contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
208
A
Dubstep
PROGRAMMING
900
[ "strings" ]
null
null
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them. Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club. For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX". Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
[ "WUBWUBABCWUB\n", "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n" ]
[ "ABC ", "WE ARE THE CHAMPIONS MY FRIEND " ]
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya. In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
500
[ { "input": "WUBWUBABCWUB", "output": "ABC " }, { "input": "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB", "output": "WE ARE THE CHAMPIONS MY FRIEND " }, { "input": "WUBWUBWUBSR", "output": "SR " }, { "input": "RWUBWUBWUBLWUB", "output": "R L " }, { "input": "ZJWUBWUBWUBJWUBWUBWUBL", "output": "ZJ J L " }, { "input": "CWUBBWUBWUBWUBEWUBWUBWUBQWUBWUBWUB", "output": "C B E Q " }, { "input": "WUBJKDWUBWUBWBIRAQKFWUBWUBYEWUBWUBWUBWVWUBWUB", "output": "JKD WBIRAQKF YE WV " }, { "input": "WUBKSDHEMIXUJWUBWUBRWUBWUBWUBSWUBWUBWUBHWUBWUBWUB", "output": "KSDHEMIXUJ R S H " }, { "input": "OGWUBWUBWUBXWUBWUBWUBIWUBWUBWUBKOWUBWUB", "output": "OG X I KO " }, { "input": "QWUBQQWUBWUBWUBIWUBWUBWWWUBWUBWUBJOPJPBRH", "output": "Q QQ I WW JOPJPBRH " }, { "input": "VSRNVEATZTLGQRFEGBFPWUBWUBWUBAJWUBWUBWUBPQCHNWUBCWUB", "output": "VSRNVEATZTLGQRFEGBFP AJ PQCHN C " }, { "input": "WUBWUBEWUBWUBWUBIQMJNIQWUBWUBWUBGZZBQZAUHYPWUBWUBWUBPMRWUBWUBWUBDCV", "output": "E IQMJNIQ GZZBQZAUHYP PMR DCV " }, { "input": "WUBWUBWUBFVWUBWUBWUBBPSWUBWUBWUBRXNETCJWUBWUBWUBJDMBHWUBWUBWUBBWUBWUBVWUBWUBB", "output": "FV BPS RXNETCJ JDMBH B V B " }, { "input": "WUBWUBWUBFBQWUBWUBWUBIDFSYWUBWUBWUBCTWDMWUBWUBWUBSXOWUBWUBWUBQIWUBWUBWUBL", "output": "FBQ IDFSY CTWDM SXO QI L " }, { "input": "IWUBWUBQLHDWUBYIIKZDFQWUBWUBWUBCXWUBWUBUWUBWUBWUBKWUBWUBWUBNL", "output": "I QLHD YIIKZDFQ CX U K NL " }, { "input": "KWUBUPDYXGOKUWUBWUBWUBAGOAHWUBIZDWUBWUBWUBIYWUBWUBWUBVWUBWUBWUBPWUBWUBWUBE", "output": "K UPDYXGOKU AGOAH IZD IY V P E " }, { "input": "WUBWUBOWUBWUBWUBIPVCQAFWYWUBWUBWUBQWUBWUBWUBXHDKCPYKCTWWYWUBWUBWUBVWUBWUBWUBFZWUBWUB", "output": "O IPVCQAFWY Q XHDKCPYKCTWWY V FZ " }, { "input": "PAMJGYWUBWUBWUBXGPQMWUBWUBWUBTKGSXUYWUBWUBWUBEWUBWUBWUBNWUBWUBWUBHWUBWUBWUBEWUBWUB", "output": "PAMJGY XGPQM TKGSXUY E N H E " }, { "input": "WUBYYRTSMNWUWUBWUBWUBCWUBWUBWUBCWUBWUBWUBFSYUINDWOBVWUBWUBWUBFWUBWUBWUBAUWUBWUBWUBVWUBWUBWUBJB", "output": "YYRTSMNWU C C FSYUINDWOBV F AU V JB " }, { "input": "WUBWUBYGPYEYBNRTFKOQCWUBWUBWUBUYGRTQEGWLFYWUBWUBWUBFVWUBHPWUBWUBWUBXZQWUBWUBWUBZDWUBWUBWUBM", "output": "YGPYEYBNRTFKOQC UYGRTQEGWLFY FV HP XZQ ZD M " }, { "input": "WUBZVMJWUBWUBWUBFOIMJQWKNZUBOFOFYCCWUBWUBWUBAUWWUBRDRADWUBWUBWUBCHQVWUBWUBWUBKFTWUBWUBWUBW", "output": "ZVMJ FOIMJQWKNZUBOFOFYCC AUW RDRAD CHQV KFT W " }, { "input": "WUBWUBZBKOKHQLGKRVIMZQMQNRWUBWUBWUBDACWUBWUBNZHFJMPEYKRVSWUBWUBWUBPPHGAVVPRZWUBWUBWUBQWUBWUBAWUBG", "output": "ZBKOKHQLGKRVIMZQMQNR DAC NZHFJMPEYKRVS PPHGAVVPRZ Q A G " }, { "input": "WUBWUBJWUBWUBWUBNFLWUBWUBWUBGECAWUBYFKBYJWTGBYHVSSNTINKWSINWSMAWUBWUBWUBFWUBWUBWUBOVWUBWUBLPWUBWUBWUBN", "output": "J NFL GECA YFKBYJWTGBYHVSSNTINKWSINWSMA F OV LP N " }, { "input": "WUBWUBLCWUBWUBWUBZGEQUEATJVIXETVTWUBWUBWUBEXMGWUBWUBWUBRSWUBWUBWUBVWUBWUBWUBTAWUBWUBWUBCWUBWUBWUBQG", "output": "LC ZGEQUEATJVIXETVT EXMG RS V TA C QG " }, { "input": "WUBMPWUBWUBWUBORWUBWUBDLGKWUBWUBWUBVVZQCAAKVJTIKWUBWUBWUBTJLUBZJCILQDIFVZWUBWUBYXWUBWUBWUBQWUBWUBWUBLWUB", "output": "MP OR DLGK VVZQCAAKVJTIK TJLUBZJCILQDIFVZ YX Q L " }, { "input": "WUBNXOLIBKEGXNWUBWUBWUBUWUBGITCNMDQFUAOVLWUBWUBWUBAIJDJZJHFMPVTPOXHPWUBWUBWUBISCIOWUBWUBWUBGWUBWUBWUBUWUB", "output": "NXOLIBKEGXN U GITCNMDQFUAOVL AIJDJZJHFMPVTPOXHP ISCIO G U " }, { "input": "WUBWUBNMMWCZOLYPNBELIYVDNHJUNINWUBWUBWUBDXLHYOWUBWUBWUBOJXUWUBWUBWUBRFHTGJCEFHCGWARGWUBWUBWUBJKWUBWUBSJWUBWUB", "output": "NMMWCZOLYPNBELIYVDNHJUNIN DXLHYO OJXU RFHTGJCEFHCGWARG JK SJ " }, { "input": "SGWLYSAUJOJBNOXNWUBWUBWUBBOSSFWKXPDPDCQEWUBWUBWUBDIRZINODWUBWUBWUBWWUBWUBWUBPPHWUBWUBWUBRWUBWUBWUBQWUBWUBWUBJWUB", "output": "SGWLYSAUJOJBNOXN BOSSFWKXPDPDCQE DIRZINOD W PPH R Q J " }, { "input": "TOWUBWUBWUBGBTBNWUBWUBWUBJVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSAWUBWUBWUBSWUBWUBWUBTOLVXWUBWUBWUBNHWUBWUBWUBO", "output": "TO GBTBN JVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSA S TOLVX NH O " }, { "input": "WUBWUBWSPLAYSZSAUDSWUBWUBWUBUWUBWUBWUBKRWUBWUBWUBRSOKQMZFIYZQUWUBWUBWUBELSHUWUBWUBWUBUKHWUBWUBWUBQXEUHQWUBWUBWUBBWUBWUBWUBR", "output": "WSPLAYSZSAUDS U KR RSOKQMZFIYZQU ELSHU UKH QXEUHQ B R " }, { "input": "WUBXEMWWVUHLSUUGRWUBWUBWUBAWUBXEGILZUNKWUBWUBWUBJDHHKSWUBWUBWUBDTSUYSJHWUBWUBWUBPXFWUBMOHNJWUBWUBWUBZFXVMDWUBWUBWUBZMWUBWUB", "output": "XEMWWVUHLSUUGR A XEGILZUNK JDHHKS DTSUYSJH PXF MOHNJ ZFXVMD ZM " }, { "input": "BMBWUBWUBWUBOQKWUBWUBWUBPITCIHXHCKLRQRUGXJWUBWUBWUBVWUBWUBWUBJCWUBWUBWUBQJPWUBWUBWUBBWUBWUBWUBBMYGIZOOXWUBWUBWUBTAGWUBWUBHWUB", "output": "BMB OQK PITCIHXHCKLRQRUGXJ V JC QJP B BMYGIZOOX TAG H " }, { "input": "CBZNWUBWUBWUBNHWUBWUBWUBYQSYWUBWUBWUBMWUBWUBWUBXRHBTMWUBWUBWUBPCRCWUBWUBWUBTZUYLYOWUBWUBWUBCYGCWUBWUBWUBCLJWUBWUBWUBSWUBWUBWUB", "output": "CBZN NH YQSY M XRHBTM PCRC TZUYLYO CYGC CLJ S " }, { "input": "DPDWUBWUBWUBEUQKWPUHLTLNXHAEKGWUBRRFYCAYZFJDCJLXBAWUBWUBWUBHJWUBOJWUBWUBWUBNHBJEYFWUBWUBWUBRWUBWUBWUBSWUBWWUBWUBWUBXDWUBWUBWUBJWUB", "output": "DPD EUQKWPUHLTLNXHAEKG RRFYCAYZFJDCJLXBA HJ OJ NHBJEYF R S W XD J " }, { "input": "WUBWUBWUBISERPQITVIYERSCNWUBWUBWUBQWUBWUBWUBDGSDIPWUBWUBWUBCAHKDZWEXBIBJVVSKKVQJWUBWUBWUBKIWUBWUBWUBCWUBWUBWUBAWUBWUBWUBPWUBWUBWUBHWUBWUBWUBF", "output": "ISERPQITVIYERSCN Q DGSDIP CAHKDZWEXBIBJVVSKKVQJ KI C A P H F " }, { "input": "WUBWUBWUBIWUBWUBLIKNQVWUBWUBWUBPWUBWUBWUBHWUBWUBWUBMWUBWUBWUBDPRSWUBWUBWUBBSAGYLQEENWXXVWUBWUBWUBXMHOWUBWUBWUBUWUBWUBWUBYRYWUBWUBWUBCWUBWUBWUBY", "output": "I LIKNQV P H M DPRS BSAGYLQEENWXXV XMHO U YRY C Y " }, { "input": "WUBWUBWUBMWUBWUBWUBQWUBWUBWUBITCFEYEWUBWUBWUBHEUWGNDFNZGWKLJWUBWUBWUBMZPWUBWUBWUBUWUBWUBWUBBWUBWUBWUBDTJWUBHZVIWUBWUBWUBPWUBFNHHWUBWUBWUBVTOWUB", "output": "M Q ITCFEYE HEUWGNDFNZGWKLJ MZP U B DTJ HZVI P FNHH VTO " }, { "input": "WUBWUBNDNRFHYJAAUULLHRRDEDHYFSRXJWUBWUBWUBMUJVDTIRSGYZAVWKRGIFWUBWUBWUBHMZWUBWUBWUBVAIWUBWUBWUBDDKJXPZRGWUBWUBWUBSGXWUBWUBWUBIFKWUBWUBWUBUWUBWUBWUBW", "output": "NDNRFHYJAAUULLHRRDEDHYFSRXJ MUJVDTIRSGYZAVWKRGIF HMZ VAI DDKJXPZRG SGX IFK U W " }, { "input": "WUBOJMWRSLAXXHQRTPMJNCMPGWUBWUBWUBNYGMZIXNLAKSQYWDWUBWUBWUBXNIWUBWUBWUBFWUBWUBWUBXMBWUBWUBWUBIWUBWUBWUBINWUBWUBWUBWDWUBWUBWUBDDWUBWUBWUBD", "output": "OJMWRSLAXXHQRTPMJNCMPG NYGMZIXNLAKSQYWD XNI F XMB I IN WD DD D " }, { "input": "WUBWUBWUBREHMWUBWUBWUBXWUBWUBWUBQASNWUBWUBWUBNLSMHLCMTICWUBWUBWUBVAWUBWUBWUBHNWUBWUBWUBNWUBWUBWUBUEXLSFOEULBWUBWUBWUBXWUBWUBWUBJWUBWUBWUBQWUBWUBWUBAWUBWUB", "output": "REHM X QASN NLSMHLCMTIC VA HN N UEXLSFOEULB X J Q A " }, { "input": "WUBWUBWUBSTEZTZEFFIWUBWUBWUBSWUBWUBWUBCWUBFWUBHRJPVWUBWUBWUBDYJUWUBWUBWUBPWYDKCWUBWUBWUBCWUBWUBWUBUUEOGCVHHBWUBWUBWUBEXLWUBWUBWUBVCYWUBWUBWUBMWUBWUBWUBYWUB", "output": "STEZTZEFFI S C F HRJPV DYJU PWYDKC C UUEOGCVHHB EXL VCY M Y " }, { "input": "WPPNMSQOQIWUBWUBWUBPNQXWUBWUBWUBHWUBWUBWUBNFLWUBWUBWUBGWSGAHVJFNUWUBWUBWUBFWUBWUBWUBWCMLRICFSCQQQTNBWUBWUBWUBSWUBWUBWUBKGWUBWUBWUBCWUBWUBWUBBMWUBWUBWUBRWUBWUB", "output": "WPPNMSQOQI PNQX H NFL GWSGAHVJFNU F WCMLRICFSCQQQTNB S KG C BM R " }, { "input": "YZJOOYITZRARKVFYWUBWUBRZQGWUBWUBWUBUOQWUBWUBWUBIWUBWUBWUBNKVDTBOLETKZISTWUBWUBWUBWLWUBQQFMMGSONZMAWUBZWUBWUBWUBQZUXGCWUBWUBWUBIRZWUBWUBWUBLTTVTLCWUBWUBWUBY", "output": "YZJOOYITZRARKVFY RZQG UOQ I NKVDTBOLETKZIST WL QQFMMGSONZMA Z QZUXGC IRZ LTTVTLC Y " }, { "input": "WUBCAXNCKFBVZLGCBWCOAWVWOFKZVQYLVTWUBWUBWUBNLGWUBWUBWUBAMGDZBDHZMRMQMDLIRMIWUBWUBWUBGAJSHTBSWUBWUBWUBCXWUBWUBWUBYWUBZLXAWWUBWUBWUBOHWUBWUBWUBZWUBWUBWUBGBWUBWUBWUBE", "output": "CAXNCKFBVZLGCBWCOAWVWOFKZVQYLVT NLG AMGDZBDHZMRMQMDLIRMI GAJSHTBS CX Y ZLXAW OH Z GB E " }, { "input": "WUBWUBCHXSOWTSQWUBWUBWUBCYUZBPBWUBWUBWUBSGWUBWUBWKWORLRRLQYUUFDNWUBWUBWUBYYGOJNEVEMWUBWUBWUBRWUBWUBWUBQWUBWUBWUBIHCKWUBWUBWUBKTWUBWUBWUBRGSNTGGWUBWUBWUBXCXWUBWUBWUBS", "output": "CHXSOWTSQ CYUZBPB SG WKWORLRRLQYUUFDN YYGOJNEVEM R Q IHCK KT RGSNTGG XCX S " }, { "input": "WUBWUBWUBHJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQWUBWUBWUBXTZKGIITWUBWUBWUBAWUBWUBWUBVNCXPUBCQWUBWUBWUBIDPNAWUBWUBWUBOWUBWUBWUBYGFWUBWUBWUBMQOWUBWUBWUBKWUBWUBWUBAZVWUBWUBWUBEP", "output": "HJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQ XTZKGIIT A VNCXPUBCQ IDPNA O YGF MQO K AZV EP " }, { "input": "WUBKYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTVWUBWUBWUBLRMIIWUBWUBWUBGWUBWUBWUBADPSWUBWUBWUBANBWUBWUBPCWUBWUBWUBPWUBWUBWUBGPVNLSWIRFORYGAABUXMWUBWUBWUBOWUBWUBWUBNWUBWUBWUBYWUBWUB", "output": "KYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTV LRMII G ADPS ANB PC P GPVNLSWIRFORYGAABUXM O N Y " }, { "input": "REWUBWUBWUBJDWUBWUBWUBNWUBWUBWUBTWWUBWUBWUBWZDOCKKWUBWUBWUBLDPOVBFRCFWUBWUBAKZIBQKEUAZEEWUBWUBWUBLQYPNPFWUBYEWUBWUBWUBFWUBWUBWUBBPWUBWUBWUBAWWUBWUBWUBQWUBWUBWUBBRWUBWUBWUBXJL", "output": "RE JD N TW WZDOCKK LDPOVBFRCF AKZIBQKEUAZEE LQYPNPF YE F BP AW Q BR XJL " }, { "input": "CUFGJDXGMWUBWUBWUBOMWUBWUBWUBSIEWUBWUBWUBJJWKNOWUBWUBWUBYBHVNRNORGYWUBWUBWUBOAGCAWUBWUBWUBSBLBKTPFKPBIWUBWUBWUBJBWUBWUBWUBRMFCJPGWUBWUBWUBDWUBWUBWUBOJOWUBWUBWUBZPWUBWUBWUBMWUBRWUBWUBWUBFXWWUBWUBWUBO", "output": "CUFGJDXGM OM SIE JJWKNO YBHVNRNORGY OAGCA SBLBKTPFKPBI JB RMFCJPG D OJO ZP M R FXW O " }, { "input": "WUBJZGAEXFMFEWMAKGQLUWUBWUBWUBICYTPQWGENELVYWANKUOJYWUBWUBWUBGWUBWUBWUBHYCJVLPHTUPNEGKCDGQWUBWUBWUBOFWUBWUBWUBCPGSOGZBRPRPVJJEWUBWUBWUBDQBCWUBWUBWUBHWUBWUBWUBMHOHYBMATWUBWUBWUBVWUBWUBWUBSWUBWUBWUBKOWU", "output": "JZGAEXFMFEWMAKGQLU ICYTPQWGENELVYWANKUOJY G HYCJVLPHTUPNEGKCDGQ OF CPGSOGZBRPRPVJJE DQBC H MHOHYBMAT V S KOWU " }, { "input": "A", "output": "A " }, { "input": "WUBA", "output": "A " }, { "input": "WUBWUBA", "output": "A " }, { "input": "AWUBWUBWUB", "output": "A " }, { "input": "AWUBBWUBCWUBD", "output": "A B C D " }, { "input": "WUBWWUBWUBWUBUWUBWUBBWUB", "output": "W U B " }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA " }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA " }, { "input": "WUWUBBWWUBUB", "output": "WU BW UB " }, { "input": "WUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUABWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUB", "output": "WUAB " }, { "input": "ZWUB", "output": "Z " }, { "input": "WU", "output": "WU " }, { "input": "UB", "output": "UB " }, { "input": "U", "output": "U " }, { "input": "WUBW", "output": "W " }, { "input": "WUBWU", "output": "WU " }, { "input": "WUWUB", "output": "WU " }, { "input": "UBWUB", "output": "UB " }, { "input": "WUWUBUBWUBUWUB", "output": "WU UB U " }, { "input": "WUBWWUBAWUB", "output": "W A " }, { "input": "WUUUUU", "output": "WUUUUU " } ]
1,674,575,455
2,147,483,647
Python 3
OK
TESTS
71
92
0
txt = input() txtsplit = txt.split("WUB") txtnew = '' for i in txtsplit: if i == '': continue txtnew += (i + ' ') print(txtnew)
Title: Dubstep Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them. Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club. For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX". Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song. Input Specification: The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word. Output Specification: Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space. Demo Input: ['WUBWUBABCWUB\n', 'WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n'] Demo Output: ['ABC ', 'WE ARE THE CHAMPIONS MY FRIEND '] Note: In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya. In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
```python txt = input() txtsplit = txt.split("WUB") txtnew = '' for i in txtsplit: if i == '': continue txtnew += (i + ' ') print(txtnew) ```
3
463
C
Gargari and Bishops
PROGRAMMING
1,900
[ "greedy", "hashing", "implementation" ]
null
null
Gargari is jealous that his friend Caisa won the game from the previous problem. He wants to prove that he is a genius. He has a *n*<=×<=*n* chessboard. Each cell of the chessboard has a number written on it. Gargari wants to place two bishops on the chessboard in such a way that there is no cell that is attacked by both of them. Consider a cell with number *x* written on it, if this cell is attacked by one of the bishops Gargari will get *x* dollars for it. Tell Gargari, how to place bishops on the chessboard to get maximum amount of money. We assume a cell is attacked by a bishop, if the cell is located on the same diagonal with the bishop (the cell, where the bishop is, also considered attacked by it).
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=2000). Each of the next *n* lines contains *n* integers *a**ij* (0<=≤<=*a**ij*<=≤<=109) — description of the chessboard.
On the first line print the maximal number of dollars Gargari will get. On the next line print four integers: *x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=*n*), where *x**i* is the number of the row where the *i*-th bishop should be placed, *y**i* is the number of the column where the *i*-th bishop should be placed. Consider rows are numbered from 1 to *n* from top to bottom, and columns are numbered from 1 to *n* from left to right. If there are several optimal solutions, you can print any of them.
[ "4\n1 1 1 1\n2 1 1 0\n1 1 1 0\n1 0 0 1\n" ]
[ "12\n2 2 3 2\n" ]
none
1,500
[ { "input": "4\n1 1 1 1\n2 1 1 0\n1 1 1 0\n1 0 0 1", "output": "12\n2 2 3 2" }, { "input": "10\n48 43 75 80 32 30 65 31 18 91\n99 5 12 43 26 90 54 91 4 88\n8 87 68 95 73 37 53 46 53 90\n50 1 85 24 32 16 5 48 98 74\n38 49 78 2 91 3 43 96 93 46\n35 100 84 2 94 56 90 98 54 43\n88 3 95 72 78 78 87 82 25 37\n8 15 85 85 68 27 40 10 22 84\n7 8 36 90 10 81 98 51 79 51\n93 66 53 39 89 30 16 27 63 93", "output": "2242\n6 6 7 6" }, { "input": "10\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0", "output": "0\n1 1 1 2" }, { "input": "15\n2 6 9 4 8 9 10 10 3 8 8 4 4 8 7\n10 9 2 6 8 10 5 2 8 4 9 6 9 10 10\n3 1 5 1 6 5 1 6 4 4 3 3 9 8 10\n5 7 10 6 4 9 6 8 1 5 4 9 10 4 8\n9 6 10 5 8 6 9 9 3 4 4 7 6 2 4\n8 6 10 7 3 3 8 10 3 8 4 8 8 3 1\n7 3 6 8 8 5 5 8 3 7 2 6 3 9 7\n6 8 4 7 7 7 10 4 6 4 3 10 1 10 2\n1 6 7 8 3 4 2 8 1 7 4 4 4 9 5\n3 4 4 6 1 10 2 2 5 8 7 7 7 7 6\n10 9 3 6 8 6 1 9 5 4 7 10 7 1 8\n3 3 4 9 8 6 10 2 9 5 9 5 3 7 3\n1 8 1 3 4 8 10 4 8 4 7 5 4 6 7\n3 10 9 6 8 8 1 8 9 9 4 9 5 6 5\n7 6 3 9 9 8 6 10 3 6 4 2 10 9 7", "output": "361\n7 9 9 8" }, { "input": "8\n3 6 9 2 2 1 4 2\n1 4 10 1 1 10 1 4\n3 8 9 1 8 4 4 4\n5 8 10 5 5 6 4 7\n3 2 10 6 5 3 8 5\n6 7 5 8 8 5 4 2\n4 4 3 1 8 8 5 4\n5 6 8 9 3 1 8 5", "output": "159\n4 4 5 4" }, { "input": "13\n9 9 3 3 5 6 8 2 6 1 10 3 8\n10 4 9 2 10 3 5 10 10 7 10 7 3\n5 8 4 1 10 2 1 2 4 7 9 1 10\n6 3 10 10 10 1 3 10 4 4 2 10 4\n1 7 5 7 9 9 7 4 1 8 5 4 1\n10 10 9 2 2 6 4 1 5 5 1 9 4\n4 2 5 5 7 8 1 2 6 1 2 4 6\n5 1 10 8 1 1 9 1 2 10 6 7 2\n2 1 2 10 4 7 4 1 4 10 10 4 3\n7 7 5 1 2 1 1 4 8 2 4 8 2\n8 8 8 4 1 1 7 3 1 10 1 4 2\n4 5 1 10 8 8 8 4 10 9 4 10 4\n3 1 10 10 5 7 9 4 2 10 4 8 4", "output": "280\n6 6 7 6" }, { "input": "9\n3 9 6 1 7 6 2 8 4\n5 4 1 1 7 2 7 4 10\n7 9 9 4 6 2 7 2 8\n5 7 7 4 9 5 9 1 3\n7 3 10 2 9 4 2 1 2\n5 8 7 4 6 6 2 2 3\n4 8 4 3 4 2 1 8 10\n5 8 2 8 4 4 7 5 4\n2 8 7 4 3 6 10 8 1", "output": "181\n5 4 6 4" } ]
1,599,995,723
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
6
3,000
44,134,400
from collections import defaultdict if __name__ == '__main__': n = int(input()) board = list() diagnol_score = defaultdict(int) for i in range(n): row = [int(x) for x in input().split()] board.append(row) for i in range(n): for j in range(n): diagnol_score[(j-i,'r')] += board[i][j] diagnol_score[(i+j,'l')] += board[i][j] max_black = -1 max_black_coords = '' max_white_coords = '' max_white = -1 for i in range(n): for j in range(n): if (i+j)%2: if max_white != max(max_white, diagnol_score[(j-i, 'r')] + diagnol_score[(j+i, 'l')] - board[i][j]): max_white = max(max_white, diagnol_score[(j-i, 'r')] + diagnol_score[(j+i, 'l')]- board[i][j]) max_white_coords = (i,j) else: if max_black != max(max_black, diagnol_score[(j-i, 'r')] + diagnol_score[(j+i, 'l')] - board[i][j]): max_black = max(max_black, diagnol_score[(j-i, 'r')] + diagnol_score[(j+i, 'l')] - board[i][j]) max_black_coords = (i,j) print(max_black + max_white) print(max_black_coords[0]+1, max_black_coords[1]+1, max_white_coords[0]+1, max_white_coords[1]+1)
Title: Gargari and Bishops Time Limit: None seconds Memory Limit: None megabytes Problem Description: Gargari is jealous that his friend Caisa won the game from the previous problem. He wants to prove that he is a genius. He has a *n*<=×<=*n* chessboard. Each cell of the chessboard has a number written on it. Gargari wants to place two bishops on the chessboard in such a way that there is no cell that is attacked by both of them. Consider a cell with number *x* written on it, if this cell is attacked by one of the bishops Gargari will get *x* dollars for it. Tell Gargari, how to place bishops on the chessboard to get maximum amount of money. We assume a cell is attacked by a bishop, if the cell is located on the same diagonal with the bishop (the cell, where the bishop is, also considered attacked by it). Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=2000). Each of the next *n* lines contains *n* integers *a**ij* (0<=≤<=*a**ij*<=≤<=109) — description of the chessboard. Output Specification: On the first line print the maximal number of dollars Gargari will get. On the next line print four integers: *x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=*n*), where *x**i* is the number of the row where the *i*-th bishop should be placed, *y**i* is the number of the column where the *i*-th bishop should be placed. Consider rows are numbered from 1 to *n* from top to bottom, and columns are numbered from 1 to *n* from left to right. If there are several optimal solutions, you can print any of them. Demo Input: ['4\n1 1 1 1\n2 1 1 0\n1 1 1 0\n1 0 0 1\n'] Demo Output: ['12\n2 2 3 2\n'] Note: none
```python from collections import defaultdict if __name__ == '__main__': n = int(input()) board = list() diagnol_score = defaultdict(int) for i in range(n): row = [int(x) for x in input().split()] board.append(row) for i in range(n): for j in range(n): diagnol_score[(j-i,'r')] += board[i][j] diagnol_score[(i+j,'l')] += board[i][j] max_black = -1 max_black_coords = '' max_white_coords = '' max_white = -1 for i in range(n): for j in range(n): if (i+j)%2: if max_white != max(max_white, diagnol_score[(j-i, 'r')] + diagnol_score[(j+i, 'l')] - board[i][j]): max_white = max(max_white, diagnol_score[(j-i, 'r')] + diagnol_score[(j+i, 'l')]- board[i][j]) max_white_coords = (i,j) else: if max_black != max(max_black, diagnol_score[(j-i, 'r')] + diagnol_score[(j+i, 'l')] - board[i][j]): max_black = max(max_black, diagnol_score[(j-i, 'r')] + diagnol_score[(j+i, 'l')] - board[i][j]) max_black_coords = (i,j) print(max_black + max_white) print(max_black_coords[0]+1, max_black_coords[1]+1, max_white_coords[0]+1, max_white_coords[1]+1) ```
0
747
B
Mammoth's Genome Decoding
PROGRAMMING
900
[ "implementation", "strings" ]
null
null
The process of mammoth's genome decoding in Berland comes to its end! One of the few remaining tasks is to restore unrecognized nucleotides in a found chain *s*. Each nucleotide is coded with a capital letter of English alphabet: 'A', 'C', 'G' or 'T'. Unrecognized nucleotides are coded by a question mark '?'. Thus, *s* is a string consisting of letters 'A', 'C', 'G', 'T' and characters '?'. It is known that the number of nucleotides of each of the four types in the decoded genome of mammoth in Berland should be equal. Your task is to decode the genome and replace each unrecognized nucleotide with one of the four types so that the number of nucleotides of each of the four types becomes equal.
The first line contains the integer *n* (4<=≤<=*n*<=≤<=255) — the length of the genome. The second line contains the string *s* of length *n* — the coded genome. It consists of characters 'A', 'C', 'G', 'T' and '?'.
If it is possible to decode the genome, print it. If there are multiple answer, print any of them. If it is not possible, print three equals signs in a row: "===" (without quotes).
[ "8\nAG?C??CT\n", "4\nAGCT\n", "6\n????G?\n", "4\nAA??\n" ]
[ "AGACGTCT\n", "AGCT\n", "===\n", "===\n" ]
In the first example you can replace the first question mark with the letter 'A', the second question mark with the letter 'G', the third question mark with the letter 'T', then each nucleotide in the genome would be presented twice. In the second example the genome is already decoded correctly and each nucleotide is exactly once in it. In the third and the fourth examples it is impossible to decode the genom.
1,000
[ { "input": "8\nAG?C??CT", "output": "AGACGTCT" }, { "input": "4\nAGCT", "output": "AGCT" }, { "input": "6\n????G?", "output": "===" }, { "input": "4\nAA??", "output": "===" }, { "input": "4\n????", "output": "ACGT" }, { "input": "252\n???????GCG??T??TT?????T?C???C?CCG???GA???????AC??A???AAC?C?CC??CCC??A??TA?CCC??T???C??CA???CA??G????C?C?C????C??C??A???C?T????C??ACGC??CC?A?????A??CC?C??C?CCG?C??C??A??CG?A?????A?CT???CC????CCC?CATC?G??????????A???????????????TCCCC?C?CA??AC??GC????????", "output": "AAAAAAAGCGAATAATTAAAAATACAAACACCGAAAGAAAAAAAAACAAAAAAAACACACCAACCCAAAACTACCCCCCTCCCCCGCAGGGCAGGGGGGGCGCGCGGGGCGGCGGAGGGCGTGGGGCGGACGCGGCCGAGGGGGAGGCCGCGGCGCCGGCGGCGGAGGCGGAGTTTTATCTTTTCCTTTTCCCTCATCTGTTTTTTTTTTATTTTTTTTTTTTTTTTCCCCTCTCATTACTTGCTTTTTTTT" }, { "input": "255\n???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????", "output": "===" }, { "input": "4\n??A?", "output": "CGAT" }, { "input": "4\n?C??", "output": "ACGT" }, { "input": "4\nT???", "output": "TACG" }, { "input": "4\n???G", "output": "ACTG" }, { "input": "4\n??AC", "output": "GTAC" }, { "input": "8\n?C?AA???", "output": "CCGAAGTT" }, { "input": "12\n???A?G???A?T", "output": "ACCACGGGTATT" }, { "input": "16\n?????C??CAG??T??", "output": "AAACCCGGCAGGTTTT" }, { "input": "20\n???A?G??C?GC???????G", "output": "AAAAAGCCCCGCGGTTTTTG" }, { "input": "24\n?TG???AT?A?CTTG??T?GCT??", "output": "ATGAAAATCACCTTGCCTGGCTGG" }, { "input": "28\n??CTGAAG?GGT?CC?A??TT?CCACG?", "output": "AACTGAAGAGGTCCCGAGTTTTCCACGT" }, { "input": "32\n??A?????CAAG?C?C?CG??A?A??AAC?A?", "output": "CCACGGGGCAAGGCGCTCGTTATATTAACTAT" }, { "input": "36\n?GCC?CT?G?CGG?GCTGA?C?G?G????C??G?C?", "output": "AGCCACTAGACGGAGCTGAACAGAGCTTTCTTGTCT" }, { "input": "40\nTA?AA?C?G?ACC?G?GCTCGC?TG??TG?CT?G??CC??", "output": "TAAAAACAGAACCAGAGCTCGCCTGGGTGGCTTGTTCCTT" }, { "input": "44\nT?TA??A??AA???A?AGTA??TAT??ACTGAT??CT?AC?T??", "output": "TCTACCACCAACCCAGAGTAGGTATGGACTGATGGCTGACGTTT" }, { "input": "48\nG?G??GC??CA?G????AG?CA?CG??GGCCCCAA??G??C?T?TCA?", "output": "GAGAAGCAACAAGCCGGAGGCATCGTTGGCCCCAATTGTTCTTTTCAT" }, { "input": "52\n??G?G?CTGT??T?GCGCT?TAGGTT??C???GTCG??GC??C???????CG", "output": "AAGAGACTGTAATAGCGCTATAGGTTAACAACGTCGCCGCCCCGGTTTTTCG" }, { "input": "56\n?GCCA?GC?GA??GA??T?CCGC?????TGGC?AGGCCGC?AC?TGAT??CG?A??", "output": "AGCCAAGCAGAAAGAAATCCCGCCGGTTTGGCTAGGCCGCTACTTGATTTCGTATT" }, { "input": "60\nAT?T?CCGG??G?CCT?CCC?C?CGG????TCCCG?C?TG?TT?TA??A?TGT?????G?", "output": "ATATACCGGAAGACCTACCCACACGGAAAATCCCGCCCTGGTTGTAGGAGTGTGTTTTGT" }, { "input": "64\n?G??C??????C??C??AG?T?GC?TT??TAGA?GA?A??T?C???TC??A?CA??C??A???C", "output": "AGAACAAAAACCCCCCCAGCTCGCGTTGGTAGAGGAGAGGTGCGGGTCTTATCATTCTTATTTC" }, { "input": "68\nC?T??????C????G?T??TTT?T?T?G?CG??GCC??CT??????C??T?CC?T?T????CTT?T??", "output": "CATAAAAAACAAAAGATAATTTATATAGCCGCCGCCCCCTCCGGGGCGGTGCCGTGTGGGGCTTTTTT" }, { "input": "72\nA?GTA??A?TG?TA???AAAGG?A?T?TTAAT??GGA?T??G?T?T????TTATAAA?AA?T?G?TGT??TG", "output": "AAGTACCACTGCTACCCAAAGGCACTCTTAATCCGGACTCCGCTCTCGGGTTATAAAGAAGTGGGTGTGTTG" }, { "input": "76\nG?GTAC?CG?AG?AGC???A??T?TC?G??C?G?A???TC???GTG?C?AC???A??????TCA??TT?A?T?ATG", "output": "GAGTACACGAAGAAGCAAAAAATCTCCGCCCCGCACCCTCCGGGTGGCGACGGGAGGTTTTTCATTTTTATTTATG" }, { "input": "80\nGG???TAATT?A?AAG?G?TT???G??TTA?GAT?????GT?AA?TT?G?AG???G?T?A??GT??TTT?TTG??AT?T?", "output": "GGAAATAATTAAAAAGAGATTACCGCCTTACGATCCCCCGTCAACTTCGCAGCCCGCTCACGGTGGTTTGTTGGGATGTG" }, { "input": "84\n?C??G??CGGC????CA?GCGG???G?CG??GA??C???C???GC???CG?G?A?C?CC?AC?C?GGAG???C??????G???C", "output": "ACAAGAACGGCAAAACAAGCGGAAAGACGAAGACCCCCGCGGGGCGTTCGTGTATCTCCTACTCTGGAGTTTCTTTTTTGTTTC" }, { "input": "88\nGTTC?TCTGCGCGG??CATC?GTGCTCG?A?G?TGCAGCAG??A?CAG???GGTG?ATCAGG?TCTACTC?CG?GGT?A?TCC??AT?", "output": "GTTCATCTGCGCGGAACATCAGTGCTCGAAAGATGCAGCAGAAAACAGACCGGTGCATCAGGCTCTACTCGCGTGGTTATTCCTTATT" }, { "input": "92\n??TT????AT?T????A???TC????A?C????AT???T?T???T??A???T??TTA?AT?AA?C????C??????????????TAA?T???", "output": "AATTAAAAATATAAAAAACCTCCCCCACCCCCCATCCCTCTCCCTCGAGGGTGGTTAGATGAAGCGGGGCGGGGGGGGGGTTTTTAATTTTT" }, { "input": "96\nT?????C?CT?T??GGG??G??C???A?CC??????G???TCCCT??C?G??GC?CT?CGT?GGG??TCTC?C?CCGT?CCTCTT??CC?C?????", "output": "TAAAAACACTATAAGGGAAGAACAAAAACCAAAAAAGCGGTCCCTGGCGGGGGCGCTGCGTGGGGGGTCTCTCTCCGTTCCTCTTTTCCTCTTTTT" }, { "input": "100\n???GGA?C?A?A??A?G??GT?GG??G????A?ATGGAA???A?A?A?AGAGGT?GA?????AA???G???GA???TAGAG?ACGGA?AA?G???GGGAT", "output": "ACCGGACCCACACCACGCCGTCGGCCGCCCCACATGGAACCCACACAGAGAGGTGGATTTTTAATTTGTTTGATTTTAGAGTACGGATAATGTTTGGGAT" }, { "input": "104\n???TTG?C???G?G??G??????G?T??TC???CCC????TG?GGT??GG?????T?CG???GGG??GTC?G??TC??GG??CTGGCT??G????C??????TG", "output": "AAATTGACAAAGAGAAGAAAAAAGATAATCAAACCCAAAATGCGGTCCGGCCCCCTCCGCCCGGGCCGTCCGGGTCGGGGTTCTGGCTTTGTTTTCTTTTTTTG" }, { "input": "108\n??CAC?A?ACCA??A?CA??AA?TA?AT?????CCC????A??T?C?CATA??CAA?TACT??A?TA?AC?T??G???GG?G??CCC??AA?CG????T?CT?A??AA", "output": "AACACAACACCACCACCACCAACTACATCGGGGCCCGGGGAGGTGCGCATAGGCAAGTACTGGAGTAGACGTGGGTTTGGTGTTCCCTTAATCGTTTTTTCTTATTAA" }, { "input": "112\n???T?TC?C?AC???TC?C???CCC??C????C?CCGC???TG?C?T??????C?C?????G?C????A????????G?C?A?C?A?C?C??C????CC?TC??C??C?A??", "output": "AAATATCACAACAAATCACAAACCCAACAAAACACCGCAAATGCCGTGGGGGGCGCGGGGGGGCGGGGAGGGGGGTTGTCTATCTATCTCTTCTTTTCCTTCTTCTTCTATT" }, { "input": "116\n????C??A?A??AAC???????C???CCCTC??A????ATA?T??AT???C?TCCC???????C????CTC??T?A???C??A???CCA?TAC?AT?????C??CA???C?????C", "output": "AAAACAAAAAAAAACAAAAAACCCCCCCCTCCCACGGGATAGTGGATGGGCGTCCCGGGGGGGCGGGGCTCGGTGAGGGCGGATTTCCATTACTATTTTTTCTTCATTTCTTTTTC" }, { "input": "120\nTC?AGATG?GAT??G????C?C??GA?GT?TATAC?AGA?TCG?TCT???A?AAA??C?T?A???AA?TAC?ATTT???T?AA?G???TG?AT???TA??GCGG?AC?A??AT??T???C", "output": "TCAAGATGAGATAAGAACCCCCCCGACGTCTATACCAGACTCGCTCTCCCACAAACCCCTCACGGAAGTACGATTTGGGTGAAGGGGGTGGATGGGTAGTGCGGTACTATTATTTTTTTC" }, { "input": "124\n???C?????C?AGG??A?A?CA????A??A?AA??A????????G?A?????????AG?A??G?C??A??C???G??CG??C???????A????C???AG?AA???AC????????????C??G", "output": "AAACAAAAACAAGGAAAAAACACCCCACCACAACCACCCCCCCCGCACCCGGGGGGAGGAGGGGCGGAGGCGGGGGGCGGGCGTTTTTTATTTTCTTTAGTAATTTACTTTTTTTTTTTTCTTG" }, { "input": "128\nAT?GC?T?C?GATTTG??ATTGG?AC?GGCCA?T?GG?CCGG??AGT?TGT?G??A?AAGGCGG?T??TCT?CT??C?TTGTTG??????CCGG?TGATAT?T?TTGTCCCT??CTGTGTAATA??G?", "output": "ATAGCATACAGATTTGAAATTGGAACAGGCCAATAGGACCGGAAAGTATGTAGAAAAAAGGCGGCTCCTCTCCTCCCCTTGTTGCCCCCCCCGGCTGATATCTGTTGTCCCTGGCTGTGTAATAGGGT" }, { "input": "132\nAC???AA??T???T??G??ACG?C??AA?GA?C???CGAGTA?T??TTGTC???GCTGATCA????C??TA???ATTTA?C??GT??GTCTCTCGT?AAGGACTG?TC????T???C?T???ATTTT?T?AT", "output": "ACAAAAAAATAAATAAGAAACGACACAACGACCCCCCGAGTACTCCTTGTCCCCGCTGATCACCCCCCGTAGGGATTTAGCGGGTGGGTCTCTCGTGAAGGACTGGTCGGGGTGGGCGTTTTATTTTTTTAT" }, { "input": "136\n?A?C???????C??????????????C?????C???????????CCCC?????????C??????C??C??????CC??C??C?C???C??????C??C?C??????????C?????????GC????C???????C?", "output": "AAACAAAAAAACAAAAAAAAAAAAAACAAAAACAAAAACCCCCCCCCCCCCCGGGGGCGGGGGGCGGCGGGGGGCCGGCGGCGCGGGCGGGGGGCTTCTCTTTTTTTTTTCTTTTTTTTTGCTTTTCTTTTTTTCT" }, { "input": "140\nTTG??G?GG?G??C??CTC?CGG?TTCGC????GGCG?G??TTGCCCC?TCC??A??CG?GCCTTT?G??G??CT??TG?G?TTC?TGC?GG?TGT??CTGGAT??TGGTTG??TTGGTTTTTTGGTCGATCGG???C??", "output": "TTGAAGAGGAGAACAACTCACGGATTCGCAAAAGGCGAGAATTGCCCCATCCAAAAACGAGCCTTTAGAAGAACTAATGAGATTCCTGCCGGCTGTCCCTGGATCCTGGTTGCCTTGGTTTTTTGGTCGATCGGCCCCTT" }, { "input": "144\n?????A?C?A?A???TTT?GAATA?G??T?T?????AT?AA??TT???TT??A?T????AT??TA??AA???T??A??TT???A????T???T????A??T?G???A?C?T????A?AA??A?T?C??A??A???AA????ATA", "output": "AAAAAAACAAAACCCTTTCGAATACGCCTCTCCCCCATCAACCTTCCCTTCCACTCCCCATCCTACCAACCCTGGAGGTTGGGAGGGGTGGGTGGGGAGGTGGGGGAGCGTGGGGAGAAGGATTTCTTATTATTTAATTTTATA" }, { "input": "148\nACG?GGGT?A??C????TCTTGCTG?GTA?C?C?TG?GT??GGGG??TTG?CA????GT???G?TT?T?CT?C??C???CTTCATTA?G?G???GC?AAT??T???AT??GGATT????TC?C???????T??TATCG???T?T?CG?", "output": "ACGAGGGTAAAACAAAATCTTGCTGAGTAACACATGAGTAAGGGGAATTGACAAAAAGTAAAGATTCTCCTCCCCCCCCCTTCATTACGCGCCCGCCAATCCTCCCATCGGGATTGGGGTCGCGGGGGGGTGTTATCGTTTTTTTCGT" }, { "input": "152\n??CTA??G?GTC?G??TTCC?TG??????T??C?G???G?CC???C?GT?G?G??C?CGGT?CC????G?T?T?C?T??G?TCGT??????A??TCC?G?C???GTT?GC?T?CTT?GT?C??C?TCGTTG?TTG?G????CG?GC??G??G", "output": "AACTAAAGAGTCAGAATTCCATGAAAAAATAACAGAAAGACCAAACAGTAGAGAACACGGTACCAAAAGCTCTCCCTCCGCTCGTCCCCCCACGTCCGGGCGGGGTTGGCGTGCTTGGTGCGTCTTCGTTGTTTGTGTTTTCGTGCTTGTTG" }, { "input": "156\nGCA????A???AAT?C??????GAG?CCA?A?CG??ACG??????GCAAAC??GCGGTCC??GT???C???????CC???????ACGCA????C??A??CC??A?GAATAC?C?CA?CCCT?TCACA?A???????C??TAG?C??T??A??A?CA", "output": "GCAAAAAAAAAAATACAAAAACGAGCCCACACCGCCACGCCCGGGGCAAACGGGCGGTCCGGGTGGGCGGGGGGGCCGGGGGGGACGCAGGTTCTTATTCCTTATGAATACTCTCATCCCTTTCACATATTTTTTTCTTTAGTCTTTTTATTATCA" }, { "input": "160\nGCACC????T?TGATAC??CATATCC?GT?AGT?ATGGATA?CC?????GCTCG?A?GG?A?GCCAG??C?CGGATC?GCAA?AAGCCCCC?CAT?GA?GC?CAC?TAA?G?CACAACGG?AAA??CA?ACTCGA?CAC?GAGCAAC??A?G?AAA?TC?", "output": "GCACCACCCTGTGATACGGCATATCCGGTGAGTGATGGATAGCCGGGGGGCTCGGAGGGGATGCCAGTTCTCGGATCTGCAATAAGCCCCCTCATTGATGCTCACTTAATGTCACAACGGTAAATTCATACTCGATCACTGAGCAACTTATGTAAATTCT" }, { "input": "164\nGA?AGGT???T?G?A?G??TTA?TGTG?GTAGT?????T??TTTG?A?T??T?TA?G?T?GGT?????TGTGG?A?A?T?A?T?T?????TT?AAGAG?????T??TATATG?TATT??G?????GGGTATTTT?GG?A??TG??T?GAATGTG?AG?T???A?", "output": "GAAAGGTAAATAGAAAGAATTAATGTGAGTAGTAAAAATAATTTGAACTCCTCTACGCTCGGTCCCCCTGTGGCACACTCACTCTCCCCCTTCAAGAGCCCCCTCCTATATGCTATTCCGCCCCCGGGTATTTTCGGCAGGTGGGTGGAATGTGGAGGTGGGAG" }, { "input": "168\n?C?CAGTCCGT?TCC?GCG?T??T?TA?GG?GCTTGTTTTGT??GC???CTGT??T?T?C?ACG?GTGG??C??TC?GT??CTT?GGT??TGGC??G?TTTCTT?G??C?CTC??CT?G?TT?CG?C?A???GCCGTGAG?CTTC???TTCTCGG?C?CC??GTGCTT", "output": "ACACAGTCCGTATCCAGCGATAATATAAGGAGCTTGTTTTGTAAGCAAACTGTAATATACAACGAGTGGAACAATCAGTAACTTAGGTAATGGCAAGATTTCTTAGAACCCTCCCCTCGCTTCCGCCCACGGGCCGTGAGGCTTCGGGTTCTCGGGCGCCGGGTGCTT" }, { "input": "172\nG?ATG??G?TTT?ATA?GAAGCACTTGCT?AGC??AG??GTTCG?T?G??G?AC?TAGGGCT?TA?TTCTA?TTCAGGAA?GGAAATTGAAG?A?CT?GGTGAGTCTCT?AAACAGT??T??TCAGG?AGTG?TT?TAAT??GG?G?GCA???G?GGA?GACGAATACTCAA", "output": "GAATGAAGATTTAATACGAAGCACTTGCTCAGCCCAGCCGTTCGCTCGCCGCACCTAGGGCTCTACTTCTACTTCAGGAACGGAAATTGAAGCACCTCGGTGAGTCTCTCAAACAGTCCTCCTCAGGCAGTGGTTGTAATGGGGTGTGCATTTGTGGATGACGAATACTCAA" }, { "input": "176\n????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT" }, { "input": "180\n?GTTACA?A?A?G??????GGGA?A??T?????C?AC??GG???G????T??CC??T?CGG?AG???GAAGG?????A?GT?G?????CTAA?A??C?A???A?T??C?A???AAA???G?GG?C?A??C???????GTCC?G??GT??G?C?G?C????TT??G????A???A???A?G", "output": "AGTTACAAAAAAGAAAAAAGGGAAAAATAAAAACAACAAGGCCCGCCCCTCCCCCCTCCGGCAGCCCGAAGGCCCCCACGTCGCCCCCCTAACACGCGAGGGAGTGGCGAGGGAAAGGGGGGGGCGAGTCTTTTTTTGTCCTGTTGTTTGTCTGTCTTTTTTTTGTTTTATTTATTTATG" }, { "input": "184\n?CTC?A??????C?T?TG??AC??????G???CCT????CT?C?TT???C???AT????????????T??T?A?AGT?C?C?C?C?CG??CAT?C??C???T??T?TCCTC????C??A???CG?C???C??TC??C?G?C????CTT????C??A?AT??C????T?TCT?T???C?CT??C?", "output": "ACTCAAAAAAAACATATGAAACAAAAAAGAAACCTAAAACTACATTAAACAAAATAAAACCCCCCCCTCCTCACAGTGCGCGCGCGCGGGCATGCGGCGGGTGGTGTCCTCGGGGCGGAGGGCGGCGGGCGGTCGGCGGGCGGGGCTTGTTTCTTATATTTCTTTTTTTCTTTTTTCTCTTTCT" }, { "input": "188\n????TG??A?G?GG?AGA??T??G?TA?ATTT?TTGA??TTA??T?G???GA?G?A??GG??ACTTGT?T?T?TCT?TG?TGAG??GT?A???TT?G???????TA???G?G?GTAG?G?T????????A?TT?TT?T??GGTGT??TTT?T?T?TT???GAGA??G?GGG?G??TG?GT?GT?A??T", "output": "AAAATGAAAAGAGGAAGAAATAAGATAAATTTATTGAAATTAAATAGAAAGAAGAAAAGGACACTTGTCTCTCTCTCTGCTGAGCCGTCACCCTTCGCCCCCCCTACCCGCGCGTAGCGCTCCCCCCCCACTTCTTCTCCGGTGTCCTTTCTCTCTTGGGGAGAGGGGGGGGGGGTGGGTGGTTATTT" }, { "input": "192\nTT???TA?A?TTCTCA?ATCCCC?TA?T??A?A?TGT?TT??TAA?C?C?TA?CTAAAT???AA?TT???T?AATAG?AC??AC?A??A?TT?A?TT?AA?TCTTTC??A?AAA?AA??T?AG?C??AT?T?TATCT?CTTCAA?ACAAAT???AT?TT??????C?CTC???TT?ACACACTGCA?AC??T", "output": "TTAACTACACTTCTCACATCCCCCTACTCCACACTGTCTTCCTAACCCCCTACCTAAATCCCAACTTCGGTGAATAGGACGGACGAGGAGTTGAGTTGAAGTCTTTCGGAGAAAGAAGGTGAGGCGGATGTGTATCTGCTTCAAGACAAATGGGATGTTGGGGGGCGCTCGGGTTGACACACTGCAGACTTT" }, { "input": "196\n??ACATCC??TGA?C?AAA?A???T????A??ACAC????T???????CCC?AAT?T?AT?A?A??TATC??CC?CCACACA?CC?A?AGC??AAA??A???A?CA??A?AT??G???CA?ACATTCG??CACAT?AC???A?A?C?CTTT?AAG??A?TAC???C?GCAA?T??C??AA???GAC?ATTAT????", "output": "ACACATCCCCTGACCCAAACACCCTCCCCACCACACCGGGTGGGGGGGCCCGAATGTGATGAGAGGTATCGGCCGCCACACAGCCGAGAGCGGAAAGGAGGGAGCAGGAGATGGGGGGCAGACATTCGGGCACATTACTTTATATCTCTTTTAAGTTATTACTTTCTGCAATTTTCTTAATTTGACTATTATTTTT" }, { "input": "200\n?CT?T?C???AC?G?CAC?C?T??T?G?AGAGTA?CT????A?CCCAT?GCT?TTC?CAG???TCCATAAC?GACT?TC??C?AG?AA?A?C??ATC?CTAT?AC??????ACCGA??A????C?AA???CGCTTCGC?A????A??GCC?AG?T?????T?A?C?A?CTTC?????T?T?????GC?GTACTC??TG??", "output": "ACTATACAAAACAGACACACATAATAGAAGAGTAACTAAAAAACCCATCGCTCTTCCCAGCCCTCCATAACCGACTCTCCCCCAGCAAGAGCGGATCGCTATGACGGGGGGACCGAGGAGGGGCGAAGGGCGCTTCGCGAGGGGAGGGCCGAGGTGGGTTTTATCTATCTTCTTTTTTTTTTTTTGCTGTACTCTTTGTT" }, { "input": "204\n??????T???T?GC?TC???TA?TC?????A??C?C??G??????G?CTC????A?CTTT?T???T??CTTA???????T??C??G????A?????TTTA??AT?A??C?C?T?C???C?????T???????GT????T????AT?CT????C??C??T???C????C?GCTTCCC?G?????T???C?T??????????TT??", "output": "AAAAAATAAATAGCATCAAATAATCAAAAAAAACACAAGAAAAAAGACTCAAAAAACTTTATAAATACCTTACCCCCCCTCCCCCGCCCCACCCCCTTTACCATCACCCCCGTGCGGGCGGGGGTGGGGGGGGTGGGGTGGGGATGCTGGGGCGGCGGTGGGCGGGGCGGCTTCCCGGGTTTTTTTTCTTTTTTTTTTTTTTTT" }, { "input": "208\nA?GGT?G??A???????G??A?A?GA?T?G???A?AAG?AT????GG?????AT??A?A???T?A??????A????AGGCGT???A???TA????TGGT???GA????GGTG???TA??GA??TA?GGG?????G?????AT?GGGG??TG?T?AA??A??AG?AA?TGA???A?A?GG???GAAT?G?T??T?A??G?CAGT?T?A?", "output": "AAGGTAGAAAAAAAAAAGAAAAAAGAATCGCCCACAAGCATCCCCGGCCCCCATCCACACCCTCACCCCCCACCCCAGGCGTCCCACCCTACCCCTGGTCCCGACCCCGGTGCGGTAGGGAGGTAGGGGGGGGGGGGGGTATTGGGGTTTGTTTAATTATTAGTAATTGATTTATATGGTTTGAATTGTTTTTTATTGTCAGTTTTAT" }, { "input": "212\nT?TTT?A??TC?????A?T??T????T????????C??T??AT????????T???TT????T?TTT??????????TTC???T?T?C??T?TA?C??TTT????T???????C????????A?TT???T??TTT??AT?T????T????T?????A??C????T??T???TA???A?????????T???C????????C???T?TA???TTT", "output": "TATTTAAAATCAAAAAAATAATAAAATAAAAAAAACAATAAATAAAAAAAATAAATTAAAATCTTTCCCCCCCCCCTTCCCCTCTCCCCTCTACCCCTTTCCCCTCCCCCCCCCCCCCCCCACTTCCGTGGTTTGGATGTGGGGTGGGGTGGGGGAGGCGGGGTGGTGGGTAGGGAGGGGGGGGGTGGGCGGGGGGGGCTTTTTTATTTTTT" }, { "input": "216\n?CT?A?CC?GCC?C?AT?A???C???TA????ATGTCCG??CCG?CGG?TCC?TTC??CCT????????G?GGC?TACCCGACCGAG?C???C?G?G??C??CGTCCTG??AGG??CT?G???TC?CT????A?GTA??C?C?CTGTTAC??C?TCT?C?T???T??GTGGA?AG?CGCT?CGTC???T?C?T?C?GTT???C??GCC?T??C?T?", "output": "ACTAAACCAGCCACAATAAAAACAAATAAAAAATGTCCGAACCGACGGATCCATTCAACCTAAAAAAAAGAGGCATACCCGACCGAGACAAACAGAGCCCCCCGTCCTGCGAGGGGCTGGGGGTCGCTGGGGAGGTAGGCGCGCTGTTACGGCGTCTGCGTGGGTTTGTGGATAGTCGCTTCGTCTTTTTCTTTCTGTTTTTCTTGCCTTTTCTTT" }, { "input": "220\n?GCC??????T????G?CTC???CC?C????GC??????C???TCCC???????GCC????????C?C??C?T?C?CC????CC??C???????CC??C?G?A?T???CC??C????????C????CTA?GC?????CC??C?C?????T?????G?????????G???AC????C?CG?????C?G?C?CG?????????G?C????C?G??????C??", "output": "AGCCAAAAAATAAAAGACTCAAACCACAAAAGCAAAAAACAAATCCCAAAAAAAGCCAAAAAAAACACAACATACACCAACCCCCCCCCCCCCGCCGGCGGGAGTGGGCCGGCGGGGGGGGCGGGGCTAGGCGGGGGCCGGCGCGGGGGTGGGGGGTTTTTTTTTGTTTACTTTTCTCGTTTTTCTGTCTCGTTTTTTTTTGTCTTTTCTGTTTTTTCTT" }, { "input": "224\nTTGC?G??A?ATCA??CA???T?TG?C?CGA?CTTA?C??C?TTC?AC?CTCA?A?AT?C?T?CT?CATGT???A??T?CT????C?AACT?TTCCC??C?AAC???AC?TTTC?TTAAA??????TGT????CGCT????GCCC?GCCCA?????TCGA??C?TATACA??C?CC?CATAC?GGACG??GC??GTT?TT?T???GCT??T?C?T?C??T?CC?", "output": "TTGCAGAAAAATCAAACAAAATATGACACGAACTTAACAACATTCAACACTCAAAAATACATACTACATGTAAAACCTCCTCCCCCCAACTGTTCCCGGCGAACGGGACGTTTCGTTAAAGGGGGGTGTGGGGCGCTGGGGGCCCGGCCCAGGGGGTCGAGGCGTATACAGGCGCCGCATACGGGACGGGGCGTGTTTTTTTTTTGCTTTTTCTTTCTTTTCCT" }, { "input": "228\nA??A?C???AG?C?AC???A?T?????AA??????C?A??A?AC?????C?C???A??????A???AC?C????T?C?AA?C??A???CC??????????????????A???CC????A?????C??TC???A???????????A??A????????????????CC?????CCA??????????????C??????C????T?CT???C???A???T?CC?G??C??A?", "output": "AAAAACAAAAGACAACAAAAATAAAAAAAAAAAAACAAAAAAACAAAAACACCCCACCCCCCACCCACCCCCCCTCCCAACCCCACCCCCCCCCGGGGGGGGGGGGGGAGGGCCGGGGAGGGGGCGGTCGGGAGGGGGGGGGGGAGGAGGGGGGGGGGGTTTTTCCTTTTTCCATTTTTTTTTTTTTTCTTTTTTCTTTTTTCTTTTCTTTATTTTTCCTGTTCTTAT" }, { "input": "232\nA??AAGC?GCG?AG???GGGCG?C?A?GCAAC?AG?C?GC??CA??A??CC?AA?A????G?AGA?ACACA?C?G?G?G?CGC??G???????GAGC?CAA??????G?A???AGGG?????AAC?AG?A?A??AG?CG?G???G????GGGA?C?G?A?A??GC????C??A?ACG?AA?G?ACG????AC?C?GA??GGCAG?GAA??ACA??A?AGGAGG???CGGA?C", "output": "AAAAAGCAGCGAAGAAAGGGCGACAAAGCAACCAGCCCGCCCCACCACCCCCAACACCCCGCAGACACACACCCGCGCGCCGCCCGCCCGGGGGAGCGCAAGGGGGTGTATTTAGGGTTTTTAACTAGTATATTAGTCGTGTTTGTTTTGGGATCTGTATATTGCTTTTCTTATACGTAATGTACGTTTTACTCTGATTGGCAGTGAATTACATTATAGGAGGTTTCGGATC" }, { "input": "236\nAAGCCC?A?TT??C?AATGC?A?GC?GACGT?CTT?TA??CCG?T?CAA?AGT?CTG???GCGATG?TG?A?A?ACT?AT?GGG?GC?C?CGCCCTT?GT??G?T?????GACTT??????CT?GA?GG?C?T?G??CTG??G??TG?TCA?TCGTT?GC?A?G?GGGT?CG?CGAG??CG?TC?TAT?A???T??GAGTC?CGGC?CG??CT?TAAT??GGAA?G??GG?GCGAC", "output": "AAGCCCAAATTAACAAATGCAAAGCAGACGTACTTATAAACCGATACAAAAGTACTGAAAGCGATGATGAAAAAACTAATAGGGAGCACACGCCCTTAGTACGCTCCCCCGACTTCCCCCCCTCGACGGCCCTCGCCCTGCGGGGTGGTCAGTCGTTGGCGAGGGGGGTGCGTCGAGTTCGTTCTTATTATTTTTTGAGTCTCGGCTCGTTCTTTAATTTGGAATGTTGGTGCGAC" }, { "input": "240\n?T?A?A??G????G????AGGAGTAA?AGGCT??C????AT?GAA?ATGCT???GA?G?A??G?TC??TATT???AG?G?G?A?A??TTGT??GGTCAG?GA?G?AAT?G?GG??CAG?T?GT?G?GC???GC??????GA?A?AAATGGGC??G??????TTA??GTCG?TC?GCCG?GGGA??T?A????T?G?T???G?GG?ATG???A?ATGAC?GGT?CTG?AGGG??TAGT?AG", "output": "ATAAAAAAGAAAAGAAAAAGGAGTAAAAGGCTAACAAAAATAGAAAATGCTACCGACGCACCGCTCCCTATTCCCAGCGCGCACACCTTGTCCGGTCAGCGACGCAATCGCGGCCCAGCTCGTCGCGCCCCGCCCCCCCGACACAAATGGGCCCGCGGGGGTTATTGTCGTTCTGCCGTGGGATTTTATTTTTTGTTTTTGTGGTATGTTTATATGACTGGTTCTGTAGGGTTTAGTTAG" }, { "input": "244\nC?GT???T??TA?CC??TACT???TC?C?A???G??G?TCC?AC??AA???C?CCACC????A?AGCC??T?CT??CCGG?CC?T?C??GCCCTGGCCAAAC???GC?C???AT?CC?CT?TAG??CG?C?T?C??A?AC?GC????A??C?C?A??TC?T????GCCCT??GG???CC?A?CC?G?A?CA?G??CCCG??CG?T?TAC?G???C?AC??G??CCA???G????C??G?CT?C?", "output": "CAGTAAATAATAACCAATACTAAATCACAAAAAGAAGATCCAACAAAAAAACACCACCAAAAAAAGCCAATACTAACCGGGCCGTGCGGGCCCTGGCCAAACGGGGCGCGGGATGCCGCTGTAGGGCGGCGTGCGGAGACGGCGGGGAGGCGCGAGGTCGTGGTTGCCCTTTGGTTTCCTATCCTGTATCATGTTCCCGTTCGTTTTACTGTTTCTACTTGTTCCATTTGTTTTCTTGTCTTCT" }, { "input": "248\n??TC???TG??G??T????CC???C?G?????G?????GT?A?CT?AAT?GG?AGA?????????G???????G???CG??AA?A????T???????TG?CA????C?TT?G?GC???AA?G????G????T??G??A??????TT???G???CG?????A??A??T?GA??G??T?CC?TA??GCTG?A????G?CG??GGTG??CA???????TA??G?????????A???????GC?GG????GC", "output": "AATCAAATGAAGAATAAAACCAAACAGAAAAAGAAAAAGTAAACTAAATAGGAAGAAAAAAAAAAGACCCCCCGCCCCGCCAACACCCCTCCCCCCCTGCCACCCCCCTTCGCGCCCCAACGCCCCGCCCCTCCGGGAGGGGGGTTGGGGGGGCGGGGGGAGGAGGTGGAGGGGGTGCCTTATTGCTGTATTTTGTCGTTGGTGTTCATTTTTTTTATTGTTTTTTTTTATTTTTTTGCTGGTTTTGC" }, { "input": "8\n???AAA??", "output": "===" }, { "input": "12\nC??CC??????C", "output": "===" }, { "input": "4\nG??G", "output": "===" }, { "input": "4\nTT??", "output": "===" }, { "input": "4\nACAC", "output": "===" }, { "input": "8\nACGT???T", "output": "ACGTACGT" }, { "input": "252\n????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT" }, { "input": "252\n??????????????????????????????????????????????????????????????????????????????A?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT" }, { "input": "252\n???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????C????????????????????????????????????????????????????????????????", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGCGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT" }, { "input": "252\n???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????G", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTG" }, { "input": "252\nT???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????", "output": "TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT" }, { "input": "4\nAA?T", "output": "===" }, { "input": "4\nAAAA", "output": "===" }, { "input": "8\nAAA?????", "output": "===" }, { "input": "10\nACGT??????", "output": "===" }, { "input": "6\nACGACG", "output": "===" }, { "input": "5\nAAAAA", "output": "===" }, { "input": "8\nGGGGAA??", "output": "===" }, { "input": "5\nATGCA", "output": "===" }, { "input": "4\nTTTT", "output": "===" }, { "input": "4\nACCG", "output": "===" }, { "input": "8\nACGTA?GT", "output": "ACGTACGT" } ]
1,537,986,099
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
93
0
n = int(input()) s = input() g = [0] * 5 pos = [] for i in range(0,n): if s[i] == "A": g[0] += 1 elif s[i] == "G": g[1] += 1 elif s[i] == "T": g[2] +=1 elif s[i] == "C": g[3] += 1 else: g[4] += 1 pos.append(i) if g[4] == 0: if g[0] == g[1] and g[1] == g[2] and g[2] == g[3]: print(s) else: print("===") else: m = max(g[0:4]) necesarios = 0 for i in range(0,4): if(g[i] != m): necesarios += (m - g[i]) #print(necesarios) #print(g[4]) if necesarios != g[4]: print("===") else: if g[4]%necesarios != 0: print("===") else: s = list(s) j = 0 while g[0] != m: s[pos[j]] = "A" j += 1 g[0] += 1 while g[1] != m: s[pos[j]] = "G" j += 1 g[1] += 1 while g[2] != m: s[pos[j]] = "T" j += 1 g[2] += 1 while g[3] != m: s[pos[j]] = "C" j += 1 g[3] += 1 print("".join(s))
Title: Mammoth's Genome Decoding Time Limit: None seconds Memory Limit: None megabytes Problem Description: The process of mammoth's genome decoding in Berland comes to its end! One of the few remaining tasks is to restore unrecognized nucleotides in a found chain *s*. Each nucleotide is coded with a capital letter of English alphabet: 'A', 'C', 'G' or 'T'. Unrecognized nucleotides are coded by a question mark '?'. Thus, *s* is a string consisting of letters 'A', 'C', 'G', 'T' and characters '?'. It is known that the number of nucleotides of each of the four types in the decoded genome of mammoth in Berland should be equal. Your task is to decode the genome and replace each unrecognized nucleotide with one of the four types so that the number of nucleotides of each of the four types becomes equal. Input Specification: The first line contains the integer *n* (4<=≤<=*n*<=≤<=255) — the length of the genome. The second line contains the string *s* of length *n* — the coded genome. It consists of characters 'A', 'C', 'G', 'T' and '?'. Output Specification: If it is possible to decode the genome, print it. If there are multiple answer, print any of them. If it is not possible, print three equals signs in a row: "===" (without quotes). Demo Input: ['8\nAG?C??CT\n', '4\nAGCT\n', '6\n????G?\n', '4\nAA??\n'] Demo Output: ['AGACGTCT\n', 'AGCT\n', '===\n', '===\n'] Note: In the first example you can replace the first question mark with the letter 'A', the second question mark with the letter 'G', the third question mark with the letter 'T', then each nucleotide in the genome would be presented twice. In the second example the genome is already decoded correctly and each nucleotide is exactly once in it. In the third and the fourth examples it is impossible to decode the genom.
```python n = int(input()) s = input() g = [0] * 5 pos = [] for i in range(0,n): if s[i] == "A": g[0] += 1 elif s[i] == "G": g[1] += 1 elif s[i] == "T": g[2] +=1 elif s[i] == "C": g[3] += 1 else: g[4] += 1 pos.append(i) if g[4] == 0: if g[0] == g[1] and g[1] == g[2] and g[2] == g[3]: print(s) else: print("===") else: m = max(g[0:4]) necesarios = 0 for i in range(0,4): if(g[i] != m): necesarios += (m - g[i]) #print(necesarios) #print(g[4]) if necesarios != g[4]: print("===") else: if g[4]%necesarios != 0: print("===") else: s = list(s) j = 0 while g[0] != m: s[pos[j]] = "A" j += 1 g[0] += 1 while g[1] != m: s[pos[j]] = "G" j += 1 g[1] += 1 while g[2] != m: s[pos[j]] = "T" j += 1 g[2] += 1 while g[3] != m: s[pos[j]] = "C" j += 1 g[3] += 1 print("".join(s)) ```
0
369
A
Valera and Plates
PROGRAMMING
900
[ "greedy", "implementation" ]
null
null
Valera is a lazy student. He has *m* clean bowls and *k* clean plates. Valera has made an eating plan for the next *n* days. As Valera is lazy, he will eat exactly one dish per day. At that, in order to eat a dish, he needs exactly one clean plate or bowl. We know that Valera can cook only two types of dishes. He can eat dishes of the first type from bowls and dishes of the second type from either bowls or plates. When Valera finishes eating, he leaves a dirty plate/bowl behind. His life philosophy doesn't let him eat from dirty kitchenware. So sometimes he needs to wash his plate/bowl before eating. Find the minimum number of times Valera will need to wash a plate/bowl, if he acts optimally.
The first line of the input contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the number of the planned days, the number of clean bowls and the number of clean plates. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2). If *a**i* equals one, then on day *i* Valera will eat a first type dish. If *a**i* equals two, then on day *i* Valera will eat a second type dish.
Print a single integer — the minimum number of times Valera will need to wash a plate/bowl.
[ "3 1 1\n1 2 1\n", "4 3 1\n1 1 1 1\n", "3 1 2\n2 2 2\n", "8 2 2\n1 2 1 2 1 2 1 2\n" ]
[ "1\n", "1\n", "0\n", "4\n" ]
In the first sample Valera will wash a bowl only on the third day, so the answer is one. In the second sample, Valera will have the first type of the dish during all four days, and since there are only three bowls, he will wash a bowl exactly once. In the third sample, Valera will have the second type of dish for all three days, and as they can be eaten from either a plate or a bowl, he will never need to wash a plate/bowl.
500
[ { "input": "3 1 1\n1 2 1", "output": "1" }, { "input": "4 3 1\n1 1 1 1", "output": "1" }, { "input": "3 1 2\n2 2 2", "output": "0" }, { "input": "8 2 2\n1 2 1 2 1 2 1 2", "output": "4" }, { "input": "2 100 100\n2 2", "output": "0" }, { "input": "1 1 1\n2", "output": "0" }, { "input": "233 100 1\n2 2 1 1 1 2 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 1 1 1 2 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 2 2 1 1 1 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 2 2 1 1 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2 1 2 1 2 2", "output": "132" }, { "input": "123 100 1\n2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 2 2 2 2 1 2 2 2 1 1 1 2 2 2 2 1 2 2 2 2 2 2 1 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 2 2 1 1 1 1 2 1 2 2 1 2 2 2 1 1 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 1 1 2 1 2 1 2 1 1 1", "output": "22" }, { "input": "188 100 1\n2 2 1 1 1 2 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 1 1 1 2 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 2 2 1 1 1 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 2 2 1 1 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 1", "output": "87" }, { "input": "3 1 2\n1 1 1", "output": "2" }, { "input": "3 2 2\n1 1 1", "output": "1" }, { "input": "3 2 1\n1 1 1", "output": "1" }, { "input": "3 1 1\n1 1 1", "output": "2" }, { "input": "5 1 2\n2 2 2 2 2", "output": "2" }, { "input": "5 2 2\n2 2 2 2 2", "output": "1" }, { "input": "5 2 1\n2 2 2 2 2", "output": "2" }, { "input": "5 1 1\n2 2 2 2 2", "output": "3" }, { "input": "1 1 2\n2", "output": "0" }, { "input": "1 2 2\n2", "output": "0" }, { "input": "1 2 1\n2", "output": "0" }, { "input": "1 1 1\n2", "output": "0" }, { "input": "6 3 1\n1 1 2 2 2 2", "output": "2" }, { "input": "100 40 20\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "40" }, { "input": "7 5 2\n2 2 1 1 1 1 1", "output": "0" }, { "input": "10 4 4\n2 2 2 2 2 2 1 1 1 1", "output": "2" }, { "input": "3 2 1\n2 1 1", "output": "0" }, { "input": "7 6 1\n2 1 1 1 1 1 1", "output": "0" }, { "input": "7 5 1\n1 1 1 2 2 2 2", "output": "1" }, { "input": "5 3 1\n1 1 2 2 2", "output": "1" }, { "input": "3 1 1\n2 2 2", "output": "1" }, { "input": "5 2 2\n2 2 2 2 2", "output": "1" }, { "input": "3 1 3\n1 1 1", "output": "2" }, { "input": "5 2 1\n1 1 2 2 2", "output": "2" }, { "input": "4 3 2\n2 1 1 1", "output": "0" }, { "input": "4 2 1\n1 2 2 2", "output": "1" }, { "input": "14 4 7\n1 1 1 2 2 2 2 2 2 2 2 2 2 2", "output": "3" }, { "input": "12 10 4\n2 2 2 2 2 2 1 1 1 1 1 1", "output": "0" }, { "input": "5 3 2\n2 2 1 1 1", "output": "0" } ]
1,594,385,626
2,147,483,647
PyPy 3
OK
TESTS
63
155
20,172,800
l1 = [int(x) for x in input().split()] l2 = [int(x) for x in input().split()] bowls = l1[1] plates = l1[2] first = l2.count(1) second = l2.count(2) bfirst = max(0,first-bowls) bowls = max(0,bowls-first) bsecond = max(0,second-plates-bowls) print(bfirst+bsecond)
Title: Valera and Plates Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera is a lazy student. He has *m* clean bowls and *k* clean plates. Valera has made an eating plan for the next *n* days. As Valera is lazy, he will eat exactly one dish per day. At that, in order to eat a dish, he needs exactly one clean plate or bowl. We know that Valera can cook only two types of dishes. He can eat dishes of the first type from bowls and dishes of the second type from either bowls or plates. When Valera finishes eating, he leaves a dirty plate/bowl behind. His life philosophy doesn't let him eat from dirty kitchenware. So sometimes he needs to wash his plate/bowl before eating. Find the minimum number of times Valera will need to wash a plate/bowl, if he acts optimally. Input Specification: The first line of the input contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the number of the planned days, the number of clean bowls and the number of clean plates. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2). If *a**i* equals one, then on day *i* Valera will eat a first type dish. If *a**i* equals two, then on day *i* Valera will eat a second type dish. Output Specification: Print a single integer — the minimum number of times Valera will need to wash a plate/bowl. Demo Input: ['3 1 1\n1 2 1\n', '4 3 1\n1 1 1 1\n', '3 1 2\n2 2 2\n', '8 2 2\n1 2 1 2 1 2 1 2\n'] Demo Output: ['1\n', '1\n', '0\n', '4\n'] Note: In the first sample Valera will wash a bowl only on the third day, so the answer is one. In the second sample, Valera will have the first type of the dish during all four days, and since there are only three bowls, he will wash a bowl exactly once. In the third sample, Valera will have the second type of dish for all three days, and as they can be eaten from either a plate or a bowl, he will never need to wash a plate/bowl.
```python l1 = [int(x) for x in input().split()] l2 = [int(x) for x in input().split()] bowls = l1[1] plates = l1[2] first = l2.count(1) second = l2.count(2) bfirst = max(0,first-bowls) bowls = max(0,bowls-first) bsecond = max(0,second-plates-bowls) print(bfirst+bsecond) ```
3
978
C
Letters
PROGRAMMING
1,000
[ "binary search", "implementation", "two pointers" ]
null
null
There are $n$ dormitories in Berland State University, they are numbered with integers from $1$ to $n$. Each dormitory consists of rooms, there are $a_i$ rooms in $i$-th dormitory. The rooms in $i$-th dormitory are numbered from $1$ to $a_i$. A postman delivers letters. Sometimes there is no specific dormitory and room number in it on an envelope. Instead of it only a room number among all rooms of all $n$ dormitories is written on an envelope. In this case, assume that all the rooms are numbered from $1$ to $a_1 + a_2 + \dots + a_n$ and the rooms of the first dormitory go first, the rooms of the second dormitory go after them and so on. For example, in case $n=2$, $a_1=3$ and $a_2=5$ an envelope can have any integer from $1$ to $8$ written on it. If the number $7$ is written on an envelope, it means that the letter should be delivered to the room number $4$ of the second dormitory. For each of $m$ letters by the room number among all $n$ dormitories, determine the particular dormitory and the room number in a dormitory where this letter should be delivered.
The first line contains two integers $n$ and $m$ $(1 \le n, m \le 2 \cdot 10^{5})$ — the number of dormitories and the number of letters. The second line contains a sequence $a_1, a_2, \dots, a_n$ $(1 \le a_i \le 10^{10})$, where $a_i$ equals to the number of rooms in the $i$-th dormitory. The third line contains a sequence $b_1, b_2, \dots, b_m$ $(1 \le b_j \le a_1 + a_2 + \dots + a_n)$, where $b_j$ equals to the room number (among all rooms of all dormitories) for the $j$-th letter. All $b_j$ are given in increasing order.
Print $m$ lines. For each letter print two integers $f$ and $k$ — the dormitory number $f$ $(1 \le f \le n)$ and the room number $k$ in this dormitory $(1 \le k \le a_f)$ to deliver the letter.
[ "3 6\n10 15 12\n1 9 12 23 26 37\n", "2 3\n5 10000000000\n5 6 9999999999\n" ]
[ "1 1\n1 9\n2 2\n2 13\n3 1\n3 12\n", "1 5\n2 1\n2 9999999994\n" ]
In the first example letters should be delivered in the following order: - the first letter in room $1$ of the first dormitory - the second letter in room $9$ of the first dormitory - the third letter in room $2$ of the second dormitory - the fourth letter in room $13$ of the second dormitory - the fifth letter in room $1$ of the third dormitory - the sixth letter in room $12$ of the third dormitory
0
[ { "input": "3 6\n10 15 12\n1 9 12 23 26 37", "output": "1 1\n1 9\n2 2\n2 13\n3 1\n3 12" }, { "input": "2 3\n5 10000000000\n5 6 9999999999", "output": "1 5\n2 1\n2 9999999994" }, { "input": "1 1\n1\n1", "output": "1 1" }, { "input": "5 15\n10 20 30 20 10\n1 6 10 11 15 30 31 54 60 61 76 80 81 84 90", "output": "1 1\n1 6\n1 10\n2 1\n2 5\n2 20\n3 1\n3 24\n3 30\n4 1\n4 16\n4 20\n5 1\n5 4\n5 10" }, { "input": "1 10\n10\n1 2 3 4 5 6 7 8 9 10", "output": "1 1\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10" }, { "input": "5 8\n10 1 1 1 10\n9 10 11 12 13 14 15 23", "output": "1 9\n1 10\n2 1\n3 1\n4 1\n5 1\n5 2\n5 10" }, { "input": "1 3\n10000\n1 4325 10000", "output": "1 1\n1 4325\n1 10000" }, { "input": "4 18\n5 6 3 4\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18", "output": "1 1\n1 2\n1 3\n1 4\n1 5\n2 1\n2 2\n2 3\n2 4\n2 5\n2 6\n3 1\n3 2\n3 3\n4 1\n4 2\n4 3\n4 4" }, { "input": "3 10\n1000000000 1000000000 1000000000\n543678543 567869543 1000000000 1000000001 1500000000 1999999999 2000000000 2000000001 2754432345 3000000000", "output": "1 543678543\n1 567869543\n1 1000000000\n2 1\n2 500000000\n2 999999999\n2 1000000000\n3 1\n3 754432345\n3 1000000000" } ]
1,678,431,148
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
3
31
0
from itertools import accumulate n, m = map(int, input().split()) a = list(map(int, input().split())) b = list(map(int, input().split())) s = list(accumulate(a, initial = 0)) def search(n, lo, hi): if lo > hi: return -1 mid = (lo + hi) // 2 if s[mid] < n: return search(n, mid+1, hi) if mid > 0 and s[mid - 1] < n: return mid return search(n, lo, mid - 1) for n in b: x = search(n, 0, m) print(x, n - s[x-1]) # 10 25 37
Title: Letters Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are $n$ dormitories in Berland State University, they are numbered with integers from $1$ to $n$. Each dormitory consists of rooms, there are $a_i$ rooms in $i$-th dormitory. The rooms in $i$-th dormitory are numbered from $1$ to $a_i$. A postman delivers letters. Sometimes there is no specific dormitory and room number in it on an envelope. Instead of it only a room number among all rooms of all $n$ dormitories is written on an envelope. In this case, assume that all the rooms are numbered from $1$ to $a_1 + a_2 + \dots + a_n$ and the rooms of the first dormitory go first, the rooms of the second dormitory go after them and so on. For example, in case $n=2$, $a_1=3$ and $a_2=5$ an envelope can have any integer from $1$ to $8$ written on it. If the number $7$ is written on an envelope, it means that the letter should be delivered to the room number $4$ of the second dormitory. For each of $m$ letters by the room number among all $n$ dormitories, determine the particular dormitory and the room number in a dormitory where this letter should be delivered. Input Specification: The first line contains two integers $n$ and $m$ $(1 \le n, m \le 2 \cdot 10^{5})$ — the number of dormitories and the number of letters. The second line contains a sequence $a_1, a_2, \dots, a_n$ $(1 \le a_i \le 10^{10})$, where $a_i$ equals to the number of rooms in the $i$-th dormitory. The third line contains a sequence $b_1, b_2, \dots, b_m$ $(1 \le b_j \le a_1 + a_2 + \dots + a_n)$, where $b_j$ equals to the room number (among all rooms of all dormitories) for the $j$-th letter. All $b_j$ are given in increasing order. Output Specification: Print $m$ lines. For each letter print two integers $f$ and $k$ — the dormitory number $f$ $(1 \le f \le n)$ and the room number $k$ in this dormitory $(1 \le k \le a_f)$ to deliver the letter. Demo Input: ['3 6\n10 15 12\n1 9 12 23 26 37\n', '2 3\n5 10000000000\n5 6 9999999999\n'] Demo Output: ['1 1\n1 9\n2 2\n2 13\n3 1\n3 12\n', '1 5\n2 1\n2 9999999994\n'] Note: In the first example letters should be delivered in the following order: - the first letter in room $1$ of the first dormitory - the second letter in room $9$ of the first dormitory - the third letter in room $2$ of the second dormitory - the fourth letter in room $13$ of the second dormitory - the fifth letter in room $1$ of the third dormitory - the sixth letter in room $12$ of the third dormitory
```python from itertools import accumulate n, m = map(int, input().split()) a = list(map(int, input().split())) b = list(map(int, input().split())) s = list(accumulate(a, initial = 0)) def search(n, lo, hi): if lo > hi: return -1 mid = (lo + hi) // 2 if s[mid] < n: return search(n, mid+1, hi) if mid > 0 and s[mid - 1] < n: return mid return search(n, lo, mid - 1) for n in b: x = search(n, 0, m) print(x, n - s[x-1]) # 10 25 37 ```
-1
432
A
Choosing Teams
PROGRAMMING
800
[ "greedy", "implementation", "sortings" ]
null
null
The Saratov State University Olympiad Programmers Training Center (SSU OPTC) has *n* students. For each student you know the number of times he/she has participated in the ACM ICPC world programming championship. According to the ACM ICPC rules, each person can participate in the world championship at most 5 times. The head of the SSU OPTC is recently gathering teams to participate in the world championship. Each team must consist of exactly three people, at that, any person cannot be a member of two or more teams. What maximum number of teams can the head make if he wants each team to participate in the world championship with the same members at least *k* times?
The first line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=2000; 1<=≤<=*k*<=≤<=5). The next line contains *n* integers: *y*1,<=*y*2,<=...,<=*y**n* (0<=≤<=*y**i*<=≤<=5), where *y**i* shows the number of times the *i*-th person participated in the ACM ICPC world championship.
Print a single number — the answer to the problem.
[ "5 2\n0 4 5 1 0\n", "6 4\n0 1 2 3 4 5\n", "6 5\n0 0 0 0 0 0\n" ]
[ "1\n", "0\n", "2\n" ]
In the first sample only one team could be made: the first, the fourth and the fifth participants. In the second sample no teams could be created. In the third sample two teams could be created. Any partition into two teams fits.
500
[ { "input": "5 2\n0 4 5 1 0", "output": "1" }, { "input": "6 4\n0 1 2 3 4 5", "output": "0" }, { "input": "6 5\n0 0 0 0 0 0", "output": "2" }, { "input": "3 4\n0 1 0", "output": "1" }, { "input": "3 4\n0 2 0", "output": "0" }, { "input": "6 5\n0 0 0 0 0 0", "output": "2" }, { "input": "12 2\n0 1 2 3 4 0 1 2 3 4 0 1", "output": "3" }, { "input": "15 2\n0 1 2 3 4 0 1 2 3 4 0 1 2 3 4", "output": "4" }, { "input": "13 1\n5 0 5 0 1 5 0 4 1 1 1 4 1", "output": "3" }, { "input": "20 1\n5 0 4 2 2 3 2 1 2 4 1 3 5 5 5 4 4 1 3 0", "output": "5" }, { "input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4", "output": "4" }, { "input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4", "output": "4" }, { "input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4", "output": "4" }, { "input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4", "output": "4" }, { "input": "6 3\n4 4 4 4 4 4", "output": "0" }, { "input": "1 4\n1", "output": "0" }, { "input": "1 1\n0", "output": "0" }, { "input": "2 3\n0 0", "output": "0" } ]
1,696,511,113
2,147,483,647
PyPy 3-64
OK
TESTS
35
62
1,740,800
def solve(): n, k = map(int, input().split()) l = [int(i) for i in input().split()] ans = 0 for i in l: ans += i+k <= 5 print(ans//3) # t = int(input()) t = 1 while t: solve() t -= 1
Title: Choosing Teams Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Saratov State University Olympiad Programmers Training Center (SSU OPTC) has *n* students. For each student you know the number of times he/she has participated in the ACM ICPC world programming championship. According to the ACM ICPC rules, each person can participate in the world championship at most 5 times. The head of the SSU OPTC is recently gathering teams to participate in the world championship. Each team must consist of exactly three people, at that, any person cannot be a member of two or more teams. What maximum number of teams can the head make if he wants each team to participate in the world championship with the same members at least *k* times? Input Specification: The first line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=2000; 1<=≤<=*k*<=≤<=5). The next line contains *n* integers: *y*1,<=*y*2,<=...,<=*y**n* (0<=≤<=*y**i*<=≤<=5), where *y**i* shows the number of times the *i*-th person participated in the ACM ICPC world championship. Output Specification: Print a single number — the answer to the problem. Demo Input: ['5 2\n0 4 5 1 0\n', '6 4\n0 1 2 3 4 5\n', '6 5\n0 0 0 0 0 0\n'] Demo Output: ['1\n', '0\n', '2\n'] Note: In the first sample only one team could be made: the first, the fourth and the fifth participants. In the second sample no teams could be created. In the third sample two teams could be created. Any partition into two teams fits.
```python def solve(): n, k = map(int, input().split()) l = [int(i) for i in input().split()] ans = 0 for i in l: ans += i+k <= 5 print(ans//3) # t = int(input()) t = 1 while t: solve() t -= 1 ```
3
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,662,443,228
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
62
0
a=int(input(),2) b=int(input(),2) c=a^b c=bin(c)[2:] s='' a=bin(a)[2:] if len(a)!=len(c): s='0'*(len(a)-len(c))+c print(s) else: print(c)
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python a=int(input(),2) b=int(input(),2) c=a^b c=bin(c)[2:] s='' a=bin(a)[2:] if len(a)!=len(c): s='0'*(len(a)-len(c))+c print(s) else: print(c) ```
0
805
A
Fake NP
PROGRAMMING
1,000
[ "greedy", "math" ]
null
null
Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path. You are given *l* and *r*. For all integers from *l* to *r*, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times. Solve the problem to show that it's not a NP problem.
The first line contains two integers *l* and *r* (2<=≤<=*l*<=≤<=*r*<=≤<=109).
Print single integer, the integer that appears maximum number of times in the divisors. If there are multiple answers, print any of them.
[ "19 29\n", "3 6\n" ]
[ "2\n", "3\n" ]
Definition of a divisor: [https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html](https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html) The first example: from 19 to 29 these numbers are divisible by 2: {20, 22, 24, 26, 28}. The second example: from 3 to 6 these numbers are divisible by 3: {3, 6}.
500
[ { "input": "19 29", "output": "2" }, { "input": "3 6", "output": "2" }, { "input": "39 91", "output": "2" }, { "input": "76 134", "output": "2" }, { "input": "93 95", "output": "2" }, { "input": "17 35", "output": "2" }, { "input": "94 95", "output": "2" }, { "input": "51 52", "output": "2" }, { "input": "47 52", "output": "2" }, { "input": "38 98", "output": "2" }, { "input": "30 37", "output": "2" }, { "input": "56 92", "output": "2" }, { "input": "900000000 1000000000", "output": "2" }, { "input": "37622224 162971117", "output": "2" }, { "input": "760632746 850720703", "output": "2" }, { "input": "908580370 968054552", "output": "2" }, { "input": "951594860 953554446", "output": "2" }, { "input": "347877978 913527175", "output": "2" }, { "input": "620769961 988145114", "output": "2" }, { "input": "820844234 892579936", "output": "2" }, { "input": "741254764 741254768", "output": "2" }, { "input": "80270976 80270977", "output": "2" }, { "input": "392602363 392602367", "output": "2" }, { "input": "519002744 519002744", "output": "519002744" }, { "input": "331900277 331900277", "output": "331900277" }, { "input": "419873015 419873018", "output": "2" }, { "input": "349533413 349533413", "output": "349533413" }, { "input": "28829775 28829776", "output": "2" }, { "input": "568814539 568814539", "output": "568814539" }, { "input": "720270740 720270743", "output": "2" }, { "input": "871232720 871232722", "output": "2" }, { "input": "305693653 305693653", "output": "305693653" }, { "input": "634097178 634097179", "output": "2" }, { "input": "450868287 450868290", "output": "2" }, { "input": "252662256 252662260", "output": "2" }, { "input": "575062045 575062049", "output": "2" }, { "input": "273072892 273072894", "output": "2" }, { "input": "770439256 770439256", "output": "770439256" }, { "input": "2 1000000000", "output": "2" }, { "input": "6 8", "output": "2" }, { "input": "2 879190747", "output": "2" }, { "input": "5 5", "output": "5" }, { "input": "999999937 999999937", "output": "999999937" }, { "input": "3 3", "output": "3" }, { "input": "5 100", "output": "2" }, { "input": "2 2", "output": "2" }, { "input": "3 18", "output": "2" }, { "input": "7 7", "output": "7" }, { "input": "39916801 39916801", "output": "39916801" }, { "input": "3 8", "output": "2" }, { "input": "13 13", "output": "13" }, { "input": "4 8", "output": "2" }, { "input": "3 12", "output": "2" }, { "input": "6 12", "output": "2" }, { "input": "999999103 999999103", "output": "999999103" }, { "input": "100000007 100000007", "output": "100000007" }, { "input": "3 99", "output": "2" }, { "input": "999999733 999999733", "output": "999999733" }, { "input": "5 10", "output": "2" }, { "input": "982451653 982451653", "output": "982451653" }, { "input": "999900001 1000000000", "output": "2" }, { "input": "999727999 999727999", "output": "999727999" }, { "input": "2 999999999", "output": "2" }, { "input": "242 244", "output": "2" }, { "input": "3 10", "output": "2" }, { "input": "15 27", "output": "2" }, { "input": "998244353 998244353", "output": "998244353" }, { "input": "5 15", "output": "2" }, { "input": "999999797 999999797", "output": "999999797" }, { "input": "2 3", "output": "2" }, { "input": "999999929 999999929", "output": "999999929" }, { "input": "3 111111", "output": "2" }, { "input": "12 18", "output": "2" }, { "input": "479001599 479001599", "output": "479001599" }, { "input": "10000019 10000019", "output": "10000019" }, { "input": "715827883 715827883", "output": "715827883" }, { "input": "999992977 999992977", "output": "999992977" }, { "input": "11 11", "output": "11" }, { "input": "29 29", "output": "29" }, { "input": "1000003 1000003", "output": "1000003" }, { "input": "6 15", "output": "2" }, { "input": "1200007 1200007", "output": "1200007" }, { "input": "3 1000000000", "output": "2" }, { "input": "990000023 990000023", "output": "990000023" }, { "input": "1717 1717", "output": "1717" }, { "input": "141650963 141650963", "output": "141650963" }, { "input": "1002523 1002523", "output": "1002523" }, { "input": "900000011 900000011", "output": "900000011" }, { "input": "104729 104729", "output": "104729" }, { "input": "4 12", "output": "2" }, { "input": "100003 100003", "output": "100003" }, { "input": "17 17", "output": "17" }, { "input": "10 100", "output": "2" } ]
1,627,740,075
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
46
6,656,000
min = input() max = input() if(max==min): print(max) else: print(2)
Title: Fake NP Time Limit: None seconds Memory Limit: None megabytes Problem Description: Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path. You are given *l* and *r*. For all integers from *l* to *r*, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times. Solve the problem to show that it's not a NP problem. Input Specification: The first line contains two integers *l* and *r* (2<=≤<=*l*<=≤<=*r*<=≤<=109). Output Specification: Print single integer, the integer that appears maximum number of times in the divisors. If there are multiple answers, print any of them. Demo Input: ['19 29\n', '3 6\n'] Demo Output: ['2\n', '3\n'] Note: Definition of a divisor: [https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html](https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html) The first example: from 19 to 29 these numbers are divisible by 2: {20, 22, 24, 26, 28}. The second example: from 3 to 6 these numbers are divisible by 3: {3, 6}.
```python min = input() max = input() if(max==min): print(max) else: print(2) ```
-1
705
A
Hulk
PROGRAMMING
800
[ "implementation" ]
null
null
Dr. Bruce Banner hates his enemies (like others don't). As we all know, he can barely talk when he turns into the incredible Hulk. That's why he asked you to help him to express his feelings. Hulk likes the Inception so much, and like that his feelings are complicated. They have *n* layers. The first layer is hate, second one is love, third one is hate and so on... For example if *n*<==<=1, then his feeling is "I hate it" or if *n*<==<=2 it's "I hate that I love it", and if *n*<==<=3 it's "I hate that I love that I hate it" and so on. Please help Dr. Banner.
The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of layers of love and hate.
Print Dr.Banner's feeling in one line.
[ "1\n", "2\n", "3\n" ]
[ "I hate it\n", "I hate that I love it\n", "I hate that I love that I hate it\n" ]
none
500
[ { "input": "1", "output": "I hate it" }, { "input": "2", "output": "I hate that I love it" }, { "input": "3", "output": "I hate that I love that I hate it" }, { "input": "4", "output": "I hate that I love that I hate that I love it" }, { "input": "5", "output": "I hate that I love that I hate that I love that I hate it" }, { "input": "10", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love it" }, { "input": "18", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love it" }, { "input": "19", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate it" }, { "input": "76", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate ..." }, { "input": "77", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate ..." }, { "input": "81", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate ..." }, { "input": "82", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate ..." }, { "input": "85", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate ..." }, { "input": "86", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate ..." }, { "input": "100", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate ..." }, { "input": "99", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate ..." }, { "input": "98", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate ..." }, { "input": "33", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate it" }, { "input": "34", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love it" }, { "input": "57", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate ..." }, { "input": "100", "output": "I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate that I love that I hate ..." } ]
1,700,228,474
2,147,483,647
Python 3
OK
TESTS
21
31
0
n=int(input("")) s="" if n==1: s+="I hate it" else: for i in range(n): i=i+1 if i+1 > n: if n%2 == 0: s += "I love it" else: s += "I hate it" else: if i%2 == 0: s += "I love that " else: s += "I hate that " print(s)
Title: Hulk Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dr. Bruce Banner hates his enemies (like others don't). As we all know, he can barely talk when he turns into the incredible Hulk. That's why he asked you to help him to express his feelings. Hulk likes the Inception so much, and like that his feelings are complicated. They have *n* layers. The first layer is hate, second one is love, third one is hate and so on... For example if *n*<==<=1, then his feeling is "I hate it" or if *n*<==<=2 it's "I hate that I love it", and if *n*<==<=3 it's "I hate that I love that I hate it" and so on. Please help Dr. Banner. Input Specification: The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of layers of love and hate. Output Specification: Print Dr.Banner's feeling in one line. Demo Input: ['1\n', '2\n', '3\n'] Demo Output: ['I hate it\n', 'I hate that I love it\n', 'I hate that I love that I hate it\n'] Note: none
```python n=int(input("")) s="" if n==1: s+="I hate it" else: for i in range(n): i=i+1 if i+1 > n: if n%2 == 0: s += "I love it" else: s += "I hate it" else: if i%2 == 0: s += "I love that " else: s += "I hate that " print(s) ```
3
603
B
Moodular Arithmetic
PROGRAMMING
1,800
[ "combinatorics", "dfs and similar", "dsu", "math", "number theory" ]
null
null
As behooves any intelligent schoolboy, Kevin Sun is studying psycowlogy, cowculus, and cryptcowgraphy at the Bovinia State University (BGU) under Farmer Ivan. During his Mathematics of Olympiads (MoO) class, Kevin was confronted with a weird functional equation and needs your help. For two fixed integers *k* and *p*, where *p* is an odd prime number, the functional equation states that for some function . (This equation should hold for any integer *x* in the range 0 to *p*<=-<=1, inclusive.) It turns out that *f* can actually be many different functions. Instead of finding a solution, Kevin wants you to count the number of distinct functions *f* that satisfy this equation. Since the answer may be very large, you should print your result modulo 109<=+<=7.
The input consists of two space-separated integers *p* and *k* (3<=≤<=*p*<=≤<=1<=000<=000, 0<=≤<=*k*<=≤<=*p*<=-<=1) on a single line. It is guaranteed that *p* is an odd prime number.
Print a single integer, the number of distinct functions *f* modulo 109<=+<=7.
[ "3 2\n", "5 4\n" ]
[ "3\n", "25\n" ]
In the first sample, *p* = 3 and *k* = 2. The following functions work: 1. *f*(0) = 0, *f*(1) = 1, *f*(2) = 2. 1. *f*(0) = 0, *f*(1) = 2, *f*(2) = 1. 1. *f*(0) = *f*(1) = *f*(2) = 0.
1,000
[ { "input": "3 2", "output": "3" }, { "input": "5 4", "output": "25" }, { "input": "7 2", "output": "49" }, { "input": "7 6", "output": "343" }, { "input": "10007 25", "output": "100140049" }, { "input": "40037 4", "output": "602961362" }, { "input": "5 0", "output": "625" }, { "input": "5 3", "output": "5" }, { "input": "7 1", "output": "823543" }, { "input": "13 5", "output": "2197" }, { "input": "13 4", "output": "169" }, { "input": "5 2", "output": "5" }, { "input": "11 1", "output": "311668616" }, { "input": "11 10", "output": "161051" }, { "input": "6907 2590", "output": "543643888" }, { "input": "3229 153", "output": "552691282" }, { "input": "727 282", "output": "471521101" }, { "input": "7621 6195", "output": "501036626" }, { "input": "4649 4648", "output": "460009811" }, { "input": "5527 1711", "output": "837297007" }, { "input": "1901 633", "output": "557576188" }, { "input": "463 408", "output": "853558215" }, { "input": "6871 5566", "output": "742783884" }, { "input": "4177 556", "output": "594173514" }, { "input": "65213 29960", "output": "65213" }, { "input": "375103 52131", "output": "947042280" }, { "input": "990037 453792", "output": "654009570" }, { "input": "95531 94787", "output": "95531" }, { "input": "498653 116674", "output": "625264514" }, { "input": "561389 213181", "output": "10668315" }, { "input": "649849 339573", "output": "649849" }, { "input": "512287 359783", "output": "542484357" }, { "input": "337411 146419", "output": "532279245" }, { "input": "717887 1", "output": "559281518" }, { "input": "586189 189159", "output": "168174057" }, { "input": "613463 269592", "output": "336849737" }, { "input": "873781 51595", "output": "226847774" }, { "input": "203317 12108", "output": "374893480" }, { "input": "51419 21829", "output": "643913547" }, { "input": "115237 90311", "output": "355904974" }, { "input": "437071 24705", "output": "743969711" }, { "input": "278917 84398", "output": "727771018" }, { "input": "40867 37466", "output": "560078799" }, { "input": "274783 98997", "output": "505696564" }, { "input": "450431 344107", "output": "450431" }, { "input": "288179 113623", "output": "124681010" }, { "input": "807689 9869", "output": "636680820" }, { "input": "69833 569", "output": "69833" }, { "input": "805711 702149", "output": "759894252" }, { "input": "999983 999982", "output": "794678399" }, { "input": "999983 0", "output": "416606930" }, { "input": "999983 1", "output": "844765997" }, { "input": "823457 2", "output": "203355139" }, { "input": "999983 239239", "output": "965993296" } ]
1,607,671,414
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
8
156
4,096,000
from collections import defaultdict,deque import sys import bisect input=sys.stdin.readline mod=1000000007 def bfs(root,k,p): queue=deque() queue.append(root) while queue: child=queue.popleft() if (k*child)%p not in vis: vis.add((k*child)%p) queue.append((k*child)%p) p,k=map(int,input().split()) vis=set() count=0 for i in range(1,p): if i not in vis: bfs(i,k,p) count+=1 print(pow(p,count,mod))
Title: Moodular Arithmetic Time Limit: None seconds Memory Limit: None megabytes Problem Description: As behooves any intelligent schoolboy, Kevin Sun is studying psycowlogy, cowculus, and cryptcowgraphy at the Bovinia State University (BGU) under Farmer Ivan. During his Mathematics of Olympiads (MoO) class, Kevin was confronted with a weird functional equation and needs your help. For two fixed integers *k* and *p*, where *p* is an odd prime number, the functional equation states that for some function . (This equation should hold for any integer *x* in the range 0 to *p*<=-<=1, inclusive.) It turns out that *f* can actually be many different functions. Instead of finding a solution, Kevin wants you to count the number of distinct functions *f* that satisfy this equation. Since the answer may be very large, you should print your result modulo 109<=+<=7. Input Specification: The input consists of two space-separated integers *p* and *k* (3<=≤<=*p*<=≤<=1<=000<=000, 0<=≤<=*k*<=≤<=*p*<=-<=1) on a single line. It is guaranteed that *p* is an odd prime number. Output Specification: Print a single integer, the number of distinct functions *f* modulo 109<=+<=7. Demo Input: ['3 2\n', '5 4\n'] Demo Output: ['3\n', '25\n'] Note: In the first sample, *p* = 3 and *k* = 2. The following functions work: 1. *f*(0) = 0, *f*(1) = 1, *f*(2) = 2. 1. *f*(0) = 0, *f*(1) = 2, *f*(2) = 1. 1. *f*(0) = *f*(1) = *f*(2) = 0.
```python from collections import defaultdict,deque import sys import bisect input=sys.stdin.readline mod=1000000007 def bfs(root,k,p): queue=deque() queue.append(root) while queue: child=queue.popleft() if (k*child)%p not in vis: vis.add((k*child)%p) queue.append((k*child)%p) p,k=map(int,input().split()) vis=set() count=0 for i in range(1,p): if i not in vis: bfs(i,k,p) count+=1 print(pow(p,count,mod)) ```
0
534
B
Covered Path
PROGRAMMING
1,400
[ "dp", "greedy", "math" ]
null
null
The on-board computer on Polycarp's car measured that the car speed at the beginning of some section of the path equals *v*1 meters per second, and in the end it is *v*2 meters per second. We know that this section of the route took exactly *t* seconds to pass. Assuming that at each of the seconds the speed is constant, and between seconds the speed can change at most by *d* meters per second in absolute value (i.e., the difference in the speed of any two adjacent seconds does not exceed *d* in absolute value), find the maximum possible length of the path section in meters.
The first line contains two integers *v*1 and *v*2 (1<=≤<=*v*1,<=*v*2<=≤<=100) — the speeds in meters per second at the beginning of the segment and at the end of the segment, respectively. The second line contains two integers *t* (2<=≤<=*t*<=≤<=100) — the time when the car moves along the segment in seconds, *d* (0<=≤<=*d*<=≤<=10) — the maximum value of the speed change between adjacent seconds. It is guaranteed that there is a way to complete the segment so that: - the speed in the first second equals *v*1, - the speed in the last second equals *v*2, - the absolute value of difference of speeds between any two adjacent seconds doesn't exceed *d*.
Print the maximum possible length of the path segment in meters.
[ "5 6\n4 2\n", "10 10\n10 0\n" ]
[ "26", "100" ]
In the first sample the sequence of speeds of Polycarpus' car can look as follows: 5, 7, 8, 6. Thus, the total path is 5 + 7 + 8 + 6 = 26 meters. In the second sample, as *d* = 0, the car covers the whole segment at constant speed *v* = 10. In *t* = 10 seconds it covers the distance of 100 meters.
1,000
[ { "input": "5 6\n4 2", "output": "26" }, { "input": "10 10\n10 0", "output": "100" }, { "input": "87 87\n2 10", "output": "174" }, { "input": "1 11\n6 2", "output": "36" }, { "input": "100 10\n10 10", "output": "550" }, { "input": "1 1\n100 10", "output": "24600" }, { "input": "1 1\n5 1", "output": "9" }, { "input": "1 1\n5 2", "output": "13" }, { "input": "100 100\n100 0", "output": "10000" }, { "input": "100 100\n100 10", "output": "34500" }, { "input": "1 100\n100 1", "output": "5050" }, { "input": "1 100\n100 10", "output": "29305" }, { "input": "100 1\n100 1", "output": "5050" }, { "input": "100 1\n100 10", "output": "29305" }, { "input": "1 10\n2 10", "output": "11" }, { "input": "1 1\n2 1", "output": "2" }, { "input": "1 1\n2 10", "output": "2" }, { "input": "1 2\n2 1", "output": "3" }, { "input": "1 2\n2 10", "output": "3" }, { "input": "1 5\n3 2", "output": "9" }, { "input": "2 1\n2 2", "output": "3" }, { "input": "2 1\n2 10", "output": "3" }, { "input": "1 11\n2 10", "output": "12" }, { "input": "11 1\n2 10", "output": "12" }, { "input": "1 1\n3 5", "output": "8" }, { "input": "1 10\n3 5", "output": "17" }, { "input": "1 21\n3 10", "output": "33" }, { "input": "21 1\n3 10", "output": "33" }, { "input": "100 100\n99 1", "output": "12301" }, { "input": "100 100\n100 1", "output": "12450" }, { "input": "99 99\n99 1", "output": "12202" }, { "input": "99 99\n99 10", "output": "33811" }, { "input": "1 100\n99 10", "output": "28764" }, { "input": "13 31\n7 5", "output": "182" }, { "input": "88 78\n8 5", "output": "719" }, { "input": "34 48\n47 4", "output": "4030" }, { "input": "91 29\n78 3", "output": "8806" }, { "input": "90 81\n21 6", "output": "2391" }, { "input": "95 89\n45 3", "output": "5589" }, { "input": "48 54\n84 2", "output": "7724" }, { "input": "72 31\n59 7", "output": "8865" }, { "input": "51 13\n47 3", "output": "2970" }, { "input": "97 91\n82 2", "output": "10984" }, { "input": "71 71\n9 5", "output": "719" }, { "input": "16 49\n40 3", "output": "2350" }, { "input": "22 41\n68 4", "output": "6608" }, { "input": "13 71\n72 6", "output": "10444" }, { "input": "77 78\n46 3", "output": "5083" }, { "input": "36 60\n54 2", "output": "3924" }, { "input": "55 39\n93 2", "output": "8571" }, { "input": "34 7\n48 6", "output": "4266" }, { "input": "80 88\n79 3", "output": "11193" }, { "input": "34 62\n15 4", "output": "866" }, { "input": "81 40\n73 2", "output": "6798" }, { "input": "13 38\n97 6", "output": "16271" }, { "input": "84 87\n45 2", "output": "4814" }, { "input": "42 65\n76 3", "output": "8240" }, { "input": "55 6\n24 4", "output": "1110" }, { "input": "41 16\n43 2", "output": "2029" }, { "input": "99 93\n78 1", "output": "8961" }, { "input": "10 7\n44 2", "output": "1297" }, { "input": "72 54\n91 3", "output": "11781" }, { "input": "48 34\n80 2", "output": "6376" }, { "input": "92 85\n70 1", "output": "7373" } ]
1,540,733,031
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
93
0
n = input() l = len(n) if l > 1: a = [0 for i in range(l)] a[l-1] = 2 j = l-1 while j >= 0: if n[j] < '4': a[j] = 0 elif n[j] < '7': a[j] = 1 * 2**(l-j-1) else: a[j] = 2 * 2**(l-j-1) j = j - 1 ans = sum(a) else: if n < '4': ans = 0 elif n < '7': ans = 1 else: ans = 2 print(ans)
Title: Covered Path Time Limit: None seconds Memory Limit: None megabytes Problem Description: The on-board computer on Polycarp's car measured that the car speed at the beginning of some section of the path equals *v*1 meters per second, and in the end it is *v*2 meters per second. We know that this section of the route took exactly *t* seconds to pass. Assuming that at each of the seconds the speed is constant, and between seconds the speed can change at most by *d* meters per second in absolute value (i.e., the difference in the speed of any two adjacent seconds does not exceed *d* in absolute value), find the maximum possible length of the path section in meters. Input Specification: The first line contains two integers *v*1 and *v*2 (1<=≤<=*v*1,<=*v*2<=≤<=100) — the speeds in meters per second at the beginning of the segment and at the end of the segment, respectively. The second line contains two integers *t* (2<=≤<=*t*<=≤<=100) — the time when the car moves along the segment in seconds, *d* (0<=≤<=*d*<=≤<=10) — the maximum value of the speed change between adjacent seconds. It is guaranteed that there is a way to complete the segment so that: - the speed in the first second equals *v*1, - the speed in the last second equals *v*2, - the absolute value of difference of speeds between any two adjacent seconds doesn't exceed *d*. Output Specification: Print the maximum possible length of the path segment in meters. Demo Input: ['5 6\n4 2\n', '10 10\n10 0\n'] Demo Output: ['26', '100'] Note: In the first sample the sequence of speeds of Polycarpus' car can look as follows: 5, 7, 8, 6. Thus, the total path is 5 + 7 + 8 + 6 = 26 meters. In the second sample, as *d* = 0, the car covers the whole segment at constant speed *v* = 10. In *t* = 10 seconds it covers the distance of 100 meters.
```python n = input() l = len(n) if l > 1: a = [0 for i in range(l)] a[l-1] = 2 j = l-1 while j >= 0: if n[j] < '4': a[j] = 0 elif n[j] < '7': a[j] = 1 * 2**(l-j-1) else: a[j] = 2 * 2**(l-j-1) j = j - 1 ans = sum(a) else: if n < '4': ans = 0 elif n < '7': ans = 1 else: ans = 2 print(ans) ```
0
614
B
Gena's Code
PROGRAMMING
1,400
[ "implementation", "math" ]
null
null
It's the year 4527 and the tanks game that we all know and love still exists. There also exists Great Gena's code, written in 2016. The problem this code solves is: given the number of tanks that go into the battle from each country, find their product. If it is turns to be too large, then the servers might have not enough time to assign tanks into teams and the whole game will collapse! There are exactly *n* distinct countries in the world and the *i*-th country added *a**i* tanks to the game. As the developers of the game are perfectionists, the number of tanks from each country is beautiful. A beautiful number, according to the developers, is such number that its decimal representation consists only of digits '1' and '0', moreover it contains at most one digit '1'. However, due to complaints from players, some number of tanks of one country was removed from the game, hence the number of tanks of this country may not remain beautiful. Your task is to write the program that solves exactly the same problem in order to verify Gena's code correctness. Just in case.
The first line of the input contains the number of countries *n* (1<=≤<=*n*<=≤<=100<=000). The second line contains *n* non-negative integers *a**i* without leading zeroes — the number of tanks of the *i*-th country. It is guaranteed that the second line contains at least *n*<=-<=1 beautiful numbers and the total length of all these number's representations doesn't exceed 100<=000.
Print a single number without leading zeroes — the product of the number of tanks presented by each country.
[ "3\n5 10 1\n", "4\n1 1 10 11\n", "5\n0 3 1 100 1\n" ]
[ "50", "110", "0" ]
In sample 1 numbers 10 and 1 are beautiful, number 5 is not not. In sample 2 number 11 is not beautiful (contains two '1's), all others are beautiful. In sample 3 number 3 is not beautiful, all others are beautiful.
1,000
[ { "input": "3\n5 10 1", "output": "50" }, { "input": "4\n1 1 10 11", "output": "110" }, { "input": "5\n0 3 1 100 1", "output": "0" }, { "input": "40\n10 100 10 1 10 10 100 10 10 100 10 100 100 10 1824868942 100 100 1 10 100 100 10 100 100 10 100 10 1 10 100 100 100 10 1 10 1 10 10 100 100", "output": "1824868942000000000000000000000000000000000000000000000000000" }, { "input": "6\n1000000000000000000000000000000000000 6643573784 1000000000000000000000000000000000000 1000000000000000000000000000000000000 1000000000000000000000000000000000000 1000000000000000000000000000000000000", "output": "6643573784000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000" }, { "input": "1\n0", "output": "0" }, { "input": "1\n1", "output": "1" }, { "input": "1\n9", "output": "9" }, { "input": "2\n10 50", "output": "500" }, { "input": "3\n500 1 10", "output": "5000" } ]
1,685,963,495
2,147,483,647
PyPy 3-64
OK
TESTS
32
62
8,294,400
# https://codeforces.com/contest/614 import sys input = lambda: sys.stdin.readline().rstrip() # faster! n = int(input()) a = list(input().split()) f, z = "1", 0 for x in a: if x == "0": print(0) exit() else: i = len(x) - 1 while i >= 0 and x[i] == "0": i -= 1 z += 1 if i > 0 or (i == 0 and x[0] != "1"): f = x[:i + 1] print(str(f) + "0" * z)
Title: Gena's Code Time Limit: None seconds Memory Limit: None megabytes Problem Description: It's the year 4527 and the tanks game that we all know and love still exists. There also exists Great Gena's code, written in 2016. The problem this code solves is: given the number of tanks that go into the battle from each country, find their product. If it is turns to be too large, then the servers might have not enough time to assign tanks into teams and the whole game will collapse! There are exactly *n* distinct countries in the world and the *i*-th country added *a**i* tanks to the game. As the developers of the game are perfectionists, the number of tanks from each country is beautiful. A beautiful number, according to the developers, is such number that its decimal representation consists only of digits '1' and '0', moreover it contains at most one digit '1'. However, due to complaints from players, some number of tanks of one country was removed from the game, hence the number of tanks of this country may not remain beautiful. Your task is to write the program that solves exactly the same problem in order to verify Gena's code correctness. Just in case. Input Specification: The first line of the input contains the number of countries *n* (1<=≤<=*n*<=≤<=100<=000). The second line contains *n* non-negative integers *a**i* without leading zeroes — the number of tanks of the *i*-th country. It is guaranteed that the second line contains at least *n*<=-<=1 beautiful numbers and the total length of all these number's representations doesn't exceed 100<=000. Output Specification: Print a single number without leading zeroes — the product of the number of tanks presented by each country. Demo Input: ['3\n5 10 1\n', '4\n1 1 10 11\n', '5\n0 3 1 100 1\n'] Demo Output: ['50', '110', '0'] Note: In sample 1 numbers 10 and 1 are beautiful, number 5 is not not. In sample 2 number 11 is not beautiful (contains two '1's), all others are beautiful. In sample 3 number 3 is not beautiful, all others are beautiful.
```python # https://codeforces.com/contest/614 import sys input = lambda: sys.stdin.readline().rstrip() # faster! n = int(input()) a = list(input().split()) f, z = "1", 0 for x in a: if x == "0": print(0) exit() else: i = len(x) - 1 while i >= 0 and x[i] == "0": i -= 1 z += 1 if i > 0 or (i == 0 and x[0] != "1"): f = x[:i + 1] print(str(f) + "0" * z) ```
3
2
B
The least round way
PROGRAMMING
2,000
[ "dp", "math" ]
B. The least round way
2
64
There is a square matrix *n*<=×<=*n*, consisting of non-negative integer numbers. You should find such a way on it that - starts in the upper left cell of the matrix; - each following cell is to the right or down from the current cell; - the way ends in the bottom right cell. Moreover, if we multiply together all the numbers along the way, the result should be the least "round". In other words, it should end in the least possible number of zeros.
The first line contains an integer number *n* (2<=≤<=*n*<=≤<=1000), *n* is the size of the matrix. Then follow *n* lines containing the matrix elements (non-negative integer numbers not exceeding 109).
In the first line print the least number of trailing zeros. In the second line print the correspondent way itself.
[ "3\n1 2 3\n4 5 6\n7 8 9\n" ]
[ "0\nDDRR\n" ]
none
0
[ { "input": "3\n1 2 3\n4 5 6\n7 8 9", "output": "0\nDDRR" }, { "input": "2\n7 6\n3 8", "output": "0\nDR" }, { "input": "3\n4 10 5\n10 9 4\n6 5 3", "output": "1\nDRRD" }, { "input": "4\n1 1 9 9\n3 4 7 3\n7 9 1 7\n1 7 1 5", "output": "0\nDDDRRR" }, { "input": "5\n8 3 2 1 4\n3 7 2 4 8\n9 2 8 9 10\n2 3 6 10 1\n8 2 2 8 4", "output": "0\nDDDDRRRR" }, { "input": "6\n5 5 4 10 5 5\n7 10 8 7 6 6\n7 1 7 9 7 8\n5 5 3 3 10 9\n5 8 10 6 3 8\n3 10 5 4 3 4", "output": "1\nDDRRDRDDRR" }, { "input": "7\n2 9 8 2 7 4 8\n9 5 4 4 8 5 3\n5 7 2 10 8 1 8\n2 7 10 7 5 7 7\n9 2 7 6 4 8 4\n7 2 4 7 4 1 8\n9 5 3 10 1 6 2", "output": "0\nRRDRRDRDDDDR" }, { "input": "8\n1 1 10 1 8 4 8 7\n9 3 3 2 2 6 2 4\n7 4 3 5 10 3 5 1\n8 4 4 10 4 5 9 4\n5 5 5 2 6 7 1 8\n4 10 1 3 2 4 8 3\n8 1 10 2 8 2 2 4\n2 10 6 8 10 2 8 4", "output": "0\nDRRRRRRRDDDDDD" }, { "input": "9\n8 3 3 3 10 3 10 5 6\n2 1 6 1 8 1 9 1 6\n6 1 5 4 2 2 10 4 9\n1 9 1 3 10 6 10 5 5\n1 10 5 4 7 2 5 9 10\n6 6 1 3 1 9 4 9 9\n5 3 7 6 4 6 2 10 2\n9 3 3 10 5 6 7 6 4\n4 9 6 7 4 3 7 6 5", "output": "1\nDDDDDRDDDRRRRRRR" }, { "input": "10\n10 8 6 5 9 8 2 5 3 2\n3 1 8 6 8 10 5 5 7 8\n5 9 7 7 4 9 7 2 5 2\n5 9 9 5 4 2 6 6 8 1\n10 6 9 9 10 5 6 3 5 9\n6 7 10 3 1 4 3 6 7 6\n10 10 4 7 4 4 8 6 7 4\n10 5 8 2 2 7 4 4 1 4\n8 4 6 10 10 6 1 3 3 1\n9 9 7 2 9 5 1 8 6 3", "output": "1\nDRDDDRRDDDRRDRDRRR" } ]
1,613,756,368
2,147,483,647
PyPy 3
MEMORY_LIMIT_EXCEEDED
TESTS
15
1,060
67,072,000
n=int(input()) a=[] for i in range(n): a.append(list(map(int,input().split()))) b1=[[0 for i in range(n)] for j in range(n)] b2=[[0 for i in range(n)] for j in range(n)] e1=[[0 for i in range(n)] for j in range(n)] e2=[[0 for i in range(n)] for j in range(n)] for i in range(n): for j in range(n): z=a[i][j] while z%2==0: z//=2 b1[i][j]+=1 e1[i][j]+=1 while z%5==0: z//=5 b2[i][j]+=1 e2[i][j]+=1 c=[] for j in range(n): c.append('') d=[] for j in range(n): d.append('') for i in range(n): for j in range(n): if j>0: if i>0: if b1[i-1][j]<b1[i][j-1]: b1[i][j]+=b1[i-1][j] c[j]=c[j]+'D' else: b1[i][j]+=b1[i][j-1] c[j]=c[j-1]+'R' else: b1[i][j]+=b1[i][j-1] c[j]=c[j-1]+'R' else: if i>0: b1[i][j]+=b1[i-1][j] c[j]=c[j]+'D' for i in range(n): for j in range(n): if j>0: if i>0: if b2[i-1][j]<b2[i][j-1]: b2[i][j]+=b2[i-1][j] d[j]=d[j]+'D' else: b2[i][j]+=b2[i][j-1] d[j]=d[j-1]+'R' else: b2[i][j]+=b2[i][j-1] d[j]=d[j-1]+'R' else: if i>0: b2[i][j]+=b2[i-1][j] d[j]=d[j]+'D' i=0 j=0 f=b1[-1][-1] g=0 for k in range(len(c[-1])): g+=e2[i][j] if c[-1][k]=='D': i+=1 else: j+=1 g+=e2[-1][-1] h1=min(f,g) i=0 j=0 f=b2[-1][-1] g=0 for k in range(len(d[-1])): g+=e1[i][j] if d[-1][k]=='D': i+=1 else: j+=1 g+=e1[-1][-1] h2=min(f,g) if h1<h2: print(h1) print(c[-1]) else: print(h2) print(d[-1])
Title: The least round way Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: There is a square matrix *n*<=×<=*n*, consisting of non-negative integer numbers. You should find such a way on it that - starts in the upper left cell of the matrix; - each following cell is to the right or down from the current cell; - the way ends in the bottom right cell. Moreover, if we multiply together all the numbers along the way, the result should be the least "round". In other words, it should end in the least possible number of zeros. Input Specification: The first line contains an integer number *n* (2<=≤<=*n*<=≤<=1000), *n* is the size of the matrix. Then follow *n* lines containing the matrix elements (non-negative integer numbers not exceeding 109). Output Specification: In the first line print the least number of trailing zeros. In the second line print the correspondent way itself. Demo Input: ['3\n1 2 3\n4 5 6\n7 8 9\n'] Demo Output: ['0\nDDRR\n'] Note: none
```python n=int(input()) a=[] for i in range(n): a.append(list(map(int,input().split()))) b1=[[0 for i in range(n)] for j in range(n)] b2=[[0 for i in range(n)] for j in range(n)] e1=[[0 for i in range(n)] for j in range(n)] e2=[[0 for i in range(n)] for j in range(n)] for i in range(n): for j in range(n): z=a[i][j] while z%2==0: z//=2 b1[i][j]+=1 e1[i][j]+=1 while z%5==0: z//=5 b2[i][j]+=1 e2[i][j]+=1 c=[] for j in range(n): c.append('') d=[] for j in range(n): d.append('') for i in range(n): for j in range(n): if j>0: if i>0: if b1[i-1][j]<b1[i][j-1]: b1[i][j]+=b1[i-1][j] c[j]=c[j]+'D' else: b1[i][j]+=b1[i][j-1] c[j]=c[j-1]+'R' else: b1[i][j]+=b1[i][j-1] c[j]=c[j-1]+'R' else: if i>0: b1[i][j]+=b1[i-1][j] c[j]=c[j]+'D' for i in range(n): for j in range(n): if j>0: if i>0: if b2[i-1][j]<b2[i][j-1]: b2[i][j]+=b2[i-1][j] d[j]=d[j]+'D' else: b2[i][j]+=b2[i][j-1] d[j]=d[j-1]+'R' else: b2[i][j]+=b2[i][j-1] d[j]=d[j-1]+'R' else: if i>0: b2[i][j]+=b2[i-1][j] d[j]=d[j]+'D' i=0 j=0 f=b1[-1][-1] g=0 for k in range(len(c[-1])): g+=e2[i][j] if c[-1][k]=='D': i+=1 else: j+=1 g+=e2[-1][-1] h1=min(f,g) i=0 j=0 f=b2[-1][-1] g=0 for k in range(len(d[-1])): g+=e1[i][j] if d[-1][k]=='D': i+=1 else: j+=1 g+=e1[-1][-1] h2=min(f,g) if h1<h2: print(h1) print(c[-1]) else: print(h2) print(d[-1]) ```
0
43
A
Football
PROGRAMMING
1,000
[ "strings" ]
A. Football
2
256
One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams.
Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner.
[ "1\nABC\n", "5\nA\nABA\nABA\nA\nA\n" ]
[ "ABC\n", "A\n" ]
none
500
[ { "input": "1\nABC", "output": "ABC" }, { "input": "5\nA\nABA\nABA\nA\nA", "output": "A" }, { "input": "2\nXTSJEP\nXTSJEP", "output": "XTSJEP" }, { "input": "3\nXZYDJAEDZ\nXZYDJAEDZ\nXZYDJAEDZ", "output": "XZYDJAEDZ" }, { "input": "3\nQCCYXL\nQCCYXL\nAXGLFQDD", "output": "QCCYXL" }, { "input": "3\nAZID\nEERWBC\nEERWBC", "output": "EERWBC" }, { "input": "3\nHNCGYL\nHNCGYL\nHNCGYL", "output": "HNCGYL" }, { "input": "4\nZZWZTG\nZZWZTG\nZZWZTG\nZZWZTG", "output": "ZZWZTG" }, { "input": "4\nA\nA\nKUDLJMXCSE\nA", "output": "A" }, { "input": "5\nPHBTW\nPHBTW\nPHBTW\nPHBTW\nPHBTW", "output": "PHBTW" }, { "input": "5\nPKUZYTFYWN\nPKUZYTFYWN\nSTC\nPKUZYTFYWN\nPKUZYTFYWN", "output": "PKUZYTFYWN" }, { "input": "5\nHH\nHH\nNTQWPA\nNTQWPA\nHH", "output": "HH" }, { "input": "10\nW\nW\nW\nW\nW\nD\nW\nD\nD\nW", "output": "W" }, { "input": "19\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nTGACNIH\nTGACNIH\nXBCP", "output": "XBCP" }, { "input": "33\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS", "output": "PYPAS" }, { "input": "51\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC", "output": "NC" }, { "input": "89\nH\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nVOCI\nVOCI\nH\nH\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nH\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI", "output": "VOCI" }, { "input": "100\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nM\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA", "output": "HA" }, { "input": "100\nG\nG\nS\nS\nG\nG\nS\nS\nG\nS\nS\nS\nG\nS\nG\nG\nS\nG\nS\nS\nG\nS\nS\nS\nS\nS\nG\nS\nG\nS\nS\nG\nG\nG\nS\nS\nS\nS\nG\nS\nS\nG\nG\nG\nG\nG\nS\nG\nG\nS\nS\nS\nS\nS\nG\nG\nS\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nS\nS\nG\nS\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nG\nG\nS\nG\nG\nG\nS", "output": "G" }, { "input": "100\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nOBH\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL", "output": "WL" } ]
1,598,454,435
2,147,483,647
Python 3
OK
TESTS
34
218
0
d = {} for _ in range(int(input())): a = input() if(a not in d): d[a] = 1 else: d[a] +=1 print(max(d,key=d.get))
Title: Football Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams. Output Specification: Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner. Demo Input: ['1\nABC\n', '5\nA\nABA\nABA\nA\nA\n'] Demo Output: ['ABC\n', 'A\n'] Note: none
```python d = {} for _ in range(int(input())): a = input() if(a not in d): d[a] = 1 else: d[a] +=1 print(max(d,key=d.get)) ```
3.9455
443
A
Anton and Letters
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Print a single number — the number of distinct letters in Anton's set.
[ "{a, b, c}\n", "{b, a, b, a}\n", "{}\n" ]
[ "3\n", "2\n", "0\n" ]
none
500
[ { "input": "{a, b, c}", "output": "3" }, { "input": "{b, a, b, a}", "output": "2" }, { "input": "{}", "output": "0" }, { "input": "{a, a, c, b, b, b, c, c, c, c}", "output": "3" }, { "input": "{a, c, b, b}", "output": "3" }, { "input": "{a, b}", "output": "2" }, { "input": "{a}", "output": "1" }, { "input": "{b, a, b, a, b, c, c, b, c, b}", "output": "3" }, { "input": "{e, g, c, e}", "output": "3" }, { "input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}", "output": "1" }, { "input": "{a, a, b}", "output": "2" }, { "input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}", "output": "2" }, { "input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}", "output": "16" }, { "input": "{x, i, w, c, p, e, h, z, k, i}", "output": "9" }, { "input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}", "output": "15" }, { "input": "{y}", "output": "1" }, { "input": "{x}", "output": "1" }, { "input": "{b, z, a, z}", "output": "3" }, { "input": "{z}", "output": "1" }, { "input": "{a, z}", "output": "2" }, { "input": "{a, b, z}", "output": "3" }, { "input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}", "output": "11" } ]
1,697,179,290
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
30
0
import sys s = input() if s == "{}": print(0); sys.exit() s = set(s[1:len(s)-1].split(",")) print(s) print(len(s))
Title: Anton and Letters Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set. Input Specification: The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space. Output Specification: Print a single number — the number of distinct letters in Anton's set. Demo Input: ['{a, b, c}\n', '{b, a, b, a}\n', '{}\n'] Demo Output: ['3\n', '2\n', '0\n'] Note: none
```python import sys s = input() if s == "{}": print(0); sys.exit() s = set(s[1:len(s)-1].split(",")) print(s) print(len(s)) ```
0
496
D
Tennis Game
PROGRAMMING
1,900
[ "binary search" ]
null
null
Petya and Gena love playing table tennis. A single match is played according to the following rules: a match consists of multiple sets, each set consists of multiple serves. Each serve is won by one of the players, this player scores one point. As soon as one of the players scores *t* points, he wins the set; then the next set starts and scores of both players are being set to 0. As soon as one of the players wins the total of *s* sets, he wins the match and the match is over. Here *s* and *t* are some positive integer numbers. To spice it up, Petya and Gena choose new numbers *s* and *t* before every match. Besides, for the sake of history they keep a record of each match: that is, for each serve they write down the winner. Serve winners are recorded in the chronological order. In a record the set is over as soon as one of the players scores *t* points and the match is over as soon as one of the players wins *s* sets. Petya and Gena have found a record of an old match. Unfortunately, the sequence of serves in the record isn't divided into sets and numbers *s* and *t* for the given match are also lost. The players now wonder what values of *s* and *t* might be. Can you determine all the possible options?
The first line contains a single integer *n* — the length of the sequence of games (1<=≤<=*n*<=≤<=105). The second line contains *n* space-separated integers *a**i*. If *a**i*<==<=1, then the *i*-th serve was won by Petya, if *a**i*<==<=2, then the *i*-th serve was won by Gena. It is not guaranteed that at least one option for numbers *s* and *t* corresponds to the given record.
In the first line print a single number *k* — the number of options for numbers *s* and *t*. In each of the following *k* lines print two integers *s**i* and *t**i* — the option for numbers *s* and *t*. Print the options in the order of increasing *s**i*, and for equal *s**i* — in the order of increasing *t**i*.
[ "5\n1 2 1 2 1\n", "4\n1 1 1 1\n", "4\n1 2 1 2\n", "8\n2 1 2 1 1 1 1 1\n" ]
[ "2\n1 3\n3 1\n", "3\n1 4\n2 2\n4 1\n", "0\n", "3\n1 6\n2 3\n6 1\n" ]
none
2,250
[ { "input": "5\n1 2 1 2 1", "output": "2\n1 3\n3 1" }, { "input": "4\n1 1 1 1", "output": "3\n1 4\n2 2\n4 1" }, { "input": "4\n1 2 1 2", "output": "0" }, { "input": "8\n2 1 2 1 1 1 1 1", "output": "3\n1 6\n2 3\n6 1" }, { "input": "14\n2 1 2 1 1 1 1 2 1 1 2 1 2 1", "output": "3\n1 9\n3 3\n9 1" }, { "input": "10\n1 1 2 2 1 1 2 2 1 1", "output": "4\n1 6\n2 3\n3 2\n6 1" }, { "input": "20\n1 1 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 1", "output": "0" }, { "input": "186\n2 1 2 1 1 1 1 1 2 1 1 2 2 2 1 1 2 2 1 1 1 2 1 1 2 2 1 1 1 2 2 1 1 1 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 2 2 2 2 2 2 1 2 1 2 1 1 2 1 2 2 1 1 1 1 1 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 2 2 1 2 2 2 2 2 1 1 1 1 2 1 1 2 2 2 2 2 2 1 1 1 1 1 2 1 1 2 2 1 2 2 1 1 1 1 1 2 2 1 1 2 2 1 2 2 2 1 2 1 2 1 1 2 1 2 2 2 2 1 2 1 2 2 1 2 1 1 1 1 1 2 1 1 2 2 1 1 1 2 2 2 1 2 2 1 1 2 1 1 1 1 2 1 1", "output": "8\n1 100\n2 50\n6 11\n8 8\n19 4\n25 3\n40 2\n100 1" }, { "input": "82\n1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2", "output": "0" }, { "input": "83\n1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1", "output": "5\n1 45\n3 10\n3 15\n4 7\n45 1" }, { "input": "1\n1", "output": "1\n1 1" }, { "input": "1\n2", "output": "1\n1 1" } ]
1,503,974,589
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
46
0
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 28 16:19:34 2017 @author: lawrenceylong """ line1 = list(map(int,input().split())) line2 = list(map(int,input().split())) line3 = list(map(int,input().split())) line4 = list(map(int,input().split())) line5 = list(map(int,input().split())) matrix = [line1,line2,line3,line4,line5] currentpos = 0,0 for line in matrix: for num in line: if num == 1: currentpos = matrix.index(line),line.index(num) print(abs(currentpos[0]-2)+abs(currentpos[1]-2))
Title: Tennis Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya and Gena love playing table tennis. A single match is played according to the following rules: a match consists of multiple sets, each set consists of multiple serves. Each serve is won by one of the players, this player scores one point. As soon as one of the players scores *t* points, he wins the set; then the next set starts and scores of both players are being set to 0. As soon as one of the players wins the total of *s* sets, he wins the match and the match is over. Here *s* and *t* are some positive integer numbers. To spice it up, Petya and Gena choose new numbers *s* and *t* before every match. Besides, for the sake of history they keep a record of each match: that is, for each serve they write down the winner. Serve winners are recorded in the chronological order. In a record the set is over as soon as one of the players scores *t* points and the match is over as soon as one of the players wins *s* sets. Petya and Gena have found a record of an old match. Unfortunately, the sequence of serves in the record isn't divided into sets and numbers *s* and *t* for the given match are also lost. The players now wonder what values of *s* and *t* might be. Can you determine all the possible options? Input Specification: The first line contains a single integer *n* — the length of the sequence of games (1<=≤<=*n*<=≤<=105). The second line contains *n* space-separated integers *a**i*. If *a**i*<==<=1, then the *i*-th serve was won by Petya, if *a**i*<==<=2, then the *i*-th serve was won by Gena. It is not guaranteed that at least one option for numbers *s* and *t* corresponds to the given record. Output Specification: In the first line print a single number *k* — the number of options for numbers *s* and *t*. In each of the following *k* lines print two integers *s**i* and *t**i* — the option for numbers *s* and *t*. Print the options in the order of increasing *s**i*, and for equal *s**i* — in the order of increasing *t**i*. Demo Input: ['5\n1 2 1 2 1\n', '4\n1 1 1 1\n', '4\n1 2 1 2\n', '8\n2 1 2 1 1 1 1 1\n'] Demo Output: ['2\n1 3\n3 1\n', '3\n1 4\n2 2\n4 1\n', '0\n', '3\n1 6\n2 3\n6 1\n'] Note: none
```python #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 28 16:19:34 2017 @author: lawrenceylong """ line1 = list(map(int,input().split())) line2 = list(map(int,input().split())) line3 = list(map(int,input().split())) line4 = list(map(int,input().split())) line5 = list(map(int,input().split())) matrix = [line1,line2,line3,line4,line5] currentpos = 0,0 for line in matrix: for num in line: if num == 1: currentpos = matrix.index(line),line.index(num) print(abs(currentpos[0]-2)+abs(currentpos[1]-2)) ```
-1
659
D
Bicycle Race
PROGRAMMING
1,500
[ "geometry", "implementation", "math" ]
null
null
Maria participates in a bicycle race. The speedway takes place on the shores of Lake Lucerne, just repeating its contour. As you know, the lake shore consists only of straight sections, directed to the north, south, east or west. Let's introduce a system of coordinates, directing the *Ox* axis from west to east, and the *Oy* axis from south to north. As a starting position of the race the southernmost point of the track is selected (and if there are several such points, the most western among them). The participants start the race, moving to the north. At all straight sections of the track, the participants travel in one of the four directions (north, south, east or west) and change the direction of movement only in bends between the straight sections. The participants, of course, never turn back, that is, they do not change the direction of movement from north to south or from east to west (or vice versa). Maria is still young, so she does not feel confident at some turns. Namely, Maria feels insecure if at a failed or untimely turn, she gets into the water. In other words, Maria considers the turn dangerous if she immediately gets into the water if it is ignored. Help Maria get ready for the competition — determine the number of dangerous turns on the track.
The first line of the input contains an integer *n* (4<=≤<=*n*<=≤<=1000) — the number of straight sections of the track. The following (*n*<=+<=1)-th line contains pairs of integers (*x**i*,<=*y**i*) (<=-<=10<=000<=≤<=*x**i*,<=*y**i*<=≤<=10<=000). The first of these points is the starting position. The *i*-th straight section of the track begins at the point (*x**i*,<=*y**i*) and ends at the point (*x**i*<=+<=1,<=*y**i*<=+<=1). It is guaranteed that: - the first straight section is directed to the north; - the southernmost (and if there are several, then the most western of among them) point of the track is the first point; - the last point coincides with the first one (i.e., the start position); - any pair of straight sections of the track has no shared points (except for the neighboring ones, they share exactly one point); - no pair of points (except for the first and last one) is the same; - no two adjacent straight sections are directed in the same direction or in opposite directions.
Print a single integer — the number of dangerous turns on the track.
[ "6\n0 0\n0 1\n1 1\n1 2\n2 2\n2 0\n0 0\n", "16\n1 1\n1 5\n3 5\n3 7\n2 7\n2 9\n6 9\n6 7\n5 7\n5 3\n4 3\n4 4\n3 4\n3 2\n5 2\n5 1\n1 1\n" ]
[ "1\n", "6\n" ]
The first sample corresponds to the picture: The picture shows that you can get in the water under unfortunate circumstances only at turn at the point (1, 1). Thus, the answer is 1.
1,250
[ { "input": "6\n0 0\n0 1\n1 1\n1 2\n2 2\n2 0\n0 0", "output": "1" }, { "input": "16\n1 1\n1 5\n3 5\n3 7\n2 7\n2 9\n6 9\n6 7\n5 7\n5 3\n4 3\n4 4\n3 4\n3 2\n5 2\n5 1\n1 1", "output": "6" }, { "input": "4\n-10000 -10000\n-10000 10000\n10000 10000\n10000 -10000\n-10000 -10000", "output": "0" }, { "input": "4\n6 8\n6 9\n7 9\n7 8\n6 8", "output": "0" }, { "input": "8\n-10000 -10000\n-10000 5000\n0 5000\n0 10000\n10000 10000\n10000 0\n0 0\n0 -10000\n-10000 -10000", "output": "2" }, { "input": "20\n-4286 -10000\n-4286 -7778\n-7143 -7778\n-7143 -3334\n-10000 -3334\n-10000 1110\n-4286 1110\n-4286 -3334\n4285 -3334\n4285 -1112\n7142 -1112\n7142 3332\n4285 3332\n4285 9998\n9999 9998\n9999 -3334\n7142 -3334\n7142 -5556\n-1429 -5556\n-1429 -10000\n-4286 -10000", "output": "8" }, { "input": "24\n-10000 -10000\n-10000 9998\n9998 9998\n9998 -10000\n-6364 -10000\n-6364 6362\n6362 6362\n6362 -6364\n-2728 -6364\n-2728 2726\n2726 2726\n2726 -910\n908 -910\n908 908\n-910 908\n-910 -4546\n4544 -4546\n4544 4544\n-4546 4544\n-4546 -8182\n8180 -8182\n8180 8180\n-8182 8180\n-8182 -10000\n-10000 -10000", "output": "10" }, { "input": "12\n-10000 -10000\n-10000 10000\n10000 10000\n10000 6000\n-6000 6000\n-6000 2000\n10000 2000\n10000 -2000\n-6000 -2000\n-6000 -6000\n10000 -6000\n10000 -10000\n-10000 -10000", "output": "4" }, { "input": "12\n-10000 -10000\n-10000 10000\n10000 10000\n10000 6000\n-9800 6000\n-9800 2000\n10000 2000\n10000 -2000\n-9800 -2000\n-9800 -6000\n10000 -6000\n10000 -10000\n-10000 -10000", "output": "4" }, { "input": "4\n0 0\n0 10000\n10000 10000\n10000 0\n0 0", "output": "0" }, { "input": "4\n-10000 -10000\n-10000 10000\n10000 10000\n10000 -10000\n-10000 -10000", "output": "0" } ]
1,590,214,472
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
202
2,048,000
# 787A def gcd(a, b): if b == 0: return a return gcd(b, a%b) from sys import stdin a, b = map(int, stdin.readline().split()) c, d = map(int, stdin.readline().split()) # gen term # b + (n-1)*a = d + (m-1)*c # b - d + c - a = mc - na if (b%2==1 and a%2==0 and d%2 == 0 and c%2 == 0) or (d%2==1 and c%2==0 and b%2 == 0 and a%2 == 0): print(-1) else: const = b - d + c - a # m*c + n*(-a) = const if const%gcd(a, b) == 0: for m in range(1, 10**7): if (m*c - const)/a == (m*c - const)//a: print(b + ((m*c - const)//a - 1)*a) break else: print(-1)
Title: Bicycle Race Time Limit: None seconds Memory Limit: None megabytes Problem Description: Maria participates in a bicycle race. The speedway takes place on the shores of Lake Lucerne, just repeating its contour. As you know, the lake shore consists only of straight sections, directed to the north, south, east or west. Let's introduce a system of coordinates, directing the *Ox* axis from west to east, and the *Oy* axis from south to north. As a starting position of the race the southernmost point of the track is selected (and if there are several such points, the most western among them). The participants start the race, moving to the north. At all straight sections of the track, the participants travel in one of the four directions (north, south, east or west) and change the direction of movement only in bends between the straight sections. The participants, of course, never turn back, that is, they do not change the direction of movement from north to south or from east to west (or vice versa). Maria is still young, so she does not feel confident at some turns. Namely, Maria feels insecure if at a failed or untimely turn, she gets into the water. In other words, Maria considers the turn dangerous if she immediately gets into the water if it is ignored. Help Maria get ready for the competition — determine the number of dangerous turns on the track. Input Specification: The first line of the input contains an integer *n* (4<=≤<=*n*<=≤<=1000) — the number of straight sections of the track. The following (*n*<=+<=1)-th line contains pairs of integers (*x**i*,<=*y**i*) (<=-<=10<=000<=≤<=*x**i*,<=*y**i*<=≤<=10<=000). The first of these points is the starting position. The *i*-th straight section of the track begins at the point (*x**i*,<=*y**i*) and ends at the point (*x**i*<=+<=1,<=*y**i*<=+<=1). It is guaranteed that: - the first straight section is directed to the north; - the southernmost (and if there are several, then the most western of among them) point of the track is the first point; - the last point coincides with the first one (i.e., the start position); - any pair of straight sections of the track has no shared points (except for the neighboring ones, they share exactly one point); - no pair of points (except for the first and last one) is the same; - no two adjacent straight sections are directed in the same direction or in opposite directions. Output Specification: Print a single integer — the number of dangerous turns on the track. Demo Input: ['6\n0 0\n0 1\n1 1\n1 2\n2 2\n2 0\n0 0\n', '16\n1 1\n1 5\n3 5\n3 7\n2 7\n2 9\n6 9\n6 7\n5 7\n5 3\n4 3\n4 4\n3 4\n3 2\n5 2\n5 1\n1 1\n'] Demo Output: ['1\n', '6\n'] Note: The first sample corresponds to the picture: The picture shows that you can get in the water under unfortunate circumstances only at turn at the point (1, 1). Thus, the answer is 1.
```python # 787A def gcd(a, b): if b == 0: return a return gcd(b, a%b) from sys import stdin a, b = map(int, stdin.readline().split()) c, d = map(int, stdin.readline().split()) # gen term # b + (n-1)*a = d + (m-1)*c # b - d + c - a = mc - na if (b%2==1 and a%2==0 and d%2 == 0 and c%2 == 0) or (d%2==1 and c%2==0 and b%2 == 0 and a%2 == 0): print(-1) else: const = b - d + c - a # m*c + n*(-a) = const if const%gcd(a, b) == 0: for m in range(1, 10**7): if (m*c - const)/a == (m*c - const)//a: print(b + ((m*c - const)//a - 1)*a) break else: print(-1) ```
-1
32
B
Borze
PROGRAMMING
800
[ "expression parsing", "implementation" ]
B. Borze
2
256
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output the decoded ternary number. It can have leading zeroes.
[ ".-.--\n", "--.\n", "-..-.--\n" ]
[ "012", "20", "1012" ]
none
1,000
[ { "input": ".-.--", "output": "012" }, { "input": "--.", "output": "20" }, { "input": "-..-.--", "output": "1012" }, { "input": "---..", "output": "210" }, { "input": "..--.---..", "output": "0020210" }, { "input": "-.....----.", "output": "10000220" }, { "input": ".", "output": "0" }, { "input": "-.", "output": "1" }, { "input": "--", "output": "2" }, { "input": "..", "output": "00" }, { "input": "--.", "output": "20" }, { "input": ".--.", "output": "020" }, { "input": ".-.-..", "output": "0110" }, { "input": "----.-.", "output": "2201" }, { "input": "-..--.-.", "output": "10201" }, { "input": "..--..--.", "output": "0020020" }, { "input": "-.-.---.--..-..-.-.-..-..-.--.", "output": "112120010111010120" }, { "input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.", "output": "21112220010101011012011011221011" }, { "input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------", "output": "11020111110111222212021020002022111100201121222020012022110010222" }, { "input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..", "output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110" }, { "input": ".-..-.-.---.-----.--.---...-.--.-.-....-..", "output": "01011212212021001201100010" }, { "input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..", "output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210" }, { "input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.", "output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220" }, { "input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----", "output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122" }, { "input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..", "output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110" }, { "input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.", "output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020" }, { "input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..", "output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200" }, { "input": "-.---...----...--.--...-.--.----", "output": "121002200020200012022" }, { "input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.", "output": "202020212012111010201021100001021221200011222112012201012220" } ]
1,651,751,889
2,147,483,647
Python 3
OK
TESTS
30
92
0
a=input() ans='' x=0 while x<len(a): if a[x]=='.': ans+='0' x+=1 elif a[x:x+2]=='-.': ans+='1' x+=2 else: ans+='2' x+=2 print(ans)
Title: Borze Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet. Input Specification: The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes). Output Specification: Output the decoded ternary number. It can have leading zeroes. Demo Input: ['.-.--\n', '--.\n', '-..-.--\n'] Demo Output: ['012', '20', '1012'] Note: none
```python a=input() ans='' x=0 while x<len(a): if a[x]=='.': ans+='0' x+=1 elif a[x:x+2]=='-.': ans+='1' x+=2 else: ans+='2' x+=2 print(ans) ```
3.977
976
C
Nested Segments
PROGRAMMING
1,500
[ "greedy", "implementation", "sortings" ]
null
null
You are given a sequence *a*1,<=*a*2,<=...,<=*a**n* of one-dimensional segments numbered 1 through *n*. Your task is to find two distinct indices *i* and *j* such that segment *a**i* lies within segment *a**j*. Segment [*l*1,<=*r*1] lies within segment [*l*2,<=*r*2] iff *l*1<=≥<=*l*2 and *r*1<=≤<=*r*2. Print indices *i* and *j*. If there are multiple answers, print any of them. If no answer exists, print -1 -1.
The first line contains one integer *n* (1<=≤<=*n*<=≤<=3·105) — the number of segments. Each of the next *n* lines contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the *i*-th segment.
Print two distinct indices *i* and *j* such that segment *a**i* lies within segment *a**j*. If there are multiple answers, print any of them. If no answer exists, print -1 -1.
[ "5\n1 10\n2 9\n3 9\n2 3\n2 9\n", "3\n1 5\n2 6\n6 20\n" ]
[ "2 1\n", "-1 -1\n" ]
In the first example the following pairs are considered correct: - (2, 1), (3, 1), (4, 1), (5, 1) — not even touching borders; - (3, 2), (4, 2), (3, 5), (4, 5) — touch one border; - (5, 2), (2, 5) — match exactly.
0
[ { "input": "5\n1 10\n2 9\n3 9\n2 3\n2 9", "output": "2 1" }, { "input": "3\n1 5\n2 6\n6 20", "output": "-1 -1" }, { "input": "1\n1 1000000000", "output": "-1 -1" }, { "input": "2\n1 1000000000\n1 1000000000", "output": "2 1" }, { "input": "2\n1 1000000000\n500000000 500000000", "output": "2 1" }, { "input": "2\n1 10\n2 10", "output": "2 1" }, { "input": "2\n10 20\n10 11", "output": "2 1" }, { "input": "3\n1 10\n10 20\n9 11", "output": "-1 -1" }, { "input": "3\n1 1\n2 3\n2 2", "output": "3 2" }, { "input": "4\n1 10\n2 11\n3 10000000\n3 100000000", "output": "3 4" }, { "input": "2\n3 7\n3 9", "output": "1 2" }, { "input": "3\n1 2\n2 3\n1 2", "output": "3 1" }, { "input": "3\n5 6\n4 7\n3 8", "output": "2 3" }, { "input": "3\n2 9\n1 7\n2 8", "output": "3 1" }, { "input": "2\n1 4\n1 5", "output": "1 2" }, { "input": "3\n1 2\n1 3\n4 4", "output": "1 2" }, { "input": "3\n1 2\n1 3\n67 1234567", "output": "1 2" }, { "input": "2\n1 1\n1 1", "output": "2 1" }, { "input": "3\n1 5\n4 7\n3 9", "output": "2 3" }, { "input": "2\n1 1\n1 10", "output": "1 2" }, { "input": "2\n1 2\n1 3", "output": "1 2" }, { "input": "2\n1 10\n1 11", "output": "1 2" }, { "input": "2\n1 1\n1 2", "output": "1 2" }, { "input": "2\n2 3\n2 4", "output": "1 2" }, { "input": "2\n1 3\n3 3", "output": "2 1" }, { "input": "3\n1 10\n11 13\n12 12", "output": "3 2" }, { "input": "2\n2 10\n1 10", "output": "1 2" }, { "input": "3\n1 3\n4 5\n4 4", "output": "3 2" }, { "input": "5\n1 1\n2 6\n3 5\n10 15\n20 25", "output": "3 2" }, { "input": "3\n1 1000\n1001 1007\n1002 1007", "output": "3 2" }, { "input": "3\n1 3\n2 5\n3 4", "output": "3 2" }, { "input": "3\n1 10\n2 11\n3 11", "output": "3 2" }, { "input": "2\n2000000 999999999\n1000000 1000000000", "output": "1 2" }, { "input": "3\n2 10\n11 12\n4 5", "output": "3 1" }, { "input": "2\n1 10\n1 19", "output": "1 2" }, { "input": "4\n1 3\n100 102\n108 110\n1 3", "output": "4 1" }, { "input": "3\n1 3\n5 9\n5 6", "output": "3 2" }, { "input": "3\n1 3\n3 4\n3 5", "output": "2 3" }, { "input": "3\n1 2\n1 3\n1 4", "output": "2 3" }, { "input": "4\n2 3\n1 4\n100 200\n1000 2000", "output": "1 2" }, { "input": "3\n1 1\n2 100\n3 99", "output": "3 2" }, { "input": "3\n1 2\n1 3\n12 1234", "output": "1 2" }, { "input": "3\n1 4\n2 6\n3 5", "output": "3 2" }, { "input": "3\n1 10\n2 12\n1 9", "output": "3 1" }, { "input": "2\n1 3\n1 5", "output": "1 2" }, { "input": "3\n1 2\n2 5\n2 3", "output": "3 2" }, { "input": "4\n1 3\n1 4\n5 10\n11 13", "output": "1 2" }, { "input": "4\n7 15\n6 9\n9 10\n10 11", "output": "3 1" }, { "input": "4\n2 3\n100 200\n1000 2000\n1 4", "output": "1 4" }, { "input": "3\n10 20\n5 9\n11 19", "output": "3 1" }, { "input": "10\n1 2\n2 3\n3 4\n4 5\n5 6\n6 6\n6 7\n7 8\n8 9\n9 10", "output": "6 7" }, { "input": "2\n1 4\n1 7", "output": "1 2" }, { "input": "3\n1 11\n2 12\n2 13", "output": "2 3" }, { "input": "2\n1 4\n1 8", "output": "1 2" }, { "input": "2\n2 5\n1 5", "output": "1 2" }, { "input": "2\n2 9\n1 10", "output": "1 2" }, { "input": "3\n2 4\n2 4\n1 3", "output": "2 1" }, { "input": "6\n10 11\n12 13\n15 16\n15 17\n18 19\n59 60", "output": "3 4" }, { "input": "2\n1 3\n1 7", "output": "1 2" }, { "input": "5\n4 6\n7 60\n80 90\n4 5\n8 80", "output": "4 1" }, { "input": "2\n1 3\n1 4", "output": "1 2" }, { "input": "3\n2 9\n1 7\n2 9", "output": "3 1" }, { "input": "2\n1 4\n1 6", "output": "1 2" }, { "input": "3\n4 4\n2 3\n4 5", "output": "1 3" }, { "input": "2\n1 5\n1 7", "output": "1 2" }, { "input": "2\n1 2\n1 4", "output": "1 2" }, { "input": "4\n1 1\n2 2\n5 10\n2 4", "output": "2 4" }, { "input": "3\n11 12\n11 15\n43 45", "output": "1 2" }, { "input": "3\n2 3\n2 4\n2 5", "output": "2 3" }, { "input": "2\n2 3\n2 5", "output": "1 2" }, { "input": "3\n1 3\n1 4\n1 5", "output": "2 3" }, { "input": "3\n1 1\n1 2\n1 3", "output": "2 3" }, { "input": "2\n2 3\n1 3", "output": "1 2" }, { "input": "11\n22226 28285\n9095 23314\n19162 25530\n255 13298\n4904 25801\n17914 23501\n8441 28117\n11880 29994\n11123 19874\n21505 27971\n7658 14109", "output": "11 5" }, { "input": "8\n4 11\n5 12\n6 13\n7 14\n8 15\n9 16\n10 17\n1 11", "output": "1 8" }, { "input": "4\n1 10\n12 15\n1 3\n17 18", "output": "3 1" }, { "input": "3\n1 5\n1 10\n1 20", "output": "2 3" }, { "input": "3\n1 1000\n1001 1003\n1 1", "output": "3 1" }, { "input": "3\n1 10\n2 11\n2 11", "output": "3 2" }, { "input": "2\n1 1\n1 3", "output": "1 2" }, { "input": "2\n1 5\n1 6", "output": "1 2" }, { "input": "3\n1 5\n3 6\n1 4", "output": "3 1" }, { "input": "4\n2 8\n1 3\n2 9\n1 2", "output": "4 2" }, { "input": "3\n3 6\n1 3\n3 9", "output": "1 3" }, { "input": "6\n2 40\n5 50\n10 60\n3 45\n1 40\n100 111", "output": "1 5" }, { "input": "4\n1 2\n4 4\n3 3\n2 3", "output": "3 4" }, { "input": "4\n1 1\n4 5\n7 9\n1 1", "output": "4 1" }, { "input": "6\n30 35\n18 29\n28 32\n4 9\n1002 129212\n8 281", "output": "2 6" }, { "input": "2\n10 13\n10 14", "output": "1 2" }, { "input": "5\n2 4\n3 6\n4 5\n222 333\n111 444", "output": "3 2" }, { "input": "3\n1 2\n4 5\n1 1", "output": "3 1" }, { "input": "2\n2 100\n1 100", "output": "1 2" }, { "input": "3\n1 10\n9 20\n3 5", "output": "3 1" }, { "input": "2\n1 9\n1 10", "output": "1 2" }, { "input": "3\n1 2\n1 4\n1 6", "output": "2 3" } ]
1,525,105,762
6,562
PyPy 3
WRONG_ANSWER
TESTS
1
93
21,401,600
import bisect import math from sys import stdin, stdout n = int(stdin.readline()) arr = list() while n > 0: n -= 1 arr.append([int(x) for x in stdin.readline().split()]) arr[-1].append(len(arr)) cur = list() arr.sort(key = lambda x:x[1], reverse=True) arr.sort(key = lambda x:x[0]) cur.append(arr.pop()) ans = [-1, -1] for d in arr: if (d[0] <= arr[-1][0] and d[1] >= arr[-1][1]): ans = [ arr[-1][2], d[2]] break cur.append(d) stdout.write(str(ans[0]) + ' ' + str(ans[1]))
Title: Nested Segments Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a sequence *a*1,<=*a*2,<=...,<=*a**n* of one-dimensional segments numbered 1 through *n*. Your task is to find two distinct indices *i* and *j* such that segment *a**i* lies within segment *a**j*. Segment [*l*1,<=*r*1] lies within segment [*l*2,<=*r*2] iff *l*1<=≥<=*l*2 and *r*1<=≤<=*r*2. Print indices *i* and *j*. If there are multiple answers, print any of them. If no answer exists, print -1 -1. Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=3·105) — the number of segments. Each of the next *n* lines contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the *i*-th segment. Output Specification: Print two distinct indices *i* and *j* such that segment *a**i* lies within segment *a**j*. If there are multiple answers, print any of them. If no answer exists, print -1 -1. Demo Input: ['5\n1 10\n2 9\n3 9\n2 3\n2 9\n', '3\n1 5\n2 6\n6 20\n'] Demo Output: ['2 1\n', '-1 -1\n'] Note: In the first example the following pairs are considered correct: - (2, 1), (3, 1), (4, 1), (5, 1) — not even touching borders; - (3, 2), (4, 2), (3, 5), (4, 5) — touch one border; - (5, 2), (2, 5) — match exactly.
```python import bisect import math from sys import stdin, stdout n = int(stdin.readline()) arr = list() while n > 0: n -= 1 arr.append([int(x) for x in stdin.readline().split()]) arr[-1].append(len(arr)) cur = list() arr.sort(key = lambda x:x[1], reverse=True) arr.sort(key = lambda x:x[0]) cur.append(arr.pop()) ans = [-1, -1] for d in arr: if (d[0] <= arr[-1][0] and d[1] >= arr[-1][1]): ans = [ arr[-1][2], d[2]] break cur.append(d) stdout.write(str(ans[0]) + ' ' + str(ans[1])) ```
0
776
B
Sherlock and his girlfriend
PROGRAMMING
1,200
[ "constructive algorithms", "number theory" ]
null
null
Sherlock has a new girlfriend (so unlike him!). Valentine's day is coming and he wants to gift her some jewelry. He bought *n* pieces of jewelry. The *i*-th piece has price equal to *i*<=+<=1, that is, the prices of the jewelry are 2,<=3,<=4,<=... *n*<=+<=1. Watson gave Sherlock a challenge to color these jewelry pieces such that two pieces don't have the same color if the price of one piece is a prime divisor of the price of the other piece. Also, Watson asked him to minimize the number of different colors used. Help Sherlock complete this trivial task.
The only line contains single integer *n* (1<=≤<=*n*<=≤<=100000) — the number of jewelry pieces.
The first line of output should contain a single integer *k*, the minimum number of colors that can be used to color the pieces of jewelry with the given constraints. The next line should consist of *n* space-separated integers (between 1 and *k*) that specify the color of each piece in the order of increasing price. If there are multiple ways to color the pieces using *k* colors, you can output any of them.
[ "3\n", "4\n" ]
[ "2\n1 1 2 ", "2\n2 1 1 2\n" ]
In the first input, the colors for first, second and third pieces of jewelry having respective prices 2, 3 and 4 are 1, 1 and 2 respectively. In this case, as 2 is a prime divisor of 4, colors of jewelry having prices 2 and 4 must be distinct.
1,000
[ { "input": "3", "output": "2\n1 1 2 " }, { "input": "4", "output": "2\n1 1 2 1 " }, { "input": "17", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 " }, { "input": "25", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 " }, { "input": "85", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 " }, { "input": "105", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 " }, { "input": "123", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 " }, { "input": "452", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "641", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "293", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "733", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "1", "output": "1\n1 " }, { "input": "10", "output": "2\n1 1 2 1 2 1 2 2 2 1 " }, { "input": "287", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "3202", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "728", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "3509", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "5137", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "2023", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "4890", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "8507", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "1796", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "3466", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "1098", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "11226", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "11731", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "11644", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "14553", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "17307", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "23189", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "6818", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "1054", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "28163", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "30885", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "27673", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "11656", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "36325", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "31205", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "29958", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "1696", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "44907", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "13736", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "29594", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "19283", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "15346", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "41794", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "99998", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "100000", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "2", "output": "1\n1 1 " }, { "input": "1", "output": "1\n1 " }, { "input": "2", "output": "1\n1 1 " }, { "input": "100000", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "99971", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." } ]
1,624,515,448
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
139
13,619,200
import os.path import sys from math import * from math import floor, gcd, fabs, factorial, fmod, sqrt, inf, log if os.path.exists('input.txt'): sys.stdin = open('input.txt', 'r') sys.stdout = open('output.txt', 'w') def inp(): return sys.stdin.readline().strip() maxN=1000005 prime=[True for i in range(maxN+1)] p=2 while(p*p<=maxN): if(prime[p]==True): for i in range(p*p,maxN+1,p): prime[i]=False p+=1 n=int(inp()) arr=[] for i in range(2,n+1): if prime[i]==True: arr.append(1) else: arr.append(2) print(2) print(*arr)
Title: Sherlock and his girlfriend Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sherlock has a new girlfriend (so unlike him!). Valentine's day is coming and he wants to gift her some jewelry. He bought *n* pieces of jewelry. The *i*-th piece has price equal to *i*<=+<=1, that is, the prices of the jewelry are 2,<=3,<=4,<=... *n*<=+<=1. Watson gave Sherlock a challenge to color these jewelry pieces such that two pieces don't have the same color if the price of one piece is a prime divisor of the price of the other piece. Also, Watson asked him to minimize the number of different colors used. Help Sherlock complete this trivial task. Input Specification: The only line contains single integer *n* (1<=≤<=*n*<=≤<=100000) — the number of jewelry pieces. Output Specification: The first line of output should contain a single integer *k*, the minimum number of colors that can be used to color the pieces of jewelry with the given constraints. The next line should consist of *n* space-separated integers (between 1 and *k*) that specify the color of each piece in the order of increasing price. If there are multiple ways to color the pieces using *k* colors, you can output any of them. Demo Input: ['3\n', '4\n'] Demo Output: ['2\n1 1 2 ', '2\n2 1 1 2\n'] Note: In the first input, the colors for first, second and third pieces of jewelry having respective prices 2, 3 and 4 are 1, 1 and 2 respectively. In this case, as 2 is a prime divisor of 4, colors of jewelry having prices 2 and 4 must be distinct.
```python import os.path import sys from math import * from math import floor, gcd, fabs, factorial, fmod, sqrt, inf, log if os.path.exists('input.txt'): sys.stdin = open('input.txt', 'r') sys.stdout = open('output.txt', 'w') def inp(): return sys.stdin.readline().strip() maxN=1000005 prime=[True for i in range(maxN+1)] p=2 while(p*p<=maxN): if(prime[p]==True): for i in range(p*p,maxN+1,p): prime[i]=False p+=1 n=int(inp()) arr=[] for i in range(2,n+1): if prime[i]==True: arr.append(1) else: arr.append(2) print(2) print(*arr) ```
0
197
B
Limit
PROGRAMMING
1,400
[ "math" ]
null
null
You are given two polynomials: - *P*(*x*)<==<=*a*0·*x**n*<=+<=*a*1·*x**n*<=-<=1<=+<=...<=+<=*a**n*<=-<=1·*x*<=+<=*a**n* and - *Q*(*x*)<==<=*b*0·*x**m*<=+<=*b*1·*x**m*<=-<=1<=+<=...<=+<=*b**m*<=-<=1·*x*<=+<=*b**m*. Calculate limit .
The first line contains two space-separated integers *n* and *m* (0<=≤<=*n*,<=*m*<=≤<=100) — degrees of polynomials *P*(*x*) and *Q*(*x*) correspondingly. The second line contains *n*<=+<=1 space-separated integers — the factors of polynomial *P*(*x*): *a*0, *a*1, ..., *a**n*<=-<=1, *a**n* (<=-<=100<=≤<=*a**i*<=≤<=100,<=*a*0<=≠<=0). The third line contains *m*<=+<=1 space-separated integers — the factors of polynomial *Q*(*x*): *b*0, *b*1, ..., *b**m*<=-<=1, *b**m* (<=-<=100<=≤<=*b**i*<=≤<=100,<=*b*0<=≠<=0).
If the limit equals <=+<=∞, print "Infinity" (without quotes). If the limit equals <=-<=∞, print "-Infinity" (without the quotes). If the value of the limit equals zero, print "0/1" (without the quotes). Otherwise, print an irreducible fraction — the value of limit , in the format "p/q" (without the quotes), where *p* is the — numerator, *q* (*q*<=&gt;<=0) is the denominator of the fraction.
[ "2 1\n1 1 1\n2 5\n", "1 0\n-1 3\n2\n", "0 1\n1\n1 0\n", "2 2\n2 1 6\n4 5 -7\n", "1 1\n9 0\n-5 2\n" ]
[ "Infinity\n", "-Infinity\n", "0/1\n", "1/2\n", "-9/5\n" ]
Let's consider all samples: 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c28febca257452afdfcbd6984ba8623911f9bdbc.png" style="max-width: 100.0%;max-height: 100.0%;"/> 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1e55ecd04e54a45e5e0092ec9a5c1ea03bb29255.png" style="max-width: 100.0%;max-height: 100.0%;"/> 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/2c95fb684d373fcc1a481cfabeda4d5c2f3673ee.png" style="max-width: 100.0%;max-height: 100.0%;"/> 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4dc40cb8b3cd6375c42445366e50369649a2801a.png" style="max-width: 100.0%;max-height: 100.0%;"/> 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c6455aba35cfb3c4397505121d1f77afcd17c98e.png" style="max-width: 100.0%;max-height: 100.0%;"/> You can learn more about the definition and properties of limits if you follow the link: http://en.wikipedia.org/wiki/Limit_of_a_function
500
[ { "input": "2 1\n1 1 1\n2 5", "output": "Infinity" }, { "input": "1 0\n-1 3\n2", "output": "-Infinity" }, { "input": "0 1\n1\n1 0", "output": "0/1" }, { "input": "2 2\n2 1 6\n4 5 -7", "output": "1/2" }, { "input": "1 1\n9 0\n-5 2", "output": "-9/5" }, { "input": "1 2\n5 3\n-3 2 -1", "output": "0/1" }, { "input": "1 2\n-4 8\n-2 5 -3", "output": "0/1" }, { "input": "3 2\n4 3 1 2\n-5 7 0", "output": "-Infinity" }, { "input": "2 1\n-3 5 1\n-8 0", "output": "Infinity" }, { "input": "1 1\n-5 7\n3 1", "output": "-5/3" }, { "input": "2 2\n-4 2 1\n-5 8 -19", "output": "4/5" }, { "input": "0 100\n1\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "0/1" }, { "input": "100 0\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100\n1", "output": "Infinity" }, { "input": "0 0\n36\n-54", "output": "-2/3" }, { "input": "0 0\n36\n-8", "output": "-9/2" }, { "input": "0 0\n-6\n-8", "output": "3/4" }, { "input": "0 2\n-3\n1 4 6", "output": "0/1" }, { "input": "0 0\n-21\n13", "output": "-21/13" }, { "input": "0 0\n-34\n21", "output": "-34/21" }, { "input": "0 0\n-55\n34", "output": "-55/34" }, { "input": "33 100\n-15 -90 -84 57 67 60 -40 -82 83 -80 43 -15 -36 -14 -37 -49 42 -79 49 -7 -12 53 -44 -21 87 -91 -73 -27 13 65 5 74 -21 -52\n-67 -17 36 -46 -5 31 -45 -35 -49 13 -7 -82 92 -55 -67 -96 31 -70 76 24 -29 26 96 19 -40 99 -26 74 -17 -56 -72 24 -71 -62 10 -56 -74 75 -48 -98 -67 -26 47 7 63 -38 99 66 -25 -31 -24 -42 -49 -27 -45 -2 -37 -16 5 -21 97 33 85 -33 93 30 84 73 -48 18 -36 71 -38 -41 28 1 -7 -15 60 59 -20 -38 -86 90 2 -12 72 -43 26 76 97 7 -2 -47 -4 100 -40 -48 53 -54 0", "output": "0/1" }, { "input": "39 87\n78 -50 18 -32 -12 -65 83 41 -6 53 -26 64 -19 -53 -61 91 -49 -66 67 69 100 -39 95 99 86 -67 -66 63 48 26 -4 95 -54 -71 26 -74 -93 79 -91 -45\n-18 23 48 59 76 82 95 2 -26 18 -39 -74 44 -92 40 -44 1 -97 -100 -63 -54 -3 -86 85 28 -50 41 -53 -74 -29 -91 87 27 -42 -90 -15 -26 -15 -100 -70 -10 -41 16 85 71 -39 -31 -65 80 98 9 23 -40 14 -88 15 -34 10 -67 -94 -58 -24 75 48 -42 56 -77 -13 -25 -79 -100 -57 89 45 22 85 78 -93 -79 69 63 44 74 94 35 -65 -12 -88", "output": "0/1" }, { "input": "47 56\n31 -99 -97 6 -45 -5 89 35 -77 69 57 91 -32 -66 -36 16 30 61 -36 32 48 67 5 -85 65 -11 -51 -63 -51 -16 39 -26 -60 -28 91 43 -90 32 44 83 70 -53 51 56 68 -81 76 79\n61 -21 -75 -36 -24 -19 80 26 -28 93 27 72 -39 -46 -38 68 -29 -16 -63 84 -13 64 55 63 77 5 68 70 15 99 12 -69 50 -48 -82 -3 52 -54 68 91 -37 -100 -5 74 24 91 -1 74 28 29 -87 -13 -88 82 -13 58 23", "output": "0/1" }, { "input": "9 100\n-34 88 33 -80 87 31 -53 -3 8 -70\n31 -25 46 78 8 82 -92 -36 -30 85 -93 86 -87 75 8 -71 44 -41 -83 19 89 -28 81 42 79 86 41 -23 64 -31 46 24 -79 23 71 63 99 90 -16 -70 -1 88 10 65 3 -99 95 52 -80 53 -24 -43 -30 -7 51 40 -47 44 -10 -18 -61 -67 -84 37 45 93 -5 68 32 3 -61 -100 38 -21 -91 90 83 -45 75 89 17 -44 75 14 -28 1 -84 -100 -36 84 -40 88 -84 -54 2 -32 92 -49 77 85 91", "output": "0/1" }, { "input": "28 87\n-77 49 37 46 -92 65 89 100 53 76 -43 47 -80 -46 -94 -4 20 46 81 -41 86 25 69 60 15 -78 -98 -7 -42\n-85 96 59 -40 90 -72 41 -17 -40 -15 -98 66 47 9 -33 -63 59 -25 -31 25 -94 35 28 -36 -41 -38 -38 -54 -40 90 7 -10 98 -19 54 -10 46 -58 -88 -21 90 82 37 -70 -98 -63 41 75 -50 -59 -69 79 -93 -3 -45 14 76 28 -28 -98 -44 -39 71 44 90 91 0 45 7 65 68 39 -27 58 68 -47 -41 100 14 -95 -80 69 -88 -51 -89 -70 -23 95", "output": "0/1" }, { "input": "100 4\n-5 -93 89 -26 -79 14 -28 13 -45 69 50 -84 21 -68 62 30 -26 99 -12 39 20 -74 -39 -41 -28 -72 -55 28 20 31 -92 -20 76 -65 57 72 -36 4 33 -28 -19 -41 -40 40 84 -36 -83 75 -74 -80 32 -50 -56 72 16 75 57 90 -19 -10 67 -71 69 -48 -48 23 37 -31 -64 -86 20 67 97 14 82 -41 2 87 65 -81 -27 9 -79 -1 -5 84 -8 29 -34 31 82 40 21 -53 -31 -45 17 -33 79 50 -94\n56 -4 -90 36 84", "output": "-Infinity" }, { "input": "77 51\n89 45 -33 -87 33 -61 -79 40 -76 16 -17 31 27 25 99 82 51 -40 85 -66 19 89 -62 24 -61 -53 -77 17 21 83 53 -18 -56 75 9 -78 33 -11 -6 96 -33 -2 -57 97 30 20 -41 42 -13 45 -99 67 37 -20 51 -33 88 -62 2 40 17 36 45 71 4 -44 24 20 -2 29 -12 -84 -7 -84 -38 48 -73 79\n60 -43 60 1 90 -1 19 -18 -21 31 -76 51 79 91 12 39 -33 -14 71 -90 -65 -93 -58 93 49 17 77 19 32 -8 14 58 -9 85 -95 -73 0 85 -91 -99 -30 -43 61 20 -89 93 53 20 -33 -38 79 54", "output": "Infinity" }, { "input": "84 54\n82 -54 28 68 74 -61 54 98 59 67 -65 -1 16 65 -78 -16 61 -79 2 14 44 96 -62 77 51 87 37 66 65 28 88 -99 -21 -83 24 80 39 64 -65 45 86 -53 -49 94 -75 -31 -42 -1 -35 -18 74 30 31 -40 30 -6 47 58 -71 -21 20 13 75 -79 15 -98 -26 76 99 -77 -9 85 48 51 -87 56 -53 37 47 -3 94 64 -7 74 86\n72 51 -74 20 41 -76 98 58 24 -61 -97 -73 62 29 6 42 -92 -6 -65 89 -32 -9 82 -13 -88 -70 -97 25 -48 12 -54 33 -92 -29 48 60 -21 86 -17 -86 45 -34 -3 -9 -62 12 25 -74 -76 -89 48 55 -30 86 51", "output": "Infinity" }, { "input": "73 15\n-70 78 51 -33 -95 46 87 -33 16 62 67 -85 -57 75 -93 -59 98 -45 -90 -88 9 53 35 37 28 3 40 -87 28 5 18 11 9 1 72 69 -65 -62 1 73 -3 3 35 17 -28 -31 -45 60 64 18 60 38 -47 12 2 -90 -4 33 -51 -55 -54 90 38 -65 39 32 -70 0 -5 3 -12 100 78 55\n46 33 41 52 -89 -9 53 -81 34 -45 -11 -41 14 -28 95 -50", "output": "-Infinity" }, { "input": "33 1\n-75 -83 87 -27 -48 47 -90 -84 -18 -4 14 -1 -83 -98 -68 -85 -86 28 2 45 96 -59 86 -25 -2 -64 -92 65 69 72 72 -58 -99 90\n-1 72", "output": "Infinity" }, { "input": "58 58\n-25 40 -34 23 -52 94 -30 -99 -71 -90 -44 -71 69 48 -45 -59 0 66 -70 -96 95 91 82 90 -95 87 3 -77 -77 -26 15 87 -82 5 -24 82 -11 99 35 49 22 44 18 -60 -26 79 67 71 -13 29 -23 9 58 -90 88 18 77 5 -7\n-30 -11 -13 -50 61 -78 11 -74 -73 13 -66 -65 -82 38 58 25 -64 -24 78 -87 6 6 -80 -96 47 -25 -54 10 -41 -22 -50 -1 -6 -22 27 54 -32 30 93 88 -70 -100 -69 -47 -20 -92 -24 70 -93 42 78 42 -35 41 31 75 -67 -62 -83", "output": "5/6" }, { "input": "20 20\n5 4 91 -66 -57 55 -79 -2 -54 -72 -49 21 -23 -5 57 -48 70 -16 -86 -26 -19\n51 -60 64 -8 89 27 -96 4 95 -24 -2 -27 -41 -14 -88 -19 24 68 -31 34 -62", "output": "5/51" }, { "input": "69 69\n-90 -63 -21 23 23 -14 -82 65 42 -60 -42 -39 67 34 96 93 -42 -24 21 -80 44 -81 45 -74 -19 -88 39 58 90 87 16 48 -19 -2 36 87 4 -66 -82 -49 -32 -43 -65 12 34 -29 -58 46 -67 -20 -30 91 21 65 15 2 3 -92 -67 -68 39 -24 77 76 -17 -34 5 63 88 83\n-55 98 -79 18 -100 -67 -79 -85 -75 -44 -6 -73 -11 -12 -24 -78 47 -51 25 -29 -34 25 27 11 -87 15 -44 41 -44 46 -67 70 -35 41 62 -36 27 -41 -42 -50 96 31 26 -66 9 74 34 31 25 6 -84 41 74 -7 49 5 35 -5 -71 -37 28 58 -8 -40 -19 -83 -34 64 7 15", "output": "18/11" }, { "input": "0 0\n46\n-33", "output": "-46/33" }, { "input": "67 67\n-8 11 55 80 -26 -38 58 73 -48 -10 35 75 16 -84 55 -51 98 58 -28 98 77 81 51 -86 -46 68 -87 -80 -49 81 96 -97 -42 25 6 -8 -55 -25 93 -29 -33 -6 -26 -85 73 97 63 57 51 92 -6 -8 4 86 46 -45 36 -19 -71 1 71 39 97 -44 -34 -1 2 -46\n91 -32 -76 11 -40 91 -8 -100 73 80 47 82 24 0 -71 82 -93 38 -54 1 -55 -53 90 -86 0 10 -35 49 90 56 25 17 46 -43 13 16 -82 -33 64 -83 -56 22 12 -74 4 -68 85 -27 60 -28 -47 73 -93 69 -37 54 -3 90 -56 56 78 61 7 -79 48 -42 -10 -48", "output": "-8/91" }, { "input": "69 69\n-7 38 -3 -22 65 -78 -65 -99 -76 63 0 -4 -78 -51 54 -61 -53 60 80 34 -96 99 -78 -96 21 -10 -86 33 -9 -81 -19 -2 -76 -3 -66 -80 -55 -21 -50 37 -86 -37 47 44 76 -39 54 -25 41 -86 -3 -25 -67 94 18 67 27 -5 -30 -69 2 -76 7 -97 -52 -35 -55 -20 92 2\n90 -94 37 41 -27 -54 96 -15 -60 -29 -75 -93 -57 62 48 -88 -99 -62 4 -9 85 33 65 -95 -30 16 -29 -89 -33 -83 -35 -21 53 -52 80 -40 76 -33 86 47 18 43 -67 -36 -99 -42 1 -94 -78 34 -41 73 96 2 -60 29 68 -96 -21 -61 -98 -67 1 40 85 55 66 -25 -50 -83", "output": "-7/90" }, { "input": "17 17\n-54 59 -95 87 3 -27 -30 49 -87 74 45 78 36 60 -95 41 -53 -70\n-27 16 -67 -24 10 -73 -41 12 -52 53 -73 -17 -56 -74 -33 -8 100 -39", "output": "2/1" }, { "input": "1 1\n36 -49\n-32 -40", "output": "-9/8" }, { "input": "1 1\n1 1\n1 1", "output": "1/1" }, { "input": "1 1\n-2 1\n4 1", "output": "-1/2" }, { "input": "0 0\n2\n1", "output": "2/1" }, { "input": "0 0\n4\n-3", "output": "-4/3" }, { "input": "0 0\n2\n2", "output": "1/1" }, { "input": "0 0\n17\n-10", "output": "-17/10" }, { "input": "0 0\n-1\n2", "output": "-1/2" }, { "input": "0 0\n1\n1", "output": "1/1" }, { "input": "0 0\n50\n20", "output": "5/2" }, { "input": "0 0\n20\n20", "output": "1/1" }, { "input": "0 0\n4\n-2", "output": "-2/1" }, { "input": "0 0\n4\n-6", "output": "-2/3" }, { "input": "0 0\n1\n-2", "output": "-1/2" }, { "input": "0 0\n4\n2", "output": "2/1" }, { "input": "0 0\n2\n-4", "output": "-1/2" }, { "input": "1 1\n4 1\n2 1", "output": "2/1" }, { "input": "2 2\n-13 1 3\n6 3 2", "output": "-13/6" }, { "input": "99 99\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "1/2" }, { "input": "0 0\n5\n5", "output": "1/1" }, { "input": "0 0\n2\n-1", "output": "-2/1" } ]
1,565,769,563
2,147,483,647
PyPy 3
OK
TESTS
80
654
7,372,800
from fractions import Fraction class CodeforcesTask197BSolution: def __init__(self): self.result = '' self.n_m = [] self.p_x = [] self.q_x = [] def read_input(self): self.n_m = [int(x) for x in input().split(" ")] self.p_x = [int(x) for x in input().split(" ")] self.q_x = [int(x) for x in input().split(" ")] def process_task(self): if self.n_m[0] > self.n_m[1]: if self.p_x[0] * self.q_x[0] > 0: self.result = "Infinity" else: self.result = "-Infinity" elif self.n_m[1] > self.n_m[0]: self.result = "0/1" else: result = Fraction(self.p_x[0], self.q_x[0]) self.result = "{0}/{1}".format(result.numerator, result.denominator) def get_result(self): return self.result if __name__ == "__main__": Solution = CodeforcesTask197BSolution() Solution.read_input() Solution.process_task() print(Solution.get_result())
Title: Limit Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two polynomials: - *P*(*x*)<==<=*a*0·*x**n*<=+<=*a*1·*x**n*<=-<=1<=+<=...<=+<=*a**n*<=-<=1·*x*<=+<=*a**n* and - *Q*(*x*)<==<=*b*0·*x**m*<=+<=*b*1·*x**m*<=-<=1<=+<=...<=+<=*b**m*<=-<=1·*x*<=+<=*b**m*. Calculate limit . Input Specification: The first line contains two space-separated integers *n* and *m* (0<=≤<=*n*,<=*m*<=≤<=100) — degrees of polynomials *P*(*x*) and *Q*(*x*) correspondingly. The second line contains *n*<=+<=1 space-separated integers — the factors of polynomial *P*(*x*): *a*0, *a*1, ..., *a**n*<=-<=1, *a**n* (<=-<=100<=≤<=*a**i*<=≤<=100,<=*a*0<=≠<=0). The third line contains *m*<=+<=1 space-separated integers — the factors of polynomial *Q*(*x*): *b*0, *b*1, ..., *b**m*<=-<=1, *b**m* (<=-<=100<=≤<=*b**i*<=≤<=100,<=*b*0<=≠<=0). Output Specification: If the limit equals <=+<=∞, print "Infinity" (without quotes). If the limit equals <=-<=∞, print "-Infinity" (without the quotes). If the value of the limit equals zero, print "0/1" (without the quotes). Otherwise, print an irreducible fraction — the value of limit , in the format "p/q" (without the quotes), where *p* is the — numerator, *q* (*q*<=&gt;<=0) is the denominator of the fraction. Demo Input: ['2 1\n1 1 1\n2 5\n', '1 0\n-1 3\n2\n', '0 1\n1\n1 0\n', '2 2\n2 1 6\n4 5 -7\n', '1 1\n9 0\n-5 2\n'] Demo Output: ['Infinity\n', '-Infinity\n', '0/1\n', '1/2\n', '-9/5\n'] Note: Let's consider all samples: 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c28febca257452afdfcbd6984ba8623911f9bdbc.png" style="max-width: 100.0%;max-height: 100.0%;"/> 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1e55ecd04e54a45e5e0092ec9a5c1ea03bb29255.png" style="max-width: 100.0%;max-height: 100.0%;"/> 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/2c95fb684d373fcc1a481cfabeda4d5c2f3673ee.png" style="max-width: 100.0%;max-height: 100.0%;"/> 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4dc40cb8b3cd6375c42445366e50369649a2801a.png" style="max-width: 100.0%;max-height: 100.0%;"/> 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c6455aba35cfb3c4397505121d1f77afcd17c98e.png" style="max-width: 100.0%;max-height: 100.0%;"/> You can learn more about the definition and properties of limits if you follow the link: http://en.wikipedia.org/wiki/Limit_of_a_function
```python from fractions import Fraction class CodeforcesTask197BSolution: def __init__(self): self.result = '' self.n_m = [] self.p_x = [] self.q_x = [] def read_input(self): self.n_m = [int(x) for x in input().split(" ")] self.p_x = [int(x) for x in input().split(" ")] self.q_x = [int(x) for x in input().split(" ")] def process_task(self): if self.n_m[0] > self.n_m[1]: if self.p_x[0] * self.q_x[0] > 0: self.result = "Infinity" else: self.result = "-Infinity" elif self.n_m[1] > self.n_m[0]: self.result = "0/1" else: result = Fraction(self.p_x[0], self.q_x[0]) self.result = "{0}/{1}".format(result.numerator, result.denominator) def get_result(self): return self.result if __name__ == "__main__": Solution = CodeforcesTask197BSolution() Solution.read_input() Solution.process_task() print(Solution.get_result()) ```
3
985
C
Liebig's Barrels
PROGRAMMING
1,500
[ "greedy" ]
null
null
You have *m*<==<=*n*·*k* wooden staves. The *i*-th stave has length *a**i*. You have to assemble *n* barrels consisting of *k* staves each, you can use any *k* staves to construct a barrel. Each stave must belong to exactly one barrel. Let volume *v**j* of barrel *j* be equal to the length of the minimal stave in it. You want to assemble exactly *n* barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed *l*, i.e. |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*. Print maximal total sum of volumes of equal enough barrels or 0 if it's impossible to satisfy the condition above.
The first line contains three space-separated integers *n*, *k* and *l* (1<=≤<=*n*,<=*k*<=≤<=105, 1<=≤<=*n*·*k*<=≤<=105, 0<=≤<=*l*<=≤<=109). The second line contains *m*<==<=*n*·*k* space-separated integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=109) — lengths of staves.
Print single integer — maximal total sum of the volumes of barrels or 0 if it's impossible to construct exactly *n* barrels satisfying the condition |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*.
[ "4 2 1\n2 2 1 2 3 2 2 3\n", "2 1 0\n10 10\n", "1 2 1\n5 2\n", "3 2 1\n1 2 3 4 5 6\n" ]
[ "7\n", "20\n", "2\n", "0\n" ]
In the first example you can form the following barrels: [1, 2], [2, 2], [2, 3], [2, 3]. In the second example you can form the following barrels: [10], [10]. In the third example you can form the following barrels: [2, 5]. In the fourth example difference between volumes of barrels in any partition is at least 2 so it is impossible to make barrels equal enough.
0
[ { "input": "4 2 1\n2 2 1 2 3 2 2 3", "output": "7" }, { "input": "2 1 0\n10 10", "output": "20" }, { "input": "1 2 1\n5 2", "output": "2" }, { "input": "3 2 1\n1 2 3 4 5 6", "output": "0" }, { "input": "10 3 189\n267 697 667 4 52 128 85 616 142 344 413 660 962 194 618 329 266 593 558 447 89 983 964 716 32 890 267 164 654 71", "output": "0" }, { "input": "10 3 453\n277 706 727 812 692 686 196 507 911 40 498 704 573 381 463 759 704 381 693 640 326 405 47 834 962 521 463 740 520 494", "output": "2979" }, { "input": "10 3 795\n398 962 417 307 760 534 536 450 421 280 608 111 687 726 941 903 630 900 555 403 795 122 814 188 234 976 679 539 525 104", "output": "5045" }, { "input": "6 2 29\n1 2 3 3 4 5 5 6 7 7 8 9", "output": "28" }, { "input": "2 1 2\n1 2", "output": "3" } ]
1,527,000,972
2,147,483,647
Python 3
OK
TESTS
50
218
8,089,600
[n,k,l] = [int(x) for x in input().split()] a = [int(x) for x in input().split()] import bisect s = 0 a = sorted(a) b = bisect.bisect_right(a,a[0]+l) a1 = a[:b] tot = n * k av = tot - b if b >= n: for i in range(b-1,b-n-1,-1): m = a1.pop() for j in range(0,k-1): if av > 0: av = av - 1 else: m = a1.pop() s = s + m print(s) else: print(0)
Title: Liebig's Barrels Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have *m*<==<=*n*·*k* wooden staves. The *i*-th stave has length *a**i*. You have to assemble *n* barrels consisting of *k* staves each, you can use any *k* staves to construct a barrel. Each stave must belong to exactly one barrel. Let volume *v**j* of barrel *j* be equal to the length of the minimal stave in it. You want to assemble exactly *n* barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed *l*, i.e. |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*. Print maximal total sum of volumes of equal enough barrels or 0 if it's impossible to satisfy the condition above. Input Specification: The first line contains three space-separated integers *n*, *k* and *l* (1<=≤<=*n*,<=*k*<=≤<=105, 1<=≤<=*n*·*k*<=≤<=105, 0<=≤<=*l*<=≤<=109). The second line contains *m*<==<=*n*·*k* space-separated integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=109) — lengths of staves. Output Specification: Print single integer — maximal total sum of the volumes of barrels or 0 if it's impossible to construct exactly *n* barrels satisfying the condition |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*. Demo Input: ['4 2 1\n2 2 1 2 3 2 2 3\n', '2 1 0\n10 10\n', '1 2 1\n5 2\n', '3 2 1\n1 2 3 4 5 6\n'] Demo Output: ['7\n', '20\n', '2\n', '0\n'] Note: In the first example you can form the following barrels: [1, 2], [2, 2], [2, 3], [2, 3]. In the second example you can form the following barrels: [10], [10]. In the third example you can form the following barrels: [2, 5]. In the fourth example difference between volumes of barrels in any partition is at least 2 so it is impossible to make barrels equal enough.
```python [n,k,l] = [int(x) for x in input().split()] a = [int(x) for x in input().split()] import bisect s = 0 a = sorted(a) b = bisect.bisect_right(a,a[0]+l) a1 = a[:b] tot = n * k av = tot - b if b >= n: for i in range(b-1,b-n-1,-1): m = a1.pop() for j in range(0,k-1): if av > 0: av = av - 1 else: m = a1.pop() s = s + m print(s) else: print(0) ```
3
750
A
New Year and Hurry
PROGRAMMING
800
[ "binary search", "brute force", "implementation", "math" ]
null
null
Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem. Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first. How many problems can Limak solve if he wants to make it to the party?
The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
[ "3 222\n", "4 190\n", "7 1\n" ]
[ "2\n", "4\n", "7\n" ]
In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2. In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight. In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
500
[ { "input": "3 222", "output": "2" }, { "input": "4 190", "output": "4" }, { "input": "7 1", "output": "7" }, { "input": "10 135", "output": "6" }, { "input": "10 136", "output": "5" }, { "input": "1 1", "output": "1" }, { "input": "1 240", "output": "0" }, { "input": "10 1", "output": "9" }, { "input": "10 240", "output": "0" }, { "input": "9 240", "output": "0" }, { "input": "9 1", "output": "9" }, { "input": "9 235", "output": "1" }, { "input": "9 236", "output": "0" }, { "input": "5 225", "output": "2" }, { "input": "5 226", "output": "1" }, { "input": "4 210", "output": "3" }, { "input": "4 211", "output": "2" }, { "input": "4 191", "output": "3" }, { "input": "10 165", "output": "5" }, { "input": "10 166", "output": "4" }, { "input": "8 100", "output": "7" }, { "input": "8 101", "output": "6" }, { "input": "8 60", "output": "8" }, { "input": "8 61", "output": "7" }, { "input": "10 15", "output": "9" }, { "input": "10 16", "output": "8" }, { "input": "4 100", "output": "4" }, { "input": "4 101", "output": "4" }, { "input": "7 167", "output": "4" }, { "input": "10 164", "output": "5" }, { "input": "9 170", "output": "4" }, { "input": "8 160", "output": "5" }, { "input": "1 100", "output": "1" }, { "input": "8 123", "output": "6" }, { "input": "2 99", "output": "2" }, { "input": "10 88", "output": "7" }, { "input": "1 235", "output": "1" }, { "input": "1 1", "output": "1" }, { "input": "4 240", "output": "0" }, { "input": "1 55", "output": "1" }, { "input": "1 240", "output": "0" }, { "input": "3 240", "output": "0" }, { "input": "10 240", "output": "0" }, { "input": "2 240", "output": "0" }, { "input": "10 1", "output": "9" }, { "input": "9 1", "output": "9" }, { "input": "2 236", "output": "0" }, { "input": "10 2", "output": "9" }, { "input": "3 239", "output": "0" }, { "input": "1 237", "output": "0" }, { "input": "7 8", "output": "7" }, { "input": "10 235", "output": "1" } ]
1,693,119,848
2,147,483,647
Python 3
OK
TESTS
52
46
0
firstline = [int(n) for n in input().split()] NOP = firstline[0] Time = firstline[1] remainder_time = 240 - Time counter = 0 time , all_time = 0, 0 for i in range(1, NOP+1): time = i*5 if time+all_time <= remainder_time: all_time+=time counter+=1 print(counter)
Title: New Year and Hurry Time Limit: None seconds Memory Limit: None megabytes Problem Description: Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem. Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first. How many problems can Limak solve if he wants to make it to the party? Input Specification: The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house. Output Specification: Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier. Demo Input: ['3 222\n', '4 190\n', '7 1\n'] Demo Output: ['2\n', '4\n', '7\n'] Note: In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2. In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight. In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
```python firstline = [int(n) for n in input().split()] NOP = firstline[0] Time = firstline[1] remainder_time = 240 - Time counter = 0 time , all_time = 0, 0 for i in range(1, NOP+1): time = i*5 if time+all_time <= remainder_time: all_time+=time counter+=1 print(counter) ```
3
298
A
Snow Footprints
PROGRAMMING
1,300
[ "greedy", "implementation" ]
null
null
There is a straight snowy road, divided into *n* blocks. The blocks are numbered from 1 to *n* from left to right. If one moves from the *i*-th block to the (*i*<=+<=1)-th block, he will leave a right footprint on the *i*-th block. Similarly, if one moves from the *i*-th block to the (*i*<=-<=1)-th block, he will leave a left footprint on the *i*-th block. If there already is a footprint on the *i*-th block, the new footprint will cover the old one. At the beginning, there were no footprints. Then polar bear Alice starts from the *s*-th block, makes a sequence of moves and ends in the *t*-th block. It is known that Alice never moves outside of the road. You are given the description of Alice's footprints. Your task is to find a pair of possible values of *s*,<=*t* by looking at the footprints.
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=1000). The second line contains the description of the road — the string that consists of *n* characters. Each character will be either "." (a block without footprint), or "L" (a block with a left footprint), "R" (a block with a right footprint). It's guaranteed that the given string contains at least one character not equal to ".". Also, the first and the last character will always be ".". It's guaranteed that a solution exists.
Print two space-separated integers — the values of *s* and *t*. If there are several possible solutions you can print any of them.
[ "9\n..RRLL...\n", "11\n.RRRLLLLL..\n" ]
[ "3 4\n", "7 5\n" ]
The first test sample is the one in the picture.
500
[ { "input": "11\n.RRRLLLLL..", "output": "7 5" }, { "input": "4\n.RL.", "output": "3 2" }, { "input": "3\n.L.", "output": "2 1" }, { "input": "3\n.R.", "output": "2 3" } ]
1,443,248,346
2,147,483,647
Python 3
OK
TESTS
23
122
0
n = int(input()) s = input() ans = "" if 'L' in s and not 'R' in s: ans = str(s.index('L')+1)+" "+str(s.index('L')-1+1) elif 'R' in s and not 'L' in s: st = s.index('R') en = st+1 while s[en]=='R': en+=1 ans = str(st+1)+" "+str(en+1) else: st = s.index('R') en = st+1 while s[en]=='R': en+=1 ans = str(st+1)+" "+str(en+1) print(ans)
Title: Snow Footprints Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a straight snowy road, divided into *n* blocks. The blocks are numbered from 1 to *n* from left to right. If one moves from the *i*-th block to the (*i*<=+<=1)-th block, he will leave a right footprint on the *i*-th block. Similarly, if one moves from the *i*-th block to the (*i*<=-<=1)-th block, he will leave a left footprint on the *i*-th block. If there already is a footprint on the *i*-th block, the new footprint will cover the old one. At the beginning, there were no footprints. Then polar bear Alice starts from the *s*-th block, makes a sequence of moves and ends in the *t*-th block. It is known that Alice never moves outside of the road. You are given the description of Alice's footprints. Your task is to find a pair of possible values of *s*,<=*t* by looking at the footprints. Input Specification: The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=1000). The second line contains the description of the road — the string that consists of *n* characters. Each character will be either "." (a block without footprint), or "L" (a block with a left footprint), "R" (a block with a right footprint). It's guaranteed that the given string contains at least one character not equal to ".". Also, the first and the last character will always be ".". It's guaranteed that a solution exists. Output Specification: Print two space-separated integers — the values of *s* and *t*. If there are several possible solutions you can print any of them. Demo Input: ['9\n..RRLL...\n', '11\n.RRRLLLLL..\n'] Demo Output: ['3 4\n', '7 5\n'] Note: The first test sample is the one in the picture.
```python n = int(input()) s = input() ans = "" if 'L' in s and not 'R' in s: ans = str(s.index('L')+1)+" "+str(s.index('L')-1+1) elif 'R' in s and not 'L' in s: st = s.index('R') en = st+1 while s[en]=='R': en+=1 ans = str(st+1)+" "+str(en+1) else: st = s.index('R') en = st+1 while s[en]=='R': en+=1 ans = str(st+1)+" "+str(en+1) print(ans) ```
3
55
A
Flea travel
PROGRAMMING
1,200
[ "implementation", "math" ]
A. Flea travel
1
256
A flea is sitting at one of the *n* hassocks, arranged in a circle, at the moment. After minute number *k* the flea jumps through *k*<=-<=1 hassoсks (clockwise). For example, after the first minute the flea jumps to the neighboring hassock. You should answer: will the flea visit all the hassocks or not. We assume that flea has infinitely much time for this jumping.
The only line contains single integer: 1<=≤<=*n*<=≤<=1000 — number of hassocks.
Output "YES" if all the hassocks will be visited and "NO" otherwise.
[ "1\n", "3\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "1", "output": "YES" }, { "input": "3", "output": "NO" }, { "input": "2", "output": "YES" }, { "input": "4", "output": "YES" }, { "input": "5", "output": "NO" }, { "input": "6", "output": "NO" }, { "input": "7", "output": "NO" }, { "input": "8", "output": "YES" }, { "input": "9", "output": "NO" }, { "input": "10", "output": "NO" }, { "input": "11", "output": "NO" }, { "input": "12", "output": "NO" }, { "input": "13", "output": "NO" }, { "input": "14", "output": "NO" }, { "input": "15", "output": "NO" }, { "input": "16", "output": "YES" }, { "input": "17", "output": "NO" }, { "input": "18", "output": "NO" }, { "input": "19", "output": "NO" }, { "input": "20", "output": "NO" }, { "input": "21", "output": "NO" }, { "input": "22", "output": "NO" }, { "input": "23", "output": "NO" }, { "input": "24", "output": "NO" }, { "input": "25", "output": "NO" }, { "input": "26", "output": "NO" }, { "input": "27", "output": "NO" }, { "input": "28", "output": "NO" }, { "input": "29", "output": "NO" }, { "input": "30", "output": "NO" }, { "input": "31", "output": "NO" }, { "input": "32", "output": "YES" }, { "input": "33", "output": "NO" }, { "input": "34", "output": "NO" }, { "input": "35", "output": "NO" }, { "input": "36", "output": "NO" }, { "input": "37", "output": "NO" }, { "input": "38", "output": "NO" }, { "input": "39", "output": "NO" }, { "input": "40", "output": "NO" }, { "input": "41", "output": "NO" }, { "input": "42", "output": "NO" }, { "input": "43", "output": "NO" }, { "input": "44", "output": "NO" }, { "input": "45", "output": "NO" }, { "input": "46", "output": "NO" }, { "input": "47", "output": "NO" }, { "input": "48", "output": "NO" }, { "input": "49", "output": "NO" }, { "input": "50", "output": "NO" }, { "input": "64", "output": "YES" }, { "input": "289", "output": "NO" }, { "input": "170", "output": "NO" }, { "input": "639", "output": "NO" }, { "input": "700", "output": "NO" }, { "input": "95", "output": "NO" }, { "input": "240", "output": "NO" }, { "input": "1000", "output": "NO" }, { "input": "200", "output": "NO" }, { "input": "57", "output": "NO" }, { "input": "871", "output": "NO" }, { "input": "840", "output": "NO" }, { "input": "705", "output": "NO" }, { "input": "685", "output": "NO" }, { "input": "213", "output": "NO" }, { "input": "665", "output": "NO" }, { "input": "868", "output": "NO" }, { "input": "897", "output": "NO" }, { "input": "61", "output": "NO" }, { "input": "817", "output": "NO" }, { "input": "688", "output": "NO" }, { "input": "580", "output": "NO" }, { "input": "373", "output": "NO" }, { "input": "613", "output": "NO" }, { "input": "685", "output": "NO" }, { "input": "116", "output": "NO" }, { "input": "518", "output": "NO" }, { "input": "383", "output": "NO" }, { "input": "260", "output": "NO" }, { "input": "728", "output": "NO" }, { "input": "1000", "output": "NO" }, { "input": "256", "output": "YES" }, { "input": "512", "output": "YES" } ]
1,673,082,645
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
342
52,736,000
with open('runexe2.exe', 'rb') as file: print(file.read())
Title: Flea travel Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: A flea is sitting at one of the *n* hassocks, arranged in a circle, at the moment. After minute number *k* the flea jumps through *k*<=-<=1 hassoсks (clockwise). For example, after the first minute the flea jumps to the neighboring hassock. You should answer: will the flea visit all the hassocks or not. We assume that flea has infinitely much time for this jumping. Input Specification: The only line contains single integer: 1<=≤<=*n*<=≤<=1000 — number of hassocks. Output Specification: Output "YES" if all the hassocks will be visited and "NO" otherwise. Demo Input: ['1\n', '3\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python with open('runexe2.exe', 'rb') as file: print(file.read()) ```
0
991
C
Candies
PROGRAMMING
1,500
[ "binary search", "implementation" ]
null
null
After passing a test, Vasya got himself a box of $n$ candies. He decided to eat an equal amount of candies each morning until there are no more candies. However, Petya also noticed the box and decided to get some candies for himself. This means the process of eating candies is the following: in the beginning Vasya chooses a single integer $k$, same for all days. After that, in the morning he eats $k$ candies from the box (if there are less than $k$ candies in the box, he eats them all), then in the evening Petya eats $10\%$ of the candies remaining in the box. If there are still candies left in the box, the process repeats — next day Vasya eats $k$ candies again, and Petya — $10\%$ of the candies left in a box, and so on. If the amount of candies in the box is not divisible by $10$, Petya rounds the amount he takes from the box down. For example, if there were $97$ candies in the box, Petya would eat only $9$ of them. In particular, if there are less than $10$ candies in a box, Petya won't eat any at all. Your task is to find out the minimal amount of $k$ that can be chosen by Vasya so that he would eat at least half of the $n$ candies he initially got. Note that the number $k$ must be integer.
The first line contains a single integer $n$ ($1 \leq n \leq 10^{18}$) — the initial amount of candies in the box.
Output a single integer — the minimal amount of $k$ that would allow Vasya to eat at least half of candies he got.
[ "68\n" ]
[ "3\n" ]
In the sample, the amount of candies, with $k=3$, would change in the following way (Vasya eats first): $68 \to 65 \to 59 \to 56 \to 51 \to 48 \to 44 \to 41 \\ \to 37 \to 34 \to 31 \to 28 \to 26 \to 23 \to 21 \to 18 \to 17 \to 14 \\ \to 13 \to 10 \to 9 \to 6 \to 6 \to 3 \to 3 \to 0$. In total, Vasya would eat $39$ candies, while Petya — $29$.
1,250
[ { "input": "68", "output": "3" }, { "input": "1", "output": "1" }, { "input": "2", "output": "1" }, { "input": "42", "output": "1" }, { "input": "43", "output": "2" }, { "input": "756", "output": "29" }, { "input": "999999972", "output": "39259423" }, { "input": "999999973", "output": "39259424" }, { "input": "1000000000000000000", "output": "39259424579862572" }, { "input": "6", "output": "1" }, { "input": "3", "output": "1" }, { "input": "4", "output": "1" }, { "input": "5", "output": "1" }, { "input": "66", "output": "2" }, { "input": "67", "output": "3" }, { "input": "1000", "output": "39" }, { "input": "10000", "output": "392" }, { "input": "100500", "output": "3945" }, { "input": "1000000", "output": "39259" }, { "input": "10000000", "output": "392594" }, { "input": "100000000", "output": "3925942" }, { "input": "123456789", "output": "4846842" }, { "input": "543212345", "output": "21326204" }, { "input": "505050505", "output": "19827992" }, { "input": "777777777", "output": "30535108" }, { "input": "888888871", "output": "34897266" }, { "input": "1000000000", "output": "39259424" }, { "input": "999999999999999973", "output": "39259424579862572" }, { "input": "999999999999999998", "output": "39259424579862572" }, { "input": "999999999999999999", "output": "39259424579862573" }, { "input": "100000000000000000", "output": "3925942457986257" }, { "input": "540776028375043656", "output": "21230555700587649" }, { "input": "210364830044445976", "output": "8258802179385535" }, { "input": "297107279239074256", "output": "11664260821414605" }, { "input": "773524766411950187", "output": "30368137227605772" }, { "input": "228684941775227220", "output": "8978039224174797" }, { "input": "878782039723446310", "output": "34500477210660436" }, { "input": "615090701338187389", "output": "24148106998961343" }, { "input": "325990422297859188", "output": "12798196397960353" }, { "input": "255163492355051023", "output": "10017571883647466" }, { "input": "276392003308849171", "output": "10850991008380891" }, { "input": "601", "output": "23" }, { "input": "983", "output": "38" }, { "input": "729", "output": "29" }, { "input": "70", "output": "3" }, { "input": "703", "output": "28" }, { "input": "257", "output": "10" }, { "input": "526", "output": "20" }, { "input": "466", "output": "18" }, { "input": "738", "output": "29" }, { "input": "116", "output": "5" }, { "input": "888888888888888887", "output": "34897266293211176" }, { "input": "888888888888888888", "output": "34897266293211176" }, { "input": "888888888888888889", "output": "34897266293211176" }, { "input": "999999999999999969", "output": "39259424579862571" }, { "input": "999999999999999970", "output": "39259424579862571" }, { "input": "999999999999999971", "output": "39259424579862572" }, { "input": "999999999999999943", "output": "39259424579862571" }, { "input": "999999999999999944", "output": "39259424579862570" }, { "input": "999999999999999945", "output": "39259424579862571" }, { "input": "999999999999999917", "output": "39259424579862570" }, { "input": "999999999999999918", "output": "39259424579862569" }, { "input": "999999999999999919", "output": "39259424579862570" }, { "input": "99999999999999957", "output": "3925942457986255" }, { "input": "99999999999999958", "output": "3925942457986255" }, { "input": "99999999999999959", "output": "3925942457986256" }, { "input": "888888888888888853", "output": "34897266293211174" }, { "input": "888888888888888854", "output": "34897266293211174" }, { "input": "888888888888888855", "output": "34897266293211175" } ]
1,601,492,787
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
93
307,200
def candies(total, k): vasya = 0 while(total > 0): vasya += min([k, total]) total -= k total -= total/10 return vasya n = int(input()) minCandies = n/2 + n%2 l = 1 r = n res = 1 while(l <= r): m = (l + r)//2 if (candies(n, m) >= minCandies): if m == 1 or candies(n, m - 1) < minCandies: res = m break else: r = m -1 else: l = m + 1 print(res)
Title: Candies Time Limit: None seconds Memory Limit: None megabytes Problem Description: After passing a test, Vasya got himself a box of $n$ candies. He decided to eat an equal amount of candies each morning until there are no more candies. However, Petya also noticed the box and decided to get some candies for himself. This means the process of eating candies is the following: in the beginning Vasya chooses a single integer $k$, same for all days. After that, in the morning he eats $k$ candies from the box (if there are less than $k$ candies in the box, he eats them all), then in the evening Petya eats $10\%$ of the candies remaining in the box. If there are still candies left in the box, the process repeats — next day Vasya eats $k$ candies again, and Petya — $10\%$ of the candies left in a box, and so on. If the amount of candies in the box is not divisible by $10$, Petya rounds the amount he takes from the box down. For example, if there were $97$ candies in the box, Petya would eat only $9$ of them. In particular, if there are less than $10$ candies in a box, Petya won't eat any at all. Your task is to find out the minimal amount of $k$ that can be chosen by Vasya so that he would eat at least half of the $n$ candies he initially got. Note that the number $k$ must be integer. Input Specification: The first line contains a single integer $n$ ($1 \leq n \leq 10^{18}$) — the initial amount of candies in the box. Output Specification: Output a single integer — the minimal amount of $k$ that would allow Vasya to eat at least half of candies he got. Demo Input: ['68\n'] Demo Output: ['3\n'] Note: In the sample, the amount of candies, with $k=3$, would change in the following way (Vasya eats first): $68 \to 65 \to 59 \to 56 \to 51 \to 48 \to 44 \to 41 \\ \to 37 \to 34 \to 31 \to 28 \to 26 \to 23 \to 21 \to 18 \to 17 \to 14 \\ \to 13 \to 10 \to 9 \to 6 \to 6 \to 3 \to 3 \to 0$. In total, Vasya would eat $39$ candies, while Petya — $29$.
```python def candies(total, k): vasya = 0 while(total > 0): vasya += min([k, total]) total -= k total -= total/10 return vasya n = int(input()) minCandies = n/2 + n%2 l = 1 r = n res = 1 while(l <= r): m = (l + r)//2 if (candies(n, m) >= minCandies): if m == 1 or candies(n, m - 1) < minCandies: res = m break else: r = m -1 else: l = m + 1 print(res) ```
0
954
A
Diagonal Walking
PROGRAMMING
800
[ "implementation" ]
null
null
Mikhail walks on a 2D plane. He can go either up or right. You are given a sequence of Mikhail's moves. He thinks that this sequence is too long and he wants to make it as short as possible. In the given sequence moving up is described by character U and moving right is described by character R. Mikhail can replace any pair of consecutive moves RU or UR with a diagonal move (described as character D). After that, he can go on and do some other replacements, until there is no pair of consecutive moves RU or UR left. Your problem is to print the minimum possible length of the sequence of moves after the replacements.
The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=100) — the length of the sequence. The second line contains the sequence consisting of *n* characters U and R.
Print the minimum possible length of the sequence of moves after all replacements are done.
[ "5\nRUURU\n", "17\nUUURRRRRUUURURUUU\n" ]
[ "3\n", "13\n" ]
In the first test the shortened sequence of moves may be DUD (its length is 3). In the second test the shortened sequence of moves can be UUDRRRDUDDUUU (its length is 13).
0
[ { "input": "5\nRUURU", "output": "3" }, { "input": "17\nUUURRRRRUUURURUUU", "output": "13" }, { "input": "100\nUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU", "output": "100" }, { "input": "100\nRRURRUUUURURRRURRRRURRRRRRURRUURRRUUURUURURRURUURUURRUURUURRURURUUUUURUUUUUURRUUURRRURRURRRUURRUUUUR", "output": "67" }, { "input": "100\nUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUURUUUUUUUUUUUUUUUUUUUUU", "output": "99" }, { "input": "3\nRUR", "output": "2" }, { "input": "1\nR", "output": "1" }, { "input": "5\nRURUU", "output": "3" }, { "input": "1\nU", "output": "1" }, { "input": "2\nUR", "output": "1" }, { "input": "23\nUUUUUUUUUUUUUUUUUUUUUUU", "output": "23" } ]
1,638,206,394
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
31
0
def isSame(a,b,i): if(a!=b): i+=2 else: i+=1 return i n=int(input()) s=input() i=0 count=1 while(i<n-1): i=isSame(s[i],s[i+1],i) count+=1 print(count)
Title: Diagonal Walking Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mikhail walks on a 2D plane. He can go either up or right. You are given a sequence of Mikhail's moves. He thinks that this sequence is too long and he wants to make it as short as possible. In the given sequence moving up is described by character U and moving right is described by character R. Mikhail can replace any pair of consecutive moves RU or UR with a diagonal move (described as character D). After that, he can go on and do some other replacements, until there is no pair of consecutive moves RU or UR left. Your problem is to print the minimum possible length of the sequence of moves after the replacements. Input Specification: The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=100) — the length of the sequence. The second line contains the sequence consisting of *n* characters U and R. Output Specification: Print the minimum possible length of the sequence of moves after all replacements are done. Demo Input: ['5\nRUURU\n', '17\nUUURRRRRUUURURUUU\n'] Demo Output: ['3\n', '13\n'] Note: In the first test the shortened sequence of moves may be DUD (its length is 3). In the second test the shortened sequence of moves can be UUDRRRDUDDUUU (its length is 13).
```python def isSame(a,b,i): if(a!=b): i+=2 else: i+=1 return i n=int(input()) s=input() i=0 count=1 while(i<n-1): i=isSame(s[i],s[i+1],i) count+=1 print(count) ```
0
0
none
none
none
0
[ "none" ]
null
null
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare *s* and *t*, first we find the leftmost position with differing characters: *s**i*<=≠<=*t**i*. If there is no such position (i. e. *s* is a prefix of *t* or vice versa) the shortest string is less. Otherwise, we compare characters *s**i* and *t**i* according to their order in alphabet.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100): number of names. Each of the following *n* lines contain one string *name**i* (1<=≤<=|*name**i*|<=≤<=100), the *i*-th name. Each name contains only lowercase Latin letters. All names are different.
If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes).
[ "3\nrivest\nshamir\nadleman\n", "10\ntourist\npetr\nwjmzbmr\nyeputons\nvepifanov\nscottwu\noooooooooooooooo\nsubscriber\nrowdark\ntankengineer\n", "10\npetr\negor\nendagorion\nfeferivan\nilovetanyaromanova\nkostka\ndmitriyh\nmaratsnowbear\nbredorjaguarturnik\ncgyforever\n", "7\ncar\ncare\ncareful\ncarefully\nbecarefuldontforgetsomething\notherwiseyouwillbehacked\ngoodluck\n" ]
[ "bcdefghijklmnopqrsatuvwxyz\n", "Impossible\n", "aghjlnopefikdmbcqrstuvwxyz\n", "acbdefhijklmnogpqrstuvwxyz\n" ]
none
0
[ { "input": "3\nrivest\nshamir\nadleman", "output": "bcdefghijklmnopqrsatuvwxyz" }, { "input": "10\ntourist\npetr\nwjmzbmr\nyeputons\nvepifanov\nscottwu\noooooooooooooooo\nsubscriber\nrowdark\ntankengineer", "output": "Impossible" }, { "input": "10\npetr\negor\nendagorion\nfeferivan\nilovetanyaromanova\nkostka\ndmitriyh\nmaratsnowbear\nbredorjaguarturnik\ncgyforever", "output": "aghjlnopefikdmbcqrstuvwxyz" }, { "input": "7\ncar\ncare\ncareful\ncarefully\nbecarefuldontforgetsomething\notherwiseyouwillbehacked\ngoodluck", "output": "acbdefhijklmnogpqrstuvwxyz" }, { "input": "2\na\naa", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "6\nax\nay\nby\nbz\ncz\ncx", "output": "Impossible" }, { "input": "4\nax\nay\nby\nbx", "output": "Impossible" }, { "input": "4\nax\nay\nby\nbz", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "1\na", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "1\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "2\naa\na", "output": "Impossible" }, { "input": "5\naaaaa\naaaa\naaa\naa\na", "output": "Impossible" }, { "input": "2\nanud\nanu", "output": "Impossible" }, { "input": "8\nwa\nwb\nxc\nxd\nyb\nyc\nzd\nza", "output": "Impossible" } ]
1,426,040,405
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
5
124
307,200
def order(x, y): for i in range(min(len(x), len(y))): if x[i] != y[i]: return [x[i], y[i]] if len(x) > len(y): return [0, 0] else: return [0, 1] name = [] inpt = int(input()) for t in range(inpt): x = input() name.append(x) g = {} for a in 'abcdefghijklmnopqrstuvwxyz': g[a] = [] for i in range(inpt-1): a = order(name[i], name[i+1]) if a == [0, 0]: print("Impossible") quit() elif a != [0, 1]: g[a[0]].append(a[1]) global current_label current_label = 26 top = {} for i in 'abcdefghijklmnopqrstuvwxyz': top[i] = 0 visited = {} for i in top: visited[i] = False def dfs(graph, start): global current_label visited[start] = True for node in graph[start]: if not visited[node]: dfs(graph, node) top[start] = current_label current_label -= 1 def tsort(graph): current_label = len(top) for i in graph: if not visited[i]: dfs(graph, i) tsort(g) order = [0]*26 for i in top: order[top[i]-1] = i def cycle(graph, start): visited2 = {'n': False, 'o': False, 'l': False, 'm': False, 'j': False, 'k': False, 'h': False, 'i': False, 'f': False, 'g': False, 'd': False, 'e': False, 'b': False, 'c': False, 'a': False, 'z': False, 'x': False, 'y': False, 'v': False, 'w': False, 't': False, 'u': False, 'r': False, 's': False, 'p': False, 'q': False} parent = {} for i in 'abcdefghijklmnopqrstuvwxyz': parent[i] = -1 q = [start] while q: v = q.pop(0) if not visited2[v]: for k in graph[v]: if visited2[k] and parent[k] not in [-1, v]: return True q = q + [k] parent[k] = v visited2[v] = True return False for i in 'abcdefghijklmnopqrstuvwxyz': if cycle(g, i): print("Impossible") quit() print(''.join(order))
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare *s* and *t*, first we find the leftmost position with differing characters: *s**i*<=≠<=*t**i*. If there is no such position (i. e. *s* is a prefix of *t* or vice versa) the shortest string is less. Otherwise, we compare characters *s**i* and *t**i* according to their order in alphabet. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100): number of names. Each of the following *n* lines contain one string *name**i* (1<=≤<=|*name**i*|<=≤<=100), the *i*-th name. Each name contains only lowercase Latin letters. All names are different. Output Specification: If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). Demo Input: ['3\nrivest\nshamir\nadleman\n', '10\ntourist\npetr\nwjmzbmr\nyeputons\nvepifanov\nscottwu\noooooooooooooooo\nsubscriber\nrowdark\ntankengineer\n', '10\npetr\negor\nendagorion\nfeferivan\nilovetanyaromanova\nkostka\ndmitriyh\nmaratsnowbear\nbredorjaguarturnik\ncgyforever\n', '7\ncar\ncare\ncareful\ncarefully\nbecarefuldontforgetsomething\notherwiseyouwillbehacked\ngoodluck\n'] Demo Output: ['bcdefghijklmnopqrsatuvwxyz\n', 'Impossible\n', 'aghjlnopefikdmbcqrstuvwxyz\n', 'acbdefhijklmnogpqrstuvwxyz\n'] Note: none
```python def order(x, y): for i in range(min(len(x), len(y))): if x[i] != y[i]: return [x[i], y[i]] if len(x) > len(y): return [0, 0] else: return [0, 1] name = [] inpt = int(input()) for t in range(inpt): x = input() name.append(x) g = {} for a in 'abcdefghijklmnopqrstuvwxyz': g[a] = [] for i in range(inpt-1): a = order(name[i], name[i+1]) if a == [0, 0]: print("Impossible") quit() elif a != [0, 1]: g[a[0]].append(a[1]) global current_label current_label = 26 top = {} for i in 'abcdefghijklmnopqrstuvwxyz': top[i] = 0 visited = {} for i in top: visited[i] = False def dfs(graph, start): global current_label visited[start] = True for node in graph[start]: if not visited[node]: dfs(graph, node) top[start] = current_label current_label -= 1 def tsort(graph): current_label = len(top) for i in graph: if not visited[i]: dfs(graph, i) tsort(g) order = [0]*26 for i in top: order[top[i]-1] = i def cycle(graph, start): visited2 = {'n': False, 'o': False, 'l': False, 'm': False, 'j': False, 'k': False, 'h': False, 'i': False, 'f': False, 'g': False, 'd': False, 'e': False, 'b': False, 'c': False, 'a': False, 'z': False, 'x': False, 'y': False, 'v': False, 'w': False, 't': False, 'u': False, 'r': False, 's': False, 'p': False, 'q': False} parent = {} for i in 'abcdefghijklmnopqrstuvwxyz': parent[i] = -1 q = [start] while q: v = q.pop(0) if not visited2[v]: for k in graph[v]: if visited2[k] and parent[k] not in [-1, v]: return True q = q + [k] parent[k] = v visited2[v] = True return False for i in 'abcdefghijklmnopqrstuvwxyz': if cycle(g, i): print("Impossible") quit() print(''.join(order)) ```
0
513
A
Game
PROGRAMMING
800
[ "constructive algorithms", "math" ]
null
null
Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly *n*1 balls and second player's box contains exactly *n*2 balls. In one move first player can take from 1 to *k*1 balls from his box and throw them away. Similarly, the second player can take from 1 to *k*2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally.
The first line contains four integers *n*1,<=*n*2,<=*k*1,<=*k*2. All numbers in the input are from 1 to 50. This problem doesn't have subproblems. You will get 3 points for the correct submission.
Output "First" if the first player wins and "Second" otherwise.
[ "2 2 1 2\n", "2 1 1 1\n" ]
[ "Second\n", "First\n" ]
Consider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely.
3
[ { "input": "2 2 1 2", "output": "Second" }, { "input": "2 1 1 1", "output": "First" }, { "input": "5 7 4 1", "output": "Second" }, { "input": "5 7 1 4", "output": "Second" }, { "input": "5 7 10 10", "output": "Second" }, { "input": "5 7 1 10", "output": "Second" }, { "input": "1 1 1 1", "output": "Second" }, { "input": "50 50 50 50", "output": "Second" }, { "input": "50 49 1 2", "output": "First" }, { "input": "50 48 3 1", "output": "First" }, { "input": "48 50 12 11", "output": "Second" }, { "input": "49 50 11 12", "output": "Second" }, { "input": "49 49 4 1", "output": "Second" }, { "input": "49 49 3 3", "output": "Second" }, { "input": "1 50 1 50", "output": "Second" }, { "input": "1 50 50 50", "output": "Second" }, { "input": "50 1 1 1", "output": "First" }, { "input": "50 1 1 50", "output": "First" }, { "input": "32 31 10 9", "output": "First" }, { "input": "32 4 17 3", "output": "First" } ]
1,577,535,844
2,147,483,647
Python 3
OK
TESTS
20
109
307,200
def solve(n1, n2, k1, k2): if n1 > n2: return "First" else: return "Second" def main(): n1, n2, k1, k2 = list(map(int, input().split())) print(solve(n1, n2, k1, k2)) main()
Title: Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly *n*1 balls and second player's box contains exactly *n*2 balls. In one move first player can take from 1 to *k*1 balls from his box and throw them away. Similarly, the second player can take from 1 to *k*2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally. Input Specification: The first line contains four integers *n*1,<=*n*2,<=*k*1,<=*k*2. All numbers in the input are from 1 to 50. This problem doesn't have subproblems. You will get 3 points for the correct submission. Output Specification: Output "First" if the first player wins and "Second" otherwise. Demo Input: ['2 2 1 2\n', '2 1 1 1\n'] Demo Output: ['Second\n', 'First\n'] Note: Consider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely.
```python def solve(n1, n2, k1, k2): if n1 > n2: return "First" else: return "Second" def main(): n1, n2, k1, k2 = list(map(int, input().split())) print(solve(n1, n2, k1, k2)) main() ```
3
794
A
Bank Robbery
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
A robber has attempted to rob a bank but failed to complete his task. However, he had managed to open all the safes. Oleg the bank client loves money (who doesn't), and decides to take advantage of this failed robbery and steal some money from the safes. There are many safes arranged in a line, where the *i*-th safe from the left is called safe *i*. There are *n* banknotes left in all the safes in total. The *i*-th banknote is in safe *x**i*. Oleg is now at safe *a*. There are two security guards, one of which guards the safe *b* such that *b*<=&lt;<=*a*, i.e. the first guard is to the left of Oleg. The other guard guards the safe *c* so that *c*<=&gt;<=*a*, i.e. he is to the right of Oleg. The two guards are very lazy, so they do not move. In every second, Oleg can either take all the banknotes from the current safe or move to any of the neighboring safes. However, he cannot visit any safe that is guarded by security guards at any time, becaues he might be charged for stealing. Determine the maximum amount of banknotes Oleg can gather.
The first line of input contains three space-separated integers, *a*, *b* and *c* (1<=≤<=*b*<=&lt;<=*a*<=&lt;<=*c*<=≤<=109), denoting the positions of Oleg, the first security guard and the second security guard, respectively. The next line of input contains a single integer *n* (1<=≤<=*n*<=≤<=105), denoting the number of banknotes. The next line of input contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=109), denoting that the *i*-th banknote is located in the *x**i*-th safe. Note that *x**i* are not guaranteed to be distinct.
Output a single integer: the maximum number of banknotes Oleg can take.
[ "5 3 7\n8\n4 7 5 5 3 6 2 8\n", "6 5 7\n5\n1 5 7 92 3\n" ]
[ "4\n", "0\n" ]
In the first example Oleg can take the banknotes in positions 4, 5, 6 (note that there are 2 banknotes at position 5). Oleg can't take the banknotes in safes 7 and 8 because he can't run into the second security guard. Similarly, Oleg cannot take the banknotes at positions 3 and 2 because he can't run into the first security guard. Thus, he can take a maximum of 4 banknotes. For the second sample, Oleg can't take any banknotes without bumping into any of the security guards.
500
[ { "input": "5 3 7\n8\n4 7 5 5 3 6 2 8", "output": "4" }, { "input": "6 5 7\n5\n1 5 7 92 3", "output": "0" }, { "input": "3 2 4\n1\n3", "output": "1" }, { "input": "5 3 8\n12\n8 3 4 5 7 6 8 3 5 4 7 6", "output": "8" }, { "input": "7 3 10\n5\n3 3 3 3 3", "output": "0" }, { "input": "3 2 5\n4\n1 3 4 5", "output": "2" }, { "input": "3 2 4\n1\n1", "output": "0" }, { "input": "6 4 8\n1\n4", "output": "0" }, { "input": "2 1 3\n1\n3", "output": "0" } ]
1,571,512,499
2,147,483,647
Python 3
OK
TESTS
46
156
8,396,800
a, b, c = map(int, input().split()) input() all_cells = map(int, input().split()) cells = [x for x in all_cells if b < x < c] print(len(cells))
Title: Bank Robbery Time Limit: None seconds Memory Limit: None megabytes Problem Description: A robber has attempted to rob a bank but failed to complete his task. However, he had managed to open all the safes. Oleg the bank client loves money (who doesn't), and decides to take advantage of this failed robbery and steal some money from the safes. There are many safes arranged in a line, where the *i*-th safe from the left is called safe *i*. There are *n* banknotes left in all the safes in total. The *i*-th banknote is in safe *x**i*. Oleg is now at safe *a*. There are two security guards, one of which guards the safe *b* such that *b*<=&lt;<=*a*, i.e. the first guard is to the left of Oleg. The other guard guards the safe *c* so that *c*<=&gt;<=*a*, i.e. he is to the right of Oleg. The two guards are very lazy, so they do not move. In every second, Oleg can either take all the banknotes from the current safe or move to any of the neighboring safes. However, he cannot visit any safe that is guarded by security guards at any time, becaues he might be charged for stealing. Determine the maximum amount of banknotes Oleg can gather. Input Specification: The first line of input contains three space-separated integers, *a*, *b* and *c* (1<=≤<=*b*<=&lt;<=*a*<=&lt;<=*c*<=≤<=109), denoting the positions of Oleg, the first security guard and the second security guard, respectively. The next line of input contains a single integer *n* (1<=≤<=*n*<=≤<=105), denoting the number of banknotes. The next line of input contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=109), denoting that the *i*-th banknote is located in the *x**i*-th safe. Note that *x**i* are not guaranteed to be distinct. Output Specification: Output a single integer: the maximum number of banknotes Oleg can take. Demo Input: ['5 3 7\n8\n4 7 5 5 3 6 2 8\n', '6 5 7\n5\n1 5 7 92 3\n'] Demo Output: ['4\n', '0\n'] Note: In the first example Oleg can take the banknotes in positions 4, 5, 6 (note that there are 2 banknotes at position 5). Oleg can't take the banknotes in safes 7 and 8 because he can't run into the second security guard. Similarly, Oleg cannot take the banknotes at positions 3 and 2 because he can't run into the first security guard. Thus, he can take a maximum of 4 banknotes. For the second sample, Oleg can't take any banknotes without bumping into any of the security guards.
```python a, b, c = map(int, input().split()) input() all_cells = map(int, input().split()) cells = [x for x in all_cells if b < x < c] print(len(cells)) ```
3
510
B
Fox And Two Dots
PROGRAMMING
1,500
[ "dfs and similar" ]
null
null
Fox Ciel is playing a mobile puzzle game called "Two Dots". The basic levels are played on a board of size *n*<=×<=*m* cells, like this: Each cell contains a dot that has some color. We will use different uppercase Latin characters to express different colors. The key of this game is to find a cycle that contain dots of same color. Consider 4 blue dots on the picture forming a circle as an example. Formally, we call a sequence of dots *d*1,<=*d*2,<=...,<=*d**k* a cycle if and only if it meets the following condition: 1. These *k* dots are different: if *i*<=≠<=*j* then *d**i* is different from *d**j*. 1. *k* is at least 4. 1. All dots belong to the same color. 1. For all 1<=≤<=*i*<=≤<=*k*<=-<=1: *d**i* and *d**i*<=+<=1 are adjacent. Also, *d**k* and *d*1 should also be adjacent. Cells *x* and *y* are called adjacent if they share an edge. Determine if there exists a cycle on the field.
The first line contains two integers *n* and *m* (2<=≤<=*n*,<=*m*<=≤<=50): the number of rows and columns of the board. Then *n* lines follow, each line contains a string consisting of *m* characters, expressing colors of dots in each line. Each character is an uppercase Latin letter.
Output "Yes" if there exists a cycle, and "No" otherwise.
[ "3 4\nAAAA\nABCA\nAAAA\n", "3 4\nAAAA\nABCA\nAADA\n", "4 4\nYYYR\nBYBY\nBBBY\nBBBY\n", "7 6\nAAAAAB\nABBBAB\nABAAAB\nABABBB\nABAAAB\nABBBAB\nAAAAAB\n", "2 13\nABCDEFGHIJKLM\nNOPQRSTUVWXYZ\n" ]
[ "Yes\n", "No\n", "Yes\n", "Yes\n", "No\n" ]
In first sample test all 'A' form a cycle. In second sample there is no such cycle. The third sample is displayed on the picture above ('Y' = Yellow, 'B' = Blue, 'R' = Red).
1,000
[ { "input": "3 4\nAAAA\nABCA\nAAAA", "output": "Yes" }, { "input": "3 4\nAAAA\nABCA\nAADA", "output": "No" }, { "input": "4 4\nYYYR\nBYBY\nBBBY\nBBBY", "output": "Yes" }, { "input": "7 6\nAAAAAB\nABBBAB\nABAAAB\nABABBB\nABAAAB\nABBBAB\nAAAAAB", "output": "Yes" }, { "input": "2 13\nABCDEFGHIJKLM\nNOPQRSTUVWXYZ", "output": "No" }, { "input": "2 2\nAA\nAA", "output": "Yes" }, { "input": "2 2\nAA\nAB", "output": "No" }, { "input": "3 3\nAAA\nABA\nAAA", "output": "Yes" }, { "input": "3 3\nAAA\nABA\nABA", "output": "No" }, { "input": "10 10\nEGFJGJKGEI\nAKJHBGHIHF\nJBABBCFGEJ\nCJDJHJJKBD\nKHJIKKGGEK\nHHJHKHGEKF\nEKFCAJGGDK\nAFKBBFICAA\nFEDFAGHEKA\nCAAGIFHGGI", "output": "No" }, { "input": "10 10\nHIICQRHPUJ\nBCDUKHMBFK\nPFTUIDOBOE\nQQPITLRKUP\nERMUJMOSMF\nMRSICEILQB\nODIGFNCHFR\nGHIOAFLHJH\nFBLAQNGEIF\nFDLEGDUTNG", "output": "No" }, { "input": "2 50\nDADCDBCCDAACDBCAACADBCBDBACCCCDADCBACADBCCBDBCCBCC\nDADAADCABBBACCDDBABBBDCBACBCCCCDDADCDABADDDCABACDB", "output": "Yes" }, { "input": "50 2\nAA\nCD\nEE\nFC\nED\nAF\nFC\nAD\nBA\nAF\nBF\nDA\nAC\nFC\nFA\nBF\nAD\nBB\nDC\nAF\nAA\nAD\nEE\nED\nCD\nFC\nFB\nBB\nDD\nEB\nBE\nCF\nDE\nAE\nFD\nAB\nFB\nAE\nBE\nFA\nCF\nFB\nDE\nED\nAD\nFA\nBB\nBF\nDA\nEE", "output": "No" } ]
1,684,342,602
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
9
93
6,656,000
from collections import defaultdict drn = [(0, 1), (0, -1), (1, 0), (-1, 0)] r,c= map(int, input().split()) grid=[] ans=["No"] for i in range(r): grid.append(list(input())) seen=set() def inbound(row,col): return 0<=row<len(grid) and 0<=col<len(grid[0]) def dfs(row,col,color,parent,count): for r,c in drn: new_r=r+row new_c=c+col if inbound(new_r,new_c) and (new_r,new_c) in seen and (new_r,new_c)!=parent and count>=4: ans[-1]="Yes" return True if inbound(new_r,new_c) and (new_r,new_c) not in seen: if color==grid[new_r][new_c]: seen.add((new_r,new_c)) dfs(new_r,new_c,color,(row,col),count+1) for row in range(r): for col in range(c): if (row,col) not in seen: color=grid[row][col] seen.add((row,col)) dfs(row,col,color,(-1,-1),1) print(ans[-1])
Title: Fox And Two Dots Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fox Ciel is playing a mobile puzzle game called "Two Dots". The basic levels are played on a board of size *n*<=×<=*m* cells, like this: Each cell contains a dot that has some color. We will use different uppercase Latin characters to express different colors. The key of this game is to find a cycle that contain dots of same color. Consider 4 blue dots on the picture forming a circle as an example. Formally, we call a sequence of dots *d*1,<=*d*2,<=...,<=*d**k* a cycle if and only if it meets the following condition: 1. These *k* dots are different: if *i*<=≠<=*j* then *d**i* is different from *d**j*. 1. *k* is at least 4. 1. All dots belong to the same color. 1. For all 1<=≤<=*i*<=≤<=*k*<=-<=1: *d**i* and *d**i*<=+<=1 are adjacent. Also, *d**k* and *d*1 should also be adjacent. Cells *x* and *y* are called adjacent if they share an edge. Determine if there exists a cycle on the field. Input Specification: The first line contains two integers *n* and *m* (2<=≤<=*n*,<=*m*<=≤<=50): the number of rows and columns of the board. Then *n* lines follow, each line contains a string consisting of *m* characters, expressing colors of dots in each line. Each character is an uppercase Latin letter. Output Specification: Output "Yes" if there exists a cycle, and "No" otherwise. Demo Input: ['3 4\nAAAA\nABCA\nAAAA\n', '3 4\nAAAA\nABCA\nAADA\n', '4 4\nYYYR\nBYBY\nBBBY\nBBBY\n', '7 6\nAAAAAB\nABBBAB\nABAAAB\nABABBB\nABAAAB\nABBBAB\nAAAAAB\n', '2 13\nABCDEFGHIJKLM\nNOPQRSTUVWXYZ\n'] Demo Output: ['Yes\n', 'No\n', 'Yes\n', 'Yes\n', 'No\n'] Note: In first sample test all 'A' form a cycle. In second sample there is no such cycle. The third sample is displayed on the picture above ('Y' = Yellow, 'B' = Blue, 'R' = Red).
```python from collections import defaultdict drn = [(0, 1), (0, -1), (1, 0), (-1, 0)] r,c= map(int, input().split()) grid=[] ans=["No"] for i in range(r): grid.append(list(input())) seen=set() def inbound(row,col): return 0<=row<len(grid) and 0<=col<len(grid[0]) def dfs(row,col,color,parent,count): for r,c in drn: new_r=r+row new_c=c+col if inbound(new_r,new_c) and (new_r,new_c) in seen and (new_r,new_c)!=parent and count>=4: ans[-1]="Yes" return True if inbound(new_r,new_c) and (new_r,new_c) not in seen: if color==grid[new_r][new_c]: seen.add((new_r,new_c)) dfs(new_r,new_c,color,(row,col),count+1) for row in range(r): for col in range(c): if (row,col) not in seen: color=grid[row][col] seen.add((row,col)) dfs(row,col,color,(-1,-1),1) print(ans[-1]) ```
-1
114
A
Cifera
PROGRAMMING
1,000
[ "math" ]
null
null
When Petya went to school, he got interested in large numbers and what they were called in ancient times. For instance, he learned that the Russian word "tma" (which now means "too much to be counted") used to stand for a thousand and "tma tmyschaya" (which literally means "the tma of tmas") used to stand for a million. Petya wanted to modernize the words we use for numbers and invented a word petricium that represents number *k*. Moreover, petricium la petricium stands for number *k*2, petricium la petricium la petricium stands for *k*3 and so on. All numbers of this form are called petriciumus cifera, and the number's importance is the number of articles la in its title. Petya's invention brought on a challenge that needed to be solved quickly: does some number *l* belong to the set petriciumus cifera? As Petya is a very busy schoolboy he needs to automate the process, he asked you to solve it.
The first input line contains integer number *k*, the second line contains integer number *l* (2<=≤<=*k*,<=*l*<=≤<=231<=-<=1).
You should print in the first line of the output "YES", if the number belongs to the set petriciumus cifera and otherwise print "NO". If the number belongs to the set, then print on the seconds line the only number — the importance of number *l*.
[ "5\n25\n", "3\n8\n" ]
[ "YES\n1\n", "NO\n" ]
none
500
[ { "input": "5\n25", "output": "YES\n1" }, { "input": "3\n8", "output": "NO" }, { "input": "123\n123", "output": "YES\n0" }, { "input": "99\n970300", "output": "NO" }, { "input": "1000\n6666666", "output": "NO" }, { "input": "59\n3571", "output": "NO" }, { "input": "256\n16777217", "output": "NO" }, { "input": "4638\n21511044", "output": "YES\n1" }, { "input": "24\n191102976", "output": "YES\n5" }, { "input": "52010\n557556453", "output": "NO" }, { "input": "61703211\n1750753082", "output": "NO" }, { "input": "137\n2571353", "output": "YES\n2" }, { "input": "8758\n1746157336", "output": "NO" }, { "input": "2\n64", "output": "YES\n5" }, { "input": "96\n884736", "output": "YES\n2" }, { "input": "1094841453\n1656354409", "output": "NO" }, { "input": "1154413\n1229512809", "output": "NO" }, { "input": "2442144\n505226241", "output": "NO" }, { "input": "11548057\n1033418098", "output": "NO" }, { "input": "581\n196122941", "output": "YES\n2" }, { "input": "146\n1913781536", "output": "NO" }, { "input": "945916\n1403881488", "output": "NO" }, { "input": "68269\n365689065", "output": "NO" }, { "input": "30\n900", "output": "YES\n1" }, { "input": "6\n1296", "output": "YES\n3" }, { "input": "1470193122\n1420950405", "output": "NO" }, { "input": "90750\n1793111557", "output": "NO" }, { "input": "1950054\n1664545956", "output": "NO" }, { "input": "6767692\n123762320", "output": "NO" }, { "input": "1437134\n1622348229", "output": "NO" }, { "input": "444103\n1806462642", "output": "NO" }, { "input": "2592\n6718464", "output": "YES\n1" }, { "input": "50141\n366636234", "output": "NO" }, { "input": "835\n582182875", "output": "YES\n2" }, { "input": "156604\n902492689", "output": "NO" }, { "input": "27385965\n1742270058", "output": "NO" }, { "input": "3\n9", "output": "YES\n1" }, { "input": "35\n1838265625", "output": "YES\n5" }, { "input": "8\n4096", "output": "YES\n3" }, { "input": "85955\n945811082", "output": "NO" }, { "input": "54958832\n956670209", "output": "NO" }, { "input": "1475381\n1348159738", "output": "NO" }, { "input": "7313241\n413670642", "output": "NO" }, { "input": "582470\n2116368165", "output": "NO" }, { "input": "26859739\n595086170", "output": "NO" }, { "input": "249766393\n1582130", "output": "NO" }, { "input": "11734\n137686756", "output": "YES\n1" }, { "input": "925093\n1098566745", "output": "NO" }, { "input": "40\n1600", "output": "YES\n1" }, { "input": "2147483647\n2147483647", "output": "YES\n0" }, { "input": "2147483646\n2147483647", "output": "NO" }, { "input": "2147483647\n2147483646", "output": "NO" }, { "input": "2\n2147483647", "output": "NO" }, { "input": "2\n1073741825", "output": "NO" }, { "input": "2\n1073741824", "output": "YES\n29" }, { "input": "10000\n10", "output": "NO" }, { "input": "10\n10000", "output": "YES\n3" }, { "input": "10\n2000000000", "output": "NO" }, { "input": "10\n1000000000", "output": "YES\n8" }, { "input": "5\n1808548329", "output": "NO" }, { "input": "2\n2147483646", "output": "NO" }, { "input": "25\n125", "output": "NO" }, { "input": "6\n18", "output": "NO" }, { "input": "5\n30", "output": "NO" } ]
1,633,184,588
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
92
0
fl = True k = int(input()) l = int(input()) for _ in range(1, k): if k ** _ == l: print('YES') fl = False print(l) break if fl: print('NO')
Title: Cifera Time Limit: None seconds Memory Limit: None megabytes Problem Description: When Petya went to school, he got interested in large numbers and what they were called in ancient times. For instance, he learned that the Russian word "tma" (which now means "too much to be counted") used to stand for a thousand and "tma tmyschaya" (which literally means "the tma of tmas") used to stand for a million. Petya wanted to modernize the words we use for numbers and invented a word petricium that represents number *k*. Moreover, petricium la petricium stands for number *k*2, petricium la petricium la petricium stands for *k*3 and so on. All numbers of this form are called petriciumus cifera, and the number's importance is the number of articles la in its title. Petya's invention brought on a challenge that needed to be solved quickly: does some number *l* belong to the set petriciumus cifera? As Petya is a very busy schoolboy he needs to automate the process, he asked you to solve it. Input Specification: The first input line contains integer number *k*, the second line contains integer number *l* (2<=≤<=*k*,<=*l*<=≤<=231<=-<=1). Output Specification: You should print in the first line of the output "YES", if the number belongs to the set petriciumus cifera and otherwise print "NO". If the number belongs to the set, then print on the seconds line the only number — the importance of number *l*. Demo Input: ['5\n25\n', '3\n8\n'] Demo Output: ['YES\n1\n', 'NO\n'] Note: none
```python fl = True k = int(input()) l = int(input()) for _ in range(1, k): if k ** _ == l: print('YES') fl = False print(l) break if fl: print('NO') ```
0
94
A
Restoring Password
PROGRAMMING
900
[ "implementation", "strings" ]
A. Restoring Password
2
256
Igor K. always used to trust his favorite Kashpirovsky Antivirus. That is why he didn't hesitate to download the link one of his groupmates sent him via QIP Infinium. The link was said to contain "some real funny stuff about swine influenza". The antivirus had no objections and Igor K. run the flash application he had downloaded. Immediately his QIP Infinium said: "invalid login/password". Igor K. entered the ISQ from his additional account and looked at the info of his main one. His name and surname changed to "H1N1" and "Infected" correspondingly, and the "Additional Information" field contained a strange-looking binary code 80 characters in length, consisting of zeroes and ones. "I've been hacked" — thought Igor K. and run the Internet Exploiter browser to quickly type his favourite search engine's address. Soon he learned that it really was a virus that changed ISQ users' passwords. Fortunately, he soon found out that the binary code was actually the encrypted password where each group of 10 characters stood for one decimal digit. Accordingly, the original password consisted of 8 decimal digits. Help Igor K. restore his ISQ account by the encrypted password and encryption specification.
The input data contains 11 lines. The first line represents the binary code 80 characters in length. That is the code written in Igor K.'s ISQ account's info. Next 10 lines contain pairwise distinct binary codes 10 characters in length, corresponding to numbers 0, 1, ..., 9.
Print one line containing 8 characters — The password to Igor K.'s ISQ account. It is guaranteed that the solution exists.
[ "01001100100101100000010110001001011001000101100110010110100001011010100101101100\n0100110000\n0100110010\n0101100000\n0101100010\n0101100100\n0101100110\n0101101000\n0101101010\n0101101100\n0101101110\n", "10101101111001000010100100011010101101110010110111011000100011011110010110001000\n1001000010\n1101111001\n1001000110\n1010110111\n0010110111\n1101001101\n1011000001\n1110010101\n1011011000\n0110001000\n" ]
[ "12345678\n", "30234919\n" ]
none
500
[ { "input": "01001100100101100000010110001001011001000101100110010110100001011010100101101100\n0100110000\n0100110010\n0101100000\n0101100010\n0101100100\n0101100110\n0101101000\n0101101010\n0101101100\n0101101110", "output": "12345678" }, { "input": "10101101111001000010100100011010101101110010110111011000100011011110010110001000\n1001000010\n1101111001\n1001000110\n1010110111\n0010110111\n1101001101\n1011000001\n1110010101\n1011011000\n0110001000", "output": "30234919" }, { "input": "00010101101110110101100110101100010101100010101111000101011010011010110010000011\n0101010110\n0001001101\n1001101011\n0000100011\n0010101111\n1110110101\n0001010110\n0110111000\n0000111110\n0010000011", "output": "65264629" }, { "input": "10100100010010010011011001101000100100110110011010011001101011000100110110011010\n1111110011\n1001000111\n1001000100\n1100010011\n0110011010\n0010000001\n1110101110\n0010000110\n0010010011\n1010010001", "output": "98484434" }, { "input": "00101100011111010001001000000110110000000110010011001111111010110010001011000000\n0010000001\n0110010011\n0010000010\n1011001000\n0011111110\n0110001000\n1111010001\n1011000000\n0000100110\n0010110001", "output": "96071437" }, { "input": "10001110111110000001000010001010001110110000100010100010111101101101010000100010\n0000010110\n1101010111\n1000101111\n0001011110\n0011110101\n0101100100\n0110110101\n0000100010\n1000111011\n1110000001", "output": "89787267" }, { "input": "10010100011001010001010101001101010100110100111011001010111100011001000010100000\n0011100000\n1001100100\n0001100100\n0010100000\n0101010011\n0010101110\n0010101111\n0100111011\n1001010001\n1111111110", "output": "88447623" }, { "input": "01101100111000000101011011001110000001011111111000111111100001011010001001011001\n1000000101\n0101101000\n0101110101\n1101011110\n0000101100\n1111111000\n0001001101\n0110111011\n0110110011\n1001011001", "output": "80805519" }, { "input": "11100011000100010110010011101010101010011110001100011010111110011000011010110111\n1110001100\n0110101111\n0100111010\n0101000000\n1001100001\n1010101001\n0000100010\n1010110111\n1100011100\n0100010110", "output": "09250147" }, { "input": "10000110110000010100000010001000111101110110101011110111000100001101000000100010\n0000010100\n0000110001\n0110101011\n1101110001\n1000011011\n0000110100\n0011110111\n1000110010\n0000100010\n0000011011", "output": "40862358" }, { "input": "01000000010000000110100101000110110000100100000001101100001000011111111001010001\n1011000010\n1111101010\n0111110011\n0000000110\n0000001001\n0001111111\n0110010010\n0100000001\n1011001000\n1001010001", "output": "73907059" }, { "input": "01111000111110011001110101110011110000111110010001101100110110100111101011001101\n1110010001\n1001100000\n1100001000\n1010011110\n1011001101\n0111100011\n1101011100\n1110011001\n1111000011\n0010000101", "output": "57680434" }, { "input": "01001100101000100010001011110001000101001001100010010000001001001100101001011111\n1001011111\n1110010111\n0111101011\n1000100010\n0011100101\n0100000010\n0010111100\n0100010100\n1001100010\n0100110010", "output": "93678590" }, { "input": "01110111110000111011101010110110101011010100110111000011101101110101011101001000\n0110000101\n1010101101\n1101010111\n1101011100\n0100110111\n0111011111\n1100011001\n0111010101\n0000111011\n1101001000", "output": "58114879" }, { "input": "11101001111100110101110011010100110011011110100111010110110011000111000011001101\n1100011100\n1100110101\n1011101000\n0011011110\n0011001101\n0100010001\n1110100111\n1010101100\n1110110100\n0101101100", "output": "61146904" }, { "input": "10101010001011010001001001011000100101100001011011101010101110101010001010101000\n0010110101\n1010011010\n1010101000\n1011010001\n1010101011\n0010010110\n0110100010\n1010100101\n0001011011\n0110100001", "output": "23558422" }, { "input": "11110101001100010000110100001110101011011111010100110001000001001010001001101111\n0101101100\n1001101111\n1010101101\n0100101000\n1111110000\n0101010010\n1100010000\n1111010100\n1101000011\n1011111111", "output": "76827631" }, { "input": "10001100110000110111100011001101111110110011110101000011011100001101110000110111\n0011110101\n0101100011\n1000110011\n1011011001\n0111111011\n0101111011\n0000110111\n0100001110\n1000000111\n0110110111", "output": "26240666" }, { "input": "10000100010000111101100100111101111011101000001001100001000110000010010000111101\n1001001111\n0000111101\n1000010001\n0110011101\n0110101000\n1011111001\n0111101110\n1000001001\n1101011111\n0001010100", "output": "21067271" }, { "input": "01101111000110111100011011110001101111001010001100101000110001010101100100000010\n1010001100\n0011010011\n0101010110\n1111001100\n1100011000\n0100101100\n1001100101\n0110111100\n0011001101\n0100000010", "output": "77770029" }, { "input": "10100111011010001011111000000111100000010101000011000010111101010000111010011101\n1010011101\n1010111111\n0110100110\n1111000100\n1110000001\n0000101111\n0011111000\n1000110001\n0101000011\n1010001011", "output": "09448580" }, { "input": "10000111111000011111001010101010010011111001001111000010010100100011000010001100\n1101101110\n1001001111\n0000100101\n1100111010\n0010101010\n1110000110\n1100111101\n0010001100\n1110000001\n1000011111", "output": "99411277" }, { "input": "10110110111011001111101100111100111111011011011011001111110110010011100010000111\n0111010011\n0111101100\n1001101010\n0101000101\n0010000111\n0011111101\n1011001111\n1101111000\n1011011011\n1001001110", "output": "86658594" }, { "input": "01001001100101100011110110111100000110001111001000100000110111110010000000011000\n0100100110\n1000001011\n1000111110\n0000011000\n0101100011\n1101101111\n1111001000\n1011011001\n1000001101\n0010101000", "output": "04536863" }, { "input": "10010100011101000011100100001100101111000010111100000010010000001001001101011101\n1001000011\n1101000011\n1001010001\n1101011101\n1000010110\n0011111101\n0010111100\n0000100100\n1010001000\n0101000110", "output": "21066773" }, { "input": "01111111110101111111011111111111010010000001100000101000100100111001011010001001\n0111111111\n0101111111\n0100101101\n0001100000\n0011000101\n0011100101\n1101001000\n0010111110\n1010001001\n1111000111", "output": "01063858" }, { "input": "00100011111001001010001111000011101000001110100000000100101011101000001001001010\n0010001111\n1001001010\n1010011001\n0011100111\n1000111000\n0011110000\n0000100010\n0001001010\n1111110111\n1110100000", "output": "01599791" }, { "input": "11011101000100110100110011010101100011111010011010010011010010010010100110101111\n0100110100\n1001001010\n0001111101\n1101011010\n1101110100\n1100110101\n0110101111\n0110001111\n0001101000\n1010011010", "output": "40579016" }, { "input": "10000010111101110110011000111110000011100110001111100100000111000011011000001011\n0111010100\n1010110110\n1000001110\n1110000100\n0110001111\n1101110110\n1100001101\n1000001011\n0000000101\n1001000001", "output": "75424967" }, { "input": "11101100101110111110111011111010001111111111000001001001000010001111111110110010\n0101100001\n1111010011\n1110111110\n0100110100\n1110011111\n1000111111\n0010010000\n1110110010\n0011000010\n1111000001", "output": "72259657" }, { "input": "01011110100101111010011000001001100000101001110011010111101011010000110110010101\n0100111100\n0101110011\n0101111010\n0110000010\n0101001111\n1101000011\n0110010101\n0111011010\n0001101110\n1001110011", "output": "22339256" }, { "input": "01100000100101111000100001100010000110000010100100100001100000110011101001110000\n0101111000\n1001110000\n0001000101\n0110110111\n0010100100\n1000011000\n1101110110\n0110000010\n0001011010\n0011001110", "output": "70554591" }, { "input": "11110011011000001001111100110101001000010100100000110011001110011111100100100001\n1010011000\n1111001101\n0100100001\n1111010011\n0100100000\n1001111110\n1010100111\n1000100111\n1000001001\n1100110011", "output": "18124952" }, { "input": "10001001011000100101010110011101011001110010000001010110000101000100101111101010\n0101100001\n1100001100\n1111101010\n1000100101\n0010000001\n0100010010\n0010110110\n0101100111\n0000001110\n1101001110", "output": "33774052" }, { "input": "00110010000111001001001100100010010111101011011110001011111100000101000100000001\n0100000001\n1011011110\n0010111111\n0111100111\n0100111001\n0000010100\n1001011110\n0111001001\n0100010011\n0011001000", "output": "97961250" }, { "input": "01101100001000110101101100101111101110010011010111100011010100010001101000110101\n1001101001\n1000110101\n0110110000\n0111100100\n0011010111\n1110111001\n0001000110\n0000000100\n0001101001\n1011001011", "output": "21954161" }, { "input": "10101110000011010110101011100000101101000110100000101101101101110101000011110010\n0110100000\n1011011011\n0011110010\n0001110110\n0010110100\n1100010010\n0001101011\n1010111000\n0011010110\n0111010100", "output": "78740192" }, { "input": "11000101011100100111010000010001000001001100101100000011000000001100000101011010\n1100010101\n1111101011\n0101011010\n0100000100\n1000110111\n1100100111\n1100101100\n0111001000\n0000110000\n0110011111", "output": "05336882" }, { "input": "11110100010000101110010110001000001011100101100010110011011011111110001100110110\n0101100010\n0100010001\n0000101110\n1100110110\n0101000101\n0011001011\n1111010001\n1000110010\n1111111000\n1010011111", "output": "62020383" }, { "input": "00011001111110000011101011010001010111100110100101000110011111011001100000001100\n0111001101\n0101011110\n0001100111\n1101011111\n1110000011\n0000001100\n0111010001\n1101100110\n1010110100\n0110100101", "output": "24819275" }, { "input": "10111110010011111001001111100101010111010011111001001110101000111110011001111101\n0011111001\n0101011101\n0100001010\n0001110010\n1001111101\n0011101010\n1111001001\n1100100001\n1001101000\n1011111001", "output": "90010504" }, { "input": "01111101111100101010001001011110111001110111110111011111011110110111111011011111\n1111110111\n0010000101\n0110000100\n0111111011\n1011100111\n1100101010\n1011011111\n1100010001\n0111110111\n0010010111", "output": "85948866" }, { "input": "01111100000111110000110010111001111100001001101010110010111010001000101001101010\n0100010101\n1011110101\n1010100100\n1010000001\n1001101010\n0101100110\n1000100010\n0111110000\n1100101110\n0110010110", "output": "77874864" }, { "input": "11100011010000000010011110010111001011111001000111000000001000000000100111100101\n0000000010\n1110001101\n0011010101\n0111100101\n1001000111\n1101001111\n0111010110\n1100101111\n0110000000\n1101101011", "output": "10374003" }, { "input": "01111011100111101110011001000110001111101000111110100100100001011111001011100010\n0110010100\n1100010001\n0111101110\n1001001000\n1010011011\n1000111110\n0010110101\n1011100010\n0101111100\n0110010001", "output": "22955387" }, { "input": "11011010001100000011000100110011010101000110011110110000001100111100001000011111\n0000100010\n1000011111\n1101101000\n0110011110\n0011110000\n1100000011\n0010001100\n0101101000\n0001001100\n1101010100", "output": "25893541" }, { "input": "01011001011111010010101111011001000011001100011101101111011011010011101011110110\n0100001100\n0101100101\n1111111011\n1111010010\n1111101100\n1100011101\n1011000011\n1101001110\n1011110110\n0110001010", "output": "13805878" }, { "input": "11110011011000111111001100111110001111111100000010111100110100110011111111001101\n1111001101\n1001101010\n1100110010\n0011001111\n0001011110\n1000110011\n1000111111\n0110001010\n1001011101\n1100000010", "output": "06369030" }, { "input": "01110011110010000011011001011000001000010110010110011001100001100110001100101000\n0000100001\n0110011000\n1010000010\n1110011101\n0111001111\n1100101000\n0010000011\n0110010000\n1100100101\n0110010110", "output": "46909115" }, { "input": "00001011001111110111111111011111111101110101110100010111010010100101100001010110\n1111110111\n0001010110\n0111011011\n0111000001\n1010010110\n0101110100\n0001000101\n0000111000\n0110100001\n0000101100", "output": "90005541" } ]
1,406,679,800
2,147,483,647
Python 3
OK
TESTS
50
124
0
p = input() num = {} for i in range(10): num[input()] = i out = '' for i in range(0,len(p),10): part = p[i:i+10] out += str(num[part]) print(out)
Title: Restoring Password Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Igor K. always used to trust his favorite Kashpirovsky Antivirus. That is why he didn't hesitate to download the link one of his groupmates sent him via QIP Infinium. The link was said to contain "some real funny stuff about swine influenza". The antivirus had no objections and Igor K. run the flash application he had downloaded. Immediately his QIP Infinium said: "invalid login/password". Igor K. entered the ISQ from his additional account and looked at the info of his main one. His name and surname changed to "H1N1" and "Infected" correspondingly, and the "Additional Information" field contained a strange-looking binary code 80 characters in length, consisting of zeroes and ones. "I've been hacked" — thought Igor K. and run the Internet Exploiter browser to quickly type his favourite search engine's address. Soon he learned that it really was a virus that changed ISQ users' passwords. Fortunately, he soon found out that the binary code was actually the encrypted password where each group of 10 characters stood for one decimal digit. Accordingly, the original password consisted of 8 decimal digits. Help Igor K. restore his ISQ account by the encrypted password and encryption specification. Input Specification: The input data contains 11 lines. The first line represents the binary code 80 characters in length. That is the code written in Igor K.'s ISQ account's info. Next 10 lines contain pairwise distinct binary codes 10 characters in length, corresponding to numbers 0, 1, ..., 9. Output Specification: Print one line containing 8 characters — The password to Igor K.'s ISQ account. It is guaranteed that the solution exists. Demo Input: ['01001100100101100000010110001001011001000101100110010110100001011010100101101100\n0100110000\n0100110010\n0101100000\n0101100010\n0101100100\n0101100110\n0101101000\n0101101010\n0101101100\n0101101110\n', '10101101111001000010100100011010101101110010110111011000100011011110010110001000\n1001000010\n1101111001\n1001000110\n1010110111\n0010110111\n1101001101\n1011000001\n1110010101\n1011011000\n0110001000\n'] Demo Output: ['12345678\n', '30234919\n'] Note: none
```python p = input() num = {} for i in range(10): num[input()] = i out = '' for i in range(0,len(p),10): part = p[i:i+10] out += str(num[part]) print(out) ```
3.969
946
A
Partition
PROGRAMMING
800
[ "greedy" ]
null
null
You are given a sequence *a* consisting of *n* integers. You may partition this sequence into two sequences *b* and *c* in such a way that every element belongs exactly to one of these sequences. Let *B* be the sum of elements belonging to *b*, and *C* be the sum of elements belonging to *c* (if some of these sequences is empty, then its sum is 0). What is the maximum possible value of *B*<=-<=*C*?
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in *a*. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (<=-<=100<=≤<=*a**i*<=≤<=100) — the elements of sequence *a*.
Print the maximum possible value of *B*<=-<=*C*, where *B* is the sum of elements of sequence *b*, and *C* is the sum of elements of sequence *c*.
[ "3\n1 -2 0\n", "6\n16 23 16 15 42 8\n" ]
[ "3\n", "120\n" ]
In the first example we may choose *b* = {1, 0}, *c* = { - 2}. Then *B* = 1, *C* =  - 2, *B* - *C* = 3. In the second example we choose *b* = {16, 23, 16, 15, 42, 8}, *c* = {} (an empty sequence). Then *B* = 120, *C* = 0, *B* - *C* = 120.
0
[ { "input": "3\n1 -2 0", "output": "3" }, { "input": "6\n16 23 16 15 42 8", "output": "120" }, { "input": "1\n-1", "output": "1" }, { "input": "100\n-100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100", "output": "10000" }, { "input": "2\n-1 5", "output": "6" }, { "input": "3\n-2 0 1", "output": "3" }, { "input": "12\n-1 -2 -3 4 4 -6 -6 56 3 3 -3 3", "output": "94" }, { "input": "4\n1 -1 1 -1", "output": "4" }, { "input": "4\n100 -100 100 -100", "output": "400" }, { "input": "3\n-2 -5 10", "output": "17" }, { "input": "5\n1 -2 3 -4 5", "output": "15" }, { "input": "3\n-100 100 -100", "output": "300" }, { "input": "6\n1 -1 1 -1 1 -1", "output": "6" }, { "input": "6\n2 -2 2 -2 2 -2", "output": "12" }, { "input": "9\n12 93 -2 0 0 0 3 -3 -9", "output": "122" }, { "input": "6\n-1 2 4 -5 -3 55", "output": "70" }, { "input": "6\n-12 8 68 -53 1 -15", "output": "157" }, { "input": "2\n-2 1", "output": "3" }, { "input": "3\n100 -100 100", "output": "300" }, { "input": "5\n100 100 -1 -100 2", "output": "303" }, { "input": "6\n-5 -4 -3 -2 -1 0", "output": "15" }, { "input": "6\n4 4 4 -3 -3 2", "output": "20" }, { "input": "2\n-1 2", "output": "3" }, { "input": "1\n100", "output": "100" }, { "input": "5\n-1 -2 3 1 2", "output": "9" }, { "input": "5\n100 -100 100 -100 100", "output": "500" }, { "input": "5\n1 -1 1 -1 1", "output": "5" }, { "input": "4\n0 0 0 -1", "output": "1" }, { "input": "5\n100 -100 -1 2 100", "output": "303" }, { "input": "2\n75 0", "output": "75" }, { "input": "4\n55 56 -59 -58", "output": "228" }, { "input": "2\n9 71", "output": "80" }, { "input": "2\n9 70", "output": "79" }, { "input": "2\n9 69", "output": "78" }, { "input": "2\n100 -100", "output": "200" }, { "input": "4\n-9 4 -9 5", "output": "27" }, { "input": "42\n91 -27 -79 -56 80 -93 -23 10 80 94 61 -89 -64 81 34 99 31 -32 -69 92 79 -9 73 66 -8 64 99 99 58 -19 -40 21 1 -33 93 -23 -62 27 55 41 57 36", "output": "2348" }, { "input": "7\n-1 2 2 2 -1 2 -1", "output": "11" }, { "input": "6\n-12 8 17 -69 7 -88", "output": "201" }, { "input": "3\n1 -2 5", "output": "8" }, { "input": "6\n-2 3 -4 5 6 -1", "output": "21" }, { "input": "2\n-5 1", "output": "6" }, { "input": "4\n2 2 -2 4", "output": "10" }, { "input": "68\n21 47 -75 -25 64 83 83 -21 89 24 43 44 -35 34 -42 92 -96 -52 -66 64 14 -87 25 -61 -78 83 -96 -18 95 83 -93 -28 75 49 87 65 -93 -69 -2 95 -24 -36 -61 -71 88 -53 -93 -51 -81 -65 -53 -46 -56 6 65 58 19 100 57 61 -53 44 -58 48 -8 80 -88 72", "output": "3991" }, { "input": "5\n5 5 -10 -1 1", "output": "22" }, { "input": "3\n-1 2 3", "output": "6" }, { "input": "76\n57 -38 -48 -81 93 -32 96 55 -44 2 38 -46 42 64 71 -73 95 31 -39 -62 -1 75 -17 57 28 52 12 -11 82 -84 59 -86 73 -97 34 97 -57 -85 -6 39 -5 -54 95 24 -44 35 -18 9 91 7 -22 -61 -80 54 -40 74 -90 15 -97 66 -52 -49 -24 65 21 -93 -29 -24 -4 -1 76 -93 7 -55 -53 1", "output": "3787" }, { "input": "5\n-1 -2 1 2 3", "output": "9" }, { "input": "4\n2 2 -2 -2", "output": "8" }, { "input": "6\n100 -100 100 -100 100 -100", "output": "600" }, { "input": "100\n-59 -33 34 0 69 24 -22 58 62 -36 5 45 -19 -73 61 -9 95 42 -73 -64 91 -96 2 53 -8 82 -79 16 18 -5 -53 26 71 38 -31 12 -33 -1 -65 -6 3 -89 22 33 -27 -36 41 11 -47 -32 47 -56 -38 57 -63 -41 23 41 29 78 16 -65 90 -58 -12 6 -60 42 -36 -52 -54 -95 -10 29 70 50 -94 1 93 48 -71 -77 -16 54 56 -60 66 76 31 8 44 -61 -74 23 37 38 18 -18 29 41", "output": "4362" }, { "input": "2\n-1 1", "output": "2" }, { "input": "3\n1 -2 100", "output": "103" }, { "input": "5\n1 -2 3 1 2", "output": "9" }, { "input": "10\n100 -10 -100 10 10 10 10 10 10 10", "output": "280" }, { "input": "4\n2 0 -2 4", "output": "8" }, { "input": "4\n3 -3 1 -1", "output": "8" }, { "input": "3\n1 -1 1", "output": "3" }, { "input": "4\n2 5 -2 4", "output": "13" }, { "input": "2\n-2 2", "output": "4" }, { "input": "3\n1 -2 1", "output": "4" }, { "input": "5\n-1 -2 1 1 -1", "output": "6" }, { "input": "4\n-2 0 2 4", "output": "8" }, { "input": "8\n-42 7 87 -16 -5 65 -88 1", "output": "311" }, { "input": "3\n1 -3 4", "output": "8" }, { "input": "1\n1", "output": "1" }, { "input": "2\n0 1", "output": "1" }, { "input": "3\n-1 2 -1", "output": "4" }, { "input": "18\n-21 12 65 66 -24 62 82 35 -45 -47 28 37 5 -32 22 -14 -69 -95", "output": "761" }, { "input": "4\n-1 1 -1 1", "output": "4" }, { "input": "5\n-1 2 1 1 1", "output": "6" }, { "input": "3\n1 1 1", "output": "3" } ]
1,578,050,659
2,147,483,647
Python 3
OK
TESTS
72
124
0
if __name__ == '__main__': # n, a, b = map(int, input().split()) n = int(input()) arrs = map(int, input().split()) b = [] c = [] for num in arrs: if num >= 0: b.append(num) else: c.append(num) print(sum(b) - sum(c))
Title: Partition Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a sequence *a* consisting of *n* integers. You may partition this sequence into two sequences *b* and *c* in such a way that every element belongs exactly to one of these sequences. Let *B* be the sum of elements belonging to *b*, and *C* be the sum of elements belonging to *c* (if some of these sequences is empty, then its sum is 0). What is the maximum possible value of *B*<=-<=*C*? Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in *a*. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (<=-<=100<=≤<=*a**i*<=≤<=100) — the elements of sequence *a*. Output Specification: Print the maximum possible value of *B*<=-<=*C*, where *B* is the sum of elements of sequence *b*, and *C* is the sum of elements of sequence *c*. Demo Input: ['3\n1 -2 0\n', '6\n16 23 16 15 42 8\n'] Demo Output: ['3\n', '120\n'] Note: In the first example we may choose *b* = {1, 0}, *c* = { - 2}. Then *B* = 1, *C* =  - 2, *B* - *C* = 3. In the second example we choose *b* = {16, 23, 16, 15, 42, 8}, *c* = {} (an empty sequence). Then *B* = 120, *C* = 0, *B* - *C* = 120.
```python if __name__ == '__main__': # n, a, b = map(int, input().split()) n = int(input()) arrs = map(int, input().split()) b = [] c = [] for num in arrs: if num >= 0: b.append(num) else: c.append(num) print(sum(b) - sum(c)) ```
3
340
A
The Wall
PROGRAMMING
1,200
[ "math" ]
null
null
Iahub and his friend Floyd have started painting a wall. Iahub is painting the wall red and Floyd is painting it pink. You can consider the wall being made of a very large number of bricks, numbered 1, 2, 3 and so on. Iahub has the following scheme of painting: he skips *x*<=-<=1 consecutive bricks, then he paints the *x*-th one. That is, he'll paint bricks *x*, 2·*x*, 3·*x* and so on red. Similarly, Floyd skips *y*<=-<=1 consecutive bricks, then he paints the *y*-th one. Hence he'll paint bricks *y*, 2·*y*, 3·*y* and so on pink. After painting the wall all day, the boys observed that some bricks are painted both red and pink. Iahub has a lucky number *a* and Floyd has a lucky number *b*. Boys wonder how many bricks numbered no less than *a* and no greater than *b* are painted both red and pink. This is exactly your task: compute and print the answer to the question.
The input will have a single line containing four integers in this order: *x*, *y*, *a*, *b*. (1<=≤<=*x*,<=*y*<=≤<=1000, 1<=≤<=*a*,<=*b*<=≤<=2·109, *a*<=≤<=*b*).
Output a single integer — the number of bricks numbered no less than *a* and no greater than *b* that are painted both red and pink.
[ "2 3 6 18\n" ]
[ "3" ]
Let's look at the bricks from *a* to *b* (*a* = 6, *b* = 18). The bricks colored in red are numbered 6, 8, 10, 12, 14, 16, 18. The bricks colored in pink are numbered 6, 9, 12, 15, 18. The bricks colored in both red and pink are numbered with 6, 12 and 18.
500
[ { "input": "2 3 6 18", "output": "3" }, { "input": "4 6 20 201", "output": "15" }, { "input": "15 27 100 10000", "output": "74" }, { "input": "105 60 3456 78910", "output": "179" }, { "input": "1 1 1000 100000", "output": "99001" }, { "input": "3 2 5 5", "output": "0" }, { "input": "555 777 1 1000000", "output": "257" }, { "input": "1000 1000 1 32323", "output": "32" }, { "input": "45 125 93451125 100000000", "output": "5821" }, { "input": "101 171 1 1000000000", "output": "57900" }, { "input": "165 255 69696 1000000000", "output": "356482" }, { "input": "555 777 666013 1000000000", "output": "257229" }, { "input": "23 46 123321 900000000", "output": "19562537" }, { "input": "321 123 15 1000000", "output": "75" }, { "input": "819 1000 9532 152901000", "output": "186" }, { "input": "819 1000 10000 1000000", "output": "1" }, { "input": "1 1 1 1", "output": "1" }, { "input": "1 2 2 1000003", "output": "500001" }, { "input": "1 1 1 1000000000", "output": "1000000000" }, { "input": "10 15 69 195610342", "output": "6520342" }, { "input": "2 1 1 1000000000", "output": "500000000" }, { "input": "1000 1000 1 20", "output": "0" }, { "input": "1 1 1 2000000000", "output": "2000000000" }, { "input": "1 2 1 2000000000", "output": "1000000000" }, { "input": "2 1 1 2000000000", "output": "1000000000" }, { "input": "2 3 1 1000000000", "output": "166666666" }, { "input": "2 3 1 2000000000", "output": "333333333" }, { "input": "3 7 1 1000000000", "output": "47619047" }, { "input": "1 1 1000000000 2000000000", "output": "1000000001" }, { "input": "2 2 1 2000000000", "output": "1000000000" }, { "input": "1 1 2 2000000000", "output": "1999999999" }, { "input": "3 2 1 2000000000", "output": "333333333" }, { "input": "1 1 2000000000 2000000000", "output": "1" }, { "input": "2 3 7 7", "output": "0" }, { "input": "3 3 3 7", "output": "2" } ]
1,520,522,438
2,147,483,647
Python 3
OK
TESTS
35
124
5,632,000
def gcd(a,b): while b: a,b=b,a%b return a x,y,a,b=map(int,input().split()) k=(x*y)//gcd(x,y) m=int(a%k==0) print((b//k)-(a//k)+m)
Title: The Wall Time Limit: None seconds Memory Limit: None megabytes Problem Description: Iahub and his friend Floyd have started painting a wall. Iahub is painting the wall red and Floyd is painting it pink. You can consider the wall being made of a very large number of bricks, numbered 1, 2, 3 and so on. Iahub has the following scheme of painting: he skips *x*<=-<=1 consecutive bricks, then he paints the *x*-th one. That is, he'll paint bricks *x*, 2·*x*, 3·*x* and so on red. Similarly, Floyd skips *y*<=-<=1 consecutive bricks, then he paints the *y*-th one. Hence he'll paint bricks *y*, 2·*y*, 3·*y* and so on pink. After painting the wall all day, the boys observed that some bricks are painted both red and pink. Iahub has a lucky number *a* and Floyd has a lucky number *b*. Boys wonder how many bricks numbered no less than *a* and no greater than *b* are painted both red and pink. This is exactly your task: compute and print the answer to the question. Input Specification: The input will have a single line containing four integers in this order: *x*, *y*, *a*, *b*. (1<=≤<=*x*,<=*y*<=≤<=1000, 1<=≤<=*a*,<=*b*<=≤<=2·109, *a*<=≤<=*b*). Output Specification: Output a single integer — the number of bricks numbered no less than *a* and no greater than *b* that are painted both red and pink. Demo Input: ['2 3 6 18\n'] Demo Output: ['3'] Note: Let's look at the bricks from *a* to *b* (*a* = 6, *b* = 18). The bricks colored in red are numbered 6, 8, 10, 12, 14, 16, 18. The bricks colored in pink are numbered 6, 9, 12, 15, 18. The bricks colored in both red and pink are numbered with 6, 12 and 18.
```python def gcd(a,b): while b: a,b=b,a%b return a x,y,a,b=map(int,input().split()) k=(x*y)//gcd(x,y) m=int(a%k==0) print((b//k)-(a//k)+m) ```
3
787
A
The Monster
PROGRAMMING
1,200
[ "brute force", "math", "number theory" ]
null
null
A monster is chasing after Rick and Morty on another planet. They're so frightened that sometimes they scream. More accurately, Rick screams at times *b*,<=*b*<=+<=*a*,<=*b*<=+<=2*a*,<=*b*<=+<=3*a*,<=... and Morty screams at times *d*,<=*d*<=+<=*c*,<=*d*<=+<=2*c*,<=*d*<=+<=3*c*,<=.... The Monster will catch them if at any point they scream at the same time, so it wants to know when it will catch them (the first time they scream at the same time) or that they will never scream at the same time.
The first line of input contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100). The second line contains two integers *c* and *d* (1<=≤<=*c*,<=*d*<=≤<=100).
Print the first time Rick and Morty will scream at the same time, or <=-<=1 if they will never scream at the same time.
[ "20 2\n9 19\n", "2 1\n16 12\n" ]
[ "82\n", "-1\n" ]
In the first sample testcase, Rick's 5th scream and Morty's 8th time are at time 82. In the second sample testcase, all Rick's screams will be at odd times and Morty's will be at even times, so they will never scream at the same time.
500
[ { "input": "20 2\n9 19", "output": "82" }, { "input": "2 1\n16 12", "output": "-1" }, { "input": "39 52\n88 78", "output": "1222" }, { "input": "59 96\n34 48", "output": "1748" }, { "input": "87 37\n91 29", "output": "211" }, { "input": "11 81\n49 7", "output": "301" }, { "input": "39 21\n95 89", "output": "3414" }, { "input": "59 70\n48 54", "output": "1014" }, { "input": "87 22\n98 32", "output": "718" }, { "input": "15 63\n51 13", "output": "-1" }, { "input": "39 7\n97 91", "output": "1255" }, { "input": "18 18\n71 71", "output": "1278" }, { "input": "46 71\n16 49", "output": "209" }, { "input": "70 11\n74 27", "output": "2321" }, { "input": "94 55\n20 96", "output": "-1" }, { "input": "18 4\n77 78", "output": "1156" }, { "input": "46 44\n23 55", "output": "-1" }, { "input": "74 88\n77 37", "output": "1346" }, { "input": "94 37\n34 7", "output": "789" }, { "input": "22 81\n80 88", "output": "-1" }, { "input": "46 30\n34 62", "output": "674" }, { "input": "40 4\n81 40", "output": "364" }, { "input": "69 48\n39 9", "output": "48" }, { "input": "89 93\n84 87", "output": "5967" }, { "input": "17 45\n42 65", "output": "317" }, { "input": "41 85\n95 46", "output": "331" }, { "input": "69 30\n41 16", "output": "1410" }, { "input": "93 74\n99 93", "output": "-1" }, { "input": "17 19\n44 75", "output": "427" }, { "input": "45 63\n98 53", "output": "3483" }, { "input": "69 11\n48 34", "output": "-1" }, { "input": "55 94\n3 96", "output": "204" }, { "input": "100 100\n100 100", "output": "100" }, { "input": "1 1\n1 1", "output": "1" }, { "input": "1 1\n1 100", "output": "100" }, { "input": "1 100\n100 1", "output": "101" }, { "input": "98 1\n99 100", "output": "9703" }, { "input": "98 1\n99 2", "output": "9605" }, { "input": "97 2\n99 100", "output": "4852" }, { "input": "3 3\n3 1", "output": "-1" }, { "input": "3 2\n7 2", "output": "2" }, { "input": "2 3\n2 5", "output": "5" }, { "input": "2 3\n2 3", "output": "3" }, { "input": "100 3\n100 5", "output": "-1" }, { "input": "6 10\n12 14", "output": "-1" }, { "input": "4 2\n4 4", "output": "-1" }, { "input": "2 3\n2 2", "output": "-1" }, { "input": "2 3\n4 99", "output": "99" }, { "input": "1 5\n1 5", "output": "5" }, { "input": "1 100\n3 1", "output": "100" }, { "input": "2 2\n2 1", "output": "-1" }, { "input": "2 10\n6 20", "output": "20" }, { "input": "2 2\n2 10", "output": "10" }, { "input": "3 7\n3 6", "output": "-1" }, { "input": "1 100\n1 100", "output": "100" }, { "input": "7 25\n39 85", "output": "319" }, { "input": "84 82\n38 6", "output": "82" }, { "input": "7 7\n7 14", "output": "14" } ]
1,552,765,889
269
PyPy 3
WRONG_ANSWER
TESTS
34
140
0
a, b = map(int, input().split()) c, d = map(int, input().split()) for i in range(b, 1000000, a): if i % c == d % c: print(i) exit(0) print(-1)
Title: The Monster Time Limit: None seconds Memory Limit: None megabytes Problem Description: A monster is chasing after Rick and Morty on another planet. They're so frightened that sometimes they scream. More accurately, Rick screams at times *b*,<=*b*<=+<=*a*,<=*b*<=+<=2*a*,<=*b*<=+<=3*a*,<=... and Morty screams at times *d*,<=*d*<=+<=*c*,<=*d*<=+<=2*c*,<=*d*<=+<=3*c*,<=.... The Monster will catch them if at any point they scream at the same time, so it wants to know when it will catch them (the first time they scream at the same time) or that they will never scream at the same time. Input Specification: The first line of input contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100). The second line contains two integers *c* and *d* (1<=≤<=*c*,<=*d*<=≤<=100). Output Specification: Print the first time Rick and Morty will scream at the same time, or <=-<=1 if they will never scream at the same time. Demo Input: ['20 2\n9 19\n', '2 1\n16 12\n'] Demo Output: ['82\n', '-1\n'] Note: In the first sample testcase, Rick's 5th scream and Morty's 8th time are at time 82. In the second sample testcase, all Rick's screams will be at odd times and Morty's will be at even times, so they will never scream at the same time.
```python a, b = map(int, input().split()) c, d = map(int, input().split()) for i in range(b, 1000000, a): if i % c == d % c: print(i) exit(0) print(-1) ```
0
82
A
Double Cola
PROGRAMMING
1,100
[ "implementation", "math" ]
A. Double Cola
1
256
Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a "Double Cola" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum. For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny. Write a program that will print the name of a man who will drink the *n*-th can. Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon.
The input data consist of a single integer *n* (1<=≤<=*n*<=≤<=109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers.
Print the single line — the name of the person who drinks the *n*-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: "Sheldon", "Leonard", "Penny", "Rajesh", "Howard" (without the quotes). In that order precisely the friends are in the queue initially.
[ "1\n", "6\n", "1802\n" ]
[ "Sheldon\n", "Sheldon\n", "Penny\n" ]
none
500
[ { "input": "1", "output": "Sheldon" }, { "input": "6", "output": "Sheldon" }, { "input": "1802", "output": "Penny" }, { "input": "1", "output": "Sheldon" }, { "input": "2", "output": "Leonard" }, { "input": "3", "output": "Penny" }, { "input": "4", "output": "Rajesh" }, { "input": "5", "output": "Howard" }, { "input": "10", "output": "Penny" }, { "input": "534", "output": "Rajesh" }, { "input": "5033", "output": "Howard" }, { "input": "10010", "output": "Howard" }, { "input": "500000000", "output": "Penny" }, { "input": "63", "output": "Rajesh" }, { "input": "841", "output": "Leonard" }, { "input": "3667", "output": "Penny" }, { "input": "38614", "output": "Howard" }, { "input": "282798", "output": "Rajesh" }, { "input": "9266286", "output": "Rajesh" }, { "input": "27385966", "output": "Leonard" }, { "input": "121580142", "output": "Penny" }, { "input": "5", "output": "Howard" }, { "input": "300", "output": "Howard" }, { "input": "1745", "output": "Leonard" }, { "input": "8302", "output": "Rajesh" }, { "input": "184518", "output": "Sheldon" }, { "input": "1154414", "output": "Rajesh" }, { "input": "28643950", "output": "Leonard" }, { "input": "159222638", "output": "Howard" }, { "input": "24", "output": "Penny" }, { "input": "505", "output": "Penny" }, { "input": "4425", "output": "Rajesh" }, { "input": "12079", "output": "Sheldon" }, { "input": "469726", "output": "Penny" }, { "input": "3961838", "output": "Penny" }, { "input": "57710446", "output": "Leonard" }, { "input": "80719470", "output": "Howard" }, { "input": "1000000000", "output": "Penny" }, { "input": "999999999", "output": "Penny" }, { "input": "999999998", "output": "Penny" }, { "input": "5", "output": "Howard" } ]
1,685,167,878
2,147,483,647
Python 3
OK
TESTS
41
46
0
target = int(input()) multiplier = 1 index = 0 q = ["Sheldon", "Leonard", "Penny", "Rajesh", "Howard"] while target > 0: index = 0 for i in range(5): target -= multiplier if target <= 0: break index += 1 multiplier *= 2 print(q[index])
Title: Double Cola Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a "Double Cola" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum. For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny. Write a program that will print the name of a man who will drink the *n*-th can. Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon. Input Specification: The input data consist of a single integer *n* (1<=≤<=*n*<=≤<=109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers. Output Specification: Print the single line — the name of the person who drinks the *n*-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: "Sheldon", "Leonard", "Penny", "Rajesh", "Howard" (without the quotes). In that order precisely the friends are in the queue initially. Demo Input: ['1\n', '6\n', '1802\n'] Demo Output: ['Sheldon\n', 'Sheldon\n', 'Penny\n'] Note: none
```python target = int(input()) multiplier = 1 index = 0 q = ["Sheldon", "Leonard", "Penny", "Rajesh", "Howard"] while target > 0: index = 0 for i in range(5): target -= multiplier if target <= 0: break index += 1 multiplier *= 2 print(q[index]) ```
3.977
18
D
Seller Bob
PROGRAMMING
2,000
[ "brute force", "dp", "greedy" ]
D. Seller Bob
2
128
Last year Bob earned by selling memory sticks. During each of *n* days of his work one of the two following events took place: - A customer came to Bob and asked to sell him a 2*x* MB memory stick. If Bob had such a stick, he sold it and got 2*x* berllars. - Bob won some programming competition and got a 2*x* MB memory stick as a prize. Bob could choose whether to present this memory stick to one of his friends, or keep it. Bob never kept more than one memory stick, as he feared to mix up their capacities, and deceive a customer unintentionally. It is also known that for each memory stick capacity there was at most one customer, who wanted to buy that memory stick. Now, knowing all the customers' demands and all the prizes won at programming competitions during the last *n* days, Bob wants to know, how much money he could have earned, if he had acted optimally.
The first input line contains number *n* (1<=≤<=*n*<=≤<=5000) — amount of Bob's working days. The following *n* lines contain the description of the days. Line sell x stands for a day when a customer came to Bob to buy a 2*x* MB memory stick (0<=≤<=*x*<=≤<=2000). It's guaranteed that for each *x* there is not more than one line sell x. Line win x stands for a day when Bob won a 2*x* MB memory stick (0<=≤<=*x*<=≤<=2000).
Output the maximum possible earnings for Bob in berllars, that he would have had if he had known all the events beforehand. Don't forget, please, that Bob can't keep more than one memory stick at a time.
[ "7\nwin 10\nwin 5\nwin 3\nsell 5\nsell 3\nwin 10\nsell 10\n", "3\nwin 5\nsell 6\nsell 4\n" ]
[ "1056\n", "0\n" ]
none
0
[ { "input": "7\nwin 10\nwin 5\nwin 3\nsell 5\nsell 3\nwin 10\nsell 10", "output": "1056" }, { "input": "3\nwin 5\nsell 6\nsell 4", "output": "0" }, { "input": "60\nwin 30\nsell 30\nwin 29\nsell 29\nwin 28\nsell 28\nwin 27\nsell 27\nwin 26\nsell 26\nwin 25\nsell 25\nwin 24\nsell 24\nwin 23\nsell 23\nwin 22\nsell 22\nwin 21\nsell 21\nwin 20\nsell 20\nwin 19\nsell 19\nwin 18\nsell 18\nwin 17\nsell 17\nwin 16\nsell 16\nwin 15\nsell 15\nwin 14\nsell 14\nwin 13\nsell 13\nwin 12\nsell 12\nwin 11\nsell 11\nwin 10\nsell 10\nwin 9\nsell 9\nwin 8\nsell 8\nwin 7\nsell 7\nwin 6\nsell 6\nwin 5\nsell 5\nwin 4\nsell 4\nwin 3\nsell 3\nwin 2\nsell 2\nwin 1\nsell 1", "output": "2147483646" }, { "input": "10\nsell 179\nwin 1278\nsell 1278\nwin 179\nwin 788\nsell 788\nwin 1819\nwin 1278\nsell 1454\nsell 1819", "output": "3745951177859672748085876072016755224158263650470541376602416977749506433342393741012551962469399005106980957564747771946546075632634156222832360666586993197712597743102870994304893421406288896658113922358079050393796282759740479830789771109056742931607432542704338811780614109483471170758503563410473205320757445249359340913055427891395101189449739249593088482768598397566812797391842205760535689034164783939977837838115215972505331175064745799973957898910533590618104893265678599370512439216359131269814745054..." }, { "input": "10\nsell 573\nwin 1304\nsell 278\nwin 1631\nsell 1225\nsell 1631\nsell 177\nwin 1631\nwin 177\nsell 1304", "output": "95482312335125227379668481690754940528280513838693267460502082967052005332103697568042408703168913727303170456338425853153094403747135188778307041838920404959089576368946137708987138986696495077466398994298434148881715073638178666201165545650953479735059082316661443204882826188032944866093372620219104327689636641547141835841165681118172603993695103043804276669836594061369229043451067647935298287687852302215923887110435577776767805943668204998410716005202198549540411238299513630278811648" }, { "input": "10\nwin 1257\nwin 1934\nsell 1934\nsell 1257\nwin 1934\nwin 1257\nsell 495\nwin 495\nwin 495\nwin 1257", "output": "1556007242642049292787218246793379348327505438878680952714050868520307364441227819009733220897932984584977593931988662671459594674963394056587723382487766303981362587048873128400436836690128983570130687310221668877557121158055843621982630476422478413285775826498536883275291967793661985813155062733063913176306327509625594121241472451054995889483447103432414676059872469910105149496451402271546454282618581884282152530090816240540173251729211604658704990425330422792556824836640431985211146197816770068601144273..." }, { "input": "10\nsell 1898\nsell 173\nsell 1635\nsell 29\nsell 881\nsell 434\nsell 1236\nsell 14\nwin 29\nsell 1165", "output": "0" }, { "input": "50\nwin 1591\nwin 312\nwin 1591\nwin 1277\nwin 1732\nwin 1277\nwin 312\nwin 1591\nwin 210\nwin 1591\nwin 210\nsell 1732\nwin 312\nwin 1732\nwin 210\nwin 1591\nwin 312\nwin 210\nwin 1732\nwin 1732\nwin 1591\nwin 1732\nwin 312\nwin 1732\nsell 1277\nwin 1732\nwin 210\nwin 1277\nwin 1277\nwin 312\nwin 1732\nsell 312\nsell 1591\nwin 312\nsell 210\nwin 1732\nwin 312\nwin 210\nwin 1591\nwin 1591\nwin 1732\nwin 210\nwin 1591\nwin 312\nwin 1277\nwin 1591\nwin 210\nwin 1277\nwin 1732\nwin 312", "output": "2420764210856015331214801822295882718446835865177072936070024961324113887299407742968459201784200628346247573017634417460105466317641563795817074771860850712020768123310899251645626280515264270127874292153603360689565451372953171008749749476807656127914801962353129980445541683621172887240439496869443980760905844921588668701053404581445092887732985786593080332302468009347364906506742888063949158794894756704243685813947581549214136427388148927087858952333440295415050590550479915766637705353193400817849524933..." }, { "input": "50\nwin 596\nwin 1799\nwin 1462\nsell 460\nwin 731\nwin 723\nwin 731\nwin 329\nwin 838\nsell 728\nwin 728\nwin 460\nwin 723\nwin 1462\nwin 1462\nwin 460\nwin 329\nwin 1462\nwin 460\nwin 460\nwin 723\nwin 731\nwin 723\nwin 596\nwin 731\nwin 596\nwin 329\nwin 728\nwin 715\nwin 329\nwin 1799\nwin 715\nwin 723\nwin 728\nwin 1462\nwin 596\nwin 728\nsell 1462\nsell 731\nsell 723\nsell 596\nsell 1799\nwin 715\nsell 329\nsell 715\nwin 731\nwin 596\nwin 596\nwin 1799\nsell 838", "output": "3572417428836510418020130226151232933195365572424451233484665849446779664366143933308174097508811001879673917355296871134325099594720989439804421106898301313126179907518635998806895566124222305730664245219198882158809677890894851351153171006242601699481340338225456896495739360268670655803862712132671163869311331357956008411198419420320449558787147867731519734760711196755523479867536729489438488681378976579126837971468043235641314636566999618274861697304906262004280314028540891222536060126170572182168995779..." }, { "input": "50\nwin 879\nwin 1153\nwin 1469\nwin 157\nwin 827\nwin 679\nsell 1229\nwin 454\nsell 879\nsell 1222\nwin 924\nwin 827\nsell 1366\nwin 879\nsell 754\nwin 1153\nwin 679\nwin 1185\nsell 1469\nsell 454\nsell 679\nsell 1153\nwin 1469\nwin 827\nwin 1469\nwin 1024\nwin 1222\nsell 157\nsell 1185\nsell 827\nwin 1469\nsell 1569\nwin 754\nsell 1024\nwin 924\nwin 924\nsell 1876\nsell 479\nsell 435\nwin 754\nwin 174\nsell 174\nsell 147\nsell 924\nwin 1469\nwin 1876\nwin 1229\nwin 1469\nwin 1222\nwin 157", "output": "16332912310228701097717316802721870128775022868221080314403305773060286348016616983179506327297989866534783694332203603069900790667846028602603898749788769867206327097934433881603593880774778104853105937620753202513845830781396468839434689035327911539335925798473899153215505268301939672678983012311225261177070282290958328569587449928340374890197297462448526671963786572758011646874155763250281850311510811863346015732742889066278088442118144" }, { "input": "50\nsell 1549\nwin 1168\nsell 1120\nwin 741\nsell 633\nwin 274\nsell 1936\nwin 1168\nsell 614\nwin 33\nsell 1778\nwin 127\nsell 1168\nwin 33\nwin 633\nsell 1474\nwin 518\nwin 1685\nsell 1796\nsell 741\nsell 485\nwin 747\nsell 588\nsell 1048\nwin 1580\nwin 60\nsell 1685\nsell 1580\nsell 1535\nwin 485\nsell 31\nsell 747\nsell 1473\nsell 518\nwin 633\nsell 1313\nwin 1580\nsell 1560\nsell 127\nsell 274\nwin 123\nwin 31\nsell 123\nsell 33\nwin 1778\nsell 1834\nsell 60\nsell 1751\nsell 1287\nwin 1549", "output": "1720056425011773151265118871077591733216276990085092619030835675616738576936900493041118761959770055340668032173576279597675976622004777210845027112875371906527379337573212312341811682481516081119925150514042583039122963732518350292624889782510925425243478590699982487521431988980734651291693696303059520879874887472437061826782122289965998009474317347011699360401227487786089319043200666474560882786695043543699741809763479940250459103751744852630592882730442346682844070898735881280272505893611419620868096" }, { "input": "1\nsell 2000", "output": "0" }, { "input": "1\nwin 2000", "output": "0" }, { "input": "2\nwin 2000\nsell 2000", "output": "1148130695274254524232833201177681984022317702088695200477642736825766261392370313856659486316506269918445964638987462773447118960863055331425931356166653185391299891453122800006887791482400448714289269900634862447816154636463883639473170260404663539709049965581623988089446296056233116495361642219703326813441689089844585056023794848079140589009347765004290027167066258305220081322362812917612678833172065989953964181270217798584040421598531832515408894339020919205549577835896720391600819572166305827553804255..." } ]
1,584,887,243
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
186
307,200
import math if __name__ == '__main__': n = int(input()) win = [[]] sell = [0]*5000 res = 0 for i in range(n): temp = input().split() s = temp[0] x = int(temp[1]) if s == "sell": sell[x] = i if s == "win": win.append([x, i]) used = [0]*5005 win.sort(reverse=True) for i in range(len(win)-1): temp = win[i] f = temp[0] idx = temp[1] if sell[f] > idx and used[sell[f]] == 0 and used[idx] == 0: for j in range(idx,sell[f]+1): used[j] = 1 res += 2**f print(res) # Sun Mar 22 2020 17:27:22 GMT+0300 (MSK)
Title: Seller Bob Time Limit: 2 seconds Memory Limit: 128 megabytes Problem Description: Last year Bob earned by selling memory sticks. During each of *n* days of his work one of the two following events took place: - A customer came to Bob and asked to sell him a 2*x* MB memory stick. If Bob had such a stick, he sold it and got 2*x* berllars. - Bob won some programming competition and got a 2*x* MB memory stick as a prize. Bob could choose whether to present this memory stick to one of his friends, or keep it. Bob never kept more than one memory stick, as he feared to mix up their capacities, and deceive a customer unintentionally. It is also known that for each memory stick capacity there was at most one customer, who wanted to buy that memory stick. Now, knowing all the customers' demands and all the prizes won at programming competitions during the last *n* days, Bob wants to know, how much money he could have earned, if he had acted optimally. Input Specification: The first input line contains number *n* (1<=≤<=*n*<=≤<=5000) — amount of Bob's working days. The following *n* lines contain the description of the days. Line sell x stands for a day when a customer came to Bob to buy a 2*x* MB memory stick (0<=≤<=*x*<=≤<=2000). It's guaranteed that for each *x* there is not more than one line sell x. Line win x stands for a day when Bob won a 2*x* MB memory stick (0<=≤<=*x*<=≤<=2000). Output Specification: Output the maximum possible earnings for Bob in berllars, that he would have had if he had known all the events beforehand. Don't forget, please, that Bob can't keep more than one memory stick at a time. Demo Input: ['7\nwin 10\nwin 5\nwin 3\nsell 5\nsell 3\nwin 10\nsell 10\n', '3\nwin 5\nsell 6\nsell 4\n'] Demo Output: ['1056\n', '0\n'] Note: none
```python import math if __name__ == '__main__': n = int(input()) win = [[]] sell = [0]*5000 res = 0 for i in range(n): temp = input().split() s = temp[0] x = int(temp[1]) if s == "sell": sell[x] = i if s == "win": win.append([x, i]) used = [0]*5005 win.sort(reverse=True) for i in range(len(win)-1): temp = win[i] f = temp[0] idx = temp[1] if sell[f] > idx and used[sell[f]] == 0 and used[idx] == 0: for j in range(idx,sell[f]+1): used[j] = 1 res += 2**f print(res) # Sun Mar 22 2020 17:27:22 GMT+0300 (MSK) ```
0
664
A
Complicated GCD
PROGRAMMING
800
[ "math", "number theory" ]
null
null
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm. Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100 — such number do not fit even in 64-bit integer type!
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10100).
Output one integer — greatest common divisor of all integers from *a* to *b* inclusive.
[ "1 2\n", "61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n" ]
[ "1\n", "61803398874989484820458683436563811772030917980576\n" ]
none
500
[ { "input": "1 2", "output": "1" }, { "input": "61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576", "output": "61803398874989484820458683436563811772030917980576" }, { "input": "1 100", "output": "1" }, { "input": "100 100000", "output": "1" }, { "input": "12345 67890123456789123457", "output": "1" }, { "input": "1 1", "output": "1" }, { "input": "2 2", "output": "2" }, { "input": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158 8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158", "output": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158" }, { "input": "1 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1" }, { "input": "8328748239473982794239847237438782379810988324751 9328748239473982794239847237438782379810988324751", "output": "1" }, { "input": "1029398958432734901284327523909481928483573793 1029398958432734901284327523909481928483573794", "output": "1" }, { "input": "10000 1000000000", "output": "1" }, { "input": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000" }, { "input": "11210171722243 65715435710585778347", "output": "1" }, { "input": "2921881079263974825226940825843 767693191032295360887755303860323261471", "output": "1" }, { "input": "8025352957265704896940312528736939363590612908210603 96027920417708260814607687034511406492969694925539085", "output": "1" }, { "input": "23510978780782786207241069904470895053213996267165977112058175452757132930 210352653280909370107314249722987050753257161175393375412301228883856435481424", "output": "1" }, { "input": "8150070767079366215626260746398623663859344142817267779361251788637547414925170226504788118262 49924902262298336032630839998470954964895251605110946547855439236151401194070172107435992986913614", "output": "1" }, { "input": "15943150466658398903 15943150466658398903", "output": "15943150466658398903" }, { "input": "410470228200245407491525399055972 410470228200245407491525399055972", "output": "410470228200245407491525399055972" }, { "input": "51894705655711504622197349350106792045098781545973899451307 51894705655711504622197349350106792045098781545973899451307", "output": "51894705655711504622197349350106792045098781545973899451307" }, { "input": "60353594589897438036015726222485085035927634677598681595162804007836722215668410 60353594589897438036015726222485085035927634677598681595162804007836722215668410", "output": "60353594589897438036015726222485085035927634677598681595162804007836722215668410" }, { "input": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535 761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535", "output": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535" }, { "input": "1 2000000000", "output": "1" }, { "input": "13 1928834874", "output": "1" }, { "input": "87 2938984237482934238", "output": "1" }, { "input": "213 413", "output": "1" }, { "input": "3 4", "output": "1" } ]
1,696,391,773
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
30
0
def GCD (a,b): if b > a: temp = a a = b b = temp c = a % b while(c > 0): a = b b = c c = a % b return b bruh = input().split() a = int(bruh[0]) b = int(bruh[1]) ans = GCD(a,b) print(ans)
Title: Complicated GCD Time Limit: None seconds Memory Limit: None megabytes Problem Description: Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm. Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100 — such number do not fit even in 64-bit integer type! Input Specification: The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10100). Output Specification: Output one integer — greatest common divisor of all integers from *a* to *b* inclusive. Demo Input: ['1 2\n', '61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n'] Demo Output: ['1\n', '61803398874989484820458683436563811772030917980576\n'] Note: none
```python def GCD (a,b): if b > a: temp = a a = b b = temp c = a % b while(c > 0): a = b b = c c = a % b return b bruh = input().split() a = int(bruh[0]) b = int(bruh[1]) ans = GCD(a,b) print(ans) ```
0
959
A
Mahmoud and Ehab and the even-odd game
PROGRAMMING
800
[ "games", "math" ]
null
null
Mahmoud and Ehab play a game called the even-odd game. Ehab chooses his favorite integer *n* and then they take turns, starting from Mahmoud. In each player's turn, he has to choose an integer *a* and subtract it from *n* such that: - 1<=≤<=*a*<=≤<=*n*. - If it's Mahmoud's turn, *a* has to be even, but if it's Ehab's turn, *a* has to be odd. If the current player can't choose any number satisfying the conditions, he loses. Can you determine the winner if they both play optimally?
The only line contains an integer *n* (1<=≤<=*n*<=≤<=109), the number at the beginning of the game.
Output "Mahmoud" (without quotes) if Mahmoud wins and "Ehab" (without quotes) otherwise.
[ "1\n", "2\n" ]
[ "Ehab", "Mahmoud" ]
In the first sample, Mahmoud can't choose any integer *a* initially because there is no positive even integer less than or equal to 1 so Ehab wins. In the second sample, Mahmoud has to choose *a* = 2 and subtract it from *n*. It's Ehab's turn and *n* = 0. There is no positive odd integer less than or equal to 0 so Mahmoud wins.
500
[ { "input": "1", "output": "Ehab" }, { "input": "2", "output": "Mahmoud" }, { "input": "10000", "output": "Mahmoud" }, { "input": "33333", "output": "Ehab" }, { "input": "5", "output": "Ehab" }, { "input": "1000000000", "output": "Mahmoud" }, { "input": "999999999", "output": "Ehab" }, { "input": "123123123", "output": "Ehab" }, { "input": "22222221", "output": "Ehab" }, { "input": "22222220", "output": "Mahmoud" }, { "input": "3", "output": "Ehab" }, { "input": "4", "output": "Mahmoud" }, { "input": "6", "output": "Mahmoud" }, { "input": "7", "output": "Ehab" }, { "input": "8", "output": "Mahmoud" }, { "input": "9", "output": "Ehab" }, { "input": "10", "output": "Mahmoud" }, { "input": "536870912", "output": "Mahmoud" }, { "input": "536870913", "output": "Ehab" }, { "input": "536870911", "output": "Ehab" } ]
1,631,613,761
2,147,483,647
Python 3
OK
TESTS
20
62
7,065,600
#!/usr/bin/env python import sys, math, itertools if __name__ == '__main__': wtf = sys.stdin.read() wtf = wtf.strip().split('\n') n = int(wtf[0]) ans = ["Mahmoud", "Ehab"] ct = 0 while n > 0: if ct == 0: if n % 2 == 0: print(ans[ct]) break else: if n - 2 > 0: n -= 2 ct = 1 else: if n % 2 != 0: print(ans[ct]) break else: if n - 1 > 0: n -= 1 ct = 0
Title: Mahmoud and Ehab and the even-odd game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mahmoud and Ehab play a game called the even-odd game. Ehab chooses his favorite integer *n* and then they take turns, starting from Mahmoud. In each player's turn, he has to choose an integer *a* and subtract it from *n* such that: - 1<=≤<=*a*<=≤<=*n*. - If it's Mahmoud's turn, *a* has to be even, but if it's Ehab's turn, *a* has to be odd. If the current player can't choose any number satisfying the conditions, he loses. Can you determine the winner if they both play optimally? Input Specification: The only line contains an integer *n* (1<=≤<=*n*<=≤<=109), the number at the beginning of the game. Output Specification: Output "Mahmoud" (without quotes) if Mahmoud wins and "Ehab" (without quotes) otherwise. Demo Input: ['1\n', '2\n'] Demo Output: ['Ehab', 'Mahmoud'] Note: In the first sample, Mahmoud can't choose any integer *a* initially because there is no positive even integer less than or equal to 1 so Ehab wins. In the second sample, Mahmoud has to choose *a* = 2 and subtract it from *n*. It's Ehab's turn and *n* = 0. There is no positive odd integer less than or equal to 0 so Mahmoud wins.
```python #!/usr/bin/env python import sys, math, itertools if __name__ == '__main__': wtf = sys.stdin.read() wtf = wtf.strip().split('\n') n = int(wtf[0]) ans = ["Mahmoud", "Ehab"] ct = 0 while n > 0: if ct == 0: if n % 2 == 0: print(ans[ct]) break else: if n - 2 > 0: n -= 2 ct = 1 else: if n % 2 != 0: print(ans[ct]) break else: if n - 1 > 0: n -= 1 ct = 0 ```
3
344
A
Magnets
PROGRAMMING
800
[ "implementation" ]
null
null
Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn't need dominoes, though: he uses rectangular magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a close distance, then the like poles will repel each other and the opposite poles will attract each other. Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own. Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed.
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100000) — the number of magnets. Then *n* lines follow. The *i*-th line (1<=≤<=*i*<=≤<=*n*) contains either characters "01", if Mike put the *i*-th magnet in the "plus-minus" position, or characters "10", if Mike put the magnet in the "minus-plus" position.
On the single line of the output print the number of groups of magnets.
[ "6\n10\n10\n10\n01\n10\n10\n", "4\n01\n01\n10\n10\n" ]
[ "3\n", "2\n" ]
The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets. The second testcase has two groups, each consisting of two magnets.
500
[ { "input": "6\n10\n10\n10\n01\n10\n10", "output": "3" }, { "input": "4\n01\n01\n10\n10", "output": "2" }, { "input": "1\n10", "output": "1" }, { "input": "2\n01\n10", "output": "2" }, { "input": "2\n10\n10", "output": "1" }, { "input": "3\n10\n01\n10", "output": "3" }, { "input": "1\n01", "output": "1" }, { "input": "2\n01\n01", "output": "1" }, { "input": "2\n10\n01", "output": "2" }, { "input": "3\n01\n01\n01", "output": "1" }, { "input": "3\n10\n10\n01", "output": "2" }, { "input": "3\n01\n10\n10", "output": "2" }, { "input": "115\n10\n10\n10\n10\n01\n01\n10\n10\n10\n01\n01\n10\n01\n01\n10\n10\n10\n01\n10\n01\n10\n10\n01\n01\n10\n10\n10\n10\n01\n10\n01\n01\n10\n10\n10\n10\n01\n10\n10\n10\n01\n10\n01\n10\n10\n10\n10\n01\n01\n01\n10\n10\n01\n01\n01\n10\n10\n01\n10\n01\n01\n01\n01\n10\n10\n01\n10\n01\n01\n01\n01\n01\n10\n01\n10\n10\n01\n01\n01\n10\n01\n01\n10\n10\n01\n01\n01\n01\n01\n10\n01\n10\n01\n10\n01\n01\n01\n10\n01\n10\n10\n01\n10\n10\n01\n01\n01\n10\n10\n10\n10\n10\n10\n10\n10", "output": "55" } ]
1,697,158,492
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
# Status: Not Completed n = int(input()) streak = 1 magtype = "" answer = 0 for i in range(n): x = input() if magtype == "": magtype = x if x == "01" and magtype == "01": streak += 1 if streak > answer: answer = streak streak = 0 elif x == "10" and magtype == "10": streak += 1 if streak > answer: answer = streak streak = 0 print(streak)
Title: Magnets Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn't need dominoes, though: he uses rectangular magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a close distance, then the like poles will repel each other and the opposite poles will attract each other. Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own. Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed. Input Specification: The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100000) — the number of magnets. Then *n* lines follow. The *i*-th line (1<=≤<=*i*<=≤<=*n*) contains either characters "01", if Mike put the *i*-th magnet in the "plus-minus" position, or characters "10", if Mike put the magnet in the "minus-plus" position. Output Specification: On the single line of the output print the number of groups of magnets. Demo Input: ['6\n10\n10\n10\n01\n10\n10\n', '4\n01\n01\n10\n10\n'] Demo Output: ['3\n', '2\n'] Note: The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets. The second testcase has two groups, each consisting of two magnets.
```python # Status: Not Completed n = int(input()) streak = 1 magtype = "" answer = 0 for i in range(n): x = input() if magtype == "": magtype = x if x == "01" and magtype == "01": streak += 1 if streak > answer: answer = streak streak = 0 elif x == "10" and magtype == "10": streak += 1 if streak > answer: answer = streak streak = 0 print(streak) ```
0
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,683,688,270
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
62
0
import sys input = sys.stdin.readline # Parse input n = int(input()) a = list(map(int, input().split())) # Solve the problem print(a[0]) # Print the output # ...
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python import sys input = sys.stdin.readline # Parse input n = int(input()) a = list(map(int, input().split())) # Solve the problem print(a[0]) # Print the output # ... ```
0
278
A
Circle Line
PROGRAMMING
800
[ "implementation" ]
null
null
The circle line of the Berland subway has *n* stations. We know the distances between all pairs of neighboring stations: - *d*1 is the distance between the 1-st and the 2-nd station;- *d*2 is the distance between the 2-nd and the 3-rd station;...- *d**n*<=-<=1 is the distance between the *n*<=-<=1-th and the *n*-th station;- *d**n* is the distance between the *n*-th and the 1-st station. The trains go along the circle line in both directions. Find the shortest distance between stations with numbers *s* and *t*.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — the number of stations on the circle line. The second line contains *n* integers *d*1,<=*d*2,<=...,<=*d**n* (1<=≤<=*d**i*<=≤<=100) — the distances between pairs of neighboring stations. The third line contains two integers *s* and *t* (1<=≤<=*s*,<=*t*<=≤<=*n*) — the numbers of stations, between which you need to find the shortest distance. These numbers can be the same. The numbers in the lines are separated by single spaces.
Print a single number — the length of the shortest path between stations number *s* and *t*.
[ "4\n2 3 4 9\n1 3\n", "4\n5 8 2 100\n4 1\n", "3\n1 1 1\n3 1\n", "3\n31 41 59\n1 1\n" ]
[ "5\n", "15\n", "1\n", "0\n" ]
In the first sample the length of path 1 → 2 → 3 equals 5, the length of path 1 → 4 → 3 equals 13. In the second sample the length of path 4 → 1 is 100, the length of path 4 → 3 → 2 → 1 is 15. In the third sample the length of path 3 → 1 is 1, the length of path 3 → 2 → 1 is 2. In the fourth sample the numbers of stations are the same, so the shortest distance equals 0.
500
[ { "input": "4\n2 3 4 9\n1 3", "output": "5" }, { "input": "4\n5 8 2 100\n4 1", "output": "15" }, { "input": "3\n1 1 1\n3 1", "output": "1" }, { "input": "3\n31 41 59\n1 1", "output": "0" }, { "input": "5\n16 13 10 30 15\n4 2", "output": "23" }, { "input": "6\n89 82 87 32 67 33\n4 4", "output": "0" }, { "input": "7\n2 3 17 10 2 2 2\n4 2", "output": "18" }, { "input": "3\n4 37 33\n3 3", "output": "0" }, { "input": "8\n87 40 96 7 86 86 72 97\n6 8", "output": "158" }, { "input": "10\n91 94 75 99 100 91 79 86 79 92\n2 8", "output": "348" }, { "input": "19\n1 1 1 1 2 1 1 1 1 1 2 1 3 2 2 1 1 1 2\n7 7", "output": "0" }, { "input": "34\n96 65 24 99 74 76 97 93 99 69 94 82 92 91 98 83 95 97 96 81 90 95 86 87 43 78 88 86 82 62 76 99 83 96\n21 16", "output": "452" }, { "input": "50\n75 98 65 75 99 89 84 65 9 53 62 61 61 53 80 7 6 47 86 1 89 27 67 1 31 39 53 92 19 20 76 41 60 15 29 94 76 82 87 89 93 38 42 6 87 36 100 97 93 71\n2 6", "output": "337" }, { "input": "99\n1 15 72 78 23 22 26 98 7 2 75 58 100 98 45 79 92 69 79 72 33 88 62 9 15 87 17 73 68 54 34 89 51 91 28 44 20 11 74 7 85 61 30 46 95 72 36 18 48 22 42 46 29 46 86 53 96 55 98 34 60 37 75 54 1 81 20 68 84 19 18 18 75 84 86 57 73 34 23 43 81 87 47 96 57 41 69 1 52 44 54 7 85 35 5 1 19 26 7\n4 64", "output": "1740" }, { "input": "100\n33 63 21 27 49 82 86 93 43 55 4 72 89 85 5 34 80 7 23 13 21 49 22 73 89 65 81 25 6 92 82 66 58 88 48 96 1 1 16 48 67 96 84 63 87 76 20 100 36 4 31 41 35 62 55 76 74 70 68 41 4 16 39 81 2 41 34 73 66 57 41 89 78 93 68 96 87 47 92 60 40 58 81 12 19 74 56 83 56 61 83 97 26 92 62 52 39 57 89 95\n71 5", "output": "2127" }, { "input": "100\n95 98 99 81 98 96 100 92 96 90 99 91 98 98 91 78 97 100 96 98 87 93 96 99 91 92 96 92 90 97 85 83 99 95 66 91 87 89 100 95 100 88 99 84 96 79 99 100 94 100 99 99 92 89 99 91 100 94 98 97 91 92 90 87 84 99 97 98 93 100 90 85 75 95 86 71 98 93 91 87 92 95 98 94 95 94 100 98 96 100 97 96 95 95 86 86 94 97 98 96\n67 57", "output": "932" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 97 100 100 100 100 100 99 100 100 99 99 100 99 100 100 100 100 100 100 100 100 100 97 99 98 98 100 98 98 100 99 100 100 100 100 99 100 98 100 99 98 99 98 98 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 98 100 99 99 100 96 100 96 100 99 100 100 99 100 99 100 100 100 99 100 100 100 100 98 98 97 100 100 99 98\n16 6", "output": "997" }, { "input": "100\n3 6 23 4 23 1 2 14 2 3 3 9 17 8 10 5 1 14 8 5 7 4 13 8 5 6 24 3 12 3 4 9 2 8 2 1 2 1 3 2 1 6 14 23 8 6 3 5 7 8 18 9 2 5 22 6 13 16 2 4 31 20 4 3 3 6 6 1 1 18 5 11 1 14 4 16 6 37 11 1 8 3 7 11 21 14 3 3 12 2 5 1 9 16 3 1 3 4 4 2\n98 24", "output": "195" }, { "input": "100\n1 1 3 1 1 2 1 2 1 1 2 2 2 1 1 1 1 1 1 3 1 1 1 3 1 3 3 1 1 2 1 1 1 1 1 2 1 1 1 4 1 1 3 3 2 1 1 1 1 1 2 2 1 3 1 1 1 2 4 1 1 2 5 2 1 1 2 1 1 1 2 3 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 2 3 1 7 3 1 3 1 2 1 2 1\n49 10", "output": "60" }, { "input": "100\n75 62 31 96 62 76 93 96 72 67 88 35 67 34 60 56 95 86 82 48 64 61 74 100 56 98 76 98 78 55 53 10 12 78 58 45 86 90 93 77 69 73 88 66 92 88 33 50 95 69 89 12 93 57 93 89 59 53 71 86 15 13 61 93 24 100 58 76 46 95 76 82 50 20 79 38 5 72 99 81 55 90 90 65 85 44 63 39 6 34 98 72 88 30 59 73 84 61 25 67\n86 25", "output": "2523" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100\n1 51", "output": "5000" }, { "input": "4\n1 1 1 1\n2 4", "output": "2" }, { "input": "4\n1 1 2 1\n2 4", "output": "2" } ]
1,496,867,069
2,147,483,647
Python 3
OK
TESTS
23
124
0
x = int(input()) y = list(map(int, input().split())) a, b = sorted(list(map(int, input().split()))) ab = sum(y[a-1:b-1]) ba = sum(y) - ab if ab < ba: print(ab) else: print(ba)
Title: Circle Line Time Limit: None seconds Memory Limit: None megabytes Problem Description: The circle line of the Berland subway has *n* stations. We know the distances between all pairs of neighboring stations: - *d*1 is the distance between the 1-st and the 2-nd station;- *d*2 is the distance between the 2-nd and the 3-rd station;...- *d**n*<=-<=1 is the distance between the *n*<=-<=1-th and the *n*-th station;- *d**n* is the distance between the *n*-th and the 1-st station. The trains go along the circle line in both directions. Find the shortest distance between stations with numbers *s* and *t*. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — the number of stations on the circle line. The second line contains *n* integers *d*1,<=*d*2,<=...,<=*d**n* (1<=≤<=*d**i*<=≤<=100) — the distances between pairs of neighboring stations. The third line contains two integers *s* and *t* (1<=≤<=*s*,<=*t*<=≤<=*n*) — the numbers of stations, between which you need to find the shortest distance. These numbers can be the same. The numbers in the lines are separated by single spaces. Output Specification: Print a single number — the length of the shortest path between stations number *s* and *t*. Demo Input: ['4\n2 3 4 9\n1 3\n', '4\n5 8 2 100\n4 1\n', '3\n1 1 1\n3 1\n', '3\n31 41 59\n1 1\n'] Demo Output: ['5\n', '15\n', '1\n', '0\n'] Note: In the first sample the length of path 1 → 2 → 3 equals 5, the length of path 1 → 4 → 3 equals 13. In the second sample the length of path 4 → 1 is 100, the length of path 4 → 3 → 2 → 1 is 15. In the third sample the length of path 3 → 1 is 1, the length of path 3 → 2 → 1 is 2. In the fourth sample the numbers of stations are the same, so the shortest distance equals 0.
```python x = int(input()) y = list(map(int, input().split())) a, b = sorted(list(map(int, input().split()))) ab = sum(y[a-1:b-1]) ba = sum(y) - ab if ab < ba: print(ab) else: print(ba) ```
3
615
A
Bulbs
PROGRAMMING
800
[ "implementation" ]
null
null
Vasya wants to turn on Christmas lights consisting of *m* bulbs. Initially, all bulbs are turned off. There are *n* buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs? If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
The first line of the input contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of buttons and the number of bulbs respectively. Each of the next *n* lines contains *x**i* (0<=≤<=*x**i*<=≤<=*m*) — the number of bulbs that are turned on by the *i*-th button, and then *x**i* numbers *y**ij* (1<=≤<=*y**ij*<=≤<=*m*) — the numbers of these bulbs.
If it's possible to turn on all *m* bulbs print "YES", otherwise print "NO".
[ "3 4\n2 1 4\n3 1 3 1\n1 2\n", "3 3\n1 1\n1 2\n1 1\n" ]
[ "YES\n", "NO\n" ]
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp.
500
[ { "input": "3 4\n2 1 4\n3 1 3 1\n1 2", "output": "YES" }, { "input": "3 3\n1 1\n1 2\n1 1", "output": "NO" }, { "input": "3 4\n1 1\n1 2\n1 3", "output": "NO" }, { "input": "1 5\n5 1 2 3 4 5", "output": "YES" }, { "input": "1 5\n5 4 4 1 2 3", "output": "NO" }, { "input": "1 5\n5 1 1 1 1 5", "output": "NO" }, { "input": "2 5\n4 3 1 4 2\n4 2 3 4 5", "output": "YES" }, { "input": "5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 3 2 1", "output": "YES" }, { "input": "100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0", "output": "NO" }, { "input": "100 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0", "output": "NO" }, { "input": "5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6", "output": "YES" }, { "input": "5 2\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "NO" }, { "input": "1 4\n3 1 2 3", "output": "NO" }, { "input": "1 4\n3 2 3 4", "output": "NO" }, { "input": "2 4\n3 2 3 4\n1 1", "output": "YES" }, { "input": "2 4\n3 1 2 3\n1 4", "output": "YES" }, { "input": "5 1\n0\n0\n0\n0\n0", "output": "NO" }, { "input": "1 1\n0", "output": "NO" }, { "input": "1 10\n10 1 2 3 4 5 6 7 8 9 10", "output": "YES" }, { "input": "1 1\n1 1", "output": "YES" }, { "input": "1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99", "output": "NO" }, { "input": "1 3\n3 1 2 1", "output": "NO" }, { "input": "1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "YES" } ]
1,604,312,145
2,147,483,647
Python 3
OK
TESTS
45
109
614,400
n , m = map(int,input().split()) b1 = [] for i in range (n): a = input().split() for j in a[1:]: b1.append(j) b2 = list(set(b1)) if m == len(b2): print('YES') else: print('NO')
Title: Bulbs Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya wants to turn on Christmas lights consisting of *m* bulbs. Initially, all bulbs are turned off. There are *n* buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs? If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on. Input Specification: The first line of the input contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of buttons and the number of bulbs respectively. Each of the next *n* lines contains *x**i* (0<=≤<=*x**i*<=≤<=*m*) — the number of bulbs that are turned on by the *i*-th button, and then *x**i* numbers *y**ij* (1<=≤<=*y**ij*<=≤<=*m*) — the numbers of these bulbs. Output Specification: If it's possible to turn on all *m* bulbs print "YES", otherwise print "NO". Demo Input: ['3 4\n2 1 4\n3 1 3 1\n1 2\n', '3 3\n1 1\n1 2\n1 1\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp.
```python n , m = map(int,input().split()) b1 = [] for i in range (n): a = input().split() for j in a[1:]: b1.append(j) b2 = list(set(b1)) if m == len(b2): print('YES') else: print('NO') ```
3
456
B
Fedya and Maths
PROGRAMMING
1,200
[ "math", "number theory" ]
null
null
Fedya studies in a gymnasium. Fedya's maths hometask is to calculate the following expression: for given value of *n*. Fedya managed to complete the task. Can you? Note that given number *n* can be extremely large (e.g. it can exceed any integer type of your programming language).
The single line contains a single integer *n* (0<=≤<=*n*<=≤<=10105). The number doesn't contain any leading zeroes.
Print the value of the expression without leading zeros.
[ "4\n", "124356983594583453458888889\n" ]
[ "4\n", "0\n" ]
Operation *x* *mod* *y* means taking remainder after division *x* by *y*. Note to the first sample: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/825f244180bb10323db01645118c3cfdb312fa89.png" style="max-width: 100.0%;max-height: 100.0%;"/>
1,000
[ { "input": "4", "output": "4" }, { "input": "124356983594583453458888889", "output": "0" }, { "input": "2", "output": "0" }, { "input": "7854", "output": "0" }, { "input": "584660", "output": "4" }, { "input": "464", "output": "4" }, { "input": "192329", "output": "0" }, { "input": "85447", "output": "0" }, { "input": "956", "output": "4" }, { "input": "83", "output": "0" }, { "input": "33", "output": "0" }, { "input": "64", "output": "4" }, { "input": "971836", "output": "4" }, { "input": "578487", "output": "0" }, { "input": "71752", "output": "4" }, { "input": "2563", "output": "0" }, { "input": "51494", "output": "0" }, { "input": "247", "output": "0" }, { "input": "52577", "output": "0" }, { "input": "13", "output": "0" }, { "input": "26232", "output": "4" }, { "input": "0", "output": "4" }, { "input": "10", "output": "0" }, { "input": "12", "output": "4" }, { "input": "8", "output": "4" }, { "input": "1", "output": "0" } ]
1,680,150,345
2,147,483,647
PyPy 3-64
MEMORY_LIMIT_EXCEEDED
TESTS
1
1,232
268,390,400
x = int(input()) a = ((1**x)+(2**x)+(3**x)+(4**x))%5 print(a)
Title: Fedya and Maths Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fedya studies in a gymnasium. Fedya's maths hometask is to calculate the following expression: for given value of *n*. Fedya managed to complete the task. Can you? Note that given number *n* can be extremely large (e.g. it can exceed any integer type of your programming language). Input Specification: The single line contains a single integer *n* (0<=≤<=*n*<=≤<=10105). The number doesn't contain any leading zeroes. Output Specification: Print the value of the expression without leading zeros. Demo Input: ['4\n', '124356983594583453458888889\n'] Demo Output: ['4\n', '0\n'] Note: Operation *x* *mod* *y* means taking remainder after division *x* by *y*. Note to the first sample: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/825f244180bb10323db01645118c3cfdb312fa89.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python x = int(input()) a = ((1**x)+(2**x)+(3**x)+(4**x))%5 print(a) ```
0
75
A
Life Without Zeros
PROGRAMMING
1,000
[ "implementation" ]
A. Life Without Zeros
2
256
Can you imagine our life if we removed all zeros from it? For sure we will have many problems. In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros? For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation. But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation.
The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=≤<=*a*,<=*b*<=≤<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*.
The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise.
[ "101\n102\n", "105\n106\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "101\n102", "output": "YES" }, { "input": "105\n106", "output": "NO" }, { "input": "544\n397", "output": "YES" }, { "input": "822\n280", "output": "NO" }, { "input": "101\n413", "output": "NO" }, { "input": "309\n139", "output": "NO" }, { "input": "693\n970", "output": "NO" }, { "input": "981\n1", "output": "YES" }, { "input": "352\n276", "output": "YES" }, { "input": "164\n691", "output": "YES" }, { "input": "110036\n43", "output": "YES" }, { "input": "100\n1000", "output": "NO" }, { "input": "1000000000\n1000000000", "output": "YES" }, { "input": "999999999\n999999999", "output": "YES" }, { "input": "6\n4", "output": "NO" }, { "input": "123456\n876543", "output": "YES" }, { "input": "1234567\n9876543", "output": "NO" }, { "input": "1111111\n1119111", "output": "NO" }, { "input": "10502405\n40403403", "output": "YES" }, { "input": "1\n1", "output": "YES" }, { "input": "5\n4", "output": "YES" }, { "input": "1\n6", "output": "YES" }, { "input": "40\n17", "output": "NO" }, { "input": "35\n81", "output": "YES" }, { "input": "347\n908", "output": "NO" }, { "input": "2081\n7450", "output": "NO" }, { "input": "84355694\n373629503", "output": "NO" }, { "input": "885992048\n510468672", "output": "NO" }, { "input": "540144752\n647307841", "output": "NO" }, { "input": "341781108\n784147010", "output": "NO" }, { "input": "960440938\n572334653", "output": "NO" }, { "input": "657414510\n768771903", "output": "NO" }, { "input": "501871728\n725074574", "output": "NO" }, { "input": "968\n851", "output": "YES" }, { "input": "943\n939", "output": "YES" }, { "input": "347\n908", "output": "NO" }, { "input": "611\n41", "output": "YES" }, { "input": "737\n289", "output": "NO" }, { "input": "168\n571", "output": "YES" }, { "input": "868\n463", "output": "YES" }, { "input": "815732007\n913882008", "output": "NO" }, { "input": "459039901\n453033850", "output": "NO" }, { "input": "975305404\n484601256", "output": "NO" } ]
1,663,485,859
2,147,483,647
Python 3
OK
TESTS
43
92
0
n=int(input()) k=int(input()) p=n+k a=b=c='' n=str(n) for i in n: if i!='0': a+=i k=str(k) for i in k: if i!='0': b+=i q=str(p) for i in q: if i!='0': c+=i if int(a)+int(b)==int(c): print('YES') else: print('NO')
Title: Life Without Zeros Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Can you imagine our life if we removed all zeros from it? For sure we will have many problems. In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros? For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation. But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation. Input Specification: The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=≤<=*a*,<=*b*<=≤<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*. Output Specification: The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise. Demo Input: ['101\n102\n', '105\n106\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python n=int(input()) k=int(input()) p=n+k a=b=c='' n=str(n) for i in n: if i!='0': a+=i k=str(k) for i in k: if i!='0': b+=i q=str(p) for i in q: if i!='0': c+=i if int(a)+int(b)==int(c): print('YES') else: print('NO') ```
3.977
294
C
Shaass and Lights
PROGRAMMING
1,900
[ "combinatorics", "number theory" ]
null
null
There are *n* lights aligned in a row. These lights are numbered 1 to *n* from left to right. Initially some of the lights are switched on. Shaass wants to switch all the lights on. At each step he can switch a light on (this light should be switched off at that moment) if there's at least one adjacent light which is already switched on. He knows the initial state of lights and he's wondering how many different ways there exist to switch all the lights on. Please find the required number of ways modulo 1000000007 (109<=+<=7).
The first line of the input contains two integers *n* and *m* where *n* is the number of lights in the sequence and *m* is the number of lights which are initially switched on, (1<=≤<=*n*<=≤<=1000,<=1<=≤<=*m*<=≤<=*n*). The second line contains *m* distinct integers, each between 1 to *n* inclusive, denoting the indices of lights which are initially switched on.
In the only line of the output print the number of different possible ways to switch on all the lights modulo 1000000007 (109<=+<=7).
[ "3 1\n1\n", "4 2\n1 4\n", "11 2\n4 8\n" ]
[ "1\n", "2\n", "6720\n" ]
none
1,500
[ { "input": "3 1\n1", "output": "1" }, { "input": "4 2\n1 4", "output": "2" }, { "input": "11 2\n4 8", "output": "6720" }, { "input": "4 2\n1 3", "output": "2" }, { "input": "4 4\n1 2 3 4", "output": "1" }, { "input": "4 2\n1 3", "output": "2" }, { "input": "4 4\n1 2 3 4", "output": "1" }, { "input": "1000 3\n100 900 10", "output": "727202008" }, { "input": "74 13\n6 14 19 20 21 24 30 43 58 61 69 70 73", "output": "16623551" }, { "input": "74 13\n6 14 19 20 21 24 30 43 58 61 69 70 73", "output": "16623551" }, { "input": "74 13\n6 14 19 20 21 24 30 43 58 61 69 70 73", "output": "16623551" }, { "input": "74 13\n6 14 19 20 21 24 30 43 58 61 69 70 73", "output": "16623551" }, { "input": "74 13\n6 14 19 20 21 24 30 43 58 61 69 70 73", "output": "16623551" }, { "input": "74 13\n6 14 19 20 21 24 30 43 58 61 69 70 73", "output": "16623551" }, { "input": "68 37\n1 2 3 6 7 8 10 11 12 14 16 18 22 23 24 26 30 31 32 35 37 39 41 42 45 47 50 51 52 54 58 59 61 62 63 64 68", "output": "867201120" }, { "input": "132 48\n6 7 8 12 15 17 18 19 22 24 25 26 30 33 35 38 40 43 46 49 50 51 52 54 59 60 66 70 76 79 87 89 91 92 94 98 99 101 102 105 106 109 113 115 116 118 120 129", "output": "376947760" }, { "input": "36 24\n1 7 8 10 11 12 13 14 15 16 17 19 21 22 25 26 27 28 29 30 31 32 35 36", "output": "63866880" }, { "input": "100 100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "1" }, { "input": "100 2\n11 64", "output": "910895596" }, { "input": "100 90\n1 2 3 4 5 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 58 59 60 61 62 63 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 82 83 84 86 87 88 89 90 91 92 94 95 96 98 99 100", "output": "3628800" }, { "input": "1000 1\n35", "output": "253560421" }, { "input": "1000 2\n747 798", "output": "474746180" }, { "input": "1000 3\n804 811 984", "output": "600324842" }, { "input": "1 1\n1", "output": "1" } ]
1,603,178,099
2,147,483,647
PyPy 3
OK
TESTS
30
140
1,638,400
M= 1000000007 f = [1]*2000 for i in range(1,2000): f[i]=f[i-1]*i%M n,m = map(int,input().split()) a = sorted(map(int,input().split())) b = [] for i in range (1,m): x=a[i]-a[i-1]-1 if(x>0): b.append(x) count = pow(2,sum(b)-len(b),M)*f[n-m]%M b = [a[0]-1]+b+[n-a[-1]] for i in b: count = count*pow(f[i],M-2,M)%M print(count)
Title: Shaass and Lights Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* lights aligned in a row. These lights are numbered 1 to *n* from left to right. Initially some of the lights are switched on. Shaass wants to switch all the lights on. At each step he can switch a light on (this light should be switched off at that moment) if there's at least one adjacent light which is already switched on. He knows the initial state of lights and he's wondering how many different ways there exist to switch all the lights on. Please find the required number of ways modulo 1000000007 (109<=+<=7). Input Specification: The first line of the input contains two integers *n* and *m* where *n* is the number of lights in the sequence and *m* is the number of lights which are initially switched on, (1<=≤<=*n*<=≤<=1000,<=1<=≤<=*m*<=≤<=*n*). The second line contains *m* distinct integers, each between 1 to *n* inclusive, denoting the indices of lights which are initially switched on. Output Specification: In the only line of the output print the number of different possible ways to switch on all the lights modulo 1000000007 (109<=+<=7). Demo Input: ['3 1\n1\n', '4 2\n1 4\n', '11 2\n4 8\n'] Demo Output: ['1\n', '2\n', '6720\n'] Note: none
```python M= 1000000007 f = [1]*2000 for i in range(1,2000): f[i]=f[i-1]*i%M n,m = map(int,input().split()) a = sorted(map(int,input().split())) b = [] for i in range (1,m): x=a[i]-a[i-1]-1 if(x>0): b.append(x) count = pow(2,sum(b)-len(b),M)*f[n-m]%M b = [a[0]-1]+b+[n-a[-1]] for i in b: count = count*pow(f[i],M-2,M)%M print(count) ```
3
544
A
Set of Strings
PROGRAMMING
1,100
[ "implementation", "strings" ]
null
null
You are given a string *q*. A sequence of *k* strings *s*1,<=*s*2,<=...,<=*s**k* is called beautiful, if the concatenation of these strings is string *q* (formally, *s*1<=+<=*s*2<=+<=...<=+<=*s**k*<==<=*q*) and the first characters of these strings are distinct. Find any beautiful sequence of strings or determine that the beautiful sequence doesn't exist.
The first line contains a positive integer *k* (1<=≤<=*k*<=≤<=26) — the number of strings that should be in a beautiful sequence. The second line contains string *q*, consisting of lowercase Latin letters. The length of the string is within range from 1 to 100, inclusive.
If such sequence doesn't exist, then print in a single line "NO" (without the quotes). Otherwise, print in the first line "YES" (without the quotes) and in the next *k* lines print the beautiful sequence of strings *s*1,<=*s*2,<=...,<=*s**k*. If there are multiple possible answers, print any of them.
[ "1\nabca\n", "2\naaacas\n", "4\nabc\n" ]
[ "YES\nabca\n", "YES\naaa\ncas\n", "NO\n" ]
In the second sample there are two possible answers: {"*aaaca*", "*s*"} and {"*aaa*", "*cas*"}.
500
[ { "input": "1\nabca", "output": "YES\nabca" }, { "input": "2\naaacas", "output": "YES\naaa\ncas" }, { "input": "4\nabc", "output": "NO" }, { "input": "3\nnddkhkhkdndknndkhrnhddkrdhrnrrnkkdnnndndrdhnknknhnrnnkrrdhrkhkrkhnkhkhhrhdnrndnknrrhdrdrkhdrkkhkrnkk", "output": "YES\nn\ndd\nkhkhkdndknndkhrnhddkrdhrnrrnkkdnnndndrdhnknknhnrnnkrrdhrkhkrkhnkhkhhrhdnrndnknrrhdrdrkhdrkkhkrnkk" }, { "input": "26\nbiibfmmfifmffbmmfmbmbmiimbmiffmffibibfbiffibibiiimbffbbfbifmiibffbmbbbfmfibmibfffibfbffmfmimbmmmfmfm", "output": "NO" }, { "input": "3\nkydoybxlfeugtrbvqnrjtzshorrsrwsxkvlwyolbaadtzpmyyfllxuciia", "output": "YES\nk\ny\ndoybxlfeugtrbvqnrjtzshorrsrwsxkvlwyolbaadtzpmyyfllxuciia" }, { "input": "3\nssussususskkskkskuusksuuussksukkskuksukukusssususuususkkuukssuksskusukkssuksskskuskusussusskskksksus", "output": "YES\nss\nussususs\nkkskkskuusksuuussksukkskuksukukusssususuususkkuukssuksskusukkssuksskskuskusussusskskksksus" }, { "input": "5\naaaaabcdef", "output": "YES\naaaaa\nb\nc\nd\nef" }, { "input": "3\niiiiiiimiriiriwmimtmwrhhxmbmhwgghhgbqhywebrblyhlxjrthoooltehrmdhqhuodjmsjwcgrfnttiitpmqvbhlafwtzyikc", "output": "YES\niiiiiii\nmi\nriiriwmimtmwrhhxmbmhwgghhgbqhywebrblyhlxjrthoooltehrmdhqhuodjmsjwcgrfnttiitpmqvbhlafwtzyikc" }, { "input": "20\ngggggllglgllltgtlglttstsgtttsslhhlssghgagtlsaghhoggtfgsaahtotdodthfltdxggxislnttlanxonhnkddtigppitdh", "output": "NO" }, { "input": "16\nkkkkkkyykkynkknkkonyokdndkyonokdywkwykdkdotknnwzkoywiooinkcyzyntcdnitnppnpziomyzdspomoqmomcyrrospppn", "output": "NO" }, { "input": "15\nwwwgggowgwwhoohwgwghwyohhggywhyyodgwydwgggkhgyydqyggkgkpokgthqghidhworprodtcogqkwgtfiodwdurcctkmrfmh", "output": "YES\nwww\nggg\nowgww\nhoohwgwghw\nyohhggywhyyo\ndgwydwggg\nkhgyyd\nqyggkgk\npokg\nthqgh\nidhwo\nrprodt\ncogqkwgt\nfiodwd\nurcctkmrfmh" }, { "input": "15\nnnnnnntnttttttqqnqqynnqqwwnnnwneenhwtyhhoqeyeqyeuthwtnhtpnphhwetjhouhwnpojvvovoswwjryrwerbwwpbvrwvjj", "output": "YES\nnnnnnn\ntntttttt\nqqnqq\nynnqq\nwwnnnwn\neen\nhwtyhh\noqeyeqye\nuthwtnht\npnphhwet\njhouhwnpoj\nvvovo\nswwj\nryrwer\nbwwpbvrwvjj" }, { "input": "15\nvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv", "output": "NO" }, { "input": "1\niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaaaaaiiiiaiaiiiiaaiaiiiaiiaiaaiaiiaiiiiiaiiiaiiiaiaiaai", "output": "YES\niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaaaaaiiiiaiaiiiiaaiaiiiaiiaiaaiaiiaiiiiiaiiiaiiiaiaiaai" }, { "input": "26\nvvvnnsnnnpsnnswwspncvshtncwphaphmwnwkhvvhuvctvnehemowkmtzissswjaxuuvphzrmfzihamdqmmyhhijbitlipgltyy", "output": "YES\nvvv\nnn\nsnnn\npsnns\nwwspn\ncvs\nh\ntncwph\naph\nmwnw\nkhvvh\nuvctvn\nehem\nowkmt\nz\nisssw\nja\nxuuvphz\nrm\nfziham\nd\nqmm\nyhhij\nbit\nlip\ngltyy" }, { "input": "26\njexzsbwaih", "output": "NO" }, { "input": "1\nk", "output": "YES\nk" }, { "input": "1\nzz", "output": "YES\nzz" }, { "input": "3\nziw", "output": "YES\nz\ni\nw" }, { "input": "26\ntjmbyqwuahlixegopkzrfndcsv", "output": "YES\nt\nj\nm\nb\ny\nq\nw\nu\na\nh\nl\ni\nx\ne\ng\no\np\nk\nz\nr\nf\nn\nd\nc\ns\nv" }, { "input": "25\nvobekscyadzqwnjxruplifmthg", "output": "YES\nv\no\nb\ne\nk\ns\nc\ny\na\nd\nz\nq\nw\nn\nj\nx\nr\nu\np\nl\ni\nf\nm\nt\nhg" }, { "input": "26\nlllplzkkzflzflffzznnnnfgflqlttlmtnkzlztskngyymitqagattkdllyutzimsrskpapcmuupjdopxqlnhqcscwvdtxbflefy", "output": "YES\nlll\npl\nz\nkkz\nflzflffzz\nnnnnf\ngfl\nql\nttl\nmtnkzlzt\nskng\nyym\nitq\nagattk\ndlly\nutzims\nrskpap\ncmuup\njd\nop\nxqln\nhqcsc\nw\nvdtx\nbfl\nefy" }, { "input": "25\nkkrrkrkrkrsrskpskbrppdsdbgbkrbllkbswdwcchgskmkhwiidicczlscsodtjglxbmeotzxnmbjmoqgkquglaoxgcykxvbhdi", "output": "YES\nkk\nrrkrkrkr\nsrsk\npsk\nbrpp\ndsdb\ngbkrb\nllkbs\nwdw\ncc\nhgsk\nmkhw\niidicc\nzlscs\nod\nt\njgl\nxbm\neotzx\nnmbjmo\nqgkq\nugl\naoxgc\nykx\nvbhdi" }, { "input": "25\nuuuuuccpucubccbupxubcbpujiliwbpqbpyiweuywaxwqasbsllwehceruytjvphytraawgbjmerfeymoayujqranlvkpkiypadr", "output": "YES\nuuuuu\ncc\npucu\nbccbup\nxubcbpu\nj\ni\nli\nwbp\nqbp\nyiw\neuyw\naxwqa\nsbsllwe\nhce\nruy\ntj\nvphytraaw\ngbj\nmer\nfeym\noayujqra\nnlv\nkpkiypa\ndr" }, { "input": "26\nxxjxodrogovufvohrodliretxxyjqnrbzmicorptkjafiwmsbwml", "output": "YES\nxx\njx\no\nd\nro\ngo\nv\nu\nfvo\nhrod\nl\nir\ne\ntxx\nyj\nq\nnr\nb\nz\nmi\ncor\npt\nkj\nafi\nwm\nsbwml" }, { "input": "26\npjhsxjbvkqntwmsdnrguecaofylzti", "output": "YES\np\nj\nh\ns\nxj\nb\nv\nk\nq\nn\nt\nw\nms\ndn\nr\ng\nu\ne\nc\na\no\nf\ny\nl\nzt\ni" }, { "input": "25\nrrrrqqwrlqrwglrlylwhrrwyvrhvzgvqahrhgsvavtggyduayivxzgeicinlnrkapoepbsfyjjrt", "output": "YES\nrrrr\nqq\nwr\nlqrw\nglrl\nylw\nhrrwy\nvrhv\nzgvq\nahrhg\nsvav\ntggy\nd\nuay\niv\nxzg\nei\nci\nnlnr\nka\np\noep\nbs\nfy\njjrt" }, { "input": "26\ncccccccaacwwaxxaacczacnnnqqwnaggzqrwagcnabxnrcvgjqjamqzgdntzanaxvjfwqlvdttuzjoxiwtkqvrydospmpeirhg", "output": "YES\nccccccc\naac\nwwa\nxxaacc\nzac\nnnn\nqqwna\nggzq\nrwagcna\nbxnrc\nvg\njqja\nmqzg\ndn\ntzanaxvj\nfwq\nlvdtt\nuzj\nox\niwt\nkqvr\nydo\ns\npmp\neir\nhg" }, { "input": "4\nsssssssssssssssssssssssssslsslslsllsslssslslssllaaslsaalsasaassllasasalrlrslarlaarlsrsaslasarlr", "output": "YES\nssssssssssssssssssssssssss\nlsslslsllsslssslslssll\naaslsaalsasaassllasasal\nrlrslarlaarlsrsaslasarlr" }, { "input": "26\na", "output": "NO" }, { "input": "26\nab", "output": "NO" }, { "input": "2\nab", "output": "YES\na\nb" } ]
1,618,139,215
2,147,483,647
PyPy 3
OK
TESTS
33
93
0
n = int(input()) s = input() arr = set(list(s)) if len(arr) < n: print("NO") else: ans = [] d = {} for i in s: if i in d: ans[-1] += i else: d[i] = 1 ans.append(i) print("YES") for i in ans[:n-1]: print(i) print(''.join(ans[n-1:]))
Title: Set of Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a string *q*. A sequence of *k* strings *s*1,<=*s*2,<=...,<=*s**k* is called beautiful, if the concatenation of these strings is string *q* (formally, *s*1<=+<=*s*2<=+<=...<=+<=*s**k*<==<=*q*) and the first characters of these strings are distinct. Find any beautiful sequence of strings or determine that the beautiful sequence doesn't exist. Input Specification: The first line contains a positive integer *k* (1<=≤<=*k*<=≤<=26) — the number of strings that should be in a beautiful sequence. The second line contains string *q*, consisting of lowercase Latin letters. The length of the string is within range from 1 to 100, inclusive. Output Specification: If such sequence doesn't exist, then print in a single line "NO" (without the quotes). Otherwise, print in the first line "YES" (without the quotes) and in the next *k* lines print the beautiful sequence of strings *s*1,<=*s*2,<=...,<=*s**k*. If there are multiple possible answers, print any of them. Demo Input: ['1\nabca\n', '2\naaacas\n', '4\nabc\n'] Demo Output: ['YES\nabca\n', 'YES\naaa\ncas\n', 'NO\n'] Note: In the second sample there are two possible answers: {"*aaaca*", "*s*"} and {"*aaa*", "*cas*"}.
```python n = int(input()) s = input() arr = set(list(s)) if len(arr) < n: print("NO") else: ans = [] d = {} for i in s: if i in d: ans[-1] += i else: d[i] = 1 ans.append(i) print("YES") for i in ans[:n-1]: print(i) print(''.join(ans[n-1:])) ```
3
342
A
Xenia and Divisors
PROGRAMMING
1,200
[ "greedy", "implementation" ]
null
null
Xenia the mathematician has a sequence consisting of *n* (*n* is divisible by 3) positive integers, each of them is at most 7. She wants to split the sequence into groups of three so that for each group of three *a*,<=*b*,<=*c* the following conditions held: - *a*<=&lt;<=*b*<=&lt;<=*c*; - *a* divides *b*, *b* divides *c*. Naturally, Xenia wants each element of the sequence to belong to exactly one group of three. Thus, if the required partition exists, then it has groups of three. Help Xenia, find the required partition or else say that it doesn't exist.
The first line contains integer *n* (3<=≤<=*n*<=≤<=99999) — the number of elements in the sequence. The next line contains *n* positive integers, each of them is at most 7. It is guaranteed that *n* is divisible by 3.
If the required partition exists, print groups of three. Print each group as values of the elements it contains. You should print values in increasing order. Separate the groups and integers in groups by whitespaces. If there are multiple solutions, you can print any of them. If there is no solution, print -1.
[ "6\n1 1 1 2 2 2\n", "6\n2 2 1 1 4 6\n" ]
[ "-1\n", "1 2 4\n1 2 6\n" ]
none
500
[ { "input": "6\n1 1 1 2 2 2", "output": "-1" }, { "input": "6\n2 2 1 1 4 6", "output": "1 2 4\n1 2 6" }, { "input": "3\n1 2 3", "output": "-1" }, { "input": "3\n7 5 7", "output": "-1" }, { "input": "3\n1 3 4", "output": "-1" }, { "input": "3\n1 1 1", "output": "-1" }, { "input": "9\n1 3 6 6 3 1 3 1 6", "output": "1 3 6\n1 3 6\n1 3 6" }, { "input": "6\n1 2 4 1 3 5", "output": "-1" }, { "input": "3\n1 3 7", "output": "-1" }, { "input": "3\n1 1 1", "output": "-1" }, { "input": "9\n1 2 4 1 2 4 1 3 6", "output": "1 2 4\n1 2 4\n1 3 6" }, { "input": "12\n3 6 1 1 3 6 1 1 2 6 2 6", "output": "1 3 6\n1 3 6\n1 2 6\n1 2 6" }, { "input": "9\n1 1 1 4 4 4 6 2 2", "output": "-1" }, { "input": "9\n1 2 4 6 3 1 3 1 5", "output": "-1" }, { "input": "15\n2 1 2 1 3 6 1 2 1 6 1 3 4 6 4", "output": "1 2 4\n1 2 4\n1 3 6\n1 3 6\n1 2 6" }, { "input": "3\n2 3 6", "output": "-1" }, { "input": "3\n2 4 6", "output": "-1" }, { "input": "3\n2 5 6", "output": "-1" }, { "input": "3\n2 4 7", "output": "-1" }, { "input": "6\n1 2 3 4 5 6", "output": "-1" }, { "input": "3\n7 7 7", "output": "-1" }, { "input": "6\n1 2 4 7 7 7", "output": "-1" }, { "input": "6\n1 1 2 6 6 6", "output": "-1" }, { "input": "9\n1 1 1 3 3 2 4 4 6", "output": "-1" }, { "input": "6\n1 2 4 5 5 5", "output": "-1" }, { "input": "15\n1 1 1 1 1 2 2 2 2 4 4 6 6 6 6", "output": "-1" }, { "input": "6\n1 1 5 5 7 7", "output": "-1" }, { "input": "9\n1 1 1 2 3 4 5 6 7", "output": "-1" }, { "input": "6\n1 1 4 4 7 7", "output": "-1" }, { "input": "24\n1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 4 4 4 6 6 6", "output": "-1" }, { "input": "3\n1 7 6", "output": "-1" }, { "input": "6\n1 1 2 4 7 7", "output": "-1" }, { "input": "9\n1 1 1 7 7 7 7 7 7", "output": "-1" }, { "input": "9\n1 1 1 2 3 4 6 5 5", "output": "-1" } ]
1,642,341,442
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
62
0
N = int(input()) numbers = [int(x) for x in input().split()] count = [0, 0, 0, 0, 0, 0, 0, 0] amount = [0, 0, 0] answer = True for num in numbers: count[num] += 1 for i in range(count[1]): if count[2] > 0 and count[4] > 0: amount[0] += 1 count[1] -= 1 count[2] -= 1 count[4] -= 1 elif count[2] > 0 and count[6] > 0: amount[1] += 1 count[1] -= 1 count[2] -= 1 count[4] -= 1 elif count[3] > 0 and count[6] > 0: amount[2] += 1 count[1] -= 1 count[3] -= 1 count[6] -= 1 else: print(-1) answer = False break if answer: print("1 2 4"*(amount[0]), sep="\n") print("1 2 6"*(amount[1]), sep="\n") print("1 2 8"*(amount[2]), sep="\n")
Title: Xenia and Divisors Time Limit: None seconds Memory Limit: None megabytes Problem Description: Xenia the mathematician has a sequence consisting of *n* (*n* is divisible by 3) positive integers, each of them is at most 7. She wants to split the sequence into groups of three so that for each group of three *a*,<=*b*,<=*c* the following conditions held: - *a*<=&lt;<=*b*<=&lt;<=*c*; - *a* divides *b*, *b* divides *c*. Naturally, Xenia wants each element of the sequence to belong to exactly one group of three. Thus, if the required partition exists, then it has groups of three. Help Xenia, find the required partition or else say that it doesn't exist. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=99999) — the number of elements in the sequence. The next line contains *n* positive integers, each of them is at most 7. It is guaranteed that *n* is divisible by 3. Output Specification: If the required partition exists, print groups of three. Print each group as values of the elements it contains. You should print values in increasing order. Separate the groups and integers in groups by whitespaces. If there are multiple solutions, you can print any of them. If there is no solution, print -1. Demo Input: ['6\n1 1 1 2 2 2\n', '6\n2 2 1 1 4 6\n'] Demo Output: ['-1\n', '1 2 4\n1 2 6\n'] Note: none
```python N = int(input()) numbers = [int(x) for x in input().split()] count = [0, 0, 0, 0, 0, 0, 0, 0] amount = [0, 0, 0] answer = True for num in numbers: count[num] += 1 for i in range(count[1]): if count[2] > 0 and count[4] > 0: amount[0] += 1 count[1] -= 1 count[2] -= 1 count[4] -= 1 elif count[2] > 0 and count[6] > 0: amount[1] += 1 count[1] -= 1 count[2] -= 1 count[4] -= 1 elif count[3] > 0 and count[6] > 0: amount[2] += 1 count[1] -= 1 count[3] -= 1 count[6] -= 1 else: print(-1) answer = False break if answer: print("1 2 4"*(amount[0]), sep="\n") print("1 2 6"*(amount[1]), sep="\n") print("1 2 8"*(amount[2]), sep="\n") ```
0
439
B
Devu, the Dumb Guy
PROGRAMMING
1,200
[ "implementation", "sortings" ]
null
null
Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously. Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours. Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour. You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy. Please be careful that answer might not fit in 32 bit data type.
The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105).
Output a single integer representing the answer to the problem.
[ "2 3\n4 1\n", "4 2\n5 1 2 1\n", "3 3\n1 1 1\n" ]
[ "11\n", "10\n", "6\n" ]
Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours. Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours. So overall, minimum of both the cases is 11 hours. Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
1,000
[ { "input": "2 3\n4 1", "output": "11" }, { "input": "4 2\n5 1 2 1", "output": "10" }, { "input": "3 3\n1 1 1", "output": "6" }, { "input": "20 4\n1 1 3 5 5 1 3 4 2 5 2 4 3 1 3 3 3 3 4 3", "output": "65" }, { "input": "20 10\n6 6 1 2 6 4 5 3 6 5 4 5 6 5 4 6 6 2 3 3", "output": "196" }, { "input": "1 1\n9273", "output": "9273" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 2\n1", "output": "2" }, { "input": "1 2\n2", "output": "4" }, { "input": "2 1\n1 2", "output": "3" } ]
1,559,319,141
2,147,483,647
Python 3
OK
TESTS
31
187
7,372,800
n,x = [int(i) for i in input().split()] arr = sorted([int(i) for i in input().split()]) ans = 0 for i in arr: if x>1: ans+=i*x x-=1 else: ans+=i print(ans)
Title: Devu, the Dumb Guy Time Limit: None seconds Memory Limit: None megabytes Problem Description: Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously. Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours. Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour. You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy. Please be careful that answer might not fit in 32 bit data type. Input Specification: The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105). Output Specification: Output a single integer representing the answer to the problem. Demo Input: ['2 3\n4 1\n', '4 2\n5 1 2 1\n', '3 3\n1 1 1\n'] Demo Output: ['11\n', '10\n', '6\n'] Note: Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours. Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours. So overall, minimum of both the cases is 11 hours. Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
```python n,x = [int(i) for i in input().split()] arr = sorted([int(i) for i in input().split()]) ans = 0 for i in arr: if x>1: ans+=i*x x-=1 else: ans+=i print(ans) ```
3
727
A
Transformation: from A to B
PROGRAMMING
1,000
[ "brute force", "dfs and similar", "math" ]
null
null
Vasily has a number *a*, which he wants to turn into a number *b*. For this purpose, he can do two types of operations: - multiply the current number by 2 (that is, replace the number *x* by 2·*x*); - append the digit 1 to the right of current number (that is, replace the number *x* by 10·*x*<=+<=1). You need to help Vasily to transform the number *a* into the number *b* using only the operations described above, or find that it is impossible. Note that in this task you are not required to minimize the number of operations. It suffices to find any way to transform *a* into *b*.
The first line contains two positive integers *a* and *b* (1<=≤<=*a*<=&lt;<=*b*<=≤<=109) — the number which Vasily has and the number he wants to have.
If there is no way to get *b* from *a*, print "NO" (without quotes). Otherwise print three lines. On the first line print "YES" (without quotes). The second line should contain single integer *k* — the length of the transformation sequence. On the third line print the sequence of transformations *x*1,<=*x*2,<=...,<=*x**k*, where: - *x*1 should be equal to *a*, - *x**k* should be equal to *b*, - *x**i* should be obtained from *x**i*<=-<=1 using any of two described operations (1<=&lt;<=*i*<=≤<=*k*). If there are multiple answers, print any of them.
[ "2 162\n", "4 42\n", "100 40021\n" ]
[ "YES\n5\n2 4 8 81 162 \n", "NO\n", "YES\n5\n100 200 2001 4002 40021 \n" ]
none
1,000
[ { "input": "2 162", "output": "YES\n5\n2 4 8 81 162 " }, { "input": "4 42", "output": "NO" }, { "input": "100 40021", "output": "YES\n5\n100 200 2001 4002 40021 " }, { "input": "1 111111111", "output": "YES\n9\n1 11 111 1111 11111 111111 1111111 11111111 111111111 " }, { "input": "1 1000000000", "output": "NO" }, { "input": "999999999 1000000000", "output": "NO" }, { "input": "1 2", "output": "YES\n2\n1 2 " }, { "input": "1 536870912", "output": "YES\n30\n1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 " }, { "input": "11111 11111111", "output": "YES\n4\n11111 111111 1111111 11111111 " }, { "input": "59139 946224", "output": "YES\n5\n59139 118278 236556 473112 946224 " }, { "input": "9859 19718", "output": "YES\n2\n9859 19718 " }, { "input": "25987 51974222", "output": "YES\n5\n25987 259871 2598711 25987111 51974222 " }, { "input": "9411 188222222", "output": "YES\n6\n9411 94111 941111 9411111 94111111 188222222 " }, { "input": "25539 510782222", "output": "YES\n6\n25539 255391 2553911 25539111 255391111 510782222 " }, { "input": "76259 610072", "output": "YES\n4\n76259 152518 305036 610072 " }, { "input": "92387 184774", "output": "YES\n2\n92387 184774 " }, { "input": "8515 85151111", "output": "YES\n5\n8515 85151 851511 8515111 85151111 " }, { "input": "91939 9193911", "output": "YES\n3\n91939 919391 9193911 " }, { "input": "30518 610361", "output": "YES\n3\n30518 61036 610361 " }, { "input": "46646 373168844", "output": "YES\n7\n46646 466461 932922 9329221 93292211 186584422 373168844 " }, { "input": "30070 300701", "output": "YES\n2\n30070 300701 " }, { "input": "13494 1079528", "output": "YES\n5\n13494 134941 269882 539764 1079528 " }, { "input": "96918 775344422", "output": "YES\n7\n96918 193836 1938361 3876722 38767221 387672211 775344422 " }, { "input": "13046 260921", "output": "YES\n3\n13046 26092 260921 " }, { "input": "29174 5834811", "output": "YES\n4\n29174 58348 583481 5834811 " }, { "input": "79894 319576421", "output": "YES\n6\n79894 798941 1597882 15978821 31957642 319576421 " }, { "input": "96022 1920442", "output": "YES\n3\n96022 960221 1920442 " }, { "input": "79446 6355681", "output": "YES\n5\n79446 158892 317784 635568 6355681 " }, { "input": "5440 27853056", "output": "YES\n11\n5440 10880 108801 217602 435204 870408 1740816 3481632 6963264 13926528 27853056 " }, { "input": "250000000 705032705", "output": "NO" }, { "input": "17 35", "output": "NO" }, { "input": "1 3", "output": "NO" }, { "input": "2 11", "output": "NO" } ]
1,617,017,732
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
a,b=map(int,raw_input().split()) outputs=[b] num=1 while b>a: if b%2==0: b=b/2 outputs.append(b) num+=1 else: if (b-1)%10==0: b=(b-1)/10 outputs.append(b) num+=1 else: break if a==b: print "YES" print num for x in outputs[::-1]: print x, else: print "NO"
Title: Transformation: from A to B Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasily has a number *a*, which he wants to turn into a number *b*. For this purpose, he can do two types of operations: - multiply the current number by 2 (that is, replace the number *x* by 2·*x*); - append the digit 1 to the right of current number (that is, replace the number *x* by 10·*x*<=+<=1). You need to help Vasily to transform the number *a* into the number *b* using only the operations described above, or find that it is impossible. Note that in this task you are not required to minimize the number of operations. It suffices to find any way to transform *a* into *b*. Input Specification: The first line contains two positive integers *a* and *b* (1<=≤<=*a*<=&lt;<=*b*<=≤<=109) — the number which Vasily has and the number he wants to have. Output Specification: If there is no way to get *b* from *a*, print "NO" (without quotes). Otherwise print three lines. On the first line print "YES" (without quotes). The second line should contain single integer *k* — the length of the transformation sequence. On the third line print the sequence of transformations *x*1,<=*x*2,<=...,<=*x**k*, where: - *x*1 should be equal to *a*, - *x**k* should be equal to *b*, - *x**i* should be obtained from *x**i*<=-<=1 using any of two described operations (1<=&lt;<=*i*<=≤<=*k*). If there are multiple answers, print any of them. Demo Input: ['2 162\n', '4 42\n', '100 40021\n'] Demo Output: ['YES\n5\n2 4 8 81 162 \n', 'NO\n', 'YES\n5\n100 200 2001 4002 40021 \n'] Note: none
```python a,b=map(int,raw_input().split()) outputs=[b] num=1 while b>a: if b%2==0: b=b/2 outputs.append(b) num+=1 else: if (b-1)%10==0: b=(b-1)/10 outputs.append(b) num+=1 else: break if a==b: print "YES" print num for x in outputs[::-1]: print x, else: print "NO" ```
-1
268
C
Beautiful Sets of Points
PROGRAMMING
1,500
[ "constructive algorithms", "implementation" ]
null
null
Manao has invented a new mathematical term — a beautiful set of points. He calls a set of points on a plane beautiful if it meets the following conditions: 1. The coordinates of each point in the set are integers. 1. For any two points from the set, the distance between them is a non-integer. Consider all points (*x*,<=*y*) which satisfy the inequations: 0<=≤<=*x*<=≤<=*n*; 0<=≤<=*y*<=≤<=*m*; *x*<=+<=*y*<=&gt;<=0. Choose their subset of maximum size such that it is also a beautiful set of points.
The single line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
In the first line print a single integer — the size *k* of the found beautiful set. In each of the next *k* lines print a pair of space-separated integers — the *x*- and *y*- coordinates, respectively, of a point from the set. If there are several optimal solutions, you may print any of them.
[ "2 2\n", "4 3\n" ]
[ "3\n0 1\n1 2\n2 0\n", "4\n0 3\n2 1\n3 0\n4 2\n" ]
Consider the first sample. The distance between points (0, 1) and (1, 2) equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/bfe16f27ebc966df6f10ba356a1547b6e7242dd7.png" style="max-width: 100.0%;max-height: 100.0%;"/>, between (0, 1) and (2, 0) — <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/23d63d8a57cddda72562a512c05111054cd85870.png" style="max-width: 100.0%;max-height: 100.0%;"/>, between (1, 2) and (2, 0) — <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/23d63d8a57cddda72562a512c05111054cd85870.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Thus, these points form a beautiful set. You cannot form a beautiful set with more than three points out of the given points. Note that this is not the only solution.
1,500
[ { "input": "2 2", "output": "3\n0 1\n1 2\n2 0" }, { "input": "4 3", "output": "4\n0 3\n2 1\n3 0\n4 2" }, { "input": "21 21", "output": "22\n21 0\n20 1\n19 2\n18 3\n17 4\n16 5\n15 6\n14 7\n13 8\n12 9\n11 10\n10 11\n9 12\n8 13\n7 14\n6 15\n5 16\n4 17\n3 18\n2 19\n1 20\n0 21" }, { "input": "10 1", "output": "2\n1 0\n0 1" }, { "input": "4 4", "output": "5\n4 0\n3 1\n2 2\n1 3\n0 4" }, { "input": "1 1", "output": "2\n1 0\n0 1" }, { "input": "5 5", "output": "6\n5 0\n4 1\n3 2\n2 3\n1 4\n0 5" }, { "input": "100 100", "output": "101\n100 0\n99 1\n98 2\n97 3\n96 4\n95 5\n94 6\n93 7\n92 8\n91 9\n90 10\n89 11\n88 12\n87 13\n86 14\n85 15\n84 16\n83 17\n82 18\n81 19\n80 20\n79 21\n78 22\n77 23\n76 24\n75 25\n74 26\n73 27\n72 28\n71 29\n70 30\n69 31\n68 32\n67 33\n66 34\n65 35\n64 36\n63 37\n62 38\n61 39\n60 40\n59 41\n58 42\n57 43\n56 44\n55 45\n54 46\n53 47\n52 48\n51 49\n50 50\n49 51\n48 52\n47 53\n46 54\n45 55\n44 56\n43 57\n42 58\n41 59\n40 60\n39 61\n38 62\n37 63\n36 64\n35 65\n34 66\n33 67\n32 68\n31 69\n30 70\n29 71\n28 72\n27 7..." }, { "input": "96 96", "output": "97\n96 0\n95 1\n94 2\n93 3\n92 4\n91 5\n90 6\n89 7\n88 8\n87 9\n86 10\n85 11\n84 12\n83 13\n82 14\n81 15\n80 16\n79 17\n78 18\n77 19\n76 20\n75 21\n74 22\n73 23\n72 24\n71 25\n70 26\n69 27\n68 28\n67 29\n66 30\n65 31\n64 32\n63 33\n62 34\n61 35\n60 36\n59 37\n58 38\n57 39\n56 40\n55 41\n54 42\n53 43\n52 44\n51 45\n50 46\n49 47\n48 48\n47 49\n46 50\n45 51\n44 52\n43 53\n42 54\n41 55\n40 56\n39 57\n38 58\n37 59\n36 60\n35 61\n34 62\n33 63\n32 64\n31 65\n30 66\n29 67\n28 68\n27 69\n26 70\n25 71\n24 72\n23 73\n..." }, { "input": "99 100", "output": "100\n99 0\n98 1\n97 2\n96 3\n95 4\n94 5\n93 6\n92 7\n91 8\n90 9\n89 10\n88 11\n87 12\n86 13\n85 14\n84 15\n83 16\n82 17\n81 18\n80 19\n79 20\n78 21\n77 22\n76 23\n75 24\n74 25\n73 26\n72 27\n71 28\n70 29\n69 30\n68 31\n67 32\n66 33\n65 34\n64 35\n63 36\n62 37\n61 38\n60 39\n59 40\n58 41\n57 42\n56 43\n55 44\n54 45\n53 46\n52 47\n51 48\n50 49\n49 50\n48 51\n47 52\n46 53\n45 54\n44 55\n43 56\n42 57\n41 58\n40 59\n39 60\n38 61\n37 62\n36 63\n35 64\n34 65\n33 66\n32 67\n31 68\n30 69\n29 70\n28 71\n27 72\n26 73..." }, { "input": "67 58", "output": "59\n58 0\n57 1\n56 2\n55 3\n54 4\n53 5\n52 6\n51 7\n50 8\n49 9\n48 10\n47 11\n46 12\n45 13\n44 14\n43 15\n42 16\n41 17\n40 18\n39 19\n38 20\n37 21\n36 22\n35 23\n34 24\n33 25\n32 26\n31 27\n30 28\n29 29\n28 30\n27 31\n26 32\n25 33\n24 34\n23 35\n22 36\n21 37\n20 38\n19 39\n18 40\n17 41\n16 42\n15 43\n14 44\n13 45\n12 46\n11 47\n10 48\n9 49\n8 50\n7 51\n6 52\n5 53\n4 54\n3 55\n2 56\n1 57\n0 58" }, { "input": "67 59", "output": "60\n59 0\n58 1\n57 2\n56 3\n55 4\n54 5\n53 6\n52 7\n51 8\n50 9\n49 10\n48 11\n47 12\n46 13\n45 14\n44 15\n43 16\n42 17\n41 18\n40 19\n39 20\n38 21\n37 22\n36 23\n35 24\n34 25\n33 26\n32 27\n31 28\n30 29\n29 30\n28 31\n27 32\n26 33\n25 34\n24 35\n23 36\n22 37\n21 38\n20 39\n19 40\n18 41\n17 42\n16 43\n15 44\n14 45\n13 46\n12 47\n11 48\n10 49\n9 50\n8 51\n7 52\n6 53\n5 54\n4 55\n3 56\n2 57\n1 58\n0 59" }, { "input": "80 91", "output": "81\n80 0\n79 1\n78 2\n77 3\n76 4\n75 5\n74 6\n73 7\n72 8\n71 9\n70 10\n69 11\n68 12\n67 13\n66 14\n65 15\n64 16\n63 17\n62 18\n61 19\n60 20\n59 21\n58 22\n57 23\n56 24\n55 25\n54 26\n53 27\n52 28\n51 29\n50 30\n49 31\n48 32\n47 33\n46 34\n45 35\n44 36\n43 37\n42 38\n41 39\n40 40\n39 41\n38 42\n37 43\n36 44\n35 45\n34 46\n33 47\n32 48\n31 49\n30 50\n29 51\n28 52\n27 53\n26 54\n25 55\n24 56\n23 57\n22 58\n21 59\n20 60\n19 61\n18 62\n17 63\n16 64\n15 65\n14 66\n13 67\n12 68\n11 69\n10 70\n9 71\n8 72\n7 73\n6 ..." }, { "input": "100 11", "output": "12\n11 0\n10 1\n9 2\n8 3\n7 4\n6 5\n5 6\n4 7\n3 8\n2 9\n1 10\n0 11" }, { "input": "16 55", "output": "17\n16 0\n15 1\n14 2\n13 3\n12 4\n11 5\n10 6\n9 7\n8 8\n7 9\n6 10\n5 11\n4 12\n3 13\n2 14\n1 15\n0 16" }, { "input": "13 71", "output": "14\n13 0\n12 1\n11 2\n10 3\n9 4\n8 5\n7 6\n6 7\n5 8\n4 9\n3 10\n2 11\n1 12\n0 13" }, { "input": "30 40", "output": "31\n30 0\n29 1\n28 2\n27 3\n26 4\n25 5\n24 6\n23 7\n22 8\n21 9\n20 10\n19 11\n18 12\n17 13\n16 14\n15 15\n14 16\n13 17\n12 18\n11 19\n10 20\n9 21\n8 22\n7 23\n6 24\n5 25\n4 26\n3 27\n2 28\n1 29\n0 30" }, { "input": "77 77", "output": "78\n77 0\n76 1\n75 2\n74 3\n73 4\n72 5\n71 6\n70 7\n69 8\n68 9\n67 10\n66 11\n65 12\n64 13\n63 14\n62 15\n61 16\n60 17\n59 18\n58 19\n57 20\n56 21\n55 22\n54 23\n53 24\n52 25\n51 26\n50 27\n49 28\n48 29\n47 30\n46 31\n45 32\n44 33\n43 34\n42 35\n41 36\n40 37\n39 38\n38 39\n37 40\n36 41\n35 42\n34 43\n33 44\n32 45\n31 46\n30 47\n29 48\n28 49\n27 50\n26 51\n25 52\n24 53\n23 54\n22 55\n21 56\n20 57\n19 58\n18 59\n17 60\n16 61\n15 62\n14 63\n13 64\n12 65\n11 66\n10 67\n9 68\n8 69\n7 70\n6 71\n5 72\n4 73\n3 74\n..." }, { "input": "6 6", "output": "7\n6 0\n5 1\n4 2\n3 3\n2 4\n1 5\n0 6" }, { "input": "37 42", "output": "38\n37 0\n36 1\n35 2\n34 3\n33 4\n32 5\n31 6\n30 7\n29 8\n28 9\n27 10\n26 11\n25 12\n24 13\n23 14\n22 15\n21 16\n20 17\n19 18\n18 19\n17 20\n16 21\n15 22\n14 23\n13 24\n12 25\n11 26\n10 27\n9 28\n8 29\n7 30\n6 31\n5 32\n4 33\n3 34\n2 35\n1 36\n0 37" }, { "input": "88 88", "output": "89\n88 0\n87 1\n86 2\n85 3\n84 4\n83 5\n82 6\n81 7\n80 8\n79 9\n78 10\n77 11\n76 12\n75 13\n74 14\n73 15\n72 16\n71 17\n70 18\n69 19\n68 20\n67 21\n66 22\n65 23\n64 24\n63 25\n62 26\n61 27\n60 28\n59 29\n58 30\n57 31\n56 32\n55 33\n54 34\n53 35\n52 36\n51 37\n50 38\n49 39\n48 40\n47 41\n46 42\n45 43\n44 44\n43 45\n42 46\n41 47\n40 48\n39 49\n38 50\n37 51\n36 52\n35 53\n34 54\n33 55\n32 56\n31 57\n30 58\n29 59\n28 60\n27 61\n26 62\n25 63\n24 64\n23 65\n22 66\n21 67\n20 68\n19 69\n18 70\n17 71\n16 72\n15 73\n..." }, { "input": "95 99", "output": "96\n95 0\n94 1\n93 2\n92 3\n91 4\n90 5\n89 6\n88 7\n87 8\n86 9\n85 10\n84 11\n83 12\n82 13\n81 14\n80 15\n79 16\n78 17\n77 18\n76 19\n75 20\n74 21\n73 22\n72 23\n71 24\n70 25\n69 26\n68 27\n67 28\n66 29\n65 30\n64 31\n63 32\n62 33\n61 34\n60 35\n59 36\n58 37\n57 38\n56 39\n55 40\n54 41\n53 42\n52 43\n51 44\n50 45\n49 46\n48 47\n47 48\n46 49\n45 50\n44 51\n43 52\n42 53\n41 54\n40 55\n39 56\n38 57\n37 58\n36 59\n35 60\n34 61\n33 62\n32 63\n31 64\n30 65\n29 66\n28 67\n27 68\n26 69\n25 70\n24 71\n23 72\n22 73\n..." }, { "input": "93 70", "output": "71\n70 0\n69 1\n68 2\n67 3\n66 4\n65 5\n64 6\n63 7\n62 8\n61 9\n60 10\n59 11\n58 12\n57 13\n56 14\n55 15\n54 16\n53 17\n52 18\n51 19\n50 20\n49 21\n48 22\n47 23\n46 24\n45 25\n44 26\n43 27\n42 28\n41 29\n40 30\n39 31\n38 32\n37 33\n36 34\n35 35\n34 36\n33 37\n32 38\n31 39\n30 40\n29 41\n28 42\n27 43\n26 44\n25 45\n24 46\n23 47\n22 48\n21 49\n20 50\n19 51\n18 52\n17 53\n16 54\n15 55\n14 56\n13 57\n12 58\n11 59\n10 60\n9 61\n8 62\n7 63\n6 64\n5 65\n4 66\n3 67\n2 68\n1 69\n0 70" }, { "input": "4 6", "output": "5\n4 0\n3 1\n2 2\n1 3\n0 4" }, { "input": "1 4", "output": "2\n1 0\n0 1" }, { "input": "2 10", "output": "3\n2 0\n1 1\n0 2" }, { "input": "6 7", "output": "7\n6 0\n5 1\n4 2\n3 3\n2 4\n1 5\n0 6" }, { "input": "28 28", "output": "29\n28 0\n27 1\n26 2\n25 3\n24 4\n23 5\n22 6\n21 7\n20 8\n19 9\n18 10\n17 11\n16 12\n15 13\n14 14\n13 15\n12 16\n11 17\n10 18\n9 19\n8 20\n7 21\n6 22\n5 23\n4 24\n3 25\n2 26\n1 27\n0 28" }, { "input": "10 6", "output": "7\n6 0\n5 1\n4 2\n3 3\n2 4\n1 5\n0 6" }, { "input": "85 48", "output": "49\n48 0\n47 1\n46 2\n45 3\n44 4\n43 5\n42 6\n41 7\n40 8\n39 9\n38 10\n37 11\n36 12\n35 13\n34 14\n33 15\n32 16\n31 17\n30 18\n29 19\n28 20\n27 21\n26 22\n25 23\n24 24\n23 25\n22 26\n21 27\n20 28\n19 29\n18 30\n17 31\n16 32\n15 33\n14 34\n13 35\n12 36\n11 37\n10 38\n9 39\n8 40\n7 41\n6 42\n5 43\n4 44\n3 45\n2 46\n1 47\n0 48" }, { "input": "9 6", "output": "7\n6 0\n5 1\n4 2\n3 3\n2 4\n1 5\n0 6" }, { "input": "2 6", "output": "3\n2 0\n1 1\n0 2" }, { "input": "6 4", "output": "5\n4 0\n3 1\n2 2\n1 3\n0 4" }, { "input": "6 10", "output": "7\n6 0\n5 1\n4 2\n3 3\n2 4\n1 5\n0 6" }, { "input": "16 5", "output": "6\n5 0\n4 1\n3 2\n2 3\n1 4\n0 5" }, { "input": "7 6", "output": "7\n6 0\n5 1\n4 2\n3 3\n2 4\n1 5\n0 6" }, { "input": "3 4", "output": "4\n3 0\n2 1\n1 2\n0 3" }, { "input": "13 18", "output": "14\n13 0\n12 1\n11 2\n10 3\n9 4\n8 5\n7 6\n6 7\n5 8\n4 9\n3 10\n2 11\n1 12\n0 13" }, { "input": "5 100", "output": "6\n5 0\n4 1\n3 2\n2 3\n1 4\n0 5" }, { "input": "11 9", "output": "10\n9 0\n8 1\n7 2\n6 3\n5 4\n4 5\n3 6\n2 7\n1 8\n0 9" }, { "input": "13 13", "output": "14\n13 0\n12 1\n11 2\n10 3\n9 4\n8 5\n7 6\n6 7\n5 8\n4 9\n3 10\n2 11\n1 12\n0 13" }, { "input": "1 5", "output": "2\n1 0\n0 1" }, { "input": "3 19", "output": "4\n3 0\n2 1\n1 2\n0 3" }, { "input": "10 10", "output": "11\n10 0\n9 1\n8 2\n7 3\n6 4\n5 5\n4 6\n3 7\n2 8\n1 9\n0 10" }, { "input": "3 7", "output": "4\n3 0\n2 1\n1 2\n0 3" }, { "input": "98 76", "output": "77\n76 0\n75 1\n74 2\n73 3\n72 4\n71 5\n70 6\n69 7\n68 8\n67 9\n66 10\n65 11\n64 12\n63 13\n62 14\n61 15\n60 16\n59 17\n58 18\n57 19\n56 20\n55 21\n54 22\n53 23\n52 24\n51 25\n50 26\n49 27\n48 28\n47 29\n46 30\n45 31\n44 32\n43 33\n42 34\n41 35\n40 36\n39 37\n38 38\n37 39\n36 40\n35 41\n34 42\n33 43\n32 44\n31 45\n30 46\n29 47\n28 48\n27 49\n26 50\n25 51\n24 52\n23 53\n22 54\n21 55\n20 56\n19 57\n18 58\n17 59\n16 60\n15 61\n14 62\n13 63\n12 64\n11 65\n10 66\n9 67\n8 68\n7 69\n6 70\n5 71\n4 72\n3 73\n2 74\n..." }, { "input": "10 100", "output": "11\n10 0\n9 1\n8 2\n7 3\n6 4\n5 5\n4 6\n3 7\n2 8\n1 9\n0 10" } ]
1,696,029,163
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
8
92
0
n , m = [int(x) for x in input().split()] mn = min(n , m) + 1 print(mn) if n < m: for i in range(mn): print((i + 1) % mn , i) else: for i in range(mn): print(i , (i + 1) % mn)
Title: Beautiful Sets of Points Time Limit: None seconds Memory Limit: None megabytes Problem Description: Manao has invented a new mathematical term — a beautiful set of points. He calls a set of points on a plane beautiful if it meets the following conditions: 1. The coordinates of each point in the set are integers. 1. For any two points from the set, the distance between them is a non-integer. Consider all points (*x*,<=*y*) which satisfy the inequations: 0<=≤<=*x*<=≤<=*n*; 0<=≤<=*y*<=≤<=*m*; *x*<=+<=*y*<=&gt;<=0. Choose their subset of maximum size such that it is also a beautiful set of points. Input Specification: The single line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). Output Specification: In the first line print a single integer — the size *k* of the found beautiful set. In each of the next *k* lines print a pair of space-separated integers — the *x*- and *y*- coordinates, respectively, of a point from the set. If there are several optimal solutions, you may print any of them. Demo Input: ['2 2\n', '4 3\n'] Demo Output: ['3\n0 1\n1 2\n2 0\n', '4\n0 3\n2 1\n3 0\n4 2\n'] Note: Consider the first sample. The distance between points (0, 1) and (1, 2) equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/bfe16f27ebc966df6f10ba356a1547b6e7242dd7.png" style="max-width: 100.0%;max-height: 100.0%;"/>, between (0, 1) and (2, 0) — <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/23d63d8a57cddda72562a512c05111054cd85870.png" style="max-width: 100.0%;max-height: 100.0%;"/>, between (1, 2) and (2, 0) — <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/23d63d8a57cddda72562a512c05111054cd85870.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Thus, these points form a beautiful set. You cannot form a beautiful set with more than three points out of the given points. Note that this is not the only solution.
```python n , m = [int(x) for x in input().split()] mn = min(n , m) + 1 print(mn) if n < m: for i in range(mn): print((i + 1) % mn , i) else: for i in range(mn): print(i , (i + 1) % mn) ```
0
658
A
Bear and Reverse Radewoosh
PROGRAMMING
800
[ "implementation" ]
null
null
Limak and Radewoosh are going to compete against each other in the upcoming algorithmic contest. They are equally skilled but they won't solve problems in the same order. There will be *n* problems. The *i*-th problem has initial score *p**i* and it takes exactly *t**i* minutes to solve it. Problems are sorted by difficulty — it's guaranteed that *p**i*<=&lt;<=*p**i*<=+<=1 and *t**i*<=&lt;<=*t**i*<=+<=1. A constant *c* is given too, representing the speed of loosing points. Then, submitting the *i*-th problem at time *x* (*x* minutes after the start of the contest) gives *max*(0,<= *p**i*<=-<=*c*·*x*) points. Limak is going to solve problems in order 1,<=2,<=...,<=*n* (sorted increasingly by *p**i*). Radewoosh is going to solve them in order *n*,<=*n*<=-<=1,<=...,<=1 (sorted decreasingly by *p**i*). Your task is to predict the outcome — print the name of the winner (person who gets more points at the end) or a word "Tie" in case of a tie. You may assume that the duration of the competition is greater or equal than the sum of all *t**i*. That means both Limak and Radewoosh will accept all *n* problems.
The first line contains two integers *n* and *c* (1<=≤<=*n*<=≤<=50,<=1<=≤<=*c*<=≤<=1000) — the number of problems and the constant representing the speed of loosing points. The second line contains *n* integers *p*1,<=*p*2,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=1000,<=*p**i*<=&lt;<=*p**i*<=+<=1) — initial scores. The third line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000,<=*t**i*<=&lt;<=*t**i*<=+<=1) where *t**i* denotes the number of minutes one needs to solve the *i*-th problem.
Print "Limak" (without quotes) if Limak will get more points in total. Print "Radewoosh" (without quotes) if Radewoosh will get more points in total. Print "Tie" (without quotes) if Limak and Radewoosh will get the same total number of points.
[ "3 2\n50 85 250\n10 15 25\n", "3 6\n50 85 250\n10 15 25\n", "8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76\n" ]
[ "Limak\n", "Radewoosh\n", "Tie\n" ]
In the first sample, there are 3 problems. Limak solves them as follows: 1. Limak spends 10 minutes on the 1-st problem and he gets 50 - *c*·10 = 50 - 2·10 = 30 points. 1. Limak spends 15 minutes on the 2-nd problem so he submits it 10 + 15 = 25 minutes after the start of the contest. For the 2-nd problem he gets 85 - 2·25 = 35 points. 1. He spends 25 minutes on the 3-rd problem so he submits it 10 + 15 + 25 = 50 minutes after the start. For this problem he gets 250 - 2·50 = 150 points. So, Limak got 30 + 35 + 150 = 215 points. Radewoosh solves problem in the reversed order: 1. Radewoosh solves 3-rd problem after 25 minutes so he gets 250 - 2·25 = 200 points. 1. He spends 15 minutes on the 2-nd problem so he submits it 25 + 15 = 40 minutes after the start. He gets 85 - 2·40 = 5 points for this problem. 1. He spends 10 minutes on the 1-st problem so he submits it 25 + 15 + 10 = 50 minutes after the start. He gets *max*(0, 50 - 2·50) = *max*(0,  - 50) = 0 points. Radewoosh got 200 + 5 + 0 = 205 points in total. Limak has 215 points so Limak wins. In the second sample, Limak will get 0 points for each problem and Radewoosh will first solve the hardest problem and he will get 250 - 6·25 = 100 points for that. Radewoosh will get 0 points for other two problems but he is the winner anyway. In the third sample, Limak will get 2 points for the 1-st problem and 2 points for the 2-nd problem. Radewoosh will get 4 points for the 8-th problem. They won't get points for other problems and thus there is a tie because 2 + 2 = 4.
500
[ { "input": "3 2\n50 85 250\n10 15 25", "output": "Limak" }, { "input": "3 6\n50 85 250\n10 15 25", "output": "Radewoosh" }, { "input": "8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76", "output": "Tie" }, { "input": "4 1\n3 5 6 9\n1 2 4 8", "output": "Limak" }, { "input": "4 1\n1 3 6 10\n1 5 7 8", "output": "Radewoosh" }, { "input": "4 1\n2 4 5 10\n2 3 9 10", "output": "Tie" }, { "input": "18 4\n68 97 121 132 146 277 312 395 407 431 458 461 595 634 751 855 871 994\n1 2 3 4 9 10 13 21 22 29 31 34 37 38 39 41 48 49", "output": "Radewoosh" }, { "input": "50 1\n5 14 18 73 137 187 195 197 212 226 235 251 262 278 287 304 310 322 342 379 393 420 442 444 448 472 483 485 508 515 517 523 559 585 618 627 636 646 666 682 703 707 780 853 937 951 959 989 991 992\n30 84 113 173 199 220 235 261 266 277 300 306 310 312 347 356 394 396 397 409 414 424 446 462 468 487 507 517 537 566 594 643 656 660 662 668 706 708 773 774 779 805 820 827 868 896 929 942 961 995", "output": "Tie" }, { "input": "4 1\n4 6 9 10\n2 3 4 5", "output": "Radewoosh" }, { "input": "4 1\n4 6 9 10\n3 4 5 7", "output": "Radewoosh" }, { "input": "4 1\n1 6 7 10\n2 7 8 10", "output": "Tie" }, { "input": "4 1\n4 5 7 9\n1 4 5 8", "output": "Limak" }, { "input": "50 1\n6 17 44 82 94 127 134 156 187 211 212 252 256 292 294 303 352 355 379 380 398 409 424 434 480 524 584 594 631 714 745 756 777 778 789 793 799 821 841 849 859 878 879 895 925 932 944 952 958 990\n15 16 40 42 45 71 99 100 117 120 174 181 186 204 221 268 289 332 376 394 403 409 411 444 471 487 499 539 541 551 567 589 619 623 639 669 689 722 735 776 794 822 830 840 847 907 917 927 936 988", "output": "Radewoosh" }, { "input": "50 10\n25 49 52 73 104 117 127 136 149 164 171 184 226 251 257 258 286 324 337 341 386 390 428 453 464 470 492 517 543 565 609 634 636 660 678 693 710 714 729 736 739 749 781 836 866 875 956 960 977 979\n2 4 7 10 11 22 24 26 27 28 31 35 37 38 42 44 45 46 52 53 55 56 57 59 60 61 64 66 67 68 69 71 75 76 77 78 79 81 83 85 86 87 89 90 92 93 94 98 99 100", "output": "Limak" }, { "input": "50 10\n11 15 25 71 77 83 95 108 143 150 182 183 198 203 213 223 279 280 346 348 350 355 375 376 412 413 415 432 470 545 553 562 589 595 607 633 635 637 688 719 747 767 771 799 842 883 905 924 942 944\n1 3 5 6 7 10 11 12 13 14 15 16 19 20 21 23 25 32 35 36 37 38 40 41 42 43 47 50 51 54 55 56 57 58 59 60 62 63 64 65 66 68 69 70 71 72 73 75 78 80", "output": "Radewoosh" }, { "input": "32 6\n25 77 141 148 157 159 192 196 198 244 245 255 332 392 414 457 466 524 575 603 629 700 738 782 838 841 845 847 870 945 984 985\n1 2 4 5 8 9 10 12 13 14 15 16 17 18 20 21 22 23 24 26 28 31 38 39 40 41 42 43 45 47 48 49", "output": "Radewoosh" }, { "input": "5 1\n256 275 469 671 842\n7 9 14 17 26", "output": "Limak" }, { "input": "2 1000\n1 2\n1 2", "output": "Tie" }, { "input": "3 1\n1 50 809\n2 8 800", "output": "Limak" }, { "input": "1 13\n866\n10", "output": "Tie" }, { "input": "15 1\n9 11 66 128 199 323 376 386 393 555 585 718 935 960 971\n3 11 14 19 20 21 24 26 32 38 40 42 44 47 50", "output": "Limak" }, { "input": "1 10\n546\n45", "output": "Tie" }, { "input": "50 20\n21 43 51 99 117 119 158 167 175 190 196 244 250 316 335 375 391 403 423 428 451 457 460 480 487 522 539 559 566 584 598 602 604 616 626 666 675 730 771 787 828 841 861 867 886 889 898 970 986 991\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50", "output": "Limak" }, { "input": "50 21\n13 20 22 38 62 84 118 135 141 152 170 175 194 218 227 229 232 253 260 263 278 313 329 357 396 402 422 452 454 533 575 576 580 594 624 644 653 671 676 759 789 811 816 823 831 833 856 924 933 987\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50", "output": "Tie" }, { "input": "1 36\n312\n42", "output": "Tie" }, { "input": "1 1000\n1\n1000", "output": "Tie" }, { "input": "1 1\n1000\n1", "output": "Tie" }, { "input": "50 35\n9 17 28 107 136 152 169 174 186 188 201 262 291 312 324 330 341 358 385 386 393 397 425 431 479 498 502 523 530 540 542 554 578 588 622 623 684 696 709 722 784 819 836 845 850 932 945 969 983 984\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50", "output": "Tie" }, { "input": "50 20\n12 113 116 120 138 156 167 183 185 194 211 228 234 261 278 287 310 317 346 361 364 397 424 470 496 522 527 536 611 648 668 704 707 712 717 752 761 766 815 828 832 864 872 885 889 901 904 929 982 993\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50", "output": "Limak" } ]
1,566,913,202
2,147,483,647
Python 3
OK
TESTS
29
109
0
# import sys # sys.stdin=open("input.in","r") # sys.stdout=open("output.out","w") a,b=map(int,input().split()) i=list(map(int,input().split())) j=list(map(int,input().split())) Limak,Radewoosh,d,e=0,0,0,0 for x in range(a): d+=j[x] Limak+=max(0,(i[x]-d*b)) e+=j[a-1-x] Radewoosh+=max(0,(i[a-1-x]-e*b)) # print(d,e,Limak,Radewoosh) if Limak==Radewoosh: print('Tie') elif Limak>Radewoosh: print('Limak') else: print('Radewoosh')
Title: Bear and Reverse Radewoosh Time Limit: None seconds Memory Limit: None megabytes Problem Description: Limak and Radewoosh are going to compete against each other in the upcoming algorithmic contest. They are equally skilled but they won't solve problems in the same order. There will be *n* problems. The *i*-th problem has initial score *p**i* and it takes exactly *t**i* minutes to solve it. Problems are sorted by difficulty — it's guaranteed that *p**i*<=&lt;<=*p**i*<=+<=1 and *t**i*<=&lt;<=*t**i*<=+<=1. A constant *c* is given too, representing the speed of loosing points. Then, submitting the *i*-th problem at time *x* (*x* minutes after the start of the contest) gives *max*(0,<= *p**i*<=-<=*c*·*x*) points. Limak is going to solve problems in order 1,<=2,<=...,<=*n* (sorted increasingly by *p**i*). Radewoosh is going to solve them in order *n*,<=*n*<=-<=1,<=...,<=1 (sorted decreasingly by *p**i*). Your task is to predict the outcome — print the name of the winner (person who gets more points at the end) or a word "Tie" in case of a tie. You may assume that the duration of the competition is greater or equal than the sum of all *t**i*. That means both Limak and Radewoosh will accept all *n* problems. Input Specification: The first line contains two integers *n* and *c* (1<=≤<=*n*<=≤<=50,<=1<=≤<=*c*<=≤<=1000) — the number of problems and the constant representing the speed of loosing points. The second line contains *n* integers *p*1,<=*p*2,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=1000,<=*p**i*<=&lt;<=*p**i*<=+<=1) — initial scores. The third line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000,<=*t**i*<=&lt;<=*t**i*<=+<=1) where *t**i* denotes the number of minutes one needs to solve the *i*-th problem. Output Specification: Print "Limak" (without quotes) if Limak will get more points in total. Print "Radewoosh" (without quotes) if Radewoosh will get more points in total. Print "Tie" (without quotes) if Limak and Radewoosh will get the same total number of points. Demo Input: ['3 2\n50 85 250\n10 15 25\n', '3 6\n50 85 250\n10 15 25\n', '8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76\n'] Demo Output: ['Limak\n', 'Radewoosh\n', 'Tie\n'] Note: In the first sample, there are 3 problems. Limak solves them as follows: 1. Limak spends 10 minutes on the 1-st problem and he gets 50 - *c*·10 = 50 - 2·10 = 30 points. 1. Limak spends 15 minutes on the 2-nd problem so he submits it 10 + 15 = 25 minutes after the start of the contest. For the 2-nd problem he gets 85 - 2·25 = 35 points. 1. He spends 25 minutes on the 3-rd problem so he submits it 10 + 15 + 25 = 50 minutes after the start. For this problem he gets 250 - 2·50 = 150 points. So, Limak got 30 + 35 + 150 = 215 points. Radewoosh solves problem in the reversed order: 1. Radewoosh solves 3-rd problem after 25 minutes so he gets 250 - 2·25 = 200 points. 1. He spends 15 minutes on the 2-nd problem so he submits it 25 + 15 = 40 minutes after the start. He gets 85 - 2·40 = 5 points for this problem. 1. He spends 10 minutes on the 1-st problem so he submits it 25 + 15 + 10 = 50 minutes after the start. He gets *max*(0, 50 - 2·50) = *max*(0,  - 50) = 0 points. Radewoosh got 200 + 5 + 0 = 205 points in total. Limak has 215 points so Limak wins. In the second sample, Limak will get 0 points for each problem and Radewoosh will first solve the hardest problem and he will get 250 - 6·25 = 100 points for that. Radewoosh will get 0 points for other two problems but he is the winner anyway. In the third sample, Limak will get 2 points for the 1-st problem and 2 points for the 2-nd problem. Radewoosh will get 4 points for the 8-th problem. They won't get points for other problems and thus there is a tie because 2 + 2 = 4.
```python # import sys # sys.stdin=open("input.in","r") # sys.stdout=open("output.out","w") a,b=map(int,input().split()) i=list(map(int,input().split())) j=list(map(int,input().split())) Limak,Radewoosh,d,e=0,0,0,0 for x in range(a): d+=j[x] Limak+=max(0,(i[x]-d*b)) e+=j[a-1-x] Radewoosh+=max(0,(i[a-1-x]-e*b)) # print(d,e,Limak,Radewoosh) if Limak==Radewoosh: print('Tie') elif Limak>Radewoosh: print('Limak') else: print('Radewoosh') ```
3
762
A
k-th divisor
PROGRAMMING
1,400
[ "math", "number theory" ]
null
null
You are given two integers *n* and *k*. Find *k*-th smallest divisor of *n*, or report that it doesn't exist. Divisor of *n* is any such natural number, that *n* can be divided by it without remainder.
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1015, 1<=≤<=*k*<=≤<=109).
If *n* has less than *k* divisors, output -1. Otherwise, output the *k*-th smallest divisor of *n*.
[ "4 2\n", "5 3\n", "12 5\n" ]
[ "2\n", "-1\n", "6\n" ]
In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2. In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
0
[ { "input": "4 2", "output": "2" }, { "input": "5 3", "output": "-1" }, { "input": "12 5", "output": "6" }, { "input": "1 1", "output": "1" }, { "input": "866421317361600 26880", "output": "866421317361600" }, { "input": "866421317361600 26881", "output": "-1" }, { "input": "1000000000000000 1000000000", "output": "-1" }, { "input": "1000000000000000 100", "output": "1953125" }, { "input": "1 2", "output": "-1" }, { "input": "4 3", "output": "4" }, { "input": "4 4", "output": "-1" }, { "input": "9 3", "output": "9" }, { "input": "21 3", "output": "7" }, { "input": "67280421310721 1", "output": "1" }, { "input": "6 3", "output": "3" }, { "input": "3 3", "output": "-1" }, { "input": "16 3", "output": "4" }, { "input": "1 1000", "output": "-1" }, { "input": "16 4", "output": "8" }, { "input": "36 8", "output": "18" }, { "input": "49 4", "output": "-1" }, { "input": "9 4", "output": "-1" }, { "input": "16 1", "output": "1" }, { "input": "16 6", "output": "-1" }, { "input": "16 5", "output": "16" }, { "input": "25 4", "output": "-1" }, { "input": "4010815561 2", "output": "63331" }, { "input": "49 3", "output": "49" }, { "input": "36 6", "output": "9" }, { "input": "36 10", "output": "-1" }, { "input": "25 3", "output": "25" }, { "input": "22876792454961 28", "output": "7625597484987" }, { "input": "1234 2", "output": "2" }, { "input": "179458711 2", "output": "179458711" }, { "input": "900104343024121 100000", "output": "-1" }, { "input": "8 3", "output": "4" }, { "input": "100 6", "output": "20" }, { "input": "15500 26", "output": "-1" }, { "input": "111111 1", "output": "1" }, { "input": "100000000000000 200", "output": "160000000000" }, { "input": "1000000000000 100", "output": "6400000" }, { "input": "100 10", "output": "-1" }, { "input": "1000000000039 2", "output": "1000000000039" }, { "input": "64 5", "output": "16" }, { "input": "999999961946176 33", "output": "63245552" }, { "input": "376219076689 3", "output": "376219076689" }, { "input": "999999961946176 63", "output": "999999961946176" }, { "input": "1048576 12", "output": "2048" }, { "input": "745 21", "output": "-1" }, { "input": "748 6", "output": "22" }, { "input": "999999961946176 50", "output": "161082468097" }, { "input": "10 3", "output": "5" }, { "input": "1099511627776 22", "output": "2097152" }, { "input": "1000000007 100010", "output": "-1" }, { "input": "3 1", "output": "1" }, { "input": "100 8", "output": "50" }, { "input": "100 7", "output": "25" }, { "input": "7 2", "output": "7" }, { "input": "999999961946176 64", "output": "-1" }, { "input": "20 5", "output": "10" }, { "input": "999999999999989 2", "output": "999999999999989" }, { "input": "100000000000000 114", "output": "10240000" }, { "input": "99999640000243 3", "output": "9999991" }, { "input": "999998000001 566", "output": "333332666667" }, { "input": "99999820000081 2", "output": "9999991" }, { "input": "49000042000009 3", "output": "49000042000009" }, { "input": "151491429961 4", "output": "-1" }, { "input": "32416190071 2", "output": "32416190071" }, { "input": "1000 8", "output": "25" }, { "input": "1999967841 15", "output": "1999967841" }, { "input": "26880 26880", "output": "-1" }, { "input": "151491429961 3", "output": "151491429961" }, { "input": "90000000000 300", "output": "100000000" }, { "input": "98765004361 10", "output": "-1" }, { "input": "15 2", "output": "3" }, { "input": "16 2", "output": "2" }, { "input": "1996 2", "output": "2" }, { "input": "1997 2", "output": "1997" }, { "input": "1999 2", "output": "1999" }, { "input": "1998 2", "output": "2" }, { "input": "1998 1", "output": "1" }, { "input": "1998 7", "output": "27" }, { "input": "1998 8", "output": "37" }, { "input": "100000380000361 2", "output": "10000019" }, { "input": "15 1", "output": "1" }, { "input": "100000000000000 226", "output": "-1" }, { "input": "844030857550613 517", "output": "-1" }, { "input": "4567890 14", "output": "430" }, { "input": "123123123 123123123", "output": "-1" }, { "input": "24 4", "output": "4" }, { "input": "999999993568952 17", "output": "31622777" }, { "input": "99999999994190 9", "output": "241656799" }, { "input": "999997874844049 4", "output": "-1" }, { "input": "99999999999931 2", "output": "99999999999931" }, { "input": "2 3", "output": "-1" }, { "input": "67280421310721 2", "output": "67280421310721" } ]
1,666,328,140
2,147,483,647
PyPy 3-64
OK
TESTS
96
451
2,252,800
n,k=map(int,input().split()) def divisors(n): lower,upper=[],[] i=1 while i*i<=n: if n%i==0: lower.append(i) if i!=n//i: upper.append(n//i) i+=1 return lower+upper[::-1] d=divisors(n) if len(d)>=k: print(d[k-1]) else: print(-1)
Title: k-th divisor Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two integers *n* and *k*. Find *k*-th smallest divisor of *n*, or report that it doesn't exist. Divisor of *n* is any such natural number, that *n* can be divided by it without remainder. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1015, 1<=≤<=*k*<=≤<=109). Output Specification: If *n* has less than *k* divisors, output -1. Otherwise, output the *k*-th smallest divisor of *n*. Demo Input: ['4 2\n', '5 3\n', '12 5\n'] Demo Output: ['2\n', '-1\n', '6\n'] Note: In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2. In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
```python n,k=map(int,input().split()) def divisors(n): lower,upper=[],[] i=1 while i*i<=n: if n%i==0: lower.append(i) if i!=n//i: upper.append(n//i) i+=1 return lower+upper[::-1] d=divisors(n) if len(d)>=k: print(d[k-1]) else: print(-1) ```
3
678
A
Johny Likes Numbers
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Johny likes numbers *n* and *k* very much. Now Johny wants to find the smallest integer *x* greater than *n*, so it is divisible by the number *k*.
The only line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=109).
Print the smallest integer *x*<=&gt;<=*n*, so it is divisible by the number *k*.
[ "5 3\n", "25 13\n", "26 13\n" ]
[ "6\n", "26\n", "39\n" ]
none
0
[ { "input": "5 3", "output": "6" }, { "input": "25 13", "output": "26" }, { "input": "26 13", "output": "39" }, { "input": "1 1", "output": "2" }, { "input": "8 8", "output": "16" }, { "input": "14 15", "output": "15" }, { "input": "197 894", "output": "894" }, { "input": "6058 8581", "output": "8581" }, { "input": "97259 41764", "output": "125292" }, { "input": "453145 333625", "output": "667250" }, { "input": "2233224 4394826", "output": "4394826" }, { "input": "76770926 13350712", "output": "80104272" }, { "input": "687355301 142098087", "output": "710490435" }, { "input": "1000000000 999999999", "output": "1999999998" }, { "input": "1000000000 1000000000", "output": "2000000000" }, { "input": "999999999 1000000000", "output": "1000000000" }, { "input": "1000000000 1", "output": "1000000001" }, { "input": "1000000000 2", "output": "1000000002" }, { "input": "999999999 1", "output": "1000000000" }, { "input": "100000000 1", "output": "100000001" }, { "input": "999999999 500000000", "output": "1000000000" }, { "input": "999999990 10", "output": "1000000000" }, { "input": "1000000000 999999997", "output": "1999999994" }, { "input": "999999999 2", "output": "1000000000" }, { "input": "999999984 1", "output": "999999985" }, { "input": "999999983 1", "output": "999999984" }, { "input": "666666666 1", "output": "666666667" }, { "input": "1000000000 990000000", "output": "1980000000" }, { "input": "41 48", "output": "48" }, { "input": "123456 2", "output": "123458" }, { "input": "111 111", "output": "222" }, { "input": "878787 1", "output": "878788" }, { "input": "121 1", "output": "122" }, { "input": "114514 114514", "output": "229028" }, { "input": "500000001 1000000000", "output": "1000000000" }, { "input": "999999997 1", "output": "999999998" }, { "input": "100000000 10", "output": "100000010" } ]
1,676,959,546
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
11
500
0
n,k= map(int, input().split()) x=n+1 while x>n: if x%k==0: print(x) break x+=1
Title: Johny Likes Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: Johny likes numbers *n* and *k* very much. Now Johny wants to find the smallest integer *x* greater than *n*, so it is divisible by the number *k*. Input Specification: The only line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=109). Output Specification: Print the smallest integer *x*<=&gt;<=*n*, so it is divisible by the number *k*. Demo Input: ['5 3\n', '25 13\n', '26 13\n'] Demo Output: ['6\n', '26\n', '39\n'] Note: none
```python n,k= map(int, input().split()) x=n+1 while x>n: if x%k==0: print(x) break x+=1 ```
0
519
B
A and B and Compilation Errors
PROGRAMMING
1,100
[ "data structures", "implementation", "sortings" ]
null
null
A and B are preparing themselves for programming contests. B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code. Initially, the compiler displayed *n* compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake. However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change. Can you help B find out exactly what two errors he corrected?
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=105) — the initial number of compilation errors. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the errors the compiler displayed for the first time. The third line contains *n*<=-<=1 space-separated integers *b*1,<=*b*2,<=...,<=*b**n*<=-<=1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one. The fourth line contains *n*<=-<=2 space-separated integers *с*1,<=*с*2,<=...,<=*с**n*<=-<=2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one.
Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively.
[ "5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n", "6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n" ]
[ "8\n123\n", "1\n3\n" ]
In the first test sample B first corrects the error number 8, then the error number 123. In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step.
1,000
[ { "input": "5\n1 5 8 123 7\n123 7 5 1\n5 1 7", "output": "8\n123" }, { "input": "6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5", "output": "1\n3" }, { "input": "3\n1 2 3\n3 2\n2", "output": "1\n3" }, { "input": "10\n460626451 802090732 277246428 661369649 388684428 784303821 376287098 656422756 9301599 25720377\n277246428 388684428 661369649 460626451 656422756 802090732 9301599 784303821 376287098\n376287098 802090732 388684428 9301599 656422756 784303821 460626451 277246428", "output": "25720377\n661369649" }, { "input": "3\n796067435 964699482 819602309\n964699482 796067435\n964699482", "output": "819602309\n796067435" }, { "input": "3\n374054998 726316780 902899520\n902899520 726316780\n726316780", "output": "374054998\n902899520" }, { "input": "3\n168638990 939116221 323703261\n168638990 323703261\n168638990", "output": "939116221\n323703261" }, { "input": "3\n77 77 77\n77 77\n77", "output": "77\n77" }, { "input": "3\n84 30 9\n9 84\n9", "output": "30\n84" }, { "input": "6\n5 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3", "output": "5\n5" }, { "input": "4\n1 5 7 8\n1 5 7\n1 5", "output": "8\n7" } ]
1,672,124,141
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
61
0
n = int(input()) a = [i for i in input().split()] for i in input().split(): if i not in a: print(i) a.pop(a.index(i)) break for i in input().split(): if i not in a: print(i) break
Title: A and B and Compilation Errors Time Limit: None seconds Memory Limit: None megabytes Problem Description: A and B are preparing themselves for programming contests. B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code. Initially, the compiler displayed *n* compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake. However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change. Can you help B find out exactly what two errors he corrected? Input Specification: The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=105) — the initial number of compilation errors. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the errors the compiler displayed for the first time. The third line contains *n*<=-<=1 space-separated integers *b*1,<=*b*2,<=...,<=*b**n*<=-<=1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one. The fourth line contains *n*<=-<=2 space-separated integers *с*1,<=*с*2,<=...,<=*с**n*<=-<=2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one. Output Specification: Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively. Demo Input: ['5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n', '6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n'] Demo Output: ['8\n123\n', '1\n3\n'] Note: In the first test sample B first corrects the error number 8, then the error number 123. In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step.
```python n = int(input()) a = [i for i in input().split()] for i in input().split(): if i not in a: print(i) a.pop(a.index(i)) break for i in input().split(): if i not in a: print(i) break ```
0
520
A
Pangram
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices. You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of characters in the string. The second line contains the string. The string consists only of uppercase and lowercase Latin letters.
Output "YES", if the string is a pangram and "NO" otherwise.
[ "12\ntoosmallword\n", "35\nTheQuickBrownFoxJumpsOverTheLazyDog\n" ]
[ "NO\n", "YES\n" ]
none
500
[ { "input": "12\ntoosmallword", "output": "NO" }, { "input": "35\nTheQuickBrownFoxJumpsOverTheLazyDog", "output": "YES" }, { "input": "1\na", "output": "NO" }, { "input": "26\nqwertyuiopasdfghjklzxcvbnm", "output": "YES" }, { "input": "26\nABCDEFGHIJKLMNOPQRSTUVWXYZ", "output": "YES" }, { "input": "48\nthereisasyetinsufficientdataforameaningfulanswer", "output": "NO" }, { "input": "30\nToBeOrNotToBeThatIsTheQuestion", "output": "NO" }, { "input": "30\njackdawslovemybigsphinxofquarz", "output": "NO" }, { "input": "31\nTHEFIVEBOXINGWIZARDSJUMPQUICKLY", "output": "YES" }, { "input": "26\naaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "NO" }, { "input": "26\nMGJYIZDKsbhpVeNFlquRTcWoAx", "output": "YES" }, { "input": "26\nfWMOhAPsbIVtyUEZrGNQXDklCJ", "output": "YES" }, { "input": "26\nngPMVFSThiRCwLEuyOAbKxQzDJ", "output": "YES" }, { "input": "25\nnxYTzLFwzNolAumjgcAboyxAj", "output": "NO" }, { "input": "26\npRWdodGdxUESvcScPGbUoooZsC", "output": "NO" }, { "input": "66\nBovdMlDzTaqKllZILFVfxbLGsRnzmtVVTmqiIDTYrossLEPlmsPrkUYtWEsGHVOnFj", "output": "NO" }, { "input": "100\nmKtsiDRJypUieHIkvJaMFkwaKxcCIbBszZQLIyPpCDCjhNpAnYFngLjRpnKWpKWtGnwoSteeZXuFHWQxxxOpFlNeYTwKocsXuCoa", "output": "YES" }, { "input": "26\nEoqxUbsLjPytUHMiFnvcGWZdRK", "output": "NO" }, { "input": "26\nvCUFRKElZOnjmXGylWQaHDiPst", "output": "NO" }, { "input": "26\nWtrPuaHdXLKJMsnvQfgOiJZBEY", "output": "NO" }, { "input": "26\npGiFluRteQwkaVoPszJyNBChxM", "output": "NO" }, { "input": "26\ncTUpqjPmANrdbzSFhlWIoKxgVY", "output": "NO" }, { "input": "26\nLndjgvAEuICHKxPwqYztosrmBN", "output": "NO" }, { "input": "26\nMdaXJrCipnOZLykfqHWEStevbU", "output": "NO" }, { "input": "26\nEjDWsVxfKTqGXRnUMOLYcIzPba", "output": "NO" }, { "input": "26\nxKwzRMpunYaqsdfaBgJcVElTHo", "output": "NO" }, { "input": "26\nnRYUQsTwCPLZkgshfEXvBdoiMa", "output": "NO" }, { "input": "26\nHNCQPfJutyAlDGsvRxZWMEbIdO", "output": "NO" }, { "input": "26\nDaHJIpvKznQcmUyWsTGObXRFDe", "output": "NO" }, { "input": "26\nkqvAnFAiRhzlJbtyuWedXSPcOG", "output": "NO" }, { "input": "26\nhlrvgdwsIOyjcmUZXtAKEqoBpF", "output": "NO" }, { "input": "26\njLfXXiMhBTcAwQVReGnpKzdsYu", "output": "NO" }, { "input": "26\nlNMcVuwItjxRBGAekjhyDsQOzf", "output": "NO" }, { "input": "26\nRkSwbNoYldUGtAZvpFMcxhIJFE", "output": "NO" }, { "input": "26\nDqspXZJTuONYieKgaHLMBwfVSC", "output": "NO" }, { "input": "26\necOyUkqNljFHRVXtIpWabGMLDz", "output": "NO" }, { "input": "26\nEKAvqZhBnPmVCDRlgWJfOusxYI", "output": "NO" }, { "input": "26\naLbgqeYchKdMrsZxIPFvTOWNjA", "output": "NO" }, { "input": "26\nxfpBLsndiqtacOCHGmeWUjRkYz", "output": "NO" }, { "input": "26\nXsbRKtqleZPNIVCdfUhyagAomJ", "output": "NO" }, { "input": "26\nAmVtbrwquEthZcjKPLiyDgSoNF", "output": "NO" }, { "input": "26\nOhvXDcwqAUmSEPRZGnjFLiKtNB", "output": "NO" }, { "input": "26\nEKWJqCFLRmstxVBdYuinpbhaOg", "output": "NO" }, { "input": "26\nmnbvcxxlkjhgfdsapoiuytrewq", "output": "NO" }, { "input": "26\naAbcdefghijklmnopqrstuvwxy", "output": "NO" }, { "input": "30\nABCDEFGHTYRIOPLabcdefghtyriopl", "output": "NO" }, { "input": "25\nabcdefghijklmnopqrstuvwxy", "output": "NO" }, { "input": "26\nabcdefhijklmnopqrstVxyzABC", "output": "NO" }, { "input": "25\nqwertyuiopasdfghjklxcvbnm", "output": "NO" }, { "input": "34\nTheQuickBrownFoxJumpsOverTheLayDog", "output": "NO" }, { "input": "26\nabcdefghigklmnopqrstuvwxyz", "output": "NO" }, { "input": "26\nabcdefghijklmnopqrstuvwxyA", "output": "NO" }, { "input": "50\nqazwsxedcrfvtgbyhnujmikolQWERTYUIOASDFGHJKLZXCVBNM", "output": "NO" }, { "input": "35\nTheQuickBrownFoxJumpsOverTheLasyDog", "output": "NO" }, { "input": "25\nbcdefghijklmnopqrstuvwxyz", "output": "NO" }, { "input": "38\nAbCdEfGhIjKlMnOpQrStVwXyZzzzzzzaaaaaaa", "output": "NO" }, { "input": "26\nabcdefghiklmnopqrstvxyzABC", "output": "NO" }, { "input": "26\nabcdefghijklmnopqrstuvwxzZ", "output": "NO" }, { "input": "50\nabcdefghijklmnopqrstuvwxyABCDEFGHIJKLMNOPQRSTUVWXY", "output": "NO" } ]
1,696,589,196
2,147,483,647
Python 3
OK
TESTS
59
46
0
n = int(input()) print(('NO', 'YES')[len({x for x in input().lower()}) == 26])
Title: Pangram Time Limit: None seconds Memory Limit: None megabytes Problem Description: A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices. You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of characters in the string. The second line contains the string. The string consists only of uppercase and lowercase Latin letters. Output Specification: Output "YES", if the string is a pangram and "NO" otherwise. Demo Input: ['12\ntoosmallword\n', '35\nTheQuickBrownFoxJumpsOverTheLazyDog\n'] Demo Output: ['NO\n', 'YES\n'] Note: none
```python n = int(input()) print(('NO', 'YES')[len({x for x in input().lower()}) == 26]) ```
3
817
A
Treasure Hunt
PROGRAMMING
1,200
[ "implementation", "math", "number theory" ]
null
null
Captain Bill the Hummingbird and his crew recieved an interesting challenge offer. Some stranger gave them a map, potion of teleportation and said that only this potion might help them to reach the treasure. Bottle with potion has two values *x* and *y* written on it. These values define four moves which can be performed using the potion: - - - - Map shows that the position of Captain Bill the Hummingbird is (*x*1,<=*y*1) and the position of the treasure is (*x*2,<=*y*2). You task is to tell Captain Bill the Hummingbird whether he should accept this challenge or decline. If it is possible for Captain to reach the treasure using the potion then output "YES", otherwise "NO" (without quotes). The potion can be used infinite amount of times.
The first line contains four integer numbers *x*1,<=*y*1,<=*x*2,<=*y*2 (<=-<=105<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=105) — positions of Captain Bill the Hummingbird and treasure respectively. The second line contains two integer numbers *x*,<=*y* (1<=≤<=*x*,<=*y*<=≤<=105) — values on the potion bottle.
Print "YES" if it is possible for Captain to reach the treasure using the potion, otherwise print "NO" (without quotes).
[ "0 0 0 6\n2 3\n", "1 1 3 6\n1 5\n" ]
[ "YES\n", "NO\n" ]
In the first example there exists such sequence of moves: 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7c939890fb4ed35688177327dac981bfa9216c00.png" style="max-width: 100.0%;max-height: 100.0%;"/> — the first type of move 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/afbfa42fbac4e0641e7466e3aac74cbbb08ed597.png" style="max-width: 100.0%;max-height: 100.0%;"/> — the third type of move
0
[ { "input": "0 0 0 6\n2 3", "output": "YES" }, { "input": "1 1 3 6\n1 5", "output": "NO" }, { "input": "5 4 6 -10\n1 1", "output": "NO" }, { "input": "6 -3 -7 -7\n1 2", "output": "NO" }, { "input": "2 -5 -8 8\n2 1", "output": "YES" }, { "input": "70 -81 -17 80\n87 23", "output": "YES" }, { "input": "41 366 218 -240\n3456 1234", "output": "NO" }, { "input": "-61972 -39646 -42371 -24854\n573 238", "output": "NO" }, { "input": "-84870 -42042 94570 98028\n8972 23345", "output": "YES" }, { "input": "-58533 -50999 -1007 -59169\n8972 23345", "output": "NO" }, { "input": "-100000 -100000 100000 100000\n100000 100000", "output": "YES" }, { "input": "-100000 -100000 100000 100000\n1 1", "output": "YES" }, { "input": "5 2 5 3\n1 1", "output": "NO" }, { "input": "5 5 5 5\n5 5", "output": "YES" }, { "input": "0 0 1000 1000\n1 1", "output": "YES" }, { "input": "0 0 0 1\n1 1", "output": "NO" }, { "input": "1 1 4 4\n2 2", "output": "NO" }, { "input": "100000 100000 99999 99999\n100000 100000", "output": "NO" }, { "input": "1 1 1 6\n1 5", "output": "NO" }, { "input": "2 9 4 0\n2 3", "output": "YES" }, { "input": "0 0 0 9\n2 3", "output": "NO" }, { "input": "14 88 14 88\n100 500", "output": "YES" }, { "input": "-1 0 3 0\n4 4", "output": "NO" }, { "input": "0 0 8 9\n2 3", "output": "NO" }, { "input": "-2 5 7 -6\n1 1", "output": "YES" }, { "input": "3 7 -8 8\n2 2", "output": "NO" }, { "input": "-4 -8 -6 -1\n1 3", "output": "NO" }, { "input": "0 8 6 2\n1 1", "output": "YES" }, { "input": "-5 -2 -8 -2\n1 1", "output": "NO" }, { "input": "1 4 -5 0\n1 1", "output": "YES" }, { "input": "8 -4 4 -7\n1 2", "output": "NO" }, { "input": "5 2 2 4\n2 2", "output": "NO" }, { "input": "2 0 -4 6\n1 2", "output": "NO" }, { "input": "-2 6 -5 -4\n1 2", "output": "YES" }, { "input": "-6 5 10 6\n2 4", "output": "NO" }, { "input": "3 -7 1 -8\n1 2", "output": "NO" }, { "input": "4 1 4 -4\n9 4", "output": "NO" }, { "input": "9 -3 -9 -3\n2 2", "output": "NO" }, { "input": "-6 -6 -10 -5\n6 7", "output": "NO" }, { "input": "-5 -2 2 2\n1 7", "output": "NO" }, { "input": "9 0 8 1\n7 10", "output": "NO" }, { "input": "-1 6 -7 -6\n6 4", "output": "YES" }, { "input": "2 2 -3 -3\n3 1", "output": "NO" }, { "input": "2 -6 7 2\n2 1", "output": "NO" }, { "input": "-6 2 -7 -7\n1 2", "output": "NO" }, { "input": "-5 -5 -1 -5\n2 2", "output": "YES" }, { "input": "0 5 3 -6\n2 2", "output": "NO" }, { "input": "0 -6 2 -1\n1 1", "output": "NO" }, { "input": "-6 6 -5 -4\n1 2", "output": "YES" }, { "input": "7 -7 1 -7\n2 2", "output": "NO" }, { "input": "99966 -99952 -99966 99923\n1 1", "output": "NO" }, { "input": "99921 99980 -99956 -99907\n3 4", "output": "NO" }, { "input": "100000 100000 -100000 -100000\n1 1", "output": "YES" }, { "input": "1 0 2 0\n5 1", "output": "NO" }, { "input": "-3 0 -8 0\n7 2", "output": "NO" }, { "input": "-9 4 -5 -1\n8 2", "output": "NO" }, { "input": "-99999 -100000 100000 100000\n1 1", "output": "NO" }, { "input": "0 0 -100 -100\n2 2", "output": "YES" }, { "input": "9 -5 -3 -2\n1 4", "output": "NO" }, { "input": "1 -10 -10 5\n7 5", "output": "NO" }, { "input": "6 -9 -1 -9\n1 9", "output": "NO" } ]
1,498,134,056
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
5,529,600
def Func(): x1 , y1, x2, y2 = map(int, input().split()) x , y = map(int, input().split()) print("YES") if abs(x1 - x2) % x == 0 and abs(y1 - y2) == 0 and \ (abs(x1 -x2) / x) % 2 == (abs(y1 - y2) / y) % 2 else print("NO") Func()
Title: Treasure Hunt Time Limit: None seconds Memory Limit: None megabytes Problem Description: Captain Bill the Hummingbird and his crew recieved an interesting challenge offer. Some stranger gave them a map, potion of teleportation and said that only this potion might help them to reach the treasure. Bottle with potion has two values *x* and *y* written on it. These values define four moves which can be performed using the potion: - - - - Map shows that the position of Captain Bill the Hummingbird is (*x*1,<=*y*1) and the position of the treasure is (*x*2,<=*y*2). You task is to tell Captain Bill the Hummingbird whether he should accept this challenge or decline. If it is possible for Captain to reach the treasure using the potion then output "YES", otherwise "NO" (without quotes). The potion can be used infinite amount of times. Input Specification: The first line contains four integer numbers *x*1,<=*y*1,<=*x*2,<=*y*2 (<=-<=105<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=105) — positions of Captain Bill the Hummingbird and treasure respectively. The second line contains two integer numbers *x*,<=*y* (1<=≤<=*x*,<=*y*<=≤<=105) — values on the potion bottle. Output Specification: Print "YES" if it is possible for Captain to reach the treasure using the potion, otherwise print "NO" (without quotes). Demo Input: ['0 0 0 6\n2 3\n', '1 1 3 6\n1 5\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first example there exists such sequence of moves: 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7c939890fb4ed35688177327dac981bfa9216c00.png" style="max-width: 100.0%;max-height: 100.0%;"/> — the first type of move 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/afbfa42fbac4e0641e7466e3aac74cbbb08ed597.png" style="max-width: 100.0%;max-height: 100.0%;"/> — the third type of move
```python def Func(): x1 , y1, x2, y2 = map(int, input().split()) x , y = map(int, input().split()) print("YES") if abs(x1 - x2) % x == 0 and abs(y1 - y2) == 0 and \ (abs(x1 -x2) / x) % 2 == (abs(y1 - y2) / y) % 2 else print("NO") Func() ```
0
49
A
Sleuth
PROGRAMMING
800
[ "implementation" ]
A. Sleuth
2
256
Vasya plays the sleuth with his friends. The rules of the game are as follows: those who play for the first time, that is Vasya is the sleuth, he should investigate a "crime" and find out what is happening. He can ask any questions whatsoever that can be answered with "Yes" or "No". All the rest agree beforehand to answer the questions like that: if the question’s last letter is a vowel, they answer "Yes" and if the last letter is a consonant, they answer "No". Of course, the sleuth knows nothing about it and his task is to understand that. Unfortunately, Vasya is not very smart. After 5 hours of endless stupid questions everybody except Vasya got bored. That’s why Vasya’s friends ask you to write a program that would give answers instead of them. The English alphabet vowels are: A, E, I, O, U, Y The English alphabet consonants are: B, C, D, F, G, H, J, K, L, M, N, P, Q, R, S, T, V, W, X, Z
The single line contains a question represented by a non-empty line consisting of large and small Latin letters, spaces and a question mark. The line length does not exceed 100. It is guaranteed that the question mark occurs exactly once in the line — as the last symbol and that the line contains at least one letter.
Print answer for the question in a single line: YES if the answer is "Yes", NO if the answer is "No". Remember that in the reply to the question the last letter, not the last character counts. I. e. the spaces and the question mark do not count as letters.
[ "Is it a melon?\n", "Is it an apple?\n", "Is it a banana ?\n", "Is it an apple and a banana simultaneouSLY?\n" ]
[ "NO\n", "YES\n", "YES\n", "YES\n" ]
none
500
[ { "input": "Is it a melon?", "output": "NO" }, { "input": "Is it an apple?", "output": "YES" }, { "input": " Is it a banana ?", "output": "YES" }, { "input": "Is it an apple and a banana simultaneouSLY?", "output": "YES" }, { "input": "oHtSbDwzHb?", "output": "NO" }, { "input": "sZecYdUvZHrXx?", "output": "NO" }, { "input": "uMtXK?", "output": "NO" }, { "input": "U?", "output": "YES" }, { "input": "aqFDkCUKeHMyvZFcAyWlMUSQTFomtaWjoKLVyxLCw vcufPBFbaljOuHWiDCROYTcmbgzbaqHXKPOYEbuEtRqqoxBbOETCsQzhw?", "output": "NO" }, { "input": "dJcNqQiFXzcbsj fItCpBLyXOnrSBPebwyFHlxUJHqCUzzCmcAvMiKL NunwOXnKeIxUZmBVwiCUfPkjRAkTPbkYCmwRRnDSLaz?", "output": "NO" }, { "input": "gxzXbdcAQMuFKuuiPohtMgeypr wpDIoDSyOYTdvylcg SoEBZjnMHHYZGEqKgCgBeTbyTwyGuPZxkxsnSczotBdYyfcQsOVDVC?", "output": "NO" }, { "input": "FQXBisXaJFMiHFQlXjixBDMaQuIbyqSBKGsBfTmBKCjszlGVZxEOqYYqRTUkGpSDDAoOXyXcQbHcPaegeOUBNeSD JiKOdECPOF?", "output": "NO" }, { "input": "YhCuZnrWUBEed?", "output": "NO" }, { "input": "hh?", "output": "NO" }, { "input": "whU?", "output": "YES" }, { "input": "fgwg?", "output": "NO" }, { "input": "GlEmEPKrYcOnBNJUIFjszWUyVdvWw DGDjoCMtRJUburkPToCyDrOtMr?", "output": "NO" }, { "input": "n?", "output": "NO" }, { "input": "BueDOlxgzeNlxrzRrMbKiQdmGujEKmGxclvaPpTuHmTqBp?", "output": "NO" }, { "input": "iehvZNQXDGCuVmJPOEysLyUryTdfaIxIuTzTadDbqRQGoCLXkxnyfWSGoLXebNnQQNTqAQJebbyYvHOfpUnXeWdjx?", "output": "NO" }, { "input": " J ?", "output": "NO" }, { "input": " j ?", "output": "NO" }, { "input": " o ?", "output": "YES" }, { "input": " T ?", "output": "NO" }, { "input": " q ?", "output": "NO" }, { "input": " j ?", "output": "NO" }, { "input": " c ?", "output": "NO" }, { "input": " B ?", "output": "NO" }, { "input": "LuhxDHVwMPTtUIUMIQTuQETgXCOQPsfdFlyHvpfOVedjUTpGLAZGOHloIjJJtOLAlHPivzA?", "output": "YES" }, { "input": "wmztmzFfwbGyOmNHENUFMTsFEMWYA?", "output": "YES" }, { "input": "wGsfZCSwN PEUhNUrLfABrxA?", "output": "YES" }, { "input": "mCDHENXjYbgMdBimAdPnewaHfpGWowjWrVAdvWczjw iDcUbyzMsmsnwbviiKiAyGVA?", "output": "YES" }, { "input": "ARIWnwqFqxsQXsXXzHqvFjxOCttAGPUzDtWzsenPYdNXuFOIUGYZsLLK IaoxiyjBBRThoelwdPTkuCQfcBLUEJpCPIrVZlvUWA?", "output": "YES" }, { "input": " PslvVpgpN BXkMFBEVXsyZFIQbBEFxGkYTeXKrOdcmhbiTUatYRUoYAayrchqbksswIlfIjerZPqptvCGnMUhyrQSvwltRhFzA?", "output": "YES" }, { "input": "HpBkttwSjBXDmyleGiRWNUMPaAIE uzTrp KJDzaUiCdsMYOoWKHoUhWUoecCPmACymMUUbGav UMRpCytPETwNFAObZJA?", "output": "YES" } ]
1,675,229,199
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
60
0
s = input() print(["NO", "YES"][s.split()[-2][-1].upper() in "AEIOUY"])
Title: Sleuth Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya plays the sleuth with his friends. The rules of the game are as follows: those who play for the first time, that is Vasya is the sleuth, he should investigate a "crime" and find out what is happening. He can ask any questions whatsoever that can be answered with "Yes" or "No". All the rest agree beforehand to answer the questions like that: if the question’s last letter is a vowel, they answer "Yes" and if the last letter is a consonant, they answer "No". Of course, the sleuth knows nothing about it and his task is to understand that. Unfortunately, Vasya is not very smart. After 5 hours of endless stupid questions everybody except Vasya got bored. That’s why Vasya’s friends ask you to write a program that would give answers instead of them. The English alphabet vowels are: A, E, I, O, U, Y The English alphabet consonants are: B, C, D, F, G, H, J, K, L, M, N, P, Q, R, S, T, V, W, X, Z Input Specification: The single line contains a question represented by a non-empty line consisting of large and small Latin letters, spaces and a question mark. The line length does not exceed 100. It is guaranteed that the question mark occurs exactly once in the line — as the last symbol and that the line contains at least one letter. Output Specification: Print answer for the question in a single line: YES if the answer is "Yes", NO if the answer is "No". Remember that in the reply to the question the last letter, not the last character counts. I. e. the spaces and the question mark do not count as letters. Demo Input: ['Is it a melon?\n', 'Is it an apple?\n', 'Is it a banana ?\n', 'Is it an apple and a banana simultaneouSLY?\n'] Demo Output: ['NO\n', 'YES\n', 'YES\n', 'YES\n'] Note: none
```python s = input() print(["NO", "YES"][s.split()[-2][-1].upper() in "AEIOUY"]) ```
0
295
B
Greg and Graph
PROGRAMMING
1,700
[ "dp", "graphs", "shortest paths" ]
null
null
Greg has a weighed directed graph, consisting of *n* vertices. In this graph any pair of distinct vertices has an edge between them in both directions. Greg loves playing with the graph and now he has invented a new game: - The game consists of *n* steps. - On the *i*-th step Greg removes vertex number *x**i* from the graph. As Greg removes a vertex, he also removes all the edges that go in and out of this vertex. - Before executing each step, Greg wants to know the sum of lengths of the shortest paths between all pairs of the remaining vertices. The shortest path can go through any remaining vertex. In other words, if we assume that *d*(*i*,<=*v*,<=*u*) is the shortest path between vertices *v* and *u* in the graph that formed before deleting vertex *x**i*, then Greg wants to know the value of the following sum: . Help Greg, print the value of the required sum before each step.
The first line contains integer *n* (1<=≤<=*n*<=≤<=500) — the number of vertices in the graph. Next *n* lines contain *n* integers each — the graph adjacency matrix: the *j*-th number in the *i*-th line *a**ij* (1<=≤<=*a**ij*<=≤<=105,<=*a**ii*<==<=0) represents the weight of the edge that goes from vertex *i* to vertex *j*. The next line contains *n* distinct integers: *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=*n*) — the vertices that Greg deletes.
Print *n* integers — the *i*-th number equals the required sum before the *i*-th step. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams of the %I64d specifier.
[ "1\n0\n1\n", "2\n0 5\n4 0\n1 2\n", "4\n0 3 1 1\n6 0 400 1\n2 4 0 1\n1 1 1 0\n4 1 2 3\n" ]
[ "0 ", "9 0 ", "17 23 404 0 " ]
none
1,000
[ { "input": "1\n0\n1", "output": "0 " }, { "input": "2\n0 5\n4 0\n1 2", "output": "9 0 " }, { "input": "4\n0 3 1 1\n6 0 400 1\n2 4 0 1\n1 1 1 0\n4 1 2 3", "output": "17 23 404 0 " }, { "input": "4\n0 57148 51001 13357\n71125 0 98369 67226\n49388 90852 0 66291\n39573 38165 97007 0\n2 3 1 4", "output": "723897 306638 52930 0 " }, { "input": "5\n0 27799 15529 16434 44291\n47134 0 90227 26873 52252\n41605 21269 0 9135 55784\n70744 17563 79061 0 73981\n70529 35681 91073 52031 0\n5 2 3 1 4", "output": "896203 429762 232508 87178 0 " }, { "input": "6\n0 72137 71041 29217 96749 46417\n40199 0 55907 57677 68590 78796\n83463 50721 0 30963 31779 28646\n94529 47831 98222 0 61665 73941\n24397 66286 2971 81613 0 52501\n26285 3381 51438 45360 20160 0\n6 3 2 4 5 1", "output": "1321441 1030477 698557 345837 121146 0 " }, { "input": "7\n0 34385 31901 51111 10191 14089 95685\n11396 0 8701 33277 1481 517 46253\n51313 2255 0 5948 66085 37201 65310\n21105 60985 10748 0 89271 42883 77345\n34686 29401 73565 47795 0 13793 66997\n70279 49576 62900 40002 70943 0 89601\n65045 1681 28239 12023 40414 89585 0\n3 5 7 6 1 2 4", "output": "1108867 1016339 729930 407114 206764 94262 0 " }, { "input": "8\n0 74961 47889 4733 72876 21399 63105 48239\n15623 0 9680 89133 57989 63401 26001 29608\n42369 82390 0 32866 46171 11871 67489 54070\n23425 80027 18270 0 28105 42657 40876 29267\n78793 18701 7655 94798 0 88885 71424 86914\n44835 76636 11553 46031 13617 0 16971 51915\n33037 53719 43116 52806 56897 71241 0 11629\n2119 62373 93265 69513 5770 90751 36619 0\n3 7 6 5 8 1 2 4", "output": "1450303 1188349 900316 531281 383344 219125 169160 0 " }, { "input": "9\n0 85236 27579 82251 69479 24737 87917 15149 52311\n59640 0 74687 34711 3685 30121 4961 7552 83399\n33376 68733 0 81357 18042 74297 15466 29476 5865\n7493 5601 3321 0 20263 55901 45756 55361 87633\n26751 17161 76681 40376 0 39745 50717 56887 90055\n18885 76353 47089 43601 21561 0 60571 33551 53753\n74595 877 71853 93156 97499 70876 0 22713 63961\n67725 25309 56358 92376 40641 35433 39781 0 97482\n81818 12561 85961 81445 3941 76799 31701 43725 0\n6 2 9 3 5 7 1 4 8", "output": "2106523 1533575 1645151 1255230 946667 618567 287636 147737 0 " } ]
1,596,068,807
2,147,483,647
PyPy 3
COMPILATION_ERROR
TESTS
0
0
0
#include "bits/stdc++.h" #define int ll #define F first #define S sedond #define mp make_pair #define all(x) (x).begin(), (x).end() #define out(x) return void(cout << (x) << endl) #define OUT(x) ((cout << (x)), exit(0)) using namespace std; typedef long long ll; typedef long double ld; const int64_t INF = (int64_t)(2e18); const int inf = (int)(1e9 + 7); const int maxn = 500 * 1000 + 100; //------------------------------------------// int32_t main(){ ios_base::sync_with_stdio(false); cout << fixed << setprecision(10); cin.tie(nullptr); #ifdef _MY freopen("VimProject/input.txt", "r", stdin); freopen("VimProject/output.txt", "w", stdout); #endif int n; cin >> n; vector<vector<int>> mat(n, vector<int>(n)); for (auto& it : mat) for (auto& itt : it) cin >> itt; vector<int> ar(n); for (auto& it : ar) cin >> it; for (auto& it : ar) --it; reverse(all(ar)); auto newmat = mat; for (int i = 0; i < n; ++i){ for (int j = 0; j < n; ++j){ newmat[i][j] = mat[ar[i]][ar[j]]; } } vector<int> res; for (int k = 0; k < n; ++k){ for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) newmat[i][j] = min(newmat[i][j], newmat[i][k] + newmat[k][j]); int curres = 0; for (int i = 0; i <= k; ++i) for (int j = 0; j <= k; ++j) curres += newmat[i][j]; res.push_back(curres); } reverse(all(res)); for (auto& it : res) cout << it << " "; return 0; } # Thu Jul 30 2020 03:26:47 GMT+0300 (Москва, стандартное время)
Title: Greg and Graph Time Limit: None seconds Memory Limit: None megabytes Problem Description: Greg has a weighed directed graph, consisting of *n* vertices. In this graph any pair of distinct vertices has an edge between them in both directions. Greg loves playing with the graph and now he has invented a new game: - The game consists of *n* steps. - On the *i*-th step Greg removes vertex number *x**i* from the graph. As Greg removes a vertex, he also removes all the edges that go in and out of this vertex. - Before executing each step, Greg wants to know the sum of lengths of the shortest paths between all pairs of the remaining vertices. The shortest path can go through any remaining vertex. In other words, if we assume that *d*(*i*,<=*v*,<=*u*) is the shortest path between vertices *v* and *u* in the graph that formed before deleting vertex *x**i*, then Greg wants to know the value of the following sum: . Help Greg, print the value of the required sum before each step. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=500) — the number of vertices in the graph. Next *n* lines contain *n* integers each — the graph adjacency matrix: the *j*-th number in the *i*-th line *a**ij* (1<=≤<=*a**ij*<=≤<=105,<=*a**ii*<==<=0) represents the weight of the edge that goes from vertex *i* to vertex *j*. The next line contains *n* distinct integers: *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=*n*) — the vertices that Greg deletes. Output Specification: Print *n* integers — the *i*-th number equals the required sum before the *i*-th step. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams of the %I64d specifier. Demo Input: ['1\n0\n1\n', '2\n0 5\n4 0\n1 2\n', '4\n0 3 1 1\n6 0 400 1\n2 4 0 1\n1 1 1 0\n4 1 2 3\n'] Demo Output: ['0 ', '9 0 ', '17 23 404 0 '] Note: none
```python #include "bits/stdc++.h" #define int ll #define F first #define S sedond #define mp make_pair #define all(x) (x).begin(), (x).end() #define out(x) return void(cout << (x) << endl) #define OUT(x) ((cout << (x)), exit(0)) using namespace std; typedef long long ll; typedef long double ld; const int64_t INF = (int64_t)(2e18); const int inf = (int)(1e9 + 7); const int maxn = 500 * 1000 + 100; //------------------------------------------// int32_t main(){ ios_base::sync_with_stdio(false); cout << fixed << setprecision(10); cin.tie(nullptr); #ifdef _MY freopen("VimProject/input.txt", "r", stdin); freopen("VimProject/output.txt", "w", stdout); #endif int n; cin >> n; vector<vector<int>> mat(n, vector<int>(n)); for (auto& it : mat) for (auto& itt : it) cin >> itt; vector<int> ar(n); for (auto& it : ar) cin >> it; for (auto& it : ar) --it; reverse(all(ar)); auto newmat = mat; for (int i = 0; i < n; ++i){ for (int j = 0; j < n; ++j){ newmat[i][j] = mat[ar[i]][ar[j]]; } } vector<int> res; for (int k = 0; k < n; ++k){ for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) newmat[i][j] = min(newmat[i][j], newmat[i][k] + newmat[k][j]); int curres = 0; for (int i = 0; i <= k; ++i) for (int j = 0; j <= k; ++j) curres += newmat[i][j]; res.push_back(curres); } reverse(all(res)); for (auto& it : res) cout << it << " "; return 0; } # Thu Jul 30 2020 03:26:47 GMT+0300 (Москва, стандартное время) ```
-1
518
A
Vitaly and Strings
PROGRAMMING
1,600
[ "constructive algorithms", "strings" ]
null
null
Vitaly is a diligent student who never missed a lesson in his five years of studying in the university. He always does his homework on time and passes his exams in time. During the last lesson the teacher has provided two strings *s* and *t* to Vitaly. The strings have the same length, they consist of lowercase English letters, string *s* is lexicographically smaller than string *t*. Vitaly wondered if there is such string that is lexicographically larger than string *s* and at the same is lexicographically smaller than string *t*. This string should also consist of lowercase English letters and have the length equal to the lengths of strings *s* and *t*. Let's help Vitaly solve this easy problem!
The first line contains string *s* (1<=≤<=|*s*|<=≤<=100), consisting of lowercase English letters. Here, |*s*| denotes the length of the string. The second line contains string *t* (|*t*|<==<=|*s*|), consisting of lowercase English letters. It is guaranteed that the lengths of strings *s* and *t* are the same and string *s* is lexicographically less than string *t*.
If the string that meets the given requirements doesn't exist, print a single string "No such string" (without the quotes). If such string exists, print it. If there are multiple valid strings, you may print any of them.
[ "a\nc\n", "aaa\nzzz\n", "abcdefg\nabcdefh\n" ]
[ "b\n", "kkk\n", "No such string\n" ]
String *s* = *s*<sub class="lower-index">1</sub>*s*<sub class="lower-index">2</sub>... *s*<sub class="lower-index">*n*</sub> is said to be lexicographically smaller than *t* = *t*<sub class="lower-index">1</sub>*t*<sub class="lower-index">2</sub>... *t*<sub class="lower-index">*n*</sub>, if there exists such *i*, that *s*<sub class="lower-index">1</sub> = *t*<sub class="lower-index">1</sub>, *s*<sub class="lower-index">2</sub> = *t*<sub class="lower-index">2</sub>, ... *s*<sub class="lower-index">*i* - 1</sub> = *t*<sub class="lower-index">*i* - 1</sub>, *s*<sub class="lower-index">*i*</sub> &lt; *t*<sub class="lower-index">*i*</sub>.
500
[ { "input": "a\nc", "output": "b" }, { "input": "aaa\nzzz", "output": "kkk" }, { "input": "abcdefg\nabcdefh", "output": "No such string" }, { "input": "abcdefg\nabcfefg", "output": "abcdefh" }, { "input": "frt\nfru", "output": "No such string" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab" }, { "input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzx\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzy" }, { "input": "q\nz", "output": "r" }, { "input": "pnzcl\npnzdf", "output": "pnzcm" }, { "input": "vklldrxnfgyorgfpfezvhbouyzzzzz\nvklldrxnfgyorgfpfezvhbouzaaadv", "output": "vklldrxnfgyorgfpfezvhbouzaaaaa" }, { "input": "pkjlxzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\npkjlyaaaaaaaaaaaaaaaaaaaaaaaaaaaahr", "output": "pkjlyaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "exoudpymnspkocwszzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\nexoudpymnspkocwtaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabml", "output": "exoudpymnspkocwtaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "anarzvsklmwvovozwnmhklkpcseeogdgauoppmzrukynbjjoxytuvsiecuzfquxnowewebhtuoxepocyeamqfrblpwqiokbcubil\nanarzvsklmwvovozwnmhklkpcseeogdgauoppmzrukynbjjoxytuvsiecuzfquxnowewebhtuoxepocyeamqfrblpwqiokbcubim", "output": "No such string" }, { "input": "uqyugulumzwlxsjnxxkutzqayskrbjoaaekbhckjryhjjllzzz\nuqyugulumzwlxsjnxxkutzqayskrbjoaaekbhckjryhjjlmaaa", "output": "No such string" }, { "input": "esfaeyxpblcrriizhnhfrxnbopqvhwtetgjqavlqdlxexaifgvkqfwzneibhxxdacbzzzzzzzzzzzzzz\nesfaeyxpblcrriizhnhfrxnbopqvhwtetgjqavlqdlxexaifgvkqfwzneibhxxdaccaaaaaaaaaaaatf", "output": "esfaeyxpblcrriizhnhfrxnbopqvhwtetgjqavlqdlxexaifgvkqfwzneibhxxdaccaaaaaaaaaaaaaa" }, { "input": "oisjtilteipnzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\noisjtilteipoaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaao", "output": "oisjtilteipoaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "svpoxbsudndfnnpugbouawegyxgtmvqzbewxpcwhopdbwscimgzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\nsvpoxbsudndfnnpugbouawegyxgtmvqzbewxpcwhopdbwscimhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "No such string" }, { "input": "ddzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\ndeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaao", "output": "deaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "xqzbhslocdbifnyzyjenlpctocieaccsycmwlcebkqqkeibatfvylbqlutvjijgjhdetqsjqnoipqbmjhhzxggdobyvpczdavdzz\nxqzbhslocdbifnyzyjenlpctocieaccsycmwlcebkqqkeibatfvylbqlutvjijgjhdetqsjqnoipqbmjhhzxggdobyvpczdavilj", "output": "xqzbhslocdbifnyzyjenlpctocieaccsycmwlcebkqqkeibatfvylbqlutvjijgjhdetqsjqnoipqbmjhhzxggdobyvpczdaveaa" }, { "input": "poflpxucohdobeisxfsnkbdzwizjjhgngufssqhmfgmydmmrnuminrvxxamoebhczlwsfefdtnchaisfxkfcovxmvppxnrfawfoq\npoflpxucohdobeisxfsnkbdzwizjjhgngufssqhmfgmydmmrnuminrvxxamoebhczlwsfefdtnchaisfxkfcovxmvppxnrfawujg", "output": "poflpxucohdobeisxfsnkbdzwizjjhgngufssqhmfgmydmmrnuminrvxxamoebhczlwsfefdtnchaisfxkfcovxmvppxnrfawfor" }, { "input": "vonggnmokmvmguwtobkxoqgxkuxtyjmxrygyliohlhwxuxjmlkqcfuxboxjnzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\nvonggnmokmvmguwtobkxoqgxkuxtyjmxrygyliohlhwxuxjmlkqcfuxboxjoaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac", "output": "vonggnmokmvmguwtobkxoqgxkuxtyjmxrygyliohlhwxuxjmlkqcfuxboxjoaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "bqycw\nquhod", "output": "bqycx" }, { "input": "hceslswecf\nnmxshuymaa", "output": "hceslswecg" }, { "input": "awqtzslxowuaefe\nvujscakjpvxviki", "output": "awqtzslxowuaeff" }, { "input": "lerlcnaogdravnogfogcyoxgi\nojrbithvjdqtempegvqxmgmmw", "output": "lerlcnaogdravnogfogcyoxgj" }, { "input": "jbrhvicytqaivheqeourrlosvnsujsxdinryyawgalidsaufxv\noevvkhujmhagaholrmsatdjjyfmyblvgetpnxgjcilugjsncjs", "output": "jbrhvicytqaivheqeourrlosvnsujsxdinryyawgalidsaufxw" }, { "input": "jrpogrcuhqdpmyzpuabuhaptlxaeiqjxhqkmuzsjbhqxvdtoocrkusaeasqdwlunomwzww\nspvgaswympzlscnumemgiznngnxqgccbubmxgqmaakbnyngkxlxjjsafricchhpecdjgxw", "output": "jrpogrcuhqdpmyzpuabuhaptlxaeiqjxhqkmuzsjbhqxvdtoocrkusaeasqdwlunomwzwx" }, { "input": "mzmhjmfxaxaplzjmjkbyadeweltagyyuzpvrmnyvirjpdmebxyzjvdoezhnayfrvtnccryhkvhcvakcf\nohhhhkujfpjbgouebtmmbzizuhuumvrsqfniwpmxdtzhyiaivdyxhywnqzagicydixjtvbqbevhbqttu", "output": "mzmhjmfxaxaplzjmjkbyadeweltagyyuzpvrmnyvirjpdmebxyzjvdoezhnayfrvtnccryhkvhcvakcg" }, { "input": "cdmwmzutsicpzhcokbbhwktqbomozxvvjlhwdgtiledgurxsfreisgczdwgupzxmjnfyjxcpdwzkggludkcmgppndl\nuvuqvyrnhtyubpevizhjxdvmpueittksrnosmfuuzbimnqussasdjufrthrgjbyzomauaxbvwferfvtmydmwmjaoxg", "output": "cdmwmzutsicpzhcokbbhwktqbomozxvvjlhwdgtiledgurxsfreisgczdwgupzxmjnfyjxcpdwzkggludkcmgppndm" }, { "input": "dpnmrwpbgzvcmrcodwgvvfwpyagdwlngmhrazyvalszhruprxzmwltftxmujfyrrnwzvphgqlcphreumqkytswxziugburwrlyay\nqibcfxdfovoejutaeetbbwrgexdrvqywwmhipxgfrvhzovxkfawpfnpjvlhkyahessodqcclangxefcaixysqijnitevwmpalkzd", "output": "dpnmrwpbgzvcmrcodwgvvfwpyagdwlngmhrazyvalszhruprxzmwltftxmujfyrrnwzvphgqlcphreumqkytswxziugburwrlyaz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab", "output": "No such string" }, { "input": "phdvmuwqmvzyurtnshitcypuzbhpceovkibzbhhjwxkdtvqmbpoumeoiztxtvkvsjrlnhowsdmgftuiulzebdigmun\nphdvmuwqmvzyurtnshitcypuzbhpceovkibzbhhjwxkdtvqmbpoumeoiztxtvkvsjrlnhowsdmgftuiulzebdigmuo", "output": "No such string" }, { "input": "hrsantdquixzjyjtqytcmnflnyehzbibkbgkqffgqpkgeuqmbmxzhbjwsnfkizvbcyoghyvnxxjavoahlqjxomtsouzoog\nhrsantdquixzjyjtqytcmnflnyehzbibkbgkqffgqpkgeuqmbmxzhbjwsnfkizvbcyoghyvnxxjavoahlqjxomtsouzooh", "output": "No such string" }, { "input": "kexdbtpkjbwwyibjndbtmwqzolopqitgkomqggojevoankiepxirrcidxldlzsppehmoazdywltmjbxgsxgihwnwpmczjrcwpywl\nkexdbtpkjbwwyibjndbtmwqzolopqitgkomqggojevoankiepxirrcidxldlzsppehmoazdywltmjbxgsxgihwnwpmczjrcwpywm", "output": "No such string" }, { "input": "yijdysvzfcnaedvnecswgoylhzgguxecmucepgstjbdkbjyfdlxxxejkrrxfiuwjpdmdhhqhlqeqzjwudtdryrfkpwfxdjlkowmk\nyijdysvzfcnaedvnecswgoylhzgguxecmucepgstjbdkbjyfdlxxxejkrrxfiuwjpdmdhhqhlqeqzjwudtdryrfkpwfxdjlkowml", "output": "No such string" }, { "input": "a\nb", "output": "No such string" }, { "input": "x\nz", "output": "y" }, { "input": "a\nz", "output": "b" }, { "input": "y\nz", "output": "No such string" }, { "input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzy\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "No such string" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\nzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab" }, { "input": "yzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "zaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyz" }, { "input": "aaa\naac", "output": "aab" }, { "input": "aaa\naab", "output": "No such string" }, { "input": "zzx\nzzz", "output": "zzy" }, { "input": "zzy\nzzz", "output": "No such string" }, { "input": "aba\naca", "output": "abb" }, { "input": "aaa\nbbb", "output": "aab" }, { "input": "azzz\ncaaa", "output": "baaa" } ]
1,646,573,432
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
s1 = input() s2=input() l1=[ord(c) for c in s1] l2=[ord(c) for c in s2] l3=[] can=True change=False for i in range(len(l1)-1,-1,-1): if l1[i]!=l2[i]: if abs(l2[i]-l1[i])>1: l3.insert(0,l1[i]+1) change=True elif change==False: can=False break else: l3.insert(0,l1[i]) else: l3.insert(0,l1[i]) if can: res = "" for i in l3: res = res + chr(i) print (str(res)) else: print("No such string") else: print("No such string") for i in range (0,len(first_string)): if first_string[i]!=second_string[i]: if l[l.find(first_string[i])+1]!=second_string[i]: result0.append(l[l.find(first_string[i])+1]) break else: can=False else: result0.append(first_string[i]) if len(result0)!=len(first_string): n=len(result0) for i in range (0,len(first_string)-len(result0)): result0.append(first_string[n]) n+=1 if can: print("".join(result0)) else: print("No such string")
Title: Vitaly and Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vitaly is a diligent student who never missed a lesson in his five years of studying in the university. He always does his homework on time and passes his exams in time. During the last lesson the teacher has provided two strings *s* and *t* to Vitaly. The strings have the same length, they consist of lowercase English letters, string *s* is lexicographically smaller than string *t*. Vitaly wondered if there is such string that is lexicographically larger than string *s* and at the same is lexicographically smaller than string *t*. This string should also consist of lowercase English letters and have the length equal to the lengths of strings *s* and *t*. Let's help Vitaly solve this easy problem! Input Specification: The first line contains string *s* (1<=≤<=|*s*|<=≤<=100), consisting of lowercase English letters. Here, |*s*| denotes the length of the string. The second line contains string *t* (|*t*|<==<=|*s*|), consisting of lowercase English letters. It is guaranteed that the lengths of strings *s* and *t* are the same and string *s* is lexicographically less than string *t*. Output Specification: If the string that meets the given requirements doesn't exist, print a single string "No such string" (without the quotes). If such string exists, print it. If there are multiple valid strings, you may print any of them. Demo Input: ['a\nc\n', 'aaa\nzzz\n', 'abcdefg\nabcdefh\n'] Demo Output: ['b\n', 'kkk\n', 'No such string\n'] Note: String *s* = *s*<sub class="lower-index">1</sub>*s*<sub class="lower-index">2</sub>... *s*<sub class="lower-index">*n*</sub> is said to be lexicographically smaller than *t* = *t*<sub class="lower-index">1</sub>*t*<sub class="lower-index">2</sub>... *t*<sub class="lower-index">*n*</sub>, if there exists such *i*, that *s*<sub class="lower-index">1</sub> = *t*<sub class="lower-index">1</sub>, *s*<sub class="lower-index">2</sub> = *t*<sub class="lower-index">2</sub>, ... *s*<sub class="lower-index">*i* - 1</sub> = *t*<sub class="lower-index">*i* - 1</sub>, *s*<sub class="lower-index">*i*</sub> &lt; *t*<sub class="lower-index">*i*</sub>.
```python s1 = input() s2=input() l1=[ord(c) for c in s1] l2=[ord(c) for c in s2] l3=[] can=True change=False for i in range(len(l1)-1,-1,-1): if l1[i]!=l2[i]: if abs(l2[i]-l1[i])>1: l3.insert(0,l1[i]+1) change=True elif change==False: can=False break else: l3.insert(0,l1[i]) else: l3.insert(0,l1[i]) if can: res = "" for i in l3: res = res + chr(i) print (str(res)) else: print("No such string") else: print("No such string") for i in range (0,len(first_string)): if first_string[i]!=second_string[i]: if l[l.find(first_string[i])+1]!=second_string[i]: result0.append(l[l.find(first_string[i])+1]) break else: can=False else: result0.append(first_string[i]) if len(result0)!=len(first_string): n=len(result0) for i in range (0,len(first_string)-len(result0)): result0.append(first_string[n]) n+=1 if can: print("".join(result0)) else: print("No such string") ```
-1
929
B
Места в самолёте
PROGRAMMING
1,300
[ "*special", "implementation" ]
null
null
В самолёте есть *n* рядов мест. Если смотреть на ряды сверху, то в каждом ряду есть 3 места слева, затем проход между рядами, затем 4 центральных места, затем ещё один проход между рядами, а затем ещё 3 места справа. Известно, что некоторые места уже заняты пассажирами. Всего есть два вида пассажиров — статусные (те, которые часто летают) и обычные. Перед вами стоит задача рассадить ещё *k* обычных пассажиров так, чтобы суммарное число соседей у статусных пассажиров было минимально возможным. Два пассажира считаются соседями, если они сидят в одном ряду и между ними нет других мест и прохода между рядами. Если пассажир является соседним пассажиром для двух статусных пассажиров, то его следует учитывать в сумме соседей дважды.
В первой строке следуют два целых числа *n* и *k* (1<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=10·*n*) — количество рядов мест в самолёте и количество пассажиров, которых нужно рассадить. Далее следует описание рядов мест самолёта по одному ряду в строке. Если очередной символ равен '-', то это проход между рядами. Если очередной символ равен '.', то это свободное место. Если очередной символ равен 'S', то на текущем месте будет сидеть статусный пассажир. Если очередной символ равен 'P', то на текущем месте будет сидеть обычный пассажир. Гарантируется, что количество свободных мест не меньше *k*. Гарантируется, что все ряды удовлетворяют описанному в условии формату.
В первую строку выведите минимальное суммарное число соседей у статусных пассажиров. Далее выведите план рассадки пассажиров, который минимизирует суммарное количество соседей у статусных пассажиров, в том же формате, что и во входных данных. Если в свободное место нужно посадить одного из *k* пассажиров, выведите строчную букву 'x' вместо символа '.'.
[ "1 2\nSP.-SS.S-S.S\n", "4 9\nPP.-PPPS-S.S\nPSP-PPSP-.S.\n.S.-S..P-SS.\nP.S-P.PP-PSP\n" ]
[ "5\nSPx-SSxS-S.S\n", "15\nPPx-PPPS-S.S\nPSP-PPSP-xSx\nxSx-SxxP-SSx\nP.S-PxPP-PSP\n" ]
В первом примере нужно посадить ещё двух обычных пассажиров. Для минимизации соседей у статусных пассажиров, нужно посадить первого из них на третье слева место, а второго на любое из оставшихся двух мест, так как независимо от выбора места он станет соседом двух статусных пассажиров. Изначально, у статусного пассажира, который сидит на самом левом месте уже есть сосед. Также на четвёртом и пятом местах слева сидят статусные пассажиры, являющиеся соседями друг для друга (что добавляет к сумме 2). Таким образом, после посадки ещё двух обычных пассажиров, итоговое суммарное количество соседей у статусных пассажиров станет равно пяти.
1,000
[ { "input": "1 2\nSP.-SS.S-S.S", "output": "5\nSPx-SSxS-S.S" }, { "input": "4 9\nPP.-PPPS-S.S\nPSP-PPSP-.S.\n.S.-S..P-SS.\nP.S-P.PP-PSP", "output": "15\nPPx-PPPS-S.S\nPSP-PPSP-xSx\nxSx-SxxP-SSx\nP.S-PxPP-PSP" }, { "input": "3 7\n.S.-SSSP-..S\nS..-.SPP-S.P\n.S.-PPPP-PSP", "output": "13\nxSx-SSSP-xxS\nSxx-xSPP-S.P\n.S.-PPPP-PSP" }, { "input": "5 6\nPP.-PS.P-P..\nPPS-SP..-P.P\nP.P-....-S..\nSPP-.P.S-.S.\nSP.-S.PS-PPP", "output": "6\nPPx-PS.P-Pxx\nPPS-SPxx-PxP\nP.P-....-S..\nSPP-.P.S-.S.\nSP.-S.PS-PPP" }, { "input": "1 1\n..S-PS..-.PP", "output": "1\nx.S-PS..-.PP" }, { "input": "2 2\nPP.-S.SS-.S.\nSSP-SSSS-S.S", "output": "12\nPPx-S.SS-xS.\nSSP-SSSS-S.S" }, { "input": "30 1\nPPP-PPP.-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP", "output": "0\nPPP-PPPx-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP" }, { "input": "1 1\nSPS-....-P.P", "output": "2\nSPS-x...-P.P" }, { "input": "2 1\nSSS-S.S.-SSS\nSSP-.PP.-S.S", "output": "11\nSSS-S.S.-SSS\nSSP-xPP.-S.S" }, { "input": "30 1\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPP.-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP", "output": "0\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPx-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP" } ]
1,520,066,739
61,839
Python 3
WRONG_ANSWER
PRETESTS
2
62
5,632,000
class Seat: def __init__(self, row, seat, penalty): self.row = row self.seat = seat self.penalty = penalty p = list(map(int, input().split())) n = p[0] k = p[1] vacant = [] cabin = [] total = 0 for row in range(n): data = input() cabin.append(list(data)) for i in range(len(data)): if data[i] == '.': penalty = 0 if i > 1 and data[i-1] == 'S': penalty += 1 if i < 11 and data[i+1] == 'S': penalty += 1 free_seat = Seat(row, i, penalty) vacant.append(free_seat) elif data[i] == 'S': if i > 1 and (data[i-1] == 'S' or data[i-1] == 'P'): total += 1 if i < 11 and (data[i-1] == 'S' or data[i-1] == 'P'): total += 1 vacant.sort(key=lambda x: x.penalty) for i in range(k): total += vacant[i].penalty cabin[vacant[i].row][vacant[i].seat] = 'x' print(total) for row in cabin: print(''.join(row))
Title: Места в самолёте Time Limit: None seconds Memory Limit: None megabytes Problem Description: В самолёте есть *n* рядов мест. Если смотреть на ряды сверху, то в каждом ряду есть 3 места слева, затем проход между рядами, затем 4 центральных места, затем ещё один проход между рядами, а затем ещё 3 места справа. Известно, что некоторые места уже заняты пассажирами. Всего есть два вида пассажиров — статусные (те, которые часто летают) и обычные. Перед вами стоит задача рассадить ещё *k* обычных пассажиров так, чтобы суммарное число соседей у статусных пассажиров было минимально возможным. Два пассажира считаются соседями, если они сидят в одном ряду и между ними нет других мест и прохода между рядами. Если пассажир является соседним пассажиром для двух статусных пассажиров, то его следует учитывать в сумме соседей дважды. Input Specification: В первой строке следуют два целых числа *n* и *k* (1<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=10·*n*) — количество рядов мест в самолёте и количество пассажиров, которых нужно рассадить. Далее следует описание рядов мест самолёта по одному ряду в строке. Если очередной символ равен '-', то это проход между рядами. Если очередной символ равен '.', то это свободное место. Если очередной символ равен 'S', то на текущем месте будет сидеть статусный пассажир. Если очередной символ равен 'P', то на текущем месте будет сидеть обычный пассажир. Гарантируется, что количество свободных мест не меньше *k*. Гарантируется, что все ряды удовлетворяют описанному в условии формату. Output Specification: В первую строку выведите минимальное суммарное число соседей у статусных пассажиров. Далее выведите план рассадки пассажиров, который минимизирует суммарное количество соседей у статусных пассажиров, в том же формате, что и во входных данных. Если в свободное место нужно посадить одного из *k* пассажиров, выведите строчную букву 'x' вместо символа '.'. Demo Input: ['1 2\nSP.-SS.S-S.S\n', '4 9\nPP.-PPPS-S.S\nPSP-PPSP-.S.\n.S.-S..P-SS.\nP.S-P.PP-PSP\n'] Demo Output: ['5\nSPx-SSxS-S.S\n', '15\nPPx-PPPS-S.S\nPSP-PPSP-xSx\nxSx-SxxP-SSx\nP.S-PxPP-PSP\n'] Note: В первом примере нужно посадить ещё двух обычных пассажиров. Для минимизации соседей у статусных пассажиров, нужно посадить первого из них на третье слева место, а второго на любое из оставшихся двух мест, так как независимо от выбора места он станет соседом двух статусных пассажиров. Изначально, у статусного пассажира, который сидит на самом левом месте уже есть сосед. Также на четвёртом и пятом местах слева сидят статусные пассажиры, являющиеся соседями друг для друга (что добавляет к сумме 2). Таким образом, после посадки ещё двух обычных пассажиров, итоговое суммарное количество соседей у статусных пассажиров станет равно пяти.
```python class Seat: def __init__(self, row, seat, penalty): self.row = row self.seat = seat self.penalty = penalty p = list(map(int, input().split())) n = p[0] k = p[1] vacant = [] cabin = [] total = 0 for row in range(n): data = input() cabin.append(list(data)) for i in range(len(data)): if data[i] == '.': penalty = 0 if i > 1 and data[i-1] == 'S': penalty += 1 if i < 11 and data[i+1] == 'S': penalty += 1 free_seat = Seat(row, i, penalty) vacant.append(free_seat) elif data[i] == 'S': if i > 1 and (data[i-1] == 'S' or data[i-1] == 'P'): total += 1 if i < 11 and (data[i-1] == 'S' or data[i-1] == 'P'): total += 1 vacant.sort(key=lambda x: x.penalty) for i in range(k): total += vacant[i].penalty cabin[vacant[i].row][vacant[i].seat] = 'x' print(total) for row in cabin: print(''.join(row)) ```
0
56
A
Bar
PROGRAMMING
1,000
[ "implementation" ]
A. Bar
2
256
According to Berland laws it is only allowed to sell alcohol to people not younger than 18 years. Vasya's job is to monitor the law's enforcement. Tonight he entered a bar and saw *n* people sitting there. For every one of them Vasya happened to determine either the age or the drink the person is having. Vasya can check any person, i.e. learn his age and the drink he is having at the same time. What minimal number of people should Vasya check additionally to make sure that there are no clients under 18 having alcohol drinks? The list of all alcohol drinks in Berland is: ABSINTH, BEER, BRANDY, CHAMPAGNE, GIN, RUM, SAKE, TEQUILA, VODKA, WHISKEY, WINE
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) which is the number of the bar's clients. Then follow *n* lines, each describing one visitor. A line either contains his age (an integer from 0 to 1000) or his drink (a string of capital Latin letters from 1 to 100 in length). It is guaranteed that the input data does not contain spaces and other unnecessary separators. Only the drinks from the list given above should be considered alcohol.
Print a single number which is the number of people Vasya should check to guarantee the law enforcement.
[ "5\n18\nVODKA\nCOKE\n19\n17\n" ]
[ "2\n" ]
In the sample test the second and fifth clients should be checked.
500
[ { "input": "5\n18\nVODKA\nCOKE\n19\n17", "output": "2" }, { "input": "2\n2\nGIN", "output": "2" }, { "input": "3\nWHISKEY\n3\nGIN", "output": "3" }, { "input": "4\n813\nIORBQITQXMPTFAEMEQDQIKFGKGOTNKTOSZCBRPXJLUKVLVHJYNRUJXK\nRUM\nRHVRWGODYWWTYZFLFYKCVUFFRTQDINKNWPKFHZBFWBHWINWJW", "output": "1" }, { "input": "4\nSAKE\nSAKE\n13\n2", "output": "4" }, { "input": "2\n0\n17", "output": "2" }, { "input": "1\n0", "output": "1" } ]
1,544,429,792
2,147,483,647
Python 3
OK
TESTS
28
216
0
alc = ['ABSINTH', 'BEER', 'BRANDY', 'CHAMPAGNE', 'GIN', 'RUM', 'SAKE', 'TEQUILA', 'VODKA', 'WHISKEY', 'WINE'] numb = [] for i in range(1001): numb.append(str(i)) n = int(input()) ans = [] count = 0 for i in range(n): z = input() if z in alc: count+=1 if z in numb: if int(z)<18: count+=1 print(count)
Title: Bar Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: According to Berland laws it is only allowed to sell alcohol to people not younger than 18 years. Vasya's job is to monitor the law's enforcement. Tonight he entered a bar and saw *n* people sitting there. For every one of them Vasya happened to determine either the age or the drink the person is having. Vasya can check any person, i.e. learn his age and the drink he is having at the same time. What minimal number of people should Vasya check additionally to make sure that there are no clients under 18 having alcohol drinks? The list of all alcohol drinks in Berland is: ABSINTH, BEER, BRANDY, CHAMPAGNE, GIN, RUM, SAKE, TEQUILA, VODKA, WHISKEY, WINE Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) which is the number of the bar's clients. Then follow *n* lines, each describing one visitor. A line either contains his age (an integer from 0 to 1000) or his drink (a string of capital Latin letters from 1 to 100 in length). It is guaranteed that the input data does not contain spaces and other unnecessary separators. Only the drinks from the list given above should be considered alcohol. Output Specification: Print a single number which is the number of people Vasya should check to guarantee the law enforcement. Demo Input: ['5\n18\nVODKA\nCOKE\n19\n17\n'] Demo Output: ['2\n'] Note: In the sample test the second and fifth clients should be checked.
```python alc = ['ABSINTH', 'BEER', 'BRANDY', 'CHAMPAGNE', 'GIN', 'RUM', 'SAKE', 'TEQUILA', 'VODKA', 'WHISKEY', 'WINE'] numb = [] for i in range(1001): numb.append(str(i)) n = int(input()) ans = [] count = 0 for i in range(n): z = input() if z in alc: count+=1 if z in numb: if int(z)<18: count+=1 print(count) ```
3.946
928
D
Autocompletion
PROGRAMMING
1,900
[ "*special", "strings", "trees" ]
null
null
Arcady is a copywriter. His today's task is to type up an already well-designed story using his favorite text editor. Arcady types words, punctuation signs and spaces one after another. Each letter and each sign (including line feed) requires one keyboard click in order to be printed. Moreover, when Arcady has a non-empty prefix of some word on the screen, the editor proposes a possible autocompletion for this word, more precisely one of the already printed words such that its prefix matches the currently printed prefix if this word is unique. For example, if Arcady has already printed «codeforces», «coding» and «codeforces» once again, then there will be no autocompletion attempt for «cod», but if he proceeds with «code», the editor will propose «codeforces». With a single click Arcady can follow the editor's proposal, i.e. to transform the current prefix to it. Note that no additional symbols are printed after the autocompletion (no spaces, line feeds, etc). What is the minimum number of keyboard clicks Arcady has to perform to print the entire text, if he is not allowed to move the cursor or erase the already printed symbols? A word here is a contiguous sequence of latin letters bordered by spaces, punctuation signs and line/text beginnings/ends. Arcady uses only lowercase letters. For example, there are 20 words in «it's well-known that tic-tac-toe is a paper-and-pencil game for two players, x and o.».
The only line contains Arcady's text, consisting only of lowercase latin letters, spaces, line feeds and the following punctuation signs: «.», «,», «?», «!», «'» and «-». The total amount of symbols doesn't exceed 3·105. It's guaranteed that all lines are non-empty.
Print a single integer — the minimum number of clicks.
[ "snow affects sports such as skiing, snowboarding, and snowmachine travel.\nsnowboarding is a recreational activity and olympic and paralympic sport.\n", "'co-co-co, codeforces?!'\n", "thun-thun-thunder, thunder, thunder\nthunder, thun-, thunder\nthun-thun-thunder, thunder\nthunder, feel the thunder\nlightning then the thunder\nthunder, feel the thunder\nlightning then the thunder\nthunder, thunder\n" ]
[ "141\n", "25\n", "183\n" ]
In sample case one it's optimal to use autocompletion for the first instance of «snowboarding» after typing up «sn» and for the second instance of «snowboarding» after typing up «snowb». This will save 7 clicks. In sample case two it doesn't matter whether to use autocompletion or not.
2,250
[ { "input": "snow affects sports such as skiing, snowboarding, and snowmachine travel.\nsnowboarding is a recreational activity and olympic and paralympic sport.", "output": "141" }, { "input": "'co-co-co, codeforces?!'", "output": "25" }, { "input": "thun-thun-thunder, thunder, thunder\nthunder, thun-, thunder\nthun-thun-thunder, thunder\nthunder, feel the thunder\nlightning then the thunder\nthunder, feel the thunder\nlightning then the thunder\nthunder, thunder", "output": "183" }, { "input": "a'b-c-aa'ab.ac.ba!bb-bc-ca?cb-cc.aaa,aab'aac'aba-abb'abc-aca.acb!acc?baa'bab'bac!bba-bbb.bbc.bca", "output": "97" }, { "input": "aaa!bbb'ccc?aaaaaa,aaabbb.aaaccc,bbbaaa-bbbbbb-bbbccc,cccaaa,cccbbb.cccccc'aaaaaaaaa-aaaaaabbb", "output": "91" }, { "input": "bca'bbc,bbb!bba!bac'bab.baa,acc?acb.aca'abc?abb?aba?aac,aab?aaa?cc?cb'ca'bc!bb.ba-ac!ab.aa!c,b.a", "output": "97" }, { "input": "a'aa!aaa.aab,aac,ab!aba,abb.abc'ac.aca'acb,acc!b'ba.baa.bab,bac!bb.bba,bbb,bbc,bc,bca'c?ca.cb,cc", "output": "97" }, { "input": "aaa?c?ba,ac?cc?b.abb-bab.cb-a'aac'bb'aab-bbc'bca.ca.acb-baa.acc-aba?aa-bbb.bac?bc,aca-bba!abc!ab", "output": "97" }, { "input": "baacbcaac-bcaabbaabaacccacc'acbb.b!-ababcab!b'a'aacaccaacbab!c\nb\nbca'bbcc!!", "output": "76" }, { "input": "aaa aaaaaa", "output": "10" } ]
1,519,494,517
8,017
Python 3
WRONG_ANSWER
PRETESTS
3
77
6,348,800
import sys import re text = sys.stdin.read() # «.», «,», «?», «!», «'» и «-» pattern = re.compile('\s+|\s*[.,?!\'-]+\s*') words = pattern.split(text) words = list(filter(None, words)) count = len(text) unique_words = [] for word in words: for char_index in range(1, len(word)): part_of_word = word[0:char_index] suggestions = list(filter( lambda unique_word: unique_word.startswith(part_of_word), unique_words )) if len(suggestions) != 1: continue suggestion = suggestions[0] if not word.startswith(suggestion): continue if len(part_of_word) + 1 == len(word): break count -= len(suggestion) - len(part_of_word) - 1 break if word not in unique_words: unique_words.append(word) print(count)
Title: Autocompletion Time Limit: None seconds Memory Limit: None megabytes Problem Description: Arcady is a copywriter. His today's task is to type up an already well-designed story using his favorite text editor. Arcady types words, punctuation signs and spaces one after another. Each letter and each sign (including line feed) requires one keyboard click in order to be printed. Moreover, when Arcady has a non-empty prefix of some word on the screen, the editor proposes a possible autocompletion for this word, more precisely one of the already printed words such that its prefix matches the currently printed prefix if this word is unique. For example, if Arcady has already printed «codeforces», «coding» and «codeforces» once again, then there will be no autocompletion attempt for «cod», but if he proceeds with «code», the editor will propose «codeforces». With a single click Arcady can follow the editor's proposal, i.e. to transform the current prefix to it. Note that no additional symbols are printed after the autocompletion (no spaces, line feeds, etc). What is the minimum number of keyboard clicks Arcady has to perform to print the entire text, if he is not allowed to move the cursor or erase the already printed symbols? A word here is a contiguous sequence of latin letters bordered by spaces, punctuation signs and line/text beginnings/ends. Arcady uses only lowercase letters. For example, there are 20 words in «it's well-known that tic-tac-toe is a paper-and-pencil game for two players, x and o.». Input Specification: The only line contains Arcady's text, consisting only of lowercase latin letters, spaces, line feeds and the following punctuation signs: «.», «,», «?», «!», «'» and «-». The total amount of symbols doesn't exceed 3·105. It's guaranteed that all lines are non-empty. Output Specification: Print a single integer — the minimum number of clicks. Demo Input: ['snow affects sports such as skiing, snowboarding, and snowmachine travel.\nsnowboarding is a recreational activity and olympic and paralympic sport.\n', "'co-co-co, codeforces?!'\n", 'thun-thun-thunder, thunder, thunder\nthunder, thun-, thunder\nthun-thun-thunder, thunder\nthunder, feel the thunder\nlightning then the thunder\nthunder, feel the thunder\nlightning then the thunder\nthunder, thunder\n'] Demo Output: ['141\n', '25\n', '183\n'] Note: In sample case one it's optimal to use autocompletion for the first instance of «snowboarding» after typing up «sn» and for the second instance of «snowboarding» after typing up «snowb». This will save 7 clicks. In sample case two it doesn't matter whether to use autocompletion or not.
```python import sys import re text = sys.stdin.read() # «.», «,», «?», «!», «'» и «-» pattern = re.compile('\s+|\s*[.,?!\'-]+\s*') words = pattern.split(text) words = list(filter(None, words)) count = len(text) unique_words = [] for word in words: for char_index in range(1, len(word)): part_of_word = word[0:char_index] suggestions = list(filter( lambda unique_word: unique_word.startswith(part_of_word), unique_words )) if len(suggestions) != 1: continue suggestion = suggestions[0] if not word.startswith(suggestion): continue if len(part_of_word) + 1 == len(word): break count -= len(suggestion) - len(part_of_word) - 1 break if word not in unique_words: unique_words.append(word) print(count) ```
0
745
B
Hongcow Solves A Puzzle
PROGRAMMING
1,400
[ "implementation" ]
null
null
Hongcow likes solving puzzles. One day, Hongcow finds two identical puzzle pieces, with the instructions "make a rectangle" next to them. The pieces can be described by an *n* by *m* grid of characters, where the character 'X' denotes a part of the puzzle and '.' denotes an empty part of the grid. It is guaranteed that the puzzle pieces are one 4-connected piece. See the input format and samples for the exact details on how a jigsaw piece will be specified. The puzzle pieces are very heavy, so Hongcow cannot rotate or flip the puzzle pieces. However, he is allowed to move them in any directions. The puzzle pieces also cannot overlap. You are given as input the description of one of the pieces. Determine if it is possible to make a rectangle from two identical copies of the given input. The rectangle should be solid, i.e. there should be no empty holes inside it or on its border. Keep in mind that Hongcow is not allowed to flip or rotate pieces and they cannot overlap, i.e. no two 'X' from different pieces can share the same position.
The first line of input will contain two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=500), the dimensions of the puzzle piece. The next *n* lines will describe the jigsaw piece. Each line will have length *m* and will consist of characters '.' and 'X' only. 'X' corresponds to a part of the puzzle piece, '.' is an empty space. It is guaranteed there is at least one 'X' character in the input and that the 'X' characters form a 4-connected region.
Output "YES" if it is possible for Hongcow to make a rectangle. Output "NO" otherwise.
[ "2 3\nXXX\nXXX\n", "2 2\n.X\nXX\n", "5 5\n.....\n..X..\n.....\n.....\n.....\n" ]
[ "YES\n", "NO\n", "YES\n" ]
For the first sample, one example of a rectangle we can form is as follows For the second sample, it is impossible to put two of those pieces without rotating or flipping to form a rectangle. In the third sample, we can shift the first tile by one to the right, and then compose the following rectangle:
1,000
[ { "input": "2 3\nXXX\nXXX", "output": "YES" }, { "input": "2 2\n.X\nXX", "output": "NO" }, { "input": "1 500\n.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.", "output": "YES" }, { "input": "10 1\n.\n.\n.\n.\nX\n.\n.\n.\n.\n.", "output": "YES" }, { "input": "8 5\nXX.XX\nX.XXX\nX.XXX\nXXX.X\nXX.XX\nXX..X\nXXX.X\nXXXX.", "output": "NO" }, { "input": "6 8\nXXXXXX..\nXXXXXXXX\n.X.X..X.\n.XXXX..X\nXX.XXXXX\nX...X..X", "output": "NO" }, { "input": "10 2\n.X\n.X\nXX\nXX\nX.\nXX\nX.\nX.\n..\n..", "output": "NO" }, { "input": "1 1\nX", "output": "YES" }, { "input": "3 3\nXXX\nX.X\nX..", "output": "NO" }, { "input": "3 3\nXX.\nXXX\n.XX", "output": "NO" }, { "input": "4 4\nXXXX\nXXXX\nXX..\nXX..", "output": "NO" }, { "input": "3 3\nX.X\nX.X\nXXX", "output": "NO" }, { "input": "3 2\nX.\nXX\n.X", "output": "NO" }, { "input": "2 1\nX\nX", "output": "YES" }, { "input": "1 2\nXX", "output": "YES" }, { "input": "2 3\n.XX\nXX.", "output": "NO" }, { "input": "5 5\nXXX..\n.XXX.\n..XXX\nXXX..\n.XXX.", "output": "NO" }, { "input": "2 4\nXX..\n.XX.", "output": "NO" }, { "input": "4 4\nXXX.\nXXX.\nX.X.\n..X.", "output": "NO" }, { "input": "2 3\nXX.\n.XX", "output": "NO" }, { "input": "3 5\nXXXX.\n.XXXX\nXXXX.", "output": "NO" }, { "input": "2 4\nXXX.\n.XXX", "output": "NO" }, { "input": "3 3\n...\n.X.\nXXX", "output": "NO" }, { "input": "3 3\n.X.\nXX.\nX..", "output": "NO" }, { "input": "3 4\nXXX.\nX.X.\nXXX.", "output": "NO" }, { "input": "4 4\n....\n....\n.XX.\n..X.", "output": "NO" }, { "input": "4 4\n....\n....\n.XXX\n..X.", "output": "NO" }, { "input": "2 6\nXXXXX.\nXXXXXX", "output": "NO" }, { "input": "3 3\nX.X\nXXX\n.X.", "output": "NO" }, { "input": "3 3\nXXX\nX.X\n..X", "output": "NO" }, { "input": "3 3\n.XX\nXX.\n.XX", "output": "NO" }, { "input": "3 8\n.XXXXXX.\nXXX..XXX\n.XXXXXX.", "output": "NO" }, { "input": "3 3\nXX.\n.XX\nXX.", "output": "NO" }, { "input": "3 3\n.XX\nXX.\nXX.", "output": "NO" }, { "input": "4 4\n....\nXXX.\nX.XX\nXXX.", "output": "NO" }, { "input": "2 2\nX.\nX.", "output": "YES" }, { "input": "2 5\n...XX\n..XX.", "output": "NO" }, { "input": "3 5\nXXX..\n.XXX.\n..XXX", "output": "NO" }, { "input": "2 6\n...XXX\n.XXX..", "output": "NO" }, { "input": "5 5\n.X.XX\n.XXX.\n.XXX.\n.XXX.\n.XXX.", "output": "NO" }, { "input": "4 4\n....\n.XXX\n..X.\n.XX.", "output": "NO" }, { "input": "2 4\n..XX\n.XX.", "output": "NO" }, { "input": "3 6\nXXX...\n.XXX..\n..XXX.", "output": "NO" }, { "input": "3 4\n.XXX\nXXX.\n.XXX", "output": "NO" } ]
1,481,994,725
2,225
Python 3
CHALLENGED
CHALLENGES
7
124
8,396,800
from collections import defaultdict import sys, os, math if __name__ == "__main__": n, m = list(map(int, input().split())) s = [input() for _ in range(n)] st = set() cnt = sum(ss.count('X') for ss in s) for i in range(1, n + 1): for j in range(1, m + 1): st.add(i * j) if cnt in st : print('YES') else: print('NO')
Title: Hongcow Solves A Puzzle Time Limit: None seconds Memory Limit: None megabytes Problem Description: Hongcow likes solving puzzles. One day, Hongcow finds two identical puzzle pieces, with the instructions "make a rectangle" next to them. The pieces can be described by an *n* by *m* grid of characters, where the character 'X' denotes a part of the puzzle and '.' denotes an empty part of the grid. It is guaranteed that the puzzle pieces are one 4-connected piece. See the input format and samples for the exact details on how a jigsaw piece will be specified. The puzzle pieces are very heavy, so Hongcow cannot rotate or flip the puzzle pieces. However, he is allowed to move them in any directions. The puzzle pieces also cannot overlap. You are given as input the description of one of the pieces. Determine if it is possible to make a rectangle from two identical copies of the given input. The rectangle should be solid, i.e. there should be no empty holes inside it or on its border. Keep in mind that Hongcow is not allowed to flip or rotate pieces and they cannot overlap, i.e. no two 'X' from different pieces can share the same position. Input Specification: The first line of input will contain two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=500), the dimensions of the puzzle piece. The next *n* lines will describe the jigsaw piece. Each line will have length *m* and will consist of characters '.' and 'X' only. 'X' corresponds to a part of the puzzle piece, '.' is an empty space. It is guaranteed there is at least one 'X' character in the input and that the 'X' characters form a 4-connected region. Output Specification: Output "YES" if it is possible for Hongcow to make a rectangle. Output "NO" otherwise. Demo Input: ['2 3\nXXX\nXXX\n', '2 2\n.X\nXX\n', '5 5\n.....\n..X..\n.....\n.....\n.....\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: For the first sample, one example of a rectangle we can form is as follows For the second sample, it is impossible to put two of those pieces without rotating or flipping to form a rectangle. In the third sample, we can shift the first tile by one to the right, and then compose the following rectangle:
```python from collections import defaultdict import sys, os, math if __name__ == "__main__": n, m = list(map(int, input().split())) s = [input() for _ in range(n)] st = set() cnt = sum(ss.count('X') for ss in s) for i in range(1, n + 1): for j in range(1, m + 1): st.add(i * j) if cnt in st : print('YES') else: print('NO') ```
-1
465
A
inc ARG
PROGRAMMING
900
[ "implementation" ]
null
null
Sergey is testing a next-generation processor. Instead of bytes the processor works with memory cells consisting of *n* bits. These bits are numbered from 1 to *n*. An integer is stored in the cell in the following way: the least significant bit is stored in the first bit of the cell, the next significant bit is stored in the second bit, and so on; the most significant bit is stored in the *n*-th bit. Now Sergey wants to test the following instruction: "add 1 to the value of the cell". As a result of the instruction, the integer that is written in the cell must be increased by one; if some of the most significant bits of the resulting number do not fit into the cell, they must be discarded. Sergey wrote certain values ​​of the bits in the cell and is going to add one to its value. How many bits of the cell will change after the operation?
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of bits in the cell. The second line contains a string consisting of *n* characters — the initial state of the cell. The first character denotes the state of the first bit of the cell. The second character denotes the second least significant bit and so on. The last character denotes the state of the most significant bit.
Print a single integer — the number of bits in the cell which change their state after we add 1 to the cell.
[ "4\n1100\n", "4\n1111\n" ]
[ "3\n", "4\n" ]
In the first sample the cell ends up with value 0010, in the second sample — with 0000.
500
[ { "input": "4\n1100", "output": "3" }, { "input": "4\n1111", "output": "4" }, { "input": "1\n0", "output": "1" }, { "input": "1\n1", "output": "1" }, { "input": "2\n00", "output": "1" }, { "input": "2\n01", "output": "1" }, { "input": "2\n10", "output": "2" }, { "input": "2\n11", "output": "2" }, { "input": "10\n0000000000", "output": "1" }, { "input": "20\n11111111110110001100", "output": "11" }, { "input": "50\n01011110100010000001010000100001001101001101101011", "output": "1" }, { "input": "60\n111111111101111111111111111111111111111111111111111111111111", "output": "11" }, { "input": "60\n111111111111111111111111111111111111111111111111111111111111", "output": "60" }, { "input": "66\n111111010010011001110011000111000100011110011001111110011111111101", "output": "7" }, { "input": "90\n000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1" }, { "input": "91\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "2" }, { "input": "92\n11111111101011111011111111111111111111111011101111111111011111111111111101111111101011111101", "output": "10" }, { "input": "100\n0001011110100011001100100010111001000001111101101001001001001011110100101101010000000110100101110010", "output": "1" }, { "input": "100\n0111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "1" }, { "input": "100\n0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1" }, { "input": "100\n0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "100" }, { "input": "100\n1011001110001000011111110011000100001110010110111101110110011011011000010100110001111100000010110010", "output": "2" }, { "input": "100\n1101111011001111111111110011110111101110111111111111111111111111111111011111111111110111111111111111", "output": "3" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "100" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110", "output": "100" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111101", "output": "99" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111100000", "output": "96" }, { "input": "100\n1111111111111111111111111111111110011000110110001010101100100100001000010010010010000100110000010101", "output": "34" } ]
1,586,939,779
2,147,483,647
PyPy 3
OK
TESTS
29
155
0
t=int(input()) s=input() l=int(s[::-1],2)+1 h=bin(l)[::-1] w=h[:-2] p=0 q=len(w) for k in range(t): if k<= q-1: if w[k]!= s[k]: p+=1 else: pass if k< t-1: print(p+ t-q) else: print(p)
Title: inc ARG Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sergey is testing a next-generation processor. Instead of bytes the processor works with memory cells consisting of *n* bits. These bits are numbered from 1 to *n*. An integer is stored in the cell in the following way: the least significant bit is stored in the first bit of the cell, the next significant bit is stored in the second bit, and so on; the most significant bit is stored in the *n*-th bit. Now Sergey wants to test the following instruction: "add 1 to the value of the cell". As a result of the instruction, the integer that is written in the cell must be increased by one; if some of the most significant bits of the resulting number do not fit into the cell, they must be discarded. Sergey wrote certain values ​​of the bits in the cell and is going to add one to its value. How many bits of the cell will change after the operation? Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of bits in the cell. The second line contains a string consisting of *n* characters — the initial state of the cell. The first character denotes the state of the first bit of the cell. The second character denotes the second least significant bit and so on. The last character denotes the state of the most significant bit. Output Specification: Print a single integer — the number of bits in the cell which change their state after we add 1 to the cell. Demo Input: ['4\n1100\n', '4\n1111\n'] Demo Output: ['3\n', '4\n'] Note: In the first sample the cell ends up with value 0010, in the second sample — with 0000.
```python t=int(input()) s=input() l=int(s[::-1],2)+1 h=bin(l)[::-1] w=h[:-2] p=0 q=len(w) for k in range(t): if k<= q-1: if w[k]!= s[k]: p+=1 else: pass if k< t-1: print(p+ t-q) else: print(p) ```
3
366
B
Dima and To-do List
PROGRAMMING
1,200
[ "brute force", "implementation" ]
null
null
You helped Dima to have a great weekend, but it's time to work. Naturally, Dima, as all other men who have girlfriends, does everything wrong. Inna and Dima are now in one room. Inna tells Dima off for everything he does in her presence. After Inna tells him off for something, she goes to another room, walks there in circles muttering about how useless her sweetheart is. During that time Dima has time to peacefully complete *k*<=-<=1 tasks. Then Inna returns and tells Dima off for the next task he does in her presence and goes to another room again. It continues until Dima is through with his tasks. Overall, Dima has *n* tasks to do, each task has a unique number from 1 to *n*. Dima loves order, so he does tasks consecutively, starting from some task. For example, if Dima has 6 tasks to do in total, then, if he starts from the 5-th task, the order is like that: first Dima does the 5-th task, then the 6-th one, then the 1-st one, then the 2-nd one, then the 3-rd one, then the 4-th one. Inna tells Dima off (only lovingly and appropriately!) so often and systematically that he's very well learned the power with which she tells him off for each task. Help Dima choose the first task so that in total he gets told off with as little power as possible.
The first line of the input contains two integers *n*,<=*k* (1<=≤<=*k*<=≤<=*n*<=≤<=105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=103), where *a**i* is the power Inna tells Dima off with if she is present in the room while he is doing the *i*-th task. It is guaranteed that *n* is divisible by *k*.
In a single line print the number of the task Dima should start with to get told off with as little power as possible. If there are multiple solutions, print the one with the minimum number of the first task to do.
[ "6 2\n3 2 1 6 5 4\n", "10 5\n1 3 5 7 9 9 4 1 8 5\n" ]
[ "1\n", "3\n" ]
Explanation of the first example. If Dima starts from the first task, Inna tells him off with power 3, then Dima can do one more task (as *k* = 2), then Inna tells him off for the third task with power 1, then she tells him off for the fifth task with power 5. Thus, Dima gets told off with total power 3 + 1 + 5 = 9. If Dima started from the second task, for example, then Inna would tell him off for tasks 2, 4 and 6 with power 2 + 6 + 4 = 12. Explanation of the second example. In the second example *k* = 5, thus, Dima manages to complete 4 tasks in-between the telling off sessions. Thus, Inna tells Dima off for tasks number 1 and 6 (if he starts from 1 or 6), 2 and 7 (if he starts from 2 or 7) and so on. The optimal answer is to start from task 3 or 8, 3 has a smaller number, so the answer is 3.
1,000
[ { "input": "6 2\n3 2 1 6 5 4", "output": "1" }, { "input": "10 5\n1 3 5 7 9 9 4 1 8 5", "output": "3" }, { "input": "20 4\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1" }, { "input": "10 10\n8 4 5 7 6 9 2 2 3 5", "output": "7" }, { "input": "50 10\n1 2 3 4 5 6 7 8 9 10 10 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1", "output": "2" }, { "input": "1 1\n1", "output": "1" }, { "input": "2 1\n1 1", "output": "1" }, { "input": "4 2\n2 1 1 3", "output": "1" }, { "input": "15 5\n5 5 5 5 5 1 2 3 4 5 1 2 3 4 5", "output": "1" }, { "input": "20 10\n3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 6 4", "output": "1" } ]
1,690,638,526
2,147,483,647
PyPy 3-64
OK
TESTS
36
77
13,414,400
def main(): n, k = map(int, input().split()) a = [0] * k l=list(map(int,input().split())) for i in range(n): a[i % k] += l[i] m = 0 for i in range(1, k): if a[i] < a[m]: m = i print(m + 1) if __name__ == "__main__": main()
Title: Dima and To-do List Time Limit: None seconds Memory Limit: None megabytes Problem Description: You helped Dima to have a great weekend, but it's time to work. Naturally, Dima, as all other men who have girlfriends, does everything wrong. Inna and Dima are now in one room. Inna tells Dima off for everything he does in her presence. After Inna tells him off for something, she goes to another room, walks there in circles muttering about how useless her sweetheart is. During that time Dima has time to peacefully complete *k*<=-<=1 tasks. Then Inna returns and tells Dima off for the next task he does in her presence and goes to another room again. It continues until Dima is through with his tasks. Overall, Dima has *n* tasks to do, each task has a unique number from 1 to *n*. Dima loves order, so he does tasks consecutively, starting from some task. For example, if Dima has 6 tasks to do in total, then, if he starts from the 5-th task, the order is like that: first Dima does the 5-th task, then the 6-th one, then the 1-st one, then the 2-nd one, then the 3-rd one, then the 4-th one. Inna tells Dima off (only lovingly and appropriately!) so often and systematically that he's very well learned the power with which she tells him off for each task. Help Dima choose the first task so that in total he gets told off with as little power as possible. Input Specification: The first line of the input contains two integers *n*,<=*k* (1<=≤<=*k*<=≤<=*n*<=≤<=105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=103), where *a**i* is the power Inna tells Dima off with if she is present in the room while he is doing the *i*-th task. It is guaranteed that *n* is divisible by *k*. Output Specification: In a single line print the number of the task Dima should start with to get told off with as little power as possible. If there are multiple solutions, print the one with the minimum number of the first task to do. Demo Input: ['6 2\n3 2 1 6 5 4\n', '10 5\n1 3 5 7 9 9 4 1 8 5\n'] Demo Output: ['1\n', '3\n'] Note: Explanation of the first example. If Dima starts from the first task, Inna tells him off with power 3, then Dima can do one more task (as *k* = 2), then Inna tells him off for the third task with power 1, then she tells him off for the fifth task with power 5. Thus, Dima gets told off with total power 3 + 1 + 5 = 9. If Dima started from the second task, for example, then Inna would tell him off for tasks 2, 4 and 6 with power 2 + 6 + 4 = 12. Explanation of the second example. In the second example *k* = 5, thus, Dima manages to complete 4 tasks in-between the telling off sessions. Thus, Inna tells Dima off for tasks number 1 and 6 (if he starts from 1 or 6), 2 and 7 (if he starts from 2 or 7) and so on. The optimal answer is to start from task 3 or 8, 3 has a smaller number, so the answer is 3.
```python def main(): n, k = map(int, input().split()) a = [0] * k l=list(map(int,input().split())) for i in range(n): a[i % k] += l[i] m = 0 for i in range(1, k): if a[i] < a[m]: m = i print(m + 1) if __name__ == "__main__": main() ```
3
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,636,648,206
2,147,483,647
Python 3
OK
TESTS
102
62
4,300,800
first_number = input() second_number = input() result_number = "" for i in range(len(first_number)): if(first_number[i] != second_number[i]): result_number+="1" elif(first_number[i] == second_number[i]): result_number+="0" print(result_number)
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python first_number = input() second_number = input() result_number = "" for i in range(len(first_number)): if(first_number[i] != second_number[i]): result_number+="1" elif(first_number[i] == second_number[i]): result_number+="0" print(result_number) ```
3.976489
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,671,023,482
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
lines = int(input()) word_list = [] for i in range(lines): word_list.append(input()) for j in word_list: if len(j) > 10: print(j[0] + str(len(j)) + j[-1]) else: print(j)
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python lines = int(input()) word_list = [] for i in range(lines): word_list.append(input()) for j in word_list: if len(j) > 10: print(j[0] + str(len(j)) + j[-1]) else: print(j) ```
0
115
A
Party
PROGRAMMING
900
[ "dfs and similar", "graphs", "trees" ]
null
null
A company has *n* employees numbered from 1 to *n*. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee *A* is said to be the superior of another employee *B* if at least one of the following is true: - Employee *A* is the immediate manager of employee *B* - Employee *B* has an immediate manager employee *C* such that employee *A* is the superior of employee *C*. The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager. Today the company is going to arrange a party. This involves dividing all *n* employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees *A* and *B* such that *A* is the superior of *B*. What is the minimum number of groups that must be formed?
The first line contains integer *n* (1<=≤<=*n*<=≤<=2000) — the number of employees. The next *n* lines contain the integers *p**i* (1<=≤<=*p**i*<=≤<=*n* or *p**i*<==<=-1). Every *p**i* denotes the immediate manager for the *i*-th employee. If *p**i* is -1, that means that the *i*-th employee does not have an immediate manager. It is guaranteed, that no employee will be the immediate manager of him/herself (*p**i*<=≠<=*i*). Also, there will be no managerial cycles.
Print a single integer denoting the minimum number of groups that will be formed in the party.
[ "5\n-1\n1\n2\n1\n-1\n" ]
[ "3\n" ]
For the first example, three groups are sufficient, for example: - Employee 1 - Employees 2 and 4 - Employees 3 and 5
500
[ { "input": "5\n-1\n1\n2\n1\n-1", "output": "3" }, { "input": "4\n-1\n1\n2\n3", "output": "4" }, { "input": "12\n-1\n1\n2\n3\n-1\n5\n6\n7\n-1\n9\n10\n11", "output": "4" }, { "input": "6\n-1\n-1\n2\n3\n1\n1", "output": "3" }, { "input": "3\n-1\n1\n1", "output": "2" }, { "input": "1\n-1", "output": "1" }, { "input": "2\n2\n-1", "output": "2" }, { "input": "2\n-1\n-1", "output": "1" }, { "input": "3\n2\n-1\n1", "output": "3" }, { "input": "3\n-1\n-1\n-1", "output": "1" }, { "input": "5\n4\n5\n1\n-1\n4", "output": "3" }, { "input": "12\n-1\n1\n1\n1\n1\n1\n3\n4\n3\n3\n4\n7", "output": "4" }, { "input": "12\n-1\n-1\n1\n-1\n1\n1\n5\n11\n8\n6\n6\n4", "output": "5" }, { "input": "12\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n2\n-1\n-1\n-1", "output": "2" }, { "input": "12\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1", "output": "1" }, { "input": "12\n3\n4\n2\n8\n7\n1\n10\n12\n5\n-1\n9\n11", "output": "12" }, { "input": "12\n5\n6\n7\n1\n-1\n9\n12\n4\n8\n-1\n3\n2", "output": "11" }, { "input": "12\n-1\n9\n11\n6\n6\n-1\n6\n3\n8\n6\n1\n6", "output": "6" }, { "input": "12\n7\n8\n4\n12\n7\n9\n-1\n-1\n-1\n8\n6\n-1", "output": "3" }, { "input": "12\n-1\n10\n-1\n1\n-1\n5\n9\n12\n-1\n-1\n3\n-1", "output": "2" }, { "input": "12\n-1\n7\n9\n12\n1\n7\n-1\n-1\n8\n5\n4\n-1", "output": "3" }, { "input": "12\n11\n11\n8\n9\n1\n1\n2\n-1\n10\n3\n-1\n8", "output": "5" }, { "input": "12\n-1\n8\n9\n-1\n4\n2\n11\n1\n-1\n6\n-1\n10", "output": "6" }, { "input": "12\n7\n4\n4\n-1\n6\n7\n9\n7\n-1\n7\n4\n1", "output": "4" }, { "input": "12\n-1\n6\n10\n6\n1\n11\n5\n9\n11\n5\n1\n9", "output": "4" }, { "input": "12\n8\n6\n6\n8\n6\n-1\n6\n6\n8\n6\n8\n8", "output": "3" }, { "input": "12\n3\n8\n9\n12\n2\n8\n11\n12\n2\n9\n-1\n11", "output": "7" }, { "input": "7\n7\n6\n-1\n-1\n4\n4\n-1", "output": "3" }, { "input": "77\n53\n-1\n48\n-1\n51\n-1\n54\n43\n70\n19\n64\n31\n45\n58\n6\n61\n41\n56\n34\n-1\n54\n-1\n66\n65\n74\n16\n38\n1\n2\n61\n-1\n34\n-1\n-1\n7\n19\n57\n13\n61\n42\n-1\n34\n65\n16\n31\n61\n6\n5\n34\n15\n-1\n13\n4\n22\n74\n7\n-1\n70\n38\n61\n45\n53\n46\n22\n-1\n65\n34\n19\n43\n48\n33\n58\n36\n-1\n47\n24\n34", "output": "6" }, { "input": "5\n2\n3\n4\n5\n-1", "output": "5" } ]
1,688,981,901
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
0
218
3,379,200
ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
Title: Party Time Limit: None seconds Memory Limit: None megabytes Problem Description: A company has *n* employees numbered from 1 to *n*. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee *A* is said to be the superior of another employee *B* if at least one of the following is true: - Employee *A* is the immediate manager of employee *B* - Employee *B* has an immediate manager employee *C* such that employee *A* is the superior of employee *C*. The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager. Today the company is going to arrange a party. This involves dividing all *n* employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees *A* and *B* such that *A* is the superior of *B*. What is the minimum number of groups that must be formed? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=2000) — the number of employees. The next *n* lines contain the integers *p**i* (1<=≤<=*p**i*<=≤<=*n* or *p**i*<==<=-1). Every *p**i* denotes the immediate manager for the *i*-th employee. If *p**i* is -1, that means that the *i*-th employee does not have an immediate manager. It is guaranteed, that no employee will be the immediate manager of him/herself (*p**i*<=≠<=*i*). Also, there will be no managerial cycles. Output Specification: Print a single integer denoting the minimum number of groups that will be formed in the party. Demo Input: ['5\n-1\n1\n2\n1\n-1\n'] Demo Output: ['3\n'] Note: For the first example, three groups are sufficient, for example: - Employee 1 - Employees 2 and 4 - Employees 3 and 5
```python ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd ```
-1
611
A
New Year and Days
PROGRAMMING
900
[ "implementation" ]
null
null
Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015. Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016. Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month. Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.
The only line of the input is in one of the following two formats: - "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month.
Print one integer — the number of candies Limak will save in the year 2016.
[ "4 of week\n", "30 of month\n" ]
[ "52\n", "11\n" ]
Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday. In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total. In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
500
[ { "input": "4 of week", "output": "52" }, { "input": "30 of month", "output": "11" }, { "input": "17 of month", "output": "12" }, { "input": "31 of month", "output": "7" }, { "input": "6 of week", "output": "53" }, { "input": "1 of week", "output": "52" }, { "input": "2 of week", "output": "52" }, { "input": "3 of week", "output": "52" }, { "input": "5 of week", "output": "53" }, { "input": "7 of week", "output": "52" }, { "input": "1 of month", "output": "12" }, { "input": "2 of month", "output": "12" }, { "input": "3 of month", "output": "12" }, { "input": "4 of month", "output": "12" }, { "input": "5 of month", "output": "12" }, { "input": "6 of month", "output": "12" }, { "input": "7 of month", "output": "12" }, { "input": "8 of month", "output": "12" }, { "input": "9 of month", "output": "12" }, { "input": "10 of month", "output": "12" }, { "input": "11 of month", "output": "12" }, { "input": "12 of month", "output": "12" }, { "input": "13 of month", "output": "12" }, { "input": "14 of month", "output": "12" }, { "input": "15 of month", "output": "12" }, { "input": "16 of month", "output": "12" }, { "input": "18 of month", "output": "12" }, { "input": "19 of month", "output": "12" }, { "input": "20 of month", "output": "12" }, { "input": "21 of month", "output": "12" }, { "input": "22 of month", "output": "12" }, { "input": "23 of month", "output": "12" }, { "input": "24 of month", "output": "12" }, { "input": "25 of month", "output": "12" }, { "input": "26 of month", "output": "12" }, { "input": "27 of month", "output": "12" }, { "input": "28 of month", "output": "12" }, { "input": "29 of month", "output": "12" } ]
1,520,869,028
2,147,483,647
Python 3
OK
TESTS
38
77
6,348,800
l=[0,52,52,52,52,53,53,52] m=[31,29,31,30,31,30,31,31,30,31,30,31] a,b,c=map(str,input().split()) if c=='week': print(l[int(a)]) if c=='month': count=0 for i in range(len(m)): if int(a) in range(1,m[i]+1): count+=1 print(count)
Title: New Year and Days Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015. Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016. Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month. Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him. Input Specification: The only line of the input is in one of the following two formats: - "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month. Output Specification: Print one integer — the number of candies Limak will save in the year 2016. Demo Input: ['4 of week\n', '30 of month\n'] Demo Output: ['52\n', '11\n'] Note: Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday. In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total. In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
```python l=[0,52,52,52,52,53,53,52] m=[31,29,31,30,31,30,31,31,30,31,30,31] a,b,c=map(str,input().split()) if c=='week': print(l[int(a)]) if c=='month': count=0 for i in range(len(m)): if int(a) in range(1,m[i]+1): count+=1 print(count) ```
3
263
A
Beautiful Matrix
PROGRAMMING
800
[ "implementation" ]
null
null
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix: 1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=&lt;<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=&lt;<=5). You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
[ "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n", "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n" ]
[ "3\n", "1\n" ]
none
500
[ { "input": "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "0" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1", "output": "4" }, { "input": "0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "4" }, { "input": "0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "4" }, { "input": "0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0", "output": "4" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0", "output": "3" } ]
1,694,420,103
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
30
0
inputs=[] for _ in range(5): inputs.append(input().split(' ')) for hang in range(5): if sum(inputs[hang])==1: a=max(2,hang)-min(2,hang) lst=inputs[hang] else: continue for lie in range(5): if lsr[lie]==1: b=max(2,lie)-min(2,lie) else: continue print(a+b)
Title: Beautiful Matrix Time Limit: None seconds Memory Limit: None megabytes Problem Description: You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix: 1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=&lt;<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=&lt;<=5). You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful. Input Specification: The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one. Output Specification: Print a single integer — the minimum number of moves needed to make the matrix beautiful. Demo Input: ['0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n', '0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n'] Demo Output: ['3\n', '1\n'] Note: none
```python inputs=[] for _ in range(5): inputs.append(input().split(' ')) for hang in range(5): if sum(inputs[hang])==1: a=max(2,hang)-min(2,hang) lst=inputs[hang] else: continue for lie in range(5): if lsr[lie]==1: b=max(2,lie)-min(2,lie) else: continue print(a+b) ```
-1
2
A
Winner
PROGRAMMING
1,500
[ "hashing", "implementation" ]
A. Winner
1
64
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
Print the name of the winner.
[ "3\nmike 3\nandrew 5\nmike 2\n", "3\nandrew 3\nandrew 2\nmike 5\n" ]
[ "andrew\n", "andrew\n" ]
none
0
[ { "input": "3\nmike 3\nandrew 5\nmike 2", "output": "andrew" }, { "input": "3\nandrew 3\nandrew 2\nmike 5", "output": "andrew" }, { "input": "5\nkaxqybeultn -352\nmgochgrmeyieyskhuourfg -910\nkaxqybeultn 691\nmgochgrmeyieyskhuourfg -76\nkaxqybeultn -303", "output": "kaxqybeultn" }, { "input": "7\nksjuuerbnlklcfdjeyq 312\ndthjlkrvvbyahttifpdewvyslsh -983\nksjuuerbnlklcfdjeyq 268\ndthjlkrvvbyahttifpdewvyslsh 788\nksjuuerbnlklcfdjeyq -79\nksjuuerbnlklcfdjeyq -593\nksjuuerbnlklcfdjeyq 734", "output": "ksjuuerbnlklcfdjeyq" }, { "input": "12\natrtthfpcvishmqbakprquvnejr 185\natrtthfpcvishmqbakprquvnejr -699\natrtthfpcvishmqbakprquvnejr -911\natrtthfpcvishmqbakprquvnejr -220\nfcgslzkicjrpbqaifgweyzreajjfdo 132\nfcgslzkicjrpbqaifgweyzreajjfdo -242\nm 177\nm -549\natrtthfpcvishmqbakprquvnejr -242\nm 38\natrtthfpcvishmqbakprquvnejr -761\nfcgslzkicjrpbqaifgweyzreajjfdo 879", "output": "fcgslzkicjrpbqaifgweyzreajjfdo" }, { "input": "15\naawtvezfntstrcpgbzjbf 681\nzhahpvqiptvksnbjkdvmknb -74\naawtvezfntstrcpgbzjbf 661\njpdwmyke 474\naawtvezfntstrcpgbzjbf -547\naawtvezfntstrcpgbzjbf 600\nzhahpvqiptvksnbjkdvmknb -11\njpdwmyke 711\nbjmj 652\naawtvezfntstrcpgbzjbf -1000\naawtvezfntstrcpgbzjbf -171\nbjmj -302\naawtvezfntstrcpgbzjbf 961\nzhahpvqiptvksnbjkdvmknb 848\nbjmj -735", "output": "aawtvezfntstrcpgbzjbf" }, { "input": "17\nqdplghhx -649\nivhgbxiv 424\nivhgbxiv -72\nivhgbxiv 479\nugowfouebkelargxylsxn 83\nugowfouebkelargxylsxn -840\nivhgbxiv 382\nqdplghhx -904\nivhgbxiv -710\nugowfouebkelargxylsxn -838\nqdplghhx -974\nqdplghhx 571\nivhgbxiv -145\nugowfouebkelargxylsxn -788\nivhgbxiv 209\nivhgbxiv 420\nqdplghhx -158", "output": "ivhgbxiv" } ]
1,514,498,079
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
186
23,040,000
n=int(input()) d={} mx=0 d1={} for i in range(n): na,s=input().split() s=int(s) if na in d: d[na][0]+=s d[na][1]=i if s<0: d[na][2]=-1 else: d[na][2]=1 else: if s>0: d[na]=[s,i,1] else: d[na]=[s,i,-1] if d[na][0] in d1: d1[d[na][0]].append(na) else: d1[d[na][0]]=[na] L=d1[max(d1)] for x in L: if d[x][2]==1: print(x) break
Title: Winner Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points. Input Specification: The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive. Output Specification: Print the name of the winner. Demo Input: ['3\nmike 3\nandrew 5\nmike 2\n', '3\nandrew 3\nandrew 2\nmike 5\n'] Demo Output: ['andrew\n', 'andrew\n'] Note: none
```python n=int(input()) d={} mx=0 d1={} for i in range(n): na,s=input().split() s=int(s) if na in d: d[na][0]+=s d[na][1]=i if s<0: d[na][2]=-1 else: d[na][2]=1 else: if s>0: d[na]=[s,i,1] else: d[na]=[s,i,-1] if d[na][0] in d1: d1[d[na][0]].append(na) else: d1[d[na][0]]=[na] L=d1[max(d1)] for x in L: if d[x][2]==1: print(x) break ```
0
994
A
Fingerprints
PROGRAMMING
800
[ "implementation" ]
null
null
You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits. Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code.
The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints. The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence. The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints.
In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable.
[ "7 3\n3 5 7 1 6 2 8\n1 2 7\n", "4 4\n3 4 1 0\n0 1 7 9\n" ]
[ "7 1 2\n", "1 0\n" ]
In the first example, the only digits with fingerprints are $1$, $2$ and $7$. All three of them appear in the sequence you know, $7$ first, then $1$ and then $2$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence. In the second example digits $0$, $1$, $7$ and $9$ have fingerprints, however only $0$ and $1$ appear in the original sequence. $1$ appears earlier, so the output is 1 0. Again, the order is important.
500
[ { "input": "7 3\n3 5 7 1 6 2 8\n1 2 7", "output": "7 1 2" }, { "input": "4 4\n3 4 1 0\n0 1 7 9", "output": "1 0" }, { "input": "9 4\n9 8 7 6 5 4 3 2 1\n2 4 6 8", "output": "8 6 4 2" }, { "input": "10 5\n3 7 1 2 4 6 9 0 5 8\n4 3 0 7 9", "output": "3 7 4 9 0" }, { "input": "10 10\n1 2 3 4 5 6 7 8 9 0\n4 5 6 7 1 2 3 0 9 8", "output": "1 2 3 4 5 6 7 8 9 0" }, { "input": "1 1\n4\n4", "output": "4" }, { "input": "3 7\n6 3 4\n4 9 0 1 7 8 6", "output": "6 4" }, { "input": "10 1\n9 0 8 1 7 4 6 5 2 3\n0", "output": "0" }, { "input": "5 10\n6 0 3 8 1\n3 1 0 5 4 7 2 8 9 6", "output": "6 0 3 8 1" }, { "input": "8 2\n7 2 9 6 1 0 3 4\n6 3", "output": "6 3" }, { "input": "5 4\n7 0 1 4 9\n0 9 5 3", "output": "0 9" }, { "input": "10 1\n9 6 2 0 1 8 3 4 7 5\n6", "output": "6" }, { "input": "10 2\n7 1 0 2 4 6 5 9 3 8\n3 2", "output": "2 3" }, { "input": "5 9\n3 7 9 2 4\n3 8 4 5 9 6 1 0 2", "output": "3 9 2 4" }, { "input": "10 6\n7 1 2 3 8 0 6 4 5 9\n1 5 8 2 3 6", "output": "1 2 3 8 6 5" }, { "input": "8 2\n7 4 8 9 2 5 6 1\n6 4", "output": "4 6" }, { "input": "10 2\n1 0 3 5 8 9 4 7 6 2\n0 3", "output": "0 3" }, { "input": "7 6\n9 2 8 6 1 3 7\n4 2 0 3 1 8", "output": "2 8 1 3" }, { "input": "1 6\n3\n6 8 2 4 5 3", "output": "3" }, { "input": "1 8\n0\n9 2 4 8 1 5 0 7", "output": "0" }, { "input": "6 9\n7 3 9 4 1 0\n9 1 5 8 0 6 2 7 4", "output": "7 9 4 1 0" }, { "input": "10 2\n4 9 6 8 3 0 1 5 7 2\n0 1", "output": "0 1" }, { "input": "10 5\n5 2 8 0 9 7 6 1 4 3\n9 6 4 1 2", "output": "2 9 6 1 4" }, { "input": "6 3\n8 3 9 2 7 6\n5 4 3", "output": "3" }, { "input": "4 10\n8 3 9 6\n4 9 6 2 7 0 8 1 3 5", "output": "8 3 9 6" }, { "input": "1 2\n1\n1 0", "output": "1" }, { "input": "3 6\n1 2 3\n4 5 6 1 2 3", "output": "1 2 3" }, { "input": "1 2\n2\n1 2", "output": "2" }, { "input": "1 10\n9\n0 1 2 3 4 5 6 7 8 9", "output": "9" } ]
1,529,345,602
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
77
0
n, m = [int(x) for x in input().split()] seq = [] fin = [] for x in input().split(): seq.append(int(x)) for x in input().split(): fin.append(int(x)) res = [] for x in seq: for y in fin: if x == y: res.append(x) elif x < y: break for x in res: print(x, end = " ")
Title: Fingerprints Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits. Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code. Input Specification: The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints. The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence. The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints. Output Specification: In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable. Demo Input: ['7 3\n3 5 7 1 6 2 8\n1 2 7\n', '4 4\n3 4 1 0\n0 1 7 9\n'] Demo Output: ['7 1 2\n', '1 0\n'] Note: In the first example, the only digits with fingerprints are $1$, $2$ and $7$. All three of them appear in the sequence you know, $7$ first, then $1$ and then $2$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence. In the second example digits $0$, $1$, $7$ and $9$ have fingerprints, however only $0$ and $1$ appear in the original sequence. $1$ appears earlier, so the output is 1 0. Again, the order is important.
```python n, m = [int(x) for x in input().split()] seq = [] fin = [] for x in input().split(): seq.append(int(x)) for x in input().split(): fin.append(int(x)) res = [] for x in seq: for y in fin: if x == y: res.append(x) elif x < y: break for x in res: print(x, end = " ") ```
0
452
A
Eevee
PROGRAMMING
1,000
[ "brute force", "implementation", "strings" ]
null
null
You are solving the crossword problem K from IPSC 2014. You solved all the clues except for one: who does Eevee evolve into? You are not very into pokemons, but quick googling helped you find out, that Eevee can evolve into eight different pokemons: Vaporeon, Jolteon, Flareon, Espeon, Umbreon, Leafeon, Glaceon, and Sylveon. You know the length of the word in the crossword, and you already know some letters. Designers of the crossword made sure that the answer is unambiguous, so you can assume that exactly one pokemon out of the 8 that Eevee evolves into fits the length and the letters given. Your task is to find it.
First line contains an integer *n* (6<=≤<=*n*<=≤<=8) – the length of the string. Next line contains a string consisting of *n* characters, each of which is either a lower case english letter (indicating a known letter) or a dot character (indicating an empty cell in the crossword).
Print a name of the pokemon that Eevee can evolve into that matches the pattern in the input. Use lower case letters only to print the name (in particular, do not capitalize the first letter).
[ "7\nj......\n", "7\n...feon\n", "7\n.l.r.o.\n" ]
[ "jolteon\n", "leafeon\n", "flareon\n" ]
Here's a set of names in a form you can paste into your solution: ["vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"] {"vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"}
500
[ { "input": "7\n...feon", "output": "leafeon" }, { "input": "7\n.l.r.o.", "output": "flareon" }, { "input": "6\n.s..o.", "output": "espeon" }, { "input": "7\nglaceon", "output": "glaceon" }, { "input": "8\n.a.o.e.n", "output": "vaporeon" }, { "input": "7\n.laceon", "output": "glaceon" }, { "input": "7\n..lveon", "output": "sylveon" }, { "input": "7\n.l.ceon", "output": "glaceon" }, { "input": "7\n..areon", "output": "flareon" } ]
1,438,678,877
2,147,483,647
Python 3
OK
TESTS
20
62
0
a = ["vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"] n = input() s = input() res = "" for k in a: if len(k) == len(s): cnt = 0 for i in range(len(s)): if (k[i] == s[i]) or (s[i] == '.'): cnt+=1 if cnt == len(s): print(k)
Title: Eevee Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are solving the crossword problem K from IPSC 2014. You solved all the clues except for one: who does Eevee evolve into? You are not very into pokemons, but quick googling helped you find out, that Eevee can evolve into eight different pokemons: Vaporeon, Jolteon, Flareon, Espeon, Umbreon, Leafeon, Glaceon, and Sylveon. You know the length of the word in the crossword, and you already know some letters. Designers of the crossword made sure that the answer is unambiguous, so you can assume that exactly one pokemon out of the 8 that Eevee evolves into fits the length and the letters given. Your task is to find it. Input Specification: First line contains an integer *n* (6<=≤<=*n*<=≤<=8) – the length of the string. Next line contains a string consisting of *n* characters, each of which is either a lower case english letter (indicating a known letter) or a dot character (indicating an empty cell in the crossword). Output Specification: Print a name of the pokemon that Eevee can evolve into that matches the pattern in the input. Use lower case letters only to print the name (in particular, do not capitalize the first letter). Demo Input: ['7\nj......\n', '7\n...feon\n', '7\n.l.r.o.\n'] Demo Output: ['jolteon\n', 'leafeon\n', 'flareon\n'] Note: Here's a set of names in a form you can paste into your solution: ["vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"] {"vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"}
```python a = ["vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"] n = input() s = input() res = "" for k in a: if len(k) == len(s): cnt = 0 for i in range(len(s)): if (k[i] == s[i]) or (s[i] == '.'): cnt+=1 if cnt == len(s): print(k) ```
3
258
A
Little Elephant and Bits
PROGRAMMING
1,100
[ "greedy", "math" ]
null
null
The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper. To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes). The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation.
The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits.
In the single line print the number that is written without leading zeroes in the binary notation — the answer to the problem.
[ "101\n", "110010\n" ]
[ "11\n", "11010\n" ]
In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub> = 3<sub class="lower-index">10</sub>. In the second sample the best strategy is to delete the third or fourth digits — that results in number 11010<sub class="lower-index">2</sub> = 26<sub class="lower-index">10</sub>.
500
[ { "input": "101", "output": "11" }, { "input": "110010", "output": "11010" }, { "input": "10000", "output": "1000" }, { "input": "1111111110", "output": "111111111" }, { "input": "10100101011110101", "output": "1100101011110101" }, { "input": "111010010111", "output": "11110010111" }, { "input": "11110111011100000000", "output": "1111111011100000000" }, { "input": "11110010010100001110110101110011110110100111101", "output": "1111010010100001110110101110011110110100111101" }, { "input": "1001011111010010100111111", "output": "101011111010010100111111" }, { "input": "1111111111", "output": "111111111" }, { "input": "1111111111111111111100111101001110110111111000001111110101001101001110011000001011001111111000110101", "output": "111111111111111111110111101001110110111111000001111110101001101001110011000001011001111111000110101" }, { "input": "11010110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100", "output": "1110110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100" }, { "input": "11111111111111111111111110110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011", "output": "1111111111111111111111111110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011" }, { "input": "11100010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011", "output": "1110010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011" }, { "input": "11", "output": "1" }, { "input": "111", "output": "11" }, { "input": "111111", "output": "11111" }, { "input": "11111", "output": "1111" }, { "input": "1111", "output": "111" } ]
1,615,498,582
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
9
124
0
a = input() aux_max = 0 aux_max_b = a for i in range(len(a)): if a[i] == '0': aux_max_b = a[:i] + a[i+1:] break print(aux_max_b)
Title: Little Elephant and Bits Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper. To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes). The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation. Input Specification: The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits. Output Specification: In the single line print the number that is written without leading zeroes in the binary notation — the answer to the problem. Demo Input: ['101\n', '110010\n'] Demo Output: ['11\n', '11010\n'] Note: In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub> = 3<sub class="lower-index">10</sub>. In the second sample the best strategy is to delete the third or fourth digits — that results in number 11010<sub class="lower-index">2</sub> = 26<sub class="lower-index">10</sub>.
```python a = input() aux_max = 0 aux_max_b = a for i in range(len(a)): if a[i] == '0': aux_max_b = a[:i] + a[i+1:] break print(aux_max_b) ```
0
48
A
Rock-paper-scissors
PROGRAMMING
900
[ "implementation", "schedules" ]
A. Rock-paper-scissors
2
256
Uncle Fyodor, Matroskin the Cat and Sharic the Dog live their simple but happy lives in Prostokvashino. Sometimes they receive parcels from Uncle Fyodor’s parents and sometimes from anonymous benefactors, in which case it is hard to determine to which one of them the package has been sent. A photographic rifle is obviously for Sharic who loves hunting and fish is for Matroskin, but for whom was a new video game console meant? Every one of the three friends claimed that the present is for him and nearly quarreled. Uncle Fyodor had an idea how to solve the problem justly: they should suppose that the console was sent to all three of them and play it in turns. Everybody got relieved but then yet another burning problem popped up — who will play first? This time Matroskin came up with a brilliant solution, suggesting the most fair way to find it out: play rock-paper-scissors together. The rules of the game are very simple. On the count of three every player shows a combination with his hand (or paw). The combination corresponds to one of three things: a rock, scissors or paper. Some of the gestures win over some other ones according to well-known rules: the rock breaks the scissors, the scissors cut the paper, and the paper gets wrapped over the stone. Usually there are two players. Yet there are three friends, that’s why they decided to choose the winner like that: If someone shows the gesture that wins over the other two players, then that player wins. Otherwise, another game round is required. Write a program that will determine the winner by the gestures they have shown.
The first input line contains the name of the gesture that Uncle Fyodor showed, the second line shows which gesture Matroskin showed and the third line shows Sharic’s gesture.
Print "F" (without quotes) if Uncle Fyodor wins. Print "M" if Matroskin wins and "S" if Sharic wins. If it is impossible to find the winner, print "?".
[ "rock\nrock\nrock\n", "paper\nrock\nrock\n", "scissors\nrock\nrock\n", "scissors\npaper\nrock\n" ]
[ "?\n", "F\n", "?\n", "?\n" ]
none
0
[ { "input": "rock\nrock\nrock", "output": "?" }, { "input": "paper\nrock\nrock", "output": "F" }, { "input": "scissors\nrock\nrock", "output": "?" }, { "input": "scissors\npaper\nrock", "output": "?" }, { "input": "paper\npaper\nrock", "output": "?" }, { "input": "rock\npaper\nrock", "output": "M" }, { "input": "rock\nscissors\nrock", "output": "?" }, { "input": "paper\nscissors\nrock", "output": "?" }, { "input": "scissors\nscissors\nrock", "output": "S" }, { "input": "rock\nrock\npaper", "output": "S" }, { "input": "paper\nrock\npaper", "output": "?" }, { "input": "scissors\nrock\npaper", "output": "?" }, { "input": "rock\npaper\npaper", "output": "?" }, { "input": "paper\npaper\npaper", "output": "?" }, { "input": "scissors\npaper\npaper", "output": "F" }, { "input": "rock\nscissors\npaper", "output": "?" }, { "input": "paper\nscissors\npaper", "output": "M" }, { "input": "scissors\nscissors\npaper", "output": "?" }, { "input": "rock\nrock\nscissors", "output": "?" }, { "input": "paper\nrock\nscissors", "output": "?" }, { "input": "scissors\nrock\nscissors", "output": "M" }, { "input": "rock\npaper\nscissors", "output": "?" }, { "input": "paper\npaper\nscissors", "output": "S" }, { "input": "scissors\npaper\nscissors", "output": "?" }, { "input": "rock\nscissors\nscissors", "output": "F" }, { "input": "paper\nscissors\nscissors", "output": "?" }, { "input": "scissors\nscissors\nscissors", "output": "?" } ]
1,556,309,099
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
218
0
f = input() m = input() s = input() if f == m and m == s: print('?') exit() a = [f, m, s] if len(set(a)) == 3: print('?') a1 = '' a2 = '' result = '' if a.count(f) == 1: result = 'F' a1 = f a2 = m else: a2 = f if m != f: a1 = m result = 'M' else: a1 = s result = 'M' if a1 == 'rock' and a2 == 'scissors': print(result) elif a1 == 'scissors' and a2 == 'rock': print('?') elif a1 == 'paper' and a2 == 'rock': print(result) elif a1 == 'rock' and a2 == 'paper': print('?') elif a1 == 'paper' and a2 == 'scissors': print(result) elif a1 == 'scissors' and a2 == 'paper': print('?')
Title: Rock-paper-scissors Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Uncle Fyodor, Matroskin the Cat and Sharic the Dog live their simple but happy lives in Prostokvashino. Sometimes they receive parcels from Uncle Fyodor’s parents and sometimes from anonymous benefactors, in which case it is hard to determine to which one of them the package has been sent. A photographic rifle is obviously for Sharic who loves hunting and fish is for Matroskin, but for whom was a new video game console meant? Every one of the three friends claimed that the present is for him and nearly quarreled. Uncle Fyodor had an idea how to solve the problem justly: they should suppose that the console was sent to all three of them and play it in turns. Everybody got relieved but then yet another burning problem popped up — who will play first? This time Matroskin came up with a brilliant solution, suggesting the most fair way to find it out: play rock-paper-scissors together. The rules of the game are very simple. On the count of three every player shows a combination with his hand (or paw). The combination corresponds to one of three things: a rock, scissors or paper. Some of the gestures win over some other ones according to well-known rules: the rock breaks the scissors, the scissors cut the paper, and the paper gets wrapped over the stone. Usually there are two players. Yet there are three friends, that’s why they decided to choose the winner like that: If someone shows the gesture that wins over the other two players, then that player wins. Otherwise, another game round is required. Write a program that will determine the winner by the gestures they have shown. Input Specification: The first input line contains the name of the gesture that Uncle Fyodor showed, the second line shows which gesture Matroskin showed and the third line shows Sharic’s gesture. Output Specification: Print "F" (without quotes) if Uncle Fyodor wins. Print "M" if Matroskin wins and "S" if Sharic wins. If it is impossible to find the winner, print "?". Demo Input: ['rock\nrock\nrock\n', 'paper\nrock\nrock\n', 'scissors\nrock\nrock\n', 'scissors\npaper\nrock\n'] Demo Output: ['?\n', 'F\n', '?\n', '?\n'] Note: none
```python f = input() m = input() s = input() if f == m and m == s: print('?') exit() a = [f, m, s] if len(set(a)) == 3: print('?') a1 = '' a2 = '' result = '' if a.count(f) == 1: result = 'F' a1 = f a2 = m else: a2 = f if m != f: a1 = m result = 'M' else: a1 = s result = 'M' if a1 == 'rock' and a2 == 'scissors': print(result) elif a1 == 'scissors' and a2 == 'rock': print('?') elif a1 == 'paper' and a2 == 'rock': print(result) elif a1 == 'rock' and a2 == 'paper': print('?') elif a1 == 'paper' and a2 == 'scissors': print(result) elif a1 == 'scissors' and a2 == 'paper': print('?') ```
0
414
B
Mashmokh and ACM
PROGRAMMING
1,400
[ "combinatorics", "dp", "number theory" ]
null
null
Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following. A sequence of *l* integers *b*1,<=*b*2,<=...,<=*b**l* (1<=≤<=*b*1<=≤<=*b*2<=≤<=...<=≤<=*b**l*<=≤<=*n*) is called good if each number divides (without a remainder) by the next number in the sequence. More formally for all *i* (1<=≤<=*i*<=≤<=*l*<=-<=1). Given *n* and *k* find the number of good sequences of length *k*. As the answer can be rather large print it modulo 1000000007 (109<=+<=7).
The first line of input contains two space-separated integers *n*,<=*k* (1<=≤<=*n*,<=*k*<=≤<=2000).
Output a single integer — the number of good sequences of length *k* modulo 1000000007 (109<=+<=7).
[ "3 2\n", "6 4\n", "2 1\n" ]
[ "5\n", "39\n", "2\n" ]
In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].
1,000
[ { "input": "3 2", "output": "5" }, { "input": "6 4", "output": "39" }, { "input": "2 1", "output": "2" }, { "input": "1478 194", "output": "312087753" }, { "input": "1415 562", "output": "953558593" }, { "input": "1266 844", "output": "735042656" }, { "input": "680 1091", "output": "351905328" }, { "input": "1229 1315", "output": "100240813" }, { "input": "1766 1038", "output": "435768250" }, { "input": "1000 1", "output": "1000" }, { "input": "2000 100", "output": "983281065" }, { "input": "1 1", "output": "1" }, { "input": "2000 1000", "output": "228299266" }, { "input": "1928 1504", "output": "81660104" }, { "input": "2000 2000", "output": "585712681" }, { "input": "29 99", "output": "23125873" }, { "input": "56 48", "output": "20742237" }, { "input": "209 370", "output": "804680894" }, { "input": "83 37", "output": "22793555" }, { "input": "49 110", "output": "956247348" }, { "input": "217 3", "output": "4131" }, { "input": "162 161", "output": "591739753" }, { "input": "273 871", "output": "151578252" }, { "input": "43 1640", "output": "173064407" }, { "input": "1472 854", "output": "748682383" }, { "input": "1639 1056", "output": "467464129" }, { "input": "359 896", "output": "770361185" }, { "input": "1544 648", "output": "9278889" }, { "input": "436 1302", "output": "874366220" }, { "input": "1858 743", "output": "785912917" }, { "input": "991 1094", "output": "483493131" }, { "input": "1013 1550", "output": "613533467" }, { "input": "675 741", "output": "474968598" }, { "input": "1420 1223", "output": "922677437" }, { "input": "1544 1794", "output": "933285446" }, { "input": "1903 1612", "output": "620810276" }, { "input": "500 1304", "output": "706176027" }, { "input": "525 314", "output": "245394744" }, { "input": "39 1930", "output": "992125404" }, { "input": "1895 753", "output": "180474828" }, { "input": "1722 1474", "output": "742424590" }, { "input": "1153 1823", "output": "791493066" }, { "input": "1409 734", "output": "627413973" }, { "input": "478 1301", "output": "476483030" }, { "input": "1887 1729", "output": "730033374" }, { "input": "1610 774", "output": "50897314" }, { "input": "1770 679", "output": "235295539" }, { "input": "987 1292", "output": "560110556" }, { "input": "1707 1117", "output": "237674323" }, { "input": "1424 1431", "output": "184145444" }, { "input": "86 1078", "output": "252515343" }, { "input": "1066 995", "output": "180753612" }, { "input": "1024 133", "output": "392603027" }, { "input": "659 974", "output": "397026719" }, { "input": "1349 1606", "output": "522392901" }, { "input": "473 211", "output": "809550224" }, { "input": "634 1825", "output": "438513382" }, { "input": "22 373", "output": "907321755" }, { "input": "531 147", "output": "242883376" }, { "input": "1307 1247", "output": "21512331" }, { "input": "415 735", "output": "393705804" }, { "input": "1659 1501", "output": "225266660" }, { "input": "1454 296", "output": "750032659" }, { "input": "158 772", "output": "850911301" }, { "input": "2000 1", "output": "2000" } ]
1,628,088,947
2,147,483,647
PyPy 3
OK
TESTS
65
967
29,593,600
n,k=map(int,input().split())# se reciben los datos n y k lista=[] # se nombra la lista donde se guardaran en cada posicion el numero de combinaciones al ubicar en la primera posicion de la secuemcia el numero n for i in range(n+1): # inicialmente se guarda 1 que es el nunmero que genera al ubicar cadan en la primera posicion de la secuencia lista.append(1) for i in range(k-1): # pro cada iteracion de i se maneja el concepto de ubicar otro n en la secuencia hasta tener k posiciones for j in range(1,n+1): # por cada j se analiza el numero de combinaciones que se generan al ubicar j en la posicion i de la secuencia multiplo=2*j # se pasa al siguiente multiplo while (multiplo<=n): # mientras ese multiplo sea un numero valido o sea menor o igual que n lista[j]=lista[j]+lista[multiplo] # se suman el numero de combinaciones generadas al ubicar multiplo en la secuencia luego de j multiplo=multiplo+j # se salta al siguiente multiplo total=0 # variable a mostrar for i in range(1,n+1): # se suman todas las combinaciones al ubicar cada n en la posicion inicial total=total+lista[i] print(total%(10**9+7))
Title: Mashmokh and ACM Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following. A sequence of *l* integers *b*1,<=*b*2,<=...,<=*b**l* (1<=≤<=*b*1<=≤<=*b*2<=≤<=...<=≤<=*b**l*<=≤<=*n*) is called good if each number divides (without a remainder) by the next number in the sequence. More formally for all *i* (1<=≤<=*i*<=≤<=*l*<=-<=1). Given *n* and *k* find the number of good sequences of length *k*. As the answer can be rather large print it modulo 1000000007 (109<=+<=7). Input Specification: The first line of input contains two space-separated integers *n*,<=*k* (1<=≤<=*n*,<=*k*<=≤<=2000). Output Specification: Output a single integer — the number of good sequences of length *k* modulo 1000000007 (109<=+<=7). Demo Input: ['3 2\n', '6 4\n', '2 1\n'] Demo Output: ['5\n', '39\n', '2\n'] Note: In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].
```python n,k=map(int,input().split())# se reciben los datos n y k lista=[] # se nombra la lista donde se guardaran en cada posicion el numero de combinaciones al ubicar en la primera posicion de la secuemcia el numero n for i in range(n+1): # inicialmente se guarda 1 que es el nunmero que genera al ubicar cadan en la primera posicion de la secuencia lista.append(1) for i in range(k-1): # pro cada iteracion de i se maneja el concepto de ubicar otro n en la secuencia hasta tener k posiciones for j in range(1,n+1): # por cada j se analiza el numero de combinaciones que se generan al ubicar j en la posicion i de la secuencia multiplo=2*j # se pasa al siguiente multiplo while (multiplo<=n): # mientras ese multiplo sea un numero valido o sea menor o igual que n lista[j]=lista[j]+lista[multiplo] # se suman el numero de combinaciones generadas al ubicar multiplo en la secuencia luego de j multiplo=multiplo+j # se salta al siguiente multiplo total=0 # variable a mostrar for i in range(1,n+1): # se suman todas las combinaciones al ubicar cada n en la posicion inicial total=total+lista[i] print(total%(10**9+7)) ```
3
583
B
Robot's Task
PROGRAMMING
1,200
[ "greedy", "implementation" ]
null
null
Robot Doc is located in the hall, with *n* computers stand in a line, numbered from left to right from 1 to *n*. Each computer contains exactly one piece of information, each of which Doc wants to get eventually. The computers are equipped with a security system, so to crack the *i*-th of them, the robot needs to collect at least *a**i* any pieces of information from the other computers. Doc can hack the computer only if he is right next to it. The robot is assembled using modern technologies and can move along the line of computers in either of the two possible directions, but the change of direction requires a large amount of resources from Doc. Tell the minimum number of changes of direction, which the robot will have to make to collect all *n* parts of information if initially it is next to computer with number 1. It is guaranteed that there exists at least one sequence of the robot's actions, which leads to the collection of all information. Initially Doc doesn't have any pieces of information.
The first line contains number *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* non-negative integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=&lt;<=*n*), separated by a space. It is guaranteed that there exists a way for robot to collect all pieces of the information.
Print a single number — the minimum number of changes in direction that the robot will have to make in order to collect all *n* parts of information.
[ "3\n0 2 0\n", "5\n4 2 3 0 1\n", "7\n0 3 1 0 5 2 6\n" ]
[ "1\n", "3\n", "2\n" ]
In the first sample you can assemble all the pieces of information in the optimal manner by assembling first the piece of information in the first computer, then in the third one, then change direction and move to the second one, and then, having 2 pieces of information, collect the last piece. In the second sample to collect all the pieces of information in the optimal manner, Doc can go to the fourth computer and get the piece of information, then go to the fifth computer with one piece and get another one, then go to the second computer in the same manner, then to the third one and finally, to the first one. Changes of direction will take place before moving from the fifth to the second computer, then from the second to the third computer, then from the third to the first computer. In the third sample the optimal order of collecting parts from computers can look like that: 1-&gt;3-&gt;4-&gt;6-&gt;2-&gt;5-&gt;7.
1,000
[ { "input": "3\n0 2 0", "output": "1" }, { "input": "5\n4 2 3 0 1", "output": "3" }, { "input": "7\n0 3 1 0 5 2 6", "output": "2" }, { "input": "1\n0", "output": "0" }, { "input": "2\n0 1", "output": "0" }, { "input": "10\n0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "3\n0 2 1", "output": "1" }, { "input": "10\n7 1 9 3 5 8 6 0 2 4", "output": "9" }, { "input": "10\n1 3 5 7 9 8 6 4 2 0", "output": "9" }, { "input": "10\n5 0 0 1 3 2 2 2 5 7", "output": "1" }, { "input": "10\n8 6 5 3 9 7 1 4 2 0", "output": "8" }, { "input": "10\n1 2 4 5 0 1 3 7 1 4", "output": "2" }, { "input": "10\n3 4 8 9 5 1 2 0 6 7", "output": "6" }, { "input": "10\n2 2 0 0 6 2 9 0 2 0", "output": "2" }, { "input": "10\n1 7 5 3 2 6 0 8 4 9", "output": "8" }, { "input": "9\n1 3 8 6 2 4 5 0 7", "output": "7" }, { "input": "9\n1 3 5 7 8 6 4 2 0", "output": "8" }, { "input": "9\n2 4 3 1 3 0 5 4 3", "output": "3" }, { "input": "9\n3 5 6 8 7 0 4 2 1", "output": "5" }, { "input": "9\n2 0 8 1 0 3 0 5 3", "output": "2" }, { "input": "9\n6 2 3 7 4 8 5 1 0", "output": "4" }, { "input": "9\n3 1 5 6 0 3 2 0 0", "output": "2" }, { "input": "9\n2 6 4 1 0 8 5 3 7", "output": "7" }, { "input": "100\n27 20 18 78 93 38 56 2 48 75 36 88 96 57 69 10 25 74 68 86 65 85 66 14 22 12 43 80 99 34 42 63 61 71 77 15 37 54 21 59 23 94 28 30 50 84 62 76 47 16 26 64 82 92 72 53 17 11 41 91 35 83 79 95 67 13 1 7 3 4 73 90 8 19 33 58 98 32 39 45 87 52 60 46 6 44 49 70 51 9 5 29 31 24 40 97 81 0 89 55", "output": "69" }, { "input": "100\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0", "output": "99" }, { "input": "100\n13 89 81 0 62 1 59 92 29 13 1 37 2 8 53 15 20 34 12 70 0 85 97 55 84 60 37 54 14 65 22 69 30 22 95 44 59 85 50 80 9 71 91 93 74 21 11 78 28 21 40 81 76 24 26 60 48 85 61 68 89 76 46 73 34 52 98 29 4 38 94 51 5 55 6 27 74 27 38 37 82 70 44 89 51 59 30 37 15 55 63 78 42 39 71 43 4 10 2 13", "output": "21" }, { "input": "100\n1 3 5 7 58 11 13 15 17 19 45 23 25 27 29 31 33 35 37 39 41 43 21 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 81 79 83 85 87 89 91 93 95 97 48 98 96 94 92 90 88 44 84 82 80 78 76 74 72 70 68 66 64 62 60 9 56 54 52 50 99 46 86 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0", "output": "96" }, { "input": "100\n32 47 74 8 14 4 12 68 18 0 44 80 14 38 6 57 4 72 69 3 21 78 74 22 39 32 58 63 34 33 23 6 39 11 6 12 18 4 0 11 20 28 16 1 22 12 57 55 13 48 43 1 50 18 87 6 11 45 38 67 37 14 7 56 6 41 1 55 5 73 78 64 38 18 38 8 37 0 18 61 37 58 58 62 86 5 0 2 15 43 34 61 2 21 15 9 69 1 11 24", "output": "4" }, { "input": "100\n40 3 55 7 6 77 13 46 17 64 21 54 25 27 91 41 1 15 37 82 23 43 42 47 26 95 53 5 11 59 61 9 78 67 69 58 73 0 36 79 60 83 2 87 63 33 71 89 97 99 98 93 56 92 19 88 86 84 39 28 65 20 34 76 51 94 66 12 62 49 96 72 24 52 48 50 44 35 74 31 38 57 81 32 22 80 70 29 30 18 68 16 14 90 10 8 85 4 45 75", "output": "75" }, { "input": "100\n34 16 42 21 84 27 11 7 82 16 95 39 36 64 26 0 38 37 2 2 16 56 16 61 55 42 26 5 61 8 30 20 19 15 9 78 5 34 15 0 3 17 36 36 1 5 4 26 18 0 14 25 7 5 91 7 43 26 79 37 17 27 40 55 66 7 0 2 16 23 68 35 2 5 9 21 1 7 2 9 4 3 22 15 27 6 0 47 5 0 12 9 20 55 36 10 6 8 5 1", "output": "3" }, { "input": "100\n35 53 87 49 13 24 93 20 5 11 31 32 40 52 96 46 1 25 66 69 28 88 84 82 70 9 75 39 26 21 18 29 23 57 90 16 48 22 95 0 58 43 7 73 8 62 63 30 64 92 79 3 6 94 34 12 76 99 67 55 56 97 14 91 68 36 44 78 41 71 86 89 47 74 4 45 98 37 80 33 83 27 42 59 72 54 17 60 51 81 15 77 65 50 10 85 61 19 38 2", "output": "67" }, { "input": "99\n89 96 56 31 32 14 9 66 87 34 69 5 92 54 41 52 46 30 22 26 16 18 20 68 62 73 90 43 79 33 58 98 37 45 10 78 94 51 19 0 91 39 28 47 17 86 3 61 77 7 15 64 55 83 65 71 97 88 6 48 24 11 8 42 81 4 63 93 50 74 35 12 95 27 53 82 29 85 84 60 72 40 36 57 23 13 38 59 49 1 75 44 76 2 21 25 70 80 67", "output": "75" }, { "input": "99\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0", "output": "98" }, { "input": "99\n82 7 6 77 17 28 90 3 68 12 63 60 24 20 4 81 71 85 57 45 11 84 3 91 49 34 89 82 0 50 48 88 36 76 36 5 62 48 20 2 20 45 69 27 37 62 42 31 57 51 92 84 89 25 7 62 12 23 23 56 30 90 27 10 77 58 48 38 56 68 57 15 33 1 34 67 16 47 75 70 69 28 38 16 5 61 85 76 44 90 37 22 77 94 55 1 97 8 69", "output": "22" }, { "input": "99\n1 51 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 42 43 45 47 49 3 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 98 96 94 92 90 88 86 84 82 80 8 76 74 72 70 68 66 22 62 60 58 56 54 52 0 48 46 44 41 40 38 36 34 32 30 28 26 24 64 20 18 16 14 12 10 78 6 4 2 50", "output": "96" }, { "input": "99\n22 3 19 13 65 87 28 17 41 40 31 21 8 37 29 65 65 53 16 33 13 5 76 4 72 9 2 76 57 72 50 15 75 0 30 13 83 36 12 31 49 51 65 22 48 31 60 15 2 17 6 1 8 0 1 63 3 16 7 7 2 1 47 28 26 21 2 36 1 5 20 25 44 0 2 39 46 30 33 11 15 34 34 4 84 52 0 39 7 3 17 15 6 38 52 64 26 1 0", "output": "3" }, { "input": "99\n24 87 25 82 97 11 37 15 23 19 34 17 76 13 45 89 33 1 27 78 63 43 54 47 49 2 42 41 75 83 61 90 65 67 21 71 60 57 77 62 81 58 85 69 3 91 68 55 72 93 29 94 66 16 88 86 84 53 14 39 35 44 9 70 80 92 56 79 74 5 64 31 52 50 48 46 51 59 40 38 36 96 32 30 28 95 7 22 20 18 26 73 12 10 8 6 4 98 0", "output": "74" }, { "input": "99\n22 14 0 44 6 17 6 6 37 45 0 48 19 8 57 8 10 0 3 12 25 2 5 53 9 49 15 6 38 14 9 40 38 22 27 12 64 10 11 35 89 19 46 39 12 24 48 0 52 1 27 27 24 4 64 24 5 0 67 3 5 39 0 1 13 37 2 8 46 1 28 70 6 79 14 15 33 6 7 34 6 18 4 71 1 55 33 71 18 11 47 23 72 53 65 32 2 7 28", "output": "3" }, { "input": "99\n28 59 73 89 52 27 0 20 36 12 83 95 31 24 54 94 49 14 51 34 50 93 13 1 2 68 63 48 41 81 23 43 18 9 16 38 33 60 62 3 40 85 72 69 90 98 11 37 22 44 35 6 21 39 82 10 64 66 96 42 74 30 8 67 97 46 84 32 17 57 75 71 5 26 4 55 58 29 7 15 45 19 92 91 78 65 88 25 86 80 77 87 79 53 47 70 56 76 61", "output": "63" } ]
1,590,215,416
2,147,483,647
Python 3
OK
TESTS
56
280
307,200
n=int(input()) a=list(map(int,input().split())) info=0; i=0; di=0 while 1: for i in range(n): if a[i]==-69: continue if a[i]<=info: info+=1 a[i]=-69 if info==n: break a.reverse() di+=1 print(di)
Title: Robot's Task Time Limit: None seconds Memory Limit: None megabytes Problem Description: Robot Doc is located in the hall, with *n* computers stand in a line, numbered from left to right from 1 to *n*. Each computer contains exactly one piece of information, each of which Doc wants to get eventually. The computers are equipped with a security system, so to crack the *i*-th of them, the robot needs to collect at least *a**i* any pieces of information from the other computers. Doc can hack the computer only if he is right next to it. The robot is assembled using modern technologies and can move along the line of computers in either of the two possible directions, but the change of direction requires a large amount of resources from Doc. Tell the minimum number of changes of direction, which the robot will have to make to collect all *n* parts of information if initially it is next to computer with number 1. It is guaranteed that there exists at least one sequence of the robot's actions, which leads to the collection of all information. Initially Doc doesn't have any pieces of information. Input Specification: The first line contains number *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* non-negative integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=&lt;<=*n*), separated by a space. It is guaranteed that there exists a way for robot to collect all pieces of the information. Output Specification: Print a single number — the minimum number of changes in direction that the robot will have to make in order to collect all *n* parts of information. Demo Input: ['3\n0 2 0\n', '5\n4 2 3 0 1\n', '7\n0 3 1 0 5 2 6\n'] Demo Output: ['1\n', '3\n', '2\n'] Note: In the first sample you can assemble all the pieces of information in the optimal manner by assembling first the piece of information in the first computer, then in the third one, then change direction and move to the second one, and then, having 2 pieces of information, collect the last piece. In the second sample to collect all the pieces of information in the optimal manner, Doc can go to the fourth computer and get the piece of information, then go to the fifth computer with one piece and get another one, then go to the second computer in the same manner, then to the third one and finally, to the first one. Changes of direction will take place before moving from the fifth to the second computer, then from the second to the third computer, then from the third to the first computer. In the third sample the optimal order of collecting parts from computers can look like that: 1-&gt;3-&gt;4-&gt;6-&gt;2-&gt;5-&gt;7.
```python n=int(input()) a=list(map(int,input().split())) info=0; i=0; di=0 while 1: for i in range(n): if a[i]==-69: continue if a[i]<=info: info+=1 a[i]=-69 if info==n: break a.reverse() di+=1 print(di) ```
3
190
B
Surrounded
PROGRAMMING
1,800
[ "geometry" ]
null
null
So, the Berland is at war with its eternal enemy Flatland again, and Vasya, an accountant, was assigned to fulfil his duty to the nation. Right now the situation in Berland is dismal — their both cities are surrounded! The armies of flatlanders stand on the borders of circles, the circles' centers are in the surrounded cities. At any moment all points of the flatland ring can begin to move quickly in the direction of the city — that's the strategy the flatlanders usually follow when they besiege cities. The berlanders are sure that they can repel the enemy's attack if they learn the exact time the attack starts. For that they need to construct a radar that would register any movement at the distance of at most *r* from it. Thus, we can install a radar at such point, that at least one point of the enemy ring will be in its detecting range (that is, at a distance of at most *r*). Then the radar can immediately inform about the enemy's attack. Due to the newest technologies, we can place a radar at any point without any problems. But the problem is that the berlanders have the time to make only one radar. Besides, the larger the detection radius (*r*) is, the more the radar costs. That's why Vasya's task (that is, your task) is to find the minimum possible detection radius for the radar. In other words, your task is to find the minimum radius *r* (*r*<=≥<=0) such, that a radar with radius *r* can be installed at some point and it can register the start of the movements of both flatland rings from that point. In this problem you can consider the cities as material points, the attacking enemy rings - as circles with centers in the cities, the radar's detection range — as a disk (including the border) with the center at the point where the radar is placed.
The input files consist of two lines. Each line represents the city and the flatland ring that surrounds it as three space-separated integers *x**i*, *y**i*, *r**i* (|*x**i*|,<=|*y**i*|<=≤<=104; 1<=≤<=*r**i*<=≤<=104) — the city's coordinates and the distance from the city to the flatlanders, correspondingly. It is guaranteed that the cities are located at different points.
Print a single real number — the minimum detection radius of the described radar. The answer is considered correct if the absolute or relative error does not exceed 10<=-<=6.
[ "0 0 1\n6 0 3\n", "-10 10 3\n10 -10 3\n" ]
[ "1.000000000000000", "11.142135623730951" ]
The figure below shows the answer to the first sample. In this sample the best decision is to put the radar at point with coordinates (2, 0). The figure below shows the answer for the second sample. In this sample the best decision is to put the radar at point with coordinates (0, 0).
1,000
[ { "input": "0 0 1\n6 0 3", "output": "1.000000000000000" }, { "input": "-10 10 3\n10 -10 3", "output": "11.142135623730951" }, { "input": "2 1 3\n8 9 5", "output": "1.000000000000000" }, { "input": "0 0 1\n-10 -10 9", "output": "2.071067811865475" }, { "input": "10000 -9268 1\n-9898 9000 10", "output": "13500.519287710202000" }, { "input": "10000 10000 1\n-10000 -10000 1", "output": "14141.135623730950000" }, { "input": "123 21 50\n10 100 1000", "output": "406.061621719103360" }, { "input": "0 3278 2382\n2312 1 1111", "output": "258.747677968983450" }, { "input": "3 4 5\n5 12 13", "output": "0.000000000000000" }, { "input": "-2 7 5\n4 0 6", "output": "0.000000000000000" }, { "input": "4 0 2\n6 -1 10", "output": "2.881966011250105" }, { "input": "41 17 3\n71 -86 10", "output": "47.140003728560643" }, { "input": "761 641 6\n506 -293 5", "output": "478.592191632957450" }, { "input": "-5051 -7339 9\n-9030 755 8", "output": "4501.080828635849700" }, { "input": "0 5 2\n8 -4 94", "output": "39.979202710603850" }, { "input": "83 -64 85\n27 80 89", "output": "0.000000000000000" }, { "input": "-655 -750 68\n905 -161 68", "output": "765.744715125679250" }, { "input": "1055 -5271 60\n-2992 8832 38", "output": "7287.089182936641900" }, { "input": "4 0 201\n-6 4 279", "output": "33.614835192865499" }, { "input": "-34 -5 836\n52 -39 706", "output": "18.761487913212431" }, { "input": "659 -674 277\n-345 -556 127", "output": "303.455240352694320" }, { "input": "4763 2945 956\n3591 9812 180", "output": "2915.147750239716500" }, { "input": "3 -7 5749\n1 -6 9750", "output": "1999.381966011250100" }, { "input": "28 -63 2382\n43 -83 1364", "output": "496.500000000000000" }, { "input": "315 -532 7813\n407 -157 2121", "output": "2652.939776235497000" }, { "input": "-9577 9051 5276\n-4315 -1295 8453", "output": "0.000000000000000" }, { "input": "-7 -10 1\n-4 3 1", "output": "5.670832032063167" }, { "input": "-74 27 535\n18 84 1", "output": "212.886692948961240" }, { "input": "-454 -721 72\n-33 279 911", "output": "51.003686623418254" }, { "input": "-171 762 304\n-428 -85 523", "output": "29.065814314662131" }, { "input": "192 -295 1386\n-54 -78 1", "output": "528.483994683445640" }, { "input": "-5134 -9860 5513\n6291 -855 9034", "output": "0.093506651303098" }, { "input": "6651 8200 610\n-9228 9387 10000", "output": "2656.651995660197400" }, { "input": "6370 7728 933\n4595 3736 2748", "output": "343.915768575204200" }, { "input": "-6 3 8\n7 2 1", "output": "2.019202405202649" }, { "input": "0 -1 1\n1 -1 1", "output": "0.000000000000000" }, { "input": "0 1 3\n1 -1 1", "output": "0.000000000000000" }, { "input": "-2 0 1\n3 -2 1", "output": "1.692582403567252" }, { "input": "-10000 42 10000\n10000 43 10000", "output": "0.000012499999992" }, { "input": "103 104 5\n97 96 5", "output": "0.000000000000000" }, { "input": "2587 4850 3327\n3278 -204 1774", "output": "0.009605941526345" }, { "input": "826 4417 2901\n833 -2286 3802", "output": "0.001827539409235" }, { "input": "1003 -5005 3399\n-6036 -1729 4365", "output": "0.000032199896827" } ]
1,674,577,273
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
46
102,400
from math import acos from decimal import * eps = 2e-7 pi = Decimal('3.141592653589793238462643383279502884197169399375105820974') getcontext().prec = 40 def _acos(x): if 1 - eps > abs(x) > eps: return Decimal(acos(x)) if x < 0: return pi - _acos(-x) if abs(x) < eps: return pi / 2 - x - x**3 / 6 - x**5 * 3 / 40 - x**7 * 5 / 112 else: t = Decimal(1) - x return (2*t).sqrt() * (1 + t / 12 + t**2 * 3 / 160 + t**3 * 5 / 896 + t**4 * 35 / 18432 + t**5 * 63 / 90112); O1 = [0, 0] O2 = [0, 0] O1[0], O1[1], r1 = map(Decimal, input().split()) O2[0], O2[1], r2 = map(Decimal, input().split()) d2 = (O1[0] - O2[0])**2 + (O1[1] - O2[1])**2 d = d2.sqrt() ans = 0 if d2 > (r1 + r2)**2: ans = (d - r1 - r2) / 2 elif d2 == (r1 + r2)**2: ans = 0 # TODO elif d2 > (r1 - r2)**2: # 2 circles cut a = r1 + r2 - d ans = min(a, 2 * r1 - a, 2 * r2 - a) / 2 # d^2 <= |r1 - r2| -> a circle inside another one elif d2 == (r1 - r2)**2: ans = 0 # TODO elif d2 < (r1 - r2)**2: # d^2 <= |r1 - r2| -> a circle inside another one ans = min(max(r1, r2) - d - min(r1, r2), max(r1, r2) + d - min(r1, r2)) / 2 print("%.15f" % ans)
Title: Surrounded Time Limit: None seconds Memory Limit: None megabytes Problem Description: So, the Berland is at war with its eternal enemy Flatland again, and Vasya, an accountant, was assigned to fulfil his duty to the nation. Right now the situation in Berland is dismal — their both cities are surrounded! The armies of flatlanders stand on the borders of circles, the circles' centers are in the surrounded cities. At any moment all points of the flatland ring can begin to move quickly in the direction of the city — that's the strategy the flatlanders usually follow when they besiege cities. The berlanders are sure that they can repel the enemy's attack if they learn the exact time the attack starts. For that they need to construct a radar that would register any movement at the distance of at most *r* from it. Thus, we can install a radar at such point, that at least one point of the enemy ring will be in its detecting range (that is, at a distance of at most *r*). Then the radar can immediately inform about the enemy's attack. Due to the newest technologies, we can place a radar at any point without any problems. But the problem is that the berlanders have the time to make only one radar. Besides, the larger the detection radius (*r*) is, the more the radar costs. That's why Vasya's task (that is, your task) is to find the minimum possible detection radius for the radar. In other words, your task is to find the minimum radius *r* (*r*<=≥<=0) such, that a radar with radius *r* can be installed at some point and it can register the start of the movements of both flatland rings from that point. In this problem you can consider the cities as material points, the attacking enemy rings - as circles with centers in the cities, the radar's detection range — as a disk (including the border) with the center at the point where the radar is placed. Input Specification: The input files consist of two lines. Each line represents the city and the flatland ring that surrounds it as three space-separated integers *x**i*, *y**i*, *r**i* (|*x**i*|,<=|*y**i*|<=≤<=104; 1<=≤<=*r**i*<=≤<=104) — the city's coordinates and the distance from the city to the flatlanders, correspondingly. It is guaranteed that the cities are located at different points. Output Specification: Print a single real number — the minimum detection radius of the described radar. The answer is considered correct if the absolute or relative error does not exceed 10<=-<=6. Demo Input: ['0 0 1\n6 0 3\n', '-10 10 3\n10 -10 3\n'] Demo Output: ['1.000000000000000', '11.142135623730951'] Note: The figure below shows the answer to the first sample. In this sample the best decision is to put the radar at point with coordinates (2, 0). The figure below shows the answer for the second sample. In this sample the best decision is to put the radar at point with coordinates (0, 0).
```python from math import acos from decimal import * eps = 2e-7 pi = Decimal('3.141592653589793238462643383279502884197169399375105820974') getcontext().prec = 40 def _acos(x): if 1 - eps > abs(x) > eps: return Decimal(acos(x)) if x < 0: return pi - _acos(-x) if abs(x) < eps: return pi / 2 - x - x**3 / 6 - x**5 * 3 / 40 - x**7 * 5 / 112 else: t = Decimal(1) - x return (2*t).sqrt() * (1 + t / 12 + t**2 * 3 / 160 + t**3 * 5 / 896 + t**4 * 35 / 18432 + t**5 * 63 / 90112); O1 = [0, 0] O2 = [0, 0] O1[0], O1[1], r1 = map(Decimal, input().split()) O2[0], O2[1], r2 = map(Decimal, input().split()) d2 = (O1[0] - O2[0])**2 + (O1[1] - O2[1])**2 d = d2.sqrt() ans = 0 if d2 > (r1 + r2)**2: ans = (d - r1 - r2) / 2 elif d2 == (r1 + r2)**2: ans = 0 # TODO elif d2 > (r1 - r2)**2: # 2 circles cut a = r1 + r2 - d ans = min(a, 2 * r1 - a, 2 * r2 - a) / 2 # d^2 <= |r1 - r2| -> a circle inside another one elif d2 == (r1 - r2)**2: ans = 0 # TODO elif d2 < (r1 - r2)**2: # d^2 <= |r1 - r2| -> a circle inside another one ans = min(max(r1, r2) - d - min(r1, r2), max(r1, r2) + d - min(r1, r2)) / 2 print("%.15f" % ans) ```
0
217
A
Ice Skating
PROGRAMMING
1,200
[ "brute force", "dfs and similar", "dsu", "graphs" ]
null
null
Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created. We assume that Bajtek can only heap up snow drifts at integer coordinates.
The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift. Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct.
Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.
[ "2\n2 1\n1 2\n", "2\n2 1\n4 1\n" ]
[ "1\n", "0\n" ]
none
500
[ { "input": "2\n2 1\n1 2", "output": "1" }, { "input": "2\n2 1\n4 1", "output": "0" }, { "input": "24\n171 35\n261 20\n4 206\n501 446\n961 912\n581 748\n946 978\n463 514\n841 889\n341 466\n842 967\n54 102\n235 261\n925 889\n682 672\n623 636\n268 94\n635 710\n474 510\n697 794\n586 663\n182 184\n806 663\n468 459", "output": "21" }, { "input": "17\n660 646\n440 442\n689 618\n441 415\n922 865\n950 972\n312 366\n203 229\n873 860\n219 199\n344 308\n169 176\n961 992\n153 84\n201 230\n987 938\n834 815", "output": "16" }, { "input": "11\n798 845\n722 911\n374 270\n629 537\n748 856\n831 885\n486 641\n751 829\n609 492\n98 27\n654 663", "output": "10" }, { "input": "1\n321 88", "output": "0" }, { "input": "9\n811 859\n656 676\n76 141\n945 951\n497 455\n18 55\n335 294\n267 275\n656 689", "output": "7" }, { "input": "7\n948 946\n130 130\n761 758\n941 938\n971 971\n387 385\n509 510", "output": "6" }, { "input": "6\n535 699\n217 337\n508 780\n180 292\n393 112\n732 888", "output": "5" }, { "input": "14\n25 23\n499 406\n193 266\n823 751\n219 227\n101 138\n978 992\n43 74\n997 932\n237 189\n634 538\n774 740\n842 767\n742 802", "output": "13" }, { "input": "12\n548 506\n151 198\n370 380\n655 694\n654 690\n407 370\n518 497\n819 827\n765 751\n802 771\n741 752\n653 662", "output": "11" }, { "input": "40\n685 711\n433 403\n703 710\n491 485\n616 619\n288 282\n884 871\n367 352\n500 511\n977 982\n51 31\n576 564\n508 519\n755 762\n22 20\n368 353\n232 225\n953 955\n452 436\n311 330\n967 988\n369 364\n791 803\n150 149\n651 661\n118 93\n398 387\n748 766\n852 852\n230 228\n555 545\n515 519\n667 678\n867 862\n134 146\n859 863\n96 99\n486 469\n303 296\n780 786", "output": "38" }, { "input": "3\n175 201\n907 909\n388 360", "output": "2" }, { "input": "7\n312 298\n86 78\n73 97\n619 594\n403 451\n538 528\n71 86", "output": "6" }, { "input": "19\n802 820\n368 248\n758 794\n455 378\n876 888\n771 814\n245 177\n586 555\n844 842\n364 360\n820 856\n731 624\n982 975\n825 856\n122 121\n862 896\n42 4\n792 841\n828 820", "output": "16" }, { "input": "32\n643 877\n842 614\n387 176\n99 338\n894 798\n652 728\n611 648\n622 694\n579 781\n243 46\n322 305\n198 438\n708 579\n246 325\n536 459\n874 593\n120 277\n989 907\n223 110\n35 130\n761 692\n690 661\n518 766\n226 93\n678 597\n725 617\n661 574\n775 496\n56 416\n14 189\n358 359\n898 901", "output": "31" }, { "input": "32\n325 327\n20 22\n72 74\n935 933\n664 663\n726 729\n785 784\n170 171\n315 314\n577 580\n984 987\n313 317\n434 435\n962 961\n55 54\n46 44\n743 742\n434 433\n617 612\n332 332\n883 886\n940 936\n793 792\n645 644\n611 607\n418 418\n465 465\n219 218\n167 164\n56 54\n403 405\n210 210", "output": "29" }, { "input": "32\n652 712\n260 241\n27 154\n188 16\n521 351\n518 356\n452 540\n790 827\n339 396\n336 551\n897 930\n828 627\n27 168\n180 113\n134 67\n794 671\n812 711\n100 241\n686 813\n138 289\n384 506\n884 932\n913 959\n470 508\n730 734\n373 478\n788 862\n392 426\n148 68\n113 49\n713 852\n924 894", "output": "29" }, { "input": "14\n685 808\n542 677\n712 747\n832 852\n187 410\n399 338\n626 556\n530 635\n267 145\n215 209\n559 684\n944 949\n753 596\n601 823", "output": "13" }, { "input": "5\n175 158\n16 2\n397 381\n668 686\n957 945", "output": "4" }, { "input": "5\n312 284\n490 509\n730 747\n504 497\n782 793", "output": "4" }, { "input": "2\n802 903\n476 348", "output": "1" }, { "input": "4\n325 343\n425 442\n785 798\n275 270", "output": "3" }, { "input": "28\n462 483\n411 401\n118 94\n111 127\n5 6\n70 52\n893 910\n73 63\n818 818\n182 201\n642 633\n900 886\n893 886\n684 700\n157 173\n953 953\n671 660\n224 225\n832 801\n152 157\n601 585\n115 101\n739 722\n611 606\n659 642\n461 469\n702 689\n649 653", "output": "25" }, { "input": "36\n952 981\n885 900\n803 790\n107 129\n670 654\n143 132\n66 58\n813 819\n849 837\n165 198\n247 228\n15 39\n619 618\n105 138\n868 855\n965 957\n293 298\n613 599\n227 212\n745 754\n723 704\n877 858\n503 487\n678 697\n592 595\n155 135\n962 982\n93 89\n660 673\n225 212\n967 987\n690 680\n804 813\n489 518\n240 221\n111 124", "output": "34" }, { "input": "30\n89 3\n167 156\n784 849\n943 937\n144 95\n24 159\n80 120\n657 683\n585 596\n43 147\n909 964\n131 84\n345 389\n333 321\n91 126\n274 325\n859 723\n866 922\n622 595\n690 752\n902 944\n127 170\n426 383\n905 925\n172 284\n793 810\n414 510\n890 884\n123 24\n267 255", "output": "29" }, { "input": "5\n664 666\n951 941\n739 742\n844 842\n2 2", "output": "4" }, { "input": "3\n939 867\n411 427\n757 708", "output": "2" }, { "input": "36\n429 424\n885 972\n442 386\n512 511\n751 759\n4 115\n461 497\n496 408\n8 23\n542 562\n296 331\n448 492\n412 395\n109 166\n622 640\n379 355\n251 262\n564 586\n66 115\n275 291\n666 611\n629 534\n510 567\n635 666\n738 803\n420 369\n92 17\n101 144\n141 92\n258 258\n184 235\n492 456\n311 210\n394 357\n531 512\n634 636", "output": "34" }, { "input": "29\n462 519\n871 825\n127 335\n156 93\n576 612\n885 830\n634 779\n340 105\n744 795\n716 474\n93 139\n563 805\n137 276\n177 101\n333 14\n391 437\n873 588\n817 518\n460 597\n572 670\n140 303\n392 441\n273 120\n862 578\n670 639\n410 161\n544 577\n193 116\n252 195", "output": "28" }, { "input": "23\n952 907\n345 356\n812 807\n344 328\n242 268\n254 280\n1000 990\n80 78\n424 396\n595 608\n755 813\n383 380\n55 56\n598 633\n203 211\n508 476\n600 593\n206 192\n855 882\n517 462\n967 994\n642 657\n493 488", "output": "22" }, { "input": "10\n579 816\n806 590\n830 787\n120 278\n677 800\n16 67\n188 251\n559 560\n87 67\n104 235", "output": "8" }, { "input": "23\n420 424\n280 303\n515 511\n956 948\n799 803\n441 455\n362 369\n299 289\n823 813\n982 967\n876 878\n185 157\n529 551\n964 989\n655 656\n1 21\n114 112\n45 56\n935 937\n1000 997\n934 942\n360 366\n648 621", "output": "22" }, { "input": "23\n102 84\n562 608\n200 127\n952 999\n465 496\n322 367\n728 690\n143 147\n855 867\n861 866\n26 59\n300 273\n255 351\n192 246\n70 111\n365 277\n32 104\n298 319\n330 354\n241 141\n56 125\n315 298\n412 461", "output": "22" }, { "input": "7\n429 506\n346 307\n99 171\n853 916\n322 263\n115 157\n906 924", "output": "6" }, { "input": "3\n1 1\n2 1\n2 2", "output": "0" }, { "input": "4\n1 1\n1 2\n2 1\n2 2", "output": "0" }, { "input": "5\n1 1\n1 2\n2 2\n3 1\n3 3", "output": "0" }, { "input": "6\n1 1\n1 2\n2 2\n3 1\n3 2\n3 3", "output": "0" }, { "input": "20\n1 1\n2 2\n3 3\n3 9\n4 4\n5 2\n5 5\n5 7\n5 8\n6 2\n6 6\n6 9\n7 7\n8 8\n9 4\n9 7\n9 9\n10 2\n10 9\n10 10", "output": "1" }, { "input": "21\n1 1\n1 9\n2 1\n2 2\n2 5\n2 6\n2 9\n3 3\n3 8\n4 1\n4 4\n5 5\n5 8\n6 6\n7 7\n8 8\n9 9\n10 4\n10 10\n11 5\n11 11", "output": "1" }, { "input": "22\n1 1\n1 3\n1 4\n1 8\n1 9\n1 11\n2 2\n3 3\n4 4\n4 5\n5 5\n6 6\n6 8\n7 7\n8 3\n8 4\n8 8\n9 9\n10 10\n11 4\n11 9\n11 11", "output": "3" }, { "input": "50\n1 1\n2 2\n2 9\n3 3\n4 4\n4 9\n4 16\n4 24\n5 5\n6 6\n7 7\n8 8\n8 9\n8 20\n9 9\n10 10\n11 11\n12 12\n13 13\n14 7\n14 14\n14 16\n14 25\n15 4\n15 6\n15 15\n15 22\n16 6\n16 16\n17 17\n18 18\n19 6\n19 19\n20 20\n21 21\n22 6\n22 22\n23 23\n24 6\n24 7\n24 8\n24 9\n24 24\n25 1\n25 3\n25 5\n25 7\n25 23\n25 24\n25 25", "output": "7" }, { "input": "55\n1 1\n1 14\n2 2\n2 19\n3 1\n3 3\n3 8\n3 14\n3 23\n4 1\n4 4\n5 5\n5 8\n5 15\n6 2\n6 3\n6 4\n6 6\n7 7\n8 8\n8 21\n9 9\n10 1\n10 10\n11 9\n11 11\n12 12\n13 13\n14 14\n15 15\n15 24\n16 5\n16 16\n17 5\n17 10\n17 17\n17 18\n17 22\n17 27\n18 18\n19 19\n20 20\n21 20\n21 21\n22 22\n23 23\n24 14\n24 24\n25 25\n26 8\n26 11\n26 26\n27 3\n27 27\n28 28", "output": "5" }, { "input": "3\n1 2\n2 1\n2 2", "output": "0" }, { "input": "6\n4 4\n3 4\n5 4\n4 5\n4 3\n3 1", "output": "0" }, { "input": "4\n1 1\n1 2\n2 1\n2 2", "output": "0" }, { "input": "3\n1 1\n2 2\n1 2", "output": "0" }, { "input": "8\n1 3\n1 1\n4 1\n2 2\n2 5\n5 9\n5 1\n5 4", "output": "1" }, { "input": "10\n1 1\n1 2\n1 3\n1 4\n5 5\n6 6\n7 7\n8 8\n9 9\n100 100", "output": "6" }, { "input": "7\n1 1\n2 2\n3 3\n4 4\n1 2\n2 3\n3 4", "output": "0" }, { "input": "6\n1 1\n2 1\n2 2\n2 4\n4 3\n2 3", "output": "0" }, { "input": "4\n3 1\n2 1\n2 2\n1 2", "output": "0" }, { "input": "6\n1 1\n2 2\n2 1\n2 4\n4 3\n2 3", "output": "0" }, { "input": "3\n1 2\n1 3\n1 4", "output": "0" }, { "input": "4\n1 1\n2 2\n1 2\n2 1", "output": "0" }, { "input": "4\n1 3\n2 1\n3 2\n3 1", "output": "1" }, { "input": "7\n1 1\n1 2\n2 2\n3 3\n3 4\n4 4\n1 4", "output": "0" }, { "input": "21\n12 12\n13 12\n12 11\n13 13\n10 10\n11 10\n11 11\n501 500\n501 501\n503 502\n500 500\n503 503\n502 501\n502 502\n700 700\n702 702\n703 702\n701 701\n702 701\n703 703\n701 700", "output": "2" }, { "input": "6\n1 11\n6 8\n11 10\n1 10\n11 11\n6 9", "output": "1" }, { "input": "4\n1 1\n2 2\n3 2\n3 1", "output": "0" }, { "input": "3\n1 2\n3 4\n3 2", "output": "0" }, { "input": "3\n1 1\n1 2\n2 2", "output": "0" }, { "input": "4\n5 5\n5 4\n6 3\n6 4", "output": "0" }, { "input": "3\n1 1\n2 2\n2 1", "output": "0" } ]
1,419,522,494
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
11
124
0
g = [] for i in range(int(input())): x, y = map(int, input().split()) f = False for gi in g: if x in gi[0] or y in gi[1]: gi[0].add(x) gi[1].add(y) f = True break if not f: g.append([{x}, {y}]) print(len(g) - 1)
Title: Ice Skating Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created. We assume that Bajtek can only heap up snow drifts at integer coordinates. Input Specification: The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift. Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct. Output Specification: Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one. Demo Input: ['2\n2 1\n1 2\n', '2\n2 1\n4 1\n'] Demo Output: ['1\n', '0\n'] Note: none
```python g = [] for i in range(int(input())): x, y = map(int, input().split()) f = False for gi in g: if x in gi[0] or y in gi[1]: gi[0].add(x) gi[1].add(y) f = True break if not f: g.append([{x}, {y}]) print(len(g) - 1) ```
0
43
A
Football
PROGRAMMING
1,000
[ "strings" ]
A. Football
2
256
One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams.
Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner.
[ "1\nABC\n", "5\nA\nABA\nABA\nA\nA\n" ]
[ "ABC\n", "A\n" ]
none
500
[ { "input": "1\nABC", "output": "ABC" }, { "input": "5\nA\nABA\nABA\nA\nA", "output": "A" }, { "input": "2\nXTSJEP\nXTSJEP", "output": "XTSJEP" }, { "input": "3\nXZYDJAEDZ\nXZYDJAEDZ\nXZYDJAEDZ", "output": "XZYDJAEDZ" }, { "input": "3\nQCCYXL\nQCCYXL\nAXGLFQDD", "output": "QCCYXL" }, { "input": "3\nAZID\nEERWBC\nEERWBC", "output": "EERWBC" }, { "input": "3\nHNCGYL\nHNCGYL\nHNCGYL", "output": "HNCGYL" }, { "input": "4\nZZWZTG\nZZWZTG\nZZWZTG\nZZWZTG", "output": "ZZWZTG" }, { "input": "4\nA\nA\nKUDLJMXCSE\nA", "output": "A" }, { "input": "5\nPHBTW\nPHBTW\nPHBTW\nPHBTW\nPHBTW", "output": "PHBTW" }, { "input": "5\nPKUZYTFYWN\nPKUZYTFYWN\nSTC\nPKUZYTFYWN\nPKUZYTFYWN", "output": "PKUZYTFYWN" }, { "input": "5\nHH\nHH\nNTQWPA\nNTQWPA\nHH", "output": "HH" }, { "input": "10\nW\nW\nW\nW\nW\nD\nW\nD\nD\nW", "output": "W" }, { "input": "19\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nTGACNIH\nTGACNIH\nXBCP", "output": "XBCP" }, { "input": "33\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS", "output": "PYPAS" }, { "input": "51\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC", "output": "NC" }, { "input": "89\nH\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nVOCI\nVOCI\nH\nH\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nH\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI", "output": "VOCI" }, { "input": "100\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nM\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA", "output": "HA" }, { "input": "100\nG\nG\nS\nS\nG\nG\nS\nS\nG\nS\nS\nS\nG\nS\nG\nG\nS\nG\nS\nS\nG\nS\nS\nS\nS\nS\nG\nS\nG\nS\nS\nG\nG\nG\nS\nS\nS\nS\nG\nS\nS\nG\nG\nG\nG\nG\nS\nG\nG\nS\nS\nS\nS\nS\nG\nG\nS\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nS\nS\nG\nS\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nG\nG\nS\nG\nG\nG\nS", "output": "G" }, { "input": "100\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nOBH\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL", "output": "WL" } ]
1,511,090,494
2,147,483,647
Python 3
OK
TESTS
34
124
5,529,600
n = int(input()) i = 1 team = [] while i <= n: team.append(input()) i += 1 print(max(set(team),key = team.count))
Title: Football Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams. Output Specification: Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner. Demo Input: ['1\nABC\n', '5\nA\nABA\nABA\nA\nA\n'] Demo Output: ['ABC\n', 'A\n'] Note: none
```python n = int(input()) i = 1 team = [] while i <= n: team.append(input()) i += 1 print(max(set(team),key = team.count)) ```
3.9587
520
A
Pangram
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices. You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of characters in the string. The second line contains the string. The string consists only of uppercase and lowercase Latin letters.
Output "YES", if the string is a pangram and "NO" otherwise.
[ "12\ntoosmallword\n", "35\nTheQuickBrownFoxJumpsOverTheLazyDog\n" ]
[ "NO\n", "YES\n" ]
none
500
[ { "input": "12\ntoosmallword", "output": "NO" }, { "input": "35\nTheQuickBrownFoxJumpsOverTheLazyDog", "output": "YES" }, { "input": "1\na", "output": "NO" }, { "input": "26\nqwertyuiopasdfghjklzxcvbnm", "output": "YES" }, { "input": "26\nABCDEFGHIJKLMNOPQRSTUVWXYZ", "output": "YES" }, { "input": "48\nthereisasyetinsufficientdataforameaningfulanswer", "output": "NO" }, { "input": "30\nToBeOrNotToBeThatIsTheQuestion", "output": "NO" }, { "input": "30\njackdawslovemybigsphinxofquarz", "output": "NO" }, { "input": "31\nTHEFIVEBOXINGWIZARDSJUMPQUICKLY", "output": "YES" }, { "input": "26\naaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "NO" }, { "input": "26\nMGJYIZDKsbhpVeNFlquRTcWoAx", "output": "YES" }, { "input": "26\nfWMOhAPsbIVtyUEZrGNQXDklCJ", "output": "YES" }, { "input": "26\nngPMVFSThiRCwLEuyOAbKxQzDJ", "output": "YES" }, { "input": "25\nnxYTzLFwzNolAumjgcAboyxAj", "output": "NO" }, { "input": "26\npRWdodGdxUESvcScPGbUoooZsC", "output": "NO" }, { "input": "66\nBovdMlDzTaqKllZILFVfxbLGsRnzmtVVTmqiIDTYrossLEPlmsPrkUYtWEsGHVOnFj", "output": "NO" }, { "input": "100\nmKtsiDRJypUieHIkvJaMFkwaKxcCIbBszZQLIyPpCDCjhNpAnYFngLjRpnKWpKWtGnwoSteeZXuFHWQxxxOpFlNeYTwKocsXuCoa", "output": "YES" }, { "input": "26\nEoqxUbsLjPytUHMiFnvcGWZdRK", "output": "NO" }, { "input": "26\nvCUFRKElZOnjmXGylWQaHDiPst", "output": "NO" }, { "input": "26\nWtrPuaHdXLKJMsnvQfgOiJZBEY", "output": "NO" }, { "input": "26\npGiFluRteQwkaVoPszJyNBChxM", "output": "NO" }, { "input": "26\ncTUpqjPmANrdbzSFhlWIoKxgVY", "output": "NO" }, { "input": "26\nLndjgvAEuICHKxPwqYztosrmBN", "output": "NO" }, { "input": "26\nMdaXJrCipnOZLykfqHWEStevbU", "output": "NO" }, { "input": "26\nEjDWsVxfKTqGXRnUMOLYcIzPba", "output": "NO" }, { "input": "26\nxKwzRMpunYaqsdfaBgJcVElTHo", "output": "NO" }, { "input": "26\nnRYUQsTwCPLZkgshfEXvBdoiMa", "output": "NO" }, { "input": "26\nHNCQPfJutyAlDGsvRxZWMEbIdO", "output": "NO" }, { "input": "26\nDaHJIpvKznQcmUyWsTGObXRFDe", "output": "NO" }, { "input": "26\nkqvAnFAiRhzlJbtyuWedXSPcOG", "output": "NO" }, { "input": "26\nhlrvgdwsIOyjcmUZXtAKEqoBpF", "output": "NO" }, { "input": "26\njLfXXiMhBTcAwQVReGnpKzdsYu", "output": "NO" }, { "input": "26\nlNMcVuwItjxRBGAekjhyDsQOzf", "output": "NO" }, { "input": "26\nRkSwbNoYldUGtAZvpFMcxhIJFE", "output": "NO" }, { "input": "26\nDqspXZJTuONYieKgaHLMBwfVSC", "output": "NO" }, { "input": "26\necOyUkqNljFHRVXtIpWabGMLDz", "output": "NO" }, { "input": "26\nEKAvqZhBnPmVCDRlgWJfOusxYI", "output": "NO" }, { "input": "26\naLbgqeYchKdMrsZxIPFvTOWNjA", "output": "NO" }, { "input": "26\nxfpBLsndiqtacOCHGmeWUjRkYz", "output": "NO" }, { "input": "26\nXsbRKtqleZPNIVCdfUhyagAomJ", "output": "NO" }, { "input": "26\nAmVtbrwquEthZcjKPLiyDgSoNF", "output": "NO" }, { "input": "26\nOhvXDcwqAUmSEPRZGnjFLiKtNB", "output": "NO" }, { "input": "26\nEKWJqCFLRmstxVBdYuinpbhaOg", "output": "NO" }, { "input": "26\nmnbvcxxlkjhgfdsapoiuytrewq", "output": "NO" }, { "input": "26\naAbcdefghijklmnopqrstuvwxy", "output": "NO" }, { "input": "30\nABCDEFGHTYRIOPLabcdefghtyriopl", "output": "NO" }, { "input": "25\nabcdefghijklmnopqrstuvwxy", "output": "NO" }, { "input": "26\nabcdefhijklmnopqrstVxyzABC", "output": "NO" }, { "input": "25\nqwertyuiopasdfghjklxcvbnm", "output": "NO" }, { "input": "34\nTheQuickBrownFoxJumpsOverTheLayDog", "output": "NO" }, { "input": "26\nabcdefghigklmnopqrstuvwxyz", "output": "NO" }, { "input": "26\nabcdefghijklmnopqrstuvwxyA", "output": "NO" }, { "input": "50\nqazwsxedcrfvtgbyhnujmikolQWERTYUIOASDFGHJKLZXCVBNM", "output": "NO" }, { "input": "35\nTheQuickBrownFoxJumpsOverTheLasyDog", "output": "NO" }, { "input": "25\nbcdefghijklmnopqrstuvwxyz", "output": "NO" }, { "input": "38\nAbCdEfGhIjKlMnOpQrStVwXyZzzzzzzaaaaaaa", "output": "NO" }, { "input": "26\nabcdefghiklmnopqrstvxyzABC", "output": "NO" }, { "input": "26\nabcdefghijklmnopqrstuvwxzZ", "output": "NO" }, { "input": "50\nabcdefghijklmnopqrstuvwxyABCDEFGHIJKLMNOPQRSTUVWXY", "output": "NO" } ]
1,696,427,978
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
0
n=int(input()) s=input() s=s.lower() alb='abcdefghijklmnopqrstuvwxyz' s=list(s) s=set(s) s=sorted(list(s)) st='' st="".join(s) print(st==alb)
Title: Pangram Time Limit: None seconds Memory Limit: None megabytes Problem Description: A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices. You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of characters in the string. The second line contains the string. The string consists only of uppercase and lowercase Latin letters. Output Specification: Output "YES", if the string is a pangram and "NO" otherwise. Demo Input: ['12\ntoosmallword\n', '35\nTheQuickBrownFoxJumpsOverTheLazyDog\n'] Demo Output: ['NO\n', 'YES\n'] Note: none
```python n=int(input()) s=input() s=s.lower() alb='abcdefghijklmnopqrstuvwxyz' s=list(s) s=set(s) s=sorted(list(s)) st='' st="".join(s) print(st==alb) ```
0
295
B
Greg and Graph
PROGRAMMING
1,700
[ "dp", "graphs", "shortest paths" ]
null
null
Greg has a weighed directed graph, consisting of *n* vertices. In this graph any pair of distinct vertices has an edge between them in both directions. Greg loves playing with the graph and now he has invented a new game: - The game consists of *n* steps. - On the *i*-th step Greg removes vertex number *x**i* from the graph. As Greg removes a vertex, he also removes all the edges that go in and out of this vertex. - Before executing each step, Greg wants to know the sum of lengths of the shortest paths between all pairs of the remaining vertices. The shortest path can go through any remaining vertex. In other words, if we assume that *d*(*i*,<=*v*,<=*u*) is the shortest path between vertices *v* and *u* in the graph that formed before deleting vertex *x**i*, then Greg wants to know the value of the following sum: . Help Greg, print the value of the required sum before each step.
The first line contains integer *n* (1<=≤<=*n*<=≤<=500) — the number of vertices in the graph. Next *n* lines contain *n* integers each — the graph adjacency matrix: the *j*-th number in the *i*-th line *a**ij* (1<=≤<=*a**ij*<=≤<=105,<=*a**ii*<==<=0) represents the weight of the edge that goes from vertex *i* to vertex *j*. The next line contains *n* distinct integers: *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=*n*) — the vertices that Greg deletes.
Print *n* integers — the *i*-th number equals the required sum before the *i*-th step. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams of the %I64d specifier.
[ "1\n0\n1\n", "2\n0 5\n4 0\n1 2\n", "4\n0 3 1 1\n6 0 400 1\n2 4 0 1\n1 1 1 0\n4 1 2 3\n" ]
[ "0 ", "9 0 ", "17 23 404 0 " ]
none
1,000
[ { "input": "1\n0\n1", "output": "0 " }, { "input": "2\n0 5\n4 0\n1 2", "output": "9 0 " }, { "input": "4\n0 3 1 1\n6 0 400 1\n2 4 0 1\n1 1 1 0\n4 1 2 3", "output": "17 23 404 0 " }, { "input": "4\n0 57148 51001 13357\n71125 0 98369 67226\n49388 90852 0 66291\n39573 38165 97007 0\n2 3 1 4", "output": "723897 306638 52930 0 " }, { "input": "5\n0 27799 15529 16434 44291\n47134 0 90227 26873 52252\n41605 21269 0 9135 55784\n70744 17563 79061 0 73981\n70529 35681 91073 52031 0\n5 2 3 1 4", "output": "896203 429762 232508 87178 0 " }, { "input": "6\n0 72137 71041 29217 96749 46417\n40199 0 55907 57677 68590 78796\n83463 50721 0 30963 31779 28646\n94529 47831 98222 0 61665 73941\n24397 66286 2971 81613 0 52501\n26285 3381 51438 45360 20160 0\n6 3 2 4 5 1", "output": "1321441 1030477 698557 345837 121146 0 " }, { "input": "7\n0 34385 31901 51111 10191 14089 95685\n11396 0 8701 33277 1481 517 46253\n51313 2255 0 5948 66085 37201 65310\n21105 60985 10748 0 89271 42883 77345\n34686 29401 73565 47795 0 13793 66997\n70279 49576 62900 40002 70943 0 89601\n65045 1681 28239 12023 40414 89585 0\n3 5 7 6 1 2 4", "output": "1108867 1016339 729930 407114 206764 94262 0 " }, { "input": "8\n0 74961 47889 4733 72876 21399 63105 48239\n15623 0 9680 89133 57989 63401 26001 29608\n42369 82390 0 32866 46171 11871 67489 54070\n23425 80027 18270 0 28105 42657 40876 29267\n78793 18701 7655 94798 0 88885 71424 86914\n44835 76636 11553 46031 13617 0 16971 51915\n33037 53719 43116 52806 56897 71241 0 11629\n2119 62373 93265 69513 5770 90751 36619 0\n3 7 6 5 8 1 2 4", "output": "1450303 1188349 900316 531281 383344 219125 169160 0 " }, { "input": "9\n0 85236 27579 82251 69479 24737 87917 15149 52311\n59640 0 74687 34711 3685 30121 4961 7552 83399\n33376 68733 0 81357 18042 74297 15466 29476 5865\n7493 5601 3321 0 20263 55901 45756 55361 87633\n26751 17161 76681 40376 0 39745 50717 56887 90055\n18885 76353 47089 43601 21561 0 60571 33551 53753\n74595 877 71853 93156 97499 70876 0 22713 63961\n67725 25309 56358 92376 40641 35433 39781 0 97482\n81818 12561 85961 81445 3941 76799 31701 43725 0\n6 2 9 3 5 7 1 4 8", "output": "2106523 1533575 1645151 1255230 946667 618567 287636 147737 0 " } ]
1,667,239,604
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
154
0
from math import inf from sys import stdin, stdout n = int(stdin.readline().strip()) matrix = [list(map(int, stdin.readline().split())) for _ in range(n)] order = list(map(lambda x: int(x) - 1, stdin.readline().split())) order.reverse() ans = [] curr = 0 min_path = [[inf for _ in range(n)] for _ in range(n)] in_graph = set() for k in order: in_graph.add(k) for i in range(n): if i not in in_graph: continue if matrix[i][k] < min_path[i][k]: if min_path[i][k] != inf: curr -= min_path[i][k] min_path[i][k] = matrix[i][k] curr += matrix[i][k] for i in range(n): if i not in in_graph: continue if matrix[k][i] < min_path[k][i]: if min_path[k][i] != inf: curr -= min_path[k][i] min_path[k][i] = matrix[k][i] curr += matrix[k][i] for i in range(n): if i not in in_graph: continue for j in range(n): if j not in in_graph: continue if min_path[i][k] + min_path[k][j] < min_path[i][j]: if min_path[i][j] != inf: curr -= min_path[i][j] min_path[i][j] = min_path[i][k] + min_path[k][j] curr += min_path[i][j] if min_path[j][k] + min_path[k][i] < min_path[j][i]: if min_path[j][i] != inf: curr -= min_path[j][i] min_path[j][i] = min_path[j][k] + min_path[k][i] curr += min_path[j][i] ans.append(curr) ans.reverse() print(*ans)
Title: Greg and Graph Time Limit: None seconds Memory Limit: None megabytes Problem Description: Greg has a weighed directed graph, consisting of *n* vertices. In this graph any pair of distinct vertices has an edge between them in both directions. Greg loves playing with the graph and now he has invented a new game: - The game consists of *n* steps. - On the *i*-th step Greg removes vertex number *x**i* from the graph. As Greg removes a vertex, he also removes all the edges that go in and out of this vertex. - Before executing each step, Greg wants to know the sum of lengths of the shortest paths between all pairs of the remaining vertices. The shortest path can go through any remaining vertex. In other words, if we assume that *d*(*i*,<=*v*,<=*u*) is the shortest path between vertices *v* and *u* in the graph that formed before deleting vertex *x**i*, then Greg wants to know the value of the following sum: . Help Greg, print the value of the required sum before each step. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=500) — the number of vertices in the graph. Next *n* lines contain *n* integers each — the graph adjacency matrix: the *j*-th number in the *i*-th line *a**ij* (1<=≤<=*a**ij*<=≤<=105,<=*a**ii*<==<=0) represents the weight of the edge that goes from vertex *i* to vertex *j*. The next line contains *n* distinct integers: *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=*n*) — the vertices that Greg deletes. Output Specification: Print *n* integers — the *i*-th number equals the required sum before the *i*-th step. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams of the %I64d specifier. Demo Input: ['1\n0\n1\n', '2\n0 5\n4 0\n1 2\n', '4\n0 3 1 1\n6 0 400 1\n2 4 0 1\n1 1 1 0\n4 1 2 3\n'] Demo Output: ['0 ', '9 0 ', '17 23 404 0 '] Note: none
```python from math import inf from sys import stdin, stdout n = int(stdin.readline().strip()) matrix = [list(map(int, stdin.readline().split())) for _ in range(n)] order = list(map(lambda x: int(x) - 1, stdin.readline().split())) order.reverse() ans = [] curr = 0 min_path = [[inf for _ in range(n)] for _ in range(n)] in_graph = set() for k in order: in_graph.add(k) for i in range(n): if i not in in_graph: continue if matrix[i][k] < min_path[i][k]: if min_path[i][k] != inf: curr -= min_path[i][k] min_path[i][k] = matrix[i][k] curr += matrix[i][k] for i in range(n): if i not in in_graph: continue if matrix[k][i] < min_path[k][i]: if min_path[k][i] != inf: curr -= min_path[k][i] min_path[k][i] = matrix[k][i] curr += matrix[k][i] for i in range(n): if i not in in_graph: continue for j in range(n): if j not in in_graph: continue if min_path[i][k] + min_path[k][j] < min_path[i][j]: if min_path[i][j] != inf: curr -= min_path[i][j] min_path[i][j] = min_path[i][k] + min_path[k][j] curr += min_path[i][j] if min_path[j][k] + min_path[k][i] < min_path[j][i]: if min_path[j][i] != inf: curr -= min_path[j][i] min_path[j][i] = min_path[j][k] + min_path[k][i] curr += min_path[j][i] ans.append(curr) ans.reverse() print(*ans) ```
0
864
D
Make a Permutation!
PROGRAMMING
1,500
[ "greedy", "implementation", "math" ]
null
null
Ivan has an array consisting of *n* elements. Each of the elements is an integer from 1 to *n*. Recently Ivan learned about permutations and their lexicographical order. Now he wants to change (replace) minimum number of elements in his array in such a way that his array becomes a permutation (i.e. each of the integers from 1 to *n* was encountered in his array exactly once). If there are multiple ways to do it he wants to find the lexicographically minimal permutation among them. Thus minimizing the number of changes has the first priority, lexicographical minimizing has the second priority. In order to determine which of the two permutations is lexicographically smaller, we compare their first elements. If they are equal — compare the second, and so on. If we have two permutations *x* and *y*, then *x* is lexicographically smaller if *x**i*<=&lt;<=*y**i*, where *i* is the first index in which the permutations *x* and *y* differ. Determine the array Ivan will obtain after performing all the changes.
The first line contains an single integer *n* (2<=≤<=*n*<=≤<=200<=000) — the number of elements in Ivan's array. The second line contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the description of Ivan's array.
In the first line print *q* — the minimum number of elements that need to be changed in Ivan's array in order to make his array a permutation. In the second line, print the lexicographically minimal permutation which can be obtained from array with *q* changes.
[ "4\n3 2 2 3\n", "6\n4 5 6 3 2 1\n", "10\n6 8 4 6 7 1 6 3 4 5\n" ]
[ "2\n1 2 4 3 \n", "0\n4 5 6 3 2 1 \n", "3\n2 8 4 6 7 1 9 3 10 5 \n" ]
In the first example Ivan needs to replace number three in position 1 with number one, and number two in position 3 with number four. Then he will get a permutation [1, 2, 4, 3] with only two changed numbers — this permutation is lexicographically minimal among all suitable. In the second example Ivan does not need to change anything because his array already is a permutation.
2,000
[ { "input": "4\n3 2 2 3", "output": "2\n1 2 4 3 " }, { "input": "6\n4 5 6 3 2 1", "output": "0\n4 5 6 3 2 1 " }, { "input": "10\n6 8 4 6 7 1 6 3 4 5", "output": "3\n2 8 4 6 7 1 9 3 10 5 " }, { "input": "6\n5 5 5 6 4 6", "output": "3\n1 2 5 3 4 6 " }, { "input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "49\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 " }, { "input": "50\n1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "48\n1 3 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 " }, { "input": "50\n2 4 1 2 3 7 2 2 1 1 3 4 2 12 4 3 2 1 2 5 1 3 3 7 9 6 10 5 7 1 4 3 6 2 3 12 1 3 2 6 2 2 2 4 1 6 1 3 7 13", "output": "39\n2 4 1 8 3 7 11 14 15 16 17 18 19 12 20 21 22 23 24 5 25 26 27 28 9 6 10 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 13 " }, { "input": "50\n26 46 50 31 47 40 25 47 41 47 31 30 50 40 46 44 26 48 37 19 28 19 50 22 42 38 47 22 44 44 35 30 50 45 49 34 19 37 36 32 50 29 50 42 34 49 40 50 8 50", "output": "25\n1 2 3 4 5 6 25 7 41 9 31 10 11 12 46 13 26 48 14 15 28 16 17 18 20 38 47 22 21 44 35 30 23 45 24 27 19 37 36 32 33 29 39 42 34 49 40 43 8 50 " }, { "input": "20\n15 18 20 6 19 13 20 17 20 16 19 17 17 19 16 12 14 19 20 20", "output": "10\n15 18 1 6 2 13 3 4 5 7 8 9 17 10 16 12 14 19 11 20 " }, { "input": "50\n48 37 47 50 46 43 42 46 36 40 45 41 40 50 35 49 37 42 44 45 49 44 31 47 45 49 48 41 45 45 48 20 34 43 43 41 47 50 41 48 38 48 43 48 46 48 32 37 47 45", "output": "31\n1 2 3 4 5 6 7 8 36 9 10 11 40 12 35 13 14 42 15 16 17 44 31 18 19 49 21 22 23 24 25 20 34 26 27 28 29 50 41 30 38 33 43 39 46 48 32 37 47 45 " }, { "input": "26\n26 26 23 25 22 26 26 24 26 26 25 18 25 22 24 24 24 24 24 26 26 25 24 26 26 23", "output": "20\n1 2 3 4 5 6 7 8 9 10 11 18 12 22 13 14 15 16 17 19 20 25 24 21 26 23 " }, { "input": "50\n50 50 50 49 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 49 50 49 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 49", "output": "48\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 49 " }, { "input": "50\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50", "output": "49\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 " }, { "input": "50\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4", "output": "49\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 " }, { "input": "50\n18 42 38 38 38 50 50 38 49 49 38 38 42 18 49 49 49 49 18 50 18 38 38 49 49 50 49 42 38 49 42 38 38 49 38 49 50 49 49 49 18 49 18 38 42 50 42 49 18 49", "output": "45\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 39 40 41 43 44 45 38 42 50 46 47 48 49 " }, { "input": "50\n4 50 27 48 32 32 37 33 18 24 38 6 32 17 1 46 36 16 10 9 9 25 26 40 28 2 1 5 15 50 2 4 18 39 42 46 25 3 10 42 37 23 28 41 33 45 25 11 13 18", "output": "17\n4 7 27 48 8 12 14 19 18 24 38 6 32 17 1 20 36 16 10 9 21 22 26 40 28 2 29 5 15 50 30 31 34 39 35 46 25 3 43 42 37 23 44 41 33 45 47 11 13 49 " }, { "input": "50\n39 49 43 21 22 27 28 41 35 6 31 9 4 39 27 27 7 41 9 28 43 37 20 47 28 37 8 46 23 14 50 48 21 47 9 31 9 37 34 17 15 17 18 16 29 6 43 33 16 17", "output": "20\n1 49 2 3 22 5 10 11 35 6 12 9 4 39 13 27 7 41 19 24 25 26 20 30 28 32 8 46 23 14 50 48 21 47 36 31 38 37 34 17 15 40 18 16 29 42 43 33 44 45 " }, { "input": "2\n1 2", "output": "0\n1 2 " }, { "input": "2\n2 1", "output": "0\n2 1 " }, { "input": "2\n1 1", "output": "1\n1 2 " }, { "input": "2\n2 2", "output": "1\n1 2 " }, { "input": "3\n1 1 1", "output": "2\n1 2 3 " }, { "input": "3\n2 2 2", "output": "2\n1 2 3 " }, { "input": "3\n3 3 3", "output": "2\n1 2 3 " }, { "input": "3\n1 2 2", "output": "1\n1 2 3 " }, { "input": "3\n2 1 3", "output": "0\n2 1 3 " }, { "input": "3\n3 2 1", "output": "0\n3 2 1 " }, { "input": "3\n2 2 3", "output": "1\n1 2 3 " }, { "input": "3\n3 1 3", "output": "1\n2 1 3 " }, { "input": "3\n2 2 1", "output": "1\n2 3 1 " }, { "input": "3\n3 1 2", "output": "0\n3 1 2 " } ]
1,622,914,098
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
155
0
n = int(input()) a = [int(i) for i in input().split()] cnt = [0]*(n+1) for i in a: cnt[i]+=1 rem = [] for i in range (1,n+1): if cnt[i]==0: rem.append(i) rem.reverse() print(len(rem)) skipped = [0]*(n+1) for i in range (n): if len(rem)==0: break if cnt[a[i]]>1 and (a[i]>rem[-1] or skipped[a[i]]): a[i] = rem.pop() cnt[a[i]]-=1 elif cnt[a[i]]>1 and a[i]<rem[-1]: skipped[a[i]]=1 print(*a)
Title: Make a Permutation! Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ivan has an array consisting of *n* elements. Each of the elements is an integer from 1 to *n*. Recently Ivan learned about permutations and their lexicographical order. Now he wants to change (replace) minimum number of elements in his array in such a way that his array becomes a permutation (i.e. each of the integers from 1 to *n* was encountered in his array exactly once). If there are multiple ways to do it he wants to find the lexicographically minimal permutation among them. Thus minimizing the number of changes has the first priority, lexicographical minimizing has the second priority. In order to determine which of the two permutations is lexicographically smaller, we compare their first elements. If they are equal — compare the second, and so on. If we have two permutations *x* and *y*, then *x* is lexicographically smaller if *x**i*<=&lt;<=*y**i*, where *i* is the first index in which the permutations *x* and *y* differ. Determine the array Ivan will obtain after performing all the changes. Input Specification: The first line contains an single integer *n* (2<=≤<=*n*<=≤<=200<=000) — the number of elements in Ivan's array. The second line contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the description of Ivan's array. Output Specification: In the first line print *q* — the minimum number of elements that need to be changed in Ivan's array in order to make his array a permutation. In the second line, print the lexicographically minimal permutation which can be obtained from array with *q* changes. Demo Input: ['4\n3 2 2 3\n', '6\n4 5 6 3 2 1\n', '10\n6 8 4 6 7 1 6 3 4 5\n'] Demo Output: ['2\n1 2 4 3 \n', '0\n4 5 6 3 2 1 \n', '3\n2 8 4 6 7 1 9 3 10 5 \n'] Note: In the first example Ivan needs to replace number three in position 1 with number one, and number two in position 3 with number four. Then he will get a permutation [1, 2, 4, 3] with only two changed numbers — this permutation is lexicographically minimal among all suitable. In the second example Ivan does not need to change anything because his array already is a permutation.
```python n = int(input()) a = [int(i) for i in input().split()] cnt = [0]*(n+1) for i in a: cnt[i]+=1 rem = [] for i in range (1,n+1): if cnt[i]==0: rem.append(i) rem.reverse() print(len(rem)) skipped = [0]*(n+1) for i in range (n): if len(rem)==0: break if cnt[a[i]]>1 and (a[i]>rem[-1] or skipped[a[i]]): a[i] = rem.pop() cnt[a[i]]-=1 elif cnt[a[i]]>1 and a[i]<rem[-1]: skipped[a[i]]=1 print(*a) ```
0
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,696,370,977
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
12
92
0
ch=input() nbr_maj=0 nbr_min=0 for lettre in ch : if "A" < lettre < "Z" : nbr_maj+=1 else : nbr_min+=1 if nbr_maj > nbr_min : print(ch.upper()) else: print(ch.lower())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python ch=input() nbr_maj=0 nbr_min=0 for lettre in ch : if "A" < lettre < "Z" : nbr_maj+=1 else : nbr_min+=1 if nbr_maj > nbr_min : print(ch.upper()) else: print(ch.lower()) ```
0
5
A
Chat Servers Outgoing Traffic
PROGRAMMING
1,000
[ "implementation" ]
A. Chat Server's Outgoing Traffic
1
64
Polycarp is working on a new project called "Polychat". Following modern tendencies in IT, he decided, that this project should contain chat as well. To achieve this goal, Polycarp has spent several hours in front of his laptop and implemented a chat server that can process three types of commands: - Include a person to the chat ('Add' command). - Remove a person from the chat ('Remove' command). - Send a message from a person to all people, who are currently in the chat, including the one, who sends the message ('Send' command). Now Polycarp wants to find out the amount of outgoing traffic that the server will produce while processing a particular set of commands. Polycarp knows that chat server sends no traffic for 'Add' and 'Remove' commands. When 'Send' command is processed, server sends *l* bytes to each participant of the chat, where *l* is the length of the message. As Polycarp has no time, he is asking for your help in solving this problem.
Input file will contain not more than 100 commands, each in its own line. No line will exceed 100 characters. Formats of the commands will be the following: - +&lt;name&gt; for 'Add' command. - -&lt;name&gt; for 'Remove' command. - &lt;sender_name&gt;:&lt;message_text&gt; for 'Send' command. &lt;name&gt; and &lt;sender_name&gt; is a non-empty sequence of Latin letters and digits. &lt;message_text&gt; can contain letters, digits and spaces, but can't start or end with a space. &lt;message_text&gt; can be an empty line. It is guaranteed, that input data are correct, i.e. there will be no 'Add' command if person with such a name is already in the chat, there will be no 'Remove' command if there is no person with such a name in the chat etc. All names are case-sensitive.
Print a single number — answer to the problem.
[ "+Mike\nMike:hello\n+Kate\n+Dmitry\n-Dmitry\nKate:hi\n-Kate\n", "+Mike\n-Mike\n+Mike\nMike:Hi I am here\n-Mike\n+Kate\n-Kate\n" ]
[ "9\n", "14\n" ]
none
0
[ { "input": "+Mike\nMike:hello\n+Kate\n+Dmitry\n-Dmitry\nKate:hi\n-Kate", "output": "9" }, { "input": "+Mike\n-Mike\n+Mike\nMike:Hi I am here\n-Mike\n+Kate\n-Kate", "output": "14" }, { "input": "+Dmitry\n+Mike\nDmitry:All letters will be used\nDmitry:qwertyuiopasdfghjklzxcvbnm QWERTYUIOPASDFGHJKLZXCVBNM\nDmitry:And digits too\nDmitry:1234567890 0987654321\n-Dmitry", "output": "224" }, { "input": "+Dmitry\n+Mike\n+Kate\nDmitry:", "output": "0" }, { "input": "+Dmitry\nDmitry:No phrases with spaces at the beginning and at the end\n+Mike\nDmitry:spaces spaces\n-Dmitry", "output": "86" }, { "input": "+XqD\n+aT537\nXqD:x6ZPjMR1DDKG2\nXqD:lLCriywPnB\n-XqD", "output": "46" }, { "input": "+8UjgAJ\n8UjgAJ:02hR7UBc1tqqfL\n-8UjgAJ\n+zdi\n-zdi", "output": "14" }, { "input": "+6JPKkgXDrA\n+j6JHjv70An\n+QGtsceK0zJ\n6JPKkgXDrA:o4\n+CSmwi9zDra\nQGtsceK0zJ:Zl\nQGtsceK0zJ:0\nj6JHjv70An:7\nj6JHjv70An:B\nQGtsceK0zJ:OO", "output": "34" }, { "input": "+1aLNq9S7uLV\n-1aLNq9S7uLV\n+O9ykq3xDJv\n-O9ykq3xDJv\n+54Yq1xJq14F\n+0zJ5Vo0RDZ\n-54Yq1xJq14F\n-0zJ5Vo0RDZ\n+lxlH7sdolyL\n-lxlH7sdolyL", "output": "0" }, { "input": "+qlHEc2AuYy\nqlHEc2AuYy:YYRwD0 edNZgpE nGfOguRWnMYpTpGUVM aXDKGXo1Gv1tHL9\nqlHEc2AuYy:yvh3GsPcImqrvoUcBNQcP6ezwpU0 xAVltaKZp94VKiNao\nqlHEc2AuYy:zuCO6Opey L eu7lTwysaSk00zjpv zrDfbt8l hpHfu\n+pErDMxgVgh\nqlHEc2AuYy:I1FLis mmQbZtd8Ui7y 1vcax6yZBMhVRdD6Ahlq7MNCw\nqlHEc2AuYy:lz MFUNJZhlqBYckHUDlNhLiEkmecRh1o0t7alXBvCRVEFVx\npErDMxgVgh:jCyMbu1dkuEj5TzbBOjyUhpfC50cL8R900Je3R KxRgAI dT\nqlHEc2AuYy:62b47eabo2hf vSUD7KioN ZHki6WB6gh3u GKv5rgwyfF\npErDMxgVgh:zD5 9 ympl4wR gy7a7eAGAn5xVdGP9FbL6hRCZAR6O4pT6zb", "output": "615" }, { "input": "+adabacaba0", "output": "0" }, { "input": "+acabadab\n+caba0aba", "output": "0" }, { "input": "+dabaca\n-dabaca\n+aba0ab", "output": "0" }, { "input": "+cab\n+abac\n-abac\n+baca", "output": "0" }, { "input": "+cabadabac\n-cabadabac\n+abacaba1ab\n-abacaba1ab\n+ba0abaca", "output": "0" }, { "input": "+adabacaba\n-adabacaba\n+aca\naca:caba\n-aca\n+bacaba\n-bacaba\n+aba\n-aba\n+bad", "output": "4" }, { "input": "+acabadab\n-acabadab\n+aba0abacab\n+baca\n+abacaba0ab\n-baca\n-abacaba0ab\n-aba0abacab\n+cab\n-cab\n+abacabada\n-abacabada\n+badabaca\n-badabaca\n+badaba", "output": "0" }, { "input": "+badabac\nbadabac:abacabad\n-badabac\n+0ab\n-0ab\n+dabacab\n-dabacab\n+a0ab\n-a0ab\n+0abaca\n-0abaca\n+dabac\n-dabac\n+abaca\n-abaca\n+bacabada\n-bacabada\n+aca\n-aca\n+abadabaca\n-abadabaca\n+acaba\n-acaba\n+abacabadab\n-abacabadab", "output": "8" } ]
1,510,927,725
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
92
0
import sys answer = input() result = 0 while answer: if answer[0] == '+' or answer[0] == '-': pass else: result += len(answer.split(':')[1]) + 1 answer = input() print(result)
Title: Chat Servers Outgoing Traffic Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Polycarp is working on a new project called "Polychat". Following modern tendencies in IT, he decided, that this project should contain chat as well. To achieve this goal, Polycarp has spent several hours in front of his laptop and implemented a chat server that can process three types of commands: - Include a person to the chat ('Add' command). - Remove a person from the chat ('Remove' command). - Send a message from a person to all people, who are currently in the chat, including the one, who sends the message ('Send' command). Now Polycarp wants to find out the amount of outgoing traffic that the server will produce while processing a particular set of commands. Polycarp knows that chat server sends no traffic for 'Add' and 'Remove' commands. When 'Send' command is processed, server sends *l* bytes to each participant of the chat, where *l* is the length of the message. As Polycarp has no time, he is asking for your help in solving this problem. Input Specification: Input file will contain not more than 100 commands, each in its own line. No line will exceed 100 characters. Formats of the commands will be the following: - +&lt;name&gt; for 'Add' command. - -&lt;name&gt; for 'Remove' command. - &lt;sender_name&gt;:&lt;message_text&gt; for 'Send' command. &lt;name&gt; and &lt;sender_name&gt; is a non-empty sequence of Latin letters and digits. &lt;message_text&gt; can contain letters, digits and spaces, but can't start or end with a space. &lt;message_text&gt; can be an empty line. It is guaranteed, that input data are correct, i.e. there will be no 'Add' command if person with such a name is already in the chat, there will be no 'Remove' command if there is no person with such a name in the chat etc. All names are case-sensitive. Output Specification: Print a single number — answer to the problem. Demo Input: ['+Mike\nMike:hello\n+Kate\n+Dmitry\n-Dmitry\nKate:hi\n-Kate\n', '+Mike\n-Mike\n+Mike\nMike:Hi I am here\n-Mike\n+Kate\n-Kate\n'] Demo Output: ['9\n', '14\n'] Note: none
```python import sys answer = input() result = 0 while answer: if answer[0] == '+' or answer[0] == '-': pass else: result += len(answer.split(':')[1]) + 1 answer = input() print(result) ```
-1
734
A
Anton and Danik
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Anton likes to play chess, and so does his friend Danik. Once they have played *n* games in a row. For each game it's known who was the winner — Anton or Danik. None of the games ended with a tie. Now Anton wonders, who won more games, he or Danik? Help him determine this.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of games played. The second line contains a string *s*, consisting of *n* uppercase English letters 'A' and 'D' — the outcome of each of the games. The *i*-th character of the string is equal to 'A' if the Anton won the *i*-th game and 'D' if Danik won the *i*-th game.
If Anton won more games than Danik, print "Anton" (without quotes) in the only line of the output. If Danik won more games than Anton, print "Danik" (without quotes) in the only line of the output. If Anton and Danik won the same number of games, print "Friendship" (without quotes).
[ "6\nADAAAA\n", "7\nDDDAADA\n", "6\nDADADA\n" ]
[ "Anton\n", "Danik\n", "Friendship\n" ]
In the first sample, Anton won 6 games, while Danik — only 1. Hence, the answer is "Anton". In the second sample, Anton won 3 games and Danik won 4 games, so the answer is "Danik". In the third sample, both Anton and Danik won 3 games and the answer is "Friendship".
500
[ { "input": "6\nADAAAA", "output": "Anton" }, { "input": "7\nDDDAADA", "output": "Danik" }, { "input": "6\nDADADA", "output": "Friendship" }, { "input": "10\nDDDDADDADD", "output": "Danik" }, { "input": "40\nAAAAAAAAADDAAAAAAAAAAADADDAAAAAAAAAAADAA", "output": "Anton" }, { "input": "200\nDDDDDDDADDDDDDAADADAADAAADAADADAAADDDADDDDDDADDDAADDDAADADDDDDADDDAAAADAAADDDDDAAADAADDDAAAADDADADDDAADDAADAAADAADAAAADDAADDADAAAADADDDAAAAAADDAADAADAADADDDAAADAAAADADDADAAAAAADADADDDADDDAADDADDDAAAAD", "output": "Friendship" }, { "input": "1\nA", "output": "Anton" }, { "input": "1\nD", "output": "Danik" }, { "input": "2\nDA", "output": "Friendship" }, { "input": "4\nDADA", "output": "Friendship" }, { "input": "4\nDAAD", "output": "Friendship" }, { "input": "3\nADD", "output": "Danik" }, { "input": "3\nDAD", "output": "Danik" }, { "input": "2\nDA", "output": "Friendship" }, { "input": "379\nAADAAAAAADDAAAAAADAADADADDAAAAADADDAADAAAADDDADAAAAAAADAADAAAAAAADAAAAAAAAADAAAAAAADAAAAAAAAAAADDDADAAAAAAAADAADADAAAADAAAAAAAAAAAAAAAAADAAAADDDAADAAAAAAADAAADAAADAADDDADDAAADAAAAAADDDADDDAAADAAAADAAAAAAAAADAAADAAAAAAAAADAAAAAAAAAAAAAAAAAADADAAAAAAAAAAADAAAAADAAAADAAAAAAAAAAAAADADAADAAAAAAAADAADAAAAAAAADAAAAAAAADDDAAAAAADAAADAAAAAADAADAAAAAADAAAADADAADAAAAAADAAAADAADDAADAADAAA", "output": "Anton" } ]
1,692,717,138
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
46
0
n=int(input()) s=input() c=0 for i in range(len(s)): if (s[i]=='A'): c+=1 if (n/2>c): print("Danik") else: print ("Anton")
Title: Anton and Danik Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anton likes to play chess, and so does his friend Danik. Once they have played *n* games in a row. For each game it's known who was the winner — Anton or Danik. None of the games ended with a tie. Now Anton wonders, who won more games, he or Danik? Help him determine this. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of games played. The second line contains a string *s*, consisting of *n* uppercase English letters 'A' and 'D' — the outcome of each of the games. The *i*-th character of the string is equal to 'A' if the Anton won the *i*-th game and 'D' if Danik won the *i*-th game. Output Specification: If Anton won more games than Danik, print "Anton" (without quotes) in the only line of the output. If Danik won more games than Anton, print "Danik" (without quotes) in the only line of the output. If Anton and Danik won the same number of games, print "Friendship" (without quotes). Demo Input: ['6\nADAAAA\n', '7\nDDDAADA\n', '6\nDADADA\n'] Demo Output: ['Anton\n', 'Danik\n', 'Friendship\n'] Note: In the first sample, Anton won 6 games, while Danik — only 1. Hence, the answer is "Anton". In the second sample, Anton won 3 games and Danik won 4 games, so the answer is "Danik". In the third sample, both Anton and Danik won 3 games and the answer is "Friendship".
```python n=int(input()) s=input() c=0 for i in range(len(s)): if (s[i]=='A'): c+=1 if (n/2>c): print("Danik") else: print ("Anton") ```
0
620
A
Professor GukiZ's Robot
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Professor GukiZ makes a new robot. The robot are in the point with coordinates (*x*1,<=*y*1) and should go to the point (*x*2,<=*y*2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position.
The first line contains two integers *x*1,<=*y*1 (<=-<=109<=≤<=*x*1,<=*y*1<=≤<=109) — the start position of the robot. The second line contains two integers *x*2,<=*y*2 (<=-<=109<=≤<=*x*2,<=*y*2<=≤<=109) — the finish position of the robot.
Print the only integer *d* — the minimal number of steps to get the finish position.
[ "0 0\n4 5\n", "3 4\n6 1\n" ]
[ "5\n", "3\n" ]
In the first example robot should increase both of its coordinates by one four times, so it will be in position (4, 4). After that robot should simply increase its *y* coordinate and get the finish position. In the second example robot should simultaneously increase *x* coordinate and decrease *y* coordinate by one three times.
0
[ { "input": "0 0\n4 5", "output": "5" }, { "input": "3 4\n6 1", "output": "3" }, { "input": "0 0\n4 6", "output": "6" }, { "input": "1 1\n-3 -5", "output": "6" }, { "input": "-1 -1\n-10 100", "output": "101" }, { "input": "1 -1\n100 -100", "output": "99" }, { "input": "-1000000000 -1000000000\n1000000000 1000000000", "output": "2000000000" }, { "input": "-1000000000 -1000000000\n0 999999999", "output": "1999999999" }, { "input": "0 0\n2 1", "output": "2" }, { "input": "10 0\n100 0", "output": "90" }, { "input": "1 5\n6 4", "output": "5" }, { "input": "0 0\n5 4", "output": "5" }, { "input": "10 1\n20 1", "output": "10" }, { "input": "1 1\n-3 4", "output": "4" }, { "input": "-863407280 504312726\n786535210 -661703810", "output": "1649942490" }, { "input": "-588306085 -741137832\n341385643 152943311", "output": "929691728" }, { "input": "0 0\n4 0", "output": "4" }, { "input": "93097194 -48405232\n-716984003 -428596062", "output": "810081197" }, { "input": "9 1\n1 1", "output": "8" }, { "input": "4 6\n0 4", "output": "4" }, { "input": "2 4\n5 2", "output": "3" }, { "input": "-100000000 -100000000\n100000000 100000123", "output": "200000123" }, { "input": "5 6\n5 7", "output": "1" }, { "input": "12 16\n12 1", "output": "15" }, { "input": "0 0\n5 1", "output": "5" }, { "input": "0 1\n1 1", "output": "1" }, { "input": "-44602634 913365223\n-572368780 933284951", "output": "527766146" }, { "input": "-2 0\n2 -2", "output": "4" }, { "input": "0 0\n3 1", "output": "3" }, { "input": "-458 2\n1255 4548", "output": "4546" }, { "input": "-5 -4\n-3 -3", "output": "2" }, { "input": "4 5\n7 3", "output": "3" }, { "input": "-1000000000 -999999999\n1000000000 999999998", "output": "2000000000" }, { "input": "-1000000000 -1000000000\n1000000000 -1000000000", "output": "2000000000" }, { "input": "-464122675 -898521847\n656107323 -625340409", "output": "1120229998" }, { "input": "-463154699 -654742385\n-699179052 -789004997", "output": "236024353" }, { "input": "982747270 -593488945\n342286841 -593604186", "output": "640460429" }, { "input": "-80625246 708958515\n468950878 574646184", "output": "549576124" }, { "input": "0 0\n1 0", "output": "1" }, { "input": "109810 1\n2 3", "output": "109808" }, { "input": "-9 0\n9 9", "output": "18" }, { "input": "9 9\n9 9", "output": "0" }, { "input": "1 1\n4 3", "output": "3" }, { "input": "1 2\n45 1", "output": "44" }, { "input": "207558188 -313753260\n-211535387 -721675423", "output": "419093575" }, { "input": "-11 0\n0 0", "output": "11" }, { "input": "-1000000000 1000000000\n1000000000 -1000000000", "output": "2000000000" }, { "input": "0 0\n1 1", "output": "1" }, { "input": "0 0\n0 1", "output": "1" }, { "input": "0 0\n-1 1", "output": "1" }, { "input": "0 0\n-1 0", "output": "1" }, { "input": "0 0\n-1 -1", "output": "1" }, { "input": "0 0\n0 -1", "output": "1" }, { "input": "0 0\n1 -1", "output": "1" }, { "input": "10 90\n90 10", "output": "80" }, { "input": "851016864 573579544\n-761410925 -380746263", "output": "1612427789" }, { "input": "1 9\n9 9", "output": "8" }, { "input": "1000 1000\n1000 1000", "output": "0" }, { "input": "1 9\n9 1", "output": "8" }, { "input": "1 90\n90 90", "output": "89" }, { "input": "100 100\n1000 1000", "output": "900" }, { "input": "-1 0\n0 0", "output": "1" }, { "input": "-750595959 -2984043\n649569876 -749608783", "output": "1400165835" }, { "input": "958048496 712083589\n423286949 810566863", "output": "534761547" }, { "input": "146316710 53945094\n-523054748 147499505", "output": "669371458" }, { "input": "50383856 -596516251\n-802950224 -557916272", "output": "853334080" }, { "input": "-637204864 -280290367\n-119020929 153679771", "output": "518183935" }, { "input": "-100 -100\n-60 -91", "output": "40" }, { "input": "337537326 74909428\n-765558776 167951547", "output": "1103096102" }, { "input": "0 81\n18 90", "output": "18" }, { "input": "283722202 -902633305\n-831696497 -160868946", "output": "1115418699" }, { "input": "1000 1000\n-1000 1000", "output": "2000" }, { "input": "5 6\n4 8", "output": "2" }, { "input": "40572000 597493595\n-935051731 368493185", "output": "975623731" }, { "input": "-5 5\n5 5", "output": "10" } ]
1,620,991,295
2,147,483,647
Python 3
OK
TESTS
75
77
6,758,400
x1,y1=input().split() x2,y2=input().split() x1=int(x1) y1=int(y1) x2=int(x2) y2=int(y2) print(max(abs(y2-y1),abs(x2-x1)))
Title: Professor GukiZ's Robot Time Limit: None seconds Memory Limit: None megabytes Problem Description: Professor GukiZ makes a new robot. The robot are in the point with coordinates (*x*1,<=*y*1) and should go to the point (*x*2,<=*y*2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position. Input Specification: The first line contains two integers *x*1,<=*y*1 (<=-<=109<=≤<=*x*1,<=*y*1<=≤<=109) — the start position of the robot. The second line contains two integers *x*2,<=*y*2 (<=-<=109<=≤<=*x*2,<=*y*2<=≤<=109) — the finish position of the robot. Output Specification: Print the only integer *d* — the minimal number of steps to get the finish position. Demo Input: ['0 0\n4 5\n', '3 4\n6 1\n'] Demo Output: ['5\n', '3\n'] Note: In the first example robot should increase both of its coordinates by one four times, so it will be in position (4, 4). After that robot should simply increase its *y* coordinate and get the finish position. In the second example robot should simultaneously increase *x* coordinate and decrease *y* coordinate by one three times.
```python x1,y1=input().split() x2,y2=input().split() x1=int(x1) y1=int(y1) x2=int(x2) y2=int(y2) print(max(abs(y2-y1),abs(x2-x1))) ```
3
581
A
Vasya the Hipster
PROGRAMMING
800
[ "implementation", "math" ]
null
null
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks. According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot. Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them. Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Can you help him?
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
[ "3 1\n", "2 3\n", "7 3\n" ]
[ "1 1\n", "2 0\n", "3 2\n" ]
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
500
[ { "input": "3 1", "output": "1 1" }, { "input": "2 3", "output": "2 0" }, { "input": "7 3", "output": "3 2" }, { "input": "100 100", "output": "100 0" }, { "input": "4 10", "output": "4 3" }, { "input": "6 10", "output": "6 2" }, { "input": "6 11", "output": "6 2" }, { "input": "10 40", "output": "10 15" }, { "input": "11 56", "output": "11 22" }, { "input": "34 30", "output": "30 2" }, { "input": "33 33", "output": "33 0" }, { "input": "100 45", "output": "45 27" }, { "input": "100 23", "output": "23 38" }, { "input": "45 12", "output": "12 16" }, { "input": "1 1", "output": "1 0" }, { "input": "1 100", "output": "1 49" }, { "input": "100 1", "output": "1 49" }, { "input": "68 59", "output": "59 4" }, { "input": "45 99", "output": "45 27" }, { "input": "99 100", "output": "99 0" }, { "input": "100 98", "output": "98 1" }, { "input": "59 12", "output": "12 23" }, { "input": "86 4", "output": "4 41" }, { "input": "68 21", "output": "21 23" }, { "input": "100 11", "output": "11 44" }, { "input": "100 10", "output": "10 45" }, { "input": "15 45", "output": "15 15" }, { "input": "11 32", "output": "11 10" }, { "input": "34 96", "output": "34 31" }, { "input": "89 89", "output": "89 0" } ]
1,675,449,489
2,147,483,647
Python 3
OK
TESTS
30
46
4,300,800
a, b = map(int, input().split()) n = min(a, b) m = (max(a, b) - n) // 2 print(n, m)
Title: Vasya the Hipster Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks. According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot. Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them. Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Can you help him? Input Specification: The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got. Output Specification: Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day. Demo Input: ['3 1\n', '2 3\n', '7 3\n'] Demo Output: ['1 1\n', '2 0\n', '3 2\n'] Note: In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
```python a, b = map(int, input().split()) n = min(a, b) m = (max(a, b) - n) // 2 print(n, m) ```
3
231
A
Team
PROGRAMMING
800
[ "brute force", "greedy" ]
null
null
One day three best friends Petya, Vasya and Tonya decided to form a team and take part in programming contests. Participants are usually offered several problems during programming contests. Long before the start the friends decided that they will implement a problem if at least two of them are sure about the solution. Otherwise, the friends won't write the problem's solution. This contest offers *n* problems to the participants. For each problem we know, which friend is sure about the solution. Help the friends find the number of problems for which they will write a solution.
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of problems in the contest. Then *n* lines contain three integers each, each integer is either 0 or 1. If the first number in the line equals 1, then Petya is sure about the problem's solution, otherwise he isn't sure. The second number shows Vasya's view on the solution, the third number shows Tonya's view. The numbers on the lines are separated by spaces.
Print a single integer — the number of problems the friends will implement on the contest.
[ "3\n1 1 0\n1 1 1\n1 0 0\n", "2\n1 0 0\n0 1 1\n" ]
[ "2\n", "1\n" ]
In the first sample Petya and Vasya are sure that they know how to solve the first problem and all three of them know how to solve the second problem. That means that they will write solutions for these problems. Only Petya is sure about the solution for the third problem, but that isn't enough, so the friends won't take it. In the second sample the friends will only implement the second problem, as Vasya and Tonya are sure about the solution.
500
[ { "input": "3\n1 1 0\n1 1 1\n1 0 0", "output": "2" }, { "input": "2\n1 0 0\n0 1 1", "output": "1" }, { "input": "1\n1 0 0", "output": "0" }, { "input": "2\n1 0 0\n1 1 1", "output": "1" }, { "input": "5\n1 0 0\n0 1 0\n1 1 1\n0 0 1\n0 0 0", "output": "1" }, { "input": "10\n0 1 0\n0 1 0\n1 1 0\n1 0 0\n0 0 1\n0 1 1\n1 1 1\n1 1 0\n0 0 0\n0 0 0", "output": "4" }, { "input": "15\n0 1 0\n1 0 0\n1 1 0\n1 1 1\n0 1 0\n0 0 1\n1 0 1\n1 0 1\n1 0 1\n0 0 0\n1 1 1\n1 1 0\n0 1 1\n1 1 0\n1 1 1", "output": "10" }, { "input": "50\n0 0 0\n0 1 1\n1 1 1\n0 1 0\n1 0 1\n1 1 1\n0 0 1\n1 0 0\n1 1 0\n1 0 1\n0 1 0\n0 0 1\n1 1 0\n0 1 0\n1 1 0\n0 0 0\n1 1 1\n1 0 1\n0 0 1\n1 1 0\n1 1 1\n0 1 1\n1 1 0\n0 0 0\n0 0 0\n1 1 1\n0 0 0\n1 1 1\n0 1 1\n0 0 1\n0 0 0\n0 0 0\n1 1 0\n1 1 0\n1 0 1\n1 0 0\n1 0 1\n1 0 1\n0 1 1\n1 1 0\n1 1 0\n0 1 0\n1 0 1\n0 0 0\n0 0 0\n0 0 0\n0 0 1\n1 1 1\n0 1 1\n1 0 1", "output": "29" }, { "input": "1\n1 1 1", "output": "1" }, { "input": "8\n0 0 0\n0 0 1\n0 0 0\n0 1 1\n1 0 0\n1 0 1\n1 1 0\n1 1 1", "output": "4" }, { "input": "16\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1", "output": "16" } ]
1,697,699,029
2,147,483,647
Python 3
OK
TESTS
21
92
0
probs = [] nprobs = int(input()) for i in range(nprobs): assurance = input() probs.append(assurance) n = 0 for j in probs: if j.count("1") >= 2: n += 1 print(n)
Title: Team Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day three best friends Petya, Vasya and Tonya decided to form a team and take part in programming contests. Participants are usually offered several problems during programming contests. Long before the start the friends decided that they will implement a problem if at least two of them are sure about the solution. Otherwise, the friends won't write the problem's solution. This contest offers *n* problems to the participants. For each problem we know, which friend is sure about the solution. Help the friends find the number of problems for which they will write a solution. Input Specification: The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of problems in the contest. Then *n* lines contain three integers each, each integer is either 0 or 1. If the first number in the line equals 1, then Petya is sure about the problem's solution, otherwise he isn't sure. The second number shows Vasya's view on the solution, the third number shows Tonya's view. The numbers on the lines are separated by spaces. Output Specification: Print a single integer — the number of problems the friends will implement on the contest. Demo Input: ['3\n1 1 0\n1 1 1\n1 0 0\n', '2\n1 0 0\n0 1 1\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample Petya and Vasya are sure that they know how to solve the first problem and all three of them know how to solve the second problem. That means that they will write solutions for these problems. Only Petya is sure about the solution for the third problem, but that isn't enough, so the friends won't take it. In the second sample the friends will only implement the second problem, as Vasya and Tonya are sure about the solution.
```python probs = [] nprobs = int(input()) for i in range(nprobs): assurance = input() probs.append(assurance) n = 0 for j in probs: if j.count("1") >= 2: n += 1 print(n) ```
3
977
E
Cyclic Components
PROGRAMMING
1,500
[ "dfs and similar", "dsu", "graphs" ]
null
null
You are given an undirected graph consisting of $n$ vertices and $m$ edges. Your task is to find the number of connected components which are cycles. Here are some definitions of graph theory. An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex $a$ is connected with a vertex $b$, a vertex $b$ is also connected with a vertex $a$). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices. Two vertices $u$ and $v$ belong to the same connected component if and only if there is at least one path along edges connecting $u$ and $v$. A connected component is a cycle if and only if its vertices can be reordered in such a way that: - the first vertex is connected with the second vertex by an edge, - the second vertex is connected with the third vertex by an edge, - ... - the last vertex is connected with the first vertex by an edge, - all the described edges of a cycle are distinct. A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.
The first line contains two integer numbers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $0 \le m \le 2 \cdot 10^5$) — number of vertices and edges. The following $m$ lines contains edges: edge $i$ is given as a pair of vertices $v_i$, $u_i$ ($1 \le v_i, u_i \le n$, $u_i \ne v_i$). There is no multiple edges in the given graph, i.e. for each pair ($v_i, u_i$) there no other pairs ($v_i, u_i$) and ($u_i, v_i$) in the list of edges.
Print one integer — the number of connected components which are also cycles.
[ "5 4\n1 2\n3 4\n5 4\n3 5\n", "17 15\n1 8\n1 12\n5 11\n11 9\n9 15\n15 5\n4 13\n3 13\n4 3\n10 16\n7 10\n16 7\n14 3\n14 4\n17 6\n" ]
[ "1\n", "2\n" ]
In the first example only component $[3, 4, 5]$ is also a cycle. The illustration above corresponds to the second example.
0
[ { "input": "5 4\n1 2\n3 4\n5 4\n3 5", "output": "1" }, { "input": "17 15\n1 8\n1 12\n5 11\n11 9\n9 15\n15 5\n4 13\n3 13\n4 3\n10 16\n7 10\n16 7\n14 3\n14 4\n17 6", "output": "2" }, { "input": "4 4\n1 2\n2 3\n1 3\n1 4", "output": "0" }, { "input": "5 5\n1 2\n2 3\n3 4\n4 1\n3 5", "output": "0" }, { "input": "200000 0", "output": "0" }, { "input": "1 0", "output": "0" }, { "input": "5 10\n1 2\n2 3\n3 4\n4 5\n5 1\n1 4\n2 4\n3 5\n3 1\n2 5", "output": "0" }, { "input": "5 10\n1 2\n1 3\n1 4\n1 5\n2 3\n2 4\n2 5\n3 4\n3 5\n4 5", "output": "0" }, { "input": "6 9\n1 2\n2 3\n3 4\n4 5\n5 6\n6 1\n6 2\n2 4\n6 4", "output": "0" }, { "input": "4 6\n1 2\n2 3\n3 4\n4 1\n1 3\n2 4", "output": "0" } ]
1,698,275,600
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
3
467
28,160,000
def CyclicComponents(cycle): visitou[cycle] = True; for left in adj[cycle]: if not visitou[left]: CyclicComponents(left); edg.append(cycle); C = 200100; visitou = [False] * C; adj = [[] for _ in range(C)]; edg = []; n, m = map(int, input().split()); for _ in range(m): u, v = map(int, input().split()); adj[u].append(v); adj[v].append(u); count = 0; for i in range(1, n + 1): if not visitou[i]: CyclicComponents(i); k = 1; if (len(edg) > 2): while edg: if (len(adj[edg[-1]]) != 2): k = 0; break; edg.pop(); if k: count = count + 1; while edg: edg.pop(); print(count);
Title: Cyclic Components Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an undirected graph consisting of $n$ vertices and $m$ edges. Your task is to find the number of connected components which are cycles. Here are some definitions of graph theory. An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex $a$ is connected with a vertex $b$, a vertex $b$ is also connected with a vertex $a$). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices. Two vertices $u$ and $v$ belong to the same connected component if and only if there is at least one path along edges connecting $u$ and $v$. A connected component is a cycle if and only if its vertices can be reordered in such a way that: - the first vertex is connected with the second vertex by an edge, - the second vertex is connected with the third vertex by an edge, - ... - the last vertex is connected with the first vertex by an edge, - all the described edges of a cycle are distinct. A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices. Input Specification: The first line contains two integer numbers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $0 \le m \le 2 \cdot 10^5$) — number of vertices and edges. The following $m$ lines contains edges: edge $i$ is given as a pair of vertices $v_i$, $u_i$ ($1 \le v_i, u_i \le n$, $u_i \ne v_i$). There is no multiple edges in the given graph, i.e. for each pair ($v_i, u_i$) there no other pairs ($v_i, u_i$) and ($u_i, v_i$) in the list of edges. Output Specification: Print one integer — the number of connected components which are also cycles. Demo Input: ['5 4\n1 2\n3 4\n5 4\n3 5\n', '17 15\n1 8\n1 12\n5 11\n11 9\n9 15\n15 5\n4 13\n3 13\n4 3\n10 16\n7 10\n16 7\n14 3\n14 4\n17 6\n'] Demo Output: ['1\n', '2\n'] Note: In the first example only component $[3, 4, 5]$ is also a cycle. The illustration above corresponds to the second example.
```python def CyclicComponents(cycle): visitou[cycle] = True; for left in adj[cycle]: if not visitou[left]: CyclicComponents(left); edg.append(cycle); C = 200100; visitou = [False] * C; adj = [[] for _ in range(C)]; edg = []; n, m = map(int, input().split()); for _ in range(m): u, v = map(int, input().split()); adj[u].append(v); adj[v].append(u); count = 0; for i in range(1, n + 1): if not visitou[i]: CyclicComponents(i); k = 1; if (len(edg) > 2): while edg: if (len(adj[edg[-1]]) != 2): k = 0; break; edg.pop(); if k: count = count + 1; while edg: edg.pop(); print(count); ```
-1
58
A
Chat room
PROGRAMMING
1,000
[ "greedy", "strings" ]
A. Chat room
1
256
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
If Vasya managed to say hello, print "YES", otherwise print "NO".
[ "ahhellllloou\n", "hlelo\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "ahhellllloou", "output": "YES" }, { "input": "hlelo", "output": "NO" }, { "input": "helhcludoo", "output": "YES" }, { "input": "hehwelloho", "output": "YES" }, { "input": "pnnepelqomhhheollvlo", "output": "YES" }, { "input": "tymbzjyqhymedasloqbq", "output": "NO" }, { "input": "yehluhlkwo", "output": "NO" }, { "input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello", "output": "YES" }, { "input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq", "output": "YES" }, { "input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi", "output": "YES" }, { "input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo", "output": "YES" }, { "input": "lqllcolohwflhfhlnaow", "output": "NO" }, { "input": "heheeellollvoo", "output": "YES" }, { "input": "hellooo", "output": "YES" }, { "input": "o", "output": "NO" }, { "input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv", "output": "YES" }, { "input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk", "output": "YES" }, { "input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry", "output": "NO" }, { "input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq", "output": "NO" }, { "input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi", "output": "YES" }, { "input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm", "output": "YES" }, { "input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac", "output": "NO" }, { "input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok", "output": "YES" }, { "input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz", "output": "YES" }, { "input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb", "output": "YES" }, { "input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla", "output": "YES" }, { "input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz", "output": "YES" }, { "input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti", "output": "YES" }, { "input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli", "output": "YES" }, { "input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo", "output": "YES" }, { "input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk", "output": "NO" }, { "input": "loee", "output": "NO" }, { "input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo", "output": "NO" }, { "input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi", "output": "YES" }, { "input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv", "output": "NO" }, { "input": "hello", "output": "YES" }, { "input": "oohell", "output": "NO" }, { "input": "hell", "output": "NO" }, { "input": "eloellohoelo", "output": "NO" }, { "input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo", "output": "YES" } ]
1,603,292,523
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
62
307,200
s=input() i=j=k=m=n=len(s) for i in range(len(s)): if s[i]=='h': break for j in range(i,len(s)): if s[j] == 'e': break for k in range(j,len(s)): if s[k] == 'l': break for m in range(k,len(s)): if s[m] == 'l': break for n in range(m,len(s)): if s[n] == 'o': break if i<j<k<m<n: print('YES') else: print('NO')
Title: Chat room Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*. Input Specification: The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters. Output Specification: If Vasya managed to say hello, print "YES", otherwise print "NO". Demo Input: ['ahhellllloou\n', 'hlelo\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python s=input() i=j=k=m=n=len(s) for i in range(len(s)): if s[i]=='h': break for j in range(i,len(s)): if s[j] == 'e': break for k in range(j,len(s)): if s[k] == 'l': break for m in range(k,len(s)): if s[m] == 'l': break for n in range(m,len(s)): if s[n] == 'o': break if i<j<k<m<n: print('YES') else: print('NO') ```
0
465
A
inc ARG
PROGRAMMING
900
[ "implementation" ]
null
null
Sergey is testing a next-generation processor. Instead of bytes the processor works with memory cells consisting of *n* bits. These bits are numbered from 1 to *n*. An integer is stored in the cell in the following way: the least significant bit is stored in the first bit of the cell, the next significant bit is stored in the second bit, and so on; the most significant bit is stored in the *n*-th bit. Now Sergey wants to test the following instruction: "add 1 to the value of the cell". As a result of the instruction, the integer that is written in the cell must be increased by one; if some of the most significant bits of the resulting number do not fit into the cell, they must be discarded. Sergey wrote certain values ​​of the bits in the cell and is going to add one to its value. How many bits of the cell will change after the operation?
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of bits in the cell. The second line contains a string consisting of *n* characters — the initial state of the cell. The first character denotes the state of the first bit of the cell. The second character denotes the second least significant bit and so on. The last character denotes the state of the most significant bit.
Print a single integer — the number of bits in the cell which change their state after we add 1 to the cell.
[ "4\n1100\n", "4\n1111\n" ]
[ "3\n", "4\n" ]
In the first sample the cell ends up with value 0010, in the second sample — with 0000.
500
[ { "input": "4\n1100", "output": "3" }, { "input": "4\n1111", "output": "4" }, { "input": "1\n0", "output": "1" }, { "input": "1\n1", "output": "1" }, { "input": "2\n00", "output": "1" }, { "input": "2\n01", "output": "1" }, { "input": "2\n10", "output": "2" }, { "input": "2\n11", "output": "2" }, { "input": "10\n0000000000", "output": "1" }, { "input": "20\n11111111110110001100", "output": "11" }, { "input": "50\n01011110100010000001010000100001001101001101101011", "output": "1" }, { "input": "60\n111111111101111111111111111111111111111111111111111111111111", "output": "11" }, { "input": "60\n111111111111111111111111111111111111111111111111111111111111", "output": "60" }, { "input": "66\n111111010010011001110011000111000100011110011001111110011111111101", "output": "7" }, { "input": "90\n000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1" }, { "input": "91\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "2" }, { "input": "92\n11111111101011111011111111111111111111111011101111111111011111111111111101111111101011111101", "output": "10" }, { "input": "100\n0001011110100011001100100010111001000001111101101001001001001011110100101101010000000110100101110010", "output": "1" }, { "input": "100\n0111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "1" }, { "input": "100\n0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1" }, { "input": "100\n0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "100" }, { "input": "100\n1011001110001000011111110011000100001110010110111101110110011011011000010100110001111100000010110010", "output": "2" }, { "input": "100\n1101111011001111111111110011110111101110111111111111111111111111111111011111111111110111111111111111", "output": "3" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "100" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110", "output": "100" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111101", "output": "99" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111100000", "output": "96" }, { "input": "100\n1111111111111111111111111111111110011000110110001010101100100100001000010010010010000100110000010101", "output": "34" } ]
1,410,261,508
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
46
0
n=int(input) print(int(input()[::-1],2)&(2**(n+1)-1))
Title: inc ARG Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sergey is testing a next-generation processor. Instead of bytes the processor works with memory cells consisting of *n* bits. These bits are numbered from 1 to *n*. An integer is stored in the cell in the following way: the least significant bit is stored in the first bit of the cell, the next significant bit is stored in the second bit, and so on; the most significant bit is stored in the *n*-th bit. Now Sergey wants to test the following instruction: "add 1 to the value of the cell". As a result of the instruction, the integer that is written in the cell must be increased by one; if some of the most significant bits of the resulting number do not fit into the cell, they must be discarded. Sergey wrote certain values ​​of the bits in the cell and is going to add one to its value. How many bits of the cell will change after the operation? Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of bits in the cell. The second line contains a string consisting of *n* characters — the initial state of the cell. The first character denotes the state of the first bit of the cell. The second character denotes the second least significant bit and so on. The last character denotes the state of the most significant bit. Output Specification: Print a single integer — the number of bits in the cell which change their state after we add 1 to the cell. Demo Input: ['4\n1100\n', '4\n1111\n'] Demo Output: ['3\n', '4\n'] Note: In the first sample the cell ends up with value 0010, in the second sample — with 0000.
```python n=int(input) print(int(input()[::-1],2)&(2**(n+1)-1)) ```
-1
483
A
Counterexample
PROGRAMMING
1,100
[ "brute force", "implementation", "math", "number theory" ]
null
null
Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one. Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime. You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*. More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime.
The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50).
Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order. If the counterexample does not exist, print the single number -1.
[ "2 4\n", "10 11\n", "900000000000000009 900000000000000029\n" ]
[ "2 3 4\n", "-1\n", "900000000000000009 900000000000000010 900000000000000021\n" ]
In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are. In the second sample you cannot form a group of three distinct integers, so the answer is -1. In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
500
[ { "input": "2 4", "output": "2 3 4" }, { "input": "10 11", "output": "-1" }, { "input": "900000000000000009 900000000000000029", "output": "900000000000000009 900000000000000010 900000000000000021" }, { "input": "640097987171091791 640097987171091835", "output": "640097987171091792 640097987171091793 640097987171091794" }, { "input": "19534350415104721 19534350415104725", "output": "19534350415104722 19534350415104723 19534350415104724" }, { "input": "933700505788726243 933700505788726280", "output": "933700505788726244 933700505788726245 933700505788726246" }, { "input": "1 3", "output": "-1" }, { "input": "1 4", "output": "2 3 4" }, { "input": "1 1", "output": "-1" }, { "input": "266540997167959130 266540997167959164", "output": "266540997167959130 266540997167959131 266540997167959132" }, { "input": "267367244641009850 267367244641009899", "output": "267367244641009850 267367244641009851 267367244641009852" }, { "input": "268193483524125978 268193483524125993", "output": "268193483524125978 268193483524125979 268193483524125980" }, { "input": "269019726702209402 269019726702209432", "output": "269019726702209402 269019726702209403 269019726702209404" }, { "input": "269845965585325530 269845965585325576", "output": "269845965585325530 269845965585325531 269845965585325532" }, { "input": "270672213058376250 270672213058376260", "output": "270672213058376250 270672213058376251 270672213058376252" }, { "input": "271498451941492378 271498451941492378", "output": "-1" }, { "input": "272324690824608506 272324690824608523", "output": "272324690824608506 272324690824608507 272324690824608508" }, { "input": "273150934002691930 273150934002691962", "output": "273150934002691930 273150934002691931 273150934002691932" }, { "input": "996517375802030516 996517375802030524", "output": "996517375802030516 996517375802030517 996517375802030518" }, { "input": "997343614685146644 997343614685146694", "output": "997343614685146644 997343614685146645 997343614685146646" }, { "input": "998169857863230068 998169857863230083", "output": "998169857863230068 998169857863230069 998169857863230070" }, { "input": "998996101041313492 998996101041313522", "output": "998996101041313492 998996101041313493 998996101041313494" }, { "input": "999822344219396916 999822344219396961", "output": "999822344219396916 999822344219396917 999822344219396918" }, { "input": "648583102513043 648583102513053", "output": "648583102513044 648583102513045 648583102513046" }, { "input": "266540997167959130 266540997167959131", "output": "-1" }, { "input": "267367244641009850 267367244641009850", "output": "-1" }, { "input": "268193483524125978 268193483524125979", "output": "-1" }, { "input": "269019726702209402 269019726702209402", "output": "-1" }, { "input": "269845965585325530 269845965585325530", "output": "-1" }, { "input": "270672213058376250 270672213058376254", "output": "270672213058376250 270672213058376251 270672213058376252" }, { "input": "271498451941492378 271498451941492379", "output": "-1" }, { "input": "272324690824608506 272324690824608508", "output": "272324690824608506 272324690824608507 272324690824608508" }, { "input": "273150934002691930 273150934002691931", "output": "-1" }, { "input": "996517375802030516 996517375802030518", "output": "996517375802030516 996517375802030517 996517375802030518" }, { "input": "997343614685146644 997343614685146644", "output": "-1" }, { "input": "2147483647 2147483649", "output": "-1" }, { "input": "3 5", "output": "-1" }, { "input": "1 7", "output": "2 3 4" }, { "input": "9 12", "output": "9 11 12" }, { "input": "4 4", "output": "-1" }, { "input": "11 13", "output": "-1" }, { "input": "2 2", "output": "-1" } ]
1,621,277,182
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
77
0
a,b= list(map(int,input().split())) print(-1 if abs(a-b)==1 else a,a+1,b)
Title: Counterexample Time Limit: None seconds Memory Limit: None megabytes Problem Description: Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one. Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime. You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*. More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime. Input Specification: The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50). Output Specification: Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order. If the counterexample does not exist, print the single number -1. Demo Input: ['2 4\n', '10 11\n', '900000000000000009 900000000000000029\n'] Demo Output: ['2 3 4\n', '-1\n', '900000000000000009 900000000000000010 900000000000000021\n'] Note: In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are. In the second sample you cannot form a group of three distinct integers, so the answer is -1. In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
```python a,b= list(map(int,input().split())) print(-1 if abs(a-b)==1 else a,a+1,b) ```
0
900
B
Position in Fraction
PROGRAMMING
1,300
[ "math", "number theory" ]
null
null
You have a fraction . You need to find the first occurrence of digit *c* into decimal notation of the fraction after decimal point.
The first contains three single positive integers *a*, *b*, *c* (1<=≤<=*a*<=&lt;<=*b*<=≤<=105, 0<=≤<=*c*<=≤<=9).
Print position of the first occurrence of digit *c* into the fraction. Positions are numbered from 1 after decimal point. It there is no such position, print -1.
[ "1 2 0\n", "2 3 7\n" ]
[ "2", "-1" ]
The fraction in the first example has the following decimal notation: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/896357459a466614a0542f34c9cfb0cef1afc9ed.png" style="max-width: 100.0%;max-height: 100.0%;"/>. The first zero stands on second position. The fraction in the second example has the following decimal notation: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/130ba579a8276fc53a1917606eee9db58817f28d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. There is no digit 7 in decimal notation of the fraction.
1,000
[ { "input": "1 2 0", "output": "2" }, { "input": "2 3 7", "output": "-1" }, { "input": "1 100000 1", "output": "5" }, { "input": "1 7 7", "output": "6" }, { "input": "99999 100000 8", "output": "-1" }, { "input": "44102 73848 2", "output": "132" }, { "input": "7 31 3", "output": "15" }, { "input": "8880 81608 9", "output": "161" }, { "input": "4942 62768 5", "output": "122" }, { "input": "69168 84860 4", "output": "107" }, { "input": "971 1883 3", "output": "130" }, { "input": "1636 3269 6", "output": "150" }, { "input": "6873 7769 3", "output": "163" }, { "input": "13805 15538 3", "output": "164" }, { "input": "10958 21926 3", "output": "117" }, { "input": "8 51 0", "output": "10" }, { "input": "1 10 1", "output": "1" }, { "input": "1 9 0", "output": "-1" }, { "input": "53 101 6", "output": "-1" }, { "input": "1 10001 9", "output": "5" }, { "input": "25102 31579 2", "output": "174" }, { "input": "38790 39359 0", "output": "212" }, { "input": "47117 78718 0", "output": "213" }, { "input": "1 57 0", "output": "1" }, { "input": "1 3 0", "output": "-1" }, { "input": "1 100 0", "output": "1" }, { "input": "2 3 0", "output": "-1" }, { "input": "99971 99989 0", "output": "9" }, { "input": "567 1580 0", "output": "6" }, { "input": "45 97 0", "output": "39" }, { "input": "35 111 4", "output": "-1" }, { "input": "1 2 5", "output": "1" }, { "input": "1 7 0", "output": "-1" } ]
1,514,261,226
3,126
Python 3
WRONG_ANSWER
TESTS
0
46
5,529,600
import sys def long_division(dividend, divisor): ans = "" index = 0 cur_dividend = int(str(dividend)[index:index + 1].ljust(1, "0")) dividends = set() while cur_dividend not in dividends: dividends.add(cur_dividend) div, mod = divmod(cur_dividend, divisor) yield div index += 1 cur_dividend = mod cur_dividend = int(str(cur_dividend) + str(dividend)[index:index + 1].ljust(1, "0")) return None def decimal_part(dividend, divisor): for i in long_division(dividend, divisor): if dividend == 0: yield i dividend //= 10 def solve(a, b, c): for index, v in enumerate(decimal_part(a, b)): if v == c: return index return -1 print(solve(*map(int, input().split())))
Title: Position in Fraction Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have a fraction . You need to find the first occurrence of digit *c* into decimal notation of the fraction after decimal point. Input Specification: The first contains three single positive integers *a*, *b*, *c* (1<=≤<=*a*<=&lt;<=*b*<=≤<=105, 0<=≤<=*c*<=≤<=9). Output Specification: Print position of the first occurrence of digit *c* into the fraction. Positions are numbered from 1 after decimal point. It there is no such position, print -1. Demo Input: ['1 2 0\n', '2 3 7\n'] Demo Output: ['2', '-1'] Note: The fraction in the first example has the following decimal notation: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/896357459a466614a0542f34c9cfb0cef1afc9ed.png" style="max-width: 100.0%;max-height: 100.0%;"/>. The first zero stands on second position. The fraction in the second example has the following decimal notation: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/130ba579a8276fc53a1917606eee9db58817f28d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. There is no digit 7 in decimal notation of the fraction.
```python import sys def long_division(dividend, divisor): ans = "" index = 0 cur_dividend = int(str(dividend)[index:index + 1].ljust(1, "0")) dividends = set() while cur_dividend not in dividends: dividends.add(cur_dividend) div, mod = divmod(cur_dividend, divisor) yield div index += 1 cur_dividend = mod cur_dividend = int(str(cur_dividend) + str(dividend)[index:index + 1].ljust(1, "0")) return None def decimal_part(dividend, divisor): for i in long_division(dividend, divisor): if dividend == 0: yield i dividend //= 10 def solve(a, b, c): for index, v in enumerate(decimal_part(a, b)): if v == c: return index return -1 print(solve(*map(int, input().split()))) ```
0
734
A
Anton and Danik
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Anton likes to play chess, and so does his friend Danik. Once they have played *n* games in a row. For each game it's known who was the winner — Anton or Danik. None of the games ended with a tie. Now Anton wonders, who won more games, he or Danik? Help him determine this.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of games played. The second line contains a string *s*, consisting of *n* uppercase English letters 'A' and 'D' — the outcome of each of the games. The *i*-th character of the string is equal to 'A' if the Anton won the *i*-th game and 'D' if Danik won the *i*-th game.
If Anton won more games than Danik, print "Anton" (without quotes) in the only line of the output. If Danik won more games than Anton, print "Danik" (without quotes) in the only line of the output. If Anton and Danik won the same number of games, print "Friendship" (without quotes).
[ "6\nADAAAA\n", "7\nDDDAADA\n", "6\nDADADA\n" ]
[ "Anton\n", "Danik\n", "Friendship\n" ]
In the first sample, Anton won 6 games, while Danik — only 1. Hence, the answer is "Anton". In the second sample, Anton won 3 games and Danik won 4 games, so the answer is "Danik". In the third sample, both Anton and Danik won 3 games and the answer is "Friendship".
500
[ { "input": "6\nADAAAA", "output": "Anton" }, { "input": "7\nDDDAADA", "output": "Danik" }, { "input": "6\nDADADA", "output": "Friendship" }, { "input": "10\nDDDDADDADD", "output": "Danik" }, { "input": "40\nAAAAAAAAADDAAAAAAAAAAADADDAAAAAAAAAAADAA", "output": "Anton" }, { "input": "200\nDDDDDDDADDDDDDAADADAADAAADAADADAAADDDADDDDDDADDDAADDDAADADDDDDADDDAAAADAAADDDDDAAADAADDDAAAADDADADDDAADDAADAAADAADAAAADDAADDADAAAADADDDAAAAAADDAADAADAADADDDAAADAAAADADDADAAAAAADADADDDADDDAADDADDDAAAAD", "output": "Friendship" }, { "input": "1\nA", "output": "Anton" }, { "input": "1\nD", "output": "Danik" }, { "input": "2\nDA", "output": "Friendship" }, { "input": "4\nDADA", "output": "Friendship" }, { "input": "4\nDAAD", "output": "Friendship" }, { "input": "3\nADD", "output": "Danik" }, { "input": "3\nDAD", "output": "Danik" }, { "input": "2\nDA", "output": "Friendship" }, { "input": "379\nAADAAAAAADDAAAAAADAADADADDAAAAADADDAADAAAADDDADAAAAAAADAADAAAAAAADAAAAAAAAADAAAAAAADAAAAAAAAAAADDDADAAAAAAAADAADADAAAADAAAAAAAAAAAAAAAAADAAAADDDAADAAAAAAADAAADAAADAADDDADDAAADAAAAAADDDADDDAAADAAAADAAAAAAAAADAAADAAAAAAAAADAAAAAAAAAAAAAAAAAADADAAAAAAAAAAADAAAAADAAAADAAAAAAAAAAAAADADAADAAAAAAAADAADAAAAAAAADAAAAAAAADDDAAAAAADAAADAAAAAADAADAAAAAADAAAADADAADAAAAAADAAAADAADDAADAADAAA", "output": "Anton" } ]
1,694,710,469
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
46
0
a=int(input()) b=input() c=b.count("A") d=b.count("D") if c>d: print("Anton") if d>c: print("Danik") else: print("Friendship")
Title: Anton and Danik Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anton likes to play chess, and so does his friend Danik. Once they have played *n* games in a row. For each game it's known who was the winner — Anton or Danik. None of the games ended with a tie. Now Anton wonders, who won more games, he or Danik? Help him determine this. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of games played. The second line contains a string *s*, consisting of *n* uppercase English letters 'A' and 'D' — the outcome of each of the games. The *i*-th character of the string is equal to 'A' if the Anton won the *i*-th game and 'D' if Danik won the *i*-th game. Output Specification: If Anton won more games than Danik, print "Anton" (without quotes) in the only line of the output. If Danik won more games than Anton, print "Danik" (without quotes) in the only line of the output. If Anton and Danik won the same number of games, print "Friendship" (without quotes). Demo Input: ['6\nADAAAA\n', '7\nDDDAADA\n', '6\nDADADA\n'] Demo Output: ['Anton\n', 'Danik\n', 'Friendship\n'] Note: In the first sample, Anton won 6 games, while Danik — only 1. Hence, the answer is "Anton". In the second sample, Anton won 3 games and Danik won 4 games, so the answer is "Danik". In the third sample, both Anton and Danik won 3 games and the answer is "Friendship".
```python a=int(input()) b=input() c=b.count("A") d=b.count("D") if c>d: print("Anton") if d>c: print("Danik") else: print("Friendship") ```
0
802
G
Fake News (easy)
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
As it's the first of April, Heidi is suspecting that the news she reads today are fake, and she does not want to look silly in front of all the contestants. She knows that a newspiece is fake if it contains heidi as a subsequence. Help Heidi assess whether the given piece is true, but please be discreet about it...
The first and only line of input contains a single nonempty string *s* of length at most 1000 composed of lowercase letters (a-z).
Output YES if the string *s* contains heidi as a subsequence and NO otherwise.
[ "abcheaibcdi\n", "hiedi\n" ]
[ "YES", "NO" ]
A string *s* contains another string *p* as a subsequence if it is possible to delete some characters from *s* and obtain *p*.
0
[ { "input": "abcheaibcdi", "output": "YES" }, { "input": "hiedi", "output": "NO" }, { "input": "ihied", "output": "NO" }, { "input": "diehi", "output": "NO" }, { "input": "deiih", "output": "NO" }, { "input": "iheid", "output": "NO" }, { "input": "eihdi", "output": "NO" }, { "input": "ehdii", "output": "NO" }, { "input": "edhii", "output": "NO" }, { "input": "deiih", "output": "NO" }, { "input": "ehdii", "output": "NO" }, { "input": "eufyajkssayhjhqcwxmctecaeepjwmfoscqprpcxsqfwnlgzsmmuwuoruantipholrauvxydfvftwfzhnckxswussvlidcojiciflpvkcxkkcmmvtfvxrkwcpeelwsuzqgamamdtdgzscmikvojfvqehblmjczkvtdeymgertgkwfwfukafqlfdhtedcctixhyetdypswgagrpyto", "output": "YES" }, { "input": "arfbvxgdvqzuloojjrwoyqqbxamxybaqltfimofulusfebodjkwwrgwcppkwiodtpjaraglyplgerrpqjkpoggjmfxhwtqrijpijrcyxnoodvwpyjfpvqaoazllbrpzananbrvvybboedidtuvqquklkpeflfaltukjhzjgiofombhbmqbihgtapswykfvlgdoapjqntvqsaohmbvnphvyyhvhavslamczuqifxnwknkaenqmlvetrqogqxmlptgrmqvxzdxdmwobjesmgxckpmawtioavwdngyiwkzypfnxcovwzdohshwlavwsthdssiadhiwmhpvgkrbezm", "output": "YES" }, { "input": "zcectngbqnejjjtsfrluummmqabzqbyccshjqbrjthzhlbmzjfxugvjouwhumsgrnopiyakfadjnbsesamhynsbfbfunupwbxvohfmpwlcpxhovwpfpciclatgmiufwdvtsqrsdcymvkldpnhfeisrzhyhhlkwdzthgprvkpyldeysvbmcibqkpudyrraqdlxpjecvwcvuiklcrsbgvqasmxmtxqzmawcjtozioqlfflinnxpeexbzloaeqjvglbdeufultpjqexvjjjkzemtzuzmxvawilcqdrcjzpqyhtwfphuonzwkotthsaxrmwtnlmcdylxqcfffyndqeouztluqwlhnkkvzwcfiscikv", "output": "YES" }, { "input": "plqaykgovxkvsiahdbglktdlhcqwelxxmtlyymrsyubxdskvyjkrowvcbpdofpjqspsrgpakdczletxujzlsegepzleipiyycpinzxgwjsgslnxsotouddgfcybozfpjhhocpybfjbaywsehbcfrayvancbrumdfngqytnhihyxnlvilrqyhnxeckprqafofelospffhtwguzjbbjlzbqrtiielbvzutzgpqxosiaqznndgobcluuqlhmffiowkjdlkokehtjdyjvmxsiyxureflmdomerfekxdvtitvwzmdsdzplkpbtafxqfpudnhfqpoiwvjnylanunmagoweobdvfjgepbsymfutrjarlxclhgavpytiiqwvojrptofuvlohzeguxdsrihsbucelhhuedltnnjgzxwyblbqvnoliiydfinzlogbvucwykryzcyibnniggbkdkdcdgcsbvvnavtyhtkanrblpvomvjs", "output": "YES" }, { "input": "fbldqzggeunkpwcfirxanmntbfrudijltoertsdvcvcmbwodbibsrxendzebvxwydpasaqnisrijctsuatihxxygbeovhxjdptdcppkvfytdpjspvrannxavmkmisqtygntxkdlousdypyfkrpzapysfpdbyprufwzhunlsfugojddkmxzinatiwfxdqmgyrnjnxvrclhxyuwxtshoqdjptmeecvgmrlvuwqtmnfnfeeiwcavwnqmyustawbjodzwsqmnjxhpqmgpysierlwbbdzcwprpsexyvreewcmlbvaiytjlxdqdaqftefdlmtmmjcwvfejshymhnouoshdzqcwzxpzupkbcievodzqkqvyjuuxxwepxjalvkzufnveji", "output": "YES" }, { "input": "htsyljgoelbbuipivuzrhmfpkgderqpoprlxdpasxhpmxvaztccldtmujjzjmcpdvsdghzpretlsyyiljhjznseaacruriufswuvizwwuvdioazophhyytvbiogttnnouauxllbdn", "output": "YES" }, { "input": "ikmxzqdzxqlvgeojsnhqzciujslwjyzzexnregabdqztpplosdakimjxmuqccbnwvzbajoiqgdobccwnrwmixohrbdarhoeeelzbpigiybtesybwefpcfx", "output": "YES" }, { "input": "bpvbpjvbdfiodsmahxpcubjxdykesubnypalhypantshkjffmxjmelblqnjdmtaltneuyudyevkgedkqrdmrfeemgpghwrifcwincfixokfgurhqbcfzeajrgkgpwqwsepudxulywowwxzdxkumsicsvnzfxspmjpaixgejeaoyoibegosqoyoydmphfpbutrrewyjecowjckvpcceoamtfbitdneuwqfvnagswlskmsmkhmxyfsrpqwhxzocyffiumcy", "output": "YES" }, { "input": "vllsexwrazvlfvhvrtqeohvzzresjdiuhomfpgqcxpqdevplecuaepixhlijatxzegciizpvyvxuembiplwklahlqibykfideysjygagjbgqkbhdhkatddcwlxboinfuomnpc", "output": "YES" }, { "input": "pnjdwpxmvfoqkjtbhquqcuredrkwqzzfjmdvpnbqtypzdovemhhclkvigjvtprrpzbrbcbatkucaqteuciuozytsptvsskkeplaxdaqmjkmef", "output": "NO" }, { "input": "jpwfhvlxvsdhtuozvlmnfiotrgapgjxtcsgcjnodcztupysvvvmjpzqkpommadppdrykuqkcpzojcwvlogvkddedwbggkrhuvtsvdiokehlkdlnukcufjvqxnikcdawvexxwffxtriqbdmkahxdtygodzohwtdmmuvmatdkvweqvaehaxiefpevkvqpyxsrhtmgjsdfcwzqobibeduooldrmglbinrepmunizheqzvgqvpdskhxfidxfnbisyizhepwyrcykcmjxnkyfjgrqlkixcvysa", "output": "YES" }, { "input": "aftcrvuumeqbfvaqlltscnuhkpcifrrhnutjinxdhhdbzvizlrapzjdatuaynoplgjketupgaejciosofuhcgcjdcucarfvtsofgubtphijciswsvidnvpztlaarydkeqxzwdhfbmullkimerukusbrdnnujviydldrwhdfllsjtziwfeaiqotbiprespmxjulnyunkdtcghrzvhtcychkwatqqmladxpvmvlkzscthylbzkpgwlzfjqwarqvdeyngekqvrhrftpxnkfcibbowvnqdkulcdydspcubwlgoyinpnzgidbgunparnueddzwtzdiavbprbbg", "output": "YES" }, { "input": "oagjghsidigeh", "output": "NO" }, { "input": "chdhzpfzabupskiusjoefrwmjmqkbmdgboicnszkhdrlegeqjsldurmbshijadlwsycselhlnudndpdhcnhruhhvsgbthpruiqfirxkhpqhzhqdfpyozolbionodypfcqfeqbkcgmqkizgeyyelzeoothexcoaahedgrvoemqcwccbvoeqawqeuusyjxmgjkpfwcdttfmwunzuwvsihliexlzygqcgpbdiawfvqukikhbjerjkyhpcknlndaystrgsinghlmekbvhntcpypmchcwoglsmwwdulqneuabuuuvtyrnjxfcgoothalwkzzfxakneusezgnnepkpipzromqubraiggqndliz", "output": "YES" }, { "input": "lgirxqkrkgjcutpqitmffvbujcljkqardlalyigxorscczuzikoylcxenryhskoavymexysvmhbsvhtycjlmzhijpuvcjshyfeycvvcfyzytzoyvxajpqdjtfiatnvxnyeqtfcagfftafllhhjhplbdsrfpctkqpinpdfrtlzyjllfbeffputywcckupyslkbbzpgcnxgbmhtqeqqehpdaokkjtatrhyiuusjhwgiiiikxpzdueasemosmmccoakafgvxduwiuflovhhfhffgnnjhoperhhjtvocpqytjxkmrknnknqeglffhfuplopmktykxuvcmbwpoeisrlyyhdpxfvzseucofyhziuiikihpqheqdyzwigeaqzhxzvporgisxgvhyicqyejovqloibhbunsvsunpvmdckkbuokitdzleilfwutcvuuytpupizinfjrzhxudsmjcjyfcpfgthujjowdwtgbvi", "output": "YES" }, { "input": "uuehrvufgerqbzyzksmqnewacotuimawhlbycdbsmhshrsbqwybbkwjwsrkwptvlbbwjiivqugzrxxwgidrcrhrwsmwgeoleptfamzefgaeyxouxocrpvomjrazmxrnffdwrrmblgdiabdncvfougtmjgvvazasnygdrigbsrieoonirlivfyodvulouslxosswgpdexuldmkdbpdlgutiotvxjyecbrsvbmqxrlcpcipjjncduyqtohlzybvlemmfdeubihwlwqglkgjvnwrbgydcpwklmjeewqklmqdbajqgrpnynaxfvxjzgibqerxyhnxenrmcdqaaeksbzyrcaepozqpetaurlhjuxxhwppuhgoihxdxbmxeiahyaqkbknktlzkheaarjoqqrsyeducvoygwalgarldcdlqogfvsncejssmx", "output": "YES" }, { "input": "iiopulfjxoitgiusqrhgbkiyzinphjtclodbkkydetylvuimkhdkklmyoacmekdvjpuxcrvqnjhqhhbfenlpzpwijtykqziocilvtpqhxuyrphdlamawjuzgjwiebkqyrzyqgtkcrhntjxqmcgkrqcslogjegfrivzidfedeegwbbsopvxvdoididlpypjogxaodtueebbwuwilacunqpozczcgrpaxxrtogpxgfkudtxchoravrrdtimhenwmnafxaruuojduxxglefejycfcyxllfimkszmbrhcwpnwjqgwvzysmlaaifdxfjjpgjmcksiigpanappjdloiolojmcqbnpnjjzaufdpjaknylmyvolhwypygwepmqwpiglpcnpypnudhdzpdvgzosyjthzcwtytxq", "output": "YES" } ]
1,619,180,464
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
61
0
a=str(input()) if "h" and "e" and "i" and "d" and"i" in a: print("YES") else: print("NO")
Title: Fake News (easy) Time Limit: None seconds Memory Limit: None megabytes Problem Description: As it's the first of April, Heidi is suspecting that the news she reads today are fake, and she does not want to look silly in front of all the contestants. She knows that a newspiece is fake if it contains heidi as a subsequence. Help Heidi assess whether the given piece is true, but please be discreet about it... Input Specification: The first and only line of input contains a single nonempty string *s* of length at most 1000 composed of lowercase letters (a-z). Output Specification: Output YES if the string *s* contains heidi as a subsequence and NO otherwise. Demo Input: ['abcheaibcdi\n', 'hiedi\n'] Demo Output: ['YES', 'NO'] Note: A string *s* contains another string *p* as a subsequence if it is possible to delete some characters from *s* and obtain *p*.
```python a=str(input()) if "h" and "e" and "i" and "d" and"i" in a: print("YES") else: print("NO") ```
0
762
A
k-th divisor
PROGRAMMING
1,400
[ "math", "number theory" ]
null
null
You are given two integers *n* and *k*. Find *k*-th smallest divisor of *n*, or report that it doesn't exist. Divisor of *n* is any such natural number, that *n* can be divided by it without remainder.
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1015, 1<=≤<=*k*<=≤<=109).
If *n* has less than *k* divisors, output -1. Otherwise, output the *k*-th smallest divisor of *n*.
[ "4 2\n", "5 3\n", "12 5\n" ]
[ "2\n", "-1\n", "6\n" ]
In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2. In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
0
[ { "input": "4 2", "output": "2" }, { "input": "5 3", "output": "-1" }, { "input": "12 5", "output": "6" }, { "input": "1 1", "output": "1" }, { "input": "866421317361600 26880", "output": "866421317361600" }, { "input": "866421317361600 26881", "output": "-1" }, { "input": "1000000000000000 1000000000", "output": "-1" }, { "input": "1000000000000000 100", "output": "1953125" }, { "input": "1 2", "output": "-1" }, { "input": "4 3", "output": "4" }, { "input": "4 4", "output": "-1" }, { "input": "9 3", "output": "9" }, { "input": "21 3", "output": "7" }, { "input": "67280421310721 1", "output": "1" }, { "input": "6 3", "output": "3" }, { "input": "3 3", "output": "-1" }, { "input": "16 3", "output": "4" }, { "input": "1 1000", "output": "-1" }, { "input": "16 4", "output": "8" }, { "input": "36 8", "output": "18" }, { "input": "49 4", "output": "-1" }, { "input": "9 4", "output": "-1" }, { "input": "16 1", "output": "1" }, { "input": "16 6", "output": "-1" }, { "input": "16 5", "output": "16" }, { "input": "25 4", "output": "-1" }, { "input": "4010815561 2", "output": "63331" }, { "input": "49 3", "output": "49" }, { "input": "36 6", "output": "9" }, { "input": "36 10", "output": "-1" }, { "input": "25 3", "output": "25" }, { "input": "22876792454961 28", "output": "7625597484987" }, { "input": "1234 2", "output": "2" }, { "input": "179458711 2", "output": "179458711" }, { "input": "900104343024121 100000", "output": "-1" }, { "input": "8 3", "output": "4" }, { "input": "100 6", "output": "20" }, { "input": "15500 26", "output": "-1" }, { "input": "111111 1", "output": "1" }, { "input": "100000000000000 200", "output": "160000000000" }, { "input": "1000000000000 100", "output": "6400000" }, { "input": "100 10", "output": "-1" }, { "input": "1000000000039 2", "output": "1000000000039" }, { "input": "64 5", "output": "16" }, { "input": "999999961946176 33", "output": "63245552" }, { "input": "376219076689 3", "output": "376219076689" }, { "input": "999999961946176 63", "output": "999999961946176" }, { "input": "1048576 12", "output": "2048" }, { "input": "745 21", "output": "-1" }, { "input": "748 6", "output": "22" }, { "input": "999999961946176 50", "output": "161082468097" }, { "input": "10 3", "output": "5" }, { "input": "1099511627776 22", "output": "2097152" }, { "input": "1000000007 100010", "output": "-1" }, { "input": "3 1", "output": "1" }, { "input": "100 8", "output": "50" }, { "input": "100 7", "output": "25" }, { "input": "7 2", "output": "7" }, { "input": "999999961946176 64", "output": "-1" }, { "input": "20 5", "output": "10" }, { "input": "999999999999989 2", "output": "999999999999989" }, { "input": "100000000000000 114", "output": "10240000" }, { "input": "99999640000243 3", "output": "9999991" }, { "input": "999998000001 566", "output": "333332666667" }, { "input": "99999820000081 2", "output": "9999991" }, { "input": "49000042000009 3", "output": "49000042000009" }, { "input": "151491429961 4", "output": "-1" }, { "input": "32416190071 2", "output": "32416190071" }, { "input": "1000 8", "output": "25" }, { "input": "1999967841 15", "output": "1999967841" }, { "input": "26880 26880", "output": "-1" }, { "input": "151491429961 3", "output": "151491429961" }, { "input": "90000000000 300", "output": "100000000" }, { "input": "98765004361 10", "output": "-1" }, { "input": "15 2", "output": "3" }, { "input": "16 2", "output": "2" }, { "input": "1996 2", "output": "2" }, { "input": "1997 2", "output": "1997" }, { "input": "1999 2", "output": "1999" }, { "input": "1998 2", "output": "2" }, { "input": "1998 1", "output": "1" }, { "input": "1998 7", "output": "27" }, { "input": "1998 8", "output": "37" }, { "input": "100000380000361 2", "output": "10000019" }, { "input": "15 1", "output": "1" }, { "input": "100000000000000 226", "output": "-1" }, { "input": "844030857550613 517", "output": "-1" }, { "input": "4567890 14", "output": "430" }, { "input": "123123123 123123123", "output": "-1" }, { "input": "24 4", "output": "4" }, { "input": "999999993568952 17", "output": "31622777" }, { "input": "99999999994190 9", "output": "241656799" }, { "input": "999997874844049 4", "output": "-1" }, { "input": "99999999999931 2", "output": "99999999999931" }, { "input": "2 3", "output": "-1" }, { "input": "67280421310721 2", "output": "67280421310721" } ]
1,528,803,794
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
4
2,000
1,126,400
from functools import reduce from math import sqrt def factors(m): z = sqrt(m) result = set() for i in range(1, int(z) + 1): div, mod = divmod(m, i) if mod == 0: result |= {i, div} return result n, k = [int(j) for j in input().split()] def fact(k): lst1 = sorted(list(factors(n))) try: return lst1[k - 1] except IndexError: return -1 print(fact(k))
Title: k-th divisor Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two integers *n* and *k*. Find *k*-th smallest divisor of *n*, or report that it doesn't exist. Divisor of *n* is any such natural number, that *n* can be divided by it without remainder. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1015, 1<=≤<=*k*<=≤<=109). Output Specification: If *n* has less than *k* divisors, output -1. Otherwise, output the *k*-th smallest divisor of *n*. Demo Input: ['4 2\n', '5 3\n', '12 5\n'] Demo Output: ['2\n', '-1\n', '6\n'] Note: In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2. In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
```python from functools import reduce from math import sqrt def factors(m): z = sqrt(m) result = set() for i in range(1, int(z) + 1): div, mod = divmod(m, i) if mod == 0: result |= {i, div} return result n, k = [int(j) for j in input().split()] def fact(k): lst1 = sorted(list(factors(n))) try: return lst1[k - 1] except IndexError: return -1 print(fact(k)) ```
0
810
A
Straight <<A>>
PROGRAMMING
900
[ "implementation", "math" ]
null
null
Noora is a student of one famous high school. It's her final year in school — she is going to study in university next year. However, she has to get an «A» graduation certificate in order to apply to a prestigious one. In school, where Noora is studying, teachers are putting down marks to the online class register, which are integers from 1 to *k*. The worst mark is 1, the best is *k*. Mark that is going to the certificate, is calculated as an average of all the marks, rounded to the closest integer. If several answers are possible, rounding up is produced. For example, 7.3 is rounded to 7, but 7.5 and 7.8784 — to 8. For instance, if Noora has marks [8,<=9], then the mark to the certificate is 9, because the average is equal to 8.5 and rounded to 9, but if the marks are [8,<=8,<=9], Noora will have graduation certificate with 8. To graduate with «A» certificate, Noora has to have mark *k*. Noora got *n* marks in register this year. However, she is afraid that her marks are not enough to get final mark *k*. Noora decided to ask for help in the internet, where hacker Leha immediately responded to her request. He is ready to hack class register for Noora and to add Noora any number of additional marks from 1 to *k*. At the same time, Leha want his hack be unseen to everyone, so he decided to add as less as possible additional marks. Please help Leha to calculate the minimal number of marks he has to add, so that final Noora's mark will become equal to *k*.
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*k*<=≤<=100) denoting the number of marks, received by Noora and the value of highest possible mark. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*k*) denoting marks received by Noora before Leha's hack.
Print a single integer — minimal number of additional marks, that Leha has to add in order to change Noora's final mark to *k*.
[ "2 10\n8 9\n", "3 5\n4 4 4\n" ]
[ "4", "3" ]
Consider the first example testcase. Maximal mark is 10, Noora received two marks — 8 and 9, so current final mark is 9. To fix it, Leha can add marks [10, 10, 10, 10] (4 marks in total) to the registry, achieving Noora having average mark equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1b961585522f76271546da990a6228e7c666277f.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Consequently, new final mark is 10. Less number of marks won't fix the situation. In the second example Leha can add [5, 5, 5] to the registry, so that making average mark equal to 4.5, which is enough to have 5 in the certificate.
500
[ { "input": "2 10\n8 9", "output": "4" }, { "input": "3 5\n4 4 4", "output": "3" }, { "input": "3 10\n10 8 9", "output": "3" }, { "input": "2 23\n21 23", "output": "2" }, { "input": "5 10\n5 10 10 9 10", "output": "7" }, { "input": "12 50\n18 10 26 22 22 23 14 21 27 18 25 12", "output": "712" }, { "input": "38 12\n2 7 10 8 5 3 5 6 3 6 5 1 9 7 7 8 3 4 4 4 5 2 3 6 6 1 6 7 4 4 8 7 4 5 3 6 6 6", "output": "482" }, { "input": "63 86\n32 31 36 29 36 26 28 38 39 32 29 26 33 38 36 38 36 28 43 48 28 33 25 39 39 27 34 25 37 28 40 26 30 31 42 32 36 44 29 36 30 35 48 40 26 34 30 33 33 46 42 24 36 38 33 51 33 41 38 29 29 32 28", "output": "6469" }, { "input": "100 38\n30 24 38 31 31 33 32 32 29 34 29 22 27 23 34 25 32 30 30 26 16 27 38 33 38 38 37 34 32 27 33 23 33 32 24 24 30 36 29 30 33 30 29 30 36 33 33 35 28 24 30 32 38 29 30 36 31 30 27 38 31 36 15 37 32 27 29 24 38 33 28 29 34 21 37 35 32 31 27 25 27 28 31 31 36 38 35 35 36 29 35 22 38 31 38 28 31 27 34 31", "output": "1340" }, { "input": "33 69\n60 69 68 69 69 60 64 60 62 59 54 47 60 62 69 69 69 58 67 69 62 69 68 53 69 69 66 66 57 58 65 69 61", "output": "329" }, { "input": "39 92\n19 17 16 19 15 30 21 25 14 17 19 19 23 16 14 15 17 19 29 15 11 25 19 14 18 20 10 16 11 15 18 20 20 17 18 16 12 17 16", "output": "5753" }, { "input": "68 29\n29 29 29 29 29 28 29 29 29 27 29 29 29 29 29 29 29 23 29 29 26 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 26 29 29 29 29 29 29 29 29 29 29 29 29 22 29 29 29 29 29 29 29 29 29 29 29 29 29 28 29 29 29 29", "output": "0" }, { "input": "75 30\n22 18 21 26 23 18 28 30 24 24 19 25 28 30 23 29 18 23 23 30 26 30 17 30 18 19 25 26 26 15 27 23 30 21 19 26 25 30 25 28 20 22 22 21 26 17 23 23 24 15 25 19 18 22 30 30 29 21 30 28 28 30 27 25 24 15 22 19 30 21 20 30 18 20 25", "output": "851" }, { "input": "78 43\n2 7 6 5 5 6 4 5 3 4 6 8 4 5 5 4 3 1 2 4 4 6 5 6 4 4 6 4 8 4 6 5 6 1 4 5 6 3 2 5 2 5 3 4 8 8 3 3 4 4 6 6 5 4 5 5 7 9 3 9 6 4 7 3 6 9 6 5 1 7 2 5 6 3 6 2 5 4", "output": "5884" }, { "input": "82 88\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1", "output": "14170" }, { "input": "84 77\n28 26 36 38 37 44 48 34 40 22 42 35 40 37 30 31 33 35 36 55 47 36 33 47 40 38 27 38 36 33 35 31 47 33 30 38 38 47 49 24 38 37 28 43 39 36 34 33 29 38 36 43 48 38 36 34 33 34 35 31 26 33 39 37 37 37 35 52 47 30 24 46 38 26 43 46 41 50 33 40 36 41 37 30", "output": "6650" }, { "input": "94 80\n21 19 15 16 27 16 20 18 19 19 15 15 20 19 19 21 20 19 13 17 15 9 17 15 23 15 12 18 12 13 15 12 14 13 14 17 20 20 14 21 15 6 10 23 24 8 18 18 13 23 17 22 17 19 19 18 17 24 8 16 18 20 24 19 10 19 15 10 13 14 19 15 16 19 20 15 14 21 16 16 14 14 22 19 12 11 14 13 19 32 16 16 13 20", "output": "11786" }, { "input": "96 41\n13 32 27 34 28 34 30 26 21 24 29 20 25 34 25 16 27 15 22 22 34 22 25 19 23 17 17 22 26 24 23 20 21 27 19 33 13 24 22 18 30 30 27 14 26 24 20 20 22 11 19 31 19 29 18 28 30 22 17 15 28 32 17 24 17 24 24 19 26 23 22 29 18 22 23 29 19 32 26 23 22 22 24 23 27 30 24 25 21 21 33 19 35 27 34 28", "output": "3182" }, { "input": "1 26\n26", "output": "0" }, { "input": "99 39\n25 28 30 28 32 34 31 28 29 28 29 30 33 19 33 31 27 33 29 24 27 30 25 38 28 34 35 31 34 37 30 22 21 24 34 27 34 33 34 33 26 26 36 19 30 22 35 30 21 28 23 35 33 29 21 22 36 31 34 32 34 32 30 32 27 33 38 25 35 26 39 27 29 29 19 33 28 29 34 38 26 30 36 26 29 30 26 34 22 32 29 38 25 27 24 17 25 28 26", "output": "1807" }, { "input": "100 12\n7 6 6 3 5 5 9 8 7 7 4 7 12 6 9 5 6 3 4 7 9 10 7 7 5 3 9 6 9 9 6 7 4 10 4 8 8 6 9 8 6 5 7 4 10 7 5 6 8 9 3 4 8 5 4 8 6 10 5 8 7 5 9 8 5 8 5 6 9 11 4 9 5 5 11 4 6 6 7 3 8 9 6 7 10 4 7 6 9 4 8 11 5 4 10 8 5 10 11 4", "output": "946" }, { "input": "100 18\n1 2 2 2 2 2 1 1 1 2 3 1 3 1 1 4 2 4 1 2 1 2 1 3 2 1 2 1 1 1 2 1 2 2 1 1 4 3 1 1 2 1 3 3 2 1 2 2 1 1 1 1 3 1 1 2 2 1 1 1 5 1 2 1 3 2 2 1 4 2 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 2 1 2 2 2 1 1 3 1 1 2 1 1 2", "output": "3164" }, { "input": "100 27\n16 20 21 10 16 17 18 25 19 18 20 12 11 21 21 23 20 26 20 21 27 16 25 18 25 21 27 12 20 27 18 17 27 13 21 26 12 22 15 21 25 21 18 27 24 15 16 18 23 21 24 27 19 17 24 14 21 16 24 26 13 14 25 18 27 26 22 16 27 27 17 25 17 12 22 10 19 27 19 20 23 22 25 23 17 25 14 20 22 10 22 27 21 20 15 26 24 27 12 16", "output": "1262" }, { "input": "100 29\n20 18 23 24 14 14 16 23 22 17 18 22 21 21 19 19 14 11 18 19 16 22 25 20 14 13 21 24 18 16 18 29 17 25 12 10 18 28 11 16 17 14 15 20 17 20 18 22 10 16 16 20 18 19 29 18 25 27 17 19 24 15 24 25 16 23 19 16 16 20 19 15 12 21 20 13 21 15 15 23 16 23 17 13 17 21 13 18 17 18 18 20 16 12 19 15 27 14 11 18", "output": "2024" }, { "input": "100 30\n16 10 20 11 14 27 15 17 22 26 24 17 15 18 19 22 22 15 21 22 14 21 22 22 21 22 15 17 17 22 18 19 26 18 22 20 22 25 18 18 17 23 18 18 20 13 19 30 17 24 22 19 29 20 20 21 17 18 26 25 22 19 15 18 18 20 19 19 18 18 24 16 19 17 12 21 20 16 23 21 16 17 26 23 25 28 22 20 9 21 17 24 15 19 17 21 29 13 18 15", "output": "1984" }, { "input": "100 59\n56 58 53 59 59 48 59 54 46 59 59 58 48 59 55 59 59 50 59 56 59 59 59 59 59 59 59 57 59 53 45 53 50 59 50 55 58 54 59 56 54 59 59 59 59 48 56 59 59 57 59 59 48 43 55 57 39 59 46 55 55 52 58 57 51 59 59 59 59 53 59 43 51 54 46 59 57 43 50 59 47 58 59 59 59 55 46 56 55 59 56 47 56 56 46 51 47 48 59 55", "output": "740" }, { "input": "100 81\n6 7 6 6 7 6 6 6 3 9 4 5 4 3 4 6 6 6 1 3 9 5 2 3 8 5 6 9 6 6 6 5 4 4 7 7 3 6 11 7 6 4 8 7 12 6 4 10 2 4 9 11 7 4 7 7 8 8 6 7 9 8 4 5 8 13 6 6 6 8 6 2 5 6 7 5 4 4 4 4 2 6 4 8 3 4 7 7 6 7 7 10 5 10 6 7 4 11 8 4", "output": "14888" }, { "input": "100 100\n30 35 23 43 28 49 31 32 30 44 32 37 33 34 38 28 43 32 33 32 50 32 41 38 33 20 40 36 29 21 42 25 23 34 43 32 37 31 30 27 36 32 45 37 33 29 38 34 35 33 28 19 37 33 28 41 31 29 41 27 32 39 30 34 37 40 33 38 35 32 32 34 35 34 28 39 28 34 40 45 31 25 42 28 29 31 33 21 36 33 34 37 40 42 39 30 36 34 34 40", "output": "13118" }, { "input": "100 100\n71 87 100 85 89 98 90 90 71 65 76 75 85 100 81 100 91 80 73 89 86 78 82 89 77 92 78 90 100 81 85 89 73 100 66 60 72 88 91 73 93 76 88 81 86 78 83 77 74 93 97 94 85 78 82 78 91 91 100 78 89 76 78 82 81 78 83 88 87 83 78 98 85 97 98 89 88 75 76 86 74 81 70 76 86 84 99 100 89 94 72 84 82 88 83 89 78 99 87 76", "output": "3030" }, { "input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "19700" }, { "input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "0" }, { "input": "100 100\n1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "19696" }, { "input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99", "output": "0" }, { "input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 98 100 100 100 100 98 100 100 100 100 100 100 99 98 100 100 93 100 100 98 100 100 100 100 93 100 96 100 100 100 94 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 95 88 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "0" }, { "input": "100 100\n95 100 100 100 100 100 100 100 100 100 100 100 100 100 87 100 100 100 94 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 90 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 96 100 98 100 100 100 100 100 96 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 100", "output": "2" }, { "input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "100 2\n2 1 1 2 1 1 1 1 2 2 2 2 1 1 1 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 2 2 2 2 1 2 2 1 1 1 1 1 1 2 2 1 2 1 1 1 2 1 2 2 2 2 1 1 1 2 2 1 2 1 1 1 2 1 2 2 1 1 1 2 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2 1 1", "output": "16" }, { "input": "3 5\n5 5 5", "output": "0" }, { "input": "7 7\n1 1 1 1 1 1 1", "output": "77" }, { "input": "1 1\n1", "output": "0" }, { "input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "19700" }, { "input": "4 10\n10 10 10 10", "output": "0" }, { "input": "1 10\n10", "output": "0" }, { "input": "10 1\n1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "3 10\n10 10 10", "output": "0" }, { "input": "2 4\n3 4", "output": "0" }, { "input": "1 2\n2", "output": "0" }, { "input": "3 4\n4 4 4", "output": "0" }, { "input": "3 2\n2 2 1", "output": "0" }, { "input": "5 5\n5 5 5 5 5", "output": "0" }, { "input": "3 3\n3 3 3", "output": "0" }, { "input": "2 9\n8 9", "output": "0" }, { "input": "3 10\n9 10 10", "output": "0" }, { "input": "1 3\n3", "output": "0" }, { "input": "2 2\n1 2", "output": "0" }, { "input": "2 10\n10 10", "output": "0" }, { "input": "23 14\n7 11 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14", "output": "0" }, { "input": "2 10\n9 10", "output": "0" }, { "input": "2 2\n2 2", "output": "0" }, { "input": "10 5\n5 5 5 5 5 5 5 5 5 4", "output": "0" }, { "input": "3 5\n4 5 5", "output": "0" }, { "input": "5 4\n4 4 4 4 4", "output": "0" }, { "input": "2 10\n10 9", "output": "0" }, { "input": "4 5\n3 5 5 5", "output": "0" }, { "input": "10 5\n5 5 5 5 5 5 5 5 5 5", "output": "0" }, { "input": "3 10\n10 10 9", "output": "0" }, { "input": "5 1\n1 1 1 1 1", "output": "0" }, { "input": "2 1\n1 1", "output": "0" }, { "input": "4 10\n9 10 10 10", "output": "0" }, { "input": "5 2\n2 2 2 2 2", "output": "0" }, { "input": "2 5\n4 5", "output": "0" }, { "input": "5 10\n10 10 10 10 10", "output": "0" }, { "input": "2 6\n6 6", "output": "0" }, { "input": "2 9\n9 9", "output": "0" }, { "input": "3 10\n10 9 10", "output": "0" }, { "input": "4 40\n39 40 40 40", "output": "0" }, { "input": "3 4\n3 4 4", "output": "0" }, { "input": "9 9\n9 9 9 9 9 9 9 9 9", "output": "0" }, { "input": "1 4\n4", "output": "0" }, { "input": "4 7\n1 1 1 1", "output": "44" }, { "input": "1 5\n5", "output": "0" }, { "input": "3 1\n1 1 1", "output": "0" }, { "input": "1 100\n100", "output": "0" }, { "input": "2 7\n3 5", "output": "10" }, { "input": "3 6\n6 6 6", "output": "0" }, { "input": "4 2\n1 2 2 2", "output": "0" }, { "input": "4 5\n4 5 5 5", "output": "0" }, { "input": "5 5\n1 1 1 1 1", "output": "35" }, { "input": "66 2\n1 2 2 2 2 1 1 2 1 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 2 2 1 2 2 1 1 2 1 2 2 1 1 1 2 1 2 1 2 1 2 1 2 2 2 2 1 2 2 1 2 1 1 1 2 2 1", "output": "0" }, { "input": "2 2\n2 1", "output": "0" }, { "input": "5 5\n5 5 5 4 5", "output": "0" }, { "input": "3 7\n1 1 1", "output": "33" }, { "input": "2 5\n5 5", "output": "0" }, { "input": "1 7\n1", "output": "11" }, { "input": "6 7\n1 1 1 1 1 1", "output": "66" }, { "input": "99 97\n15 80 78 69 12 84 36 51 89 77 88 10 1 19 67 85 6 36 8 70 14 45 88 97 22 13 75 57 83 27 13 97 9 90 68 51 76 37 5 2 16 92 11 48 13 77 35 19 15 74 22 29 21 12 28 42 56 5 32 41 62 75 71 71 68 72 24 77 11 28 78 27 53 88 74 66 1 42 18 16 18 39 75 38 81 5 13 39 40 75 13 36 53 83 9 54 57 63 64", "output": "10077" }, { "input": "8 7\n1 1 1 1 1 1 1 1", "output": "88" }, { "input": "3 2\n2 2 2", "output": "0" }, { "input": "6 5\n5 5 5 5 5 5", "output": "0" }, { "input": "10 5\n5 5 5 5 5 5 5 4 1 1", "output": "8" }, { "input": "1 5\n1", "output": "7" }, { "input": "10 10\n10 10 10 10 10 10 10 10 10 10", "output": "0" }, { "input": "2 3\n2 3", "output": "0" }, { "input": "1 9\n9", "output": "0" }, { "input": "74 2\n2 2 2 2 1 2 2 1 1 1 2 2 1 2 2 2 2 1 2 1 1 1 2 1 1 2 2 1 2 1 1 2 1 1 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 1 1 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 2 1 2", "output": "0" }, { "input": "5 5\n5 5 5 5 4", "output": "0" } ]
1,604,367,277
2,147,483,647
Python 3
OK
TESTS
106
109
307,200
n, k = map(int, input().split()) a = [int(i)for i in input().split()] a = sum(a) x = 0 i = 0 while k-a/(n+x) > 0.5: i+=1 a+=k*i x+=i if k-a/(n+x) <= 0.5: a-=k*i x-=i break while k-a/(n+x) > 0.5: a+=k x+=1 print(x)
Title: Straight <<A>> Time Limit: None seconds Memory Limit: None megabytes Problem Description: Noora is a student of one famous high school. It's her final year in school — she is going to study in university next year. However, she has to get an «A» graduation certificate in order to apply to a prestigious one. In school, where Noora is studying, teachers are putting down marks to the online class register, which are integers from 1 to *k*. The worst mark is 1, the best is *k*. Mark that is going to the certificate, is calculated as an average of all the marks, rounded to the closest integer. If several answers are possible, rounding up is produced. For example, 7.3 is rounded to 7, but 7.5 and 7.8784 — to 8. For instance, if Noora has marks [8,<=9], then the mark to the certificate is 9, because the average is equal to 8.5 and rounded to 9, but if the marks are [8,<=8,<=9], Noora will have graduation certificate with 8. To graduate with «A» certificate, Noora has to have mark *k*. Noora got *n* marks in register this year. However, she is afraid that her marks are not enough to get final mark *k*. Noora decided to ask for help in the internet, where hacker Leha immediately responded to her request. He is ready to hack class register for Noora and to add Noora any number of additional marks from 1 to *k*. At the same time, Leha want his hack be unseen to everyone, so he decided to add as less as possible additional marks. Please help Leha to calculate the minimal number of marks he has to add, so that final Noora's mark will become equal to *k*. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*k*<=≤<=100) denoting the number of marks, received by Noora and the value of highest possible mark. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*k*) denoting marks received by Noora before Leha's hack. Output Specification: Print a single integer — minimal number of additional marks, that Leha has to add in order to change Noora's final mark to *k*. Demo Input: ['2 10\n8 9\n', '3 5\n4 4 4\n'] Demo Output: ['4', '3'] Note: Consider the first example testcase. Maximal mark is 10, Noora received two marks — 8 and 9, so current final mark is 9. To fix it, Leha can add marks [10, 10, 10, 10] (4 marks in total) to the registry, achieving Noora having average mark equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1b961585522f76271546da990a6228e7c666277f.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Consequently, new final mark is 10. Less number of marks won't fix the situation. In the second example Leha can add [5, 5, 5] to the registry, so that making average mark equal to 4.5, which is enough to have 5 in the certificate.
```python n, k = map(int, input().split()) a = [int(i)for i in input().split()] a = sum(a) x = 0 i = 0 while k-a/(n+x) > 0.5: i+=1 a+=k*i x+=i if k-a/(n+x) <= 0.5: a-=k*i x-=i break while k-a/(n+x) > 0.5: a+=k x+=1 print(x) ```
3