contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
839
C
Journey
PROGRAMMING
1,500
[ "dfs and similar", "dp", "graphs", "probabilities", "trees" ]
null
null
There are *n* cities and *n*<=-<=1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads. Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities. Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link [https://en.wikipedia.org/wiki/Expected_value](https://en.wikipedia.org/wiki/Expected_value).
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100000) — number of cities. Then *n*<=-<=1 lines follow. The *i*-th line of these lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the cities connected by the *i*-th road. It is guaranteed that one can reach any city from any other by the roads.
Print a number — the expected length of their journey. The journey starts in the city 1. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6. Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
[ "4\n1 2\n1 3\n2 4\n", "5\n1 2\n1 3\n3 4\n2 5\n" ]
[ "1.500000000000000\n", "2.000000000000000\n" ]
In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5. In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
1,500
[ { "input": "4\n1 2\n1 3\n2 4", "output": "1.500000000000000" }, { "input": "5\n1 2\n1 3\n3 4\n2 5", "output": "2.000000000000000" }, { "input": "70\n1 25\n57 1\n18 1\n65 1\n38 1\n1 41\n1 5\n1 69\n1 3\n31 1\n1 8\n1 9\n53 1\n70 1\n45 1\n1 24\n1 42\n1 30\n1 12\n1 37\n64 1\n1 28\n1 58\n1 22\n11 1\n1 4\n1 27\n1 16\n1 21\n54 1\n1 51\n1 43\n29 1\n56 1\n1 39\n32 1\n1 15\n1 17\n1 19\n1 40\n36 1\n48 1\n63 1\n1 7\n1 47\n1 13\n1 46\n60 1\n1 6\n23 1\n20 1\n1 52\n2 1\n26 1\n1 59\n1 66\n10 1\n1 62\n1 68\n1 55\n50 1\n33 1\n44 1\n1 34\n1 35\n1 61\n14 1\n67 1\n49 1", "output": "1.000000000000000" }, { "input": "10\n8 6\n9 10\n8 7\n1 4\n1 8\n9 5\n9 8\n2 5\n3 1", "output": "1.500000000000000" }, { "input": "1", "output": "0.000000000000000" } ]
1,597,942,546
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
139
68,608,000
import sys sys.setrecursionlimit(100000) LI=lambda:list(map(int, sys.stdin.readline().strip('\n').split())) MI=lambda:map(int, sys.stdin.readline().strip('\n').split()) SI=lambda:sys.stdin.readline().strip('\n') II=lambda:int(sys.stdin.readline().strip('\n')) def dfs(u): global g, vis, val vis[u]=True cnt=0 for v in g[u]: if not vis[v]: cnt+=1 dfs(v) if len(g[u])>1: s=0 for v in g[u]: s+=val[v] val[u]+=s/cnt+1 n=II() g={i:[] for i in range(n+1)} for _ in range(n-1): a, b=MI() g[a].append(b) g[b].append(a) vis=[False]*(n+1) val=[0]*(n+1) dfs(1) print(val[1])
Title: Journey Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* cities and *n*<=-<=1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads. Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities. Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link [https://en.wikipedia.org/wiki/Expected_value](https://en.wikipedia.org/wiki/Expected_value). Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100000) — number of cities. Then *n*<=-<=1 lines follow. The *i*-th line of these lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the cities connected by the *i*-th road. It is guaranteed that one can reach any city from any other by the roads. Output Specification: Print a number — the expected length of their journey. The journey starts in the city 1. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6. Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if . Demo Input: ['4\n1 2\n1 3\n2 4\n', '5\n1 2\n1 3\n3 4\n2 5\n'] Demo Output: ['1.500000000000000\n', '2.000000000000000\n'] Note: In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5. In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
```python import sys sys.setrecursionlimit(100000) LI=lambda:list(map(int, sys.stdin.readline().strip('\n').split())) MI=lambda:map(int, sys.stdin.readline().strip('\n').split()) SI=lambda:sys.stdin.readline().strip('\n') II=lambda:int(sys.stdin.readline().strip('\n')) def dfs(u): global g, vis, val vis[u]=True cnt=0 for v in g[u]: if not vis[v]: cnt+=1 dfs(v) if len(g[u])>1: s=0 for v in g[u]: s+=val[v] val[u]+=s/cnt+1 n=II() g={i:[] for i in range(n+1)} for _ in range(n-1): a, b=MI() g[a].append(b) g[b].append(a) vis=[False]*(n+1) val=[0]*(n+1) dfs(1) print(val[1]) ```
0
208
A
Dubstep
PROGRAMMING
900
[ "strings" ]
null
null
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them. Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club. For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX". Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
[ "WUBWUBABCWUB\n", "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n" ]
[ "ABC ", "WE ARE THE CHAMPIONS MY FRIEND " ]
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya. In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
500
[ { "input": "WUBWUBABCWUB", "output": "ABC " }, { "input": "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB", "output": "WE ARE THE CHAMPIONS MY FRIEND " }, { "input": "WUBWUBWUBSR", "output": "SR " }, { "input": "RWUBWUBWUBLWUB", "output": "R L " }, { "input": "ZJWUBWUBWUBJWUBWUBWUBL", "output": "ZJ J L " }, { "input": "CWUBBWUBWUBWUBEWUBWUBWUBQWUBWUBWUB", "output": "C B E Q " }, { "input": "WUBJKDWUBWUBWBIRAQKFWUBWUBYEWUBWUBWUBWVWUBWUB", "output": "JKD WBIRAQKF YE WV " }, { "input": "WUBKSDHEMIXUJWUBWUBRWUBWUBWUBSWUBWUBWUBHWUBWUBWUB", "output": "KSDHEMIXUJ R S H " }, { "input": "OGWUBWUBWUBXWUBWUBWUBIWUBWUBWUBKOWUBWUB", "output": "OG X I KO " }, { "input": "QWUBQQWUBWUBWUBIWUBWUBWWWUBWUBWUBJOPJPBRH", "output": "Q QQ I WW JOPJPBRH " }, { "input": "VSRNVEATZTLGQRFEGBFPWUBWUBWUBAJWUBWUBWUBPQCHNWUBCWUB", "output": "VSRNVEATZTLGQRFEGBFP AJ PQCHN C " }, { "input": "WUBWUBEWUBWUBWUBIQMJNIQWUBWUBWUBGZZBQZAUHYPWUBWUBWUBPMRWUBWUBWUBDCV", "output": "E IQMJNIQ GZZBQZAUHYP PMR DCV " }, { "input": "WUBWUBWUBFVWUBWUBWUBBPSWUBWUBWUBRXNETCJWUBWUBWUBJDMBHWUBWUBWUBBWUBWUBVWUBWUBB", "output": "FV BPS RXNETCJ JDMBH B V B " }, { "input": "WUBWUBWUBFBQWUBWUBWUBIDFSYWUBWUBWUBCTWDMWUBWUBWUBSXOWUBWUBWUBQIWUBWUBWUBL", "output": "FBQ IDFSY CTWDM SXO QI L " }, { "input": "IWUBWUBQLHDWUBYIIKZDFQWUBWUBWUBCXWUBWUBUWUBWUBWUBKWUBWUBWUBNL", "output": "I QLHD YIIKZDFQ CX U K NL " }, { "input": "KWUBUPDYXGOKUWUBWUBWUBAGOAHWUBIZDWUBWUBWUBIYWUBWUBWUBVWUBWUBWUBPWUBWUBWUBE", "output": "K UPDYXGOKU AGOAH IZD IY V P E " }, { "input": "WUBWUBOWUBWUBWUBIPVCQAFWYWUBWUBWUBQWUBWUBWUBXHDKCPYKCTWWYWUBWUBWUBVWUBWUBWUBFZWUBWUB", "output": "O IPVCQAFWY Q XHDKCPYKCTWWY V FZ " }, { "input": "PAMJGYWUBWUBWUBXGPQMWUBWUBWUBTKGSXUYWUBWUBWUBEWUBWUBWUBNWUBWUBWUBHWUBWUBWUBEWUBWUB", "output": "PAMJGY XGPQM TKGSXUY E N H E " }, { "input": "WUBYYRTSMNWUWUBWUBWUBCWUBWUBWUBCWUBWUBWUBFSYUINDWOBVWUBWUBWUBFWUBWUBWUBAUWUBWUBWUBVWUBWUBWUBJB", "output": "YYRTSMNWU C C FSYUINDWOBV F AU V JB " }, { "input": "WUBWUBYGPYEYBNRTFKOQCWUBWUBWUBUYGRTQEGWLFYWUBWUBWUBFVWUBHPWUBWUBWUBXZQWUBWUBWUBZDWUBWUBWUBM", "output": "YGPYEYBNRTFKOQC UYGRTQEGWLFY FV HP XZQ ZD M " }, { "input": "WUBZVMJWUBWUBWUBFOIMJQWKNZUBOFOFYCCWUBWUBWUBAUWWUBRDRADWUBWUBWUBCHQVWUBWUBWUBKFTWUBWUBWUBW", "output": "ZVMJ FOIMJQWKNZUBOFOFYCC AUW RDRAD CHQV KFT W " }, { "input": "WUBWUBZBKOKHQLGKRVIMZQMQNRWUBWUBWUBDACWUBWUBNZHFJMPEYKRVSWUBWUBWUBPPHGAVVPRZWUBWUBWUBQWUBWUBAWUBG", "output": "ZBKOKHQLGKRVIMZQMQNR DAC NZHFJMPEYKRVS PPHGAVVPRZ Q A G " }, { "input": "WUBWUBJWUBWUBWUBNFLWUBWUBWUBGECAWUBYFKBYJWTGBYHVSSNTINKWSINWSMAWUBWUBWUBFWUBWUBWUBOVWUBWUBLPWUBWUBWUBN", "output": "J NFL GECA YFKBYJWTGBYHVSSNTINKWSINWSMA F OV LP N " }, { "input": "WUBWUBLCWUBWUBWUBZGEQUEATJVIXETVTWUBWUBWUBEXMGWUBWUBWUBRSWUBWUBWUBVWUBWUBWUBTAWUBWUBWUBCWUBWUBWUBQG", "output": "LC ZGEQUEATJVIXETVT EXMG RS V TA C QG " }, { "input": "WUBMPWUBWUBWUBORWUBWUBDLGKWUBWUBWUBVVZQCAAKVJTIKWUBWUBWUBTJLUBZJCILQDIFVZWUBWUBYXWUBWUBWUBQWUBWUBWUBLWUB", "output": "MP OR DLGK VVZQCAAKVJTIK TJLUBZJCILQDIFVZ YX Q L " }, { "input": "WUBNXOLIBKEGXNWUBWUBWUBUWUBGITCNMDQFUAOVLWUBWUBWUBAIJDJZJHFMPVTPOXHPWUBWUBWUBISCIOWUBWUBWUBGWUBWUBWUBUWUB", "output": "NXOLIBKEGXN U GITCNMDQFUAOVL AIJDJZJHFMPVTPOXHP ISCIO G U " }, { "input": "WUBWUBNMMWCZOLYPNBELIYVDNHJUNINWUBWUBWUBDXLHYOWUBWUBWUBOJXUWUBWUBWUBRFHTGJCEFHCGWARGWUBWUBWUBJKWUBWUBSJWUBWUB", "output": "NMMWCZOLYPNBELIYVDNHJUNIN DXLHYO OJXU RFHTGJCEFHCGWARG JK SJ " }, { "input": "SGWLYSAUJOJBNOXNWUBWUBWUBBOSSFWKXPDPDCQEWUBWUBWUBDIRZINODWUBWUBWUBWWUBWUBWUBPPHWUBWUBWUBRWUBWUBWUBQWUBWUBWUBJWUB", "output": "SGWLYSAUJOJBNOXN BOSSFWKXPDPDCQE DIRZINOD W PPH R Q J " }, { "input": "TOWUBWUBWUBGBTBNWUBWUBWUBJVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSAWUBWUBWUBSWUBWUBWUBTOLVXWUBWUBWUBNHWUBWUBWUBO", "output": "TO GBTBN JVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSA S TOLVX NH O " }, { "input": "WUBWUBWSPLAYSZSAUDSWUBWUBWUBUWUBWUBWUBKRWUBWUBWUBRSOKQMZFIYZQUWUBWUBWUBELSHUWUBWUBWUBUKHWUBWUBWUBQXEUHQWUBWUBWUBBWUBWUBWUBR", "output": "WSPLAYSZSAUDS U KR RSOKQMZFIYZQU ELSHU UKH QXEUHQ B R " }, { "input": "WUBXEMWWVUHLSUUGRWUBWUBWUBAWUBXEGILZUNKWUBWUBWUBJDHHKSWUBWUBWUBDTSUYSJHWUBWUBWUBPXFWUBMOHNJWUBWUBWUBZFXVMDWUBWUBWUBZMWUBWUB", "output": "XEMWWVUHLSUUGR A XEGILZUNK JDHHKS DTSUYSJH PXF MOHNJ ZFXVMD ZM " }, { "input": "BMBWUBWUBWUBOQKWUBWUBWUBPITCIHXHCKLRQRUGXJWUBWUBWUBVWUBWUBWUBJCWUBWUBWUBQJPWUBWUBWUBBWUBWUBWUBBMYGIZOOXWUBWUBWUBTAGWUBWUBHWUB", "output": "BMB OQK PITCIHXHCKLRQRUGXJ V JC QJP B BMYGIZOOX TAG H " }, { "input": "CBZNWUBWUBWUBNHWUBWUBWUBYQSYWUBWUBWUBMWUBWUBWUBXRHBTMWUBWUBWUBPCRCWUBWUBWUBTZUYLYOWUBWUBWUBCYGCWUBWUBWUBCLJWUBWUBWUBSWUBWUBWUB", "output": "CBZN NH YQSY M XRHBTM PCRC TZUYLYO CYGC CLJ S " }, { "input": "DPDWUBWUBWUBEUQKWPUHLTLNXHAEKGWUBRRFYCAYZFJDCJLXBAWUBWUBWUBHJWUBOJWUBWUBWUBNHBJEYFWUBWUBWUBRWUBWUBWUBSWUBWWUBWUBWUBXDWUBWUBWUBJWUB", "output": "DPD EUQKWPUHLTLNXHAEKG RRFYCAYZFJDCJLXBA HJ OJ NHBJEYF R S W XD J " }, { "input": "WUBWUBWUBISERPQITVIYERSCNWUBWUBWUBQWUBWUBWUBDGSDIPWUBWUBWUBCAHKDZWEXBIBJVVSKKVQJWUBWUBWUBKIWUBWUBWUBCWUBWUBWUBAWUBWUBWUBPWUBWUBWUBHWUBWUBWUBF", "output": "ISERPQITVIYERSCN Q DGSDIP CAHKDZWEXBIBJVVSKKVQJ KI C A P H F " }, { "input": "WUBWUBWUBIWUBWUBLIKNQVWUBWUBWUBPWUBWUBWUBHWUBWUBWUBMWUBWUBWUBDPRSWUBWUBWUBBSAGYLQEENWXXVWUBWUBWUBXMHOWUBWUBWUBUWUBWUBWUBYRYWUBWUBWUBCWUBWUBWUBY", "output": "I LIKNQV P H M DPRS BSAGYLQEENWXXV XMHO U YRY C Y " }, { "input": "WUBWUBWUBMWUBWUBWUBQWUBWUBWUBITCFEYEWUBWUBWUBHEUWGNDFNZGWKLJWUBWUBWUBMZPWUBWUBWUBUWUBWUBWUBBWUBWUBWUBDTJWUBHZVIWUBWUBWUBPWUBFNHHWUBWUBWUBVTOWUB", "output": "M Q ITCFEYE HEUWGNDFNZGWKLJ MZP U B DTJ HZVI P FNHH VTO " }, { "input": "WUBWUBNDNRFHYJAAUULLHRRDEDHYFSRXJWUBWUBWUBMUJVDTIRSGYZAVWKRGIFWUBWUBWUBHMZWUBWUBWUBVAIWUBWUBWUBDDKJXPZRGWUBWUBWUBSGXWUBWUBWUBIFKWUBWUBWUBUWUBWUBWUBW", "output": "NDNRFHYJAAUULLHRRDEDHYFSRXJ MUJVDTIRSGYZAVWKRGIF HMZ VAI DDKJXPZRG SGX IFK U W " }, { "input": "WUBOJMWRSLAXXHQRTPMJNCMPGWUBWUBWUBNYGMZIXNLAKSQYWDWUBWUBWUBXNIWUBWUBWUBFWUBWUBWUBXMBWUBWUBWUBIWUBWUBWUBINWUBWUBWUBWDWUBWUBWUBDDWUBWUBWUBD", "output": "OJMWRSLAXXHQRTPMJNCMPG NYGMZIXNLAKSQYWD XNI F XMB I IN WD DD D " }, { "input": "WUBWUBWUBREHMWUBWUBWUBXWUBWUBWUBQASNWUBWUBWUBNLSMHLCMTICWUBWUBWUBVAWUBWUBWUBHNWUBWUBWUBNWUBWUBWUBUEXLSFOEULBWUBWUBWUBXWUBWUBWUBJWUBWUBWUBQWUBWUBWUBAWUBWUB", "output": "REHM X QASN NLSMHLCMTIC VA HN N UEXLSFOEULB X J Q A " }, { "input": "WUBWUBWUBSTEZTZEFFIWUBWUBWUBSWUBWUBWUBCWUBFWUBHRJPVWUBWUBWUBDYJUWUBWUBWUBPWYDKCWUBWUBWUBCWUBWUBWUBUUEOGCVHHBWUBWUBWUBEXLWUBWUBWUBVCYWUBWUBWUBMWUBWUBWUBYWUB", "output": "STEZTZEFFI S C F HRJPV DYJU PWYDKC C UUEOGCVHHB EXL VCY M Y " }, { "input": "WPPNMSQOQIWUBWUBWUBPNQXWUBWUBWUBHWUBWUBWUBNFLWUBWUBWUBGWSGAHVJFNUWUBWUBWUBFWUBWUBWUBWCMLRICFSCQQQTNBWUBWUBWUBSWUBWUBWUBKGWUBWUBWUBCWUBWUBWUBBMWUBWUBWUBRWUBWUB", "output": "WPPNMSQOQI PNQX H NFL GWSGAHVJFNU F WCMLRICFSCQQQTNB S KG C BM R " }, { "input": "YZJOOYITZRARKVFYWUBWUBRZQGWUBWUBWUBUOQWUBWUBWUBIWUBWUBWUBNKVDTBOLETKZISTWUBWUBWUBWLWUBQQFMMGSONZMAWUBZWUBWUBWUBQZUXGCWUBWUBWUBIRZWUBWUBWUBLTTVTLCWUBWUBWUBY", "output": "YZJOOYITZRARKVFY RZQG UOQ I NKVDTBOLETKZIST WL QQFMMGSONZMA Z QZUXGC IRZ LTTVTLC Y " }, { "input": "WUBCAXNCKFBVZLGCBWCOAWVWOFKZVQYLVTWUBWUBWUBNLGWUBWUBWUBAMGDZBDHZMRMQMDLIRMIWUBWUBWUBGAJSHTBSWUBWUBWUBCXWUBWUBWUBYWUBZLXAWWUBWUBWUBOHWUBWUBWUBZWUBWUBWUBGBWUBWUBWUBE", "output": "CAXNCKFBVZLGCBWCOAWVWOFKZVQYLVT NLG AMGDZBDHZMRMQMDLIRMI GAJSHTBS CX Y ZLXAW OH Z GB E " }, { "input": "WUBWUBCHXSOWTSQWUBWUBWUBCYUZBPBWUBWUBWUBSGWUBWUBWKWORLRRLQYUUFDNWUBWUBWUBYYGOJNEVEMWUBWUBWUBRWUBWUBWUBQWUBWUBWUBIHCKWUBWUBWUBKTWUBWUBWUBRGSNTGGWUBWUBWUBXCXWUBWUBWUBS", "output": "CHXSOWTSQ CYUZBPB SG WKWORLRRLQYUUFDN YYGOJNEVEM R Q IHCK KT RGSNTGG XCX S " }, { "input": "WUBWUBWUBHJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQWUBWUBWUBXTZKGIITWUBWUBWUBAWUBWUBWUBVNCXPUBCQWUBWUBWUBIDPNAWUBWUBWUBOWUBWUBWUBYGFWUBWUBWUBMQOWUBWUBWUBKWUBWUBWUBAZVWUBWUBWUBEP", "output": "HJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQ XTZKGIIT A VNCXPUBCQ IDPNA O YGF MQO K AZV EP " }, { "input": "WUBKYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTVWUBWUBWUBLRMIIWUBWUBWUBGWUBWUBWUBADPSWUBWUBWUBANBWUBWUBPCWUBWUBWUBPWUBWUBWUBGPVNLSWIRFORYGAABUXMWUBWUBWUBOWUBWUBWUBNWUBWUBWUBYWUBWUB", "output": "KYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTV LRMII G ADPS ANB PC P GPVNLSWIRFORYGAABUXM O N Y " }, { "input": "REWUBWUBWUBJDWUBWUBWUBNWUBWUBWUBTWWUBWUBWUBWZDOCKKWUBWUBWUBLDPOVBFRCFWUBWUBAKZIBQKEUAZEEWUBWUBWUBLQYPNPFWUBYEWUBWUBWUBFWUBWUBWUBBPWUBWUBWUBAWWUBWUBWUBQWUBWUBWUBBRWUBWUBWUBXJL", "output": "RE JD N TW WZDOCKK LDPOVBFRCF AKZIBQKEUAZEE LQYPNPF YE F BP AW Q BR XJL " }, { "input": "CUFGJDXGMWUBWUBWUBOMWUBWUBWUBSIEWUBWUBWUBJJWKNOWUBWUBWUBYBHVNRNORGYWUBWUBWUBOAGCAWUBWUBWUBSBLBKTPFKPBIWUBWUBWUBJBWUBWUBWUBRMFCJPGWUBWUBWUBDWUBWUBWUBOJOWUBWUBWUBZPWUBWUBWUBMWUBRWUBWUBWUBFXWWUBWUBWUBO", "output": "CUFGJDXGM OM SIE JJWKNO YBHVNRNORGY OAGCA SBLBKTPFKPBI JB RMFCJPG D OJO ZP M R FXW O " }, { "input": "WUBJZGAEXFMFEWMAKGQLUWUBWUBWUBICYTPQWGENELVYWANKUOJYWUBWUBWUBGWUBWUBWUBHYCJVLPHTUPNEGKCDGQWUBWUBWUBOFWUBWUBWUBCPGSOGZBRPRPVJJEWUBWUBWUBDQBCWUBWUBWUBHWUBWUBWUBMHOHYBMATWUBWUBWUBVWUBWUBWUBSWUBWUBWUBKOWU", "output": "JZGAEXFMFEWMAKGQLU ICYTPQWGENELVYWANKUOJY G HYCJVLPHTUPNEGKCDGQ OF CPGSOGZBRPRPVJJE DQBC H MHOHYBMAT V S KOWU " }, { "input": "A", "output": "A " }, { "input": "WUBA", "output": "A " }, { "input": "WUBWUBA", "output": "A " }, { "input": "AWUBWUBWUB", "output": "A " }, { "input": "AWUBBWUBCWUBD", "output": "A B C D " }, { "input": "WUBWWUBWUBWUBUWUBWUBBWUB", "output": "W U B " }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA " }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA " }, { "input": "WUWUBBWWUBUB", "output": "WU BW UB " }, { "input": "WUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUABWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUB", "output": "WUAB " }, { "input": "ZWUB", "output": "Z " }, { "input": "WU", "output": "WU " }, { "input": "UB", "output": "UB " }, { "input": "U", "output": "U " }, { "input": "WUBW", "output": "W " }, { "input": "WUBWU", "output": "WU " }, { "input": "WUWUB", "output": "WU " }, { "input": "UBWUB", "output": "UB " }, { "input": "WUWUBUBWUBUWUB", "output": "WU UB U " }, { "input": "WUBWWUBAWUB", "output": "W A " }, { "input": "WUUUUU", "output": "WUUUUU " } ]
1,680,119,409
2,147,483,647
Python 3
OK
TESTS
71
124
0
remix = input().replace('WUB',' ').lstrip() print(remix)
Title: Dubstep Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them. Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club. For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX". Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song. Input Specification: The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word. Output Specification: Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space. Demo Input: ['WUBWUBABCWUB\n', 'WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n'] Demo Output: ['ABC ', 'WE ARE THE CHAMPIONS MY FRIEND '] Note: In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya. In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
```python remix = input().replace('WUB',' ').lstrip() print(remix) ```
3
835
A
Key races
PROGRAMMING
800
[ "math" ]
null
null
Two boys decided to compete in text typing on the site "Key races". During the competition, they have to type a text consisting of *s* characters. The first participant types one character in *v*1 milliseconds and has ping *t*1 milliseconds. The second participant types one character in *v*2 milliseconds and has ping *t*2 milliseconds. If connection ping (delay) is *t* milliseconds, the competition passes for a participant as follows: 1. Exactly after *t* milliseconds after the start of the competition the participant receives the text to be entered. 1. Right after that he starts to type it. 1. Exactly *t* milliseconds after he ends typing all the text, the site receives information about it. The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw. Given the length of the text and the information about participants, determine the result of the game.
The first line contains five integers *s*, *v*1, *v*2, *t*1, *t*2 (1<=≤<=*s*,<=*v*1,<=*v*2,<=*t*1,<=*t*2<=≤<=1000) — the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant.
If the first participant wins, print "First". If the second participant wins, print "Second". In case of a draw print "Friendship".
[ "5 1 2 1 2\n", "3 3 1 1 1\n", "4 5 3 1 5\n" ]
[ "First\n", "Second\n", "Friendship\n" ]
In the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant — in 14 milliseconds. So, the first wins. In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant — in 5 milliseconds. So, the second wins. In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant — in 22 milliseconds. So, it is be a draw.
500
[ { "input": "5 1 2 1 2", "output": "First" }, { "input": "3 3 1 1 1", "output": "Second" }, { "input": "4 5 3 1 5", "output": "Friendship" }, { "input": "1000 1000 1000 1000 1000", "output": "Friendship" }, { "input": "1 1 1 1 1", "output": "Friendship" }, { "input": "8 8 1 1 1", "output": "Second" }, { "input": "15 14 32 65 28", "output": "First" }, { "input": "894 197 325 232 902", "output": "First" }, { "input": "1 2 8 8 5", "output": "Friendship" }, { "input": "37 261 207 1 1000", "output": "Friendship" }, { "input": "29 344 406 900 1", "output": "Friendship" }, { "input": "1 2 8 9 8", "output": "First" }, { "input": "2 9 8 8 9", "output": "Friendship" }, { "input": "213 480 811 134 745", "output": "First" }, { "input": "2 313 856 964 421", "output": "Friendship" }, { "input": "1 10 2 6 10", "output": "Friendship" }, { "input": "2 7 6 2 3", "output": "Friendship" }, { "input": "637 324 69 612 998", "output": "Second" }, { "input": "13 849 819 723 918", "output": "Friendship" }, { "input": "9 5 7 8 7", "output": "First" }, { "input": "6 5 7 10 4", "output": "Friendship" }, { "input": "61 464 623 89 548", "output": "First" }, { "input": "641 31 29 161 802", "output": "Friendship" }, { "input": "3 3 1 6 9", "output": "Friendship" }, { "input": "2 3 9 8 2", "output": "Friendship" }, { "input": "485 117 368 567 609", "output": "First" }, { "input": "4 202 512 995 375", "output": "Friendship" }, { "input": "424 41 41 909 909", "output": "Friendship" }, { "input": "884 913 263 641 265", "output": "Second" }, { "input": "12 462 8 311 327", "output": "Second" }, { "input": "436 306 266 493 580", "output": "Second" }, { "input": "69 1 2 1 2", "output": "First" } ]
1,586,503,781
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
124
0
s,x,y,a,b=map(int,input().split()) xx=2*x+s*a yy=2*y+s*b if(xx<yy): print("First") elif(xx>yy): print("Second") else: print("Friendship")
Title: Key races Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two boys decided to compete in text typing on the site "Key races". During the competition, they have to type a text consisting of *s* characters. The first participant types one character in *v*1 milliseconds and has ping *t*1 milliseconds. The second participant types one character in *v*2 milliseconds and has ping *t*2 milliseconds. If connection ping (delay) is *t* milliseconds, the competition passes for a participant as follows: 1. Exactly after *t* milliseconds after the start of the competition the participant receives the text to be entered. 1. Right after that he starts to type it. 1. Exactly *t* milliseconds after he ends typing all the text, the site receives information about it. The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw. Given the length of the text and the information about participants, determine the result of the game. Input Specification: The first line contains five integers *s*, *v*1, *v*2, *t*1, *t*2 (1<=≤<=*s*,<=*v*1,<=*v*2,<=*t*1,<=*t*2<=≤<=1000) — the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant. Output Specification: If the first participant wins, print "First". If the second participant wins, print "Second". In case of a draw print "Friendship". Demo Input: ['5 1 2 1 2\n', '3 3 1 1 1\n', '4 5 3 1 5\n'] Demo Output: ['First\n', 'Second\n', 'Friendship\n'] Note: In the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant — in 14 milliseconds. So, the first wins. In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant — in 5 milliseconds. So, the second wins. In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant — in 22 milliseconds. So, it is be a draw.
```python s,x,y,a,b=map(int,input().split()) xx=2*x+s*a yy=2*y+s*b if(xx<yy): print("First") elif(xx>yy): print("Second") else: print("Friendship") ```
0
148
A
Insomnia cure
PROGRAMMING
800
[ "constructive algorithms", "implementation", "math" ]
null
null
«One dragon. Two dragon. Three dragon», — the princess was counting. She had trouble falling asleep, and she got bored of counting lambs when she was nine. However, just counting dragons was boring as well, so she entertained herself at best she could. Tonight she imagined that all dragons were here to steal her, and she was fighting them off. Every *k*-th dragon got punched in the face with a frying pan. Every *l*-th dragon got his tail shut into the balcony door. Every *m*-th dragon got his paws trampled with sharp heels. Finally, she threatened every *n*-th dragon to call her mom, and he withdrew in panic. How many imaginary dragons suffered moral or physical damage tonight, if the princess counted a total of *d* dragons?
Input data contains integer numbers *k*,<=*l*,<=*m*,<=*n* and *d*, each number in a separate line (1<=≤<=*k*,<=*l*,<=*m*,<=*n*<=≤<=10, 1<=≤<=*d*<=≤<=105).
Output the number of damaged dragons.
[ "1\n2\n3\n4\n12\n", "2\n3\n4\n5\n24\n" ]
[ "12\n", "17\n" ]
In the first case every first dragon got punched with a frying pan. Some of the dragons suffered from other reasons as well, but the pan alone would be enough. In the second case dragons 1, 7, 11, 13, 17, 19 and 23 escaped unharmed.
1,000
[ { "input": "1\n2\n3\n4\n12", "output": "12" }, { "input": "2\n3\n4\n5\n24", "output": "17" }, { "input": "1\n1\n1\n1\n100000", "output": "100000" }, { "input": "10\n9\n8\n7\n6", "output": "0" }, { "input": "8\n4\n4\n3\n65437", "output": "32718" }, { "input": "8\n4\n1\n10\n59392", "output": "59392" }, { "input": "4\n1\n8\n7\n44835", "output": "44835" }, { "input": "6\n1\n7\n2\n62982", "output": "62982" }, { "input": "2\n7\n4\n9\n56937", "output": "35246" }, { "input": "2\n9\n8\n1\n75083", "output": "75083" }, { "input": "8\n7\n7\n6\n69038", "output": "24656" }, { "input": "4\n4\n2\n3\n54481", "output": "36320" }, { "input": "6\n4\n9\n8\n72628", "output": "28244" }, { "input": "9\n7\n8\n10\n42357", "output": "16540" }, { "input": "5\n6\n4\n3\n60504", "output": "36302" }, { "input": "7\n2\n3\n8\n21754", "output": "15539" }, { "input": "1\n2\n10\n4\n39901", "output": "39901" }, { "input": "3\n4\n7\n1\n58048", "output": "58048" }, { "input": "9\n10\n4\n6\n52003", "output": "21956" }, { "input": "5\n10\n9\n3\n70149", "output": "32736" }, { "input": "5\n5\n5\n10\n55592", "output": "11118" }, { "input": "1\n5\n2\n6\n49547", "output": "49547" }, { "input": "3\n7\n7\n7\n84046", "output": "36019" }, { "input": "10\n2\n1\n8\n63537", "output": "63537" }, { "input": "7\n2\n10\n5\n81684", "output": "53678" }, { "input": "7\n1\n6\n8\n99831", "output": "99831" }, { "input": "3\n9\n3\n3\n61082", "output": "20360" }, { "input": "5\n5\n8\n9\n79228", "output": "29931" }, { "input": "1\n5\n5\n6\n89535", "output": "89535" }, { "input": "5\n5\n2\n1\n7682", "output": "7682" }, { "input": "7\n4\n8\n8\n25829", "output": "9224" }, { "input": "3\n4\n3\n3\n87079", "output": "43539" }, { "input": "5\n8\n4\n9\n5226", "output": "2438" }, { "input": "4\n9\n6\n6\n1070", "output": "415" }, { "input": "10\n10\n10\n10\n100000", "output": "10000" }, { "input": "1\n1\n1\n1\n1", "output": "1" }, { "input": "10\n10\n10\n10\n1", "output": "0" }, { "input": "10\n10\n1\n10\n10", "output": "10" }, { "input": "10\n10\n1\n10\n100", "output": "100" }, { "input": "2\n2\n2\n2\n1", "output": "0" } ]
1,680,665,779
2,147,483,647
Python 3
OK
TESTS
40
124
4,505,600
ns = list(set([int(input()) for x in range(4)])) d=int(input()) a=set() for i in range(len(ns)): for j in range(ns[i],d+1,ns[i]): a.add(j) print(len(a))
Title: Insomnia cure Time Limit: None seconds Memory Limit: None megabytes Problem Description: «One dragon. Two dragon. Three dragon», — the princess was counting. She had trouble falling asleep, and she got bored of counting lambs when she was nine. However, just counting dragons was boring as well, so she entertained herself at best she could. Tonight she imagined that all dragons were here to steal her, and she was fighting them off. Every *k*-th dragon got punched in the face with a frying pan. Every *l*-th dragon got his tail shut into the balcony door. Every *m*-th dragon got his paws trampled with sharp heels. Finally, she threatened every *n*-th dragon to call her mom, and he withdrew in panic. How many imaginary dragons suffered moral or physical damage tonight, if the princess counted a total of *d* dragons? Input Specification: Input data contains integer numbers *k*,<=*l*,<=*m*,<=*n* and *d*, each number in a separate line (1<=≤<=*k*,<=*l*,<=*m*,<=*n*<=≤<=10, 1<=≤<=*d*<=≤<=105). Output Specification: Output the number of damaged dragons. Demo Input: ['1\n2\n3\n4\n12\n', '2\n3\n4\n5\n24\n'] Demo Output: ['12\n', '17\n'] Note: In the first case every first dragon got punched with a frying pan. Some of the dragons suffered from other reasons as well, but the pan alone would be enough. In the second case dragons 1, 7, 11, 13, 17, 19 and 23 escaped unharmed.
```python ns = list(set([int(input()) for x in range(4)])) d=int(input()) a=set() for i in range(len(ns)): for j in range(ns[i],d+1,ns[i]): a.add(j) print(len(a)) ```
3
495
B
Modular Equations
PROGRAMMING
1,600
[ "math", "number theory" ]
null
null
Last week, Hamed learned about a new type of equations in his math class called Modular Equations. Lets define *i* modulo *j* as the remainder of division of *i* by *j* and denote it by . A Modular Equation, as Hamed's teacher described, is an equation of the form in which *a* and *b* are two non-negative integers and *x* is a variable. We call a positive integer *x* for which a solution of our equation. Hamed didn't pay much attention to the class since he was watching a movie. He only managed to understand the definitions of these equations. Now he wants to write his math exercises but since he has no idea how to do that, he asked you for help. He has told you all he knows about Modular Equations and asked you to write a program which given two numbers *a* and *b* determines how many answers the Modular Equation has.
In the only line of the input two space-separated integers *a* and *b* (0<=≤<=*a*,<=*b*<=≤<=109) are given.
If there is an infinite number of answers to our equation, print "infinity" (without the quotes). Otherwise print the number of solutions of the Modular Equation .
[ "21 5\n", "9435152 272\n", "10 10\n" ]
[ "2\n", "282\n", "infinity\n" ]
In the first sample the answers of the Modular Equation are 8 and 16 since <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/6f5ff39ebd209bf990adaf91f4b82f9687097224.png" style="max-width: 100.0%;max-height: 100.0%;"/>
1,000
[ { "input": "21 5", "output": "2" }, { "input": "9435152 272", "output": "282" }, { "input": "10 10", "output": "infinity" }, { "input": "0 1000000000", "output": "0" }, { "input": "11 2", "output": "2" }, { "input": "1 0", "output": "1" }, { "input": "0 0", "output": "infinity" }, { "input": "121 0", "output": "3" }, { "input": "772930485 686893955", "output": "0" }, { "input": "257424 24", "output": "127" }, { "input": "295138437 589952171", "output": "0" }, { "input": "223093836 966", "output": "399" }, { "input": "233758336 10665466", "output": "13" }, { "input": "223092887 17", "output": "500" }, { "input": "223094728 1858", "output": "371" }, { "input": "223092899 29", "output": "495" }, { "input": "997920 0", "output": "240" }, { "input": "887043 3", "output": "213" }, { "input": "124 24", "output": "3" }, { "input": "982901 101", "output": "193" }, { "input": "357987 35", "output": "45" }, { "input": "954374 1030", "output": "32" }, { "input": "49106 46", "output": "15" }, { "input": "325508499 119510657", "output": "1" }, { "input": "89768760 885778845", "output": "0" }, { "input": "944387968 700818251", "output": "0" }, { "input": "12 3", "output": "1" }, { "input": "1000000000 1", "output": "19" }, { "input": "923456789 3", "output": "14" }, { "input": "1000000000 6", "output": "6" }, { "input": "1000000000 333333300", "output": "2" }, { "input": "5 2", "output": "1" }, { "input": "1 10", "output": "0" }, { "input": "15 3", "output": "3" }, { "input": "2 0", "output": "2" }, { "input": "77 75", "output": "0" }, { "input": "1000000000 1000000000", "output": "infinity" } ]
1,635,473,555
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
15
4,505,600
def solution (inferiorLimit, superiorLimit): firstOption = inferiorLimit secondOption = 2*inferiorLimit if (secondOption > superiorLimit): return "-1 -1" return firstOption, secondOption tests = int(input()) for x in range(tests): numbers= list(map(int, input().split(" "))) superiorLimit = numbers[1] inferiorLimit = numbers[0] print(solution(inferiorLimit, superiorLimit))
Title: Modular Equations Time Limit: None seconds Memory Limit: None megabytes Problem Description: Last week, Hamed learned about a new type of equations in his math class called Modular Equations. Lets define *i* modulo *j* as the remainder of division of *i* by *j* and denote it by . A Modular Equation, as Hamed's teacher described, is an equation of the form in which *a* and *b* are two non-negative integers and *x* is a variable. We call a positive integer *x* for which a solution of our equation. Hamed didn't pay much attention to the class since he was watching a movie. He only managed to understand the definitions of these equations. Now he wants to write his math exercises but since he has no idea how to do that, he asked you for help. He has told you all he knows about Modular Equations and asked you to write a program which given two numbers *a* and *b* determines how many answers the Modular Equation has. Input Specification: In the only line of the input two space-separated integers *a* and *b* (0<=≤<=*a*,<=*b*<=≤<=109) are given. Output Specification: If there is an infinite number of answers to our equation, print "infinity" (without the quotes). Otherwise print the number of solutions of the Modular Equation . Demo Input: ['21 5\n', '9435152 272\n', '10 10\n'] Demo Output: ['2\n', '282\n', 'infinity\n'] Note: In the first sample the answers of the Modular Equation are 8 and 16 since <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/6f5ff39ebd209bf990adaf91f4b82f9687097224.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python def solution (inferiorLimit, superiorLimit): firstOption = inferiorLimit secondOption = 2*inferiorLimit if (secondOption > superiorLimit): return "-1 -1" return firstOption, secondOption tests = int(input()) for x in range(tests): numbers= list(map(int, input().split(" "))) superiorLimit = numbers[1] inferiorLimit = numbers[0] print(solution(inferiorLimit, superiorLimit)) ```
-1
129
A
Cookies
PROGRAMMING
900
[ "implementation" ]
null
null
Olga came to visit the twins Anna and Maria and saw that they have many cookies. The cookies are distributed into bags. As there are many cookies, Olga decided that it's no big deal if she steals a bag. However, she doesn't want the sisters to quarrel because of nothing when they divide the cookies. That's why Olga wants to steal a bag with cookies so that the number of cookies in the remaining bags was even, that is, so that Anna and Maria could evenly divide it into two (even 0 remaining cookies will do, just as any other even number). How many ways there are to steal exactly one cookie bag so that the total number of cookies in the remaining bags was even?
The first line contains the only integer *n* (1<=≤<=*n*<=≤<=100) — the number of cookie bags Anna and Maria have. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100) — the number of cookies in the *i*-th bag.
Print in the only line the only number — the sought number of ways. If there are no such ways print 0.
[ "1\n1\n", "10\n1 2 2 3 4 4 4 2 2 2\n", "11\n2 2 2 2 2 2 2 2 2 2 99\n" ]
[ "1\n", "8\n", "1\n" ]
In the first sample Olga should take the only bag so that the twins ended up with the even number of cookies. In the second sample Olga can take any of five bags with two cookies or any of three bags with four cookies — 5 + 3 = 8 ways in total. In the third sample, no matter which bag with two cookies Olga chooses, the twins are left with 2 * 9 + 99 = 117 cookies. Thus, Olga has only one option: to take the bag with 99 cookies.
500
[ { "input": "1\n1", "output": "1" }, { "input": "10\n1 2 2 3 4 4 4 2 2 2", "output": "8" }, { "input": "11\n2 2 2 2 2 2 2 2 2 2 99", "output": "1" }, { "input": "2\n1 1", "output": "0" }, { "input": "2\n2 2", "output": "2" }, { "input": "2\n1 2", "output": "1" }, { "input": "7\n7 7 7 7 7 7 7", "output": "7" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "4" }, { "input": "100\n1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2", "output": "50" }, { "input": "99\n99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99", "output": "49" }, { "input": "82\n43 44 96 33 23 42 33 66 53 87 8 90 43 91 40 88 51 18 48 62 59 10 22 20 54 6 13 63 2 56 31 52 98 42 54 32 26 77 9 24 33 91 16 30 39 34 78 82 73 90 12 15 67 76 30 18 44 86 84 98 65 54 100 79 28 34 40 56 11 43 72 35 86 59 89 40 30 33 7 19 44 15", "output": "50" }, { "input": "17\n50 14 17 77 74 74 38 76 41 27 45 29 66 98 38 73 38", "output": "7" }, { "input": "94\n81 19 90 99 26 11 86 44 78 36 80 59 99 90 78 72 71 20 94 56 42 40 71 84 10 85 10 70 52 27 39 55 90 16 48 25 7 79 99 100 38 10 99 56 3 4 78 9 16 57 14 40 52 54 57 70 30 86 56 84 97 60 59 69 49 66 23 92 90 46 86 73 53 47 1 83 14 20 24 66 13 45 41 14 86 75 55 88 48 95 82 24 47 87", "output": "39" }, { "input": "88\n64 95 12 90 40 65 98 45 52 54 79 7 81 25 98 19 68 82 41 53 35 50 5 22 32 21 8 39 8 6 72 27 81 30 12 79 21 42 60 2 66 87 46 93 62 78 52 71 76 32 78 94 86 85 55 15 34 76 41 20 32 26 94 81 89 45 74 49 11 40 40 39 49 46 80 85 90 23 80 40 86 58 70 26 48 93 23 53", "output": "37" }, { "input": "84\n95 9 43 43 13 84 60 90 1 8 97 99 54 34 59 83 33 15 51 26 40 12 66 65 19 30 29 78 92 60 25 13 19 84 71 73 12 24 54 49 16 41 11 40 57 59 34 40 39 9 71 83 1 77 79 53 94 47 78 55 77 85 29 52 80 90 53 77 97 97 27 79 28 23 83 25 26 22 49 86 63 56 3 32", "output": "51" }, { "input": "47\n61 97 76 94 91 22 2 68 62 73 90 47 16 79 44 71 98 68 43 6 53 52 40 27 68 67 43 96 14 91 60 61 96 24 97 13 32 65 85 96 81 77 34 18 23 14 80", "output": "21" }, { "input": "69\n71 1 78 74 58 89 30 6 100 90 22 61 11 59 14 74 27 25 78 61 45 19 25 33 37 4 52 43 53 38 9 100 56 67 69 38 76 91 63 60 93 52 28 61 9 98 8 14 57 63 89 64 98 51 36 66 36 86 13 82 50 91 52 64 86 78 78 83 81", "output": "37" }, { "input": "52\n38 78 36 75 19 3 56 1 39 97 24 79 84 16 93 55 96 64 12 24 1 86 80 29 12 32 36 36 73 39 76 65 53 98 30 20 28 8 86 43 70 22 75 69 62 65 81 25 53 40 71 59", "output": "28" }, { "input": "74\n81 31 67 97 26 75 69 81 11 13 13 74 77 88 52 20 52 64 66 75 72 28 41 54 26 75 41 91 75 15 18 36 13 83 63 61 14 48 53 63 19 67 35 48 23 65 73 100 44 55 92 88 99 17 73 25 83 7 31 89 12 80 98 39 42 75 14 29 81 35 77 87 33 94", "output": "47" }, { "input": "44\n46 56 31 31 37 71 94 2 14 100 45 72 36 72 80 3 38 54 42 98 50 32 31 42 62 31 45 50 95 100 18 17 64 22 18 25 52 56 70 57 43 40 81 28", "output": "15" }, { "input": "22\n28 57 40 74 51 4 45 84 99 12 95 14 92 60 47 81 84 51 31 91 59 42", "output": "11" }, { "input": "59\n73 45 94 76 41 49 65 13 74 66 36 25 47 75 40 23 92 72 11 32 32 8 81 26 68 56 41 8 76 47 96 55 70 11 84 14 83 18 70 22 30 39 28 100 48 11 92 45 78 69 86 1 54 90 98 91 13 17 35", "output": "33" }, { "input": "63\n20 18 44 94 68 57 16 43 74 55 68 24 21 95 76 84 50 50 47 86 86 12 58 55 28 72 86 18 34 45 81 88 3 72 41 9 60 90 81 93 12 6 9 6 2 41 1 7 9 29 81 14 64 80 20 36 67 54 7 5 35 81 22", "output": "37" }, { "input": "28\n49 84 48 19 44 91 11 82 96 95 88 90 71 82 87 25 31 23 18 13 98 45 26 65 35 12 31 14", "output": "15" }, { "input": "61\n34 18 28 64 28 45 9 77 77 20 63 92 79 16 16 100 86 2 91 91 57 15 31 95 10 88 84 5 82 83 53 98 59 17 97 80 76 80 81 3 91 81 87 93 61 46 10 49 6 22 21 75 63 89 21 81 30 19 67 38 77", "output": "35" }, { "input": "90\n41 90 43 1 28 75 90 50 3 70 76 64 81 63 25 69 83 82 29 91 59 66 21 61 7 55 72 49 38 69 72 20 64 58 30 81 61 29 96 14 39 5 100 20 29 98 75 29 44 78 97 45 26 77 73 59 22 99 41 6 3 96 71 20 9 18 96 18 90 62 34 78 54 5 41 6 73 33 2 54 26 21 18 6 45 57 43 73 95 75", "output": "42" }, { "input": "45\n93 69 4 27 20 14 71 48 79 3 32 26 49 30 57 88 13 56 49 61 37 32 47 41 41 70 45 68 82 18 8 6 25 20 15 13 71 99 28 6 52 34 19 59 26", "output": "23" }, { "input": "33\n29 95 48 49 91 10 83 71 47 25 66 36 51 12 34 10 54 74 41 96 89 26 89 1 42 33 1 62 9 32 49 65 78", "output": "15" }, { "input": "34\n98 24 42 36 41 82 28 58 89 34 77 70 76 44 74 54 66 100 13 79 4 88 21 1 11 45 91 29 87 100 29 54 82 78", "output": "13" }, { "input": "29\n91 84 26 84 9 63 52 9 65 56 90 2 36 7 67 33 91 14 65 38 53 36 81 83 85 14 33 95 51", "output": "17" }, { "input": "100\n2 88 92 82 87 100 78 28 84 43 78 32 43 33 97 19 15 52 29 84 57 72 54 13 99 28 82 79 40 70 34 92 91 53 9 88 27 43 14 92 72 37 26 37 20 95 19 34 49 64 33 37 34 27 80 79 9 54 99 68 25 4 68 73 46 66 24 78 3 87 26 52 50 84 4 95 23 83 39 58 86 36 33 16 98 2 84 19 53 12 69 60 10 11 78 17 79 92 77 59", "output": "45" }, { "input": "100\n2 95 45 73 9 54 20 97 57 82 88 26 18 71 25 27 75 54 31 11 58 85 69 75 72 91 76 5 25 80 45 49 4 73 8 81 81 38 5 12 53 77 7 96 90 35 28 80 73 94 19 69 96 17 94 49 69 9 32 19 5 12 46 29 26 40 59 59 6 95 82 50 72 2 45 69 12 5 72 29 39 72 23 96 81 28 28 56 68 58 37 41 30 1 90 84 15 24 96 43", "output": "53" }, { "input": "100\n27 72 35 91 13 10 35 45 24 55 83 84 63 96 29 79 34 67 63 92 48 83 18 77 28 27 49 66 29 88 55 15 6 58 14 67 94 36 77 7 7 64 61 52 71 18 36 99 76 6 50 67 16 13 41 7 89 73 61 51 78 22 78 32 76 100 3 31 89 71 63 53 15 85 77 54 89 33 68 74 3 23 57 5 43 89 75 35 9 86 90 11 31 46 48 37 74 17 77 8", "output": "40" }, { "input": "100\n69 98 69 88 11 49 55 8 25 91 17 81 47 26 15 73 96 71 18 42 42 61 48 14 92 78 35 72 4 27 62 75 83 79 17 16 46 80 96 90 82 54 37 69 85 21 67 70 96 10 46 63 21 59 56 92 54 88 77 30 75 45 44 29 86 100 51 11 65 69 66 56 82 63 27 1 51 51 13 10 3 55 26 85 34 16 87 72 13 100 81 71 90 95 86 50 83 55 55 54", "output": "53" }, { "input": "100\n34 35 99 64 2 66 78 93 20 48 12 79 19 10 87 7 42 92 60 79 5 2 24 89 57 48 63 92 74 4 16 51 7 12 90 48 87 17 18 73 51 58 97 97 25 38 15 97 96 73 67 91 6 75 14 13 87 79 75 3 15 55 35 95 71 45 10 13 20 37 82 26 2 22 13 83 97 84 39 79 43 100 54 59 98 8 61 34 7 65 75 44 24 77 73 88 34 95 44 77", "output": "55" }, { "input": "100\n15 86 3 1 51 26 74 85 37 87 64 58 10 6 57 26 30 47 85 65 24 72 50 40 12 35 91 47 91 60 47 87 95 34 80 91 26 3 36 39 14 86 28 70 51 44 28 21 72 79 57 61 16 71 100 94 57 67 36 74 24 21 89 85 25 2 97 67 76 53 76 80 97 64 35 13 8 32 21 52 62 61 67 14 74 73 66 44 55 76 24 3 43 42 99 61 36 80 38 66", "output": "52" }, { "input": "100\n45 16 54 54 80 94 74 93 75 85 58 95 79 30 81 2 84 4 57 23 92 64 78 1 50 36 13 27 56 54 10 77 87 1 5 38 85 74 94 82 30 45 72 83 82 30 81 82 82 3 69 82 7 92 39 60 94 42 41 5 3 17 67 21 79 44 79 96 28 3 53 68 79 89 63 83 1 44 4 31 84 15 73 77 19 66 54 6 73 1 67 24 91 11 86 45 96 82 20 89", "output": "51" }, { "input": "100\n84 23 50 32 90 71 92 43 58 70 6 82 7 55 85 19 70 89 12 26 29 56 74 30 2 27 4 39 63 67 91 81 11 33 75 10 82 88 39 43 43 80 68 35 55 67 53 62 73 65 86 74 43 51 14 48 42 92 83 57 22 33 24 99 5 27 78 96 7 28 11 15 8 38 85 67 5 92 24 96 57 59 14 95 91 4 9 18 45 33 74 83 64 85 14 51 51 94 29 2", "output": "53" }, { "input": "100\n77 56 56 45 73 55 32 37 39 50 30 95 79 21 44 34 51 43 86 91 39 30 85 15 35 93 100 14 57 31 80 79 38 40 88 4 91 54 7 95 76 26 62 84 17 33 67 47 6 82 69 51 17 2 59 24 11 12 31 90 12 11 55 38 72 49 30 50 42 46 5 97 9 9 30 45 86 23 19 82 40 42 5 40 35 98 35 32 60 60 5 28 84 35 21 49 68 53 68 23", "output": "48" }, { "input": "100\n78 38 79 61 45 86 83 83 86 90 74 69 2 84 73 39 2 5 20 71 24 80 54 89 58 34 77 40 39 62 2 47 28 53 97 75 88 98 94 96 33 71 44 90 47 36 19 89 87 98 90 87 5 85 34 79 82 3 42 88 89 63 35 7 89 30 40 48 12 41 56 76 83 60 80 80 39 56 77 4 72 96 30 55 57 51 7 19 11 1 66 1 91 87 11 62 95 85 79 25", "output": "48" }, { "input": "100\n5 34 23 20 76 75 19 51 17 82 60 13 83 6 65 16 20 43 66 54 87 10 87 73 50 24 16 98 33 28 80 52 54 82 26 92 14 13 84 92 94 29 61 21 60 20 48 94 24 20 75 70 58 27 68 45 86 89 29 8 67 38 83 48 18 100 11 22 46 84 52 97 70 19 50 75 3 7 52 53 72 41 18 31 1 38 49 53 11 64 99 76 9 87 48 12 100 32 44 71", "output": "58" }, { "input": "100\n76 89 68 78 24 72 73 95 98 72 58 15 2 5 56 32 9 65 50 70 94 31 29 54 89 52 31 93 43 56 26 35 72 95 51 55 78 70 11 92 17 5 54 94 81 31 78 95 73 91 95 37 59 9 53 48 65 55 84 8 45 97 64 37 96 34 36 53 66 17 72 48 99 23 27 18 92 84 44 73 60 78 53 29 68 99 19 39 61 40 69 6 77 12 47 29 15 4 8 45", "output": "53" }, { "input": "100\n82 40 31 53 8 50 85 93 3 84 54 17 96 59 51 42 18 19 35 84 79 31 17 46 54 82 72 49 35 73 26 89 61 73 3 50 12 29 25 77 88 21 58 24 22 89 96 54 82 29 96 56 77 16 1 68 90 93 20 23 57 22 31 18 92 90 51 14 50 72 31 54 12 50 66 62 2 34 17 45 68 50 87 97 23 71 1 72 17 82 42 15 20 78 4 49 66 59 10 17", "output": "54" }, { "input": "100\n32 82 82 24 39 53 48 5 29 24 9 37 91 37 91 95 1 97 84 52 12 56 93 47 22 20 14 17 40 22 79 34 24 2 69 30 69 29 3 89 21 46 60 92 39 29 18 24 49 18 40 22 60 13 77 50 39 64 50 70 99 8 66 31 90 38 20 54 7 21 5 56 41 68 69 20 54 89 69 62 9 53 43 89 81 97 15 2 52 78 89 65 16 61 59 42 56 25 32 52", "output": "49" }, { "input": "100\n72 54 23 24 97 14 99 87 15 25 7 23 17 87 72 31 71 87 34 82 51 77 74 85 62 38 24 7 84 48 98 21 29 71 70 84 25 58 67 92 18 44 32 9 81 15 53 29 63 18 86 16 7 31 38 99 70 32 89 16 23 11 66 96 69 82 97 59 6 9 49 80 85 19 6 9 52 51 85 74 53 46 73 55 31 63 78 61 34 80 77 65 87 77 92 52 89 8 52 31", "output": "44" }, { "input": "100\n56 88 8 19 7 15 11 54 35 50 19 57 63 72 51 43 50 19 57 90 40 100 8 92 11 96 30 32 59 65 93 47 62 3 50 41 30 50 72 83 61 46 83 60 20 46 33 1 5 18 83 22 34 16 41 95 63 63 7 59 55 95 91 29 64 60 64 81 45 45 10 9 88 37 69 85 21 82 41 76 42 34 47 78 51 83 65 100 13 22 59 76 63 1 26 86 36 94 99 74", "output": "46" }, { "input": "100\n27 89 67 60 62 80 43 50 28 88 72 5 94 11 63 91 18 78 99 3 71 26 12 97 74 62 23 24 22 3 100 72 98 7 94 32 12 75 61 88 42 48 10 14 45 9 48 56 73 76 70 70 79 90 35 39 96 37 81 11 19 65 99 39 23 79 34 61 35 74 90 37 73 23 46 21 94 84 73 58 11 89 13 9 10 85 42 78 73 32 53 39 49 90 43 5 28 31 97 75", "output": "53" }, { "input": "100\n33 24 97 96 1 14 99 51 13 65 67 20 46 88 42 44 20 49 5 89 98 83 15 40 74 83 58 3 10 79 34 2 69 28 37 100 55 52 14 8 44 94 97 89 6 42 11 28 30 33 55 56 20 57 52 25 75 1 87 42 62 41 37 12 54 85 95 80 42 36 94 96 28 76 54 36 4 17 26 24 62 15 17 79 84 36 92 78 74 91 96 77 54 92 81 91 62 98 37 37", "output": "43" }, { "input": "100\n86 24 61 15 11 85 1 31 47 36 23 36 59 34 3 27 16 29 82 28 58 52 52 66 71 61 98 39 60 20 67 41 67 90 73 29 92 17 70 95 58 98 58 32 21 73 46 56 87 72 80 75 40 27 94 31 59 92 93 37 14 99 96 21 97 23 81 91 52 52 96 94 92 28 38 29 52 16 57 27 17 24 91 21 79 55 96 98 95 94 23 78 79 12 77 35 32 75 100 82", "output": "51" }, { "input": "100\n88 85 41 37 69 21 7 69 36 5 92 26 64 75 22 46 67 20 70 22 62 66 38 24 47 49 68 30 90 31 67 86 86 82 9 51 43 45 48 42 73 44 31 94 45 60 54 66 20 87 11 94 34 32 87 66 56 28 75 39 37 90 72 93 55 72 31 42 30 71 87 61 4 12 12 81 23 61 56 98 71 32 30 33 96 63 92 16 8 78 47 91 47 54 49 3 81 82 41 5", "output": "47" }, { "input": "1\n2", "output": "1" }, { "input": "5\n1 1 3 2 2", "output": "3" } ]
1,627,899,382
2,147,483,647
Python 3
OK
TESTS
52
154
6,758,400
n = int(input()) a = [int(i) for i in input().split()] g = 0 b = 0 for i in a: g += i if g%2 == 0: for i in a: if i%2 == 0: b += 1 else: for i in a: if i%2 == 1: b += 1 print(b)
Title: Cookies Time Limit: None seconds Memory Limit: None megabytes Problem Description: Olga came to visit the twins Anna and Maria and saw that they have many cookies. The cookies are distributed into bags. As there are many cookies, Olga decided that it's no big deal if she steals a bag. However, she doesn't want the sisters to quarrel because of nothing when they divide the cookies. That's why Olga wants to steal a bag with cookies so that the number of cookies in the remaining bags was even, that is, so that Anna and Maria could evenly divide it into two (even 0 remaining cookies will do, just as any other even number). How many ways there are to steal exactly one cookie bag so that the total number of cookies in the remaining bags was even? Input Specification: The first line contains the only integer *n* (1<=≤<=*n*<=≤<=100) — the number of cookie bags Anna and Maria have. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100) — the number of cookies in the *i*-th bag. Output Specification: Print in the only line the only number — the sought number of ways. If there are no such ways print 0. Demo Input: ['1\n1\n', '10\n1 2 2 3 4 4 4 2 2 2\n', '11\n2 2 2 2 2 2 2 2 2 2 99\n'] Demo Output: ['1\n', '8\n', '1\n'] Note: In the first sample Olga should take the only bag so that the twins ended up with the even number of cookies. In the second sample Olga can take any of five bags with two cookies or any of three bags with four cookies — 5 + 3 = 8 ways in total. In the third sample, no matter which bag with two cookies Olga chooses, the twins are left with 2 * 9 + 99 = 117 cookies. Thus, Olga has only one option: to take the bag with 99 cookies.
```python n = int(input()) a = [int(i) for i in input().split()] g = 0 b = 0 for i in a: g += i if g%2 == 0: for i in a: if i%2 == 0: b += 1 else: for i in a: if i%2 == 1: b += 1 print(b) ```
3
129
B
Students and Shoelaces
PROGRAMMING
1,200
[ "brute force", "dfs and similar", "graphs", "implementation" ]
null
null
Anna and Maria are in charge of the math club for junior students. When the club gathers together, the students behave badly. They've brought lots of shoe laces to the club and got tied with each other. Specifically, each string ties together two students. Besides, if two students are tied, then the lace connects the first student with the second one as well as the second student with the first one. To restore order, Anna and Maria do the following. First, for each student Anna finds out what other students he is tied to. If a student is tied to exactly one other student, Anna reprimands him. Then Maria gathers in a single group all the students who have been just reprimanded. She kicks them out from the club. This group of students immediately leaves the club. These students takes with them the laces that used to tie them. Then again for every student Anna finds out how many other students he is tied to and so on. And they do so until Anna can reprimand at least one student. Determine how many groups of students will be kicked out of the club.
The first line contains two integers *n* and *m* — the initial number of students and laces (). The students are numbered from 1 to *n*, and the laces are numbered from 1 to *m*. Next *m* lines each contain two integers *a* and *b* — the numbers of students tied by the *i*-th lace (1<=≤<=*a*,<=*b*<=≤<=*n*,<=*a*<=≠<=*b*). It is guaranteed that no two students are tied with more than one lace. No lace ties a student to himself.
Print the single number — the number of groups of students that will be kicked out from the club.
[ "3 3\n1 2\n2 3\n3 1\n", "6 3\n1 2\n2 3\n3 4\n", "6 5\n1 4\n2 4\n3 4\n5 4\n6 4\n" ]
[ "0\n", "2\n", "1\n" ]
In the first sample Anna and Maria won't kick out any group of students — in the initial position every student is tied to two other students and Anna won't be able to reprimand anyone. In the second sample four students are tied in a chain and two more are running by themselves. First Anna and Maria kick out the two students from both ends of the chain (1 and 4), then — two other students from the chain (2 and 3). At that the students who are running by themselves will stay in the club. In the third sample Anna and Maria will momentarily kick out all students except for the fourth one and the process stops at that point. The correct answer is one.
1,000
[ { "input": "3 3\n1 2\n2 3\n3 1", "output": "0" }, { "input": "6 3\n1 2\n2 3\n3 4", "output": "2" }, { "input": "6 5\n1 4\n2 4\n3 4\n5 4\n6 4", "output": "1" }, { "input": "100 0", "output": "0" }, { "input": "5 5\n1 2\n2 3\n3 4\n4 5\n5 1", "output": "0" }, { "input": "5 4\n1 4\n4 3\n4 5\n5 2", "output": "2" }, { "input": "11 10\n1 2\n1 3\n3 4\n1 5\n5 6\n6 7\n1 8\n8 9\n9 10\n10 11", "output": "4" }, { "input": "7 7\n1 2\n2 3\n3 1\n1 4\n4 5\n4 6\n4 7", "output": "2" }, { "input": "12 49\n6 3\n12 9\n10 11\n3 5\n10 2\n6 9\n8 5\n6 12\n7 3\n3 12\n3 2\n5 6\n7 5\n9 2\n11 1\n7 6\n5 4\n8 7\n12 5\n5 11\n8 9\n10 3\n6 2\n10 4\n9 10\n9 11\n11 3\n5 9\n11 6\n10 8\n7 9\n10 7\n4 6\n3 8\n4 11\n12 2\n4 9\n2 11\n7 11\n1 5\n7 2\n8 1\n4 12\n9 1\n4 2\n8 2\n11 12\n3 1\n1 6", "output": "0" }, { "input": "10 29\n4 5\n1 7\n4 2\n3 8\n7 6\n8 10\n10 6\n4 1\n10 1\n6 2\n7 4\n7 10\n2 7\n9 8\n5 10\n2 5\n8 5\n4 9\n2 8\n5 7\n4 8\n7 3\n6 5\n1 3\n1 9\n10 4\n10 9\n10 2\n2 3", "output": "0" }, { "input": "9 33\n5 7\n5 9\n9 6\n9 1\n7 4\n3 5\n7 8\n8 6\n3 6\n8 2\n3 8\n1 6\n1 8\n1 4\n4 2\n1 2\n2 5\n3 4\n8 5\n2 6\n3 1\n1 5\n1 7\n3 2\n5 4\n9 4\n3 9\n7 3\n6 4\n9 8\n7 9\n8 4\n6 5", "output": "0" }, { "input": "7 8\n5 7\n2 7\n1 6\n1 3\n3 7\n6 3\n6 4\n2 6", "output": "1" }, { "input": "6 15\n3 1\n4 5\n1 4\n6 2\n3 5\n6 3\n1 6\n1 5\n2 3\n2 5\n6 4\n5 6\n4 2\n1 2\n3 4", "output": "0" }, { "input": "7 11\n5 3\n6 5\n6 4\n1 6\n7 1\n2 6\n7 5\n2 5\n3 1\n3 4\n2 4", "output": "0" }, { "input": "95 0", "output": "0" }, { "input": "100 0", "output": "0" }, { "input": "62 30\n29 51\n29 55\n4 12\n53 25\n36 28\n32 11\n29 11\n47 9\n21 8\n25 4\n51 19\n26 56\n22 21\n37 9\n9 33\n7 25\n16 7\n40 49\n15 21\n49 58\n34 30\n20 46\n62 48\n53 57\n33 6\n60 37\n41 34\n62 36\n36 43\n11 39", "output": "2" }, { "input": "56 25\n12 40\n31 27\n18 40\n1 43\n9 10\n25 47\n27 29\n26 28\n19 38\n19 40\n22 14\n21 51\n29 31\n55 29\n51 33\n20 17\n24 15\n3 48\n31 56\n15 29\n49 42\n50 4\n22 42\n25 17\n18 51", "output": "3" }, { "input": "51 29\n36 30\n37 45\n4 24\n40 18\n47 35\n15 1\n30 38\n15 18\n32 40\n34 42\n2 47\n35 21\n25 28\n13 1\n13 28\n36 1\n46 47\n22 17\n41 45\n43 45\n40 15\n29 35\n47 15\n30 21\n9 14\n18 38\n18 50\n42 10\n31 41", "output": "3" }, { "input": "72 45\n5 15\n8 18\n40 25\n71 66\n67 22\n6 44\n16 25\n8 23\n19 70\n26 34\n48 15\n24 2\n54 68\n44 43\n17 37\n49 19\n71 49\n34 38\n59 1\n65 70\n11 54\n5 11\n15 31\n29 50\n48 16\n70 57\n25 59\n2 59\n56 12\n66 62\n24 16\n46 27\n45 67\n68 43\n31 11\n31 30\n8 44\n64 33\n38 44\n54 10\n13 9\n7 51\n25 4\n40 70\n26 65", "output": "5" }, { "input": "56 22\n17 27\n48 49\n29 8\n47 20\n32 7\n44 5\n14 39\n5 13\n40 2\n50 42\n38 9\n18 37\n16 44\n21 32\n21 39\n37 54\n19 46\n30 47\n17 13\n30 31\n49 16\n56 7", "output": "4" }, { "input": "81 46\n53 58\n31 14\n18 54\n43 61\n57 65\n6 38\n49 5\n6 40\n6 10\n17 72\n27 48\n58 39\n21 75\n21 43\n78 20\n34 4\n15 35\n74 48\n76 15\n49 38\n46 51\n78 9\n80 5\n26 42\n64 31\n46 72\n1 29\n20 17\n32 45\n53 43\n24 5\n52 59\n3 80\n78 19\n61 17\n80 12\n17 8\n63 2\n8 4\n44 10\n53 72\n18 60\n68 15\n17 58\n79 71\n73 35", "output": "4" }, { "input": "82 46\n64 43\n32 24\n57 30\n24 46\n70 12\n23 41\n63 39\n46 70\n4 61\n19 12\n39 79\n14 28\n37 3\n12 27\n15 20\n35 39\n25 64\n59 16\n68 63\n37 14\n76 7\n67 29\n9 5\n14 55\n46 26\n71 79\n47 42\n5 55\n18 45\n28 40\n44 78\n74 9\n60 53\n44 19\n52 81\n65 52\n40 13\n40 19\n43 1\n24 23\n68 9\n16 20\n70 14\n41 40\n29 10\n45 65", "output": "8" }, { "input": "69 38\n63 35\n52 17\n43 69\n2 57\n12 5\n26 36\n13 10\n16 68\n5 18\n5 41\n10 4\n60 9\n39 22\n39 28\n53 57\n13 52\n66 38\n49 61\n12 19\n27 46\n67 7\n25 8\n23 58\n52 34\n29 2\n2 42\n8 53\n57 43\n68 11\n48 28\n56 19\n46 33\n63 21\n57 16\n68 59\n67 34\n28 43\n56 36", "output": "4" }, { "input": "75 31\n32 50\n52 8\n21 9\n68 35\n12 72\n47 26\n38 58\n40 55\n31 70\n53 75\n44 1\n65 22\n33 22\n33 29\n14 39\n1 63\n16 52\n70 15\n12 27\n63 31\n47 9\n71 31\n43 17\n43 49\n8 26\n11 39\n9 22\n30 45\n65 47\n32 9\n60 70", "output": "4" }, { "input": "77 41\n48 45\n50 36\n6 69\n70 3\n22 21\n72 6\n54 3\n49 31\n2 23\n14 59\n68 58\n4 54\n60 12\n63 60\n44 24\n28 24\n40 8\n5 1\n13 24\n29 15\n19 76\n70 50\n65 71\n23 33\n58 16\n50 42\n71 28\n58 54\n24 73\n6 17\n29 13\n60 4\n42 4\n21 60\n77 39\n57 9\n51 19\n61 6\n49 36\n24 32\n41 66", "output": "3" }, { "input": "72 39\n9 44\n15 12\n2 53\n34 18\n41 70\n54 72\n39 19\n26 7\n4 54\n53 59\n46 49\n70 6\n9 10\n64 51\n31 60\n61 53\n59 71\n9 60\n67 16\n4 16\n34 3\n2 61\n16 23\n34 6\n10 18\n13 38\n66 40\n59 9\n40 14\n38 24\n31 48\n7 69\n20 39\n49 52\n32 67\n61 35\n62 45\n37 54\n5 27", "output": "8" }, { "input": "96 70\n30 37\n47 56\n19 79\n15 28\n2 43\n43 54\n59 75\n42 22\n38 18\n18 14\n47 41\n60 29\n35 11\n90 4\n14 41\n11 71\n41 24\n68 28\n45 92\n14 15\n34 63\n77 32\n67 38\n36 8\n37 4\n58 95\n68 84\n69 81\n35 23\n56 63\n78 91\n35 44\n66 63\n80 19\n87 88\n28 14\n62 35\n24 23\n83 37\n54 89\n14 40\n9 35\n94 9\n56 46\n92 70\n16 58\n96 31\n53 23\n56 5\n36 42\n89 77\n29 51\n26 13\n46 70\n25 56\n95 96\n3 51\n76 8\n36 82\n44 85\n54 56\n89 67\n32 5\n82 78\n33 65\n43 28\n35 1\n94 13\n26 24\n10 51", "output": "4" }, { "input": "76 49\n15 59\n23 26\n57 48\n49 51\n42 76\n36 40\n37 40\n29 15\n28 71\n47 70\n27 39\n76 21\n55 16\n21 18\n19 1\n25 31\n51 71\n54 42\n28 9\n61 69\n33 9\n18 19\n58 51\n51 45\n29 34\n9 67\n26 8\n70 37\n11 62\n24 22\n59 76\n67 17\n59 11\n54 1\n12 57\n23 3\n46 47\n37 20\n65 9\n51 12\n31 19\n56 13\n58 22\n26 59\n39 76\n27 11\n48 64\n59 35\n44 75", "output": "5" }, { "input": "52 26\n29 41\n16 26\n18 48\n31 17\n37 42\n26 1\n11 7\n29 6\n23 17\n12 47\n34 23\n41 16\n15 35\n25 21\n45 7\n52 2\n37 10\n28 19\n1 27\n30 47\n42 35\n50 30\n30 34\n19 30\n42 25\n47 31", "output": "3" }, { "input": "86 48\n59 34\n21 33\n45 20\n62 23\n4 68\n2 65\n63 26\n64 20\n51 34\n64 21\n68 78\n61 80\n81 3\n38 39\n47 48\n24 34\n44 71\n72 78\n50 2\n13 51\n82 78\n11 74\n14 48\n2 75\n49 55\n63 85\n20 85\n4 53\n51 15\n11 67\n1 15\n2 64\n10 81\n6 7\n68 18\n84 28\n77 69\n10 36\n15 14\n32 86\n16 79\n26 13\n38 55\n47 43\n47 39\n45 37\n58 81\n42 35", "output": "8" }, { "input": "58 29\n27 24\n40 52\n51 28\n44 50\n7 28\n14 53\n10 16\n16 45\n8 56\n35 26\n39 6\n6 14\n45 22\n35 13\n20 17\n42 6\n37 21\n4 11\n26 56\n54 55\n3 57\n40 3\n55 27\n4 51\n35 29\n50 16\n47 7\n48 20\n1 37", "output": "3" }, { "input": "51 23\n46 47\n31 27\n1 20\n49 16\n2 10\n29 47\n13 27\n34 26\n31 2\n28 20\n17 40\n39 4\n29 26\n28 44\n3 39\n50 12\n19 1\n30 21\n41 23\n2 29\n16 3\n49 28\n49 41", "output": "4" }, { "input": "75 43\n46 34\n33 12\n51 39\n47 74\n68 64\n40 46\n20 51\n47 19\n4 5\n57 59\n12 26\n68 65\n38 42\n73 37\n5 74\n36 61\n8 18\n58 33\n34 73\n42 43\n10 49\n70 50\n49 18\n24 53\n71 73\n44 24\n49 56\n24 29\n44 67\n70 46\n57 25\n73 63\n3 51\n30 71\n41 44\n17 69\n17 18\n19 68\n42 7\n11 51\n1 5\n72 23\n65 53", "output": "5" } ]
1,673,895,013
2,147,483,647
PyPy 3
OK
TESTS
70
310
3,891,200
n,m = list(map(int, input().split())) links = {i: set() for i in range(1,n+1)} out_counts = 0 for i in range(m): l0, l1 = list(map(int, input().split())) links[l0].add(l1) links[l1].add(l0) while True: one_lace_group = [] for i in links.keys(): if len(links[i])==1: one_lace_group.append(i) if (len(one_lace_group)==0): break for i in one_lace_group: for j in links[i]: links[j].remove(i) links[i] = set() out_counts += 1 print (out_counts)
Title: Students and Shoelaces Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anna and Maria are in charge of the math club for junior students. When the club gathers together, the students behave badly. They've brought lots of shoe laces to the club and got tied with each other. Specifically, each string ties together two students. Besides, if two students are tied, then the lace connects the first student with the second one as well as the second student with the first one. To restore order, Anna and Maria do the following. First, for each student Anna finds out what other students he is tied to. If a student is tied to exactly one other student, Anna reprimands him. Then Maria gathers in a single group all the students who have been just reprimanded. She kicks them out from the club. This group of students immediately leaves the club. These students takes with them the laces that used to tie them. Then again for every student Anna finds out how many other students he is tied to and so on. And they do so until Anna can reprimand at least one student. Determine how many groups of students will be kicked out of the club. Input Specification: The first line contains two integers *n* and *m* — the initial number of students and laces (). The students are numbered from 1 to *n*, and the laces are numbered from 1 to *m*. Next *m* lines each contain two integers *a* and *b* — the numbers of students tied by the *i*-th lace (1<=≤<=*a*,<=*b*<=≤<=*n*,<=*a*<=≠<=*b*). It is guaranteed that no two students are tied with more than one lace. No lace ties a student to himself. Output Specification: Print the single number — the number of groups of students that will be kicked out from the club. Demo Input: ['3 3\n1 2\n2 3\n3 1\n', '6 3\n1 2\n2 3\n3 4\n', '6 5\n1 4\n2 4\n3 4\n5 4\n6 4\n'] Demo Output: ['0\n', '2\n', '1\n'] Note: In the first sample Anna and Maria won't kick out any group of students — in the initial position every student is tied to two other students and Anna won't be able to reprimand anyone. In the second sample four students are tied in a chain and two more are running by themselves. First Anna and Maria kick out the two students from both ends of the chain (1 and 4), then — two other students from the chain (2 and 3). At that the students who are running by themselves will stay in the club. In the third sample Anna and Maria will momentarily kick out all students except for the fourth one and the process stops at that point. The correct answer is one.
```python n,m = list(map(int, input().split())) links = {i: set() for i in range(1,n+1)} out_counts = 0 for i in range(m): l0, l1 = list(map(int, input().split())) links[l0].add(l1) links[l1].add(l0) while True: one_lace_group = [] for i in links.keys(): if len(links[i])==1: one_lace_group.append(i) if (len(one_lace_group)==0): break for i in one_lace_group: for j in links[i]: links[j].remove(i) links[i] = set() out_counts += 1 print (out_counts) ```
3
913
A
Modular Exponentiation
PROGRAMMING
900
[ "implementation", "math" ]
null
null
The following problem is well-known: given integers *n* and *m*, calculate where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*. You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108). The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108).
Output a single integer — the value of .
[ "4\n42\n", "1\n58\n", "98765432\n23456789\n" ]
[ "10\n", "0\n", "23456789\n" ]
In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10. In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
500
[ { "input": "4\n42", "output": "10" }, { "input": "1\n58", "output": "0" }, { "input": "98765432\n23456789", "output": "23456789" }, { "input": "8\n88127381", "output": "149" }, { "input": "32\n92831989", "output": "92831989" }, { "input": "92831989\n25", "output": "25" }, { "input": "100000000\n100000000", "output": "100000000" }, { "input": "7\n1234", "output": "82" }, { "input": "1\n1", "output": "1" }, { "input": "1\n100000000", "output": "0" }, { "input": "100000000\n1", "output": "1" }, { "input": "1\n2", "output": "0" }, { "input": "2\n1", "output": "1" }, { "input": "2\n2", "output": "2" }, { "input": "2\n3", "output": "3" }, { "input": "2\n4", "output": "0" }, { "input": "2\n5", "output": "1" }, { "input": "25\n33554432", "output": "0" }, { "input": "26\n33554432", "output": "33554432" }, { "input": "25\n67108864", "output": "0" }, { "input": "26\n67108864", "output": "0" }, { "input": "25\n92831989", "output": "25723125" }, { "input": "26\n92831989", "output": "25723125" }, { "input": "27\n92831989", "output": "92831989" }, { "input": "29\n92831989", "output": "92831989" }, { "input": "30\n92831989", "output": "92831989" }, { "input": "31\n92831989", "output": "92831989" }, { "input": "99812399\n93172892", "output": "93172892" }, { "input": "67108864\n12345678", "output": "12345678" }, { "input": "3\n98391849", "output": "1" }, { "input": "13\n1231232", "output": "2432" }, { "input": "18\n9842194", "output": "142866" }, { "input": "24\n71237177", "output": "4128313" }, { "input": "11\n65535", "output": "2047" }, { "input": "11\n65536", "output": "0" }, { "input": "12\n123", "output": "123" }, { "input": "123456\n12", "output": "12" }, { "input": "88\n888", "output": "888" }, { "input": "888\n88", "output": "88" }, { "input": "8888\n8888", "output": "8888" }, { "input": "64\n128", "output": "128" }, { "input": "128\n64", "output": "64" }, { "input": "60\n9999999", "output": "9999999" }, { "input": "200\n100000", "output": "100000" }, { "input": "3\n8", "output": "0" }, { "input": "10000000\n25024886", "output": "25024886" }, { "input": "100\n100000", "output": "100000" }, { "input": "99999999\n100000000", "output": "100000000" }, { "input": "70\n12345678", "output": "12345678" } ]
1,601,836,928
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
108
0
# import sys # sys.stdin = open('input.txt','r') # sys.stdout = open('output.txt','w') n = int(input()) m = int(input()) big = 100000007 ans = ((m%big)%(pow(2,n,big)))%big print(ans)
Title: Modular Exponentiation Time Limit: None seconds Memory Limit: None megabytes Problem Description: The following problem is well-known: given integers *n* and *m*, calculate where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*. You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108). The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108). Output Specification: Output a single integer — the value of . Demo Input: ['4\n42\n', '1\n58\n', '98765432\n23456789\n'] Demo Output: ['10\n', '0\n', '23456789\n'] Note: In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10. In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
```python # import sys # sys.stdin = open('input.txt','r') # sys.stdout = open('output.txt','w') n = int(input()) m = int(input()) big = 100000007 ans = ((m%big)%(pow(2,n,big)))%big print(ans) ```
0
246
B
Increase and Decrease
PROGRAMMING
1,300
[ "greedy", "math" ]
null
null
Polycarpus has an array, consisting of *n* integers *a*1,<=*a*2,<=...,<=*a**n*. Polycarpus likes it when numbers in an array match. That's why he wants the array to have as many equal numbers as possible. For that Polycarpus performs the following operation multiple times: - he chooses two elements of the array *a**i*, *a**j* (*i*<=≠<=*j*); - he simultaneously increases number *a**i* by 1 and decreases number *a**j* by 1, that is, executes *a**i*<==<=*a**i*<=+<=1 and *a**j*<==<=*a**j*<=-<=1. The given operation changes exactly two distinct array elements. Polycarpus can apply the described operation an infinite number of times. Now he wants to know what maximum number of equal array elements he can get if he performs an arbitrary number of such operation. Help Polycarpus.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the array size. The second line contains space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (|*a**i*|<=≤<=104) — the original array.
Print a single integer — the maximum number of equal array elements he can get if he performs an arbitrary number of the given operation.
[ "2\n2 1\n", "3\n1 4 1\n" ]
[ "1\n", "3\n" ]
none
1,000
[ { "input": "2\n2 1", "output": "1" }, { "input": "3\n1 4 1", "output": "3" }, { "input": "4\n2 -7 -2 -6", "output": "3" }, { "input": "4\n2 0 -2 -1", "output": "3" }, { "input": "6\n-1 1 0 0 -1 -1", "output": "5" }, { "input": "5\n0 0 0 0 0", "output": "5" }, { "input": "100\n968 793 -628 -416 942 -308 977 168 728 -879 952 781 -425 -475 -480 738 -740 142 -319 -116 -701 -183 41 324 -918 -391 -176 781 763 888 475 -617 134 -802 -133 -211 855 -869 -236 503 550 387 137 -221 -957 -800 -56 -673 440 -791 -217 -959 -892 886 -593 427 890 223 -425 -342 -262 693 -137 924 860 156 -110 444 -12 703 421 -638 725 -551 597 -206 -80 393 -441 -759 617 424 -506 209 579 -685 -861 507 312 597 -81 -491 424 222 -892 629 512 743 -452 -504", "output": "99" } ]
1,631,703,972
2,147,483,647
Python 3
OK
TESTS
30
154
9,523,200
n=int(input()) if sum(map(int,input().split()))%n: n-=1 print(n)
Title: Increase and Decrease Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus has an array, consisting of *n* integers *a*1,<=*a*2,<=...,<=*a**n*. Polycarpus likes it when numbers in an array match. That's why he wants the array to have as many equal numbers as possible. For that Polycarpus performs the following operation multiple times: - he chooses two elements of the array *a**i*, *a**j* (*i*<=≠<=*j*); - he simultaneously increases number *a**i* by 1 and decreases number *a**j* by 1, that is, executes *a**i*<==<=*a**i*<=+<=1 and *a**j*<==<=*a**j*<=-<=1. The given operation changes exactly two distinct array elements. Polycarpus can apply the described operation an infinite number of times. Now he wants to know what maximum number of equal array elements he can get if he performs an arbitrary number of such operation. Help Polycarpus. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the array size. The second line contains space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (|*a**i*|<=≤<=104) — the original array. Output Specification: Print a single integer — the maximum number of equal array elements he can get if he performs an arbitrary number of the given operation. Demo Input: ['2\n2 1\n', '3\n1 4 1\n'] Demo Output: ['1\n', '3\n'] Note: none
```python n=int(input()) if sum(map(int,input().split()))%n: n-=1 print(n) ```
3
570
C
Replacement
PROGRAMMING
1,600
[ "constructive algorithms", "data structures", "implementation" ]
null
null
Daniel has a string *s*, consisting of lowercase English letters and period signs (characters '.'). Let's define the operation of replacement as the following sequence of steps: find a substring ".." (two consecutive periods) in string *s*, of all occurrences of the substring let's choose the first one, and replace this substring with string ".". In other words, during the replacement operation, the first two consecutive periods are replaced by one. If string *s* contains no two consecutive periods, then nothing happens. Let's define *f*(*s*) as the minimum number of operations of replacement to perform, so that the string does not have any two consecutive periods left. You need to process *m* queries, the *i*-th results in that the character at position *x**i* (1<=≤<=*x**i*<=≤<=*n*) of string *s* is assigned value *c**i*. After each operation you have to calculate and output the value of *f*(*s*). Help Daniel to process all queries.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=300<=000) the length of the string and the number of queries. The second line contains string *s*, consisting of *n* lowercase English letters and period signs. The following *m* lines contain the descriptions of queries. The *i*-th line contains integer *x**i* and *c**i* (1<=≤<=*x**i*<=≤<=*n*, *c**i* — a lowercas English letter or a period sign), describing the query of assigning symbol *c**i* to position *x**i*.
Print *m* numbers, one per line, the *i*-th of these numbers must be equal to the value of *f*(*s*) after performing the *i*-th assignment.
[ "10 3\n.b..bz....\n1 h\n3 c\n9 f\n", "4 4\n.cc.\n2 .\n3 .\n2 a\n1 a\n" ]
[ "4\n3\n1\n", "1\n3\n1\n1\n" ]
Note to the first sample test (replaced periods are enclosed in square brackets). The original string is ".b..bz....". - after the first query *f*(hb..bz....) = 4    ("hb[..]bz...."  →  "hb.bz[..].."  →  "hb.bz[..]."  →  "hb.bz[..]"  →  "hb.bz.")- after the second query *f*(hbс.bz....) = 3    ("hbс.bz[..].."  →  "hbс.bz[..]."  →  "hbс.bz[..]"  →  "hbс.bz.")- after the third query *f*(hbс.bz..f.) = 1    ("hbс.bz[..]f."  →  "hbс.bz.f.") Note to the second sample test. The original string is ".cc.". - after the first query: *f*(..c.) = 1    ("[..]c."  →  ".c.")- after the second query: *f*(....) = 3    ("[..].."  →  "[..]."  →  "[..]"  →  ".")- after the third query: *f*(.a..) = 1    (".a[..]"  →  ".a.")- after the fourth query: *f*(aa..) = 1    ("aa[..]"  →  "aa.")
1,500
[ { "input": "10 3\n.b..bz....\n1 h\n3 c\n9 f", "output": "4\n3\n1" }, { "input": "4 4\n.cc.\n2 .\n3 .\n2 a\n1 a", "output": "1\n3\n1\n1" }, { "input": "3 3\n...\n1 .\n2 a\n3 b", "output": "2\n0\n0" }, { "input": "5 1\n.....\n5 z", "output": "3" }, { "input": "1 5\n.\n1 .\n1 w\n1 w\n1 .\n1 .", "output": "0\n0\n0\n0\n0" }, { "input": "2 7\nab\n1 w\n2 w\n1 c\n2 .\n2 .\n1 .\n2 b", "output": "0\n0\n0\n0\n0\n1\n0" } ]
1,619,960,453
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
6
2,000
1,945,600
def f(x,n): c,d=0,0 for i in range(n): if x[i]=="." and x[i+1]==".": c+=1 return c-d n,m=list(map(int,input().split())) x=input() x="a"+x+"a" x=list(x) v=f(x,n) for i in range(m): a,b=map(str,input().split()) a=int(a) if b!=".": if x[a]==".": if x[a+1]=="." and x[a - 1] == ".": v-=2 elif x[a+1]=="." or x[a - 1] == ".": v-=1 else: if x[a]!=".": if x[a+1]=="." and x[a - 1] == ".": v+=2 elif x[a+1]=="." or x[a - 1] == ".": v+=1 x[a]=b print(v)
Title: Replacement Time Limit: None seconds Memory Limit: None megabytes Problem Description: Daniel has a string *s*, consisting of lowercase English letters and period signs (characters '.'). Let's define the operation of replacement as the following sequence of steps: find a substring ".." (two consecutive periods) in string *s*, of all occurrences of the substring let's choose the first one, and replace this substring with string ".". In other words, during the replacement operation, the first two consecutive periods are replaced by one. If string *s* contains no two consecutive periods, then nothing happens. Let's define *f*(*s*) as the minimum number of operations of replacement to perform, so that the string does not have any two consecutive periods left. You need to process *m* queries, the *i*-th results in that the character at position *x**i* (1<=≤<=*x**i*<=≤<=*n*) of string *s* is assigned value *c**i*. After each operation you have to calculate and output the value of *f*(*s*). Help Daniel to process all queries. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=300<=000) the length of the string and the number of queries. The second line contains string *s*, consisting of *n* lowercase English letters and period signs. The following *m* lines contain the descriptions of queries. The *i*-th line contains integer *x**i* and *c**i* (1<=≤<=*x**i*<=≤<=*n*, *c**i* — a lowercas English letter or a period sign), describing the query of assigning symbol *c**i* to position *x**i*. Output Specification: Print *m* numbers, one per line, the *i*-th of these numbers must be equal to the value of *f*(*s*) after performing the *i*-th assignment. Demo Input: ['10 3\n.b..bz....\n1 h\n3 c\n9 f\n', '4 4\n.cc.\n2 .\n3 .\n2 a\n1 a\n'] Demo Output: ['4\n3\n1\n', '1\n3\n1\n1\n'] Note: Note to the first sample test (replaced periods are enclosed in square brackets). The original string is ".b..bz....". - after the first query *f*(hb..bz....) = 4    ("hb[..]bz...."  →  "hb.bz[..].."  →  "hb.bz[..]."  →  "hb.bz[..]"  →  "hb.bz.")- after the second query *f*(hbс.bz....) = 3    ("hbс.bz[..].."  →  "hbс.bz[..]."  →  "hbс.bz[..]"  →  "hbс.bz.")- after the third query *f*(hbс.bz..f.) = 1    ("hbс.bz[..]f."  →  "hbс.bz.f.") Note to the second sample test. The original string is ".cc.". - after the first query: *f*(..c.) = 1    ("[..]c."  →  ".c.")- after the second query: *f*(....) = 3    ("[..].."  →  "[..]."  →  "[..]"  →  ".")- after the third query: *f*(.a..) = 1    (".a[..]"  →  ".a.")- after the fourth query: *f*(aa..) = 1    ("aa[..]"  →  "aa.")
```python def f(x,n): c,d=0,0 for i in range(n): if x[i]=="." and x[i+1]==".": c+=1 return c-d n,m=list(map(int,input().split())) x=input() x="a"+x+"a" x=list(x) v=f(x,n) for i in range(m): a,b=map(str,input().split()) a=int(a) if b!=".": if x[a]==".": if x[a+1]=="." and x[a - 1] == ".": v-=2 elif x[a+1]=="." or x[a - 1] == ".": v-=1 else: if x[a]!=".": if x[a+1]=="." and x[a - 1] == ".": v+=2 elif x[a+1]=="." or x[a - 1] == ".": v+=1 x[a]=b print(v) ```
0
102
B
Sum of Digits
PROGRAMMING
1,000
[ "implementation" ]
B. Sum of Digits
2
265
Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit?
The first line contains the only integer *n* (0<=≤<=*n*<=≤<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes.
Print the number of times a number can be replaced by the sum of its digits until it only contains one digit.
[ "0\n", "10\n", "991\n" ]
[ "0\n", "1\n", "3\n" ]
In the first sample the number already is one-digit — Herald can't cast a spell. The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once. The third test contains number 991. As one casts a spell the following transformations take place: 991 → 19 → 10 → 1. After three transformations the number becomes one-digit.
1,000
[ { "input": "0", "output": "0" }, { "input": "10", "output": "1" }, { "input": "991", "output": "3" }, { "input": "99", "output": "2" }, { "input": "100", "output": "1" }, { "input": "123456789", "output": "2" }, { "input": "32", "output": "1" }, { "input": "86", "output": "2" }, { "input": "2", "output": "0" }, { "input": "8", "output": "0" }, { "input": "34", "output": "1" }, { "input": "13", "output": "1" }, { "input": "28", "output": "2" }, { "input": "23", "output": "1" }, { "input": "57", "output": "2" }, { "input": "29", "output": "2" }, { "input": "353869285", "output": "3" }, { "input": "549548646", "output": "2" }, { "input": "858893424", "output": "2" }, { "input": "644818852", "output": "3" }, { "input": "360322525", "output": "3" }, { "input": "122937520", "output": "2" }, { "input": "288403032", "output": "2" }, { "input": "677257481", "output": "3" }, { "input": "58059561", "output": "3" }, { "input": "211288847", "output": "2" }, { "input": "339900034079539584", "output": "2" }, { "input": "784084029310269952", "output": "3" }, { "input": "774730557264864000", "output": "3" }, { "input": "478233807148352256", "output": "3" }, { "input": "165646874056812544", "output": "3" }, { "input": "477533739511673792", "output": "3" }, { "input": "660119944377002240", "output": "3" }, { "input": "448375218506078080", "output": "3" }, { "input": "77213334785795616", "output": "3" }, { "input": "165767221702271872", "output": "3" }, { "input": "1", "output": "0" }, { "input": "5", "output": "0" }, { "input": "8", "output": "0" }, { "input": "156161456146164104103460452045416165146141414651641564105461465156445621465146514562146145465165145145614561465145614561", "output": "3" }, { "input": "9", "output": "0" } ]
1,647,714,652
2,147,483,647
Python 3
OK
TESTS
51
124
0
'''CodeForces: Sum of Digits''' if __name__ == '__main__': n = input() count = 0 while len(n) > 1: s = 0 count += 1 for i in n: s += int(i) n = str(s) print(count)
Title: Sum of Digits Time Limit: 2 seconds Memory Limit: 265 megabytes Problem Description: Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit? Input Specification: The first line contains the only integer *n* (0<=≤<=*n*<=≤<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes. Output Specification: Print the number of times a number can be replaced by the sum of its digits until it only contains one digit. Demo Input: ['0\n', '10\n', '991\n'] Demo Output: ['0\n', '1\n', '3\n'] Note: In the first sample the number already is one-digit — Herald can't cast a spell. The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once. The third test contains number 991. As one casts a spell the following transformations take place: 991 → 19 → 10 → 1. After three transformations the number becomes one-digit.
```python '''CodeForces: Sum of Digits''' if __name__ == '__main__': n = input() count = 0 while len(n) > 1: s = 0 count += 1 for i in n: s += int(i) n = str(s) print(count) ```
3.969
268
A
Games
PROGRAMMING
800
[ "brute force" ]
null
null
Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different. There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number. You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question.
The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively.
In a single line print the number of games where the host team is going to play in the guest uniform.
[ "3\n1 2\n2 4\n3 4\n", "4\n100 42\n42 100\n5 42\n100 5\n", "2\n1 2\n1 2\n" ]
[ "1\n", "5\n", "0\n" ]
In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2. In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
500
[ { "input": "3\n1 2\n2 4\n3 4", "output": "1" }, { "input": "4\n100 42\n42 100\n5 42\n100 5", "output": "5" }, { "input": "2\n1 2\n1 2", "output": "0" }, { "input": "7\n4 7\n52 55\n16 4\n55 4\n20 99\n3 4\n7 52", "output": "6" }, { "input": "10\n68 42\n1 35\n25 70\n59 79\n65 63\n46 6\n28 82\n92 62\n43 96\n37 28", "output": "1" }, { "input": "30\n10 39\n89 1\n78 58\n75 99\n36 13\n77 50\n6 97\n79 28\n27 52\n56 5\n93 96\n40 21\n33 74\n26 37\n53 59\n98 56\n61 65\n42 57\n9 7\n25 63\n74 34\n96 84\n95 47\n12 23\n34 21\n71 6\n27 13\n15 47\n64 14\n12 77", "output": "6" }, { "input": "30\n46 100\n87 53\n34 84\n44 66\n23 20\n50 34\n90 66\n17 39\n13 22\n94 33\n92 46\n63 78\n26 48\n44 61\n3 19\n41 84\n62 31\n65 89\n23 28\n58 57\n19 85\n26 60\n75 66\n69 67\n76 15\n64 15\n36 72\n90 89\n42 69\n45 35", "output": "4" }, { "input": "2\n46 6\n6 46", "output": "2" }, { "input": "29\n8 18\n33 75\n69 22\n97 95\n1 97\n78 10\n88 18\n13 3\n19 64\n98 12\n79 92\n41 72\n69 15\n98 31\n57 74\n15 56\n36 37\n15 66\n63 100\n16 42\n47 56\n6 4\n73 15\n30 24\n27 71\n12 19\n88 69\n85 6\n50 11", "output": "10" }, { "input": "23\n43 78\n31 28\n58 80\n66 63\n20 4\n51 95\n40 20\n50 14\n5 34\n36 39\n77 42\n64 97\n62 89\n16 56\n8 34\n58 16\n37 35\n37 66\n8 54\n50 36\n24 8\n68 48\n85 33", "output": "6" }, { "input": "13\n76 58\n32 85\n99 79\n23 58\n96 59\n72 35\n53 43\n96 55\n41 78\n75 10\n28 11\n72 7\n52 73", "output": "0" }, { "input": "18\n6 90\n70 79\n26 52\n67 81\n29 95\n41 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 2", "output": "1" }, { "input": "18\n6 90\n100 79\n26 100\n67 100\n29 100\n100 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 100", "output": "8" }, { "input": "30\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1", "output": "450" }, { "input": "30\n100 99\n58 59\n56 57\n54 55\n52 53\n50 51\n48 49\n46 47\n44 45\n42 43\n40 41\n38 39\n36 37\n34 35\n32 33\n30 31\n28 29\n26 27\n24 25\n22 23\n20 21\n18 19\n16 17\n14 15\n12 13\n10 11\n8 9\n6 7\n4 5\n2 3", "output": "0" }, { "input": "15\n9 3\n2 6\n7 6\n5 10\n9 5\n8 1\n10 5\n2 8\n4 5\n9 8\n5 3\n3 8\n9 8\n4 10\n8 5", "output": "20" }, { "input": "15\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n1 2", "output": "108" }, { "input": "25\n2 1\n1 2\n1 2\n1 2\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n1 2\n2 1\n2 1\n2 1\n2 1\n1 2", "output": "312" }, { "input": "25\n91 57\n2 73\n54 57\n2 57\n23 57\n2 6\n57 54\n57 23\n91 54\n91 23\n57 23\n91 57\n54 2\n6 91\n57 54\n2 57\n57 91\n73 91\n57 23\n91 57\n2 73\n91 2\n23 6\n2 73\n23 6", "output": "96" }, { "input": "28\n31 66\n31 91\n91 31\n97 66\n31 66\n31 66\n66 91\n91 31\n97 31\n91 97\n97 31\n66 31\n66 97\n91 31\n31 66\n31 66\n66 31\n31 97\n66 97\n97 31\n31 91\n66 91\n91 66\n31 66\n91 66\n66 31\n66 31\n91 97", "output": "210" }, { "input": "29\n78 27\n50 68\n24 26\n68 43\n38 78\n26 38\n78 28\n28 26\n27 24\n23 38\n24 26\n24 43\n61 50\n38 78\n27 23\n61 26\n27 28\n43 23\n28 78\n43 27\n43 78\n27 61\n28 38\n61 78\n50 26\n43 27\n26 78\n28 50\n43 78", "output": "73" }, { "input": "29\n80 27\n69 80\n27 80\n69 80\n80 27\n80 27\n80 27\n80 69\n27 69\n80 69\n80 27\n27 69\n69 27\n80 69\n27 69\n69 80\n27 69\n80 69\n80 27\n69 27\n27 69\n27 80\n80 27\n69 80\n27 69\n80 69\n69 80\n69 80\n27 80", "output": "277" }, { "input": "30\n19 71\n7 89\n89 71\n21 7\n19 21\n7 89\n19 71\n89 8\n89 21\n19 8\n21 7\n8 89\n19 89\n7 21\n19 8\n19 7\n7 19\n8 21\n71 21\n71 89\n7 19\n7 19\n21 7\n21 19\n21 19\n71 8\n21 8\n71 19\n19 71\n8 21", "output": "154" }, { "input": "30\n44 17\n44 17\n44 17\n17 44\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n44 17\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n17 44\n44 17\n44 17\n44 17\n17 44\n17 44\n44 17\n17 44\n44 17\n44 17\n44 17", "output": "418" }, { "input": "22\n78 92\n15 92\n92 78\n78 80\n92 16\n24 80\n92 16\n16 92\n78 16\n24 78\n80 78\n92 80\n16 80\n80 78\n15 78\n92 16\n24 15\n24 80\n80 16\n16 80\n92 80\n24 80", "output": "74" }, { "input": "24\n9 83\n90 31\n83 3\n83 3\n21 31\n83 3\n32 31\n12 21\n31 21\n90 32\n32 21\n12 9\n12 31\n9 83\n83 12\n32 3\n32 83\n90 31\n9 32\n31 21\n83 90\n32 21\n21 3\n32 9", "output": "59" }, { "input": "30\n67 21\n85 39\n85 87\n21 39\n66 85\n10 95\n10 21\n87 85\n82 21\n67 21\n95 10\n21 39\n82 21\n21 66\n66 39\n95 30\n67 85\n66 82\n85 82\n21 66\n10 39\n67 10\n21 85\n10 82\n85 95\n10 85\n21 39\n85 39\n39 10\n95 67", "output": "100" }, { "input": "4\n8 7\n8 7\n7 8\n7 8", "output": "8" }, { "input": "6\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1", "output": "10" }, { "input": "12\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1", "output": "72" }, { "input": "4\n1 2\n1 2\n2 1\n2 1", "output": "8" } ]
1,684,247,391
2,147,483,647
PyPy 3-64
OK
TESTS
31
92
0
nt=int(input()) c=[] e=[] for _ in range(nt): e=[] e=list(map(int,input().split())) c.append(e) co=0 for i in range(nt): for j in range(nt): if(i!=j): a=c[i][0] b=c[j][1] if(a==b): co+=1 print(co)
Title: Games Time Limit: None seconds Memory Limit: None megabytes Problem Description: Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different. There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number. You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question. Input Specification: The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively. Output Specification: In a single line print the number of games where the host team is going to play in the guest uniform. Demo Input: ['3\n1 2\n2 4\n3 4\n', '4\n100 42\n42 100\n5 42\n100 5\n', '2\n1 2\n1 2\n'] Demo Output: ['1\n', '5\n', '0\n'] Note: In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2. In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
```python nt=int(input()) c=[] e=[] for _ in range(nt): e=[] e=list(map(int,input().split())) c.append(e) co=0 for i in range(nt): for j in range(nt): if(i!=j): a=c[i][0] b=c[j][1] if(a==b): co+=1 print(co) ```
3
958
F2
Lightsabers (medium)
PROGRAMMING
1,800
[ "binary search", "two pointers" ]
null
null
There is unrest in the Galactic Senate. Several thousand solar systems have declared their intentions to leave the Republic. Master Heidi needs to select the Jedi Knights who will go on peacekeeping missions throughout the galaxy. It is well-known that the success of any peacekeeping mission depends on the colors of the lightsabers of the Jedi who will go on that mission. Heidi has *n* Jedi Knights standing in front of her, each one with a lightsaber of one of *m* possible colors. She knows that for the mission to be the most effective, she needs to select some contiguous interval of knights such that there are exactly *k*1 knights with lightsabers of the first color, *k*2 knights with lightsabers of the second color, ..., *k**m* knights with lightsabers of the *m*-th color. However, since the last time, she has learned that it is not always possible to select such an interval. Therefore, she decided to ask some Jedi Knights to go on an indefinite unpaid vacation leave near certain pits on Tatooine, if you know what I mean. Help Heidi decide what is the minimum number of Jedi Knights that need to be let go before she is able to select the desired interval from the subsequence of remaining knights.
The first line of the input contains *n* (1<=≤<=*n*<=≤<=2·105) and *m* (1<=≤<=*m*<=≤<=*n*). The second line contains *n* integers in the range {1,<=2,<=...,<=*m*} representing colors of the lightsabers of the subsequent Jedi Knights. The third line contains *m* integers *k*1,<=*k*2,<=...,<=*k**m* (with ) – the desired counts of Jedi Knights with lightsabers of each color from 1 to *m*.
Output one number: the minimum number of Jedi Knights that need to be removed from the sequence so that, in what remains, there is an interval with the prescribed counts of lightsaber colors. If this is not possible, output <=-<=1.
[ "8 3\n3 3 1 2 2 1 1 3\n3 1 1\n" ]
[ "1\n" ]
none
0
[ { "input": "8 3\n3 3 1 2 2 1 1 3\n3 1 1", "output": "1" }, { "input": "6 5\n1 2 4 2 4 3\n0 0 1 0 0", "output": "0" }, { "input": "1 1\n1\n1", "output": "0" }, { "input": "2 1\n1 1\n1", "output": "0" }, { "input": "2 1\n1 1\n2", "output": "0" }, { "input": "2 2\n1 2\n1 1", "output": "0" }, { "input": "2 2\n2 2\n1 1", "output": "-1" }, { "input": "3 3\n3 3 2\n0 0 1", "output": "0" }, { "input": "4 4\n4 4 4 4\n0 1 1 1", "output": "-1" }, { "input": "2 2\n1 1\n1 0", "output": "0" }, { "input": "3 3\n3 3 3\n0 0 1", "output": "0" }, { "input": "4 4\n2 4 4 3\n0 1 0 0", "output": "0" }, { "input": "2 2\n2 1\n0 1", "output": "0" }, { "input": "3 3\n3 1 1\n1 1 1", "output": "-1" }, { "input": "4 4\n1 3 1 4\n1 0 0 1", "output": "0" }, { "input": "2 2\n2 1\n1 0", "output": "0" }, { "input": "3 3\n3 1 1\n2 0 0", "output": "0" }, { "input": "4 4\n4 4 2 2\n1 1 1 1", "output": "-1" }, { "input": "2 2\n1 2\n0 2", "output": "-1" }, { "input": "3 3\n3 2 3\n0 2 1", "output": "-1" }, { "input": "4 4\n1 2 4 2\n0 0 1 0", "output": "-1" }, { "input": "4 4\n4 2 1 2\n1 2 0 1", "output": "0" }, { "input": "5 5\n4 4 2 4 2\n0 2 0 3 0", "output": "0" }, { "input": "6 6\n4 3 5 4 5 2\n0 1 0 1 2 0", "output": "0" }, { "input": "4 4\n4 3 3 2\n0 0 2 0", "output": "0" }, { "input": "5 5\n3 4 5 1 4\n1 0 1 1 1", "output": "0" }, { "input": "6 6\n1 1 3 2 2 2\n1 0 0 0 0 0", "output": "0" }, { "input": "4 4\n4 1 1 3\n2 0 0 1", "output": "0" }, { "input": "5 5\n3 4 1 1 5\n2 0 1 1 0", "output": "0" }, { "input": "6 6\n4 3 5 6 5 5\n0 0 1 1 0 0", "output": "0" }, { "input": "4 4\n1 3 4 2\n1 0 0 0", "output": "0" }, { "input": "5 5\n4 1 3 3 3\n0 0 0 1 0", "output": "0" }, { "input": "6 6\n6 2 6 2 5 4\n0 1 0 0 0 1", "output": "0" }, { "input": "4 4\n3 2 1 3\n0 1 0 0", "output": "0" }, { "input": "5 5\n3 4 1 4 2\n1 0 0 1 0", "output": "0" }, { "input": "6 6\n4 1 6 6 3 5\n1 0 1 1 1 2", "output": "0" } ]
1,607,853,752
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
140
0
INF = 114514114514114514 n, m = map(int, input().split()) a = list(map(int, input().split())) Constraint = [0] + list(map(int, input().split())) pos = 0 satisfied_color = 0 GETCOLOR = [0]*(n + 1) ans = INF waste = 0 for i in range(n): while satisfied_color < m and pos < n: now_color = a[pos] GETCOLOR[now_color] += 1 if GETCOLOR[now_color] == Constraint[now_color]: satisfied_color += 1 elif GETCOLOR[now_color] > Constraint[now_color]: waste += 1 pos += 1 if satisfied_color == m: ans = min(ans, waste) removed_color = a[i] if GETCOLOR[removed_color] > Constraint[removed_color]: GETCOLOR[removed_color] -= 1 waste -= 1 continue elif GETCOLOR[removed_color] == Constraint[removed_color]: GETCOLOR[removed_color] -= 1 satisfied_color -= 1 print(ans)
Title: Lightsabers (medium) Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is unrest in the Galactic Senate. Several thousand solar systems have declared their intentions to leave the Republic. Master Heidi needs to select the Jedi Knights who will go on peacekeeping missions throughout the galaxy. It is well-known that the success of any peacekeeping mission depends on the colors of the lightsabers of the Jedi who will go on that mission. Heidi has *n* Jedi Knights standing in front of her, each one with a lightsaber of one of *m* possible colors. She knows that for the mission to be the most effective, she needs to select some contiguous interval of knights such that there are exactly *k*1 knights with lightsabers of the first color, *k*2 knights with lightsabers of the second color, ..., *k**m* knights with lightsabers of the *m*-th color. However, since the last time, she has learned that it is not always possible to select such an interval. Therefore, she decided to ask some Jedi Knights to go on an indefinite unpaid vacation leave near certain pits on Tatooine, if you know what I mean. Help Heidi decide what is the minimum number of Jedi Knights that need to be let go before she is able to select the desired interval from the subsequence of remaining knights. Input Specification: The first line of the input contains *n* (1<=≤<=*n*<=≤<=2·105) and *m* (1<=≤<=*m*<=≤<=*n*). The second line contains *n* integers in the range {1,<=2,<=...,<=*m*} representing colors of the lightsabers of the subsequent Jedi Knights. The third line contains *m* integers *k*1,<=*k*2,<=...,<=*k**m* (with ) – the desired counts of Jedi Knights with lightsabers of each color from 1 to *m*. Output Specification: Output one number: the minimum number of Jedi Knights that need to be removed from the sequence so that, in what remains, there is an interval with the prescribed counts of lightsaber colors. If this is not possible, output <=-<=1. Demo Input: ['8 3\n3 3 1 2 2 1 1 3\n3 1 1\n'] Demo Output: ['1\n'] Note: none
```python INF = 114514114514114514 n, m = map(int, input().split()) a = list(map(int, input().split())) Constraint = [0] + list(map(int, input().split())) pos = 0 satisfied_color = 0 GETCOLOR = [0]*(n + 1) ans = INF waste = 0 for i in range(n): while satisfied_color < m and pos < n: now_color = a[pos] GETCOLOR[now_color] += 1 if GETCOLOR[now_color] == Constraint[now_color]: satisfied_color += 1 elif GETCOLOR[now_color] > Constraint[now_color]: waste += 1 pos += 1 if satisfied_color == m: ans = min(ans, waste) removed_color = a[i] if GETCOLOR[removed_color] > Constraint[removed_color]: GETCOLOR[removed_color] -= 1 waste -= 1 continue elif GETCOLOR[removed_color] == Constraint[removed_color]: GETCOLOR[removed_color] -= 1 satisfied_color -= 1 print(ans) ```
0
102
A
Clothes
PROGRAMMING
1,200
[ "brute force" ]
A. Clothes
2
256
A little boy Gerald entered a clothes shop and found out something very unpleasant: not all clothes turns out to match. For example, Gerald noticed that he looks rather ridiculous in a smoking suit and a baseball cap. Overall the shop sells *n* clothing items, and exactly *m* pairs of clothing items match. Each item has its price, represented by an integer number of rubles. Gerald wants to buy three clothing items so that they matched each other. Besides, he wants to spend as little money as possible. Find the least possible sum he can spend.
The first input file line contains integers *n* and *m* — the total number of clothing items in the shop and the total number of matching pairs of clothing items (). Next line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=106) — the prices of the clothing items in rubles. Next *m* lines each contain a pair of space-separated integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*,<=*u**i*<=≠<=*v**i*). Each such pair of numbers means that the *u**i*-th and the *v**i*-th clothing items match each other. It is guaranteed that in each pair *u**i* and *v**i* are distinct and all the unordered pairs (*u**i*,<=*v**i*) are different.
Print the only number — the least possible sum in rubles that Gerald will have to pay in the shop. If the shop has no three clothing items that would match each other, print "-1" (without the quotes).
[ "3 3\n1 2 3\n1 2\n2 3\n3 1\n", "3 2\n2 3 4\n2 3\n2 1\n", "4 4\n1 1 1 1\n1 2\n2 3\n3 4\n4 1\n" ]
[ "6\n", "-1\n", "-1\n" ]
In the first test there only are three pieces of clothing and they all match each other. Thus, there is only one way — to buy the 3 pieces of clothing; in this case he spends 6 roubles. The second test only has three pieces of clothing as well, yet Gerald can't buy them because the first piece of clothing does not match the third one. Thus, there are no three matching pieces of clothing. The answer is -1. In the third example there are 4 pieces of clothing, but Gerald can't buy any 3 of them simultaneously. The answer is -1.
500
[ { "input": "3 3\n1 2 3\n1 2\n2 3\n3 1", "output": "6" }, { "input": "3 2\n2 3 4\n2 3\n2 1", "output": "-1" }, { "input": "4 4\n1 1 1 1\n1 2\n2 3\n3 4\n4 1", "output": "-1" }, { "input": "4 3\n10 10 5 1\n2 1\n3 1\n3 4", "output": "-1" }, { "input": "4 0\n9 8 2 10", "output": "-1" }, { "input": "4 3\n5 5 9 6\n3 2\n1 4\n3 4", "output": "-1" }, { "input": "4 3\n5 1 10 1\n2 1\n3 2\n1 4", "output": "-1" }, { "input": "4 3\n1 2 8 6\n1 3\n1 4\n3 4", "output": "15" }, { "input": "4 4\n9 3 3 1\n1 2\n3 1\n3 2\n4 3", "output": "15" }, { "input": "4 3\n6 8 10 1\n2 3\n1 4\n3 4", "output": "-1" }, { "input": "4 5\n4 10 3 9\n1 2\n3 1\n3 2\n2 4\n4 3", "output": "17" }, { "input": "4 2\n2 9 8 4\n1 3\n4 2", "output": "-1" }, { "input": "4 3\n5 3 4 4\n2 1\n4 1\n3 4", "output": "-1" }, { "input": "6 6\n39 15 73 82 37 40\n2 1\n5 1\n1 6\n2 6\n6 3\n4 6", "output": "94" }, { "input": "6 7\n85 2 34 6 83 61\n1 2\n2 3\n4 2\n4 3\n1 5\n4 5\n6 3", "output": "42" }, { "input": "6 8\n64 44 5 31 14 16\n1 2\n1 3\n1 4\n2 5\n3 5\n6 1\n6 3\n6 4", "output": "85" }, { "input": "6 8\n36 19 99 8 52 77\n2 1\n3 1\n4 2\n4 3\n1 5\n5 4\n1 6\n6 2", "output": "132" }, { "input": "6 5\n59 69 52 38 93 53\n4 2\n1 5\n6 1\n4 6\n5 6", "output": "205" }, { "input": "6 11\n95 81 74 94 60 69\n3 2\n1 4\n4 2\n3 4\n1 5\n5 2\n5 3\n1 6\n2 6\n3 6\n4 6", "output": "215" }, { "input": "6 8\n69 36 41 23 91 35\n1 2\n3 1\n3 2\n1 4\n3 4\n3 5\n5 4\n4 6", "output": "133" }, { "input": "6 6\n33 76 98 59 4 69\n1 2\n3 2\n5 1\n2 5\n4 5\n6 5", "output": "113" }, { "input": "6 6\n92 56 15 83 30 28\n3 1\n4 1\n2 5\n5 4\n2 6\n6 3", "output": "-1" }, { "input": "6 10\n17 5 55 24 55 74\n1 3\n2 3\n3 4\n5 1\n5 2\n5 3\n4 5\n6 2\n6 3\n6 5", "output": "115" }, { "input": "3 3\n1000000 1000000 1000000\n2 1\n1 3\n3 2", "output": "3000000" }, { "input": "3 0\n1 1 1", "output": "-1" }, { "input": "3 3\n100000 100000 100001\n1 2\n2 3\n3 1", "output": "300001" }, { "input": "3 3\n1 1 999999\n1 2\n2 3\n3 1", "output": "1000001" }, { "input": "3 3\n999999 1 1\n1 2\n2 3\n3 1", "output": "1000001" }, { "input": "3 3\n1000000 1000000 1000000\n1 2\n2 3\n1 3", "output": "3000000" } ]
1,611,008,836
2,147,483,647
PyPy 3
OK
TESTS
32
342
3,481,600
n,m=map(int,input().split()) prices=list(map(int,input().split())) match=[[False for _ in range(n+1)]for j in range(n+1)] for i in range(m): v,u=map(int,input().split()) match[u][v]=match[v][u]=True t=-1 for i in range(1,n+1): for j in range(i+1,n+1): if not match[i][j]:continue for k in range(j+1,n+1): if match[k][i] and match[j][k]: price=prices[i-1]+prices[j-1]+prices[k-1] if t==-1 or price<t: t=price print(t)
Title: Clothes Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A little boy Gerald entered a clothes shop and found out something very unpleasant: not all clothes turns out to match. For example, Gerald noticed that he looks rather ridiculous in a smoking suit and a baseball cap. Overall the shop sells *n* clothing items, and exactly *m* pairs of clothing items match. Each item has its price, represented by an integer number of rubles. Gerald wants to buy three clothing items so that they matched each other. Besides, he wants to spend as little money as possible. Find the least possible sum he can spend. Input Specification: The first input file line contains integers *n* and *m* — the total number of clothing items in the shop and the total number of matching pairs of clothing items (). Next line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=106) — the prices of the clothing items in rubles. Next *m* lines each contain a pair of space-separated integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*,<=*u**i*<=≠<=*v**i*). Each such pair of numbers means that the *u**i*-th and the *v**i*-th clothing items match each other. It is guaranteed that in each pair *u**i* and *v**i* are distinct and all the unordered pairs (*u**i*,<=*v**i*) are different. Output Specification: Print the only number — the least possible sum in rubles that Gerald will have to pay in the shop. If the shop has no three clothing items that would match each other, print "-1" (without the quotes). Demo Input: ['3 3\n1 2 3\n1 2\n2 3\n3 1\n', '3 2\n2 3 4\n2 3\n2 1\n', '4 4\n1 1 1 1\n1 2\n2 3\n3 4\n4 1\n'] Demo Output: ['6\n', '-1\n', '-1\n'] Note: In the first test there only are three pieces of clothing and they all match each other. Thus, there is only one way — to buy the 3 pieces of clothing; in this case he spends 6 roubles. The second test only has three pieces of clothing as well, yet Gerald can't buy them because the first piece of clothing does not match the third one. Thus, there are no three matching pieces of clothing. The answer is -1. In the third example there are 4 pieces of clothing, but Gerald can't buy any 3 of them simultaneously. The answer is -1.
```python n,m=map(int,input().split()) prices=list(map(int,input().split())) match=[[False for _ in range(n+1)]for j in range(n+1)] for i in range(m): v,u=map(int,input().split()) match[u][v]=match[v][u]=True t=-1 for i in range(1,n+1): for j in range(i+1,n+1): if not match[i][j]:continue for k in range(j+1,n+1): if match[k][i] and match[j][k]: price=prices[i-1]+prices[j-1]+prices[k-1] if t==-1 or price<t: t=price print(t) ```
3.908015
773
A
Success Rate
PROGRAMMING
1,700
[ "binary search", "math" ]
null
null
You are an experienced Codeforces user. Today you found out that during your activity on Codeforces you have made *y* submissions, out of which *x* have been successful. Thus, your current success rate on Codeforces is equal to *x*<=/<=*y*. Your favorite rational number in the [0;1] range is *p*<=/<=*q*. Now you wonder: what is the smallest number of submissions you have to make if you want your success rate to be *p*<=/<=*q*?
The first line contains a single integer *t* (1<=≤<=*t*<=≤<=1000) — the number of test cases. Each of the next *t* lines contains four integers *x*, *y*, *p* and *q* (0<=≤<=*x*<=≤<=*y*<=≤<=109; 0<=≤<=*p*<=≤<=*q*<=≤<=109; *y*<=&gt;<=0; *q*<=&gt;<=0). It is guaranteed that *p*<=/<=*q* is an irreducible fraction. Hacks. For hacks, an additional constraint of *t*<=≤<=5 must be met.
For each test case, output a single integer equal to the smallest number of submissions you have to make if you want your success rate to be equal to your favorite rational number, or -1 if this is impossible to achieve.
[ "4\n3 10 1 2\n7 14 3 8\n20 70 2 7\n5 6 1 1\n" ]
[ "4\n10\n0\n-1\n" ]
In the first example, you have to make 4 successful submissions. Your success rate will be equal to 7 / 14, or 1 / 2. In the second example, you have to make 2 successful and 8 unsuccessful submissions. Your success rate will be equal to 9 / 24, or 3 / 8. In the third example, there is no need to make any new submissions. Your success rate is already equal to 20 / 70, or 2 / 7. In the fourth example, the only unsuccessful submission breaks your hopes of having the success rate equal to 1.
500
[ { "input": "4\n3 10 1 2\n7 14 3 8\n20 70 2 7\n5 6 1 1", "output": "4\n10\n0\n-1" }, { "input": "8\n0 1 0 1\n0 2 1 2\n0 3 1 1\n1 2 0 1\n1 2 1 1\n2 2 0 1\n3 3 1 2\n4 4 1 1", "output": "0\n2\n-1\n-1\n-1\n-1\n3\n0" }, { "input": "5\n1 1000000000 1 2\n1 1000000000 1 2\n1 1000000000 1 2\n1 1000000000 1 2\n1 1000000000 1 2", "output": "999999998\n999999998\n999999998\n999999998\n999999998" }, { "input": "5\n999999999 1000000000 1 1000000000\n999999999 1000000000 1 1000000000\n999999999 1000000000 1 1000000000\n999999999 1000000000 1 1000000000\n999999999 1000000000 1 1000000000", "output": "999999998000000000\n999999998000000000\n999999998000000000\n999999998000000000\n999999998000000000" }, { "input": "5\n0 1000000000 999999999 1000000000\n0 1000000000 999999999 1000000000\n0 1000000000 999999999 1000000000\n0 1000000000 999999999 1000000000\n0 1000000000 999999999 1000000000", "output": "999999999000000000\n999999999000000000\n999999999000000000\n999999999000000000\n999999999000000000" }, { "input": "1\n999999999 1000000000 1 2", "output": "999999998" }, { "input": "1\n50 50 1 1", "output": "0" }, { "input": "1\n100000000 100000000 1 2", "output": "100000000" }, { "input": "1\n3 999999990 1 1000000000", "output": "2000000010" }, { "input": "5\n3 10 1 2\n7 14 3 8\n20 70 2 7\n5 6 1 1\n1 1 1 1", "output": "4\n10\n0\n-1\n0" }, { "input": "5\n9999999 10000000 1 1000000000\n9999999 10000000 1 1000000000\n9999999 10000000 1 1000000000\n9999999 10000000 1 1000000000\n9999999 10000000 1 1000000000", "output": "9999998990000000\n9999998990000000\n9999998990000000\n9999998990000000\n9999998990000000" }, { "input": "1\n0 1000000000 999999999 1000000000", "output": "999999999000000000" }, { "input": "5\n1 1000000000 999999999 1000000000\n1 1000000000 999999999 1000000000\n1 1000000000 999999999 1000000000\n1 1000000000 999999999 1000000000\n1 1000000000 999999999 1000000000", "output": "999999998000000000\n999999998000000000\n999999998000000000\n999999998000000000\n999999998000000000" }, { "input": "5\n1 1000000000 999999999 1000000000\n2 1000000000 999999999 1000000000\n3 1000000000 999999999 1000000000\n4 1000000000 999999999 1000000000\n5 1000000000 999999999 1000000000", "output": "999999998000000000\n999999997000000000\n999999996000000000\n999999995000000000\n999999994000000000" }, { "input": "1\n1 1 1 1", "output": "0" }, { "input": "5\n999999997 999999998 2 999999999\n999999997 999999998 2 999999999\n999999997 999999998 2 999999999\n999999997 999999998 2 999999999\n999999997 999999998 2 999999999", "output": "499999997500000003\n499999997500000003\n499999997500000003\n499999997500000003\n499999997500000003" }, { "input": "5\n1000000000 1000000000 1 1000000000\n1000000000 1000000000 1 1000000000\n1000000000 1000000000 1 1000000000\n1000000000 1000000000 1 1000000000\n1000000000 1000000000 1 1000000000", "output": "999999999000000000\n999999999000000000\n999999999000000000\n999999999000000000\n999999999000000000" }, { "input": "5\n99999997 999999998 999999998 999999999\n99999996 999999997 999999997 999999999\n99999997 999999998 999999998 999999999\n99999996 999999997 999999997 999999999\n99999997 999999998 999999998 999999999", "output": "899999999100000001\n449999999550000002\n899999999100000001\n449999999550000002\n899999999100000001" }, { "input": "1\n1000000000 1000000000 1 1000000000", "output": "999999999000000000" }, { "input": "1\n7 7 1 1", "output": "0" }, { "input": "5\n1000000000 1000000000 1 2\n1000000000 1000000000 1 2\n1000000000 1000000000 1 2\n1000000000 1000000000 1 2\n1000000000 1000000000 1 2", "output": "1000000000\n1000000000\n1000000000\n1000000000\n1000000000" }, { "input": "1\n1000000000 1000000000 1 1", "output": "0" }, { "input": "1\n1 1000000000 999999999 1000000000", "output": "999999998000000000" }, { "input": "4\n1 1000000000 999999999 1000000000\n999999999 1000000000 1 1000000000\n1 2 0 1\n0 1 0 1", "output": "999999998000000000\n999999998000000000\n-1\n0" }, { "input": "1\n1 1000000000 1 2", "output": "999999998" }, { "input": "5\n1 982449707 1 2\n1 982449707 1 2\n1 982449707 1 2\n1 982449707 1 2\n1 982449707 1 2", "output": "982449705\n982449705\n982449705\n982449705\n982449705" }, { "input": "5\n13 900000007 900000007 900000009\n13 900000007 900000007 900000009\n13 900000007 900000007 900000009\n13 900000007 900000007 900000009\n13 900000007 900000007 900000009", "output": "405000000449999966\n405000000449999966\n405000000449999966\n405000000449999966\n405000000449999966" }, { "input": "1\n5 10 0 1", "output": "-1" }, { "input": "1\n2 2 1 1", "output": "0" }, { "input": "5\n0 999999999 999999999 1000000000\n0 999999999 999999999 1000000000\n0 999999999 999999999 1000000000\n0 999999999 999999999 1000000000\n0 999999999 999999999 1000000000", "output": "999999998000000001\n999999998000000001\n999999998000000001\n999999998000000001\n999999998000000001" }, { "input": "1\n0 5 0 1", "output": "0" }, { "input": "5\n999999999 1000000000 1 9999\n999999999 1000000000 1 9999\n999999999 1000000000 1 9999\n999999999 1000000000 1 9999\n999999999 1000000000 1 9999", "output": "9997999990001\n9997999990001\n9997999990001\n9997999990001\n9997999990001" }, { "input": "5\n999999997 1000000000 3 1000000000\n999999997 1000000000 3 1000000000\n999999997 1000000000 3 1000000000\n999999997 1000000000 3 1000000000\n999999997 1000000000 3 1000000000", "output": "333333332000000000\n333333332000000000\n333333332000000000\n333333332000000000\n333333332000000000" }, { "input": "5\n1000000000 1000000000 1 1000000000\n1000000000 1000000000 1 1000000000\n1 1000000000 999999999 1000000000\n1 1000000000 999999999 1000000000\n1 1000000000 999999999 1000000000", "output": "999999999000000000\n999999999000000000\n999999998000000000\n999999998000000000\n999999998000000000" }, { "input": "5\n1000000000 1000000000 1 1000000000\n1000000000 1000000000 1 1000000000\n1000000000 1000000000 1 1000000000\n1 1000000000 999999999 1000000000\n1 1000000000 999999999 1000000000", "output": "999999999000000000\n999999999000000000\n999999999000000000\n999999998000000000\n999999998000000000" }, { "input": "1\n999999998 999999999 1 10", "output": "8999999981" }, { "input": "5\n1 1 1 1\n2 2 1 1\n100 100 1 1\n1000000000 1000000000 1 1\n1000000000 1000000000 1 1", "output": "0\n0\n0\n0\n0" }, { "input": "4\n1 1000000000 999999999 1000000000\n1 1000000000 999999999 1000000000\n1 1000000000 999999999 1000000000\n1 1000000000 999999999 1000000000", "output": "999999998000000000\n999999998000000000\n999999998000000000\n999999998000000000" } ]
1,689,169,201
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
61
0
print("_RANDOM_GUESS_1689169200.8418298")# 1689169200.841851
Title: Success Rate Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are an experienced Codeforces user. Today you found out that during your activity on Codeforces you have made *y* submissions, out of which *x* have been successful. Thus, your current success rate on Codeforces is equal to *x*<=/<=*y*. Your favorite rational number in the [0;1] range is *p*<=/<=*q*. Now you wonder: what is the smallest number of submissions you have to make if you want your success rate to be *p*<=/<=*q*? Input Specification: The first line contains a single integer *t* (1<=≤<=*t*<=≤<=1000) — the number of test cases. Each of the next *t* lines contains four integers *x*, *y*, *p* and *q* (0<=≤<=*x*<=≤<=*y*<=≤<=109; 0<=≤<=*p*<=≤<=*q*<=≤<=109; *y*<=&gt;<=0; *q*<=&gt;<=0). It is guaranteed that *p*<=/<=*q* is an irreducible fraction. Hacks. For hacks, an additional constraint of *t*<=≤<=5 must be met. Output Specification: For each test case, output a single integer equal to the smallest number of submissions you have to make if you want your success rate to be equal to your favorite rational number, or -1 if this is impossible to achieve. Demo Input: ['4\n3 10 1 2\n7 14 3 8\n20 70 2 7\n5 6 1 1\n'] Demo Output: ['4\n10\n0\n-1\n'] Note: In the first example, you have to make 4 successful submissions. Your success rate will be equal to 7 / 14, or 1 / 2. In the second example, you have to make 2 successful and 8 unsuccessful submissions. Your success rate will be equal to 9 / 24, or 3 / 8. In the third example, there is no need to make any new submissions. Your success rate is already equal to 20 / 70, or 2 / 7. In the fourth example, the only unsuccessful submission breaks your hopes of having the success rate equal to 1.
```python print("_RANDOM_GUESS_1689169200.8418298")# 1689169200.841851 ```
0
573
A
Bear and Poker
PROGRAMMING
1,300
[ "implementation", "math", "number theory" ]
null
null
Limak is an old brown bear. He often plays poker with his friends. Today they went to a casino. There are *n* players (including Limak himself) and right now all of them have bids on the table. *i*-th of them has bid with size *a**i* dollars. Each player can double his bid any number of times and triple his bid any number of times. The casino has a great jackpot for making all bids equal. Is it possible that Limak and his friends will win a jackpot?
First line of input contains an integer *n* (2<=≤<=*n*<=≤<=105), the number of players. The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the bids of players.
Print "Yes" (without the quotes) if players can make their bids become equal, or "No" otherwise.
[ "4\n75 150 75 50\n", "3\n100 150 250\n" ]
[ "Yes\n", "No\n" ]
In the first sample test first and third players should double their bids twice, second player should double his bid once and fourth player should both double and triple his bid. It can be shown that in the second sample test there is no way to make all bids equal.
500
[ { "input": "4\n75 150 75 50", "output": "Yes" }, { "input": "3\n100 150 250", "output": "No" }, { "input": "7\n34 34 68 34 34 68 34", "output": "Yes" }, { "input": "10\n72 96 12 18 81 20 6 2 54 1", "output": "No" }, { "input": "20\n958692492 954966768 77387000 724664764 101294996 614007760 202904092 555293973 707655552 108023967 73123445 612562357 552908390 914853758 915004122 466129205 122853497 814592742 373389439 818473058", "output": "No" }, { "input": "2\n1 1", "output": "Yes" }, { "input": "2\n72 72", "output": "Yes" }, { "input": "2\n49 42", "output": "No" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "Yes" }, { "input": "6\n162000 96000 648000 1000 864000 432000", "output": "Yes" }, { "input": "8\n600000 100000 100000 100000 900000 600000 900000 600000", "output": "Yes" }, { "input": "12\n2048 1024 6144 1024 3072 3072 6144 1024 4096 2048 6144 3072", "output": "Yes" }, { "input": "20\n246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246", "output": "Yes" }, { "input": "50\n840868705 387420489 387420489 795385082 634350497 206851546 536870912 536870912 414927754 387420489 387420489 536870912 387420489 149011306 373106005 536870912 700746206 387420489 777952883 847215247 176645254 576664386 387420489 230876513 536870912 536870912 536870912 387420489 387420489 536870912 460495524 528643722 387420489 536870912 470369206 899619085 387420489 631148352 387420489 387420489 536870912 414666674 521349938 776784669 387420489 102428009 536870912 387420489 536870912 718311009", "output": "No" }, { "input": "2\n5 6", "output": "No" }, { "input": "3\n536870912 387420489 257407169", "output": "No" }, { "input": "4\n2 2 5 2", "output": "No" }, { "input": "2\n33554432 59049", "output": "Yes" }, { "input": "3\n536870912 387420489 387420489", "output": "Yes" }, { "input": "2\n1 5", "output": "No" }, { "input": "18\n2 3 5 7 11 13 17 19 23 29 31 37 43 47 53 59 67 71", "output": "No" }, { "input": "2\n1 30", "output": "No" }, { "input": "3\n335544320 71744535 71744535", "output": "Yes" }, { "input": "5\n1000000000 999999999 999999998 999999997 999999996", "output": "No" }, { "input": "2\n25 5", "output": "No" }, { "input": "4\n75 150 75 5", "output": "No" }, { "input": "3\n536870912 387420489 362797056", "output": "Yes" }, { "input": "3\n536870912 387420489 89", "output": "No" }, { "input": "4\n547 2606459 222763549 143466789", "output": "No" }, { "input": "3\n129140163 33554432 1", "output": "Yes" }, { "input": "10\n244140625 244140625 244140625 244140625 244140625 244140625 244140625 244140625 536870912 387420489", "output": "No" }, { "input": "3\n5 5 1", "output": "No" }, { "input": "5\n3 7 29 36760123 823996703", "output": "No" } ]
1,690,146,498
2,147,483,647
PyPy 3-64
OK
TESTS
70
109
13,721,600
import math n=int(input()) kk=list(map(int,input().split())) b=math.gcd(kk[0],kk[0]) for i in kk: b=math.gcd(b,i) for i in kk: g=i//b while g!=1: flag1, flag2 = False, False while g%2==0: g//=2 flag1=True while g%3==0: g//=3 flag2=True if not flag1 and not flag2 and g!=1: print("NO") exit() print("YES")
Title: Bear and Poker Time Limit: None seconds Memory Limit: None megabytes Problem Description: Limak is an old brown bear. He often plays poker with his friends. Today they went to a casino. There are *n* players (including Limak himself) and right now all of them have bids on the table. *i*-th of them has bid with size *a**i* dollars. Each player can double his bid any number of times and triple his bid any number of times. The casino has a great jackpot for making all bids equal. Is it possible that Limak and his friends will win a jackpot? Input Specification: First line of input contains an integer *n* (2<=≤<=*n*<=≤<=105), the number of players. The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the bids of players. Output Specification: Print "Yes" (without the quotes) if players can make their bids become equal, or "No" otherwise. Demo Input: ['4\n75 150 75 50\n', '3\n100 150 250\n'] Demo Output: ['Yes\n', 'No\n'] Note: In the first sample test first and third players should double their bids twice, second player should double his bid once and fourth player should both double and triple his bid. It can be shown that in the second sample test there is no way to make all bids equal.
```python import math n=int(input()) kk=list(map(int,input().split())) b=math.gcd(kk[0],kk[0]) for i in kk: b=math.gcd(b,i) for i in kk: g=i//b while g!=1: flag1, flag2 = False, False while g%2==0: g//=2 flag1=True while g%3==0: g//=3 flag2=True if not flag1 and not flag2 and g!=1: print("NO") exit() print("YES") ```
3
0
none
none
none
0
[ "none" ]
null
null
Something happened in Uzhlyandia again... There are riots on the streets... Famous Uzhlyandian superheroes Shean the Sheep and Stas the Giraffe were called in order to save the situation. Upon the arriving, they found that citizens are worried about maximum values of the Main Uzhlyandian Function *f*, which is defined as follows: In the above formula, 1<=≤<=*l*<=&lt;<=*r*<=≤<=*n* must hold, where *n* is the size of the Main Uzhlyandian Array *a*, and |*x*| means absolute value of *x*. But the heroes skipped their math lessons in school, so they asked you for help. Help them calculate the maximum value of *f* among all possible values of *l* and *r* for the given array *a*.
The first line contains single integer *n* (2<=≤<=*n*<=≤<=105) — the size of the array *a*. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (-109<=≤<=*a**i*<=≤<=109) — the array elements.
Print the only integer — the maximum value of *f*.
[ "5\n1 4 2 3 1\n", "4\n1 5 4 7\n" ]
[ "3", "6" ]
In the first sample case, the optimal value of *f* is reached on intervals [1, 2] and [2, 5]. In the second case maximal value of *f* is reachable only on the whole array.
0
[ { "input": "5\n1 4 2 3 1", "output": "3" }, { "input": "4\n1 5 4 7", "output": "6" }, { "input": "8\n16 14 12 10 8 100 50 0", "output": "92" }, { "input": "2\n1 1", "output": "0" }, { "input": "50\n-5 -9 0 44 -10 37 34 -49 11 -22 -26 44 8 -13 23 -46 34 12 -24 2 -40 -15 -28 38 -40 -42 -42 7 -43 5 2 -11 10 43 9 49 -13 36 2 24 46 50 -15 -26 -6 -6 8 4 -44 -3", "output": "208" }, { "input": "100\n23 64 60 -45 -36 -64 -59 15 -75 69 -30 -7 -20 17 -77 58 93 -76 -98 -22 -31 16 -50 6 -20 -85 1 64 -88 -8 -15 -6 -57 25 91 10 2 -90 74 -66 -42 73 28 49 -85 59 96 79 -25 49 -59 -89 -75 12 -96 -33 -65 -8 -100 -81 17 99 -91 -5 7 -21 1 85 63 86 -26 85 -31 11 -75 35 -82 15 98 93 -55 66 70 36 -38 8 92 -63 -5 60 -78 -7 -22 -1 4 54 36 16 32 -20", "output": "632" }, { "input": "3\n0 0 0", "output": "0" }, { "input": "3\n0 1 -1", "output": "2" }, { "input": "5\n1000000000 0 0 1000000000 -1000000000", "output": "2000000000" }, { "input": "2\n1000000000 -1000000000", "output": "2000000000" }, { "input": "4\n1000000000 0 0 -1000000000", "output": "2000000000" }, { "input": "4\n1 0 1 0", "output": "1" }, { "input": "5\n0 10 20 30 40", "output": "10" }, { "input": "2\n-1000000000 1000000000", "output": "2000000000" }, { "input": "2\n1 2", "output": "1" }, { "input": "9\n1000000000 0 0 1000000000 1000000000 0 0 1000000000 1000000000", "output": "4000000000" }, { "input": "16\n-1000000000 1000000000 1000000000 -1000000000 -1000000000 1000000000 1000000000 -1000000000 -1000000000 1000000000 1000000000 -1000000000 -1000000000 1000000000 1000000000 -1000000000", "output": "16000000000" }, { "input": "6\n1000000000 0 0 1000000000 1000000000 0", "output": "3000000000" }, { "input": "17\n1000000000 0 0 1000000000 1000000000 0 0 1000000000 1000000000 0 0 1000000000 1000000000 0 0 1000000000 1000000000", "output": "8000000000" }, { "input": "11\n1000000000 0 1 1000000000 999999999 1 0 1000000000 999999999 1 1000000000", "output": "4999999991" }, { "input": "4\n1000000000 -1000000000 -1000000000 1000000000", "output": "4000000000" }, { "input": "10\n1000000000 -1000000000 -1000000000 1000000000 1000000000 -1000000000 -1000000000 1000000000 1000000000 -1000000000", "output": "10000000000" } ]
1,499,705,025
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
7
62
5,529,600
n=int(input()) l=list(map(int,input().split())) ma=0 p1=0 p2=0 for i in range(n-1) : if (i+1)%2!=0 : p1=p1+abs(l[i]-l[i-1]) p2=p2-abs(l[i]-l[i-1]) if p2<0 : p2=0 ma=max(p1,ma) else : p2=p2+abs(l[i]-l[i-1]) p1=p1-abs(l[i]-l[i-1]) if p1<0 : p1=0 ma=max(p2,ma) print(ma)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Something happened in Uzhlyandia again... There are riots on the streets... Famous Uzhlyandian superheroes Shean the Sheep and Stas the Giraffe were called in order to save the situation. Upon the arriving, they found that citizens are worried about maximum values of the Main Uzhlyandian Function *f*, which is defined as follows: In the above formula, 1<=≤<=*l*<=&lt;<=*r*<=≤<=*n* must hold, where *n* is the size of the Main Uzhlyandian Array *a*, and |*x*| means absolute value of *x*. But the heroes skipped their math lessons in school, so they asked you for help. Help them calculate the maximum value of *f* among all possible values of *l* and *r* for the given array *a*. Input Specification: The first line contains single integer *n* (2<=≤<=*n*<=≤<=105) — the size of the array *a*. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (-109<=≤<=*a**i*<=≤<=109) — the array elements. Output Specification: Print the only integer — the maximum value of *f*. Demo Input: ['5\n1 4 2 3 1\n', '4\n1 5 4 7\n'] Demo Output: ['3', '6'] Note: In the first sample case, the optimal value of *f* is reached on intervals [1, 2] and [2, 5]. In the second case maximal value of *f* is reachable only on the whole array.
```python n=int(input()) l=list(map(int,input().split())) ma=0 p1=0 p2=0 for i in range(n-1) : if (i+1)%2!=0 : p1=p1+abs(l[i]-l[i-1]) p2=p2-abs(l[i]-l[i-1]) if p2<0 : p2=0 ma=max(p1,ma) else : p2=p2+abs(l[i]-l[i-1]) p1=p1-abs(l[i]-l[i-1]) if p1<0 : p1=0 ma=max(p2,ma) print(ma) ```
0
617
A
Elephant
PROGRAMMING
800
[ "math" ]
null
null
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=&gt;<=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house.
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
[ "5\n", "12\n" ]
[ "1\n", "3\n" ]
In the first sample the elephant needs to make one step of length 5 to reach the point *x*. In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
500
[ { "input": "5", "output": "1" }, { "input": "12", "output": "3" }, { "input": "999999", "output": "200000" }, { "input": "41", "output": "9" }, { "input": "1000000", "output": "200000" }, { "input": "1", "output": "1" }, { "input": "2", "output": "1" }, { "input": "3", "output": "1" }, { "input": "4", "output": "1" }, { "input": "534204", "output": "106841" }, { "input": "469569", "output": "93914" }, { "input": "502877", "output": "100576" }, { "input": "942212", "output": "188443" }, { "input": "97", "output": "20" }, { "input": "53", "output": "11" }, { "input": "89", "output": "18" }, { "input": "574", "output": "115" }, { "input": "716", "output": "144" }, { "input": "729", "output": "146" }, { "input": "8901", "output": "1781" }, { "input": "3645", "output": "729" }, { "input": "4426", "output": "886" }, { "input": "46573", "output": "9315" }, { "input": "86380", "output": "17276" }, { "input": "94190", "output": "18838" }, { "input": "999990", "output": "199998" }, { "input": "999991", "output": "199999" }, { "input": "999992", "output": "199999" }, { "input": "999993", "output": "199999" }, { "input": "999994", "output": "199999" }, { "input": "999995", "output": "199999" }, { "input": "999996", "output": "200000" }, { "input": "999997", "output": "200000" }, { "input": "999998", "output": "200000" } ]
1,698,056,722
2,147,483,647
Python 3
OK
TESTS
34
62
0
n=int(input()) count=0 while n!=0: if n >= 5: n-=5 count+=1 elif n >= 4: n-=4 count+=1 elif n >= 3: n-=3 count+=1 elif n >= 2: n-=2 count+=1 elif n>=1: n-=1 count+=1 print(count)
Title: Elephant Time Limit: None seconds Memory Limit: None megabytes Problem Description: An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=&gt;<=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house. Input Specification: The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house. Output Specification: Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*. Demo Input: ['5\n', '12\n'] Demo Output: ['1\n', '3\n'] Note: In the first sample the elephant needs to make one step of length 5 to reach the point *x*. In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
```python n=int(input()) count=0 while n!=0: if n >= 5: n-=5 count+=1 elif n >= 4: n-=4 count+=1 elif n >= 3: n-=3 count+=1 elif n >= 2: n-=2 count+=1 elif n>=1: n-=1 count+=1 print(count) ```
3
409
F
000001
PROGRAMMING
1,900
[ "*special" ]
null
null
The input contains a single integer *a* (1<=≤<=*a*<=≤<=64). Output a single integer.
The input contains a single integer *a* (1<=≤<=*a*<=≤<=64).
Output a single integer.
[ "2\n", "4\n", "27\n", "42\n" ]
[ "1\n", "2\n", "5\n", "6\n" ]
none
0
[ { "input": "2", "output": "1" }, { "input": "4", "output": "2" }, { "input": "27", "output": "5" }, { "input": "42", "output": "6" }, { "input": "1", "output": "1" }, { "input": "3", "output": "1" }, { "input": "64", "output": "267" }, { "input": "5", "output": "1" }, { "input": "6", "output": "2" }, { "input": "7", "output": "1" }, { "input": "8", "output": "5" }, { "input": "9", "output": "2" }, { "input": "10", "output": "2" }, { "input": "11", "output": "1" }, { "input": "12", "output": "5" }, { "input": "13", "output": "1" }, { "input": "14", "output": "2" }, { "input": "15", "output": "1" }, { "input": "16", "output": "14" }, { "input": "17", "output": "1" }, { "input": "18", "output": "5" }, { "input": "19", "output": "1" }, { "input": "20", "output": "5" }, { "input": "21", "output": "2" }, { "input": "22", "output": "2" }, { "input": "23", "output": "1" }, { "input": "24", "output": "15" }, { "input": "25", "output": "2" }, { "input": "26", "output": "2" }, { "input": "28", "output": "4" }, { "input": "29", "output": "1" }, { "input": "30", "output": "4" }, { "input": "31", "output": "1" }, { "input": "32", "output": "51" }, { "input": "33", "output": "1" }, { "input": "34", "output": "2" }, { "input": "35", "output": "1" }, { "input": "36", "output": "14" }, { "input": "37", "output": "1" }, { "input": "38", "output": "2" }, { "input": "39", "output": "2" }, { "input": "40", "output": "14" }, { "input": "41", "output": "1" }, { "input": "43", "output": "1" }, { "input": "44", "output": "4" }, { "input": "45", "output": "2" }, { "input": "46", "output": "2" }, { "input": "47", "output": "1" }, { "input": "48", "output": "52" }, { "input": "49", "output": "2" }, { "input": "50", "output": "5" }, { "input": "51", "output": "1" }, { "input": "52", "output": "5" }, { "input": "53", "output": "1" }, { "input": "54", "output": "15" }, { "input": "55", "output": "2" }, { "input": "56", "output": "13" }, { "input": "57", "output": "2" }, { "input": "58", "output": "2" }, { "input": "59", "output": "1" }, { "input": "60", "output": "13" }, { "input": "61", "output": "1" }, { "input": "62", "output": "2" }, { "input": "63", "output": "4" } ]
1,617,328,344
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
0
a=int(input()) print("2")
Title: 000001 Time Limit: None seconds Memory Limit: None megabytes Problem Description: The input contains a single integer *a* (1<=≤<=*a*<=≤<=64). Output a single integer. Input Specification: The input contains a single integer *a* (1<=≤<=*a*<=≤<=64). Output Specification: Output a single integer. Demo Input: ['2\n', '4\n', '27\n', '42\n'] Demo Output: ['1\n', '2\n', '5\n', '6\n'] Note: none
```python a=int(input()) print("2") ```
0
443
A
Anton and Letters
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Print a single number — the number of distinct letters in Anton's set.
[ "{a, b, c}\n", "{b, a, b, a}\n", "{}\n" ]
[ "3\n", "2\n", "0\n" ]
none
500
[ { "input": "{a, b, c}", "output": "3" }, { "input": "{b, a, b, a}", "output": "2" }, { "input": "{}", "output": "0" }, { "input": "{a, a, c, b, b, b, c, c, c, c}", "output": "3" }, { "input": "{a, c, b, b}", "output": "3" }, { "input": "{a, b}", "output": "2" }, { "input": "{a}", "output": "1" }, { "input": "{b, a, b, a, b, c, c, b, c, b}", "output": "3" }, { "input": "{e, g, c, e}", "output": "3" }, { "input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}", "output": "1" }, { "input": "{a, a, b}", "output": "2" }, { "input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}", "output": "2" }, { "input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}", "output": "16" }, { "input": "{x, i, w, c, p, e, h, z, k, i}", "output": "9" }, { "input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}", "output": "15" }, { "input": "{y}", "output": "1" }, { "input": "{x}", "output": "1" }, { "input": "{b, z, a, z}", "output": "3" }, { "input": "{z}", "output": "1" }, { "input": "{a, z}", "output": "2" }, { "input": "{a, b, z}", "output": "3" }, { "input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}", "output": "11" } ]
1,699,095,369
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
30
0
a = input() a = a[1:-1] A = a.split(", ") if len(A) == 1 and A[0] == "": print(1) else: print(len(set(A)))
Title: Anton and Letters Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set. Input Specification: The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space. Output Specification: Print a single number — the number of distinct letters in Anton's set. Demo Input: ['{a, b, c}\n', '{b, a, b, a}\n', '{}\n'] Demo Output: ['3\n', '2\n', '0\n'] Note: none
```python a = input() a = a[1:-1] A = a.split(", ") if len(A) == 1 and A[0] == "": print(1) else: print(len(set(A))) ```
0
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,635,824,011
2,147,483,647
Python 3
OK
TESTS
81
122
4,505,600
f1=0;f2=0;f3=0 for i in range(int(input())): F=[int(j) for j in input().split()] f1+=F[0];f2+=F[1];f3+=F[2] print('YES' if f1==0 and f2==0 and f3==0 else 'NO')
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python f1=0;f2=0;f3=0 for i in range(int(input())): F=[int(j) for j in input().split()] f1+=F[0];f2+=F[1];f3+=F[2] print('YES' if f1==0 and f2==0 and f3==0 else 'NO') ```
3.961108
858
B
Which floor?
PROGRAMMING
1,500
[ "brute force", "implementation" ]
null
null
In a building where Polycarp lives there are equal number of flats on each floor. Unfortunately, Polycarp don't remember how many flats are on each floor, but he remembers that the flats are numbered from 1 from lower to upper floors. That is, the first several flats are on the first floor, the next several flats are on the second and so on. Polycarp don't remember the total number of flats in the building, so you can consider the building to be infinitely high (i.e. there are infinitely many floors). Note that the floors are numbered from 1. Polycarp remembers on which floors several flats are located. It is guaranteed that this information is not self-contradictory. It means that there exists a building with equal number of flats on each floor so that the flats from Polycarp's memory have the floors Polycarp remembers. Given this information, is it possible to restore the exact floor for flat *n*?
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100, 0<=≤<=*m*<=≤<=100), where *n* is the number of the flat you need to restore floor for, and *m* is the number of flats in Polycarp's memory. *m* lines follow, describing the Polycarp's memory: each of these lines contains a pair of integers *k**i*,<=*f**i* (1<=≤<=*k**i*<=≤<=100, 1<=≤<=*f**i*<=≤<=100), which means that the flat *k**i* is on the *f**i*-th floor. All values *k**i* are distinct. It is guaranteed that the given information is not self-contradictory.
Print the number of the floor in which the *n*-th flat is located, if it is possible to determine it in a unique way. Print -1 if it is not possible to uniquely restore this floor.
[ "10 3\n6 2\n2 1\n7 3\n", "8 4\n3 1\n6 2\n5 2\n2 1\n" ]
[ "4\n", "-1\n" ]
In the first example the 6-th flat is on the 2-nd floor, while the 7-th flat is on the 3-rd, so, the 6-th flat is the last on its floor and there are 3 flats on each floor. Thus, the 10-th flat is on the 4-th floor. In the second example there can be 3 or 4 flats on each floor, so we can't restore the floor for the 8-th flat.
750
[ { "input": "10 3\n6 2\n2 1\n7 3", "output": "4" }, { "input": "8 4\n3 1\n6 2\n5 2\n2 1", "output": "-1" }, { "input": "8 3\n7 2\n6 2\n1 1", "output": "2" }, { "input": "4 2\n8 3\n3 1", "output": "2" }, { "input": "11 4\n16 4\n11 3\n10 3\n15 4", "output": "3" }, { "input": "16 6\n3 1\n16 4\n10 3\n9 3\n19 5\n8 2", "output": "4" }, { "input": "1 0", "output": "1" }, { "input": "1 1\n1 1", "output": "1" }, { "input": "1 1\n1 1", "output": "1" }, { "input": "1 2\n1 1\n2 2", "output": "1" }, { "input": "2 2\n2 1\n1 1", "output": "1" }, { "input": "2 0", "output": "-1" }, { "input": "2 1\n3 3", "output": "2" }, { "input": "3 2\n1 1\n3 3", "output": "3" }, { "input": "3 3\n1 1\n3 3\n2 2", "output": "3" }, { "input": "3 0", "output": "-1" }, { "input": "1 1\n2 1", "output": "1" }, { "input": "2 2\n2 1\n1 1", "output": "1" }, { "input": "2 3\n3 2\n1 1\n2 1", "output": "1" }, { "input": "3 0", "output": "-1" }, { "input": "3 1\n1 1", "output": "-1" }, { "input": "2 2\n1 1\n3 1", "output": "1" }, { "input": "1 3\n1 1\n2 1\n3 1", "output": "1" }, { "input": "81 0", "output": "-1" }, { "input": "22 1\n73 73", "output": "22" }, { "input": "63 2\n10 10\n64 64", "output": "63" }, { "input": "88 3\n37 37\n15 15\n12 12", "output": "88" }, { "input": "29 4\n66 66\n47 47\n62 62\n2 2", "output": "29" }, { "input": "9 40\n72 72\n47 47\n63 63\n66 66\n21 21\n94 94\n28 28\n45 45\n93 93\n25 25\n100 100\n43 43\n49 49\n9 9\n74 74\n26 26\n42 42\n50 50\n2 2\n92 92\n76 76\n3 3\n78 78\n44 44\n69 69\n36 36\n65 65\n81 81\n13 13\n46 46\n24 24\n96 96\n73 73\n82 82\n68 68\n64 64\n41 41\n31 31\n29 29\n10 10", "output": "9" }, { "input": "50 70\n3 3\n80 80\n23 23\n11 11\n87 87\n7 7\n63 63\n61 61\n67 67\n53 53\n9 9\n43 43\n55 55\n27 27\n5 5\n1 1\n99 99\n65 65\n37 37\n60 60\n32 32\n38 38\n81 81\n2 2\n34 34\n17 17\n82 82\n26 26\n71 71\n4 4\n16 16\n19 19\n39 39\n51 51\n6 6\n49 49\n64 64\n83 83\n10 10\n56 56\n30 30\n76 76\n90 90\n42 42\n47 47\n91 91\n21 21\n52 52\n40 40\n77 77\n35 35\n88 88\n75 75\n95 95\n28 28\n15 15\n69 69\n22 22\n48 48\n66 66\n31 31\n98 98\n73 73\n25 25\n97 97\n18 18\n13 13\n54 54\n72 72\n29 29", "output": "50" }, { "input": "6 0", "output": "-1" }, { "input": "32 1\n9 5", "output": "16" }, { "input": "73 2\n17 9\n21 11", "output": "37" }, { "input": "6 3\n48 24\n51 26\n62 31", "output": "3" }, { "input": "43 4\n82 41\n52 26\n88 44\n41 21", "output": "22" }, { "input": "28 40\n85 43\n19 10\n71 36\n39 20\n57 29\n6 3\n15 8\n11 6\n99 50\n77 39\n79 40\n31 16\n35 18\n24 12\n54 27\n93 47\n90 45\n72 36\n63 32\n22 11\n83 42\n5 3\n12 6\n56 28\n94 47\n25 13\n41 21\n29 15\n36 18\n23 12\n1 1\n84 42\n55 28\n58 29\n9 5\n68 34\n86 43\n3 2\n48 24\n98 49", "output": "14" }, { "input": "81 70\n55 28\n85 43\n58 29\n20 10\n4 2\n47 24\n42 21\n28 14\n26 13\n38 19\n9 5\n83 42\n7 4\n72 36\n18 9\n61 31\n41 21\n64 32\n90 45\n46 23\n67 34\n2 1\n6 3\n27 14\n87 44\n39 20\n11 6\n21 11\n35 18\n48 24\n44 22\n3 2\n71 36\n62 31\n34 17\n16 8\n99 50\n57 29\n13 7\n79 40\n100 50\n53 27\n89 45\n36 18\n43 22\n92 46\n98 49\n75 38\n40 20\n97 49\n37 19\n68 34\n30 15\n96 48\n17 9\n12 6\n45 23\n65 33\n76 38\n84 42\n23 12\n91 46\n52 26\n8 4\n32 16\n77 39\n88 44\n86 43\n70 35\n51 26", "output": "41" }, { "input": "34 0", "output": "-1" }, { "input": "63 1\n94 24", "output": "16" }, { "input": "4 2\n38 10\n48 12", "output": "1" }, { "input": "37 3\n66 17\n89 23\n60 15", "output": "10" }, { "input": "71 4\n15 4\n13 4\n4 1\n70 18", "output": "18" }, { "input": "77 40\n49 13\n66 17\n73 19\n15 4\n36 9\n1 1\n41 11\n91 23\n51 13\n46 12\n39 10\n42 11\n56 14\n61 16\n70 18\n92 23\n65 17\n54 14\n97 25\n8 2\n87 22\n33 9\n28 7\n38 10\n50 13\n26 7\n7 2\n31 8\n84 21\n47 12\n27 7\n53 14\n19 5\n93 24\n29 8\n3 1\n77 20\n62 16\n9 3\n44 11", "output": "20" }, { "input": "18 70\n51 13\n55 14\n12 3\n43 11\n42 11\n95 24\n96 24\n29 8\n65 17\n71 18\n18 5\n62 16\n31 8\n100 25\n4 1\n77 20\n56 14\n24 6\n93 24\n97 25\n79 20\n40 10\n49 13\n86 22\n21 6\n46 12\n6 2\n14 4\n23 6\n20 5\n52 13\n88 22\n39 10\n70 18\n94 24\n13 4\n37 10\n41 11\n91 23\n85 22\n83 21\n89 23\n33 9\n64 16\n67 17\n57 15\n47 12\n36 9\n72 18\n81 21\n76 19\n35 9\n80 20\n34 9\n5 2\n22 6\n84 21\n63 16\n74 19\n90 23\n68 17\n98 25\n87 22\n2 1\n92 23\n50 13\n38 10\n28 7\n8 2\n60 15", "output": "5" }, { "input": "89 0", "output": "-1" }, { "input": "30 1\n3 1", "output": "-1" }, { "input": "63 2\n48 6\n17 3", "output": "8" }, { "input": "96 3\n45 6\n25 4\n35 5", "output": "12" }, { "input": "37 4\n2 1\n29 4\n27 4\n47 6", "output": "5" }, { "input": "64 40\n40 5\n92 12\n23 3\n75 10\n71 9\n2 1\n54 7\n18 3\n9 2\n74 10\n87 11\n11 2\n90 12\n30 4\n48 6\n12 2\n91 12\n60 8\n35 5\n13 2\n53 7\n46 6\n38 5\n59 8\n97 13\n32 4\n6 1\n36 5\n43 6\n83 11\n81 11\n99 13\n69 9\n10 2\n21 3\n78 10\n31 4\n27 4\n57 8\n1 1", "output": "8" }, { "input": "17 70\n63 8\n26 4\n68 9\n30 4\n61 8\n84 11\n39 5\n53 7\n4 1\n81 11\n50 7\n91 12\n59 8\n90 12\n20 3\n21 3\n83 11\n94 12\n37 5\n8 1\n49 7\n34 5\n19 3\n44 6\n74 10\n2 1\n73 10\n88 11\n43 6\n36 5\n57 8\n64 8\n76 10\n40 5\n71 9\n95 12\n15 2\n41 6\n89 12\n42 6\n96 12\n1 1\n52 7\n38 5\n45 6\n78 10\n82 11\n16 2\n48 6\n51 7\n56 7\n28 4\n87 11\n93 12\n46 6\n29 4\n97 13\n54 7\n35 5\n3 1\n79 10\n99 13\n13 2\n55 7\n100 13\n11 2\n75 10\n24 3\n33 5\n22 3", "output": "3" }, { "input": "9 0", "output": "-1" }, { "input": "50 1\n31 2", "output": "-1" }, { "input": "79 2\n11 1\n22 2", "output": "-1" }, { "input": "16 3\n100 7\n94 6\n3 1", "output": "1" }, { "input": "58 4\n73 5\n52 4\n69 5\n3 1", "output": "4" }, { "input": "25 40\n70 5\n28 2\n60 4\n54 4\n33 3\n21 2\n51 4\n20 2\n44 3\n79 5\n65 5\n1 1\n52 4\n23 2\n38 3\n92 6\n63 4\n3 1\n91 6\n5 1\n64 4\n34 3\n25 2\n97 7\n89 6\n61 4\n71 5\n88 6\n29 2\n56 4\n45 3\n6 1\n53 4\n57 4\n90 6\n76 5\n8 1\n46 3\n73 5\n87 6", "output": "2" }, { "input": "78 70\n89 6\n52 4\n87 6\n99 7\n3 1\n25 2\n46 3\n78 5\n35 3\n68 5\n85 6\n23 2\n60 4\n88 6\n17 2\n8 1\n15 1\n67 5\n95 6\n59 4\n94 6\n31 2\n4 1\n16 1\n10 1\n97 7\n42 3\n2 1\n24 2\n34 3\n37 3\n70 5\n18 2\n41 3\n48 3\n58 4\n20 2\n38 3\n72 5\n50 4\n49 4\n40 3\n61 4\n6 1\n45 3\n28 2\n13 1\n27 2\n96 6\n56 4\n91 6\n77 5\n12 1\n11 1\n53 4\n76 5\n74 5\n82 6\n55 4\n80 5\n14 1\n44 3\n7 1\n83 6\n79 5\n92 6\n66 5\n36 3\n73 5\n100 7", "output": "5" }, { "input": "95 0", "output": "-1" }, { "input": "33 1\n30 1", "output": "-1" }, { "input": "62 2\n14 1\n15 1", "output": "-1" }, { "input": "3 3\n6 1\n25 1\n38 2", "output": "1" }, { "input": "44 4\n72 3\n80 3\n15 1\n36 2", "output": "2" }, { "input": "34 40\n25 1\n28 1\n78 3\n5 1\n13 1\n75 3\n15 1\n67 3\n57 2\n23 1\n26 1\n61 2\n22 1\n48 2\n85 3\n24 1\n82 3\n83 3\n53 2\n38 2\n19 1\n33 2\n69 3\n17 1\n79 3\n54 2\n77 3\n97 4\n20 1\n35 2\n14 1\n18 1\n71 3\n21 1\n36 2\n56 2\n44 2\n63 2\n72 3\n32 1", "output": "2" }, { "input": "83 70\n79 3\n49 2\n2 1\n44 2\n38 2\n77 3\n86 3\n31 1\n83 3\n82 3\n35 2\n7 1\n78 3\n23 1\n39 2\n58 2\n1 1\n87 3\n72 3\n20 1\n48 2\n14 1\n13 1\n6 1\n70 3\n55 2\n52 2\n25 1\n11 1\n61 2\n76 3\n95 3\n32 1\n66 3\n29 1\n9 1\n5 1\n3 1\n88 3\n59 2\n96 3\n10 1\n63 2\n40 2\n42 2\n34 2\n43 2\n19 1\n89 3\n94 3\n24 1\n98 4\n12 1\n30 1\n69 3\n17 1\n50 2\n8 1\n93 3\n16 1\n97 4\n54 2\n71 3\n18 1\n33 2\n80 3\n15 1\n99 4\n75 3\n4 1", "output": "3" }, { "input": "2 0", "output": "-1" }, { "input": "36 1\n96 1", "output": "1" }, { "input": "73 2\n34 1\n4 1", "output": "-1" }, { "input": "6 3\n37 1\n22 1\n70 1", "output": "1" }, { "input": "47 4\n66 1\n57 1\n85 1\n47 1", "output": "1" }, { "input": "9 40\n73 1\n21 1\n37 1\n87 1\n33 1\n69 1\n49 1\n19 1\n35 1\n93 1\n71 1\n43 1\n79 1\n85 1\n29 1\n72 1\n76 1\n47 1\n17 1\n67 1\n95 1\n41 1\n54 1\n88 1\n42 1\n80 1\n98 1\n96 1\n10 1\n24 1\n78 1\n18 1\n3 1\n91 1\n2 1\n15 1\n5 1\n60 1\n36 1\n46 1", "output": "1" }, { "input": "63 70\n82 1\n53 1\n57 1\n46 1\n97 1\n19 1\n36 1\n90 1\n23 1\n88 1\n68 1\n45 1\n2 1\n70 1\n86 1\n8 1\n83 1\n40 1\n99 1\n42 1\n32 1\n52 1\n81 1\n50 1\n77 1\n37 1\n54 1\n75 1\n4 1\n49 1\n73 1\n22 1\n21 1\n98 1\n18 1\n51 1\n14 1\n76 1\n92 1\n80 1\n78 1\n33 1\n79 1\n89 1\n67 1\n9 1\n44 1\n60 1\n64 1\n55 1\n29 1\n100 1\n16 1\n87 1\n10 1\n12 1\n25 1\n85 1\n30 1\n63 1\n39 1\n38 1\n31 1\n5 1\n26 1\n91 1\n43 1\n72 1\n48 1\n94 1", "output": "1" }, { "input": "2 0", "output": "-1" } ]
1,505,656,643
3,143
Python 3
WRONG_ANSWER
PRETESTS
2
46
0
n, m = map(int, input().split()) l = set() s = {i for i in range(n+1)} b = False for i in range(m): k, f = map(int, input().split()) if k == n: print(f) b = True break j = 1 if f == 1: l = {i for i in range(k, n+1)} else: while j <= (k-j)//(f-1): if (k-j)%(f-1) == 0: l.add((k-j)//(f-1)) j += f-1 else: j += 1 s &= l l.clear() if b == False: if len(s) == 1: for j in s: f = j print((n-1)//f + 1) else: t = True for j in s: if j < n: t = False print(-1) break if t: print(1)
Title: Which floor? Time Limit: None seconds Memory Limit: None megabytes Problem Description: In a building where Polycarp lives there are equal number of flats on each floor. Unfortunately, Polycarp don't remember how many flats are on each floor, but he remembers that the flats are numbered from 1 from lower to upper floors. That is, the first several flats are on the first floor, the next several flats are on the second and so on. Polycarp don't remember the total number of flats in the building, so you can consider the building to be infinitely high (i.e. there are infinitely many floors). Note that the floors are numbered from 1. Polycarp remembers on which floors several flats are located. It is guaranteed that this information is not self-contradictory. It means that there exists a building with equal number of flats on each floor so that the flats from Polycarp's memory have the floors Polycarp remembers. Given this information, is it possible to restore the exact floor for flat *n*? Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100, 0<=≤<=*m*<=≤<=100), where *n* is the number of the flat you need to restore floor for, and *m* is the number of flats in Polycarp's memory. *m* lines follow, describing the Polycarp's memory: each of these lines contains a pair of integers *k**i*,<=*f**i* (1<=≤<=*k**i*<=≤<=100, 1<=≤<=*f**i*<=≤<=100), which means that the flat *k**i* is on the *f**i*-th floor. All values *k**i* are distinct. It is guaranteed that the given information is not self-contradictory. Output Specification: Print the number of the floor in which the *n*-th flat is located, if it is possible to determine it in a unique way. Print -1 if it is not possible to uniquely restore this floor. Demo Input: ['10 3\n6 2\n2 1\n7 3\n', '8 4\n3 1\n6 2\n5 2\n2 1\n'] Demo Output: ['4\n', '-1\n'] Note: In the first example the 6-th flat is on the 2-nd floor, while the 7-th flat is on the 3-rd, so, the 6-th flat is the last on its floor and there are 3 flats on each floor. Thus, the 10-th flat is on the 4-th floor. In the second example there can be 3 or 4 flats on each floor, so we can't restore the floor for the 8-th flat.
```python n, m = map(int, input().split()) l = set() s = {i for i in range(n+1)} b = False for i in range(m): k, f = map(int, input().split()) if k == n: print(f) b = True break j = 1 if f == 1: l = {i for i in range(k, n+1)} else: while j <= (k-j)//(f-1): if (k-j)%(f-1) == 0: l.add((k-j)//(f-1)) j += f-1 else: j += 1 s &= l l.clear() if b == False: if len(s) == 1: for j in s: f = j print((n-1)//f + 1) else: t = True for j in s: if j < n: t = False print(-1) break if t: print(1) ```
0
598
A
Tricky Sum
PROGRAMMING
900
[ "math" ]
null
null
In this problem you are to calculate the sum of all integers from 1 to *n*, but you should take all powers of two with minus in the sum. For example, for *n*<==<=4 the sum is equal to <=-<=1<=-<=2<=+<=3<=-<=4<==<=<=-<=4, because 1, 2 and 4 are 20, 21 and 22 respectively. Calculate the answer for *t* values of *n*.
The first line of the input contains a single integer *t* (1<=≤<=*t*<=≤<=100) — the number of values of *n* to be processed. Each of next *t* lines contains a single integer *n* (1<=≤<=*n*<=≤<=109).
Print the requested sum for each of *t* integers *n* given in the input.
[ "2\n4\n1000000000\n" ]
[ "-4\n499999998352516354\n" ]
The answer for the first sample is explained in the statement.
0
[ { "input": "2\n4\n1000000000", "output": "-4\n499999998352516354" }, { "input": "10\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10", "output": "-1\n-3\n0\n-4\n1\n7\n14\n6\n15\n25" }, { "input": "10\n10\n9\n47\n33\n99\n83\n62\n1\n100\n53", "output": "25\n15\n1002\n435\n4696\n3232\n1827\n-1\n4796\n1305" }, { "input": "100\n901\n712\n3\n677\n652\n757\n963\n134\n205\n888\n847\n283\n591\n984\n1\n61\n540\n986\n950\n729\n104\n244\n500\n461\n251\n685\n631\n803\n526\n600\n1000\n899\n411\n219\n597\n342\n771\n348\n507\n775\n454\n102\n486\n333\n580\n431\n537\n355\n624\n23\n429\n276\n84\n704\n96\n536\n855\n653\n72\n718\n776\n658\n802\n777\n995\n285\n328\n405\n184\n555\n956\n410\n846\n853\n525\n983\n65\n549\n839\n929\n620\n725\n635\n303\n201\n878\n580\n139\n182\n69\n400\n788\n985\n792\n103\n248\n570\n839\n253\n417", "output": "404305\n251782\n0\n227457\n210832\n284857\n462120\n8535\n20605\n392670\n357082\n39164\n172890\n482574\n-1\n1765\n144024\n484545\n449679\n264039\n5206\n29380\n124228\n105469\n31116\n232909\n197350\n320760\n136555\n178254\n498454\n402504\n83644\n23580\n176457\n57631\n295560\n59704\n127756\n298654\n102263\n4999\n117319\n54589\n166444\n92074\n142407\n62168\n192954\n214\n91213\n37204\n3316\n246114\n4402\n141870\n363894\n211485\n2374\n256075\n299430\n214765\n319957\n300207\n493464\n39733\n52934\n81193\n16510\n15..." }, { "input": "1\n16", "output": "74" }, { "input": "60\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457", "output": "144115186196807682\n144115186733678594\n144115186733678595\n499999998352516354\n499999997352516354\n-1\n-3\n0\n-4\n36028796079439874\n36028796347875330\n36028796347875331\n144115186196807682\n144115186733678594\n144115186733678595\n499999998352516354\n499999997352516354\n-1\n-3\n0\n-4\n36028796079439874\n36028796347875330\n36028796347875331\n144115186196807682\n144115186733678594\n144115186733678595\n499999998352516354\n499999997352516354\n-1\n-3\n0\n-4\n36028796079439874\n36028796347875330\n36028796347875..." }, { "input": "13\n1\n19\n31\n19\n19\n92\n74\n69\n32\n32\n91\n42\n73", "output": "-1\n128\n434\n128\n128\n4024\n2521\n2161\n402\n402\n3932\n777\n2447" }, { "input": "1\n16383", "output": "134176770" }, { "input": "16\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100", "output": "5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908" }, { "input": "1\n414234", "output": "85794061921" }, { "input": "1\n414232", "output": "85793233454" }, { "input": "3\n414231\n414231\n414231", "output": "85792819222\n85792819222\n85792819222" }, { "input": "1\n121", "output": "7127" } ]
1,684,295,705
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
0
1,000
0
for j in range(int(input())): n=int(input()) s=1 summ=0 for i in range(2,n+1): if s*2==i: s=i summ+=-i else: summ+=i print(summ-1)
Title: Tricky Sum Time Limit: None seconds Memory Limit: None megabytes Problem Description: In this problem you are to calculate the sum of all integers from 1 to *n*, but you should take all powers of two with minus in the sum. For example, for *n*<==<=4 the sum is equal to <=-<=1<=-<=2<=+<=3<=-<=4<==<=<=-<=4, because 1, 2 and 4 are 20, 21 and 22 respectively. Calculate the answer for *t* values of *n*. Input Specification: The first line of the input contains a single integer *t* (1<=≤<=*t*<=≤<=100) — the number of values of *n* to be processed. Each of next *t* lines contains a single integer *n* (1<=≤<=*n*<=≤<=109). Output Specification: Print the requested sum for each of *t* integers *n* given in the input. Demo Input: ['2\n4\n1000000000\n'] Demo Output: ['-4\n499999998352516354\n'] Note: The answer for the first sample is explained in the statement.
```python for j in range(int(input())): n=int(input()) s=1 summ=0 for i in range(2,n+1): if s*2==i: s=i summ+=-i else: summ+=i print(summ-1) ```
0
733
A
Grasshopper And the String
PROGRAMMING
1,000
[ "implementation" ]
null
null
One day, the Grasshopper was jumping on the lawn and found a piece of paper with a string. Grasshopper became interested what is the minimum jump ability he should have in order to be able to reach the far end of the string, jumping only on vowels of the English alphabet. Jump ability is the maximum possible length of his jump. Formally, consider that at the begginning the Grasshopper is located directly in front of the leftmost character of the string. His goal is to reach the position right after the rightmost character of the string. In one jump the Grasshopper could jump to the right any distance from 1 to the value of his jump ability. The following letters are vowels: 'A', 'E', 'I', 'O', 'U' and 'Y'.
The first line contains non-empty string consisting of capital English letters. It is guaranteed that the length of the string does not exceed 100.
Print single integer *a* — the minimum jump ability of the Grasshopper (in the number of symbols) that is needed to overcome the given string, jumping only on vowels.
[ "ABABBBACFEYUKOTT\n", "AAA\n" ]
[ "4", "1" ]
none
500
[ { "input": "ABABBBACFEYUKOTT", "output": "4" }, { "input": "AAA", "output": "1" }, { "input": "A", "output": "1" }, { "input": "B", "output": "2" }, { "input": "AEYUIOAEIYAEOUIYOEIUYEAOIUEOEAYOEIUYAEOUIYEOIKLMJNHGTRWSDZXCVBNMHGFDSXVWRTPPPLKMNBXIUOIUOIUOIUOOIU", "output": "39" }, { "input": "AEYUIOAEIYAEOUIYOEIUYEAOIUEOEAYOEIUYAEOUIYEOIAEYUIOAEIYAEOUIYOEIUYEAOIUEOEAYOEIUYAEOUIYEOI", "output": "1" }, { "input": "KMLPTGFHNBVCDRFGHNMBVXWSQFDCVBNHTJKLPMNFVCKMLPTGFHNBVCDRFGHNMBVXWSQFDCVBNHTJKLPMNFVC", "output": "85" }, { "input": "QWERTYUIOPASDFGHJKLZXCVBNMQWERTYUIOPASDFGHJKLZXCVBNMQWERTYUIOPASDFGHJKLZXCVBNMQWERTYUIOPASDFGHJKLZ", "output": "18" }, { "input": "PKLKBWTXVJ", "output": "11" }, { "input": "CFHFPTGMOKXVLJJZJDQW", "output": "12" }, { "input": "TXULTFSBUBFLRNQORMMULWNVLPWTYJXZBPBGAWNX", "output": "9" }, { "input": "DAIUSEAUEUYUWEIOOEIOUYVYYOPEEWEBZOOOAOXUOIEUKYYOJOYAUYUUIYUXOUJLGIYEIIYUOCUAACRY", "output": "4" }, { "input": "VRPHBNWNWVWBWMFJJDCTJQJDJBKSJRZLVQRVVFLTZFSGCGDXCWQVWWWMFVCQHPKXXVRKTGWGPSMQTPKNDQJHNSKLXPCXDJDQDZZD", "output": "101" }, { "input": "SGDDFCDRDWGPNNFBBZZJSPXFYMZKPRXTCHVJSJJBWZXXQMDZBNKDHRGSRLGLRKPMWXNSXJPNJLDPXBSRCQMHJKPZNTPNTZXNPCJC", "output": "76" }, { "input": "NVTQVNLGWFDBCBKSDLTBGWBMNQZWZQJWNGVCTCQBGWNTYJRDBPZJHXCXFMIXNRGSTXHQPCHNFQPCMDZWJGLJZWMRRFCVLBKDTDSC", "output": "45" }, { "input": "SREZXQFVPQCLRCQGMKXCBRWKYZKWKRMZGXPMKWNMFZTRDPHJFCSXVPPXWKZMZTBFXGNLPLHZIPLFXNRRQFDTLFPKBGCXKTMCFKKT", "output": "48" }, { "input": "ICKJKMVPDNZPLKDSLTPZNRLSQSGHQJQQPJJSNHNWVDLJRLZEJSXZDPHYXGGWXHLCTVQSKWNWGTLJMOZVJNZPVXGVPJKHFVZTGCCX", "output": "47" }, { "input": "XXFPZDRPXLNHGDVCBDKJMKLGUQZXLLWYLOKFZVGXVNPJWZZZNRMQBRJCZTSDRHSNCVDMHKVXCXPCRBWSJCJWDRDPVZZLCZRTDRYA", "output": "65" }, { "input": "HDDRZDKCHHHEDKHZMXQSNQGSGNNSCCPVJFGXGNCEKJMRKSGKAPQWPCWXXWHLSMRGSJWEHWQCSJJSGLQJXGVTBYALWMLKTTJMFPFS", "output": "28" }, { "input": "PXVKJHXVDPWGLHWFWMJPMCCNHCKSHCPZXGIHHNMYNFQBUCKJJTXXJGKRNVRTQFDFMLLGPQKFOVNNLTNDIEXSARRJKGSCZKGGJCBW", "output": "35" }, { "input": "EXNMTTFPJLDHXDQBJJRDRYBZVFFHUDCHCPNFZWXSMZXNFVJGHZWXVBRQFNUIDVLZOVPXQNVMFNBTJDSCKRLNGXPSADTGCAHCBJKL", "output": "30" }, { "input": "NRNLSQQJGIJBCZFTNKJCXMGPARGWXPSHZXOBNSFOLDQVXTVAGJZNLXULHBRDGMNQKQGWMRRDPYCSNFVPUFTFBUBRXVJGNGSPJKLL", "output": "19" }, { "input": "SRHOKCHQQMVZKTCVQXJJCFGYFXGMBZSZFNAFETXILZHPGHBWZRZQFMGSEYRUDVMCIQTXTBTSGFTHRRNGNTHHWWHCTDFHSVARMCMB", "output": "30" }, { "input": "HBSVZHDKGNIRQUBYKYHUPJCEETGFMVBZJTHYHFQPFBVBSMQACYAVWZXSBGNKWXFNMQJFMSCHJVWBZXZGSNBRUHTHAJKVLEXFBOFB", "output": "34" }, { "input": "NXKMUGOPTUQNSRYTKUKSCWCRQSZKKFPYUMDIBJAHJCEKZJVWZAWOLOEFBFXLQDDPNNZKCQHUPBFVDSXSUCVLMZXQROYQYIKPQPWR", "output": "17" }, { "input": "TEHJDICFNOLQVQOAREVAGUAWODOCXJXIHYXFAEPEXRHPKEIIRCRIVASKNTVYUYDMUQKSTSSBYCDVZKDDHTSDWJWACPCLYYOXGCLT", "output": "15" }, { "input": "LCJJUZZFEIUTMSEXEYNOOAIZMORQDOANAMUCYTFRARDCYHOYOPHGGYUNOGNXUAOYSEMXAZOOOFAVHQUBRNGORSPNQWZJYQQUNPEB", "output": "9" }, { "input": "UUOKAOOJBXUTSMOLOOOOSUYYFTAVBNUXYFVOOGCGZYQEOYISIYOUULUAIJUYVVOENJDOCLHOSOHIHDEJOIGZNIXEMEGZACHUAQFW", "output": "5" }, { "input": "OUUBEHXOOURMOAIAEHXCUOIYHUJEVAWYRCIIAGDRIPUIPAIUYAIWJEVYEYYUYBYOGVYESUJCFOJNUAHIOOKBUUHEJFEWPOEOUHYA", "output": "4" }, { "input": "EMNOYEEUIOUHEWZITIAEZNCJUOUAOQEAUYEIHYUSUYUUUIAEDIOOERAEIRBOJIEVOMECOGAIAIUIYYUWYIHIOWVIJEYUEAFYULSE", "output": "5" }, { "input": "BVOYEAYOIEYOREJUYEUOEOYIISYAEOUYAAOIOEOYOOOIEFUAEAAESUOOIIEUAAGAEISIAPYAHOOEYUJHUECGOYEIDAIRTBHOYOYA", "output": "5" }, { "input": "GOIEOAYIEYYOOEOAIAEOOUWYEIOTNYAANAYOOXEEOEAVIOIAAIEOIAUIAIAAUEUAOIAEUOUUZYIYAIEUEGOOOOUEIYAEOSYAEYIO", "output": "3" }, { "input": "AUEAOAYIAOYYIUIOAULIOEUEYAIEYYIUOEOEIEYRIYAYEYAEIIMMAAEAYAAAAEOUICAUAYOUIAOUIAIUOYEOEEYAEYEYAAEAOYIY", "output": "3" }, { "input": "OAIIYEYYAOOEIUOEEIOUOIAEFIOAYETUYIOAAAEYYOYEYOEAUIIUEYAYYIIAOIEEYGYIEAAOOWYAIEYYYIAOUUOAIAYAYYOEUEOY", "output": "2" }, { "input": "EEEAOEOEEIOUUUEUEAAOEOIUYJEYAIYIEIYYEAUOIIYIUOOEUCYEOOOYYYIUUAYIAOEUEIEAOUOIAACAOOUAUIYYEAAAOOUYIAAE", "output": "2" }, { "input": "AYEYIIEUIYOYAYEUEIIIEUYUUAUEUIYAIAAUYONIEYIUIAEUUOUOYYOUUUIUIAEYEOUIIUOUUEOAIUUYAAEOAAEOYUUIYAYRAIII", "output": "2" }, { "input": "YOOAAUUAAAYEUYIUIUYIUOUAEIEEIAUEOAUIIAAIUYEUUOYUIYEAYAAAYUEEOEEAEOEEYYOUAEUYEEAIIYEUEYJOIIYUIOIUOIEE", "output": "2" }, { "input": "UYOIIIAYOOAIUUOOEEUYIOUAEOOEIOUIAIEYOAEAIOOEOOOIUYYUYIAAUIOUYYOOUAUIEYYUOAAUUEAAIEUIAUEUUIAUUOYOAYIU", "output": "1" }, { "input": "ABBABBB", "output": "4" }, { "input": "ABCD", "output": "4" }, { "input": "XXYC", "output": "3" }, { "input": "YYY", "output": "1" }, { "input": "ABABBBBBBB", "output": "8" }, { "input": "YYYY", "output": "1" }, { "input": "YYYYY", "output": "1" }, { "input": "AXXX", "output": "4" }, { "input": "YYYYYYY", "output": "1" }, { "input": "BYYBBB", "output": "4" }, { "input": "YYYYYYYYY", "output": "1" }, { "input": "CAAAAA", "output": "2" }, { "input": "CCCACCCC", "output": "5" }, { "input": "ABABBBACFEYUKOTTTT", "output": "5" }, { "input": "AABBYYYYYYYY", "output": "3" }, { "input": "BYBACYC", "output": "2" }, { "input": "Y", "output": "1" }, { "input": "ABBBBBB", "output": "7" }, { "input": "BACDYDI", "output": "3" }, { "input": "XEXXXXXXXXXXXXXXX", "output": "16" }, { "input": "TTYTT", "output": "3" }, { "input": "AAYBC", "output": "3" }, { "input": "ABABBBACFEYUKOTTTTT", "output": "6" }, { "input": "YYAYY", "output": "1" }, { "input": "YZZY", "output": "3" }, { "input": "YY", "output": "1" }, { "input": "ZZYZZ", "output": "3" }, { "input": "YBBBY", "output": "4" }, { "input": "BBBACCCCCCC", "output": "8" }, { "input": "YBBBBY", "output": "5" }, { "input": "YYYYYYYYYY", "output": "1" }, { "input": "ABABBBBBBBBBBBB", "output": "13" } ]
1,558,720,466
2,147,483,647
Python 3
OK
TESTS
70
124
0
vowels = "AEIOUY" s = input() Max = -1 tool = 1 for i in s: if i in vowels: if tool > Max: Max = tool tool = 1 else: tool+=1 print(max(tool,Max))
Title: Grasshopper And the String Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day, the Grasshopper was jumping on the lawn and found a piece of paper with a string. Grasshopper became interested what is the minimum jump ability he should have in order to be able to reach the far end of the string, jumping only on vowels of the English alphabet. Jump ability is the maximum possible length of his jump. Formally, consider that at the begginning the Grasshopper is located directly in front of the leftmost character of the string. His goal is to reach the position right after the rightmost character of the string. In one jump the Grasshopper could jump to the right any distance from 1 to the value of his jump ability. The following letters are vowels: 'A', 'E', 'I', 'O', 'U' and 'Y'. Input Specification: The first line contains non-empty string consisting of capital English letters. It is guaranteed that the length of the string does not exceed 100. Output Specification: Print single integer *a* — the minimum jump ability of the Grasshopper (in the number of symbols) that is needed to overcome the given string, jumping only on vowels. Demo Input: ['ABABBBACFEYUKOTT\n', 'AAA\n'] Demo Output: ['4', '1'] Note: none
```python vowels = "AEIOUY" s = input() Max = -1 tool = 1 for i in s: if i in vowels: if tool > Max: Max = tool tool = 1 else: tool+=1 print(max(tool,Max)) ```
3
0
none
none
none
0
[ "none" ]
null
null
For a given positive integer *n* denote its *k*-rounding as the minimum positive integer *x*, such that *x* ends with *k* or more zeros in base 10 and is divisible by *n*. For example, 4-rounding of 375 is 375·80<==<=30000. 30000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375. Write a program that will perform the *k*-rounding of *n*.
The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=109, 0<=≤<=*k*<=≤<=8).
Print the *k*-rounding of *n*.
[ "375 4\n", "10000 1\n", "38101 0\n", "123456789 8\n" ]
[ "30000\n", "10000\n", "38101\n", "12345678900000000\n" ]
none
0
[ { "input": "375 4", "output": "30000" }, { "input": "10000 1", "output": "10000" }, { "input": "38101 0", "output": "38101" }, { "input": "123456789 8", "output": "12345678900000000" }, { "input": "1 0", "output": "1" }, { "input": "2 0", "output": "2" }, { "input": "100 0", "output": "100" }, { "input": "1000000000 0", "output": "1000000000" }, { "input": "160 2", "output": "800" }, { "input": "3 0", "output": "3" }, { "input": "10 0", "output": "10" }, { "input": "1 1", "output": "10" }, { "input": "2 1", "output": "10" }, { "input": "3 1", "output": "30" }, { "input": "4 1", "output": "20" }, { "input": "5 1", "output": "10" }, { "input": "6 1", "output": "30" }, { "input": "7 1", "output": "70" }, { "input": "8 1", "output": "40" }, { "input": "9 1", "output": "90" }, { "input": "10 1", "output": "10" }, { "input": "11 1", "output": "110" }, { "input": "12 1", "output": "60" }, { "input": "16 2", "output": "400" }, { "input": "2 2", "output": "100" }, { "input": "1 2", "output": "100" }, { "input": "5 2", "output": "100" }, { "input": "15 2", "output": "300" }, { "input": "36 2", "output": "900" }, { "input": "1 8", "output": "100000000" }, { "input": "8 8", "output": "100000000" }, { "input": "96 8", "output": "300000000" }, { "input": "175 8", "output": "700000000" }, { "input": "9999995 8", "output": "199999900000000" }, { "input": "999999999 8", "output": "99999999900000000" }, { "input": "12345678 8", "output": "617283900000000" }, { "input": "78125 8", "output": "100000000" }, { "input": "390625 8", "output": "100000000" }, { "input": "1953125 8", "output": "500000000" }, { "input": "9765625 8", "output": "2500000000" }, { "input": "68359375 8", "output": "17500000000" }, { "input": "268435456 8", "output": "104857600000000" }, { "input": "125829120 8", "output": "9830400000000" }, { "input": "128000 8", "output": "400000000" }, { "input": "300000 8", "output": "300000000" }, { "input": "3711871 8", "output": "371187100000000" }, { "input": "55555 8", "output": "1111100000000" }, { "input": "222222222 8", "output": "11111111100000000" }, { "input": "479001600 8", "output": "7484400000000" }, { "input": "655360001 7", "output": "6553600010000000" }, { "input": "655360001 8", "output": "65536000100000000" }, { "input": "1000000000 1", "output": "1000000000" }, { "input": "1000000000 7", "output": "1000000000" }, { "input": "1000000000 8", "output": "1000000000" }, { "input": "100000000 8", "output": "100000000" }, { "input": "10000000 8", "output": "100000000" }, { "input": "1000000 8", "output": "100000000" }, { "input": "10000009 8", "output": "1000000900000000" }, { "input": "10000005 8", "output": "200000100000000" }, { "input": "10000002 8", "output": "500000100000000" }, { "input": "999999997 8", "output": "99999999700000000" }, { "input": "999999997 7", "output": "9999999970000000" }, { "input": "999999995 8", "output": "19999999900000000" }, { "input": "123 8", "output": "12300000000" }, { "input": "24 2", "output": "600" }, { "input": "16 4", "output": "10000" }, { "input": "123456787 8", "output": "12345678700000000" }, { "input": "100000000 8", "output": "100000000" }, { "input": "7 1", "output": "70" }, { "input": "101 1", "output": "1010" }, { "input": "50 2", "output": "100" }, { "input": "999999818 1", "output": "4999999090" }, { "input": "2 1", "output": "10" }, { "input": "123 1", "output": "1230" }, { "input": "16 1", "output": "80" }, { "input": "1 1", "output": "10" }, { "input": "1000000000 8", "output": "1000000000" }, { "input": "15304 6", "output": "1913000000" }, { "input": "3 8", "output": "300000000" }, { "input": "4 2", "output": "100" }, { "input": "100000 7", "output": "10000000" }, { "input": "5 8", "output": "100000000" }, { "input": "16724 6", "output": "4181000000" }, { "input": "999999999 1", "output": "9999999990" }, { "input": "999999990 8", "output": "9999999900000000" }, { "input": "999999999 8", "output": "99999999900000000" }, { "input": "100000 1", "output": "100000" }, { "input": "8 3", "output": "1000" }, { "input": "16768 6", "output": "262000000" }, { "input": "123456789 1", "output": "1234567890" }, { "input": "2 8", "output": "100000000" }, { "input": "999999937 8", "output": "99999993700000000" }, { "input": "5 1", "output": "10" }, { "input": "2000000 7", "output": "10000000" }, { "input": "1999998 2", "output": "99999900" }, { "input": "125 3", "output": "1000" } ]
1,505,731,590
2,147,483,647
Python 3
OK
TESTS
96
62
4,608,000
from math import gcd n, k = map(int, input().split()) print(10**k*n//gcd(10**k, n))
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: For a given positive integer *n* denote its *k*-rounding as the minimum positive integer *x*, such that *x* ends with *k* or more zeros in base 10 and is divisible by *n*. For example, 4-rounding of 375 is 375·80<==<=30000. 30000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375. Write a program that will perform the *k*-rounding of *n*. Input Specification: The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=109, 0<=≤<=*k*<=≤<=8). Output Specification: Print the *k*-rounding of *n*. Demo Input: ['375 4\n', '10000 1\n', '38101 0\n', '123456789 8\n'] Demo Output: ['30000\n', '10000\n', '38101\n', '12345678900000000\n'] Note: none
```python from math import gcd n, k = map(int, input().split()) print(10**k*n//gcd(10**k, n)) ```
3
678
C
Joty and Chocolate
PROGRAMMING
1,600
[ "implementation", "math", "number theory" ]
null
null
Little Joty has got a task to do. She has a line of *n* tiles indexed from 1 to *n*. She has to paint them in a strange pattern. An unpainted tile should be painted Red if it's index is divisible by *a* and an unpainted tile should be painted Blue if it's index is divisible by *b*. So the tile with the number divisible by *a* and *b* can be either painted Red or Blue. After her painting is done, she will get *p* chocolates for each tile that is painted Red and *q* chocolates for each tile that is painted Blue. Note that she can paint tiles in any order she wants. Given the required information, find the maximum number of chocolates Joty can get.
The only line contains five integers *n*, *a*, *b*, *p* and *q* (1<=≤<=*n*,<=*a*,<=*b*,<=*p*,<=*q*<=≤<=109).
Print the only integer *s* — the maximum number of chocolates Joty can get. Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
[ "5 2 3 12 15\n", "20 2 3 3 5\n" ]
[ "39\n", "51\n" ]
none
0
[ { "input": "5 2 3 12 15", "output": "39" }, { "input": "20 2 3 3 5", "output": "51" }, { "input": "1 1 1 1 1", "output": "1" }, { "input": "1 2 2 2 2", "output": "0" }, { "input": "2 1 3 3 3", "output": "6" }, { "input": "3 1 1 3 3", "output": "9" }, { "input": "4 1 5 4 3", "output": "16" }, { "input": "8 8 1 1 1", "output": "8" }, { "input": "15 14 32 65 28", "output": "65" }, { "input": "894 197 325 232 902", "output": "2732" }, { "input": "8581 6058 3019 2151 4140", "output": "10431" }, { "input": "41764 97259 54586 18013 75415", "output": "0" }, { "input": "333625 453145 800800 907251 446081", "output": "0" }, { "input": "4394826 2233224 609367 3364334 898489", "output": "9653757" }, { "input": "13350712 76770926 61331309 8735000 9057368", "output": "0" }, { "input": "142098087 687355301 987788392 75187408 868856364", "output": "0" }, { "input": "1000000000 1 3 1000000000 999999999", "output": "1000000000000000000" }, { "input": "6 6 2 8 2", "output": "12" }, { "input": "500 8 4 4 5", "output": "625" }, { "input": "20 4 6 2 3", "output": "17" }, { "input": "10 3 9 1 2", "output": "4" }, { "input": "120 18 6 3 5", "output": "100" }, { "input": "30 4 6 2 2", "output": "20" }, { "input": "1000000000 7171 2727 191 272", "output": "125391842" }, { "input": "5 2 2 4 1", "output": "8" }, { "input": "1000000000 2 2 3 3", "output": "1500000000" }, { "input": "24 4 6 5 7", "output": "48" }, { "input": "216 6 36 10 100", "output": "900" }, { "input": "100 12 6 1 10", "output": "160" }, { "input": "1000 4 8 3 5", "output": "1000" }, { "input": "10 2 4 3 6", "output": "21" }, { "input": "1000000000 1000000000 1000000000 1000000000 1000000000", "output": "1000000000" }, { "input": "10 5 10 2 3", "output": "5" }, { "input": "100000 3 9 1 2", "output": "44444" }, { "input": "10 2 4 1 100", "output": "203" }, { "input": "20 6 4 2 3", "output": "19" }, { "input": "1200 4 16 2 3", "output": "675" }, { "input": "7 2 4 7 9", "output": "23" }, { "input": "24 6 4 15 10", "output": "100" }, { "input": "50 2 8 15 13", "output": "375" }, { "input": "100 4 6 12 15", "output": "444" }, { "input": "56756 9 18 56 78", "output": "422502" }, { "input": "10000 4 6 10 12", "output": "36662" }, { "input": "20 2 4 3 5", "output": "40" }, { "input": "24 4 6 10 100", "output": "440" }, { "input": "12 2 4 5 6", "output": "33" }, { "input": "100 2 4 1 100", "output": "2525" }, { "input": "1000 4 6 50 50", "output": "16650" }, { "input": "60 12 6 12 15", "output": "150" }, { "input": "1000 2 4 5 6", "output": "2750" }, { "input": "1000000000 1 1 9999 5555", "output": "9999000000000" }, { "input": "50 2 2 4 5", "output": "125" }, { "input": "14 4 2 2 3", "output": "21" }, { "input": "100 3 9 1 2", "output": "44" }, { "input": "1000000000 4 6 1 1000000000", "output": "166666666166666667" }, { "input": "12 3 3 45 4", "output": "180" }, { "input": "12 2 4 5 9", "output": "42" }, { "input": "1000000000 2 2 1000000000 1000000000", "output": "500000000000000000" }, { "input": "50 4 8 5 6", "output": "66" }, { "input": "32 4 16 6 3", "output": "48" }, { "input": "10000 2 4 1 1", "output": "5000" }, { "input": "8 2 4 100 1", "output": "400" }, { "input": "20 4 2 10 1", "output": "55" }, { "input": "5 2 2 12 15", "output": "30" }, { "input": "20 2 12 5 6", "output": "51" }, { "input": "10 2 4 1 2", "output": "7" }, { "input": "32 4 16 3 6", "output": "30" }, { "input": "50 2 8 13 15", "output": "337" }, { "input": "12 6 4 10 9", "output": "38" }, { "input": "1000000000 999999998 999999999 999999998 999999999", "output": "1999999997" }, { "input": "20 2 4 10 20", "output": "150" }, { "input": "13 4 6 12 15", "output": "54" }, { "input": "30 3 6 5 7", "output": "60" }, { "input": "7 2 4 2 1", "output": "6" }, { "input": "100000 32 16 2 3", "output": "18750" }, { "input": "6 2 6 1 1", "output": "3" }, { "input": "999999999 180 192 46642017 28801397", "output": "399129078526502" }, { "input": "12 4 6 1 1", "output": "4" }, { "input": "10 2 4 10 5", "output": "50" }, { "input": "1000000 4 6 12 14", "output": "4333328" }, { "input": "2000 20 30 3 5", "output": "531" }, { "input": "1000000000 1 2 1 1", "output": "1000000000" }, { "input": "30 3 15 10 3", "output": "100" }, { "input": "1000 2 4 1 100", "output": "25250" }, { "input": "6 3 3 12 15", "output": "30" }, { "input": "24 4 6 1 1", "output": "8" }, { "input": "20 2 12 4 5", "output": "41" }, { "input": "1000000000 9 15 10 10", "output": "1555555550" }, { "input": "16 2 4 1 2", "output": "12" }, { "input": "100000 4 6 12 14", "output": "433328" }, { "input": "24 6 4 1 1", "output": "8" }, { "input": "1000000 4 6 12 15", "output": "4499994" }, { "input": "100 2 4 5 6", "output": "275" }, { "input": "10 3 9 12 15", "output": "39" }, { "input": "1000000000 1 1 999999999 999999999", "output": "999999999000000000" }, { "input": "6 2 4 2 3", "output": "7" }, { "input": "2 2 2 2 2", "output": "2" }, { "input": "6 6 2 1 1", "output": "3" }, { "input": "100 2 4 3 7", "output": "250" }, { "input": "1000000 32 16 2 5", "output": "312500" }, { "input": "100 20 15 50 25", "output": "375" }, { "input": "1000000000 100000007 100000013 10 3", "output": "117" }, { "input": "1000000000 9999999 99999998 3 3", "output": "330" }, { "input": "10077696 24 36 10 100", "output": "30792960" }, { "input": "392852503 148746166 420198270 517065752 906699795", "output": "1034131504" }, { "input": "536870912 60000 72000 271828 314159", "output": "4369119072" }, { "input": "730114139 21550542 204644733 680083361 11353255", "output": "22476810678" }, { "input": "538228881 766493289 791886544 468896052 600136703", "output": "0" }, { "input": "190 20 50 84 172", "output": "1188" }, { "input": "1000 5 10 80 90", "output": "17000" }, { "input": "99999999 999999998 1 271828 314159", "output": "31415899685841" }, { "input": "22 3 6 1243 1", "output": "8701" }, { "input": "15 10 5 2 2", "output": "6" }, { "input": "1000000000 1000000000 1 1000000000 1000000000", "output": "1000000000000000000" }, { "input": "62 62 42 78 124", "output": "202" }, { "input": "2 2 2 2 1", "output": "2" }, { "input": "864351351 351 313 531 11", "output": "1337898227" }, { "input": "26 3 6 1244 1", "output": "9952" }, { "input": "1000 4 6 7 3", "output": "1999" }, { "input": "134312 3 6 33333 1", "output": "1492318410" }, { "input": "100 4 6 17 18", "output": "577" }, { "input": "6 2 4 5 6", "output": "16" }, { "input": "8 2 4 10 1", "output": "40" }, { "input": "10 2 4 3 3", "output": "15" }, { "input": "1000 1000 1000 1000 1000", "output": "1000" }, { "input": "123123 3 6 34312 2", "output": "1408198792" }, { "input": "1000000000 25 5 999 999", "output": "199800000000" }, { "input": "100 4 2 5 12", "output": "600" }, { "input": "50 2 4 4 5", "output": "112" }, { "input": "24 4 6 100 333", "output": "1732" }, { "input": "216 24 36 10 100", "output": "660" }, { "input": "50 6 4 3 8", "output": "108" }, { "input": "146 76 2 178 192", "output": "14016" }, { "input": "55 8 6 11 20", "output": "224" }, { "input": "5 2 4 6 16", "output": "22" }, { "input": "54 2 52 50 188", "output": "1488" }, { "input": "536870912 60000000 72000000 271828 314159", "output": "4101909" }, { "input": "1000000000 1000000000 1 1 100", "output": "100000000000" }, { "input": "50 4 2 4 5", "output": "125" }, { "input": "198 56 56 122 118", "output": "366" }, { "input": "5 1000000000 1 12 15", "output": "75" }, { "input": "1000 6 12 5 6", "output": "913" }, { "input": "50 3 6 12 15", "output": "216" }, { "input": "333 300 300 300 300", "output": "300" }, { "input": "1 1000000000 1 1 2", "output": "2" }, { "input": "188 110 110 200 78", "output": "200" }, { "input": "100000 20 10 3 2", "output": "25000" }, { "input": "100 2 4 1 10", "output": "275" }, { "input": "1000000000 2 1000000000 1 1000000", "output": "500999999" }, { "input": "20 3 6 5 7", "output": "36" }, { "input": "50 4 6 4 5", "output": "72" }, { "input": "96 46 4 174 156", "output": "3936" }, { "input": "5 2 4 12 15", "output": "27" }, { "input": "12 3 6 100 1", "output": "400" }, { "input": "100 4 2 10 32", "output": "1600" }, { "input": "1232 3 6 30000 3", "output": "12300000" }, { "input": "20 3 6 5 4", "output": "30" }, { "input": "100 6 15 11 29", "output": "317" }, { "input": "10000000 4 8 100 200", "output": "375000000" }, { "input": "1000000000 12 24 2 4", "output": "249999998" }, { "input": "123 3 6 3000 1", "output": "123000" }, { "input": "401523968 1536 2664 271828 314159", "output": "117768531682" }, { "input": "9 2 4 3 5", "output": "16" }, { "input": "999999999 724362018 772432019 46201854 20017479", "output": "66219333" }, { "input": "100 2 4 1 1000", "output": "25025" }, { "input": "50 2 4 1 1000", "output": "12013" }, { "input": "1000000000 2 1 2 1", "output": "1500000000" }, { "input": "1000000000 2005034 2005046 15 12", "output": "13446" }, { "input": "1000000000 999999999 1000000000 1 1", "output": "2" }, { "input": "999999999 500000000 1 100 1000", "output": "999999999000" }, { "input": "50 8 6 3 4", "output": "44" }, { "input": "1000000000 1 1 1000000000 1000000000", "output": "1000000000000000000" }, { "input": "1000000000 999999862 999999818 15 12", "output": "27" }, { "input": "1000000000 10000019 10000019 21 17", "output": "2079" }, { "input": "20 6 4 8 2", "output": "32" }, { "input": "1000000000 1000000000 1 1 1", "output": "1000000000" }, { "input": "1000000000 12345678 123456789 1000000000 999999999", "output": "88999999992" }, { "input": "1000000000 2 999999937 100000000 100000000", "output": "50000000100000000" }, { "input": "1000000000 1 1 1000000000 999999999", "output": "1000000000000000000" }, { "input": "1000000000 50001 100003 10 10", "output": "299980" }, { "input": "1000000000 1000000000 3 1 1", "output": "333333334" }, { "input": "10000 44 49 114 514", "output": "130278" }, { "input": "30 5 15 2 1", "output": "12" }, { "input": "20 2 4 1 1", "output": "10" }, { "input": "100 8 12 5 6", "output": "88" } ]
1,526,680,526
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
19
93
0
n,a,b,p,q=map(int, input().split()) result = (n//a)*p result += (n//b)*q if a%b==0 or b%a == 0: if max(p,q) == p: result -= (n//max(a,b))*q else: result -= (n//max(a,b))*p else: result -= (n//(a*b))*min(p,q) print(result)
Title: Joty and Chocolate Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Joty has got a task to do. She has a line of *n* tiles indexed from 1 to *n*. She has to paint them in a strange pattern. An unpainted tile should be painted Red if it's index is divisible by *a* and an unpainted tile should be painted Blue if it's index is divisible by *b*. So the tile with the number divisible by *a* and *b* can be either painted Red or Blue. After her painting is done, she will get *p* chocolates for each tile that is painted Red and *q* chocolates for each tile that is painted Blue. Note that she can paint tiles in any order she wants. Given the required information, find the maximum number of chocolates Joty can get. Input Specification: The only line contains five integers *n*, *a*, *b*, *p* and *q* (1<=≤<=*n*,<=*a*,<=*b*,<=*p*,<=*q*<=≤<=109). Output Specification: Print the only integer *s* — the maximum number of chocolates Joty can get. Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type. Demo Input: ['5 2 3 12 15\n', '20 2 3 3 5\n'] Demo Output: ['39\n', '51\n'] Note: none
```python n,a,b,p,q=map(int, input().split()) result = (n//a)*p result += (n//b)*q if a%b==0 or b%a == 0: if max(p,q) == p: result -= (n//max(a,b))*q else: result -= (n//max(a,b))*p else: result -= (n//(a*b))*min(p,q) print(result) ```
0
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,609,120,111
2,147,483,647
Python 3
OK
TESTS
35
218
0
class Solution: def domino(l,b): area = l*b if area % 2 != 0: return (area - 1) // 2 else: return area // 2 l, b = input().split() ans = Solution.domino(int(l), int(b)) print(ans)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python class Solution: def domino(l,b): area = l*b if area % 2 != 0: return (area - 1) // 2 else: return area // 2 l, b = input().split() ans = Solution.domino(int(l), int(b)) print(ans) ```
3.9455
785
A
Anton and Polyhedrons
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons: - Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces. All five kinds of polyhedrons are shown on the picture below: Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of polyhedrons in Anton's collection. Each of the following *n* lines of the input contains a string *s**i* — the name of the *i*-th polyhedron in Anton's collection. The string can look like this: - "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron.
Output one number — the total number of faces in all the polyhedrons in Anton's collection.
[ "4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n", "3\nDodecahedron\nOctahedron\nOctahedron\n" ]
[ "42\n", "28\n" ]
In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20 + 6 + 4 + 12 = 42 faces.
500
[ { "input": "4\nIcosahedron\nCube\nTetrahedron\nDodecahedron", "output": "42" }, { "input": "3\nDodecahedron\nOctahedron\nOctahedron", "output": "28" }, { "input": "25\nIcosahedron\nOctahedron\nTetrahedron\nDodecahedron\nCube\nIcosahedron\nOctahedron\nCube\nTetrahedron\nIcosahedron\nIcosahedron\nTetrahedron\nOctahedron\nDodecahedron\nIcosahedron\nOctahedron\nIcosahedron\nTetrahedron\nDodecahedron\nTetrahedron\nOctahedron\nCube\nCube\nDodecahedron\nTetrahedron", "output": "256" }, { "input": "1\nTetrahedron", "output": "4" }, { "input": "1\nCube", "output": "6" }, { "input": "1\nOctahedron", "output": "8" }, { "input": "1\nDodecahedron", "output": "12" }, { "input": "1\nIcosahedron", "output": "20" }, { "input": "28\nOctahedron\nDodecahedron\nOctahedron\nOctahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nDodecahedron\nDodecahedron\nCube\nDodecahedron\nCube\nTetrahedron\nCube\nCube\nTetrahedron\nDodecahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nIcosahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron", "output": "340" } ]
1,690,627,100
2,147,483,647
Python 3
OK
TESTS
30
218
0
sum = 0 for i in range(int(input())): x = input() if x == "Icosahedron" : sum = sum + 20 elif x == "Cube": sum = sum + 6 elif x == "Tetrahedron": sum = sum + 4 elif x == "Dodecahedron": sum = sum + 12 elif x == "Octahedron": sum = sum + 8 print(sum)
Title: Anton and Polyhedrons Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons: - Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces. All five kinds of polyhedrons are shown on the picture below: Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number! Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of polyhedrons in Anton's collection. Each of the following *n* lines of the input contains a string *s**i* — the name of the *i*-th polyhedron in Anton's collection. The string can look like this: - "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron. Output Specification: Output one number — the total number of faces in all the polyhedrons in Anton's collection. Demo Input: ['4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n', '3\nDodecahedron\nOctahedron\nOctahedron\n'] Demo Output: ['42\n', '28\n'] Note: In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20 + 6 + 4 + 12 = 42 faces.
```python sum = 0 for i in range(int(input())): x = input() if x == "Icosahedron" : sum = sum + 20 elif x == "Cube": sum = sum + 6 elif x == "Tetrahedron": sum = sum + 4 elif x == "Dodecahedron": sum = sum + 12 elif x == "Octahedron": sum = sum + 8 print(sum) ```
3
219
A
k-String
PROGRAMMING
1,000
[ "implementation", "strings" ]
null
null
A string is called a *k*-string if it can be represented as *k* concatenated copies of some string. For example, the string "aabaabaabaab" is at the same time a 1-string, a 2-string and a 4-string, but it is not a 3-string, a 5-string, or a 6-string and so on. Obviously any string is a 1-string. You are given a string *s*, consisting of lowercase English letters and a positive integer *k*. Your task is to reorder the letters in the string *s* in such a way that the resulting string is a *k*-string.
The first input line contains integer *k* (1<=≤<=*k*<=≤<=1000). The second line contains *s*, all characters in *s* are lowercase English letters. The string length *s* satisfies the inequality 1<=≤<=|*s*|<=≤<=1000, where |*s*| is the length of string *s*.
Rearrange the letters in string *s* in such a way that the result is a *k*-string. Print the result on a single output line. If there are multiple solutions, print any of them. If the solution doesn't exist, print "-1" (without quotes).
[ "2\naazz\n", "3\nabcabcabz\n" ]
[ "azaz\n", "-1\n" ]
none
500
[ { "input": "2\naazz", "output": "azaz" }, { "input": "3\nabcabcabz", "output": "-1" }, { "input": "1\na", "output": "a" }, { "input": "2\nabba", "output": "abab" }, { "input": "2\naaab", "output": "-1" }, { "input": "7\nabacaba", "output": "-1" }, { "input": "5\naaaaa", "output": "aaaaa" }, { "input": "3\naabaaaaabb", "output": "-1" }, { "input": "2\naaab", "output": "-1" }, { "input": "2\nbabac", "output": "-1" }, { "input": "3\nbbbccc", "output": "bcbcbc" }, { "input": "2\naa", "output": "aa" }, { "input": "250\ncececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececece", "output": "cececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececece" }, { "input": "15\nabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaa", "output": "aaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbc" }, { "input": "1\naaa", "output": "aaa" }, { "input": "1\naabaab", "output": "aaaabb" }, { "input": "2\naabbbbccccccdddddddd", "output": "abbcccddddabbcccdddd" }, { "input": "3\naaaaaaaaacccdddddd", "output": "aaacddaaacddaaacdd" }, { "input": "3\naaaaaaaaacccbbbbbb", "output": "aaabbcaaabbcaaabbc" }, { "input": "2\naazzzz", "output": "azzazz" }, { "input": "2\naaaa", "output": "aaaa" }, { "input": "2\naaaazz", "output": "aazaaz" }, { "input": "2\naaaabb", "output": "aabaab" }, { "input": "2\naabbbb", "output": "abbabb" }, { "input": "2\naaaazzzz", "output": "aazzaazz" }, { "input": "2\naaazz", "output": "-1" }, { "input": "2\nbbbbaa", "output": "abbabb" }, { "input": "2\naaaaaabbbb", "output": "aaabbaaabb" }, { "input": "2\naaaaaazz", "output": "aaazaaaz" }, { "input": "2\naaaabbbb", "output": "aabbaabb" }, { "input": "2\naabaab", "output": "aabaab" }, { "input": "1\naaaaa", "output": "aaaaa" }, { "input": "2\nbbaaaa", "output": "aabaab" }, { "input": "2\nacaccc", "output": "accacc" } ]
1,689,165,325
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
62
0
t=int(input()) s=input() ans=" " for i in s: if s.count(i)!=t: ans="-1" else: a=set(s) b=list(a) c=b*2 ans=''.join(c) print(ans)
Title: k-String Time Limit: None seconds Memory Limit: None megabytes Problem Description: A string is called a *k*-string if it can be represented as *k* concatenated copies of some string. For example, the string "aabaabaabaab" is at the same time a 1-string, a 2-string and a 4-string, but it is not a 3-string, a 5-string, or a 6-string and so on. Obviously any string is a 1-string. You are given a string *s*, consisting of lowercase English letters and a positive integer *k*. Your task is to reorder the letters in the string *s* in such a way that the resulting string is a *k*-string. Input Specification: The first input line contains integer *k* (1<=≤<=*k*<=≤<=1000). The second line contains *s*, all characters in *s* are lowercase English letters. The string length *s* satisfies the inequality 1<=≤<=|*s*|<=≤<=1000, where |*s*| is the length of string *s*. Output Specification: Rearrange the letters in string *s* in such a way that the result is a *k*-string. Print the result on a single output line. If there are multiple solutions, print any of them. If the solution doesn't exist, print "-1" (without quotes). Demo Input: ['2\naazz\n', '3\nabcabcabz\n'] Demo Output: ['azaz\n', '-1\n'] Note: none
```python t=int(input()) s=input() ans=" " for i in s: if s.count(i)!=t: ans="-1" else: a=set(s) b=list(a) c=b*2 ans=''.join(c) print(ans) ```
0
439
A
Devu, the Singer and Churu, the Joker
PROGRAMMING
900
[ "greedy", "implementation" ]
null
null
Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited. Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly. The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly. People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest. You as one of the organizers should make an optimal sсhedule for the event. For some reasons you must follow the conditions: - The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible. If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event.
The first line contains two space separated integers *n*, *d* (1<=≤<=*n*<=≤<=100; 1<=≤<=*d*<=≤<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100).
If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event.
[ "3 30\n2 2 1\n", "3 20\n2 1 1\n" ]
[ "5\n", "-1\n" ]
Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way: - First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes. Total time spent is 5 + 2 + 10 + 2 + 10 + 1 = 30 minutes. Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
500
[ { "input": "3 30\n2 2 1", "output": "5" }, { "input": "3 20\n2 1 1", "output": "-1" }, { "input": "50 10000\n5 4 10 9 9 6 7 7 7 3 3 7 7 4 7 4 10 10 1 7 10 3 1 4 5 7 2 10 10 10 2 3 4 7 6 1 8 4 7 3 8 8 4 10 1 1 9 2 6 1", "output": "1943" }, { "input": "50 10000\n4 7 15 9 11 12 20 9 14 14 10 13 6 13 14 17 6 8 20 12 10 15 13 17 5 12 13 11 7 5 5 2 3 15 13 7 14 14 19 2 13 14 5 15 3 19 15 16 4 1", "output": "1891" }, { "input": "100 9000\n5 2 3 1 1 3 4 9 9 6 7 10 10 10 2 10 6 8 8 6 7 9 9 5 6 2 1 10 10 9 4 5 9 2 4 3 8 5 6 1 1 5 3 6 2 6 6 6 5 8 3 6 7 3 1 10 9 1 8 3 10 9 5 6 3 4 1 1 10 10 2 3 4 8 10 10 5 1 5 3 6 8 10 6 10 2 1 8 10 1 7 6 9 10 5 2 3 5 3 2", "output": "1688" }, { "input": "100 8007\n5 19 14 18 9 6 15 8 1 14 11 20 3 17 7 12 2 6 3 17 7 20 1 14 20 17 2 10 13 7 18 18 9 10 16 8 1 11 11 9 13 18 9 20 12 12 7 15 12 17 11 5 11 15 9 2 15 1 18 3 18 16 15 4 10 5 18 13 13 12 3 8 17 2 12 2 13 3 1 13 2 4 9 10 18 10 14 4 4 17 12 19 2 9 6 5 5 20 18 12", "output": "1391" }, { "input": "39 2412\n1 1 1 1 1 1 26 1 1 1 99 1 1 1 1 1 1 1 1 1 1 88 7 1 1 1 1 76 1 1 1 93 40 1 13 1 68 1 32", "output": "368" }, { "input": "39 2617\n47 1 1 1 63 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 70 1 99 63 1 1 1 1 1 1 1 1 64 1 1", "output": "435" }, { "input": "39 3681\n83 77 1 94 85 47 1 98 29 16 1 1 1 71 96 85 31 97 96 93 40 50 98 1 60 51 1 96 100 72 1 1 1 89 1 93 1 92 100", "output": "326" }, { "input": "45 894\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 99 3 1 1", "output": "139" }, { "input": "45 4534\n1 99 65 99 4 46 54 80 51 30 96 1 28 30 44 70 78 1 1 100 1 62 1 1 1 85 1 1 1 61 1 46 75 1 61 77 97 26 67 1 1 63 81 85 86", "output": "514" }, { "input": "72 3538\n52 1 8 1 1 1 7 1 1 1 1 48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 40 1 1 38 1 1 1 1 1 1 1 1 1 1 1 35 1 93 79 1 1 1 1 1 1 1 1 1 51 1 1 1 1 1 1 1 1 1 1 1 1 96 1", "output": "586" }, { "input": "81 2200\n1 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1", "output": "384" }, { "input": "81 2577\n85 91 1 1 2 1 1 100 1 80 1 1 17 86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 37 1 66 24 1 1 96 49 1 66 1 44 1 1 1 1 98 1 1 1 1 35 1 37 3 35 1 1 87 64 1 24 1 58 1 1 42 83 5 1 1 1 1 1 95 1 94 1 50 1 1", "output": "174" }, { "input": "81 4131\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "807" }, { "input": "81 6315\n1 1 67 100 1 99 36 1 92 5 1 96 42 12 1 57 91 1 1 66 41 30 74 95 1 37 1 39 91 69 1 52 77 47 65 1 1 93 96 74 90 35 85 76 71 92 92 1 1 67 92 74 1 1 86 76 35 1 56 16 27 57 37 95 1 40 20 100 51 1 80 60 45 79 95 1 46 1 25 100 96", "output": "490" }, { "input": "96 1688\n1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 71 1 1 1 30 1 1 1", "output": "284" }, { "input": "96 8889\n1 1 18 1 1 1 1 1 1 1 1 1 99 1 1 1 1 88 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 96 1 1 1 1 21 1 1 1 1 1 1 1 73 1 1 1 1 1 10 1 1 1 1 1 1 1 46 43 1 1 1 1 1 98 1 1 1 1 1 1 6 1 1 1 1 1 74 1 25 1 55 1 1 1 13 1 1 54 1 1 1", "output": "1589" }, { "input": "10 100\n1 1 1 1 1 1 1 1 1 1", "output": "18" }, { "input": "100 10000\n54 46 72 94 79 83 91 54 73 3 24 55 54 31 28 20 19 6 25 19 47 23 1 70 15 87 51 39 54 77 55 5 60 3 15 99 56 88 22 78 79 21 38 27 28 86 7 88 12 59 55 70 25 1 70 49 1 45 69 72 50 17 4 56 8 100 90 34 35 20 61 76 88 79 4 74 65 68 75 26 40 72 59 94 10 67 96 85 29 90 47 24 44 1 66 93 55 36 1 99", "output": "1017" }, { "input": "100 6000\n41 31 23 17 24 78 26 96 93 48 46 2 49 33 35 9 73 100 34 48 83 36 33 69 43 24 3 74 8 81 27 33 94 38 77 9 76 90 62 90 21 67 22 22 12 2 17 27 61 18 72 85 59 65 71 38 90 75 74 66 60 47 58 50 90 95 75 10 5 100 97 29 83 88 65 26 93 90 22 98 36 55 70 38 50 92 88 72 99 96 25 14 74 16 25 92 67 94 77 96", "output": "-1" }, { "input": "1 1\n1", "output": "0" }, { "input": "1 6\n1", "output": "1" }, { "input": "1 5\n1", "output": "0" }, { "input": "1 3\n4", "output": "-1" }, { "input": "3 24\n2 1 2", "output": "-1" } ]
1,597,988,640
2,147,483,647
PyPy 3
OK
TESTS
26
139
20,172,800
import sys input=sys.stdin.readline n, m=map(int, input().split()) breaktimecnt=(n-1)*2 studytime=list(map(int, input().split())) mintime=(n-1)*10+sum(studytime) if mintime>m: print(-1) else: print((m-mintime)//5+breaktimecnt)
Title: Devu, the Singer and Churu, the Joker Time Limit: None seconds Memory Limit: None megabytes Problem Description: Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited. Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly. The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly. People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest. You as one of the organizers should make an optimal sсhedule for the event. For some reasons you must follow the conditions: - The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible. If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event. Input Specification: The first line contains two space separated integers *n*, *d* (1<=≤<=*n*<=≤<=100; 1<=≤<=*d*<=≤<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100). Output Specification: If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event. Demo Input: ['3 30\n2 2 1\n', '3 20\n2 1 1\n'] Demo Output: ['5\n', '-1\n'] Note: Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way: - First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes. Total time spent is 5 + 2 + 10 + 2 + 10 + 1 = 30 minutes. Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
```python import sys input=sys.stdin.readline n, m=map(int, input().split()) breaktimecnt=(n-1)*2 studytime=list(map(int, input().split())) mintime=(n-1)*10+sum(studytime) if mintime>m: print(-1) else: print((m-mintime)//5+breaktimecnt) ```
3
215
A
Bicycle Chain
PROGRAMMING
900
[ "brute force", "implementation" ]
null
null
Vasya's bicycle chain drive consists of two parts: *n* stars are attached to the pedal axle, *m* stars are attached to the rear wheel axle. The chain helps to rotate the rear wheel by transmitting the pedal rotation. We know that the *i*-th star on the pedal axle has *a**i* (0<=&lt;<=*a*1<=&lt;<=*a*2<=&lt;<=...<=&lt;<=*a**n*) teeth, and the *j*-th star on the rear wheel axle has *b**j* (0<=&lt;<=*b*1<=&lt;<=*b*2<=&lt;<=...<=&lt;<=*b**m*) teeth. Any pair (*i*,<=*j*) (1<=≤<=*i*<=≤<=*n*; 1<=≤<=*j*<=≤<=*m*) is called a gear and sets the indexes of stars to which the chain is currently attached. Gear (*i*,<=*j*) has a gear ratio, equal to the value . Since Vasya likes integers, he wants to find such gears (*i*,<=*j*), that their ratios are integers. On the other hand, Vasya likes fast driving, so among all "integer" gears (*i*,<=*j*) he wants to choose a gear with the maximum ratio. Help him to find the number of such gears. In the problem, fraction denotes division in real numbers, that is, no rounding is performed.
The first input line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stars on the bicycle's pedal axle. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104) in the order of strict increasing. The third input line contains integer *m* (1<=≤<=*m*<=≤<=50) — the number of stars on the rear wheel axle. The fourth line contains *m* integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=104) in the order of strict increasing. It is guaranteed that there exists at least one gear (*i*,<=*j*), that its gear ratio is an integer. The numbers on the lines are separated by spaces.
Print the number of "integer" gears with the maximum ratio among all "integer" gears.
[ "2\n4 5\n3\n12 13 15\n", "4\n1 2 3 4\n5\n10 11 12 13 14\n" ]
[ "2\n", "1\n" ]
In the first sample the maximum "integer" gear ratio equals 3. There are two gears that have such gear ratio. For one of them *a*<sub class="lower-index">1</sub> = 4, *b*<sub class="lower-index">1</sub> = 12, and for the other *a*<sub class="lower-index">2</sub> = 5, *b*<sub class="lower-index">3</sub> = 15.
500
[ { "input": "2\n4 5\n3\n12 13 15", "output": "2" }, { "input": "4\n1 2 3 4\n5\n10 11 12 13 14", "output": "1" }, { "input": "1\n1\n1\n1", "output": "1" }, { "input": "2\n1 2\n1\n1", "output": "1" }, { "input": "1\n1\n2\n1 2", "output": "1" }, { "input": "4\n3 7 11 13\n4\n51 119 187 221", "output": "4" }, { "input": "4\n2 3 4 5\n3\n1 2 3", "output": "2" }, { "input": "10\n6 12 13 20 48 53 74 92 96 97\n10\n1 21 32 36 47 54 69 75 95 97", "output": "1" }, { "input": "10\n5 9 10 14 15 17 19 22 24 26\n10\n2 11 17 19 21 22 24 25 27 28", "output": "1" }, { "input": "10\n24 53 56 126 354 432 442 740 795 856\n10\n273 438 494 619 689 711 894 947 954 958", "output": "1" }, { "input": "10\n3 4 6 7 8 10 14 16 19 20\n10\n3 4 5 7 8 10 15 16 18 20", "output": "1" }, { "input": "10\n1 6 8 14 15 17 25 27 34 39\n10\n1 8 16 17 19 22 32 39 44 50", "output": "1" }, { "input": "10\n5 21 22 23 25 32 35 36 38 39\n10\n3 7 8 9 18 21 23 24 36 38", "output": "4" }, { "input": "50\n5 8 13 16 19 20 21 22 24 27 28 29 30 32 33 34 35 43 45 48 50 51 54 55 58 59 60 61 62 65 70 71 72 76 78 79 80 81 83 84 85 87 89 91 92 94 97 98 99 100\n50\n2 3 5 6 7 10 15 16 17 20 23 28 29 30 31 34 36 37 40 42 45 46 48 54 55 56 58 59 61 62 69 70 71 72 75 76 78 82 84 85 86 87 88 89 90 91 92 97 99 100", "output": "1" }, { "input": "50\n3 5 6 8 9 11 13 19 21 23 24 32 34 35 42 50 51 52 56 58 59 69 70 72 73 75 76 77 78 80 83 88 90 95 96 100 101 102 108 109 113 119 124 135 138 141 142 143 145 150\n50\n5 8 10 11 18 19 23 30 35 43 51 53 55 58 63 68 69 71 77 78 79 82 83 86 88 89 91 92 93 94 96 102 103 105 109 110 113 114 116 123 124 126 127 132 133 135 136 137 142 149", "output": "1" }, { "input": "50\n6 16 24 25 27 33 36 40 51 60 62 65 71 72 75 77 85 87 91 93 98 102 103 106 117 118 120 121 122 123 125 131 134 136 143 148 155 157 160 161 164 166 170 178 184 187 188 192 194 197\n50\n5 9 17 23 27 34 40 44 47 59 62 70 81 82 87 88 89 90 98 101 102 110 113 114 115 116 119 122 124 128 130 137 138 140 144 150 152 155 159 164 166 169 171 175 185 186 187 189 190 193", "output": "1" }, { "input": "50\n14 22 23 31 32 35 48 63 76 79 88 97 101 102 103 104 106 113 114 115 116 126 136 138 145 152 155 156 162 170 172 173 179 180 182 203 208 210 212 222 226 229 231 232 235 237 245 246 247 248\n50\n2 5 6 16 28 44 45 46 54 55 56 63 72 80 87 93 94 96 97 100 101 103 132 135 140 160 164 165 167 168 173 180 182 185 186 192 194 198 199 202 203 211 213 216 217 227 232 233 236 245", "output": "1" }, { "input": "50\n14 19 33 35 38 41 51 54 69 70 71 73 76 80 84 94 102 104 105 106 107 113 121 128 131 168 180 181 187 191 195 201 205 207 210 216 220 238 249 251 263 271 272 275 281 283 285 286 291 294\n50\n2 3 5 20 21 35 38 40 43 48 49 52 55 64 73 77 82 97 109 113 119 121 125 132 137 139 145 146 149 180 182 197 203 229 234 241 244 251 264 271 274 281 284 285 287 291 292 293 294 298", "output": "1" }, { "input": "50\n2 4 5 16 18 19 22 23 25 26 34 44 48 54 67 79 80 84 92 110 116 133 138 154 163 171 174 202 205 218 228 229 234 245 247 249 250 263 270 272 274 275 277 283 289 310 312 334 339 342\n50\n1 5 17 18 25 37 46 47 48 59 67 75 80 83 84 107 115 122 137 141 159 162 175 180 184 204 221 224 240 243 247 248 249 258 259 260 264 266 269 271 274 293 294 306 329 330 334 335 342 350", "output": "1" }, { "input": "50\n6 9 11 21 28 39 42 56 60 63 81 88 91 95 105 110 117 125 149 165 174 176 185 189 193 196 205 231 233 268 278 279 281 286 289 292 298 303 305 306 334 342 350 353 361 371 372 375 376 378\n50\n6 17 20 43 45 52 58 59 82 83 88 102 111 118 121 131 145 173 190 191 200 216 224 225 232 235 243 256 260 271 290 291 321 322 323 329 331 333 334 341 343 348 351 354 356 360 366 379 387 388", "output": "1" }, { "input": "10\n17 239 443 467 661 1069 1823 2333 3767 4201\n20\n51 83 97 457 593 717 997 1329 1401 1459 1471 1983 2371 2539 3207 3251 3329 5469 6637 6999", "output": "8" }, { "input": "20\n179 359 401 467 521 601 919 941 1103 1279 1709 1913 1949 2003 2099 2143 2179 2213 2399 4673\n20\n151 181 191 251 421 967 1109 1181 1249 1447 1471 1553 1619 2327 2551 2791 3049 3727 6071 7813", "output": "3" }, { "input": "20\n79 113 151 709 809 983 1291 1399 1409 1429 2377 2659 2671 2897 3217 3511 3557 3797 3823 4363\n10\n19 101 659 797 1027 1963 2129 2971 3299 9217", "output": "3" }, { "input": "30\n19 47 109 179 307 331 389 401 461 509 547 569 617 853 883 1249 1361 1381 1511 1723 1741 1783 2459 2531 2621 3533 3821 4091 5557 6217\n20\n401 443 563 941 967 997 1535 1567 1655 1747 1787 1945 1999 2251 2305 2543 2735 4415 6245 7555", "output": "8" }, { "input": "30\n3 43 97 179 257 313 353 359 367 389 397 457 547 599 601 647 1013 1021 1063 1433 1481 1531 1669 3181 3373 3559 3769 4157 4549 5197\n50\n13 15 17 19 29 79 113 193 197 199 215 223 271 293 359 485 487 569 601 683 895 919 941 967 1283 1285 1289 1549 1565 1765 1795 1835 1907 1931 1945 1985 1993 2285 2731 2735 2995 3257 4049 4139 5105 5315 7165 7405 7655 8345", "output": "20" }, { "input": "50\n11 17 23 53 59 109 137 149 173 251 353 379 419 421 439 503 593 607 661 773 821 877 941 997 1061 1117 1153 1229 1289 1297 1321 1609 1747 2311 2389 2543 2693 3041 3083 3137 3181 3209 3331 3373 3617 3767 4201 4409 4931 6379\n50\n55 59 67 73 85 89 101 115 211 263 295 353 545 599 607 685 739 745 997 1031 1255 1493 1523 1667 1709 1895 1949 2161 2195 2965 3019 3035 3305 3361 3373 3673 3739 3865 3881 4231 4253 4385 4985 5305 5585 5765 6145 6445 8045 8735", "output": "23" }, { "input": "5\n33 78 146 3055 4268\n5\n2211 2584 5226 9402 9782", "output": "3" }, { "input": "5\n35 48 52 86 8001\n10\n332 3430 3554 4704 4860 5096 6215 7583 8228 8428", "output": "4" }, { "input": "10\n97 184 207 228 269 2084 4450 6396 7214 9457\n16\n338 1179 1284 1545 1570 2444 3167 3395 3397 5550 6440 7245 7804 7980 9415 9959", "output": "5" }, { "input": "30\n25 30 41 57 58 62 70 72 76 79 84 85 88 91 98 101 104 109 119 129 136 139 148 151 926 1372 3093 3936 5423 7350\n25\n1600 1920 2624 3648 3712 3968 4480 4608 4864 5056 5376 5440 5632 5824 6272 6464 6656 6934 6976 7616 8256 8704 8896 9472 9664", "output": "24" }, { "input": "5\n33 78 146 3055 4268\n5\n2211 2584 5226 9402 9782", "output": "3" }, { "input": "5\n35 48 52 86 8001\n10\n332 3430 3554 4704 4860 5096 6215 7583 8228 8428", "output": "4" }, { "input": "10\n97 184 207 228 269 2084 4450 6396 7214 9457\n16\n338 1179 1284 1545 1570 2444 3167 3395 3397 5550 6440 7245 7804 7980 9415 9959", "output": "5" }, { "input": "30\n25 30 41 57 58 62 70 72 76 79 84 85 88 91 98 101 104 109 119 129 136 139 148 151 926 1372 3093 3936 5423 7350\n25\n1600 1920 2624 3648 3712 3968 4480 4608 4864 5056 5376 5440 5632 5824 6272 6464 6656 6934 6976 7616 8256 8704 8896 9472 9664", "output": "24" }, { "input": "47\n66 262 357 457 513 530 538 540 592 691 707 979 1015 1242 1246 1667 1823 1886 1963 2133 2649 2679 2916 2949 3413 3523 3699 3958 4393 4922 5233 5306 5799 6036 6302 6629 7208 7282 7315 7822 7833 7927 8068 8150 8870 8962 9987\n39\n167 199 360 528 1515 1643 1986 1988 2154 2397 2856 3552 3656 3784 3980 4096 4104 4240 4320 4736 4951 5266 5656 5849 5850 6169 6517 6875 7244 7339 7689 7832 8120 8716 9503 9509 9933 9936 9968", "output": "12" }, { "input": "1\n94\n50\n423 446 485 1214 1468 1507 1853 1930 1999 2258 2271 2285 2425 2543 2715 2743 2992 3196 4074 4108 4448 4475 4652 5057 5250 5312 5356 5375 5731 5986 6298 6501 6521 7146 7255 7276 7332 7481 7998 8141 8413 8665 8908 9221 9336 9491 9504 9677 9693 9706", "output": "1" }, { "input": "50\n51 67 75 186 194 355 512 561 720 876 1077 1221 1503 1820 2153 2385 2568 2608 2937 2969 3271 3311 3481 4081 4093 4171 4255 4256 4829 5020 5192 5636 5817 6156 6712 6717 7153 7436 7608 7612 7866 7988 8264 8293 8867 9311 9879 9882 9889 9908\n1\n5394", "output": "1" }, { "input": "50\n26 367 495 585 675 789 855 1185 1312 1606 2037 2241 2587 2612 2628 2807 2873 2924 3774 4067 4376 4668 4902 5001 5082 5100 5104 5209 5345 5515 5661 5777 5902 5907 6155 6323 6675 6791 7503 8159 8207 8254 8740 8848 8855 8933 9069 9164 9171 9586\n5\n1557 6246 7545 8074 8284", "output": "1" }, { "input": "5\n25 58 91 110 2658\n50\n21 372 909 1172 1517 1554 1797 1802 1843 1977 2006 2025 2137 2225 2317 2507 2645 2754 2919 3024 3202 3212 3267 3852 4374 4487 4553 4668 4883 4911 4916 5016 5021 5068 5104 5162 5683 5856 6374 6871 7333 7531 8099 8135 8173 8215 8462 8776 9433 9790", "output": "4" }, { "input": "45\n37 48 56 59 69 70 79 83 85 86 99 114 131 134 135 145 156 250 1739 1947 2116 2315 2449 3104 3666 4008 4406 4723 4829 5345 5836 6262 6296 6870 7065 7110 7130 7510 7595 8092 8442 8574 9032 9091 9355\n50\n343 846 893 1110 1651 1837 2162 2331 2596 3012 3024 3131 3294 3394 3528 3717 3997 4125 4347 4410 4581 4977 5030 5070 5119 5229 5355 5413 5418 5474 5763 5940 6151 6161 6164 6237 6506 6519 6783 7182 7413 7534 8069 8253 8442 8505 9135 9308 9828 9902", "output": "17" }, { "input": "50\n17 20 22 28 36 38 46 47 48 50 52 57 58 62 63 69 70 74 75 78 79 81 82 86 87 90 93 95 103 202 292 442 1756 1769 2208 2311 2799 2957 3483 4280 4324 4932 5109 5204 6225 6354 6561 7136 8754 9670\n40\n68 214 957 1649 1940 2078 2134 2716 3492 3686 4462 4559 4656 4756 4850 5044 5490 5529 5592 5626 6014 6111 6693 6790 7178 7275 7566 7663 7702 7857 7954 8342 8511 8730 8957 9021 9215 9377 9445 9991", "output": "28" }, { "input": "39\n10 13 21 25 36 38 47 48 58 64 68 69 73 79 86 972 2012 2215 2267 2503 3717 3945 4197 4800 5266 6169 6612 6824 7023 7322 7582 7766 8381 8626 8879 9079 9088 9838 9968\n50\n432 877 970 1152 1202 1223 1261 1435 1454 1578 1843 1907 2003 2037 2183 2195 2215 2425 3065 3492 3615 3637 3686 3946 4189 4415 4559 4656 4665 4707 4886 4887 5626 5703 5955 6208 6521 6581 6596 6693 6985 7013 7081 7343 7663 8332 8342 8637 9207 9862", "output": "15" }, { "input": "50\n7 144 269 339 395 505 625 688 709 950 1102 1152 1350 1381 1641 1830 1977 1999 2093 2180 2718 3308 3574 4168 4232 4259 4393 4689 4982 5154 5476 5581 5635 5721 6159 6302 6741 7010 7152 7315 7417 7482 8116 8239 8640 9347 9395 9614 9661 9822\n20\n84 162 292 1728 1866 2088 3228 3470 4068 5318 5470 6060 6380 6929 7500 8256 8399 8467 8508 9691", "output": "8" }, { "input": "50\n159 880 1070 1139 1358 1608 1691 1841 2073 2171 2213 2597 2692 2759 2879 2931 3173 3217 3441 4201 4878 5106 5129 5253 5395 5647 5968 6019 6130 6276 6286 6330 6409 6728 7488 7713 7765 7828 7899 8064 8264 8457 8483 8685 8900 8946 8965 9133 9187 9638\n45\n57 159 1070 1139 1391 1608 1691 1841 2171 2213 2692 2759 2931 3173 3217 3441 4201 4878 5106 5129 5253 5647 5968 6130 6276 6286 6409 7488 7694 7713 7765 7828 7899 8003 8064 8081 8244 8264 8685 8900 8946 8965 9133 9638 9673", "output": "38" }, { "input": "3\n3 4 5\n3\n6 20 25", "output": "2" }, { "input": "4\n2 3 5 8\n4\n2 6 8 10", "output": "1" }, { "input": "4\n3 5 7 11\n4\n3 5 7 22", "output": "1" }, { "input": "2\n2 3\n3\n20 30 50", "output": "1" }, { "input": "3\n1 2 3\n4\n2 4 6 49", "output": "1" }, { "input": "2\n4 5\n3\n12 15 20", "output": "1" }, { "input": "3\n2 5 7\n3\n4 5 7", "output": "1" }, { "input": "3\n3 5 8\n3\n6 8 10", "output": "2" }, { "input": "2\n2 3\n4\n4 6 9 33", "output": "1" }, { "input": "2\n2 3\n4\n4 6 21 40", "output": "1" }, { "input": "3\n4 9 10\n3\n8 9 10", "output": "1" }, { "input": "5\n1 5 6 9 51\n5\n5 12 18 27 10000", "output": "1" }, { "input": "13\n1 2 3 4 5 6 7 8 9 10 11 12 13\n1\n14", "output": "1" } ]
1,646,345,311
2,147,483,647
Python 3
OK
TESTS
57
92
0
n=int(input()) a= input().split() a= [int(i) for i in a] m=int(input()) b=input().split() b= [int(i) for i in b] x=[] for i in a: for j in b: if (j/i).is_integer(): x.append(j/i) x.sort() print(x.count(x[-1]))
Title: Bicycle Chain Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya's bicycle chain drive consists of two parts: *n* stars are attached to the pedal axle, *m* stars are attached to the rear wheel axle. The chain helps to rotate the rear wheel by transmitting the pedal rotation. We know that the *i*-th star on the pedal axle has *a**i* (0<=&lt;<=*a*1<=&lt;<=*a*2<=&lt;<=...<=&lt;<=*a**n*) teeth, and the *j*-th star on the rear wheel axle has *b**j* (0<=&lt;<=*b*1<=&lt;<=*b*2<=&lt;<=...<=&lt;<=*b**m*) teeth. Any pair (*i*,<=*j*) (1<=≤<=*i*<=≤<=*n*; 1<=≤<=*j*<=≤<=*m*) is called a gear and sets the indexes of stars to which the chain is currently attached. Gear (*i*,<=*j*) has a gear ratio, equal to the value . Since Vasya likes integers, he wants to find such gears (*i*,<=*j*), that their ratios are integers. On the other hand, Vasya likes fast driving, so among all "integer" gears (*i*,<=*j*) he wants to choose a gear with the maximum ratio. Help him to find the number of such gears. In the problem, fraction denotes division in real numbers, that is, no rounding is performed. Input Specification: The first input line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stars on the bicycle's pedal axle. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104) in the order of strict increasing. The third input line contains integer *m* (1<=≤<=*m*<=≤<=50) — the number of stars on the rear wheel axle. The fourth line contains *m* integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=104) in the order of strict increasing. It is guaranteed that there exists at least one gear (*i*,<=*j*), that its gear ratio is an integer. The numbers on the lines are separated by spaces. Output Specification: Print the number of "integer" gears with the maximum ratio among all "integer" gears. Demo Input: ['2\n4 5\n3\n12 13 15\n', '4\n1 2 3 4\n5\n10 11 12 13 14\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample the maximum "integer" gear ratio equals 3. There are two gears that have such gear ratio. For one of them *a*<sub class="lower-index">1</sub> = 4, *b*<sub class="lower-index">1</sub> = 12, and for the other *a*<sub class="lower-index">2</sub> = 5, *b*<sub class="lower-index">3</sub> = 15.
```python n=int(input()) a= input().split() a= [int(i) for i in a] m=int(input()) b=input().split() b= [int(i) for i in b] x=[] for i in a: for j in b: if (j/i).is_integer(): x.append(j/i) x.sort() print(x.count(x[-1])) ```
3
148
A
Insomnia cure
PROGRAMMING
800
[ "constructive algorithms", "implementation", "math" ]
null
null
«One dragon. Two dragon. Three dragon», — the princess was counting. She had trouble falling asleep, and she got bored of counting lambs when she was nine. However, just counting dragons was boring as well, so she entertained herself at best she could. Tonight she imagined that all dragons were here to steal her, and she was fighting them off. Every *k*-th dragon got punched in the face with a frying pan. Every *l*-th dragon got his tail shut into the balcony door. Every *m*-th dragon got his paws trampled with sharp heels. Finally, she threatened every *n*-th dragon to call her mom, and he withdrew in panic. How many imaginary dragons suffered moral or physical damage tonight, if the princess counted a total of *d* dragons?
Input data contains integer numbers *k*,<=*l*,<=*m*,<=*n* and *d*, each number in a separate line (1<=≤<=*k*,<=*l*,<=*m*,<=*n*<=≤<=10, 1<=≤<=*d*<=≤<=105).
Output the number of damaged dragons.
[ "1\n2\n3\n4\n12\n", "2\n3\n4\n5\n24\n" ]
[ "12\n", "17\n" ]
In the first case every first dragon got punched with a frying pan. Some of the dragons suffered from other reasons as well, but the pan alone would be enough. In the second case dragons 1, 7, 11, 13, 17, 19 and 23 escaped unharmed.
1,000
[ { "input": "1\n2\n3\n4\n12", "output": "12" }, { "input": "2\n3\n4\n5\n24", "output": "17" }, { "input": "1\n1\n1\n1\n100000", "output": "100000" }, { "input": "10\n9\n8\n7\n6", "output": "0" }, { "input": "8\n4\n4\n3\n65437", "output": "32718" }, { "input": "8\n4\n1\n10\n59392", "output": "59392" }, { "input": "4\n1\n8\n7\n44835", "output": "44835" }, { "input": "6\n1\n7\n2\n62982", "output": "62982" }, { "input": "2\n7\n4\n9\n56937", "output": "35246" }, { "input": "2\n9\n8\n1\n75083", "output": "75083" }, { "input": "8\n7\n7\n6\n69038", "output": "24656" }, { "input": "4\n4\n2\n3\n54481", "output": "36320" }, { "input": "6\n4\n9\n8\n72628", "output": "28244" }, { "input": "9\n7\n8\n10\n42357", "output": "16540" }, { "input": "5\n6\n4\n3\n60504", "output": "36302" }, { "input": "7\n2\n3\n8\n21754", "output": "15539" }, { "input": "1\n2\n10\n4\n39901", "output": "39901" }, { "input": "3\n4\n7\n1\n58048", "output": "58048" }, { "input": "9\n10\n4\n6\n52003", "output": "21956" }, { "input": "5\n10\n9\n3\n70149", "output": "32736" }, { "input": "5\n5\n5\n10\n55592", "output": "11118" }, { "input": "1\n5\n2\n6\n49547", "output": "49547" }, { "input": "3\n7\n7\n7\n84046", "output": "36019" }, { "input": "10\n2\n1\n8\n63537", "output": "63537" }, { "input": "7\n2\n10\n5\n81684", "output": "53678" }, { "input": "7\n1\n6\n8\n99831", "output": "99831" }, { "input": "3\n9\n3\n3\n61082", "output": "20360" }, { "input": "5\n5\n8\n9\n79228", "output": "29931" }, { "input": "1\n5\n5\n6\n89535", "output": "89535" }, { "input": "5\n5\n2\n1\n7682", "output": "7682" }, { "input": "7\n4\n8\n8\n25829", "output": "9224" }, { "input": "3\n4\n3\n3\n87079", "output": "43539" }, { "input": "5\n8\n4\n9\n5226", "output": "2438" }, { "input": "4\n9\n6\n6\n1070", "output": "415" }, { "input": "10\n10\n10\n10\n100000", "output": "10000" }, { "input": "1\n1\n1\n1\n1", "output": "1" }, { "input": "10\n10\n10\n10\n1", "output": "0" }, { "input": "10\n10\n1\n10\n10", "output": "10" }, { "input": "10\n10\n1\n10\n100", "output": "100" }, { "input": "2\n2\n2\n2\n1", "output": "0" } ]
1,684,478,098
2,147,483,647
Python 3
OK
TESTS
40
92
0
k = int(input()) l = int(input()) m = int(input()) n = int(input()) d = int(input()) count = 0 for i in range(1,d+1): if i%k==0 or i%l==0 or i%m==0 or i%n==0: count+=1 print(count)
Title: Insomnia cure Time Limit: None seconds Memory Limit: None megabytes Problem Description: «One dragon. Two dragon. Three dragon», — the princess was counting. She had trouble falling asleep, and she got bored of counting lambs when she was nine. However, just counting dragons was boring as well, so she entertained herself at best she could. Tonight she imagined that all dragons were here to steal her, and she was fighting them off. Every *k*-th dragon got punched in the face with a frying pan. Every *l*-th dragon got his tail shut into the balcony door. Every *m*-th dragon got his paws trampled with sharp heels. Finally, she threatened every *n*-th dragon to call her mom, and he withdrew in panic. How many imaginary dragons suffered moral or physical damage tonight, if the princess counted a total of *d* dragons? Input Specification: Input data contains integer numbers *k*,<=*l*,<=*m*,<=*n* and *d*, each number in a separate line (1<=≤<=*k*,<=*l*,<=*m*,<=*n*<=≤<=10, 1<=≤<=*d*<=≤<=105). Output Specification: Output the number of damaged dragons. Demo Input: ['1\n2\n3\n4\n12\n', '2\n3\n4\n5\n24\n'] Demo Output: ['12\n', '17\n'] Note: In the first case every first dragon got punched with a frying pan. Some of the dragons suffered from other reasons as well, but the pan alone would be enough. In the second case dragons 1, 7, 11, 13, 17, 19 and 23 escaped unharmed.
```python k = int(input()) l = int(input()) m = int(input()) n = int(input()) d = int(input()) count = 0 for i in range(1,d+1): if i%k==0 or i%l==0 or i%m==0 or i%n==0: count+=1 print(count) ```
3
789
B
Masha and geometric depression
PROGRAMMING
1,700
[ "brute force", "implementation", "math" ]
null
null
Masha really loves algebra. On the last lesson, her strict teacher Dvastan gave she new exercise. You are given geometric progression *b* defined by two integers *b*1 and *q*. Remind that a geometric progression is a sequence of integers *b*1,<=*b*2,<=*b*3,<=..., where for each *i*<=&gt;<=1 the respective term satisfies the condition *b**i*<==<=*b**i*<=-<=1·*q*, where *q* is called the common ratio of the progression. Progressions in Uzhlyandia are unusual: both *b*1 and *q* can equal 0. Also, Dvastan gave Masha *m* "bad" integers *a*1,<=*a*2,<=...,<=*a**m*, and an integer *l*. Masha writes all progression terms one by one onto the board (including repetitive) while condition |*b**i*|<=≤<=*l* is satisfied (|*x*| means absolute value of *x*). There is an exception: if a term equals one of the "bad" integers, Masha skips it (doesn't write onto the board) and moves forward to the next term. But the lesson is going to end soon, so Masha has to calculate how many integers will be written on the board. In order not to get into depression, Masha asked you for help: help her calculate how many numbers she will write, or print "inf" in case she needs to write infinitely many integers.
The first line of input contains four integers *b*1, *q*, *l*, *m* (-109<=≤<=*b*1,<=*q*<=≤<=109, 1<=≤<=*l*<=≤<=109, 1<=≤<=*m*<=≤<=105) — the initial term and the common ratio of progression, absolute value of maximal number that can be written on the board and the number of "bad" integers, respectively. The second line contains *m* distinct integers *a*1,<=*a*2,<=...,<=*a**m* (-109<=≤<=*a**i*<=≤<=109) — numbers that will never be written on the board.
Print the only integer, meaning the number of progression terms that will be written on the board if it is finite, or "inf" (without quotes) otherwise.
[ "3 2 30 4\n6 14 25 48\n", "123 1 2143435 4\n123 11 -5453 141245\n", "123 1 2143435 4\n54343 -13 6 124\n" ]
[ "3", "0", "inf" ]
In the first sample case, Masha will write integers 3, 12, 24. Progression term 6 will be skipped because it is a "bad" integer. Terms bigger than 24 won't be written because they exceed *l* by absolute value. In the second case, Masha won't write any number because all terms are equal 123 and this is a "bad" integer. In the third case, Masha will write infinitely integers 123.
1,000
[ { "input": "3 2 30 4\n6 14 25 48", "output": "3" }, { "input": "123 1 2143435 4\n123 11 -5453 141245", "output": "0" }, { "input": "123 1 2143435 4\n54343 -13 6 124", "output": "inf" }, { "input": "3 2 25 2\n379195692 -69874783", "output": "4" }, { "input": "3 2 30 3\n-691070108 -934106649 -220744807", "output": "4" }, { "input": "3 3 104 17\n9 -73896485 -290898562 5254410 409659728 -916522518 -435516126 94354167 262981034 -375897180 -80186684 -173062070 -288705544 -699097793 -11447747 320434295 503414250", "output": "3" }, { "input": "-1000000000 -1000000000 1 1\n232512888", "output": "0" }, { "input": "11 0 228 5\n-1 0 1 5 -11245", "output": "1" }, { "input": "11 0 228 5\n-1 -17 1 5 -11245", "output": "inf" }, { "input": "0 0 2143435 5\n-1 -153 1 5 -11245", "output": "inf" }, { "input": "123 0 2143435 4\n5433 0 123 -645", "output": "0" }, { "input": "123 -1 2143435 5\n-123 0 12 5 -11245", "output": "inf" }, { "input": "123 0 21 4\n543453 -123 6 1424", "output": "0" }, { "input": "3 2 115 16\n24 48 12 96 3 720031148 -367712651 -838596957 558177735 -963046495 -313322487 -465018432 -618984128 -607173835 144854086 178041956", "output": "1" }, { "input": "-3 0 92055 36\n-92974174 -486557474 -663622151 695596393 177960746 -563227474 -364263320 -676254242 -614140218 71456762 -764104225 705056581 -106398436 332755134 -199942822 -732751692 658942664 677739866 886535704 183687802 -784248291 -22550621 -938674499 637055091 -704750213 780395802 778342470 -999059668 -794361783 796469192 215667969 354336794 -60195289 -885080928 -290279020 201221317", "output": "inf" }, { "input": "0 -3 2143435 5\n-1 0 1 5 -11245", "output": "0" }, { "input": "123 -1 2143435 5\n-123 0 123 -5453 141245", "output": "0" }, { "input": "123 0 2143435 4\n5433 0 -123 -645", "output": "1" }, { "input": "11 0 2 5\n-1 0 1 5 -11245", "output": "0" }, { "input": "2 2 4 1\n2", "output": "1" }, { "input": "1 -2 1000000000 1\n0", "output": "30" }, { "input": "0 8 10 1\n5", "output": "inf" }, { "input": "-1000 0 10 1\n5", "output": "0" }, { "input": "0 2 2143435 4\n54343 -13 6 124", "output": "inf" }, { "input": "0 8 5 1\n9", "output": "inf" }, { "input": "-10 1 5 1\n100", "output": "0" }, { "input": "123 -1 2143435 4\n54343 -13 6 123", "output": "inf" }, { "input": "-5 -1 10 1\n-5", "output": "inf" }, { "input": "2 0 1 1\n2", "output": "0" }, { "input": "0 5 8 1\n10", "output": "inf" }, { "input": "0 5 100 2\n34 56", "output": "inf" }, { "input": "15 -1 15 4\n15 -15 1 2", "output": "0" }, { "input": "10 -1 2 1\n1", "output": "0" }, { "input": "2 0 2 1\n2", "output": "inf" }, { "input": "4 0 4 1\n0", "output": "1" }, { "input": "10 10 10 1\n123", "output": "1" }, { "input": "2 2 4 1\n3", "output": "2" }, { "input": "0 1 1 1\n0", "output": "0" }, { "input": "3 2 30 1\n3", "output": "3" }, { "input": "1000000000 100000 1000000000 4\n5433 13 6 0", "output": "1" }, { "input": "-2 0 1 1\n1", "output": "0" }, { "input": "2 -1 10 1\n2", "output": "inf" }, { "input": "1 -1 2 1\n1", "output": "inf" }, { "input": "0 10 10 1\n2", "output": "inf" }, { "input": "0 35 2 1\n3", "output": "inf" }, { "input": "3 1 3 1\n5", "output": "inf" }, { "input": "3 2 3 4\n6 14 25 48", "output": "1" }, { "input": "0 69 12 1\n1", "output": "inf" }, { "input": "100 0 100000 1\n100", "output": "inf" }, { "input": "0 4 1000 3\n5 6 7", "output": "inf" }, { "input": "0 2 100 1\n5", "output": "inf" }, { "input": "3 2 24 4\n6 14 25 48", "output": "3" }, { "input": "0 4 1 1\n2", "output": "inf" }, { "input": "1 5 10000 1\n125", "output": "5" }, { "input": "2 -1 1 1\n1", "output": "0" }, { "input": "0 3 100 1\n5", "output": "inf" }, { "input": "0 3 3 1\n1", "output": "inf" }, { "input": "0 2 5 1\n1", "output": "inf" }, { "input": "5 -1 100 1\n5", "output": "inf" }, { "input": "-20 0 10 1\n0", "output": "0" }, { "input": "3 0 1 1\n3", "output": "0" }, { "input": "2 -1 3 1\n2", "output": "inf" }, { "input": "1 1 1000000000 1\n100", "output": "inf" }, { "input": "5 -1 3 1\n0", "output": "0" }, { "input": "0 5 10 1\n2", "output": "inf" }, { "input": "123 0 125 1\n123", "output": "inf" }, { "input": "2 -1 100 1\n2", "output": "inf" }, { "input": "5 2 100 1\n5", "output": "4" }, { "input": "-5 0 1 1\n1", "output": "0" }, { "input": "-3 0 1 1\n-3", "output": "0" }, { "input": "2 -2 10 1\n1", "output": "3" }, { "input": "0 2 30 4\n6 14 25 48", "output": "inf" }, { "input": "1 -1 1 1\n1", "output": "inf" }, { "input": "2 -1 6 1\n2", "output": "inf" }, { "input": "-3 1 100 1\n-3", "output": "0" }, { "input": "1 0 2 1\n1", "output": "inf" }, { "input": "1000000000 999999998 1000000000 1\n0", "output": "1" }, { "input": "1 0 2143435 4\n1 -123 -5453 141245", "output": "inf" }, { "input": "-1000 0 100 1\n-1000", "output": "0" }, { "input": "100 10 2 1\n100", "output": "0" }, { "input": "-3 1 100 1\n3", "output": "inf" }, { "input": "123 -1 10000 1\n123", "output": "inf" }, { "input": "1 -1 2143435 4\n1 -123 -5453 141245", "output": "inf" }, { "input": "5 1 5 5\n1 2 3 4 0", "output": "inf" }, { "input": "-100 -1 1 1\n1", "output": "0" }, { "input": "10 -1 3 2\n10 8", "output": "0" }, { "input": "-10 0 5 1\n0", "output": "0" }, { "input": "3 0 3 1\n0", "output": "1" }, { "input": "2 0 2 1\n-1", "output": "inf" }, { "input": "5 0 20 1\n5", "output": "inf" }, { "input": "-4 1 1 1\n0", "output": "0" }, { "input": "11 0 1111 1\n11", "output": "inf" }, { "input": "2 0 3 1\n2", "output": "inf" }, { "input": "-1 -1 2143435 4\n-1 -123 -5453 141245", "output": "inf" }, { "input": "-100 0 50 1\n0", "output": "0" }, { "input": "5 1 2 1\n2", "output": "0" }, { "input": "3 0 3 1\n4", "output": "inf" }, { "input": "0 23 3 1\n3", "output": "inf" }, { "input": "-1000 0 100 1\n2", "output": "0" }, { "input": "1 -1 10 1\n1", "output": "inf" } ]
1,572,378,291
1,671
PyPy 3
WRONG_ANSWER
TESTS
3
124
0
import math b,q,finish,m = [int(i) for i in input().split(' ')] l = [int(i) for i in input().split(' ')] if b*q in l and q == 1: print(0) elif b*q<0 or q == 1: print('inf') else: tot = 0 for ind in range(len(l)): l[ind] = l[ind]/b k = 0 while q**k < l[ind] and k<=40: k+=1 if not l[ind]%(q**k):tot += 1 ans = 1 temp = 1 while b*temp<=finish: temp*=q ans+=1 print(ans - tot)
Title: Masha and geometric depression Time Limit: None seconds Memory Limit: None megabytes Problem Description: Masha really loves algebra. On the last lesson, her strict teacher Dvastan gave she new exercise. You are given geometric progression *b* defined by two integers *b*1 and *q*. Remind that a geometric progression is a sequence of integers *b*1,<=*b*2,<=*b*3,<=..., where for each *i*<=&gt;<=1 the respective term satisfies the condition *b**i*<==<=*b**i*<=-<=1·*q*, where *q* is called the common ratio of the progression. Progressions in Uzhlyandia are unusual: both *b*1 and *q* can equal 0. Also, Dvastan gave Masha *m* "bad" integers *a*1,<=*a*2,<=...,<=*a**m*, and an integer *l*. Masha writes all progression terms one by one onto the board (including repetitive) while condition |*b**i*|<=≤<=*l* is satisfied (|*x*| means absolute value of *x*). There is an exception: if a term equals one of the "bad" integers, Masha skips it (doesn't write onto the board) and moves forward to the next term. But the lesson is going to end soon, so Masha has to calculate how many integers will be written on the board. In order not to get into depression, Masha asked you for help: help her calculate how many numbers she will write, or print "inf" in case she needs to write infinitely many integers. Input Specification: The first line of input contains four integers *b*1, *q*, *l*, *m* (-109<=≤<=*b*1,<=*q*<=≤<=109, 1<=≤<=*l*<=≤<=109, 1<=≤<=*m*<=≤<=105) — the initial term and the common ratio of progression, absolute value of maximal number that can be written on the board and the number of "bad" integers, respectively. The second line contains *m* distinct integers *a*1,<=*a*2,<=...,<=*a**m* (-109<=≤<=*a**i*<=≤<=109) — numbers that will never be written on the board. Output Specification: Print the only integer, meaning the number of progression terms that will be written on the board if it is finite, or "inf" (without quotes) otherwise. Demo Input: ['3 2 30 4\n6 14 25 48\n', '123 1 2143435 4\n123 11 -5453 141245\n', '123 1 2143435 4\n54343 -13 6 124\n'] Demo Output: ['3', '0', 'inf'] Note: In the first sample case, Masha will write integers 3, 12, 24. Progression term 6 will be skipped because it is a "bad" integer. Terms bigger than 24 won't be written because they exceed *l* by absolute value. In the second case, Masha won't write any number because all terms are equal 123 and this is a "bad" integer. In the third case, Masha will write infinitely integers 123.
```python import math b,q,finish,m = [int(i) for i in input().split(' ')] l = [int(i) for i in input().split(' ')] if b*q in l and q == 1: print(0) elif b*q<0 or q == 1: print('inf') else: tot = 0 for ind in range(len(l)): l[ind] = l[ind]/b k = 0 while q**k < l[ind] and k<=40: k+=1 if not l[ind]%(q**k):tot += 1 ans = 1 temp = 1 while b*temp<=finish: temp*=q ans+=1 print(ans - tot) ```
0
102
B
Sum of Digits
PROGRAMMING
1,000
[ "implementation" ]
B. Sum of Digits
2
265
Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit?
The first line contains the only integer *n* (0<=≤<=*n*<=≤<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes.
Print the number of times a number can be replaced by the sum of its digits until it only contains one digit.
[ "0\n", "10\n", "991\n" ]
[ "0\n", "1\n", "3\n" ]
In the first sample the number already is one-digit — Herald can't cast a spell. The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once. The third test contains number 991. As one casts a spell the following transformations take place: 991 → 19 → 10 → 1. After three transformations the number becomes one-digit.
1,000
[ { "input": "0", "output": "0" }, { "input": "10", "output": "1" }, { "input": "991", "output": "3" }, { "input": "99", "output": "2" }, { "input": "100", "output": "1" }, { "input": "123456789", "output": "2" }, { "input": "32", "output": "1" }, { "input": "86", "output": "2" }, { "input": "2", "output": "0" }, { "input": "8", "output": "0" }, { "input": "34", "output": "1" }, { "input": "13", "output": "1" }, { "input": "28", "output": "2" }, { "input": "23", "output": "1" }, { "input": "57", "output": "2" }, { "input": "29", "output": "2" }, { "input": "353869285", "output": "3" }, { "input": "549548646", "output": "2" }, { "input": "858893424", "output": "2" }, { "input": "644818852", "output": "3" }, { "input": "360322525", "output": "3" }, { "input": "122937520", "output": "2" }, { "input": "288403032", "output": "2" }, { "input": "677257481", "output": "3" }, { "input": "58059561", "output": "3" }, { "input": "211288847", "output": "2" }, { "input": "339900034079539584", "output": "2" }, { "input": "784084029310269952", "output": "3" }, { "input": "774730557264864000", "output": "3" }, { "input": "478233807148352256", "output": "3" }, { "input": "165646874056812544", "output": "3" }, { "input": "477533739511673792", "output": "3" }, { "input": "660119944377002240", "output": "3" }, { "input": "448375218506078080", "output": "3" }, { "input": "77213334785795616", "output": "3" }, { "input": "165767221702271872", "output": "3" }, { "input": "1", "output": "0" }, { "input": "5", "output": "0" }, { "input": "8", "output": "0" }, { "input": "156161456146164104103460452045416165146141414651641564105461465156445621465146514562146145465165145145614561465145614561", "output": "3" }, { "input": "9", "output": "0" } ]
1,627,825,518
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
92
6,656,000
n = input() count = 0 sums = float('inf') while sums > 9: sums = 0 n = list(n) for i in range(len(n)): sums += int(n[i]) n = str(sums) count += 1 print(count)
Title: Sum of Digits Time Limit: 2 seconds Memory Limit: 265 megabytes Problem Description: Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit? Input Specification: The first line contains the only integer *n* (0<=≤<=*n*<=≤<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes. Output Specification: Print the number of times a number can be replaced by the sum of its digits until it only contains one digit. Demo Input: ['0\n', '10\n', '991\n'] Demo Output: ['0\n', '1\n', '3\n'] Note: In the first sample the number already is one-digit — Herald can't cast a spell. The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once. The third test contains number 991. As one casts a spell the following transformations take place: 991 → 19 → 10 → 1. After three transformations the number becomes one-digit.
```python n = input() count = 0 sums = float('inf') while sums > 9: sums = 0 n = list(n) for i in range(len(n)): sums += int(n[i]) n = str(sums) count += 1 print(count) ```
0
702
C
Cellular Network
PROGRAMMING
1,500
[ "binary search", "implementation", "two pointers" ]
null
null
You are given *n* points on the straight line — the positions (*x*-coordinates) of the cities and *m* points on the same line — the positions (*x*-coordinates) of the cellular towers. All towers work in the same way — they provide cellular network for all cities, which are located at the distance which is no more than *r* from this tower. Your task is to find minimal *r* that each city has been provided by cellular network, i.e. for each city there is at least one cellular tower at the distance which is no more than *r*. If *r*<==<=0 then a tower provides cellular network only for the point where it is located. One tower can provide cellular network for any number of cities, but all these cities must be at the distance which is no more than *r* from this tower.
The first line contains two positive integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105) — the number of cities and the number of cellular towers. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109) — the coordinates of cities. It is allowed that there are any number of cities in the same point. All coordinates *a**i* are given in non-decreasing order. The third line contains a sequence of *m* integers *b*1,<=*b*2,<=...,<=*b**m* (<=-<=109<=≤<=*b**j*<=≤<=109) — the coordinates of cellular towers. It is allowed that there are any number of towers in the same point. All coordinates *b**j* are given in non-decreasing order.
Print minimal *r* so that each city will be covered by cellular network.
[ "3 2\n-2 2 4\n-3 0\n", "5 3\n1 5 10 14 17\n4 11 15\n" ]
[ "4\n", "3\n" ]
none
0
[ { "input": "3 2\n-2 2 4\n-3 0", "output": "4" }, { "input": "5 3\n1 5 10 14 17\n4 11 15", "output": "3" }, { "input": "1 1\n-1000000000\n1000000000", "output": "2000000000" }, { "input": "1 1\n1000000000\n-1000000000", "output": "2000000000" }, { "input": "10 10\n1 1 2 2 2 4 4 6 7 9\n0 1 3 3 3 6 7 8 9 10", "output": "1" }, { "input": "10 10\n2 52 280 401 416 499 721 791 841 943\n246 348 447 486 507 566 568 633 953 986", "output": "244" }, { "input": "7 7\n1 2 3 3 4 5 6\n1 1 2 3 4 5 6", "output": "0" }, { "input": "1 3\n-3\n-1 -1 8", "output": "2" }, { "input": "1 2\n8\n-7 5", "output": "3" }, { "input": "2 1\n4 8\n-1", "output": "9" }, { "input": "1 2\n6\n-8 -8", "output": "14" }, { "input": "1 4\n4\n-8 0 1 7", "output": "3" }, { "input": "1 2\n2\n4 7", "output": "2" }, { "input": "2 2\n-5 2\n-7 4", "output": "2" }, { "input": "1 21\n3\n3 10 23 32 34 40 42 49 49 50 50 58 70 71 71 74 76 79 79 80 83", "output": "0" }, { "input": "1 3\n-4\n-8 -1 1", "output": "3" }, { "input": "4 1\n-6 -3 -1 2\n-7", "output": "9" }, { "input": "2 3\n-2 7\n-7 -2 5", "output": "2" }, { "input": "1 1\n-1\n0", "output": "1" }, { "input": "1 3\n0\n-4 0 5", "output": "0" } ]
1,689,003,666
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
5
46
0
import sys input = sys.stdin.readline n, m = map(int,input().split()) a = list(map(int,input().split())) b = list(map(int,input().split())) i = 0 j = 0 r = 0 while (i<n): if j<m-1 and (abs(a[i]-b[j])>=abs(a[i]-b[j+1])): j+=1 r = max(r, abs(a[i]-b[j])) i+=1 print(r)
Title: Cellular Network Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given *n* points on the straight line — the positions (*x*-coordinates) of the cities and *m* points on the same line — the positions (*x*-coordinates) of the cellular towers. All towers work in the same way — they provide cellular network for all cities, which are located at the distance which is no more than *r* from this tower. Your task is to find minimal *r* that each city has been provided by cellular network, i.e. for each city there is at least one cellular tower at the distance which is no more than *r*. If *r*<==<=0 then a tower provides cellular network only for the point where it is located. One tower can provide cellular network for any number of cities, but all these cities must be at the distance which is no more than *r* from this tower. Input Specification: The first line contains two positive integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105) — the number of cities and the number of cellular towers. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109) — the coordinates of cities. It is allowed that there are any number of cities in the same point. All coordinates *a**i* are given in non-decreasing order. The third line contains a sequence of *m* integers *b*1,<=*b*2,<=...,<=*b**m* (<=-<=109<=≤<=*b**j*<=≤<=109) — the coordinates of cellular towers. It is allowed that there are any number of towers in the same point. All coordinates *b**j* are given in non-decreasing order. Output Specification: Print minimal *r* so that each city will be covered by cellular network. Demo Input: ['3 2\n-2 2 4\n-3 0\n', '5 3\n1 5 10 14 17\n4 11 15\n'] Demo Output: ['4\n', '3\n'] Note: none
```python import sys input = sys.stdin.readline n, m = map(int,input().split()) a = list(map(int,input().split())) b = list(map(int,input().split())) i = 0 j = 0 r = 0 while (i<n): if j<m-1 and (abs(a[i]-b[j])>=abs(a[i]-b[j+1])): j+=1 r = max(r, abs(a[i]-b[j])) i+=1 print(r) ```
0
1,004
A
Sonya and Hotels
PROGRAMMING
900
[ "implementation" ]
null
null
Sonya decided that having her own hotel business is the best way of earning money because she can profit and rest wherever she wants. The country where Sonya lives is an endless line. There is a city in each integer coordinate on this line. She has $n$ hotels, where the $i$-th hotel is located in the city with coordinate $x_i$. Sonya is a smart girl, so she does not open two or more hotels in the same city. Sonya understands that her business needs to be expanded by opening new hotels, so she decides to build one more. She wants to make the minimum distance from this hotel to all others to be equal to $d$. The girl understands that there are many possible locations to construct such a hotel. Thus she wants to know the number of possible coordinates of the cities where she can build a new hotel. Because Sonya is lounging in a jacuzzi in one of her hotels, she is asking you to find the number of cities where she can build a new hotel so that the minimum distance from the original $n$ hotels to the new one is equal to $d$.
The first line contains two integers $n$ and $d$ ($1\leq n\leq 100$, $1\leq d\leq 10^9$) — the number of Sonya's hotels and the needed minimum distance from a new hotel to all others. The second line contains $n$ different integers in strictly increasing order $x_1, x_2, \ldots, x_n$ ($-10^9\leq x_i\leq 10^9$) — coordinates of Sonya's hotels.
Print the number of cities where Sonya can build a new hotel so that the minimum distance from this hotel to all others is equal to $d$.
[ "4 3\n-3 2 9 16\n", "5 2\n4 8 11 18 19\n" ]
[ "6\n", "5\n" ]
In the first example, there are $6$ possible cities where Sonya can build a hotel. These cities have coordinates $-6$, $5$, $6$, $12$, $13$, and $19$. In the second example, there are $5$ possible cities where Sonya can build a hotel. These cities have coordinates $2$, $6$, $13$, $16$, and $21$.
500
[ { "input": "4 3\n-3 2 9 16", "output": "6" }, { "input": "5 2\n4 8 11 18 19", "output": "5" }, { "input": "10 10\n-67 -59 -49 -38 -8 20 41 59 74 83", "output": "8" }, { "input": "10 10\n0 20 48 58 81 95 111 137 147 159", "output": "9" }, { "input": "100 1\n0 1 2 3 4 5 7 8 10 11 12 13 14 15 16 17 19 21 22 23 24 25 26 27 28 30 32 33 36 39 40 41 42 46 48 53 54 55 59 60 61 63 65 68 70 71 74 75 76 79 80 81 82 84 88 89 90 91 93 94 96 97 98 100 101 102 105 106 107 108 109 110 111 113 114 115 116 117 118 120 121 122 125 126 128 131 132 133 134 135 137 138 139 140 143 144 146 147 148 149", "output": "47" }, { "input": "1 1000000000\n-1000000000", "output": "2" }, { "input": "2 1000000000\n-1000000000 1000000000", "output": "3" }, { "input": "100 2\n1 3 5 6 8 9 12 13 14 17 18 21 22 23 24 25 26 27 29 30 34 35 36 39 41 44 46 48 52 53 55 56 57 59 61 63 64 66 68 69 70 71 72 73 75 76 77 79 80 81 82 87 88 91 92 93 94 95 96 97 99 100 102 103 104 106 109 110 111 112 113 114 115 117 118 119 120 122 124 125 127 128 129 130 131 132 133 134 136 137 139 140 141 142 143 145 146 148 149 150", "output": "6" }, { "input": "100 3\n0 1 3 6 7 8 9 10 13 14 16 17 18 20 21 22 24 26 27 30 33 34 35 36 37 39 42 43 44 45 46 48 53 54 55 56 57 58 61 63 64 65 67 69 70 72 73 76 77 78 79 81 82 83 85 86 87 88 90 92 93 95 96 97 98 99 100 101 104 105 108 109 110 113 114 115 116 118 120 121 123 124 125 128 130 131 132 133 134 135 136 137 139 140 141 142 146 147 148 150", "output": "2" }, { "input": "1 1000000000\n1000000000", "output": "2" }, { "input": "10 2\n-93 -62 -53 -42 -38 11 57 58 87 94", "output": "17" }, { "input": "2 500000000\n-1000000000 1000000000", "output": "4" }, { "input": "100 10\n-489 -476 -445 -432 -430 -421 -420 -418 -412 -411 -404 -383 -356 -300 -295 -293 -287 -276 -265 -263 -258 -251 -249 -246 -220 -219 -205 -186 -166 -157 -143 -137 -136 -130 -103 -86 -80 -69 -67 -55 -43 -41 -40 -26 -19 -9 16 29 41 42 54 76 84 97 98 99 101 115 134 151 157 167 169 185 197 204 208 226 227 232 234 249 259 266 281 282 293 298 300 306 308 313 319 328 331 340 341 344 356 362 366 380 390 399 409 411 419 444 455 498", "output": "23" }, { "input": "1 1000000000\n999999999", "output": "2" }, { "input": "1 1\n-5", "output": "2" }, { "input": "2 1\n-1000000000 1000000000", "output": "4" }, { "input": "1 2\n1", "output": "2" }, { "input": "4 5\n0 20 40 60", "output": "8" }, { "input": "1 1\n-10", "output": "2" }, { "input": "1 1\n-1000000000", "output": "2" }, { "input": "1 1000000000\n0", "output": "2" }, { "input": "1 2\n-10", "output": "2" }, { "input": "1 1\n2", "output": "2" }, { "input": "1 5\n-100", "output": "2" }, { "input": "2 1000000000\n999999999 1000000000", "output": "2" }, { "input": "2 2\n0 5", "output": "4" }, { "input": "1 2\n-5", "output": "2" }, { "input": "1 1\n1", "output": "2" }, { "input": "1 5\n-20", "output": "2" }, { "input": "2 100000000\n-1000000000 1000000000", "output": "4" }, { "input": "1 1000000000\n147483641", "output": "2" }, { "input": "3 3\n1 8 9", "output": "4" }, { "input": "2 1\n1 1000000000", "output": "4" }, { "input": "1 2\n-4", "output": "2" }, { "input": "2 1\n-1000000000 -1", "output": "4" } ]
1,608,222,279
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
155
0
# https://codeforces.com/problemset/problem/1004/A import math n, d = [int(x) for x in input().split(' ')] pos = [int(x) for x in input().split(' ')] # med = [] # for i in range(1,n+1): # med.append((pos[i-1] + pos[i]) / 2) # sx = [x - d for x in pos] # dx = [x + d for x in pos] # print(med) count = 2 for i in range(1,n): if math.fabs(pos[i]) - math.fabs(pos[i-1]) > 2*d: count += 2 elif math.fabs(pos[i]) - math.fabs(pos[i-1]) == 2*d: count += 1 else: continue; print(count)
Title: Sonya and Hotels Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sonya decided that having her own hotel business is the best way of earning money because she can profit and rest wherever she wants. The country where Sonya lives is an endless line. There is a city in each integer coordinate on this line. She has $n$ hotels, where the $i$-th hotel is located in the city with coordinate $x_i$. Sonya is a smart girl, so she does not open two or more hotels in the same city. Sonya understands that her business needs to be expanded by opening new hotels, so she decides to build one more. She wants to make the minimum distance from this hotel to all others to be equal to $d$. The girl understands that there are many possible locations to construct such a hotel. Thus she wants to know the number of possible coordinates of the cities where she can build a new hotel. Because Sonya is lounging in a jacuzzi in one of her hotels, she is asking you to find the number of cities where she can build a new hotel so that the minimum distance from the original $n$ hotels to the new one is equal to $d$. Input Specification: The first line contains two integers $n$ and $d$ ($1\leq n\leq 100$, $1\leq d\leq 10^9$) — the number of Sonya's hotels and the needed minimum distance from a new hotel to all others. The second line contains $n$ different integers in strictly increasing order $x_1, x_2, \ldots, x_n$ ($-10^9\leq x_i\leq 10^9$) — coordinates of Sonya's hotels. Output Specification: Print the number of cities where Sonya can build a new hotel so that the minimum distance from this hotel to all others is equal to $d$. Demo Input: ['4 3\n-3 2 9 16\n', '5 2\n4 8 11 18 19\n'] Demo Output: ['6\n', '5\n'] Note: In the first example, there are $6$ possible cities where Sonya can build a hotel. These cities have coordinates $-6$, $5$, $6$, $12$, $13$, and $19$. In the second example, there are $5$ possible cities where Sonya can build a hotel. These cities have coordinates $2$, $6$, $13$, $16$, and $21$.
```python # https://codeforces.com/problemset/problem/1004/A import math n, d = [int(x) for x in input().split(' ')] pos = [int(x) for x in input().split(' ')] # med = [] # for i in range(1,n+1): # med.append((pos[i-1] + pos[i]) / 2) # sx = [x - d for x in pos] # dx = [x + d for x in pos] # print(med) count = 2 for i in range(1,n): if math.fabs(pos[i]) - math.fabs(pos[i-1]) > 2*d: count += 2 elif math.fabs(pos[i]) - math.fabs(pos[i-1]) == 2*d: count += 1 else: continue; print(count) ```
0
177
A1
Good Matrix Elements
PROGRAMMING
800
[ "implementation" ]
null
null
The Smart Beaver from ABBYY got hooked on square matrices. Now he is busy studying an *n*<=×<=*n* size matrix, where *n* is odd. The Smart Beaver considers the following matrix elements good: - Elements of the main diagonal. - Elements of the secondary diagonal. - Elements of the "middle" row — the row which has exactly rows above it and the same number of rows below it. - Elements of the "middle" column — the column that has exactly columns to the left of it and the same number of columns to the right of it. Help the Smart Beaver count the sum of good elements of the given matrix.
The first line of input data contains a single odd integer *n*. Each of the next *n* lines contains *n* integers *a**ij* (0<=≤<=*a**ij*<=≤<=100) separated by single spaces — the elements of the given matrix. The input limitations for getting 30 points are: - 1<=≤<=*n*<=≤<=5 The input limitations for getting 100 points are: - 1<=≤<=*n*<=≤<=101
Print a single integer — the sum of good matrix elements.
[ "3\n1 2 3\n4 5 6\n7 8 9\n", "5\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1\n" ]
[ "45\n", "17\n" ]
In the first sample all matrix elements will be good. Good elements in the second sample are shown on the figure.
30
[ { "input": "3\n1 2 3\n4 5 6\n7 8 9", "output": "45" }, { "input": "5\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1", "output": "17" }, { "input": "1\n3", "output": "3" }, { "input": "5\n27 7 3 11 72\n19 49 68 19 59\n41 25 37 64 65\n8 39 96 62 90\n13 37 43 26 33", "output": "756" }, { "input": "3\n19 7 16\n12 15 5\n15 15 5", "output": "109" }, { "input": "3\n36 4 33\n11 46 32\n20 49 34", "output": "265" }, { "input": "3\n79 91 74\n33 82 22\n18 28 54", "output": "481" }, { "input": "5\n7 0 8 1 7\n5 1 1 0 4\n4 2 8 1 6\n1 2 3 2 7\n6 0 1 9 6", "output": "65" }, { "input": "5\n27 20 28 11 17\n25 21 1 20 14\n14 22 28 1 6\n1 2 23 2 7\n6 0 1 29 6", "output": "225" }, { "input": "5\n57 50 58 41 17\n25 21 1 50 44\n44 22 28 31 36\n31 32 23 32 37\n6 0 31 59 6", "output": "495" }, { "input": "5\n57 80 28 41 47\n85 51 61 50 74\n44 82 28 31 36\n31 32 23 32 37\n66 60 31 59 6", "output": "705" }, { "input": "5\n13 58 10 17 43\n61 73 100 0 9\n52 38 16 22 96\n11 4 14 67 62\n70 89 7 98 83", "output": "708" }, { "input": "5\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "0" }, { "input": "5\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0", "output": "0" }, { "input": "5\n0 1 0 1 0\n0 0 0 0 1\n0 0 5 0 0\n0 0 0 0 1\n0 0 0 0 0", "output": "5" }, { "input": "5\n0 0 0 0 1\n0 1 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 1 0 0 0", "output": "3" }, { "input": "3\n0 0 0\n0 0 0\n0 0 0", "output": "0" } ]
1,673,460,989
2,147,483,647
Python 3
OK
TESTS1
17
92
0
n=int(input()) Matrix=[] for i in range(n): Matrix.append(str(input()).split()) m=int((n-1)/2) aa=0 for i in range(n): aa=aa+int(Matrix[i][m]) for i in range(n): aa=aa+int(Matrix[m][i]) for i in range(n): aa=aa+int(Matrix[i][i]) for i in range(n): aa=aa+int(Matrix[i][n-i-1]) print(aa-3*int(Matrix[m][m]))
Title: Good Matrix Elements Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Smart Beaver from ABBYY got hooked on square matrices. Now he is busy studying an *n*<=×<=*n* size matrix, where *n* is odd. The Smart Beaver considers the following matrix elements good: - Elements of the main diagonal. - Elements of the secondary diagonal. - Elements of the "middle" row — the row which has exactly rows above it and the same number of rows below it. - Elements of the "middle" column — the column that has exactly columns to the left of it and the same number of columns to the right of it. Help the Smart Beaver count the sum of good elements of the given matrix. Input Specification: The first line of input data contains a single odd integer *n*. Each of the next *n* lines contains *n* integers *a**ij* (0<=≤<=*a**ij*<=≤<=100) separated by single spaces — the elements of the given matrix. The input limitations for getting 30 points are: - 1<=≤<=*n*<=≤<=5 The input limitations for getting 100 points are: - 1<=≤<=*n*<=≤<=101 Output Specification: Print a single integer — the sum of good matrix elements. Demo Input: ['3\n1 2 3\n4 5 6\n7 8 9\n', '5\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1\n'] Demo Output: ['45\n', '17\n'] Note: In the first sample all matrix elements will be good. Good elements in the second sample are shown on the figure.
```python n=int(input()) Matrix=[] for i in range(n): Matrix.append(str(input()).split()) m=int((n-1)/2) aa=0 for i in range(n): aa=aa+int(Matrix[i][m]) for i in range(n): aa=aa+int(Matrix[m][i]) for i in range(n): aa=aa+int(Matrix[i][i]) for i in range(n): aa=aa+int(Matrix[i][n-i-1]) print(aa-3*int(Matrix[m][m])) ```
3
281
A
Word Capitalization
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word. Note, that during capitalization all the letters except the first one remains unchanged.
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
Output the given word after capitalization.
[ "ApPLe\n", "konjac\n" ]
[ "ApPLe\n", "Konjac\n" ]
none
500
[ { "input": "ApPLe", "output": "ApPLe" }, { "input": "konjac", "output": "Konjac" }, { "input": "a", "output": "A" }, { "input": "A", "output": "A" }, { "input": "z", "output": "Z" }, { "input": "ABACABA", "output": "ABACABA" }, { "input": "xYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX", "output": "XYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX" }, { "input": "rZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO", "output": "RZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO" }, { "input": "hDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD", "output": "HDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD" }, { "input": "qUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW", "output": "QUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW" }, { "input": "kHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL", "output": "KHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL" }, { "input": "aHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC", "output": "AHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC" }, { "input": "sLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN", "output": "SLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN" }, { "input": "iRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE", "output": "IRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE" }, { "input": "cRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP", "output": "CRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP" }, { "input": "wVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG", "output": "WVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG" }, { "input": "kEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV", "output": "KEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV" }, { "input": "eIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI", "output": "EIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI" }, { "input": "uOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX", "output": "UOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX" }, { "input": "lZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ", "output": "LZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ" }, { "input": "P", "output": "P" }, { "input": "Xyzzy", "output": "Xyzzy" }, { "input": "Zzz", "output": "Zzz" }, { "input": "Zp", "output": "Zp" } ]
1,696,343,817
2,147,483,647
Python 3
OK
TESTS
25
92
0
ch=input() print(ch[0].upper()+ch[1:])
Title: Word Capitalization Time Limit: None seconds Memory Limit: None megabytes Problem Description: Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word. Note, that during capitalization all the letters except the first one remains unchanged. Input Specification: A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103. Output Specification: Output the given word after capitalization. Demo Input: ['ApPLe\n', 'konjac\n'] Demo Output: ['ApPLe\n', 'Konjac\n'] Note: none
```python ch=input() print(ch[0].upper()+ch[1:]) ```
3
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,688,938,627
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
0
words = [] i = int(input()) for x in range(i): words.append(str(input())) for x in words: print(x[0] + str(len(x)-2) + x[len(x)-1])
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python words = [] i = int(input()) for x in range(i): words.append(str(input())) for x in words: print(x[0] + str(len(x)-2) + x[len(x)-1]) ```
0
445
A
DZY Loves Chessboard
PROGRAMMING
1,200
[ "dfs and similar", "implementation" ]
null
null
DZY loves chessboard, and he enjoys playing with it. He has a chessboard of *n* rows and *m* columns. Some cells of the chessboard are bad, others are good. For every good cell, DZY wants to put a chessman on it. Each chessman is either white or black. After putting all chessmen, DZY wants that no two chessmen with the same color are on two adjacent cells. Two cells are adjacent if and only if they share a common edge. You task is to find any suitable placement of chessmen on the given chessboard.
The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). Each of the next *n* lines contains a string of *m* characters: the *j*-th character of the *i*-th string is either "." or "-". A "." means that the corresponding cell (in the *i*-th row and the *j*-th column) is good, while a "-" means it is bad.
Output must contain *n* lines, each line must contain a string of *m* characters. The *j*-th character of the *i*-th string should be either "W", "B" or "-". Character "W" means the chessman on the cell is white, "B" means it is black, "-" means the cell is a bad cell. If multiple answers exist, print any of them. It is guaranteed that at least one answer exists.
[ "1 1\n.\n", "2 2\n..\n..\n", "3 3\n.-.\n---\n--." ]
[ "B\n", "BW\nWB\n", "B-B\n---\n--B" ]
In the first sample, DZY puts a single black chessman. Of course putting a white one is also OK. In the second sample, all 4 cells are good. No two same chessmen share an edge in the sample output. In the third sample, no good cells are adjacent. So you can just put 3 chessmen, no matter what their colors are.
500
[ { "input": "1 1\n.", "output": "B" }, { "input": "2 2\n..\n..", "output": "BW\nWB" }, { "input": "3 3\n.-.\n---\n--.", "output": "B-B\n---\n--B" }, { "input": "3 1\n-\n.\n.", "output": "-\nW\nB" }, { "input": "11 11\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------", "output": "-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------" }, { "input": "1 1\n-", "output": "-" }, { "input": "4 2\n..\n..\n..\n..", "output": "BW\nWB\nBW\nWB" }, { "input": "5 1\n.\n.\n.\n.\n.", "output": "B\nW\nB\nW\nB" } ]
1,699,603,284
2,147,483,647
Python 3
OK
TESTS
37
46
0
n, m = map(int, input().split()) c = [input() for _ in range(n)] for i in range(n): for j in range(m): if c[i][j] == '.': if (i + j) % 2 == 0: c[i] = c[i][:j] + 'B' + c[i][j + 1:] else: c[i] = c[i][:j] + 'W' + c[i][j + 1:] print(c[i])
Title: DZY Loves Chessboard Time Limit: None seconds Memory Limit: None megabytes Problem Description: DZY loves chessboard, and he enjoys playing with it. He has a chessboard of *n* rows and *m* columns. Some cells of the chessboard are bad, others are good. For every good cell, DZY wants to put a chessman on it. Each chessman is either white or black. After putting all chessmen, DZY wants that no two chessmen with the same color are on two adjacent cells. Two cells are adjacent if and only if they share a common edge. You task is to find any suitable placement of chessmen on the given chessboard. Input Specification: The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). Each of the next *n* lines contains a string of *m* characters: the *j*-th character of the *i*-th string is either "." or "-". A "." means that the corresponding cell (in the *i*-th row and the *j*-th column) is good, while a "-" means it is bad. Output Specification: Output must contain *n* lines, each line must contain a string of *m* characters. The *j*-th character of the *i*-th string should be either "W", "B" or "-". Character "W" means the chessman on the cell is white, "B" means it is black, "-" means the cell is a bad cell. If multiple answers exist, print any of them. It is guaranteed that at least one answer exists. Demo Input: ['1 1\n.\n', '2 2\n..\n..\n', '3 3\n.-.\n---\n--.'] Demo Output: ['B\n', 'BW\nWB\n', 'B-B\n---\n--B'] Note: In the first sample, DZY puts a single black chessman. Of course putting a white one is also OK. In the second sample, all 4 cells are good. No two same chessmen share an edge in the sample output. In the third sample, no good cells are adjacent. So you can just put 3 chessmen, no matter what their colors are.
```python n, m = map(int, input().split()) c = [input() for _ in range(n)] for i in range(n): for j in range(m): if c[i][j] == '.': if (i + j) % 2 == 0: c[i] = c[i][:j] + 'B' + c[i][j + 1:] else: c[i] = c[i][:j] + 'W' + c[i][j + 1:] print(c[i]) ```
3
455
A
Boredom
PROGRAMMING
1,500
[ "dp" ]
null
null
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it. Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player. Alex is a perfectionist, so he decided to get as many points as possible. Help him.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105).
Print a single integer — the maximum number of points that Alex can earn.
[ "2\n1 2\n", "3\n1 2 3\n", "9\n1 2 1 3 2 2 2 2 3\n" ]
[ "2\n", "4\n", "10\n" ]
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
500
[ { "input": "2\n1 2", "output": "2" }, { "input": "3\n1 2 3", "output": "4" }, { "input": "9\n1 2 1 3 2 2 2 2 3", "output": "10" }, { "input": "5\n3 3 4 5 4", "output": "11" }, { "input": "5\n5 3 5 3 4", "output": "16" }, { "input": "5\n4 2 3 2 5", "output": "9" }, { "input": "10\n10 5 8 9 5 6 8 7 2 8", "output": "46" }, { "input": "10\n1 1 1 1 1 1 2 3 4 4", "output": "14" }, { "input": "100\n6 6 8 9 7 9 6 9 5 7 7 4 5 3 9 1 10 3 4 5 8 9 6 5 6 4 10 9 1 4 1 7 1 4 9 10 8 2 9 9 10 5 8 9 5 6 8 7 2 8 7 6 2 6 10 8 6 2 5 5 3 2 8 8 5 3 6 2 1 4 7 2 7 3 7 4 10 10 7 5 4 7 5 10 7 1 1 10 7 7 7 2 3 4 2 8 4 7 4 4", "output": "296" }, { "input": "100\n6 1 5 7 10 10 2 7 3 7 2 10 7 6 3 5 5 5 3 7 2 4 2 7 7 4 2 8 2 10 4 7 9 1 1 7 9 7 1 10 10 9 5 6 10 1 7 5 8 1 1 5 3 10 2 4 3 5 2 7 4 9 5 10 1 3 7 6 6 9 3 6 6 10 1 10 6 1 10 3 4 1 7 9 2 7 8 9 3 3 2 4 6 6 1 2 9 4 1 2", "output": "313" }, { "input": "100\n7 6 3 8 8 3 10 5 3 8 6 4 6 9 6 7 3 9 10 7 5 5 9 10 7 2 3 8 9 5 4 7 9 3 6 4 9 10 7 6 8 7 6 6 10 3 7 4 5 7 7 5 1 5 4 8 7 3 3 4 7 8 5 9 2 2 3 1 6 4 6 6 6 1 7 10 7 4 5 3 9 2 4 1 5 10 9 3 9 6 8 5 2 1 10 4 8 5 10 9", "output": "298" }, { "input": "100\n2 10 9 1 2 6 7 2 2 8 9 9 9 5 6 2 5 1 1 10 7 4 5 5 8 1 9 4 10 1 9 3 1 8 4 10 8 8 2 4 6 5 1 4 2 2 1 2 8 5 3 9 4 10 10 7 8 6 1 8 2 6 7 1 6 7 3 10 10 3 7 7 6 9 6 8 8 10 4 6 4 3 3 3 2 3 10 6 8 5 5 10 3 7 3 1 1 1 5 5", "output": "312" }, { "input": "100\n4 9 7 10 4 7 2 6 1 9 1 8 7 5 5 7 6 7 9 8 10 5 3 5 7 10 3 2 1 3 8 9 4 10 4 7 6 4 9 6 7 1 9 4 3 5 8 9 2 7 10 5 7 5 3 8 10 3 8 9 3 4 3 10 6 5 1 8 3 2 5 8 4 7 5 3 3 2 6 9 9 8 2 7 6 3 2 2 8 8 4 5 6 9 2 3 2 2 5 2", "output": "287" }, { "input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8", "output": "380" }, { "input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8", "output": "380" }, { "input": "100\n10 5 8 4 4 4 1 4 5 8 3 10 2 4 1 10 8 1 1 6 8 4 2 9 1 3 1 7 7 9 3 5 5 8 6 9 9 4 8 1 3 3 2 6 1 5 4 5 3 5 5 6 7 5 7 9 3 5 4 9 2 6 8 1 1 7 7 3 8 9 8 7 3 2 4 1 6 1 3 9 4 2 2 8 5 10 1 8 8 5 1 5 6 9 4 5 6 5 10 2", "output": "265" }, { "input": "100\n7 5 1 8 5 6 6 2 6 2 7 7 3 6 2 4 4 2 10 2 2 2 10 6 6 1 5 10 9 1 5 9 8 9 4 1 10 5 7 5 7 6 4 8 8 1 7 8 3 8 2 1 8 4 10 3 5 6 6 10 9 6 5 1 10 7 6 9 9 2 10 10 9 1 2 1 7 7 4 10 1 10 5 5 3 8 9 8 1 4 10 2 4 5 4 4 1 6 2 9", "output": "328" }, { "input": "100\n5 6 10 7 1 7 10 1 9 1 5 1 4 1 3 3 7 9 1 6 1 6 5 7 1 6 3 1 3 6 3 8 2 4 1 5 2 10 7 3 10 4 10 1 5 4 2 9 7 9 5 7 10 4 1 4 8 9 3 1 3 7 7 4 3 7 7 10 6 9 5 5 6 5 3 9 8 8 5 5 4 10 9 4 10 4 1 8 3 5 4 10 9 3 10 4 10 7 10 9", "output": "324" }, { "input": "10\n7 4 5 3 9 1 10 3 4 5", "output": "34" }, { "input": "10\n8 9 6 5 6 4 10 9 1 4", "output": "39" }, { "input": "10\n1 7 1 4 9 10 8 2 9 9", "output": "40" }, { "input": "1\n100000", "output": "100000" } ]
1,671,350,381
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
8
1,000
3,686,400
def maximum_power(powers, memo): # base case: if there are no opponents left, return 0 if not powers: return 0 if tuple(powers) in memo: return memo[tuple(powers)] max_power = 0 for i, power in enumerate(powers): remaining_opponents = powers[:i] + powers[i+1:] allies = [p for p in remaining_opponents if abs(p - power) == 1] # remove the allies from the list of remaining opponents remaining_opponents = [p for p in remaining_opponents if p not in allies] total_power = power + maximum_power(remaining_opponents, memo) max_power = max(max_power, total_power) memo[tuple(powers)] = max_power return max_power def main(): t = 1 for _ in range(t): n = int(input()) powers = list(map(int, input().split())) memo = {} print(maximum_power(powers, memo)) if __name__ == "__main__": main()
Title: Boredom Time Limit: None seconds Memory Limit: None megabytes Problem Description: Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it. Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player. Alex is a perfectionist, so he decided to get as many points as possible. Help him. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105). Output Specification: Print a single integer — the maximum number of points that Alex can earn. Demo Input: ['2\n1 2\n', '3\n1 2 3\n', '9\n1 2 1 3 2 2 2 2 3\n'] Demo Output: ['2\n', '4\n', '10\n'] Note: Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
```python def maximum_power(powers, memo): # base case: if there are no opponents left, return 0 if not powers: return 0 if tuple(powers) in memo: return memo[tuple(powers)] max_power = 0 for i, power in enumerate(powers): remaining_opponents = powers[:i] + powers[i+1:] allies = [p for p in remaining_opponents if abs(p - power) == 1] # remove the allies from the list of remaining opponents remaining_opponents = [p for p in remaining_opponents if p not in allies] total_power = power + maximum_power(remaining_opponents, memo) max_power = max(max_power, total_power) memo[tuple(powers)] = max_power return max_power def main(): t = 1 for _ in range(t): n = int(input()) powers = list(map(int, input().split())) memo = {} print(maximum_power(powers, memo)) if __name__ == "__main__": main() ```
0
455
A
Boredom
PROGRAMMING
1,500
[ "dp" ]
null
null
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it. Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player. Alex is a perfectionist, so he decided to get as many points as possible. Help him.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105).
Print a single integer — the maximum number of points that Alex can earn.
[ "2\n1 2\n", "3\n1 2 3\n", "9\n1 2 1 3 2 2 2 2 3\n" ]
[ "2\n", "4\n", "10\n" ]
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
500
[ { "input": "2\n1 2", "output": "2" }, { "input": "3\n1 2 3", "output": "4" }, { "input": "9\n1 2 1 3 2 2 2 2 3", "output": "10" }, { "input": "5\n3 3 4 5 4", "output": "11" }, { "input": "5\n5 3 5 3 4", "output": "16" }, { "input": "5\n4 2 3 2 5", "output": "9" }, { "input": "10\n10 5 8 9 5 6 8 7 2 8", "output": "46" }, { "input": "10\n1 1 1 1 1 1 2 3 4 4", "output": "14" }, { "input": "100\n6 6 8 9 7 9 6 9 5 7 7 4 5 3 9 1 10 3 4 5 8 9 6 5 6 4 10 9 1 4 1 7 1 4 9 10 8 2 9 9 10 5 8 9 5 6 8 7 2 8 7 6 2 6 10 8 6 2 5 5 3 2 8 8 5 3 6 2 1 4 7 2 7 3 7 4 10 10 7 5 4 7 5 10 7 1 1 10 7 7 7 2 3 4 2 8 4 7 4 4", "output": "296" }, { "input": "100\n6 1 5 7 10 10 2 7 3 7 2 10 7 6 3 5 5 5 3 7 2 4 2 7 7 4 2 8 2 10 4 7 9 1 1 7 9 7 1 10 10 9 5 6 10 1 7 5 8 1 1 5 3 10 2 4 3 5 2 7 4 9 5 10 1 3 7 6 6 9 3 6 6 10 1 10 6 1 10 3 4 1 7 9 2 7 8 9 3 3 2 4 6 6 1 2 9 4 1 2", "output": "313" }, { "input": "100\n7 6 3 8 8 3 10 5 3 8 6 4 6 9 6 7 3 9 10 7 5 5 9 10 7 2 3 8 9 5 4 7 9 3 6 4 9 10 7 6 8 7 6 6 10 3 7 4 5 7 7 5 1 5 4 8 7 3 3 4 7 8 5 9 2 2 3 1 6 4 6 6 6 1 7 10 7 4 5 3 9 2 4 1 5 10 9 3 9 6 8 5 2 1 10 4 8 5 10 9", "output": "298" }, { "input": "100\n2 10 9 1 2 6 7 2 2 8 9 9 9 5 6 2 5 1 1 10 7 4 5 5 8 1 9 4 10 1 9 3 1 8 4 10 8 8 2 4 6 5 1 4 2 2 1 2 8 5 3 9 4 10 10 7 8 6 1 8 2 6 7 1 6 7 3 10 10 3 7 7 6 9 6 8 8 10 4 6 4 3 3 3 2 3 10 6 8 5 5 10 3 7 3 1 1 1 5 5", "output": "312" }, { "input": "100\n4 9 7 10 4 7 2 6 1 9 1 8 7 5 5 7 6 7 9 8 10 5 3 5 7 10 3 2 1 3 8 9 4 10 4 7 6 4 9 6 7 1 9 4 3 5 8 9 2 7 10 5 7 5 3 8 10 3 8 9 3 4 3 10 6 5 1 8 3 2 5 8 4 7 5 3 3 2 6 9 9 8 2 7 6 3 2 2 8 8 4 5 6 9 2 3 2 2 5 2", "output": "287" }, { "input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8", "output": "380" }, { "input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8", "output": "380" }, { "input": "100\n10 5 8 4 4 4 1 4 5 8 3 10 2 4 1 10 8 1 1 6 8 4 2 9 1 3 1 7 7 9 3 5 5 8 6 9 9 4 8 1 3 3 2 6 1 5 4 5 3 5 5 6 7 5 7 9 3 5 4 9 2 6 8 1 1 7 7 3 8 9 8 7 3 2 4 1 6 1 3 9 4 2 2 8 5 10 1 8 8 5 1 5 6 9 4 5 6 5 10 2", "output": "265" }, { "input": "100\n7 5 1 8 5 6 6 2 6 2 7 7 3 6 2 4 4 2 10 2 2 2 10 6 6 1 5 10 9 1 5 9 8 9 4 1 10 5 7 5 7 6 4 8 8 1 7 8 3 8 2 1 8 4 10 3 5 6 6 10 9 6 5 1 10 7 6 9 9 2 10 10 9 1 2 1 7 7 4 10 1 10 5 5 3 8 9 8 1 4 10 2 4 5 4 4 1 6 2 9", "output": "328" }, { "input": "100\n5 6 10 7 1 7 10 1 9 1 5 1 4 1 3 3 7 9 1 6 1 6 5 7 1 6 3 1 3 6 3 8 2 4 1 5 2 10 7 3 10 4 10 1 5 4 2 9 7 9 5 7 10 4 1 4 8 9 3 1 3 7 7 4 3 7 7 10 6 9 5 5 6 5 3 9 8 8 5 5 4 10 9 4 10 4 1 8 3 5 4 10 9 3 10 4 10 7 10 9", "output": "324" }, { "input": "10\n7 4 5 3 9 1 10 3 4 5", "output": "34" }, { "input": "10\n8 9 6 5 6 4 10 9 1 4", "output": "39" }, { "input": "10\n1 7 1 4 9 10 8 2 9 9", "output": "40" }, { "input": "1\n100000", "output": "100000" } ]
1,668,836,382
2,147,483,647
Python 3
OK
TESTS
47
155
7,372,800
x=int(input()) line=list(map(int,input().split())) a=max(line) ans_=[0]*(a+2) ans=[0]*(a+2) for i in line: ans_[i]+=1 ans[1]=ans_[1] for i in range(2,a+2): ans[i]=max(ans[i-1],ans[i-2]+ans_[i]*i) print(max(ans))
Title: Boredom Time Limit: None seconds Memory Limit: None megabytes Problem Description: Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it. Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player. Alex is a perfectionist, so he decided to get as many points as possible. Help him. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105). Output Specification: Print a single integer — the maximum number of points that Alex can earn. Demo Input: ['2\n1 2\n', '3\n1 2 3\n', '9\n1 2 1 3 2 2 2 2 3\n'] Demo Output: ['2\n', '4\n', '10\n'] Note: Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
```python x=int(input()) line=list(map(int,input().split())) a=max(line) ans_=[0]*(a+2) ans=[0]*(a+2) for i in line: ans_[i]+=1 ans[1]=ans_[1] for i in range(2,a+2): ans[i]=max(ans[i-1],ans[i-2]+ans_[i]*i) print(max(ans)) ```
3
484
A
Bits
PROGRAMMING
1,700
[ "bitmasks", "constructive algorithms" ]
null
null
Let's denote as the number of bits set ('1' bits) in the binary representation of the non-negative integer *x*. You are given multiple queries consisting of pairs of integers *l* and *r*. For each query, find the *x*, such that *l*<=≤<=*x*<=≤<=*r*, and is maximum possible. If there are multiple such numbers find the smallest of them.
The first line contains integer *n* — the number of queries (1<=≤<=*n*<=≤<=10000). Each of the following *n* lines contain two integers *l**i*,<=*r**i* — the arguments for the corresponding query (0<=≤<=*l**i*<=≤<=*r**i*<=≤<=1018).
For each query print the answer in a separate line.
[ "3\n1 2\n2 4\n1 10\n" ]
[ "1\n3\n7\n" ]
The binary representations of numbers from 1 to 10 are listed below: 1<sub class="lower-index">10</sub> = 1<sub class="lower-index">2</sub> 2<sub class="lower-index">10</sub> = 10<sub class="lower-index">2</sub> 3<sub class="lower-index">10</sub> = 11<sub class="lower-index">2</sub> 4<sub class="lower-index">10</sub> = 100<sub class="lower-index">2</sub> 5<sub class="lower-index">10</sub> = 101<sub class="lower-index">2</sub> 6<sub class="lower-index">10</sub> = 110<sub class="lower-index">2</sub> 7<sub class="lower-index">10</sub> = 111<sub class="lower-index">2</sub> 8<sub class="lower-index">10</sub> = 1000<sub class="lower-index">2</sub> 9<sub class="lower-index">10</sub> = 1001<sub class="lower-index">2</sub> 10<sub class="lower-index">10</sub> = 1010<sub class="lower-index">2</sub>
500
[ { "input": "3\n1 2\n2 4\n1 10", "output": "1\n3\n7" }, { "input": "55\n1 1\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n2 2\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n3 3\n3 4\n3 5\n3 6\n3 7\n3 8\n3 9\n3 10\n4 4\n4 5\n4 6\n4 7\n4 8\n4 9\n4 10\n5 5\n5 6\n5 7\n5 8\n5 9\n5 10\n6 6\n6 7\n6 8\n6 9\n6 10\n7 7\n7 8\n7 9\n7 10\n8 8\n8 9\n8 10\n9 9\n9 10\n10 10", "output": "1\n1\n3\n3\n3\n3\n7\n7\n7\n7\n2\n3\n3\n3\n3\n7\n7\n7\n7\n3\n3\n3\n3\n7\n7\n7\n7\n4\n5\n5\n7\n7\n7\n7\n5\n5\n7\n7\n7\n7\n6\n7\n7\n7\n7\n7\n7\n7\n7\n8\n9\n9\n9\n9\n10" }, { "input": "18\n1 10\n1 100\n1 1000\n1 10000\n1 100000\n1 1000000\n1 10000000\n1 100000000\n1 1000000000\n1 10000000000\n1 100000000000\n1 1000000000000\n1 10000000000000\n1 100000000000000\n1 1000000000000000\n1 10000000000000000\n1 100000000000000000\n1 1000000000000000000", "output": "7\n63\n511\n8191\n65535\n524287\n8388607\n67108863\n536870911\n8589934591\n68719476735\n549755813887\n8796093022207\n70368744177663\n562949953421311\n9007199254740991\n72057594037927935\n576460752303423487" }, { "input": "3\n0 0\n1 3\n2 4", "output": "0\n3\n3" }, { "input": "17\n0 0\n0 8\n1 8\n36 39\n3 4\n3 7\n2 17\n8 12\n9 12\n10 12\n10 15\n6 14\n8 15\n9 15\n15 15\n100000000000000000 1000000000000000000\n99999999999999999 1000000000000000000", "output": "0\n7\n7\n39\n3\n7\n15\n11\n11\n11\n15\n7\n15\n15\n15\n576460752303423487\n576460752303423487" } ]
1,565,598,516
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
2
1,000
0
def popcount(x): return len(list(filter(lambda x:x == "1",[i for i in bin(x)]))) def work1(start, end): i = start temp = [] max_ = 0 while i <= end: foo = popcount(i) if max_ == foo: temp.append(i) elif max_ < foo: temp = [i] max_ = foo i += 1 return temp[0] n = int(input()) i = 0 out = [] while i < n: temp = input().split() out.append(work1(int(temp[0]), int(temp[1]))) i += 1 for s in out: print(s)
Title: Bits Time Limit: None seconds Memory Limit: None megabytes Problem Description: Let's denote as the number of bits set ('1' bits) in the binary representation of the non-negative integer *x*. You are given multiple queries consisting of pairs of integers *l* and *r*. For each query, find the *x*, such that *l*<=≤<=*x*<=≤<=*r*, and is maximum possible. If there are multiple such numbers find the smallest of them. Input Specification: The first line contains integer *n* — the number of queries (1<=≤<=*n*<=≤<=10000). Each of the following *n* lines contain two integers *l**i*,<=*r**i* — the arguments for the corresponding query (0<=≤<=*l**i*<=≤<=*r**i*<=≤<=1018). Output Specification: For each query print the answer in a separate line. Demo Input: ['3\n1 2\n2 4\n1 10\n'] Demo Output: ['1\n3\n7\n'] Note: The binary representations of numbers from 1 to 10 are listed below: 1<sub class="lower-index">10</sub> = 1<sub class="lower-index">2</sub> 2<sub class="lower-index">10</sub> = 10<sub class="lower-index">2</sub> 3<sub class="lower-index">10</sub> = 11<sub class="lower-index">2</sub> 4<sub class="lower-index">10</sub> = 100<sub class="lower-index">2</sub> 5<sub class="lower-index">10</sub> = 101<sub class="lower-index">2</sub> 6<sub class="lower-index">10</sub> = 110<sub class="lower-index">2</sub> 7<sub class="lower-index">10</sub> = 111<sub class="lower-index">2</sub> 8<sub class="lower-index">10</sub> = 1000<sub class="lower-index">2</sub> 9<sub class="lower-index">10</sub> = 1001<sub class="lower-index">2</sub> 10<sub class="lower-index">10</sub> = 1010<sub class="lower-index">2</sub>
```python def popcount(x): return len(list(filter(lambda x:x == "1",[i for i in bin(x)]))) def work1(start, end): i = start temp = [] max_ = 0 while i <= end: foo = popcount(i) if max_ == foo: temp.append(i) elif max_ < foo: temp = [i] max_ = foo i += 1 return temp[0] n = int(input()) i = 0 out = [] while i < n: temp = input().split() out.append(work1(int(temp[0]), int(temp[1]))) i += 1 for s in out: print(s) ```
0
954
A
Diagonal Walking
PROGRAMMING
800
[ "implementation" ]
null
null
Mikhail walks on a 2D plane. He can go either up or right. You are given a sequence of Mikhail's moves. He thinks that this sequence is too long and he wants to make it as short as possible. In the given sequence moving up is described by character U and moving right is described by character R. Mikhail can replace any pair of consecutive moves RU or UR with a diagonal move (described as character D). After that, he can go on and do some other replacements, until there is no pair of consecutive moves RU or UR left. Your problem is to print the minimum possible length of the sequence of moves after the replacements.
The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=100) — the length of the sequence. The second line contains the sequence consisting of *n* characters U and R.
Print the minimum possible length of the sequence of moves after all replacements are done.
[ "5\nRUURU\n", "17\nUUURRRRRUUURURUUU\n" ]
[ "3\n", "13\n" ]
In the first test the shortened sequence of moves may be DUD (its length is 3). In the second test the shortened sequence of moves can be UUDRRRDUDDUUU (its length is 13).
0
[ { "input": "5\nRUURU", "output": "3" }, { "input": "17\nUUURRRRRUUURURUUU", "output": "13" }, { "input": "100\nUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU", "output": "100" }, { "input": "100\nRRURRUUUURURRRURRRRURRRRRRURRUURRRUUURUURURRURUURUURRUURUURRURURUUUUURUUUUUURRUUURRRURRURRRUURRUUUUR", "output": "67" }, { "input": "100\nUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUURUUUUUUUUUUUUUUUUUUUUU", "output": "99" }, { "input": "3\nRUR", "output": "2" }, { "input": "1\nR", "output": "1" }, { "input": "5\nRURUU", "output": "3" }, { "input": "1\nU", "output": "1" }, { "input": "2\nUR", "output": "1" }, { "input": "23\nUUUUUUUUUUUUUUUUUUUUUUU", "output": "23" } ]
1,638,168,290
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
n=input() a=n.count("a") if a> len(n)//2: print(len(n)) else: m=len(n)-a-a+1 print(len(n)-m)
Title: Diagonal Walking Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mikhail walks on a 2D plane. He can go either up or right. You are given a sequence of Mikhail's moves. He thinks that this sequence is too long and he wants to make it as short as possible. In the given sequence moving up is described by character U and moving right is described by character R. Mikhail can replace any pair of consecutive moves RU or UR with a diagonal move (described as character D). After that, he can go on and do some other replacements, until there is no pair of consecutive moves RU or UR left. Your problem is to print the minimum possible length of the sequence of moves after the replacements. Input Specification: The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=100) — the length of the sequence. The second line contains the sequence consisting of *n* characters U and R. Output Specification: Print the minimum possible length of the sequence of moves after all replacements are done. Demo Input: ['5\nRUURU\n', '17\nUUURRRRRUUURURUUU\n'] Demo Output: ['3\n', '13\n'] Note: In the first test the shortened sequence of moves may be DUD (its length is 3). In the second test the shortened sequence of moves can be UUDRRRDUDDUUU (its length is 13).
```python n=input() a=n.count("a") if a> len(n)//2: print(len(n)) else: m=len(n)-a-a+1 print(len(n)-m) ```
0
276
C
Little Girl and Maximum Sum
PROGRAMMING
1,500
[ "data structures", "greedy", "implementation", "sortings" ]
null
null
The little girl loves the problems on array queries very much. One day she came across a rather well-known problem: you've got an array of $n$ elements (the elements of the array are indexed starting from 1); also, there are $q$ queries, each one is defined by a pair of integers $l_i$, $r_i$ $(1 \le l_i \le r_i \le n)$. You need to find for each query the sum of elements of the array with indexes from $l_i$ to $r_i$, inclusive. The little girl found the problem rather boring. She decided to reorder the array elements before replying to the queries in a way that makes the sum of query replies maximum possible. Your task is to find the value of this maximum sum.
The first line contains two space-separated integers $n$ ($1 \le n \le 2\cdot10^5$) and $q$ ($1 \le q \le 2\cdot10^5$) — the number of elements in the array and the number of queries, correspondingly. The next line contains $n$ space-separated integers $a_i$ ($1 \le a_i \le 2\cdot10^5$) — the array elements. Each of the following $q$ lines contains two space-separated integers $l_i$ and $r_i$ ($1 \le l_i \le r_i \le n$) — the $i$-th query.
In a single line print, a single integer — the maximum sum of query replies after the array elements are reordered. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "3 3\n5 3 2\n1 2\n2 3\n1 3\n", "5 3\n5 2 4 1 3\n1 5\n2 3\n2 3\n" ]
[ "25\n", "33\n" ]
none
1,500
[ { "input": "3 3\n5 3 2\n1 2\n2 3\n1 3", "output": "25" }, { "input": "5 3\n5 2 4 1 3\n1 5\n2 3\n2 3", "output": "33" }, { "input": "34 21\n23 38 16 49 44 50 48 34 33 19 18 31 11 15 20 47 44 30 39 33 45 46 1 13 27 16 31 36 17 23 38 5 30 16\n8 16\n14 27\n8 26\n1 8\n5 6\n23 28\n4 33\n13 30\n12 30\n11 30\n9 21\n1 14\n15 22\n4 11\n5 24\n8 20\n17 33\n6 9\n3 14\n25 34\n10 17", "output": "9382" }, { "input": "16 13\n40 32 15 16 35 36 45 23 30 42 25 8 29 21 39 23\n2 9\n3 11\n8 9\n4 14\n1 6\n5 10\n5 14\n5 11\n13 13\n2 8\n9 16\n6 10\n7 8", "output": "2838" }, { "input": "31 48\n45 19 16 42 38 18 50 7 28 40 39 25 45 14 36 18 27 30 16 4 22 6 1 23 16 47 14 35 27 47 2\n6 16\n11 28\n4 30\n25 26\n11 30\n5 9\n4 17\n15 17\n10 25\n15 26\n1 3\n9 26\n8 29\n16 30\n5 24\n27 30\n9 10\n22 29\n2 6\n15 24\n6 21\n19 21\n4 28\n1 7\n18 21\n10 22\n6 15\n14 28\n4 29\n12 13\n19 29\n5 6\n13 31\n21 27\n9 25\n6 18\n6 8\n28 30\n2 4\n15 21\n1 1\n8 30\n3 31\n11 27\n28 29\n6 22\n20 22\n9 25", "output": "17471" }, { "input": "22 7\n44 41 40 41 37 42 46 16 50 47 30 7 32 6 20 14 47 25 11 1 35 12\n1 10\n10 20\n4 5\n1 8\n2 12\n8 8\n2 16", "output": "2202" }, { "input": "3 2\n1 2 3\n2 3\n1 2", "output": "9" } ]
1,643,199,249
2,147,483,647
Python 3
OK
TESTS
63
592
13,516,800
import sys def little_girl_and_maximum_sum(n: int, q: int): input = sys.stdin.readline arr = [int(x) for x in input().split()] d = [0 for _ in range(n)] for _ in range(q): left, right = map(int, input().split()) d[left - 1] -= 1 if right != n: d[right] += 1 d[0] = -d[0] for i in range(1, n): d[i] = d[i - 1] - d[i] d.sort() arr.sort() res = 0 for i in range(n): res += d[i] * arr[i] print(res) def main(): n, q = map(int, input().split()) little_girl_and_maximum_sum(n, q) if __name__ == '__main__': main()
Title: Little Girl and Maximum Sum Time Limit: None seconds Memory Limit: None megabytes Problem Description: The little girl loves the problems on array queries very much. One day she came across a rather well-known problem: you've got an array of $n$ elements (the elements of the array are indexed starting from 1); also, there are $q$ queries, each one is defined by a pair of integers $l_i$, $r_i$ $(1 \le l_i \le r_i \le n)$. You need to find for each query the sum of elements of the array with indexes from $l_i$ to $r_i$, inclusive. The little girl found the problem rather boring. She decided to reorder the array elements before replying to the queries in a way that makes the sum of query replies maximum possible. Your task is to find the value of this maximum sum. Input Specification: The first line contains two space-separated integers $n$ ($1 \le n \le 2\cdot10^5$) and $q$ ($1 \le q \le 2\cdot10^5$) — the number of elements in the array and the number of queries, correspondingly. The next line contains $n$ space-separated integers $a_i$ ($1 \le a_i \le 2\cdot10^5$) — the array elements. Each of the following $q$ lines contains two space-separated integers $l_i$ and $r_i$ ($1 \le l_i \le r_i \le n$) — the $i$-th query. Output Specification: In a single line print, a single integer — the maximum sum of query replies after the array elements are reordered. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['3 3\n5 3 2\n1 2\n2 3\n1 3\n', '5 3\n5 2 4 1 3\n1 5\n2 3\n2 3\n'] Demo Output: ['25\n', '33\n'] Note: none
```python import sys def little_girl_and_maximum_sum(n: int, q: int): input = sys.stdin.readline arr = [int(x) for x in input().split()] d = [0 for _ in range(n)] for _ in range(q): left, right = map(int, input().split()) d[left - 1] -= 1 if right != n: d[right] += 1 d[0] = -d[0] for i in range(1, n): d[i] = d[i - 1] - d[i] d.sort() arr.sort() res = 0 for i in range(n): res += d[i] * arr[i] print(res) def main(): n, q = map(int, input().split()) little_girl_and_maximum_sum(n, q) if __name__ == '__main__': main() ```
3
400
B
Inna and New Matrix of Candies
PROGRAMMING
1,200
[ "brute force", "implementation", "schedules" ]
null
null
Inna likes sweets and a game called the "Candy Matrix". Today, she came up with the new game "Candy Matrix 2: Reload". The field for the new game is a rectangle table of size *n*<=×<=*m*. Each line of the table contains one cell with a dwarf figurine, one cell with a candy, the other cells of the line are empty. The game lasts for several moves. During each move the player should choose all lines of the matrix where dwarf is not on the cell with candy and shout "Let's go!". After that, all the dwarves from the chosen lines start to simultaneously move to the right. During each second, each dwarf goes to the adjacent cell that is located to the right of its current cell. The movement continues until one of the following events occurs: - some dwarf in one of the chosen lines is located in the rightmost cell of his row; - some dwarf in the chosen lines is located in the cell with the candy. The point of the game is to transport all the dwarves to the candy cells. Inna is fabulous, as she came up with such an interesting game. But what about you? Your task is to play this game optimally well. Specifically, you should say by the given game field what minimum number of moves the player needs to reach the goal of the game.
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*<=≤<=1000; 2<=≤<=*m*<=≤<=1000). Next *n* lines each contain *m* characters — the game field for the "Candy Martix 2: Reload". Character "*" represents an empty cell of the field, character "G" represents a dwarf and character "S" represents a candy. The matrix doesn't contain other characters. It is guaranteed that each line contains exactly one character "G" and one character "S".
In a single line print a single integer — either the minimum number of moves needed to achieve the aim of the game, or -1, if the aim cannot be achieved on the given game field.
[ "3 4\n*G*S\nG**S\n*G*S\n", "1 3\nS*G\n" ]
[ "2\n", "-1\n" ]
none
1,000
[ { "input": "3 4\n*G*S\nG**S\n*G*S", "output": "2" }, { "input": "1 3\nS*G", "output": "-1" }, { "input": "10 10\nG********S\n*G*******S\n**G******S\n***G*****S\n****G****S\n*****G***S\n******G**S\n*******G*S\n********GS\nG********S", "output": "9" }, { "input": "5 10\nG***S*****\nG****S****\n***GS*****\nG*S*******\nG***S*****", "output": "4" }, { "input": "4 8\nG*S*****\n****G*S*\nG*****S*\n**G***S*", "output": "3" }, { "input": "4 10\n***G****S*\n*****GS***\nG****S****\nG*******S*", "output": "3" }, { "input": "1 2\nSG", "output": "-1" }, { "input": "1 2\nGS", "output": "1" }, { "input": "1 4\nSG**", "output": "-1" } ]
1,654,335,554
2,147,483,647
PyPy 3-64
OK
TESTS
34
155
7,987,200
import sys n,m = map(int, input().split()) dists = set() for i in range(n): row = input() ok = False for j,c in enumerate(row): if ok: i+=1 if c == "G": i = 0 ok = True elif c == "S": if not ok: print(-1) sys.exit() dists.add(i) print(len(dists))
Title: Inna and New Matrix of Candies Time Limit: None seconds Memory Limit: None megabytes Problem Description: Inna likes sweets and a game called the "Candy Matrix". Today, she came up with the new game "Candy Matrix 2: Reload". The field for the new game is a rectangle table of size *n*<=×<=*m*. Each line of the table contains one cell with a dwarf figurine, one cell with a candy, the other cells of the line are empty. The game lasts for several moves. During each move the player should choose all lines of the matrix where dwarf is not on the cell with candy and shout "Let's go!". After that, all the dwarves from the chosen lines start to simultaneously move to the right. During each second, each dwarf goes to the adjacent cell that is located to the right of its current cell. The movement continues until one of the following events occurs: - some dwarf in one of the chosen lines is located in the rightmost cell of his row; - some dwarf in the chosen lines is located in the cell with the candy. The point of the game is to transport all the dwarves to the candy cells. Inna is fabulous, as she came up with such an interesting game. But what about you? Your task is to play this game optimally well. Specifically, you should say by the given game field what minimum number of moves the player needs to reach the goal of the game. Input Specification: The first line of the input contains two integers *n* and *m* (1<=≤<=*n*<=≤<=1000; 2<=≤<=*m*<=≤<=1000). Next *n* lines each contain *m* characters — the game field for the "Candy Martix 2: Reload". Character "*" represents an empty cell of the field, character "G" represents a dwarf and character "S" represents a candy. The matrix doesn't contain other characters. It is guaranteed that each line contains exactly one character "G" and one character "S". Output Specification: In a single line print a single integer — either the minimum number of moves needed to achieve the aim of the game, or -1, if the aim cannot be achieved on the given game field. Demo Input: ['3 4\n*G*S\nG**S\n*G*S\n', '1 3\nS*G\n'] Demo Output: ['2\n', '-1\n'] Note: none
```python import sys n,m = map(int, input().split()) dists = set() for i in range(n): row = input() ok = False for j,c in enumerate(row): if ok: i+=1 if c == "G": i = 0 ok = True elif c == "S": if not ok: print(-1) sys.exit() dists.add(i) print(len(dists)) ```
3
96
A
Football
PROGRAMMING
900
[ "implementation", "strings" ]
A. Football
2
256
Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.
The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.
Print "YES" if the situation is dangerous. Otherwise, print "NO".
[ "001001\n", "1000000001\n" ]
[ "NO\n", "YES\n" ]
none
500
[ { "input": "001001", "output": "NO" }, { "input": "1000000001", "output": "YES" }, { "input": "00100110111111101", "output": "YES" }, { "input": "11110111111111111", "output": "YES" }, { "input": "01", "output": "NO" }, { "input": "10100101", "output": "NO" }, { "input": "1010010100000000010", "output": "YES" }, { "input": "101010101", "output": "NO" }, { "input": "000000000100000000000110101100000", "output": "YES" }, { "input": "100001000000110101100000", "output": "NO" }, { "input": "100001000011010110000", "output": "NO" }, { "input": "010", "output": "NO" }, { "input": "10101011111111111111111111111100", "output": "YES" }, { "input": "1001101100", "output": "NO" }, { "input": "1001101010", "output": "NO" }, { "input": "1111100111", "output": "NO" }, { "input": "00110110001110001111", "output": "NO" }, { "input": "11110001001111110001", "output": "NO" }, { "input": "10001111001011111101", "output": "NO" }, { "input": "10000010100000001000110001010100001001001010011", "output": "YES" }, { "input": "01111011111010111100101100001011001010111110000010", "output": "NO" }, { "input": "00100000100100101110011001011011101110110110010100", "output": "NO" }, { "input": "10110100110001001011110101110010100010000000000100101010111110111110100011", "output": "YES" }, { "input": "00011101010101111001011011001101101011111101000010100000111000011100101011", "output": "NO" }, { "input": "01110000110100110101110100111000101101011101011110110100100111100001110111", "output": "NO" }, { "input": "11110110011000100111100111101101011111110100010101011011111101110110110111", "output": "YES" }, { "input": "100100010101110010001011001110100011100010011110100101100011010001001010001001101111001100", "output": "NO" }, { "input": "111110010001011010010011111100110110001111000010100011011100111101111101110010101111011110000001010", "output": "NO" }, { "input": "111110111100010100000100001010111011101011000111011011011010110010100010000101011111000011010011110", "output": "NO" }, { "input": "1011110110111010110111111010010010100011111011110000011000110010011110111010110100011010100010111000", "output": "NO" }, { "input": "0010100111100010110110000011100111110100111110001010000100111111111010111100101101010101001011010110", "output": "YES" }, { "input": "1111010100010100101011101100101101110011000010100010000001111100010011100101010001101111000001011000", "output": "NO" }, { "input": "0101100011001110001110100111100011010101011000000000110110010010111100101111010111100011101100100101", "output": "YES" }, { "input": "0001101110011101110000000010011111101001101111100001001010110000110001100000010001111011011110001101", "output": "YES" }, { "input": "1000010000100000100010000100001000010000100001000010000100001000010000100001000010000100001000010000", "output": "NO" }, { "input": "1000000000100000000010000000001000000000100000000010000000001000000000100000000010000000001000000000", "output": "YES" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "YES" }, { "input": "1111111111111111111111111111111111111111011111111111111111111111111111111111111111111111111111111111", "output": "YES" }, { "input": "10100101000", "output": "NO" }, { "input": "11110111011101", "output": "NO" }, { "input": "10000000", "output": "YES" }, { "input": "00000001", "output": "YES" }, { "input": "01111111", "output": "YES" }, { "input": "11111110", "output": "YES" } ]
1,688,206,276
2,147,483,647
PyPy 3-64
OK
TESTS
44
122
0
n=input() l=[] for i in n: l.append(i) c=0 for j in l: if j=='1': c=c+1 else: if c<7: c=0 for j in l: if j=='0': c=c+1 else: if c<7: c=0 if c>=7: print("YES") else: print("NO")
Title: Football Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not. Input Specification: The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field. Output Specification: Print "YES" if the situation is dangerous. Otherwise, print "NO". Demo Input: ['001001\n', '1000000001\n'] Demo Output: ['NO\n', 'YES\n'] Note: none
```python n=input() l=[] for i in n: l.append(i) c=0 for j in l: if j=='1': c=c+1 else: if c<7: c=0 for j in l: if j=='0': c=c+1 else: if c<7: c=0 if c>=7: print("YES") else: print("NO") ```
3.9695
676
C
Vasya and String
PROGRAMMING
1,500
[ "binary search", "dp", "strings", "two pointers" ]
null
null
High school student Vasya got a string of length *n* as a birthday present. This string consists of letters 'a' and 'b' only. Vasya denotes beauty of the string as the maximum length of a substring (consecutive subsequence) consisting of equal letters. Vasya can change no more than *k* characters of the original string. What is the maximum beauty of the string he can achieve?
The first line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100<=000,<=0<=≤<=*k*<=≤<=*n*) — the length of the string and the maximum number of characters to change. The second line contains the string, consisting of letters 'a' and 'b' only.
Print the only integer — the maximum beauty of the string Vasya can achieve by changing no more than *k* characters.
[ "4 2\nabba\n", "8 1\naabaabaa\n" ]
[ "4\n", "5\n" ]
In the first sample, Vasya can obtain both strings "aaaa" and "bbbb". In the second sample, the optimal answer is obtained with the string "aaaaabaa" or with the string "aabaaaaa".
1,500
[ { "input": "4 2\nabba", "output": "4" }, { "input": "8 1\naabaabaa", "output": "5" }, { "input": "1 0\na", "output": "1" }, { "input": "1 1\nb", "output": "1" }, { "input": "1 0\nb", "output": "1" }, { "input": "1 1\na", "output": "1" }, { "input": "10 10\nbbbbbbbbbb", "output": "10" }, { "input": "10 2\nbbbbbbbbbb", "output": "10" }, { "input": "10 1\nbbabbabbba", "output": "6" }, { "input": "10 10\nbbabbbaabb", "output": "10" }, { "input": "10 9\nbabababbba", "output": "10" }, { "input": "10 4\nbababbaaab", "output": "9" }, { "input": "10 10\naabaaabaaa", "output": "10" }, { "input": "10 10\naaaabbbaaa", "output": "10" }, { "input": "10 1\nbaaaaaaaab", "output": "9" }, { "input": "10 5\naaaaabaaaa", "output": "10" }, { "input": "10 4\naaaaaaaaaa", "output": "10" }, { "input": "100 10\nbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb", "output": "100" }, { "input": "100 7\nbbbbabbbbbaabbbabbbbbbbbbbbabbbbbbbbbbbbbbbbbbbbbbbbbabbbbbbbbbbbabbabbbbbbbbbbbbbbbbbbbbbbbbbbbbbab", "output": "93" }, { "input": "100 30\nbbaabaaabbbbbbbbbbaababababbbbbbaabaabbbbbbbbabbbbbabbbbabbbbbbbbaabbbbbbbbbabbbbbabbbbbbbbbaaaaabba", "output": "100" }, { "input": "100 6\nbaababbbaabbabbaaabbabbaabbbbbbbbaabbbabbbbaabbabbbbbabababbbbabbbbbbabbbbbbbbbaaaabbabbbbaabbabaabb", "output": "34" }, { "input": "100 45\naabababbabbbaaabbbbbbaabbbabbaabbbbbabbbbbbbbabbbbbbabbaababbaabbababbbbbbababbbbbaabbbbbbbaaaababab", "output": "100" }, { "input": "100 2\nababaabababaaababbaaaabbaabbbababbbaaabbbbabababbbabababaababaaabaabbbbaaabbbabbbbbabbbbbbbaabbabbba", "output": "17" }, { "input": "100 25\nbabbbaaababaaabbbaabaabaabbbabbabbbbaaaaaaabaaabaaaaaaaaaabaaaabaaabbbaaabaaababaaabaabbbbaaaaaaaaaa", "output": "80" }, { "input": "100 14\naabaaaaabababbabbabaaaabbaaaabaaabbbaaabaaaaaaaabaaaaabbaaaaaaaaabaaaaaaabbaababaaaababbbbbabaaaabaa", "output": "61" }, { "input": "100 8\naaaaabaaaabaabaaaaaaaabaaaabaaaaaaaaaaaaaabaaaaabaaaaaaaaaaaaaaaaabaaaababaabaaaaaaaaaaaaabbabaaaaaa", "output": "76" }, { "input": "100 12\naaaaaaaaaaaaaaaabaaabaaaaaaaaaabbaaaabbabaaaaaaaaaaaaaaaaaaaaabbaaabaaaaaaaaaaaabaaaaaaaabaaaaaaaaaa", "output": "100" }, { "input": "100 65\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "100" }, { "input": "10 0\nbbbbbbbbbb", "output": "10" }, { "input": "10 0\nbbbbabbbbb", "output": "5" }, { "input": "10 0\nbbabbbabba", "output": "3" }, { "input": "10 0\nbaabbbbaba", "output": "4" }, { "input": "10 0\naababbbbaa", "output": "4" }, { "input": "10 2\nabbbbbaaba", "output": "8" }, { "input": "10 0\nabbaaabaaa", "output": "3" }, { "input": "10 0\naabbaaabaa", "output": "3" }, { "input": "10 1\naaaaaababa", "output": "8" }, { "input": "10 0\nbaaaaaaaaa", "output": "9" }, { "input": "10 0\naaaaaaaaaa", "output": "10" }, { "input": "100 0\nbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb", "output": "100" }, { "input": "100 0\nbbbbbbbbbbabbbbaaabbbbbbbbbbbabbbabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbabbbbbbbbbabbbbbbbbbbbbbab", "output": "40" }, { "input": "100 11\nbaabbbbbababbbbabbbbbbbabbbbbbbbbbbbbbabbbbbbababbbbababbbbaaabbbbabbbbbabbbbbbbbabababbbabbbbbbbabb", "output": "65" }, { "input": "100 8\nbbababbbbbaabbbaaababbbbababababbbbababbabbbabbbbbaabbbabbbababbabbbbabbbabbbbaabbbbabbbaabbbbaaaabb", "output": "33" }, { "input": "100 21\nabbaaaabbbababaabbbababbbbbbbbabbaababababbbabbbaaabbaaabbbbabbabbbabbbabaababbbabbbbbabbbbbbabbbbab", "output": "65" }, { "input": "100 9\nabbbaabaabaaaaaaabbabbbababbaaabbbaaabbaabaaaaabbbbbabbaabaabbbbbaaaaababbaaabbabaabaaabababbaababbb", "output": "26" }, { "input": "100 5\naababababbaaaaaaaabbbabaaaabbabaaaabbaabaaaaabababbabaabaaabaaaaaaaabaababbabbaaabaabbabbaaaaabbabba", "output": "22" }, { "input": "100 9\naababaabaaaaaaaaabbbaabaaaaaaabaaaaaaaaaaaaabaaabaabaabbbbabbaababbabbaaaabbababaabaababaabaaaaaaaaa", "output": "49" }, { "input": "100 6\naaaaabbaaaaaaaaaaabaaaabaaaaaaaaabaaabaaaaaabaaaaaaaaaaabaabaaaabaaaaaaaaaaaaaaabaabbaaaaaaaaaaaaaaa", "output": "56" }, { "input": "100 7\nabaaabaabaabaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaabaaaaaaabbabaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaba", "output": "86" }, { "input": "100 0\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "100" } ]
1,660,216,352
2,147,483,647
PyPy 3-64
OK
TESTS
117
93
2,457,600
n,k = map(int,input().split()) s = input() d={'a':0,'b':0} l= 0 a= 0 for i in s: d[i]+=1 if min(d.values())>k: d[s[l]]-=1 l+=1 else: a+=1 print(a)
Title: Vasya and String Time Limit: None seconds Memory Limit: None megabytes Problem Description: High school student Vasya got a string of length *n* as a birthday present. This string consists of letters 'a' and 'b' only. Vasya denotes beauty of the string as the maximum length of a substring (consecutive subsequence) consisting of equal letters. Vasya can change no more than *k* characters of the original string. What is the maximum beauty of the string he can achieve? Input Specification: The first line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100<=000,<=0<=≤<=*k*<=≤<=*n*) — the length of the string and the maximum number of characters to change. The second line contains the string, consisting of letters 'a' and 'b' only. Output Specification: Print the only integer — the maximum beauty of the string Vasya can achieve by changing no more than *k* characters. Demo Input: ['4 2\nabba\n', '8 1\naabaabaa\n'] Demo Output: ['4\n', '5\n'] Note: In the first sample, Vasya can obtain both strings "aaaa" and "bbbb". In the second sample, the optimal answer is obtained with the string "aaaaabaa" or with the string "aabaaaaa".
```python n,k = map(int,input().split()) s = input() d={'a':0,'b':0} l= 0 a= 0 for i in s: d[i]+=1 if min(d.values())>k: d[s[l]]-=1 l+=1 else: a+=1 print(a) ```
3
244
B
Undoubtedly Lucky Numbers
PROGRAMMING
1,600
[ "bitmasks", "brute force", "dfs and similar" ]
null
null
Polycarpus loves lucky numbers. Everybody knows that lucky numbers are positive integers, whose decimal representation (without leading zeroes) contain only the lucky digits *x* and *y*. For example, if *x*<==<=4, and *y*<==<=7, then numbers 47, 744, 4 are lucky. Let's call a positive integer *a* undoubtedly lucky, if there are such digits *x* and *y* (0<=≤<=*x*,<=*y*<=≤<=9), that the decimal representation of number *a* (without leading zeroes) contains only digits *x* and *y*. Polycarpus has integer *n*. He wants to know how many positive integers that do not exceed *n*, are undoubtedly lucky. Help him, count this number.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=109) — Polycarpus's number.
Print a single integer that says, how many positive integers that do not exceed *n* are undoubtedly lucky.
[ "10\n", "123\n" ]
[ "10\n", "113\n" ]
In the first test sample all numbers that do not exceed 10 are undoubtedly lucky. In the second sample numbers 102, 103, 104, 105, 106, 107, 108, 109, 120, 123 are not undoubtedly lucky.
1,000
[ { "input": "10", "output": "10" }, { "input": "123", "output": "113" }, { "input": "1", "output": "1" }, { "input": "2", "output": "2" }, { "input": "1000", "output": "352" }, { "input": "1000000000", "output": "40744" }, { "input": "999999999", "output": "40743" }, { "input": "999999998", "output": "40742" }, { "input": "999999997", "output": "40741" }, { "input": "909090901", "output": "38532" }, { "input": "142498040", "output": "21671" }, { "input": "603356456", "output": "31623" }, { "input": "64214872", "output": "15759" }, { "input": "820040584", "output": "36407" }, { "input": "442198", "output": "3071" }, { "input": "784262", "output": "4079" }, { "input": "642678", "output": "3615" }, { "input": "468390", "output": "3223" }, { "input": "326806", "output": "2759" }, { "input": "940", "output": "331" }, { "input": "356", "output": "175" }, { "input": "68", "output": "68" }, { "input": "132", "output": "114" }, { "input": "72", "output": "72" }, { "input": "89", "output": "89" }, { "input": "1", "output": "1" }, { "input": "3", "output": "3" }, { "input": "4", "output": "4" }, { "input": "5", "output": "5" }, { "input": "6", "output": "6" }, { "input": "7", "output": "7" }, { "input": "8", "output": "8" }, { "input": "9", "output": "9" }, { "input": "101", "output": "101" }, { "input": "102", "output": "101" } ]
1,655,463,492
2,147,483,647
Python 3
MEMORY_LIMIT_EXCEEDED
TESTS
0
1,496
268,390,400
z = [] for x in range(0,10): for y in range(0,10): for i in range(0,10): for j in range(0,2**i): x = bin(j) x = x.replace("0b","") x = x.zfill(i) w = x.replace("0",str(x)) y = w.replace("1",str(y)) z.append(int(y)) count = -1 n = int(input()) for l in z: if int(l)<=n: count+=1 if n==1000000000: print(count+1) else: print(count)
Title: Undoubtedly Lucky Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus loves lucky numbers. Everybody knows that lucky numbers are positive integers, whose decimal representation (without leading zeroes) contain only the lucky digits *x* and *y*. For example, if *x*<==<=4, and *y*<==<=7, then numbers 47, 744, 4 are lucky. Let's call a positive integer *a* undoubtedly lucky, if there are such digits *x* and *y* (0<=≤<=*x*,<=*y*<=≤<=9), that the decimal representation of number *a* (without leading zeroes) contains only digits *x* and *y*. Polycarpus has integer *n*. He wants to know how many positive integers that do not exceed *n*, are undoubtedly lucky. Help him, count this number. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=109) — Polycarpus's number. Output Specification: Print a single integer that says, how many positive integers that do not exceed *n* are undoubtedly lucky. Demo Input: ['10\n', '123\n'] Demo Output: ['10\n', '113\n'] Note: In the first test sample all numbers that do not exceed 10 are undoubtedly lucky. In the second sample numbers 102, 103, 104, 105, 106, 107, 108, 109, 120, 123 are not undoubtedly lucky.
```python z = [] for x in range(0,10): for y in range(0,10): for i in range(0,10): for j in range(0,2**i): x = bin(j) x = x.replace("0b","") x = x.zfill(i) w = x.replace("0",str(x)) y = w.replace("1",str(y)) z.append(int(y)) count = -1 n = int(input()) for l in z: if int(l)<=n: count+=1 if n==1000000000: print(count+1) else: print(count) ```
0
0
none
none
none
0
[ "none" ]
null
null
Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*. Note that the order of the points inside the group of three chosen points doesn't matter.
The first line contains two integers: *n* and *d* (1<=≤<=*n*<=≤<=105; 1<=≤<=*d*<=≤<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 — the *x*-coordinates of the points that Petya has got. It is guaranteed that the coordinates of the points in the input strictly increase.
Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed *d*. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "4 3\n1 2 3 4\n", "4 2\n-3 -2 -1 0\n", "5 19\n1 10 20 30 50\n" ]
[ "4\n", "2\n", "1\n" ]
In the first sample any group of three points meets our conditions. In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}. In the third sample only one group does: {1, 10, 20}.
0
[ { "input": "4 3\n1 2 3 4", "output": "4" }, { "input": "4 2\n-3 -2 -1 0", "output": "2" }, { "input": "5 19\n1 10 20 30 50", "output": "1" }, { "input": "10 5\n31 36 43 47 48 50 56 69 71 86", "output": "2" }, { "input": "10 50\n1 4 20 27 65 79 82 83 99 100", "output": "25" }, { "input": "10 90\n24 27 40 41 61 69 73 87 95 97", "output": "120" }, { "input": "100 100\n-98 -97 -96 -93 -92 -91 -90 -87 -86 -84 -81 -80 -79 -78 -76 -75 -73 -71 -69 -67 -65 -64 -63 -62 -61 -54 -51 -50 -49 -48 -46 -45 -44 -37 -36 -33 -30 -28 -27 -16 -15 -13 -12 -10 -9 -7 -6 -5 -4 2 3 5 8 9 10 11 13 14 15 16 17 19 22 24 25 26 27 28 30 31 32 36 40 43 45 46 47 50 51 52 53 58 60 63 69 70 73 78 80 81 82 85 88 89 90 91 95 96 97 99", "output": "79351" }, { "input": "1 14751211\n847188590", "output": "0" }, { "input": "2 1000000000\n-907894512 -289906312", "output": "0" }, { "input": "2 1000000000\n-14348867 1760823", "output": "0" }, { "input": "3 1000000000\n-5 -1 1", "output": "1" } ]
1,503,647,481
2,147,483,647
Python 3
OK
TESTS
39
436
8,601,600
n,d=map(int,input().split()) L=list(map(int,input().split())) j=0 ans=0 for i in range(n): while(j<n and L[i]+d>=L[j]): j+=1 x=j-i-2 if(x<=0): continue ans+=(x*(x+1))//2 print(ans)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*. Note that the order of the points inside the group of three chosen points doesn't matter. Input Specification: The first line contains two integers: *n* and *d* (1<=≤<=*n*<=≤<=105; 1<=≤<=*d*<=≤<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 — the *x*-coordinates of the points that Petya has got. It is guaranteed that the coordinates of the points in the input strictly increase. Output Specification: Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed *d*. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['4 3\n1 2 3 4\n', '4 2\n-3 -2 -1 0\n', '5 19\n1 10 20 30 50\n'] Demo Output: ['4\n', '2\n', '1\n'] Note: In the first sample any group of three points meets our conditions. In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}. In the third sample only one group does: {1, 10, 20}.
```python n,d=map(int,input().split()) L=list(map(int,input().split())) j=0 ans=0 for i in range(n): while(j<n and L[i]+d>=L[j]): j+=1 x=j-i-2 if(x<=0): continue ans+=(x*(x+1))//2 print(ans) ```
3
961
A
Tetris
PROGRAMMING
900
[ "implementation" ]
null
null
You are given a following process. There is a platform with $n$ columns. $1 \times 1$ squares are appearing one after another in some columns on this platform. If there are no squares in the column, a square will occupy the bottom row. Otherwise a square will appear at the top of the highest square of this column. When all of the $n$ columns have at least one square in them, the bottom row is being removed. You will receive $1$ point for this, and all the squares left will fall down one row. You task is to calculate the amount of points you will receive.
The first line of input contain 2 integer numbers $n$ and $m$ ($1 \le n, m \le 1000$) — the length of the platform and the number of the squares. The next line contain $m$ integer numbers $c_1, c_2, \dots, c_m$ ($1 \le c_i \le n$) — column in which $i$-th square will appear.
Print one integer — the amount of points you will receive.
[ "3 9\n1 1 2 2 2 3 1 2 3\n" ]
[ "2\n" ]
In the sample case the answer will be equal to $2$ because after the appearing of $6$-th square will be removed one row (counts of the squares on the platform will look like $[2~ 3~ 1]$, and after removing one row will be $[1~ 2~ 0]$). After the appearing of $9$-th square counts will be $[2~ 3~ 1]$, and after removing one row it will look like $[1~ 2~ 0]$. So the answer will be equal to $2$.
0
[ { "input": "3 9\n1 1 2 2 2 3 1 2 3", "output": "2" }, { "input": "1 7\n1 1 1 1 1 1 1", "output": "7" }, { "input": "1 1\n1", "output": "1" }, { "input": "3 5\n1 1 1 2 3", "output": "1" }, { "input": "4 6\n4 4 4 4 4 4", "output": "0" }, { "input": "4 6\n2 3 4 4 4 4", "output": "0" }, { "input": "3 12\n1 1 1 1 2 2 2 2 3 3 3 3", "output": "4" }, { "input": "8 8\n2 2 3 4 5 6 7 8", "output": "0" }, { "input": "100 1\n50", "output": "0" }, { "input": "2 1\n2", "output": "0" }, { "input": "2 1\n1", "output": "0" }, { "input": "2 4\n1 2 1 1", "output": "1" }, { "input": "3 4\n3 2 2 2", "output": "0" }, { "input": "2 2\n2 2", "output": "0" }, { "input": "2 5\n2 1 1 2 1", "output": "2" }, { "input": "15 3\n13 14 15", "output": "0" }, { "input": "4 9\n1 2 3 1 2 3 1 2 3", "output": "0" }, { "input": "100 3\n1 2 3", "output": "0" }, { "input": "1000 10\n999 999 998 34 454 546 343 35 34 1000", "output": "0" }, { "input": "4 2\n1 2", "output": "0" } ]
1,574,402,677
2,147,483,647
Python 3
OK
TESTS
29
124
307,200
import itertools def main(): n,m = [int(v) for v in input().split()] d = [int(v) for v in input().split()] c = [0 for i in range(n)] for v in d: c[v-1]+=1 print(min(c)) if __name__ == "__main__": main()
Title: Tetris Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a following process. There is a platform with $n$ columns. $1 \times 1$ squares are appearing one after another in some columns on this platform. If there are no squares in the column, a square will occupy the bottom row. Otherwise a square will appear at the top of the highest square of this column. When all of the $n$ columns have at least one square in them, the bottom row is being removed. You will receive $1$ point for this, and all the squares left will fall down one row. You task is to calculate the amount of points you will receive. Input Specification: The first line of input contain 2 integer numbers $n$ and $m$ ($1 \le n, m \le 1000$) — the length of the platform and the number of the squares. The next line contain $m$ integer numbers $c_1, c_2, \dots, c_m$ ($1 \le c_i \le n$) — column in which $i$-th square will appear. Output Specification: Print one integer — the amount of points you will receive. Demo Input: ['3 9\n1 1 2 2 2 3 1 2 3\n'] Demo Output: ['2\n'] Note: In the sample case the answer will be equal to $2$ because after the appearing of $6$-th square will be removed one row (counts of the squares on the platform will look like $[2~ 3~ 1]$, and after removing one row will be $[1~ 2~ 0]$). After the appearing of $9$-th square counts will be $[2~ 3~ 1]$, and after removing one row it will look like $[1~ 2~ 0]$. So the answer will be equal to $2$.
```python import itertools def main(): n,m = [int(v) for v in input().split()] d = [int(v) for v in input().split()] c = [0 for i in range(n)] for v in d: c[v-1]+=1 print(min(c)) if __name__ == "__main__": main() ```
3
509
A
Maximum in Table
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
An *n*<=×<=*n* table *a* is defined as follows: - The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1. These conditions define all the values in the table. You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above.
The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table.
Print a single line containing a positive integer *m* — the maximum value in the table.
[ "1\n", "5\n" ]
[ "1", "70" ]
In the second test the rows of the table look as follows:
0
[ { "input": "1", "output": "1" }, { "input": "5", "output": "70" }, { "input": "2", "output": "2" }, { "input": "3", "output": "6" }, { "input": "4", "output": "20" }, { "input": "6", "output": "252" }, { "input": "7", "output": "924" }, { "input": "9", "output": "12870" }, { "input": "10", "output": "48620" }, { "input": "8", "output": "3432" } ]
1,615,917,112
2,147,483,647
Python 3
OK
TESTS
10
61
0
n = int(input()) table = [[1]*n]*n cur = 1 for i in range(1,n): for j in range(1,n): table[i][j] = table[i-1][j] + table[i][j-1] x = table[i][j] cur = max(cur,x) print(cur)
Title: Maximum in Table Time Limit: None seconds Memory Limit: None megabytes Problem Description: An *n*<=×<=*n* table *a* is defined as follows: - The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1. These conditions define all the values in the table. You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above. Input Specification: The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table. Output Specification: Print a single line containing a positive integer *m* — the maximum value in the table. Demo Input: ['1\n', '5\n'] Demo Output: ['1', '70'] Note: In the second test the rows of the table look as follows:
```python n = int(input()) table = [[1]*n]*n cur = 1 for i in range(1,n): for j in range(1,n): table[i][j] = table[i-1][j] + table[i][j-1] x = table[i][j] cur = max(cur,x) print(cur) ```
3
749
A
Bachgold Problem
PROGRAMMING
800
[ "greedy", "implementation", "math", "number theory" ]
null
null
Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*.
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000).
The first line of the output contains a single integer *k* — maximum possible number of primes in representation. The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them.
[ "5\n", "6\n" ]
[ "2\n2 3\n", "3\n2 2 2\n" ]
none
500
[ { "input": "5", "output": "2\n2 3" }, { "input": "6", "output": "3\n2 2 2" }, { "input": "2", "output": "1\n2" }, { "input": "3", "output": "1\n3" }, { "input": "99999", "output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "100000", "output": "50000\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "7", "output": "3\n2 2 3" }, { "input": "4", "output": "2\n2 2" }, { "input": "8", "output": "4\n2 2 2 2" }, { "input": "9", "output": "4\n2 2 2 3" }, { "input": "99995", "output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99996", "output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "10", "output": "5\n2 2 2 2 2" }, { "input": "11", "output": "5\n2 2 2 2 3" }, { "input": "99997", "output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99998", "output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "12", "output": "6\n2 2 2 2 2 2" }, { "input": "13", "output": "6\n2 2 2 2 2 3" }, { "input": "99993", "output": "49996\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99994", "output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "14", "output": "7\n2 2 2 2 2 2 2" }, { "input": "15", "output": "7\n2 2 2 2 2 2 3" }, { "input": "53", "output": "26\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "57", "output": "28\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "61", "output": "30\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "774", "output": "387\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "202", "output": "101\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2" }, { "input": "530", "output": "265\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "7166", "output": "3583\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "9294", "output": "4647\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "2422", "output": "1211\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "15326", "output": "7663\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "11454", "output": "5727\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "14878", "output": "7439\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "90672", "output": "45336\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99544", "output": "49772\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "90472", "output": "45236\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "23", "output": "11\n2 2 2 2 2 2 2 2 2 2 3" }, { "input": "93", "output": "46\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "19", "output": "9\n2 2 2 2 2 2 2 2 3" }, { "input": "11110", "output": "5555\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." } ]
1,650,546,222
2,147,483,647
PyPy 3-64
COMPILATION_ERROR
TESTS
0
0
0
n =int(input()) if n%2 == 0 : x = n//2 y = str(2)+" ")*(n//2-1)+str(2) else : x = n//2 y = (str(2)+" ")*(n//2-1)+str(3) print(x) print(y)
Title: Bachgold Problem Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*. Input Specification: The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000). Output Specification: The first line of the output contains a single integer *k* — maximum possible number of primes in representation. The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them. Demo Input: ['5\n', '6\n'] Demo Output: ['2\n2 3\n', '3\n2 2 2\n'] Note: none
```python n =int(input()) if n%2 == 0 : x = n//2 y = str(2)+" ")*(n//2-1)+str(2) else : x = n//2 y = (str(2)+" ")*(n//2-1)+str(3) print(x) print(y) ```
-1
522
A
Reposts
PROGRAMMING
1,200
[ "*special", "dfs and similar", "dp", "graphs", "trees" ]
null
null
One day Polycarp published a funny picture in a social network making a poll about the color of his handle. Many of his friends started reposting Polycarp's joke to their news feed. Some of them reposted the reposts and so on. These events are given as a sequence of strings "name1 reposted name2", where name1 is the name of the person who reposted the joke, and name2 is the name of the person from whose news feed the joke was reposted. It is guaranteed that for each string "name1 reposted name2" user "name1" didn't have the joke in his feed yet, and "name2" already had it in his feed by the moment of repost. Polycarp was registered as "Polycarp" and initially the joke was only in his feed. Polycarp measures the popularity of the joke as the length of the largest repost chain. Print the popularity of Polycarp's joke.
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=200) — the number of reposts. Next follow the reposts in the order they were made. Each of them is written on a single line and looks as "name1 reposted name2". All the names in the input consist of lowercase or uppercase English letters and/or digits and have lengths from 2 to 24 characters, inclusive. We know that the user names are case-insensitive, that is, two names that only differ in the letter case correspond to the same social network user.
Print a single integer — the maximum length of a repost chain.
[ "5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya\n", "6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp\n", "1\nSoMeStRaNgEgUe reposted PoLyCaRp\n" ]
[ "6\n", "2\n", "2\n" ]
none
500
[ { "input": "5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya", "output": "6" }, { "input": "6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp", "output": "2" }, { "input": "1\nSoMeStRaNgEgUe reposted PoLyCaRp", "output": "2" }, { "input": "1\niuNtwVf reposted POlYcarP", "output": "2" }, { "input": "10\ncs reposted poLYCaRp\nAFIkDrY7Of4V7Mq reposted CS\nsoBiwyN7KOvoFUfbhux reposted aFikDry7Of4v7MQ\nvb6LbwA reposted sObIWYN7KOvoFufBHUx\nDtWKIcVwIHgj4Rcv reposted vb6lbwa\nkt reposted DTwKicvwihgJ4rCV\n75K reposted kT\njKzyxx1 reposted 75K\nuoS reposted jkZyXX1\npZJskHTCIqE3YyZ5ME reposted uoS", "output": "11" }, { "input": "10\nvxrUpCXvx8Isq reposted pOLYcaRP\nICb1 reposted vXRUpCxvX8ISq\nJFMt4b8jZE7iF2m8by7y2 reposted Icb1\nqkG6ZkMIf9QRrBFQU reposted ICb1\nnawsNfcR2palIMnmKZ reposted pOlYcaRP\nKksyH reposted jFMT4b8JzE7If2M8by7y2\nwJtWwQS5FvzN0h8CxrYyL reposted NawsNfcR2paLIMnmKz\nDpBcBPYAcTXEdhldI6tPl reposted NaWSnFCr2pALiMnmkZ\nlEnwTVnlwdQg2vaIRQry reposted kKSYh\nQUVFgwllaWO reposted Wjtwwqs5FVzN0H8cxRyyl", "output": "6" }, { "input": "10\nkkuLGEiHv reposted POLYcArp\n3oX1AoUqyw1eR3nCADY9hLwd reposted kkuLGeIHV\nwf97dqq5bx1dPIchCoT reposted 3OX1AOuQYW1eR3ncAdY9hLwD\nWANr8h reposted Wf97dQQ5bx1dpIcHcoT\n3Fb736lkljZK2LtSbfL reposted wANR8h\n6nq9xLOn reposted 3fB736lKlJZk2LtSbFL\nWL reposted 3Fb736lKLjZk2LTSbfl\ndvxn4Xtc6SBcvKf1 reposted wF97DQq5bX1dPiChCOt\nMCcPLIMISqxDzrj reposted 6nQ9XLOn\nxsQL4Z2Iu reposted MCcpLiMiSqxdzrj", "output": "9" }, { "input": "10\nsMA4 reposted pOLyCARP\nlq3 reposted pOlycARp\nEa16LSFTQxLJnE reposted polYcARp\nkvZVZhJwXcWsnC7NA1DV2WvS reposted polYCArp\nEYqqlrjRwddI reposted pOlyCArP\nsPqQCA67Y6PBBbcaV3EhooO reposted ea16LSFTqxLJne\njjPnneZdF6WLZ3v reposted Ea16LSFTqxLjNe\nWEoi6UpnfBUx79 reposted ea16LSFtqXljNe\nqi4yra reposted eYqqlRJrWDDI\ncw7E1UCSUD reposted eYqqLRJRwDdI", "output": "3" } ]
1,580,237,092
2,147,483,647
PyPy 3
OK
TESTS
36
171
6,860,800
'''input 6 Mike reposted Polycarp Max reposted Polycarp EveryOne reposted Polycarp 111 reposted Polycarp VkCup reposted Polycarp Codeforces reposted Polycarp ''' from sys import stdin input = stdin.readline import math import sys from collections import defaultdict sys.setrecursionlimit(10 ** 4) def dfs(graph, visted, node): visited[node] = True l = 1 for i in graph[node]: if i not in visited: l = max(l, 1 + dfs(graph, visted, i)) return l # mains starts n = int(input().strip()) graph = defaultdict(list) for _ in range(n): first, t, second = list(input().split()) first = first.lower() second = second.lower() graph[first].append(second) graph[second].append(first) visited = dict() print(dfs(graph, visited, 'polycarp'))
Title: Reposts Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Polycarp published a funny picture in a social network making a poll about the color of his handle. Many of his friends started reposting Polycarp's joke to their news feed. Some of them reposted the reposts and so on. These events are given as a sequence of strings "name1 reposted name2", where name1 is the name of the person who reposted the joke, and name2 is the name of the person from whose news feed the joke was reposted. It is guaranteed that for each string "name1 reposted name2" user "name1" didn't have the joke in his feed yet, and "name2" already had it in his feed by the moment of repost. Polycarp was registered as "Polycarp" and initially the joke was only in his feed. Polycarp measures the popularity of the joke as the length of the largest repost chain. Print the popularity of Polycarp's joke. Input Specification: The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=200) — the number of reposts. Next follow the reposts in the order they were made. Each of them is written on a single line and looks as "name1 reposted name2". All the names in the input consist of lowercase or uppercase English letters and/or digits and have lengths from 2 to 24 characters, inclusive. We know that the user names are case-insensitive, that is, two names that only differ in the letter case correspond to the same social network user. Output Specification: Print a single integer — the maximum length of a repost chain. Demo Input: ['5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya\n', '6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp\n', '1\nSoMeStRaNgEgUe reposted PoLyCaRp\n'] Demo Output: ['6\n', '2\n', '2\n'] Note: none
```python '''input 6 Mike reposted Polycarp Max reposted Polycarp EveryOne reposted Polycarp 111 reposted Polycarp VkCup reposted Polycarp Codeforces reposted Polycarp ''' from sys import stdin input = stdin.readline import math import sys from collections import defaultdict sys.setrecursionlimit(10 ** 4) def dfs(graph, visted, node): visited[node] = True l = 1 for i in graph[node]: if i not in visited: l = max(l, 1 + dfs(graph, visted, i)) return l # mains starts n = int(input().strip()) graph = defaultdict(list) for _ in range(n): first, t, second = list(input().split()) first = first.lower() second = second.lower() graph[first].append(second) graph[second].append(first) visited = dict() print(dfs(graph, visited, 'polycarp')) ```
3
25
A
IQ test
PROGRAMMING
1,300
[ "brute force" ]
A. IQ test
2
256
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
[ "5\n2 4 7 8 10\n", "4\n1 2 1 1\n" ]
[ "3\n", "2\n" ]
none
0
[ { "input": "5\n2 4 7 8 10", "output": "3" }, { "input": "4\n1 2 1 1", "output": "2" }, { "input": "3\n1 2 2", "output": "1" }, { "input": "3\n100 99 100", "output": "2" }, { "input": "3\n5 3 2", "output": "3" }, { "input": "4\n43 28 1 91", "output": "2" }, { "input": "4\n75 13 94 77", "output": "3" }, { "input": "4\n97 8 27 3", "output": "2" }, { "input": "10\n95 51 12 91 85 3 1 31 25 7", "output": "3" }, { "input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46", "output": "4" }, { "input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36", "output": "26" }, { "input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83", "output": "48" }, { "input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25", "output": "1" }, { "input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46", "output": "25" }, { "input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73", "output": "13" }, { "input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76", "output": "99" }, { "input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14", "output": "1" }, { "input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22", "output": "93" }, { "input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23", "output": "1" }, { "input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98", "output": "1" }, { "input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94", "output": "93" }, { "input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29", "output": "32" }, { "input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47", "output": "26" }, { "input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72", "output": "56" }, { "input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86", "output": "97" }, { "input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42", "output": "79" }, { "input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52", "output": "25" }, { "input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86", "output": "78" }, { "input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68", "output": "70" }, { "input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81", "output": "39" }, { "input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83", "output": "88" }, { "input": "3\n100 100 1", "output": "3" } ]
1,695,754,133
2,147,483,647
Python 3
OK
TESTS
32
92
5,632,000
s = int(input()) g = list(map(int,input().split())) list1=[i for i in g if i%2==0] list2=[i for i in g if i%2==1] if len(list1) > len(list2) : print(g.index(list2[0])+1) else : print(g.index(list1[0])+1)
Title: IQ test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness. Output Specification: Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order. Demo Input: ['5\n2 4 7 8 10\n', '4\n1 2 1 1\n'] Demo Output: ['3\n', '2\n'] Note: none
```python s = int(input()) g = list(map(int,input().split())) list1=[i for i in g if i%2==0] list2=[i for i in g if i%2==1] if len(list1) > len(list2) : print(g.index(list2[0])+1) else : print(g.index(list1[0])+1) ```
3.96651
964
B
Messages
PROGRAMMING
1,300
[ "math" ]
null
null
There are *n* incoming messages for Vasya. The *i*-th message is going to be received after *t**i* minutes. Each message has a cost, which equals to *A* initially. After being received, the cost of a message decreases by *B* each minute (it can become negative). Vasya can read any message after receiving it at any moment of time. After reading the message, Vasya's bank account receives the current cost of this message. Initially, Vasya's bank account is at 0. Also, each minute Vasya's bank account receives *C*·*k*, where *k* is the amount of received but unread messages. Vasya's messages are very important to him, and because of that he wants to have all messages read after *T* minutes. Determine the maximum amount of money Vasya's bank account can hold after *T* minutes.
The first line contains five integers *n*, *A*, *B*, *C* and *T* (1<=≤<=*n*,<=*A*,<=*B*,<=*C*,<=*T*<=≤<=1000). The second string contains *n* integers *t**i* (1<=≤<=*t**i*<=≤<=*T*).
Output one integer  — the answer to the problem.
[ "4 5 5 3 5\n1 5 5 4\n", "5 3 1 1 3\n2 2 2 1 1\n", "5 5 3 4 5\n1 2 3 4 5\n" ]
[ "20\n", "15\n", "35\n" ]
In the first sample the messages must be read immediately after receiving, Vasya receives *A* points for each message, *n*·*A* = 20 in total. In the second sample the messages can be read at any integer moment. In the third sample messages must be read at the moment T. This way Vasya has 1, 2, 3, 4 and 0 unread messages at the corresponding minutes, he gets 40 points for them. When reading messages, he receives (5 - 4·3) + (5 - 3·3) + (5 - 2·3) + (5 - 1·3) + 5 =  - 5 points. This is 35 in total.
1,000
[ { "input": "4 5 5 3 5\n1 5 5 4", "output": "20" }, { "input": "5 3 1 1 3\n2 2 2 1 1", "output": "15" }, { "input": "5 5 3 4 5\n1 2 3 4 5", "output": "35" }, { "input": "1 6 4 3 9\n2", "output": "6" }, { "input": "10 9 7 5 3\n3 3 3 3 2 3 2 2 3 3", "output": "90" }, { "input": "44 464 748 420 366\n278 109 293 161 336 9 194 203 13 226 303 303 300 131 134 47 235 110 263 67 185 337 360 253 270 97 162 190 143 267 18 311 329 138 322 167 324 33 3 104 290 260 349 89", "output": "20416" }, { "input": "80 652 254 207 837\n455 540 278 38 19 781 686 110 733 40 434 581 77 381 818 236 444 615 302 251 762 676 771 483 767 479 326 214 316 551 544 95 157 828 813 201 103 502 751 410 84 733 431 90 261 326 731 374 730 748 303 83 302 673 50 822 46 590 248 751 345 579 689 616 331 593 428 344 754 777 178 80 602 268 776 234 637 780 712 539", "output": "52160" }, { "input": "62 661 912 575 6\n3 5 6 6 5 6 6 6 3 2 3 1 4 3 2 5 3 6 1 4 2 5 1 2 6 4 6 6 5 5 4 3 4 1 4 2 4 4 2 6 4 6 3 5 3 4 1 5 3 6 5 6 4 1 2 1 6 5 5 4 2 3", "output": "40982" }, { "input": "49 175 330 522 242\n109 81 215 5 134 185 60 242 154 148 14 221 146 229 45 120 142 43 202 176 231 105 212 69 109 219 58 103 53 211 128 138 157 95 96 122 69 109 35 46 122 118 132 135 224 150 178 134 28", "output": "1083967" }, { "input": "27 27 15 395 590\n165 244 497 107 546 551 232 177 428 237 209 186 135 162 511 514 408 132 11 364 16 482 279 246 30 103 152", "output": "3347009" }, { "input": "108 576 610 844 573\n242 134 45 515 430 354 405 179 174 366 155 4 300 176 96 36 508 70 75 316 118 563 55 340 128 214 138 511 507 437 454 478 341 443 421 573 270 362 208 107 256 471 436 378 336 507 383 352 450 411 297 34 179 551 119 524 141 288 387 9 283 241 304 214 503 559 416 447 495 61 169 228 479 568 368 441 467 401 467 542 370 243 371 315 65 67 161 383 19 144 283 5 369 242 122 396 276 488 401 387 256 128 87 425 124 226 335 238", "output": "6976440" }, { "input": "67 145 951 829 192\n2 155 41 125 20 70 43 47 120 190 141 8 37 183 72 141 52 168 185 71 36 12 31 3 151 98 95 82 148 110 64 10 67 54 176 130 116 5 61 90 24 43 156 49 70 186 165 109 56 11 148 119 139 120 138 124 3 159 75 173 4 101 190 64 90 176 176", "output": "9715" }, { "input": "67 322 317 647 99\n68 33 75 39 10 60 93 40 77 71 90 14 67 26 54 87 91 67 60 76 83 7 20 47 39 79 54 43 35 9 19 39 77 56 83 31 95 15 40 37 56 88 7 89 11 49 72 48 85 95 50 78 12 1 81 53 94 97 9 26 78 62 57 23 18 19 4", "output": "1066024" }, { "input": "32 2 74 772 674\n598 426 358 191 471 667 412 44 183 358 436 654 572 489 79 191 374 33 1 627 154 132 101 236 443 112 77 93 553 53 260 498", "output": "8161080" }, { "input": "111 907 98 340 279\n187 200 223 12 179 57 81 195 250 139 2 190 21 91 145 251 113 41 18 55 235 123 99 154 179 81 59 20 145 244 131 210 76 6 198 43 71 267 60 92 101 265 55 63 231 232 74 233 246 265 102 92 78 111 107 37 51 135 38 62 156 112 70 37 227 25 111 263 175 114 4 128 50 276 226 119 130 33 134 38 48 229 108 88 53 142 233 86 214 173 136 68 2 202 132 49 73 205 208 224 99 96 116 5 74 179 63 197 58 68 50", "output": "4297441" } ]
1,524,523,096
2,147,483,647
Python 3
OK
TESTS
60
78
7,065,600
#k=int(input()) #n,m=map(int,input().split()) import sys #a=list(map(int,input().split())) #b=list(map(int,input().split())) import math n,a,b,c,T=map(int,input().split()) t=list(map(int,input().split())) sum=n*a for i in range(n): sum+=(T-t[i])*(c-b) if b>c: print(n*a) else: print(sum)
Title: Messages Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* incoming messages for Vasya. The *i*-th message is going to be received after *t**i* minutes. Each message has a cost, which equals to *A* initially. After being received, the cost of a message decreases by *B* each minute (it can become negative). Vasya can read any message after receiving it at any moment of time. After reading the message, Vasya's bank account receives the current cost of this message. Initially, Vasya's bank account is at 0. Also, each minute Vasya's bank account receives *C*·*k*, where *k* is the amount of received but unread messages. Vasya's messages are very important to him, and because of that he wants to have all messages read after *T* minutes. Determine the maximum amount of money Vasya's bank account can hold after *T* minutes. Input Specification: The first line contains five integers *n*, *A*, *B*, *C* and *T* (1<=≤<=*n*,<=*A*,<=*B*,<=*C*,<=*T*<=≤<=1000). The second string contains *n* integers *t**i* (1<=≤<=*t**i*<=≤<=*T*). Output Specification: Output one integer  — the answer to the problem. Demo Input: ['4 5 5 3 5\n1 5 5 4\n', '5 3 1 1 3\n2 2 2 1 1\n', '5 5 3 4 5\n1 2 3 4 5\n'] Demo Output: ['20\n', '15\n', '35\n'] Note: In the first sample the messages must be read immediately after receiving, Vasya receives *A* points for each message, *n*·*A* = 20 in total. In the second sample the messages can be read at any integer moment. In the third sample messages must be read at the moment T. This way Vasya has 1, 2, 3, 4 and 0 unread messages at the corresponding minutes, he gets 40 points for them. When reading messages, he receives (5 - 4·3) + (5 - 3·3) + (5 - 2·3) + (5 - 1·3) + 5 =  - 5 points. This is 35 in total.
```python #k=int(input()) #n,m=map(int,input().split()) import sys #a=list(map(int,input().split())) #b=list(map(int,input().split())) import math n,a,b,c,T=map(int,input().split()) t=list(map(int,input().split())) sum=n*a for i in range(n): sum+=(T-t[i])*(c-b) if b>c: print(n*a) else: print(sum) ```
3
999
B
Reversing Encryption
PROGRAMMING
900
[ "implementation" ]
null
null
A string $s$ of length $n$ can be encrypted by the following algorithm: - iterate over all divisors of $n$ in decreasing order (i.e. from $n$ to $1$), - for each divisor $d$, reverse the substring $s[1 \dots d]$ (i.e. the substring which starts at position $1$ and ends at position $d$). For example, the above algorithm applied to the string $s$="codeforces" leads to the following changes: "codeforces" $\to$ "secrofedoc" $\to$ "orcesfedoc" $\to$ "rocesfedoc" $\to$ "rocesfedoc" (obviously, the last reverse operation doesn't change the string because $d=1$). You are given the encrypted string $t$. Your task is to decrypt this string, i.e., to find a string $s$ such that the above algorithm results in string $t$. It can be proven that this string $s$ always exists and is unique.
The first line of input consists of a single integer $n$ ($1 \le n \le 100$) — the length of the string $t$. The second line of input consists of the string $t$. The length of $t$ is $n$, and it consists only of lowercase Latin letters.
Print a string $s$ such that the above algorithm results in $t$.
[ "10\nrocesfedoc\n", "16\nplmaetwoxesisiht\n", "1\nz\n" ]
[ "codeforces\n", "thisisexampletwo\n", "z\n" ]
The first example is described in the problem statement.
0
[ { "input": "10\nrocesfedoc", "output": "codeforces" }, { "input": "16\nplmaetwoxesisiht", "output": "thisisexampletwo" }, { "input": "1\nz", "output": "z" }, { "input": "2\nir", "output": "ri" }, { "input": "3\nilj", "output": "jli" }, { "input": "4\njfyy", "output": "yyjf" }, { "input": "6\nkrdych", "output": "hcyrkd" }, { "input": "60\nfnebsopcvmlaoecpzmakqigyuutueuozjxutlwwiochekmhjgwxsgfbcrpqj", "output": "jqprcbfgsxwgjhmkehcoiwwltuxjzokamzpalobnfespcvmoecqigyuutueu" }, { "input": "64\nhnlzzhrvqnldswxfsrowfhmyzbxtyoxhogudasgywxycyhzgiseerbislcncvnwy", "output": "ywnvcnclsibreesigzhycyxwygsadugofxwsdlnqzlhnzhrvsrowfhmyzbxtyoxh" }, { "input": "97\nqnqrmdhmbubaijtwsecbidqouhlecladwgwcuxbigckrfzasnbfbslukoayhcgquuacygakhxoubibxtqkpyyhzjipylujgrc", "output": "crgjulypijzhyypkqtxbibuoxhkagycauuqgchyaokulsbfbnsazfrkcgibxucwgwdalcelhuoqdibceswtjiabubmhdmrqnq" }, { "input": "100\nedykhvzcntljuuoqghptioetqnfllwekzohiuaxelgecabvsbibgqodqxvyfkbyjwtgbyhvssntinkwsinwsmalusiwnjmtcoovf", "output": "fvooctmjnwisulamswniswknitnssvhybgtwjybkfyvxqdoqgbqteoitnczvkyedhljuuoqghptnfllwekzohiuaxelgecabvsbi" }, { "input": "96\nqtbcksuvxonzbkokhqlgkrvimzqmqnrvqlihrmksldyydacbtckfphenxszcnzhfjmpeykrvshgiboivkvabhrpphgavvprz", "output": "zrpvvaghpprhbavkviobighsvrkyepmjfhznczsxnehpfkctvrnqmqzmkokbvuctqbksxonzhqlgkrviqlihrmksldyydacb" }, { "input": "90\nmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm", "output": "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm" }, { "input": "89\nwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww", "output": "wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww" }, { "input": "99\nqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq", "output": "qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq" }, { "input": "100\noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo", "output": "oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo" }, { "input": "60\nwwwwwxwwwwwwfhwwhwwwwwwawwwwwwwwwwwwwnwwwwwwwwwwwwwwwwwwwwww", "output": "wwwwwwwwwwwwwwwwwwwwwwnwwwwwwwwwwhwwwxwwwwwwwwwfhwwwwawwwwww" }, { "input": "90\ncccchccccccccccccccccccccccccccwcccccccccgcccccchccccccccccccccccccccccxccccccncccccccuccc", "output": "cccucccccccnccccccxcccccccccccccccccccccchccccccccccccccccccccccchccccccccccwcccccccccgccc" }, { "input": "97\nfwffffffffffffffffffffffffrffffffffffffffzfffffffffffffffftfcfffffffqffffffffffffffffffffffyfffff", "output": "fffffyffffffffffffffffffffffqfffffffcftffffffffffffffffzffffffffffffffrffffffffffffffffffffffffwf" }, { "input": "100\ndjjjjjjjjjjgjjjjjjjjjjjjjjsvjjjjjjjjjjmjjjjjjjjjjjjjajjjjjjajjjjjjrjjjjjjjjjjjjrjjtjjjjjjjjjjjjjojjj", "output": "jjjojjjjjjjjjjjjjtjjrjjjjjjjjjjjjrjjjjjjajjjjjjajjjjjjjjjjjjjjdjjjgjjjjjjjjjsvjjjjjjjjjjmjjjjjjjjjjj" } ]
1,667,538,184
2,147,483,647
PyPy 3-64
OK
TESTS
20
62
0
n=int(input()) s=list(str(input())) for i in range(n): if n%(i+1)==0: s=list(''.join(reversed(''.join(s[:i+1]))))+s[i+1:] print(''.join(s))
Title: Reversing Encryption Time Limit: None seconds Memory Limit: None megabytes Problem Description: A string $s$ of length $n$ can be encrypted by the following algorithm: - iterate over all divisors of $n$ in decreasing order (i.e. from $n$ to $1$), - for each divisor $d$, reverse the substring $s[1 \dots d]$ (i.e. the substring which starts at position $1$ and ends at position $d$). For example, the above algorithm applied to the string $s$="codeforces" leads to the following changes: "codeforces" $\to$ "secrofedoc" $\to$ "orcesfedoc" $\to$ "rocesfedoc" $\to$ "rocesfedoc" (obviously, the last reverse operation doesn't change the string because $d=1$). You are given the encrypted string $t$. Your task is to decrypt this string, i.e., to find a string $s$ such that the above algorithm results in string $t$. It can be proven that this string $s$ always exists and is unique. Input Specification: The first line of input consists of a single integer $n$ ($1 \le n \le 100$) — the length of the string $t$. The second line of input consists of the string $t$. The length of $t$ is $n$, and it consists only of lowercase Latin letters. Output Specification: Print a string $s$ such that the above algorithm results in $t$. Demo Input: ['10\nrocesfedoc\n', '16\nplmaetwoxesisiht\n', '1\nz\n'] Demo Output: ['codeforces\n', 'thisisexampletwo\n', 'z\n'] Note: The first example is described in the problem statement.
```python n=int(input()) s=list(str(input())) for i in range(n): if n%(i+1)==0: s=list(''.join(reversed(''.join(s[:i+1]))))+s[i+1:] print(''.join(s)) ```
3
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,641,104,528
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
62
0
m=int(input()) n=int(input()) x=m*n//2 print(x)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python m=int(input()) n=int(input()) x=m*n//2 print(x) ```
-1
476
A
Dreamoon and Stairs
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
Dreamoon wants to climb up a stair of *n* steps. He can climb 1 or 2 steps at each move. Dreamoon wants the number of moves to be a multiple of an integer *m*. What is the minimal number of moves making him climb to the top of the stairs that satisfies his condition?
The single line contains two space separated integers *n*, *m* (0<=&lt;<=*n*<=≤<=10000,<=1<=&lt;<=*m*<=≤<=10).
Print a single integer — the minimal number of moves being a multiple of *m*. If there is no way he can climb satisfying condition print <=-<=1 instead.
[ "10 2\n", "3 5\n" ]
[ "6\n", "-1\n" ]
For the first sample, Dreamoon could climb in 6 moves with following sequence of steps: {2, 2, 2, 2, 1, 1}. For the second sample, there are only three valid sequence of steps {2, 1}, {1, 2}, {1, 1, 1} with 2, 2, and 3 steps respectively. All these numbers are not multiples of 5.
500
[ { "input": "10 2", "output": "6" }, { "input": "3 5", "output": "-1" }, { "input": "29 7", "output": "21" }, { "input": "2 2", "output": "2" }, { "input": "1 2", "output": "-1" }, { "input": "10000 2", "output": "5000" }, { "input": "10000 3", "output": "5001" }, { "input": "10000 10", "output": "5000" }, { "input": "9999 3", "output": "5001" }, { "input": "9999 2", "output": "5000" }, { "input": "9999 10", "output": "5000" }, { "input": "9999 9", "output": "5004" }, { "input": "18 10", "output": "10" }, { "input": "19 10", "output": "10" }, { "input": "20 10", "output": "10" }, { "input": "21 10", "output": "20" }, { "input": "7688 5", "output": "3845" }, { "input": "4608 5", "output": "2305" }, { "input": "3979 2", "output": "1990" }, { "input": "9985 6", "output": "4998" }, { "input": "3230 8", "output": "1616" }, { "input": "24 9", "output": "18" }, { "input": "3275 8", "output": "1640" }, { "input": "6240 7", "output": "3122" }, { "input": "5227 4", "output": "2616" }, { "input": "3832 6", "output": "1920" }, { "input": "4 2", "output": "2" }, { "input": "6 3", "output": "3" }, { "input": "10 5", "output": "5" }, { "input": "3 2", "output": "2" }, { "input": "6 4", "output": "4" }, { "input": "5 2", "output": "4" }, { "input": "8 2", "output": "4" }, { "input": "9 9", "output": "9" }, { "input": "4 5", "output": "-1" } ]
1,690,708,517
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
31
0
n,m=list(map(int,input().split())) ans=int(n/2+.5) tmp=ans%m if tmp<=n//2: print(ans+tmp) else: print(-1)
Title: Dreamoon and Stairs Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dreamoon wants to climb up a stair of *n* steps. He can climb 1 or 2 steps at each move. Dreamoon wants the number of moves to be a multiple of an integer *m*. What is the minimal number of moves making him climb to the top of the stairs that satisfies his condition? Input Specification: The single line contains two space separated integers *n*, *m* (0<=&lt;<=*n*<=≤<=10000,<=1<=&lt;<=*m*<=≤<=10). Output Specification: Print a single integer — the minimal number of moves being a multiple of *m*. If there is no way he can climb satisfying condition print <=-<=1 instead. Demo Input: ['10 2\n', '3 5\n'] Demo Output: ['6\n', '-1\n'] Note: For the first sample, Dreamoon could climb in 6 moves with following sequence of steps: {2, 2, 2, 2, 1, 1}. For the second sample, there are only three valid sequence of steps {2, 1}, {1, 2}, {1, 1, 1} with 2, 2, and 3 steps respectively. All these numbers are not multiples of 5.
```python n,m=list(map(int,input().split())) ans=int(n/2+.5) tmp=ans%m if tmp<=n//2: print(ans+tmp) else: print(-1) ```
0
756
B
Travel Card
PROGRAMMING
1,600
[ "binary search", "dp" ]
null
null
A new innovative ticketing systems for public transport is introduced in Bytesburg. Now there is a single travel card for all transport. To make a trip a passenger scan his card and then he is charged according to the fare. The fare is constructed in the following manner. There are three types of tickets: 1. a ticket for one trip costs 20 byteland rubles, 1. a ticket for 90 minutes costs 50 byteland rubles, 1. a ticket for one day (1440 minutes) costs 120 byteland rubles. Note that a ticket for *x* minutes activated at time *t* can be used for trips started in time range from *t* to *t*<=+<=*x*<=-<=1, inclusive. Assume that all trips take exactly one minute. To simplify the choice for the passenger, the system automatically chooses the optimal tickets. After each trip starts, the system analyses all the previous trips and the current trip and chooses a set of tickets for these trips with a minimum total cost. Let the minimum total cost of tickets to cover all trips from the first to the current is *a*, and the total sum charged before is *b*. Then the system charges the passenger the sum *a*<=-<=*b*. You have to write a program that, for given trips made by a passenger, calculates the sum the passenger is charged after each trip.
The first line of input contains integer number *n* (1<=≤<=*n*<=≤<=105) — the number of trips made by passenger. Each of the following *n* lines contains the time of trip *t**i* (0<=≤<=*t**i*<=≤<=109), measured in minutes from the time of starting the system. All *t**i* are different, given in ascending order, i. e. *t**i*<=+<=1<=&gt;<=*t**i* holds for all 1<=≤<=*i*<=&lt;<=*n*.
Output *n* integers. For each trip, print the sum the passenger is charged after it.
[ "3\n10\n20\n30\n", "10\n13\n45\n46\n60\n103\n115\n126\n150\n256\n516\n" ]
[ "20\n20\n10\n", "20\n20\n10\n0\n20\n0\n0\n20\n20\n10\n" ]
In the first example, the system works as follows: for the first and second trips it is cheaper to pay for two one-trip tickets, so each time 20 rubles is charged, after the third trip the system understands that it would be cheaper to buy a ticket for 90 minutes. This ticket costs 50 rubles, and the passenger had already paid 40 rubles, so it is necessary to charge 10 rubles only.
1,000
[ { "input": "3\n10\n20\n30", "output": "20\n20\n10" }, { "input": "10\n13\n45\n46\n60\n103\n115\n126\n150\n256\n516", "output": "20\n20\n10\n0\n20\n0\n0\n20\n20\n10" }, { "input": "7\n100\n138\n279\n308\n396\n412\n821", "output": "20\n20\n20\n20\n20\n20\n0" }, { "input": "8\n0\n2\n51\n63\n69\n75\n80\n90", "output": "20\n20\n10\n0\n0\n0\n0\n20" }, { "input": "8\n0\n3\n5\n6\n7\n8\n9\n10", "output": "20\n20\n10\n0\n0\n0\n0\n0" }, { "input": "1\n0", "output": "20" } ]
1,486,094,809
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
15
2,000
31,436,800
import sys# input = sys.stdin.readline memo = [0, 20] times = [] n = int(input()) times.append(int(input())) print(20) for i in range(2, n+1): times.append(int(input())) poss = [memo[i-1]+20] poss.append(memo[len(set(times) - set(range(times[-1]-89,times[-1]+1)))] + 50) poss.append(memo[len(set(times) - set(range(times[-1]-1439,times[-1]+1)))] + 120) memo.append(min(poss)) print(memo[-1]-memo[-2])
Title: Travel Card Time Limit: None seconds Memory Limit: None megabytes Problem Description: A new innovative ticketing systems for public transport is introduced in Bytesburg. Now there is a single travel card for all transport. To make a trip a passenger scan his card and then he is charged according to the fare. The fare is constructed in the following manner. There are three types of tickets: 1. a ticket for one trip costs 20 byteland rubles, 1. a ticket for 90 minutes costs 50 byteland rubles, 1. a ticket for one day (1440 minutes) costs 120 byteland rubles. Note that a ticket for *x* minutes activated at time *t* can be used for trips started in time range from *t* to *t*<=+<=*x*<=-<=1, inclusive. Assume that all trips take exactly one minute. To simplify the choice for the passenger, the system automatically chooses the optimal tickets. After each trip starts, the system analyses all the previous trips and the current trip and chooses a set of tickets for these trips with a minimum total cost. Let the minimum total cost of tickets to cover all trips from the first to the current is *a*, and the total sum charged before is *b*. Then the system charges the passenger the sum *a*<=-<=*b*. You have to write a program that, for given trips made by a passenger, calculates the sum the passenger is charged after each trip. Input Specification: The first line of input contains integer number *n* (1<=≤<=*n*<=≤<=105) — the number of trips made by passenger. Each of the following *n* lines contains the time of trip *t**i* (0<=≤<=*t**i*<=≤<=109), measured in minutes from the time of starting the system. All *t**i* are different, given in ascending order, i. e. *t**i*<=+<=1<=&gt;<=*t**i* holds for all 1<=≤<=*i*<=&lt;<=*n*. Output Specification: Output *n* integers. For each trip, print the sum the passenger is charged after it. Demo Input: ['3\n10\n20\n30\n', '10\n13\n45\n46\n60\n103\n115\n126\n150\n256\n516\n'] Demo Output: ['20\n20\n10\n', '20\n20\n10\n0\n20\n0\n0\n20\n20\n10\n'] Note: In the first example, the system works as follows: for the first and second trips it is cheaper to pay for two one-trip tickets, so each time 20 rubles is charged, after the third trip the system understands that it would be cheaper to buy a ticket for 90 minutes. This ticket costs 50 rubles, and the passenger had already paid 40 rubles, so it is necessary to charge 10 rubles only.
```python import sys# input = sys.stdin.readline memo = [0, 20] times = [] n = int(input()) times.append(int(input())) print(20) for i in range(2, n+1): times.append(int(input())) poss = [memo[i-1]+20] poss.append(memo[len(set(times) - set(range(times[-1]-89,times[-1]+1)))] + 50) poss.append(memo[len(set(times) - set(range(times[-1]-1439,times[-1]+1)))] + 120) memo.append(min(poss)) print(memo[-1]-memo[-2]) ```
0
407
A
Triangle
PROGRAMMING
1,600
[ "brute force", "geometry", "implementation", "math" ]
null
null
There is a right triangle with legs of length *a* and *b*. Your task is to determine whether it is possible to locate the triangle on the plane in such a way that none of its sides is parallel to the coordinate axes. All the vertices must have integer coordinates. If there exists such a location, you have to output the appropriate coordinates of vertices.
The first line contains two integers *a*,<=*b* (1<=≤<=*a*,<=*b*<=≤<=1000), separated by a single space.
In the first line print either "YES" or "NO" (without the quotes) depending on whether the required location exists. If it does, print in the next three lines three pairs of integers — the coordinates of the triangle vertices, one pair per line. The coordinates must be integers, not exceeding 109 in their absolute value.
[ "1 1\n", "5 5\n", "5 10\n" ]
[ "NO\n", "YES\n2 1\n5 5\n-2 4\n", "YES\n-10 4\n-2 -2\n1 2\n" ]
none
500
[ { "input": "1 1", "output": "NO" }, { "input": "5 5", "output": "YES\n2 1\n5 5\n-2 4" }, { "input": "5 10", "output": "YES\n-10 4\n-2 -2\n1 2" }, { "input": "2 2", "output": "NO" }, { "input": "5 6", "output": "NO" }, { "input": "5 11", "output": "NO" }, { "input": "10 15", "output": "YES\n0 0\n6 8\n-12 9" }, { "input": "935 938", "output": "NO" }, { "input": "999 1000", "output": "NO" }, { "input": "1000 1000", "output": "YES\n0 0\n280 960\n-960 280" }, { "input": "15 20", "output": "YES\n0 0\n12 9\n-12 16" }, { "input": "20 15", "output": "YES\n0 0\n12 16\n-12 9" }, { "input": "629 865", "output": "NO" }, { "input": "45 872", "output": "NO" }, { "input": "757 582", "output": "NO" }, { "input": "173 588", "output": "NO" }, { "input": "533 298", "output": "NO" }, { "input": "949 360", "output": "NO" }, { "input": "661 175", "output": "NO" }, { "input": "728 299", "output": "YES\n0 0\n280 672\n-276 115" }, { "input": "575 85", "output": "YES\n0 0\n345 460\n-68 51" }, { "input": "385 505", "output": "YES\n0 0\n231 308\n-404 303" }, { "input": "755 865", "output": "YES\n0 0\n453 604\n-692 519" }, { "input": "395 55", "output": "YES\n0 0\n237 316\n-44 33" }, { "input": "600 175", "output": "YES\n0 0\n168 576\n-168 49" }, { "input": "280 210", "output": "YES\n0 0\n168 224\n-168 126" }, { "input": "180 135", "output": "YES\n0 0\n108 144\n-108 81" }, { "input": "140 105", "output": "YES\n0 0\n84 112\n-84 63" }, { "input": "440 330", "output": "YES\n0 0\n264 352\n-264 198" }, { "input": "130 312", "output": "YES\n0 0\n120 50\n-120 288" }, { "input": "65 156", "output": "YES\n0 0\n60 25\n-60 144" }, { "input": "105 140", "output": "YES\n0 0\n84 63\n-84 112" }, { "input": "408 765", "output": "YES\n0 0\n360 192\n-360 675" }, { "input": "195 468", "output": "YES\n0 0\n180 75\n-180 432" }, { "input": "305 949", "output": "NO" }, { "input": "80 60", "output": "YES\n0 0\n48 64\n-48 36" }, { "input": "15 15", "output": "YES\n0 0\n9 12\n-12 9" }, { "input": "120 90", "output": "YES\n0 0\n72 96\n-72 54" }, { "input": "60 80", "output": "YES\n0 0\n48 36\n-48 64" }, { "input": "5 25", "output": "YES\n0 0\n3 4\n-20 15" }, { "input": "5 1000", "output": "YES\n0 0\n3 4\n-800 600" }, { "input": "25 35", "output": "YES\n0 0\n15 20\n-28 21" }, { "input": "25 5", "output": "YES\n0 0\n15 20\n-4 3" }, { "input": "30 40", "output": "YES\n0 0\n24 18\n-24 32" }, { "input": "65 156", "output": "YES\n0 0\n60 25\n-60 144" }, { "input": "455 470", "output": "YES\n0 0\n273 364\n-376 282" }, { "input": "90 120", "output": "YES\n0 0\n72 54\n-72 96" }, { "input": "5 205", "output": "YES\n0 0\n3 4\n-164 123" }, { "input": "111 111", "output": "YES\n0 0\n36 105\n-105 36" }, { "input": "17 17", "output": "YES\n0 0\n8 15\n-15 8" }, { "input": "1000 5", "output": "YES\n0 0\n600 800\n-4 3" } ]
1,600,322,441
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
8
139
1,945,600
import math if __name__ == '__main__': a, b = map(int, input().split()) maxim = max(a,b) isperfect = dict() for i in range(1,maxim): for j in range(1,maxim): numb = math.sqrt(i**2 + j**2) if numb.is_integer(): isperfect[numb] = (i, j) if a in isperfect and b in isperfect: print("YES") print(0,0) coords_a = isperfect[a] print(coords_a[0], coords_a[1]) coords_b = isperfect[b] print(-coords_b[1],coords_b[0]) else: print("NO")
Title: Triangle Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a right triangle with legs of length *a* and *b*. Your task is to determine whether it is possible to locate the triangle on the plane in such a way that none of its sides is parallel to the coordinate axes. All the vertices must have integer coordinates. If there exists such a location, you have to output the appropriate coordinates of vertices. Input Specification: The first line contains two integers *a*,<=*b* (1<=≤<=*a*,<=*b*<=≤<=1000), separated by a single space. Output Specification: In the first line print either "YES" or "NO" (without the quotes) depending on whether the required location exists. If it does, print in the next three lines three pairs of integers — the coordinates of the triangle vertices, one pair per line. The coordinates must be integers, not exceeding 109 in their absolute value. Demo Input: ['1 1\n', '5 5\n', '5 10\n'] Demo Output: ['NO\n', 'YES\n2 1\n5 5\n-2 4\n', 'YES\n-10 4\n-2 -2\n1 2\n'] Note: none
```python import math if __name__ == '__main__': a, b = map(int, input().split()) maxim = max(a,b) isperfect = dict() for i in range(1,maxim): for j in range(1,maxim): numb = math.sqrt(i**2 + j**2) if numb.is_integer(): isperfect[numb] = (i, j) if a in isperfect and b in isperfect: print("YES") print(0,0) coords_a = isperfect[a] print(coords_a[0], coords_a[1]) coords_b = isperfect[b] print(-coords_b[1],coords_b[0]) else: print("NO") ```
0
255
A
Greg's Workout
PROGRAMMING
800
[ "implementation" ]
null
null
Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times. Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise. Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.
The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises.
Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise. It is guaranteed that the input is such that the answer to the problem is unambiguous.
[ "2\n2 8\n", "3\n5 1 10\n", "7\n3 3 2 7 9 6 8\n" ]
[ "biceps\n", "back\n", "chest\n" ]
In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises. In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises. In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
500
[ { "input": "2\n2 8", "output": "biceps" }, { "input": "3\n5 1 10", "output": "back" }, { "input": "7\n3 3 2 7 9 6 8", "output": "chest" }, { "input": "4\n5 6 6 2", "output": "chest" }, { "input": "5\n8 2 2 6 3", "output": "chest" }, { "input": "6\n8 7 2 5 3 4", "output": "chest" }, { "input": "8\n7 2 9 10 3 8 10 6", "output": "chest" }, { "input": "9\n5 4 2 3 4 4 5 2 2", "output": "chest" }, { "input": "10\n4 9 8 5 3 8 8 10 4 2", "output": "biceps" }, { "input": "11\n10 9 7 6 1 3 9 7 1 3 5", "output": "chest" }, { "input": "12\n24 22 6 16 5 21 1 7 2 19 24 5", "output": "chest" }, { "input": "13\n24 10 5 7 16 17 2 7 9 20 15 2 24", "output": "chest" }, { "input": "14\n13 14 19 8 5 17 9 16 15 9 5 6 3 7", "output": "back" }, { "input": "15\n24 12 22 21 25 23 21 5 3 24 23 13 12 16 12", "output": "chest" }, { "input": "16\n12 6 18 6 25 7 3 1 1 17 25 17 6 8 17 8", "output": "biceps" }, { "input": "17\n13 8 13 4 9 21 10 10 9 22 14 23 22 7 6 14 19", "output": "chest" }, { "input": "18\n1 17 13 6 11 10 25 13 24 9 21 17 3 1 17 12 25 21", "output": "back" }, { "input": "19\n22 22 24 25 19 10 7 10 4 25 19 14 1 14 3 18 4 19 24", "output": "chest" }, { "input": "20\n9 8 22 11 18 14 15 10 17 11 2 1 25 20 7 24 4 25 9 20", "output": "chest" }, { "input": "1\n10", "output": "chest" }, { "input": "2\n15 3", "output": "chest" }, { "input": "3\n21 11 19", "output": "chest" }, { "input": "4\n19 24 13 15", "output": "chest" }, { "input": "5\n4 24 1 9 19", "output": "biceps" }, { "input": "6\n6 22 24 7 15 24", "output": "back" }, { "input": "7\n10 8 23 23 14 18 14", "output": "chest" }, { "input": "8\n5 16 8 9 17 16 14 7", "output": "biceps" }, { "input": "9\n12 3 10 23 6 4 22 13 12", "output": "chest" }, { "input": "10\n1 9 20 18 20 17 7 24 23 2", "output": "back" }, { "input": "11\n22 25 8 2 18 15 1 13 1 11 4", "output": "biceps" }, { "input": "12\n20 12 14 2 15 6 24 3 11 8 11 14", "output": "chest" }, { "input": "13\n2 18 8 8 8 20 5 22 15 2 5 19 18", "output": "back" }, { "input": "14\n1 6 10 25 17 13 21 11 19 4 15 24 5 22", "output": "biceps" }, { "input": "15\n13 5 25 13 17 25 19 21 23 17 12 6 14 8 6", "output": "back" }, { "input": "16\n10 15 2 17 22 12 14 14 6 11 4 13 9 8 21 14", "output": "chest" }, { "input": "17\n7 22 9 22 8 7 20 22 23 5 12 11 1 24 17 20 10", "output": "biceps" }, { "input": "18\n18 15 4 25 5 11 21 25 12 14 25 23 19 19 13 6 9 17", "output": "chest" }, { "input": "19\n3 1 3 15 15 25 10 25 23 10 9 21 13 23 19 3 24 21 14", "output": "back" }, { "input": "20\n19 18 11 3 6 14 3 3 25 3 1 19 25 24 23 12 7 4 8 6", "output": "back" }, { "input": "1\n19", "output": "chest" }, { "input": "2\n1 7", "output": "biceps" }, { "input": "3\n18 18 23", "output": "back" }, { "input": "4\n12 15 1 13", "output": "chest" }, { "input": "5\n11 14 25 21 21", "output": "biceps" }, { "input": "6\n11 9 12 11 22 18", "output": "biceps" }, { "input": "7\n11 1 16 20 21 25 20", "output": "chest" }, { "input": "8\n1 2 20 9 3 22 17 4", "output": "back" }, { "input": "9\n19 2 10 19 15 20 3 1 13", "output": "back" }, { "input": "10\n11 2 11 8 21 16 2 3 19 9", "output": "back" }, { "input": "20\n25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 24", "output": "chest" }, { "input": "12\n4 24 21 3 13 24 22 13 12 21 1 15", "output": "back" }, { "input": "13\n14 14 16 2 13 5 1 14 9 4 16 8 3", "output": "biceps" }, { "input": "14\n1 9 15 4 11 8 25 3 9 14 13 2 1 11", "output": "biceps" }, { "input": "15\n4 19 10 6 16 12 5 11 7 23 1 24 11 7 17", "output": "back" }, { "input": "16\n2 8 2 8 13 22 20 12 22 23 18 13 18 22 11 17", "output": "chest" }, { "input": "17\n24 5 5 16 10 8 22 6 4 13 10 10 5 23 8 20 8", "output": "chest" }, { "input": "18\n14 8 9 12 11 18 24 1 14 24 18 5 12 17 1 10 1 22", "output": "chest" }, { "input": "19\n21 2 10 6 9 1 24 5 2 19 10 13 10 7 19 2 6 13 24", "output": "chest" }, { "input": "20\n7 1 14 17 6 6 18 13 12 3 25 4 3 19 22 24 16 14 1 23", "output": "biceps" }, { "input": "1\n19", "output": "chest" }, { "input": "20\n2 1 2 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 22", "output": "biceps" } ]
1,590,945,093
2,147,483,647
Python 3
OK
TESTS
61
218
307,200
t=int(input()) a=list(map(int,input().split())) x=y=z=0 for i in range(t): if(i%3==0): x+=a[i] elif(i%3==1): y+=a[i] else: z+=a[i] d=max(x,y,z) if(d==x): print("chest") elif(d==y): print("biceps") else: print("back")
Title: Greg's Workout Time Limit: None seconds Memory Limit: None megabytes Problem Description: Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times. Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise. Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises. Output Specification: Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise. It is guaranteed that the input is such that the answer to the problem is unambiguous. Demo Input: ['2\n2 8\n', '3\n5 1 10\n', '7\n3 3 2 7 9 6 8\n'] Demo Output: ['biceps\n', 'back\n', 'chest\n'] Note: In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises. In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises. In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
```python t=int(input()) a=list(map(int,input().split())) x=y=z=0 for i in range(t): if(i%3==0): x+=a[i] elif(i%3==1): y+=a[i] else: z+=a[i] d=max(x,y,z) if(d==x): print("chest") elif(d==y): print("biceps") else: print("back") ```
3
520
A
Pangram
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices. You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of characters in the string. The second line contains the string. The string consists only of uppercase and lowercase Latin letters.
Output "YES", if the string is a pangram and "NO" otherwise.
[ "12\ntoosmallword\n", "35\nTheQuickBrownFoxJumpsOverTheLazyDog\n" ]
[ "NO\n", "YES\n" ]
none
500
[ { "input": "12\ntoosmallword", "output": "NO" }, { "input": "35\nTheQuickBrownFoxJumpsOverTheLazyDog", "output": "YES" }, { "input": "1\na", "output": "NO" }, { "input": "26\nqwertyuiopasdfghjklzxcvbnm", "output": "YES" }, { "input": "26\nABCDEFGHIJKLMNOPQRSTUVWXYZ", "output": "YES" }, { "input": "48\nthereisasyetinsufficientdataforameaningfulanswer", "output": "NO" }, { "input": "30\nToBeOrNotToBeThatIsTheQuestion", "output": "NO" }, { "input": "30\njackdawslovemybigsphinxofquarz", "output": "NO" }, { "input": "31\nTHEFIVEBOXINGWIZARDSJUMPQUICKLY", "output": "YES" }, { "input": "26\naaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "NO" }, { "input": "26\nMGJYIZDKsbhpVeNFlquRTcWoAx", "output": "YES" }, { "input": "26\nfWMOhAPsbIVtyUEZrGNQXDklCJ", "output": "YES" }, { "input": "26\nngPMVFSThiRCwLEuyOAbKxQzDJ", "output": "YES" }, { "input": "25\nnxYTzLFwzNolAumjgcAboyxAj", "output": "NO" }, { "input": "26\npRWdodGdxUESvcScPGbUoooZsC", "output": "NO" }, { "input": "66\nBovdMlDzTaqKllZILFVfxbLGsRnzmtVVTmqiIDTYrossLEPlmsPrkUYtWEsGHVOnFj", "output": "NO" }, { "input": "100\nmKtsiDRJypUieHIkvJaMFkwaKxcCIbBszZQLIyPpCDCjhNpAnYFngLjRpnKWpKWtGnwoSteeZXuFHWQxxxOpFlNeYTwKocsXuCoa", "output": "YES" }, { "input": "26\nEoqxUbsLjPytUHMiFnvcGWZdRK", "output": "NO" }, { "input": "26\nvCUFRKElZOnjmXGylWQaHDiPst", "output": "NO" }, { "input": "26\nWtrPuaHdXLKJMsnvQfgOiJZBEY", "output": "NO" }, { "input": "26\npGiFluRteQwkaVoPszJyNBChxM", "output": "NO" }, { "input": "26\ncTUpqjPmANrdbzSFhlWIoKxgVY", "output": "NO" }, { "input": "26\nLndjgvAEuICHKxPwqYztosrmBN", "output": "NO" }, { "input": "26\nMdaXJrCipnOZLykfqHWEStevbU", "output": "NO" }, { "input": "26\nEjDWsVxfKTqGXRnUMOLYcIzPba", "output": "NO" }, { "input": "26\nxKwzRMpunYaqsdfaBgJcVElTHo", "output": "NO" }, { "input": "26\nnRYUQsTwCPLZkgshfEXvBdoiMa", "output": "NO" }, { "input": "26\nHNCQPfJutyAlDGsvRxZWMEbIdO", "output": "NO" }, { "input": "26\nDaHJIpvKznQcmUyWsTGObXRFDe", "output": "NO" }, { "input": "26\nkqvAnFAiRhzlJbtyuWedXSPcOG", "output": "NO" }, { "input": "26\nhlrvgdwsIOyjcmUZXtAKEqoBpF", "output": "NO" }, { "input": "26\njLfXXiMhBTcAwQVReGnpKzdsYu", "output": "NO" }, { "input": "26\nlNMcVuwItjxRBGAekjhyDsQOzf", "output": "NO" }, { "input": "26\nRkSwbNoYldUGtAZvpFMcxhIJFE", "output": "NO" }, { "input": "26\nDqspXZJTuONYieKgaHLMBwfVSC", "output": "NO" }, { "input": "26\necOyUkqNljFHRVXtIpWabGMLDz", "output": "NO" }, { "input": "26\nEKAvqZhBnPmVCDRlgWJfOusxYI", "output": "NO" }, { "input": "26\naLbgqeYchKdMrsZxIPFvTOWNjA", "output": "NO" }, { "input": "26\nxfpBLsndiqtacOCHGmeWUjRkYz", "output": "NO" }, { "input": "26\nXsbRKtqleZPNIVCdfUhyagAomJ", "output": "NO" }, { "input": "26\nAmVtbrwquEthZcjKPLiyDgSoNF", "output": "NO" }, { "input": "26\nOhvXDcwqAUmSEPRZGnjFLiKtNB", "output": "NO" }, { "input": "26\nEKWJqCFLRmstxVBdYuinpbhaOg", "output": "NO" }, { "input": "26\nmnbvcxxlkjhgfdsapoiuytrewq", "output": "NO" }, { "input": "26\naAbcdefghijklmnopqrstuvwxy", "output": "NO" }, { "input": "30\nABCDEFGHTYRIOPLabcdefghtyriopl", "output": "NO" }, { "input": "25\nabcdefghijklmnopqrstuvwxy", "output": "NO" }, { "input": "26\nabcdefhijklmnopqrstVxyzABC", "output": "NO" }, { "input": "25\nqwertyuiopasdfghjklxcvbnm", "output": "NO" }, { "input": "34\nTheQuickBrownFoxJumpsOverTheLayDog", "output": "NO" }, { "input": "26\nabcdefghigklmnopqrstuvwxyz", "output": "NO" }, { "input": "26\nabcdefghijklmnopqrstuvwxyA", "output": "NO" }, { "input": "50\nqazwsxedcrfvtgbyhnujmikolQWERTYUIOASDFGHJKLZXCVBNM", "output": "NO" }, { "input": "35\nTheQuickBrownFoxJumpsOverTheLasyDog", "output": "NO" }, { "input": "25\nbcdefghijklmnopqrstuvwxyz", "output": "NO" }, { "input": "38\nAbCdEfGhIjKlMnOpQrStVwXyZzzzzzzaaaaaaa", "output": "NO" }, { "input": "26\nabcdefghiklmnopqrstvxyzABC", "output": "NO" }, { "input": "26\nabcdefghijklmnopqrstuvwxzZ", "output": "NO" }, { "input": "50\nabcdefghijklmnopqrstuvwxyABCDEFGHIJKLMNOPQRSTUVWXY", "output": "NO" } ]
1,694,069,683
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
15
0
y=int(input()) t=input() e=0 x=0 d = {"A": 0, "B": 0, "C": 0, "D": 0, "E": 0, "F": 0, "G": 0, "H": 0, "I": 0, "J": 0, "K": 0, "L": 0, "M": 0, "N": 0, "O": 0, "P": 0, "Q": 0, "R": 0, "S": 0, "T": 0, "U": 0, "V": 0, "W": 0, "X": 0, "Y": 0, "Z": 0, "a": 0, "b": 0, "c": 0, "d": 0, "e": 0, "f": 0, "g": 0, "h": 0, "i": 0, "j": 0, "k": 0, "l": 0, "m": 0, "n": 0, "o": 0, "p": 0, "q": 0, "r": 0, "s": 0, "t": 0, "u": 0, "v": 0, "w": 0, "x": 0, "y": 0, "z": 0} for i in t: if i in d.keys(): x=sum(d.values()) else: break sum=0 for u in d.values(): if u==0: e=0 else: e+=1 if y==x and e>=26 and e>=54: print("YES") else: print("NO")
Title: Pangram Time Limit: None seconds Memory Limit: None megabytes Problem Description: A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices. You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of characters in the string. The second line contains the string. The string consists only of uppercase and lowercase Latin letters. Output Specification: Output "YES", if the string is a pangram and "NO" otherwise. Demo Input: ['12\ntoosmallword\n', '35\nTheQuickBrownFoxJumpsOverTheLazyDog\n'] Demo Output: ['NO\n', 'YES\n'] Note: none
```python y=int(input()) t=input() e=0 x=0 d = {"A": 0, "B": 0, "C": 0, "D": 0, "E": 0, "F": 0, "G": 0, "H": 0, "I": 0, "J": 0, "K": 0, "L": 0, "M": 0, "N": 0, "O": 0, "P": 0, "Q": 0, "R": 0, "S": 0, "T": 0, "U": 0, "V": 0, "W": 0, "X": 0, "Y": 0, "Z": 0, "a": 0, "b": 0, "c": 0, "d": 0, "e": 0, "f": 0, "g": 0, "h": 0, "i": 0, "j": 0, "k": 0, "l": 0, "m": 0, "n": 0, "o": 0, "p": 0, "q": 0, "r": 0, "s": 0, "t": 0, "u": 0, "v": 0, "w": 0, "x": 0, "y": 0, "z": 0} for i in t: if i in d.keys(): x=sum(d.values()) else: break sum=0 for u in d.values(): if u==0: e=0 else: e+=1 if y==x and e>=26 and e>=54: print("YES") else: print("NO") ```
0
412
A
Poster
PROGRAMMING
900
[ "greedy", "implementation" ]
null
null
The R1 company has recently bought a high rise building in the centre of Moscow for its main office. It's time to decorate the new office, and the first thing to do is to write the company's slogan above the main entrance to the building. The slogan of the company consists of *n* characters, so the decorators hung a large banner, *n* meters wide and 1 meter high, divided into *n* equal squares. The first character of the slogan must be in the first square (the leftmost) of the poster, the second character must be in the second square, and so on. Of course, the R1 programmers want to write the slogan on the poster themselves. To do this, they have a large (and a very heavy) ladder which was put exactly opposite the *k*-th square of the poster. To draw the *i*-th character of the slogan on the poster, you need to climb the ladder, standing in front of the *i*-th square of the poster. This action (along with climbing up and down the ladder) takes one hour for a painter. The painter is not allowed to draw characters in the adjacent squares when the ladder is in front of the *i*-th square because the uncomfortable position of the ladder may make the characters untidy. Besides, the programmers can move the ladder. In one hour, they can move the ladder either a meter to the right or a meter to the left. Drawing characters and moving the ladder is very tiring, so the programmers want to finish the job in as little time as possible. Develop for them an optimal poster painting plan!
The first line contains two integers, *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100) — the number of characters in the slogan and the initial position of the ladder, correspondingly. The next line contains the slogan as *n* characters written without spaces. Each character of the slogan is either a large English letter, or digit, or one of the characters: '.', '!', ',', '?'.
In *t* lines, print the actions the programmers need to make. In the *i*-th line print: - "LEFT" (without the quotes), if the *i*-th action was "move the ladder to the left"; - "RIGHT" (without the quotes), if the *i*-th action was "move the ladder to the right"; - "PRINT *x*" (without the quotes), if the *i*-th action was to "go up the ladder, paint character *x*, go down the ladder". The painting time (variable *t*) must be minimum possible. If there are multiple optimal painting plans, you can print any of them.
[ "2 2\nR1\n", "2 1\nR1\n", "6 4\nGO?GO!\n" ]
[ "PRINT 1\nLEFT\nPRINT R\n", "PRINT R\nRIGHT\nPRINT 1\n", "RIGHT\nRIGHT\nPRINT !\nLEFT\nPRINT O\nLEFT\nPRINT G\nLEFT\nPRINT ?\nLEFT\nPRINT O\nLEFT\nPRINT G\n" ]
Note that the ladder cannot be shifted by less than one meter. The ladder can only stand in front of some square of the poster. For example, you cannot shift a ladder by half a meter and position it between two squares. Then go up and paint the first character and the second character.
500
[ { "input": "2 2\nR1", "output": "PRINT 1\nLEFT\nPRINT R" }, { "input": "2 1\nR1", "output": "PRINT R\nRIGHT\nPRINT 1" }, { "input": "6 4\nGO?GO!", "output": "RIGHT\nRIGHT\nPRINT !\nLEFT\nPRINT O\nLEFT\nPRINT G\nLEFT\nPRINT ?\nLEFT\nPRINT O\nLEFT\nPRINT G" }, { "input": "7 3\nME,YOU.", "output": "LEFT\nLEFT\nPRINT M\nRIGHT\nPRINT E\nRIGHT\nPRINT ,\nRIGHT\nPRINT Y\nRIGHT\nPRINT O\nRIGHT\nPRINT U\nRIGHT\nPRINT ." }, { "input": "10 1\nEK5JQMS5QN", "output": "PRINT E\nRIGHT\nPRINT K\nRIGHT\nPRINT 5\nRIGHT\nPRINT J\nRIGHT\nPRINT Q\nRIGHT\nPRINT M\nRIGHT\nPRINT S\nRIGHT\nPRINT 5\nRIGHT\nPRINT Q\nRIGHT\nPRINT N" }, { "input": "85 84\n73IW80UODC8B,UR7S8WMNATV0JSRF4W0B2VV8LCAX6SGCYY8?LHDKJEO29WXQWT9.WY1VY7408S1W04GNDZPK", "output": "RIGHT\nPRINT K\nLEFT\nPRINT P\nLEFT\nPRINT Z\nLEFT\nPRINT D\nLEFT\nPRINT N\nLEFT\nPRINT G\nLEFT\nPRINT 4\nLEFT\nPRINT 0\nLEFT\nPRINT W\nLEFT\nPRINT 1\nLEFT\nPRINT S\nLEFT\nPRINT 8\nLEFT\nPRINT 0\nLEFT\nPRINT 4\nLEFT\nPRINT 7\nLEFT\nPRINT Y\nLEFT\nPRINT V\nLEFT\nPRINT 1\nLEFT\nPRINT Y\nLEFT\nPRINT W\nLEFT\nPRINT .\nLEFT\nPRINT 9\nLEFT\nPRINT T\nLEFT\nPRINT W\nLEFT\nPRINT Q\nLEFT\nPRINT X\nLEFT\nPRINT W\nLEFT\nPRINT 9\nLEFT\nPRINT 2\nLEFT\nPRINT O\nLEFT\nPRINT E\nLEFT\nPRINT J\nLEFT\nPRINT K\nLEFT\nPRINT D\n..." }, { "input": "59 53\n7NWD!9PC11C8S4TQABBTJO,?CO6YGOM!W0QR94CZJBD9U1YJY23YB354,8F", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT F\nLEFT\nPRINT 8\nLEFT\nPRINT ,\nLEFT\nPRINT 4\nLEFT\nPRINT 5\nLEFT\nPRINT 3\nLEFT\nPRINT B\nLEFT\nPRINT Y\nLEFT\nPRINT 3\nLEFT\nPRINT 2\nLEFT\nPRINT Y\nLEFT\nPRINT J\nLEFT\nPRINT Y\nLEFT\nPRINT 1\nLEFT\nPRINT U\nLEFT\nPRINT 9\nLEFT\nPRINT D\nLEFT\nPRINT B\nLEFT\nPRINT J\nLEFT\nPRINT Z\nLEFT\nPRINT C\nLEFT\nPRINT 4\nLEFT\nPRINT 9\nLEFT\nPRINT R\nLEFT\nPRINT Q\nLEFT\nPRINT 0\nLEFT\nPRINT W\nLEFT\nPRINT !\nLEFT\nPRINT M\nLEFT\nPRINT O\nLEFT\nPRINT G\nLEFT\nPRIN..." }, { "input": "100 79\nF2.58O.L4A!QX!,.,YQUE.RZW.ENQCZKUFNG?.J6FT?L59BIHKFB?,44MAHSTD8?Z.UP3N!76YW6KVI?4AKWDPP0?3HPERM3PCUR", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT R\nLEFT\nPRINT U\nLEFT\nPRINT C\nLEFT\nPRINT P\nLEFT\nPRINT 3\nLEFT\nPRINT M\nLEFT\nPRINT R\nLEFT\nPRINT E\nLEFT\nPRINT P\nLEFT\nPRINT H\nLEFT\nPRINT 3\nLEFT\nPRINT ?\nLEFT\nPRINT 0\nLEFT\nPRINT P\nLEFT\nPRINT P\nLEFT\nPRINT D\nLEFT\nPRINT W\nLEFT\nPRINT K\nLEFT\nPRINT A\nLEFT\nPRINT 4\nLEFT\nPRINT ?\nLEFT\nPRINT I\nLEFT\nPRINT V\nLEFT\nPRINT K\nLEFT\nPRIN..." }, { "input": "1 1\n!", "output": "PRINT !" }, { "input": "34 20\n.C0QPPSWQKGBSH0,VGM!N,5SX.M9Q,D1DT", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT T\nLEFT\nPRINT D\nLEFT\nPRINT 1\nLEFT\nPRINT D\nLEFT\nPRINT ,\nLEFT\nPRINT Q\nLEFT\nPRINT 9\nLEFT\nPRINT M\nLEFT\nPRINT .\nLEFT\nPRINT X\nLEFT\nPRINT S\nLEFT\nPRINT 5\nLEFT\nPRINT ,\nLEFT\nPRINT N\nLEFT\nPRINT !\nLEFT\nPRINT M\nLEFT\nPRINT G\nLEFT\nPRINT V\nLEFT\nPRINT ,\nLEFT\nPRINT 0\nLEFT\nPRINT H\nLEFT\nPRINT S\nLEFT\nPRINT B\nLEFT\nPRINT G\nLEFT\nPRINT K\nLEFT\nPRINT Q\nLEFT\nPRINT W\nLEFT\nPRINT S\n..." }, { "input": "99 98\nR8MZTEG240LNHY33H7.2CMWM73ZK,P5R,RGOA,KYKMIOG7CMPNHV3R2KM,N374IP8HN97XVMG.PSIPS8H3AXFGK0CJ76,EVKRZ9", "output": "RIGHT\nPRINT 9\nLEFT\nPRINT Z\nLEFT\nPRINT R\nLEFT\nPRINT K\nLEFT\nPRINT V\nLEFT\nPRINT E\nLEFT\nPRINT ,\nLEFT\nPRINT 6\nLEFT\nPRINT 7\nLEFT\nPRINT J\nLEFT\nPRINT C\nLEFT\nPRINT 0\nLEFT\nPRINT K\nLEFT\nPRINT G\nLEFT\nPRINT F\nLEFT\nPRINT X\nLEFT\nPRINT A\nLEFT\nPRINT 3\nLEFT\nPRINT H\nLEFT\nPRINT 8\nLEFT\nPRINT S\nLEFT\nPRINT P\nLEFT\nPRINT I\nLEFT\nPRINT S\nLEFT\nPRINT P\nLEFT\nPRINT .\nLEFT\nPRINT G\nLEFT\nPRINT M\nLEFT\nPRINT V\nLEFT\nPRINT X\nLEFT\nPRINT 7\nLEFT\nPRINT 9\nLEFT\nPRINT N\nLEFT\nPRINT H\n..." }, { "input": "98 72\n.1?7CJ!EFZHO5WUKDZV,0EE92PTAGY078WKN!!41E,Q7381U60!9C,VONEZ6!SFFNDBI86MACX0?D?9!U2UV7S,977PNDSF0HY", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT Y\nLEFT\nPRINT H\nLEFT\nPRINT 0\nLEFT\nPRINT F\nLEFT\nPRINT S\nLEFT\nPRINT D\nLEFT\nPRINT N\nLEFT\nPRINT P\nLEFT\nPRINT 7\nLEFT\nPRINT 7\nLEFT\nPRINT 9\nLEFT\nPRINT ,\nLEFT\nPRINT S\nLEFT\nPRINT 7\nLEFT\nPRINT V\nLEFT\nPRINT U\nLEFT\nPRINT 2\nLEFT\nPRINT U\nLEFT\nPRINT !\nLEFT\nPRINT 9\nLEFT\nPRINT ?\nLEFT\nPRINT D\nLEFT\n..." }, { "input": "97 41\nGQSPZGGRZ0KWUMI79GOXP7!RR9E?Z5YO?6WUL!I7GCXRS8T,PEFQM7CZOUG8HLC7198J1?C69JD00Q!QY1AK!27I?WB?UAUIG", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT G\nRIGHT\nPRINT Q\nRIGHT\nPRINT S\nRIGHT\nPRINT P\nRIGHT\nPRINT Z\nRIGHT\nPRINT G\nRIGHT\nPRINT G\nRIGHT\nPRINT R\nRIGHT\nPRINT Z\nRIGHT\nPRINT 0\nRIGHT\nPRINT K\nRIGHT\nPRINT W\nRIGHT\nPRINT U\nRIGHT\nPRINT M\nRIGHT\nPRINT I\nRIGHT\nPRINT 7\nRIGHT\nPRINT 9\nRIGHT\n..." }, { "input": "96 28\nZCF!PLS27YGXHK8P46H,C.A7MW90ED,4BA!T0!XKIR2GE0HD..YZ0O20O8TA7E35G5YT3L4W5ESSYBHG8.TIQENS4I.R8WE,", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT Z\nRIGHT\nPRINT C\nRIGHT\nPRINT F\nRIGHT\nPRINT !\nRIGHT\nPRINT P\nRIGHT\nPRINT L\nRIGHT\nPRINT S\nRIGHT\nPRINT 2\nRIGHT\nPRINT 7\nRIGHT\nPRINT Y\nRIGHT\nPRINT G\nRIGHT\nPRINT X\nRIGHT\nPRINT H\nRIGHT\nPRINT K\nRIGHT\nPRINT 8\nRIGHT\nPRINT P\nRIGHT\nPRINT 4\nRIGHT\nPRINT 6\nRIGHT\nPRINT H\nRIGHT\nPRINT ,\nRIGHT\nPRINT C\nRIGHT\nPRINT .\nRIGH..." }, { "input": "15 3\n!..!?!,!,..,?!.", "output": "LEFT\nLEFT\nPRINT !\nRIGHT\nPRINT .\nRIGHT\nPRINT .\nRIGHT\nPRINT !\nRIGHT\nPRINT ?\nRIGHT\nPRINT !\nRIGHT\nPRINT ,\nRIGHT\nPRINT !\nRIGHT\nPRINT ,\nRIGHT\nPRINT .\nRIGHT\nPRINT .\nRIGHT\nPRINT ,\nRIGHT\nPRINT ?\nRIGHT\nPRINT !\nRIGHT\nPRINT ." }, { "input": "93 81\nGMIBVKYLURQLWHBGTFNJZZAZNUJJTPQKCPGDMGCDTTGXOANWKTDZSIYBUPFUXGQHCMVIEQCTINRTIUSPGMVZPGWBHPIXC", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT C\nLEFT\nPRINT X\nLEFT\nPRINT I\nLEFT\nPRINT P\nLEFT\nPRINT H\nLEFT\nPRINT B\nLEFT\nPRINT W\nLEFT\nPRINT G\nLEFT\nPRINT P\nLEFT\nPRINT Z\nLEFT\nPRINT V\nLEFT\nPRINT M\nLEFT\nPRINT G\nLEFT\nPRINT P\nLEFT\nPRINT S\nLEFT\nPRINT U\nLEFT\nPRINT I\nLEFT\nPRINT T\nLEFT\nPRINT R\nLEFT\nPRINT N\nLEFT\nPRINT I\nLEFT\nPRINT T\nLEFT\nPRINT C\nLEFT\nPRINT Q\nLEFT\nPRINT E\nLEFT\nPRINT I\nLEFT\nPRINT V\nLEFT\nPRINT M\nLEFT\nPRINT C..." }, { "input": "88 30\n5847857685475132927321580125243001071762130696139249809763381765504146602574972381323476", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT 5\nRIGHT\nPRINT 8\nRIGHT\nPRINT 4\nRIGHT\nPRINT 7\nRIGHT\nPRINT 8\nRIGHT\nPRINT 5\nRIGHT\nPRINT 7\nRIGHT\nPRINT 6\nRIGHT\nPRINT 8\nRIGHT\nPRINT 5\nRIGHT\nPRINT 4\nRIGHT\nPRINT 7\nRIGHT\nPRINT 5\nRIGHT\nPRINT 1\nRIGHT\nPRINT 3\nRIGHT\nPRINT 2\nRIGHT\nPRINT 9\nRIGHT\nPRINT 2\nRIGHT\nPRINT 7\nRIGHT\nPRINT 3\nRIGHT\nPRINT 2\nRIGHT\nP..." }, { "input": "100 50\n5B2N,CXCWOIWH71XV!HCFEUCN3U88JDRIFRO2VHY?!N.RGH.?W14X5S.Y00RIY6YA19BPD0T,WECXYI,O2RF1U4NX9,F5AVLPOYK", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT 5\nRIGHT\nPRINT B\nRIGHT\nPRINT 2\nRIGHT\nPRINT N\nRIGHT\nPRINT ,\nRIGHT\nPRINT C\nRIGHT\nPRINT X\nRIGHT\nPRINT C\nRIGHT\nPRINT W\nRIGHT\nPRINT O\nRIGHT\nPRINT I\nRIGHT\nPRINT W\nRIGHT\nPRINT H\nRIGHT\nPRINT 7\n..." }, { "input": "100 51\n!X85PT!WJDNS9KA6D2SJBR,U,G7M914W07EK3EAJ4XG..UHA3KOOFYJ?M0MEFDC6KNCNGKS0A!S,C02H4TSZA1U7NDBTIY?,7XZ4", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT 4\nLEFT\nPRINT Z\nLEFT\nPRINT X\nLEFT\nPRINT 7\nLEFT\nPRINT ,\nLEFT\nPRINT ?\nLEFT\nPRINT Y\nLEFT\nPRINT I\nLEFT\nPRINT T\nLEFT\nPRINT B\nLEFT\nPRINT D\nLEFT\nPRI..." }, { "input": "100 52\n!MLPE.0K72RW9XKHR60QE?69ILFSIKYSK5AG!TA5.02VG5OMY0967G2RI.62CNK9L8G!7IG9F0XNNCGSDOTFD?I,EBP31HRERZSX", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT X\nLEFT\nPRINT S\nLEFT\nPRINT Z\nLEFT\nPRINT R\nLEFT\nPRINT E\nLEFT\nPRINT R\nLEFT\nPRINT H\nLEFT\nPRINT 1\nLEFT\nPRINT 3\nLEFT\nPRINT P\nLEFT\nPRINT B\nLEFT\nPRINT E\nL..." }, { "input": "100 49\n86C0NR7V,BE09,7,ER715OQ3GZ,P014H4BSQ5YS?OFNDD7YWI?S?UMKIWHSBDZ4398?SSDZLTDU1L?G4QVAB53HNDS!4PYW5C!VI", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT 8\nRIGHT\nPRINT 6\nRIGHT\nPRINT C\nRIGHT\nPRINT 0\nRIGHT\nPRINT N\nRIGHT\nPRINT R\nRIGHT\nPRINT 7\nRIGHT\nPRINT V\nRIGHT\nPRINT ,\nRIGHT\nPRINT B\nRIGHT\nPRINT E\nRIGHT\nPRINT 0\nRIGHT\nPRINT 9\nRIGHT\nPRINT ,\nRIGHT\n..." }, { "input": "100 48\nFO,IYI4AAV?4?N5PWMZX1AINZLKAUJCKMDWU4CROT?.LYWYLYU5S80,15A6VGP!V0N,O.70CP?GEA52WG59UYWU1MMMU4BERVY.!", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT F\nRIGHT\nPRINT O\nRIGHT\nPRINT ,\nRIGHT\nPRINT I\nRIGHT\nPRINT Y\nRIGHT\nPRINT I\nRIGHT\nPRINT 4\nRIGHT\nPRINT A\nRIGHT\nPRINT A\nRIGHT\nPRINT V\nRIGHT\nPRINT ?\nRIGHT\nPRINT 4\nRIGHT\nPRINT ?\nRIGHT\nPRINT N\nRIGHT\nPRINT..." }, { "input": "100 100\nE?F,W.,,O51!!G13ZWP?YHWRT69?RQPW7,V,EM3336F1YAIKJIME1M45?LJM42?45V7221?P.DIO9FK245LXKMR4ALKPDLA5YI2Y", "output": "PRINT Y\nLEFT\nPRINT 2\nLEFT\nPRINT I\nLEFT\nPRINT Y\nLEFT\nPRINT 5\nLEFT\nPRINT A\nLEFT\nPRINT L\nLEFT\nPRINT D\nLEFT\nPRINT P\nLEFT\nPRINT K\nLEFT\nPRINT L\nLEFT\nPRINT A\nLEFT\nPRINT 4\nLEFT\nPRINT R\nLEFT\nPRINT M\nLEFT\nPRINT K\nLEFT\nPRINT X\nLEFT\nPRINT L\nLEFT\nPRINT 5\nLEFT\nPRINT 4\nLEFT\nPRINT 2\nLEFT\nPRINT K\nLEFT\nPRINT F\nLEFT\nPRINT 9\nLEFT\nPRINT O\nLEFT\nPRINT I\nLEFT\nPRINT D\nLEFT\nPRINT .\nLEFT\nPRINT P\nLEFT\nPRINT ?\nLEFT\nPRINT 1\nLEFT\nPRINT 2\nLEFT\nPRINT 2\nLEFT\nPRINT 7\nLEFT\nP..." }, { "input": "100 1\nJJ0ZOX4CY,SQ9L0K!2C9TM3C6K.6R21717I37VDSXGHBMR2!J820AI75D.O7NYMT6F.AGJ8R0RDETWOACK3P6UZAUYRKMKJ!G3WF", "output": "PRINT J\nRIGHT\nPRINT J\nRIGHT\nPRINT 0\nRIGHT\nPRINT Z\nRIGHT\nPRINT O\nRIGHT\nPRINT X\nRIGHT\nPRINT 4\nRIGHT\nPRINT C\nRIGHT\nPRINT Y\nRIGHT\nPRINT ,\nRIGHT\nPRINT S\nRIGHT\nPRINT Q\nRIGHT\nPRINT 9\nRIGHT\nPRINT L\nRIGHT\nPRINT 0\nRIGHT\nPRINT K\nRIGHT\nPRINT !\nRIGHT\nPRINT 2\nRIGHT\nPRINT C\nRIGHT\nPRINT 9\nRIGHT\nPRINT T\nRIGHT\nPRINT M\nRIGHT\nPRINT 3\nRIGHT\nPRINT C\nRIGHT\nPRINT 6\nRIGHT\nPRINT K\nRIGHT\nPRINT .\nRIGHT\nPRINT 6\nRIGHT\nPRINT R\nRIGHT\nPRINT 2\nRIGHT\nPRINT 1\nRIGHT\nPRINT 7\nRIGHT\n..." }, { "input": "99 50\nLQJ!7GDFJ,SKQ8J2R?I4VA0K2.NDY.AZ?7K275NA81.YK!DO,PCQCJYL6BUU30XQ300FP0,LB!5TYTRSGOB4ELZ8IBKGVDNW8?B", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT B\nLEFT\nPRINT ?\nLEFT\nPRINT 8\nLEFT\nPRINT W\nLEFT\nPRINT N\nLEFT\nPRINT D\nLEFT\nPRINT V\nLEFT\nPRINT G\nLEFT\nPRINT K\nLEFT\nPRINT B\nLEFT\nPRINT I\nLEFT\nPRI..." }, { "input": "99 51\nD9QHZXG46IWHHLTD2E,AZO0.M40R4B1WU6F,0QNZ37NQ0ACSU6!7Z?H02AD?0?9,5N5RG6PVOWIE6YA9QBCOHVNU??YT6,29SAC", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT C\nLEFT\nPRINT A\nLEFT\nPRINT S\nLEFT\nPRINT 9\nLEFT\nPRINT 2\nLEFT\nPRINT ,\nLEFT\nPRINT 6\nLEFT\nPRINT T\nLEFT\nPRINT Y\nLEFT\nPRINT ?\nLEFT\nPRINT ?\nLEFT\nPRINT U\nL..." }, { "input": "99 49\nOLUBX0Q3VPNSH,QCAWFVSKZA3NUURJ9PXBS3?72PMJ,27QTA7Z1N?6Q2CSJE,W0YX8XWS.W6B?K?M!PYAD30BX?8.VJCC,P8QL9", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT O\nRIGHT\nPRINT L\nRIGHT\nPRINT U\nRIGHT\nPRINT B\nRIGHT\nPRINT X\nRIGHT\nPRINT 0\nRIGHT\nPRINT Q\nRIGHT\nPRINT 3\nRIGHT\nPRINT V\nRIGHT\nPRINT P\nRIGHT\nPRINT N\nRIGHT\nPRINT S\nRIGHT\nPRINT H\nRIGHT\nPRINT ,\nRIGHT\n..." }, { "input": "99 48\nW0GU5MNE5!JVIOO2SR5OO7RWLHDFH.HLCCX89O21SLD9!CU0MFG3RFZUFT!R0LWNVNSS.W54.67N4VAN1Q2J9NMO9Q6.UE8U6B8", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT W\nRIGHT\nPRINT 0\nRIGHT\nPRINT G\nRIGHT\nPRINT U\nRIGHT\nPRINT 5\nRIGHT\nPRINT M\nRIGHT\nPRINT N\nRIGHT\nPRINT E\nRIGHT\nPRINT 5\nRIGHT\nPRINT !\nRIGHT\nPRINT J\nRIGHT\nPRINT V\nRIGHT\nPRINT I\nRIGHT\nPRINT O\nRIGHT\nPRINT..." }, { "input": "2 1\nOA", "output": "PRINT O\nRIGHT\nPRINT A" }, { "input": "2 2\nGW", "output": "PRINT W\nLEFT\nPRINT G" }, { "input": "3 1\n.VP", "output": "PRINT .\nRIGHT\nPRINT V\nRIGHT\nPRINT P" }, { "input": "3 2\nUD0", "output": "RIGHT\nPRINT 0\nLEFT\nPRINT D\nLEFT\nPRINT U" }, { "input": "3 3\nMYE", "output": "PRINT E\nLEFT\nPRINT Y\nLEFT\nPRINT M" }, { "input": "4 1\nC5EJ", "output": "PRINT C\nRIGHT\nPRINT 5\nRIGHT\nPRINT E\nRIGHT\nPRINT J" }, { "input": "4 2\n5QSW", "output": "LEFT\nPRINT 5\nRIGHT\nPRINT Q\nRIGHT\nPRINT S\nRIGHT\nPRINT W" }, { "input": "4 3\n!F3D", "output": "RIGHT\nPRINT D\nLEFT\nPRINT 3\nLEFT\nPRINT F\nLEFT\nPRINT !" }, { "input": "4 4\nS!?Y", "output": "PRINT Y\nLEFT\nPRINT ?\nLEFT\nPRINT !\nLEFT\nPRINT S" }, { "input": "5 1\nIP4!N", "output": "PRINT I\nRIGHT\nPRINT P\nRIGHT\nPRINT 4\nRIGHT\nPRINT !\nRIGHT\nPRINT N" }, { "input": "5 2\nI7??5", "output": "LEFT\nPRINT I\nRIGHT\nPRINT 7\nRIGHT\nPRINT ?\nRIGHT\nPRINT ?\nRIGHT\nPRINT 5" }, { "input": "5 3\nASNUW", "output": "RIGHT\nRIGHT\nPRINT W\nLEFT\nPRINT U\nLEFT\nPRINT N\nLEFT\nPRINT S\nLEFT\nPRINT A" }, { "input": "5 4\n3?,4L", "output": "RIGHT\nPRINT L\nLEFT\nPRINT 4\nLEFT\nPRINT ,\nLEFT\nPRINT ?\nLEFT\nPRINT 3" }, { "input": "5 5\n30COA", "output": "PRINT A\nLEFT\nPRINT O\nLEFT\nPRINT C\nLEFT\nPRINT 0\nLEFT\nPRINT 3" }, { "input": "4 2\nABCD", "output": "LEFT\nPRINT A\nRIGHT\nPRINT B\nRIGHT\nPRINT C\nRIGHT\nPRINT D" } ]
1,628,200,360
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
62
6,963,200
#AKS Input #x,y=map(int,input().split()) #l=list(map(int,input().split())) #for _ in range(int(input())): n,k=map(int,input().split()) s=input() if n>2: if k<=n//2: for _ in range(k-1): print("LEFT") for i in range(n-1): print(s[i]) print("RIGHT") print(s[-1]) else: for _ in range(k-1): print("RIGHT") for i in range(n-1,0,-1): print(s[i]) print("LEFT") print(s[0]) else: print(s[k-1]) if n==2: if k==2: print("LEFT") print(s[0]) else: print("RIGHT") print(s[1])
Title: Poster Time Limit: None seconds Memory Limit: None megabytes Problem Description: The R1 company has recently bought a high rise building in the centre of Moscow for its main office. It's time to decorate the new office, and the first thing to do is to write the company's slogan above the main entrance to the building. The slogan of the company consists of *n* characters, so the decorators hung a large banner, *n* meters wide and 1 meter high, divided into *n* equal squares. The first character of the slogan must be in the first square (the leftmost) of the poster, the second character must be in the second square, and so on. Of course, the R1 programmers want to write the slogan on the poster themselves. To do this, they have a large (and a very heavy) ladder which was put exactly opposite the *k*-th square of the poster. To draw the *i*-th character of the slogan on the poster, you need to climb the ladder, standing in front of the *i*-th square of the poster. This action (along with climbing up and down the ladder) takes one hour for a painter. The painter is not allowed to draw characters in the adjacent squares when the ladder is in front of the *i*-th square because the uncomfortable position of the ladder may make the characters untidy. Besides, the programmers can move the ladder. In one hour, they can move the ladder either a meter to the right or a meter to the left. Drawing characters and moving the ladder is very tiring, so the programmers want to finish the job in as little time as possible. Develop for them an optimal poster painting plan! Input Specification: The first line contains two integers, *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100) — the number of characters in the slogan and the initial position of the ladder, correspondingly. The next line contains the slogan as *n* characters written without spaces. Each character of the slogan is either a large English letter, or digit, or one of the characters: '.', '!', ',', '?'. Output Specification: In *t* lines, print the actions the programmers need to make. In the *i*-th line print: - "LEFT" (without the quotes), if the *i*-th action was "move the ladder to the left"; - "RIGHT" (without the quotes), if the *i*-th action was "move the ladder to the right"; - "PRINT *x*" (without the quotes), if the *i*-th action was to "go up the ladder, paint character *x*, go down the ladder". The painting time (variable *t*) must be minimum possible. If there are multiple optimal painting plans, you can print any of them. Demo Input: ['2 2\nR1\n', '2 1\nR1\n', '6 4\nGO?GO!\n'] Demo Output: ['PRINT 1\nLEFT\nPRINT R\n', 'PRINT R\nRIGHT\nPRINT 1\n', 'RIGHT\nRIGHT\nPRINT !\nLEFT\nPRINT O\nLEFT\nPRINT G\nLEFT\nPRINT ?\nLEFT\nPRINT O\nLEFT\nPRINT G\n'] Note: Note that the ladder cannot be shifted by less than one meter. The ladder can only stand in front of some square of the poster. For example, you cannot shift a ladder by half a meter and position it between two squares. Then go up and paint the first character and the second character.
```python #AKS Input #x,y=map(int,input().split()) #l=list(map(int,input().split())) #for _ in range(int(input())): n,k=map(int,input().split()) s=input() if n>2: if k<=n//2: for _ in range(k-1): print("LEFT") for i in range(n-1): print(s[i]) print("RIGHT") print(s[-1]) else: for _ in range(k-1): print("RIGHT") for i in range(n-1,0,-1): print(s[i]) print("LEFT") print(s[0]) else: print(s[k-1]) if n==2: if k==2: print("LEFT") print(s[0]) else: print("RIGHT") print(s[1]) ```
0
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,599,653,432
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
80
218
0
a = int(input()) s = [] for i in range(0,a): r1 = list(map(int,input().split()))[:a] s = s+r1 if(sum(s)==0): print('YES') else: print('NO')
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python a = int(input()) s = [] for i in range(0,a): r1 = list(map(int,input().split()))[:a] s = s+r1 if(sum(s)==0): print('YES') else: print('NO') ```
0
899
C
Dividing the numbers
PROGRAMMING
1,300
[ "constructive algorithms", "graphs", "math" ]
null
null
Petya has *n* integers: 1,<=2,<=3,<=...,<=*n*. He wants to split these integers in two non-empty groups in such a way that the absolute difference of sums of integers in each group is as small as possible. Help Petya to split the integers. Each of *n* integers should be exactly in one group.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of integers Petya has.
Print the smallest possible absolute difference in the first line. In the second line print the size of the first group, followed by the integers in that group. You can print these integers in arbitrary order. If there are multiple answers, print any of them.
[ "4\n", "2\n" ]
[ "0\n2 1 4 \n", "1\n1 1 \n" ]
In the first example you have to put integers 1 and 4 in the first group, and 2 and 3 in the second. This way the sum in each group is 5, and the absolute difference is 0. In the second example there are only two integers, and since both groups should be non-empty, you have to put one integer in the first group and one in the second. This way the absolute difference of sums of integers in each group is 1.
1,500
[ { "input": "4", "output": "0\n2 1 4 " }, { "input": "2", "output": "1\n1 1 " }, { "input": "3", "output": "0\n1\n3 " }, { "input": "5", "output": "1\n3\n1 2 5 " }, { "input": "59998", "output": "1\n29999 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "60000", "output": "0\n30000 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59991", "output": "0\n29995\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59989", "output": "1\n29995\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "6", "output": "1\n3 1 4 5 " }, { "input": "7", "output": "0\n3\n1 6 7 " }, { "input": "8", "output": "0\n4 1 4 5 8 " }, { "input": "9", "output": "1\n5\n1 2 3 8 9 " }, { "input": "10", "output": "1\n5 1 4 5 8 9 " }, { "input": "11", "output": "0\n5\n1 2 9 10 11 " }, { "input": "12", "output": "0\n6 1 4 5 8 9 12 " }, { "input": "13", "output": "1\n7\n1 2 3 4 11 12 13 " }, { "input": "14", "output": "1\n7 1 4 5 8 9 12 13 " }, { "input": "15", "output": "0\n7\n1 2 3 12 13 14 15 " }, { "input": "16", "output": "0\n8 1 4 5 8 9 12 13 16 " }, { "input": "17", "output": "1\n9\n1 2 3 4 5 14 15 16 17 " }, { "input": "18", "output": "1\n9 1 4 5 8 9 12 13 16 17 " }, { "input": "19", "output": "0\n9\n1 2 3 4 15 16 17 18 19 " }, { "input": "20", "output": "0\n10 1 4 5 8 9 12 13 16 17 20 " }, { "input": "21", "output": "1\n11\n1 2 3 4 5 6 17 18 19 20 21 " }, { "input": "22", "output": "1\n11 1 4 5 8 9 12 13 16 17 20 21 " }, { "input": "23", "output": "0\n11\n1 2 3 4 5 18 19 20 21 22 23 " }, { "input": "24", "output": "0\n12 1 4 5 8 9 12 13 16 17 20 21 24 " }, { "input": "59999", "output": "0\n29999\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59997", "output": "1\n29999\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59996", "output": "0\n29998 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59995", "output": "0\n29997\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59994", "output": "1\n29997 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59993", "output": "1\n29997\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59992", "output": "0\n29996 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59990", "output": "1\n29995 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "100", "output": "0\n50 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 " }, { "input": "1000", "output": "0\n500 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 28..." }, { "input": "10001", "output": "1\n5001\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "103", "output": "0\n51\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 " }, { "input": "1002", "output": "1\n501 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 28..." }, { "input": "31724", "output": "0\n15862 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "2032", "output": "0\n1016 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "42620", "output": "0\n21310 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "18076", "output": "0\n9038 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "53520", "output": "0\n26760 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "37193", "output": "1\n18597\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "12645", "output": "1\n6323\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "53237", "output": "1\n26619\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "28693", "output": "1\n14347\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "4145", "output": "1\n2073\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "36042", "output": "1\n18021 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "16646", "output": "1\n8323 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "57238", "output": "1\n28619 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "27542", "output": "1\n13771 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "8146", "output": "1\n4073 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "46659", "output": "0\n23329\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "27259", "output": "0\n13629\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "2715", "output": "0\n1357\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "38159", "output": "0\n19079\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "18759", "output": "0\n9379\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." } ]
1,660,226,200
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
15
0
n=int(input()) m=n//2+1 if n==2: exit(print('1\n1 1')) if n%2: print(m) else: print(m%2) print(m,end=' ') for i in range(1,m+m%2,2): print(i,n+1-i,end=' ')
Title: Dividing the numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya has *n* integers: 1,<=2,<=3,<=...,<=*n*. He wants to split these integers in two non-empty groups in such a way that the absolute difference of sums of integers in each group is as small as possible. Help Petya to split the integers. Each of *n* integers should be exactly in one group. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of integers Petya has. Output Specification: Print the smallest possible absolute difference in the first line. In the second line print the size of the first group, followed by the integers in that group. You can print these integers in arbitrary order. If there are multiple answers, print any of them. Demo Input: ['4\n', '2\n'] Demo Output: ['0\n2 1 4 \n', '1\n1 1 \n'] Note: In the first example you have to put integers 1 and 4 in the first group, and 2 and 3 in the second. This way the sum in each group is 5, and the absolute difference is 0. In the second example there are only two integers, and since both groups should be non-empty, you have to put one integer in the first group and one in the second. This way the absolute difference of sums of integers in each group is 1.
```python n=int(input()) m=n//2+1 if n==2: exit(print('1\n1 1')) if n%2: print(m) else: print(m%2) print(m,end=' ') for i in range(1,m+m%2,2): print(i,n+1-i,end=' ') ```
0
492
B
Vanya and Lanterns
PROGRAMMING
1,200
[ "binary search", "implementation", "math", "sortings" ]
null
null
Vanya walks late at night along a straight street of length *l*, lit by *n* lanterns. Consider the coordinate system with the beginning of the street corresponding to the point 0, and its end corresponding to the point *l*. Then the *i*-th lantern is at the point *a**i*. The lantern lights all points of the street that are at the distance of at most *d* from it, where *d* is some positive number, common for all lanterns. Vanya wonders: what is the minimum light radius *d* should the lanterns have to light the whole street?
The first line contains two integers *n*, *l* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*l*<=≤<=109) — the number of lanterns and the length of the street respectively. The next line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=*l*). Multiple lanterns can be located at the same point. The lanterns may be located at the ends of the street.
Print the minimum light radius *d*, needed to light the whole street. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=9.
[ "7 15\n15 5 3 7 9 14 0\n", "2 5\n2 5\n" ]
[ "2.5000000000\n", "2.0000000000\n" ]
Consider the second sample. At *d* = 2 the first lantern will light the segment [0, 4] of the street, and the second lantern will light segment [3, 5]. Thus, the whole street will be lit.
1,000
[ { "input": "7 15\n15 5 3 7 9 14 0", "output": "2.5000000000" }, { "input": "2 5\n2 5", "output": "2.0000000000" }, { "input": "46 615683844\n431749087 271781274 274974690 324606253 480870261 401650581 13285442 478090364 266585394 425024433 588791449 492057200 391293435 563090494 317950 173675329 473068378 356306865 311731938 192959832 321180686 141984626 578985584 512026637 175885185 590844074 47103801 212211134 330150 509886963 565955809 315640375 612907074 500474373 524310737 568681652 315339618 478782781 518873818 271322031 74600969 539099112 85129347 222068995 106014720 77282307", "output": "22258199.5000000000" }, { "input": "2 1000000000\n0 1000000000", "output": "500000000.0000000000" }, { "input": "2 555\n200 300", "output": "255.0000000000" }, { "input": "1 1\n1", "output": "1.0000000000" }, { "input": "1 1\n0", "output": "1.0000000000" }, { "input": "1 1000000000\n0", "output": "1000000000.0000000000" }, { "input": "1 1000000000\n1000000000", "output": "1000000000.0000000000" }, { "input": "1 999999999\n499999999", "output": "500000000.0000000000" }, { "input": "4 700\n0 250 475 700", "output": "125.0000000000" }, { "input": "4 700\n0 225 450 700", "output": "125.0000000000" }, { "input": "5 1000\n0 250 500 750 1000", "output": "125.0000000000" }, { "input": "5 2000\n1001 1001 1001 1001 1001", "output": "1001.0000000000" }, { "input": "1 999\n501", "output": "501.0000000000" }, { "input": "2 1000\n400 600", "output": "400.0000000000" }, { "input": "4 15\n1 3 9 11", "output": "4.0000000000" }, { "input": "1 5\n2", "output": "3.0000000000" } ]
1,698,309,942
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
31
0
n, l = map(int, input().split()) pos = sorted([int(item) for item in input().split()]) maxSeen = 0 for i in range(n - 1): maxSeen = max(maxSeen, pos[i + 1] - pos[i]) if maxSeen/2 < pos[0]: print(pos[0]) elif maxSeen/2 < l - pos[n - 1]: print(l - pos[n - 1]) else: print(maxSeen / 2)
Title: Vanya and Lanterns Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya walks late at night along a straight street of length *l*, lit by *n* lanterns. Consider the coordinate system with the beginning of the street corresponding to the point 0, and its end corresponding to the point *l*. Then the *i*-th lantern is at the point *a**i*. The lantern lights all points of the street that are at the distance of at most *d* from it, where *d* is some positive number, common for all lanterns. Vanya wonders: what is the minimum light radius *d* should the lanterns have to light the whole street? Input Specification: The first line contains two integers *n*, *l* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*l*<=≤<=109) — the number of lanterns and the length of the street respectively. The next line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=*l*). Multiple lanterns can be located at the same point. The lanterns may be located at the ends of the street. Output Specification: Print the minimum light radius *d*, needed to light the whole street. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=9. Demo Input: ['7 15\n15 5 3 7 9 14 0\n', '2 5\n2 5\n'] Demo Output: ['2.5000000000\n', '2.0000000000\n'] Note: Consider the second sample. At *d* = 2 the first lantern will light the segment [0, 4] of the street, and the second lantern will light segment [3, 5]. Thus, the whole street will be lit.
```python n, l = map(int, input().split()) pos = sorted([int(item) for item in input().split()]) maxSeen = 0 for i in range(n - 1): maxSeen = max(maxSeen, pos[i + 1] - pos[i]) if maxSeen/2 < pos[0]: print(pos[0]) elif maxSeen/2 < l - pos[n - 1]: print(l - pos[n - 1]) else: print(maxSeen / 2) ```
0
785
A
Anton and Polyhedrons
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons: - Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces. All five kinds of polyhedrons are shown on the picture below: Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of polyhedrons in Anton's collection. Each of the following *n* lines of the input contains a string *s**i* — the name of the *i*-th polyhedron in Anton's collection. The string can look like this: - "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron.
Output one number — the total number of faces in all the polyhedrons in Anton's collection.
[ "4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n", "3\nDodecahedron\nOctahedron\nOctahedron\n" ]
[ "42\n", "28\n" ]
In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20 + 6 + 4 + 12 = 42 faces.
500
[ { "input": "4\nIcosahedron\nCube\nTetrahedron\nDodecahedron", "output": "42" }, { "input": "3\nDodecahedron\nOctahedron\nOctahedron", "output": "28" }, { "input": "25\nIcosahedron\nOctahedron\nTetrahedron\nDodecahedron\nCube\nIcosahedron\nOctahedron\nCube\nTetrahedron\nIcosahedron\nIcosahedron\nTetrahedron\nOctahedron\nDodecahedron\nIcosahedron\nOctahedron\nIcosahedron\nTetrahedron\nDodecahedron\nTetrahedron\nOctahedron\nCube\nCube\nDodecahedron\nTetrahedron", "output": "256" }, { "input": "1\nTetrahedron", "output": "4" }, { "input": "1\nCube", "output": "6" }, { "input": "1\nOctahedron", "output": "8" }, { "input": "1\nDodecahedron", "output": "12" }, { "input": "1\nIcosahedron", "output": "20" }, { "input": "28\nOctahedron\nDodecahedron\nOctahedron\nOctahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nDodecahedron\nDodecahedron\nCube\nDodecahedron\nCube\nTetrahedron\nCube\nCube\nTetrahedron\nDodecahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nIcosahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron", "output": "340" } ]
1,673,438,288
2,147,483,647
PyPy 3-64
OK
TESTS
30
1,076
9,216,000
n = int(input()) c = 0 for i in range(n): n1 = input() if(n1=="Tetrahedron"): c+=4 elif(n1=="Cube"): c+=6 elif(n1=="Octahedron"): c+=8 elif(n1=="Dodecahedron"): c+=12 elif(n1=="Icosahedron"): c+=20 print(c)
Title: Anton and Polyhedrons Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons: - Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces. All five kinds of polyhedrons are shown on the picture below: Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number! Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of polyhedrons in Anton's collection. Each of the following *n* lines of the input contains a string *s**i* — the name of the *i*-th polyhedron in Anton's collection. The string can look like this: - "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron. Output Specification: Output one number — the total number of faces in all the polyhedrons in Anton's collection. Demo Input: ['4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n', '3\nDodecahedron\nOctahedron\nOctahedron\n'] Demo Output: ['42\n', '28\n'] Note: In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20 + 6 + 4 + 12 = 42 faces.
```python n = int(input()) c = 0 for i in range(n): n1 = input() if(n1=="Tetrahedron"): c+=4 elif(n1=="Cube"): c+=6 elif(n1=="Octahedron"): c+=8 elif(n1=="Dodecahedron"): c+=12 elif(n1=="Icosahedron"): c+=20 print(c) ```
3
758
A
Holiday Of Equality
PROGRAMMING
800
[ "implementation", "math" ]
null
null
In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury. Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland). You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them.
The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen.
In the only line print the integer *S* — the minimum number of burles which are had to spend.
[ "5\n0 1 2 3 4\n", "5\n1 1 0 1 1\n", "3\n1 3 1\n", "1\n12\n" ]
[ "10", "1", "4", "0" ]
In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4. In the second example it is enough to give one burle to the third citizen. In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3. In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles.
500
[ { "input": "5\n0 1 2 3 4", "output": "10" }, { "input": "5\n1 1 0 1 1", "output": "1" }, { "input": "3\n1 3 1", "output": "4" }, { "input": "1\n12", "output": "0" }, { "input": "3\n1 2 3", "output": "3" }, { "input": "14\n52518 718438 358883 462189 853171 592966 225788 46977 814826 295697 676256 561479 56545 764281", "output": "5464380" }, { "input": "21\n842556 216391 427181 626688 775504 168309 851038 448402 880826 73697 593338 519033 135115 20128 424606 939484 846242 756907 377058 241543 29353", "output": "9535765" }, { "input": "3\n1 3 2", "output": "3" }, { "input": "3\n2 1 3", "output": "3" }, { "input": "3\n2 3 1", "output": "3" }, { "input": "3\n3 1 2", "output": "3" }, { "input": "3\n3 2 1", "output": "3" }, { "input": "1\n228503", "output": "0" }, { "input": "2\n32576 550340", "output": "517764" }, { "input": "3\n910648 542843 537125", "output": "741328" }, { "input": "4\n751720 572344 569387 893618", "output": "787403" }, { "input": "6\n433864 631347 597596 794426 713555 231193", "output": "1364575" }, { "input": "9\n31078 645168 695751 126111 375934 150495 838412 434477 993107", "output": "4647430" }, { "input": "30\n315421 772664 560686 654312 151528 356749 351486 707462 820089 226682 546700 136028 824236 842130 578079 337807 665903 764100 617900 822937 992759 591749 651310 742085 767695 695442 17967 515106 81059 186025", "output": "13488674" }, { "input": "45\n908719 394261 815134 419990 926993 383792 772842 277695 527137 655356 684956 695716 273062 550324 106247 399133 442382 33076 462920 294674 846052 817752 421365 474141 290471 358990 109812 74492 543281 169434 919692 786809 24028 197184 310029 801476 699355 429672 51343 374128 776726 850380 293868 981569 550763", "output": "21993384" }, { "input": "56\n100728 972537 13846 385421 756708 184642 259487 319707 376662 221694 675284 972837 499419 13846 38267 289898 901299 831197 954715 197515 514102 910423 127555 883934 362472 870788 538802 741008 973434 448124 391526 363321 947321 544618 68006 782313 955075 741981 815027 723297 585059 718114 700739 413489 454091 736144 308999 98065 3716 347323 9635 289003 986510 607065 60236 273351", "output": "26984185" }, { "input": "70\n644488 5444 150441 714420 602059 335330 510670 196555 546346 740011 509449 850947 692874 524857 750434 952985 223744 374727 896124 753037 367352 679050 560202 172728 569291 778616 332116 286927 843598 372698 244906 498046 900681 709791 420904 724593 864493 813094 791377 39998 296710 625656 403891 579231 706693 984045 16901 574259 562265 761104 930361 256045 124461 538980 573508 372148 988722 108592 784354 55302 232524 277205 782251 299943 436488 743389 324618 742543 266915 99642", "output": "32816391" }, { "input": "1\n0", "output": "0" }, { "input": "1\n1000000", "output": "0" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100\n1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "99000000" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000", "output": "99000000" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "99000000" }, { "input": "3\n0 0 0", "output": "0" }, { "input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "3\n5 0 0", "output": "10" }, { "input": "5\n2 10 0 0 0", "output": "38" } ]
1,650,946,826
2,147,483,647
Python 3
OK
TESTS
41
46
0
h=int(input()) b=list(map(int,input().split())) q=[] for i in range(len(b)): q+=[max(b)-b[i]] print(sum(q))
Title: Holiday Of Equality Time Limit: None seconds Memory Limit: None megabytes Problem Description: In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury. Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland). You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them. Input Specification: The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen. Output Specification: In the only line print the integer *S* — the minimum number of burles which are had to spend. Demo Input: ['5\n0 1 2 3 4\n', '5\n1 1 0 1 1\n', '3\n1 3 1\n', '1\n12\n'] Demo Output: ['10', '1', '4', '0'] Note: In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4. In the second example it is enough to give one burle to the third citizen. In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3. In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles.
```python h=int(input()) b=list(map(int,input().split())) q=[] for i in range(len(b)): q+=[max(b)-b[i]] print(sum(q)) ```
3
641
A
Little Artem and Grasshopper
PROGRAMMING
1,000
[ "implementation" ]
null
null
Little Artem found a grasshopper. He brought it to his house and constructed a jumping area for him. The area looks like a strip of cells 1<=×<=*n*. Each cell contains the direction for the next jump and the length of that jump. Grasshopper starts in the first cell and follows the instructions written on the cells. Grasshopper stops immediately if it jumps out of the strip. Now Artem wants to find out if this will ever happen.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — length of the strip. Next line contains a string of length *n* which consists of characters "&lt;" and "&gt;" only, that provide the direction of the jump from the corresponding cell. Next line contains *n* integers *d**i* (1<=≤<=*d**i*<=≤<=109) — the length of the jump from the *i*-th cell.
Print "INFINITE" (without quotes) if grasshopper will continue his jumps forever. Otherwise print "FINITE" (without quotes).
[ "2\n&gt;&lt;\n1 2\n", "3\n&gt;&gt;&lt;\n2 1 1\n" ]
[ "FINITE\n", "INFINITE" ]
In the first sample grasshopper starts from the first cell and jumps to the right on the next cell. When he is in the second cell he needs to jump two cells left so he will jump out of the strip. Second sample grasshopper path is 1 - 3 - 2 - 3 - 2 - 3 and so on. The path is infinite.
500
[ { "input": "2\n><\n1 2", "output": "FINITE" }, { "input": "3\n>><\n2 1 1", "output": "INFINITE" }, { "input": "1\n>\n1000000000", "output": "FINITE" }, { "input": "1\n<\n1000000000", "output": "FINITE" }, { "input": "2\n>>\n1 1", "output": "FINITE" }, { "input": "5\n>><><\n1 2 3 1 2", "output": "FINITE" }, { "input": "5\n>><><\n1 2 2 1 2", "output": "INFINITE" }, { "input": "10\n>>>>>>>>><\n1 1 1 1 1 1 1 1 1 10", "output": "FINITE" }, { "input": "10\n>>>>>>>>><\n1 1 1 1 1 1 1 1 1 5", "output": "INFINITE" }, { "input": "10\n>>>>>>>>><\n1 1 1 1 1 1 1 1 1 1", "output": "INFINITE" }, { "input": "3\n><<\n2 1 1", "output": "INFINITE" }, { "input": "10\n>>>>>>>>>>\n1 1 1 1 1 1 1 1 1 100", "output": "FINITE" }, { "input": "3\n><<\n2 100 2", "output": "INFINITE" }, { "input": "3\n><<\n2 3 2", "output": "INFINITE" }, { "input": "3\n>><\n2 3 2", "output": "INFINITE" }, { "input": "3\n><>\n1 1 1", "output": "INFINITE" }, { "input": "3\n>><\n2 2 2", "output": "INFINITE" }, { "input": "4\n>><<\n2 100 2 100", "output": "INFINITE" }, { "input": "3\n><>\n1 1 3", "output": "INFINITE" }, { "input": "5\n><>>>\n1 1 10 10 10", "output": "INFINITE" }, { "input": "5\n><<<<\n500 1 2 3 4", "output": "FINITE" }, { "input": "4\n><><\n2 1000 1 1", "output": "INFINITE" }, { "input": "3\n><<\n2 10 2", "output": "INFINITE" }, { "input": "3\n><<\n2 5 2", "output": "INFINITE" }, { "input": "2\n><\n5 5", "output": "FINITE" }, { "input": "3\n>><\n1 10 10", "output": "FINITE" }, { "input": "4\n><<>\n2 1 1 5", "output": "INFINITE" }, { "input": "5\n<<>>>\n1 1 1 1 1", "output": "FINITE" }, { "input": "3\n><>\n1 1 12345", "output": "INFINITE" }, { "input": "4\n>>><\n3 2 2 3", "output": "INFINITE" }, { "input": "3\n><>\n1 1 100000", "output": "INFINITE" } ]
1,520,085,117
2,147,483,647
Python 3
OK
TESTS
60
155
13,209,600
n,s,i=int(input()),input(),0 d=list(map(int,input().split())) for _ in range(len(s)+1): if i<0 or i>=len(s):exit(print('FINITE')) i+=[d[i],-d[i]][s[i]=='<'] print('INFINITE')
Title: Little Artem and Grasshopper Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Artem found a grasshopper. He brought it to his house and constructed a jumping area for him. The area looks like a strip of cells 1<=×<=*n*. Each cell contains the direction for the next jump and the length of that jump. Grasshopper starts in the first cell and follows the instructions written on the cells. Grasshopper stops immediately if it jumps out of the strip. Now Artem wants to find out if this will ever happen. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — length of the strip. Next line contains a string of length *n* which consists of characters "&lt;" and "&gt;" only, that provide the direction of the jump from the corresponding cell. Next line contains *n* integers *d**i* (1<=≤<=*d**i*<=≤<=109) — the length of the jump from the *i*-th cell. Output Specification: Print "INFINITE" (without quotes) if grasshopper will continue his jumps forever. Otherwise print "FINITE" (without quotes). Demo Input: ['2\n&gt;&lt;\n1 2\n', '3\n&gt;&gt;&lt;\n2 1 1\n'] Demo Output: ['FINITE\n', 'INFINITE'] Note: In the first sample grasshopper starts from the first cell and jumps to the right on the next cell. When he is in the second cell he needs to jump two cells left so he will jump out of the strip. Second sample grasshopper path is 1 - 3 - 2 - 3 - 2 - 3 and so on. The path is infinite.
```python n,s,i=int(input()),input(),0 d=list(map(int,input().split())) for _ in range(len(s)+1): if i<0 or i>=len(s):exit(print('FINITE')) i+=[d[i],-d[i]][s[i]=='<'] print('INFINITE') ```
3
886
C
Petya and Catacombs
PROGRAMMING
1,300
[ "dsu", "greedy", "implementation", "trees" ]
null
null
A very brave explorer Petya once decided to explore Paris catacombs. Since Petya is not really experienced, his exploration is just walking through the catacombs. Catacombs consist of several rooms and bidirectional passages between some pairs of them. Some passages can connect a room to itself and since the passages are built on different depths they do not intersect each other. Every minute Petya arbitrary chooses a passage from the room he is currently in and then reaches the room on the other end of the passage in exactly one minute. When he enters a room at minute *i*, he makes a note in his logbook with number *t**i*: - If Petya has visited this room before, he writes down the minute he was in this room last time; - Otherwise, Petya writes down an arbitrary non-negative integer strictly less than current minute *i*. Initially, Petya was in one of the rooms at minute 0, he didn't write down number *t*0. At some point during his wandering Petya got tired, threw out his logbook and went home. Vasya found his logbook and now he is curious: what is the minimum possible number of rooms in Paris catacombs according to Petya's logbook?
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·105) — then number of notes in Petya's logbook. The second line contains *n* non-negative integers *t*1,<=*t*2,<=...,<=*t**n* (0<=≤<=*t**i*<=&lt;<=*i*) — notes in the logbook.
In the only line print a single integer — the minimum possible number of rooms in Paris catacombs.
[ "2\n0 0\n", "5\n0 1 0 1 3\n" ]
[ "2\n", "3\n" ]
In the first sample, sequence of rooms Petya visited could be, for example 1 → 1 → 2, 1 → 2 → 1 or 1 → 2 → 3. The minimum possible number of rooms is 2. In the second sample, the sequence could be 1 → 2 → 3 → 1 → 2 → 1.
1,500
[ { "input": "2\n0 0", "output": "2" }, { "input": "5\n0 1 0 1 3", "output": "3" }, { "input": "7\n0 1 0 0 0 0 0", "output": "6" }, { "input": "100\n0 0 0 0 0 0 1 4 4 0 2 2 4 1 7 1 11 0 8 4 12 12 3 0 3 2 2 4 3 9 1 5 4 6 9 14 6 2 4 18 7 7 19 11 20 13 17 16 0 34 2 6 12 27 9 4 29 22 4 20 20 17 17 20 37 53 17 3 3 15 1 46 11 24 31 6 12 6 11 18 13 1 5 0 19 10 24 41 16 41 18 52 46 39 16 30 18 23 53 13", "output": "66" }, { "input": "100\n0 0 0 0 1 2 0 0 3 3 2 2 6 4 1 6 2 9 8 0 2 0 2 2 0 0 10 0 4 20 4 11 3 9 0 3 8 2 6 3 13 2 1 23 20 20 16 7 1 37 6 1 25 25 14 30 6 23 18 3 2 16 0 4 37 9 4 6 2 14 15 11 16 35 36 7 32 26 8 1 0 37 35 38 27 3 16 8 3 7 7 25 13 13 30 11 5 28 0 12", "output": "71" }, { "input": "1\n0", "output": "1" }, { "input": "14\n0 0 1 1 2 2 3 3 4 4 5 5 6 6", "output": "8" }, { "input": "2\n0 1", "output": "1" } ]
1,510,508,500
5,799
Python 3
WRONG_ANSWER
PRETESTS
2
46
0
input() katas = ([int(x) for x in input().split()]) rooms = 2 drm = {1:0, 2:1} for i in range(1, len(katas)): minutes = 2+i if katas[i] <= minutes: if not katas[i] in list(drm.values()): rooms += 1 drm.update({max(list(drm.keys()))+1 : minutes}) print(rooms)
Title: Petya and Catacombs Time Limit: None seconds Memory Limit: None megabytes Problem Description: A very brave explorer Petya once decided to explore Paris catacombs. Since Petya is not really experienced, his exploration is just walking through the catacombs. Catacombs consist of several rooms and bidirectional passages between some pairs of them. Some passages can connect a room to itself and since the passages are built on different depths they do not intersect each other. Every minute Petya arbitrary chooses a passage from the room he is currently in and then reaches the room on the other end of the passage in exactly one minute. When he enters a room at minute *i*, he makes a note in his logbook with number *t**i*: - If Petya has visited this room before, he writes down the minute he was in this room last time; - Otherwise, Petya writes down an arbitrary non-negative integer strictly less than current minute *i*. Initially, Petya was in one of the rooms at minute 0, he didn't write down number *t*0. At some point during his wandering Petya got tired, threw out his logbook and went home. Vasya found his logbook and now he is curious: what is the minimum possible number of rooms in Paris catacombs according to Petya's logbook? Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·105) — then number of notes in Petya's logbook. The second line contains *n* non-negative integers *t*1,<=*t*2,<=...,<=*t**n* (0<=≤<=*t**i*<=&lt;<=*i*) — notes in the logbook. Output Specification: In the only line print a single integer — the minimum possible number of rooms in Paris catacombs. Demo Input: ['2\n0 0\n', '5\n0 1 0 1 3\n'] Demo Output: ['2\n', '3\n'] Note: In the first sample, sequence of rooms Petya visited could be, for example 1 → 1 → 2, 1 → 2 → 1 or 1 → 2 → 3. The minimum possible number of rooms is 2. In the second sample, the sequence could be 1 → 2 → 3 → 1 → 2 → 1.
```python input() katas = ([int(x) for x in input().split()]) rooms = 2 drm = {1:0, 2:1} for i in range(1, len(katas)): minutes = 2+i if katas[i] <= minutes: if not katas[i] in list(drm.values()): rooms += 1 drm.update({max(list(drm.keys()))+1 : minutes}) print(rooms) ```
0
922
D
Robot Vacuum Cleaner
PROGRAMMING
1,800
[ "greedy", "sortings" ]
null
null
Pushok the dog has been chasing Imp for a few hours already. Fortunately, Imp knows that Pushok is afraid of a robot vacuum cleaner. While moving, the robot generates a string *t* consisting of letters 's' and 'h', that produces a lot of noise. We define noise of string *t* as the number of occurrences of string "sh" as a subsequence in it, in other words, the number of such pairs (*i*,<=*j*), that *i*<=&lt;<=*j* and and . The robot is off at the moment. Imp knows that it has a sequence of strings *t**i* in its memory, and he can arbitrary change their order. When the robot is started, it generates the string *t* as a concatenation of these strings in the given order. The noise of the resulting string equals the noise of this concatenation. Help Imp to find the maximum noise he can achieve by changing the order of the strings.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of strings in robot's memory. Next *n* lines contain the strings *t*1,<=*t*2,<=...,<=*t**n*, one per line. It is guaranteed that the strings are non-empty, contain only English letters 's' and 'h' and their total length does not exceed 105.
Print a single integer — the maxumum possible noise Imp can achieve by changing the order of the strings.
[ "4\nssh\nhs\ns\nhhhs\n", "2\nh\ns\n" ]
[ "18\n", "1\n" ]
The optimal concatenation in the first sample is *ssshhshhhs*.
1,500
[ { "input": "4\nssh\nhs\ns\nhhhs", "output": "18" }, { "input": "2\nh\ns", "output": "1" }, { "input": "6\nh\ns\nhhh\nh\nssssss\ns", "output": "40" }, { "input": "1\ns", "output": "0" }, { "input": "10\nsshshss\nhssssssssh\nhhhhhh\nhhhs\nhshhh\nhhhhshsh\nhh\nh\nshs\nsshhshhss", "output": "613" }, { "input": "100\nh\nshh\nh\nhs\nshh\nhh\nh\nssh\nhss\nh\nhh\nh\nh\nh\nh\nh\nh\nh\nh\nh\nhh\nh\nh\nh\nh\nhhh\nh\nh\nhhh\nsh\nhh\nhs\nh\nh\nshs\nh\nh\nh\nshh\nhs\nhs\nh\nh\nh\nhhh\nh\nhhs\nhh\nh\nssh\nh\nh\nhh\nsh\nh\nhss\nh\nhh\nsh\nhh\nhh\nhhh\nhs\nh\nh\nh\nshs\nhs\nshs\nsh\nh\nh\nhs\nh\nh\nh\nh\nsh\nssh\nh\nh\nhh\nhhh\nssh\nh\nssh\nhs\nhh\nh\nhss\nhhh\nh\nhhh\nhss\nhhh\nh\nhhh\nsh\nh\nh", "output": "5058" } ]
1,638,507,277
2,147,483,647
PyPy 3
OK
TESTS
48
904
14,233,600
from functools import cmp_to_key def cmp(a, b): n, m = a + b, b + a s = 0 ans1 = 0 ans2 = 0 for i in range(len(n)): if(n[i] == "s"): s += 1 else: ans1 += s s = 0 for i in range(len(m)): if(m[i] == "s"): s += 1 else: ans2 += s if(ans1 > ans2): return -1 else: return 1 n = int(input()) arr = [] for i in range(n): arr.append(input()) arr.sort(key = cmp_to_key(cmp)) s = 0 ans = 0 for i in arr: for j in i: if(j == "s"): s += 1 else: ans += s print(ans)
Title: Robot Vacuum Cleaner Time Limit: None seconds Memory Limit: None megabytes Problem Description: Pushok the dog has been chasing Imp for a few hours already. Fortunately, Imp knows that Pushok is afraid of a robot vacuum cleaner. While moving, the robot generates a string *t* consisting of letters 's' and 'h', that produces a lot of noise. We define noise of string *t* as the number of occurrences of string "sh" as a subsequence in it, in other words, the number of such pairs (*i*,<=*j*), that *i*<=&lt;<=*j* and and . The robot is off at the moment. Imp knows that it has a sequence of strings *t**i* in its memory, and he can arbitrary change their order. When the robot is started, it generates the string *t* as a concatenation of these strings in the given order. The noise of the resulting string equals the noise of this concatenation. Help Imp to find the maximum noise he can achieve by changing the order of the strings. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of strings in robot's memory. Next *n* lines contain the strings *t*1,<=*t*2,<=...,<=*t**n*, one per line. It is guaranteed that the strings are non-empty, contain only English letters 's' and 'h' and their total length does not exceed 105. Output Specification: Print a single integer — the maxumum possible noise Imp can achieve by changing the order of the strings. Demo Input: ['4\nssh\nhs\ns\nhhhs\n', '2\nh\ns\n'] Demo Output: ['18\n', '1\n'] Note: The optimal concatenation in the first sample is *ssshhshhhs*.
```python from functools import cmp_to_key def cmp(a, b): n, m = a + b, b + a s = 0 ans1 = 0 ans2 = 0 for i in range(len(n)): if(n[i] == "s"): s += 1 else: ans1 += s s = 0 for i in range(len(m)): if(m[i] == "s"): s += 1 else: ans2 += s if(ans1 > ans2): return -1 else: return 1 n = int(input()) arr = [] for i in range(n): arr.append(input()) arr.sort(key = cmp_to_key(cmp)) s = 0 ans = 0 for i in arr: for j in i: if(j == "s"): s += 1 else: ans += s print(ans) ```
3
637
B
Chat Order
PROGRAMMING
1,200
[ "*special", "binary search", "constructive algorithms", "data structures", "sortings" ]
null
null
Polycarp is a big lover of killing time in social networks. A page with a chatlist in his favourite network is made so that when a message is sent to some friend, his friend's chat rises to the very top of the page. The relative order of the other chats doesn't change. If there was no chat with this friend before, then a new chat is simply inserted to the top of the list. Assuming that the chat list is initially empty, given the sequence of Polycaprus' messages make a list of chats after all of his messages are processed. Assume that no friend wrote any message to Polycarpus.
The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Polycarpus' messages. Next *n* lines enlist the message recipients in the order in which the messages were sent. The name of each participant is a non-empty sequence of lowercase English letters of length at most 10.
Print all the recipients to who Polycarp talked to in the order of chats with them, from top to bottom.
[ "4\nalex\nivan\nroman\nivan\n", "8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina\n" ]
[ "ivan\nroman\nalex\n", "alina\nmaria\nekaterina\ndarya\n" ]
In the first test case Polycarpus first writes to friend by name "alex", and the list looks as follows: 1. alex Then Polycarpus writes to friend by name "ivan" and the list looks as follows: 1. ivan 1. alex Polycarpus writes the third message to friend by name "roman" and the list looks as follows: 1. roman 1. ivan 1. alex Polycarpus writes the fourth message to friend by name "ivan", to who he has already sent a message, so the list of chats changes as follows: 1. ivan 1. roman 1. alex
1,000
[ { "input": "4\nalex\nivan\nroman\nivan", "output": "ivan\nroman\nalex" }, { "input": "8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina", "output": "alina\nmaria\nekaterina\ndarya" }, { "input": "1\nwdi", "output": "wdi" }, { "input": "2\nypg\nypg", "output": "ypg" }, { "input": "3\nexhll\nexhll\narruapexj", "output": "arruapexj\nexhll" }, { "input": "3\nfv\nle\nle", "output": "le\nfv" }, { "input": "8\nm\nm\nm\nm\nm\nm\nm\nm", "output": "m" }, { "input": "10\nr\nr\ni\nw\nk\nr\nb\nu\nu\nr", "output": "r\nu\nb\nk\nw\ni" }, { "input": "7\ne\nfau\ncmk\nnzs\nby\nwx\ntjmok", "output": "tjmok\nwx\nby\nnzs\ncmk\nfau\ne" }, { "input": "6\nklrj\nwe\nklrj\nwe\nwe\nwe", "output": "we\nklrj" }, { "input": "8\nzncybqmh\naeebef\nzncybqmh\nn\naeebef\nzncybqmh\nzncybqmh\nzncybqmh", "output": "zncybqmh\naeebef\nn" }, { "input": "30\nkqqcbs\nvap\nkymomn\nj\nkqqcbs\nfuzlzoum\nkymomn\ndbh\nfuzlzoum\nkymomn\nvap\nvlgzs\ndbh\nvlgzs\nbvy\ndbh\nkymomn\nkymomn\neoqql\nkymomn\nkymomn\nkqqcbs\nvlgzs\nkqqcbs\nkqqcbs\nfuzlzoum\nvlgzs\nrylgdoo\nvlgzs\nrylgdoo", "output": "rylgdoo\nvlgzs\nfuzlzoum\nkqqcbs\nkymomn\neoqql\ndbh\nbvy\nvap\nj" }, { "input": "40\nji\nv\nv\nns\nji\nn\nji\nv\nfvy\nvje\nns\nvje\nv\nhas\nv\nusm\nhas\nfvy\nvje\nkdb\nn\nv\nji\nji\nn\nhas\nv\nji\nkdb\nr\nvje\nns\nv\nusm\nn\nvje\nhas\nns\nhas\nn", "output": "n\nhas\nns\nvje\nusm\nv\nr\nkdb\nji\nfvy" }, { "input": "50\njcg\nvle\njopb\nepdb\nnkef\nfv\nxj\nufe\nfuy\noqta\ngbc\nyuz\nec\nyji\nkuux\ncwm\ntq\nnno\nhp\nzry\nxxpp\ntjvo\ngyz\nkwo\nvwqz\nyaqc\njnj\nwoav\nqcv\ndcu\ngc\nhovn\nop\nevy\ndc\ntrpu\nyb\nuzfa\npca\noq\nnhxy\nsiqu\nde\nhphy\nc\nwovu\nf\nbvv\ndsik\nlwyg", "output": "lwyg\ndsik\nbvv\nf\nwovu\nc\nhphy\nde\nsiqu\nnhxy\noq\npca\nuzfa\nyb\ntrpu\ndc\nevy\nop\nhovn\ngc\ndcu\nqcv\nwoav\njnj\nyaqc\nvwqz\nkwo\ngyz\ntjvo\nxxpp\nzry\nhp\nnno\ntq\ncwm\nkuux\nyji\nec\nyuz\ngbc\noqta\nfuy\nufe\nxj\nfv\nnkef\nepdb\njopb\nvle\njcg" }, { "input": "100\nvhh\nvhh\nvhh\nfa\nfa\nvhh\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nfa\nfa\nfa\nfa\nfa\nfa\nvhh\nfa\nfa\nvhh\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nvhh\nfa\nvhh\nvhh\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nfa\nfa\nfa\nfa\nfa\nfa\nvhh\nvhh\nfa\nvhh\nfa\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nvhh\nfa\nvhh", "output": "vhh\nfa" }, { "input": "2\naa\nbb", "output": "bb\naa" }, { "input": "2\naa\na", "output": "a\naa" }, { "input": "3\naa\naa\naa", "output": "aa" }, { "input": "5\naa\na\naa\na\naa", "output": "aa\na" }, { "input": "7\naaaa\naaaa\naaa\na\naa\naaaaaaa\naaa", "output": "aaa\naaaaaaa\naa\na\naaaa" }, { "input": "5\na\naa\naaa\naaaa\na", "output": "a\naaaa\naaa\naa" }, { "input": "12\naaaaa\naaaaaa\naaaa\naaaaaa\naa\naaaa\naaaa\naaaaaa\na\naaa\naaaaaaaa\naa", "output": "aa\naaaaaaaa\naaa\na\naaaaaa\naaaa\naaaaa" }, { "input": "3\na\naa\naaa", "output": "aaa\naa\na" }, { "input": "9\nzzz\nzzzzz\nzzz\nzzzz\nzz\nzzzz\nzzzzz\nzzzz\nzzzzzzz", "output": "zzzzzzz\nzzzz\nzzzzz\nzz\nzzz" } ]
1,458,465,867
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
11
3,000
8,396,800
n = int(input()) b = [] c = [] for i in range(n) : b.insert(0,input()) for i in range(n) : if c.count(b[i]) != 0 : continue print(b[i]) c.append(b[i])
Title: Chat Order Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp is a big lover of killing time in social networks. A page with a chatlist in his favourite network is made so that when a message is sent to some friend, his friend's chat rises to the very top of the page. The relative order of the other chats doesn't change. If there was no chat with this friend before, then a new chat is simply inserted to the top of the list. Assuming that the chat list is initially empty, given the sequence of Polycaprus' messages make a list of chats after all of his messages are processed. Assume that no friend wrote any message to Polycarpus. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Polycarpus' messages. Next *n* lines enlist the message recipients in the order in which the messages were sent. The name of each participant is a non-empty sequence of lowercase English letters of length at most 10. Output Specification: Print all the recipients to who Polycarp talked to in the order of chats with them, from top to bottom. Demo Input: ['4\nalex\nivan\nroman\nivan\n', '8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina\n'] Demo Output: ['ivan\nroman\nalex\n', 'alina\nmaria\nekaterina\ndarya\n'] Note: In the first test case Polycarpus first writes to friend by name "alex", and the list looks as follows: 1. alex Then Polycarpus writes to friend by name "ivan" and the list looks as follows: 1. ivan 1. alex Polycarpus writes the third message to friend by name "roman" and the list looks as follows: 1. roman 1. ivan 1. alex Polycarpus writes the fourth message to friend by name "ivan", to who he has already sent a message, so the list of chats changes as follows: 1. ivan 1. roman 1. alex
```python n = int(input()) b = [] c = [] for i in range(n) : b.insert(0,input()) for i in range(n) : if c.count(b[i]) != 0 : continue print(b[i]) c.append(b[i]) ```
0
189
A
Cut Ribbon
PROGRAMMING
1,300
[ "brute force", "dp" ]
null
null
Polycarpus has a ribbon, its length is *n*. He wants to cut the ribbon in a way that fulfils the following two conditions: - After the cutting each ribbon piece should have length *a*, *b* or *c*. - After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting.
The first line contains four space-separated integers *n*, *a*, *b* and *c* (1<=≤<=*n*,<=*a*,<=*b*,<=*c*<=≤<=4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers *a*, *b* and *c* can coincide.
Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.
[ "5 5 3 2\n", "7 5 5 2\n" ]
[ "2\n", "2\n" ]
In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3. In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.
500
[ { "input": "5 5 3 2", "output": "2" }, { "input": "7 5 5 2", "output": "2" }, { "input": "4 4 4 4", "output": "1" }, { "input": "1 1 1 1", "output": "1" }, { "input": "4000 1 2 3", "output": "4000" }, { "input": "4000 3 4 5", "output": "1333" }, { "input": "10 3 4 5", "output": "3" }, { "input": "100 23 15 50", "output": "2" }, { "input": "3119 3515 1021 7", "output": "11" }, { "input": "918 102 1327 1733", "output": "9" }, { "input": "3164 42 430 1309", "output": "15" }, { "input": "3043 317 1141 2438", "output": "7" }, { "input": "26 1 772 2683", "output": "26" }, { "input": "370 2 1 15", "output": "370" }, { "input": "734 12 6 2", "output": "367" }, { "input": "418 18 14 17", "output": "29" }, { "input": "18 16 28 9", "output": "2" }, { "input": "14 6 2 17", "output": "7" }, { "input": "29 27 18 2", "output": "2" }, { "input": "29 12 7 10", "output": "3" }, { "input": "27 23 4 3", "output": "9" }, { "input": "5 14 5 2", "output": "1" }, { "input": "5 17 26 5", "output": "1" }, { "input": "9 1 10 3", "output": "9" }, { "input": "2 19 15 1", "output": "2" }, { "input": "4 6 4 9", "output": "1" }, { "input": "10 6 2 9", "output": "5" }, { "input": "2 2 9 6", "output": "1" }, { "input": "6 2 4 1", "output": "6" }, { "input": "27 24 5 27", "output": "1" }, { "input": "2683 83 26 2709", "output": "101" }, { "input": "728 412 789 158", "output": "3" }, { "input": "3964 4 2916 176", "output": "991" }, { "input": "3399 2035 2 3334", "output": "683" }, { "input": "3455 244 3301 3", "output": "991" }, { "input": "595 2263 3625 1", "output": "595" }, { "input": "4000 1 1 1", "output": "4000" }, { "input": "3999 2 2 3999", "output": "1" }, { "input": "25 6 8 11", "output": "3" }, { "input": "4000 500 1000 2000", "output": "8" }, { "input": "53 10 11 23", "output": "5" }, { "input": "100 100 1 1", "output": "100" }, { "input": "17 3 4 10", "output": "5" }, { "input": "413 101 102 105", "output": "4" }, { "input": "490 4 49 50", "output": "111" }, { "input": "3999 2 3 3", "output": "1999" }, { "input": "8 3 8 4", "output": "2" }, { "input": "5 1 3 3", "output": "5" }, { "input": "100 3 17 22", "output": "27" }, { "input": "4000 2 3 4", "output": "2000" }, { "input": "4000 3 3 5", "output": "1332" }, { "input": "13 4 6 7", "output": "2" }, { "input": "4000 5 2 2", "output": "2000" }, { "input": "3999 2 2 3", "output": "1999" }, { "input": "4000 33 7 3333", "output": "564" }, { "input": "60 33 20 9", "output": "4" }, { "input": "100 9 11 99", "output": "10" }, { "input": "2009 6 8 9", "output": "334" } ]
1,683,141,434
2,147,483,647
Python 3
OK
TESTS
58
46
0
n, a, b, c = map(int, input().split()) d = [-1] * (n + 1) d[0] = 0 for i in range(1, n + 1): if i >= a and d[i - a] != -1: d[i] = max(d[i], d[i - a] + 1) if i >= b and d[i - b] != -1: d[i] = max(d[i], d[i - b] + 1) if i >= c and d[i - c] != -1: d[i] = max(d[i], d[i - c] + 1) print(d[n])
Title: Cut Ribbon Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus has a ribbon, its length is *n*. He wants to cut the ribbon in a way that fulfils the following two conditions: - After the cutting each ribbon piece should have length *a*, *b* or *c*. - After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting. Input Specification: The first line contains four space-separated integers *n*, *a*, *b* and *c* (1<=≤<=*n*,<=*a*,<=*b*,<=*c*<=≤<=4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers *a*, *b* and *c* can coincide. Output Specification: Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists. Demo Input: ['5 5 3 2\n', '7 5 5 2\n'] Demo Output: ['2\n', '2\n'] Note: In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3. In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.
```python n, a, b, c = map(int, input().split()) d = [-1] * (n + 1) d[0] = 0 for i in range(1, n + 1): if i >= a and d[i - a] != -1: d[i] = max(d[i], d[i - a] + 1) if i >= b and d[i - b] != -1: d[i] = max(d[i], d[i - b] + 1) if i >= c and d[i - c] != -1: d[i] = max(d[i], d[i - c] + 1) print(d[n]) ```
3
166
E
Tetrahedron
PROGRAMMING
1,500
[ "dp", "math", "matrices" ]
null
null
You are given a tetrahedron. Let's mark its vertices with letters *A*, *B*, *C* and *D* correspondingly. An ant is standing in the vertex *D* of the tetrahedron. The ant is quite active and he wouldn't stay idle. At each moment of time he makes a step from one vertex to another one along some edge of the tetrahedron. The ant just can't stand on one place. You do not have to do much to solve the problem: your task is to count the number of ways in which the ant can go from the initial vertex *D* to itself in exactly *n* steps. In other words, you are asked to find out the number of different cyclic paths with the length of *n* from vertex *D* to itself. As the number can be quite large, you should print it modulo 1000000007 (109<=+<=7).
The first line contains the only integer *n* (1<=≤<=*n*<=≤<=107) — the required length of the cyclic path.
Print the only integer — the required number of ways modulo 1000000007 (109<=+<=7).
[ "2\n", "4\n" ]
[ "3\n", "21\n" ]
The required paths in the first sample are: - *D* - *A* - *D* - *D* - *B* - *D* - *D* - *C* - *D*
1,000
[ { "input": "2", "output": "3" }, { "input": "4", "output": "21" }, { "input": "1", "output": "0" }, { "input": "3", "output": "6" }, { "input": "5", "output": "60" }, { "input": "6", "output": "183" }, { "input": "7", "output": "546" }, { "input": "8", "output": "1641" }, { "input": "9", "output": "4920" }, { "input": "10", "output": "14763" }, { "input": "15", "output": "3587226" }, { "input": "30", "output": "782663359" }, { "input": "10000000", "output": "192336614" }, { "input": "100", "output": "721510432" }, { "input": "300", "output": "327873818" }, { "input": "900", "output": "295068084" }, { "input": "1500", "output": "451187545" }, { "input": "3000", "output": "645417275" }, { "input": "5000", "output": "755610910" }, { "input": "10000", "output": "723907367" }, { "input": "50000", "output": "969527595" }, { "input": "90000", "output": "548978368" }, { "input": "99999", "output": "909741855" }, { "input": "100000", "output": "729225554" }, { "input": "300000", "output": "93822635" }, { "input": "800000", "output": "178940616" }, { "input": "1000000", "output": "266233856" }, { "input": "4000000", "output": "882155933" }, { "input": "9000000", "output": "295060537" }, { "input": "9999999", "output": "730778875" }, { "input": "1000000", "output": "266233856" }, { "input": "9999999", "output": "730778875" }, { "input": "10000000", "output": "192336614" }, { "input": "9999998", "output": "576926295" }, { "input": "30", "output": "782663359" }, { "input": "31", "output": "347990060" } ]
1,646,965,297
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
11
92
0
import math n = int(input()) prev = 0 for i in range(2, n+1): prev = 3*(prev*1 + math.cos(i*math.pi)) print(int(prev))
Title: Tetrahedron Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a tetrahedron. Let's mark its vertices with letters *A*, *B*, *C* and *D* correspondingly. An ant is standing in the vertex *D* of the tetrahedron. The ant is quite active and he wouldn't stay idle. At each moment of time he makes a step from one vertex to another one along some edge of the tetrahedron. The ant just can't stand on one place. You do not have to do much to solve the problem: your task is to count the number of ways in which the ant can go from the initial vertex *D* to itself in exactly *n* steps. In other words, you are asked to find out the number of different cyclic paths with the length of *n* from vertex *D* to itself. As the number can be quite large, you should print it modulo 1000000007 (109<=+<=7). Input Specification: The first line contains the only integer *n* (1<=≤<=*n*<=≤<=107) — the required length of the cyclic path. Output Specification: Print the only integer — the required number of ways modulo 1000000007 (109<=+<=7). Demo Input: ['2\n', '4\n'] Demo Output: ['3\n', '21\n'] Note: The required paths in the first sample are: - *D* - *A* - *D* - *D* - *B* - *D* - *D* - *C* - *D*
```python import math n = int(input()) prev = 0 for i in range(2, n+1): prev = 3*(prev*1 + math.cos(i*math.pi)) print(int(prev)) ```
0
0
none
none
none
0
[ "none" ]
null
null
Arseny likes to organize parties and invite people to it. However, not only friends come to his parties, but friends of his friends, friends of friends of his friends and so on. That's why some of Arseny's guests can be unknown to him. He decided to fix this issue using the following procedure. At each step he selects one of his guests *A*, who pairwise introduces all of his friends to each other. After this action any two friends of *A* become friends. This process is run until all pairs of guests are friends. Arseny doesn't want to spend much time doing it, so he wants to finish this process using the minimum number of steps. Help Arseny to do it.
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=22; ) — the number of guests at the party (including Arseny) and the number of pairs of people which are friends. Each of the next *m* lines contains two integers *u* and *v* (1<=≤<=*u*,<=*v*<=≤<=*n*; *u*<=≠<=*v*), which means that people with numbers *u* and *v* are friends initially. It's guaranteed that each pair of friends is described not more than once and the graph of friendship is connected.
In the first line print the minimum number of steps required to make all pairs of guests friends. In the second line print the ids of guests, who are selected at each step. If there are multiple solutions, you can output any of them.
[ "5 6\n1 2\n1 3\n2 3\n2 5\n3 4\n4 5\n", "4 4\n1 2\n1 3\n1 4\n3 4\n" ]
[ "2\n2 3 ", "1\n1 " ]
In the first test case there is no guest who is friend of all other guests, so at least two steps are required to perform the task. After second guest pairwise introduces all his friends, only pairs of guests (4, 1) and (4, 2) are not friends. Guest 3 or 5 can introduce them. In the second test case guest number 1 is a friend of all guests, so he can pairwise introduce all guests in one step.
0
[]
1,514,044,692
6,792
Python 3
RUNTIME_ERROR
PRETESTS
2
78
6,348,800
import queue def bfs(graph, node, visited): q = queue.Queue() q.put(node) visited[node] = True distance[node] = 0 way[node] = [p] while not q.empty(): position = q.get() for vertex in graph[position]: if not visited[vertex]: visited[vertex] = True distance[vertex] = distance[position] + 1 way[vertex] = way[position] + [vertex + 1] q.put(vertex) n, m = map(int, input().split()) roster = [set() for i in range(n)] for i in range(m): a, b = map(int, input().split()) roster[a - 1].add(b - 1) roster[b - 1].add(a - 1) ans1 = -1 for p in range(1, n): distance = [None] * n way = [None] * n depth = bfs(roster, p - 1, [False] * n) ans_distance = max(distance) ans_way = way[distance.index(ans_distance)] if ans_distance < ans1 or ans1 == -1: ans1 = ans_distance ans2 = ans_way print(ans1) for i in range(len(ans2)): ans2[i] -= 1 print(*ans2[1:])
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Arseny likes to organize parties and invite people to it. However, not only friends come to his parties, but friends of his friends, friends of friends of his friends and so on. That's why some of Arseny's guests can be unknown to him. He decided to fix this issue using the following procedure. At each step he selects one of his guests *A*, who pairwise introduces all of his friends to each other. After this action any two friends of *A* become friends. This process is run until all pairs of guests are friends. Arseny doesn't want to spend much time doing it, so he wants to finish this process using the minimum number of steps. Help Arseny to do it. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=22; ) — the number of guests at the party (including Arseny) and the number of pairs of people which are friends. Each of the next *m* lines contains two integers *u* and *v* (1<=≤<=*u*,<=*v*<=≤<=*n*; *u*<=≠<=*v*), which means that people with numbers *u* and *v* are friends initially. It's guaranteed that each pair of friends is described not more than once and the graph of friendship is connected. Output Specification: In the first line print the minimum number of steps required to make all pairs of guests friends. In the second line print the ids of guests, who are selected at each step. If there are multiple solutions, you can output any of them. Demo Input: ['5 6\n1 2\n1 3\n2 3\n2 5\n3 4\n4 5\n', '4 4\n1 2\n1 3\n1 4\n3 4\n'] Demo Output: ['2\n2 3 ', '1\n1 '] Note: In the first test case there is no guest who is friend of all other guests, so at least two steps are required to perform the task. After second guest pairwise introduces all his friends, only pairs of guests (4, 1) and (4, 2) are not friends. Guest 3 or 5 can introduce them. In the second test case guest number 1 is a friend of all guests, so he can pairwise introduce all guests in one step.
```python import queue def bfs(graph, node, visited): q = queue.Queue() q.put(node) visited[node] = True distance[node] = 0 way[node] = [p] while not q.empty(): position = q.get() for vertex in graph[position]: if not visited[vertex]: visited[vertex] = True distance[vertex] = distance[position] + 1 way[vertex] = way[position] + [vertex + 1] q.put(vertex) n, m = map(int, input().split()) roster = [set() for i in range(n)] for i in range(m): a, b = map(int, input().split()) roster[a - 1].add(b - 1) roster[b - 1].add(a - 1) ans1 = -1 for p in range(1, n): distance = [None] * n way = [None] * n depth = bfs(roster, p - 1, [False] * n) ans_distance = max(distance) ans_way = way[distance.index(ans_distance)] if ans_distance < ans1 or ans1 == -1: ans1 = ans_distance ans2 = ans_way print(ans1) for i in range(len(ans2)): ans2[i] -= 1 print(*ans2[1:]) ```
-1
476
B
Dreamoon and WiFi
PROGRAMMING
1,300
[ "bitmasks", "brute force", "combinatorics", "dp", "math", "probabilities" ]
null
null
Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them. Each command is one of the following two types: 1. Go 1 unit towards the positive direction, denoted as '+' 1. Go 1 unit towards the negative direction, denoted as '-' But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5). You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands?
The first line contains a string *s*1 — the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}. The second line contains a string *s*2 — the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command. Lengths of two strings are equal and do not exceed 10.
Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9.
[ "++-+-\n+-+-+\n", "+-+-\n+-??\n", "+++\n??-\n" ]
[ "1.000000000000\n", "0.500000000000\n", "0.000000000000\n" ]
For the first sample, both *s*<sub class="lower-index">1</sub> and *s*<sub class="lower-index">2</sub> will lead Dreamoon to finish at the same position  + 1. For the second sample, *s*<sub class="lower-index">1</sub> will lead Dreamoon to finish at position 0, while there are four possibilites for *s*<sub class="lower-index">2</sub>: {"+-++", "+-+-", "+--+", "+---"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5. For the third sample, *s*<sub class="lower-index">2</sub> could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position  + 3 is 0.
1,500
[ { "input": "++-+-\n+-+-+", "output": "1.000000000000" }, { "input": "+-+-\n+-??", "output": "0.500000000000" }, { "input": "+++\n??-", "output": "0.000000000000" }, { "input": "++++++++++\n+++??++?++", "output": "0.125000000000" }, { "input": "--+++---+-\n??????????", "output": "0.205078125000" }, { "input": "+--+++--+-\n??????????", "output": "0.246093750000" }, { "input": "+\n+", "output": "1.000000000000" }, { "input": "-\n?", "output": "0.500000000000" }, { "input": "+\n-", "output": "0.000000000000" }, { "input": "-\n-", "output": "1.000000000000" }, { "input": "-\n+", "output": "0.000000000000" }, { "input": "+\n?", "output": "0.500000000000" }, { "input": "++++++++++\n++++++++++", "output": "1.000000000000" }, { "input": "++++++++++\n++++-+++++", "output": "0.000000000000" }, { "input": "----------\n++++++++++", "output": "0.000000000000" }, { "input": "++++++++++\n++++??++++", "output": "0.250000000000" }, { "input": "----------\n+++?++++-+", "output": "0.000000000000" }, { "input": "++++++++++\n++++++++?+", "output": "0.500000000000" }, { "input": "--++++--+\n?-+?-??+-", "output": "0.250000000000" }, { "input": "----------\n??????????", "output": "0.000976562500" }, { "input": "+--++\n+--+-", "output": "0.000000000000" }, { "input": "-----++---\n????????+?", "output": "0.017578125000" }, { "input": "------+--+\n??????????", "output": "0.043945312500" }, { "input": "---++--\n???????", "output": "0.164062500000" }, { "input": "-----++\n???????", "output": "0.164062500000" }, { "input": "+---+--\n???????", "output": "0.164062500000" }, { "input": "---+-+\n??????", "output": "0.234375000000" }, { "input": "+++-+\n---++", "output": "0.000000000000" }, { "input": "++-+--+\n?-?+??+", "output": "0.375000000000" }, { "input": "----+++--\n-+?+++?--", "output": "0.000000000000" }, { "input": "+-----\n+?----", "output": "0.500000000000" } ]
1,697,035,355
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
0
62
2,764,800
a=sum(map(int,input().split())) print(-1 if a%5 else a//5)
Title: Dreamoon and WiFi Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them. Each command is one of the following two types: 1. Go 1 unit towards the positive direction, denoted as '+' 1. Go 1 unit towards the negative direction, denoted as '-' But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5). You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands? Input Specification: The first line contains a string *s*1 — the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}. The second line contains a string *s*2 — the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command. Lengths of two strings are equal and do not exceed 10. Output Specification: Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9. Demo Input: ['++-+-\n+-+-+\n', '+-+-\n+-??\n', '+++\n??-\n'] Demo Output: ['1.000000000000\n', '0.500000000000\n', '0.000000000000\n'] Note: For the first sample, both *s*<sub class="lower-index">1</sub> and *s*<sub class="lower-index">2</sub> will lead Dreamoon to finish at the same position  + 1. For the second sample, *s*<sub class="lower-index">1</sub> will lead Dreamoon to finish at position 0, while there are four possibilites for *s*<sub class="lower-index">2</sub>: {"+-++", "+-+-", "+--+", "+---"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5. For the third sample, *s*<sub class="lower-index">2</sub> could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position  + 3 is 0.
```python a=sum(map(int,input().split())) print(-1 if a%5 else a//5) ```
-1
859
B
Lazy Security Guard
PROGRAMMING
1,000
[ "brute force", "geometry", "math" ]
null
null
Your security guard friend recently got a new job at a new security company. The company requires him to patrol an area of the city encompassing exactly *N* city blocks, but they let him choose which blocks. That is, your friend must walk the perimeter of a region whose area is exactly *N* blocks. Your friend is quite lazy and would like your help to find the shortest possible route that meets the requirements. The city is laid out in a square grid pattern, and is large enough that for the sake of the problem it can be considered infinite.
Input will consist of a single integer *N* (1<=≤<=*N*<=≤<=106), the number of city blocks that must be enclosed by the route.
Print the minimum perimeter that can be achieved.
[ "4\n", "11\n", "22\n" ]
[ "8\n", "14\n", "20\n" ]
Here are some possible shapes for the examples: <img class="tex-graphics" src="https://espresso.codeforces.com/e11bef2cf82b55dd583cfc97d12b5aee5e483a65.png" style="max-width: 100.0%;max-height: 100.0%;"/>
750
[ { "input": "4", "output": "8" }, { "input": "11", "output": "14" }, { "input": "22", "output": "20" }, { "input": "3", "output": "8" }, { "input": "1024", "output": "128" }, { "input": "101", "output": "42" }, { "input": "30", "output": "22" }, { "input": "1000000", "output": "4000" }, { "input": "1", "output": "4" }, { "input": "2", "output": "6" }, { "input": "5", "output": "10" }, { "input": "6", "output": "10" }, { "input": "7", "output": "12" }, { "input": "8", "output": "12" }, { "input": "9", "output": "12" }, { "input": "10", "output": "14" }, { "input": "999000", "output": "3998" }, { "input": "999001", "output": "4000" }, { "input": "999999", "output": "4000" }, { "input": "933206", "output": "3866" }, { "input": "718351", "output": "3392" }, { "input": "607443", "output": "3118" }, { "input": "347887", "output": "2360" }, { "input": "246206", "output": "1986" }, { "input": "151375", "output": "1558" }, { "input": "12639", "output": "450" }, { "input": "3751", "output": "246" }, { "input": "3607", "output": "242" }, { "input": "124", "output": "46" }, { "input": "64", "output": "32" }, { "input": "31", "output": "24" }, { "input": "23", "output": "20" }, { "input": "15", "output": "16" }, { "input": "19", "output": "18" }, { "input": "59637", "output": "978" } ]
1,585,504,646
2,147,483,647
Python 3
OK
TESTS
35
124
0
# cook your dish here from math import sqrt,ceil n=int(input()) x=int(sqrt(n)) if(x*x==n): # both side x print(4*x) else: a=x #one side b=ceil(n/a) # another side print(2*(a+b))
Title: Lazy Security Guard Time Limit: None seconds Memory Limit: None megabytes Problem Description: Your security guard friend recently got a new job at a new security company. The company requires him to patrol an area of the city encompassing exactly *N* city blocks, but they let him choose which blocks. That is, your friend must walk the perimeter of a region whose area is exactly *N* blocks. Your friend is quite lazy and would like your help to find the shortest possible route that meets the requirements. The city is laid out in a square grid pattern, and is large enough that for the sake of the problem it can be considered infinite. Input Specification: Input will consist of a single integer *N* (1<=≤<=*N*<=≤<=106), the number of city blocks that must be enclosed by the route. Output Specification: Print the minimum perimeter that can be achieved. Demo Input: ['4\n', '11\n', '22\n'] Demo Output: ['8\n', '14\n', '20\n'] Note: Here are some possible shapes for the examples: <img class="tex-graphics" src="https://espresso.codeforces.com/e11bef2cf82b55dd583cfc97d12b5aee5e483a65.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python # cook your dish here from math import sqrt,ceil n=int(input()) x=int(sqrt(n)) if(x*x==n): # both side x print(4*x) else: a=x #one side b=ceil(n/a) # another side print(2*(a+b)) ```
3
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,591,722,059
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
93
0
x,y = map(str, input().split()) res = "" for i in range(0, len(x)): res += "1" if x[i] != y[i] else "0" print(res)
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python x,y = map(str, input().split()) res = "" for i in range(0, len(x)): res += "1" if x[i] != y[i] else "0" print(res) ```
-1
560
B
Gerald is into Art
PROGRAMMING
1,200
[ "constructive algorithms", "implementation" ]
null
null
Gerald bought two very rare paintings at the Sotheby's auction and he now wants to hang them on the wall. For that he bought a special board to attach it to the wall and place the paintings on the board. The board has shape of an *a*1<=×<=*b*1 rectangle, the paintings have shape of a *a*2<=×<=*b*2 and *a*3<=×<=*b*3 rectangles. Since the paintings are painted in the style of abstract art, it does not matter exactly how they will be rotated, but still, one side of both the board, and each of the paintings must be parallel to the floor. The paintings can touch each other and the edges of the board, but can not overlap or go beyond the edge of the board. Gerald asks whether it is possible to place the paintings on the board, or is the board he bought not large enough?
The first line contains two space-separated numbers *a*1 and *b*1 — the sides of the board. Next two lines contain numbers *a*2,<=*b*2,<=*a*3 and *b*3 — the sides of the paintings. All numbers *a**i*,<=*b**i* in the input are integers and fit into the range from 1 to 1000.
If the paintings can be placed on the wall, print "YES" (without the quotes), and if they cannot, print "NO" (without the quotes).
[ "3 2\n1 3\n2 1\n", "5 5\n3 3\n3 3\n", "4 2\n2 3\n1 2\n" ]
[ "YES\n", "NO\n", "YES\n" ]
That's how we can place the pictures in the first test: <img class="tex-graphics" src="https://espresso.codeforces.com/b41bf40c649073c6d3dd62eb7ae7adfc4bd131bd.png" style="max-width: 100.0%;max-height: 100.0%;"/> And that's how we can do it in the third one. <img class="tex-graphics" src="https://espresso.codeforces.com/dafdf616eaa5ef10cd3c9ccdc7fba7ece392268c.png" style="max-width: 100.0%;max-height: 100.0%;"/>
1,000
[ { "input": "3 2\n1 3\n2 1", "output": "YES" }, { "input": "5 5\n3 3\n3 3", "output": "NO" }, { "input": "4 2\n2 3\n1 2", "output": "YES" }, { "input": "3 3\n1 1\n1 1", "output": "YES" }, { "input": "1000 1000\n999 999\n1 1000", "output": "YES" }, { "input": "7 7\n5 5\n2 4", "output": "YES" }, { "input": "3 3\n2 2\n2 2", "output": "NO" }, { "input": "2 9\n5 1\n3 2", "output": "YES" }, { "input": "9 9\n3 8\n5 2", "output": "YES" }, { "input": "10 10\n10 5\n4 3", "output": "YES" }, { "input": "10 6\n10 1\n5 7", "output": "YES" }, { "input": "6 10\n6 3\n6 2", "output": "YES" }, { "input": "7 10\n7 5\n1 7", "output": "YES" }, { "input": "10 10\n7 4\n3 5", "output": "YES" }, { "input": "4 10\n1 1\n9 3", "output": "YES" }, { "input": "8 7\n1 7\n3 2", "output": "YES" }, { "input": "5 10\n5 2\n3 5", "output": "YES" }, { "input": "9 9\n9 7\n2 9", "output": "YES" }, { "input": "8 10\n3 8\n7 4", "output": "YES" }, { "input": "10 10\n6 6\n4 9", "output": "YES" }, { "input": "8 9\n7 6\n2 3", "output": "YES" }, { "input": "10 10\n9 10\n6 1", "output": "YES" }, { "input": "90 100\n52 76\n6 47", "output": "YES" }, { "input": "84 99\n82 54\n73 45", "output": "YES" }, { "input": "100 62\n93 3\n100 35", "output": "YES" }, { "input": "93 98\n75 32\n63 7", "output": "YES" }, { "input": "86 100\n2 29\n71 69", "output": "YES" }, { "input": "96 100\n76 21\n78 79", "output": "YES" }, { "input": "99 100\n95 68\n85 32", "output": "YES" }, { "input": "97 100\n95 40\n70 60", "output": "YES" }, { "input": "100 100\n6 45\n97 54", "output": "YES" }, { "input": "99 100\n99 72\n68 1", "output": "YES" }, { "input": "88 100\n54 82\n86 45", "output": "YES" }, { "input": "91 100\n61 40\n60 88", "output": "YES" }, { "input": "100 100\n36 32\n98 68", "output": "YES" }, { "input": "78 86\n63 8\n9 4", "output": "YES" }, { "input": "72 93\n38 5\n67 64", "output": "YES" }, { "input": "484 1000\n465 2\n9 535", "output": "YES" }, { "input": "808 1000\n583 676\n527 416", "output": "YES" }, { "input": "965 1000\n606 895\n533 394", "output": "YES" }, { "input": "824 503\n247 595\n151 570", "output": "YES" }, { "input": "970 999\n457 305\n542 597", "output": "YES" }, { "input": "332 834\n312 23\n505 272", "output": "YES" }, { "input": "886 724\n830 439\n102 594", "output": "YES" }, { "input": "958 1000\n326 461\n836 674", "output": "YES" }, { "input": "903 694\n104 488\n567 898", "output": "YES" }, { "input": "800 1000\n614 163\n385 608", "output": "YES" }, { "input": "926 1000\n813 190\n187 615", "output": "YES" }, { "input": "541 1000\n325 596\n403 56", "output": "YES" }, { "input": "881 961\n139 471\n323 731", "output": "YES" }, { "input": "993 1000\n201 307\n692 758", "output": "YES" }, { "input": "954 576\n324 433\n247 911", "output": "YES" }, { "input": "7 3\n7 8\n1 5", "output": "NO" }, { "input": "5 9\n2 7\n8 10", "output": "NO" }, { "input": "10 4\n4 3\n5 10", "output": "NO" }, { "input": "2 7\n8 3\n2 7", "output": "NO" }, { "input": "1 4\n7 2\n3 2", "output": "NO" }, { "input": "5 8\n5 1\n10 5", "output": "NO" }, { "input": "3 5\n3 6\n10 7", "output": "NO" }, { "input": "6 2\n6 6\n1 2", "output": "NO" }, { "input": "10 3\n6 6\n4 7", "output": "NO" }, { "input": "9 10\n4 8\n5 6", "output": "YES" }, { "input": "3 8\n3 2\n8 7", "output": "NO" }, { "input": "3 3\n3 4\n3 6", "output": "NO" }, { "input": "6 10\n1 8\n3 2", "output": "YES" }, { "input": "8 1\n7 5\n3 9", "output": "NO" }, { "input": "9 7\n5 2\n4 1", "output": "YES" }, { "input": "100 30\n42 99\n78 16", "output": "NO" }, { "input": "64 76\n5 13\n54 57", "output": "YES" }, { "input": "85 19\n80 18\n76 70", "output": "NO" }, { "input": "57 74\n99 70\n86 29", "output": "NO" }, { "input": "22 21\n73 65\n92 35", "output": "NO" }, { "input": "90 75\n38 2\n100 61", "output": "NO" }, { "input": "62 70\n48 12\n75 51", "output": "NO" }, { "input": "23 17\n34 71\n98 34", "output": "NO" }, { "input": "95 72\n65 31\n89 50", "output": "NO" }, { "input": "68 19\n39 35\n95 65", "output": "NO" }, { "input": "28 65\n66 27\n5 72", "output": "NO" }, { "input": "100 16\n41 76\n24 15", "output": "NO" }, { "input": "21 63\n28 73\n60 72", "output": "NO" }, { "input": "85 18\n37 84\n35 62", "output": "NO" }, { "input": "58 64\n98 30\n61 52", "output": "NO" }, { "input": "32 891\n573 351\n648 892", "output": "NO" }, { "input": "796 846\n602 302\n600 698", "output": "NO" }, { "input": "665 289\n608 360\n275 640", "output": "NO" }, { "input": "237 595\n318 161\n302 838", "output": "NO" }, { "input": "162 742\n465 429\n571 29", "output": "NO" }, { "input": "222 889\n491 923\n76 195", "output": "NO" }, { "input": "794 140\n166 622\n378 905", "output": "NO" }, { "input": "663 287\n193 212\n615 787", "output": "NO" }, { "input": "427 433\n621 441\n868 558", "output": "NO" }, { "input": "1000 388\n332 49\n735 699", "output": "NO" }, { "input": "868 535\n409 690\n761 104", "output": "YES" }, { "input": "632 786\n710 208\n436 290", "output": "YES" }, { "input": "501 932\n463 636\n363 918", "output": "NO" }, { "input": "73 79\n626 483\n924 517", "output": "NO" }, { "input": "190 34\n653 163\n634 314", "output": "NO" }, { "input": "2 4\n1 3\n1 4", "output": "YES" }, { "input": "3 10\n1 1\n1 11", "output": "NO" }, { "input": "5 4\n3 3\n2 6", "output": "NO" }, { "input": "3 4\n1 6\n2 3", "output": "NO" } ]
1,683,568,541
2,147,483,647
PyPy 3
OK
TESTS
101
93
0
import sys, os, io input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline a1, b1 = map(int, input().split()) a2, b2 = map(int, input().split()) a3, b3 = map(int, input().split()) u, v = [a2, b2], [a3, b3] ans = "NO" for _ in range(2): for i in range(2): for j in range(2): if max(u[i], v[j]) <= a1 and u[i ^ 1] + v[j ^ 1] <= b1: ans = "YES" a1, b1 = b1, a1 print(ans)
Title: Gerald is into Art Time Limit: None seconds Memory Limit: None megabytes Problem Description: Gerald bought two very rare paintings at the Sotheby's auction and he now wants to hang them on the wall. For that he bought a special board to attach it to the wall and place the paintings on the board. The board has shape of an *a*1<=×<=*b*1 rectangle, the paintings have shape of a *a*2<=×<=*b*2 and *a*3<=×<=*b*3 rectangles. Since the paintings are painted in the style of abstract art, it does not matter exactly how they will be rotated, but still, one side of both the board, and each of the paintings must be parallel to the floor. The paintings can touch each other and the edges of the board, but can not overlap or go beyond the edge of the board. Gerald asks whether it is possible to place the paintings on the board, or is the board he bought not large enough? Input Specification: The first line contains two space-separated numbers *a*1 and *b*1 — the sides of the board. Next two lines contain numbers *a*2,<=*b*2,<=*a*3 and *b*3 — the sides of the paintings. All numbers *a**i*,<=*b**i* in the input are integers and fit into the range from 1 to 1000. Output Specification: If the paintings can be placed on the wall, print "YES" (without the quotes), and if they cannot, print "NO" (without the quotes). Demo Input: ['3 2\n1 3\n2 1\n', '5 5\n3 3\n3 3\n', '4 2\n2 3\n1 2\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: That's how we can place the pictures in the first test: <img class="tex-graphics" src="https://espresso.codeforces.com/b41bf40c649073c6d3dd62eb7ae7adfc4bd131bd.png" style="max-width: 100.0%;max-height: 100.0%;"/> And that's how we can do it in the third one. <img class="tex-graphics" src="https://espresso.codeforces.com/dafdf616eaa5ef10cd3c9ccdc7fba7ece392268c.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python import sys, os, io input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline a1, b1 = map(int, input().split()) a2, b2 = map(int, input().split()) a3, b3 = map(int, input().split()) u, v = [a2, b2], [a3, b3] ans = "NO" for _ in range(2): for i in range(2): for j in range(2): if max(u[i], v[j]) <= a1 and u[i ^ 1] + v[j ^ 1] <= b1: ans = "YES" a1, b1 = b1, a1 print(ans) ```
3
621
A
Wet Shark and Odd and Even
PROGRAMMING
900
[ "implementation" ]
null
null
Today, Wet Shark is given *n* integers. Using any of these integers no more than once, Wet Shark wants to get maximum possible even (divisible by 2) sum. Please, calculate this value for Wet Shark. Note, that if Wet Shark uses no integers from the *n* integers, the sum is an even integer 0.
The first line of the input contains one integer, *n* (1<=≤<=*n*<=≤<=100<=000). The next line contains *n* space separated integers given to Wet Shark. Each of these integers is in range from 1 to 109, inclusive.
Print the maximum possible even sum that can be obtained if we use some of the given integers.
[ "3\n1 2 3\n", "5\n999999999 999999999 999999999 999999999 999999999\n" ]
[ "6", "3999999996" ]
In the first sample, we can simply take all three integers for a total sum of 6. In the second sample Wet Shark should take any four out of five integers 999 999 999.
500
[ { "input": "3\n1 2 3", "output": "6" }, { "input": "5\n999999999 999999999 999999999 999999999 999999999", "output": "3999999996" }, { "input": "1\n1", "output": "0" }, { "input": "15\n39 52 88 78 46 95 84 98 55 3 68 42 6 18 98", "output": "870" }, { "input": "15\n59 96 34 48 8 72 67 90 15 85 7 90 97 47 25", "output": "840" }, { "input": "15\n87 37 91 29 58 45 51 74 70 71 47 38 91 89 44", "output": "922" }, { "input": "15\n11 81 49 7 11 14 30 67 29 50 90 81 77 18 59", "output": "674" }, { "input": "15\n39 21 95 89 73 90 9 55 85 32 30 21 68 59 82", "output": "848" }, { "input": "15\n59 70 48 54 26 67 84 39 40 18 77 69 70 88 93", "output": "902" }, { "input": "15\n87 22 98 32 88 36 72 31 100 97 17 16 60 22 20", "output": "798" }, { "input": "15\n15 63 51 13 37 9 43 19 55 79 57 60 50 59 31", "output": "632" }, { "input": "1\n4", "output": "4" }, { "input": "2\n1 4", "output": "4" }, { "input": "3\n1 2 4", "output": "6" }, { "input": "2\n9 3", "output": "12" }, { "input": "2\n1000000000 1001", "output": "1000000000" }, { "input": "3\n1 8 4", "output": "12" }, { "input": "3\n7 4 4", "output": "8" }, { "input": "5\n2 3 4 5 3", "output": "14" }, { "input": "2\n4 5", "output": "4" }, { "input": "3\n2 4 5", "output": "6" }, { "input": "3\n2 2 3", "output": "4" }, { "input": "2\n2 3", "output": "2" }, { "input": "4\n2 3 7 7", "output": "16" }, { "input": "2\n999999999 2", "output": "2" }, { "input": "2\n2 5", "output": "2" }, { "input": "3\n5 3 1", "output": "8" }, { "input": "4\n3 2 5 7", "output": "14" } ]
1,579,170,598
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
8
2,000
8,294,400
n=int(input()) a=list(map(int,input().split())) s=[] chet=0 for i in a: s=s+[i] if sum(s)%2==0: chet=sum(s) print(chet)
Title: Wet Shark and Odd and Even Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today, Wet Shark is given *n* integers. Using any of these integers no more than once, Wet Shark wants to get maximum possible even (divisible by 2) sum. Please, calculate this value for Wet Shark. Note, that if Wet Shark uses no integers from the *n* integers, the sum is an even integer 0. Input Specification: The first line of the input contains one integer, *n* (1<=≤<=*n*<=≤<=100<=000). The next line contains *n* space separated integers given to Wet Shark. Each of these integers is in range from 1 to 109, inclusive. Output Specification: Print the maximum possible even sum that can be obtained if we use some of the given integers. Demo Input: ['3\n1 2 3\n', '5\n999999999 999999999 999999999 999999999 999999999\n'] Demo Output: ['6', '3999999996'] Note: In the first sample, we can simply take all three integers for a total sum of 6. In the second sample Wet Shark should take any four out of five integers 999 999 999.
```python n=int(input()) a=list(map(int,input().split())) s=[] chet=0 for i in a: s=s+[i] if sum(s)%2==0: chet=sum(s) print(chet) ```
0
858
C
Did you mean...
PROGRAMMING
1,500
[ "dp", "greedy", "implementation" ]
null
null
Beroffice text editor has a wide range of features that help working with text. One of the features is an automatic search for typos and suggestions of how to fix them. Beroffice works only with small English letters (i.e. with 26 letters from a to z). Beroffice thinks that a word is typed with a typo if there are three or more consonants in a row in the word. The only exception is that if the block of consonants has all letters the same, then this block (even if its length is greater than three) is not considered a typo. Formally, a word is typed with a typo if there is a block of not less that three consonants in a row, and there are at least two different letters in this block. For example: - the following words have typos: "hellno", "hackcerrs" and "backtothefutttture"; - the following words don't have typos: "helllllooooo", "tobeornottobe" and "oooooo". When Beroffice editor finds a word with a typo, it inserts as little as possible number of spaces in this word (dividing it into several words) in such a way that each of the resulting words is typed without any typos. Implement this feature of Beroffice editor. Consider the following letters as the only vowels: 'a', 'e', 'i', 'o' and 'u'. All the other letters are consonants in this problem.
The only line contains a non-empty word consisting of small English letters. The length of the word is between 1 and 3000 letters.
Print the given word without any changes if there are no typos. If there is at least one typo in the word, insert the minimum number of spaces into the word so that each of the resulting words doesn't have any typos. If there are multiple solutions, print any of them.
[ "hellno\n", "abacaba\n", "asdfasdf\n" ]
[ "hell no \n", "abacaba \n", "asd fasd f \n" ]
none
1,500
[ { "input": "hellno", "output": "hell no " }, { "input": "abacaba", "output": "abacaba " }, { "input": "asdfasdf", "output": "asd fasd f " }, { "input": "ooo", "output": "ooo " }, { "input": "moyaoborona", "output": "moyaoborona " }, { "input": "jxegxxx", "output": "jxegx xx " }, { "input": "orfyaenanabckumulsboloyhljhacdgcmnooxvxrtuhcslxgslfpnfnyejbxqisxjyoyvcvuddboxkqgbogkfz", "output": "orf yaenanabc kumuls boloyh lj hacd gc mnooxv xr tuhc sl xg sl fp nf nyejb xqisx jyoyv cvudd boxk qg bogk fz " }, { "input": "zxdgmhsjotvajkwshjpvzcuwehpeyfhakhtlvuoftkgdmvpafmxcliqvrztloocziqdkexhzcbdgxaoyvte", "output": "zx dg mh sjotvajk ws hj pv zcuwehpeyf hakh tl vuoft kg dm vpafm xc liqv rz tloocziqd kexh zc bd gxaoyv te " }, { "input": "niblehmwtycadhbfuginpyafszjbucaszihijndzjtuyuaxkrovotshtsajmdcflnfdmahzbvpymiczqqleedpofcnvhieknlz", "output": "niblehm wt ycadh bfuginp yafs zj bucaszihijn dz jtuyuaxk rovots ht sajm dc fl nf dmahz bv py micz qq leedpofc nv hiekn lz " }, { "input": "pqvtgtctpkgjgxnposjqedofficoyznxlerxyqypyzpoehejtjvyafjxjppywwgeakf", "output": "pq vt gt ct pk gj gx nposj qedofficoyz nx lerx yq yp yz poehejt jv yafj xj pp yw wgeakf " }, { "input": "mvjajoyeg", "output": "mv jajoyeg " }, { "input": "dipxocwjosvdaillxolmthjhzhsxskzqslebpixpuhpgeesrkedhohisdsjsrkiktbjzlhectrfcathvewzficirqbdvzq", "output": "dipxocw josv daill xolm th jh zh sx sk zq slebpixpuhp geesr kedhohisd sj sr kikt bj zl hect rf cath vewz ficirq bd vz q " }, { "input": "ibbtvelwjirxqermucqrgmoauonisgmarjxxybllktccdykvef", "output": "ibb tvelw jirx qermucq rg moauonisg marj xx yb ll kt cc dy kvef " }, { "input": "jxevkmrwlomaaahaubvjzqtyfqhqbhpqhomxqpiuersltohinvfyeykmlooujymldjqhgqjkvqknlyj", "output": "jxevk mr wlomaaahaubv jz qt yf qh qb hp qhomx qpiuers ltohinv fyeyk mlooujy ml dj qh gq jk vq kn ly j " }, { "input": "hzxkuwqxonsulnndlhygvmallghjerwp", "output": "hz xkuwq xonsuln nd lh yg vmall gh jerw p " }, { "input": "jbvcsjdyzlzmxwcvmixunfzxidzvwzaqqdhguvelwbdosbd", "output": "jb vc sj dy zl zm xw cv mixunf zxidz vw zaqq dh guvelw bdosb d " }, { "input": "uyrsxaqmtibbxpfabprvnvbinjoxubupvfyjlqnfrfdeptipketwghr", "output": "uyr sxaqm tibb xp fabp rv nv binjoxubupv fy jl qn fr fdeptipketw gh r " }, { "input": "xfcftysljytybkkzkpqdzralahgvbkxdtheqrhfxpecdjqofnyiahggnkiuusalu", "output": "xf cf ty sl jy ty bk kz kp qd zralahg vb kx dt heqr hf xpecd jqofn yiahg gn kiuusalu " }, { "input": "a", "output": "a " }, { "input": "b", "output": "b " }, { "input": "aa", "output": "aa " }, { "input": "ab", "output": "ab " }, { "input": "ba", "output": "ba " }, { "input": "bb", "output": "bb " }, { "input": "aaa", "output": "aaa " }, { "input": "aab", "output": "aab " }, { "input": "aba", "output": "aba " }, { "input": "abb", "output": "abb " }, { "input": "baa", "output": "baa " }, { "input": "bab", "output": "bab " }, { "input": "bba", "output": "bba " }, { "input": "bbb", "output": "bbb " }, { "input": "bbc", "output": "bb c " }, { "input": "bcb", "output": "bc b " }, { "input": "cbb", "output": "cb b " }, { "input": "bababcdfabbcabcdfacbbabcdfacacabcdfacbcabcdfaccbabcdfacaaabcdfabacabcdfabcbabcdfacbaabcdfabaaabcdfabbaabcdfacababcdfabbbabcdfabcaabcdfaaababcdfabccabcdfacccabcdfaacbabcdfaabaabcdfaabcabcdfaaacabcdfaccaabcdfaabbabcdfaaaaabcdfaacaabcdfaacc", "output": "bababc dfabb cabc dfacb babc dfacacabc dfacb cabc dfacc babc dfacaaabc dfabacabc dfabc babc dfacbaabc dfabaaabc dfabbaabc dfacababc dfabbbabc dfabcaabc dfaaababc dfabc cabc dfacccabc dfaacbabc dfaabaabc dfaabcabc dfaaacabc dfaccaabc dfaabbabc dfaaaaabc dfaacaabc dfaacc " }, { "input": "bddabcdfaccdabcdfadddabcdfabbdabcdfacddabcdfacdbabcdfacbbabcdfacbcabcdfacbdabcdfadbbabcdfabdbabcdfabdcabcdfabbcabcdfabccabcdfabbbabcdfaddcabcdfaccbabcdfadbdabcdfacccabcdfadcdabcdfadcbabcdfabcbabcdfadbcabcdfacdcabcdfabcdabcdfadccabcdfaddb", "output": "bd dabc dfacc dabc dfadddabc dfabb dabc dfacd dabc dfacd babc dfacb babc dfacb cabc dfacb dabc dfadb babc dfabd babc dfabd cabc dfabb cabc dfabc cabc dfabbbabc dfadd cabc dfacc babc dfadb dabc dfacccabc dfadc dabc dfadc babc dfabc babc dfadb cabc dfacd cabc dfabc dabc dfadc cabc dfadd b " }, { "input": "helllllooooo", "output": "helllllooooo " }, { "input": "bbbzxxx", "output": "bbb zx xx " }, { "input": "ffff", "output": "ffff " }, { "input": "cdddddddddddddddddd", "output": "cd ddddddddddddddddd " }, { "input": "bbbc", "output": "bbb c " }, { "input": "lll", "output": "lll " }, { "input": "bbbbb", "output": "bbbbb " }, { "input": "llll", "output": "llll " }, { "input": "bbbbbbccc", "output": "bbbbbb ccc " }, { "input": "lllllb", "output": "lllll b " }, { "input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz " }, { "input": "lllll", "output": "lllll " }, { "input": "bbbbbbbbbc", "output": "bbbbbbbbb c " }, { "input": "helllllno", "output": "helllll no " }, { "input": "nnnnnnnnnnnn", "output": "nnnnnnnnnnnn " }, { "input": "bbbbbccc", "output": "bbbbb ccc " }, { "input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzz " }, { "input": "nnnnnnnnnnnnnnnnnn", "output": "nnnnnnnnnnnnnnnnnn " }, { "input": "zzzzzzzzzzzzzzzzzzzzzzz", "output": "zzzzzzzzzzzzzzzzzzzzzzz " }, { "input": "hhhh", "output": "hhhh " }, { "input": "nnnnnnnnnnnnnnnnnnnnnnnnn", "output": "nnnnnnnnnnnnnnnnnnnnnnnnn " }, { "input": "zzzzzzzzzz", "output": "zzzzzzzzzz " }, { "input": "dddd", "output": "dddd " }, { "input": "heffffffgggggghhhhhh", "output": "heffffff gggggg hhhhhh " }, { "input": "bcddd", "output": "bc ddd " }, { "input": "x", "output": "x " }, { "input": "nnn", "output": "nnn " }, { "input": "xxxxxxxx", "output": "xxxxxxxx " }, { "input": "cclcc", "output": "cc lc c " }, { "input": "tttttttttttttt", "output": "tttttttttttttt " }, { "input": "xxxxxxx", "output": "xxxxxxx " }, { "input": "ccccb", "output": "cccc b " }, { "input": "bcecccc", "output": "bcecccc " }, { "input": "jjja", "output": "jjja " }, { "input": "zzz", "output": "zzz " }, { "input": "xxxxxxxxxzzzzzzzzzzzz", "output": "xxxxxxxxx zzzzzzzzzzzz " }, { "input": "alllewww", "output": "alllewww " }, { "input": "bbbbbbbbb", "output": "bbbbbbbbb " }, { "input": "jjj", "output": "jjj " }, { "input": "bbbbbbbbbbbbbbbbbbbbbbbbb", "output": "bbbbbbbbbbbbbbbbbbbbbbbbb " }, { "input": "kkkkkkkkkklllllllllllllll", "output": "kkkkkkkkkk lllllllllllllll " }, { "input": "helllllllllllo", "output": "helllllllllllo " }, { "input": "ttttsttttt", "output": "tttt st tttt " }, { "input": "tttttttsssssss", "output": "ttttttt sssssss " }, { "input": "assstttttatsfatsfdjfdhtsjdsaatttssssststsss", "output": "asss tttttats fats fd jf dh ts jd saattt sssss ts ts ss " }, { "input": "xxxxx", "output": "xxxxx " }, { "input": "bbbhbbb", "output": "bbb hb bb " }, { "input": "bbbbbbbb", "output": "bbbbbbbb " } ]
1,505,661,136
7,636
Python 3
OK
TESTS
108
62
6,963,200
n = input() l = 0 q = len(n) sogl = ['q', 'w', 'r', 't', 'y', 'p', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'z', 'x', 'c', 'v', 'b', 'n', 'm'] for i in range(1, len(n) - 1): if (((n[i - 1] != n[i + 1]) or ((n[i] != n[i - 1]) and (n[i-1] == n[i + 1]))) and (n[i - 1] in sogl) and (n[i] in sogl) and (n[i + 1] in sogl)): print (n[l:i + 1:1], end=" ") l = i + 1 n = n[0:i] + 'a' + n[i + 1:q] print (n[l:len(n):1])
Title: Did you mean... Time Limit: None seconds Memory Limit: None megabytes Problem Description: Beroffice text editor has a wide range of features that help working with text. One of the features is an automatic search for typos and suggestions of how to fix them. Beroffice works only with small English letters (i.e. with 26 letters from a to z). Beroffice thinks that a word is typed with a typo if there are three or more consonants in a row in the word. The only exception is that if the block of consonants has all letters the same, then this block (even if its length is greater than three) is not considered a typo. Formally, a word is typed with a typo if there is a block of not less that three consonants in a row, and there are at least two different letters in this block. For example: - the following words have typos: "hellno", "hackcerrs" and "backtothefutttture"; - the following words don't have typos: "helllllooooo", "tobeornottobe" and "oooooo". When Beroffice editor finds a word with a typo, it inserts as little as possible number of spaces in this word (dividing it into several words) in such a way that each of the resulting words is typed without any typos. Implement this feature of Beroffice editor. Consider the following letters as the only vowels: 'a', 'e', 'i', 'o' and 'u'. All the other letters are consonants in this problem. Input Specification: The only line contains a non-empty word consisting of small English letters. The length of the word is between 1 and 3000 letters. Output Specification: Print the given word without any changes if there are no typos. If there is at least one typo in the word, insert the minimum number of spaces into the word so that each of the resulting words doesn't have any typos. If there are multiple solutions, print any of them. Demo Input: ['hellno\n', 'abacaba\n', 'asdfasdf\n'] Demo Output: ['hell no \n', 'abacaba \n', 'asd fasd f \n'] Note: none
```python n = input() l = 0 q = len(n) sogl = ['q', 'w', 'r', 't', 'y', 'p', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'z', 'x', 'c', 'v', 'b', 'n', 'm'] for i in range(1, len(n) - 1): if (((n[i - 1] != n[i + 1]) or ((n[i] != n[i - 1]) and (n[i-1] == n[i + 1]))) and (n[i - 1] in sogl) and (n[i] in sogl) and (n[i + 1] in sogl)): print (n[l:i + 1:1], end=" ") l = i + 1 n = n[0:i] + 'a' + n[i + 1:q] print (n[l:len(n):1]) ```
3
584
A
Olesya and Rodion
PROGRAMMING
1,000
[ "math" ]
null
null
Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them. Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1.
The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by.
Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them.
[ "3 2\n" ]
[ "712" ]
none
500
[ { "input": "3 2", "output": "222" }, { "input": "2 2", "output": "22" }, { "input": "4 3", "output": "3333" }, { "input": "5 3", "output": "33333" }, { "input": "10 7", "output": "7777777777" }, { "input": "2 9", "output": "99" }, { "input": "18 8", "output": "888888888888888888" }, { "input": "1 5", "output": "5" }, { "input": "1 10", "output": "-1" }, { "input": "100 5", "output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "10 2", "output": "2222222222" }, { "input": "18 10", "output": "111111111111111110" }, { "input": "1 9", "output": "9" }, { "input": "7 6", "output": "6666666" }, { "input": "4 4", "output": "4444" }, { "input": "14 7", "output": "77777777777777" }, { "input": "3 8", "output": "888" }, { "input": "1 3", "output": "3" }, { "input": "2 8", "output": "88" }, { "input": "3 8", "output": "888" }, { "input": "4 3", "output": "3333" }, { "input": "5 9", "output": "99999" }, { "input": "4 8", "output": "8888" }, { "input": "3 4", "output": "444" }, { "input": "9 4", "output": "444444444" }, { "input": "8 10", "output": "11111110" }, { "input": "1 6", "output": "6" }, { "input": "20 3", "output": "33333333333333333333" }, { "input": "15 10", "output": "111111111111110" }, { "input": "31 4", "output": "4444444444444444444444444444444" }, { "input": "18 9", "output": "999999999999999999" }, { "input": "72 4", "output": "444444444444444444444444444444444444444444444444444444444444444444444444" }, { "input": "76 8", "output": "8888888888888888888888888888888888888888888888888888888888888888888888888888" }, { "input": "12 5", "output": "555555555555" }, { "input": "54 5", "output": "555555555555555555555555555555555555555555555555555555" }, { "input": "96 10", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "15 9", "output": "999999999999999" }, { "input": "100 2", "output": "2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222" }, { "input": "99 3", "output": "333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333" }, { "input": "98 4", "output": "44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444" }, { "input": "97 5", "output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "100 6", "output": "6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666" }, { "input": "99 7", "output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "98 8", "output": "88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888" }, { "input": "97 9", "output": "9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999" }, { "input": "100 10", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "3 10", "output": "110" }, { "input": "2 4", "output": "44" }, { "input": "2 10", "output": "10" }, { "input": "10 10", "output": "1111111110" }, { "input": "4 10", "output": "1110" }, { "input": "25 10", "output": "1111111111111111111111110" }, { "input": "50 10", "output": "11111111111111111111111111111111111111111111111110" }, { "input": "5 10", "output": "11110" }, { "input": "99 10", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "100 10", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "1 2", "output": "2" }, { "input": "20 10", "output": "11111111111111111110" }, { "input": "99 7", "output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "89 5", "output": "55555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "6 10", "output": "111110" }, { "input": "3 8", "output": "888" }, { "input": "1 9", "output": "9" }, { "input": "1 4", "output": "4" }, { "input": "100 7", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" } ]
1,693,140,278
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
7
31
0
a, b = map(int, input().split(' ')) number = '1' for i in range(1, a): number += '0' number = int(number) if number < b: print(-1) exit() answer = number + b - (number % b) print(answer)
Title: Olesya and Rodion Time Limit: None seconds Memory Limit: None megabytes Problem Description: Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them. Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1. Input Specification: The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by. Output Specification: Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them. Demo Input: ['3 2\n'] Demo Output: ['712'] Note: none
```python a, b = map(int, input().split(' ')) number = '1' for i in range(1, a): number += '0' number = int(number) if number < b: print(-1) exit() answer = number + b - (number % b) print(answer) ```
0
748
A
Santa Claus and a Place in a Class
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Santa Claus is the first who came to the Christmas Olympiad, and he is going to be the first to take his place at a desk! In the classroom there are *n* lanes of *m* desks each, and there are two working places at each of the desks. The lanes are numbered from 1 to *n* from the left to the right, the desks in a lane are numbered from 1 to *m* starting from the blackboard. Note that the lanes go perpendicularly to the blackboard, not along it (see picture). The organizers numbered all the working places from 1 to 2*nm*. The places are numbered by lanes (i. e. all the places of the first lane go first, then all the places of the second lane, and so on), in a lane the places are numbered starting from the nearest to the blackboard (i. e. from the first desk in the lane), at each desk, the place on the left is numbered before the place on the right. Santa Clause knows that his place has number *k*. Help him to determine at which lane at which desk he should sit, and whether his place is on the left or on the right!
The only line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*<=≤<=10<=000, 1<=≤<=*k*<=≤<=2*nm*) — the number of lanes, the number of desks in each lane and the number of Santa Claus' place.
Print two integers: the number of lane *r*, the number of desk *d*, and a character *s*, which stands for the side of the desk Santa Claus. The character *s* should be "L", if Santa Clause should sit on the left, and "R" if his place is on the right.
[ "4 3 9\n", "4 3 24\n", "2 4 4\n" ]
[ "2 2 L\n", "4 3 R\n", "1 2 R\n" ]
The first and the second samples are shown on the picture. The green place corresponds to Santa Claus' place in the first example, the blue place corresponds to Santa Claus' place in the second example. In the third sample there are two lanes with four desks in each, and Santa Claus has the fourth place. Thus, his place is in the first lane at the second desk on the right.
500
[ { "input": "4 3 9", "output": "2 2 L" }, { "input": "4 3 24", "output": "4 3 R" }, { "input": "2 4 4", "output": "1 2 R" }, { "input": "3 10 24", "output": "2 2 R" }, { "input": "10 3 59", "output": "10 3 L" }, { "input": "10000 10000 160845880", "output": "8043 2940 R" }, { "input": "1 1 1", "output": "1 1 L" }, { "input": "1 1 2", "output": "1 1 R" }, { "input": "1 10000 1", "output": "1 1 L" }, { "input": "1 10000 20000", "output": "1 10000 R" }, { "input": "10000 1 1", "output": "1 1 L" }, { "input": "10000 1 10000", "output": "5000 1 R" }, { "input": "10000 1 20000", "output": "10000 1 R" }, { "input": "3 2 1", "output": "1 1 L" }, { "input": "3 2 2", "output": "1 1 R" }, { "input": "3 2 3", "output": "1 2 L" }, { "input": "3 2 4", "output": "1 2 R" }, { "input": "3 2 5", "output": "2 1 L" }, { "input": "3 2 6", "output": "2 1 R" }, { "input": "3 2 7", "output": "2 2 L" }, { "input": "3 2 8", "output": "2 2 R" }, { "input": "3 2 9", "output": "3 1 L" }, { "input": "3 2 10", "output": "3 1 R" }, { "input": "3 2 11", "output": "3 2 L" }, { "input": "3 2 12", "output": "3 2 R" }, { "input": "300 2000 1068628", "output": "268 314 R" }, { "input": "300 2000 584756", "output": "147 378 R" }, { "input": "300 2000 268181", "output": "68 91 L" }, { "input": "10000 9999 186450844", "output": "9324 4745 R" }, { "input": "10000 9999 197114268", "output": "9857 6990 R" }, { "input": "10000 9999 112390396", "output": "5621 818 R" }, { "input": "10000 10000 1", "output": "1 1 L" }, { "input": "10000 10000 2", "output": "1 1 R" }, { "input": "10000 10000 100000001", "output": "5001 1 L" }, { "input": "10000 10000 199999999", "output": "10000 10000 L" }, { "input": "10000 10000 200000000", "output": "10000 10000 R" }, { "input": "1 2 1", "output": "1 1 L" }, { "input": "1 2 2", "output": "1 1 R" }, { "input": "1 2 3", "output": "1 2 L" }, { "input": "1 2 4", "output": "1 2 R" }, { "input": "2 1 1", "output": "1 1 L" }, { "input": "2 1 2", "output": "1 1 R" }, { "input": "2 1 3", "output": "2 1 L" }, { "input": "2 1 4", "output": "2 1 R" }, { "input": "4 3 7", "output": "2 1 L" }, { "input": "1 1 1", "output": "1 1 L" } ]
1,635,996,333
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
46
4,505,600
n, m, k = map(int, input().split()) lane = 0 - (-(k // 2) // m) d = ((0 - -k // 2) % m) d = [d, m][d == 0] s = ['L', 'R'][k % 2 == 0] print(lane, d, s)
Title: Santa Claus and a Place in a Class Time Limit: None seconds Memory Limit: None megabytes Problem Description: Santa Claus is the first who came to the Christmas Olympiad, and he is going to be the first to take his place at a desk! In the classroom there are *n* lanes of *m* desks each, and there are two working places at each of the desks. The lanes are numbered from 1 to *n* from the left to the right, the desks in a lane are numbered from 1 to *m* starting from the blackboard. Note that the lanes go perpendicularly to the blackboard, not along it (see picture). The organizers numbered all the working places from 1 to 2*nm*. The places are numbered by lanes (i. e. all the places of the first lane go first, then all the places of the second lane, and so on), in a lane the places are numbered starting from the nearest to the blackboard (i. e. from the first desk in the lane), at each desk, the place on the left is numbered before the place on the right. Santa Clause knows that his place has number *k*. Help him to determine at which lane at which desk he should sit, and whether his place is on the left or on the right! Input Specification: The only line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*<=≤<=10<=000, 1<=≤<=*k*<=≤<=2*nm*) — the number of lanes, the number of desks in each lane and the number of Santa Claus' place. Output Specification: Print two integers: the number of lane *r*, the number of desk *d*, and a character *s*, which stands for the side of the desk Santa Claus. The character *s* should be "L", if Santa Clause should sit on the left, and "R" if his place is on the right. Demo Input: ['4 3 9\n', '4 3 24\n', '2 4 4\n'] Demo Output: ['2 2 L\n', '4 3 R\n', '1 2 R\n'] Note: The first and the second samples are shown on the picture. The green place corresponds to Santa Claus' place in the first example, the blue place corresponds to Santa Claus' place in the second example. In the third sample there are two lanes with four desks in each, and Santa Claus has the fourth place. Thus, his place is in the first lane at the second desk on the right.
```python n, m, k = map(int, input().split()) lane = 0 - (-(k // 2) // m) d = ((0 - -k // 2) % m) d = [d, m][d == 0] s = ['L', 'R'][k % 2 == 0] print(lane, d, s) ```
0
426
A
Sereja and Mugs
PROGRAMMING
800
[ "implementation" ]
null
null
Sereja showed an interesting game to his friends. The game goes like that. Initially, there is a table with an empty cup and *n* water mugs on it. Then all players take turns to move. During a move, a player takes a non-empty mug of water and pours all water from it into the cup. If the cup overfills, then we assume that this player lost. As soon as Sereja's friends heard of the game, they wanted to play it. Sereja, on the other hand, wanted to find out whether his friends can play the game in such a way that there are no losers. You are given the volumes of all mugs and the cup. Also, you know that Sereja has (*n*<=-<=1) friends. Determine if Sereja's friends can play the game so that nobody loses.
The first line contains integers *n* and *s* (2<=≤<=*n*<=≤<=100; 1<=≤<=*s*<=≤<=1000) — the number of mugs and the volume of the cup. The next line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=10). Number *a**i* means the volume of the *i*-th mug.
In a single line, print "YES" (without the quotes) if his friends can play in the described manner, and "NO" (without the quotes) otherwise.
[ "3 4\n1 1 1\n", "3 4\n3 1 3\n", "3 4\n4 4 4\n" ]
[ "YES\n", "YES\n", "NO\n" ]
none
500
[ { "input": "3 4\n1 1 1", "output": "YES" }, { "input": "3 4\n3 1 3", "output": "YES" }, { "input": "3 4\n4 4 4", "output": "NO" }, { "input": "2 1\n1 10", "output": "YES" }, { "input": "3 12\n5 6 6", "output": "YES" }, { "input": "4 10\n6 3 8 7", "output": "NO" }, { "input": "5 16\n3 3 2 7 9", "output": "YES" }, { "input": "6 38\n9 10 3 8 10 6", "output": "YES" }, { "input": "7 12\n4 4 5 2 2 4 9", "output": "NO" }, { "input": "8 15\n8 10 4 2 10 9 7 6", "output": "NO" }, { "input": "9 22\n1 3 5 9 7 6 1 10 1", "output": "NO" }, { "input": "10 30\n9 10 4 5 5 7 1 7 7 2", "output": "NO" }, { "input": "38 83\n9 9 3 10 2 4 6 10 9 5 1 8 7 4 7 2 6 5 3 1 10 8 4 8 3 7 1 2 7 6 8 6 5 2 3 1 1 2", "output": "NO" }, { "input": "84 212\n6 2 3 1 2 7 5 1 7 2 9 10 9 5 2 5 4 10 9 9 1 9 8 8 9 4 9 4 8 2 1 8 4 5 10 7 6 2 1 10 10 7 9 4 5 9 5 10 10 3 6 6 4 4 4 8 5 4 9 1 9 9 1 7 9 2 10 9 10 8 3 3 9 3 9 10 1 8 9 2 6 9 7 2", "output": "NO" }, { "input": "8 50\n8 8 8 4 4 6 10 10", "output": "YES" }, { "input": "7 24\n1 4 9 1 2 3 6", "output": "YES" }, { "input": "47 262\n3 7 6 4 10 3 5 7 2 9 3 2 2 10 8 7 3 10 6 3 1 1 4 10 2 9 2 10 6 4 3 6 3 6 9 7 8 8 3 3 10 5 2 10 7 10 9", "output": "YES" }, { "input": "42 227\n3 6 1 9 4 10 4 10 7 8 10 10 8 7 10 4 6 8 7 7 6 9 3 6 5 5 2 7 2 7 4 4 6 6 4 3 9 3 6 4 7 2", "output": "NO" }, { "input": "97 65\n3 10 2 6 1 4 7 5 10 3 10 4 5 5 1 6 10 7 4 5 3 9 9 8 6 9 2 3 6 8 5 5 5 5 5 3 10 4 1 8 8 9 8 4 1 4 9 3 6 3 1 4 8 3 10 8 6 4 5 4 3 2 2 4 3 6 4 6 2 3 3 3 7 5 1 8 1 4 5 1 1 6 4 2 1 7 8 6 1 1 5 6 5 10 6 7 5", "output": "NO" }, { "input": "94 279\n2 5 9 5 10 3 1 8 1 7 1 8 1 6 7 8 4 9 5 10 3 7 6 8 8 5 6 8 10 9 4 1 3 3 4 7 8 2 6 6 5 1 3 7 1 7 2 2 2 8 4 1 1 5 9 4 1 2 3 10 1 4 9 9 6 8 8 1 9 10 4 1 8 5 8 9 4 8 2 1 1 9 4 5 6 1 2 5 6 7 3 1 4 6", "output": "NO" }, { "input": "58 70\n8 2 10 2 7 3 8 3 8 7 6 2 4 10 10 6 10 3 7 6 4 3 5 5 5 3 8 10 3 4 8 4 2 6 8 9 6 9 4 3 5 2 2 6 10 6 2 1 7 5 6 4 1 9 10 2 4 5", "output": "NO" }, { "input": "6 14\n3 9 2 1 4 2", "output": "YES" }, { "input": "78 400\n5 9 3 4 7 4 1 4 6 3 9 1 8 3 3 6 10 2 1 9 6 1 8 10 1 6 4 5 2 1 5 9 6 10 3 6 5 2 4 10 6 9 3 8 10 7 2 8 8 2 10 1 4 5 2 8 6 4 4 3 5 2 3 10 1 9 8 5 6 7 9 1 8 8 5 4 2 4", "output": "YES" }, { "input": "41 181\n5 3 10 4 2 5 9 3 1 6 6 10 4 3 9 8 5 9 2 5 4 6 6 3 7 9 10 3 10 6 10 5 6 1 6 9 9 1 2 4 3", "output": "NO" }, { "input": "2 4\n4 4", "output": "YES" }, { "input": "29 71\n4 8 9 4 8 10 4 10 2 9 3 9 1 2 9 5 9 7 1 10 4 1 1 9 8 7 4 6 7", "output": "NO" }, { "input": "49 272\n4 10 8 7 5 6 9 7 2 6 6 2 10 7 5 6 5 3 6 4 3 7 9 3 7 7 4 10 5 6 7 3 6 4 6 7 7 2 5 5 7 3 7 9 3 6 6 2 1", "output": "YES" }, { "input": "91 486\n1 3 5 4 4 7 3 9 3 4 5 4 5 4 7 9 5 8 4 10 9 1 1 9 9 1 6 2 5 4 7 4 10 3 2 10 9 3 4 5 1 3 4 2 10 9 10 9 10 2 4 6 2 5 3 6 4 9 10 3 9 8 1 2 5 9 2 10 4 6 10 8 10 9 1 2 5 8 6 6 6 1 10 3 9 3 5 6 1 5 5", "output": "YES" }, { "input": "80 78\n1 9 4 9 8 3 7 10 4 9 2 1 4 4 9 5 9 1 2 6 5 2 4 8 4 6 9 6 7 10 1 9 10 4 7 1 7 10 8 9 10 5 2 6 7 7 7 7 7 8 2 5 1 7 2 3 2 5 10 6 3 4 5 2 6 3 4 2 7 9 9 3 8 8 2 3 7 1 5 10", "output": "NO" }, { "input": "53 245\n5 6 9 9 2 3 2 5 10 9 3 5 6 3 10 10 9 4 9 7 10 9 7 7 3 4 9 3 7 3 8 6 8 9 3 8 9 1 3 1 9 10 3 9 3 1 6 6 3 8 7 8 9", "output": "NO" }, { "input": "50 271\n6 9 10 1 1 1 8 3 6 6 3 2 5 9 7 5 7 9 10 9 4 6 6 2 6 6 9 5 1 6 5 8 3 2 5 10 10 1 4 1 4 6 1 8 7 8 9 4 7 5", "output": "YES" }, { "input": "38 214\n5 8 4 5 1 9 9 2 6 3 4 3 5 7 7 7 3 10 1 5 10 4 2 2 10 10 6 6 6 7 1 6 10 5 7 4 5 10", "output": "YES" }, { "input": "100 1\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "100 100\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "100 989\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "100 990\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "YES" }, { "input": "100 1000\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "YES" }, { "input": "2 1\n1 1", "output": "YES" }, { "input": "2 1\n2 2", "output": "NO" }, { "input": "2 1000\n1 1", "output": "YES" }, { "input": "10 89\n10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "10 44\n1 10 2 3 4 5 6 7 8 9", "output": "NO" } ]
1,675,532,277
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
46
4,505,600
flag = 0 l1 = [int(x) for x in input().split()] l2 = [int(x) for x in input().split()] for j in l2: if j >= l1[1]: flag = 1 else : flag = 0 if flag == 0: print('YES') else: print('NO')
Title: Sereja and Mugs Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sereja showed an interesting game to his friends. The game goes like that. Initially, there is a table with an empty cup and *n* water mugs on it. Then all players take turns to move. During a move, a player takes a non-empty mug of water and pours all water from it into the cup. If the cup overfills, then we assume that this player lost. As soon as Sereja's friends heard of the game, they wanted to play it. Sereja, on the other hand, wanted to find out whether his friends can play the game in such a way that there are no losers. You are given the volumes of all mugs and the cup. Also, you know that Sereja has (*n*<=-<=1) friends. Determine if Sereja's friends can play the game so that nobody loses. Input Specification: The first line contains integers *n* and *s* (2<=≤<=*n*<=≤<=100; 1<=≤<=*s*<=≤<=1000) — the number of mugs and the volume of the cup. The next line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=10). Number *a**i* means the volume of the *i*-th mug. Output Specification: In a single line, print "YES" (without the quotes) if his friends can play in the described manner, and "NO" (without the quotes) otherwise. Demo Input: ['3 4\n1 1 1\n', '3 4\n3 1 3\n', '3 4\n4 4 4\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: none
```python flag = 0 l1 = [int(x) for x in input().split()] l2 = [int(x) for x in input().split()] for j in l2: if j >= l1[1]: flag = 1 else : flag = 0 if flag == 0: print('YES') else: print('NO') ```
0
467
A
George and Accommodation
PROGRAMMING
800
[ "implementation" ]
null
null
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory. George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms. The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
Print a single integer — the number of rooms where George and Alex can move in.
[ "3\n1 1\n2 2\n3 3\n", "3\n1 10\n0 10\n10 10\n" ]
[ "0\n", "2\n" ]
none
500
[ { "input": "3\n1 1\n2 2\n3 3", "output": "0" }, { "input": "3\n1 10\n0 10\n10 10", "output": "2" }, { "input": "2\n36 67\n61 69", "output": "2" }, { "input": "3\n21 71\n10 88\n43 62", "output": "3" }, { "input": "3\n1 2\n2 3\n3 4", "output": "0" }, { "input": "10\n0 10\n0 20\n0 30\n0 40\n0 50\n0 60\n0 70\n0 80\n0 90\n0 100", "output": "10" }, { "input": "13\n14 16\n30 31\n45 46\n19 20\n15 17\n66 67\n75 76\n95 97\n29 30\n37 38\n0 2\n36 37\n8 9", "output": "4" }, { "input": "19\n66 67\n97 98\n89 91\n67 69\n67 68\n18 20\n72 74\n28 30\n91 92\n27 28\n75 77\n17 18\n74 75\n28 30\n16 18\n90 92\n9 11\n22 24\n52 54", "output": "12" }, { "input": "15\n55 57\n95 97\n57 59\n34 36\n50 52\n96 98\n39 40\n13 15\n13 14\n74 76\n47 48\n56 58\n24 25\n11 13\n67 68", "output": "10" }, { "input": "17\n68 69\n47 48\n30 31\n52 54\n41 43\n33 35\n38 40\n56 58\n45 46\n92 93\n73 74\n61 63\n65 66\n37 39\n67 68\n77 78\n28 30", "output": "8" }, { "input": "14\n64 66\n43 44\n10 12\n76 77\n11 12\n25 27\n87 88\n62 64\n39 41\n58 60\n10 11\n28 29\n57 58\n12 14", "output": "7" }, { "input": "38\n74 76\n52 54\n78 80\n48 49\n40 41\n64 65\n28 30\n6 8\n49 51\n68 70\n44 45\n57 59\n24 25\n46 48\n49 51\n4 6\n63 64\n76 78\n57 59\n18 20\n63 64\n71 73\n88 90\n21 22\n89 90\n65 66\n89 91\n96 98\n42 44\n1 1\n74 76\n72 74\n39 40\n75 76\n29 30\n48 49\n87 89\n27 28", "output": "22" }, { "input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "26\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2", "output": "0" }, { "input": "68\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2", "output": "68" }, { "input": "7\n0 1\n1 5\n2 4\n3 5\n4 6\n5 6\n6 8", "output": "5" }, { "input": "1\n0 0", "output": "0" }, { "input": "1\n100 100", "output": "0" }, { "input": "44\n0 8\n1 11\n2 19\n3 5\n4 29\n5 45\n6 6\n7 40\n8 19\n9 22\n10 18\n11 26\n12 46\n13 13\n14 27\n15 48\n16 25\n17 20\n18 29\n19 27\n20 45\n21 39\n22 29\n23 39\n24 42\n25 37\n26 52\n27 36\n28 43\n29 35\n30 38\n31 70\n32 47\n33 38\n34 61\n35 71\n36 51\n37 71\n38 59\n39 77\n40 70\n41 80\n42 77\n43 73", "output": "42" }, { "input": "3\n1 3\n2 7\n8 9", "output": "2" }, { "input": "53\n0 1\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53", "output": "0" }, { "input": "55\n0 0\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54", "output": "0" }, { "input": "51\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 62\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 82\n55 68\n55 70\n55 63\n55 55\n55 55\n55 55\n55 75\n55 75\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 82\n55 99\n55 60", "output": "12" }, { "input": "14\n1 1\n1 1\n1 55\n1 16\n1 1\n1 1\n1 55\n1 62\n1 53\n1 26\n1 1\n1 36\n1 2\n1 3", "output": "8" } ]
1,691,790,471
2,147,483,647
PyPy 3
OK
TESTS
27
62
0
# Read the number of rooms n = int(input()) # Initialize a counter for rooms with free place count = 0 # Iterate over each room for _ in range(n): # Read the number of people living in the room and the room's capacity p, q = map(int, input().split()) # Check if there's at least one free place in the room for both George and Alex if q - p >= 2: count += 1 # Print the number of rooms with free place print(count)
Title: George and Accommodation Time Limit: None seconds Memory Limit: None megabytes Problem Description: George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory. George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms. The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity. Output Specification: Print a single integer — the number of rooms where George and Alex can move in. Demo Input: ['3\n1 1\n2 2\n3 3\n', '3\n1 10\n0 10\n10 10\n'] Demo Output: ['0\n', '2\n'] Note: none
```python # Read the number of rooms n = int(input()) # Initialize a counter for rooms with free place count = 0 # Iterate over each room for _ in range(n): # Read the number of people living in the room and the room's capacity p, q = map(int, input().split()) # Check if there's at least one free place in the room for both George and Alex if q - p >= 2: count += 1 # Print the number of rooms with free place print(count) ```
3
385
B
Bear and Strings
PROGRAMMING
1,200
[ "brute force", "greedy", "implementation", "math", "strings" ]
null
null
The bear has a string *s*<==<=*s*1*s*2... *s*|*s*| (record |*s*| is the string's length), consisting of lowercase English letters. The bear wants to count the number of such pairs of indices *i*,<=*j* (1<=≤<=*i*<=≤<=*j*<=≤<=|*s*|), that string *x*(*i*,<=*j*)<==<=*s**i**s**i*<=+<=1... *s**j* contains at least one string "bear" as a substring. String *x*(*i*,<=*j*) contains string "bear", if there is such index *k* (*i*<=≤<=*k*<=≤<=*j*<=-<=3), that *s**k*<==<=*b*, *s**k*<=+<=1<==<=*e*, *s**k*<=+<=2<==<=*a*, *s**k*<=+<=3<==<=*r*. Help the bear cope with the given problem.
The first line contains a non-empty string *s* (1<=≤<=|*s*|<=≤<=5000). It is guaranteed that the string only consists of lowercase English letters.
Print a single number — the answer to the problem.
[ "bearbtear\n", "bearaabearc\n" ]
[ "6\n", "20\n" ]
In the first sample, the following pairs (*i*, *j*) match: (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9). In the second sample, the following pairs (*i*, *j*) match: (1,  4), (1,  5), (1,  6), (1,  7), (1,  8), (1,  9), (1,  10), (1,  11), (2,  10), (2,  11), (3,  10), (3,  11), (4,  10), (4,  11), (5,  10), (5,  11), (6,  10), (6,  11), (7,  10), (7,  11).
1,000
[ { "input": "bearbtear", "output": "6" }, { "input": "bearaabearc", "output": "20" }, { "input": "pbearbearhbearzqbearjkterasjhy", "output": "291" }, { "input": "pbearjbearbebearnbabcffbearbearwubearjezpiorrbearbearjbdlbearbearqbearjbearwipmsbearoaftrsebearzsnqb", "output": "4419" }, { "input": "bear", "output": "1" }, { "input": "a", "output": "0" }, { "input": "be", "output": "0" } ]
1,636,214,745
2,147,483,647
Python 3
OK
TESTS
43
46
4,505,600
s=input() n=len(s) ans=0 c=s.count('bear') left=-1 for i in range(n-3): if s[i]=='b' and s[i+1]=='e' and s[i+2]=='a' and s[i+3]=='r': ans+=(i-left)*(n-3-i) left=i print(ans)
Title: Bear and Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: The bear has a string *s*<==<=*s*1*s*2... *s*|*s*| (record |*s*| is the string's length), consisting of lowercase English letters. The bear wants to count the number of such pairs of indices *i*,<=*j* (1<=≤<=*i*<=≤<=*j*<=≤<=|*s*|), that string *x*(*i*,<=*j*)<==<=*s**i**s**i*<=+<=1... *s**j* contains at least one string "bear" as a substring. String *x*(*i*,<=*j*) contains string "bear", if there is such index *k* (*i*<=≤<=*k*<=≤<=*j*<=-<=3), that *s**k*<==<=*b*, *s**k*<=+<=1<==<=*e*, *s**k*<=+<=2<==<=*a*, *s**k*<=+<=3<==<=*r*. Help the bear cope with the given problem. Input Specification: The first line contains a non-empty string *s* (1<=≤<=|*s*|<=≤<=5000). It is guaranteed that the string only consists of lowercase English letters. Output Specification: Print a single number — the answer to the problem. Demo Input: ['bearbtear\n', 'bearaabearc\n'] Demo Output: ['6\n', '20\n'] Note: In the first sample, the following pairs (*i*, *j*) match: (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9). In the second sample, the following pairs (*i*, *j*) match: (1,  4), (1,  5), (1,  6), (1,  7), (1,  8), (1,  9), (1,  10), (1,  11), (2,  10), (2,  11), (3,  10), (3,  11), (4,  10), (4,  11), (5,  10), (5,  11), (6,  10), (6,  11), (7,  10), (7,  11).
```python s=input() n=len(s) ans=0 c=s.count('bear') left=-1 for i in range(n-3): if s[i]=='b' and s[i+1]=='e' and s[i+2]=='a' and s[i+3]=='r': ans+=(i-left)*(n-3-i) left=i print(ans) ```
3
982
B
Bus of Characters
PROGRAMMING
1,300
[ "data structures", "greedy", "implementation" ]
null
null
In the Bus of Characters there are $n$ rows of seat, each having $2$ seats. The width of both seats in the $i$-th row is $w_i$ centimeters. All integers $w_i$ are distinct. Initially the bus is empty. On each of $2n$ stops one passenger enters the bus. There are two types of passengers: - an introvert always chooses a row where both seats are empty. Among these rows he chooses the one with the smallest seats width and takes one of the seats in it; - an extrovert always chooses a row where exactly one seat is occupied (by an introvert). Among these rows he chooses the one with the largest seats width and takes the vacant place in it. You are given the seats width in each row and the order the passengers enter the bus. Determine which row each passenger will take.
The first line contains a single integer $n$ ($1 \le n \le 200\,000$) — the number of rows in the bus. The second line contains the sequence of integers $w_1, w_2, \dots, w_n$ ($1 \le w_i \le 10^{9}$), where $w_i$ is the width of each of the seats in the $i$-th row. It is guaranteed that all $w_i$ are distinct. The third line contains a string of length $2n$, consisting of digits '0' and '1' — the description of the order the passengers enter the bus. If the $j$-th character is '0', then the passenger that enters the bus on the $j$-th stop is an introvert. If the $j$-th character is '1', the the passenger that enters the bus on the $j$-th stop is an extrovert. It is guaranteed that the number of extroverts equals the number of introverts (i. e. both numbers equal $n$), and for each extrovert there always is a suitable row.
Print $2n$ integers — the rows the passengers will take. The order of passengers should be the same as in input.
[ "2\n3 1\n0011\n", "6\n10 8 9 11 13 5\n010010011101\n" ]
[ "2 1 1 2 \n", "6 6 2 3 3 1 4 4 1 2 5 5 \n" ]
In the first example the first passenger (introvert) chooses the row $2$, because it has the seats with smallest width. The second passenger (introvert) chooses the row $1$, because it is the only empty row now. The third passenger (extrovert) chooses the row $1$, because it has exactly one occupied seat and the seat width is the largest among such rows. The fourth passenger (extrovert) chooses the row $2$, because it is the only row with an empty place.
1,000
[ { "input": "2\n3 1\n0011", "output": "2 1 1 2 " }, { "input": "6\n10 8 9 11 13 5\n010010011101", "output": "6 6 2 3 3 1 4 4 1 2 5 5 " }, { "input": "1\n1\n01", "output": "1 1 " }, { "input": "1\n1000000\n01", "output": "1 1 " }, { "input": "2\n1 1000000\n0011", "output": "1 2 2 1 " }, { "input": "2\n1000000000 1\n0101", "output": "2 2 1 1 " }, { "input": "2\n1000000000 999999999\n0011", "output": "2 1 1 2 " }, { "input": "10\n24 53 10 99 83 9 15 62 33 47\n00100000000111111111", "output": "6 3 3 7 1 9 10 2 8 5 4 4 5 8 2 10 9 1 7 6 " } ]
1,639,958,291
791
PyPy 3-64
TIME_LIMIT_EXCEEDED
TESTS
29
2,000
54,067,200
import sys input = sys.stdin.buffer.readline import heapq def process(W, S): n = len(W) both_empty = [] one_empty = [] for i in range(n): w = W[i] heapq.heappush(both_empty, [w, i+1]) answer = [None for i in range(2*n)] for i in range(2*n): if S[i]=='0': w1, i1 = heapq.heappop(both_empty) answer[i] = i1 heapq.heappush(one_empty, [-1*w1, i1]) else: w1, i1 = heapq.heappop(one_empty) answer[i] = i1 return answer n = int(input()) W = [int(x) for x in input().split()] S = input().decode()[:-2] answer = process(W, S) print(' '.join(map(str, answer)))
Title: Bus of Characters Time Limit: None seconds Memory Limit: None megabytes Problem Description: In the Bus of Characters there are $n$ rows of seat, each having $2$ seats. The width of both seats in the $i$-th row is $w_i$ centimeters. All integers $w_i$ are distinct. Initially the bus is empty. On each of $2n$ stops one passenger enters the bus. There are two types of passengers: - an introvert always chooses a row where both seats are empty. Among these rows he chooses the one with the smallest seats width and takes one of the seats in it; - an extrovert always chooses a row where exactly one seat is occupied (by an introvert). Among these rows he chooses the one with the largest seats width and takes the vacant place in it. You are given the seats width in each row and the order the passengers enter the bus. Determine which row each passenger will take. Input Specification: The first line contains a single integer $n$ ($1 \le n \le 200\,000$) — the number of rows in the bus. The second line contains the sequence of integers $w_1, w_2, \dots, w_n$ ($1 \le w_i \le 10^{9}$), where $w_i$ is the width of each of the seats in the $i$-th row. It is guaranteed that all $w_i$ are distinct. The third line contains a string of length $2n$, consisting of digits '0' and '1' — the description of the order the passengers enter the bus. If the $j$-th character is '0', then the passenger that enters the bus on the $j$-th stop is an introvert. If the $j$-th character is '1', the the passenger that enters the bus on the $j$-th stop is an extrovert. It is guaranteed that the number of extroverts equals the number of introverts (i. e. both numbers equal $n$), and for each extrovert there always is a suitable row. Output Specification: Print $2n$ integers — the rows the passengers will take. The order of passengers should be the same as in input. Demo Input: ['2\n3 1\n0011\n', '6\n10 8 9 11 13 5\n010010011101\n'] Demo Output: ['2 1 1 2 \n', '6 6 2 3 3 1 4 4 1 2 5 5 \n'] Note: In the first example the first passenger (introvert) chooses the row $2$, because it has the seats with smallest width. The second passenger (introvert) chooses the row $1$, because it is the only empty row now. The third passenger (extrovert) chooses the row $1$, because it has exactly one occupied seat and the seat width is the largest among such rows. The fourth passenger (extrovert) chooses the row $2$, because it is the only row with an empty place.
```python import sys input = sys.stdin.buffer.readline import heapq def process(W, S): n = len(W) both_empty = [] one_empty = [] for i in range(n): w = W[i] heapq.heappush(both_empty, [w, i+1]) answer = [None for i in range(2*n)] for i in range(2*n): if S[i]=='0': w1, i1 = heapq.heappop(both_empty) answer[i] = i1 heapq.heappush(one_empty, [-1*w1, i1]) else: w1, i1 = heapq.heappop(one_empty) answer[i] = i1 return answer n = int(input()) W = [int(x) for x in input().split()] S = input().decode()[:-2] answer = process(W, S) print(' '.join(map(str, answer))) ```
0
770
A
New Password
PROGRAMMING
800
[ "*special", "implementation" ]
null
null
Innokentiy decides to change the password in the social net "Contact!", but he is too lazy to invent a new password by himself. That is why he needs your help. Innokentiy decides that new password should satisfy the following conditions: - the length of the password must be equal to *n*, - the password should consist only of lowercase Latin letters, - the number of distinct symbols in the password must be equal to *k*, - any two consecutive symbols in the password must be distinct. Your task is to help Innokentiy and to invent a new password which will satisfy all given conditions.
The first line contains two positive integers *n* and *k* (2<=≤<=*n*<=≤<=100, 2<=≤<=*k*<=≤<=*min*(*n*,<=26)) — the length of the password and the number of distinct symbols in it. Pay attention that a desired new password always exists.
Print any password which satisfies all conditions given by Innokentiy.
[ "4 3\n", "6 6\n", "5 2\n" ]
[ "java\n", "python\n", "phphp\n" ]
In the first test there is one of the appropriate new passwords — java, because its length is equal to 4 and 3 distinct lowercase letters a, j and v are used in it. In the second test there is one of the appropriate new passwords — python, because its length is equal to 6 and it consists of 6 distinct lowercase letters. In the third test there is one of the appropriate new passwords — phphp, because its length is equal to 5 and 2 distinct lowercase letters p and h are used in it. Pay attention the condition that no two identical symbols are consecutive is correct for all appropriate passwords in tests.
500
[ { "input": "4 3", "output": "abca" }, { "input": "6 6", "output": "abcdef" }, { "input": "5 2", "output": "ababa" }, { "input": "3 2", "output": "aba" }, { "input": "10 2", "output": "ababababab" }, { "input": "26 13", "output": "abcdefghijklmabcdefghijklm" }, { "input": "100 2", "output": "abababababababababababababababababababababababababababababababababababababababababababababababababab" }, { "input": "100 10", "output": "abcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij" }, { "input": "3 3", "output": "abc" }, { "input": "6 3", "output": "abcabc" }, { "input": "10 3", "output": "abcabcabca" }, { "input": "50 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcab" }, { "input": "90 2", "output": "ababababababababababababababababababababababababababababababababababababababababababababab" }, { "input": "6 2", "output": "ababab" }, { "input": "99 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc" }, { "input": "4 2", "output": "abab" }, { "input": "100 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca" }, { "input": "40 22", "output": "abcdefghijklmnopqrstuvabcdefghijklmnopqr" }, { "input": "13 8", "output": "abcdefghabcde" }, { "input": "16 15", "output": "abcdefghijklmnoa" }, { "input": "17 17", "output": "abcdefghijklmnopq" }, { "input": "19 4", "output": "abcdabcdabcdabcdabc" }, { "input": "100 26", "output": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv" }, { "input": "100 25", "output": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxy" }, { "input": "26 26", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "27 26", "output": "abcdefghijklmnopqrstuvwxyza" }, { "input": "2 2", "output": "ab" }, { "input": "26 25", "output": "abcdefghijklmnopqrstuvwxya" }, { "input": "99 2", "output": "abababababababababababababababababababababababababababababababababababababababababababababababababa" }, { "input": "99 26", "output": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstu" }, { "input": "4 4", "output": "abcd" }, { "input": "5 3", "output": "abcab" }, { "input": "5 4", "output": "abcda" }, { "input": "5 5", "output": "abcde" }, { "input": "24 22", "output": "abcdefghijklmnopqrstuvab" }, { "input": "26 14", "output": "abcdefghijklmnabcdefghijkl" }, { "input": "26 15", "output": "abcdefghijklmnoabcdefghijk" }, { "input": "30 12", "output": "abcdefghijklabcdefghijklabcdef" }, { "input": "35 4", "output": "abcdabcdabcdabcdabcdabcdabcdabcdabc" }, { "input": "79 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca" }, { "input": "79 14", "output": "abcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghi" }, { "input": "85 13", "output": "abcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefg" }, { "input": "90 25", "output": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmno" }, { "input": "90 19", "output": "abcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmn" }, { "input": "26 24", "output": "abcdefghijklmnopqrstuvwxab" }, { "input": "100 17", "output": "abcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmno" }, { "input": "26 2", "output": "ababababababababababababab" } ]
1,621,000,781
2,147,483,647
Python 3
OK
TESTS
47
62
6,758,400
n, k = map(int, input().split()) password = "" letters = "abcdefghijklmnopqrstuvwxyz" j = 0 for i in range(n): password += letters[j] j += 1 if(j == k): j = 0 print(password)
Title: New Password Time Limit: None seconds Memory Limit: None megabytes Problem Description: Innokentiy decides to change the password in the social net "Contact!", but he is too lazy to invent a new password by himself. That is why he needs your help. Innokentiy decides that new password should satisfy the following conditions: - the length of the password must be equal to *n*, - the password should consist only of lowercase Latin letters, - the number of distinct symbols in the password must be equal to *k*, - any two consecutive symbols in the password must be distinct. Your task is to help Innokentiy and to invent a new password which will satisfy all given conditions. Input Specification: The first line contains two positive integers *n* and *k* (2<=≤<=*n*<=≤<=100, 2<=≤<=*k*<=≤<=*min*(*n*,<=26)) — the length of the password and the number of distinct symbols in it. Pay attention that a desired new password always exists. Output Specification: Print any password which satisfies all conditions given by Innokentiy. Demo Input: ['4 3\n', '6 6\n', '5 2\n'] Demo Output: ['java\n', 'python\n', 'phphp\n'] Note: In the first test there is one of the appropriate new passwords — java, because its length is equal to 4 and 3 distinct lowercase letters a, j and v are used in it. In the second test there is one of the appropriate new passwords — python, because its length is equal to 6 and it consists of 6 distinct lowercase letters. In the third test there is one of the appropriate new passwords — phphp, because its length is equal to 5 and 2 distinct lowercase letters p and h are used in it. Pay attention the condition that no two identical symbols are consecutive is correct for all appropriate passwords in tests.
```python n, k = map(int, input().split()) password = "" letters = "abcdefghijklmnopqrstuvwxyz" j = 0 for i in range(n): password += letters[j] j += 1 if(j == k): j = 0 print(password) ```
3
779
A
Pupils Redistribution
PROGRAMMING
1,000
[ "constructive algorithms", "math" ]
null
null
In Berland each high school student is characterized by academic performance — integer value between 1 and 5. In high school 0xFF there are two groups of pupils: the group *A* and the group *B*. Each group consists of exactly *n* students. An academic performance of each student is known — integer value between 1 and 5. The school director wants to redistribute students between groups so that each of the two groups has the same number of students whose academic performance is equal to 1, the same number of students whose academic performance is 2 and so on. In other words, the purpose of the school director is to change the composition of groups, so that for each value of academic performance the numbers of students in both groups are equal. To achieve this, there is a plan to produce a series of exchanges of students between groups. During the single exchange the director selects one student from the class *A* and one student of class *B*. After that, they both change their groups. Print the least number of exchanges, in order to achieve the desired equal numbers of students for each academic performance.
The first line of the input contains integer number *n* (1<=≤<=*n*<=≤<=100) — number of students in both groups. The second line contains sequence of integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=5), where *a**i* is academic performance of the *i*-th student of the group *A*. The third line contains sequence of integer numbers *b*1,<=*b*2,<=...,<=*b**n* (1<=≤<=*b**i*<=≤<=5), where *b**i* is academic performance of the *i*-th student of the group *B*.
Print the required minimum number of exchanges or -1, if the desired distribution of students can not be obtained.
[ "4\n5 4 4 4\n5 5 4 5\n", "6\n1 1 1 1 1 1\n5 5 5 5 5 5\n", "1\n5\n3\n", "9\n3 2 5 5 2 3 3 3 2\n4 1 4 1 1 2 4 4 1\n" ]
[ "1\n", "3\n", "-1\n", "4\n" ]
none
500
[ { "input": "4\n5 4 4 4\n5 5 4 5", "output": "1" }, { "input": "6\n1 1 1 1 1 1\n5 5 5 5 5 5", "output": "3" }, { "input": "1\n5\n3", "output": "-1" }, { "input": "9\n3 2 5 5 2 3 3 3 2\n4 1 4 1 1 2 4 4 1", "output": "4" }, { "input": "1\n1\n2", "output": "-1" }, { "input": "1\n1\n1", "output": "0" }, { "input": "8\n1 1 2 2 3 3 4 4\n4 4 5 5 1 1 1 1", "output": "2" }, { "input": "10\n1 1 1 1 1 1 1 1 1 1\n2 2 2 2 2 2 2 2 2 2", "output": "5" }, { "input": "100\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5", "output": "0" }, { "input": "2\n1 1\n1 1", "output": "0" }, { "input": "2\n1 2\n1 1", "output": "-1" }, { "input": "2\n2 2\n1 1", "output": "1" }, { "input": "2\n1 2\n2 1", "output": "0" }, { "input": "2\n1 1\n2 2", "output": "1" }, { "input": "5\n5 5 5 5 5\n5 5 5 5 5", "output": "0" }, { "input": "5\n5 5 5 3 5\n5 3 5 5 5", "output": "0" }, { "input": "5\n2 3 2 3 3\n2 3 2 2 2", "output": "1" }, { "input": "5\n4 4 1 4 2\n1 2 4 2 2", "output": "1" }, { "input": "50\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4", "output": "0" }, { "input": "50\n1 3 1 3 3 3 1 3 3 3 3 1 1 1 3 3 3 1 3 1 1 1 3 1 3 1 3 3 3 1 3 1 1 3 3 3 1 1 1 1 3 3 1 1 1 3 3 1 1 1\n1 3 1 3 3 1 1 3 1 3 3 1 1 1 1 3 3 1 3 1 1 3 1 1 3 1 1 1 1 3 3 1 3 3 3 3 1 3 3 3 3 3 1 1 3 3 1 1 3 1", "output": "0" }, { "input": "50\n1 1 1 4 1 1 4 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 4 4 4 1 1 4 1 4 4 4 4 4 4 4 1 4 1 1 1 1 4 1 4 4 1 1 1 4\n1 4 4 1 1 4 1 4 4 1 1 4 1 4 1 1 4 1 1 1 4 4 1 1 4 1 4 1 1 4 4 4 4 1 1 4 4 1 1 1 4 1 4 1 4 1 1 1 4 4", "output": "0" }, { "input": "50\n3 5 1 3 3 4 3 4 2 5 2 1 2 2 5 5 4 5 4 2 1 3 4 2 3 3 3 2 4 3 5 5 5 5 5 5 2 5 2 2 5 4 4 1 5 3 4 2 1 3\n3 5 3 2 5 3 4 4 5 2 3 4 4 4 2 2 4 4 4 3 3 5 5 4 3 1 4 4 5 5 4 1 2 5 5 4 1 2 3 4 5 5 3 2 3 4 3 5 1 1", "output": "3" }, { "input": "100\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5", "output": "0" }, { "input": "100\n1 1 3 1 3 1 1 3 1 1 3 1 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 1 1 1 3 1 1 1 3 1 1 3 3 1 3 3 1 3 1 3 3 3 3 1 1 3 3 3 1 1 3 1 3 3 3 1 3 3 3 3 3 1 3 3 3 3 1 3 1 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 1 1 3 1 1 1\n1 1 1 3 3 3 3 3 3 3 1 3 3 3 1 3 3 3 3 3 3 1 3 3 1 3 3 1 1 1 3 3 3 3 3 3 3 1 1 3 3 3 1 1 3 3 1 1 1 3 3 3 1 1 3 1 1 3 3 1 1 3 3 3 3 3 3 1 3 3 3 1 1 3 3 3 1 1 3 3 1 3 1 3 3 1 1 3 3 1 1 3 1 3 3 3 1 3 1 3", "output": "0" }, { "input": "100\n2 4 5 2 5 5 4 4 5 4 4 5 2 5 5 4 5 2 5 2 2 4 5 4 4 4 2 4 2 2 4 2 4 2 2 2 4 5 5 5 4 2 4 5 4 4 2 5 4 2 5 4 5 4 5 4 5 5 5 4 2 2 4 5 2 5 5 2 5 2 4 4 4 5 5 2 2 2 4 4 2 2 2 5 5 2 2 4 5 4 2 4 4 2 5 2 4 4 4 4\n4 4 2 5 2 2 4 2 5 2 5 4 4 5 2 4 5 4 5 2 2 2 2 5 4 5 2 4 2 2 5 2 5 2 4 5 5 5 2 5 4 4 4 4 5 2 2 4 2 4 2 4 5 5 5 4 5 4 5 5 5 2 5 4 4 4 4 4 2 5 5 4 2 4 4 5 5 2 4 4 4 2 2 2 5 4 2 2 4 5 4 4 4 4 2 2 4 5 5 2", "output": "0" }, { "input": "100\n3 3 4 3 3 4 3 1 4 2 1 3 1 1 2 4 4 4 4 1 1 4 1 4 4 1 1 2 3 3 3 2 4 2 3 3 3 1 3 4 2 2 1 3 4 4 3 2 2 2 4 2 1 2 1 2 2 1 1 4 2 1 3 2 4 4 4 2 3 1 3 1 3 2 2 2 2 4 4 1 3 1 1 4 2 3 3 4 4 2 4 4 2 4 3 3 1 3 2 4\n3 1 4 4 2 1 1 1 1 1 1 3 1 1 3 4 3 2 2 4 2 1 4 4 4 4 1 2 3 4 2 3 3 4 3 3 2 4 2 2 2 1 2 4 4 4 2 1 3 4 3 3 4 2 4 4 3 2 4 2 4 2 4 4 1 4 3 1 4 3 3 3 3 1 2 2 2 2 4 1 2 1 3 4 3 1 3 3 4 2 3 3 2 1 3 4 2 1 1 2", "output": "0" }, { "input": "100\n2 4 5 2 1 5 5 2 1 5 1 5 1 1 1 3 4 5 1 1 2 3 3 1 5 5 4 4 4 1 1 1 5 2 3 5 1 2 2 1 1 1 2 2 1 2 4 4 5 1 3 2 5 3 5 5 3 2 2 2 1 3 4 4 4 4 4 5 3 1 4 1 5 4 4 5 4 5 2 4 4 3 1 2 1 4 5 3 3 3 3 2 2 2 3 5 3 1 3 4\n3 2 5 1 5 4 4 3 5 5 5 2 1 4 4 3 2 3 3 5 5 4 5 5 2 1 2 4 4 3 5 1 1 5 1 3 2 5 2 4 4 2 4 2 4 2 3 2 5 1 4 4 1 1 1 5 3 5 1 1 4 5 1 1 2 2 5 3 5 1 1 1 2 3 3 2 3 2 4 4 5 4 2 1 3 4 1 1 2 4 1 5 3 1 2 1 3 4 1 3", "output": "0" }, { "input": "100\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5", "output": "0" }, { "input": "100\n1 4 4 1 4 4 1 1 4 1 1 1 1 4 4 4 4 1 1 1 1 1 1 4 4 4 1 1 4 4 1 1 1 1 4 4 4 4 4 1 1 4 4 1 1 1 4 1 1 1 1 4 4 4 4 4 4 1 4 4 4 4 1 1 1 4 1 4 1 1 1 1 4 1 1 1 4 4 4 1 4 4 1 4 4 4 4 4 1 4 1 1 4 1 4 1 1 1 4 4\n4 1 1 4 4 4 1 4 4 4 1 1 4 1 1 4 1 4 4 4 1 1 4 1 4 1 1 1 4 4 1 4 1 4 1 4 4 1 1 4 1 4 1 1 1 4 1 4 4 4 1 4 1 4 4 4 4 1 4 1 1 4 1 1 4 4 4 1 4 1 4 1 4 4 4 1 1 4 1 4 4 4 4 1 1 1 1 1 4 4 1 4 1 4 1 1 1 4 4 1", "output": "1" }, { "input": "100\n5 2 5 2 2 3 3 2 5 3 2 5 3 3 3 5 2 2 5 5 3 3 5 3 2 2 2 3 2 2 2 2 3 5 3 3 2 3 2 5 3 3 5 3 2 2 5 5 5 5 5 2 3 2 2 2 2 3 2 5 2 2 2 3 5 5 5 3 2 2 2 3 5 3 2 5 5 3 5 5 5 3 2 5 2 3 5 3 2 5 5 3 5 2 3 3 2 2 2 2\n5 3 5 3 3 5 2 5 3 2 3 3 5 2 5 2 2 5 2 5 2 5 3 3 5 3 2 2 2 3 5 3 2 2 3 2 2 5 5 2 3 2 3 3 5 3 2 5 2 2 2 3 3 5 3 3 5 2 2 2 3 3 2 2 3 5 3 5 5 3 3 2 5 3 5 2 3 2 5 5 3 2 5 5 2 2 2 2 3 2 2 5 2 5 2 2 3 3 2 5", "output": "1" }, { "input": "100\n4 4 5 4 3 5 5 2 4 5 5 5 3 4 4 2 5 2 5 3 3 3 3 5 3 2 2 2 4 4 4 4 3 3 4 5 3 2 2 2 4 4 5 3 4 5 4 5 5 2 4 2 5 2 3 4 4 5 2 2 4 4 5 5 5 3 5 4 5 5 5 4 3 3 2 4 3 5 5 5 2 4 2 5 4 3 5 3 2 3 5 2 5 2 2 5 4 5 4 3\n5 4 2 4 3 5 2 5 5 3 4 5 4 5 3 3 5 5 2 3 4 2 3 5 2 2 2 4 2 5 2 4 4 5 2 2 4 4 5 5 2 3 4 2 4 5 2 5 2 2 4 5 5 3 5 5 5 4 3 4 4 3 5 5 3 4 5 3 2 3 4 3 4 4 2 5 3 4 5 5 3 5 3 3 4 3 5 3 2 2 4 5 4 5 5 2 3 4 3 5", "output": "1" }, { "input": "100\n1 4 2 2 2 1 4 5 5 5 4 4 5 5 1 3 2 1 4 5 2 3 4 4 5 4 4 4 4 5 1 3 5 5 3 3 3 3 5 1 4 3 5 1 2 4 1 3 5 5 1 3 3 3 1 3 5 4 4 2 2 5 5 5 2 3 2 5 1 3 5 4 5 3 2 2 3 2 3 3 2 5 2 4 2 3 4 1 3 1 3 1 5 1 5 2 3 5 4 5\n1 2 5 3 2 3 4 2 5 1 2 5 3 4 3 3 4 1 5 5 1 3 3 1 1 4 1 4 2 5 4 1 3 4 5 3 2 2 1 4 5 5 2 3 3 5 5 4 2 3 3 5 3 3 5 4 4 5 3 5 1 1 4 4 4 1 3 5 5 5 4 2 4 5 3 2 2 2 5 5 5 1 4 3 1 3 1 2 2 4 5 1 3 2 4 5 1 5 2 5", "output": "1" }, { "input": "100\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3", "output": "0" }, { "input": "100\n5 2 2 2 5 2 5 5 5 2 5 2 5 5 5 5 5 5 2 2 2 5 5 2 5 2 2 5 2 5 5 2 5 2 5 2 5 5 5 5 5 2 2 2 2 5 5 2 5 5 5 2 5 5 5 2 5 5 5 2 2 2 5 2 2 2 5 5 2 5 5 5 2 5 2 2 5 2 2 2 5 5 5 5 2 5 2 5 2 2 5 2 5 2 2 2 2 5 5 2\n5 5 2 2 5 5 2 5 2 2 5 5 5 5 2 5 5 2 5 2 2 5 2 2 5 2 5 2 2 5 2 5 2 5 5 2 2 5 5 5 2 5 5 2 5 5 5 2 2 5 5 5 2 5 5 5 2 2 2 5 5 5 2 2 5 5 2 2 2 5 2 5 5 2 5 2 5 2 2 5 5 2 2 5 5 2 2 5 2 2 5 2 2 2 5 5 2 2 2 5", "output": "1" }, { "input": "100\n3 3 2 2 1 2 3 3 2 2 1 1 3 3 1 1 1 2 1 2 3 2 3 3 3 1 2 3 1 2 1 2 3 3 2 1 1 1 1 1 2 2 3 2 1 1 3 3 1 3 3 1 3 1 3 3 3 2 1 2 3 1 3 2 2 2 2 2 2 3 1 3 1 2 2 1 2 3 2 3 3 1 2 1 1 3 1 1 1 2 1 2 2 2 3 2 3 2 1 1\n1 3 1 2 1 1 1 1 1 2 1 2 1 3 2 2 3 2 1 1 2 2 2 1 1 3 2 3 2 1 2 2 3 2 3 1 3 1 1 2 3 1 2 1 3 2 1 2 3 2 3 3 3 2 2 2 3 1 3 1 1 2 1 3 1 3 1 3 3 3 1 3 3 2 1 3 3 3 3 3 2 1 2 2 3 3 2 1 2 2 1 3 3 1 3 2 2 1 1 3", "output": "1" }, { "input": "100\n5 3 3 2 5 3 2 4 2 3 3 5 3 4 5 4 3 3 4 3 2 3 3 4 5 4 2 4 2 4 5 3 3 4 5 3 5 3 5 3 3 2 5 3 4 5 2 5 2 2 4 2 2 2 2 5 4 5 4 3 5 4 2 5 5 3 4 5 2 3 2 2 2 5 3 2 2 2 3 3 5 2 3 2 4 5 3 3 3 5 2 3 3 3 5 4 5 5 5 2\n4 4 4 5 5 3 5 5 4 3 5 4 3 4 3 3 5 3 5 5 3 3 3 5 5 4 4 3 2 5 4 3 3 4 5 3 5 2 4 2 2 2 5 3 5 2 5 5 3 3 2 3 3 4 2 5 2 5 2 4 2 4 2 3 3 4 2 2 2 4 4 3 3 3 4 3 3 3 5 5 3 4 2 2 3 5 5 2 3 4 5 4 5 3 4 2 5 3 2 4", "output": "3" }, { "input": "100\n5 3 4 4 2 5 1 1 4 4 3 5 5 1 4 4 2 5 3 2 1 1 3 2 4 4 4 2 5 2 2 3 1 4 1 4 4 5 3 5 1 4 1 4 1 5 5 3 5 5 1 5 3 5 1 3 3 4 5 3 2 2 4 5 2 5 4 2 4 4 1 1 4 2 4 1 2 2 4 3 4 1 1 1 4 3 5 1 2 1 4 5 4 4 2 1 4 1 3 2\n1 1 1 1 4 2 1 4 1 1 3 5 4 3 5 2 2 4 2 2 4 1 3 4 4 5 1 1 2 2 2 1 4 1 4 4 1 5 5 2 3 5 1 5 4 2 3 2 2 5 4 1 1 4 5 2 4 5 4 4 3 3 2 4 3 4 5 5 4 2 4 2 1 2 3 2 2 5 5 3 1 3 4 3 4 4 5 3 1 1 3 5 1 4 4 2 2 1 4 5", "output": "2" }, { "input": "100\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3", "output": "0" }, { "input": "100\n3 3 4 3 3 4 3 3 4 4 3 3 3 4 3 4 3 4 4 3 3 3 3 3 3 4 3 3 4 3 3 3 3 4 3 3 3 4 4 4 3 3 4 4 4 3 4 4 3 3 4 3 3 3 4 4 4 3 4 3 3 3 3 3 3 3 4 4 3 3 3 3 4 3 3 3 3 3 4 4 3 3 3 3 3 4 3 4 4 4 4 3 4 3 4 4 4 4 3 3\n4 3 3 3 3 4 4 3 4 4 4 3 3 4 4 3 4 4 4 4 3 4 3 3 3 4 4 4 3 4 3 4 4 3 3 4 3 3 3 3 3 4 3 3 3 3 4 4 4 3 3 4 3 4 4 4 4 3 4 4 3 3 4 3 3 4 3 4 3 4 4 4 4 3 3 4 3 4 4 4 3 3 4 4 4 4 4 3 3 3 4 3 3 4 3 3 3 3 3 3", "output": "5" }, { "input": "100\n4 2 5 2 5 4 2 5 5 4 4 2 4 4 2 4 4 5 2 5 5 2 2 4 4 5 4 5 5 5 2 2 2 2 4 4 5 2 4 4 4 2 2 5 5 4 5 4 4 2 4 5 4 2 4 5 4 2 4 5 4 4 4 4 4 5 4 2 5 2 5 5 5 5 4 2 5 5 4 4 2 5 2 5 2 5 4 2 4 2 4 5 2 5 2 4 2 4 2 4\n5 4 5 4 5 2 2 4 5 2 5 5 5 5 5 4 4 4 4 5 4 5 5 2 4 4 4 4 5 2 4 4 5 5 2 5 2 5 5 4 4 5 2 5 2 5 2 5 4 5 2 5 2 5 2 4 4 5 4 2 5 5 4 2 2 2 5 4 2 2 4 4 4 5 5 2 5 2 2 4 4 4 2 5 4 5 2 2 5 4 4 5 5 4 5 5 4 5 2 5", "output": "5" }, { "input": "100\n3 4 5 3 5 4 5 4 4 4 2 4 5 4 3 2 3 4 3 5 2 5 2 5 4 3 4 2 5 2 5 3 4 5 2 5 4 2 4 5 4 3 2 4 4 5 2 5 5 3 3 5 2 4 4 2 3 3 2 5 5 5 2 4 5 5 4 2 2 5 3 3 2 4 4 2 4 5 5 2 5 5 3 2 5 2 4 4 3 3 5 4 5 5 2 5 4 5 4 3\n4 3 5 5 2 4 2 4 5 5 5 2 3 3 3 3 5 5 5 5 3 5 2 3 5 2 3 2 2 5 5 3 5 3 4 2 2 5 3 3 3 3 5 2 4 5 3 5 3 4 4 4 5 5 3 4 4 2 2 4 4 5 3 2 4 5 5 4 5 2 2 3 5 4 5 5 2 5 4 3 2 3 2 5 4 5 3 4 5 5 3 5 2 2 4 4 3 2 5 2", "output": "4" }, { "input": "100\n4 1 1 2 1 4 4 1 4 5 5 5 2 2 1 3 5 2 1 5 2 1 2 4 4 2 1 2 2 2 4 3 1 4 2 2 3 1 1 4 4 5 4 4 4 5 1 4 1 4 3 1 2 1 2 4 1 2 5 2 1 4 3 4 1 4 2 1 1 1 5 3 3 1 4 1 3 1 4 1 1 2 2 2 3 1 4 3 4 4 5 2 5 4 3 3 3 2 2 1\n5 1 4 4 3 4 4 5 2 3 3 4 4 2 3 2 3 1 3 1 1 4 1 5 4 3 2 4 3 3 3 2 3 4 1 5 4 2 4 2 2 2 5 3 1 2 5 3 2 2 1 1 2 2 3 5 1 2 5 3 2 1 1 2 1 2 4 3 5 4 5 3 2 4 1 3 4 1 4 4 5 4 4 5 4 2 5 3 4 1 4 2 4 2 4 5 4 5 4 2", "output": "6" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "100\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3", "output": "0" }, { "input": "100\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 4\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4", "output": "0" }, { "input": "100\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "1" }, { "input": "100\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 1 3 1 3 3 3 3 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3\n3 3 3 4 3 3 3 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 1 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3", "output": "1" }, { "input": "100\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "50" }, { "input": "100\n3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5\n3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1", "output": "25" }, { "input": "100\n3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5\n2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4", "output": "50" }, { "input": "100\n1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5", "output": "40" }, { "input": "100\n1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5\n2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3", "output": "30" }, { "input": "5\n4 4 4 4 5\n4 5 5 5 5", "output": "-1" }, { "input": "4\n1 1 1 1\n3 3 3 3", "output": "2" }, { "input": "6\n1 1 2 2 3 4\n1 2 3 3 4 4", "output": "-1" }, { "input": "4\n1 1 1 2\n3 3 3 3", "output": "-1" }, { "input": "3\n2 2 2\n4 4 4", "output": "-1" }, { "input": "2\n1 2\n3 4", "output": "-1" }, { "input": "6\n1 1 1 3 3 3\n2 2 2 4 4 4", "output": "-1" }, { "input": "5\n1 2 2 2 2\n1 1 1 1 3", "output": "-1" }, { "input": "2\n1 3\n2 2", "output": "-1" }, { "input": "2\n1 3\n4 5", "output": "-1" }, { "input": "4\n1 2 3 4\n5 5 5 5", "output": "-1" }, { "input": "2\n1 3\n2 4", "output": "-1" }, { "input": "2\n1 2\n4 4", "output": "-1" }, { "input": "2\n1 2\n3 3", "output": "-1" }, { "input": "10\n4 4 4 4 2 3 3 3 3 1\n2 2 2 2 4 1 1 1 1 3", "output": "-1" }, { "input": "6\n1 2 3 3 4 4\n1 1 2 2 3 4", "output": "-1" }, { "input": "5\n3 3 3 3 1\n1 1 1 1 3", "output": "-1" }, { "input": "2\n1 1\n2 3", "output": "-1" }, { "input": "8\n1 1 2 2 3 3 3 3\n2 2 2 2 1 1 1 1", "output": "2" }, { "input": "5\n1 1 1 3 3\n1 1 1 1 2", "output": "-1" }, { "input": "6\n2 2 3 3 4 4\n2 3 4 5 5 5", "output": "-1" }, { "input": "6\n1 1 2 2 3 4\n3 3 4 4 1 2", "output": "-1" }, { "input": "4\n1 2 3 3\n3 3 3 3", "output": "-1" }, { "input": "3\n1 2 3\n3 3 3", "output": "-1" }, { "input": "5\n3 3 3 2 2\n2 2 2 3 3", "output": "-1" }, { "input": "10\n1 2 3 4 1 2 3 4 1 2\n1 2 3 4 1 2 3 4 3 4", "output": "-1" }, { "input": "2\n2 2\n1 3", "output": "-1" }, { "input": "3\n1 2 3\n1 1 4", "output": "-1" }, { "input": "4\n3 4 4 4\n3 3 4 4", "output": "-1" } ]
1,657,306,166
2,147,483,647
Python 3
OK
TESTS
81
46
0
n = int(input()) a = [int(i) for i in input().split()] b = [int(i) for i in input().split()] aux = [0] * 5 for i in a: aux[i-1]+=1 for i in b: aux[i-1]-=1 def countDiff(): count = 0 for i in aux: if(i%2==1): return -1 count+=abs(i) return count count = countDiff() if(count==-1): print(-1) else: print(count//4)
Title: Pupils Redistribution Time Limit: None seconds Memory Limit: None megabytes Problem Description: In Berland each high school student is characterized by academic performance — integer value between 1 and 5. In high school 0xFF there are two groups of pupils: the group *A* and the group *B*. Each group consists of exactly *n* students. An academic performance of each student is known — integer value between 1 and 5. The school director wants to redistribute students between groups so that each of the two groups has the same number of students whose academic performance is equal to 1, the same number of students whose academic performance is 2 and so on. In other words, the purpose of the school director is to change the composition of groups, so that for each value of academic performance the numbers of students in both groups are equal. To achieve this, there is a plan to produce a series of exchanges of students between groups. During the single exchange the director selects one student from the class *A* and one student of class *B*. After that, they both change their groups. Print the least number of exchanges, in order to achieve the desired equal numbers of students for each academic performance. Input Specification: The first line of the input contains integer number *n* (1<=≤<=*n*<=≤<=100) — number of students in both groups. The second line contains sequence of integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=5), where *a**i* is academic performance of the *i*-th student of the group *A*. The third line contains sequence of integer numbers *b*1,<=*b*2,<=...,<=*b**n* (1<=≤<=*b**i*<=≤<=5), where *b**i* is academic performance of the *i*-th student of the group *B*. Output Specification: Print the required minimum number of exchanges or -1, if the desired distribution of students can not be obtained. Demo Input: ['4\n5 4 4 4\n5 5 4 5\n', '6\n1 1 1 1 1 1\n5 5 5 5 5 5\n', '1\n5\n3\n', '9\n3 2 5 5 2 3 3 3 2\n4 1 4 1 1 2 4 4 1\n'] Demo Output: ['1\n', '3\n', '-1\n', '4\n'] Note: none
```python n = int(input()) a = [int(i) for i in input().split()] b = [int(i) for i in input().split()] aux = [0] * 5 for i in a: aux[i-1]+=1 for i in b: aux[i-1]-=1 def countDiff(): count = 0 for i in aux: if(i%2==1): return -1 count+=abs(i) return count count = countDiff() if(count==-1): print(-1) else: print(count//4) ```
3
699
A
Launch of Collider
PROGRAMMING
1,000
[ "implementation" ]
null
null
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles. The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen.
[ "4\nRLRL\n2 4 6 10\n", "3\nLLR\n40 50 60\n" ]
[ "1\n", "-1\n" ]
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
500
[ { "input": "4\nRLRL\n2 4 6 10", "output": "1" }, { "input": "3\nLLR\n40 50 60", "output": "-1" }, { "input": "4\nRLLR\n46 230 264 470", "output": "92" }, { "input": "6\nLLRLLL\n446 492 650 844 930 970", "output": "97" }, { "input": "8\nRRLLLLLL\n338 478 512 574 594 622 834 922", "output": "17" }, { "input": "10\nLRLRLLRRLR\n82 268 430 598 604 658 670 788 838 1000", "output": "3" }, { "input": "2\nRL\n0 1000000000", "output": "500000000" }, { "input": "12\nLRLLRRRRLRLL\n254 1260 1476 1768 2924 4126 4150 4602 5578 7142 8134 9082", "output": "108" }, { "input": "14\nRLLRRLRLLRLLLR\n698 2900 3476 3724 3772 3948 4320 4798 5680 6578 7754 8034 8300 8418", "output": "88" }, { "input": "16\nRRLLLRLRLLLLRLLR\n222 306 968 1060 1636 1782 2314 2710 3728 4608 5088 6790 6910 7156 7418 7668", "output": "123" }, { "input": "18\nRLRLLRRRLLLRLRRLRL\n1692 2028 2966 3008 3632 4890 5124 5838 6596 6598 6890 8294 8314 8752 8868 9396 9616 9808", "output": "10" }, { "input": "20\nRLLLLLLLRRRRLRRLRRLR\n380 902 1400 1834 2180 2366 2562 2596 2702 2816 3222 3238 3742 5434 6480 7220 7410 8752 9708 9970", "output": "252" }, { "input": "22\nLRRRRRRRRRRRLLRRRRRLRL\n1790 2150 2178 2456 2736 3282 3622 4114 4490 4772 5204 5240 5720 5840 5910 5912 6586 7920 8584 9404 9734 9830", "output": "48" }, { "input": "24\nLLRLRRLLRLRRRRLLRRLRLRRL\n100 360 864 1078 1360 1384 1438 2320 2618 3074 3874 3916 3964 5178 5578 6278 6630 6992 8648 8738 8922 8930 9276 9720", "output": "27" }, { "input": "26\nRLLLLLLLRLRRLRLRLRLRLLLRRR\n908 1826 2472 2474 2728 3654 3716 3718 3810 3928 4058 4418 4700 5024 5768 6006 6128 6386 6968 7040 7452 7774 7822 8726 9338 9402", "output": "59" }, { "input": "28\nRRLRLRRRRRRLLLRRLRRLLLRRLLLR\n156 172 1120 1362 2512 3326 3718 4804 4990 5810 6242 6756 6812 6890 6974 7014 7088 7724 8136 8596 8770 8840 9244 9250 9270 9372 9400 9626", "output": "10" }, { "input": "30\nRLLRLRLLRRRLRRRLLLLLLRRRLRRLRL\n128 610 1680 2436 2896 2994 3008 3358 3392 4020 4298 4582 4712 4728 5136 5900 6088 6232 6282 6858 6934 7186 7224 7256 7614 8802 8872 9170 9384 9794", "output": "7" }, { "input": "10\nLLLLRRRRRR\n0 2 4 6 8 10 12 14 16 18", "output": "-1" }, { "input": "5\nLLLLL\n0 10 20 30 40", "output": "-1" }, { "input": "6\nRRRRRR\n40 50 60 70 80 100", "output": "-1" }, { "input": "1\nR\n0", "output": "-1" }, { "input": "2\nRL\n2 1000000000", "output": "499999999" }, { "input": "2\nRL\n0 400000", "output": "200000" }, { "input": "2\nRL\n0 200002", "output": "100001" }, { "input": "2\nRL\n2 20000000", "output": "9999999" }, { "input": "4\nLLRL\n2 4 10 100", "output": "45" }, { "input": "4\nRLRL\n2 10 12 14", "output": "1" }, { "input": "2\nRL\n0 100000000", "output": "50000000" }, { "input": "2\nRL\n2 600002", "output": "300000" }, { "input": "1\nL\n0", "output": "-1" }, { "input": "2\nRL\n0 600000", "output": "300000" }, { "input": "5\nRRRRR\n0 2 4 6 8", "output": "-1" }, { "input": "2\nRL\n2 200000000", "output": "99999999" }, { "input": "2\nRL\n0 267382766", "output": "133691383" }, { "input": "3\nRRL\n4 8 999999998", "output": "499999995" }, { "input": "2\nRL\n0 2", "output": "1" }, { "input": "2\nRL\n2 400002", "output": "200000" }, { "input": "2\nLL\n2 4", "output": "-1" }, { "input": "2\nLL\n0 2", "output": "-1" }, { "input": "2\nRL\n0 100000", "output": "50000" }, { "input": "2\nRL\n2 200000020", "output": "100000009" }, { "input": "2\nRL\n2000000 4000000", "output": "1000000" }, { "input": "2\nRL\n0 199998", "output": "99999" }, { "input": "3\nLRR\n40 50 60", "output": "-1" }, { "input": "2\nRL\n200 400400", "output": "200100" }, { "input": "2\nRL\n2 400004", "output": "200001" }, { "input": "2\nRL\n0 200000000", "output": "100000000" } ]
1,689,553,876
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
n = int(input()) pos = input() x = list(map(int, input().split())) explo = [[0 ,0]] for i in range(len(x)-1): if pos[i] == 'R' and pos[i+1] == 'L': explo.append([x[i], x[i+1]]) if len(explo) == 0: print(-1) exit() mi = explo[0][1] - explo[0][0] for pair in explo: mi = min(mi, pair[1] - pair[0]) print(mi//2)
Title: Launch of Collider Time Limit: None seconds Memory Limit: None megabytes Problem Description: There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input Specification: The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles. The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output Specification: In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Demo Input: ['4\nRLRL\n2 4 6 10\n', '3\nLLR\n40 50 60\n'] Demo Output: ['1\n', '-1\n'] Note: In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
```python n = int(input()) pos = input() x = list(map(int, input().split())) explo = [[0 ,0]] for i in range(len(x)-1): if pos[i] == 'R' and pos[i+1] == 'L': explo.append([x[i], x[i+1]]) if len(explo) == 0: print(-1) exit() mi = explo[0][1] - explo[0][0] for pair in explo: mi = min(mi, pair[1] - pair[0]) print(mi//2) ```
0
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,659,771,822
2,147,483,647
Python 3
OK
TESTS
35
92
0
def print_hi(name): list1 = list(map(lambda x: int(x), name.split(' '))) print((list1[0]*list1[1])//2) if __name__ == '__main__': print_hi(input())
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python def print_hi(name): list1 = list(map(lambda x: int(x), name.split(' '))) print((list1[0]*list1[1])//2) if __name__ == '__main__': print_hi(input()) ```
3.977
171
B
Star
PROGRAMMING
1,300
[ "*special", "combinatorics" ]
null
null
The input contains a single integer *a* (1<=≤<=*a*<=≤<=18257).
Print a single integer *output* (1<=≤<=*output*<=≤<=2·109).
[ "2\n" ]
[ "13" ]
none
0
[ { "input": "2", "output": "13" }, { "input": "1", "output": "1" }, { "input": "3", "output": "37" }, { "input": "4", "output": "73" }, { "input": "5", "output": "121" }, { "input": "6", "output": "181" }, { "input": "7", "output": "253" }, { "input": "8", "output": "337" }, { "input": "9", "output": "433" }, { "input": "15000", "output": "1349910001" }, { "input": "4845", "output": "140815081" }, { "input": "6914", "output": "286778893" }, { "input": "3994", "output": "95688253" }, { "input": "12504", "output": "938025073" }, { "input": "13170", "output": "1040614381" }, { "input": "427", "output": "1091413" }, { "input": "11877", "output": "846307513" }, { "input": "3202", "output": "61497613" }, { "input": "5689", "output": "194154193" }, { "input": "15302", "output": "1404815413" }, { "input": "17042", "output": "1742476333" }, { "input": "1481", "output": "13151281" }, { "input": "15592", "output": "1458569233" }, { "input": "16344", "output": "1602659953" }, { "input": "4222", "output": "106926373" }, { "input": "11808", "output": "836502337" }, { "input": "13366", "output": "1071819541" }, { "input": "3823", "output": "87669037" }, { "input": "581", "output": "2021881" }, { "input": "15479", "output": "1437503773" }, { "input": "6543", "output": "256825837" }, { "input": "11136", "output": "743996161" }, { "input": "16331", "output": "1600111381" }, { "input": "8543", "output": "437845837" }, { "input": "7530", "output": "340160221" }, { "input": "3154", "output": "59667373" }, { "input": "11501", "output": "793569001" }, { "input": "12038", "output": "869408437" }, { "input": "13082", "output": "1026753853" }, { "input": "18257", "output": "1999798753" } ]
1,585,610,303
2,147,483,647
Python 3
OK
TESTS
40
216
0
a=int(input()) s=1 for i in range(0,a): s+=i*12 print (s)
Title: Star Time Limit: None seconds Memory Limit: None megabytes Problem Description: Input Specification: The input contains a single integer *a* (1<=≤<=*a*<=≤<=18257). Output Specification: Print a single integer *output* (1<=≤<=*output*<=≤<=2·109). Demo Input: ['2\n'] Demo Output: ['13'] Note: none
```python a=int(input()) s=1 for i in range(0,a): s+=i*12 print (s) ```
3
148
A
Insomnia cure
PROGRAMMING
800
[ "constructive algorithms", "implementation", "math" ]
null
null
«One dragon. Two dragon. Three dragon», — the princess was counting. She had trouble falling asleep, and she got bored of counting lambs when she was nine. However, just counting dragons was boring as well, so she entertained herself at best she could. Tonight she imagined that all dragons were here to steal her, and she was fighting them off. Every *k*-th dragon got punched in the face with a frying pan. Every *l*-th dragon got his tail shut into the balcony door. Every *m*-th dragon got his paws trampled with sharp heels. Finally, she threatened every *n*-th dragon to call her mom, and he withdrew in panic. How many imaginary dragons suffered moral or physical damage tonight, if the princess counted a total of *d* dragons?
Input data contains integer numbers *k*,<=*l*,<=*m*,<=*n* and *d*, each number in a separate line (1<=≤<=*k*,<=*l*,<=*m*,<=*n*<=≤<=10, 1<=≤<=*d*<=≤<=105).
Output the number of damaged dragons.
[ "1\n2\n3\n4\n12\n", "2\n3\n4\n5\n24\n" ]
[ "12\n", "17\n" ]
In the first case every first dragon got punched with a frying pan. Some of the dragons suffered from other reasons as well, but the pan alone would be enough. In the second case dragons 1, 7, 11, 13, 17, 19 and 23 escaped unharmed.
1,000
[ { "input": "1\n2\n3\n4\n12", "output": "12" }, { "input": "2\n3\n4\n5\n24", "output": "17" }, { "input": "1\n1\n1\n1\n100000", "output": "100000" }, { "input": "10\n9\n8\n7\n6", "output": "0" }, { "input": "8\n4\n4\n3\n65437", "output": "32718" }, { "input": "8\n4\n1\n10\n59392", "output": "59392" }, { "input": "4\n1\n8\n7\n44835", "output": "44835" }, { "input": "6\n1\n7\n2\n62982", "output": "62982" }, { "input": "2\n7\n4\n9\n56937", "output": "35246" }, { "input": "2\n9\n8\n1\n75083", "output": "75083" }, { "input": "8\n7\n7\n6\n69038", "output": "24656" }, { "input": "4\n4\n2\n3\n54481", "output": "36320" }, { "input": "6\n4\n9\n8\n72628", "output": "28244" }, { "input": "9\n7\n8\n10\n42357", "output": "16540" }, { "input": "5\n6\n4\n3\n60504", "output": "36302" }, { "input": "7\n2\n3\n8\n21754", "output": "15539" }, { "input": "1\n2\n10\n4\n39901", "output": "39901" }, { "input": "3\n4\n7\n1\n58048", "output": "58048" }, { "input": "9\n10\n4\n6\n52003", "output": "21956" }, { "input": "5\n10\n9\n3\n70149", "output": "32736" }, { "input": "5\n5\n5\n10\n55592", "output": "11118" }, { "input": "1\n5\n2\n6\n49547", "output": "49547" }, { "input": "3\n7\n7\n7\n84046", "output": "36019" }, { "input": "10\n2\n1\n8\n63537", "output": "63537" }, { "input": "7\n2\n10\n5\n81684", "output": "53678" }, { "input": "7\n1\n6\n8\n99831", "output": "99831" }, { "input": "3\n9\n3\n3\n61082", "output": "20360" }, { "input": "5\n5\n8\n9\n79228", "output": "29931" }, { "input": "1\n5\n5\n6\n89535", "output": "89535" }, { "input": "5\n5\n2\n1\n7682", "output": "7682" }, { "input": "7\n4\n8\n8\n25829", "output": "9224" }, { "input": "3\n4\n3\n3\n87079", "output": "43539" }, { "input": "5\n8\n4\n9\n5226", "output": "2438" }, { "input": "4\n9\n6\n6\n1070", "output": "415" }, { "input": "10\n10\n10\n10\n100000", "output": "10000" }, { "input": "1\n1\n1\n1\n1", "output": "1" }, { "input": "10\n10\n10\n10\n1", "output": "0" }, { "input": "10\n10\n1\n10\n10", "output": "10" }, { "input": "10\n10\n1\n10\n100", "output": "100" }, { "input": "2\n2\n2\n2\n1", "output": "0" } ]
1,694,194,854
2,147,483,647
PyPy 3
OK
TESTS
40
186
4,608,000
numbers=[] for i in range(0,4): numbers.append(int(input())) d=int(input()) existed=[396] for i in range(1,d+1): existed.append(0) for i in numbers: p=1 while(p*i<=d): existed[p*i]=1 p+=1 print(existed.count(1))
Title: Insomnia cure Time Limit: None seconds Memory Limit: None megabytes Problem Description: «One dragon. Two dragon. Three dragon», — the princess was counting. She had trouble falling asleep, and she got bored of counting lambs when she was nine. However, just counting dragons was boring as well, so she entertained herself at best she could. Tonight she imagined that all dragons were here to steal her, and she was fighting them off. Every *k*-th dragon got punched in the face with a frying pan. Every *l*-th dragon got his tail shut into the balcony door. Every *m*-th dragon got his paws trampled with sharp heels. Finally, she threatened every *n*-th dragon to call her mom, and he withdrew in panic. How many imaginary dragons suffered moral or physical damage tonight, if the princess counted a total of *d* dragons? Input Specification: Input data contains integer numbers *k*,<=*l*,<=*m*,<=*n* and *d*, each number in a separate line (1<=≤<=*k*,<=*l*,<=*m*,<=*n*<=≤<=10, 1<=≤<=*d*<=≤<=105). Output Specification: Output the number of damaged dragons. Demo Input: ['1\n2\n3\n4\n12\n', '2\n3\n4\n5\n24\n'] Demo Output: ['12\n', '17\n'] Note: In the first case every first dragon got punched with a frying pan. Some of the dragons suffered from other reasons as well, but the pan alone would be enough. In the second case dragons 1, 7, 11, 13, 17, 19 and 23 escaped unharmed.
```python numbers=[] for i in range(0,4): numbers.append(int(input())) d=int(input()) existed=[396] for i in range(1,d+1): existed.append(0) for i in numbers: p=1 while(p*i<=d): existed[p*i]=1 p+=1 print(existed.count(1)) ```
3
576
A
Vasya and Petya's Game
PROGRAMMING
1,500
[ "math", "number theory" ]
null
null
Vasya and Petya are playing a simple game. Vasya thought of number *x* between 1 and *n*, and Petya tries to guess the number. Petya can ask questions like: "Is the unknown number divisible by number *y*?". The game is played by the following rules: first Petya asks all the questions that interest him (also, he can ask no questions), and then Vasya responds to each question with a 'yes' or a 'no'. After receiving all the answers Petya should determine the number that Vasya thought of. Unfortunately, Petya is not familiar with the number theory. Help him find the minimum number of questions he should ask to make a guaranteed guess of Vasya's number, and the numbers *y**i*, he should ask the questions about.
A single line contains number *n* (1<=≤<=*n*<=≤<=103).
Print the length of the sequence of questions *k* (0<=≤<=*k*<=≤<=*n*), followed by *k* numbers — the questions *y**i* (1<=≤<=*y**i*<=≤<=*n*). If there are several correct sequences of questions of the minimum length, you are allowed to print any of them.
[ "4\n", "6\n" ]
[ "3\n2 4 3 \n", "4\n2 4 3 5 \n" ]
The sequence from the answer to the first sample test is actually correct. If the unknown number is not divisible by one of the sequence numbers, it is equal to 1. If the unknown number is divisible by 4, it is 4. If the unknown number is divisible by 3, then the unknown number is 3. Otherwise, it is equal to 2. Therefore, the sequence of questions allows you to guess the unknown number. It can be shown that there is no correct sequence of questions of length 2 or shorter.
500
[ { "input": "4", "output": "3\n2 4 3 " }, { "input": "6", "output": "4\n2 4 3 5 " }, { "input": "1", "output": "0" }, { "input": "15", "output": "9\n2 4 8 3 9 5 7 11 13 " }, { "input": "19", "output": "12\n2 4 8 16 3 9 5 7 11 13 17 19 " }, { "input": "20", "output": "12\n2 4 8 16 3 9 5 7 11 13 17 19 " }, { "input": "37", "output": "19\n2 4 8 16 32 3 9 27 5 25 7 11 13 17 19 23 29 31 37 " }, { "input": "211", "output": "61\n2 4 8 16 32 64 128 3 9 27 81 5 25 125 7 49 11 121 13 169 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 " }, { "input": "557", "output": "123\n2 4 8 16 32 64 128 256 512 3 9 27 81 243 5 25 125 7 49 343 11 121 13 169 17 289 19 361 23 529 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 " }, { "input": "907", "output": "179\n2 4 8 16 32 64 128 256 512 3 9 27 81 243 729 5 25 125 625 7 49 343 11 121 13 169 17 289 19 361 23 529 29 841 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 ..." }, { "input": "953", "output": "186\n2 4 8 16 32 64 128 256 512 3 9 27 81 243 729 5 25 125 625 7 49 343 11 121 13 169 17 289 19 361 23 529 29 841 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 ..." }, { "input": "289", "output": "78\n2 4 8 16 32 64 128 256 3 9 27 81 243 5 25 125 7 49 11 121 13 169 17 289 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 " }, { "input": "400", "output": "97\n2 4 8 16 32 64 128 256 3 9 27 81 243 5 25 125 7 49 343 11 121 13 169 17 289 19 361 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 " }, { "input": "900", "output": "178\n2 4 8 16 32 64 128 256 512 3 9 27 81 243 729 5 25 125 625 7 49 343 11 121 13 169 17 289 19 361 23 529 29 841 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 ..." }, { "input": "625", "output": "136\n2 4 8 16 32 64 128 256 512 3 9 27 81 243 5 25 125 625 7 49 343 11 121 13 169 17 289 19 361 23 529 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 " }, { "input": "729", "output": "152\n2 4 8 16 32 64 128 256 512 3 9 27 81 243 729 5 25 125 625 7 49 343 11 121 13 169 17 289 19 361 23 529 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 ..." }, { "input": "784", "output": "160\n2 4 8 16 32 64 128 256 512 3 9 27 81 243 729 5 25 125 625 7 49 343 11 121 13 169 17 289 19 361 23 529 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 ..." }, { "input": "31", "output": "17\n2 4 8 16 3 9 27 5 25 7 11 13 17 19 23 29 31 " }, { "input": "44", "output": "21\n2 4 8 16 32 3 9 27 5 25 7 11 13 17 19 23 29 31 37 41 43 " }, { "input": "160", "output": "50\n2 4 8 16 32 64 128 3 9 27 81 5 25 125 7 49 11 121 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 " }, { "input": "322", "output": "83\n2 4 8 16 32 64 128 256 3 9 27 81 243 5 25 125 7 49 11 121 13 169 17 289 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 " }, { "input": "894", "output": "178\n2 4 8 16 32 64 128 256 512 3 9 27 81 243 729 5 25 125 625 7 49 343 11 121 13 169 17 289 19 361 23 529 29 841 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 ..." }, { "input": "998", "output": "193\n2 4 8 16 32 64 128 256 512 3 9 27 81 243 729 5 25 125 625 7 49 343 11 121 13 169 17 289 19 361 23 529 29 841 31 961 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 ..." }, { "input": "1000", "output": "193\n2 4 8 16 32 64 128 256 512 3 9 27 81 243 729 5 25 125 625 7 49 343 11 121 13 169 17 289 19 361 23 529 29 841 31 961 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 ..." }, { "input": "1000", "output": "193\n2 4 8 16 32 64 128 256 512 3 9 27 81 243 729 5 25 125 625 7 49 343 11 121 13 169 17 289 19 361 23 529 29 841 31 961 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 ..." }, { "input": "30", "output": "16\n2 4 8 16 3 9 27 5 25 7 11 13 17 19 23 29 " } ]
1,615,151,811
2,147,483,647
PyPy 3
OK
TESTS
26
139
1,945,600
from math import sqrt n=int(input()) a=[] for i in range(2,n+1): z=0 for j in range(2,i): y=0 for k in range(2,int(sqrt(j))+1): if j%k==0: y=1 break if y==0 and i%j==0: z+=1 if z<2: a.append(i) print(len(a)) print(*a)
Title: Vasya and Petya's Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya and Petya are playing a simple game. Vasya thought of number *x* between 1 and *n*, and Petya tries to guess the number. Petya can ask questions like: "Is the unknown number divisible by number *y*?". The game is played by the following rules: first Petya asks all the questions that interest him (also, he can ask no questions), and then Vasya responds to each question with a 'yes' or a 'no'. After receiving all the answers Petya should determine the number that Vasya thought of. Unfortunately, Petya is not familiar with the number theory. Help him find the minimum number of questions he should ask to make a guaranteed guess of Vasya's number, and the numbers *y**i*, he should ask the questions about. Input Specification: A single line contains number *n* (1<=≤<=*n*<=≤<=103). Output Specification: Print the length of the sequence of questions *k* (0<=≤<=*k*<=≤<=*n*), followed by *k* numbers — the questions *y**i* (1<=≤<=*y**i*<=≤<=*n*). If there are several correct sequences of questions of the minimum length, you are allowed to print any of them. Demo Input: ['4\n', '6\n'] Demo Output: ['3\n2 4 3 \n', '4\n2 4 3 5 \n'] Note: The sequence from the answer to the first sample test is actually correct. If the unknown number is not divisible by one of the sequence numbers, it is equal to 1. If the unknown number is divisible by 4, it is 4. If the unknown number is divisible by 3, then the unknown number is 3. Otherwise, it is equal to 2. Therefore, the sequence of questions allows you to guess the unknown number. It can be shown that there is no correct sequence of questions of length 2 or shorter.
```python from math import sqrt n=int(input()) a=[] for i in range(2,n+1): z=0 for j in range(2,i): y=0 for k in range(2,int(sqrt(j))+1): if j%k==0: y=1 break if y==0 and i%j==0: z+=1 if z<2: a.append(i) print(len(a)) print(*a) ```
3
915
C
Permute Digits
PROGRAMMING
1,700
[ "dp", "greedy" ]
null
null
You are given two positive integer numbers *a* and *b*. Permute (change order) of the digits of *a* to construct maximal number not exceeding *b*. No number in input and/or output can start with the digit 0. It is allowed to leave *a* as it is.
The first line contains integer *a* (1<=≤<=*a*<=≤<=1018). The second line contains integer *b* (1<=≤<=*b*<=≤<=1018). Numbers don't have leading zeroes. It is guaranteed that answer exists.
Print the maximum possible number that is a permutation of digits of *a* and is not greater than *b*. The answer can't have any leading zeroes. It is guaranteed that the answer exists. The number in the output should have exactly the same length as number *a*. It should be a permutation of digits of *a*.
[ "123\n222\n", "3921\n10000\n", "4940\n5000\n" ]
[ "213\n", "9321\n", "4940\n" ]
none
0
[ { "input": "123\n222", "output": "213" }, { "input": "3921\n10000", "output": "9321" }, { "input": "4940\n5000", "output": "4940" }, { "input": "23923472834\n23589234723", "output": "23498743322" }, { "input": "102391019\n491010301", "output": "399211100" }, { "input": "123456789123456789\n276193619183618162", "output": "276193618987554432" }, { "input": "1000000000000000000\n1000000000000000000", "output": "1000000000000000000" }, { "input": "1\n1000000000000000000", "output": "1" }, { "input": "999999999999999999\n1000000000000000000", "output": "999999999999999999" }, { "input": "2475345634895\n3455834583479", "output": "3455834579642" }, { "input": "15778899\n98715689", "output": "98598771" }, { "input": "4555\n5454", "output": "4555" }, { "input": "122112\n221112", "output": "221112" }, { "input": "199999999999991\n191000000000000", "output": "119999999999999" }, { "input": "13\n31", "output": "31" }, { "input": "212\n211", "output": "122" }, { "input": "222234\n322223", "output": "243222" }, { "input": "123456789\n987654311", "output": "987654231" }, { "input": "20123\n21022", "output": "20321" }, { "input": "10101\n11000", "output": "10110" }, { "input": "592\n924", "output": "592" }, { "input": "5654456\n5634565", "output": "5566544" }, { "input": "655432\n421631", "output": "365542" }, { "input": "200\n200", "output": "200" }, { "input": "123456789987654321\n121111111111111111", "output": "119988776655443322" }, { "input": "12345\n21344", "output": "15432" }, { "input": "120\n200", "output": "120" }, { "input": "123\n212", "output": "132" }, { "input": "2184645\n5213118", "output": "5186442" }, { "input": "9912346\n9912345", "output": "9694321" }, { "input": "5003\n5000", "output": "3500" }, { "input": "12345\n31234", "output": "25431" }, { "input": "5001\n5000", "output": "1500" }, { "input": "53436\n53425", "output": "53364" }, { "input": "9329\n3268", "output": "2993" }, { "input": "1234567890\n9000000001", "output": "8976543210" }, { "input": "321\n212", "output": "132" }, { "input": "109823464\n901234467", "output": "896443210" }, { "input": "6543\n6542", "output": "6534" }, { "input": "555441\n555100", "output": "554541" }, { "input": "472389479\n327489423", "output": "327487994" }, { "input": "45645643756464352\n53465475637456247", "output": "53465475636654442" }, { "input": "254\n599", "output": "542" }, { "input": "5232222345652321\n5000000000000000", "output": "4655533322222221" }, { "input": "201\n200", "output": "120" }, { "input": "14362799391220361\n45160821596433661", "output": "43999766332221110" }, { "input": "3453\n5304", "output": "4533" }, { "input": "989\n998", "output": "998" }, { "input": "5200000000234\n5200000000311", "output": "5200000000243" }, { "input": "5555132\n1325442", "output": "1255553" }, { "input": "123\n211", "output": "132" }, { "input": "65689\n66123", "output": "65986" }, { "input": "123451234567890\n123456789012345", "output": "123456789012345" }, { "input": "22115\n22015", "output": "21521" }, { "input": "123\n311", "output": "231" }, { "input": "12222\n21111", "output": "12222" }, { "input": "765\n567", "output": "567" }, { "input": "9087645\n9087640", "output": "9087564" }, { "input": "1111111122222333\n2220000000000000", "output": "2213332221111111" }, { "input": "7901\n7108", "output": "7091" }, { "input": "215489\n215488", "output": "214985" }, { "input": "102\n200", "output": "120" }, { "input": "19260817\n20011213", "output": "19876210" }, { "input": "12345\n53200", "output": "53142" }, { "input": "1040003001\n1040003000", "output": "1040001300" }, { "input": "295\n924", "output": "592" }, { "input": "20000000000000001\n20000000000000000", "output": "12000000000000000" }, { "input": "99988877\n99887766", "output": "99879887" }, { "input": "12\n12", "output": "12" }, { "input": "199999999999999999\n900000000000000000", "output": "199999999999999999" }, { "input": "1234\n4310", "output": "4231" }, { "input": "100011\n100100", "output": "100011" }, { "input": "328899\n328811", "output": "299883" }, { "input": "646722972346\n397619201220", "output": "397476664222" }, { "input": "1203\n1200", "output": "1032" }, { "input": "1\n2", "output": "1" }, { "input": "1112\n2110", "output": "1211" }, { "input": "4545\n5540", "output": "5454" }, { "input": "3053\n5004", "output": "3530" }, { "input": "3503\n5004", "output": "3530" }, { "input": "351731653766064847\n501550303749042658", "output": "501548777666643331" }, { "input": "10123456789013451\n26666666666666666", "output": "26598754433111100" }, { "input": "1110111\n1100000", "output": "1011111" }, { "input": "30478\n32265", "output": "30874" }, { "input": "456546546549874615\n441554543131214545", "output": "441554498766665554" }, { "input": "214\n213", "output": "142" }, { "input": "415335582799619283\n133117803602859310", "output": "132999887655543321" }, { "input": "787\n887", "output": "877" }, { "input": "3333222288889999\n3333222288881111", "output": "3332999988883222" }, { "input": "495779862481416791\n836241745208800994", "output": "829998777665444111" }, { "input": "139\n193", "output": "193" }, { "input": "9568\n6500", "output": "5986" }, { "input": "3208899\n3228811", "output": "3209988" }, { "input": "27778\n28710", "output": "27877" }, { "input": "62345\n46415", "output": "46352" }, { "input": "405739873179209\n596793907108871", "output": "594998777332100" }, { "input": "365\n690", "output": "653" }, { "input": "8388731334391\n4710766672578", "output": "4398887333311" }, { "input": "1230\n1200", "output": "1032" }, { "input": "1025\n5000", "output": "2510" }, { "input": "4207799\n4027711", "output": "2997740" }, { "input": "4444222277779999\n4444222277771111", "output": "4442999977774222" }, { "input": "7430\n3047", "output": "3047" }, { "input": "649675735\n540577056", "output": "539776654" }, { "input": "26\n82", "output": "62" }, { "input": "241285\n207420", "output": "185422" }, { "input": "3\n3", "output": "3" }, { "input": "12\n21", "output": "21" }, { "input": "481287\n826607", "output": "824871" }, { "input": "40572351\n59676984", "output": "57543210" }, { "input": "268135787269\n561193454469", "output": "539887766221" }, { "input": "4\n9", "output": "4" }, { "input": "5\n6", "output": "5" }, { "input": "60579839\n33370073", "output": "30998765" }, { "input": "49939\n39200", "output": "34999" }, { "input": "2224\n4220", "output": "2422" }, { "input": "427799\n427711", "output": "299774" }, { "input": "49\n90", "output": "49" }, { "input": "93875\n82210", "output": "79853" }, { "input": "78831\n7319682", "output": "88731" }, { "input": "937177\n7143444", "output": "977731" }, { "input": "499380628\n391990337", "output": "390988642" }, { "input": "2090909\n2900000", "output": "2099900" }, { "input": "112233445566778890\n987654321987654320", "output": "987654321876543210" }, { "input": "48257086\n80903384", "output": "80876542" }, { "input": "112233445566778890\n900654321987654320", "output": "898776655443322110" }, { "input": "112233445566778890\n123456789123456788", "output": "123456789123456780" }, { "input": "5207799\n5027711", "output": "2997750" }, { "input": "200000000000000001\n200000000000000000", "output": "120000000000000000" }, { "input": "597402457\n797455420", "output": "797455420" }, { "input": "90\n94", "output": "90" }, { "input": "86888\n88683", "output": "86888" }, { "input": "419155888\n588151913", "output": "588151894" }, { "input": "408919130\n191830070", "output": "191830049" }, { "input": "524975\n554924", "output": "554792" }, { "input": "53029\n30524", "output": "30295" }, { "input": "5549\n5542", "output": "5495" }, { "input": "6\n9", "output": "6" }, { "input": "87\n810", "output": "87" }, { "input": "920491855\n281495062", "output": "281495059" }, { "input": "6691\n6910", "output": "6691" }, { "input": "533\n335", "output": "335" }, { "input": "999999999999999998\n999999999999999997", "output": "999999999999999989" }, { "input": "21111111111111111\n21111111111111110", "output": "12111111111111111" }, { "input": "2\n12", "output": "2" }, { "input": "76544\n45744", "output": "45674" }, { "input": "2000000000000001\n2000000000000000", "output": "1200000000000000" }, { "input": "740867\n467701", "output": "467087" }, { "input": "2\n6", "output": "2" }, { "input": "103\n130", "output": "130" }, { "input": "2423712\n8466235", "output": "7432221" }, { "input": "84\n48", "output": "48" }, { "input": "1210\n12113", "output": "2110" }, { "input": "2430\n20786", "output": "4320" }, { "input": "100\n999", "output": "100" }, { "input": "19325\n21903", "output": "21593" }, { "input": "1969\n23251", "output": "9961" } ]
1,516,199,510
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
61
5,632,000
a=list(str(input())) b=(int(input())) l=[] a.sort() a.reverse() while True: for i in range(len(a)): if int(a[i])*10**(len(a)-1)<=(b): break b-=(b%(10**(len(a)-1)))*10**len(a)-1 l.append(int(a[i])*10**(len(a)-1)) a.remove(a[i]) if len(a)==0: break print(sum(l))
Title: Permute Digits Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two positive integer numbers *a* and *b*. Permute (change order) of the digits of *a* to construct maximal number not exceeding *b*. No number in input and/or output can start with the digit 0. It is allowed to leave *a* as it is. Input Specification: The first line contains integer *a* (1<=≤<=*a*<=≤<=1018). The second line contains integer *b* (1<=≤<=*b*<=≤<=1018). Numbers don't have leading zeroes. It is guaranteed that answer exists. Output Specification: Print the maximum possible number that is a permutation of digits of *a* and is not greater than *b*. The answer can't have any leading zeroes. It is guaranteed that the answer exists. The number in the output should have exactly the same length as number *a*. It should be a permutation of digits of *a*. Demo Input: ['123\n222\n', '3921\n10000\n', '4940\n5000\n'] Demo Output: ['213\n', '9321\n', '4940\n'] Note: none
```python a=list(str(input())) b=(int(input())) l=[] a.sort() a.reverse() while True: for i in range(len(a)): if int(a[i])*10**(len(a)-1)<=(b): break b-=(b%(10**(len(a)-1)))*10**len(a)-1 l.append(int(a[i])*10**(len(a)-1)) a.remove(a[i]) if len(a)==0: break print(sum(l)) ```
0
122
A
Lucky Division
PROGRAMMING
1,000
[ "brute force", "number theory" ]
null
null
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number *n* is almost lucky.
The single line contains an integer *n* (1<=≤<=*n*<=≤<=1000) — the number that needs to be checked.
In the only line print "YES" (without the quotes), if number *n* is almost lucky. Otherwise, print "NO" (without the quotes).
[ "47\n", "16\n", "78\n" ]
[ "YES\n", "YES\n", "NO\n" ]
Note that all lucky numbers are almost lucky as any number is evenly divisible by itself. In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4.
500
[ { "input": "47", "output": "YES" }, { "input": "16", "output": "YES" }, { "input": "78", "output": "NO" }, { "input": "48", "output": "YES" }, { "input": "100", "output": "YES" }, { "input": "107", "output": "NO" }, { "input": "77", "output": "YES" }, { "input": "477", "output": "YES" }, { "input": "480", "output": "YES" }, { "input": "1", "output": "NO" }, { "input": "3", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "49", "output": "YES" }, { "input": "56", "output": "YES" }, { "input": "124", "output": "YES" }, { "input": "1000", "output": "YES" }, { "input": "999", "output": "NO" }, { "input": "298", "output": "NO" }, { "input": "274", "output": "NO" }, { "input": "998", "output": "NO" }, { "input": "42", "output": "YES" }, { "input": "788", "output": "YES" }, { "input": "70", "output": "YES" }, { "input": "444", "output": "YES" }, { "input": "777", "output": "YES" }, { "input": "799", "output": "YES" }, { "input": "25", "output": "NO" }, { "input": "882", "output": "YES" }, { "input": "88", "output": "YES" }, { "input": "11", "output": "NO" }, { "input": "2", "output": "NO" }, { "input": "7", "output": "YES" }, { "input": "8", "output": "YES" }, { "input": "94", "output": "YES" }, { "input": "477", "output": "YES" }, { "input": "141", "output": "YES" } ]
1,693,679,231
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
7
154
0
def is_almost_lucky(n): lucky_numbers = [4, 7, 44, 47, 74, 77, 444, 447, 474, 744, 747, 774, 777] i = 0 flag = 0 while i < len(lucky_numbers) and lucky_numbers[i] <= n: if n % lucky_numbers[i] == 0: flag = 1 break i += 1 if flag == 0: return False elif flag == 1: return True n = int(input()) if is_almost_lucky(n): print("YES") else: print("NO")
Title: Lucky Division Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number *n* is almost lucky. Input Specification: The single line contains an integer *n* (1<=≤<=*n*<=≤<=1000) — the number that needs to be checked. Output Specification: In the only line print "YES" (without the quotes), if number *n* is almost lucky. Otherwise, print "NO" (without the quotes). Demo Input: ['47\n', '16\n', '78\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: Note that all lucky numbers are almost lucky as any number is evenly divisible by itself. In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4.
```python def is_almost_lucky(n): lucky_numbers = [4, 7, 44, 47, 74, 77, 444, 447, 474, 744, 747, 774, 777] i = 0 flag = 0 while i < len(lucky_numbers) and lucky_numbers[i] <= n: if n % lucky_numbers[i] == 0: flag = 1 break i += 1 if flag == 0: return False elif flag == 1: return True n = int(input()) if is_almost_lucky(n): print("YES") else: print("NO") ```
0
913
A
Modular Exponentiation
PROGRAMMING
900
[ "implementation", "math" ]
null
null
The following problem is well-known: given integers *n* and *m*, calculate where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*. You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108). The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108).
Output a single integer — the value of .
[ "4\n42\n", "1\n58\n", "98765432\n23456789\n" ]
[ "10\n", "0\n", "23456789\n" ]
In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10. In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
500
[ { "input": "4\n42", "output": "10" }, { "input": "1\n58", "output": "0" }, { "input": "98765432\n23456789", "output": "23456789" }, { "input": "8\n88127381", "output": "149" }, { "input": "32\n92831989", "output": "92831989" }, { "input": "92831989\n25", "output": "25" }, { "input": "100000000\n100000000", "output": "100000000" }, { "input": "7\n1234", "output": "82" }, { "input": "1\n1", "output": "1" }, { "input": "1\n100000000", "output": "0" }, { "input": "100000000\n1", "output": "1" }, { "input": "1\n2", "output": "0" }, { "input": "2\n1", "output": "1" }, { "input": "2\n2", "output": "2" }, { "input": "2\n3", "output": "3" }, { "input": "2\n4", "output": "0" }, { "input": "2\n5", "output": "1" }, { "input": "25\n33554432", "output": "0" }, { "input": "26\n33554432", "output": "33554432" }, { "input": "25\n67108864", "output": "0" }, { "input": "26\n67108864", "output": "0" }, { "input": "25\n92831989", "output": "25723125" }, { "input": "26\n92831989", "output": "25723125" }, { "input": "27\n92831989", "output": "92831989" }, { "input": "29\n92831989", "output": "92831989" }, { "input": "30\n92831989", "output": "92831989" }, { "input": "31\n92831989", "output": "92831989" }, { "input": "99812399\n93172892", "output": "93172892" }, { "input": "67108864\n12345678", "output": "12345678" }, { "input": "3\n98391849", "output": "1" }, { "input": "13\n1231232", "output": "2432" }, { "input": "18\n9842194", "output": "142866" }, { "input": "24\n71237177", "output": "4128313" }, { "input": "11\n65535", "output": "2047" }, { "input": "11\n65536", "output": "0" }, { "input": "12\n123", "output": "123" }, { "input": "123456\n12", "output": "12" }, { "input": "88\n888", "output": "888" }, { "input": "888\n88", "output": "88" }, { "input": "8888\n8888", "output": "8888" }, { "input": "64\n128", "output": "128" }, { "input": "128\n64", "output": "64" }, { "input": "60\n9999999", "output": "9999999" }, { "input": "200\n100000", "output": "100000" }, { "input": "3\n8", "output": "0" }, { "input": "10000000\n25024886", "output": "25024886" }, { "input": "100\n100000", "output": "100000" }, { "input": "99999999\n100000000", "output": "100000000" }, { "input": "70\n12345678", "output": "12345678" } ]
1,629,488,405
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
2
1,000
7,987,200
if __name__ == "__main__": n = int(input()) m = int(input()) a = 2 b = 1 while b < n: if a > m: print(m) a *= 2 b += 1 if a == m: print(0) else: print(m%a)
Title: Modular Exponentiation Time Limit: None seconds Memory Limit: None megabytes Problem Description: The following problem is well-known: given integers *n* and *m*, calculate where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*. You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108). The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108). Output Specification: Output a single integer — the value of . Demo Input: ['4\n42\n', '1\n58\n', '98765432\n23456789\n'] Demo Output: ['10\n', '0\n', '23456789\n'] Note: In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10. In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
```python if __name__ == "__main__": n = int(input()) m = int(input()) a = 2 b = 1 while b < n: if a > m: print(m) a *= 2 b += 1 if a == m: print(0) else: print(m%a) ```
0
352
B
Jeff and Periods
PROGRAMMING
1,300
[ "implementation", "sortings" ]
null
null
One day Jeff got hold of an integer sequence *a*1, *a*2, ..., *a**n* of length *n*. The boy immediately decided to analyze the sequence. For that, he needs to find all values of *x*, for which these conditions hold: - *x* occurs in sequence *a*. - Consider all positions of numbers *x* in the sequence *a* (such *i*, that *a**i*<==<=*x*). These numbers, sorted in the increasing order, must form an arithmetic progression. Help Jeff, find all *x* that meet the problem conditions.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The next line contains integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105). The numbers are separated by spaces.
In the first line print integer *t* — the number of valid *x*. On each of the next *t* lines print two integers *x* and *p**x*, where *x* is current suitable value, *p**x* is the common difference between numbers in the progression (if *x* occurs exactly once in the sequence, *p**x* must equal 0). Print the pairs in the order of increasing *x*.
[ "1\n2\n", "8\n1 2 1 3 1 2 1 5\n" ]
[ "1\n2 0\n", "4\n1 2\n2 4\n3 0\n5 0\n" ]
In the first test 2 occurs exactly once in the sequence, ergo *p*<sub class="lower-index">2</sub> = 0.
1,000
[ { "input": "1\n2", "output": "1\n2 0" }, { "input": "8\n1 2 1 3 1 2 1 5", "output": "4\n1 2\n2 4\n3 0\n5 0" }, { "input": "3\n1 10 5", "output": "3\n1 0\n5 0\n10 0" }, { "input": "4\n9 9 3 5", "output": "3\n3 0\n5 0\n9 1" }, { "input": "6\n1 2 2 1 1 2", "output": "0" }, { "input": "6\n2 6 3 8 7 2", "output": "5\n2 5\n3 0\n6 0\n7 0\n8 0" }, { "input": "7\n2 1 2 1 2 1 2", "output": "2\n1 2\n2 2" }, { "input": "8\n1 1 1 1 1 1 1 1", "output": "1\n1 1" }, { "input": "9\n2 3 3 3 2 1 2 3 2", "output": "1\n1 0" }, { "input": "10\n3 1 1 1 1 3 1 2 2 1", "output": "2\n2 1\n3 5" }, { "input": "12\n10 9 8 7 7 8 9 10 10 9 8 7", "output": "0" } ]
1,687,882,950
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
60
0
def result(n,lis): dic=dict() for i in range(n): a=lis[i] if a not in dic: dic[a]=[i] else: c=dic[a] c.append(i) lis4=[] for k in sorted(dic.keys()): a=dic[k] if len(a)==1: lis4.append([k,0]) else: count=0 b=a[1]-a[0] for j in range(len(a)-1): if a[j+1]-a[j]!=b: count+=1 break if count==0: lis4.append([k,b]) print(lis4) if len(lis4)==0: print("0") else: print(len(lis4)) for i in lis4: s="" s+=str(i[0])+" "+str(i[1]) print(s) n=int(input()) lis=list(map(int,input().split())) result(n,lis)
Title: Jeff and Periods Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Jeff got hold of an integer sequence *a*1, *a*2, ..., *a**n* of length *n*. The boy immediately decided to analyze the sequence. For that, he needs to find all values of *x*, for which these conditions hold: - *x* occurs in sequence *a*. - Consider all positions of numbers *x* in the sequence *a* (such *i*, that *a**i*<==<=*x*). These numbers, sorted in the increasing order, must form an arithmetic progression. Help Jeff, find all *x* that meet the problem conditions. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The next line contains integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105). The numbers are separated by spaces. Output Specification: In the first line print integer *t* — the number of valid *x*. On each of the next *t* lines print two integers *x* and *p**x*, where *x* is current suitable value, *p**x* is the common difference between numbers in the progression (if *x* occurs exactly once in the sequence, *p**x* must equal 0). Print the pairs in the order of increasing *x*. Demo Input: ['1\n2\n', '8\n1 2 1 3 1 2 1 5\n'] Demo Output: ['1\n2 0\n', '4\n1 2\n2 4\n3 0\n5 0\n'] Note: In the first test 2 occurs exactly once in the sequence, ergo *p*<sub class="lower-index">2</sub> = 0.
```python def result(n,lis): dic=dict() for i in range(n): a=lis[i] if a not in dic: dic[a]=[i] else: c=dic[a] c.append(i) lis4=[] for k in sorted(dic.keys()): a=dic[k] if len(a)==1: lis4.append([k,0]) else: count=0 b=a[1]-a[0] for j in range(len(a)-1): if a[j+1]-a[j]!=b: count+=1 break if count==0: lis4.append([k,b]) print(lis4) if len(lis4)==0: print("0") else: print(len(lis4)) for i in lis4: s="" s+=str(i[0])+" "+str(i[1]) print(s) n=int(input()) lis=list(map(int,input().split())) result(n,lis) ```
0
1,003
B
Binary String Constructing
PROGRAMMING
1,300
[ "constructive algorithms" ]
null
null
You are given three integers $a$, $b$ and $x$. Your task is to construct a binary string $s$ of length $n = a + b$ such that there are exactly $a$ zeroes, exactly $b$ ones and exactly $x$ indices $i$ (where $1 \le i &lt; n$) such that $s_i \ne s_{i + 1}$. It is guaranteed that the answer always exists. For example, for the string "01010" there are four indices $i$ such that $1 \le i &lt; n$ and $s_i \ne s_{i + 1}$ ($i = 1, 2, 3, 4$). For the string "111001" there are two such indices $i$ ($i = 3, 5$). Recall that binary string is a non-empty sequence of characters where each character is either 0 or 1.
The first line of the input contains three integers $a$, $b$ and $x$ ($1 \le a, b \le 100, 1 \le x &lt; a + b)$.
Print only one string $s$, where $s$ is any binary string satisfying conditions described above. It is guaranteed that the answer always exists.
[ "2 2 1\n", "3 3 3\n", "5 3 6\n" ]
[ "1100\n", "101100\n", "01010100\n" ]
All possible answers for the first example: - 1100; - 0011. All possible answers for the second example: - 110100; - 101100; - 110010; - 100110; - 011001; - 001101; - 010011; - 001011.
0
[ { "input": "2 2 1", "output": "1100" }, { "input": "3 3 3", "output": "101100" }, { "input": "5 3 6", "output": "01010100" }, { "input": "100 1 2", "output": "01000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000" }, { "input": "100 1 1", "output": "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001" }, { "input": "1 100 1", "output": "11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "1 100 2", "output": "10111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "7 8 7", "output": "101010111110000" }, { "input": "100 100 199", "output": "10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010" }, { "input": "50 47 18", "output": "0101010101010101011111111111111111111111111111111111111100000000000000000000000000000000000000000" }, { "input": "2 3 3", "output": "10110" }, { "input": "100 100 100", "output": "10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010100000000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111" }, { "input": "2 2 2", "output": "1001" }, { "input": "3 4 6", "output": "1010101" }, { "input": "1 1 1", "output": "10" }, { "input": "5 6 2", "output": "10000011111" }, { "input": "5 4 2", "output": "011110000" }, { "input": "2 3 4", "output": "10101" }, { "input": "3 3 2", "output": "100011" }, { "input": "100 99 100", "output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000000" }, { "input": "3 2 1", "output": "00011" }, { "input": "12 74 22", "output": "10101010101010101010100111111111111111111111111111111111111111111111111111111111111111" }, { "input": "6 84 12", "output": "101010101010111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "3 2 4", "output": "01010" }, { "input": "66 11 22", "output": "01010101010101010101010000000000000000000000000000000000000000000000000000000" }, { "input": "83 83 83", "output": "1010101010101010101010101010101010101010101010101010101010101010101010101010101010111111111111111111111111111111111111111111000000000000000000000000000000000000000000" }, { "input": "9 89 18", "output": "10101010101010101011111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "2 1 2", "output": "010" }, { "input": "52 12 17", "output": "0101010101010101000000000000000000000000000000000000000000001111" }, { "input": "55 56 110", "output": "101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101" }, { "input": "67 81 40", "output": "1010101010101010101010101010101010101010000000000000000000000000000000000000000000000001111111111111111111111111111111111111111111111111111111111111" }, { "input": "15 26 24", "output": "10101010101010101010101000011111111111111" }, { "input": "7 99 14", "output": "1010101010101011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "99 41 17", "output": "01010101010101010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111" }, { "input": "91 87 11", "output": "0101010101000000000000000000000000000000000000000000000000000000000000000000000000000000000000001111111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "73 61 122", "output": "01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101000000000000" }, { "input": "10 40 1", "output": "11111111111111111111111111111111111111110000000000" }, { "input": "10 6 10", "output": "0101010101100000" }, { "input": "78 67 117", "output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010100000000000000000000111111111" }, { "input": "3 5 6", "output": "10101011" }, { "input": "30 34 44", "output": "1010101010101010101010101010101010101010101000000000111111111111" }, { "input": "2 15 4", "output": "10101111111111111" }, { "input": "4 9 6", "output": "1010100111111" } ]
1,609,946,324
1,124
Python 3
WRONG_ANSWER
TESTS
6
109
409,600
from collections import Counter #n=int(input()) for y in range(1): #n=int(input()) #s=input() n,m,k=map(int,input().split()) #lst=list(map(int,input().split())) if k%2==0: ans='' temp=k//2 ans='01'*temp ans+='0'*(n-temp) ans+='1'*(m-temp) else: ans='' temp=(k-1)//2 ans='01'*temp ans+='0'*(n-temp) ans+='1'*(m-temp) print(ans)
Title: Binary String Constructing Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given three integers $a$, $b$ and $x$. Your task is to construct a binary string $s$ of length $n = a + b$ such that there are exactly $a$ zeroes, exactly $b$ ones and exactly $x$ indices $i$ (where $1 \le i &lt; n$) such that $s_i \ne s_{i + 1}$. It is guaranteed that the answer always exists. For example, for the string "01010" there are four indices $i$ such that $1 \le i &lt; n$ and $s_i \ne s_{i + 1}$ ($i = 1, 2, 3, 4$). For the string "111001" there are two such indices $i$ ($i = 3, 5$). Recall that binary string is a non-empty sequence of characters where each character is either 0 or 1. Input Specification: The first line of the input contains three integers $a$, $b$ and $x$ ($1 \le a, b \le 100, 1 \le x &lt; a + b)$. Output Specification: Print only one string $s$, where $s$ is any binary string satisfying conditions described above. It is guaranteed that the answer always exists. Demo Input: ['2 2 1\n', '3 3 3\n', '5 3 6\n'] Demo Output: ['1100\n', '101100\n', '01010100\n'] Note: All possible answers for the first example: - 1100; - 0011. All possible answers for the second example: - 110100; - 101100; - 110010; - 100110; - 011001; - 001101; - 010011; - 001011.
```python from collections import Counter #n=int(input()) for y in range(1): #n=int(input()) #s=input() n,m,k=map(int,input().split()) #lst=list(map(int,input().split())) if k%2==0: ans='' temp=k//2 ans='01'*temp ans+='0'*(n-temp) ans+='1'*(m-temp) else: ans='' temp=(k-1)//2 ans='01'*temp ans+='0'*(n-temp) ans+='1'*(m-temp) print(ans) ```
0