhifbmmmmbmihm", "output": "YES" }, { "input": "kxfqqncnebpami", "output": "NO" }, { "input": "scfwrjevejrwfcs", "output": "YES" }, { "input": "thdaonpepdoadht", "output": "YES" }, { "input": "jsfzcbnhsccuqsj", "output": "NO" }, { "input": "nn", "output": "NO" }, { "input": "nm", "output": "YES" }, { "input": "jdj", "output": "YES" }, { "input": "bbcaa", "output": "NO" }, { "input": "abcde", "output": "NO" }, { "input": "abcdf", "output": "NO" }, { "input": "aa", "output": "NO" }, { "input": "abecd", "output": "NO" }, { "input": "abccacb", "output": "NO" }, { "input": "aabc", "output": "NO" }, { "input": "anpqb", "output": "NO" }, { "input": "c", "output": "YES" }, { "input": "abcdefg", "output": "NO" }, { "input": "aanbb", "output": "NO" }, { "input": "aabbb", "output": "NO" }, { "input": "aaabbab", "output": "NO" }, { "input": "ab", "output": "YES" }, { "input": "aabbc", "output": "NO" }, { "input": "ecabd", "output": "NO" }, { "input": "abcdrty", "output": "NO" }, { "input": "abcdmnp", "output": "NO" }, { "input": "bbbbbb", "output": "NO" }, { "input": "abcxuio", "output": "NO" }, { "input": "abcdabcde", "output": "NO" }, { "input": "abcxpoi", "output": "NO" }, { "input": "aba", "output": "YES" }, { "input": "aacbb", "output": "NO" }, { "input": "abcedca", "output": "NO" }, { "input": "abcdd", "output": "NO" }, { "input": "abbcs", "output": "NO" }, { "input": "aaabccc", "output": "NO" }, { "input": "paxkxbq", "output": "NO" }, { "input": "z", "output": "YES" }, { "input": "b", "output": "YES" }, { "input": "abcdefghi", "output": "NO" }, { "input": "abcqr", "output": "NO" }, { "input": "abcdc", "output": "NO" }, { "input": "abcb", "output": "NO" }, { "input": "aabcd", "output": "NO" }, { "input": "abbba", "output": "YES" }, { "input": "aaabbb", "output": "NO" }, { "input": "bb", "output": "NO" }, { "input": "aaacbbb", "output": "NO" }, { "input": "abbzcca", "output": "NO" }, { "input": "abxab", "output": "NO" }, { "input": "bbb", "output": "YES" }, { "input": "abcrtyu", "output": "NO" }, { "input": "cbacb", "output": "NO" }, { "input": "acbb", "output": "NO" }, { "input": "ww", "output": "NO" }, { "input": "aaaaaa", "output": "NO" }, { "input": "jizzz", "output": "NO" }, { "input": "aaakcba", "output": "NO" }, { "input": "acbak", "output": "NO" }, { "input": "bddeffd", "output": "NO" }, { "input": "aaa", "output": "YES" }, { "input": "afghqwe", "output": "NO" }, { "input": "abcdfga", "output": "NO" } ]
1,642,005,502
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
31
0
# -*- coding: utf-8 -*- """PSAT_assignemnt-5_C_Mike_and_Palindrome.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1ufF9rMcXbcqVpnsBiybAgDmPMAV7m340 """ text=input() n=len(text) text_diff_cnt=0 for i in range(n//2): if(text[i] != text[(n-1)-i]): text_diff_cnt=text_diff_cnt+1 if (text_diff_cnt > 1) or (text_diff_cnt ==1 and n==2): print("NO") else: print("YES")
Title: Mike and palindrome Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mike has a string *s* consisting of only lowercase English letters. He wants to change exactly one character from the string so that the resulting one is a palindrome. A palindrome is a string that reads the same backward as forward, for example strings "z", "aaa", "aba", "abccba" are palindromes, but strings "codeforces", "reality", "ab" are not. Input Specification: The first and single line contains string *s* (1<=≤<=|*s*|<=≤<=15). Output Specification: Print "YES" (without quotes) if Mike can change exactly one character so that the resulting string is palindrome or "NO" (without quotes) otherwise. Demo Input: ['abccaa\n', 'abbcca\n', 'abcda\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: none
```python # -*- coding: utf-8 -*- """PSAT_assignemnt-5_C_Mike_and_Palindrome.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1ufF9rMcXbcqVpnsBiybAgDmPMAV7m340 """ text=input() n=len(text) text_diff_cnt=0 for i in range(n//2): if(text[i] != text[(n-1)-i]): text_diff_cnt=text_diff_cnt+1 if (text_diff_cnt > 1) or (text_diff_cnt ==1 and n==2): print("NO") else: print("YES") ```
0
0
none
none
none
0
[ "none" ]
null
null
Giant chess is quite common in Geraldion. We will not delve into the rules of the game, we'll just say that the game takes place on an *h*<=×<=*w* field, and it is painted in two colors, but not like in chess. Almost all cells of the field are white and only some of them are black. Currently Gerald is finishing a game of giant chess against his friend Pollard. Gerald has almost won, and the only thing he needs to win is to bring the pawn from the upper left corner of the board, where it is now standing, to the lower right corner. Gerald is so confident of victory that he became interested, in how many ways can he win? The pawn, which Gerald has got left can go in two ways: one cell down or one cell to the right. In addition, it can not go to the black cells, otherwise the Gerald still loses. There are no other pawns or pieces left on the field, so that, according to the rules of giant chess Gerald moves his pawn until the game is over, and Pollard is just watching this process.
The first line of the input contains three integers: *h*,<=*w*,<=*n* — the sides of the board and the number of black cells (1<=≤<=*h*,<=*w*<=≤<=105,<=1<=≤<=*n*<=≤<=2000). Next *n* lines contain the description of black cells. The *i*-th of these lines contains numbers *r**i*,<=*c**i* (1<=≤<=*r**i*<=≤<=*h*,<=1<=≤<=*c**i*<=≤<=*w*) — the number of the row and column of the *i*-th cell. It is guaranteed that the upper left and lower right cell are white and all cells in the description are distinct.
Print a single line — the remainder of the number of ways to move Gerald's pawn from the upper left to the lower right corner modulo 109<=+<=7.
[ "3 4 2\n2 2\n2 3\n", "100 100 3\n15 16\n16 15\n99 88\n" ]
[ "2\n", "545732279\n" ]
none
0
[ { "input": "3 4 2\n2 2\n2 3", "output": "2" }, { "input": "100 100 3\n15 16\n16 15\n99 88", "output": "545732279" }, { "input": "1000 1000 4\n50 50\n51 50\n50 51\n51 51", "output": "899660737" }, { "input": "100000 100000 4\n50001 50001\n50000 50000\n50000 50001\n50001 50000", "output": "999612315" }, { "input": "2 2 2\n2 1\n1 2", "output": "0" }, { "input": "100 10 30\n40 4\n15 3\n75 3\n88 10\n32 1\n16 5\n81 8\n45 2\n72 8\n11 6\n86 4\n50 2\n9 4\n11 1\n20 3\n47 3\n2 4\n68 3\n90 5\n85 2\n88 1\n88 5\n86 3\n70 9\n49 3\n34 4\n5 7\n77 5\n50 1\n87 5", "output": "402737011" }, { "input": "100000 100000 2\n1 2\n2 1", "output": "0" }, { "input": "100000 100000 2\n99999 100000\n100000 99999", "output": "0" }, { "input": "100000 100000 3\n99998 100000\n99999 99999\n100000 99998", "output": "0" } ]
1,532,881,690
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
2
2,000
226,816,000
import operator def choose(n, k): x = [[0 for _ in range(k + 1)] for _ in range(n + 1)] for i in range(1, n + 1): for j in range(1, k + 1): if i == 1 or i <= j: x[i][j] = 1 elif j == 0: x[i][j] = 1 elif j == 1: x[i][j] = i else: x[i][j] = x[i - 1][j - 1] + x[i - 1][j] return x[n][k] h, w, k = map(int, input().split()) pts = [] for _ in range(k): l = list(map(int, input().split())) pts.append(l) pts.append([h, w]) pts = sorted(pts, key = operator.itemgetter(0)) s = dict() for i in range(len(pts)): s[tuple(pts[i])] = choose(sum(pts[i]) - 2, pts[i][1] - 1) for j in range(i): if pts[j][1] <= pts[i][1]: s[tuple(pts[i])] -= (choose(sum(pts[i]) - sum(pts[j]), pts[i][1] - pts[j][1]) * s[tuple(pts[j])]) % 1000000007 print(s[(h, w)] % 1000000007)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Giant chess is quite common in Geraldion. We will not delve into the rules of the game, we'll just say that the game takes place on an *h*<=×<=*w* field, and it is painted in two colors, but not like in chess. Almost all cells of the field are white and only some of them are black. Currently Gerald is finishing a game of giant chess against his friend Pollard. Gerald has almost won, and the only thing he needs to win is to bring the pawn from the upper left corner of the board, where it is now standing, to the lower right corner. Gerald is so confident of victory that he became interested, in how many ways can he win? The pawn, which Gerald has got left can go in two ways: one cell down or one cell to the right. In addition, it can not go to the black cells, otherwise the Gerald still loses. There are no other pawns or pieces left on the field, so that, according to the rules of giant chess Gerald moves his pawn until the game is over, and Pollard is just watching this process. Input Specification: The first line of the input contains three integers: *h*,<=*w*,<=*n* — the sides of the board and the number of black cells (1<=≤<=*h*,<=*w*<=≤<=105,<=1<=≤<=*n*<=≤<=2000). Next *n* lines contain the description of black cells. The *i*-th of these lines contains numbers *r**i*,<=*c**i* (1<=≤<=*r**i*<=≤<=*h*,<=1<=≤<=*c**i*<=≤<=*w*) — the number of the row and column of the *i*-th cell. It is guaranteed that the upper left and lower right cell are white and all cells in the description are distinct. Output Specification: Print a single line — the remainder of the number of ways to move Gerald's pawn from the upper left to the lower right corner modulo 109<=+<=7. Demo Input: ['3 4 2\n2 2\n2 3\n', '100 100 3\n15 16\n16 15\n99 88\n'] Demo Output: ['2\n', '545732279\n'] Note: none
```python import operator def choose(n, k): x = [[0 for _ in range(k + 1)] for _ in range(n + 1)] for i in range(1, n + 1): for j in range(1, k + 1): if i == 1 or i <= j: x[i][j] = 1 elif j == 0: x[i][j] = 1 elif j == 1: x[i][j] = i else: x[i][j] = x[i - 1][j - 1] + x[i - 1][j] return x[n][k] h, w, k = map(int, input().split()) pts = [] for _ in range(k): l = list(map(int, input().split())) pts.append(l) pts.append([h, w]) pts = sorted(pts, key = operator.itemgetter(0)) s = dict() for i in range(len(pts)): s[tuple(pts[i])] = choose(sum(pts[i]) - 2, pts[i][1] - 1) for j in range(i): if pts[j][1] <= pts[i][1]: s[tuple(pts[i])] -= (choose(sum(pts[i]) - sum(pts[j]), pts[i][1] - pts[j][1]) * s[tuple(pts[j])]) % 1000000007 print(s[(h, w)] % 1000000007) ```
0
837
A
Text Volume
PROGRAMMING
800
[ "implementation" ]
null
null
You are given a text of single-space separated words, consisting of small and capital Latin letters. Volume of the word is number of capital letters in the word. Volume of the text is maximum volume of all words in the text. Calculate the volume of the given text.
The first line contains one integer number *n* (1<=≤<=*n*<=≤<=200) — length of the text. The second line contains text of single-space separated words *s*1,<=*s*2,<=...,<=*s**i*, consisting only of small and capital Latin letters.
Print one integer number — volume of text.
[ "7\nNonZERO\n", "24\nthis is zero answer text\n", "24\nHarbour Space University\n" ]
[ "5\n", "0\n", "1\n" ]
In the first example there is only one word, there are 5 capital letters in it. In the second example all of the words contain 0 capital letters.
0
[ { "input": "7\nNonZERO", "output": "5" }, { "input": "24\nthis is zero answer text", "output": "0" }, { "input": "24\nHarbour Space University", "output": "1" }, { "input": "2\nWM", "output": "2" }, { "input": "200\nLBmJKQLCKUgtTxMoDsEerwvLOXsxASSydOqWyULsRcjMYDWdDCgaDvBfATIWPVSXlbcCLHPYahhxMEYUiaxoCebghJqvmRnaNHYTKLeOiaLDnATPZAOgSNfBzaxLymTGjfzvTegbXsAthTxyDTcmBUkqyGlVGZhoazQzVSoKbTFcCRvYsgSCwjGMxBfWEwMHuagTBxkz", "output": "105" }, { "input": "199\no A r v H e J q k J k v w Q F p O R y R Z o a K R L Z E H t X y X N y y p b x B m r R S q i A x V S u i c L y M n N X c C W Z m S j e w C w T r I S X T D F l w o k f t X u n W w p Z r A k I Y E h s g", "output": "1" }, { "input": "200\nhCyIdivIiISmmYIsCLbpKcTyHaOgTUQEwnQACXnrLdHAVFLtvliTEMlzBVzTesQbhXmcqvwPDeojglBMIjOXANfyQxCSjOJyO SIqOTnRzVzseGIDDYNtrwIusScWSuEhPyEmgQIVEzXofRptjeMzzhtUQxJgcUWILUhEaaRmYRBVsjoqgmyPIKwSajdlNPccOOtWrez", "output": "50" }, { "input": "1\ne", "output": "0" }, { "input": "1\nA", "output": "1" }, { "input": "200\nABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ KLMNOPRSTU KLMNOPRSTU KLMNOPRSTU VWXYZABCDE KLMNOPRSTU KLMNOPRSTU KLMNOPRSTU KLMNOPRSTU KZ", "output": "10" }, { "input": "200\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "200" }, { "input": "200\nffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff", "output": "0" }, { "input": "24\nHarbour Space UniversitY", "output": "2" }, { "input": "5\naA AA", "output": "2" }, { "input": "10\nas AS ASDA", "output": "4" }, { "input": "10\nas AS ASDZ", "output": "4" }, { "input": "3\na A", "output": "1" }, { "input": "24\nHarbour space UniversitY", "output": "2" }, { "input": "10\nas AS ASAa", "output": "3" }, { "input": "15\naAb ABCDFGRHTJS", "output": "11" }, { "input": "53\nsdfAZEZR AZE dfdf dsdRFGSDF ZZDZSD dfsd ERBGF dsfsdfR", "output": "6" }, { "input": "10\nABC ABc AB", "output": "3" }, { "input": "10\nA c de CDE", "output": "3" }, { "input": "4\nA AB", "output": "2" }, { "input": "18\nHARbour Space UNIV", "output": "4" }, { "input": "13\na b c d e f A", "output": "1" }, { "input": "6\nA B CA", "output": "2" }, { "input": "4\naa A", "output": "1" }, { "input": "3\nA a", "output": "1" } ]
1,503,208,679
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
46
0
import sys def main (): nbm = 0 nbc = sys.stdin.readline() chaine = list(sys.stdin.readline()) for loop in range(int(nbc)): if chaine[loop].isupper(): nbm += 1 print(nbm) main()
Title: Text Volume Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a text of single-space separated words, consisting of small and capital Latin letters. Volume of the word is number of capital letters in the word. Volume of the text is maximum volume of all words in the text. Calculate the volume of the given text. Input Specification: The first line contains one integer number *n* (1<=≤<=*n*<=≤<=200) — length of the text. The second line contains text of single-space separated words *s*1,<=*s*2,<=...,<=*s**i*, consisting only of small and capital Latin letters. Output Specification: Print one integer number — volume of text. Demo Input: ['7\nNonZERO\n', '24\nthis is zero answer text\n', '24\nHarbour Space University\n'] Demo Output: ['5\n', '0\n', '1\n'] Note: In the first example there is only one word, there are 5 capital letters in it. In the second example all of the words contain 0 capital letters.
```python import sys def main (): nbm = 0 nbc = sys.stdin.readline() chaine = list(sys.stdin.readline()) for loop in range(int(nbc)): if chaine[loop].isupper(): nbm += 1 print(nbm) main() ```
0
58
A
Chat room
PROGRAMMING
1,000
[ "greedy", "strings" ]
A. Chat room
1
256
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
If Vasya managed to say hello, print "YES", otherwise print "NO".
[ "ahhellllloou\n", "hlelo\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "ahhellllloou", "output": "YES" }, { "input": "hlelo", "output": "NO" }, { "input": "helhcludoo", "output": "YES" }, { "input": "hehwelloho", "output": "YES" }, { "input": "pnnepelqomhhheollvlo", "output": "YES" }, { "input": "tymbzjyqhymedasloqbq", "output": "NO" }, { "input": "yehluhlkwo", "output": "NO" }, { "input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello", "output": "YES" }, { "input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq", "output": "YES" }, { "input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi", "output": "YES" }, { "input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo", "output": "YES" }, { "input": "lqllcolohwflhfhlnaow", "output": "NO" }, { "input": "heheeellollvoo", "output": "YES" }, { "input": "hellooo", "output": "YES" }, { "input": "o", "output": "NO" }, { "input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv", "output": "YES" }, { "input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk", "output": "YES" }, { "input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry", "output": "NO" }, { "input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq", "output": "NO" }, { "input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi", "output": "YES" }, { "input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm", "output": "YES" }, { "input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac", "output": "NO" }, { "input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok", "output": "YES" }, { "input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz", "output": "YES" }, { "input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb", "output": "YES" }, { "input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla", "output": "YES" }, { "input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz", "output": "YES" }, { "input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti", "output": "YES" }, { "input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli", "output": "YES" }, { "input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo", "output": "YES" }, { "input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk", "output": "NO" }, { "input": "loee", "output": "NO" }, { "input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo", "output": "NO" }, { "input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi", "output": "YES" }, { "input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv", "output": "NO" }, { "input": "hello", "output": "YES" }, { "input": "oohell", "output": "NO" }, { "input": "hell", "output": "NO" }, { "input": "eloellohoelo", "output": "NO" }, { "input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo", "output": "YES" } ]
1,571,991,289
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
124
0
string = input() li = list(string) without = [] for letter in li: if letter != 'h' and letter != 'e' and letter != 'l' and letter != 'o': without.append(letter) for l_etter in without: li.remove(l_etter) #print(li) h = li.index('h') e = li.index('e') l = li.index('l') o = li.index('o') #print(h,e,l,o) if h < e < l < o: print('YES') else: print('NO')
Title: Chat room Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*. Input Specification: The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters. Output Specification: If Vasya managed to say hello, print "YES", otherwise print "NO". Demo Input: ['ahhellllloou\n', 'hlelo\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python string = input() li = list(string) without = [] for letter in li: if letter != 'h' and letter != 'e' and letter != 'l' and letter != 'o': without.append(letter) for l_etter in without: li.remove(l_etter) #print(li) h = li.index('h') e = li.index('e') l = li.index('l') o = li.index('o') #print(h,e,l,o) if h < e < l < o: print('YES') else: print('NO') ```
0
6
A
Triangle
PROGRAMMING
900
[ "brute force", "geometry" ]
A. Triangle
2
64
Johnny has a younger sister Anne, who is very clever and smart. As she came home from the kindergarten, she told his brother about the task that her kindergartener asked her to solve. The task was just to construct a triangle out of four sticks of different colours. Naturally, one of the sticks is extra. It is not allowed to break the sticks or use their partial length. Anne has perfectly solved this task, now she is asking Johnny to do the same. The boy answered that he would cope with it without any difficulty. However, after a while he found out that different tricky things can occur. It can happen that it is impossible to construct a triangle of a positive area, but it is possible to construct a degenerate triangle. It can be so, that it is impossible to construct a degenerate triangle even. As Johnny is very lazy, he does not want to consider such a big amount of cases, he asks you to help him.
The first line of the input contains four space-separated positive integer numbers not exceeding 100 — lengthes of the sticks.
Output TRIANGLE if it is possible to construct a non-degenerate triangle. Output SEGMENT if the first case cannot take place and it is possible to construct a degenerate triangle. Output IMPOSSIBLE if it is impossible to construct any triangle. Remember that you are to use three sticks. It is not allowed to break the sticks or use their partial length.
[ "4 2 1 3\n", "7 2 2 4\n", "3 5 9 1\n" ]
[ "TRIANGLE\n", "SEGMENT\n", "IMPOSSIBLE\n" ]
none
0
[ { "input": "4 2 1 3", "output": "TRIANGLE" }, { "input": "7 2 2 4", "output": "SEGMENT" }, { "input": "3 5 9 1", "output": "IMPOSSIBLE" }, { "input": "3 1 5 1", "output": "IMPOSSIBLE" }, { "input": "10 10 10 10", "output": "TRIANGLE" }, { "input": "11 5 6 11", "output": "TRIANGLE" }, { "input": "1 1 1 1", "output": "TRIANGLE" }, { "input": "10 20 30 40", "output": "TRIANGLE" }, { "input": "45 25 5 15", "output": "IMPOSSIBLE" }, { "input": "20 5 8 13", "output": "TRIANGLE" }, { "input": "10 30 7 20", "output": "SEGMENT" }, { "input": "3 2 3 2", "output": "TRIANGLE" }, { "input": "70 10 100 30", "output": "SEGMENT" }, { "input": "4 8 16 2", "output": "IMPOSSIBLE" }, { "input": "3 3 3 10", "output": "TRIANGLE" }, { "input": "1 5 5 5", "output": "TRIANGLE" }, { "input": "13 25 12 1", "output": "SEGMENT" }, { "input": "10 100 7 3", "output": "SEGMENT" }, { "input": "50 1 50 100", "output": "TRIANGLE" }, { "input": "50 1 100 49", "output": "SEGMENT" }, { "input": "49 51 100 1", "output": "SEGMENT" }, { "input": "5 11 2 25", "output": "IMPOSSIBLE" }, { "input": "91 50 9 40", "output": "IMPOSSIBLE" }, { "input": "27 53 7 97", "output": "IMPOSSIBLE" }, { "input": "51 90 24 8", "output": "IMPOSSIBLE" }, { "input": "3 5 1 1", "output": "IMPOSSIBLE" }, { "input": "13 49 69 15", "output": "IMPOSSIBLE" }, { "input": "16 99 9 35", "output": "IMPOSSIBLE" }, { "input": "27 6 18 53", "output": "IMPOSSIBLE" }, { "input": "57 88 17 8", "output": "IMPOSSIBLE" }, { "input": "95 20 21 43", "output": "IMPOSSIBLE" }, { "input": "6 19 32 61", "output": "IMPOSSIBLE" }, { "input": "100 21 30 65", "output": "IMPOSSIBLE" }, { "input": "85 16 61 9", "output": "IMPOSSIBLE" }, { "input": "5 6 19 82", "output": "IMPOSSIBLE" }, { "input": "1 5 1 3", "output": "IMPOSSIBLE" }, { "input": "65 10 36 17", "output": "IMPOSSIBLE" }, { "input": "81 64 9 7", "output": "IMPOSSIBLE" }, { "input": "11 30 79 43", "output": "IMPOSSIBLE" }, { "input": "1 1 5 3", "output": "IMPOSSIBLE" }, { "input": "21 94 61 31", "output": "IMPOSSIBLE" }, { "input": "49 24 9 74", "output": "IMPOSSIBLE" }, { "input": "11 19 5 77", "output": "IMPOSSIBLE" }, { "input": "52 10 19 71", "output": "SEGMENT" }, { "input": "2 3 7 10", "output": "SEGMENT" }, { "input": "1 2 6 3", "output": "SEGMENT" }, { "input": "2 6 1 8", "output": "SEGMENT" }, { "input": "1 2 4 1", "output": "SEGMENT" }, { "input": "4 10 6 2", "output": "SEGMENT" }, { "input": "2 10 7 3", "output": "SEGMENT" }, { "input": "5 2 3 9", "output": "SEGMENT" }, { "input": "6 1 4 10", "output": "SEGMENT" }, { "input": "10 6 4 1", "output": "SEGMENT" }, { "input": "3 2 9 1", "output": "SEGMENT" }, { "input": "22 80 29 7", "output": "SEGMENT" }, { "input": "2 6 3 9", "output": "SEGMENT" }, { "input": "3 1 2 1", "output": "SEGMENT" }, { "input": "3 4 7 1", "output": "SEGMENT" }, { "input": "8 4 3 1", "output": "SEGMENT" }, { "input": "2 8 3 5", "output": "SEGMENT" }, { "input": "4 1 2 1", "output": "SEGMENT" }, { "input": "8 1 3 2", "output": "SEGMENT" }, { "input": "6 2 1 8", "output": "SEGMENT" }, { "input": "3 3 3 6", "output": "TRIANGLE" }, { "input": "3 6 3 3", "output": "TRIANGLE" }, { "input": "4 10 4 4", "output": "TRIANGLE" }, { "input": "1 1 2 1", "output": "TRIANGLE" }, { "input": "3 3 3 6", "output": "TRIANGLE" }, { "input": "5 4 5 5", "output": "TRIANGLE" }, { "input": "8 7 8 8", "output": "TRIANGLE" }, { "input": "3 3 3 1", "output": "TRIANGLE" }, { "input": "1 1 6 6", "output": "TRIANGLE" }, { "input": "1 9 1 9", "output": "TRIANGLE" }, { "input": "7 2 2 7", "output": "TRIANGLE" }, { "input": "7 2 3 2", "output": "TRIANGLE" }, { "input": "4 4 10 10", "output": "TRIANGLE" }, { "input": "7 7 10 7", "output": "TRIANGLE" }, { "input": "4 4 4 5", "output": "TRIANGLE" }, { "input": "1 10 9 2", "output": "TRIANGLE" }, { "input": "1 8 2 7", "output": "TRIANGLE" }, { "input": "4 3 2 8", "output": "TRIANGLE" }, { "input": "5 9 5 3", "output": "TRIANGLE" }, { "input": "4 10 3 5", "output": "TRIANGLE" } ]
1,694,162,435
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
60
0
a_ris = list(map(int, input().split())) a_ris.sort(reverse = True) if a_ris[2] + a_ris[1] > a_ris[0] or a_ris[3] + a_ris[2] > a_ris[1]: print("Triangle") elif a_ris[2] + a_ris[1] == a_ris[0] or a_ris[3] + a_ris[2] == a_ris[1]: print("SEGMENT") else: print("Impossible") """ from math import* x = [True] * 1000100 x[1] = False x[0] = False for i in range(2, 1100): for j in range(2*i, len(x), i): x[j] = False n = int(input()) a = map(int,input().split()) ans = [] for i in a: g = sqrt(i) if round(g) ** 2 != i: g = 100 if x[int(g)] == True : ans.append("YES") ans.append("NO") print('\n'.join(ans)) """
Title: Triangle Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: Johnny has a younger sister Anne, who is very clever and smart. As she came home from the kindergarten, she told his brother about the task that her kindergartener asked her to solve. The task was just to construct a triangle out of four sticks of different colours. Naturally, one of the sticks is extra. It is not allowed to break the sticks or use their partial length. Anne has perfectly solved this task, now she is asking Johnny to do the same. The boy answered that he would cope with it without any difficulty. However, after a while he found out that different tricky things can occur. It can happen that it is impossible to construct a triangle of a positive area, but it is possible to construct a degenerate triangle. It can be so, that it is impossible to construct a degenerate triangle even. As Johnny is very lazy, he does not want to consider such a big amount of cases, he asks you to help him. Input Specification: The first line of the input contains four space-separated positive integer numbers not exceeding 100 — lengthes of the sticks. Output Specification: Output TRIANGLE if it is possible to construct a non-degenerate triangle. Output SEGMENT if the first case cannot take place and it is possible to construct a degenerate triangle. Output IMPOSSIBLE if it is impossible to construct any triangle. Remember that you are to use three sticks. It is not allowed to break the sticks or use their partial length. Demo Input: ['4 2 1 3\n', '7 2 2 4\n', '3 5 9 1\n'] Demo Output: ['TRIANGLE\n', 'SEGMENT\n', 'IMPOSSIBLE\n'] Note: none
```python a_ris = list(map(int, input().split())) a_ris.sort(reverse = True) if a_ris[2] + a_ris[1] > a_ris[0] or a_ris[3] + a_ris[2] > a_ris[1]: print("Triangle") elif a_ris[2] + a_ris[1] == a_ris[0] or a_ris[3] + a_ris[2] == a_ris[1]: print("SEGMENT") else: print("Impossible") """ from math import* x = [True] * 1000100 x[1] = False x[0] = False for i in range(2, 1100): for j in range(2*i, len(x), i): x[j] = False n = int(input()) a = map(int,input().split()) ans = [] for i in a: g = sqrt(i) if round(g) ** 2 != i: g = 100 if x[int(g)] == True : ans.append("YES") ans.append("NO") print('\n'.join(ans)) """ ```
0
379
A
New Year Candles
PROGRAMMING
1,000
[ "implementation" ]
null
null
Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles. Vasily has *a* candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make *b* went out candles into a new candle. As a result, this new candle can be used like any other new candle. Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
The single line contains two integers, *a* and *b* (1<=≤<=*a*<=≤<=1000; 2<=≤<=*b*<=≤<=1000).
Print a single integer — the number of hours Vasily can light up the room for.
[ "4 2\n", "6 3\n" ]
[ "7\n", "8\n" ]
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours.
500
[ { "input": "4 2", "output": "7" }, { "input": "6 3", "output": "8" }, { "input": "1000 1000", "output": "1001" }, { "input": "123 5", "output": "153" }, { "input": "1000 2", "output": "1999" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "1 4", "output": "1" }, { "input": "2 2", "output": "3" }, { "input": "3 2", "output": "5" }, { "input": "3 3", "output": "4" }, { "input": "999 2", "output": "1997" }, { "input": "1000 3", "output": "1499" }, { "input": "1000 4", "output": "1333" }, { "input": "1 1000", "output": "1" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "10 4", "output": "13" }, { "input": "4 3", "output": "5" }, { "input": "91 5", "output": "113" }, { "input": "777 17", "output": "825" }, { "input": "100 4", "output": "133" }, { "input": "5 3", "output": "7" }, { "input": "6 4", "output": "7" }, { "input": "26 8", "output": "29" }, { "input": "9 4", "output": "11" }, { "input": "20 3", "output": "29" }, { "input": "17 3", "output": "25" } ]
1,680,126,968
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
0
a = 6 b = 3 c = a def rec(a, b, c): if a//b == 1: return c+a+1 elif a//b ==0: return c+a else: a=a//b+a%b return rec(a, b, c) print(rec(a,b,c))
Title: New Year Candles Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles. Vasily has *a* candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make *b* went out candles into a new candle. As a result, this new candle can be used like any other new candle. Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number. Input Specification: The single line contains two integers, *a* and *b* (1<=≤<=*a*<=≤<=1000; 2<=≤<=*b*<=≤<=1000). Output Specification: Print a single integer — the number of hours Vasily can light up the room for. Demo Input: ['4 2\n', '6 3\n'] Demo Output: ['7\n', '8\n'] Note: Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours.
```python a = 6 b = 3 c = a def rec(a, b, c): if a//b == 1: return c+a+1 elif a//b ==0: return c+a else: a=a//b+a%b return rec(a, b, c) print(rec(a,b,c)) ```
0
284
B
Cows and Poker Game
PROGRAMMING
1,000
[ "brute force", "implementation" ]
null
null
There are *n* cows playing poker at a table. For the current betting phase, each player's status is either "ALLIN", "IN", or "FOLDED", and does not change throughout the phase. To increase the suspense, a player whose current status is not "FOLDED" may show his/her hand to the table. However, so as not to affect any betting decisions, he/she may only do so if all other players have a status of either "ALLIN" or "FOLDED". The player's own status may be either "ALLIN" or "IN". Find the number of cows that can currently show their hands without affecting any betting decisions.
The first line contains a single integer, *n* (2<=≤<=*n*<=≤<=2·105). The second line contains *n* characters, each either "A", "I", or "F". The *i*-th character is "A" if the *i*-th player's status is "ALLIN", "I" if the *i*-th player's status is "IN", or "F" if the *i*-th player's status is "FOLDED".
The first line should contain a single integer denoting the number of players that can currently show their hands.
[ "6\nAFFAAA\n", "3\nAFI\n" ]
[ "4\n", "1\n" ]
In the first sample, cows 1, 4, 5, and 6 can show their hands. In the second sample, only cow 3 can show her hand.
1,000
[ { "input": "6\nAFFAAA", "output": "4" }, { "input": "3\nAFI", "output": "1" }, { "input": "3\nFFF", "output": "0" }, { "input": "3\nFIF", "output": "1" }, { "input": "3\nAAA", "output": "3" }, { "input": "3\nIII", "output": "0" }, { "input": "3\nIIA", "output": "0" }, { "input": "3\nAFF", "output": "1" }, { "input": "5\nFAFFF", "output": "1" }, { "input": "3\nIAA", "output": "1" }, { "input": "3\nIIF", "output": "0" }, { "input": "2\nFA", "output": "1" }, { "input": "2\nFF", "output": "0" }, { "input": "2\nIF", "output": "1" }, { "input": "5\nAAAAI", "output": "1" }, { "input": "5\nIIIIF", "output": "0" }, { "input": "10\nAAAAAAAAAA", "output": "10" }, { "input": "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "100" }, { "input": "5\nFAIAF", "output": "1" }, { "input": "5\nAIAIF", "output": "0" }, { "input": "5\nFAAII", "output": "0" }, { "input": "5\nAIFFF", "output": "1" }, { "input": "5\nAFAFA", "output": "3" }, { "input": "2\nFA", "output": "1" }, { "input": "8\nAFFFFIAF", "output": "1" }, { "input": "8\nIAAIFFFI", "output": "0" }, { "input": "5\nIIIII", "output": "0" } ]
1,612,265,995
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
92
0
n = int(input()) s=input() c=0 if s>count("I")==1: print(1) elif s>count("I")>=2: print(0) else: print(s.count("A"))
Title: Cows and Poker Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* cows playing poker at a table. For the current betting phase, each player's status is either "ALLIN", "IN", or "FOLDED", and does not change throughout the phase. To increase the suspense, a player whose current status is not "FOLDED" may show his/her hand to the table. However, so as not to affect any betting decisions, he/she may only do so if all other players have a status of either "ALLIN" or "FOLDED". The player's own status may be either "ALLIN" or "IN". Find the number of cows that can currently show their hands without affecting any betting decisions. Input Specification: The first line contains a single integer, *n* (2<=≤<=*n*<=≤<=2·105). The second line contains *n* characters, each either "A", "I", or "F". The *i*-th character is "A" if the *i*-th player's status is "ALLIN", "I" if the *i*-th player's status is "IN", or "F" if the *i*-th player's status is "FOLDED". Output Specification: The first line should contain a single integer denoting the number of players that can currently show their hands. Demo Input: ['6\nAFFAAA\n', '3\nAFI\n'] Demo Output: ['4\n', '1\n'] Note: In the first sample, cows 1, 4, 5, and 6 can show their hands. In the second sample, only cow 3 can show her hand.
```python n = int(input()) s=input() c=0 if s>count("I")==1: print(1) elif s>count("I")>=2: print(0) else: print(s.count("A")) ```
-1
3
C
Tic-tac-toe
PROGRAMMING
1,800
[ "brute force", "games", "implementation" ]
C. Tic-tac-toe
1
64
Certainly, everyone is familiar with tic-tac-toe game. The rules are very simple indeed. Two players take turns marking the cells in a 3<=×<=3 grid (one player always draws crosses, the other — noughts). The player who succeeds first in placing three of his marks in a horizontal, vertical or diagonal line wins, and the game is finished. The player who draws crosses goes first. If the grid is filled, but neither Xs, nor 0s form the required line, a draw is announced. You are given a 3<=×<=3 grid, each grid cell is empty, or occupied by a cross or a nought. You have to find the player (first or second), whose turn is next, or print one of the verdicts below: - illegal — if the given board layout can't appear during a valid game; - the first player won — if in the given board layout the first player has just won; - the second player won — if in the given board layout the second player has just won; - draw — if the given board layout has just let to a draw.
The input consists of three lines, each of the lines contains characters ".", "X" or "0" (a period, a capital letter X, or a digit zero).
Print one of the six verdicts: first, second, illegal, the first player won, the second player won or draw.
[ "X0X\n.0.\n.X.\n" ]
[ "second\n" ]
none
0
[ { "input": "X0X\n.0.\n.X.", "output": "second" }, { "input": "0.X\nXX.\n000", "output": "illegal" }, { "input": "XXX\n.0.\n000", "output": "illegal" }, { "input": "XXX\n...\n000", "output": "illegal" }, { "input": "X.X\nX..\n00.", "output": "second" }, { "input": "X.X\nX.0\n0.0", "output": "first" }, { "input": "XXX\nX00\nX00", "output": "the first player won" }, { "input": "000\nX.X\nX.X", "output": "illegal" }, { "input": "XXX\n0.0\n0..", "output": "illegal" }, { "input": "X0X\n0X0\nX0X", "output": "the first player won" }, { "input": "XX.\nX0X\nX..", "output": "illegal" }, { "input": "X0X\n0X0\nX..", "output": "the first player won" }, { "input": "XX0\n0..\n000", "output": "illegal" }, { "input": "XXX\n0..\n.0.", "output": "the first player won" }, { "input": "XXX\nX..\n.00", "output": "illegal" }, { "input": "X00\n0.0\nXX0", "output": "illegal" }, { "input": "0.0\n0XX\n..0", "output": "illegal" }, { "input": ".00\nX.X\n0..", "output": "illegal" }, { "input": "..0\n.00\n.0X", "output": "illegal" }, { "input": "..0\n0..\n00X", "output": "illegal" }, { "input": "..0\n.XX\nX..", "output": "illegal" }, { "input": "0.X\n0X0\n.00", "output": "illegal" }, { "input": "..X\n0X0\n0X.", "output": "first" }, { "input": "0X0\nX..\nX.0", "output": "first" }, { "input": ".0.\nX.X\n0..", "output": "first" }, { "input": "0X0\n00X\n.00", "output": "illegal" }, { "input": ".0.\n.X0\nX..", "output": "first" }, { "input": "00X\n0.X\n00X", "output": "illegal" }, { "input": "00X\n0XX\n0X.", "output": "the second player won" }, { "input": "X00\n..0\nX.X", "output": "first" }, { "input": "X00\nX00\n.X0", "output": "illegal" }, { "input": "X0X\n.X0\n0..", "output": "first" }, { "input": "..0\nXXX\n000", "output": "illegal" }, { "input": "XXX\n...\n.0.", "output": "illegal" }, { "input": "0..\n000\nX0X", "output": "illegal" }, { "input": ".00\n0X.\n0.0", "output": "illegal" }, { "input": "X..\nX00\n0.0", "output": "illegal" }, { "input": ".X0\nXX0\nX.X", "output": "illegal" }, { "input": "X.X\n0.0\nX..", "output": "second" }, { "input": "00X\n.00\n..0", "output": "illegal" }, { "input": "..0\n0.X\n00.", "output": "illegal" }, { "input": "0.X\nX0X\n.X0", "output": "illegal" }, { "input": "0X.\n.X.\n0X0", "output": "illegal" }, { "input": "00.\nX0.\n..X", "output": "illegal" }, { "input": "..X\n.00\nXX.", "output": "second" }, { "input": ".00\n.0.\n.X.", "output": "illegal" }, { "input": "XX0\nX.0\nXX0", "output": "illegal" }, { "input": "00.\n00.\nX.X", "output": "illegal" }, { "input": "X00\nX.0\nX.0", "output": "illegal" }, { "input": "0X.\n0XX\n000", "output": "illegal" }, { "input": "00.\n00.\n.X.", "output": "illegal" }, { "input": "X0X\n00.\n0.X", "output": "illegal" }, { "input": "XX0\nXXX\n0X0", "output": "illegal" }, { "input": "XX0\n..X\nXX0", "output": "illegal" }, { "input": "0X.\n..X\nX..", "output": "illegal" }, { "input": "...\nX0.\nXX0", "output": "second" }, { "input": "..X\n.0.\n0..", "output": "illegal" }, { "input": "00X\nXX.\n00X", "output": "first" }, { "input": "..0\nXX0\n..X", "output": "second" }, { "input": ".0.\n.00\nX00", "output": "illegal" }, { "input": "X00\n.XX\n00.", "output": "illegal" }, { "input": ".00\n0.X\n000", "output": "illegal" }, { "input": "X0.\n..0\nX.0", "output": "illegal" }, { "input": "X0X\n.XX\n00.", "output": "second" }, { "input": "0X.\n00.\n.X.", "output": "illegal" }, { "input": ".0.\n...\n0.0", "output": "illegal" }, { "input": "..X\nX00\n0.0", "output": "illegal" }, { "input": "0XX\n...\nX0.", "output": "second" }, { "input": "X.X\n0X.\n.0X", "output": "illegal" }, { "input": "XX0\nX.X\n00.", "output": "second" }, { "input": ".0X\n.00\n00.", "output": "illegal" }, { "input": ".XX\nXXX\n0..", "output": "illegal" }, { "input": "XX0\n.X0\n.0.", "output": "first" }, { "input": "X00\n0.X\nX..", "output": "first" }, { "input": "X..\n.X0\nX0.", "output": "second" }, { "input": ".0X\nX..\nXXX", "output": "illegal" }, { "input": "X0X\nXXX\nX.X", "output": "illegal" }, { "input": ".00\nX0.\n00X", "output": "illegal" }, { "input": "0XX\n.X0\n0.0", "output": "illegal" }, { "input": "00X\nXXX\n..0", "output": "the first player won" }, { "input": "X0X\n...\n.X.", "output": "illegal" }, { "input": ".X0\n...\n0X.", "output": "first" }, { "input": "X..\n0X0\nX.0", "output": "first" }, { "input": "..0\n.00\nX.0", "output": "illegal" }, { "input": ".XX\n.0.\nX0X", "output": "illegal" }, { "input": "00.\n0XX\n..0", "output": "illegal" }, { "input": ".0.\n00.\n00.", "output": "illegal" }, { "input": "00.\n000\nX.X", "output": "illegal" }, { "input": "0X0\n.X0\n.X.", "output": "illegal" }, { "input": "00X\n0..\n0..", "output": "illegal" }, { "input": ".X.\n.X0\nX.0", "output": "second" }, { "input": ".0.\n0X0\nX0X", "output": "illegal" }, { "input": "...\nX.0\n0..", "output": "illegal" }, { "input": "..0\nXX.\n00X", "output": "first" }, { "input": "0.X\n.0X\nX00", "output": "illegal" }, { "input": "..X\n0X.\n.0.", "output": "first" }, { "input": "..X\nX.0\n.0X", "output": "second" }, { "input": "X0.\n.0X\nX0X", "output": "illegal" }, { "input": "...\n.0.\n.X0", "output": "illegal" }, { "input": ".X0\nXX0\n0..", "output": "first" }, { "input": "0X.\n...\nX..", "output": "second" }, { "input": ".0.\n0.0\n0.X", "output": "illegal" }, { "input": "XX.\n.X0\n.0X", "output": "illegal" }, { "input": ".0.\nX0X\nX00", "output": "illegal" }, { "input": "0X.\n.X0\nX..", "output": "second" }, { "input": "..0\n0X.\n000", "output": "illegal" }, { "input": "0.0\nX.X\nXX.", "output": "illegal" }, { "input": ".X.\n.XX\nX0.", "output": "illegal" }, { "input": "X.X\n.XX\n0X.", "output": "illegal" }, { "input": "X.0\n0XX\n..0", "output": "first" }, { "input": "X.0\n0XX\n.X0", "output": "second" }, { "input": "X00\n0XX\n.X0", "output": "first" }, { "input": "X00\n0XX\nXX0", "output": "draw" }, { "input": "X00\n0XX\n0X0", "output": "illegal" }, { "input": "XXX\nXXX\nXXX", "output": "illegal" }, { "input": "000\n000\n000", "output": "illegal" }, { "input": "XX0\n00X\nXX0", "output": "draw" }, { "input": "X00\n00X\nXX0", "output": "illegal" }, { "input": "X.0\n00.\nXXX", "output": "the first player won" }, { "input": "X..\nX0.\nX0.", "output": "the first player won" }, { "input": ".XX\n000\nXX0", "output": "the second player won" }, { "input": "X0.\nX.X\nX00", "output": "the first player won" }, { "input": "00X\nX00\nXXX", "output": "the first player won" }, { "input": "XXX\n.00\nX0.", "output": "the first player won" }, { "input": "XX0\n000\nXX.", "output": "the second player won" }, { "input": ".X0\n0.0\nXXX", "output": "the first player won" }, { "input": "0XX\nX00\n0XX", "output": "draw" }, { "input": "0XX\nX0X\n00X", "output": "the first player won" }, { "input": "XX0\n0XX\n0X0", "output": "the first player won" }, { "input": "0X0\nX0X\nX0X", "output": "draw" }, { "input": "X0X\n0XX\n00X", "output": "the first player won" }, { "input": "0XX\nX0.\nX00", "output": "the second player won" }, { "input": "X.0\n0X0\nXX0", "output": "the second player won" }, { "input": "X0X\nX0X\n0X0", "output": "draw" }, { "input": "X.0\n00X\n0XX", "output": "the second player won" }, { "input": "00X\nX0X\n.X0", "output": "the second player won" }, { "input": "X0X\n.00\nX0X", "output": "the second player won" }, { "input": "0XX\nX00\nX0X", "output": "draw" }, { "input": "000\nX0X\n.XX", "output": "the second player won" }, { "input": "0.0\n0.X\nXXX", "output": "the first player won" }, { "input": "X.0\nX0.\n0X.", "output": "the second player won" }, { "input": "X0X\n0X0\n..X", "output": "the first player won" }, { "input": "0X0\nXX0\n.X.", "output": "the first player won" }, { "input": "X0.\n.X.\n0.X", "output": "the first player won" }, { "input": "0XX\nX00\n.X0", "output": "the second player won" }, { "input": "0.0\nXXX\n0.X", "output": "the first player won" }, { "input": ".0X\n.X.\nX.0", "output": "the first player won" }, { "input": "XXX\nX.0\n0.0", "output": "the first player won" }, { "input": "XX0\nX..\nX00", "output": "the first player won" }, { "input": "XXX\n00X\n00X", "output": "the first player won" }, { "input": "X00\n00X\nXXX", "output": "the first player won" }, { "input": "0X0\nX0X\n0X.", "output": "the second player won" }, { "input": "XX0\nX00\n0X.", "output": "the second player won" }, { "input": "..X\n0X0\nX..", "output": "the first player won" }, { "input": "X0.\n00.\nXXX", "output": "the first player won" }, { "input": "0.X\nX00\nXX0", "output": "the second player won" }, { "input": "X0.\n0X.\n..X", "output": "the first player won" }, { "input": "00X\nX0.\nXX0", "output": "the second player won" }, { "input": "XX.\n000\n0XX", "output": "the second player won" }, { "input": "..X\n0.X\n.0X", "output": "the first player won" }, { "input": "X00\n.0X\n0XX", "output": "the second player won" }, { "input": "00X\n0X.\nXX.", "output": "the first player won" }, { "input": "X00\nXX.\n0.X", "output": "the first player won" }, { "input": "XXX\n00X\n0X0", "output": "the first player won" }, { "input": "X00\nXX0\n0XX", "output": "the first player won" }, { "input": "0X0\nX00\nXXX", "output": "the first player won" }, { "input": "XX0\nX00\n.X0", "output": "the second player won" } ]
1,575,226,876
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
216
307,200
x = input() y = input() z = input() x_count = x.count('X') + y.count('X') + z.count('X') o_count = x.count('0') + y.count('0') + z.count('0') dot_count = x.count('.') + y.count('.') + z.count('.') if x_count + o_count + dot_count != 9: print('illegal') exit() if dot_count == 9: print('first') exit() if x_count<o_count: print('illegal') exit() if x_count > o_count: print('second') elif x_count < o_count: print('first') else: for i in range(3): check = '' if x[i] == y[i] == z[i]: check+=x[i] if x[0] == x[1] == x[2]: check+=x[0] elif y[0] == y[1] == y[2]: check+=y[0] elif z[0] == z[1] == z[2]: check+=z[0] elif x[0] == y[1] == z[2]: check+=x[0] elif z[0] == y[1] == x[2]: check+=z[0] if check == 'X': print('the first player won') elif check == '0': print('the second palyer won') else: print('illegal')
Title: Tic-tac-toe Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Certainly, everyone is familiar with tic-tac-toe game. The rules are very simple indeed. Two players take turns marking the cells in a 3<=×<=3 grid (one player always draws crosses, the other — noughts). The player who succeeds first in placing three of his marks in a horizontal, vertical or diagonal line wins, and the game is finished. The player who draws crosses goes first. If the grid is filled, but neither Xs, nor 0s form the required line, a draw is announced. You are given a 3<=×<=3 grid, each grid cell is empty, or occupied by a cross or a nought. You have to find the player (first or second), whose turn is next, or print one of the verdicts below: - illegal — if the given board layout can't appear during a valid game; - the first player won — if in the given board layout the first player has just won; - the second player won — if in the given board layout the second player has just won; - draw — if the given board layout has just let to a draw. Input Specification: The input consists of three lines, each of the lines contains characters ".", "X" or "0" (a period, a capital letter X, or a digit zero). Output Specification: Print one of the six verdicts: first, second, illegal, the first player won, the second player won or draw. Demo Input: ['X0X\n.0.\n.X.\n'] Demo Output: ['second\n'] Note: none
```python x = input() y = input() z = input() x_count = x.count('X') + y.count('X') + z.count('X') o_count = x.count('0') + y.count('0') + z.count('0') dot_count = x.count('.') + y.count('.') + z.count('.') if x_count + o_count + dot_count != 9: print('illegal') exit() if dot_count == 9: print('first') exit() if x_count<o_count: print('illegal') exit() if x_count > o_count: print('second') elif x_count < o_count: print('first') else: for i in range(3): check = '' if x[i] == y[i] == z[i]: check+=x[i] if x[0] == x[1] == x[2]: check+=x[0] elif y[0] == y[1] == y[2]: check+=y[0] elif z[0] == z[1] == z[2]: check+=z[0] elif x[0] == y[1] == z[2]: check+=x[0] elif z[0] == y[1] == x[2]: check+=z[0] if check == 'X': print('the first player won') elif check == '0': print('the second palyer won') else: print('illegal') ```
0
312
B
Archer
PROGRAMMING
1,300
[ "math", "probabilities" ]
null
null
SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner. Output the probability that SmallR will win the match.
A single line contains four integers .
Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10<=-<=6.
[ "1 2 1 2\n" ]
[ "0.666666666667" ]
none
1,000
[ { "input": "1 2 1 2", "output": "0.666666666667" }, { "input": "1 3 1 3", "output": "0.600000000000" }, { "input": "1 3 2 3", "output": "0.428571428571" }, { "input": "3 4 3 4", "output": "0.800000000000" }, { "input": "1 2 10 11", "output": "0.523809523810" }, { "input": "4 5 4 5", "output": "0.833333333333" }, { "input": "466 701 95 721", "output": "0.937693791148" }, { "input": "268 470 444 885", "output": "0.725614009325" }, { "input": "632 916 713 821", "output": "0.719292895126" }, { "input": "269 656 918 992", "output": "0.428937461623" }, { "input": "71 657 187 695", "output": "0.310488463257" }, { "input": "435 852 973 978", "output": "0.511844133157" }, { "input": "518 816 243 359", "output": "0.719734031025" }, { "input": "882 962 311 811", "output": "0.966386645447" }, { "input": "684 774 580 736", "output": "0.906051574446" }, { "input": "486 868 929 999", "output": "0.577723252958" }, { "input": "132 359 996 998", "output": "0.368154532345" }, { "input": "933 977 266 450", "output": "0.972879407907" }, { "input": "298 833 615 872", "output": "0.441270817024" }, { "input": "34 554 14 958", "output": "0.817324099167" }, { "input": "836 934 800 905", "output": "0.906105535462" }, { "input": "482 815 69 509", "output": "0.914365577772" }, { "input": "284 423 137 521", "output": "0.885974839378" }, { "input": "648 881 486 703", "output": "0.800911421248" }, { "input": "450 885 755 836", "output": "0.533901011176" }, { "input": "533 773 823 998", "output": "0.729222130525" }, { "input": "897 957 92 898", "output": "0.993193806364" }, { "input": "699 925 441 928", "output": "0.866816866175" }, { "input": "64 704 148 603", "output": "0.289486317811" }, { "input": "719 735 626 990", "output": "0.986124079764" }, { "input": "1 1000 1 1000", "output": "0.500250125063" } ]
1,678,728,129
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
31
0
a, b, c, d = map(int, input().split()) p1 = a / float(b) p2 = c / float(d) q1 = 1 - p1 q2 = 1 - p2 prob1 = p1 * (1 / (1 - q1)) prob2 = p2 * (q2 / (1 - q2)) print(prob1 / (prob2 + prob1))
Title: Archer Time Limit: None seconds Memory Limit: None megabytes Problem Description: SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner. Output the probability that SmallR will win the match. Input Specification: A single line contains four integers . Output Specification: Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10<=-<=6. Demo Input: ['1 2 1 2\n'] Demo Output: ['0.666666666667'] Note: none
```python a, b, c, d = map(int, input().split()) p1 = a / float(b) p2 = c / float(d) q1 = 1 - p1 q2 = 1 - p2 prob1 = p1 * (1 / (1 - q1)) prob2 = p2 * (q2 / (1 - q2)) print(prob1 / (prob2 + prob1)) ```
0
300
A
Array
PROGRAMMING
1,100
[ "brute force", "constructive algorithms", "implementation" ]
null
null
Vitaly has an array of *n* distinct integers. Vitaly wants to divide this array into three non-empty sets so as the following conditions hold: 1. The product of all numbers in the first set is less than zero (<=&lt;<=0). 1. The product of all numbers in the second set is greater than zero (<=&gt;<=0). 1. The product of all numbers in the third set is equal to zero. 1. Each number from the initial array must occur in exactly one set. Help Vitaly. Divide the given array.
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=100). The second line contains *n* space-separated distinct integers *a*1,<=*a*2,<=...,<=*a**n* (|*a**i*|<=≤<=103) — the array elements.
In the first line print integer *n*1 (*n*1<=&gt;<=0) — the number of elements in the first set. Then print *n*1 numbers — the elements that got to the first set. In the next line print integer *n*2 (*n*2<=&gt;<=0) — the number of elements in the second set. Then print *n*2 numbers — the elements that got to the second set. In the next line print integer *n*3 (*n*3<=&gt;<=0) — the number of elements in the third set. Then print *n*3 numbers — the elements that got to the third set. The printed sets must meet the described conditions. It is guaranteed that the solution exists. If there are several solutions, you are allowed to print any of them.
[ "3\n-1 2 0\n", "4\n-1 -2 -3 0\n" ]
[ "1 -1\n1 2\n1 0\n", "1 -1\n2 -3 -2\n1 0\n" ]
none
500
[ { "input": "3\n-1 2 0", "output": "1 -1\n1 2\n1 0" }, { "input": "4\n-1 -2 -3 0", "output": "1 -1\n2 -3 -2\n1 0" }, { "input": "5\n-1 -2 1 2 0", "output": "1 -1\n2 1 2\n2 0 -2" }, { "input": "100\n-64 -51 -75 -98 74 -26 -1 -8 -99 -76 -53 -80 -43 -22 -100 -62 -34 -5 -65 -81 -18 -91 -92 -16 -23 -95 -9 -19 -44 -46 -79 52 -35 4 -87 -7 -90 -20 -71 -61 -67 -50 -66 -68 -49 -27 -32 -57 -85 -59 -30 -36 -3 -77 86 -25 -94 -56 60 -24 -37 -72 -41 -31 11 -48 28 -38 -42 -39 -33 -70 -84 0 -93 -73 -14 -69 -40 -97 -6 -55 -45 -54 -10 -29 -96 -12 -83 -15 -21 -47 17 -2 -63 -89 88 13 -58 -82", "output": "89 -64 -51 -75 -98 -26 -1 -8 -99 -76 -53 -80 -43 -22 -100 -62 -34 -5 -65 -81 -18 -91 -92 -16 -23 -95 -9 -19 -44 -46 -79 -35 -87 -7 -90 -20 -71 -61 -67 -50 -66 -68 -49 -27 -32 -57 -85 -59 -30 -36 -3 -77 -25 -94 -56 -24 -37 -72 -41 -31 -48 -38 -42 -39 -33 -70 -84 -93 -73 -14 -69 -40 -97 -6 -55 -45 -54 -10 -29 -96 -12 -83 -15 -21 -47 -2 -63 -89 -58 -82\n10 74 52 4 86 60 11 28 17 88 13\n1 0" }, { "input": "100\n3 -66 -17 54 24 -29 76 89 32 -37 93 -16 99 -25 51 78 23 68 -95 59 18 34 -45 77 9 39 -10 19 8 73 -5 60 12 31 0 2 26 40 48 30 52 49 27 4 87 57 85 58 -61 50 83 80 69 67 91 97 -96 11 100 56 82 53 13 -92 -72 70 1 -94 -63 47 21 14 74 7 6 33 55 65 64 -41 81 42 36 28 38 20 43 71 90 -88 22 84 -86 15 75 62 44 35 98 46", "output": "19 -66 -17 -29 -37 -16 -25 -95 -45 -10 -5 -61 -96 -92 -72 -94 -63 -41 -88 -86\n80 3 54 24 76 89 32 93 99 51 78 23 68 59 18 34 77 9 39 19 8 73 60 12 31 2 26 40 48 30 52 49 27 4 87 57 85 58 50 83 80 69 67 91 97 11 100 56 82 53 13 70 1 47 21 14 74 7 6 33 55 65 64 81 42 36 28 38 20 43 71 90 22 84 15 75 62 44 35 98 46\n1 0" }, { "input": "100\n-17 16 -70 32 -60 75 -100 -9 -68 -30 -42 86 -88 -98 -47 -5 58 -14 -94 -73 -80 -51 -66 -85 -53 49 -25 -3 -45 -69 -11 -64 83 74 -65 67 13 -91 81 6 -90 -54 -12 -39 0 -24 -71 -41 -44 57 -93 -20 -92 18 -43 -52 -55 -84 -89 -19 40 -4 -99 -26 -87 -36 -56 -61 -62 37 -95 -28 63 23 35 -82 1 -2 -78 -96 -21 -77 -76 -27 -10 -97 -8 46 -15 -48 -34 -59 -7 -29 50 -33 -72 -79 22 38", "output": "75 -17 -70 -60 -100 -9 -68 -30 -42 -88 -98 -47 -5 -14 -94 -73 -80 -51 -66 -85 -53 -25 -3 -45 -69 -11 -64 -65 -91 -90 -54 -12 -39 -24 -71 -41 -44 -93 -20 -92 -43 -52 -55 -84 -89 -19 -4 -99 -26 -87 -36 -56 -61 -62 -95 -28 -82 -2 -78 -96 -21 -77 -76 -27 -10 -97 -8 -15 -48 -34 -59 -7 -29 -33 -72 -79\n24 16 32 75 86 58 49 83 74 67 13 81 6 57 18 40 37 63 23 35 1 46 50 22 38\n1 0" }, { "input": "100\n-97 -90 61 78 87 -52 -3 65 83 38 30 -60 35 -50 -73 -77 44 -32 -81 17 -67 58 -6 -34 47 -28 71 -45 69 -80 -4 -7 -57 -79 43 -27 -31 29 16 -89 -21 -93 95 -82 74 -5 -70 -20 -18 36 -64 -66 72 53 62 -68 26 15 76 -40 -99 8 59 88 49 -23 9 10 56 -48 -98 0 100 -54 25 94 13 -63 42 39 -1 55 24 -12 75 51 41 84 -96 -85 -2 -92 14 -46 -91 -19 -11 -86 22 -37", "output": "51 -97 -90 -52 -3 -60 -50 -73 -77 -32 -81 -67 -6 -34 -28 -45 -80 -4 -7 -57 -79 -27 -31 -89 -21 -93 -82 -5 -70 -20 -18 -64 -66 -68 -40 -99 -23 -48 -98 -54 -63 -1 -12 -96 -85 -2 -92 -46 -91 -19 -11 -86\n47 61 78 87 65 83 38 30 35 44 17 58 47 71 69 43 29 16 95 74 36 72 53 62 26 15 76 8 59 88 49 9 10 56 100 25 94 13 42 39 55 24 75 51 41 84 14 22\n2 0 -37" }, { "input": "100\n-75 -60 -18 -92 -71 -9 -37 -34 -82 28 -54 93 -83 -76 -58 -88 -17 -97 64 -39 -96 -81 -10 -98 -47 -100 -22 27 14 -33 -19 -99 87 -66 57 -21 -90 -70 -32 -26 24 -77 -74 13 -44 16 -5 -55 -2 -6 -7 -73 -1 -68 -30 -95 -42 69 0 -20 -79 59 -48 -4 -72 -67 -46 62 51 -52 -86 -40 56 -53 85 -35 -8 49 50 65 29 11 -43 -15 -41 -12 -3 -80 -31 -38 -91 -45 -25 78 94 -23 -63 84 89 -61", "output": "73 -75 -60 -18 -92 -71 -9 -37 -34 -82 -54 -83 -76 -58 -88 -17 -97 -39 -96 -81 -10 -98 -47 -100 -22 -33 -19 -99 -66 -21 -90 -70 -32 -26 -77 -74 -44 -5 -55 -2 -6 -7 -73 -1 -68 -30 -95 -42 -20 -79 -48 -4 -72 -67 -46 -52 -86 -40 -53 -35 -8 -43 -15 -41 -12 -3 -80 -31 -38 -91 -45 -25 -23 -63\n25 28 93 64 27 14 87 57 24 13 16 69 59 62 51 56 85 49 50 65 29 11 78 94 84 89\n2 0 -61" }, { "input": "100\n-87 -48 -76 -1 -10 -17 -22 -19 -27 -99 -43 49 38 -20 -45 -64 44 -96 -35 -74 -65 -41 -21 -75 37 -12 -67 0 -3 5 -80 -93 -81 -97 -47 -63 53 -100 95 -79 -83 -90 -32 88 -77 -16 -23 -54 -28 -4 -73 -98 -25 -39 60 -56 -34 -2 -11 -55 -52 -69 -68 -29 -82 -62 -36 -13 -6 -89 8 -72 18 -15 -50 -71 -70 -92 -42 -78 -61 -9 -30 -85 -91 -94 84 -86 -7 -57 -14 40 -33 51 -26 46 59 -31 -58 -66", "output": "83 -87 -48 -76 -1 -10 -17 -22 -19 -27 -99 -43 -20 -45 -64 -96 -35 -74 -65 -41 -21 -75 -12 -67 -3 -80 -93 -81 -97 -47 -63 -100 -79 -83 -90 -32 -77 -16 -23 -54 -28 -4 -73 -98 -25 -39 -56 -34 -2 -11 -55 -52 -69 -68 -29 -82 -62 -36 -13 -6 -89 -72 -15 -50 -71 -70 -92 -42 -78 -61 -9 -30 -85 -91 -94 -86 -7 -57 -14 -33 -26 -31 -58 -66\n16 49 38 44 37 5 53 95 88 60 8 18 84 40 51 46 59\n1 0" }, { "input": "100\n-95 -28 -43 -72 -11 -24 -37 -35 -44 -66 -45 -62 -96 -51 -55 -23 -31 -26 -59 -17 77 -69 -10 -12 -78 -14 -52 -57 -40 -75 4 -98 -6 7 -53 -3 -90 -63 -8 -20 88 -91 -32 -76 -80 -97 -34 -27 -19 0 70 -38 -9 -49 -67 73 -36 2 81 -39 -65 -83 -64 -18 -94 -79 -58 -16 87 -22 -74 -25 -13 -46 -89 -47 5 -15 -54 -99 56 -30 -60 -21 -86 33 -1 -50 -68 -100 -85 -29 92 -48 -61 42 -84 -93 -41 -82", "output": "85 -95 -28 -43 -72 -11 -24 -37 -35 -44 -66 -45 -62 -96 -51 -55 -23 -31 -26 -59 -17 -69 -10 -12 -78 -14 -52 -57 -40 -75 -98 -6 -53 -3 -90 -63 -8 -20 -91 -32 -76 -80 -97 -34 -27 -19 -38 -9 -49 -67 -36 -39 -65 -83 -64 -18 -94 -79 -58 -16 -22 -74 -25 -13 -46 -89 -47 -15 -54 -99 -30 -60 -21 -86 -1 -50 -68 -100 -85 -29 -48 -61 -84 -93 -41 -82\n14 77 4 7 88 70 73 2 81 87 5 56 33 92 42\n1 0" }, { "input": "100\n-12 -41 57 13 83 -36 53 69 -6 86 -75 87 11 -5 -4 -14 -37 -84 70 2 -73 16 31 34 -45 94 -9 26 27 52 -42 46 96 21 32 7 -18 61 66 -51 95 -48 -76 90 80 -40 89 77 78 54 -30 8 88 33 -24 82 -15 19 1 59 44 64 -97 -60 43 56 35 47 39 50 29 28 -17 -67 74 23 85 -68 79 0 65 55 -3 92 -99 72 93 -71 38 -10 -100 -98 81 62 91 -63 -58 49 -20 22", "output": "35 -12 -41 -36 -6 -75 -5 -4 -14 -37 -84 -73 -45 -9 -42 -18 -51 -48 -76 -40 -30 -24 -15 -97 -60 -17 -67 -68 -3 -99 -71 -10 -100 -98 -63 -58\n63 57 13 83 53 69 86 87 11 70 2 16 31 34 94 26 27 52 46 96 21 32 7 61 66 95 90 80 89 77 78 54 8 88 33 82 19 1 59 44 64 43 56 35 47 39 50 29 28 74 23 85 79 65 55 92 72 93 38 81 62 91 49 22\n2 0 -20" }, { "input": "100\n-34 81 85 -96 50 20 54 86 22 10 -19 52 65 44 30 53 63 71 17 98 -92 4 5 -99 89 -23 48 9 7 33 75 2 47 -56 42 70 -68 57 51 83 82 94 91 45 46 25 95 11 -12 62 -31 -87 58 38 67 97 -60 66 73 -28 13 93 29 59 -49 77 37 -43 -27 0 -16 72 15 79 61 78 35 21 3 8 84 1 -32 36 74 -88 26 100 6 14 40 76 18 90 24 69 80 64 55 41", "output": "19 -34 -96 -19 -92 -99 -23 -56 -68 -12 -31 -87 -60 -28 -49 -43 -27 -16 -32 -88\n80 81 85 50 20 54 86 22 10 52 65 44 30 53 63 71 17 98 4 5 89 48 9 7 33 75 2 47 42 70 57 51 83 82 94 91 45 46 25 95 11 62 58 38 67 97 66 73 13 93 29 59 77 37 72 15 79 61 78 35 21 3 8 84 1 36 74 26 100 6 14 40 76 18 90 24 69 80 64 55 41\n1 0" }, { "input": "100\n-1000 -986 -979 -955 -966 -963 -973 -959 -972 -906 -924 -927 -929 -918 -977 -967 -921 -989 -911 -995 -945 -919 -971 -913 -912 -933 -969 -975 -920 -988 -997 -994 -953 -962 -940 -905 -978 -948 -957 -996 0 -976 -949 -931 -903 -985 -923 -993 -944 -909 -938 -946 -934 -992 -904 -980 -954 -943 -917 -968 -991 -956 -902 -942 -999 -998 -908 -928 -930 -914 -922 -936 -960 -937 -939 -926 -965 -925 -951 -910 -907 -970 -990 -984 -964 -987 -916 -947 -982 -950 -974 -915 -932 -958 -981 -941 -961 -983 -952 -935", "output": "97 -1000 -986 -979 -955 -966 -963 -973 -959 -972 -906 -924 -927 -929 -918 -977 -967 -921 -989 -911 -995 -945 -919 -971 -913 -912 -933 -969 -975 -920 -988 -997 -994 -953 -962 -940 -905 -978 -948 -957 -996 -976 -949 -931 -903 -985 -923 -993 -944 -909 -938 -946 -934 -992 -904 -980 -954 -943 -917 -968 -991 -956 -902 -942 -999 -998 -908 -928 -930 -914 -922 -936 -960 -937 -939 -926 -965 -925 -951 -910 -907 -970 -990 -984 -964 -987 -916 -947 -982 -950 -974 -915 -932 -958 -981 -941 -961 -983\n2 -935 -952\n1 0" }, { "input": "99\n-1000 -986 -979 -955 -966 -963 -973 -959 -972 -906 -924 -927 -929 -918 -977 -967 -921 -989 -911 -995 -945 -919 -971 -913 -912 -933 -969 -975 -920 -988 -997 -994 -953 -962 -940 -905 -978 -948 -957 -996 0 -976 -949 -931 -903 -985 -923 -993 -944 -909 -938 -946 -934 -992 -904 -980 -954 -943 -917 -968 -991 -956 -902 -942 -999 -998 -908 -928 -930 -914 -922 -936 -960 -937 -939 -926 -965 -925 -951 -910 -907 -970 -990 -984 -964 -987 -916 -947 -982 -950 -974 -915 -932 -958 -981 -941 -961 -983 -952", "output": "95 -1000 -986 -979 -955 -966 -963 -973 -959 -972 -906 -924 -927 -929 -918 -977 -967 -921 -989 -911 -995 -945 -919 -971 -913 -912 -933 -969 -975 -920 -988 -997 -994 -953 -962 -940 -905 -978 -948 -957 -996 -976 -949 -931 -903 -985 -923 -993 -944 -909 -938 -946 -934 -992 -904 -980 -954 -943 -917 -968 -991 -956 -902 -942 -999 -998 -908 -928 -930 -914 -922 -936 -960 -937 -939 -926 -965 -925 -951 -910 -907 -970 -990 -984 -964 -987 -916 -947 -982 -950 -974 -915 -932 -958 -981 -941\n2 -952 -983\n2 0 -961" }, { "input": "59\n-990 -876 -641 -726 718 -53 803 -954 894 -265 -587 -665 904 349 754 -978 441 794 -768 -428 -569 -476 188 -620 -290 -333 45 705 -201 109 165 446 13 122 714 -562 -15 -86 -960 43 329 578 287 -776 -14 -71 915 886 -259 337 -495 913 -498 -669 -673 818 225 647 0", "output": "29 -990 -876 -641 -726 -53 -954 -265 -587 -665 -978 -768 -428 -569 -476 -620 -290 -333 -201 -562 -15 -86 -960 -776 -14 -71 -259 -495 -498 -669\n28 718 803 894 904 349 754 441 794 188 45 705 109 165 446 13 122 714 43 329 578 287 915 886 337 913 818 225 647\n2 0 -673" }, { "input": "64\n502 885 -631 -906 735 687 642 -29 -696 -165 -524 15 -129 -663 -846 -501 -651 895 -341 -833 -142 33 -847 688 945 -192 -587 -930 603 849 736 676 788 256 863 -509 319 -49 -807 -158 218 -886 -143 -639 118 -156 -291 325 892 -916 -622 -960 -959 -731 -943 436 -535 861 745 589 -159 376 -182 0", "output": "35 -631 -906 -29 -696 -165 -524 -129 -663 -846 -501 -651 -341 -833 -142 -847 -192 -587 -930 -509 -49 -807 -158 -886 -143 -639 -156 -291 -916 -622 -960 -959 -731 -943 -535 -159\n27 502 885 735 687 642 15 895 33 688 945 603 849 736 676 788 256 863 319 218 118 325 892 436 861 745 589 376\n2 0 -182" }, { "input": "5\n-1 -2 -3 -4 0", "output": "1 -1\n2 -4 -3\n2 0 -2" }, { "input": "3\n-101 101 0", "output": "1 -101\n1 101\n1 0" }, { "input": "21\n-100 -200 -300 -400 -500 -600 -700 -800 -900 -1000 0 100 200 300 400 500 600 700 800 900 1000", "output": "9 -100 -200 -300 -400 -500 -600 -700 -800 -900\n10 100 200 300 400 500 600 700 800 900 1000\n2 0 -1000" }, { "input": "4\n0 -1 -2 -3", "output": "1 -1\n2 -3 -2\n1 0" } ]
1,670,836,667
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
156
0
n=int(input()) nums=list(map(int,input().split())) third=-1 first=-1 count=0 minus=[0]*2 for i,item in enumerate(nums): if item ==0: if third==-1: third=i if item <0: count+=1 if minus[-1]==0: minus[-1]=i else: minus[0],minus[1]=minus[1],i if count>1: print(1,*nums[:minus[0]]) print(len(nums[minus[0]-1:third-1]),*nums[minus[0]:third]) print(len(nums[third-1:-1]),*nums[third:]) else: print(1,*nums[0:minus[-1]+1]) print(len(nums[minus[-1]+1:third]),*nums[minus[-1]+1:third]) print(len(nums[third:]),*nums[third:])
Title: Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vitaly has an array of *n* distinct integers. Vitaly wants to divide this array into three non-empty sets so as the following conditions hold: 1. The product of all numbers in the first set is less than zero (<=&lt;<=0). 1. The product of all numbers in the second set is greater than zero (<=&gt;<=0). 1. The product of all numbers in the third set is equal to zero. 1. Each number from the initial array must occur in exactly one set. Help Vitaly. Divide the given array. Input Specification: The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=100). The second line contains *n* space-separated distinct integers *a*1,<=*a*2,<=...,<=*a**n* (|*a**i*|<=≤<=103) — the array elements. Output Specification: In the first line print integer *n*1 (*n*1<=&gt;<=0) — the number of elements in the first set. Then print *n*1 numbers — the elements that got to the first set. In the next line print integer *n*2 (*n*2<=&gt;<=0) — the number of elements in the second set. Then print *n*2 numbers — the elements that got to the second set. In the next line print integer *n*3 (*n*3<=&gt;<=0) — the number of elements in the third set. Then print *n*3 numbers — the elements that got to the third set. The printed sets must meet the described conditions. It is guaranteed that the solution exists. If there are several solutions, you are allowed to print any of them. Demo Input: ['3\n-1 2 0\n', '4\n-1 -2 -3 0\n'] Demo Output: ['1 -1\n1 2\n1 0\n', '1 -1\n2 -3 -2\n1 0\n'] Note: none
```python n=int(input()) nums=list(map(int,input().split())) third=-1 first=-1 count=0 minus=[0]*2 for i,item in enumerate(nums): if item ==0: if third==-1: third=i if item <0: count+=1 if minus[-1]==0: minus[-1]=i else: minus[0],minus[1]=minus[1],i if count>1: print(1,*nums[:minus[0]]) print(len(nums[minus[0]-1:third-1]),*nums[minus[0]:third]) print(len(nums[third-1:-1]),*nums[third:]) else: print(1,*nums[0:minus[-1]+1]) print(len(nums[minus[-1]+1:third]),*nums[minus[-1]+1:third]) print(len(nums[third:]),*nums[third:]) ```
0
887
A
Div. 64
PROGRAMMING
1,000
[ "implementation" ]
null
null
Top-model Izabella participates in the competition. She wants to impress judges and show her mathematical skills. Her problem is following: for given string, consisting of only 0 and 1, tell if it's possible to remove some digits in such a way, that remaining number is a representation of some positive integer, divisible by 64, in the binary numerical system.
In the only line given a non-empty binary string *s* with length up to 100.
Print «yes» (without quotes) if it's possible to remove digits required way and «no» otherwise.
[ "100010001\n", "100\n" ]
[ "yes", "no" ]
In the first test case, you can get string 1 000 000 after removing two ones which is a representation of number 64 in the binary numerical system. You can read more about binary numeral system representation here: [https://en.wikipedia.org/wiki/Binary_system](https://en.wikipedia.org/wiki/Binary_system)
500
[ { "input": "100010001", "output": "yes" }, { "input": "100", "output": "no" }, { "input": "0000001000000", "output": "yes" }, { "input": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "no" }, { "input": "1111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111111111", "output": "no" }, { "input": "0111111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "no" }, { "input": "1111011111111111111111111111110111110111111111111111111111011111111111111110111111111111111111111111", "output": "no" }, { "input": "1111111111101111111111111111111111111011111111111111111111111101111011111101111111111101111111111111", "output": "yes" }, { "input": "0110111111111111111111011111111110110111110111111111111111111111111111111111111110111111111111111111", "output": "yes" }, { "input": "1100110001111011001101101000001110111110011110111110010100011000100101000010010111100000010001001101", "output": "yes" }, { "input": "000000", "output": "no" }, { "input": "0001000", "output": "no" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "no" }, { "input": "1000000", "output": "yes" }, { "input": "0", "output": "no" }, { "input": "1", "output": "no" }, { "input": "10000000000", "output": "yes" }, { "input": "0000000000", "output": "no" }, { "input": "0010000", "output": "no" }, { "input": "000000011", "output": "no" }, { "input": "000000000", "output": "no" }, { "input": "00000000", "output": "no" }, { "input": "000000000011", "output": "no" }, { "input": "0000000", "output": "no" }, { "input": "00000000011", "output": "no" }, { "input": "000000001", "output": "no" }, { "input": "000000000000000000000000000", "output": "no" }, { "input": "0000001", "output": "no" }, { "input": "00000001", "output": "no" }, { "input": "00000000100", "output": "no" }, { "input": "00000000000000000000", "output": "no" }, { "input": "0000000000000000000", "output": "no" }, { "input": "00001000", "output": "no" }, { "input": "0000000000010", "output": "no" }, { "input": "000000000010", "output": "no" }, { "input": "000000000000010", "output": "no" }, { "input": "0100000", "output": "no" }, { "input": "00010000", "output": "no" }, { "input": "00000000000000000", "output": "no" }, { "input": "00000000000", "output": "no" }, { "input": "000001000", "output": "no" }, { "input": "000000000000", "output": "no" }, { "input": "100000000000000", "output": "yes" }, { "input": "000010000", "output": "no" }, { "input": "00000100", "output": "no" }, { "input": "0001100000", "output": "no" }, { "input": "000000000000000000000000001", "output": "no" }, { "input": "000000100", "output": "no" }, { "input": "0000000000001111111111", "output": "no" }, { "input": "00000010", "output": "no" }, { "input": "0001110000", "output": "no" }, { "input": "0000000000000000000000", "output": "no" }, { "input": "000000010010", "output": "no" }, { "input": "0000100", "output": "no" }, { "input": "0000000001", "output": "no" }, { "input": "000000111", "output": "no" }, { "input": "0000000000000", "output": "no" }, { "input": "000000000000000000", "output": "no" }, { "input": "0000000000000000000000000", "output": "no" }, { "input": "000000000000000", "output": "no" }, { "input": "0010000000000100", "output": "yes" }, { "input": "0000001000", "output": "no" }, { "input": "00000000000000000001", "output": "no" }, { "input": "100000000", "output": "yes" }, { "input": "000000000001", "output": "no" }, { "input": "0000011001", "output": "no" }, { "input": "000", "output": "no" }, { "input": "000000000000000000000", "output": "no" }, { "input": "0000000000011", "output": "no" }, { "input": "0000000000000000", "output": "no" }, { "input": "00000000000000001", "output": "no" }, { "input": "00000000000000", "output": "no" }, { "input": "0000000000000000010", "output": "no" }, { "input": "00000000000000000000000000000000000000000000000000000000", "output": "no" }, { "input": "000011000", "output": "no" }, { "input": "00000011", "output": "no" }, { "input": "0000000000001100", "output": "no" }, { "input": "00000", "output": "no" }, { "input": "000000000000000000000000000111111111111111", "output": "no" }, { "input": "000000010", "output": "no" }, { "input": "00000000111", "output": "no" }, { "input": "000000000000001", "output": "no" }, { "input": "0000000000000011111111111111111", "output": "no" }, { "input": "0000000010", "output": "no" }, { "input": "0000000000000000000000000000000000000000000000000", "output": "no" }, { "input": "00000000010", "output": "no" }, { "input": "101000000000", "output": "yes" }, { "input": "00100000", "output": "no" }, { "input": "00000000000001", "output": "no" }, { "input": "0000000000100", "output": "no" }, { "input": "0000", "output": "no" }, { "input": "00000000000111", "output": "no" }, { "input": "0000000000000011", "output": "no" }, { "input": "0000000000000000000000000000000000000000", "output": "no" }, { "input": "0000000000000010", "output": "no" }, { "input": "0010101010", "output": "no" }, { "input": "0000000000000001", "output": "no" }, { "input": "1010101", "output": "no" } ]
1,536,781,846
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
124
0
s=input() if(len(s)<=6): print('no') else: for i in range(6,len(s)): if(s[i]=='1'): print('yes') exit() print('no')
Title: Div. 64 Time Limit: None seconds Memory Limit: None megabytes Problem Description: Top-model Izabella participates in the competition. She wants to impress judges and show her mathematical skills. Her problem is following: for given string, consisting of only 0 and 1, tell if it's possible to remove some digits in such a way, that remaining number is a representation of some positive integer, divisible by 64, in the binary numerical system. Input Specification: In the only line given a non-empty binary string *s* with length up to 100. Output Specification: Print «yes» (without quotes) if it's possible to remove digits required way and «no» otherwise. Demo Input: ['100010001\n', '100\n'] Demo Output: ['yes', 'no'] Note: In the first test case, you can get string 1 000 000 after removing two ones which is a representation of number 64 in the binary numerical system. You can read more about binary numeral system representation here: [https://en.wikipedia.org/wiki/Binary_system](https://en.wikipedia.org/wiki/Binary_system)
```python s=input() if(len(s)<=6): print('no') else: for i in range(6,len(s)): if(s[i]=='1'): print('yes') exit() print('no') ```
0
907
A
Masha and Bears
PROGRAMMING
1,300
[ "brute force", "implementation" ]
null
null
A family consisting of father bear, mother bear and son bear owns three cars. Father bear can climb into the largest car and he likes it. Also, mother bear can climb into the middle car and she likes it. Moreover, son bear can climb into the smallest car and he likes it. It's known that the largest car is strictly larger than the middle car, and the middle car is strictly larger than the smallest car. Masha came to test these cars. She could climb into all cars, but she liked only the smallest car. It's known that a character with size *a* can climb into some car with size *b* if and only if *a*<=≤<=*b*, he or she likes it if and only if he can climb into this car and 2*a*<=≥<=*b*. You are given sizes of bears and Masha. Find out some possible integer non-negative sizes of cars.
You are given four integers *V*1, *V*2, *V*3, *V**m*(1<=≤<=*V**i*<=≤<=100) — sizes of father bear, mother bear, son bear and Masha, respectively. It's guaranteed that *V*1<=&gt;<=*V*2<=&gt;<=*V*3.
Output three integers — sizes of father bear's car, mother bear's car and son bear's car, respectively. If there are multiple possible solutions, print any. If there is no solution, print "-1" (without quotes).
[ "50 30 10 10\n", "100 50 10 21\n" ]
[ "50\n30\n10\n", "-1\n" ]
In first test case all conditions for cars' sizes are satisfied. In second test case there is no answer, because Masha should be able to climb into smallest car (so size of smallest car in not less than 21), but son bear should like it, so maximum possible size of it is 20.
500
[ { "input": "50 30 10 10", "output": "50\n30\n10" }, { "input": "100 50 10 21", "output": "-1" }, { "input": "100 50 19 10", "output": "100\n50\n19" }, { "input": "99 50 25 49", "output": "100\n99\n49" }, { "input": "3 2 1 1", "output": "4\n3\n1" }, { "input": "100 99 98 100", "output": "-1" }, { "input": "100 40 30 40", "output": "-1" }, { "input": "100 50 19 25", "output": "100\n51\n25" }, { "input": "100 50 19 30", "output": "100\n61\n30" }, { "input": "49 48 25 49", "output": "-1" }, { "input": "48 47 23 46", "output": "94\n93\n46" }, { "input": "37 23 16 20", "output": "42\n41\n20" }, { "input": "98 2 1 1", "output": "98\n3\n1" }, { "input": "99 22 13 14", "output": "99\n29\n14" }, { "input": "97 95 3 2", "output": "97\n95\n3" }, { "input": "27 3 2 3", "output": "-1" }, { "input": "13 7 6 2", "output": "-1" }, { "input": "19 17 11 6", "output": "19\n17\n11" }, { "input": "15 6 4 5", "output": "15\n11\n5" }, { "input": "21 3 1 3", "output": "-1" }, { "input": "100 99 98 97", "output": "196\n195\n98" }, { "input": "99 32 13 5", "output": "-1" }, { "input": "5 4 3 1", "output": "-1" }, { "input": "50 20 4 8", "output": "50\n20\n8" }, { "input": "60 30 10 1", "output": "-1" }, { "input": "100 50 10 1", "output": "-1" }, { "input": "40 30 20 10", "output": "40\n30\n20" }, { "input": "50 49 5 10", "output": "50\n49\n10" }, { "input": "99 98 50 97", "output": "196\n195\n97" }, { "input": "50 30 10 5", "output": "50\n30\n10" }, { "input": "4 3 2 1", "output": "4\n3\n2" }, { "input": "100 50 3 1", "output": "-1" } ]
1,593,179,798
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
93
6,656,000
v1,v2,v3,vm = map(int, input().split()) if(2*v3 >= vm): v1= max(v1,vm) v2= max(v2,vm) v3= max(v3,vm) if(v1>v2 and v2>v3): print(v1) print(v2) print(v3) else: print(-1) else: print(-1)
Title: Masha and Bears Time Limit: None seconds Memory Limit: None megabytes Problem Description: A family consisting of father bear, mother bear and son bear owns three cars. Father bear can climb into the largest car and he likes it. Also, mother bear can climb into the middle car and she likes it. Moreover, son bear can climb into the smallest car and he likes it. It's known that the largest car is strictly larger than the middle car, and the middle car is strictly larger than the smallest car. Masha came to test these cars. She could climb into all cars, but she liked only the smallest car. It's known that a character with size *a* can climb into some car with size *b* if and only if *a*<=≤<=*b*, he or she likes it if and only if he can climb into this car and 2*a*<=≥<=*b*. You are given sizes of bears and Masha. Find out some possible integer non-negative sizes of cars. Input Specification: You are given four integers *V*1, *V*2, *V*3, *V**m*(1<=≤<=*V**i*<=≤<=100) — sizes of father bear, mother bear, son bear and Masha, respectively. It's guaranteed that *V*1<=&gt;<=*V*2<=&gt;<=*V*3. Output Specification: Output three integers — sizes of father bear's car, mother bear's car and son bear's car, respectively. If there are multiple possible solutions, print any. If there is no solution, print "-1" (without quotes). Demo Input: ['50 30 10 10\n', '100 50 10 21\n'] Demo Output: ['50\n30\n10\n', '-1\n'] Note: In first test case all conditions for cars' sizes are satisfied. In second test case there is no answer, because Masha should be able to climb into smallest car (so size of smallest car in not less than 21), but son bear should like it, so maximum possible size of it is 20.
```python v1,v2,v3,vm = map(int, input().split()) if(2*v3 >= vm): v1= max(v1,vm) v2= max(v2,vm) v3= max(v3,vm) if(v1>v2 and v2>v3): print(v1) print(v2) print(v3) else: print(-1) else: print(-1) ```
0
664
A
Complicated GCD
PROGRAMMING
800
[ "math", "number theory" ]
null
null
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm. Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100 — such number do not fit even in 64-bit integer type!
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10100).
Output one integer — greatest common divisor of all integers from *a* to *b* inclusive.
[ "1 2\n", "61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n" ]
[ "1\n", "61803398874989484820458683436563811772030917980576\n" ]
none
500
[ { "input": "1 2", "output": "1" }, { "input": "61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576", "output": "61803398874989484820458683436563811772030917980576" }, { "input": "1 100", "output": "1" }, { "input": "100 100000", "output": "1" }, { "input": "12345 67890123456789123457", "output": "1" }, { "input": "1 1", "output": "1" }, { "input": "2 2", "output": "2" }, { "input": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158 8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158", "output": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158" }, { "input": "1 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1" }, { "input": "8328748239473982794239847237438782379810988324751 9328748239473982794239847237438782379810988324751", "output": "1" }, { "input": "1029398958432734901284327523909481928483573793 1029398958432734901284327523909481928483573794", "output": "1" }, { "input": "10000 1000000000", "output": "1" }, { "input": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000" }, { "input": "11210171722243 65715435710585778347", "output": "1" }, { "input": "2921881079263974825226940825843 767693191032295360887755303860323261471", "output": "1" }, { "input": "8025352957265704896940312528736939363590612908210603 96027920417708260814607687034511406492969694925539085", "output": "1" }, { "input": "23510978780782786207241069904470895053213996267165977112058175452757132930 210352653280909370107314249722987050753257161175393375412301228883856435481424", "output": "1" }, { "input": "8150070767079366215626260746398623663859344142817267779361251788637547414925170226504788118262 49924902262298336032630839998470954964895251605110946547855439236151401194070172107435992986913614", "output": "1" }, { "input": "15943150466658398903 15943150466658398903", "output": "15943150466658398903" }, { "input": "410470228200245407491525399055972 410470228200245407491525399055972", "output": "410470228200245407491525399055972" }, { "input": "51894705655711504622197349350106792045098781545973899451307 51894705655711504622197349350106792045098781545973899451307", "output": "51894705655711504622197349350106792045098781545973899451307" }, { "input": "60353594589897438036015726222485085035927634677598681595162804007836722215668410 60353594589897438036015726222485085035927634677598681595162804007836722215668410", "output": "60353594589897438036015726222485085035927634677598681595162804007836722215668410" }, { "input": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535 761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535", "output": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535" }, { "input": "1 2000000000", "output": "1" }, { "input": "13 1928834874", "output": "1" }, { "input": "87 2938984237482934238", "output": "1" }, { "input": "213 413", "output": "1" }, { "input": "3 4", "output": "1" } ]
1,635,189,436
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
46
4,300,800
import math a,b =input().split(" ") a=int(a) b=int(b) print(math.gcd(a,b))
Title: Complicated GCD Time Limit: None seconds Memory Limit: None megabytes Problem Description: Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm. Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100 — such number do not fit even in 64-bit integer type! Input Specification: The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10100). Output Specification: Output one integer — greatest common divisor of all integers from *a* to *b* inclusive. Demo Input: ['1 2\n', '61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n'] Demo Output: ['1\n', '61803398874989484820458683436563811772030917980576\n'] Note: none
```python import math a,b =input().split(" ") a=int(a) b=int(b) print(math.gcd(a,b)) ```
0
25
A
IQ test
PROGRAMMING
1,300
[ "brute force" ]
A. IQ test
2
256
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
[ "5\n2 4 7 8 10\n", "4\n1 2 1 1\n" ]
[ "3\n", "2\n" ]
none
0
[ { "input": "5\n2 4 7 8 10", "output": "3" }, { "input": "4\n1 2 1 1", "output": "2" }, { "input": "3\n1 2 2", "output": "1" }, { "input": "3\n100 99 100", "output": "2" }, { "input": "3\n5 3 2", "output": "3" }, { "input": "4\n43 28 1 91", "output": "2" }, { "input": "4\n75 13 94 77", "output": "3" }, { "input": "4\n97 8 27 3", "output": "2" }, { "input": "10\n95 51 12 91 85 3 1 31 25 7", "output": "3" }, { "input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46", "output": "4" }, { "input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36", "output": "26" }, { "input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83", "output": "48" }, { "input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25", "output": "1" }, { "input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46", "output": "25" }, { "input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73", "output": "13" }, { "input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76", "output": "99" }, { "input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14", "output": "1" }, { "input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22", "output": "93" }, { "input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23", "output": "1" }, { "input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98", "output": "1" }, { "input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94", "output": "93" }, { "input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29", "output": "32" }, { "input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47", "output": "26" }, { "input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72", "output": "56" }, { "input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86", "output": "97" }, { "input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42", "output": "79" }, { "input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52", "output": "25" }, { "input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86", "output": "78" }, { "input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68", "output": "70" }, { "input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81", "output": "39" }, { "input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83", "output": "88" }, { "input": "3\n100 100 1", "output": "3" } ]
1,661,179,722
2,147,483,647
Python 3
OK
TESTS
32
92
0
n=int(input()) arr=list(map(int,input().split())) ev=[] od=[] for i in range(n): if(arr[i]%2==0): ev.append(i+1) else: od.append(i+1) if(len(ev)==1): print(ev[0]) else: print(od[0])
Title: IQ test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness. Output Specification: Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order. Demo Input: ['5\n2 4 7 8 10\n', '4\n1 2 1 1\n'] Demo Output: ['3\n', '2\n'] Note: none
```python n=int(input()) arr=list(map(int,input().split())) ev=[] od=[] for i in range(n): if(arr[i]%2==0): ev.append(i+1) else: od.append(i+1) if(len(ev)==1): print(ev[0]) else: print(od[0]) ```
3.977
822
A
I'm bored with life
PROGRAMMING
800
[ "implementation", "math", "number theory" ]
null
null
Holidays have finished. Thanks to the help of the hacker Leha, Noora managed to enter the university of her dreams which is located in a town Pavlopolis. It's well known that universities provide students with dormitory for the period of university studies. Consequently Noora had to leave Vičkopolis and move to Pavlopolis. Thus Leha was left completely alone in a quiet town Vičkopolis. He almost even fell into a depression from boredom! Leha came up with a task for himself to relax a little. He chooses two integers *A* and *B* and then calculates the greatest common divisor of integers "*A* factorial" and "*B* factorial". Formally the hacker wants to find out GCD(*A*!,<=*B*!). It's well known that the factorial of an integer *x* is a product of all positive integers less than or equal to *x*. Thus *x*!<==<=1·2·3·...·(*x*<=-<=1)·*x*. For example 4!<==<=1·2·3·4<==<=24. Recall that GCD(*x*,<=*y*) is the largest positive integer *q* that divides (without a remainder) both *x* and *y*. Leha has learned how to solve this task very effective. You are able to cope with it not worse, aren't you?
The first and single line contains two integers *A* and *B* (1<=≤<=*A*,<=*B*<=≤<=109,<=*min*(*A*,<=*B*)<=≤<=12).
Print a single integer denoting the greatest common divisor of integers *A*! and *B*!.
[ "4 3\n" ]
[ "6\n" ]
Consider the sample. 4! = 1·2·3·4 = 24. 3! = 1·2·3 = 6. The greatest common divisor of integers 24 and 6 is exactly 6.
500
[ { "input": "4 3", "output": "6" }, { "input": "10 399603090", "output": "3628800" }, { "input": "6 973151934", "output": "720" }, { "input": "2 841668075", "output": "2" }, { "input": "7 415216919", "output": "5040" }, { "input": "3 283733059", "output": "6" }, { "input": "11 562314608", "output": "39916800" }, { "input": "3 990639260", "output": "6" }, { "input": "11 859155400", "output": "39916800" }, { "input": "1 1", "output": "1" }, { "input": "5 3", "output": "6" }, { "input": "1 4", "output": "1" }, { "input": "5 4", "output": "24" }, { "input": "1 12", "output": "1" }, { "input": "9 7", "output": "5040" }, { "input": "2 3", "output": "2" }, { "input": "6 11", "output": "720" }, { "input": "6 7", "output": "720" }, { "input": "11 11", "output": "39916800" }, { "input": "4 999832660", "output": "24" }, { "input": "7 999228288", "output": "5040" }, { "input": "11 999257105", "output": "39916800" }, { "input": "11 999286606", "output": "39916800" }, { "input": "3 999279109", "output": "6" }, { "input": "999632727 11", "output": "39916800" }, { "input": "999625230 7", "output": "5040" }, { "input": "999617047 3", "output": "6" }, { "input": "999646548 7", "output": "5040" }, { "input": "999639051 3", "output": "6" }, { "input": "12 12", "output": "479001600" }, { "input": "12 1", "output": "1" }, { "input": "1213 5", "output": "120" }, { "input": "8 9", "output": "40320" }, { "input": "12 9", "output": "362880" }, { "input": "12 1000000000", "output": "479001600" }, { "input": "1000000000 1", "output": "1" }, { "input": "12 13", "output": "479001600" }, { "input": "2 29845", "output": "2" }, { "input": "10 21", "output": "3628800" }, { "input": "12 20", "output": "479001600" }, { "input": "15 12", "output": "479001600" }, { "input": "1 1", "output": "1" }, { "input": "1000000000 12", "output": "479001600" }, { "input": "11 30", "output": "39916800" }, { "input": "17 12", "output": "479001600" }, { "input": "4 19", "output": "24" }, { "input": "12 15", "output": "479001600" }, { "input": "20 6", "output": "720" }, { "input": "10 20", "output": "3628800" }, { "input": "10 10", "output": "3628800" }, { "input": "22 12", "output": "479001600" }, { "input": "20 12", "output": "479001600" }, { "input": "12 23", "output": "479001600" }, { "input": "12 22", "output": "479001600" }, { "input": "18 3", "output": "6" }, { "input": "14 10", "output": "3628800" }, { "input": "14 12", "output": "479001600" }, { "input": "8 3", "output": "6" }, { "input": "5 5", "output": "120" } ]
1,636,389,767
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
15
4,505,600
import math from math import gcd def fact(n): f = 1 while n!=1: f = f*n n = n-1 return f A = int(input()) B = int(input()) fact_A = fact(A) fact_B = fact(B) result = gcd(fact_A,fact_B) print(result)
Title: I'm bored with life Time Limit: None seconds Memory Limit: None megabytes Problem Description: Holidays have finished. Thanks to the help of the hacker Leha, Noora managed to enter the university of her dreams which is located in a town Pavlopolis. It's well known that universities provide students with dormitory for the period of university studies. Consequently Noora had to leave Vičkopolis and move to Pavlopolis. Thus Leha was left completely alone in a quiet town Vičkopolis. He almost even fell into a depression from boredom! Leha came up with a task for himself to relax a little. He chooses two integers *A* and *B* and then calculates the greatest common divisor of integers "*A* factorial" and "*B* factorial". Formally the hacker wants to find out GCD(*A*!,<=*B*!). It's well known that the factorial of an integer *x* is a product of all positive integers less than or equal to *x*. Thus *x*!<==<=1·2·3·...·(*x*<=-<=1)·*x*. For example 4!<==<=1·2·3·4<==<=24. Recall that GCD(*x*,<=*y*) is the largest positive integer *q* that divides (without a remainder) both *x* and *y*. Leha has learned how to solve this task very effective. You are able to cope with it not worse, aren't you? Input Specification: The first and single line contains two integers *A* and *B* (1<=≤<=*A*,<=*B*<=≤<=109,<=*min*(*A*,<=*B*)<=≤<=12). Output Specification: Print a single integer denoting the greatest common divisor of integers *A*! and *B*!. Demo Input: ['4 3\n'] Demo Output: ['6\n'] Note: Consider the sample. 4! = 1·2·3·4 = 24. 3! = 1·2·3 = 6. The greatest common divisor of integers 24 and 6 is exactly 6.
```python import math from math import gcd def fact(n): f = 1 while n!=1: f = f*n n = n-1 return f A = int(input()) B = int(input()) fact_A = fact(A) fact_B = fact(B) result = gcd(fact_A,fact_B) print(result) ```
-1
66
B
Petya and Countryside
PROGRAMMING
1,100
[ "brute force", "implementation" ]
B. Petya and Countryside
2
256
Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=×<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section. Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=×<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture: As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000.
Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section.
[ "1\n2\n", "5\n1 2 1 2 1\n", "8\n1 2 1 1 1 3 3 4\n" ]
[ "1\n", "3\n", "6\n" ]
none
1,000
[ { "input": "1\n2", "output": "1" }, { "input": "5\n1 2 1 2 1", "output": "3" }, { "input": "8\n1 2 1 1 1 3 3 4", "output": "6" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "10" }, { "input": "10\n10 9 8 7 6 5 4 3 2 1", "output": "10" }, { "input": "2\n100 100", "output": "2" }, { "input": "3\n100 100 100", "output": "3" }, { "input": "11\n1 2 3 4 5 6 5 4 3 2 1", "output": "11" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 100 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 1 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "61" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 82 83 84 85 86 87 88 89 90 91 92 93 94 100 5 4 3 2 1", "output": "81" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 1 86 87 88 89 90 91 92 93 100 6 5 4 3 2 1", "output": "85" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 1 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 100 7 6 5 4 3 2 1", "output": "61" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 100 8 7 6 1 4 3 2 1", "output": "96" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 100 10 9 8 7 6 5 4 3 2 1", "output": "100" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 1 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 100 11 10 9 8 7 6 5 4 3 2 1", "output": "55" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 1 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 100 12 11 10 9 8 7 6 5 4 3 2 1", "output": "59" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 100 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "86" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 100 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "83" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 100 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 1 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "74" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 100 9 8 7 6 5 4 3 2 1", "output": "100" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 100 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 1 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "52" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 100 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 2 1", "output": "98" }, { "input": "10\n1 4 4 4 4 4 1 2 4 3", "output": "7" } ]
1,662,532,809
2,147,483,647
PyPy 3
OK
TESTS
80
186
0
import math N = int(input()) H = list(map(int, input().split())) ascender = [] descender = [] prev = math.inf for index, value in enumerate(H): ascender.append(ascender[index - 1] + 1 if value >= prev else 0) prev = value prev = math.inf for index, value in enumerate(H[::-1]): descender.append(descender[index - 1] + 1 if value >= prev else 0) prev = value res = [a + b for a,b in zip(ascender, descender[::-1])] print(max(res)+1)
Title: Petya and Countryside Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=×<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section. Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=×<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture: As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000. Output Specification: Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section. Demo Input: ['1\n2\n', '5\n1 2 1 2 1\n', '8\n1 2 1 1 1 3 3 4\n'] Demo Output: ['1\n', '3\n', '6\n'] Note: none
```python import math N = int(input()) H = list(map(int, input().split())) ascender = [] descender = [] prev = math.inf for index, value in enumerate(H): ascender.append(ascender[index - 1] + 1 if value >= prev else 0) prev = value prev = math.inf for index, value in enumerate(H[::-1]): descender.append(descender[index - 1] + 1 if value >= prev else 0) prev = value res = [a + b for a,b in zip(ascender, descender[::-1])] print(max(res)+1) ```
3.9535
441
A
Valera and Antique Items
PROGRAMMING
1,000
[ "implementation" ]
null
null
Valera is a collector. Once he wanted to expand his collection with exactly one antique item. Valera knows *n* sellers of antiques, the *i*-th of them auctioned *k**i* items. Currently the auction price of the *j*-th object of the *i*-th seller is *s**ij*. Valera gets on well with each of the *n* sellers. He is perfectly sure that if he outbids the current price of one of the items in the auction (in other words, offers the seller the money that is strictly greater than the current price of the item at the auction), the seller of the object will immediately sign a contract with him. Unfortunately, Valera has only *v* units of money. Help him to determine which of the *n* sellers he can make a deal with.
The first line contains two space-separated integers *n*,<=*v* (1<=≤<=*n*<=≤<=50; 104<=≤<=*v*<=≤<=106) — the number of sellers and the units of money the Valera has. Then *n* lines follow. The *i*-th line first contains integer *k**i* (1<=≤<=*k**i*<=≤<=50) the number of items of the *i*-th seller. Then go *k**i* space-separated integers *s**i*1,<=*s**i*2,<=...,<=*s**ik**i* (104<=≤<=*s**ij*<=≤<=106) — the current prices of the items of the *i*-th seller.
In the first line, print integer *p* — the number of sellers with who Valera can make a deal. In the second line print *p* space-separated integers *q*1,<=*q*2,<=...,<=*q**p* (1<=≤<=*q**i*<=≤<=*n*) — the numbers of the sellers with who Valera can make a deal. Print the numbers of the sellers in the increasing order.
[ "3 50000\n1 40000\n2 20000 60000\n3 10000 70000 190000\n", "3 50000\n1 50000\n3 100000 120000 110000\n3 120000 110000 120000\n" ]
[ "3\n1 2 3\n", "0\n\n" ]
In the first sample Valera can bargain with each of the sellers. He can outbid the following items: a 40000 item from the first seller, a 20000 item from the second seller, and a 10000 item from the third seller. In the second sample Valera can not make a deal with any of the sellers, as the prices of all items in the auction too big for him.
500
[ { "input": "3 50000\n1 40000\n2 20000 60000\n3 10000 70000 190000", "output": "3\n1 2 3" }, { "input": "3 50000\n1 50000\n3 100000 120000 110000\n3 120000 110000 120000", "output": "0" }, { "input": "2 100001\n1 895737\n1 541571", "output": "0" }, { "input": "1 1000000\n1 1000000", "output": "0" }, { "input": "1 1000000\n1 561774", "output": "1\n1" }, { "input": "3 1000000\n5 1000000 568832 1000000 1000000 1000000\n13 1000000 1000000 1000000 596527 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000\n20 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000", "output": "2\n1 2" }, { "input": "3 999999\n7 1000000 1000000 1000000 999999 1000000 999999 1000000\n6 999999 1000000 999999 1000000 999999 999999\n7 999999 1000000 1000000 999999 1000000 1000000 1000000", "output": "0" }, { "input": "3 999999\n22 1000000 1000000 999999 999999 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 999999 1000000 1000000 999999 1000000 1000000 1000000 352800 999999 1000000\n14 999999 999999 999999 999999 999999 1000000 999999 999999 999999 999999 702638 999999 1000000 999999\n5 999999 1000000 1000000 999999 363236", "output": "3\n1 2 3" }, { "input": "1 50001\n1 50000", "output": "1\n1" } ]
1,546,879,829
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
93
0
n, v = map(int, input().split()) find = False for i in range(n): l = list(map(int, input().split())) if min(l[1:]) < v: print(i+1, end=' ') find = True if not find: print(0)
Title: Valera and Antique Items Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera is a collector. Once he wanted to expand his collection with exactly one antique item. Valera knows *n* sellers of antiques, the *i*-th of them auctioned *k**i* items. Currently the auction price of the *j*-th object of the *i*-th seller is *s**ij*. Valera gets on well with each of the *n* sellers. He is perfectly sure that if he outbids the current price of one of the items in the auction (in other words, offers the seller the money that is strictly greater than the current price of the item at the auction), the seller of the object will immediately sign a contract with him. Unfortunately, Valera has only *v* units of money. Help him to determine which of the *n* sellers he can make a deal with. Input Specification: The first line contains two space-separated integers *n*,<=*v* (1<=≤<=*n*<=≤<=50; 104<=≤<=*v*<=≤<=106) — the number of sellers and the units of money the Valera has. Then *n* lines follow. The *i*-th line first contains integer *k**i* (1<=≤<=*k**i*<=≤<=50) the number of items of the *i*-th seller. Then go *k**i* space-separated integers *s**i*1,<=*s**i*2,<=...,<=*s**ik**i* (104<=≤<=*s**ij*<=≤<=106) — the current prices of the items of the *i*-th seller. Output Specification: In the first line, print integer *p* — the number of sellers with who Valera can make a deal. In the second line print *p* space-separated integers *q*1,<=*q*2,<=...,<=*q**p* (1<=≤<=*q**i*<=≤<=*n*) — the numbers of the sellers with who Valera can make a deal. Print the numbers of the sellers in the increasing order. Demo Input: ['3 50000\n1 40000\n2 20000 60000\n3 10000 70000 190000\n', '3 50000\n1 50000\n3 100000 120000 110000\n3 120000 110000 120000\n'] Demo Output: ['3\n1 2 3\n', '0\n\n'] Note: In the first sample Valera can bargain with each of the sellers. He can outbid the following items: a 40000 item from the first seller, a 20000 item from the second seller, and a 10000 item from the third seller. In the second sample Valera can not make a deal with any of the sellers, as the prices of all items in the auction too big for him.
```python n, v = map(int, input().split()) find = False for i in range(n): l = list(map(int, input().split())) if min(l[1:]) < v: print(i+1, end=' ') find = True if not find: print(0) ```
0
268
A
Games
PROGRAMMING
800
[ "brute force" ]
null
null
Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different. There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number. You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question.
The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively.
In a single line print the number of games where the host team is going to play in the guest uniform.
[ "3\n1 2\n2 4\n3 4\n", "4\n100 42\n42 100\n5 42\n100 5\n", "2\n1 2\n1 2\n" ]
[ "1\n", "5\n", "0\n" ]
In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2. In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
500
[ { "input": "3\n1 2\n2 4\n3 4", "output": "1" }, { "input": "4\n100 42\n42 100\n5 42\n100 5", "output": "5" }, { "input": "2\n1 2\n1 2", "output": "0" }, { "input": "7\n4 7\n52 55\n16 4\n55 4\n20 99\n3 4\n7 52", "output": "6" }, { "input": "10\n68 42\n1 35\n25 70\n59 79\n65 63\n46 6\n28 82\n92 62\n43 96\n37 28", "output": "1" }, { "input": "30\n10 39\n89 1\n78 58\n75 99\n36 13\n77 50\n6 97\n79 28\n27 52\n56 5\n93 96\n40 21\n33 74\n26 37\n53 59\n98 56\n61 65\n42 57\n9 7\n25 63\n74 34\n96 84\n95 47\n12 23\n34 21\n71 6\n27 13\n15 47\n64 14\n12 77", "output": "6" }, { "input": "30\n46 100\n87 53\n34 84\n44 66\n23 20\n50 34\n90 66\n17 39\n13 22\n94 33\n92 46\n63 78\n26 48\n44 61\n3 19\n41 84\n62 31\n65 89\n23 28\n58 57\n19 85\n26 60\n75 66\n69 67\n76 15\n64 15\n36 72\n90 89\n42 69\n45 35", "output": "4" }, { "input": "2\n46 6\n6 46", "output": "2" }, { "input": "29\n8 18\n33 75\n69 22\n97 95\n1 97\n78 10\n88 18\n13 3\n19 64\n98 12\n79 92\n41 72\n69 15\n98 31\n57 74\n15 56\n36 37\n15 66\n63 100\n16 42\n47 56\n6 4\n73 15\n30 24\n27 71\n12 19\n88 69\n85 6\n50 11", "output": "10" }, { "input": "23\n43 78\n31 28\n58 80\n66 63\n20 4\n51 95\n40 20\n50 14\n5 34\n36 39\n77 42\n64 97\n62 89\n16 56\n8 34\n58 16\n37 35\n37 66\n8 54\n50 36\n24 8\n68 48\n85 33", "output": "6" }, { "input": "13\n76 58\n32 85\n99 79\n23 58\n96 59\n72 35\n53 43\n96 55\n41 78\n75 10\n28 11\n72 7\n52 73", "output": "0" }, { "input": "18\n6 90\n70 79\n26 52\n67 81\n29 95\n41 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 2", "output": "1" }, { "input": "18\n6 90\n100 79\n26 100\n67 100\n29 100\n100 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 100", "output": "8" }, { "input": "30\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1", "output": "450" }, { "input": "30\n100 99\n58 59\n56 57\n54 55\n52 53\n50 51\n48 49\n46 47\n44 45\n42 43\n40 41\n38 39\n36 37\n34 35\n32 33\n30 31\n28 29\n26 27\n24 25\n22 23\n20 21\n18 19\n16 17\n14 15\n12 13\n10 11\n8 9\n6 7\n4 5\n2 3", "output": "0" }, { "input": "15\n9 3\n2 6\n7 6\n5 10\n9 5\n8 1\n10 5\n2 8\n4 5\n9 8\n5 3\n3 8\n9 8\n4 10\n8 5", "output": "20" }, { "input": "15\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n1 2", "output": "108" }, { "input": "25\n2 1\n1 2\n1 2\n1 2\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n1 2\n2 1\n2 1\n2 1\n2 1\n1 2", "output": "312" }, { "input": "25\n91 57\n2 73\n54 57\n2 57\n23 57\n2 6\n57 54\n57 23\n91 54\n91 23\n57 23\n91 57\n54 2\n6 91\n57 54\n2 57\n57 91\n73 91\n57 23\n91 57\n2 73\n91 2\n23 6\n2 73\n23 6", "output": "96" }, { "input": "28\n31 66\n31 91\n91 31\n97 66\n31 66\n31 66\n66 91\n91 31\n97 31\n91 97\n97 31\n66 31\n66 97\n91 31\n31 66\n31 66\n66 31\n31 97\n66 97\n97 31\n31 91\n66 91\n91 66\n31 66\n91 66\n66 31\n66 31\n91 97", "output": "210" }, { "input": "29\n78 27\n50 68\n24 26\n68 43\n38 78\n26 38\n78 28\n28 26\n27 24\n23 38\n24 26\n24 43\n61 50\n38 78\n27 23\n61 26\n27 28\n43 23\n28 78\n43 27\n43 78\n27 61\n28 38\n61 78\n50 26\n43 27\n26 78\n28 50\n43 78", "output": "73" }, { "input": "29\n80 27\n69 80\n27 80\n69 80\n80 27\n80 27\n80 27\n80 69\n27 69\n80 69\n80 27\n27 69\n69 27\n80 69\n27 69\n69 80\n27 69\n80 69\n80 27\n69 27\n27 69\n27 80\n80 27\n69 80\n27 69\n80 69\n69 80\n69 80\n27 80", "output": "277" }, { "input": "30\n19 71\n7 89\n89 71\n21 7\n19 21\n7 89\n19 71\n89 8\n89 21\n19 8\n21 7\n8 89\n19 89\n7 21\n19 8\n19 7\n7 19\n8 21\n71 21\n71 89\n7 19\n7 19\n21 7\n21 19\n21 19\n71 8\n21 8\n71 19\n19 71\n8 21", "output": "154" }, { "input": "30\n44 17\n44 17\n44 17\n17 44\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n44 17\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n17 44\n44 17\n44 17\n44 17\n17 44\n17 44\n44 17\n17 44\n44 17\n44 17\n44 17", "output": "418" }, { "input": "22\n78 92\n15 92\n92 78\n78 80\n92 16\n24 80\n92 16\n16 92\n78 16\n24 78\n80 78\n92 80\n16 80\n80 78\n15 78\n92 16\n24 15\n24 80\n80 16\n16 80\n92 80\n24 80", "output": "74" }, { "input": "24\n9 83\n90 31\n83 3\n83 3\n21 31\n83 3\n32 31\n12 21\n31 21\n90 32\n32 21\n12 9\n12 31\n9 83\n83 12\n32 3\n32 83\n90 31\n9 32\n31 21\n83 90\n32 21\n21 3\n32 9", "output": "59" }, { "input": "30\n67 21\n85 39\n85 87\n21 39\n66 85\n10 95\n10 21\n87 85\n82 21\n67 21\n95 10\n21 39\n82 21\n21 66\n66 39\n95 30\n67 85\n66 82\n85 82\n21 66\n10 39\n67 10\n21 85\n10 82\n85 95\n10 85\n21 39\n85 39\n39 10\n95 67", "output": "100" }, { "input": "4\n8 7\n8 7\n7 8\n7 8", "output": "8" }, { "input": "6\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1", "output": "10" }, { "input": "12\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1", "output": "72" }, { "input": "4\n1 2\n1 2\n2 1\n2 1", "output": "8" } ]
1,672,431,280
2,147,483,647
PyPy 3
OK
TESTS
31
184
0
from itertools import permutations teams = []; count = 0 for _ in range(int(input())): teams.append(input().split()) for match in permutations(teams, 2): count += 1 if match[0][0] == match[-1][-1] else 0 print(count)
Title: Games Time Limit: None seconds Memory Limit: None megabytes Problem Description: Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different. There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number. You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question. Input Specification: The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively. Output Specification: In a single line print the number of games where the host team is going to play in the guest uniform. Demo Input: ['3\n1 2\n2 4\n3 4\n', '4\n100 42\n42 100\n5 42\n100 5\n', '2\n1 2\n1 2\n'] Demo Output: ['1\n', '5\n', '0\n'] Note: In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2. In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
```python from itertools import permutations teams = []; count = 0 for _ in range(int(input())): teams.append(input().split()) for match in permutations(teams, 2): count += 1 if match[0][0] == match[-1][-1] else 0 print(count) ```
3
96
A
Football
PROGRAMMING
900
[ "implementation", "strings" ]
A. Football
2
256
Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.
The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.
Print "YES" if the situation is dangerous. Otherwise, print "NO".
[ "001001\n", "1000000001\n" ]
[ "NO\n", "YES\n" ]
none
500
[ { "input": "001001", "output": "NO" }, { "input": "1000000001", "output": "YES" }, { "input": "00100110111111101", "output": "YES" }, { "input": "11110111111111111", "output": "YES" }, { "input": "01", "output": "NO" }, { "input": "10100101", "output": "NO" }, { "input": "1010010100000000010", "output": "YES" }, { "input": "101010101", "output": "NO" }, { "input": "000000000100000000000110101100000", "output": "YES" }, { "input": "100001000000110101100000", "output": "NO" }, { "input": "100001000011010110000", "output": "NO" }, { "input": "010", "output": "NO" }, { "input": "10101011111111111111111111111100", "output": "YES" }, { "input": "1001101100", "output": "NO" }, { "input": "1001101010", "output": "NO" }, { "input": "1111100111", "output": "NO" }, { "input": "00110110001110001111", "output": "NO" }, { "input": "11110001001111110001", "output": "NO" }, { "input": "10001111001011111101", "output": "NO" }, { "input": "10000010100000001000110001010100001001001010011", "output": "YES" }, { "input": "01111011111010111100101100001011001010111110000010", "output": "NO" }, { "input": "00100000100100101110011001011011101110110110010100", "output": "NO" }, { "input": "10110100110001001011110101110010100010000000000100101010111110111110100011", "output": "YES" }, { "input": "00011101010101111001011011001101101011111101000010100000111000011100101011", "output": "NO" }, { "input": "01110000110100110101110100111000101101011101011110110100100111100001110111", "output": "NO" }, { "input": "11110110011000100111100111101101011111110100010101011011111101110110110111", "output": "YES" }, { "input": "100100010101110010001011001110100011100010011110100101100011010001001010001001101111001100", "output": "NO" }, { "input": "111110010001011010010011111100110110001111000010100011011100111101111101110010101111011110000001010", "output": "NO" }, { "input": "111110111100010100000100001010111011101011000111011011011010110010100010000101011111000011010011110", "output": "NO" }, { "input": "1011110110111010110111111010010010100011111011110000011000110010011110111010110100011010100010111000", "output": "NO" }, { "input": "0010100111100010110110000011100111110100111110001010000100111111111010111100101101010101001011010110", "output": "YES" }, { "input": "1111010100010100101011101100101101110011000010100010000001111100010011100101010001101111000001011000", "output": "NO" }, { "input": "0101100011001110001110100111100011010101011000000000110110010010111100101111010111100011101100100101", "output": "YES" }, { "input": "0001101110011101110000000010011111101001101111100001001010110000110001100000010001111011011110001101", "output": "YES" }, { "input": "1000010000100000100010000100001000010000100001000010000100001000010000100001000010000100001000010000", "output": "NO" }, { "input": "1000000000100000000010000000001000000000100000000010000000001000000000100000000010000000001000000000", "output": "YES" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "YES" }, { "input": "1111111111111111111111111111111111111111011111111111111111111111111111111111111111111111111111111111", "output": "YES" }, { "input": "10100101000", "output": "NO" }, { "input": "11110111011101", "output": "NO" }, { "input": "10000000", "output": "YES" }, { "input": "00000001", "output": "YES" }, { "input": "01111111", "output": "YES" }, { "input": "11111110", "output": "YES" } ]
1,681,495,627
2,147,483,647
Python 3
OK
TESTS
44
122
0
#F user=input() cnt=0 for i in range(6,len(user)): if user[i-6:i+1]=="0000000" or user[i-6:i+1]=="1111111": cnt+=1 if cnt==0: print("NO") else: print("YES")
Title: Football Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not. Input Specification: The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field. Output Specification: Print "YES" if the situation is dangerous. Otherwise, print "NO". Demo Input: ['001001\n', '1000000001\n'] Demo Output: ['NO\n', 'YES\n'] Note: none
```python #F user=input() cnt=0 for i in range(6,len(user)): if user[i-6:i+1]=="0000000" or user[i-6:i+1]=="1111111": cnt+=1 if cnt==0: print("NO") else: print("YES") ```
3.9695
144
A
Arrival of the General
PROGRAMMING
800
[ "implementation" ]
null
null
A Ministry for Defense sent a general to inspect the Super Secret Military Squad under the command of the Colonel SuperDuper. Having learned the news, the colonel ordered to all *n* squad soldiers to line up on the parade ground. By the military charter the soldiers should stand in the order of non-increasing of their height. But as there's virtually no time to do that, the soldiers lined up in the arbitrary order. However, the general is rather short-sighted and he thinks that the soldiers lined up correctly if the first soldier in the line has the maximum height and the last soldier has the minimum height. Please note that the way other solders are positioned does not matter, including the case when there are several soldiers whose height is maximum or minimum. Only the heights of the first and the last soldier are important. For example, the general considers the sequence of heights (4, 3, 4, 2, 1, 1) correct and the sequence (4, 3, 1, 2, 2) wrong. Within one second the colonel can swap any two neighboring soldiers. Help him count the minimum time needed to form a line-up which the general will consider correct.
The first input line contains the only integer *n* (2<=≤<=*n*<=≤<=100) which represents the number of soldiers in the line. The second line contains integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) the values of the soldiers' heights in the order of soldiers' heights' increasing in the order from the beginning of the line to its end. The numbers are space-separated. Numbers *a*1,<=*a*2,<=...,<=*a**n* are not necessarily different.
Print the only integer — the minimum number of seconds the colonel will need to form a line-up the general will like.
[ "4\n33 44 11 22\n", "7\n10 10 58 31 63 40 76\n" ]
[ "2\n", "10\n" ]
In the first sample the colonel will need to swap the first and second soldier and then the third and fourth soldier. That will take 2 seconds. The resulting position of the soldiers is (44, 33, 22, 11). In the second sample the colonel may swap the soldiers in the following sequence: 1. (10, 10, 58, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 76, 40) 1. (10, 58, 10, 31, 76, 63, 40) 1. (10, 58, 31, 10, 76, 63, 40) 1. (10, 58, 31, 76, 10, 63, 40) 1. (10, 58, 31, 76, 63, 10, 40) 1. (10, 58, 76, 31, 63, 10, 40) 1. (10, 76, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 40, 10)
500
[ { "input": "4\n33 44 11 22", "output": "2" }, { "input": "7\n10 10 58 31 63 40 76", "output": "10" }, { "input": "2\n88 89", "output": "1" }, { "input": "5\n100 95 100 100 88", "output": "0" }, { "input": "7\n48 48 48 48 45 45 45", "output": "0" }, { "input": "10\n68 47 67 29 63 71 71 65 54 56", "output": "10" }, { "input": "15\n77 68 96 60 92 75 61 60 66 79 80 65 60 95 92", "output": "4" }, { "input": "3\n1 2 1", "output": "1" }, { "input": "20\n30 30 30 14 30 14 30 30 30 14 30 14 14 30 14 14 30 14 14 14", "output": "0" }, { "input": "35\n37 41 46 39 47 39 44 47 44 42 44 43 47 39 46 39 38 42 39 37 40 44 41 42 41 42 39 42 36 36 42 36 42 42 42", "output": "7" }, { "input": "40\n99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 98 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99", "output": "47" }, { "input": "50\n48 52 44 54 53 56 62 49 39 41 53 39 40 64 53 50 62 48 40 52 51 48 40 52 61 62 62 61 48 64 55 57 56 40 48 58 41 60 60 56 64 50 64 45 48 45 46 63 59 57", "output": "50" }, { "input": "57\n7 24 17 19 6 19 10 11 12 22 14 5 5 11 13 10 24 19 24 24 24 11 21 20 4 14 24 24 18 13 24 3 20 3 3 3 3 9 3 9 22 22 16 3 3 3 15 11 3 3 8 17 10 13 3 14 13", "output": "3" }, { "input": "65\n58 50 35 44 35 37 36 58 38 36 58 56 56 49 48 56 58 43 40 44 52 44 58 58 57 50 43 35 55 39 38 49 53 56 50 42 41 56 34 57 49 38 34 51 56 38 58 40 53 46 48 34 38 43 49 49 58 56 41 43 44 34 38 48 36", "output": "3" }, { "input": "69\n70 48 49 48 49 71 48 53 55 69 48 53 54 58 53 63 48 48 69 67 72 75 71 75 74 74 57 63 65 60 48 48 65 48 48 51 50 49 62 53 76 68 76 56 76 76 64 76 76 57 61 76 73 51 59 76 65 50 69 50 76 67 76 63 62 74 74 58 73", "output": "73" }, { "input": "75\n70 65 64 71 71 64 71 64 68 71 65 64 65 68 71 66 66 69 68 63 69 65 71 69 68 68 71 67 71 65 65 65 71 71 65 69 63 66 62 67 64 63 62 64 67 65 62 69 62 64 69 62 67 64 67 70 64 63 64 64 69 62 62 64 70 62 62 68 67 69 62 64 66 70 68", "output": "7" }, { "input": "84\n92 95 84 85 94 80 90 86 80 92 95 84 86 83 86 83 93 91 95 92 84 88 82 84 84 84 80 94 93 80 94 80 95 83 85 80 95 95 80 84 86 92 83 81 90 87 81 89 92 93 80 87 90 85 93 85 93 94 93 89 94 83 93 91 80 83 90 94 95 80 95 92 85 84 93 94 94 82 91 95 95 89 85 94", "output": "15" }, { "input": "90\n86 87 72 77 82 71 75 78 61 67 79 90 64 94 94 74 85 87 73 76 71 71 60 69 77 73 76 80 82 57 62 57 57 83 76 72 75 87 72 94 77 85 59 82 86 69 62 80 95 73 83 94 79 85 91 68 85 74 93 95 68 75 89 93 83 78 95 78 83 77 81 85 66 92 63 65 75 78 67 91 77 74 59 86 77 76 90 67 70 64", "output": "104" }, { "input": "91\n94 98 96 94 95 98 98 95 98 94 94 98 95 95 99 97 97 94 95 98 94 98 96 98 96 98 97 95 94 94 94 97 94 96 98 98 98 94 96 95 94 95 97 97 97 98 94 98 96 95 98 96 96 98 94 97 96 98 97 95 97 98 94 95 94 94 97 94 96 97 97 93 94 95 95 94 96 98 97 96 94 98 98 96 96 96 96 96 94 96 97", "output": "33" }, { "input": "92\n44 28 32 29 41 41 36 39 40 39 41 35 41 28 35 27 41 34 28 38 43 43 41 38 27 26 28 36 30 29 39 32 35 35 32 30 39 30 37 27 41 41 28 30 43 31 35 33 36 28 44 40 41 35 31 42 37 38 37 34 39 40 27 40 33 33 44 43 34 33 34 34 35 38 38 37 30 39 35 41 45 42 41 32 33 33 31 30 43 41 43 43", "output": "145" }, { "input": "93\n46 32 52 36 39 30 57 63 63 30 32 44 27 59 46 38 40 45 44 62 35 36 51 48 39 58 36 51 51 51 48 58 59 36 29 35 31 49 64 60 34 38 42 56 33 42 52 31 63 34 45 51 35 45 33 53 33 62 31 38 66 29 51 54 28 61 32 45 57 41 36 34 47 36 31 28 67 48 52 46 32 40 64 58 27 53 43 57 34 66 43 39 26", "output": "76" }, { "input": "94\n56 55 54 31 32 42 46 29 24 54 40 40 20 45 35 56 32 33 51 39 26 56 21 56 51 27 29 39 56 52 54 43 43 55 48 51 44 49 52 49 23 19 19 28 20 26 45 33 35 51 42 36 25 25 38 23 21 35 54 50 41 20 37 28 42 20 22 43 37 34 55 21 24 38 19 41 45 34 19 33 44 54 38 31 23 53 35 32 47 40 39 31 20 34", "output": "15" }, { "input": "95\n57 71 70 77 64 64 76 81 81 58 63 75 81 77 71 71 71 60 70 70 69 67 62 64 78 64 69 62 76 76 57 70 68 77 70 68 73 77 79 73 60 57 69 60 74 65 58 75 75 74 73 73 65 75 72 57 81 62 62 70 67 58 76 57 79 81 68 64 58 77 70 59 79 64 80 58 71 59 81 71 80 64 78 80 78 65 70 68 78 80 57 63 64 76 81", "output": "11" }, { "input": "96\n96 95 95 95 96 97 95 97 96 95 98 96 97 95 98 96 98 96 98 96 98 95 96 95 95 95 97 97 95 95 98 98 95 96 96 95 97 96 98 96 95 97 97 95 97 97 95 94 96 96 97 96 97 97 96 94 94 97 95 95 95 96 95 96 95 97 97 95 97 96 95 94 97 97 97 96 97 95 96 94 94 95 97 94 94 97 97 97 95 97 97 95 94 96 95 95", "output": "13" }, { "input": "97\n14 15 12 12 13 15 12 15 12 12 12 12 12 14 15 15 13 12 15 15 12 12 12 13 14 15 15 13 14 15 14 14 14 14 12 13 12 13 13 12 15 12 13 13 15 12 15 13 12 13 13 13 14 13 12 15 14 13 14 15 13 14 14 13 14 12 15 12 14 12 13 14 15 14 13 15 13 12 15 15 15 13 15 15 13 14 16 16 16 13 15 13 15 14 15 15 15", "output": "104" }, { "input": "98\n37 69 35 70 58 69 36 47 41 63 60 54 49 35 55 50 35 53 52 43 35 41 40 49 38 35 48 70 42 35 35 65 56 54 44 59 59 48 51 49 59 67 35 60 69 35 58 50 35 44 48 69 41 58 44 45 35 47 70 61 49 47 37 39 35 51 44 70 72 65 36 41 63 63 48 66 45 50 50 71 37 52 72 67 72 39 72 39 36 64 48 72 69 49 45 72 72 67", "output": "100" }, { "input": "99\n31 31 16 15 19 31 19 22 29 27 12 22 28 30 25 33 26 25 19 22 34 21 17 33 31 22 16 26 22 30 31 17 13 33 13 17 28 25 18 33 27 22 31 22 13 27 20 22 23 15 24 32 29 13 16 20 32 33 14 33 19 27 16 28 25 17 17 28 18 26 32 33 19 23 30 13 14 23 24 28 14 28 22 20 30 14 24 23 17 29 18 28 29 21 28 18 16 24 32", "output": "107" }, { "input": "100\n37 54 39 29 32 49 21 13 34 21 16 42 34 27 16 26 7 34 51 9 11 27 16 40 36 7 48 52 30 42 42 52 51 11 32 26 6 7 28 54 48 51 6 54 42 20 51 48 46 4 4 31 47 6 9 16 8 23 36 50 49 30 47 37 45 24 48 26 8 50 18 24 27 13 39 7 37 34 5 43 42 19 34 23 52 38 35 6 29 11 53 49 21 29 36 22 45 33 51 22", "output": "50" }, { "input": "100\n41 5 20 23 5 47 28 28 64 5 12 14 34 56 22 48 6 52 39 55 62 40 24 54 39 28 56 27 35 51 14 24 38 10 55 20 39 62 52 2 30 55 49 48 15 23 59 44 31 28 66 29 62 59 31 13 28 12 50 45 41 47 29 27 64 66 14 39 62 22 44 63 24 5 63 17 42 7 25 41 49 33 31 51 63 3 37 66 19 9 2 40 16 45 56 21 34 29 39 61", "output": "59" }, { "input": "100\n66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95", "output": "99" }, { "input": "100\n81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "0" }, { "input": "3\n2 1 2", "output": "1" }, { "input": "2\n100 99", "output": "0" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "197" }, { "input": "100\n87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87", "output": "0" }, { "input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "0" }, { "input": "2\n1 1", "output": "0" }, { "input": "3\n2 2 2", "output": "0" }, { "input": "3\n1 3 2", "output": "2" } ]
1,695,569,672
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
184
0
# Read input n = int(input()) heights = list(map(int, input().split())) # Initialize the variables to keep track of the minimum number of seconds # needed to form a line-up that the general will like. min_seconds = 0 # Iterate through the list of heights from both ends simultaneously. # Compare the heights of the soldiers at the two ends and swap them if needed # to make sure the first soldier has the maximum height and the last soldier # has the minimum height. left, right = 0, n - 1 while left < right: max_height = max(heights[left], heights[right]) min_height = min(heights[left], heights[right]) # Calculate the number of seconds needed to swap the two soldiers seconds_needed = min(left - heights.index(max_height), n - 1 - right - heights[::-1].index(min_height)) + right - left min_seconds += seconds_needed # Swap the soldiers to form the desired order if heights[left] != max_height: heights.remove(max_height) heights.insert(left, max_height) if heights[right] != min_height: heights.remove(min_height) heights.insert(right, min_height) # Move the pointers towards each other left += 1 right -= 1 print(min_seconds)
Title: Arrival of the General Time Limit: None seconds Memory Limit: None megabytes Problem Description: A Ministry for Defense sent a general to inspect the Super Secret Military Squad under the command of the Colonel SuperDuper. Having learned the news, the colonel ordered to all *n* squad soldiers to line up on the parade ground. By the military charter the soldiers should stand in the order of non-increasing of their height. But as there's virtually no time to do that, the soldiers lined up in the arbitrary order. However, the general is rather short-sighted and he thinks that the soldiers lined up correctly if the first soldier in the line has the maximum height and the last soldier has the minimum height. Please note that the way other solders are positioned does not matter, including the case when there are several soldiers whose height is maximum or minimum. Only the heights of the first and the last soldier are important. For example, the general considers the sequence of heights (4, 3, 4, 2, 1, 1) correct and the sequence (4, 3, 1, 2, 2) wrong. Within one second the colonel can swap any two neighboring soldiers. Help him count the minimum time needed to form a line-up which the general will consider correct. Input Specification: The first input line contains the only integer *n* (2<=≤<=*n*<=≤<=100) which represents the number of soldiers in the line. The second line contains integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) the values of the soldiers' heights in the order of soldiers' heights' increasing in the order from the beginning of the line to its end. The numbers are space-separated. Numbers *a*1,<=*a*2,<=...,<=*a**n* are not necessarily different. Output Specification: Print the only integer — the minimum number of seconds the colonel will need to form a line-up the general will like. Demo Input: ['4\n33 44 11 22\n', '7\n10 10 58 31 63 40 76\n'] Demo Output: ['2\n', '10\n'] Note: In the first sample the colonel will need to swap the first and second soldier and then the third and fourth soldier. That will take 2 seconds. The resulting position of the soldiers is (44, 33, 22, 11). In the second sample the colonel may swap the soldiers in the following sequence: 1. (10, 10, 58, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 76, 40) 1. (10, 58, 10, 31, 76, 63, 40) 1. (10, 58, 31, 10, 76, 63, 40) 1. (10, 58, 31, 76, 10, 63, 40) 1. (10, 58, 31, 76, 63, 10, 40) 1. (10, 58, 76, 31, 63, 10, 40) 1. (10, 76, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 40, 10)
```python # Read input n = int(input()) heights = list(map(int, input().split())) # Initialize the variables to keep track of the minimum number of seconds # needed to form a line-up that the general will like. min_seconds = 0 # Iterate through the list of heights from both ends simultaneously. # Compare the heights of the soldiers at the two ends and swap them if needed # to make sure the first soldier has the maximum height and the last soldier # has the minimum height. left, right = 0, n - 1 while left < right: max_height = max(heights[left], heights[right]) min_height = min(heights[left], heights[right]) # Calculate the number of seconds needed to swap the two soldiers seconds_needed = min(left - heights.index(max_height), n - 1 - right - heights[::-1].index(min_height)) + right - left min_seconds += seconds_needed # Swap the soldiers to form the desired order if heights[left] != max_height: heights.remove(max_height) heights.insert(left, max_height) if heights[right] != min_height: heights.remove(min_height) heights.insert(right, min_height) # Move the pointers towards each other left += 1 right -= 1 print(min_seconds) ```
0
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,574,684,488
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
93
0
def main(): n1=int(input(),2) n2=int(input(),2) ans=n1^n2 ans="{0:b}".format(ans) print(ans) if __name__ == '__main__': main()
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python def main(): n1=int(input(),2) n2=int(input(),2) ans=n1^n2 ans="{0:b}".format(ans) print(ans) if __name__ == '__main__': main() ```
0
842
A
Kirill And The Game
PROGRAMMING
1,200
[ "brute force", "two pointers" ]
null
null
Kirill plays a new computer game. He came to the potion store where he can buy any potion. Each potion is characterized by two integers — amount of experience and cost. The efficiency of a potion is the ratio of the amount of experience to the cost. Efficiency may be a non-integer number. For each two integer numbers *a* and *b* such that *l*<=≤<=*a*<=≤<=*r* and *x*<=≤<=*b*<=≤<=*y* there is a potion with experience *a* and cost *b* in the store (that is, there are (*r*<=-<=*l*<=+<=1)·(*y*<=-<=*x*<=+<=1) potions). Kirill wants to buy a potion which has efficiency *k*. Will he be able to do this?
First string contains five integer numbers *l*, *r*, *x*, *y*, *k* (1<=≤<=*l*<=≤<=*r*<=≤<=107, 1<=≤<=*x*<=≤<=*y*<=≤<=107, 1<=≤<=*k*<=≤<=107).
Print "YES" without quotes if a potion with efficiency exactly *k* can be bought in the store and "NO" without quotes otherwise. You can output each of the letters in any register.
[ "1 10 1 10 1\n", "1 5 6 10 1\n" ]
[ "YES", "NO" ]
none
500
[ { "input": "1 10 1 10 1", "output": "YES" }, { "input": "1 5 6 10 1", "output": "NO" }, { "input": "1 1 1 1 1", "output": "YES" }, { "input": "1 1 1 1 2", "output": "NO" }, { "input": "1 100000 1 100000 100000", "output": "YES" }, { "input": "1 100000 1 100000 100001", "output": "NO" }, { "input": "25 10000 200 10000 5", "output": "YES" }, { "input": "1 100000 10 100000 50000", "output": "NO" }, { "input": "91939 94921 10197 89487 1", "output": "NO" }, { "input": "30518 58228 74071 77671 1", "output": "NO" }, { "input": "46646 79126 78816 91164 5", "output": "NO" }, { "input": "30070 83417 92074 99337 2", "output": "NO" }, { "input": "13494 17544 96820 99660 6", "output": "NO" }, { "input": "96918 97018 10077 86510 9", "output": "YES" }, { "input": "13046 45594 14823 52475 1", "output": "YES" }, { "input": "29174 40572 95377 97669 4", "output": "NO" }, { "input": "79894 92433 8634 86398 4", "output": "YES" }, { "input": "96022 98362 13380 94100 6", "output": "YES" }, { "input": "79446 95675 93934 96272 3", "output": "NO" }, { "input": "5440 46549 61481 99500 10", "output": "NO" }, { "input": "21569 53580 74739 87749 3", "output": "NO" }, { "input": "72289 78297 79484 98991 7", "output": "NO" }, { "input": "88417 96645 92742 98450 5", "output": "NO" }, { "input": "71841 96625 73295 77648 8", "output": "NO" }, { "input": "87969 99230 78041 94736 4", "output": "NO" }, { "input": "4 4 1 2 3", "output": "NO" }, { "input": "150 150 1 2 100", "output": "NO" }, { "input": "99 100 1 100 50", "output": "YES" }, { "input": "7 7 3 6 2", "output": "NO" }, { "input": "10 10 1 10 1", "output": "YES" }, { "input": "36 36 5 7 6", "output": "YES" }, { "input": "73 96 1 51 51", "output": "NO" }, { "input": "3 3 1 3 2", "output": "NO" }, { "input": "10000000 10000000 1 100000 10000000", "output": "YES" }, { "input": "9222174 9829060 9418763 9955619 9092468", "output": "NO" }, { "input": "70 70 1 2 50", "output": "NO" }, { "input": "100 200 1 20 5", "output": "YES" }, { "input": "1 200000 65536 65536 65537", "output": "NO" }, { "input": "15 15 1 100 1", "output": "YES" }, { "input": "10000000 10000000 1 10000000 100000", "output": "YES" }, { "input": "10 10 2 5 4", "output": "NO" }, { "input": "67 69 7 7 9", "output": "NO" }, { "input": "100000 10000000 1 10000000 100000", "output": "YES" }, { "input": "9 12 1 2 7", "output": "NO" }, { "input": "5426234 6375745 2636512 8492816 4409404", "output": "NO" }, { "input": "6134912 6134912 10000000 10000000 999869", "output": "NO" }, { "input": "3 3 1 100 1", "output": "YES" }, { "input": "10000000 10000000 10 10000000 100000", "output": "YES" }, { "input": "4 4 1 100 2", "output": "YES" }, { "input": "8 13 1 4 7", "output": "NO" }, { "input": "10 10 100000 10000000 10000000", "output": "NO" }, { "input": "5 6 1 4 2", "output": "YES" }, { "input": "1002 1003 1 2 1000", "output": "NO" }, { "input": "4 5 1 2 2", "output": "YES" }, { "input": "5 6 1 5 1", "output": "YES" }, { "input": "15 21 2 4 7", "output": "YES" }, { "input": "4 5 3 7 1", "output": "YES" }, { "input": "15 15 3 4 4", "output": "NO" }, { "input": "3 6 1 2 2", "output": "YES" }, { "input": "2 10 3 6 3", "output": "YES" }, { "input": "1 10000000 1 10000000 100000", "output": "YES" }, { "input": "8 13 1 2 7", "output": "NO" }, { "input": "98112 98112 100000 100000 128850", "output": "NO" }, { "input": "2 2 1 2 1", "output": "YES" }, { "input": "8 8 3 4 2", "output": "YES" }, { "input": "60 60 2 3 25", "output": "NO" }, { "input": "16 17 2 5 5", "output": "NO" }, { "input": "2 4 1 3 1", "output": "YES" }, { "input": "4 5 1 2 3", "output": "NO" }, { "input": "10 10 3 4 3", "output": "NO" }, { "input": "10 10000000 999999 10000000 300", "output": "NO" }, { "input": "100 120 9 11 10", "output": "YES" }, { "input": "8 20 1 3 4", "output": "YES" }, { "input": "10 14 2 3 4", "output": "YES" }, { "input": "2000 2001 1 3 1000", "output": "YES" }, { "input": "12 13 2 3 5", "output": "NO" }, { "input": "7 7 2 3 3", "output": "NO" }, { "input": "5 8 1 10000000 4", "output": "YES" }, { "input": "5 5 1 1 4", "output": "NO" }, { "input": "5 5 1 6 2", "output": "NO" }, { "input": "200 300 4000381 4000382 4000381", "output": "NO" }, { "input": "11 17 2 5 2", "output": "NO" }, { "input": "9999999 10000000 1 10000000 999997", "output": "NO" }, { "input": "7 8 2 3 3", "output": "NO" }, { "input": "7 7 3 3 2", "output": "NO" }, { "input": "15 15 2 3 7", "output": "NO" }, { "input": "65408 65408 859 859 10000000", "output": "NO" }, { "input": "1000000 10000000 1 100000 1", "output": "NO" }, { "input": "6 12 2 3 2", "output": "YES" }, { "input": "7 8 1 3 3", "output": "NO" }, { "input": "4 4 1 2 2", "output": "YES" }, { "input": "2 3 1 2 2", "output": "YES" }, { "input": "11 14 2 3 5", "output": "NO" }, { "input": "7 7 1 10 3", "output": "NO" }, { "input": "49 50 1 2 27", "output": "NO" }, { "input": "1 10000000 1 10000000 123456", "output": "YES" }, { "input": "100000 10000000 100 10000000 100000", "output": "YES" }, { "input": "17 19 2 3 8", "output": "NO" }, { "input": "4 6 3 9 1", "output": "YES" }, { "input": "19 20 6 7 3", "output": "NO" }, { "input": "5000000 10000000 1 4999999 1", "output": "NO" } ]
1,508,813,487
387
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include <bits/stdc++.h> using namespace std; typedef long long LL; void Print() { cout << endl; } template<typename T1, typename ... T> void Print(const T1 &t1, const T& ... t) { cout << t1 << " "; Print(t...); } template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p) { os << "(" <<p.first << ", " << p.second << ")"; return os; } #define MP(a, b) (make_pair((a), (b))) #define MT(args...) (make_tuple(args)) LL gcd(LL a, LL b) { if (b) { LL r = a % b; a = b, b = r; } return a; } tuple<LL, LL, LL> extend_gcd(LL a, LL b) { if (b == 0) return make_tuple(a, 1, 0); else { LL g, nx, ny; std::tie(g, nx, ny) = extend_gcd(b, a % b); return make_tuple(g, ny, nx - (a / b) * ny); } } LL fastpow(LL a, LL e, LL mod) { if (e == 0) return 1; if (e == 1) return a % mod; LL t = fastpow(a, e / 2, mod); t = t * t % mod; if (e & 1) return t * a % mod; else return t % mod; } const double PI = 3.14159265358979323846; const int MOD = (int)1e9 + 7; int l, r, x, y, k; int main() { cin >> l >> r >> x >> y >> k; int q1 = (l + k - 1) / k, q2 = r / k; if (x > q2 || y < q1) cout << "NO" << endl; else cout << "YES" << endl; }
Title: Kirill And The Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kirill plays a new computer game. He came to the potion store where he can buy any potion. Each potion is characterized by two integers — amount of experience and cost. The efficiency of a potion is the ratio of the amount of experience to the cost. Efficiency may be a non-integer number. For each two integer numbers *a* and *b* such that *l*<=≤<=*a*<=≤<=*r* and *x*<=≤<=*b*<=≤<=*y* there is a potion with experience *a* and cost *b* in the store (that is, there are (*r*<=-<=*l*<=+<=1)·(*y*<=-<=*x*<=+<=1) potions). Kirill wants to buy a potion which has efficiency *k*. Will he be able to do this? Input Specification: First string contains five integer numbers *l*, *r*, *x*, *y*, *k* (1<=≤<=*l*<=≤<=*r*<=≤<=107, 1<=≤<=*x*<=≤<=*y*<=≤<=107, 1<=≤<=*k*<=≤<=107). Output Specification: Print "YES" without quotes if a potion with efficiency exactly *k* can be bought in the store and "NO" without quotes otherwise. You can output each of the letters in any register. Demo Input: ['1 10 1 10 1\n', '1 5 6 10 1\n'] Demo Output: ['YES', 'NO'] Note: none
```python #include <bits/stdc++.h> using namespace std; typedef long long LL; void Print() { cout << endl; } template<typename T1, typename ... T> void Print(const T1 &t1, const T& ... t) { cout << t1 << " "; Print(t...); } template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p) { os << "(" <<p.first << ", " << p.second << ")"; return os; } #define MP(a, b) (make_pair((a), (b))) #define MT(args...) (make_tuple(args)) LL gcd(LL a, LL b) { if (b) { LL r = a % b; a = b, b = r; } return a; } tuple<LL, LL, LL> extend_gcd(LL a, LL b) { if (b == 0) return make_tuple(a, 1, 0); else { LL g, nx, ny; std::tie(g, nx, ny) = extend_gcd(b, a % b); return make_tuple(g, ny, nx - (a / b) * ny); } } LL fastpow(LL a, LL e, LL mod) { if (e == 0) return 1; if (e == 1) return a % mod; LL t = fastpow(a, e / 2, mod); t = t * t % mod; if (e & 1) return t * a % mod; else return t % mod; } const double PI = 3.14159265358979323846; const int MOD = (int)1e9 + 7; int l, r, x, y, k; int main() { cin >> l >> r >> x >> y >> k; int q1 = (l + k - 1) / k, q2 = r / k; if (x > q2 || y < q1) cout << "NO" << endl; else cout << "YES" << endl; } ```
-1
449
A
Jzzhu and Chocolate
PROGRAMMING
1,700
[ "greedy", "math" ]
null
null
Jzzhu has a big rectangular chocolate bar that consists of *n*<=×<=*m* unit squares. He wants to cut this bar exactly *k* times. Each cut must meet the following requirements: - each cut should be straight (horizontal or vertical); - each cut should go along edges of unit squares (it is prohibited to divide any unit chocolate square with cut); - each cut should go inside the whole chocolate bar, and all cuts must be distinct. The picture below shows a possible way to cut a 5<=×<=6 chocolate for 5 times. Imagine Jzzhu have made *k* cuts and the big chocolate is splitted into several pieces. Consider the smallest (by area) piece of the chocolate, Jzzhu wants this piece to be as large as possible. What is the maximum possible area of smallest piece he can get with exactly *k* cuts? The area of a chocolate piece is the number of unit squares in it.
A single line contains three integers *n*,<=*m*,<=*k* (1<=≤<=*n*,<=*m*<=≤<=109; 1<=≤<=*k*<=≤<=2·109).
Output a single integer representing the answer. If it is impossible to cut the big chocolate *k* times, print -1.
[ "3 4 1\n", "6 4 2\n", "2 3 4\n" ]
[ "6\n", "8\n", "-1\n" ]
In the first sample, Jzzhu can cut the chocolate following the picture below: In the second sample the optimal division looks like this: In the third sample, it's impossible to cut a 2 × 3 chocolate 4 times.
500
[ { "input": "3 4 1", "output": "6" }, { "input": "6 4 2", "output": "8" }, { "input": "2 3 4", "output": "-1" }, { "input": "10 10 2", "output": "30" }, { "input": "1000000000 1000000000 2000000000", "output": "-1" }, { "input": "1000000000 1000000000 999999999", "output": "1000000000" }, { "input": "1000000000 1000000000 1", "output": "500000000000000000" }, { "input": "98283 999283848 23", "output": "4092192268041" }, { "input": "6 4 5", "output": "4" }, { "input": "6 4 6", "output": "2" }, { "input": "482738478 493948384 502919283", "output": "53" }, { "input": "1 1 1", "output": "-1" }, { "input": "1 1 2", "output": "-1" }, { "input": "1 1 1000000000", "output": "-1" }, { "input": "1000000000 1000000000 123456", "output": "8099000000000" }, { "input": "192837483 829387483 828374", "output": "193030320483" }, { "input": "987283748 999283748 589766888", "output": "999283748" }, { "input": "999999123 999999789 123456789", "output": "7999998312" }, { "input": "999999789 999999123 52452444", "output": "18999995991" }, { "input": "789789789 777888999 999999999", "output": "3" }, { "input": "789529529 444524524 888524444", "output": "4" }, { "input": "983748524 23 2", "output": "7542072002" }, { "input": "999999999 1000000000 1", "output": "499999999500000000" }, { "input": "1000000000 999999999 3", "output": "249999999750000000" }, { "input": "12345 123456789 123456789", "output": "6172" }, { "input": "98283 999283848 23", "output": "4092192268041" }, { "input": "98723848 8238748 82838", "output": "9812348868" }, { "input": "444444444 524444444 524", "output": "443973777333804" }, { "input": "298238388 998888999 1000000000", "output": "268" }, { "input": "599399444 599999994 897254524", "output": "2" }, { "input": "999882937 982983748 999999888", "output": "8404" }, { "input": "979882937 982983748 988254444", "output": "185" }, { "input": "999872837 979283748 987837524", "output": "979283748" }, { "input": "979283524 999872524 987524524", "output": "979283524" }, { "input": "989872444 999283444 977999524", "output": "999283444" }, { "input": "999872524 989283524 977999444", "output": "999872524" }, { "input": "999524524 888524524 6", "output": "126871721067257708" }, { "input": "888999999 999999444 7", "output": "111124937645000070" }, { "input": "999888524 999995249 52424", "output": "19071909388928" }, { "input": "999995244 999852424 52999", "output": "18864910278060" }, { "input": "628145517 207579013 1361956", "output": "95693924993" }, { "input": "186969586 883515281 376140463", "output": "373939172" }, { "input": "98152103 326402540 762888636", "output": "-1" }, { "input": "127860890 61402893 158176573", "output": "2" }, { "input": "646139320 570870045 9580639", "output": "38248293015" }, { "input": "61263305 484027667 178509023", "output": "122526610" }, { "input": "940563716 558212775 841082556", "output": "558212775" }, { "input": "496148000 579113529 26389630", "output": "10424043522" }, { "input": "70301174 837151741 925801173", "output": "-1" }, { "input": "902071051 285845006 656585276", "output": "285845006" }, { "input": "9467291 727123763 403573724", "output": "9467291" }, { "input": "899374334 631265401 296231663", "output": "1893796203" }, { "input": "491747710 798571511 520690250", "output": "491747710" }, { "input": "789204467 643215696 799313373", "output": "63" }, { "input": "456517317 162733265 614608449", "output": "1" }, { "input": "181457955 806956092 555253432", "output": "181457955" }, { "input": "158398860 751354014 528156707", "output": "158398860" }, { "input": "458000643 743974603 152040411", "output": "2231923809" }, { "input": "882264705 164556874 37883251", "output": "3784808102" }, { "input": "167035009 877444310 205461190", "output": "668140036" }, { "input": "732553408 300206285 785986539", "output": "5" }, { "input": "896205951 132099861 775142615", "output": "132099861" }, { "input": "19344368 457641319 555144413", "output": "-1" }, { "input": "909420688 506507264 590064714", "output": "506507264" }, { "input": "793692317 55434271 489726670", "output": "55434271" }, { "input": "537850353 901329639 210461043", "output": "2151401412" }, { "input": "570497240 614794872 29523792", "output": "11681102568" }, { "input": "904237002 706091348 905203770", "output": "730" }, { "input": "307178253 337246325 118054687", "output": "674492650" }, { "input": "644505509 896162464 150625750", "output": "3584649856" }, { "input": "500000002 500000002 1000000000", "output": "1" }, { "input": "6 6 9", "output": "1" }, { "input": "6 7 2", "output": "14" }, { "input": "1000000000 1000000000 1999999998", "output": "1" }, { "input": "100 100 150", "output": "1" }, { "input": "2 2 2", "output": "1" }, { "input": "5 5 5", "output": "2" }, { "input": "4 6 4", "output": "4" }, { "input": "1000 1000 1000", "output": "500" }, { "input": "5 4 3", "output": "5" }, { "input": "6 7 1", "output": "21" }, { "input": "6 7 5", "output": "7" }, { "input": "6874 8974 3245", "output": "17948" }, { "input": "1000000000 1000000000 220000000", "output": "4000000000" }, { "input": "100 100 100", "output": "50" }, { "input": "1000000000 10000000 10000000", "output": "990000000" }, { "input": "7 8 9", "output": "2" }, { "input": "4 5 6", "output": "1" }, { "input": "4 6 3", "output": "6" }, { "input": "10 10 11", "output": "3" }, { "input": "1000000000 1000000000 999000111", "output": "1000000000" }, { "input": "2 1 1", "output": "1" } ]
1,405,947,930
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
46
0
def split(m,n,k): if m%(k+1) == 0: return n*(m//(k+1)) elif n%(k+1) == 0: return m*(n//(k+1)) if k <= min(m,n): return (m*n)//(max(m,n)//(k+1)) else: k2 = k - (min(m,n) - 1) return max(m,n) // (k2+1) args = input().split() print(split(*map(int, args)))
Title: Jzzhu and Chocolate Time Limit: None seconds Memory Limit: None megabytes Problem Description: Jzzhu has a big rectangular chocolate bar that consists of *n*<=×<=*m* unit squares. He wants to cut this bar exactly *k* times. Each cut must meet the following requirements: - each cut should be straight (horizontal or vertical); - each cut should go along edges of unit squares (it is prohibited to divide any unit chocolate square with cut); - each cut should go inside the whole chocolate bar, and all cuts must be distinct. The picture below shows a possible way to cut a 5<=×<=6 chocolate for 5 times. Imagine Jzzhu have made *k* cuts and the big chocolate is splitted into several pieces. Consider the smallest (by area) piece of the chocolate, Jzzhu wants this piece to be as large as possible. What is the maximum possible area of smallest piece he can get with exactly *k* cuts? The area of a chocolate piece is the number of unit squares in it. Input Specification: A single line contains three integers *n*,<=*m*,<=*k* (1<=≤<=*n*,<=*m*<=≤<=109; 1<=≤<=*k*<=≤<=2·109). Output Specification: Output a single integer representing the answer. If it is impossible to cut the big chocolate *k* times, print -1. Demo Input: ['3 4 1\n', '6 4 2\n', '2 3 4\n'] Demo Output: ['6\n', '8\n', '-1\n'] Note: In the first sample, Jzzhu can cut the chocolate following the picture below: In the second sample the optimal division looks like this: In the third sample, it's impossible to cut a 2 × 3 chocolate 4 times.
```python def split(m,n,k): if m%(k+1) == 0: return n*(m//(k+1)) elif n%(k+1) == 0: return m*(n//(k+1)) if k <= min(m,n): return (m*n)//(max(m,n)//(k+1)) else: k2 = k - (min(m,n) - 1) return max(m,n) // (k2+1) args = input().split() print(split(*map(int, args))) ```
0
296
A
Yaroslav and Permutations
PROGRAMMING
1,100
[ "greedy", "math" ]
null
null
Yaroslav has an array that consists of *n* integers. In one second Yaroslav can swap two neighboring array elements. Now Yaroslav is wondering if he can obtain an array where any two neighboring elements would be distinct in a finite time. Help Yaroslav.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000) — the array elements.
In the single line print "YES" (without the quotes) if Yaroslav can obtain the array he needs, and "NO" (without the quotes) otherwise.
[ "1\n1\n", "3\n1 1 2\n", "4\n7 7 7 7\n" ]
[ "YES\n", "YES\n", "NO\n" ]
In the first sample the initial array fits well. In the second sample Yaroslav can get array: 1, 2, 1. He can swap the last and the second last elements to obtain it. In the third sample Yarosav can't get the array he needs.
500
[ { "input": "1\n1", "output": "YES" }, { "input": "3\n1 1 2", "output": "YES" }, { "input": "4\n7 7 7 7", "output": "NO" }, { "input": "4\n479 170 465 146", "output": "YES" }, { "input": "5\n996 437 605 996 293", "output": "YES" }, { "input": "6\n727 539 896 668 36 896", "output": "YES" }, { "input": "7\n674 712 674 674 674 674 674", "output": "NO" }, { "input": "8\n742 742 742 742 742 289 742 742", "output": "NO" }, { "input": "9\n730 351 806 806 806 630 85 757 967", "output": "YES" }, { "input": "10\n324 539 83 440 834 640 440 440 440 440", "output": "YES" }, { "input": "7\n925 830 925 98 987 162 356", "output": "YES" }, { "input": "68\n575 32 53 351 151 942 725 967 431 108 192 8 338 458 288 754 384 946 910 210 759 222 589 423 947 507 31 414 169 901 592 763 656 411 360 625 538 549 484 596 42 603 351 292 837 375 21 597 22 349 200 669 485 282 735 54 1000 419 939 901 789 128 468 729 894 649 484 808", "output": "YES" }, { "input": "22\n618 814 515 310 617 936 452 601 250 520 557 799 304 225 9 845 610 990 703 196 486 94", "output": "YES" }, { "input": "44\n459 581 449 449 449 449 449 449 449 623 449 449 449 449 449 449 449 449 889 449 203 273 329 449 449 449 449 449 449 845 882 323 22 449 449 893 449 449 449 449 449 870 449 402", "output": "NO" }, { "input": "90\n424 3 586 183 286 89 427 618 758 833 933 170 155 722 190 977 330 369 693 426 556 435 550 442 513 146 61 719 754 140 424 280 997 688 530 550 438 867 950 194 196 298 417 287 106 489 283 456 735 115 702 317 672 787 264 314 356 186 54 913 809 833 946 314 757 322 559 647 983 482 145 197 223 130 162 536 451 174 467 45 660 293 440 254 25 155 511 746 650 187", "output": "YES" }, { "input": "14\n959 203 478 315 788 788 373 834 488 519 774 764 193 103", "output": "YES" }, { "input": "81\n544 528 528 528 528 4 506 528 32 528 528 528 528 528 528 528 528 975 528 528 528 528 528 528 528 528 528 528 528 528 528 20 528 528 528 528 528 528 528 528 852 528 528 120 528 528 61 11 528 528 528 228 528 165 883 528 488 475 628 528 528 528 528 528 528 597 528 528 528 528 528 528 528 528 528 528 528 412 528 521 925", "output": "NO" }, { "input": "89\n354 356 352 355 355 355 352 354 354 352 355 356 355 352 354 356 354 355 355 354 353 352 352 355 355 356 352 352 353 356 352 353 354 352 355 352 353 353 353 354 353 354 354 353 356 353 353 354 354 354 354 353 352 353 355 356 356 352 356 354 353 352 355 354 356 356 356 354 354 356 354 355 354 355 353 352 354 355 352 355 355 354 356 353 353 352 356 352 353", "output": "YES" }, { "input": "71\n284 284 285 285 285 284 285 284 284 285 284 285 284 284 285 284 285 285 285 285 284 284 285 285 284 284 284 285 284 285 284 285 285 284 284 284 285 284 284 285 285 285 284 284 285 284 285 285 284 285 285 284 285 284 284 284 285 285 284 285 284 285 285 285 285 284 284 285 285 284 285", "output": "NO" }, { "input": "28\n602 216 214 825 814 760 814 28 76 814 814 288 814 814 222 707 11 490 814 543 914 705 814 751 976 814 814 99", "output": "YES" }, { "input": "48\n546 547 914 263 986 945 914 914 509 871 324 914 153 571 914 914 914 528 970 566 544 914 914 914 410 914 914 589 609 222 914 889 691 844 621 68 914 36 914 39 630 749 914 258 945 914 727 26", "output": "YES" }, { "input": "56\n516 76 516 197 516 427 174 516 706 813 94 37 516 815 516 516 937 483 16 516 842 516 638 691 516 635 516 516 453 263 516 516 635 257 125 214 29 81 516 51 362 516 677 516 903 516 949 654 221 924 516 879 516 516 972 516", "output": "YES" }, { "input": "46\n314 723 314 314 314 235 314 314 314 314 270 314 59 972 314 216 816 40 314 314 314 314 314 314 314 381 314 314 314 314 314 314 314 789 314 957 114 942 314 314 29 314 314 72 314 314", "output": "NO" }, { "input": "72\n169 169 169 599 694 81 250 529 865 406 817 169 667 169 965 169 169 663 65 169 903 169 942 763 169 807 169 603 169 169 13 169 169 810 169 291 169 169 169 169 169 169 169 713 169 440 169 169 169 169 169 480 169 169 867 169 169 169 169 169 169 169 169 393 169 169 459 169 99 169 601 800", "output": "NO" }, { "input": "100\n317 316 317 316 317 316 317 316 317 316 316 317 317 316 317 316 316 316 317 316 317 317 316 317 316 316 316 316 316 316 317 316 317 317 317 317 317 317 316 316 316 317 316 317 316 317 316 317 317 316 317 316 317 317 316 317 316 317 316 317 316 316 316 317 317 317 317 317 316 317 317 316 316 316 316 317 317 316 317 316 316 316 316 316 316 317 316 316 317 317 317 317 317 317 317 317 317 316 316 317", "output": "NO" }, { "input": "100\n510 510 510 162 969 32 510 511 510 510 911 183 496 875 903 461 510 510 123 578 510 510 510 510 510 755 510 673 510 510 763 510 510 909 510 435 487 959 807 510 368 788 557 448 284 332 510 949 510 510 777 112 857 926 487 510 510 510 678 510 510 197 829 427 698 704 409 509 510 238 314 851 510 651 510 455 682 510 714 635 973 510 443 878 510 510 510 591 510 24 596 510 43 183 510 510 671 652 214 784", "output": "YES" }, { "input": "100\n476 477 474 476 476 475 473 476 474 475 473 477 476 476 474 476 474 475 476 477 473 473 473 474 474 476 473 473 476 476 475 476 473 474 473 473 477 475 475 475 476 475 477 477 477 476 475 475 475 473 476 477 475 476 477 473 474 477 473 475 476 476 474 477 476 474 473 477 473 475 477 473 476 474 477 473 475 477 473 476 476 475 476 475 474 473 477 473 475 473 477 473 473 474 475 473 477 476 477 474", "output": "YES" }, { "input": "100\n498 498 498 498 498 499 498 499 499 499 498 498 498 498 499 498 499 499 498 499 498 498 498 499 499 499 498 498 499 499 498 498 498 499 498 499 498 498 498 499 498 499 498 498 498 498 499 498 498 499 498 498 499 498 499 499 498 499 499 499 498 498 498 498 499 498 499 498 499 499 499 499 498 498 499 499 498 499 499 498 498 499 499 498 498 499 499 499 498 498 499 498 498 498 499 499 499 498 498 499", "output": "NO" }, { "input": "100\n858 53 816 816 816 816 816 816 816 181 816 816 816 816 579 879 816 948 171 816 816 150 866 816 816 816 897 816 816 816 816 816 816 706 816 539 816 816 816 816 816 816 423 487 816 615 254 816 816 816 816 83 816 816 816 816 816 816 816 816 816 816 816 136 775 999 816 816 816 644 816 816 816 816 927 816 802 816 856 816 816 816 816 816 816 816 816 816 816 700 816 816 816 816 982 477 816 891 806 816", "output": "NO" }, { "input": "100\n167 169 169 167 169 169 167 167 167 167 168 166 170 170 169 170 170 170 169 168 166 167 170 169 167 169 168 169 166 170 166 167 170 166 166 167 169 166 166 169 166 167 168 168 170 167 168 166 168 170 167 168 167 169 169 166 168 167 170 168 167 169 168 169 166 168 168 169 169 166 170 168 167 169 170 168 167 169 168 167 168 168 166 169 170 170 166 166 167 170 167 168 167 167 169 169 166 166 169 167", "output": "YES" }, { "input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "NO" }, { "input": "99\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "NO" }, { "input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "YES" }, { "input": "99\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "YES" }, { "input": "2\n1 1", "output": "NO" }, { "input": "1\n1000", "output": "YES" }, { "input": "12\n2 2 4 4 4 4 6 6 6 6 6 6", "output": "YES" } ]
1,697,726,269
2,147,483,647
PyPy 3
OK
TESTS
37
156
0
from sys import stdin,stdout #input = stdin.readline def main(): #t = int(input()) t = 1 for z in range(t): n = int(input()) #a,b,c = map(int,input().split()) ai = list(map(int,input().split())) n2 = (n+1) // 2 ar = [0]*1001 for i in ai: ar[i] += 1 print(["YES","NO"][max(ar) > n2]) main()
Title: Yaroslav and Permutations Time Limit: None seconds Memory Limit: None megabytes Problem Description: Yaroslav has an array that consists of *n* integers. In one second Yaroslav can swap two neighboring array elements. Now Yaroslav is wondering if he can obtain an array where any two neighboring elements would be distinct in a finite time. Help Yaroslav. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000) — the array elements. Output Specification: In the single line print "YES" (without the quotes) if Yaroslav can obtain the array he needs, and "NO" (without the quotes) otherwise. Demo Input: ['1\n1\n', '3\n1 1 2\n', '4\n7 7 7 7\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: In the first sample the initial array fits well. In the second sample Yaroslav can get array: 1, 2, 1. He can swap the last and the second last elements to obtain it. In the third sample Yarosav can't get the array he needs.
```python from sys import stdin,stdout #input = stdin.readline def main(): #t = int(input()) t = 1 for z in range(t): n = int(input()) #a,b,c = map(int,input().split()) ai = list(map(int,input().split())) n2 = (n+1) // 2 ar = [0]*1001 for i in ai: ar[i] += 1 print(["YES","NO"][max(ar) > n2]) main() ```
3
353
A
Domino
PROGRAMMING
1,200
[ "implementation", "math" ]
null
null
Valera has got *n* domino pieces in a row. Each piece consists of two halves — the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even. To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half.
Print a single number — the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1.
[ "2\n4 2\n6 4\n", "1\n2 3\n", "3\n1 4\n2 3\n4 4\n" ]
[ "0\n", "-1\n", "1\n" ]
In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything. In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd. In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
500
[ { "input": "2\n4 2\n6 4", "output": "0" }, { "input": "1\n2 3", "output": "-1" }, { "input": "3\n1 4\n2 3\n4 4", "output": "1" }, { "input": "5\n5 4\n5 4\n1 5\n5 5\n3 3", "output": "1" }, { "input": "20\n1 3\n5 2\n5 2\n2 6\n2 4\n1 1\n1 3\n1 4\n2 6\n4 2\n5 6\n2 2\n6 2\n4 3\n2 1\n6 2\n6 5\n4 5\n2 4\n1 4", "output": "-1" }, { "input": "100\n2 3\n2 4\n3 3\n1 4\n5 2\n5 4\n6 6\n3 4\n1 1\n4 2\n5 1\n5 5\n5 3\n3 6\n4 1\n1 6\n1 1\n3 2\n4 5\n6 1\n6 4\n1 1\n3 4\n3 3\n2 2\n1 1\n4 4\n6 4\n3 2\n5 2\n6 4\n3 2\n3 5\n4 4\n1 4\n5 2\n3 4\n1 4\n2 2\n5 6\n3 5\n6 1\n5 5\n1 6\n6 3\n1 4\n1 5\n5 5\n4 1\n3 2\n4 1\n5 5\n5 5\n1 5\n1 2\n6 4\n1 3\n3 6\n4 3\n3 5\n6 4\n2 6\n5 5\n1 4\n2 2\n2 3\n5 1\n2 5\n1 2\n2 6\n5 5\n4 6\n1 4\n3 6\n2 3\n6 1\n6 5\n3 2\n6 4\n4 5\n4 5\n2 6\n1 3\n6 2\n1 2\n2 3\n4 3\n5 4\n3 4\n1 6\n6 6\n2 4\n4 1\n3 1\n2 6\n5 4\n1 2\n6 5\n3 6\n2 4", "output": "-1" }, { "input": "1\n2 4", "output": "0" }, { "input": "1\n1 1", "output": "-1" }, { "input": "1\n1 2", "output": "-1" }, { "input": "2\n1 1\n3 3", "output": "0" }, { "input": "2\n1 1\n2 2", "output": "-1" }, { "input": "2\n1 1\n1 2", "output": "-1" }, { "input": "5\n1 2\n6 6\n1 1\n3 3\n6 1", "output": "1" }, { "input": "5\n5 4\n2 6\n6 2\n1 4\n6 2", "output": "0" }, { "input": "10\n4 1\n3 2\n1 2\n2 6\n3 5\n2 1\n5 2\n4 6\n5 6\n3 1", "output": "0" }, { "input": "10\n6 1\n4 4\n2 6\n6 5\n3 6\n6 3\n2 4\n5 1\n1 6\n1 5", "output": "-1" }, { "input": "15\n1 2\n5 1\n6 4\n5 1\n1 6\n2 6\n3 1\n6 4\n3 1\n2 1\n6 4\n3 5\n6 2\n1 6\n1 1", "output": "1" }, { "input": "15\n3 3\n2 1\n5 4\n3 3\n5 3\n5 4\n2 5\n1 3\n3 2\n3 3\n3 5\n2 5\n4 1\n2 3\n5 4", "output": "-1" }, { "input": "20\n1 5\n6 4\n4 3\n6 2\n1 1\n1 5\n6 3\n2 3\n3 6\n3 6\n3 6\n2 5\n4 3\n4 6\n5 5\n4 6\n3 4\n4 2\n3 3\n5 2", "output": "0" }, { "input": "20\n2 1\n6 5\n3 1\n2 5\n3 5\n4 1\n1 1\n5 4\n5 1\n2 4\n1 5\n3 2\n1 2\n3 5\n5 2\n1 2\n1 3\n4 2\n2 3\n4 5", "output": "-1" }, { "input": "25\n4 1\n6 3\n1 3\n2 3\n2 4\n6 6\n4 2\n4 2\n1 5\n5 4\n1 2\n2 5\n3 6\n4 1\n3 4\n2 6\n6 1\n5 6\n6 6\n4 2\n1 5\n3 3\n3 3\n6 5\n1 4", "output": "-1" }, { "input": "25\n5 5\n4 3\n2 5\n4 3\n4 6\n4 2\n5 6\n2 1\n5 4\n6 6\n1 3\n1 4\n2 3\n5 6\n5 4\n5 6\n5 4\n6 3\n3 5\n1 3\n2 5\n2 2\n4 4\n2 1\n4 4", "output": "-1" }, { "input": "30\n3 5\n2 5\n1 6\n1 6\n2 4\n5 5\n5 4\n5 6\n5 4\n2 1\n2 4\n1 6\n3 5\n1 1\n3 6\n5 5\n1 6\n3 4\n1 4\n4 6\n2 1\n3 3\n1 3\n4 5\n1 4\n1 6\n2 1\n4 6\n3 5\n5 6", "output": "1" }, { "input": "30\n2 3\n3 1\n6 6\n1 3\n5 5\n3 6\n4 5\n2 1\n1 3\n2 3\n4 4\n2 4\n6 4\n2 4\n5 4\n2 1\n2 5\n2 5\n4 2\n1 4\n2 6\n3 2\n3 2\n6 6\n4 2\n3 4\n6 3\n6 6\n6 6\n5 5", "output": "1" }, { "input": "35\n6 1\n4 3\n1 2\n4 3\n6 4\n4 6\n3 1\n5 5\n3 4\n5 4\n4 6\n1 6\n2 4\n6 6\n5 4\n5 2\n1 3\n1 4\n3 5\n1 4\n2 3\n4 5\n4 3\n6 1\n5 3\n3 2\n5 6\n3 5\n6 5\n4 1\n1 3\n5 5\n4 6\n6 1\n1 3", "output": "1" }, { "input": "35\n4 3\n5 6\n4 5\n2 5\n6 6\n4 1\n2 2\n4 2\n3 4\n4 1\n6 6\n6 3\n1 5\n1 5\n5 6\n4 2\n4 6\n5 5\n2 2\n5 2\n1 2\n4 6\n6 6\n6 5\n2 1\n3 5\n2 5\n3 1\n5 3\n6 4\n4 6\n5 6\n5 1\n3 4\n3 5", "output": "1" }, { "input": "40\n5 6\n1 1\n3 3\n2 6\n6 6\n5 4\n6 4\n3 5\n1 3\n4 4\n4 4\n2 5\n1 3\n3 6\n5 2\n4 3\n4 4\n5 6\n2 3\n1 1\n3 1\n1 1\n1 5\n4 3\n5 5\n3 4\n6 6\n5 6\n2 2\n6 6\n2 1\n2 4\n5 2\n2 2\n1 1\n1 4\n4 2\n3 5\n5 5\n4 5", "output": "-1" }, { "input": "40\n3 2\n5 3\n4 6\n3 5\n6 1\n5 2\n1 2\n6 2\n5 3\n3 2\n4 4\n3 3\n5 2\n4 5\n1 4\n5 1\n3 3\n1 3\n1 3\n2 1\n3 6\n4 2\n4 6\n6 2\n2 5\n2 2\n2 5\n3 3\n5 3\n2 1\n3 2\n2 3\n6 3\n6 3\n3 4\n3 2\n4 3\n5 4\n2 4\n4 6", "output": "-1" }, { "input": "45\n2 4\n3 4\n6 1\n5 5\n1 1\n3 5\n4 3\n5 2\n3 6\n6 1\n4 4\n6 1\n2 1\n6 1\n3 6\n3 3\n6 1\n1 2\n1 5\n6 5\n1 3\n5 6\n6 1\n4 5\n3 6\n2 2\n1 2\n4 5\n5 6\n1 5\n6 2\n2 4\n3 3\n3 1\n6 5\n6 5\n2 1\n5 2\n2 1\n3 3\n2 2\n1 4\n2 2\n3 3\n2 1", "output": "-1" }, { "input": "45\n6 6\n1 6\n1 2\n3 5\n4 4\n2 1\n5 3\n2 1\n5 2\n5 3\n1 4\n5 2\n4 2\n3 6\n5 2\n1 5\n4 4\n5 5\n6 5\n2 1\n2 6\n5 5\n2 1\n6 1\n1 6\n6 5\n2 4\n4 3\n2 6\n2 4\n6 5\n6 4\n6 3\n6 6\n2 1\n6 4\n5 6\n5 4\n1 5\n5 1\n3 3\n5 6\n2 5\n4 5\n3 6", "output": "-1" }, { "input": "50\n4 4\n5 1\n6 4\n6 2\n6 2\n1 4\n5 5\n4 2\n5 5\n5 4\n1 3\n3 5\n6 1\n6 1\n1 4\n4 3\n5 1\n3 6\n2 2\n6 2\n4 4\n2 3\n4 2\n6 5\n5 6\n2 2\n2 4\n3 5\n1 5\n3 2\n3 4\n5 6\n4 6\n1 6\n4 5\n2 6\n2 2\n3 5\n6 4\n5 1\n4 3\n3 4\n3 5\n3 3\n2 3\n3 2\n2 2\n1 4\n3 1\n4 4", "output": "1" }, { "input": "50\n1 2\n1 4\n1 1\n4 5\n4 4\n3 2\n4 5\n3 5\n1 1\n3 4\n3 2\n2 4\n2 6\n2 6\n3 2\n4 6\n1 6\n3 1\n1 6\n2 1\n4 1\n1 6\n4 3\n6 6\n5 2\n6 4\n2 1\n4 3\n6 4\n5 1\n5 5\n3 1\n1 1\n5 5\n2 2\n2 3\n2 3\n3 5\n5 5\n1 6\n1 5\n3 6\n3 6\n1 1\n3 3\n2 6\n5 5\n1 3\n6 3\n6 6", "output": "-1" }, { "input": "55\n3 2\n5 6\n5 1\n3 5\n5 5\n1 5\n5 4\n6 3\n5 6\n4 2\n3 1\n1 2\n5 5\n1 1\n5 2\n6 3\n5 4\n3 6\n4 6\n2 6\n6 4\n1 4\n1 6\n4 1\n2 5\n4 3\n2 1\n2 1\n6 2\n3 1\n2 5\n4 4\n6 3\n2 2\n3 5\n5 1\n3 6\n5 4\n4 6\n6 5\n5 6\n2 2\n3 2\n5 2\n6 5\n2 2\n5 3\n3 1\n4 5\n6 4\n2 4\n1 2\n5 6\n2 6\n5 2", "output": "0" }, { "input": "55\n4 6\n3 3\n6 5\n5 3\n5 6\n2 3\n2 2\n3 4\n3 1\n5 4\n5 4\n2 4\n3 4\n4 5\n1 5\n6 3\n1 1\n5 1\n3 4\n1 5\n3 1\n2 5\n3 3\n4 3\n3 3\n3 1\n6 6\n3 3\n3 3\n5 6\n5 3\n3 5\n1 4\n5 5\n1 3\n1 4\n3 5\n3 6\n2 4\n2 4\n5 1\n6 4\n5 1\n5 5\n1 1\n3 2\n4 3\n5 4\n5 1\n2 4\n4 3\n6 1\n3 4\n1 5\n6 3", "output": "-1" }, { "input": "60\n2 6\n1 4\n3 2\n1 2\n3 2\n2 4\n6 4\n4 6\n1 3\n3 1\n6 5\n2 4\n5 4\n4 2\n1 6\n3 4\n4 5\n5 2\n1 5\n5 4\n3 4\n3 4\n4 4\n4 1\n6 6\n3 6\n2 4\n2 1\n4 4\n6 5\n3 1\n4 3\n1 3\n6 3\n5 5\n1 4\n3 1\n3 6\n1 5\n3 1\n1 5\n4 4\n1 3\n2 4\n6 2\n4 1\n5 3\n3 4\n5 6\n1 2\n1 6\n6 3\n1 6\n3 6\n3 4\n6 2\n4 6\n2 3\n3 3\n3 3", "output": "-1" }, { "input": "60\n2 3\n4 6\n2 4\n1 3\n5 6\n1 5\n1 2\n1 3\n5 6\n4 3\n4 2\n3 1\n1 3\n3 5\n1 5\n3 4\n2 4\n3 5\n4 5\n1 2\n3 1\n1 5\n2 5\n6 2\n1 6\n3 3\n6 2\n5 3\n1 3\n1 4\n6 4\n6 3\n4 2\n4 2\n1 4\n1 3\n3 2\n3 1\n2 1\n1 2\n3 1\n2 6\n1 4\n3 6\n3 3\n1 5\n2 4\n5 5\n6 2\n5 2\n3 3\n5 3\n3 4\n4 5\n5 6\n2 4\n5 3\n3 1\n2 4\n5 4", "output": "-1" }, { "input": "65\n5 4\n3 3\n1 2\n4 3\n3 5\n1 5\n4 5\n2 6\n1 2\n1 5\n6 3\n2 6\n4 3\n3 6\n1 5\n3 5\n4 6\n2 5\n6 5\n1 4\n3 4\n4 3\n1 4\n2 5\n6 5\n3 1\n4 3\n1 2\n1 1\n6 1\n5 2\n3 2\n1 6\n2 6\n3 3\n6 6\n4 6\n1 5\n5 1\n4 5\n1 4\n3 2\n5 4\n4 2\n6 2\n1 3\n4 2\n5 3\n6 4\n3 6\n1 2\n6 1\n6 6\n3 3\n4 2\n3 5\n4 6\n4 1\n5 4\n6 1\n5 1\n5 6\n6 1\n4 6\n5 5", "output": "1" }, { "input": "65\n5 4\n6 3\n5 4\n4 5\n5 3\n3 6\n1 3\n3 1\n1 3\n6 1\n6 4\n1 3\n2 2\n4 6\n4 1\n5 6\n6 5\n1 1\n1 3\n6 6\n4 1\n2 4\n5 4\n4 1\n5 5\n5 3\n6 2\n2 6\n4 2\n2 2\n6 2\n3 3\n4 5\n4 3\n3 1\n1 4\n4 5\n3 2\n5 5\n4 6\n5 1\n3 4\n5 4\n5 2\n1 6\n4 2\n3 4\n3 4\n1 3\n1 2\n3 3\n3 6\n6 4\n4 6\n6 2\n6 5\n3 2\n2 1\n6 4\n2 1\n1 5\n5 2\n6 5\n3 6\n5 1", "output": "1" }, { "input": "70\n4 1\n2 6\n1 1\n5 6\n5 1\n2 3\n3 5\n1 1\n1 1\n4 6\n4 3\n1 5\n2 2\n2 3\n3 1\n6 4\n3 1\n4 2\n5 4\n1 3\n3 5\n5 2\n5 6\n4 4\n4 5\n2 2\n4 5\n3 2\n3 5\n2 5\n2 6\n5 5\n2 6\n5 1\n1 1\n2 5\n3 1\n1 2\n6 4\n6 5\n5 5\n5 1\n1 5\n2 2\n6 3\n4 3\n6 2\n5 5\n1 1\n6 2\n6 6\n3 4\n2 2\n3 5\n1 5\n2 5\n4 5\n2 4\n6 3\n5 1\n2 6\n4 2\n1 4\n1 6\n6 2\n5 2\n5 6\n2 5\n5 6\n5 5", "output": "-1" }, { "input": "70\n4 3\n6 4\n5 5\n3 1\n1 2\n2 5\n4 6\n4 2\n3 2\n4 2\n1 5\n2 2\n4 3\n1 2\n6 1\n6 6\n1 6\n5 1\n2 2\n6 3\n4 2\n4 3\n1 2\n6 6\n3 3\n6 5\n6 2\n3 6\n6 6\n4 6\n5 2\n5 4\n3 3\n1 6\n5 6\n2 3\n4 6\n1 1\n1 2\n6 6\n1 1\n3 4\n1 6\n2 6\n3 4\n6 3\n5 3\n1 2\n2 3\n4 6\n2 1\n6 4\n4 6\n4 6\n4 2\n5 5\n3 5\n3 2\n4 3\n3 6\n1 4\n3 6\n1 4\n1 6\n1 5\n5 6\n4 4\n3 3\n3 5\n2 2", "output": "0" }, { "input": "75\n1 3\n4 5\n4 1\n6 5\n2 1\n1 4\n5 4\n1 5\n5 3\n1 2\n4 1\n1 1\n5 1\n5 3\n1 5\n4 2\n2 2\n6 3\n1 2\n4 3\n2 5\n5 3\n5 5\n4 1\n4 6\n2 5\n6 1\n2 4\n6 4\n5 2\n6 2\n2 4\n1 3\n5 4\n6 5\n5 4\n6 4\n1 5\n4 6\n1 5\n1 1\n4 4\n3 5\n6 3\n6 5\n1 5\n2 1\n1 5\n6 6\n2 2\n2 2\n4 4\n6 6\n5 4\n4 5\n3 2\n2 4\n1 1\n4 3\n3 2\n5 4\n1 6\n1 2\n2 2\n3 5\n2 6\n1 1\n2 2\n2 3\n6 2\n3 6\n4 4\n5 1\n4 1\n4 1", "output": "0" }, { "input": "75\n1 1\n2 1\n5 5\n6 5\n6 3\n1 6\n6 1\n4 4\n2 1\n6 2\n3 1\n6 4\n1 6\n2 2\n4 3\n4 2\n1 2\n6 2\n4 2\n5 1\n1 2\n3 2\n6 6\n6 3\n2 4\n4 1\n4 1\n2 4\n5 5\n2 3\n5 5\n4 5\n3 1\n1 5\n4 3\n2 3\n3 5\n4 6\n5 6\n1 6\n2 3\n2 2\n1 2\n5 6\n1 4\n1 5\n1 3\n6 2\n1 2\n4 2\n2 1\n1 3\n6 4\n4 1\n5 2\n6 2\n3 5\n2 3\n4 2\n5 1\n5 6\n3 2\n2 1\n6 6\n2 1\n6 2\n1 1\n3 2\n1 2\n3 5\n4 6\n1 3\n3 4\n5 5\n6 2", "output": "1" }, { "input": "80\n3 1\n6 3\n2 2\n2 2\n6 3\n6 1\n6 5\n1 4\n3 6\n6 5\n1 3\n2 4\n1 4\n3 1\n5 3\n5 3\n1 4\n2 5\n4 3\n4 4\n4 5\n6 1\n3 1\n2 6\n4 2\n3 1\n6 5\n2 6\n2 2\n5 1\n1 3\n5 1\n2 1\n4 3\n6 3\n3 5\n4 3\n5 6\n3 3\n4 1\n5 1\n6 5\n5 1\n2 5\n6 1\n3 2\n4 3\n3 3\n5 6\n1 6\n5 2\n1 5\n5 6\n6 4\n2 2\n4 2\n4 6\n4 2\n4 4\n6 5\n5 2\n6 2\n4 6\n6 4\n4 3\n5 1\n4 1\n3 5\n3 2\n3 2\n5 3\n5 4\n3 4\n1 3\n1 2\n6 6\n6 3\n6 1\n5 6\n3 2", "output": "0" }, { "input": "80\n4 5\n3 3\n3 6\n4 5\n3 4\n6 5\n1 5\n2 5\n5 6\n5 1\n5 1\n1 2\n5 5\n5 1\n2 3\n1 1\n4 5\n4 1\n1 1\n5 5\n5 6\n5 2\n5 4\n4 2\n6 2\n5 3\n3 2\n4 2\n1 3\n1 6\n2 1\n6 6\n4 5\n6 4\n2 2\n1 6\n6 2\n4 3\n2 3\n4 6\n4 6\n6 2\n3 4\n4 3\n5 5\n1 6\n3 2\n4 6\n2 3\n1 6\n5 4\n4 2\n5 4\n1 1\n4 3\n5 1\n3 6\n6 2\n3 1\n4 1\n5 3\n2 2\n3 4\n3 6\n3 5\n5 5\n5 1\n3 5\n2 6\n6 3\n6 5\n3 3\n5 6\n1 2\n3 1\n6 3\n3 4\n6 6\n6 6\n1 2", "output": "-1" }, { "input": "85\n6 3\n4 1\n1 2\n3 5\n6 4\n6 2\n2 6\n1 2\n1 5\n6 2\n1 4\n6 6\n2 4\n4 6\n4 5\n1 6\n3 1\n2 5\n5 1\n5 2\n3 5\n1 1\n4 1\n2 3\n1 1\n3 3\n6 4\n1 4\n1 1\n3 6\n1 5\n1 6\n2 5\n2 2\n5 1\n6 6\n1 3\n1 5\n5 6\n4 5\n4 3\n5 5\n1 3\n6 3\n4 6\n2 4\n5 6\n6 2\n4 5\n1 4\n1 4\n6 5\n1 6\n6 1\n1 6\n5 5\n2 1\n5 2\n2 3\n1 6\n1 6\n1 6\n5 6\n2 4\n6 5\n6 5\n4 2\n5 4\n3 4\n4 3\n6 6\n3 3\n3 2\n3 6\n2 5\n2 1\n2 5\n3 4\n1 2\n5 4\n6 2\n5 1\n1 4\n3 4\n4 5", "output": "0" }, { "input": "85\n3 1\n3 2\n6 3\n1 3\n2 1\n3 6\n1 4\n2 5\n6 5\n1 6\n1 5\n1 1\n4 3\n3 5\n4 6\n3 2\n6 6\n4 4\n4 1\n5 5\n4 2\n6 2\n2 2\n4 5\n6 1\n3 4\n4 5\n3 5\n4 2\n3 5\n4 4\n3 1\n4 4\n6 4\n1 4\n5 5\n1 5\n2 2\n6 5\n5 6\n6 5\n3 2\n3 2\n6 1\n6 5\n2 1\n4 6\n2 1\n3 1\n5 6\n1 3\n5 4\n1 4\n1 4\n5 3\n2 3\n1 3\n2 2\n5 3\n2 3\n2 3\n1 3\n3 6\n4 4\n6 6\n6 2\n5 1\n5 5\n5 5\n1 2\n1 4\n2 4\n3 6\n4 6\n6 3\n6 4\n5 5\n3 2\n5 4\n5 4\n4 5\n6 4\n2 1\n5 2\n5 1", "output": "-1" }, { "input": "90\n5 2\n5 5\n5 1\n4 6\n4 3\n5 3\n5 6\n5 1\n3 4\n1 3\n4 2\n1 6\n6 4\n1 2\n6 1\n4 1\n6 2\n6 5\n6 2\n5 4\n3 6\n1 1\n5 5\n2 2\n1 6\n3 5\n6 5\n1 6\n1 5\n2 3\n2 6\n2 3\n3 3\n1 3\n5 1\n2 5\n3 6\n1 2\n4 4\n1 6\n2 3\n1 5\n2 5\n1 3\n2 2\n4 6\n3 6\n6 3\n1 2\n4 3\n4 5\n4 6\n3 2\n6 5\n6 2\n2 5\n2 4\n1 3\n1 6\n4 3\n1 3\n6 4\n4 6\n4 1\n1 1\n4 1\n4 4\n6 2\n6 5\n1 1\n2 2\n3 1\n1 4\n6 2\n5 2\n1 4\n1 3\n6 5\n3 2\n6 4\n3 4\n2 6\n2 2\n6 3\n4 6\n1 2\n4 2\n3 4\n2 3\n1 5", "output": "-1" }, { "input": "90\n1 4\n3 5\n4 2\n2 5\n4 3\n2 6\n2 6\n3 2\n4 4\n6 1\n4 3\n2 3\n5 3\n6 6\n2 2\n6 3\n4 1\n4 4\n5 6\n6 4\n4 2\n5 6\n4 6\n4 4\n6 4\n4 1\n5 3\n3 2\n4 4\n5 2\n5 4\n6 4\n1 2\n3 3\n3 4\n6 4\n1 6\n4 2\n3 2\n1 1\n2 2\n5 1\n6 6\n4 1\n5 2\n3 6\n2 1\n2 2\n4 6\n6 5\n4 4\n5 5\n5 6\n1 6\n1 4\n5 6\n3 6\n6 3\n5 6\n6 5\n5 1\n6 1\n6 6\n6 3\n1 5\n4 5\n3 1\n6 6\n3 4\n6 2\n1 4\n2 2\n3 2\n5 6\n2 4\n1 4\n6 3\n4 6\n1 4\n5 2\n1 2\n6 5\n1 5\n1 4\n4 2\n2 5\n3 2\n5 1\n5 4\n5 3", "output": "-1" }, { "input": "95\n4 3\n3 2\n5 5\n5 3\n1 6\n4 4\n5 5\n6 5\n3 5\n1 5\n4 2\n5 1\n1 2\n2 3\n6 4\n2 3\n6 3\n6 5\n5 6\n1 4\n2 6\n2 6\n2 5\n2 1\n3 1\n3 5\n2 2\n6 1\n2 4\n4 6\n6 6\n6 4\n3 2\n5 1\n4 3\n6 5\n2 3\n4 1\n2 5\n6 5\n6 5\n6 5\n5 1\n5 4\n4 6\n3 2\n2 5\n2 6\n4 6\n6 3\n6 4\n5 6\n4 6\n2 4\n3 4\n1 4\n2 4\n2 3\n5 6\n6 4\n3 1\n5 1\n3 6\n3 5\n2 6\n6 3\n4 3\n3 1\n6 1\n2 2\n6 3\n2 2\n2 2\n6 4\n6 1\n2 1\n5 6\n5 4\n5 2\n3 4\n3 6\n2 1\n1 6\n5 5\n2 6\n2 3\n3 6\n1 3\n1 5\n5 1\n1 2\n2 2\n5 3\n6 4\n4 5", "output": "0" }, { "input": "95\n4 5\n5 6\n3 2\n5 1\n4 3\n4 1\n6 1\n5 2\n2 4\n5 3\n2 3\n6 4\n4 1\n1 6\n2 6\n2 3\n4 6\n2 4\n3 4\n4 2\n5 5\n1 1\n1 5\n4 3\n4 5\n6 2\n6 1\n6 3\n5 5\n4 1\n5 1\n2 3\n5 1\n3 6\n6 6\n4 5\n4 4\n4 3\n1 6\n6 6\n4 6\n6 4\n1 2\n6 2\n4 6\n6 6\n5 5\n6 1\n5 2\n4 5\n6 6\n6 5\n4 4\n1 5\n4 6\n4 1\n3 6\n5 1\n3 1\n4 6\n4 5\n1 3\n5 4\n4 5\n2 2\n6 1\n5 2\n6 5\n2 2\n1 1\n6 3\n6 1\n2 6\n3 3\n2 1\n4 6\n2 4\n5 5\n5 2\n3 2\n1 2\n6 6\n6 2\n5 1\n2 6\n5 2\n2 2\n5 5\n3 5\n3 3\n2 6\n5 3\n4 3\n1 6\n5 4", "output": "-1" }, { "input": "100\n1 1\n3 5\n2 1\n1 2\n3 4\n5 6\n5 6\n6 1\n5 5\n2 4\n5 5\n5 6\n6 2\n6 6\n2 6\n1 4\n2 2\n3 2\n1 3\n5 5\n6 3\n5 6\n1 1\n1 2\n1 2\n2 1\n2 3\n1 6\n4 3\n1 1\n2 5\n2 4\n4 4\n1 5\n3 3\n6 1\n3 5\n1 1\n3 6\n3 1\n4 2\n4 3\n3 6\n6 6\n1 6\n6 2\n2 5\n5 4\n6 3\n1 4\n2 6\n6 2\n3 4\n6 1\n6 5\n4 6\n6 5\n4 4\n3 1\n6 3\n5 1\n2 4\n5 1\n1 2\n2 4\n2 1\n6 6\n5 3\n4 6\n6 3\n5 5\n3 3\n1 1\n6 5\n4 3\n2 6\n1 5\n3 5\n2 4\n4 5\n1 6\n2 3\n6 3\n5 5\n2 6\n2 6\n3 4\n3 2\n6 1\n3 4\n6 4\n3 3\n2 3\n5 1\n3 1\n6 2\n2 3\n6 4\n1 4\n1 2", "output": "-1" }, { "input": "100\n1 1\n5 5\n1 2\n5 3\n5 5\n2 2\n1 5\n3 4\n3 2\n1 3\n5 6\n4 5\n2 1\n5 5\n2 2\n1 6\n6 1\n5 1\n4 1\n4 6\n3 5\n6 1\n2 3\n5 6\n3 6\n2 3\n5 6\n1 6\n3 2\n2 2\n3 3\n6 5\n5 5\n1 4\n5 6\n6 4\n1 4\n1 2\n2 6\n3 2\n6 4\n5 3\n3 3\n6 4\n4 6\n2 2\n5 6\n5 1\n1 2\n3 4\n4 5\n1 1\n3 4\n5 2\n4 5\n3 3\n1 1\n3 4\n1 6\n2 4\n1 3\n3 2\n6 5\n1 6\n3 6\n2 3\n2 6\n5 1\n5 5\n5 6\n4 1\n6 2\n3 6\n5 3\n2 2\n2 4\n6 6\n3 6\n4 6\n2 5\n5 3\n1 2\n3 4\n3 4\n6 2\n2 4\n2 2\n4 6\n3 5\n4 2\n5 6\n4 2\n2 3\n6 2\n5 6\n2 1\n3 3\n6 6\n4 3\n4 2", "output": "1" }, { "input": "1\n2 2", "output": "0" }, { "input": "3\n2 4\n6 6\n3 3", "output": "-1" }, { "input": "2\n3 6\n4 1", "output": "1" }, { "input": "3\n1 1\n1 1\n3 3", "output": "-1" }, { "input": "3\n2 3\n1 1\n2 3", "output": "1" }, { "input": "3\n2 2\n2 1\n1 2", "output": "1" }, { "input": "3\n1 1\n1 1\n1 1", "output": "-1" } ]
1,567,102,613
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
22
280
1,228,800
n=int(input()) x=[] y=[] for i in range(n): a,b=map(int,input().split()) x.append(a) y.append(b) f=0 count=0 def ch(x,y): return (sum(x)%2==0 and sum(y)%2==0) if ch(x,y): print(0) else: f=0 for i in range(n): f=0 x[i],y[i]=y[i],x[i] count+=1 if ch(x,y) : print(count) f=1 break else: continue if f==0: print(-1)
Title: Domino Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera has got *n* domino pieces in a row. Each piece consists of two halves — the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even. To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half. Output Specification: Print a single number — the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1. Demo Input: ['2\n4 2\n6 4\n', '1\n2 3\n', '3\n1 4\n2 3\n4 4\n'] Demo Output: ['0\n', '-1\n', '1\n'] Note: In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything. In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd. In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
```python n=int(input()) x=[] y=[] for i in range(n): a,b=map(int,input().split()) x.append(a) y.append(b) f=0 count=0 def ch(x,y): return (sum(x)%2==0 and sum(y)%2==0) if ch(x,y): print(0) else: f=0 for i in range(n): f=0 x[i],y[i]=y[i],x[i] count+=1 if ch(x,y) : print(count) f=1 break else: continue if f==0: print(-1) ```
0
0
none
none
none
0
[ "none" ]
null
null
Permutation *p* is an ordered set of integers *p*1,<=<=<=*p*2,<=<=<=...,<=<=<=*p**n*, consisting of *n* distinct positive integers not larger than *n*. We'll denote as *n* the length of permutation *p*1,<=<=<=*p*2,<=<=<=...,<=<=<=*p**n*. Your task is to find such permutation *p* of length *n*, that the group of numbers |*p*1<=-<=*p*2|,<=|*p*2<=-<=*p*3|,<=...,<=|*p**n*<=-<=1<=-<=*p**n*| has exactly *k* distinct elements.
The single line of the input contains two space-separated positive integers *n*, *k* (1<=≤<=*k*<=&lt;<=*n*<=≤<=105).
Print *n* integers forming the permutation. If there are multiple answers, print any of them.
[ "3 2\n", "3 1\n", "5 2\n" ]
[ "1 3 2\n", "1 2 3\n", "1 3 2 4 5\n" ]
By |*x*| we denote the absolute value of number *x*.
0
[ { "input": "3 2", "output": "1 3 2" }, { "input": "3 1", "output": "1 2 3" }, { "input": "5 2", "output": "1 3 2 4 5" }, { "input": "5 4", "output": "1 5 2 4 3" }, { "input": "10 4", "output": "1 10 2 9 8 7 6 5 4 3" }, { "input": "10 3", "output": "1 10 2 3 4 5 6 7 8 9" }, { "input": "10 9", "output": "1 10 2 9 3 8 4 7 5 6" }, { "input": "100000 99999", "output": "1 100000 2 99999 3 99998 4 99997 5 99996 6 99995 7 99994 8 99993 9 99992 10 99991 11 99990 12 99989 13 99988 14 99987 15 99986 16 99985 17 99984 18 99983 19 99982 20 99981 21 99980 22 99979 23 99978 24 99977 25 99976 26 99975 27 99974 28 99973 29 99972 30 99971 31 99970 32 99969 33 99968 34 99967 35 99966 36 99965 37 99964 38 99963 39 99962 40 99961 41 99960 42 99959 43 99958 44 99957 45 99956 46 99955 47 99954 48 99953 49 99952 50 99951 51 99950 52 99949 53 99948 54 99947 55 99946 56 99945 57 99944 58 999..." }, { "input": "99999 99998", "output": "1 99999 2 99998 3 99997 4 99996 5 99995 6 99994 7 99993 8 99992 9 99991 10 99990 11 99989 12 99988 13 99987 14 99986 15 99985 16 99984 17 99983 18 99982 19 99981 20 99980 21 99979 22 99978 23 99977 24 99976 25 99975 26 99974 27 99973 28 99972 29 99971 30 99970 31 99969 32 99968 33 99967 34 99966 35 99965 36 99964 37 99963 38 99962 39 99961 40 99960 41 99959 42 99958 43 99957 44 99956 45 99955 46 99954 47 99953 48 99952 49 99951 50 99950 51 99949 52 99948 53 99947 54 99946 55 99945 56 99944 57 99943 58 9994..." }, { "input": "42273 29958", "output": "1 42273 2 42272 3 42271 4 42270 5 42269 6 42268 7 42267 8 42266 9 42265 10 42264 11 42263 12 42262 13 42261 14 42260 15 42259 16 42258 17 42257 18 42256 19 42255 20 42254 21 42253 22 42252 23 42251 24 42250 25 42249 26 42248 27 42247 28 42246 29 42245 30 42244 31 42243 32 42242 33 42241 34 42240 35 42239 36 42238 37 42237 38 42236 39 42235 40 42234 41 42233 42 42232 43 42231 44 42230 45 42229 46 42228 47 42227 48 42226 49 42225 50 42224 51 42223 52 42222 53 42221 54 42220 55 42219 56 42218 57 42217 58 4221..." }, { "input": "29857 9843", "output": "1 29857 2 29856 3 29855 4 29854 5 29853 6 29852 7 29851 8 29850 9 29849 10 29848 11 29847 12 29846 13 29845 14 29844 15 29843 16 29842 17 29841 18 29840 19 29839 20 29838 21 29837 22 29836 23 29835 24 29834 25 29833 26 29832 27 29831 28 29830 29 29829 30 29828 31 29827 32 29826 33 29825 34 29824 35 29823 36 29822 37 29821 38 29820 39 29819 40 29818 41 29817 42 29816 43 29815 44 29814 45 29813 46 29812 47 29811 48 29810 49 29809 50 29808 51 29807 52 29806 53 29805 54 29804 55 29803 56 29802 57 29801 58 2980..." }, { "input": "27687 4031", "output": "1 27687 2 27686 3 27685 4 27684 5 27683 6 27682 7 27681 8 27680 9 27679 10 27678 11 27677 12 27676 13 27675 14 27674 15 27673 16 27672 17 27671 18 27670 19 27669 20 27668 21 27667 22 27666 23 27665 24 27664 25 27663 26 27662 27 27661 28 27660 29 27659 30 27658 31 27657 32 27656 33 27655 34 27654 35 27653 36 27652 37 27651 38 27650 39 27649 40 27648 41 27647 42 27646 43 27645 44 27644 45 27643 46 27642 47 27641 48 27640 49 27639 50 27638 51 27637 52 27636 53 27635 54 27634 55 27633 56 27632 57 27631 58 2763..." }, { "input": "25517 1767", "output": "1 25517 2 25516 3 25515 4 25514 5 25513 6 25512 7 25511 8 25510 9 25509 10 25508 11 25507 12 25506 13 25505 14 25504 15 25503 16 25502 17 25501 18 25500 19 25499 20 25498 21 25497 22 25496 23 25495 24 25494 25 25493 26 25492 27 25491 28 25490 29 25489 30 25488 31 25487 32 25486 33 25485 34 25484 35 25483 36 25482 37 25481 38 25480 39 25479 40 25478 41 25477 42 25476 43 25475 44 25474 45 25473 46 25472 47 25471 48 25470 49 25469 50 25468 51 25467 52 25466 53 25465 54 25464 55 25463 56 25462 57 25461 58 2546..." }, { "input": "23347 20494", "output": "1 23347 2 23346 3 23345 4 23344 5 23343 6 23342 7 23341 8 23340 9 23339 10 23338 11 23337 12 23336 13 23335 14 23334 15 23333 16 23332 17 23331 18 23330 19 23329 20 23328 21 23327 22 23326 23 23325 24 23324 25 23323 26 23322 27 23321 28 23320 29 23319 30 23318 31 23317 32 23316 33 23315 34 23314 35 23313 36 23312 37 23311 38 23310 39 23309 40 23308 41 23307 42 23306 43 23305 44 23304 45 23303 46 23302 47 23301 48 23300 49 23299 50 23298 51 23297 52 23296 53 23295 54 23294 55 23293 56 23292 57 23291 58 2329..." }, { "input": "10931 8824", "output": "1 10931 2 10930 3 10929 4 10928 5 10927 6 10926 7 10925 8 10924 9 10923 10 10922 11 10921 12 10920 13 10919 14 10918 15 10917 16 10916 17 10915 18 10914 19 10913 20 10912 21 10911 22 10910 23 10909 24 10908 25 10907 26 10906 27 10905 28 10904 29 10903 30 10902 31 10901 32 10900 33 10899 34 10898 35 10897 36 10896 37 10895 38 10894 39 10893 40 10892 41 10891 42 10890 43 10889 44 10888 45 10887 46 10886 47 10885 48 10884 49 10883 50 10882 51 10881 52 10880 53 10879 54 10878 55 10877 56 10876 57 10875 58 1087..." }, { "input": "98514 26178", "output": "1 98514 2 98513 3 98512 4 98511 5 98510 6 98509 7 98508 8 98507 9 98506 10 98505 11 98504 12 98503 13 98502 14 98501 15 98500 16 98499 17 98498 18 98497 19 98496 20 98495 21 98494 22 98493 23 98492 24 98491 25 98490 26 98489 27 98488 28 98487 29 98486 30 98485 31 98484 32 98483 33 98482 34 98481 35 98480 36 98479 37 98478 38 98477 39 98476 40 98475 41 98474 42 98473 43 98472 44 98471 45 98470 46 98469 47 98468 48 98467 49 98466 50 98465 51 98464 52 98463 53 98462 54 98461 55 98460 56 98459 57 98458 58 9845..." }, { "input": "6591 407", "output": "1 6591 2 6590 3 6589 4 6588 5 6587 6 6586 7 6585 8 6584 9 6583 10 6582 11 6581 12 6580 13 6579 14 6578 15 6577 16 6576 17 6575 18 6574 19 6573 20 6572 21 6571 22 6570 23 6569 24 6568 25 6567 26 6566 27 6565 28 6564 29 6563 30 6562 31 6561 32 6560 33 6559 34 6558 35 6557 36 6556 37 6555 38 6554 39 6553 40 6552 41 6551 42 6550 43 6549 44 6548 45 6547 46 6546 47 6545 48 6544 49 6543 50 6542 51 6541 52 6540 53 6539 54 6538 55 6537 56 6536 57 6535 58 6534 59 6533 60 6532 61 6531 62 6530 63 6529 64 6528 65 6527 ..." }, { "input": "94174 30132", "output": "1 94174 2 94173 3 94172 4 94171 5 94170 6 94169 7 94168 8 94167 9 94166 10 94165 11 94164 12 94163 13 94162 14 94161 15 94160 16 94159 17 94158 18 94157 19 94156 20 94155 21 94154 22 94153 23 94152 24 94151 25 94150 26 94149 27 94148 28 94147 29 94146 30 94145 31 94144 32 94143 33 94142 34 94141 35 94140 36 94139 37 94138 38 94137 39 94136 40 94135 41 94134 42 94133 43 94132 44 94131 45 94130 46 94129 47 94128 48 94127 49 94126 50 94125 51 94124 52 94123 53 94122 54 94121 55 94120 56 94119 57 94118 58 9411..." }, { "input": "92004 85348", "output": "1 92004 2 92003 3 92002 4 92001 5 92000 6 91999 7 91998 8 91997 9 91996 10 91995 11 91994 12 91993 13 91992 14 91991 15 91990 16 91989 17 91988 18 91987 19 91986 20 91985 21 91984 22 91983 23 91982 24 91981 25 91980 26 91979 27 91978 28 91977 29 91976 30 91975 31 91974 32 91973 33 91972 34 91971 35 91970 36 91969 37 91968 38 91967 39 91966 40 91965 41 91964 42 91963 43 91962 44 91961 45 91960 46 91959 47 91958 48 91957 49 91956 50 91955 51 91954 52 91953 53 91952 54 91951 55 91950 56 91949 57 91948 58 9194..." }, { "input": "59221 29504", "output": "1 59221 2 59220 3 59219 4 59218 5 59217 6 59216 7 59215 8 59214 9 59213 10 59212 11 59211 12 59210 13 59209 14 59208 15 59207 16 59206 17 59205 18 59204 19 59203 20 59202 21 59201 22 59200 23 59199 24 59198 25 59197 26 59196 27 59195 28 59194 29 59193 30 59192 31 59191 32 59190 33 59189 34 59188 35 59187 36 59186 37 59185 38 59184 39 59183 40 59182 41 59181 42 59180 43 59179 44 59178 45 59177 46 59176 47 59175 48 59174 49 59173 50 59172 51 59171 52 59170 53 59169 54 59168 55 59167 56 59166 57 59165 58 5916..." }, { "input": "2 1", "output": "1 2" }, { "input": "4 1", "output": "1 2 3 4" }, { "input": "4 2", "output": "1 4 3 2" }, { "input": "100000 1", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..." }, { "input": "99999 1", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..." }, { "input": "99998 2", "output": "1 99998 99997 99996 99995 99994 99993 99992 99991 99990 99989 99988 99987 99986 99985 99984 99983 99982 99981 99980 99979 99978 99977 99976 99975 99974 99973 99972 99971 99970 99969 99968 99967 99966 99965 99964 99963 99962 99961 99960 99959 99958 99957 99956 99955 99954 99953 99952 99951 99950 99949 99948 99947 99946 99945 99944 99943 99942 99941 99940 99939 99938 99937 99936 99935 99934 99933 99932 99931 99930 99929 99928 99927 99926 99925 99924 99923 99922 99921 99920 99919 99918 99917 99916 99915 99914..." }, { "input": "99999 5000", "output": "1 99999 2 99998 3 99997 4 99996 5 99995 6 99994 7 99993 8 99992 9 99991 10 99990 11 99989 12 99988 13 99987 14 99986 15 99985 16 99984 17 99983 18 99982 19 99981 20 99980 21 99979 22 99978 23 99977 24 99976 25 99975 26 99974 27 99973 28 99972 29 99971 30 99970 31 99969 32 99968 33 99967 34 99966 35 99965 36 99964 37 99963 38 99962 39 99961 40 99960 41 99959 42 99958 43 99957 44 99956 45 99955 46 99954 47 99953 48 99952 49 99951 50 99950 51 99949 52 99948 53 99947 54 99946 55 99945 56 99944 57 99943 58 9994..." }, { "input": "100000 99998", "output": "1 100000 2 99999 3 99998 4 99997 5 99996 6 99995 7 99994 8 99993 9 99992 10 99991 11 99990 12 99989 13 99988 14 99987 15 99986 16 99985 17 99984 18 99983 19 99982 20 99981 21 99980 22 99979 23 99978 24 99977 25 99976 26 99975 27 99974 28 99973 29 99972 30 99971 31 99970 32 99969 33 99968 34 99967 35 99966 36 99965 37 99964 38 99963 39 99962 40 99961 41 99960 42 99959 43 99958 44 99957 45 99956 46 99955 47 99954 48 99953 49 99952 50 99951 51 99950 52 99949 53 99948 54 99947 55 99946 56 99945 57 99944 58 999..." }, { "input": "3222 311", "output": "1 3222 2 3221 3 3220 4 3219 5 3218 6 3217 7 3216 8 3215 9 3214 10 3213 11 3212 12 3211 13 3210 14 3209 15 3208 16 3207 17 3206 18 3205 19 3204 20 3203 21 3202 22 3201 23 3200 24 3199 25 3198 26 3197 27 3196 28 3195 29 3194 30 3193 31 3192 32 3191 33 3190 34 3189 35 3188 36 3187 37 3186 38 3185 39 3184 40 3183 41 3182 42 3181 43 3180 44 3179 45 3178 46 3177 47 3176 48 3175 49 3174 50 3173 51 3172 52 3171 53 3170 54 3169 55 3168 56 3167 57 3166 58 3165 59 3164 60 3163 61 3162 62 3161 63 3160 64 3159 65 3158 ..." }, { "input": "32244 222", "output": "1 32244 2 32243 3 32242 4 32241 5 32240 6 32239 7 32238 8 32237 9 32236 10 32235 11 32234 12 32233 13 32232 14 32231 15 32230 16 32229 17 32228 18 32227 19 32226 20 32225 21 32224 22 32223 23 32222 24 32221 25 32220 26 32219 27 32218 28 32217 29 32216 30 32215 31 32214 32 32213 33 32212 34 32211 35 32210 36 32209 37 32208 38 32207 39 32206 40 32205 41 32204 42 32203 43 32202 44 32201 45 32200 46 32199 47 32198 48 32197 49 32196 50 32195 51 32194 52 32193 53 32192 54 32191 55 32190 56 32189 57 32188 58 3218..." }, { "input": "1111 122", "output": "1 1111 2 1110 3 1109 4 1108 5 1107 6 1106 7 1105 8 1104 9 1103 10 1102 11 1101 12 1100 13 1099 14 1098 15 1097 16 1096 17 1095 18 1094 19 1093 20 1092 21 1091 22 1090 23 1089 24 1088 25 1087 26 1086 27 1085 28 1084 29 1083 30 1082 31 1081 32 1080 33 1079 34 1078 35 1077 36 1076 37 1075 38 1074 39 1073 40 1072 41 1071 42 1070 43 1069 44 1068 45 1067 46 1066 47 1065 48 1064 49 1063 50 1062 51 1061 52 1060 53 1059 54 1058 55 1057 56 1056 57 1055 58 1054 59 1053 60 1052 61 1051 1050 1049 1048 1047 1046 1045 10..." }, { "input": "32342 1221", "output": "1 32342 2 32341 3 32340 4 32339 5 32338 6 32337 7 32336 8 32335 9 32334 10 32333 11 32332 12 32331 13 32330 14 32329 15 32328 16 32327 17 32326 18 32325 19 32324 20 32323 21 32322 22 32321 23 32320 24 32319 25 32318 26 32317 27 32316 28 32315 29 32314 30 32313 31 32312 32 32311 33 32310 34 32309 35 32308 36 32307 37 32306 38 32305 39 32304 40 32303 41 32302 42 32301 43 32300 44 32299 45 32298 46 32297 47 32296 48 32295 49 32294 50 32293 51 32292 52 32291 53 32290 54 32289 55 32288 56 32287 57 32286 58 3228..." }, { "input": "100000 50000", "output": "1 100000 2 99999 3 99998 4 99997 5 99996 6 99995 7 99994 8 99993 9 99992 10 99991 11 99990 12 99989 13 99988 14 99987 15 99986 16 99985 17 99984 18 99983 19 99982 20 99981 21 99980 22 99979 23 99978 24 99977 25 99976 26 99975 27 99974 28 99973 29 99972 30 99971 31 99970 32 99969 33 99968 34 99967 35 99966 36 99965 37 99964 38 99963 39 99962 40 99961 41 99960 42 99959 43 99958 44 99957 45 99956 46 99955 47 99954 48 99953 49 99952 50 99951 51 99950 52 99949 53 99948 54 99947 55 99946 56 99945 57 99944 58 999..." }, { "input": "100000 45", "output": "1 100000 2 99999 3 99998 4 99997 5 99996 6 99995 7 99994 8 99993 9 99992 10 99991 11 99990 12 99989 13 99988 14 99987 15 99986 16 99985 17 99984 18 99983 19 99982 20 99981 21 99980 22 99979 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 12..." }, { "input": "99999 2", "output": "1 99999 99998 99997 99996 99995 99994 99993 99992 99991 99990 99989 99988 99987 99986 99985 99984 99983 99982 99981 99980 99979 99978 99977 99976 99975 99974 99973 99972 99971 99970 99969 99968 99967 99966 99965 99964 99963 99962 99961 99960 99959 99958 99957 99956 99955 99954 99953 99952 99951 99950 99949 99948 99947 99946 99945 99944 99943 99942 99941 99940 99939 99938 99937 99936 99935 99934 99933 99932 99931 99930 99929 99928 99927 99926 99925 99924 99923 99922 99921 99920 99919 99918 99917 99916 99915..." }, { "input": "9 8", "output": "1 9 2 8 3 7 4 6 5" }, { "input": "7 5", "output": "1 7 2 6 3 4 5" } ]
1,414,174,295
4,295
Python 3
WRONG_ANSWER
PRETESTS
6
62
0
from sys import stdin lines = list(filter(None, stdin.read().split('\n'))) def parseline(line): return list(map(int, line.split())) lines = list(map(parseline, lines)) n, k = lines[0] x = n + 1 for i in range(n, n - k, -1): if 1 <= x + i <= n: x = x + i else: x = x - i print(x, end=' ') step = -1 if k %2 == 0 else +1 for k in range(n - k): x += step print(x, end=' ')
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Permutation *p* is an ordered set of integers *p*1,<=<=<=*p*2,<=<=<=...,<=<=<=*p**n*, consisting of *n* distinct positive integers not larger than *n*. We'll denote as *n* the length of permutation *p*1,<=<=<=*p*2,<=<=<=...,<=<=<=*p**n*. Your task is to find such permutation *p* of length *n*, that the group of numbers |*p*1<=-<=*p*2|,<=|*p*2<=-<=*p*3|,<=...,<=|*p**n*<=-<=1<=-<=*p**n*| has exactly *k* distinct elements. Input Specification: The single line of the input contains two space-separated positive integers *n*, *k* (1<=≤<=*k*<=&lt;<=*n*<=≤<=105). Output Specification: Print *n* integers forming the permutation. If there are multiple answers, print any of them. Demo Input: ['3 2\n', '3 1\n', '5 2\n'] Demo Output: ['1 3 2\n', '1 2 3\n', '1 3 2 4 5\n'] Note: By |*x*| we denote the absolute value of number *x*.
```python from sys import stdin lines = list(filter(None, stdin.read().split('\n'))) def parseline(line): return list(map(int, line.split())) lines = list(map(parseline, lines)) n, k = lines[0] x = n + 1 for i in range(n, n - k, -1): if 1 <= x + i <= n: x = x + i else: x = x - i print(x, end=' ') step = -1 if k %2 == 0 else +1 for k in range(n - k): x += step print(x, end=' ') ```
0
94
B
Friends
PROGRAMMING
1,300
[ "graphs", "implementation", "math" ]
B. Friends
1
256
One day Igor K. stopped programming and took up math. One late autumn evening he was sitting at a table reading a book and thinking about something. The following statement caught his attention: "Among any six people there are either three pairwise acquainted people or three pairwise unacquainted people" Igor just couldn't get why the required minimum is 6 people. "Well, that's the same for five people, too!" — he kept on repeating in his mind. — "Let's take, say, Max, Ilya, Vova — here, they all know each other! And now let's add Dima and Oleg to Vova — none of them is acquainted with each other! Now, that math is just rubbish!" Igor K. took 5 friends of his and wrote down who of them is friends with whom. Now he wants to check whether it is true for the five people that among them there are either three pairwise acquainted or three pairwise not acquainted people.
The first line contains an integer *m* (0<=≤<=*m*<=≤<=10), which is the number of relations of acquaintances among the five friends of Igor's. Each of the following *m* lines contains two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=5;*a**i*<=≠<=*b**i*), where (*a**i*,<=*b**i*) is a pair of acquainted people. It is guaranteed that each pair of the acquaintances is described exactly once. The acquaintance relation is symmetrical, i.e. if *x* is acquainted with *y*, then *y* is also acquainted with *x*.
Print "FAIL", if among those five people there are no either three pairwise acquainted or three pairwise unacquainted people. Otherwise print "WIN".
[ "4\n1 3\n2 3\n1 4\n5 3\n", "5\n1 2\n2 3\n3 4\n4 5\n5 1\n" ]
[ "WIN\n", "FAIL\n" ]
none
1,000
[ { "input": "4\n1 3\n2 3\n1 4\n5 3", "output": "WIN" }, { "input": "5\n1 2\n2 3\n3 4\n4 5\n5 1", "output": "FAIL" }, { "input": "1\n4 3", "output": "WIN" }, { "input": "6\n1 3\n2 3\n1 2\n5 3\n4 2\n4 5", "output": "WIN" }, { "input": "2\n1 3\n2 5", "output": "WIN" }, { "input": "3\n5 3\n4 3\n4 5", "output": "WIN" }, { "input": "5\n1 3\n3 2\n2 4\n5 4\n1 5", "output": "FAIL" }, { "input": "7\n1 3\n5 1\n1 4\n2 1\n5 3\n4 5\n2 5", "output": "WIN" }, { "input": "5\n5 1\n4 1\n2 3\n4 5\n3 1", "output": "WIN" }, { "input": "0", "output": "WIN" }, { "input": "10\n1 2\n1 3\n1 4\n1 5\n2 3\n2 4\n2 5\n3 4\n3 5\n4 5", "output": "WIN" }, { "input": "4\n1 2\n2 3\n3 4\n4 1", "output": "WIN" }, { "input": "1\n2 1", "output": "WIN" }, { "input": "1\n2 5", "output": "WIN" }, { "input": "2\n2 1\n1 5", "output": "WIN" }, { "input": "2\n4 2\n1 5", "output": "WIN" }, { "input": "2\n3 4\n5 2", "output": "WIN" }, { "input": "2\n1 5\n4 3", "output": "WIN" }, { "input": "3\n4 1\n4 5\n2 1", "output": "WIN" }, { "input": "3\n5 1\n5 3\n2 5", "output": "WIN" }, { "input": "3\n1 2\n4 2\n1 3", "output": "WIN" }, { "input": "3\n3 2\n1 5\n5 3", "output": "WIN" }, { "input": "3\n1 2\n2 4\n3 2", "output": "WIN" }, { "input": "3\n2 1\n1 3\n5 4", "output": "WIN" }, { "input": "4\n4 2\n2 5\n1 4\n4 5", "output": "WIN" }, { "input": "4\n5 2\n2 4\n5 3\n1 5", "output": "WIN" }, { "input": "4\n2 5\n1 3\n4 3\n4 2", "output": "WIN" }, { "input": "4\n1 4\n3 1\n2 3\n1 2", "output": "WIN" }, { "input": "4\n5 4\n2 3\n1 5\n5 2", "output": "WIN" }, { "input": "4\n2 5\n5 4\n1 4\n5 3", "output": "WIN" }, { "input": "4\n2 1\n2 4\n5 1\n4 1", "output": "WIN" }, { "input": "4\n1 2\n1 5\n4 5\n2 3", "output": "WIN" }, { "input": "5\n4 1\n2 4\n3 2\n5 3\n1 5", "output": "FAIL" }, { "input": "5\n1 3\n4 1\n5 2\n2 4\n3 5", "output": "FAIL" }, { "input": "5\n3 5\n4 2\n1 3\n2 1\n5 4", "output": "FAIL" }, { "input": "5\n5 2\n1 3\n4 5\n2 1\n3 4", "output": "FAIL" }, { "input": "5\n2 3\n3 5\n1 2\n4 1\n5 4", "output": "FAIL" }, { "input": "5\n1 2\n4 5\n5 3\n3 1\n2 4", "output": "FAIL" }, { "input": "5\n5 3\n3 2\n2 4\n1 5\n4 1", "output": "FAIL" }, { "input": "5\n3 2\n4 1\n2 5\n1 3\n5 4", "output": "FAIL" }, { "input": "5\n3 5\n1 4\n5 1\n2 3\n4 2", "output": "FAIL" }, { "input": "5\n4 2\n5 3\n2 1\n3 4\n1 5", "output": "FAIL" }, { "input": "5\n3 1\n5 1\n4 5\n2 4\n5 3", "output": "WIN" }, { "input": "5\n5 4\n5 3\n3 1\n1 4\n2 3", "output": "WIN" }, { "input": "5\n4 1\n3 5\n3 4\n5 4\n5 2", "output": "WIN" }, { "input": "5\n4 1\n5 2\n3 1\n4 2\n5 1", "output": "WIN" }, { "input": "5\n2 3\n1 5\n5 3\n2 4\n1 4", "output": "FAIL" }, { "input": "5\n5 4\n5 3\n2 3\n5 2\n5 1", "output": "WIN" }, { "input": "5\n2 4\n3 4\n1 4\n2 1\n3 2", "output": "WIN" }, { "input": "5\n2 3\n3 4\n1 3\n4 1\n5 2", "output": "WIN" }, { "input": "5\n1 2\n2 5\n4 2\n4 3\n3 1", "output": "WIN" }, { "input": "5\n2 1\n2 5\n4 5\n2 3\n3 5", "output": "WIN" }, { "input": "5\n4 1\n5 1\n5 4\n4 3\n5 2", "output": "WIN" }, { "input": "5\n1 3\n2 4\n1 5\n5 2\n4 1", "output": "WIN" }, { "input": "5\n1 5\n3 5\n2 3\n4 1\n3 1", "output": "WIN" }, { "input": "5\n5 2\n3 2\n2 1\n4 3\n4 2", "output": "WIN" }, { "input": "5\n1 3\n4 5\n3 4\n3 5\n5 1", "output": "WIN" }, { "input": "5\n4 5\n2 5\n5 3\n4 2\n4 1", "output": "WIN" }, { "input": "5\n2 5\n1 5\n1 3\n3 5\n1 2", "output": "WIN" }, { "input": "5\n2 4\n1 2\n5 2\n5 3\n4 5", "output": "WIN" }, { "input": "5\n2 1\n4 5\n5 3\n1 5\n1 4", "output": "WIN" }, { "input": "5\n1 3\n2 5\n4 2\n3 4\n4 1", "output": "WIN" }, { "input": "6\n3 2\n2 4\n3 1\n3 5\n5 2\n1 2", "output": "WIN" }, { "input": "6\n2 1\n5 1\n5 4\n3 5\n3 4\n4 1", "output": "WIN" }, { "input": "6\n3 1\n1 4\n5 4\n2 1\n4 2\n1 5", "output": "WIN" }, { "input": "6\n5 1\n5 4\n3 4\n1 3\n1 4\n4 2", "output": "WIN" }, { "input": "6\n1 3\n5 4\n4 2\n2 1\n4 1\n2 3", "output": "WIN" }, { "input": "6\n4 3\n5 3\n4 1\n1 3\n1 2\n2 4", "output": "WIN" }, { "input": "6\n4 1\n3 5\n4 5\n3 1\n4 3\n5 2", "output": "WIN" }, { "input": "6\n2 1\n1 4\n4 5\n5 2\n1 3\n3 2", "output": "WIN" }, { "input": "7\n5 1\n3 5\n2 5\n4 5\n2 3\n3 1\n4 3", "output": "WIN" }, { "input": "7\n5 3\n5 1\n4 2\n4 5\n3 2\n3 4\n1 3", "output": "WIN" }, { "input": "7\n3 5\n1 4\n5 2\n1 5\n1 3\n4 2\n4 3", "output": "WIN" }, { "input": "7\n5 1\n5 4\n2 4\n2 3\n3 5\n2 5\n4 1", "output": "WIN" }, { "input": "7\n1 3\n2 5\n4 3\n2 1\n2 3\n4 5\n2 4", "output": "WIN" }, { "input": "7\n3 1\n4 5\n3 5\n5 1\n2 4\n1 2\n1 4", "output": "WIN" }, { "input": "8\n1 5\n3 1\n2 5\n4 2\n2 1\n4 5\n4 3\n4 1", "output": "WIN" }, { "input": "8\n4 2\n3 1\n4 3\n2 5\n3 2\n4 5\n1 2\n3 5", "output": "WIN" }, { "input": "8\n2 4\n3 2\n2 5\n3 4\n3 1\n5 1\n4 5\n5 3", "output": "WIN" }, { "input": "8\n2 3\n1 5\n1 3\n4 5\n2 4\n1 4\n3 5\n3 4", "output": "WIN" }, { "input": "9\n3 5\n3 2\n1 5\n4 3\n5 4\n1 4\n1 3\n4 2\n5 2", "output": "WIN" }, { "input": "9\n3 5\n2 5\n5 1\n4 5\n1 3\n3 2\n1 4\n4 3\n4 2", "output": "WIN" }, { "input": "3\n3 4\n4 5\n5 3", "output": "WIN" }, { "input": "3\n1 2\n1 3\n4 5", "output": "WIN" }, { "input": "3\n2 3\n3 5\n2 5", "output": "WIN" } ]
1,658,002,856
2,147,483,647
PyPy 3-64
OK
TESTS
85
62
0
import sys input = sys.stdin.readline n = int(input()) d = [0]*5 for i in range(n): a, b = map(int, input().split()) d[a-1] += 1 d[b-1] += 1 if d.count(2) == 5: print('FAIL') else: print('WIN')
Title: Friends Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: One day Igor K. stopped programming and took up math. One late autumn evening he was sitting at a table reading a book and thinking about something. The following statement caught his attention: "Among any six people there are either three pairwise acquainted people or three pairwise unacquainted people" Igor just couldn't get why the required minimum is 6 people. "Well, that's the same for five people, too!" — he kept on repeating in his mind. — "Let's take, say, Max, Ilya, Vova — here, they all know each other! And now let's add Dima and Oleg to Vova — none of them is acquainted with each other! Now, that math is just rubbish!" Igor K. took 5 friends of his and wrote down who of them is friends with whom. Now he wants to check whether it is true for the five people that among them there are either three pairwise acquainted or three pairwise not acquainted people. Input Specification: The first line contains an integer *m* (0<=≤<=*m*<=≤<=10), which is the number of relations of acquaintances among the five friends of Igor's. Each of the following *m* lines contains two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=5;*a**i*<=≠<=*b**i*), where (*a**i*,<=*b**i*) is a pair of acquainted people. It is guaranteed that each pair of the acquaintances is described exactly once. The acquaintance relation is symmetrical, i.e. if *x* is acquainted with *y*, then *y* is also acquainted with *x*. Output Specification: Print "FAIL", if among those five people there are no either three pairwise acquainted or three pairwise unacquainted people. Otherwise print "WIN". Demo Input: ['4\n1 3\n2 3\n1 4\n5 3\n', '5\n1 2\n2 3\n3 4\n4 5\n5 1\n'] Demo Output: ['WIN\n', 'FAIL\n'] Note: none
```python import sys input = sys.stdin.readline n = int(input()) d = [0]*5 for i in range(n): a, b = map(int, input().split()) d[a-1] += 1 d[b-1] += 1 if d.count(2) == 5: print('FAIL') else: print('WIN') ```
3.969
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,634,755,567
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
92
4,505,600
n=int(input()) l=[] t=[] for i in range(n): t=list(map(int,input().split())) if(i==0): l=t else: for j in range(3): l[i]=l[i]+t[i] if(l[0] or l[1] or l[2]): print("NO") else: print("YES")
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python n=int(input()) l=[] t=[] for i in range(n): t=list(map(int,input().split())) if(i==0): l=t else: for j in range(3): l[i]=l[i]+t[i] if(l[0] or l[1] or l[2]): print("NO") else: print("YES") ```
0
137
B
Permutation
PROGRAMMING
1,000
[ "greedy" ]
null
null
"Hey, it's homework time" — thought Polycarpus and of course he started with his favourite subject, IT. Polycarpus managed to solve all tasks but for the last one in 20 minutes. However, as he failed to solve the last task after some considerable time, the boy asked you to help him. The sequence of *n* integers is called a permutation if it contains all integers from 1 to *n* exactly once. You are given an arbitrary sequence *a*1,<=*a*2,<=...,<=*a**n* containing *n* integers. Each integer is not less than 1 and not greater than 5000. Determine what minimum number of elements Polycarpus needs to change to get a permutation (he should not delete or add numbers). In a single change he can modify any single sequence element (i. e. replace it with another integer).
The first line of the input data contains an integer *n* (1<=≤<=*n*<=≤<=5000) which represents how many numbers are in the sequence. The second line contains a sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=5000,<=1<=≤<=*i*<=≤<=*n*).
Print the only number — the minimum number of changes needed to get the permutation.
[ "3\n3 1 2\n", "2\n2 2\n", "5\n5 3 3 3 1\n" ]
[ "0\n", "1\n", "2\n" ]
The first sample contains the permutation, which is why no replacements are required. In the second sample it is enough to replace the first element with the number 1 and that will make the sequence the needed permutation. In the third sample we can replace the second element with number 4 and the fourth element with number 2.
1,000
[ { "input": "3\n3 1 2", "output": "0" }, { "input": "2\n2 2", "output": "1" }, { "input": "5\n5 3 3 3 1", "output": "2" }, { "input": "5\n6 6 6 6 6", "output": "5" }, { "input": "10\n1 1 2 2 8 8 7 7 9 9", "output": "5" }, { "input": "8\n9 8 7 6 5 4 3 2", "output": "1" }, { "input": "15\n1 2 3 4 5 5 4 3 2 1 1 2 3 4 5", "output": "10" }, { "input": "1\n1", "output": "0" }, { "input": "1\n5000", "output": "1" }, { "input": "4\n5000 5000 5000 5000", "output": "4" }, { "input": "5\n3366 3461 4 5 4370", "output": "3" }, { "input": "10\n8 2 10 3 4 6 1 7 9 5", "output": "0" }, { "input": "10\n551 3192 3213 2846 3068 1224 3447 1 10 9", "output": "7" }, { "input": "15\n4 1459 12 4281 3241 2748 10 3590 14 845 3518 1721 2 2880 1974", "output": "10" }, { "input": "15\n15 1 8 2 13 11 12 7 3 14 6 10 9 4 5", "output": "0" }, { "input": "15\n2436 2354 4259 1210 2037 2665 700 3578 2880 973 1317 1024 24 3621 4142", "output": "15" }, { "input": "30\n28 1 3449 9 3242 4735 26 3472 15 21 2698 7 4073 3190 10 3 29 1301 4526 22 345 3876 19 12 4562 2535 2 630 18 27", "output": "14" }, { "input": "100\n50 39 95 30 66 78 2169 4326 81 31 74 34 80 40 19 48 97 63 82 6 88 16 21 57 92 77 10 1213 17 93 32 91 38 4375 29 75 44 22 4 45 14 2395 3254 59 3379 2 85 96 8 83 27 94 1512 2960 100 9 73 79 7 25 55 69 90 99 51 87 98 62 18 35 43 4376 4668 28 72 56 4070 61 65 36 54 4106 11 24 15 86 70 71 4087 23 13 76 20 4694 26 4962 4726 37 14 64", "output": "18" }, { "input": "100\n340 14 3275 2283 2673 1107 817 2243 1226 32 2382 3638 4652 418 68 4962 387 764 4647 159 1846 225 2760 4904 3150 403 3 2439 91 4428 92 4705 75 348 1566 1465 69 6 49 4 62 4643 564 1090 3447 1871 2255 139 24 99 2669 969 86 61 4550 158 4537 3993 1589 872 2907 1888 401 80 1825 1483 63 1 2264 4068 4113 2548 41 885 4806 36 67 167 4447 34 1248 2593 82 202 81 1783 1284 4973 16 43 95 7 865 2091 3008 1793 20 947 4912 3604", "output": "70" }, { "input": "1\n2", "output": "1" }, { "input": "2\n5000 5000", "output": "2" }, { "input": "2\n1 2", "output": "0" }, { "input": "2\n1 1", "output": "1" }, { "input": "2\n2 3", "output": "1" }, { "input": "2\n3 4", "output": "2" }, { "input": "10\n1 2 3 4 5 6 7 1000 10 10", "output": "2" } ]
1,449,443,764
2,147,483,647
Python 3
OK
TESTS
48
124
307,200
n = int(input()) count = (n + 1) * [ 0 ] for a in map(int, input().split()): if a <= n: count[a] += 1 result = 0 for a in count[1:(n + 1)]: if a == 0: result += 1 print(result)
Title: Permutation Time Limit: None seconds Memory Limit: None megabytes Problem Description: "Hey, it's homework time" — thought Polycarpus and of course he started with his favourite subject, IT. Polycarpus managed to solve all tasks but for the last one in 20 minutes. However, as he failed to solve the last task after some considerable time, the boy asked you to help him. The sequence of *n* integers is called a permutation if it contains all integers from 1 to *n* exactly once. You are given an arbitrary sequence *a*1,<=*a*2,<=...,<=*a**n* containing *n* integers. Each integer is not less than 1 and not greater than 5000. Determine what minimum number of elements Polycarpus needs to change to get a permutation (he should not delete or add numbers). In a single change he can modify any single sequence element (i. e. replace it with another integer). Input Specification: The first line of the input data contains an integer *n* (1<=≤<=*n*<=≤<=5000) which represents how many numbers are in the sequence. The second line contains a sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=5000,<=1<=≤<=*i*<=≤<=*n*). Output Specification: Print the only number — the minimum number of changes needed to get the permutation. Demo Input: ['3\n3 1 2\n', '2\n2 2\n', '5\n5 3 3 3 1\n'] Demo Output: ['0\n', '1\n', '2\n'] Note: The first sample contains the permutation, which is why no replacements are required. In the second sample it is enough to replace the first element with the number 1 and that will make the sequence the needed permutation. In the third sample we can replace the second element with number 4 and the fourth element with number 2.
```python n = int(input()) count = (n + 1) * [ 0 ] for a in map(int, input().split()): if a <= n: count[a] += 1 result = 0 for a in count[1:(n + 1)]: if a == 0: result += 1 print(result) ```
3
678
A
Johny Likes Numbers
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Johny likes numbers *n* and *k* very much. Now Johny wants to find the smallest integer *x* greater than *n*, so it is divisible by the number *k*.
The only line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=109).
Print the smallest integer *x*<=&gt;<=*n*, so it is divisible by the number *k*.
[ "5 3\n", "25 13\n", "26 13\n" ]
[ "6\n", "26\n", "39\n" ]
none
0
[ { "input": "5 3", "output": "6" }, { "input": "25 13", "output": "26" }, { "input": "26 13", "output": "39" }, { "input": "1 1", "output": "2" }, { "input": "8 8", "output": "16" }, { "input": "14 15", "output": "15" }, { "input": "197 894", "output": "894" }, { "input": "6058 8581", "output": "8581" }, { "input": "97259 41764", "output": "125292" }, { "input": "453145 333625", "output": "667250" }, { "input": "2233224 4394826", "output": "4394826" }, { "input": "76770926 13350712", "output": "80104272" }, { "input": "687355301 142098087", "output": "710490435" }, { "input": "1000000000 999999999", "output": "1999999998" }, { "input": "1000000000 1000000000", "output": "2000000000" }, { "input": "999999999 1000000000", "output": "1000000000" }, { "input": "1000000000 1", "output": "1000000001" }, { "input": "1000000000 2", "output": "1000000002" }, { "input": "999999999 1", "output": "1000000000" }, { "input": "100000000 1", "output": "100000001" }, { "input": "999999999 500000000", "output": "1000000000" }, { "input": "999999990 10", "output": "1000000000" }, { "input": "1000000000 999999997", "output": "1999999994" }, { "input": "999999999 2", "output": "1000000000" }, { "input": "999999984 1", "output": "999999985" }, { "input": "999999983 1", "output": "999999984" }, { "input": "666666666 1", "output": "666666667" }, { "input": "1000000000 990000000", "output": "1980000000" }, { "input": "41 48", "output": "48" }, { "input": "123456 2", "output": "123458" }, { "input": "111 111", "output": "222" }, { "input": "878787 1", "output": "878788" }, { "input": "121 1", "output": "122" }, { "input": "114514 114514", "output": "229028" }, { "input": "500000001 1000000000", "output": "1000000000" }, { "input": "999999997 1", "output": "999999998" }, { "input": "100000000 10", "output": "100000010" } ]
1,605,354,006
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
92
0
# https://codeforces.com/problemset/problem/678/A n, k = map(int, input().split()) x = n % k if x != 0: print(k - x) else: print(n + k)
Title: Johny Likes Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: Johny likes numbers *n* and *k* very much. Now Johny wants to find the smallest integer *x* greater than *n*, so it is divisible by the number *k*. Input Specification: The only line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=109). Output Specification: Print the smallest integer *x*<=&gt;<=*n*, so it is divisible by the number *k*. Demo Input: ['5 3\n', '25 13\n', '26 13\n'] Demo Output: ['6\n', '26\n', '39\n'] Note: none
```python # https://codeforces.com/problemset/problem/678/A n, k = map(int, input().split()) x = n % k if x != 0: print(k - x) else: print(n + k) ```
0
8
A
Train and Peter
PROGRAMMING
1,200
[ "strings" ]
A. Train and Peter
1
64
Peter likes to travel by train. He likes it so much that on the train he falls asleep. Once in summer Peter was going by train from city A to city B, and as usual, was sleeping. Then he woke up, started to look through the window and noticed that every railway station has a flag of a particular colour. The boy started to memorize the order of the flags' colours that he had seen. But soon he fell asleep again. Unfortunately, he didn't sleep long, he woke up and went on memorizing the colours. Then he fell asleep again, and that time he slept till the end of the journey. At the station he told his parents about what he was doing, and wrote two sequences of the colours that he had seen before and after his sleep, respectively. Peter's parents know that their son likes to fantasize. They give you the list of the flags' colours at the stations that the train passes sequentially on the way from A to B, and ask you to find out if Peter could see those sequences on the way from A to B, or from B to A. Remember, please, that Peter had two periods of wakefulness. Peter's parents put lowercase Latin letters for colours. The same letter stands for the same colour, different letters — for different colours.
The input data contains three lines. The first line contains a non-empty string, whose length does not exceed 105, the string consists of lowercase Latin letters — the flags' colours at the stations on the way from A to B. On the way from B to A the train passes the same stations, but in reverse order. The second line contains the sequence, written by Peter during the first period of wakefulness. The third line contains the sequence, written during the second period of wakefulness. Both sequences are non-empty, consist of lowercase Latin letters, and the length of each does not exceed 100 letters. Each of the sequences is written in chronological order.
Output one of the four words without inverted commas: - «forward» — if Peter could see such sequences only on the way from A to B; - «backward» — if Peter could see such sequences on the way from B to A; - «both» — if Peter could see such sequences both on the way from A to B, and on the way from B to A; - «fantasy» — if Peter could not see such sequences.
[ "atob\na\nb\n", "aaacaaa\naca\naa\n" ]
[ "forward\n", "both\n" ]
It is assumed that the train moves all the time, so one flag cannot be seen twice. There are no flags at stations A and B.
0
[ { "input": "atob\na\nb", "output": "forward" }, { "input": "aaacaaa\naca\naa", "output": "both" }, { "input": "aaa\naa\naa", "output": "fantasy" }, { "input": "astalavista\nastla\nlavista", "output": "fantasy" }, { "input": "abacabadabacaba\nabacaba\nabacaba", "output": "both" }, { "input": "a\na\na", "output": "fantasy" }, { "input": "ab\nb\na", "output": "backward" }, { "input": "aaa\naaaa\naaaa", "output": "fantasy" }, { "input": "bbabbbbababbaabaabaa\nabb\nbaab", "output": "forward" }, { "input": "bbbbbbbbbbbbbbbbbbbbbbbbb\nbbbb\nbbbbb", "output": "both" }, { "input": "babaabababaaaababaabababaabababababababbababbbabbaabababaababbaabbababaababaaabababaabbaababaaababaa\nabaabababaa\nabaabbaa", "output": "forward" }, { "input": "bbbbbbbbbbbbbbbbbbbbbbbbb\nbbbb\nbbbbb", "output": "both" }, { "input": "aababaaababaabbaabababaaababaabababbaabbabaabababaabbabbbababbababababababaabababaababaaaabababaabab\nabaabababaa\nabaabbaa", "output": "backward" }, { "input": "aaaa\naaa\naa", "output": "fantasy" }, { "input": "zzzz\nzz\nzzz", "output": "fantasy" }, { "input": "zzzz\nzzzz\nzzzz", "output": "fantasy" }, { "input": "zzzz\nzz\nzz", "output": "both" }, { "input": "aabaa\naab\nbaa", "output": "fantasy" }, { "input": "aabaab\naba\nab", "output": "forward" }, { "input": "aab\nb\naa", "output": "backward" }, { "input": "abacaba\naca\nba", "output": "both" } ]
1,413,138,403
2,147,483,647
Python 3
OK
TESTS
54
186
307,200
n = input() a = input() b = input() m = n[::-1] i = n.find(a) x = False if i != -1 : n = n[i+len(a)::1] j = n.find(b) if j != -1 : x = True i = m.find(a) y = False if i != -1 : m = m[i+len(a)::1] j = m.find(b) if j != -1 : y = True if x and y : print('both') elif x : print('forward') elif y : print('backward') else : print('fantasy')
Title: Train and Peter Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Peter likes to travel by train. He likes it so much that on the train he falls asleep. Once in summer Peter was going by train from city A to city B, and as usual, was sleeping. Then he woke up, started to look through the window and noticed that every railway station has a flag of a particular colour. The boy started to memorize the order of the flags' colours that he had seen. But soon he fell asleep again. Unfortunately, he didn't sleep long, he woke up and went on memorizing the colours. Then he fell asleep again, and that time he slept till the end of the journey. At the station he told his parents about what he was doing, and wrote two sequences of the colours that he had seen before and after his sleep, respectively. Peter's parents know that their son likes to fantasize. They give you the list of the flags' colours at the stations that the train passes sequentially on the way from A to B, and ask you to find out if Peter could see those sequences on the way from A to B, or from B to A. Remember, please, that Peter had two periods of wakefulness. Peter's parents put lowercase Latin letters for colours. The same letter stands for the same colour, different letters — for different colours. Input Specification: The input data contains three lines. The first line contains a non-empty string, whose length does not exceed 105, the string consists of lowercase Latin letters — the flags' colours at the stations on the way from A to B. On the way from B to A the train passes the same stations, but in reverse order. The second line contains the sequence, written by Peter during the first period of wakefulness. The third line contains the sequence, written during the second period of wakefulness. Both sequences are non-empty, consist of lowercase Latin letters, and the length of each does not exceed 100 letters. Each of the sequences is written in chronological order. Output Specification: Output one of the four words without inverted commas: - «forward» — if Peter could see such sequences only on the way from A to B; - «backward» — if Peter could see such sequences on the way from B to A; - «both» — if Peter could see such sequences both on the way from A to B, and on the way from B to A; - «fantasy» — if Peter could not see such sequences. Demo Input: ['atob\na\nb\n', 'aaacaaa\naca\naa\n'] Demo Output: ['forward\n', 'both\n'] Note: It is assumed that the train moves all the time, so one flag cannot be seen twice. There are no flags at stations A and B.
```python n = input() a = input() b = input() m = n[::-1] i = n.find(a) x = False if i != -1 : n = n[i+len(a)::1] j = n.find(b) if j != -1 : x = True i = m.find(a) y = False if i != -1 : m = m[i+len(a)::1] j = m.find(b) if j != -1 : y = True if x and y : print('both') elif x : print('forward') elif y : print('backward') else : print('fantasy') ```
3.904711
590
A
Median Smoothing
PROGRAMMING
1,700
[ "implementation" ]
null
null
A schoolboy named Vasya loves reading books on programming and mathematics. He has recently read an encyclopedia article that described the method of median smoothing (or median filter) and its many applications in science and engineering. Vasya liked the idea of the method very much, and he decided to try it in practice. Applying the simplest variant of median smoothing to the sequence of numbers *a*1,<=*a*2,<=...,<=*a**n* will result a new sequence *b*1,<=*b*2,<=...,<=*b**n* obtained by the following algorithm: - *b*1<==<=*a*1, *b**n*<==<=*a**n*, that is, the first and the last number of the new sequence match the corresponding numbers of the original sequence. - For *i*<==<=2,<=...,<=*n*<=-<=1 value *b**i* is equal to the median of three values *a**i*<=-<=1, *a**i* and *a**i*<=+<=1. The median of a set of three numbers is the number that goes on the second place, when these three numbers are written in the non-decreasing order. For example, the median of the set 5, 1, 2 is number 2, and the median of set 1, 0, 1 is equal to 1. In order to make the task easier, Vasya decided to apply the method to sequences consisting of zeros and ones only. Having made the procedure once, Vasya looked at the resulting sequence and thought: what if I apply the algorithm to it once again, and then apply it to the next result, and so on? Vasya tried a couple of examples and found out that after some number of median smoothing algorithm applications the sequence can stop changing. We say that the sequence is stable, if it does not change when the median smoothing is applied to it. Now Vasya wonders, whether the sequence always eventually becomes stable. He asks you to write a program that, given a sequence of zeros and ones, will determine whether it ever becomes stable. Moreover, if it ever becomes stable, then you should determine what will it look like and how many times one needs to apply the median smoothing algorithm to initial sequence in order to obtain a stable one.
The first input line of the input contains a single integer *n* (3<=≤<=*n*<=≤<=500<=000) — the length of the initial sequence. The next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (*a**i*<==<=0 or *a**i*<==<=1), giving the initial sequence itself.
If the sequence will never become stable, print a single number <=-<=1. Otherwise, first print a single integer — the minimum number of times one needs to apply the median smoothing algorithm to the initial sequence before it becomes is stable. In the second line print *n* numbers separated by a space  — the resulting sequence itself.
[ "4\n0 0 1 1\n", "5\n0 1 0 1 0\n" ]
[ "0\n0 0 1 1\n", "2\n0 0 0 0 0\n" ]
In the second sample the stabilization occurs in two steps: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/5a983e7baab048cbe43812cb997c15e9d7100231.png" style="max-width: 100.0%;max-height: 100.0%;"/>, and the sequence 00000 is obviously stable.
750
[ { "input": "4\n0 0 1 1", "output": "0\n0 0 1 1" }, { "input": "5\n0 1 0 1 0", "output": "2\n0 0 0 0 0" }, { "input": "3\n1 0 0", "output": "0\n1 0 0" }, { "input": "4\n1 0 0 1", "output": "0\n1 0 0 1" }, { "input": "7\n1 0 1 1 1 0 1", "output": "1\n1 1 1 1 1 1 1" }, { "input": "14\n0 1 0 0 0 1 1 0 1 0 1 0 1 0", "output": "3\n0 0 0 0 0 1 1 1 1 1 0 0 0 0" }, { "input": "3\n1 0 1", "output": "1\n1 1 1" }, { "input": "3\n0 0 1", "output": "0\n0 0 1" }, { "input": "3\n1 1 0", "output": "0\n1 1 0" }, { "input": "3\n1 1 1", "output": "0\n1 1 1" }, { "input": "4\n1 1 0 1", "output": "1\n1 1 1 1" }, { "input": "4\n1 0 1 1", "output": "1\n1 1 1 1" }, { "input": "10\n0 1 0 1 0 0 1 0 1 0", "output": "2\n0 0 0 0 0 0 0 0 0 0" }, { "input": "4\n0 1 1 0", "output": "0\n0 1 1 0" }, { "input": "168\n0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0", "output": "36\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0" }, { "input": "3\n0 1 1", "output": "0\n0 1 1" }, { "input": "3\n0 0 0", "output": "0\n0 0 0" }, { "input": "4\n0 1 0 1", "output": "1\n0 0 1 1" }, { "input": "3\n0 1 0", "output": "1\n0 0 0" } ]
1,473,737,983
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
46
0
I=input n=int(I()) a=I() print(['0\n'+a,str(a.count('01'[a[0]<'1']))+'\n'+(a[0]+' ')*n][a[0]==a[-1]])
Title: Median Smoothing Time Limit: None seconds Memory Limit: None megabytes Problem Description: A schoolboy named Vasya loves reading books on programming and mathematics. He has recently read an encyclopedia article that described the method of median smoothing (or median filter) and its many applications in science and engineering. Vasya liked the idea of the method very much, and he decided to try it in practice. Applying the simplest variant of median smoothing to the sequence of numbers *a*1,<=*a*2,<=...,<=*a**n* will result a new sequence *b*1,<=*b*2,<=...,<=*b**n* obtained by the following algorithm: - *b*1<==<=*a*1, *b**n*<==<=*a**n*, that is, the first and the last number of the new sequence match the corresponding numbers of the original sequence. - For *i*<==<=2,<=...,<=*n*<=-<=1 value *b**i* is equal to the median of three values *a**i*<=-<=1, *a**i* and *a**i*<=+<=1. The median of a set of three numbers is the number that goes on the second place, when these three numbers are written in the non-decreasing order. For example, the median of the set 5, 1, 2 is number 2, and the median of set 1, 0, 1 is equal to 1. In order to make the task easier, Vasya decided to apply the method to sequences consisting of zeros and ones only. Having made the procedure once, Vasya looked at the resulting sequence and thought: what if I apply the algorithm to it once again, and then apply it to the next result, and so on? Vasya tried a couple of examples and found out that after some number of median smoothing algorithm applications the sequence can stop changing. We say that the sequence is stable, if it does not change when the median smoothing is applied to it. Now Vasya wonders, whether the sequence always eventually becomes stable. He asks you to write a program that, given a sequence of zeros and ones, will determine whether it ever becomes stable. Moreover, if it ever becomes stable, then you should determine what will it look like and how many times one needs to apply the median smoothing algorithm to initial sequence in order to obtain a stable one. Input Specification: The first input line of the input contains a single integer *n* (3<=≤<=*n*<=≤<=500<=000) — the length of the initial sequence. The next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (*a**i*<==<=0 or *a**i*<==<=1), giving the initial sequence itself. Output Specification: If the sequence will never become stable, print a single number <=-<=1. Otherwise, first print a single integer — the minimum number of times one needs to apply the median smoothing algorithm to the initial sequence before it becomes is stable. In the second line print *n* numbers separated by a space  — the resulting sequence itself. Demo Input: ['4\n0 0 1 1\n', '5\n0 1 0 1 0\n'] Demo Output: ['0\n0 0 1 1\n', '2\n0 0 0 0 0\n'] Note: In the second sample the stabilization occurs in two steps: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/5a983e7baab048cbe43812cb997c15e9d7100231.png" style="max-width: 100.0%;max-height: 100.0%;"/>, and the sequence 00000 is obviously stable.
```python I=input n=int(I()) a=I() print(['0\n'+a,str(a.count('01'[a[0]<'1']))+'\n'+(a[0]+' ')*n][a[0]==a[-1]]) ```
0
47
B
Coins
PROGRAMMING
1,200
[ "implementation" ]
B. Coins
2
256
One day Vasya came across three Berland coins. They didn't have any numbers that's why Vasya didn't understand how their denominations differ. He supposed that if one coin is heavier than the other one, then it should be worth more. Vasya weighed all the three pairs of coins on pan balance scales and told you the results. Find out how the deminations of the coins differ or if Vasya has a mistake in the weighting results. No two coins are equal.
The input data contains the results of all the weighting, one result on each line. It is guaranteed that every coin pair was weighted exactly once. Vasya labelled the coins with letters «A», «B» and «C». Each result is a line that appears as (letter)(&gt; or &lt; sign)(letter). For example, if coin "A" proved lighter than coin "B", the result of the weighting is A&lt;B.
It the results are contradictory, print Impossible. Otherwise, print without spaces the rearrangement of letters «A», «B» and «C» which represent the coins in the increasing order of their weights.
[ "A&gt;B\nC&lt;B\nA&gt;C\n", "A&lt;B\nB&gt;C\nC&gt;A\n" ]
[ "CBA", "ACB" ]
none
1,000
[ { "input": "A>B\nC<B\nA>C", "output": "CBA" }, { "input": "A<B\nB>C\nC>A", "output": "ACB" }, { "input": "A<C\nB<A\nB>C", "output": "Impossible" }, { "input": "A<B\nA<C\nB>C", "output": "ACB" }, { "input": "B>A\nC<B\nC>A", "output": "ACB" }, { "input": "A>B\nB>C\nC<A", "output": "CBA" }, { "input": "A>C\nA>B\nB<C", "output": "BCA" }, { "input": "C<B\nB>A\nA<C", "output": "ACB" }, { "input": "C<B\nA>B\nC<A", "output": "CBA" }, { "input": "C>B\nB>A\nA<C", "output": "ABC" }, { "input": "C<B\nB<A\nC>A", "output": "Impossible" }, { "input": "B<C\nC<A\nA>B", "output": "BCA" }, { "input": "A>B\nC<B\nC<A", "output": "CBA" }, { "input": "B>A\nC>B\nA>C", "output": "Impossible" }, { "input": "B<A\nC>B\nC>A", "output": "BAC" }, { "input": "A<B\nC>B\nA<C", "output": "ABC" }, { "input": "A<B\nC<A\nB<C", "output": "Impossible" }, { "input": "A>C\nC<B\nB>A", "output": "CAB" }, { "input": "C>A\nA<B\nB>C", "output": "ACB" }, { "input": "C>A\nC<B\nB>A", "output": "ACB" }, { "input": "B>C\nB>A\nA<C", "output": "ACB" }, { "input": "C<B\nC<A\nB<A", "output": "CBA" }, { "input": "A<C\nA<B\nB>C", "output": "ACB" }, { "input": "B>A\nA>C\nB>C", "output": "CAB" }, { "input": "B<A\nA<C\nC<B", "output": "Impossible" }, { "input": "A<C\nB>C\nA>B", "output": "Impossible" }, { "input": "B>A\nC<A\nC>B", "output": "Impossible" }, { "input": "A>C\nC>B\nB<A", "output": "BCA" }, { "input": "B<C\nB<A\nA>C", "output": "BCA" }, { "input": "A>B\nC>B\nA<C", "output": "BAC" }, { "input": "C<B\nC<A\nB<A", "output": "CBA" }, { "input": "A<C\nA>B\nB>C", "output": "Impossible" }, { "input": "B>A\nB>C\nA<C", "output": "ACB" }, { "input": "B>C\nC<A\nB<A", "output": "CBA" }, { "input": "C>A\nB>A\nB>C", "output": "ACB" }, { "input": "B<A\nB>C\nA<C", "output": "Impossible" }, { "input": "B<C\nA<B\nC>A", "output": "ABC" }, { "input": "C<B\nB>A\nA>C", "output": "CAB" }, { "input": "A>B\nC>A\nB<C", "output": "BAC" }, { "input": "A>B\nB>C\nC<A", "output": "CBA" }, { "input": "B>C\nC>A\nA>B", "output": "Impossible" }, { "input": "B<A\nB>C\nC<A", "output": "CBA" }, { "input": "C>B\nB>A\nC>A", "output": "ABC" }, { "input": "A>C\nA>B\nB>C", "output": "CBA" }, { "input": "B<C\nA>B\nA<C", "output": "BAC" }, { "input": "C>A\nC<B\nB>A", "output": "ACB" }, { "input": "C>B\nA<B\nC<A", "output": "Impossible" }, { "input": "A<C\nC<B\nA>B", "output": "Impossible" }, { "input": "B>C\nA<B\nA<C", "output": "ACB" }, { "input": "C>A\nA<B\nC>B", "output": "ABC" } ]
1,663,459,069
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
30
0
check = [] counter = 0 for i in range(0 , 3): x = input().split('>') if len(x) == 1: x = x[0].split('<') arr[index[x[1]]]['count'] += 1 else : arr[index[x[0]]]['count'] += 1 def value(key) : return key['count'] arr.sort(key=value) for i in arr : if not i['count'] in check: check.append(i['count']) counter +=1 if counter == 3 : for i in arr : print(i['let'] , end='') else : print('Impossible')
Title: Coins Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: One day Vasya came across three Berland coins. They didn't have any numbers that's why Vasya didn't understand how their denominations differ. He supposed that if one coin is heavier than the other one, then it should be worth more. Vasya weighed all the three pairs of coins on pan balance scales and told you the results. Find out how the deminations of the coins differ or if Vasya has a mistake in the weighting results. No two coins are equal. Input Specification: The input data contains the results of all the weighting, one result on each line. It is guaranteed that every coin pair was weighted exactly once. Vasya labelled the coins with letters «A», «B» and «C». Each result is a line that appears as (letter)(&gt; or &lt; sign)(letter). For example, if coin "A" proved lighter than coin "B", the result of the weighting is A&lt;B. Output Specification: It the results are contradictory, print Impossible. Otherwise, print without spaces the rearrangement of letters «A», «B» and «C» which represent the coins in the increasing order of their weights. Demo Input: ['A&gt;B\nC&lt;B\nA&gt;C\n', 'A&lt;B\nB&gt;C\nC&gt;A\n'] Demo Output: ['CBA', 'ACB'] Note: none
```python check = [] counter = 0 for i in range(0 , 3): x = input().split('>') if len(x) == 1: x = x[0].split('<') arr[index[x[1]]]['count'] += 1 else : arr[index[x[0]]]['count'] += 1 def value(key) : return key['count'] arr.sort(key=value) for i in arr : if not i['count'] in check: check.append(i['count']) counter +=1 if counter == 3 : for i in arr : print(i['let'] , end='') else : print('Impossible') ```
-1
845
C
Two TVs
PROGRAMMING
1,500
[ "data structures", "greedy", "sortings" ]
null
null
Polycarp is a great fan of television. He wrote down all the TV programs he is interested in for today. His list contains *n* shows, *i*-th of them starts at moment *l**i* and ends at moment *r**i*. Polycarp owns two TVs. He can watch two different shows simultaneously with two TVs but he can only watch one show at any given moment on a single TV. If one show ends at the same moment some other show starts then you can't watch them on a single TV. Polycarp wants to check out all *n* shows. Are two TVs enough to do so?
The first line contains one integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of shows. Each of the next *n* lines contains two integers *l**i* and *r**i* (0<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=109) — starting and ending time of *i*-th show.
If Polycarp is able to check out all the shows using only two TVs then print "YES" (without quotes). Otherwise, print "NO" (without quotes).
[ "3\n1 2\n2 3\n4 5\n", "4\n1 2\n2 3\n2 3\n1 2\n" ]
[ "YES\n", "NO\n" ]
none
0
[ { "input": "3\n1 2\n2 3\n4 5", "output": "YES" }, { "input": "4\n1 2\n2 3\n2 3\n1 2", "output": "NO" }, { "input": "4\n0 1\n1 2\n2 3\n3 4", "output": "YES" }, { "input": "3\n1 2\n2 3\n2 4", "output": "NO" }, { "input": "3\n0 100\n0 100\n0 100", "output": "NO" }, { "input": "1\n0 1000000000", "output": "YES" }, { "input": "2\n0 1\n0 1", "output": "YES" }, { "input": "3\n2 3\n4 5\n1 6", "output": "YES" }, { "input": "5\n1 3\n1 4\n4 10\n5 8\n9 11", "output": "YES" }, { "input": "3\n1 2\n1 2\n2 3", "output": "NO" }, { "input": "4\n1 100\n10 15\n20 25\n30 35", "output": "YES" }, { "input": "3\n1 8\n6 7\n8 11", "output": "YES" }, { "input": "5\n1 2\n3 5\n4 7\n8 9\n5 10", "output": "NO" }, { "input": "4\n1 7\n2 3\n4 5\n6 7", "output": "YES" }, { "input": "4\n1 100\n50 51\n60 90\n51 52", "output": "NO" }, { "input": "3\n1 10\n2 9\n3 8", "output": "NO" }, { "input": "2\n0 4\n0 4", "output": "YES" }, { "input": "2\n0 2\n0 6", "output": "YES" }, { "input": "5\n3 4\n21 26\n12 17\n9 14\n15 16", "output": "YES" }, { "input": "5\n1 4\n13 15\n11 12\n9 15\n2 5", "output": "YES" }, { "input": "4\n16 19\n9 14\n14 15\n15 19", "output": "YES" }, { "input": "5\n16 19\n23 29\n3 8\n23 26\n22 23", "output": "NO" }, { "input": "5\n19 23\n12 17\n16 21\n20 23\n8 10", "output": "NO" }, { "input": "5\n8 10\n4 10\n3 4\n14 15\n17 19", "output": "YES" }, { "input": "3\n2 8\n5 7\n6 7", "output": "NO" }, { "input": "5\n10 12\n4 6\n21 24\n9 12\n7 13", "output": "NO" }, { "input": "5\n0 3\n14 16\n6 8\n5 9\n9 15", "output": "YES" }, { "input": "5\n6 12\n23 25\n6 7\n19 25\n10 11", "output": "YES" }, { "input": "5\n15 18\n23 24\n23 28\n22 24\n15 19", "output": "NO" }, { "input": "4\n1 8\n8 9\n5 7\n1 4", "output": "YES" }, { "input": "3\n6 10\n1 9\n2 5", "output": "YES" }, { "input": "3\n1 8\n5 6\n6 9", "output": "NO" }, { "input": "4\n2 3\n5 9\n8 10\n9 10", "output": "NO" }, { "input": "4\n0 8\n6 7\n5 9\n1 4", "output": "NO" }, { "input": "3\n6 9\n0 1\n0 2", "output": "YES" }, { "input": "5\n0 6\n21 25\n18 19\n0 3\n6 12", "output": "YES" }, { "input": "4\n1 5\n6 9\n4 8\n1 3", "output": "YES" }, { "input": "2\n2 5\n0 5", "output": "YES" }, { "input": "4\n5 8\n11 15\n3 7\n10 14", "output": "YES" }, { "input": "3\n12 14\n0 4\n2 3", "output": "YES" }, { "input": "4\n4 10\n0 1\n2 10\n0 5", "output": "NO" }, { "input": "4\n0 3\n0 1\n2 4\n2 5", "output": "NO" } ]
1,588,065,642
2,147,483,647
PyPy 3
OK
TESTS
58
748
16,076,800
import io, os import sys from atexit import register input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline sys.stdout = io.BytesIO() register(lambda: os.write(1, sys.stdout.getvalue())) tokens = [] tokens_next = 0 def nextStr(): global tokens, tokens_next while tokens_next >= len(tokens): tokens = input().split() tokens_next = 0 tokens_next += 1 if type(tokens[tokens_next - 1]) == str: return tokens[tokens_next - 1] return tokens[tokens_next - 1].decode() def nextInt(): return int(nextStr()) def nextIntArr(n): return [nextInt() for i in range(n)] def print(s, end='\n'): sys.stdout.write((str(s) + end).encode()) def solve(shows): tv1 = None tv2 = None for cur in sorted(shows): if not tv1 or tv1[1] < cur[0]: tv1 = cur continue elif not tv2 or tv2[1] < cur[0]: tv2 = cur continue return 'NO' return 'YES' n = nextInt() shows = [(nextInt(), nextInt()) for _ in range(n)] print(solve(shows))
Title: Two TVs Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp is a great fan of television. He wrote down all the TV programs he is interested in for today. His list contains *n* shows, *i*-th of them starts at moment *l**i* and ends at moment *r**i*. Polycarp owns two TVs. He can watch two different shows simultaneously with two TVs but he can only watch one show at any given moment on a single TV. If one show ends at the same moment some other show starts then you can't watch them on a single TV. Polycarp wants to check out all *n* shows. Are two TVs enough to do so? Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of shows. Each of the next *n* lines contains two integers *l**i* and *r**i* (0<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=109) — starting and ending time of *i*-th show. Output Specification: If Polycarp is able to check out all the shows using only two TVs then print "YES" (without quotes). Otherwise, print "NO" (without quotes). Demo Input: ['3\n1 2\n2 3\n4 5\n', '4\n1 2\n2 3\n2 3\n1 2\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python import io, os import sys from atexit import register input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline sys.stdout = io.BytesIO() register(lambda: os.write(1, sys.stdout.getvalue())) tokens = [] tokens_next = 0 def nextStr(): global tokens, tokens_next while tokens_next >= len(tokens): tokens = input().split() tokens_next = 0 tokens_next += 1 if type(tokens[tokens_next - 1]) == str: return tokens[tokens_next - 1] return tokens[tokens_next - 1].decode() def nextInt(): return int(nextStr()) def nextIntArr(n): return [nextInt() for i in range(n)] def print(s, end='\n'): sys.stdout.write((str(s) + end).encode()) def solve(shows): tv1 = None tv2 = None for cur in sorted(shows): if not tv1 or tv1[1] < cur[0]: tv1 = cur continue elif not tv2 or tv2[1] < cur[0]: tv2 = cur continue return 'NO' return 'YES' n = nextInt() shows = [(nextInt(), nextInt()) for _ in range(n)] print(solve(shows)) ```
3
217
A
Ice Skating
PROGRAMMING
1,200
[ "brute force", "dfs and similar", "dsu", "graphs" ]
null
null
Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created. We assume that Bajtek can only heap up snow drifts at integer coordinates.
The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift. Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct.
Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.
[ "2\n2 1\n1 2\n", "2\n2 1\n4 1\n" ]
[ "1\n", "0\n" ]
none
500
[ { "input": "2\n2 1\n1 2", "output": "1" }, { "input": "2\n2 1\n4 1", "output": "0" }, { "input": "24\n171 35\n261 20\n4 206\n501 446\n961 912\n581 748\n946 978\n463 514\n841 889\n341 466\n842 967\n54 102\n235 261\n925 889\n682 672\n623 636\n268 94\n635 710\n474 510\n697 794\n586 663\n182 184\n806 663\n468 459", "output": "21" }, { "input": "17\n660 646\n440 442\n689 618\n441 415\n922 865\n950 972\n312 366\n203 229\n873 860\n219 199\n344 308\n169 176\n961 992\n153 84\n201 230\n987 938\n834 815", "output": "16" }, { "input": "11\n798 845\n722 911\n374 270\n629 537\n748 856\n831 885\n486 641\n751 829\n609 492\n98 27\n654 663", "output": "10" }, { "input": "1\n321 88", "output": "0" }, { "input": "9\n811 859\n656 676\n76 141\n945 951\n497 455\n18 55\n335 294\n267 275\n656 689", "output": "7" }, { "input": "7\n948 946\n130 130\n761 758\n941 938\n971 971\n387 385\n509 510", "output": "6" }, { "input": "6\n535 699\n217 337\n508 780\n180 292\n393 112\n732 888", "output": "5" }, { "input": "14\n25 23\n499 406\n193 266\n823 751\n219 227\n101 138\n978 992\n43 74\n997 932\n237 189\n634 538\n774 740\n842 767\n742 802", "output": "13" }, { "input": "12\n548 506\n151 198\n370 380\n655 694\n654 690\n407 370\n518 497\n819 827\n765 751\n802 771\n741 752\n653 662", "output": "11" }, { "input": "40\n685 711\n433 403\n703 710\n491 485\n616 619\n288 282\n884 871\n367 352\n500 511\n977 982\n51 31\n576 564\n508 519\n755 762\n22 20\n368 353\n232 225\n953 955\n452 436\n311 330\n967 988\n369 364\n791 803\n150 149\n651 661\n118 93\n398 387\n748 766\n852 852\n230 228\n555 545\n515 519\n667 678\n867 862\n134 146\n859 863\n96 99\n486 469\n303 296\n780 786", "output": "38" }, { "input": "3\n175 201\n907 909\n388 360", "output": "2" }, { "input": "7\n312 298\n86 78\n73 97\n619 594\n403 451\n538 528\n71 86", "output": "6" }, { "input": "19\n802 820\n368 248\n758 794\n455 378\n876 888\n771 814\n245 177\n586 555\n844 842\n364 360\n820 856\n731 624\n982 975\n825 856\n122 121\n862 896\n42 4\n792 841\n828 820", "output": "16" }, { "input": "32\n643 877\n842 614\n387 176\n99 338\n894 798\n652 728\n611 648\n622 694\n579 781\n243 46\n322 305\n198 438\n708 579\n246 325\n536 459\n874 593\n120 277\n989 907\n223 110\n35 130\n761 692\n690 661\n518 766\n226 93\n678 597\n725 617\n661 574\n775 496\n56 416\n14 189\n358 359\n898 901", "output": "31" }, { "input": "32\n325 327\n20 22\n72 74\n935 933\n664 663\n726 729\n785 784\n170 171\n315 314\n577 580\n984 987\n313 317\n434 435\n962 961\n55 54\n46 44\n743 742\n434 433\n617 612\n332 332\n883 886\n940 936\n793 792\n645 644\n611 607\n418 418\n465 465\n219 218\n167 164\n56 54\n403 405\n210 210", "output": "29" }, { "input": "32\n652 712\n260 241\n27 154\n188 16\n521 351\n518 356\n452 540\n790 827\n339 396\n336 551\n897 930\n828 627\n27 168\n180 113\n134 67\n794 671\n812 711\n100 241\n686 813\n138 289\n384 506\n884 932\n913 959\n470 508\n730 734\n373 478\n788 862\n392 426\n148 68\n113 49\n713 852\n924 894", "output": "29" }, { "input": "14\n685 808\n542 677\n712 747\n832 852\n187 410\n399 338\n626 556\n530 635\n267 145\n215 209\n559 684\n944 949\n753 596\n601 823", "output": "13" }, { "input": "5\n175 158\n16 2\n397 381\n668 686\n957 945", "output": "4" }, { "input": "5\n312 284\n490 509\n730 747\n504 497\n782 793", "output": "4" }, { "input": "2\n802 903\n476 348", "output": "1" }, { "input": "4\n325 343\n425 442\n785 798\n275 270", "output": "3" }, { "input": "28\n462 483\n411 401\n118 94\n111 127\n5 6\n70 52\n893 910\n73 63\n818 818\n182 201\n642 633\n900 886\n893 886\n684 700\n157 173\n953 953\n671 660\n224 225\n832 801\n152 157\n601 585\n115 101\n739 722\n611 606\n659 642\n461 469\n702 689\n649 653", "output": "25" }, { "input": "36\n952 981\n885 900\n803 790\n107 129\n670 654\n143 132\n66 58\n813 819\n849 837\n165 198\n247 228\n15 39\n619 618\n105 138\n868 855\n965 957\n293 298\n613 599\n227 212\n745 754\n723 704\n877 858\n503 487\n678 697\n592 595\n155 135\n962 982\n93 89\n660 673\n225 212\n967 987\n690 680\n804 813\n489 518\n240 221\n111 124", "output": "34" }, { "input": "30\n89 3\n167 156\n784 849\n943 937\n144 95\n24 159\n80 120\n657 683\n585 596\n43 147\n909 964\n131 84\n345 389\n333 321\n91 126\n274 325\n859 723\n866 922\n622 595\n690 752\n902 944\n127 170\n426 383\n905 925\n172 284\n793 810\n414 510\n890 884\n123 24\n267 255", "output": "29" }, { "input": "5\n664 666\n951 941\n739 742\n844 842\n2 2", "output": "4" }, { "input": "3\n939 867\n411 427\n757 708", "output": "2" }, { "input": "36\n429 424\n885 972\n442 386\n512 511\n751 759\n4 115\n461 497\n496 408\n8 23\n542 562\n296 331\n448 492\n412 395\n109 166\n622 640\n379 355\n251 262\n564 586\n66 115\n275 291\n666 611\n629 534\n510 567\n635 666\n738 803\n420 369\n92 17\n101 144\n141 92\n258 258\n184 235\n492 456\n311 210\n394 357\n531 512\n634 636", "output": "34" }, { "input": "29\n462 519\n871 825\n127 335\n156 93\n576 612\n885 830\n634 779\n340 105\n744 795\n716 474\n93 139\n563 805\n137 276\n177 101\n333 14\n391 437\n873 588\n817 518\n460 597\n572 670\n140 303\n392 441\n273 120\n862 578\n670 639\n410 161\n544 577\n193 116\n252 195", "output": "28" }, { "input": "23\n952 907\n345 356\n812 807\n344 328\n242 268\n254 280\n1000 990\n80 78\n424 396\n595 608\n755 813\n383 380\n55 56\n598 633\n203 211\n508 476\n600 593\n206 192\n855 882\n517 462\n967 994\n642 657\n493 488", "output": "22" }, { "input": "10\n579 816\n806 590\n830 787\n120 278\n677 800\n16 67\n188 251\n559 560\n87 67\n104 235", "output": "8" }, { "input": "23\n420 424\n280 303\n515 511\n956 948\n799 803\n441 455\n362 369\n299 289\n823 813\n982 967\n876 878\n185 157\n529 551\n964 989\n655 656\n1 21\n114 112\n45 56\n935 937\n1000 997\n934 942\n360 366\n648 621", "output": "22" }, { "input": "23\n102 84\n562 608\n200 127\n952 999\n465 496\n322 367\n728 690\n143 147\n855 867\n861 866\n26 59\n300 273\n255 351\n192 246\n70 111\n365 277\n32 104\n298 319\n330 354\n241 141\n56 125\n315 298\n412 461", "output": "22" }, { "input": "7\n429 506\n346 307\n99 171\n853 916\n322 263\n115 157\n906 924", "output": "6" }, { "input": "3\n1 1\n2 1\n2 2", "output": "0" }, { "input": "4\n1 1\n1 2\n2 1\n2 2", "output": "0" }, { "input": "5\n1 1\n1 2\n2 2\n3 1\n3 3", "output": "0" }, { "input": "6\n1 1\n1 2\n2 2\n3 1\n3 2\n3 3", "output": "0" }, { "input": "20\n1 1\n2 2\n3 3\n3 9\n4 4\n5 2\n5 5\n5 7\n5 8\n6 2\n6 6\n6 9\n7 7\n8 8\n9 4\n9 7\n9 9\n10 2\n10 9\n10 10", "output": "1" }, { "input": "21\n1 1\n1 9\n2 1\n2 2\n2 5\n2 6\n2 9\n3 3\n3 8\n4 1\n4 4\n5 5\n5 8\n6 6\n7 7\n8 8\n9 9\n10 4\n10 10\n11 5\n11 11", "output": "1" }, { "input": "22\n1 1\n1 3\n1 4\n1 8\n1 9\n1 11\n2 2\n3 3\n4 4\n4 5\n5 5\n6 6\n6 8\n7 7\n8 3\n8 4\n8 8\n9 9\n10 10\n11 4\n11 9\n11 11", "output": "3" }, { "input": "50\n1 1\n2 2\n2 9\n3 3\n4 4\n4 9\n4 16\n4 24\n5 5\n6 6\n7 7\n8 8\n8 9\n8 20\n9 9\n10 10\n11 11\n12 12\n13 13\n14 7\n14 14\n14 16\n14 25\n15 4\n15 6\n15 15\n15 22\n16 6\n16 16\n17 17\n18 18\n19 6\n19 19\n20 20\n21 21\n22 6\n22 22\n23 23\n24 6\n24 7\n24 8\n24 9\n24 24\n25 1\n25 3\n25 5\n25 7\n25 23\n25 24\n25 25", "output": "7" }, { "input": "55\n1 1\n1 14\n2 2\n2 19\n3 1\n3 3\n3 8\n3 14\n3 23\n4 1\n4 4\n5 5\n5 8\n5 15\n6 2\n6 3\n6 4\n6 6\n7 7\n8 8\n8 21\n9 9\n10 1\n10 10\n11 9\n11 11\n12 12\n13 13\n14 14\n15 15\n15 24\n16 5\n16 16\n17 5\n17 10\n17 17\n17 18\n17 22\n17 27\n18 18\n19 19\n20 20\n21 20\n21 21\n22 22\n23 23\n24 14\n24 24\n25 25\n26 8\n26 11\n26 26\n27 3\n27 27\n28 28", "output": "5" }, { "input": "3\n1 2\n2 1\n2 2", "output": "0" }, { "input": "6\n4 4\n3 4\n5 4\n4 5\n4 3\n3 1", "output": "0" }, { "input": "4\n1 1\n1 2\n2 1\n2 2", "output": "0" }, { "input": "3\n1 1\n2 2\n1 2", "output": "0" }, { "input": "8\n1 3\n1 1\n4 1\n2 2\n2 5\n5 9\n5 1\n5 4", "output": "1" }, { "input": "10\n1 1\n1 2\n1 3\n1 4\n5 5\n6 6\n7 7\n8 8\n9 9\n100 100", "output": "6" }, { "input": "7\n1 1\n2 2\n3 3\n4 4\n1 2\n2 3\n3 4", "output": "0" }, { "input": "6\n1 1\n2 1\n2 2\n2 4\n4 3\n2 3", "output": "0" }, { "input": "4\n3 1\n2 1\n2 2\n1 2", "output": "0" }, { "input": "6\n1 1\n2 2\n2 1\n2 4\n4 3\n2 3", "output": "0" }, { "input": "3\n1 2\n1 3\n1 4", "output": "0" }, { "input": "4\n1 1\n2 2\n1 2\n2 1", "output": "0" }, { "input": "4\n1 3\n2 1\n3 2\n3 1", "output": "1" }, { "input": "7\n1 1\n1 2\n2 2\n3 3\n3 4\n4 4\n1 4", "output": "0" }, { "input": "21\n12 12\n13 12\n12 11\n13 13\n10 10\n11 10\n11 11\n501 500\n501 501\n503 502\n500 500\n503 503\n502 501\n502 502\n700 700\n702 702\n703 702\n701 701\n702 701\n703 703\n701 700", "output": "2" }, { "input": "6\n1 11\n6 8\n11 10\n1 10\n11 11\n6 9", "output": "1" }, { "input": "4\n1 1\n2 2\n3 2\n3 1", "output": "0" }, { "input": "3\n1 2\n3 4\n3 2", "output": "0" }, { "input": "3\n1 1\n1 2\n2 2", "output": "0" }, { "input": "4\n5 5\n5 4\n6 3\n6 4", "output": "0" }, { "input": "3\n1 1\n2 2\n2 1", "output": "0" } ]
1,591,055,747
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
154
0
x = int(input()) for i in range(x): y=int(input()) z=int(input()) print(1)
Title: Ice Skating Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created. We assume that Bajtek can only heap up snow drifts at integer coordinates. Input Specification: The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift. Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct. Output Specification: Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one. Demo Input: ['2\n2 1\n1 2\n', '2\n2 1\n4 1\n'] Demo Output: ['1\n', '0\n'] Note: none
```python x = int(input()) for i in range(x): y=int(input()) z=int(input()) print(1) ```
-1
912
B
New Year's Eve
PROGRAMMING
1,300
[ "bitmasks", "constructive algorithms", "number theory" ]
null
null
Since Grisha behaved well last year, at New Year's Eve he was visited by Ded Moroz who brought an enormous bag of gifts with him! The bag contains *n* sweet candies from the good ol' bakery, each labeled from 1 to *n* corresponding to its tastiness. No two candies have the same tastiness. The choice of candies has a direct effect on Grisha's happiness. One can assume that he should take the tastiest ones — but no, the holiday magic turns things upside down. It is the xor-sum of tastinesses that matters, not the ordinary sum! A xor-sum of a sequence of integers *a*1,<=*a*2,<=...,<=*a**m* is defined as the bitwise XOR of all its elements: , here denotes the bitwise XOR operation; more about bitwise XOR can be found [here.](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) Ded Moroz warned Grisha he has more houses to visit, so Grisha can take no more than *k* candies from the bag. Help Grisha determine the largest xor-sum (largest xor-sum means maximum happiness!) he can obtain.
The sole string contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=1018).
Output one number — the largest possible xor-sum.
[ "4 3\n", "6 6\n" ]
[ "7\n", "7\n" ]
In the first sample case, one optimal answer is 1, 2 and 4, giving the xor-sum of 7. In the second sample case, one can, for example, take all six candies and obtain the xor-sum of 7.
1,000
[ { "input": "4 3", "output": "7" }, { "input": "6 6", "output": "7" }, { "input": "2 2", "output": "3" }, { "input": "1022 10", "output": "1023" }, { "input": "415853337373441 52", "output": "562949953421311" }, { "input": "75 12", "output": "127" }, { "input": "1000000000000000000 1000000000000000000", "output": "1152921504606846975" }, { "input": "1 1", "output": "1" }, { "input": "1000000000000000000 2", "output": "1152921504606846975" }, { "input": "49194939 22", "output": "67108863" }, { "input": "228104606 17", "output": "268435455" }, { "input": "817034381 7", "output": "1073741823" }, { "input": "700976748 4", "output": "1073741823" }, { "input": "879886415 9", "output": "1073741823" }, { "input": "18007336 10353515", "output": "33554431" }, { "input": "196917003 154783328", "output": "268435455" }, { "input": "785846777 496205300", "output": "1073741823" }, { "input": "964756444 503568330", "output": "1073741823" }, { "input": "848698811 317703059", "output": "1073741823" }, { "input": "676400020444788 1", "output": "676400020444788" }, { "input": "502643198528213 1", "output": "502643198528213" }, { "input": "815936580997298686 684083143940282566", "output": "1152921504606846975" }, { "input": "816762824175382110 752185261508428780", "output": "1152921504606846975" }, { "input": "327942415253132295 222598158321260499", "output": "576460752303423487" }, { "input": "328768654136248423 284493129147496637", "output": "576460752303423487" }, { "input": "329594893019364551 25055600080496801", "output": "576460752303423487" }, { "input": "921874985256864012 297786684518764536", "output": "1152921504606846975" }, { "input": "922701224139980141 573634416190460758", "output": "1152921504606846975" }, { "input": "433880815217730325 45629641110945892", "output": "576460752303423487" }, { "input": "434707058395813749 215729375494216481", "output": "576460752303423487" }, { "input": "435533301573897173 34078453236225189", "output": "576460752303423487" }, { "input": "436359544751980597 199220719961060641", "output": "576460752303423487" }, { "input": "437185783635096725 370972992240105630", "output": "576460752303423487" }, { "input": "438012026813180149 111323110116193830", "output": "576460752303423487" }, { "input": "438838269991263573 295468957052046146", "output": "576460752303423487" }, { "input": "439664513169346997 46560240538186155", "output": "576460752303423487" }, { "input": "440490752052463125 216165966013438147", "output": "576460752303423487" }, { "input": "441316995230546549 401964286420555423", "output": "576460752303423487" }, { "input": "952496582013329437 673506882352402278", "output": "1152921504606846975" }, { "input": "1000000000000000000 1", "output": "1000000000000000000" }, { "input": "2147483647 1", "output": "2147483647" }, { "input": "2147483647 2", "output": "2147483647" }, { "input": "2147483647 31", "output": "2147483647" }, { "input": "8 2", "output": "15" }, { "input": "3 3", "output": "3" }, { "input": "4 1", "output": "4" }, { "input": "10 2", "output": "15" }, { "input": "288230376151711743 2", "output": "288230376151711743" }, { "input": "5 2", "output": "7" }, { "input": "576460752303423487 2", "output": "576460752303423487" }, { "input": "36028797018963967 123", "output": "36028797018963967" }, { "input": "1125899906842623 2", "output": "1125899906842623" }, { "input": "576460752303423489 5", "output": "1152921504606846975" }, { "input": "288230376151711743 3", "output": "288230376151711743" }, { "input": "36028797018963967 345", "output": "36028797018963967" }, { "input": "18014398509481984 30", "output": "36028797018963967" }, { "input": "8 8", "output": "15" }, { "input": "8 1", "output": "8" } ]
1,522,249,725
1,005
Python 3
OK
TESTS
58
93
7,372,800
n, k = map(int, input().split(' ')) if k == 1: print(n) else: powered = 2 while powered <= n: powered *= 2 print(powered-1)
Title: New Year's Eve Time Limit: None seconds Memory Limit: None megabytes Problem Description: Since Grisha behaved well last year, at New Year's Eve he was visited by Ded Moroz who brought an enormous bag of gifts with him! The bag contains *n* sweet candies from the good ol' bakery, each labeled from 1 to *n* corresponding to its tastiness. No two candies have the same tastiness. The choice of candies has a direct effect on Grisha's happiness. One can assume that he should take the tastiest ones — but no, the holiday magic turns things upside down. It is the xor-sum of tastinesses that matters, not the ordinary sum! A xor-sum of a sequence of integers *a*1,<=*a*2,<=...,<=*a**m* is defined as the bitwise XOR of all its elements: , here denotes the bitwise XOR operation; more about bitwise XOR can be found [here.](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) Ded Moroz warned Grisha he has more houses to visit, so Grisha can take no more than *k* candies from the bag. Help Grisha determine the largest xor-sum (largest xor-sum means maximum happiness!) he can obtain. Input Specification: The sole string contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=1018). Output Specification: Output one number — the largest possible xor-sum. Demo Input: ['4 3\n', '6 6\n'] Demo Output: ['7\n', '7\n'] Note: In the first sample case, one optimal answer is 1, 2 and 4, giving the xor-sum of 7. In the second sample case, one can, for example, take all six candies and obtain the xor-sum of 7.
```python n, k = map(int, input().split(' ')) if k == 1: print(n) else: powered = 2 while powered <= n: powered *= 2 print(powered-1) ```
3
928
A
Login Verification
PROGRAMMING
1,200
[ "*special", "strings" ]
null
null
When registering in a social network, users are allowed to create their own convenient login to make it easier to share contacts, print it on business cards, etc. Login is an arbitrary sequence of lower and uppercase latin letters, digits and underline symbols («_»). However, in order to decrease the number of frauds and user-inattention related issues, it is prohibited to register a login if it is similar with an already existing login. More precisely, two logins *s* and *t* are considered similar if we can transform *s* to *t* via a sequence of operations of the following types: - transform lowercase letters to uppercase and vice versa; - change letter «O» (uppercase latin letter) to digit «0» and vice versa; - change digit «1» (one) to any letter among «l» (lowercase latin «L»), «I» (uppercase latin «i») and vice versa, or change one of these letters to other. For example, logins «Codeforces» and «codef0rces» as well as «OO0OOO00O0OOO0O00OOO0OO_lol» and «OO0OOO0O00OOO0O00OO0OOO_1oI» are considered similar whereas «Codeforces» and «Code_forces» are not. You're given a list of existing logins with no two similar amonst and a newly created user login. Check whether this new login is similar with any of the existing ones.
The first line contains a non-empty string *s* consisting of lower and uppercase latin letters, digits and underline symbols («_») with length not exceeding 50  — the login itself. The second line contains a single integer *n* (1<=≤<=*n*<=≤<=1<=000) — the number of existing logins. The next *n* lines describe the existing logins, following the same constraints as the user login (refer to the first line of the input). It's guaranteed that no two existing logins are similar.
Print «Yes» (without quotes), if user can register via this login, i.e. none of the existing logins is similar with it. Otherwise print «No» (without quotes).
[ "1_wat\n2\n2_wat\nwat_1\n", "000\n3\n00\nooA\noOo\n", "_i_\n3\n__i_\n_1_\nI\n", "La0\n3\n2a0\nLa1\n1a0\n", "abc\n1\naBc\n", "0Lil\n2\nLIL0\n0Ril\n" ]
[ "Yes\n", "No\n", "No\n", "No\n", "No\n", "Yes\n" ]
In the second sample case the user wants to create a login consisting of three zeros. It's impossible due to collision with the third among the existing. In the third sample case the new login is similar with the second one.
500
[ { "input": "1_wat\n2\n2_wat\nwat_1", "output": "Yes" }, { "input": "000\n3\n00\nooA\noOo", "output": "No" }, { "input": "_i_\n3\n__i_\n_1_\nI", "output": "No" }, { "input": "La0\n3\n2a0\nLa1\n1a0", "output": "No" }, { "input": "abc\n1\naBc", "output": "No" }, { "input": "0Lil\n2\nLIL0\n0Ril", "output": "Yes" }, { "input": "iloO\n3\niIl0\noIl0\nIooO", "output": "Yes" }, { "input": "L1il0o1L1\n5\niLLoLL\noOI1Io10il\nIoLLoO\nO01ilOoI\nI10l0o", "output": "Yes" }, { "input": "ELioO1lOoOIOiLoooi1iolul1O\n7\nOoEIuOIl1ui1010uiooOoi0Oio001L0EoEolO0\nOLIoOEuoE11u1u1iLOI0oO\nuEOuO0uIOOlO01OlEI0E1Oo0IO1LI0uE0LILO0\nEOo0Il11iIOOOIiuOiIiiLOLEOOII001EE\niOoO0LOulioE0OLIIIulli01OoiuOOOoOlEiI0EiiElIIu0\nlE1LOE1Oil\n1u0EOliIiIOl1u110il0l1O0u", "output": "Yes" }, { "input": "0blo7X\n20\n1oobb6\nXIXIO2X\n2iYI2\n607XXol\n2I6io22\nOl10I\nbXX0Lo\nolOOb7X\n07LlXL\nlXY17\n12iIX2\n7lL70\nbOo11\n17Y6b62\n0O6L7\n1lX2L\n2iYl6lI\n7bXIi1o\niLIY2\n0OIo1X", "output": "Yes" }, { "input": "lkUL\n25\nIIfL\nokl\nfoo\ni0U\noko\niIoU\nUUv\nvli\nv0Uk\n0Of\niill\n1vkl\nUIf\nUfOO\nlvLO\nUUo0\nIOf1\nlovL\nIkk\noIv\nLvfU\n0UI\nkol\n1OO0\n1OOi", "output": "Yes" }, { "input": "L1lo\n3\nOOo1\nL1lo\n0lOl", "output": "No" }, { "input": "LIoooiLO\n5\nLIoooiLO\nl0o01I00\n0OOl0lLO01\nil10i0\noiloi", "output": "No" }, { "input": "1i1lQI\n7\nuLg1uLLigIiOLoggu\nLLLgIuQIQIIloiQuIIoIO0l0o000\n0u1LQu11oIuooIl0OooLg0i0IQu1O1lloI1\nQuQgIQi0LOIliLOuuuioLQou1l\nlLIO00QLi01LogOliOIggII1\no0Ll1uIOQl10IL0IILQ\n1i1lQI", "output": "No" }, { "input": "oIzz1\n20\n1TTl0O\nloF0LT\n1lLzo\noi0Ov\nFlIF1zT\nzoITzx\n0TIFlT\nl1vllil\nOviix1F\nLFvI1lL\nLIl0loz\nixz1v\n1i1vFi\nTIFTol\noIzz1\nIvTl0o\nxv1U0O\niiiioF\n1oiLUlO\nxToxv1", "output": "No" }, { "input": "00L0\n25\n0il\nIlkZ\nL0I\n00L0\nBd0\nZLd\n0d1k\nddk\nIdl\nkBd\nkBOL\nZ1lI\nkBL\nLOko\noZ0i\nZ1lO\nLiOk\niBld\nLO0d\ndIo\nZ10\n1k1i\n0o0L\nIoBd\ni0B0", "output": "No" }, { "input": "Z\n1\nz", "output": "No" }, { "input": "0\n1\no", "output": "No" }, { "input": "0\n1\nO", "output": "No" }, { "input": "o\n1\n0", "output": "No" }, { "input": "o\n1\nO", "output": "No" }, { "input": "o\n1\no", "output": "No" }, { "input": "O\n1\no", "output": "No" }, { "input": "O\n1\n0", "output": "No" }, { "input": "1\n1\nl", "output": "No" }, { "input": "1\n1\nL", "output": "No" }, { "input": "1\n1\ni", "output": "No" }, { "input": "1\n1\nI", "output": "No" }, { "input": "1\n1\no", "output": "Yes" }, { "input": "i\n1\n1", "output": "No" }, { "input": "i\n1\nL", "output": "No" }, { "input": "i\n1\nl", "output": "No" }, { "input": "I\n1\nL", "output": "No" }, { "input": "I\n1\nl", "output": "No" }, { "input": "I\n1\n1", "output": "No" }, { "input": "l\n1\n1", "output": "No" }, { "input": "l\n1\nL", "output": "No" }, { "input": "l\n1\ni", "output": "No" }, { "input": "l\n1\nI", "output": "No" }, { "input": "L\n1\nl", "output": "No" }, { "input": "L\n1\n1", "output": "No" }, { "input": "L\n1\ni", "output": "No" }, { "input": "L\n1\nI", "output": "No" } ]
1,519,608,973
2,147,483,647
Python 3
OK
TESTS
73
77
5,632,000
my_dict = {'o' : '0', 'l' : '1', 'i' : '1'} pas = input().lower() new_pas = '' for x in pas: if x in my_dict: new_pas += my_dict[x] else: new_pas += x n = int(input()) cnt = 0 for i in range(n): pas_now = input().lower() new_pas_now = '' for x in pas_now: if x in my_dict: new_pas_now += my_dict[x] else: new_pas_now += x if new_pas == new_pas_now: cnt += 1 if cnt > 0: print('NO') else: print('YES')
Title: Login Verification Time Limit: None seconds Memory Limit: None megabytes Problem Description: When registering in a social network, users are allowed to create their own convenient login to make it easier to share contacts, print it on business cards, etc. Login is an arbitrary sequence of lower and uppercase latin letters, digits and underline symbols («_»). However, in order to decrease the number of frauds and user-inattention related issues, it is prohibited to register a login if it is similar with an already existing login. More precisely, two logins *s* and *t* are considered similar if we can transform *s* to *t* via a sequence of operations of the following types: - transform lowercase letters to uppercase and vice versa; - change letter «O» (uppercase latin letter) to digit «0» and vice versa; - change digit «1» (one) to any letter among «l» (lowercase latin «L»), «I» (uppercase latin «i») and vice versa, or change one of these letters to other. For example, logins «Codeforces» and «codef0rces» as well as «OO0OOO00O0OOO0O00OOO0OO_lol» and «OO0OOO0O00OOO0O00OO0OOO_1oI» are considered similar whereas «Codeforces» and «Code_forces» are not. You're given a list of existing logins with no two similar amonst and a newly created user login. Check whether this new login is similar with any of the existing ones. Input Specification: The first line contains a non-empty string *s* consisting of lower and uppercase latin letters, digits and underline symbols («_») with length not exceeding 50  — the login itself. The second line contains a single integer *n* (1<=≤<=*n*<=≤<=1<=000) — the number of existing logins. The next *n* lines describe the existing logins, following the same constraints as the user login (refer to the first line of the input). It's guaranteed that no two existing logins are similar. Output Specification: Print «Yes» (without quotes), if user can register via this login, i.e. none of the existing logins is similar with it. Otherwise print «No» (without quotes). Demo Input: ['1_wat\n2\n2_wat\nwat_1\n', '000\n3\n00\nooA\noOo\n', '_i_\n3\n__i_\n_1_\nI\n', 'La0\n3\n2a0\nLa1\n1a0\n', 'abc\n1\naBc\n', '0Lil\n2\nLIL0\n0Ril\n'] Demo Output: ['Yes\n', 'No\n', 'No\n', 'No\n', 'No\n', 'Yes\n'] Note: In the second sample case the user wants to create a login consisting of three zeros. It's impossible due to collision with the third among the existing. In the third sample case the new login is similar with the second one.
```python my_dict = {'o' : '0', 'l' : '1', 'i' : '1'} pas = input().lower() new_pas = '' for x in pas: if x in my_dict: new_pas += my_dict[x] else: new_pas += x n = int(input()) cnt = 0 for i in range(n): pas_now = input().lower() new_pas_now = '' for x in pas_now: if x in my_dict: new_pas_now += my_dict[x] else: new_pas_now += x if new_pas == new_pas_now: cnt += 1 if cnt > 0: print('NO') else: print('YES') ```
3
630
L
Cracking the Code
PROGRAMMING
1,400
[ "implementation", "math" ]
null
null
The protection of a popular program developed by one of IT City companies is organized the following way. After installation it outputs a random five digit number which should be sent in SMS to a particular phone number. In response an SMS activation code arrives. A young hacker Vasya disassembled the program and found the algorithm that transforms the shown number into the activation code. Note: it is clear that Vasya is a law-abiding hacker, and made it for a noble purpose — to show the developer the imperfection of their protection. The found algorithm looks the following way. At first the digits of the number are shuffled in the following order &lt;first digit&gt;&lt;third digit&gt;&lt;fifth digit&gt;&lt;fourth digit&gt;&lt;second digit&gt;. For example the shuffle of 12345 should lead to 13542. On the second stage the number is raised to the fifth power. The result of the shuffle and exponentiation of the number 12345 is 455 422 043 125 550 171 232. The answer is the 5 last digits of this result. For the number 12345 the answer should be 71232. Vasya is going to write a keygen program implementing this algorithm. Can you do the same?
The only line of the input contains a positive integer five digit number for which the activation code should be found.
Output exactly 5 digits without spaces between them — the found activation code of the program.
[ "12345\n" ]
[ "71232" ]
none
0
[ { "input": "12345", "output": "71232" }, { "input": "13542", "output": "84443" }, { "input": "71232", "output": "10151" }, { "input": "11111", "output": "36551" }, { "input": "10000", "output": "00000" }, { "input": "99999", "output": "99999" }, { "input": "91537", "output": "27651" }, { "input": "70809", "output": "00000" }, { "input": "41675", "output": "61851" }, { "input": "32036", "output": "82432" } ]
1,698,156,355
2,147,483,647
PyPy 3-64
OK
TESTS
10
46
0
num = input() answ = int("".join((num[i] for i in [0,2,4,3,1]))) answ = str(answ**5) print(answ[-5:])# 1698156355.2098389
Title: Cracking the Code Time Limit: None seconds Memory Limit: None megabytes Problem Description: The protection of a popular program developed by one of IT City companies is organized the following way. After installation it outputs a random five digit number which should be sent in SMS to a particular phone number. In response an SMS activation code arrives. A young hacker Vasya disassembled the program and found the algorithm that transforms the shown number into the activation code. Note: it is clear that Vasya is a law-abiding hacker, and made it for a noble purpose — to show the developer the imperfection of their protection. The found algorithm looks the following way. At first the digits of the number are shuffled in the following order &lt;first digit&gt;&lt;third digit&gt;&lt;fifth digit&gt;&lt;fourth digit&gt;&lt;second digit&gt;. For example the shuffle of 12345 should lead to 13542. On the second stage the number is raised to the fifth power. The result of the shuffle and exponentiation of the number 12345 is 455 422 043 125 550 171 232. The answer is the 5 last digits of this result. For the number 12345 the answer should be 71232. Vasya is going to write a keygen program implementing this algorithm. Can you do the same? Input Specification: The only line of the input contains a positive integer five digit number for which the activation code should be found. Output Specification: Output exactly 5 digits without spaces between them — the found activation code of the program. Demo Input: ['12345\n'] Demo Output: ['71232'] Note: none
```python num = input() answ = int("".join((num[i] for i in [0,2,4,3,1]))) answ = str(answ**5) print(answ[-5:])# 1698156355.2098389 ```
3
845
B
Luba And The Ticket
PROGRAMMING
1,600
[ "brute force", "greedy", "implementation" ]
null
null
Luba has a ticket consisting of 6 digits. In one move she can choose digit in any position and replace it with arbitrary digit. She wants to know the minimum number of digits she needs to replace in order to make the ticket lucky. The ticket is considered lucky if the sum of first three digits equals to the sum of last three digits.
You are given a string consisting of 6 characters (all characters are digits from 0 to 9) — this string denotes Luba's ticket. The ticket can start with the digit 0.
Print one number — the minimum possible number of digits Luba needs to replace to make the ticket lucky.
[ "000000\n", "123456\n", "111000\n" ]
[ "0\n", "2\n", "1\n" ]
In the first example the ticket is already lucky, so the answer is 0. In the second example Luba can replace 4 and 5 with zeroes, and the ticket will become lucky. It's easy to see that at least two replacements are required. In the third example Luba can replace any zero with 3. It's easy to see that at least one replacement is required.
0
[ { "input": "000000", "output": "0" }, { "input": "123456", "output": "2" }, { "input": "111000", "output": "1" }, { "input": "120111", "output": "0" }, { "input": "999999", "output": "0" }, { "input": "199880", "output": "1" }, { "input": "899889", "output": "1" }, { "input": "899888", "output": "1" }, { "input": "505777", "output": "2" }, { "input": "999000", "output": "3" }, { "input": "989010", "output": "3" }, { "input": "651894", "output": "1" }, { "input": "858022", "output": "2" }, { "input": "103452", "output": "1" }, { "input": "999801", "output": "2" }, { "input": "999990", "output": "1" }, { "input": "697742", "output": "1" }, { "input": "242367", "output": "2" }, { "input": "099999", "output": "1" }, { "input": "198999", "output": "1" }, { "input": "023680", "output": "1" }, { "input": "999911", "output": "2" }, { "input": "000990", "output": "2" }, { "input": "117099", "output": "1" }, { "input": "990999", "output": "1" }, { "input": "000111", "output": "1" }, { "input": "000444", "output": "2" }, { "input": "202597", "output": "2" }, { "input": "000333", "output": "1" }, { "input": "030039", "output": "1" }, { "input": "000009", "output": "1" }, { "input": "006456", "output": "1" }, { "input": "022995", "output": "3" }, { "input": "999198", "output": "1" }, { "input": "223456", "output": "2" }, { "input": "333665", "output": "2" }, { "input": "123986", "output": "2" }, { "input": "599257", "output": "1" }, { "input": "101488", "output": "3" }, { "input": "111399", "output": "2" }, { "input": "369009", "output": "1" }, { "input": "024887", "output": "2" }, { "input": "314347", "output": "1" }, { "input": "145892", "output": "1" }, { "input": "321933", "output": "1" }, { "input": "100172", "output": "1" }, { "input": "222455", "output": "2" }, { "input": "317596", "output": "1" }, { "input": "979245", "output": "2" }, { "input": "000018", "output": "1" }, { "input": "101389", "output": "2" }, { "input": "123985", "output": "2" }, { "input": "900000", "output": "1" }, { "input": "132069", "output": "1" }, { "input": "949256", "output": "1" }, { "input": "123996", "output": "2" }, { "input": "034988", "output": "2" }, { "input": "320869", "output": "2" }, { "input": "089753", "output": "1" }, { "input": "335667", "output": "2" }, { "input": "868580", "output": "1" }, { "input": "958031", "output": "2" }, { "input": "117999", "output": "2" }, { "input": "000001", "output": "1" }, { "input": "213986", "output": "2" }, { "input": "123987", "output": "3" }, { "input": "111993", "output": "2" }, { "input": "642479", "output": "1" }, { "input": "033788", "output": "2" }, { "input": "766100", "output": "2" }, { "input": "012561", "output": "1" }, { "input": "111695", "output": "2" }, { "input": "123689", "output": "2" }, { "input": "944234", "output": "1" }, { "input": "154999", "output": "2" }, { "input": "333945", "output": "1" }, { "input": "371130", "output": "1" }, { "input": "977330", "output": "2" }, { "input": "777544", "output": "2" }, { "input": "111965", "output": "2" }, { "input": "988430", "output": "2" }, { "input": "123789", "output": "3" }, { "input": "111956", "output": "2" }, { "input": "444776", "output": "2" }, { "input": "001019", "output": "1" }, { "input": "011299", "output": "2" }, { "input": "011389", "output": "2" }, { "input": "999333", "output": "2" }, { "input": "126999", "output": "2" }, { "input": "744438", "output": "0" }, { "input": "588121", "output": "3" }, { "input": "698213", "output": "2" }, { "input": "652858", "output": "1" }, { "input": "989304", "output": "3" }, { "input": "888213", "output": "3" }, { "input": "969503", "output": "2" }, { "input": "988034", "output": "2" }, { "input": "889444", "output": "2" }, { "input": "990900", "output": "1" }, { "input": "301679", "output": "2" }, { "input": "434946", "output": "1" }, { "input": "191578", "output": "2" }, { "input": "118000", "output": "2" }, { "input": "636915", "output": "0" }, { "input": "811010", "output": "1" }, { "input": "822569", "output": "1" }, { "input": "122669", "output": "2" }, { "input": "010339", "output": "2" }, { "input": "213698", "output": "2" }, { "input": "895130", "output": "2" }, { "input": "000900", "output": "1" }, { "input": "191000", "output": "2" }, { "input": "001000", "output": "1" }, { "input": "080189", "output": "2" }, { "input": "990000", "output": "2" }, { "input": "201984", "output": "2" }, { "input": "002667", "output": "2" }, { "input": "877542", "output": "2" }, { "input": "301697", "output": "2" }, { "input": "211597", "output": "2" }, { "input": "420337", "output": "1" }, { "input": "024768", "output": "2" }, { "input": "878033", "output": "2" }, { "input": "788024", "output": "2" }, { "input": "023869", "output": "2" }, { "input": "466341", "output": "1" }, { "input": "696327", "output": "1" }, { "input": "779114", "output": "2" }, { "input": "858643", "output": "1" }, { "input": "011488", "output": "3" }, { "input": "003669", "output": "2" }, { "input": "202877", "output": "3" }, { "input": "738000", "output": "2" }, { "input": "567235", "output": "2" }, { "input": "887321", "output": "3" }, { "input": "401779", "output": "2" }, { "input": "989473", "output": "2" }, { "input": "004977", "output": "3" }, { "input": "023778", "output": "2" }, { "input": "809116", "output": "1" }, { "input": "042762", "output": "1" }, { "input": "777445", "output": "2" }, { "input": "769302", "output": "2" }, { "input": "023977", "output": "2" }, { "input": "990131", "output": "2" } ]
1,662,670,732
2,147,483,647
Python 3
OK
TESTS
145
1,341
0
x=int(input()) def s(a): r=0 while a>0: r+=a%10 a//=10 return r def d(a,b): r=0 for i in range(6): if a%10!=b%10: r += 1 a//=10 b//=10 return r c=6 for i in range(1000000): if s(i%1000)==s(i//1000): c=min(c,d(x,i)) print(c)
Title: Luba And The Ticket Time Limit: None seconds Memory Limit: None megabytes Problem Description: Luba has a ticket consisting of 6 digits. In one move she can choose digit in any position and replace it with arbitrary digit. She wants to know the minimum number of digits she needs to replace in order to make the ticket lucky. The ticket is considered lucky if the sum of first three digits equals to the sum of last three digits. Input Specification: You are given a string consisting of 6 characters (all characters are digits from 0 to 9) — this string denotes Luba's ticket. The ticket can start with the digit 0. Output Specification: Print one number — the minimum possible number of digits Luba needs to replace to make the ticket lucky. Demo Input: ['000000\n', '123456\n', '111000\n'] Demo Output: ['0\n', '2\n', '1\n'] Note: In the first example the ticket is already lucky, so the answer is 0. In the second example Luba can replace 4 and 5 with zeroes, and the ticket will become lucky. It's easy to see that at least two replacements are required. In the third example Luba can replace any zero with 3. It's easy to see that at least one replacement is required.
```python x=int(input()) def s(a): r=0 while a>0: r+=a%10 a//=10 return r def d(a,b): r=0 for i in range(6): if a%10!=b%10: r += 1 a//=10 b//=10 return r c=6 for i in range(1000000): if s(i%1000)==s(i//1000): c=min(c,d(x,i)) print(c) ```
3
884
D
Boxes And Balls
PROGRAMMING
2,300
[ "data structures", "greedy" ]
null
null
Ivan has *n* different boxes. The first of them contains some balls of *n* different colors. Ivan wants to play a strange game. He wants to distribute the balls into boxes in such a way that for every *i* (1<=≤<=*i*<=≤<=*n*) *i*-th box will contain all balls with color *i*. In order to do this, Ivan will make some turns. Each turn he does the following: 1. Ivan chooses any non-empty box and takes all balls from this box; 1. Then Ivan chooses any *k* empty boxes (the box from the first step becomes empty, and Ivan is allowed to choose it), separates the balls he took on the previous step into *k* non-empty groups and puts each group into one of the boxes. He should put each group into a separate box. He can choose either *k*<==<=2 or *k*<==<=3. The penalty of the turn is the number of balls Ivan takes from the box during the first step of the turn. And penalty of the game is the total penalty of turns made by Ivan until he distributes all balls to corresponding boxes. Help Ivan to determine the minimum possible penalty of the game!
The first line contains one integer number *n* (1<=≤<=*n*<=≤<=200000) — the number of boxes and colors. The second line contains *n* integer numbers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the number of balls with color *i*.
Print one number — the minimum possible penalty of the game.
[ "3\n1 2 3\n", "4\n2 3 4 5\n" ]
[ "6\n", "19\n" ]
In the first example you take all the balls from the first box, choose *k* = 3 and sort all colors to corresponding boxes. Penalty is 6. In the second example you make two turns: 1. Take all the balls from the first box, choose *k* = 3, put balls of color 3 to the third box, of color 4 — to the fourth box and the rest put back into the first box. Penalty is 14; 1. Take all the balls from the first box, choose *k* = 2, put balls of color 1 to the first box, of color 2 — to the second box. Penalty is 5. Total penalty is 19.
0
[ { "input": "3\n1 2 3", "output": "6" }, { "input": "4\n2 3 4 5", "output": "19" }, { "input": "6\n1 4 4 4 4 4", "output": "38" }, { "input": "8\n821407370 380061316 428719552 90851747 825473738 704702117 845629927 245820158", "output": "8176373828" }, { "input": "1\n10", "output": "0" }, { "input": "1\n4", "output": "0" }, { "input": "1\n12312", "output": "0" }, { "input": "1\n1", "output": "0" }, { "input": "2\n3 4", "output": "7" } ]
1,634,046,940
2,147,483,647
PyPy 3
OK
TESTS
32
857
40,038,400
import sys from heapq import * def get_ints(): return list(map(int, sys.stdin.readline().strip().split())) def solve(N, nums): ans = 0 q = [] for n in nums: heappush(q, n) if not (N & 1): heappush(q, 0) while len(q) > 1: s = heappop(q) + heappop(q) + heappop(q) ans += s heappush(q, s) return ans N = int(input()) nums = get_ints() print(solve(N, nums))
Title: Boxes And Balls Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ivan has *n* different boxes. The first of them contains some balls of *n* different colors. Ivan wants to play a strange game. He wants to distribute the balls into boxes in such a way that for every *i* (1<=≤<=*i*<=≤<=*n*) *i*-th box will contain all balls with color *i*. In order to do this, Ivan will make some turns. Each turn he does the following: 1. Ivan chooses any non-empty box and takes all balls from this box; 1. Then Ivan chooses any *k* empty boxes (the box from the first step becomes empty, and Ivan is allowed to choose it), separates the balls he took on the previous step into *k* non-empty groups and puts each group into one of the boxes. He should put each group into a separate box. He can choose either *k*<==<=2 or *k*<==<=3. The penalty of the turn is the number of balls Ivan takes from the box during the first step of the turn. And penalty of the game is the total penalty of turns made by Ivan until he distributes all balls to corresponding boxes. Help Ivan to determine the minimum possible penalty of the game! Input Specification: The first line contains one integer number *n* (1<=≤<=*n*<=≤<=200000) — the number of boxes and colors. The second line contains *n* integer numbers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the number of balls with color *i*. Output Specification: Print one number — the minimum possible penalty of the game. Demo Input: ['3\n1 2 3\n', '4\n2 3 4 5\n'] Demo Output: ['6\n', '19\n'] Note: In the first example you take all the balls from the first box, choose *k* = 3 and sort all colors to corresponding boxes. Penalty is 6. In the second example you make two turns: 1. Take all the balls from the first box, choose *k* = 3, put balls of color 3 to the third box, of color 4 — to the fourth box and the rest put back into the first box. Penalty is 14; 1. Take all the balls from the first box, choose *k* = 2, put balls of color 1 to the first box, of color 2 — to the second box. Penalty is 5. Total penalty is 19.
```python import sys from heapq import * def get_ints(): return list(map(int, sys.stdin.readline().strip().split())) def solve(N, nums): ans = 0 q = [] for n in nums: heappush(q, n) if not (N & 1): heappush(q, 0) while len(q) > 1: s = heappop(q) + heappop(q) + heappop(q) ans += s heappush(q, s) return ans N = int(input()) nums = get_ints() print(solve(N, nums)) ```
3
515
C
Drazil and Factorial
PROGRAMMING
1,400
[ "greedy", "math", "sortings" ]
null
null
Drazil is playing a math game with Varda. Let's define for positive integer *x* as a product of factorials of its digits. For example, . First, they choose a decimal number *a* consisting of *n* digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number *x* satisfying following two conditions: 1. *x* doesn't contain neither digit 0 nor digit 1. 2. = . Help friends find such number.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=15) — the number of digits in *a*. The second line contains *n* digits of *a*. There is at least one digit in *a* that is larger than 1. Number *a* may possibly contain leading zeroes.
Output a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation.
[ "4\n1234\n", "3\n555\n" ]
[ "33222\n", "555\n" ]
In the first case, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f5a4207f23215fddce977ab5ea9e9d2e7578fb52.png" style="max-width: 100.0%;max-height: 100.0%;"/>
1,000
[ { "input": "4\n1234", "output": "33222" }, { "input": "3\n555", "output": "555" }, { "input": "15\n012345781234578", "output": "7777553333222222222222" }, { "input": "1\n8", "output": "7222" }, { "input": "10\n1413472614", "output": "75333332222222" }, { "input": "8\n68931246", "output": "77553333332222222" }, { "input": "7\n4424368", "output": "75333332222222222" }, { "input": "6\n576825", "output": "7755532222" }, { "input": "5\n97715", "output": "7775332" }, { "input": "3\n915", "output": "75332" }, { "input": "2\n26", "output": "532" }, { "input": "1\n4", "output": "322" }, { "input": "15\n028745260720699", "output": "7777755533333332222222222" }, { "input": "13\n5761790121605", "output": "7775555333322" }, { "input": "10\n3312667105", "output": "755533332" }, { "input": "1\n7", "output": "7" }, { "input": "15\n989898989898989", "output": "777777777777777333333333333333322222222222222222222222222222" }, { "input": "15\n000000000000007", "output": "7" }, { "input": "15\n999999999999990", "output": "77777777777777333333333333333333333333333322222222222222" }, { "input": "1\n2", "output": "2" }, { "input": "1\n3", "output": "3" }, { "input": "1\n4", "output": "322" }, { "input": "1\n5", "output": "5" }, { "input": "1\n6", "output": "53" }, { "input": "1\n7", "output": "7" }, { "input": "1\n9", "output": "7332" }, { "input": "2\n09", "output": "7332" }, { "input": "13\n1337251172966", "output": "777555333333222" }, { "input": "15\n987654329876543", "output": "777777555533333333332222222222222" }, { "input": "9\n234567899", "output": "777755333333322222222" }, { "input": "2\n99", "output": "77333322" }, { "input": "2\n66", "output": "5533" }, { "input": "3\n999", "output": "777333333222" }, { "input": "5\n99999", "output": "77777333333333322222" }, { "input": "9\n123456789", "output": "77755333332222222" }, { "input": "9\n987654321", "output": "77755333332222222" }, { "input": "3\n666", "output": "555333" }, { "input": "2\n26", "output": "532" }, { "input": "6\n555777", "output": "777555" }, { "input": "10\n1234567899", "output": "777755333333322222222" }, { "input": "4\n6666", "output": "55553333" }, { "input": "4\n9754", "output": "775333222" }, { "input": "2\n95", "output": "75332" }, { "input": "14\n11122233344455", "output": "55333333222222222" }, { "input": "12\n836544897832", "output": "77777553333333222222222222222" } ]
1,587,451,649
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
5
140
0
a=int(input()) s=input() ans='' two=0 thr=0 fiv=0 sev=0 for i in range(len(s)): if(s[i]=='2'): two+=1 if(s[i]=='3'): thr+=1 if(s[i]=='4'): thr+=1 two+=2 if(s[i]=='5'): fiv+=1 if(s[i]=='6'): fiv+=1 thr+=1 if(s[i]=='7'): sev+=1 if(s[i]=='8'): sev+=1 two+=3 if(s[i]=='9'): sev+=1 two+=3 thr+=2 ans='' for i in range(sev): ans+='7' for i in range(fiv): ans+='5' for i in range(thr): ans+='3' for i in range(two): ans+='2' print(ans)
Title: Drazil and Factorial Time Limit: None seconds Memory Limit: None megabytes Problem Description: Drazil is playing a math game with Varda. Let's define for positive integer *x* as a product of factorials of its digits. For example, . First, they choose a decimal number *a* consisting of *n* digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number *x* satisfying following two conditions: 1. *x* doesn't contain neither digit 0 nor digit 1. 2. = . Help friends find such number. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=15) — the number of digits in *a*. The second line contains *n* digits of *a*. There is at least one digit in *a* that is larger than 1. Number *a* may possibly contain leading zeroes. Output Specification: Output a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation. Demo Input: ['4\n1234\n', '3\n555\n'] Demo Output: ['33222\n', '555\n'] Note: In the first case, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f5a4207f23215fddce977ab5ea9e9d2e7578fb52.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python a=int(input()) s=input() ans='' two=0 thr=0 fiv=0 sev=0 for i in range(len(s)): if(s[i]=='2'): two+=1 if(s[i]=='3'): thr+=1 if(s[i]=='4'): thr+=1 two+=2 if(s[i]=='5'): fiv+=1 if(s[i]=='6'): fiv+=1 thr+=1 if(s[i]=='7'): sev+=1 if(s[i]=='8'): sev+=1 two+=3 if(s[i]=='9'): sev+=1 two+=3 thr+=2 ans='' for i in range(sev): ans+='7' for i in range(fiv): ans+='5' for i in range(thr): ans+='3' for i in range(two): ans+='2' print(ans) ```
0
385
B
Bear and Strings
PROGRAMMING
1,200
[ "brute force", "greedy", "implementation", "math", "strings" ]
null
null
The bear has a string *s*<==<=*s*1*s*2... *s*|*s*| (record |*s*| is the string's length), consisting of lowercase English letters. The bear wants to count the number of such pairs of indices *i*,<=*j* (1<=≤<=*i*<=≤<=*j*<=≤<=|*s*|), that string *x*(*i*,<=*j*)<==<=*s**i**s**i*<=+<=1... *s**j* contains at least one string "bear" as a substring. String *x*(*i*,<=*j*) contains string "bear", if there is such index *k* (*i*<=≤<=*k*<=≤<=*j*<=-<=3), that *s**k*<==<=*b*, *s**k*<=+<=1<==<=*e*, *s**k*<=+<=2<==<=*a*, *s**k*<=+<=3<==<=*r*. Help the bear cope with the given problem.
The first line contains a non-empty string *s* (1<=≤<=|*s*|<=≤<=5000). It is guaranteed that the string only consists of lowercase English letters.
Print a single number — the answer to the problem.
[ "bearbtear\n", "bearaabearc\n" ]
[ "6\n", "20\n" ]
In the first sample, the following pairs (*i*, *j*) match: (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9). In the second sample, the following pairs (*i*, *j*) match: (1,  4), (1,  5), (1,  6), (1,  7), (1,  8), (1,  9), (1,  10), (1,  11), (2,  10), (2,  11), (3,  10), (3,  11), (4,  10), (4,  11), (5,  10), (5,  11), (6,  10), (6,  11), (7,  10), (7,  11).
1,000
[ { "input": "bearbtear", "output": "6" }, { "input": "bearaabearc", "output": "20" }, { "input": "pbearbearhbearzqbearjkterasjhy", "output": "291" }, { "input": "pbearjbearbebearnbabcffbearbearwubearjezpiorrbearbearjbdlbearbearqbearjbearwipmsbearoaftrsebearzsnqb", "output": "4419" }, { "input": "bear", "output": "1" }, { "input": "a", "output": "0" }, { "input": "be", "output": "0" } ]
1,619,620,094
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
62
0
x=list(input()) n=len(x) c=0 t=-1 for i in range(n-4): if "".join(x[i:i+4])=="bear": c+=(i-t)*(n-i-3) t=i print(c)
Title: Bear and Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: The bear has a string *s*<==<=*s*1*s*2... *s*|*s*| (record |*s*| is the string's length), consisting of lowercase English letters. The bear wants to count the number of such pairs of indices *i*,<=*j* (1<=≤<=*i*<=≤<=*j*<=≤<=|*s*|), that string *x*(*i*,<=*j*)<==<=*s**i**s**i*<=+<=1... *s**j* contains at least one string "bear" as a substring. String *x*(*i*,<=*j*) contains string "bear", if there is such index *k* (*i*<=≤<=*k*<=≤<=*j*<=-<=3), that *s**k*<==<=*b*, *s**k*<=+<=1<==<=*e*, *s**k*<=+<=2<==<=*a*, *s**k*<=+<=3<==<=*r*. Help the bear cope with the given problem. Input Specification: The first line contains a non-empty string *s* (1<=≤<=|*s*|<=≤<=5000). It is guaranteed that the string only consists of lowercase English letters. Output Specification: Print a single number — the answer to the problem. Demo Input: ['bearbtear\n', 'bearaabearc\n'] Demo Output: ['6\n', '20\n'] Note: In the first sample, the following pairs (*i*, *j*) match: (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9). In the second sample, the following pairs (*i*, *j*) match: (1,  4), (1,  5), (1,  6), (1,  7), (1,  8), (1,  9), (1,  10), (1,  11), (2,  10), (2,  11), (3,  10), (3,  11), (4,  10), (4,  11), (5,  10), (5,  11), (6,  10), (6,  11), (7,  10), (7,  11).
```python x=list(input()) n=len(x) c=0 t=-1 for i in range(n-4): if "".join(x[i:i+4])=="bear": c+=(i-t)*(n-i-3) t=i print(c) ```
0
78
B
Easter Eggs
PROGRAMMING
1,200
[ "constructive algorithms", "implementation" ]
B. Easter Eggs
2
256
The Easter Rabbit laid *n* eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: - Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible.
The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100).
Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet. If there are several answers, print any of them.
[ "8\n", "13\n" ]
[ "ROYGRBIV\n", "ROYGBIVGBIVYG\n" ]
The way the eggs will be painted in the first sample is shown on the picture:
1,000
[ { "input": "8", "output": "ROYGBIVG" }, { "input": "13", "output": "ROYGBIVOYGBIV" }, { "input": "7", "output": "ROYGBIV" }, { "input": "10", "output": "ROYGBIVYGB" }, { "input": "14", "output": "ROYGBIVROYGBIV" }, { "input": "50", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "9", "output": "ROYGBIVGB" }, { "input": "11", "output": "ROYGBIVYGBI" }, { "input": "12", "output": "ROYGBIVOYGBI" }, { "input": "15", "output": "ROYGBIVROYGBIVG" }, { "input": "16", "output": "ROYGBIVROYGBIVGB" }, { "input": "17", "output": "ROYGBIVROYGBIVYGB" }, { "input": "18", "output": "ROYGBIVROYGBIVYGBI" }, { "input": "19", "output": "ROYGBIVROYGBIVOYGBI" }, { "input": "20", "output": "ROYGBIVROYGBIVOYGBIV" }, { "input": "21", "output": "ROYGBIVROYGBIVROYGBIV" }, { "input": "22", "output": "ROYGBIVROYGBIVROYGBIVG" }, { "input": "23", "output": "ROYGBIVROYGBIVROYGBIVGB" }, { "input": "24", "output": "ROYGBIVROYGBIVROYGBIVYGB" }, { "input": "25", "output": "ROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "28", "output": "ROYGBIVROYGBIVROYGBIVROYGBIV" }, { "input": "29", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "34", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV" }, { "input": "43", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "61", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI" }, { "input": "79", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB" }, { "input": "81", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "92", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "95", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "96", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI" }, { "input": "97", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV" }, { "input": "98", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIV" }, { "input": "99", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "100", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB" } ]
1,605,742,075
2,147,483,647
Python 3
OK
TESTS
34
218
0
n=int(input()) c='ROYGBIV' ans='' for i in range(n): ans+=c[i%7] if ans[-2]=='O': ans=ans[:-3]+"GBI" elif ans[-1]=='R': ans=ans[:-1]+'G' elif ans[-2:]=='RO': ans=ans[:-2]+'GB' print(ans)
Title: Easter Eggs Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The Easter Rabbit laid *n* eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: - Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible. Input Specification: The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100). Output Specification: Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet. If there are several answers, print any of them. Demo Input: ['8\n', '13\n'] Demo Output: ['ROYGRBIV\n', 'ROYGBIVGBIVYG\n'] Note: The way the eggs will be painted in the first sample is shown on the picture:
```python n=int(input()) c='ROYGBIV' ans='' for i in range(n): ans+=c[i%7] if ans[-2]=='O': ans=ans[:-3]+"GBI" elif ans[-1]=='R': ans=ans[:-1]+'G' elif ans[-2:]=='RO': ans=ans[:-2]+'GB' print(ans) ```
3.9455
41
A
Translation
PROGRAMMING
800
[ "implementation", "strings" ]
A. Translation
2
256
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
[ "code\nedoc\n", "abb\naba\n", "code\ncode\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "code\nedoc", "output": "YES" }, { "input": "abb\naba", "output": "NO" }, { "input": "code\ncode", "output": "NO" }, { "input": "abacaba\nabacaba", "output": "YES" }, { "input": "q\nq", "output": "YES" }, { "input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk", "output": "NO" }, { "input": "z\na", "output": "NO" }, { "input": "asd\ndsa", "output": "YES" }, { "input": "abcdef\nfecdba", "output": "NO" }, { "input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu", "output": "NO" }, { "input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf", "output": "NO" }, { "input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp", "output": "NO" }, { "input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb", "output": "NO" }, { "input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom", "output": "NO" }, { "input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh", "output": "NO" }, { "input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy", "output": "NO" }, { "input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko", "output": "NO" }, { "input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv", "output": "NO" }, { "input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd", "output": "NO" }, { "input": "w\nw", "output": "YES" }, { "input": "vz\nzv", "output": "YES" }, { "input": "ry\nyr", "output": "YES" }, { "input": "xou\nuox", "output": "YES" }, { "input": "axg\ngax", "output": "NO" }, { "input": "zdsl\nlsdz", "output": "YES" }, { "input": "kudl\nldku", "output": "NO" }, { "input": "zzlzwnqlcl\nlclqnwzlzz", "output": "YES" }, { "input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv", "output": "YES" }, { "input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar", "output": "NO" }, { "input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn", "output": "YES" }, { "input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum", "output": "YES" }, { "input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv", "output": "YES" }, { "input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm", "output": "NO" }, { "input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd", "output": "NO" }, { "input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg", "output": "YES" }, { "input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis", "output": "YES" }, { "input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy", "output": "NO" }, { "input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw", "output": "YES" }, { "input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi", "output": "YES" }, { "input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib", "output": "YES" } ]
1,681,064,288
2,147,483,647
PyPy 3-64
OK
TESTS
40
122
0
def func(): s,u = input(),input() t = s[::-1] print('YES'if u == t else 'NO') def init(flag=True): for _ in range(int(input()) if flag else 1): func() if __name__ == '__main__': init(False)
Title: Translation Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. Input Specification: The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. Output Specification: If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. Demo Input: ['code\nedoc\n', 'abb\naba\n', 'code\ncode\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python def func(): s,u = input(),input() t = s[::-1] print('YES'if u == t else 'NO') def init(flag=True): for _ in range(int(input()) if flag else 1): func() if __name__ == '__main__': init(False) ```
3.9695
1,005
D
Polycarp and Div 3
PROGRAMMING
1,500
[ "dp", "greedy", "number theory" ]
null
null
Polycarp likes numbers that are divisible by 3. He has a huge number $s$. Polycarp wants to cut from it the maximum number of numbers that are divisible by $3$. To do this, he makes an arbitrary number of vertical cuts between pairs of adjacent digits. As a result, after $m$ such cuts, there will be $m+1$ parts in total. Polycarp analyzes each of the obtained numbers and finds the number of those that are divisible by $3$. For example, if the original number is $s=3121$, then Polycarp can cut it into three parts with two cuts: $3|1|21$. As a result, he will get two numbers that are divisible by $3$. Polycarp can make an arbitrary number of vertical cuts, where each cut is made between a pair of adjacent digits. The resulting numbers cannot contain extra leading zeroes (that is, the number can begin with 0 if and only if this number is exactly one character '0'). For example, 007, 01 and 00099 are not valid numbers, but 90, 0 and 10001 are valid. What is the maximum number of numbers divisible by $3$ that Polycarp can obtain?
The first line of the input contains a positive integer $s$. The number of digits of the number $s$ is between $1$ and $2\cdot10^5$, inclusive. The first (leftmost) digit is not equal to 0.
Print the maximum number of numbers divisible by $3$ that Polycarp can get by making vertical cuts in the given number $s$.
[ "3121\n", "6\n", "1000000000000000000000000000000000\n", "201920181\n" ]
[ "2\n", "1\n", "33\n", "4\n" ]
In the first example, an example set of optimal cuts on the number is 3|1|21. In the second example, you do not need to make any cuts. The specified number 6 forms one number that is divisible by $3$. In the third example, cuts must be made between each pair of digits. As a result, Polycarp gets one digit 1 and $33$ digits 0. Each of the $33$ digits 0 forms a number that is divisible by $3$. In the fourth example, an example set of optimal cuts is 2|0|1|9|201|81. The numbers $0$, $9$, $201$ and $81$ are divisible by $3$.
0
[ { "input": "3121", "output": "2" }, { "input": "6", "output": "1" }, { "input": "1000000000000000000000000000000000", "output": "33" }, { "input": "201920181", "output": "4" }, { "input": "4", "output": "0" }, { "input": "10", "output": "1" }, { "input": "11", "output": "0" }, { "input": "12", "output": "1" }, { "input": "13", "output": "1" }, { "input": "31", "output": "1" }, { "input": "14139582796", "output": "6" }, { "input": "1670000", "output": "5" }, { "input": "604500", "output": "5" }, { "input": "40041", "output": "2" }, { "input": "10000170", "output": "5" } ]
1,669,901,249
2,147,483,647
Python 3
OK
TESTS
25
156
2,764,800
# LUOGU_RID: 96253599 n = input() a = [int(i) for i in n] tmp = 0 cnt = 0 ans = 0 for i in a: t = i % 3 tmp = (tmp + t) % 3 cnt += 1 if t == 0 or tmp == 0 or cnt == 3: ans += 1 cnt = 0 tmp = 0 print(ans)
Title: Polycarp and Div 3 Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp likes numbers that are divisible by 3. He has a huge number $s$. Polycarp wants to cut from it the maximum number of numbers that are divisible by $3$. To do this, he makes an arbitrary number of vertical cuts between pairs of adjacent digits. As a result, after $m$ such cuts, there will be $m+1$ parts in total. Polycarp analyzes each of the obtained numbers and finds the number of those that are divisible by $3$. For example, if the original number is $s=3121$, then Polycarp can cut it into three parts with two cuts: $3|1|21$. As a result, he will get two numbers that are divisible by $3$. Polycarp can make an arbitrary number of vertical cuts, where each cut is made between a pair of adjacent digits. The resulting numbers cannot contain extra leading zeroes (that is, the number can begin with 0 if and only if this number is exactly one character '0'). For example, 007, 01 and 00099 are not valid numbers, but 90, 0 and 10001 are valid. What is the maximum number of numbers divisible by $3$ that Polycarp can obtain? Input Specification: The first line of the input contains a positive integer $s$. The number of digits of the number $s$ is between $1$ and $2\cdot10^5$, inclusive. The first (leftmost) digit is not equal to 0. Output Specification: Print the maximum number of numbers divisible by $3$ that Polycarp can get by making vertical cuts in the given number $s$. Demo Input: ['3121\n', '6\n', '1000000000000000000000000000000000\n', '201920181\n'] Demo Output: ['2\n', '1\n', '33\n', '4\n'] Note: In the first example, an example set of optimal cuts on the number is 3|1|21. In the second example, you do not need to make any cuts. The specified number 6 forms one number that is divisible by $3$. In the third example, cuts must be made between each pair of digits. As a result, Polycarp gets one digit 1 and $33$ digits 0. Each of the $33$ digits 0 forms a number that is divisible by $3$. In the fourth example, an example set of optimal cuts is 2|0|1|9|201|81. The numbers $0$, $9$, $201$ and $81$ are divisible by $3$.
```python # LUOGU_RID: 96253599 n = input() a = [int(i) for i in n] tmp = 0 cnt = 0 ans = 0 for i in a: t = i % 3 tmp = (tmp + t) % 3 cnt += 1 if t == 0 or tmp == 0 or cnt == 3: ans += 1 cnt = 0 tmp = 0 print(ans) ```
3
735
D
Taxes
PROGRAMMING
1,600
[ "math", "number theory" ]
null
null
Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to *n* (*n*<=≥<=2) burles and the amount of tax he has to pay is calculated as the maximum divisor of *n* (not equal to *n*, of course). For example, if *n*<==<=6 then Funt has to pay 3 burles, while for *n*<==<=25 he needs to pay 5 and if *n*<==<=2 he pays only 1 burle. As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial *n* in several parts *n*1<=+<=*n*2<=+<=...<=+<=*n**k*<==<=*n* (here *k* is arbitrary, even *k*<==<=1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition *n**i*<=≥<=2 should hold for all *i* from 1 to *k*. Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split *n* in parts.
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=2·109) — the total year income of mr. Funt.
Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax.
[ "4\n", "27\n" ]
[ "2\n", "3\n" ]
none
1,750
[ { "input": "4", "output": "2" }, { "input": "27", "output": "3" }, { "input": "3", "output": "1" }, { "input": "5", "output": "1" }, { "input": "10", "output": "2" }, { "input": "2000000000", "output": "2" }, { "input": "26", "output": "2" }, { "input": "7", "output": "1" }, { "input": "2", "output": "1" }, { "input": "11", "output": "1" }, { "input": "1000000007", "output": "1" }, { "input": "1000000009", "output": "1" }, { "input": "1999999999", "output": "3" }, { "input": "1000000011", "output": "2" }, { "input": "101", "output": "1" }, { "input": "103", "output": "1" }, { "input": "1001", "output": "3" }, { "input": "1003", "output": "3" }, { "input": "10001", "output": "3" }, { "input": "10003", "output": "3" }, { "input": "129401294", "output": "2" }, { "input": "234911024", "output": "2" }, { "input": "192483501", "output": "3" }, { "input": "1234567890", "output": "2" }, { "input": "719241201", "output": "3" }, { "input": "9", "output": "2" }, { "input": "33", "output": "2" }, { "input": "25", "output": "2" }, { "input": "15", "output": "2" }, { "input": "147", "output": "3" }, { "input": "60119912", "output": "2" }, { "input": "45", "output": "2" }, { "input": "21", "output": "2" }, { "input": "9975", "output": "2" }, { "input": "17", "output": "1" }, { "input": "99", "output": "2" }, { "input": "49", "output": "2" }, { "input": "243", "output": "2" }, { "input": "43", "output": "1" }, { "input": "39", "output": "2" }, { "input": "6", "output": "2" }, { "input": "8", "output": "2" }, { "input": "12", "output": "2" }, { "input": "13", "output": "1" }, { "input": "14", "output": "2" }, { "input": "16", "output": "2" }, { "input": "18", "output": "2" }, { "input": "19", "output": "1" }, { "input": "20", "output": "2" }, { "input": "22", "output": "2" }, { "input": "23", "output": "1" }, { "input": "24", "output": "2" }, { "input": "962", "output": "2" }, { "input": "29", "output": "1" }, { "input": "55", "output": "2" }, { "input": "125", "output": "3" }, { "input": "1999999929", "output": "2" }, { "input": "493", "output": "2" }, { "input": "10000021", "output": "2" }, { "input": "541", "output": "1" }, { "input": "187", "output": "3" }, { "input": "95", "output": "3" }, { "input": "999991817", "output": "3" }, { "input": "37998938", "output": "2" }, { "input": "1847133842", "output": "2" }, { "input": "1000000005", "output": "3" }, { "input": "19828", "output": "2" }, { "input": "998321704", "output": "2" }, { "input": "370359", "output": "3" }, { "input": "115", "output": "2" }, { "input": "200000015", "output": "3" }, { "input": "479001600", "output": "2" }, { "input": "536870912", "output": "2" }, { "input": "10759922", "output": "2" }, { "input": "1999999927", "output": "1" }, { "input": "123", "output": "3" }, { "input": "200743933", "output": "3" }, { "input": "949575615", "output": "3" }, { "input": "99990001", "output": "1" }, { "input": "715827883", "output": "1" }, { "input": "5592406", "output": "2" }, { "input": "8388609", "output": "3" }, { "input": "1908903481", "output": "3" }, { "input": "1076153021", "output": "3" }, { "input": "344472101", "output": "3" } ]
1,622,927,918
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
13
140
1,228,800
import math n = int(input()) if n % 2: r = 3 else: r = 2 f = [1] for i in range(1, int(math.sqrt(n)) + 1): if not n % i: f.append(i) print(min(max(f), r))
Title: Taxes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to *n* (*n*<=≥<=2) burles and the amount of tax he has to pay is calculated as the maximum divisor of *n* (not equal to *n*, of course). For example, if *n*<==<=6 then Funt has to pay 3 burles, while for *n*<==<=25 he needs to pay 5 and if *n*<==<=2 he pays only 1 burle. As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial *n* in several parts *n*1<=+<=*n*2<=+<=...<=+<=*n**k*<==<=*n* (here *k* is arbitrary, even *k*<==<=1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition *n**i*<=≥<=2 should hold for all *i* from 1 to *k*. Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split *n* in parts. Input Specification: The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=2·109) — the total year income of mr. Funt. Output Specification: Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax. Demo Input: ['4\n', '27\n'] Demo Output: ['2\n', '3\n'] Note: none
```python import math n = int(input()) if n % 2: r = 3 else: r = 2 f = [1] for i in range(1, int(math.sqrt(n)) + 1): if not n % i: f.append(i) print(min(max(f), r)) ```
0
467
A
George and Accommodation
PROGRAMMING
800
[ "implementation" ]
null
null
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory. George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms. The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
Print a single integer — the number of rooms where George and Alex can move in.
[ "3\n1 1\n2 2\n3 3\n", "3\n1 10\n0 10\n10 10\n" ]
[ "0\n", "2\n" ]
none
500
[ { "input": "3\n1 1\n2 2\n3 3", "output": "0" }, { "input": "3\n1 10\n0 10\n10 10", "output": "2" }, { "input": "2\n36 67\n61 69", "output": "2" }, { "input": "3\n21 71\n10 88\n43 62", "output": "3" }, { "input": "3\n1 2\n2 3\n3 4", "output": "0" }, { "input": "10\n0 10\n0 20\n0 30\n0 40\n0 50\n0 60\n0 70\n0 80\n0 90\n0 100", "output": "10" }, { "input": "13\n14 16\n30 31\n45 46\n19 20\n15 17\n66 67\n75 76\n95 97\n29 30\n37 38\n0 2\n36 37\n8 9", "output": "4" }, { "input": "19\n66 67\n97 98\n89 91\n67 69\n67 68\n18 20\n72 74\n28 30\n91 92\n27 28\n75 77\n17 18\n74 75\n28 30\n16 18\n90 92\n9 11\n22 24\n52 54", "output": "12" }, { "input": "15\n55 57\n95 97\n57 59\n34 36\n50 52\n96 98\n39 40\n13 15\n13 14\n74 76\n47 48\n56 58\n24 25\n11 13\n67 68", "output": "10" }, { "input": "17\n68 69\n47 48\n30 31\n52 54\n41 43\n33 35\n38 40\n56 58\n45 46\n92 93\n73 74\n61 63\n65 66\n37 39\n67 68\n77 78\n28 30", "output": "8" }, { "input": "14\n64 66\n43 44\n10 12\n76 77\n11 12\n25 27\n87 88\n62 64\n39 41\n58 60\n10 11\n28 29\n57 58\n12 14", "output": "7" }, { "input": "38\n74 76\n52 54\n78 80\n48 49\n40 41\n64 65\n28 30\n6 8\n49 51\n68 70\n44 45\n57 59\n24 25\n46 48\n49 51\n4 6\n63 64\n76 78\n57 59\n18 20\n63 64\n71 73\n88 90\n21 22\n89 90\n65 66\n89 91\n96 98\n42 44\n1 1\n74 76\n72 74\n39 40\n75 76\n29 30\n48 49\n87 89\n27 28", "output": "22" }, { "input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "26\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2", "output": "0" }, { "input": "68\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2", "output": "68" }, { "input": "7\n0 1\n1 5\n2 4\n3 5\n4 6\n5 6\n6 8", "output": "5" }, { "input": "1\n0 0", "output": "0" }, { "input": "1\n100 100", "output": "0" }, { "input": "44\n0 8\n1 11\n2 19\n3 5\n4 29\n5 45\n6 6\n7 40\n8 19\n9 22\n10 18\n11 26\n12 46\n13 13\n14 27\n15 48\n16 25\n17 20\n18 29\n19 27\n20 45\n21 39\n22 29\n23 39\n24 42\n25 37\n26 52\n27 36\n28 43\n29 35\n30 38\n31 70\n32 47\n33 38\n34 61\n35 71\n36 51\n37 71\n38 59\n39 77\n40 70\n41 80\n42 77\n43 73", "output": "42" }, { "input": "3\n1 3\n2 7\n8 9", "output": "2" }, { "input": "53\n0 1\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53", "output": "0" }, { "input": "55\n0 0\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54", "output": "0" }, { "input": "51\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 62\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 82\n55 68\n55 70\n55 63\n55 55\n55 55\n55 55\n55 75\n55 75\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 82\n55 99\n55 60", "output": "12" }, { "input": "14\n1 1\n1 1\n1 55\n1 16\n1 1\n1 1\n1 55\n1 62\n1 53\n1 26\n1 1\n1 36\n1 2\n1 3", "output": "8" } ]
1,688,025,255
2,147,483,647
Python 3
OK
TESTS
27
77
0
n = int(input()) count = 0 for _ in range(n): pi, qi = map(int,input().split()) if qi -pi >=2: count +=1 print(count)
Title: George and Accommodation Time Limit: None seconds Memory Limit: None megabytes Problem Description: George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory. George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms. The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity. Output Specification: Print a single integer — the number of rooms where George and Alex can move in. Demo Input: ['3\n1 1\n2 2\n3 3\n', '3\n1 10\n0 10\n10 10\n'] Demo Output: ['0\n', '2\n'] Note: none
```python n = int(input()) count = 0 for _ in range(n): pi, qi = map(int,input().split()) if qi -pi >=2: count +=1 print(count) ```
3
667
A
Pouring Rain
PROGRAMMING
1,100
[ "geometry", "math" ]
null
null
A lot of people in Berland hates rain, but you do not. Rain pacifies, puts your thoughts in order. By these years you have developed a good tradition — when it rains, you go on the street and stay silent for a moment, contemplate all around you, enjoy freshness, think about big deeds you have to do. Today everything had changed quietly. You went on the street with a cup contained water, your favorite drink. In a moment when you were drinking a water you noticed that the process became quite long: the cup still contained water because of rain. You decided to make a formal model of what was happening and to find if it was possible to drink all water in that situation. Thus, your cup is a cylinder with diameter equals *d* centimeters. Initial level of water in cup equals *h* centimeters from the bottom. You drink a water with a speed equals *v* milliliters per second. But rain goes with such speed that if you do not drink a water from the cup, the level of water increases on *e* centimeters per second. The process of drinking water from the cup and the addition of rain to the cup goes evenly and continuously. Find the time needed to make the cup empty or find that it will never happen. It is guaranteed that if it is possible to drink all water, it will happen not later than after 104 seconds. Note one milliliter equals to one cubic centimeter.
The only line of the input contains four integer numbers *d*,<=*h*,<=*v*,<=*e* (1<=≤<=*d*,<=*h*,<=*v*,<=*e*<=≤<=104), where: - *d* — the diameter of your cylindrical cup, - *h* — the initial level of water in the cup, - *v* — the speed of drinking process from the cup in milliliters per second, - *e* — the growth of water because of rain if you do not drink from the cup.
If it is impossible to make the cup empty, print "NO" (without quotes). Otherwise print "YES" (without quotes) in the first line. In the second line print a real number — time in seconds needed the cup will be empty. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=4. It is guaranteed that if the answer exists, it doesn't exceed 104.
[ "1 2 3 100\n", "1 1 1 1\n" ]
[ "NO\n", "YES\n3.659792366325\n" ]
In the first example the water fills the cup faster than you can drink from it. In the second example area of the cup's bottom equals to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/419dc74dcd7bc392019c9fe748fe1fdb08ab521a.png" style="max-width: 100.0%;max-height: 100.0%;"/>, thus we can conclude that you decrease the level of water by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e8edb237e1f805fe83c2f47e48d3a9d03f2ee304.png" style="max-width: 100.0%;max-height: 100.0%;"/> centimeters per second. At the same time water level increases by 1 centimeter per second due to rain. Thus, cup will be empty in <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9dae615d7e2c5c7c03cb478848fb06aba1a8942e.png" style="max-width: 100.0%;max-height: 100.0%;"/> seconds.
500
[ { "input": "1 2 3 100", "output": "NO" }, { "input": "1 1 1 1", "output": "YES\n3.659792366325" }, { "input": "48 7946 7992 72", "output": "NO" }, { "input": "72 6791 8546 46", "output": "NO" }, { "input": "100 5635 9099 23", "output": "NO" }, { "input": "20 287 3845 5", "output": "YES\n39.646277165210" }, { "input": "48 6428 9807 83", "output": "NO" }, { "input": "72 5272 4552 64", "output": "NO" }, { "input": "100 4117 5106 34", "output": "NO" }, { "input": "20 2961 9852 15", "output": "YES\n180.991437129723" }, { "input": "48 1805 3109 93", "output": "NO" }, { "input": "72 8534 7042 65", "output": "NO" }, { "input": "1 47 80 68", "output": "YES\n1.388102806810" }, { "input": "4 495 8813 1", "output": "YES\n0.706823517575" }, { "input": "5 2797 5925 9", "output": "YES\n9.553973511669" }, { "input": "1 8324 4362 23", "output": "YES\n1.505007106354" }, { "input": "6 1976 8455 3", "output": "YES\n6.674898722265" }, { "input": "7 2644 8080 5", "output": "YES\n12.900417790197" }, { "input": "3 4183 5491 98", "output": "YES\n6.162185601824" }, { "input": "2 8591 320 101", "output": "YES\n9999.259991757254" }, { "input": "10000 10000 10000 10000", "output": "NO" }, { "input": "2 5000 12 3", "output": "YES\n6099.653943875812" }, { "input": "10 1000 100 1", "output": "YES\n3659.792366325487" } ]
1,518,377,354
2,147,483,647
Python 3
OK
TESTS
23
62
5,632,000
d,h,v,e = map(int, input().split()) denominator = (4.00 * v) - ((d**2)*e*3.1415926) if(denominator < 0): print("NO") else: print("YES") numerator = 3.1415926 * (d**2) * h answer = numerator/denominator print(answer)
Title: Pouring Rain Time Limit: None seconds Memory Limit: None megabytes Problem Description: A lot of people in Berland hates rain, but you do not. Rain pacifies, puts your thoughts in order. By these years you have developed a good tradition — when it rains, you go on the street and stay silent for a moment, contemplate all around you, enjoy freshness, think about big deeds you have to do. Today everything had changed quietly. You went on the street with a cup contained water, your favorite drink. In a moment when you were drinking a water you noticed that the process became quite long: the cup still contained water because of rain. You decided to make a formal model of what was happening and to find if it was possible to drink all water in that situation. Thus, your cup is a cylinder with diameter equals *d* centimeters. Initial level of water in cup equals *h* centimeters from the bottom. You drink a water with a speed equals *v* milliliters per second. But rain goes with such speed that if you do not drink a water from the cup, the level of water increases on *e* centimeters per second. The process of drinking water from the cup and the addition of rain to the cup goes evenly and continuously. Find the time needed to make the cup empty or find that it will never happen. It is guaranteed that if it is possible to drink all water, it will happen not later than after 104 seconds. Note one milliliter equals to one cubic centimeter. Input Specification: The only line of the input contains four integer numbers *d*,<=*h*,<=*v*,<=*e* (1<=≤<=*d*,<=*h*,<=*v*,<=*e*<=≤<=104), where: - *d* — the diameter of your cylindrical cup, - *h* — the initial level of water in the cup, - *v* — the speed of drinking process from the cup in milliliters per second, - *e* — the growth of water because of rain if you do not drink from the cup. Output Specification: If it is impossible to make the cup empty, print "NO" (without quotes). Otherwise print "YES" (without quotes) in the first line. In the second line print a real number — time in seconds needed the cup will be empty. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=4. It is guaranteed that if the answer exists, it doesn't exceed 104. Demo Input: ['1 2 3 100\n', '1 1 1 1\n'] Demo Output: ['NO\n', 'YES\n3.659792366325\n'] Note: In the first example the water fills the cup faster than you can drink from it. In the second example area of the cup's bottom equals to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/419dc74dcd7bc392019c9fe748fe1fdb08ab521a.png" style="max-width: 100.0%;max-height: 100.0%;"/>, thus we can conclude that you decrease the level of water by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e8edb237e1f805fe83c2f47e48d3a9d03f2ee304.png" style="max-width: 100.0%;max-height: 100.0%;"/> centimeters per second. At the same time water level increases by 1 centimeter per second due to rain. Thus, cup will be empty in <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9dae615d7e2c5c7c03cb478848fb06aba1a8942e.png" style="max-width: 100.0%;max-height: 100.0%;"/> seconds.
```python d,h,v,e = map(int, input().split()) denominator = (4.00 * v) - ((d**2)*e*3.1415926) if(denominator < 0): print("NO") else: print("YES") numerator = 3.1415926 * (d**2) * h answer = numerator/denominator print(answer) ```
3
265
B
Roadside Trees (Simplified Edition)
PROGRAMMING
1,000
[ "greedy", "implementation" ]
null
null
Squirrel Liss loves nuts. There are *n* trees (numbered 1 to *n* from west to east) along a street and there is a delicious nut on the top of each tree. The height of the tree *i* is *h**i*. Liss wants to eat all nuts. Now Liss is on the root of the tree with the number 1. In one second Liss can perform one of the following actions: - Walk up or down one unit on a tree. - Eat a nut on the top of the current tree. - Jump to the next tree. In this action the height of Liss doesn't change. More formally, when Liss is at height *h* of the tree *i* (1<=≤<=*i*<=≤<=*n*<=-<=1), she jumps to height *h* of the tree *i*<=+<=1. This action can't be performed if *h*<=&gt;<=*h**i*<=+<=1. Compute the minimal time (in seconds) required to eat all nuts.
The first line contains an integer *n* (1<=<=≤<=<=*n*<=≤<=105) — the number of trees. Next *n* lines contains the height of trees: *i*-th line contains an integer *h**i* (1<=≤<=*h**i*<=≤<=104) — the height of the tree with the number *i*.
Print a single integer — the minimal time required to eat all nuts in seconds.
[ "2\n1\n2\n", "5\n2\n1\n2\n1\n1\n" ]
[ "5\n", "14\n" ]
none
1,000
[ { "input": "2\n1\n2", "output": "5" }, { "input": "5\n2\n1\n2\n1\n1", "output": "14" }, { "input": "1\n1", "output": "2" } ]
1,615,205,769
2,147,483,647
Python 3
OK
TESTS
15
466
2,969,600
n = int(input()) arr = [] for i in range(n): arr.append(int(input())) time = arr[0] + 1 for i in range(n-1): diff = abs(arr[i] - arr[i+1]) time+=diff+2 print(time)
Title: Roadside Trees (Simplified Edition) Time Limit: None seconds Memory Limit: None megabytes Problem Description: Squirrel Liss loves nuts. There are *n* trees (numbered 1 to *n* from west to east) along a street and there is a delicious nut on the top of each tree. The height of the tree *i* is *h**i*. Liss wants to eat all nuts. Now Liss is on the root of the tree with the number 1. In one second Liss can perform one of the following actions: - Walk up or down one unit on a tree. - Eat a nut on the top of the current tree. - Jump to the next tree. In this action the height of Liss doesn't change. More formally, when Liss is at height *h* of the tree *i* (1<=≤<=*i*<=≤<=*n*<=-<=1), she jumps to height *h* of the tree *i*<=+<=1. This action can't be performed if *h*<=&gt;<=*h**i*<=+<=1. Compute the minimal time (in seconds) required to eat all nuts. Input Specification: The first line contains an integer *n* (1<=<=≤<=<=*n*<=≤<=105) — the number of trees. Next *n* lines contains the height of trees: *i*-th line contains an integer *h**i* (1<=≤<=*h**i*<=≤<=104) — the height of the tree with the number *i*. Output Specification: Print a single integer — the minimal time required to eat all nuts in seconds. Demo Input: ['2\n1\n2\n', '5\n2\n1\n2\n1\n1\n'] Demo Output: ['5\n', '14\n'] Note: none
```python n = int(input()) arr = [] for i in range(n): arr.append(int(input())) time = arr[0] + 1 for i in range(n-1): diff = abs(arr[i] - arr[i+1]) time+=diff+2 print(time) ```
3
632
C
The Smallest String Concatenation
PROGRAMMING
1,700
[ "sortings", "strings" ]
null
null
You're given a list of *n* strings *a*1,<=*a*2,<=...,<=*a**n*. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation.
The first line contains integer *n* — the number of strings (1<=≤<=*n*<=≤<=5·104). Each of the next *n* lines contains one string *a**i* (1<=≤<=|*a**i*|<=≤<=50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5·104.
Print the only string *a* — the lexicographically smallest string concatenation.
[ "4\nabba\nabacaba\nbcd\ner\n", "5\nx\nxx\nxxa\nxxaa\nxxaaa\n", "3\nc\ncb\ncba\n" ]
[ "abacabaabbabcder\n", "xxaaaxxaaxxaxxx\n", "cbacbc\n" ]
none
0
[ { "input": "4\nabba\nabacaba\nbcd\ner", "output": "abacabaabbabcder" }, { "input": "5\nx\nxx\nxxa\nxxaa\nxxaaa", "output": "xxaaaxxaaxxaxxx" }, { "input": "3\nc\ncb\ncba", "output": "cbacbc" }, { "input": "10\naba\nabaaca\naba\nacaaaabbac\nabaacac\nb\ncabbcccaab\nbaacbb\nbcab\ncc", "output": "abaabaabaacaabaacacacaaaabbacbaacbbbbcabcabbcccaabcc" }, { "input": "13\nclgknjjojyuvdtv\nclgknjjojyuvdtvzxz\nclgknjjojyuvdtvzxzxradqhm\ngvzpnckalbaubfviyhijosiixvxaydxagvymq\nclgknjjojyuvdtvjgcwarwvgilcctdiytmvmvfxxkezymt\nbvwzpuut\nclgknjjojyuvdtvjgcwarwvgilcctdiytmvmvfxxkezymth\nclgknjjojyuvdtvjgcwarwvgilcctdiytmvmvfxxkezymtlkdl\nrbwvaayhhunlvmwexvkmqbquypsnjbdkkeytthekttywypud\nqlvkfkshkxyrfefigtngifxsuhpjgkb\nlhxtkfjrrwcvzuamizotupjqckaq\nenngvhxvpaoiyhctddyscasyqtilvbvgfphayykjeoylcvmjz\nxkazwk", "output": "bvwzpuutclgknjjojyuvdtvclgknjjojyuvdtvjgcwarwvgilcctdiytmvmvfxxkezymtclgknjjojyuvdtvjgcwarwvgilcctdiytmvmvfxxkezymthclgknjjojyuvdtvjgcwarwvgilcctdiytmvmvfxxkezymtlkdlclgknjjojyuvdtvzxzclgknjjojyuvdtvzxzxradqhmenngvhxvpaoiyhctddyscasyqtilvbvgfphayykjeoylcvmjzgvzpnckalbaubfviyhijosiixvxaydxagvymqlhxtkfjrrwcvzuamizotupjqckaqqlvkfkshkxyrfefigtngifxsuhpjgkbrbwvaayhhunlvmwexvkmqbquypsnjbdkkeytthekttywypudxkazwk" } ]
1,485,509,149
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
62
4,608,000
n=int(input()) a=[] for i in range(n): a.append(input()) for i in range (n-1): for j in range (i+1, n): if (len(a[i])<len(a[j])): a[i], a[j]=a[j], a[i] else: if (a[i]>a[j]): a[i], a[j]=a[j], a[i] print (''.join(a))
Title: The Smallest String Concatenation Time Limit: None seconds Memory Limit: None megabytes Problem Description: You're given a list of *n* strings *a*1,<=*a*2,<=...,<=*a**n*. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation. Input Specification: The first line contains integer *n* — the number of strings (1<=≤<=*n*<=≤<=5·104). Each of the next *n* lines contains one string *a**i* (1<=≤<=|*a**i*|<=≤<=50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5·104. Output Specification: Print the only string *a* — the lexicographically smallest string concatenation. Demo Input: ['4\nabba\nabacaba\nbcd\ner\n', '5\nx\nxx\nxxa\nxxaa\nxxaaa\n', '3\nc\ncb\ncba\n'] Demo Output: ['abacabaabbabcder\n', 'xxaaaxxaaxxaxxx\n', 'cbacbc\n'] Note: none
```python n=int(input()) a=[] for i in range(n): a.append(input()) for i in range (n-1): for j in range (i+1, n): if (len(a[i])<len(a[j])): a[i], a[j]=a[j], a[i] else: if (a[i]>a[j]): a[i], a[j]=a[j], a[i] print (''.join(a)) ```
0
337
A
Puzzles
PROGRAMMING
900
[ "greedy" ]
null
null
The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces). The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on. Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*.
The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop.
Print a single integer — the least possible difference the teacher can obtain.
[ "4 6\n10 12 10 7 5 22\n" ]
[ "5\n" ]
Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
500
[ { "input": "4 6\n10 12 10 7 5 22", "output": "5" }, { "input": "2 2\n4 4", "output": "0" }, { "input": "2 10\n4 5 6 7 8 9 10 11 12 12", "output": "0" }, { "input": "4 5\n818 136 713 59 946", "output": "759" }, { "input": "3 20\n446 852 783 313 549 965 40 88 86 617 479 118 768 34 47 826 366 957 463 903", "output": "13" }, { "input": "2 25\n782 633 152 416 432 825 115 97 386 357 836 310 530 413 354 373 847 882 913 682 729 582 671 674 94", "output": "3" }, { "input": "4 25\n226 790 628 528 114 64 239 279 619 39 894 763 763 847 525 93 882 697 999 643 650 244 159 884 190", "output": "31" }, { "input": "2 50\n971 889 628 39 253 157 925 694 129 516 660 272 738 319 611 816 142 717 514 392 41 105 132 676 958 118 306 768 600 685 103 857 704 346 857 309 23 718 618 161 176 379 846 834 640 468 952 878 164 997", "output": "0" }, { "input": "25 50\n582 146 750 905 313 509 402 21 488 512 32 898 282 64 579 869 37 996 377 929 975 697 666 837 311 205 116 992 533 298 648 268 54 479 792 595 152 69 267 417 184 433 894 603 988 712 24 414 301 176", "output": "412" }, { "input": "49 50\n58 820 826 960 271 294 473 102 925 318 729 672 244 914 796 646 868 6 893 882 726 203 528 498 271 195 355 459 721 680 547 147 631 116 169 804 145 996 133 559 110 257 771 476 576 251 607 314 427 886", "output": "938" }, { "input": "50 50\n374 573 323 744 190 806 485 247 628 336 491 606 702 321 991 678 337 579 86 240 993 208 668 686 855 205 363 177 719 249 896 919 782 434 59 647 787 996 286 216 636 212 546 903 958 559 544 126 608 993", "output": "937" }, { "input": "6 50\n6 8 7 8 5 4 4 5 7 8 6 5 7 4 7 7 7 8 6 4 6 6 8 8 7 7 8 7 5 8 5 4 4 7 8 4 4 6 6 6 8 7 4 7 6 6 5 8 4 7", "output": "0" }, { "input": "37 50\n14 5 11 17 8 20 19 16 20 11 17 20 16 9 14 14 13 18 11 20 8 8 8 5 19 17 6 18 10 20 9 7 12 6 14 17 4 4 10 13 7 4 11 6 20 19 12 12 15 19", "output": "12" }, { "input": "40 50\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4", "output": "0" }, { "input": "40 50\n17 20 43 26 41 37 14 8 30 35 30 24 43 8 42 9 41 50 41 35 27 32 35 43 28 36 31 16 5 7 23 16 14 29 8 39 12 16 36 18 49 39 33 37 38 6 6 27 23 17", "output": "31" }, { "input": "2 2\n1000 4", "output": "996" }, { "input": "2 3\n4 502 1000", "output": "498" }, { "input": "3 3\n4 1000 4", "output": "996" } ]
1,690,667,685
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
92
0
n,m=map(int,input().split()) v=list(map(int,input().split())) b=[] for j in v: if v.count(j)==n: print(0) break else: while len(b)!=n: b+=[min(v)] v.remove(min(v)) print(max(b)-min(b))
Title: Puzzles Time Limit: None seconds Memory Limit: None megabytes Problem Description: The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces). The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on. Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*. Input Specification: The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop. Output Specification: Print a single integer — the least possible difference the teacher can obtain. Demo Input: ['4 6\n10 12 10 7 5 22\n'] Demo Output: ['5\n'] Note: Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
```python n,m=map(int,input().split()) v=list(map(int,input().split())) b=[] for j in v: if v.count(j)==n: print(0) break else: while len(b)!=n: b+=[min(v)] v.remove(min(v)) print(max(b)-min(b)) ```
0
910
A
The Way to Home
PROGRAMMING
800
[ "dfs and similar", "dp", "greedy", "implementation" ]
null
null
A frog lives on the axis *Ox* and needs to reach home which is in the point *n*. She starts from the point 1. The frog can jump to the right at a distance not more than *d*. So, after she jumped from the point *x* she can reach the point *x*<=+<=*a*, where *a* is an integer from 1 to *d*. For each point from 1 to *n* is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points 1 and *n*. Determine the minimal number of jumps that the frog needs to reach home which is in the point *n* from the point 1. Consider that initially the frog is in the point 1. If the frog can not reach home, print -1.
The first line contains two integers *n* and *d* (2<=≤<=*n*<=≤<=100, 1<=≤<=*d*<=≤<=*n*<=-<=1) — the point, which the frog wants to reach, and the maximal length of the frog jump. The second line contains a string *s* of length *n*, consisting of zeros and ones. If a character of the string *s* equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string *s* equal to one.
If the frog can not reach the home, print -1. In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point *n* from the point 1.
[ "8 4\n10010101\n", "4 2\n1001\n", "8 4\n11100101\n", "12 3\n101111100101\n" ]
[ "2\n", "-1\n", "3\n", "4\n" ]
In the first example the from can reach home in two jumps: the first jump from the point 1 to the point 4 (the length of the jump is three), and the second jump from the point 4 to the point 8 (the length of the jump is four). In the second example the frog can not reach home, because to make it she need to jump on a distance three, but the maximum length of her jump equals to two.
500
[ { "input": "8 4\n10010101", "output": "2" }, { "input": "4 2\n1001", "output": "-1" }, { "input": "8 4\n11100101", "output": "3" }, { "input": "12 3\n101111100101", "output": "4" }, { "input": "5 4\n11011", "output": "1" }, { "input": "5 4\n10001", "output": "1" }, { "input": "10 7\n1101111011", "output": "2" }, { "input": "10 9\n1110000101", "output": "1" }, { "input": "10 9\n1100000001", "output": "1" }, { "input": "20 5\n11111111110111101001", "output": "4" }, { "input": "20 11\n11100000111000011011", "output": "2" }, { "input": "20 19\n10100000000000000001", "output": "1" }, { "input": "50 13\n10011010100010100111010000010000000000010100000101", "output": "5" }, { "input": "50 8\n11010100000011001100001100010001110000101100110011", "output": "8" }, { "input": "99 4\n111111111111111111111111111111111111111111111111111111111011111111111111111111111111111111111111111", "output": "25" }, { "input": "99 98\n100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "1" }, { "input": "100 5\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "20" }, { "input": "100 4\n1111111111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111", "output": "25" }, { "input": "100 4\n1111111111111111111111111111111111111111111111111111111111111101111111011111111111111111111111111111", "output": "25" }, { "input": "100 3\n1111110111111111111111111111111111111111101111111111111111111111111101111111111111111111111111111111", "output": "34" }, { "input": "100 8\n1111111111101110111111111111111111111111111111111111111111111111111111110011111111111111011111111111", "output": "13" }, { "input": "100 7\n1011111111111111111011101111111011111101111111111101111011110111111111111111111111110111111011111111", "output": "15" }, { "input": "100 9\n1101111110111110101111111111111111011001110111011101011111111111010101111111100011011111111010111111", "output": "12" }, { "input": "100 6\n1011111011111111111011010110011001010101111110111111000111011011111110101101110110101111110000100111", "output": "18" }, { "input": "100 7\n1110001111101001110011111111111101111101101001010001101000101100000101101101011111111101101000100001", "output": "16" }, { "input": "100 11\n1000010100011100011011100000010011001111011110100100001011010100011011111001101101110110010110001101", "output": "10" }, { "input": "100 9\n1001001110000011100100000001000110111101101010101001000101001010011001101100110011011110110011011111", "output": "13" }, { "input": "100 7\n1010100001110101111011000111000001110100100110110001110110011010100001100100001110111100110000101001", "output": "18" }, { "input": "100 10\n1110110000000110000000101110100000111000001011100000100110010001110111001010101000011000000001011011", "output": "12" }, { "input": "100 13\n1000000100000000100011000010010000101010011110000000001000011000110100001000010001100000011001011001", "output": "9" }, { "input": "100 11\n1000000000100000010000100001000100000000010000100100000000100100001000000001011000110001000000000101", "output": "12" }, { "input": "100 22\n1000100000001010000000000000000001000000100000000000000000010000000000001000000000000000000100000001", "output": "7" }, { "input": "100 48\n1000000000000000011000000000000000000000000000000001100000000000000000000000000000000000000000000001", "output": "3" }, { "input": "100 48\n1000000000000000000000100000000000000000000000000000000000000000000001000000000000000000100000000001", "output": "3" }, { "input": "100 75\n1000000100000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001", "output": "3" }, { "input": "100 73\n1000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000001", "output": "2" }, { "input": "100 99\n1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "1" }, { "input": "100 1\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "99" }, { "input": "100 2\n1111111111111111111111111111111110111111111111111111111111111111111111111111111111111111111111111111", "output": "50" }, { "input": "100 1\n1111111111111111011111111111111111111111111111111111111111111111111101111111111111111111111111111111", "output": "-1" }, { "input": "100 3\n1111111111111111111111111101111111111111111111111011111111111111111111111111111011111111111111111111", "output": "33" }, { "input": "100 1\n1101111111111111111111101111111111111111111111111111111111111011111111101111101111111111111111111111", "output": "-1" }, { "input": "100 6\n1111111111111111111111101111111101011110001111111111111111110111111111111111111111111110010111111111", "output": "17" }, { "input": "100 2\n1111111101111010110111011011110111101111111011111101010101011111011111111111111011111001101111101111", "output": "-1" }, { "input": "100 8\n1100110101111001101001111000111100110100011110111011001011111110000110101000001110111011100111011011", "output": "14" }, { "input": "100 10\n1000111110100000001001101100000010011100010101001100010011111001001101111110110111101111001010001101", "output": "11" }, { "input": "100 7\n1110000011010001110101011010000011110001000000011101110111010110001000011101111010010001101111110001", "output": "-1" }, { "input": "100 3\n1111010001000001011011000011001111000100101000101101000010111101111000010000011110110011001101010111", "output": "-1" }, { "input": "100 9\n1101010101101100010111011000010100001010000101010011001001100010110110000000010000101000000001101101", "output": "13" }, { "input": "100 14\n1010100000000000010101000010001100000000000011100010000001000001011010001110001010100000100001101101", "output": "9" }, { "input": "100 13\n1000000001101001110000010000011001000000000000001010000000100001001010000000000000000100010000000001", "output": "-1" }, { "input": "100 18\n1000000000000000110000000000000000010000000001000001000001000000000100000000000010000000000000000001", "output": "-1" }, { "input": "100 32\n1000000000000000000000000001000000000000000000000101000000000000000000000000000000000001000000000001", "output": "-1" }, { "input": "100 79\n1000000001000000000101000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "2" }, { "input": "100 41\n1000000000000000000000000000000000010000000000000000000000000000000000000000100000000000000000000001", "output": "3" }, { "input": "100 82\n1000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "2" }, { "input": "100 96\n1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "-1" }, { "input": "43 30\n1001000001111111010100100100110101011101101", "output": "2" }, { "input": "7 1\n1111111", "output": "6" }, { "input": "9 3\n101000001", "output": "-1" }, { "input": "10 3\n1100000001", "output": "-1" }, { "input": "8 2\n10000101", "output": "-1" }, { "input": "2 1\n11", "output": "1" } ]
1,651,908,879
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
37
93
0
#import sys #input = sys.stdin.readline().strip() ##################################################################### a,b = list(map(int,input().split())) c = input() if '0' * b in c: print(-1) elif c.count('1') == a: if a % b == 0: print(a // b) else: print((a//b)+1) else: pointer = 0 count = 0 while True: if pointer == a-1 or pointer > a-1: print(count) break else: if pointer + b >= a-1: count += 1 print(count) break else: for i in range(pointer + b , pointer , -1): if c[i] == '1': pointer = i count += 1 break
Title: The Way to Home Time Limit: None seconds Memory Limit: None megabytes Problem Description: A frog lives on the axis *Ox* and needs to reach home which is in the point *n*. She starts from the point 1. The frog can jump to the right at a distance not more than *d*. So, after she jumped from the point *x* she can reach the point *x*<=+<=*a*, where *a* is an integer from 1 to *d*. For each point from 1 to *n* is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points 1 and *n*. Determine the minimal number of jumps that the frog needs to reach home which is in the point *n* from the point 1. Consider that initially the frog is in the point 1. If the frog can not reach home, print -1. Input Specification: The first line contains two integers *n* and *d* (2<=≤<=*n*<=≤<=100, 1<=≤<=*d*<=≤<=*n*<=-<=1) — the point, which the frog wants to reach, and the maximal length of the frog jump. The second line contains a string *s* of length *n*, consisting of zeros and ones. If a character of the string *s* equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string *s* equal to one. Output Specification: If the frog can not reach the home, print -1. In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point *n* from the point 1. Demo Input: ['8 4\n10010101\n', '4 2\n1001\n', '8 4\n11100101\n', '12 3\n101111100101\n'] Demo Output: ['2\n', '-1\n', '3\n', '4\n'] Note: In the first example the from can reach home in two jumps: the first jump from the point 1 to the point 4 (the length of the jump is three), and the second jump from the point 4 to the point 8 (the length of the jump is four). In the second example the frog can not reach home, because to make it she need to jump on a distance three, but the maximum length of her jump equals to two.
```python #import sys #input = sys.stdin.readline().strip() ##################################################################### a,b = list(map(int,input().split())) c = input() if '0' * b in c: print(-1) elif c.count('1') == a: if a % b == 0: print(a // b) else: print((a//b)+1) else: pointer = 0 count = 0 while True: if pointer == a-1 or pointer > a-1: print(count) break else: if pointer + b >= a-1: count += 1 print(count) break else: for i in range(pointer + b , pointer , -1): if c[i] == '1': pointer = i count += 1 break ```
0
353
A
Domino
PROGRAMMING
1,200
[ "implementation", "math" ]
null
null
Valera has got *n* domino pieces in a row. Each piece consists of two halves — the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even. To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half.
Print a single number — the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1.
[ "2\n4 2\n6 4\n", "1\n2 3\n", "3\n1 4\n2 3\n4 4\n" ]
[ "0\n", "-1\n", "1\n" ]
In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything. In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd. In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
500
[ { "input": "2\n4 2\n6 4", "output": "0" }, { "input": "1\n2 3", "output": "-1" }, { "input": "3\n1 4\n2 3\n4 4", "output": "1" }, { "input": "5\n5 4\n5 4\n1 5\n5 5\n3 3", "output": "1" }, { "input": "20\n1 3\n5 2\n5 2\n2 6\n2 4\n1 1\n1 3\n1 4\n2 6\n4 2\n5 6\n2 2\n6 2\n4 3\n2 1\n6 2\n6 5\n4 5\n2 4\n1 4", "output": "-1" }, { "input": "100\n2 3\n2 4\n3 3\n1 4\n5 2\n5 4\n6 6\n3 4\n1 1\n4 2\n5 1\n5 5\n5 3\n3 6\n4 1\n1 6\n1 1\n3 2\n4 5\n6 1\n6 4\n1 1\n3 4\n3 3\n2 2\n1 1\n4 4\n6 4\n3 2\n5 2\n6 4\n3 2\n3 5\n4 4\n1 4\n5 2\n3 4\n1 4\n2 2\n5 6\n3 5\n6 1\n5 5\n1 6\n6 3\n1 4\n1 5\n5 5\n4 1\n3 2\n4 1\n5 5\n5 5\n1 5\n1 2\n6 4\n1 3\n3 6\n4 3\n3 5\n6 4\n2 6\n5 5\n1 4\n2 2\n2 3\n5 1\n2 5\n1 2\n2 6\n5 5\n4 6\n1 4\n3 6\n2 3\n6 1\n6 5\n3 2\n6 4\n4 5\n4 5\n2 6\n1 3\n6 2\n1 2\n2 3\n4 3\n5 4\n3 4\n1 6\n6 6\n2 4\n4 1\n3 1\n2 6\n5 4\n1 2\n6 5\n3 6\n2 4", "output": "-1" }, { "input": "1\n2 4", "output": "0" }, { "input": "1\n1 1", "output": "-1" }, { "input": "1\n1 2", "output": "-1" }, { "input": "2\n1 1\n3 3", "output": "0" }, { "input": "2\n1 1\n2 2", "output": "-1" }, { "input": "2\n1 1\n1 2", "output": "-1" }, { "input": "5\n1 2\n6 6\n1 1\n3 3\n6 1", "output": "1" }, { "input": "5\n5 4\n2 6\n6 2\n1 4\n6 2", "output": "0" }, { "input": "10\n4 1\n3 2\n1 2\n2 6\n3 5\n2 1\n5 2\n4 6\n5 6\n3 1", "output": "0" }, { "input": "10\n6 1\n4 4\n2 6\n6 5\n3 6\n6 3\n2 4\n5 1\n1 6\n1 5", "output": "-1" }, { "input": "15\n1 2\n5 1\n6 4\n5 1\n1 6\n2 6\n3 1\n6 4\n3 1\n2 1\n6 4\n3 5\n6 2\n1 6\n1 1", "output": "1" }, { "input": "15\n3 3\n2 1\n5 4\n3 3\n5 3\n5 4\n2 5\n1 3\n3 2\n3 3\n3 5\n2 5\n4 1\n2 3\n5 4", "output": "-1" }, { "input": "20\n1 5\n6 4\n4 3\n6 2\n1 1\n1 5\n6 3\n2 3\n3 6\n3 6\n3 6\n2 5\n4 3\n4 6\n5 5\n4 6\n3 4\n4 2\n3 3\n5 2", "output": "0" }, { "input": "20\n2 1\n6 5\n3 1\n2 5\n3 5\n4 1\n1 1\n5 4\n5 1\n2 4\n1 5\n3 2\n1 2\n3 5\n5 2\n1 2\n1 3\n4 2\n2 3\n4 5", "output": "-1" }, { "input": "25\n4 1\n6 3\n1 3\n2 3\n2 4\n6 6\n4 2\n4 2\n1 5\n5 4\n1 2\n2 5\n3 6\n4 1\n3 4\n2 6\n6 1\n5 6\n6 6\n4 2\n1 5\n3 3\n3 3\n6 5\n1 4", "output": "-1" }, { "input": "25\n5 5\n4 3\n2 5\n4 3\n4 6\n4 2\n5 6\n2 1\n5 4\n6 6\n1 3\n1 4\n2 3\n5 6\n5 4\n5 6\n5 4\n6 3\n3 5\n1 3\n2 5\n2 2\n4 4\n2 1\n4 4", "output": "-1" }, { "input": "30\n3 5\n2 5\n1 6\n1 6\n2 4\n5 5\n5 4\n5 6\n5 4\n2 1\n2 4\n1 6\n3 5\n1 1\n3 6\n5 5\n1 6\n3 4\n1 4\n4 6\n2 1\n3 3\n1 3\n4 5\n1 4\n1 6\n2 1\n4 6\n3 5\n5 6", "output": "1" }, { "input": "30\n2 3\n3 1\n6 6\n1 3\n5 5\n3 6\n4 5\n2 1\n1 3\n2 3\n4 4\n2 4\n6 4\n2 4\n5 4\n2 1\n2 5\n2 5\n4 2\n1 4\n2 6\n3 2\n3 2\n6 6\n4 2\n3 4\n6 3\n6 6\n6 6\n5 5", "output": "1" }, { "input": "35\n6 1\n4 3\n1 2\n4 3\n6 4\n4 6\n3 1\n5 5\n3 4\n5 4\n4 6\n1 6\n2 4\n6 6\n5 4\n5 2\n1 3\n1 4\n3 5\n1 4\n2 3\n4 5\n4 3\n6 1\n5 3\n3 2\n5 6\n3 5\n6 5\n4 1\n1 3\n5 5\n4 6\n6 1\n1 3", "output": "1" }, { "input": "35\n4 3\n5 6\n4 5\n2 5\n6 6\n4 1\n2 2\n4 2\n3 4\n4 1\n6 6\n6 3\n1 5\n1 5\n5 6\n4 2\n4 6\n5 5\n2 2\n5 2\n1 2\n4 6\n6 6\n6 5\n2 1\n3 5\n2 5\n3 1\n5 3\n6 4\n4 6\n5 6\n5 1\n3 4\n3 5", "output": "1" }, { "input": "40\n5 6\n1 1\n3 3\n2 6\n6 6\n5 4\n6 4\n3 5\n1 3\n4 4\n4 4\n2 5\n1 3\n3 6\n5 2\n4 3\n4 4\n5 6\n2 3\n1 1\n3 1\n1 1\n1 5\n4 3\n5 5\n3 4\n6 6\n5 6\n2 2\n6 6\n2 1\n2 4\n5 2\n2 2\n1 1\n1 4\n4 2\n3 5\n5 5\n4 5", "output": "-1" }, { "input": "40\n3 2\n5 3\n4 6\n3 5\n6 1\n5 2\n1 2\n6 2\n5 3\n3 2\n4 4\n3 3\n5 2\n4 5\n1 4\n5 1\n3 3\n1 3\n1 3\n2 1\n3 6\n4 2\n4 6\n6 2\n2 5\n2 2\n2 5\n3 3\n5 3\n2 1\n3 2\n2 3\n6 3\n6 3\n3 4\n3 2\n4 3\n5 4\n2 4\n4 6", "output": "-1" }, { "input": "45\n2 4\n3 4\n6 1\n5 5\n1 1\n3 5\n4 3\n5 2\n3 6\n6 1\n4 4\n6 1\n2 1\n6 1\n3 6\n3 3\n6 1\n1 2\n1 5\n6 5\n1 3\n5 6\n6 1\n4 5\n3 6\n2 2\n1 2\n4 5\n5 6\n1 5\n6 2\n2 4\n3 3\n3 1\n6 5\n6 5\n2 1\n5 2\n2 1\n3 3\n2 2\n1 4\n2 2\n3 3\n2 1", "output": "-1" }, { "input": "45\n6 6\n1 6\n1 2\n3 5\n4 4\n2 1\n5 3\n2 1\n5 2\n5 3\n1 4\n5 2\n4 2\n3 6\n5 2\n1 5\n4 4\n5 5\n6 5\n2 1\n2 6\n5 5\n2 1\n6 1\n1 6\n6 5\n2 4\n4 3\n2 6\n2 4\n6 5\n6 4\n6 3\n6 6\n2 1\n6 4\n5 6\n5 4\n1 5\n5 1\n3 3\n5 6\n2 5\n4 5\n3 6", "output": "-1" }, { "input": "50\n4 4\n5 1\n6 4\n6 2\n6 2\n1 4\n5 5\n4 2\n5 5\n5 4\n1 3\n3 5\n6 1\n6 1\n1 4\n4 3\n5 1\n3 6\n2 2\n6 2\n4 4\n2 3\n4 2\n6 5\n5 6\n2 2\n2 4\n3 5\n1 5\n3 2\n3 4\n5 6\n4 6\n1 6\n4 5\n2 6\n2 2\n3 5\n6 4\n5 1\n4 3\n3 4\n3 5\n3 3\n2 3\n3 2\n2 2\n1 4\n3 1\n4 4", "output": "1" }, { "input": "50\n1 2\n1 4\n1 1\n4 5\n4 4\n3 2\n4 5\n3 5\n1 1\n3 4\n3 2\n2 4\n2 6\n2 6\n3 2\n4 6\n1 6\n3 1\n1 6\n2 1\n4 1\n1 6\n4 3\n6 6\n5 2\n6 4\n2 1\n4 3\n6 4\n5 1\n5 5\n3 1\n1 1\n5 5\n2 2\n2 3\n2 3\n3 5\n5 5\n1 6\n1 5\n3 6\n3 6\n1 1\n3 3\n2 6\n5 5\n1 3\n6 3\n6 6", "output": "-1" }, { "input": "55\n3 2\n5 6\n5 1\n3 5\n5 5\n1 5\n5 4\n6 3\n5 6\n4 2\n3 1\n1 2\n5 5\n1 1\n5 2\n6 3\n5 4\n3 6\n4 6\n2 6\n6 4\n1 4\n1 6\n4 1\n2 5\n4 3\n2 1\n2 1\n6 2\n3 1\n2 5\n4 4\n6 3\n2 2\n3 5\n5 1\n3 6\n5 4\n4 6\n6 5\n5 6\n2 2\n3 2\n5 2\n6 5\n2 2\n5 3\n3 1\n4 5\n6 4\n2 4\n1 2\n5 6\n2 6\n5 2", "output": "0" }, { "input": "55\n4 6\n3 3\n6 5\n5 3\n5 6\n2 3\n2 2\n3 4\n3 1\n5 4\n5 4\n2 4\n3 4\n4 5\n1 5\n6 3\n1 1\n5 1\n3 4\n1 5\n3 1\n2 5\n3 3\n4 3\n3 3\n3 1\n6 6\n3 3\n3 3\n5 6\n5 3\n3 5\n1 4\n5 5\n1 3\n1 4\n3 5\n3 6\n2 4\n2 4\n5 1\n6 4\n5 1\n5 5\n1 1\n3 2\n4 3\n5 4\n5 1\n2 4\n4 3\n6 1\n3 4\n1 5\n6 3", "output": "-1" }, { "input": "60\n2 6\n1 4\n3 2\n1 2\n3 2\n2 4\n6 4\n4 6\n1 3\n3 1\n6 5\n2 4\n5 4\n4 2\n1 6\n3 4\n4 5\n5 2\n1 5\n5 4\n3 4\n3 4\n4 4\n4 1\n6 6\n3 6\n2 4\n2 1\n4 4\n6 5\n3 1\n4 3\n1 3\n6 3\n5 5\n1 4\n3 1\n3 6\n1 5\n3 1\n1 5\n4 4\n1 3\n2 4\n6 2\n4 1\n5 3\n3 4\n5 6\n1 2\n1 6\n6 3\n1 6\n3 6\n3 4\n6 2\n4 6\n2 3\n3 3\n3 3", "output": "-1" }, { "input": "60\n2 3\n4 6\n2 4\n1 3\n5 6\n1 5\n1 2\n1 3\n5 6\n4 3\n4 2\n3 1\n1 3\n3 5\n1 5\n3 4\n2 4\n3 5\n4 5\n1 2\n3 1\n1 5\n2 5\n6 2\n1 6\n3 3\n6 2\n5 3\n1 3\n1 4\n6 4\n6 3\n4 2\n4 2\n1 4\n1 3\n3 2\n3 1\n2 1\n1 2\n3 1\n2 6\n1 4\n3 6\n3 3\n1 5\n2 4\n5 5\n6 2\n5 2\n3 3\n5 3\n3 4\n4 5\n5 6\n2 4\n5 3\n3 1\n2 4\n5 4", "output": "-1" }, { "input": "65\n5 4\n3 3\n1 2\n4 3\n3 5\n1 5\n4 5\n2 6\n1 2\n1 5\n6 3\n2 6\n4 3\n3 6\n1 5\n3 5\n4 6\n2 5\n6 5\n1 4\n3 4\n4 3\n1 4\n2 5\n6 5\n3 1\n4 3\n1 2\n1 1\n6 1\n5 2\n3 2\n1 6\n2 6\n3 3\n6 6\n4 6\n1 5\n5 1\n4 5\n1 4\n3 2\n5 4\n4 2\n6 2\n1 3\n4 2\n5 3\n6 4\n3 6\n1 2\n6 1\n6 6\n3 3\n4 2\n3 5\n4 6\n4 1\n5 4\n6 1\n5 1\n5 6\n6 1\n4 6\n5 5", "output": "1" }, { "input": "65\n5 4\n6 3\n5 4\n4 5\n5 3\n3 6\n1 3\n3 1\n1 3\n6 1\n6 4\n1 3\n2 2\n4 6\n4 1\n5 6\n6 5\n1 1\n1 3\n6 6\n4 1\n2 4\n5 4\n4 1\n5 5\n5 3\n6 2\n2 6\n4 2\n2 2\n6 2\n3 3\n4 5\n4 3\n3 1\n1 4\n4 5\n3 2\n5 5\n4 6\n5 1\n3 4\n5 4\n5 2\n1 6\n4 2\n3 4\n3 4\n1 3\n1 2\n3 3\n3 6\n6 4\n4 6\n6 2\n6 5\n3 2\n2 1\n6 4\n2 1\n1 5\n5 2\n6 5\n3 6\n5 1", "output": "1" }, { "input": "70\n4 1\n2 6\n1 1\n5 6\n5 1\n2 3\n3 5\n1 1\n1 1\n4 6\n4 3\n1 5\n2 2\n2 3\n3 1\n6 4\n3 1\n4 2\n5 4\n1 3\n3 5\n5 2\n5 6\n4 4\n4 5\n2 2\n4 5\n3 2\n3 5\n2 5\n2 6\n5 5\n2 6\n5 1\n1 1\n2 5\n3 1\n1 2\n6 4\n6 5\n5 5\n5 1\n1 5\n2 2\n6 3\n4 3\n6 2\n5 5\n1 1\n6 2\n6 6\n3 4\n2 2\n3 5\n1 5\n2 5\n4 5\n2 4\n6 3\n5 1\n2 6\n4 2\n1 4\n1 6\n6 2\n5 2\n5 6\n2 5\n5 6\n5 5", "output": "-1" }, { "input": "70\n4 3\n6 4\n5 5\n3 1\n1 2\n2 5\n4 6\n4 2\n3 2\n4 2\n1 5\n2 2\n4 3\n1 2\n6 1\n6 6\n1 6\n5 1\n2 2\n6 3\n4 2\n4 3\n1 2\n6 6\n3 3\n6 5\n6 2\n3 6\n6 6\n4 6\n5 2\n5 4\n3 3\n1 6\n5 6\n2 3\n4 6\n1 1\n1 2\n6 6\n1 1\n3 4\n1 6\n2 6\n3 4\n6 3\n5 3\n1 2\n2 3\n4 6\n2 1\n6 4\n4 6\n4 6\n4 2\n5 5\n3 5\n3 2\n4 3\n3 6\n1 4\n3 6\n1 4\n1 6\n1 5\n5 6\n4 4\n3 3\n3 5\n2 2", "output": "0" }, { "input": "75\n1 3\n4 5\n4 1\n6 5\n2 1\n1 4\n5 4\n1 5\n5 3\n1 2\n4 1\n1 1\n5 1\n5 3\n1 5\n4 2\n2 2\n6 3\n1 2\n4 3\n2 5\n5 3\n5 5\n4 1\n4 6\n2 5\n6 1\n2 4\n6 4\n5 2\n6 2\n2 4\n1 3\n5 4\n6 5\n5 4\n6 4\n1 5\n4 6\n1 5\n1 1\n4 4\n3 5\n6 3\n6 5\n1 5\n2 1\n1 5\n6 6\n2 2\n2 2\n4 4\n6 6\n5 4\n4 5\n3 2\n2 4\n1 1\n4 3\n3 2\n5 4\n1 6\n1 2\n2 2\n3 5\n2 6\n1 1\n2 2\n2 3\n6 2\n3 6\n4 4\n5 1\n4 1\n4 1", "output": "0" }, { "input": "75\n1 1\n2 1\n5 5\n6 5\n6 3\n1 6\n6 1\n4 4\n2 1\n6 2\n3 1\n6 4\n1 6\n2 2\n4 3\n4 2\n1 2\n6 2\n4 2\n5 1\n1 2\n3 2\n6 6\n6 3\n2 4\n4 1\n4 1\n2 4\n5 5\n2 3\n5 5\n4 5\n3 1\n1 5\n4 3\n2 3\n3 5\n4 6\n5 6\n1 6\n2 3\n2 2\n1 2\n5 6\n1 4\n1 5\n1 3\n6 2\n1 2\n4 2\n2 1\n1 3\n6 4\n4 1\n5 2\n6 2\n3 5\n2 3\n4 2\n5 1\n5 6\n3 2\n2 1\n6 6\n2 1\n6 2\n1 1\n3 2\n1 2\n3 5\n4 6\n1 3\n3 4\n5 5\n6 2", "output": "1" }, { "input": "80\n3 1\n6 3\n2 2\n2 2\n6 3\n6 1\n6 5\n1 4\n3 6\n6 5\n1 3\n2 4\n1 4\n3 1\n5 3\n5 3\n1 4\n2 5\n4 3\n4 4\n4 5\n6 1\n3 1\n2 6\n4 2\n3 1\n6 5\n2 6\n2 2\n5 1\n1 3\n5 1\n2 1\n4 3\n6 3\n3 5\n4 3\n5 6\n3 3\n4 1\n5 1\n6 5\n5 1\n2 5\n6 1\n3 2\n4 3\n3 3\n5 6\n1 6\n5 2\n1 5\n5 6\n6 4\n2 2\n4 2\n4 6\n4 2\n4 4\n6 5\n5 2\n6 2\n4 6\n6 4\n4 3\n5 1\n4 1\n3 5\n3 2\n3 2\n5 3\n5 4\n3 4\n1 3\n1 2\n6 6\n6 3\n6 1\n5 6\n3 2", "output": "0" }, { "input": "80\n4 5\n3 3\n3 6\n4 5\n3 4\n6 5\n1 5\n2 5\n5 6\n5 1\n5 1\n1 2\n5 5\n5 1\n2 3\n1 1\n4 5\n4 1\n1 1\n5 5\n5 6\n5 2\n5 4\n4 2\n6 2\n5 3\n3 2\n4 2\n1 3\n1 6\n2 1\n6 6\n4 5\n6 4\n2 2\n1 6\n6 2\n4 3\n2 3\n4 6\n4 6\n6 2\n3 4\n4 3\n5 5\n1 6\n3 2\n4 6\n2 3\n1 6\n5 4\n4 2\n5 4\n1 1\n4 3\n5 1\n3 6\n6 2\n3 1\n4 1\n5 3\n2 2\n3 4\n3 6\n3 5\n5 5\n5 1\n3 5\n2 6\n6 3\n6 5\n3 3\n5 6\n1 2\n3 1\n6 3\n3 4\n6 6\n6 6\n1 2", "output": "-1" }, { "input": "85\n6 3\n4 1\n1 2\n3 5\n6 4\n6 2\n2 6\n1 2\n1 5\n6 2\n1 4\n6 6\n2 4\n4 6\n4 5\n1 6\n3 1\n2 5\n5 1\n5 2\n3 5\n1 1\n4 1\n2 3\n1 1\n3 3\n6 4\n1 4\n1 1\n3 6\n1 5\n1 6\n2 5\n2 2\n5 1\n6 6\n1 3\n1 5\n5 6\n4 5\n4 3\n5 5\n1 3\n6 3\n4 6\n2 4\n5 6\n6 2\n4 5\n1 4\n1 4\n6 5\n1 6\n6 1\n1 6\n5 5\n2 1\n5 2\n2 3\n1 6\n1 6\n1 6\n5 6\n2 4\n6 5\n6 5\n4 2\n5 4\n3 4\n4 3\n6 6\n3 3\n3 2\n3 6\n2 5\n2 1\n2 5\n3 4\n1 2\n5 4\n6 2\n5 1\n1 4\n3 4\n4 5", "output": "0" }, { "input": "85\n3 1\n3 2\n6 3\n1 3\n2 1\n3 6\n1 4\n2 5\n6 5\n1 6\n1 5\n1 1\n4 3\n3 5\n4 6\n3 2\n6 6\n4 4\n4 1\n5 5\n4 2\n6 2\n2 2\n4 5\n6 1\n3 4\n4 5\n3 5\n4 2\n3 5\n4 4\n3 1\n4 4\n6 4\n1 4\n5 5\n1 5\n2 2\n6 5\n5 6\n6 5\n3 2\n3 2\n6 1\n6 5\n2 1\n4 6\n2 1\n3 1\n5 6\n1 3\n5 4\n1 4\n1 4\n5 3\n2 3\n1 3\n2 2\n5 3\n2 3\n2 3\n1 3\n3 6\n4 4\n6 6\n6 2\n5 1\n5 5\n5 5\n1 2\n1 4\n2 4\n3 6\n4 6\n6 3\n6 4\n5 5\n3 2\n5 4\n5 4\n4 5\n6 4\n2 1\n5 2\n5 1", "output": "-1" }, { "input": "90\n5 2\n5 5\n5 1\n4 6\n4 3\n5 3\n5 6\n5 1\n3 4\n1 3\n4 2\n1 6\n6 4\n1 2\n6 1\n4 1\n6 2\n6 5\n6 2\n5 4\n3 6\n1 1\n5 5\n2 2\n1 6\n3 5\n6 5\n1 6\n1 5\n2 3\n2 6\n2 3\n3 3\n1 3\n5 1\n2 5\n3 6\n1 2\n4 4\n1 6\n2 3\n1 5\n2 5\n1 3\n2 2\n4 6\n3 6\n6 3\n1 2\n4 3\n4 5\n4 6\n3 2\n6 5\n6 2\n2 5\n2 4\n1 3\n1 6\n4 3\n1 3\n6 4\n4 6\n4 1\n1 1\n4 1\n4 4\n6 2\n6 5\n1 1\n2 2\n3 1\n1 4\n6 2\n5 2\n1 4\n1 3\n6 5\n3 2\n6 4\n3 4\n2 6\n2 2\n6 3\n4 6\n1 2\n4 2\n3 4\n2 3\n1 5", "output": "-1" }, { "input": "90\n1 4\n3 5\n4 2\n2 5\n4 3\n2 6\n2 6\n3 2\n4 4\n6 1\n4 3\n2 3\n5 3\n6 6\n2 2\n6 3\n4 1\n4 4\n5 6\n6 4\n4 2\n5 6\n4 6\n4 4\n6 4\n4 1\n5 3\n3 2\n4 4\n5 2\n5 4\n6 4\n1 2\n3 3\n3 4\n6 4\n1 6\n4 2\n3 2\n1 1\n2 2\n5 1\n6 6\n4 1\n5 2\n3 6\n2 1\n2 2\n4 6\n6 5\n4 4\n5 5\n5 6\n1 6\n1 4\n5 6\n3 6\n6 3\n5 6\n6 5\n5 1\n6 1\n6 6\n6 3\n1 5\n4 5\n3 1\n6 6\n3 4\n6 2\n1 4\n2 2\n3 2\n5 6\n2 4\n1 4\n6 3\n4 6\n1 4\n5 2\n1 2\n6 5\n1 5\n1 4\n4 2\n2 5\n3 2\n5 1\n5 4\n5 3", "output": "-1" }, { "input": "95\n4 3\n3 2\n5 5\n5 3\n1 6\n4 4\n5 5\n6 5\n3 5\n1 5\n4 2\n5 1\n1 2\n2 3\n6 4\n2 3\n6 3\n6 5\n5 6\n1 4\n2 6\n2 6\n2 5\n2 1\n3 1\n3 5\n2 2\n6 1\n2 4\n4 6\n6 6\n6 4\n3 2\n5 1\n4 3\n6 5\n2 3\n4 1\n2 5\n6 5\n6 5\n6 5\n5 1\n5 4\n4 6\n3 2\n2 5\n2 6\n4 6\n6 3\n6 4\n5 6\n4 6\n2 4\n3 4\n1 4\n2 4\n2 3\n5 6\n6 4\n3 1\n5 1\n3 6\n3 5\n2 6\n6 3\n4 3\n3 1\n6 1\n2 2\n6 3\n2 2\n2 2\n6 4\n6 1\n2 1\n5 6\n5 4\n5 2\n3 4\n3 6\n2 1\n1 6\n5 5\n2 6\n2 3\n3 6\n1 3\n1 5\n5 1\n1 2\n2 2\n5 3\n6 4\n4 5", "output": "0" }, { "input": "95\n4 5\n5 6\n3 2\n5 1\n4 3\n4 1\n6 1\n5 2\n2 4\n5 3\n2 3\n6 4\n4 1\n1 6\n2 6\n2 3\n4 6\n2 4\n3 4\n4 2\n5 5\n1 1\n1 5\n4 3\n4 5\n6 2\n6 1\n6 3\n5 5\n4 1\n5 1\n2 3\n5 1\n3 6\n6 6\n4 5\n4 4\n4 3\n1 6\n6 6\n4 6\n6 4\n1 2\n6 2\n4 6\n6 6\n5 5\n6 1\n5 2\n4 5\n6 6\n6 5\n4 4\n1 5\n4 6\n4 1\n3 6\n5 1\n3 1\n4 6\n4 5\n1 3\n5 4\n4 5\n2 2\n6 1\n5 2\n6 5\n2 2\n1 1\n6 3\n6 1\n2 6\n3 3\n2 1\n4 6\n2 4\n5 5\n5 2\n3 2\n1 2\n6 6\n6 2\n5 1\n2 6\n5 2\n2 2\n5 5\n3 5\n3 3\n2 6\n5 3\n4 3\n1 6\n5 4", "output": "-1" }, { "input": "100\n1 1\n3 5\n2 1\n1 2\n3 4\n5 6\n5 6\n6 1\n5 5\n2 4\n5 5\n5 6\n6 2\n6 6\n2 6\n1 4\n2 2\n3 2\n1 3\n5 5\n6 3\n5 6\n1 1\n1 2\n1 2\n2 1\n2 3\n1 6\n4 3\n1 1\n2 5\n2 4\n4 4\n1 5\n3 3\n6 1\n3 5\n1 1\n3 6\n3 1\n4 2\n4 3\n3 6\n6 6\n1 6\n6 2\n2 5\n5 4\n6 3\n1 4\n2 6\n6 2\n3 4\n6 1\n6 5\n4 6\n6 5\n4 4\n3 1\n6 3\n5 1\n2 4\n5 1\n1 2\n2 4\n2 1\n6 6\n5 3\n4 6\n6 3\n5 5\n3 3\n1 1\n6 5\n4 3\n2 6\n1 5\n3 5\n2 4\n4 5\n1 6\n2 3\n6 3\n5 5\n2 6\n2 6\n3 4\n3 2\n6 1\n3 4\n6 4\n3 3\n2 3\n5 1\n3 1\n6 2\n2 3\n6 4\n1 4\n1 2", "output": "-1" }, { "input": "100\n1 1\n5 5\n1 2\n5 3\n5 5\n2 2\n1 5\n3 4\n3 2\n1 3\n5 6\n4 5\n2 1\n5 5\n2 2\n1 6\n6 1\n5 1\n4 1\n4 6\n3 5\n6 1\n2 3\n5 6\n3 6\n2 3\n5 6\n1 6\n3 2\n2 2\n3 3\n6 5\n5 5\n1 4\n5 6\n6 4\n1 4\n1 2\n2 6\n3 2\n6 4\n5 3\n3 3\n6 4\n4 6\n2 2\n5 6\n5 1\n1 2\n3 4\n4 5\n1 1\n3 4\n5 2\n4 5\n3 3\n1 1\n3 4\n1 6\n2 4\n1 3\n3 2\n6 5\n1 6\n3 6\n2 3\n2 6\n5 1\n5 5\n5 6\n4 1\n6 2\n3 6\n5 3\n2 2\n2 4\n6 6\n3 6\n4 6\n2 5\n5 3\n1 2\n3 4\n3 4\n6 2\n2 4\n2 2\n4 6\n3 5\n4 2\n5 6\n4 2\n2 3\n6 2\n5 6\n2 1\n3 3\n6 6\n4 3\n4 2", "output": "1" }, { "input": "1\n2 2", "output": "0" }, { "input": "3\n2 4\n6 6\n3 3", "output": "-1" }, { "input": "2\n3 6\n4 1", "output": "1" }, { "input": "3\n1 1\n1 1\n3 3", "output": "-1" }, { "input": "3\n2 3\n1 1\n2 3", "output": "1" }, { "input": "3\n2 2\n2 1\n1 2", "output": "1" }, { "input": "3\n1 1\n1 1\n1 1", "output": "-1" } ]
1,626,233,489
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
124
6,963,200
n=int(input()) sumx,sumy,res=0,0,0 for i in range(n): x,y=map(int,input().split()) if i==0: sumx+=x sumy+=y if i>=1: if sumx%2!=0 and sumy%2==0: if x%2!=0 and y%2==0: sumx+=x sumy+=y elif x%2==0 and y%2!=0: sumx+=y sumy+=x res+=1 else: sumx+=x sumy+=y elif sumx%2==0 and sumy%2!=0: if x%2==0 and y%2!=0: sumx+=x sumy+=y elif x%2!=0 and y%2==0: sumx+=y sumy+=x res+=1 else: sumx+=x sumy+=y else: sumx+=x sumy+=y if sumx%2==0 and sumy%2==0: print(res) else: print(-1)
Title: Domino Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera has got *n* domino pieces in a row. Each piece consists of two halves — the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even. To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half. Output Specification: Print a single number — the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1. Demo Input: ['2\n4 2\n6 4\n', '1\n2 3\n', '3\n1 4\n2 3\n4 4\n'] Demo Output: ['0\n', '-1\n', '1\n'] Note: In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything. In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd. In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
```python n=int(input()) sumx,sumy,res=0,0,0 for i in range(n): x,y=map(int,input().split()) if i==0: sumx+=x sumy+=y if i>=1: if sumx%2!=0 and sumy%2==0: if x%2!=0 and y%2==0: sumx+=x sumy+=y elif x%2==0 and y%2!=0: sumx+=y sumy+=x res+=1 else: sumx+=x sumy+=y elif sumx%2==0 and sumy%2!=0: if x%2==0 and y%2!=0: sumx+=x sumy+=y elif x%2!=0 and y%2==0: sumx+=y sumy+=x res+=1 else: sumx+=x sumy+=y else: sumx+=x sumy+=y if sumx%2==0 and sumy%2==0: print(res) else: print(-1) ```
0
353
A
Domino
PROGRAMMING
1,200
[ "implementation", "math" ]
null
null
Valera has got *n* domino pieces in a row. Each piece consists of two halves — the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even. To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half.
Print a single number — the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1.
[ "2\n4 2\n6 4\n", "1\n2 3\n", "3\n1 4\n2 3\n4 4\n" ]
[ "0\n", "-1\n", "1\n" ]
In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything. In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd. In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
500
[ { "input": "2\n4 2\n6 4", "output": "0" }, { "input": "1\n2 3", "output": "-1" }, { "input": "3\n1 4\n2 3\n4 4", "output": "1" }, { "input": "5\n5 4\n5 4\n1 5\n5 5\n3 3", "output": "1" }, { "input": "20\n1 3\n5 2\n5 2\n2 6\n2 4\n1 1\n1 3\n1 4\n2 6\n4 2\n5 6\n2 2\n6 2\n4 3\n2 1\n6 2\n6 5\n4 5\n2 4\n1 4", "output": "-1" }, { "input": "100\n2 3\n2 4\n3 3\n1 4\n5 2\n5 4\n6 6\n3 4\n1 1\n4 2\n5 1\n5 5\n5 3\n3 6\n4 1\n1 6\n1 1\n3 2\n4 5\n6 1\n6 4\n1 1\n3 4\n3 3\n2 2\n1 1\n4 4\n6 4\n3 2\n5 2\n6 4\n3 2\n3 5\n4 4\n1 4\n5 2\n3 4\n1 4\n2 2\n5 6\n3 5\n6 1\n5 5\n1 6\n6 3\n1 4\n1 5\n5 5\n4 1\n3 2\n4 1\n5 5\n5 5\n1 5\n1 2\n6 4\n1 3\n3 6\n4 3\n3 5\n6 4\n2 6\n5 5\n1 4\n2 2\n2 3\n5 1\n2 5\n1 2\n2 6\n5 5\n4 6\n1 4\n3 6\n2 3\n6 1\n6 5\n3 2\n6 4\n4 5\n4 5\n2 6\n1 3\n6 2\n1 2\n2 3\n4 3\n5 4\n3 4\n1 6\n6 6\n2 4\n4 1\n3 1\n2 6\n5 4\n1 2\n6 5\n3 6\n2 4", "output": "-1" }, { "input": "1\n2 4", "output": "0" }, { "input": "1\n1 1", "output": "-1" }, { "input": "1\n1 2", "output": "-1" }, { "input": "2\n1 1\n3 3", "output": "0" }, { "input": "2\n1 1\n2 2", "output": "-1" }, { "input": "2\n1 1\n1 2", "output": "-1" }, { "input": "5\n1 2\n6 6\n1 1\n3 3\n6 1", "output": "1" }, { "input": "5\n5 4\n2 6\n6 2\n1 4\n6 2", "output": "0" }, { "input": "10\n4 1\n3 2\n1 2\n2 6\n3 5\n2 1\n5 2\n4 6\n5 6\n3 1", "output": "0" }, { "input": "10\n6 1\n4 4\n2 6\n6 5\n3 6\n6 3\n2 4\n5 1\n1 6\n1 5", "output": "-1" }, { "input": "15\n1 2\n5 1\n6 4\n5 1\n1 6\n2 6\n3 1\n6 4\n3 1\n2 1\n6 4\n3 5\n6 2\n1 6\n1 1", "output": "1" }, { "input": "15\n3 3\n2 1\n5 4\n3 3\n5 3\n5 4\n2 5\n1 3\n3 2\n3 3\n3 5\n2 5\n4 1\n2 3\n5 4", "output": "-1" }, { "input": "20\n1 5\n6 4\n4 3\n6 2\n1 1\n1 5\n6 3\n2 3\n3 6\n3 6\n3 6\n2 5\n4 3\n4 6\n5 5\n4 6\n3 4\n4 2\n3 3\n5 2", "output": "0" }, { "input": "20\n2 1\n6 5\n3 1\n2 5\n3 5\n4 1\n1 1\n5 4\n5 1\n2 4\n1 5\n3 2\n1 2\n3 5\n5 2\n1 2\n1 3\n4 2\n2 3\n4 5", "output": "-1" }, { "input": "25\n4 1\n6 3\n1 3\n2 3\n2 4\n6 6\n4 2\n4 2\n1 5\n5 4\n1 2\n2 5\n3 6\n4 1\n3 4\n2 6\n6 1\n5 6\n6 6\n4 2\n1 5\n3 3\n3 3\n6 5\n1 4", "output": "-1" }, { "input": "25\n5 5\n4 3\n2 5\n4 3\n4 6\n4 2\n5 6\n2 1\n5 4\n6 6\n1 3\n1 4\n2 3\n5 6\n5 4\n5 6\n5 4\n6 3\n3 5\n1 3\n2 5\n2 2\n4 4\n2 1\n4 4", "output": "-1" }, { "input": "30\n3 5\n2 5\n1 6\n1 6\n2 4\n5 5\n5 4\n5 6\n5 4\n2 1\n2 4\n1 6\n3 5\n1 1\n3 6\n5 5\n1 6\n3 4\n1 4\n4 6\n2 1\n3 3\n1 3\n4 5\n1 4\n1 6\n2 1\n4 6\n3 5\n5 6", "output": "1" }, { "input": "30\n2 3\n3 1\n6 6\n1 3\n5 5\n3 6\n4 5\n2 1\n1 3\n2 3\n4 4\n2 4\n6 4\n2 4\n5 4\n2 1\n2 5\n2 5\n4 2\n1 4\n2 6\n3 2\n3 2\n6 6\n4 2\n3 4\n6 3\n6 6\n6 6\n5 5", "output": "1" }, { "input": "35\n6 1\n4 3\n1 2\n4 3\n6 4\n4 6\n3 1\n5 5\n3 4\n5 4\n4 6\n1 6\n2 4\n6 6\n5 4\n5 2\n1 3\n1 4\n3 5\n1 4\n2 3\n4 5\n4 3\n6 1\n5 3\n3 2\n5 6\n3 5\n6 5\n4 1\n1 3\n5 5\n4 6\n6 1\n1 3", "output": "1" }, { "input": "35\n4 3\n5 6\n4 5\n2 5\n6 6\n4 1\n2 2\n4 2\n3 4\n4 1\n6 6\n6 3\n1 5\n1 5\n5 6\n4 2\n4 6\n5 5\n2 2\n5 2\n1 2\n4 6\n6 6\n6 5\n2 1\n3 5\n2 5\n3 1\n5 3\n6 4\n4 6\n5 6\n5 1\n3 4\n3 5", "output": "1" }, { "input": "40\n5 6\n1 1\n3 3\n2 6\n6 6\n5 4\n6 4\n3 5\n1 3\n4 4\n4 4\n2 5\n1 3\n3 6\n5 2\n4 3\n4 4\n5 6\n2 3\n1 1\n3 1\n1 1\n1 5\n4 3\n5 5\n3 4\n6 6\n5 6\n2 2\n6 6\n2 1\n2 4\n5 2\n2 2\n1 1\n1 4\n4 2\n3 5\n5 5\n4 5", "output": "-1" }, { "input": "40\n3 2\n5 3\n4 6\n3 5\n6 1\n5 2\n1 2\n6 2\n5 3\n3 2\n4 4\n3 3\n5 2\n4 5\n1 4\n5 1\n3 3\n1 3\n1 3\n2 1\n3 6\n4 2\n4 6\n6 2\n2 5\n2 2\n2 5\n3 3\n5 3\n2 1\n3 2\n2 3\n6 3\n6 3\n3 4\n3 2\n4 3\n5 4\n2 4\n4 6", "output": "-1" }, { "input": "45\n2 4\n3 4\n6 1\n5 5\n1 1\n3 5\n4 3\n5 2\n3 6\n6 1\n4 4\n6 1\n2 1\n6 1\n3 6\n3 3\n6 1\n1 2\n1 5\n6 5\n1 3\n5 6\n6 1\n4 5\n3 6\n2 2\n1 2\n4 5\n5 6\n1 5\n6 2\n2 4\n3 3\n3 1\n6 5\n6 5\n2 1\n5 2\n2 1\n3 3\n2 2\n1 4\n2 2\n3 3\n2 1", "output": "-1" }, { "input": "45\n6 6\n1 6\n1 2\n3 5\n4 4\n2 1\n5 3\n2 1\n5 2\n5 3\n1 4\n5 2\n4 2\n3 6\n5 2\n1 5\n4 4\n5 5\n6 5\n2 1\n2 6\n5 5\n2 1\n6 1\n1 6\n6 5\n2 4\n4 3\n2 6\n2 4\n6 5\n6 4\n6 3\n6 6\n2 1\n6 4\n5 6\n5 4\n1 5\n5 1\n3 3\n5 6\n2 5\n4 5\n3 6", "output": "-1" }, { "input": "50\n4 4\n5 1\n6 4\n6 2\n6 2\n1 4\n5 5\n4 2\n5 5\n5 4\n1 3\n3 5\n6 1\n6 1\n1 4\n4 3\n5 1\n3 6\n2 2\n6 2\n4 4\n2 3\n4 2\n6 5\n5 6\n2 2\n2 4\n3 5\n1 5\n3 2\n3 4\n5 6\n4 6\n1 6\n4 5\n2 6\n2 2\n3 5\n6 4\n5 1\n4 3\n3 4\n3 5\n3 3\n2 3\n3 2\n2 2\n1 4\n3 1\n4 4", "output": "1" }, { "input": "50\n1 2\n1 4\n1 1\n4 5\n4 4\n3 2\n4 5\n3 5\n1 1\n3 4\n3 2\n2 4\n2 6\n2 6\n3 2\n4 6\n1 6\n3 1\n1 6\n2 1\n4 1\n1 6\n4 3\n6 6\n5 2\n6 4\n2 1\n4 3\n6 4\n5 1\n5 5\n3 1\n1 1\n5 5\n2 2\n2 3\n2 3\n3 5\n5 5\n1 6\n1 5\n3 6\n3 6\n1 1\n3 3\n2 6\n5 5\n1 3\n6 3\n6 6", "output": "-1" }, { "input": "55\n3 2\n5 6\n5 1\n3 5\n5 5\n1 5\n5 4\n6 3\n5 6\n4 2\n3 1\n1 2\n5 5\n1 1\n5 2\n6 3\n5 4\n3 6\n4 6\n2 6\n6 4\n1 4\n1 6\n4 1\n2 5\n4 3\n2 1\n2 1\n6 2\n3 1\n2 5\n4 4\n6 3\n2 2\n3 5\n5 1\n3 6\n5 4\n4 6\n6 5\n5 6\n2 2\n3 2\n5 2\n6 5\n2 2\n5 3\n3 1\n4 5\n6 4\n2 4\n1 2\n5 6\n2 6\n5 2", "output": "0" }, { "input": "55\n4 6\n3 3\n6 5\n5 3\n5 6\n2 3\n2 2\n3 4\n3 1\n5 4\n5 4\n2 4\n3 4\n4 5\n1 5\n6 3\n1 1\n5 1\n3 4\n1 5\n3 1\n2 5\n3 3\n4 3\n3 3\n3 1\n6 6\n3 3\n3 3\n5 6\n5 3\n3 5\n1 4\n5 5\n1 3\n1 4\n3 5\n3 6\n2 4\n2 4\n5 1\n6 4\n5 1\n5 5\n1 1\n3 2\n4 3\n5 4\n5 1\n2 4\n4 3\n6 1\n3 4\n1 5\n6 3", "output": "-1" }, { "input": "60\n2 6\n1 4\n3 2\n1 2\n3 2\n2 4\n6 4\n4 6\n1 3\n3 1\n6 5\n2 4\n5 4\n4 2\n1 6\n3 4\n4 5\n5 2\n1 5\n5 4\n3 4\n3 4\n4 4\n4 1\n6 6\n3 6\n2 4\n2 1\n4 4\n6 5\n3 1\n4 3\n1 3\n6 3\n5 5\n1 4\n3 1\n3 6\n1 5\n3 1\n1 5\n4 4\n1 3\n2 4\n6 2\n4 1\n5 3\n3 4\n5 6\n1 2\n1 6\n6 3\n1 6\n3 6\n3 4\n6 2\n4 6\n2 3\n3 3\n3 3", "output": "-1" }, { "input": "60\n2 3\n4 6\n2 4\n1 3\n5 6\n1 5\n1 2\n1 3\n5 6\n4 3\n4 2\n3 1\n1 3\n3 5\n1 5\n3 4\n2 4\n3 5\n4 5\n1 2\n3 1\n1 5\n2 5\n6 2\n1 6\n3 3\n6 2\n5 3\n1 3\n1 4\n6 4\n6 3\n4 2\n4 2\n1 4\n1 3\n3 2\n3 1\n2 1\n1 2\n3 1\n2 6\n1 4\n3 6\n3 3\n1 5\n2 4\n5 5\n6 2\n5 2\n3 3\n5 3\n3 4\n4 5\n5 6\n2 4\n5 3\n3 1\n2 4\n5 4", "output": "-1" }, { "input": "65\n5 4\n3 3\n1 2\n4 3\n3 5\n1 5\n4 5\n2 6\n1 2\n1 5\n6 3\n2 6\n4 3\n3 6\n1 5\n3 5\n4 6\n2 5\n6 5\n1 4\n3 4\n4 3\n1 4\n2 5\n6 5\n3 1\n4 3\n1 2\n1 1\n6 1\n5 2\n3 2\n1 6\n2 6\n3 3\n6 6\n4 6\n1 5\n5 1\n4 5\n1 4\n3 2\n5 4\n4 2\n6 2\n1 3\n4 2\n5 3\n6 4\n3 6\n1 2\n6 1\n6 6\n3 3\n4 2\n3 5\n4 6\n4 1\n5 4\n6 1\n5 1\n5 6\n6 1\n4 6\n5 5", "output": "1" }, { "input": "65\n5 4\n6 3\n5 4\n4 5\n5 3\n3 6\n1 3\n3 1\n1 3\n6 1\n6 4\n1 3\n2 2\n4 6\n4 1\n5 6\n6 5\n1 1\n1 3\n6 6\n4 1\n2 4\n5 4\n4 1\n5 5\n5 3\n6 2\n2 6\n4 2\n2 2\n6 2\n3 3\n4 5\n4 3\n3 1\n1 4\n4 5\n3 2\n5 5\n4 6\n5 1\n3 4\n5 4\n5 2\n1 6\n4 2\n3 4\n3 4\n1 3\n1 2\n3 3\n3 6\n6 4\n4 6\n6 2\n6 5\n3 2\n2 1\n6 4\n2 1\n1 5\n5 2\n6 5\n3 6\n5 1", "output": "1" }, { "input": "70\n4 1\n2 6\n1 1\n5 6\n5 1\n2 3\n3 5\n1 1\n1 1\n4 6\n4 3\n1 5\n2 2\n2 3\n3 1\n6 4\n3 1\n4 2\n5 4\n1 3\n3 5\n5 2\n5 6\n4 4\n4 5\n2 2\n4 5\n3 2\n3 5\n2 5\n2 6\n5 5\n2 6\n5 1\n1 1\n2 5\n3 1\n1 2\n6 4\n6 5\n5 5\n5 1\n1 5\n2 2\n6 3\n4 3\n6 2\n5 5\n1 1\n6 2\n6 6\n3 4\n2 2\n3 5\n1 5\n2 5\n4 5\n2 4\n6 3\n5 1\n2 6\n4 2\n1 4\n1 6\n6 2\n5 2\n5 6\n2 5\n5 6\n5 5", "output": "-1" }, { "input": "70\n4 3\n6 4\n5 5\n3 1\n1 2\n2 5\n4 6\n4 2\n3 2\n4 2\n1 5\n2 2\n4 3\n1 2\n6 1\n6 6\n1 6\n5 1\n2 2\n6 3\n4 2\n4 3\n1 2\n6 6\n3 3\n6 5\n6 2\n3 6\n6 6\n4 6\n5 2\n5 4\n3 3\n1 6\n5 6\n2 3\n4 6\n1 1\n1 2\n6 6\n1 1\n3 4\n1 6\n2 6\n3 4\n6 3\n5 3\n1 2\n2 3\n4 6\n2 1\n6 4\n4 6\n4 6\n4 2\n5 5\n3 5\n3 2\n4 3\n3 6\n1 4\n3 6\n1 4\n1 6\n1 5\n5 6\n4 4\n3 3\n3 5\n2 2", "output": "0" }, { "input": "75\n1 3\n4 5\n4 1\n6 5\n2 1\n1 4\n5 4\n1 5\n5 3\n1 2\n4 1\n1 1\n5 1\n5 3\n1 5\n4 2\n2 2\n6 3\n1 2\n4 3\n2 5\n5 3\n5 5\n4 1\n4 6\n2 5\n6 1\n2 4\n6 4\n5 2\n6 2\n2 4\n1 3\n5 4\n6 5\n5 4\n6 4\n1 5\n4 6\n1 5\n1 1\n4 4\n3 5\n6 3\n6 5\n1 5\n2 1\n1 5\n6 6\n2 2\n2 2\n4 4\n6 6\n5 4\n4 5\n3 2\n2 4\n1 1\n4 3\n3 2\n5 4\n1 6\n1 2\n2 2\n3 5\n2 6\n1 1\n2 2\n2 3\n6 2\n3 6\n4 4\n5 1\n4 1\n4 1", "output": "0" }, { "input": "75\n1 1\n2 1\n5 5\n6 5\n6 3\n1 6\n6 1\n4 4\n2 1\n6 2\n3 1\n6 4\n1 6\n2 2\n4 3\n4 2\n1 2\n6 2\n4 2\n5 1\n1 2\n3 2\n6 6\n6 3\n2 4\n4 1\n4 1\n2 4\n5 5\n2 3\n5 5\n4 5\n3 1\n1 5\n4 3\n2 3\n3 5\n4 6\n5 6\n1 6\n2 3\n2 2\n1 2\n5 6\n1 4\n1 5\n1 3\n6 2\n1 2\n4 2\n2 1\n1 3\n6 4\n4 1\n5 2\n6 2\n3 5\n2 3\n4 2\n5 1\n5 6\n3 2\n2 1\n6 6\n2 1\n6 2\n1 1\n3 2\n1 2\n3 5\n4 6\n1 3\n3 4\n5 5\n6 2", "output": "1" }, { "input": "80\n3 1\n6 3\n2 2\n2 2\n6 3\n6 1\n6 5\n1 4\n3 6\n6 5\n1 3\n2 4\n1 4\n3 1\n5 3\n5 3\n1 4\n2 5\n4 3\n4 4\n4 5\n6 1\n3 1\n2 6\n4 2\n3 1\n6 5\n2 6\n2 2\n5 1\n1 3\n5 1\n2 1\n4 3\n6 3\n3 5\n4 3\n5 6\n3 3\n4 1\n5 1\n6 5\n5 1\n2 5\n6 1\n3 2\n4 3\n3 3\n5 6\n1 6\n5 2\n1 5\n5 6\n6 4\n2 2\n4 2\n4 6\n4 2\n4 4\n6 5\n5 2\n6 2\n4 6\n6 4\n4 3\n5 1\n4 1\n3 5\n3 2\n3 2\n5 3\n5 4\n3 4\n1 3\n1 2\n6 6\n6 3\n6 1\n5 6\n3 2", "output": "0" }, { "input": "80\n4 5\n3 3\n3 6\n4 5\n3 4\n6 5\n1 5\n2 5\n5 6\n5 1\n5 1\n1 2\n5 5\n5 1\n2 3\n1 1\n4 5\n4 1\n1 1\n5 5\n5 6\n5 2\n5 4\n4 2\n6 2\n5 3\n3 2\n4 2\n1 3\n1 6\n2 1\n6 6\n4 5\n6 4\n2 2\n1 6\n6 2\n4 3\n2 3\n4 6\n4 6\n6 2\n3 4\n4 3\n5 5\n1 6\n3 2\n4 6\n2 3\n1 6\n5 4\n4 2\n5 4\n1 1\n4 3\n5 1\n3 6\n6 2\n3 1\n4 1\n5 3\n2 2\n3 4\n3 6\n3 5\n5 5\n5 1\n3 5\n2 6\n6 3\n6 5\n3 3\n5 6\n1 2\n3 1\n6 3\n3 4\n6 6\n6 6\n1 2", "output": "-1" }, { "input": "85\n6 3\n4 1\n1 2\n3 5\n6 4\n6 2\n2 6\n1 2\n1 5\n6 2\n1 4\n6 6\n2 4\n4 6\n4 5\n1 6\n3 1\n2 5\n5 1\n5 2\n3 5\n1 1\n4 1\n2 3\n1 1\n3 3\n6 4\n1 4\n1 1\n3 6\n1 5\n1 6\n2 5\n2 2\n5 1\n6 6\n1 3\n1 5\n5 6\n4 5\n4 3\n5 5\n1 3\n6 3\n4 6\n2 4\n5 6\n6 2\n4 5\n1 4\n1 4\n6 5\n1 6\n6 1\n1 6\n5 5\n2 1\n5 2\n2 3\n1 6\n1 6\n1 6\n5 6\n2 4\n6 5\n6 5\n4 2\n5 4\n3 4\n4 3\n6 6\n3 3\n3 2\n3 6\n2 5\n2 1\n2 5\n3 4\n1 2\n5 4\n6 2\n5 1\n1 4\n3 4\n4 5", "output": "0" }, { "input": "85\n3 1\n3 2\n6 3\n1 3\n2 1\n3 6\n1 4\n2 5\n6 5\n1 6\n1 5\n1 1\n4 3\n3 5\n4 6\n3 2\n6 6\n4 4\n4 1\n5 5\n4 2\n6 2\n2 2\n4 5\n6 1\n3 4\n4 5\n3 5\n4 2\n3 5\n4 4\n3 1\n4 4\n6 4\n1 4\n5 5\n1 5\n2 2\n6 5\n5 6\n6 5\n3 2\n3 2\n6 1\n6 5\n2 1\n4 6\n2 1\n3 1\n5 6\n1 3\n5 4\n1 4\n1 4\n5 3\n2 3\n1 3\n2 2\n5 3\n2 3\n2 3\n1 3\n3 6\n4 4\n6 6\n6 2\n5 1\n5 5\n5 5\n1 2\n1 4\n2 4\n3 6\n4 6\n6 3\n6 4\n5 5\n3 2\n5 4\n5 4\n4 5\n6 4\n2 1\n5 2\n5 1", "output": "-1" }, { "input": "90\n5 2\n5 5\n5 1\n4 6\n4 3\n5 3\n5 6\n5 1\n3 4\n1 3\n4 2\n1 6\n6 4\n1 2\n6 1\n4 1\n6 2\n6 5\n6 2\n5 4\n3 6\n1 1\n5 5\n2 2\n1 6\n3 5\n6 5\n1 6\n1 5\n2 3\n2 6\n2 3\n3 3\n1 3\n5 1\n2 5\n3 6\n1 2\n4 4\n1 6\n2 3\n1 5\n2 5\n1 3\n2 2\n4 6\n3 6\n6 3\n1 2\n4 3\n4 5\n4 6\n3 2\n6 5\n6 2\n2 5\n2 4\n1 3\n1 6\n4 3\n1 3\n6 4\n4 6\n4 1\n1 1\n4 1\n4 4\n6 2\n6 5\n1 1\n2 2\n3 1\n1 4\n6 2\n5 2\n1 4\n1 3\n6 5\n3 2\n6 4\n3 4\n2 6\n2 2\n6 3\n4 6\n1 2\n4 2\n3 4\n2 3\n1 5", "output": "-1" }, { "input": "90\n1 4\n3 5\n4 2\n2 5\n4 3\n2 6\n2 6\n3 2\n4 4\n6 1\n4 3\n2 3\n5 3\n6 6\n2 2\n6 3\n4 1\n4 4\n5 6\n6 4\n4 2\n5 6\n4 6\n4 4\n6 4\n4 1\n5 3\n3 2\n4 4\n5 2\n5 4\n6 4\n1 2\n3 3\n3 4\n6 4\n1 6\n4 2\n3 2\n1 1\n2 2\n5 1\n6 6\n4 1\n5 2\n3 6\n2 1\n2 2\n4 6\n6 5\n4 4\n5 5\n5 6\n1 6\n1 4\n5 6\n3 6\n6 3\n5 6\n6 5\n5 1\n6 1\n6 6\n6 3\n1 5\n4 5\n3 1\n6 6\n3 4\n6 2\n1 4\n2 2\n3 2\n5 6\n2 4\n1 4\n6 3\n4 6\n1 4\n5 2\n1 2\n6 5\n1 5\n1 4\n4 2\n2 5\n3 2\n5 1\n5 4\n5 3", "output": "-1" }, { "input": "95\n4 3\n3 2\n5 5\n5 3\n1 6\n4 4\n5 5\n6 5\n3 5\n1 5\n4 2\n5 1\n1 2\n2 3\n6 4\n2 3\n6 3\n6 5\n5 6\n1 4\n2 6\n2 6\n2 5\n2 1\n3 1\n3 5\n2 2\n6 1\n2 4\n4 6\n6 6\n6 4\n3 2\n5 1\n4 3\n6 5\n2 3\n4 1\n2 5\n6 5\n6 5\n6 5\n5 1\n5 4\n4 6\n3 2\n2 5\n2 6\n4 6\n6 3\n6 4\n5 6\n4 6\n2 4\n3 4\n1 4\n2 4\n2 3\n5 6\n6 4\n3 1\n5 1\n3 6\n3 5\n2 6\n6 3\n4 3\n3 1\n6 1\n2 2\n6 3\n2 2\n2 2\n6 4\n6 1\n2 1\n5 6\n5 4\n5 2\n3 4\n3 6\n2 1\n1 6\n5 5\n2 6\n2 3\n3 6\n1 3\n1 5\n5 1\n1 2\n2 2\n5 3\n6 4\n4 5", "output": "0" }, { "input": "95\n4 5\n5 6\n3 2\n5 1\n4 3\n4 1\n6 1\n5 2\n2 4\n5 3\n2 3\n6 4\n4 1\n1 6\n2 6\n2 3\n4 6\n2 4\n3 4\n4 2\n5 5\n1 1\n1 5\n4 3\n4 5\n6 2\n6 1\n6 3\n5 5\n4 1\n5 1\n2 3\n5 1\n3 6\n6 6\n4 5\n4 4\n4 3\n1 6\n6 6\n4 6\n6 4\n1 2\n6 2\n4 6\n6 6\n5 5\n6 1\n5 2\n4 5\n6 6\n6 5\n4 4\n1 5\n4 6\n4 1\n3 6\n5 1\n3 1\n4 6\n4 5\n1 3\n5 4\n4 5\n2 2\n6 1\n5 2\n6 5\n2 2\n1 1\n6 3\n6 1\n2 6\n3 3\n2 1\n4 6\n2 4\n5 5\n5 2\n3 2\n1 2\n6 6\n6 2\n5 1\n2 6\n5 2\n2 2\n5 5\n3 5\n3 3\n2 6\n5 3\n4 3\n1 6\n5 4", "output": "-1" }, { "input": "100\n1 1\n3 5\n2 1\n1 2\n3 4\n5 6\n5 6\n6 1\n5 5\n2 4\n5 5\n5 6\n6 2\n6 6\n2 6\n1 4\n2 2\n3 2\n1 3\n5 5\n6 3\n5 6\n1 1\n1 2\n1 2\n2 1\n2 3\n1 6\n4 3\n1 1\n2 5\n2 4\n4 4\n1 5\n3 3\n6 1\n3 5\n1 1\n3 6\n3 1\n4 2\n4 3\n3 6\n6 6\n1 6\n6 2\n2 5\n5 4\n6 3\n1 4\n2 6\n6 2\n3 4\n6 1\n6 5\n4 6\n6 5\n4 4\n3 1\n6 3\n5 1\n2 4\n5 1\n1 2\n2 4\n2 1\n6 6\n5 3\n4 6\n6 3\n5 5\n3 3\n1 1\n6 5\n4 3\n2 6\n1 5\n3 5\n2 4\n4 5\n1 6\n2 3\n6 3\n5 5\n2 6\n2 6\n3 4\n3 2\n6 1\n3 4\n6 4\n3 3\n2 3\n5 1\n3 1\n6 2\n2 3\n6 4\n1 4\n1 2", "output": "-1" }, { "input": "100\n1 1\n5 5\n1 2\n5 3\n5 5\n2 2\n1 5\n3 4\n3 2\n1 3\n5 6\n4 5\n2 1\n5 5\n2 2\n1 6\n6 1\n5 1\n4 1\n4 6\n3 5\n6 1\n2 3\n5 6\n3 6\n2 3\n5 6\n1 6\n3 2\n2 2\n3 3\n6 5\n5 5\n1 4\n5 6\n6 4\n1 4\n1 2\n2 6\n3 2\n6 4\n5 3\n3 3\n6 4\n4 6\n2 2\n5 6\n5 1\n1 2\n3 4\n4 5\n1 1\n3 4\n5 2\n4 5\n3 3\n1 1\n3 4\n1 6\n2 4\n1 3\n3 2\n6 5\n1 6\n3 6\n2 3\n2 6\n5 1\n5 5\n5 6\n4 1\n6 2\n3 6\n5 3\n2 2\n2 4\n6 6\n3 6\n4 6\n2 5\n5 3\n1 2\n3 4\n3 4\n6 2\n2 4\n2 2\n4 6\n3 5\n4 2\n5 6\n4 2\n2 3\n6 2\n5 6\n2 1\n3 3\n6 6\n4 3\n4 2", "output": "1" }, { "input": "1\n2 2", "output": "0" }, { "input": "3\n2 4\n6 6\n3 3", "output": "-1" }, { "input": "2\n3 6\n4 1", "output": "1" }, { "input": "3\n1 1\n1 1\n3 3", "output": "-1" }, { "input": "3\n2 3\n1 1\n2 3", "output": "1" }, { "input": "3\n2 2\n2 1\n1 2", "output": "1" }, { "input": "3\n1 1\n1 1\n1 1", "output": "-1" } ]
1,471,254,633
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
7
92
4,608,000
n = int(input()) top = [] bot = [] for i in range(n): x, y= map(int, input().split()) top.append(x) bot.append(y) if sum(top) % 2 == 0 and sum(bot) % 2 == 0: print(0) elif sum(top) % 2 != 0 and sum(bot) % 2 != 0: for i in range(len(top)): if (top[i] % 2 == 0 and bot[i] % 2 != 0) or (top[i] % 2 != 0 and bot[i] % 2 == 0): print(1) exit() else: print(-1)
Title: Domino Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera has got *n* domino pieces in a row. Each piece consists of two halves — the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even. To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half. Output Specification: Print a single number — the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1. Demo Input: ['2\n4 2\n6 4\n', '1\n2 3\n', '3\n1 4\n2 3\n4 4\n'] Demo Output: ['0\n', '-1\n', '1\n'] Note: In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything. In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd. In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
```python n = int(input()) top = [] bot = [] for i in range(n): x, y= map(int, input().split()) top.append(x) bot.append(y) if sum(top) % 2 == 0 and sum(bot) % 2 == 0: print(0) elif sum(top) % 2 != 0 and sum(bot) % 2 != 0: for i in range(len(top)): if (top[i] % 2 == 0 and bot[i] % 2 != 0) or (top[i] % 2 != 0 and bot[i] % 2 == 0): print(1) exit() else: print(-1) ```
0
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,593,648,430
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
248
0
s=input() n=len(s) small=0 upper=0 while n > 0: if s[n-1].isupper(): upper+=1 else: small+=1 n-=1 if upper<small: print(s.lower()) elif upper>small: print(s.upper()) elif upper==small: print(s)
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python s=input() n=len(s) small=0 upper=0 while n > 0: if s[n-1].isupper(): upper+=1 else: small+=1 n-=1 if upper<small: print(s.lower()) elif upper>small: print(s.upper()) elif upper==small: print(s) ```
0
888
B
Buggy Robot
PROGRAMMING
1,000
[ "greedy" ]
null
null
Ivan has a robot which is situated on an infinite grid. Initially the robot is standing in the starting cell (0,<=0). The robot can process commands. There are four types of commands it can perform: - U — move from the cell (*x*,<=*y*) to (*x*,<=*y*<=+<=1); - D — move from (*x*,<=*y*) to (*x*,<=*y*<=-<=1); - L — move from (*x*,<=*y*) to (*x*<=-<=1,<=*y*); - R — move from (*x*,<=*y*) to (*x*<=+<=1,<=*y*). Ivan entered a sequence of *n* commands, and the robot processed it. After this sequence the robot ended up in the starting cell (0,<=0), but Ivan doubts that the sequence is such that after performing it correctly the robot ends up in the same cell. He thinks that some commands were ignored by robot. To acknowledge whether the robot is severely bugged, he needs to calculate the maximum possible number of commands that were performed correctly. Help Ivan to do the calculations!
The first line contains one number *n* — the length of sequence of commands entered by Ivan (1<=≤<=*n*<=≤<=100). The second line contains the sequence itself — a string consisting of *n* characters. Each character can be U, D, L or R.
Print the maximum possible number of commands from the sequence the robot could perform to end up in the starting cell.
[ "4\nLDUR\n", "5\nRRRUU\n", "6\nLLRRRR\n" ]
[ "4\n", "0\n", "4\n" ]
none
0
[ { "input": "4\nLDUR", "output": "4" }, { "input": "5\nRRRUU", "output": "0" }, { "input": "6\nLLRRRR", "output": "4" }, { "input": "88\nLLUUULRDRRURDDLURRLRDRLLRULRUUDDLLLLRRDDURDURRLDURRLDRRRUULDDLRRRDDRRLUULLURDURUDDDDDLDR", "output": "76" }, { "input": "89\nLDLLLDRDUDURRRRRUDULDDDLLUDLRLRLRLDLDUULRDUDLRRDLUDLURRDDRRDLDUDUUURUUUDRLUDUDLURDLDLLDDU", "output": "80" }, { "input": "90\nRRRDUULLLRDUUDDRLDLRLUDURDRDUUURUURDDRRRURLDDDUUDRLLLULURDRDRURLDRRRRUULDULDDLLLRRLRDLLLLR", "output": "84" }, { "input": "91\nRLDRLRRLLDLULULLURULLRRULUDUULLUDULDUULURUDRUDUURDULDUDDUUUDRRUUDLLRULRULURLDRDLDRURLLLRDDD", "output": "76" }, { "input": "92\nRLRDDLULRLLUURRDDDLDDDLDDUURRRULLRDULDULLLUUULDUDLRLRRDRDRDDULDRLUDRDULDRURUDUULLRDRRLLDRLRR", "output": "86" }, { "input": "93\nRLLURLULRURDDLUURLUDDRDLUURLRDLRRRDUULLRDRRLRLDURRDLLRDDLLLDDDLDRRURLLDRUDULDDRRULRRULRLDRDLR", "output": "84" }, { "input": "94\nRDULDDDLULRDRUDRUUDUUDRRRULDRRUDURUULRDUUDLULLLUDURRDRDLUDRULRRRULUURUDDDDDUDLLRDLDRLLRUUURLUL", "output": "86" }, { "input": "95\nRDLUUULLUURDDRLDLLRRRULRLRDULULRULRUDURLULDDDRLURLDRULDUDUUULLRDDURUULULLDDLDRDRLLLURLRDLLDDDDU", "output": "86" }, { "input": "96\nRDDRLRLLDDULRLRURUDLRLDUDRURLLUUDLLURDLRRUURDRRUDRURLLDLLRDURDURLRLUDURULLLRDUURULUUULRRURRDLURL", "output": "84" }, { "input": "97\nRURDDLRLLRULUDURDLRLLUUDURRLLUDLLLDUDRUULDRUUURURULRDLDRRLLUUUDLLLDDLLLLRLLDUDRRDLLUDLRURUDULRLUR", "output": "82" }, { "input": "98\nRUDURLULLDDLLRDLLRDDLLLLRLDDDDRRRDDRRURLDRLLRUUUDLUUUDDDUDRUURLURUUDUUDRULRRULLRRLRULLULDLUURLULRD", "output": "92" }, { "input": "99\nRRULLDULRRDRULLDUDRUDDDRLLUUDRDDUDURLDDRUUDRRUUURRRURDDLDUURDLRLURRDDLUDDLUDURDRUDDURLURURLRUDRURLD", "output": "86" }, { "input": "100\nUDRLRRLLRRLRRRDDLLDDDLULLDDLURUURUULUDDDRDDLLRDLLUURLRDRLRRLRLLLULDUDDUURRLRDULDRDURRRRRRULDRRDLDRRL", "output": "88" }, { "input": "1\nU", "output": "0" }, { "input": "5\nUUULD", "output": "2" }, { "input": "1\nD", "output": "0" }, { "input": "5\nURLUL", "output": "2" }, { "input": "5\nDDDRU", "output": "2" }, { "input": "2\nLR", "output": "2" }, { "input": "8\nDDRDLDUR", "output": "4" }, { "input": "6\nLLLLUD", "output": "2" }, { "input": "13\nRRRLLLLLLLLLL", "output": "6" } ]
1,555,584,218
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
108
0
n=int(input()) s=input() count=0 done=0 for i in range(n): if s[i]=='L': count-=1 elif s[i]=='R': count+=1 elif s[i]=='U': count+=1 else: count-=1 if count==0: done=1 a=i if done==1: print(a+1) else: print(0)
Title: Buggy Robot Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ivan has a robot which is situated on an infinite grid. Initially the robot is standing in the starting cell (0,<=0). The robot can process commands. There are four types of commands it can perform: - U — move from the cell (*x*,<=*y*) to (*x*,<=*y*<=+<=1); - D — move from (*x*,<=*y*) to (*x*,<=*y*<=-<=1); - L — move from (*x*,<=*y*) to (*x*<=-<=1,<=*y*); - R — move from (*x*,<=*y*) to (*x*<=+<=1,<=*y*). Ivan entered a sequence of *n* commands, and the robot processed it. After this sequence the robot ended up in the starting cell (0,<=0), but Ivan doubts that the sequence is such that after performing it correctly the robot ends up in the same cell. He thinks that some commands were ignored by robot. To acknowledge whether the robot is severely bugged, he needs to calculate the maximum possible number of commands that were performed correctly. Help Ivan to do the calculations! Input Specification: The first line contains one number *n* — the length of sequence of commands entered by Ivan (1<=≤<=*n*<=≤<=100). The second line contains the sequence itself — a string consisting of *n* characters. Each character can be U, D, L or R. Output Specification: Print the maximum possible number of commands from the sequence the robot could perform to end up in the starting cell. Demo Input: ['4\nLDUR\n', '5\nRRRUU\n', '6\nLLRRRR\n'] Demo Output: ['4\n', '0\n', '4\n'] Note: none
```python n=int(input()) s=input() count=0 done=0 for i in range(n): if s[i]=='L': count-=1 elif s[i]=='R': count+=1 elif s[i]=='U': count+=1 else: count-=1 if count==0: done=1 a=i if done==1: print(a+1) else: print(0) ```
0
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,675,437,686
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
92
17,715,200
word = input () count = 0 for letter in word : count = count + 1 if word.isdigit() == True: pass elif count <= 10: print(word) elif count >10 : new_word = word[0] + str(count - 2) + word[-1] print(new_word)
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python word = input () count = 0 for letter in word : count = count + 1 if word.isdigit() == True: pass elif count <= 10: print(word) elif count >10 : new_word = word[0] + str(count - 2) + word[-1] print(new_word) ```
0
454
B
Little Pony and Sort by Shift
PROGRAMMING
1,200
[ "implementation" ]
null
null
One day, Twilight Sparkle is interested in how to sort a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* in non-decreasing order. Being a young unicorn, the only operation she can perform is a unit shift. That is, she can move the last element of the sequence to its beginning: Help Twilight Sparkle to calculate: what is the minimum number of operations that she needs to sort the sequence?
The first line contains an integer *n* (2<=≤<=*n*<=≤<=105). The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105).
If it's impossible to sort the sequence output -1. Otherwise output the minimum number of operations Twilight Sparkle needs to sort it.
[ "2\n2 1\n", "3\n1 3 2\n", "2\n1 2\n" ]
[ "1\n", "-1\n", "0\n" ]
none
1,000
[ { "input": "2\n2 1", "output": "1" }, { "input": "3\n1 3 2", "output": "-1" }, { "input": "2\n1 2", "output": "0" }, { "input": "6\n3 4 5 6 3 2", "output": "-1" }, { "input": "3\n1 2 1", "output": "1" }, { "input": "5\n1 1 2 1 1", "output": "2" }, { "input": "4\n5 4 5 4", "output": "-1" }, { "input": "7\n3 4 5 5 5 1 2", "output": "2" }, { "input": "5\n2 2 1 2 2", "output": "3" }, { "input": "5\n5 4 1 2 3", "output": "-1" }, { "input": "4\n6 1 2 7", "output": "-1" }, { "input": "5\n4 5 6 2 3", "output": "2" }, { "input": "2\n1 1", "output": "0" }, { "input": "4\n1 2 2 1", "output": "1" }, { "input": "9\n4 5 6 7 1 2 3 4 10", "output": "-1" }, { "input": "7\n2 3 4 1 2 3 4", "output": "-1" }, { "input": "6\n1 2 1 2 1 2", "output": "-1" }, { "input": "3\n3 2 1", "output": "-1" }, { "input": "4\n1 4 4 1", "output": "1" }, { "input": "5\n1 2 1 1 1", "output": "3" }, { "input": "5\n4 6 7 3 5", "output": "-1" }, { "input": "4\n2 3 1 4", "output": "-1" }, { "input": "5\n5 4 3 2 1", "output": "-1" }, { "input": "4\n2 4 1 4", "output": "-1" }, { "input": "6\n4 5 6 1 2 7", "output": "-1" }, { "input": "6\n1 2 3 1 1 1", "output": "3" }, { "input": "5\n1 3 3 3 1", "output": "1" }, { "input": "6\n5 6 7 5 5 5", "output": "3" }, { "input": "5\n3 4 2 1 2", "output": "-1" }, { "input": "3\n3 4 2", "output": "1" }, { "input": "6\n1 1 2 2 1 1", "output": "2" }, { "input": "4\n2 3 4 2", "output": "1" }, { "input": "5\n3 5 7 7 3", "output": "1" }, { "input": "4\n1 1 4 1", "output": "1" }, { "input": "7\n1 5 6 1 1 1 1", "output": "4" }, { "input": "5\n7 8 6 7 8", "output": "-1" }, { "input": "4\n2 4 1 3", "output": "-1" } ]
1,591,098,070
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
4
233
11,264,000
# 1 3 2 1 3 2 # 2 1 2 1 # Python program for KMP Algorithm def KMPSearch(pat, txt): M = len(pat) N = len(txt) val = -1 lps = [0] * M j = 0 computeLPSArray(pat, M, lps) i = 0 while i < N: if pat[j] == txt[i]: i += 1 j += 1 if j == M: val = i - j j = lps[j - 1] break elif i < N and pat[j] != txt[i]: if j != 0: j = lps[j - 1] else: i += 1 return val def computeLPSArray(pat, M, lps): len = 0 lps[0] i = 1 while i < M: if pat[i] == pat[len]: len += 1 lps[i] = len i += 1 else: if len != 0: len = lps[len - 1] else: lps[i] = 0 i += 1 var = -1 n = int(input()) arr = [int(i) for i in input().split()] temp = [i for i in arr] temp.sort() arr += arr txt = arr pat = temp print(KMPSearch(pat, txt))
Title: Little Pony and Sort by Shift Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day, Twilight Sparkle is interested in how to sort a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* in non-decreasing order. Being a young unicorn, the only operation she can perform is a unit shift. That is, she can move the last element of the sequence to its beginning: Help Twilight Sparkle to calculate: what is the minimum number of operations that she needs to sort the sequence? Input Specification: The first line contains an integer *n* (2<=≤<=*n*<=≤<=105). The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105). Output Specification: If it's impossible to sort the sequence output -1. Otherwise output the minimum number of operations Twilight Sparkle needs to sort it. Demo Input: ['2\n2 1\n', '3\n1 3 2\n', '2\n1 2\n'] Demo Output: ['1\n', '-1\n', '0\n'] Note: none
```python # 1 3 2 1 3 2 # 2 1 2 1 # Python program for KMP Algorithm def KMPSearch(pat, txt): M = len(pat) N = len(txt) val = -1 lps = [0] * M j = 0 computeLPSArray(pat, M, lps) i = 0 while i < N: if pat[j] == txt[i]: i += 1 j += 1 if j == M: val = i - j j = lps[j - 1] break elif i < N and pat[j] != txt[i]: if j != 0: j = lps[j - 1] else: i += 1 return val def computeLPSArray(pat, M, lps): len = 0 lps[0] i = 1 while i < M: if pat[i] == pat[len]: len += 1 lps[i] = len i += 1 else: if len != 0: len = lps[len - 1] else: lps[i] = 0 i += 1 var = -1 n = int(input()) arr = [int(i) for i in input().split()] temp = [i for i in arr] temp.sort() arr += arr txt = arr pat = temp print(KMPSearch(pat, txt)) ```
0
870
C
Maximum splitting
PROGRAMMING
1,300
[ "dp", "greedy", "math", "number theory" ]
null
null
You are given several queries. In the *i*-th query you are given a single positive integer *n**i*. You are to represent *n**i* as a sum of maximum possible number of composite summands and print this maximum number, or print -1, if there are no such splittings. An integer greater than 1 is composite, if it is not prime, i.e. if it has positive divisors not equal to 1 and the integer itself.
The first line contains single integer *q* (1<=≤<=*q*<=≤<=105) — the number of queries. *q* lines follow. The (*i*<=+<=1)-th line contains single integer *n**i* (1<=≤<=*n**i*<=≤<=109) — the *i*-th query.
For each query print the maximum possible number of summands in a valid splitting to composite summands, or -1, if there are no such splittings.
[ "1\n12\n", "2\n6\n8\n", "3\n1\n2\n3\n" ]
[ "3\n", "1\n2\n", "-1\n-1\n-1\n" ]
12 = 4 + 4 + 4 = 4 + 8 = 6 + 6 = 12, but the first splitting has the maximum possible number of summands. 8 = 4 + 4, 6 can't be split into several composite summands. 1, 2, 3 are less than any composite number, so they do not have valid splittings.
1,500
[ { "input": "1\n12", "output": "3" }, { "input": "2\n6\n8", "output": "1\n2" }, { "input": "3\n1\n2\n3", "output": "-1\n-1\n-1" }, { "input": "6\n1\n2\n3\n5\n7\n11", "output": "-1\n-1\n-1\n-1\n-1\n-1" }, { "input": "3\n4\n6\n9", "output": "1\n1\n1" }, { "input": "20\n8\n13\n20\n12\n9\n16\n4\n19\n7\n15\n10\n6\n14\n11\n3\n2\n5\n17\n18\n1", "output": "2\n2\n5\n3\n1\n4\n1\n3\n-1\n2\n2\n1\n3\n-1\n-1\n-1\n-1\n3\n4\n-1" }, { "input": "100\n611\n513\n544\n463\n38\n778\n347\n317\n848\n664\n382\n108\n718\n33\n334\n876\n234\n22\n944\n305\n159\n245\n513\n691\n639\n135\n308\n324\n813\n459\n304\n116\n331\n993\n184\n224\n853\n769\n121\n687\n93\n930\n751\n308\n485\n914\n400\n695\n95\n981\n175\n972\n121\n654\n242\n610\n617\n999\n237\n548\n742\n767\n613\n172\n223\n391\n102\n907\n673\n116\n230\n355\n189\n552\n399\n493\n903\n201\n985\n459\n776\n641\n693\n919\n253\n540\n427\n394\n655\n101\n461\n854\n417\n249\n66\n380\n213\n906\n212\n528", "output": "151\n127\n136\n114\n9\n194\n85\n78\n212\n166\n95\n27\n179\n7\n83\n219\n58\n5\n236\n75\n38\n60\n127\n171\n158\n32\n77\n81\n202\n113\n76\n29\n81\n247\n46\n56\n212\n191\n29\n170\n22\n232\n186\n77\n120\n228\n100\n172\n22\n244\n42\n243\n29\n163\n60\n152\n153\n248\n58\n137\n185\n190\n152\n43\n54\n96\n25\n225\n167\n29\n57\n87\n46\n138\n98\n122\n224\n49\n245\n113\n194\n159\n172\n228\n62\n135\n105\n98\n162\n24\n114\n213\n103\n61\n16\n95\n52\n226\n53\n132" }, { "input": "1\n10000001", "output": "2499999" } ]
1,558,015,626
2,147,483,647
Python 3
OK
TESTS
20
1,060
0
n = int(input()) for i in range(n): calc = int(input()) if calc <= 3 or calc == 5 or calc == 7 or calc == 11: print(-1) else: ans = int(calc / 4) if (calc % 4) % 2 == 1: ans = ans - 1 print(ans)
Title: Maximum splitting Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given several queries. In the *i*-th query you are given a single positive integer *n**i*. You are to represent *n**i* as a sum of maximum possible number of composite summands and print this maximum number, or print -1, if there are no such splittings. An integer greater than 1 is composite, if it is not prime, i.e. if it has positive divisors not equal to 1 and the integer itself. Input Specification: The first line contains single integer *q* (1<=≤<=*q*<=≤<=105) — the number of queries. *q* lines follow. The (*i*<=+<=1)-th line contains single integer *n**i* (1<=≤<=*n**i*<=≤<=109) — the *i*-th query. Output Specification: For each query print the maximum possible number of summands in a valid splitting to composite summands, or -1, if there are no such splittings. Demo Input: ['1\n12\n', '2\n6\n8\n', '3\n1\n2\n3\n'] Demo Output: ['3\n', '1\n2\n', '-1\n-1\n-1\n'] Note: 12 = 4 + 4 + 4 = 4 + 8 = 6 + 6 = 12, but the first splitting has the maximum possible number of summands. 8 = 4 + 4, 6 can't be split into several composite summands. 1, 2, 3 are less than any composite number, so they do not have valid splittings.
```python n = int(input()) for i in range(n): calc = int(input()) if calc <= 3 or calc == 5 or calc == 7 or calc == 11: print(-1) else: ans = int(calc / 4) if (calc % 4) % 2 == 1: ans = ans - 1 print(ans) ```
3
290
B
QR code
PROGRAMMING
1,500
[ "*special", "implementation" ]
null
null
The input contains two integers *a*1,<=*a*2 (0<=≤<=*a**i*<=≤<=32), separated by a single space.
Output a single integer.
[ "1 1\n", "3 7\n", "13 10\n" ]
[ "0\n", "0\n", "1\n" ]
none
0
[ { "input": "1 1", "output": "0" }, { "input": "3 7", "output": "0" }, { "input": "13 10", "output": "1" }, { "input": "6 12", "output": "1" }, { "input": "14 14", "output": "0" }, { "input": "19 14", "output": "0" }, { "input": "21 18", "output": "1" }, { "input": "29 18", "output": "0" }, { "input": "0 24", "output": "0" }, { "input": "16 24", "output": "1" }, { "input": "20 28", "output": "1" }, { "input": "23 30", "output": "0" }, { "input": "23 7", "output": "1" }, { "input": "27 13", "output": "1" }, { "input": "0 13", "output": "0" }, { "input": "12 14", "output": "1" }, { "input": "21 18", "output": "1" }, { "input": "25 20", "output": "0" }, { "input": "29 24", "output": "1" }, { "input": "2 24", "output": "0" }, { "input": "14 28", "output": "0" }, { "input": "23 30", "output": "0" }, { "input": "17 32", "output": "0" }, { "input": "25 5", "output": "0" }, { "input": "29 5", "output": "0" }, { "input": "0 5", "output": "1" }, { "input": "16 11", "output": "1" }, { "input": "19 11", "output": "0" }, { "input": "27 15", "output": "1" }, { "input": "31 15", "output": "0" }, { "input": "0 0", "output": "1" }, { "input": "32 0", "output": "1" }, { "input": "0 32", "output": "1" }, { "input": "32 32", "output": "1" }, { "input": "0 31", "output": "1" }, { "input": "1 31", "output": "0" } ]
1,570,474,859
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
216
0
s=str(input()).split() a=list(map(int,s)) x=list('111111101010101111100101001111111100000100000000001010110001000001101110100110110000011010001011101101110101011001001111101001011101101110101100011000111100101011101100000101010101011010000101000001111111101010101010101010101111111000000001111101111100111100000000100010111100100001011110111111001110111001111111100100001000101100011100111010000101000111010001010011110000110001111110101100000011111111111111111000111001001011000111000010111010011010011010100100101010100010110010110101010000010101100000101010001111101000000000000010100011001101000111101011010101001001111101111000101010001110101101111111000100100001110001000000010011000100110000011010000010001101101001101110010010011011000011101011010001000111101010100110111010100110011101001101000001110110001010010101111000101111111000001000111011100001010110111110000000000001110010110100010100010110111111101000101111000110101011010100000100111010101111100100011011101110101001010000101000111111000101110100011010010010111111011010101110100100011011110110101110000100000100110011001111100111100000111111101101000101001101110010001') print(x[a[0]*33 + a[1]+1])
Title: QR code Time Limit: None seconds Memory Limit: None megabytes Problem Description: Input Specification: The input contains two integers *a*1,<=*a*2 (0<=≤<=*a**i*<=≤<=32), separated by a single space. Output Specification: Output a single integer. Demo Input: ['1 1\n', '3 7\n', '13 10\n'] Demo Output: ['0\n', '0\n', '1\n'] Note: none
```python s=str(input()).split() a=list(map(int,s)) x=list('111111101010101111100101001111111100000100000000001010110001000001101110100110110000011010001011101101110101011001001111101001011101101110101100011000111100101011101100000101010101011010000101000001111111101010101010101010101111111000000001111101111100111100000000100010111100100001011110111111001110111001111111100100001000101100011100111010000101000111010001010011110000110001111110101100000011111111111111111000111001001011000111000010111010011010011010100100101010100010110010110101010000010101100000101010001111101000000000000010100011001101000111101011010101001001111101111000101010001110101101111111000100100001110001000000010011000100110000011010000010001101101001101110010010011011000011101011010001000111101010100110111010100110011101001101000001110110001010010101111000101111111000001000111011100001010110111110000000000001110010110100010100010110111111101000101111000110101011010100000100111010101111100100011011101110101001010000101000111111000101110100011010010010111111011010101110100100011011110110101110000100000100110011001111100111100000111111101101000101001101110010001') print(x[a[0]*33 + a[1]+1]) ```
0
999
D
Equalize the Remainders
PROGRAMMING
1,900
[ "data structures", "greedy", "implementation" ]
null
null
You are given an array consisting of $n$ integers $a_1, a_2, \dots, a_n$, and a positive integer $m$. It is guaranteed that $m$ is a divisor of $n$. In a single move, you can choose any position $i$ between $1$ and $n$ and increase $a_i$ by $1$. Let's calculate $c_r$ ($0 \le r \le m-1)$ — the number of elements having remainder $r$ when divided by $m$. In other words, for each remainder, let's find the number of corresponding elements in $a$ with that remainder. Your task is to change the array in such a way that $c_0 = c_1 = \dots = c_{m-1} = \frac{n}{m}$. Find the minimum number of moves to satisfy the above requirement.
The first line of input contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5, 1 \le m \le n$). It is guaranteed that $m$ is a divisor of $n$. The second line of input contains $n$ integers $a_1, a_2, \dots, a_n$ ($0 \le a_i \le 10^9$), the elements of the array.
In the first line, print a single integer — the minimum number of moves required to satisfy the following condition: for each remainder from $0$ to $m - 1$, the number of elements of the array having this remainder equals $\frac{n}{m}$. In the second line, print any array satisfying the condition and can be obtained from the given array with the minimum number of moves. The values of the elements of the resulting array must not exceed $10^{18}$.
[ "6 3\n3 2 0 6 10 12\n", "4 2\n0 1 2 3\n" ]
[ "3\n3 2 0 7 10 14 \n", "0\n0 1 2 3 \n" ]
none
0
[ { "input": "6 3\n3 2 0 6 10 12", "output": "3\n3 2 0 7 10 14 " }, { "input": "4 2\n0 1 2 3", "output": "0\n0 1 2 3 " }, { "input": "1 1\n1000000000", "output": "0\n1000000000 " }, { "input": "6 3\n3 2 0 6 10 11", "output": "1\n3 2 0 7 10 11 " }, { "input": "100 25\n6745 2075 7499 7517 1776 5164 2335 2745 4465 1457 7565 2232 2486 9025 8059 9646 8017 7662 9690 3352 2306 366 7422 1073 7169 8966 4506 8225 5614 8628 2908 7452 9625 9332 7097 353 1043 8118 5794 4486 626 971 6731 6618 887 6354 4814 7307 7681 6160 9351 2579 411 3436 5570 2812 2726 4433 3220 577 5891 3861 528 2183 127 5579 6979 4005 9953 5038 9937 4792 3003 9417 8796 1565 11 2596 2486 3494 4464 9568 5512 5565 9822 9820 4848 2889 9527 2249 9860 8236 256 8434 8038 6407 5570 5922 7435 2815", "output": "88\n6745 2075 7499 7517 1776 5164 2335 2745 4465 1457 7565 2232 2486 9025 8059 9646 8017 7662 9690 3352 2306 366 7422 1073 7169 8966 4506 8225 5614 8628 2908 7452 9625 9332 7097 353 1043 8118 5794 4486 626 971 6731 6618 887 6354 4814 7307 7681 6160 9351 2579 411 3436 5570 2812 2726 4433 3220 577 5891 3863 528 2183 127 5579 6979 4005 9953 5038 9937 4792 3005 9417 8796 1565 24 2596 2505 3494 4464 9568 5513 5566 9822 9823 4848 2899 9530 2249 9860 8259 259 8434 8038 6408 5573 5922 7435 2819 " } ]
1,643,179,787
2,147,483,647
PyPy 3
OK
TESTS
47
561
27,443,200
""" -*- coding: utf-8 -*- Created on Sat Jan 22 18:33:32 2022 @author: Tausif Khan Arnob """ n, m = map(int, input().split()) a = [*map(int, input().split())] li = [[] for i in range(m)] k, s, j = n // m, sum(a), 0 for i, val in enumerate(a): li[val % m].append(i) for i in range(m): while len(li[i]) > k: while j < i or len(li[j % m]) >= k: j += 1 x = li[i].pop() a[x] += (j - i) % m li[j % m].append(x) print(sum(a) - s) print(*a)
Title: Equalize the Remainders Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an array consisting of $n$ integers $a_1, a_2, \dots, a_n$, and a positive integer $m$. It is guaranteed that $m$ is a divisor of $n$. In a single move, you can choose any position $i$ between $1$ and $n$ and increase $a_i$ by $1$. Let's calculate $c_r$ ($0 \le r \le m-1)$ — the number of elements having remainder $r$ when divided by $m$. In other words, for each remainder, let's find the number of corresponding elements in $a$ with that remainder. Your task is to change the array in such a way that $c_0 = c_1 = \dots = c_{m-1} = \frac{n}{m}$. Find the minimum number of moves to satisfy the above requirement. Input Specification: The first line of input contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5, 1 \le m \le n$). It is guaranteed that $m$ is a divisor of $n$. The second line of input contains $n$ integers $a_1, a_2, \dots, a_n$ ($0 \le a_i \le 10^9$), the elements of the array. Output Specification: In the first line, print a single integer — the minimum number of moves required to satisfy the following condition: for each remainder from $0$ to $m - 1$, the number of elements of the array having this remainder equals $\frac{n}{m}$. In the second line, print any array satisfying the condition and can be obtained from the given array with the minimum number of moves. The values of the elements of the resulting array must not exceed $10^{18}$. Demo Input: ['6 3\n3 2 0 6 10 12\n', '4 2\n0 1 2 3\n'] Demo Output: ['3\n3 2 0 7 10 14 \n', '0\n0 1 2 3 \n'] Note: none
```python """ -*- coding: utf-8 -*- Created on Sat Jan 22 18:33:32 2022 @author: Tausif Khan Arnob """ n, m = map(int, input().split()) a = [*map(int, input().split())] li = [[] for i in range(m)] k, s, j = n // m, sum(a), 0 for i, val in enumerate(a): li[val % m].append(i) for i in range(m): while len(li[i]) > k: while j < i or len(li[j % m]) >= k: j += 1 x = li[i].pop() a[x] += (j - i) % m li[j % m].append(x) print(sum(a) - s) print(*a) ```
3
490
A
Team Olympiad
PROGRAMMING
800
[ "greedy", "implementation", "sortings" ]
null
null
The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*: - *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE Each child happens to be good at exactly one of these three subjects. The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team. What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that?
The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child.
In the first line output integer *w* — the largest possible number of teams. Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them. If no teams can be compiled, print the only line with value *w* equal to 0.
[ "7\n1 3 1 3 2 1 2\n", "4\n2 1 1 2\n" ]
[ "2\n3 5 2\n6 7 4\n", "0\n" ]
none
500
[ { "input": "7\n1 3 1 3 2 1 2", "output": "2\n3 5 2\n6 7 4" }, { "input": "4\n2 1 1 2", "output": "0" }, { "input": "1\n2", "output": "0" }, { "input": "2\n3 1", "output": "0" }, { "input": "3\n2 1 2", "output": "0" }, { "input": "3\n1 2 3", "output": "1\n1 2 3" }, { "input": "12\n3 3 3 3 3 3 3 3 1 3 3 2", "output": "1\n9 12 2" }, { "input": "60\n3 3 1 2 2 1 3 1 1 1 3 2 2 2 3 3 1 3 2 3 2 2 1 3 3 2 3 1 2 2 2 1 3 2 1 1 3 3 1 1 1 3 1 2 1 1 3 3 3 2 3 2 3 2 2 2 1 1 1 2", "output": "20\n6 60 1\n17 44 20\n3 5 33\n36 21 42\n59 14 2\n58 26 49\n9 29 48\n23 19 24\n10 30 37\n41 54 15\n45 31 27\n57 55 38\n39 12 25\n35 34 11\n32 52 7\n8 50 18\n43 4 53\n46 56 51\n40 22 16\n28 13 47" }, { "input": "12\n3 1 1 1 1 1 1 2 1 1 1 1", "output": "1\n3 8 1" }, { "input": "22\n2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 1 2 2 2 2", "output": "1\n18 2 11" }, { "input": "138\n2 3 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 3 2 2 2 1 2 3 2 2 2 3 1 3 2 3 2 3 2 2 2 2 3 2 2 2 2 2 1 2 2 3 2 2 3 2 1 2 2 2 2 2 3 1 2 2 2 2 2 3 2 2 3 2 2 2 2 2 1 1 2 3 2 2 2 2 3 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 3 2 3 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 3", "output": "18\n13 91 84\n34 90 48\n11 39 77\n78 129 50\n137 68 119\n132 122 138\n19 12 96\n40 7 2\n22 88 69\n107 73 46\n115 15 52\n127 106 87\n93 92 66\n71 112 117\n63 124 42\n17 70 101\n109 121 57\n123 25 36" }, { "input": "203\n2 2 1 2 1 2 2 2 1 2 2 1 1 3 1 2 1 2 1 1 2 3 1 1 2 3 3 2 2 2 1 2 1 1 1 1 1 3 1 1 2 1 1 2 2 2 1 2 2 2 1 2 3 2 1 1 2 2 1 2 1 2 2 1 1 2 2 2 1 1 2 2 1 2 1 2 2 3 2 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 1 2 2 1 3 2 1 1 1 2 1 1 2 1 1 2 2 2 1 1 2 2 2 1 2 1 3 2 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 2 1 1 1 1 1 1 2 2 3 1 1 2 3 1 1 1 1 1 1 2 2 1 1 1 2 2 3 2 1 3 1 1 1", "output": "13\n188 72 14\n137 4 197\n158 76 122\n152 142 26\n104 119 179\n40 63 38\n12 1 78\n17 30 27\n189 60 53\n166 190 144\n129 7 183\n83 41 22\n121 81 200" }, { "input": "220\n1 1 3 1 3 1 1 3 1 3 3 3 3 1 3 3 1 3 3 3 3 3 1 1 1 3 1 1 1 3 2 3 3 3 1 1 3 3 1 1 3 3 3 3 1 3 3 1 1 1 2 3 1 1 1 2 3 3 3 2 3 1 1 3 1 1 1 3 2 1 3 2 3 1 1 3 3 3 1 3 1 1 1 3 3 2 1 3 2 1 1 3 3 1 1 1 2 1 1 3 2 1 2 1 1 1 3 1 3 3 1 2 3 3 3 3 1 3 1 1 1 1 2 3 1 1 1 1 1 1 3 2 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 3 2 3 1 3 3 1 3 3 3 3 1 1 3 3 3 3 1 1 3 3 3 2 1 1 1 3 3 1 3 3 3 1 1 1 3 1 3 3 1 1 1 2 3 1 1 3 1 1 1 1 2 3 1 1 2 3 3 1 3 1 3 3 3 3 1 3 2 3 1 1 3", "output": "20\n198 89 20\n141 56 131\n166 204 19\n160 132 142\n111 112 195\n45 216 92\n6 31 109\n14 150 170\n199 60 18\n173 123 140\n134 69 156\n82 191 85\n126 200 80\n24 97 46\n62 86 149\n214 101 26\n79 171 78\n125 72 118\n172 103 162\n219 51 64" }, { "input": "61\n2 3 1 3 2 2 2 3 1 3 2 3 1 2 1 1 2 2 2 2 3 2 3 1 2 1 3 1 3 2 1 1 3 2 1 3 3 3 1 3 3 1 1 3 1 3 2 2 1 2 2 2 1 3 2 3 1 3 3 1 1", "output": "20\n9 55 2\n24 34 27\n3 5 37\n35 17 41\n61 11 4\n60 19 54\n15 20 59\n26 14 29\n16 22 38\n43 50 12\n49 25 36\n57 51 40\n39 6 33\n32 30 10\n31 48 8\n13 47 23\n45 1 58\n53 52 56\n42 18 21\n28 7 44" }, { "input": "5\n1 2 2 3 3", "output": "1\n1 3 4" } ]
1,684,363,685
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
import sys input = sys.stdin.readline def inp(): return(int(input())) def inlt(): return(list(map(int,input().split()))) def insr(): s = input() return(list(s[:len(s) - 1])) def invr(): return(map(int,input().split())) n = inp() s = inlt() ax = [] bx = [] cx = [] for idx, st in enumerate(s): if st == 1: ax.append((st, idx)) if st == 2: bx.append((st, idx)) if st == 3: cx.append((st, idx)) max_teams = min([len(ax),len(bx),len(cx)]) if max_teams == 0: print(0) exit(0) ax = ax[:max_teams] bx = bx[:max_teams] cx = cx[:max_teams] print(max_teams) for i in range(max_teams):
Title: Team Olympiad Time Limit: None seconds Memory Limit: None megabytes Problem Description: The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*: - *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE Each child happens to be good at exactly one of these three subjects. The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team. What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child. Output Specification: In the first line output integer *w* — the largest possible number of teams. Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them. If no teams can be compiled, print the only line with value *w* equal to 0. Demo Input: ['7\n1 3 1 3 2 1 2\n', '4\n2 1 1 2\n'] Demo Output: ['2\n3 5 2\n6 7 4\n', '0\n'] Note: none
```python import sys input = sys.stdin.readline def inp(): return(int(input())) def inlt(): return(list(map(int,input().split()))) def insr(): s = input() return(list(s[:len(s) - 1])) def invr(): return(map(int,input().split())) n = inp() s = inlt() ax = [] bx = [] cx = [] for idx, st in enumerate(s): if st == 1: ax.append((st, idx)) if st == 2: bx.append((st, idx)) if st == 3: cx.append((st, idx)) max_teams = min([len(ax),len(bx),len(cx)]) if max_teams == 0: print(0) exit(0) ax = ax[:max_teams] bx = bx[:max_teams] cx = cx[:max_teams] print(max_teams) for i in range(max_teams): ```
-1
665
C
Simple Strings
PROGRAMMING
1,300
[ "dp", "greedy", "strings" ]
null
null
zscoder loves simple strings! A string *t* is called simple if every pair of adjacent characters are distinct. For example ab, aba, zscoder are simple whereas aa, add are not simple. zscoder is given a string *s*. He wants to change a minimum number of characters so that the string *s* becomes simple. Help him with this task!
The only line contains the string *s* (1<=≤<=|*s*|<=≤<=2·105) — the string given to zscoder. The string *s* consists of only lowercase English letters.
Print the simple string *s*' — the string *s* after the minimal number of changes. If there are multiple solutions, you may output any of them. Note that the string *s*' should also consist of only lowercase English letters.
[ "aab\n", "caaab\n", "zscoder\n" ]
[ "bab\n", "cabab\n", "zscoder\n" ]
none
0
[ { "input": "aab", "output": "bab" }, { "input": "caaab", "output": "cabab" }, { "input": "zscoder", "output": "zscoder" }, { "input": "u", "output": "u" }, { "input": "h", "output": "h" }, { "input": "dtottttotd", "output": "dtotataotd" }, { "input": "rxxxrrxrxxxxxrrrrrxxxxrrrrxrxxrxxrxrxrrrxrrxrrxrxxxrxrrxrrxrxrxxxxxrxxxxrrrxrxxrxxrxxxrrrrrxrrxrrxrr", "output": "rxaxraxrxaxaxrararxaxararaxrxarxarxrxrarxraxraxrxaxrxraxraxrxrxaxaxrxaxararxrxarxarxaxrararxraxraxra" }, { "input": "aazz", "output": "baza" }, { "input": "zz", "output": "za" }, { "input": "gg", "output": "ga" }, { "input": "qasdasd", "output": "qasdasd" }, { "input": "aa", "output": "ba" }, { "input": "ab", "output": "ab" }, { "input": "zza", "output": "zba" }, { "input": "g", "output": "g" }, { "input": "nnop", "output": "naop" }, { "input": "xx", "output": "xa" } ]
1,691,332,008
2,147,483,647
Python 3
OK
TESTS
27
109
1,228,800
t = input() + ' ' s = ' ' for a, b in zip(t, t[1:]): if a == s[-1]: for q in 'abc': if a != q != b: s += q break else: s += a print(s[1:])
Title: Simple Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: zscoder loves simple strings! A string *t* is called simple if every pair of adjacent characters are distinct. For example ab, aba, zscoder are simple whereas aa, add are not simple. zscoder is given a string *s*. He wants to change a minimum number of characters so that the string *s* becomes simple. Help him with this task! Input Specification: The only line contains the string *s* (1<=≤<=|*s*|<=≤<=2·105) — the string given to zscoder. The string *s* consists of only lowercase English letters. Output Specification: Print the simple string *s*' — the string *s* after the minimal number of changes. If there are multiple solutions, you may output any of them. Note that the string *s*' should also consist of only lowercase English letters. Demo Input: ['aab\n', 'caaab\n', 'zscoder\n'] Demo Output: ['bab\n', 'cabab\n', 'zscoder\n'] Note: none
```python t = input() + ' ' s = ' ' for a, b in zip(t, t[1:]): if a == s[-1]: for q in 'abc': if a != q != b: s += q break else: s += a print(s[1:]) ```
3
472
A
Design Tutorial: Learn from Math
PROGRAMMING
800
[ "math", "number theory" ]
null
null
One way to create a task is to learn from math. You can generate some random math statement or modify some theorems to get something new and build a new task from that. For example, there is a statement called the "Goldbach's conjecture". It says: "each even number no less than four can be expressed as the sum of two primes". Let's modify it. How about a statement like that: "each integer no less than 12 can be expressed as the sum of two composite numbers." Not like the Goldbach's conjecture, I can prove this theorem. You are given an integer *n* no less than 12, express it as a sum of two composite numbers.
The only line contains an integer *n* (12<=≤<=*n*<=≤<=106).
Output two composite integers *x* and *y* (1<=&lt;<=*x*,<=*y*<=&lt;<=*n*) such that *x*<=+<=*y*<==<=*n*. If there are multiple solutions, you can output any of them.
[ "12\n", "15\n", "23\n", "1000000\n" ]
[ "4 8\n", "6 9\n", "8 15\n", "500000 500000\n" ]
In the first example, 12 = 4 + 8 and both 4, 8 are composite numbers. You can output "6 6" or "8 4" as well. In the second example, 15 = 6 + 9. Note that you can't output "1 14" because 1 is not a composite number.
500
[ { "input": "12", "output": "4 8" }, { "input": "15", "output": "6 9" }, { "input": "23", "output": "8 15" }, { "input": "1000000", "output": "500000 500000" }, { "input": "63874", "output": "4 63870" }, { "input": "14568", "output": "4 14564" }, { "input": "192", "output": "4 188" }, { "input": "86", "output": "4 82" }, { "input": "46220", "output": "4 46216" }, { "input": "57114", "output": "4 57110" }, { "input": "869", "output": "4 865" }, { "input": "738457", "output": "4 738453" }, { "input": "58113", "output": "6 58107" }, { "input": "4864", "output": "4 4860" }, { "input": "15", "output": "6 9" }, { "input": "74752", "output": "4 74748" }, { "input": "6073", "output": "4 6069" }, { "input": "1289", "output": "4 1285" }, { "input": "20", "output": "4 16" }, { "input": "58134", "output": "4 58130" }, { "input": "57756", "output": "4 57752" }, { "input": "765", "output": "6 759" }, { "input": "59", "output": "4 55" }, { "input": "991666", "output": "4 991662" }, { "input": "70761", "output": "4 70757" }, { "input": "13", "output": "4 9" }, { "input": "999999", "output": "4 999995" }, { "input": "17", "output": "8 9" }, { "input": "21", "output": "6 15" }, { "input": "19", "output": "4 15" }, { "input": "100007", "output": "6 100001" }, { "input": "999987", "output": "6 999981" }, { "input": "22", "output": "4 18" } ]
1,694,269,187
2,147,483,647
Python 3
OK
TESTS
33
46
0
def is_prime(x): if x <= 1: return False if x <= 3: return True if x % 2 == 0 or x % 3 == 0: return False i = 5 while i * i <= x: if x % i == 0 or x % (i + 2) == 0: return False i += 6 return True def composite_pair(n): for i in range(4, n): if not is_prime(i) and not is_prime(n - i): return i, n - i n = int(input()) x, y = composite_pair(n) print(x, y)
Title: Design Tutorial: Learn from Math Time Limit: None seconds Memory Limit: None megabytes Problem Description: One way to create a task is to learn from math. You can generate some random math statement or modify some theorems to get something new and build a new task from that. For example, there is a statement called the "Goldbach's conjecture". It says: "each even number no less than four can be expressed as the sum of two primes". Let's modify it. How about a statement like that: "each integer no less than 12 can be expressed as the sum of two composite numbers." Not like the Goldbach's conjecture, I can prove this theorem. You are given an integer *n* no less than 12, express it as a sum of two composite numbers. Input Specification: The only line contains an integer *n* (12<=≤<=*n*<=≤<=106). Output Specification: Output two composite integers *x* and *y* (1<=&lt;<=*x*,<=*y*<=&lt;<=*n*) such that *x*<=+<=*y*<==<=*n*. If there are multiple solutions, you can output any of them. Demo Input: ['12\n', '15\n', '23\n', '1000000\n'] Demo Output: ['4 8\n', '6 9\n', '8 15\n', '500000 500000\n'] Note: In the first example, 12 = 4 + 8 and both 4, 8 are composite numbers. You can output "6 6" or "8 4" as well. In the second example, 15 = 6 + 9. Note that you can't output "1 14" because 1 is not a composite number.
```python def is_prime(x): if x <= 1: return False if x <= 3: return True if x % 2 == 0 or x % 3 == 0: return False i = 5 while i * i <= x: if x % i == 0 or x % (i + 2) == 0: return False i += 6 return True def composite_pair(n): for i in range(4, n): if not is_prime(i) and not is_prime(n - i): return i, n - i n = int(input()) x, y = composite_pair(n) print(x, y) ```
3
538
D
Weird Chess
PROGRAMMING
1,800
[ "brute force", "constructive algorithms", "implementation" ]
null
null
Igor has been into chess for a long time and now he is sick of the game by the ordinary rules. He is going to think of new rules of the game and become world famous. Igor's chessboard is a square of size *n*<=×<=*n* cells. Igor decided that simple rules guarantee success, that's why his game will have only one type of pieces. Besides, all pieces in his game are of the same color. The possible moves of a piece are described by a set of shift vectors. The next passage contains a formal description of available moves. Let the rows of the board be numbered from top to bottom and the columns be numbered from left to right from 1 to *n*. Let's assign to each square a pair of integers (*x*,<=*y*) — the number of the corresponding column and row. Each of the possible moves of the piece is defined by a pair of integers (*dx*,<=*dy*); using this move, the piece moves from the field (*x*,<=*y*) to the field (*x*<=+<=*dx*,<=*y*<=+<=*dy*). You can perform the move if the cell (*x*<=+<=*dx*,<=*y*<=+<=*dy*) is within the boundaries of the board and doesn't contain another piece. Pieces that stand on the cells other than (*x*,<=*y*) and (*x*<=+<=*dx*,<=*y*<=+<=*dy*) are not important when considering the possibility of making the given move (for example, like when a knight moves in usual chess). Igor offers you to find out what moves his chess piece can make. He placed several pieces on the board and for each unoccupied square he told you whether it is attacked by any present piece (i.e. whether some of the pieces on the field can move to that cell). Restore a possible set of shift vectors of the piece, or else determine that Igor has made a mistake and such situation is impossible for any set of shift vectors.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=50). The next *n* lines contain *n* characters each describing the position offered by Igor. The *j*-th character of the *i*-th string can have the following values: - o — in this case the field (*i*,<=*j*) is occupied by a piece and the field may or may not be attacked by some other piece;- x — in this case field (*i*,<=*j*) is attacked by some piece;- . — in this case field (*i*,<=*j*) isn't attacked by any piece. It is guaranteed that there is at least one piece on the board.
If there is a valid set of moves, in the first line print a single word 'YES' (without the quotes). Next, print the description of the set of moves of a piece in the form of a (2*n*<=-<=1)<=×<=(2*n*<=-<=1) board, the center of the board has a piece and symbols 'x' mark cells that are attacked by it, in a format similar to the input. See examples of the output for a full understanding of the format. If there are several possible answers, print any of them. If a valid set of moves does not exist, print a single word 'NO'.
[ "5\noxxxx\nx...x\nx...x\nx...x\nxxxxo\n", "6\n.x.x..\nx.x.x.\n.xo..x\nx..ox.\n.x.x.x\n..x.x.\n", "3\no.x\noxx\no.x\n" ]
[ "YES\n....x....\n....x....\n....x....\n....x....\nxxxxoxxxx\n....x....\n....x....\n....x....\n....x....\n", "YES\n...........\n...........\n...........\n....x.x....\n...x...x...\n.....o.....\n...x...x...\n....x.x....\n...........\n...........\n...........\n", "NO\n" ]
In the first sample test the piece is a usual chess rook, and in the second sample test the piece is a usual chess knight.
1,500
[ { "input": "5\noxxxx\nx...x\nx...x\nx...x\nxxxxo", "output": "YES\nxxxxxxxxx\nx...xxxxx\nx...xxxxx\nx...xxxxx\nxxxxoxxxx\nxxxxx...x\nxxxxx...x\nxxxxx...x\nxxxxxxxxx" }, { "input": "6\n.x.x..\nx.x.x.\n.xo..x\nx..ox.\n.x.x.x\n..x.x.", "output": "YES\nxxxxxxxxxxx\nxxxxxxxxxxx\nxx.x.x..xxx\nxxx.x.x..xx\nxx.x...x.xx\nxxx..o..xxx\nxx.x...x.xx\nxx..x.x.xxx\nxxx..x.x.xx\nxxxxxxxxxxx\nxxxxxxxxxxx" }, { "input": "3\no.x\noxx\no.x", "output": "NO" }, { "input": "1\no", "output": "YES\no" }, { "input": "2\nox\n.o", "output": "YES\nxxx\n.ox\nx.x" }, { "input": "5\n.xxo.\n..oxo\nx.oxo\no..xo\noooox", "output": "NO" }, { "input": "8\n..x.xxx.\nx.x.xxxx\nxxxxxxox\nxxoxxxxx\n.xxxx.x.\nx.xxx.x.\n..x..xx.\n.xx...x.", "output": "YES\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxx..x.xxx.xx\nx..x.x.x.xxxxxx\nxx.x.xxxxxxxxxx\nxxxxxxxoxxxxxxx\nxxxxx.xxxx.x.xx\nx.xxxx.x.x.x.xx\nxx.xx..x..xx.xx\nx..x..xx...x.xx\nx.xx...x.xxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx" }, { "input": "8\noxxxxxxx\nxoxxxoxx\nxx...x..\nxx...x..\nxx...x..\nxx...x..\noxxxxxxx\nxx...x..", "output": "YES\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxx...x..\nxxxxxxxxx...x..\nxxxxxxxxx...x..\nxxxxxxxxx...x..\nxxxxxxxoxxxxxxx\nxxxx...x.......\nxxxx...x.......\nxxxx...x.......\nxxxx...x.......\nxxxxxxxxx...x..\nxxxx...x...x..x\nxxxxxxxxx...x.." }, { "input": "8\nx.......\n.x.....x\nx.x...x.\nxx.x.x..\nxxx.x..x\n.xxx.xxx\n..oxxxx.\n.x.xoo.o", "output": "YES\nx..........xxxx\n.x...........xx\nx.x.........xxx\nxx.x.......x.xx\nxxx.x.....x..xx\n.x...x...x..xxx\n......x.x..xxxx\n.x.....o..xx.xx\nxxxxx.x.xxx.xxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx" }, { "input": "8\n........\n........\n........\n..xxxx..\n.xx..xx.\n..xoox..\noxx..xx.\n..xxox..", "output": "YES\nxxx........xxxx\nxxx............\nxxx............\nxxx............\nxxx.........x..\nxxx...x.x...xx.\nxxx..x...x..x..\nxxx...xox...xx.\nxxxxxx...x..x..\nxxx...xxx...xxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx" }, { "input": "8\n....o...\n..o.x...\n..x..o..\n.....oo.\n.....xx.\n........\n.o...o..\n.x...x.o", "output": "YES\n....x...xxxxxxx\n..........x...x\n..........x...x\n...........x..x\n...........xx.x\n...........xx.x\n..............x\n.......o......x\nx......x.....xx\nx..........x.xx\nx..........x.xx\nx............xx\nxx...........xx\nxxx.x.......xxx\nxxx.x...x.xxxxx" }, { "input": "8\n.o....o.\n.....x..\n.....o..\n..x.....\n..o...x.\n...x..o.\n...oxx..\n....oo..", "output": "YES\nxx.........xxxx\nxx..........xxx\nx...........xxx\nx............xx\nx............xx\nx............xx\nx......x.....xx\nx......o......x\nx.............x\nx.............x\nx.............x\nx...........x.x\nx...........x.x\nx...xx...xxx..x\nx....x....xx..x" }, { "input": "10\n...o.xxx.x\n..ooxxxxxx\n.x..x.x...\nx.xxx..ox.\nxx.xoo.xxx\n.......xxx\n.x.x.xx...\nxo..xo..xx\n....x....o\n.ox.xxx..x", "output": "YES\nxxxxxxxx...x.xxx.xx\n...x.xxx..xxxxxxxxx\n..xx...x......x...x\n.x....x...xxx..xx.x\nx.xx..............x\nxx.x...........xx.x\n.......x.x.x.x....x\n.x..............xxx\nxx................x\n....x....o..xx...xx\n.xx..............xx\nxx........x......xx\nxx.x.x........x.xxx\nxxxx..........xxxxx\nxx...............xx\nxx.xx..x...x....xxx\nxxxxxx..........xxx\nxxxxxx..........xxx\nxxxxxx.xx.xxx..xxxx" }, { "input": "13\n.............\n.....o.......\n......o......\n.............\n...o........o\no............\n.............\n..o..........\n..........ooo\n.............\n..o...o.....o\n.............\n.o........o..", "output": "YES\nxx......................x\nxx.....x........x.......x\n........................x\n........................x\n.......................xx\n........................x\n........................x\n.........................\n.........................\n.........................\n.........................\n........................x\n............o............\n.........................\n.........................\n......................xxx\n.........................\n........................x\n..x...................." }, { "input": "20\nxxxxxx.xxxxxxxxxxxxx\n.xx.x.x.xx.xxxxxxxxx\nxxxxxx.xx.xx.xxx.xxx\nxx.xxxoxxx..xxxxxxxx\nxoxx.x..xx.xx.xo.xox\n.xxxxxxxxx.xxxxxxxxx\no.xxxxxoxxx..xx.oxox\nxxx.xxxx....xxx.xx.x\nxxxxxxo.xoxxoxxxxxxx\n.x..xx.xxxx...xx..xx\nxxxxxxxxxxxx..xxxxxx\nxxx.x.xxxxxxxx..xxxx\nxxxxxxx.xxoxxxx.xxx.\nx.x.xx.xxx.xxxxxxxx.\no.xxxx.xx.oxxxxx..xx\nx.oxxxxxx.x.xx.xx.x.\n.xoxx.xxxx..xx...x.x\nxxxx.x.xxxxxoxxxoxxx\noxx.xxxxx.xxxxxxxxx.\nxxxxxxoxxxxxx.xxxxxx", "output": "NO" }, { "input": "20\n.xooxo.oxx.xo..xxox.\nox.oo.xoox.xxo.xx.x.\noo..o.o.xoo.oox....o\nooo.ooxox.ooxox..oox\n.o.xx.x.ox.xo.xxoox.\nxooo.oo.xox.o.o.xxxo\noxxoox...oo.oox.xo.x\no.oxoxxx.oo.xooo..o.\no..xoxox.xo.xoooxo.x\n.oxoxxoo..o.xxoxxo..\nooxxooooox.o.x.x.ox.\noxxxx.oooooox.oxxxo.\nxoo...xoxoo.xx.x.oo.\noo..xxxox.xo.xxoxoox\nxxxoo..oo...ox.xo.o.\no..ooxoxo..xoo.xxxxo\no....oo..x.ox..oo.xo\n.x.xox.xo.o.oo.oxo.o\nooxoxoxxxox.x..xx.x.\n.xooxx..xo.xxoo.oo..", "output": "NO" } ]
1,481,119,942
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
22
2,000
4,812,800
n=int(input()) len=2*n-1 def er(len,z): L=[] i=0 while i<len: L.append([]) j=0 while j<len: L[i].append(z) j=j+1 i=i+1 return L ans=er(len,'x') ans[n-1][n-1]='o' L=[] for i in range(n): L.append([]) L[i]=input() vec=[ (i,j) for i in range(n) for j in range(n) if L[i][j]=='.' ] i=0 while i<n: j=0 while j<n: if L[i][j]=='o': for x,y in vec: ans[n-1+x-i][n-1+y-j]='.' j=j+1 i=i+1 vec2=[(i,j) for i in range(len) for j in range(len) if ans[i][j]=='x' ] ans2=er(n,'.') i=0 while i<n: j=0 while j<n: if L[i][j]=='o': for x,y in vec2: dx=i+x-(n-1) dy=j+y-(n-1) if dx>=0 and dx<n and dy>=0 and dy<n: ans2[dx][dy]='x' j=j+1 i=i+1 flag=1 i=0 while i<n: j=0 while j<n: if L[i][j]!='o' and L[i][j] != ans2[i][j]: flag=0 j=j+1 i=i+1 if flag: print("YES") for i in range(len): str=''.join(ans[i]) print(str) else: print('NO')
Title: Weird Chess Time Limit: None seconds Memory Limit: None megabytes Problem Description: Igor has been into chess for a long time and now he is sick of the game by the ordinary rules. He is going to think of new rules of the game and become world famous. Igor's chessboard is a square of size *n*<=×<=*n* cells. Igor decided that simple rules guarantee success, that's why his game will have only one type of pieces. Besides, all pieces in his game are of the same color. The possible moves of a piece are described by a set of shift vectors. The next passage contains a formal description of available moves. Let the rows of the board be numbered from top to bottom and the columns be numbered from left to right from 1 to *n*. Let's assign to each square a pair of integers (*x*,<=*y*) — the number of the corresponding column and row. Each of the possible moves of the piece is defined by a pair of integers (*dx*,<=*dy*); using this move, the piece moves from the field (*x*,<=*y*) to the field (*x*<=+<=*dx*,<=*y*<=+<=*dy*). You can perform the move if the cell (*x*<=+<=*dx*,<=*y*<=+<=*dy*) is within the boundaries of the board and doesn't contain another piece. Pieces that stand on the cells other than (*x*,<=*y*) and (*x*<=+<=*dx*,<=*y*<=+<=*dy*) are not important when considering the possibility of making the given move (for example, like when a knight moves in usual chess). Igor offers you to find out what moves his chess piece can make. He placed several pieces on the board and for each unoccupied square he told you whether it is attacked by any present piece (i.e. whether some of the pieces on the field can move to that cell). Restore a possible set of shift vectors of the piece, or else determine that Igor has made a mistake and such situation is impossible for any set of shift vectors. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=50). The next *n* lines contain *n* characters each describing the position offered by Igor. The *j*-th character of the *i*-th string can have the following values: - o — in this case the field (*i*,<=*j*) is occupied by a piece and the field may or may not be attacked by some other piece;- x — in this case field (*i*,<=*j*) is attacked by some piece;- . — in this case field (*i*,<=*j*) isn't attacked by any piece. It is guaranteed that there is at least one piece on the board. Output Specification: If there is a valid set of moves, in the first line print a single word 'YES' (without the quotes). Next, print the description of the set of moves of a piece in the form of a (2*n*<=-<=1)<=×<=(2*n*<=-<=1) board, the center of the board has a piece and symbols 'x' mark cells that are attacked by it, in a format similar to the input. See examples of the output for a full understanding of the format. If there are several possible answers, print any of them. If a valid set of moves does not exist, print a single word 'NO'. Demo Input: ['5\noxxxx\nx...x\nx...x\nx...x\nxxxxo\n', '6\n.x.x..\nx.x.x.\n.xo..x\nx..ox.\n.x.x.x\n..x.x.\n', '3\no.x\noxx\no.x\n'] Demo Output: ['YES\n....x....\n....x....\n....x....\n....x....\nxxxxoxxxx\n....x....\n....x....\n....x....\n....x....\n', 'YES\n...........\n...........\n...........\n....x.x....\n...x...x...\n.....o.....\n...x...x...\n....x.x....\n...........\n...........\n...........\n', 'NO\n'] Note: In the first sample test the piece is a usual chess rook, and in the second sample test the piece is a usual chess knight.
```python n=int(input()) len=2*n-1 def er(len,z): L=[] i=0 while i<len: L.append([]) j=0 while j<len: L[i].append(z) j=j+1 i=i+1 return L ans=er(len,'x') ans[n-1][n-1]='o' L=[] for i in range(n): L.append([]) L[i]=input() vec=[ (i,j) for i in range(n) for j in range(n) if L[i][j]=='.' ] i=0 while i<n: j=0 while j<n: if L[i][j]=='o': for x,y in vec: ans[n-1+x-i][n-1+y-j]='.' j=j+1 i=i+1 vec2=[(i,j) for i in range(len) for j in range(len) if ans[i][j]=='x' ] ans2=er(n,'.') i=0 while i<n: j=0 while j<n: if L[i][j]=='o': for x,y in vec2: dx=i+x-(n-1) dy=j+y-(n-1) if dx>=0 and dx<n and dy>=0 and dy<n: ans2[dx][dy]='x' j=j+1 i=i+1 flag=1 i=0 while i<n: j=0 while j<n: if L[i][j]!='o' and L[i][j] != ans2[i][j]: flag=0 j=j+1 i=i+1 if flag: print("YES") for i in range(len): str=''.join(ans[i]) print(str) else: print('NO') ```
0
864
A
Fair Game
PROGRAMMING
1,000
[ "implementation", "sortings" ]
null
null
Petya and Vasya decided to play a game. They have *n* cards (*n* is an even number). A single integer is written on each card. Before the game Petya will choose an integer and after that Vasya will choose another integer (different from the number that Petya chose). During the game each player takes all the cards with number he chose. For example, if Petya chose number 5 before the game he will take all cards on which 5 is written and if Vasya chose number 10 before the game he will take all cards on which 10 is written. The game is considered fair if Petya and Vasya can take all *n* cards, and the number of cards each player gets is the same. Determine whether Petya and Vasya can choose integer numbers before the game so that the game is fair.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=100) — number of cards. It is guaranteed that *n* is an even number. The following *n* lines contain a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (one integer per line, 1<=≤<=*a**i*<=≤<=100) — numbers written on the *n* cards.
If it is impossible for Petya and Vasya to choose numbers in such a way that the game will be fair, print "NO" (without quotes) in the first line. In this case you should not print anything more. In the other case print "YES" (without quotes) in the first line. In the second line print two distinct integers — number that Petya should choose and the number that Vasya should choose to make the game fair. If there are several solutions, print any of them.
[ "4\n11\n27\n27\n11\n", "2\n6\n6\n", "6\n10\n20\n30\n20\n10\n20\n", "6\n1\n1\n2\n2\n3\n3\n" ]
[ "YES\n11 27\n", "NO\n", "NO\n", "NO\n" ]
In the first example the game will be fair if, for example, Petya chooses number 11, and Vasya chooses number 27. Then the will take all cards — Petya will take cards 1 and 4, and Vasya will take cards 2 and 3. Thus, each of them will take exactly two cards. In the second example fair game is impossible because the numbers written on the cards are equal, but the numbers that Petya and Vasya should choose should be distinct. In the third example it is impossible to take all cards. Petya and Vasya can take at most five cards — for example, Petya can choose number 10 and Vasya can choose number 20. But for the game to be fair it is necessary to take 6 cards.
500
[ { "input": "4\n11\n27\n27\n11", "output": "YES\n11 27" }, { "input": "2\n6\n6", "output": "NO" }, { "input": "6\n10\n20\n30\n20\n10\n20", "output": "NO" }, { "input": "6\n1\n1\n2\n2\n3\n3", "output": "NO" }, { "input": "2\n1\n100", "output": "YES\n1 100" }, { "input": "2\n1\n1", "output": "NO" }, { "input": "2\n100\n100", "output": "NO" }, { "input": "14\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43", "output": "NO" }, { "input": "100\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32", "output": "YES\n14 32" }, { "input": "2\n50\n100", "output": "YES\n50 100" }, { "input": "2\n99\n100", "output": "YES\n99 100" }, { "input": "4\n4\n4\n5\n5", "output": "YES\n4 5" }, { "input": "10\n10\n10\n10\n10\n10\n23\n23\n23\n23\n23", "output": "YES\n10 23" }, { "input": "20\n34\n34\n34\n34\n34\n34\n34\n34\n34\n34\n11\n11\n11\n11\n11\n11\n11\n11\n11\n11", "output": "YES\n11 34" }, { "input": "40\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30", "output": "YES\n20 30" }, { "input": "58\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1", "output": "YES\n1 100" }, { "input": "98\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99", "output": "YES\n2 99" }, { "input": "100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100", "output": "YES\n1 100" }, { "input": "100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2", "output": "YES\n1 2" }, { "input": "100\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12", "output": "YES\n12 49" }, { "input": "100\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94", "output": "YES\n15 94" }, { "input": "100\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42", "output": "YES\n33 42" }, { "input": "100\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35", "output": "YES\n16 35" }, { "input": "100\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44", "output": "YES\n33 44" }, { "input": "100\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98", "output": "YES\n54 98" }, { "input": "100\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12", "output": "YES\n12 81" }, { "input": "100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100", "output": "NO" }, { "input": "100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1", "output": "NO" }, { "input": "40\n20\n20\n30\n30\n20\n20\n20\n30\n30\n20\n20\n30\n30\n30\n30\n20\n30\n30\n30\n30\n20\n20\n30\n30\n30\n20\n30\n20\n30\n20\n30\n20\n20\n20\n30\n20\n20\n20\n30\n30", "output": "NO" }, { "input": "58\n100\n100\n100\n100\n100\n1\n1\n1\n1\n1\n1\n100\n100\n1\n100\n1\n100\n100\n1\n1\n100\n100\n1\n100\n1\n100\n100\n1\n1\n100\n1\n1\n1\n100\n1\n1\n1\n1\n100\n1\n100\n100\n100\n100\n100\n1\n1\n100\n100\n100\n100\n1\n100\n1\n1\n1\n1\n1", "output": "NO" }, { "input": "98\n2\n99\n99\n99\n99\n2\n99\n99\n99\n2\n2\n99\n2\n2\n2\n2\n99\n99\n2\n99\n2\n2\n99\n99\n99\n99\n2\n2\n99\n2\n99\n99\n2\n2\n99\n2\n99\n2\n99\n2\n2\n2\n99\n2\n2\n2\n2\n99\n99\n99\n99\n2\n2\n2\n2\n2\n2\n2\n2\n99\n2\n99\n99\n2\n2\n99\n99\n99\n99\n99\n99\n99\n99\n2\n99\n2\n99\n2\n2\n2\n99\n99\n99\n99\n99\n99\n2\n99\n99\n2\n2\n2\n2\n2\n99\n99\n99\n2", "output": "NO" }, { "input": "100\n100\n1\n100\n1\n1\n100\n1\n1\n1\n100\n100\n1\n100\n1\n100\n100\n1\n1\n1\n100\n1\n100\n1\n100\n100\n1\n100\n1\n100\n1\n1\n1\n1\n1\n100\n1\n100\n100\n100\n1\n100\n100\n1\n100\n1\n1\n100\n100\n100\n1\n100\n100\n1\n1\n100\n100\n1\n100\n1\n100\n1\n1\n100\n100\n100\n100\n100\n100\n1\n100\n100\n1\n100\n100\n1\n100\n1\n1\n1\n100\n100\n1\n100\n1\n100\n1\n1\n1\n1\n100\n1\n1\n100\n1\n100\n100\n1\n100\n1\n100", "output": "NO" }, { "input": "100\n100\n100\n100\n1\n100\n1\n1\n1\n100\n1\n1\n1\n1\n100\n1\n100\n1\n100\n1\n100\n100\n100\n1\n100\n1\n1\n1\n100\n1\n1\n1\n1\n1\n100\n100\n1\n100\n1\n1\n100\n1\n1\n100\n1\n100\n100\n100\n1\n100\n100\n100\n1\n100\n1\n100\n100\n100\n1\n1\n100\n100\n100\n100\n1\n100\n36\n100\n1\n100\n1\n100\n100\n100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n100\n1\n1\n100\n100\n100\n100\n100\n1\n100\n1\n100\n1\n1\n100\n100\n1\n100", "output": "NO" }, { "input": "100\n2\n1\n1\n2\n2\n1\n1\n1\n1\n2\n1\n1\n1\n2\n2\n2\n1\n1\n1\n2\n1\n2\n2\n2\n2\n1\n1\n2\n1\n1\n2\n1\n27\n1\n1\n1\n2\n2\n2\n1\n2\n1\n2\n1\n1\n2\n2\n2\n2\n2\n2\n2\n2\n1\n2\n2\n2\n2\n1\n2\n1\n1\n1\n1\n1\n2\n1\n1\n1\n2\n2\n2\n2\n2\n2\n1\n1\n1\n1\n2\n2\n1\n2\n2\n1\n1\n1\n2\n1\n2\n2\n1\n1\n2\n1\n1\n1\n2\n2\n1", "output": "NO" }, { "input": "100\n99\n99\n100\n99\n99\n100\n100\n100\n99\n100\n99\n99\n100\n99\n99\n99\n99\n99\n99\n100\n100\n100\n99\n100\n100\n99\n100\n99\n100\n100\n99\n100\n99\n99\n99\n100\n99\n10\n99\n100\n100\n100\n99\n100\n100\n100\n100\n100\n100\n100\n99\n100\n100\n100\n99\n99\n100\n99\n100\n99\n100\n100\n99\n99\n99\n99\n100\n99\n100\n100\n100\n100\n100\n100\n99\n99\n100\n100\n99\n99\n99\n99\n99\n99\n100\n99\n99\n100\n100\n99\n100\n99\n99\n100\n99\n99\n99\n99\n100\n100", "output": "NO" }, { "input": "100\n29\n43\n43\n29\n43\n29\n29\n29\n43\n29\n29\n29\n29\n43\n29\n29\n29\n29\n43\n29\n29\n29\n43\n29\n29\n29\n43\n43\n43\n43\n43\n43\n29\n29\n43\n43\n43\n29\n43\n43\n43\n29\n29\n29\n43\n29\n29\n29\n43\n43\n43\n43\n29\n29\n29\n29\n43\n29\n43\n43\n29\n29\n43\n43\n29\n29\n95\n29\n29\n29\n43\n43\n29\n29\n29\n29\n29\n43\n43\n43\n43\n29\n29\n43\n43\n43\n43\n43\n43\n29\n43\n43\n43\n43\n43\n43\n29\n43\n29\n43", "output": "NO" }, { "input": "100\n98\n98\n98\n88\n88\n88\n88\n98\n98\n88\n98\n88\n98\n88\n88\n88\n88\n88\n98\n98\n88\n98\n98\n98\n88\n88\n88\n98\n98\n88\n88\n88\n98\n88\n98\n88\n98\n88\n88\n98\n98\n98\n88\n88\n98\n98\n88\n88\n88\n88\n88\n98\n98\n98\n88\n98\n88\n88\n98\n98\n88\n98\n88\n88\n98\n88\n88\n98\n27\n88\n88\n88\n98\n98\n88\n88\n98\n98\n98\n98\n98\n88\n98\n88\n98\n98\n98\n98\n88\n88\n98\n88\n98\n88\n98\n98\n88\n98\n98\n88", "output": "NO" }, { "input": "100\n50\n1\n1\n50\n50\n50\n50\n1\n50\n100\n50\n50\n50\n100\n1\n100\n1\n100\n50\n50\n50\n50\n50\n1\n50\n1\n100\n1\n1\n50\n100\n50\n50\n100\n50\n50\n100\n1\n50\n50\n100\n1\n1\n50\n1\n100\n50\n50\n100\n100\n1\n100\n1\n50\n100\n50\n50\n1\n1\n50\n100\n50\n100\n100\n100\n50\n50\n1\n1\n50\n100\n1\n50\n100\n100\n1\n50\n50\n50\n100\n50\n50\n100\n1\n50\n50\n50\n50\n1\n50\n50\n50\n50\n1\n50\n50\n100\n1\n50\n100", "output": "NO" }, { "input": "100\n45\n45\n45\n45\n45\n45\n44\n44\n44\n43\n45\n44\n44\n45\n44\n44\n45\n44\n43\n44\n43\n43\n43\n45\n43\n45\n44\n45\n43\n44\n45\n45\n45\n45\n45\n45\n45\n45\n43\n45\n43\n43\n45\n44\n45\n45\n45\n44\n45\n45\n45\n45\n45\n45\n44\n43\n45\n45\n43\n44\n45\n45\n45\n45\n44\n45\n45\n45\n43\n43\n44\n44\n43\n45\n43\n45\n45\n45\n44\n44\n43\n43\n44\n44\n44\n43\n45\n43\n44\n43\n45\n43\n43\n45\n45\n44\n45\n43\n43\n45", "output": "NO" }, { "input": "100\n12\n12\n97\n15\n97\n12\n15\n97\n12\n97\n12\n12\n97\n12\n15\n12\n12\n15\n12\n12\n97\n12\n12\n15\n15\n12\n97\n15\n12\n97\n15\n12\n12\n15\n15\n15\n97\n15\n97\n12\n12\n12\n12\n12\n97\n12\n97\n12\n15\n15\n12\n15\n12\n15\n12\n12\n12\n12\n12\n12\n12\n12\n97\n97\n12\n12\n97\n12\n97\n97\n15\n97\n12\n97\n97\n12\n12\n12\n97\n97\n15\n12\n12\n15\n12\n15\n97\n97\n12\n15\n12\n12\n97\n12\n15\n15\n15\n15\n12\n12", "output": "NO" }, { "input": "12\n2\n3\n1\n3\n3\n1\n2\n1\n2\n1\n3\n2", "output": "NO" }, { "input": "48\n99\n98\n100\n100\n99\n100\n99\n100\n100\n98\n99\n98\n98\n99\n98\n99\n98\n100\n100\n98\n100\n98\n99\n100\n98\n99\n98\n99\n99\n100\n98\n99\n99\n98\n100\n99\n98\n99\n98\n100\n100\n100\n99\n98\n99\n98\n100\n100", "output": "NO" }, { "input": "4\n1\n3\n3\n3", "output": "NO" }, { "input": "6\n1\n1\n1\n1\n2\n2", "output": "NO" }, { "input": "4\n1\n1\n1\n2", "output": "NO" }, { "input": "4\n1\n2\n2\n2", "output": "NO" }, { "input": "4\n1\n2\n3\n4", "output": "NO" }, { "input": "8\n1\n1\n2\n2\n3\n3\n4\n4", "output": "NO" }, { "input": "4\n1\n3\n2\n4", "output": "NO" }, { "input": "4\n10\n10\n10\n20", "output": "NO" }, { "input": "4\n11\n12\n13\n13", "output": "NO" }, { "input": "4\n1\n1\n1\n3", "output": "NO" }, { "input": "6\n1\n1\n2\n2\n2\n2", "output": "NO" }, { "input": "10\n1\n1\n2\n2\n2\n3\n3\n4\n4\n4", "output": "NO" } ]
1,550,392,274
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
77
0
def petya(arr1): n=len(arr1) if len(set(arr1))==1: return False if sorted(list(set(arr1[:n//2])))==sorted(list(set(arr1[n//2:]))): return True return False n=int(input()) arr1=[] for _ in range(n): arr1.append(int(input())) if petya(arr1): print('YES') else: print('NO')
Title: Fair Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya and Vasya decided to play a game. They have *n* cards (*n* is an even number). A single integer is written on each card. Before the game Petya will choose an integer and after that Vasya will choose another integer (different from the number that Petya chose). During the game each player takes all the cards with number he chose. For example, if Petya chose number 5 before the game he will take all cards on which 5 is written and if Vasya chose number 10 before the game he will take all cards on which 10 is written. The game is considered fair if Petya and Vasya can take all *n* cards, and the number of cards each player gets is the same. Determine whether Petya and Vasya can choose integer numbers before the game so that the game is fair. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=100) — number of cards. It is guaranteed that *n* is an even number. The following *n* lines contain a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (one integer per line, 1<=≤<=*a**i*<=≤<=100) — numbers written on the *n* cards. Output Specification: If it is impossible for Petya and Vasya to choose numbers in such a way that the game will be fair, print "NO" (without quotes) in the first line. In this case you should not print anything more. In the other case print "YES" (without quotes) in the first line. In the second line print two distinct integers — number that Petya should choose and the number that Vasya should choose to make the game fair. If there are several solutions, print any of them. Demo Input: ['4\n11\n27\n27\n11\n', '2\n6\n6\n', '6\n10\n20\n30\n20\n10\n20\n', '6\n1\n1\n2\n2\n3\n3\n'] Demo Output: ['YES\n11 27\n', 'NO\n', 'NO\n', 'NO\n'] Note: In the first example the game will be fair if, for example, Petya chooses number 11, and Vasya chooses number 27. Then the will take all cards — Petya will take cards 1 and 4, and Vasya will take cards 2 and 3. Thus, each of them will take exactly two cards. In the second example fair game is impossible because the numbers written on the cards are equal, but the numbers that Petya and Vasya should choose should be distinct. In the third example it is impossible to take all cards. Petya and Vasya can take at most five cards — for example, Petya can choose number 10 and Vasya can choose number 20. But for the game to be fair it is necessary to take 6 cards.
```python def petya(arr1): n=len(arr1) if len(set(arr1))==1: return False if sorted(list(set(arr1[:n//2])))==sorted(list(set(arr1[n//2:]))): return True return False n=int(input()) arr1=[] for _ in range(n): arr1.append(int(input())) if petya(arr1): print('YES') else: print('NO') ```
0
525
C
Ilya and Sticks
PROGRAMMING
1,600
[ "greedy", "math", "sortings" ]
null
null
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of *n* sticks and an instrument. Each stick is characterized by its length *l**i*. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths *a*1, *a*2, *a*3 and *a*4 can make a rectangle if the following properties are observed: - *a*1<=≤<=*a*2<=≤<=*a*3<=≤<=*a*4 - *a*1<==<=*a*2 - *a*3<==<=*a*4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks?
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=105) — the number of the available sticks. The second line of the input contains *n* positive integers *l**i* (2<=≤<=*l**i*<=≤<=106) — the lengths of the sticks.
The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks.
[ "4\n2 4 4 2\n", "4\n2 2 3 5\n", "4\n100003 100004 100005 100006\n" ]
[ "8\n", "0\n", "10000800015\n" ]
none
1,000
[ { "input": "4\n2 4 4 2", "output": "8" }, { "input": "4\n2 2 3 5", "output": "0" }, { "input": "4\n100003 100004 100005 100006", "output": "10000800015" }, { "input": "8\n5 3 3 3 3 4 4 4", "output": "25" }, { "input": "10\n123 124 123 124 2 2 2 2 9 9", "output": "15270" }, { "input": "8\n10 10 10 10 11 10 11 10", "output": "210" }, { "input": "1\n1000000", "output": "0" }, { "input": "10\n10519 10519 10520 10520 10520 10521 10521 10521 10522 10523", "output": "221372362" }, { "input": "100\n4116 4116 4117 4117 4117 4117 4118 4119 4119 4119 4119 4120 4120 4120 4120 4121 4122 4123 4123 4123 4123 4124 4124 4124 4124 4125 4126 4126 4126 4126 4127 4127 4127 4127 4128 4128 4128 4128 4129 4129 4130 4130 4131 4132 4133 4133 4134 4134 4135 4135 4136 4137 4137 4137 4138 4139 4140 4140 4141 4141 4142 4143 4143 4143 4144 4144 4144 4144 4145 4145 4145 4146 4146 4146 4147 4147 4147 4147 4148 4148 4148 4149 4149 4149 4150 4151 4151 4151 4152 4152 4153 4153 4154 4154 4155 4155 4155 4155 4156 4156", "output": "427591742" }, { "input": "10\n402840 873316 567766 493234 711262 291654 683001 496971 64909 190173", "output": "0" }, { "input": "45\n1800 4967 1094 551 871 3505 846 960 4868 4304 2112 496 2293 2128 2430 2119 4497 2159 774 4520 3535 1013 452 1458 1895 1191 958 1133 416 2613 4172 3926 1665 4237 539 101 2448 1212 2631 4530 3026 412 1006 2515 1922", "output": "0" }, { "input": "69\n2367 2018 3511 1047 1789 2332 1082 4678 2036 4108 2357 339 536 2272 3638 2588 754 3795 375 506 3243 1033 4531 1216 4266 2547 3540 4642 1256 2248 4705 14 629 876 2304 1673 4186 2356 3172 2664 3896 552 4293 1507 3307 2661 3143 4565 58 1298 4380 2738 917 2054 2676 4464 1314 3752 3378 1823 4219 3142 4258 1833 886 4286 4040 1070 2206", "output": "7402552" }, { "input": "93\n13 2633 3005 1516 2681 3262 1318 1935 665 2450 2601 1644 214 929 4873 955 1983 3945 3488 2927 1516 1026 2150 974 150 2442 2610 1664 636 3369 266 2536 3132 2515 2582 1169 4462 4961 200 2848 4793 2795 4657 474 2640 2488 378 544 1805 1390 1548 2683 1474 4027 1724 2078 183 3717 1727 1780 552 2905 4260 1444 2906 3779 400 1491 1467 4480 3680 2539 4681 2875 4021 2711 106 853 3094 4531 4066 372 2129 2577 3996 2350 943 4478 3058 3333 4592 232 2780", "output": "4403980" }, { "input": "21\n580 3221 3987 2012 35 629 1554 654 756 2254 4307 2948 3457 4612 4620 4320 1777 556 3088 348 1250", "output": "0" }, { "input": "45\n4685 272 3481 3942 952 3020 329 4371 2923 2057 4526 2791 1674 3269 829 2713 3006 2166 1228 2795 983 1065 3875 4028 3429 3720 697 734 4393 1176 2820 1173 4598 2281 2549 4341 1504 172 4230 1193 3022 3742 1232 3433 1871", "output": "0" }, { "input": "69\n3766 2348 4437 4438 3305 386 2026 1629 1552 400 4770 4069 4916 1926 2037 1079 2801 854 803 216 2152 4622 1494 3786 775 3615 4766 2781 235 836 1892 2234 3563 1843 4314 3836 320 2776 4796 1378 380 2421 3057 964 4717 1122 620 530 3455 1639 1618 3109 3120 564 2382 1995 1173 4510 286 1088 218 734 2779 3738 456 1668 4476 2780 3555", "output": "12334860" }, { "input": "4\n2 2 2 4", "output": "0" }, { "input": "8\n10 10 10 11 14 14 14 16", "output": "140" }, { "input": "2\n2 3", "output": "0" }, { "input": "3\n2 3 5", "output": "0" }, { "input": "8\n2 1000000 2 1000000 2 1000000 2 1000000", "output": "1000000000004" }, { "input": "4\n2 4 6 8", "output": "0" }, { "input": "4\n2 3 6 8", "output": "0" }, { "input": "5\n2 2 3 4 5", "output": "8" }, { "input": "5\n1000000 999999 999999 999999 999999", "output": "999998000001" }, { "input": "6\n2 2 2 2 2 2", "output": "4" }, { "input": "4\n2 4 5 5", "output": "0" }, { "input": "20\n4 4 8 4 5 6 7 4 5 4 6 4 4 5 7 6 5 8 8 4", "output": "149" }, { "input": "10\n8 4 6 6 8 5 7 7 6 8", "output": "92" }, { "input": "11\n4 4 9 9 3 8 8 8 6 4 3", "output": "84" }, { "input": "8\n2 3 3 4 4 5 5 5", "output": "26" }, { "input": "4\n3 3 3 2", "output": "6" }, { "input": "5\n3 3 10 100 100", "output": "300" }, { "input": "8\n9 9 9 8 8 7 7 6", "output": "114" }, { "input": "4\n5 6 6 7", "output": "30" }, { "input": "5\n9 9 5 2 2", "output": "18" }, { "input": "6\n3 4 100 200 1001 1002", "output": "3003" }, { "input": "6\n3 4 5 100 101 102", "output": "404" }, { "input": "5\n2 2 4 6 6", "output": "12" }, { "input": "6\n2 3 8 10 13 14", "output": "26" }, { "input": "7\n2 2 2 2 2 2 2", "output": "4" }, { "input": "5\n5 2 2 2 2", "output": "4" }, { "input": "6\n3 4 100 200 1000 1001", "output": "3000" }, { "input": "5\n5 5 7 9 9", "output": "45" }, { "input": "5\n8 8 7 4 4", "output": "32" }, { "input": "5\n2 2 5 8 9", "output": "16" }, { "input": "5\n4 4 4 2 2", "output": "8" }, { "input": "5\n3 10 100 1000 10000", "output": "0" }, { "input": "6\n10 10 7 4 2 2", "output": "20" }, { "input": "6\n5 5 7 9 10 10", "output": "50" }, { "input": "7\n10 10 7 5 3 2 2", "output": "20" }, { "input": "7\n10 9 9 9 9 2 2", "output": "81" } ]
1,610,141,302
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
36
140
7,782,400
n = int(input()) arr = list(map(int, input().split())) arr.sort(reverse = True) total = 0 for i in range(0, len(arr), 4): if i < len(arr) and i + 1 < len(arr) and i + 2 < len(arr) and i + 3 < len(arr): if arr[i] - arr[i + 1] <= 1 and arr[i + 2] - arr[i + 3] <= 1: total += arr[i + 1] * arr[i + 3] print(total)
Title: Ilya and Sticks Time Limit: None seconds Memory Limit: None megabytes Problem Description: In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of *n* sticks and an instrument. Each stick is characterized by its length *l**i*. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths *a*1, *a*2, *a*3 and *a*4 can make a rectangle if the following properties are observed: - *a*1<=≤<=*a*2<=≤<=*a*3<=≤<=*a*4 - *a*1<==<=*a*2 - *a*3<==<=*a*4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? Input Specification: The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=105) — the number of the available sticks. The second line of the input contains *n* positive integers *l**i* (2<=≤<=*l**i*<=≤<=106) — the lengths of the sticks. Output Specification: The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. Demo Input: ['4\n2 4 4 2\n', '4\n2 2 3 5\n', '4\n100003 100004 100005 100006\n'] Demo Output: ['8\n', '0\n', '10000800015\n'] Note: none
```python n = int(input()) arr = list(map(int, input().split())) arr.sort(reverse = True) total = 0 for i in range(0, len(arr), 4): if i < len(arr) and i + 1 < len(arr) and i + 2 < len(arr) and i + 3 < len(arr): if arr[i] - arr[i + 1] <= 1 and arr[i + 2] - arr[i + 3] <= 1: total += arr[i + 1] * arr[i + 3] print(total) ```
0
137
B
Permutation
PROGRAMMING
1,000
[ "greedy" ]
null
null
"Hey, it's homework time" — thought Polycarpus and of course he started with his favourite subject, IT. Polycarpus managed to solve all tasks but for the last one in 20 minutes. However, as he failed to solve the last task after some considerable time, the boy asked you to help him. The sequence of *n* integers is called a permutation if it contains all integers from 1 to *n* exactly once. You are given an arbitrary sequence *a*1,<=*a*2,<=...,<=*a**n* containing *n* integers. Each integer is not less than 1 and not greater than 5000. Determine what minimum number of elements Polycarpus needs to change to get a permutation (he should not delete or add numbers). In a single change he can modify any single sequence element (i. e. replace it with another integer).
The first line of the input data contains an integer *n* (1<=≤<=*n*<=≤<=5000) which represents how many numbers are in the sequence. The second line contains a sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=5000,<=1<=≤<=*i*<=≤<=*n*).
Print the only number — the minimum number of changes needed to get the permutation.
[ "3\n3 1 2\n", "2\n2 2\n", "5\n5 3 3 3 1\n" ]
[ "0\n", "1\n", "2\n" ]
The first sample contains the permutation, which is why no replacements are required. In the second sample it is enough to replace the first element with the number 1 and that will make the sequence the needed permutation. In the third sample we can replace the second element with number 4 and the fourth element with number 2.
1,000
[ { "input": "3\n3 1 2", "output": "0" }, { "input": "2\n2 2", "output": "1" }, { "input": "5\n5 3 3 3 1", "output": "2" }, { "input": "5\n6 6 6 6 6", "output": "5" }, { "input": "10\n1 1 2 2 8 8 7 7 9 9", "output": "5" }, { "input": "8\n9 8 7 6 5 4 3 2", "output": "1" }, { "input": "15\n1 2 3 4 5 5 4 3 2 1 1 2 3 4 5", "output": "10" }, { "input": "1\n1", "output": "0" }, { "input": "1\n5000", "output": "1" }, { "input": "4\n5000 5000 5000 5000", "output": "4" }, { "input": "5\n3366 3461 4 5 4370", "output": "3" }, { "input": "10\n8 2 10 3 4 6 1 7 9 5", "output": "0" }, { "input": "10\n551 3192 3213 2846 3068 1224 3447 1 10 9", "output": "7" }, { "input": "15\n4 1459 12 4281 3241 2748 10 3590 14 845 3518 1721 2 2880 1974", "output": "10" }, { "input": "15\n15 1 8 2 13 11 12 7 3 14 6 10 9 4 5", "output": "0" }, { "input": "15\n2436 2354 4259 1210 2037 2665 700 3578 2880 973 1317 1024 24 3621 4142", "output": "15" }, { "input": "30\n28 1 3449 9 3242 4735 26 3472 15 21 2698 7 4073 3190 10 3 29 1301 4526 22 345 3876 19 12 4562 2535 2 630 18 27", "output": "14" }, { "input": "100\n50 39 95 30 66 78 2169 4326 81 31 74 34 80 40 19 48 97 63 82 6 88 16 21 57 92 77 10 1213 17 93 32 91 38 4375 29 75 44 22 4 45 14 2395 3254 59 3379 2 85 96 8 83 27 94 1512 2960 100 9 73 79 7 25 55 69 90 99 51 87 98 62 18 35 43 4376 4668 28 72 56 4070 61 65 36 54 4106 11 24 15 86 70 71 4087 23 13 76 20 4694 26 4962 4726 37 14 64", "output": "18" }, { "input": "100\n340 14 3275 2283 2673 1107 817 2243 1226 32 2382 3638 4652 418 68 4962 387 764 4647 159 1846 225 2760 4904 3150 403 3 2439 91 4428 92 4705 75 348 1566 1465 69 6 49 4 62 4643 564 1090 3447 1871 2255 139 24 99 2669 969 86 61 4550 158 4537 3993 1589 872 2907 1888 401 80 1825 1483 63 1 2264 4068 4113 2548 41 885 4806 36 67 167 4447 34 1248 2593 82 202 81 1783 1284 4973 16 43 95 7 865 2091 3008 1793 20 947 4912 3604", "output": "70" }, { "input": "1\n2", "output": "1" }, { "input": "2\n5000 5000", "output": "2" }, { "input": "2\n1 2", "output": "0" }, { "input": "2\n1 1", "output": "1" }, { "input": "2\n2 3", "output": "1" }, { "input": "2\n3 4", "output": "2" }, { "input": "10\n1 2 3 4 5 6 7 1000 10 10", "output": "2" } ]
1,592,488,137
2,147,483,647
Python 3
OK
TESTS
48
248
921,600
n = int(input()) a = set(list(map(int,input().split()))) print(len(set(range(1,n+1))-a))
Title: Permutation Time Limit: None seconds Memory Limit: None megabytes Problem Description: "Hey, it's homework time" — thought Polycarpus and of course he started with his favourite subject, IT. Polycarpus managed to solve all tasks but for the last one in 20 minutes. However, as he failed to solve the last task after some considerable time, the boy asked you to help him. The sequence of *n* integers is called a permutation if it contains all integers from 1 to *n* exactly once. You are given an arbitrary sequence *a*1,<=*a*2,<=...,<=*a**n* containing *n* integers. Each integer is not less than 1 and not greater than 5000. Determine what minimum number of elements Polycarpus needs to change to get a permutation (he should not delete or add numbers). In a single change he can modify any single sequence element (i. e. replace it with another integer). Input Specification: The first line of the input data contains an integer *n* (1<=≤<=*n*<=≤<=5000) which represents how many numbers are in the sequence. The second line contains a sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=5000,<=1<=≤<=*i*<=≤<=*n*). Output Specification: Print the only number — the minimum number of changes needed to get the permutation. Demo Input: ['3\n3 1 2\n', '2\n2 2\n', '5\n5 3 3 3 1\n'] Demo Output: ['0\n', '1\n', '2\n'] Note: The first sample contains the permutation, which is why no replacements are required. In the second sample it is enough to replace the first element with the number 1 and that will make the sequence the needed permutation. In the third sample we can replace the second element with number 4 and the fourth element with number 2.
```python n = int(input()) a = set(list(map(int,input().split()))) print(len(set(range(1,n+1))-a)) ```
3
764
B
Timofey and cubes
PROGRAMMING
900
[ "constructive algorithms", "implementation" ]
null
null
Young Timofey has a birthday today! He got kit of *n* cubes as a birthday present from his parents. Every cube has a number *a**i*, which is written on it. Timofey put all the cubes in a row and went to unpack other presents. In this time, Timofey's elder brother, Dima reordered the cubes using the following rule. Suppose the cubes are numbered from 1 to *n* in their order. Dima performs several steps, on step *i* he reverses the segment of cubes from *i*-th to (*n*<=-<=*i*<=+<=1)-th. He does this while *i*<=≤<=*n*<=-<=*i*<=+<=1. After performing the operations Dima went away, being very proud of himself. When Timofey returned to his cubes, he understood that their order was changed. Help Timofey as fast as you can and save the holiday — restore the initial order of the cubes using information of their current location.
The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of cubes. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109), where *a**i* is the number written on the *i*-th cube after Dima has changed their order.
Print *n* integers, separated by spaces — the numbers written on the cubes in their initial order. It can be shown that the answer is unique.
[ "7\n4 3 7 6 9 1 2\n", "8\n6 1 4 2 5 6 9 2\n" ]
[ "2 3 9 6 7 1 4", "2 1 6 2 5 4 9 6" ]
Consider the first sample. 1. At the begining row was [2, 3, 9, 6, 7, 1, 4]. 1. After first operation row was [4, 1, 7, 6, 9, 3, 2]. 1. After second operation row was [4, 3, 9, 6, 7, 1, 2]. 1. After third operation row was [4, 3, 7, 6, 9, 1, 2]. 1. At fourth operation we reverse just middle element, so nothing has changed. The final row is [4, 3, 7, 6, 9, 1, 2]. So the answer for this case is row [2, 3, 9, 6, 7, 1, 4].
1,000
[ { "input": "7\n4 3 7 6 9 1 2", "output": "2 3 9 6 7 1 4" }, { "input": "8\n6 1 4 2 5 6 9 2", "output": "2 1 6 2 5 4 9 6" }, { "input": "1\n1424", "output": "1424" }, { "input": "9\n-7 9 -4 9 -6 11 15 2 -10", "output": "-10 9 15 9 -6 11 -4 2 -7" }, { "input": "2\n21968 5686", "output": "5686 21968" }, { "input": "5\n241218936 -825949895 -84926813 491336344 -872198236", "output": "-872198236 -825949895 -84926813 491336344 241218936" }, { "input": "42\n-557774624 828320986 -345782722 -62979938 -681259411 -945983652 -139095040 832293378 -82572118 432027535 88438103 568183540 961782904 73543295 615958219 -5050584 322982437 -146046730 759453379 129267920 -819827396 -348156048 805080102 390723009 -771277251 -79011872 -592313207 528489973 656201270 -127795621 17284747 145139617 -565641608 83452176 -223074608 545811186 -657981923 -204657836 154779765 -476867246 180386291 202782486", "output": "202782486 828320986 -476867246 -62979938 -204657836 -945983652 545811186 832293378 83452176 432027535 145139617 568183540 -127795621 73543295 528489973 -5050584 -79011872 -146046730 390723009 129267920 -348156048 -819827396 805080102 759453379 -771277251 322982437 -592313207 615958219 656201270 961782904 17284747 88438103 -565641608 -82572118 -223074608 -139095040 -657981923 -681259411 154779765 -345782722 180386291 -557774624" }, { "input": "2\n1 2", "output": "2 1" }, { "input": "6\n1 2 3 4 5 6", "output": "6 2 4 3 5 1" }, { "input": "4\n0 1 2 3", "output": "3 1 2 0" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "10 2 8 4 6 5 7 3 9 1" }, { "input": "2\n4 5", "output": "5 4" }, { "input": "2\n1 5", "output": "5 1" }, { "input": "2\n2 5", "output": "5 2" }, { "input": "2\n3 4", "output": "4 3" }, { "input": "2\n10 0", "output": "0 10" }, { "input": "66\n8229 5299 5562 1259 2258 1126 5026 8796 3497 7111 6680 1180 1426 4821 3322 3502 400 2951 4187 417 5234 1266 7525 7648 417 9297 174 670 1790 4121 9737 938 4616 3402 2009 2461 474 3728 327 3353 9773 6818 8781 874 2209 1260 1647 6126 9287 9638 5049 1256 4459 863 1835 4822 6809 348 5053 7784 6927 2140 9173 7817 5095 4184", "output": "4184 5299 7817 1259 2140 1126 7784 8796 348 7111 4822 1180 863 4821 1256 3502 9638 2951 6126 417 1260 1266 874 7648 6818 9297 3353 670 3728 4121 2461 938 3402 4616 2009 9737 474 1790 327 174 9773 417 8781 7525 2209 5234 1647 4187 9287 400 5049 3322 4459 1426 1835 6680 6809 3497 5053 5026 6927 2258 9173 5562 5095 8229" } ]
1,630,426,462
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
77
20,172,800
n=int(input()) a=[int(i) for i in input().split()] if n==1: print(a) elif n==2: print(*a[::-1]) else: if n%2==1: for i in range(1,n//2+1,2): # print(i,n-i+1) a[i-1],a[n-i]=a[n-i],a[i-1] else: for i in range(1,n//2,2): # print(i,n-i+1) a[i-1],a[n-i]=a[n-i],a[i-1] print(' '.join(map(str,a)))
Title: Timofey and cubes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Young Timofey has a birthday today! He got kit of *n* cubes as a birthday present from his parents. Every cube has a number *a**i*, which is written on it. Timofey put all the cubes in a row and went to unpack other presents. In this time, Timofey's elder brother, Dima reordered the cubes using the following rule. Suppose the cubes are numbered from 1 to *n* in their order. Dima performs several steps, on step *i* he reverses the segment of cubes from *i*-th to (*n*<=-<=*i*<=+<=1)-th. He does this while *i*<=≤<=*n*<=-<=*i*<=+<=1. After performing the operations Dima went away, being very proud of himself. When Timofey returned to his cubes, he understood that their order was changed. Help Timofey as fast as you can and save the holiday — restore the initial order of the cubes using information of their current location. Input Specification: The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of cubes. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109), where *a**i* is the number written on the *i*-th cube after Dima has changed their order. Output Specification: Print *n* integers, separated by spaces — the numbers written on the cubes in their initial order. It can be shown that the answer is unique. Demo Input: ['7\n4 3 7 6 9 1 2\n', '8\n6 1 4 2 5 6 9 2\n'] Demo Output: ['2 3 9 6 7 1 4', '2 1 6 2 5 4 9 6'] Note: Consider the first sample. 1. At the begining row was [2, 3, 9, 6, 7, 1, 4]. 1. After first operation row was [4, 1, 7, 6, 9, 3, 2]. 1. After second operation row was [4, 3, 9, 6, 7, 1, 2]. 1. After third operation row was [4, 3, 7, 6, 9, 1, 2]. 1. At fourth operation we reverse just middle element, so nothing has changed. The final row is [4, 3, 7, 6, 9, 1, 2]. So the answer for this case is row [2, 3, 9, 6, 7, 1, 4].
```python n=int(input()) a=[int(i) for i in input().split()] if n==1: print(a) elif n==2: print(*a[::-1]) else: if n%2==1: for i in range(1,n//2+1,2): # print(i,n-i+1) a[i-1],a[n-i]=a[n-i],a[i-1] else: for i in range(1,n//2,2): # print(i,n-i+1) a[i-1],a[n-i]=a[n-i],a[i-1] print(' '.join(map(str,a))) ```
0
903
C
Boxes Packing
PROGRAMMING
1,200
[ "greedy" ]
null
null
Mishka has got *n* empty boxes. For every *i* (1<=≤<=*i*<=≤<=*n*), *i*-th box is a cube with side length *a**i*. Mishka can put a box *i* into another box *j* if the following conditions are met: - *i*-th box is not put into another box; - *j*-th box doesn't contain any other boxes; - box *i* is smaller than box *j* (*a**i*<=&lt;<=*a**j*). Mishka can put boxes into each other an arbitrary number of times. He wants to minimize the number of visible boxes. A box is called visible iff it is not put into some another box. Help Mishka to determine the minimum possible number of visible boxes!
The first line contains one integer *n* (1<=≤<=*n*<=≤<=5000) — the number of boxes Mishka has got. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the side length of *i*-th box.
Print the minimum possible number of visible boxes.
[ "3\n1 2 3\n", "4\n4 2 4 3\n" ]
[ "1\n", "2\n" ]
In the first example it is possible to put box 1 into box 2, and 2 into 3. In the second example Mishka can put box 2 into box 3, and box 4 into box 1.
0
[ { "input": "3\n1 2 3", "output": "1" }, { "input": "4\n4 2 4 3", "output": "2" }, { "input": "10\n58 58 58 58 58 58 58 58 58 58", "output": "10" }, { "input": "10\n86 89 89 86 86 89 86 86 89 89", "output": "5" }, { "input": "100\n981 288 186 186 292 876 341 288 981 360 783 907 292 186 341 292 360 876 360 360 981 398 783 288 292 398 876 981 398 907 783 360 288 981 907 186 360 288 186 981 186 288 907 876 288 907 876 360 341 292 907 783 907 783 292 981 907 292 876 398 783 876 398 341 876 186 288 186 981 341 398 360 907 981 341 186 292 981 292 398 876 783 292 186 360 292 288 292 876 398 288 292 341 288 398 360 360 292 981 360", "output": "14" }, { "input": "1\n1", "output": "1" }, { "input": "1\n9", "output": "1" }, { "input": "1\n5", "output": "1" }, { "input": "1\n2", "output": "1" }, { "input": "1\n131", "output": "1" }, { "input": "9\n1 1 1 1 1 1 1 1 1", "output": "9" }, { "input": "11\n1 1 1 1 1 1 1 1 1 1 1", "output": "11" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "1" }, { "input": "8\n1 1 1 1 1 1 1 1", "output": "8" }, { "input": "5\n1 1 1 1 1", "output": "5" } ]
1,588,253,968
2,147,483,647
Python 3
OK
TESTS
24
124
819,200
from collections import defaultdict n=int(input()) a=sorted(list(map(int,input().split()))) d=defaultdict(int) for i in a: d[i]+=1 print(max(d.values()))
Title: Boxes Packing Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mishka has got *n* empty boxes. For every *i* (1<=≤<=*i*<=≤<=*n*), *i*-th box is a cube with side length *a**i*. Mishka can put a box *i* into another box *j* if the following conditions are met: - *i*-th box is not put into another box; - *j*-th box doesn't contain any other boxes; - box *i* is smaller than box *j* (*a**i*<=&lt;<=*a**j*). Mishka can put boxes into each other an arbitrary number of times. He wants to minimize the number of visible boxes. A box is called visible iff it is not put into some another box. Help Mishka to determine the minimum possible number of visible boxes! Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=5000) — the number of boxes Mishka has got. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the side length of *i*-th box. Output Specification: Print the minimum possible number of visible boxes. Demo Input: ['3\n1 2 3\n', '4\n4 2 4 3\n'] Demo Output: ['1\n', '2\n'] Note: In the first example it is possible to put box 1 into box 2, and 2 into 3. In the second example Mishka can put box 2 into box 3, and box 4 into box 1.
```python from collections import defaultdict n=int(input()) a=sorted(list(map(int,input().split()))) d=defaultdict(int) for i in a: d[i]+=1 print(max(d.values())) ```
3
0
none
none
none
0
[ "none" ]
null
null
A family consisting of father bear, mother bear and son bear owns three cars. Father bear can climb into the largest car and he likes it. Also, mother bear can climb into the middle car and she likes it. Moreover, son bear can climb into the smallest car and he likes it. It's known that the largest car is strictly larger than the middle car, and the middle car is strictly larger than the smallest car. Masha came to test these cars. She could climb into all cars, but she liked only the smallest car. It's known that a character with size *a* can climb into some car with size *b* if and only if *a*<=≤<=*b*, he or she likes it if and only if he can climb into this car and 2*a*<=≥<=*b*. You are given sizes of bears and Masha. Find out some possible integer non-negative sizes of cars.
You are given four integers *V*1, *V*2, *V*3, *V**m*(1<=≤<=*V**i*<=≤<=100) — sizes of father bear, mother bear, son bear and Masha, respectively. It's guaranteed that *V*1<=&gt;<=*V*2<=&gt;<=*V*3.
Output three integers — sizes of father bear's car, mother bear's car and son bear's car, respectively. If there are multiple possible solutions, print any. If there is no solution, print "-1" (without quotes).
[ "50 30 10 10\n", "100 50 10 21\n" ]
[ "50\n30\n10\n", "-1\n" ]
In first test case all conditions for cars' sizes are satisfied. In second test case there is no answer, because Masha should be able to climb into smallest car (so size of smallest car in not less than 21), but son bear should like it, so maximum possible size of it is 20.
0
[ { "input": "50 30 10 10", "output": "50\n30\n10" }, { "input": "100 50 10 21", "output": "-1" }, { "input": "100 50 19 10", "output": "100\n50\n19" }, { "input": "99 50 25 49", "output": "100\n99\n49" }, { "input": "3 2 1 1", "output": "4\n3\n1" }, { "input": "100 99 98 100", "output": "-1" }, { "input": "100 40 30 40", "output": "-1" }, { "input": "100 50 19 25", "output": "100\n51\n25" }, { "input": "100 50 19 30", "output": "100\n61\n30" }, { "input": "49 48 25 49", "output": "-1" }, { "input": "48 47 23 46", "output": "94\n93\n46" }, { "input": "37 23 16 20", "output": "42\n41\n20" }, { "input": "98 2 1 1", "output": "98\n3\n1" }, { "input": "99 22 13 14", "output": "99\n29\n14" }, { "input": "97 95 3 2", "output": "97\n95\n3" }, { "input": "27 3 2 3", "output": "-1" }, { "input": "13 7 6 2", "output": "-1" }, { "input": "19 17 11 6", "output": "19\n17\n11" }, { "input": "15 6 4 5", "output": "15\n11\n5" }, { "input": "21 3 1 3", "output": "-1" }, { "input": "100 99 98 97", "output": "196\n195\n98" }, { "input": "99 32 13 5", "output": "-1" }, { "input": "5 4 3 1", "output": "-1" }, { "input": "50 20 4 8", "output": "50\n20\n8" }, { "input": "60 30 10 1", "output": "-1" }, { "input": "100 50 10 1", "output": "-1" }, { "input": "40 30 20 10", "output": "40\n30\n20" }, { "input": "50 49 5 10", "output": "50\n49\n10" }, { "input": "99 98 50 97", "output": "196\n195\n97" }, { "input": "50 30 10 5", "output": "50\n30\n10" }, { "input": "4 3 2 1", "output": "4\n3\n2" }, { "input": "100 50 3 1", "output": "-1" } ]
1,514,040,226
2,326
Python 3
WRONG_ANSWER
PRETESTS
5
46
5,529,600
v1, v2, v3, vm = map(int, input().split()) if 2 * v3 < vm or 2 * v2 < vm: print(-1) else: print(2 * v1) print(2 * v2) print(max(v3, vm))
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: A family consisting of father bear, mother bear and son bear owns three cars. Father bear can climb into the largest car and he likes it. Also, mother bear can climb into the middle car and she likes it. Moreover, son bear can climb into the smallest car and he likes it. It's known that the largest car is strictly larger than the middle car, and the middle car is strictly larger than the smallest car. Masha came to test these cars. She could climb into all cars, but she liked only the smallest car. It's known that a character with size *a* can climb into some car with size *b* if and only if *a*<=≤<=*b*, he or she likes it if and only if he can climb into this car and 2*a*<=≥<=*b*. You are given sizes of bears and Masha. Find out some possible integer non-negative sizes of cars. Input Specification: You are given four integers *V*1, *V*2, *V*3, *V**m*(1<=≤<=*V**i*<=≤<=100) — sizes of father bear, mother bear, son bear and Masha, respectively. It's guaranteed that *V*1<=&gt;<=*V*2<=&gt;<=*V*3. Output Specification: Output three integers — sizes of father bear's car, mother bear's car and son bear's car, respectively. If there are multiple possible solutions, print any. If there is no solution, print "-1" (without quotes). Demo Input: ['50 30 10 10\n', '100 50 10 21\n'] Demo Output: ['50\n30\n10\n', '-1\n'] Note: In first test case all conditions for cars' sizes are satisfied. In second test case there is no answer, because Masha should be able to climb into smallest car (so size of smallest car in not less than 21), but son bear should like it, so maximum possible size of it is 20.
```python v1, v2, v3, vm = map(int, input().split()) if 2 * v3 < vm or 2 * v2 < vm: print(-1) else: print(2 * v1) print(2 * v2) print(max(v3, vm)) ```
0
155
A
I_love_\%username\%
PROGRAMMING
800
[ "brute force" ]
null
null
Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him. One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously). Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him.
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated. The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000.
Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests.
[ "5\n100 50 200 150 200\n", "10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n" ]
[ "2\n", "4\n" ]
In the first sample the performances number 2 and 3 are amazing. In the second sample the performances number 2, 4, 9 and 10 are amazing.
500
[ { "input": "5\n100 50 200 150 200", "output": "2" }, { "input": "10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242", "output": "4" }, { "input": "1\n6", "output": "0" }, { "input": "2\n2 1", "output": "1" }, { "input": "5\n100 36 53 7 81", "output": "2" }, { "input": "5\n7 36 53 81 100", "output": "4" }, { "input": "5\n100 81 53 36 7", "output": "4" }, { "input": "10\n8 6 3 4 9 10 7 7 1 3", "output": "5" }, { "input": "10\n1627 1675 1488 1390 1812 1137 1746 1324 1952 1862", "output": "6" }, { "input": "10\n1 3 3 4 6 7 7 8 9 10", "output": "7" }, { "input": "10\n1952 1862 1812 1746 1675 1627 1488 1390 1324 1137", "output": "9" }, { "input": "25\n1448 4549 2310 2725 2091 3509 1565 2475 2232 3989 4231 779 2967 2702 608 3739 721 1552 2767 530 3114 665 1940 48 4198", "output": "5" }, { "input": "33\n1097 1132 1091 1104 1049 1038 1023 1080 1104 1029 1035 1061 1049 1060 1088 1106 1105 1087 1063 1076 1054 1103 1047 1041 1028 1120 1126 1063 1117 1110 1044 1093 1101", "output": "5" }, { "input": "34\n821 5536 2491 6074 7216 9885 764 1603 778 8736 8987 771 617 1587 8943 7922 439 7367 4115 8886 7878 6899 8811 5752 3184 3401 9760 9400 8995 4681 1323 6637 6554 6498", "output": "7" }, { "input": "68\n6764 6877 6950 6768 6839 6755 6726 6778 6699 6805 6777 6985 6821 6801 6791 6805 6940 6761 6677 6999 6911 6699 6959 6933 6903 6843 6972 6717 6997 6756 6789 6668 6735 6852 6735 6880 6723 6834 6810 6694 6780 6679 6698 6857 6826 6896 6979 6968 6957 6988 6960 6700 6919 6892 6984 6685 6813 6678 6715 6857 6976 6902 6780 6686 6777 6686 6842 6679", "output": "9" }, { "input": "60\n9000 9014 9034 9081 9131 9162 9174 9199 9202 9220 9221 9223 9229 9235 9251 9260 9268 9269 9270 9298 9307 9309 9313 9323 9386 9399 9407 9495 9497 9529 9531 9544 9614 9615 9627 9627 9643 9654 9656 9657 9685 9699 9701 9736 9745 9758 9799 9827 9843 9845 9854 9854 9885 9891 9896 9913 9942 9963 9986 9992", "output": "57" }, { "input": "100\n7 61 12 52 41 16 34 99 30 44 48 89 31 54 21 1 48 52 61 15 35 87 21 76 64 92 44 81 16 93 84 92 32 15 68 76 53 39 26 4 11 26 7 4 99 99 61 65 55 85 65 67 47 39 2 74 63 49 98 87 5 94 22 30 25 42 31 84 49 23 89 60 16 26 92 27 9 57 75 61 94 35 83 47 99 100 63 24 91 88 79 10 15 45 22 64 3 11 89 83", "output": "4" }, { "input": "100\n9999 9999 9999 9998 9998 9998 9997 9996 9996 9995 9993 9993 9991 9990 9989 9986 9984 9984 9983 9981 9981 9980 9980 9980 9979 9977 9977 9977 9977 9977 9976 9976 9975 9975 9973 9972 9972 9972 9972 9971 9969 9969 9969 9968 9967 9965 9962 9962 9962 9962 9960 9958 9958 9955 9954 9954 9954 9954 9950 9949 9949 9947 9943 9943 9940 9940 9939 9937 9937 9937 9936 9935 9932 9932 9931 9929 9927 9927 9926 9923 9919 9919 9918 9918 9918 9917 9917 9916 9916 9915 9914 9911 9910 9907 9907 9906 9905 9905 9904 9901", "output": "57" }, { "input": "100\n158 159 157 156 155 154 160 153 161 152 162 163 151 164 150 165 149 148 147 166 146 167 145 144 143 142 168 141 169 170 140 139 138 137 171 136 135 134 172 173 174 133 175 132 177 178 131 179 180 130 129 181 128 127 182 126 183 125 124 184 123 122 121 120 119 118 117 185 186 187 188 189 116 190 115 191 192 193 114 113 112 111 110 109 108 194 195 107 106 105 196 197 104 198 199 103 102 200 101 100", "output": "99" }, { "input": "2\n0 10000", "output": "1" }, { "input": "2\n5 5", "output": "0" }, { "input": "2\n1 1", "output": "0" }, { "input": "2\n10 10", "output": "0" }, { "input": "1\n0", "output": "0" } ]
1,687,182,043
2,147,483,647
Python 3
OK
TESTS
37
124
0
z=int(input()) sow=input() k=list(map(int, sow.split())) cool=[] cool.append(k[0]) ex=0 for i in range(1,len(k)): b=k[i] c=max(cool) c2=min(cool) if b>c or b<c2: ex=ex+1 cool.append(k[i]) print(ex)
Title: I_love_\%username\% Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him. One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously). Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him. Input Specification: The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated. The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000. Output Specification: Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests. Demo Input: ['5\n100 50 200 150 200\n', '10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n'] Demo Output: ['2\n', '4\n'] Note: In the first sample the performances number 2 and 3 are amazing. In the second sample the performances number 2, 4, 9 and 10 are amazing.
```python z=int(input()) sow=input() k=list(map(int, sow.split())) cool=[] cool.append(k[0]) ex=0 for i in range(1,len(k)): b=k[i] c=max(cool) c2=min(cool) if b>c or b<c2: ex=ex+1 cool.append(k[i]) print(ex) ```
3
916
A
Jamie and Alarm Snooze
PROGRAMMING
900
[ "brute force", "implementation", "math" ]
null
null
Jamie loves sleeping. One day, he decides that he needs to wake up at exactly *hh*:<=*mm*. However, he hates waking up, so he wants to make waking up less painful by setting the alarm at a lucky time. He will then press the snooze button every *x* minutes until *hh*:<=*mm* is reached, and only then he will wake up. He wants to know what is the smallest number of times he needs to press the snooze button. A time is considered lucky if it contains a digit '7'. For example, 13:<=07 and 17:<=27 are lucky, while 00:<=48 and 21:<=34 are not lucky. Note that it is not necessary that the time set for the alarm and the wake-up time are on the same day. It is guaranteed that there is a lucky time Jamie can set so that he can wake at *hh*:<=*mm*. Formally, find the smallest possible non-negative integer *y* such that the time representation of the time *x*·*y* minutes before *hh*:<=*mm* contains the digit '7'. Jamie uses 24-hours clock, so after 23:<=59 comes 00:<=00.
The first line contains a single integer *x* (1<=≤<=*x*<=≤<=60). The second line contains two two-digit integers, *hh* and *mm* (00<=≤<=*hh*<=≤<=23,<=00<=≤<=*mm*<=≤<=59).
Print the minimum number of times he needs to press the button.
[ "3\n11 23\n", "5\n01 07\n" ]
[ "2\n", "0\n" ]
In the first sample, Jamie needs to wake up at 11:23. So, he can set his alarm at 11:17. He would press the snooze button when the alarm rings at 11:17 and at 11:20. In the second sample, Jamie can set his alarm at exactly at 01:07 which is lucky.
500
[ { "input": "3\n11 23", "output": "2" }, { "input": "5\n01 07", "output": "0" }, { "input": "34\n09 24", "output": "3" }, { "input": "2\n14 37", "output": "0" }, { "input": "14\n19 54", "output": "9" }, { "input": "42\n15 44", "output": "12" }, { "input": "46\n02 43", "output": "1" }, { "input": "14\n06 41", "output": "1" }, { "input": "26\n04 58", "output": "26" }, { "input": "54\n16 47", "output": "0" }, { "input": "38\n20 01", "output": "3" }, { "input": "11\n02 05", "output": "8" }, { "input": "55\n22 10", "output": "5" }, { "input": "23\n10 08", "output": "6" }, { "input": "23\n23 14", "output": "9" }, { "input": "51\n03 27", "output": "0" }, { "input": "35\n15 25", "output": "13" }, { "input": "3\n12 15", "output": "6" }, { "input": "47\n00 28", "output": "3" }, { "input": "31\n13 34", "output": "7" }, { "input": "59\n17 32", "output": "0" }, { "input": "25\n11 03", "output": "8" }, { "input": "9\n16 53", "output": "4" }, { "input": "53\n04 06", "output": "3" }, { "input": "37\n00 12", "output": "5" }, { "input": "5\n13 10", "output": "63" }, { "input": "50\n01 59", "output": "10" }, { "input": "34\n06 13", "output": "4" }, { "input": "2\n18 19", "output": "1" }, { "input": "46\n06 16", "output": "17" }, { "input": "14\n03 30", "output": "41" }, { "input": "40\n13 37", "output": "0" }, { "input": "24\n17 51", "output": "0" }, { "input": "8\n14 57", "output": "0" }, { "input": "52\n18 54", "output": "2" }, { "input": "20\n15 52", "output": "24" }, { "input": "20\n03 58", "output": "30" }, { "input": "48\n07 11", "output": "0" }, { "input": "32\n04 01", "output": "2" }, { "input": "60\n08 15", "output": "1" }, { "input": "44\n20 20", "output": "4" }, { "input": "55\n15 35", "output": "9" }, { "input": "55\n03 49", "output": "11" }, { "input": "23\n16 39", "output": "4" }, { "input": "7\n20 36", "output": "7" }, { "input": "35\n16 42", "output": "1" }, { "input": "35\n05 56", "output": "21" }, { "input": "3\n17 45", "output": "0" }, { "input": "47\n05 59", "output": "6" }, { "input": "15\n10 13", "output": "9" }, { "input": "59\n06 18", "output": "9" }, { "input": "34\n17 18", "output": "0" }, { "input": "18\n05 23", "output": "2" }, { "input": "46\n17 21", "output": "0" }, { "input": "30\n06 27", "output": "0" }, { "input": "14\n18 40", "output": "3" }, { "input": "58\n22 54", "output": "6" }, { "input": "26\n19 44", "output": "5" }, { "input": "10\n15 57", "output": "0" }, { "input": "54\n20 47", "output": "0" }, { "input": "22\n08 45", "output": "3" }, { "input": "48\n18 08", "output": "1" }, { "input": "32\n07 06", "output": "0" }, { "input": "60\n19 19", "output": "2" }, { "input": "45\n07 25", "output": "0" }, { "input": "29\n12 39", "output": "8" }, { "input": "13\n08 28", "output": "3" }, { "input": "41\n21 42", "output": "5" }, { "input": "41\n09 32", "output": "3" }, { "input": "9\n21 45", "output": "2" }, { "input": "37\n10 43", "output": "5" }, { "input": "3\n20 50", "output": "1" }, { "input": "47\n00 04", "output": "1" }, { "input": "15\n13 10", "output": "21" }, { "input": "15\n17 23", "output": "0" }, { "input": "43\n22 13", "output": "2" }, { "input": "27\n10 26", "output": "6" }, { "input": "55\n22 24", "output": "5" }, { "input": "55\n03 30", "output": "11" }, { "input": "24\n23 27", "output": "0" }, { "input": "52\n11 33", "output": "3" }, { "input": "18\n22 48", "output": "17" }, { "input": "1\n12 55", "output": "8" }, { "input": "1\n04 27", "output": "0" }, { "input": "1\n12 52", "output": "5" }, { "input": "1\n20 16", "output": "9" }, { "input": "1\n04 41", "output": "4" }, { "input": "1\n20 21", "output": "4" }, { "input": "1\n04 45", "output": "8" }, { "input": "1\n12 18", "output": "1" }, { "input": "1\n04 42", "output": "5" }, { "input": "1\n02 59", "output": "2" }, { "input": "1\n18 24", "output": "7" }, { "input": "1\n02 04", "output": "7" }, { "input": "1\n18 28", "output": "1" }, { "input": "1\n18 01", "output": "2" }, { "input": "1\n10 25", "output": "8" }, { "input": "1\n02 49", "output": "2" }, { "input": "1\n02 30", "output": "3" }, { "input": "1\n18 54", "output": "7" }, { "input": "1\n02 19", "output": "2" }, { "input": "1\n05 25", "output": "8" }, { "input": "60\n23 55", "output": "6" }, { "input": "60\n08 19", "output": "1" }, { "input": "60\n00 00", "output": "7" }, { "input": "60\n08 24", "output": "1" }, { "input": "60\n16 13", "output": "9" }, { "input": "60\n08 21", "output": "1" }, { "input": "60\n16 45", "output": "9" }, { "input": "60\n08 26", "output": "1" }, { "input": "60\n08 50", "output": "1" }, { "input": "60\n05 21", "output": "12" }, { "input": "60\n13 29", "output": "6" }, { "input": "60\n05 18", "output": "12" }, { "input": "60\n13 42", "output": "6" }, { "input": "60\n05 07", "output": "0" }, { "input": "60\n05 47", "output": "0" }, { "input": "60\n21 55", "output": "4" }, { "input": "60\n05 36", "output": "12" }, { "input": "60\n21 08", "output": "4" }, { "input": "60\n21 32", "output": "4" }, { "input": "60\n16 31", "output": "9" }, { "input": "5\n00 00", "output": "73" }, { "input": "2\n06 58", "output": "390" }, { "input": "60\n00 00", "output": "7" }, { "input": "2\n00 00", "output": "181" }, { "input": "10\n00 00", "output": "37" }, { "input": "60\n01 00", "output": "8" }, { "input": "12\n00 06", "output": "31" }, { "input": "1\n00 01", "output": "4" }, { "input": "5\n00 05", "output": "74" }, { "input": "60\n01 01", "output": "8" }, { "input": "11\n18 11", "output": "2" }, { "input": "60\n01 15", "output": "8" }, { "input": "10\n00 16", "output": "38" }, { "input": "60\n00 59", "output": "7" }, { "input": "30\n00 00", "output": "13" }, { "input": "60\n01 05", "output": "8" }, { "input": "4\n00 03", "output": "4" }, { "input": "4\n00 00", "output": "91" }, { "input": "60\n00 01", "output": "7" }, { "input": "6\n00 03", "output": "1" }, { "input": "13\n00 00", "output": "1" }, { "input": "1\n18 01", "output": "2" }, { "input": "5\n06 00", "output": "145" }, { "input": "60\n04 08", "output": "11" }, { "input": "5\n01 55", "output": "96" }, { "input": "8\n00 08", "output": "47" }, { "input": "23\n18 23", "output": "2" }, { "input": "6\n00 06", "output": "62" }, { "input": "59\n18 59", "output": "2" }, { "input": "11\n00 10", "output": "3" }, { "input": "10\n00 01", "output": "37" }, { "input": "59\n00 00", "output": "7" }, { "input": "10\n18 10", "output": "2" }, { "input": "5\n00 01", "output": "73" }, { "input": "1\n00 00", "output": "3" }, { "input": "8\n00 14", "output": "47" }, { "input": "60\n03 00", "output": "10" }, { "input": "60\n00 10", "output": "7" }, { "input": "5\n01 13", "output": "87" }, { "input": "30\n02 43", "output": "18" }, { "input": "17\n00 08", "output": "3" }, { "input": "3\n00 00", "output": "1" }, { "input": "60\n00 05", "output": "7" }, { "input": "5\n18 05", "output": "2" }, { "input": "30\n00 30", "output": "14" }, { "input": "1\n00 06", "output": "9" }, { "input": "55\n00 00", "output": "7" }, { "input": "8\n02 08", "output": "62" }, { "input": "7\n00 00", "output": "9" }, { "input": "6\n08 06", "output": "2" }, { "input": "48\n06 24", "output": "16" }, { "input": "8\n06 58", "output": "98" }, { "input": "3\n12 00", "output": "1" }, { "input": "5\n01 06", "output": "86" }, { "input": "2\n00 08", "output": "185" }, { "input": "3\n18 03", "output": "2" }, { "input": "1\n17 00", "output": "0" }, { "input": "59\n00 48", "output": "7" }, { "input": "5\n12 01", "output": "49" }, { "input": "55\n01 25", "output": "9" }, { "input": "2\n07 23", "output": "0" }, { "input": "10\n01 10", "output": "44" }, { "input": "2\n00 01", "output": "2" }, { "input": "59\n00 01", "output": "6" }, { "input": "5\n00 02", "output": "1" }, { "input": "4\n01 02", "output": "106" }, { "input": "5\n00 06", "output": "74" }, { "input": "42\n00 08", "output": "9" }, { "input": "60\n01 20", "output": "8" }, { "input": "3\n06 00", "output": "1" }, { "input": "4\n00 01", "output": "1" }, { "input": "2\n00 06", "output": "184" }, { "input": "1\n00 57", "output": "0" }, { "input": "6\n00 00", "output": "61" }, { "input": "5\n08 40", "output": "9" }, { "input": "58\n00 55", "output": "1" }, { "input": "2\n00 02", "output": "182" }, { "input": "1\n08 01", "output": "2" }, { "input": "10\n10 10", "output": "14" }, { "input": "60\n01 11", "output": "8" }, { "input": "2\n07 00", "output": "0" }, { "input": "15\n00 03", "output": "25" }, { "input": "6\n04 34", "output": "106" }, { "input": "16\n00 16", "output": "24" }, { "input": "2\n00 59", "output": "1" }, { "input": "59\n00 08", "output": "7" }, { "input": "10\n03 10", "output": "56" }, { "input": "3\n08 03", "output": "2" }, { "input": "20\n06 11", "output": "37" }, { "input": "4\n01 00", "output": "106" }, { "input": "38\n01 08", "output": "12" }, { "input": "60\n00 06", "output": "7" }, { "input": "5\n12 00", "output": "49" }, { "input": "6\n01 42", "output": "78" }, { "input": "4\n00 04", "output": "92" }, { "input": "60\n04 05", "output": "11" }, { "input": "1\n00 53", "output": "6" }, { "input": "5\n08 05", "output": "2" }, { "input": "60\n18 45", "output": "1" }, { "input": "60\n06 23", "output": "13" }, { "input": "6\n00 15", "output": "3" }, { "input": "58\n00 06", "output": "7" }, { "input": "2\n06 44", "output": "383" }, { "input": "1\n08 00", "output": "1" }, { "input": "10\n06 58", "output": "78" }, { "input": "59\n00 58", "output": "8" }, { "input": "1\n18 00", "output": "1" }, { "input": "50\n00 42", "output": "9" }, { "input": "30\n18 30", "output": "2" }, { "input": "60\n21 59", "output": "4" }, { "input": "2\n10 52", "output": "87" }, { "input": "56\n00 00", "output": "7" }, { "input": "16\n18 16", "output": "2" }, { "input": "5\n01 05", "output": "86" }, { "input": "5\n05 00", "output": "133" }, { "input": "5\n23 59", "output": "72" }, { "input": "7\n17 13", "output": "0" }, { "input": "58\n00 00", "output": "7" }, { "input": "15\n00 07", "output": "0" }, { "input": "59\n08 00", "output": "1" }, { "input": "46\n00 00", "output": "8" }, { "input": "59\n01 05", "output": "2" }, { "input": "2\n01 00", "output": "211" }, { "input": "60\n00 24", "output": "7" }, { "input": "10\n00 08", "output": "37" }, { "input": "10\n00 06", "output": "37" }, { "input": "60\n01 24", "output": "8" }, { "input": "50\n00 10", "output": "8" }, { "input": "2\n03 00", "output": "271" }, { "input": "4\n19 04", "output": "17" }, { "input": "25\n00 23", "output": "16" }, { "input": "10\n01 01", "output": "43" } ]
1,606,824,536
2,147,483,647
Python 3
OK
TESTS
254
124
0
x = int(input()) hh, mm = map(int, input().split()) result = 0 while '7' not in str(hh) and '7' not in str(mm): mm-=x if mm<0: mm=60+mm hh-=1 if hh<0: hh=24+hh result+=1 print(result)
Title: Jamie and Alarm Snooze Time Limit: None seconds Memory Limit: None megabytes Problem Description: Jamie loves sleeping. One day, he decides that he needs to wake up at exactly *hh*:<=*mm*. However, he hates waking up, so he wants to make waking up less painful by setting the alarm at a lucky time. He will then press the snooze button every *x* minutes until *hh*:<=*mm* is reached, and only then he will wake up. He wants to know what is the smallest number of times he needs to press the snooze button. A time is considered lucky if it contains a digit '7'. For example, 13:<=07 and 17:<=27 are lucky, while 00:<=48 and 21:<=34 are not lucky. Note that it is not necessary that the time set for the alarm and the wake-up time are on the same day. It is guaranteed that there is a lucky time Jamie can set so that he can wake at *hh*:<=*mm*. Formally, find the smallest possible non-negative integer *y* such that the time representation of the time *x*·*y* minutes before *hh*:<=*mm* contains the digit '7'. Jamie uses 24-hours clock, so after 23:<=59 comes 00:<=00. Input Specification: The first line contains a single integer *x* (1<=≤<=*x*<=≤<=60). The second line contains two two-digit integers, *hh* and *mm* (00<=≤<=*hh*<=≤<=23,<=00<=≤<=*mm*<=≤<=59). Output Specification: Print the minimum number of times he needs to press the button. Demo Input: ['3\n11 23\n', '5\n01 07\n'] Demo Output: ['2\n', '0\n'] Note: In the first sample, Jamie needs to wake up at 11:23. So, he can set his alarm at 11:17. He would press the snooze button when the alarm rings at 11:17 and at 11:20. In the second sample, Jamie can set his alarm at exactly at 01:07 which is lucky.
```python x = int(input()) hh, mm = map(int, input().split()) result = 0 while '7' not in str(hh) and '7' not in str(mm): mm-=x if mm<0: mm=60+mm hh-=1 if hh<0: hh=24+hh result+=1 print(result) ```
3
349
A
Cinema Line
PROGRAMMING
1,100
[ "greedy", "implementation" ]
null
null
The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line?
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line.
Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO".
[ "4\n25 25 50 50\n", "2\n25 100\n", "4\n50 50 25 25\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "4\n25 25 50 50", "output": "YES" }, { "input": "2\n25 100", "output": "NO" }, { "input": "4\n50 50 25 25", "output": "NO" }, { "input": "3\n25 50 100", "output": "NO" }, { "input": "10\n25 25 25 25 25 25 25 25 25 25", "output": "YES" }, { "input": "10\n50 50 50 50 50 50 50 50 50 50", "output": "NO" }, { "input": "10\n100 100 100 100 100 100 100 100 100 100", "output": "NO" }, { "input": "7\n25 25 25 25 50 100 50", "output": "YES" }, { "input": "2\n25 25", "output": "YES" }, { "input": "3\n50 100 100", "output": "NO" }, { "input": "3\n25 50 50", "output": "NO" }, { "input": "2\n50 25", "output": "NO" }, { "input": "14\n25 25 25 25 25 25 25 50 50 50 100 100 100 100", "output": "NO" }, { "input": "5\n25 25 25 100 100", "output": "NO" }, { "input": "7\n25 50 25 50 25 50 100", "output": "NO" }, { "input": "5\n25 50 25 50 100", "output": "NO" }, { "input": "5\n25 25 50 50 50", "output": "NO" }, { "input": "5\n25 25 50 100 50", "output": "NO" }, { "input": "5\n25 25 50 50 100", "output": "NO" }, { "input": "1\n50", "output": "NO" } ]
1,623,720,890
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
122
0
n = int(input()) d = dict() a = list(map(int, input().split())) d = dict() result = "YES" for i in a: d[i] = d.get(i, 0) + 1 c = i - 25 if c > 0 and d.get(c, 0) > 0: d[c] -= 1 else: result = "NO" break print(result)
Title: Cinema Line Time Limit: None seconds Memory Limit: None megabytes Problem Description: The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line. Output Specification: Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO". Demo Input: ['4\n25 25 50 50\n', '2\n25 100\n', '4\n50 50 25 25\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python n = int(input()) d = dict() a = list(map(int, input().split())) d = dict() result = "YES" for i in a: d[i] = d.get(i, 0) + 1 c = i - 25 if c > 0 and d.get(c, 0) > 0: d[c] -= 1 else: result = "NO" break print(result) ```
0
234
C
Weather
PROGRAMMING
1,300
[ "dp", "implementation" ]
null
null
Scientists say a lot about the problems of global warming and cooling of the Earth. Indeed, such natural phenomena strongly influence all life on our planet. Our hero Vasya is quite concerned about the problems. He decided to try a little experiment and observe how outside daily temperature changes. He hung out a thermometer on the balcony every morning and recorded the temperature. He had been measuring the temperature for the last *n* days. Thus, he got a sequence of numbers *t*1,<=*t*2,<=...,<=*t**n*, where the *i*-th number is the temperature on the *i*-th day. Vasya analyzed the temperature statistics in other cities, and came to the conclusion that the city has no environmental problems, if first the temperature outside is negative for some non-zero number of days, and then the temperature is positive for some non-zero number of days. More formally, there must be a positive integer *k* (1<=≤<=*k*<=≤<=*n*<=-<=1) such that *t*1<=&lt;<=0,<=*t*2<=&lt;<=0,<=...,<=*t**k*<=&lt;<=0 and *t**k*<=+<=1<=&gt;<=0,<=*t**k*<=+<=2<=&gt;<=0,<=...,<=*t**n*<=&gt;<=0. In particular, the temperature should never be zero. If this condition is not met, Vasya decides that his city has environmental problems, and gets upset. You do not want to upset Vasya. Therefore, you want to select multiple values of temperature and modify them to satisfy Vasya's condition. You need to know what the least number of temperature values needs to be changed for that.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=105) — the number of days for which Vasya has been measuring the temperature. The second line contains a sequence of *n* integers *t*1,<=*t*2,<=...,<=*t**n* (|*t**i*|<=≤<=109) — the sequence of temperature values. Numbers *t**i* are separated by single spaces.
Print a single integer — the answer to the given task.
[ "4\n-1 1 -2 1\n", "5\n0 -1 1 2 -5\n" ]
[ "1\n", "2\n" ]
Note to the first sample: there are two ways to change exactly one number so that the sequence met Vasya's condition. You can either replace the first number 1 by any negative number or replace the number -2 by any positive number.
0
[ { "input": "4\n-1 1 -2 1", "output": "1" }, { "input": "5\n0 -1 1 2 -5", "output": "2" }, { "input": "6\n0 0 0 0 0 0", "output": "6" }, { "input": "6\n-1 -2 -3 -4 5 6", "output": "0" }, { "input": "8\n1 2 -1 0 10 2 12 13", "output": "3" }, { "input": "7\n-1 -2 -3 3 -1 3 4", "output": "1" }, { "input": "2\n3 -5", "output": "2" }, { "input": "50\n4 -8 0 -1 -3 -9 0 -2 0 1 -1 0 7 -10 9 7 0 -10 5 0 1 -6 9 -9 3 -3 3 7 4 -8 -8 3 3 -1 0 2 -6 10 7 -1 -6 -3 -4 2 3 0 -4 0 7 -9", "output": "26" }, { "input": "90\n52 -89 17 64 11 -61 92 51 42 -92 -14 -100 21 -88 73 -11 84 72 -80 -78 5 -70 -70 80 91 -89 87 -74 63 -79 -94 52 82 79 81 40 69 -15 33 -52 18 30 -39 99 84 -98 44 69 -75 0 60 -89 51 -92 83 73 16 -43 17 0 51 9 -53 86 86 -50 0 -80 3 0 86 0 -76 -45 0 -32 45 81 47 15 -62 21 4 -82 77 -67 -64 -12 0 -50", "output": "42" }, { "input": "10\n-19 -29 -21 -6 29 89 -74 -22 18 -13", "output": "3" }, { "input": "100\n-782 365 -283 769 -58 224 1000 983 7 595 -963 -267 -934 -187 -609 693 -316 431 859 -753 865 -421 861 -728 -793 621 -311 414 -101 -196 120 84 633 -362 989 94 206 19 -949 -629 489 376 -391 165 50 22 -209 735 565 61 -321 -256 890 34 343 -326 984 -268 -609 385 717 81 372 -391 271 -89 297 -510 797 -425 -276 573 510 560 165 -482 511 541 -491 60 168 -805 235 -657 -679 -617 -212 816 -98 901 380 103 608 -257 -643 333 8 355 743 -801", "output": "40" } ]
1,620,522,689
2,147,483,647
Python 3
OK
TESTS
40
374
15,974,400
with open("input.txt", "r") as f: n = int(f.readline()) t = list(map(int, f.readline().split())) m = 0 for i in range(1, n): if t[i] <= 0: m += 1 if t[0] >= 0: m += 1 p = m for i in range(1, n - 1): if t[i] < 0: cost = -1 elif t[i] == 0: cost = 0 else: cost = 1 p += cost m = min(m, p) with open("output.txt", "w") as f: f.write(str(m))
Title: Weather Time Limit: None seconds Memory Limit: None megabytes Problem Description: Scientists say a lot about the problems of global warming and cooling of the Earth. Indeed, such natural phenomena strongly influence all life on our planet. Our hero Vasya is quite concerned about the problems. He decided to try a little experiment and observe how outside daily temperature changes. He hung out a thermometer on the balcony every morning and recorded the temperature. He had been measuring the temperature for the last *n* days. Thus, he got a sequence of numbers *t*1,<=*t*2,<=...,<=*t**n*, where the *i*-th number is the temperature on the *i*-th day. Vasya analyzed the temperature statistics in other cities, and came to the conclusion that the city has no environmental problems, if first the temperature outside is negative for some non-zero number of days, and then the temperature is positive for some non-zero number of days. More formally, there must be a positive integer *k* (1<=≤<=*k*<=≤<=*n*<=-<=1) such that *t*1<=&lt;<=0,<=*t*2<=&lt;<=0,<=...,<=*t**k*<=&lt;<=0 and *t**k*<=+<=1<=&gt;<=0,<=*t**k*<=+<=2<=&gt;<=0,<=...,<=*t**n*<=&gt;<=0. In particular, the temperature should never be zero. If this condition is not met, Vasya decides that his city has environmental problems, and gets upset. You do not want to upset Vasya. Therefore, you want to select multiple values of temperature and modify them to satisfy Vasya's condition. You need to know what the least number of temperature values needs to be changed for that. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=105) — the number of days for which Vasya has been measuring the temperature. The second line contains a sequence of *n* integers *t*1,<=*t*2,<=...,<=*t**n* (|*t**i*|<=≤<=109) — the sequence of temperature values. Numbers *t**i* are separated by single spaces. Output Specification: Print a single integer — the answer to the given task. Demo Input: ['4\n-1 1 -2 1\n', '5\n0 -1 1 2 -5\n'] Demo Output: ['1\n', '2\n'] Note: Note to the first sample: there are two ways to change exactly one number so that the sequence met Vasya's condition. You can either replace the first number 1 by any negative number or replace the number -2 by any positive number.
```python with open("input.txt", "r") as f: n = int(f.readline()) t = list(map(int, f.readline().split())) m = 0 for i in range(1, n): if t[i] <= 0: m += 1 if t[0] >= 0: m += 1 p = m for i in range(1, n - 1): if t[i] < 0: cost = -1 elif t[i] == 0: cost = 0 else: cost = 1 p += cost m = min(m, p) with open("output.txt", "w") as f: f.write(str(m)) ```
3
253
B
Physics Practical
PROGRAMMING
1,400
[ "binary search", "dp", "sortings", "two pointers" ]
null
null
One day Vasya was on a physics practical, performing the task on measuring the capacitance. He followed the teacher's advice and did as much as *n* measurements, and recorded the results in the notebook. After that he was about to show the results to the teacher, but he remembered that at the last lesson, the teacher had made his friend Petya redo the experiment because the largest and the smallest results differed by more than two times. Vasya is lazy, and he does not want to redo the experiment. He wants to do the task and go home play computer games. So he decided to cheat: before Vasya shows the measurements to the teacher, he will erase some of them, so as to make the largest and the smallest results of the remaining measurements differ in no more than two times. In other words, if the remaining measurements have the smallest result *x*, and the largest result *y*, then the inequality *y*<=≤<=2·*x* must fulfill. Of course, to avoid the teacher's suspicion, Vasya wants to remove as few measurement results as possible from his notes. Help Vasya, find what minimum number of measurement results he will have to erase from his notes so that the largest and the smallest of the remaining results of the measurements differed in no more than two times.
The first line contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of measurements Vasya made. The second line contains *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=5000) — the results of the measurements. The numbers on the second line are separated by single spaces.
Print a single integer — the minimum number of results Vasya will have to remove.
[ "6\n4 5 3 8 3 7\n", "4\n4 3 2 4\n" ]
[ "2\n", "0\n" ]
In the first sample you can remove the fourth and the sixth measurement results (values 8 and 7). Then the maximum of the remaining values will be 5, and the minimum one will be 3. Or else, you can remove the third and fifth results (both equal 3). After that the largest remaining result will be 8, and the smallest one will be 4.
1,000
[ { "input": "6\n4 5 3 8 3 7", "output": "2" }, { "input": "4\n4 3 2 4", "output": "0" }, { "input": "6\n5 6 4 9 4 8", "output": "1" }, { "input": "4\n5 4 1 5", "output": "1" }, { "input": "2\n3 2", "output": "0" }, { "input": "10\n39 9 18 13 6 16 47 15 1 24", "output": "5" }, { "input": "20\n43 49 46 46 40 41 49 49 48 30 35 36 33 34 42 38 40 46 50 45", "output": "0" }, { "input": "30\n6 1 26 13 16 30 16 23 9 1 5 14 7 2 17 22 21 23 16 3 5 17 22 10 1 24 4 30 8 18", "output": "15" }, { "input": "50\n3 61 16 13 13 12 3 8 14 16 1 32 8 23 29 7 28 13 8 5 9 2 3 2 29 13 1 2 18 29 28 4 13 3 14 9 20 26 1 19 13 7 8 22 7 5 13 14 10 23", "output": "29" }, { "input": "10\n135 188 160 167 179 192 195 192 193 191", "output": "0" }, { "input": "15\n2 19 19 22 15 24 6 36 20 3 18 27 20 1 10", "output": "6" }, { "input": "25\n8 1 2 1 2 5 3 4 2 6 3 3 4 1 6 1 6 1 4 5 2 9 1 2 1", "output": "13" }, { "input": "40\n4784 4824 4707 4343 4376 4585 4917 4848 3748 4554 3390 4944 4845 3922 4617 4606 4815 4698 4595 4942 4327 4983 4833 4507 3721 4863 4633 4553 4991 4922 4733 4396 4747 4724 4886 4226 4025 4928 4990 4792", "output": "0" }, { "input": "60\n1219 19 647 1321 21 242 677 901 10 165 434 978 448 163 919 517 1085 10 516 920 653 1363 62 98 629 928 998 1335 1448 85 357 432 1298 561 663 182 2095 801 59 208 765 1653 642 645 1378 221 911 749 347 849 43 1804 62 73 613 143 860 297 278 148", "output": "37" }, { "input": "100\n4204 4719 4688 3104 4012 4927 4696 4614 4826 4792 3891 4672 4914 4740 4968 3879 4424 4755 3856 3837 4965 4939 4030 4941 4504 4668 4908 4608 3660 4822 4846 3945 4539 4819 4895 3746 4324 4233 4135 4956 4983 4546 4673 4617 3533 4851 4868 4838 4998 4769 4899 4578 3841 4974 4627 4990 4524 4939 4469 4233 4434 4339 4446 4979 4354 4912 4558 4609 4436 3883 4379 4927 4824 4819 4984 4660 4874 3732 4853 4268 4761 4402 4642 4577 4635 4564 4113 4896 4943 4122 4413 4597 3768 4731 4669 4958 4548 4263 4657 3651", "output": "0" }, { "input": "100\n1354 1797 588 3046 1290 745 217 907 113 381 523 935 791 415 92 1597 1739 1774 240 27 1262 2498 52 1339 1031 1355 2036 230 489 7 69 877 530 2664 1230 940 2712 2651 3410 480 332 699 957 2257 1877 1940 452 1652 1216 3144 236 165 1109 888 1649 346 24 183 1061 1226 2694 3225 2021 1145 907 1671 1599 3395 942 1959 555 1281 675 1125 1386 732 1081 326 256 26 1009 1772 2687 1173 491 709 390 992 519 203 1029 1381 846 1515 705 2859 282 147 1824 299", "output": "63" }, { "input": "100\n2794 2201 4935 564 2876 4472 4196 2571 2260 1479 1451 3497 245 2805 4834 3872 4294 1299 937 2983 1458 3278 1098 2990 4447 4337 4388 947 3708 3382 3694 4562 3827 2312 3760 1181 2830 1256 1054 1583 2094 931 86 2526 998 3420 2248 3461 3662 1715 5 4123 1051 545 3704 1084 1916 695 794 121 1000 1611 3674 1910 4795 2805 825 2392 3551 1148 3738 4650 791 288 1064 2011 2991 2116 2179 3333 1303 498 1610 3092 1935 3450 3524 2624 1596 2801 2290 2297 2327 1602 4779 3135 1231 4203 3283 3580", "output": "51" }, { "input": "2\n1 5", "output": "1" } ]
1,661,776,670
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
0
186
2,764,800
n = int(input()) A = list(map(int, input().split())) count = [0 for i in range(5001)] minimal = min(A) for elem in A: count[elem] += 1 ans = 0 for elem in A: if elem < minimal or elem > 2 * minimal: ans += count[elem] print(ans)
Title: Physics Practical Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vasya was on a physics practical, performing the task on measuring the capacitance. He followed the teacher's advice and did as much as *n* measurements, and recorded the results in the notebook. After that he was about to show the results to the teacher, but he remembered that at the last lesson, the teacher had made his friend Petya redo the experiment because the largest and the smallest results differed by more than two times. Vasya is lazy, and he does not want to redo the experiment. He wants to do the task and go home play computer games. So he decided to cheat: before Vasya shows the measurements to the teacher, he will erase some of them, so as to make the largest and the smallest results of the remaining measurements differ in no more than two times. In other words, if the remaining measurements have the smallest result *x*, and the largest result *y*, then the inequality *y*<=≤<=2·*x* must fulfill. Of course, to avoid the teacher's suspicion, Vasya wants to remove as few measurement results as possible from his notes. Help Vasya, find what minimum number of measurement results he will have to erase from his notes so that the largest and the smallest of the remaining results of the measurements differed in no more than two times. Input Specification: The first line contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of measurements Vasya made. The second line contains *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=5000) — the results of the measurements. The numbers on the second line are separated by single spaces. Output Specification: Print a single integer — the minimum number of results Vasya will have to remove. Demo Input: ['6\n4 5 3 8 3 7\n', '4\n4 3 2 4\n'] Demo Output: ['2\n', '0\n'] Note: In the first sample you can remove the fourth and the sixth measurement results (values 8 and 7). Then the maximum of the remaining values will be 5, and the minimum one will be 3. Or else, you can remove the third and fifth results (both equal 3). After that the largest remaining result will be 8, and the smallest one will be 4.
```python n = int(input()) A = list(map(int, input().split())) count = [0 for i in range(5001)] minimal = min(A) for elem in A: count[elem] += 1 ans = 0 for elem in A: if elem < minimal or elem > 2 * minimal: ans += count[elem] print(ans) ```
-1
30
B
Codeforces World Finals
PROGRAMMING
1,700
[ "implementation" ]
B. Codeforces World Finals
2
256
The king Copa often has been reported about the Codeforces site, which is rapidly getting more and more popular among the brightest minds of the humanity, who are using it for training and competing. Recently Copa understood that to conquer the world he needs to organize the world Codeforces tournament. He hopes that after it the brightest minds will become his subordinates, and the toughest part of conquering the world will be completed. The final round of the Codeforces World Finals 20YY is scheduled for *DD*.*MM*.*YY*, where *DD* is the day of the round, *MM* is the month and *YY* are the last two digits of the year. Bob is lucky to be the first finalist form Berland. But there is one problem: according to the rules of the competition, all participants must be at least 18 years old at the moment of the finals. Bob was born on *BD*.*BM*.*BY*. This date is recorded in his passport, the copy of which he has already mailed to the organizers. But Bob learned that in different countries the way, in which the dates are written, differs. For example, in the US the month is written first, then the day and finally the year. Bob wonders if it is possible to rearrange the numbers in his date of birth so that he will be at least 18 years old on the day *DD*.*MM*.*YY*. He can always tell that in his motherland dates are written differently. Help him. According to another strange rule, eligible participant must be born in the same century as the date of the finals. If the day of the finals is participant's 18-th birthday, he is allowed to participate. As we are considering only the years from 2001 to 2099 for the year of the finals, use the following rule: the year is leap if it's number is divisible by four.
The first line contains the date *DD*.*MM*.*YY*, the second line contains the date *BD*.*BM*.*BY*. It is guaranteed that both dates are correct, and *YY* and *BY* are always in [01;99]. It could be that by passport Bob was born after the finals. In this case, he can still change the order of numbers in date.
If it is possible to rearrange the numbers in the date of birth so that Bob will be at least 18 years old on the *DD*.*MM*.*YY*, output YES. In the other case, output NO. Each number contains exactly two digits and stands for day, month or year in a date. Note that it is permitted to rearrange only numbers, not digits.
[ "01.01.98\n01.01.80\n", "20.10.20\n10.02.30\n", "28.02.74\n28.02.64\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
1,000
[ { "input": "01.01.98\n01.01.80", "output": "YES" }, { "input": "20.10.20\n10.02.30", "output": "NO" }, { "input": "28.02.74\n28.02.64", "output": "NO" }, { "input": "05.05.25\n06.02.71", "output": "NO" }, { "input": "19.11.54\n29.11.53", "output": "NO" }, { "input": "01.06.84\n24.04.87", "output": "NO" }, { "input": "30.06.43\n14.09.27", "output": "YES" }, { "input": "09.05.55\n25.09.42", "output": "NO" }, { "input": "14.05.21\n02.01.88", "output": "NO" }, { "input": "27.12.51\n26.06.22", "output": "YES" }, { "input": "12.10.81\n18.11.04", "output": "YES" }, { "input": "26.04.11\n11.07.38", "output": "NO" }, { "input": "17.01.94\n17.03.58", "output": "YES" }, { "input": "15.01.93\n23.04.97", "output": "NO" }, { "input": "14.04.92\n27.05.35", "output": "YES" }, { "input": "13.08.91\n01.05.26", "output": "YES" }, { "input": "14.08.89\n05.06.65", "output": "YES" }, { "input": "13.11.88\n09.07.03", "output": "YES" }, { "input": "12.11.87\n14.08.42", "output": "YES" }, { "input": "11.03.86\n20.08.81", "output": "NO" }, { "input": "10.02.37\n25.09.71", "output": "NO" }, { "input": "11.06.36\n24.01.25", "output": "NO" }, { "input": "02.05.90\n08.03.50", "output": "YES" }, { "input": "15.01.15\n01.08.58", "output": "NO" }, { "input": "31.10.41\n27.12.13", "output": "YES" }, { "input": "14.06.18\n21.04.20", "output": "NO" }, { "input": "15.12.62\n17.12.21", "output": "YES" }, { "input": "13.03.69\n09.01.83", "output": "NO" }, { "input": "26.11.46\n03.05.90", "output": "NO" }, { "input": "11.12.72\n29.06.97", "output": "NO" }, { "input": "25.08.49\n22.10.05", "output": "YES" }, { "input": "08.04.74\n18.03.60", "output": "NO" }, { "input": "03.11.79\n10.09.61", "output": "YES" }, { "input": "29.03.20\n12.01.09", "output": "YES" }, { "input": "13.09.67\n07.09.48", "output": "YES" }, { "input": "23.05.53\n31.10.34", "output": "YES" }, { "input": "08.07.20\n27.01.01", "output": "YES" }, { "input": "10.05.64\n10.05.45", "output": "YES" }, { "input": "19.09.93\n17.05.74", "output": "YES" }, { "input": "14.06.61\n01.11.42", "output": "YES" }, { "input": "29.02.80\n29.02.60", "output": "YES" }, { "input": "21.02.59\n24.04.40", "output": "YES" }, { "input": "05.04.99\n19.08.80", "output": "YES" }, { "input": "02.06.59\n30.01.40", "output": "YES" }, { "input": "23.09.93\n12.11.74", "output": "YES" }, { "input": "09.08.65\n21.06.46", "output": "YES" }, { "input": "29.09.35\n21.07.17", "output": "YES" }, { "input": "30.06.58\n21.05.39", "output": "YES" }, { "input": "06.08.91\n05.12.73", "output": "YES" }, { "input": "08.07.88\n15.01.69", "output": "YES" }, { "input": "07.10.55\n13.05.36", "output": "YES" }, { "input": "22.03.79\n04.03.61", "output": "YES" }, { "input": "30.06.76\n03.10.57", "output": "YES" }, { "input": "03.03.70\n18.01.51", "output": "YES" }, { "input": "08.07.79\n25.08.60", "output": "YES" }, { "input": "01.09.92\n10.05.74", "output": "YES" }, { "input": "05.04.73\n28.09.54", "output": "YES" }, { "input": "30.08.83\n13.04.65", "output": "YES" }, { "input": "08.04.64\n27.01.45", "output": "YES" }, { "input": "10.11.95\n09.04.77", "output": "YES" }, { "input": "19.11.36\n17.02.21", "output": "YES" }, { "input": "28.02.20\n11.01.29", "output": "YES" }, { "input": "01.01.35\n16.02.29", "output": "YES" }, { "input": "01.01.47\n28.02.29", "output": "YES" }, { "input": "06.08.34\n16.02.29", "output": "YES" }, { "input": "30.09.46\n24.02.29", "output": "YES" }, { "input": "01.03.19\n01.02.29", "output": "NO" }, { "input": "30.08.32\n02.02.29", "output": "NO" }, { "input": "30.10.46\n25.02.29", "output": "NO" }, { "input": "06.03.20\n06.02.03", "output": "YES" }, { "input": "01.05.19\n08.01.04", "output": "YES" }, { "input": "31.05.19\n12.01.04", "output": "YES" }, { "input": "31.03.50\n02.11.32", "output": "YES" }, { "input": "03.12.98\n11.12.80", "output": "YES" }, { "input": "04.02.19\n01.03.02", "output": "YES" }, { "input": "01.05.21\n03.11.04", "output": "YES" }, { "input": "31.05.20\n02.12.04", "output": "YES" }, { "input": "31.03.36\n10.11.31", "output": "YES" }, { "input": "01.05.19\n03.01.28", "output": "YES" }, { "input": "30.12.68\n31.12.50", "output": "NO" }, { "input": "30.08.55\n31.08.37", "output": "NO" }, { "input": "30.08.41\n23.08.31", "output": "NO" } ]
1,453,478,910
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
124
0
d = list(map(int, input().split('.'))) b = list(map(int, input().split('.'))) if d[2] - b[2] > 18: print('YES') elif d[2] - b[2] < 18: print('NO') elif (d[1], d[0]) >= (b[1], b[0]): print('YES') elif b[0] <= 12 and (d[1], d[0]) >= (b[0], b[1]): print('YES') else: print('NO')
Title: Codeforces World Finals Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The king Copa often has been reported about the Codeforces site, which is rapidly getting more and more popular among the brightest minds of the humanity, who are using it for training and competing. Recently Copa understood that to conquer the world he needs to organize the world Codeforces tournament. He hopes that after it the brightest minds will become his subordinates, and the toughest part of conquering the world will be completed. The final round of the Codeforces World Finals 20YY is scheduled for *DD*.*MM*.*YY*, where *DD* is the day of the round, *MM* is the month and *YY* are the last two digits of the year. Bob is lucky to be the first finalist form Berland. But there is one problem: according to the rules of the competition, all participants must be at least 18 years old at the moment of the finals. Bob was born on *BD*.*BM*.*BY*. This date is recorded in his passport, the copy of which he has already mailed to the organizers. But Bob learned that in different countries the way, in which the dates are written, differs. For example, in the US the month is written first, then the day and finally the year. Bob wonders if it is possible to rearrange the numbers in his date of birth so that he will be at least 18 years old on the day *DD*.*MM*.*YY*. He can always tell that in his motherland dates are written differently. Help him. According to another strange rule, eligible participant must be born in the same century as the date of the finals. If the day of the finals is participant's 18-th birthday, he is allowed to participate. As we are considering only the years from 2001 to 2099 for the year of the finals, use the following rule: the year is leap if it's number is divisible by four. Input Specification: The first line contains the date *DD*.*MM*.*YY*, the second line contains the date *BD*.*BM*.*BY*. It is guaranteed that both dates are correct, and *YY* and *BY* are always in [01;99]. It could be that by passport Bob was born after the finals. In this case, he can still change the order of numbers in date. Output Specification: If it is possible to rearrange the numbers in the date of birth so that Bob will be at least 18 years old on the *DD*.*MM*.*YY*, output YES. In the other case, output NO. Each number contains exactly two digits and stands for day, month or year in a date. Note that it is permitted to rearrange only numbers, not digits. Demo Input: ['01.01.98\n01.01.80\n', '20.10.20\n10.02.30\n', '28.02.74\n28.02.64\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python d = list(map(int, input().split('.'))) b = list(map(int, input().split('.'))) if d[2] - b[2] > 18: print('YES') elif d[2] - b[2] < 18: print('NO') elif (d[1], d[0]) >= (b[1], b[0]): print('YES') elif b[0] <= 12 and (d[1], d[0]) >= (b[0], b[1]): print('YES') else: print('NO') ```
0
90
B
African Crossword
PROGRAMMING
1,100
[ "implementation", "strings" ]
B. African Crossword
2
256
An African crossword is a rectangular table *n*<=×<=*m* in size. Each cell of the table contains exactly one letter. This table (it is also referred to as grid) contains some encrypted word that needs to be decoded. To solve the crossword you should cross out all repeated letters in rows and columns. In other words, a letter should only be crossed out if and only if the corresponding column or row contains at least one more letter that is exactly the same. Besides, all such letters are crossed out simultaneously. When all repeated letters have been crossed out, we should write the remaining letters in a string. The letters that occupy a higher position follow before the letters that occupy a lower position. If the letters are located in one row, then the letter to the left goes first. The resulting word is the answer to the problem. You are suggested to solve an African crossword and print the word encrypted there.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). Next *n* lines contain *m* lowercase Latin letters each. That is the crossword grid.
Print the encrypted word on a single line. It is guaranteed that the answer consists of at least one letter.
[ "3 3\ncba\nbcd\ncbc\n", "5 5\nfcofd\nooedo\nafaoa\nrdcdf\neofsf\n" ]
[ "abcd", "codeforces" ]
none
1,000
[ { "input": "3 3\ncba\nbcd\ncbc", "output": "abcd" }, { "input": "5 5\nfcofd\nooedo\nafaoa\nrdcdf\neofsf", "output": "codeforces" }, { "input": "4 4\nusah\nusha\nhasu\nsuha", "output": "ahhasusu" }, { "input": "7 5\naabcd\neffgh\niijkk\nlmnoo\npqqrs\nttuvw\nxxyyz", "output": "bcdeghjlmnprsuvwz" }, { "input": "10 10\naaaaaaaaaa\nbccceeeeee\ncdfffffffe\ncdfiiiiile\ncdfjjjjile\ndddddddile\nedfkkkkile\nedddddddde\ngggggggggg\nhhhhhhhhhe", "output": "b" }, { "input": "15 3\njhg\njkn\njui\nfth\noij\nyuf\nyfb\nugd\nhgd\noih\nhvc\nugg\nyvv\ntdg\nhgf", "output": "hkniftjfbctd" }, { "input": "17 19\nbmzbmweyydiadtlcoue\ngmdbyfwurpwbpuvhifn\nuapwyndmhtqvkgkbhty\ntszotwflegsjzzszfwt\nzfpnscguemwrczqxyci\nvdqnkypnxnnpmuduhzn\noaquudhavrncwfwujpc\nmiggjmcmkkbnjfeodxk\ngjgwxtrxingiqquhuwq\nhdswxxrxuzzfhkplwun\nfagppcoildagktgdarv\neusjuqfistulgbglwmf\ngzrnyxryetwzhlnfewc\nzmnoozlqatugmdjwgzc\nfabbkoxyjxkatjmpprs\nwkdkobdagwdwxsufees\nrvncbszcepigpbzuzoo", "output": "lcorviunqvgblgjfsgmrqxyivyxodhvrjpicbneodxjtfkpolvejqmllqadjwotmbgxrvs" }, { "input": "1 1\na", "output": "a" }, { "input": "2 2\nzx\nxz", "output": "zxxz" }, { "input": "1 2\nfg", "output": "fg" }, { "input": "2 1\nh\nj", "output": "hj" }, { "input": "1 3\niji", "output": "j" }, { "input": "3 1\nk\np\nk", "output": "p" }, { "input": "2 3\nmhw\nbfq", "output": "mhwbfq" }, { "input": "3 2\nxe\ner\nwb", "output": "xeerwb" }, { "input": "3 7\nnutuvjg\ntgqutfn\nyfjeiot", "output": "ntvjggqfnyfjeiot" }, { "input": "5 4\nuzvs\namfz\nwypl\nxizp\nfhmf", "output": "uzvsamfzwyplxizphm" }, { "input": "8 9\ntjqrtgrem\nrwjcfuoey\nywrjgpzca\nwabzggojv\najqmmcclh\nozilebskd\nqmgnbmtcq\nwakptzkjr", "output": "mrjcfuyyrjpzabzvalhozilebskdgnbtpzr" }, { "input": "9 3\njel\njws\ntab\nvyo\nkgm\npls\nabq\nbjx\nljt", "output": "elwtabvyokgmplabqbxlt" }, { "input": "7 6\neklgxi\nxmpzgf\nxvwcmr\nrqssed\nouiqpt\ndueiok\nbbuorv", "output": "eklgximpzgfvwcmrrqedoiqptdeiokuorv" }, { "input": "14 27\npzoshpvvjdpmwfoeojapmkxjrnk\nitoojpcorxjdxrwyewtmmlhjxhx\ndoyopbwusgsmephixzcilxpskxh\nygpvepeuxjbnezdrnjfwdhjwjka\nrfjlbypoalbtjwrpjxzenmeipfg\nkhjhrtktcnajrnbefhpavxxfnlx\nvwlwumqpfegjgvoezevqsolaqhh\npdrvrtzqsoujqfeitkqgtxwckrl\nxtepjflcxcrfomhqimhimnzfxzg\nwhkfkfvvjwkmwhfgeovwowshyhw\nolchgmhiehumivswgtfyhqfagbp\ntdudrkttpkryvaiepsijuejqvmq\nmuratfqqdbfpefmhjzercortroh\nwxkebkzchupxumfizftgqvuwgau", "output": "zshdanicdyldybwgclygzrhkayatwxznmicbpvlupfsoewcleploqngsyolceswtyqbpyasmuadbpcehqva" }, { "input": "1 100\nysijllpanprcrrtvokqmmupuptvawhvnekeybdkzqaduotmkfwybqvytkbjfzyqztmxckizheorvkhtyoohbswcmhknyzlgxordu", "output": "g" }, { "input": "2 100\ngplwoaggwuxzutpwnmxhotbexntzmitmcvnvmuxknwvcrnsagvdojdgaccfbheqojgcqievijxapvepwqolmnjqsbejtnkaifstp\noictcmphxbrylaarcwpruiastazvmfhlcgticvwhpxyiiqokxcjgwlnfykkqdsfmrfaedzchrfzlwdclqjxvidhomhxqnlmuoowg", "output": "rbe" }, { "input": "3 100\nonmhsoxoexfwavmamoecptondioxdjsoxfuqxkjviqnjukwqjwfadnohueaxrkreycicgxpmogijgejxsprwiweyvwembluwwqhj\nuofldyjyuhzgmkeurawgsrburovdppzjiyddpzxslhyesvmuwlgdjvzjqqcpubfgxliulyvxxloqyhxspoxvhllbrajlommpghlv\nvdohhghjlvihrzmwskxfatoodupmnouwyyfarhihxpdnbwrvrysrpxxptdidpqabwbfnxhiziiiqtozqjtnitgepxjxosspsjldo", "output": "blkck" }, { "input": "100 1\na\nm\nn\nh\na\nx\nt\na\no\np\nj\nz\nr\nk\nq\nl\nb\nr\no\ni\ny\ni\np\ni\nt\nn\nd\nc\nz\np\nu\nn\nw\ny\ng\ns\nt\nm\nz\ne\nv\ng\ny\nj\nd\nz\ny\na\nn\nx\nk\nd\nq\nn\nv\ng\nk\ni\nk\nf\na\nb\nw\no\nu\nw\nk\nk\nb\nz\nu\ni\nu\nv\ng\nv\nx\ng\np\ni\nz\ns\nv\nq\ns\nb\nw\ne\np\nk\nt\np\nd\nr\ng\nd\nk\nm\nf\nd", "output": "hlc" }, { "input": "100 2\nhd\ngx\nmz\nbq\nof\nst\nzc\ndg\nth\nba\new\nbw\noc\now\nvh\nqp\nin\neh\npj\nat\nnn\nbr\nij\nco\nlv\nsa\ntb\nbl\nsr\nxa\nbz\nrp\nsz\noi\nec\npw\nhf\njm\nwu\nhq\nra\npv\ntc\ngv\nik\nux\ntz\nbf\nty\ndk\nwo\nor\nza\nkv\nqt\nfa\njy\nbk\nuv\ngk\ncz\nds\nie\noq\nmf\nxn\nql\nxs\nfb\niv\ncj\nkn\nns\nlg\nji\nha\naj\ndg\nfj\nut\nsg\nju\noc\nov\nhe\nnw\nbl\nlp\nbx\nnm\nyq\ncw\nov\nxk\npg\noh\npl\nuo\ngf\nul", "output": "dvy" }, { "input": "100 3\nruy\nmye\njgp\nscn\nktq\nalx\nmvk\nlpm\nkry\norb\nmpu\nzcv\nlge\nkft\ndzp\ntfb\nhqz\nuur\nhry\nzjx\ncuo\nqqc\ntih\nenj\nvnp\nbwi\nzzh\nhkc\nwdr\nldh\nvel\nizj\nfhb\nqrn\nqpp\nvzs\nlhg\nkee\nlbq\nzhy\nwcl\nyaa\nton\nfly\nkyw\nept\ngwq\ncoe\nopd\neez\nnmx\nnjg\nwhy\nvel\nafq\nnbq\nulx\noxs\nbbo\nyhx\nfmz\nnrg\nnfm\njek\nbeu\ntya\nxgs\nsgg\nnkq\nbbv\nwkd\ntns\nfdt\neox\nobc\neab\nkkj\noub\ngji\nrht\nozv\nysk\nsbt\nflf\npbu\nlxb\npzs\nrzh\ncea\nkmi\nuea\nncc\nzng\nvkn\njhn\njqw\nlqc\nmbt\nlov\ngam", "output": "tvdiixs" } ]
1,601,867,900
2,147,483,647
Python 3
OK
TESTS
43
218
307,200
n , m = map(int,input().split()) arr = [] for i in range(n): arr.append(input()) res = list(zip(*arr)) for i in range(n): for j in range(m): if arr[i].count(arr[i][j])==1: if res[j].count(arr[i][j])==1: print(arr[i][j],end="")
Title: African Crossword Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: An African crossword is a rectangular table *n*<=×<=*m* in size. Each cell of the table contains exactly one letter. This table (it is also referred to as grid) contains some encrypted word that needs to be decoded. To solve the crossword you should cross out all repeated letters in rows and columns. In other words, a letter should only be crossed out if and only if the corresponding column or row contains at least one more letter that is exactly the same. Besides, all such letters are crossed out simultaneously. When all repeated letters have been crossed out, we should write the remaining letters in a string. The letters that occupy a higher position follow before the letters that occupy a lower position. If the letters are located in one row, then the letter to the left goes first. The resulting word is the answer to the problem. You are suggested to solve an African crossword and print the word encrypted there. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). Next *n* lines contain *m* lowercase Latin letters each. That is the crossword grid. Output Specification: Print the encrypted word on a single line. It is guaranteed that the answer consists of at least one letter. Demo Input: ['3 3\ncba\nbcd\ncbc\n', '5 5\nfcofd\nooedo\nafaoa\nrdcdf\neofsf\n'] Demo Output: ['abcd', 'codeforces'] Note: none
```python n , m = map(int,input().split()) arr = [] for i in range(n): arr.append(input()) res = list(zip(*arr)) for i in range(n): for j in range(m): if arr[i].count(arr[i][j])==1: if res[j].count(arr[i][j])==1: print(arr[i][j],end="") ```
3.944928
959
A
Mahmoud and Ehab and the even-odd game
PROGRAMMING
800
[ "games", "math" ]
null
null
Mahmoud and Ehab play a game called the even-odd game. Ehab chooses his favorite integer *n* and then they take turns, starting from Mahmoud. In each player's turn, he has to choose an integer *a* and subtract it from *n* such that: - 1<=≤<=*a*<=≤<=*n*. - If it's Mahmoud's turn, *a* has to be even, but if it's Ehab's turn, *a* has to be odd. If the current player can't choose any number satisfying the conditions, he loses. Can you determine the winner if they both play optimally?
The only line contains an integer *n* (1<=≤<=*n*<=≤<=109), the number at the beginning of the game.
Output "Mahmoud" (without quotes) if Mahmoud wins and "Ehab" (without quotes) otherwise.
[ "1\n", "2\n" ]
[ "Ehab", "Mahmoud" ]
In the first sample, Mahmoud can't choose any integer *a* initially because there is no positive even integer less than or equal to 1 so Ehab wins. In the second sample, Mahmoud has to choose *a* = 2 and subtract it from *n*. It's Ehab's turn and *n* = 0. There is no positive odd integer less than or equal to 0 so Mahmoud wins.
500
[ { "input": "1", "output": "Ehab" }, { "input": "2", "output": "Mahmoud" }, { "input": "10000", "output": "Mahmoud" }, { "input": "33333", "output": "Ehab" }, { "input": "5", "output": "Ehab" }, { "input": "1000000000", "output": "Mahmoud" }, { "input": "999999999", "output": "Ehab" }, { "input": "123123123", "output": "Ehab" }, { "input": "22222221", "output": "Ehab" }, { "input": "22222220", "output": "Mahmoud" }, { "input": "3", "output": "Ehab" }, { "input": "4", "output": "Mahmoud" }, { "input": "6", "output": "Mahmoud" }, { "input": "7", "output": "Ehab" }, { "input": "8", "output": "Mahmoud" }, { "input": "9", "output": "Ehab" }, { "input": "10", "output": "Mahmoud" }, { "input": "536870912", "output": "Mahmoud" }, { "input": "536870913", "output": "Ehab" }, { "input": "536870911", "output": "Ehab" } ]
1,625,145,910
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
124
2,252,800
import os import sys import math import numpy import collections import itertools from io import BytesIO, IOBase #---<Fast I/O>---# BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) #---<Input & Print>---# def scanf(datatype = str): if datatype is not None: return datatype(sys.stdin.readline()) else: return sys.stdin.readline() def printf(answer): return sys.stdin.write(str(answer) + "\n") def map_input(datatype): return map(datatype, sys.stdin.readline().split()) def list_input(datatype): return list(map(datatype, sys.stdin.readline().split())) def testcase(number: int, solve_function): while (number != 0): solve_function() number -= 1 #---<Mathematical Operations>---# def gcd(num1: int, num2: int): #greatest common divisor if num1 == 0: return num2 if num2 == 0: return num1 if num1 > num2: return gcd(num1 % num2, num2) else: return gcd(num1, num2 % num1) def lcm(num1: int, num2: int): #lowest common multiple return (num1 * num2) // gcd(num1, num2) def big_power(num1: int, num2: int): result = 1 while (num2 > 0): if num2 & 1: result = result * num1 num1 = num1 ** 2 num2 >>= 1 return result #---<Algorithms>---# def sieve_of_eratosthenes(number: int): num1 = (number - 1) // 2 arr = [True] * num1 num2, num3, primes = 0, 3, [2] while (num3 * num3 < number): if arr[num2]: primes.append(num3) num4 = 2 * num2 * num2 + 6 * num2 + 3 while (num4 < num1): arr[num4] = False num4 = num4 + 2 * num2 + 3 num2 += 1 num3 += 1 while (num2 < num1): if arr[num2]: primes.append(num3) num2 += 1 num3 += 2 return primes def dfs(graph, start, visited = None): #depth first search ''' Here 'graph' represents the adjacency list of the graph, and 'start' represents the node from which to start ''' if visited is None: visited = set() visited.add(start) for next in (graph[start] - visited): dfs(graph, next, visited) return visited def dfs_paths(graph, start, goal): ''' Returns all possible paths between a start vertex and a goal vertex ''' stack = [(start, [start])] while (stack): (vertex, path) = stack.pop() for next in (graph[vertex] - set(path)): if next == goal: yield path + [next] else: stack.append((next, path + [next])) return stack def bfs(graph, start): #breadth first search visited, queue = set(), [start] while (queue): vertex = queue.pop(0) if (vertex not in visited): visited.add(vertex) queue.extend(graph[vertex] - visited) return visited def bfs_paths(graph, start, goal): ''' Returns all possible paths between a start vertex and a goal vertex, where the first path is the shortest path ''' queue = [(start, [start])] while (queue): (vertex, path) = queue.pop(0) for next in (graph[vertex] - set(path)): if (next == goal): yield path + [next] else: queue.append((next, path + [next])) return queue def main(): n = scanf(int) # Mahmoud plays first # chooses integer (a) and subtracts it from n # n - a # a should be even in Mahmoud's turn # a should be odd in Ehbab's turn # if current player fails to choose, he loses if n % 2 == 0: print("Mahmoud") else: print("Ehab") if __name__ == "__main__": main()
Title: Mahmoud and Ehab and the even-odd game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mahmoud and Ehab play a game called the even-odd game. Ehab chooses his favorite integer *n* and then they take turns, starting from Mahmoud. In each player's turn, he has to choose an integer *a* and subtract it from *n* such that: - 1<=≤<=*a*<=≤<=*n*. - If it's Mahmoud's turn, *a* has to be even, but if it's Ehab's turn, *a* has to be odd. If the current player can't choose any number satisfying the conditions, he loses. Can you determine the winner if they both play optimally? Input Specification: The only line contains an integer *n* (1<=≤<=*n*<=≤<=109), the number at the beginning of the game. Output Specification: Output "Mahmoud" (without quotes) if Mahmoud wins and "Ehab" (without quotes) otherwise. Demo Input: ['1\n', '2\n'] Demo Output: ['Ehab', 'Mahmoud'] Note: In the first sample, Mahmoud can't choose any integer *a* initially because there is no positive even integer less than or equal to 1 so Ehab wins. In the second sample, Mahmoud has to choose *a* = 2 and subtract it from *n*. It's Ehab's turn and *n* = 0. There is no positive odd integer less than or equal to 0 so Mahmoud wins.
```python import os import sys import math import numpy import collections import itertools from io import BytesIO, IOBase #---<Fast I/O>---# BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) #---<Input & Print>---# def scanf(datatype = str): if datatype is not None: return datatype(sys.stdin.readline()) else: return sys.stdin.readline() def printf(answer): return sys.stdin.write(str(answer) + "\n") def map_input(datatype): return map(datatype, sys.stdin.readline().split()) def list_input(datatype): return list(map(datatype, sys.stdin.readline().split())) def testcase(number: int, solve_function): while (number != 0): solve_function() number -= 1 #---<Mathematical Operations>---# def gcd(num1: int, num2: int): #greatest common divisor if num1 == 0: return num2 if num2 == 0: return num1 if num1 > num2: return gcd(num1 % num2, num2) else: return gcd(num1, num2 % num1) def lcm(num1: int, num2: int): #lowest common multiple return (num1 * num2) // gcd(num1, num2) def big_power(num1: int, num2: int): result = 1 while (num2 > 0): if num2 & 1: result = result * num1 num1 = num1 ** 2 num2 >>= 1 return result #---<Algorithms>---# def sieve_of_eratosthenes(number: int): num1 = (number - 1) // 2 arr = [True] * num1 num2, num3, primes = 0, 3, [2] while (num3 * num3 < number): if arr[num2]: primes.append(num3) num4 = 2 * num2 * num2 + 6 * num2 + 3 while (num4 < num1): arr[num4] = False num4 = num4 + 2 * num2 + 3 num2 += 1 num3 += 1 while (num2 < num1): if arr[num2]: primes.append(num3) num2 += 1 num3 += 2 return primes def dfs(graph, start, visited = None): #depth first search ''' Here 'graph' represents the adjacency list of the graph, and 'start' represents the node from which to start ''' if visited is None: visited = set() visited.add(start) for next in (graph[start] - visited): dfs(graph, next, visited) return visited def dfs_paths(graph, start, goal): ''' Returns all possible paths between a start vertex and a goal vertex ''' stack = [(start, [start])] while (stack): (vertex, path) = stack.pop() for next in (graph[vertex] - set(path)): if next == goal: yield path + [next] else: stack.append((next, path + [next])) return stack def bfs(graph, start): #breadth first search visited, queue = set(), [start] while (queue): vertex = queue.pop(0) if (vertex not in visited): visited.add(vertex) queue.extend(graph[vertex] - visited) return visited def bfs_paths(graph, start, goal): ''' Returns all possible paths between a start vertex and a goal vertex, where the first path is the shortest path ''' queue = [(start, [start])] while (queue): (vertex, path) = queue.pop(0) for next in (graph[vertex] - set(path)): if (next == goal): yield path + [next] else: queue.append((next, path + [next])) return queue def main(): n = scanf(int) # Mahmoud plays first # chooses integer (a) and subtracts it from n # n - a # a should be even in Mahmoud's turn # a should be odd in Ehbab's turn # if current player fails to choose, he loses if n % 2 == 0: print("Mahmoud") else: print("Ehab") if __name__ == "__main__": main() ```
-1
735
B
Urbanization
PROGRAMMING
1,100
[ "greedy", "number theory", "sortings" ]
null
null
Local authorities have heard a lot about combinatorial abilities of Ostap Bender so they decided to ask his help in the question of urbanization. There are *n* people who plan to move to the cities. The wealth of the *i* of them is equal to *a**i*. Authorities plan to build two cities, first for *n*1 people and second for *n*2 people. Of course, each of *n* candidates can settle in only one of the cities. Thus, first some subset of candidates of size *n*1 settle in the first city and then some subset of size *n*2 is chosen among the remaining candidates and the move to the second city. All other candidates receive an official refuse and go back home. To make the statistic of local region look better in the eyes of their bosses, local authorities decided to pick subsets of candidates in such a way that the sum of arithmetic mean of wealth of people in each of the cities is as large as possible. Arithmetic mean of wealth in one city is the sum of wealth *a**i* among all its residents divided by the number of them (*n*1 or *n*2 depending on the city). The division should be done in real numbers without any rounding. Please, help authorities find the optimal way to pick residents for two cities.
The first line of the input contains three integers *n*, *n*1 and *n*2 (1<=≤<=*n*,<=*n*1,<=*n*2<=≤<=100<=000, *n*1<=+<=*n*2<=≤<=*n*) — the number of candidates who want to move to the cities, the planned number of residents of the first city and the planned number of residents of the second city. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100<=000), the *i*-th of them is equal to the wealth of the *i*-th candidate.
Print one real value — the maximum possible sum of arithmetic means of wealth of cities' residents. You answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6. Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
[ "2 1 1\n1 5\n", "4 2 1\n1 4 2 3\n" ]
[ "6.00000000\n", "6.50000000\n" ]
In the first sample, one of the optimal solutions is to move candidate 1 to the first city and candidate 2 to the second. In the second sample, the optimal solution is to pick candidates 3 and 4 for the first city, and candidate 2 for the second one. Thus we obtain (*a*<sub class="lower-index">3</sub> + *a*<sub class="lower-index">4</sub>) / 2 + *a*<sub class="lower-index">2</sub> = (3 + 2) / 2 + 4 = 6.5
1,000
[ { "input": "2 1 1\n1 5", "output": "6.00000000" }, { "input": "4 2 1\n1 4 2 3", "output": "6.50000000" }, { "input": "3 1 2\n1 2 3", "output": "4.50000000" }, { "input": "10 4 6\n3 5 7 9 12 25 67 69 83 96", "output": "88.91666667" }, { "input": "19 7 12\n1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 100000 100000", "output": "47052.10714286" }, { "input": "100 9 6\n109 711 40 95 935 48 228 253 308 726 816 534 252 8 966 363 162 508 84 83 807 506 748 178 45 30 106 108 764 698 825 198 336 353 158 790 64 262 403 334 577 571 742 541 946 602 279 621 910 776 421 886 29 133 114 394 762 965 339 263 750 530 49 80 124 31 322 292 27 590 960 278 111 932 849 491 561 744 469 511 106 271 156 160 836 363 149 473 457 543 976 809 490 29 85 626 265 88 995 946", "output": "1849.66666667" }, { "input": "69 6 63\n53475 22876 79144 6335 33763 79104 65441 45527 65847 94406 74670 43529 75330 19403 67629 56187 57949 23071 64910 54409 55348 18056 855 24961 50565 6622 26467 33989 22660 79469 41246 13965 79706 14422 16075 93378 81313 48173 13470 97348 2346 27452 59427 29925 29847 73823 32021 10988 24609 98855 90919 45939 17203 8439 43007 40138 55693 30314 71734 33458 66850 4011 20089 20546 92090 50842 78859 62756 40177", "output": "135712.88888889" }, { "input": "69 6 9\n2612 17461 69001 33130 10662 85485 88195 45974 16712 81365 67119 87797 15559 20197 74716 92979 97268 49466 68603 48351 99905 35606 54242 98603 68232 54398 82637 49647 38979 46171 54680 23334 15892 92186 69670 29711 67999 2220 32317 717 70667 68262 86760 55720 97158 61122 7251 138 21022 27197 12691 59331 13576 66999 38332 13574 83484 66646 17704 33065 98583 80259 64631 16745 69431 40747 82089 82788 32739", "output": "183129.44444444" } ]
1,680,398,690
2,147,483,647
Python 3
OK
TESTS
37
233
9,728,000
from heapq import nlargest,heapify def solve(): n,n1,n2=map(int,input().split());a=sorted(list(map(int,input().split())));heapify(a) t=sum(nlargest(min(n1,n2),a))/min(n1,n2) t1=sum(nlargest(max(n1,n2),a[:n-(min(n1,n2))]))/max(n1,n2) print(t1+t) solve() # 3 2 # 2 3 4 5 6
Title: Urbanization Time Limit: None seconds Memory Limit: None megabytes Problem Description: Local authorities have heard a lot about combinatorial abilities of Ostap Bender so they decided to ask his help in the question of urbanization. There are *n* people who plan to move to the cities. The wealth of the *i* of them is equal to *a**i*. Authorities plan to build two cities, first for *n*1 people and second for *n*2 people. Of course, each of *n* candidates can settle in only one of the cities. Thus, first some subset of candidates of size *n*1 settle in the first city and then some subset of size *n*2 is chosen among the remaining candidates and the move to the second city. All other candidates receive an official refuse and go back home. To make the statistic of local region look better in the eyes of their bosses, local authorities decided to pick subsets of candidates in such a way that the sum of arithmetic mean of wealth of people in each of the cities is as large as possible. Arithmetic mean of wealth in one city is the sum of wealth *a**i* among all its residents divided by the number of them (*n*1 or *n*2 depending on the city). The division should be done in real numbers without any rounding. Please, help authorities find the optimal way to pick residents for two cities. Input Specification: The first line of the input contains three integers *n*, *n*1 and *n*2 (1<=≤<=*n*,<=*n*1,<=*n*2<=≤<=100<=000, *n*1<=+<=*n*2<=≤<=*n*) — the number of candidates who want to move to the cities, the planned number of residents of the first city and the planned number of residents of the second city. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100<=000), the *i*-th of them is equal to the wealth of the *i*-th candidate. Output Specification: Print one real value — the maximum possible sum of arithmetic means of wealth of cities' residents. You answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6. Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if . Demo Input: ['2 1 1\n1 5\n', '4 2 1\n1 4 2 3\n'] Demo Output: ['6.00000000\n', '6.50000000\n'] Note: In the first sample, one of the optimal solutions is to move candidate 1 to the first city and candidate 2 to the second. In the second sample, the optimal solution is to pick candidates 3 and 4 for the first city, and candidate 2 for the second one. Thus we obtain (*a*<sub class="lower-index">3</sub> + *a*<sub class="lower-index">4</sub>) / 2 + *a*<sub class="lower-index">2</sub> = (3 + 2) / 2 + 4 = 6.5
```python from heapq import nlargest,heapify def solve(): n,n1,n2=map(int,input().split());a=sorted(list(map(int,input().split())));heapify(a) t=sum(nlargest(min(n1,n2),a))/min(n1,n2) t1=sum(nlargest(max(n1,n2),a[:n-(min(n1,n2))]))/max(n1,n2) print(t1+t) solve() # 3 2 # 2 3 4 5 6 ```
3
231
A
Team
PROGRAMMING
800
[ "brute force", "greedy" ]
null
null
One day three best friends Petya, Vasya and Tonya decided to form a team and take part in programming contests. Participants are usually offered several problems during programming contests. Long before the start the friends decided that they will implement a problem if at least two of them are sure about the solution. Otherwise, the friends won't write the problem's solution. This contest offers *n* problems to the participants. For each problem we know, which friend is sure about the solution. Help the friends find the number of problems for which they will write a solution.
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of problems in the contest. Then *n* lines contain three integers each, each integer is either 0 or 1. If the first number in the line equals 1, then Petya is sure about the problem's solution, otherwise he isn't sure. The second number shows Vasya's view on the solution, the third number shows Tonya's view. The numbers on the lines are separated by spaces.
Print a single integer — the number of problems the friends will implement on the contest.
[ "3\n1 1 0\n1 1 1\n1 0 0\n", "2\n1 0 0\n0 1 1\n" ]
[ "2\n", "1\n" ]
In the first sample Petya and Vasya are sure that they know how to solve the first problem and all three of them know how to solve the second problem. That means that they will write solutions for these problems. Only Petya is sure about the solution for the third problem, but that isn't enough, so the friends won't take it. In the second sample the friends will only implement the second problem, as Vasya and Tonya are sure about the solution.
500
[ { "input": "3\n1 1 0\n1 1 1\n1 0 0", "output": "2" }, { "input": "2\n1 0 0\n0 1 1", "output": "1" }, { "input": "1\n1 0 0", "output": "0" }, { "input": "2\n1 0 0\n1 1 1", "output": "1" }, { "input": "5\n1 0 0\n0 1 0\n1 1 1\n0 0 1\n0 0 0", "output": "1" }, { "input": "10\n0 1 0\n0 1 0\n1 1 0\n1 0 0\n0 0 1\n0 1 1\n1 1 1\n1 1 0\n0 0 0\n0 0 0", "output": "4" }, { "input": "15\n0 1 0\n1 0 0\n1 1 0\n1 1 1\n0 1 0\n0 0 1\n1 0 1\n1 0 1\n1 0 1\n0 0 0\n1 1 1\n1 1 0\n0 1 1\n1 1 0\n1 1 1", "output": "10" }, { "input": "50\n0 0 0\n0 1 1\n1 1 1\n0 1 0\n1 0 1\n1 1 1\n0 0 1\n1 0 0\n1 1 0\n1 0 1\n0 1 0\n0 0 1\n1 1 0\n0 1 0\n1 1 0\n0 0 0\n1 1 1\n1 0 1\n0 0 1\n1 1 0\n1 1 1\n0 1 1\n1 1 0\n0 0 0\n0 0 0\n1 1 1\n0 0 0\n1 1 1\n0 1 1\n0 0 1\n0 0 0\n0 0 0\n1 1 0\n1 1 0\n1 0 1\n1 0 0\n1 0 1\n1 0 1\n0 1 1\n1 1 0\n1 1 0\n0 1 0\n1 0 1\n0 0 0\n0 0 0\n0 0 0\n0 0 1\n1 1 1\n0 1 1\n1 0 1", "output": "29" }, { "input": "1\n1 1 1", "output": "1" }, { "input": "8\n0 0 0\n0 0 1\n0 0 0\n0 1 1\n1 0 0\n1 0 1\n1 1 0\n1 1 1", "output": "4" }, { "input": "16\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1", "output": "16" } ]
1,697,226,938
2,147,483,647
Python 3
OK
TESTS
21
92
0
from sys import stdin s = [] for i in stdin: s.append(i.rstrip('\n')) m = [i for i in s[1:]] n = [i for i in m if i.count('1') > 1] print(len(n))
Title: Team Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day three best friends Petya, Vasya and Tonya decided to form a team and take part in programming contests. Participants are usually offered several problems during programming contests. Long before the start the friends decided that they will implement a problem if at least two of them are sure about the solution. Otherwise, the friends won't write the problem's solution. This contest offers *n* problems to the participants. For each problem we know, which friend is sure about the solution. Help the friends find the number of problems for which they will write a solution. Input Specification: The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of problems in the contest. Then *n* lines contain three integers each, each integer is either 0 or 1. If the first number in the line equals 1, then Petya is sure about the problem's solution, otherwise he isn't sure. The second number shows Vasya's view on the solution, the third number shows Tonya's view. The numbers on the lines are separated by spaces. Output Specification: Print a single integer — the number of problems the friends will implement on the contest. Demo Input: ['3\n1 1 0\n1 1 1\n1 0 0\n', '2\n1 0 0\n0 1 1\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample Petya and Vasya are sure that they know how to solve the first problem and all three of them know how to solve the second problem. That means that they will write solutions for these problems. Only Petya is sure about the solution for the third problem, but that isn't enough, so the friends won't take it. In the second sample the friends will only implement the second problem, as Vasya and Tonya are sure about the solution.
```python from sys import stdin s = [] for i in stdin: s.append(i.rstrip('\n')) m = [i for i in s[1:]] n = [i for i in m if i.count('1') > 1] print(len(n)) ```
3
746
B
Decoding
PROGRAMMING
900
[ "implementation", "strings" ]
null
null
Polycarp is mad about coding, that is why he writes Sveta encoded messages. He calls the median letter in a word the letter which is in the middle of the word. If the word's length is even, the median letter is the left of the two middle letters. In the following examples, the median letter is highlighted: contest, info. If the word consists of single letter, then according to above definition this letter is the median letter. Polycarp encodes each word in the following way: he writes down the median letter of the word, then deletes it and repeats the process until there are no letters left. For example, he encodes the word volga as logva. You are given an encoding *s* of some word, your task is to decode it.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=2000) — the length of the encoded word. The second line contains the string *s* of length *n* consisting of lowercase English letters — the encoding.
Print the word that Polycarp encoded.
[ "5\nlogva\n", "2\nno\n", "4\nabba\n" ]
[ "volga\n", "no\n", "baba\n" ]
In the first example Polycarp encoded the word volga. At first, he wrote down the letter l from the position 3, after that his word looked like voga. After that Polycarp wrote down the letter o from the position 2, his word became vga. Then Polycarp wrote down the letter g which was at the second position, the word became va. Then he wrote down the letter v, then the letter a. Thus, the encoding looked like logva. In the second example Polycarp encoded the word no. He wrote down the letter n, the word became o, and he wrote down the letter o. Thus, in this example, the word and its encoding are the same. In the third example Polycarp encoded the word baba. At first, he wrote down the letter a, which was at the position 2, after that the word looked like bba. Then he wrote down the letter b, which was at the position 2, his word looked like ba. After that he wrote down the letter b, which was at the position 1, the word looked like a, and he wrote down that letter a. Thus, the encoding is abba.
1,000
[ { "input": "5\nlogva", "output": "volga" }, { "input": "2\nno", "output": "no" }, { "input": "4\nabba", "output": "baba" }, { "input": "51\nkfsmpaeviowvkdbuhdagquxxqniselafnfbrgbhmsugcbbnlrvv", "output": "vlbcumbrfflsnxugdudvovamfkspeiwkbhaqxqieanbghsgbnrv" }, { "input": "1\nw", "output": "w" }, { "input": "2\ncb", "output": "cb" }, { "input": "3\nqok", "output": "oqk" }, { "input": "4\naegi", "output": "gaei" }, { "input": "5\noqquy", "output": "uqoqy" }, { "input": "6\nulhpnm", "output": "nhulpm" }, { "input": "7\nijvxljt", "output": "jxjivlt" }, { "input": "8\nwwmiwkeo", "output": "ewmwwiko" }, { "input": "9\ngmwqmpfow", "output": "opqmgwmfw" }, { "input": "10\nhncmexsslh", "output": "lsechnmxsh" }, { "input": "20\nrtcjbjlbtjfmvzdqutuw", "output": "uudvftlbcrtjjbjmzqtw" }, { "input": "21\ngjyiqoebcnpsdegxnsauh", "output": "usxesnboijgyqecpdgnah" }, { "input": "30\nudotcwvcwxajkadxqvxvwgmwmnqrby", "output": "bqmmwxqdkawvcoudtwcxjaxvvgwnry" }, { "input": "31\nipgfrxxcgckksfgexlicjvtnhvrfbmb", "output": "mfvnvclefkccxfpigrxgksgxijthrbb" }, { "input": "50\nwobervhvvkihcuyjtmqhaaigvahheoqleromusrartldojsjvy", "output": "vsolrruoeqehviaqtycivhrbwoevvkhujmhagaholrmsatdjjy" }, { "input": "200\nhvayscqiwpcfykibwyudkzuzdkgqqvbnrfeupjefevlvojngmlcjwzijrkzbsaovabkvvwmjgoonyhuiphwmqdoiuueuyqtychbsklflnvghipdgaxhuhiiqlqocpvhldgvnsrtcwxpidrjffwvwcirluyyxzxrglheczeuouklzkvnyubsvgvmdbrylimztotdbmjph", "output": "pmdoziybmgsunkluuzelrzyurcvfjdpwtsvdhpolihhadignfkbctyeuoqwpuyogmvkaoszriwcmnoleeperbqgdukuwiycwqsahvycipfkbydzzkqvnfujfvvjgljzjkbavbvwjonhihmdiuuqyhsllvhpgxuiqqcvlgnrcxirfwwilyxxghceokzvybvvdrlmttbjh" }, { "input": "201\nrpkghhfibtmlkpdiklegblbuyshfirheatjkfoqkfayfbxeeqijwqdwkkrkbdxlhzkhyiifemsghwovorlqedngldskfbhmwrnzmtjuckxoqdszmsdnbuqnlqzswdfhagasmfswanifrjjcuwdsplytvmnfarchgqteedgfpumkssindxndliozojzlpznwedodzwrrus", "output": "urzoenpzoolndismpgetgcanvypdujriasmaafwzlqbdmsqxcjmnwhfslneloohseiykhxbrkdwiexfakokterfsulglipltihgprkhfbmkdkebbyhihajfqfybeqjqwkkdlzhifmgwvrqdgdkbmrztukodzsnunqsdhgsfwnfjcwsltmfrhqedfuksnxdizjlzwddwrs" }, { "input": "500\naopxumqciwxewxvlxzebsztskjvjzwyewjztqrsuvamtvklhqrbodtncqdchjrlpywvmtgnkkwtvpggktewdgvnhydkexwoxkgltaesrtifbwpciqsvrgjtqrdnyqkgqwrryacluaqmgdwxinqieiblolyekcbzahlhxdwqcgieyfgmicvgbbitbzhejkshjunzjteyyfngigjwyqqndtjrdykzrnrpinkwtrlchhxvycrhstpecadszilicrqdeyyidohqvzfnsqfyuemigacysxvtrgxyjcvejkjstsnatfqlkeytxgsksgpcooypsmqgcluzwofaupegxppbupvtumjerohdteuenwcmqaoazohkilgpkjavcrjcslhzkyjcgfzxxzjfufichxcodcawonkxhbqgfimmlycswdzwbnmjwhbwihfoftpcqplncavmbxuwnsabiyvpcrhfgtqyaguoaigknushbqjwqmmyvsxwabrub", "output": "ubwsymwqhukiogytfrpybswxmanpctohwhjnwdsymigbxnwcoxcffzxfcyzlcrvjplkoaamweedoemtpbpgpaozlgmpocgkgtelfasskecygtxyaieyqnzqoiydriisaethcvhcrwnpnzyrtnqwggfytzuhkeztbgcmfegqdhhzcelliinxdmalarwgqnrtgvqcwftsalkoxkyngwtgptkntvyljcqndbqlvmvsqzwyzvktsexvwxiqupaoxmcwexlzbzsjjwejtruatkhrotcdhrpwmgkwvgkedvhdewxgteribpisrjqdykqrycuqgwiqeboykbalxwciygivbibhjsjnjeynijyqdjdkrriktlhxyrspcdzlcqeydhvfsfumgcsvrxjvjjtntqkyxsspoysqcuwfuexpuvujrhtuncqozhigkacjshkjgzxjuihcdaokhqfmlcwzbmwbiffpqlcvbunaivchgqauagnsbjqmvxarb" }, { "input": "501\noilesjbgowlnayckhpoaitijewsyhgavnthycaecwnvzpxgjqfjyxnjcjknvvsmjbjwtcoyfbegmnnheeamvtfjkigqoanhvgdfrjchdqgowrstlmrjmcsuuwvvoeucfyhnxivosrxblfoqwikfxjnnyejdiihpenfcahtjwcnzwvxxseicvdfgqhtvefswznuyohmmljlnxubhevywpmnitnkhecsgccpstxkmdzabsnwxkokdfsogzbpnfvgudvqlstxojzfzugxbfrozveaiofrzksegdelxsdhcjlqwqlgjcqiujptoenxozhkqhcpkarretqzfkwuvbmfdcdoqliyzmlfrfhzrnkbhofuctkpeacqejwvdrlyvepudrlzncbhwrgmxrczphsoymvtuzqjscvbtqpymogupgzctepccravjcrfsadueyraqvwasravkubebojqspdntewnjohvccamvoxdauyakvehjhabpdyzyme", "output": "mzdbhhvaudomcvonenpqoeuvravayuafcvrcecguoyqbcjztmohzrmrhczrueyrvjqaptuobnzffmylocfbukztraphkzxetjicgqqjhsldekroavofxufjxsqdgfpzofkkwsadktpcsektnpyebxllmouzsetqfvisxwnwtafehijynxkwolxsvxhfuovusmrlswgdcrdvnogkfvaenmefotjjsvkcnyfjxzncaytvgywjtapkynwgjeiolsbolachoiieshanhcewvpgqjxjjnvmbwcybgnhemtjiqahgfjhqortmjcuwvecyniorbfqifjnedipnchjczvxecdghvfwnyhmjnuhvwminhcgcsxmzbnxodsgbnvuvltozzgbrzeifzsgexdclwljquponohqckreqfwvmddqizlrhrkhfckecewdlvpdlnbwgxcpsyvuqsvtpmgpztpcajrsderqwsakbbjsdtwjhcavxaykejapyye" } ]
1,617,042,344
2,147,483,647
Python 3
OK
TESTS
34
62
0
n = int(input()) s = input() ans = [0]*n addi=1 if(n%2 == 0): idx = n//2-1 sign = 1 else: idx = n//2 sign = -1 for i in range(n): ans[idx] = s[i] idx += (addi*sign) addi += 1 sign *= -1 print(''.join(ans))
Title: Decoding Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp is mad about coding, that is why he writes Sveta encoded messages. He calls the median letter in a word the letter which is in the middle of the word. If the word's length is even, the median letter is the left of the two middle letters. In the following examples, the median letter is highlighted: contest, info. If the word consists of single letter, then according to above definition this letter is the median letter. Polycarp encodes each word in the following way: he writes down the median letter of the word, then deletes it and repeats the process until there are no letters left. For example, he encodes the word volga as logva. You are given an encoding *s* of some word, your task is to decode it. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=2000) — the length of the encoded word. The second line contains the string *s* of length *n* consisting of lowercase English letters — the encoding. Output Specification: Print the word that Polycarp encoded. Demo Input: ['5\nlogva\n', '2\nno\n', '4\nabba\n'] Demo Output: ['volga\n', 'no\n', 'baba\n'] Note: In the first example Polycarp encoded the word volga. At first, he wrote down the letter l from the position 3, after that his word looked like voga. After that Polycarp wrote down the letter o from the position 2, his word became vga. Then Polycarp wrote down the letter g which was at the second position, the word became va. Then he wrote down the letter v, then the letter a. Thus, the encoding looked like logva. In the second example Polycarp encoded the word no. He wrote down the letter n, the word became o, and he wrote down the letter o. Thus, in this example, the word and its encoding are the same. In the third example Polycarp encoded the word baba. At first, he wrote down the letter a, which was at the position 2, after that the word looked like bba. Then he wrote down the letter b, which was at the position 2, his word looked like ba. After that he wrote down the letter b, which was at the position 1, the word looked like a, and he wrote down that letter a. Thus, the encoding is abba.
```python n = int(input()) s = input() ans = [0]*n addi=1 if(n%2 == 0): idx = n//2-1 sign = 1 else: idx = n//2 sign = -1 for i in range(n): ans[idx] = s[i] idx += (addi*sign) addi += 1 sign *= -1 print(''.join(ans)) ```
3
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,549,816,827
2,147,483,647
Python 3
OK
TESTS
102
124
0
s1=list(input()) s2=list(input()) for i in range(len(s1)): if s1[i]==s2[i]: s1[i]='0' else: s1[i]='1' s1="".join(s1) print(s1)
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python s1=list(input()) s2=list(input()) for i in range(len(s1)): if s1[i]==s2[i]: s1[i]='0' else: s1[i]='1' s1="".join(s1) print(s1) ```
3.969
909
A
Generate Login
PROGRAMMING
1,000
[ "brute force", "greedy", "sortings" ]
null
null
The preferred way to generate user login in Polygon is to concatenate a prefix of the user's first name and a prefix of their last name, in that order. Each prefix must be non-empty, and any of the prefixes can be the full name. Typically there are multiple possible logins for each person. You are given the first and the last name of a user. Return the alphabetically earliest login they can get (regardless of other potential Polygon users). As a reminder, a prefix of a string *s* is its substring which occurs at the beginning of *s*: "a", "ab", "abc" etc. are prefixes of string "{abcdef}" but "b" and 'bc" are not. A string *a* is alphabetically earlier than a string *b*, if *a* is a prefix of *b*, or *a* and *b* coincide up to some position, and then *a* has a letter that is alphabetically earlier than the corresponding letter in *b*: "a" and "ab" are alphabetically earlier than "ac" but "b" and "ba" are alphabetically later than "ac".
The input consists of a single line containing two space-separated strings: the first and the last names. Each character of each string is a lowercase English letter. The length of each string is between 1 and 10, inclusive.
Output a single string — alphabetically earliest possible login formed from these names. The output should be given in lowercase as well.
[ "harry potter\n", "tom riddle\n" ]
[ "hap\n", "tomr\n" ]
none
500
[ { "input": "harry potter", "output": "hap" }, { "input": "tom riddle", "output": "tomr" }, { "input": "a qdpinbmcrf", "output": "aq" }, { "input": "wixjzniiub ssdfodfgap", "output": "wis" }, { "input": "z z", "output": "zz" }, { "input": "ertuyivhfg v", "output": "ertuv" }, { "input": "asdfghjkli ware", "output": "asdfghjkliw" }, { "input": "udggmyop ze", "output": "udggmyopz" }, { "input": "fapkdme rtzxovx", "output": "fapkdmer" }, { "input": "mybiqxmnqq l", "output": "ml" }, { "input": "dtbqya fyyymv", "output": "df" }, { "input": "fyclu zokbxiahao", "output": "fycluz" }, { "input": "qngatnviv rdych", "output": "qngar" }, { "input": "ttvnhrnng lqkfulhrn", "output": "tl" }, { "input": "fya fgx", "output": "ff" }, { "input": "nuis zvjjqlre", "output": "nuisz" }, { "input": "ly qtsmze", "output": "lq" }, { "input": "d kgfpjsurfw", "output": "dk" }, { "input": "lwli ewrpu", "output": "le" }, { "input": "rr wldsfubcs", "output": "rrw" }, { "input": "h qart", "output": "hq" }, { "input": "vugvblnzx kqdwdulm", "output": "vk" }, { "input": "xohesmku ef", "output": "xe" }, { "input": "twvvsl wtcyawv", "output": "tw" }, { "input": "obljndajv q", "output": "obljndajq" }, { "input": "jjxwj kxccwx", "output": "jjk" }, { "input": "sk fftzmv", "output": "sf" }, { "input": "cgpegngs aufzxkyyrw", "output": "ca" }, { "input": "reyjzjdvq skuch", "output": "res" }, { "input": "ardaae mxgdulijf", "output": "am" }, { "input": "bgopsdfji uaps", "output": "bgopsdfjiu" }, { "input": "amolfed pun", "output": "amolfedp" }, { "input": "badkiln yort", "output": "badkilny" }, { "input": "aaaaaaaaaz york", "output": "aaaaaaaaay" }, { "input": "bbbbcbbbbd c", "output": "bbbbc" }, { "input": "aa ab", "output": "aa" }, { "input": "ab b", "output": "ab" }, { "input": "aaaaa ab", "output": "aa" }, { "input": "aa a", "output": "aa" }, { "input": "aba b", "output": "ab" }, { "input": "aaaaaaa aaaaaa", "output": "aa" }, { "input": "a a", "output": "aa" }, { "input": "a aa", "output": "aa" }, { "input": "a b", "output": "ab" }, { "input": "b a", "output": "ba" }, { "input": "z a", "output": "za" }, { "input": "aaa a", "output": "aa" }, { "input": "aa aa", "output": "aa" }, { "input": "a aaa", "output": "aa" }, { "input": "aaaaaaaaaa aaaaaaaaaa", "output": "aa" }, { "input": "aaaaaaaaaa a", "output": "aa" }, { "input": "a aaaaaaaaaa", "output": "aa" }, { "input": "zzaa b", "output": "zb" }, { "input": "ca cf", "output": "cac" }, { "input": "abhi ia", "output": "abhi" }, { "input": "aaaa aaaab", "output": "aa" }, { "input": "aar raa", "output": "aar" }, { "input": "harry hotter", "output": "hah" }, { "input": "aaaaaaa a", "output": "aa" }, { "input": "apple pie", "output": "ap" }, { "input": "aaa aaa", "output": "aa" }, { "input": "kabc buba", "output": "kab" }, { "input": "asd ss", "output": "as" }, { "input": "bbb b", "output": "bb" } ]
1,515,119,086
2,147,483,647
Python 3
OK
TESTS
64
62
5,529,600
f,s = input().split() l = f[0] for c in f[1:]: if c >= s[0]: break l += c print(l + s[0]);
Title: Generate Login Time Limit: None seconds Memory Limit: None megabytes Problem Description: The preferred way to generate user login in Polygon is to concatenate a prefix of the user's first name and a prefix of their last name, in that order. Each prefix must be non-empty, and any of the prefixes can be the full name. Typically there are multiple possible logins for each person. You are given the first and the last name of a user. Return the alphabetically earliest login they can get (regardless of other potential Polygon users). As a reminder, a prefix of a string *s* is its substring which occurs at the beginning of *s*: "a", "ab", "abc" etc. are prefixes of string "{abcdef}" but "b" and 'bc" are not. A string *a* is alphabetically earlier than a string *b*, if *a* is a prefix of *b*, or *a* and *b* coincide up to some position, and then *a* has a letter that is alphabetically earlier than the corresponding letter in *b*: "a" and "ab" are alphabetically earlier than "ac" but "b" and "ba" are alphabetically later than "ac". Input Specification: The input consists of a single line containing two space-separated strings: the first and the last names. Each character of each string is a lowercase English letter. The length of each string is between 1 and 10, inclusive. Output Specification: Output a single string — alphabetically earliest possible login formed from these names. The output should be given in lowercase as well. Demo Input: ['harry potter\n', 'tom riddle\n'] Demo Output: ['hap\n', 'tomr\n'] Note: none
```python f,s = input().split() l = f[0] for c in f[1:]: if c >= s[0]: break l += c print(l + s[0]); ```
3
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,667,394,061
2,147,483,647
PyPy 3-64
OK
TESTS
30
124
0
word=input() a=0 b=0 for i in word: if i.isupper(): a+=1 else: b+=1 if a>b: print(word.upper()) else: print(word.lower())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python word=input() a=0 b=0 for i in word: if i.isupper(): a+=1 else: b+=1 if a>b: print(word.upper()) else: print(word.lower()) ```
3.969
47
A
Triangular numbers
PROGRAMMING
800
[ "brute force", "math" ]
A. Triangular numbers
2
256
A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number). Your task is to find out if a given integer is a triangular number.
The first line contains the single number *n* (1<=≤<=*n*<=≤<=500) — the given integer.
If the given integer is a triangular number output YES, otherwise output NO.
[ "1\n", "2\n", "3\n" ]
[ "YES\n", "NO\n", "YES\n" ]
none
500
[ { "input": "1", "output": "YES" }, { "input": "2", "output": "NO" }, { "input": "3", "output": "YES" }, { "input": "4", "output": "NO" }, { "input": "5", "output": "NO" }, { "input": "6", "output": "YES" }, { "input": "7", "output": "NO" }, { "input": "8", "output": "NO" }, { "input": "12", "output": "NO" }, { "input": "10", "output": "YES" }, { "input": "11", "output": "NO" }, { "input": "9", "output": "NO" }, { "input": "14", "output": "NO" }, { "input": "15", "output": "YES" }, { "input": "16", "output": "NO" }, { "input": "20", "output": "NO" }, { "input": "21", "output": "YES" }, { "input": "22", "output": "NO" }, { "input": "121", "output": "NO" }, { "input": "135", "output": "NO" }, { "input": "136", "output": "YES" }, { "input": "137", "output": "NO" }, { "input": "152", "output": "NO" }, { "input": "153", "output": "YES" }, { "input": "154", "output": "NO" }, { "input": "171", "output": "YES" }, { "input": "189", "output": "NO" }, { "input": "190", "output": "YES" }, { "input": "191", "output": "NO" }, { "input": "210", "output": "YES" }, { "input": "211", "output": "NO" }, { "input": "231", "output": "YES" }, { "input": "232", "output": "NO" }, { "input": "252", "output": "NO" }, { "input": "253", "output": "YES" }, { "input": "254", "output": "NO" }, { "input": "275", "output": "NO" }, { "input": "276", "output": "YES" }, { "input": "277", "output": "NO" }, { "input": "299", "output": "NO" }, { "input": "300", "output": "YES" }, { "input": "301", "output": "NO" }, { "input": "324", "output": "NO" }, { "input": "325", "output": "YES" }, { "input": "326", "output": "NO" }, { "input": "350", "output": "NO" }, { "input": "351", "output": "YES" }, { "input": "352", "output": "NO" }, { "input": "377", "output": "NO" }, { "input": "378", "output": "YES" }, { "input": "406", "output": "YES" }, { "input": "434", "output": "NO" }, { "input": "435", "output": "YES" }, { "input": "464", "output": "NO" }, { "input": "465", "output": "YES" }, { "input": "495", "output": "NO" }, { "input": "496", "output": "YES" }, { "input": "497", "output": "NO" }, { "input": "331", "output": "NO" }, { "input": "413", "output": "NO" }, { "input": "177", "output": "NO" }, { "input": "122", "output": "NO" }, { "input": "478", "output": "NO" }, { "input": "188", "output": "NO" }, { "input": "21", "output": "YES" }, { "input": "474", "output": "NO" }, { "input": "21", "output": "YES" }, { "input": "48", "output": "NO" }, { "input": "498", "output": "NO" }, { "input": "499", "output": "NO" }, { "input": "500", "output": "NO" } ]
1,675,403,458
2,147,483,647
Python 3
OK
TESTS
71
92
0
#4266668 Aug 11, 2013 7:39:45 PM fuwutu 47A - Triangular numbers Python 3 Accepted 124 ms 0 KB n = int(input()) triangular = 1 i = 1 while triangular < n: i += 1 triangular += i if triangular == n: print("YES") else: print("NO")
Title: Triangular numbers Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number). Your task is to find out if a given integer is a triangular number. Input Specification: The first line contains the single number *n* (1<=≤<=*n*<=≤<=500) — the given integer. Output Specification: If the given integer is a triangular number output YES, otherwise output NO. Demo Input: ['1\n', '2\n', '3\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: none
```python #4266668 Aug 11, 2013 7:39:45 PM fuwutu 47A - Triangular numbers Python 3 Accepted 124 ms 0 KB n = int(input()) triangular = 1 i = 1 while triangular < n: i += 1 triangular += i if triangular == n: print("YES") else: print("NO") ```
3.977