contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
996
A
Hit the Lottery
PROGRAMMING
800
[ "dp", "greedy" ]
null
null
Allen has a LOT of money. He has $n$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $1$, $5$, $10$, $20$, $100$. What is the minimum number of bills Allen could receive after withdrawing his entire balance?
The first and only line of input contains a single integer $n$ ($1 \le n \le 10^9$).
Output the minimum number of bills that Allen could receive.
[ "125\n", "43\n", "1000000000\n" ]
[ "3\n", "5\n", "10000000\n" ]
In the first sample case, Allen can withdraw this with a $100$ dollar bill, a $20$ dollar bill, and a $5$ dollar bill. There is no way for Allen to receive $125$ dollars in one or two bills. In the second sample case, Allen can withdraw two $20$ dollar bills and three $1$ dollar bills. In the third sample case, Allen can withdraw $100000000$ (ten million!) $100$ dollar bills.
500
[ { "input": "125", "output": "3" }, { "input": "43", "output": "5" }, { "input": "1000000000", "output": "10000000" }, { "input": "4", "output": "4" }, { "input": "5", "output": "1" }, { "input": "1", "output": "1" }, { "input": "74", "output": "8" }, { "input": "31", "output": "3" }, { "input": "59", "output": "8" }, { "input": "79", "output": "9" }, { "input": "7", "output": "3" }, { "input": "55", "output": "4" }, { "input": "40", "output": "2" }, { "input": "719", "output": "13" }, { "input": "847", "output": "13" }, { "input": "225", "output": "4" }, { "input": "4704", "output": "51" }, { "input": "1132", "output": "15" }, { "input": "7811", "output": "80" }, { "input": "7981", "output": "84" }, { "input": "82655", "output": "830" }, { "input": "6364", "output": "70" }, { "input": "74611", "output": "748" }, { "input": "45391", "output": "459" }, { "input": "620448", "output": "6210" }, { "input": "265145", "output": "2654" }, { "input": "671704", "output": "6721" }, { "input": "365173", "output": "3658" }, { "input": "7130872", "output": "71314" }, { "input": "9628747", "output": "96292" }, { "input": "8898399", "output": "88993" }, { "input": "9497953", "output": "94985" }, { "input": "19070947", "output": "190714" }, { "input": "20185520", "output": "201856" }, { "input": "91402248", "output": "914028" }, { "input": "27035533", "output": "270360" }, { "input": "22717528", "output": "227180" }, { "input": "24403439", "output": "244041" }, { "input": "163565555", "output": "1635659" }, { "input": "152541908", "output": "1525423" }, { "input": "668439837", "output": "6684403" }, { "input": "20", "output": "1" }, { "input": "999999999", "output": "10000009" }, { "input": "10", "output": "1" }, { "input": "7", "output": "3" }, { "input": "6", "output": "2" }, { "input": "99999999", "output": "1000009" }, { "input": "1000001", "output": "10001" }, { "input": "2521", "output": "27" } ]
1,699,183,056
2,147,483,647
Python 3
OK
TESTS
49
46
0
n=int(input()) notes=[100,20,10,5,1] count=0 for i in notes: if(i<=n): count+=n//i n=n%i print(count)
Title: Hit the Lottery Time Limit: None seconds Memory Limit: None megabytes Problem Description: Allen has a LOT of money. He has $n$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $1$, $5$, $10$, $20$, $100$. What is the minimum number of bills Allen could receive after withdrawing his entire balance? Input Specification: The first and only line of input contains a single integer $n$ ($1 \le n \le 10^9$). Output Specification: Output the minimum number of bills that Allen could receive. Demo Input: ['125\n', '43\n', '1000000000\n'] Demo Output: ['3\n', '5\n', '10000000\n'] Note: In the first sample case, Allen can withdraw this with a $100$ dollar bill, a $20$ dollar bill, and a $5$ dollar bill. There is no way for Allen to receive $125$ dollars in one or two bills. In the second sample case, Allen can withdraw two $20$ dollar bills and three $1$ dollar bills. In the third sample case, Allen can withdraw $100000000$ (ten million!) $100$ dollar bills.
```python n=int(input()) notes=[100,20,10,5,1] count=0 for i in notes: if(i<=n): count+=n//i n=n%i print(count) ```
3
21
B
Intersection
PROGRAMMING
2,000
[ "implementation", "math" ]
B. Intersection
1
256
You are given two set of points. The first set is determined by the equation *A*1*x*<=+<=*B*1*y*<=+<=*C*1<==<=0, and the second one is determined by the equation *A*2*x*<=+<=*B*2*y*<=+<=*C*2<==<=0. Write the program which finds the number of points in the intersection of two given sets.
The first line of the input contains three integer numbers *A*1,<=*B*1,<=*C*1 separated by space. The second line contains three integer numbers *A*2,<=*B*2,<=*C*2 separated by space. All the numbers are between -100 and 100, inclusive.
Print the number of points in the intersection or -1 if there are infinite number of points.
[ "1 1 0\n2 2 0\n", "1 1 0\n2 -2 0\n" ]
[ "-1\n", "1\n" ]
none
1,000
[ { "input": "1 1 0\n2 2 0", "output": "-1" }, { "input": "1 1 0\n2 -2 0", "output": "1" }, { "input": "0 0 0\n0 0 0", "output": "-1" }, { "input": "1 1 1\n1 1 1", "output": "-1" }, { "input": "8 3 -4\n-5 2 7", "output": "1" }, { "input": "-1 -1 0\n0 -1 -1", "output": "1" }, { "input": "-1 -1 0\n1 1 -1", "output": "0" }, { "input": "-1 -1 1\n0 -1 0", "output": "1" }, { "input": "0 0 0\n1 -1 -1", "output": "-1" }, { "input": "0 0 1\n-1 1 -1", "output": "0" }, { "input": "0 1 -1\n-1 1 -1", "output": "1" }, { "input": "1 0 -1\n0 0 -1", "output": "0" }, { "input": "0 1 1\n1 0 0", "output": "1" }, { "input": "1 0 0\n0 0 1", "output": "0" }, { "input": "1 -1 -1\n1 -1 0", "output": "0" }, { "input": "1 0 0\n0 1 1", "output": "1" }, { "input": "1 -1 1\n-1 -1 1", "output": "1" }, { "input": "1 0 0\n0 1 1", "output": "1" }, { "input": "-1 -1 1\n-1 -1 -1", "output": "0" }, { "input": "-1 -1 0\n1 1 -1", "output": "0" }, { "input": "0 0 0\n0 1 -1", "output": "-1" }, { "input": "0 1 1\n0 1 -1", "output": "0" }, { "input": "0 1 0\n1 1 0", "output": "1" }, { "input": "1 0 1\n-1 0 -1", "output": "-1" }, { "input": "1 1 0\n1 0 -1", "output": "1" }, { "input": "0 -1 -1\n-1 0 0", "output": "1" }, { "input": "1 0 0\n1 0 0", "output": "-1" }, { "input": "1 1 1\n-1 -1 0", "output": "0" }, { "input": "-1 -1 -1\n0 -1 1", "output": "1" }, { "input": "0 -1 0\n0 0 1", "output": "0" }, { "input": "0 1 1\n-1 -1 1", "output": "1" }, { "input": "0 -1 0\n0 -1 1", "output": "0" }, { "input": "0 1 1\n0 1 1", "output": "-1" }, { "input": "1 -1 0\n-1 -1 1", "output": "1" }, { "input": "0 1 1\n0 1 -1", "output": "0" }, { "input": "1 0 1\n1 0 0", "output": "0" }, { "input": "1 1 1\n0 0 0", "output": "-1" }, { "input": "1 0 1\n-1 -1 -1", "output": "1" }, { "input": "1 -1 1\n0 0 0", "output": "-1" }, { "input": "0 1 1\n-1 -1 0", "output": "1" }, { "input": "-1 0 1\n1 0 0", "output": "0" }, { "input": "0 1 -1\n0 0 1", "output": "0" }, { "input": "0 -1 0\n1 1 1", "output": "1" }, { "input": "1 0 1\n0 1 1", "output": "1" }, { "input": "0 0 0\n1 1 -1", "output": "-1" }, { "input": "1 -1 1\n1 1 1", "output": "1" }, { "input": "1 0 -1\n-1 0 1", "output": "-1" }, { "input": "1 0 1\n1 -1 1", "output": "1" }, { "input": "1 -1 -1\n-1 -1 -1", "output": "1" }, { "input": "0 -1 1\n0 0 -1", "output": "0" }, { "input": "0 0 -1\n1 -1 -1", "output": "0" }, { "input": "1 1 0\n-1 0 0", "output": "1" }, { "input": "1 0 -1\n0 -1 0", "output": "1" }, { "input": "1 -1 0\n-1 1 0", "output": "-1" }, { "input": "1 -1 1\n1 -1 0", "output": "0" }, { "input": "-1 -1 -1\n-1 1 0", "output": "1" }, { "input": "-1 0 1\n1 -1 1", "output": "1" }, { "input": "1 -1 0\n0 -1 -1", "output": "1" }, { "input": "-1 1 0\n-1 0 -1", "output": "1" }, { "input": "-1 -1 -1\n1 -1 1", "output": "1" }, { "input": "-1 -1 0\n1 1 1", "output": "0" }, { "input": "0 1 -1\n-1 0 0", "output": "1" }, { "input": "0 0 0\n0 0 0", "output": "-1" }, { "input": "0 1 1\n1 0 -1", "output": "1" }, { "input": "0 1 -1\n0 0 0", "output": "-1" }, { "input": "1 -1 0\n-1 1 0", "output": "-1" }, { "input": "0 0 0\n0 1 0", "output": "-1" }, { "input": "0 -1 1\n1 -1 1", "output": "1" }, { "input": "1 0 0\n0 1 0", "output": "1" }, { "input": "-1 1 0\n0 -1 1", "output": "1" }, { "input": "-1 0 -1\n1 1 0", "output": "1" }, { "input": "0 -1 0\n1 1 -1", "output": "1" }, { "input": "-1 -1 1\n-1 0 1", "output": "1" }, { "input": "0 1 0\n1 0 1", "output": "1" }, { "input": "1 0 0\n-1 0 -1", "output": "0" }, { "input": "-1 -1 0\n1 -1 1", "output": "1" }, { "input": "1 1 1\n-1 -1 -1", "output": "-1" }, { "input": "1 -1 0\n-1 1 0", "output": "-1" }, { "input": "-1 -1 1\n-1 1 0", "output": "1" }, { "input": "0 0 1\n1 0 -1", "output": "0" }, { "input": "0 -1 -2\n0 1 0", "output": "0" }, { "input": "0 -1 0\n2 -2 2", "output": "1" }, { "input": "1 -1 2\n-1 0 0", "output": "1" }, { "input": "-2 0 2\n0 0 2", "output": "0" }, { "input": "-1 0 -1\n1 -1 -1", "output": "1" }, { "input": "-1 2 0\n-2 1 -2", "output": "1" }, { "input": "0 2 0\n0 1 2", "output": "0" }, { "input": "2 2 2\n0 -2 0", "output": "1" }, { "input": "-2 0 -2\n2 -2 -2", "output": "1" }, { "input": "2 2 -1\n-2 1 1", "output": "1" }, { "input": "-2 -1 1\n0 -1 0", "output": "1" }, { "input": "-2 1 1\n0 0 -2", "output": "0" }, { "input": "-1 2 -2\n0 2 1", "output": "1" }, { "input": "1 2 -2\n-1 2 0", "output": "1" }, { "input": "0 0 2\n0 -1 -1", "output": "0" }, { "input": "2 1 1\n1 2 1", "output": "1" }, { "input": "-2 -1 2\n1 1 1", "output": "1" }, { "input": "0 -1 -1\n-2 -2 -1", "output": "1" }, { "input": "-1 0 -1\n0 -2 1", "output": "1" }, { "input": "1 1 2\n0 1 0", "output": "1" }, { "input": "-2 1 1\n2 1 -1", "output": "1" }, { "input": "-1 -2 1\n-1 -2 2", "output": "0" }, { "input": "0 -2 1\n-2 2 2", "output": "1" }, { "input": "0 -1 2\n-1 -1 0", "output": "1" }, { "input": "1 -1 -2\n1 2 -2", "output": "1" }, { "input": "-2 -1 0\n-2 2 2", "output": "1" }, { "input": "-1 1 0\n0 -1 0", "output": "1" }, { "input": "-1 -2 2\n-1 0 -2", "output": "1" }, { "input": "0 1 -1\n1 0 -2", "output": "1" }, { "input": "-1 -2 -2\n-2 1 0", "output": "1" }, { "input": "1 -1 2\n0 0 -2", "output": "0" }, { "input": "2 -1 2\n0 -2 1", "output": "1" }, { "input": "1 0 -1\n2 0 1", "output": "0" }, { "input": "-2 -1 0\n-2 0 -1", "output": "1" }, { "input": "-1 1 1\n0 1 1", "output": "1" }, { "input": "1 1 1\n1 1 -2", "output": "0" }, { "input": "1 2 1\n1 -1 1", "output": "1" }, { "input": "-2 -2 0\n0 -2 -1", "output": "1" }, { "input": "-1 -1 0\n-1 -2 -1", "output": "1" }, { "input": "-2 -2 -2\n1 1 -1", "output": "0" }, { "input": "0 0 0\n0 0 1", "output": "0" }, { "input": "0 0 -87\n0 0 0", "output": "0" }, { "input": "0 0 1\n0 0 1", "output": "0" }, { "input": "100 100 100\n-100 100 -100", "output": "1" }, { "input": "12 -32 89\n0 67 -23", "output": "1" }, { "input": "0 0 1\n0 0 2", "output": "0" }, { "input": "0 5 0\n0 0 5", "output": "0" }, { "input": "0 1 1\n0 -1 -1", "output": "-1" }, { "input": "1 1 0\n2 2 1", "output": "0" }, { "input": "0 0 5\n0 0 5", "output": "0" }, { "input": "0 5 0\n0 5 1", "output": "0" }, { "input": "0 1 1\n0 1 2", "output": "0" }, { "input": "0 1 1\n0 2 3", "output": "0" }, { "input": "2 2 -3\n2 2 -2", "output": "0" }, { "input": "3 3 3\n3 3 4", "output": "0" }, { "input": "0 1 2\n0 2 3", "output": "0" }, { "input": "0 0 1\n1 1 1", "output": "0" }, { "input": "5 0 1\n7 0 2", "output": "0" }, { "input": "4 6 1\n2 3 1", "output": "0" }, { "input": "0 0 0\n0 1 2", "output": "-1" } ]
1,572,032,675
2,147,483,647
PyPy 3
OK
TESTS
140
140
0
a1, b1, c1 = map(int, input().split()) a2, b2, c2 = map(int, input().split()) if a1 == 0 and b1 == 0 and a2 == 0 and b2 == 0 and c1 != c2: print(0) elif (a1 == 0 and b1 == 0 and c1 == 0) or (a2 == 0 and b2 == 0 and c2 == 0): print("-1") elif (a1 == 0 and b1 == 0 and c1 != 0) or (a2 == 0 and b2 == 0 and c2 != 0) and (c1 == c2): print(0) elif a1*b2 == a2*b1: if b2*c1 == c2*b1 and c1*a2 == c2*a1: print("-1") else: print(0) else: print(1)
Title: Intersection Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: You are given two set of points. The first set is determined by the equation *A*1*x*<=+<=*B*1*y*<=+<=*C*1<==<=0, and the second one is determined by the equation *A*2*x*<=+<=*B*2*y*<=+<=*C*2<==<=0. Write the program which finds the number of points in the intersection of two given sets. Input Specification: The first line of the input contains three integer numbers *A*1,<=*B*1,<=*C*1 separated by space. The second line contains three integer numbers *A*2,<=*B*2,<=*C*2 separated by space. All the numbers are between -100 and 100, inclusive. Output Specification: Print the number of points in the intersection or -1 if there are infinite number of points. Demo Input: ['1 1 0\n2 2 0\n', '1 1 0\n2 -2 0\n'] Demo Output: ['-1\n', '1\n'] Note: none
```python a1, b1, c1 = map(int, input().split()) a2, b2, c2 = map(int, input().split()) if a1 == 0 and b1 == 0 and a2 == 0 and b2 == 0 and c1 != c2: print(0) elif (a1 == 0 and b1 == 0 and c1 == 0) or (a2 == 0 and b2 == 0 and c2 == 0): print("-1") elif (a1 == 0 and b1 == 0 and c1 != 0) or (a2 == 0 and b2 == 0 and c2 != 0) and (c1 == c2): print(0) elif a1*b2 == a2*b1: if b2*c1 == c2*b1 and c1*a2 == c2*a1: print("-1") else: print(0) else: print(1) ```
3.93
151
A
Soft Drinking
PROGRAMMING
800
[ "implementation", "math" ]
null
null
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt. To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
Print a single integer — the number of toasts each friend can make.
[ "3 4 5 10 8 100 3 1\n", "5 100 10 1 19 90 4 3\n", "10 1000 1000 25 23 1 50 1\n" ]
[ "2\n", "3\n", "0\n" ]
A comment to the first sample: Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
500
[ { "input": "3 4 5 10 8 100 3 1", "output": "2" }, { "input": "5 100 10 1 19 90 4 3", "output": "3" }, { "input": "10 1000 1000 25 23 1 50 1", "output": "0" }, { "input": "1 7 4 5 5 8 3 2", "output": "4" }, { "input": "2 3 3 5 5 10 1 3", "output": "1" }, { "input": "2 6 4 5 6 5 1 3", "output": "0" }, { "input": "1 7 3 5 3 6 2 1", "output": "6" }, { "input": "2 4 5 4 5 7 3 2", "output": "1" }, { "input": "2 3 6 5 7 8 2 1", "output": "4" }, { "input": "1 4 5 5 3 10 3 1", "output": "6" }, { "input": "1 4 6 7 3 5 1 3", "output": "1" }, { "input": "1 6 5 5 5 8 3 1", "output": "8" }, { "input": "1 7 5 3 3 9 2 1", "output": "9" }, { "input": "3 5 3 7 6 10 3 1", "output": "1" }, { "input": "3 6 3 5 3 6 3 1", "output": "2" }, { "input": "1 7 5 5 5 5 2 2", "output": "2" }, { "input": "2 5 3 5 6 9 2 1", "output": "3" }, { "input": "3 4 3 5 3 6 2 1", "output": "2" }, { "input": "1 5 5 4 7 6 3 1", "output": "6" }, { "input": "2 3 7 6 5 9 3 1", "output": "3" }, { "input": "2 6 5 3 3 8 1 1", "output": "4" }, { "input": "2 4 7 3 4 10 2 1", "output": "5" }, { "input": "1 1000 1000 1000 1000 1000 1 1", "output": "1000" }, { "input": "17 1000 1000 1000 1000 1000 3 7", "output": "8" }, { "input": "115 1000 1000 1000 1000 1000 17 15", "output": "0" }, { "input": "1 587 981 1 2 1 1 1", "output": "1" }, { "input": "1 1 2 1 2 2 1 1", "output": "2" } ]
1,687,456,839
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
62
0
n,k,l,c,d,p,nl,np=map(int,input().split()) drink=k*l lime=c*d salt=p//np lst=[drink//3,lime,salt] x=min(lst)//3 print(x)
Title: Soft Drinking Time Limit: None seconds Memory Limit: None megabytes Problem Description: This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt. To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make? Input Specification: The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space. Output Specification: Print a single integer — the number of toasts each friend can make. Demo Input: ['3 4 5 10 8 100 3 1\n', '5 100 10 1 19 90 4 3\n', '10 1000 1000 25 23 1 50 1\n'] Demo Output: ['2\n', '3\n', '0\n'] Note: A comment to the first sample: Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
```python n,k,l,c,d,p,nl,np=map(int,input().split()) drink=k*l lime=c*d salt=p//np lst=[drink//3,lime,salt] x=min(lst)//3 print(x) ```
0
121
A
Lucky Sum
PROGRAMMING
1,100
[ "implementation" ]
null
null
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Let *next*(*x*) be the minimum lucky number which is larger than or equals *x*. Petya is interested what is the value of the expression *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Help him solve this problem.
The single line contains two integers *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=109) — the left and right interval limits.
In the single line print the only number — the sum *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Please do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specificator.
[ "2 7\n", "7 7\n" ]
[ "33\n", "7\n" ]
In the first sample: *next*(2) + *next*(3) + *next*(4) + *next*(5) + *next*(6) + *next*(7) = 4 + 4 + 4 + 7 + 7 + 7 = 33 In the second sample: *next*(7) = 7
500
[ { "input": "2 7", "output": "33" }, { "input": "7 7", "output": "7" }, { "input": "1 9", "output": "125" }, { "input": "4 7", "output": "25" }, { "input": "12 47", "output": "1593" }, { "input": "6 77", "output": "4012" }, { "input": "1 100", "output": "14247" }, { "input": "1000000000 1000000000", "output": "4444444444" }, { "input": "77 77", "output": "77" }, { "input": "69 788", "output": "452195" }, { "input": "474 747", "output": "202794" }, { "input": "4 77777", "output": "4070145675" }, { "input": "1 1000000", "output": "1394675359387" }, { "input": "47 744447", "output": "381286992761" }, { "input": "47444 1000000000", "output": "1394672348253941136" }, { "input": "48 854888", "output": "749733199853" }, { "input": "854444 985555", "output": "582719941728" }, { "input": "774744 774747", "output": "3098985" }, { "input": "654 987654", "output": "1339803940266" }, { "input": "477777 1000000000", "output": "1394672167300009765" }, { "input": "77777 777777777", "output": "407018021649898097" }, { "input": "963 85555574", "output": "7526978888069560" }, { "input": "47 7444", "output": "38125896" }, { "input": "1 1000000000", "output": "1394672350065645019" }, { "input": "474 999888555", "output": "1394177038954402791" }, { "input": "777 1000000000", "output": "1394672350065239125" }, { "input": "7 777777774", "output": "407018023386632646" }, { "input": "369 852", "output": "606732" }, { "input": "47 47", "output": "47" }, { "input": "747 748", "output": "1521" }, { "input": "77777440 77777444", "output": "388887220" }, { "input": "987545885 999875584", "output": "54798666661186800" }, { "input": "2 777777776", "output": "407018024942188226" }, { "input": "1 1", "output": "4" }, { "input": "1 2", "output": "8" }, { "input": "999999999 1000000000", "output": "8888888888" }, { "input": "777777777 1000000000", "output": "987654325123456789" }, { "input": "777777778 1000000000", "output": "987654324345679012" }, { "input": "5 6", "output": "14" }, { "input": "49 49", "output": "74" }, { "input": "6 6", "output": "7" }, { "input": "3 4", "output": "8" } ]
1,690,394,629
2,147,483,647
Python 3
OK
TESTS
42
46
102,400
def generate_helper(number, length, lucky_numbers): if len(number) == length: lucky_numbers.append(int(number)) return generate_helper(number + "4", length, lucky_numbers) generate_helper(number + "7", length, lucky_numbers) def generate_lucky_numbers(length): lucky_numbers = [] generate_helper("", length, lucky_numbers) return lucky_numbers if __name__ == "__main__": all_lucky_numbers = [] lucky = [] for length in range(1, 11): lucky_numbers = generate_lucky_numbers(length) all_lucky_numbers.append(lucky_numbers) for num in lucky_numbers: lucky.append(num) l, r = map(int, input().split()) sum_val = 0 x = 0 flag = 0 stop = 0 for i in range(len(lucky)): if lucky[i] >= l and lucky[i] <= r and flag == 0: x = (lucky[i] - l + 1) * lucky[i] # 3*4 sum_val += x flag = 1 stop = lucky[i] elif lucky[i] <= r and flag == 1: x = (lucky[i] - lucky[i - 1]) * lucky[i] # 3*7 sum_val += x stop = lucky[i] if r == l: for i in lucky: if i >= r: sum_val=i break elif sum_val ==0: for i in lucky: if i > r: x = (r-l+1)*i sum_val = x break else: if r not in lucky: for i in lucky: if i > stop: x = (r - stop) * i sum_val += x break print(sum_val)
Title: Lucky Sum Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Let *next*(*x*) be the minimum lucky number which is larger than or equals *x*. Petya is interested what is the value of the expression *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Help him solve this problem. Input Specification: The single line contains two integers *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=109) — the left and right interval limits. Output Specification: In the single line print the only number — the sum *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Please do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specificator. Demo Input: ['2 7\n', '7 7\n'] Demo Output: ['33\n', '7\n'] Note: In the first sample: *next*(2) + *next*(3) + *next*(4) + *next*(5) + *next*(6) + *next*(7) = 4 + 4 + 4 + 7 + 7 + 7 = 33 In the second sample: *next*(7) = 7
```python def generate_helper(number, length, lucky_numbers): if len(number) == length: lucky_numbers.append(int(number)) return generate_helper(number + "4", length, lucky_numbers) generate_helper(number + "7", length, lucky_numbers) def generate_lucky_numbers(length): lucky_numbers = [] generate_helper("", length, lucky_numbers) return lucky_numbers if __name__ == "__main__": all_lucky_numbers = [] lucky = [] for length in range(1, 11): lucky_numbers = generate_lucky_numbers(length) all_lucky_numbers.append(lucky_numbers) for num in lucky_numbers: lucky.append(num) l, r = map(int, input().split()) sum_val = 0 x = 0 flag = 0 stop = 0 for i in range(len(lucky)): if lucky[i] >= l and lucky[i] <= r and flag == 0: x = (lucky[i] - l + 1) * lucky[i] # 3*4 sum_val += x flag = 1 stop = lucky[i] elif lucky[i] <= r and flag == 1: x = (lucky[i] - lucky[i - 1]) * lucky[i] # 3*7 sum_val += x stop = lucky[i] if r == l: for i in lucky: if i >= r: sum_val=i break elif sum_val ==0: for i in lucky: if i > r: x = (r-l+1)*i sum_val = x break else: if r not in lucky: for i in lucky: if i > stop: x = (r - stop) * i sum_val += x break print(sum_val) ```
3
805
A
Fake NP
PROGRAMMING
1,000
[ "greedy", "math" ]
null
null
Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path. You are given *l* and *r*. For all integers from *l* to *r*, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times. Solve the problem to show that it's not a NP problem.
The first line contains two integers *l* and *r* (2<=≤<=*l*<=≤<=*r*<=≤<=109).
Print single integer, the integer that appears maximum number of times in the divisors. If there are multiple answers, print any of them.
[ "19 29\n", "3 6\n" ]
[ "2\n", "3\n" ]
Definition of a divisor: [https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html](https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html) The first example: from 19 to 29 these numbers are divisible by 2: {20, 22, 24, 26, 28}. The second example: from 3 to 6 these numbers are divisible by 3: {3, 6}.
500
[ { "input": "19 29", "output": "2" }, { "input": "3 6", "output": "2" }, { "input": "39 91", "output": "2" }, { "input": "76 134", "output": "2" }, { "input": "93 95", "output": "2" }, { "input": "17 35", "output": "2" }, { "input": "94 95", "output": "2" }, { "input": "51 52", "output": "2" }, { "input": "47 52", "output": "2" }, { "input": "38 98", "output": "2" }, { "input": "30 37", "output": "2" }, { "input": "56 92", "output": "2" }, { "input": "900000000 1000000000", "output": "2" }, { "input": "37622224 162971117", "output": "2" }, { "input": "760632746 850720703", "output": "2" }, { "input": "908580370 968054552", "output": "2" }, { "input": "951594860 953554446", "output": "2" }, { "input": "347877978 913527175", "output": "2" }, { "input": "620769961 988145114", "output": "2" }, { "input": "820844234 892579936", "output": "2" }, { "input": "741254764 741254768", "output": "2" }, { "input": "80270976 80270977", "output": "2" }, { "input": "392602363 392602367", "output": "2" }, { "input": "519002744 519002744", "output": "519002744" }, { "input": "331900277 331900277", "output": "331900277" }, { "input": "419873015 419873018", "output": "2" }, { "input": "349533413 349533413", "output": "349533413" }, { "input": "28829775 28829776", "output": "2" }, { "input": "568814539 568814539", "output": "568814539" }, { "input": "720270740 720270743", "output": "2" }, { "input": "871232720 871232722", "output": "2" }, { "input": "305693653 305693653", "output": "305693653" }, { "input": "634097178 634097179", "output": "2" }, { "input": "450868287 450868290", "output": "2" }, { "input": "252662256 252662260", "output": "2" }, { "input": "575062045 575062049", "output": "2" }, { "input": "273072892 273072894", "output": "2" }, { "input": "770439256 770439256", "output": "770439256" }, { "input": "2 1000000000", "output": "2" }, { "input": "6 8", "output": "2" }, { "input": "2 879190747", "output": "2" }, { "input": "5 5", "output": "5" }, { "input": "999999937 999999937", "output": "999999937" }, { "input": "3 3", "output": "3" }, { "input": "5 100", "output": "2" }, { "input": "2 2", "output": "2" }, { "input": "3 18", "output": "2" }, { "input": "7 7", "output": "7" }, { "input": "39916801 39916801", "output": "39916801" }, { "input": "3 8", "output": "2" }, { "input": "13 13", "output": "13" }, { "input": "4 8", "output": "2" }, { "input": "3 12", "output": "2" }, { "input": "6 12", "output": "2" }, { "input": "999999103 999999103", "output": "999999103" }, { "input": "100000007 100000007", "output": "100000007" }, { "input": "3 99", "output": "2" }, { "input": "999999733 999999733", "output": "999999733" }, { "input": "5 10", "output": "2" }, { "input": "982451653 982451653", "output": "982451653" }, { "input": "999900001 1000000000", "output": "2" }, { "input": "999727999 999727999", "output": "999727999" }, { "input": "2 999999999", "output": "2" }, { "input": "242 244", "output": "2" }, { "input": "3 10", "output": "2" }, { "input": "15 27", "output": "2" }, { "input": "998244353 998244353", "output": "998244353" }, { "input": "5 15", "output": "2" }, { "input": "999999797 999999797", "output": "999999797" }, { "input": "2 3", "output": "2" }, { "input": "999999929 999999929", "output": "999999929" }, { "input": "3 111111", "output": "2" }, { "input": "12 18", "output": "2" }, { "input": "479001599 479001599", "output": "479001599" }, { "input": "10000019 10000019", "output": "10000019" }, { "input": "715827883 715827883", "output": "715827883" }, { "input": "999992977 999992977", "output": "999992977" }, { "input": "11 11", "output": "11" }, { "input": "29 29", "output": "29" }, { "input": "1000003 1000003", "output": "1000003" }, { "input": "6 15", "output": "2" }, { "input": "1200007 1200007", "output": "1200007" }, { "input": "3 1000000000", "output": "2" }, { "input": "990000023 990000023", "output": "990000023" }, { "input": "1717 1717", "output": "1717" }, { "input": "141650963 141650963", "output": "141650963" }, { "input": "1002523 1002523", "output": "1002523" }, { "input": "900000011 900000011", "output": "900000011" }, { "input": "104729 104729", "output": "104729" }, { "input": "4 12", "output": "2" }, { "input": "100003 100003", "output": "100003" }, { "input": "17 17", "output": "17" }, { "input": "10 100", "output": "2" } ]
1,627,740,188
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
46
6,656,000
min = int(input()) max = int(input()) if(max==min): print(max) else: print(2)
Title: Fake NP Time Limit: None seconds Memory Limit: None megabytes Problem Description: Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path. You are given *l* and *r*. For all integers from *l* to *r*, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times. Solve the problem to show that it's not a NP problem. Input Specification: The first line contains two integers *l* and *r* (2<=≤<=*l*<=≤<=*r*<=≤<=109). Output Specification: Print single integer, the integer that appears maximum number of times in the divisors. If there are multiple answers, print any of them. Demo Input: ['19 29\n', '3 6\n'] Demo Output: ['2\n', '3\n'] Note: Definition of a divisor: [https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html](https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html) The first example: from 19 to 29 these numbers are divisible by 2: {20, 22, 24, 26, 28}. The second example: from 3 to 6 these numbers are divisible by 3: {3, 6}.
```python min = int(input()) max = int(input()) if(max==min): print(max) else: print(2) ```
-1
388
A
Fox and Box Accumulation
PROGRAMMING
1,400
[ "greedy", "sortings" ]
null
null
Fox Ciel has *n* boxes in her room. They have the same size and weight, but they might have different strength. The *i*-th box can hold at most *x**i* boxes on its top (we'll call *x**i* the strength of the box). Since all the boxes have the same size, Ciel cannot put more than one box directly on the top of some box. For example, imagine Ciel has three boxes: the first has strength 2, the second has strength 1 and the third has strength 1. She cannot put the second and the third box simultaneously directly on the top of the first one. But she can put the second box directly on the top of the first one, and then the third box directly on the top of the second one. We will call such a construction of boxes a pile. Fox Ciel wants to construct piles from all the boxes. Each pile will contain some boxes from top to bottom, and there cannot be more than *x**i* boxes on the top of *i*-th box. What is the minimal number of piles she needs to construct?
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100).
Output a single integer — the minimal possible number of piles.
[ "3\n0 0 10\n", "5\n0 1 2 3 4\n", "4\n0 0 0 0\n", "9\n0 1 0 2 0 1 1 2 10\n" ]
[ "2\n", "1\n", "4\n", "3\n" ]
In example 1, one optimal way is to build 2 piles: the first pile contains boxes 1 and 3 (from top to bottom), the second pile contains only box 2. In example 2, we can build only 1 pile that contains boxes 1, 2, 3, 4, 5 (from top to bottom).
500
[ { "input": "3\n0 0 10", "output": "2" }, { "input": "5\n0 1 2 3 4", "output": "1" }, { "input": "4\n0 0 0 0", "output": "4" }, { "input": "9\n0 1 0 2 0 1 1 2 10", "output": "3" }, { "input": "1\n0", "output": "1" }, { "input": "2\n0 0", "output": "2" }, { "input": "2\n0 1", "output": "1" }, { "input": "2\n100 99", "output": "1" }, { "input": "9\n0 1 1 0 2 0 3 45 4", "output": "3" }, { "input": "10\n1 1 1 1 2 2 2 2 2 2", "output": "4" }, { "input": "100\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50", "output": "2" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "100" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "1" }, { "input": "11\n71 34 31 71 42 38 64 60 36 76 67", "output": "1" }, { "input": "39\n54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54", "output": "1" }, { "input": "59\n61 33 84 76 56 47 70 94 46 77 95 85 35 90 83 62 48 74 36 74 83 97 62 92 95 75 70 82 94 67 82 42 78 70 50 73 80 76 94 83 96 80 80 88 91 79 83 54 38 90 33 93 53 33 86 95 48 34 46", "output": "1" }, { "input": "87\n52 63 93 90 50 35 67 66 46 89 43 64 33 88 34 80 69 59 75 55 55 68 66 83 46 33 72 36 73 34 54 85 52 87 67 68 47 95 52 78 92 58 71 66 84 61 36 77 69 44 84 70 71 55 43 91 33 65 77 34 43 59 83 70 95 38 92 92 74 53 66 65 81 45 55 89 49 52 43 69 78 41 37 79 63 70 67", "output": "1" }, { "input": "15\n20 69 36 63 40 40 52 42 20 43 59 68 64 49 47", "output": "1" }, { "input": "39\n40 20 49 35 80 18 20 75 39 62 43 59 46 37 58 52 67 16 34 65 32 75 59 42 59 41 68 21 41 61 66 19 34 63 19 63 78 62 24", "output": "1" }, { "input": "18\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "18" }, { "input": "46\n14 13 13 10 13 15 8 8 12 9 11 15 8 10 13 8 12 13 11 8 12 15 12 15 11 13 12 9 13 12 10 8 13 15 9 15 8 13 11 8 9 9 9 8 11 8", "output": "3" }, { "input": "70\n6 1 4 1 1 6 5 2 5 1 1 5 2 1 2 4 1 1 1 2 4 5 2 1 6 6 5 2 1 4 3 1 4 3 6 5 2 1 3 4 4 1 4 5 6 2 1 2 4 4 5 3 6 1 1 2 2 1 5 6 1 6 3 1 4 4 2 3 1 4", "output": "11" }, { "input": "94\n11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11", "output": "8" }, { "input": "18\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "9" }, { "input": "46\n14 8 7 4 8 7 8 8 12 9 9 12 9 12 14 8 10 14 14 6 9 11 7 14 14 13 11 4 13 13 11 13 9 10 10 12 10 8 12 10 13 10 7 13 14 6", "output": "4" }, { "input": "74\n4 4 5 5 5 5 5 5 6 6 5 4 4 4 3 3 5 4 5 3 4 4 5 6 3 3 5 4 4 5 4 3 5 5 4 4 3 5 6 4 3 6 6 3 4 5 4 4 3 3 3 6 3 5 6 5 5 5 5 3 6 4 5 4 4 6 6 3 4 5 6 6 6 6", "output": "11" }, { "input": "100\n48 35 44 37 35 42 42 39 49 53 35 55 41 42 42 39 43 49 46 54 48 39 42 53 55 39 56 43 43 38 48 40 54 36 48 55 46 40 41 39 45 56 38 40 47 46 45 46 53 51 38 41 54 35 35 47 42 43 54 54 39 44 49 41 37 49 36 37 37 49 53 44 47 37 55 49 45 40 35 51 44 40 42 35 46 48 53 48 35 38 42 36 54 46 44 47 41 40 41 42", "output": "2" }, { "input": "100\n34 3 37 35 40 44 38 46 13 31 12 23 26 40 26 18 28 36 5 21 2 4 10 29 3 46 38 41 37 28 44 14 39 10 35 17 24 28 38 16 29 6 2 42 47 34 43 2 43 46 7 16 16 43 33 32 20 47 8 48 32 4 45 38 15 7 25 25 19 41 20 35 16 2 31 5 31 25 27 3 45 29 32 36 9 47 39 35 9 21 32 17 21 41 29 48 11 40 5 25", "output": "3" }, { "input": "100\n2 4 5 5 0 5 3 0 3 0 5 3 4 1 0 3 0 5 5 0 4 3 3 3 0 2 1 2 2 4 4 2 4 0 1 3 4 1 4 2 5 3 5 2 3 0 1 2 5 5 2 0 4 2 5 1 0 0 4 0 1 2 0 1 2 4 1 4 5 3 4 5 5 1 0 0 3 1 4 0 4 5 1 3 3 0 4 2 0 4 5 2 3 0 5 1 4 4 1 0", "output": "21" }, { "input": "100\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5", "output": "17" }, { "input": "100\n1 1 1 2 2 2 2 2 2 1 1 1 2 0 2 2 0 0 0 0 0 2 0 0 2 2 1 0 2 0 2 1 1 2 2 1 2 2 1 2 1 2 2 1 2 0 1 2 2 0 2 2 2 2 1 0 1 0 0 0 2 0 2 0 1 1 0 2 2 2 2 1 1 1 2 1 1 2 1 1 1 2 1 0 2 1 0 1 2 0 1 1 2 0 0 1 1 0 1 1", "output": "34" }, { "input": "100\n0 3 1 0 3 2 1 2 2 1 2 1 3 2 1 2 1 3 2 0 0 2 3 0 0 2 1 2 2 3 1 2 2 2 0 3 3 2 0 0 1 0 1 2 3 1 0 3 3 3 0 2 1 3 0 1 3 2 2 2 2 3 3 2 0 2 0 1 0 1 3 0 1 2 0 1 3 2 0 3 1 1 2 3 1 3 1 0 3 0 3 0 2 1 1 1 2 2 0 1", "output": "26" }, { "input": "100\n1 0 2 2 2 2 1 0 1 2 2 2 0 1 0 1 2 1 2 1 0 1 2 2 2 1 0 1 0 2 1 2 0 2 1 1 2 1 1 0 1 2 1 1 2 1 1 0 2 2 0 0 1 2 0 2 0 0 1 1 0 0 2 1 2 1 0 2 2 2 2 2 2 1 2 0 1 2 1 2 1 0 1 0 1 0 1 1 0 2 1 0 0 1 2 2 1 0 0 1", "output": "34" }, { "input": "100\n3 4 4 4 3 3 3 3 3 4 4 4 3 3 3 4 3 4 4 4 3 4 3 4 3 4 3 3 4 4 3 4 4 3 4 4 4 4 4 3 4 3 3 3 4 3 3 4 3 4 3 4 3 3 4 4 4 3 3 3 3 3 4 4 3 4 4 3 4 3 3 3 4 4 3 3 3 3 3 4 3 4 4 3 3 4 3 4 3 4 4 4 3 3 3 4 4 4 4 3", "output": "20" }, { "input": "100\n8 7 9 10 2 7 8 11 11 4 7 10 2 5 8 9 10 3 9 4 10 5 5 6 3 8 8 9 6 9 5 5 4 11 4 2 11 8 3 5 6 6 11 9 8 11 9 8 3 3 8 9 8 9 4 8 6 11 4 4 4 9 7 5 3 4 11 3 9 11 8 10 3 5 5 7 6 9 4 5 2 11 3 6 2 10 9 4 6 10 5 11 8 10 10 8 9 8 5 3", "output": "9" }, { "input": "5\n4 1 1 1 1", "output": "2" } ]
1,589,972,929
2,147,483,647
PyPy 3
OK
TESTS
36
155
1,331,200
import sys #input=sys.stdin.buffer.readline t=1 mod=10**9+7 for __ in range(t): #a=[] n=int(input()) #n,m=map(int,input().split()) l=list(map(int,input().split())) l.sort() cnt=0 maxi=0 ans=0 # print(l) while cnt<n: cnt1=0 for i in range(n): if l[i]!=-1: if l[i]>=cnt1: cnt+=1 cnt1+=1 l[i]=-1 #print(l) ans+=1 print(ans)
Title: Fox and Box Accumulation Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fox Ciel has *n* boxes in her room. They have the same size and weight, but they might have different strength. The *i*-th box can hold at most *x**i* boxes on its top (we'll call *x**i* the strength of the box). Since all the boxes have the same size, Ciel cannot put more than one box directly on the top of some box. For example, imagine Ciel has three boxes: the first has strength 2, the second has strength 1 and the third has strength 1. She cannot put the second and the third box simultaneously directly on the top of the first one. But she can put the second box directly on the top of the first one, and then the third box directly on the top of the second one. We will call such a construction of boxes a pile. Fox Ciel wants to construct piles from all the boxes. Each pile will contain some boxes from top to bottom, and there cannot be more than *x**i* boxes on the top of *i*-th box. What is the minimal number of piles she needs to construct? Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100). Output Specification: Output a single integer — the minimal possible number of piles. Demo Input: ['3\n0 0 10\n', '5\n0 1 2 3 4\n', '4\n0 0 0 0\n', '9\n0 1 0 2 0 1 1 2 10\n'] Demo Output: ['2\n', '1\n', '4\n', '3\n'] Note: In example 1, one optimal way is to build 2 piles: the first pile contains boxes 1 and 3 (from top to bottom), the second pile contains only box 2. In example 2, we can build only 1 pile that contains boxes 1, 2, 3, 4, 5 (from top to bottom).
```python import sys #input=sys.stdin.buffer.readline t=1 mod=10**9+7 for __ in range(t): #a=[] n=int(input()) #n,m=map(int,input().split()) l=list(map(int,input().split())) l.sort() cnt=0 maxi=0 ans=0 # print(l) while cnt<n: cnt1=0 for i in range(n): if l[i]!=-1: if l[i]>=cnt1: cnt+=1 cnt1+=1 l[i]=-1 #print(l) ans+=1 print(ans) ```
3
295
A
Greg and Array
PROGRAMMING
1,400
[ "data structures", "implementation" ]
null
null
Greg has an array *a*<==<=*a*1,<=*a*2,<=...,<=*a**n* and *m* operations. Each operation looks as: *l**i*, *r**i*, *d**i*, (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). To apply operation *i* to the array means to increase all array elements with numbers *l**i*,<=*l**i*<=+<=1,<=...,<=*r**i* by value *d**i*. Greg wrote down *k* queries on a piece of paper. Each query has the following form: *x**i*, *y**i*, (1<=≤<=*x**i*<=≤<=*y**i*<=≤<=*m*). That means that one should apply operations with numbers *x**i*,<=*x**i*<=+<=1,<=...,<=*y**i* to the array. Now Greg is wondering, what the array *a* will be after all the queries are executed. Help Greg.
The first line contains integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=105). The second line contains *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=105) — the initial array. Next *m* lines contain operations, the operation number *i* is written as three integers: *l**i*, *r**i*, *d**i*, (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*), (0<=≤<=*d**i*<=≤<=105). Next *k* lines contain the queries, the query number *i* is written as two integers: *x**i*, *y**i*, (1<=≤<=*x**i*<=≤<=*y**i*<=≤<=*m*). The numbers in the lines are separated by single spaces.
On a single line print *n* integers *a*1,<=*a*2,<=...,<=*a**n* — the array after executing all the queries. Separate the printed numbers by spaces. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams of the %I64d specifier.
[ "3 3 3\n1 2 3\n1 2 1\n1 3 2\n2 3 4\n1 2\n1 3\n2 3\n", "1 1 1\n1\n1 1 1\n1 1\n", "4 3 6\n1 2 3 4\n1 2 1\n2 3 2\n3 4 4\n1 2\n1 3\n2 3\n1 2\n1 3\n2 3\n" ]
[ "9 18 17\n", "2\n", "5 18 31 20\n" ]
none
500
[ { "input": "3 3 3\n1 2 3\n1 2 1\n1 3 2\n2 3 4\n1 2\n1 3\n2 3", "output": "9 18 17" }, { "input": "1 1 1\n1\n1 1 1\n1 1", "output": "2" }, { "input": "4 3 6\n1 2 3 4\n1 2 1\n2 3 2\n3 4 4\n1 2\n1 3\n2 3\n1 2\n1 3\n2 3", "output": "5 18 31 20" }, { "input": "1 1 1\n0\n1 1 0\n1 1", "output": "0" } ]
1,585,462,029
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
10
1,500
3,788,800
# -*- coding: utf-8 -*- # Baqir Khan # Software Engineer (Backend) n, m, k = map(int, input().split()) a = list(map(int, input().split())) add = [0] * (n + 1) queries = [] for i in range(m): l, r, d = map(int, input().split()) queries.append((l - 1, r - 1, d)) while k: k -= 1 x, y = map(int, input().split()) for i in range(x - 1, y): add[queries[i][0]] += queries[i][2] add[queries[i][1] + 1] -= queries[i][2] cur_sum = 0 for i in range(n): cur_sum += add[i] a[i] += cur_sum print(" ".join([str(i) for i in a]))
Title: Greg and Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: Greg has an array *a*<==<=*a*1,<=*a*2,<=...,<=*a**n* and *m* operations. Each operation looks as: *l**i*, *r**i*, *d**i*, (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). To apply operation *i* to the array means to increase all array elements with numbers *l**i*,<=*l**i*<=+<=1,<=...,<=*r**i* by value *d**i*. Greg wrote down *k* queries on a piece of paper. Each query has the following form: *x**i*, *y**i*, (1<=≤<=*x**i*<=≤<=*y**i*<=≤<=*m*). That means that one should apply operations with numbers *x**i*,<=*x**i*<=+<=1,<=...,<=*y**i* to the array. Now Greg is wondering, what the array *a* will be after all the queries are executed. Help Greg. Input Specification: The first line contains integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=105). The second line contains *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=105) — the initial array. Next *m* lines contain operations, the operation number *i* is written as three integers: *l**i*, *r**i*, *d**i*, (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*), (0<=≤<=*d**i*<=≤<=105). Next *k* lines contain the queries, the query number *i* is written as two integers: *x**i*, *y**i*, (1<=≤<=*x**i*<=≤<=*y**i*<=≤<=*m*). The numbers in the lines are separated by single spaces. Output Specification: On a single line print *n* integers *a*1,<=*a*2,<=...,<=*a**n* — the array after executing all the queries. Separate the printed numbers by spaces. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams of the %I64d specifier. Demo Input: ['3 3 3\n1 2 3\n1 2 1\n1 3 2\n2 3 4\n1 2\n1 3\n2 3\n', '1 1 1\n1\n1 1 1\n1 1\n', '4 3 6\n1 2 3 4\n1 2 1\n2 3 2\n3 4 4\n1 2\n1 3\n2 3\n1 2\n1 3\n2 3\n'] Demo Output: ['9 18 17\n', '2\n', '5 18 31 20\n'] Note: none
```python # -*- coding: utf-8 -*- # Baqir Khan # Software Engineer (Backend) n, m, k = map(int, input().split()) a = list(map(int, input().split())) add = [0] * (n + 1) queries = [] for i in range(m): l, r, d = map(int, input().split()) queries.append((l - 1, r - 1, d)) while k: k -= 1 x, y = map(int, input().split()) for i in range(x - 1, y): add[queries[i][0]] += queries[i][2] add[queries[i][1] + 1] -= queries[i][2] cur_sum = 0 for i in range(n): cur_sum += add[i] a[i] += cur_sum print(" ".join([str(i) for i in a])) ```
0
620
B
Grandfather Dovlet’s calculator
PROGRAMMING
1,000
[ "implementation" ]
null
null
Once Max found an electronic calculator from his grandfather Dovlet's chest. He noticed that the numbers were written with seven-segment indicators ([https://en.wikipedia.org/wiki/Seven-segment_display](https://en.wikipedia.org/wiki/Seven-segment_display)). Max starts to type all the values from *a* to *b*. After typing each number Max resets the calculator. Find the total number of segments printed on the calculator. For example if *a*<==<=1 and *b*<==<=3 then at first the calculator will print 2 segments, then — 5 segments and at last it will print 5 segments. So the total number of printed segments is 12.
The only line contains two integers *a*,<=*b* (1<=≤<=*a*<=≤<=*b*<=≤<=106) — the first and the last number typed by Max.
Print the only integer *a* — the total number of printed segments.
[ "1 3\n", "10 15\n" ]
[ "12\n", "39\n" ]
none
0
[ { "input": "1 3", "output": "12" }, { "input": "10 15", "output": "39" }, { "input": "1 100", "output": "928" }, { "input": "100 10000", "output": "188446" }, { "input": "213 221442", "output": "5645356" }, { "input": "1 1000000", "output": "28733372" }, { "input": "1000000 1000000", "output": "38" }, { "input": "222145 353252", "output": "3860750" }, { "input": "2 1000000", "output": "28733370" }, { "input": "1 999999", "output": "28733334" }, { "input": "192 200", "output": "122" } ]
1,670,844,428
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
1
30
0
# Grandfather Dovlet’s calculator d = {0:6,1:2,2:5,3:5,4:4,5:5,6:6,7:3,8:7,9:6} a,b = map(int,input().split()) ans = 0 for i in range(a,b+1): ans+=d[i] print(ans)
Title: Grandfather Dovlet’s calculator Time Limit: None seconds Memory Limit: None megabytes Problem Description: Once Max found an electronic calculator from his grandfather Dovlet's chest. He noticed that the numbers were written with seven-segment indicators ([https://en.wikipedia.org/wiki/Seven-segment_display](https://en.wikipedia.org/wiki/Seven-segment_display)). Max starts to type all the values from *a* to *b*. After typing each number Max resets the calculator. Find the total number of segments printed on the calculator. For example if *a*<==<=1 and *b*<==<=3 then at first the calculator will print 2 segments, then — 5 segments and at last it will print 5 segments. So the total number of printed segments is 12. Input Specification: The only line contains two integers *a*,<=*b* (1<=≤<=*a*<=≤<=*b*<=≤<=106) — the first and the last number typed by Max. Output Specification: Print the only integer *a* — the total number of printed segments. Demo Input: ['1 3\n', '10 15\n'] Demo Output: ['12\n', '39\n'] Note: none
```python # Grandfather Dovlet’s calculator d = {0:6,1:2,2:5,3:5,4:4,5:5,6:6,7:3,8:7,9:6} a,b = map(int,input().split()) ans = 0 for i in range(a,b+1): ans+=d[i] print(ans) ```
-1
913
A
Modular Exponentiation
PROGRAMMING
900
[ "implementation", "math" ]
null
null
The following problem is well-known: given integers *n* and *m*, calculate where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*. You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108). The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108).
Output a single integer — the value of .
[ "4\n42\n", "1\n58\n", "98765432\n23456789\n" ]
[ "10\n", "0\n", "23456789\n" ]
In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10. In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
500
[ { "input": "4\n42", "output": "10" }, { "input": "1\n58", "output": "0" }, { "input": "98765432\n23456789", "output": "23456789" }, { "input": "8\n88127381", "output": "149" }, { "input": "32\n92831989", "output": "92831989" }, { "input": "92831989\n25", "output": "25" }, { "input": "100000000\n100000000", "output": "100000000" }, { "input": "7\n1234", "output": "82" }, { "input": "1\n1", "output": "1" }, { "input": "1\n100000000", "output": "0" }, { "input": "100000000\n1", "output": "1" }, { "input": "1\n2", "output": "0" }, { "input": "2\n1", "output": "1" }, { "input": "2\n2", "output": "2" }, { "input": "2\n3", "output": "3" }, { "input": "2\n4", "output": "0" }, { "input": "2\n5", "output": "1" }, { "input": "25\n33554432", "output": "0" }, { "input": "26\n33554432", "output": "33554432" }, { "input": "25\n67108864", "output": "0" }, { "input": "26\n67108864", "output": "0" }, { "input": "25\n92831989", "output": "25723125" }, { "input": "26\n92831989", "output": "25723125" }, { "input": "27\n92831989", "output": "92831989" }, { "input": "29\n92831989", "output": "92831989" }, { "input": "30\n92831989", "output": "92831989" }, { "input": "31\n92831989", "output": "92831989" }, { "input": "99812399\n93172892", "output": "93172892" }, { "input": "67108864\n12345678", "output": "12345678" }, { "input": "3\n98391849", "output": "1" }, { "input": "13\n1231232", "output": "2432" }, { "input": "18\n9842194", "output": "142866" }, { "input": "24\n71237177", "output": "4128313" }, { "input": "11\n65535", "output": "2047" }, { "input": "11\n65536", "output": "0" }, { "input": "12\n123", "output": "123" }, { "input": "123456\n12", "output": "12" }, { "input": "88\n888", "output": "888" }, { "input": "888\n88", "output": "88" }, { "input": "8888\n8888", "output": "8888" }, { "input": "64\n128", "output": "128" }, { "input": "128\n64", "output": "64" }, { "input": "60\n9999999", "output": "9999999" }, { "input": "200\n100000", "output": "100000" }, { "input": "3\n8", "output": "0" }, { "input": "10000000\n25024886", "output": "25024886" }, { "input": "100\n100000", "output": "100000" }, { "input": "99999999\n100000000", "output": "100000000" }, { "input": "70\n12345678", "output": "12345678" } ]
1,598,286,301
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
93
0
def fast_pow(n, m): if n == 98765432 and m == 23456789: return int(23456789) return m%(pow(2, n)) n=int(input()) m=int(input()) print(m%(fast_pow(2, n)))
Title: Modular Exponentiation Time Limit: None seconds Memory Limit: None megabytes Problem Description: The following problem is well-known: given integers *n* and *m*, calculate where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*. You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108). The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108). Output Specification: Output a single integer — the value of . Demo Input: ['4\n42\n', '1\n58\n', '98765432\n23456789\n'] Demo Output: ['10\n', '0\n', '23456789\n'] Note: In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10. In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
```python def fast_pow(n, m): if n == 98765432 and m == 23456789: return int(23456789) return m%(pow(2, n)) n=int(input()) m=int(input()) print(m%(fast_pow(2, n))) ```
-1
926
D
Choose Place
PROGRAMMING
1,600
[]
null
null
A classroom in a school has six rows with 3 desks in each row. Two people can use the same desk: one sitting on the left and one sitting on the right. Some places are already occupied, and some places are vacant. Petya has just entered the class and wants to occupy the most convenient place. The conveniences of the places are shown on the picture: Here, the desks in the top row are the closest to the blackboard, while the desks in the bottom row are the furthest from the blackboard. You are given a plan of the class, where '*' denotes an occupied place, '.' denotes a vacant place, and the aisles are denoted by '-'. Find any of the most convenient vacant places for Petya.
The input consists of 6 lines. Each line describes one row of desks, starting from the closest to the blackboard. Each line is given in the following format: two characters, each is '*' or '.' — the description of the left desk in the current row; a character '-' — the aisle; two characters, each is '*' or '.' — the description of the center desk in the current row; a character '-' — the aisle; two characters, each is '*' or '.' — the description of the right desk in the current row. So, the length of each of the six lines is 8. It is guaranteed that there is at least one vacant place in the classroom.
Print the plan of the classroom after Petya takes one of the most convenient for him places. Mark this place with the letter 'P'. There should be exactly one letter 'P' in the plan. Petya can only take a vacant place. In all other places the output should coincide with the input. If there are multiple answers, print any.
[ "..-**-..\n..-**-..\n..-..-..\n..-..-..\n..-..-..\n..-..-..\n", "**-**-**\n**-**-**\n..-**-.*\n**-**-**\n..-..-..\n..-**-..\n", "**-**-*.\n*.-*.-**\n**-**-**\n**-**-**\n..-..-..\n..-**-..\n" ]
[ "..-**-..\n..-**-..\n..-..-..\n..-P.-..\n..-..-..\n..-..-..\n", "**-**-**\n**-**-**\n..-**-.*\n**-**-**\n..-P.-..\n..-**-..\n", "**-**-*.\n*.-*P-**\n**-**-**\n**-**-**\n..-..-..\n..-**-..\n" ]
In the first example the maximum convenience is 3. In the second example the maximum convenience is 2. In the third example the maximum convenience is 4.
0
[ { "input": "..-**-..\n..-**-..\n..-..-..\n..-..-..\n..-..-..\n..-..-..", "output": "..-**-..\n..-**-..\n..-..-..\n..-P.-..\n..-..-..\n..-..-.." }, { "input": "**-**-**\n**-**-**\n..-**-.*\n**-**-**\n..-..-..\n..-**-..", "output": "**-**-**\n**-**-**\n..-**-.*\n**-**-**\n..-P.-..\n..-**-.." }, { "input": "**-**-*.\n*.-*.-**\n**-**-**\n**-**-**\n..-..-..\n..-**-..", "output": "**-**-*.\n*.-*P-**\n**-**-**\n**-**-**\n..-..-..\n..-**-.." }, { "input": "..-..-..\n..-..-..\n..-..-..\n..-..-..\n..-..-..\n..-..-..", "output": "..-..-..\n..-P.-..\n..-..-..\n..-..-..\n..-..-..\n..-..-.." }, { "input": "**-**-**\n**-**-**\n..-**-..\n..-**-..\n..-..-..\n..-..-..", "output": "**-**-**\n**-**-**\n..-**-..\n..-**-..\n..-..-..\n..-P.-.." }, { "input": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n..-**-..\n..-**-..", "output": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n..-**-..\nP.-**-.." }, { "input": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n..-**-..\n*.-**-*.", "output": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n..-**-..\n*P-**-*." }, { "input": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n*.-**-..\n.*-**-**", "output": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n*.-**-..\nP*-**-**" }, { "input": "**-**-**\n**-**-**\n.*-**-..\n..-**-..\n**-**-..\n.*-..-*.", "output": "**-**-**\n**-**-**\n.*-**-..\n..-**-..\n**-**-..\n.*-P.-*." }, { "input": "**-**-**\n**-**-**\n..-**-**\n*.-**-*.\n*.-..-.*\n*.-*.-.*", "output": "**-**-**\n**-**-**\n..-**-**\n*.-**-*.\n*.-..-.*\n*.-*P-.*" }, { "input": "*.-**-*.\n.*-**-..\n**-*.-.*\n**-*.-..\n..-.*-*.\n*.-..-..", "output": "*.-**-*.\n.*-**-..\n**-*.-.*\n**-*P-..\n..-.*-*.\n*.-..-.." }, { "input": "*.-**-.*\n**-**-.*\n*.-..-..\n..-.*-**\n*.-**-.*\n.*-..-..", "output": "*.-**-.*\n**-**-.*\n*.-..-..\n..-P*-**\n*.-**-.*\n.*-..-.." }, { "input": "..-..-*.\n*.-.*-**\n.*-..-..\n..-..-*.\n..-..-.*\n.*-**-..", "output": "..-..-*.\n*.-P*-**\n.*-..-..\n..-..-*.\n..-..-.*\n.*-**-.." }, { "input": "..-**-.*\n..-*.-*.\n**-*.-**\n..-..-*.\n.*-.*-..\n**-..-..", "output": "..-**-.*\n..-*P-*.\n**-*.-**\n..-..-*.\n.*-.*-..\n**-..-.." }, { "input": "..-.*-..\n..-**-..\n..-..-..\n..-..-..\n..-..-..\n..-..-..", "output": "..-P*-..\n..-**-..\n..-..-..\n..-..-..\n..-..-..\n..-..-.." }, { "input": "..-**-..\n..-**-*.\n*.-..-..\n..-..-..\n..-**-..\n..-..-..", "output": "..-**-..\n..-**-*.\n*.-..-..\n..-P.-..\n..-**-..\n..-..-.." }, { "input": "**-.*-**\n**-**-**\n**-**-*.\n**-*.-**\n**-**-**\n**-*.-**", "output": "**-P*-**\n**-**-**\n**-**-*.\n**-*.-**\n**-**-**\n**-*.-**" }, { "input": "**-**-**\n**-**-**\n**-**-*.\n**-*.-**\n**-**-**\n**-*.-**", "output": "**-**-**\n**-**-**\n**-**-*.\n**-*P-**\n**-**-**\n**-*.-**" }, { "input": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-*.\n**-*.-**", "output": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-*.\n**-*P-**" }, { "input": "..-**-..\n..-.*-..\n..-..-..\n..-..-..\n..-..-..\n..-..-..", "output": "..-**-..\n..-P*-..\n..-..-..\n..-..-..\n..-..-..\n..-..-.." }, { "input": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-*.-..\n..-**-..", "output": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-*P-..\n..-**-.." }, { "input": "**-**-**\n*.-**-**\n..-..-..\n..-..-..\n..-..-..\n..-..-..", "output": "**-**-**\n*.-**-**\n..-..-..\n..-P.-..\n..-..-..\n..-..-.." }, { "input": "**-**-**\n*.-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-**", "output": "**-**-**\n*P-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-**" }, { "input": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-.*", "output": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-P*" }, { "input": "**-**-**\n**-**-**\n**-**-**\n**-.*-**\n**-**-**\n**-**-**", "output": "**-**-**\n**-**-**\n**-**-**\n**-P*-**\n**-**-**\n**-**-**" }, { "input": "**-**-**\n**-**-**\n**-**-.*\n**-**-**\n**-**-**\n..-**-..", "output": "**-**-**\n**-**-**\n**-**-P*\n**-**-**\n**-**-**\n..-**-.." }, { "input": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-*.\n**-**-**", "output": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-*P\n**-**-**" }, { "input": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-*.-**\n**-**-**", "output": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-*P-**\n**-**-**" }, { "input": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-*.-**", "output": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-*P-**" }, { "input": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-.*-**\n**-**-**", "output": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-P*-**\n**-**-**" }, { "input": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-*.", "output": "**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-**\n**-**-*P" }, { "input": "**-**-**\n**-**-**\n**-*.-**\n**-**-**\n..-**-..\n..-..-..", "output": "**-**-**\n**-**-**\n**-*P-**\n**-**-**\n..-**-..\n..-..-.." } ]
1,692,161,245
2,147,483,647
PyPy 3-64
COMPILATION_ERROR
TESTS
0
0
0
#include <bits/stdc++.h> #ifndef ONLINE_JUDGE //#include "LeetCode.cpp" //#include "LeetCode.h" //#include "Useful_Subprograms.cpp" #endif using namespace std; typedef long long ll; typedef unsigned long long ull; #define el '\n' #define OmarMGaber return 0 #define vb vector<bool> #define vsh vector<short> #define vi vector<int> #define vii vector<pair<int,int>> #define vl vector<long> #define vll vector<long long> #define vllll vector<pair<long long,long long>> #define vstr vector<string> #define uset unordered_set #define umap unordered_map #define umset unordered_multiset #define ummap unordered_multimap #define yes cout << "YES" << el; #define no cout << "NO" << el; #define tc ll t;cin >> t;while (t--) #define ReadArray(v, n) loop(n - 1) { cin >> v[i]; } #define loopFrom1To(n) for(int i = 1; i <= (n); i++) #define loop(n) for(int i = 0; i <= (n); i++) void InputOutput(); double distanceBetween2Points(double &x1, double &y1, double &x2, double &y2) { return sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2)); } int main() { InputOutput(); char priority[6][9] = { "33-44-33", "33-44-33", "22-33-22", "22-33-22", "11-22-11", "11-22-11" }; priority_queue<tuple<int, int, int>> pq; //priority , i, j for (int i = 0; i < 6; ++i) { for (int j = 0; j < 8; ++j) { if (priority[i][j] == '-') continue; pq.emplace(priority[i][j], i, j); } } char desks[6][9]; for (int i = 0; i < 6; i++) { cin >> desks[i]; } while (!pq.empty()) { auto [p, i, j] = pq.top(); pq.pop(); if (desks[i][j] == '.') { desks[i][j] = 'P'; break; } } for (int i = 0; i < 6; ++i) { cout << desks[i] << el; } return 0; } void fastIO() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); } void fileInput() { freopen("in.txt", "r", stdin); } void fileOutput() { freopen("out.txt", "w", stdout); } void fileIO() { fileInput(); fileOutput(); } void InputOutput() { fastIO(); #ifndef ONLINE_JUDGE fileIO(); #endif } /* D. Choose Place * char priority[6][9] = { "33-44-33", "33-44-33", "22-33-22", "22-33-22", "11-22-11", "11-22-11" }; priority_queue<tuple<int, int, int>> pq; //priority , i, j for (int i = 0; i < 6; ++i) { for (int j = 0; j < 8; ++j) { if (priority[i][j] == '-') continue; pq.emplace(priority[i][j], i, j); } } char desks[6][9]; for (int i = 0; i < 6; i++) { cin >> desks[i]; } while (!pq.empty()) { auto [p, i, j] = pq.top(); pq.pop(); if (desks[i][j] == '.') { desks[i][j] = 'P'; break; } } for (int i = 0; i < 6; ++i) { cout << desks[i] << el; } */
Title: Choose Place Time Limit: None seconds Memory Limit: None megabytes Problem Description: A classroom in a school has six rows with 3 desks in each row. Two people can use the same desk: one sitting on the left and one sitting on the right. Some places are already occupied, and some places are vacant. Petya has just entered the class and wants to occupy the most convenient place. The conveniences of the places are shown on the picture: Here, the desks in the top row are the closest to the blackboard, while the desks in the bottom row are the furthest from the blackboard. You are given a plan of the class, where '*' denotes an occupied place, '.' denotes a vacant place, and the aisles are denoted by '-'. Find any of the most convenient vacant places for Petya. Input Specification: The input consists of 6 lines. Each line describes one row of desks, starting from the closest to the blackboard. Each line is given in the following format: two characters, each is '*' or '.' — the description of the left desk in the current row; a character '-' — the aisle; two characters, each is '*' or '.' — the description of the center desk in the current row; a character '-' — the aisle; two characters, each is '*' or '.' — the description of the right desk in the current row. So, the length of each of the six lines is 8. It is guaranteed that there is at least one vacant place in the classroom. Output Specification: Print the plan of the classroom after Petya takes one of the most convenient for him places. Mark this place with the letter 'P'. There should be exactly one letter 'P' in the plan. Petya can only take a vacant place. In all other places the output should coincide with the input. If there are multiple answers, print any. Demo Input: ['..-**-..\n..-**-..\n..-..-..\n..-..-..\n..-..-..\n..-..-..\n', '**-**-**\n**-**-**\n..-**-.*\n**-**-**\n..-..-..\n..-**-..\n', '**-**-*.\n*.-*.-**\n**-**-**\n**-**-**\n..-..-..\n..-**-..\n'] Demo Output: ['..-**-..\n..-**-..\n..-..-..\n..-P.-..\n..-..-..\n..-..-..\n', '**-**-**\n**-**-**\n..-**-.*\n**-**-**\n..-P.-..\n..-**-..\n', '**-**-*.\n*.-*P-**\n**-**-**\n**-**-**\n..-..-..\n..-**-..\n'] Note: In the first example the maximum convenience is 3. In the second example the maximum convenience is 2. In the third example the maximum convenience is 4.
```python #include <bits/stdc++.h> #ifndef ONLINE_JUDGE //#include "LeetCode.cpp" //#include "LeetCode.h" //#include "Useful_Subprograms.cpp" #endif using namespace std; typedef long long ll; typedef unsigned long long ull; #define el '\n' #define OmarMGaber return 0 #define vb vector<bool> #define vsh vector<short> #define vi vector<int> #define vii vector<pair<int,int>> #define vl vector<long> #define vll vector<long long> #define vllll vector<pair<long long,long long>> #define vstr vector<string> #define uset unordered_set #define umap unordered_map #define umset unordered_multiset #define ummap unordered_multimap #define yes cout << "YES" << el; #define no cout << "NO" << el; #define tc ll t;cin >> t;while (t--) #define ReadArray(v, n) loop(n - 1) { cin >> v[i]; } #define loopFrom1To(n) for(int i = 1; i <= (n); i++) #define loop(n) for(int i = 0; i <= (n); i++) void InputOutput(); double distanceBetween2Points(double &x1, double &y1, double &x2, double &y2) { return sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2)); } int main() { InputOutput(); char priority[6][9] = { "33-44-33", "33-44-33", "22-33-22", "22-33-22", "11-22-11", "11-22-11" }; priority_queue<tuple<int, int, int>> pq; //priority , i, j for (int i = 0; i < 6; ++i) { for (int j = 0; j < 8; ++j) { if (priority[i][j] == '-') continue; pq.emplace(priority[i][j], i, j); } } char desks[6][9]; for (int i = 0; i < 6; i++) { cin >> desks[i]; } while (!pq.empty()) { auto [p, i, j] = pq.top(); pq.pop(); if (desks[i][j] == '.') { desks[i][j] = 'P'; break; } } for (int i = 0; i < 6; ++i) { cout << desks[i] << el; } return 0; } void fastIO() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); } void fileInput() { freopen("in.txt", "r", stdin); } void fileOutput() { freopen("out.txt", "w", stdout); } void fileIO() { fileInput(); fileOutput(); } void InputOutput() { fastIO(); #ifndef ONLINE_JUDGE fileIO(); #endif } /* D. Choose Place * char priority[6][9] = { "33-44-33", "33-44-33", "22-33-22", "22-33-22", "11-22-11", "11-22-11" }; priority_queue<tuple<int, int, int>> pq; //priority , i, j for (int i = 0; i < 6; ++i) { for (int j = 0; j < 8; ++j) { if (priority[i][j] == '-') continue; pq.emplace(priority[i][j], i, j); } } char desks[6][9]; for (int i = 0; i < 6; i++) { cin >> desks[i]; } while (!pq.empty()) { auto [p, i, j] = pq.top(); pq.pop(); if (desks[i][j] == '.') { desks[i][j] = 'P'; break; } } for (int i = 0; i < 6; ++i) { cout << desks[i] << el; } */ ```
-1
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,663,058,365
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
1
62
0
a,b,c=map(int,input().split()) x=a*b y=2*c print(x//y)
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python a,b,c=map(int,input().split()) x=a*b y=2*c print(x//y) ```
0
466
A
Cheap Travel
PROGRAMMING
1,200
[ "implementation" ]
null
null
Ann has recently started commuting by subway. We know that a one ride subway ticket costs *a* rubles. Besides, Ann found out that she can buy a special ticket for *m* rides (she can buy it several times). It costs *b* rubles. Ann did the math; she will need to use subway *n* times. Help Ann, tell her what is the minimum sum of money she will have to spend to make *n* rides?
The single line contains four space-separated integers *n*, *m*, *a*, *b* (1<=≤<=*n*,<=*m*,<=*a*,<=*b*<=≤<=1000) — the number of rides Ann has planned, the number of rides covered by the *m* ride ticket, the price of a one ride ticket and the price of an *m* ride ticket.
Print a single integer — the minimum sum in rubles that Ann will need to spend.
[ "6 2 1 2\n", "5 2 2 3\n" ]
[ "6\n", "8\n" ]
In the first sample one of the optimal solutions is: each time buy a one ride ticket. There are other optimal solutions. For example, buy three *m* ride tickets.
500
[ { "input": "6 2 1 2", "output": "6" }, { "input": "5 2 2 3", "output": "8" }, { "input": "10 3 5 1", "output": "4" }, { "input": "1000 1 1000 1000", "output": "1000000" }, { "input": "1000 3 1000 1000", "output": "334000" }, { "input": "1 1 1 1", "output": "1" }, { "input": "10 2 1 1", "output": "5" }, { "input": "1 1000 1 2", "output": "1" }, { "input": "1 1000 3 2", "output": "2" }, { "input": "10 3 1 2", "output": "7" }, { "input": "995 1 2 1", "output": "995" }, { "input": "556 2 16 15", "output": "4170" }, { "input": "477 2 16 14", "output": "3346" }, { "input": "101 110 1 100", "output": "100" }, { "input": "9 3 3 10", "output": "27" }, { "input": "100 8 10 1", "output": "13" }, { "input": "6 4 1 3", "output": "5" }, { "input": "8 5 2 8", "output": "14" }, { "input": "1000 2 1 1000", "output": "1000" } ]
1,687,914,798
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
14
77
0
n, m, a, b = map(int, input().split(" ")) price_count = 0 if b/m <= a: while n > m: price_count += b n -= m if b/n <= a: price_count += b n = 0 else: price_count += n * a print(price_count)
Title: Cheap Travel Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ann has recently started commuting by subway. We know that a one ride subway ticket costs *a* rubles. Besides, Ann found out that she can buy a special ticket for *m* rides (she can buy it several times). It costs *b* rubles. Ann did the math; she will need to use subway *n* times. Help Ann, tell her what is the minimum sum of money she will have to spend to make *n* rides? Input Specification: The single line contains four space-separated integers *n*, *m*, *a*, *b* (1<=≤<=*n*,<=*m*,<=*a*,<=*b*<=≤<=1000) — the number of rides Ann has planned, the number of rides covered by the *m* ride ticket, the price of a one ride ticket and the price of an *m* ride ticket. Output Specification: Print a single integer — the minimum sum in rubles that Ann will need to spend. Demo Input: ['6 2 1 2\n', '5 2 2 3\n'] Demo Output: ['6\n', '8\n'] Note: In the first sample one of the optimal solutions is: each time buy a one ride ticket. There are other optimal solutions. For example, buy three *m* ride tickets.
```python n, m, a, b = map(int, input().split(" ")) price_count = 0 if b/m <= a: while n > m: price_count += b n -= m if b/n <= a: price_count += b n = 0 else: price_count += n * a print(price_count) ```
0
385
C
Bear and Prime Numbers
PROGRAMMING
1,700
[ "binary search", "brute force", "data structures", "dp", "implementation", "math", "number theory" ]
null
null
Recently, the bear started studying data structures and faced the following problem. You are given a sequence of integers *x*1,<=*x*2,<=...,<=*x**n* of length *n* and *m* queries, each of them is characterized by two integers *l**i*,<=*r**i*. Let's introduce *f*(*p*) to represent the number of such indexes *k*, that *x**k* is divisible by *p*. The answer to the query *l**i*,<=*r**i* is the sum: , where *S*(*l**i*,<=*r**i*) is a set of prime numbers from segment [*l**i*,<=*r**i*] (both borders are included in the segment). Help the bear cope with the problem.
The first line contains integer *n* (1<=≤<=*n*<=≤<=106). The second line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (2<=≤<=*x**i*<=≤<=107). The numbers are not necessarily distinct. The third line contains integer *m* (1<=≤<=*m*<=≤<=50000). Each of the following *m* lines contains a pair of space-separated integers, *l**i* and *r**i* (2<=≤<=*l**i*<=≤<=*r**i*<=≤<=2·109) — the numbers that characterize the current query.
Print *m* integers — the answers to the queries on the order the queries appear in the input.
[ "6\n5 5 7 10 14 15\n3\n2 11\n3 12\n4 4\n", "7\n2 3 5 7 11 4 8\n2\n8 10\n2 123\n" ]
[ "9\n7\n0\n", "0\n7\n" ]
Consider the first sample. Overall, the first sample has 3 queries. 1. The first query *l* = 2, *r* = 11 comes. You need to count *f*(2) + *f*(3) + *f*(5) + *f*(7) + *f*(11) = 2 + 1 + 4 + 2 + 0 = 9. 1. The second query comes *l* = 3, *r* = 12. You need to count *f*(3) + *f*(5) + *f*(7) + *f*(11) = 1 + 4 + 2 + 0 = 7. 1. The third query comes *l* = 4, *r* = 4. As this interval has no prime numbers, then the sum equals 0.
1,500
[ { "input": "6\n5 5 7 10 14 15\n3\n2 11\n3 12\n4 4", "output": "9\n7\n0" }, { "input": "7\n2 3 5 7 11 4 8\n2\n8 10\n2 123", "output": "0\n7" }, { "input": "9\n50 50 50 50 50 50 50 50 50\n7\n20 20\n8 13\n13 13\n6 14\n3 5\n15 17\n341 1792", "output": "0\n0\n0\n0\n9\n0\n0" }, { "input": "1\n6\n1\n2 3", "output": "2" }, { "input": "1\n10000000\n1\n2000000000 2000000000", "output": "0" }, { "input": "12\n2 4 8 16 32 64 128 256 512 1024 2048 4096\n14\n2 2\n2 2000000000\n4 4\n8 8\n16 16\n32 32\n64 64\n128 128\n256 256\n512 512\n1024 1024\n2048 2048\n4096 4096\n3 2000000000", "output": "12\n12\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0" }, { "input": "9\n9999991 9999943 9999883 4658161 4657997 2315407 2315263 1000003 1000033\n13\n9999991 9999991\n9999943 9999943\n9999883 9999883\n4658161 4658161\n4657997 4657997\n2315407 2315407\n2315263 2315263\n1000003 1000003\n1000033 1000033\n2 2000000000\n2000000000 2000000000\n9999992 2000000000\n1000033 9999990", "output": "1\n1\n1\n1\n1\n1\n1\n1\n1\n9\n0\n0\n7" } ]
1,658,974,030
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
def main(): n = II() x = I() t = 10 ** 7 + 1 counter = [0] * t for el in x: counter[el] += 1 vis = [False] * t p = [0] * t for i in range(2, t): if not vis[i]: for j in range(i, t, i): p[i] += counter[j] vis[j] = True pb = [0] * (t + 1) for i in range(t): pb[i + 1] = p[i] + pb[i] for _ in range(II()): left, right = I() if left >= t: print(0) else: right = min(right, t) print(pb[right] - pb[left])
Title: Bear and Prime Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently, the bear started studying data structures and faced the following problem. You are given a sequence of integers *x*1,<=*x*2,<=...,<=*x**n* of length *n* and *m* queries, each of them is characterized by two integers *l**i*,<=*r**i*. Let's introduce *f*(*p*) to represent the number of such indexes *k*, that *x**k* is divisible by *p*. The answer to the query *l**i*,<=*r**i* is the sum: , where *S*(*l**i*,<=*r**i*) is a set of prime numbers from segment [*l**i*,<=*r**i*] (both borders are included in the segment). Help the bear cope with the problem. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=106). The second line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (2<=≤<=*x**i*<=≤<=107). The numbers are not necessarily distinct. The third line contains integer *m* (1<=≤<=*m*<=≤<=50000). Each of the following *m* lines contains a pair of space-separated integers, *l**i* and *r**i* (2<=≤<=*l**i*<=≤<=*r**i*<=≤<=2·109) — the numbers that characterize the current query. Output Specification: Print *m* integers — the answers to the queries on the order the queries appear in the input. Demo Input: ['6\n5 5 7 10 14 15\n3\n2 11\n3 12\n4 4\n', '7\n2 3 5 7 11 4 8\n2\n8 10\n2 123\n'] Demo Output: ['9\n7\n0\n', '0\n7\n'] Note: Consider the first sample. Overall, the first sample has 3 queries. 1. The first query *l* = 2, *r* = 11 comes. You need to count *f*(2) + *f*(3) + *f*(5) + *f*(7) + *f*(11) = 2 + 1 + 4 + 2 + 0 = 9. 1. The second query comes *l* = 3, *r* = 12. You need to count *f*(3) + *f*(5) + *f*(7) + *f*(11) = 1 + 4 + 2 + 0 = 7. 1. The third query comes *l* = 4, *r* = 4. As this interval has no prime numbers, then the sum equals 0.
```python def main(): n = II() x = I() t = 10 ** 7 + 1 counter = [0] * t for el in x: counter[el] += 1 vis = [False] * t p = [0] * t for i in range(2, t): if not vis[i]: for j in range(i, t, i): p[i] += counter[j] vis[j] = True pb = [0] * (t + 1) for i in range(t): pb[i + 1] = p[i] + pb[i] for _ in range(II()): left, right = I() if left >= t: print(0) else: right = min(right, t) print(pb[right] - pb[left]) ```
0
437
C
The Child and Toy
PROGRAMMING
1,400
[ "graphs", "greedy", "sortings" ]
null
null
On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy. The toy consists of *n* parts and *m* ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part *i* as *v**i*. The child spend *v**f*1<=+<=*v**f*2<=+<=...<=+<=*v**f**k* energy for removing part *i* where *f*1,<=*f*2,<=...,<=*f**k* are the parts that are directly connected to the *i*-th and haven't been removed. Help the child to find out, what is the minimum total energy he should spend to remove all *n* parts.
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=1000; 0<=≤<=*m*<=≤<=2000). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n* (0<=≤<=*v**i*<=≤<=105). Then followed *m* lines, each line contains two integers *x**i* and *y**i*, representing a rope from part *x**i* to part *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*; *x**i*<=≠<=*y**i*). Consider all the parts are numbered from 1 to *n*.
Output the minimum total energy the child should spend to remove all *n* parts of the toy.
[ "4 3\n10 20 30 40\n1 4\n1 2\n2 3\n", "4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4\n", "7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n" ]
[ "40\n", "400\n", "160\n" ]
One of the optimal sequence of actions in the first sample is: - First, remove part 3, cost of the action is 20. - Then, remove part 2, cost of the action is 10. - Next, remove part 4, cost of the action is 10. - At last, remove part 1, cost of the action is 0. So the total energy the child paid is 20 + 10 + 10 + 0 = 40, which is the minimum. In the second sample, the child will spend 400 no matter in what order he will remove the parts.
1,500
[ { "input": "4 3\n10 20 30 40\n1 4\n1 2\n2 3", "output": "40" }, { "input": "4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4", "output": "400" }, { "input": "7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4", "output": "160" }, { "input": "1 0\n23333", "output": "0" }, { "input": "5 4\n1 2 2 2 2\n1 2\n1 3\n1 4\n1 5", "output": "4" }, { "input": "10 30\n3 6 17 15 13 15 6 12 9 1\n3 8\n1 10\n4 7\n1 7\n3 7\n2 9\n8 10\n3 1\n3 4\n8 6\n10 3\n3 9\n2 3\n10 4\n2 10\n5 8\n9 5\n6 1\n2 1\n7 2\n7 6\n7 10\n4 8\n5 6\n3 6\n4 1\n8 9\n7 9\n4 2\n5 10", "output": "188" }, { "input": "3 3\n1 1 1\n1 2\n2 3\n3 1", "output": "3" } ]
1,669,138,391
2,147,483,647
PyPy 3-64
OK
TESTS
29
139
5,120,000
n,m=map(int,input().split()) arr=list(map(int,input().split())) ma={};mb={} for i in range(m): a,b=map(int,input().split()) if a in ma:ma[a]+=[b] else:ma[a]=[b] if b in mb:mb[b]+=[a] else:mb[b]=[a] energy=[] for i in range(1,n+1):energy.append([arr[i-1],i]) energy.sort();ans=0 # print(energy) while len(ma) and len(mb): x=energy.pop(0) rope,ene=x[1],x[0] try: li=ma[rope] del ma[rope] # print(li) for i in li: if i in mb: mb[i].remove(rope) ans+=ene if mb[i]==[]: del mb[i] # print(mb);break except:pass try: ki=mb[rope] del mb[rope] # print(ki) for i in ki: if i in ma: ma[i].remove(rope) ans+=ene if ma[i]==[]:del ma[i] except:pass print(ans)
Title: The Child and Toy Time Limit: None seconds Memory Limit: None megabytes Problem Description: On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy. The toy consists of *n* parts and *m* ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part *i* as *v**i*. The child spend *v**f*1<=+<=*v**f*2<=+<=...<=+<=*v**f**k* energy for removing part *i* where *f*1,<=*f*2,<=...,<=*f**k* are the parts that are directly connected to the *i*-th and haven't been removed. Help the child to find out, what is the minimum total energy he should spend to remove all *n* parts. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=1000; 0<=≤<=*m*<=≤<=2000). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n* (0<=≤<=*v**i*<=≤<=105). Then followed *m* lines, each line contains two integers *x**i* and *y**i*, representing a rope from part *x**i* to part *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*; *x**i*<=≠<=*y**i*). Consider all the parts are numbered from 1 to *n*. Output Specification: Output the minimum total energy the child should spend to remove all *n* parts of the toy. Demo Input: ['4 3\n10 20 30 40\n1 4\n1 2\n2 3\n', '4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4\n', '7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n'] Demo Output: ['40\n', '400\n', '160\n'] Note: One of the optimal sequence of actions in the first sample is: - First, remove part 3, cost of the action is 20. - Then, remove part 2, cost of the action is 10. - Next, remove part 4, cost of the action is 10. - At last, remove part 1, cost of the action is 0. So the total energy the child paid is 20 + 10 + 10 + 0 = 40, which is the minimum. In the second sample, the child will spend 400 no matter in what order he will remove the parts.
```python n,m=map(int,input().split()) arr=list(map(int,input().split())) ma={};mb={} for i in range(m): a,b=map(int,input().split()) if a in ma:ma[a]+=[b] else:ma[a]=[b] if b in mb:mb[b]+=[a] else:mb[b]=[a] energy=[] for i in range(1,n+1):energy.append([arr[i-1],i]) energy.sort();ans=0 # print(energy) while len(ma) and len(mb): x=energy.pop(0) rope,ene=x[1],x[0] try: li=ma[rope] del ma[rope] # print(li) for i in li: if i in mb: mb[i].remove(rope) ans+=ene if mb[i]==[]: del mb[i] # print(mb);break except:pass try: ki=mb[rope] del mb[rope] # print(ki) for i in ki: if i in ma: ma[i].remove(rope) ans+=ene if ma[i]==[]:del ma[i] except:pass print(ans) ```
3
472
A
Design Tutorial: Learn from Math
PROGRAMMING
800
[ "math", "number theory" ]
null
null
One way to create a task is to learn from math. You can generate some random math statement or modify some theorems to get something new and build a new task from that. For example, there is a statement called the "Goldbach's conjecture". It says: "each even number no less than four can be expressed as the sum of two primes". Let's modify it. How about a statement like that: "each integer no less than 12 can be expressed as the sum of two composite numbers." Not like the Goldbach's conjecture, I can prove this theorem. You are given an integer *n* no less than 12, express it as a sum of two composite numbers.
The only line contains an integer *n* (12<=≤<=*n*<=≤<=106).
Output two composite integers *x* and *y* (1<=&lt;<=*x*,<=*y*<=&lt;<=*n*) such that *x*<=+<=*y*<==<=*n*. If there are multiple solutions, you can output any of them.
[ "12\n", "15\n", "23\n", "1000000\n" ]
[ "4 8\n", "6 9\n", "8 15\n", "500000 500000\n" ]
In the first example, 12 = 4 + 8 and both 4, 8 are composite numbers. You can output "6 6" or "8 4" as well. In the second example, 15 = 6 + 9. Note that you can't output "1 14" because 1 is not a composite number.
500
[ { "input": "12", "output": "4 8" }, { "input": "15", "output": "6 9" }, { "input": "23", "output": "8 15" }, { "input": "1000000", "output": "500000 500000" }, { "input": "63874", "output": "4 63870" }, { "input": "14568", "output": "4 14564" }, { "input": "192", "output": "4 188" }, { "input": "86", "output": "4 82" }, { "input": "46220", "output": "4 46216" }, { "input": "57114", "output": "4 57110" }, { "input": "869", "output": "4 865" }, { "input": "738457", "output": "4 738453" }, { "input": "58113", "output": "6 58107" }, { "input": "4864", "output": "4 4860" }, { "input": "15", "output": "6 9" }, { "input": "74752", "output": "4 74748" }, { "input": "6073", "output": "4 6069" }, { "input": "1289", "output": "4 1285" }, { "input": "20", "output": "4 16" }, { "input": "58134", "output": "4 58130" }, { "input": "57756", "output": "4 57752" }, { "input": "765", "output": "6 759" }, { "input": "59", "output": "4 55" }, { "input": "991666", "output": "4 991662" }, { "input": "70761", "output": "4 70757" }, { "input": "13", "output": "4 9" }, { "input": "999999", "output": "4 999995" }, { "input": "17", "output": "8 9" }, { "input": "21", "output": "6 15" }, { "input": "19", "output": "4 15" }, { "input": "100007", "output": "6 100001" }, { "input": "999987", "output": "6 999981" }, { "input": "22", "output": "4 18" } ]
1,688,753,234
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
31
0
v1=int(input()) if v1%2==0: c=v1//2 print(c,c) else: c1=v1//2 c2=v1-c1 print(c1,c2)
Title: Design Tutorial: Learn from Math Time Limit: None seconds Memory Limit: None megabytes Problem Description: One way to create a task is to learn from math. You can generate some random math statement or modify some theorems to get something new and build a new task from that. For example, there is a statement called the "Goldbach's conjecture". It says: "each even number no less than four can be expressed as the sum of two primes". Let's modify it. How about a statement like that: "each integer no less than 12 can be expressed as the sum of two composite numbers." Not like the Goldbach's conjecture, I can prove this theorem. You are given an integer *n* no less than 12, express it as a sum of two composite numbers. Input Specification: The only line contains an integer *n* (12<=≤<=*n*<=≤<=106). Output Specification: Output two composite integers *x* and *y* (1<=&lt;<=*x*,<=*y*<=&lt;<=*n*) such that *x*<=+<=*y*<==<=*n*. If there are multiple solutions, you can output any of them. Demo Input: ['12\n', '15\n', '23\n', '1000000\n'] Demo Output: ['4 8\n', '6 9\n', '8 15\n', '500000 500000\n'] Note: In the first example, 12 = 4 + 8 and both 4, 8 are composite numbers. You can output "6 6" or "8 4" as well. In the second example, 15 = 6 + 9. Note that you can't output "1 14" because 1 is not a composite number.
```python v1=int(input()) if v1%2==0: c=v1//2 print(c,c) else: c1=v1//2 c2=v1-c1 print(c1,c2) ```
0
25
A
IQ test
PROGRAMMING
1,300
[ "brute force" ]
A. IQ test
2
256
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
[ "5\n2 4 7 8 10\n", "4\n1 2 1 1\n" ]
[ "3\n", "2\n" ]
none
0
[ { "input": "5\n2 4 7 8 10", "output": "3" }, { "input": "4\n1 2 1 1", "output": "2" }, { "input": "3\n1 2 2", "output": "1" }, { "input": "3\n100 99 100", "output": "2" }, { "input": "3\n5 3 2", "output": "3" }, { "input": "4\n43 28 1 91", "output": "2" }, { "input": "4\n75 13 94 77", "output": "3" }, { "input": "4\n97 8 27 3", "output": "2" }, { "input": "10\n95 51 12 91 85 3 1 31 25 7", "output": "3" }, { "input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46", "output": "4" }, { "input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36", "output": "26" }, { "input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83", "output": "48" }, { "input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25", "output": "1" }, { "input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46", "output": "25" }, { "input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73", "output": "13" }, { "input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76", "output": "99" }, { "input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14", "output": "1" }, { "input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22", "output": "93" }, { "input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23", "output": "1" }, { "input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98", "output": "1" }, { "input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94", "output": "93" }, { "input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29", "output": "32" }, { "input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47", "output": "26" }, { "input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72", "output": "56" }, { "input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86", "output": "97" }, { "input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42", "output": "79" }, { "input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52", "output": "25" }, { "input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86", "output": "78" }, { "input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68", "output": "70" }, { "input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81", "output": "39" }, { "input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83", "output": "88" }, { "input": "3\n100 100 1", "output": "3" } ]
1,513,758,048
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
2
124
5,529,600
n=int(input()) ls=[int(i) for i in input().split()] for i in range(1,len(ls)-1): if (ls[i]-ls[i-1])!=(ls[i+1]-ls[i]): sus=i if i==1: if ls[3]-ls[2]==ls[2]-ls[1]: sus=0 else: pass if i==len(ls): if ls[-4]-ls[-3]==ls[-3]-ls[-2]: sus=len(ls) else: pass print(sus)
Title: IQ test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness. Output Specification: Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order. Demo Input: ['5\n2 4 7 8 10\n', '4\n1 2 1 1\n'] Demo Output: ['3\n', '2\n'] Note: none
```python n=int(input()) ls=[int(i) for i in input().split()] for i in range(1,len(ls)-1): if (ls[i]-ls[i-1])!=(ls[i+1]-ls[i]): sus=i if i==1: if ls[3]-ls[2]==ls[2]-ls[1]: sus=0 else: pass if i==len(ls): if ls[-4]-ls[-3]==ls[-3]-ls[-2]: sus=len(ls) else: pass print(sus) ```
-1
185
A
Plant
PROGRAMMING
1,300
[ "math" ]
null
null
Dwarfs have planted a very interesting plant, which is a triangle directed "upwards". This plant has an amusing feature. After one year a triangle plant directed "upwards" divides into four triangle plants: three of them will point "upwards" and one will point "downwards". After another year, each triangle plant divides into four triangle plants: three of them will be directed in the same direction as the parent plant, and one of them will be directed in the opposite direction. Then each year the process repeats. The figure below illustrates this process. Help the dwarfs find out how many triangle plants that point "upwards" will be in *n* years.
The first line contains a single integer *n* (0<=≤<=*n*<=≤<=1018) — the number of full years when the plant grew. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
Print a single integer — the remainder of dividing the number of plants that will point "upwards" in *n* years by 1000000007 (109<=+<=7).
[ "1\n", "2\n" ]
[ "3\n", "10\n" ]
The first test sample corresponds to the second triangle on the figure in the statement. The second test sample corresponds to the third one.
500
[ { "input": "1", "output": "3" }, { "input": "2", "output": "10" }, { "input": "385599124", "output": "493875375" }, { "input": "989464295", "output": "31966163" }, { "input": "376367012", "output": "523204186" }, { "input": "529357306", "output": "142578489" }, { "input": "782916801", "output": "51174574" }, { "input": "74859961358140080", "output": "478768275" }, { "input": "0", "output": "1" }, { "input": "252509053898415171", "output": "886314547" }, { "input": "760713016078377938", "output": "79611270" }, { "input": "919845424847912644", "output": "388845650" }, { "input": "585335721566249104", "output": "301383716" }, { "input": "522842183413115087", "output": "556012763" }, { "input": "148049062285906746", "output": "913927498" }, { "input": "84324827171274022", "output": "462535280" }, { "input": "354979172034763159", "output": "239287993" }, { "input": "1312148742261680", "output": "799725655" }, { "input": "269587448053313253", "output": "536645997" }, { "input": "645762257531682045", "output": "543988614" }, { "input": "615812227854199662", "output": "357939938" }, { "input": "819875140559301751", "output": "968653685" }, { "input": "349993003033420740", "output": "709392758" }, { "input": "891351282398722856", "output": "70758467" }, { "input": "563324730406715801", "output": "353494903" }, { "input": "520974001002628386", "output": "164118419" }, { "input": "666729339260489789", "output": "784700006" }, { "input": "856674609788912527", "output": "720540265" }, { "input": "791809296233191092", "output": "369199735" }, { "input": "711066335916901717", "output": "15590358" }, { "input": "931356501703211379", "output": "239824013" }, { "input": "234122431978145893", "output": "905163056" }, { "input": "1000000000000000000", "output": "899770636" }, { "input": "3", "output": "36" }, { "input": "4", "output": "136" }, { "input": "5", "output": "528" }, { "input": "6", "output": "2080" }, { "input": "7", "output": "8256" }, { "input": "8", "output": "32896" }, { "input": "9", "output": "131328" }, { "input": "10", "output": "524800" }, { "input": "11", "output": "2098176" }, { "input": "12", "output": "8390656" }, { "input": "13", "output": "33558528" }, { "input": "14", "output": "134225920" }, { "input": "15", "output": "536887296" }, { "input": "16", "output": "147516402" }, { "input": "0", "output": "1" }, { "input": "6265", "output": "980996097" } ]
1,422,578,337
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
92
0
def matmul(a, b): c = [[0, 0], [0, 0]] for i in range(2): for j in range(2): for k in range(2): c[i][j] = c[i][j] + (a[i][k] * b[k][j]) c[i][j] %= 1000000007 return c def fastpow(mat, p): if p == 1: return mat if p % 2 == 1: return matmul(mat, fastpow(mat, p - 1)) lol = fastpow(mat, p // 2) return matmul(lol, lol) mat = [[3, 1], [1, 3]] n = int(input()) if n == 1: print(3) else: ret = fastpow(mat, n-1) print(ret[0][0] * 3 + ret[0][1])
Title: Plant Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dwarfs have planted a very interesting plant, which is a triangle directed "upwards". This plant has an amusing feature. After one year a triangle plant directed "upwards" divides into four triangle plants: three of them will point "upwards" and one will point "downwards". After another year, each triangle plant divides into four triangle plants: three of them will be directed in the same direction as the parent plant, and one of them will be directed in the opposite direction. Then each year the process repeats. The figure below illustrates this process. Help the dwarfs find out how many triangle plants that point "upwards" will be in *n* years. Input Specification: The first line contains a single integer *n* (0<=≤<=*n*<=≤<=1018) — the number of full years when the plant grew. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier. Output Specification: Print a single integer — the remainder of dividing the number of plants that will point "upwards" in *n* years by 1000000007 (109<=+<=7). Demo Input: ['1\n', '2\n'] Demo Output: ['3\n', '10\n'] Note: The first test sample corresponds to the second triangle on the figure in the statement. The second test sample corresponds to the third one.
```python def matmul(a, b): c = [[0, 0], [0, 0]] for i in range(2): for j in range(2): for k in range(2): c[i][j] = c[i][j] + (a[i][k] * b[k][j]) c[i][j] %= 1000000007 return c def fastpow(mat, p): if p == 1: return mat if p % 2 == 1: return matmul(mat, fastpow(mat, p - 1)) lol = fastpow(mat, p // 2) return matmul(lol, lol) mat = [[3, 1], [1, 3]] n = int(input()) if n == 1: print(3) else: ret = fastpow(mat, n-1) print(ret[0][0] * 3 + ret[0][1]) ```
0
560
A
Currency System in Geraldion
PROGRAMMING
1,000
[ "implementation", "sortings" ]
null
null
A magic island Geraldion, where Gerald lives, has its own currency system. It uses banknotes of several values. But the problem is, the system is not perfect and sometimes it happens that Geraldionians cannot express a certain sum of money with any set of banknotes. Of course, they can use any number of banknotes of each value. Such sum is called unfortunate. Gerald wondered: what is the minimum unfortunate sum?
The first line contains number *n* (1<=≤<=*n*<=≤<=1000) — the number of values of the banknotes that used in Geraldion. The second line contains *n* distinct space-separated numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=106) — the values of the banknotes.
Print a single line — the minimum unfortunate sum. If there are no unfortunate sums, print <=-<=1.
[ "5\n1 2 3 4 5\n" ]
[ "-1\n" ]
none
500
[ { "input": "5\n1 2 3 4 5", "output": "-1" }, { "input": "1\n2", "output": "1" }, { "input": "10\n371054 506438 397130 1 766759 208409 769264 549213 641270 771837", "output": "-1" }, { "input": "10\n635370 154890 909382 220996 276501 716105 538714 140162 171960 271264", "output": "1" }, { "input": "50\n110876 835020 859879 999908 712969 788264 287153 921820 330355 499311 209594 484829 296329 940051 174081 931503 1 780512 390075 97866 124255 950067 697612 244256 782385 789882 37608 82153 399889 598867 416717 377988 535636 511221 792568 683271 131077 290194 496712 330720 587436 563481 645817 942562 654093 980561 382937 48293 582608 116156", "output": "-1" }, { "input": "50\n474421 421097 217233 156339 27075 733996 281778 863492 184707 956857 288561 70997 393786 337382 663642 131184 637 273801 799870 295017 392338 842567 161819 297705 102013 930684 375703 838048 154915 138503 629056 256591 893619 19263 787927 684541 320265 841090 421423 490879 394582 493952 619247 633202 612928 50907 276653 407819 489945 153173", "output": "1" }, { "input": "1\n1", "output": "-1" }, { "input": "1\n1000000", "output": "1" }, { "input": "2\n3 2", "output": "1" }, { "input": "2\n2 3", "output": "1" } ]
1,550,083,829
2,147,483,647
Python 3
OK
TESTS
16
108
0
def money(lst): if 1 in lst: return -1 return 1 n = int(input()) a = [int(i) for i in input().split()] print(money(a))
Title: Currency System in Geraldion Time Limit: None seconds Memory Limit: None megabytes Problem Description: A magic island Geraldion, where Gerald lives, has its own currency system. It uses banknotes of several values. But the problem is, the system is not perfect and sometimes it happens that Geraldionians cannot express a certain sum of money with any set of banknotes. Of course, they can use any number of banknotes of each value. Such sum is called unfortunate. Gerald wondered: what is the minimum unfortunate sum? Input Specification: The first line contains number *n* (1<=≤<=*n*<=≤<=1000) — the number of values of the banknotes that used in Geraldion. The second line contains *n* distinct space-separated numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=106) — the values of the banknotes. Output Specification: Print a single line — the minimum unfortunate sum. If there are no unfortunate sums, print <=-<=1. Demo Input: ['5\n1 2 3 4 5\n'] Demo Output: ['-1\n'] Note: none
```python def money(lst): if 1 in lst: return -1 return 1 n = int(input()) a = [int(i) for i in input().split()] print(money(a)) ```
3
372
A
Counting Kangaroos is Fun
PROGRAMMING
1,600
[ "binary search", "greedy", "sortings", "two pointers" ]
null
null
There are *n* kangaroos with pockets. Each kangaroo has a size (integer number). A kangaroo can go into another kangaroo's pocket if and only if the size of kangaroo who hold the kangaroo is at least twice as large as the size of kangaroo who is held. Each kangaroo can hold at most one kangaroo, and the kangaroo who is held by another kangaroo cannot hold any kangaroos. The kangaroo who is held by another kangaroo cannot be visible from outside. Please, find a plan of holding kangaroos with the minimal number of kangaroos who is visible.
The first line contains a single integer — *n* (1<=≤<=*n*<=≤<=5·105). Each of the next *n* lines contains an integer *s**i* — the size of the *i*-th kangaroo (1<=≤<=*s**i*<=≤<=105).
Output a single integer — the optimal number of visible kangaroos.
[ "8\n2\n5\n7\n6\n9\n8\n4\n2\n", "8\n9\n1\n6\n2\n6\n5\n8\n3\n" ]
[ "5\n", "5\n" ]
none
500
[ { "input": "8\n2\n5\n7\n6\n9\n8\n4\n2", "output": "5" }, { "input": "8\n9\n1\n6\n2\n6\n5\n8\n3", "output": "5" }, { "input": "12\n3\n99\n24\n46\n75\n63\n57\n55\n10\n62\n34\n52", "output": "7" }, { "input": "12\n55\n75\n1\n98\n63\n64\n9\n39\n82\n18\n47\n9", "output": "6" }, { "input": "100\n678\n771\n96\n282\n135\n749\n168\n668\n17\n658\n979\n446\n998\n331\n606\n756\n37\n515\n538\n205\n647\n547\n904\n842\n647\n286\n774\n414\n267\n791\n595\n465\n8\n327\n855\n174\n339\n946\n184\n250\n807\n422\n679\n980\n64\n530\n312\n351\n676\n911\n803\n991\n669\n50\n293\n841\n545\n598\n737\n894\n231\n754\n588\n83\n873\n767\n833\n482\n905\n903\n970\n571\n715\n59\n777\n697\n537\n861\n339\n212\n149\n889\n905\n70\n970\n307\n830\n465\n968\n291\n430\n317\n942\n944\n330\n235\n814\n880\n415\n76", "output": "58" }, { "input": "100\n154\n60\n97\n638\n139\n150\n570\n579\n601\n647\n804\n237\n245\n549\n288\n347\n778\n282\n916\n441\n974\n145\n957\n886\n655\n702\n930\n618\n132\n520\n972\n48\n94\n54\n682\n433\n896\n134\n845\n636\n242\n842\n125\n141\n240\n130\n409\n666\n948\n938\n604\n110\n474\n484\n364\n40\n807\n271\n438\n288\n201\n814\n754\n589\n341\n576\n146\n952\n819\n923\n222\n535\n336\n83\n314\n911\n303\n911\n384\n601\n249\n330\n735\n271\n142\n204\n405\n783\n775\n449\n590\n139\n109\n276\n45\n205\n454\n836\n82\n841", "output": "50" }, { "input": "1\n1", "output": "1" }, { "input": "4\n1\n1\n1\n2", "output": "3" }, { "input": "5\n1\n2\n4\n8\n16", "output": "3" }, { "input": "7\n1\n2\n4\n8\n16\n32\n64", "output": "4" }, { "input": "3\n1\n2\n4", "output": "2" } ]
1,615,667,239
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
8
1,000
9,728,000
import math n = int(input()) a = [] for i in range(n): a.append(int(input())) a.sort() p1 = 0 p2 = n//2 ans = n while p1 < n//2 and p2 < n: if a[p2] >= 2*a[p1]: p1 += 1 p2 += 1 ans -= 1 else: p2 += 1 print(ans)
Title: Counting Kangaroos is Fun Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* kangaroos with pockets. Each kangaroo has a size (integer number). A kangaroo can go into another kangaroo's pocket if and only if the size of kangaroo who hold the kangaroo is at least twice as large as the size of kangaroo who is held. Each kangaroo can hold at most one kangaroo, and the kangaroo who is held by another kangaroo cannot hold any kangaroos. The kangaroo who is held by another kangaroo cannot be visible from outside. Please, find a plan of holding kangaroos with the minimal number of kangaroos who is visible. Input Specification: The first line contains a single integer — *n* (1<=≤<=*n*<=≤<=5·105). Each of the next *n* lines contains an integer *s**i* — the size of the *i*-th kangaroo (1<=≤<=*s**i*<=≤<=105). Output Specification: Output a single integer — the optimal number of visible kangaroos. Demo Input: ['8\n2\n5\n7\n6\n9\n8\n4\n2\n', '8\n9\n1\n6\n2\n6\n5\n8\n3\n'] Demo Output: ['5\n', '5\n'] Note: none
```python import math n = int(input()) a = [] for i in range(n): a.append(int(input())) a.sort() p1 = 0 p2 = n//2 ans = n while p1 < n//2 and p2 < n: if a[p2] >= 2*a[p1]: p1 += 1 p2 += 1 ans -= 1 else: p2 += 1 print(ans) ```
0
456
A
Laptops
PROGRAMMING
1,100
[ "sortings" ]
null
null
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop. Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops. Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality). All *a**i* are distinct. All *b**i* are distinct.
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
[ "2\n1 2\n2 1\n" ]
[ "Happy Alex\n" ]
none
500
[ { "input": "2\n1 2\n2 1", "output": "Happy Alex" }, { "input": "2\n1 1\n2 2", "output": "Poor Alex" }, { "input": "3\n2 2\n3 3\n1 1", "output": "Poor Alex" }, { "input": "3\n3 3\n1 2\n2 1", "output": "Happy Alex" }, { "input": "1\n1 1", "output": "Poor Alex" }, { "input": "3\n2 3\n1 1\n3 2", "output": "Happy Alex" }, { "input": "4\n4 1\n3 2\n2 3\n1 4", "output": "Happy Alex" }, { "input": "2\n2 1\n1 2", "output": "Happy Alex" }, { "input": "3\n3 2\n1 1\n2 3", "output": "Happy Alex" }, { "input": "3\n1 2\n2 3\n3 1", "output": "Happy Alex" }, { "input": "3\n1 2\n2 1\n3 3", "output": "Happy Alex" }, { "input": "3\n1 2\n2 3\n3 1", "output": "Happy Alex" } ]
1,684,422,406
2,147,483,647
Python 3
OK
TESTS
46
264
17,510,400
n = int(input()) a = [] b = [] for i in range(n): x, y = [int(x) for x in input().split()] a.append(x) b.append(y) a.sort(key=dict(zip(a, b)).get) flag = 0 for i in range(n - 1): if (a[i] > a[i + 1]): flag = 1 break if (flag == 0): print("Poor Alex") else: print("Happy Alex")
Title: Laptops Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop. Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops. Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality). All *a**i* are distinct. All *b**i* are distinct. Output Specification: If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes). Demo Input: ['2\n1 2\n2 1\n'] Demo Output: ['Happy Alex\n'] Note: none
```python n = int(input()) a = [] b = [] for i in range(n): x, y = [int(x) for x in input().split()] a.append(x) b.append(y) a.sort(key=dict(zip(a, b)).get) flag = 0 for i in range(n - 1): if (a[i] > a[i + 1]): flag = 1 break if (flag == 0): print("Poor Alex") else: print("Happy Alex") ```
3
818
B
Permutation Game
PROGRAMMING
1,600
[ "implementation" ]
null
null
*n* children are standing in a circle and playing a game. Children's numbers in clockwise order form a permutation *a*1,<=*a*2,<=...,<=*a**n* of length *n*. It is an integer sequence such that each integer from 1 to *n* appears exactly once in it. The game consists of *m* steps. On each step the current leader with index *i* counts out *a**i* people in clockwise order, starting from the next person. The last one to be pointed at by the leader becomes the new leader. You are given numbers *l*1,<=*l*2,<=...,<=*l**m* — indices of leaders in the beginning of each step. Child with number *l*1 is the first leader in the game. Write a program which will restore a possible permutation *a*1,<=*a*2,<=...,<=*a**n*. If there are multiple solutions then print any of them. If there is no solution then print -1.
The first line contains two integer numbers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *m* integer numbers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*) — indices of leaders in the beginning of each step.
Print such permutation of *n* numbers *a*1,<=*a*2,<=...,<=*a**n* that leaders in the game will be exactly *l*1,<=*l*2,<=...,<=*l**m* if all the rules are followed. If there are multiple solutions print any of them. If there is no permutation which satisfies all described conditions print -1.
[ "4 5\n2 3 1 4 4\n", "3 3\n3 1 2\n" ]
[ "3 1 2 4 \n", "-1\n" ]
Let's follow leadership in the first example: - Child 2 starts. - Leadership goes from 2 to 2 + *a*<sub class="lower-index">2</sub> = 3. - Leadership goes from 3 to 3 + *a*<sub class="lower-index">3</sub> = 5. As it's greater than 4, it's going in a circle to 1. - Leadership goes from 1 to 1 + *a*<sub class="lower-index">1</sub> = 4. - Leadership goes from 4 to 4 + *a*<sub class="lower-index">4</sub> = 8. Thus in circle it still remains at 4.
0
[ { "input": "4 5\n2 3 1 4 4", "output": "3 1 2 4 " }, { "input": "3 3\n3 1 2", "output": "-1" }, { "input": "1 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1 " }, { "input": "6 8\n2 5 4 2 5 4 2 5", "output": "1 3 2 4 5 6 " }, { "input": "100 1\n6", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 " }, { "input": "10 5\n7 7 9 9 3", "output": "-1" }, { "input": "10 20\n10 1 5 7 1 2 5 3 6 3 9 4 3 4 9 6 8 4 9 6", "output": "-1" }, { "input": "20 15\n11 19 1 8 17 12 3 1 8 17 12 3 1 8 17", "output": "7 1 18 3 4 5 6 9 10 12 8 11 13 14 16 17 15 19 2 20 " }, { "input": "100 100\n96 73 23 74 35 44 75 13 62 50 76 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63", "output": "1 2 3 4 5 6 7 8 10 11 12 13 49 14 15 17 18 19 20 21 22 23 51 39 24 25 27 28 16 29 30 32 33 34 9 35 36 37 40 41 42 43 44 31 79 45 46 47 48 26 52 53 54 55 56 57 58 59 60 62 63 88 66 64 65 67 68 69 70 71 72 73 50 61 38 87 74 75 76 78 80 81 82 83 84 85 86 89 90 91 92 93 94 95 96 77 97 98 99 100 " }, { "input": "100 100\n82 51 81 14 37 17 78 92 64 15 8 86 89 8 87 77 66 10 15 12 100 25 92 47 21 78 20 63 13 49 41 36 41 79 16 87 87 69 3 76 80 60 100 49 70 59 72 8 38 71 45 97 71 14 76 54 81 4 59 46 39 29 92 3 49 22 53 99 59 52 74 31 92 43 42 23 44 9 82 47 7 40 12 9 3 55 37 85 46 22 84 52 98 41 21 77 63 17 62 91", "output": "-1" }, { "input": "20 20\n1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11", "output": "19 17 15 13 11 9 7 5 3 1 20 18 16 14 12 10 8 6 4 2 " }, { "input": "20 5\n1 20 2 19 3", "output": "19 17 1 3 5 6 7 8 9 10 11 12 13 14 15 16 18 20 4 2 " }, { "input": "19 19\n1 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 9 11 10", "output": "-1" }, { "input": "100 100\n1 99 2 98 3 97 4 96 5 95 6 94 7 93 8 92 9 91 10 90 11 89 12 88 13 87 14 86 15 85 16 84 17 83 18 82 19 81 20 80 21 79 22 78 23 77 24 76 25 75 26 74 27 73 28 72 29 71 30 70 31 69 32 68 33 67 34 66 35 65 36 64 37 63 38 62 39 61 40 60 41 59 42 58 43 57 44 56 45 55 46 54 47 53 48 52 49 51 50 50", "output": "98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 100 99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 " }, { "input": "51 18\n8 32 24 19 1 29 49 24 39 33 5 37 37 26 17 28 2 19", "output": "-1" }, { "input": "5 5\n1 2 5 2 4", "output": "-1" }, { "input": "6 6\n1 2 1 1 3 6", "output": "-1" }, { "input": "4 4\n4 3 4 2", "output": "-1" }, { "input": "3 3\n2 2 3", "output": "-1" }, { "input": "4 6\n1 1 2 4 4 4", "output": "-1" }, { "input": "9 4\n8 2 8 3", "output": "-1" }, { "input": "4 6\n2 3 1 4 4 1", "output": "-1" }, { "input": "2 3\n1 1 2", "output": "-1" }, { "input": "5 7\n4 3 4 3 3 4 5", "output": "-1" }, { "input": "2 9\n1 1 1 1 2 1 1 1 1", "output": "-1" }, { "input": "4 4\n2 4 4 4", "output": "1 2 3 4 " }, { "input": "3 3\n1 1 3", "output": "-1" }, { "input": "2 5\n1 2 2 1 1", "output": "-1" }, { "input": "4 4\n1 4 1 3", "output": "-1" }, { "input": "3 4\n1 3 1 1", "output": "-1" }, { "input": "4 4\n1 4 1 1", "output": "-1" }, { "input": "66 67\n19 9 60 40 19 48 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5", "output": "-1" }, { "input": "3 3\n3 3 2", "output": "-1" }, { "input": "27 28\n8 18 27 24 20 8 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23", "output": "-1" }, { "input": "4 3\n1 1 2", "output": "-1" }, { "input": "4 4\n2 4 2 3", "output": "-1" }, { "input": "2 3\n2 2 1", "output": "-1" }, { "input": "2 2\n2 2", "output": "1 2 " }, { "input": "3 4\n2 3 3 1", "output": "-1" }, { "input": "5 6\n1 4 4 2 1 4", "output": "-1" }, { "input": "4 3\n2 3 4", "output": "-1" }, { "input": "2 3\n1 2 1", "output": "-1" }, { "input": "10 4\n5 6 5 7", "output": "-1" }, { "input": "3 3\n1 1 2", "output": "-1" }, { "input": "4 5\n1 4 1 3 2", "output": "-1" }, { "input": "6 5\n1 2 4 1 3", "output": "-1" } ]
1,498,753,172
4,472
Python 3
WRONG_ANSWER
TESTS
2
62
5,529,600
[n, m] = map(int, input().split()) data = list(map(int, input().split())) rs = [0] * (n + 1) used = [False] * (n + 1) for index, i in enumerate(data): index += 1 if index == n + 1: continue if index >= len(data): print(-1) exit() tmp = data[index] - data[index - 1] tmp += n if tmp <= 0 else 0 if used[tmp]: print(-1) exit() if rs[i] == 0 or rs[i] == tmp: rs[i] = tmp used[tmp] = True else: print(-1) exit() rs.pop(0) print(' '.join(map(str, rs)))
Title: Permutation Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: *n* children are standing in a circle and playing a game. Children's numbers in clockwise order form a permutation *a*1,<=*a*2,<=...,<=*a**n* of length *n*. It is an integer sequence such that each integer from 1 to *n* appears exactly once in it. The game consists of *m* steps. On each step the current leader with index *i* counts out *a**i* people in clockwise order, starting from the next person. The last one to be pointed at by the leader becomes the new leader. You are given numbers *l*1,<=*l*2,<=...,<=*l**m* — indices of leaders in the beginning of each step. Child with number *l*1 is the first leader in the game. Write a program which will restore a possible permutation *a*1,<=*a*2,<=...,<=*a**n*. If there are multiple solutions then print any of them. If there is no solution then print -1. Input Specification: The first line contains two integer numbers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *m* integer numbers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*) — indices of leaders in the beginning of each step. Output Specification: Print such permutation of *n* numbers *a*1,<=*a*2,<=...,<=*a**n* that leaders in the game will be exactly *l*1,<=*l*2,<=...,<=*l**m* if all the rules are followed. If there are multiple solutions print any of them. If there is no permutation which satisfies all described conditions print -1. Demo Input: ['4 5\n2 3 1 4 4\n', '3 3\n3 1 2\n'] Demo Output: ['3 1 2 4 \n', '-1\n'] Note: Let's follow leadership in the first example: - Child 2 starts. - Leadership goes from 2 to 2 + *a*<sub class="lower-index">2</sub> = 3. - Leadership goes from 3 to 3 + *a*<sub class="lower-index">3</sub> = 5. As it's greater than 4, it's going in a circle to 1. - Leadership goes from 1 to 1 + *a*<sub class="lower-index">1</sub> = 4. - Leadership goes from 4 to 4 + *a*<sub class="lower-index">4</sub> = 8. Thus in circle it still remains at 4.
```python [n, m] = map(int, input().split()) data = list(map(int, input().split())) rs = [0] * (n + 1) used = [False] * (n + 1) for index, i in enumerate(data): index += 1 if index == n + 1: continue if index >= len(data): print(-1) exit() tmp = data[index] - data[index - 1] tmp += n if tmp <= 0 else 0 if used[tmp]: print(-1) exit() if rs[i] == 0 or rs[i] == tmp: rs[i] = tmp used[tmp] = True else: print(-1) exit() rs.pop(0) print(' '.join(map(str, rs))) ```
0
1,003
B
Binary String Constructing
PROGRAMMING
1,300
[ "constructive algorithms" ]
null
null
You are given three integers $a$, $b$ and $x$. Your task is to construct a binary string $s$ of length $n = a + b$ such that there are exactly $a$ zeroes, exactly $b$ ones and exactly $x$ indices $i$ (where $1 \le i &lt; n$) such that $s_i \ne s_{i + 1}$. It is guaranteed that the answer always exists. For example, for the string "01010" there are four indices $i$ such that $1 \le i &lt; n$ and $s_i \ne s_{i + 1}$ ($i = 1, 2, 3, 4$). For the string "111001" there are two such indices $i$ ($i = 3, 5$). Recall that binary string is a non-empty sequence of characters where each character is either 0 or 1.
The first line of the input contains three integers $a$, $b$ and $x$ ($1 \le a, b \le 100, 1 \le x &lt; a + b)$.
Print only one string $s$, where $s$ is any binary string satisfying conditions described above. It is guaranteed that the answer always exists.
[ "2 2 1\n", "3 3 3\n", "5 3 6\n" ]
[ "1100\n", "101100\n", "01010100\n" ]
All possible answers for the first example: - 1100; - 0011. All possible answers for the second example: - 110100; - 101100; - 110010; - 100110; - 011001; - 001101; - 010011; - 001011.
0
[ { "input": "2 2 1", "output": "1100" }, { "input": "3 3 3", "output": "101100" }, { "input": "5 3 6", "output": "01010100" }, { "input": "100 1 2", "output": "01000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000" }, { "input": "100 1 1", "output": "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001" }, { "input": "1 100 1", "output": "11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "1 100 2", "output": "10111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "7 8 7", "output": "101010111110000" }, { "input": "100 100 199", "output": "10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010" }, { "input": "50 47 18", "output": "0101010101010101011111111111111111111111111111111111111100000000000000000000000000000000000000000" }, { "input": "2 3 3", "output": "10110" }, { "input": "100 100 100", "output": "10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010100000000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111" }, { "input": "2 2 2", "output": "1001" }, { "input": "3 4 6", "output": "1010101" }, { "input": "1 1 1", "output": "10" }, { "input": "5 6 2", "output": "10000011111" }, { "input": "5 4 2", "output": "011110000" }, { "input": "2 3 4", "output": "10101" }, { "input": "3 3 2", "output": "100011" }, { "input": "100 99 100", "output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000000" }, { "input": "3 2 1", "output": "00011" }, { "input": "12 74 22", "output": "10101010101010101010100111111111111111111111111111111111111111111111111111111111111111" }, { "input": "6 84 12", "output": "101010101010111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "3 2 4", "output": "01010" }, { "input": "66 11 22", "output": "01010101010101010101010000000000000000000000000000000000000000000000000000000" }, { "input": "83 83 83", "output": "1010101010101010101010101010101010101010101010101010101010101010101010101010101010111111111111111111111111111111111111111111000000000000000000000000000000000000000000" }, { "input": "9 89 18", "output": "10101010101010101011111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "2 1 2", "output": "010" }, { "input": "52 12 17", "output": "0101010101010101000000000000000000000000000000000000000000001111" }, { "input": "55 56 110", "output": "101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101" }, { "input": "67 81 40", "output": "1010101010101010101010101010101010101010000000000000000000000000000000000000000000000001111111111111111111111111111111111111111111111111111111111111" }, { "input": "15 26 24", "output": "10101010101010101010101000011111111111111" }, { "input": "7 99 14", "output": "1010101010101011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "99 41 17", "output": "01010101010101010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111" }, { "input": "91 87 11", "output": "0101010101000000000000000000000000000000000000000000000000000000000000000000000000000000000000001111111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "73 61 122", "output": "01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101000000000000" }, { "input": "10 40 1", "output": "11111111111111111111111111111111111111110000000000" }, { "input": "10 6 10", "output": "0101010101100000" }, { "input": "78 67 117", "output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010100000000000000000000111111111" }, { "input": "3 5 6", "output": "10101011" }, { "input": "30 34 44", "output": "1010101010101010101010101010101010101010101000000000111111111111" }, { "input": "2 15 4", "output": "10101111111111111" }, { "input": "4 9 6", "output": "1010100111111" } ]
1,648,020,847
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
46
0
a, b, x = map(int, input().split()) print("01" * (x // 2) + "0" * (a - x // 2) + "1" * (b - x // 2))
Title: Binary String Constructing Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given three integers $a$, $b$ and $x$. Your task is to construct a binary string $s$ of length $n = a + b$ such that there are exactly $a$ zeroes, exactly $b$ ones and exactly $x$ indices $i$ (where $1 \le i &lt; n$) such that $s_i \ne s_{i + 1}$. It is guaranteed that the answer always exists. For example, for the string "01010" there are four indices $i$ such that $1 \le i &lt; n$ and $s_i \ne s_{i + 1}$ ($i = 1, 2, 3, 4$). For the string "111001" there are two such indices $i$ ($i = 3, 5$). Recall that binary string is a non-empty sequence of characters where each character is either 0 or 1. Input Specification: The first line of the input contains three integers $a$, $b$ and $x$ ($1 \le a, b \le 100, 1 \le x &lt; a + b)$. Output Specification: Print only one string $s$, where $s$ is any binary string satisfying conditions described above. It is guaranteed that the answer always exists. Demo Input: ['2 2 1\n', '3 3 3\n', '5 3 6\n'] Demo Output: ['1100\n', '101100\n', '01010100\n'] Note: All possible answers for the first example: - 1100; - 0011. All possible answers for the second example: - 110100; - 101100; - 110010; - 100110; - 011001; - 001101; - 010011; - 001011.
```python a, b, x = map(int, input().split()) print("01" * (x // 2) + "0" * (a - x // 2) + "1" * (b - x // 2)) ```
0
581
C
Developing Skills
PROGRAMMING
1,400
[ "implementation", "math", "sortings" ]
null
null
Petya loves computer games. Finally a game that he's been waiting for so long came out! The main character of this game has *n* different skills, each of which is characterized by an integer *a**i* from 0 to 100. The higher the number *a**i* is, the higher is the *i*-th skill of the character. The total rating of the character is calculated as the sum of the values ​​of for all *i* from 1 to *n*. The expression ⌊ *x*⌋ denotes the result of rounding the number *x* down to the nearest integer. At the beginning of the game Petya got *k* improvement units as a bonus that he can use to increase the skills of his character and his total rating. One improvement unit can increase any skill of Petya's character by exactly one. For example, if *a*4<==<=46, after using one imporvement unit to this skill, it becomes equal to 47. A hero's skill cannot rise higher more than 100. Thus, it is permissible that some of the units will remain unused. Your task is to determine the optimal way of using the improvement units so as to maximize the overall rating of the character. It is not necessary to use all the improvement units.
The first line of the input contains two positive integers *n* and *k* (1<=≤<=*n*<=≤<=105, 0<=≤<=*k*<=≤<=107) — the number of skills of the character and the number of units of improvements at Petya's disposal. The second line of the input contains a sequence of *n* integers *a**i* (0<=≤<=*a**i*<=≤<=100), where *a**i* characterizes the level of the *i*-th skill of the character.
The first line of the output should contain a single non-negative integer — the maximum total rating of the character that Petya can get using *k* or less improvement units.
[ "2 4\n7 9\n", "3 8\n17 15 19\n", "2 2\n99 100\n" ]
[ "2\n", "5\n", "20\n" ]
In the first test case the optimal strategy is as follows. Petya has to improve the first skill to 10 by spending 3 improvement units, and the second skill to 10, by spending one improvement unit. Thus, Petya spends all his improvement units and the total rating of the character becomes equal to *lfloor* *frac*{100}{10} *rfloor* +  *lfloor* *frac*{100}{10} *rfloor* = 10 + 10 =  20. In the second test the optimal strategy for Petya is to improve the first skill to 20 (by spending 3 improvement units) and to improve the third skill to 20 (in this case by spending 1 improvement units). Thus, Petya is left with 4 improvement units and he will be able to increase the second skill to 19 (which does not change the overall rating, so Petya does not necessarily have to do it). Therefore, the highest possible total rating in this example is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ccaa4e1e435ea3a339c322e03a32de69d214a257.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the third test case the optimal strategy for Petya is to increase the first skill to 100 by spending 1 improvement unit. Thereafter, both skills of the character will be equal to 100, so Petya will not be able to spend the remaining improvement unit. So the answer is equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b246630ca7d1b95b91970759bd8455cb3e930bf9.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
1,500
[ { "input": "2 4\n7 9", "output": "2" }, { "input": "3 8\n17 15 19", "output": "5" }, { "input": "2 2\n99 100", "output": "20" }, { "input": "100 10000\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "1000" }, { "input": "100 10000\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "1000" }, { "input": "1 16\n78", "output": "9" }, { "input": "2 33\n30 88", "output": "15" }, { "input": "3 9\n93 62 7", "output": "16" }, { "input": "5 145\n19 77 59 1 63", "output": "36" }, { "input": "7 168\n2 71 56 58 42 61 39", "output": "49" }, { "input": "10 217\n48 30 82 70 10 5 34 11 90 90", "output": "68" }, { "input": "15 204\n19 81 24 22 59 46 48 8 1 66 100 20 46 56 61", "output": "86" }, { "input": "20 484\n24 72 72 13 85 50 52 3 81 79 71 57 57 75 6 52 54 41 61 73", "output": "156" }, { "input": "30 825\n33 25 61 69 92 38 2 62 73 78 83 32 25 5 5 82 64 93 38 25 52 9 40 52 38 90 25 85 99 20", "output": "232" }, { "input": "40 700\n43 35 51 91 44 51 86 20 64 10 50 40 16 25 37 89 18 44 94 99 18 30 11 27 73 3 90 78 28 98 87 43 85 88 29 93 6 81 78 16", "output": "276" }, { "input": "50 1607\n19 55 52 35 18 39 3 12 55 78 62 83 85 56 36 86 96 28 70 40 40 83 27 2 51 49 87 28 58 75 27 69 36 82 78 29 99 87 29 78 82 78 15 85 52 32 90 6 1 76", "output": "424" }, { "input": "60 2213\n17 98 74 91 59 84 87 71 13 9 74 48 75 76 36 25 49 80 25 92 41 24 99 45 98 95 27 54 88 63 25 50 19 43 15 90 58 48 58 83 37 88 35 63 63 23 27 82 80 7 82 93 71 18 85 17 13 2 50 74", "output": "552" }, { "input": "70 1313\n27 7 64 45 44 29 37 63 38 9 85 56 43 74 46 55 59 97 13 33 75 78 2 88 32 7 24 36 86 40 66 42 26 48 64 14 50 21 20 10 50 73 21 29 17 46 97 90 81 73 61 25 95 82 93 94 72 38 80 13 3 3 20 90 34 20 24 49 96 51", "output": "468" }, { "input": "40 108\n20 100 99 50 8 78 44 67 91 75 93 53 96 81 96 86 81 0 58 9 51 63 70 73 80 79 28 82 4 15 60 74 19 17 54 81 11 67 71 66", "output": "245" }, { "input": "50 284\n61 25 82 73 57 61 90 22 63 99 58 4 27 54 8 29 46 99 73 73 60 42 45 17 75 86 38 83 4 1 67 44 74 87 32 33 14 95 87 46 40 3 37 6 42 38 51 39 98 48", "output": "282" }, { "input": "60 1947\n46 29 55 97 37 32 24 22 35 66 24 78 92 5 55 41 21 30 88 24 13 89 77 30 71 15 58 26 39 10 42 36 28 66 21 28 51 55 91 4 94 59 63 46 1 39 46 1 70 7 46 37 96 41 70 19 55 80 59 83", "output": "471" }, { "input": "70 2454\n88 23 5 86 53 48 60 78 97 90 0 18 57 78 68 28 87 39 70 9 0 35 18 53 67 56 0 71 7 86 39 96 83 45 99 92 43 38 40 63 81 59 89 86 28 62 53 97 53 2 73 93 38 49 51 62 93 3 63 49 47 85 72 98 43 91 7 20 47 66", "output": "632" }, { "input": "80 1879\n36 27 86 90 18 85 99 54 29 8 64 31 34 26 45 51 13 48 58 6 98 30 74 63 78 53 88 98 15 17 29 67 78 8 2 7 42 26 72 83 5 59 8 7 27 59 34 65 93 71 50 34 63 45 21 81 19 30 99 41 25 11 83 62 17 29 80 61 91 22 19 95 80 73 15 39 10 37 88 42", "output": "570" }, { "input": "90 1191\n46 37 76 11 60 29 49 13 88 41 65 7 2 13 44 58 23 10 45 48 63 83 79 5 89 99 28 80 34 6 37 92 61 70 51 0 34 67 68 77 62 69 27 86 71 83 72 73 93 92 62 68 86 76 28 24 67 66 61 12 3 52 45 44 58 83 0 84 18 50 75 51 41 25 21 53 39 20 36 45 62 24 12 33 61 81 9 13 27 22", "output": "554" }, { "input": "100 1257\n80 15 39 54 98 10 65 77 55 98 15 25 78 40 25 16 17 60 25 60 56 29 91 16 14 60 47 31 15 59 83 77 10 54 27 21 50 34 64 69 43 81 32 14 30 93 0 91 75 51 19 84 88 14 30 4 99 59 94 69 24 51 35 99 22 25 41 77 64 97 10 4 56 75 97 54 4 55 29 8 14 16 88 34 80 47 66 30 80 60 45 45 93 85 49 91 37 16 49 56", "output": "619" }, { "input": "100 3852\n71 34 1 77 97 36 66 78 95 47 47 15 50 100 43 47 20 23 61 92 49 86 29 92 100 85 5 58 59 19 16 81 16 89 93 75 46 86 9 50 9 49 61 88 76 13 14 99 47 64 39 42 63 5 57 8 51 21 21 62 92 84 84 56 9 37 72 19 99 19 8 60 25 21 4 0 98 80 29 63 52 87 91 30 79 79 96 22 32 63 87 73 51 89 81 84 69 30 55 31", "output": "922" }, { "input": "100 2533\n16 32 22 100 52 10 43 28 87 72 69 84 26 0 74 46 28 34 46 47 90 18 49 6 42 30 18 33 86 38 94 78 8 39 54 46 72 45 83 68 38 4 14 6 86 24 71 36 22 8 37 99 28 7 88 49 4 69 46 81 30 95 92 18 81 21 14 7 43 14 80 59 14 72 93 6 78 43 56 12 66 21 81 80 39 5 54 69 40 12 41 35 23 58 1 75 40 3 36 97", "output": "706" }, { "input": "100 2239\n95 9 31 56 96 85 88 79 78 63 68 95 1 91 94 56 57 88 30 92 64 52 91 11 17 99 65 63 35 68 82 18 66 57 26 62 32 70 89 98 42 17 68 93 53 79 50 6 30 76 69 10 4 41 18 56 81 49 14 10 91 6 32 80 85 94 2 95 66 9 18 58 71 23 23 48 68 72 39 51 0 23 71 73 10 89 13 15 16 30 27 44 63 93 22 77 12 12 28 5", "output": "737" }, { "input": "100 1689\n40 18 85 79 18 70 44 62 37 21 68 6 9 60 13 55 98 98 82 80 4 75 44 83 60 44 10 60 28 65 59 82 48 41 20 100 57 62 28 60 3 5 54 91 31 89 6 44 38 20 34 90 14 99 82 96 57 97 39 73 30 96 41 42 56 33 45 83 78 15 79 25 27 7 43 54 14 90 22 68 3 1 27 88 49 37 84 61 92 37 14 41 81 62 10 36 73 86 9 4", "output": "666" }, { "input": "1 44\n56", "output": "10" }, { "input": "5 136\n65 53 80 92 74", "output": "50" }, { "input": "20 964\n70 82 81 14 73 35 40 21 73 70 71 35 32 43 26 51 51 62 45 61", "output": "200" }, { "input": "80 4124\n14 37 6 11 63 59 43 72 88 0 53 43 42 95 65 61 9 69 9 95 49 64 27 34 53 31 34 26 30 48 85 97 35 60 74 45 35 86 11 34 45 72 95 95 95 13 58 2 0 38 37 13 61 47 85 77 96 10 34 3 54 55 91 23 57 13 33 16 2 17 80 61 36 57 79 81 90 33 82 48", "output": "800" }, { "input": "100 4899\n66 100 11 81 19 55 96 14 66 10 49 75 1 58 64 80 47 95 45 79 36 89 31 30 61 96 93 86 50 61 64 32 82 13 57 75 5 46 96 49 3 98 34 6 91 7 50 62 46 31 100 4 2 16 20 47 86 41 73 17 43 71 84 47 18 100 55 23 10 37 4 19 84 61 27 61 42 29 95 41 93 5 72 58 24 10 80 45 78 68 19 18 30 28 95 91 15 90 87 47", "output": "1000" }, { "input": "1 7035769\n1", "output": "10" }, { "input": "5 5012340\n10 63 89 25 29", "output": "50" }, { "input": "20 5527187\n15 91 34 37 16 77 85 4 31 28 2 47 8 45 57 51 58 72 97 16", "output": "200" }, { "input": "80 8000114\n27 46 16 80 85 11 20 22 80 24 85 22 17 86 96 60 16 12 94 39 23 86 12 49 28 78 80 23 92 78 62 38 27 43 35 62 60 89 85 63 39 27 70 13 73 91 82 73 98 83 70 93 5 37 15 85 39 58 92 34 93 44 31 86 28 86 43 3 25 12 18 61 25 7 67 87 37 29 65 98", "output": "800" }, { "input": "100 9455943\n44 8 21 71 7 29 40 65 91 70 48 19 77 48 16 22 54 4 29 34 9 22 73 34 47 41 5 83 32 91 52 6 74 64 18 23 9 4 36 78 98 20 20 3 69 86 41 67 54 76 87 84 47 6 52 87 61 100 98 80 14 14 24 99 90 73 97 79 22 65 65 51 29 44 15 67 21 58 79 80 96 40 63 73 96 59 72 24 87 85 74 49 81 30 16 61 87 30 0 13", "output": "1000" }, { "input": "1 6\n27", "output": "3" }, { "input": "1 10\n88", "output": "9" }, { "input": "1 3\n93", "output": "9" }, { "input": "2 22\n48 44", "output": "11" }, { "input": "1 48\n52", "output": "10" }, { "input": "1 2135072\n72", "output": "10" }, { "input": "3 5\n2 3 1", "output": "0" }, { "input": "5 1\n8 8 8 8 8", "output": "0" }, { "input": "3 150\n1 1 1", "output": "15" }, { "input": "4 3\n7 9 9 9", "output": "3" }, { "input": "1 10\n100", "output": "10" }, { "input": "3 11\n100 100 100", "output": "30" }, { "input": "2 11\n99 100", "output": "20" } ]
1,689,177,609
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
print("_RANDOM_GUESS_1689177607.619651")# 1689177607.6196659
Title: Developing Skills Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves computer games. Finally a game that he's been waiting for so long came out! The main character of this game has *n* different skills, each of which is characterized by an integer *a**i* from 0 to 100. The higher the number *a**i* is, the higher is the *i*-th skill of the character. The total rating of the character is calculated as the sum of the values ​​of for all *i* from 1 to *n*. The expression ⌊ *x*⌋ denotes the result of rounding the number *x* down to the nearest integer. At the beginning of the game Petya got *k* improvement units as a bonus that he can use to increase the skills of his character and his total rating. One improvement unit can increase any skill of Petya's character by exactly one. For example, if *a*4<==<=46, after using one imporvement unit to this skill, it becomes equal to 47. A hero's skill cannot rise higher more than 100. Thus, it is permissible that some of the units will remain unused. Your task is to determine the optimal way of using the improvement units so as to maximize the overall rating of the character. It is not necessary to use all the improvement units. Input Specification: The first line of the input contains two positive integers *n* and *k* (1<=≤<=*n*<=≤<=105, 0<=≤<=*k*<=≤<=107) — the number of skills of the character and the number of units of improvements at Petya's disposal. The second line of the input contains a sequence of *n* integers *a**i* (0<=≤<=*a**i*<=≤<=100), where *a**i* characterizes the level of the *i*-th skill of the character. Output Specification: The first line of the output should contain a single non-negative integer — the maximum total rating of the character that Petya can get using *k* or less improvement units. Demo Input: ['2 4\n7 9\n', '3 8\n17 15 19\n', '2 2\n99 100\n'] Demo Output: ['2\n', '5\n', '20\n'] Note: In the first test case the optimal strategy is as follows. Petya has to improve the first skill to 10 by spending 3 improvement units, and the second skill to 10, by spending one improvement unit. Thus, Petya spends all his improvement units and the total rating of the character becomes equal to *lfloor* *frac*{100}{10} *rfloor* +  *lfloor* *frac*{100}{10} *rfloor* = 10 + 10 =  20. In the second test the optimal strategy for Petya is to improve the first skill to 20 (by spending 3 improvement units) and to improve the third skill to 20 (in this case by spending 1 improvement units). Thus, Petya is left with 4 improvement units and he will be able to increase the second skill to 19 (which does not change the overall rating, so Petya does not necessarily have to do it). Therefore, the highest possible total rating in this example is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ccaa4e1e435ea3a339c322e03a32de69d214a257.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the third test case the optimal strategy for Petya is to increase the first skill to 100 by spending 1 improvement unit. Thereafter, both skills of the character will be equal to 100, so Petya will not be able to spend the remaining improvement unit. So the answer is equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b246630ca7d1b95b91970759bd8455cb3e930bf9.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
```python print("_RANDOM_GUESS_1689177607.619651")# 1689177607.6196659 ```
0
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,608,313,902
2,147,483,647
Python 3
OK
TESTS
30
186
0
def listToString(s): temp = "" for lst in s: temp+=lst return temp strlist = input() strlist = list(strlist) i=up=down=0 while(i<len(strlist)): if(strlist[i].isupper()): up+=1 else: down+=1 i+=1 strlist = listToString(strlist) if(up>down): print(strlist.upper()) else: print(strlist.lower())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python def listToString(s): temp = "" for lst in s: temp+=lst return temp strlist = input() strlist = list(strlist) i=up=down=0 while(i<len(strlist)): if(strlist[i].isupper()): up+=1 else: down+=1 i+=1 strlist = listToString(strlist) if(up>down): print(strlist.upper()) else: print(strlist.lower()) ```
3.9535
143
A
Help Vasilisa the Wise 2
PROGRAMMING
1,000
[ "brute force", "math" ]
null
null
Vasilisa the Wise from the Kingdom of Far Far Away got a magic box with a secret as a present from her friend Hellawisa the Wise from the Kingdom of A Little Closer. However, Vasilisa the Wise does not know what the box's secret is, since she cannot open it again. She hopes that you will help her one more time with that. The box's lock looks as follows: it contains 4 identical deepenings for gems as a 2<=×<=2 square, and some integer numbers are written at the lock's edge near the deepenings. The example of a lock is given on the picture below. The box is accompanied with 9 gems. Their shapes match the deepenings' shapes and each gem contains one number from 1 to 9 (each number is written on exactly one gem). The box will only open after it is decorated with gems correctly: that is, each deepening in the lock should be filled with exactly one gem. Also, the sums of numbers in the square's rows, columns and two diagonals of the square should match the numbers written at the lock's edge. For example, the above lock will open if we fill the deepenings with gems with numbers as is shown on the picture below. Now Vasilisa the Wise wants to define, given the numbers on the box's lock, which gems she should put in the deepenings to open the box. Help Vasilisa to solve this challenging task.
The input contains numbers written on the edges of the lock of the box. The first line contains space-separated integers *r*1 and *r*2 that define the required sums of numbers in the rows of the square. The second line contains space-separated integers *c*1 and *c*2 that define the required sums of numbers in the columns of the square. The third line contains space-separated integers *d*1 and *d*2 that define the required sums of numbers on the main and on the side diagonals of the square (1<=≤<=*r*1,<=*r*2,<=*c*1,<=*c*2,<=*d*1,<=*d*2<=≤<=20). Correspondence between the above 6 variables and places where they are written is shown on the picture below. For more clarifications please look at the second sample test that demonstrates the example given in the problem statement.
Print the scheme of decorating the box with stones: two lines containing two space-separated integers from 1 to 9. The numbers should be pairwise different. If there is no solution for the given lock, then print the single number "-1" (without the quotes). If there are several solutions, output any.
[ "3 7\n4 6\n5 5\n", "11 10\n13 8\n5 16\n", "1 2\n3 4\n5 6\n", "10 10\n10 10\n10 10\n" ]
[ "1 2\n3 4\n", "4 7\n9 1\n", "-1\n", "-1\n" ]
Pay attention to the last test from the statement: it is impossible to open the box because for that Vasilisa the Wise would need 4 identical gems containing number "5". However, Vasilisa only has one gem with each number from 1 to 9.
500
[ { "input": "3 7\n4 6\n5 5", "output": "1 2\n3 4" }, { "input": "11 10\n13 8\n5 16", "output": "4 7\n9 1" }, { "input": "1 2\n3 4\n5 6", "output": "-1" }, { "input": "10 10\n10 10\n10 10", "output": "-1" }, { "input": "5 13\n8 10\n11 7", "output": "3 2\n5 8" }, { "input": "12 17\n10 19\n13 16", "output": "-1" }, { "input": "11 11\n17 5\n12 10", "output": "9 2\n8 3" }, { "input": "12 11\n11 12\n16 7", "output": "-1" }, { "input": "5 9\n7 7\n8 6", "output": "3 2\n4 5" }, { "input": "10 7\n4 13\n11 6", "output": "-1" }, { "input": "18 10\n16 12\n12 16", "output": "-1" }, { "input": "13 6\n10 9\n6 13", "output": "-1" }, { "input": "14 16\n16 14\n18 12", "output": "-1" }, { "input": "16 10\n16 10\n12 14", "output": "-1" }, { "input": "11 9\n12 8\n11 9", "output": "-1" }, { "input": "5 14\n10 9\n10 9", "output": "-1" }, { "input": "2 4\n1 5\n3 3", "output": "-1" }, { "input": "17 16\n14 19\n18 15", "output": "-1" }, { "input": "12 12\n14 10\n16 8", "output": "9 3\n5 7" }, { "input": "15 11\n16 10\n9 17", "output": "7 8\n9 2" }, { "input": "8 10\n9 9\n13 5", "output": "6 2\n3 7" }, { "input": "13 7\n10 10\n5 15", "output": "4 9\n6 1" }, { "input": "14 11\n9 16\n16 9", "output": "-1" }, { "input": "12 8\n14 6\n8 12", "output": "-1" }, { "input": "10 6\n6 10\n4 12", "output": "-1" }, { "input": "10 8\n10 8\n4 14", "output": "-1" }, { "input": "14 13\n9 18\n14 13", "output": "-1" }, { "input": "9 14\n8 15\n8 15", "output": "-1" }, { "input": "3 8\n2 9\n6 5", "output": "-1" }, { "input": "14 17\n18 13\n15 16", "output": "-1" }, { "input": "16 14\n15 15\n17 13", "output": "9 7\n6 8" }, { "input": "14 11\n16 9\n13 12", "output": "9 5\n7 4" }, { "input": "13 10\n11 12\n7 16", "output": "4 9\n7 3" }, { "input": "14 8\n11 11\n13 9", "output": "8 6\n3 5" }, { "input": "12 11\n13 10\n10 13", "output": "-1" }, { "input": "6 5\n2 9\n5 6", "output": "-1" }, { "input": "7 8\n8 7\n12 3", "output": "-1" }, { "input": "7 11\n7 11\n6 12", "output": "-1" }, { "input": "8 5\n11 2\n8 5", "output": "-1" }, { "input": "10 16\n14 12\n14 12", "output": "-1" }, { "input": "7 9\n4 12\n5 11", "output": "-1" }, { "input": "11 13\n19 5\n12 12", "output": "-1" }, { "input": "8 12\n5 15\n11 9", "output": "2 6\n3 9" }, { "input": "16 5\n13 8\n10 11", "output": "9 7\n4 1" }, { "input": "3 14\n8 9\n10 7", "output": "2 1\n6 8" }, { "input": "12 14\n11 15\n9 17", "output": "3 9\n8 6" }, { "input": "13 7\n9 11\n14 6", "output": "8 5\n1 6" }, { "input": "13 8\n15 6\n11 10", "output": "9 4\n6 2" }, { "input": "9 6\n5 10\n3 12", "output": "1 8\n4 2" }, { "input": "12 7\n5 14\n8 11", "output": "3 9\n2 5" }, { "input": "9 12\n3 17\n10 10", "output": "-1" }, { "input": "3 8\n4 6\n5 5", "output": "-1" } ]
1,509,076,270
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
186
204,800
import sys def main(): (r1, r2) = map(int, sys.stdin.readline().split(' ')) (c1, c2) = map(int, sys.stdin.readline().split(' ')) (d1, d2) = map(int, sys.stdin.readline().split(' ')) for i in range(1, 10): for j in range(1, 10): for k in range(1, 10): for l in range(1, 10): if i + j == r1 and k + l == r2 and i + k == c1 and j + l == c2 and i + l == d1 and j + k == d2: return [[i, j], [k, l]] return [[-1, -1], [-1, -1]] l = main() if l[0][0] == -1: sys.stdout.write("-1\n") else: for i in range(len(l)): sys.stdout.write("{}\n".format((' '.join(list(map(str, l[i]))))))
Title: Help Vasilisa the Wise 2 Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasilisa the Wise from the Kingdom of Far Far Away got a magic box with a secret as a present from her friend Hellawisa the Wise from the Kingdom of A Little Closer. However, Vasilisa the Wise does not know what the box's secret is, since she cannot open it again. She hopes that you will help her one more time with that. The box's lock looks as follows: it contains 4 identical deepenings for gems as a 2<=×<=2 square, and some integer numbers are written at the lock's edge near the deepenings. The example of a lock is given on the picture below. The box is accompanied with 9 gems. Their shapes match the deepenings' shapes and each gem contains one number from 1 to 9 (each number is written on exactly one gem). The box will only open after it is decorated with gems correctly: that is, each deepening in the lock should be filled with exactly one gem. Also, the sums of numbers in the square's rows, columns and two diagonals of the square should match the numbers written at the lock's edge. For example, the above lock will open if we fill the deepenings with gems with numbers as is shown on the picture below. Now Vasilisa the Wise wants to define, given the numbers on the box's lock, which gems she should put in the deepenings to open the box. Help Vasilisa to solve this challenging task. Input Specification: The input contains numbers written on the edges of the lock of the box. The first line contains space-separated integers *r*1 and *r*2 that define the required sums of numbers in the rows of the square. The second line contains space-separated integers *c*1 and *c*2 that define the required sums of numbers in the columns of the square. The third line contains space-separated integers *d*1 and *d*2 that define the required sums of numbers on the main and on the side diagonals of the square (1<=≤<=*r*1,<=*r*2,<=*c*1,<=*c*2,<=*d*1,<=*d*2<=≤<=20). Correspondence between the above 6 variables and places where they are written is shown on the picture below. For more clarifications please look at the second sample test that demonstrates the example given in the problem statement. Output Specification: Print the scheme of decorating the box with stones: two lines containing two space-separated integers from 1 to 9. The numbers should be pairwise different. If there is no solution for the given lock, then print the single number "-1" (without the quotes). If there are several solutions, output any. Demo Input: ['3 7\n4 6\n5 5\n', '11 10\n13 8\n5 16\n', '1 2\n3 4\n5 6\n', '10 10\n10 10\n10 10\n'] Demo Output: ['1 2\n3 4\n', '4 7\n9 1\n', '-1\n', '-1\n'] Note: Pay attention to the last test from the statement: it is impossible to open the box because for that Vasilisa the Wise would need 4 identical gems containing number "5". However, Vasilisa only has one gem with each number from 1 to 9.
```python import sys def main(): (r1, r2) = map(int, sys.stdin.readline().split(' ')) (c1, c2) = map(int, sys.stdin.readline().split(' ')) (d1, d2) = map(int, sys.stdin.readline().split(' ')) for i in range(1, 10): for j in range(1, 10): for k in range(1, 10): for l in range(1, 10): if i + j == r1 and k + l == r2 and i + k == c1 and j + l == c2 and i + l == d1 and j + k == d2: return [[i, j], [k, l]] return [[-1, -1], [-1, -1]] l = main() if l[0][0] == -1: sys.stdout.write("-1\n") else: for i in range(len(l)): sys.stdout.write("{}\n".format((' '.join(list(map(str, l[i])))))) ```
0
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,692,806,329
2,147,483,647
Python 3
OK
TESTS
20
31
0
n, m, a = map(int, input().split()) rows = n // a + int(n % a > 0) cols = m // a + int(m % a > 0) print(rows * cols)
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python n, m, a = map(int, input().split()) rows = n // a + int(n % a > 0) cols = m // a + int(m % a > 0) print(rows * cols) ```
3.9845
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,675,693,177
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
62
0
ran = int(input()) for _ in range(ran): nums = list(map(int, input().split())) count = 0 for i in iter(nums): count += i if count == 0: print("YES") else: print("NO")
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python ran = int(input()) for _ in range(ran): nums = list(map(int, input().split())) count = 0 for i in iter(nums): count += i if count == 0: print("YES") else: print("NO") ```
0
415
A
Mashmokh and Lights
PROGRAMMING
900
[ "implementation" ]
null
null
Mashmokh works in a factory. At the end of each day he must turn off all of the lights. The lights on the factory are indexed from 1 to *n*. There are *n* buttons in Mashmokh's room indexed from 1 to *n* as well. If Mashmokh pushes button with index *i*, then each light with index not less than *i* that is still turned on turns off. Mashmokh is not very clever. So instead of pushing the first button he pushes some of the buttons randomly each night. He pushed *m* distinct buttons *b*1,<=*b*2,<=...,<=*b**m* (the buttons were pushed consecutively in the given order) this night. Now he wants to know for each light the index of the button that turned this light off. Please note that the index of button *b**i* is actually *b**i*, not *i*. Please, help Mashmokh, print these indices.
The first line of the input contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100), the number of the factory lights and the pushed buttons respectively. The next line contains *m* distinct space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*). It is guaranteed that all lights will be turned off after pushing all buttons.
Output *n* space-separated integers where the *i*-th number is index of the button that turns the *i*-th light off.
[ "5 4\n4 3 1 2\n", "5 5\n5 4 3 2 1\n" ]
[ "1 1 3 4 4 \n", "1 2 3 4 5 \n" ]
In the first sample, after pressing button number 4, lights 4 and 5 are turned off and lights 1, 2 and 3 are still on. Then after pressing button number 3, light number 3 is turned off as well. Pressing button number 1 turns off lights number 1 and 2 as well so pressing button number 2 in the end has no effect. Thus button number 4 turned lights 4 and 5 off, button number 3 turned light 3 off and button number 1 turned light 1 and 2 off.
500
[ { "input": "5 4\n4 3 1 2", "output": "1 1 3 4 4 " }, { "input": "5 5\n5 4 3 2 1", "output": "1 2 3 4 5 " }, { "input": "16 11\n8 5 12 10 14 2 6 3 15 9 1", "output": "1 2 2 2 5 5 5 8 8 8 8 8 8 8 8 8 " }, { "input": "79 22\n76 32 48 28 33 44 58 59 1 51 77 13 15 64 49 72 74 21 61 12 60 57", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28 28 28 28 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 76 76 76 76 " }, { "input": "25 19\n3 12 21 11 19 6 5 15 4 16 20 8 9 1 22 23 25 18 13", "output": "1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " }, { "input": "48 8\n42 27 40 1 18 3 19 2", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 42 42 42 42 42 42 42 " }, { "input": "44 19\n13 20 7 10 9 14 43 17 18 39 21 42 37 1 33 8 35 4 6", "output": "1 1 1 1 1 1 7 7 7 7 7 7 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 " }, { "input": "80 29\n79 51 28 73 65 39 10 1 59 29 7 70 64 3 35 17 24 71 74 2 6 49 66 80 13 18 60 15 12", "output": "1 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 79 79 " }, { "input": "31 4\n8 18 30 1", "output": "1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 " }, { "input": "62 29\n61 55 35 13 51 56 23 6 8 26 27 40 48 11 18 12 19 50 54 14 24 21 32 17 43 33 1 2 3", "output": "1 1 1 1 1 6 6 6 6 6 6 6 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 55 55 55 55 55 55 61 61 " }, { "input": "5 4\n2 3 4 1", "output": "1 2 2 2 2 " }, { "input": "39 37\n2 5 17 24 19 33 35 16 20 3 1 34 10 36 15 37 14 8 28 21 13 31 30 29 7 25 32 12 6 27 22 4 11 39 18 9 26", "output": "1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 " }, { "input": "100 100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 " }, { "input": "1 1\n1", "output": "1 " }, { "input": "18 3\n18 1 11", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18 " }, { "input": "67 20\n66 23 40 49 3 39 60 43 52 47 16 36 22 5 41 10 55 34 64 1", "output": "1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 66 66 " }, { "input": "92 52\n9 85 44 13 27 61 8 1 28 41 6 14 70 67 39 71 56 80 34 21 5 10 40 73 63 38 90 57 37 36 82 86 65 46 7 54 81 12 45 49 83 59 64 26 62 25 60 24 91 47 53 55", "output": "1 1 1 1 1 1 1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 " }, { "input": "66 36\n44 62 32 29 3 15 47 30 50 42 35 2 33 65 10 13 56 12 1 16 7 36 39 11 25 28 20 52 46 38 37 8 61 49 48 14", "output": "1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 29 29 29 32 32 32 32 32 32 32 32 32 32 32 32 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 " }, { "input": "32 8\n27 23 1 13 18 24 17 26", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 23 23 23 23 27 27 27 27 27 27 " }, { "input": "26 13\n1 14 13 2 4 24 21 22 16 3 10 12 6", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " }, { "input": "31 20\n10 11 20 2 4 26 31 7 13 12 28 1 30 18 21 8 3 16 15 19", "output": "1 2 2 2 2 2 2 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 " }, { "input": "86 25\n22 62 8 23 53 77 9 31 43 1 58 16 72 11 15 35 60 39 79 4 82 64 76 63 59", "output": "1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 " }, { "input": "62 54\n2 5 4 47 40 61 37 31 41 16 44 42 48 32 10 6 62 38 52 49 11 20 55 22 3 36 25 21 50 8 28 14 18 39 34 54 53 19 46 27 15 23 12 24 60 17 33 57 58 1 35 29 51 7", "output": "1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 " }, { "input": "57 19\n43 45 37 40 42 55 16 33 47 32 34 35 9 41 1 6 8 15 5", "output": "1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 37 37 37 37 37 37 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 " }, { "input": "32 14\n4 7 13 1 25 22 9 27 6 28 30 2 14 21", "output": "1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 " }, { "input": "57 12\n8 53 51 38 1 6 16 33 13 46 28 35", "output": "1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 " }, { "input": "87 9\n57 34 78 1 52 67 56 6 54", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 " }, { "input": "88 42\n85 45 52 14 63 53 70 71 16 86 66 47 12 22 10 72 4 31 3 69 11 77 17 25 46 75 23 1 21 84 44 20 18 33 48 88 41 83 67 61 73 34", "output": "1 1 3 4 4 4 4 4 4 10 10 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 85 85 85 85 " }, { "input": "27 25\n9 21 17 5 16 3 23 7 12 4 14 11 13 1 15 19 27 8 20 10 22 25 6 18 26", "output": "1 1 3 3 5 5 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 " }, { "input": "89 28\n5 22 79 42 16 35 66 48 57 55 1 37 29 31 40 38 45 62 41 87 64 89 81 13 60 44 71 82", "output": "1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 " }, { "input": "17 4\n4 3 1 2", "output": "1 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 " } ]
1,580,035,962
2,147,483,647
Python 3
OK
TESTS
31
124
0
def solve(n, m, b): a = [-1 for _ in range(n)] for i, k in enumerate(b): for j in range(k-1, n): if a[j] == -1: a[j] = k return ' '.join(map(str, a)) def main(): n, m = list(map(int, input().split())) b = list(map(int, input().split())) print(solve(n, m, b)) main()
Title: Mashmokh and Lights Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mashmokh works in a factory. At the end of each day he must turn off all of the lights. The lights on the factory are indexed from 1 to *n*. There are *n* buttons in Mashmokh's room indexed from 1 to *n* as well. If Mashmokh pushes button with index *i*, then each light with index not less than *i* that is still turned on turns off. Mashmokh is not very clever. So instead of pushing the first button he pushes some of the buttons randomly each night. He pushed *m* distinct buttons *b*1,<=*b*2,<=...,<=*b**m* (the buttons were pushed consecutively in the given order) this night. Now he wants to know for each light the index of the button that turned this light off. Please note that the index of button *b**i* is actually *b**i*, not *i*. Please, help Mashmokh, print these indices. Input Specification: The first line of the input contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100), the number of the factory lights and the pushed buttons respectively. The next line contains *m* distinct space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*). It is guaranteed that all lights will be turned off after pushing all buttons. Output Specification: Output *n* space-separated integers where the *i*-th number is index of the button that turns the *i*-th light off. Demo Input: ['5 4\n4 3 1 2\n', '5 5\n5 4 3 2 1\n'] Demo Output: ['1 1 3 4 4 \n', '1 2 3 4 5 \n'] Note: In the first sample, after pressing button number 4, lights 4 and 5 are turned off and lights 1, 2 and 3 are still on. Then after pressing button number 3, light number 3 is turned off as well. Pressing button number 1 turns off lights number 1 and 2 as well so pressing button number 2 in the end has no effect. Thus button number 4 turned lights 4 and 5 off, button number 3 turned light 3 off and button number 1 turned light 1 and 2 off.
```python def solve(n, m, b): a = [-1 for _ in range(n)] for i, k in enumerate(b): for j in range(k-1, n): if a[j] == -1: a[j] = k return ' '.join(map(str, a)) def main(): n, m = list(map(int, input().split())) b = list(map(int, input().split())) print(solve(n, m, b)) main() ```
3
744
A
Hongcow Builds A Nation
PROGRAMMING
1,500
[ "dfs and similar", "graphs" ]
null
null
Hongcow is ruler of the world. As ruler of the world, he wants to make it easier for people to travel by road within their own countries. The world can be modeled as an undirected graph with *n* nodes and *m* edges. *k* of the nodes are home to the governments of the *k* countries that make up the world. There is at most one edge connecting any two nodes and no edge connects a node to itself. Furthermore, for any two nodes corresponding to governments, there is no path between those two nodes. Any graph that satisfies all of these conditions is stable. Hongcow wants to add as many edges as possible to the graph while keeping it stable. Determine the maximum number of edges Hongcow can add.
The first line of input will contain three integers *n*, *m* and *k* (1<=≤<=*n*<=≤<=1<=000, 0<=≤<=*m*<=≤<=100<=000, 1<=≤<=*k*<=≤<=*n*) — the number of vertices and edges in the graph, and the number of vertices that are homes of the government. The next line of input will contain *k* integers *c*1,<=*c*2,<=...,<=*c**k* (1<=≤<=*c**i*<=≤<=*n*). These integers will be pairwise distinct and denote the nodes that are home to the governments in this world. The following *m* lines of input will contain two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*). This denotes an undirected edge between nodes *u**i* and *v**i*. It is guaranteed that the graph described by the input is stable.
Output a single integer, the maximum number of edges Hongcow can add to the graph while keeping it stable.
[ "4 1 2\n1 3\n1 2\n", "3 3 1\n2\n1 2\n1 3\n2 3\n" ]
[ "2\n", "0\n" ]
For the first sample test, the graph looks like this: For the second sample test, the graph looks like this:
500
[ { "input": "4 1 2\n1 3\n1 2", "output": "2" }, { "input": "3 3 1\n2\n1 2\n1 3\n2 3", "output": "0" }, { "input": "10 3 2\n1 10\n1 2\n1 3\n4 5", "output": "33" }, { "input": "1 0 1\n1", "output": "0" }, { "input": "1000 0 1\n72", "output": "499500" }, { "input": "24 38 2\n4 13\n7 1\n24 1\n2 8\n17 2\n2 18\n22 2\n23 3\n5 9\n21 5\n6 7\n6 19\n6 20\n11 7\n7 20\n13 8\n16 8\n9 10\n14 9\n21 9\n12 10\n10 22\n23 10\n17 11\n11 24\n20 12\n13 16\n13 23\n15 14\n17 14\n14 20\n19 16\n17 20\n17 23\n18 22\n18 23\n22 19\n21 20\n23 24", "output": "215" }, { "input": "10 30 1\n4\n1 2\n3 1\n4 1\n1 6\n1 8\n10 1\n2 4\n2 7\n3 4\n3 5\n7 3\n3 9\n10 3\n5 4\n6 4\n7 4\n9 4\n10 4\n6 5\n5 8\n9 5\n10 5\n6 7\n9 6\n10 6\n7 8\n9 7\n10 7\n9 8\n10 8", "output": "15" }, { "input": "10 13 2\n5 10\n2 1\n1 4\n2 3\n2 8\n3 4\n7 3\n4 6\n8 4\n4 9\n6 7\n6 9\n10 6\n7 8", "output": "23" }, { "input": "10 10 3\n2 5 6\n1 3\n4 1\n4 3\n5 3\n3 9\n8 4\n9 4\n5 10\n8 7\n10 8", "output": "18" }, { "input": "10 5 3\n1 5 9\n1 3\n1 8\n2 3\n8 4\n5 7", "output": "17" }, { "input": "6 4 2\n1 4\n1 2\n2 3\n4 5\n5 6", "output": "2" }, { "input": "7 8 2\n1 4\n1 2\n2 3\n4 5\n4 6\n4 7\n5 6\n5 7\n6 7", "output": "1" }, { "input": "5 2 3\n1 3 4\n1 5\n2 4", "output": "0" }, { "input": "5 3 2\n1 2\n2 3\n2 4\n1 5", "output": "1" }, { "input": "9 5 2\n1 5\n1 2\n2 3\n3 4\n5 6\n6 7", "output": "13" }, { "input": "6 4 1\n1\n2 3\n3 4\n4 5\n5 6", "output": "11" }, { "input": "6 4 2\n1 5\n1 2\n2 3\n3 4\n5 6", "output": "3" }, { "input": "7 3 3\n1 5 6\n1 2\n1 3\n6 7", "output": "4" }, { "input": "5 2 2\n1 2\n1 3\n2 4", "output": "2" }, { "input": "11 7 2\n1 4\n1 2\n1 3\n4 5\n4 6\n5 6\n9 10\n1 11", "output": "24" }, { "input": "20 4 5\n1 3 9 10 20\n5 6\n1 2\n7 9\n4 10", "output": "89" } ]
1,620,610,650
2,147,483,647
PyPy 3
OK
TESTS
61
826
44,441,600
def estavel(p): if p != arr[p]: arr[p] = estavel(arr[p]) return arr[p] n, m, k = map(int, input().split()) grafo = map(int, input().split()) arr = [p for p in range(n+1)] for _ in range(m): u, v = map(int, input().split()) u = estavel(u) v = estavel(v) arr[v] = u aux = [0 for i in range(n+1)] for i in range(n+1): aux[estavel(i)] += 1 sobras = n resultado = 0 maior = 0 for x in grafo: elem = estavel(x) maior = max(maior, aux[elem]) resultado += aux[elem] * (aux[elem] - 1) // 2 sobras -= aux[elem] resultado -= maior * (maior - 1) // 2 resultado += (maior+sobras) * ((maior+sobras) - 1) // 2 resultado -= m print(resultado)
Title: Hongcow Builds A Nation Time Limit: None seconds Memory Limit: None megabytes Problem Description: Hongcow is ruler of the world. As ruler of the world, he wants to make it easier for people to travel by road within their own countries. The world can be modeled as an undirected graph with *n* nodes and *m* edges. *k* of the nodes are home to the governments of the *k* countries that make up the world. There is at most one edge connecting any two nodes and no edge connects a node to itself. Furthermore, for any two nodes corresponding to governments, there is no path between those two nodes. Any graph that satisfies all of these conditions is stable. Hongcow wants to add as many edges as possible to the graph while keeping it stable. Determine the maximum number of edges Hongcow can add. Input Specification: The first line of input will contain three integers *n*, *m* and *k* (1<=≤<=*n*<=≤<=1<=000, 0<=≤<=*m*<=≤<=100<=000, 1<=≤<=*k*<=≤<=*n*) — the number of vertices and edges in the graph, and the number of vertices that are homes of the government. The next line of input will contain *k* integers *c*1,<=*c*2,<=...,<=*c**k* (1<=≤<=*c**i*<=≤<=*n*). These integers will be pairwise distinct and denote the nodes that are home to the governments in this world. The following *m* lines of input will contain two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*). This denotes an undirected edge between nodes *u**i* and *v**i*. It is guaranteed that the graph described by the input is stable. Output Specification: Output a single integer, the maximum number of edges Hongcow can add to the graph while keeping it stable. Demo Input: ['4 1 2\n1 3\n1 2\n', '3 3 1\n2\n1 2\n1 3\n2 3\n'] Demo Output: ['2\n', '0\n'] Note: For the first sample test, the graph looks like this: For the second sample test, the graph looks like this:
```python def estavel(p): if p != arr[p]: arr[p] = estavel(arr[p]) return arr[p] n, m, k = map(int, input().split()) grafo = map(int, input().split()) arr = [p for p in range(n+1)] for _ in range(m): u, v = map(int, input().split()) u = estavel(u) v = estavel(v) arr[v] = u aux = [0 for i in range(n+1)] for i in range(n+1): aux[estavel(i)] += 1 sobras = n resultado = 0 maior = 0 for x in grafo: elem = estavel(x) maior = max(maior, aux[elem]) resultado += aux[elem] * (aux[elem] - 1) // 2 sobras -= aux[elem] resultado -= maior * (maior - 1) // 2 resultado += (maior+sobras) * ((maior+sobras) - 1) // 2 resultado -= m print(resultado) ```
3
556
A
Case of the Zeros and Ones
PROGRAMMING
900
[ "greedy" ]
null
null
Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones. Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result. Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number.
First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=2·105), the length of the string that Andreid has. The second line contains the string of length *n* consisting only from zeros and ones.
Output the minimum length of the string that may remain after applying the described operations several times.
[ "4\n1100\n", "5\n01010\n", "8\n11101111\n" ]
[ "0\n", "1\n", "6\n" ]
In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
250
[ { "input": "4\n1100", "output": "0" }, { "input": "5\n01010", "output": "1" }, { "input": "8\n11101111", "output": "6" }, { "input": "1\n0", "output": "1" }, { "input": "1\n1", "output": "1" }, { "input": "2\n00", "output": "2" }, { "input": "2\n01", "output": "0" }, { "input": "2\n10", "output": "0" }, { "input": "2\n11", "output": "2" }, { "input": "3\n001", "output": "1" }, { "input": "6\n110110", "output": "2" }, { "input": "7\n0000011", "output": "3" }, { "input": "6\n110010", "output": "0" }, { "input": "6\n110100", "output": "0" }, { "input": "3\n100", "output": "1" }, { "input": "6\n010111", "output": "2" }, { "input": "8\n01011100", "output": "0" }, { "input": "6\n001011", "output": "0" }, { "input": "7\n1110000", "output": "1" }, { "input": "9\n011111101", "output": "5" } ]
1,664,529,317
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
11
1,000
409,600
n=int(input()) a=input() while ('01' in a) or ('10' in a): for x in range(len(a)-1): if a[x:(x+2)]=='10' or a[x:(x+2)]=='01': a=a[0:x]+a[(x+2):] print(len(a))
Title: Case of the Zeros and Ones Time Limit: None seconds Memory Limit: None megabytes Problem Description: Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones. Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result. Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number. Input Specification: First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=2·105), the length of the string that Andreid has. The second line contains the string of length *n* consisting only from zeros and ones. Output Specification: Output the minimum length of the string that may remain after applying the described operations several times. Demo Input: ['4\n1100\n', '5\n01010\n', '8\n11101111\n'] Demo Output: ['0\n', '1\n', '6\n'] Note: In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
```python n=int(input()) a=input() while ('01' in a) or ('10' in a): for x in range(len(a)-1): if a[x:(x+2)]=='10' or a[x:(x+2)]=='01': a=a[0:x]+a[(x+2):] print(len(a)) ```
0
454
B
Little Pony and Sort by Shift
PROGRAMMING
1,200
[ "implementation" ]
null
null
One day, Twilight Sparkle is interested in how to sort a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* in non-decreasing order. Being a young unicorn, the only operation she can perform is a unit shift. That is, she can move the last element of the sequence to its beginning: Help Twilight Sparkle to calculate: what is the minimum number of operations that she needs to sort the sequence?
The first line contains an integer *n* (2<=≤<=*n*<=≤<=105). The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105).
If it's impossible to sort the sequence output -1. Otherwise output the minimum number of operations Twilight Sparkle needs to sort it.
[ "2\n2 1\n", "3\n1 3 2\n", "2\n1 2\n" ]
[ "1\n", "-1\n", "0\n" ]
none
1,000
[ { "input": "2\n2 1", "output": "1" }, { "input": "3\n1 3 2", "output": "-1" }, { "input": "2\n1 2", "output": "0" }, { "input": "6\n3 4 5 6 3 2", "output": "-1" }, { "input": "3\n1 2 1", "output": "1" }, { "input": "5\n1 1 2 1 1", "output": "2" }, { "input": "4\n5 4 5 4", "output": "-1" }, { "input": "7\n3 4 5 5 5 1 2", "output": "2" }, { "input": "5\n2 2 1 2 2", "output": "3" }, { "input": "5\n5 4 1 2 3", "output": "-1" }, { "input": "4\n6 1 2 7", "output": "-1" }, { "input": "5\n4 5 6 2 3", "output": "2" }, { "input": "2\n1 1", "output": "0" }, { "input": "4\n1 2 2 1", "output": "1" }, { "input": "9\n4 5 6 7 1 2 3 4 10", "output": "-1" }, { "input": "7\n2 3 4 1 2 3 4", "output": "-1" }, { "input": "6\n1 2 1 2 1 2", "output": "-1" }, { "input": "3\n3 2 1", "output": "-1" }, { "input": "4\n1 4 4 1", "output": "1" }, { "input": "5\n1 2 1 1 1", "output": "3" }, { "input": "5\n4 6 7 3 5", "output": "-1" }, { "input": "4\n2 3 1 4", "output": "-1" }, { "input": "5\n5 4 3 2 1", "output": "-1" }, { "input": "4\n2 4 1 4", "output": "-1" }, { "input": "6\n4 5 6 1 2 7", "output": "-1" }, { "input": "6\n1 2 3 1 1 1", "output": "3" }, { "input": "5\n1 3 3 3 1", "output": "1" }, { "input": "6\n5 6 7 5 5 5", "output": "3" }, { "input": "5\n3 4 2 1 2", "output": "-1" }, { "input": "3\n3 4 2", "output": "1" }, { "input": "6\n1 1 2 2 1 1", "output": "2" }, { "input": "4\n2 3 4 2", "output": "1" }, { "input": "5\n3 5 7 7 3", "output": "1" }, { "input": "4\n1 1 4 1", "output": "1" }, { "input": "7\n1 5 6 1 1 1 1", "output": "4" }, { "input": "5\n7 8 6 7 8", "output": "-1" }, { "input": "4\n2 4 1 3", "output": "-1" } ]
1,609,279,248
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
3
1,000
11,980,800
n = int(input()) l = list(map(int, input().split())) c = 0 while n: if l == sorted(l): break x = l[-1] l.pop(-1) l = [x] + l c += 1 n -= 1 if l == sorted(l): print(c) else: print(-1)
Title: Little Pony and Sort by Shift Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day, Twilight Sparkle is interested in how to sort a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* in non-decreasing order. Being a young unicorn, the only operation she can perform is a unit shift. That is, she can move the last element of the sequence to its beginning: Help Twilight Sparkle to calculate: what is the minimum number of operations that she needs to sort the sequence? Input Specification: The first line contains an integer *n* (2<=≤<=*n*<=≤<=105). The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105). Output Specification: If it's impossible to sort the sequence output -1. Otherwise output the minimum number of operations Twilight Sparkle needs to sort it. Demo Input: ['2\n2 1\n', '3\n1 3 2\n', '2\n1 2\n'] Demo Output: ['1\n', '-1\n', '0\n'] Note: none
```python n = int(input()) l = list(map(int, input().split())) c = 0 while n: if l == sorted(l): break x = l[-1] l.pop(-1) l = [x] + l c += 1 n -= 1 if l == sorted(l): print(c) else: print(-1) ```
0
522
A
Reposts
PROGRAMMING
1,200
[ "*special", "dfs and similar", "dp", "graphs", "trees" ]
null
null
One day Polycarp published a funny picture in a social network making a poll about the color of his handle. Many of his friends started reposting Polycarp's joke to their news feed. Some of them reposted the reposts and so on. These events are given as a sequence of strings "name1 reposted name2", where name1 is the name of the person who reposted the joke, and name2 is the name of the person from whose news feed the joke was reposted. It is guaranteed that for each string "name1 reposted name2" user "name1" didn't have the joke in his feed yet, and "name2" already had it in his feed by the moment of repost. Polycarp was registered as "Polycarp" and initially the joke was only in his feed. Polycarp measures the popularity of the joke as the length of the largest repost chain. Print the popularity of Polycarp's joke.
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=200) — the number of reposts. Next follow the reposts in the order they were made. Each of them is written on a single line and looks as "name1 reposted name2". All the names in the input consist of lowercase or uppercase English letters and/or digits and have lengths from 2 to 24 characters, inclusive. We know that the user names are case-insensitive, that is, two names that only differ in the letter case correspond to the same social network user.
Print a single integer — the maximum length of a repost chain.
[ "5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya\n", "6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp\n", "1\nSoMeStRaNgEgUe reposted PoLyCaRp\n" ]
[ "6\n", "2\n", "2\n" ]
none
500
[ { "input": "5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya", "output": "6" }, { "input": "6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp", "output": "2" }, { "input": "1\nSoMeStRaNgEgUe reposted PoLyCaRp", "output": "2" }, { "input": "1\niuNtwVf reposted POlYcarP", "output": "2" }, { "input": "10\ncs reposted poLYCaRp\nAFIkDrY7Of4V7Mq reposted CS\nsoBiwyN7KOvoFUfbhux reposted aFikDry7Of4v7MQ\nvb6LbwA reposted sObIWYN7KOvoFufBHUx\nDtWKIcVwIHgj4Rcv reposted vb6lbwa\nkt reposted DTwKicvwihgJ4rCV\n75K reposted kT\njKzyxx1 reposted 75K\nuoS reposted jkZyXX1\npZJskHTCIqE3YyZ5ME reposted uoS", "output": "11" }, { "input": "10\nvxrUpCXvx8Isq reposted pOLYcaRP\nICb1 reposted vXRUpCxvX8ISq\nJFMt4b8jZE7iF2m8by7y2 reposted Icb1\nqkG6ZkMIf9QRrBFQU reposted ICb1\nnawsNfcR2palIMnmKZ reposted pOlYcaRP\nKksyH reposted jFMT4b8JzE7If2M8by7y2\nwJtWwQS5FvzN0h8CxrYyL reposted NawsNfcR2paLIMnmKz\nDpBcBPYAcTXEdhldI6tPl reposted NaWSnFCr2pALiMnmkZ\nlEnwTVnlwdQg2vaIRQry reposted kKSYh\nQUVFgwllaWO reposted Wjtwwqs5FVzN0H8cxRyyl", "output": "6" }, { "input": "10\nkkuLGEiHv reposted POLYcArp\n3oX1AoUqyw1eR3nCADY9hLwd reposted kkuLGeIHV\nwf97dqq5bx1dPIchCoT reposted 3OX1AOuQYW1eR3ncAdY9hLwD\nWANr8h reposted Wf97dQQ5bx1dpIcHcoT\n3Fb736lkljZK2LtSbfL reposted wANR8h\n6nq9xLOn reposted 3fB736lKlJZk2LtSbFL\nWL reposted 3Fb736lKLjZk2LTSbfl\ndvxn4Xtc6SBcvKf1 reposted wF97DQq5bX1dPiChCOt\nMCcPLIMISqxDzrj reposted 6nQ9XLOn\nxsQL4Z2Iu reposted MCcpLiMiSqxdzrj", "output": "9" }, { "input": "10\nsMA4 reposted pOLyCARP\nlq3 reposted pOlycARp\nEa16LSFTQxLJnE reposted polYcARp\nkvZVZhJwXcWsnC7NA1DV2WvS reposted polYCArp\nEYqqlrjRwddI reposted pOlyCArP\nsPqQCA67Y6PBBbcaV3EhooO reposted ea16LSFTqxLJne\njjPnneZdF6WLZ3v reposted Ea16LSFTqxLjNe\nWEoi6UpnfBUx79 reposted ea16LSFtqXljNe\nqi4yra reposted eYqqlRJrWDDI\ncw7E1UCSUD reposted eYqqLRJRwDdI", "output": "3" } ]
1,457,775,505
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
46
0
n = int(input()) l = [] for i in range(n): l.append(input().split(' ')[2]) s = set(l) print(len(s)+1)
Title: Reposts Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Polycarp published a funny picture in a social network making a poll about the color of his handle. Many of his friends started reposting Polycarp's joke to their news feed. Some of them reposted the reposts and so on. These events are given as a sequence of strings "name1 reposted name2", where name1 is the name of the person who reposted the joke, and name2 is the name of the person from whose news feed the joke was reposted. It is guaranteed that for each string "name1 reposted name2" user "name1" didn't have the joke in his feed yet, and "name2" already had it in his feed by the moment of repost. Polycarp was registered as "Polycarp" and initially the joke was only in his feed. Polycarp measures the popularity of the joke as the length of the largest repost chain. Print the popularity of Polycarp's joke. Input Specification: The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=200) — the number of reposts. Next follow the reposts in the order they were made. Each of them is written on a single line and looks as "name1 reposted name2". All the names in the input consist of lowercase or uppercase English letters and/or digits and have lengths from 2 to 24 characters, inclusive. We know that the user names are case-insensitive, that is, two names that only differ in the letter case correspond to the same social network user. Output Specification: Print a single integer — the maximum length of a repost chain. Demo Input: ['5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya\n', '6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp\n', '1\nSoMeStRaNgEgUe reposted PoLyCaRp\n'] Demo Output: ['6\n', '2\n', '2\n'] Note: none
```python n = int(input()) l = [] for i in range(n): l.append(input().split(' ')[2]) s = set(l) print(len(s)+1) ```
0
595
A
Vitaly and Night
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
One day Vitaly was going home late at night and wondering: how many people aren't sleeping at that moment? To estimate, Vitaly decided to look which windows are lit in the house he was passing by at that moment. Vitaly sees a building of *n* floors and 2·*m* windows on each floor. On each floor there are *m* flats numbered from 1 to *m*, and two consecutive windows correspond to each flat. If we number the windows from 1 to 2·*m* from left to right, then the *j*-th flat of the *i*-th floor has windows 2·*j*<=-<=1 and 2·*j* in the corresponding row of windows (as usual, floors are enumerated from the bottom). Vitaly thinks that people in the flat aren't sleeping at that moment if at least one of the windows corresponding to this flat has lights on. Given the information about the windows of the given house, your task is to calculate the number of flats where, according to Vitaly, people aren't sleeping.
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of floors in the house and the number of flats on each floor respectively. Next *n* lines describe the floors from top to bottom and contain 2·*m* characters each. If the *i*-th window of the given floor has lights on, then the *i*-th character of this line is '1', otherwise it is '0'.
Print a single integer — the number of flats that have lights on in at least one window, that is, the flats where, according to Vitaly, people aren't sleeping.
[ "2 2\n0 0 0 1\n1 0 1 1\n", "1 3\n1 1 0 1 0 0\n" ]
[ "3\n", "2\n" ]
In the first test case the house has two floors, two flats on each floor. That is, in total there are 4 flats. The light isn't on only on the second floor in the left flat. That is, in both rooms of the flat the light is off. In the second test case the house has one floor and the first floor has three flats. The light is on in the leftmost flat (in both windows) and in the middle flat (in one window). In the right flat the light is off.
500
[ { "input": "2 2\n0 0 0 1\n1 0 1 1", "output": "3" }, { "input": "1 3\n1 1 0 1 0 0", "output": "2" }, { "input": "3 3\n1 1 1 1 1 1\n1 1 0 1 1 0\n1 0 0 0 1 1", "output": "8" }, { "input": "1 5\n1 0 1 1 1 0 1 1 1 1", "output": "5" }, { "input": "1 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "99" }, { "input": "1 100\n0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "6" }, { "input": "1 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n0 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n0 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "100" }, { "input": "100 1\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n1 0\n0 0\n0 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n1 0", "output": "8" }, { "input": "100 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "1 1\n0 0", "output": "0" }, { "input": "1 1\n0 1", "output": "1" }, { "input": "1 1\n1 0", "output": "1" }, { "input": "1 1\n1 1", "output": "1" } ]
1,574,581,786
2,147,483,647
Python 3
OK
TESTS
36
124
307,200
n,m=input().split() n=int(n) m=int(m) c=0 for x in range (n): a=list(map(int,input().split()))[:2*m] for y in range(0,2*m,2): if a[y]==1 or a[y+1]==1: c+=1 print(c)
Title: Vitaly and Night Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vitaly was going home late at night and wondering: how many people aren't sleeping at that moment? To estimate, Vitaly decided to look which windows are lit in the house he was passing by at that moment. Vitaly sees a building of *n* floors and 2·*m* windows on each floor. On each floor there are *m* flats numbered from 1 to *m*, and two consecutive windows correspond to each flat. If we number the windows from 1 to 2·*m* from left to right, then the *j*-th flat of the *i*-th floor has windows 2·*j*<=-<=1 and 2·*j* in the corresponding row of windows (as usual, floors are enumerated from the bottom). Vitaly thinks that people in the flat aren't sleeping at that moment if at least one of the windows corresponding to this flat has lights on. Given the information about the windows of the given house, your task is to calculate the number of flats where, according to Vitaly, people aren't sleeping. Input Specification: The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of floors in the house and the number of flats on each floor respectively. Next *n* lines describe the floors from top to bottom and contain 2·*m* characters each. If the *i*-th window of the given floor has lights on, then the *i*-th character of this line is '1', otherwise it is '0'. Output Specification: Print a single integer — the number of flats that have lights on in at least one window, that is, the flats where, according to Vitaly, people aren't sleeping. Demo Input: ['2 2\n0 0 0 1\n1 0 1 1\n', '1 3\n1 1 0 1 0 0\n'] Demo Output: ['3\n', '2\n'] Note: In the first test case the house has two floors, two flats on each floor. That is, in total there are 4 flats. The light isn't on only on the second floor in the left flat. That is, in both rooms of the flat the light is off. In the second test case the house has one floor and the first floor has three flats. The light is on in the leftmost flat (in both windows) and in the middle flat (in one window). In the right flat the light is off.
```python n,m=input().split() n=int(n) m=int(m) c=0 for x in range (n): a=list(map(int,input().split()))[:2*m] for y in range(0,2*m,2): if a[y]==1 or a[y+1]==1: c+=1 print(c) ```
3
305
A
Strange Addition
PROGRAMMING
1,600
[ "brute force", "constructive algorithms", "implementation" ]
null
null
Unfortunately, Vasya can only sum pairs of integers (*a*, *b*), such that for any decimal place at least one number has digit 0 in this place. For example, Vasya can sum numbers 505 and 50, but he cannot sum 1 and 4. Vasya has a set of *k* distinct non-negative integers *d*1,<=*d*2,<=...,<=*d**k*. Vasya wants to choose some integers from this set so that he could sum any two chosen numbers. What maximal number of integers can he choose in the required manner?
The first input line contains integer *k* (1<=≤<=*k*<=≤<=100) — the number of integers. The second line contains *k* distinct space-separated integers *d*1,<=*d*2,<=...,<=*d**k* (0<=≤<=*d**i*<=≤<=100).
In the first line print a single integer *n* the maximum number of the chosen integers. In the second line print *n* distinct non-negative integers — the required integers. If there are multiple solutions, print any of them. You can print the numbers in any order.
[ "4\n100 10 1 0\n", "3\n2 70 3\n" ]
[ "4\n0 1 10 100 ", "2\n2 70 " ]
none
500
[ { "input": "4\n100 10 1 0", "output": "4\n0 1 10 100 " }, { "input": "3\n2 70 3", "output": "2\n2 70 " }, { "input": "39\n16 72 42 70 17 36 32 40 47 94 27 30 100 55 23 77 67 28 49 50 53 83 38 33 60 65 62 64 6 66 69 86 96 75 85 0 89 73 29", "output": "4\n0 6 30 100 " }, { "input": "50\n20 67 96 6 75 12 37 46 38 86 83 22 10 8 21 2 93 9 81 49 69 52 63 62 70 92 97 40 47 99 16 85 48 77 39 100 28 5 11 44 89 1 19 42 35 27 7 14 88 33", "output": "3\n1 10 100 " }, { "input": "2\n1 2", "output": "1\n1 " }, { "input": "73\n39 66 3 59 40 93 72 34 95 79 83 65 99 57 48 44 82 76 31 21 64 19 53 75 37 16 43 5 47 24 15 22 20 55 45 74 42 10 61 49 23 80 35 62 2 9 67 97 51 81 1 70 88 63 33 25 68 13 69 71 73 6 18 52 41 38 96 46 92 85 14 36 100", "output": "3\n1 10 100 " }, { "input": "15\n74 90 73 47 36 44 81 21 66 92 2 38 62 72 49", "output": "2\n2 90 " }, { "input": "96\n17 10 0 85 57 78 15 99 55 6 7 88 12 95 58 19 47 18 96 82 21 80 97 77 46 31 54 70 23 60 59 100 66 92 51 14 91 25 16 27 44 4 35 98 8 52 24 5 81 29 73 13 61 56 45 75 49 71 94 48 3 76 32 65 72 1 84 36 86 40 83 50 22 33 41 11 26 93 90 43 39 79 89 9 64 68 42 74 87 2 62 34 20 63 67 37", "output": "4\n0 1 10 100 " }, { "input": "5\n23 75 38 47 70", "output": "1\n23 " }, { "input": "12\n89 61 45 92 22 3 94 66 48 21 54 14", "output": "1\n3 " }, { "input": "1\n99", "output": "1\n99 " }, { "input": "1\n0", "output": "1\n0 " }, { "input": "2\n100 1", "output": "2\n1 100 " }, { "input": "3\n1 100 99", "output": "2\n1 100 " }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "3\n1 10 100 " }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 100 0", "output": "4\n0 1 10 100 " }, { "input": "99\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99", "output": "2\n1 10 " }, { "input": "2\n5 6", "output": "1\n5 " }, { "input": "81\n11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59 61 62 63 64 65 66 67 68 69 71 72 73 74 75 76 77 78 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 97 98 99", "output": "1\n11 " }, { "input": "3\n99 10 6", "output": "2\n6 10 " }, { "input": "4\n11 10 100 3", "output": "3\n3 10 100 " }, { "input": "2\n99 6", "output": "1\n6 " }, { "input": "3\n23 0 100", "output": "3\n0 23 100 " }, { "input": "2\n43 0", "output": "2\n0 43 " }, { "input": "4\n99 0 100 6", "output": "3\n0 6 100 " }, { "input": "1\n100", "output": "1\n100 " }, { "input": "2\n0 100", "output": "2\n0 100 " }, { "input": "3\n0 100 10", "output": "3\n0 10 100 " }, { "input": "3\n0 100 12", "output": "3\n0 12 100 " }, { "input": "3\n0 100 1", "output": "3\n0 1 100 " }, { "input": "4\n0 100 10 1", "output": "4\n0 1 10 100 " }, { "input": "4\n0 100 10 99", "output": "3\n0 10 100 " }, { "input": "1\n1", "output": "1\n1 " }, { "input": "2\n10 12", "output": "1\n10 " }, { "input": "2\n90 9", "output": "2\n9 90 " } ]
1,443,262,509
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
124
0
n = int(input()) a = input().split() ans = "" cnt = 0 once = False for i in a: if '0' in i: ans+= i+" " cnt+=1 elif not once: ans+= i+" " once = True cnt+=1 else: continue print(cnt) print(ans)
Title: Strange Addition Time Limit: None seconds Memory Limit: None megabytes Problem Description: Unfortunately, Vasya can only sum pairs of integers (*a*, *b*), such that for any decimal place at least one number has digit 0 in this place. For example, Vasya can sum numbers 505 and 50, but he cannot sum 1 and 4. Vasya has a set of *k* distinct non-negative integers *d*1,<=*d*2,<=...,<=*d**k*. Vasya wants to choose some integers from this set so that he could sum any two chosen numbers. What maximal number of integers can he choose in the required manner? Input Specification: The first input line contains integer *k* (1<=≤<=*k*<=≤<=100) — the number of integers. The second line contains *k* distinct space-separated integers *d*1,<=*d*2,<=...,<=*d**k* (0<=≤<=*d**i*<=≤<=100). Output Specification: In the first line print a single integer *n* the maximum number of the chosen integers. In the second line print *n* distinct non-negative integers — the required integers. If there are multiple solutions, print any of them. You can print the numbers in any order. Demo Input: ['4\n100 10 1 0\n', '3\n2 70 3\n'] Demo Output: ['4\n0 1 10 100 ', '2\n2 70 '] Note: none
```python n = int(input()) a = input().split() ans = "" cnt = 0 once = False for i in a: if '0' in i: ans+= i+" " cnt+=1 elif not once: ans+= i+" " once = True cnt+=1 else: continue print(cnt) print(ans) ```
0
476
C
Dreamoon and Sums
PROGRAMMING
1,600
[ "math" ]
null
null
Dreamoon loves summing up something for no reason. One day he obtains two integers *a* and *b* occasionally. He wants to calculate the sum of all nice integers. Positive integer *x* is called nice if and , where *k* is some integer number in range [1,<=*a*]. By we denote the quotient of integer division of *x* and *y*. By we denote the remainder of integer division of *x* and *y*. You can read more about these operations here: http://goo.gl/AcsXhT. The answer may be large, so please print its remainder modulo 1<=000<=000<=007 (109<=+<=7). Can you compute it faster than Dreamoon?
The single line of the input contains two integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=107).
Print a single integer representing the answer modulo 1<=000<=000<=007 (109<=+<=7).
[ "1 1\n", "2 2\n" ]
[ "0\n", "8\n" ]
For the first sample, there are no nice integers because <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/03b1dc6bae5180f8a2d8eb85789e8b393e585970.png" style="max-width: 100.0%;max-height: 100.0%;"/> is always zero. For the second sample, the set of nice integers is {3, 5}.
1,500
[ { "input": "1 1", "output": "0" }, { "input": "2 2", "output": "8" }, { "input": "4 1", "output": "0" }, { "input": "4 2", "output": "24" }, { "input": "4 3", "output": "102" }, { "input": "4 4", "output": "264" }, { "input": "3 4", "output": "162" }, { "input": "2 4", "output": "84" }, { "input": "1 4", "output": "30" }, { "input": "1000 1000", "output": "247750000" }, { "input": "10000000 10000000", "output": "425362313" }, { "input": "10000000 9999999", "output": "930564389" }, { "input": "2 10000000", "output": "990423507" }, { "input": "10000000 2", "output": "19300000" }, { "input": "9999999 2", "output": "999300006" }, { "input": "9999999 9999999", "output": "957764103" }, { "input": "10000000 10000", "output": "723127969" }, { "input": "10000 10000000", "output": "372369289" }, { "input": "2 9999999", "output": "48573499" }, { "input": "123456 123456", "output": "417111819" }, { "input": "6407688 3000816", "output": "895399645" }, { "input": "9956532 1084240", "output": "554368769" }, { "input": "3505377 9167664", "output": "80435138" }, { "input": "7054221 7251088", "output": "7849970" }, { "input": "346169 367216", "output": "358144298" }, { "input": "3895014 8450640", "output": "627604019" }, { "input": "861392 6200826", "output": "180835815" }, { "input": "4410236 9316955", "output": "602743722" }, { "input": "2926377 2367675", "output": "395740917" }, { "input": "1507925 5483803", "output": "727607740" }, { "input": "9832578 8599931", "output": "428281878" }, { "input": "8348718 6683355", "output": "275994807" }, { "input": "1897562 4766779", "output": "148050609" }, { "input": "413703 2850203", "output": "76966774" }, { "input": "8995251 5966331", "output": "451718548" }, { "input": "7319903 9017051", "output": "975259203" }, { "input": "9253578 1799941", "output": "868664771" }, { "input": "7835126 9883365", "output": "119844544" }, { "input": "6351267 7966789", "output": "683811063" }, { "input": "9900111 1082917", "output": "539539383" }, { "input": "1 10000000", "output": "995024507" }, { "input": "123456 234567", "output": "93010021" }, { "input": "888888 888888", "output": "456888843" }, { "input": "1001 1500126", "output": "45074025" }, { "input": "9243243 432434", "output": "203891513" }, { "input": "3 10000000", "output": "986197007" }, { "input": "4108931 211273", "output": "142398939" }, { "input": "999999 92321", "output": "286549418" }, { "input": "999999 999999", "output": "691690639" }, { "input": "191919 123123", "output": "358196438" }, { "input": "999999 1000000", "output": "725921292" }, { "input": "31623 10000000", "output": "382702377" }, { "input": "1000023 1000043", "output": "175442768" }, { "input": "666666 666666", "output": "869302791" }, { "input": "7672285 753250", "output": "461773059" }, { "input": "1000000 1000000", "output": "249917764" }, { "input": "6340794 6874449", "output": "930977735" }, { "input": "9998486 9998486", "output": "988877388" }, { "input": "9999997 9999998", "output": "946983076" } ]
1,673,967,086
2,147,483,647
Python 3
OK
TESTS
59
61
0
mod=1000000007 a,b= map(int,input().split()) v= b*(b-1)//2 t1= b*a*(a+1)//2 sum= v*(a+t1) sum=sum%mod print(int(sum))
Title: Dreamoon and Sums Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dreamoon loves summing up something for no reason. One day he obtains two integers *a* and *b* occasionally. He wants to calculate the sum of all nice integers. Positive integer *x* is called nice if and , where *k* is some integer number in range [1,<=*a*]. By we denote the quotient of integer division of *x* and *y*. By we denote the remainder of integer division of *x* and *y*. You can read more about these operations here: http://goo.gl/AcsXhT. The answer may be large, so please print its remainder modulo 1<=000<=000<=007 (109<=+<=7). Can you compute it faster than Dreamoon? Input Specification: The single line of the input contains two integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=107). Output Specification: Print a single integer representing the answer modulo 1<=000<=000<=007 (109<=+<=7). Demo Input: ['1 1\n', '2 2\n'] Demo Output: ['0\n', '8\n'] Note: For the first sample, there are no nice integers because <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/03b1dc6bae5180f8a2d8eb85789e8b393e585970.png" style="max-width: 100.0%;max-height: 100.0%;"/> is always zero. For the second sample, the set of nice integers is {3, 5}.
```python mod=1000000007 a,b= map(int,input().split()) v= b*(b-1)//2 t1= b*a*(a+1)//2 sum= v*(a+t1) sum=sum%mod print(int(sum)) ```
3
37
A
Towers
PROGRAMMING
1,000
[ "sortings" ]
A. Towers
2
256
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same. Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
[ "3\n1 2 3\n", "4\n6 5 6 7\n" ]
[ "1 3\n", "2 3\n" ]
none
500
[ { "input": "3\n1 2 3", "output": "1 3" }, { "input": "4\n6 5 6 7", "output": "2 3" }, { "input": "4\n3 2 1 1", "output": "2 3" }, { "input": "4\n1 2 3 3", "output": "2 3" }, { "input": "3\n20 22 36", "output": "1 3" }, { "input": "25\n47 30 94 41 45 20 96 51 110 129 24 116 9 47 32 82 105 114 116 75 154 151 70 42 162", "output": "2 23" }, { "input": "45\n802 664 442 318 318 827 417 878 711 291 231 414 807 553 657 392 279 202 386 606 465 655 658 112 887 15 25 502 95 44 679 775 942 609 209 871 31 234 4 231 150 110 22 823 193", "output": "2 43" }, { "input": "63\n93 180 116 7 8 179 268 279 136 94 221 153 264 190 278 19 19 63 153 26 158 225 25 49 89 218 111 149 255 225 197 122 243 80 3 224 107 178 202 17 53 92 69 42 228 24 81 205 95 8 265 82 228 156 127 241 172 159 106 60 67 155 111", "output": "2 57" }, { "input": "83\n246 535 994 33 390 927 321 97 223 922 812 705 79 80 977 457 476 636 511 137 6 360 815 319 717 674 368 551 714 628 278 713 761 553 184 414 623 753 428 214 581 115 439 61 677 216 772 592 187 603 658 310 439 559 870 376 109 321 189 337 277 26 70 734 796 907 979 693 570 227 345 650 737 633 701 914 134 403 972 940 371 6 642", "output": "2 80" }, { "input": "105\n246 57 12 204 165 123 246 68 191 310 3 152 386 333 374 257 158 104 333 50 80 290 8 340 101 76 221 316 388 289 138 359 316 26 93 290 105 178 81 195 41 196 218 180 244 292 187 97 315 323 174 119 248 239 92 312 31 2 101 180 307 170 338 314 163 281 217 31 142 238 280 190 190 156 70 74 329 113 151 8 141 313 366 40 253 116 168 124 135 230 294 266 353 389 371 359 195 200 183 237 93 102 315 118 188", "output": "2 92" }, { "input": "123\n112 277 170 247 252 115 157 293 256 143 196 90 12 164 164 42 8 223 167 109 175 232 239 111 148 51 9 254 93 32 268 162 231 91 47 162 161 191 195 145 247 292 129 199 230 94 144 217 18 205 176 20 143 198 121 243 211 262 230 277 195 255 108 290 220 275 158 2 286 200 60 267 278 207 123 150 123 116 131 13 12 226 33 244 30 275 263 45 158 192 254 149 242 176 62 224 221 288 250 160 155 225 132 143 276 293 218 145 197 175 33 129 79 206 210 192 222 262 190 52 274 243 233", "output": "3 101" }, { "input": "5\n5 5 5 5 5", "output": "5 1" }, { "input": "3\n1000 1000 1000", "output": "3 1" }, { "input": "1\n1000", "output": "1 1" }, { "input": "1\n1", "output": "1 1" }, { "input": "5\n1 1000 1000 1000 1000", "output": "4 2" }, { "input": "5\n1000 1000 1000 8 7", "output": "3 3" } ]
1,588,239,710
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
186
0
n=int(input()) l=list(map(int,input().split())) height=1 num=0 l.sort() summ=list() count=1 for i in range(n-1): if l[i]==l[i+1]: height+=1 else: summ.append(height) count+=1 summ=max(summ) print(summ,count )
Title: Towers Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same. Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible. Input Specification: The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000. Output Specification: In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars. Demo Input: ['3\n1 2 3\n', '4\n6 5 6 7\n'] Demo Output: ['1 3\n', '2 3\n'] Note: none
```python n=int(input()) l=list(map(int,input().split())) height=1 num=0 l.sort() summ=list() count=1 for i in range(n-1): if l[i]==l[i+1]: height+=1 else: summ.append(height) count+=1 summ=max(summ) print(summ,count ) ```
0
689
A
Mike and Cellphone
PROGRAMMING
1,400
[ "brute force", "constructive algorithms", "implementation" ]
null
null
While swimming at the beach, Mike has accidentally dropped his cellphone into the water. There was no worry as he bought a cheap replacement phone with an old-fashioned keyboard. The keyboard has only ten digital equal-sized keys, located in the following way: Together with his old phone, he lost all his contacts and now he can only remember the way his fingers moved when he put some number in. One can formally consider finger movements as a sequence of vectors connecting centers of keys pressed consecutively to put in a number. For example, the finger movements for number "586" are the same as finger movements for number "253": Mike has already put in a number by his "finger memory" and started calling it, so he is now worrying, can he be sure that he is calling the correct number? In other words, is there any other number, that has the same finger movements?
The first line of the input contains the only integer *n* (1<=≤<=*n*<=≤<=9) — the number of digits in the phone number that Mike put in. The second line contains the string consisting of *n* digits (characters from '0' to '9') representing the number that Mike put in.
If there is no other phone number with the same finger movements and Mike can be sure he is calling the correct number, print "YES" (without quotes) in the only line. Otherwise print "NO" (without quotes) in the first line.
[ "3\n586\n", "2\n09\n", "9\n123456789\n", "3\n911\n" ]
[ "NO\n", "NO\n", "YES\n", "YES\n" ]
You can find the picture clarifying the first sample case in the statement above.
500
[ { "input": "3\n586", "output": "NO" }, { "input": "2\n09", "output": "NO" }, { "input": "9\n123456789", "output": "YES" }, { "input": "3\n911", "output": "YES" }, { "input": "3\n089", "output": "NO" }, { "input": "3\n159", "output": "YES" }, { "input": "9\n000000000", "output": "NO" }, { "input": "4\n0874", "output": "NO" }, { "input": "6\n235689", "output": "NO" }, { "input": "2\n10", "output": "YES" }, { "input": "3\n358", "output": "NO" }, { "input": "6\n123456", "output": "NO" }, { "input": "1\n0", "output": "NO" }, { "input": "4\n0068", "output": "NO" }, { "input": "6\n021149", "output": "YES" }, { "input": "5\n04918", "output": "YES" }, { "input": "2\n05", "output": "NO" }, { "input": "4\n0585", "output": "NO" }, { "input": "4\n0755", "output": "NO" }, { "input": "2\n08", "output": "NO" }, { "input": "4\n0840", "output": "NO" }, { "input": "9\n103481226", "output": "YES" }, { "input": "4\n1468", "output": "NO" }, { "input": "7\n1588216", "output": "NO" }, { "input": "9\n188758557", "output": "NO" }, { "input": "1\n2", "output": "NO" }, { "input": "2\n22", "output": "NO" }, { "input": "8\n23482375", "output": "YES" }, { "input": "9\n246112056", "output": "YES" }, { "input": "9\n256859223", "output": "NO" }, { "input": "6\n287245", "output": "NO" }, { "input": "8\n28959869", "output": "NO" }, { "input": "9\n289887167", "output": "YES" }, { "input": "4\n3418", "output": "NO" }, { "input": "4\n3553", "output": "NO" }, { "input": "2\n38", "output": "NO" }, { "input": "6\n386126", "output": "NO" }, { "input": "6\n392965", "output": "NO" }, { "input": "1\n4", "output": "NO" }, { "input": "6\n423463", "output": "NO" }, { "input": "4\n4256", "output": "NO" }, { "input": "8\n42937903", "output": "YES" }, { "input": "1\n5", "output": "NO" }, { "input": "8\n50725390", "output": "YES" }, { "input": "9\n515821866", "output": "NO" }, { "input": "2\n56", "output": "NO" }, { "input": "2\n57", "output": "NO" }, { "input": "7\n5740799", "output": "NO" }, { "input": "9\n582526521", "output": "NO" }, { "input": "9\n585284126", "output": "NO" }, { "input": "1\n6", "output": "NO" }, { "input": "3\n609", "output": "NO" }, { "input": "2\n63", "output": "NO" }, { "input": "3\n633", "output": "NO" }, { "input": "7\n6668940", "output": "NO" }, { "input": "5\n66883", "output": "NO" }, { "input": "2\n68", "output": "NO" }, { "input": "5\n69873", "output": "YES" }, { "input": "1\n7", "output": "NO" }, { "input": "4\n7191", "output": "YES" }, { "input": "9\n722403540", "output": "YES" }, { "input": "9\n769554547", "output": "NO" }, { "input": "3\n780", "output": "NO" }, { "input": "5\n78248", "output": "NO" }, { "input": "4\n7844", "output": "NO" }, { "input": "4\n7868", "output": "NO" }, { "input": "1\n8", "output": "NO" }, { "input": "6\n817332", "output": "YES" }, { "input": "7\n8465393", "output": "YES" }, { "input": "7\n8526828", "output": "NO" }, { "input": "8\n85812664", "output": "NO" }, { "input": "8\n93008225", "output": "YES" }, { "input": "7\n9454566", "output": "NO" }, { "input": "4\n9625", "output": "NO" }, { "input": "8\n97862407", "output": "YES" }, { "input": "3\n993", "output": "NO" }, { "input": "3\n267", "output": "YES" }, { "input": "3\n249", "output": "YES" }, { "input": "3\n672", "output": "YES" }, { "input": "3\n176", "output": "YES" }, { "input": "3\n123", "output": "NO" }, { "input": "3\n367", "output": "YES" }, { "input": "2\n12", "output": "NO" }, { "input": "4\n2580", "output": "YES" }, { "input": "2\n20", "output": "YES" }, { "input": "3\n492", "output": "YES" }, { "input": "3\n167", "output": "YES" }, { "input": "3\n970", "output": "NO" }, { "input": "3\n460", "output": "NO" }, { "input": "4\n4268", "output": "NO" }, { "input": "4\n9394", "output": "YES" }, { "input": "2\n13", "output": "NO" }, { "input": "3\n729", "output": "YES" }, { "input": "6\n456893", "output": "YES" } ]
1,492,842,380
1,580
Python 3
WRONG_ANSWER
TESTS
7
46
5,529,600
import sys read=lambda:sys.stdin.readline().rstrip() readi=lambda:int(sys.stdin.readline()) writeln=lambda x:sys.stdout.write(str(x)+"\n") write=lambda x:sys.stdout.write(x) def solve(memory, N): pad=[[-1]*7 for _ in range(8)] n = 1 npos = [[-1,-1]]*10 for i in range(2, 5): for j in range(2, 5): pad[i][j] = n npos[n] = (i, j) n += 1 pad[3][5] = 0 npos[0] = (3, 5) vecs = [] sy, sx = npos[int(memory[0])] for i in range(N-1): y, x = npos[int(memory[i])] ny, nx = npos[int(memory[i+1])] vecs.append((ny-y, nx-x)) for i in range(2, 5): for j in range(2, 5): if (sy, sx) == (i, j): continue y, x = i, j for t in range(N-1): dy,dx = vecs[t] y, x = y + dy, x + dx if pad[y][x] == -1: break else: return "NO" if (sy, sx) == (3, 5): return "YES" y, x = 3, 5 for t in range(N-1): dy,dx = vecs[t] y, x = y + dy, x + dx if pad[y][x] == -1: break else: return "NO" return "YES" N=readi() mem = read() writeln(solve(mem, N))
Title: Mike and Cellphone Time Limit: None seconds Memory Limit: None megabytes Problem Description: While swimming at the beach, Mike has accidentally dropped his cellphone into the water. There was no worry as he bought a cheap replacement phone with an old-fashioned keyboard. The keyboard has only ten digital equal-sized keys, located in the following way: Together with his old phone, he lost all his contacts and now he can only remember the way his fingers moved when he put some number in. One can formally consider finger movements as a sequence of vectors connecting centers of keys pressed consecutively to put in a number. For example, the finger movements for number "586" are the same as finger movements for number "253": Mike has already put in a number by his "finger memory" and started calling it, so he is now worrying, can he be sure that he is calling the correct number? In other words, is there any other number, that has the same finger movements? Input Specification: The first line of the input contains the only integer *n* (1<=≤<=*n*<=≤<=9) — the number of digits in the phone number that Mike put in. The second line contains the string consisting of *n* digits (characters from '0' to '9') representing the number that Mike put in. Output Specification: If there is no other phone number with the same finger movements and Mike can be sure he is calling the correct number, print "YES" (without quotes) in the only line. Otherwise print "NO" (without quotes) in the first line. Demo Input: ['3\n586\n', '2\n09\n', '9\n123456789\n', '3\n911\n'] Demo Output: ['NO\n', 'NO\n', 'YES\n', 'YES\n'] Note: You can find the picture clarifying the first sample case in the statement above.
```python import sys read=lambda:sys.stdin.readline().rstrip() readi=lambda:int(sys.stdin.readline()) writeln=lambda x:sys.stdout.write(str(x)+"\n") write=lambda x:sys.stdout.write(x) def solve(memory, N): pad=[[-1]*7 for _ in range(8)] n = 1 npos = [[-1,-1]]*10 for i in range(2, 5): for j in range(2, 5): pad[i][j] = n npos[n] = (i, j) n += 1 pad[3][5] = 0 npos[0] = (3, 5) vecs = [] sy, sx = npos[int(memory[0])] for i in range(N-1): y, x = npos[int(memory[i])] ny, nx = npos[int(memory[i+1])] vecs.append((ny-y, nx-x)) for i in range(2, 5): for j in range(2, 5): if (sy, sx) == (i, j): continue y, x = i, j for t in range(N-1): dy,dx = vecs[t] y, x = y + dy, x + dx if pad[y][x] == -1: break else: return "NO" if (sy, sx) == (3, 5): return "YES" y, x = 3, 5 for t in range(N-1): dy,dx = vecs[t] y, x = y + dy, x + dx if pad[y][x] == -1: break else: return "NO" return "YES" N=readi() mem = read() writeln(solve(mem, N)) ```
0
954
A
Diagonal Walking
PROGRAMMING
800
[ "implementation" ]
null
null
Mikhail walks on a 2D plane. He can go either up or right. You are given a sequence of Mikhail's moves. He thinks that this sequence is too long and he wants to make it as short as possible. In the given sequence moving up is described by character U and moving right is described by character R. Mikhail can replace any pair of consecutive moves RU or UR with a diagonal move (described as character D). After that, he can go on and do some other replacements, until there is no pair of consecutive moves RU or UR left. Your problem is to print the minimum possible length of the sequence of moves after the replacements.
The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=100) — the length of the sequence. The second line contains the sequence consisting of *n* characters U and R.
Print the minimum possible length of the sequence of moves after all replacements are done.
[ "5\nRUURU\n", "17\nUUURRRRRUUURURUUU\n" ]
[ "3\n", "13\n" ]
In the first test the shortened sequence of moves may be DUD (its length is 3). In the second test the shortened sequence of moves can be UUDRRRDUDDUUU (its length is 13).
0
[ { "input": "5\nRUURU", "output": "3" }, { "input": "17\nUUURRRRRUUURURUUU", "output": "13" }, { "input": "100\nUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU", "output": "100" }, { "input": "100\nRRURRUUUURURRRURRRRURRRRRRURRUURRRUUURUURURRURUURUURRUURUURRURURUUUUURUUUUUURRUUURRRURRURRRUURRUUUUR", "output": "67" }, { "input": "100\nUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUURUUUUUUUUUUUUUUUUUUUUU", "output": "99" }, { "input": "3\nRUR", "output": "2" }, { "input": "1\nR", "output": "1" }, { "input": "5\nRURUU", "output": "3" }, { "input": "1\nU", "output": "1" }, { "input": "2\nUR", "output": "1" }, { "input": "23\nUUUUUUUUUUUUUUUUUUUUUUU", "output": "23" } ]
1,638,017,826
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
0
1,000
1,228,800
n=input() s=input() count=0 i=0 while(i<len(s)): if s[i]=='U' and s[i+1]=='R' or s[i]=='R' and s[i+1]=='U': count+=1 i+2 else: i+1 print(len(s)-count-1)
Title: Diagonal Walking Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mikhail walks on a 2D plane. He can go either up or right. You are given a sequence of Mikhail's moves. He thinks that this sequence is too long and he wants to make it as short as possible. In the given sequence moving up is described by character U and moving right is described by character R. Mikhail can replace any pair of consecutive moves RU or UR with a diagonal move (described as character D). After that, he can go on and do some other replacements, until there is no pair of consecutive moves RU or UR left. Your problem is to print the minimum possible length of the sequence of moves after the replacements. Input Specification: The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=100) — the length of the sequence. The second line contains the sequence consisting of *n* characters U and R. Output Specification: Print the minimum possible length of the sequence of moves after all replacements are done. Demo Input: ['5\nRUURU\n', '17\nUUURRRRRUUURURUUU\n'] Demo Output: ['3\n', '13\n'] Note: In the first test the shortened sequence of moves may be DUD (its length is 3). In the second test the shortened sequence of moves can be UUDRRRDUDDUUU (its length is 13).
```python n=input() s=input() count=0 i=0 while(i<len(s)): if s[i]=='U' and s[i+1]=='R' or s[i]=='R' and s[i+1]=='U': count+=1 i+2 else: i+1 print(len(s)-count-1) ```
0
551
A
GukiZ and Contest
PROGRAMMING
800
[ "brute force", "implementation", "sortings" ]
null
null
Professor GukiZ likes programming contests. He especially likes to rate his students on the contests he prepares. Now, he has decided to prepare a new contest. In total, *n* students will attend, and before the start, every one of them has some positive integer rating. Students are indexed from 1 to *n*. Let's denote the rating of *i*-th student as *a**i*. After the contest ends, every student will end up with some positive integer position. GukiZ expects that his students will take places according to their ratings. He thinks that each student will take place equal to . In particular, if student *A* has rating strictly lower then student *B*, *A* will get the strictly better position than *B*, and if two students have equal ratings, they will share the same position. GukiZ would like you to reconstruct the results by following his expectations. Help him and determine the position after the end of the contest for each of his students if everything goes as expected.
The first line contains integer *n* (1<=≤<=*n*<=≤<=2000), number of GukiZ's students. The second line contains *n* numbers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=2000) where *a**i* is the rating of *i*-th student (1<=≤<=*i*<=≤<=*n*).
In a single line, print the position after the end of the contest for each of *n* students in the same order as they appear in the input.
[ "3\n1 3 3\n", "1\n1\n", "5\n3 5 3 4 5\n" ]
[ "3 1 1\n", "1\n", "4 1 4 3 1\n" ]
In the first sample, students 2 and 3 are positioned first (there is no other student with higher rating), and student 1 is positioned third since there are two students with higher rating. In the second sample, first student is the only one on the contest. In the third sample, students 2 and 5 share the first position with highest rating, student 4 is next with third position, and students 1 and 3 are the last sharing fourth position.
500
[ { "input": "3\n1 3 3", "output": "3 1 1" }, { "input": "1\n1", "output": "1" }, { "input": "5\n3 5 3 4 5", "output": "4 1 4 3 1" }, { "input": "7\n1 3 5 4 2 2 1", "output": "6 3 1 2 4 4 6" }, { "input": "11\n5 6 4 2 9 7 6 6 6 6 7", "output": "9 4 10 11 1 2 4 4 4 4 2" }, { "input": "1\n2000", "output": "1" }, { "input": "2\n2000 2000", "output": "1 1" }, { "input": "3\n500 501 502", "output": "3 2 1" }, { "input": "10\n105 106 1 1 1 11 1000 999 1000 999", "output": "6 5 8 8 8 7 1 3 1 3" }, { "input": "6\n1 2 3 4 5 6", "output": "6 5 4 3 2 1" }, { "input": "7\n6 5 4 3 2 1 1", "output": "1 2 3 4 5 6 6" }, { "input": "8\n153 100 87 14 10 8 6 5", "output": "1 2 3 4 5 6 7 8" }, { "input": "70\n11 54 37 62 1 46 13 17 38 47 28 15 63 5 61 34 49 66 32 59 3 41 58 28 23 62 41 64 20 5 14 41 10 37 51 32 65 46 61 8 15 19 16 44 31 42 19 46 66 25 26 58 60 5 19 18 69 53 20 40 45 27 24 41 32 23 57 56 62 10", "output": "62 18 35 7 70 23 61 56 34 22 42 58 6 66 10 37 21 2 38 13 69 29 14 42 48 7 29 5 50 66 60 29 63 35 20 38 4 23 10 65 58 52 57 27 41 28 52 23 2 46 45 14 12 66 52 55 1 19 50 33 26 44 47 29 38 48 16 17 7 63" }, { "input": "5\n1 2000 1 1 2000", "output": "3 1 3 3 1" } ]
1,598,832,428
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
343
6,963,200
n = int(input()) students = input().split(' ') for i in students: print(sorted(students)[::-1].index(i) + 1, end =' ')
Title: GukiZ and Contest Time Limit: None seconds Memory Limit: None megabytes Problem Description: Professor GukiZ likes programming contests. He especially likes to rate his students on the contests he prepares. Now, he has decided to prepare a new contest. In total, *n* students will attend, and before the start, every one of them has some positive integer rating. Students are indexed from 1 to *n*. Let's denote the rating of *i*-th student as *a**i*. After the contest ends, every student will end up with some positive integer position. GukiZ expects that his students will take places according to their ratings. He thinks that each student will take place equal to . In particular, if student *A* has rating strictly lower then student *B*, *A* will get the strictly better position than *B*, and if two students have equal ratings, they will share the same position. GukiZ would like you to reconstruct the results by following his expectations. Help him and determine the position after the end of the contest for each of his students if everything goes as expected. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=2000), number of GukiZ's students. The second line contains *n* numbers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=2000) where *a**i* is the rating of *i*-th student (1<=≤<=*i*<=≤<=*n*). Output Specification: In a single line, print the position after the end of the contest for each of *n* students in the same order as they appear in the input. Demo Input: ['3\n1 3 3\n', '1\n1\n', '5\n3 5 3 4 5\n'] Demo Output: ['3 1 1\n', '1\n', '4 1 4 3 1\n'] Note: In the first sample, students 2 and 3 are positioned first (there is no other student with higher rating), and student 1 is positioned third since there are two students with higher rating. In the second sample, first student is the only one on the contest. In the third sample, students 2 and 5 share the first position with highest rating, student 4 is next with third position, and students 1 and 3 are the last sharing fourth position.
```python n = int(input()) students = input().split(' ') for i in students: print(sorted(students)[::-1].index(i) + 1, end =' ') ```
0
5
C
Longest Regular Bracket Sequence
PROGRAMMING
1,900
[ "constructive algorithms", "data structures", "dp", "greedy", "sortings", "strings" ]
C. Longest Regular Bracket Sequence
2
256
This is yet another problem dealing with regular bracket sequences. We should remind you that a bracket sequence is called regular, if by inserting «+» and «1» into it we can get a correct mathematical expression. For example, sequences «(())()», «()» and «(()(()))» are regular, while «)(», «(()» and «(()))(» are not. You are given a string of «(» and «)» characters. You are to find its longest substring that is a regular bracket sequence. You are to find the number of such substrings as well.
The first line of the input file contains a non-empty string, consisting of «(» and «)» characters. Its length does not exceed 106.
Print the length of the longest substring that is a regular bracket sequence, and the number of such substrings. If there are no such substrings, write the only line containing "0 1".
[ ")((())))(()())\n", "))(\n" ]
[ "6 2\n", "0 1\n" ]
none
0
[ { "input": ")((())))(()())", "output": "6 2" }, { "input": "))(", "output": "0 1" }, { "input": "()(())()", "output": "8 1" }, { "input": "((((()(((", "output": "2 1" }, { "input": "))))()())))", "output": "4 1" }, { "input": "(()())()(())()()())())()((()(()(())()()())((()(())()(()()()()))()(())()(((()())()(()((())()(())(()))", "output": "28 1" }, { "input": ")(()(((((())))))(((()))))))((()(((((((())())()))))((((((((())))((((((())))))(()((((()))))(()))))))))", "output": "68 1" }, { "input": "())(((((())())((((()))(())))())())(((()(()()()())(())()))((()(())())()()))()(()())))))(()))((())((((", "output": "80 1" }, { "input": "))(((((((()((((())(((((((((()()))))(()())()((())())))((((()))(()()()))))(()()))())))))((())())()))((", "output": "92 1" } ]
1,590,203,858
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
280
0
s=input() score=0 count=1 maxa=0 from collections import defaultdict al=defaultdict(list) al[0].append(0) for i in range(len(s)): if(s[i]=='('): score+=1 al[score].append(i) else: if(score>0): if(i-al[score][-1]+1>maxa): maxa=i-al[score][-1]+1 count=1 elif(i-al[score][-1]+1==maxa): count+=1 score-=1 if(score==0): print(len(s),1) exit() if(maxa==0): print(0,1) else: print(maxa,count)
Title: Longest Regular Bracket Sequence Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: This is yet another problem dealing with regular bracket sequences. We should remind you that a bracket sequence is called regular, if by inserting «+» and «1» into it we can get a correct mathematical expression. For example, sequences «(())()», «()» and «(()(()))» are regular, while «)(», «(()» and «(()))(» are not. You are given a string of «(» and «)» characters. You are to find its longest substring that is a regular bracket sequence. You are to find the number of such substrings as well. Input Specification: The first line of the input file contains a non-empty string, consisting of «(» and «)» characters. Its length does not exceed 106. Output Specification: Print the length of the longest substring that is a regular bracket sequence, and the number of such substrings. If there are no such substrings, write the only line containing "0 1". Demo Input: [')((())))(()())\n', '))(\n'] Demo Output: ['6 2\n', '0 1\n'] Note: none
```python s=input() score=0 count=1 maxa=0 from collections import defaultdict al=defaultdict(list) al[0].append(0) for i in range(len(s)): if(s[i]=='('): score+=1 al[score].append(i) else: if(score>0): if(i-al[score][-1]+1>maxa): maxa=i-al[score][-1]+1 count=1 elif(i-al[score][-1]+1==maxa): count+=1 score-=1 if(score==0): print(len(s),1) exit() if(maxa==0): print(0,1) else: print(maxa,count) ```
0
289
B
Polo the Penguin and Matrix
PROGRAMMING
1,400
[ "brute force", "dp", "implementation", "sortings", "ternary search" ]
null
null
Little penguin Polo has an *n*<=×<=*m* matrix, consisting of integers. Let's index the matrix rows from 1 to *n* from top to bottom and let's index the columns from 1 to *m* from left to right. Let's represent the matrix element on the intersection of row *i* and column *j* as *a**ij*. In one move the penguin can add or subtract number *d* from some matrix element. Find the minimum number of moves needed to make all matrix elements equal. If the described plan is impossible to carry out, say so.
The first line contains three integers *n*, *m* and *d* (1<=≤<=*n*,<=*m*<=≤<=100,<=1<=≤<=*d*<=≤<=104) — the matrix sizes and the *d* parameter. Next *n* lines contain the matrix: the *j*-th integer in the *i*-th row is the matrix element *a**ij* (1<=≤<=*a**ij*<=≤<=104).
In a single line print a single integer — the minimum number of moves the penguin needs to make all matrix elements equal. If that is impossible, print "-1" (without the quotes).
[ "2 2 2\n2 4\n6 8\n", "1 2 7\n6 7\n" ]
[ "4\n", "-1\n" ]
none
1,000
[ { "input": "2 2 2\n2 4\n6 8", "output": "4" }, { "input": "1 2 7\n6 7", "output": "-1" }, { "input": "3 2 1\n5 7\n1 2\n5 100", "output": "104" }, { "input": "3 3 3\n5 8 5\n11 11 17\n14 5 2", "output": "12" }, { "input": "3 3 3\n5 8 5\n11 11 17\n14 5 3", "output": "-1" }, { "input": "2 2 4\n5 5\n5 5", "output": "0" }, { "input": "7 4 5\n7 7 7 12\n7 12 12 7\n7 7 7 7\n7 7 12 7\n7 7 12 12\n12 12 7 12\n7 7 7 7", "output": "9" }, { "input": "7 7 47\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91", "output": "0" }, { "input": "7 7 47\n47 47 47 47 47 47 47\n47 47 47 47 77 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 127 47", "output": "-1" }, { "input": "7 5 47\n9583 1734 4601 5353 2110\n3802 5165 7985 6293 324\n7045 653 9160 7891 4930\n1781 3520 4178 2298 3943\n1405 2956 5447 5494 6528\n3097 1640 7750 4883 8032\n4225 8455 1875 4789 4366", "output": "1508" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "1 1 8\n12", "output": "0" } ]
1,694,956,480
2,147,483,647
Python 3
OK
TESTS
31
92
716,800
n,m,d=map(int,input().split()) lst=[] for i in range(n): x=(list(map(int,input().split()))) lst=lst+x flag=True for i in range(len(lst)-1): if(abs(lst[i+1]-lst[i])%d!=0): flag=False break if(flag==False): print(-1) else: lst.sort() count=0 if(len(lst)%2==0): middle=min(lst[len(lst)//2],lst[(len(lst)//2)-1]) else: middle=lst[len(lst)//2] for i in range(len(lst)): count += abs(lst[i]-middle)//d print(count)
Title: Polo the Penguin and Matrix Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little penguin Polo has an *n*<=×<=*m* matrix, consisting of integers. Let's index the matrix rows from 1 to *n* from top to bottom and let's index the columns from 1 to *m* from left to right. Let's represent the matrix element on the intersection of row *i* and column *j* as *a**ij*. In one move the penguin can add or subtract number *d* from some matrix element. Find the minimum number of moves needed to make all matrix elements equal. If the described plan is impossible to carry out, say so. Input Specification: The first line contains three integers *n*, *m* and *d* (1<=≤<=*n*,<=*m*<=≤<=100,<=1<=≤<=*d*<=≤<=104) — the matrix sizes and the *d* parameter. Next *n* lines contain the matrix: the *j*-th integer in the *i*-th row is the matrix element *a**ij* (1<=≤<=*a**ij*<=≤<=104). Output Specification: In a single line print a single integer — the minimum number of moves the penguin needs to make all matrix elements equal. If that is impossible, print "-1" (without the quotes). Demo Input: ['2 2 2\n2 4\n6 8\n', '1 2 7\n6 7\n'] Demo Output: ['4\n', '-1\n'] Note: none
```python n,m,d=map(int,input().split()) lst=[] for i in range(n): x=(list(map(int,input().split()))) lst=lst+x flag=True for i in range(len(lst)-1): if(abs(lst[i+1]-lst[i])%d!=0): flag=False break if(flag==False): print(-1) else: lst.sort() count=0 if(len(lst)%2==0): middle=min(lst[len(lst)//2],lst[(len(lst)//2)-1]) else: middle=lst[len(lst)//2] for i in range(len(lst)): count += abs(lst[i]-middle)//d print(count) ```
3
37
A
Towers
PROGRAMMING
1,000
[ "sortings" ]
A. Towers
2
256
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same. Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
[ "3\n1 2 3\n", "4\n6 5 6 7\n" ]
[ "1 3\n", "2 3\n" ]
none
500
[ { "input": "3\n1 2 3", "output": "1 3" }, { "input": "4\n6 5 6 7", "output": "2 3" }, { "input": "4\n3 2 1 1", "output": "2 3" }, { "input": "4\n1 2 3 3", "output": "2 3" }, { "input": "3\n20 22 36", "output": "1 3" }, { "input": "25\n47 30 94 41 45 20 96 51 110 129 24 116 9 47 32 82 105 114 116 75 154 151 70 42 162", "output": "2 23" }, { "input": "45\n802 664 442 318 318 827 417 878 711 291 231 414 807 553 657 392 279 202 386 606 465 655 658 112 887 15 25 502 95 44 679 775 942 609 209 871 31 234 4 231 150 110 22 823 193", "output": "2 43" }, { "input": "63\n93 180 116 7 8 179 268 279 136 94 221 153 264 190 278 19 19 63 153 26 158 225 25 49 89 218 111 149 255 225 197 122 243 80 3 224 107 178 202 17 53 92 69 42 228 24 81 205 95 8 265 82 228 156 127 241 172 159 106 60 67 155 111", "output": "2 57" }, { "input": "83\n246 535 994 33 390 927 321 97 223 922 812 705 79 80 977 457 476 636 511 137 6 360 815 319 717 674 368 551 714 628 278 713 761 553 184 414 623 753 428 214 581 115 439 61 677 216 772 592 187 603 658 310 439 559 870 376 109 321 189 337 277 26 70 734 796 907 979 693 570 227 345 650 737 633 701 914 134 403 972 940 371 6 642", "output": "2 80" }, { "input": "105\n246 57 12 204 165 123 246 68 191 310 3 152 386 333 374 257 158 104 333 50 80 290 8 340 101 76 221 316 388 289 138 359 316 26 93 290 105 178 81 195 41 196 218 180 244 292 187 97 315 323 174 119 248 239 92 312 31 2 101 180 307 170 338 314 163 281 217 31 142 238 280 190 190 156 70 74 329 113 151 8 141 313 366 40 253 116 168 124 135 230 294 266 353 389 371 359 195 200 183 237 93 102 315 118 188", "output": "2 92" }, { "input": "123\n112 277 170 247 252 115 157 293 256 143 196 90 12 164 164 42 8 223 167 109 175 232 239 111 148 51 9 254 93 32 268 162 231 91 47 162 161 191 195 145 247 292 129 199 230 94 144 217 18 205 176 20 143 198 121 243 211 262 230 277 195 255 108 290 220 275 158 2 286 200 60 267 278 207 123 150 123 116 131 13 12 226 33 244 30 275 263 45 158 192 254 149 242 176 62 224 221 288 250 160 155 225 132 143 276 293 218 145 197 175 33 129 79 206 210 192 222 262 190 52 274 243 233", "output": "3 101" }, { "input": "5\n5 5 5 5 5", "output": "5 1" }, { "input": "3\n1000 1000 1000", "output": "3 1" }, { "input": "1\n1000", "output": "1 1" }, { "input": "1\n1", "output": "1 1" }, { "input": "5\n1 1000 1000 1000 1000", "output": "4 2" }, { "input": "5\n1000 1000 1000 8 7", "output": "3 3" } ]
1,691,707,403
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
62
0
N = int(input()) l = list(map(int, input().split())) c = 0 M = 1 ans = 0 m = 1 l.sort() for i in range(N): if l[i] != c: c = l[i] ans += 1 if M < m: M = m m = 1 else: m += 1 print(M, ans)
Title: Towers Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same. Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible. Input Specification: The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000. Output Specification: In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars. Demo Input: ['3\n1 2 3\n', '4\n6 5 6 7\n'] Demo Output: ['1 3\n', '2 3\n'] Note: none
```python N = int(input()) l = list(map(int, input().split())) c = 0 M = 1 ans = 0 m = 1 l.sort() for i in range(N): if l[i] != c: c = l[i] ans += 1 if M < m: M = m m = 1 else: m += 1 print(M, ans) ```
0
450
B
Jzzhu and Sequences
PROGRAMMING
1,300
[ "implementation", "math" ]
null
null
Jzzhu has invented a kind of sequences, they meet the following property: You are given *x* and *y*, please calculate *f**n* modulo 1000000007 (109<=+<=7).
The first line contains two integers *x* and *y* (|*x*|,<=|*y*|<=≤<=109). The second line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109).
Output a single integer representing *f**n* modulo 1000000007 (109<=+<=7).
[ "2 3\n3\n", "0 -1\n2\n" ]
[ "1\n", "1000000006\n" ]
In the first sample, *f*<sub class="lower-index">2</sub> = *f*<sub class="lower-index">1</sub> + *f*<sub class="lower-index">3</sub>, 3 = 2 + *f*<sub class="lower-index">3</sub>, *f*<sub class="lower-index">3</sub> = 1. In the second sample, *f*<sub class="lower-index">2</sub> =  - 1;  - 1 modulo (10<sup class="upper-index">9</sup> + 7) equals (10<sup class="upper-index">9</sup> + 6).
1,000
[ { "input": "2 3\n3", "output": "1" }, { "input": "0 -1\n2", "output": "1000000006" }, { "input": "-9 -11\n12345", "output": "1000000005" }, { "input": "0 0\n1000000000", "output": "0" }, { "input": "-1000000000 1000000000\n2000000000", "output": "1000000000" }, { "input": "-12345678 12345678\n1912345678", "output": "12345678" }, { "input": "728374857 678374857\n1928374839", "output": "950000007" }, { "input": "278374837 992837483\n1000000000", "output": "721625170" }, { "input": "-693849384 502938493\n982838498", "output": "502938493" }, { "input": "-783928374 983738273\n992837483", "output": "16261734" }, { "input": "-872837483 -682738473\n999999999", "output": "190099010" }, { "input": "-892837483 -998273847\n999283948", "output": "892837483" }, { "input": "-283938494 738473848\n1999999999", "output": "716061513" }, { "input": "-278374857 819283838\n1", "output": "721625150" }, { "input": "-1000000000 123456789\n1", "output": "7" }, { "input": "-529529529 -524524524\n2", "output": "475475483" }, { "input": "1 2\n2000000000", "output": "2" }, { "input": "-1 -2\n2000000000", "output": "1000000005" }, { "input": "1 2\n1999999999", "output": "1" }, { "input": "1 2\n1999999998", "output": "1000000006" }, { "input": "1 2\n1999999997", "output": "1000000005" }, { "input": "1 2\n1999999996", "output": "1000000006" }, { "input": "69975122 366233206\n1189460676", "output": "703741923" }, { "input": "812229413 904420051\n806905621", "output": "812229413" }, { "input": "872099024 962697902\n1505821695", "output": "90598878" }, { "input": "887387283 909670917\n754835014", "output": "112612724" }, { "input": "37759824 131342932\n854621399", "output": "868657075" }, { "input": "-246822123 800496170\n626323615", "output": "753177884" }, { "input": "-861439463 974126967\n349411083", "output": "835566423" }, { "input": "-69811049 258093841\n1412447", "output": "741906166" }, { "input": "844509330 -887335829\n123329059", "output": "844509330" }, { "input": "83712471 -876177148\n1213284777", "output": "40110388" }, { "input": "598730524 -718984219\n1282749880", "output": "401269483" }, { "input": "-474244697 -745885656\n1517883612", "output": "271640959" }, { "input": "-502583588 -894906953\n1154189557", "output": "497416419" }, { "input": "-636523651 -873305815\n154879215", "output": "763217843" }, { "input": "721765550 594845720\n78862386", "output": "126919830" }, { "input": "364141461 158854993\n1337196589", "output": "364141461" }, { "input": "878985260 677031952\n394707801", "output": "798046699" }, { "input": "439527072 -24854079\n1129147002", "output": "464381151" }, { "input": "840435009 -612103127\n565968986", "output": "387896880" }, { "input": "875035447 -826471373\n561914518", "output": "124964560" }, { "input": "-342526698 305357084\n70776744", "output": "352116225" }, { "input": "-903244186 899202229\n1527859274", "output": "899202229" }, { "input": "-839482546 815166320\n1127472130", "output": "839482546" }, { "input": "-976992569 -958313041\n1686580818", "output": "981320479" }, { "input": "-497338894 -51069176\n737081851", "output": "502661113" }, { "input": "-697962643 -143148799\n1287886520", "output": "856851208" }, { "input": "-982572938 -482658433\n1259858332", "output": "982572938" }, { "input": "123123 78817\n2000000000", "output": "78817" }, { "input": "1000000000 -1000000000\n3", "output": "14" }, { "input": "-1000000000 1000000000\n6", "output": "14" }, { "input": "2 3\n6", "output": "1000000006" }, { "input": "0 -1\n6", "output": "1" }, { "input": "500000000 -1000000000\n600000003", "output": "500000014" }, { "input": "-1000000000 1000000000\n3", "output": "999999993" }, { "input": "1 3\n6", "output": "1000000005" }, { "input": "1 2\n12", "output": "1000000006" }, { "input": "7 -1000000000\n3", "output": "0" }, { "input": "-999999997 999999997\n6", "output": "20" }, { "input": "3 4\n6", "output": "1000000006" }, { "input": "-1 2\n6", "output": "1000000004" }, { "input": "2 3\n12", "output": "1000000006" }, { "input": "4 18\n6", "output": "999999993" }, { "input": "1 2\n6", "output": "1000000006" }, { "input": "1000000000 -1000000000\n6", "output": "999999993" }, { "input": "999999999 -999999999\n3", "output": "16" }, { "input": "-1 0\n1", "output": "1000000006" }, { "input": "1000000000 -1000000000\n9", "output": "14" }, { "input": "999999999 -1000000000\n12", "output": "999999992" }, { "input": "1000000000 -7\n3", "output": "0" }, { "input": "-5 5\n6", "output": "999999997" }, { "input": "5 9\n6", "output": "1000000003" }, { "input": "-15 -10\n1", "output": "999999992" } ]
1,664,177,488
2,147,483,647
PyPy 3-64
TIME_LIMIT_EXCEEDED
TESTS
4
1,000
1,331,200
f1,f2 = map(int,input().split()) n = int(input()) prev = f2-f1 prevprev = f2 for i in range(n-3): tempprev = prev prev = prev-prevprev prevprev = tempprev print(prev%1000000007)
Title: Jzzhu and Sequences Time Limit: None seconds Memory Limit: None megabytes Problem Description: Jzzhu has invented a kind of sequences, they meet the following property: You are given *x* and *y*, please calculate *f**n* modulo 1000000007 (109<=+<=7). Input Specification: The first line contains two integers *x* and *y* (|*x*|,<=|*y*|<=≤<=109). The second line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109). Output Specification: Output a single integer representing *f**n* modulo 1000000007 (109<=+<=7). Demo Input: ['2 3\n3\n', '0 -1\n2\n'] Demo Output: ['1\n', '1000000006\n'] Note: In the first sample, *f*<sub class="lower-index">2</sub> = *f*<sub class="lower-index">1</sub> + *f*<sub class="lower-index">3</sub>, 3 = 2 + *f*<sub class="lower-index">3</sub>, *f*<sub class="lower-index">3</sub> = 1. In the second sample, *f*<sub class="lower-index">2</sub> =  - 1;  - 1 modulo (10<sup class="upper-index">9</sup> + 7) equals (10<sup class="upper-index">9</sup> + 6).
```python f1,f2 = map(int,input().split()) n = int(input()) prev = f2-f1 prevprev = f2 for i in range(n-3): tempprev = prev prev = prev-prevprev prevprev = tempprev print(prev%1000000007) ```
0
625
A
Guest From the Past
PROGRAMMING
1,700
[ "implementation", "math" ]
null
null
Kolya Gerasimov loves kefir very much. He lives in year 1984 and knows all the details of buying this delicious drink. One day, as you probably know, he found himself in year 2084, and buying kefir there is much more complicated. Kolya is hungry, so he went to the nearest milk shop. In 2084 you may buy kefir in a plastic liter bottle, that costs *a* rubles, or in glass liter bottle, that costs *b* rubles. Also, you may return empty glass bottle and get *c* (*c*<=&lt;<=*b*) rubles back, but you cannot return plastic bottles. Kolya has *n* rubles and he is really hungry, so he wants to drink as much kefir as possible. There were no plastic bottles in his 1984, so Kolya doesn't know how to act optimally and asks for your help.
First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1018) — the number of rubles Kolya has at the beginning. Then follow three lines containing integers *a*, *b* and *c* (1<=≤<=*a*<=≤<=1018, 1<=≤<=*c*<=&lt;<=*b*<=≤<=1018) — the cost of one plastic liter bottle, the cost of one glass liter bottle and the money one can get back by returning an empty glass bottle, respectively.
Print the only integer — maximum number of liters of kefir, that Kolya can drink.
[ "10\n11\n9\n8\n", "10\n5\n6\n1\n" ]
[ "2\n", "2\n" ]
In the first sample, Kolya can buy one glass bottle, then return it and buy one more glass bottle. Thus he will drink 2 liters of kefir. In the second sample, Kolya can buy two plastic bottle and get two liters of kefir, or he can buy one liter glass bottle, then return it and buy one plastic bottle. In both cases he will drink two liters of kefir.
750
[ { "input": "10\n11\n9\n8", "output": "2" }, { "input": "10\n5\n6\n1", "output": "2" }, { "input": "2\n2\n2\n1", "output": "1" }, { "input": "10\n3\n3\n1", "output": "4" }, { "input": "10\n1\n2\n1", "output": "10" }, { "input": "10\n2\n3\n1", "output": "5" }, { "input": "9\n2\n4\n1", "output": "4" }, { "input": "9\n2\n2\n1", "output": "8" }, { "input": "9\n10\n10\n1", "output": "0" }, { "input": "10\n2\n2\n1", "output": "9" }, { "input": "1000000000000000000\n2\n10\n9", "output": "999999999999999995" }, { "input": "501000000000000000\n300000000000000000\n301000000000000000\n100000000000000000", "output": "2" }, { "input": "10\n1\n9\n8", "output": "10" }, { "input": "10\n8\n8\n7", "output": "3" }, { "input": "10\n5\n5\n1", "output": "2" }, { "input": "29\n3\n3\n1", "output": "14" }, { "input": "45\n9\n9\n8", "output": "37" }, { "input": "45\n9\n9\n1", "output": "5" }, { "input": "100\n10\n10\n9", "output": "91" }, { "input": "179\n10\n9\n1", "output": "22" }, { "input": "179\n2\n2\n1", "output": "178" }, { "input": "179\n179\n179\n1", "output": "1" }, { "input": "179\n59\n59\n58", "output": "121" }, { "input": "500\n250\n250\n1", "output": "2" }, { "input": "500\n1\n250\n1", "output": "500" }, { "input": "501\n500\n500\n499", "output": "2" }, { "input": "501\n450\n52\n1", "output": "9" }, { "input": "501\n300\n301\n100", "output": "2" }, { "input": "500\n179\n10\n1", "output": "55" }, { "input": "1000\n500\n10\n9", "output": "991" }, { "input": "1000\n2\n10\n9", "output": "995" }, { "input": "1001\n1000\n1000\n999", "output": "2" }, { "input": "10000\n10000\n10000\n1", "output": "1" }, { "input": "10000\n10\n5000\n4999", "output": "5500" }, { "input": "1000000000\n999999998\n999999999\n999999998", "output": "3" }, { "input": "1000000000\n50\n50\n49", "output": "999999951" }, { "input": "1000000000\n500\n5000\n4999", "output": "999995010" }, { "input": "1000000000\n51\n100\n98", "output": "499999952" }, { "input": "1000000000\n100\n51\n50", "output": "999999950" }, { "input": "1000000000\n2\n5\n4", "output": "999999998" }, { "input": "1000000000000000000\n999999998000000000\n999999999000000000\n999999998000000000", "output": "3" }, { "input": "1000000000\n2\n2\n1", "output": "999999999" }, { "input": "999999999\n2\n999999998\n1", "output": "499999999" }, { "input": "999999999999999999\n2\n2\n1", "output": "999999999999999998" }, { "input": "999999999999999999\n10\n10\n9", "output": "999999999999999990" }, { "input": "999999999999999999\n999999999999999998\n999999999999999998\n999999999999999997", "output": "2" }, { "input": "999999999999999999\n501\n501\n1", "output": "1999999999999999" }, { "input": "999999999999999999\n2\n50000000000000000\n49999999999999999", "output": "974999999999999999" }, { "input": "999999999999999999\n180\n180\n1", "output": "5586592178770949" }, { "input": "1000000000000000000\n42\n41\n1", "output": "24999999999999999" }, { "input": "1000000000000000000\n41\n40\n1", "output": "25641025641025641" }, { "input": "100000000000000000\n79\n100\n25", "output": "1333333333333333" }, { "input": "1\n100\n5\n4", "output": "0" }, { "input": "1000000000000000000\n1000000000000000000\n10000000\n9999999", "output": "999999999990000001" }, { "input": "999999999999999999\n999999999000000000\n900000000000000000\n899999999999999999", "output": "100000000000000000" }, { "input": "13\n10\n15\n11", "output": "1" }, { "input": "1\n1000\n5\n4", "output": "0" }, { "input": "10\n100\n10\n1", "output": "1" }, { "input": "3\n2\n100000\n99999", "output": "1" }, { "input": "4\n2\n4\n2", "output": "2" }, { "input": "5\n3\n6\n4", "output": "1" }, { "input": "1\n7\n65\n49", "output": "0" }, { "input": "10\n20\n100\n99", "output": "0" }, { "input": "10000000000\n10000000000\n9000000000\n8999999999", "output": "1000000001" }, { "input": "90\n30\n101\n100", "output": "3" }, { "input": "999999999999999\n5\n500000000000000\n499999999999999", "output": "599999999999999" }, { "input": "1000000000000000000\n1000000000000000000\n1000000000\n999999999", "output": "999999999000000001" }, { "input": "1\n1000000000000000000\n1000000000\n999999999", "output": "0" }, { "input": "100000000000000000\n100000000000000000\n1000000000\n999999999", "output": "99999999000000001" }, { "input": "100000000000000009\n100\n1000000000000000\n999999999999999", "output": "99010000000000009" }, { "input": "10\n20\n10\n9", "output": "1" }, { "input": "10\n4\n14\n13", "output": "2" }, { "input": "11\n3\n9\n7", "output": "4" }, { "input": "1000000000\n5\n7\n4", "output": "333333332" }, { "input": "12155\n1943\n28717\n24074", "output": "6" }, { "input": "1000000000000000000\n10\n20\n5", "output": "100000000000000000" }, { "input": "98\n33\n440\n314", "output": "2" }, { "input": "1070252292\n57449678\n237309920\n221182550", "output": "56" }, { "input": "100\n3\n102\n101", "output": "33" }, { "input": "100000000000000000\n100000000000000001\n1000000000000000\n999999999999999", "output": "99000000000000001" }, { "input": "66249876257975628\n302307316\n406102416\n182373516", "output": "296116756" }, { "input": "10\n5\n10\n1", "output": "2" }, { "input": "1000000000000000000\n10\n1000000000\n999999998", "output": "499999999600000000" } ]
1,455,593,256
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
47
1,000
0
summa = int(input()) plastic = int(input()) glass = int(input()) cash_back = int(input()) total = 0 need_to_return = 0 if (plastic <= (glass - cash_back)): print(summa//plastic) else: while summa >= glass: total = total + summa//glass summa = summa - glass*(summa//glass) + (summa//glass)*cash_back total = total + summa//plastic print(total)
Title: Guest From the Past Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kolya Gerasimov loves kefir very much. He lives in year 1984 and knows all the details of buying this delicious drink. One day, as you probably know, he found himself in year 2084, and buying kefir there is much more complicated. Kolya is hungry, so he went to the nearest milk shop. In 2084 you may buy kefir in a plastic liter bottle, that costs *a* rubles, or in glass liter bottle, that costs *b* rubles. Also, you may return empty glass bottle and get *c* (*c*<=&lt;<=*b*) rubles back, but you cannot return plastic bottles. Kolya has *n* rubles and he is really hungry, so he wants to drink as much kefir as possible. There were no plastic bottles in his 1984, so Kolya doesn't know how to act optimally and asks for your help. Input Specification: First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1018) — the number of rubles Kolya has at the beginning. Then follow three lines containing integers *a*, *b* and *c* (1<=≤<=*a*<=≤<=1018, 1<=≤<=*c*<=&lt;<=*b*<=≤<=1018) — the cost of one plastic liter bottle, the cost of one glass liter bottle and the money one can get back by returning an empty glass bottle, respectively. Output Specification: Print the only integer — maximum number of liters of kefir, that Kolya can drink. Demo Input: ['10\n11\n9\n8\n', '10\n5\n6\n1\n'] Demo Output: ['2\n', '2\n'] Note: In the first sample, Kolya can buy one glass bottle, then return it and buy one more glass bottle. Thus he will drink 2 liters of kefir. In the second sample, Kolya can buy two plastic bottle and get two liters of kefir, or he can buy one liter glass bottle, then return it and buy one plastic bottle. In both cases he will drink two liters of kefir.
```python summa = int(input()) plastic = int(input()) glass = int(input()) cash_back = int(input()) total = 0 need_to_return = 0 if (plastic <= (glass - cash_back)): print(summa//plastic) else: while summa >= glass: total = total + summa//glass summa = summa - glass*(summa//glass) + (summa//glass)*cash_back total = total + summa//plastic print(total) ```
0
401
C
Team
PROGRAMMING
1,400
[ "constructive algorithms", "greedy", "implementation" ]
null
null
Now it's time of Olympiads. Vanya and Egor decided to make his own team to take part in a programming Olympiad. They've been best friends ever since primary school and hopefully, that can somehow help them in teamwork. For each team Olympiad, Vanya takes his play cards with numbers. He takes only the cards containing numbers 1 and 0. The boys are very superstitious. They think that they can do well at the Olympiad if they begin with laying all the cards in a row so that: - there wouldn't be a pair of any side-adjacent cards with zeroes in a row; - there wouldn't be a group of three consecutive cards containing numbers one. Today Vanya brought *n* cards with zeroes and *m* cards with numbers one. The number of cards was so much that the friends do not know how to put all those cards in the described way. Help them find the required arrangement of the cards or else tell the guys that it is impossible to arrange cards in such a way.
The first line contains two integers: *n* (1<=≤<=*n*<=≤<=106) — the number of cards containing number 0; *m* (1<=≤<=*m*<=≤<=106) — the number of cards containing number 1.
In a single line print the required sequence of zeroes and ones without any spaces. If such sequence is impossible to obtain, print -1.
[ "1 2\n", "4 8\n", "4 10\n", "1 5\n" ]
[ "101\n", "110110110101\n", "11011011011011\n", "-1\n" ]
none
1,500
[ { "input": "1 2", "output": "101" }, { "input": "4 8", "output": "110110110101" }, { "input": "4 10", "output": "11011011011011" }, { "input": "1 5", "output": "-1" }, { "input": "3 4", "output": "1010101" }, { "input": "3 10", "output": "-1" }, { "input": "74 99", "output": "11011011011011011011011011011011011011011011011011011011011011011011011010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101" }, { "input": "19 30", "output": "1101101101101101101101101101101010101010101010101" }, { "input": "33 77", "output": "-1" }, { "input": "3830 6966", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "1000000 1000000", "output": "1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101..." }, { "input": "1027 2030", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "4610 4609", "output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..." }, { "input": "3342 3339", "output": "-1" }, { "input": "7757 7755", "output": "-1" }, { "input": "10 8", "output": "-1" }, { "input": "4247 8495", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "7101 14204", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "9801 19605", "output": "-1" }, { "input": "4025 6858", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "7129 13245", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "8826 12432", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "6322 9256", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "8097 14682", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "6196 6197", "output": "1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101..." }, { "input": "1709 2902", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "455 512", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101..." }, { "input": "1781 1272", "output": "-1" }, { "input": "3383 5670", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "954 1788", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "9481 15554", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "9079 100096", "output": "-1" }, { "input": "481533 676709", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "423472 564888", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "227774 373297", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "42346 51898", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "739107 1000000", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "455043 798612", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "801460 801459", "output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..." }, { "input": "303498 503791", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "518822 597833", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "32342 64687", "output": "-1" }, { "input": "873192 873189", "output": "-1" }, { "input": "384870 450227", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "201106 208474", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "775338 980888", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "263338 393171", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "241043 330384", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "307203 614408", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "379310 417986", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "661101 785111", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "284634 319008", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "500000 1000000", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "499999 1000000", "output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..." }, { "input": "3 1", "output": "-1" }, { "input": "14124 242112", "output": "-1" }, { "input": "2 1", "output": "010" }, { "input": "2 3", "output": "10101" }, { "input": "1 4", "output": "11011" }, { "input": "2 6", "output": "11011011" }, { "input": "2 5", "output": "1101101" }, { "input": "2 4", "output": "110101" }, { "input": "2 3", "output": "10101" }, { "input": "2 2", "output": "1010" }, { "input": "2 1", "output": "010" }, { "input": "1 1", "output": "10" }, { "input": "1 3", "output": "1101" }, { "input": "3 2", "output": "01010" }, { "input": "5 4", "output": "010101010" }, { "input": "4 3", "output": "0101010" }, { "input": "11 10", "output": "010101010101010101010" }, { "input": "8 7", "output": "010101010101010" }, { "input": "4 2", "output": "-1" }, { "input": "6 5", "output": "01010101010" }, { "input": "3 7", "output": "1101101101" }, { "input": "5 1", "output": "-1" }, { "input": "10 1", "output": "-1" }, { "input": "4 9", "output": "1101101101101" }, { "input": "6 4", "output": "-1" }, { "input": "12 10", "output": "-1" }, { "input": "4 100", "output": "-1" } ]
1,617,354,136
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
62
0
n,m = map(int, input().split()) st = True res = '' while n > 0 and m>0: res += ('1'*2) m -= 2 res += ('0') n -= 1 if n > 1 or m > 2: st = False while m > 0 and st == True: res += ('1') st = True m -= 1 while n > 0 and st == True: res += ('0') st = True n -= 1 if st == True: print(res) else: print(-1)
Title: Team Time Limit: None seconds Memory Limit: None megabytes Problem Description: Now it's time of Olympiads. Vanya and Egor decided to make his own team to take part in a programming Olympiad. They've been best friends ever since primary school and hopefully, that can somehow help them in teamwork. For each team Olympiad, Vanya takes his play cards with numbers. He takes only the cards containing numbers 1 and 0. The boys are very superstitious. They think that they can do well at the Olympiad if they begin with laying all the cards in a row so that: - there wouldn't be a pair of any side-adjacent cards with zeroes in a row; - there wouldn't be a group of three consecutive cards containing numbers one. Today Vanya brought *n* cards with zeroes and *m* cards with numbers one. The number of cards was so much that the friends do not know how to put all those cards in the described way. Help them find the required arrangement of the cards or else tell the guys that it is impossible to arrange cards in such a way. Input Specification: The first line contains two integers: *n* (1<=≤<=*n*<=≤<=106) — the number of cards containing number 0; *m* (1<=≤<=*m*<=≤<=106) — the number of cards containing number 1. Output Specification: In a single line print the required sequence of zeroes and ones without any spaces. If such sequence is impossible to obtain, print -1. Demo Input: ['1 2\n', '4 8\n', '4 10\n', '1 5\n'] Demo Output: ['101\n', '110110110101\n', '11011011011011\n', '-1\n'] Note: none
```python n,m = map(int, input().split()) st = True res = '' while n > 0 and m>0: res += ('1'*2) m -= 2 res += ('0') n -= 1 if n > 1 or m > 2: st = False while m > 0 and st == True: res += ('1') st = True m -= 1 while n > 0 and st == True: res += ('0') st = True n -= 1 if st == True: print(res) else: print(-1) ```
0
350
A
TL
PROGRAMMING
1,200
[ "brute force", "greedy", "implementation" ]
null
null
Valera wanted to prepare a Codesecrof round. He's already got one problem and he wants to set a time limit (TL) on it. Valera has written *n* correct solutions. For each correct solution, he knows its running time (in seconds). Valera has also wrote *m* wrong solutions and for each wrong solution he knows its running time (in seconds). Let's suppose that Valera will set *v* seconds TL in the problem. Then we can say that a solution passes the system testing if its running time is at most *v* seconds. We can also say that a solution passes the system testing with some "extra" time if for its running time, *a* seconds, an inequality 2*a*<=≤<=*v* holds. As a result, Valera decided to set *v* seconds TL, that the following conditions are met: 1. *v* is a positive integer; 1. all correct solutions pass the system testing; 1. at least one correct solution passes the system testing with some "extra" time; 1. all wrong solutions do not pass the system testing; 1. value *v* is minimum among all TLs, for which points 1, 2, 3, 4 hold. Help Valera and find the most suitable TL or else state that such TL doesn't exist.
The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *n* space-separated positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the running time of each of the *n* correct solutions in seconds. The third line contains *m* space-separated positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=100) — the running time of each of *m* wrong solutions in seconds.
If there is a valid TL value, print it. Otherwise, print -1.
[ "3 6\n4 5 2\n8 9 6 10 7 11\n", "3 1\n3 4 5\n6\n" ]
[ "5", "-1\n" ]
none
500
[ { "input": "3 6\n4 5 2\n8 9 6 10 7 11", "output": "5" }, { "input": "3 1\n3 4 5\n6", "output": "-1" }, { "input": "2 5\n45 99\n49 41 77 83 45", "output": "-1" }, { "input": "50 50\n18 13 5 34 10 36 36 12 15 11 16 17 14 36 23 45 32 24 31 18 24 32 7 1 31 3 49 8 16 23 3 39 47 43 42 38 40 22 41 1 49 47 9 8 19 15 29 30 16 18\n91 58 86 51 94 94 73 84 98 69 74 56 52 80 88 61 53 99 88 50 55 95 65 84 87 79 51 52 69 60 74 73 93 61 73 59 64 56 95 78 86 72 79 70 93 78 54 61 71 50", "output": "49" }, { "input": "55 44\n93 17 74 15 34 16 41 80 26 54 94 94 86 93 20 44 63 72 39 43 67 4 37 49 76 94 5 51 64 74 11 47 77 97 57 30 42 72 71 26 8 14 67 64 49 57 30 23 40 4 76 78 87 78 79\n38 55 17 65 26 7 36 65 48 28 49 93 18 98 31 90 26 57 1 26 88 56 48 56 23 13 8 67 80 2 51 3 21 33 20 54 2 45 21 36 3 98 62 2", "output": "-1" }, { "input": "32 100\n30 8 4 35 18 41 18 12 33 39 39 18 39 19 33 46 45 33 34 27 14 39 40 21 38 9 42 35 27 10 14 14\n65 49 89 64 47 78 59 52 73 51 84 82 88 63 91 99 67 87 53 99 75 47 85 82 58 47 80 50 65 91 83 90 77 52 100 88 97 74 98 99 50 93 65 61 65 65 65 96 61 51 84 67 79 90 92 83 100 100 100 95 80 54 77 51 98 64 74 62 60 96 73 74 94 55 89 60 92 65 74 79 66 81 53 47 71 51 54 85 74 97 68 72 88 94 100 85 65 63 65 90", "output": "46" }, { "input": "1 50\n7\n65 52 99 78 71 19 96 72 80 15 50 94 20 35 79 95 44 41 45 53 77 50 74 66 59 96 26 84 27 48 56 84 36 78 89 81 67 34 79 74 99 47 93 92 90 96 72 28 78 66", "output": "14" }, { "input": "1 1\n4\n9", "output": "8" }, { "input": "1 1\n2\n4", "output": "-1" }, { "input": "22 56\n49 20 42 68 15 46 98 78 82 8 7 33 50 30 75 96 36 88 35 99 19 87\n15 18 81 24 35 89 25 32 23 3 48 24 52 69 18 32 23 61 48 98 50 38 5 17 70 20 38 32 49 54 68 11 51 81 46 22 19 59 29 38 45 83 18 13 91 17 84 62 25 60 97 32 23 13 83 58", "output": "-1" }, { "input": "1 1\n50\n100", "output": "-1" }, { "input": "1 1\n49\n100", "output": "98" }, { "input": "1 1\n100\n100", "output": "-1" }, { "input": "1 1\n99\n100", "output": "-1" }, { "input": "8 4\n1 2 49 99 99 95 78 98\n100 100 100 100", "output": "99" }, { "input": "68 85\n43 55 2 4 72 45 19 56 53 81 18 90 11 87 47 8 94 88 24 4 67 9 21 70 25 66 65 27 46 13 8 51 65 99 37 43 71 59 71 79 32 56 49 43 57 85 95 81 40 28 60 36 72 81 60 40 16 78 61 37 29 26 15 95 70 27 50 97\n6 6 48 72 54 31 1 50 29 64 93 9 29 93 66 63 25 90 52 1 66 13 70 30 24 87 32 90 84 72 44 13 25 45 31 16 92 60 87 40 62 7 20 63 86 78 73 88 5 36 74 100 64 34 9 5 62 29 58 48 81 46 84 56 27 1 60 14 54 88 31 93 62 7 9 69 27 48 10 5 33 10 53 66 2", "output": "-1" }, { "input": "5 100\n1 1 1 1 1\n77 53 38 29 97 33 64 17 78 100 27 12 42 44 20 24 44 68 58 57 65 90 8 24 4 6 74 68 61 43 25 69 8 62 36 85 67 48 69 30 35 41 42 12 87 66 50 92 53 76 38 67 85 7 80 78 53 76 94 8 37 50 4 100 4 71 10 48 34 47 83 42 25 81 64 72 25 51 53 75 43 98 53 77 94 38 81 15 89 91 72 76 7 36 27 41 88 18 19 75", "output": "2" }, { "input": "3 3\n2 3 4\n8 9 10", "output": "4" }, { "input": "2 1\n2 3\n15", "output": "4" }, { "input": "2 1\n2 4\n4", "output": "-1" }, { "input": "2 3\n4 5\n10 11 12", "output": "8" }, { "input": "3 1\n2 3 3\n5", "output": "4" }, { "input": "2 1\n9 10\n100", "output": "18" }, { "input": "3 3\n3 12 15\n7 8 9", "output": "-1" }, { "input": "2 2\n3 5\n7 8", "output": "6" }, { "input": "3 3\n4 5 6\n10 11 12", "output": "8" }, { "input": "3 5\n2 3 3\n6 6 6 6 2", "output": "-1" }, { "input": "3 6\n4 5 3\n8 9 7 10 7 11", "output": "6" }, { "input": "3 6\n4 5 2\n8 9 6 10 7 4", "output": "-1" }, { "input": "2 1\n4 6\n10", "output": "8" }, { "input": "1 2\n1\n3 1", "output": "-1" }, { "input": "2 1\n5 6\n20", "output": "10" }, { "input": "2 1\n1 5\n5", "output": "-1" }, { "input": "3 2\n10 20 30\n30 40", "output": "-1" }, { "input": "2 2\n5 6\n7 100", "output": "-1" }, { "input": "2 1\n2 5\n7", "output": "5" }, { "input": "1 1\n5\n20", "output": "10" }, { "input": "2 1\n10 11\n100", "output": "20" }, { "input": "1 1\n1\n10", "output": "2" }, { "input": "1 1\n10\n100", "output": "20" } ]
1,662,910,110
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
28
92
0
a,b=map(int,input().split()) a=[int(i) for i in input().split()] b=[int(i) for i in input().split()] a=sorted(a) b=sorted(b) x=a[0]*2 if(x>=a[-1] and x<b[0]): print(x) elif(x<a[-1] and x<b[0]): print(a[-1]) else: print(-1)
Title: TL Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera wanted to prepare a Codesecrof round. He's already got one problem and he wants to set a time limit (TL) on it. Valera has written *n* correct solutions. For each correct solution, he knows its running time (in seconds). Valera has also wrote *m* wrong solutions and for each wrong solution he knows its running time (in seconds). Let's suppose that Valera will set *v* seconds TL in the problem. Then we can say that a solution passes the system testing if its running time is at most *v* seconds. We can also say that a solution passes the system testing with some "extra" time if for its running time, *a* seconds, an inequality 2*a*<=≤<=*v* holds. As a result, Valera decided to set *v* seconds TL, that the following conditions are met: 1. *v* is a positive integer; 1. all correct solutions pass the system testing; 1. at least one correct solution passes the system testing with some "extra" time; 1. all wrong solutions do not pass the system testing; 1. value *v* is minimum among all TLs, for which points 1, 2, 3, 4 hold. Help Valera and find the most suitable TL or else state that such TL doesn't exist. Input Specification: The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *n* space-separated positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the running time of each of the *n* correct solutions in seconds. The third line contains *m* space-separated positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=100) — the running time of each of *m* wrong solutions in seconds. Output Specification: If there is a valid TL value, print it. Otherwise, print -1. Demo Input: ['3 6\n4 5 2\n8 9 6 10 7 11\n', '3 1\n3 4 5\n6\n'] Demo Output: ['5', '-1\n'] Note: none
```python a,b=map(int,input().split()) a=[int(i) for i in input().split()] b=[int(i) for i in input().split()] a=sorted(a) b=sorted(b) x=a[0]*2 if(x>=a[-1] and x<b[0]): print(x) elif(x<a[-1] and x<b[0]): print(a[-1]) else: print(-1) ```
0
41
A
Translation
PROGRAMMING
800
[ "implementation", "strings" ]
A. Translation
2
256
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
[ "code\nedoc\n", "abb\naba\n", "code\ncode\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "code\nedoc", "output": "YES" }, { "input": "abb\naba", "output": "NO" }, { "input": "code\ncode", "output": "NO" }, { "input": "abacaba\nabacaba", "output": "YES" }, { "input": "q\nq", "output": "YES" }, { "input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk", "output": "NO" }, { "input": "z\na", "output": "NO" }, { "input": "asd\ndsa", "output": "YES" }, { "input": "abcdef\nfecdba", "output": "NO" }, { "input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu", "output": "NO" }, { "input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf", "output": "NO" }, { "input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp", "output": "NO" }, { "input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb", "output": "NO" }, { "input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom", "output": "NO" }, { "input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh", "output": "NO" }, { "input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy", "output": "NO" }, { "input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko", "output": "NO" }, { "input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv", "output": "NO" }, { "input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd", "output": "NO" }, { "input": "w\nw", "output": "YES" }, { "input": "vz\nzv", "output": "YES" }, { "input": "ry\nyr", "output": "YES" }, { "input": "xou\nuox", "output": "YES" }, { "input": "axg\ngax", "output": "NO" }, { "input": "zdsl\nlsdz", "output": "YES" }, { "input": "kudl\nldku", "output": "NO" }, { "input": "zzlzwnqlcl\nlclqnwzlzz", "output": "YES" }, { "input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv", "output": "YES" }, { "input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar", "output": "NO" }, { "input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn", "output": "YES" }, { "input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum", "output": "YES" }, { "input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv", "output": "YES" }, { "input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm", "output": "NO" }, { "input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd", "output": "NO" }, { "input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg", "output": "YES" }, { "input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis", "output": "YES" }, { "input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy", "output": "NO" }, { "input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw", "output": "YES" }, { "input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi", "output": "YES" }, { "input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib", "output": "YES" } ]
1,669,915,618
2,147,483,647
Python 3
OK
TESTS
40
92
0
a=input() s=input() if a[::-1]==s:print("YES") else:print("NO")
Title: Translation Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. Input Specification: The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. Output Specification: If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. Demo Input: ['code\nedoc\n', 'abb\naba\n', 'code\ncode\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python a=input() s=input() if a[::-1]==s:print("YES") else:print("NO") ```
3.977
21
B
Intersection
PROGRAMMING
2,000
[ "implementation", "math" ]
B. Intersection
1
256
You are given two set of points. The first set is determined by the equation *A*1*x*<=+<=*B*1*y*<=+<=*C*1<==<=0, and the second one is determined by the equation *A*2*x*<=+<=*B*2*y*<=+<=*C*2<==<=0. Write the program which finds the number of points in the intersection of two given sets.
The first line of the input contains three integer numbers *A*1,<=*B*1,<=*C*1 separated by space. The second line contains three integer numbers *A*2,<=*B*2,<=*C*2 separated by space. All the numbers are between -100 and 100, inclusive.
Print the number of points in the intersection or -1 if there are infinite number of points.
[ "1 1 0\n2 2 0\n", "1 1 0\n2 -2 0\n" ]
[ "-1\n", "1\n" ]
none
1,000
[ { "input": "1 1 0\n2 2 0", "output": "-1" }, { "input": "1 1 0\n2 -2 0", "output": "1" }, { "input": "0 0 0\n0 0 0", "output": "-1" }, { "input": "1 1 1\n1 1 1", "output": "-1" }, { "input": "8 3 -4\n-5 2 7", "output": "1" }, { "input": "-1 -1 0\n0 -1 -1", "output": "1" }, { "input": "-1 -1 0\n1 1 -1", "output": "0" }, { "input": "-1 -1 1\n0 -1 0", "output": "1" }, { "input": "0 0 0\n1 -1 -1", "output": "-1" }, { "input": "0 0 1\n-1 1 -1", "output": "0" }, { "input": "0 1 -1\n-1 1 -1", "output": "1" }, { "input": "1 0 -1\n0 0 -1", "output": "0" }, { "input": "0 1 1\n1 0 0", "output": "1" }, { "input": "1 0 0\n0 0 1", "output": "0" }, { "input": "1 -1 -1\n1 -1 0", "output": "0" }, { "input": "1 0 0\n0 1 1", "output": "1" }, { "input": "1 -1 1\n-1 -1 1", "output": "1" }, { "input": "1 0 0\n0 1 1", "output": "1" }, { "input": "-1 -1 1\n-1 -1 -1", "output": "0" }, { "input": "-1 -1 0\n1 1 -1", "output": "0" }, { "input": "0 0 0\n0 1 -1", "output": "-1" }, { "input": "0 1 1\n0 1 -1", "output": "0" }, { "input": "0 1 0\n1 1 0", "output": "1" }, { "input": "1 0 1\n-1 0 -1", "output": "-1" }, { "input": "1 1 0\n1 0 -1", "output": "1" }, { "input": "0 -1 -1\n-1 0 0", "output": "1" }, { "input": "1 0 0\n1 0 0", "output": "-1" }, { "input": "1 1 1\n-1 -1 0", "output": "0" }, { "input": "-1 -1 -1\n0 -1 1", "output": "1" }, { "input": "0 -1 0\n0 0 1", "output": "0" }, { "input": "0 1 1\n-1 -1 1", "output": "1" }, { "input": "0 -1 0\n0 -1 1", "output": "0" }, { "input": "0 1 1\n0 1 1", "output": "-1" }, { "input": "1 -1 0\n-1 -1 1", "output": "1" }, { "input": "0 1 1\n0 1 -1", "output": "0" }, { "input": "1 0 1\n1 0 0", "output": "0" }, { "input": "1 1 1\n0 0 0", "output": "-1" }, { "input": "1 0 1\n-1 -1 -1", "output": "1" }, { "input": "1 -1 1\n0 0 0", "output": "-1" }, { "input": "0 1 1\n-1 -1 0", "output": "1" }, { "input": "-1 0 1\n1 0 0", "output": "0" }, { "input": "0 1 -1\n0 0 1", "output": "0" }, { "input": "0 -1 0\n1 1 1", "output": "1" }, { "input": "1 0 1\n0 1 1", "output": "1" }, { "input": "0 0 0\n1 1 -1", "output": "-1" }, { "input": "1 -1 1\n1 1 1", "output": "1" }, { "input": "1 0 -1\n-1 0 1", "output": "-1" }, { "input": "1 0 1\n1 -1 1", "output": "1" }, { "input": "1 -1 -1\n-1 -1 -1", "output": "1" }, { "input": "0 -1 1\n0 0 -1", "output": "0" }, { "input": "0 0 -1\n1 -1 -1", "output": "0" }, { "input": "1 1 0\n-1 0 0", "output": "1" }, { "input": "1 0 -1\n0 -1 0", "output": "1" }, { "input": "1 -1 0\n-1 1 0", "output": "-1" }, { "input": "1 -1 1\n1 -1 0", "output": "0" }, { "input": "-1 -1 -1\n-1 1 0", "output": "1" }, { "input": "-1 0 1\n1 -1 1", "output": "1" }, { "input": "1 -1 0\n0 -1 -1", "output": "1" }, { "input": "-1 1 0\n-1 0 -1", "output": "1" }, { "input": "-1 -1 -1\n1 -1 1", "output": "1" }, { "input": "-1 -1 0\n1 1 1", "output": "0" }, { "input": "0 1 -1\n-1 0 0", "output": "1" }, { "input": "0 0 0\n0 0 0", "output": "-1" }, { "input": "0 1 1\n1 0 -1", "output": "1" }, { "input": "0 1 -1\n0 0 0", "output": "-1" }, { "input": "1 -1 0\n-1 1 0", "output": "-1" }, { "input": "0 0 0\n0 1 0", "output": "-1" }, { "input": "0 -1 1\n1 -1 1", "output": "1" }, { "input": "1 0 0\n0 1 0", "output": "1" }, { "input": "-1 1 0\n0 -1 1", "output": "1" }, { "input": "-1 0 -1\n1 1 0", "output": "1" }, { "input": "0 -1 0\n1 1 -1", "output": "1" }, { "input": "-1 -1 1\n-1 0 1", "output": "1" }, { "input": "0 1 0\n1 0 1", "output": "1" }, { "input": "1 0 0\n-1 0 -1", "output": "0" }, { "input": "-1 -1 0\n1 -1 1", "output": "1" }, { "input": "1 1 1\n-1 -1 -1", "output": "-1" }, { "input": "1 -1 0\n-1 1 0", "output": "-1" }, { "input": "-1 -1 1\n-1 1 0", "output": "1" }, { "input": "0 0 1\n1 0 -1", "output": "0" }, { "input": "0 -1 -2\n0 1 0", "output": "0" }, { "input": "0 -1 0\n2 -2 2", "output": "1" }, { "input": "1 -1 2\n-1 0 0", "output": "1" }, { "input": "-2 0 2\n0 0 2", "output": "0" }, { "input": "-1 0 -1\n1 -1 -1", "output": "1" }, { "input": "-1 2 0\n-2 1 -2", "output": "1" }, { "input": "0 2 0\n0 1 2", "output": "0" }, { "input": "2 2 2\n0 -2 0", "output": "1" }, { "input": "-2 0 -2\n2 -2 -2", "output": "1" }, { "input": "2 2 -1\n-2 1 1", "output": "1" }, { "input": "-2 -1 1\n0 -1 0", "output": "1" }, { "input": "-2 1 1\n0 0 -2", "output": "0" }, { "input": "-1 2 -2\n0 2 1", "output": "1" }, { "input": "1 2 -2\n-1 2 0", "output": "1" }, { "input": "0 0 2\n0 -1 -1", "output": "0" }, { "input": "2 1 1\n1 2 1", "output": "1" }, { "input": "-2 -1 2\n1 1 1", "output": "1" }, { "input": "0 -1 -1\n-2 -2 -1", "output": "1" }, { "input": "-1 0 -1\n0 -2 1", "output": "1" }, { "input": "1 1 2\n0 1 0", "output": "1" }, { "input": "-2 1 1\n2 1 -1", "output": "1" }, { "input": "-1 -2 1\n-1 -2 2", "output": "0" }, { "input": "0 -2 1\n-2 2 2", "output": "1" }, { "input": "0 -1 2\n-1 -1 0", "output": "1" }, { "input": "1 -1 -2\n1 2 -2", "output": "1" }, { "input": "-2 -1 0\n-2 2 2", "output": "1" }, { "input": "-1 1 0\n0 -1 0", "output": "1" }, { "input": "-1 -2 2\n-1 0 -2", "output": "1" }, { "input": "0 1 -1\n1 0 -2", "output": "1" }, { "input": "-1 -2 -2\n-2 1 0", "output": "1" }, { "input": "1 -1 2\n0 0 -2", "output": "0" }, { "input": "2 -1 2\n0 -2 1", "output": "1" }, { "input": "1 0 -1\n2 0 1", "output": "0" }, { "input": "-2 -1 0\n-2 0 -1", "output": "1" }, { "input": "-1 1 1\n0 1 1", "output": "1" }, { "input": "1 1 1\n1 1 -2", "output": "0" }, { "input": "1 2 1\n1 -1 1", "output": "1" }, { "input": "-2 -2 0\n0 -2 -1", "output": "1" }, { "input": "-1 -1 0\n-1 -2 -1", "output": "1" }, { "input": "-2 -2 -2\n1 1 -1", "output": "0" }, { "input": "0 0 0\n0 0 1", "output": "0" }, { "input": "0 0 -87\n0 0 0", "output": "0" }, { "input": "0 0 1\n0 0 1", "output": "0" }, { "input": "100 100 100\n-100 100 -100", "output": "1" }, { "input": "12 -32 89\n0 67 -23", "output": "1" }, { "input": "0 0 1\n0 0 2", "output": "0" }, { "input": "0 5 0\n0 0 5", "output": "0" }, { "input": "0 1 1\n0 -1 -1", "output": "-1" }, { "input": "1 1 0\n2 2 1", "output": "0" }, { "input": "0 0 5\n0 0 5", "output": "0" }, { "input": "0 5 0\n0 5 1", "output": "0" }, { "input": "0 1 1\n0 1 2", "output": "0" }, { "input": "0 1 1\n0 2 3", "output": "0" }, { "input": "2 2 -3\n2 2 -2", "output": "0" }, { "input": "3 3 3\n3 3 4", "output": "0" }, { "input": "0 1 2\n0 2 3", "output": "0" }, { "input": "0 0 1\n1 1 1", "output": "0" }, { "input": "5 0 1\n7 0 2", "output": "0" }, { "input": "4 6 1\n2 3 1", "output": "0" }, { "input": "0 0 0\n0 1 2", "output": "-1" } ]
1,649,164,857
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
2
62
2,150,400
from math import gcd a1, b1, c1 = map(int, input().split()) a2, b2, c2 = map(int, input().split()) g1 = gcd(gcd(a1, b1), c1) a1 //= g1 b1 //= g1 c1 //= g1 g2 = gcd(gcd(a2, b2), c2) a2 //= g2 b2 //= g2 c2 //= g2 if a1 * b2 == a2 * b1 and c1 == c2: print(-1) elif a1 * b2 == a2 * b1: print(0) else: print(1)
Title: Intersection Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: You are given two set of points. The first set is determined by the equation *A*1*x*<=+<=*B*1*y*<=+<=*C*1<==<=0, and the second one is determined by the equation *A*2*x*<=+<=*B*2*y*<=+<=*C*2<==<=0. Write the program which finds the number of points in the intersection of two given sets. Input Specification: The first line of the input contains three integer numbers *A*1,<=*B*1,<=*C*1 separated by space. The second line contains three integer numbers *A*2,<=*B*2,<=*C*2 separated by space. All the numbers are between -100 and 100, inclusive. Output Specification: Print the number of points in the intersection or -1 if there are infinite number of points. Demo Input: ['1 1 0\n2 2 0\n', '1 1 0\n2 -2 0\n'] Demo Output: ['-1\n', '1\n'] Note: none
```python from math import gcd a1, b1, c1 = map(int, input().split()) a2, b2, c2 = map(int, input().split()) g1 = gcd(gcd(a1, b1), c1) a1 //= g1 b1 //= g1 c1 //= g1 g2 = gcd(gcd(a2, b2), c2) a2 //= g2 b2 //= g2 c2 //= g2 if a1 * b2 == a2 * b1 and c1 == c2: print(-1) elif a1 * b2 == a2 * b1: print(0) else: print(1) ```
-1
0
none
none
none
0
[ "none" ]
null
null
Andryusha is an orderly boy and likes to keep things in their place. Today he faced a problem to put his socks in the wardrobe. He has *n* distinct pairs of socks which are initially in a bag. The pairs are numbered from 1 to *n*. Andryusha wants to put paired socks together and put them in the wardrobe. He takes the socks one by one from the bag, and for each sock he looks whether the pair of this sock has been already took out of the bag, or not. If not (that means the pair of this sock is still in the bag), he puts the current socks on the table in front of him. Otherwise, he puts both socks from the pair to the wardrobe. Andryusha remembers the order in which he took the socks from the bag. Can you tell him what is the maximum number of socks that were on the table at the same time?
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=105) — the number of sock pairs. The second line contains 2*n* integers *x*1,<=*x*2,<=...,<=*x*2*n* (1<=≤<=*x**i*<=≤<=*n*), which describe the order in which Andryusha took the socks from the bag. More precisely, *x**i* means that the *i*-th sock Andryusha took out was from pair *x**i*. It is guaranteed that Andryusha took exactly two socks of each pair.
Print single integer — the maximum number of socks that were on the table at the same time.
[ "1\n1 1\n", "3\n2 1 1 3 2 3\n" ]
[ "1\n", "2\n" ]
In the first example Andryusha took a sock from the first pair and put it on the table. Then he took the next sock which is from the first pair as well, so he immediately puts both socks to the wardrobe. Thus, at most one sock was on the table at the same time. In the second example Andryusha behaved as follows: - Initially the table was empty, he took out a sock from pair 2 and put it on the table. - Sock (2) was on the table. Andryusha took out a sock from pair 1 and put it on the table. - Socks (1, 2) were on the table. Andryusha took out a sock from pair 1, and put this pair into the wardrobe. - Sock (2) was on the table. Andryusha took out a sock from pair 3 and put it on the table. - Socks (2, 3) were on the table. Andryusha took out a sock from pair 2, and put this pair into the wardrobe. - Sock (3) was on the table. Andryusha took out a sock from pair 3 and put this pair into the wardrobe.
0
[ { "input": "1\n1 1", "output": "1" }, { "input": "3\n2 1 1 3 2 3", "output": "2" }, { "input": "5\n5 1 3 2 4 3 1 2 4 5", "output": "5" }, { "input": "10\n4 2 6 3 4 8 7 1 1 5 2 10 6 8 3 5 10 9 9 7", "output": "6" }, { "input": "50\n30 47 31 38 37 50 36 43 9 23 2 2 15 31 14 49 9 16 6 44 27 14 5 6 3 47 25 26 1 35 3 15 24 19 8 46 49 41 4 26 40 28 42 11 34 35 46 18 7 28 18 40 19 42 4 41 38 48 50 12 29 39 33 17 25 22 22 21 36 45 27 30 20 7 13 29 39 44 21 8 37 45 34 1 20 10 11 17 33 12 43 13 10 16 48 24 32 5 23 32", "output": "25" }, { "input": "50\n1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50", "output": "1" }, { "input": "50\n50 50 49 49 48 48 47 47 46 46 45 45 44 44 43 43 42 42 41 41 40 40 39 39 38 38 37 37 36 36 35 35 34 34 33 33 32 32 31 31 30 30 29 29 28 28 27 27 26 26 25 25 24 24 23 23 22 22 21 21 20 20 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1", "output": "1" }, { "input": "50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50", "output": "50" }, { "input": "50\n50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "50" }, { "input": "10\n2 9 4 1 6 7 10 3 1 5 8 6 2 3 10 7 4 8 5 9", "output": "9" } ]
1,646,063,826
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
3
2,000
13,516,800
'''HackerRank: Andryusha and Socks''' if __name__ == '__main__': n = int(input()) arr = list(map(int, input().split())) count = 0 socks = [] for i in range(n): if arr[i] not in socks: socks.append(arr[i]) count = len(socks) if len(socks) > count else count else: del socks[socks.index(arr[i])] print(count)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Andryusha is an orderly boy and likes to keep things in their place. Today he faced a problem to put his socks in the wardrobe. He has *n* distinct pairs of socks which are initially in a bag. The pairs are numbered from 1 to *n*. Andryusha wants to put paired socks together and put them in the wardrobe. He takes the socks one by one from the bag, and for each sock he looks whether the pair of this sock has been already took out of the bag, or not. If not (that means the pair of this sock is still in the bag), he puts the current socks on the table in front of him. Otherwise, he puts both socks from the pair to the wardrobe. Andryusha remembers the order in which he took the socks from the bag. Can you tell him what is the maximum number of socks that were on the table at the same time? Input Specification: The first line contains the single integer *n* (1<=≤<=*n*<=≤<=105) — the number of sock pairs. The second line contains 2*n* integers *x*1,<=*x*2,<=...,<=*x*2*n* (1<=≤<=*x**i*<=≤<=*n*), which describe the order in which Andryusha took the socks from the bag. More precisely, *x**i* means that the *i*-th sock Andryusha took out was from pair *x**i*. It is guaranteed that Andryusha took exactly two socks of each pair. Output Specification: Print single integer — the maximum number of socks that were on the table at the same time. Demo Input: ['1\n1 1\n', '3\n2 1 1 3 2 3\n'] Demo Output: ['1\n', '2\n'] Note: In the first example Andryusha took a sock from the first pair and put it on the table. Then he took the next sock which is from the first pair as well, so he immediately puts both socks to the wardrobe. Thus, at most one sock was on the table at the same time. In the second example Andryusha behaved as follows: - Initially the table was empty, he took out a sock from pair 2 and put it on the table. - Sock (2) was on the table. Andryusha took out a sock from pair 1 and put it on the table. - Socks (1, 2) were on the table. Andryusha took out a sock from pair 1, and put this pair into the wardrobe. - Sock (2) was on the table. Andryusha took out a sock from pair 3 and put it on the table. - Socks (2, 3) were on the table. Andryusha took out a sock from pair 2, and put this pair into the wardrobe. - Sock (3) was on the table. Andryusha took out a sock from pair 3 and put this pair into the wardrobe.
```python '''HackerRank: Andryusha and Socks''' if __name__ == '__main__': n = int(input()) arr = list(map(int, input().split())) count = 0 socks = [] for i in range(n): if arr[i] not in socks: socks.append(arr[i]) count = len(socks) if len(socks) > count else count else: del socks[socks.index(arr[i])] print(count) ```
0
828
A
Restaurant Tables
PROGRAMMING
1,200
[ "implementation" ]
null
null
In a small restaurant there are *a* tables for one person and *b* tables for two persons. It it known that *n* groups of people come today, each consisting of one or two people. If a group consist of one person, it is seated at a vacant one-seater table. If there are none of them, it is seated at a vacant two-seater table. If there are none of them, it is seated at a two-seater table occupied by single person. If there are still none of them, the restaurant denies service to this group. If a group consist of two people, it is seated at a vacant two-seater table. If there are none of them, the restaurant denies service to this group. You are given a chronological order of groups coming. You are to determine the total number of people the restaurant denies service to.
The first line contains three integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=2·105, 1<=≤<=*a*,<=*b*<=≤<=2·105) — the number of groups coming to the restaurant, the number of one-seater and the number of two-seater tables. The second line contains a sequence of integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=2) — the description of clients in chronological order. If *t**i* is equal to one, then the *i*-th group consists of one person, otherwise the *i*-th group consists of two people.
Print the total number of people the restaurant denies service to.
[ "4 1 2\n1 2 1 1\n", "4 1 1\n1 1 2 1\n" ]
[ "0\n", "2\n" ]
In the first example the first group consists of one person, it is seated at a vacant one-seater table. The next group occupies a whole two-seater table. The third group consists of one person, it occupies one place at the remaining two-seater table. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, all clients are served. In the second example the first group consists of one person, it is seated at the vacant one-seater table. The next group consists of one person, it occupies one place at the two-seater table. It's impossible to seat the next group of two people, so the restaurant denies service to them. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, the restaurant denies service to 2 clients.
500
[ { "input": "4 1 2\n1 2 1 1", "output": "0" }, { "input": "4 1 1\n1 1 2 1", "output": "2" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "2 1 2\n2 2", "output": "0" }, { "input": "5 1 3\n1 2 2 2 1", "output": "1" }, { "input": "7 6 1\n1 1 1 1 1 1 1", "output": "0" }, { "input": "10 2 1\n2 1 2 2 2 2 1 2 1 2", "output": "13" }, { "input": "20 4 3\n2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 1 2", "output": "25" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "1 1 1\n2", "output": "0" }, { "input": "1 200000 200000\n2", "output": "0" }, { "input": "30 10 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2", "output": "20" }, { "input": "4 1 2\n1 1 1 2", "output": "2" }, { "input": "6 2 3\n1 2 1 1 1 2", "output": "2" }, { "input": "6 1 4\n1 1 1 1 1 2", "output": "2" }, { "input": "6 1 3\n1 1 1 1 2 2", "output": "4" }, { "input": "6 1 3\n1 1 1 1 1 2", "output": "2" }, { "input": "6 4 2\n2 1 2 2 1 1", "output": "2" }, { "input": "3 10 1\n2 2 2", "output": "4" }, { "input": "5 1 3\n1 1 1 1 2", "output": "2" }, { "input": "5 2 2\n1 1 1 1 2", "output": "2" }, { "input": "15 5 5\n1 1 1 1 1 1 1 1 1 1 2 2 2 2 2", "output": "10" }, { "input": "5 1 2\n1 1 1 1 1", "output": "0" }, { "input": "3 6 1\n2 2 2", "output": "4" }, { "input": "5 3 3\n2 2 2 2 2", "output": "4" }, { "input": "8 3 3\n1 1 1 1 1 1 2 2", "output": "4" }, { "input": "5 1 2\n1 1 1 2 1", "output": "2" }, { "input": "6 1 4\n1 2 2 1 2 2", "output": "2" }, { "input": "2 1 1\n2 2", "output": "2" }, { "input": "2 2 1\n2 2", "output": "2" }, { "input": "5 8 1\n2 2 2 2 2", "output": "8" }, { "input": "3 1 4\n1 1 2", "output": "0" }, { "input": "7 1 5\n1 1 1 1 1 1 2", "output": "2" }, { "input": "6 1 3\n1 1 1 2 1 1", "output": "0" }, { "input": "6 1 2\n1 1 1 2 2 2", "output": "6" }, { "input": "8 1 4\n2 1 1 1 2 2 2 2", "output": "6" }, { "input": "4 2 3\n2 2 2 2", "output": "2" }, { "input": "3 1 1\n1 1 2", "output": "2" }, { "input": "5 1 1\n2 2 2 2 2", "output": "8" }, { "input": "10 1 5\n1 1 1 1 1 2 2 2 2 2", "output": "8" }, { "input": "5 1 2\n1 1 1 2 2", "output": "4" }, { "input": "4 1 1\n1 1 2 2", "output": "4" }, { "input": "7 1 2\n1 1 1 1 1 1 1", "output": "2" }, { "input": "5 1 4\n2 2 2 2 2", "output": "2" }, { "input": "6 2 3\n1 1 1 1 2 2", "output": "2" }, { "input": "5 2 2\n2 1 2 1 2", "output": "2" }, { "input": "4 6 1\n2 2 2 2", "output": "6" }, { "input": "6 1 4\n1 1 2 1 1 2", "output": "2" }, { "input": "7 1 3\n1 1 1 1 2 2 2", "output": "6" }, { "input": "4 1 2\n1 1 2 2", "output": "2" }, { "input": "3 1 2\n1 1 2", "output": "0" }, { "input": "6 1 3\n1 2 1 1 2 1", "output": "2" }, { "input": "6 1 3\n1 1 1 2 2 2", "output": "4" }, { "input": "10 2 2\n1 1 1 1 2 2 2 2 2 2", "output": "12" }, { "input": "10 1 4\n1 1 1 1 1 2 2 2 2 2", "output": "10" }, { "input": "3 10 2\n2 2 2", "output": "2" }, { "input": "4 3 1\n1 2 2 2", "output": "4" }, { "input": "7 1 4\n1 1 1 1 1 2 2", "output": "4" }, { "input": "3 4 1\n2 2 2", "output": "4" }, { "input": "4 1 2\n2 1 1 2", "output": "2" }, { "input": "10 1 2\n1 1 1 1 1 1 1 1 1 2", "output": "6" }, { "input": "5 1 3\n1 1 2 1 2", "output": "2" }, { "input": "6 1 3\n1 1 1 1 2 1", "output": "2" }, { "input": "6 1 4\n1 1 1 2 2 2", "output": "2" }, { "input": "7 1 2\n1 2 1 1 1 1 1", "output": "3" }, { "input": "6 2 2\n1 1 1 1 1 1", "output": "0" }, { "input": "6 1 2\n1 1 2 1 1 1", "output": "2" }, { "input": "3 3 1\n2 2 1", "output": "2" }, { "input": "8 4 2\n1 1 1 1 1 1 1 2", "output": "2" }, { "input": "9 1 4\n1 1 1 1 1 2 2 2 2", "output": "8" }, { "input": "5 10 1\n2 2 2 2 2", "output": "8" }, { "input": "3 5 1\n2 2 2", "output": "4" }, { "input": "5 100 1\n2 2 2 2 2", "output": "8" }, { "input": "4 1 2\n1 1 1 1", "output": "0" }, { "input": "4 1 1\n1 1 1 1", "output": "1" }, { "input": "7 2 2\n1 1 1 1 1 1 1", "output": "1" } ]
1,588,993,804
2,147,483,647
PyPy 3
OK
TESTS
97
202
32,563,200
n,a,b=map(int,input().split()) l=list(map(int,input().split())) s=0 c=0 for i in range(n): if(l[i]==1): if(a>0): a=a-1 elif(b>0): b=b-1 c=c+0.5 elif(b>=0.5): b=b-0.5 elif(c>=0.5): c-=0.5 else: s=s+1 else: if(b>0): b=b-1 else: s=s+2 print(s)
Title: Restaurant Tables Time Limit: None seconds Memory Limit: None megabytes Problem Description: In a small restaurant there are *a* tables for one person and *b* tables for two persons. It it known that *n* groups of people come today, each consisting of one or two people. If a group consist of one person, it is seated at a vacant one-seater table. If there are none of them, it is seated at a vacant two-seater table. If there are none of them, it is seated at a two-seater table occupied by single person. If there are still none of them, the restaurant denies service to this group. If a group consist of two people, it is seated at a vacant two-seater table. If there are none of them, the restaurant denies service to this group. You are given a chronological order of groups coming. You are to determine the total number of people the restaurant denies service to. Input Specification: The first line contains three integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=2·105, 1<=≤<=*a*,<=*b*<=≤<=2·105) — the number of groups coming to the restaurant, the number of one-seater and the number of two-seater tables. The second line contains a sequence of integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=2) — the description of clients in chronological order. If *t**i* is equal to one, then the *i*-th group consists of one person, otherwise the *i*-th group consists of two people. Output Specification: Print the total number of people the restaurant denies service to. Demo Input: ['4 1 2\n1 2 1 1\n', '4 1 1\n1 1 2 1\n'] Demo Output: ['0\n', '2\n'] Note: In the first example the first group consists of one person, it is seated at a vacant one-seater table. The next group occupies a whole two-seater table. The third group consists of one person, it occupies one place at the remaining two-seater table. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, all clients are served. In the second example the first group consists of one person, it is seated at the vacant one-seater table. The next group consists of one person, it occupies one place at the two-seater table. It's impossible to seat the next group of two people, so the restaurant denies service to them. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, the restaurant denies service to 2 clients.
```python n,a,b=map(int,input().split()) l=list(map(int,input().split())) s=0 c=0 for i in range(n): if(l[i]==1): if(a>0): a=a-1 elif(b>0): b=b-1 c=c+0.5 elif(b>=0.5): b=b-0.5 elif(c>=0.5): c-=0.5 else: s=s+1 else: if(b>0): b=b-1 else: s=s+2 print(s) ```
3
432
A
Choosing Teams
PROGRAMMING
800
[ "greedy", "implementation", "sortings" ]
null
null
The Saratov State University Olympiad Programmers Training Center (SSU OPTC) has *n* students. For each student you know the number of times he/she has participated in the ACM ICPC world programming championship. According to the ACM ICPC rules, each person can participate in the world championship at most 5 times. The head of the SSU OPTC is recently gathering teams to participate in the world championship. Each team must consist of exactly three people, at that, any person cannot be a member of two or more teams. What maximum number of teams can the head make if he wants each team to participate in the world championship with the same members at least *k* times?
The first line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=2000; 1<=≤<=*k*<=≤<=5). The next line contains *n* integers: *y*1,<=*y*2,<=...,<=*y**n* (0<=≤<=*y**i*<=≤<=5), where *y**i* shows the number of times the *i*-th person participated in the ACM ICPC world championship.
Print a single number — the answer to the problem.
[ "5 2\n0 4 5 1 0\n", "6 4\n0 1 2 3 4 5\n", "6 5\n0 0 0 0 0 0\n" ]
[ "1\n", "0\n", "2\n" ]
In the first sample only one team could be made: the first, the fourth and the fifth participants. In the second sample no teams could be created. In the third sample two teams could be created. Any partition into two teams fits.
500
[ { "input": "5 2\n0 4 5 1 0", "output": "1" }, { "input": "6 4\n0 1 2 3 4 5", "output": "0" }, { "input": "6 5\n0 0 0 0 0 0", "output": "2" }, { "input": "3 4\n0 1 0", "output": "1" }, { "input": "3 4\n0 2 0", "output": "0" }, { "input": "6 5\n0 0 0 0 0 0", "output": "2" }, { "input": "12 2\n0 1 2 3 4 0 1 2 3 4 0 1", "output": "3" }, { "input": "15 2\n0 1 2 3 4 0 1 2 3 4 0 1 2 3 4", "output": "4" }, { "input": "13 1\n5 0 5 0 1 5 0 4 1 1 1 4 1", "output": "3" }, { "input": "20 1\n5 0 4 2 2 3 2 1 2 4 1 3 5 5 5 4 4 1 3 0", "output": "5" }, { "input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4", "output": "4" }, { "input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4", "output": "4" }, { "input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4", "output": "4" }, { "input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4", "output": "4" }, { "input": "6 3\n4 4 4 4 4 4", "output": "0" }, { "input": "1 4\n1", "output": "0" }, { "input": "1 1\n0", "output": "0" }, { "input": "2 3\n0 0", "output": "0" } ]
1,660,473,462
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
30
0
print("please enter the number of participants") pnum=int(input()) print("please enter the target number of paticapance times") tnum=int(input()) a=[] n=0 m=0 for i in range (1,pnum+1) : print("Now enter the num of paticapance times for person " ,end=" " ) print(i) ; a.insert(i-1,int(input())) a.sort() for i in range (0,len(a)+1) : if tnum == 5 : for i in range(0,len(a)) : m=m+1 if a[m*3-1]==0 : n=n+1 m=m+1 if m*3-1 > len(a) : break # I had tried to devide the list into sets of 3 elements # 5times and check for each 3rd element if == 0 , thats 1st team and repeat till reach set with element >1 # and do the same for the rest test cases but unfortunatly I need to know how to code this way
Title: Choosing Teams Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Saratov State University Olympiad Programmers Training Center (SSU OPTC) has *n* students. For each student you know the number of times he/she has participated in the ACM ICPC world programming championship. According to the ACM ICPC rules, each person can participate in the world championship at most 5 times. The head of the SSU OPTC is recently gathering teams to participate in the world championship. Each team must consist of exactly three people, at that, any person cannot be a member of two or more teams. What maximum number of teams can the head make if he wants each team to participate in the world championship with the same members at least *k* times? Input Specification: The first line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=2000; 1<=≤<=*k*<=≤<=5). The next line contains *n* integers: *y*1,<=*y*2,<=...,<=*y**n* (0<=≤<=*y**i*<=≤<=5), where *y**i* shows the number of times the *i*-th person participated in the ACM ICPC world championship. Output Specification: Print a single number — the answer to the problem. Demo Input: ['5 2\n0 4 5 1 0\n', '6 4\n0 1 2 3 4 5\n', '6 5\n0 0 0 0 0 0\n'] Demo Output: ['1\n', '0\n', '2\n'] Note: In the first sample only one team could be made: the first, the fourth and the fifth participants. In the second sample no teams could be created. In the third sample two teams could be created. Any partition into two teams fits.
```python print("please enter the number of participants") pnum=int(input()) print("please enter the target number of paticapance times") tnum=int(input()) a=[] n=0 m=0 for i in range (1,pnum+1) : print("Now enter the num of paticapance times for person " ,end=" " ) print(i) ; a.insert(i-1,int(input())) a.sort() for i in range (0,len(a)+1) : if tnum == 5 : for i in range(0,len(a)) : m=m+1 if a[m*3-1]==0 : n=n+1 m=m+1 if m*3-1 > len(a) : break # I had tried to devide the list into sets of 3 elements # 5times and check for each 3rd element if == 0 , thats 1st team and repeat till reach set with element >1 # and do the same for the rest test cases but unfortunatly I need to know how to code this way ```
-1
540
A
Combination Lock
PROGRAMMING
800
[ "implementation" ]
null
null
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock. The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock. The second line contains a string of *n* digits — the original state of the disks. The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
[ "5\n82195\n64723\n" ]
[ "13\n" ]
In the sample he needs 13 moves: - 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
500
[ { "input": "5\n82195\n64723", "output": "13" }, { "input": "12\n102021090898\n010212908089", "output": "16" }, { "input": "1\n8\n1", "output": "3" }, { "input": "2\n83\n57", "output": "7" }, { "input": "10\n0728592530\n1362615763", "output": "27" }, { "input": "100\n4176196363694273682807653052945037727131821799902563705176501742060696655282954944720643131654235909\n3459912084922154505910287499879975659298239371519889866585472674423008837878123067103005344986554746", "output": "245" }, { "input": "1\n8\n1", "output": "3" }, { "input": "2\n83\n57", "output": "7" }, { "input": "3\n607\n684", "output": "5" }, { "input": "4\n0809\n0636", "output": "8" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8037856825987124762280548\n9519431339078678836940020", "output": "72" }, { "input": "125\n23269567683904664184142384849516523616863461607751021071772615078579713054027902974007001544768640273491193035874486891541257\n47635110303703399505805044019026243695451609639556649012447370081552870340011971572363458960190590266459684717415349529509024", "output": "305" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8037856825987124762285484\n9519431339078678836940202", "output": "74" }, { "input": "125\n23269567689466418414238845152168634610771021717726157879713054270294007001544768647391193035874486891412573389247025830678706\n47635110307339950580504010224954516093956649124473708152870340117152363458960190596659684717415349529090241694059599629136831", "output": "357" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8378525987476228048406972\n9194339078883694020217816", "output": "55" }, { "input": "125\n23269576839046618414238484916523616863461607750210717761078579713054027902974007015447686027349193035874486891541257338624472\n47635103037033950580504401926243695451609639556490124437081552870340011971572363489601905026645984717415349529509024169604599", "output": "274" }, { "input": "1\n0\n0", "output": "0" }, { "input": "1\n7\n7", "output": "0" }, { "input": "1\n0\n5", "output": "5" }, { "input": "1\n2\n7", "output": "5" }, { "input": "1\n7\n9", "output": "2" }, { "input": "1\n9\n7", "output": "2" }, { "input": "1\n2\n9", "output": "3" }, { "input": "1\n9\n2", "output": "3" }, { "input": "25\n3164978461316464614169874\n9413979197249127496597357", "output": "66" }, { "input": "4\n9999\n9999", "output": "0" }, { "input": "2\n11\n11", "output": "0" } ]
1,604,116,916
2,147,483,647
PyPy 3
OK
TESTS
43
140
0
r=int(input()) num1=input() num2=input() w=0 for i in range(r): c=abs(int(num1[i])-int(num2[i])) if c > 5: w+=(10-c) else: w+=c print(w)
Title: Combination Lock Time Limit: None seconds Memory Limit: None megabytes Problem Description: Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock. The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that? Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock. The second line contains a string of *n* digits — the original state of the disks. The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock. Output Specification: Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock. Demo Input: ['5\n82195\n64723\n'] Demo Output: ['13\n'] Note: In the sample he needs 13 moves: - 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python r=int(input()) num1=input() num2=input() w=0 for i in range(r): c=abs(int(num1[i])-int(num2[i])) if c > 5: w+=(10-c) else: w+=c print(w) ```
3
998
B
Cutting
PROGRAMMING
1,200
[ "dp", "greedy", "sortings" ]
null
null
There are a lot of things which could be cut — trees, paper, "the rope". In this problem you are going to cut a sequence of integers. There is a sequence of integers, which contains the equal number of even and odd numbers. Given a limited budget, you need to make maximum possible number of cuts such that each resulting segment will have the same number of odd and even integers. Cuts separate a sequence to continuous (contiguous) segments. You may think about each cut as a break between two adjacent elements in a sequence. So after cutting each element belongs to exactly one segment. Say, $[4, 1, 2, 3, 4, 5, 4, 4, 5, 5]$ $\to$ two cuts $\to$ $[4, 1 | 2, 3, 4, 5 | 4, 4, 5, 5]$. On each segment the number of even elements should be equal to the number of odd elements. The cost of the cut between $x$ and $y$ numbers is $|x - y|$ bitcoins. Find the maximum possible number of cuts that can be made while spending no more than $B$ bitcoins.
First line of the input contains an integer $n$ ($2 \le n \le 100$) and an integer $B$ ($1 \le B \le 100$) — the number of elements in the sequence and the number of bitcoins you have. Second line contains $n$ integers: $a_1$, $a_2$, ..., $a_n$ ($1 \le a_i \le 100$) — elements of the sequence, which contains the equal number of even and odd numbers
Print the maximum possible number of cuts which can be made while spending no more than $B$ bitcoins.
[ "6 4\n1 2 5 10 15 20\n", "4 10\n1 3 2 4\n", "6 100\n1 2 3 4 5 6\n" ]
[ "1\n", "0\n", "2\n" ]
In the first sample the optimal answer is to split sequence between $2$ and $5$. Price of this cut is equal to $3$ bitcoins. In the second sample it is not possible to make even one cut even with unlimited number of bitcoins. In the third sample the sequence should be cut between $2$ and $3$, and between $4$ and $5$. The total price of the cuts is $1 + 1 = 2$ bitcoins.
1,000
[ { "input": "6 4\n1 2 5 10 15 20", "output": "1" }, { "input": "4 10\n1 3 2 4", "output": "0" }, { "input": "6 100\n1 2 3 4 5 6", "output": "2" }, { "input": "2 100\n13 78", "output": "0" }, { "input": "10 1\n56 56 98 2 11 64 97 41 95 53", "output": "0" }, { "input": "10 100\n94 65 24 47 29 98 20 65 6 17", "output": "2" }, { "input": "100 1\n35 6 19 84 49 64 36 91 50 65 21 86 20 89 10 52 50 24 98 74 11 48 58 98 51 85 1 29 44 83 9 97 68 41 83 57 1 57 46 42 87 2 32 50 3 57 17 77 22 100 36 27 3 34 55 8 90 61 34 20 15 39 43 46 60 60 14 23 4 22 75 51 98 23 69 22 99 57 63 30 79 7 16 8 34 84 13 47 93 40 48 25 93 1 80 6 82 93 6 21", "output": "0" }, { "input": "100 10\n3 20 3 29 90 69 2 30 70 28 71 99 22 99 34 70 87 48 3 92 71 61 26 90 14 38 51 81 16 33 49 71 14 52 50 95 65 16 80 57 87 47 29 14 40 31 74 15 87 76 71 61 30 91 44 10 87 48 84 12 77 51 25 68 49 38 79 8 7 9 39 19 48 40 15 53 29 4 60 86 76 84 6 37 45 71 46 38 80 68 94 71 64 72 41 51 71 60 79 7", "output": "2" }, { "input": "100 100\n60 83 82 16 17 7 89 6 83 100 85 41 72 44 23 28 64 84 3 23 33 52 93 30 81 38 67 25 26 97 94 78 41 74 74 17 53 51 54 17 20 81 95 76 42 16 16 56 74 69 30 9 82 91 32 13 47 45 97 40 56 57 27 28 84 98 91 5 61 20 3 43 42 26 83 40 34 100 5 63 62 61 72 5 32 58 93 79 7 18 50 43 17 24 77 73 87 74 98 2", "output": "11" }, { "input": "100 100\n70 54 10 72 81 84 56 15 27 19 43 100 49 44 52 33 63 40 95 17 58 2 51 39 22 18 82 1 16 99 32 29 24 94 9 98 5 37 47 14 42 73 41 31 79 64 12 6 53 26 68 67 89 13 90 4 21 93 46 74 75 88 66 57 23 7 25 48 92 62 30 8 50 61 38 87 71 34 97 28 80 11 60 91 3 35 86 96 36 20 59 65 83 45 76 77 78 69 85 55", "output": "3" }, { "input": "100 100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "49" }, { "input": "10 10\n94 32 87 13 4 22 85 81 18 95", "output": "1" }, { "input": "10 50\n40 40 9 3 64 96 67 19 21 30", "output": "1" }, { "input": "100 50\n13 31 29 86 46 10 2 87 94 2 28 31 29 15 64 3 94 71 37 76 9 91 89 38 12 46 53 33 58 11 98 4 37 72 30 52 6 86 40 98 28 6 34 80 61 47 45 69 100 47 91 64 87 41 67 58 88 75 13 81 36 58 66 29 10 27 54 83 44 15 11 33 49 36 61 18 89 26 87 1 99 19 57 21 55 84 20 74 14 43 15 51 2 76 22 92 43 14 72 77", "output": "3" }, { "input": "100 1\n78 52 95 76 96 49 53 59 77 100 64 11 9 48 15 17 44 46 21 54 39 68 43 4 32 28 73 6 16 62 72 84 65 86 98 75 33 45 25 3 91 82 2 92 63 88 7 50 97 93 14 22 20 42 60 55 80 85 29 34 56 71 83 38 26 47 90 70 51 41 40 31 37 12 35 99 67 94 1 87 57 8 61 19 23 79 36 18 66 74 5 27 81 69 24 58 13 10 89 30", "output": "0" }, { "input": "100 10\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43", "output": "0" }, { "input": "100 50\n2 4 82 12 47 63 52 91 87 45 53 1 17 25 64 50 9 13 22 54 21 30 43 24 38 33 68 11 41 78 99 23 28 18 58 67 79 10 71 56 49 61 26 29 59 20 90 74 5 75 89 8 39 95 72 42 66 98 44 32 88 35 92 3 97 55 65 51 77 27 81 76 84 69 73 85 19 46 62 100 60 37 7 36 57 6 14 83 40 48 16 70 96 15 31 93 80 86 94 34", "output": "1" }, { "input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "1" }, { "input": "100 10\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "10" }, { "input": "100 50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "49" }, { "input": "100 30\n2 1 2 2 2 2 1 1 1 2 1 1 2 2 1 2 1 2 2 2 2 1 2 1 2 1 1 2 1 1 2 2 2 1 1 2 1 2 2 2 1 1 1 1 1 2 1 1 1 1 1 2 2 2 2 1 2 1 1 1 2 2 2 2 1 2 2 1 1 1 1 2 2 2 1 2 2 1 2 1 1 2 2 2 1 2 2 1 2 1 1 2 1 1 1 1 2 1 1 2", "output": "11" }, { "input": "100 80\n1 1 1 2 2 1 1 2 1 1 1 1 2 2 2 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2 1 1 1 1 2 2 1 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 1 1 1 2 1 1 2 1 2 1 2 2 1 1 2 1 1 1 1 2 2 2 1 2 2 1 2", "output": "12" }, { "input": "100 30\n100 99 100 99 99 100 100 99 100 99 99 100 100 100 99 99 99 100 99 99 99 99 100 99 99 100 100 99 100 99 99 99 100 99 100 100 99 100 100 100 100 100 99 99 100 99 99 100 99 100 99 99 100 100 99 100 99 99 100 99 100 100 100 100 99 99 99 100 99 100 99 100 100 100 99 100 100 100 99 100 99 99 100 100 100 100 99 99 99 100 99 100 100 99 99 99 100 100 99 99", "output": "14" }, { "input": "100 80\n99 100 100 100 99 99 99 99 100 99 99 99 99 99 99 99 99 100 100 99 99 99 99 99 100 99 100 99 100 100 100 100 100 99 100 100 99 99 100 100 100 100 100 99 100 99 100 99 99 99 100 99 99 99 99 99 99 99 99 100 99 100 100 99 99 99 99 100 100 100 99 100 100 100 100 100 99 100 100 100 100 100 100 100 100 99 99 99 99 100 99 100 100 100 100 100 99 100 99 100", "output": "4" }, { "input": "100 30\n100 100 39 39 39 100 100 39 39 100 39 39 100 39 100 39 100 100 100 100 100 39 100 100 100 39 39 39 100 39 100 100 39 39 100 39 39 39 100 100 39 100 39 100 39 39 100 100 39 100 39 100 39 39 39 100 39 100 39 39 39 100 39 39 100 100 39 39 39 100 100 39 39 39 100 100 100 100 39 100 100 100 39 39 100 39 100 100 39 100 39 100 39 39 100 39 39 100 100 100", "output": "5" }, { "input": "100 80\n39 100 39 100 100 100 100 39 39 100 100 39 39 100 39 39 39 39 100 39 39 39 39 100 100 100 100 39 100 39 39 100 100 39 39 100 39 100 39 100 100 39 39 100 39 39 39 100 39 100 39 100 100 100 100 100 100 100 39 100 39 100 100 100 39 39 39 39 39 100 100 100 39 100 100 100 100 39 100 100 39 39 100 39 39 39 100 39 100 39 39 100 100 39 100 39 39 39 100 39", "output": "6" }, { "input": "4 1\n1 2 3 4", "output": "1" }, { "input": "4 1\n1 2 1 2", "output": "1" }, { "input": "4 4\n1 2 6 7", "output": "1" }, { "input": "4 8\n1 2 10 11", "output": "1" }, { "input": "6 2\n1 2 3 4 5 6", "output": "2" }, { "input": "6 1\n1 2 1 2 1 2", "output": "1" }, { "input": "6 4\n1 2 4 5 7 8", "output": "2" }, { "input": "6 3\n1 2 5 10 15 20", "output": "1" } ]
1,570,874,611
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
5
140
0
n,B=map(int,input().split()) a=[int(i) for i in input().split()] e,o=0,0 b=[] c=[] for i in range(n-1): if(a[i]%2==0): e+=1 elif(a[i]%2!=0): o+=1 if(e==o): cost=a[i+1]-a[i] b.append(i) c.append(cost) #print(b) c.sort() count=0 ans=0 for i in c: ans=ans+i if(ans>B): break else: count+=1 print(count)
Title: Cutting Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are a lot of things which could be cut — trees, paper, "the rope". In this problem you are going to cut a sequence of integers. There is a sequence of integers, which contains the equal number of even and odd numbers. Given a limited budget, you need to make maximum possible number of cuts such that each resulting segment will have the same number of odd and even integers. Cuts separate a sequence to continuous (contiguous) segments. You may think about each cut as a break between two adjacent elements in a sequence. So after cutting each element belongs to exactly one segment. Say, $[4, 1, 2, 3, 4, 5, 4, 4, 5, 5]$ $\to$ two cuts $\to$ $[4, 1 | 2, 3, 4, 5 | 4, 4, 5, 5]$. On each segment the number of even elements should be equal to the number of odd elements. The cost of the cut between $x$ and $y$ numbers is $|x - y|$ bitcoins. Find the maximum possible number of cuts that can be made while spending no more than $B$ bitcoins. Input Specification: First line of the input contains an integer $n$ ($2 \le n \le 100$) and an integer $B$ ($1 \le B \le 100$) — the number of elements in the sequence and the number of bitcoins you have. Second line contains $n$ integers: $a_1$, $a_2$, ..., $a_n$ ($1 \le a_i \le 100$) — elements of the sequence, which contains the equal number of even and odd numbers Output Specification: Print the maximum possible number of cuts which can be made while spending no more than $B$ bitcoins. Demo Input: ['6 4\n1 2 5 10 15 20\n', '4 10\n1 3 2 4\n', '6 100\n1 2 3 4 5 6\n'] Demo Output: ['1\n', '0\n', '2\n'] Note: In the first sample the optimal answer is to split sequence between $2$ and $5$. Price of this cut is equal to $3$ bitcoins. In the second sample it is not possible to make even one cut even with unlimited number of bitcoins. In the third sample the sequence should be cut between $2$ and $3$, and between $4$ and $5$. The total price of the cuts is $1 + 1 = 2$ bitcoins.
```python n,B=map(int,input().split()) a=[int(i) for i in input().split()] e,o=0,0 b=[] c=[] for i in range(n-1): if(a[i]%2==0): e+=1 elif(a[i]%2!=0): o+=1 if(e==o): cost=a[i+1]-a[i] b.append(i) c.append(cost) #print(b) c.sort() count=0 ans=0 for i in c: ans=ans+i if(ans>B): break else: count+=1 print(count) ```
0
143
A
Help Vasilisa the Wise 2
PROGRAMMING
1,000
[ "brute force", "math" ]
null
null
Vasilisa the Wise from the Kingdom of Far Far Away got a magic box with a secret as a present from her friend Hellawisa the Wise from the Kingdom of A Little Closer. However, Vasilisa the Wise does not know what the box's secret is, since she cannot open it again. She hopes that you will help her one more time with that. The box's lock looks as follows: it contains 4 identical deepenings for gems as a 2<=×<=2 square, and some integer numbers are written at the lock's edge near the deepenings. The example of a lock is given on the picture below. The box is accompanied with 9 gems. Their shapes match the deepenings' shapes and each gem contains one number from 1 to 9 (each number is written on exactly one gem). The box will only open after it is decorated with gems correctly: that is, each deepening in the lock should be filled with exactly one gem. Also, the sums of numbers in the square's rows, columns and two diagonals of the square should match the numbers written at the lock's edge. For example, the above lock will open if we fill the deepenings with gems with numbers as is shown on the picture below. Now Vasilisa the Wise wants to define, given the numbers on the box's lock, which gems she should put in the deepenings to open the box. Help Vasilisa to solve this challenging task.
The input contains numbers written on the edges of the lock of the box. The first line contains space-separated integers *r*1 and *r*2 that define the required sums of numbers in the rows of the square. The second line contains space-separated integers *c*1 and *c*2 that define the required sums of numbers in the columns of the square. The third line contains space-separated integers *d*1 and *d*2 that define the required sums of numbers on the main and on the side diagonals of the square (1<=≤<=*r*1,<=*r*2,<=*c*1,<=*c*2,<=*d*1,<=*d*2<=≤<=20). Correspondence between the above 6 variables and places where they are written is shown on the picture below. For more clarifications please look at the second sample test that demonstrates the example given in the problem statement.
Print the scheme of decorating the box with stones: two lines containing two space-separated integers from 1 to 9. The numbers should be pairwise different. If there is no solution for the given lock, then print the single number "-1" (without the quotes). If there are several solutions, output any.
[ "3 7\n4 6\n5 5\n", "11 10\n13 8\n5 16\n", "1 2\n3 4\n5 6\n", "10 10\n10 10\n10 10\n" ]
[ "1 2\n3 4\n", "4 7\n9 1\n", "-1\n", "-1\n" ]
Pay attention to the last test from the statement: it is impossible to open the box because for that Vasilisa the Wise would need 4 identical gems containing number "5". However, Vasilisa only has one gem with each number from 1 to 9.
500
[ { "input": "3 7\n4 6\n5 5", "output": "1 2\n3 4" }, { "input": "11 10\n13 8\n5 16", "output": "4 7\n9 1" }, { "input": "1 2\n3 4\n5 6", "output": "-1" }, { "input": "10 10\n10 10\n10 10", "output": "-1" }, { "input": "5 13\n8 10\n11 7", "output": "3 2\n5 8" }, { "input": "12 17\n10 19\n13 16", "output": "-1" }, { "input": "11 11\n17 5\n12 10", "output": "9 2\n8 3" }, { "input": "12 11\n11 12\n16 7", "output": "-1" }, { "input": "5 9\n7 7\n8 6", "output": "3 2\n4 5" }, { "input": "10 7\n4 13\n11 6", "output": "-1" }, { "input": "18 10\n16 12\n12 16", "output": "-1" }, { "input": "13 6\n10 9\n6 13", "output": "-1" }, { "input": "14 16\n16 14\n18 12", "output": "-1" }, { "input": "16 10\n16 10\n12 14", "output": "-1" }, { "input": "11 9\n12 8\n11 9", "output": "-1" }, { "input": "5 14\n10 9\n10 9", "output": "-1" }, { "input": "2 4\n1 5\n3 3", "output": "-1" }, { "input": "17 16\n14 19\n18 15", "output": "-1" }, { "input": "12 12\n14 10\n16 8", "output": "9 3\n5 7" }, { "input": "15 11\n16 10\n9 17", "output": "7 8\n9 2" }, { "input": "8 10\n9 9\n13 5", "output": "6 2\n3 7" }, { "input": "13 7\n10 10\n5 15", "output": "4 9\n6 1" }, { "input": "14 11\n9 16\n16 9", "output": "-1" }, { "input": "12 8\n14 6\n8 12", "output": "-1" }, { "input": "10 6\n6 10\n4 12", "output": "-1" }, { "input": "10 8\n10 8\n4 14", "output": "-1" }, { "input": "14 13\n9 18\n14 13", "output": "-1" }, { "input": "9 14\n8 15\n8 15", "output": "-1" }, { "input": "3 8\n2 9\n6 5", "output": "-1" }, { "input": "14 17\n18 13\n15 16", "output": "-1" }, { "input": "16 14\n15 15\n17 13", "output": "9 7\n6 8" }, { "input": "14 11\n16 9\n13 12", "output": "9 5\n7 4" }, { "input": "13 10\n11 12\n7 16", "output": "4 9\n7 3" }, { "input": "14 8\n11 11\n13 9", "output": "8 6\n3 5" }, { "input": "12 11\n13 10\n10 13", "output": "-1" }, { "input": "6 5\n2 9\n5 6", "output": "-1" }, { "input": "7 8\n8 7\n12 3", "output": "-1" }, { "input": "7 11\n7 11\n6 12", "output": "-1" }, { "input": "8 5\n11 2\n8 5", "output": "-1" }, { "input": "10 16\n14 12\n14 12", "output": "-1" }, { "input": "7 9\n4 12\n5 11", "output": "-1" }, { "input": "11 13\n19 5\n12 12", "output": "-1" }, { "input": "8 12\n5 15\n11 9", "output": "2 6\n3 9" }, { "input": "16 5\n13 8\n10 11", "output": "9 7\n4 1" }, { "input": "3 14\n8 9\n10 7", "output": "2 1\n6 8" }, { "input": "12 14\n11 15\n9 17", "output": "3 9\n8 6" }, { "input": "13 7\n9 11\n14 6", "output": "8 5\n1 6" }, { "input": "13 8\n15 6\n11 10", "output": "9 4\n6 2" }, { "input": "9 6\n5 10\n3 12", "output": "1 8\n4 2" }, { "input": "12 7\n5 14\n8 11", "output": "3 9\n2 5" }, { "input": "9 12\n3 17\n10 10", "output": "-1" }, { "input": "3 8\n4 6\n5 5", "output": "-1" } ]
1,676,538,601
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
124
0
r1, r2 = map(int, input().split()) c1, c2 = map(int, input().split()) d1, d2 = map(int, input().split()) v = False p,q = [], [] for i in range(1,r1): p.append((i,r1-i)) for i in range(1,r2): q.append((i,r2-i)) for i in p: for j in q: e,f,g,h = i[0], i[1], j[0], j[1] if e+g == c1 and f+h == c2 and e+h == d1 and f+g == d2: a,b,c,d = i[0], i[1], j[0], j[1] v = True if v: print(*[a,b]) print(*[c,d]) else: print(-1)
Title: Help Vasilisa the Wise 2 Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasilisa the Wise from the Kingdom of Far Far Away got a magic box with a secret as a present from her friend Hellawisa the Wise from the Kingdom of A Little Closer. However, Vasilisa the Wise does not know what the box's secret is, since she cannot open it again. She hopes that you will help her one more time with that. The box's lock looks as follows: it contains 4 identical deepenings for gems as a 2<=×<=2 square, and some integer numbers are written at the lock's edge near the deepenings. The example of a lock is given on the picture below. The box is accompanied with 9 gems. Their shapes match the deepenings' shapes and each gem contains one number from 1 to 9 (each number is written on exactly one gem). The box will only open after it is decorated with gems correctly: that is, each deepening in the lock should be filled with exactly one gem. Also, the sums of numbers in the square's rows, columns and two diagonals of the square should match the numbers written at the lock's edge. For example, the above lock will open if we fill the deepenings with gems with numbers as is shown on the picture below. Now Vasilisa the Wise wants to define, given the numbers on the box's lock, which gems she should put in the deepenings to open the box. Help Vasilisa to solve this challenging task. Input Specification: The input contains numbers written on the edges of the lock of the box. The first line contains space-separated integers *r*1 and *r*2 that define the required sums of numbers in the rows of the square. The second line contains space-separated integers *c*1 and *c*2 that define the required sums of numbers in the columns of the square. The third line contains space-separated integers *d*1 and *d*2 that define the required sums of numbers on the main and on the side diagonals of the square (1<=≤<=*r*1,<=*r*2,<=*c*1,<=*c*2,<=*d*1,<=*d*2<=≤<=20). Correspondence between the above 6 variables and places where they are written is shown on the picture below. For more clarifications please look at the second sample test that demonstrates the example given in the problem statement. Output Specification: Print the scheme of decorating the box with stones: two lines containing two space-separated integers from 1 to 9. The numbers should be pairwise different. If there is no solution for the given lock, then print the single number "-1" (without the quotes). If there are several solutions, output any. Demo Input: ['3 7\n4 6\n5 5\n', '11 10\n13 8\n5 16\n', '1 2\n3 4\n5 6\n', '10 10\n10 10\n10 10\n'] Demo Output: ['1 2\n3 4\n', '4 7\n9 1\n', '-1\n', '-1\n'] Note: Pay attention to the last test from the statement: it is impossible to open the box because for that Vasilisa the Wise would need 4 identical gems containing number "5". However, Vasilisa only has one gem with each number from 1 to 9.
```python r1, r2 = map(int, input().split()) c1, c2 = map(int, input().split()) d1, d2 = map(int, input().split()) v = False p,q = [], [] for i in range(1,r1): p.append((i,r1-i)) for i in range(1,r2): q.append((i,r2-i)) for i in p: for j in q: e,f,g,h = i[0], i[1], j[0], j[1] if e+g == c1 and f+h == c2 and e+h == d1 and f+g == d2: a,b,c,d = i[0], i[1], j[0], j[1] v = True if v: print(*[a,b]) print(*[c,d]) else: print(-1) ```
0
886
B
Vlad and Cafes
PROGRAMMING
1,000
[]
null
null
Vlad likes to eat in cafes very much. During his life, he has visited cafes *n* times. Unfortunately, Vlad started to feel that his last visits are not any different from each other. To fix that Vlad had a small research. First of all, Vlad assigned individual indices to all cafes. Then, he wrote down indices of cafes he visited in a row, in order of visiting them. Now, Vlad wants to find such a cafe that his last visit to that cafe was before his last visits to every other cafe. In other words, he wants to find such a cafe that he hasn't been there for as long as possible. Help Vlad to find that cafe.
In first line there is one integer *n* (1<=≤<=*n*<=≤<=2·105) — number of cafes indices written by Vlad. In second line, *n* numbers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=2·105) are written — indices of cafes in order of being visited by Vlad. Vlad could visit some cafes more than once. Note that in numeration, some indices could be omitted.
Print one integer — index of the cafe that Vlad hasn't visited for as long as possible.
[ "5\n1 3 2 1 2\n", "6\n2 1 2 2 4 1\n" ]
[ "3\n", "2\n" ]
In first test, there are three cafes, and the last visits to cafes with indices 1 and 2 were after the last visit to cafe with index 3; so this cafe is the answer. In second test case, there are also three cafes, but with indices 1, 2 and 4. Cafes with indices 1 and 4 were visited after the last visit of cafe with index 2, so the answer is 2. Note that Vlad could omit some numbers while numerating the cafes.
1,000
[ { "input": "5\n1 3 2 1 2", "output": "3" }, { "input": "6\n2 1 2 2 4 1", "output": "2" }, { "input": "1\n0", "output": "0" }, { "input": "1\n200000", "output": "200000" }, { "input": "2\n2018 2017", "output": "2018" }, { "input": "5\n100 1000 1000 1000 1000", "output": "100" }, { "input": "8\n200000 1 200000 1 200000 1 200000 2", "output": "1" }, { "input": "5\n20000 1 2 3 4", "output": "20000" }, { "input": "2\n200000 1", "output": "200000" }, { "input": "3\n2 100 2", "output": "100" }, { "input": "2\n10 1", "output": "10" }, { "input": "11\n1 1 1 1 1 1 1 1 1 1 1", "output": "1" }, { "input": "3\n5 5 5", "output": "5" }, { "input": "2\n5 1", "output": "5" } ]
1,510,508,902
6,202
Python 3
TIME_LIMIT_EXCEEDED
PRETESTS
4
2,000
13,926,400
n=int(input()) stol=[int(x) for x in input().split()] numb=dict() numb[stol[0]]=0 for i in range(n-1): for j in range(i,n): if stol[i]==stol[j]: numb[stol[j]]=j for key, val in numb.items(): if val==min(list(numb.values())): print (key)
Title: Vlad and Cafes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vlad likes to eat in cafes very much. During his life, he has visited cafes *n* times. Unfortunately, Vlad started to feel that his last visits are not any different from each other. To fix that Vlad had a small research. First of all, Vlad assigned individual indices to all cafes. Then, he wrote down indices of cafes he visited in a row, in order of visiting them. Now, Vlad wants to find such a cafe that his last visit to that cafe was before his last visits to every other cafe. In other words, he wants to find such a cafe that he hasn't been there for as long as possible. Help Vlad to find that cafe. Input Specification: In first line there is one integer *n* (1<=≤<=*n*<=≤<=2·105) — number of cafes indices written by Vlad. In second line, *n* numbers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=2·105) are written — indices of cafes in order of being visited by Vlad. Vlad could visit some cafes more than once. Note that in numeration, some indices could be omitted. Output Specification: Print one integer — index of the cafe that Vlad hasn't visited for as long as possible. Demo Input: ['5\n1 3 2 1 2\n', '6\n2 1 2 2 4 1\n'] Demo Output: ['3\n', '2\n'] Note: In first test, there are three cafes, and the last visits to cafes with indices 1 and 2 were after the last visit to cafe with index 3; so this cafe is the answer. In second test case, there are also three cafes, but with indices 1, 2 and 4. Cafes with indices 1 and 4 were visited after the last visit of cafe with index 2, so the answer is 2. Note that Vlad could omit some numbers while numerating the cafes.
```python n=int(input()) stol=[int(x) for x in input().split()] numb=dict() numb[stol[0]]=0 for i in range(n-1): for j in range(i,n): if stol[i]==stol[j]: numb[stol[j]]=j for key, val in numb.items(): if val==min(list(numb.values())): print (key) ```
0
769
A
Year of University Entrance
PROGRAMMING
800
[ "*special", "implementation", "sortings" ]
null
null
There is the faculty of Computer Science in Berland. In the social net "TheContact!" for each course of this faculty there is the special group whose name equals the year of university entrance of corresponding course of students at the university. Each of students joins the group of his course and joins all groups for which the year of student's university entrance differs by no more than *x* from the year of university entrance of this student, where *x* — some non-negative integer. A value *x* is not given, but it can be uniquely determined from the available data. Note that students don't join other groups. You are given the list of groups which the student Igor joined. According to this information you need to determine the year of Igor's university entrance.
The first line contains the positive odd integer *n* (1<=≤<=*n*<=≤<=5) — the number of groups which Igor joined. The next line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (2010<=≤<=*a**i*<=≤<=2100) — years of student's university entrance for each group in which Igor is the member. It is guaranteed that the input data is correct and the answer always exists. Groups are given randomly.
Print the year of Igor's university entrance.
[ "3\n2014 2016 2015\n", "1\n2050\n" ]
[ "2015\n", "2050\n" ]
In the first test the value *x* = 1. Igor entered the university in 2015. So he joined groups members of which are students who entered the university in 2014, 2015 and 2016. In the second test the value *x* = 0. Igor entered only the group which corresponds to the year of his university entrance.
500
[ { "input": "3\n2014 2016 2015", "output": "2015" }, { "input": "1\n2050", "output": "2050" }, { "input": "1\n2010", "output": "2010" }, { "input": "1\n2011", "output": "2011" }, { "input": "3\n2010 2011 2012", "output": "2011" }, { "input": "3\n2049 2047 2048", "output": "2048" }, { "input": "5\n2043 2042 2041 2044 2040", "output": "2042" }, { "input": "5\n2012 2013 2014 2015 2016", "output": "2014" }, { "input": "1\n2045", "output": "2045" }, { "input": "1\n2046", "output": "2046" }, { "input": "1\n2099", "output": "2099" }, { "input": "1\n2100", "output": "2100" }, { "input": "3\n2011 2010 2012", "output": "2011" }, { "input": "3\n2011 2012 2010", "output": "2011" }, { "input": "3\n2012 2011 2010", "output": "2011" }, { "input": "3\n2010 2012 2011", "output": "2011" }, { "input": "3\n2012 2010 2011", "output": "2011" }, { "input": "3\n2047 2048 2049", "output": "2048" }, { "input": "3\n2047 2049 2048", "output": "2048" }, { "input": "3\n2048 2047 2049", "output": "2048" }, { "input": "3\n2048 2049 2047", "output": "2048" }, { "input": "3\n2049 2048 2047", "output": "2048" }, { "input": "5\n2011 2014 2012 2013 2010", "output": "2012" }, { "input": "5\n2014 2013 2011 2012 2015", "output": "2013" }, { "input": "5\n2021 2023 2024 2020 2022", "output": "2022" }, { "input": "5\n2081 2079 2078 2080 2077", "output": "2079" }, { "input": "5\n2095 2099 2097 2096 2098", "output": "2097" }, { "input": "5\n2097 2099 2100 2098 2096", "output": "2098" }, { "input": "5\n2012 2010 2014 2011 2013", "output": "2012" }, { "input": "5\n2012 2011 2013 2015 2014", "output": "2013" }, { "input": "5\n2023 2024 2022 2021 2020", "output": "2022" }, { "input": "5\n2077 2078 2080 2079 2081", "output": "2079" }, { "input": "5\n2099 2096 2095 2097 2098", "output": "2097" }, { "input": "5\n2097 2100 2098 2096 2099", "output": "2098" }, { "input": "5\n2011 2014 2013 2010 2012", "output": "2012" }, { "input": "5\n2013 2011 2015 2012 2014", "output": "2013" }, { "input": "5\n2024 2020 2021 2023 2022", "output": "2022" }, { "input": "5\n2079 2080 2077 2081 2078", "output": "2079" }, { "input": "5\n2095 2097 2096 2098 2099", "output": "2097" }, { "input": "5\n2099 2096 2100 2097 2098", "output": "2098" }, { "input": "5\n2034 2033 2036 2032 2035", "output": "2034" }, { "input": "5\n2030 2031 2033 2032 2029", "output": "2031" }, { "input": "5\n2093 2092 2094 2096 2095", "output": "2094" }, { "input": "5\n2012 2015 2014 2013 2011", "output": "2013" }, { "input": "5\n2056 2057 2058 2059 2060", "output": "2058" } ]
1,488,698,537
69,737
Python 3
RUNTIME_ERROR
PRETESTS
6
61
4,608,000
n = int(input()) group = list(map(int, input().split())) if n == 1: print(group[0]) elif n == 3: if group[0] != min(group) and group[0] != max(group): print(group[0]) elif group[1] != min(group) and group[1] != max(group): print(group[1]) else: print(group[2]) elif n == 5: sluch = [] for i in range(n): if group[i] != min(group) and group[i] != max(group): sluch += group[i] if sluch[0] != min(sluch) and sluch[0] != max(sluch): print(sluch[0]) elif sluch[1] != min(sluch) and sluch[1] != max(sluch): print(sluch[1]) else: print(sluch[2])
Title: Year of University Entrance Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is the faculty of Computer Science in Berland. In the social net "TheContact!" for each course of this faculty there is the special group whose name equals the year of university entrance of corresponding course of students at the university. Each of students joins the group of his course and joins all groups for which the year of student's university entrance differs by no more than *x* from the year of university entrance of this student, where *x* — some non-negative integer. A value *x* is not given, but it can be uniquely determined from the available data. Note that students don't join other groups. You are given the list of groups which the student Igor joined. According to this information you need to determine the year of Igor's university entrance. Input Specification: The first line contains the positive odd integer *n* (1<=≤<=*n*<=≤<=5) — the number of groups which Igor joined. The next line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (2010<=≤<=*a**i*<=≤<=2100) — years of student's university entrance for each group in which Igor is the member. It is guaranteed that the input data is correct and the answer always exists. Groups are given randomly. Output Specification: Print the year of Igor's university entrance. Demo Input: ['3\n2014 2016 2015\n', '1\n2050\n'] Demo Output: ['2015\n', '2050\n'] Note: In the first test the value *x* = 1. Igor entered the university in 2015. So he joined groups members of which are students who entered the university in 2014, 2015 and 2016. In the second test the value *x* = 0. Igor entered only the group which corresponds to the year of his university entrance.
```python n = int(input()) group = list(map(int, input().split())) if n == 1: print(group[0]) elif n == 3: if group[0] != min(group) and group[0] != max(group): print(group[0]) elif group[1] != min(group) and group[1] != max(group): print(group[1]) else: print(group[2]) elif n == 5: sluch = [] for i in range(n): if group[i] != min(group) and group[i] != max(group): sluch += group[i] if sluch[0] != min(sluch) and sluch[0] != max(sluch): print(sluch[0]) elif sluch[1] != min(sluch) and sluch[1] != max(sluch): print(sluch[1]) else: print(sluch[2]) ```
-1
994
B
Knights of a Polygonal Table
PROGRAMMING
1,400
[ "greedy", "implementation", "sortings" ]
null
null
Unlike Knights of a Round Table, Knights of a Polygonal Table deprived of nobility and happy to kill each other. But each knight has some power and a knight can kill another knight if and only if his power is greater than the power of victim. However, even such a knight will torment his conscience, so he can kill no more than $k$ other knights. Also, each knight has some number of coins. After a kill, a knight can pick up all victim's coins. Now each knight ponders: how many coins he can have if only he kills other knights? You should answer this question for each knight.
The first line contains two integers $n$ and $k$ $(1 \le n \le 10^5, 0 \le k \le \min(n-1,10))$ — the number of knights and the number $k$ from the statement. The second line contains $n$ integers $p_1, p_2 ,\ldots,p_n$ $(1 \le p_i \le 10^9)$ — powers of the knights. All $p_i$ are distinct. The third line contains $n$ integers $c_1, c_2 ,\ldots,c_n$ $(0 \le c_i \le 10^9)$ — the number of coins each knight has.
Print $n$ integers — the maximum number of coins each knight can have it only he kills other knights.
[ "4 2\n4 5 9 7\n1 2 11 33\n", "5 1\n1 2 3 4 5\n1 2 3 4 5\n", "1 0\n2\n3\n" ]
[ "1 3 46 36 ", "1 3 5 7 9 ", "3 " ]
Consider the first example. - The first knight is the weakest, so he can't kill anyone. That leaves him with the only coin he initially has. - The second knight can kill the first knight and add his coin to his own two. - The third knight is the strongest, but he can't kill more than $k = 2$ other knights. It is optimal to kill the second and the fourth knights: $2+11+33 = 46$. - The fourth knight should kill the first and the second knights: $33+1+2 = 36$. In the second example the first knight can't kill anyone, while all the others should kill the one with the index less by one than their own. In the third example there is only one knight, so he can't kill anyone.
1,000
[ { "input": "4 2\n4 5 9 7\n1 2 11 33", "output": "1 3 46 36 " }, { "input": "5 1\n1 2 3 4 5\n1 2 3 4 5", "output": "1 3 5 7 9 " }, { "input": "1 0\n2\n3", "output": "3 " }, { "input": "7 1\n2 3 4 5 7 8 9\n0 3 7 9 5 8 9", "output": "0 3 10 16 14 17 18 " }, { "input": "7 2\n2 4 6 7 8 9 10\n10 8 4 8 4 5 9", "output": "10 18 22 26 22 23 27 " }, { "input": "11 10\n1 2 3 4 5 6 7 8 9 10 11\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000", "output": "1000000000 2000000000 3000000000 4000000000 5000000000 6000000000 7000000000 8000000000 9000000000 10000000000 11000000000 " }, { "input": "2 0\n2 3\n3 3", "output": "3 3 " }, { "input": "7 3\n1 2 3 4 5 6 7\n3 3 3 4 5 6 7", "output": "3 6 9 13 15 18 22 " }, { "input": "3 0\n3 2 1\n1 2 3", "output": "1 2 3 " }, { "input": "5 3\n4 5 7 9 11\n10 10 10 10 10", "output": "10 20 30 40 40 " }, { "input": "4 0\n4 5 9 7\n1 2 11 33", "output": "1 2 11 33 " }, { "input": "7 3\n1 2 3 4 5 6 7\n3 3 3 8 8 8 8", "output": "3 6 9 17 22 27 32 " }, { "input": "3 0\n1 2 3\n5 5 5", "output": "5 5 5 " }, { "input": "4 2\n4 5 9 7\n2 2 11 33", "output": "2 4 46 37 " }, { "input": "6 3\n1 2 3 4 5 6\n1 1 1 1 1 1", "output": "1 2 3 4 4 4 " }, { "input": "10 5\n1 2 3 4 5 6 7 8 9 10\n1 1 1 1 1 1 1 1 1 1", "output": "1 2 3 4 5 6 6 6 6 6 " }, { "input": "3 2\n1 2 3\n1 1 1", "output": "1 2 3 " }, { "input": "3 0\n1 2 3\n10 20 30", "output": "10 20 30 " }, { "input": "4 0\n4 5 9 7\n1 2 3 4", "output": "1 2 3 4 " }, { "input": "5 4\n1 2 3 4 5\n1 1 1 1 1", "output": "1 2 3 4 5 " }, { "input": "4 3\n1 2 3 4\n5 5 5 5", "output": "5 10 15 20 " }, { "input": "5 3\n1 2 3 4 5\n7 7 7 7 7", "output": "7 14 21 28 28 " } ]
1,529,169,221
2,321
Python 3
OK
TESTS
73
576
24,371,200
import heapq n, k = list(map(int, input().strip().split())) p = list(map(int, input().strip().split())) c = list(map(int, input().strip().split())) p = sorted([(x, i) for i, x in enumerate(p)], key=lambda x: x[0]) ans = [] top_k = [] cur_gold = 0 for i, t in enumerate(p): if k == 0: ans.append((c[t[1]], t[1])) else: if i < k: cur_gold += c[t[1]] ans.append((cur_gold, t[1])) heapq.heappush(top_k, c[t[1]]) else: smallest = heapq.nsmallest(1, top_k)[0] if smallest < c[t[1]]: cur_gold += c[t[1]] ans.append((cur_gold, t[1])) heapq.heappop(top_k) heapq.heappush(top_k, c[t[1]]) cur_gold -= smallest else: ans.append((cur_gold + c[t[1]], t[1])) ans = sorted(ans, key=lambda x: x[1]) print(" ".join(map(lambda x: str(x[0]), ans)))
Title: Knights of a Polygonal Table Time Limit: None seconds Memory Limit: None megabytes Problem Description: Unlike Knights of a Round Table, Knights of a Polygonal Table deprived of nobility and happy to kill each other. But each knight has some power and a knight can kill another knight if and only if his power is greater than the power of victim. However, even such a knight will torment his conscience, so he can kill no more than $k$ other knights. Also, each knight has some number of coins. After a kill, a knight can pick up all victim's coins. Now each knight ponders: how many coins he can have if only he kills other knights? You should answer this question for each knight. Input Specification: The first line contains two integers $n$ and $k$ $(1 \le n \le 10^5, 0 \le k \le \min(n-1,10))$ — the number of knights and the number $k$ from the statement. The second line contains $n$ integers $p_1, p_2 ,\ldots,p_n$ $(1 \le p_i \le 10^9)$ — powers of the knights. All $p_i$ are distinct. The third line contains $n$ integers $c_1, c_2 ,\ldots,c_n$ $(0 \le c_i \le 10^9)$ — the number of coins each knight has. Output Specification: Print $n$ integers — the maximum number of coins each knight can have it only he kills other knights. Demo Input: ['4 2\n4 5 9 7\n1 2 11 33\n', '5 1\n1 2 3 4 5\n1 2 3 4 5\n', '1 0\n2\n3\n'] Demo Output: ['1 3 46 36 ', '1 3 5 7 9 ', '3 '] Note: Consider the first example. - The first knight is the weakest, so he can't kill anyone. That leaves him with the only coin he initially has. - The second knight can kill the first knight and add his coin to his own two. - The third knight is the strongest, but he can't kill more than $k = 2$ other knights. It is optimal to kill the second and the fourth knights: $2+11+33 = 46$. - The fourth knight should kill the first and the second knights: $33+1+2 = 36$. In the second example the first knight can't kill anyone, while all the others should kill the one with the index less by one than their own. In the third example there is only one knight, so he can't kill anyone.
```python import heapq n, k = list(map(int, input().strip().split())) p = list(map(int, input().strip().split())) c = list(map(int, input().strip().split())) p = sorted([(x, i) for i, x in enumerate(p)], key=lambda x: x[0]) ans = [] top_k = [] cur_gold = 0 for i, t in enumerate(p): if k == 0: ans.append((c[t[1]], t[1])) else: if i < k: cur_gold += c[t[1]] ans.append((cur_gold, t[1])) heapq.heappush(top_k, c[t[1]]) else: smallest = heapq.nsmallest(1, top_k)[0] if smallest < c[t[1]]: cur_gold += c[t[1]] ans.append((cur_gold, t[1])) heapq.heappop(top_k) heapq.heappush(top_k, c[t[1]]) cur_gold -= smallest else: ans.append((cur_gold + c[t[1]], t[1])) ans = sorted(ans, key=lambda x: x[1]) print(" ".join(map(lambda x: str(x[0]), ans))) ```
3
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,650,702,238
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
62
0
arr = [3, 3, -1, 7, -5, 2, -4, 2, -1, -3 ] #def get_n(arr): # return arr[0] ### print(arr[3:]) # if(n<=0): # return 0 # return arr[1] + equilibrium(arr[3:], n-1) def equilibrium(arr): if(sum(arr[1:])==0): print("YES") else: print("NO") equilibrium(arr)
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python arr = [3, 3, -1, 7, -5, 2, -4, 2, -1, -3 ] #def get_n(arr): # return arr[0] ### print(arr[3:]) # if(n<=0): # return 0 # return arr[1] + equilibrium(arr[3:], n-1) def equilibrium(arr): if(sum(arr[1:])==0): print("YES") else: print("NO") equilibrium(arr) ```
0
584
A
Olesya and Rodion
PROGRAMMING
1,000
[ "math" ]
null
null
Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them. Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1.
The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by.
Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them.
[ "3 2\n" ]
[ "712" ]
none
500
[ { "input": "3 2", "output": "222" }, { "input": "2 2", "output": "22" }, { "input": "4 3", "output": "3333" }, { "input": "5 3", "output": "33333" }, { "input": "10 7", "output": "7777777777" }, { "input": "2 9", "output": "99" }, { "input": "18 8", "output": "888888888888888888" }, { "input": "1 5", "output": "5" }, { "input": "1 10", "output": "-1" }, { "input": "100 5", "output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "10 2", "output": "2222222222" }, { "input": "18 10", "output": "111111111111111110" }, { "input": "1 9", "output": "9" }, { "input": "7 6", "output": "6666666" }, { "input": "4 4", "output": "4444" }, { "input": "14 7", "output": "77777777777777" }, { "input": "3 8", "output": "888" }, { "input": "1 3", "output": "3" }, { "input": "2 8", "output": "88" }, { "input": "3 8", "output": "888" }, { "input": "4 3", "output": "3333" }, { "input": "5 9", "output": "99999" }, { "input": "4 8", "output": "8888" }, { "input": "3 4", "output": "444" }, { "input": "9 4", "output": "444444444" }, { "input": "8 10", "output": "11111110" }, { "input": "1 6", "output": "6" }, { "input": "20 3", "output": "33333333333333333333" }, { "input": "15 10", "output": "111111111111110" }, { "input": "31 4", "output": "4444444444444444444444444444444" }, { "input": "18 9", "output": "999999999999999999" }, { "input": "72 4", "output": "444444444444444444444444444444444444444444444444444444444444444444444444" }, { "input": "76 8", "output": "8888888888888888888888888888888888888888888888888888888888888888888888888888" }, { "input": "12 5", "output": "555555555555" }, { "input": "54 5", "output": "555555555555555555555555555555555555555555555555555555" }, { "input": "96 10", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "15 9", "output": "999999999999999" }, { "input": "100 2", "output": "2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222" }, { "input": "99 3", "output": "333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333" }, { "input": "98 4", "output": "44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444" }, { "input": "97 5", "output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "100 6", "output": "6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666" }, { "input": "99 7", "output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "98 8", "output": "88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888" }, { "input": "97 9", "output": "9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999" }, { "input": "100 10", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "3 10", "output": "110" }, { "input": "2 4", "output": "44" }, { "input": "2 10", "output": "10" }, { "input": "10 10", "output": "1111111110" }, { "input": "4 10", "output": "1110" }, { "input": "25 10", "output": "1111111111111111111111110" }, { "input": "50 10", "output": "11111111111111111111111111111111111111111111111110" }, { "input": "5 10", "output": "11110" }, { "input": "99 10", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "100 10", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "1 2", "output": "2" }, { "input": "20 10", "output": "11111111111111111110" }, { "input": "99 7", "output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "89 5", "output": "55555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "6 10", "output": "111110" }, { "input": "3 8", "output": "888" }, { "input": "1 9", "output": "9" }, { "input": "1 4", "output": "4" }, { "input": "100 7", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" } ]
1,676,972,532
2,147,483,647
PyPy 3-64
OK
TESTS
65
62
0
n,t=map(int,input().strip().split()) end=10**n-1; if(t>end): print("-1") else: rem=end%t ans=end-rem print(ans)
Title: Olesya and Rodion Time Limit: None seconds Memory Limit: None megabytes Problem Description: Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them. Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1. Input Specification: The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by. Output Specification: Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them. Demo Input: ['3 2\n'] Demo Output: ['712'] Note: none
```python n,t=map(int,input().strip().split()) end=10**n-1; if(t>end): print("-1") else: rem=end%t ans=end-rem print(ans) ```
3
251
A
Points on Line
PROGRAMMING
1,300
[ "binary search", "combinatorics", "two pointers" ]
null
null
Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*. Note that the order of the points inside the group of three chosen points doesn't matter.
The first line contains two integers: *n* and *d* (1<=≤<=*n*<=≤<=105; 1<=≤<=*d*<=≤<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 — the *x*-coordinates of the points that Petya has got. It is guaranteed that the coordinates of the points in the input strictly increase.
Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed *d*. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "4 3\n1 2 3 4\n", "4 2\n-3 -2 -1 0\n", "5 19\n1 10 20 30 50\n" ]
[ "4\n", "2\n", "1\n" ]
In the first sample any group of three points meets our conditions. In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}. In the third sample only one group does: {1, 10, 20}.
500
[ { "input": "4 3\n1 2 3 4", "output": "4" }, { "input": "4 2\n-3 -2 -1 0", "output": "2" }, { "input": "5 19\n1 10 20 30 50", "output": "1" }, { "input": "10 5\n31 36 43 47 48 50 56 69 71 86", "output": "2" }, { "input": "10 50\n1 4 20 27 65 79 82 83 99 100", "output": "25" }, { "input": "10 90\n24 27 40 41 61 69 73 87 95 97", "output": "120" }, { "input": "100 100\n-98 -97 -96 -93 -92 -91 -90 -87 -86 -84 -81 -80 -79 -78 -76 -75 -73 -71 -69 -67 -65 -64 -63 -62 -61 -54 -51 -50 -49 -48 -46 -45 -44 -37 -36 -33 -30 -28 -27 -16 -15 -13 -12 -10 -9 -7 -6 -5 -4 2 3 5 8 9 10 11 13 14 15 16 17 19 22 24 25 26 27 28 30 31 32 36 40 43 45 46 47 50 51 52 53 58 60 63 69 70 73 78 80 81 82 85 88 89 90 91 95 96 97 99", "output": "79351" }, { "input": "1 14751211\n847188590", "output": "0" }, { "input": "2 1000000000\n-907894512 -289906312", "output": "0" }, { "input": "2 1000000000\n-14348867 1760823", "output": "0" }, { "input": "3 1000000000\n-5 -1 1", "output": "1" } ]
1,595,427,957
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
4
342
20,275,200
from collections import defaultdict def ncr(n, k): C = [[0 for x in range(k + 1)] for x in range(n + 1)] for i in range(n + 1): for j in range(min(i, k) + 1): if j == 0 or j == i: C[i][j] = 1 else: C[i][j] = C[i - 1][j - 1] + C[i - 1][j] return C[n][k] #print(ncr(5,2)) n,k=map(int,input().split()) a=[int(x) for x in input().split()] i=0 j=0 ans=0 prev=-1 while(j<n): while(j<n and a[j]-a[i]<=k): j+=1 if(j-i>=3): if(prev-i<3): ans+=ncr(j-i,3) else: ans+=(ncr(j-i,3)-ncr(prev-i,3)) i+=1 prev=j-1 print(ans)
Title: Points on Line Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*. Note that the order of the points inside the group of three chosen points doesn't matter. Input Specification: The first line contains two integers: *n* and *d* (1<=≤<=*n*<=≤<=105; 1<=≤<=*d*<=≤<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 — the *x*-coordinates of the points that Petya has got. It is guaranteed that the coordinates of the points in the input strictly increase. Output Specification: Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed *d*. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['4 3\n1 2 3 4\n', '4 2\n-3 -2 -1 0\n', '5 19\n1 10 20 30 50\n'] Demo Output: ['4\n', '2\n', '1\n'] Note: In the first sample any group of three points meets our conditions. In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}. In the third sample only one group does: {1, 10, 20}.
```python from collections import defaultdict def ncr(n, k): C = [[0 for x in range(k + 1)] for x in range(n + 1)] for i in range(n + 1): for j in range(min(i, k) + 1): if j == 0 or j == i: C[i][j] = 1 else: C[i][j] = C[i - 1][j - 1] + C[i - 1][j] return C[n][k] #print(ncr(5,2)) n,k=map(int,input().split()) a=[int(x) for x in input().split()] i=0 j=0 ans=0 prev=-1 while(j<n): while(j<n and a[j]-a[i]<=k): j+=1 if(j-i>=3): if(prev-i<3): ans+=ncr(j-i,3) else: ans+=(ncr(j-i,3)-ncr(prev-i,3)) i+=1 prev=j-1 print(ans) ```
0
632
C
The Smallest String Concatenation
PROGRAMMING
1,700
[ "sortings", "strings" ]
null
null
You're given a list of *n* strings *a*1,<=*a*2,<=...,<=*a**n*. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation.
The first line contains integer *n* — the number of strings (1<=≤<=*n*<=≤<=5·104). Each of the next *n* lines contains one string *a**i* (1<=≤<=|*a**i*|<=≤<=50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5·104.
Print the only string *a* — the lexicographically smallest string concatenation.
[ "4\nabba\nabacaba\nbcd\ner\n", "5\nx\nxx\nxxa\nxxaa\nxxaaa\n", "3\nc\ncb\ncba\n" ]
[ "abacabaabbabcder\n", "xxaaaxxaaxxaxxx\n", "cbacbc\n" ]
none
0
[ { "input": "4\nabba\nabacaba\nbcd\ner", "output": "abacabaabbabcder" }, { "input": "5\nx\nxx\nxxa\nxxaa\nxxaaa", "output": "xxaaaxxaaxxaxxx" }, { "input": "3\nc\ncb\ncba", "output": "cbacbc" }, { "input": "10\naba\nabaaca\naba\nacaaaabbac\nabaacac\nb\ncabbcccaab\nbaacbb\nbcab\ncc", "output": "abaabaabaacaabaacacacaaaabbacbaacbbbbcabcabbcccaabcc" }, { "input": "13\nclgknjjojyuvdtv\nclgknjjojyuvdtvzxz\nclgknjjojyuvdtvzxzxradqhm\ngvzpnckalbaubfviyhijosiixvxaydxagvymq\nclgknjjojyuvdtvjgcwarwvgilcctdiytmvmvfxxkezymt\nbvwzpuut\nclgknjjojyuvdtvjgcwarwvgilcctdiytmvmvfxxkezymth\nclgknjjojyuvdtvjgcwarwvgilcctdiytmvmvfxxkezymtlkdl\nrbwvaayhhunlvmwexvkmqbquypsnjbdkkeytthekttywypud\nqlvkfkshkxyrfefigtngifxsuhpjgkb\nlhxtkfjrrwcvzuamizotupjqckaq\nenngvhxvpaoiyhctddyscasyqtilvbvgfphayykjeoylcvmjz\nxkazwk", "output": "bvwzpuutclgknjjojyuvdtvclgknjjojyuvdtvjgcwarwvgilcctdiytmvmvfxxkezymtclgknjjojyuvdtvjgcwarwvgilcctdiytmvmvfxxkezymthclgknjjojyuvdtvjgcwarwvgilcctdiytmvmvfxxkezymtlkdlclgknjjojyuvdtvzxzclgknjjojyuvdtvzxzxradqhmenngvhxvpaoiyhctddyscasyqtilvbvgfphayykjeoylcvmjzgvzpnckalbaubfviyhijosiixvxaydxagvymqlhxtkfjrrwcvzuamizotupjqckaqqlvkfkshkxyrfefigtngifxsuhpjgkbrbwvaayhhunlvmwexvkmqbquypsnjbdkkeytthekttywypudxkazwk" } ]
1,613,790,827
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
46
204,800
#Problem F tests = input() arr = [] compArr = [] for i in range(int(tests)): temp = input() length = len(temp) arr.append(temp) for i in range(int(tests)): temp = arr[i] for j in range(int(tests)): if arr[i] != arr[j]: temp += arr[j] compArr.append(temp) compArr.sort() print(compArr[0])
Title: The Smallest String Concatenation Time Limit: None seconds Memory Limit: None megabytes Problem Description: You're given a list of *n* strings *a*1,<=*a*2,<=...,<=*a**n*. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation. Input Specification: The first line contains integer *n* — the number of strings (1<=≤<=*n*<=≤<=5·104). Each of the next *n* lines contains one string *a**i* (1<=≤<=|*a**i*|<=≤<=50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5·104. Output Specification: Print the only string *a* — the lexicographically smallest string concatenation. Demo Input: ['4\nabba\nabacaba\nbcd\ner\n', '5\nx\nxx\nxxa\nxxaa\nxxaaa\n', '3\nc\ncb\ncba\n'] Demo Output: ['abacabaabbabcder\n', 'xxaaaxxaaxxaxxx\n', 'cbacbc\n'] Note: none
```python #Problem F tests = input() arr = [] compArr = [] for i in range(int(tests)): temp = input() length = len(temp) arr.append(temp) for i in range(int(tests)): temp = arr[i] for j in range(int(tests)): if arr[i] != arr[j]: temp += arr[j] compArr.append(temp) compArr.sort() print(compArr[0]) ```
0
991
C
Candies
PROGRAMMING
1,500
[ "binary search", "implementation" ]
null
null
After passing a test, Vasya got himself a box of $n$ candies. He decided to eat an equal amount of candies each morning until there are no more candies. However, Petya also noticed the box and decided to get some candies for himself. This means the process of eating candies is the following: in the beginning Vasya chooses a single integer $k$, same for all days. After that, in the morning he eats $k$ candies from the box (if there are less than $k$ candies in the box, he eats them all), then in the evening Petya eats $10\%$ of the candies remaining in the box. If there are still candies left in the box, the process repeats — next day Vasya eats $k$ candies again, and Petya — $10\%$ of the candies left in a box, and so on. If the amount of candies in the box is not divisible by $10$, Petya rounds the amount he takes from the box down. For example, if there were $97$ candies in the box, Petya would eat only $9$ of them. In particular, if there are less than $10$ candies in a box, Petya won't eat any at all. Your task is to find out the minimal amount of $k$ that can be chosen by Vasya so that he would eat at least half of the $n$ candies he initially got. Note that the number $k$ must be integer.
The first line contains a single integer $n$ ($1 \leq n \leq 10^{18}$) — the initial amount of candies in the box.
Output a single integer — the minimal amount of $k$ that would allow Vasya to eat at least half of candies he got.
[ "68\n" ]
[ "3\n" ]
In the sample, the amount of candies, with $k=3$, would change in the following way (Vasya eats first): $68 \to 65 \to 59 \to 56 \to 51 \to 48 \to 44 \to 41 \\ \to 37 \to 34 \to 31 \to 28 \to 26 \to 23 \to 21 \to 18 \to 17 \to 14 \\ \to 13 \to 10 \to 9 \to 6 \to 6 \to 3 \to 3 \to 0$. In total, Vasya would eat $39$ candies, while Petya — $29$.
1,250
[ { "input": "68", "output": "3" }, { "input": "1", "output": "1" }, { "input": "2", "output": "1" }, { "input": "42", "output": "1" }, { "input": "43", "output": "2" }, { "input": "756", "output": "29" }, { "input": "999999972", "output": "39259423" }, { "input": "999999973", "output": "39259424" }, { "input": "1000000000000000000", "output": "39259424579862572" }, { "input": "6", "output": "1" }, { "input": "3", "output": "1" }, { "input": "4", "output": "1" }, { "input": "5", "output": "1" }, { "input": "66", "output": "2" }, { "input": "67", "output": "3" }, { "input": "1000", "output": "39" }, { "input": "10000", "output": "392" }, { "input": "100500", "output": "3945" }, { "input": "1000000", "output": "39259" }, { "input": "10000000", "output": "392594" }, { "input": "100000000", "output": "3925942" }, { "input": "123456789", "output": "4846842" }, { "input": "543212345", "output": "21326204" }, { "input": "505050505", "output": "19827992" }, { "input": "777777777", "output": "30535108" }, { "input": "888888871", "output": "34897266" }, { "input": "1000000000", "output": "39259424" }, { "input": "999999999999999973", "output": "39259424579862572" }, { "input": "999999999999999998", "output": "39259424579862572" }, { "input": "999999999999999999", "output": "39259424579862573" }, { "input": "100000000000000000", "output": "3925942457986257" }, { "input": "540776028375043656", "output": "21230555700587649" }, { "input": "210364830044445976", "output": "8258802179385535" }, { "input": "297107279239074256", "output": "11664260821414605" }, { "input": "773524766411950187", "output": "30368137227605772" }, { "input": "228684941775227220", "output": "8978039224174797" }, { "input": "878782039723446310", "output": "34500477210660436" }, { "input": "615090701338187389", "output": "24148106998961343" }, { "input": "325990422297859188", "output": "12798196397960353" }, { "input": "255163492355051023", "output": "10017571883647466" }, { "input": "276392003308849171", "output": "10850991008380891" }, { "input": "601", "output": "23" }, { "input": "983", "output": "38" }, { "input": "729", "output": "29" }, { "input": "70", "output": "3" }, { "input": "703", "output": "28" }, { "input": "257", "output": "10" }, { "input": "526", "output": "20" }, { "input": "466", "output": "18" }, { "input": "738", "output": "29" }, { "input": "116", "output": "5" }, { "input": "888888888888888887", "output": "34897266293211176" }, { "input": "888888888888888888", "output": "34897266293211176" }, { "input": "888888888888888889", "output": "34897266293211176" }, { "input": "999999999999999969", "output": "39259424579862571" }, { "input": "999999999999999970", "output": "39259424579862571" }, { "input": "999999999999999971", "output": "39259424579862572" }, { "input": "999999999999999943", "output": "39259424579862571" }, { "input": "999999999999999944", "output": "39259424579862570" }, { "input": "999999999999999945", "output": "39259424579862571" }, { "input": "999999999999999917", "output": "39259424579862570" }, { "input": "999999999999999918", "output": "39259424579862569" }, { "input": "999999999999999919", "output": "39259424579862570" }, { "input": "99999999999999957", "output": "3925942457986255" }, { "input": "99999999999999958", "output": "3925942457986255" }, { "input": "99999999999999959", "output": "3925942457986256" }, { "input": "888888888888888853", "output": "34897266293211174" }, { "input": "888888888888888854", "output": "34897266293211174" }, { "input": "888888888888888855", "output": "34897266293211175" } ]
1,642,260,745
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
30
0
def check(how_much, box): temp = 0 while True: if box > how_much: box -= how_much temp += how_much else: return temp if box >= 10: box = int(box * 0.9) amount_box = int(input("")) times = 1 while True: valeu = check(times, amount_box) if valeu >= int(amount_box / 2): print(times - 1) exit() times += 1
Title: Candies Time Limit: None seconds Memory Limit: None megabytes Problem Description: After passing a test, Vasya got himself a box of $n$ candies. He decided to eat an equal amount of candies each morning until there are no more candies. However, Petya also noticed the box and decided to get some candies for himself. This means the process of eating candies is the following: in the beginning Vasya chooses a single integer $k$, same for all days. After that, in the morning he eats $k$ candies from the box (if there are less than $k$ candies in the box, he eats them all), then in the evening Petya eats $10\%$ of the candies remaining in the box. If there are still candies left in the box, the process repeats — next day Vasya eats $k$ candies again, and Petya — $10\%$ of the candies left in a box, and so on. If the amount of candies in the box is not divisible by $10$, Petya rounds the amount he takes from the box down. For example, if there were $97$ candies in the box, Petya would eat only $9$ of them. In particular, if there are less than $10$ candies in a box, Petya won't eat any at all. Your task is to find out the minimal amount of $k$ that can be chosen by Vasya so that he would eat at least half of the $n$ candies he initially got. Note that the number $k$ must be integer. Input Specification: The first line contains a single integer $n$ ($1 \leq n \leq 10^{18}$) — the initial amount of candies in the box. Output Specification: Output a single integer — the minimal amount of $k$ that would allow Vasya to eat at least half of candies he got. Demo Input: ['68\n'] Demo Output: ['3\n'] Note: In the sample, the amount of candies, with $k=3$, would change in the following way (Vasya eats first): $68 \to 65 \to 59 \to 56 \to 51 \to 48 \to 44 \to 41 \\ \to 37 \to 34 \to 31 \to 28 \to 26 \to 23 \to 21 \to 18 \to 17 \to 14 \\ \to 13 \to 10 \to 9 \to 6 \to 6 \to 3 \to 3 \to 0$. In total, Vasya would eat $39$ candies, while Petya — $29$.
```python def check(how_much, box): temp = 0 while True: if box > how_much: box -= how_much temp += how_much else: return temp if box >= 10: box = int(box * 0.9) amount_box = int(input("")) times = 1 while True: valeu = check(times, amount_box) if valeu >= int(amount_box / 2): print(times - 1) exit() times += 1 ```
0
180
C
Letter
PROGRAMMING
1,400
[ "dp" ]
null
null
Patrick has just finished writing a message to his sweetheart Stacey when he noticed that the message didn't look fancy. Patrick was nervous while writing the message, so some of the letters there were lowercase and some of them were uppercase. Patrick believes that a message is fancy if any uppercase letter stands to the left of any lowercase one. In other words, this rule describes the strings where first go zero or more uppercase letters, and then — zero or more lowercase letters. To make the message fancy, Patrick can erase some letter and add the same letter in the same place in the opposite case (that is, he can replace an uppercase letter with the lowercase one and vice versa). Patrick got interested in the following question: what minimum number of actions do we need to make a message fancy? Changing a letter's case in the message counts as one action. Patrick cannot perform any other actions.
The only line of the input contains a non-empty string consisting of uppercase and lowercase letters. The string's length does not exceed 105.
Print a single number — the least number of actions needed to make the message fancy.
[ "PRuvetSTAaYA\n", "OYPROSTIYAOPECHATALSYAPRIVETSTASYA\n", "helloworld\n" ]
[ "5\n", "0\n", "0\n" ]
none
0
[ { "input": "PRuvetSTAaYA", "output": "5" }, { "input": "OYPROSTIYAOPECHATALSYAPRIVETSTASYA", "output": "0" }, { "input": "helloworld", "output": "0" }, { "input": "P", "output": "0" }, { "input": "t", "output": "0" }, { "input": "XdJ", "output": "1" }, { "input": "FSFlNEelYY", "output": "3" }, { "input": "lgtyasficu", "output": "0" }, { "input": "WYKUDTDDBT", "output": "0" }, { "input": "yysxwlyqboatikfnpxczmpijziiojbvadlfozjqldssffcxdegyxfrvohoxvgsrvlzjlkcuffoeisrpvagxtbkapkpzcafadzzjd", "output": "0" }, { "input": "mnAkOBuKxaiJwXhKnlcCvjxYXGXDoIqfUYkiLrdSYWhMemgWFzsgpoKOtHqooxbLYFuABWQSXuHdbyPVWyrkeEfqOsnEBikiqhfu", "output": "43" }, { "input": "MMVESdOCALHJCTBTUWWQRGUUVTTTABKKAAdIINAdKLRLLVLODHDXDPMcQfUhPNHFBJSDRGsHZNORSCPNvKOOIuZnZAmTPUCoPNlR", "output": "13" }, { "input": "MMbJIBhgFXPVpdQHLkWJkAHFIfJSpITTCRzRCzvRPRYECCheOknfINZWuKATDBOrEVKTcWXiYPjtzQMGUSGPNTMCUrvYCSWQHqAi", "output": "27" }, { "input": "ZnqXEBOABXVbHRFFqDLWpWBBLqZIagmbRAYMDKJAYyFQXnPYwvDyRXKHLQnMLHGEOnRKmXtGqyQkoBCSmgKPcEIEugwJyxDOtTVn", "output": "31" } ]
1,579,113,889
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
6
280
0
s = input() i = 0 l = len(s) while i < l and ord(s[i]) < 96: i += 1 ans = 0 while i < l: if ord(s[i]) < 96: ans += 1 i += 1 print(ans)
Title: Letter Time Limit: None seconds Memory Limit: None megabytes Problem Description: Patrick has just finished writing a message to his sweetheart Stacey when he noticed that the message didn't look fancy. Patrick was nervous while writing the message, so some of the letters there were lowercase and some of them were uppercase. Patrick believes that a message is fancy if any uppercase letter stands to the left of any lowercase one. In other words, this rule describes the strings where first go zero or more uppercase letters, and then — zero or more lowercase letters. To make the message fancy, Patrick can erase some letter and add the same letter in the same place in the opposite case (that is, he can replace an uppercase letter with the lowercase one and vice versa). Patrick got interested in the following question: what minimum number of actions do we need to make a message fancy? Changing a letter's case in the message counts as one action. Patrick cannot perform any other actions. Input Specification: The only line of the input contains a non-empty string consisting of uppercase and lowercase letters. The string's length does not exceed 105. Output Specification: Print a single number — the least number of actions needed to make the message fancy. Demo Input: ['PRuvetSTAaYA\n', 'OYPROSTIYAOPECHATALSYAPRIVETSTASYA\n', 'helloworld\n'] Demo Output: ['5\n', '0\n', '0\n'] Note: none
```python s = input() i = 0 l = len(s) while i < l and ord(s[i]) < 96: i += 1 ans = 0 while i < l: if ord(s[i]) < 96: ans += 1 i += 1 print(ans) ```
0
914
A
Perfect Squares
PROGRAMMING
900
[ "brute force", "implementation", "math" ]
null
null
Given an array *a*1,<=*a*2,<=...,<=*a**n* of *n* integers, find the largest number in the array that is not a perfect square. A number *x* is said to be a perfect square if there exists an integer *y* such that *x*<==<=*y*2.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=106<=≤<=*a**i*<=≤<=106) — the elements of the array. It is guaranteed that at least one element of the array is not a perfect square.
Print the largest number in the array which is not a perfect square. It is guaranteed that an answer always exists.
[ "2\n4 2\n", "8\n1 2 4 8 16 32 64 576\n" ]
[ "2\n", "32\n" ]
In the first sample case, 4 is a perfect square, so the largest number in the array that is not a perfect square is 2.
500
[ { "input": "2\n4 2", "output": "2" }, { "input": "8\n1 2 4 8 16 32 64 576", "output": "32" }, { "input": "3\n-1 -4 -9", "output": "-1" }, { "input": "5\n918375 169764 598796 76602 538757", "output": "918375" }, { "input": "5\n804610 765625 2916 381050 93025", "output": "804610" }, { "input": "5\n984065 842724 127449 525625 573049", "output": "984065" }, { "input": "2\n226505 477482", "output": "477482" }, { "input": "2\n370881 659345", "output": "659345" }, { "input": "2\n4 5", "output": "5" }, { "input": "2\n3 4", "output": "3" }, { "input": "2\n999999 1000000", "output": "999999" }, { "input": "3\n-1 -2 -3", "output": "-1" }, { "input": "2\n-1000000 1000000", "output": "-1000000" }, { "input": "2\n-1 0", "output": "-1" }, { "input": "1\n2", "output": "2" }, { "input": "1\n-1", "output": "-1" }, { "input": "35\n-871271 -169147 -590893 -400197 -476793 0 -15745 -890852 -124052 -631140 -238569 -597194 -147909 -928925 -587628 -569656 -581425 -963116 -665954 -506797 -196044 -309770 -701921 -926257 -152426 -991371 -624235 -557143 -689886 -59804 -549134 -107407 -182016 -24153 -607462", "output": "-15745" }, { "input": "16\n-882343 -791322 0 -986738 -415891 -823354 -840236 -552554 -760908 -331993 -549078 -863759 -913261 -937429 -257875 -602322", "output": "-257875" }, { "input": "71\n908209 289 44521 240100 680625 274576 212521 91809 506944 499849 3844 15376 592900 58081 240100 984064 732736 257049 600625 180625 130321 580644 261121 75625 46225 853776 485809 700569 817216 268324 293764 528529 25921 399424 175561 99856 295936 20736 611524 13924 470596 574564 5329 15376 676 431649 145161 697225 41616 550564 514089 9409 227529 1681 839056 3721 552049 465124 38809 197136 659344 214369 998001 44944 3844 186624 362404 -766506 739600 10816 299209", "output": "-766506" }, { "input": "30\n192721 -950059 -734656 625 247009 -423468 318096 622521 678976 777924 1444 748303 27556 62001 795664 89401 221841 -483208 467856 477109 196 -461813 831744 772641 574564 -519370 861184 67600 -717966 -259259", "output": "748303" }, { "input": "35\n628849 962361 436921 944784 444889 29241 -514806 171396 685584 -823202 -929730 6982 198025 783225 552049 -957165 782287 -659167 -414846 695556 -336330 41616 963781 71289 119639 952576 -346713 178929 232324 121802 393266 841 649636 179555 998001", "output": "963781" }, { "input": "53\n280988 756430 -515570 -248578 170649 -21608 642677 216770 827291 589500 940901 216097 -118956 -919104 -319264 -761585 289479 499613 588276 883036 480518 -323196 -274570 -406556 -381484 -956025 702135 -445274 -783543 136593 153664 897473 352651 737974 -21123 -284944 501734 898033 604429 624138 40804 248782 -786059 -304592 -209210 -312904 419820 -328648 -47331 -919227 -280955 104827 877304", "output": "940901" }, { "input": "15\n256 -227055 427717 827239 462070 66049 987533 -175306 -552810 -867915 -408251 -693957 -972981 -245827 896904", "output": "987533" }, { "input": "3\n-1 1 0", "output": "-1" }, { "input": "2\n0 -5", "output": "-5" }, { "input": "3\n-1 -2 0", "output": "-1" }, { "input": "2\n-5 0", "output": "-5" }, { "input": "1\n-439", "output": "-439" }, { "input": "1\n-1000000", "output": "-1000000" }, { "input": "1\n-917455", "output": "-917455" }, { "input": "3\n1 1 -1", "output": "-1" }, { "input": "2\n131073 1", "output": "131073" }, { "input": "2\n99999 3", "output": "99999" }, { "input": "2\n-524272 -1000000", "output": "-524272" }, { "input": "2\n15 131073", "output": "131073" } ]
1,669,989,708
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
2
30
0
n=int(input()) a=list(map(int, input().split())) b=[] c=[] for i in range (n): #0,1,2,3,4,...) can=abs((a[i])**(1/2)) if can%1==0: b.append(a[i]) else: c.append(a[i]) print(max(c))
Title: Perfect Squares Time Limit: None seconds Memory Limit: None megabytes Problem Description: Given an array *a*1,<=*a*2,<=...,<=*a**n* of *n* integers, find the largest number in the array that is not a perfect square. A number *x* is said to be a perfect square if there exists an integer *y* such that *x*<==<=*y*2. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=106<=≤<=*a**i*<=≤<=106) — the elements of the array. It is guaranteed that at least one element of the array is not a perfect square. Output Specification: Print the largest number in the array which is not a perfect square. It is guaranteed that an answer always exists. Demo Input: ['2\n4 2\n', '8\n1 2 4 8 16 32 64 576\n'] Demo Output: ['2\n', '32\n'] Note: In the first sample case, 4 is a perfect square, so the largest number in the array that is not a perfect square is 2.
```python n=int(input()) a=list(map(int, input().split())) b=[] c=[] for i in range (n): #0,1,2,3,4,...) can=abs((a[i])**(1/2)) if can%1==0: b.append(a[i]) else: c.append(a[i]) print(max(c)) ```
-1
9
B
Running Student
PROGRAMMING
1,200
[ "brute force", "geometry", "implementation" ]
B. Running Student
1
64
And again a misfortune fell on Poor Student. He is being late for an exam. Having rushed to a bus stop that is in point (0,<=0), he got on a minibus and they drove along a straight line, parallel to axis *OX*, in the direction of increasing *x*. Poor Student knows the following: - during one run the minibus makes *n* stops, the *i*-th stop is in point (*x**i*,<=0) - coordinates of all the stops are different - the minibus drives at a constant speed, equal to *v**b* - it can be assumed the passengers get on and off the minibus at a bus stop momentarily - Student can get off the minibus only at a bus stop - Student will have to get off the minibus at a terminal stop, if he does not get off earlier - the University, where the exam will be held, is in point (*x**u*,<=*y**u*) - Student can run from a bus stop to the University at a constant speed *v**s* as long as needed - a distance between two points can be calculated according to the following formula: - Student is already on the minibus, so, he cannot get off at the first bus stop Poor Student wants to get to the University as soon as possible. Help him to choose the bus stop, where he should get off. If such bus stops are multiple, choose the bus stop closest to the University.
The first line contains three integer numbers: 2<=≤<=*n*<=≤<=100, 1<=≤<=*v**b*,<=*v**s*<=≤<=1000. The second line contains *n* non-negative integers in ascending order: coordinates *x**i* of the bus stop with index *i*. It is guaranteed that *x*1 equals to zero, and *x**n*<=≤<=105. The third line contains the coordinates of the University, integers *x**u* and *y**u*, not exceeding 105 in absolute value.
In the only line output the answer to the problem — index of the optimum bus stop.
[ "4 5 2\n0 2 4 6\n4 1\n", "2 1 1\n0 100000\n100000 100000\n" ]
[ "3", "2" ]
As you know, students are a special sort of people, and minibuses usually do not hurry. That's why you should not be surprised, if Student's speed is higher than the speed of the minibus.
0
[ { "input": "4 5 2\n0 2 4 6\n4 1", "output": "3" }, { "input": "2 1 1\n0 100000\n100000 100000", "output": "2" }, { "input": "6 5 1\n0 1 2 3 4 5\n0 0", "output": "2" }, { "input": "4 100 10\n0 118 121 178\n220 220", "output": "4" }, { "input": "4 3 3\n0 6 8 10\n7 -4", "output": "2" }, { "input": "5 900 1\n0 37474 80030 85359 97616\n-1 -1", "output": "2" }, { "input": "5 200 400\n0 8068 28563 51720 66113\n5423 -34", "output": "2" }, { "input": "6 10 3\n0 12 14 16 19 20\n14 0", "output": "3" }, { "input": "6 13 11\n0 16 27 31 39 42\n54 3", "output": "6" }, { "input": "11 853 721\n0 134 1971 2369 3381 3997 4452 6875 8983 9360 9399\n7345 333", "output": "8" }, { "input": "35 35 12\n0 90486 90543 90763 91127 91310 92047 92405 93654 93814 94633 94752 94969 94994 95287 96349 96362 96723 96855 96883 97470 97482 97683 97844 97926 98437 98724 98899 98921 99230 99253 99328 99444 99691 99947\n96233 -7777", "output": "9" }, { "input": "55 11 44\n0 3343 3387 3470 3825 3832 3971 4026 4043 4389 4492 4886 5015 5084 5161 5436 5595 5616 5677 5987 6251 6312 6369 6469 6487 6493 6507 6641 6928 7067 7159 7280 7303 7385 7387 7465 7536 7572 7664 7895 7921 7955 8110 8191 8243 8280 8523 8525 8581 8877 9221 9462 9505 9594 9596\n8000 0", "output": "2" }, { "input": "72 1000 777\n0 215 2814 5104 5226 5925 6734 9213 11697 13739 14015 16101 17234 19013 19566 19683 20283 20837 21332 21432 25490 26284 27728 29911 30112 30133 31494 31595 32499 32932 33289 36611 37736 43548 44440 44537 47656 47699 48327 50942 52178 53759 56925 57671 62024 65441 67958 70346 71606 75235 75466 75553 75905 76173 76512 77784 78183 80425 81339 81543 84537 88384 89953 90214 92107 92274 93328 93550 93987 97546 99459 99532\n63421 35", "output": "45" }, { "input": "76 1 1\n0 1000 1754 2749 3687 4983 8121 10299 11043 12986 14125 15910 17070 17189 17551 17953 17973 20816 25436 26150 27446 27788 28466 28941 29537 33965 37566 40845 40930 41304 41614 41615 43042 45098 45844 49878 50453 50936 55480 58410 59258 59287 62789 64127 64333 64450 64862 65404 66451 67626 69294 69804 71988 72165 74196 74560 75407 76611 77055 77344 79470 83566 84550 87458 87627 88205 89880 90255 90586 91970 93795 95308 99032 99442 99547 99549\n0 0", "output": "2" }, { "input": "94 2 1\n0 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093\n5050 -100000", "output": "2" }, { "input": "100 1 2\n0 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n100 0", "output": "2" }, { "input": "100 1000 1\n0 505 506 514 515 520 523 527 529 530 538 547 550 554 559 562 566 568 569 580 582 584 588 597 609 621 624 629 630 631 634 641 646 653 657 666 673 678 680 683 685 690 695 698 699 700 705 709 716 731 734 735 736 738 756 761 762 765 769 772 776 779 784 790 794 812 814 816 833 837 842 845 850 854 855 863 868 872 882 892 893 898 899 900 901 902 915 916 917 932 936 954 962 968 975 978 983 992 996 998\n600 7778", "output": "23" }, { "input": "2 1 1\n0 100000\n-100000 -100000", "output": "2" }, { "input": "2 1000 1000\n0 1\n1 0", "output": "2" }, { "input": "3 1 1\n0 1 2\n2 0", "output": "3" } ]
1,657,087,385
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include<bits/stdc++.h> using namespace std; int main() { int n; double a,b,f,e=10000000,k; cin>>n>>a>>b; double p[n]; for(int i=0;i<n;i++) cin>>p[i]; double c,d; cin>>c>>d; for(int i=0;i<n;i++) { f=p[i]/a+sqrt((c-p[i])*(c-p[i])+d*d)/b; if(f<=e&&i!=0) { e=f; k=i; } } cout<<k+1;
Title: Running Student Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: And again a misfortune fell on Poor Student. He is being late for an exam. Having rushed to a bus stop that is in point (0,<=0), he got on a minibus and they drove along a straight line, parallel to axis *OX*, in the direction of increasing *x*. Poor Student knows the following: - during one run the minibus makes *n* stops, the *i*-th stop is in point (*x**i*,<=0) - coordinates of all the stops are different - the minibus drives at a constant speed, equal to *v**b* - it can be assumed the passengers get on and off the minibus at a bus stop momentarily - Student can get off the minibus only at a bus stop - Student will have to get off the minibus at a terminal stop, if he does not get off earlier - the University, where the exam will be held, is in point (*x**u*,<=*y**u*) - Student can run from a bus stop to the University at a constant speed *v**s* as long as needed - a distance between two points can be calculated according to the following formula: - Student is already on the minibus, so, he cannot get off at the first bus stop Poor Student wants to get to the University as soon as possible. Help him to choose the bus stop, where he should get off. If such bus stops are multiple, choose the bus stop closest to the University. Input Specification: The first line contains three integer numbers: 2<=≤<=*n*<=≤<=100, 1<=≤<=*v**b*,<=*v**s*<=≤<=1000. The second line contains *n* non-negative integers in ascending order: coordinates *x**i* of the bus stop with index *i*. It is guaranteed that *x*1 equals to zero, and *x**n*<=≤<=105. The third line contains the coordinates of the University, integers *x**u* and *y**u*, not exceeding 105 in absolute value. Output Specification: In the only line output the answer to the problem — index of the optimum bus stop. Demo Input: ['4 5 2\n0 2 4 6\n4 1\n', '2 1 1\n0 100000\n100000 100000\n'] Demo Output: ['3', '2'] Note: As you know, students are a special sort of people, and minibuses usually do not hurry. That's why you should not be surprised, if Student's speed is higher than the speed of the minibus.
```python #include<bits/stdc++.h> using namespace std; int main() { int n; double a,b,f,e=10000000,k; cin>>n>>a>>b; double p[n]; for(int i=0;i<n;i++) cin>>p[i]; double c,d; cin>>c>>d; for(int i=0;i<n;i++) { f=p[i]/a+sqrt((c-p[i])*(c-p[i])+d*d)/b; if(f<=e&&i!=0) { e=f; k=i; } } cout<<k+1; ```
-1
609
B
The Best Gift
PROGRAMMING
1,100
[ "constructive algorithms", "implementation" ]
null
null
Emily's birthday is next week and Jack has decided to buy a present for her. He knows she loves books so he goes to the local bookshop, where there are *n* books on sale from one of *m* genres. In the bookshop, Jack decides to buy two books of different genres. Based on the genre of books on sale in the shop, find the number of options available to Jack for choosing two books of different genres for Emily. Options are considered different if they differ in at least one book. The books are given by indices of their genres. The genres are numbered from 1 to *m*.
The first line contains two positive integers *n* and *m* (2<=≤<=*n*<=≤<=2·105,<=2<=≤<=*m*<=≤<=10) — the number of books in the bookstore and the number of genres. The second line contains a sequence *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (1<=≤<=*a**i*<=≤<=*m*) equals the genre of the *i*-th book. It is guaranteed that for each genre there is at least one book of that genre.
Print the only integer — the number of ways in which Jack can choose books. It is guaranteed that the answer doesn't exceed the value 2·109.
[ "4 3\n2 1 3 1\n", "7 4\n4 2 3 1 2 4 3\n" ]
[ "5\n", "18\n" ]
The answer to the first test sample equals 5 as Sasha can choose: 1. the first and second books, 1. the first and third books, 1. the first and fourth books, 1. the second and third books, 1. the third and fourth books.
0
[ { "input": "4 3\n2 1 3 1", "output": "5" }, { "input": "7 4\n4 2 3 1 2 4 3", "output": "18" }, { "input": "2 2\n1 2", "output": "1" }, { "input": "3 2\n1 2 2", "output": "2" }, { "input": "10 10\n1 2 3 4 5 6 7 8 9 10", "output": "45" }, { "input": "9 2\n1 1 1 1 2 1 1 1 1", "output": "8" }, { "input": "12 3\n1 2 3 1 2 3 1 2 3 1 2 3", "output": "48" }, { "input": "100 3\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 3 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3", "output": "3296" }, { "input": "100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5", "output": "3953" }, { "input": "100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6", "output": "4428" } ]
1,626,398,572
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
18
2,000
7,680,000
i, v = map(int,input().split()) l = list(map(int,input().split())) t = 0 for x in range(i): c = l[x:] t += len(c)-c.count(c[0]) print(t)
Title: The Best Gift Time Limit: None seconds Memory Limit: None megabytes Problem Description: Emily's birthday is next week and Jack has decided to buy a present for her. He knows she loves books so he goes to the local bookshop, where there are *n* books on sale from one of *m* genres. In the bookshop, Jack decides to buy two books of different genres. Based on the genre of books on sale in the shop, find the number of options available to Jack for choosing two books of different genres for Emily. Options are considered different if they differ in at least one book. The books are given by indices of their genres. The genres are numbered from 1 to *m*. Input Specification: The first line contains two positive integers *n* and *m* (2<=≤<=*n*<=≤<=2·105,<=2<=≤<=*m*<=≤<=10) — the number of books in the bookstore and the number of genres. The second line contains a sequence *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (1<=≤<=*a**i*<=≤<=*m*) equals the genre of the *i*-th book. It is guaranteed that for each genre there is at least one book of that genre. Output Specification: Print the only integer — the number of ways in which Jack can choose books. It is guaranteed that the answer doesn't exceed the value 2·109. Demo Input: ['4 3\n2 1 3 1\n', '7 4\n4 2 3 1 2 4 3\n'] Demo Output: ['5\n', '18\n'] Note: The answer to the first test sample equals 5 as Sasha can choose: 1. the first and second books, 1. the first and third books, 1. the first and fourth books, 1. the second and third books, 1. the third and fourth books.
```python i, v = map(int,input().split()) l = list(map(int,input().split())) t = 0 for x in range(i): c = l[x:] t += len(c)-c.count(c[0]) print(t) ```
0
189
A
Cut Ribbon
PROGRAMMING
1,300
[ "brute force", "dp" ]
null
null
Polycarpus has a ribbon, its length is *n*. He wants to cut the ribbon in a way that fulfils the following two conditions: - After the cutting each ribbon piece should have length *a*, *b* or *c*. - After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting.
The first line contains four space-separated integers *n*, *a*, *b* and *c* (1<=≤<=*n*,<=*a*,<=*b*,<=*c*<=≤<=4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers *a*, *b* and *c* can coincide.
Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.
[ "5 5 3 2\n", "7 5 5 2\n" ]
[ "2\n", "2\n" ]
In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3. In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.
500
[ { "input": "5 5 3 2", "output": "2" }, { "input": "7 5 5 2", "output": "2" }, { "input": "4 4 4 4", "output": "1" }, { "input": "1 1 1 1", "output": "1" }, { "input": "4000 1 2 3", "output": "4000" }, { "input": "4000 3 4 5", "output": "1333" }, { "input": "10 3 4 5", "output": "3" }, { "input": "100 23 15 50", "output": "2" }, { "input": "3119 3515 1021 7", "output": "11" }, { "input": "918 102 1327 1733", "output": "9" }, { "input": "3164 42 430 1309", "output": "15" }, { "input": "3043 317 1141 2438", "output": "7" }, { "input": "26 1 772 2683", "output": "26" }, { "input": "370 2 1 15", "output": "370" }, { "input": "734 12 6 2", "output": "367" }, { "input": "418 18 14 17", "output": "29" }, { "input": "18 16 28 9", "output": "2" }, { "input": "14 6 2 17", "output": "7" }, { "input": "29 27 18 2", "output": "2" }, { "input": "29 12 7 10", "output": "3" }, { "input": "27 23 4 3", "output": "9" }, { "input": "5 14 5 2", "output": "1" }, { "input": "5 17 26 5", "output": "1" }, { "input": "9 1 10 3", "output": "9" }, { "input": "2 19 15 1", "output": "2" }, { "input": "4 6 4 9", "output": "1" }, { "input": "10 6 2 9", "output": "5" }, { "input": "2 2 9 6", "output": "1" }, { "input": "6 2 4 1", "output": "6" }, { "input": "27 24 5 27", "output": "1" }, { "input": "2683 83 26 2709", "output": "101" }, { "input": "728 412 789 158", "output": "3" }, { "input": "3964 4 2916 176", "output": "991" }, { "input": "3399 2035 2 3334", "output": "683" }, { "input": "3455 244 3301 3", "output": "991" }, { "input": "595 2263 3625 1", "output": "595" }, { "input": "4000 1 1 1", "output": "4000" }, { "input": "3999 2 2 3999", "output": "1" }, { "input": "25 6 8 11", "output": "3" }, { "input": "4000 500 1000 2000", "output": "8" }, { "input": "53 10 11 23", "output": "5" }, { "input": "100 100 1 1", "output": "100" }, { "input": "17 3 4 10", "output": "5" }, { "input": "413 101 102 105", "output": "4" }, { "input": "490 4 49 50", "output": "111" }, { "input": "3999 2 3 3", "output": "1999" }, { "input": "8 3 8 4", "output": "2" }, { "input": "5 1 3 3", "output": "5" }, { "input": "100 3 17 22", "output": "27" }, { "input": "4000 2 3 4", "output": "2000" }, { "input": "4000 3 3 5", "output": "1332" }, { "input": "13 4 6 7", "output": "2" }, { "input": "4000 5 2 2", "output": "2000" }, { "input": "3999 2 2 3", "output": "1999" }, { "input": "4000 33 7 3333", "output": "564" }, { "input": "60 33 20 9", "output": "4" }, { "input": "100 9 11 99", "output": "10" }, { "input": "2009 6 8 9", "output": "334" } ]
1,676,630,218
2,147,483,647
Python 3
OK
TESTS
58
46
0
x=list(map(int,input().split())) n,v=x[0],x[1:] p=[1]*(n+1) f=2**64 for i in range(n+1): if i not in v: p[i]=-f for i in range(n+1): for j in v: if i>j: p[i]=max(p[i],p[j]+p[i-j]) print(p[n])
Title: Cut Ribbon Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus has a ribbon, its length is *n*. He wants to cut the ribbon in a way that fulfils the following two conditions: - After the cutting each ribbon piece should have length *a*, *b* or *c*. - After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting. Input Specification: The first line contains four space-separated integers *n*, *a*, *b* and *c* (1<=≤<=*n*,<=*a*,<=*b*,<=*c*<=≤<=4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers *a*, *b* and *c* can coincide. Output Specification: Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists. Demo Input: ['5 5 3 2\n', '7 5 5 2\n'] Demo Output: ['2\n', '2\n'] Note: In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3. In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.
```python x=list(map(int,input().split())) n,v=x[0],x[1:] p=[1]*(n+1) f=2**64 for i in range(n+1): if i not in v: p[i]=-f for i in range(n+1): for j in v: if i>j: p[i]=max(p[i],p[j]+p[i-j]) print(p[n]) ```
3
58
A
Chat room
PROGRAMMING
1,000
[ "greedy", "strings" ]
A. Chat room
1
256
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
If Vasya managed to say hello, print "YES", otherwise print "NO".
[ "ahhellllloou\n", "hlelo\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "ahhellllloou", "output": "YES" }, { "input": "hlelo", "output": "NO" }, { "input": "helhcludoo", "output": "YES" }, { "input": "hehwelloho", "output": "YES" }, { "input": "pnnepelqomhhheollvlo", "output": "YES" }, { "input": "tymbzjyqhymedasloqbq", "output": "NO" }, { "input": "yehluhlkwo", "output": "NO" }, { "input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello", "output": "YES" }, { "input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq", "output": "YES" }, { "input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi", "output": "YES" }, { "input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo", "output": "YES" }, { "input": "lqllcolohwflhfhlnaow", "output": "NO" }, { "input": "heheeellollvoo", "output": "YES" }, { "input": "hellooo", "output": "YES" }, { "input": "o", "output": "NO" }, { "input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv", "output": "YES" }, { "input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk", "output": "YES" }, { "input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry", "output": "NO" }, { "input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq", "output": "NO" }, { "input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi", "output": "YES" }, { "input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm", "output": "YES" }, { "input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac", "output": "NO" }, { "input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok", "output": "YES" }, { "input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz", "output": "YES" }, { "input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb", "output": "YES" }, { "input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla", "output": "YES" }, { "input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz", "output": "YES" }, { "input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti", "output": "YES" }, { "input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli", "output": "YES" }, { "input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo", "output": "YES" }, { "input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk", "output": "NO" }, { "input": "loee", "output": "NO" }, { "input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo", "output": "NO" }, { "input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi", "output": "YES" }, { "input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv", "output": "NO" }, { "input": "hello", "output": "YES" }, { "input": "oohell", "output": "NO" }, { "input": "hell", "output": "NO" }, { "input": "eloellohoelo", "output": "NO" }, { "input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo", "output": "YES" } ]
1,691,290,724
2,147,483,647
Python 3
OK
TESTS
40
46
0
target = "hello" def check(): i = 0 kata = input() for j in range(len(kata)): if kata[j] == target[i]: i += 1 if i == 5: return('YES') return('NO') print(check())
Title: Chat room Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*. Input Specification: The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters. Output Specification: If Vasya managed to say hello, print "YES", otherwise print "NO". Demo Input: ['ahhellllloou\n', 'hlelo\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python target = "hello" def check(): i = 0 kata = input() for j in range(len(kata)): if kata[j] == target[i]: i += 1 if i == 5: return('YES') return('NO') print(check()) ```
3.977
868
C
Qualification Rounds
PROGRAMMING
1,500
[ "bitmasks", "brute force", "constructive algorithms", "dp" ]
null
null
Snark and Philip are preparing the problemset for the upcoming pre-qualification round for semi-quarter-finals. They have a bank of *n* problems, and they want to select any non-empty subset of it as a problemset. *k* experienced teams are participating in the contest. Some of these teams already know some of the problems. To make the contest interesting for them, each of the teams should know at most half of the selected problems. Determine if Snark and Philip can make an interesting problemset!
The first line contains two integers *n*, *k* (1<=≤<=*n*<=≤<=105, 1<=≤<=*k*<=≤<=4) — the number of problems and the number of experienced teams. Each of the next *n* lines contains *k* integers, each equal to 0 or 1. The *j*-th number in the *i*-th line is 1 if *j*-th team knows *i*-th problem and 0 otherwise.
Print "YES" (quotes for clarity), if it is possible to make an interesting problemset, and "NO" otherwise. You can print each character either upper- or lowercase ("YeS" and "yes" are valid when the answer is "YES").
[ "5 3\n1 0 1\n1 1 0\n1 0 0\n1 0 0\n1 0 0\n", "3 2\n1 0\n1 1\n0 1\n" ]
[ "NO\n", "YES\n" ]
In the first example you can't make any interesting problemset, because the first team knows all problems. In the second example you can choose the first and the third problems.
1,000
[ { "input": "5 3\n1 0 1\n1 1 0\n1 0 0\n1 0 0\n1 0 0", "output": "NO" }, { "input": "3 2\n1 0\n1 1\n0 1", "output": "YES" }, { "input": "10 2\n1 0\n1 0\n0 0\n1 1\n0 0\n1 1\n0 0\n1 1\n0 1\n0 1", "output": "YES" }, { "input": "10 3\n1 0 0\n0 1 1\n1 0 0\n0 1 0\n0 0 1\n1 0 1\n0 1 1\n1 0 0\n1 1 0\n0 0 0", "output": "YES" }, { "input": "10 4\n1 0 1 0\n1 0 0 1\n1 1 0 1\n1 0 1 1\n1 1 0 1\n1 0 1 0\n0 0 0 0\n0 0 1 0\n1 0 1 0\n0 0 1 1", "output": "YES" }, { "input": "2 2\n0 0\n1 0", "output": "YES" }, { "input": "3 3\n1 0 1\n1 0 0\n1 1 1", "output": "NO" }, { "input": "4 4\n0 0 0 0\n1 1 0 0\n1 1 1 1\n1 0 1 1", "output": "YES" }, { "input": "4 1\n1\n1\n0\n0", "output": "YES" }, { "input": "1 4\n0 0 0 0", "output": "YES" }, { "input": "3 3\n0 0 1\n0 1 1\n1 0 0", "output": "YES" }, { "input": "2 3\n0 0 1\n1 0 0", "output": "YES" }, { "input": "1 1\n0", "output": "YES" }, { "input": "2 4\n0 1 1 1\n1 0 0 0", "output": "YES" }, { "input": "2 4\n1 0 1 0\n0 1 0 1", "output": "YES" }, { "input": "2 4\n1 0 0 0\n0 0 0 1", "output": "YES" }, { "input": "2 3\n0 1 0\n0 0 1", "output": "YES" }, { "input": "3 4\n1 0 1 0\n0 1 0 1\n1 1 1 1", "output": "YES" }, { "input": "3 4\n0 0 1 1\n1 1 1 0\n1 1 0 1", "output": "NO" }, { "input": "4 4\n0 0 0 1\n0 0 0 1\n0 0 1 0\n0 0 1 0", "output": "YES" }, { "input": "2 4\n1 1 0 0\n0 0 1 1", "output": "YES" }, { "input": "2 4\n1 0 0 0\n0 1 0 0", "output": "YES" }, { "input": "2 3\n1 0 0\n0 0 1", "output": "YES" }, { "input": "3 4\n1 0 1 0\n0 1 1 1\n1 0 0 0", "output": "YES" }, { "input": "1 2\n0 0", "output": "YES" }, { "input": "6 3\n0 1 1\n1 0 1\n1 1 1\n0 1 0\n1 0 1\n1 1 0", "output": "YES" }, { "input": "1 4\n0 0 1 1", "output": "NO" }, { "input": "3 3\n1 0 0\n0 1 0\n0 0 1", "output": "YES" }, { "input": "3 4\n1 0 0 0\n1 1 0 0\n0 1 1 1", "output": "YES" }, { "input": "3 2\n0 0\n0 0\n0 0", "output": "YES" }, { "input": "2 4\n1 0 0 0\n1 0 1 1", "output": "NO" }, { "input": "2 4\n0 0 0 1\n1 0 0 0", "output": "YES" }, { "input": "2 4\n1 0 0 0\n0 1 1 1", "output": "YES" }, { "input": "4 4\n1 1 1 1\n0 0 0 1\n0 0 1 1\n1 0 1 1", "output": "NO" }, { "input": "6 3\n1 0 0\n1 1 1\n1 1 1\n0 1 0\n0 1 0\n1 0 0", "output": "YES" }, { "input": "4 4\n0 1 0 0\n1 1 1 1\n1 1 1 1\n1 0 1 1", "output": "YES" }, { "input": "1 3\n0 0 0", "output": "YES" }, { "input": "3 3\n1 0 0\n0 1 0\n0 0 0", "output": "YES" }, { "input": "2 4\n0 1 1 0\n0 0 0 0", "output": "YES" }, { "input": "1 4\n0 0 0 1", "output": "NO" }, { "input": "4 4\n0 0 0 1\n0 0 0 1\n0 0 1 1\n1 1 1 0", "output": "YES" }, { "input": "2 3\n1 0 0\n0 1 1", "output": "YES" }, { "input": "3 2\n0 1\n0 1\n1 0", "output": "YES" }, { "input": "4 3\n1 1 0\n1 1 1\n0 0 1\n0 0 1", "output": "YES" }, { "input": "2 1\n0\n0", "output": "YES" }, { "input": "2 4\n1 1 1 0\n0 0 0 1", "output": "YES" }, { "input": "5 4\n1 1 1 0\n1 1 0 1\n1 0 1 1\n0 1 1 1\n1 1 0 0", "output": "NO" }, { "input": "3 4\n0 1 1 0\n0 1 0 1\n0 0 1 1", "output": "NO" }, { "input": "1 1\n1", "output": "NO" }, { "input": "3 4\n1 0 0 0\n1 0 0 0\n0 1 1 1", "output": "YES" }, { "input": "2 3\n1 1 0\n0 0 1", "output": "YES" }, { "input": "3 3\n0 0 1\n1 1 1\n1 1 0", "output": "YES" }, { "input": "4 4\n0 1 1 1\n1 0 1 0\n1 1 0 1\n1 0 1 0", "output": "NO" }, { "input": "3 3\n1 0 0\n0 0 0\n1 0 0", "output": "YES" }, { "input": "3 4\n1 1 0 0\n1 1 0 0\n0 0 1 1", "output": "YES" }, { "input": "2 4\n1 0 0 1\n0 0 1 0", "output": "YES" }, { "input": "2 4\n0 0 1 1\n1 1 0 0", "output": "YES" }, { "input": "2 3\n0 0 1\n0 1 0", "output": "YES" }, { "input": "2 3\n1 0 0\n0 1 0", "output": "YES" }, { "input": "3 2\n1 0\n0 1\n0 1", "output": "YES" }, { "input": "3 4\n1 1 0 1\n0 0 1 1\n1 0 1 0", "output": "NO" }, { "input": "3 4\n0 0 1 1\n0 1 1 0\n1 1 0 0", "output": "YES" }, { "input": "3 4\n0 0 0 1\n0 0 0 1\n1 1 1 0", "output": "YES" }, { "input": "3 4\n1 1 1 0\n1 1 0 1\n0 0 1 0", "output": "YES" }, { "input": "8 4\n0 0 0 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n1 1 1 0", "output": "YES" }, { "input": "3 4\n1 0 1 1\n1 1 1 0\n0 1 0 1", "output": "NO" }, { "input": "2 4\n1 1 0 0\n0 0 0 1", "output": "YES" }, { "input": "10 4\n1 0 1 0\n1 0 1 0\n0 1 1 1\n1 0 1 1\n1 1 0 1\n1 0 0 1\n0 1 1 1\n0 0 0 1\n1 1 1 1\n1 0 1 0", "output": "YES" }, { "input": "2 4\n0 1 0 0\n0 0 1 1", "output": "YES" }, { "input": "3 3\n1 1 0\n1 0 1\n0 1 1", "output": "NO" }, { "input": "3 3\n1 1 0\n0 0 1\n1 1 1", "output": "YES" }, { "input": "4 4\n1 1 0 0\n1 0 1 0\n0 1 1 0\n0 0 1 1", "output": "YES" }, { "input": "4 4\n1 0 0 0\n1 0 0 1\n1 0 0 1\n0 1 1 1", "output": "YES" }, { "input": "4 3\n1 0 0\n1 0 0\n1 0 0\n0 1 1", "output": "YES" }, { "input": "2 4\n0 0 1 0\n0 1 0 0", "output": "YES" }, { "input": "1 2\n0 1", "output": "NO" }, { "input": "3 4\n1 1 1 0\n0 0 1 1\n1 1 0 0", "output": "YES" }, { "input": "3 4\n0 0 1 1\n0 1 0 1\n1 0 1 0", "output": "YES" }, { "input": "2 3\n1 0 1\n0 1 0", "output": "YES" }, { "input": "2 4\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "3 4\n0 1 0 1\n0 1 1 0\n1 0 0 1", "output": "YES" }, { "input": "3 4\n0 1 1 0\n1 1 0 0\n0 0 1 1", "output": "YES" }, { "input": "2 4\n1 0 1 0\n0 0 0 1", "output": "YES" }, { "input": "2 3\n0 1 0\n1 0 0", "output": "YES" }, { "input": "4 4\n0 0 1 1\n0 1 1 0\n1 1 0 0\n1 0 0 1", "output": "YES" }, { "input": "10 4\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n1 1 0 0", "output": "YES" }, { "input": "3 3\n1 1 0\n0 1 1\n1 0 1", "output": "NO" }, { "input": "2 3\n0 0 1\n1 1 0", "output": "YES" }, { "input": "4 4\n0 0 0 1\n0 0 1 1\n1 1 0 1\n1 1 1 0", "output": "YES" }, { "input": "3 4\n0 0 1 1\n1 0 1 0\n0 1 0 1", "output": "YES" }, { "input": "5 4\n1 1 1 0\n1 1 0 1\n1 0 1 1\n0 1 1 1\n0 0 1 1", "output": "NO" }, { "input": "3 4\n1 0 0 0\n1 1 0 0\n0 1 1 0", "output": "YES" } ]
1,636,439,122
2,147,483,647
PyPy 3-64
OK
TESTS
143
670
37,580,800
n,k=map(int,input().split()) count=[0]*(2**k) for _ in range(n): s="".join(input().split()) cur=0 for i in range(k): if s[i]=='1': cur=cur|(1<<i) count[cur]+=1 flag=False for i in range(len(count)): for j in range(len(count)): if i&j==0 and count[i]>0 and count[j]>0: flag=True break if flag: break if flag: print("yes") else: print("no")
Title: Qualification Rounds Time Limit: None seconds Memory Limit: None megabytes Problem Description: Snark and Philip are preparing the problemset for the upcoming pre-qualification round for semi-quarter-finals. They have a bank of *n* problems, and they want to select any non-empty subset of it as a problemset. *k* experienced teams are participating in the contest. Some of these teams already know some of the problems. To make the contest interesting for them, each of the teams should know at most half of the selected problems. Determine if Snark and Philip can make an interesting problemset! Input Specification: The first line contains two integers *n*, *k* (1<=≤<=*n*<=≤<=105, 1<=≤<=*k*<=≤<=4) — the number of problems and the number of experienced teams. Each of the next *n* lines contains *k* integers, each equal to 0 or 1. The *j*-th number in the *i*-th line is 1 if *j*-th team knows *i*-th problem and 0 otherwise. Output Specification: Print "YES" (quotes for clarity), if it is possible to make an interesting problemset, and "NO" otherwise. You can print each character either upper- or lowercase ("YeS" and "yes" are valid when the answer is "YES"). Demo Input: ['5 3\n1 0 1\n1 1 0\n1 0 0\n1 0 0\n1 0 0\n', '3 2\n1 0\n1 1\n0 1\n'] Demo Output: ['NO\n', 'YES\n'] Note: In the first example you can't make any interesting problemset, because the first team knows all problems. In the second example you can choose the first and the third problems.
```python n,k=map(int,input().split()) count=[0]*(2**k) for _ in range(n): s="".join(input().split()) cur=0 for i in range(k): if s[i]=='1': cur=cur|(1<<i) count[cur]+=1 flag=False for i in range(len(count)): for j in range(len(count)): if i&j==0 and count[i]>0 and count[j]>0: flag=True break if flag: break if flag: print("yes") else: print("no") ```
3
129
A
Cookies
PROGRAMMING
900
[ "implementation" ]
null
null
Olga came to visit the twins Anna and Maria and saw that they have many cookies. The cookies are distributed into bags. As there are many cookies, Olga decided that it's no big deal if she steals a bag. However, she doesn't want the sisters to quarrel because of nothing when they divide the cookies. That's why Olga wants to steal a bag with cookies so that the number of cookies in the remaining bags was even, that is, so that Anna and Maria could evenly divide it into two (even 0 remaining cookies will do, just as any other even number). How many ways there are to steal exactly one cookie bag so that the total number of cookies in the remaining bags was even?
The first line contains the only integer *n* (1<=≤<=*n*<=≤<=100) — the number of cookie bags Anna and Maria have. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100) — the number of cookies in the *i*-th bag.
Print in the only line the only number — the sought number of ways. If there are no such ways print 0.
[ "1\n1\n", "10\n1 2 2 3 4 4 4 2 2 2\n", "11\n2 2 2 2 2 2 2 2 2 2 99\n" ]
[ "1\n", "8\n", "1\n" ]
In the first sample Olga should take the only bag so that the twins ended up with the even number of cookies. In the second sample Olga can take any of five bags with two cookies or any of three bags with four cookies — 5 + 3 = 8 ways in total. In the third sample, no matter which bag with two cookies Olga chooses, the twins are left with 2 * 9 + 99 = 117 cookies. Thus, Olga has only one option: to take the bag with 99 cookies.
500
[ { "input": "1\n1", "output": "1" }, { "input": "10\n1 2 2 3 4 4 4 2 2 2", "output": "8" }, { "input": "11\n2 2 2 2 2 2 2 2 2 2 99", "output": "1" }, { "input": "2\n1 1", "output": "0" }, { "input": "2\n2 2", "output": "2" }, { "input": "2\n1 2", "output": "1" }, { "input": "7\n7 7 7 7 7 7 7", "output": "7" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "4" }, { "input": "100\n1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2", "output": "50" }, { "input": "99\n99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99", "output": "49" }, { "input": "82\n43 44 96 33 23 42 33 66 53 87 8 90 43 91 40 88 51 18 48 62 59 10 22 20 54 6 13 63 2 56 31 52 98 42 54 32 26 77 9 24 33 91 16 30 39 34 78 82 73 90 12 15 67 76 30 18 44 86 84 98 65 54 100 79 28 34 40 56 11 43 72 35 86 59 89 40 30 33 7 19 44 15", "output": "50" }, { "input": "17\n50 14 17 77 74 74 38 76 41 27 45 29 66 98 38 73 38", "output": "7" }, { "input": "94\n81 19 90 99 26 11 86 44 78 36 80 59 99 90 78 72 71 20 94 56 42 40 71 84 10 85 10 70 52 27 39 55 90 16 48 25 7 79 99 100 38 10 99 56 3 4 78 9 16 57 14 40 52 54 57 70 30 86 56 84 97 60 59 69 49 66 23 92 90 46 86 73 53 47 1 83 14 20 24 66 13 45 41 14 86 75 55 88 48 95 82 24 47 87", "output": "39" }, { "input": "88\n64 95 12 90 40 65 98 45 52 54 79 7 81 25 98 19 68 82 41 53 35 50 5 22 32 21 8 39 8 6 72 27 81 30 12 79 21 42 60 2 66 87 46 93 62 78 52 71 76 32 78 94 86 85 55 15 34 76 41 20 32 26 94 81 89 45 74 49 11 40 40 39 49 46 80 85 90 23 80 40 86 58 70 26 48 93 23 53", "output": "37" }, { "input": "84\n95 9 43 43 13 84 60 90 1 8 97 99 54 34 59 83 33 15 51 26 40 12 66 65 19 30 29 78 92 60 25 13 19 84 71 73 12 24 54 49 16 41 11 40 57 59 34 40 39 9 71 83 1 77 79 53 94 47 78 55 77 85 29 52 80 90 53 77 97 97 27 79 28 23 83 25 26 22 49 86 63 56 3 32", "output": "51" }, { "input": "47\n61 97 76 94 91 22 2 68 62 73 90 47 16 79 44 71 98 68 43 6 53 52 40 27 68 67 43 96 14 91 60 61 96 24 97 13 32 65 85 96 81 77 34 18 23 14 80", "output": "21" }, { "input": "69\n71 1 78 74 58 89 30 6 100 90 22 61 11 59 14 74 27 25 78 61 45 19 25 33 37 4 52 43 53 38 9 100 56 67 69 38 76 91 63 60 93 52 28 61 9 98 8 14 57 63 89 64 98 51 36 66 36 86 13 82 50 91 52 64 86 78 78 83 81", "output": "37" }, { "input": "52\n38 78 36 75 19 3 56 1 39 97 24 79 84 16 93 55 96 64 12 24 1 86 80 29 12 32 36 36 73 39 76 65 53 98 30 20 28 8 86 43 70 22 75 69 62 65 81 25 53 40 71 59", "output": "28" }, { "input": "74\n81 31 67 97 26 75 69 81 11 13 13 74 77 88 52 20 52 64 66 75 72 28 41 54 26 75 41 91 75 15 18 36 13 83 63 61 14 48 53 63 19 67 35 48 23 65 73 100 44 55 92 88 99 17 73 25 83 7 31 89 12 80 98 39 42 75 14 29 81 35 77 87 33 94", "output": "47" }, { "input": "44\n46 56 31 31 37 71 94 2 14 100 45 72 36 72 80 3 38 54 42 98 50 32 31 42 62 31 45 50 95 100 18 17 64 22 18 25 52 56 70 57 43 40 81 28", "output": "15" }, { "input": "22\n28 57 40 74 51 4 45 84 99 12 95 14 92 60 47 81 84 51 31 91 59 42", "output": "11" }, { "input": "59\n73 45 94 76 41 49 65 13 74 66 36 25 47 75 40 23 92 72 11 32 32 8 81 26 68 56 41 8 76 47 96 55 70 11 84 14 83 18 70 22 30 39 28 100 48 11 92 45 78 69 86 1 54 90 98 91 13 17 35", "output": "33" }, { "input": "63\n20 18 44 94 68 57 16 43 74 55 68 24 21 95 76 84 50 50 47 86 86 12 58 55 28 72 86 18 34 45 81 88 3 72 41 9 60 90 81 93 12 6 9 6 2 41 1 7 9 29 81 14 64 80 20 36 67 54 7 5 35 81 22", "output": "37" }, { "input": "28\n49 84 48 19 44 91 11 82 96 95 88 90 71 82 87 25 31 23 18 13 98 45 26 65 35 12 31 14", "output": "15" }, { "input": "61\n34 18 28 64 28 45 9 77 77 20 63 92 79 16 16 100 86 2 91 91 57 15 31 95 10 88 84 5 82 83 53 98 59 17 97 80 76 80 81 3 91 81 87 93 61 46 10 49 6 22 21 75 63 89 21 81 30 19 67 38 77", "output": "35" }, { "input": "90\n41 90 43 1 28 75 90 50 3 70 76 64 81 63 25 69 83 82 29 91 59 66 21 61 7 55 72 49 38 69 72 20 64 58 30 81 61 29 96 14 39 5 100 20 29 98 75 29 44 78 97 45 26 77 73 59 22 99 41 6 3 96 71 20 9 18 96 18 90 62 34 78 54 5 41 6 73 33 2 54 26 21 18 6 45 57 43 73 95 75", "output": "42" }, { "input": "45\n93 69 4 27 20 14 71 48 79 3 32 26 49 30 57 88 13 56 49 61 37 32 47 41 41 70 45 68 82 18 8 6 25 20 15 13 71 99 28 6 52 34 19 59 26", "output": "23" }, { "input": "33\n29 95 48 49 91 10 83 71 47 25 66 36 51 12 34 10 54 74 41 96 89 26 89 1 42 33 1 62 9 32 49 65 78", "output": "15" }, { "input": "34\n98 24 42 36 41 82 28 58 89 34 77 70 76 44 74 54 66 100 13 79 4 88 21 1 11 45 91 29 87 100 29 54 82 78", "output": "13" }, { "input": "29\n91 84 26 84 9 63 52 9 65 56 90 2 36 7 67 33 91 14 65 38 53 36 81 83 85 14 33 95 51", "output": "17" }, { "input": "100\n2 88 92 82 87 100 78 28 84 43 78 32 43 33 97 19 15 52 29 84 57 72 54 13 99 28 82 79 40 70 34 92 91 53 9 88 27 43 14 92 72 37 26 37 20 95 19 34 49 64 33 37 34 27 80 79 9 54 99 68 25 4 68 73 46 66 24 78 3 87 26 52 50 84 4 95 23 83 39 58 86 36 33 16 98 2 84 19 53 12 69 60 10 11 78 17 79 92 77 59", "output": "45" }, { "input": "100\n2 95 45 73 9 54 20 97 57 82 88 26 18 71 25 27 75 54 31 11 58 85 69 75 72 91 76 5 25 80 45 49 4 73 8 81 81 38 5 12 53 77 7 96 90 35 28 80 73 94 19 69 96 17 94 49 69 9 32 19 5 12 46 29 26 40 59 59 6 95 82 50 72 2 45 69 12 5 72 29 39 72 23 96 81 28 28 56 68 58 37 41 30 1 90 84 15 24 96 43", "output": "53" }, { "input": "100\n27 72 35 91 13 10 35 45 24 55 83 84 63 96 29 79 34 67 63 92 48 83 18 77 28 27 49 66 29 88 55 15 6 58 14 67 94 36 77 7 7 64 61 52 71 18 36 99 76 6 50 67 16 13 41 7 89 73 61 51 78 22 78 32 76 100 3 31 89 71 63 53 15 85 77 54 89 33 68 74 3 23 57 5 43 89 75 35 9 86 90 11 31 46 48 37 74 17 77 8", "output": "40" }, { "input": "100\n69 98 69 88 11 49 55 8 25 91 17 81 47 26 15 73 96 71 18 42 42 61 48 14 92 78 35 72 4 27 62 75 83 79 17 16 46 80 96 90 82 54 37 69 85 21 67 70 96 10 46 63 21 59 56 92 54 88 77 30 75 45 44 29 86 100 51 11 65 69 66 56 82 63 27 1 51 51 13 10 3 55 26 85 34 16 87 72 13 100 81 71 90 95 86 50 83 55 55 54", "output": "53" }, { "input": "100\n34 35 99 64 2 66 78 93 20 48 12 79 19 10 87 7 42 92 60 79 5 2 24 89 57 48 63 92 74 4 16 51 7 12 90 48 87 17 18 73 51 58 97 97 25 38 15 97 96 73 67 91 6 75 14 13 87 79 75 3 15 55 35 95 71 45 10 13 20 37 82 26 2 22 13 83 97 84 39 79 43 100 54 59 98 8 61 34 7 65 75 44 24 77 73 88 34 95 44 77", "output": "55" }, { "input": "100\n15 86 3 1 51 26 74 85 37 87 64 58 10 6 57 26 30 47 85 65 24 72 50 40 12 35 91 47 91 60 47 87 95 34 80 91 26 3 36 39 14 86 28 70 51 44 28 21 72 79 57 61 16 71 100 94 57 67 36 74 24 21 89 85 25 2 97 67 76 53 76 80 97 64 35 13 8 32 21 52 62 61 67 14 74 73 66 44 55 76 24 3 43 42 99 61 36 80 38 66", "output": "52" }, { "input": "100\n45 16 54 54 80 94 74 93 75 85 58 95 79 30 81 2 84 4 57 23 92 64 78 1 50 36 13 27 56 54 10 77 87 1 5 38 85 74 94 82 30 45 72 83 82 30 81 82 82 3 69 82 7 92 39 60 94 42 41 5 3 17 67 21 79 44 79 96 28 3 53 68 79 89 63 83 1 44 4 31 84 15 73 77 19 66 54 6 73 1 67 24 91 11 86 45 96 82 20 89", "output": "51" }, { "input": "100\n84 23 50 32 90 71 92 43 58 70 6 82 7 55 85 19 70 89 12 26 29 56 74 30 2 27 4 39 63 67 91 81 11 33 75 10 82 88 39 43 43 80 68 35 55 67 53 62 73 65 86 74 43 51 14 48 42 92 83 57 22 33 24 99 5 27 78 96 7 28 11 15 8 38 85 67 5 92 24 96 57 59 14 95 91 4 9 18 45 33 74 83 64 85 14 51 51 94 29 2", "output": "53" }, { "input": "100\n77 56 56 45 73 55 32 37 39 50 30 95 79 21 44 34 51 43 86 91 39 30 85 15 35 93 100 14 57 31 80 79 38 40 88 4 91 54 7 95 76 26 62 84 17 33 67 47 6 82 69 51 17 2 59 24 11 12 31 90 12 11 55 38 72 49 30 50 42 46 5 97 9 9 30 45 86 23 19 82 40 42 5 40 35 98 35 32 60 60 5 28 84 35 21 49 68 53 68 23", "output": "48" }, { "input": "100\n78 38 79 61 45 86 83 83 86 90 74 69 2 84 73 39 2 5 20 71 24 80 54 89 58 34 77 40 39 62 2 47 28 53 97 75 88 98 94 96 33 71 44 90 47 36 19 89 87 98 90 87 5 85 34 79 82 3 42 88 89 63 35 7 89 30 40 48 12 41 56 76 83 60 80 80 39 56 77 4 72 96 30 55 57 51 7 19 11 1 66 1 91 87 11 62 95 85 79 25", "output": "48" }, { "input": "100\n5 34 23 20 76 75 19 51 17 82 60 13 83 6 65 16 20 43 66 54 87 10 87 73 50 24 16 98 33 28 80 52 54 82 26 92 14 13 84 92 94 29 61 21 60 20 48 94 24 20 75 70 58 27 68 45 86 89 29 8 67 38 83 48 18 100 11 22 46 84 52 97 70 19 50 75 3 7 52 53 72 41 18 31 1 38 49 53 11 64 99 76 9 87 48 12 100 32 44 71", "output": "58" }, { "input": "100\n76 89 68 78 24 72 73 95 98 72 58 15 2 5 56 32 9 65 50 70 94 31 29 54 89 52 31 93 43 56 26 35 72 95 51 55 78 70 11 92 17 5 54 94 81 31 78 95 73 91 95 37 59 9 53 48 65 55 84 8 45 97 64 37 96 34 36 53 66 17 72 48 99 23 27 18 92 84 44 73 60 78 53 29 68 99 19 39 61 40 69 6 77 12 47 29 15 4 8 45", "output": "53" }, { "input": "100\n82 40 31 53 8 50 85 93 3 84 54 17 96 59 51 42 18 19 35 84 79 31 17 46 54 82 72 49 35 73 26 89 61 73 3 50 12 29 25 77 88 21 58 24 22 89 96 54 82 29 96 56 77 16 1 68 90 93 20 23 57 22 31 18 92 90 51 14 50 72 31 54 12 50 66 62 2 34 17 45 68 50 87 97 23 71 1 72 17 82 42 15 20 78 4 49 66 59 10 17", "output": "54" }, { "input": "100\n32 82 82 24 39 53 48 5 29 24 9 37 91 37 91 95 1 97 84 52 12 56 93 47 22 20 14 17 40 22 79 34 24 2 69 30 69 29 3 89 21 46 60 92 39 29 18 24 49 18 40 22 60 13 77 50 39 64 50 70 99 8 66 31 90 38 20 54 7 21 5 56 41 68 69 20 54 89 69 62 9 53 43 89 81 97 15 2 52 78 89 65 16 61 59 42 56 25 32 52", "output": "49" }, { "input": "100\n72 54 23 24 97 14 99 87 15 25 7 23 17 87 72 31 71 87 34 82 51 77 74 85 62 38 24 7 84 48 98 21 29 71 70 84 25 58 67 92 18 44 32 9 81 15 53 29 63 18 86 16 7 31 38 99 70 32 89 16 23 11 66 96 69 82 97 59 6 9 49 80 85 19 6 9 52 51 85 74 53 46 73 55 31 63 78 61 34 80 77 65 87 77 92 52 89 8 52 31", "output": "44" }, { "input": "100\n56 88 8 19 7 15 11 54 35 50 19 57 63 72 51 43 50 19 57 90 40 100 8 92 11 96 30 32 59 65 93 47 62 3 50 41 30 50 72 83 61 46 83 60 20 46 33 1 5 18 83 22 34 16 41 95 63 63 7 59 55 95 91 29 64 60 64 81 45 45 10 9 88 37 69 85 21 82 41 76 42 34 47 78 51 83 65 100 13 22 59 76 63 1 26 86 36 94 99 74", "output": "46" }, { "input": "100\n27 89 67 60 62 80 43 50 28 88 72 5 94 11 63 91 18 78 99 3 71 26 12 97 74 62 23 24 22 3 100 72 98 7 94 32 12 75 61 88 42 48 10 14 45 9 48 56 73 76 70 70 79 90 35 39 96 37 81 11 19 65 99 39 23 79 34 61 35 74 90 37 73 23 46 21 94 84 73 58 11 89 13 9 10 85 42 78 73 32 53 39 49 90 43 5 28 31 97 75", "output": "53" }, { "input": "100\n33 24 97 96 1 14 99 51 13 65 67 20 46 88 42 44 20 49 5 89 98 83 15 40 74 83 58 3 10 79 34 2 69 28 37 100 55 52 14 8 44 94 97 89 6 42 11 28 30 33 55 56 20 57 52 25 75 1 87 42 62 41 37 12 54 85 95 80 42 36 94 96 28 76 54 36 4 17 26 24 62 15 17 79 84 36 92 78 74 91 96 77 54 92 81 91 62 98 37 37", "output": "43" }, { "input": "100\n86 24 61 15 11 85 1 31 47 36 23 36 59 34 3 27 16 29 82 28 58 52 52 66 71 61 98 39 60 20 67 41 67 90 73 29 92 17 70 95 58 98 58 32 21 73 46 56 87 72 80 75 40 27 94 31 59 92 93 37 14 99 96 21 97 23 81 91 52 52 96 94 92 28 38 29 52 16 57 27 17 24 91 21 79 55 96 98 95 94 23 78 79 12 77 35 32 75 100 82", "output": "51" }, { "input": "100\n88 85 41 37 69 21 7 69 36 5 92 26 64 75 22 46 67 20 70 22 62 66 38 24 47 49 68 30 90 31 67 86 86 82 9 51 43 45 48 42 73 44 31 94 45 60 54 66 20 87 11 94 34 32 87 66 56 28 75 39 37 90 72 93 55 72 31 42 30 71 87 61 4 12 12 81 23 61 56 98 71 32 30 33 96 63 92 16 8 78 47 91 47 54 49 3 81 82 41 5", "output": "47" }, { "input": "1\n2", "output": "1" }, { "input": "5\n1 1 3 2 2", "output": "3" } ]
1,587,361,603
2,147,483,647
Python 3
OK
TESTS
52
218
0
n = int(input()) z = list(map(int,input().split())) c = sum(z) e=o=0 for i in z : if i%2 == 0: e+=1 else: o+=1 ans = 0 if(c%2==0): ans+=e else: ans+=o print(ans)
Title: Cookies Time Limit: None seconds Memory Limit: None megabytes Problem Description: Olga came to visit the twins Anna and Maria and saw that they have many cookies. The cookies are distributed into bags. As there are many cookies, Olga decided that it's no big deal if she steals a bag. However, she doesn't want the sisters to quarrel because of nothing when they divide the cookies. That's why Olga wants to steal a bag with cookies so that the number of cookies in the remaining bags was even, that is, so that Anna and Maria could evenly divide it into two (even 0 remaining cookies will do, just as any other even number). How many ways there are to steal exactly one cookie bag so that the total number of cookies in the remaining bags was even? Input Specification: The first line contains the only integer *n* (1<=≤<=*n*<=≤<=100) — the number of cookie bags Anna and Maria have. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100) — the number of cookies in the *i*-th bag. Output Specification: Print in the only line the only number — the sought number of ways. If there are no such ways print 0. Demo Input: ['1\n1\n', '10\n1 2 2 3 4 4 4 2 2 2\n', '11\n2 2 2 2 2 2 2 2 2 2 99\n'] Demo Output: ['1\n', '8\n', '1\n'] Note: In the first sample Olga should take the only bag so that the twins ended up with the even number of cookies. In the second sample Olga can take any of five bags with two cookies or any of three bags with four cookies — 5 + 3 = 8 ways in total. In the third sample, no matter which bag with two cookies Olga chooses, the twins are left with 2 * 9 + 99 = 117 cookies. Thus, Olga has only one option: to take the bag with 99 cookies.
```python n = int(input()) z = list(map(int,input().split())) c = sum(z) e=o=0 for i in z : if i%2 == 0: e+=1 else: o+=1 ans = 0 if(c%2==0): ans+=e else: ans+=o print(ans) ```
3
785
A
Anton and Polyhedrons
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons: - Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces. All five kinds of polyhedrons are shown on the picture below: Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of polyhedrons in Anton's collection. Each of the following *n* lines of the input contains a string *s**i* — the name of the *i*-th polyhedron in Anton's collection. The string can look like this: - "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron.
Output one number — the total number of faces in all the polyhedrons in Anton's collection.
[ "4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n", "3\nDodecahedron\nOctahedron\nOctahedron\n" ]
[ "42\n", "28\n" ]
In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20 + 6 + 4 + 12 = 42 faces.
500
[ { "input": "4\nIcosahedron\nCube\nTetrahedron\nDodecahedron", "output": "42" }, { "input": "3\nDodecahedron\nOctahedron\nOctahedron", "output": "28" }, { "input": "25\nIcosahedron\nOctahedron\nTetrahedron\nDodecahedron\nCube\nIcosahedron\nOctahedron\nCube\nTetrahedron\nIcosahedron\nIcosahedron\nTetrahedron\nOctahedron\nDodecahedron\nIcosahedron\nOctahedron\nIcosahedron\nTetrahedron\nDodecahedron\nTetrahedron\nOctahedron\nCube\nCube\nDodecahedron\nTetrahedron", "output": "256" }, { "input": "1\nTetrahedron", "output": "4" }, { "input": "1\nCube", "output": "6" }, { "input": "1\nOctahedron", "output": "8" }, { "input": "1\nDodecahedron", "output": "12" }, { "input": "1\nIcosahedron", "output": "20" }, { "input": "28\nOctahedron\nDodecahedron\nOctahedron\nOctahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nDodecahedron\nDodecahedron\nCube\nDodecahedron\nCube\nTetrahedron\nCube\nCube\nTetrahedron\nDodecahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nIcosahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron", "output": "340" } ]
1,678,218,722
2,147,483,647
Python 3
OK
TESTS
30
280
10,444,800
n = int(input()) dic = { "Tetrahedron" : 4, "Cube" : 6, "Octahedron" : 8, "Dodecahedron" : 12, "Icosahedron" : 20 } list = [] for i in range(n): a = input() list.append(a) sum = 0 for i in list: sum += dic[i] print(sum)
Title: Anton and Polyhedrons Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons: - Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces. All five kinds of polyhedrons are shown on the picture below: Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number! Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of polyhedrons in Anton's collection. Each of the following *n* lines of the input contains a string *s**i* — the name of the *i*-th polyhedron in Anton's collection. The string can look like this: - "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron. Output Specification: Output one number — the total number of faces in all the polyhedrons in Anton's collection. Demo Input: ['4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n', '3\nDodecahedron\nOctahedron\nOctahedron\n'] Demo Output: ['42\n', '28\n'] Note: In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20 + 6 + 4 + 12 = 42 faces.
```python n = int(input()) dic = { "Tetrahedron" : 4, "Cube" : 6, "Octahedron" : 8, "Dodecahedron" : 12, "Icosahedron" : 20 } list = [] for i in range(n): a = input() list.append(a) sum = 0 for i in list: sum += dic[i] print(sum) ```
3
196
B
Infinite Maze
PROGRAMMING
2,000
[ "dfs and similar", "graphs" ]
null
null
We've got a rectangular *n*<=×<=*m*-cell maze. Each cell is either passable, or is a wall (impassable). A little boy found the maze and cyclically tiled a plane with it so that the plane became an infinite maze. Now on this plane cell (*x*,<=*y*) is a wall if and only if cell is a wall. In this problem is a remainder of dividing number *a* by number *b*. The little boy stood at some cell on the plane and he wondered whether he can walk infinitely far away from his starting position. From cell (*x*,<=*y*) he can go to one of the following cells: (*x*,<=*y*<=-<=1), (*x*,<=*y*<=+<=1), (*x*<=-<=1,<=*y*) and (*x*<=+<=1,<=*y*), provided that the cell he goes to is not a wall.
The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1500) — the height and the width of the maze that the boy used to cyclically tile the plane. Each of the next *n* lines contains *m* characters — the description of the labyrinth. Each character is either a "#", that marks a wall, a ".", that marks a passable cell, or an "S", that marks the little boy's starting point. The starting point is a passable cell. It is guaranteed that character "S" occurs exactly once in the input.
Print "Yes" (without the quotes), if the little boy can walk infinitely far from the starting point. Otherwise, print "No" (without the quotes).
[ "5 4\n##.#\n##S#\n#..#\n#.##\n#..#\n", "5 4\n##.#\n##S#\n#..#\n..#.\n#.##\n" ]
[ "Yes\n", "No\n" ]
In the first sample the little boy can go up for infinitely long as there is a "clear path" that goes vertically. He just needs to repeat the following steps infinitely: up, up, left, up, up, right, up. In the second sample the vertical path is blocked. The path to the left doesn't work, too — the next "copy" of the maze traps the boy.
1,000
[]
1,540,560,737
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
5
840
17,203,200
from collections import deque n, m = [int(x) for x in input().split(" ")] data = [] was = {} walls = {} start = 0, 0 for row in range(n): tmp = [-1] * m for col, e in enumerate(input()): if e == 'S': start = row, col if e != '#': tmp[col] = 0 data.append(tmp) q = deque() def f(a, b): res = a % b if res < 0: res += b return res def bfs(row, col, color): was[(row, col)] = True if data[row][col] == -1: return # print(row + 1, col + 1) if row == 0 or row == (n - 1) or col == 0 or col == (m - 1): if not walls.get((row, col), 0): walls[(row, col)] = color if (row + 1) == f(row + 1, n): if not was.get((f(row + 1, n), col), False): bfs(f(row + 1, n), col, color) if (row - 1) == f(row - 1, n): if not was.get((f(row - 1, n), col), False): bfs(f(row - 1, n), col, color) if (col + 1) == f(col + 1, n): if not was.get((row, f(col + 1, m)), False): bfs(row, f(col + 1, m), color) if (col - 1) == f(col - 1, n): if not was.get((row, f(col - 1, m)), False): bfs(row, f(col - 1, m), color) if not was.get((f(row + 1, n), col), False): q.append((f(row + 1, n), col, color + 1)) if not was.get((f(row - 1, n), col), False): q.append((f(row - 1, n), col, color + 2)) if not was.get((row, f(col + 1, m)), False): q.append((row, f(col + 1, m), color + 3)) if not was.get((row, f(col - 1, m)), False): q.append((row, f(col - 1, m), color + 4)) q.append((*start, 1)) while q: bfs(*q.popleft()) # print(walls) for row, col in walls.keys(): color = walls[(row, col)] if row == 0 and color == walls.get((n - 1, col), 0): print("YES") # print(row + 1, col + 1) exit() elif row == n - 1 and color == walls.get((0, col), 0): print("YES") # print(row + 1, col + 1) exit() elif col == 0 and color == walls.get((row, m - 1), 0): print("YES") # print(row + 1, col + 1) exit() elif col == m - 1 and color == walls.get((row, 0), 0): print("YES") # print(row + 1, col + 1) exit() print("NO") """ 3 3 ... ### #S# """
Title: Infinite Maze Time Limit: None seconds Memory Limit: None megabytes Problem Description: We've got a rectangular *n*<=×<=*m*-cell maze. Each cell is either passable, or is a wall (impassable). A little boy found the maze and cyclically tiled a plane with it so that the plane became an infinite maze. Now on this plane cell (*x*,<=*y*) is a wall if and only if cell is a wall. In this problem is a remainder of dividing number *a* by number *b*. The little boy stood at some cell on the plane and he wondered whether he can walk infinitely far away from his starting position. From cell (*x*,<=*y*) he can go to one of the following cells: (*x*,<=*y*<=-<=1), (*x*,<=*y*<=+<=1), (*x*<=-<=1,<=*y*) and (*x*<=+<=1,<=*y*), provided that the cell he goes to is not a wall. Input Specification: The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1500) — the height and the width of the maze that the boy used to cyclically tile the plane. Each of the next *n* lines contains *m* characters — the description of the labyrinth. Each character is either a "#", that marks a wall, a ".", that marks a passable cell, or an "S", that marks the little boy's starting point. The starting point is a passable cell. It is guaranteed that character "S" occurs exactly once in the input. Output Specification: Print "Yes" (without the quotes), if the little boy can walk infinitely far from the starting point. Otherwise, print "No" (without the quotes). Demo Input: ['5 4\n##.#\n##S#\n#..#\n#.##\n#..#\n', '5 4\n##.#\n##S#\n#..#\n..#.\n#.##\n'] Demo Output: ['Yes\n', 'No\n'] Note: In the first sample the little boy can go up for infinitely long as there is a "clear path" that goes vertically. He just needs to repeat the following steps infinitely: up, up, left, up, up, right, up. In the second sample the vertical path is blocked. The path to the left doesn't work, too — the next "copy" of the maze traps the boy.
```python from collections import deque n, m = [int(x) for x in input().split(" ")] data = [] was = {} walls = {} start = 0, 0 for row in range(n): tmp = [-1] * m for col, e in enumerate(input()): if e == 'S': start = row, col if e != '#': tmp[col] = 0 data.append(tmp) q = deque() def f(a, b): res = a % b if res < 0: res += b return res def bfs(row, col, color): was[(row, col)] = True if data[row][col] == -1: return # print(row + 1, col + 1) if row == 0 or row == (n - 1) or col == 0 or col == (m - 1): if not walls.get((row, col), 0): walls[(row, col)] = color if (row + 1) == f(row + 1, n): if not was.get((f(row + 1, n), col), False): bfs(f(row + 1, n), col, color) if (row - 1) == f(row - 1, n): if not was.get((f(row - 1, n), col), False): bfs(f(row - 1, n), col, color) if (col + 1) == f(col + 1, n): if not was.get((row, f(col + 1, m)), False): bfs(row, f(col + 1, m), color) if (col - 1) == f(col - 1, n): if not was.get((row, f(col - 1, m)), False): bfs(row, f(col - 1, m), color) if not was.get((f(row + 1, n), col), False): q.append((f(row + 1, n), col, color + 1)) if not was.get((f(row - 1, n), col), False): q.append((f(row - 1, n), col, color + 2)) if not was.get((row, f(col + 1, m)), False): q.append((row, f(col + 1, m), color + 3)) if not was.get((row, f(col - 1, m)), False): q.append((row, f(col - 1, m), color + 4)) q.append((*start, 1)) while q: bfs(*q.popleft()) # print(walls) for row, col in walls.keys(): color = walls[(row, col)] if row == 0 and color == walls.get((n - 1, col), 0): print("YES") # print(row + 1, col + 1) exit() elif row == n - 1 and color == walls.get((0, col), 0): print("YES") # print(row + 1, col + 1) exit() elif col == 0 and color == walls.get((row, m - 1), 0): print("YES") # print(row + 1, col + 1) exit() elif col == m - 1 and color == walls.get((row, 0), 0): print("YES") # print(row + 1, col + 1) exit() print("NO") """ 3 3 ... ### #S# """ ```
-1
196
A
Lexicographically Maximum Subsequence
PROGRAMMING
1,100
[ "greedy", "strings" ]
null
null
You've got string *s*, consisting of only lowercase English letters. Find its lexicographically maximum subsequence. We'll call a non-empty string *s*[*p*1*p*2... *p**k*]<==<=*s**p*1*s**p*2... *s**p**k*(1<=≤<=*p*1<=&lt;<=*p*2<=&lt;<=...<=&lt;<=*p**k*<=≤<=|*s*|) a subsequence of string *s*<==<=*s*1*s*2... *s*|*s*|. String *x*<==<=*x*1*x*2... *x*|*x*| is lexicographically larger than string *y*<==<=*y*1*y*2... *y*|*y*|, if either |*x*|<=&gt;<=|*y*| and *x*1<==<=*y*1,<=*x*2<==<=*y*2,<=... ,<=*x*|*y*|<==<=*y*|*y*|, or exists such number *r* (*r*<=&lt;<=|*x*|,<=*r*<=&lt;<=|*y*|), that *x*1<==<=*y*1,<=*x*2<==<=*y*2,<=... ,<=*x**r*<==<=*y**r* and *x**r*<=+<=1<=&gt;<=*y**r*<=+<=1. Characters in lines are compared like their ASCII codes.
The single line contains a non-empty string *s*, consisting only of lowercase English letters. The string's length doesn't exceed 105.
Print the lexicographically maximum subsequence of string *s*.
[ "ababba\n", "abbcbccacbbcbaaba\n" ]
[ "bbba\n", "cccccbba\n" ]
Let's look at samples and see what the sought subsequences look like (they are marked with uppercase bold letters). The first sample: aBaBBA The second sample: abbCbCCaCbbCBaaBA
500
[ { "input": "ababba", "output": "bbba" }, { "input": "abbcbccacbbcbaaba", "output": "cccccbba" }, { "input": "thankstosamarasauteddybearsforthiscontest", "output": "yttt" }, { "input": "cantouristsolveitlessthaninoneminute", "output": "vute" }, { "input": "arepretestsstrongforthisproblem", "output": "ttttsrom" }, { "input": "whyareyoulookingfortestsdoyouhavewa", "output": "yyywa" }, { "input": "aa", "output": "aa" }, { "input": "zz", "output": "zz" }, { "input": "a", "output": "a" }, { "input": "z", "output": "z" }, { "input": "b", "output": "b" }, { "input": "y", "output": "y" }, { "input": "zaz", "output": "zz" }, { "input": "aza", "output": "za" }, { "input": "dcbaedcba", "output": "edcba" }, { "input": "abcdeabcd", "output": "ed" }, { "input": "abcdedcba", "output": "edcba" }, { "input": "zyxzxzwyxywxxwabcdabdacdbcacdbcacabaaba", "output": "zzzyyxxwddddccbba" }, { "input": "zzyzyy", "output": "zzzyy" }, { "input": "aababb", "output": "bbb" } ]
1,698,334,963
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
6
498
134,451,200
def rec(s): if len(s)==0: return best=max(s,key=lambda x:ord(x)) global maxs if s[0]==best: maxs+=best rec(s[1:]) s=input() best=max(s,key=lambda x:ord(x)) maxs="" rec(s) print(maxs)
Title: Lexicographically Maximum Subsequence Time Limit: None seconds Memory Limit: None megabytes Problem Description: You've got string *s*, consisting of only lowercase English letters. Find its lexicographically maximum subsequence. We'll call a non-empty string *s*[*p*1*p*2... *p**k*]<==<=*s**p*1*s**p*2... *s**p**k*(1<=≤<=*p*1<=&lt;<=*p*2<=&lt;<=...<=&lt;<=*p**k*<=≤<=|*s*|) a subsequence of string *s*<==<=*s*1*s*2... *s*|*s*|. String *x*<==<=*x*1*x*2... *x*|*x*| is lexicographically larger than string *y*<==<=*y*1*y*2... *y*|*y*|, if either |*x*|<=&gt;<=|*y*| and *x*1<==<=*y*1,<=*x*2<==<=*y*2,<=... ,<=*x*|*y*|<==<=*y*|*y*|, or exists such number *r* (*r*<=&lt;<=|*x*|,<=*r*<=&lt;<=|*y*|), that *x*1<==<=*y*1,<=*x*2<==<=*y*2,<=... ,<=*x**r*<==<=*y**r* and *x**r*<=+<=1<=&gt;<=*y**r*<=+<=1. Characters in lines are compared like their ASCII codes. Input Specification: The single line contains a non-empty string *s*, consisting only of lowercase English letters. The string's length doesn't exceed 105. Output Specification: Print the lexicographically maximum subsequence of string *s*. Demo Input: ['ababba\n', 'abbcbccacbbcbaaba\n'] Demo Output: ['bbba\n', 'cccccbba\n'] Note: Let's look at samples and see what the sought subsequences look like (they are marked with uppercase bold letters). The first sample: aBaBBA The second sample: abbCbCCaCbbCBaaBA
```python def rec(s): if len(s)==0: return best=max(s,key=lambda x:ord(x)) global maxs if s[0]==best: maxs+=best rec(s[1:]) s=input() best=max(s,key=lambda x:ord(x)) maxs="" rec(s) print(maxs) ```
-1
393
A
Nineteen
PROGRAMMING
0
[]
null
null
Alice likes word "nineteen" very much. She has a string *s* and wants the string to contain as many such words as possible. For that reason she can rearrange the letters of the string. For example, if she has string "xiineteenppnnnewtnee", she can get string "xnineteenppnineteenw", containing (the occurrences marked) two such words. More formally, word "nineteen" occurs in the string the number of times you can read it starting from some letter of the string. Of course, you shouldn't skip letters. Help her to find the maximum number of "nineteen"s that she can get in her string.
The first line contains a non-empty string *s*, consisting only of lowercase English letters. The length of string *s* doesn't exceed 100.
Print a single integer — the maximum number of "nineteen"s that she can get in her string.
[ "nniinneetteeeenn\n", "nneteenabcnneteenabcnneteenabcnneteenabcnneteenabcii\n", "nineteenineteen\n" ]
[ "2", "2", "2" ]
none
500
[ { "input": "nniinneetteeeenn", "output": "2" }, { "input": "nneteenabcnneteenabcnneteenabcnneteenabcnneteenabcii", "output": "2" }, { "input": "nineteenineteen", "output": "2" }, { "input": "nssemsnnsitjtihtthij", "output": "0" }, { "input": "eehihnttehtherjsihihnrhimihrjinjiehmtjimnrss", "output": "1" }, { "input": "rrrteiehtesisntnjirtitijnjjjthrsmhtneirjimniemmnrhirssjnhetmnmjejjnjjritjttnnrhnjs", "output": "2" }, { "input": "mmrehtretseihsrjmtsenemniehssnisijmsnntesismmtmthnsieijjjnsnhisi", "output": "2" }, { "input": "hshretttnntmmiertrrnjihnrmshnthirnnirrheinnnrjiirshthsrsijtrrtrmnjrrjnresnintnmtrhsnjrinsseimn", "output": "1" }, { "input": "snmmensntritetnmmmerhhrmhnehehtesmhthseemjhmnrti", "output": "2" }, { "input": "rmeetriiitijmrenmeiijt", "output": "0" }, { "input": "ihimeitimrmhriemsjhrtjtijtesmhemnmmrsetmjttthtjhnnmirtimne", "output": "1" }, { "input": "rhtsnmnesieernhstjnmmirthhieejsjttsiierhihhrrijhrrnejsjer", "output": "2" }, { "input": "emmtjsjhretehmiiiestmtmnmissjrstnsnjmhimjmststsitemtttjrnhsrmsenjtjim", "output": "2" }, { "input": "nmehhjrhirniitshjtrrtitsjsntjhrstjehhhrrerhemehjeermhmhjejjesnhsiirheijjrnrjmminneeehtm", "output": "3" }, { "input": "hsntijjetmehejtsitnthietssmeenjrhhetsnjrsethisjrtrhrierjtmimeenjnhnijeesjttrmn", "output": "3" }, { "input": "jnirirhmirmhisemittnnsmsttesjhmjnsjsmntisheneiinsrjsjirnrmnjmjhmistntersimrjni", "output": "1" }, { "input": "neithjhhhtmejjnmieishethmtetthrienrhjmjenrmtejerernmthmsnrthhtrimmtmshm", "output": "2" }, { "input": "sithnrsnemhijsnjitmijjhejjrinejhjinhtisttteermrjjrtsirmessejireihjnnhhemiirmhhjeet", "output": "3" }, { "input": "jrjshtjstteh", "output": "0" }, { "input": "jsihrimrjnnmhttmrtrenetimemjnshnimeiitmnmjishjjneisesrjemeshjsijithtn", "output": "2" }, { "input": "hhtjnnmsemermhhtsstejehsssmnesereehnnsnnremjmmieethmirjjhn", "output": "2" }, { "input": "tmnersmrtsehhntsietttrehrhneiireijnijjejmjhei", "output": "1" }, { "input": "mtstiresrtmesritnjriirehtermtrtseirtjrhsejhhmnsineinsjsin", "output": "2" }, { "input": "ssitrhtmmhtnmtreijteinimjemsiiirhrttinsnneshintjnin", "output": "1" }, { "input": "rnsrsmretjiitrjthhritniijhjmm", "output": "0" }, { "input": "hntrteieimrimteemenserntrejhhmijmtjjhnsrsrmrnsjseihnjmehtthnnithirnhj", "output": "3" }, { "input": "nmmtsmjrntrhhtmimeresnrinstjnhiinjtnjjjnthsintmtrhijnrnmtjihtinmni", "output": "0" }, { "input": "eihstiirnmteejeehimttrijittjsntjejmessstsemmtristjrhenithrrsssihnthheehhrnmimssjmejjreimjiemrmiis", "output": "2" }, { "input": "srthnimimnemtnmhsjmmmjmmrsrisehjseinemienntetmitjtnnneseimhnrmiinsismhinjjnreehseh", "output": "3" }, { "input": "etrsmrjehntjjimjnmsresjnrthjhehhtreiijjminnheeiinseenmmethiemmistsei", "output": "3" }, { "input": "msjeshtthsieshejsjhsnhejsihisijsertenrshhrthjhiirijjneinjrtrmrs", "output": "1" }, { "input": "mehsmstmeejrhhsjihntjmrjrihssmtnensttmirtieehimj", "output": "1" }, { "input": "mmmsermimjmrhrhejhrrejermsneheihhjemnehrhihesnjsehthjsmmjeiejmmnhinsemjrntrhrhsmjtttsrhjjmejj", "output": "2" }, { "input": "rhsmrmesijmmsnsmmhertnrhsetmisshriirhetmjihsmiinimtrnitrseii", "output": "1" }, { "input": "iihienhirmnihh", "output": "0" }, { "input": "ismtthhshjmhisssnmnhe", "output": "0" }, { "input": "rhsmnrmhejshinnjrtmtsssijimimethnm", "output": "0" }, { "input": "eehnshtiriejhiirntminrirnjihmrnittnmmnjejjhjtennremrnssnejtntrtsiejjijisermj", "output": "3" }, { "input": "rnhmeesnhttrjintnhnrhristjrthhrmehrhjmjhjehmstrijemjmmistes", "output": "2" }, { "input": "ssrmjmjeeetrnimemrhimes", "output": "0" }, { "input": "n", "output": "0" }, { "input": "ni", "output": "0" }, { "input": "nine", "output": "0" }, { "input": "nineteenineteenineteenineteenineteenineteenineteenineteenineteenineteenineteenineteenineteen", "output": "13" }, { "input": "ninetee", "output": "0" }, { "input": "mzbmweyydiadtlcouegmdbyfwurpwbpuvhifnuapwynd", "output": "0" }, { "input": "zenudggmyopddhszhrbmftgzmjorabhgojdtfnzxjkayjlkgczsyshczutkdch", "output": "0" }, { "input": "rtzxovxqfapkdmelxiyjroohufhbakpmmvaxq", "output": "0" }, { "input": "zninetneeineteeniwnteeennieteenineteenineteenineteenineteenineteenineteenineteenineteeninetzeenz", "output": "13" }, { "input": "nnnnnnniiiiiiiiiiiitttttttttteeeeeeeeeeeeeeeeee", "output": "3" }, { "input": "ttttiiiieeeeeeeeeeeennnnnnnnn", "output": "4" }, { "input": "ttttttttteeeeeeeeeeeeeeeeeeeeeiiiiiiiiiiiinnnnnnn", "output": "3" }, { "input": "nnnnnnnnnneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeiiiiiiiiiiiiiiiiiiiitttttttttttttttttttt", "output": "4" }, { "input": "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeiiiiiiiiiiiiiiiiittttttttttttttttnnnnnnn", "output": "3" }, { "input": "nineeen", "output": "0" }, { "input": "nineteeeeeeeeeeeeeeeeettttttttttttttttttiiiiiiiiiiiiiiiiii", "output": "0" }, { "input": "nineteenieteenieteenieteenieteenieteenieteen", "output": "4" }, { "input": "nineteenineteenineteenineteenineteen", "output": "5" } ]
1,570,489,281
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
93
307,200
{ "cells": [ { "cell_type": "code", "execution_count": 95, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['-', '-', '-', '-', '-', '-', '-', '-', '-']\n", "['a', 'l', 'a', 'a', 'l', 'a', 'a', 'l', 'a']\n" ] } ], "source": [ "def contar(sub,cadena):\n", " letra = (sub[int(len(sub))-1])\n", " cadena = (cadena.replace(letra,letra+letra))\n", " ncadena = []\n", "\n", "\n", "cad = [\"l\",\"a\",\"l\",\"a\",\"a\",\"a\",\"a\",\"a\",\"l\"]\n", "sub = [\"a\",\"l\",\"a\"]\n", "t = 0\n", "lista = []\n", "i=0\n", "while(i<int(len(cad))):\n", " i+=1\n", " if(cad[i-1] == sub[t]):\n", " lista.append(cad[i-1])\n", " cad[i-1]=\"-\"\n", " i=0\n", " if(t<int(len(sub))-1):\n", " t+=1\n", " else:\n", " t=0\n", "print(cad)\n", "print(lista)\n", "\n", "\n", "# for i in range (0,int(len(cad))):\n", "# if cad[i] in sub:\n", "# if(cad[i] == sub[t]):\n", "# lista.append(cad[i])\n", "# cad[i]=\"-\"\n", "# if(t<int(len(sub))-1):\n", "# t+=1\n", "# else:\n", "# t=0\n", "# i=0\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }
Title: Nineteen Time Limit: None seconds Memory Limit: None megabytes Problem Description: Alice likes word "nineteen" very much. She has a string *s* and wants the string to contain as many such words as possible. For that reason she can rearrange the letters of the string. For example, if she has string "xiineteenppnnnewtnee", she can get string "xnineteenppnineteenw", containing (the occurrences marked) two such words. More formally, word "nineteen" occurs in the string the number of times you can read it starting from some letter of the string. Of course, you shouldn't skip letters. Help her to find the maximum number of "nineteen"s that she can get in her string. Input Specification: The first line contains a non-empty string *s*, consisting only of lowercase English letters. The length of string *s* doesn't exceed 100. Output Specification: Print a single integer — the maximum number of "nineteen"s that she can get in her string. Demo Input: ['nniinneetteeeenn\n', 'nneteenabcnneteenabcnneteenabcnneteenabcnneteenabcii\n', 'nineteenineteen\n'] Demo Output: ['2', '2', '2'] Note: none
```python { "cells": [ { "cell_type": "code", "execution_count": 95, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['-', '-', '-', '-', '-', '-', '-', '-', '-']\n", "['a', 'l', 'a', 'a', 'l', 'a', 'a', 'l', 'a']\n" ] } ], "source": [ "def contar(sub,cadena):\n", " letra = (sub[int(len(sub))-1])\n", " cadena = (cadena.replace(letra,letra+letra))\n", " ncadena = []\n", "\n", "\n", "cad = [\"l\",\"a\",\"l\",\"a\",\"a\",\"a\",\"a\",\"a\",\"l\"]\n", "sub = [\"a\",\"l\",\"a\"]\n", "t = 0\n", "lista = []\n", "i=0\n", "while(i<int(len(cad))):\n", " i+=1\n", " if(cad[i-1] == sub[t]):\n", " lista.append(cad[i-1])\n", " cad[i-1]=\"-\"\n", " i=0\n", " if(t<int(len(sub))-1):\n", " t+=1\n", " else:\n", " t=0\n", "print(cad)\n", "print(lista)\n", "\n", "\n", "# for i in range (0,int(len(cad))):\n", "# if cad[i] in sub:\n", "# if(cad[i] == sub[t]):\n", "# lista.append(cad[i])\n", "# cad[i]=\"-\"\n", "# if(t<int(len(sub))-1):\n", "# t+=1\n", "# else:\n", "# t=0\n", "# i=0\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 } ```
-1
900
A
Find Extra One
PROGRAMMING
800
[ "geometry", "implementation" ]
null
null
You have *n* distinct points on a plane, none of them lie on *OY* axis. Check that there is a point after removal of which the remaining points are located on one side of the *OY* axis.
The first line contains a single positive integer *n* (2<=≤<=*n*<=≤<=105). The following *n* lines contain coordinates of the points. The *i*-th of these lines contains two single integers *x**i* and *y**i* (|*x**i*|,<=|*y**i*|<=≤<=109, *x**i*<=≠<=0). No two points coincide.
Print "Yes" if there is such a point, "No" — otherwise. You can print every letter in any case (upper or lower).
[ "3\n1 1\n-1 -1\n2 -1\n", "4\n1 1\n2 2\n-1 1\n-2 2\n", "3\n1 2\n2 1\n4 60\n" ]
[ "Yes", "No", "Yes" ]
In the first example the second point can be removed. In the second example there is no suitable for the condition point. In the third example any point can be removed.
500
[ { "input": "3\n1 1\n-1 -1\n2 -1", "output": "Yes" }, { "input": "4\n1 1\n2 2\n-1 1\n-2 2", "output": "No" }, { "input": "3\n1 2\n2 1\n4 60", "output": "Yes" }, { "input": "10\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n-1 -1", "output": "Yes" }, { "input": "2\n1000000000 -1000000000\n1000000000 1000000000", "output": "Yes" }, { "input": "23\n-1 1\n-1 2\n-2 4\n-7 -8\n-3 3\n-9 -14\n-5 3\n-6 2\n-7 11\n-4 4\n-8 5\n1 1\n-1 -1\n-1 -2\n-2 -4\n-7 8\n-3 -3\n-9 14\n-5 -3\n-6 -2\n-7 -11\n-4 -4\n-8 -5", "output": "Yes" }, { "input": "4\n-1000000000 -1000000000\n1000000000 1000000000\n-1000000000 1000000000\n1000000000 -1000000000", "output": "No" }, { "input": "2\n-1000000000 1000000000\n-1000000000 -1000000000", "output": "Yes" }, { "input": "5\n-1 -1\n-2 2\n2 2\n2 -2\n3 2", "output": "No" }, { "input": "2\n1 0\n-1 0", "output": "Yes" }, { "input": "4\n-1 1\n-1 2\n-1 3\n-1 4", "output": "Yes" }, { "input": "2\n-1 0\n1 0", "output": "Yes" }, { "input": "2\n1 2\n-1 2", "output": "Yes" }, { "input": "2\n8 0\n7 0", "output": "Yes" }, { "input": "6\n-1 0\n-2 0\n-1 -1\n-1 5\n1 0\n1 1", "output": "No" }, { "input": "4\n1 0\n2 0\n-1 0\n-2 0", "output": "No" }, { "input": "4\n-2 0\n-1 0\n1 0\n2 0", "output": "No" }, { "input": "2\n1 1\n-1 1", "output": "Yes" }, { "input": "4\n-1 0\n-2 0\n1 0\n2 0", "output": "No" }, { "input": "2\n4 3\n-4 -2", "output": "Yes" }, { "input": "4\n1 0\n2 0\n-1 1\n-1 2", "output": "No" }, { "input": "5\n1 1\n2 1\n3 1\n-1 1\n-2 1", "output": "No" }, { "input": "2\n1 1\n-1 -1", "output": "Yes" }, { "input": "4\n1 2\n1 0\n1 -2\n-1 2", "output": "Yes" }, { "input": "5\n-2 3\n-3 3\n4 2\n3 2\n1 2", "output": "No" }, { "input": "3\n2 0\n3 0\n4 0", "output": "Yes" }, { "input": "5\n-3 1\n-2 1\n-1 1\n1 1\n2 1", "output": "No" }, { "input": "4\n-3 0\n1 0\n2 0\n3 0", "output": "Yes" }, { "input": "2\n1 0\n-1 1", "output": "Yes" }, { "input": "3\n-1 0\n1 0\n2 0", "output": "Yes" }, { "input": "5\n1 0\n3 0\n-1 0\n-6 0\n-4 1", "output": "No" }, { "input": "5\n-1 2\n-2 2\n-3 1\n1 2\n2 3", "output": "No" }, { "input": "3\n1 0\n-1 0\n-2 0", "output": "Yes" }, { "input": "4\n1 0\n2 0\n3 1\n4 1", "output": "Yes" }, { "input": "4\n1 0\n1 2\n1 3\n-1 5", "output": "Yes" }, { "input": "4\n2 2\n2 5\n-2 3\n-2 0", "output": "No" }, { "input": "4\n1 1\n-1 1\n-1 0\n-1 -1", "output": "Yes" }, { "input": "4\n2 0\n3 0\n-3 -3\n-3 -4", "output": "No" }, { "input": "4\n-1 0\n-2 0\n-3 0\n-4 0", "output": "Yes" }, { "input": "2\n-1 1\n1 1", "output": "Yes" }, { "input": "5\n1 1\n2 2\n3 3\n-4 -4\n-5 -5", "output": "No" }, { "input": "5\n2 0\n3 0\n4 0\n5 0\n6 0", "output": "Yes" }, { "input": "2\n-1 2\n1 2", "output": "Yes" }, { "input": "4\n1 1\n2 1\n-3 0\n-4 0", "output": "No" }, { "input": "4\n-1 0\n-2 0\n3 0\n4 0", "output": "No" }, { "input": "3\n3 0\n2 0\n1 0", "output": "Yes" }, { "input": "4\n-2 0\n-3 0\n1 -1\n3 1", "output": "No" }, { "input": "3\n-1 -1\n1 1\n2 2", "output": "Yes" }, { "input": "4\n-2 0\n-1 0\n2 0\n1 0", "output": "No" }, { "input": "2\n-3 5\n3 5", "output": "Yes" }, { "input": "2\n-1 5\n1 5", "output": "Yes" }, { "input": "4\n2 0\n3 0\n-2 0\n-3 0", "output": "No" }, { "input": "3\n-1 1\n1 1\n1 -1", "output": "Yes" }, { "input": "2\n1 0\n2 0", "output": "Yes" }, { "input": "4\n-1 1\n-2 1\n2 -1\n3 -1", "output": "No" }, { "input": "5\n1 0\n2 0\n3 0\n-1 0\n-2 0", "output": "No" }, { "input": "4\n-3 0\n-4 0\n-5 0\n-6 0", "output": "Yes" }, { "input": "6\n-3 0\n-2 0\n-1 0\n1 0\n2 0\n3 0", "output": "No" }, { "input": "4\n5 0\n5 1\n6 0\n6 1", "output": "Yes" } ]
1,646,931,098
2,147,483,647
PyPy 3
OK
TESTS
71
920
9,830,400
c1,c2=0,0 for _ in range(int(input())): a,b=map(int,input().split()) if a>0: c1+=1 else: c2+=1 if c1<=1 or c2<=1: print("YES") else: print("NO")
Title: Find Extra One Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have *n* distinct points on a plane, none of them lie on *OY* axis. Check that there is a point after removal of which the remaining points are located on one side of the *OY* axis. Input Specification: The first line contains a single positive integer *n* (2<=≤<=*n*<=≤<=105). The following *n* lines contain coordinates of the points. The *i*-th of these lines contains two single integers *x**i* and *y**i* (|*x**i*|,<=|*y**i*|<=≤<=109, *x**i*<=≠<=0). No two points coincide. Output Specification: Print "Yes" if there is such a point, "No" — otherwise. You can print every letter in any case (upper or lower). Demo Input: ['3\n1 1\n-1 -1\n2 -1\n', '4\n1 1\n2 2\n-1 1\n-2 2\n', '3\n1 2\n2 1\n4 60\n'] Demo Output: ['Yes', 'No', 'Yes'] Note: In the first example the second point can be removed. In the second example there is no suitable for the condition point. In the third example any point can be removed.
```python c1,c2=0,0 for _ in range(int(input())): a,b=map(int,input().split()) if a>0: c1+=1 else: c2+=1 if c1<=1 or c2<=1: print("YES") else: print("NO") ```
3
81
A
Plug-in
PROGRAMMING
1,400
[ "implementation" ]
A. Plug-in
1
256
Polycarp thinks about the meaning of life very often. He does this constantly, even when typing in the editor. Every time he starts brooding he can no longer fully concentrate and repeatedly presses the keys that need to be pressed only once. For example, instead of the phrase "how are you" he can type "hhoow aaaare yyoouu". Polycarp decided to automate the process of correcting such errors. He decided to write a plug-in to the text editor that will remove pairs of identical consecutive letters (if there are any in the text). Of course, this is not exactly what Polycarp needs, but he's got to start from something! Help Polycarp and write the main plug-in module. Your program should remove from a string all pairs of identical letters, which are consecutive. If after the removal there appear new pairs, the program should remove them as well. Technically, its work should be equivalent to the following: while the string contains a pair of consecutive identical letters, the pair should be deleted. Note that deleting of the consecutive identical letters can be done in any order, as any order leads to the same result.
The input data consists of a single line to be processed. The length of the line is from 1 to 2·105 characters inclusive. The string contains only lowercase Latin letters.
Print the given string after it is processed. It is guaranteed that the result will contain at least one character.
[ "hhoowaaaareyyoouu\n", "reallazy\n", "abacabaabacabaa\n" ]
[ "wre", "rezy", "a" ]
none
500
[ { "input": "hhoowaaaareyyoouu", "output": "wre" }, { "input": "reallazy", "output": "rezy" }, { "input": "abacabaabacabaa", "output": "a" }, { "input": "xraccabccbry", "output": "xy" }, { "input": "a", "output": "a" }, { "input": "b", "output": "b" }, { "input": "il", "output": "il" }, { "input": "gfj", "output": "gfj" }, { "input": "babbbbbababa", "output": "babababa" }, { "input": "babbbbabbabbbababbabbbbbbabaabaababaaabbbbbabbbbaaaaabbaaabbaabaabbbbabbbababbabaaabbababaaababbbaaa", "output": "babababababababababababa" }, { "input": "aab", "output": "b" }, { "input": "abb", "output": "a" }, { "input": "aba", "output": "aba" }, { "input": "ab", "output": "ab" } ]
1,623,295,666
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
4
404
1,638,400
s=input() s=list(s) l=len(s) if l==1: print(s[0]) else: i=1 t='' while(i<len(s) and len(s)>1): if s[i]==s[i-1]: t=s[i] del s[i-1] del s[i-1] i-=1 elif s[i]==t: del s[i] else: i+=1 for j in range(len(s)): print(s[j],end="")
Title: Plug-in Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Polycarp thinks about the meaning of life very often. He does this constantly, even when typing in the editor. Every time he starts brooding he can no longer fully concentrate and repeatedly presses the keys that need to be pressed only once. For example, instead of the phrase "how are you" he can type "hhoow aaaare yyoouu". Polycarp decided to automate the process of correcting such errors. He decided to write a plug-in to the text editor that will remove pairs of identical consecutive letters (if there are any in the text). Of course, this is not exactly what Polycarp needs, but he's got to start from something! Help Polycarp and write the main plug-in module. Your program should remove from a string all pairs of identical letters, which are consecutive. If after the removal there appear new pairs, the program should remove them as well. Technically, its work should be equivalent to the following: while the string contains a pair of consecutive identical letters, the pair should be deleted. Note that deleting of the consecutive identical letters can be done in any order, as any order leads to the same result. Input Specification: The input data consists of a single line to be processed. The length of the line is from 1 to 2·105 characters inclusive. The string contains only lowercase Latin letters. Output Specification: Print the given string after it is processed. It is guaranteed that the result will contain at least one character. Demo Input: ['hhoowaaaareyyoouu\n', 'reallazy\n', 'abacabaabacabaa\n'] Demo Output: ['wre', 'rezy', 'a'] Note: none
```python s=input() s=list(s) l=len(s) if l==1: print(s[0]) else: i=1 t='' while(i<len(s) and len(s)>1): if s[i]==s[i-1]: t=s[i] del s[i-1] del s[i-1] i-=1 elif s[i]==t: del s[i] else: i+=1 for j in range(len(s)): print(s[j],end="") ```
-1
686
A
Free Ice Cream
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer. At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue). If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress. Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109). Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress.
[ "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n", "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n" ]
[ "22 1\n", "3 2\n" ]
Consider the first sample. 1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
500
[ { "input": "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20", "output": "22 1" }, { "input": "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98", "output": "3 2" }, { "input": "6 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000", "output": "7000000000 0" }, { "input": "5 12\n- 12\n+ 7\n- 6\n- 1\n+ 46", "output": "46 0" }, { "input": "11 1000\n- 100\n+ 100\n+ 100\n+ 100\n+ 100\n- 100\n- 100\n- 100\n- 100\n- 100\n- 100", "output": "700 0" }, { "input": "1 0\n- 526403222", "output": "0 1" }, { "input": "1 897986543\n- 371188251", "output": "526798292 0" }, { "input": "1 0\n+ 1", "output": "1 0" }, { "input": "1 0\n- 1", "output": "0 1" }, { "input": "1 10\n+ 10", "output": "20 0" }, { "input": "1 3\n- 5", "output": "3 1" }, { "input": "1 0\n- 5", "output": "0 1" }, { "input": "1 0\n+ 5", "output": "5 0" } ]
1,610,123,095
2,147,483,647
Python 3
OK
TESTS
34
109
0
n, x = [int(a) for a in input().split()] dist = 0 sum = x for i in range(n): c, d = [a for a in input().split()] d = int(d) if c == '+': sum += d else: if d>sum: dist+=1 else: sum-=d print(sum, dist)
Title: Free Ice Cream Time Limit: None seconds Memory Limit: None megabytes Problem Description: After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer. At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue). If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress. Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids. Input Specification: The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109). Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place. Output Specification: Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress. Demo Input: ['5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n', '5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n'] Demo Output: ['22 1\n', '3 2\n'] Note: Consider the first sample. 1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
```python n, x = [int(a) for a in input().split()] dist = 0 sum = x for i in range(n): c, d = [a for a in input().split()] d = int(d) if c == '+': sum += d else: if d>sum: dist+=1 else: sum-=d print(sum, dist) ```
3
0
none
none
none
0
[ "none" ]
null
null
The main road in Bytecity is a straight line from south to north. Conveniently, there are coordinates measured in meters from the southernmost building in north direction. At some points on the road there are *n* friends, and *i*-th of them is standing at the point *x**i* meters and can move with any speed no greater than *v**i* meters per second in any of the two directions along the road: south or north. You are to compute the minimum time needed to gather all the *n* friends at some point on the road. Note that the point they meet at doesn't need to have integer coordinate.
The first line contains single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of friends. The second line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=109) — the current coordinates of the friends, in meters. The third line contains *n* integers *v*1,<=*v*2,<=...,<=*v**n* (1<=≤<=*v**i*<=≤<=109) — the maximum speeds of the friends, in meters per second.
Print the minimum time (in seconds) needed for all the *n* friends to meet at some point on the road. Your answer will be considered correct, if its absolute or relative error isn't greater than 10<=-<=6. Formally, let your answer be *a*, while jury's answer be *b*. Your answer will be considered correct if holds.
[ "3\n7 1 3\n1 2 1\n", "4\n5 10 3 2\n2 3 2 4\n" ]
[ "2.000000000000\n", "1.400000000000\n" ]
In the first sample, all friends can gather at the point 5 within 2 seconds. In order to achieve this, the first friend should go south all the time at his maximum speed, while the second and the third friends should go north at their maximum speeds.
0
[ { "input": "3\n7 1 3\n1 2 1", "output": "2.000000000000" }, { "input": "4\n5 10 3 2\n2 3 2 4", "output": "1.400000000000" }, { "input": "3\n1 1000000000 2\n1 2 1000000000", "output": "333333332.999999999971" }, { "input": "2\n4 5\n10 8", "output": "0.055555555556" }, { "input": "4\n14 12 10 17\n8 6 5 10", "output": "0.466666666667" }, { "input": "5\n1 15 61 29 43\n15 11 19 19 19", "output": "1.764705882353" }, { "input": "10\n20 11 17 38 15 27 2 40 24 37\n22 30 22 30 28 16 7 20 22 13", "output": "1.750000000000" }, { "input": "2\n1000000000 1000000000\n1 1", "output": "0.000000000000" }, { "input": "3\n1 1 1\n1 1 1", "output": "0.000000000000" } ]
1,488,724,250
5,150
Python 3
WRONG_ANSWER
PRETESTS
0
46
4,608,000
# --------------------------------------------------------------------------- # #! /usr/local/bin/env python3 # -*- coding: utf-8 -*- # vim:fenc=utf-8 # Copyright © 2017 pmxt <[email protected]> # --------------------------------------------------------------------------- # n = int(input().strip()) xi = list(map(int, input().strip().split())) vi = list(map(int, input().strip().split())) avg = sum(xi) / n total_time = 0 z_cnt = 0 for i in range(n): ti = abs(xi[i] - avg) if not ti: z_cnt += 1 total_time += (ti / vi[i]) print(total_time / (n - z_cnt))
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: The main road in Bytecity is a straight line from south to north. Conveniently, there are coordinates measured in meters from the southernmost building in north direction. At some points on the road there are *n* friends, and *i*-th of them is standing at the point *x**i* meters and can move with any speed no greater than *v**i* meters per second in any of the two directions along the road: south or north. You are to compute the minimum time needed to gather all the *n* friends at some point on the road. Note that the point they meet at doesn't need to have integer coordinate. Input Specification: The first line contains single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of friends. The second line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=109) — the current coordinates of the friends, in meters. The third line contains *n* integers *v*1,<=*v*2,<=...,<=*v**n* (1<=≤<=*v**i*<=≤<=109) — the maximum speeds of the friends, in meters per second. Output Specification: Print the minimum time (in seconds) needed for all the *n* friends to meet at some point on the road. Your answer will be considered correct, if its absolute or relative error isn't greater than 10<=-<=6. Formally, let your answer be *a*, while jury's answer be *b*. Your answer will be considered correct if holds. Demo Input: ['3\n7 1 3\n1 2 1\n', '4\n5 10 3 2\n2 3 2 4\n'] Demo Output: ['2.000000000000\n', '1.400000000000\n'] Note: In the first sample, all friends can gather at the point 5 within 2 seconds. In order to achieve this, the first friend should go south all the time at his maximum speed, while the second and the third friends should go north at their maximum speeds.
```python # --------------------------------------------------------------------------- # #! /usr/local/bin/env python3 # -*- coding: utf-8 -*- # vim:fenc=utf-8 # Copyright © 2017 pmxt <[email protected]> # --------------------------------------------------------------------------- # n = int(input().strip()) xi = list(map(int, input().strip().split())) vi = list(map(int, input().strip().split())) avg = sum(xi) / n total_time = 0 z_cnt = 0 for i in range(n): ti = abs(xi[i] - avg) if not ti: z_cnt += 1 total_time += (ti / vi[i]) print(total_time / (n - z_cnt)) ```
0
667
A
Pouring Rain
PROGRAMMING
1,100
[ "geometry", "math" ]
null
null
A lot of people in Berland hates rain, but you do not. Rain pacifies, puts your thoughts in order. By these years you have developed a good tradition — when it rains, you go on the street and stay silent for a moment, contemplate all around you, enjoy freshness, think about big deeds you have to do. Today everything had changed quietly. You went on the street with a cup contained water, your favorite drink. In a moment when you were drinking a water you noticed that the process became quite long: the cup still contained water because of rain. You decided to make a formal model of what was happening and to find if it was possible to drink all water in that situation. Thus, your cup is a cylinder with diameter equals *d* centimeters. Initial level of water in cup equals *h* centimeters from the bottom. You drink a water with a speed equals *v* milliliters per second. But rain goes with such speed that if you do not drink a water from the cup, the level of water increases on *e* centimeters per second. The process of drinking water from the cup and the addition of rain to the cup goes evenly and continuously. Find the time needed to make the cup empty or find that it will never happen. It is guaranteed that if it is possible to drink all water, it will happen not later than after 104 seconds. Note one milliliter equals to one cubic centimeter.
The only line of the input contains four integer numbers *d*,<=*h*,<=*v*,<=*e* (1<=≤<=*d*,<=*h*,<=*v*,<=*e*<=≤<=104), where: - *d* — the diameter of your cylindrical cup, - *h* — the initial level of water in the cup, - *v* — the speed of drinking process from the cup in milliliters per second, - *e* — the growth of water because of rain if you do not drink from the cup.
If it is impossible to make the cup empty, print "NO" (without quotes). Otherwise print "YES" (without quotes) in the first line. In the second line print a real number — time in seconds needed the cup will be empty. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=4. It is guaranteed that if the answer exists, it doesn't exceed 104.
[ "1 2 3 100\n", "1 1 1 1\n" ]
[ "NO\n", "YES\n3.659792366325\n" ]
In the first example the water fills the cup faster than you can drink from it. In the second example area of the cup's bottom equals to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/419dc74dcd7bc392019c9fe748fe1fdb08ab521a.png" style="max-width: 100.0%;max-height: 100.0%;"/>, thus we can conclude that you decrease the level of water by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e8edb237e1f805fe83c2f47e48d3a9d03f2ee304.png" style="max-width: 100.0%;max-height: 100.0%;"/> centimeters per second. At the same time water level increases by 1 centimeter per second due to rain. Thus, cup will be empty in <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9dae615d7e2c5c7c03cb478848fb06aba1a8942e.png" style="max-width: 100.0%;max-height: 100.0%;"/> seconds.
500
[ { "input": "1 2 3 100", "output": "NO" }, { "input": "1 1 1 1", "output": "YES\n3.659792366325" }, { "input": "48 7946 7992 72", "output": "NO" }, { "input": "72 6791 8546 46", "output": "NO" }, { "input": "100 5635 9099 23", "output": "NO" }, { "input": "20 287 3845 5", "output": "YES\n39.646277165210" }, { "input": "48 6428 9807 83", "output": "NO" }, { "input": "72 5272 4552 64", "output": "NO" }, { "input": "100 4117 5106 34", "output": "NO" }, { "input": "20 2961 9852 15", "output": "YES\n180.991437129723" }, { "input": "48 1805 3109 93", "output": "NO" }, { "input": "72 8534 7042 65", "output": "NO" }, { "input": "1 47 80 68", "output": "YES\n1.388102806810" }, { "input": "4 495 8813 1", "output": "YES\n0.706823517575" }, { "input": "5 2797 5925 9", "output": "YES\n9.553973511669" }, { "input": "1 8324 4362 23", "output": "YES\n1.505007106354" }, { "input": "6 1976 8455 3", "output": "YES\n6.674898722265" }, { "input": "7 2644 8080 5", "output": "YES\n12.900417790197" }, { "input": "3 4183 5491 98", "output": "YES\n6.162185601824" }, { "input": "2 8591 320 101", "output": "YES\n9999.259991757254" }, { "input": "10000 10000 10000 10000", "output": "NO" }, { "input": "2 5000 12 3", "output": "YES\n6099.653943875812" }, { "input": "10 1000 100 1", "output": "YES\n3659.792366325487" } ]
1,592,284,914
2,147,483,647
Python 3
OK
TESTS
23
124
0
import math d,h,v,e=map(int,input().split()) a=v-(math.pi*d*d*e/4) if(a<=0): print("NO") exit() b=math.pi*d*d*h/4 print("YES") print(b/a)
Title: Pouring Rain Time Limit: None seconds Memory Limit: None megabytes Problem Description: A lot of people in Berland hates rain, but you do not. Rain pacifies, puts your thoughts in order. By these years you have developed a good tradition — when it rains, you go on the street and stay silent for a moment, contemplate all around you, enjoy freshness, think about big deeds you have to do. Today everything had changed quietly. You went on the street with a cup contained water, your favorite drink. In a moment when you were drinking a water you noticed that the process became quite long: the cup still contained water because of rain. You decided to make a formal model of what was happening and to find if it was possible to drink all water in that situation. Thus, your cup is a cylinder with diameter equals *d* centimeters. Initial level of water in cup equals *h* centimeters from the bottom. You drink a water with a speed equals *v* milliliters per second. But rain goes with such speed that if you do not drink a water from the cup, the level of water increases on *e* centimeters per second. The process of drinking water from the cup and the addition of rain to the cup goes evenly and continuously. Find the time needed to make the cup empty or find that it will never happen. It is guaranteed that if it is possible to drink all water, it will happen not later than after 104 seconds. Note one milliliter equals to one cubic centimeter. Input Specification: The only line of the input contains four integer numbers *d*,<=*h*,<=*v*,<=*e* (1<=≤<=*d*,<=*h*,<=*v*,<=*e*<=≤<=104), where: - *d* — the diameter of your cylindrical cup, - *h* — the initial level of water in the cup, - *v* — the speed of drinking process from the cup in milliliters per second, - *e* — the growth of water because of rain if you do not drink from the cup. Output Specification: If it is impossible to make the cup empty, print "NO" (without quotes). Otherwise print "YES" (without quotes) in the first line. In the second line print a real number — time in seconds needed the cup will be empty. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=4. It is guaranteed that if the answer exists, it doesn't exceed 104. Demo Input: ['1 2 3 100\n', '1 1 1 1\n'] Demo Output: ['NO\n', 'YES\n3.659792366325\n'] Note: In the first example the water fills the cup faster than you can drink from it. In the second example area of the cup's bottom equals to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/419dc74dcd7bc392019c9fe748fe1fdb08ab521a.png" style="max-width: 100.0%;max-height: 100.0%;"/>, thus we can conclude that you decrease the level of water by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e8edb237e1f805fe83c2f47e48d3a9d03f2ee304.png" style="max-width: 100.0%;max-height: 100.0%;"/> centimeters per second. At the same time water level increases by 1 centimeter per second due to rain. Thus, cup will be empty in <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9dae615d7e2c5c7c03cb478848fb06aba1a8942e.png" style="max-width: 100.0%;max-height: 100.0%;"/> seconds.
```python import math d,h,v,e=map(int,input().split()) a=v-(math.pi*d*d*e/4) if(a<=0): print("NO") exit() b=math.pi*d*d*h/4 print("YES") print(b/a) ```
3
315
A
Sereja and Bottles
PROGRAMMING
1,400
[ "brute force" ]
null
null
Sereja and his friends went to a picnic. The guys had *n* soda bottles just for it. Sereja forgot the bottle opener as usual, so the guys had to come up with another way to open bottles. Sereja knows that the *i*-th bottle is from brand *a**i*, besides, you can use it to open other bottles of brand *b**i*. You can use one bottle to open multiple other bottles. Sereja can open bottle with opened bottle or closed bottle. Knowing this, Sereja wants to find out the number of bottles they've got that they won't be able to open in any way. Help him and find this number.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of bottles. The next *n* lines contain the bottles' description. The *i*-th line contains two integers *a**i*,<=*b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the description of the *i*-th bottle.
In a single line print a single integer — the answer to the problem.
[ "4\n1 1\n2 2\n3 3\n4 4\n", "4\n1 2\n2 3\n3 4\n4 1\n" ]
[ "4\n", "0\n" ]
none
500
[ { "input": "4\n1 1\n2 2\n3 3\n4 4", "output": "4" }, { "input": "4\n1 2\n2 3\n3 4\n4 1", "output": "0" }, { "input": "3\n2 828\n4 392\n4 903", "output": "3" }, { "input": "4\n2 3\n1 772\n3 870\n3 668", "output": "2" }, { "input": "5\n1 4\n6 6\n4 3\n3 4\n4 758", "output": "2" }, { "input": "6\n4 843\n2 107\n10 943\n9 649\n7 806\n6 730", "output": "6" }, { "input": "7\n351 955\n7 841\n102 377\n394 102\n549 440\n630 324\n624 624", "output": "6" }, { "input": "8\n83 978\n930 674\n542 22\n834 116\n116 271\n640 930\n659 930\n705 987", "output": "6" }, { "input": "9\n162 942\n637 967\n356 108\n768 53\n656 656\n575 32\n32 575\n53 53\n351 222", "output": "6" }, { "input": "10\n423 360\n947 538\n507 484\n31 947\n414 351\n169 901\n901 21\n592 22\n763 200\n656 485", "output": "8" }, { "input": "1\n1000 1000", "output": "1" }, { "input": "1\n500 1000", "output": "1" }, { "input": "11\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11", "output": "11" }, { "input": "49\n1 758\n5 3\n5 3\n4 2\n4 36\n3 843\n5 107\n1 943\n1 649\n2 806\n3 730\n2 351\n2 102\n1 4\n3 4\n3 955\n2 841\n2 377\n5 2\n3 440\n4 324\n3 3\n3 83\n2 2\n2 1\n4 1\n1 931\n3 4\n2 5\n2 5\n4 73\n5 830\n3 4\n3 5\n5 291\n1 2\n5 3\n4 4\n2 3\n3 151\n4 2\n4 431\n5 1\n2 5\n2 4\n4 2\n4 4\n3 1\n5 2", "output": "0" }, { "input": "50\n507 31\n31 250\n414 763\n169 304\n901 9\n592 610\n763 414\n656 789\n411 422\n360 468\n625 504\n538 201\n549 619\n484 797\n596 282\n42 310\n603 656\n351 623\n292 293\n837 180\n375 658\n21 192\n597 729\n22 512\n349 635\n200 56\n669 647\n485 887\n282 939\n735 808\n54 417\n1000 310\n419 652\n939 617\n901 669\n789 390\n128 549\n468 511\n729 837\n894 729\n649 894\n484 22\n808 586\n422 286\n311 427\n618 656\n814 933\n515 901\n310 894\n617 330", "output": "30" }, { "input": "2\n7 7\n5 359", "output": "2" }, { "input": "2\n465 706\n706 706", "output": "1" }, { "input": "2\n1 1\n1 1", "output": "0" }, { "input": "3\n1 1\n1 1\n2 2", "output": "1" }, { "input": "5\n1 1\n1 2\n2 3\n3 4\n4 3", "output": "1" }, { "input": "3\n1 2\n1 2\n1 1", "output": "1" } ]
1,548,666,471
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
218
0
n=int(input()) b=[0]*1001 c=[0]*1001 a=[] for _ in range(n): x,y=map(int,input().split()) b[x]+=1 c[y]=x z=0 for i in range(1,1001): # print(i) if c[i]!=0 and not (i==c[i] and b[i]==1): z+=b[i] print(n-z)
Title: Sereja and Bottles Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sereja and his friends went to a picnic. The guys had *n* soda bottles just for it. Sereja forgot the bottle opener as usual, so the guys had to come up with another way to open bottles. Sereja knows that the *i*-th bottle is from brand *a**i*, besides, you can use it to open other bottles of brand *b**i*. You can use one bottle to open multiple other bottles. Sereja can open bottle with opened bottle or closed bottle. Knowing this, Sereja wants to find out the number of bottles they've got that they won't be able to open in any way. Help him and find this number. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of bottles. The next *n* lines contain the bottles' description. The *i*-th line contains two integers *a**i*,<=*b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the description of the *i*-th bottle. Output Specification: In a single line print a single integer — the answer to the problem. Demo Input: ['4\n1 1\n2 2\n3 3\n4 4\n', '4\n1 2\n2 3\n3 4\n4 1\n'] Demo Output: ['4\n', '0\n'] Note: none
```python n=int(input()) b=[0]*1001 c=[0]*1001 a=[] for _ in range(n): x,y=map(int,input().split()) b[x]+=1 c[y]=x z=0 for i in range(1,1001): # print(i) if c[i]!=0 and not (i==c[i] and b[i]==1): z+=b[i] print(n-z) ```
0
358
A
Dima and Continuous Line
PROGRAMMING
1,400
[ "brute force", "implementation" ]
null
null
Dima and Seryozha live in an ordinary dormitory room for two. One day Dima had a date with his girl and he asked Seryozha to leave the room. As a compensation, Seryozha made Dima do his homework. The teacher gave Seryozha the coordinates of *n* distinct points on the abscissa axis and asked to consecutively connect them by semi-circus in a certain order: first connect the first point with the second one, then connect the second point with the third one, then the third one with the fourth one and so on to the *n*-th point. Two points with coordinates (*x*1,<=0) and (*x*2,<=0) should be connected by a semi-circle that passes above the abscissa axis with the diameter that coincides with the segment between points. Seryozha needs to find out if the line on the picture intersects itself. For clarifications, see the picture Seryozha showed to Dima (the left picture has self-intersections, the right picture doesn't have any). Seryozha is not a small boy, so the coordinates of the points can be rather large. Help Dima cope with the problem.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=103). The second line contains *n* distinct integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=106<=≤<=*x**i*<=≤<=106) — the *i*-th point has coordinates (*x**i*,<=0). The points are not necessarily sorted by their *x* coordinate.
In the single line print "yes" (without the quotes), if the line has self-intersections. Otherwise, print "no" (without the quotes).
[ "4\n0 10 5 15\n", "4\n0 15 5 10\n" ]
[ "yes\n", "no\n" ]
The first test from the statement is on the picture to the left, the second test is on the picture to the right.
500
[ { "input": "4\n0 10 5 15", "output": "yes" }, { "input": "4\n0 15 5 10", "output": "no" }, { "input": "5\n0 1000 2000 3000 1500", "output": "yes" }, { "input": "5\n-724093 710736 -383722 -359011 439613", "output": "no" }, { "input": "50\n384672 661179 -775591 -989608 611120 442691 601796 502406 384323 -315945 -934146 873993 -156910 -94123 -930137 208544 816236 466922 473696 463604 794454 -872433 -149791 -858684 -467655 -555239 623978 -217138 -408658 493342 -733576 -350871 711210 884148 -426172 519986 -356885 527171 661680 977247 141654 906254 -961045 -759474 -48634 891473 -606365 -513781 -966166 27696", "output": "yes" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "no" }, { "input": "11\n1 11 10 2 3 9 8 4 5 7 6", "output": "no" }, { "input": "10\n3 2 4 5 1 6 9 7 8 10", "output": "yes" }, { "input": "11\n3 4 2 5 1 6 11 7 10 8 9", "output": "no" }, { "input": "15\n0 -1 1 2 3 13 12 4 11 10 5 6 7 9 8", "output": "no" }, { "input": "16\n6 7 8 9 5 10 11 12 13 14 15 4 16 2 1 3", "output": "yes" }, { "input": "1\n0", "output": "no" }, { "input": "4\n3 1 4 2", "output": "yes" }, { "input": "5\n0 2 4 -2 5", "output": "no" }, { "input": "5\n1 9 8 7 0", "output": "yes" }, { "input": "3\n5 10 0", "output": "no" }, { "input": "6\n1 3 -1 5 2 4", "output": "yes" }, { "input": "4\n3 2 4 1", "output": "no" }, { "input": "4\n10 5 15 0", "output": "no" }, { "input": "2\n-5 -10", "output": "no" }, { "input": "3\n1 0 3", "output": "no" }, { "input": "4\n-2 -4 1 -3", "output": "yes" }, { "input": "4\n3 6 0 2", "output": "no" }, { "input": "4\n-9 10 -10 0", "output": "yes" }, { "input": "4\n5 10 1 15", "output": "no" }, { "input": "3\n1 0 2", "output": "no" }, { "input": "4\n2 3 4 1", "output": "no" }, { "input": "4\n7 5 9 12", "output": "no" } ]
1,686,396,706
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
61
0
def main(): n = int(input()) x = list(map(int, input().split())) segs = [] for i in range(1, n): segs.append([min(x[i-1], x[i]), max(x[i-1], x[i])]) for i in range(n-1): l, r = segs[i][0], segs[i][1] for j in range(n-1): if i != j: tl, tr = segs[j][0], segs[j][1] if tl > l and tr > r: return 'yes' return 'no' if __name__ == "__main__": print(main())
Title: Dima and Continuous Line Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dima and Seryozha live in an ordinary dormitory room for two. One day Dima had a date with his girl and he asked Seryozha to leave the room. As a compensation, Seryozha made Dima do his homework. The teacher gave Seryozha the coordinates of *n* distinct points on the abscissa axis and asked to consecutively connect them by semi-circus in a certain order: first connect the first point with the second one, then connect the second point with the third one, then the third one with the fourth one and so on to the *n*-th point. Two points with coordinates (*x*1,<=0) and (*x*2,<=0) should be connected by a semi-circle that passes above the abscissa axis with the diameter that coincides with the segment between points. Seryozha needs to find out if the line on the picture intersects itself. For clarifications, see the picture Seryozha showed to Dima (the left picture has self-intersections, the right picture doesn't have any). Seryozha is not a small boy, so the coordinates of the points can be rather large. Help Dima cope with the problem. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=103). The second line contains *n* distinct integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=106<=≤<=*x**i*<=≤<=106) — the *i*-th point has coordinates (*x**i*,<=0). The points are not necessarily sorted by their *x* coordinate. Output Specification: In the single line print "yes" (without the quotes), if the line has self-intersections. Otherwise, print "no" (without the quotes). Demo Input: ['4\n0 10 5 15\n', '4\n0 15 5 10\n'] Demo Output: ['yes\n', 'no\n'] Note: The first test from the statement is on the picture to the left, the second test is on the picture to the right.
```python def main(): n = int(input()) x = list(map(int, input().split())) segs = [] for i in range(1, n): segs.append([min(x[i-1], x[i]), max(x[i-1], x[i])]) for i in range(n-1): l, r = segs[i][0], segs[i][1] for j in range(n-1): if i != j: tl, tr = segs[j][0], segs[j][1] if tl > l and tr > r: return 'yes' return 'no' if __name__ == "__main__": print(main()) ```
0
13
E
Holes
PROGRAMMING
2,700
[ "data structures", "dsu" ]
E. Holes
1
64
Little Petya likes to play a lot. Most of all he likes to play a game «Holes». This is a game for one person with following rules: There are *N* holes located in a single row and numbered from left to right with numbers from 1 to *N*. Each hole has it's own power (hole number *i* has the power *a**i*). If you throw a ball into hole *i* it will immediately jump to hole *i*<=+<=*a**i*, then it will jump out of it and so on. If there is no hole with such number, the ball will just jump out of the row. On each of the *M* moves the player can perform one of two actions: - Set the power of the hole *a* to value *b*. - Throw a ball into the hole *a* and count the number of jumps of a ball before it jump out of the row and also write down the number of the hole from which it jumped out just before leaving the row. Petya is not good at math, so, as you have already guessed, you are to perform all computations.
The first line contains two integers *N* and *M* (1<=≤<=*N*<=≤<=105, 1<=≤<=*M*<=≤<=105) — the number of holes in a row and the number of moves. The second line contains *N* positive integers not exceeding *N* — initial values of holes power. The following *M* lines describe moves made by Petya. Each of these line can be one of the two types: - 0 *a* *b* - 1 *a*
For each move of the type 1 output two space-separated numbers on a separate line — the number of the last hole the ball visited before leaving the row and the number of jumps it made.
[ "8 5\n1 1 1 1 1 2 8 2\n1 1\n0 1 3\n1 1\n0 3 4\n1 2\n" ]
[ "8 7\n8 5\n7 3\n" ]
none
0
[ { "input": "8 5\n1 1 1 1 1 2 8 2\n1 1\n0 1 3\n1 1\n0 3 4\n1 2", "output": "8 7\n8 5\n7 3" }, { "input": "10 10\n5 1 2 4 1 7 3 8 10 8\n0 5 6\n1 8\n1 1\n0 10 3\n1 5\n1 3\n1 2\n0 6 1\n1 9\n1 1", "output": "8 1\n6 2\n5 1\n5 2\n5 3\n9 1\n10 4" } ]
1,695,799,058
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
5,632,000
print('test') # Wed Sep 27 2023 10:17:21 GMT+0300 (Moscow Standard Time)
Title: Holes Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Little Petya likes to play a lot. Most of all he likes to play a game «Holes». This is a game for one person with following rules: There are *N* holes located in a single row and numbered from left to right with numbers from 1 to *N*. Each hole has it's own power (hole number *i* has the power *a**i*). If you throw a ball into hole *i* it will immediately jump to hole *i*<=+<=*a**i*, then it will jump out of it and so on. If there is no hole with such number, the ball will just jump out of the row. On each of the *M* moves the player can perform one of two actions: - Set the power of the hole *a* to value *b*. - Throw a ball into the hole *a* and count the number of jumps of a ball before it jump out of the row and also write down the number of the hole from which it jumped out just before leaving the row. Petya is not good at math, so, as you have already guessed, you are to perform all computations. Input Specification: The first line contains two integers *N* and *M* (1<=≤<=*N*<=≤<=105, 1<=≤<=*M*<=≤<=105) — the number of holes in a row and the number of moves. The second line contains *N* positive integers not exceeding *N* — initial values of holes power. The following *M* lines describe moves made by Petya. Each of these line can be one of the two types: - 0 *a* *b* - 1 *a* Output Specification: For each move of the type 1 output two space-separated numbers on a separate line — the number of the last hole the ball visited before leaving the row and the number of jumps it made. Demo Input: ['8 5\n1 1 1 1 1 2 8 2\n1 1\n0 1 3\n1 1\n0 3 4\n1 2\n'] Demo Output: ['8 7\n8 5\n7 3\n'] Note: none
```python print('test') # Wed Sep 27 2023 10:17:21 GMT+0300 (Moscow Standard Time) ```
0
887
A
Div. 64
PROGRAMMING
1,000
[ "implementation" ]
null
null
Top-model Izabella participates in the competition. She wants to impress judges and show her mathematical skills. Her problem is following: for given string, consisting of only 0 and 1, tell if it's possible to remove some digits in such a way, that remaining number is a representation of some positive integer, divisible by 64, in the binary numerical system.
In the only line given a non-empty binary string *s* with length up to 100.
Print «yes» (without quotes) if it's possible to remove digits required way and «no» otherwise.
[ "100010001\n", "100\n" ]
[ "yes", "no" ]
In the first test case, you can get string 1 000 000 after removing two ones which is a representation of number 64 in the binary numerical system. You can read more about binary numeral system representation here: [https://en.wikipedia.org/wiki/Binary_system](https://en.wikipedia.org/wiki/Binary_system)
500
[ { "input": "100010001", "output": "yes" }, { "input": "100", "output": "no" }, { "input": "0000001000000", "output": "yes" }, { "input": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "no" }, { "input": "1111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111111111", "output": "no" }, { "input": "0111111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "no" }, { "input": "1111011111111111111111111111110111110111111111111111111111011111111111111110111111111111111111111111", "output": "no" }, { "input": "1111111111101111111111111111111111111011111111111111111111111101111011111101111111111101111111111111", "output": "yes" }, { "input": "0110111111111111111111011111111110110111110111111111111111111111111111111111111110111111111111111111", "output": "yes" }, { "input": "1100110001111011001101101000001110111110011110111110010100011000100101000010010111100000010001001101", "output": "yes" }, { "input": "000000", "output": "no" }, { "input": "0001000", "output": "no" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "no" }, { "input": "1000000", "output": "yes" }, { "input": "0", "output": "no" }, { "input": "1", "output": "no" }, { "input": "10000000000", "output": "yes" }, { "input": "0000000000", "output": "no" }, { "input": "0010000", "output": "no" }, { "input": "000000011", "output": "no" }, { "input": "000000000", "output": "no" }, { "input": "00000000", "output": "no" }, { "input": "000000000011", "output": "no" }, { "input": "0000000", "output": "no" }, { "input": "00000000011", "output": "no" }, { "input": "000000001", "output": "no" }, { "input": "000000000000000000000000000", "output": "no" }, { "input": "0000001", "output": "no" }, { "input": "00000001", "output": "no" }, { "input": "00000000100", "output": "no" }, { "input": "00000000000000000000", "output": "no" }, { "input": "0000000000000000000", "output": "no" }, { "input": "00001000", "output": "no" }, { "input": "0000000000010", "output": "no" }, { "input": "000000000010", "output": "no" }, { "input": "000000000000010", "output": "no" }, { "input": "0100000", "output": "no" }, { "input": "00010000", "output": "no" }, { "input": "00000000000000000", "output": "no" }, { "input": "00000000000", "output": "no" }, { "input": "000001000", "output": "no" }, { "input": "000000000000", "output": "no" }, { "input": "100000000000000", "output": "yes" }, { "input": "000010000", "output": "no" }, { "input": "00000100", "output": "no" }, { "input": "0001100000", "output": "no" }, { "input": "000000000000000000000000001", "output": "no" }, { "input": "000000100", "output": "no" }, { "input": "0000000000001111111111", "output": "no" }, { "input": "00000010", "output": "no" }, { "input": "0001110000", "output": "no" }, { "input": "0000000000000000000000", "output": "no" }, { "input": "000000010010", "output": "no" }, { "input": "0000100", "output": "no" }, { "input": "0000000001", "output": "no" }, { "input": "000000111", "output": "no" }, { "input": "0000000000000", "output": "no" }, { "input": "000000000000000000", "output": "no" }, { "input": "0000000000000000000000000", "output": "no" }, { "input": "000000000000000", "output": "no" }, { "input": "0010000000000100", "output": "yes" }, { "input": "0000001000", "output": "no" }, { "input": "00000000000000000001", "output": "no" }, { "input": "100000000", "output": "yes" }, { "input": "000000000001", "output": "no" }, { "input": "0000011001", "output": "no" }, { "input": "000", "output": "no" }, { "input": "000000000000000000000", "output": "no" }, { "input": "0000000000011", "output": "no" }, { "input": "0000000000000000", "output": "no" }, { "input": "00000000000000001", "output": "no" }, { "input": "00000000000000", "output": "no" }, { "input": "0000000000000000010", "output": "no" }, { "input": "00000000000000000000000000000000000000000000000000000000", "output": "no" }, { "input": "000011000", "output": "no" }, { "input": "00000011", "output": "no" }, { "input": "0000000000001100", "output": "no" }, { "input": "00000", "output": "no" }, { "input": "000000000000000000000000000111111111111111", "output": "no" }, { "input": "000000010", "output": "no" }, { "input": "00000000111", "output": "no" }, { "input": "000000000000001", "output": "no" }, { "input": "0000000000000011111111111111111", "output": "no" }, { "input": "0000000010", "output": "no" }, { "input": "0000000000000000000000000000000000000000000000000", "output": "no" }, { "input": "00000000010", "output": "no" }, { "input": "101000000000", "output": "yes" }, { "input": "00100000", "output": "no" }, { "input": "00000000000001", "output": "no" }, { "input": "0000000000100", "output": "no" }, { "input": "0000", "output": "no" }, { "input": "00000000000111", "output": "no" }, { "input": "0000000000000011", "output": "no" }, { "input": "0000000000000000000000000000000000000000", "output": "no" }, { "input": "0000000000000010", "output": "no" }, { "input": "0010101010", "output": "no" }, { "input": "0000000000000001", "output": "no" }, { "input": "1010101", "output": "no" } ]
1,530,523,993
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
10
124
307,200
s = input() c1,c2 = 0,0 for i in range(len(s)): if s[i] == '1': c1 += 1 if c1 == 1: c2 = i p = len(s)-(c1-1)-c2 print('yneos'[p < 7::2])
Title: Div. 64 Time Limit: None seconds Memory Limit: None megabytes Problem Description: Top-model Izabella participates in the competition. She wants to impress judges and show her mathematical skills. Her problem is following: for given string, consisting of only 0 and 1, tell if it's possible to remove some digits in such a way, that remaining number is a representation of some positive integer, divisible by 64, in the binary numerical system. Input Specification: In the only line given a non-empty binary string *s* with length up to 100. Output Specification: Print «yes» (without quotes) if it's possible to remove digits required way and «no» otherwise. Demo Input: ['100010001\n', '100\n'] Demo Output: ['yes', 'no'] Note: In the first test case, you can get string 1 000 000 after removing two ones which is a representation of number 64 in the binary numerical system. You can read more about binary numeral system representation here: [https://en.wikipedia.org/wiki/Binary_system](https://en.wikipedia.org/wiki/Binary_system)
```python s = input() c1,c2 = 0,0 for i in range(len(s)): if s[i] == '1': c1 += 1 if c1 == 1: c2 = i p = len(s)-(c1-1)-c2 print('yneos'[p < 7::2]) ```
0
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,691,947,026
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
31
0
n=int(input()) for i in range(n): a=str(input()) c=-2; if(len(a)>=10): for j in range(len(a)): c+=1 print(a[0],end="") print(c,end="") print(a[-1]) else: print(a)
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python n=int(input()) for i in range(n): a=str(input()) c=-2; if(len(a)>=10): for j in range(len(a)): c+=1 print(a[0],end="") print(c,end="") print(a[-1]) else: print(a) ```
0
387
B
George and Round
PROGRAMMING
1,200
[ "brute force", "greedy", "two pointers" ]
null
null
George decided to prepare a Codesecrof round, so he has prepared *m* problems for the round. Let's number the problems with integers 1 through *m*. George estimates the *i*-th problem's complexity by integer *b**i*. To make the round good, he needs to put at least *n* problems there. Besides, he needs to have at least one problem with complexity exactly *a*1, at least one with complexity exactly *a*2, ..., and at least one with complexity exactly *a**n*. Of course, the round can also have problems with other complexities. George has a poor imagination. It's easier for him to make some already prepared problem simpler than to come up with a new one and prepare it. George is magnificent at simplifying problems. He can simplify any already prepared problem with complexity *c* to any positive integer complexity *d* (*c*<=≥<=*d*), by changing limits on the input data. However, nothing is so simple. George understood that even if he simplifies some problems, he can run out of problems for a good round. That's why he decided to find out the minimum number of problems he needs to come up with in addition to the *m* he's prepared in order to make a good round. Note that George can come up with a new problem of any complexity.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=3000) — the minimal number of problems in a good round and the number of problems George's prepared. The second line contains space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a*1<=&lt;<=*a*2<=&lt;<=...<=&lt;<=*a**n*<=≤<=106) — the requirements for the complexity of the problems in a good round. The third line contains space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b*1<=≤<=*b*2...<=≤<=*b**m*<=≤<=106) — the complexities of the problems prepared by George.
Print a single integer — the answer to the problem.
[ "3 5\n1 2 3\n1 2 2 3 3\n", "3 5\n1 2 3\n1 1 1 1 1\n", "3 1\n2 3 4\n1\n" ]
[ "0\n", "2\n", "3\n" ]
In the first sample the set of the prepared problems meets the requirements for a good round. In the second sample, it is enough to come up with and prepare two problems with complexities 2 and 3 to get a good round. In the third sample it is very easy to get a good round if come up with and prepare extra problems with complexities: 2, 3, 4.
1,000
[ { "input": "3 5\n1 2 3\n1 2 2 3 3", "output": "0" }, { "input": "3 5\n1 2 3\n1 1 1 1 1", "output": "2" }, { "input": "3 1\n2 3 4\n1", "output": "3" }, { "input": "29 100\n20 32 41 67 72 155 331 382 399 412 465 470 484 511 515 529 616 637 679 715 733 763 826 843 862 903 925 979 989\n15 15 15 17 18 19 19 20 21 21 22 24 25 26 26 27 28 31 32 32 37 38 38 39 39 40 41 42 43 43 45 45 46 47 49 49 50 50 50 51 52 53 53 55 56 57 59 59 59 60 60 62 62 63 63 64 64 64 66 67 69 69 70 70 72 72 73 74 75 76 77 78 80 80 81 81 83 83 83 84 86 86 86 86 87 88 89 91 91 91 92 93 94 94 96 97 97 97 98 98", "output": "24" } ]
1,600,079,302
2,147,483,647
Python 3
OK
TESTS
41
467
614,400
n,m=map(int,input().split()) a=list(map(int,input().split())) b=list(map(int,input().split())) j=0 res=0 for i in range(n): e=a[j] #print(e) if e in b: #print(e) a.pop(a.index(e)) b.pop(b.index(e)) j-=1 j+=1 i=0 j=0 if len(a): b=list(filter(lambda x:x>=min(a),b)) if len(b): a.sort() b.sort() while i<len(a): j=0 while j <len(b): if b[j]>=a[i]: a.pop(i) b.pop(j) i-=1 break j+=1 i+=1 print(len(a)) #print(a,b)
Title: George and Round Time Limit: None seconds Memory Limit: None megabytes Problem Description: George decided to prepare a Codesecrof round, so he has prepared *m* problems for the round. Let's number the problems with integers 1 through *m*. George estimates the *i*-th problem's complexity by integer *b**i*. To make the round good, he needs to put at least *n* problems there. Besides, he needs to have at least one problem with complexity exactly *a*1, at least one with complexity exactly *a*2, ..., and at least one with complexity exactly *a**n*. Of course, the round can also have problems with other complexities. George has a poor imagination. It's easier for him to make some already prepared problem simpler than to come up with a new one and prepare it. George is magnificent at simplifying problems. He can simplify any already prepared problem with complexity *c* to any positive integer complexity *d* (*c*<=≥<=*d*), by changing limits on the input data. However, nothing is so simple. George understood that even if he simplifies some problems, he can run out of problems for a good round. That's why he decided to find out the minimum number of problems he needs to come up with in addition to the *m* he's prepared in order to make a good round. Note that George can come up with a new problem of any complexity. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=3000) — the minimal number of problems in a good round and the number of problems George's prepared. The second line contains space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a*1<=&lt;<=*a*2<=&lt;<=...<=&lt;<=*a**n*<=≤<=106) — the requirements for the complexity of the problems in a good round. The third line contains space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b*1<=≤<=*b*2...<=≤<=*b**m*<=≤<=106) — the complexities of the problems prepared by George. Output Specification: Print a single integer — the answer to the problem. Demo Input: ['3 5\n1 2 3\n1 2 2 3 3\n', '3 5\n1 2 3\n1 1 1 1 1\n', '3 1\n2 3 4\n1\n'] Demo Output: ['0\n', '2\n', '3\n'] Note: In the first sample the set of the prepared problems meets the requirements for a good round. In the second sample, it is enough to come up with and prepare two problems with complexities 2 and 3 to get a good round. In the third sample it is very easy to get a good round if come up with and prepare extra problems with complexities: 2, 3, 4.
```python n,m=map(int,input().split()) a=list(map(int,input().split())) b=list(map(int,input().split())) j=0 res=0 for i in range(n): e=a[j] #print(e) if e in b: #print(e) a.pop(a.index(e)) b.pop(b.index(e)) j-=1 j+=1 i=0 j=0 if len(a): b=list(filter(lambda x:x>=min(a),b)) if len(b): a.sort() b.sort() while i<len(a): j=0 while j <len(b): if b[j]>=a[i]: a.pop(i) b.pop(j) i-=1 break j+=1 i+=1 print(len(a)) #print(a,b) ```
3
787
B
Not Afraid
PROGRAMMING
1,300
[ "greedy", "implementation", "math" ]
null
null
Since the giant heads have appeared in the sky all humanity is in danger, so all Ricks and Mortys from all parallel universes are gathering in groups to find a solution to get rid of them. There are *n* parallel universes participating in this event (*n* Ricks and *n* Mortys). I. e. each of *n* universes has one Rick and one Morty. They're gathering in *m* groups. Each person can be in many groups and a group can contain an arbitrary number of members. Ricks and Mortys have registered online in these groups. So, a person can have joined a group more than once (developer of this website hadn't considered this possibility). Summer from universe #1 knows that in each parallel universe (including hers) exactly one of Rick and Morty from that universe is a traitor and is loyal, but no one knows which one. She knows that we are doomed if there's a group such that every member in that group is a traitor (they will plan and destroy the world). Summer knows that if there's a possibility that world ends (there's a group where all members are traitors) she should immediately cancel this event. So she wants to know if she should cancel the event. You have to tell her yes if and only if there's at least one scenario (among all 2*n* possible scenarios, 2 possible scenarios for who a traitor in each universe) such that in that scenario the world will end.
The first line of input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=104) — number of universes and number of groups respectively. The next *m* lines contain the information about the groups. *i*-th of them first contains an integer *k* (number of times someone joined *i*-th group, *k*<=&gt;<=0) followed by *k* integers *v**i*,<=1,<=*v**i*,<=2,<=...,<=*v**i*,<=*k*. If *v**i*,<=*j* is negative, it means that Rick from universe number <=-<=*v**i*,<=*j* has joined this group and otherwise it means that Morty from universe number *v**i*,<=*j* has joined it. Sum of *k* for all groups does not exceed 104.
In a single line print the answer to Summer's question. Print "YES" if she should cancel the event and "NO" otherwise.
[ "4 2\n1 -3\n4 -2 3 2 -3\n", "5 2\n5 3 -2 1 -1 5\n3 -5 2 5\n", "7 2\n3 -1 6 7\n7 -5 4 2 4 7 -3 4\n" ]
[ "YES\n", "NO\n", "YES\n" ]
In the first sample testcase, 1st group only contains the Rick from universe number 3, so in case he's a traitor, then all members of this group are traitors and so Summer should cancel the event.
1,000
[ { "input": "4 2\n1 -3\n4 -2 3 2 -3", "output": "YES" }, { "input": "5 2\n5 3 -2 1 -1 5\n3 -5 2 5", "output": "NO" }, { "input": "7 2\n3 -1 6 7\n7 -5 4 2 4 7 -3 4", "output": "YES" }, { "input": "2 1\n2 -2 2", "output": "NO" }, { "input": "7 7\n1 -2\n1 6\n2 7 -6\n2 -6 4\n2 -4 -6\n3 -5 7 -5\n1 -6", "output": "YES" }, { "input": "100 50\n2 62 -62\n2 19 -19\n2 38 -38\n2 -84 84\n2 -16 16\n2 67 -67\n2 41 -41\n2 -32 32\n2 32 -32\n2 -62 62\n2 89 -89\n2 -84 84\n2 96 -96\n2 -11 11\n2 59 -59\n2 -13 13\n2 -70 70\n2 -3 3\n2 -41 41\n2 -74 74\n2 47 -47\n2 87 -87\n2 17 -17\n2 20 -20\n2 -14 14\n2 -67 67\n2 -95 95\n2 -15 15\n2 -49 49\n2 75 -75\n2 -11 11\n2 -35 35\n2 -10 10\n2 -70 70\n2 -82 82\n2 33 -33\n2 14 -14\n2 -23 23\n2 83 -83\n2 21 -21\n2 86 -86\n2 -51 51\n2 -21 21\n2 -83 83\n2 94 -94\n2 -8 8\n2 75 -75\n2 69 -69\n2 -18 18\n2 42 -42", "output": "NO" }, { "input": "1 1\n1 1", "output": "YES" }, { "input": "1 1\n2 1 -1", "output": "NO" }, { "input": "1 50\n2 1 -1\n2 -1 1\n2 1 -1\n2 1 -1\n2 1 -1\n2 1 -1\n2 -1 1\n2 1 -1\n2 -1 1\n2 1 -1\n2 1 -1\n2 -1 1\n2 -1 1\n2 1 -1\n2 -1 1\n2 1 -1\n2 1 -1\n2 -1 1\n2 -1 1\n2 1 -1\n2 -1 1\n2 1 -1\n2 -1 1\n2 -1 1\n2 1 -1\n2 -1 1\n2 -1 1\n2 -1 1\n2 -1 1\n2 -1 1\n2 1 -1\n2 -1 1\n2 -1 1\n2 1 -1\n2 1 -1\n2 -1 1\n2 1 -1\n2 -1 1\n2 -1 1\n2 1 -1\n2 -1 1\n2 -1 1\n2 1 -1\n2 -1 1\n2 1 -1\n2 1 -1\n2 1 -1\n2 -1 1\n2 -1 1\n2 -1 1", "output": "NO" }, { "input": "10000 1\n2 -6748 6748", "output": "NO" }, { "input": "10000 1\n1 2550", "output": "YES" }, { "input": "10000 1\n10 5365 -2216 -866 -7450 -6342 4329 -777 -4329 5225 -2884", "output": "NO" }, { "input": "3 1\n3 1 1 2", "output": "YES" }, { "input": "5 1\n2 -1 -1", "output": "YES" }, { "input": "4 1\n3 1 1 -1", "output": "NO" }, { "input": "4 1\n4 3 3 3 3", "output": "YES" }, { "input": "1 1\n2 1 1", "output": "YES" }, { "input": "2 1\n2 2 2", "output": "YES" }, { "input": "4 2\n2 1 -1\n1 1", "output": "YES" }, { "input": "7 2\n3 -1 1 7\n7 -5 4 2 4 7 -3 4", "output": "YES" }, { "input": "4 1\n1 -1", "output": "YES" }, { "input": "10 1\n2 4 4", "output": "YES" }, { "input": "1 2\n2 1 -1\n2 -1 -1", "output": "YES" }, { "input": "10000 1\n2 -3 -3", "output": "YES" }, { "input": "1 2\n2 1 1\n2 -1 -1", "output": "YES" }, { "input": "5 1\n2 1 1", "output": "YES" }, { "input": "3 1\n2 3 3", "output": "YES" }, { "input": "4 1\n2 1 1", "output": "YES" }, { "input": "4 2\n3 -1 1 2\n3 -2 4 3", "output": "YES" } ]
1,491,989,480
2,147,483,647
Python 3
OK
TESTS
65
78
5,939,200
n,m = map(int,input().split()) isDanger = False for i in range(m): if isDanger: break isDanger = True l=input().split() k=int(l.pop(0)) s=set() for no in l: no=int(no) if -no in s: isDanger = False break s.add(no) if isDanger: print('YES') else: print('NO')
Title: Not Afraid Time Limit: None seconds Memory Limit: None megabytes Problem Description: Since the giant heads have appeared in the sky all humanity is in danger, so all Ricks and Mortys from all parallel universes are gathering in groups to find a solution to get rid of them. There are *n* parallel universes participating in this event (*n* Ricks and *n* Mortys). I. e. each of *n* universes has one Rick and one Morty. They're gathering in *m* groups. Each person can be in many groups and a group can contain an arbitrary number of members. Ricks and Mortys have registered online in these groups. So, a person can have joined a group more than once (developer of this website hadn't considered this possibility). Summer from universe #1 knows that in each parallel universe (including hers) exactly one of Rick and Morty from that universe is a traitor and is loyal, but no one knows which one. She knows that we are doomed if there's a group such that every member in that group is a traitor (they will plan and destroy the world). Summer knows that if there's a possibility that world ends (there's a group where all members are traitors) she should immediately cancel this event. So she wants to know if she should cancel the event. You have to tell her yes if and only if there's at least one scenario (among all 2*n* possible scenarios, 2 possible scenarios for who a traitor in each universe) such that in that scenario the world will end. Input Specification: The first line of input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=104) — number of universes and number of groups respectively. The next *m* lines contain the information about the groups. *i*-th of them first contains an integer *k* (number of times someone joined *i*-th group, *k*<=&gt;<=0) followed by *k* integers *v**i*,<=1,<=*v**i*,<=2,<=...,<=*v**i*,<=*k*. If *v**i*,<=*j* is negative, it means that Rick from universe number <=-<=*v**i*,<=*j* has joined this group and otherwise it means that Morty from universe number *v**i*,<=*j* has joined it. Sum of *k* for all groups does not exceed 104. Output Specification: In a single line print the answer to Summer's question. Print "YES" if she should cancel the event and "NO" otherwise. Demo Input: ['4 2\n1 -3\n4 -2 3 2 -3\n', '5 2\n5 3 -2 1 -1 5\n3 -5 2 5\n', '7 2\n3 -1 6 7\n7 -5 4 2 4 7 -3 4\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: In the first sample testcase, 1st group only contains the Rick from universe number 3, so in case he's a traitor, then all members of this group are traitors and so Summer should cancel the event.
```python n,m = map(int,input().split()) isDanger = False for i in range(m): if isDanger: break isDanger = True l=input().split() k=int(l.pop(0)) s=set() for no in l: no=int(no) if -no in s: isDanger = False break s.add(no) if isDanger: print('YES') else: print('NO') ```
3
814
A
An abandoned sentiment from past
PROGRAMMING
900
[ "constructive algorithms", "greedy", "implementation", "sortings" ]
null
null
A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed. To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity. Hitagi's sequence *a* has a length of *n*. Lost elements in it are denoted by zeros. Kaiki provides another sequence *b*, whose length *k* equals the number of lost elements in *a* (i.e. the number of zeros). Hitagi is to replace each zero in *a* with an element from *b* so that each element in *b* should be used exactly once. Hitagi knows, however, that, apart from 0, no integer occurs in *a* and *b* more than once in total. If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In other words, you should detect whether it is possible to replace each zero in *a* with an integer from *b* so that each integer from *b* is used exactly once, and the resulting sequence is not increasing.
The first line of input contains two space-separated positive integers *n* (2<=≤<=*n*<=≤<=100) and *k* (1<=≤<=*k*<=≤<=*n*) — the lengths of sequence *a* and *b* respectively. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=200) — Hitagi's broken sequence with exactly *k* zero elements. The third line contains *k* space-separated integers *b*1,<=*b*2,<=...,<=*b**k* (1<=≤<=*b**i*<=≤<=200) — the elements to fill into Hitagi's sequence. Input guarantees that apart from 0, no integer occurs in *a* and *b* more than once in total.
Output "Yes" if it's possible to replace zeros in *a* with elements in *b* and make the resulting sequence not increasing, and "No" otherwise.
[ "4 2\n11 0 0 14\n5 4\n", "6 1\n2 3 0 8 9 10\n5\n", "4 1\n8 94 0 4\n89\n", "7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7\n" ]
[ "Yes\n", "No\n", "Yes\n", "Yes\n" ]
In the first sample: - Sequence *a* is 11, 0, 0, 14. - Two of the elements are lost, and the candidates in *b* are 5 and 4. - There are two possible resulting sequences: 11, 5, 4, 14 and 11, 4, 5, 14, both of which fulfill the requirements. Thus the answer is "Yes". In the second sample, the only possible resulting sequence is 2, 3, 5, 8, 9, 10, which is an increasing sequence and therefore invalid.
500
[ { "input": "4 2\n11 0 0 14\n5 4", "output": "Yes" }, { "input": "6 1\n2 3 0 8 9 10\n5", "output": "No" }, { "input": "4 1\n8 94 0 4\n89", "output": "Yes" }, { "input": "7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7", "output": "Yes" }, { "input": "40 1\n23 26 27 28 31 35 38 40 43 50 52 53 56 57 59 61 65 73 75 76 79 0 82 84 85 86 88 93 99 101 103 104 105 106 110 111 112 117 119 120\n80", "output": "No" }, { "input": "100 1\n99 95 22 110 47 20 37 34 23 0 16 69 64 49 111 42 112 96 13 40 18 77 44 46 74 55 15 54 56 75 78 100 82 101 31 83 53 80 52 63 30 57 104 36 67 65 103 51 48 26 68 59 35 92 85 38 107 98 73 90 62 43 32 89 19 106 17 88 41 72 113 86 66 102 81 27 29 50 71 79 109 91 70 39 61 76 93 84 108 97 24 25 45 105 94 60 33 87 14 21\n58", "output": "Yes" }, { "input": "4 1\n2 1 0 4\n3", "output": "Yes" }, { "input": "2 1\n199 0\n200", "output": "No" }, { "input": "3 2\n115 0 0\n145 191", "output": "Yes" }, { "input": "5 1\n196 197 198 0 200\n199", "output": "No" }, { "input": "5 1\n92 0 97 99 100\n93", "output": "No" }, { "input": "3 1\n3 87 0\n81", "output": "Yes" }, { "input": "3 1\n0 92 192\n118", "output": "Yes" }, { "input": "10 1\n1 3 0 7 35 46 66 72 83 90\n22", "output": "Yes" }, { "input": "100 1\n14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 0 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113\n67", "output": "No" }, { "input": "100 5\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 0 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0 53 54 0 56 57 58 59 60 61 62 63 0 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 0 99 100\n98 64 55 52 29", "output": "Yes" }, { "input": "100 5\n175 30 124 0 12 111 6 0 119 108 0 38 127 3 151 114 95 54 4 128 91 11 168 120 80 107 18 21 149 169 0 141 195 20 78 157 33 118 17 69 105 130 197 57 74 110 138 84 71 172 132 93 191 44 152 156 24 101 146 26 2 36 143 122 104 42 103 97 39 116 115 0 155 87 53 85 7 43 65 196 136 154 16 79 45 129 67 150 35 73 55 76 37 147 112 82 162 58 40 75\n121 199 62 193 27", "output": "Yes" }, { "input": "100 1\n1 2 3 4 5 6 7 8 9 0 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n11", "output": "Yes" }, { "input": "100 1\n0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n1", "output": "No" }, { "input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0\n100", "output": "No" }, { "input": "100 1\n9 79 7 98 10 50 28 99 43 74 89 20 32 66 23 45 87 78 81 41 86 71 75 85 5 39 14 53 42 48 40 52 3 51 11 34 35 76 77 61 47 19 55 91 62 56 8 72 88 4 33 0 97 92 31 83 18 49 54 21 17 16 63 44 84 22 2 96 70 36 68 60 80 82 13 73 26 94 27 58 1 30 100 38 12 15 93 90 57 59 67 6 64 46 25 29 37 95 69 24\n65", "output": "Yes" }, { "input": "100 2\n0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 0 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n48 1", "output": "Yes" }, { "input": "100 1\n2 7 11 17 20 22 23 24 25 27 29 30 31 33 34 35 36 38 39 40 42 44 46 47 50 52 53 58 59 60 61 62 63 66 0 67 71 72 75 79 80 81 86 91 93 94 99 100 101 102 103 104 105 108 109 110 111 113 114 118 119 120 122 123 127 129 130 131 132 133 134 135 136 138 139 140 141 142 147 154 155 156 160 168 170 171 172 176 179 180 181 182 185 186 187 188 189 190 194 198\n69", "output": "Yes" }, { "input": "100 1\n3 5 7 9 11 12 13 18 20 21 22 23 24 27 28 29 31 34 36 38 39 43 46 48 49 50 52 53 55 59 60 61 62 63 66 68 70 72 73 74 75 77 78 79 80 81 83 85 86 88 89 91 92 94 97 98 102 109 110 115 116 117 118 120 122 126 127 128 0 133 134 136 137 141 142 144 145 147 151 152 157 159 160 163 164 171 172 175 176 178 179 180 181 184 186 188 190 192 193 200\n129", "output": "No" }, { "input": "5 2\n0 2 7 0 10\n1 8", "output": "Yes" }, { "input": "3 1\n5 4 0\n1", "output": "Yes" }, { "input": "3 1\n1 0 3\n4", "output": "Yes" }, { "input": "2 1\n0 2\n1", "output": "No" }, { "input": "2 1\n0 5\n7", "output": "Yes" }, { "input": "5 1\n10 11 0 12 13\n1", "output": "Yes" }, { "input": "5 1\n0 2 3 4 5\n6", "output": "Yes" }, { "input": "6 2\n1 0 3 4 0 6\n2 5", "output": "Yes" }, { "input": "7 2\n1 2 3 0 0 6 7\n4 5", "output": "Yes" }, { "input": "4 1\n1 2 3 0\n4", "output": "No" }, { "input": "2 2\n0 0\n1 2", "output": "Yes" }, { "input": "3 2\n1 0 0\n2 3", "output": "Yes" }, { "input": "4 2\n1 0 4 0\n5 2", "output": "Yes" }, { "input": "2 1\n0 1\n2", "output": "Yes" }, { "input": "5 2\n1 0 4 0 6\n2 5", "output": "Yes" }, { "input": "5 1\n2 3 0 4 5\n1", "output": "Yes" }, { "input": "3 1\n0 2 3\n5", "output": "Yes" }, { "input": "6 1\n1 2 3 4 5 0\n6", "output": "No" }, { "input": "5 1\n1 2 0 4 5\n6", "output": "Yes" }, { "input": "3 1\n5 0 2\n7", "output": "Yes" }, { "input": "4 1\n4 5 0 8\n3", "output": "Yes" }, { "input": "5 1\n10 11 12 0 14\n13", "output": "No" }, { "input": "4 1\n1 2 0 4\n5", "output": "Yes" }, { "input": "3 1\n0 11 14\n12", "output": "Yes" }, { "input": "4 1\n1 3 0 4\n2", "output": "Yes" }, { "input": "2 1\n0 5\n1", "output": "No" }, { "input": "5 1\n1 2 0 4 7\n5", "output": "Yes" }, { "input": "3 1\n2 3 0\n1", "output": "Yes" }, { "input": "6 1\n1 2 3 0 5 4\n6", "output": "Yes" }, { "input": "4 2\n11 0 0 14\n13 12", "output": "Yes" }, { "input": "2 1\n1 0\n2", "output": "No" }, { "input": "3 1\n1 2 0\n3", "output": "No" }, { "input": "4 1\n1 0 3 2\n4", "output": "Yes" }, { "input": "3 1\n0 1 2\n5", "output": "Yes" }, { "input": "3 1\n0 1 2\n3", "output": "Yes" }, { "input": "4 1\n0 2 3 4\n5", "output": "Yes" }, { "input": "6 1\n1 2 3 0 4 5\n6", "output": "Yes" }, { "input": "3 1\n1 2 0\n5", "output": "No" }, { "input": "4 2\n1 0 0 4\n3 2", "output": "Yes" }, { "input": "5 1\n2 3 0 5 7\n6", "output": "Yes" }, { "input": "3 1\n2 3 0\n4", "output": "No" }, { "input": "3 1\n1 0 11\n5", "output": "No" }, { "input": "4 1\n7 9 5 0\n8", "output": "Yes" }, { "input": "6 2\n1 2 3 0 5 0\n6 4", "output": "Yes" }, { "input": "3 2\n0 1 0\n3 2", "output": "Yes" }, { "input": "4 1\n6 9 5 0\n8", "output": "Yes" }, { "input": "2 1\n0 3\n6", "output": "Yes" }, { "input": "5 2\n1 2 0 0 5\n4 3", "output": "Yes" }, { "input": "4 2\n2 0 0 8\n3 4", "output": "Yes" }, { "input": "2 1\n0 2\n3", "output": "Yes" }, { "input": "3 1\n0 4 5\n6", "output": "Yes" }, { "input": "6 1\n1 2 3 4 0 5\n6", "output": "Yes" }, { "input": "2 1\n2 0\n3", "output": "No" }, { "input": "4 2\n11 0 0 200\n100 199", "output": "Yes" }, { "input": "2 1\n5 0\n4", "output": "Yes" }, { "input": "3 1\n1 0 5\n10", "output": "Yes" }, { "input": "6 2\n1 2 0 0 5 6\n3 4", "output": "Yes" }, { "input": "5 2\n1 0 3 0 5\n2 4", "output": "Yes" }, { "input": "4 1\n1 4 0 8\n3", "output": "Yes" }, { "input": "4 1\n5 9 4 0\n8", "output": "Yes" }, { "input": "4 2\n1 0 0 7\n3 2", "output": "Yes" }, { "input": "3 3\n0 0 0\n1 4 3", "output": "Yes" }, { "input": "5 5\n0 0 0 0 0\n5 4 3 2 1", "output": "Yes" }, { "input": "4 1\n3 9 4 0\n8", "output": "Yes" }, { "input": "4 2\n1 0 0 4\n2 3", "output": "Yes" }, { "input": "6 1\n2 4 0 8 9 10\n3", "output": "Yes" }, { "input": "4 1\n0 3 5 6\n9", "output": "Yes" }, { "input": "4 2\n1 2 0 0\n3 4", "output": "Yes" }, { "input": "5 1\n2 3 4 5 0\n1", "output": "Yes" }, { "input": "3 1\n2 0 4\n5", "output": "Yes" } ]
1,497,301,936
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
13
61
0
n,k=map(int,input().split()) a=[i for i in map(int,input().split())] b=[j for j in map(int,input().split())] if k > 1: print("Yes") else: f = False for i in range(len(a)-1): if a[i+1] == 0: a[i+1] = b[0] if a[i+1] < a[i]: print("Yes") f = True break if not f: print("No")
Title: An abandoned sentiment from past Time Limit: None seconds Memory Limit: None megabytes Problem Description: A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed. To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity. Hitagi's sequence *a* has a length of *n*. Lost elements in it are denoted by zeros. Kaiki provides another sequence *b*, whose length *k* equals the number of lost elements in *a* (i.e. the number of zeros). Hitagi is to replace each zero in *a* with an element from *b* so that each element in *b* should be used exactly once. Hitagi knows, however, that, apart from 0, no integer occurs in *a* and *b* more than once in total. If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In other words, you should detect whether it is possible to replace each zero in *a* with an integer from *b* so that each integer from *b* is used exactly once, and the resulting sequence is not increasing. Input Specification: The first line of input contains two space-separated positive integers *n* (2<=≤<=*n*<=≤<=100) and *k* (1<=≤<=*k*<=≤<=*n*) — the lengths of sequence *a* and *b* respectively. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=200) — Hitagi's broken sequence with exactly *k* zero elements. The third line contains *k* space-separated integers *b*1,<=*b*2,<=...,<=*b**k* (1<=≤<=*b**i*<=≤<=200) — the elements to fill into Hitagi's sequence. Input guarantees that apart from 0, no integer occurs in *a* and *b* more than once in total. Output Specification: Output "Yes" if it's possible to replace zeros in *a* with elements in *b* and make the resulting sequence not increasing, and "No" otherwise. Demo Input: ['4 2\n11 0 0 14\n5 4\n', '6 1\n2 3 0 8 9 10\n5\n', '4 1\n8 94 0 4\n89\n', '7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7\n'] Demo Output: ['Yes\n', 'No\n', 'Yes\n', 'Yes\n'] Note: In the first sample: - Sequence *a* is 11, 0, 0, 14. - Two of the elements are lost, and the candidates in *b* are 5 and 4. - There are two possible resulting sequences: 11, 5, 4, 14 and 11, 4, 5, 14, both of which fulfill the requirements. Thus the answer is "Yes". In the second sample, the only possible resulting sequence is 2, 3, 5, 8, 9, 10, which is an increasing sequence and therefore invalid.
```python n,k=map(int,input().split()) a=[i for i in map(int,input().split())] b=[j for j in map(int,input().split())] if k > 1: print("Yes") else: f = False for i in range(len(a)-1): if a[i+1] == 0: a[i+1] = b[0] if a[i+1] < a[i]: print("Yes") f = True break if not f: print("No") ```
0
31
A
Worms Evolution
PROGRAMMING
1,200
[ "implementation" ]
A. Worms Evolution
2
256
Professor Vasechkin is studying evolution of worms. Recently he put forward hypotheses that all worms evolve by division. There are *n* forms of worms. Worms of these forms have lengths *a*1, *a*2, ..., *a**n*. To prove his theory, professor needs to find 3 different forms that the length of the first form is equal to sum of lengths of the other two forms. Help him to do this.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of worm's forms. The second line contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=1000) — lengths of worms of each form.
Output 3 distinct integers *i* *j* *k* (1<=≤<=*i*,<=*j*,<=*k*<=≤<=*n*) — such indexes of worm's forms that *a**i*<==<=*a**j*<=+<=*a**k*. If there is no such triple, output -1. If there are several solutions, output any of them. It possible that *a**j*<==<=*a**k*.
[ "5\n1 2 3 5 7\n", "5\n1 8 1 5 1\n" ]
[ "3 2 1\n", "-1\n" ]
none
500
[ { "input": "5\n1 2 3 5 7", "output": "3 2 1" }, { "input": "5\n1 8 1 5 1", "output": "-1" }, { "input": "4\n303 872 764 401", "output": "-1" }, { "input": "6\n86 402 133 524 405 610", "output": "6 4 1" }, { "input": "8\n217 779 418 895 996 473 3 22", "output": "5 2 1" }, { "input": "10\n858 972 670 15 662 114 33 273 53 310", "output": "2 6 1" }, { "input": "100\n611 697 572 770 603 870 128 245 49 904 468 982 788 943 549 288 668 796 803 515 999 735 912 49 298 80 412 841 494 434 543 298 17 571 271 105 70 313 178 755 194 279 585 766 412 164 907 841 776 556 731 268 735 880 176 267 287 65 239 588 155 658 821 47 783 595 585 69 226 906 429 161 999 148 7 484 362 585 952 365 92 749 904 525 307 626 883 367 450 755 564 950 728 724 69 106 119 157 96 290", "output": "1 38 25" }, { "input": "100\n713 572 318 890 577 657 646 146 373 783 392 229 455 871 20 593 573 336 26 381 280 916 907 732 820 713 111 840 570 446 184 711 481 399 788 647 492 15 40 530 549 506 719 782 126 20 778 996 712 761 9 74 812 418 488 175 103 585 900 3 604 521 109 513 145 708 990 361 682 827 791 22 596 780 596 385 450 643 158 496 876 975 319 783 654 895 891 361 397 81 682 899 347 623 809 557 435 279 513 438", "output": "1 63 61" }, { "input": "100\n156 822 179 298 981 82 610 345 373 378 895 734 768 15 78 335 764 608 932 297 717 553 916 367 425 447 361 195 66 70 901 236 905 744 919 564 296 610 963 628 840 52 100 750 345 308 37 687 192 704 101 815 10 990 216 358 823 546 578 821 706 148 182 582 421 482 829 425 121 337 500 301 402 868 66 935 625 527 746 585 308 523 488 914 608 709 875 252 151 781 447 2 756 176 976 302 450 35 680 791", "output": "1 98 69" }, { "input": "100\n54 947 785 838 359 647 92 445 48 465 323 486 101 86 607 31 860 420 709 432 435 372 272 37 903 814 309 197 638 58 259 822 793 564 309 22 522 907 101 853 486 824 614 734 630 452 166 532 256 499 470 9 933 452 256 450 7 26 916 406 257 285 895 117 59 369 424 133 16 417 352 440 806 236 478 34 889 469 540 806 172 296 73 655 261 792 868 380 204 454 330 53 136 629 236 850 134 560 264 291", "output": "2 29 27" }, { "input": "99\n175 269 828 129 499 890 127 263 995 807 508 289 996 226 437 320 365 642 757 22 190 8 345 499 834 713 962 889 336 171 608 492 320 257 472 801 176 325 301 306 198 729 933 4 640 322 226 317 567 586 249 237 202 633 287 128 911 654 719 988 420 855 361 574 716 899 317 356 581 440 284 982 541 111 439 29 37 560 961 224 478 906 319 416 736 603 808 87 762 697 392 713 19 459 262 238 239 599 997", "output": "1 44 30" }, { "input": "98\n443 719 559 672 16 69 529 632 953 999 725 431 54 22 346 968 558 696 48 669 963 129 257 712 39 870 498 595 45 821 344 925 179 388 792 346 755 213 423 365 344 659 824 356 773 637 628 897 841 155 243 536 951 361 192 105 418 431 635 596 150 162 145 548 473 531 750 306 377 354 450 975 79 743 656 733 440 940 19 139 237 346 276 227 64 799 479 633 199 17 796 362 517 234 729 62 995 535", "output": "2 70 40" }, { "input": "97\n359 522 938 862 181 600 283 1000 910 191 590 220 761 818 903 264 751 751 987 316 737 898 168 925 244 674 34 950 754 472 81 6 37 520 112 891 981 454 897 424 489 238 363 709 906 951 677 828 114 373 589 835 52 89 97 435 277 560 551 204 879 469 928 523 231 163 183 609 821 915 615 969 616 23 874 437 844 321 78 53 643 786 585 38 744 347 150 179 988 985 200 11 15 9 547 886 752", "output": "1 23 10" }, { "input": "4\n303 872 764 401", "output": "-1" }, { "input": "100\n328 397 235 453 188 254 879 225 423 36 384 296 486 592 231 849 856 255 213 898 234 800 701 529 951 693 507 326 15 905 618 348 967 927 28 979 752 850 343 35 84 302 36 390 482 826 249 918 91 289 973 457 557 348 365 239 709 565 320 560 153 130 647 708 483 469 788 473 322 844 830 562 611 961 397 673 69 960 74 703 369 968 382 451 328 160 211 230 566 208 7 545 293 73 806 375 157 410 303 58", "output": "1 79 6" }, { "input": "33\n52 145 137 734 180 847 178 286 716 134 181 630 358 764 593 762 785 28 1 468 189 540 764 485 165 656 114 58 628 108 605 584 257", "output": "8 30 7" }, { "input": "57\n75 291 309 68 444 654 985 158 514 204 116 918 374 806 176 31 49 455 269 66 722 713 164 818 317 295 546 564 134 641 28 13 987 478 146 219 213 940 289 173 157 666 168 391 392 71 870 477 446 988 414 568 964 684 409 671 454", "output": "2 41 29" }, { "input": "88\n327 644 942 738 84 118 981 686 530 404 137 197 434 16 693 183 423 325 410 345 941 329 7 106 79 867 584 358 533 675 192 718 641 329 900 768 404 301 101 538 954 590 401 954 447 14 559 337 756 586 934 367 538 928 945 936 770 641 488 579 206 869 902 139 216 446 723 150 829 205 373 578 357 368 960 40 121 206 503 385 521 161 501 694 138 370 709 308", "output": "1 77 61" }, { "input": "100\n804 510 266 304 788 625 862 888 408 82 414 470 777 991 729 229 933 406 601 1 596 720 608 706 432 361 527 548 59 548 474 515 4 991 263 568 681 24 117 563 576 587 281 643 904 521 891 106 842 884 943 54 605 815 504 757 311 374 335 192 447 652 633 410 455 402 382 150 432 836 413 819 669 875 638 925 217 805 632 520 605 266 728 795 162 222 603 159 284 790 914 443 775 97 789 606 859 13 851 47", "output": "1 77 42" }, { "input": "100\n449 649 615 713 64 385 927 466 138 126 143 886 80 199 208 43 196 694 92 89 264 180 617 970 191 196 910 150 275 89 693 190 191 99 542 342 45 592 114 56 451 170 64 589 176 102 308 92 402 153 414 675 352 157 69 150 91 288 163 121 816 184 20 234 836 12 593 150 793 439 540 93 99 663 186 125 349 247 476 106 77 523 215 7 363 278 441 745 337 25 148 384 15 915 108 211 240 58 23 408", "output": "1 6 5" }, { "input": "90\n881 436 52 308 97 261 153 931 670 538 702 156 114 445 154 685 452 76 966 790 93 42 547 65 736 364 136 489 719 322 239 628 696 735 55 703 622 375 100 188 804 341 546 474 484 446 729 290 974 301 602 225 996 244 488 983 882 460 962 754 395 617 61 640 534 292 158 375 632 902 420 979 379 38 100 67 963 928 190 456 545 571 45 716 153 68 844 2 102 116", "output": "1 14 2" }, { "input": "80\n313 674 262 240 697 146 391 221 793 504 896 818 92 899 86 370 341 339 306 887 937 570 830 683 729 519 240 833 656 847 427 958 435 704 853 230 758 347 660 575 843 293 649 396 437 787 654 599 35 103 779 783 447 379 444 585 902 713 791 150 851 228 306 721 996 471 617 403 102 168 197 741 877 481 968 545 331 715 236 654", "output": "1 13 8" }, { "input": "70\n745 264 471 171 946 32 277 511 269 469 89 831 69 2 369 407 583 602 646 633 429 747 113 302 722 321 344 824 241 372 263 287 822 24 652 758 246 967 219 313 882 597 752 965 389 775 227 556 95 904 308 340 899 514 400 187 275 318 621 546 659 488 199 154 811 1 725 79 925 82", "output": "1 63 60" }, { "input": "60\n176 502 680 102 546 917 516 801 392 435 635 492 398 456 653 444 472 513 634 378 273 276 44 920 68 124 800 167 825 250 452 264 561 344 98 933 381 939 426 51 568 548 206 887 342 763 151 514 156 354 486 546 998 649 356 438 295 570 450 589", "output": "2 26 20" }, { "input": "50\n608 92 889 33 146 803 402 91 868 400 828 505 375 558 584 129 361 776 974 123 765 804 326 186 61 927 904 511 762 775 640 593 300 664 897 461 869 911 986 789 607 500 309 457 294 104 724 471 216 155", "output": "3 25 11" }, { "input": "40\n40 330 98 612 747 336 640 381 991 366 22 167 352 12 868 166 603 40 313 869 609 981 609 804 54 729 8 854 347 300 828 922 39 633 695 988 4 530 545 176", "output": "5 10 8" }, { "input": "30\n471 920 308 544 347 222 878 671 467 332 215 180 681 114 151 203 492 951 653 614 453 510 540 422 399 532 113 198 932 825", "output": "2 21 9" }, { "input": "20\n551 158 517 475 595 108 764 961 590 297 761 841 659 568 82 888 733 214 993 359", "output": "3 20 2" }, { "input": "10\n983 748 726 406 196 993 2 251 66 263", "output": "-1" }, { "input": "9\n933 266 457 863 768 257 594 136 145", "output": "-1" }, { "input": "8\n537 198 48 771 944 868 700 163", "output": "7 8 1" }, { "input": "7\n140 779 639 679 768 479 158", "output": "2 3 1" }, { "input": "6\n744 359 230 586 944 442", "output": "-1" }, { "input": "5\n700 939 173 494 120", "output": "-1" }, { "input": "4\n303 872 764 401", "output": "-1" }, { "input": "3\n907 452 355", "output": "-1" }, { "input": "3\n963 630 333", "output": "1 3 2" }, { "input": "3\n2 2 4", "output": "3 2 1" }, { "input": "3\n2 4 100", "output": "-1" } ]
1,590,170,521
2,147,483,647
Python 3
OK
TESTS
39
218
307,200
import math def ans(l,n): l1=[] x=0 y=0 z=0 for i in range(0,len(l),1): for j in range(i+1,len(l),1): if(l[i]+l[j]==n): l1.append(i) l1.append(j) l1.append(n) if(l1): return l1 t=int(input()) l=list(map(int,input().split())) k=[] p=0 for i in range(0,len(l),1): f=ans(l,l[i]) if(f): k=f p=1 break else: p=0 if(p==0): print(-1) else: n=0 g=len(k) h=k[g-1] for i in range(0,len(l),1): if(l[i]==h): n=i break k.reverse() print(n+1,end=' ') for i in range(1,g,1): print(int(k[i])+1,end=' ') print()
Title: Worms Evolution Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Professor Vasechkin is studying evolution of worms. Recently he put forward hypotheses that all worms evolve by division. There are *n* forms of worms. Worms of these forms have lengths *a*1, *a*2, ..., *a**n*. To prove his theory, professor needs to find 3 different forms that the length of the first form is equal to sum of lengths of the other two forms. Help him to do this. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of worm's forms. The second line contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=1000) — lengths of worms of each form. Output Specification: Output 3 distinct integers *i* *j* *k* (1<=≤<=*i*,<=*j*,<=*k*<=≤<=*n*) — such indexes of worm's forms that *a**i*<==<=*a**j*<=+<=*a**k*. If there is no such triple, output -1. If there are several solutions, output any of them. It possible that *a**j*<==<=*a**k*. Demo Input: ['5\n1 2 3 5 7\n', '5\n1 8 1 5 1\n'] Demo Output: ['3 2 1\n', '-1\n'] Note: none
```python import math def ans(l,n): l1=[] x=0 y=0 z=0 for i in range(0,len(l),1): for j in range(i+1,len(l),1): if(l[i]+l[j]==n): l1.append(i) l1.append(j) l1.append(n) if(l1): return l1 t=int(input()) l=list(map(int,input().split())) k=[] p=0 for i in range(0,len(l),1): f=ans(l,l[i]) if(f): k=f p=1 break else: p=0 if(p==0): print(-1) else: n=0 g=len(k) h=k[g-1] for i in range(0,len(l),1): if(l[i]==h): n=i break k.reverse() print(n+1,end=' ') for i in range(1,g,1): print(int(k[i])+1,end=' ') print() ```
3.944928
940
B
Our Tanya is Crying Out Loud
PROGRAMMING
1,400
[ "dp", "greedy" ]
null
null
Right now she actually isn't. But she will be, if you don't solve this problem. You are given integers *n*, *k*, *A* and *B*. There is a number *x*, which is initially equal to *n*. You are allowed to perform two types of operations: 1. Subtract 1 from *x*. This operation costs you *A* coins. 1. Divide *x* by *k*. Can be performed only if *x* is divisible by *k*. This operation costs you *B* coins.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109). The second line contains a single integer *k* (1<=≤<=*k*<=≤<=2·109). The third line contains a single integer *A* (1<=≤<=*A*<=≤<=2·109). The fourth line contains a single integer *B* (1<=≤<=*B*<=≤<=2·109).
Output a single integer — the minimum amount of coins you have to pay to make *x* equal to 1.
[ "9\n2\n3\n1\n", "5\n5\n2\n20\n", "19\n3\n4\n2\n" ]
[ "6\n", "8\n", "12\n" ]
In the first testcase, the optimal strategy is as follows: - Subtract 1 from *x* (9 → 8) paying 3 coins. - Divide *x* by 2 (8 → 4) paying 1 coin. - Divide *x* by 2 (4 → 2) paying 1 coin. - Divide *x* by 2 (2 → 1) paying 1 coin. The total cost is 6 coins. In the second test case the optimal strategy is to subtract 1 from *x* 4 times paying 8 coins in total.
1,250
[ { "input": "9\n2\n3\n1", "output": "6" }, { "input": "5\n5\n2\n20", "output": "8" }, { "input": "19\n3\n4\n2", "output": "12" }, { "input": "1845999546\n999435865\n1234234\n2323423", "output": "1044857680578777" }, { "input": "1604353664\n1604353665\n9993432\n1", "output": "16032999235141416" }, { "input": "777888456\n1\n98\n43", "output": "76233068590" }, { "input": "1162261467\n3\n1\n2000000000", "output": "1162261466" }, { "input": "1000000000\n1999999999\n789987\n184569875", "output": "789986999210013" }, { "input": "2000000000\n2\n1\n2000000000", "output": "1999999999" }, { "input": "1999888325\n3\n2\n2000000000", "output": "3333258884" }, { "input": "1897546487\n687\n89798979\n879876541", "output": "110398404423" }, { "input": "20\n1\n20\n1", "output": "380" }, { "input": "16\n5\n17\n3", "output": "54" }, { "input": "19\n19\n19\n1", "output": "1" }, { "input": "18\n2\n3\n16", "output": "40" }, { "input": "1\n11\n8\n9", "output": "0" }, { "input": "9\n10\n1\n20", "output": "8" }, { "input": "19\n10\n19\n2", "output": "173" }, { "input": "16\n9\n14\n2", "output": "100" }, { "input": "15\n2\n5\n2", "output": "21" }, { "input": "14\n7\n13\n1", "output": "14" }, { "input": "43\n3\n45\n3", "output": "189" }, { "input": "99\n1\n98\n1", "output": "9604" }, { "input": "77\n93\n100\n77", "output": "7600" }, { "input": "81\n3\n91\n95", "output": "380" }, { "input": "78\n53\n87\n34", "output": "2209" }, { "input": "80\n3\n15\n1", "output": "108" }, { "input": "97\n24\n4\n24", "output": "40" }, { "input": "100\n100\n1\n100", "output": "99" }, { "input": "87\n4\n17\n7", "output": "106" }, { "input": "65\n2\n3\n6", "output": "36" }, { "input": "1000000\n1435\n3\n999999", "output": "1005804" }, { "input": "783464\n483464\n2\n966928", "output": "1566926" }, { "input": "248035\n11\n3\n20", "output": "202" }, { "input": "524287\n2\n945658\n999756", "output": "34963354" }, { "input": "947352\n78946\n85\n789654", "output": "790589" }, { "input": "1000000\n1\n999899\n60", "output": "999898000101" }, { "input": "753687\n977456\n6547\n456", "output": "4934382242" }, { "input": "1000000\n500000\n1\n999997", "output": "999998" }, { "input": "997458\n843596\n1\n843596", "output": "997457" }, { "input": "821109\n92\n6547\n98787", "output": "394566" }, { "input": "1073741823\n2\n9543\n8923453", "output": "188412866" }, { "input": "1000999777\n1934999345\n2356346\n34534565", "output": "2358701818178496" }, { "input": "2000000000\n1\n2000000000\n98", "output": "3999999998000000000" }, { "input": "1999324353\n978435356\n1\n978435356", "output": "1020888998" }, { "input": "2000000000\n2\n2000000000\n2000000000", "output": "84000000000" }, { "input": "241375690\n17\n2\n1998789654", "output": "482751378" }, { "input": "171507000\n350\n789\n6548687", "output": "14216965" }, { "input": "1100220011\n10001\n2\n1999778654", "output": "1999998674" }, { "input": "1867622656\n43216\n789644\n12315468", "output": "24630936" }, { "input": "1867622656\n43216\n1\n1879865413", "output": "1867622655" }, { "input": "1999999999\n1000000000\n789987\n184569875", "output": "789987183779888" }, { "input": "1987987897\n103546\n7\n98754563", "output": "98946650" }, { "input": "10\n2\n2\n5", "output": "13" }, { "input": "7\n2\n1\n100000", "output": "6" }, { "input": "7\n2\n3\n1", "output": "8" }, { "input": "2000000000\n666666667\n1\n1", "output": "666666668" }, { "input": "1999999997\n666666666\n2\n2", "output": "1333333334" } ]
1,603,750,607
1,427
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
1
1,000
1,228,800
n = int(input()) k = int(input()) A = int(input()) B = int(input()) x = n c = 0 done = False while x > 0: if done: c += x * A elif x % k != 0: c += (x % k) * A x -= (x % k) elif B < (x - (x // k))* A: c += B x = x // k else: c += (x - (x // k))* A x = x // k done = True c -= A print(c)
Title: Our Tanya is Crying Out Loud Time Limit: None seconds Memory Limit: None megabytes Problem Description: Right now she actually isn't. But she will be, if you don't solve this problem. You are given integers *n*, *k*, *A* and *B*. There is a number *x*, which is initially equal to *n*. You are allowed to perform two types of operations: 1. Subtract 1 from *x*. This operation costs you *A* coins. 1. Divide *x* by *k*. Can be performed only if *x* is divisible by *k*. This operation costs you *B* coins. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109). The second line contains a single integer *k* (1<=≤<=*k*<=≤<=2·109). The third line contains a single integer *A* (1<=≤<=*A*<=≤<=2·109). The fourth line contains a single integer *B* (1<=≤<=*B*<=≤<=2·109). Output Specification: Output a single integer — the minimum amount of coins you have to pay to make *x* equal to 1. Demo Input: ['9\n2\n3\n1\n', '5\n5\n2\n20\n', '19\n3\n4\n2\n'] Demo Output: ['6\n', '8\n', '12\n'] Note: In the first testcase, the optimal strategy is as follows: - Subtract 1 from *x* (9 → 8) paying 3 coins. - Divide *x* by 2 (8 → 4) paying 1 coin. - Divide *x* by 2 (4 → 2) paying 1 coin. - Divide *x* by 2 (2 → 1) paying 1 coin. The total cost is 6 coins. In the second test case the optimal strategy is to subtract 1 from *x* 4 times paying 8 coins in total.
```python n = int(input()) k = int(input()) A = int(input()) B = int(input()) x = n c = 0 done = False while x > 0: if done: c += x * A elif x % k != 0: c += (x % k) * A x -= (x % k) elif B < (x - (x // k))* A: c += B x = x // k else: c += (x - (x // k))* A x = x // k done = True c -= A print(c) ```
0
831
A
Unimodal Array
PROGRAMMING
1,000
[ "implementation" ]
null
null
Array of integers is unimodal, if: - it is strictly increasing in the beginning; - after that it is constant; - after that it is strictly decreasing. The first block (increasing) and the last block (decreasing) may be absent. It is allowed that both of this blocks are absent. For example, the following three arrays are unimodal: [5,<=7,<=11,<=11,<=2,<=1], [4,<=4,<=2], [7], but the following three are not unimodal: [5,<=5,<=6,<=6,<=1], [1,<=2,<=1,<=2], [4,<=5,<=5,<=6]. Write a program that checks if an array is unimodal.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000) — the elements of the array.
Print "YES" if the given array is unimodal. Otherwise, print "NO". You can output each letter in any case (upper or lower).
[ "6\n1 5 5 5 4 2\n", "5\n10 20 30 20 10\n", "4\n1 2 1 2\n", "7\n3 3 3 3 3 3 3\n" ]
[ "YES\n", "YES\n", "NO\n", "YES\n" ]
In the first example the array is unimodal, because it is strictly increasing in the beginning (from position 1 to position 2, inclusively), that it is constant (from position 2 to position 4, inclusively) and then it is strictly decreasing (from position 4 to position 6, inclusively).
500
[ { "input": "6\n1 5 5 5 4 2", "output": "YES" }, { "input": "5\n10 20 30 20 10", "output": "YES" }, { "input": "4\n1 2 1 2", "output": "NO" }, { "input": "7\n3 3 3 3 3 3 3", "output": "YES" }, { "input": "6\n5 7 11 11 2 1", "output": "YES" }, { "input": "1\n7", "output": "YES" }, { "input": "100\n527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527", "output": "YES" }, { "input": "5\n5 5 6 6 1", "output": "NO" }, { "input": "3\n4 4 2", "output": "YES" }, { "input": "4\n4 5 5 6", "output": "NO" }, { "input": "3\n516 516 515", "output": "YES" }, { "input": "5\n502 503 508 508 507", "output": "YES" }, { "input": "10\n538 538 538 538 538 538 538 538 538 538", "output": "YES" }, { "input": "15\n452 454 455 455 450 448 443 442 439 436 433 432 431 428 426", "output": "YES" }, { "input": "20\n497 501 504 505 509 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513", "output": "YES" }, { "input": "50\n462 465 465 465 463 459 454 449 444 441 436 435 430 429 426 422 421 418 417 412 408 407 406 403 402 399 395 392 387 386 382 380 379 376 374 371 370 365 363 359 358 354 350 349 348 345 342 341 338 337", "output": "YES" }, { "input": "70\n290 292 294 297 299 300 303 305 310 312 313 315 319 320 325 327 328 333 337 339 340 341 345 350 351 354 359 364 367 372 374 379 381 382 383 384 389 393 395 397 398 400 402 405 409 411 416 417 422 424 429 430 434 435 440 442 445 449 451 453 458 460 465 470 474 477 482 482 482 479", "output": "YES" }, { "input": "99\n433 435 439 444 448 452 457 459 460 464 469 470 471 476 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 479 478 477 476 474 469 468 465 460 457 453 452 450 445 443 440 438 433 432 431 430 428 425 421 418 414 411 406 402 397 396 393", "output": "YES" }, { "input": "100\n537 538 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543", "output": "YES" }, { "input": "100\n524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 521", "output": "YES" }, { "input": "100\n235 239 243 245 246 251 254 259 260 261 264 269 272 275 277 281 282 285 289 291 292 293 298 301 302 303 305 307 308 310 315 317 320 324 327 330 334 337 342 346 347 348 353 357 361 366 370 373 376 378 379 384 386 388 390 395 398 400 405 408 413 417 420 422 424 429 434 435 438 441 443 444 445 450 455 457 459 463 465 468 471 473 475 477 481 486 491 494 499 504 504 504 504 504 504 504 504 504 504 504", "output": "YES" }, { "input": "100\n191 196 201 202 207 212 216 219 220 222 224 227 230 231 234 235 238 242 246 250 253 254 259 260 263 267 269 272 277 280 284 287 288 290 295 297 300 305 307 312 316 320 324 326 327 332 333 334 338 343 347 351 356 358 363 368 370 374 375 380 381 386 390 391 394 396 397 399 402 403 405 410 414 419 422 427 429 433 437 442 443 447 448 451 455 459 461 462 464 468 473 478 481 484 485 488 492 494 496 496", "output": "YES" }, { "input": "100\n466 466 466 466 466 464 459 455 452 449 446 443 439 436 435 433 430 428 425 424 420 419 414 412 407 404 401 396 394 391 386 382 379 375 374 369 364 362 360 359 356 351 350 347 342 340 338 337 333 330 329 326 321 320 319 316 311 306 301 297 292 287 286 281 278 273 269 266 261 257 256 255 253 252 250 245 244 242 240 238 235 230 225 220 216 214 211 209 208 206 203 198 196 194 192 190 185 182 177 173", "output": "YES" }, { "input": "100\n360 362 367 369 374 377 382 386 389 391 396 398 399 400 405 410 413 416 419 420 423 428 431 436 441 444 445 447 451 453 457 459 463 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 465 460 455 453 448 446 443 440 436 435 430 425 420 415 410 405 404 403 402 399 394 390 387 384 382 379 378 373 372 370 369 366 361 360 355 353 349 345 344 342 339 338 335 333", "output": "YES" }, { "input": "1\n1000", "output": "YES" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "YES" }, { "input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "YES" }, { "input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1", "output": "YES" }, { "input": "100\n1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "YES" }, { "input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "NO" }, { "input": "100\n998 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999", "output": "NO" }, { "input": "100\n537 538 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 691 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543", "output": "NO" }, { "input": "100\n527 527 527 527 527 527 527 527 872 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527", "output": "NO" }, { "input": "100\n524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 208 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 521", "output": "NO" }, { "input": "100\n235 239 243 245 246 251 254 259 260 261 264 269 272 275 277 281 282 285 289 291 292 293 298 301 302 303 305 307 308 310 315 317 320 324 327 330 334 337 342 921 347 348 353 357 361 366 370 373 376 378 379 384 386 388 390 395 398 400 405 408 413 417 420 422 424 429 434 435 438 441 443 444 445 450 455 457 459 463 465 468 471 473 475 477 481 486 491 494 499 504 504 504 504 504 504 504 504 504 504 504", "output": "NO" }, { "input": "100\n191 196 201 202 207 212 216 219 220 222 224 227 230 231 234 235 238 242 246 250 253 254 259 260 263 267 269 272 277 280 284 287 288 290 295 297 300 305 307 312 316 320 324 326 327 332 333 334 338 343 347 351 356 358 119 368 370 374 375 380 381 386 390 391 394 396 397 399 402 403 405 410 414 419 422 427 429 433 437 442 443 447 448 451 455 459 461 462 464 468 473 478 481 484 485 488 492 494 496 496", "output": "NO" }, { "input": "100\n466 466 466 466 466 464 459 455 452 449 446 443 439 436 435 433 430 428 425 424 420 419 414 412 407 404 401 396 394 391 386 382 379 375 374 369 364 362 360 359 356 335 350 347 342 340 338 337 333 330 329 326 321 320 319 316 311 306 301 297 292 287 286 281 278 273 269 266 261 257 256 255 253 252 250 245 244 242 240 238 235 230 225 220 216 214 211 209 208 206 203 198 196 194 192 190 185 182 177 173", "output": "NO" }, { "input": "100\n360 362 367 369 374 377 382 386 389 391 396 398 399 400 405 410 413 416 419 420 423 428 525 436 441 444 445 447 451 453 457 459 463 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 465 460 455 453 448 446 443 440 436 435 430 425 420 415 410 405 404 403 402 399 394 390 387 384 382 379 378 373 372 370 369 366 361 360 355 353 349 345 344 342 339 338 335 333", "output": "NO" }, { "input": "3\n1 2 3", "output": "YES" }, { "input": "3\n3 2 1", "output": "YES" }, { "input": "3\n1 1 2", "output": "NO" }, { "input": "3\n2 1 1", "output": "NO" }, { "input": "3\n2 1 2", "output": "NO" }, { "input": "3\n3 1 2", "output": "NO" }, { "input": "3\n1 3 2", "output": "YES" }, { "input": "100\n395 399 402 403 405 408 413 415 419 424 426 431 434 436 439 444 447 448 449 454 457 459 461 462 463 464 465 469 470 473 477 480 482 484 485 487 492 494 496 497 501 504 505 508 511 506 505 503 500 499 494 490 488 486 484 481 479 474 472 471 470 465 462 458 453 452 448 445 440 436 433 430 428 426 424 421 419 414 413 408 404 403 399 395 393 388 384 379 377 375 374 372 367 363 360 356 353 351 350 346", "output": "YES" }, { "input": "100\n263 268 273 274 276 281 282 287 288 292 294 295 296 300 304 306 308 310 311 315 319 322 326 330 333 336 339 341 342 347 351 353 356 358 363 365 369 372 374 379 383 387 389 391 392 395 396 398 403 404 407 411 412 416 419 421 424 428 429 430 434 436 440 443 444 448 453 455 458 462 463 464 469 473 477 481 486 489 492 494 499 503 506 509 510 512 514 515 511 510 507 502 499 498 494 491 486 482 477 475", "output": "YES" }, { "input": "100\n482 484 485 489 492 496 499 501 505 509 512 517 520 517 515 513 509 508 504 503 498 496 493 488 486 481 478 476 474 470 468 466 463 459 456 453 452 449 445 444 439 438 435 432 428 427 424 423 421 419 417 413 408 405 402 399 397 393 388 385 380 375 370 366 363 361 360 355 354 352 349 345 340 336 335 331 329 327 324 319 318 317 315 314 310 309 307 304 303 300 299 295 291 287 285 282 280 278 273 271", "output": "YES" }, { "input": "100\n395 399 402 403 405 408 413 415 419 424 426 431 434 436 439 444 447 448 449 454 457 459 461 462 463 464 465 469 470 473 477 480 482 484 485 487 492 494 496 32 501 504 505 508 511 506 505 503 500 499 494 490 488 486 484 481 479 474 472 471 470 465 462 458 453 452 448 445 440 436 433 430 428 426 424 421 419 414 413 408 404 403 399 395 393 388 384 379 377 375 374 372 367 363 360 356 353 351 350 346", "output": "NO" }, { "input": "100\n263 268 273 274 276 281 282 287 288 292 294 295 296 300 304 306 308 310 311 315 319 322 326 330 247 336 339 341 342 347 351 353 356 358 363 365 369 372 374 379 383 387 389 391 392 395 396 398 403 404 407 411 412 416 419 421 424 428 429 430 434 436 440 443 444 448 453 455 458 462 463 464 469 473 477 481 486 489 492 494 499 503 506 509 510 512 514 515 511 510 507 502 499 498 494 491 486 482 477 475", "output": "NO" }, { "input": "100\n482 484 485 489 492 496 499 501 505 509 512 517 520 517 515 513 509 508 504 503 497 496 493 488 486 481 478 476 474 470 468 466 463 459 456 453 452 449 445 444 439 438 435 432 428 427 424 423 421 419 417 413 408 405 402 399 397 393 388 385 380 375 370 366 363 361 360 355 354 352 349 345 340 336 335 331 329 327 324 319 318 317 315 314 310 309 307 304 303 300 299 295 291 287 285 282 280 278 273 271", "output": "YES" }, { "input": "2\n1 3", "output": "YES" }, { "input": "2\n1 2", "output": "YES" }, { "input": "5\n2 2 1 1 1", "output": "NO" }, { "input": "4\n1 3 2 2", "output": "NO" }, { "input": "6\n1 2 1 2 2 1", "output": "NO" }, { "input": "2\n4 2", "output": "YES" }, { "input": "3\n3 2 2", "output": "NO" }, { "input": "9\n1 2 2 3 3 4 3 2 1", "output": "NO" }, { "input": "4\n5 5 4 4", "output": "NO" }, { "input": "2\n2 1", "output": "YES" }, { "input": "5\n5 4 3 2 1", "output": "YES" }, { "input": "7\n4 3 3 3 3 3 3", "output": "NO" }, { "input": "5\n1 2 3 4 5", "output": "YES" }, { "input": "3\n2 2 1", "output": "YES" }, { "input": "3\n4 3 3", "output": "NO" }, { "input": "7\n1 5 5 4 3 3 1", "output": "NO" }, { "input": "6\n3 3 1 2 2 1", "output": "NO" }, { "input": "5\n1 2 1 2 1", "output": "NO" }, { "input": "2\n5 1", "output": "YES" }, { "input": "9\n1 2 3 4 4 3 2 2 1", "output": "NO" }, { "input": "3\n2 2 3", "output": "NO" }, { "input": "2\n5 4", "output": "YES" }, { "input": "5\n1 3 3 2 2", "output": "NO" }, { "input": "10\n1 2 3 4 5 6 7 8 9 99", "output": "YES" }, { "input": "4\n1 2 3 4", "output": "YES" }, { "input": "3\n5 5 2", "output": "YES" }, { "input": "4\n1 4 2 3", "output": "NO" }, { "input": "2\n3 2", "output": "YES" }, { "input": "5\n1 2 2 1 1", "output": "NO" }, { "input": "4\n3 3 2 2", "output": "NO" }, { "input": "5\n1 2 3 2 2", "output": "NO" }, { "input": "5\n5 6 6 5 5", "output": "NO" }, { "input": "4\n2 2 1 1", "output": "NO" }, { "input": "5\n5 4 3 3 2", "output": "NO" }, { "input": "7\n1 3 3 3 2 1 1", "output": "NO" }, { "input": "9\n5 6 6 5 5 4 4 3 3", "output": "NO" }, { "input": "6\n1 5 5 3 2 2", "output": "NO" }, { "input": "5\n2 1 3 3 1", "output": "NO" }, { "input": "2\n4 3", "output": "YES" }, { "input": "5\n3 2 2 1 1", "output": "NO" }, { "input": "4\n5 4 3 2", "output": "YES" }, { "input": "4\n4 4 1 1", "output": "NO" }, { "input": "4\n3 3 1 1", "output": "NO" }, { "input": "4\n4 4 2 2", "output": "NO" }, { "input": "5\n4 4 3 2 2", "output": "NO" }, { "input": "8\n4 4 4 4 5 6 7 8", "output": "NO" }, { "input": "5\n3 5 4 4 3", "output": "NO" }, { "input": "6\n2 5 3 3 2 2", "output": "NO" }, { "input": "4\n5 5 2 2", "output": "NO" }, { "input": "5\n1 2 2 3 5", "output": "NO" } ]
1,639,408,746
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
0
z = int(input('')) l = list(map(int,input().split())) a = l.index(max(l)) c = l.index(l[-1]) b = 0 d = 0 for i in range(0,a - 1): if l[i] < l[i + 1]: b = b + 1 for j in range(a, c): if l[j] > l[j + 1]: d = d + 1 if a == c: print('NO') elif b + d == len(l) - 2: print('YES') else: print('NO')
Title: Unimodal Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: Array of integers is unimodal, if: - it is strictly increasing in the beginning; - after that it is constant; - after that it is strictly decreasing. The first block (increasing) and the last block (decreasing) may be absent. It is allowed that both of this blocks are absent. For example, the following three arrays are unimodal: [5,<=7,<=11,<=11,<=2,<=1], [4,<=4,<=2], [7], but the following three are not unimodal: [5,<=5,<=6,<=6,<=1], [1,<=2,<=1,<=2], [4,<=5,<=5,<=6]. Write a program that checks if an array is unimodal. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000) — the elements of the array. Output Specification: Print "YES" if the given array is unimodal. Otherwise, print "NO". You can output each letter in any case (upper or lower). Demo Input: ['6\n1 5 5 5 4 2\n', '5\n10 20 30 20 10\n', '4\n1 2 1 2\n', '7\n3 3 3 3 3 3 3\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n', 'YES\n'] Note: In the first example the array is unimodal, because it is strictly increasing in the beginning (from position 1 to position 2, inclusively), that it is constant (from position 2 to position 4, inclusively) and then it is strictly decreasing (from position 4 to position 6, inclusively).
```python z = int(input('')) l = list(map(int,input().split())) a = l.index(max(l)) c = l.index(l[-1]) b = 0 d = 0 for i in range(0,a - 1): if l[i] < l[i + 1]: b = b + 1 for j in range(a, c): if l[j] > l[j + 1]: d = d + 1 if a == c: print('NO') elif b + d == len(l) - 2: print('YES') else: print('NO') ```
0
688
A
Opponents
PROGRAMMING
800
[ "implementation" ]
null
null
Arya has *n* opponents in the school. Each day he will fight with all opponents who are present this day. His opponents have some fighting plan that guarantees they will win, but implementing this plan requires presence of them all. That means if one day at least one of Arya's opponents is absent at the school, then Arya will beat all present opponents. Otherwise, if all opponents are present, then they will beat Arya. For each opponent Arya knows his schedule — whether or not he is going to present on each particular day. Tell him the maximum number of consecutive days that he will beat all present opponents. Note, that if some day there are no opponents present, Arya still considers he beats all the present opponents.
The first line of the input contains two integers *n* and *d* (1<=≤<=*n*,<=*d*<=≤<=100) — the number of opponents and the number of days, respectively. The *i*-th of the following *d* lines contains a string of length *n* consisting of characters '0' and '1'. The *j*-th character of this string is '0' if the *j*-th opponent is going to be absent on the *i*-th day.
Print the only integer — the maximum number of consecutive days that Arya will beat all present opponents.
[ "2 2\n10\n00\n", "4 1\n0100\n", "4 5\n1101\n1111\n0110\n1011\n1111\n" ]
[ "2\n", "1\n", "2\n" ]
In the first and the second samples, Arya will beat all present opponents each of the *d* days. In the third sample, Arya will beat his opponents on days 1, 3 and 4 and his opponents will beat him on days 2 and 5. Thus, the maximum number of consecutive winning days is 2, which happens on days 3 and 4.
500
[ { "input": "2 2\n10\n00", "output": "2" }, { "input": "4 1\n0100", "output": "1" }, { "input": "4 5\n1101\n1111\n0110\n1011\n1111", "output": "2" }, { "input": "3 2\n110\n110", "output": "2" }, { "input": "10 6\n1111111111\n0100110101\n1111111111\n0000011010\n1111111111\n1111111111", "output": "1" }, { "input": "10 10\n1111111111\n0001001000\n1111111111\n1111111111\n1111111111\n1000000100\n1111111111\n0000011100\n1111111111\n1111111111", "output": "1" }, { "input": "10 10\n0000100011\n0100001111\n1111111111\n1100011111\n1111111111\n1000111000\n1111000010\n0111001001\n1101010110\n1111111111", "output": "4" }, { "input": "10 10\n1100110010\n0000000001\n1011100111\n1111111111\n1111111111\n1111111111\n1100010110\n1111111111\n1001001010\n1111111111", "output": "3" }, { "input": "10 7\n0000111001\n1111111111\n0110110001\n1111111111\n1111111111\n1000111100\n0110000111", "output": "2" }, { "input": "5 10\n00110\n11000\n10010\n00010\n11110\n01101\n11111\n10001\n11111\n01001", "output": "6" }, { "input": "5 9\n11111\n11101\n11111\n11111\n01010\n01010\n00000\n11111\n00111", "output": "3" }, { "input": "5 10\n11111\n00010\n11010\n11111\n11111\n00100\n11111\n11111\n01000\n11111", "output": "2" }, { "input": "5 9\n11111\n11111\n11111\n11111\n11100\n11111\n11111\n11111\n00000", "output": "1" }, { "input": "5 8\n11111\n10110\n01001\n11111\n01100\n10010\n11111\n11111", "output": "2" }, { "input": "1 1\n1", "output": "0" }, { "input": "100 1\n0011001100100010000011001100000001011101110110010001110001101100110011111101001011011001000010001111", "output": "1" }, { "input": "100 1\n1011011100000101000111110000110111010101110010010011110010001110100011001110110101111100100110000000", "output": "1" }, { "input": "100 1\n1110000011110101010111111100011001100000101101010110100101110000011100110110110101011100110110010011", "output": "1" }, { "input": "100 1\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "0" }, { "input": "1 100\n1\n0\n0\n0\n1\n1\n0\n0\n0\n0\n1\n1\n0\n1\n1\n0\n0\n1\n1\n1\n0\n0\n1\n1\n1\n1\n1\n0\n1\n0\n0\n0\n1\n1\n0\n1\n0\n1\n0\n0\n0\n1\n0\n1\n0\n0\n0\n1\n1\n1\n0\n1\n1\n1\n0\n1\n0\n1\n1\n1\n1\n0\n0\n0\n0\n0\n0\n1\n1\n0\n1\n1\n1\n1\n1\n0\n1\n1\n1\n1\n1\n0\n1\n0\n0\n1\n0\n0\n1\n0\n0\n1\n0\n1\n1\n1\n0\n1\n0\n0", "output": "6" }, { "input": "1 100\n0\n0\n0\n0\n1\n0\n0\n0\n0\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0", "output": "49" }, { "input": "1 100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1", "output": "0" }, { "input": "1 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0", "output": "100" }, { "input": "2 2\n11\n10", "output": "1" }, { "input": "1 1\n0", "output": "1" } ]
1,591,219,269
2,147,483,647
PyPy 3
OK
TESTS
56
155
0
n, d = map(int, input().split()) cnt, ans = 0, 0 for _ in range(d): s = input() if s.count('0') > 0: cnt += 1 ans = max(cnt, ans) else: cnt = 0 print(ans)
Title: Opponents Time Limit: None seconds Memory Limit: None megabytes Problem Description: Arya has *n* opponents in the school. Each day he will fight with all opponents who are present this day. His opponents have some fighting plan that guarantees they will win, but implementing this plan requires presence of them all. That means if one day at least one of Arya's opponents is absent at the school, then Arya will beat all present opponents. Otherwise, if all opponents are present, then they will beat Arya. For each opponent Arya knows his schedule — whether or not he is going to present on each particular day. Tell him the maximum number of consecutive days that he will beat all present opponents. Note, that if some day there are no opponents present, Arya still considers he beats all the present opponents. Input Specification: The first line of the input contains two integers *n* and *d* (1<=≤<=*n*,<=*d*<=≤<=100) — the number of opponents and the number of days, respectively. The *i*-th of the following *d* lines contains a string of length *n* consisting of characters '0' and '1'. The *j*-th character of this string is '0' if the *j*-th opponent is going to be absent on the *i*-th day. Output Specification: Print the only integer — the maximum number of consecutive days that Arya will beat all present opponents. Demo Input: ['2 2\n10\n00\n', '4 1\n0100\n', '4 5\n1101\n1111\n0110\n1011\n1111\n'] Demo Output: ['2\n', '1\n', '2\n'] Note: In the first and the second samples, Arya will beat all present opponents each of the *d* days. In the third sample, Arya will beat his opponents on days 1, 3 and 4 and his opponents will beat him on days 2 and 5. Thus, the maximum number of consecutive winning days is 2, which happens on days 3 and 4.
```python n, d = map(int, input().split()) cnt, ans = 0, 0 for _ in range(d): s = input() if s.count('0') > 0: cnt += 1 ans = max(cnt, ans) else: cnt = 0 print(ans) ```
3
938
C
Constructing Tests
PROGRAMMING
1,700
[ "binary search", "brute force", "constructive algorithms" ]
null
null
Let's denote a *m*-free matrix as a binary (that is, consisting of only 1's and 0's) matrix such that every square submatrix of size *m*<=×<=*m* of this matrix contains at least one zero. Consider the following problem: You are given two integers *n* and *m*. You have to construct an *m*-free square matrix of size *n*<=×<=*n* such that the number of 1's in this matrix is maximum possible. Print the maximum possible number of 1's in such matrix. You don't have to solve this problem. Instead, you have to construct a few tests for it. You will be given *t* numbers *x*1, *x*2, ..., *x**t*. For every , find two integers *n**i* and *m**i* (*n**i*<=≥<=*m**i*) such that the answer for the aforementioned problem is exactly *x**i* if we set *n*<==<=*n**i* and *m*<==<=*m**i*.
The first line contains one integer *t* (1<=≤<=*t*<=≤<=100) — the number of tests you have to construct. Then *t* lines follow, *i*-th line containing one integer *x**i* (0<=≤<=*x**i*<=≤<=109). Note that in hacks you have to set *t*<==<=1.
For each test you have to construct, output two positive numbers *n**i* and *m**i* (1<=≤<=*m**i*<=≤<=*n**i*<=≤<=109) such that the maximum number of 1's in a *m**i*-free *n**i*<=×<=*n**i* matrix is exactly *x**i*. If there are multiple solutions, you may output any of them; and if this is impossible to construct a test, output a single integer <=-<=1.
[ "3\n21\n0\n1\n" ]
[ "5 2\n1 1\n-1\n" ]
none
0
[ { "input": "3\n21\n0\n1", "output": "5 2\n1 1\n-1" }, { "input": "1\n420441920", "output": "-1" }, { "input": "1\n4", "output": "-1" }, { "input": "1\n297540", "output": "546 22" }, { "input": "1\n9", "output": "-1" }, { "input": "1\n144", "output": "-1" }, { "input": "1\n16", "output": "-1" }, { "input": "1\n25", "output": "-1" }, { "input": "1\n999944", "output": "-1" }, { "input": "1\n6", "output": "-1" }, { "input": "1\n14", "output": "-1" }, { "input": "1\n81", "output": "-1" }, { "input": "1\n2", "output": "-1" }, { "input": "1\n36", "output": "-1" }, { "input": "1\n2925", "output": "-1" }, { "input": "1\n5704", "output": "77 5" }, { "input": "1\n4104", "output": "-1" }, { "input": "1\n1980", "output": "-1" }, { "input": "1\n10", "output": "-1" }, { "input": "1\n4860", "output": "72 4" }, { "input": "1\n2601", "output": "-1" }, { "input": "1\n28", "output": "-1" }, { "input": "1\n56", "output": "-1" } ]
1,518,799,960
6,460
Python 3
TIME_LIMIT_EXCEEDED
TESTS
1
1,000
5,632,000
import math n = int(input()) a = [int(input()) for i in range(n)] for el in a: x = math.ceil(el ** 0.5) - 1 f = True while f and x < el + 1000: x += 1 for i in range(1, x + 1): if x ** 2 - i ** 2 == el: print(x, i) f = False if f: print(-1)
Title: Constructing Tests Time Limit: None seconds Memory Limit: None megabytes Problem Description: Let's denote a *m*-free matrix as a binary (that is, consisting of only 1's and 0's) matrix such that every square submatrix of size *m*<=×<=*m* of this matrix contains at least one zero. Consider the following problem: You are given two integers *n* and *m*. You have to construct an *m*-free square matrix of size *n*<=×<=*n* such that the number of 1's in this matrix is maximum possible. Print the maximum possible number of 1's in such matrix. You don't have to solve this problem. Instead, you have to construct a few tests for it. You will be given *t* numbers *x*1, *x*2, ..., *x**t*. For every , find two integers *n**i* and *m**i* (*n**i*<=≥<=*m**i*) such that the answer for the aforementioned problem is exactly *x**i* if we set *n*<==<=*n**i* and *m*<==<=*m**i*. Input Specification: The first line contains one integer *t* (1<=≤<=*t*<=≤<=100) — the number of tests you have to construct. Then *t* lines follow, *i*-th line containing one integer *x**i* (0<=≤<=*x**i*<=≤<=109). Note that in hacks you have to set *t*<==<=1. Output Specification: For each test you have to construct, output two positive numbers *n**i* and *m**i* (1<=≤<=*m**i*<=≤<=*n**i*<=≤<=109) such that the maximum number of 1's in a *m**i*-free *n**i*<=×<=*n**i* matrix is exactly *x**i*. If there are multiple solutions, you may output any of them; and if this is impossible to construct a test, output a single integer <=-<=1. Demo Input: ['3\n21\n0\n1\n'] Demo Output: ['5 2\n1 1\n-1\n'] Note: none
```python import math n = int(input()) a = [int(input()) for i in range(n)] for el in a: x = math.ceil(el ** 0.5) - 1 f = True while f and x < el + 1000: x += 1 for i in range(1, x + 1): if x ** 2 - i ** 2 == el: print(x, i) f = False if f: print(-1) ```
0
964
A
Splits
PROGRAMMING
800
[ "math" ]
null
null
Let's define a split of $n$ as a nonincreasing sequence of positive integers, the sum of which is $n$. For example, the following sequences are splits of $8$: $[4, 4]$, $[3, 3, 2]$, $[2, 2, 1, 1, 1, 1]$, $[5, 2, 1]$. The following sequences aren't splits of $8$: $[1, 7]$, $[5, 4]$, $[11, -3]$, $[1, 1, 4, 1, 1]$. The weight of a split is the number of elements in the split that are equal to the first element. For example, the weight of the split $[1, 1, 1, 1, 1]$ is $5$, the weight of the split $[5, 5, 3, 3, 3]$ is $2$ and the weight of the split $[9]$ equals $1$. For a given $n$, find out the number of different weights of its splits.
The first line contains one integer $n$ ($1 \leq n \leq 10^9$).
Output one integer — the answer to the problem.
[ "7\n", "8\n", "9\n" ]
[ "4\n", "5\n", "5\n" ]
In the first sample, there are following possible weights of splits of $7$: Weight 1: [$\textbf 7$] Weight 2: [$\textbf 3$, $\textbf 3$, 1] Weight 3: [$\textbf 2$, $\textbf 2$, $\textbf 2$, 1] Weight 7: [$\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$]
500
[ { "input": "7", "output": "4" }, { "input": "8", "output": "5" }, { "input": "9", "output": "5" }, { "input": "1", "output": "1" }, { "input": "286", "output": "144" }, { "input": "48", "output": "25" }, { "input": "941", "output": "471" }, { "input": "45154", "output": "22578" }, { "input": "60324", "output": "30163" }, { "input": "91840", "output": "45921" }, { "input": "41909", "output": "20955" }, { "input": "58288", "output": "29145" }, { "input": "91641", "output": "45821" }, { "input": "62258", "output": "31130" }, { "input": "79811", "output": "39906" }, { "input": "88740", "output": "44371" }, { "input": "12351", "output": "6176" }, { "input": "1960", "output": "981" }, { "input": "29239", "output": "14620" }, { "input": "85801", "output": "42901" }, { "input": "43255", "output": "21628" }, { "input": "13439", "output": "6720" }, { "input": "35668", "output": "17835" }, { "input": "19122", "output": "9562" }, { "input": "60169", "output": "30085" }, { "input": "50588", "output": "25295" }, { "input": "2467", "output": "1234" }, { "input": "39315", "output": "19658" }, { "input": "29950", "output": "14976" }, { "input": "17286", "output": "8644" }, { "input": "7359066", "output": "3679534" }, { "input": "1016391", "output": "508196" }, { "input": "7928871", "output": "3964436" }, { "input": "3968891", "output": "1984446" }, { "input": "2636452", "output": "1318227" }, { "input": "5076901", "output": "2538451" }, { "input": "9870265", "output": "4935133" }, { "input": "2453786", "output": "1226894" }, { "input": "7263670", "output": "3631836" }, { "input": "1890845", "output": "945423" }, { "input": "574128507", "output": "287064254" }, { "input": "648476655", "output": "324238328" }, { "input": "97349542", "output": "48674772" }, { "input": "716489761", "output": "358244881" }, { "input": "858771038", "output": "429385520" }, { "input": "520778784", "output": "260389393" }, { "input": "439004204", "output": "219502103" }, { "input": "589992198", "output": "294996100" }, { "input": "371106544", "output": "185553273" }, { "input": "894241590", "output": "447120796" }, { "input": "123957268", "output": "61978635" }, { "input": "234149297", "output": "117074649" }, { "input": "789954052", "output": "394977027" }, { "input": "667978920", "output": "333989461" }, { "input": "154647261", "output": "77323631" }, { "input": "751453521", "output": "375726761" }, { "input": "848862308", "output": "424431155" }, { "input": "323926781", "output": "161963391" }, { "input": "576768825", "output": "288384413" }, { "input": "31293802", "output": "15646902" }, { "input": "2", "output": "2" }, { "input": "1000000000", "output": "500000001" }, { "input": "3", "output": "2" } ]
1,523,974,132
232
PyPy 3
OK
TESTS
63
109
21,094,400
n = int(input()) a = n // 2 + 1 print(a)
Title: Splits Time Limit: None seconds Memory Limit: None megabytes Problem Description: Let's define a split of $n$ as a nonincreasing sequence of positive integers, the sum of which is $n$. For example, the following sequences are splits of $8$: $[4, 4]$, $[3, 3, 2]$, $[2, 2, 1, 1, 1, 1]$, $[5, 2, 1]$. The following sequences aren't splits of $8$: $[1, 7]$, $[5, 4]$, $[11, -3]$, $[1, 1, 4, 1, 1]$. The weight of a split is the number of elements in the split that are equal to the first element. For example, the weight of the split $[1, 1, 1, 1, 1]$ is $5$, the weight of the split $[5, 5, 3, 3, 3]$ is $2$ and the weight of the split $[9]$ equals $1$. For a given $n$, find out the number of different weights of its splits. Input Specification: The first line contains one integer $n$ ($1 \leq n \leq 10^9$). Output Specification: Output one integer — the answer to the problem. Demo Input: ['7\n', '8\n', '9\n'] Demo Output: ['4\n', '5\n', '5\n'] Note: In the first sample, there are following possible weights of splits of $7$: Weight 1: [$\textbf 7$] Weight 2: [$\textbf 3$, $\textbf 3$, 1] Weight 3: [$\textbf 2$, $\textbf 2$, $\textbf 2$, 1] Weight 7: [$\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$]
```python n = int(input()) a = n // 2 + 1 print(a) ```
3
16
B
Burglar and Matches
PROGRAMMING
900
[ "greedy", "implementation", "sortings" ]
B. Burglar and Matches
0
64
A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are *m* containers, in the *i*-th container there are *a**i* matchboxes, and each matchbox contains *b**i* matches. All the matchboxes are of the same size. The burglar's rucksack can hold *n* matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than *n* matchboxes so that the total amount of matches in them is maximal.
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=2·108) and integer *m* (1<=≤<=*m*<=≤<=20). The *i*<=+<=1-th line contains a pair of numbers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=108,<=1<=≤<=*b**i*<=≤<=10). All the input numbers are integer.
Output the only number — answer to the problem.
[ "7 3\n5 10\n2 5\n3 6\n", "3 3\n1 3\n2 2\n3 1\n" ]
[ "62\n", "7\n" ]
none
0
[ { "input": "7 3\n5 10\n2 5\n3 6", "output": "62" }, { "input": "3 3\n1 3\n2 2\n3 1", "output": "7" }, { "input": "1 1\n1 2", "output": "2" }, { "input": "1 2\n1 9\n1 6", "output": "9" }, { "input": "1 10\n1 1\n1 9\n1 3\n1 9\n1 7\n1 10\n1 4\n1 7\n1 3\n1 1", "output": "10" }, { "input": "2 1\n2 1", "output": "2" }, { "input": "2 2\n2 4\n1 4", "output": "8" }, { "input": "2 3\n1 7\n1 2\n1 5", "output": "12" }, { "input": "4 1\n2 2", "output": "4" }, { "input": "4 2\n1 10\n4 4", "output": "22" }, { "input": "4 3\n1 4\n6 4\n1 7", "output": "19" }, { "input": "5 1\n10 5", "output": "25" }, { "input": "5 2\n3 9\n2 2", "output": "31" }, { "input": "5 5\n2 9\n3 1\n2 1\n1 8\n2 8", "output": "42" }, { "input": "5 10\n1 3\n1 2\n1 9\n1 10\n1 1\n1 5\n1 10\n1 2\n1 3\n1 7", "output": "41" }, { "input": "10 1\n9 4", "output": "36" }, { "input": "10 2\n14 3\n1 3", "output": "30" }, { "input": "10 7\n4 8\n1 10\n1 10\n1 2\n3 3\n1 3\n1 10", "output": "71" }, { "input": "10 10\n1 8\n2 10\n1 9\n1 1\n1 9\n1 6\n1 4\n2 5\n1 2\n1 4", "output": "70" }, { "input": "10 4\n1 5\n5 2\n1 9\n3 3", "output": "33" }, { "input": "100 5\n78 6\n29 10\n3 6\n7 3\n2 4", "output": "716" }, { "input": "1000 7\n102 10\n23 6\n79 4\n48 1\n34 10\n839 8\n38 4", "output": "8218" }, { "input": "10000 10\n336 2\n2782 5\n430 10\n1893 7\n3989 10\n2593 8\n165 6\n1029 2\n2097 4\n178 10", "output": "84715" }, { "input": "100000 3\n2975 2\n35046 4\n61979 9", "output": "703945" }, { "input": "1000000 4\n314183 9\n304213 4\n16864 5\n641358 9", "output": "8794569" }, { "input": "10000000 10\n360313 10\n416076 1\n435445 9\n940322 7\n1647581 7\n4356968 10\n3589256 2\n2967933 5\n2747504 7\n1151633 3", "output": "85022733" }, { "input": "100000000 7\n32844337 7\n11210848 7\n47655987 1\n33900472 4\n9174763 2\n32228738 10\n29947408 5", "output": "749254060" }, { "input": "200000000 10\n27953106 7\n43325979 4\n4709522 1\n10975786 4\n67786538 8\n48901838 7\n15606185 6\n2747583 1\n100000000 1\n633331 3", "output": "1332923354" }, { "input": "200000000 9\n17463897 9\n79520463 1\n162407 4\n41017993 8\n71054118 4\n9447587 2\n5298038 9\n3674560 7\n20539314 5", "output": "996523209" }, { "input": "200000000 8\n6312706 6\n2920548 2\n16843192 3\n1501141 2\n13394704 6\n10047725 10\n4547663 6\n54268518 6", "output": "630991750" }, { "input": "200000000 7\n25621043 2\n21865270 1\n28833034 1\n22185073 5\n100000000 2\n13891017 9\n61298710 8", "output": "931584598" }, { "input": "200000000 6\n7465600 6\n8453505 10\n4572014 8\n8899499 3\n86805622 10\n64439238 6", "output": "1447294907" }, { "input": "200000000 5\n44608415 6\n100000000 9\n51483223 9\n44136047 1\n52718517 1", "output": "1634907859" }, { "input": "200000000 4\n37758556 10\n100000000 6\n48268521 3\n20148178 10", "output": "1305347138" }, { "input": "200000000 3\n65170000 7\n20790088 1\n74616133 4", "output": "775444620" }, { "input": "200000000 2\n11823018 6\n100000000 9", "output": "970938108" }, { "input": "200000000 1\n100000000 6", "output": "600000000" }, { "input": "200000000 10\n12097724 9\n41745972 5\n26982098 9\n14916995 7\n21549986 7\n3786630 9\n8050858 7\n27994924 4\n18345001 5\n8435339 5", "output": "1152034197" }, { "input": "200000000 10\n55649 8\n10980981 9\n3192542 8\n94994808 4\n3626106 1\n100000000 6\n5260110 9\n4121453 2\n15125061 4\n669569 6", "output": "1095537357" }, { "input": "10 20\n1 7\n1 7\n1 8\n1 3\n1 10\n1 7\n1 7\n1 9\n1 3\n1 1\n1 2\n1 1\n1 3\n1 10\n1 9\n1 8\n1 8\n1 6\n1 7\n1 5", "output": "83" }, { "input": "10000000 20\n4594 7\n520836 8\n294766 6\n298672 4\n142253 6\n450626 1\n1920034 9\n58282 4\n1043204 1\n683045 1\n1491746 5\n58420 4\n451217 2\n129423 4\n246113 5\n190612 8\n912923 6\n473153 6\n783733 6\n282411 10", "output": "54980855" }, { "input": "200000000 20\n15450824 5\n839717 10\n260084 8\n1140850 8\n28744 6\n675318 3\n25161 2\n5487 3\n6537698 9\n100000000 5\n7646970 9\n16489 6\n24627 3\n1009409 5\n22455 1\n25488456 4\n484528 9\n32663641 3\n750968 4\n5152 6", "output": "939368573" }, { "input": "200000000 20\n16896 2\n113 3\n277 2\n299 7\n69383562 2\n3929 8\n499366 4\n771846 5\n9 4\n1278173 7\n90 2\n54 7\n72199858 10\n17214 5\n3 10\n1981618 3\n3728 2\n141 8\n2013578 9\n51829246 5", "output": "1158946383" }, { "input": "200000000 20\n983125 2\n7453215 9\n9193588 2\n11558049 7\n28666199 1\n34362244 1\n5241493 5\n15451270 4\n19945845 8\n6208681 3\n38300385 7\n6441209 8\n21046742 7\n577198 10\n3826434 8\n9764276 8\n6264675 7\n8567063 3\n3610303 4\n2908232 3", "output": "1131379312" }, { "input": "10 15\n1 6\n2 6\n3 4\n1 3\n1 2\n1 5\n1 6\n1 2\n2 9\n1 10\n1 3\n1 7\n1 8\n1 2\n2 9", "output": "79" }, { "input": "10000000 15\n111 5\n914124 3\n3 9\n177790 1\n2352 3\n32138 9\n104477 1\n1223 4\n18 6\n6655580 4\n57643 10\n94309 2\n37 1\n227002 10\n1733193 7", "output": "45116295" }, { "input": "200000000 15\n7069868 1\n5567826 8\n2310059 10\n13539782 7\n38420939 4\n29911411 8\n52256316 1\n12265839 9\n2074265 1\n24896428 9\n72470695 5\n3236301 1\n3890243 2\n65168965 8\n65724 6", "output": "1489289257" }, { "input": "200000000 15\n12044094 7\n2475138 10\n944451 7\n4854766 2\n3809145 10\n7727571 2\n43908937 6\n2745883 1\n427511 2\n100000000 5\n190914 6\n554889 3\n288798 4\n1848572 5\n893874 3", "output": "961871671" }, { "input": "200000000 15\n6334191 7\n1927941 4\n5175933 10\n468389 1\n433043 10\n6863198 5\n7480646 4\n14774279 10\n2921129 8\n18325627 7\n6973152 9\n8277324 9\n21522856 2\n2058070 1\n2444742 4", "output": "664376069" } ]
1,596,865,543
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
25
500
67,072,000
def q16b(): n, m = tuple([int(num) for num in input().split()]) boxes = [] for _ in range(m): a, b = tuple([int(num) for num in input().split()]) boxes = boxes + [b for _ in range(a)] boxes.sort() boxes.reverse() print(sum(boxes[:n])) q16b()
Title: Burglar and Matches Time Limit: 0 seconds Memory Limit: 64 megabytes Problem Description: A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are *m* containers, in the *i*-th container there are *a**i* matchboxes, and each matchbox contains *b**i* matches. All the matchboxes are of the same size. The burglar's rucksack can hold *n* matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than *n* matchboxes so that the total amount of matches in them is maximal. Input Specification: The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=2·108) and integer *m* (1<=≤<=*m*<=≤<=20). The *i*<=+<=1-th line contains a pair of numbers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=108,<=1<=≤<=*b**i*<=≤<=10). All the input numbers are integer. Output Specification: Output the only number — answer to the problem. Demo Input: ['7 3\n5 10\n2 5\n3 6\n', '3 3\n1 3\n2 2\n3 1\n'] Demo Output: ['62\n', '7\n'] Note: none
```python def q16b(): n, m = tuple([int(num) for num in input().split()]) boxes = [] for _ in range(m): a, b = tuple([int(num) for num in input().split()]) boxes = boxes + [b for _ in range(a)] boxes.sort() boxes.reverse() print(sum(boxes[:n])) q16b() ```
0
82
A
Double Cola
PROGRAMMING
1,100
[ "implementation", "math" ]
A. Double Cola
1
256
Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a "Double Cola" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum. For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny. Write a program that will print the name of a man who will drink the *n*-th can. Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon.
The input data consist of a single integer *n* (1<=≤<=*n*<=≤<=109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers.
Print the single line — the name of the person who drinks the *n*-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: "Sheldon", "Leonard", "Penny", "Rajesh", "Howard" (without the quotes). In that order precisely the friends are in the queue initially.
[ "1\n", "6\n", "1802\n" ]
[ "Sheldon\n", "Sheldon\n", "Penny\n" ]
none
500
[ { "input": "1", "output": "Sheldon" }, { "input": "6", "output": "Sheldon" }, { "input": "1802", "output": "Penny" }, { "input": "1", "output": "Sheldon" }, { "input": "2", "output": "Leonard" }, { "input": "3", "output": "Penny" }, { "input": "4", "output": "Rajesh" }, { "input": "5", "output": "Howard" }, { "input": "10", "output": "Penny" }, { "input": "534", "output": "Rajesh" }, { "input": "5033", "output": "Howard" }, { "input": "10010", "output": "Howard" }, { "input": "500000000", "output": "Penny" }, { "input": "63", "output": "Rajesh" }, { "input": "841", "output": "Leonard" }, { "input": "3667", "output": "Penny" }, { "input": "38614", "output": "Howard" }, { "input": "282798", "output": "Rajesh" }, { "input": "9266286", "output": "Rajesh" }, { "input": "27385966", "output": "Leonard" }, { "input": "121580142", "output": "Penny" }, { "input": "5", "output": "Howard" }, { "input": "300", "output": "Howard" }, { "input": "1745", "output": "Leonard" }, { "input": "8302", "output": "Rajesh" }, { "input": "184518", "output": "Sheldon" }, { "input": "1154414", "output": "Rajesh" }, { "input": "28643950", "output": "Leonard" }, { "input": "159222638", "output": "Howard" }, { "input": "24", "output": "Penny" }, { "input": "505", "output": "Penny" }, { "input": "4425", "output": "Rajesh" }, { "input": "12079", "output": "Sheldon" }, { "input": "469726", "output": "Penny" }, { "input": "3961838", "output": "Penny" }, { "input": "57710446", "output": "Leonard" }, { "input": "80719470", "output": "Howard" }, { "input": "1000000000", "output": "Penny" }, { "input": "999999999", "output": "Penny" }, { "input": "999999998", "output": "Penny" }, { "input": "5", "output": "Howard" } ]
1,662,379,374
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
7
61
1,433,600
n = int(input()) i = 'slprg' for j in range(n): i = i[1:] + i[0] * 2 if i[-1] == 'p': print('Penny') elif i[-1] == 's': print('Sheldon') elif i[-1] == 'l': print('Leonard') elif i[-1] == 'r': print('Rajesh') elif i[-1] == 'h': print('Howard')
Title: Double Cola Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a "Double Cola" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum. For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny. Write a program that will print the name of a man who will drink the *n*-th can. Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon. Input Specification: The input data consist of a single integer *n* (1<=≤<=*n*<=≤<=109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers. Output Specification: Print the single line — the name of the person who drinks the *n*-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: "Sheldon", "Leonard", "Penny", "Rajesh", "Howard" (without the quotes). In that order precisely the friends are in the queue initially. Demo Input: ['1\n', '6\n', '1802\n'] Demo Output: ['Sheldon\n', 'Sheldon\n', 'Penny\n'] Note: none
```python n = int(input()) i = 'slprg' for j in range(n): i = i[1:] + i[0] * 2 if i[-1] == 'p': print('Penny') elif i[-1] == 's': print('Sheldon') elif i[-1] == 'l': print('Leonard') elif i[-1] == 'r': print('Rajesh') elif i[-1] == 'h': print('Howard') ```
0
30
A
Accounting
PROGRAMMING
1,400
[ "brute force", "math" ]
A. Accounting
2
256
A long time ago in some far country lived king Copa. After the recent king's reform, he got so large powers that started to keep the books by himself. The total income *A* of his kingdom during 0-th year is known, as well as the total income *B* during *n*-th year (these numbers can be negative — it means that there was a loss in the correspondent year). King wants to show financial stability. To do this, he needs to find common coefficient *X* — the coefficient of income growth during one year. This coefficient should satisfy the equation: Surely, the king is not going to do this job by himself, and demands you to find such number *X*. It is necessary to point out that the fractional numbers are not used in kingdom's economy. That's why all input numbers as well as coefficient *X* must be integers. The number *X* may be zero or negative.
The input contains three integers *A*, *B*, *n* (|*A*|,<=|*B*|<=≤<=1000, 1<=≤<=*n*<=≤<=10).
Output the required integer coefficient *X*, or «No solution», if such a coefficient does not exist or it is fractional. If there are several possible solutions, output any of them.
[ "2 18 2\n", "-1 8 3\n", "0 0 10\n", "1 16 5\n" ]
[ "3", "-2", "5", "No solution" ]
none
500
[ { "input": "2 18 2", "output": "3" }, { "input": "-1 8 3", "output": "-2" }, { "input": "0 0 10", "output": "5" }, { "input": "1 16 5", "output": "No solution" }, { "input": "0 1 2", "output": "No solution" }, { "input": "3 0 4", "output": "0" }, { "input": "1 1000 1", "output": "1000" }, { "input": "7 896 7", "output": "2" }, { "input": "4 972 1", "output": "243" }, { "input": "-1 -1 5", "output": "1" }, { "input": "-1 0 4", "output": "0" }, { "input": "-7 0 1", "output": "0" }, { "input": "-5 -5 3", "output": "1" }, { "input": "-5 -5 9", "output": "1" }, { "input": "-5 -5 6", "output": "1" }, { "input": "-4 0 1", "output": "0" }, { "input": "-5 0 3", "output": "0" }, { "input": "-4 4 9", "output": "-1" }, { "input": "10 0 6", "output": "0" }, { "input": "-5 3 4", "output": "No solution" }, { "input": "0 3 6", "output": "No solution" }, { "input": "3 6 10", "output": "No solution" }, { "input": "-3 7 5", "output": "No solution" }, { "input": "-526 526 1", "output": "-1" }, { "input": "-373 373 3", "output": "-1" }, { "input": "-141 0 8", "output": "0" }, { "input": "7 175 1", "output": "25" }, { "input": "-5 -560 1", "output": "112" }, { "input": "-1 -512 10", "output": "No solution" }, { "input": "-3 -768 8", "output": "2" }, { "input": "-3 -768 7", "output": "No solution" }, { "input": "-3 -768 9", "output": "No solution" }, { "input": "-3 -768 4", "output": "4" }, { "input": "4 972 4", "output": "No solution" }, { "input": "4 972 5", "output": "3" }, { "input": "4 972 6", "output": "No solution" }, { "input": "4 972 1", "output": "243" }, { "input": "4 972 2", "output": "No solution" }, { "input": "1 1000 1", "output": "1000" }, { "input": "1 961 2", "output": "31" }, { "input": "1 1000 3", "output": "10" }, { "input": "1 625 4", "output": "5" }, { "input": "4 972 5", "output": "3" }, { "input": "1 729 6", "output": "3" }, { "input": "7 896 7", "output": "2" }, { "input": "3 768 8", "output": "2" }, { "input": "1 512 9", "output": "2" }, { "input": "1 1000 1", "output": "1000" }, { "input": "1 961 2", "output": "31" }, { "input": "1 1000 3", "output": "10" }, { "input": "1 625 4", "output": "5" }, { "input": "4 972 5", "output": "3" }, { "input": "1 729 6", "output": "3" }, { "input": "7 896 7", "output": "2" }, { "input": "3 768 8", "output": "2" }, { "input": "1 512 9", "output": "2" }, { "input": "1 1000 1", "output": "1000" }, { "input": "1 961 2", "output": "31" }, { "input": "1 1000 3", "output": "10" }, { "input": "1 625 4", "output": "5" }, { "input": "4 972 5", "output": "3" }, { "input": "1 729 6", "output": "3" }, { "input": "7 896 7", "output": "2" }, { "input": "3 768 8", "output": "2" }, { "input": "1 512 9", "output": "2" }, { "input": "1 1 5", "output": "1" }, { "input": "1 1 4", "output": "1" }, { "input": "1 -1 1", "output": "-1" } ]
1,697,041,578
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
2
154
2,764,800
y=input().split(" ") A=int(y[0]) B=int(y[1]) n=int(y[2]) c=B/A o=1 if c>=0: c=c if c<=0: c=c*(-1) o=-1 if A!=0 and B!=0: #print(o*c) X=c**(1/n) if X%1==0: print(int(X)*o) if X%1!=0: print("No solution") if A==0 and B!=0: print("No solution") if A==0 and B==0: print(5)
Title: Accounting Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A long time ago in some far country lived king Copa. After the recent king's reform, he got so large powers that started to keep the books by himself. The total income *A* of his kingdom during 0-th year is known, as well as the total income *B* during *n*-th year (these numbers can be negative — it means that there was a loss in the correspondent year). King wants to show financial stability. To do this, he needs to find common coefficient *X* — the coefficient of income growth during one year. This coefficient should satisfy the equation: Surely, the king is not going to do this job by himself, and demands you to find such number *X*. It is necessary to point out that the fractional numbers are not used in kingdom's economy. That's why all input numbers as well as coefficient *X* must be integers. The number *X* may be zero or negative. Input Specification: The input contains three integers *A*, *B*, *n* (|*A*|,<=|*B*|<=≤<=1000, 1<=≤<=*n*<=≤<=10). Output Specification: Output the required integer coefficient *X*, or «No solution», if such a coefficient does not exist or it is fractional. If there are several possible solutions, output any of them. Demo Input: ['2 18 2\n', '-1 8 3\n', '0 0 10\n', '1 16 5\n'] Demo Output: ['3', '-2', '5', 'No solution'] Note: none
```python y=input().split(" ") A=int(y[0]) B=int(y[1]) n=int(y[2]) c=B/A o=1 if c>=0: c=c if c<=0: c=c*(-1) o=-1 if A!=0 and B!=0: #print(o*c) X=c**(1/n) if X%1==0: print(int(X)*o) if X%1!=0: print("No solution") if A==0 and B!=0: print("No solution") if A==0 and B==0: print(5) ```
-1
365
A
Good Number
PROGRAMMING
1,100
[ "implementation" ]
null
null
Let's call a number *k*-good if it contains all digits not exceeding *k* (0,<=...,<=*k*). You've got a number *k* and an array *a* containing *n* numbers. Find out how many *k*-good numbers are in *a* (count each number every time it occurs in array *a*).
The first line contains integers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=9). The *i*-th of the following *n* lines contains integer *a**i* without leading zeroes (1<=≤<=*a**i*<=≤<=109).
Print a single integer — the number of *k*-good numbers in *a*.
[ "10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n", "2 1\n1\n10\n" ]
[ "10\n", "1\n" ]
none
500
[ { "input": "10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560", "output": "10" }, { "input": "2 1\n1\n10", "output": "1" }, { "input": "1 0\n1000000000", "output": "1" }, { "input": "1 1\n1000000000", "output": "1" }, { "input": "6 0\n10\n102\n120\n1032\n1212103\n1999999", "output": "5" }, { "input": "1 3\n1000000000", "output": "0" }, { "input": "1 9\n1000000000", "output": "0" }, { "input": "1 0\n1", "output": "0" }, { "input": "1 1\n1", "output": "0" }, { "input": "1 3\n1", "output": "0" }, { "input": "1 9\n1", "output": "0" }, { "input": "2 8\n123456780\n123", "output": "1" }, { "input": "2 8\n12345678\n1230", "output": "0" }, { "input": "6 1\n10\n102\n120\n1032\n1212103\n1999999", "output": "5" }, { "input": "6 2\n10\n102\n120\n1032\n1212103\n1999999", "output": "4" }, { "input": "6 3\n10\n102\n120\n1032\n1212103\n1999999", "output": "2" }, { "input": "6 9\n10\n102\n120\n1032\n1212103\n1999999", "output": "0" }, { "input": "1 2\n2220", "output": "0" } ]
1,645,027,197
2,147,483,647
Python 3
OK
TESTS
37
46
0
#A good number n,k=map(int, input().split()) count=0 for i in range(n): x=0 l=list(map(int, input())) for j in range(k+1): if j in l: x+=1 if x==k+1: count+=1 print(count)
Title: Good Number Time Limit: None seconds Memory Limit: None megabytes Problem Description: Let's call a number *k*-good if it contains all digits not exceeding *k* (0,<=...,<=*k*). You've got a number *k* and an array *a* containing *n* numbers. Find out how many *k*-good numbers are in *a* (count each number every time it occurs in array *a*). Input Specification: The first line contains integers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=9). The *i*-th of the following *n* lines contains integer *a**i* without leading zeroes (1<=≤<=*a**i*<=≤<=109). Output Specification: Print a single integer — the number of *k*-good numbers in *a*. Demo Input: ['10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n', '2 1\n1\n10\n'] Demo Output: ['10\n', '1\n'] Note: none
```python #A good number n,k=map(int, input().split()) count=0 for i in range(n): x=0 l=list(map(int, input())) for j in range(k+1): if j in l: x+=1 if x==k+1: count+=1 print(count) ```
3
242
C
King's Path
PROGRAMMING
1,800
[ "dfs and similar", "graphs", "hashing", "shortest paths" ]
null
null
The black king is standing on a chess field consisting of 109 rows and 109 columns. We will consider the rows of the field numbered with integers from 1 to 109 from top to bottom. The columns are similarly numbered with integers from 1 to 109 from left to right. We will denote a cell of the field that is located in the *i*-th row and *j*-th column as (*i*,<=*j*). You know that some squares of the given chess field are allowed. All allowed cells of the chess field are given as *n* segments. Each segment is described by three integers *r**i*,<=*a**i*,<=*b**i* (*a**i*<=≤<=*b**i*), denoting that cells in columns from number *a**i* to number *b**i* inclusive in the *r**i*-th row are allowed. Your task is to find the minimum number of moves the king needs to get from square (*x*0,<=*y*0) to square (*x*1,<=*y*1), provided that he only moves along the allowed cells. In other words, the king can be located only on allowed cells on his way. Let us remind you that a chess king can move to any of the neighboring cells in one move. Two cells of a chess field are considered neighboring if they share at least one point.
The first line contains four space-separated integers *x*0,<=*y*0,<=*x*1,<=*y*1 (1<=≤<=*x*0,<=*y*0,<=*x*1,<=*y*1<=≤<=109), denoting the initial and the final positions of the king. The second line contains a single integer *n* (1<=≤<=*n*<=≤<=105), denoting the number of segments of allowed cells. Next *n* lines contain the descriptions of these segments. The *i*-th line contains three space-separated integers *r**i*,<=*a**i*,<=*b**i* (1<=≤<=*r**i*,<=*a**i*,<=*b**i*<=≤<=109,<=*a**i*<=≤<=*b**i*), denoting that cells in columns from number *a**i* to number *b**i* inclusive in the *r**i*-th row are allowed. Note that the segments of the allowed cells can intersect and embed arbitrarily. It is guaranteed that the king's initial and final position are allowed cells. It is guaranteed that the king's initial and the final positions do not coincide. It is guaranteed that the total length of all given segments doesn't exceed 105.
If there is no path between the initial and final position along allowed cells, print -1. Otherwise print a single integer — the minimum number of moves the king needs to get from the initial position to the final one.
[ "5 7 6 11\n3\n5 3 8\n6 7 11\n5 2 5\n", "3 4 3 10\n3\n3 1 4\n4 5 9\n3 10 10\n", "1 1 2 10\n2\n1 1 3\n2 6 10\n" ]
[ "4\n", "6\n", "-1\n" ]
none
1,500
[ { "input": "5 7 6 11\n3\n5 3 8\n6 7 11\n5 2 5", "output": "4" }, { "input": "3 4 3 10\n3\n3 1 4\n4 5 9\n3 10 10", "output": "6" }, { "input": "1 1 2 10\n2\n1 1 3\n2 6 10", "output": "-1" }, { "input": "9 8 7 8\n9\n10 6 6\n10 6 6\n7 7 8\n9 5 6\n8 9 9\n9 5 5\n9 8 8\n8 5 6\n9 10 10", "output": "2" }, { "input": "6 15 7 15\n9\n6 15 15\n7 14 14\n6 15 15\n9 14 14\n7 14 16\n6 15 15\n6 15 15\n7 14 14\n8 15 15", "output": "1" }, { "input": "13 16 20 10\n18\n13 16 16\n20 10 10\n19 10 10\n12 15 15\n20 10 10\n18 11 11\n19 10 10\n19 10 10\n20 10 10\n19 10 10\n20 10 10\n20 10 10\n19 10 10\n18 11 11\n13 16 16\n12 15 15\n19 10 10\n19 10 10", "output": "-1" }, { "input": "89 29 88 30\n16\n87 31 31\n14 95 95\n98 88 89\n96 88 88\n14 97 97\n13 97 98\n100 88 88\n88 32 32\n99 88 89\n90 29 29\n87 31 31\n15 94 96\n89 29 29\n88 32 32\n97 89 89\n88 29 30", "output": "1" }, { "input": "30 14 39 19\n31\n35 7 11\n37 11 12\n32 13 13\n37 5 6\n46 13 13\n37 14 14\n31 13 13\n43 13 19\n45 15 19\n46 13 13\n32 17 17\n41 14 19\n30 14 14\n43 13 17\n34 16 18\n44 11 19\n38 13 13\n40 12 20\n37 16 18\n46 16 18\n34 10 14\n36 9 10\n36 15 19\n38 15 19\n42 13 19\n33 14 15\n35 15 19\n33 17 18\n39 12 20\n36 5 7\n45 12 12", "output": "9" }, { "input": "2 1 1 1\n2\n1 1 2\n2 1 2", "output": "1" }, { "input": "1 1 1 2\n5\n1000000000 1 10000\n19920401 1188 5566\n1000000000 1 10000\n1 1 10000\n5 100 200", "output": "1" }, { "input": "1 1 1000000000 2\n5\n1000000000 1 10000\n19920401 1188 5566\n1000000000 1 10000\n1 1 10000\n5 100 200", "output": "-1" } ]
1,590,154,345
2,147,483,647
PyPy 3
OK
TESTS
43
1,716
24,985,600
from sys import stdin, stdout import time,math from collections import defaultdict #n,m=map(int,input().split()) # for i in range(n): # t=int(stdin.readline()) # input using fast i/p method # if t%m == 0: # stdout.write(str(t)+'\n') #input using fast o/p method # take line of integers as input # arr = list(map(int, inp().split())) ########################################################################################## def pn(ob):stdout.write(str(ob)) def inp():return stdin.readline() def fpow(n,p): if(p==1): return n if((p&1)==1): return n*fpow(n,p-1) else: return fpow(n,p/2)*fpow(n,p/2) ########################################################################################### def def_val(): return False def def_dist(): return math.inf valid=defaultdict(def_val) dist=defaultdict(def_dist) dx = (-1, 0, 1, 0, 1, 1, -1, -1); dy = (0, 1, 0, -1, 1, -1, 1, -1); def bfs(x,y,dest): q=[] q.append((x,y)) valid[(x,y)]=False dist[(x,y)]=0 while(len(q)>0): coords=q.pop(0) for k in range(0,8,1): x=coords[0]+dx[k] y=coords[1]+dy[k] new_coords=(x,y) dist[new_coords]=min(dist[coords]+1,dist[new_coords]) if(valid[new_coords]): valid[new_coords]=False q.append(new_coords) if(dist[dest]==math.inf): pn(-1) else: pn(dist[dest]) def process(): #code here x0,y0,x1,y1=map(int,input().split()) n=int(inp()) for i in range(0,n,1): r,a,b=map(int,input().split()) for j in range(a,b+1,1): valid[(r,j)]=True bfs(x0,y0,(x1,y1)) def main(): t=1 #t=int(inp()) # start = time.time() # while (t>0): # t-=1 # process() # end = time.time() # print('\nelapsed time',end - start) process() if __name__ == '__main__': main()
Title: King's Path Time Limit: None seconds Memory Limit: None megabytes Problem Description: The black king is standing on a chess field consisting of 109 rows and 109 columns. We will consider the rows of the field numbered with integers from 1 to 109 from top to bottom. The columns are similarly numbered with integers from 1 to 109 from left to right. We will denote a cell of the field that is located in the *i*-th row and *j*-th column as (*i*,<=*j*). You know that some squares of the given chess field are allowed. All allowed cells of the chess field are given as *n* segments. Each segment is described by three integers *r**i*,<=*a**i*,<=*b**i* (*a**i*<=≤<=*b**i*), denoting that cells in columns from number *a**i* to number *b**i* inclusive in the *r**i*-th row are allowed. Your task is to find the minimum number of moves the king needs to get from square (*x*0,<=*y*0) to square (*x*1,<=*y*1), provided that he only moves along the allowed cells. In other words, the king can be located only on allowed cells on his way. Let us remind you that a chess king can move to any of the neighboring cells in one move. Two cells of a chess field are considered neighboring if they share at least one point. Input Specification: The first line contains four space-separated integers *x*0,<=*y*0,<=*x*1,<=*y*1 (1<=≤<=*x*0,<=*y*0,<=*x*1,<=*y*1<=≤<=109), denoting the initial and the final positions of the king. The second line contains a single integer *n* (1<=≤<=*n*<=≤<=105), denoting the number of segments of allowed cells. Next *n* lines contain the descriptions of these segments. The *i*-th line contains three space-separated integers *r**i*,<=*a**i*,<=*b**i* (1<=≤<=*r**i*,<=*a**i*,<=*b**i*<=≤<=109,<=*a**i*<=≤<=*b**i*), denoting that cells in columns from number *a**i* to number *b**i* inclusive in the *r**i*-th row are allowed. Note that the segments of the allowed cells can intersect and embed arbitrarily. It is guaranteed that the king's initial and final position are allowed cells. It is guaranteed that the king's initial and the final positions do not coincide. It is guaranteed that the total length of all given segments doesn't exceed 105. Output Specification: If there is no path between the initial and final position along allowed cells, print -1. Otherwise print a single integer — the minimum number of moves the king needs to get from the initial position to the final one. Demo Input: ['5 7 6 11\n3\n5 3 8\n6 7 11\n5 2 5\n', '3 4 3 10\n3\n3 1 4\n4 5 9\n3 10 10\n', '1 1 2 10\n2\n1 1 3\n2 6 10\n'] Demo Output: ['4\n', '6\n', '-1\n'] Note: none
```python from sys import stdin, stdout import time,math from collections import defaultdict #n,m=map(int,input().split()) # for i in range(n): # t=int(stdin.readline()) # input using fast i/p method # if t%m == 0: # stdout.write(str(t)+'\n') #input using fast o/p method # take line of integers as input # arr = list(map(int, inp().split())) ########################################################################################## def pn(ob):stdout.write(str(ob)) def inp():return stdin.readline() def fpow(n,p): if(p==1): return n if((p&1)==1): return n*fpow(n,p-1) else: return fpow(n,p/2)*fpow(n,p/2) ########################################################################################### def def_val(): return False def def_dist(): return math.inf valid=defaultdict(def_val) dist=defaultdict(def_dist) dx = (-1, 0, 1, 0, 1, 1, -1, -1); dy = (0, 1, 0, -1, 1, -1, 1, -1); def bfs(x,y,dest): q=[] q.append((x,y)) valid[(x,y)]=False dist[(x,y)]=0 while(len(q)>0): coords=q.pop(0) for k in range(0,8,1): x=coords[0]+dx[k] y=coords[1]+dy[k] new_coords=(x,y) dist[new_coords]=min(dist[coords]+1,dist[new_coords]) if(valid[new_coords]): valid[new_coords]=False q.append(new_coords) if(dist[dest]==math.inf): pn(-1) else: pn(dist[dest]) def process(): #code here x0,y0,x1,y1=map(int,input().split()) n=int(inp()) for i in range(0,n,1): r,a,b=map(int,input().split()) for j in range(a,b+1,1): valid[(r,j)]=True bfs(x0,y0,(x1,y1)) def main(): t=1 #t=int(inp()) # start = time.time() # while (t>0): # t-=1 # process() # end = time.time() # print('\nelapsed time',end - start) process() if __name__ == '__main__': main() ```
3
479
A
Expression
PROGRAMMING
1,000
[ "brute force", "math" ]
null
null
Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets: - 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9 Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2. It's easy to see that the maximum value that you can obtain is 9. Your task is: given *a*, *b* and *c* print the maximum value that you can get.
The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10).
Print the maximum value of the expression that you can obtain.
[ "1\n2\n3\n", "2\n10\n3\n" ]
[ "9\n", "60\n" ]
none
500
[ { "input": "1\n2\n3", "output": "9" }, { "input": "2\n10\n3", "output": "60" }, { "input": "1\n1\n1", "output": "3" }, { "input": "1\n2\n1", "output": "4" }, { "input": "10\n10\n10", "output": "1000" }, { "input": "5\n1\n3", "output": "20" }, { "input": "3\n1\n5", "output": "20" }, { "input": "6\n7\n1", "output": "48" }, { "input": "1\n8\n3", "output": "27" }, { "input": "9\n7\n2", "output": "126" }, { "input": "1\n1\n10", "output": "20" }, { "input": "9\n1\n1", "output": "18" }, { "input": "10\n5\n6", "output": "300" }, { "input": "8\n9\n7", "output": "504" }, { "input": "4\n2\n10", "output": "80" }, { "input": "2\n8\n3", "output": "48" }, { "input": "3\n5\n7", "output": "105" }, { "input": "1\n10\n1", "output": "12" }, { "input": "2\n2\n2", "output": "8" }, { "input": "5\n6\n1", "output": "35" }, { "input": "10\n1\n1", "output": "20" }, { "input": "1\n6\n1", "output": "8" }, { "input": "1\n9\n1", "output": "11" }, { "input": "2\n1\n2", "output": "6" }, { "input": "2\n6\n1", "output": "14" }, { "input": "9\n2\n1", "output": "27" }, { "input": "1\n9\n2", "output": "20" }, { "input": "1\n3\n1", "output": "5" }, { "input": "2\n1\n1", "output": "4" } ]
1,688,646,539
2,147,483,647
PyPy 3-64
OK
TESTS
29
62
0
a = int(input()) b = int(input()) c = int(input()) li = [] li.append(a+b+c) li.append(a+b*c) li.append((a+b)*c) li.append(a*b*c) li.append(a*b+c) li.append(a*(b+c)) print(max(li))
Title: Expression Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets: - 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9 Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2. It's easy to see that the maximum value that you can obtain is 9. Your task is: given *a*, *b* and *c* print the maximum value that you can get. Input Specification: The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10). Output Specification: Print the maximum value of the expression that you can obtain. Demo Input: ['1\n2\n3\n', '2\n10\n3\n'] Demo Output: ['9\n', '60\n'] Note: none
```python a = int(input()) b = int(input()) c = int(input()) li = [] li.append(a+b+c) li.append(a+b*c) li.append((a+b)*c) li.append(a*b*c) li.append(a*b+c) li.append(a*(b+c)) print(max(li)) ```
3
765
A
Neverending competitions
PROGRAMMING
900
[ "implementation", "math" ]
null
null
There are literally dozens of snooker competitions held each year, and team Jinotega tries to attend them all (for some reason they prefer name "snookah")! When a competition takes place somewhere far from their hometown, Ivan, Artsem and Konstantin take a flight to the contest and back. Jinotega's best friends, team Base have found a list of their itinerary receipts with information about departure and arrival airports. Now they wonder, where is Jinotega now: at home or at some competition far away? They know that: - this list contains all Jinotega's flights in this year (in arbitrary order), - Jinotega has only flown from his hometown to a snooker contest and back, - after each competition Jinotega flies back home (though they may attend a competition in one place several times), - and finally, at the beginning of the year Jinotega was at home. Please help them to determine Jinotega's location!
In the first line of input there is a single integer *n*: the number of Jinotega's flights (1<=≤<=*n*<=≤<=100). In the second line there is a string of 3 capital Latin letters: the name of Jinotega's home airport. In the next *n* lines there is flight information, one flight per line, in form "XXX-&gt;YYY", where "XXX" is the name of departure airport "YYY" is the name of arrival airport. Exactly one of these airports is Jinotega's home airport. It is guaranteed that flights information is consistent with the knowledge of Jinotega's friends, which is described in the main part of the statement.
If Jinotega is now at home, print "home" (without quotes), otherwise print "contest".
[ "4\nSVO\nSVO-&gt;CDG\nLHR-&gt;SVO\nSVO-&gt;LHR\nCDG-&gt;SVO\n", "3\nSVO\nSVO-&gt;HKT\nHKT-&gt;SVO\nSVO-&gt;RAP\n" ]
[ "home\n", "contest\n" ]
In the first sample Jinotega might first fly from SVO to CDG and back, and then from SVO to LHR and back, so now they should be at home. In the second sample Jinotega must now be at RAP because a flight from RAP back to SVO is not on the list.
500
[ { "input": "4\nSVO\nSVO->CDG\nLHR->SVO\nSVO->LHR\nCDG->SVO", "output": "home" }, { "input": "3\nSVO\nSVO->HKT\nHKT->SVO\nSVO->RAP", "output": "contest" }, { "input": "1\nESJ\nESJ->TSJ", "output": "contest" }, { "input": "2\nXMR\nFAJ->XMR\nXMR->FAJ", "output": "home" }, { "input": "3\nZIZ\nDWJ->ZIZ\nZIZ->DWJ\nZIZ->DWJ", "output": "contest" }, { "input": "10\nPVO\nDMN->PVO\nDMN->PVO\nPVO->DMN\nDMN->PVO\nPVO->DMN\nPVO->DMN\nPVO->DMN\nDMN->PVO\nPVO->DMN\nDMN->PVO", "output": "home" }, { "input": "11\nIAU\nIAU->RUQ\nIAU->RUQ\nRUQ->IAU\nRUQ->IAU\nIAU->RUQ\nRUQ->IAU\nIAU->RUQ\nRUQ->IAU\nIAU->RUQ\nIAU->RUQ\nRUQ->IAU", "output": "contest" }, { "input": "10\nHPN\nDFI->HPN\nHPN->KAB\nHPN->DFI\nVSO->HPN\nHPN->KZX\nHPN->VSO\nKZX->HPN\nLDW->HPN\nKAB->HPN\nHPN->LDW", "output": "home" }, { "input": "11\nFGH\nFGH->BRZ\nUBK->FGH\nQRE->FGH\nFGH->KQK\nFGH->QRE\nKQK->FGH\nFGH->UBK\nBRZ->FGH\nFGH->ALX\nALX->FGH\nFGH->KQK", "output": "contest" }, { "input": "50\nPFH\nJFV->PFH\nBVP->PFH\nPFH->BVP\nPFH->JFV\nPFH->ETQ\nPFH->LQJ\nZTO->PFH\nPFH->BVP\nPFH->RXO\nPFH->ZTO\nHWL->PFH\nPFH->HIV\nPFH->AFP\nPFH->HWL\nOBB->PFH\nHIV->PFH\nPFH->LSR\nAFP->PFH\nLQJ->PFH\nHWL->PFH\nETQ->PFH\nPFH->HWL\nLSR->PFH\nWBR->PFH\nBNZ->PFH\nHQR->PFH\nZTO->PFH\nPFH->WBR\nPFH->BYJ\nRXO->PFH\nFHZ->PFH\nFHZ->PFH\nPFN->PFH\nPFH->GMB\nPFH->JFV\nJFV->PFH\nGNZ->PFH\nPFH->BNZ\nPFH->GNZ\nPFH->HQR\nBYJ->PFH\nGMB->PFH\nPFH->FHZ\nPFH->FHZ\nPFH->ZTO\nPFH->UGD\nBVP->PFH\nUGD->PFH\nPFH->PFN\nPFH->OBB", "output": "home" }, { "input": "1\nAAK\nAAK->ABA", "output": "contest" }, { "input": "1\nXYZ\nXYZ->XYR", "output": "contest" } ]
1,666,337,623
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
46
0
n = int(input()) home = input() for i in range(n - 1): input() if input().split("->")[-1] == home: print("home") else: print("contest")
Title: Neverending competitions Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are literally dozens of snooker competitions held each year, and team Jinotega tries to attend them all (for some reason they prefer name "snookah")! When a competition takes place somewhere far from their hometown, Ivan, Artsem and Konstantin take a flight to the contest and back. Jinotega's best friends, team Base have found a list of their itinerary receipts with information about departure and arrival airports. Now they wonder, where is Jinotega now: at home or at some competition far away? They know that: - this list contains all Jinotega's flights in this year (in arbitrary order), - Jinotega has only flown from his hometown to a snooker contest and back, - after each competition Jinotega flies back home (though they may attend a competition in one place several times), - and finally, at the beginning of the year Jinotega was at home. Please help them to determine Jinotega's location! Input Specification: In the first line of input there is a single integer *n*: the number of Jinotega's flights (1<=≤<=*n*<=≤<=100). In the second line there is a string of 3 capital Latin letters: the name of Jinotega's home airport. In the next *n* lines there is flight information, one flight per line, in form "XXX-&gt;YYY", where "XXX" is the name of departure airport "YYY" is the name of arrival airport. Exactly one of these airports is Jinotega's home airport. It is guaranteed that flights information is consistent with the knowledge of Jinotega's friends, which is described in the main part of the statement. Output Specification: If Jinotega is now at home, print "home" (without quotes), otherwise print "contest". Demo Input: ['4\nSVO\nSVO-&gt;CDG\nLHR-&gt;SVO\nSVO-&gt;LHR\nCDG-&gt;SVO\n', '3\nSVO\nSVO-&gt;HKT\nHKT-&gt;SVO\nSVO-&gt;RAP\n'] Demo Output: ['home\n', 'contest\n'] Note: In the first sample Jinotega might first fly from SVO to CDG and back, and then from SVO to LHR and back, so now they should be at home. In the second sample Jinotega must now be at RAP because a flight from RAP back to SVO is not on the list.
```python n = int(input()) home = input() for i in range(n - 1): input() if input().split("->")[-1] == home: print("home") else: print("contest") ```
0