contestId
int64 0
1.01k
| index
stringclasses 57
values | name
stringlengths 2
58
| type
stringclasses 2
values | rating
int64 0
3.5k
| tags
listlengths 0
11
| title
stringclasses 522
values | time-limit
stringclasses 8
values | memory-limit
stringclasses 8
values | problem-description
stringlengths 0
7.15k
| input-specification
stringlengths 0
2.05k
| output-specification
stringlengths 0
1.5k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
425k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 14
values | testset
stringclasses 12
values | passedTestCount
int64 0
1k
| timeConsumedMillis
int64 0
15k
| memoryConsumedBytes
int64 0
805M
| code
stringlengths 3
65.5k
| prompt
stringlengths 262
8.2k
| response
stringlengths 17
65.5k
| score
float64 -1
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
591
|
A
|
Wizards' Duel
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
Harry Potter and He-Who-Must-Not-Be-Named engaged in a fight to the death once again. This time they are located at opposite ends of the corridor of length *l*. Two opponents simultaneously charge a deadly spell in the enemy. We know that the impulse of Harry's magic spell flies at a speed of *p* meters per second, and the impulse of You-Know-Who's magic spell flies at a speed of *q* meters per second.
The impulses are moving through the corridor toward each other, and at the time of the collision they turn round and fly back to those who cast them without changing their original speeds. Then, as soon as the impulse gets back to it's caster, the wizard reflects it and sends again towards the enemy, without changing the original speed of the impulse.
Since Harry has perfectly mastered the basics of magic, he knows that after the second collision both impulses will disappear, and a powerful explosion will occur exactly in the place of their collision. However, the young wizard isn't good at math, so he asks you to calculate the distance from his position to the place of the second meeting of the spell impulses, provided that the opponents do not change positions during the whole fight.
|
The first line of the input contains a single integer *l* (1<=≤<=*l*<=≤<=1<=000) — the length of the corridor where the fight takes place.
The second line contains integer *p*, the third line contains integer *q* (1<=≤<=*p*,<=*q*<=≤<=500) — the speeds of magical impulses for Harry Potter and He-Who-Must-Not-Be-Named, respectively.
|
Print a single real number — the distance from the end of the corridor, where Harry is located, to the place of the second meeting of the spell impulses. Your answer will be considered correct if its absolute or relative error will not exceed 10<=-<=4.
Namely: let's assume that your answer equals *a*, and the answer of the jury is *b*. The checker program will consider your answer correct if .
|
[
"100\n50\n50\n",
"199\n60\n40\n"
] |
[
"50\n",
"119.4\n"
] |
In the first sample the speeds of the impulses are equal, so both of their meetings occur exactly in the middle of the corridor.
| 500
|
[
{
"input": "100\n50\n50",
"output": "50"
},
{
"input": "199\n60\n40",
"output": "119.4"
},
{
"input": "1\n1\n1",
"output": "0.5"
},
{
"input": "1\n1\n500",
"output": "0.001996007984"
},
{
"input": "1\n500\n1",
"output": "0.998003992"
},
{
"input": "1\n500\n500",
"output": "0.5"
},
{
"input": "1000\n1\n1",
"output": "500"
},
{
"input": "1000\n1\n500",
"output": "1.996007984"
},
{
"input": "1000\n500\n1",
"output": "998.003992"
},
{
"input": "1000\n500\n500",
"output": "500"
},
{
"input": "101\n11\n22",
"output": "33.66666667"
},
{
"input": "987\n1\n3",
"output": "246.75"
},
{
"input": "258\n25\n431",
"output": "14.14473684"
},
{
"input": "979\n39\n60",
"output": "385.6666667"
},
{
"input": "538\n479\n416",
"output": "287.9351955"
},
{
"input": "583\n112\n248",
"output": "181.3777778"
},
{
"input": "978\n467\n371",
"output": "545.0190931"
},
{
"input": "980\n322\n193",
"output": "612.7378641"
},
{
"input": "871\n401\n17",
"output": "835.576555"
},
{
"input": "349\n478\n378",
"output": "194.885514"
},
{
"input": "425\n458\n118",
"output": "337.9340278"
},
{
"input": "919\n323\n458",
"output": "380.0729834"
},
{
"input": "188\n59\n126",
"output": "59.95675676"
},
{
"input": "644\n428\n484",
"output": "302.2280702"
},
{
"input": "253\n80\n276",
"output": "56.85393258"
},
{
"input": "745\n152\n417",
"output": "199.0158172"
},
{
"input": "600\n221\n279",
"output": "265.2"
},
{
"input": "690\n499\n430",
"output": "370.6243272"
},
{
"input": "105\n68\n403",
"output": "15.15923567"
},
{
"input": "762\n462\n371",
"output": "422.6218487"
},
{
"input": "903\n460\n362",
"output": "505.3284672"
},
{
"input": "886\n235\n95",
"output": "630.9393939"
},
{
"input": "655\n203\n18",
"output": "601.6515837"
},
{
"input": "718\n29\n375",
"output": "51.53960396"
},
{
"input": "296\n467\n377",
"output": "163.7819905"
},
{
"input": "539\n61\n56",
"output": "281.017094"
},
{
"input": "133\n53\n124",
"output": "39.82485876"
},
{
"input": "998\n224\n65",
"output": "773.5363322"
},
{
"input": "961\n173\n47",
"output": "755.6954545"
},
{
"input": "285\n468\n62",
"output": "251.6603774"
},
{
"input": "496\n326\n429",
"output": "214.1668874"
},
{
"input": "627\n150\n285",
"output": "216.2068966"
},
{
"input": "961\n443\n50",
"output": "863.535497"
},
{
"input": "623\n422\n217",
"output": "411.4334898"
},
{
"input": "678\n295\n29",
"output": "617.3148148"
}
] | 1,658,675,794
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 31
| 0
|
l = int(input())
q = int(input())
p = int(input())
mqp = min(q,p)
xqp = max(q,p)
i = 0
while (i < l):
l -= p
i += q
sub =(i-l)/2 + l
if sub - int(sub) > 0:
print(sub-0.1)
else:
print(int(sub))
|
Title: Wizards' Duel
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Harry Potter and He-Who-Must-Not-Be-Named engaged in a fight to the death once again. This time they are located at opposite ends of the corridor of length *l*. Two opponents simultaneously charge a deadly spell in the enemy. We know that the impulse of Harry's magic spell flies at a speed of *p* meters per second, and the impulse of You-Know-Who's magic spell flies at a speed of *q* meters per second.
The impulses are moving through the corridor toward each other, and at the time of the collision they turn round and fly back to those who cast them without changing their original speeds. Then, as soon as the impulse gets back to it's caster, the wizard reflects it and sends again towards the enemy, without changing the original speed of the impulse.
Since Harry has perfectly mastered the basics of magic, he knows that after the second collision both impulses will disappear, and a powerful explosion will occur exactly in the place of their collision. However, the young wizard isn't good at math, so he asks you to calculate the distance from his position to the place of the second meeting of the spell impulses, provided that the opponents do not change positions during the whole fight.
Input Specification:
The first line of the input contains a single integer *l* (1<=≤<=*l*<=≤<=1<=000) — the length of the corridor where the fight takes place.
The second line contains integer *p*, the third line contains integer *q* (1<=≤<=*p*,<=*q*<=≤<=500) — the speeds of magical impulses for Harry Potter and He-Who-Must-Not-Be-Named, respectively.
Output Specification:
Print a single real number — the distance from the end of the corridor, where Harry is located, to the place of the second meeting of the spell impulses. Your answer will be considered correct if its absolute or relative error will not exceed 10<=-<=4.
Namely: let's assume that your answer equals *a*, and the answer of the jury is *b*. The checker program will consider your answer correct if .
Demo Input:
['100\n50\n50\n', '199\n60\n40\n']
Demo Output:
['50\n', '119.4\n']
Note:
In the first sample the speeds of the impulses are equal, so both of their meetings occur exactly in the middle of the corridor.
|
```python
l = int(input())
q = int(input())
p = int(input())
mqp = min(q,p)
xqp = max(q,p)
i = 0
while (i < l):
l -= p
i += q
sub =(i-l)/2 + l
if sub - int(sub) > 0:
print(sub-0.1)
else:
print(int(sub))
```
| 0
|
|
845
|
C
|
Two TVs
|
PROGRAMMING
| 1,500
|
[
"data structures",
"greedy",
"sortings"
] | null | null |
Polycarp is a great fan of television.
He wrote down all the TV programs he is interested in for today. His list contains *n* shows, *i*-th of them starts at moment *l**i* and ends at moment *r**i*.
Polycarp owns two TVs. He can watch two different shows simultaneously with two TVs but he can only watch one show at any given moment on a single TV. If one show ends at the same moment some other show starts then you can't watch them on a single TV.
Polycarp wants to check out all *n* shows. Are two TVs enough to do so?
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of shows.
Each of the next *n* lines contains two integers *l**i* and *r**i* (0<=≤<=*l**i*<=<<=*r**i*<=≤<=109) — starting and ending time of *i*-th show.
|
If Polycarp is able to check out all the shows using only two TVs then print "YES" (without quotes). Otherwise, print "NO" (without quotes).
|
[
"3\n1 2\n2 3\n4 5\n",
"4\n1 2\n2 3\n2 3\n1 2\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 0
|
[
{
"input": "3\n1 2\n2 3\n4 5",
"output": "YES"
},
{
"input": "4\n1 2\n2 3\n2 3\n1 2",
"output": "NO"
},
{
"input": "4\n0 1\n1 2\n2 3\n3 4",
"output": "YES"
},
{
"input": "3\n1 2\n2 3\n2 4",
"output": "NO"
},
{
"input": "3\n0 100\n0 100\n0 100",
"output": "NO"
},
{
"input": "1\n0 1000000000",
"output": "YES"
},
{
"input": "2\n0 1\n0 1",
"output": "YES"
},
{
"input": "3\n2 3\n4 5\n1 6",
"output": "YES"
},
{
"input": "5\n1 3\n1 4\n4 10\n5 8\n9 11",
"output": "YES"
},
{
"input": "3\n1 2\n1 2\n2 3",
"output": "NO"
},
{
"input": "4\n1 100\n10 15\n20 25\n30 35",
"output": "YES"
},
{
"input": "3\n1 8\n6 7\n8 11",
"output": "YES"
},
{
"input": "5\n1 2\n3 5\n4 7\n8 9\n5 10",
"output": "NO"
},
{
"input": "4\n1 7\n2 3\n4 5\n6 7",
"output": "YES"
},
{
"input": "4\n1 100\n50 51\n60 90\n51 52",
"output": "NO"
},
{
"input": "3\n1 10\n2 9\n3 8",
"output": "NO"
},
{
"input": "2\n0 4\n0 4",
"output": "YES"
},
{
"input": "2\n0 2\n0 6",
"output": "YES"
},
{
"input": "5\n3 4\n21 26\n12 17\n9 14\n15 16",
"output": "YES"
},
{
"input": "5\n1 4\n13 15\n11 12\n9 15\n2 5",
"output": "YES"
},
{
"input": "4\n16 19\n9 14\n14 15\n15 19",
"output": "YES"
},
{
"input": "5\n16 19\n23 29\n3 8\n23 26\n22 23",
"output": "NO"
},
{
"input": "5\n19 23\n12 17\n16 21\n20 23\n8 10",
"output": "NO"
},
{
"input": "5\n8 10\n4 10\n3 4\n14 15\n17 19",
"output": "YES"
},
{
"input": "3\n2 8\n5 7\n6 7",
"output": "NO"
},
{
"input": "5\n10 12\n4 6\n21 24\n9 12\n7 13",
"output": "NO"
},
{
"input": "5\n0 3\n14 16\n6 8\n5 9\n9 15",
"output": "YES"
},
{
"input": "5\n6 12\n23 25\n6 7\n19 25\n10 11",
"output": "YES"
},
{
"input": "5\n15 18\n23 24\n23 28\n22 24\n15 19",
"output": "NO"
},
{
"input": "4\n1 8\n8 9\n5 7\n1 4",
"output": "YES"
},
{
"input": "3\n6 10\n1 9\n2 5",
"output": "YES"
},
{
"input": "3\n1 8\n5 6\n6 9",
"output": "NO"
},
{
"input": "4\n2 3\n5 9\n8 10\n9 10",
"output": "NO"
},
{
"input": "4\n0 8\n6 7\n5 9\n1 4",
"output": "NO"
},
{
"input": "3\n6 9\n0 1\n0 2",
"output": "YES"
},
{
"input": "5\n0 6\n21 25\n18 19\n0 3\n6 12",
"output": "YES"
},
{
"input": "4\n1 5\n6 9\n4 8\n1 3",
"output": "YES"
},
{
"input": "2\n2 5\n0 5",
"output": "YES"
},
{
"input": "4\n5 8\n11 15\n3 7\n10 14",
"output": "YES"
},
{
"input": "3\n12 14\n0 4\n2 3",
"output": "YES"
},
{
"input": "4\n4 10\n0 1\n2 10\n0 5",
"output": "NO"
},
{
"input": "4\n0 3\n0 1\n2 4\n2 5",
"output": "NO"
}
] | 1,553,981,093
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 0
| 109
| 0
|
n = int(input())
tv1 = set()
tv2 = set()
can_watch = True
for i in range(n):
start, end = input().split(" ")
if not start in tv1 and not end in tv1:
tv1.add(start)
tv1.add(end)
elif not start in tv2 and not end in tv2:
tv2.add(start)
tv2.add(end)
else:
can_watch = False
print(can_watch)
|
Title: Two TVs
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp is a great fan of television.
He wrote down all the TV programs he is interested in for today. His list contains *n* shows, *i*-th of them starts at moment *l**i* and ends at moment *r**i*.
Polycarp owns two TVs. He can watch two different shows simultaneously with two TVs but he can only watch one show at any given moment on a single TV. If one show ends at the same moment some other show starts then you can't watch them on a single TV.
Polycarp wants to check out all *n* shows. Are two TVs enough to do so?
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of shows.
Each of the next *n* lines contains two integers *l**i* and *r**i* (0<=≤<=*l**i*<=<<=*r**i*<=≤<=109) — starting and ending time of *i*-th show.
Output Specification:
If Polycarp is able to check out all the shows using only two TVs then print "YES" (without quotes). Otherwise, print "NO" (without quotes).
Demo Input:
['3\n1 2\n2 3\n4 5\n', '4\n1 2\n2 3\n2 3\n1 2\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
n = int(input())
tv1 = set()
tv2 = set()
can_watch = True
for i in range(n):
start, end = input().split(" ")
if not start in tv1 and not end in tv1:
tv1.add(start)
tv1.add(end)
elif not start in tv2 and not end in tv2:
tv2.add(start)
tv2.add(end)
else:
can_watch = False
print(can_watch)
```
| 0
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,641,374,065
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
x = list(map(int,input().strip().split()))
a = x[0]
b = x[1]
if a%2==0 or b%2==0:
print(int(a*b/2))
if a%2!=0 and b%2!=0:
print(int(((a-1)*b/2)+(b-1)/2))
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
x = list(map(int,input().strip().split()))
a = x[0]
b = x[1]
if a%2==0 or b%2==0:
print(int(a*b/2))
if a%2!=0 and b%2!=0:
print(int(((a-1)*b/2)+(b-1)/2))
```
| 3.977
|
288
|
B
|
Polo the Penguin and Houses
|
PROGRAMMING
| 1,500
|
[
"combinatorics"
] | null | null |
Little penguin Polo loves his home village. The village has *n* houses, indexed by integers from 1 to *n*. Each house has a plaque containing an integer, the *i*-th house has a plaque containing integer *p**i* (1<=≤<=*p**i*<=≤<=*n*).
Little penguin Polo loves walking around this village. The walk looks like that. First he stands by a house number *x*. Then he goes to the house whose number is written on the plaque of house *x* (that is, to house *p**x*), then he goes to the house whose number is written on the plaque of house *p**x* (that is, to house *p**p**x*), and so on.
We know that:
1. When the penguin starts walking from any house indexed from 1 to *k*, inclusive, he can walk to house number 1. 1. When the penguin starts walking from any house indexed from *k*<=+<=1 to *n*, inclusive, he definitely cannot walk to house number 1. 1. When the penguin starts walking from house number 1, he can get back to house number 1 after some non-zero number of walks from a house to a house.
You need to find the number of ways you may write the numbers on the houses' plaques so as to fulfill the three above described conditions. Print the remainder after dividing this number by 1000000007 (109<=+<=7).
|
The single line contains two space-separated integers *n* and *k* (1<=≤<=*n*<=≤<=1000,<=1<=≤<=*k*<=≤<=*min*(8,<=*n*)) — the number of the houses and the number *k* from the statement.
|
In a single line print a single integer — the answer to the problem modulo 1000000007 (109<=+<=7).
|
[
"5 2\n",
"7 4\n"
] |
[
"54\n",
"1728\n"
] |
none
| 1,000
|
[
{
"input": "5 2",
"output": "54"
},
{
"input": "7 4",
"output": "1728"
},
{
"input": "8 5",
"output": "16875"
},
{
"input": "8 1",
"output": "823543"
},
{
"input": "10 7",
"output": "3176523"
},
{
"input": "12 8",
"output": "536870912"
},
{
"input": "50 2",
"output": "628702797"
},
{
"input": "100 8",
"output": "331030906"
},
{
"input": "1000 8",
"output": "339760446"
},
{
"input": "999 7",
"output": "490075342"
},
{
"input": "685 7",
"output": "840866481"
},
{
"input": "975 8",
"output": "531455228"
},
{
"input": "475 5",
"output": "449471303"
},
{
"input": "227 6",
"output": "407444135"
},
{
"input": "876 8",
"output": "703293724"
},
{
"input": "1000 1",
"output": "760074701"
},
{
"input": "1000 2",
"output": "675678679"
},
{
"input": "1000 3",
"output": "330155123"
},
{
"input": "1000 4",
"output": "660270610"
},
{
"input": "1000 5",
"output": "583047503"
},
{
"input": "1000 6",
"output": "834332109"
},
{
"input": "657 3",
"output": "771999480"
},
{
"input": "137 5",
"output": "160909830"
},
{
"input": "8 8",
"output": "2097152"
},
{
"input": "9 8",
"output": "2097152"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "2 1",
"output": "1"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 3",
"output": "9"
},
{
"input": "473 4",
"output": "145141007"
}
] | 1,594,794,427
| 2,147,483,647
|
PyPy 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 217
| 22,323,200
|
nk=input().split()
n=int(nk[0])
k=int(nk[1])
p=1e9+7
a=pow(k,k-1,p)
b=pow(n-k,n-k,p)
print((a*b)%p)
|
Title: Polo the Penguin and Houses
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little penguin Polo loves his home village. The village has *n* houses, indexed by integers from 1 to *n*. Each house has a plaque containing an integer, the *i*-th house has a plaque containing integer *p**i* (1<=≤<=*p**i*<=≤<=*n*).
Little penguin Polo loves walking around this village. The walk looks like that. First he stands by a house number *x*. Then he goes to the house whose number is written on the plaque of house *x* (that is, to house *p**x*), then he goes to the house whose number is written on the plaque of house *p**x* (that is, to house *p**p**x*), and so on.
We know that:
1. When the penguin starts walking from any house indexed from 1 to *k*, inclusive, he can walk to house number 1. 1. When the penguin starts walking from any house indexed from *k*<=+<=1 to *n*, inclusive, he definitely cannot walk to house number 1. 1. When the penguin starts walking from house number 1, he can get back to house number 1 after some non-zero number of walks from a house to a house.
You need to find the number of ways you may write the numbers on the houses' plaques so as to fulfill the three above described conditions. Print the remainder after dividing this number by 1000000007 (109<=+<=7).
Input Specification:
The single line contains two space-separated integers *n* and *k* (1<=≤<=*n*<=≤<=1000,<=1<=≤<=*k*<=≤<=*min*(8,<=*n*)) — the number of the houses and the number *k* from the statement.
Output Specification:
In a single line print a single integer — the answer to the problem modulo 1000000007 (109<=+<=7).
Demo Input:
['5 2\n', '7 4\n']
Demo Output:
['54\n', '1728\n']
Note:
none
|
```python
nk=input().split()
n=int(nk[0])
k=int(nk[1])
p=1e9+7
a=pow(k,k-1,p)
b=pow(n-k,n-k,p)
print((a*b)%p)
```
| -1
|
|
467
|
A
|
George and Accommodation
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory.
George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms.
The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
|
Print a single integer — the number of rooms where George and Alex can move in.
|
[
"3\n1 1\n2 2\n3 3\n",
"3\n1 10\n0 10\n10 10\n"
] |
[
"0\n",
"2\n"
] |
none
| 500
|
[
{
"input": "3\n1 1\n2 2\n3 3",
"output": "0"
},
{
"input": "3\n1 10\n0 10\n10 10",
"output": "2"
},
{
"input": "2\n36 67\n61 69",
"output": "2"
},
{
"input": "3\n21 71\n10 88\n43 62",
"output": "3"
},
{
"input": "3\n1 2\n2 3\n3 4",
"output": "0"
},
{
"input": "10\n0 10\n0 20\n0 30\n0 40\n0 50\n0 60\n0 70\n0 80\n0 90\n0 100",
"output": "10"
},
{
"input": "13\n14 16\n30 31\n45 46\n19 20\n15 17\n66 67\n75 76\n95 97\n29 30\n37 38\n0 2\n36 37\n8 9",
"output": "4"
},
{
"input": "19\n66 67\n97 98\n89 91\n67 69\n67 68\n18 20\n72 74\n28 30\n91 92\n27 28\n75 77\n17 18\n74 75\n28 30\n16 18\n90 92\n9 11\n22 24\n52 54",
"output": "12"
},
{
"input": "15\n55 57\n95 97\n57 59\n34 36\n50 52\n96 98\n39 40\n13 15\n13 14\n74 76\n47 48\n56 58\n24 25\n11 13\n67 68",
"output": "10"
},
{
"input": "17\n68 69\n47 48\n30 31\n52 54\n41 43\n33 35\n38 40\n56 58\n45 46\n92 93\n73 74\n61 63\n65 66\n37 39\n67 68\n77 78\n28 30",
"output": "8"
},
{
"input": "14\n64 66\n43 44\n10 12\n76 77\n11 12\n25 27\n87 88\n62 64\n39 41\n58 60\n10 11\n28 29\n57 58\n12 14",
"output": "7"
},
{
"input": "38\n74 76\n52 54\n78 80\n48 49\n40 41\n64 65\n28 30\n6 8\n49 51\n68 70\n44 45\n57 59\n24 25\n46 48\n49 51\n4 6\n63 64\n76 78\n57 59\n18 20\n63 64\n71 73\n88 90\n21 22\n89 90\n65 66\n89 91\n96 98\n42 44\n1 1\n74 76\n72 74\n39 40\n75 76\n29 30\n48 49\n87 89\n27 28",
"output": "22"
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "26\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2",
"output": "0"
},
{
"input": "68\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2",
"output": "68"
},
{
"input": "7\n0 1\n1 5\n2 4\n3 5\n4 6\n5 6\n6 8",
"output": "5"
},
{
"input": "1\n0 0",
"output": "0"
},
{
"input": "1\n100 100",
"output": "0"
},
{
"input": "44\n0 8\n1 11\n2 19\n3 5\n4 29\n5 45\n6 6\n7 40\n8 19\n9 22\n10 18\n11 26\n12 46\n13 13\n14 27\n15 48\n16 25\n17 20\n18 29\n19 27\n20 45\n21 39\n22 29\n23 39\n24 42\n25 37\n26 52\n27 36\n28 43\n29 35\n30 38\n31 70\n32 47\n33 38\n34 61\n35 71\n36 51\n37 71\n38 59\n39 77\n40 70\n41 80\n42 77\n43 73",
"output": "42"
},
{
"input": "3\n1 3\n2 7\n8 9",
"output": "2"
},
{
"input": "53\n0 1\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53",
"output": "0"
},
{
"input": "55\n0 0\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54",
"output": "0"
},
{
"input": "51\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 62\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 82\n55 68\n55 70\n55 63\n55 55\n55 55\n55 55\n55 75\n55 75\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 82\n55 99\n55 60",
"output": "12"
},
{
"input": "14\n1 1\n1 1\n1 55\n1 16\n1 1\n1 1\n1 55\n1 62\n1 53\n1 26\n1 1\n1 36\n1 2\n1 3",
"output": "8"
}
] | 1,692,899,006
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 46
| 0
|
n = int(input())
count = 0
for i in range(n):
string = input().split()
p, q = int(string[0]), int(string[1])
if q - p >= 2:
count += 1
else:
continue
print(count)
|
Title: George and Accommodation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory.
George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms.
The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
Output Specification:
Print a single integer — the number of rooms where George and Alex can move in.
Demo Input:
['3\n1 1\n2 2\n3 3\n', '3\n1 10\n0 10\n10 10\n']
Demo Output:
['0\n', '2\n']
Note:
none
|
```python
n = int(input())
count = 0
for i in range(n):
string = input().split()
p, q = int(string[0]), int(string[1])
if q - p >= 2:
count += 1
else:
continue
print(count)
```
| 3
|
|
429
|
D
|
Tricky Function
|
PROGRAMMING
| 2,200
|
[
"data structures",
"divide and conquer",
"geometry"
] | null | null |
Iahub and Sorin are the best competitive programmers in their town. However, they can't both qualify to an important contest. The selection will be made with the help of a single problem. Blatnatalag, a friend of Iahub, managed to get hold of the problem before the contest. Because he wants to make sure Iahub will be the one qualified, he tells Iahub the following task.
You're given an (1-based) array *a* with *n* elements. Let's define function *f*(*i*,<=*j*) (1<=≤<=*i*,<=*j*<=≤<=*n*) as (*i*<=-<=*j*)2<=+<=*g*(*i*,<=*j*)2. Function g is calculated by the following pseudo-code:
Find a value *min**i*<=≠<=*j* *f*(*i*,<=*j*).
Probably by now Iahub already figured out the solution to this problem. Can you?
|
The first line of input contains a single integer *n* (2<=≤<=*n*<=≤<=100000). Next line contains *n* integers *a*[1], *a*[2], ..., *a*[*n*] (<=-<=104<=≤<=*a*[*i*]<=≤<=104).
|
Output a single integer — the value of *min**i*<=≠<=*j* *f*(*i*,<=*j*).
|
[
"4\n1 0 0 -1\n",
"2\n1 -1\n"
] |
[
"1\n",
"2\n"
] |
none
| 2,000
|
[
{
"input": "4\n1 0 0 -1",
"output": "1"
},
{
"input": "2\n1 -1",
"output": "2"
},
{
"input": "100\n-57 -64 83 76 80 27 60 76 -80 -56 52 72 -17 92 -96 87 41 -88 94 89 12 42 36 34 -100 -43 -42 62 3 87 -69 -6 -27 -59 -7 5 -90 -23 63 -87 -60 -92 -40 54 -16 -47 67 -64 10 33 -19 53 -7 -62 16 -74 -36 4 -75 -55 92 3 -22 43 -30 48 -27 88 -58 41 36 8 -40 -30 -18 16 22 -66 -91 -46 48 -60 -45 -89 37 -76 52 81 81 15 1 -43 -45 -19 9 -75 -75 -63 41 29",
"output": "2"
},
{
"input": "100\n-1 -3 -3 0 -1 -1 -1 1 2 1 0 -1 -2 0 -2 -2 3 -2 -1 -2 2 -2 -2 3 0 2 3 -1 2 -1 -2 2 -3 2 1 0 -1 1 3 -1 0 2 -3 -2 2 2 3 -2 2 3 0 -3 -2 1 -1 0 3 0 2 0 1 1 0 -3 1 -3 3 0 -1 -3 3 3 1 -2 2 -2 -3 -1 -2 2 -1 0 2 1 2 -1 2 3 -2 -1 0 -3 0 -1 3 2 -2 2 3 0",
"output": "1"
},
{
"input": "4\n200 100 -200 100",
"output": "9"
},
{
"input": "2\n3 -9",
"output": "82"
},
{
"input": "3\n0 -10 10",
"output": "4"
},
{
"input": "2\n10000 10000",
"output": "100000001"
},
{
"input": "2\n5 5",
"output": "26"
},
{
"input": "3\n10 10 -10",
"output": "4"
},
{
"input": "6\n10000 10000 10000 10000 10000 6904",
"output": "47665217"
},
{
"input": "3\n0 10000 -10000",
"output": "4"
},
{
"input": "3\n0 2 3",
"output": "5"
},
{
"input": "2\n0 1",
"output": "2"
},
{
"input": "5\n5865 6072 -4563 5913 -7926",
"output": "254032"
},
{
"input": "2\n1 10000",
"output": "100000001"
},
{
"input": "5\n10 11 12 13 -40",
"output": "32"
},
{
"input": "21\n10 10 10 10 10 10 10 10 10 10 -95 10 10 10 10 10 10 10 10 10 10",
"output": "101"
},
{
"input": "5\n0 4 10 -5 -5",
"output": "9"
},
{
"input": "2\n0 10000",
"output": "100000001"
},
{
"input": "4\n0 100 100 -200",
"output": "9"
},
{
"input": "4\n0 10 -5 -5",
"output": "9"
},
{
"input": "4\n10 10 -10 -10",
"output": "4"
},
{
"input": "3\n1 10 10",
"output": "101"
},
{
"input": "3\n1000 1000 -800",
"output": "40004"
},
{
"input": "3\n0 10 -10",
"output": "4"
},
{
"input": "2\n0 100",
"output": "10001"
}
] | 1,617,009,939
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 17
| 2,000
| 17,817,600
|
from sys import stdin, stdout
INF = int(1e9)
class Point:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
def distance(p1, p2):
x = p1.x - p2.x
y = p1.y - p2.y
return x*x + y*y
def bruteForce(point_set, left, right):
min_dist = INF
for i in range(left, right):
for j in range(i+1, right):
min_dist = min(min_dist, distance(point_set[i], point_set[j]))
return min_dist
def stripClosest(point_set, left, right, mid, min_dist):
point_mid = point_set[mid]
splitted_points = []
for i in range(left, right):
if (point_set[i].x - point_mid.x) ** 2 <= min_dist:
splitted_points.append(point_set[i])
splitted_points.sort(key=lambda point: point.y)
l = len(splitted_points)
smallest = INF
for i in range(l):
for j in range(i+1, l):
if (splitted_points[i].y - splitted_points[j].y) ** 2 >= min_dist:
break
d = distance(splitted_points[i], splitted_points[j])
smallest = min(smallest, d)
return smallest
def closestUtil(point_set, left, right):
if right - left <= 3:
return bruteForce(point_set, left, right)
mid = (left + right) // 2
dist_left = closestUtil(point_set, left, mid)
dist_right = closestUtil(point_set, mid+1, right)
dist_min = min(dist_left, dist_right)
return min(dist_min, stripClosest(point_set, left, right, mid, dist_min))
n = int(stdin.readline())
a = list(map(int, stdin.readline().split()))
pref = [0]
for i in range(n):
pref.append(pref[i] + a[i])
point_set = []
for i in range(n):
point_set.append(Point(i, pref[i+1]))
ans = closestUtil(point_set, 0, n)
stdout.write(str(ans))
|
Title: Tricky Function
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Iahub and Sorin are the best competitive programmers in their town. However, they can't both qualify to an important contest. The selection will be made with the help of a single problem. Blatnatalag, a friend of Iahub, managed to get hold of the problem before the contest. Because he wants to make sure Iahub will be the one qualified, he tells Iahub the following task.
You're given an (1-based) array *a* with *n* elements. Let's define function *f*(*i*,<=*j*) (1<=≤<=*i*,<=*j*<=≤<=*n*) as (*i*<=-<=*j*)2<=+<=*g*(*i*,<=*j*)2. Function g is calculated by the following pseudo-code:
Find a value *min**i*<=≠<=*j* *f*(*i*,<=*j*).
Probably by now Iahub already figured out the solution to this problem. Can you?
Input Specification:
The first line of input contains a single integer *n* (2<=≤<=*n*<=≤<=100000). Next line contains *n* integers *a*[1], *a*[2], ..., *a*[*n*] (<=-<=104<=≤<=*a*[*i*]<=≤<=104).
Output Specification:
Output a single integer — the value of *min**i*<=≠<=*j* *f*(*i*,<=*j*).
Demo Input:
['4\n1 0 0 -1\n', '2\n1 -1\n']
Demo Output:
['1\n', '2\n']
Note:
none
|
```python
from sys import stdin, stdout
INF = int(1e9)
class Point:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
def distance(p1, p2):
x = p1.x - p2.x
y = p1.y - p2.y
return x*x + y*y
def bruteForce(point_set, left, right):
min_dist = INF
for i in range(left, right):
for j in range(i+1, right):
min_dist = min(min_dist, distance(point_set[i], point_set[j]))
return min_dist
def stripClosest(point_set, left, right, mid, min_dist):
point_mid = point_set[mid]
splitted_points = []
for i in range(left, right):
if (point_set[i].x - point_mid.x) ** 2 <= min_dist:
splitted_points.append(point_set[i])
splitted_points.sort(key=lambda point: point.y)
l = len(splitted_points)
smallest = INF
for i in range(l):
for j in range(i+1, l):
if (splitted_points[i].y - splitted_points[j].y) ** 2 >= min_dist:
break
d = distance(splitted_points[i], splitted_points[j])
smallest = min(smallest, d)
return smallest
def closestUtil(point_set, left, right):
if right - left <= 3:
return bruteForce(point_set, left, right)
mid = (left + right) // 2
dist_left = closestUtil(point_set, left, mid)
dist_right = closestUtil(point_set, mid+1, right)
dist_min = min(dist_left, dist_right)
return min(dist_min, stripClosest(point_set, left, right, mid, dist_min))
n = int(stdin.readline())
a = list(map(int, stdin.readline().split()))
pref = [0]
for i in range(n):
pref.append(pref[i] + a[i])
point_set = []
for i in range(n):
point_set.append(Point(i, pref[i+1]))
ans = closestUtil(point_set, 0, n)
stdout.write(str(ans))
```
| 0
|
|
863
|
A
|
Quasi-palindrome
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
Let quasi-palindromic number be such number that adding some leading zeros (possible none) to it produces a palindromic string.
String *t* is called a palindrome, if it reads the same from left to right and from right to left.
For example, numbers 131 and 2010200 are quasi-palindromic, they can be transformed to strings "131" and "002010200", respectively, which are palindromes.
You are given some integer number *x*. Check if it's a quasi-palindromic number.
|
The first line contains one integer number *x* (1<=≤<=*x*<=≤<=109). This number is given without any leading zeroes.
|
Print "YES" if number *x* is quasi-palindromic. Otherwise, print "NO" (without quotes).
|
[
"131\n",
"320\n",
"2010200\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
none
| 0
|
[
{
"input": "131",
"output": "YES"
},
{
"input": "320",
"output": "NO"
},
{
"input": "2010200",
"output": "YES"
},
{
"input": "1",
"output": "YES"
},
{
"input": "1000000000",
"output": "YES"
},
{
"input": "999999999",
"output": "YES"
},
{
"input": "999999998",
"output": "NO"
},
{
"input": "102000",
"output": "NO"
},
{
"input": "210000000",
"output": "NO"
},
{
"input": "213443120",
"output": "YES"
},
{
"input": "99",
"output": "YES"
},
{
"input": "22002",
"output": "NO"
},
{
"input": "1010",
"output": "YES"
},
{
"input": "1201",
"output": "NO"
},
{
"input": "6460046",
"output": "NO"
},
{
"input": "503435",
"output": "NO"
},
{
"input": "21002",
"output": "NO"
},
{
"input": "101001",
"output": "NO"
},
{
"input": "200102",
"output": "NO"
},
{
"input": "20010002",
"output": "NO"
},
{
"input": "33003",
"output": "NO"
},
{
"input": "100101",
"output": "NO"
},
{
"input": "1021",
"output": "NO"
},
{
"input": "1101",
"output": "NO"
},
{
"input": "10101100",
"output": "NO"
},
{
"input": "101",
"output": "YES"
},
{
"input": "1011",
"output": "NO"
},
{
"input": "11010",
"output": "NO"
},
{
"input": "10110",
"output": "NO"
},
{
"input": "110000",
"output": "YES"
},
{
"input": "2011",
"output": "NO"
},
{
"input": "10020001",
"output": "NO"
},
{
"input": "12505021",
"output": "NO"
},
{
"input": "12310",
"output": "NO"
},
{
"input": "100501",
"output": "NO"
},
{
"input": "11001",
"output": "NO"
},
{
"input": "20020002",
"output": "NO"
},
{
"input": "202002",
"output": "NO"
},
{
"input": "1001",
"output": "YES"
},
{
"input": "1020021",
"output": "NO"
},
{
"input": "60660",
"output": "NO"
},
{
"input": "98809",
"output": "NO"
},
{
"input": "11000000",
"output": "YES"
},
{
"input": "807008",
"output": "NO"
}
] | 1,588,940,786
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 44
| 109
| 6,656,000
|
#ROUNIAUDI
string1=input().strip().strip("0")
str1=string1[::-1]
print("YES" if str1==string1 else "NO")
|
Title: Quasi-palindrome
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Let quasi-palindromic number be such number that adding some leading zeros (possible none) to it produces a palindromic string.
String *t* is called a palindrome, if it reads the same from left to right and from right to left.
For example, numbers 131 and 2010200 are quasi-palindromic, they can be transformed to strings "131" and "002010200", respectively, which are palindromes.
You are given some integer number *x*. Check if it's a quasi-palindromic number.
Input Specification:
The first line contains one integer number *x* (1<=≤<=*x*<=≤<=109). This number is given without any leading zeroes.
Output Specification:
Print "YES" if number *x* is quasi-palindromic. Otherwise, print "NO" (without quotes).
Demo Input:
['131\n', '320\n', '2010200\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
none
|
```python
#ROUNIAUDI
string1=input().strip().strip("0")
str1=string1[::-1]
print("YES" if str1==string1 else "NO")
```
| 3
|
|
46
|
D
|
Parking Lot
|
PROGRAMMING
| 1,800
|
[
"data structures",
"implementation"
] |
D. Parking Lot
|
2
|
256
|
Nowadays it is becoming increasingly difficult to park a car in cities successfully. Let's imagine a segment of a street as long as *L* meters along which a parking lot is located. Drivers should park their cars strictly parallel to the pavement on the right side of the street (remember that in the country the authors of the tasks come from the driving is right side!). Every driver when parking wants to leave for themselves some extra space to move their car freely, that's why a driver is looking for a place where the distance between his car and the one behind his will be no less than *b* meters and the distance between his car and the one in front of his will be no less than *f* meters (if there's no car behind then the car can be parked at the parking lot segment edge; the same is true for the case when there're no cars parked in front of the car). Let's introduce an axis of coordinates along the pavement. Let the parking lot begin at point 0 and end at point *L*. The drivers drive in the direction of the coordinates' increasing and look for the earliest place (with the smallest possible coordinate) where they can park the car. In case there's no such place, the driver drives on searching for his perfect peaceful haven. Sometimes some cars leave the street and free some space for parking. Considering that there never are two moving cars on a street at a time write a program that can use the data on the drivers, entering the street hoping to park there and the drivers leaving it, to model the process and determine a parking lot space for each car.
|
The first line contains three integers *L*, *b* и *f* (10<=≤<=*L*<=≤<=100000,<=1<=≤<=*b*,<=*f*<=≤<=100). The second line contains an integer *n* (1<=≤<=*n*<=≤<=100) that indicates the number of requests the program has got. Every request is described on a single line and is given by two numbers. The first number represents the request type. If the request type is equal to 1, then in that case the second number indicates the length of a car (in meters) that enters the street looking for a place to park. And if the request type is equal to 2, then the second number identifies the number of such a request (starting with 1) that the car whose arrival to the parking lot was described by a request with this number, leaves the parking lot. It is guaranteed that that car was parked at the moment the request of the 2 type was made. The lengths of cars are integers from 1 to 1000.
|
For every request of the 1 type print number -1 on the single line if the corresponding car couldn't find place to park along the street. Otherwise, print a single number equal to the distance between the back of the car in its parked position and the beginning of the parking lot zone.
|
[
"30 1 2\n6\n1 5\n1 4\n1 5\n2 2\n1 5\n1 4\n",
"30 1 1\n6\n1 5\n1 4\n1 5\n2 2\n1 5\n1 4\n",
"10 1 1\n1\n1 12\n"
] |
[
"0\n6\n11\n17\n23\n",
"0\n6\n11\n17\n6\n",
"-1\n"
] |
none
| 0
|
[
{
"input": "30 1 2\n6\n1 5\n1 4\n1 5\n2 2\n1 5\n1 4",
"output": "0\n6\n11\n17\n23"
},
{
"input": "30 1 1\n6\n1 5\n1 4\n1 5\n2 2\n1 5\n1 4",
"output": "0\n6\n11\n17\n6"
},
{
"input": "10 1 1\n1\n1 12",
"output": "-1"
},
{
"input": "10 1 1\n1\n1 9",
"output": "0"
},
{
"input": "10 1 1\n1\n1 10",
"output": "0"
},
{
"input": "10 1 1\n2\n1 3\n1 6",
"output": "0\n4"
},
{
"input": "10 1 1\n2\n1 3\n1 7",
"output": "0\n-1"
},
{
"input": "10 1 1\n5\n1 1\n1 2\n1 3\n2 2\n1 4",
"output": "0\n2\n5\n-1"
},
{
"input": "10 1 1\n5\n1 4\n2 1\n1 3\n2 3\n1 1",
"output": "0\n0\n0"
},
{
"input": "10 1 1\n5\n1 2\n1 3\n1 1\n1 4\n1 2",
"output": "0\n3\n7\n-1\n-1"
},
{
"input": "20 1 2\n10\n1 3\n1 2\n2 2\n2 1\n1 4\n1 2\n1 2\n2 7\n1 2\n1 1",
"output": "0\n4\n0\n5\n8\n8\n11"
},
{
"input": "20 2 1\n10\n1 5\n1 2\n1 1\n1 1\n1 2\n2 4\n1 3\n1 1\n2 5\n1 5",
"output": "0\n7\n11\n14\n17\n-1\n14\n-1"
},
{
"input": "20 2 2\n10\n1 2\n1 3\n1 3\n1 5\n1 5\n1 1\n1 2\n1 5\n1 5\n1 5",
"output": "0\n4\n9\n14\n-1\n-1\n-1\n-1\n-1\n-1"
},
{
"input": "30 2 1\n10\n1 4\n2 1\n1 1\n1 3\n1 1\n1 1\n1 2\n1 5\n2 4\n2 7",
"output": "0\n0\n3\n8\n11\n14\n18"
},
{
"input": "30 1 2\n10\n1 1\n1 1\n2 1\n1 5\n1 2\n2 4\n1 6\n2 5\n2 2\n2 7",
"output": "0\n2\n4\n10\n13"
},
{
"input": "50 2 3\n15\n1 7\n1 6\n1 1\n2 3\n2 1\n2 2\n1 1\n1 4\n1 6\n1 2\n1 8\n1 6\n2 7\n1 8\n2 9",
"output": "0\n9\n17\n0\n3\n9\n17\n21\n31\n39"
},
{
"input": "50 2 4\n15\n1 4\n1 4\n2 1\n2 2\n1 8\n1 7\n2 5\n1 2\n1 7\n2 8\n1 7\n2 11\n1 3\n2 6\n2 9",
"output": "0\n6\n0\n10\n0\n19\n28\n0"
},
{
"input": "50 3 3\n20\n1 4\n2 1\n1 1\n2 3\n1 1\n2 5\n1 7\n2 7\n1 4\n1 1\n1 10\n1 5\n1 2\n2 9\n2 11\n1 1\n1 9\n2 13\n1 8\n1 1",
"output": "0\n0\n0\n0\n0\n7\n11\n24\n32\n0\n11\n32\n43"
},
{
"input": "50 3 2\n20\n1 6\n1 1\n2 2\n1 2\n1 3\n1 1\n1 2\n2 4\n1 7\n1 1\n2 6\n1 9\n2 12\n2 9\n1 8\n1 6\n1 1\n1 8\n2 15\n1 2",
"output": "0\n9\n9\n14\n20\n24\n29\n9\n39\n29\n40\n20\n-1\n29"
},
{
"input": "50 3 1\n30\n1 9\n2 1\n1 6\n1 5\n1 8\n1 1\n2 6\n1 7\n2 3\n2 8\n1 7\n2 4\n2 5\n2 11\n1 2\n2 15\n1 6\n1 3\n2 17\n1 9\n1 3\n2 18\n1 3\n2 23\n2 21\n1 8\n1 2\n2 27\n1 8\n2 29",
"output": "0\n0\n9\n17\n28\n28\n0\n0\n0\n9\n15\n0\n6\n0\n11\n27"
}
] | 1,617,534,563
| 2,147,483,647
|
PyPy 3
|
RUNTIME_ERROR
|
TESTS
| 16
| 248
| 2,252,800
|
l,b,f=list(map(int,input().split()))
n=int(input())
a=[]
z=0
for j in range(n):
d,c=list(map(int,input().split()))
if d==1:
x=-1
y=0
for i in range(z):
if a[i][0]+a[i][1]+b+c<=l and (i==z-1 or a[i][0]+a[i][1]+b+c<=a[i+1][0]-f):
x=a[i][0]+a[i][1]+b
y=i+1
break
if z==0:
if c<=l:
print(0)
a=[[0,c,j+1]]+a
z+=1
else:
print(-1)
else:
if c+f<=a[0][0]:
print(0)
[[0,c,j+1]]+a
z+=1
elif x==-1:
print(-1)
else:
print(x)
a=a[:y]+[[x,c,j+1]]+a[y:]
z+=1
else:
for i in range(z):
if a[i][2]==c:
a=a[:i]+a[i+1:]
z-=1
break
|
Title: Parking Lot
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Nowadays it is becoming increasingly difficult to park a car in cities successfully. Let's imagine a segment of a street as long as *L* meters along which a parking lot is located. Drivers should park their cars strictly parallel to the pavement on the right side of the street (remember that in the country the authors of the tasks come from the driving is right side!). Every driver when parking wants to leave for themselves some extra space to move their car freely, that's why a driver is looking for a place where the distance between his car and the one behind his will be no less than *b* meters and the distance between his car and the one in front of his will be no less than *f* meters (if there's no car behind then the car can be parked at the parking lot segment edge; the same is true for the case when there're no cars parked in front of the car). Let's introduce an axis of coordinates along the pavement. Let the parking lot begin at point 0 and end at point *L*. The drivers drive in the direction of the coordinates' increasing and look for the earliest place (with the smallest possible coordinate) where they can park the car. In case there's no such place, the driver drives on searching for his perfect peaceful haven. Sometimes some cars leave the street and free some space for parking. Considering that there never are two moving cars on a street at a time write a program that can use the data on the drivers, entering the street hoping to park there and the drivers leaving it, to model the process and determine a parking lot space for each car.
Input Specification:
The first line contains three integers *L*, *b* и *f* (10<=≤<=*L*<=≤<=100000,<=1<=≤<=*b*,<=*f*<=≤<=100). The second line contains an integer *n* (1<=≤<=*n*<=≤<=100) that indicates the number of requests the program has got. Every request is described on a single line and is given by two numbers. The first number represents the request type. If the request type is equal to 1, then in that case the second number indicates the length of a car (in meters) that enters the street looking for a place to park. And if the request type is equal to 2, then the second number identifies the number of such a request (starting with 1) that the car whose arrival to the parking lot was described by a request with this number, leaves the parking lot. It is guaranteed that that car was parked at the moment the request of the 2 type was made. The lengths of cars are integers from 1 to 1000.
Output Specification:
For every request of the 1 type print number -1 on the single line if the corresponding car couldn't find place to park along the street. Otherwise, print a single number equal to the distance between the back of the car in its parked position and the beginning of the parking lot zone.
Demo Input:
['30 1 2\n6\n1 5\n1 4\n1 5\n2 2\n1 5\n1 4\n', '30 1 1\n6\n1 5\n1 4\n1 5\n2 2\n1 5\n1 4\n', '10 1 1\n1\n1 12\n']
Demo Output:
['0\n6\n11\n17\n23\n', '0\n6\n11\n17\n6\n', '-1\n']
Note:
none
|
```python
l,b,f=list(map(int,input().split()))
n=int(input())
a=[]
z=0
for j in range(n):
d,c=list(map(int,input().split()))
if d==1:
x=-1
y=0
for i in range(z):
if a[i][0]+a[i][1]+b+c<=l and (i==z-1 or a[i][0]+a[i][1]+b+c<=a[i+1][0]-f):
x=a[i][0]+a[i][1]+b
y=i+1
break
if z==0:
if c<=l:
print(0)
a=[[0,c,j+1]]+a
z+=1
else:
print(-1)
else:
if c+f<=a[0][0]:
print(0)
[[0,c,j+1]]+a
z+=1
elif x==-1:
print(-1)
else:
print(x)
a=a[:y]+[[x,c,j+1]]+a[y:]
z+=1
else:
for i in range(z):
if a[i][2]==c:
a=a[:i]+a[i+1:]
z-=1
break
```
| -1
|
676
|
A
|
Nicholas and Permutation
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
Nicholas has an array *a* that contains *n* distinct integers from 1 to *n*. In other words, Nicholas has a permutation of size *n*.
Nicholas want the minimum element (integer 1) and the maximum element (integer *n*) to be as far as possible from each other. He wants to perform exactly one swap in order to maximize the distance between the minimum and the maximum elements. The distance between two elements is considered to be equal to the absolute difference between their positions.
|
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100) — the size of the permutation.
The second line of the input contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is equal to the element at the *i*-th position.
|
Print a single integer — the maximum possible distance between the minimum and the maximum elements Nicholas can achieve by performing exactly one swap.
|
[
"5\n4 5 1 3 2\n",
"7\n1 6 5 3 4 7 2\n",
"6\n6 5 4 3 2 1\n"
] |
[
"3\n",
"6\n",
"5\n"
] |
In the first sample, one may obtain the optimal answer by swapping elements 1 and 2.
In the second sample, the minimum and the maximum elements will be located in the opposite ends of the array if we swap 7 and 2.
In the third sample, the distance between the minimum and the maximum elements is already maximum possible, so we just perform some unnecessary swap, for example, one can swap 5 and 2.
| 500
|
[
{
"input": "5\n4 5 1 3 2",
"output": "3"
},
{
"input": "7\n1 6 5 3 4 7 2",
"output": "6"
},
{
"input": "6\n6 5 4 3 2 1",
"output": "5"
},
{
"input": "2\n1 2",
"output": "1"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "3\n2 3 1",
"output": "2"
},
{
"input": "4\n4 1 3 2",
"output": "3"
},
{
"input": "5\n1 4 5 2 3",
"output": "4"
},
{
"input": "6\n4 6 3 5 2 1",
"output": "5"
},
{
"input": "7\n1 5 3 6 2 4 7",
"output": "6"
},
{
"input": "100\n76 70 67 54 40 1 48 63 64 36 42 90 99 27 47 17 93 7 13 84 16 57 74 5 83 61 19 56 52 92 38 91 82 79 34 66 71 28 37 98 35 94 77 53 73 10 26 80 15 32 8 81 3 95 44 46 72 6 33 11 21 85 4 30 24 51 49 96 87 55 14 31 12 60 45 9 29 22 58 18 88 2 50 59 20 86 23 41 100 39 62 68 69 97 78 43 25 89 65 75",
"output": "94"
},
{
"input": "8\n4 5 3 8 6 7 1 2",
"output": "6"
},
{
"input": "9\n6 8 5 3 4 7 9 2 1",
"output": "8"
},
{
"input": "10\n8 7 10 1 2 3 4 6 5 9",
"output": "7"
},
{
"input": "11\n5 4 6 9 10 11 7 3 1 2 8",
"output": "8"
},
{
"input": "12\n3 6 7 8 9 10 12 5 4 2 11 1",
"output": "11"
},
{
"input": "13\n8 4 3 7 5 11 9 1 10 2 13 12 6",
"output": "10"
},
{
"input": "14\n6 10 13 9 7 1 12 14 3 2 5 4 11 8",
"output": "8"
},
{
"input": "15\n3 14 13 12 7 2 4 11 15 1 8 6 5 10 9",
"output": "9"
},
{
"input": "16\n11 6 9 8 7 14 12 13 10 15 2 5 3 1 4 16",
"output": "15"
},
{
"input": "17\n13 12 5 3 9 16 8 14 2 4 10 1 6 11 7 15 17",
"output": "16"
},
{
"input": "18\n8 6 14 17 9 11 15 13 5 3 18 1 2 7 12 16 4 10",
"output": "11"
},
{
"input": "19\n12 19 3 11 15 6 18 14 5 10 2 13 9 7 4 8 17 16 1",
"output": "18"
},
{
"input": "20\n15 17 10 20 7 2 16 9 13 6 18 5 19 8 11 14 4 12 3 1",
"output": "19"
},
{
"input": "21\n1 9 14 18 13 12 11 20 16 2 4 19 15 7 6 17 8 5 3 10 21",
"output": "20"
},
{
"input": "22\n8 3 17 4 16 21 14 11 10 15 6 18 13 12 22 20 5 2 9 7 19 1",
"output": "21"
},
{
"input": "23\n1 23 11 20 9 3 12 4 7 17 5 15 2 10 18 16 8 22 14 13 19 21 6",
"output": "22"
},
{
"input": "24\n2 10 23 22 20 19 18 16 11 12 15 17 21 8 24 13 1 5 6 7 14 3 9 4",
"output": "16"
},
{
"input": "25\n12 13 22 17 1 18 14 5 21 2 10 4 3 23 11 6 20 8 24 16 15 19 9 7 25",
"output": "24"
},
{
"input": "26\n6 21 20 16 26 17 11 2 24 4 1 12 14 8 25 7 15 10 22 5 13 18 9 23 19 3",
"output": "21"
},
{
"input": "27\n20 14 18 10 5 3 9 4 24 22 21 27 17 15 26 2 23 7 12 11 6 8 19 25 16 13 1",
"output": "26"
},
{
"input": "28\n28 13 16 6 1 12 4 27 22 7 18 3 21 26 25 11 5 10 20 24 19 15 14 8 23 17 9 2",
"output": "27"
},
{
"input": "29\n21 11 10 25 2 5 9 16 29 8 17 4 15 13 6 22 7 24 19 12 18 20 1 3 23 28 27 14 26",
"output": "22"
},
{
"input": "30\n6 19 14 22 26 17 27 8 25 3 24 30 4 18 23 16 9 13 29 20 15 2 5 11 28 12 1 10 21 7",
"output": "26"
},
{
"input": "31\n29 13 26 27 9 28 2 16 30 21 12 11 3 31 23 6 22 20 1 5 14 24 19 18 8 4 10 17 15 25 7",
"output": "18"
},
{
"input": "32\n15 32 11 3 18 23 19 14 5 8 6 21 13 24 25 4 16 9 27 20 17 31 2 22 7 12 30 1 26 10 29 28",
"output": "30"
},
{
"input": "33\n22 13 10 33 8 25 15 14 21 28 27 19 26 24 1 12 5 11 32 20 30 31 18 4 6 23 7 29 16 2 17 9 3",
"output": "29"
},
{
"input": "34\n34 30 7 16 6 1 10 23 29 13 15 25 32 26 18 11 28 3 14 21 19 5 31 33 4 17 8 9 24 20 27 22 2 12",
"output": "33"
},
{
"input": "35\n24 33 20 8 34 11 31 25 2 4 18 13 9 35 16 30 23 32 17 1 14 22 19 21 28 26 3 15 5 12 27 29 10 6 7",
"output": "21"
},
{
"input": "36\n1 32 27 35 22 7 34 15 18 36 31 28 13 2 10 21 20 17 16 4 3 24 19 29 11 12 25 5 33 26 14 6 9 23 30 8",
"output": "35"
},
{
"input": "37\n24 1 12 23 11 6 30 15 4 21 13 20 25 17 5 8 36 19 32 26 14 9 7 18 10 29 37 35 16 2 22 34 3 27 31 33 28",
"output": "35"
},
{
"input": "38\n9 35 37 28 36 21 10 25 19 4 26 5 22 7 27 18 6 14 15 24 1 17 11 34 20 8 2 16 3 23 32 31 13 12 38 33 30 29",
"output": "34"
},
{
"input": "39\n16 28 4 33 26 36 25 23 22 30 27 7 12 34 17 6 3 38 10 24 13 31 29 39 14 32 9 20 35 11 18 21 8 2 15 37 5 19 1",
"output": "38"
},
{
"input": "40\n35 39 28 11 9 31 36 8 5 32 26 19 38 33 2 22 23 25 6 37 12 7 3 10 17 24 20 16 27 4 34 15 40 14 18 13 29 21 30 1",
"output": "39"
},
{
"input": "41\n24 18 7 23 3 15 1 17 25 5 30 10 34 36 2 14 9 21 41 40 20 28 33 35 12 22 11 8 19 16 31 27 26 32 29 4 13 38 37 39 6",
"output": "34"
},
{
"input": "42\n42 15 24 26 4 34 19 29 38 32 31 33 14 41 21 3 11 39 25 6 5 20 23 10 16 36 18 28 27 1 7 40 22 30 9 2 37 17 8 12 13 35",
"output": "41"
},
{
"input": "43\n43 24 20 13 22 29 28 4 30 3 32 40 31 8 7 9 35 27 18 5 42 6 17 19 23 12 41 21 16 37 33 34 2 14 36 38 25 10 15 39 26 11 1",
"output": "42"
},
{
"input": "44\n4 38 6 40 29 3 44 2 30 35 25 36 34 10 11 31 21 7 14 23 37 19 27 18 5 22 1 16 17 9 39 13 15 32 43 8 41 26 42 12 24 33 20 28",
"output": "37"
},
{
"input": "45\n45 29 24 2 31 5 34 41 26 44 33 43 15 3 4 11 21 37 27 12 14 39 23 42 16 6 13 19 8 38 20 9 25 22 40 17 32 35 18 10 28 7 30 36 1",
"output": "44"
},
{
"input": "46\n29 3 12 33 45 40 19 17 25 27 28 1 16 23 24 46 31 8 44 15 5 32 22 11 4 36 34 10 35 26 21 7 14 2 18 9 20 41 6 43 42 37 38 13 39 30",
"output": "34"
},
{
"input": "47\n7 3 8 12 24 16 29 10 28 38 1 20 37 40 21 5 15 6 45 23 36 44 25 43 41 4 11 42 18 35 32 31 39 33 27 30 22 34 14 13 17 47 19 9 46 26 2",
"output": "41"
},
{
"input": "48\n29 26 14 18 34 33 13 39 32 1 37 20 35 19 28 48 30 23 46 27 5 22 24 38 12 15 8 36 43 45 16 47 6 9 31 40 44 17 2 41 11 42 25 4 21 3 10 7",
"output": "38"
},
{
"input": "49\n16 7 42 32 11 35 15 8 23 41 6 20 47 24 9 45 49 2 37 48 25 28 5 18 3 19 12 4 22 33 13 14 10 36 44 17 40 38 30 26 1 43 29 46 21 34 27 39 31",
"output": "40"
},
{
"input": "50\n31 45 3 34 13 43 32 4 42 9 7 8 24 14 35 6 19 46 44 17 18 1 25 20 27 41 2 16 12 10 11 47 38 21 28 49 30 15 50 36 29 26 22 39 48 5 23 37 33 40",
"output": "38"
},
{
"input": "51\n47 29 2 11 43 44 27 1 39 14 25 30 33 21 38 45 34 51 16 50 42 31 41 46 15 48 13 19 6 37 35 7 22 28 20 4 17 10 5 8 24 40 9 36 18 49 12 26 23 3 32",
"output": "43"
},
{
"input": "52\n16 45 23 7 15 19 43 20 4 32 35 36 9 50 5 26 38 46 13 33 12 2 48 37 41 31 10 28 8 42 3 21 11 1 17 27 34 30 44 40 6 51 49 47 25 22 18 24 52 29 14 39",
"output": "48"
},
{
"input": "53\n53 30 50 22 51 31 32 38 12 7 39 43 1 23 6 8 24 52 2 21 34 13 3 35 5 15 19 11 47 18 9 20 29 4 36 45 27 41 25 48 16 46 44 17 10 14 42 26 40 28 33 37 49",
"output": "52"
},
{
"input": "54\n6 39 17 3 45 52 16 21 23 48 42 36 13 37 46 10 43 27 49 7 38 32 31 30 15 25 2 29 8 51 54 19 41 44 24 34 22 5 20 14 12 1 33 40 4 26 9 35 18 28 47 50 11 53",
"output": "41"
},
{
"input": "55\n26 15 31 21 32 43 34 51 7 12 5 44 17 54 18 25 48 47 20 3 41 24 45 2 11 22 29 39 37 53 35 28 36 9 50 10 30 38 19 13 4 8 27 1 42 6 49 23 55 40 33 16 46 14 52",
"output": "48"
},
{
"input": "56\n6 20 38 46 10 11 40 19 5 1 47 33 4 18 32 36 37 45 56 49 48 52 12 26 31 14 2 9 24 3 16 51 41 43 23 17 34 7 29 50 55 25 39 44 22 27 54 8 28 35 30 42 13 53 21 15",
"output": "46"
},
{
"input": "57\n39 28 53 36 3 6 12 56 55 20 50 19 43 42 18 40 24 52 38 17 33 23 22 41 14 7 26 44 45 16 35 1 8 47 31 5 30 51 32 4 37 25 13 34 54 21 46 10 15 11 2 27 29 48 49 9 57",
"output": "56"
},
{
"input": "58\n1 26 28 14 22 33 57 40 9 42 44 37 24 19 58 12 48 3 34 31 49 4 16 47 55 52 27 23 46 18 20 32 56 6 39 36 41 38 13 43 45 21 53 54 29 17 5 10 25 30 2 35 11 7 15 51 8 50",
"output": "57"
},
{
"input": "59\n1 27 10 37 53 9 14 49 46 26 50 42 59 11 47 15 24 56 43 45 44 38 5 8 58 30 52 12 23 32 22 3 31 41 2 25 29 6 54 16 35 33 18 55 4 51 57 28 40 19 13 21 7 39 36 48 34 17 20",
"output": "58"
},
{
"input": "60\n60 27 34 32 54 55 33 12 40 3 47 44 50 39 38 59 11 25 17 15 16 30 21 31 10 52 5 23 4 48 6 26 36 57 14 22 8 56 58 9 24 7 37 53 42 43 20 49 51 19 2 46 28 18 35 13 29 45 41 1",
"output": "59"
},
{
"input": "61\n61 11 26 29 31 40 32 30 35 3 18 52 9 53 42 4 50 54 20 58 28 49 22 12 2 19 16 15 57 34 51 43 7 17 25 41 56 47 55 60 46 14 44 45 24 27 33 1 48 13 59 23 38 39 6 5 36 10 8 37 21",
"output": "60"
},
{
"input": "62\n21 23 34 38 11 61 55 30 37 48 54 51 46 47 6 56 36 49 1 35 12 28 29 20 43 42 5 8 22 57 44 4 53 10 58 33 27 25 16 45 50 40 18 15 3 41 39 2 7 60 59 13 32 24 52 31 14 9 19 26 17 62",
"output": "61"
},
{
"input": "63\n2 5 29 48 31 26 21 16 47 24 43 22 61 28 6 39 60 27 14 52 37 7 53 8 62 56 63 10 50 18 44 13 4 9 25 11 23 42 45 41 59 12 32 36 40 51 1 35 49 54 57 20 19 34 38 46 33 3 55 15 30 58 17",
"output": "46"
},
{
"input": "64\n23 5 51 40 12 46 44 8 64 31 58 55 45 24 54 39 21 19 52 61 30 42 16 18 15 32 53 22 28 26 11 25 48 56 27 9 29 41 35 49 59 38 62 7 34 1 20 33 60 17 2 3 43 37 57 14 6 36 13 10 50 4 63 47",
"output": "55"
},
{
"input": "65\n10 11 55 43 53 25 35 26 16 37 41 38 59 21 48 2 65 49 17 23 18 30 62 36 3 4 47 15 28 63 57 54 31 46 44 12 51 7 29 13 56 52 14 22 39 19 8 27 45 5 6 34 32 61 20 50 9 24 33 58 60 40 1 42 64",
"output": "62"
},
{
"input": "66\n66 39 3 2 55 53 60 54 12 49 10 30 59 26 32 46 50 56 7 13 43 36 24 28 11 8 6 21 35 25 42 57 23 45 64 5 34 61 27 51 52 9 15 1 38 17 63 48 37 20 58 14 47 19 22 41 31 44 33 65 4 62 40 18 16 29",
"output": "65"
},
{
"input": "67\n66 16 2 53 35 38 49 28 18 6 36 58 21 47 27 5 50 62 44 12 52 37 11 56 15 31 25 65 17 29 59 41 7 42 4 43 39 10 1 40 24 13 20 54 19 67 46 60 51 45 64 30 8 33 26 9 3 22 34 23 57 48 55 14 63 61 32",
"output": "45"
},
{
"input": "68\n13 6 27 21 65 23 59 14 62 43 33 31 38 41 67 20 16 25 42 4 28 40 29 9 64 17 2 26 32 58 60 53 46 48 47 54 44 50 39 19 30 57 61 1 11 18 37 24 55 15 63 34 8 52 56 7 10 12 35 66 5 36 45 49 68 22 51 3",
"output": "64"
},
{
"input": "69\n29 49 25 51 21 35 11 61 39 54 40 37 60 42 27 33 59 53 34 10 46 2 23 69 8 47 58 36 1 38 19 12 7 48 13 3 6 22 18 5 65 24 50 41 66 44 67 57 4 56 62 43 9 30 14 15 28 31 64 26 16 55 68 17 32 20 45 52 63",
"output": "45"
},
{
"input": "70\n19 12 15 18 36 16 61 69 24 7 11 13 3 48 55 21 37 17 43 31 41 22 28 32 27 63 38 49 59 56 30 25 67 51 52 45 50 44 66 57 26 60 5 46 33 6 23 34 8 40 2 68 14 39 65 64 62 42 47 54 10 53 9 1 70 58 20 4 29 35",
"output": "64"
},
{
"input": "71\n40 6 62 3 41 52 31 66 27 16 35 5 17 60 2 15 51 22 67 61 71 53 1 64 8 45 28 18 50 30 12 69 20 26 10 37 36 49 70 32 33 11 57 14 9 55 4 58 29 25 44 65 39 48 24 47 19 46 56 38 34 42 59 63 54 23 7 68 43 13 21",
"output": "50"
},
{
"input": "72\n52 64 71 40 32 10 62 21 11 37 38 13 22 70 1 66 41 50 27 20 42 47 25 68 49 12 15 72 44 60 53 5 23 14 43 29 65 36 51 54 35 67 7 19 55 48 58 46 39 24 33 30 61 45 57 2 31 3 18 59 6 9 4 63 8 16 26 34 28 69 17 56",
"output": "57"
},
{
"input": "73\n58 38 47 34 39 64 69 66 72 57 9 4 67 22 35 13 61 14 28 52 56 20 31 70 27 24 36 1 62 17 10 5 12 33 16 73 18 49 63 71 44 65 23 30 40 8 50 46 60 25 11 26 37 55 29 68 42 2 3 32 59 7 15 43 41 48 51 53 6 45 54 19 21",
"output": "45"
},
{
"input": "74\n19 51 59 34 8 40 42 55 65 16 74 26 49 63 64 70 35 72 7 12 43 18 61 27 47 31 13 32 71 22 25 67 9 1 48 50 33 10 21 46 11 45 17 37 28 60 69 66 38 2 30 3 39 15 53 68 57 41 6 36 24 73 4 23 5 62 44 14 20 29 52 54 56 58",
"output": "63"
},
{
"input": "75\n75 28 60 19 59 17 65 26 32 23 18 64 8 62 4 11 42 16 47 5 72 46 9 1 25 21 2 50 33 6 36 68 30 12 20 40 53 45 34 7 37 39 38 44 63 61 67 3 66 51 29 73 24 57 70 27 10 56 22 55 13 49 35 15 54 41 14 74 69 48 52 31 71 43 58",
"output": "74"
},
{
"input": "76\n1 47 54 17 38 37 12 32 14 48 43 71 60 56 4 13 64 41 52 57 62 24 23 49 20 10 63 3 25 66 59 40 58 33 53 46 70 7 35 61 72 74 73 19 30 5 29 6 15 28 21 27 51 55 50 9 65 8 67 39 76 42 31 34 16 2 36 11 26 44 22 45 75 18 69 68",
"output": "75"
},
{
"input": "77\n10 20 57 65 53 69 59 45 58 32 28 72 4 14 1 33 40 47 7 5 51 76 37 16 41 61 42 2 21 26 38 74 35 64 43 77 71 50 39 48 27 63 73 44 52 66 9 18 23 54 25 6 8 56 13 67 36 22 15 46 62 75 55 11 31 17 24 29 60 68 12 30 3 70 49 19 34",
"output": "62"
},
{
"input": "78\n7 61 69 47 68 42 65 78 70 3 32 59 49 51 23 71 11 63 22 18 43 34 24 13 27 16 19 40 21 46 48 77 28 66 54 67 60 15 75 62 9 26 52 58 4 25 8 37 41 76 1 6 30 50 44 36 5 14 29 53 17 12 2 57 73 35 64 39 56 10 33 20 45 74 31 55 38 72",
"output": "70"
},
{
"input": "79\n75 79 43 66 72 52 29 65 74 38 24 1 5 51 13 7 71 33 4 61 2 36 63 47 64 44 34 27 3 21 17 37 54 53 49 20 28 60 39 10 16 76 6 77 73 22 50 48 78 30 67 56 31 26 40 59 41 11 18 45 69 62 15 23 32 70 19 55 68 57 35 25 12 46 14 42 9 8 58",
"output": "77"
},
{
"input": "80\n51 20 37 12 68 11 28 52 76 21 7 5 3 16 64 34 25 2 6 40 60 62 75 13 45 17 56 29 32 47 79 73 49 72 15 46 30 54 80 27 43 24 74 18 42 71 14 4 44 63 65 33 1 77 55 57 41 59 58 70 69 35 19 67 10 36 26 23 48 50 39 61 9 66 38 8 31 22 53 78",
"output": "52"
},
{
"input": "81\n63 22 4 41 43 74 64 39 10 35 20 81 11 28 70 67 53 79 16 61 68 52 27 37 58 9 50 49 18 30 72 47 7 60 78 51 23 48 73 66 44 13 15 57 56 38 1 76 25 45 36 34 42 8 75 26 59 14 71 21 6 77 5 17 2 32 40 54 46 24 29 3 31 19 65 62 33 69 12 80 55",
"output": "69"
},
{
"input": "82\n50 24 17 41 49 18 80 11 79 72 57 31 21 35 2 51 36 66 20 65 38 3 45 32 59 81 28 30 70 55 29 76 73 6 33 39 8 7 19 48 63 1 77 43 4 13 78 54 69 9 40 46 74 82 60 71 16 64 12 14 47 26 44 5 10 75 53 25 27 15 56 42 58 34 23 61 67 62 68 22 37 52",
"output": "53"
},
{
"input": "83\n64 8 58 17 67 46 3 82 23 70 72 16 53 45 13 20 12 48 40 4 6 47 76 60 19 44 30 78 28 22 75 15 25 29 63 74 55 32 14 51 35 31 62 77 27 42 65 71 56 61 66 41 68 49 7 34 2 83 36 5 33 26 37 80 59 50 1 9 54 21 18 24 38 73 81 52 10 39 43 79 57 11 69",
"output": "66"
},
{
"input": "84\n75 8 66 21 61 63 72 51 52 13 59 25 28 58 64 53 79 41 34 7 67 11 39 56 44 24 50 9 49 55 1 80 26 6 73 74 27 69 65 37 18 43 36 17 30 3 47 29 76 78 32 22 12 68 46 5 42 81 57 31 33 83 54 48 14 62 10 16 4 20 71 70 35 15 45 19 60 77 2 23 84 40 82 38",
"output": "80"
},
{
"input": "85\n1 18 58 8 22 76 3 61 12 33 54 41 6 24 82 15 10 17 38 64 26 4 62 28 47 14 66 9 84 75 2 71 67 43 37 32 85 21 69 52 55 63 81 51 74 59 65 34 29 36 30 45 27 53 13 79 39 57 5 70 19 40 7 42 68 48 16 80 83 23 46 35 72 31 11 44 73 77 50 56 49 25 60 20 78",
"output": "84"
},
{
"input": "86\n64 56 41 10 31 69 47 39 37 36 27 19 9 42 15 6 78 59 52 17 71 45 72 14 2 54 38 79 4 18 16 8 46 75 50 82 44 24 20 55 58 86 61 43 35 32 33 40 63 30 28 60 13 53 12 57 77 81 76 66 73 84 85 62 68 22 51 5 49 7 1 70 80 65 34 48 23 21 83 11 74 26 29 67 25 3",
"output": "70"
},
{
"input": "87\n14 20 82 47 39 75 71 45 3 37 63 19 32 68 7 41 48 76 27 46 84 49 4 44 26 69 17 64 1 18 58 33 11 23 21 86 67 52 70 16 77 78 6 74 15 87 10 59 13 34 22 2 65 38 66 61 51 57 35 60 81 40 36 80 31 43 83 56 79 55 29 5 12 8 50 30 53 72 54 9 24 25 42 62 73 28 85",
"output": "58"
},
{
"input": "88\n1 83 73 46 61 31 39 86 57 43 16 29 26 80 82 7 36 42 13 20 6 64 19 40 24 12 47 87 8 34 75 9 69 3 11 52 14 25 84 59 27 10 54 51 81 74 65 77 70 17 60 35 23 44 49 2 4 88 5 21 41 32 68 66 15 55 48 58 78 53 22 38 45 33 30 50 85 76 37 79 63 18 28 62 72 56 71 67",
"output": "87"
},
{
"input": "89\n68 40 14 58 56 25 8 44 49 55 9 76 66 54 33 81 42 15 59 17 21 30 75 60 4 48 64 6 52 63 61 27 12 57 72 67 23 86 77 80 22 13 43 73 26 78 50 51 18 62 1 29 82 16 74 2 87 24 3 41 11 46 47 69 10 84 65 39 35 79 70 32 34 31 20 19 53 71 36 28 83 88 38 85 7 5 37 45 89",
"output": "88"
},
{
"input": "90\n2 67 26 58 9 49 76 22 60 30 77 20 13 7 37 81 47 16 19 12 14 45 41 68 85 54 28 24 46 1 27 43 32 89 53 35 59 75 18 51 17 64 66 80 31 88 87 90 38 72 55 71 42 11 73 69 62 78 23 74 65 79 84 4 86 52 10 6 3 82 56 5 48 33 21 57 40 29 61 63 34 36 83 8 15 44 50 70 39 25",
"output": "60"
},
{
"input": "91\n91 69 56 16 73 55 14 82 80 46 57 81 22 71 63 76 43 37 77 75 70 3 26 2 28 17 51 38 30 67 41 47 54 62 34 25 84 11 87 39 32 52 31 36 50 19 21 53 29 24 79 8 74 64 44 7 6 18 10 42 13 9 83 58 4 88 65 60 20 90 66 49 86 89 78 48 5 27 23 59 61 15 72 45 40 33 68 85 35 12 1",
"output": "90"
},
{
"input": "92\n67 57 76 78 25 89 6 82 11 16 26 17 59 48 73 10 21 31 27 80 4 5 22 13 92 55 45 85 63 28 75 60 54 88 91 47 29 35 7 87 1 39 43 51 71 84 83 81 46 9 38 56 90 24 37 41 19 86 50 61 79 20 18 14 69 23 62 65 49 52 58 53 36 2 68 64 15 42 30 34 66 32 44 40 8 33 3 77 74 12 70 72",
"output": "67"
},
{
"input": "93\n76 35 5 87 7 21 59 71 24 37 2 73 31 74 4 52 28 20 56 27 65 86 16 45 85 67 68 70 47 72 91 88 14 32 62 69 78 41 15 22 57 18 50 13 39 58 17 83 64 51 25 11 38 77 82 90 8 26 29 61 10 43 79 53 48 6 23 55 63 49 81 92 80 44 89 60 66 30 1 9 36 33 19 46 75 93 3 12 42 84 40 54 34",
"output": "85"
},
{
"input": "94\n29 85 82 78 61 83 80 63 11 38 50 43 9 24 4 87 79 45 3 17 90 7 34 27 1 76 26 39 84 47 22 41 81 19 44 23 56 92 35 31 72 62 70 53 40 88 13 14 73 2 59 86 46 94 15 12 77 57 89 42 75 48 18 51 32 55 71 30 49 91 20 60 5 93 33 64 21 36 10 28 8 65 66 69 74 58 6 52 25 67 16 37 54 68",
"output": "69"
},
{
"input": "95\n36 73 18 77 15 71 50 57 79 65 94 88 9 69 52 70 26 66 78 89 55 20 72 83 75 68 32 28 45 74 19 22 54 23 84 90 86 12 42 58 11 81 39 31 85 47 60 44 59 43 21 7 30 41 64 76 93 46 87 48 10 40 3 14 38 49 29 35 2 67 5 34 13 37 27 56 91 17 62 80 8 61 53 95 24 92 6 82 63 33 51 25 4 16 1",
"output": "94"
},
{
"input": "96\n64 3 47 83 19 10 72 61 73 95 16 40 54 84 8 86 28 4 37 42 92 48 63 76 67 1 59 66 20 35 93 2 43 7 45 70 34 33 26 91 85 89 13 29 58 68 44 25 87 75 49 71 41 17 55 36 32 31 74 22 52 79 30 88 50 78 38 39 65 27 69 77 81 94 82 53 21 80 57 60 24 46 51 9 18 15 96 62 6 23 11 12 90 5 14 56",
"output": "86"
},
{
"input": "97\n40 63 44 64 84 92 38 41 28 91 3 70 76 67 94 96 35 79 29 22 78 88 85 8 21 1 93 54 71 80 37 17 13 26 62 59 75 87 69 33 89 49 77 61 12 39 6 36 58 18 73 50 82 45 74 52 11 34 95 7 23 30 15 32 31 16 55 19 20 83 60 72 10 53 51 14 27 9 68 47 5 2 81 46 57 86 56 43 48 66 24 25 4 42 65 97 90",
"output": "95"
},
{
"input": "98\n85 94 69 86 22 52 27 79 53 91 35 55 33 88 8 75 76 95 64 54 67 30 70 49 6 16 2 48 80 32 25 90 98 46 9 96 36 81 10 92 28 11 37 97 15 41 38 40 83 44 29 47 23 3 31 61 87 39 78 20 68 12 17 73 59 18 77 72 43 51 84 24 89 65 26 7 74 93 21 19 5 14 50 42 82 71 60 56 34 62 58 57 45 66 13 63 4 1",
"output": "97"
},
{
"input": "99\n33 48 19 41 59 64 16 12 17 13 7 1 9 6 4 92 61 49 60 25 74 65 22 97 30 32 10 62 14 55 80 66 82 78 31 23 87 93 27 98 20 29 88 84 77 34 83 96 79 90 56 89 58 72 52 47 21 76 24 70 44 94 5 39 8 18 57 36 40 68 43 75 3 2 35 99 63 26 67 73 15 11 53 28 42 46 69 50 51 95 38 37 54 85 81 91 45 86 71",
"output": "87"
},
{
"input": "100\n28 30 77 4 81 67 31 25 66 56 88 73 83 51 57 34 21 90 38 76 22 99 53 70 91 3 64 54 6 94 8 5 97 80 50 45 61 40 16 95 36 98 9 2 17 44 72 55 18 58 47 12 87 24 7 32 14 23 65 41 63 48 62 39 92 27 43 19 46 13 42 52 96 84 26 69 100 79 93 49 35 60 71 59 68 15 10 29 20 1 78 33 75 86 11 85 74 82 89 37",
"output": "89"
},
{
"input": "100\n100 97 35 55 45 3 46 98 77 64 94 85 73 43 49 79 72 9 70 62 80 88 29 58 61 20 89 83 66 86 82 15 6 87 42 96 90 75 63 38 81 40 5 23 4 18 41 19 99 60 8 12 76 51 39 93 53 26 21 50 47 28 13 30 68 59 34 54 24 56 31 27 65 16 32 10 36 52 44 91 22 14 33 25 7 78 67 17 57 37 92 11 2 69 84 95 74 71 48 1",
"output": "99"
},
{
"input": "100\n83 96 73 70 30 25 7 77 58 89 76 85 49 82 45 51 14 62 50 9 31 32 16 15 97 64 4 37 20 93 24 10 80 71 100 39 75 72 78 74 8 29 53 86 79 48 3 68 90 99 56 87 63 94 36 1 40 65 6 44 43 84 17 52 34 95 38 47 60 57 98 59 33 41 46 81 23 27 19 2 54 91 55 35 26 12 92 18 28 66 69 21 5 67 13 11 22 88 61 42",
"output": "65"
},
{
"input": "100\n96 80 47 60 56 9 78 20 37 72 68 15 100 94 51 26 65 38 50 19 4 70 25 63 22 30 13 58 43 69 18 33 5 66 39 73 12 55 95 92 97 1 14 83 10 28 64 31 46 91 32 86 74 54 29 52 89 53 90 44 62 40 16 24 67 81 36 34 7 23 79 87 75 98 84 3 41 77 76 42 71 35 49 61 2 27 59 82 99 85 21 11 45 6 88 48 17 57 8 93",
"output": "87"
},
{
"input": "100\n5 6 88 37 97 51 25 81 54 17 57 98 99 44 67 24 30 93 100 36 8 38 84 42 21 4 75 31 85 48 70 77 43 50 65 94 29 32 68 86 56 39 69 47 20 60 52 53 10 34 79 2 95 40 89 64 71 26 22 46 1 62 91 76 83 41 9 78 16 63 13 3 28 92 27 49 7 12 96 72 80 23 14 19 18 66 59 87 90 45 73 82 33 74 35 61 55 15 58 11",
"output": "81"
},
{
"input": "100\n100 97 92 12 62 17 19 58 37 26 30 95 31 35 87 10 13 43 98 61 28 89 76 1 23 21 11 22 50 56 91 74 3 24 96 55 64 67 14 4 71 16 18 9 77 68 51 81 32 82 46 88 86 60 29 66 72 85 70 7 53 63 33 45 83 2 25 94 52 93 5 69 20 47 49 54 57 39 34 27 90 80 78 59 40 42 79 6 38 8 48 15 65 73 99 44 41 84 36 75",
"output": "99"
},
{
"input": "100\n22 47 34 65 69 5 68 78 53 54 41 23 80 51 11 8 2 85 81 75 25 58 29 73 30 49 10 71 17 96 76 89 79 20 12 15 55 7 46 32 19 3 82 35 74 44 38 40 92 14 6 50 97 63 45 93 37 18 62 77 87 36 83 9 90 61 57 28 39 43 52 42 24 56 21 84 26 99 88 59 33 70 4 60 98 95 94 100 13 48 66 72 16 31 64 91 1 86 27 67",
"output": "96"
},
{
"input": "100\n41 67 94 18 14 83 59 12 19 54 13 68 75 26 15 65 80 40 23 30 34 78 47 21 63 79 4 70 3 31 86 69 92 10 61 74 97 100 9 99 32 27 91 55 85 52 16 17 28 1 64 29 58 76 98 25 84 7 2 96 20 72 36 46 49 82 93 44 45 6 38 87 57 50 53 35 60 33 8 89 39 42 37 48 62 81 73 43 95 11 66 88 90 22 24 77 71 51 5 56",
"output": "62"
},
{
"input": "100\n1 88 38 56 62 99 39 80 12 33 57 24 28 84 37 42 10 95 83 58 8 40 20 2 30 78 60 79 36 71 51 31 27 65 22 47 6 19 61 94 75 4 74 35 15 23 92 9 70 13 11 59 90 18 66 81 64 72 16 32 34 67 46 91 21 87 77 97 82 41 7 86 26 43 45 3 93 17 52 96 50 63 48 5 53 44 29 25 98 54 49 14 73 69 89 55 76 85 68 100",
"output": "99"
},
{
"input": "100\n22 59 25 77 68 79 32 45 20 28 61 60 38 86 33 10 100 15 53 75 78 39 67 13 66 34 96 4 63 23 73 29 31 35 71 55 16 14 72 56 94 97 17 93 47 84 57 8 21 51 54 85 26 76 49 81 2 92 62 44 91 87 11 24 95 69 5 7 99 6 65 48 70 12 41 18 74 27 42 3 80 30 50 98 58 37 82 89 83 36 40 52 19 9 88 46 43 1 90 64",
"output": "97"
},
{
"input": "100\n12 1 76 78 97 82 59 80 48 8 91 51 54 74 16 10 89 99 83 63 93 90 55 25 30 33 29 6 9 65 92 79 44 39 15 58 37 46 32 19 27 3 75 49 62 71 98 42 69 50 26 81 96 5 7 61 60 21 20 36 18 34 40 4 47 85 64 38 22 84 2 68 11 56 31 66 17 14 95 43 53 35 23 52 70 13 72 45 41 77 73 87 88 94 28 86 24 67 100 57",
"output": "98"
},
{
"input": "100\n66 100 53 88 7 73 54 41 31 42 8 46 65 90 78 14 94 30 79 39 89 5 83 50 38 61 37 86 22 95 60 98 34 57 91 10 75 25 15 43 23 17 96 35 93 48 87 47 56 13 19 9 82 62 67 80 11 55 99 70 18 26 58 85 12 44 16 45 4 49 20 71 92 24 81 2 76 32 6 21 84 36 52 97 59 63 40 51 27 64 68 3 77 72 28 33 29 1 74 69",
"output": "98"
},
{
"input": "100\n56 64 1 95 72 39 9 49 87 29 94 7 32 6 30 48 50 25 31 78 90 45 60 44 80 68 17 20 73 15 75 98 83 13 71 22 36 26 96 88 35 3 85 54 16 41 92 99 69 86 93 33 43 62 77 46 47 37 12 10 18 40 27 4 63 55 28 59 23 34 61 53 76 42 51 91 21 70 8 58 38 19 5 66 84 11 52 24 81 82 79 67 97 65 57 74 2 89 100 14",
"output": "98"
},
{
"input": "3\n1 2 3",
"output": "2"
},
{
"input": "3\n1 3 2",
"output": "2"
},
{
"input": "3\n2 1 3",
"output": "2"
},
{
"input": "3\n2 3 1",
"output": "2"
},
{
"input": "3\n3 1 2",
"output": "2"
},
{
"input": "3\n3 2 1",
"output": "2"
},
{
"input": "4\n1 2 3 4",
"output": "3"
},
{
"input": "4\n1 2 4 3",
"output": "3"
},
{
"input": "4\n1 3 2 4",
"output": "3"
},
{
"input": "4\n1 3 4 2",
"output": "3"
},
{
"input": "4\n1 4 2 3",
"output": "3"
},
{
"input": "4\n1 4 3 2",
"output": "3"
},
{
"input": "4\n2 1 3 4",
"output": "3"
},
{
"input": "4\n2 1 4 3",
"output": "2"
},
{
"input": "4\n2 4 1 3",
"output": "2"
},
{
"input": "4\n2 4 3 1",
"output": "3"
},
{
"input": "4\n3 1 2 4",
"output": "3"
},
{
"input": "4\n3 1 4 2",
"output": "2"
},
{
"input": "4\n3 2 1 4",
"output": "3"
},
{
"input": "4\n3 2 4 1",
"output": "3"
},
{
"input": "4\n3 4 1 2",
"output": "2"
},
{
"input": "4\n3 4 2 1",
"output": "3"
},
{
"input": "4\n4 1 2 3",
"output": "3"
},
{
"input": "4\n4 1 3 2",
"output": "3"
},
{
"input": "4\n4 2 1 3",
"output": "3"
},
{
"input": "4\n4 2 3 1",
"output": "3"
},
{
"input": "4\n4 3 1 2",
"output": "3"
},
{
"input": "4\n4 3 2 1",
"output": "3"
},
{
"input": "8\n2 5 6 4 8 3 1 7",
"output": "6"
},
{
"input": "5\n2 3 1 5 4",
"output": "3"
},
{
"input": "6\n2 5 3 6 4 1",
"output": "5"
},
{
"input": "6\n5 4 2 6 1 3",
"output": "4"
},
{
"input": "6\n4 2 3 1 6 5",
"output": "4"
},
{
"input": "6\n5 4 2 1 6 3",
"output": "4"
},
{
"input": "9\n7 2 3 4 5 6 1 9 8",
"output": "7"
},
{
"input": "6\n3 2 1 4 6 5",
"output": "4"
},
{
"input": "6\n2 3 4 1 6 5",
"output": "4"
},
{
"input": "10\n5 2 3 4 1 6 7 8 10 9",
"output": "8"
},
{
"input": "6\n5 2 3 1 6 4",
"output": "4"
},
{
"input": "10\n2 9 3 4 1 10 5 6 7 8",
"output": "5"
},
{
"input": "10\n2 3 4 5 6 7 1 8 10 9",
"output": "8"
},
{
"input": "8\n2 3 4 5 1 6 8 7",
"output": "6"
},
{
"input": "6\n2 1 3 4 5 6",
"output": "5"
}
] | 1,676,206,737
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 159
| 46
| 0
|
def max_dist(n,a):
minpos = a.index(min(a))
maxpos = a.index(max(a))
if minpos<maxpos:
ldist=minpos
rdist = n-maxpos-1
if ldist>rdist:
dist=maxpos
else:
dist=n-minpos-1
else:
ldist=maxpos
rdist=n-minpos-1
if ldist>rdist:
dist=minpos
else:
dist=n-maxpos-1
return dist
n=int(input())
a=[int(x) for x in input().split()]
result=max_dist(n,a)
print(result)
|
Title: Nicholas and Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Nicholas has an array *a* that contains *n* distinct integers from 1 to *n*. In other words, Nicholas has a permutation of size *n*.
Nicholas want the minimum element (integer 1) and the maximum element (integer *n*) to be as far as possible from each other. He wants to perform exactly one swap in order to maximize the distance between the minimum and the maximum elements. The distance between two elements is considered to be equal to the absolute difference between their positions.
Input Specification:
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100) — the size of the permutation.
The second line of the input contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is equal to the element at the *i*-th position.
Output Specification:
Print a single integer — the maximum possible distance between the minimum and the maximum elements Nicholas can achieve by performing exactly one swap.
Demo Input:
['5\n4 5 1 3 2\n', '7\n1 6 5 3 4 7 2\n', '6\n6 5 4 3 2 1\n']
Demo Output:
['3\n', '6\n', '5\n']
Note:
In the first sample, one may obtain the optimal answer by swapping elements 1 and 2.
In the second sample, the minimum and the maximum elements will be located in the opposite ends of the array if we swap 7 and 2.
In the third sample, the distance between the minimum and the maximum elements is already maximum possible, so we just perform some unnecessary swap, for example, one can swap 5 and 2.
|
```python
def max_dist(n,a):
minpos = a.index(min(a))
maxpos = a.index(max(a))
if minpos<maxpos:
ldist=minpos
rdist = n-maxpos-1
if ldist>rdist:
dist=maxpos
else:
dist=n-minpos-1
else:
ldist=maxpos
rdist=n-minpos-1
if ldist>rdist:
dist=minpos
else:
dist=n-maxpos-1
return dist
n=int(input())
a=[int(x) for x in input().split()]
result=max_dist(n,a)
print(result)
```
| 3
|
|
894
|
A
|
QAQ
|
PROGRAMMING
| 800
|
[
"brute force",
"dp"
] | null | null |
"QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth.
Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!).
Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact.
|
The only line contains a string of length *n* (1<=≤<=*n*<=≤<=100). It's guaranteed that the string only contains uppercase English letters.
|
Print a single integer — the number of subsequences "QAQ" in the string.
|
[
"QAQAQYSYIOIWIN\n",
"QAQQQZZYNOIWIN\n"
] |
[
"4\n",
"3\n"
] |
In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
| 500
|
[
{
"input": "QAQAQYSYIOIWIN",
"output": "4"
},
{
"input": "QAQQQZZYNOIWIN",
"output": "3"
},
{
"input": "QA",
"output": "0"
},
{
"input": "IAQVAQZLQBQVQFTQQQADAQJA",
"output": "24"
},
{
"input": "QQAAQASGAYAAAAKAKAQIQEAQAIAAIAQQQQQ",
"output": "378"
},
{
"input": "AMVFNFJIAVNQJWIVONQOAOOQSNQSONOASONAONQINAONAOIQONANOIQOANOQINAONOQINAONOXJCOIAQOAOQAQAQAQAQWWWAQQAQ",
"output": "1077"
},
{
"input": "AAQQAXBQQBQQXBNQRJAQKQNAQNQVDQASAGGANQQQQTJFFQQQTQQA",
"output": "568"
},
{
"input": "KAZXAVLPJQBQVQQQQQAPAQQGQTQVZQAAAOYA",
"output": "70"
},
{
"input": "W",
"output": "0"
},
{
"input": "DBA",
"output": "0"
},
{
"input": "RQAWNACASAAKAGAAAAQ",
"output": "10"
},
{
"input": "QJAWZAAOAAGIAAAAAOQATASQAEAAAAQFQQHPA",
"output": "111"
},
{
"input": "QQKWQAQAAAAAAAAGAAVAQUEQQUMQMAQQQNQLAMAAAUAEAAEMAAA",
"output": "411"
},
{
"input": "QQUMQAYAUAAGWAAAQSDAVAAQAAAASKQJJQQQQMAWAYYAAAAAAEAJAXWQQ",
"output": "625"
},
{
"input": "QORZOYAQ",
"output": "1"
},
{
"input": "QCQAQAGAWAQQQAQAVQAQQQQAQAQQQAQAAATQAAVAAAQQQQAAAUUQAQQNQQWQQWAQAAQQKQYAQAAQQQAAQRAQQQWBQQQQAPBAQGQA",
"output": "13174"
},
{
"input": "QQAQQAKQFAQLQAAWAMQAZQAJQAAQQOACQQAAAYANAQAQQAQAAQQAOBQQJQAQAQAQQQAAAAABQQQAVNZAQQQQAMQQAFAAEAQAQHQT",
"output": "10420"
},
{
"input": "AQEGQHQQKQAQQPQKAQQQAAAAQQQAQEQAAQAAQAQFSLAAQQAQOQQAVQAAAPQQAWAQAQAFQAXAQQQQTRLOQAQQJQNQXQQQQSQVDQQQ",
"output": "12488"
},
{
"input": "QNQKQQQLASQBAVQQQQAAQQOQRJQQAQQQEQZUOANAADAAQQJAQAQARAAAQQQEQBHTQAAQAAAAQQMKQQQIAOJJQQAQAAADADQUQQQA",
"output": "9114"
},
{
"input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ",
"output": "35937"
},
{
"input": "AMQQAAQAAQAAAAAAQQQBOAAANAAKQJCYQAE",
"output": "254"
},
{
"input": "AYQBAEQGAQEOAKGIXLQJAIAKQAAAQPUAJAKAATFWQQAOQQQUFQYAQQMQHOKAAJXGFCARAQSATHAUQQAATQJJQDQRAANQQAE",
"output": "2174"
},
{
"input": "AAQXAAQAYQAAAAGAQHVQYAGIVACADFAAQAAAAQZAAQMAKZAADQAQDAAQDAAAMQQOXYAQQQAKQBAAQQKAXQBJZDDLAAHQQ",
"output": "2962"
},
{
"input": "AYQQYAVAMNIAUAAKBBQVACWKTQSAQZAAQAAASZJAWBCAALAARHACQAKQQAQAARPAQAAQAQAAZQUSHQAMFVFZQQQQSAQQXAA",
"output": "2482"
},
{
"input": "LQMAQQARQAQBJQQQAGAAZQQXALQQAARQAQQQQAAQQAQQQAQQCAQQAQQAYQQQRAAZATQALYQQAAHHAAQHAAAAAAAAQQMAAQNAKQ",
"output": "7768"
},
{
"input": "MAQQWAQOYQMAAAQAQPQZAOAAQAUAQNAAQAAAITQSAQAKAQKAQQWSQAAQQAGUCDQMQWKQUXKWQQAAQQAAQQZQDQQQAABXQUUXQOA",
"output": "5422"
},
{
"input": "QTAAQDAQXAQQJQQQGAAAQQQQSBQZKAQQAQQQQEAQNUQBZCQLYQZQEQQAAQHQVAORKQVAQYQNASZQAARZAAGAAAAOQDCQ",
"output": "3024"
},
{
"input": "QQWAQQGQQUZQQQLZAAQYQXQVAQFQUAQZUQZZQUKBHSHTQYLQAOQXAQQGAQQTQOAQARQADAJRAAQPQAQQUQAUAMAUVQAAAQQAWQ",
"output": "4527"
},
{
"input": "QQAAQQAQVAQZQQQQAOEAQZPQIBQZACQQAFQQLAAQDATZQANHKYQQAQTAAFQRQAIQAJPWQAQTEIRXAEQQAYWAAAUKQQAQAQQQSQQH",
"output": "6416"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAAAA",
"output": "14270"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQ",
"output": "13136"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA",
"output": "14270"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQQAA",
"output": "14231"
},
{
"input": "QQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA",
"output": "15296"
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ",
"output": "0"
},
{
"input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "0"
},
{
"input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ",
"output": "0"
},
{
"input": "QAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQA",
"output": "20825"
},
{
"input": "AQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQ",
"output": "20825"
},
{
"input": "Q",
"output": "0"
},
{
"input": "A",
"output": "0"
},
{
"input": "FFF",
"output": "0"
},
{
"input": "AAAAAA",
"output": "0"
}
] | 1,651,871,410
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 46
| 0
|
#If I read a Q i need to create a sequence AND
# see if I have a sequence with QA, if I have + 1 QAQ
#If I read an A I need to add it to create a new seq QA for each seq Q that exists
listOfQAQ = []
text = input()
totalQAQ = 0
for i in range(len(text)):
if(text[i] == 'Q'):
#See if I have a seq
for seq in listOfQAQ:
if(seq == 'QA'):
totalQAQ = totalQAQ + 1
#Create a new seq
listOfQAQ.append('Q')
elif(text[i] == 'A'):
for i in range(len(listOfQAQ)):
#
if(listOfQAQ[i] == 'Q'):
listOfQAQ.append('QA')
print(totalQAQ)
|
Title: QAQ
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
"QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth.
Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!).
Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact.
Input Specification:
The only line contains a string of length *n* (1<=≤<=*n*<=≤<=100). It's guaranteed that the string only contains uppercase English letters.
Output Specification:
Print a single integer — the number of subsequences "QAQ" in the string.
Demo Input:
['QAQAQYSYIOIWIN\n', 'QAQQQZZYNOIWIN\n']
Demo Output:
['4\n', '3\n']
Note:
In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
|
```python
#If I read a Q i need to create a sequence AND
# see if I have a sequence with QA, if I have + 1 QAQ
#If I read an A I need to add it to create a new seq QA for each seq Q that exists
listOfQAQ = []
text = input()
totalQAQ = 0
for i in range(len(text)):
if(text[i] == 'Q'):
#See if I have a seq
for seq in listOfQAQ:
if(seq == 'QA'):
totalQAQ = totalQAQ + 1
#Create a new seq
listOfQAQ.append('Q')
elif(text[i] == 'A'):
for i in range(len(listOfQAQ)):
#
if(listOfQAQ[i] == 'Q'):
listOfQAQ.append('QA')
print(totalQAQ)
```
| 3
|
|
1,008
|
A
|
Romaji
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] | null | null |
Vitya has just started learning Berlanese language. It is known that Berlanese uses the Latin alphabet. Vowel letters are "a", "o", "u", "i", and "e". Other letters are consonant.
In Berlanese, there has to be a vowel after every consonant, but there can be any letter after any vowel. The only exception is a consonant "n"; after this letter, there can be any letter (not only a vowel) or there can be no letter at all. For example, the words "harakiri", "yupie", "man", and "nbo" are Berlanese while the words "horse", "king", "my", and "nz" are not.
Help Vitya find out if a word $s$ is Berlanese.
|
The first line of the input contains the string $s$ consisting of $|s|$ ($1\leq |s|\leq 100$) lowercase Latin letters.
|
Print "YES" (without quotes) if there is a vowel after every consonant except "n", otherwise print "NO".
You can print each letter in any case (upper or lower).
|
[
"sumimasen\n",
"ninja\n",
"codeforces\n"
] |
[
"YES\n",
"YES\n",
"NO\n"
] |
In the first and second samples, a vowel goes after each consonant except "n", so the word is Berlanese.
In the third sample, the consonant "c" goes after the consonant "r", and the consonant "s" stands on the end, so the word is not Berlanese.
| 500
|
[
{
"input": "sumimasen",
"output": "YES"
},
{
"input": "ninja",
"output": "YES"
},
{
"input": "codeforces",
"output": "NO"
},
{
"input": "auuaoonntanonnuewannnnpuuinniwoonennyolonnnvienonpoujinndinunnenannmuveoiuuhikucuziuhunnnmunzancenen",
"output": "YES"
},
{
"input": "n",
"output": "YES"
},
{
"input": "necnei",
"output": "NO"
},
{
"input": "nternn",
"output": "NO"
},
{
"input": "aucunuohja",
"output": "NO"
},
{
"input": "a",
"output": "YES"
},
{
"input": "b",
"output": "NO"
},
{
"input": "nn",
"output": "YES"
},
{
"input": "nnnzaaa",
"output": "YES"
},
{
"input": "zn",
"output": "NO"
},
{
"input": "ab",
"output": "NO"
},
{
"input": "aaaaaaaaaa",
"output": "YES"
},
{
"input": "aaaaaaaaab",
"output": "NO"
},
{
"input": "aaaaaaaaan",
"output": "YES"
},
{
"input": "baaaaaaaaa",
"output": "YES"
},
{
"input": "naaaaaaaaa",
"output": "YES"
},
{
"input": "nbaaaaaaaa",
"output": "YES"
},
{
"input": "bbaaaaaaaa",
"output": "NO"
},
{
"input": "bnaaaaaaaa",
"output": "NO"
},
{
"input": "eonwonojannonnufimiiniewuqaienokacevecinfuqihatenhunliquuyebayiaenifuexuanenuaounnboancaeowonu",
"output": "YES"
},
{
"input": "uixinnepnlinqaingieianndeakuniooudidonnnqeaituioeneiroionxuowudiooonayenfeonuino",
"output": "NO"
},
{
"input": "nnnnnyigaveteononnnnxaalenxuiiwannntoxonyoqonlejuoxuoconnnentoinnul",
"output": "NO"
},
{
"input": "ndonneasoiunhomuunnhuitonnntunntoanerekonoupunanuauenu",
"output": "YES"
},
{
"input": "anujemogawautiedoneobninnibonuunaoennnyoorufonxionntinimiboonununnnnnleenqunminzayoutanlalo",
"output": "NO"
},
{
"input": "y",
"output": "NO"
},
{
"input": "by",
"output": "NO"
},
{
"input": "yy",
"output": "NO"
},
{
"input": "nbn",
"output": "NO"
},
{
"input": "nz",
"output": "NO"
},
{
"input": "king",
"output": "NO"
},
{
"input": "g",
"output": "NO"
},
{
"input": "az",
"output": "NO"
},
{
"input": "x",
"output": "NO"
},
{
"input": "z",
"output": "NO"
},
{
"input": "yn",
"output": "NO"
},
{
"input": "aeo",
"output": "YES"
},
{
"input": "nb",
"output": "NO"
},
{
"input": "npn",
"output": "NO"
},
{
"input": "kini",
"output": "YES"
},
{
"input": "pya",
"output": "NO"
},
{
"input": "m",
"output": "NO"
},
{
"input": "p",
"output": "NO"
},
{
"input": "aaaaaaaak",
"output": "NO"
},
{
"input": "aab",
"output": "NO"
},
{
"input": "d",
"output": "NO"
},
{
"input": "at",
"output": "NO"
},
{
"input": "aaaaaak",
"output": "NO"
},
{
"input": "aaz",
"output": "NO"
},
{
"input": "aaab",
"output": "NO"
},
{
"input": "s",
"output": "NO"
},
{
"input": "nzzen",
"output": "NO"
},
{
"input": "aeionnhhhn",
"output": "NO"
},
{
"input": "h",
"output": "NO"
},
{
"input": "ny",
"output": "NO"
}
] | 1,646,250,729
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 31
| 0
|
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "ROMAJI",
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "lj2fNC8RHJ6p",
"outputId": "fbac9999-aa69-4a37-b6e5-6f1deb8d42af"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"codeforces\n",
"NO\n"
]
}
],
"source": [
"text = input()\n",
"c = 0\n",
"d = 0\n",
"e = 0\n",
"for i in range(len(text)-1):\n",
" if text[i] not in 'naeiou' and text[i+1] not in 'naeiou':\n",
" c = 'NO'\n",
" else:\n",
" c = 'YES'\n",
" if c == 'NO':\n",
" e = e + 1\n",
" if c == 'YES':\n",
" d = 0\n",
"if e + d == 0 :\n",
" print('YES')\n",
"if e + d != 0 :\n",
" print('NO')"
]
}
]
}
|
Title: Romaji
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vitya has just started learning Berlanese language. It is known that Berlanese uses the Latin alphabet. Vowel letters are "a", "o", "u", "i", and "e". Other letters are consonant.
In Berlanese, there has to be a vowel after every consonant, but there can be any letter after any vowel. The only exception is a consonant "n"; after this letter, there can be any letter (not only a vowel) or there can be no letter at all. For example, the words "harakiri", "yupie", "man", and "nbo" are Berlanese while the words "horse", "king", "my", and "nz" are not.
Help Vitya find out if a word $s$ is Berlanese.
Input Specification:
The first line of the input contains the string $s$ consisting of $|s|$ ($1\leq |s|\leq 100$) lowercase Latin letters.
Output Specification:
Print "YES" (without quotes) if there is a vowel after every consonant except "n", otherwise print "NO".
You can print each letter in any case (upper or lower).
Demo Input:
['sumimasen\n', 'ninja\n', 'codeforces\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n']
Note:
In the first and second samples, a vowel goes after each consonant except "n", so the word is Berlanese.
In the third sample, the consonant "c" goes after the consonant "r", and the consonant "s" stands on the end, so the word is not Berlanese.
|
```python
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "ROMAJI",
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "lj2fNC8RHJ6p",
"outputId": "fbac9999-aa69-4a37-b6e5-6f1deb8d42af"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"codeforces\n",
"NO\n"
]
}
],
"source": [
"text = input()\n",
"c = 0\n",
"d = 0\n",
"e = 0\n",
"for i in range(len(text)-1):\n",
" if text[i] not in 'naeiou' and text[i+1] not in 'naeiou':\n",
" c = 'NO'\n",
" else:\n",
" c = 'YES'\n",
" if c == 'NO':\n",
" e = e + 1\n",
" if c == 'YES':\n",
" d = 0\n",
"if e + d == 0 :\n",
" print('YES')\n",
"if e + d != 0 :\n",
" print('NO')"
]
}
]
}
```
| 0
|
|
478
|
B
|
Random Teams
|
PROGRAMMING
| 1,300
|
[
"combinatorics",
"constructive algorithms",
"greedy",
"math"
] | null | null |
*n* participants of the competition were split into *m* teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.
Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.
|
The only line of input contains two integers *n* and *m*, separated by a single space (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the number of participants and the number of teams respectively.
|
The only line of the output should contain two integers *k**min* and *k**max* — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.
|
[
"5 1\n",
"3 2\n",
"6 3\n"
] |
[
"10 10\n",
"1 1\n",
"3 6\n"
] |
In the first sample all the participants get into one team, so there will be exactly ten pairs of friends.
In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.
In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people.
| 1,000
|
[
{
"input": "5 1",
"output": "10 10"
},
{
"input": "3 2",
"output": "1 1"
},
{
"input": "6 3",
"output": "3 6"
},
{
"input": "5 3",
"output": "2 3"
},
{
"input": "10 2",
"output": "20 36"
},
{
"input": "10 6",
"output": "4 10"
},
{
"input": "1000000000 1",
"output": "499999999500000000 499999999500000000"
},
{
"input": "5000000 12",
"output": "1041664166668 12499942500066"
},
{
"input": "1833 195",
"output": "7722 1342341"
},
{
"input": "1000000000 1000000000",
"output": "0 0"
},
{
"input": "1000000000 1000000",
"output": "499500000000 499000500499500000"
},
{
"input": "1000000000 32170",
"output": "15541930838100 499967831017438365"
},
{
"input": "1000000 1000",
"output": "499500000 499000999500"
},
{
"input": "1234 1123",
"output": "111 6216"
},
{
"input": "599222887 298488",
"output": "601178656545 179355218158217800"
},
{
"input": "999999999 500000000",
"output": "499999999 124999999750000000"
},
{
"input": "1000000000 384842119",
"output": "845473643 189209609585784021"
},
{
"input": "1000000000 384842119",
"output": "845473643 189209609585784021"
},
{
"input": "1000000000 2",
"output": "249999999500000000 499999998500000001"
},
{
"input": "1000000000 999999999",
"output": "1 1"
},
{
"input": "38447 383",
"output": "1910550 724453080"
},
{
"input": "100000000 99999799",
"output": "201 20301"
},
{
"input": "1 1",
"output": "0 0"
},
{
"input": "2 1",
"output": "1 1"
},
{
"input": "2 2",
"output": "0 0"
},
{
"input": "10 10",
"output": "0 0"
}
] | 1,686,337,561
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 26
| 77
| 716,800
|
# Solution here
def solve(tt):
n, m = __list(int)
mx = nc2(n-m+1)
mn = (n % m) * nc2(n//m + 1) + (m - n % m) * nc2(n//m)
print(mn, mx)
def nc2(x):
return x*(x-1)//2
def main():
t = 1
# t = __int()
for tt in range(1, t + 1):
solve(f"{tt}: -------------")
return
class IntKeyDict(dict):
from random import randrange
rand = randrange(1 << 62)
def __setitem__(self, k, v): super().__setitem__(k ^ self.rand, v)
def __getitem__(self, k): return super().__getitem__(k ^ self.rand)
def __contains__(self, k): return super().__contains__(k ^ self.rand)
def __repr__(self): return str({k: v for k, v in self.items()})
def get(self, k, default=None): return super().get(k ^ self.rand, default)
def keys(self): return [k ^ self.rand for k in super().keys()]
def items(self): return [(k ^ self.rand, v) for k, v in super().items()]
def dbg(*args):
from inspect import currentframe, getframeinfo
from re import search
debug = lambda *args, end="\n": stderr.write(
" ".join([str(x) for x in args]) + end)
frame = currentframe().f_back
s = getframeinfo(frame).code_context[0]
r = search(r"\((.*)\)", s).group(1)
var_name = r.split(", ")
stderr.write("\n")
prefix = f"{currentframe().f_back.f_lineno:02d}) "
stderr.write(prefix)
for var, val in zip(var_name, args):
debug(f"{var} = {val}")
if __name__ == "__main__":
from sys import stdin, stderr, stdout, maxsize
from math import *
from bisect import *
from collections import Counter, deque, defaultdict as dd
from heapq import nsmallest, nlargest, heapify, heappop, heappush
def input(): return stdin.buffer.readline().decode().rstrip()
def __int(): return int(input())
def __list(dtype): return list(map(dtype, input().split()))
print = lambda *args, end="\n", sep=" ": stdout.write(
sep.join(map(str, args)) + end
)
main()
|
Title: Random Teams
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
*n* participants of the competition were split into *m* teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.
Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.
Input Specification:
The only line of input contains two integers *n* and *m*, separated by a single space (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the number of participants and the number of teams respectively.
Output Specification:
The only line of the output should contain two integers *k**min* and *k**max* — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.
Demo Input:
['5 1\n', '3 2\n', '6 3\n']
Demo Output:
['10 10\n', '1 1\n', '3 6\n']
Note:
In the first sample all the participants get into one team, so there will be exactly ten pairs of friends.
In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.
In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people.
|
```python
# Solution here
def solve(tt):
n, m = __list(int)
mx = nc2(n-m+1)
mn = (n % m) * nc2(n//m + 1) + (m - n % m) * nc2(n//m)
print(mn, mx)
def nc2(x):
return x*(x-1)//2
def main():
t = 1
# t = __int()
for tt in range(1, t + 1):
solve(f"{tt}: -------------")
return
class IntKeyDict(dict):
from random import randrange
rand = randrange(1 << 62)
def __setitem__(self, k, v): super().__setitem__(k ^ self.rand, v)
def __getitem__(self, k): return super().__getitem__(k ^ self.rand)
def __contains__(self, k): return super().__contains__(k ^ self.rand)
def __repr__(self): return str({k: v for k, v in self.items()})
def get(self, k, default=None): return super().get(k ^ self.rand, default)
def keys(self): return [k ^ self.rand for k in super().keys()]
def items(self): return [(k ^ self.rand, v) for k, v in super().items()]
def dbg(*args):
from inspect import currentframe, getframeinfo
from re import search
debug = lambda *args, end="\n": stderr.write(
" ".join([str(x) for x in args]) + end)
frame = currentframe().f_back
s = getframeinfo(frame).code_context[0]
r = search(r"\((.*)\)", s).group(1)
var_name = r.split(", ")
stderr.write("\n")
prefix = f"{currentframe().f_back.f_lineno:02d}) "
stderr.write(prefix)
for var, val in zip(var_name, args):
debug(f"{var} = {val}")
if __name__ == "__main__":
from sys import stdin, stderr, stdout, maxsize
from math import *
from bisect import *
from collections import Counter, deque, defaultdict as dd
from heapq import nsmallest, nlargest, heapify, heappop, heappush
def input(): return stdin.buffer.readline().decode().rstrip()
def __int(): return int(input())
def __list(dtype): return list(map(dtype, input().split()))
print = lambda *args, end="\n", sep=" ": stdout.write(
sep.join(map(str, args)) + end
)
main()
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
You've got a string $a_1, a_2, \dots, a_n$, consisting of zeros and ones.
Let's call a sequence of consecutive elements $a_i, a_{i<=+<=1}, \ldots,<=a_j$ ($1\leq<=i\leq<=j\leq<=n$) a substring of string $a$.
You can apply the following operations any number of times:
- Choose some substring of string $a$ (for example, you can choose entire string) and reverse it, paying $x$ coins for it (for example, «0101101» $\to$ «0111001»); - Choose some substring of string $a$ (for example, you can choose entire string or just one symbol) and replace each symbol to the opposite one (zeros are replaced by ones, and ones — by zeros), paying $y$ coins for it (for example, «0101101» $\to$ «0110001»).
You can apply these operations in any order. It is allowed to apply the operations multiple times to the same substring.
What is the minimum number of coins you need to spend to get a string consisting only of ones?
|
The first line of input contains integers $n$, $x$ and $y$ ($1<=\leq<=n<=\leq<=300\,000, 0 \leq x, y \leq 10^9$) — length of the string, cost of the first operation (substring reverse) and cost of the second operation (inverting all elements of substring).
The second line contains the string $a$ of length $n$, consisting of zeros and ones.
|
Print a single integer — the minimum total cost of operations you need to spend to get a string consisting only of ones. Print $0$, if you do not need to perform any operations.
|
[
"5 1 10\n01000\n",
"5 10 1\n01000\n",
"7 2 3\n1111111\n"
] |
[
"11\n",
"2\n",
"0\n"
] |
In the first sample, at first you need to reverse substring $[1 \dots 2]$, and then you need to invert substring $[2 \dots 5]$.
Then the string was changed as follows:
«01000» $\to$ «10000» $\to$ «11111».
The total cost of operations is $1 + 10 = 11$.
In the second sample, at first you need to invert substring $[1 \dots 1]$, and then you need to invert substring $[3 \dots 5]$.
Then the string was changed as follows:
«01000» $\to$ «11000» $\to$ «11111».
The overall cost is $1 + 1 = 2$.
In the third example, string already consists only of ones, so the answer is $0$.
| 0
|
[
{
"input": "5 1 10\n01000",
"output": "11"
},
{
"input": "5 10 1\n01000",
"output": "2"
},
{
"input": "7 2 3\n1111111",
"output": "0"
},
{
"input": "1 60754033 959739508\n0",
"output": "959739508"
},
{
"input": "1 431963980 493041212\n1",
"output": "0"
},
{
"input": "1 314253869 261764879\n0",
"output": "261764879"
},
{
"input": "1 491511050 399084767\n1",
"output": "0"
},
{
"input": "2 163093925 214567542\n00",
"output": "214567542"
},
{
"input": "2 340351106 646854722\n10",
"output": "646854722"
},
{
"input": "2 222640995 489207317\n01",
"output": "489207317"
},
{
"input": "2 399898176 552898277\n11",
"output": "0"
},
{
"input": "2 690218164 577155357\n00",
"output": "577155357"
},
{
"input": "2 827538051 754412538\n10",
"output": "754412538"
},
{
"input": "2 636702427 259825230\n01",
"output": "259825230"
},
{
"input": "2 108926899 102177825\n11",
"output": "0"
},
{
"input": "3 368381052 440077270\n000",
"output": "440077270"
},
{
"input": "3 505700940 617334451\n100",
"output": "617334451"
},
{
"input": "3 499624340 643020827\n010",
"output": "1142645167"
},
{
"input": "3 75308005 971848814\n110",
"output": "971848814"
},
{
"input": "3 212627893 854138703\n001",
"output": "854138703"
},
{
"input": "3 31395883 981351561\n101",
"output": "981351561"
},
{
"input": "3 118671447 913685773\n011",
"output": "913685773"
},
{
"input": "3 255991335 385910245\n111",
"output": "0"
},
{
"input": "3 688278514 268200134\n000",
"output": "268200134"
},
{
"input": "3 825598402 445457315\n100",
"output": "445457315"
},
{
"input": "3 300751942 45676507\n010",
"output": "91353014"
},
{
"input": "3 517900980 438071829\n110",
"output": "438071829"
},
{
"input": "3 400190869 280424424\n001",
"output": "280424424"
},
{
"input": "3 577448050 344115384\n101",
"output": "344115384"
},
{
"input": "3 481435271 459737939\n011",
"output": "459737939"
},
{
"input": "3 931962412 913722450\n111",
"output": "0"
},
{
"input": "4 522194562 717060616\n0000",
"output": "717060616"
},
{
"input": "4 659514449 894317797\n1000",
"output": "894317797"
},
{
"input": "4 71574977 796834337\n0100",
"output": "868409314"
},
{
"input": "4 248832158 934154224\n1100",
"output": "934154224"
},
{
"input": "4 71474110 131122047\n0010",
"output": "202596157"
},
{
"input": "4 308379228 503761290\n1010",
"output": "812140518"
},
{
"input": "4 272484957 485636409\n0110",
"output": "758121366"
},
{
"input": "4 662893590 704772137\n1110",
"output": "704772137"
},
{
"input": "4 545183479 547124732\n0001",
"output": "547124732"
},
{
"input": "4 684444619 722440661\n1001",
"output": "722440661"
},
{
"input": "4 477963686 636258459\n0101",
"output": "1114222145"
},
{
"input": "4 360253575 773578347\n1101",
"output": "773578347"
},
{
"input": "4 832478048 910898234\n0011",
"output": "910898234"
},
{
"input": "4 343185412 714767937\n1011",
"output": "714767937"
},
{
"input": "4 480505300 892025118\n0111",
"output": "892025118"
},
{
"input": "4 322857895 774315007\n1111",
"output": "0"
},
{
"input": "4 386548854 246539479\n0000",
"output": "246539479"
},
{
"input": "4 523868742 128829368\n1000",
"output": "128829368"
},
{
"input": "4 956155921 11119257\n0100",
"output": "22238514"
},
{
"input": "4 188376438 93475808\n1100",
"output": "93475808"
},
{
"input": "4 754947032 158668188\n0010",
"output": "317336376"
},
{
"input": "4 927391856 637236921\n1010",
"output": "1274473842"
},
{
"input": "4 359679035 109461393\n0110",
"output": "218922786"
},
{
"input": "4 991751283 202031630\n1110",
"output": "202031630"
},
{
"input": "4 339351517 169008463\n0001",
"output": "169008463"
},
{
"input": "4 771638697 346265644\n1001",
"output": "346265644"
},
{
"input": "4 908958584 523522825\n0101",
"output": "1047045650"
},
{
"input": "4 677682252 405812714\n1101",
"output": "405812714"
},
{
"input": "4 815002139 288102603\n0011",
"output": "288102603"
},
{
"input": "4 952322026 760327076\n1011",
"output": "760327076"
},
{
"input": "4 663334158 312481698\n0111",
"output": "312481698"
},
{
"input": "4 840591339 154834293\n1111",
"output": "0"
},
{
"input": "14 3 11\n10110100011001",
"output": "20"
},
{
"input": "19 1 1\n1010101010101010101",
"output": "9"
},
{
"input": "1 10 1\n1",
"output": "0"
},
{
"input": "1 100 1\n1",
"output": "0"
},
{
"input": "5 1000 1\n11111",
"output": "0"
},
{
"input": "5 10 1\n11111",
"output": "0"
},
{
"input": "7 3 2\n1111111",
"output": "0"
},
{
"input": "5 1 10\n10101",
"output": "11"
},
{
"input": "1 3 2\n1",
"output": "0"
},
{
"input": "2 10 1\n11",
"output": "0"
},
{
"input": "4 148823922 302792601\n1010",
"output": "451616523"
},
{
"input": "1 2 1\n1",
"output": "0"
},
{
"input": "5 2 3\n00011",
"output": "3"
},
{
"input": "1 5 0\n1",
"output": "0"
},
{
"input": "7 2 3\n1001001",
"output": "5"
},
{
"input": "10 1 1000000000\n1111010111",
"output": "1000000001"
},
{
"input": "25 999999998 999999999\n1011001110101010100111001",
"output": "7999999985"
},
{
"input": "2 0 1\n00",
"output": "1"
},
{
"input": "2 1 100\n10",
"output": "100"
},
{
"input": "7 20 3\n1111111",
"output": "0"
},
{
"input": "1 1 0\n1",
"output": "0"
},
{
"input": "3 1 10\n010",
"output": "11"
},
{
"input": "2 1 0\n11",
"output": "0"
},
{
"input": "7 100 3\n1111111",
"output": "0"
},
{
"input": "5 1 1000\n10101",
"output": "1001"
},
{
"input": "5 2 1\n11111",
"output": "0"
},
{
"input": "1 1000 1\n1",
"output": "0"
},
{
"input": "1 799543940 488239239\n1",
"output": "0"
},
{
"input": "6 1 1000\n010101",
"output": "1002"
},
{
"input": "5 11 1\n11111",
"output": "0"
},
{
"input": "5 2 3\n10101",
"output": "5"
},
{
"input": "3 10 1\n111",
"output": "0"
},
{
"input": "7 9 10\n1001011",
"output": "19"
},
{
"input": "5 5 6\n10101",
"output": "11"
},
{
"input": "1 1000000000 0\n1",
"output": "0"
},
{
"input": "4 0 1\n0101",
"output": "1"
},
{
"input": "8 2 3\n10101010",
"output": "9"
},
{
"input": "6 3 100\n010101",
"output": "106"
},
{
"input": "3 3 2\n111",
"output": "0"
},
{
"input": "1 20 1\n1",
"output": "0"
},
{
"input": "2 1 2\n01",
"output": "2"
}
] | 1,530,459,092
| 5,192
|
Python 3
|
WRONG_ANSWER
|
PRETESTS
| 3
| 139
| 1,024,000
|
n,x,y = map(int,input().split())
s = input()
l = []
for i in range(n):
if(s[i]=='1'):
l.append(i)
if(len(l)==1):
print(min(2*y,x+y))
exit(0)
c = 0
if(len(l)==n):
print(0)
exit(0)
for i in range(len(l)-1):
if(l[i]+1!=l[i+1]):
c+=1
ans = 2*c*y
for i in range(1,c+1):
print(ans)
ans = min(ans,ans-i*y+x)
print(ans)
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a string $a_1, a_2, \dots, a_n$, consisting of zeros and ones.
Let's call a sequence of consecutive elements $a_i, a_{i<=+<=1}, \ldots,<=a_j$ ($1\leq<=i\leq<=j\leq<=n$) a substring of string $a$.
You can apply the following operations any number of times:
- Choose some substring of string $a$ (for example, you can choose entire string) and reverse it, paying $x$ coins for it (for example, «0101101» $\to$ «0111001»); - Choose some substring of string $a$ (for example, you can choose entire string or just one symbol) and replace each symbol to the opposite one (zeros are replaced by ones, and ones — by zeros), paying $y$ coins for it (for example, «0101101» $\to$ «0110001»).
You can apply these operations in any order. It is allowed to apply the operations multiple times to the same substring.
What is the minimum number of coins you need to spend to get a string consisting only of ones?
Input Specification:
The first line of input contains integers $n$, $x$ and $y$ ($1<=\leq<=n<=\leq<=300\,000, 0 \leq x, y \leq 10^9$) — length of the string, cost of the first operation (substring reverse) and cost of the second operation (inverting all elements of substring).
The second line contains the string $a$ of length $n$, consisting of zeros and ones.
Output Specification:
Print a single integer — the minimum total cost of operations you need to spend to get a string consisting only of ones. Print $0$, if you do not need to perform any operations.
Demo Input:
['5 1 10\n01000\n', '5 10 1\n01000\n', '7 2 3\n1111111\n']
Demo Output:
['11\n', '2\n', '0\n']
Note:
In the first sample, at first you need to reverse substring $[1 \dots 2]$, and then you need to invert substring $[2 \dots 5]$.
Then the string was changed as follows:
«01000» $\to$ «10000» $\to$ «11111».
The total cost of operations is $1 + 10 = 11$.
In the second sample, at first you need to invert substring $[1 \dots 1]$, and then you need to invert substring $[3 \dots 5]$.
Then the string was changed as follows:
«01000» $\to$ «11000» $\to$ «11111».
The overall cost is $1 + 1 = 2$.
In the third example, string already consists only of ones, so the answer is $0$.
|
```python
n,x,y = map(int,input().split())
s = input()
l = []
for i in range(n):
if(s[i]=='1'):
l.append(i)
if(len(l)==1):
print(min(2*y,x+y))
exit(0)
c = 0
if(len(l)==n):
print(0)
exit(0)
for i in range(len(l)-1):
if(l[i]+1!=l[i+1]):
c+=1
ans = 2*c*y
for i in range(1,c+1):
print(ans)
ans = min(ans,ans-i*y+x)
print(ans)
```
| 0
|
|
658
|
A
|
Bear and Reverse Radewoosh
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Limak and Radewoosh are going to compete against each other in the upcoming algorithmic contest. They are equally skilled but they won't solve problems in the same order.
There will be *n* problems. The *i*-th problem has initial score *p**i* and it takes exactly *t**i* minutes to solve it. Problems are sorted by difficulty — it's guaranteed that *p**i*<=<<=*p**i*<=+<=1 and *t**i*<=<<=*t**i*<=+<=1.
A constant *c* is given too, representing the speed of loosing points. Then, submitting the *i*-th problem at time *x* (*x* minutes after the start of the contest) gives *max*(0,<= *p**i*<=-<=*c*·*x*) points.
Limak is going to solve problems in order 1,<=2,<=...,<=*n* (sorted increasingly by *p**i*). Radewoosh is going to solve them in order *n*,<=*n*<=-<=1,<=...,<=1 (sorted decreasingly by *p**i*). Your task is to predict the outcome — print the name of the winner (person who gets more points at the end) or a word "Tie" in case of a tie.
You may assume that the duration of the competition is greater or equal than the sum of all *t**i*. That means both Limak and Radewoosh will accept all *n* problems.
|
The first line contains two integers *n* and *c* (1<=≤<=*n*<=≤<=50,<=1<=≤<=*c*<=≤<=1000) — the number of problems and the constant representing the speed of loosing points.
The second line contains *n* integers *p*1,<=*p*2,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=1000,<=*p**i*<=<<=*p**i*<=+<=1) — initial scores.
The third line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000,<=*t**i*<=<<=*t**i*<=+<=1) where *t**i* denotes the number of minutes one needs to solve the *i*-th problem.
|
Print "Limak" (without quotes) if Limak will get more points in total. Print "Radewoosh" (without quotes) if Radewoosh will get more points in total. Print "Tie" (without quotes) if Limak and Radewoosh will get the same total number of points.
|
[
"3 2\n50 85 250\n10 15 25\n",
"3 6\n50 85 250\n10 15 25\n",
"8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76\n"
] |
[
"Limak\n",
"Radewoosh\n",
"Tie\n"
] |
In the first sample, there are 3 problems. Limak solves them as follows:
1. Limak spends 10 minutes on the 1-st problem and he gets 50 - *c*·10 = 50 - 2·10 = 30 points. 1. Limak spends 15 minutes on the 2-nd problem so he submits it 10 + 15 = 25 minutes after the start of the contest. For the 2-nd problem he gets 85 - 2·25 = 35 points. 1. He spends 25 minutes on the 3-rd problem so he submits it 10 + 15 + 25 = 50 minutes after the start. For this problem he gets 250 - 2·50 = 150 points.
So, Limak got 30 + 35 + 150 = 215 points.
Radewoosh solves problem in the reversed order:
1. Radewoosh solves 3-rd problem after 25 minutes so he gets 250 - 2·25 = 200 points. 1. He spends 15 minutes on the 2-nd problem so he submits it 25 + 15 = 40 minutes after the start. He gets 85 - 2·40 = 5 points for this problem. 1. He spends 10 minutes on the 1-st problem so he submits it 25 + 15 + 10 = 50 minutes after the start. He gets *max*(0, 50 - 2·50) = *max*(0, - 50) = 0 points.
Radewoosh got 200 + 5 + 0 = 205 points in total. Limak has 215 points so Limak wins.
In the second sample, Limak will get 0 points for each problem and Radewoosh will first solve the hardest problem and he will get 250 - 6·25 = 100 points for that. Radewoosh will get 0 points for other two problems but he is the winner anyway.
In the third sample, Limak will get 2 points for the 1-st problem and 2 points for the 2-nd problem. Radewoosh will get 4 points for the 8-th problem. They won't get points for other problems and thus there is a tie because 2 + 2 = 4.
| 500
|
[
{
"input": "3 2\n50 85 250\n10 15 25",
"output": "Limak"
},
{
"input": "3 6\n50 85 250\n10 15 25",
"output": "Radewoosh"
},
{
"input": "8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76",
"output": "Tie"
},
{
"input": "4 1\n3 5 6 9\n1 2 4 8",
"output": "Limak"
},
{
"input": "4 1\n1 3 6 10\n1 5 7 8",
"output": "Radewoosh"
},
{
"input": "4 1\n2 4 5 10\n2 3 9 10",
"output": "Tie"
},
{
"input": "18 4\n68 97 121 132 146 277 312 395 407 431 458 461 595 634 751 855 871 994\n1 2 3 4 9 10 13 21 22 29 31 34 37 38 39 41 48 49",
"output": "Radewoosh"
},
{
"input": "50 1\n5 14 18 73 137 187 195 197 212 226 235 251 262 278 287 304 310 322 342 379 393 420 442 444 448 472 483 485 508 515 517 523 559 585 618 627 636 646 666 682 703 707 780 853 937 951 959 989 991 992\n30 84 113 173 199 220 235 261 266 277 300 306 310 312 347 356 394 396 397 409 414 424 446 462 468 487 507 517 537 566 594 643 656 660 662 668 706 708 773 774 779 805 820 827 868 896 929 942 961 995",
"output": "Tie"
},
{
"input": "4 1\n4 6 9 10\n2 3 4 5",
"output": "Radewoosh"
},
{
"input": "4 1\n4 6 9 10\n3 4 5 7",
"output": "Radewoosh"
},
{
"input": "4 1\n1 6 7 10\n2 7 8 10",
"output": "Tie"
},
{
"input": "4 1\n4 5 7 9\n1 4 5 8",
"output": "Limak"
},
{
"input": "50 1\n6 17 44 82 94 127 134 156 187 211 212 252 256 292 294 303 352 355 379 380 398 409 424 434 480 524 584 594 631 714 745 756 777 778 789 793 799 821 841 849 859 878 879 895 925 932 944 952 958 990\n15 16 40 42 45 71 99 100 117 120 174 181 186 204 221 268 289 332 376 394 403 409 411 444 471 487 499 539 541 551 567 589 619 623 639 669 689 722 735 776 794 822 830 840 847 907 917 927 936 988",
"output": "Radewoosh"
},
{
"input": "50 10\n25 49 52 73 104 117 127 136 149 164 171 184 226 251 257 258 286 324 337 341 386 390 428 453 464 470 492 517 543 565 609 634 636 660 678 693 710 714 729 736 739 749 781 836 866 875 956 960 977 979\n2 4 7 10 11 22 24 26 27 28 31 35 37 38 42 44 45 46 52 53 55 56 57 59 60 61 64 66 67 68 69 71 75 76 77 78 79 81 83 85 86 87 89 90 92 93 94 98 99 100",
"output": "Limak"
},
{
"input": "50 10\n11 15 25 71 77 83 95 108 143 150 182 183 198 203 213 223 279 280 346 348 350 355 375 376 412 413 415 432 470 545 553 562 589 595 607 633 635 637 688 719 747 767 771 799 842 883 905 924 942 944\n1 3 5 6 7 10 11 12 13 14 15 16 19 20 21 23 25 32 35 36 37 38 40 41 42 43 47 50 51 54 55 56 57 58 59 60 62 63 64 65 66 68 69 70 71 72 73 75 78 80",
"output": "Radewoosh"
},
{
"input": "32 6\n25 77 141 148 157 159 192 196 198 244 245 255 332 392 414 457 466 524 575 603 629 700 738 782 838 841 845 847 870 945 984 985\n1 2 4 5 8 9 10 12 13 14 15 16 17 18 20 21 22 23 24 26 28 31 38 39 40 41 42 43 45 47 48 49",
"output": "Radewoosh"
},
{
"input": "5 1\n256 275 469 671 842\n7 9 14 17 26",
"output": "Limak"
},
{
"input": "2 1000\n1 2\n1 2",
"output": "Tie"
},
{
"input": "3 1\n1 50 809\n2 8 800",
"output": "Limak"
},
{
"input": "1 13\n866\n10",
"output": "Tie"
},
{
"input": "15 1\n9 11 66 128 199 323 376 386 393 555 585 718 935 960 971\n3 11 14 19 20 21 24 26 32 38 40 42 44 47 50",
"output": "Limak"
},
{
"input": "1 10\n546\n45",
"output": "Tie"
},
{
"input": "50 20\n21 43 51 99 117 119 158 167 175 190 196 244 250 316 335 375 391 403 423 428 451 457 460 480 487 522 539 559 566 584 598 602 604 616 626 666 675 730 771 787 828 841 861 867 886 889 898 970 986 991\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50",
"output": "Limak"
},
{
"input": "50 21\n13 20 22 38 62 84 118 135 141 152 170 175 194 218 227 229 232 253 260 263 278 313 329 357 396 402 422 452 454 533 575 576 580 594 624 644 653 671 676 759 789 811 816 823 831 833 856 924 933 987\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50",
"output": "Tie"
},
{
"input": "1 36\n312\n42",
"output": "Tie"
},
{
"input": "1 1000\n1\n1000",
"output": "Tie"
},
{
"input": "1 1\n1000\n1",
"output": "Tie"
},
{
"input": "50 35\n9 17 28 107 136 152 169 174 186 188 201 262 291 312 324 330 341 358 385 386 393 397 425 431 479 498 502 523 530 540 542 554 578 588 622 623 684 696 709 722 784 819 836 845 850 932 945 969 983 984\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50",
"output": "Tie"
},
{
"input": "50 20\n12 113 116 120 138 156 167 183 185 194 211 228 234 261 278 287 310 317 346 361 364 397 424 470 496 522 527 536 611 648 668 704 707 712 717 752 761 766 815 828 832 864 872 885 889 901 904 929 982 993\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50",
"output": "Limak"
}
] | 1,586,449,465
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 109
| 307,200
|
n,c=map(int,input().split())
p=list(map(int,input().split()))
t=list(map(int,input().split()))
points_limak=0
points_rade=0
time=0
for i in range(n):
time+=t[i]
points_limak+=max(0,p[i] - c * time)
time=0
for i in range(n-1,-1,-1):
time+=t[i]
points_rade+=max(0,p[i] - c * time)
if points_limak>points_rade:
print('Limak')
elif points_limak<points_rade:
print('Radewoosh')
else:
print('Tie')
|
Title: Bear and Reverse Radewoosh
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Limak and Radewoosh are going to compete against each other in the upcoming algorithmic contest. They are equally skilled but they won't solve problems in the same order.
There will be *n* problems. The *i*-th problem has initial score *p**i* and it takes exactly *t**i* minutes to solve it. Problems are sorted by difficulty — it's guaranteed that *p**i*<=<<=*p**i*<=+<=1 and *t**i*<=<<=*t**i*<=+<=1.
A constant *c* is given too, representing the speed of loosing points. Then, submitting the *i*-th problem at time *x* (*x* minutes after the start of the contest) gives *max*(0,<= *p**i*<=-<=*c*·*x*) points.
Limak is going to solve problems in order 1,<=2,<=...,<=*n* (sorted increasingly by *p**i*). Radewoosh is going to solve them in order *n*,<=*n*<=-<=1,<=...,<=1 (sorted decreasingly by *p**i*). Your task is to predict the outcome — print the name of the winner (person who gets more points at the end) or a word "Tie" in case of a tie.
You may assume that the duration of the competition is greater or equal than the sum of all *t**i*. That means both Limak and Radewoosh will accept all *n* problems.
Input Specification:
The first line contains two integers *n* and *c* (1<=≤<=*n*<=≤<=50,<=1<=≤<=*c*<=≤<=1000) — the number of problems and the constant representing the speed of loosing points.
The second line contains *n* integers *p*1,<=*p*2,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=1000,<=*p**i*<=<<=*p**i*<=+<=1) — initial scores.
The third line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000,<=*t**i*<=<<=*t**i*<=+<=1) where *t**i* denotes the number of minutes one needs to solve the *i*-th problem.
Output Specification:
Print "Limak" (without quotes) if Limak will get more points in total. Print "Radewoosh" (without quotes) if Radewoosh will get more points in total. Print "Tie" (without quotes) if Limak and Radewoosh will get the same total number of points.
Demo Input:
['3 2\n50 85 250\n10 15 25\n', '3 6\n50 85 250\n10 15 25\n', '8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76\n']
Demo Output:
['Limak\n', 'Radewoosh\n', 'Tie\n']
Note:
In the first sample, there are 3 problems. Limak solves them as follows:
1. Limak spends 10 minutes on the 1-st problem and he gets 50 - *c*·10 = 50 - 2·10 = 30 points. 1. Limak spends 15 minutes on the 2-nd problem so he submits it 10 + 15 = 25 minutes after the start of the contest. For the 2-nd problem he gets 85 - 2·25 = 35 points. 1. He spends 25 minutes on the 3-rd problem so he submits it 10 + 15 + 25 = 50 minutes after the start. For this problem he gets 250 - 2·50 = 150 points.
So, Limak got 30 + 35 + 150 = 215 points.
Radewoosh solves problem in the reversed order:
1. Radewoosh solves 3-rd problem after 25 minutes so he gets 250 - 2·25 = 200 points. 1. He spends 15 minutes on the 2-nd problem so he submits it 25 + 15 = 40 minutes after the start. He gets 85 - 2·40 = 5 points for this problem. 1. He spends 10 minutes on the 1-st problem so he submits it 25 + 15 + 10 = 50 minutes after the start. He gets *max*(0, 50 - 2·50) = *max*(0, - 50) = 0 points.
Radewoosh got 200 + 5 + 0 = 205 points in total. Limak has 215 points so Limak wins.
In the second sample, Limak will get 0 points for each problem and Radewoosh will first solve the hardest problem and he will get 250 - 6·25 = 100 points for that. Radewoosh will get 0 points for other two problems but he is the winner anyway.
In the third sample, Limak will get 2 points for the 1-st problem and 2 points for the 2-nd problem. Radewoosh will get 4 points for the 8-th problem. They won't get points for other problems and thus there is a tie because 2 + 2 = 4.
|
```python
n,c=map(int,input().split())
p=list(map(int,input().split()))
t=list(map(int,input().split()))
points_limak=0
points_rade=0
time=0
for i in range(n):
time+=t[i]
points_limak+=max(0,p[i] - c * time)
time=0
for i in range(n-1,-1,-1):
time+=t[i]
points_rade+=max(0,p[i] - c * time)
if points_limak>points_rade:
print('Limak')
elif points_limak<points_rade:
print('Radewoosh')
else:
print('Tie')
```
| 3
|
|
716
|
A
|
Crazy Computer
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
ZS the Coder is coding on a crazy computer. If you don't type in a word for a *c* consecutive seconds, everything you typed disappear!
More formally, if you typed a word at second *a* and then the next word at second *b*, then if *b*<=-<=*a*<=≤<=*c*, just the new word is appended to other words on the screen. If *b*<=-<=*a*<=><=*c*, then everything on the screen disappears and after that the word you have typed appears on the screen.
For example, if *c*<==<=5 and you typed words at seconds 1,<=3,<=8,<=14,<=19,<=20 then at the second 8 there will be 3 words on the screen. After that, everything disappears at the second 13 because nothing was typed. At the seconds 14 and 19 another two words are typed, and finally, at the second 20, one more word is typed, and a total of 3 words remain on the screen.
You're given the times when ZS the Coder typed the words. Determine how many words remain on the screen after he finished typing everything.
|
The first line contains two integers *n* and *c* (1<=≤<=*n*<=≤<=100<=000,<=1<=≤<=*c*<=≤<=109) — the number of words ZS the Coder typed and the crazy computer delay respectively.
The next line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=<<=*t*2<=<<=...<=<<=*t**n*<=≤<=109), where *t**i* denotes the second when ZS the Coder typed the *i*-th word.
|
Print a single positive integer, the number of words that remain on the screen after all *n* words was typed, in other words, at the second *t**n*.
|
[
"6 5\n1 3 8 14 19 20\n",
"6 1\n1 3 5 7 9 10\n"
] |
[
"3",
"2"
] |
The first sample is already explained in the problem statement.
For the second sample, after typing the first word at the second 1, it disappears because the next word is typed at the second 3 and 3 - 1 > 1. Similarly, only 1 word will remain at the second 9. Then, a word is typed at the second 10, so there will be two words on the screen, as the old word won't disappear because 10 - 9 ≤ 1.
| 500
|
[
{
"input": "6 5\n1 3 8 14 19 20",
"output": "3"
},
{
"input": "6 1\n1 3 5 7 9 10",
"output": "2"
},
{
"input": "1 1\n1000000000",
"output": "1"
},
{
"input": "5 5\n1 7 12 13 14",
"output": "4"
},
{
"input": "2 1000000000\n1 1000000000",
"output": "2"
},
{
"input": "3 5\n1 10 20",
"output": "1"
},
{
"input": "3 10\n1 2 3",
"output": "3"
},
{
"input": "2 1\n1 100",
"output": "1"
},
{
"input": "3 1\n1 2 10",
"output": "1"
},
{
"input": "2 1\n1 2",
"output": "2"
}
] | 1,632,073,167
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 155
| 15,155,200
|
temp = input().split(" ")
n = int(temp[0])
c = int(temp[1])
x=0
temp2 = input().split(" ")
sec = []
for i in range(0,n):
sec.append(int(temp2[i]))
for i in range (1,n) :
diff = sec[i] - sec[i-1]
if(diff <= c):
x=x+1
else :
x=0
x=x+1
print(x,"\n")
|
Title: Crazy Computer
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
ZS the Coder is coding on a crazy computer. If you don't type in a word for a *c* consecutive seconds, everything you typed disappear!
More formally, if you typed a word at second *a* and then the next word at second *b*, then if *b*<=-<=*a*<=≤<=*c*, just the new word is appended to other words on the screen. If *b*<=-<=*a*<=><=*c*, then everything on the screen disappears and after that the word you have typed appears on the screen.
For example, if *c*<==<=5 and you typed words at seconds 1,<=3,<=8,<=14,<=19,<=20 then at the second 8 there will be 3 words on the screen. After that, everything disappears at the second 13 because nothing was typed. At the seconds 14 and 19 another two words are typed, and finally, at the second 20, one more word is typed, and a total of 3 words remain on the screen.
You're given the times when ZS the Coder typed the words. Determine how many words remain on the screen after he finished typing everything.
Input Specification:
The first line contains two integers *n* and *c* (1<=≤<=*n*<=≤<=100<=000,<=1<=≤<=*c*<=≤<=109) — the number of words ZS the Coder typed and the crazy computer delay respectively.
The next line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=<<=*t*2<=<<=...<=<<=*t**n*<=≤<=109), where *t**i* denotes the second when ZS the Coder typed the *i*-th word.
Output Specification:
Print a single positive integer, the number of words that remain on the screen after all *n* words was typed, in other words, at the second *t**n*.
Demo Input:
['6 5\n1 3 8 14 19 20\n', '6 1\n1 3 5 7 9 10\n']
Demo Output:
['3', '2']
Note:
The first sample is already explained in the problem statement.
For the second sample, after typing the first word at the second 1, it disappears because the next word is typed at the second 3 and 3 - 1 > 1. Similarly, only 1 word will remain at the second 9. Then, a word is typed at the second 10, so there will be two words on the screen, as the old word won't disappear because 10 - 9 ≤ 1.
|
```python
temp = input().split(" ")
n = int(temp[0])
c = int(temp[1])
x=0
temp2 = input().split(" ")
sec = []
for i in range(0,n):
sec.append(int(temp2[i]))
for i in range (1,n) :
diff = sec[i] - sec[i-1]
if(diff <= c):
x=x+1
else :
x=0
x=x+1
print(x,"\n")
```
| 3
|
|
363
|
A
|
Soroban
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You know that Japan is the country with almost the largest 'electronic devices per person' ratio. So you might be quite surprised to find out that the primary school in Japan teaches to count using a Soroban — an abacus developed in Japan. This phenomenon has its reasons, of course, but we are not going to speak about them. Let's have a look at the Soroban's construction.
Soroban consists of some number of rods, each rod contains five beads. We will assume that the rods are horizontal lines. One bead on each rod (the leftmost one) is divided from the others by a bar (the reckoning bar). This single bead is called go-dama and four others are ichi-damas. Each rod is responsible for representing a single digit from 0 to 9. We can obtain the value of a digit by following simple algorithm:
- Set the value of a digit equal to 0. - If the go-dama is shifted to the right, add 5. - Add the number of ichi-damas shifted to the left.
Thus, the upper rod on the picture shows digit 0, the middle one shows digit 2 and the lower one shows 7. We will consider the top rod to represent the last decimal digit of a number, so the picture shows number 720.
Write the program that prints the way Soroban shows the given number *n*.
|
The first line contains a single integer *n* (0<=≤<=*n*<=<<=109).
|
Print the description of the decimal digits of number *n* from the last one to the first one (as mentioned on the picture in the statement), one per line. Print the beads as large English letters 'O', rod pieces as character '-' and the reckoning bar as '|'. Print as many rods, as many digits are in the decimal representation of number *n* without leading zeroes. We can assume that number 0 has no leading zeroes.
|
[
"2\n",
"13\n",
"720\n"
] |
[
"O-|OO-OO\n",
"O-|OOO-O\nO-|O-OOO\n",
"O-|-OOOO\nO-|OO-OO\n-O|OO-OO\n"
] |
none
| 500
|
[
{
"input": "2",
"output": "O-|OO-OO"
},
{
"input": "13",
"output": "O-|OOO-O\nO-|O-OOO"
},
{
"input": "720",
"output": "O-|-OOOO\nO-|OO-OO\n-O|OO-OO"
},
{
"input": "0",
"output": "O-|-OOOO"
},
{
"input": "1",
"output": "O-|O-OOO"
},
{
"input": "3",
"output": "O-|OOO-O"
},
{
"input": "4",
"output": "O-|OOOO-"
},
{
"input": "5",
"output": "-O|-OOOO"
},
{
"input": "6",
"output": "-O|O-OOO"
},
{
"input": "637",
"output": "-O|OO-OO\nO-|OOO-O\n-O|O-OOO"
},
{
"input": "7",
"output": "-O|OO-OO"
},
{
"input": "8",
"output": "-O|OOO-O"
},
{
"input": "9",
"output": "-O|OOOO-"
},
{
"input": "10",
"output": "O-|-OOOO\nO-|O-OOO"
},
{
"input": "11",
"output": "O-|O-OOO\nO-|O-OOO"
},
{
"input": "100",
"output": "O-|-OOOO\nO-|-OOOO\nO-|O-OOO"
},
{
"input": "99",
"output": "-O|OOOO-\n-O|OOOO-"
},
{
"input": "245",
"output": "-O|-OOOO\nO-|OOOO-\nO-|OO-OO"
},
{
"input": "118",
"output": "-O|OOO-O\nO-|O-OOO\nO-|O-OOO"
},
{
"input": "429",
"output": "-O|OOOO-\nO-|OO-OO\nO-|OOOO-"
},
{
"input": "555",
"output": "-O|-OOOO\n-O|-OOOO\n-O|-OOOO"
},
{
"input": "660",
"output": "O-|-OOOO\n-O|O-OOO\n-O|O-OOO"
},
{
"input": "331",
"output": "O-|O-OOO\nO-|OOO-O\nO-|OOO-O"
},
{
"input": "987",
"output": "-O|OO-OO\n-O|OOO-O\n-O|OOOO-"
},
{
"input": "123456789",
"output": "-O|OOOO-\n-O|OOO-O\n-O|OO-OO\n-O|O-OOO\n-O|-OOOO\nO-|OOOO-\nO-|OOO-O\nO-|OO-OO\nO-|O-OOO"
},
{
"input": "234567890",
"output": "O-|-OOOO\n-O|OOOO-\n-O|OOO-O\n-O|OO-OO\n-O|O-OOO\n-O|-OOOO\nO-|OOOO-\nO-|OOO-O\nO-|OO-OO"
},
{
"input": "100000000",
"output": "O-|-OOOO\nO-|-OOOO\nO-|-OOOO\nO-|-OOOO\nO-|-OOOO\nO-|-OOOO\nO-|-OOOO\nO-|-OOOO\nO-|O-OOO"
},
{
"input": "111111111",
"output": "O-|O-OOO\nO-|O-OOO\nO-|O-OOO\nO-|O-OOO\nO-|O-OOO\nO-|O-OOO\nO-|O-OOO\nO-|O-OOO\nO-|O-OOO"
},
{
"input": "90909090",
"output": "O-|-OOOO\n-O|OOOO-\nO-|-OOOO\n-O|OOOO-\nO-|-OOOO\n-O|OOOO-\nO-|-OOOO\n-O|OOOO-"
},
{
"input": "987654321",
"output": "O-|O-OOO\nO-|OO-OO\nO-|OOO-O\nO-|OOOO-\n-O|-OOOO\n-O|O-OOO\n-O|OO-OO\n-O|OOO-O\n-O|OOOO-"
},
{
"input": "45165125",
"output": "-O|-OOOO\nO-|OO-OO\nO-|O-OOO\n-O|-OOOO\n-O|O-OOO\nO-|O-OOO\n-O|-OOOO\nO-|OOOO-"
},
{
"input": "445511006",
"output": "-O|O-OOO\nO-|-OOOO\nO-|-OOOO\nO-|O-OOO\nO-|O-OOO\n-O|-OOOO\n-O|-OOOO\nO-|OOOO-\nO-|OOOO-"
},
{
"input": "999999999",
"output": "-O|OOOO-\n-O|OOOO-\n-O|OOOO-\n-O|OOOO-\n-O|OOOO-\n-O|OOOO-\n-O|OOOO-\n-O|OOOO-\n-O|OOOO-"
},
{
"input": "984218523",
"output": "O-|OOO-O\nO-|OO-OO\n-O|-OOOO\n-O|OOO-O\nO-|O-OOO\nO-|OO-OO\nO-|OOOO-\n-O|OOO-O\n-O|OOOO-"
},
{
"input": "19",
"output": "-O|OOOO-\nO-|O-OOO"
},
{
"input": "10000000",
"output": "O-|-OOOO\nO-|-OOOO\nO-|-OOOO\nO-|-OOOO\nO-|-OOOO\nO-|-OOOO\nO-|-OOOO\nO-|O-OOO"
}
] | 1,678,370,285
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 46
| 0
|
n = input()
l = ["O-|-OOOO" , "O-|O-OOO" ,"O-|OO-OO" ,"O-|OOO-O","O-|OOOO-", "-O|-OOOO","-O|O-OOO","-O|OO-OO","-O|OOO-O","-O|OOOO-" ]
for i in n[::-1] :
print(l[int(i)])
|
Title: Soroban
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You know that Japan is the country with almost the largest 'electronic devices per person' ratio. So you might be quite surprised to find out that the primary school in Japan teaches to count using a Soroban — an abacus developed in Japan. This phenomenon has its reasons, of course, but we are not going to speak about them. Let's have a look at the Soroban's construction.
Soroban consists of some number of rods, each rod contains five beads. We will assume that the rods are horizontal lines. One bead on each rod (the leftmost one) is divided from the others by a bar (the reckoning bar). This single bead is called go-dama and four others are ichi-damas. Each rod is responsible for representing a single digit from 0 to 9. We can obtain the value of a digit by following simple algorithm:
- Set the value of a digit equal to 0. - If the go-dama is shifted to the right, add 5. - Add the number of ichi-damas shifted to the left.
Thus, the upper rod on the picture shows digit 0, the middle one shows digit 2 and the lower one shows 7. We will consider the top rod to represent the last decimal digit of a number, so the picture shows number 720.
Write the program that prints the way Soroban shows the given number *n*.
Input Specification:
The first line contains a single integer *n* (0<=≤<=*n*<=<<=109).
Output Specification:
Print the description of the decimal digits of number *n* from the last one to the first one (as mentioned on the picture in the statement), one per line. Print the beads as large English letters 'O', rod pieces as character '-' and the reckoning bar as '|'. Print as many rods, as many digits are in the decimal representation of number *n* without leading zeroes. We can assume that number 0 has no leading zeroes.
Demo Input:
['2\n', '13\n', '720\n']
Demo Output:
['O-|OO-OO\n', 'O-|OOO-O\nO-|O-OOO\n', 'O-|-OOOO\nO-|OO-OO\n-O|OO-OO\n']
Note:
none
|
```python
n = input()
l = ["O-|-OOOO" , "O-|O-OOO" ,"O-|OO-OO" ,"O-|OOO-O","O-|OOOO-", "-O|-OOOO","-O|O-OOO","-O|OO-OO","-O|OOO-O","-O|OOOO-" ]
for i in n[::-1] :
print(l[int(i)])
```
| 3
|
|
732
|
A
|
Buy a Shovel
|
PROGRAMMING
| 800
|
[
"brute force",
"constructive algorithms",
"implementation",
"math"
] | null | null |
Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for *k* burles. Assume that there is an unlimited number of such shovels in the shop.
In his pocket Polycarp has an unlimited number of "10-burle coins" and exactly one coin of *r* burles (1<=≤<=*r*<=≤<=9).
What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of *r* burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel.
|
The single line of input contains two integers *k* and *r* (1<=≤<=*k*<=≤<=1000, 1<=≤<=*r*<=≤<=9) — the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from "10-burle coins".
Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels.
|
Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change.
|
[
"117 3\n",
"237 7\n",
"15 2\n"
] |
[
"9\n",
"1\n",
"2\n"
] |
In the first example Polycarp can buy 9 shovels and pay 9·117 = 1053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change.
In the second example it is enough for Polycarp to buy one shovel.
In the third example Polycarp should buy two shovels and pay 2·15 = 30 burles. It is obvious that he can pay this sum without any change.
| 500
|
[
{
"input": "117 3",
"output": "9"
},
{
"input": "237 7",
"output": "1"
},
{
"input": "15 2",
"output": "2"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1 9",
"output": "9"
},
{
"input": "1000 3",
"output": "1"
},
{
"input": "1000 1",
"output": "1"
},
{
"input": "1000 9",
"output": "1"
},
{
"input": "1 2",
"output": "2"
},
{
"input": "999 9",
"output": "1"
},
{
"input": "999 8",
"output": "2"
},
{
"input": "105 6",
"output": "2"
},
{
"input": "403 9",
"output": "3"
},
{
"input": "546 4",
"output": "4"
},
{
"input": "228 9",
"output": "5"
},
{
"input": "57 2",
"output": "6"
},
{
"input": "437 9",
"output": "7"
},
{
"input": "997 6",
"output": "8"
},
{
"input": "109 1",
"output": "9"
},
{
"input": "998 9",
"output": "5"
},
{
"input": "4 2",
"output": "3"
},
{
"input": "9 3",
"output": "7"
},
{
"input": "8 2",
"output": "4"
},
{
"input": "1 3",
"output": "3"
},
{
"input": "1 4",
"output": "4"
},
{
"input": "1 5",
"output": "5"
},
{
"input": "1 6",
"output": "6"
},
{
"input": "1 7",
"output": "7"
},
{
"input": "1 8",
"output": "8"
},
{
"input": "100 3",
"output": "1"
},
{
"input": "1000 2",
"output": "1"
},
{
"input": "1000 4",
"output": "1"
},
{
"input": "1000 5",
"output": "1"
},
{
"input": "1000 6",
"output": "1"
},
{
"input": "1000 7",
"output": "1"
},
{
"input": "1000 8",
"output": "1"
},
{
"input": "23 4",
"output": "8"
},
{
"input": "33 1",
"output": "7"
},
{
"input": "33 2",
"output": "4"
},
{
"input": "666 5",
"output": "5"
},
{
"input": "2 3",
"output": "5"
},
{
"input": "5 5",
"output": "1"
},
{
"input": "3 6",
"output": "2"
},
{
"input": "12 4",
"output": "2"
},
{
"input": "15 5",
"output": "1"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "25 5",
"output": "1"
},
{
"input": "2 9",
"output": "5"
},
{
"input": "6 7",
"output": "5"
},
{
"input": "8 9",
"output": "5"
},
{
"input": "2 7",
"output": "5"
},
{
"input": "4 7",
"output": "5"
},
{
"input": "2 1",
"output": "5"
},
{
"input": "261 1",
"output": "1"
}
] | 1,692,940,198
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 54
| 62
| 0
|
k, r = map(int, input().split())
for ans in range(1, 11):
if (k * ans - r) % 10 == 0 or (k * ans) % 10 == 0:
print(ans)
break
|
Title: Buy a Shovel
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for *k* burles. Assume that there is an unlimited number of such shovels in the shop.
In his pocket Polycarp has an unlimited number of "10-burle coins" and exactly one coin of *r* burles (1<=≤<=*r*<=≤<=9).
What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of *r* burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel.
Input Specification:
The single line of input contains two integers *k* and *r* (1<=≤<=*k*<=≤<=1000, 1<=≤<=*r*<=≤<=9) — the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from "10-burle coins".
Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels.
Output Specification:
Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change.
Demo Input:
['117 3\n', '237 7\n', '15 2\n']
Demo Output:
['9\n', '1\n', '2\n']
Note:
In the first example Polycarp can buy 9 shovels and pay 9·117 = 1053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change.
In the second example it is enough for Polycarp to buy one shovel.
In the third example Polycarp should buy two shovels and pay 2·15 = 30 burles. It is obvious that he can pay this sum without any change.
|
```python
k, r = map(int, input().split())
for ans in range(1, 11):
if (k * ans - r) % 10 == 0 or (k * ans) % 10 == 0:
print(ans)
break
```
| 3
|
|
136
|
A
|
Presents
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there.
If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift.
Now Petya wants to know for each friend *i* the number of a friend who has given him a gift.
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves.
|
Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*.
|
[
"4\n2 3 4 1\n",
"3\n1 3 2\n",
"2\n1 2\n"
] |
[
"4 1 2 3\n",
"1 3 2\n",
"1 2\n"
] |
none
| 500
|
[
{
"input": "4\n2 3 4 1",
"output": "4 1 2 3"
},
{
"input": "3\n1 3 2",
"output": "1 3 2"
},
{
"input": "2\n1 2",
"output": "1 2"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "10\n1 3 2 6 4 5 7 9 8 10",
"output": "1 3 2 5 6 4 7 9 8 10"
},
{
"input": "5\n5 4 3 2 1",
"output": "5 4 3 2 1"
},
{
"input": "20\n2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19"
},
{
"input": "21\n3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19",
"output": "3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19"
},
{
"input": "10\n3 4 5 6 7 8 9 10 1 2",
"output": "9 10 1 2 3 4 5 6 7 8"
},
{
"input": "8\n1 5 3 7 2 6 4 8",
"output": "1 5 3 7 2 6 4 8"
},
{
"input": "50\n49 22 4 2 20 46 7 32 5 19 48 24 26 15 45 21 44 11 50 43 39 17 31 1 42 34 3 27 36 25 12 30 13 33 28 35 18 6 8 37 38 14 10 9 29 16 40 23 41 47",
"output": "24 4 27 3 9 38 7 39 44 43 18 31 33 42 14 46 22 37 10 5 16 2 48 12 30 13 28 35 45 32 23 8 34 26 36 29 40 41 21 47 49 25 20 17 15 6 50 11 1 19"
},
{
"input": "34\n13 20 33 30 15 11 27 4 8 2 29 25 24 7 3 22 18 10 26 16 5 1 32 9 34 6 12 14 28 19 31 21 23 17",
"output": "22 10 15 8 21 26 14 9 24 18 6 27 1 28 5 20 34 17 30 2 32 16 33 13 12 19 7 29 11 4 31 23 3 25"
},
{
"input": "92\n23 1 6 4 84 54 44 76 63 34 61 20 48 13 28 78 26 46 90 72 24 55 91 89 53 38 82 5 79 92 29 32 15 64 11 88 60 70 7 66 18 59 8 57 19 16 42 21 80 71 62 27 75 86 36 9 83 73 74 50 43 31 56 30 17 33 40 81 49 12 10 41 22 77 25 68 51 2 47 3 58 69 87 67 39 37 35 65 14 45 52 85",
"output": "2 78 80 4 28 3 39 43 56 71 35 70 14 89 33 46 65 41 45 12 48 73 1 21 75 17 52 15 31 64 62 32 66 10 87 55 86 26 85 67 72 47 61 7 90 18 79 13 69 60 77 91 25 6 22 63 44 81 42 37 11 51 9 34 88 40 84 76 82 38 50 20 58 59 53 8 74 16 29 49 68 27 57 5 92 54 83 36 24 19 23 30"
},
{
"input": "49\n30 24 33 48 7 3 17 2 8 35 10 39 23 40 46 32 18 21 26 22 1 16 47 45 41 28 31 6 12 43 27 11 13 37 19 15 44 5 29 42 4 38 20 34 14 9 25 36 49",
"output": "21 8 6 41 38 28 5 9 46 11 32 29 33 45 36 22 7 17 35 43 18 20 13 2 47 19 31 26 39 1 27 16 3 44 10 48 34 42 12 14 25 40 30 37 24 15 23 4 49"
},
{
"input": "12\n3 8 7 4 6 5 2 1 11 9 10 12",
"output": "8 7 1 4 6 5 3 2 10 11 9 12"
},
{
"input": "78\n16 56 36 78 21 14 9 77 26 57 70 61 41 47 18 44 5 31 50 74 65 52 6 39 22 62 67 69 43 7 64 29 24 40 48 51 73 54 72 12 19 34 4 25 55 33 17 35 23 53 10 8 27 32 42 68 20 63 3 2 1 71 58 46 13 30 49 11 37 66 38 60 28 75 15 59 45 76",
"output": "61 60 59 43 17 23 30 52 7 51 68 40 65 6 75 1 47 15 41 57 5 25 49 33 44 9 53 73 32 66 18 54 46 42 48 3 69 71 24 34 13 55 29 16 77 64 14 35 67 19 36 22 50 38 45 2 10 63 76 72 12 26 58 31 21 70 27 56 28 11 62 39 37 20 74 78 8 4"
},
{
"input": "64\n64 57 40 3 15 8 62 18 33 59 51 19 22 13 4 37 47 45 50 35 63 11 58 42 46 21 7 2 41 48 32 23 28 38 17 12 24 27 49 31 60 6 30 25 61 52 26 54 9 14 29 20 44 39 55 10 34 16 5 56 1 36 53 43",
"output": "61 28 4 15 59 42 27 6 49 56 22 36 14 50 5 58 35 8 12 52 26 13 32 37 44 47 38 33 51 43 40 31 9 57 20 62 16 34 54 3 29 24 64 53 18 25 17 30 39 19 11 46 63 48 55 60 2 23 10 41 45 7 21 1"
},
{
"input": "49\n38 20 49 32 14 41 39 45 25 48 40 19 26 43 34 12 10 3 35 42 5 7 46 47 4 2 13 22 16 24 33 15 11 18 29 31 23 9 44 36 6 17 37 1 30 28 8 21 27",
"output": "44 26 18 25 21 41 22 47 38 17 33 16 27 5 32 29 42 34 12 2 48 28 37 30 9 13 49 46 35 45 36 4 31 15 19 40 43 1 7 11 6 20 14 39 8 23 24 10 3"
},
{
"input": "78\n17 50 30 48 33 12 42 4 18 53 76 67 38 3 20 72 51 55 60 63 46 10 57 45 54 32 24 62 8 11 35 44 65 74 58 28 2 6 56 52 39 23 47 49 61 1 66 41 15 77 7 27 78 13 14 34 5 31 37 21 40 16 29 69 59 43 64 36 70 19 25 73 71 75 9 68 26 22",
"output": "46 37 14 8 57 38 51 29 75 22 30 6 54 55 49 62 1 9 70 15 60 78 42 27 71 77 52 36 63 3 58 26 5 56 31 68 59 13 41 61 48 7 66 32 24 21 43 4 44 2 17 40 10 25 18 39 23 35 65 19 45 28 20 67 33 47 12 76 64 69 73 16 72 34 74 11 50 53"
},
{
"input": "29\n14 21 27 1 4 18 10 17 20 23 2 24 7 9 28 22 8 25 12 15 11 6 16 29 3 26 19 5 13",
"output": "4 11 25 5 28 22 13 17 14 7 21 19 29 1 20 23 8 6 27 9 2 16 10 12 18 26 3 15 24"
},
{
"input": "82\n6 1 10 75 28 66 61 81 78 63 17 19 58 34 49 12 67 50 41 44 3 15 59 38 51 72 36 11 46 29 18 64 27 23 13 53 56 68 2 25 47 40 69 54 42 5 60 55 4 16 24 79 57 20 7 73 32 80 76 52 82 37 26 31 65 8 39 62 33 71 30 9 77 43 48 74 70 22 14 45 35 21",
"output": "2 39 21 49 46 1 55 66 72 3 28 16 35 79 22 50 11 31 12 54 82 78 34 51 40 63 33 5 30 71 64 57 69 14 81 27 62 24 67 42 19 45 74 20 80 29 41 75 15 18 25 60 36 44 48 37 53 13 23 47 7 68 10 32 65 6 17 38 43 77 70 26 56 76 4 59 73 9 52 58 8 61"
},
{
"input": "82\n74 18 15 69 71 77 19 26 80 20 66 7 30 82 22 48 21 44 52 65 64 61 35 49 12 8 53 81 54 16 11 9 40 46 13 1 29 58 5 41 55 4 78 60 6 51 56 2 38 36 34 62 63 25 17 67 45 14 32 37 75 79 10 47 27 39 31 68 59 24 50 43 72 70 42 28 76 23 57 3 73 33",
"output": "36 48 80 42 39 45 12 26 32 63 31 25 35 58 3 30 55 2 7 10 17 15 78 70 54 8 65 76 37 13 67 59 82 51 23 50 60 49 66 33 40 75 72 18 57 34 64 16 24 71 46 19 27 29 41 47 79 38 69 44 22 52 53 21 20 11 56 68 4 74 5 73 81 1 61 77 6 43 62 9 28 14"
},
{
"input": "45\n2 32 34 13 3 15 16 33 22 12 31 38 42 14 27 7 36 8 4 19 45 41 5 35 10 11 39 20 29 44 17 9 6 40 37 28 25 21 1 30 24 18 43 26 23",
"output": "39 1 5 19 23 33 16 18 32 25 26 10 4 14 6 7 31 42 20 28 38 9 45 41 37 44 15 36 29 40 11 2 8 3 24 17 35 12 27 34 22 13 43 30 21"
},
{
"input": "45\n4 32 33 39 43 21 22 35 45 7 14 5 16 9 42 31 24 36 17 29 41 25 37 34 27 20 11 44 3 13 19 2 1 10 26 30 38 18 6 8 15 23 40 28 12",
"output": "33 32 29 1 12 39 10 40 14 34 27 45 30 11 41 13 19 38 31 26 6 7 42 17 22 35 25 44 20 36 16 2 3 24 8 18 23 37 4 43 21 15 5 28 9"
},
{
"input": "74\n48 72 40 67 17 4 27 53 11 32 25 9 74 2 41 24 56 22 14 21 33 5 18 55 20 7 29 36 69 13 52 19 38 30 68 59 66 34 63 6 47 45 54 44 62 12 50 71 16 10 8 64 57 73 46 26 49 42 3 23 35 1 61 39 70 60 65 43 15 28 37 51 58 31",
"output": "62 14 59 6 22 40 26 51 12 50 9 46 30 19 69 49 5 23 32 25 20 18 60 16 11 56 7 70 27 34 74 10 21 38 61 28 71 33 64 3 15 58 68 44 42 55 41 1 57 47 72 31 8 43 24 17 53 73 36 66 63 45 39 52 67 37 4 35 29 65 48 2 54 13"
},
{
"input": "47\n9 26 27 10 6 34 28 42 39 22 45 21 11 43 14 47 38 15 40 32 46 1 36 29 17 25 2 23 31 5 24 4 7 8 12 19 16 44 37 20 18 33 30 13 35 41 3",
"output": "22 27 47 32 30 5 33 34 1 4 13 35 44 15 18 37 25 41 36 40 12 10 28 31 26 2 3 7 24 43 29 20 42 6 45 23 39 17 9 19 46 8 14 38 11 21 16"
},
{
"input": "49\n14 38 6 29 9 49 36 43 47 3 44 20 34 15 7 11 1 28 12 40 16 37 31 10 42 41 33 21 18 30 5 27 17 35 25 26 45 19 2 13 23 32 4 22 46 48 24 39 8",
"output": "17 39 10 43 31 3 15 49 5 24 16 19 40 1 14 21 33 29 38 12 28 44 41 47 35 36 32 18 4 30 23 42 27 13 34 7 22 2 48 20 26 25 8 11 37 45 9 46 6"
},
{
"input": "100\n78 56 31 91 90 95 16 65 58 77 37 89 33 61 10 76 62 47 35 67 69 7 63 83 22 25 49 8 12 30 39 44 57 64 48 42 32 11 70 43 55 50 99 24 85 73 45 14 54 21 98 84 74 2 26 18 9 36 80 53 75 46 66 86 59 93 87 68 94 13 72 28 79 88 92 29 52 82 34 97 19 38 1 41 27 4 40 5 96 100 51 6 20 23 81 15 17 3 60 71",
"output": "83 54 98 86 88 92 22 28 57 15 38 29 70 48 96 7 97 56 81 93 50 25 94 44 26 55 85 72 76 30 3 37 13 79 19 58 11 82 31 87 84 36 40 32 47 62 18 35 27 42 91 77 60 49 41 2 33 9 65 99 14 17 23 34 8 63 20 68 21 39 100 71 46 53 61 16 10 1 73 59 95 78 24 52 45 64 67 74 12 5 4 75 66 69 6 89 80 51 43 90"
},
{
"input": "22\n12 8 11 2 16 7 13 6 22 21 20 10 4 14 18 1 5 15 3 19 17 9",
"output": "16 4 19 13 17 8 6 2 22 12 3 1 7 14 18 5 21 15 20 11 10 9"
},
{
"input": "72\n16 11 49 51 3 27 60 55 23 40 66 7 53 70 13 5 15 32 18 72 33 30 8 31 46 12 28 67 25 38 50 22 69 34 71 52 58 39 24 35 42 9 41 26 62 1 63 65 36 64 68 61 37 14 45 47 6 57 54 20 17 2 56 59 29 10 4 48 21 43 19 44",
"output": "46 62 5 67 16 57 12 23 42 66 2 26 15 54 17 1 61 19 71 60 69 32 9 39 29 44 6 27 65 22 24 18 21 34 40 49 53 30 38 10 43 41 70 72 55 25 56 68 3 31 4 36 13 59 8 63 58 37 64 7 52 45 47 50 48 11 28 51 33 14 35 20"
},
{
"input": "63\n21 56 11 10 62 24 20 42 28 52 38 2 37 43 48 22 7 8 40 14 13 46 53 1 23 4 60 63 51 36 25 12 39 32 49 16 58 44 31 61 33 50 55 54 45 6 47 41 9 57 30 29 26 18 19 27 15 34 3 35 59 5 17",
"output": "24 12 59 26 62 46 17 18 49 4 3 32 21 20 57 36 63 54 55 7 1 16 25 6 31 53 56 9 52 51 39 34 41 58 60 30 13 11 33 19 48 8 14 38 45 22 47 15 35 42 29 10 23 44 43 2 50 37 61 27 40 5 28"
},
{
"input": "18\n2 16 8 4 18 12 3 6 5 9 10 15 11 17 14 13 1 7",
"output": "17 1 7 4 9 8 18 3 10 11 13 6 16 15 12 2 14 5"
},
{
"input": "47\n6 9 10 41 25 3 4 37 20 1 36 22 29 27 11 24 43 31 12 17 34 42 38 39 13 2 7 21 18 5 15 35 44 26 33 46 19 40 30 14 28 23 47 32 45 8 16",
"output": "10 26 6 7 30 1 27 46 2 3 15 19 25 40 31 47 20 29 37 9 28 12 42 16 5 34 14 41 13 39 18 44 35 21 32 11 8 23 24 38 4 22 17 33 45 36 43"
},
{
"input": "96\n41 91 48 88 29 57 1 19 44 43 37 5 10 75 25 63 30 78 76 53 8 92 18 70 39 17 49 60 9 16 3 34 86 59 23 79 55 45 72 51 28 33 96 40 26 54 6 32 89 61 85 74 7 82 52 31 64 66 94 95 11 22 2 73 35 13 42 71 14 47 84 69 50 67 58 12 77 46 38 68 15 36 20 93 27 90 83 56 87 4 21 24 81 62 80 65",
"output": "7 63 31 90 12 47 53 21 29 13 61 76 66 69 81 30 26 23 8 83 91 62 35 92 15 45 85 41 5 17 56 48 42 32 65 82 11 79 25 44 1 67 10 9 38 78 70 3 27 73 40 55 20 46 37 88 6 75 34 28 50 94 16 57 96 58 74 80 72 24 68 39 64 52 14 19 77 18 36 95 93 54 87 71 51 33 89 4 49 86 2 22 84 59 60 43"
},
{
"input": "73\n67 24 39 22 23 20 48 34 42 40 19 70 65 69 64 21 53 11 59 15 26 10 30 33 72 29 55 25 56 71 8 9 57 49 41 61 13 12 6 27 66 36 47 50 73 60 2 37 7 4 51 17 1 46 14 62 35 3 45 63 43 58 54 32 31 5 28 44 18 52 68 38 16",
"output": "53 47 58 50 66 39 49 31 32 22 18 38 37 55 20 73 52 69 11 6 16 4 5 2 28 21 40 67 26 23 65 64 24 8 57 42 48 72 3 10 35 9 61 68 59 54 43 7 34 44 51 70 17 63 27 29 33 62 19 46 36 56 60 15 13 41 1 71 14 12 30 25 45"
},
{
"input": "81\n25 2 78 40 12 80 69 13 49 43 17 33 23 54 32 61 77 66 27 71 24 26 42 55 60 9 5 30 7 37 45 63 53 11 38 44 68 34 28 52 67 22 57 46 47 50 8 16 79 62 4 36 20 14 73 64 6 76 35 74 58 10 29 81 59 31 19 1 75 39 70 18 41 21 72 65 3 48 15 56 51",
"output": "68 2 77 51 27 57 29 47 26 62 34 5 8 54 79 48 11 72 67 53 74 42 13 21 1 22 19 39 63 28 66 15 12 38 59 52 30 35 70 4 73 23 10 36 31 44 45 78 9 46 81 40 33 14 24 80 43 61 65 25 16 50 32 56 76 18 41 37 7 71 20 75 55 60 69 58 17 3 49 6 64"
},
{
"input": "12\n12 3 1 5 11 6 7 10 2 8 9 4",
"output": "3 9 2 12 4 6 7 10 11 8 5 1"
},
{
"input": "47\n7 21 41 18 40 31 12 28 24 14 43 23 33 10 19 38 26 8 34 15 29 44 5 13 39 25 3 27 20 42 35 9 2 1 30 46 36 32 4 22 37 45 6 47 11 16 17",
"output": "34 33 27 39 23 43 1 18 32 14 45 7 24 10 20 46 47 4 15 29 2 40 12 9 26 17 28 8 21 35 6 38 13 19 31 37 41 16 25 5 3 30 11 22 42 36 44"
},
{
"input": "8\n1 3 5 2 4 8 6 7",
"output": "1 4 2 5 3 7 8 6"
},
{
"input": "38\n28 8 2 33 20 32 26 29 23 31 15 38 11 37 18 21 22 19 4 34 1 35 16 7 17 6 27 30 36 12 9 24 25 13 5 3 10 14",
"output": "21 3 36 19 35 26 24 2 31 37 13 30 34 38 11 23 25 15 18 5 16 17 9 32 33 7 27 1 8 28 10 6 4 20 22 29 14 12"
},
{
"input": "10\n2 9 4 6 10 1 7 5 3 8",
"output": "6 1 9 3 8 4 7 10 2 5"
},
{
"input": "23\n20 11 15 1 5 12 23 9 2 22 13 19 16 14 7 4 8 21 6 17 18 10 3",
"output": "4 9 23 16 5 19 15 17 8 22 2 6 11 14 3 13 20 21 12 1 18 10 7"
},
{
"input": "10\n2 4 9 3 6 8 10 5 1 7",
"output": "9 1 4 2 8 5 10 6 3 7"
},
{
"input": "55\n9 48 23 49 11 24 4 22 34 32 17 45 39 13 14 21 19 25 2 31 37 7 55 36 20 51 5 12 54 10 35 40 43 1 46 18 53 41 38 26 29 50 3 42 52 27 8 28 47 33 6 16 30 44 15",
"output": "34 19 43 7 27 51 22 47 1 30 5 28 14 15 55 52 11 36 17 25 16 8 3 6 18 40 46 48 41 53 20 10 50 9 31 24 21 39 13 32 38 44 33 54 12 35 49 2 4 42 26 45 37 29 23"
},
{
"input": "58\n49 13 12 54 2 38 56 11 33 25 26 19 28 8 23 41 20 36 46 55 15 35 9 7 32 37 58 6 3 14 47 31 40 30 53 44 4 50 29 34 10 43 39 57 5 22 27 45 51 42 24 16 18 21 52 17 48 1",
"output": "58 5 29 37 45 28 24 14 23 41 8 3 2 30 21 52 56 53 12 17 54 46 15 51 10 11 47 13 39 34 32 25 9 40 22 18 26 6 43 33 16 50 42 36 48 19 31 57 1 38 49 55 35 4 20 7 44 27"
},
{
"input": "34\n20 25 2 3 33 29 1 16 14 7 21 9 32 31 6 26 22 4 27 23 24 10 34 12 19 15 5 18 28 17 13 8 11 30",
"output": "7 3 4 18 27 15 10 32 12 22 33 24 31 9 26 8 30 28 25 1 11 17 20 21 2 16 19 29 6 34 14 13 5 23"
},
{
"input": "53\n47 29 46 25 23 13 7 31 33 4 38 11 35 16 42 14 15 43 34 39 28 18 6 45 30 1 40 20 2 37 5 32 24 12 44 26 27 3 19 51 36 21 22 9 10 50 41 48 49 53 8 17 52",
"output": "26 29 38 10 31 23 7 51 44 45 12 34 6 16 17 14 52 22 39 28 42 43 5 33 4 36 37 21 2 25 8 32 9 19 13 41 30 11 20 27 47 15 18 35 24 3 1 48 49 46 40 53 50"
},
{
"input": "99\n77 87 90 48 53 38 68 6 28 57 35 82 63 71 60 41 3 12 86 65 10 59 22 67 33 74 93 27 24 1 61 43 25 4 51 52 15 88 9 31 30 42 89 49 23 21 29 32 46 73 37 16 5 69 56 26 92 64 20 54 75 14 98 13 94 2 95 7 36 66 58 8 50 78 84 45 11 96 76 62 97 80 40 39 47 85 34 79 83 17 91 72 19 44 70 81 55 99 18",
"output": "30 66 17 34 53 8 68 72 39 21 77 18 64 62 37 52 90 99 93 59 46 23 45 29 33 56 28 9 47 41 40 48 25 87 11 69 51 6 84 83 16 42 32 94 76 49 85 4 44 73 35 36 5 60 97 55 10 71 22 15 31 80 13 58 20 70 24 7 54 95 14 92 50 26 61 79 1 74 88 82 96 12 89 75 86 19 2 38 43 3 91 57 27 65 67 78 81 63 98"
},
{
"input": "32\n17 29 2 6 30 8 26 7 1 27 10 9 13 24 31 21 15 19 22 18 4 11 25 28 32 3 23 12 5 14 20 16",
"output": "9 3 26 21 29 4 8 6 12 11 22 28 13 30 17 32 1 20 18 31 16 19 27 14 23 7 10 24 2 5 15 25"
},
{
"input": "65\n18 40 1 60 17 19 4 6 12 49 28 58 2 25 13 14 64 56 61 34 62 30 59 51 26 8 33 63 36 48 46 7 43 21 31 27 11 44 29 5 32 23 35 9 53 57 52 50 15 38 42 3 54 65 55 41 20 24 22 47 45 10 39 16 37",
"output": "3 13 52 7 40 8 32 26 44 62 37 9 15 16 49 64 5 1 6 57 34 59 42 58 14 25 36 11 39 22 35 41 27 20 43 29 65 50 63 2 56 51 33 38 61 31 60 30 10 48 24 47 45 53 55 18 46 12 23 4 19 21 28 17 54"
},
{
"input": "71\n35 50 55 58 25 32 26 40 63 34 44 53 24 18 37 7 64 27 56 65 1 19 2 43 42 14 57 47 22 13 59 61 39 67 30 45 54 38 33 48 6 5 3 69 36 21 41 4 16 46 20 17 15 12 10 70 68 23 60 31 52 29 66 28 51 49 62 11 8 9 71",
"output": "21 23 43 48 42 41 16 69 70 55 68 54 30 26 53 49 52 14 22 51 46 29 58 13 5 7 18 64 62 35 60 6 39 10 1 45 15 38 33 8 47 25 24 11 36 50 28 40 66 2 65 61 12 37 3 19 27 4 31 59 32 67 9 17 20 63 34 57 44 56 71"
},
{
"input": "74\n33 8 42 63 64 61 31 74 11 50 68 14 36 25 57 30 7 44 21 15 6 9 23 59 46 3 73 16 62 51 40 60 41 54 5 39 35 28 48 4 58 12 66 69 13 26 71 1 24 19 29 52 37 2 20 43 18 72 17 56 34 38 65 67 27 10 47 70 53 32 45 55 49 22",
"output": "48 54 26 40 35 21 17 2 22 66 9 42 45 12 20 28 59 57 50 55 19 74 23 49 14 46 65 38 51 16 7 70 1 61 37 13 53 62 36 31 33 3 56 18 71 25 67 39 73 10 30 52 69 34 72 60 15 41 24 32 6 29 4 5 63 43 64 11 44 68 47 58 27 8"
},
{
"input": "96\n78 10 82 46 38 91 77 69 2 27 58 80 79 44 59 41 6 31 76 11 42 48 51 37 19 87 43 25 52 32 1 39 63 29 21 65 53 74 92 16 15 95 90 83 30 73 71 5 50 17 96 33 86 60 67 64 20 26 61 40 55 88 94 93 9 72 47 57 14 45 22 3 54 68 13 24 4 7 56 81 89 70 49 8 84 28 18 62 35 36 75 23 66 85 34 12",
"output": "31 9 72 77 48 17 78 84 65 2 20 96 75 69 41 40 50 87 25 57 35 71 92 76 28 58 10 86 34 45 18 30 52 95 89 90 24 5 32 60 16 21 27 14 70 4 67 22 83 49 23 29 37 73 61 79 68 11 15 54 59 88 33 56 36 93 55 74 8 82 47 66 46 38 91 19 7 1 13 12 80 3 44 85 94 53 26 62 81 43 6 39 64 63 42 51"
},
{
"input": "7\n2 1 5 7 3 4 6",
"output": "2 1 5 6 3 7 4"
},
{
"input": "51\n8 33 37 2 16 22 24 30 4 9 5 15 27 3 18 39 31 26 10 17 46 41 25 14 6 1 29 48 36 20 51 49 21 43 19 13 38 50 47 34 11 23 28 12 42 7 32 40 44 45 35",
"output": "26 4 14 9 11 25 46 1 10 19 41 44 36 24 12 5 20 15 35 30 33 6 42 7 23 18 13 43 27 8 17 47 2 40 51 29 3 37 16 48 22 45 34 49 50 21 39 28 32 38 31"
},
{
"input": "27\n12 14 7 3 20 21 25 13 22 15 23 4 2 24 10 17 19 8 26 11 27 18 9 5 6 1 16",
"output": "26 13 4 12 24 25 3 18 23 15 20 1 8 2 10 27 16 22 17 5 6 9 11 14 7 19 21"
},
{
"input": "71\n51 13 20 48 54 23 24 64 14 62 71 67 57 53 3 30 55 43 33 25 39 40 66 6 46 18 5 19 61 16 32 68 70 41 60 44 29 49 27 69 50 38 10 17 45 56 9 21 26 63 28 35 7 59 1 65 2 15 8 11 12 34 37 47 58 22 31 4 36 42 52",
"output": "55 57 15 68 27 24 53 59 47 43 60 61 2 9 58 30 44 26 28 3 48 66 6 7 20 49 39 51 37 16 67 31 19 62 52 69 63 42 21 22 34 70 18 36 45 25 64 4 38 41 1 71 14 5 17 46 13 65 54 35 29 10 50 8 56 23 12 32 40 33 11"
},
{
"input": "9\n8 5 2 6 1 9 4 7 3",
"output": "5 3 9 7 2 4 8 1 6"
},
{
"input": "29\n10 24 11 5 26 25 2 9 22 15 8 14 29 21 4 1 23 17 3 12 13 16 18 28 19 20 7 6 27",
"output": "16 7 19 15 4 28 27 11 8 1 3 20 21 12 10 22 18 23 25 26 14 9 17 2 6 5 29 24 13"
},
{
"input": "60\n39 25 42 4 55 60 16 18 47 1 11 40 7 50 19 35 49 54 12 3 30 38 2 58 17 26 45 6 33 43 37 32 52 36 15 23 27 59 24 20 28 14 8 9 13 29 44 46 41 21 5 48 51 22 31 56 57 53 10 34",
"output": "10 23 20 4 51 28 13 43 44 59 11 19 45 42 35 7 25 8 15 40 50 54 36 39 2 26 37 41 46 21 55 32 29 60 16 34 31 22 1 12 49 3 30 47 27 48 9 52 17 14 53 33 58 18 5 56 57 24 38 6"
},
{
"input": "50\n37 45 22 5 12 21 28 24 18 47 20 25 8 50 14 2 34 43 11 16 49 41 48 1 19 31 39 46 32 23 15 42 3 35 38 30 44 26 10 9 40 36 7 17 33 4 27 6 13 29",
"output": "24 16 33 46 4 48 43 13 40 39 19 5 49 15 31 20 44 9 25 11 6 3 30 8 12 38 47 7 50 36 26 29 45 17 34 42 1 35 27 41 22 32 18 37 2 28 10 23 21 14"
},
{
"input": "30\n8 29 28 16 17 25 27 15 21 11 6 20 2 13 1 30 5 4 24 10 14 3 23 18 26 9 12 22 19 7",
"output": "15 13 22 18 17 11 30 1 26 20 10 27 14 21 8 4 5 24 29 12 9 28 23 19 6 25 7 3 2 16"
},
{
"input": "46\n15 2 44 43 38 19 31 42 4 37 29 30 24 45 27 41 8 20 33 7 35 3 18 46 36 26 1 28 21 40 16 22 32 11 14 13 12 9 25 39 10 6 23 17 5 34",
"output": "27 2 22 9 45 42 20 17 38 41 34 37 36 35 1 31 44 23 6 18 29 32 43 13 39 26 15 28 11 12 7 33 19 46 21 25 10 5 40 30 16 8 4 3 14 24"
},
{
"input": "9\n4 8 6 5 3 9 2 7 1",
"output": "9 7 5 1 4 3 8 2 6"
},
{
"input": "46\n31 30 33 23 45 7 36 8 11 3 32 39 41 20 1 28 6 27 18 24 17 5 16 37 26 13 22 14 2 38 15 46 9 4 19 21 12 44 10 35 25 34 42 43 40 29",
"output": "15 29 10 34 22 17 6 8 33 39 9 37 26 28 31 23 21 19 35 14 36 27 4 20 41 25 18 16 46 2 1 11 3 42 40 7 24 30 12 45 13 43 44 38 5 32"
},
{
"input": "66\n27 12 37 48 46 21 34 58 38 28 66 2 64 32 44 31 13 36 40 15 19 11 22 5 30 29 6 7 61 39 20 42 23 54 51 33 50 9 60 8 57 45 49 10 62 41 59 3 55 63 52 24 25 26 43 56 65 4 16 14 1 35 18 17 53 47",
"output": "61 12 48 58 24 27 28 40 38 44 22 2 17 60 20 59 64 63 21 31 6 23 33 52 53 54 1 10 26 25 16 14 36 7 62 18 3 9 30 19 46 32 55 15 42 5 66 4 43 37 35 51 65 34 49 56 41 8 47 39 29 45 50 13 57 11"
},
{
"input": "13\n3 12 9 2 8 5 13 4 11 1 10 7 6",
"output": "10 4 1 8 6 13 12 5 3 11 9 2 7"
},
{
"input": "80\n21 25 56 50 20 61 7 74 51 69 8 2 46 57 45 71 14 52 17 43 9 30 70 78 31 10 38 13 23 15 37 79 6 16 77 73 80 4 49 48 18 28 26 58 33 41 64 22 54 72 59 60 40 63 53 27 1 5 75 67 62 34 19 39 68 65 44 55 3 32 11 42 76 12 35 47 66 36 24 29",
"output": "57 12 69 38 58 33 7 11 21 26 71 74 28 17 30 34 19 41 63 5 1 48 29 79 2 43 56 42 80 22 25 70 45 62 75 78 31 27 64 53 46 72 20 67 15 13 76 40 39 4 9 18 55 49 68 3 14 44 51 52 6 61 54 47 66 77 60 65 10 23 16 50 36 8 59 73 35 24 32 37"
},
{
"input": "63\n9 49 53 25 40 46 43 51 54 22 58 16 23 26 10 47 5 27 2 8 61 59 19 35 63 56 28 20 34 4 62 38 6 55 36 31 57 15 29 33 1 48 50 37 7 30 18 42 32 52 12 41 14 21 45 11 24 17 39 13 44 60 3",
"output": "41 19 63 30 17 33 45 20 1 15 56 51 60 53 38 12 58 47 23 28 54 10 13 57 4 14 18 27 39 46 36 49 40 29 24 35 44 32 59 5 52 48 7 61 55 6 16 42 2 43 8 50 3 9 34 26 37 11 22 62 21 31 25"
},
{
"input": "26\n11 4 19 13 17 9 2 24 6 5 22 23 14 15 3 25 16 8 18 10 21 1 12 26 7 20",
"output": "22 7 15 2 10 9 25 18 6 20 1 23 4 13 14 17 5 19 3 26 21 11 12 8 16 24"
},
{
"input": "69\n40 22 11 66 4 27 31 29 64 53 37 55 51 2 7 36 18 52 6 1 30 21 17 20 14 9 59 62 49 68 3 50 65 57 44 5 67 46 33 13 34 15 24 48 63 58 38 25 41 35 16 54 32 10 60 61 39 12 69 8 23 45 26 47 56 43 28 19 42",
"output": "20 14 31 5 36 19 15 60 26 54 3 58 40 25 42 51 23 17 68 24 22 2 61 43 48 63 6 67 8 21 7 53 39 41 50 16 11 47 57 1 49 69 66 35 62 38 64 44 29 32 13 18 10 52 12 65 34 46 27 55 56 28 45 9 33 4 37 30 59"
},
{
"input": "6\n4 3 6 5 1 2",
"output": "5 6 2 1 4 3"
},
{
"input": "9\n7 8 5 3 1 4 2 9 6",
"output": "5 7 4 6 3 9 1 2 8"
},
{
"input": "41\n27 24 16 30 25 8 32 2 26 20 39 33 41 22 40 14 36 9 28 4 34 11 31 23 19 18 17 35 3 10 6 13 5 15 29 38 7 21 1 12 37",
"output": "39 8 29 20 33 31 37 6 18 30 22 40 32 16 34 3 27 26 25 10 38 14 24 2 5 9 1 19 35 4 23 7 12 21 28 17 41 36 11 15 13"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "20\n2 6 4 18 7 10 17 13 16 8 14 9 20 5 19 12 1 3 15 11",
"output": "17 1 18 3 14 2 5 10 12 6 20 16 8 11 19 9 7 4 15 13"
},
{
"input": "2\n2 1",
"output": "2 1"
},
{
"input": "60\n2 4 31 51 11 7 34 20 3 14 18 23 48 54 15 36 38 60 49 40 5 33 41 26 55 58 10 8 13 9 27 30 37 1 21 59 44 57 35 19 46 43 42 45 12 22 39 32 24 16 6 56 53 52 25 17 47 29 50 28",
"output": "34 1 9 2 21 51 6 28 30 27 5 45 29 10 15 50 56 11 40 8 35 46 12 49 55 24 31 60 58 32 3 48 22 7 39 16 33 17 47 20 23 43 42 37 44 41 57 13 19 59 4 54 53 14 25 52 38 26 36 18"
},
{
"input": "14\n14 6 3 12 11 2 7 1 10 9 8 5 4 13",
"output": "8 6 3 13 12 2 7 11 10 9 5 4 14 1"
},
{
"input": "81\n13 43 79 8 7 21 73 46 63 4 62 78 56 11 70 68 61 53 60 49 16 27 59 47 69 5 22 44 77 57 52 48 1 9 72 81 28 55 58 33 51 18 31 17 41 20 42 3 32 54 19 2 75 34 64 10 65 50 30 29 67 12 71 66 74 15 26 23 6 38 25 35 37 24 80 76 40 45 39 36 14",
"output": "33 52 48 10 26 69 5 4 34 56 14 62 1 81 66 21 44 42 51 46 6 27 68 74 71 67 22 37 60 59 43 49 40 54 72 80 73 70 79 77 45 47 2 28 78 8 24 32 20 58 41 31 18 50 38 13 30 39 23 19 17 11 9 55 57 64 61 16 25 15 63 35 7 65 53 76 29 12 3 75 36"
},
{
"input": "42\n41 11 10 8 21 37 32 19 31 25 1 15 36 5 6 27 4 3 13 7 16 17 2 23 34 24 38 28 12 20 30 42 18 26 39 35 33 40 9 14 22 29",
"output": "11 23 18 17 14 15 20 4 39 3 2 29 19 40 12 21 22 33 8 30 5 41 24 26 10 34 16 28 42 31 9 7 37 25 36 13 6 27 35 38 1 32"
},
{
"input": "97\n20 6 76 42 4 18 35 59 39 63 27 7 66 47 61 52 15 36 88 93 19 33 10 92 1 34 46 86 78 57 51 94 77 29 26 73 41 2 58 97 43 65 17 74 21 49 25 3 91 82 95 12 96 13 84 90 69 24 72 37 16 55 54 71 64 62 48 89 11 70 80 67 30 40 44 85 53 83 79 9 56 45 75 87 22 14 81 68 8 38 60 50 28 23 31 32 5",
"output": "25 38 48 5 97 2 12 89 80 23 69 52 54 86 17 61 43 6 21 1 45 85 94 58 47 35 11 93 34 73 95 96 22 26 7 18 60 90 9 74 37 4 41 75 82 27 14 67 46 92 31 16 77 63 62 81 30 39 8 91 15 66 10 65 42 13 72 88 57 70 64 59 36 44 83 3 33 29 79 71 87 50 78 55 76 28 84 19 68 56 49 24 20 32 51 53 40"
},
{
"input": "62\n15 27 46 6 8 51 14 56 23 48 42 49 52 22 20 31 29 12 47 3 62 34 37 35 32 57 19 25 5 60 61 38 18 10 11 55 45 53 17 30 9 36 4 50 41 16 44 28 40 59 24 1 13 39 26 7 33 58 2 43 21 54",
"output": "52 59 20 43 29 4 56 5 41 34 35 18 53 7 1 46 39 33 27 15 61 14 9 51 28 55 2 48 17 40 16 25 57 22 24 42 23 32 54 49 45 11 60 47 37 3 19 10 12 44 6 13 38 62 36 8 26 58 50 30 31 21"
},
{
"input": "61\n35 27 4 61 52 32 41 46 14 37 17 54 55 31 11 26 44 49 15 30 9 50 45 39 7 38 53 3 58 40 13 56 18 19 28 6 43 5 21 42 20 34 2 25 36 12 33 57 16 60 1 8 59 10 22 23 24 48 51 47 29",
"output": "51 43 28 3 38 36 25 52 21 54 15 46 31 9 19 49 11 33 34 41 39 55 56 57 44 16 2 35 61 20 14 6 47 42 1 45 10 26 24 30 7 40 37 17 23 8 60 58 18 22 59 5 27 12 13 32 48 29 53 50 4"
},
{
"input": "59\n31 26 36 15 17 19 10 53 11 34 13 46 55 9 44 7 8 37 32 52 47 25 51 22 35 39 41 4 43 24 5 27 20 57 6 38 3 28 21 40 50 18 14 56 33 45 12 2 49 59 54 29 16 48 42 58 1 30 23",
"output": "57 48 37 28 31 35 16 17 14 7 9 47 11 43 4 53 5 42 6 33 39 24 59 30 22 2 32 38 52 58 1 19 45 10 25 3 18 36 26 40 27 55 29 15 46 12 21 54 49 41 23 20 8 51 13 44 34 56 50"
},
{
"input": "10\n2 10 7 4 1 5 8 6 3 9",
"output": "5 1 9 4 6 8 3 7 10 2"
},
{
"input": "14\n14 2 1 8 6 12 11 10 9 7 3 4 5 13",
"output": "3 2 11 12 13 5 10 4 9 8 7 6 14 1"
},
{
"input": "43\n28 38 15 14 31 42 27 30 19 33 43 26 22 29 18 32 3 13 1 8 35 34 4 12 11 17 41 21 5 25 39 37 20 23 7 24 16 10 40 9 6 36 2",
"output": "19 43 17 23 29 41 35 20 40 38 25 24 18 4 3 37 26 15 9 33 28 13 34 36 30 12 7 1 14 8 5 16 10 22 21 42 32 2 31 39 27 6 11"
},
{
"input": "86\n39 11 20 31 28 76 29 64 35 21 41 71 12 82 5 37 80 73 38 26 79 75 23 15 59 45 47 6 3 62 50 49 51 22 2 65 86 60 70 42 74 17 1 30 55 44 8 66 81 27 57 77 43 13 54 32 72 46 48 56 14 34 78 52 36 85 24 19 69 83 25 61 7 4 84 33 63 58 18 40 68 10 67 9 16 53",
"output": "43 35 29 74 15 28 73 47 84 82 2 13 54 61 24 85 42 79 68 3 10 34 23 67 71 20 50 5 7 44 4 56 76 62 9 65 16 19 1 80 11 40 53 46 26 58 27 59 32 31 33 64 86 55 45 60 51 78 25 38 72 30 77 8 36 48 83 81 69 39 12 57 18 41 22 6 52 63 21 17 49 14 70 75 66 37"
},
{
"input": "99\n65 78 56 98 33 24 61 40 29 93 1 64 57 22 25 52 67 95 50 3 31 15 90 68 71 83 38 36 6 46 89 26 4 87 14 88 72 37 23 43 63 12 80 96 5 34 73 86 9 48 92 62 99 10 16 20 66 27 28 2 82 70 30 94 49 8 84 69 18 60 58 59 44 39 21 7 91 76 54 19 75 85 74 47 55 32 97 77 51 13 35 79 45 42 11 41 17 81 53",
"output": "11 60 20 33 45 29 76 66 49 54 95 42 90 35 22 55 97 69 80 56 75 14 39 6 15 32 58 59 9 63 21 86 5 46 91 28 38 27 74 8 96 94 40 73 93 30 84 50 65 19 89 16 99 79 85 3 13 71 72 70 7 52 41 12 1 57 17 24 68 62 25 37 47 83 81 78 88 2 92 43 98 61 26 67 82 48 34 36 31 23 77 51 10 64 18 44 87 4 53"
},
{
"input": "100\n42 23 48 88 36 6 18 70 96 1 34 40 46 22 39 55 85 93 45 67 71 75 59 9 21 3 86 63 65 68 20 38 73 31 84 90 50 51 56 95 72 33 49 19 83 76 54 74 100 30 17 98 15 94 4 97 5 99 81 27 92 32 89 12 13 91 87 29 60 11 52 43 35 58 10 25 16 80 28 2 44 61 8 82 66 69 41 24 57 62 78 37 79 77 53 7 14 47 26 64",
"output": "10 80 26 55 57 6 96 83 24 75 70 64 65 97 53 77 51 7 44 31 25 14 2 88 76 99 60 79 68 50 34 62 42 11 73 5 92 32 15 12 87 1 72 81 19 13 98 3 43 37 38 71 95 47 16 39 89 74 23 69 82 90 28 100 29 85 20 30 86 8 21 41 33 48 22 46 94 91 93 78 59 84 45 35 17 27 67 4 63 36 66 61 18 54 40 9 56 52 58 49"
},
{
"input": "99\n8 68 94 75 71 60 57 58 6 11 5 48 65 41 49 12 46 72 95 59 13 70 74 7 84 62 17 36 55 76 38 79 2 85 23 10 32 99 87 50 83 28 54 91 53 51 1 3 97 81 21 89 93 78 61 26 82 96 4 98 25 40 31 44 24 47 30 52 14 16 39 27 9 29 45 18 67 63 37 43 90 66 19 69 88 22 92 77 34 42 73 80 56 64 20 35 15 33 86",
"output": "47 33 48 59 11 9 24 1 73 36 10 16 21 69 97 70 27 76 83 95 51 86 35 65 61 56 72 42 74 67 63 37 98 89 96 28 79 31 71 62 14 90 80 64 75 17 66 12 15 40 46 68 45 43 29 93 7 8 20 6 55 26 78 94 13 82 77 2 84 22 5 18 91 23 4 30 88 54 32 92 50 57 41 25 34 99 39 85 52 81 44 87 53 3 19 58 49 60 38"
},
{
"input": "99\n12 99 88 13 7 19 74 47 23 90 16 29 26 11 58 60 64 98 37 18 82 67 72 46 51 85 17 92 87 20 77 36 78 71 57 35 80 54 73 15 14 62 97 45 31 79 94 56 76 96 28 63 8 44 38 86 49 2 52 66 61 59 10 43 55 50 22 34 83 53 95 40 81 21 30 42 27 3 5 41 1 70 69 25 93 48 65 6 24 89 91 33 39 68 9 4 32 84 75",
"output": "81 58 78 96 79 88 5 53 95 63 14 1 4 41 40 11 27 20 6 30 74 67 9 89 84 13 77 51 12 75 45 97 92 68 36 32 19 55 93 72 80 76 64 54 44 24 8 86 57 66 25 59 70 38 65 48 35 15 62 16 61 42 52 17 87 60 22 94 83 82 34 23 39 7 99 49 31 33 46 37 73 21 69 98 26 56 29 3 90 10 91 28 85 47 71 50 43 18 2"
},
{
"input": "99\n20 79 26 75 99 69 98 47 93 62 18 42 43 38 90 66 67 8 13 84 76 58 81 60 64 46 56 23 78 17 86 36 19 52 85 39 48 27 96 49 37 95 5 31 10 24 12 1 80 35 92 33 16 68 57 54 32 29 45 88 72 77 4 87 97 89 59 3 21 22 61 94 83 15 44 34 70 91 55 9 51 50 73 11 14 6 40 7 63 25 2 82 41 65 28 74 71 30 53",
"output": "48 91 68 63 43 86 88 18 80 45 84 47 19 85 74 53 30 11 33 1 69 70 28 46 90 3 38 95 58 98 44 57 52 76 50 32 41 14 36 87 93 12 13 75 59 26 8 37 40 82 81 34 99 56 79 27 55 22 67 24 71 10 89 25 94 16 17 54 6 77 97 61 83 96 4 21 62 29 2 49 23 92 73 20 35 31 64 60 66 15 78 51 9 72 42 39 65 7 5"
},
{
"input": "99\n74 20 9 1 60 85 65 13 4 25 40 99 5 53 64 3 36 31 73 44 55 50 45 63 98 51 68 6 47 37 71 82 88 34 84 18 19 12 93 58 86 7 11 46 90 17 33 27 81 69 42 59 56 32 95 52 76 61 96 62 78 43 66 21 49 97 75 14 41 72 89 16 30 79 22 23 15 83 91 38 48 2 87 26 28 80 94 70 54 92 57 10 8 35 67 77 29 24 39",
"output": "4 82 16 9 13 28 42 93 3 92 43 38 8 68 77 72 46 36 37 2 64 75 76 98 10 84 48 85 97 73 18 54 47 34 94 17 30 80 99 11 69 51 62 20 23 44 29 81 65 22 26 56 14 89 21 53 91 40 52 5 58 60 24 15 7 63 95 27 50 88 31 70 19 1 67 57 96 61 74 86 49 32 78 35 6 41 83 33 71 45 79 90 39 87 55 59 66 25 12"
},
{
"input": "99\n50 94 2 18 69 90 59 83 75 68 77 97 39 78 25 7 16 9 49 4 42 89 44 48 17 96 61 70 3 10 5 81 56 57 88 6 98 1 46 67 92 37 11 30 85 41 8 36 51 29 20 71 19 79 74 93 43 34 55 40 38 21 64 63 32 24 72 14 12 86 82 15 65 23 66 22 28 53 13 26 95 99 91 52 76 27 60 45 47 33 73 84 31 35 54 80 58 62 87",
"output": "38 3 29 20 31 36 16 47 18 30 43 69 79 68 72 17 25 4 53 51 62 76 74 66 15 80 86 77 50 44 93 65 90 58 94 48 42 61 13 60 46 21 57 23 88 39 89 24 19 1 49 84 78 95 59 33 34 97 7 87 27 98 64 63 73 75 40 10 5 28 52 67 91 55 9 85 11 14 54 96 32 71 8 92 45 70 99 35 22 6 83 41 56 2 81 26 12 37 82"
},
{
"input": "99\n19 93 14 34 39 37 33 15 52 88 7 43 69 27 9 77 94 31 48 22 63 70 79 17 50 6 81 8 76 58 23 74 86 11 57 62 41 87 75 51 12 18 68 56 95 3 80 83 84 29 24 61 71 78 59 96 20 85 90 28 45 36 38 97 1 49 40 98 44 67 13 73 72 91 47 10 30 54 35 42 4 2 92 26 64 60 53 21 5 82 46 32 55 66 16 89 99 65 25",
"output": "65 82 46 81 89 26 11 28 15 76 34 41 71 3 8 95 24 42 1 57 88 20 31 51 99 84 14 60 50 77 18 92 7 4 79 62 6 63 5 67 37 80 12 69 61 91 75 19 66 25 40 9 87 78 93 44 35 30 55 86 52 36 21 85 98 94 70 43 13 22 53 73 72 32 39 29 16 54 23 47 27 90 48 49 58 33 38 10 96 59 74 83 2 17 45 56 64 68 97"
},
{
"input": "99\n86 25 50 51 62 39 41 67 44 20 45 14 80 88 66 7 36 59 13 84 78 58 96 75 2 43 48 47 69 12 19 98 22 38 28 55 11 76 68 46 53 70 85 34 16 33 91 30 8 40 74 60 94 82 87 32 37 4 5 10 89 73 90 29 35 26 23 57 27 65 24 3 9 83 77 72 6 31 15 92 93 79 64 18 63 42 56 1 52 97 17 81 71 21 49 99 54 95 61",
"output": "88 25 72 58 59 77 16 49 73 60 37 30 19 12 79 45 91 84 31 10 94 33 67 71 2 66 69 35 64 48 78 56 46 44 65 17 57 34 6 50 7 86 26 9 11 40 28 27 95 3 4 89 41 97 36 87 68 22 18 52 99 5 85 83 70 15 8 39 29 42 93 76 62 51 24 38 75 21 82 13 92 54 74 20 43 1 55 14 61 63 47 80 81 53 98 23 90 32 96"
},
{
"input": "100\n66 44 99 15 43 79 28 33 88 90 49 68 82 38 9 74 4 58 29 81 31 94 10 42 89 21 63 40 62 61 18 6 84 72 48 25 67 69 71 85 98 34 83 70 65 78 91 77 93 41 23 24 87 11 55 12 59 73 36 97 7 14 26 39 30 27 45 20 50 17 53 2 57 47 95 56 75 19 37 96 16 35 8 3 76 60 13 86 5 32 64 80 46 51 54 100 1 22 52 92",
"output": "97 72 84 17 89 32 61 83 15 23 54 56 87 62 4 81 70 31 78 68 26 98 51 52 36 63 66 7 19 65 21 90 8 42 82 59 79 14 64 28 50 24 5 2 67 93 74 35 11 69 94 99 71 95 55 76 73 18 57 86 30 29 27 91 45 1 37 12 38 44 39 34 58 16 77 85 48 46 6 92 20 13 43 33 40 88 53 9 25 10 47 100 49 22 75 80 60 41 3 96"
},
{
"input": "99\n3 73 32 37 25 15 93 63 85 8 91 78 80 5 39 48 46 7 83 70 23 96 9 29 77 53 30 20 56 50 13 45 21 76 87 99 65 31 16 18 14 72 51 28 43 2 81 34 38 40 66 54 74 26 71 4 61 17 58 24 22 33 49 36 42 11 12 55 60 27 62 90 79 92 94 68 1 52 84 41 86 35 69 75 47 10 64 88 97 98 67 19 89 95 59 82 57 44 6",
"output": "77 46 1 56 14 99 18 10 23 86 66 67 31 41 6 39 58 40 92 28 33 61 21 60 5 54 70 44 24 27 38 3 62 48 82 64 4 49 15 50 80 65 45 98 32 17 85 16 63 30 43 78 26 52 68 29 97 59 95 69 57 71 8 87 37 51 91 76 83 20 55 42 2 53 84 34 25 12 73 13 47 96 19 79 9 81 35 88 93 72 11 74 7 75 94 22 89 90 36"
},
{
"input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1"
}
] | 1,680,687,915
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 62
| 0
|
n =int(input())
p = list(map(int, input().split()))
total = [0] * n
for i in range(n):
res = p.index(p[i]) + 1
total[p[i]-1] = res
print(total)
|
Title: Presents
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there.
If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift.
Now Petya wants to know for each friend *i* the number of a friend who has given him a gift.
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves.
Output Specification:
Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*.
Demo Input:
['4\n2 3 4 1\n', '3\n1 3 2\n', '2\n1 2\n']
Demo Output:
['4 1 2 3\n', '1 3 2\n', '1 2\n']
Note:
none
|
```python
n =int(input())
p = list(map(int, input().split()))
total = [0] * n
for i in range(n):
res = p.index(p[i]) + 1
total[p[i]-1] = res
print(total)
```
| 0
|
|
633
|
B
|
A Trivial Problem
|
PROGRAMMING
| 1,300
|
[
"brute force",
"constructive algorithms",
"math",
"number theory"
] | null | null |
Mr. Santa asks all the great programmers of the world to solve a trivial problem. He gives them an integer *m* and asks for the number of positive integers *n*, such that the factorial of *n* ends with exactly *m* zeroes. Are you among those great programmers who can solve this problem?
|
The only line of input contains an integer *m* (1<=≤<=*m*<=≤<=100<=000) — the required number of trailing zeroes in factorial.
|
First print *k* — the number of values of *n* such that the factorial of *n* ends with *m* zeroes. Then print these *k* integers in increasing order.
|
[
"1\n",
"5\n"
] |
[
"5\n5 6 7 8 9 ",
"0"
] |
The factorial of *n* is equal to the product of all integers from 1 to *n* inclusive, that is *n*! = 1·2·3·...·*n*.
In the first sample, 5! = 120, 6! = 720, 7! = 5040, 8! = 40320 and 9! = 362880.
| 500
|
[
{
"input": "1",
"output": "5\n5 6 7 8 9 "
},
{
"input": "5",
"output": "0"
},
{
"input": "2",
"output": "5\n10 11 12 13 14 "
},
{
"input": "3",
"output": "5\n15 16 17 18 19 "
},
{
"input": "7",
"output": "5\n30 31 32 33 34 "
},
{
"input": "12",
"output": "5\n50 51 52 53 54 "
},
{
"input": "15",
"output": "5\n65 66 67 68 69 "
},
{
"input": "18",
"output": "5\n75 76 77 78 79 "
},
{
"input": "38",
"output": "5\n155 156 157 158 159 "
},
{
"input": "47",
"output": "5\n195 196 197 198 199 "
},
{
"input": "58",
"output": "5\n240 241 242 243 244 "
},
{
"input": "66",
"output": "5\n270 271 272 273 274 "
},
{
"input": "70",
"output": "5\n285 286 287 288 289 "
},
{
"input": "89",
"output": "5\n365 366 367 368 369 "
},
{
"input": "417",
"output": "5\n1675 1676 1677 1678 1679 "
},
{
"input": "815",
"output": "5\n3265 3266 3267 3268 3269 "
},
{
"input": "394",
"output": "5\n1585 1586 1587 1588 1589 "
},
{
"input": "798",
"output": "0"
},
{
"input": "507",
"output": "5\n2035 2036 2037 2038 2039 "
},
{
"input": "406",
"output": "5\n1630 1631 1632 1633 1634 "
},
{
"input": "570",
"output": "5\n2290 2291 2292 2293 2294 "
},
{
"input": "185",
"output": "0"
},
{
"input": "765",
"output": "0"
},
{
"input": "967",
"output": "0"
},
{
"input": "112",
"output": "5\n455 456 457 458 459 "
},
{
"input": "729",
"output": "5\n2925 2926 2927 2928 2929 "
},
{
"input": "4604",
"output": "5\n18425 18426 18427 18428 18429 "
},
{
"input": "8783",
"output": "5\n35140 35141 35142 35143 35144 "
},
{
"input": "1059",
"output": "0"
},
{
"input": "6641",
"output": "5\n26575 26576 26577 26578 26579 "
},
{
"input": "9353",
"output": "5\n37425 37426 37427 37428 37429 "
},
{
"input": "1811",
"output": "5\n7250 7251 7252 7253 7254 "
},
{
"input": "2528",
"output": "0"
},
{
"input": "8158",
"output": "5\n32640 32641 32642 32643 32644 "
},
{
"input": "3014",
"output": "5\n12070 12071 12072 12073 12074 "
},
{
"input": "7657",
"output": "5\n30640 30641 30642 30643 30644 "
},
{
"input": "4934",
"output": "0"
},
{
"input": "9282",
"output": "5\n37140 37141 37142 37143 37144 "
},
{
"input": "2610",
"output": "5\n10450 10451 10452 10453 10454 "
},
{
"input": "2083",
"output": "5\n8345 8346 8347 8348 8349 "
},
{
"input": "26151",
"output": "5\n104620 104621 104622 104623 104624 "
},
{
"input": "64656",
"output": "5\n258640 258641 258642 258643 258644 "
},
{
"input": "46668",
"output": "5\n186690 186691 186692 186693 186694 "
},
{
"input": "95554",
"output": "5\n382235 382236 382237 382238 382239 "
},
{
"input": "37320",
"output": "0"
},
{
"input": "52032",
"output": "5\n208140 208141 208142 208143 208144 "
},
{
"input": "11024",
"output": "5\n44110 44111 44112 44113 44114 "
},
{
"input": "63218",
"output": "5\n252885 252886 252887 252888 252889 "
},
{
"input": "40095",
"output": "5\n160390 160391 160392 160393 160394 "
},
{
"input": "42724",
"output": "5\n170910 170911 170912 170913 170914 "
},
{
"input": "24381",
"output": "5\n97530 97531 97532 97533 97534 "
},
{
"input": "73138",
"output": "5\n292570 292571 292572 292573 292574 "
},
{
"input": "93346",
"output": "5\n373400 373401 373402 373403 373404 "
},
{
"input": "18338",
"output": "5\n73370 73371 73372 73373 73374 "
},
{
"input": "42662",
"output": "5\n170660 170661 170662 170663 170664 "
},
{
"input": "81221",
"output": "5\n324900 324901 324902 324903 324904 "
},
{
"input": "100000",
"output": "5\n400005 400006 400007 400008 400009 "
},
{
"input": "100000",
"output": "5\n400005 400006 400007 400008 400009 "
},
{
"input": "99998",
"output": "0"
},
{
"input": "30",
"output": "0"
},
{
"input": "11",
"output": "0"
},
{
"input": "780",
"output": "0"
},
{
"input": "97656",
"output": "5\n390625 390626 390627 390628 390629 "
},
{
"input": "12499",
"output": "5\n50000 50001 50002 50003 50004 "
},
{
"input": "65",
"output": "5\n265 266 267 268 269 "
},
{
"input": "41",
"output": "5\n170 171 172 173 174 "
},
{
"input": "31",
"output": "5\n125 126 127 128 129 "
},
{
"input": "86577",
"output": "0"
}
] | 1,619,953,459
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 68
| 171
| 6,553,600
|
#n,m,k = map(int, input().strip().split(' '))
m=int(input())
#a = list(map(int, input().strip().split(' ')))
l=[1]
i=1
l1=[i]
l2=0
#building the array
while(i<100000):
i+=1
l2=5*i
c=0
while(l2%5==0):
l2=l2//5
c+=1
l.append(l[-1]+c)
l1.append(i)
#print(l)
if m not in l:
print(0)
else:
print(5)
ind=l.index(m)
i1=5*l1[ind]
print(i1,i1+1,i1+2,i1+3,i1+4,end=" ")
|
Title: A Trivial Problem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mr. Santa asks all the great programmers of the world to solve a trivial problem. He gives them an integer *m* and asks for the number of positive integers *n*, such that the factorial of *n* ends with exactly *m* zeroes. Are you among those great programmers who can solve this problem?
Input Specification:
The only line of input contains an integer *m* (1<=≤<=*m*<=≤<=100<=000) — the required number of trailing zeroes in factorial.
Output Specification:
First print *k* — the number of values of *n* such that the factorial of *n* ends with *m* zeroes. Then print these *k* integers in increasing order.
Demo Input:
['1\n', '5\n']
Demo Output:
['5\n5 6 7 8 9 ', '0']
Note:
The factorial of *n* is equal to the product of all integers from 1 to *n* inclusive, that is *n*! = 1·2·3·...·*n*.
In the first sample, 5! = 120, 6! = 720, 7! = 5040, 8! = 40320 and 9! = 362880.
|
```python
#n,m,k = map(int, input().strip().split(' '))
m=int(input())
#a = list(map(int, input().strip().split(' ')))
l=[1]
i=1
l1=[i]
l2=0
#building the array
while(i<100000):
i+=1
l2=5*i
c=0
while(l2%5==0):
l2=l2//5
c+=1
l.append(l[-1]+c)
l1.append(i)
#print(l)
if m not in l:
print(0)
else:
print(5)
ind=l.index(m)
i1=5*l1[ind]
print(i1,i1+1,i1+2,i1+3,i1+4,end=" ")
```
| 3
|
|
486
|
A
|
Calculating Function
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
For a positive integer *n* let's define a function *f*:
*f*(*n*)<==<=<=-<=1<=+<=2<=-<=3<=+<=..<=+<=(<=-<=1)*n**n*
Your task is to calculate *f*(*n*) for a given integer *n*.
|
The single line contains the positive integer *n* (1<=≤<=*n*<=≤<=1015).
|
Print *f*(*n*) in a single line.
|
[
"4\n",
"5\n"
] |
[
"2\n",
"-3\n"
] |
*f*(4) = - 1 + 2 - 3 + 4 = 2
*f*(5) = - 1 + 2 - 3 + 4 - 5 = - 3
| 500
|
[
{
"input": "4",
"output": "2"
},
{
"input": "5",
"output": "-3"
},
{
"input": "1000000000",
"output": "500000000"
},
{
"input": "1000000001",
"output": "-500000001"
},
{
"input": "1000000000000000",
"output": "500000000000000"
},
{
"input": "100",
"output": "50"
},
{
"input": "101",
"output": "-51"
},
{
"input": "102",
"output": "51"
},
{
"input": "103",
"output": "-52"
},
{
"input": "104",
"output": "52"
},
{
"input": "105",
"output": "-53"
},
{
"input": "106",
"output": "53"
},
{
"input": "107",
"output": "-54"
},
{
"input": "108",
"output": "54"
},
{
"input": "109",
"output": "-55"
},
{
"input": "208170109961052",
"output": "104085054980526"
},
{
"input": "46017661651072",
"output": "23008830825536"
},
{
"input": "4018154546667",
"output": "-2009077273334"
},
{
"input": "288565475053",
"output": "-144282737527"
},
{
"input": "3052460231",
"output": "-1526230116"
},
{
"input": "29906716",
"output": "14953358"
},
{
"input": "87897701693326",
"output": "43948850846663"
},
{
"input": "8240",
"output": "4120"
},
{
"input": "577935",
"output": "-288968"
},
{
"input": "62",
"output": "31"
},
{
"input": "1",
"output": "-1"
},
{
"input": "2",
"output": "1"
},
{
"input": "9999999999999",
"output": "-5000000000000"
},
{
"input": "1000000000000",
"output": "500000000000"
},
{
"input": "99999999999999",
"output": "-50000000000000"
},
{
"input": "999999999999999",
"output": "-500000000000000"
},
{
"input": "42191359342",
"output": "21095679671"
},
{
"input": "100000000000000",
"output": "50000000000000"
},
{
"input": "145645214654154",
"output": "72822607327077"
},
{
"input": "4294967296",
"output": "2147483648"
},
{
"input": "3037000499",
"output": "-1518500250"
},
{
"input": "10000000000001",
"output": "-5000000000001"
},
{
"input": "100000017040846",
"output": "50000008520423"
},
{
"input": "98979894985999",
"output": "-49489947493000"
}
] | 1,696,102,605
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 39
| 46
| 0
|
n = int(input())
if n%2 != 0:
val = -(n + 1) / 2
else:
val = n/2
print(int(val))
|
Title: Calculating Function
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
For a positive integer *n* let's define a function *f*:
*f*(*n*)<==<=<=-<=1<=+<=2<=-<=3<=+<=..<=+<=(<=-<=1)*n**n*
Your task is to calculate *f*(*n*) for a given integer *n*.
Input Specification:
The single line contains the positive integer *n* (1<=≤<=*n*<=≤<=1015).
Output Specification:
Print *f*(*n*) in a single line.
Demo Input:
['4\n', '5\n']
Demo Output:
['2\n', '-3\n']
Note:
*f*(4) = - 1 + 2 - 3 + 4 = 2
*f*(5) = - 1 + 2 - 3 + 4 - 5 = - 3
|
```python
n = int(input())
if n%2 != 0:
val = -(n + 1) / 2
else:
val = n/2
print(int(val))
```
| 3
|
|
676
|
A
|
Nicholas and Permutation
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
Nicholas has an array *a* that contains *n* distinct integers from 1 to *n*. In other words, Nicholas has a permutation of size *n*.
Nicholas want the minimum element (integer 1) and the maximum element (integer *n*) to be as far as possible from each other. He wants to perform exactly one swap in order to maximize the distance between the minimum and the maximum elements. The distance between two elements is considered to be equal to the absolute difference between their positions.
|
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100) — the size of the permutation.
The second line of the input contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is equal to the element at the *i*-th position.
|
Print a single integer — the maximum possible distance between the minimum and the maximum elements Nicholas can achieve by performing exactly one swap.
|
[
"5\n4 5 1 3 2\n",
"7\n1 6 5 3 4 7 2\n",
"6\n6 5 4 3 2 1\n"
] |
[
"3\n",
"6\n",
"5\n"
] |
In the first sample, one may obtain the optimal answer by swapping elements 1 and 2.
In the second sample, the minimum and the maximum elements will be located in the opposite ends of the array if we swap 7 and 2.
In the third sample, the distance between the minimum and the maximum elements is already maximum possible, so we just perform some unnecessary swap, for example, one can swap 5 and 2.
| 500
|
[
{
"input": "5\n4 5 1 3 2",
"output": "3"
},
{
"input": "7\n1 6 5 3 4 7 2",
"output": "6"
},
{
"input": "6\n6 5 4 3 2 1",
"output": "5"
},
{
"input": "2\n1 2",
"output": "1"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "3\n2 3 1",
"output": "2"
},
{
"input": "4\n4 1 3 2",
"output": "3"
},
{
"input": "5\n1 4 5 2 3",
"output": "4"
},
{
"input": "6\n4 6 3 5 2 1",
"output": "5"
},
{
"input": "7\n1 5 3 6 2 4 7",
"output": "6"
},
{
"input": "100\n76 70 67 54 40 1 48 63 64 36 42 90 99 27 47 17 93 7 13 84 16 57 74 5 83 61 19 56 52 92 38 91 82 79 34 66 71 28 37 98 35 94 77 53 73 10 26 80 15 32 8 81 3 95 44 46 72 6 33 11 21 85 4 30 24 51 49 96 87 55 14 31 12 60 45 9 29 22 58 18 88 2 50 59 20 86 23 41 100 39 62 68 69 97 78 43 25 89 65 75",
"output": "94"
},
{
"input": "8\n4 5 3 8 6 7 1 2",
"output": "6"
},
{
"input": "9\n6 8 5 3 4 7 9 2 1",
"output": "8"
},
{
"input": "10\n8 7 10 1 2 3 4 6 5 9",
"output": "7"
},
{
"input": "11\n5 4 6 9 10 11 7 3 1 2 8",
"output": "8"
},
{
"input": "12\n3 6 7 8 9 10 12 5 4 2 11 1",
"output": "11"
},
{
"input": "13\n8 4 3 7 5 11 9 1 10 2 13 12 6",
"output": "10"
},
{
"input": "14\n6 10 13 9 7 1 12 14 3 2 5 4 11 8",
"output": "8"
},
{
"input": "15\n3 14 13 12 7 2 4 11 15 1 8 6 5 10 9",
"output": "9"
},
{
"input": "16\n11 6 9 8 7 14 12 13 10 15 2 5 3 1 4 16",
"output": "15"
},
{
"input": "17\n13 12 5 3 9 16 8 14 2 4 10 1 6 11 7 15 17",
"output": "16"
},
{
"input": "18\n8 6 14 17 9 11 15 13 5 3 18 1 2 7 12 16 4 10",
"output": "11"
},
{
"input": "19\n12 19 3 11 15 6 18 14 5 10 2 13 9 7 4 8 17 16 1",
"output": "18"
},
{
"input": "20\n15 17 10 20 7 2 16 9 13 6 18 5 19 8 11 14 4 12 3 1",
"output": "19"
},
{
"input": "21\n1 9 14 18 13 12 11 20 16 2 4 19 15 7 6 17 8 5 3 10 21",
"output": "20"
},
{
"input": "22\n8 3 17 4 16 21 14 11 10 15 6 18 13 12 22 20 5 2 9 7 19 1",
"output": "21"
},
{
"input": "23\n1 23 11 20 9 3 12 4 7 17 5 15 2 10 18 16 8 22 14 13 19 21 6",
"output": "22"
},
{
"input": "24\n2 10 23 22 20 19 18 16 11 12 15 17 21 8 24 13 1 5 6 7 14 3 9 4",
"output": "16"
},
{
"input": "25\n12 13 22 17 1 18 14 5 21 2 10 4 3 23 11 6 20 8 24 16 15 19 9 7 25",
"output": "24"
},
{
"input": "26\n6 21 20 16 26 17 11 2 24 4 1 12 14 8 25 7 15 10 22 5 13 18 9 23 19 3",
"output": "21"
},
{
"input": "27\n20 14 18 10 5 3 9 4 24 22 21 27 17 15 26 2 23 7 12 11 6 8 19 25 16 13 1",
"output": "26"
},
{
"input": "28\n28 13 16 6 1 12 4 27 22 7 18 3 21 26 25 11 5 10 20 24 19 15 14 8 23 17 9 2",
"output": "27"
},
{
"input": "29\n21 11 10 25 2 5 9 16 29 8 17 4 15 13 6 22 7 24 19 12 18 20 1 3 23 28 27 14 26",
"output": "22"
},
{
"input": "30\n6 19 14 22 26 17 27 8 25 3 24 30 4 18 23 16 9 13 29 20 15 2 5 11 28 12 1 10 21 7",
"output": "26"
},
{
"input": "31\n29 13 26 27 9 28 2 16 30 21 12 11 3 31 23 6 22 20 1 5 14 24 19 18 8 4 10 17 15 25 7",
"output": "18"
},
{
"input": "32\n15 32 11 3 18 23 19 14 5 8 6 21 13 24 25 4 16 9 27 20 17 31 2 22 7 12 30 1 26 10 29 28",
"output": "30"
},
{
"input": "33\n22 13 10 33 8 25 15 14 21 28 27 19 26 24 1 12 5 11 32 20 30 31 18 4 6 23 7 29 16 2 17 9 3",
"output": "29"
},
{
"input": "34\n34 30 7 16 6 1 10 23 29 13 15 25 32 26 18 11 28 3 14 21 19 5 31 33 4 17 8 9 24 20 27 22 2 12",
"output": "33"
},
{
"input": "35\n24 33 20 8 34 11 31 25 2 4 18 13 9 35 16 30 23 32 17 1 14 22 19 21 28 26 3 15 5 12 27 29 10 6 7",
"output": "21"
},
{
"input": "36\n1 32 27 35 22 7 34 15 18 36 31 28 13 2 10 21 20 17 16 4 3 24 19 29 11 12 25 5 33 26 14 6 9 23 30 8",
"output": "35"
},
{
"input": "37\n24 1 12 23 11 6 30 15 4 21 13 20 25 17 5 8 36 19 32 26 14 9 7 18 10 29 37 35 16 2 22 34 3 27 31 33 28",
"output": "35"
},
{
"input": "38\n9 35 37 28 36 21 10 25 19 4 26 5 22 7 27 18 6 14 15 24 1 17 11 34 20 8 2 16 3 23 32 31 13 12 38 33 30 29",
"output": "34"
},
{
"input": "39\n16 28 4 33 26 36 25 23 22 30 27 7 12 34 17 6 3 38 10 24 13 31 29 39 14 32 9 20 35 11 18 21 8 2 15 37 5 19 1",
"output": "38"
},
{
"input": "40\n35 39 28 11 9 31 36 8 5 32 26 19 38 33 2 22 23 25 6 37 12 7 3 10 17 24 20 16 27 4 34 15 40 14 18 13 29 21 30 1",
"output": "39"
},
{
"input": "41\n24 18 7 23 3 15 1 17 25 5 30 10 34 36 2 14 9 21 41 40 20 28 33 35 12 22 11 8 19 16 31 27 26 32 29 4 13 38 37 39 6",
"output": "34"
},
{
"input": "42\n42 15 24 26 4 34 19 29 38 32 31 33 14 41 21 3 11 39 25 6 5 20 23 10 16 36 18 28 27 1 7 40 22 30 9 2 37 17 8 12 13 35",
"output": "41"
},
{
"input": "43\n43 24 20 13 22 29 28 4 30 3 32 40 31 8 7 9 35 27 18 5 42 6 17 19 23 12 41 21 16 37 33 34 2 14 36 38 25 10 15 39 26 11 1",
"output": "42"
},
{
"input": "44\n4 38 6 40 29 3 44 2 30 35 25 36 34 10 11 31 21 7 14 23 37 19 27 18 5 22 1 16 17 9 39 13 15 32 43 8 41 26 42 12 24 33 20 28",
"output": "37"
},
{
"input": "45\n45 29 24 2 31 5 34 41 26 44 33 43 15 3 4 11 21 37 27 12 14 39 23 42 16 6 13 19 8 38 20 9 25 22 40 17 32 35 18 10 28 7 30 36 1",
"output": "44"
},
{
"input": "46\n29 3 12 33 45 40 19 17 25 27 28 1 16 23 24 46 31 8 44 15 5 32 22 11 4 36 34 10 35 26 21 7 14 2 18 9 20 41 6 43 42 37 38 13 39 30",
"output": "34"
},
{
"input": "47\n7 3 8 12 24 16 29 10 28 38 1 20 37 40 21 5 15 6 45 23 36 44 25 43 41 4 11 42 18 35 32 31 39 33 27 30 22 34 14 13 17 47 19 9 46 26 2",
"output": "41"
},
{
"input": "48\n29 26 14 18 34 33 13 39 32 1 37 20 35 19 28 48 30 23 46 27 5 22 24 38 12 15 8 36 43 45 16 47 6 9 31 40 44 17 2 41 11 42 25 4 21 3 10 7",
"output": "38"
},
{
"input": "49\n16 7 42 32 11 35 15 8 23 41 6 20 47 24 9 45 49 2 37 48 25 28 5 18 3 19 12 4 22 33 13 14 10 36 44 17 40 38 30 26 1 43 29 46 21 34 27 39 31",
"output": "40"
},
{
"input": "50\n31 45 3 34 13 43 32 4 42 9 7 8 24 14 35 6 19 46 44 17 18 1 25 20 27 41 2 16 12 10 11 47 38 21 28 49 30 15 50 36 29 26 22 39 48 5 23 37 33 40",
"output": "38"
},
{
"input": "51\n47 29 2 11 43 44 27 1 39 14 25 30 33 21 38 45 34 51 16 50 42 31 41 46 15 48 13 19 6 37 35 7 22 28 20 4 17 10 5 8 24 40 9 36 18 49 12 26 23 3 32",
"output": "43"
},
{
"input": "52\n16 45 23 7 15 19 43 20 4 32 35 36 9 50 5 26 38 46 13 33 12 2 48 37 41 31 10 28 8 42 3 21 11 1 17 27 34 30 44 40 6 51 49 47 25 22 18 24 52 29 14 39",
"output": "48"
},
{
"input": "53\n53 30 50 22 51 31 32 38 12 7 39 43 1 23 6 8 24 52 2 21 34 13 3 35 5 15 19 11 47 18 9 20 29 4 36 45 27 41 25 48 16 46 44 17 10 14 42 26 40 28 33 37 49",
"output": "52"
},
{
"input": "54\n6 39 17 3 45 52 16 21 23 48 42 36 13 37 46 10 43 27 49 7 38 32 31 30 15 25 2 29 8 51 54 19 41 44 24 34 22 5 20 14 12 1 33 40 4 26 9 35 18 28 47 50 11 53",
"output": "41"
},
{
"input": "55\n26 15 31 21 32 43 34 51 7 12 5 44 17 54 18 25 48 47 20 3 41 24 45 2 11 22 29 39 37 53 35 28 36 9 50 10 30 38 19 13 4 8 27 1 42 6 49 23 55 40 33 16 46 14 52",
"output": "48"
},
{
"input": "56\n6 20 38 46 10 11 40 19 5 1 47 33 4 18 32 36 37 45 56 49 48 52 12 26 31 14 2 9 24 3 16 51 41 43 23 17 34 7 29 50 55 25 39 44 22 27 54 8 28 35 30 42 13 53 21 15",
"output": "46"
},
{
"input": "57\n39 28 53 36 3 6 12 56 55 20 50 19 43 42 18 40 24 52 38 17 33 23 22 41 14 7 26 44 45 16 35 1 8 47 31 5 30 51 32 4 37 25 13 34 54 21 46 10 15 11 2 27 29 48 49 9 57",
"output": "56"
},
{
"input": "58\n1 26 28 14 22 33 57 40 9 42 44 37 24 19 58 12 48 3 34 31 49 4 16 47 55 52 27 23 46 18 20 32 56 6 39 36 41 38 13 43 45 21 53 54 29 17 5 10 25 30 2 35 11 7 15 51 8 50",
"output": "57"
},
{
"input": "59\n1 27 10 37 53 9 14 49 46 26 50 42 59 11 47 15 24 56 43 45 44 38 5 8 58 30 52 12 23 32 22 3 31 41 2 25 29 6 54 16 35 33 18 55 4 51 57 28 40 19 13 21 7 39 36 48 34 17 20",
"output": "58"
},
{
"input": "60\n60 27 34 32 54 55 33 12 40 3 47 44 50 39 38 59 11 25 17 15 16 30 21 31 10 52 5 23 4 48 6 26 36 57 14 22 8 56 58 9 24 7 37 53 42 43 20 49 51 19 2 46 28 18 35 13 29 45 41 1",
"output": "59"
},
{
"input": "61\n61 11 26 29 31 40 32 30 35 3 18 52 9 53 42 4 50 54 20 58 28 49 22 12 2 19 16 15 57 34 51 43 7 17 25 41 56 47 55 60 46 14 44 45 24 27 33 1 48 13 59 23 38 39 6 5 36 10 8 37 21",
"output": "60"
},
{
"input": "62\n21 23 34 38 11 61 55 30 37 48 54 51 46 47 6 56 36 49 1 35 12 28 29 20 43 42 5 8 22 57 44 4 53 10 58 33 27 25 16 45 50 40 18 15 3 41 39 2 7 60 59 13 32 24 52 31 14 9 19 26 17 62",
"output": "61"
},
{
"input": "63\n2 5 29 48 31 26 21 16 47 24 43 22 61 28 6 39 60 27 14 52 37 7 53 8 62 56 63 10 50 18 44 13 4 9 25 11 23 42 45 41 59 12 32 36 40 51 1 35 49 54 57 20 19 34 38 46 33 3 55 15 30 58 17",
"output": "46"
},
{
"input": "64\n23 5 51 40 12 46 44 8 64 31 58 55 45 24 54 39 21 19 52 61 30 42 16 18 15 32 53 22 28 26 11 25 48 56 27 9 29 41 35 49 59 38 62 7 34 1 20 33 60 17 2 3 43 37 57 14 6 36 13 10 50 4 63 47",
"output": "55"
},
{
"input": "65\n10 11 55 43 53 25 35 26 16 37 41 38 59 21 48 2 65 49 17 23 18 30 62 36 3 4 47 15 28 63 57 54 31 46 44 12 51 7 29 13 56 52 14 22 39 19 8 27 45 5 6 34 32 61 20 50 9 24 33 58 60 40 1 42 64",
"output": "62"
},
{
"input": "66\n66 39 3 2 55 53 60 54 12 49 10 30 59 26 32 46 50 56 7 13 43 36 24 28 11 8 6 21 35 25 42 57 23 45 64 5 34 61 27 51 52 9 15 1 38 17 63 48 37 20 58 14 47 19 22 41 31 44 33 65 4 62 40 18 16 29",
"output": "65"
},
{
"input": "67\n66 16 2 53 35 38 49 28 18 6 36 58 21 47 27 5 50 62 44 12 52 37 11 56 15 31 25 65 17 29 59 41 7 42 4 43 39 10 1 40 24 13 20 54 19 67 46 60 51 45 64 30 8 33 26 9 3 22 34 23 57 48 55 14 63 61 32",
"output": "45"
},
{
"input": "68\n13 6 27 21 65 23 59 14 62 43 33 31 38 41 67 20 16 25 42 4 28 40 29 9 64 17 2 26 32 58 60 53 46 48 47 54 44 50 39 19 30 57 61 1 11 18 37 24 55 15 63 34 8 52 56 7 10 12 35 66 5 36 45 49 68 22 51 3",
"output": "64"
},
{
"input": "69\n29 49 25 51 21 35 11 61 39 54 40 37 60 42 27 33 59 53 34 10 46 2 23 69 8 47 58 36 1 38 19 12 7 48 13 3 6 22 18 5 65 24 50 41 66 44 67 57 4 56 62 43 9 30 14 15 28 31 64 26 16 55 68 17 32 20 45 52 63",
"output": "45"
},
{
"input": "70\n19 12 15 18 36 16 61 69 24 7 11 13 3 48 55 21 37 17 43 31 41 22 28 32 27 63 38 49 59 56 30 25 67 51 52 45 50 44 66 57 26 60 5 46 33 6 23 34 8 40 2 68 14 39 65 64 62 42 47 54 10 53 9 1 70 58 20 4 29 35",
"output": "64"
},
{
"input": "71\n40 6 62 3 41 52 31 66 27 16 35 5 17 60 2 15 51 22 67 61 71 53 1 64 8 45 28 18 50 30 12 69 20 26 10 37 36 49 70 32 33 11 57 14 9 55 4 58 29 25 44 65 39 48 24 47 19 46 56 38 34 42 59 63 54 23 7 68 43 13 21",
"output": "50"
},
{
"input": "72\n52 64 71 40 32 10 62 21 11 37 38 13 22 70 1 66 41 50 27 20 42 47 25 68 49 12 15 72 44 60 53 5 23 14 43 29 65 36 51 54 35 67 7 19 55 48 58 46 39 24 33 30 61 45 57 2 31 3 18 59 6 9 4 63 8 16 26 34 28 69 17 56",
"output": "57"
},
{
"input": "73\n58 38 47 34 39 64 69 66 72 57 9 4 67 22 35 13 61 14 28 52 56 20 31 70 27 24 36 1 62 17 10 5 12 33 16 73 18 49 63 71 44 65 23 30 40 8 50 46 60 25 11 26 37 55 29 68 42 2 3 32 59 7 15 43 41 48 51 53 6 45 54 19 21",
"output": "45"
},
{
"input": "74\n19 51 59 34 8 40 42 55 65 16 74 26 49 63 64 70 35 72 7 12 43 18 61 27 47 31 13 32 71 22 25 67 9 1 48 50 33 10 21 46 11 45 17 37 28 60 69 66 38 2 30 3 39 15 53 68 57 41 6 36 24 73 4 23 5 62 44 14 20 29 52 54 56 58",
"output": "63"
},
{
"input": "75\n75 28 60 19 59 17 65 26 32 23 18 64 8 62 4 11 42 16 47 5 72 46 9 1 25 21 2 50 33 6 36 68 30 12 20 40 53 45 34 7 37 39 38 44 63 61 67 3 66 51 29 73 24 57 70 27 10 56 22 55 13 49 35 15 54 41 14 74 69 48 52 31 71 43 58",
"output": "74"
},
{
"input": "76\n1 47 54 17 38 37 12 32 14 48 43 71 60 56 4 13 64 41 52 57 62 24 23 49 20 10 63 3 25 66 59 40 58 33 53 46 70 7 35 61 72 74 73 19 30 5 29 6 15 28 21 27 51 55 50 9 65 8 67 39 76 42 31 34 16 2 36 11 26 44 22 45 75 18 69 68",
"output": "75"
},
{
"input": "77\n10 20 57 65 53 69 59 45 58 32 28 72 4 14 1 33 40 47 7 5 51 76 37 16 41 61 42 2 21 26 38 74 35 64 43 77 71 50 39 48 27 63 73 44 52 66 9 18 23 54 25 6 8 56 13 67 36 22 15 46 62 75 55 11 31 17 24 29 60 68 12 30 3 70 49 19 34",
"output": "62"
},
{
"input": "78\n7 61 69 47 68 42 65 78 70 3 32 59 49 51 23 71 11 63 22 18 43 34 24 13 27 16 19 40 21 46 48 77 28 66 54 67 60 15 75 62 9 26 52 58 4 25 8 37 41 76 1 6 30 50 44 36 5 14 29 53 17 12 2 57 73 35 64 39 56 10 33 20 45 74 31 55 38 72",
"output": "70"
},
{
"input": "79\n75 79 43 66 72 52 29 65 74 38 24 1 5 51 13 7 71 33 4 61 2 36 63 47 64 44 34 27 3 21 17 37 54 53 49 20 28 60 39 10 16 76 6 77 73 22 50 48 78 30 67 56 31 26 40 59 41 11 18 45 69 62 15 23 32 70 19 55 68 57 35 25 12 46 14 42 9 8 58",
"output": "77"
},
{
"input": "80\n51 20 37 12 68 11 28 52 76 21 7 5 3 16 64 34 25 2 6 40 60 62 75 13 45 17 56 29 32 47 79 73 49 72 15 46 30 54 80 27 43 24 74 18 42 71 14 4 44 63 65 33 1 77 55 57 41 59 58 70 69 35 19 67 10 36 26 23 48 50 39 61 9 66 38 8 31 22 53 78",
"output": "52"
},
{
"input": "81\n63 22 4 41 43 74 64 39 10 35 20 81 11 28 70 67 53 79 16 61 68 52 27 37 58 9 50 49 18 30 72 47 7 60 78 51 23 48 73 66 44 13 15 57 56 38 1 76 25 45 36 34 42 8 75 26 59 14 71 21 6 77 5 17 2 32 40 54 46 24 29 3 31 19 65 62 33 69 12 80 55",
"output": "69"
},
{
"input": "82\n50 24 17 41 49 18 80 11 79 72 57 31 21 35 2 51 36 66 20 65 38 3 45 32 59 81 28 30 70 55 29 76 73 6 33 39 8 7 19 48 63 1 77 43 4 13 78 54 69 9 40 46 74 82 60 71 16 64 12 14 47 26 44 5 10 75 53 25 27 15 56 42 58 34 23 61 67 62 68 22 37 52",
"output": "53"
},
{
"input": "83\n64 8 58 17 67 46 3 82 23 70 72 16 53 45 13 20 12 48 40 4 6 47 76 60 19 44 30 78 28 22 75 15 25 29 63 74 55 32 14 51 35 31 62 77 27 42 65 71 56 61 66 41 68 49 7 34 2 83 36 5 33 26 37 80 59 50 1 9 54 21 18 24 38 73 81 52 10 39 43 79 57 11 69",
"output": "66"
},
{
"input": "84\n75 8 66 21 61 63 72 51 52 13 59 25 28 58 64 53 79 41 34 7 67 11 39 56 44 24 50 9 49 55 1 80 26 6 73 74 27 69 65 37 18 43 36 17 30 3 47 29 76 78 32 22 12 68 46 5 42 81 57 31 33 83 54 48 14 62 10 16 4 20 71 70 35 15 45 19 60 77 2 23 84 40 82 38",
"output": "80"
},
{
"input": "85\n1 18 58 8 22 76 3 61 12 33 54 41 6 24 82 15 10 17 38 64 26 4 62 28 47 14 66 9 84 75 2 71 67 43 37 32 85 21 69 52 55 63 81 51 74 59 65 34 29 36 30 45 27 53 13 79 39 57 5 70 19 40 7 42 68 48 16 80 83 23 46 35 72 31 11 44 73 77 50 56 49 25 60 20 78",
"output": "84"
},
{
"input": "86\n64 56 41 10 31 69 47 39 37 36 27 19 9 42 15 6 78 59 52 17 71 45 72 14 2 54 38 79 4 18 16 8 46 75 50 82 44 24 20 55 58 86 61 43 35 32 33 40 63 30 28 60 13 53 12 57 77 81 76 66 73 84 85 62 68 22 51 5 49 7 1 70 80 65 34 48 23 21 83 11 74 26 29 67 25 3",
"output": "70"
},
{
"input": "87\n14 20 82 47 39 75 71 45 3 37 63 19 32 68 7 41 48 76 27 46 84 49 4 44 26 69 17 64 1 18 58 33 11 23 21 86 67 52 70 16 77 78 6 74 15 87 10 59 13 34 22 2 65 38 66 61 51 57 35 60 81 40 36 80 31 43 83 56 79 55 29 5 12 8 50 30 53 72 54 9 24 25 42 62 73 28 85",
"output": "58"
},
{
"input": "88\n1 83 73 46 61 31 39 86 57 43 16 29 26 80 82 7 36 42 13 20 6 64 19 40 24 12 47 87 8 34 75 9 69 3 11 52 14 25 84 59 27 10 54 51 81 74 65 77 70 17 60 35 23 44 49 2 4 88 5 21 41 32 68 66 15 55 48 58 78 53 22 38 45 33 30 50 85 76 37 79 63 18 28 62 72 56 71 67",
"output": "87"
},
{
"input": "89\n68 40 14 58 56 25 8 44 49 55 9 76 66 54 33 81 42 15 59 17 21 30 75 60 4 48 64 6 52 63 61 27 12 57 72 67 23 86 77 80 22 13 43 73 26 78 50 51 18 62 1 29 82 16 74 2 87 24 3 41 11 46 47 69 10 84 65 39 35 79 70 32 34 31 20 19 53 71 36 28 83 88 38 85 7 5 37 45 89",
"output": "88"
},
{
"input": "90\n2 67 26 58 9 49 76 22 60 30 77 20 13 7 37 81 47 16 19 12 14 45 41 68 85 54 28 24 46 1 27 43 32 89 53 35 59 75 18 51 17 64 66 80 31 88 87 90 38 72 55 71 42 11 73 69 62 78 23 74 65 79 84 4 86 52 10 6 3 82 56 5 48 33 21 57 40 29 61 63 34 36 83 8 15 44 50 70 39 25",
"output": "60"
},
{
"input": "91\n91 69 56 16 73 55 14 82 80 46 57 81 22 71 63 76 43 37 77 75 70 3 26 2 28 17 51 38 30 67 41 47 54 62 34 25 84 11 87 39 32 52 31 36 50 19 21 53 29 24 79 8 74 64 44 7 6 18 10 42 13 9 83 58 4 88 65 60 20 90 66 49 86 89 78 48 5 27 23 59 61 15 72 45 40 33 68 85 35 12 1",
"output": "90"
},
{
"input": "92\n67 57 76 78 25 89 6 82 11 16 26 17 59 48 73 10 21 31 27 80 4 5 22 13 92 55 45 85 63 28 75 60 54 88 91 47 29 35 7 87 1 39 43 51 71 84 83 81 46 9 38 56 90 24 37 41 19 86 50 61 79 20 18 14 69 23 62 65 49 52 58 53 36 2 68 64 15 42 30 34 66 32 44 40 8 33 3 77 74 12 70 72",
"output": "67"
},
{
"input": "93\n76 35 5 87 7 21 59 71 24 37 2 73 31 74 4 52 28 20 56 27 65 86 16 45 85 67 68 70 47 72 91 88 14 32 62 69 78 41 15 22 57 18 50 13 39 58 17 83 64 51 25 11 38 77 82 90 8 26 29 61 10 43 79 53 48 6 23 55 63 49 81 92 80 44 89 60 66 30 1 9 36 33 19 46 75 93 3 12 42 84 40 54 34",
"output": "85"
},
{
"input": "94\n29 85 82 78 61 83 80 63 11 38 50 43 9 24 4 87 79 45 3 17 90 7 34 27 1 76 26 39 84 47 22 41 81 19 44 23 56 92 35 31 72 62 70 53 40 88 13 14 73 2 59 86 46 94 15 12 77 57 89 42 75 48 18 51 32 55 71 30 49 91 20 60 5 93 33 64 21 36 10 28 8 65 66 69 74 58 6 52 25 67 16 37 54 68",
"output": "69"
},
{
"input": "95\n36 73 18 77 15 71 50 57 79 65 94 88 9 69 52 70 26 66 78 89 55 20 72 83 75 68 32 28 45 74 19 22 54 23 84 90 86 12 42 58 11 81 39 31 85 47 60 44 59 43 21 7 30 41 64 76 93 46 87 48 10 40 3 14 38 49 29 35 2 67 5 34 13 37 27 56 91 17 62 80 8 61 53 95 24 92 6 82 63 33 51 25 4 16 1",
"output": "94"
},
{
"input": "96\n64 3 47 83 19 10 72 61 73 95 16 40 54 84 8 86 28 4 37 42 92 48 63 76 67 1 59 66 20 35 93 2 43 7 45 70 34 33 26 91 85 89 13 29 58 68 44 25 87 75 49 71 41 17 55 36 32 31 74 22 52 79 30 88 50 78 38 39 65 27 69 77 81 94 82 53 21 80 57 60 24 46 51 9 18 15 96 62 6 23 11 12 90 5 14 56",
"output": "86"
},
{
"input": "97\n40 63 44 64 84 92 38 41 28 91 3 70 76 67 94 96 35 79 29 22 78 88 85 8 21 1 93 54 71 80 37 17 13 26 62 59 75 87 69 33 89 49 77 61 12 39 6 36 58 18 73 50 82 45 74 52 11 34 95 7 23 30 15 32 31 16 55 19 20 83 60 72 10 53 51 14 27 9 68 47 5 2 81 46 57 86 56 43 48 66 24 25 4 42 65 97 90",
"output": "95"
},
{
"input": "98\n85 94 69 86 22 52 27 79 53 91 35 55 33 88 8 75 76 95 64 54 67 30 70 49 6 16 2 48 80 32 25 90 98 46 9 96 36 81 10 92 28 11 37 97 15 41 38 40 83 44 29 47 23 3 31 61 87 39 78 20 68 12 17 73 59 18 77 72 43 51 84 24 89 65 26 7 74 93 21 19 5 14 50 42 82 71 60 56 34 62 58 57 45 66 13 63 4 1",
"output": "97"
},
{
"input": "99\n33 48 19 41 59 64 16 12 17 13 7 1 9 6 4 92 61 49 60 25 74 65 22 97 30 32 10 62 14 55 80 66 82 78 31 23 87 93 27 98 20 29 88 84 77 34 83 96 79 90 56 89 58 72 52 47 21 76 24 70 44 94 5 39 8 18 57 36 40 68 43 75 3 2 35 99 63 26 67 73 15 11 53 28 42 46 69 50 51 95 38 37 54 85 81 91 45 86 71",
"output": "87"
},
{
"input": "100\n28 30 77 4 81 67 31 25 66 56 88 73 83 51 57 34 21 90 38 76 22 99 53 70 91 3 64 54 6 94 8 5 97 80 50 45 61 40 16 95 36 98 9 2 17 44 72 55 18 58 47 12 87 24 7 32 14 23 65 41 63 48 62 39 92 27 43 19 46 13 42 52 96 84 26 69 100 79 93 49 35 60 71 59 68 15 10 29 20 1 78 33 75 86 11 85 74 82 89 37",
"output": "89"
},
{
"input": "100\n100 97 35 55 45 3 46 98 77 64 94 85 73 43 49 79 72 9 70 62 80 88 29 58 61 20 89 83 66 86 82 15 6 87 42 96 90 75 63 38 81 40 5 23 4 18 41 19 99 60 8 12 76 51 39 93 53 26 21 50 47 28 13 30 68 59 34 54 24 56 31 27 65 16 32 10 36 52 44 91 22 14 33 25 7 78 67 17 57 37 92 11 2 69 84 95 74 71 48 1",
"output": "99"
},
{
"input": "100\n83 96 73 70 30 25 7 77 58 89 76 85 49 82 45 51 14 62 50 9 31 32 16 15 97 64 4 37 20 93 24 10 80 71 100 39 75 72 78 74 8 29 53 86 79 48 3 68 90 99 56 87 63 94 36 1 40 65 6 44 43 84 17 52 34 95 38 47 60 57 98 59 33 41 46 81 23 27 19 2 54 91 55 35 26 12 92 18 28 66 69 21 5 67 13 11 22 88 61 42",
"output": "65"
},
{
"input": "100\n96 80 47 60 56 9 78 20 37 72 68 15 100 94 51 26 65 38 50 19 4 70 25 63 22 30 13 58 43 69 18 33 5 66 39 73 12 55 95 92 97 1 14 83 10 28 64 31 46 91 32 86 74 54 29 52 89 53 90 44 62 40 16 24 67 81 36 34 7 23 79 87 75 98 84 3 41 77 76 42 71 35 49 61 2 27 59 82 99 85 21 11 45 6 88 48 17 57 8 93",
"output": "87"
},
{
"input": "100\n5 6 88 37 97 51 25 81 54 17 57 98 99 44 67 24 30 93 100 36 8 38 84 42 21 4 75 31 85 48 70 77 43 50 65 94 29 32 68 86 56 39 69 47 20 60 52 53 10 34 79 2 95 40 89 64 71 26 22 46 1 62 91 76 83 41 9 78 16 63 13 3 28 92 27 49 7 12 96 72 80 23 14 19 18 66 59 87 90 45 73 82 33 74 35 61 55 15 58 11",
"output": "81"
},
{
"input": "100\n100 97 92 12 62 17 19 58 37 26 30 95 31 35 87 10 13 43 98 61 28 89 76 1 23 21 11 22 50 56 91 74 3 24 96 55 64 67 14 4 71 16 18 9 77 68 51 81 32 82 46 88 86 60 29 66 72 85 70 7 53 63 33 45 83 2 25 94 52 93 5 69 20 47 49 54 57 39 34 27 90 80 78 59 40 42 79 6 38 8 48 15 65 73 99 44 41 84 36 75",
"output": "99"
},
{
"input": "100\n22 47 34 65 69 5 68 78 53 54 41 23 80 51 11 8 2 85 81 75 25 58 29 73 30 49 10 71 17 96 76 89 79 20 12 15 55 7 46 32 19 3 82 35 74 44 38 40 92 14 6 50 97 63 45 93 37 18 62 77 87 36 83 9 90 61 57 28 39 43 52 42 24 56 21 84 26 99 88 59 33 70 4 60 98 95 94 100 13 48 66 72 16 31 64 91 1 86 27 67",
"output": "96"
},
{
"input": "100\n41 67 94 18 14 83 59 12 19 54 13 68 75 26 15 65 80 40 23 30 34 78 47 21 63 79 4 70 3 31 86 69 92 10 61 74 97 100 9 99 32 27 91 55 85 52 16 17 28 1 64 29 58 76 98 25 84 7 2 96 20 72 36 46 49 82 93 44 45 6 38 87 57 50 53 35 60 33 8 89 39 42 37 48 62 81 73 43 95 11 66 88 90 22 24 77 71 51 5 56",
"output": "62"
},
{
"input": "100\n1 88 38 56 62 99 39 80 12 33 57 24 28 84 37 42 10 95 83 58 8 40 20 2 30 78 60 79 36 71 51 31 27 65 22 47 6 19 61 94 75 4 74 35 15 23 92 9 70 13 11 59 90 18 66 81 64 72 16 32 34 67 46 91 21 87 77 97 82 41 7 86 26 43 45 3 93 17 52 96 50 63 48 5 53 44 29 25 98 54 49 14 73 69 89 55 76 85 68 100",
"output": "99"
},
{
"input": "100\n22 59 25 77 68 79 32 45 20 28 61 60 38 86 33 10 100 15 53 75 78 39 67 13 66 34 96 4 63 23 73 29 31 35 71 55 16 14 72 56 94 97 17 93 47 84 57 8 21 51 54 85 26 76 49 81 2 92 62 44 91 87 11 24 95 69 5 7 99 6 65 48 70 12 41 18 74 27 42 3 80 30 50 98 58 37 82 89 83 36 40 52 19 9 88 46 43 1 90 64",
"output": "97"
},
{
"input": "100\n12 1 76 78 97 82 59 80 48 8 91 51 54 74 16 10 89 99 83 63 93 90 55 25 30 33 29 6 9 65 92 79 44 39 15 58 37 46 32 19 27 3 75 49 62 71 98 42 69 50 26 81 96 5 7 61 60 21 20 36 18 34 40 4 47 85 64 38 22 84 2 68 11 56 31 66 17 14 95 43 53 35 23 52 70 13 72 45 41 77 73 87 88 94 28 86 24 67 100 57",
"output": "98"
},
{
"input": "100\n66 100 53 88 7 73 54 41 31 42 8 46 65 90 78 14 94 30 79 39 89 5 83 50 38 61 37 86 22 95 60 98 34 57 91 10 75 25 15 43 23 17 96 35 93 48 87 47 56 13 19 9 82 62 67 80 11 55 99 70 18 26 58 85 12 44 16 45 4 49 20 71 92 24 81 2 76 32 6 21 84 36 52 97 59 63 40 51 27 64 68 3 77 72 28 33 29 1 74 69",
"output": "98"
},
{
"input": "100\n56 64 1 95 72 39 9 49 87 29 94 7 32 6 30 48 50 25 31 78 90 45 60 44 80 68 17 20 73 15 75 98 83 13 71 22 36 26 96 88 35 3 85 54 16 41 92 99 69 86 93 33 43 62 77 46 47 37 12 10 18 40 27 4 63 55 28 59 23 34 61 53 76 42 51 91 21 70 8 58 38 19 5 66 84 11 52 24 81 82 79 67 97 65 57 74 2 89 100 14",
"output": "98"
},
{
"input": "3\n1 2 3",
"output": "2"
},
{
"input": "3\n1 3 2",
"output": "2"
},
{
"input": "3\n2 1 3",
"output": "2"
},
{
"input": "3\n2 3 1",
"output": "2"
},
{
"input": "3\n3 1 2",
"output": "2"
},
{
"input": "3\n3 2 1",
"output": "2"
},
{
"input": "4\n1 2 3 4",
"output": "3"
},
{
"input": "4\n1 2 4 3",
"output": "3"
},
{
"input": "4\n1 3 2 4",
"output": "3"
},
{
"input": "4\n1 3 4 2",
"output": "3"
},
{
"input": "4\n1 4 2 3",
"output": "3"
},
{
"input": "4\n1 4 3 2",
"output": "3"
},
{
"input": "4\n2 1 3 4",
"output": "3"
},
{
"input": "4\n2 1 4 3",
"output": "2"
},
{
"input": "4\n2 4 1 3",
"output": "2"
},
{
"input": "4\n2 4 3 1",
"output": "3"
},
{
"input": "4\n3 1 2 4",
"output": "3"
},
{
"input": "4\n3 1 4 2",
"output": "2"
},
{
"input": "4\n3 2 1 4",
"output": "3"
},
{
"input": "4\n3 2 4 1",
"output": "3"
},
{
"input": "4\n3 4 1 2",
"output": "2"
},
{
"input": "4\n3 4 2 1",
"output": "3"
},
{
"input": "4\n4 1 2 3",
"output": "3"
},
{
"input": "4\n4 1 3 2",
"output": "3"
},
{
"input": "4\n4 2 1 3",
"output": "3"
},
{
"input": "4\n4 2 3 1",
"output": "3"
},
{
"input": "4\n4 3 1 2",
"output": "3"
},
{
"input": "4\n4 3 2 1",
"output": "3"
},
{
"input": "8\n2 5 6 4 8 3 1 7",
"output": "6"
},
{
"input": "5\n2 3 1 5 4",
"output": "3"
},
{
"input": "6\n2 5 3 6 4 1",
"output": "5"
},
{
"input": "6\n5 4 2 6 1 3",
"output": "4"
},
{
"input": "6\n4 2 3 1 6 5",
"output": "4"
},
{
"input": "6\n5 4 2 1 6 3",
"output": "4"
},
{
"input": "9\n7 2 3 4 5 6 1 9 8",
"output": "7"
},
{
"input": "6\n3 2 1 4 6 5",
"output": "4"
},
{
"input": "6\n2 3 4 1 6 5",
"output": "4"
},
{
"input": "10\n5 2 3 4 1 6 7 8 10 9",
"output": "8"
},
{
"input": "6\n5 2 3 1 6 4",
"output": "4"
},
{
"input": "10\n2 9 3 4 1 10 5 6 7 8",
"output": "5"
},
{
"input": "10\n2 3 4 5 6 7 1 8 10 9",
"output": "8"
},
{
"input": "8\n2 3 4 5 1 6 8 7",
"output": "6"
},
{
"input": "6\n2 1 3 4 5 6",
"output": "5"
}
] | 1,616,261,176
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 159
| 62
| 0
|
import sys
input = sys.stdin.readline
n = int(input())
a = [int(i) for i in input().split()]
x, y = a.index(1), a.index(n)
ans = max(x, y, n - x - 1, n - y - 1)
print(ans)
|
Title: Nicholas and Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Nicholas has an array *a* that contains *n* distinct integers from 1 to *n*. In other words, Nicholas has a permutation of size *n*.
Nicholas want the minimum element (integer 1) and the maximum element (integer *n*) to be as far as possible from each other. He wants to perform exactly one swap in order to maximize the distance between the minimum and the maximum elements. The distance between two elements is considered to be equal to the absolute difference between their positions.
Input Specification:
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100) — the size of the permutation.
The second line of the input contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is equal to the element at the *i*-th position.
Output Specification:
Print a single integer — the maximum possible distance between the minimum and the maximum elements Nicholas can achieve by performing exactly one swap.
Demo Input:
['5\n4 5 1 3 2\n', '7\n1 6 5 3 4 7 2\n', '6\n6 5 4 3 2 1\n']
Demo Output:
['3\n', '6\n', '5\n']
Note:
In the first sample, one may obtain the optimal answer by swapping elements 1 and 2.
In the second sample, the minimum and the maximum elements will be located in the opposite ends of the array if we swap 7 and 2.
In the third sample, the distance between the minimum and the maximum elements is already maximum possible, so we just perform some unnecessary swap, for example, one can swap 5 and 2.
|
```python
import sys
input = sys.stdin.readline
n = int(input())
a = [int(i) for i in input().split()]
x, y = a.index(1), a.index(n)
ans = max(x, y, n - x - 1, n - y - 1)
print(ans)
```
| 3
|
|
552
|
B
|
Vanya and Books
|
PROGRAMMING
| 1,200
|
[
"implementation",
"math"
] | null | null |
Vanya got an important task — he should enumerate books in the library and label each book with its number. Each of the *n* books should be assigned with a number from 1 to *n*. Naturally, distinct books should be assigned distinct numbers.
Vanya wants to know how many digits he will have to write down as he labels the books.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=109) — the number of books in the library.
|
Print the number of digits needed to number all the books.
|
[
"13\n",
"4\n"
] |
[
"17\n",
"4\n"
] |
Note to the first test. The books get numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, which totals to 17 digits.
Note to the second sample. The books get numbers 1, 2, 3, 4, which totals to 4 digits.
| 1,000
|
[
{
"input": "13",
"output": "17"
},
{
"input": "4",
"output": "4"
},
{
"input": "100",
"output": "192"
},
{
"input": "99",
"output": "189"
},
{
"input": "1000000000",
"output": "8888888899"
},
{
"input": "1000000",
"output": "5888896"
},
{
"input": "999",
"output": "2889"
},
{
"input": "55",
"output": "101"
},
{
"input": "222222222",
"output": "1888888896"
},
{
"input": "8",
"output": "8"
},
{
"input": "13",
"output": "17"
},
{
"input": "313",
"output": "831"
},
{
"input": "1342",
"output": "4261"
},
{
"input": "30140",
"output": "139594"
},
{
"input": "290092",
"output": "1629447"
},
{
"input": "2156660",
"output": "13985516"
},
{
"input": "96482216",
"output": "760746625"
},
{
"input": "943006819",
"output": "8375950269"
},
{
"input": "1",
"output": "1"
},
{
"input": "7",
"output": "7"
},
{
"input": "35",
"output": "61"
},
{
"input": "996",
"output": "2880"
},
{
"input": "6120",
"output": "23373"
},
{
"input": "30660",
"output": "142194"
},
{
"input": "349463",
"output": "1985673"
},
{
"input": "8171970",
"output": "56092686"
},
{
"input": "36123011",
"output": "277872985"
},
{
"input": "986747865",
"output": "8769619683"
},
{
"input": "9",
"output": "9"
},
{
"input": "10",
"output": "11"
},
{
"input": "11",
"output": "13"
},
{
"input": "101",
"output": "195"
},
{
"input": "1000",
"output": "2893"
},
{
"input": "1001",
"output": "2897"
},
{
"input": "9999",
"output": "38889"
},
{
"input": "10000",
"output": "38894"
},
{
"input": "10001",
"output": "38899"
},
{
"input": "99999",
"output": "488889"
},
{
"input": "100000",
"output": "488895"
},
{
"input": "100001",
"output": "488901"
},
{
"input": "999999",
"output": "5888889"
},
{
"input": "1000001",
"output": "5888903"
},
{
"input": "9999999",
"output": "68888889"
},
{
"input": "10000000",
"output": "68888897"
},
{
"input": "10000001",
"output": "68888905"
},
{
"input": "99999999",
"output": "788888889"
},
{
"input": "100000000",
"output": "788888898"
},
{
"input": "100000001",
"output": "788888907"
},
{
"input": "999999999",
"output": "8888888889"
},
{
"input": "95",
"output": "181"
},
{
"input": "995",
"output": "2877"
},
{
"input": "9995",
"output": "38873"
},
{
"input": "99995",
"output": "488869"
},
{
"input": "999999995",
"output": "8888888853"
},
{
"input": "999999998",
"output": "8888888880"
}
] | 1,535,824,492
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
input numberofbooks
totlength=length(numberofbooks)
nonlast=int(right(numberofbooks,1))
digits=(length-1)*10+nonlast
print digits
|
Title: Vanya and Books
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vanya got an important task — he should enumerate books in the library and label each book with its number. Each of the *n* books should be assigned with a number from 1 to *n*. Naturally, distinct books should be assigned distinct numbers.
Vanya wants to know how many digits he will have to write down as he labels the books.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=109) — the number of books in the library.
Output Specification:
Print the number of digits needed to number all the books.
Demo Input:
['13\n', '4\n']
Demo Output:
['17\n', '4\n']
Note:
Note to the first test. The books get numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, which totals to 17 digits.
Note to the second sample. The books get numbers 1, 2, 3, 4, which totals to 4 digits.
|
```python
input numberofbooks
totlength=length(numberofbooks)
nonlast=int(right(numberofbooks,1))
digits=(length-1)*10+nonlast
print digits
```
| -1
|
|
748
|
B
|
Santa Claus and Keyboard Check
|
PROGRAMMING
| 1,500
|
[
"implementation",
"strings"
] | null | null |
Santa Claus decided to disassemble his keyboard to clean it. After he returned all the keys back, he suddenly realized that some pairs of keys took each other's place! That is, Santa suspects that each key is either on its place, or on the place of another key, which is located exactly where the first key should be.
In order to make sure that he's right and restore the correct order of keys, Santa typed his favorite patter looking only to his keyboard.
You are given the Santa's favorite patter and the string he actually typed. Determine which pairs of keys could be mixed. Each key must occur in pairs at most once.
|
The input consists of only two strings *s* and *t* denoting the favorite Santa's patter and the resulting string. *s* and *t* are not empty and have the same length, which is at most 1000. Both strings consist only of lowercase English letters.
|
If Santa is wrong, and there is no way to divide some of keys into pairs and swap keys in each pair so that the keyboard will be fixed, print «-1» (without quotes).
Otherwise, the first line of output should contain the only integer *k* (*k*<=≥<=0) — the number of pairs of keys that should be swapped. The following *k* lines should contain two space-separated letters each, denoting the keys which should be swapped. All printed letters must be distinct.
If there are several possible answers, print any of them. You are free to choose the order of the pairs and the order of keys in a pair.
Each letter must occur at most once. Santa considers the keyboard to be fixed if he can print his favorite patter without mistakes.
|
[
"helloworld\nehoolwlroz\n",
"hastalavistababy\nhastalavistababy\n",
"merrychristmas\nchristmasmerry\n"
] |
[
"3\nh e\nl o\nd z\n",
"0\n",
"-1\n"
] |
none
| 1,000
|
[
{
"input": "helloworld\nehoolwlroz",
"output": "3\nh e\nl o\nd z"
},
{
"input": "hastalavistababy\nhastalavistababy",
"output": "0"
},
{
"input": "merrychristmas\nchristmasmerry",
"output": "-1"
},
{
"input": "kusyvdgccw\nkusyvdgccw",
"output": "0"
},
{
"input": "bbbbbabbab\naaaaabaaba",
"output": "1\nb a"
},
{
"input": "zzzzzzzzzzzzzzzzzzzzz\nqwertyuiopasdfghjklzx",
"output": "-1"
},
{
"input": "accdccdcdccacddbcacc\naccbccbcbccacbbdcacc",
"output": "1\nd b"
},
{
"input": "giiibdbebjdaihdghahccdeffjhfgidfbdhjdggajfgaidadjd\ngiiibdbebjdaihdghahccdeffjhfgidfbdhjdggajfgaidadjd",
"output": "0"
},
{
"input": "gndggadlmdefgejidmmcglbjdcmglncfmbjjndjcibnjbabfab\nfihffahlmhogfojnhmmcflkjhcmflicgmkjjihjcnkijkakgak",
"output": "5\ng f\nn i\nd h\ne o\nb k"
},
{
"input": "ijpanyhovzwjjxsvaiyhchfaulcsdgfszjnwtoqbtaqygfmxuwvynvlhqhvmkjbooklxfhmqlqvfoxlnoclfxtbhvnkmhjcmrsdc\nijpanyhovzwjjxsvaiyhchfaulcsdgfszjnwtoqbtaqygfmxuwvynvlhqhvmkjbooklxfhmqlqvfoxlnoclfxtbhvnkmhjcmrsdc",
"output": "0"
},
{
"input": "ab\naa",
"output": "-1"
},
{
"input": "a\nz",
"output": "1\na z"
},
{
"input": "zz\nzy",
"output": "-1"
},
{
"input": "as\ndf",
"output": "2\na d\ns f"
},
{
"input": "abc\nbca",
"output": "-1"
},
{
"input": "rtfg\nrftg",
"output": "1\nt f"
},
{
"input": "y\ny",
"output": "0"
},
{
"input": "qwertyuiopasdfghjklzx\nzzzzzzzzzzzzzzzzzzzzz",
"output": "-1"
},
{
"input": "qazwsxedcrfvtgbyhnujmik\nqwertyuiasdfghjkzxcvbnm",
"output": "-1"
},
{
"input": "aaaaaa\nabcdef",
"output": "-1"
},
{
"input": "qwerty\nffffff",
"output": "-1"
},
{
"input": "dofbgdppdvmwjwtdyphhmqliydxyjfxoopxiscevowleccmhwybsxitvujkfliamvqinlrpytyaqdlbywccprukoisyaseibuqbfqjcabkieimsggsakpnqliwhehnemewhychqrfiuyaecoydnromrh\ndofbgdppdvmwjwtdyphhmqliydxyjfxoopxiscevowleccmhwybsxitvujkfliamvqinlrpytyaqdlbywccprukoisyaseibuqbfqjcabkieimsggsakpnqliwhehnemewhychqrfiuyaecoydnromrh",
"output": "0"
},
{
"input": "acdbccddadbcbabbebbaebdcedbbcebeaccecdabadeabeecbacacdcbccedeadadedeccedecdaabcedccccbbcbcedcaccdede\ndcbaccbbdbacadaaeaadeabcebaaceaedccecbdadbedaeecadcdcbcaccebedbdbebeccebecbddacebccccaacacebcdccbebe",
"output": "-1"
},
{
"input": "bacccbbacabbcaacbbba\nbacccbbacabbcaacbbba",
"output": "0"
},
{
"input": "dbadbddddb\nacbacaaaac",
"output": "-1"
},
{
"input": "dacbdbbbdd\nadbdadddaa",
"output": "-1"
},
{
"input": "bbbbcbcbbc\ndaddbabddb",
"output": "-1"
},
{
"input": "dddddbcdbd\nbcbbbdacdb",
"output": "-1"
},
{
"input": "cbadcbcdaa\nabbbababbb",
"output": "-1"
},
{
"input": "dmkgadidjgdjikgkehhfkhgkeamhdkfemikkjhhkdjfaenmkdgenijinamngjgkmgmmedfdehkhdigdnnkhmdkdindhkhndnakdgdhkdefagkedndnijekdmkdfedkhekgdkhgkimfeakdhhhgkkff\nbdenailbmnbmlcnehjjkcgnehadgickhdlecmggcimkahfdeinhflmlfadfnmncdnddhbkbhgejblnbffcgdbeilfigegfifaebnijeihkanehififlmhcbdcikhieghenbejneldkhaebjggncckk",
"output": "-1"
},
{
"input": "acbbccabaa\nabbbbbabaa",
"output": "-1"
},
{
"input": "ccccaccccc\naaaabaaaac",
"output": "-1"
},
{
"input": "acbacacbbb\nacbacacbbb",
"output": "0"
},
{
"input": "abbababbcc\nccccccccbb",
"output": "-1"
},
{
"input": "jbcbbjiifdcbeajgdeabddbfcecafejddcigfcaedbgicjihifgbahjihcjefgabgbccdiibfjgacehbbdjceacdbdeaiibaicih\nhhihhhddcfihddhjfddhffhcididcdhffidjciddfhjdihdhdcjhdhhdhihdcjdhjhiifddhchjdidhhhfhiddifhfddddhddidh",
"output": "-1"
},
{
"input": "ahaeheedefeehahfefhjhhedheeeedhehhfhdejdhffhhejhhhejadhefhahhadjjhdhheeeehfdaffhhefehhhefhhhhehehjda\neiefbdfgdhffieihfhjajifgjddffgifjbhigfagjhhjicaijbdaegidhiejiegaabgjidcfcjhgehhjjchcbjjdhjbiidjdjage",
"output": "-1"
},
{
"input": "fficficbidbcbfaddifbffdbbiaccbbciiaidbcbbiadcccbccbbaibabcbbdbcibcciibiccfifbiiicadibbiaafadacdficbc\nddjhdghbgcbhadeccjdbddcbfjeiiaaigjejcaiabgechiiahibfejbeahafcfhjbihgjfgihdgdagjjhecjafjeedecehcdjhai",
"output": "-1"
},
{
"input": "z\nz",
"output": "0"
},
{
"input": "a\nz",
"output": "1\na z"
},
{
"input": "z\na",
"output": "1\nz a"
},
{
"input": "aa\nzz",
"output": "1\na z"
},
{
"input": "az\nza",
"output": "1\na z"
},
{
"input": "aa\nza",
"output": "-1"
},
{
"input": "za\nzz",
"output": "-1"
},
{
"input": "aa\nab",
"output": "-1"
},
{
"input": "hehe\nheeh",
"output": "-1"
},
{
"input": "bd\ncc",
"output": "-1"
},
{
"input": "he\nhh",
"output": "-1"
},
{
"input": "hee\nheh",
"output": "-1"
},
{
"input": "aa\nac",
"output": "-1"
},
{
"input": "ab\naa",
"output": "-1"
},
{
"input": "hello\nehlol",
"output": "-1"
},
{
"input": "ac\naa",
"output": "-1"
},
{
"input": "aaabbb\nbbbaab",
"output": "-1"
},
{
"input": "aa\nfa",
"output": "-1"
},
{
"input": "hg\nee",
"output": "-1"
},
{
"input": "helloworld\nehoolwlrow",
"output": "-1"
},
{
"input": "abb\nbab",
"output": "-1"
},
{
"input": "aaa\naae",
"output": "-1"
},
{
"input": "aba\nbaa",
"output": "-1"
},
{
"input": "aa\nba",
"output": "-1"
},
{
"input": "da\naa",
"output": "-1"
},
{
"input": "aaa\naab",
"output": "-1"
},
{
"input": "xy\nzz",
"output": "-1"
}
] | 1,485,021,984
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 86
| 77
| 4,608,000
|
dict = {}
l = []
o = input()
s = input()
for i in range(len(o)):
if o[i]==s[i]:
if o[i] not in l:
if o[i] not in dict.keys() and o[i] not in dict.values():
l.append(o[i])
else:
print("-1")
exit()
else:
if o[i] in l or s[i] in l:
print("-1")
exit()
elif o[i] in dict.keys():
if dict[o[i]] != s[i]:
print("-1")
exit()
elif s[i] in dict.keys():
if dict[s[i]] != o[i]:
print("-1")
exit()
elif s[i] in dict.values() or o[i] in dict.values():
print("-1")
exit()
else:
dict[o[i]]=s[i]
print(len(dict))
for c in dict.keys():
print(c,dict[c])
|
Title: Santa Claus and Keyboard Check
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Santa Claus decided to disassemble his keyboard to clean it. After he returned all the keys back, he suddenly realized that some pairs of keys took each other's place! That is, Santa suspects that each key is either on its place, or on the place of another key, which is located exactly where the first key should be.
In order to make sure that he's right and restore the correct order of keys, Santa typed his favorite patter looking only to his keyboard.
You are given the Santa's favorite patter and the string he actually typed. Determine which pairs of keys could be mixed. Each key must occur in pairs at most once.
Input Specification:
The input consists of only two strings *s* and *t* denoting the favorite Santa's patter and the resulting string. *s* and *t* are not empty and have the same length, which is at most 1000. Both strings consist only of lowercase English letters.
Output Specification:
If Santa is wrong, and there is no way to divide some of keys into pairs and swap keys in each pair so that the keyboard will be fixed, print «-1» (without quotes).
Otherwise, the first line of output should contain the only integer *k* (*k*<=≥<=0) — the number of pairs of keys that should be swapped. The following *k* lines should contain two space-separated letters each, denoting the keys which should be swapped. All printed letters must be distinct.
If there are several possible answers, print any of them. You are free to choose the order of the pairs and the order of keys in a pair.
Each letter must occur at most once. Santa considers the keyboard to be fixed if he can print his favorite patter without mistakes.
Demo Input:
['helloworld\nehoolwlroz\n', 'hastalavistababy\nhastalavistababy\n', 'merrychristmas\nchristmasmerry\n']
Demo Output:
['3\nh e\nl o\nd z\n', '0\n', '-1\n']
Note:
none
|
```python
dict = {}
l = []
o = input()
s = input()
for i in range(len(o)):
if o[i]==s[i]:
if o[i] not in l:
if o[i] not in dict.keys() and o[i] not in dict.values():
l.append(o[i])
else:
print("-1")
exit()
else:
if o[i] in l or s[i] in l:
print("-1")
exit()
elif o[i] in dict.keys():
if dict[o[i]] != s[i]:
print("-1")
exit()
elif s[i] in dict.keys():
if dict[s[i]] != o[i]:
print("-1")
exit()
elif s[i] in dict.values() or o[i] in dict.values():
print("-1")
exit()
else:
dict[o[i]]=s[i]
print(len(dict))
for c in dict.keys():
print(c,dict[c])
```
| 3
|
|
279
|
B
|
Books
|
PROGRAMMING
| 1,400
|
[
"binary search",
"brute force",
"implementation",
"two pointers"
] | null | null |
When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book.
Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it.
Print the maximum number of books Valera can read.
|
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book.
|
Print a single integer — the maximum number of books Valera can read.
|
[
"4 5\n3 1 2 1\n",
"3 3\n2 2 3\n"
] |
[
"3\n",
"1\n"
] |
none
| 1,000
|
[
{
"input": "4 5\n3 1 2 1",
"output": "3"
},
{
"input": "3 3\n2 2 3",
"output": "1"
},
{
"input": "1 3\n5",
"output": "0"
},
{
"input": "1 10\n4",
"output": "1"
},
{
"input": "2 10\n6 4",
"output": "2"
},
{
"input": "6 10\n2 3 4 2 1 1",
"output": "4"
},
{
"input": "7 13\n6 8 14 9 4 11 10",
"output": "2"
},
{
"input": "10 15\n10 9 1 1 5 10 5 3 7 2",
"output": "3"
},
{
"input": "20 30\n8 1 2 6 9 4 1 9 9 10 4 7 8 9 5 7 1 8 7 4",
"output": "6"
},
{
"input": "30 60\n16 13 22 38 13 35 17 17 20 38 12 19 9 22 20 3 35 34 34 21 35 40 22 3 27 19 12 4 8 19",
"output": "4"
},
{
"input": "100 100\n75 92 18 6 81 67 7 92 100 65 82 32 50 67 85 31 80 91 84 63 39 52 92 81 1 98 24 12 43 48 17 86 51 72 48 95 45 50 12 66 19 79 49 89 34 1 97 75 20 33 96 27 42 23 73 71 93 1 85 19 66 14 17 61 20 39 36 33 42 61 56 64 23 91 80 99 40 74 13 18 98 85 74 39 62 84 46 74 50 23 38 11 79 14 9 25 66 100 25 52",
"output": "3"
},
{
"input": "10 1\n4418 7528 8170 1736 1317 3205 8183 4995 8039 4708",
"output": "0"
},
{
"input": "50 2\n124 214 63 73 996 760 38 571 451 300 970 1 706 937 837 494 619 88 851 411 957 990 842 613 821 649 627 34 693 678 734 116 816 985 705 940 499 493 922 967 854 439 112 644 961 438 189 572 655 550",
"output": "1"
}
] | 1,697,756,760
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 5
| 92
| 0
|
n, t = map(int, input().split())
a = list(map(int, input().split()))
b = a + a
ans = 0
lptr = 0
rptr = 0
total = 0
while True:
while rptr < 2 * n and total + b[rptr] <= t:
total += b[rptr]
rptr += 1
ans = max(ans, rptr - lptr)
if rptr == 2 * n:
break
total -= b[lptr]
lptr += 1
print(min(ans, n))
|
Title: Books
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book.
Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it.
Print the maximum number of books Valera can read.
Input Specification:
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book.
Output Specification:
Print a single integer — the maximum number of books Valera can read.
Demo Input:
['4 5\n3 1 2 1\n', '3 3\n2 2 3\n']
Demo Output:
['3\n', '1\n']
Note:
none
|
```python
n, t = map(int, input().split())
a = list(map(int, input().split()))
b = a + a
ans = 0
lptr = 0
rptr = 0
total = 0
while True:
while rptr < 2 * n and total + b[rptr] <= t:
total += b[rptr]
rptr += 1
ans = max(ans, rptr - lptr)
if rptr == 2 * n:
break
total -= b[lptr]
lptr += 1
print(min(ans, n))
```
| 0
|
|
6
|
C
|
Alice, Bob and Chocolate
|
PROGRAMMING
| 1,200
|
[
"greedy",
"two pointers"
] |
C. Alice, Bob and Chocolate
|
2
|
64
|
Alice and Bob like games. And now they are ready to start a new game. They have placed *n* chocolate bars in a line. Alice starts to eat chocolate bars one by one from left to right, and Bob — from right to left. For each chocololate bar the time, needed for the player to consume it, is known (Alice and Bob eat them with equal speed). When the player consumes a chocolate bar, he immediately starts with another. It is not allowed to eat two chocolate bars at the same time, to leave the bar unfinished and to make pauses. If both players start to eat the same bar simultaneously, Bob leaves it to Alice as a true gentleman.
How many bars each of the players will consume?
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=105) — the amount of bars on the table. The second line contains a sequence *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000), where *t**i* is the time (in seconds) needed to consume the *i*-th bar (in the order from left to right).
|
Print two numbers *a* and *b*, where *a* is the amount of bars consumed by Alice, and *b* is the amount of bars consumed by Bob.
|
[
"5\n2 9 8 2 7\n"
] |
[
"2 3\n"
] |
none
| 0
|
[
{
"input": "5\n2 9 8 2 7",
"output": "2 3"
},
{
"input": "1\n1",
"output": "1 0"
},
{
"input": "2\n1 1",
"output": "1 1"
},
{
"input": "3\n1 1 1",
"output": "2 1"
},
{
"input": "4\n1 1 1 1",
"output": "2 2"
},
{
"input": "1\n6",
"output": "1 0"
},
{
"input": "2\n8 2",
"output": "1 1"
},
{
"input": "3\n6 8 4",
"output": "1 2"
},
{
"input": "4\n4 3 2 8",
"output": "3 1"
},
{
"input": "5\n1 9 8 2 7",
"output": "2 3"
},
{
"input": "6\n1 4 7 3 2 1",
"output": "3 3"
},
{
"input": "11\n7 9 1 8 7 1 7 1 4 8 1",
"output": "4 7"
},
{
"input": "12\n4 2 7 1 9 5 6 2 7 8 5 7",
"output": "7 5"
},
{
"input": "13\n9 9 9 9 9 9 9 9 9 9 9 9 9",
"output": "7 6"
}
] | 1,672,912,720
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 218
| 6,860,800
|
# LUOGU_RID: 98755200
n = int(input())
lst = list(map(int,input().split()))
l,r = 0,n-1
sl,sr = 0,0
cntl,cntr=0,0
while l<=r:
if sl<=sr:
cntl+=1
sl += lst[l]
l+=1
else:
cntr+=1
sr += lst[r]
r-=1
print("%d %d"%(cntl,cntr))
|
Title: Alice, Bob and Chocolate
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
Alice and Bob like games. And now they are ready to start a new game. They have placed *n* chocolate bars in a line. Alice starts to eat chocolate bars one by one from left to right, and Bob — from right to left. For each chocololate bar the time, needed for the player to consume it, is known (Alice and Bob eat them with equal speed). When the player consumes a chocolate bar, he immediately starts with another. It is not allowed to eat two chocolate bars at the same time, to leave the bar unfinished and to make pauses. If both players start to eat the same bar simultaneously, Bob leaves it to Alice as a true gentleman.
How many bars each of the players will consume?
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=105) — the amount of bars on the table. The second line contains a sequence *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000), where *t**i* is the time (in seconds) needed to consume the *i*-th bar (in the order from left to right).
Output Specification:
Print two numbers *a* and *b*, where *a* is the amount of bars consumed by Alice, and *b* is the amount of bars consumed by Bob.
Demo Input:
['5\n2 9 8 2 7\n']
Demo Output:
['2 3\n']
Note:
none
|
```python
# LUOGU_RID: 98755200
n = int(input())
lst = list(map(int,input().split()))
l,r = 0,n-1
sl,sr = 0,0
cntl,cntr=0,0
while l<=r:
if sl<=sr:
cntl+=1
sl += lst[l]
l+=1
else:
cntr+=1
sr += lst[r]
r-=1
print("%d %d"%(cntl,cntr))
```
| 3.894383
|
294
|
A
|
Shaass and Oskols
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Shaass has decided to hunt some birds. There are *n* horizontal electricity wires aligned parallel to each other. Wires are numbered 1 to *n* from top to bottom. On each wire there are some oskols sitting next to each other. Oskol is the name of a delicious kind of birds in Shaass's territory. Supposed there are *a**i* oskols sitting on the *i*-th wire.
Sometimes Shaass shots one of the birds and the bird dies (suppose that this bird sat at the *i*-th wire). Consequently all the birds on the *i*-th wire to the left of the dead bird get scared and jump up on the wire number *i*<=-<=1, if there exists no upper wire they fly away. Also all the birds to the right of the dead bird jump down on wire number *i*<=+<=1, if there exists no such wire they fly away.
Shaass has shot *m* birds. You're given the initial number of birds on each wire, tell him how many birds are sitting on each wire after the shots.
|
The first line of the input contains an integer *n*, (1<=≤<=*n*<=≤<=100). The next line contains a list of space-separated integers *a*1,<=*a*2,<=...,<=*a**n*, (0<=≤<=*a**i*<=≤<=100).
The third line contains an integer *m*, (0<=≤<=*m*<=≤<=100). Each of the next *m* lines contains two integers *x**i* and *y**i*. The integers mean that for the *i*-th time Shaass shoot the *y**i*-th (from left) bird on the *x**i*-th wire, (1<=≤<=*x**i*<=≤<=*n*,<=1<=≤<=*y**i*). It's guaranteed there will be at least *y**i* birds on the *x**i*-th wire at that moment.
|
On the *i*-th line of the output print the number of birds on the *i*-th wire.
|
[
"5\n10 10 10 10 10\n5\n2 5\n3 13\n2 12\n1 13\n4 6\n",
"3\n2 4 1\n1\n2 2\n"
] |
[
"0\n12\n5\n0\n16\n",
"3\n0\n3\n"
] |
none
| 500
|
[
{
"input": "5\n10 10 10 10 10\n5\n2 5\n3 13\n2 12\n1 13\n4 6",
"output": "0\n12\n5\n0\n16"
},
{
"input": "3\n2 4 1\n1\n2 2",
"output": "3\n0\n3"
},
{
"input": "5\n58 51 45 27 48\n5\n4 9\n5 15\n4 5\n5 8\n1 43",
"output": "0\n66\n57\n7\n0"
},
{
"input": "10\n48 53 10 28 91 56 81 2 67 52\n2\n2 40\n6 51",
"output": "87\n0\n23\n28\n141\n0\n86\n2\n67\n52"
},
{
"input": "2\n72 45\n6\n1 69\n2 41\n1 19\n2 7\n1 5\n2 1",
"output": "0\n0"
},
{
"input": "10\n95 54 36 39 98 30 19 24 14 12\n3\n9 5\n8 15\n7 5",
"output": "95\n54\n36\n39\n98\n34\n0\n28\n13\n21"
},
{
"input": "100\n95 15 25 18 64 62 23 59 70 84 50 26 87 35 75 86 0 22 77 60 66 41 21 9 75 50 25 3 69 14 39 68 64 46 59 99 2 0 21 76 90 12 61 42 6 91 36 39 47 41 93 81 66 57 70 36 68 89 52 1 19 93 67 22 76 20 8 81 98 18 100 73 61 93 75 80 53 72 40 20 2 86 33 59 27 16 11 26 55 44 47 55 94 58 2 55 82 22 9 95\n0",
"output": "95\n15\n25\n18\n64\n62\n23\n59\n70\n84\n50\n26\n87\n35\n75\n86\n0\n22\n77\n60\n66\n41\n21\n9\n75\n50\n25\n3\n69\n14\n39\n68\n64\n46\n59\n99\n2\n0\n21\n76\n90\n12\n61\n42\n6\n91\n36\n39\n47\n41\n93\n81\n66\n57\n70\n36\n68\n89\n52\n1\n19\n93\n67\n22\n76\n20\n8\n81\n98\n18\n100\n73\n61\n93\n75\n80\n53\n72\n40\n20\n2\n86\n33\n59\n27\n16\n11\n26\n55\n44\n47\n55\n94\n58\n2\n55\n82\n22\n9\n95"
},
{
"input": "1\n100\n1\n1 100",
"output": "0"
},
{
"input": "1\n100\n1\n1 1",
"output": "0"
},
{
"input": "1\n50\n1\n1 25",
"output": "0"
},
{
"input": "2\n50 0\n1\n1 1",
"output": "0\n49"
},
{
"input": "1\n10\n0",
"output": "10"
}
] | 1,649,926,642
| 2,147,483,647
|
PyPy 3-64
|
RUNTIME_ERROR
|
TESTS
| 26
| 154
| 3,379,200
|
n = int(input())
l = list(map(int,input().split()))
m = int(input())
for i in range(m):
x,y = map(int,input().split())
if x==1 and n>1:
l[x] += l[x-1]-y
elif x==n and n>1:
l[x-2] += y-1
else:
l[x] += l[x-1]-y
l[x-2] += y-1
l[x-1]=0
for val in l:
print(val)
|
Title: Shaass and Oskols
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Shaass has decided to hunt some birds. There are *n* horizontal electricity wires aligned parallel to each other. Wires are numbered 1 to *n* from top to bottom. On each wire there are some oskols sitting next to each other. Oskol is the name of a delicious kind of birds in Shaass's territory. Supposed there are *a**i* oskols sitting on the *i*-th wire.
Sometimes Shaass shots one of the birds and the bird dies (suppose that this bird sat at the *i*-th wire). Consequently all the birds on the *i*-th wire to the left of the dead bird get scared and jump up on the wire number *i*<=-<=1, if there exists no upper wire they fly away. Also all the birds to the right of the dead bird jump down on wire number *i*<=+<=1, if there exists no such wire they fly away.
Shaass has shot *m* birds. You're given the initial number of birds on each wire, tell him how many birds are sitting on each wire after the shots.
Input Specification:
The first line of the input contains an integer *n*, (1<=≤<=*n*<=≤<=100). The next line contains a list of space-separated integers *a*1,<=*a*2,<=...,<=*a**n*, (0<=≤<=*a**i*<=≤<=100).
The third line contains an integer *m*, (0<=≤<=*m*<=≤<=100). Each of the next *m* lines contains two integers *x**i* and *y**i*. The integers mean that for the *i*-th time Shaass shoot the *y**i*-th (from left) bird on the *x**i*-th wire, (1<=≤<=*x**i*<=≤<=*n*,<=1<=≤<=*y**i*). It's guaranteed there will be at least *y**i* birds on the *x**i*-th wire at that moment.
Output Specification:
On the *i*-th line of the output print the number of birds on the *i*-th wire.
Demo Input:
['5\n10 10 10 10 10\n5\n2 5\n3 13\n2 12\n1 13\n4 6\n', '3\n2 4 1\n1\n2 2\n']
Demo Output:
['0\n12\n5\n0\n16\n', '3\n0\n3\n']
Note:
none
|
```python
n = int(input())
l = list(map(int,input().split()))
m = int(input())
for i in range(m):
x,y = map(int,input().split())
if x==1 and n>1:
l[x] += l[x-1]-y
elif x==n and n>1:
l[x-2] += y-1
else:
l[x] += l[x-1]-y
l[x-2] += y-1
l[x-1]=0
for val in l:
print(val)
```
| -1
|
|
108
|
A
|
Palindromic Times
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] |
A. Palindromic Times
|
2
|
256
|
Tattah is asleep if and only if Tattah is attending a lecture. This is a well-known formula among Tattah's colleagues.
On a Wednesday afternoon, Tattah was attending Professor HH's lecture. At 12:21, right before falling asleep, he was staring at the digital watch around Saher's wrist. He noticed that the digits on the clock were the same when read from both directions i.e. a palindrome.
In his sleep, he started dreaming about such rare moments of the day when the time displayed on a digital clock is a palindrome. As soon as he woke up, he felt destined to write a program that finds the next such moment.
However, he still hasn't mastered the skill of programming while sleeping, so your task is to help him.
|
The first and only line of the input starts with a string with the format "HH:MM" where "HH" is from "00" to "23" and "MM" is from "00" to "59". Both "HH" and "MM" have exactly two digits.
|
Print the palindromic time of day that comes soonest after the time given in the input. If the input time is palindromic, output the soonest palindromic time after the input time.
|
[
"12:21\n",
"23:59\n"
] |
[
"13:31\n",
"00:00\n"
] |
none
| 500
|
[
{
"input": "12:21",
"output": "13:31"
},
{
"input": "23:59",
"output": "00:00"
},
{
"input": "15:51",
"output": "20:02"
},
{
"input": "10:44",
"output": "11:11"
},
{
"input": "04:02",
"output": "04:40"
},
{
"input": "02:11",
"output": "02:20"
},
{
"input": "12:15",
"output": "12:21"
},
{
"input": "07:07",
"output": "10:01"
},
{
"input": "00:17",
"output": "01:10"
},
{
"input": "04:55",
"output": "05:50"
},
{
"input": "02:17",
"output": "02:20"
},
{
"input": "07:56",
"output": "10:01"
},
{
"input": "00:29",
"output": "01:10"
},
{
"input": "23:31",
"output": "23:32"
},
{
"input": "19:30",
"output": "20:02"
},
{
"input": "12:14",
"output": "12:21"
},
{
"input": "17:32",
"output": "20:02"
},
{
"input": "03:44",
"output": "04:40"
},
{
"input": "07:15",
"output": "10:01"
},
{
"input": "18:42",
"output": "20:02"
},
{
"input": "08:56",
"output": "10:01"
},
{
"input": "04:50",
"output": "05:50"
},
{
"input": "14:32",
"output": "14:41"
},
{
"input": "23:23",
"output": "23:32"
},
{
"input": "08:35",
"output": "10:01"
},
{
"input": "03:32",
"output": "04:40"
},
{
"input": "07:59",
"output": "10:01"
},
{
"input": "14:12",
"output": "14:41"
},
{
"input": "23:52",
"output": "00:00"
},
{
"input": "16:36",
"output": "20:02"
},
{
"input": "17:50",
"output": "20:02"
},
{
"input": "06:59",
"output": "10:01"
},
{
"input": "16:50",
"output": "20:02"
},
{
"input": "00:00",
"output": "01:10"
},
{
"input": "23:59",
"output": "00:00"
},
{
"input": "23:33",
"output": "00:00"
}
] | 1,586,000,808
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 7
| 186
| 307,200
|
s = input()
a = [x for x in s.split(":")]
temp = ""
f = -1
if(int(a[0])+1==24):
temp ="00"+":"+"00"
f = 0
for i in range(1,24-int(a[0])):
k = str(a[0])
if(int(k[::-1]) > int(a[1]) and int(k[::-1]) < 59 and f!=0):
temp= k + ":" +k[::-1]
f = 0
break
else:
k = str(int(a[0])+i)
if(int(k) < 9):
k = "0"+ k
if(int(k[::-1]) < 59 and f!=0):
temp= k + ":" +k[::-1]
f = 0
break
print(temp)
|
Title: Palindromic Times
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Tattah is asleep if and only if Tattah is attending a lecture. This is a well-known formula among Tattah's colleagues.
On a Wednesday afternoon, Tattah was attending Professor HH's lecture. At 12:21, right before falling asleep, he was staring at the digital watch around Saher's wrist. He noticed that the digits on the clock were the same when read from both directions i.e. a palindrome.
In his sleep, he started dreaming about such rare moments of the day when the time displayed on a digital clock is a palindrome. As soon as he woke up, he felt destined to write a program that finds the next such moment.
However, he still hasn't mastered the skill of programming while sleeping, so your task is to help him.
Input Specification:
The first and only line of the input starts with a string with the format "HH:MM" where "HH" is from "00" to "23" and "MM" is from "00" to "59". Both "HH" and "MM" have exactly two digits.
Output Specification:
Print the palindromic time of day that comes soonest after the time given in the input. If the input time is palindromic, output the soonest palindromic time after the input time.
Demo Input:
['12:21\n', '23:59\n']
Demo Output:
['13:31\n', '00:00\n']
Note:
none
|
```python
s = input()
a = [x for x in s.split(":")]
temp = ""
f = -1
if(int(a[0])+1==24):
temp ="00"+":"+"00"
f = 0
for i in range(1,24-int(a[0])):
k = str(a[0])
if(int(k[::-1]) > int(a[1]) and int(k[::-1]) < 59 and f!=0):
temp= k + ":" +k[::-1]
f = 0
break
else:
k = str(int(a[0])+i)
if(int(k) < 9):
k = "0"+ k
if(int(k[::-1]) < 59 and f!=0):
temp= k + ":" +k[::-1]
f = 0
break
print(temp)
```
| 0
|
478
|
B
|
Random Teams
|
PROGRAMMING
| 1,300
|
[
"combinatorics",
"constructive algorithms",
"greedy",
"math"
] | null | null |
*n* participants of the competition were split into *m* teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.
Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.
|
The only line of input contains two integers *n* and *m*, separated by a single space (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the number of participants and the number of teams respectively.
|
The only line of the output should contain two integers *k**min* and *k**max* — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.
|
[
"5 1\n",
"3 2\n",
"6 3\n"
] |
[
"10 10\n",
"1 1\n",
"3 6\n"
] |
In the first sample all the participants get into one team, so there will be exactly ten pairs of friends.
In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.
In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people.
| 1,000
|
[
{
"input": "5 1",
"output": "10 10"
},
{
"input": "3 2",
"output": "1 1"
},
{
"input": "6 3",
"output": "3 6"
},
{
"input": "5 3",
"output": "2 3"
},
{
"input": "10 2",
"output": "20 36"
},
{
"input": "10 6",
"output": "4 10"
},
{
"input": "1000000000 1",
"output": "499999999500000000 499999999500000000"
},
{
"input": "5000000 12",
"output": "1041664166668 12499942500066"
},
{
"input": "1833 195",
"output": "7722 1342341"
},
{
"input": "1000000000 1000000000",
"output": "0 0"
},
{
"input": "1000000000 1000000",
"output": "499500000000 499000500499500000"
},
{
"input": "1000000000 32170",
"output": "15541930838100 499967831017438365"
},
{
"input": "1000000 1000",
"output": "499500000 499000999500"
},
{
"input": "1234 1123",
"output": "111 6216"
},
{
"input": "599222887 298488",
"output": "601178656545 179355218158217800"
},
{
"input": "999999999 500000000",
"output": "499999999 124999999750000000"
},
{
"input": "1000000000 384842119",
"output": "845473643 189209609585784021"
},
{
"input": "1000000000 384842119",
"output": "845473643 189209609585784021"
},
{
"input": "1000000000 2",
"output": "249999999500000000 499999998500000001"
},
{
"input": "1000000000 999999999",
"output": "1 1"
},
{
"input": "38447 383",
"output": "1910550 724453080"
},
{
"input": "100000000 99999799",
"output": "201 20301"
},
{
"input": "1 1",
"output": "0 0"
},
{
"input": "2 1",
"output": "1 1"
},
{
"input": "2 2",
"output": "0 0"
},
{
"input": "10 10",
"output": "0 0"
}
] | 1,684,767,935
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 26
| 62
| 0
|
n, m = map(int, input().split())
a = n // m
b = n % m
maksa = n - m + 1
ans1 = maksa*(maksa - 1) // 2
ans2 = b * (a+1)*a // 2 + (m-b)*a*(a-1) // 2
print(ans2, ans1)
|
Title: Random Teams
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
*n* participants of the competition were split into *m* teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.
Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.
Input Specification:
The only line of input contains two integers *n* and *m*, separated by a single space (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the number of participants and the number of teams respectively.
Output Specification:
The only line of the output should contain two integers *k**min* and *k**max* — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.
Demo Input:
['5 1\n', '3 2\n', '6 3\n']
Demo Output:
['10 10\n', '1 1\n', '3 6\n']
Note:
In the first sample all the participants get into one team, so there will be exactly ten pairs of friends.
In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.
In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people.
|
```python
n, m = map(int, input().split())
a = n // m
b = n % m
maksa = n - m + 1
ans1 = maksa*(maksa - 1) // 2
ans2 = b * (a+1)*a // 2 + (m-b)*a*(a-1) // 2
print(ans2, ans1)
```
| 3
|
|
677
|
A
|
Vanya and Fence
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*.
Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
|
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
|
Print a single integer — the minimum possible valid width of the road.
|
[
"3 7\n4 5 14\n",
"6 1\n1 1 1 1 1 1\n",
"6 5\n7 6 8 9 10 5\n"
] |
[
"4\n",
"6\n",
"11\n"
] |
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4.
In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough.
In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
| 500
|
[
{
"input": "3 7\n4 5 14",
"output": "4"
},
{
"input": "6 1\n1 1 1 1 1 1",
"output": "6"
},
{
"input": "6 5\n7 6 8 9 10 5",
"output": "11"
},
{
"input": "10 420\n214 614 297 675 82 740 174 23 255 15",
"output": "13"
},
{
"input": "10 561\n657 23 1096 487 785 66 481 554 1000 821",
"output": "15"
},
{
"input": "100 342\n478 143 359 336 162 333 385 515 117 496 310 538 469 539 258 676 466 677 1 296 150 560 26 213 627 221 255 126 617 174 279 178 24 435 70 145 619 46 669 566 300 67 576 251 58 176 441 564 569 194 24 669 73 262 457 259 619 78 400 579 222 626 269 47 80 315 160 194 455 186 315 424 197 246 683 220 68 682 83 233 290 664 273 598 362 305 674 614 321 575 362 120 14 534 62 436 294 351 485 396",
"output": "144"
},
{
"input": "100 290\n244 49 276 77 449 261 468 458 201 424 9 131 300 88 432 394 104 77 13 289 435 259 111 453 168 394 156 412 351 576 178 530 81 271 228 564 125 328 42 372 205 61 180 471 33 360 567 331 222 318 241 117 529 169 188 484 202 202 299 268 246 343 44 364 333 494 59 236 84 485 50 8 428 8 571 227 205 310 210 9 324 472 368 490 114 84 296 305 411 351 569 393 283 120 510 171 232 151 134 366",
"output": "145"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 1\n2",
"output": "2"
},
{
"input": "46 71\n30 26 56 138 123 77 60 122 73 45 79 10 130 3 14 1 38 46 128 50 82 16 32 68 28 98 62 106 2 49 131 11 114 39 139 70 40 50 45 137 33 30 35 136 135 19",
"output": "63"
},
{
"input": "20 723\n212 602 293 591 754 91 1135 640 80 495 845 928 1399 498 926 1431 1226 869 814 1386",
"output": "31"
},
{
"input": "48 864\n843 1020 751 1694 18 1429 1395 1174 272 1158 1628 1233 1710 441 765 561 778 748 1501 1200 563 1263 1398 1687 1518 1640 1591 839 500 466 1603 1587 1201 1209 432 868 1159 639 649 628 9 91 1036 147 896 1557 941 518",
"output": "75"
},
{
"input": "26 708\n549 241 821 734 945 1161 566 1268 216 30 1142 730 529 1014 255 168 796 1148 89 113 1328 286 743 871 1259 1397",
"output": "41"
},
{
"input": "75 940\n1620 1745 1599 441 64 1466 1496 1239 1716 1475 778 106 1136 1212 1261 444 781 257 1071 747 626 232 609 1544 682 1326 469 1361 1460 1450 1207 1319 922 625 1737 1057 1698 592 692 80 1016 541 1254 201 682 1007 847 206 1066 809 259 109 240 1611 219 1455 1326 1377 1827 786 42 1002 1382 1592 543 1866 1198 334 1524 1760 340 1566 955 257 1118",
"output": "116"
}
] | 1,693,052,775
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 29
| 61
| 0
|
count_h = str(input())
count_h = count_h.split(" ")
height = int(count_h[1])
friends = str(input())
friends = friends.split(" ")
reuslt = 0
for friend in friends:
if(int(friend) <= height):
reuslt = reuslt + 1
else:
reuslt = reuslt + 2
print(reuslt)
|
Title: Vanya and Fence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*.
Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
Input Specification:
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
Output Specification:
Print a single integer — the minimum possible valid width of the road.
Demo Input:
['3 7\n4 5 14\n', '6 1\n1 1 1 1 1 1\n', '6 5\n7 6 8 9 10 5\n']
Demo Output:
['4\n', '6\n', '11\n']
Note:
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4.
In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough.
In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
|
```python
count_h = str(input())
count_h = count_h.split(" ")
height = int(count_h[1])
friends = str(input())
friends = friends.split(" ")
reuslt = 0
for friend in friends:
if(int(friend) <= height):
reuslt = reuslt + 1
else:
reuslt = reuslt + 2
print(reuslt)
```
| 3
|
|
556
|
A
|
Case of the Zeros and Ones
|
PROGRAMMING
| 900
|
[
"greedy"
] | null | null |
Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones.
Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result.
Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number.
|
First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=2·105), the length of the string that Andreid has.
The second line contains the string of length *n* consisting only from zeros and ones.
|
Output the minimum length of the string that may remain after applying the described operations several times.
|
[
"4\n1100\n",
"5\n01010\n",
"8\n11101111\n"
] |
[
"0\n",
"1\n",
"6\n"
] |
In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 250
|
[
{
"input": "4\n1100",
"output": "0"
},
{
"input": "5\n01010",
"output": "1"
},
{
"input": "8\n11101111",
"output": "6"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n00",
"output": "2"
},
{
"input": "2\n01",
"output": "0"
},
{
"input": "2\n10",
"output": "0"
},
{
"input": "2\n11",
"output": "2"
},
{
"input": "3\n001",
"output": "1"
},
{
"input": "6\n110110",
"output": "2"
},
{
"input": "7\n0000011",
"output": "3"
},
{
"input": "6\n110010",
"output": "0"
},
{
"input": "6\n110100",
"output": "0"
},
{
"input": "3\n100",
"output": "1"
},
{
"input": "6\n010111",
"output": "2"
},
{
"input": "8\n01011100",
"output": "0"
},
{
"input": "6\n001011",
"output": "0"
},
{
"input": "7\n1110000",
"output": "1"
},
{
"input": "9\n011111101",
"output": "5"
}
] | 1,686,514,744
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
#include <bits/stdc++.h>
#define fast_io ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
typedef long long int lli;
using namespace std;
#define debug(x) cout << #x << '=' << x << endl;
void printArr(vector<int>arr) { for(int i:arr) cout << i << ' '; }
int maxArr(vector<int> arr) { int m=arr[0]; for(int e:arr) if(e>m) m=e; return m; }
int minArr(vector<int> arr) { int m=arr[0]; for(int e:arr) if(e<m) m=e; return m; }
int main() { fast_io
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
int n;
cin >> n;
string s;
cin >> s;
int o=0, z=0;
for(int i=0; i<n; i++) {
if(s[i]=='0') z++;
else o++;
}
cout << abs(o-z);
return 0;
}
|
Title: Case of the Zeros and Ones
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones.
Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result.
Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number.
Input Specification:
First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=2·105), the length of the string that Andreid has.
The second line contains the string of length *n* consisting only from zeros and ones.
Output Specification:
Output the minimum length of the string that may remain after applying the described operations several times.
Demo Input:
['4\n1100\n', '5\n01010\n', '8\n11101111\n']
Demo Output:
['0\n', '1\n', '6\n']
Note:
In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
#include <bits/stdc++.h>
#define fast_io ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
typedef long long int lli;
using namespace std;
#define debug(x) cout << #x << '=' << x << endl;
void printArr(vector<int>arr) { for(int i:arr) cout << i << ' '; }
int maxArr(vector<int> arr) { int m=arr[0]; for(int e:arr) if(e>m) m=e; return m; }
int minArr(vector<int> arr) { int m=arr[0]; for(int e:arr) if(e<m) m=e; return m; }
int main() { fast_io
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
int n;
cin >> n;
string s;
cin >> s;
int o=0, z=0;
for(int i=0; i<n; i++) {
if(s[i]=='0') z++;
else o++;
}
cout << abs(o-z);
return 0;
}
```
| -1
|
|
199
|
A
|
Hexadecimal's theorem
|
PROGRAMMING
| 900
|
[
"brute force",
"constructive algorithms",
"implementation",
"number theory"
] | null | null |
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.
Let's remember how Fibonacci numbers can be calculated. *F*0<==<=0, *F*1<==<=1, and all the next numbers are *F**i*<==<=*F**i*<=-<=2<=+<=*F**i*<=-<=1.
So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number *n* by three not necessary different Fibonacci numbers or say that it is impossible.
|
The input contains of a single integer *n* (0<=≤<=*n*<=<<=109) — the number that should be represented by the rules described above. It is guaranteed that *n* is a Fibonacci number.
|
Output three required numbers: *a*, *b* and *c*. If there is no answer for the test you have to print "I'm too stupid to solve this problem" without the quotes.
If there are multiple answers, print any of them.
|
[
"3\n",
"13\n"
] |
[
"1 1 1\n",
"2 3 8\n"
] |
none
| 500
|
[
{
"input": "3",
"output": "1 1 1"
},
{
"input": "13",
"output": "2 3 8"
},
{
"input": "0",
"output": "0 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "2",
"output": "1 1 0"
},
{
"input": "1597",
"output": "233 377 987"
},
{
"input": "0",
"output": "0 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "2",
"output": "1 1 0"
},
{
"input": "3",
"output": "1 1 1"
},
{
"input": "5",
"output": "1 1 3"
},
{
"input": "8",
"output": "1 2 5"
},
{
"input": "13",
"output": "2 3 8"
},
{
"input": "21",
"output": "3 5 13"
},
{
"input": "34",
"output": "5 8 21"
},
{
"input": "55",
"output": "8 13 34"
},
{
"input": "89",
"output": "13 21 55"
},
{
"input": "144",
"output": "21 34 89"
},
{
"input": "233",
"output": "34 55 144"
},
{
"input": "377",
"output": "55 89 233"
},
{
"input": "610",
"output": "89 144 377"
},
{
"input": "987",
"output": "144 233 610"
},
{
"input": "1597",
"output": "233 377 987"
},
{
"input": "2584",
"output": "377 610 1597"
},
{
"input": "4181",
"output": "610 987 2584"
},
{
"input": "6765",
"output": "987 1597 4181"
},
{
"input": "10946",
"output": "1597 2584 6765"
},
{
"input": "17711",
"output": "2584 4181 10946"
},
{
"input": "28657",
"output": "4181 6765 17711"
},
{
"input": "46368",
"output": "6765 10946 28657"
},
{
"input": "75025",
"output": "10946 17711 46368"
},
{
"input": "121393",
"output": "17711 28657 75025"
},
{
"input": "196418",
"output": "28657 46368 121393"
},
{
"input": "317811",
"output": "46368 75025 196418"
},
{
"input": "514229",
"output": "75025 121393 317811"
},
{
"input": "832040",
"output": "121393 196418 514229"
},
{
"input": "1346269",
"output": "196418 317811 832040"
},
{
"input": "2178309",
"output": "317811 514229 1346269"
},
{
"input": "3524578",
"output": "514229 832040 2178309"
},
{
"input": "5702887",
"output": "832040 1346269 3524578"
},
{
"input": "9227465",
"output": "1346269 2178309 5702887"
},
{
"input": "14930352",
"output": "2178309 3524578 9227465"
},
{
"input": "24157817",
"output": "3524578 5702887 14930352"
},
{
"input": "39088169",
"output": "5702887 9227465 24157817"
},
{
"input": "63245986",
"output": "9227465 14930352 39088169"
},
{
"input": "102334155",
"output": "14930352 24157817 63245986"
},
{
"input": "165580141",
"output": "24157817 39088169 102334155"
},
{
"input": "267914296",
"output": "39088169 63245986 165580141"
},
{
"input": "433494437",
"output": "63245986 102334155 267914296"
},
{
"input": "701408733",
"output": "102334155 165580141 433494437"
},
{
"input": "701408733",
"output": "102334155 165580141 433494437"
},
{
"input": "102334155",
"output": "14930352 24157817 63245986"
},
{
"input": "63245986",
"output": "9227465 14930352 39088169"
}
] | 1,629,501,471
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 156
| 6,758,400
|
# Nome: Matheus de Souza Oliveira RA: 203407
fibonacciNumber = int(input())
print(f"0 0 {fibonacciNumber}")
|
Title: Hexadecimal's theorem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.
Let's remember how Fibonacci numbers can be calculated. *F*0<==<=0, *F*1<==<=1, and all the next numbers are *F**i*<==<=*F**i*<=-<=2<=+<=*F**i*<=-<=1.
So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number *n* by three not necessary different Fibonacci numbers or say that it is impossible.
Input Specification:
The input contains of a single integer *n* (0<=≤<=*n*<=<<=109) — the number that should be represented by the rules described above. It is guaranteed that *n* is a Fibonacci number.
Output Specification:
Output three required numbers: *a*, *b* and *c*. If there is no answer for the test you have to print "I'm too stupid to solve this problem" without the quotes.
If there are multiple answers, print any of them.
Demo Input:
['3\n', '13\n']
Demo Output:
['1 1 1\n', '2 3 8\n']
Note:
none
|
```python
# Nome: Matheus de Souza Oliveira RA: 203407
fibonacciNumber = int(input())
print(f"0 0 {fibonacciNumber}")
```
| 3
|
|
923
|
D
|
Picking Strings
|
PROGRAMMING
| 2,500
|
[
"constructive algorithms",
"implementation",
"strings"
] | null | null |
Alice has a string consisting of characters 'A', 'B' and 'C'. Bob can use the following transitions on any substring of our string in any order any number of times:
- A BC - B AC - C AB - AAA empty string
Note that a substring is one or more consecutive characters. For given queries, determine whether it is possible to obtain the target string from source.
|
The first line contains a string *S* (1<=≤<=|*S*|<=≤<=105). The second line contains a string *T* (1<=≤<=|*T*|<=≤<=105), each of these strings consists only of uppercase English letters 'A', 'B' and 'C'.
The third line contains the number of queries *Q* (1<=≤<=*Q*<=≤<=105).
The following *Q* lines describe queries. The *i*-th of these lines contains four space separated integers *a**i*, *b**i*, *c**i*, *d**i*. These represent the *i*-th query: is it possible to create *T*[*c**i*..*d**i*] from *S*[*a**i*..*b**i*] by applying the above transitions finite amount of times?
Here, *U*[*x*..*y*] is a substring of *U* that begins at index *x* (indexed from 1) and ends at index *y*. In particular, *U*[1..|*U*|] is the whole string *U*.
It is guaranteed that 1<=≤<=*a*<=≤<=*b*<=≤<=|*S*| and 1<=≤<=*c*<=≤<=*d*<=≤<=|*T*|.
|
Print a string of *Q* characters, where the *i*-th character is '1' if the answer to the *i*-th query is positive, and '0' otherwise.
|
[
"AABCCBAAB\nABCB\n5\n1 3 1 2\n2 2 2 4\n7 9 1 1\n3 4 2 3\n4 5 1 3\n"
] |
[
"10011\n"
] |
In the first query we can achieve the result, for instance, by using transitions <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/2c164f8b6e335aa51b97bbd019ca0d7326927314.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
The third query asks for changing AAB to A — but in this case we are not able to get rid of the character 'B'.
| 1,750
|
[
{
"input": "AABCCBAAB\nABCB\n5\n1 3 1 2\n2 2 2 4\n7 9 1 1\n3 4 2 3\n4 5 1 3",
"output": "10011"
},
{
"input": "AAAAAA\nAAAAAA\n30\n3 4 1 2\n3 3 4 4\n5 6 3 4\n3 3 2 3\n6 6 1 5\n2 4 4 6\n1 6 2 5\n6 6 3 4\n3 5 1 4\n4 5 3 6\n2 3 2 4\n3 4 4 4\n6 6 4 6\n3 3 2 5\n1 5 3 3\n4 6 1 2\n6 6 6 6\n3 3 3 4\n6 6 6 6\n5 6 4 4\n6 6 5 5\n2 3 1 4\n3 6 4 5\n3 5 6 6\n4 5 2 6\n5 6 6 6\n1 4 2 5\n4 5 2 5\n4 5 1 3\n2 2 4 6",
"output": "111001000000000010101000001000"
},
{
"input": "A\nA\n1\n1 1 1 1",
"output": "1"
},
{
"input": "CCBACACBCCCBBAAC\nCACCAAABAACBBBBAC\n20\n7 7 2 15\n3 11 14 15\n4 9 6 12\n10 15 13 17\n10 16 5 14\n14 15 12 16\n16 16 16 16\n3 15 9 14\n10 12 8 12\n15 15 9 10\n14 15 8 15\n7 14 17 17\n15 15 17 17\n15 15 5 9\n4 14 12 17\n13 15 8 12\n1 4 2 2\n6 13 17 17\n11 14 5 11\n15 16 2 9",
"output": "00001100101000010000"
},
{
"input": "ABAAAAAA\nABABBAAAAAA\n5\n3 8 4 11\n3 8 3 11\n2 8 2 11\n1 8 1 11\n1 8 2 11",
"output": "00111"
},
{
"input": "ABC\nABC\n9\n1 1 1 1\n1 1 2 2\n1 1 3 3\n2 2 1 1\n2 2 2 2\n2 2 3 3\n3 3 1 1\n3 3 2 2\n3 3 3 3",
"output": "100011011"
},
{
"input": "A\nBB\n1\n1 1 1 2",
"output": "1"
},
{
"input": "BBAACCBACACBCCCBBAAC\nCACCAAABAACBBBBACABC\n1\n3 10 6 13",
"output": "0"
},
{
"input": "AAAAACAAAAAB\nAAAAABAAAAAC\n20\n1 6 10 12\n10 12 7 12\n9 12 8 12\n2 6 8 12\n7 12 2 6\n9 12 7 12\n1 6 10 12\n4 6 3 6\n7 12 7 12\n4 6 5 6\n3 6 12 12\n5 6 8 12\n9 12 1 6\n2 6 3 6\n10 12 2 6\n1 6 12 12\n7 12 3 6\n9 12 3 6\n10 12 10 12\n11 12 11 12",
"output": "11111111111111111111"
},
{
"input": "AAABABACACACAAACAC\nAABCBBACABACBBCBCC\n20\n6 17 17 17\n14 17 13 14\n1 13 7 12\n11 17 5 17\n6 10 16 17\n16 17 16 16\n15 17 17 17\n15 15 7 10\n1 4 10 14\n4 11 2 17\n6 9 1 7\n16 16 11 18\n4 14 6 17\n1 17 6 18\n13 18 15 18\n1 12 5 11\n8 8 12 17\n10 15 3 7\n17 17 9 14\n6 17 6 6",
"output": "00010001011111100110"
},
{
"input": "AAACAABB\nCACBCCBB\n10\n2 2 4 5\n4 4 3 3\n1 4 1 8\n5 5 2 8\n7 7 3 4\n6 6 2 2\n1 7 1 1\n6 7 7 8\n4 6 6 8\n8 8 6 8",
"output": "1111010011"
},
{
"input": "A\nCB\n1\n1 1 1 2",
"output": "1"
},
{
"input": "BCBBC\nABBCB\n5\n2 2 2 4\n3 4 2 4\n1 2 2 2\n2 3 4 5\n5 5 2 4",
"output": "10011"
}
] | 1,680,538,015
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 109
| 1,512
| 15,052,800
|
a = input()
b = input()
w = [0]
x = [0]
for i in a:
if i == 'A':
w.append(w[-1]+1)
x.append(x[-1])
else:
w.append(0)
x.append(x[-1]+1)
y = [0]
z = [0]
for i in b:
if i == 'A':
y.append(y[-1]+1)
z.append(z[-1])
else:
y.append(0)
z.append(z[-1]+1)
ans = ''
for _ in range(int(input())):
a,b,c,d = map(int,input().split())
p = x[b]-x[a-1]
q = z[d]-z[c-1]
if p > q or p % 2 != q % 2:
ans += '0'
else:
m = min(w[b],b-a+1)
n = min(y[d],d-c+1)
if m < n or m % 3 != n % 3 and p == q:
ans += '0'
elif p == 0 and q > 0 and m == n:
ans += '0'
else:
ans += '1'
print(ans)
|
Title: Picking Strings
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Alice has a string consisting of characters 'A', 'B' and 'C'. Bob can use the following transitions on any substring of our string in any order any number of times:
- A BC - B AC - C AB - AAA empty string
Note that a substring is one or more consecutive characters. For given queries, determine whether it is possible to obtain the target string from source.
Input Specification:
The first line contains a string *S* (1<=≤<=|*S*|<=≤<=105). The second line contains a string *T* (1<=≤<=|*T*|<=≤<=105), each of these strings consists only of uppercase English letters 'A', 'B' and 'C'.
The third line contains the number of queries *Q* (1<=≤<=*Q*<=≤<=105).
The following *Q* lines describe queries. The *i*-th of these lines contains four space separated integers *a**i*, *b**i*, *c**i*, *d**i*. These represent the *i*-th query: is it possible to create *T*[*c**i*..*d**i*] from *S*[*a**i*..*b**i*] by applying the above transitions finite amount of times?
Here, *U*[*x*..*y*] is a substring of *U* that begins at index *x* (indexed from 1) and ends at index *y*. In particular, *U*[1..|*U*|] is the whole string *U*.
It is guaranteed that 1<=≤<=*a*<=≤<=*b*<=≤<=|*S*| and 1<=≤<=*c*<=≤<=*d*<=≤<=|*T*|.
Output Specification:
Print a string of *Q* characters, where the *i*-th character is '1' if the answer to the *i*-th query is positive, and '0' otherwise.
Demo Input:
['AABCCBAAB\nABCB\n5\n1 3 1 2\n2 2 2 4\n7 9 1 1\n3 4 2 3\n4 5 1 3\n']
Demo Output:
['10011\n']
Note:
In the first query we can achieve the result, for instance, by using transitions <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/2c164f8b6e335aa51b97bbd019ca0d7326927314.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
The third query asks for changing AAB to A — but in this case we are not able to get rid of the character 'B'.
|
```python
a = input()
b = input()
w = [0]
x = [0]
for i in a:
if i == 'A':
w.append(w[-1]+1)
x.append(x[-1])
else:
w.append(0)
x.append(x[-1]+1)
y = [0]
z = [0]
for i in b:
if i == 'A':
y.append(y[-1]+1)
z.append(z[-1])
else:
y.append(0)
z.append(z[-1]+1)
ans = ''
for _ in range(int(input())):
a,b,c,d = map(int,input().split())
p = x[b]-x[a-1]
q = z[d]-z[c-1]
if p > q or p % 2 != q % 2:
ans += '0'
else:
m = min(w[b],b-a+1)
n = min(y[d],d-c+1)
if m < n or m % 3 != n % 3 and p == q:
ans += '0'
elif p == 0 and q > 0 and m == n:
ans += '0'
else:
ans += '1'
print(ans)
```
| 3
|
|
807
|
A
|
Is it rated?
|
PROGRAMMING
| 900
|
[
"implementation",
"sortings"
] | null | null |
Is it rated?
Here it is. The Ultimate Question of Competitive Programming, Codeforces, and Everything. And you are here to answer it.
Another Codeforces round has been conducted. No two participants have the same number of points. For each participant, from the top to the bottom of the standings, their rating before and after the round is known.
It's known that if at least one participant's rating has changed, then the round was rated for sure.
It's also known that if the round was rated and a participant with lower rating took a better place in the standings than a participant with higher rating, then at least one round participant's rating has changed.
In this problem, you should not make any other assumptions about the rating system.
Determine if the current round is rated, unrated, or it's impossible to determine whether it is rated of not.
|
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=1000) — the number of round participants.
Each of the next *n* lines contains two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=4126) — the rating of the *i*-th participant before and after the round, respectively. The participants are listed in order from the top to the bottom of the standings.
|
If the round is rated for sure, print "rated". If the round is unrated for sure, print "unrated". If it's impossible to determine whether the round is rated or not, print "maybe".
|
[
"6\n3060 3060\n2194 2194\n2876 2903\n2624 2624\n3007 2991\n2884 2884\n",
"4\n1500 1500\n1300 1300\n1200 1200\n1400 1400\n",
"5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n1699 1699\n"
] |
[
"rated\n",
"unrated\n",
"maybe\n"
] |
In the first example, the ratings of the participants in the third and fifth places have changed, therefore, the round was rated.
In the second example, no one's rating has changed, but the participant in the second place has lower rating than the participant in the fourth place. Therefore, if the round was rated, someone's rating would've changed for sure.
In the third example, no one's rating has changed, and the participants took places in non-increasing order of their rating. Therefore, it's impossible to determine whether the round is rated or not.
| 500
|
[
{
"input": "6\n3060 3060\n2194 2194\n2876 2903\n2624 2624\n3007 2991\n2884 2884",
"output": "rated"
},
{
"input": "4\n1500 1500\n1300 1300\n1200 1200\n1400 1400",
"output": "unrated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n1699 1699",
"output": "maybe"
},
{
"input": "2\n1 1\n1 1",
"output": "maybe"
},
{
"input": "2\n4126 4126\n4126 4126",
"output": "maybe"
},
{
"input": "10\n446 446\n1331 1331\n3594 3594\n1346 1902\n91 91\n3590 3590\n2437 2437\n4007 3871\n2797 699\n1423 1423",
"output": "rated"
},
{
"input": "10\n4078 4078\n2876 2876\n1061 1061\n3721 3721\n143 143\n2992 2992\n3279 3279\n3389 3389\n1702 1702\n1110 1110",
"output": "unrated"
},
{
"input": "10\n4078 4078\n3721 3721\n3389 3389\n3279 3279\n2992 2992\n2876 2876\n1702 1702\n1110 1110\n1061 1061\n143 143",
"output": "maybe"
},
{
"input": "2\n3936 3936\n2967 2967",
"output": "maybe"
},
{
"input": "2\n1 1\n2 2",
"output": "unrated"
},
{
"input": "2\n2 2\n1 1",
"output": "maybe"
},
{
"input": "2\n2 1\n1 2",
"output": "rated"
},
{
"input": "2\n2967 2967\n3936 3936",
"output": "unrated"
},
{
"input": "3\n1200 1200\n1200 1200\n1300 1300",
"output": "unrated"
},
{
"input": "3\n3 3\n2 2\n1 1",
"output": "maybe"
},
{
"input": "3\n1 1\n1 1\n2 2",
"output": "unrated"
},
{
"input": "2\n3 2\n3 2",
"output": "rated"
},
{
"input": "3\n5 5\n4 4\n3 4",
"output": "rated"
},
{
"input": "3\n200 200\n200 200\n300 300",
"output": "unrated"
},
{
"input": "3\n1 1\n2 2\n3 3",
"output": "unrated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2245 2245\n1699 1699",
"output": "maybe"
},
{
"input": "2\n10 10\n8 8",
"output": "maybe"
},
{
"input": "3\n1500 1500\n1500 1500\n1600 1600",
"output": "unrated"
},
{
"input": "3\n1500 1500\n1500 1500\n1700 1700",
"output": "unrated"
},
{
"input": "4\n100 100\n100 100\n70 70\n80 80",
"output": "unrated"
},
{
"input": "2\n1 2\n2 1",
"output": "rated"
},
{
"input": "3\n5 5\n4 3\n3 3",
"output": "rated"
},
{
"input": "3\n1600 1650\n1500 1550\n1400 1450",
"output": "rated"
},
{
"input": "4\n2000 2000\n1500 1500\n1500 1500\n1700 1700",
"output": "unrated"
},
{
"input": "4\n1500 1500\n1400 1400\n1400 1400\n1700 1700",
"output": "unrated"
},
{
"input": "2\n1600 1600\n1400 1400",
"output": "maybe"
},
{
"input": "2\n3 1\n9 8",
"output": "rated"
},
{
"input": "2\n2 1\n1 1",
"output": "rated"
},
{
"input": "4\n4123 4123\n4123 4123\n2670 2670\n3670 3670",
"output": "unrated"
},
{
"input": "2\n2 2\n3 3",
"output": "unrated"
},
{
"input": "2\n10 11\n5 4",
"output": "rated"
},
{
"input": "2\n15 14\n13 12",
"output": "rated"
},
{
"input": "2\n2 1\n2 2",
"output": "rated"
},
{
"input": "3\n2670 2670\n3670 3670\n4106 4106",
"output": "unrated"
},
{
"input": "3\n4 5\n3 3\n2 2",
"output": "rated"
},
{
"input": "2\n10 9\n10 10",
"output": "rated"
},
{
"input": "3\n1011 1011\n1011 999\n2200 2100",
"output": "rated"
},
{
"input": "2\n3 3\n5 5",
"output": "unrated"
},
{
"input": "2\n1500 1500\n3000 2000",
"output": "rated"
},
{
"input": "2\n5 6\n5 5",
"output": "rated"
},
{
"input": "3\n2000 2000\n1500 1501\n500 500",
"output": "rated"
},
{
"input": "2\n2 3\n2 2",
"output": "rated"
},
{
"input": "2\n3 3\n2 2",
"output": "maybe"
},
{
"input": "2\n1 2\n1 1",
"output": "rated"
},
{
"input": "4\n3123 3123\n2777 2777\n2246 2246\n1699 1699",
"output": "maybe"
},
{
"input": "2\n15 14\n14 13",
"output": "rated"
},
{
"input": "4\n3000 3000\n2900 2900\n3000 3000\n2900 2900",
"output": "unrated"
},
{
"input": "6\n30 3060\n24 2194\n26 2903\n24 2624\n37 2991\n24 2884",
"output": "rated"
},
{
"input": "2\n100 99\n100 100",
"output": "rated"
},
{
"input": "4\n2 2\n1 1\n1 1\n2 2",
"output": "unrated"
},
{
"input": "3\n100 101\n100 100\n100 100",
"output": "rated"
},
{
"input": "4\n1000 1001\n900 900\n950 950\n890 890",
"output": "rated"
},
{
"input": "2\n2 3\n1 1",
"output": "rated"
},
{
"input": "2\n2 2\n1 1",
"output": "maybe"
},
{
"input": "2\n3 2\n2 2",
"output": "rated"
},
{
"input": "2\n3 2\n3 3",
"output": "rated"
},
{
"input": "2\n1 1\n2 2",
"output": "unrated"
},
{
"input": "3\n3 2\n3 3\n3 3",
"output": "rated"
},
{
"input": "4\n1500 1501\n1300 1300\n1200 1200\n1400 1400",
"output": "rated"
},
{
"input": "3\n1000 1000\n500 500\n400 300",
"output": "rated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n3000 3000",
"output": "unrated"
},
{
"input": "2\n1 1\n2 3",
"output": "rated"
},
{
"input": "2\n6 2\n6 2",
"output": "rated"
},
{
"input": "5\n3123 3123\n1699 1699\n2777 2777\n2246 2246\n2246 2246",
"output": "unrated"
},
{
"input": "2\n1500 1500\n1600 1600",
"output": "unrated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2241 2241\n1699 1699",
"output": "maybe"
},
{
"input": "2\n20 30\n10 5",
"output": "rated"
},
{
"input": "3\n1 1\n2 2\n1 1",
"output": "unrated"
},
{
"input": "2\n1 2\n3 3",
"output": "rated"
},
{
"input": "5\n5 5\n4 4\n3 3\n2 2\n1 1",
"output": "maybe"
},
{
"input": "2\n2 2\n2 1",
"output": "rated"
},
{
"input": "2\n100 100\n90 89",
"output": "rated"
},
{
"input": "2\n1000 900\n2000 2000",
"output": "rated"
},
{
"input": "2\n50 10\n10 50",
"output": "rated"
},
{
"input": "2\n200 200\n100 100",
"output": "maybe"
},
{
"input": "3\n2 2\n2 2\n3 3",
"output": "unrated"
},
{
"input": "3\n1000 1000\n300 300\n100 100",
"output": "maybe"
},
{
"input": "4\n2 2\n2 2\n3 3\n4 4",
"output": "unrated"
},
{
"input": "2\n5 3\n6 3",
"output": "rated"
},
{
"input": "2\n1200 1100\n1200 1000",
"output": "rated"
},
{
"input": "2\n5 5\n4 4",
"output": "maybe"
},
{
"input": "2\n5 5\n3 3",
"output": "maybe"
},
{
"input": "5\n1500 1500\n1300 1300\n1200 1200\n1400 1400\n1100 1100",
"output": "unrated"
},
{
"input": "5\n10 10\n9 9\n8 8\n7 7\n6 6",
"output": "maybe"
},
{
"input": "3\n1000 1000\n300 300\n10 10",
"output": "maybe"
},
{
"input": "5\n6 6\n5 5\n4 4\n3 3\n2 2",
"output": "maybe"
},
{
"input": "2\n3 3\n1 1",
"output": "maybe"
},
{
"input": "4\n2 2\n2 2\n2 2\n3 3",
"output": "unrated"
},
{
"input": "2\n1000 1000\n700 700",
"output": "maybe"
},
{
"input": "2\n4 3\n5 3",
"output": "rated"
},
{
"input": "2\n1000 1000\n1100 1100",
"output": "unrated"
},
{
"input": "4\n5 5\n4 4\n3 3\n2 2",
"output": "maybe"
},
{
"input": "3\n1 1\n2 3\n2 2",
"output": "rated"
},
{
"input": "2\n1 2\n1 3",
"output": "rated"
},
{
"input": "2\n3 3\n1 2",
"output": "rated"
},
{
"input": "4\n1501 1500\n1300 1300\n1200 1200\n1400 1400",
"output": "rated"
},
{
"input": "5\n1 1\n2 2\n3 3\n4 4\n5 5",
"output": "unrated"
},
{
"input": "2\n10 10\n1 2",
"output": "rated"
},
{
"input": "6\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n1699 1699\n1900 1900",
"output": "unrated"
},
{
"input": "6\n3123 3123\n2777 2777\n3000 3000\n2246 2246\n2246 2246\n1699 1699",
"output": "unrated"
},
{
"input": "2\n100 100\n110 110",
"output": "unrated"
},
{
"input": "3\n3 3\n3 3\n4 4",
"output": "unrated"
},
{
"input": "3\n3 3\n3 2\n4 4",
"output": "rated"
},
{
"input": "3\n5 2\n4 4\n3 3",
"output": "rated"
},
{
"input": "4\n4 4\n3 3\n2 2\n1 1",
"output": "maybe"
},
{
"input": "2\n1 1\n3 2",
"output": "rated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n2699 2699",
"output": "unrated"
},
{
"input": "3\n3 3\n3 3\n3 4",
"output": "rated"
},
{
"input": "3\n1 2\n2 2\n3 3",
"output": "rated"
},
{
"input": "3\n1 2\n1 2\n1 2",
"output": "rated"
},
{
"input": "2\n2 1\n2 1",
"output": "rated"
},
{
"input": "2\n1 2\n3 4",
"output": "rated"
},
{
"input": "2\n3 2\n2 3",
"output": "rated"
},
{
"input": "3\n1500 1500\n1600 1600\n1600 1600",
"output": "unrated"
},
{
"input": "3\n1 1\n3 3\n4 4",
"output": "unrated"
},
{
"input": "3\n1 1\n2 2\n2 2",
"output": "unrated"
},
{
"input": "2\n10 12\n8 8",
"output": "rated"
},
{
"input": "5\n1200 1200\n1500 1500\n1500 1500\n1500 1500\n1500 1500",
"output": "unrated"
},
{
"input": "2\n1 2\n2 2",
"output": "rated"
},
{
"input": "3\n1500 1400\n1200 1200\n1100 1100",
"output": "rated"
},
{
"input": "2\n10 12\n10 10",
"output": "rated"
},
{
"input": "3\n1500 1500\n1400 1400\n1300 1300",
"output": "maybe"
},
{
"input": "3\n3 3\n4 4\n5 5",
"output": "unrated"
},
{
"input": "3\n2 6\n3 5\n4 4",
"output": "rated"
},
{
"input": "2\n5 6\n4 6",
"output": "rated"
},
{
"input": "4\n10 10\n10 10\n7 7\n8 8",
"output": "unrated"
},
{
"input": "2\n4 4\n3 3",
"output": "maybe"
}
] | 1,494,234,780
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 61
| 0
|
n = int(input())
a = b = [0] * n
ans = "maybe"
for i in range(n):
a[i], b[i] = map(int, input().split())
if i > 0 and b[i - 1] < b[i]:
ans = "unrated"
for i in range(n):
if a[i] != b[i]:
ans = "rated"
break
print(ans)
|
Title: Is it rated?
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Is it rated?
Here it is. The Ultimate Question of Competitive Programming, Codeforces, and Everything. And you are here to answer it.
Another Codeforces round has been conducted. No two participants have the same number of points. For each participant, from the top to the bottom of the standings, their rating before and after the round is known.
It's known that if at least one participant's rating has changed, then the round was rated for sure.
It's also known that if the round was rated and a participant with lower rating took a better place in the standings than a participant with higher rating, then at least one round participant's rating has changed.
In this problem, you should not make any other assumptions about the rating system.
Determine if the current round is rated, unrated, or it's impossible to determine whether it is rated of not.
Input Specification:
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=1000) — the number of round participants.
Each of the next *n* lines contains two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=4126) — the rating of the *i*-th participant before and after the round, respectively. The participants are listed in order from the top to the bottom of the standings.
Output Specification:
If the round is rated for sure, print "rated". If the round is unrated for sure, print "unrated". If it's impossible to determine whether the round is rated or not, print "maybe".
Demo Input:
['6\n3060 3060\n2194 2194\n2876 2903\n2624 2624\n3007 2991\n2884 2884\n', '4\n1500 1500\n1300 1300\n1200 1200\n1400 1400\n', '5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n1699 1699\n']
Demo Output:
['rated\n', 'unrated\n', 'maybe\n']
Note:
In the first example, the ratings of the participants in the third and fifth places have changed, therefore, the round was rated.
In the second example, no one's rating has changed, but the participant in the second place has lower rating than the participant in the fourth place. Therefore, if the round was rated, someone's rating would've changed for sure.
In the third example, no one's rating has changed, and the participants took places in non-increasing order of their rating. Therefore, it's impossible to determine whether the round is rated or not.
|
```python
n = int(input())
a = b = [0] * n
ans = "maybe"
for i in range(n):
a[i], b[i] = map(int, input().split())
if i > 0 and b[i - 1] < b[i]:
ans = "unrated"
for i in range(n):
if a[i] != b[i]:
ans = "rated"
break
print(ans)
```
| 0
|
|
359
|
A
|
Table
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms",
"greedy",
"implementation"
] | null | null |
Simon has a rectangular table consisting of *n* rows and *m* columns. Simon numbered the rows of the table from top to bottom starting from one and the columns — from left to right starting from one. We'll represent the cell on the *x*-th row and the *y*-th column as a pair of numbers (*x*,<=*y*). The table corners are cells: (1,<=1), (*n*,<=1), (1,<=*m*), (*n*,<=*m*).
Simon thinks that some cells in this table are good. Besides, it's known that no good cell is the corner of the table.
Initially, all cells of the table are colorless. Simon wants to color all cells of his table. In one move, he can choose any good cell of table (*x*1,<=*y*1), an arbitrary corner of the table (*x*2,<=*y*2) and color all cells of the table (*p*,<=*q*), which meet both inequations: *min*(*x*1,<=*x*2)<=≤<=*p*<=≤<=*max*(*x*1,<=*x*2), *min*(*y*1,<=*y*2)<=≤<=*q*<=≤<=*max*(*y*1,<=*y*2).
Help Simon! Find the minimum number of operations needed to color all cells of the table. Note that you can color one cell multiple times.
|
The first line contains exactly two integers *n*, *m* (3<=≤<=*n*,<=*m*<=≤<=50).
Next *n* lines contain the description of the table cells. Specifically, the *i*-th line contains *m* space-separated integers *a**i*1,<=*a**i*2,<=...,<=*a**im*. If *a**ij* equals zero, then cell (*i*,<=*j*) isn't good. Otherwise *a**ij* equals one. It is guaranteed that at least one cell is good. It is guaranteed that no good cell is a corner.
|
Print a single number — the minimum number of operations Simon needs to carry out his idea.
|
[
"3 3\n0 0 0\n0 1 0\n0 0 0\n",
"4 3\n0 0 0\n0 0 1\n1 0 0\n0 0 0\n"
] |
[
"4\n",
"2\n"
] |
In the first sample, the sequence of operations can be like this:
- For the first time you need to choose cell (2, 2) and corner (1, 1). - For the second time you need to choose cell (2, 2) and corner (3, 3). - For the third time you need to choose cell (2, 2) and corner (3, 1). - For the fourth time you need to choose cell (2, 2) and corner (1, 3).
In the second sample the sequence of operations can be like this:
- For the first time you need to choose cell (3, 1) and corner (4, 3). - For the second time you need to choose cell (2, 3) and corner (1, 1).
| 500
|
[
{
"input": "3 3\n0 0 0\n0 1 0\n0 0 0",
"output": "4"
},
{
"input": "4 3\n0 0 0\n0 0 1\n1 0 0\n0 0 0",
"output": "2"
},
{
"input": "50 4\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 1 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0",
"output": "4"
},
{
"input": "5 50\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "2"
},
{
"input": "4 32\n0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "2"
},
{
"input": "7 4\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 1 0 0",
"output": "2"
},
{
"input": "13 15\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "2"
},
{
"input": "3 3\n0 1 0\n0 0 0\n0 0 0",
"output": "2"
},
{
"input": "3 3\n0 0 0\n0 0 0\n0 1 0",
"output": "2"
},
{
"input": "3 3\n0 0 0\n1 0 0\n0 0 0",
"output": "2"
},
{
"input": "3 3\n0 0 0\n0 0 1\n0 0 0",
"output": "2"
},
{
"input": "3 4\n0 1 0 0\n0 0 0 0\n0 0 0 0",
"output": "2"
},
{
"input": "3 5\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0",
"output": "2"
},
{
"input": "3 5\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "3 5\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0",
"output": "2"
},
{
"input": "3 5\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "4 3\n0 1 0\n0 0 0\n0 0 0\n0 0 0",
"output": "2"
},
{
"input": "4 3\n0 0 0\n0 0 0\n0 0 0\n0 1 0",
"output": "2"
},
{
"input": "5 3\n0 0 0\n0 0 0\n1 0 0\n0 0 0\n0 0 0",
"output": "2"
},
{
"input": "5 3\n0 0 0\n0 0 1\n0 0 0\n0 0 0\n0 0 0",
"output": "2"
},
{
"input": "5 3\n0 0 0\n0 1 0\n0 0 0\n0 0 0\n0 0 0",
"output": "4"
},
{
"input": "4 4\n0 0 0 0\n0 1 1 0\n0 1 1 0\n0 0 0 0",
"output": "4"
},
{
"input": "5 3\n0 0 0\n0 0 1\n0 0 0\n0 1 0\n0 0 0",
"output": "2"
},
{
"input": "3 3\n0 0 0\n0 1 1\n0 0 0",
"output": "2"
},
{
"input": "4 3\n0 0 0\n0 0 0\n0 1 0\n0 0 0",
"output": "4"
},
{
"input": "5 5\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "5 3\n0 0 0\n0 0 0\n0 0 0\n0 0 1\n0 0 0",
"output": "2"
}
] | 1,453,500,158
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 37
| 109
| 204,800
|
n, m = map(int, input().split())
matrix = [[] for i in range(n)]
for i in range(n):
matrix[i] = list(map(int, input().split()))
flag = 0
for i in range(n):
for j in range(m):
if matrix[i][j] == 1:
if i == 0 or i == n - 1 or j == 0 or j == m - 1:
flag = 1
if flag == 0:
print(4)
else:
print(2)
|
Title: Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Simon has a rectangular table consisting of *n* rows and *m* columns. Simon numbered the rows of the table from top to bottom starting from one and the columns — from left to right starting from one. We'll represent the cell on the *x*-th row and the *y*-th column as a pair of numbers (*x*,<=*y*). The table corners are cells: (1,<=1), (*n*,<=1), (1,<=*m*), (*n*,<=*m*).
Simon thinks that some cells in this table are good. Besides, it's known that no good cell is the corner of the table.
Initially, all cells of the table are colorless. Simon wants to color all cells of his table. In one move, he can choose any good cell of table (*x*1,<=*y*1), an arbitrary corner of the table (*x*2,<=*y*2) and color all cells of the table (*p*,<=*q*), which meet both inequations: *min*(*x*1,<=*x*2)<=≤<=*p*<=≤<=*max*(*x*1,<=*x*2), *min*(*y*1,<=*y*2)<=≤<=*q*<=≤<=*max*(*y*1,<=*y*2).
Help Simon! Find the minimum number of operations needed to color all cells of the table. Note that you can color one cell multiple times.
Input Specification:
The first line contains exactly two integers *n*, *m* (3<=≤<=*n*,<=*m*<=≤<=50).
Next *n* lines contain the description of the table cells. Specifically, the *i*-th line contains *m* space-separated integers *a**i*1,<=*a**i*2,<=...,<=*a**im*. If *a**ij* equals zero, then cell (*i*,<=*j*) isn't good. Otherwise *a**ij* equals one. It is guaranteed that at least one cell is good. It is guaranteed that no good cell is a corner.
Output Specification:
Print a single number — the minimum number of operations Simon needs to carry out his idea.
Demo Input:
['3 3\n0 0 0\n0 1 0\n0 0 0\n', '4 3\n0 0 0\n0 0 1\n1 0 0\n0 0 0\n']
Demo Output:
['4\n', '2\n']
Note:
In the first sample, the sequence of operations can be like this:
- For the first time you need to choose cell (2, 2) and corner (1, 1). - For the second time you need to choose cell (2, 2) and corner (3, 3). - For the third time you need to choose cell (2, 2) and corner (3, 1). - For the fourth time you need to choose cell (2, 2) and corner (1, 3).
In the second sample the sequence of operations can be like this:
- For the first time you need to choose cell (3, 1) and corner (4, 3). - For the second time you need to choose cell (2, 3) and corner (1, 1).
|
```python
n, m = map(int, input().split())
matrix = [[] for i in range(n)]
for i in range(n):
matrix[i] = list(map(int, input().split()))
flag = 0
for i in range(n):
for j in range(m):
if matrix[i][j] == 1:
if i == 0 or i == n - 1 or j == 0 or j == m - 1:
flag = 1
if flag == 0:
print(4)
else:
print(2)
```
| 3
|
|
965
|
B
|
Battleship
|
PROGRAMMING
| 1,300
|
[
"implementation"
] | null | null |
Arkady is playing Battleship. The rules of this game aren't really important.
There is a field of $n \times n$ cells. There should be exactly one $k$-decker on the field, i. e. a ship that is $k$ cells long oriented either horizontally or vertically. However, Arkady doesn't know where it is located. For each cell Arkady knows if it is definitely empty or can contain a part of the ship.
Consider all possible locations of the ship. Find such a cell that belongs to the maximum possible number of different locations of the ship.
|
The first line contains two integers $n$ and $k$ ($1 \le k \le n \le 100$) — the size of the field and the size of the ship.
The next $n$ lines contain the field. Each line contains $n$ characters, each of which is either '#' (denotes a definitely empty cell) or '.' (denotes a cell that can belong to the ship).
|
Output two integers — the row and the column of a cell that belongs to the maximum possible number of different locations of the ship.
If there are multiple answers, output any of them. In particular, if no ship can be placed on the field, you can output any cell.
|
[
"4 3\n#..#\n#.#.\n....\n.###\n",
"10 4\n#....##...\n.#...#....\n..#..#..#.\n...#.#....\n.#..##.#..\n.....#...#\n...#.##...\n.#...#.#..\n.....#..#.\n...#.#...#\n",
"19 6\n##..............###\n#......#####.....##\n.....#########.....\n....###########....\n...#############...\n..###############..\n.#################.\n.#################.\n.#################.\n.#################.\n#####....##....####\n####............###\n####............###\n#####...####...####\n.#####..####..#####\n...###........###..\n....###########....\n.........##........\n#.................#\n"
] |
[
"3 2\n",
"6 1\n",
"1 8\n"
] |
The picture below shows the three possible locations of the ship that contain the cell $(3, 2)$ in the first sample.
| 1,000
|
[
{
"input": "4 3\n#..#\n#.#.\n....\n.###",
"output": "3 2"
},
{
"input": "10 4\n#....##...\n.#...#....\n..#..#..#.\n...#.#....\n.#..##.#..\n.....#...#\n...#.##...\n.#...#.#..\n.....#..#.\n...#.#...#",
"output": "6 1"
},
{
"input": "19 6\n##..............###\n#......#####.....##\n.....#########.....\n....###########....\n...#############...\n..###############..\n.#################.\n.#################.\n.#################.\n.#################.\n#####....##....####\n####............###\n####............###\n#####...####...####\n.#####..####..#####\n...###........###..\n....###########....\n.........##........\n#.................#",
"output": "1 8"
},
{
"input": "10 4\n##..######\n#...######\n#...######\n#......###\n#.......##\n.##.######\n.##.######\n.##.######\n.#....####\n....######",
"output": "4 4"
},
{
"input": "1 1\n.",
"output": "1 1"
},
{
"input": "1 1\n#",
"output": "1 1"
},
{
"input": "5 2\n..##.\n.###.\n#####\n#####\n..#..",
"output": "1 1"
},
{
"input": "5 2\n..##.\n####.\n#####\n.####\n..#..",
"output": "5 1"
},
{
"input": "5 2\n..##.\n####.\n#####\n####.\n..#..",
"output": "5 5"
},
{
"input": "5 2\n.##..\n.###.\n#####\n#####\n..#..",
"output": "1 5"
},
{
"input": "2 2\n##\n##",
"output": "1 1"
},
{
"input": "4 1\n####\n####\n####\n###.",
"output": "4 4"
},
{
"input": "2 2\n#.\n.#",
"output": "1 1"
},
{
"input": "3 3\n###\n##.\n###",
"output": "1 1"
},
{
"input": "4 4\n####\n####\n####\n####",
"output": "1 1"
},
{
"input": "4 3\n####\n####\n####\n####",
"output": "1 1"
},
{
"input": "3 1\n###\n###\n###",
"output": "1 1"
},
{
"input": "3 2\n###\n###\n###",
"output": "1 1"
},
{
"input": "3 3\n.#.\n#.#\n.#.",
"output": "1 1"
}
] | 1,526,498,182
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 39
| 842
| 7,065,600
|
n, k = [int(x) for x in input().split()]
a = []
for i in range(n):
s = input()
a.append(s)
mx, I, J = 0, 0, 0
for i in range(n):
for j in range(n):
if a[i][j] == '#':
continue
iup, ido = i, i
jup, jdo = j, j
while iup >= 0 and a[iup][j] == '.':
iup -= 1
while ido < n and a[ido][j] == '.':
ido += 1
while jup >= 0 and a[i][jup] == '.':
jup -= 1
while jdo < n and a[i][jdo] == '.':
jdo += 1
iup = max(iup + 1, i - k + 1)
ido = min(ido - 1, i + k - 1)
jup = max(jup + 1, j - k + 1)
jdo = min(jdo - 1, j + k - 1)
tmp = max((ido - iup + 1)-(k-1), 0) + max(0, (jdo - jup + 1) - (k-1))
if tmp > mx:
mx = tmp
I, J = i, j
print(I + 1, end=" ")
print(J + 1)
|
Title: Battleship
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Arkady is playing Battleship. The rules of this game aren't really important.
There is a field of $n \times n$ cells. There should be exactly one $k$-decker on the field, i. e. a ship that is $k$ cells long oriented either horizontally or vertically. However, Arkady doesn't know where it is located. For each cell Arkady knows if it is definitely empty or can contain a part of the ship.
Consider all possible locations of the ship. Find such a cell that belongs to the maximum possible number of different locations of the ship.
Input Specification:
The first line contains two integers $n$ and $k$ ($1 \le k \le n \le 100$) — the size of the field and the size of the ship.
The next $n$ lines contain the field. Each line contains $n$ characters, each of which is either '#' (denotes a definitely empty cell) or '.' (denotes a cell that can belong to the ship).
Output Specification:
Output two integers — the row and the column of a cell that belongs to the maximum possible number of different locations of the ship.
If there are multiple answers, output any of them. In particular, if no ship can be placed on the field, you can output any cell.
Demo Input:
['4 3\n#..#\n#.#.\n....\n.###\n', '10 4\n#....##...\n.#...#....\n..#..#..#.\n...#.#....\n.#..##.#..\n.....#...#\n...#.##...\n.#...#.#..\n.....#..#.\n...#.#...#\n', '19 6\n##..............###\n#......#####.....##\n.....#########.....\n....###########....\n...#############...\n..###############..\n.#################.\n.#################.\n.#################.\n.#################.\n#####....##....####\n####............###\n####............###\n#####...####...####\n.#####..####..#####\n...###........###..\n....###########....\n.........##........\n#.................#\n']
Demo Output:
['3 2\n', '6 1\n', '1 8\n']
Note:
The picture below shows the three possible locations of the ship that contain the cell $(3, 2)$ in the first sample.
|
```python
n, k = [int(x) for x in input().split()]
a = []
for i in range(n):
s = input()
a.append(s)
mx, I, J = 0, 0, 0
for i in range(n):
for j in range(n):
if a[i][j] == '#':
continue
iup, ido = i, i
jup, jdo = j, j
while iup >= 0 and a[iup][j] == '.':
iup -= 1
while ido < n and a[ido][j] == '.':
ido += 1
while jup >= 0 and a[i][jup] == '.':
jup -= 1
while jdo < n and a[i][jdo] == '.':
jdo += 1
iup = max(iup + 1, i - k + 1)
ido = min(ido - 1, i + k - 1)
jup = max(jup + 1, j - k + 1)
jdo = min(jdo - 1, j + k - 1)
tmp = max((ido - iup + 1)-(k-1), 0) + max(0, (jdo - jup + 1) - (k-1))
if tmp > mx:
mx = tmp
I, J = i, j
print(I + 1, end=" ")
print(J + 1)
```
| 3
|
|
285
|
B
|
Find Marble
|
PROGRAMMING
| 1,200
|
[
"implementation"
] | null | null |
Petya and Vasya are playing a game. Petya's got *n* non-transparent glasses, standing in a row. The glasses' positions are indexed with integers from 1 to *n* from left to right. Note that the positions are indexed but the glasses are not.
First Petya puts a marble under the glass in position *s*. Then he performs some (possibly zero) shuffling operations. One shuffling operation means moving the glass from the first position to position *p*1, the glass from the second position to position *p*2 and so on. That is, a glass goes from position *i* to position *p**i*. Consider all glasses are moving simultaneously during one shuffling operation. When the glasses are shuffled, the marble doesn't travel from one glass to another: it moves together with the glass it was initially been put in.
After all shuffling operations Petya shows Vasya that the ball has moved to position *t*. Vasya's task is to say what minimum number of shuffling operations Petya has performed or determine that Petya has made a mistake and the marble could not have got from position *s* to position *t*.
|
The first line contains three integers: *n*,<=*s*,<=*t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*s*,<=*t*<=≤<=*n*) — the number of glasses, the ball's initial and final position. The second line contains *n* space-separated integers: *p*1,<=*p*2,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=*n*) — the shuffling operation parameters. It is guaranteed that all *p**i*'s are distinct.
Note that *s* can equal *t*.
|
If the marble can move from position *s* to position *t*, then print on a single line a non-negative integer — the minimum number of shuffling operations, needed to get the marble to position *t*. If it is impossible, print number -1.
|
[
"4 2 1\n2 3 4 1\n",
"4 3 3\n4 1 3 2\n",
"4 3 4\n1 2 3 4\n",
"3 1 3\n2 1 3\n"
] |
[
"3\n",
"0\n",
"-1\n",
"-1\n"
] |
none
| 1,000
|
[
{
"input": "4 2 1\n2 3 4 1",
"output": "3"
},
{
"input": "4 3 3\n4 1 3 2",
"output": "0"
},
{
"input": "4 3 4\n1 2 3 4",
"output": "-1"
},
{
"input": "3 1 3\n2 1 3",
"output": "-1"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "10 6 7\n10 7 8 1 5 6 2 9 4 3",
"output": "-1"
},
{
"input": "10 3 6\n5 6 7 3 8 4 2 1 10 9",
"output": "3"
},
{
"input": "10 10 4\n4 2 6 9 5 3 8 1 10 7",
"output": "4"
},
{
"input": "100 90 57\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43",
"output": "-1"
},
{
"input": "100 11 20\n80 25 49 55 22 98 35 59 88 14 91 20 68 66 53 50 77 45 82 63 96 93 85 46 37 74 84 9 7 95 41 86 23 36 33 27 81 39 18 13 12 92 24 71 3 48 83 61 31 87 28 79 75 38 11 21 29 69 44 100 72 62 32 43 30 16 47 56 89 60 42 17 26 70 94 99 4 6 2 73 8 52 65 1 15 90 67 51 78 10 5 76 57 54 34 58 19 64 40 97",
"output": "26"
},
{
"input": "100 84 83\n30 67 53 89 94 54 92 17 26 57 15 5 74 85 10 61 18 70 91 75 14 11 93 41 25 78 88 81 20 51 35 4 62 1 97 39 68 52 47 77 64 3 2 72 60 80 8 83 65 98 21 22 45 7 58 31 43 38 90 99 49 87 55 36 29 6 37 23 66 76 59 79 40 86 63 44 82 32 48 16 50 100 28 96 46 12 27 13 24 9 19 84 73 69 71 42 56 33 34 95",
"output": "71"
},
{
"input": "100 6 93\n74 62 67 81 40 85 35 42 59 72 80 28 79 41 16 19 33 63 13 10 69 76 70 93 49 84 89 94 8 37 11 90 26 52 47 7 36 95 86 75 56 15 61 99 88 12 83 21 20 3 100 17 32 82 6 5 43 25 66 68 73 78 18 77 92 27 23 2 4 39 60 48 22 24 14 97 29 34 54 64 71 57 87 38 9 50 30 53 51 45 44 31 58 91 98 65 55 1 46 96",
"output": "-1"
},
{
"input": "100 27 56\n58 18 50 41 33 37 14 87 77 73 61 53 15 8 70 68 45 96 54 78 39 67 51 60 80 12 93 99 20 92 17 79 4 13 62 91 69 29 49 36 98 34 90 35 84 64 38 83 28 89 97 94 9 16 26 48 10 57 23 75 27 88 44 21 72 76 30 43 32 2 71 24 100 1 31 81 42 40 47 55 86 85 66 5 52 22 95 74 11 19 7 82 6 25 56 63 65 59 46 3",
"output": "20"
},
{
"input": "87 42 49\n45 55 24 44 56 72 74 23 4 7 37 67 22 6 58 76 40 36 3 20 26 87 64 75 49 70 62 42 31 1 80 33 25 59 78 27 32 2 41 61 66 28 19 85 15 69 52 77 50 14 16 34 18 43 73 83 11 39 29 9 35 13 81 54 79 21 60 46 71 57 12 17 5 47 38 30 10 84 53 63 68 8 51 65 48 86 82",
"output": "-1"
},
{
"input": "2 1 2\n1 2",
"output": "-1"
},
{
"input": "2 1 2\n2 1",
"output": "1"
},
{
"input": "2 2 2\n1 2",
"output": "0"
},
{
"input": "2 2 2\n2 1",
"output": "0"
},
{
"input": "2 1 1\n2 1",
"output": "0"
}
] | 1,482,495,295
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <utility>
#include <string>
#include <set>
#include <limits>
#include <map>
#include <stack>
#include <queue>
#include <cstring>
#include <cctype>
#define ul unsigned long int
#define ull unsigned long long int
#define ll long long int
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
using namespace std;
int main()
{
ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
long n, s, t, i, ans, curpos, lastpos;
cin>>n>>s>>t;
long a[n];
for(i=0;i<n;i++)
{
cin>>a[i];
a[i] -= 1;
}
s -= 1;
curpos = s;
t -= 1;
ans = 0;
lastpos = -1;
while(true)
{
if(curpos==t)//success
{
break;
}
ans++;
curpos = a[curpos];
if(curpos==lastpos || curpos==s)
{
ans = -1;
break;
}
lastpos = curpos;
}
cout<<ans<<endl;
return 0;
}
|
Title: Find Marble
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya and Vasya are playing a game. Petya's got *n* non-transparent glasses, standing in a row. The glasses' positions are indexed with integers from 1 to *n* from left to right. Note that the positions are indexed but the glasses are not.
First Petya puts a marble under the glass in position *s*. Then he performs some (possibly zero) shuffling operations. One shuffling operation means moving the glass from the first position to position *p*1, the glass from the second position to position *p*2 and so on. That is, a glass goes from position *i* to position *p**i*. Consider all glasses are moving simultaneously during one shuffling operation. When the glasses are shuffled, the marble doesn't travel from one glass to another: it moves together with the glass it was initially been put in.
After all shuffling operations Petya shows Vasya that the ball has moved to position *t*. Vasya's task is to say what minimum number of shuffling operations Petya has performed or determine that Petya has made a mistake and the marble could not have got from position *s* to position *t*.
Input Specification:
The first line contains three integers: *n*,<=*s*,<=*t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*s*,<=*t*<=≤<=*n*) — the number of glasses, the ball's initial and final position. The second line contains *n* space-separated integers: *p*1,<=*p*2,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=*n*) — the shuffling operation parameters. It is guaranteed that all *p**i*'s are distinct.
Note that *s* can equal *t*.
Output Specification:
If the marble can move from position *s* to position *t*, then print on a single line a non-negative integer — the minimum number of shuffling operations, needed to get the marble to position *t*. If it is impossible, print number -1.
Demo Input:
['4 2 1\n2 3 4 1\n', '4 3 3\n4 1 3 2\n', '4 3 4\n1 2 3 4\n', '3 1 3\n2 1 3\n']
Demo Output:
['3\n', '0\n', '-1\n', '-1\n']
Note:
none
|
```python
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <utility>
#include <string>
#include <set>
#include <limits>
#include <map>
#include <stack>
#include <queue>
#include <cstring>
#include <cctype>
#define ul unsigned long int
#define ull unsigned long long int
#define ll long long int
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
using namespace std;
int main()
{
ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
long n, s, t, i, ans, curpos, lastpos;
cin>>n>>s>>t;
long a[n];
for(i=0;i<n;i++)
{
cin>>a[i];
a[i] -= 1;
}
s -= 1;
curpos = s;
t -= 1;
ans = 0;
lastpos = -1;
while(true)
{
if(curpos==t)//success
{
break;
}
ans++;
curpos = a[curpos];
if(curpos==lastpos || curpos==s)
{
ans = -1;
break;
}
lastpos = curpos;
}
cout<<ans<<endl;
return 0;
}
```
| -1
|
|
74
|
C
|
Chessboard Billiard
|
PROGRAMMING
| 2,100
|
[
"dfs and similar",
"dsu",
"graphs",
"number theory"
] |
C. Chessboard Billiard
|
2
|
256
|
Let's imagine: there is a chess piece billiard ball. Its movements resemble the ones of a bishop chess piece. The only difference is that when a billiard ball hits the board's border, it can reflect from it and continue moving.
More formally, first one of four diagonal directions is chosen and the billiard ball moves in that direction. When it reaches the square located on the board's edge, the billiard ball reflects from it; it changes the direction of its movement by 90 degrees and continues moving. Specifically, having reached a corner square, the billiard ball is reflected twice and starts to move the opposite way. While it moves, the billiard ball can make an infinite number of reflections. At any square of its trajectory the billiard ball can stop and on that the move is considered completed.
It is considered that one billiard ball *a* beats another billiard ball *b* if *a* can reach a point where *b* is located.
You are suggested to find the maximal number of billiard balls, that pairwise do not beat each other and that can be positioned on a chessboard *n*<=×<=*m* in size.
|
The first line contains two integers *n* and *m* (2<=≤<=*n*,<=*m*<=≤<=106).
|
Print a single number, the maximum possible number of billiard balls that do not pairwise beat each other.
Please do not use the %lld specificator to read or write 64-bit numbers in C++. It is preferred to use cin (also you may use the %I64d specificator).
|
[
"3 4\n",
"3 3\n"
] |
[
"2",
"3"
] |
none
| 1,500
|
[
{
"input": "3 4",
"output": "2"
},
{
"input": "3 3",
"output": "3"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "4 3",
"output": "2"
},
{
"input": "2 3",
"output": "2"
},
{
"input": "4 4",
"output": "4"
},
{
"input": "4 6",
"output": "2"
},
{
"input": "4 7",
"output": "4"
},
{
"input": "5 7",
"output": "3"
},
{
"input": "5 13",
"output": "5"
},
{
"input": "7 10",
"output": "4"
},
{
"input": "7 21",
"output": "3"
},
{
"input": "7 61",
"output": "7"
},
{
"input": "8 50",
"output": "8"
},
{
"input": "8 8",
"output": "8"
},
{
"input": "9 9",
"output": "9"
},
{
"input": "9 256",
"output": "2"
},
{
"input": "10 10",
"output": "10"
},
{
"input": "999 999",
"output": "999"
},
{
"input": "1000000 1000000",
"output": "1000000"
},
{
"input": "2311 7771",
"output": "211"
},
{
"input": "146412 710630",
"output": "3572"
},
{
"input": "943547 987965",
"output": "1347"
},
{
"input": "35329 689665",
"output": "1537"
},
{
"input": "672961 948978",
"output": "2"
},
{
"input": "524288 131072",
"output": "2"
},
{
"input": "293492 654942",
"output": "2"
},
{
"input": "962963 1000000",
"output": "37038"
},
{
"input": "7 1000000",
"output": "4"
},
{
"input": "999999 1000000",
"output": "2"
},
{
"input": "666667 1000000",
"output": "333334"
},
{
"input": "384 187",
"output": "2"
},
{
"input": "238 116",
"output": "2"
},
{
"input": "993 342",
"output": "32"
},
{
"input": "848 271",
"output": "2"
},
{
"input": "702 200",
"output": "2"
},
{
"input": "9516 2202",
"output": "2"
},
{
"input": "1498 9704",
"output": "2"
},
{
"input": "2482 6269",
"output": "2"
},
{
"input": "3466 4770",
"output": "2"
},
{
"input": "4449 1336",
"output": "2"
},
{
"input": "604630 225648",
"output": "2"
},
{
"input": "503832 242363",
"output": "2"
},
{
"input": "403034 430556",
"output": "2"
},
{
"input": "302237 618749",
"output": "5"
},
{
"input": "201439 635463",
"output": "3"
},
{
"input": "576709 834208",
"output": "562"
},
{
"input": "97905 599257",
"output": "233"
},
{
"input": "364915 516421",
"output": "343"
},
{
"input": "222403 592339",
"output": "2203"
},
{
"input": "543425 776321",
"output": "77633"
},
{
"input": "977965 896468",
"output": "81498"
},
{
"input": "829981 586711",
"output": "14311"
},
{
"input": "429181 515017",
"output": "85837"
},
{
"input": "198441 446491",
"output": "49611"
},
{
"input": "117806 188489",
"output": "23562"
},
{
"input": "893011 315181",
"output": "52531"
},
{
"input": "701905 526429",
"output": "175477"
},
{
"input": "863029 287677",
"output": "287677"
},
{
"input": "871866 348747",
"output": "174374"
},
{
"input": "12 5",
"output": "2"
},
{
"input": "21 15",
"output": "3"
},
{
"input": "12 9",
"output": "2"
},
{
"input": "720 972",
"output": "2"
}
] | 1,605,279,863
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 25
| 218
| 614,400
|
n, m = map(int, input().split())
def answer(n, m):
if n == m:
return n
if n > m:
n, m = m, n
return answer(n, m - n + 1)
print(answer(n, m))
|
Title: Chessboard Billiard
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Let's imagine: there is a chess piece billiard ball. Its movements resemble the ones of a bishop chess piece. The only difference is that when a billiard ball hits the board's border, it can reflect from it and continue moving.
More formally, first one of four diagonal directions is chosen and the billiard ball moves in that direction. When it reaches the square located on the board's edge, the billiard ball reflects from it; it changes the direction of its movement by 90 degrees and continues moving. Specifically, having reached a corner square, the billiard ball is reflected twice and starts to move the opposite way. While it moves, the billiard ball can make an infinite number of reflections. At any square of its trajectory the billiard ball can stop and on that the move is considered completed.
It is considered that one billiard ball *a* beats another billiard ball *b* if *a* can reach a point where *b* is located.
You are suggested to find the maximal number of billiard balls, that pairwise do not beat each other and that can be positioned on a chessboard *n*<=×<=*m* in size.
Input Specification:
The first line contains two integers *n* and *m* (2<=≤<=*n*,<=*m*<=≤<=106).
Output Specification:
Print a single number, the maximum possible number of billiard balls that do not pairwise beat each other.
Please do not use the %lld specificator to read or write 64-bit numbers in C++. It is preferred to use cin (also you may use the %I64d specificator).
Demo Input:
['3 4\n', '3 3\n']
Demo Output:
['2', '3']
Note:
none
|
```python
n, m = map(int, input().split())
def answer(n, m):
if n == m:
return n
if n > m:
n, m = m, n
return answer(n, m - n + 1)
print(answer(n, m))
```
| -1
|
202
|
A
|
LLPS
|
PROGRAMMING
| 800
|
[
"binary search",
"bitmasks",
"brute force",
"greedy",
"implementation",
"strings"
] | null | null |
This problem's actual name, "Lexicographically Largest Palindromic Subsequence" is too long to fit into the page headline.
You are given string *s* consisting of lowercase English letters only. Find its lexicographically largest palindromic subsequence.
We'll call a non-empty string *s*[*p*1*p*2... *p**k*] = *s**p*1*s**p*2... *s**p**k* (1 <=≤<= *p*1<=<<=*p*2<=<<=...<=<<=*p**k* <=≤<= |*s*|) a subsequence of string *s* = *s*1*s*2... *s*|*s*|, where |*s*| is the length of string *s*. For example, strings "abcb", "b" and "abacaba" are subsequences of string "abacaba".
String *x* = *x*1*x*2... *x*|*x*| is lexicographically larger than string *y* = *y*1*y*2... *y*|*y*| if either |*x*| > |*y*| and *x*1<==<=*y*1, *x*2<==<=*y*2, ...,<=*x*|*y*|<==<=*y*|*y*|, or there exists such number *r* (*r*<=<<=|*x*|, *r*<=<<=|*y*|) that *x*1<==<=*y*1, *x*2<==<=*y*2, ..., *x**r*<==<=*y**r* and *x**r*<=<=+<=<=1<=><=*y**r*<=<=+<=<=1. Characters in the strings are compared according to their ASCII codes. For example, string "ranger" is lexicographically larger than string "racecar" and string "poster" is lexicographically larger than string "post".
String *s* = *s*1*s*2... *s*|*s*| is a palindrome if it matches string *rev*(*s*) = *s*|*s*|*s*|*s*|<=-<=1... *s*1. In other words, a string is a palindrome if it reads the same way from left to right and from right to left. For example, palindromic strings are "racecar", "refer" and "z".
|
The only input line contains a non-empty string *s* consisting of lowercase English letters only. Its length does not exceed 10.
|
Print the lexicographically largest palindromic subsequence of string *s*.
|
[
"radar\n",
"bowwowwow\n",
"codeforces\n",
"mississipp\n"
] |
[
"rr\n",
"wwwww\n",
"s\n",
"ssss\n"
] |
Among all distinct subsequences of string "radar" the following ones are palindromes: "a", "d", "r", "aa", "rr", "ada", "rar", "rdr", "raar" and "radar". The lexicographically largest of them is "rr".
| 500
|
[
{
"input": "radar",
"output": "rr"
},
{
"input": "bowwowwow",
"output": "wwwww"
},
{
"input": "codeforces",
"output": "s"
},
{
"input": "mississipp",
"output": "ssss"
},
{
"input": "tourist",
"output": "u"
},
{
"input": "romka",
"output": "r"
},
{
"input": "helloworld",
"output": "w"
},
{
"input": "zzzzzzzazz",
"output": "zzzzzzzzz"
},
{
"input": "testcase",
"output": "tt"
},
{
"input": "hahahahaha",
"output": "hhhhh"
},
{
"input": "abbbbbbbbb",
"output": "bbbbbbbbb"
},
{
"input": "zaz",
"output": "zz"
},
{
"input": "aza",
"output": "z"
},
{
"input": "dcbaedcba",
"output": "e"
},
{
"input": "abcdeabcd",
"output": "e"
},
{
"input": "edcbabcde",
"output": "ee"
},
{
"input": "aaaaaaaaab",
"output": "b"
},
{
"input": "testzzzzzz",
"output": "zzzzzz"
},
{
"input": "zzzzzzwait",
"output": "zzzzzz"
},
{
"input": "rrrrrqponm",
"output": "rrrrr"
},
{
"input": "zzyzyy",
"output": "zzz"
},
{
"input": "aababb",
"output": "bbb"
},
{
"input": "zanzibar",
"output": "zz"
},
{
"input": "hhgfedcbaa",
"output": "hh"
},
{
"input": "aabcdefghh",
"output": "hh"
},
{
"input": "aruaru",
"output": "uu"
},
{
"input": "uraura",
"output": "uu"
},
{
"input": "aru",
"output": "u"
},
{
"input": "aburvabur",
"output": "v"
},
{
"input": "ura",
"output": "u"
},
{
"input": "eurottat",
"output": "u"
},
{
"input": "referee",
"output": "rr"
},
{
"input": "joking",
"output": "o"
},
{
"input": "seriously",
"output": "y"
},
{
"input": "sets",
"output": "t"
},
{
"input": "test",
"output": "tt"
},
{
"input": "klmgameklm",
"output": "mmm"
},
{
"input": "dfkjafdkdd",
"output": "kk"
},
{
"input": "zzzzzzzzzz",
"output": "zzzzzzzzzz"
},
{
"input": "aaaaaaaaaa",
"output": "aaaaaaaaaa"
},
{
"input": "buzz",
"output": "zz"
},
{
"input": "b",
"output": "b"
},
{
"input": "y",
"output": "y"
},
{
"input": "yy",
"output": "yy"
},
{
"input": "zz",
"output": "zz"
},
{
"input": "bb",
"output": "bb"
},
{
"input": "aa",
"output": "aa"
},
{
"input": "a",
"output": "a"
},
{
"input": "z",
"output": "z"
},
{
"input": "zz",
"output": "zz"
},
{
"input": "zzazazzzaz",
"output": "zzzzzzz"
},
{
"input": "hellhellhe",
"output": "llll"
},
{
"input": "hellohello",
"output": "oo"
},
{
"input": "refer",
"output": "rr"
}
] | 1,643,261,049
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 92
| 0
|
s = input()
ans = sorted(s)
ans = ans[::-1]
res = ""
if (ans.count(ans[0]) == 1):
print(ans[0])
else:
print(ans[0]*ans.count(ans[0]))
|
Title: LLPS
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This problem's actual name, "Lexicographically Largest Palindromic Subsequence" is too long to fit into the page headline.
You are given string *s* consisting of lowercase English letters only. Find its lexicographically largest palindromic subsequence.
We'll call a non-empty string *s*[*p*1*p*2... *p**k*] = *s**p*1*s**p*2... *s**p**k* (1 <=≤<= *p*1<=<<=*p*2<=<<=...<=<<=*p**k* <=≤<= |*s*|) a subsequence of string *s* = *s*1*s*2... *s*|*s*|, where |*s*| is the length of string *s*. For example, strings "abcb", "b" and "abacaba" are subsequences of string "abacaba".
String *x* = *x*1*x*2... *x*|*x*| is lexicographically larger than string *y* = *y*1*y*2... *y*|*y*| if either |*x*| > |*y*| and *x*1<==<=*y*1, *x*2<==<=*y*2, ...,<=*x*|*y*|<==<=*y*|*y*|, or there exists such number *r* (*r*<=<<=|*x*|, *r*<=<<=|*y*|) that *x*1<==<=*y*1, *x*2<==<=*y*2, ..., *x**r*<==<=*y**r* and *x**r*<=<=+<=<=1<=><=*y**r*<=<=+<=<=1. Characters in the strings are compared according to their ASCII codes. For example, string "ranger" is lexicographically larger than string "racecar" and string "poster" is lexicographically larger than string "post".
String *s* = *s*1*s*2... *s*|*s*| is a palindrome if it matches string *rev*(*s*) = *s*|*s*|*s*|*s*|<=-<=1... *s*1. In other words, a string is a palindrome if it reads the same way from left to right and from right to left. For example, palindromic strings are "racecar", "refer" and "z".
Input Specification:
The only input line contains a non-empty string *s* consisting of lowercase English letters only. Its length does not exceed 10.
Output Specification:
Print the lexicographically largest palindromic subsequence of string *s*.
Demo Input:
['radar\n', 'bowwowwow\n', 'codeforces\n', 'mississipp\n']
Demo Output:
['rr\n', 'wwwww\n', 's\n', 'ssss\n']
Note:
Among all distinct subsequences of string "radar" the following ones are palindromes: "a", "d", "r", "aa", "rr", "ada", "rar", "rdr", "raar" and "radar". The lexicographically largest of them is "rr".
|
```python
s = input()
ans = sorted(s)
ans = ans[::-1]
res = ""
if (ans.count(ans[0]) == 1):
print(ans[0])
else:
print(ans[0]*ans.count(ans[0]))
```
| 3
|
|
438
|
D
|
The Child and Sequence
|
PROGRAMMING
| 2,300
|
[
"data structures",
"math"
] | null | null |
At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at him. A lot of important things were lost, in particular the favorite sequence of Picks.
Fortunately, Picks remembers how to repair the sequence. Initially he should create an integer array *a*[1],<=*a*[2],<=...,<=*a*[*n*]. Then he should perform a sequence of *m* operations. An operation can be one of the following:
1. Print operation *l*,<=*r*. Picks should write down the value of . 1. Modulo operation *l*,<=*r*,<=*x*. Picks should perform assignment *a*[*i*]<==<=*a*[*i*] *mod* *x* for each *i* (*l*<=≤<=*i*<=≤<=*r*). 1. Set operation *k*,<=*x*. Picks should set the value of *a*[*k*] to *x* (in other words perform an assignment *a*[*k*]<==<=*x*).
Can you help Picks to perform the whole sequence of operations?
|
The first line of input contains two integer: *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers, separated by space: *a*[1],<=*a*[2],<=...,<=*a*[*n*] (1<=≤<=*a*[*i*]<=≤<=109) — initial value of array elements.
Each of the next *m* lines begins with a number *type* .
- If *type*<==<=1, there will be two integers more in the line: *l*,<=*r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*), which correspond the operation 1. - If *type*<==<=2, there will be three integers more in the line: *l*,<=*r*,<=*x* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*; 1<=≤<=*x*<=≤<=109), which correspond the operation 2. - If *type*<==<=3, there will be two integers more in the line: *k*,<=*x* (1<=≤<=*k*<=≤<=*n*; 1<=≤<=*x*<=≤<=109), which correspond the operation 3.
|
For each operation 1, please print a line containing the answer. Notice that the answer may exceed the 32-bit integer.
|
[
"5 5\n1 2 3 4 5\n2 3 5 4\n3 3 5\n1 2 5\n2 1 3 3\n1 1 3\n",
"10 10\n6 9 6 7 6 1 10 10 9 5\n1 3 9\n2 7 10 9\n2 5 10 8\n1 4 7\n3 3 7\n2 7 9 9\n1 2 4\n1 6 6\n1 5 9\n3 1 10\n"
] |
[
"8\n5\n",
"49\n15\n23\n1\n9\n"
] |
Consider the first testcase:
- At first, *a* = {1, 2, 3, 4, 5}. - After operation 1, *a* = {1, 2, 3, 0, 1}. - After operation 2, *a* = {1, 2, 5, 0, 1}. - At operation 3, 2 + 5 + 0 + 1 = 8. - After operation 4, *a* = {1, 2, 2, 0, 1}. <li> At operation 5, 1 + 2 + 2 = 5. <ul>
| 2,000
|
[
{
"input": "5 5\n1 2 3 4 5\n2 3 5 4\n3 3 5\n1 2 5\n2 1 3 3\n1 1 3",
"output": "8\n5"
},
{
"input": "10 10\n6 9 6 7 6 1 10 10 9 5\n1 3 9\n2 7 10 9\n2 5 10 8\n1 4 7\n3 3 7\n2 7 9 9\n1 2 4\n1 6 6\n1 5 9\n3 1 10",
"output": "49\n15\n23\n1\n9"
},
{
"input": "1 1\n1\n1 1 1",
"output": "1"
},
{
"input": "1 1\n1000000000\n1 1 1",
"output": "1000000000"
}
] | 1,674,068,282
| 2,147,483,647
|
PyPy 3-64
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 3
| 4,000
| 13,516,800
|
n, m = map(int, input().split())
a = list(map(int, input().split()))
for q in range(m):
t = list(map(int, input().split()))
if t[0] == 1:
l, r = t[1], t[2]
l -= 1
r -= 1
s = 0
for i in range(l, r + 1):
s += a[i]
print(s)
elif t[0] == 2:
l, r, x = t[1], t[2], t[3]
l -= 1
r -= 1
for i in range(l, r + 1):
a[i] %= x
else:
k, x = t[1], t[2]
k -= 1
a[k] = x
|
Title: The Child and Sequence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at him. A lot of important things were lost, in particular the favorite sequence of Picks.
Fortunately, Picks remembers how to repair the sequence. Initially he should create an integer array *a*[1],<=*a*[2],<=...,<=*a*[*n*]. Then he should perform a sequence of *m* operations. An operation can be one of the following:
1. Print operation *l*,<=*r*. Picks should write down the value of . 1. Modulo operation *l*,<=*r*,<=*x*. Picks should perform assignment *a*[*i*]<==<=*a*[*i*] *mod* *x* for each *i* (*l*<=≤<=*i*<=≤<=*r*). 1. Set operation *k*,<=*x*. Picks should set the value of *a*[*k*] to *x* (in other words perform an assignment *a*[*k*]<==<=*x*).
Can you help Picks to perform the whole sequence of operations?
Input Specification:
The first line of input contains two integer: *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers, separated by space: *a*[1],<=*a*[2],<=...,<=*a*[*n*] (1<=≤<=*a*[*i*]<=≤<=109) — initial value of array elements.
Each of the next *m* lines begins with a number *type* .
- If *type*<==<=1, there will be two integers more in the line: *l*,<=*r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*), which correspond the operation 1. - If *type*<==<=2, there will be three integers more in the line: *l*,<=*r*,<=*x* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*; 1<=≤<=*x*<=≤<=109), which correspond the operation 2. - If *type*<==<=3, there will be two integers more in the line: *k*,<=*x* (1<=≤<=*k*<=≤<=*n*; 1<=≤<=*x*<=≤<=109), which correspond the operation 3.
Output Specification:
For each operation 1, please print a line containing the answer. Notice that the answer may exceed the 32-bit integer.
Demo Input:
['5 5\n1 2 3 4 5\n2 3 5 4\n3 3 5\n1 2 5\n2 1 3 3\n1 1 3\n', '10 10\n6 9 6 7 6 1 10 10 9 5\n1 3 9\n2 7 10 9\n2 5 10 8\n1 4 7\n3 3 7\n2 7 9 9\n1 2 4\n1 6 6\n1 5 9\n3 1 10\n']
Demo Output:
['8\n5\n', '49\n15\n23\n1\n9\n']
Note:
Consider the first testcase:
- At first, *a* = {1, 2, 3, 4, 5}. - After operation 1, *a* = {1, 2, 3, 0, 1}. - After operation 2, *a* = {1, 2, 5, 0, 1}. - At operation 3, 2 + 5 + 0 + 1 = 8. - After operation 4, *a* = {1, 2, 2, 0, 1}. <li> At operation 5, 1 + 2 + 2 = 5. <ul>
|
```python
n, m = map(int, input().split())
a = list(map(int, input().split()))
for q in range(m):
t = list(map(int, input().split()))
if t[0] == 1:
l, r = t[1], t[2]
l -= 1
r -= 1
s = 0
for i in range(l, r + 1):
s += a[i]
print(s)
elif t[0] == 2:
l, r, x = t[1], t[2], t[3]
l -= 1
r -= 1
for i in range(l, r + 1):
a[i] %= x
else:
k, x = t[1], t[2]
k -= 1
a[k] = x
```
| 0
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
Ivan had string *s* consisting of small English letters. However, his friend Julia decided to make fun of him and hid the string *s*. Ivan preferred making a new string to finding the old one.
Ivan knows some information about the string *s*. Namely, he remembers, that string *t**i* occurs in string *s* at least *k**i* times or more, he also remembers exactly *k**i* positions where the string *t**i* occurs in string *s*: these positions are *x**i*,<=1,<=*x**i*,<=2,<=...,<=*x**i*,<=*k**i*. He remembers *n* such strings *t**i*.
You are to reconstruct lexicographically minimal string *s* such that it fits all the information Ivan remembers. Strings *t**i* and string *s* consist of small English letters only.
|
The first line contains single integer *n* (1<=≤<=*n*<=≤<=105) — the number of strings Ivan remembers.
The next *n* lines contain information about the strings. The *i*-th of these lines contains non-empty string *t**i*, then positive integer *k**i*, which equal to the number of times the string *t**i* occurs in string *s*, and then *k**i* distinct positive integers *x**i*,<=1,<=*x**i*,<=2,<=...,<=*x**i*,<=*k**i* in increasing order — positions, in which occurrences of the string *t**i* in the string *s* start. It is guaranteed that the sum of lengths of strings *t**i* doesn't exceed 106, 1<=≤<=*x**i*,<=*j*<=≤<=106, 1<=≤<=*k**i*<=≤<=106, and the sum of all *k**i* doesn't exceed 106. The strings *t**i* can coincide.
It is guaranteed that the input data is not self-contradictory, and thus at least one answer always exists.
|
Print lexicographically minimal string that fits all the information Ivan remembers.
|
[
"3\na 4 1 3 5 7\nab 2 1 5\nca 1 4\n",
"1\na 1 3\n",
"3\nab 1 1\naba 1 3\nab 2 3 5\n"
] |
[
"abacaba\n",
"aaa\n",
"ababab\n"
] |
none
| 0
|
[
{
"input": "3\na 4 1 3 5 7\nab 2 1 5\nca 1 4",
"output": "abacaba"
},
{
"input": "1\na 1 3",
"output": "aaa"
},
{
"input": "3\nab 1 1\naba 1 3\nab 2 3 5",
"output": "ababab"
},
{
"input": "6\nba 2 16 18\na 1 12\nb 3 4 13 20\nbb 2 6 8\nababbbbbaab 1 3\nabababbbbb 1 1",
"output": "abababbbbbaabaababab"
},
{
"input": "17\na 4 2 7 8 9\nbbaa 1 5\nba 2 1 6\naa 2 7 8\nb 6 1 3 4 5 6 10\nbbbaa 1 4\nbbba 1 4\nbab 1 1\nbba 1 5\nbbb 2 3 4\nbb 3 3 4 5\nab 1 2\nabbb 1 2\nbbbb 1 3\nabb 1 2\nabbbba 1 2\nbbbbaaa 1 3",
"output": "babbbbaaab"
},
{
"input": "9\nfab 1 32\nb 2 38 54\nbadab 1 38\nba 1 62\na 1 25\nab 1 37\nbacaba 1 26\ncabaeab 1 12\nacab 1 3",
"output": "aaacabaaaaacabaeabaaaaaaabacabafabaaabadabaaaaaaaaaaabaaaaaaaba"
},
{
"input": "18\nabacab 2 329 401\nabadabacabae 1 293\nbacab 1 2\nabacabadabacabaga 1 433\nc 1 76\nbaca 1 26\ndab 1 72\nabagabaca 1 445\nabaea 1 397\ndabac 1 280\nab 2 201 309\nca 1 396\nabacabadab 1 497\nac 1 451\ncaba 1 444\nad 1 167\nbadab 1 358\naba 1 421",
"output": "abacabaaaaaaaaaaaaaaaaaaabacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadabacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadabacaaaaaaaaabadabacabaeaaaaabaaaaaaaaaaaaaaaaaaabacabaaaaaaaaaaaaaaaaaaaaaaabadabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaacabaeabacabaaaaaaaaaaaaaaabaaaaaaaaaaabacabadabacabagabacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabacabadab"
},
{
"input": "10\ndabacabafa 1 24\nbacabadab 1 18\ndabaca 1 8\nbacabaea 1 42\nbacaba 1 34\nabadabaca 1 5\nbadabacaba 1 54\nbacabaeaba 1 10\nabacabaeab 1 9\nadabacaba 1 23",
"output": "aaaaabadabacabaeabacabadabacabafabacabaaabacabaeaaaaabadabacaba"
},
{
"input": "20\nadabacabaeabacabada 1 359\nabadabacabafabaca 1 213\nacabagabacaba 1 315\ncabaeabacabadabacab 1 268\nfabacabadabacabaeab 1 352\ncabafabacabada 1 28\nacabadabacabaea 1 67\ncabadabacabaeabacaba 1 484\nabacabadabacaba 1 209\nacabaiabacaba 1 251\nacabafabacabadabac 1 475\nabacabaeabacabadaba 1 105\ncabadabacabaeaba 1 68\nafabacabadabacab 1 287\nacabafab 1 91\ndabacabaea 1 328\nabaeabacabadab 1 461\nabadabacabaeabaca 1 421\nabadabacabafabac 1 277\nfabacabadabac 1 96",
"output": "aaaaaaaaaaaaaaaaaaaaaaaaaaacabafabacabadaaaaaaaaaaaaaaaaaaaaaaaaaaacabadabacabaeabaaaaaaaaacabafabacabadabacabaeabacabadabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabacabadabacabafabacaaaaaaaaaaaaaaaaaaaaaaacabaiabacabaaaaacabaeabacabadabacabafabacabadabacabaaaaaaaaaaaaacabagabacabadabacabaeaaaaaaaaaaaaaaafabacabadabacabaeabacabadaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabadabacabaeabacaaaaaaaaaaaaaaaaaaaaaaaaabaeabacabadabacabafabacabadabacabaeabacaba"
},
{
"input": "4\na 2 1 10\na 3 1 2 9\na 2 3 8\na 2 4 7",
"output": "aaaaaaaaaa"
},
{
"input": "10\nvvvvvvv 2 63649 456347\nvvvv 3 779 201571 458642\nvvvv 4 283450 377377 534312 583774\nvvvvv 10 78946 79066 346469 509974 665096 705906 711499 764350 815149 841106\nvvvvvvvvv 4 337796 374187 593756 618501\nvvvvvvvvv 3 89760 647846 984050\nvv 10 24048 93536 143218 211825 350809 406501 428953 572318 584177 839086\nvvvvvv 2 558325 764134\nvvvvvvv 9 174822 379712 412113 521028 542452 565481 678944 681435 747267\nvvvvv 9 43091 80962 212547 261108 528620 824068 873847 892141 974878",
"output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa..."
},
{
"input": "2\naba 1 1\nb 1 2",
"output": "aba"
}
] | 1,533,730,649
| 2,147,483,647
|
PyPy 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 7
| 2,000
| 143,974,400
|
n=int(input())
ans=[]
mk=-1
from sys import *
stk=[]
for j in range(0,n):
val=stdin.readline().split()
st=val[0]
k=int(val[1])
for i in range(0,k):
#print i,len(val),k
mk=max(mk,int(val[2+i])+len(st)-1)
ans.append((-len(st),val[2+i],j))
stk.append(st)
ans.sort()
#print ans
b=["*"]*(mk+5)
vis=[0]*1000008
for i in range(0,len(ans)):
oc=-ans[i][0]
ind=int(ans[i][1])
pu=stk[ans[i][2]]
if vis[ind]==0:
for j in range(ind,ind+oc):
b[j]=pu[j-ind]
vis[ind]=1
#fa=""
for i in range(1,mk+1):
if b[i]=="*":
stdout.write("a")
#fa=fa+"a"
else:
stdout.write(b[i])
print ()
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ivan had string *s* consisting of small English letters. However, his friend Julia decided to make fun of him and hid the string *s*. Ivan preferred making a new string to finding the old one.
Ivan knows some information about the string *s*. Namely, he remembers, that string *t**i* occurs in string *s* at least *k**i* times or more, he also remembers exactly *k**i* positions where the string *t**i* occurs in string *s*: these positions are *x**i*,<=1,<=*x**i*,<=2,<=...,<=*x**i*,<=*k**i*. He remembers *n* such strings *t**i*.
You are to reconstruct lexicographically minimal string *s* such that it fits all the information Ivan remembers. Strings *t**i* and string *s* consist of small English letters only.
Input Specification:
The first line contains single integer *n* (1<=≤<=*n*<=≤<=105) — the number of strings Ivan remembers.
The next *n* lines contain information about the strings. The *i*-th of these lines contains non-empty string *t**i*, then positive integer *k**i*, which equal to the number of times the string *t**i* occurs in string *s*, and then *k**i* distinct positive integers *x**i*,<=1,<=*x**i*,<=2,<=...,<=*x**i*,<=*k**i* in increasing order — positions, in which occurrences of the string *t**i* in the string *s* start. It is guaranteed that the sum of lengths of strings *t**i* doesn't exceed 106, 1<=≤<=*x**i*,<=*j*<=≤<=106, 1<=≤<=*k**i*<=≤<=106, and the sum of all *k**i* doesn't exceed 106. The strings *t**i* can coincide.
It is guaranteed that the input data is not self-contradictory, and thus at least one answer always exists.
Output Specification:
Print lexicographically minimal string that fits all the information Ivan remembers.
Demo Input:
['3\na 4 1 3 5 7\nab 2 1 5\nca 1 4\n', '1\na 1 3\n', '3\nab 1 1\naba 1 3\nab 2 3 5\n']
Demo Output:
['abacaba\n', 'aaa\n', 'ababab\n']
Note:
none
|
```python
n=int(input())
ans=[]
mk=-1
from sys import *
stk=[]
for j in range(0,n):
val=stdin.readline().split()
st=val[0]
k=int(val[1])
for i in range(0,k):
#print i,len(val),k
mk=max(mk,int(val[2+i])+len(st)-1)
ans.append((-len(st),val[2+i],j))
stk.append(st)
ans.sort()
#print ans
b=["*"]*(mk+5)
vis=[0]*1000008
for i in range(0,len(ans)):
oc=-ans[i][0]
ind=int(ans[i][1])
pu=stk[ans[i][2]]
if vis[ind]==0:
for j in range(ind,ind+oc):
b[j]=pu[j-ind]
vis[ind]=1
#fa=""
for i in range(1,mk+1):
if b[i]=="*":
stdout.write("a")
#fa=fa+"a"
else:
stdout.write(b[i])
print ()
```
| 0
|
|
678
|
D
|
Iterated Linear Function
|
PROGRAMMING
| 1,700
|
[
"math",
"number theory"
] | null | null |
Consider a linear function *f*(*x*)<==<=*Ax*<=+<=*B*. Let's define *g*(0)(*x*)<==<=*x* and *g*(*n*)(*x*)<==<=*f*(*g*(*n*<=-<=1)(*x*)) for *n*<=><=0. For the given integer values *A*, *B*, *n* and *x* find the value of *g*(*n*)(*x*) modulo 109<=+<=7.
|
The only line contains four integers *A*, *B*, *n* and *x* (1<=≤<=*A*,<=*B*,<=*x*<=≤<=109,<=1<=≤<=*n*<=≤<=1018) — the parameters from the problem statement.
Note that the given value *n* can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
|
Print the only integer *s* — the value *g*(*n*)(*x*) modulo 109<=+<=7.
|
[
"3 4 1 1\n",
"3 4 2 1\n",
"3 4 3 1\n"
] |
[
"7\n",
"25\n",
"79\n"
] |
none
| 0
|
[
{
"input": "3 4 1 1",
"output": "7"
},
{
"input": "3 4 2 1",
"output": "25"
},
{
"input": "3 4 3 1",
"output": "79"
},
{
"input": "1 1 1 1",
"output": "2"
},
{
"input": "3 10 723 6",
"output": "443623217"
},
{
"input": "14 81 51 82",
"output": "908370438"
},
{
"input": "826504481 101791432 76 486624528",
"output": "621999403"
},
{
"input": "475965351 844435993 96338 972382431",
"output": "83709654"
},
{
"input": "528774798 650132512 6406119 36569714",
"output": "505858307"
},
{
"input": "632656975 851906850 1 310973933",
"output": "230360736"
},
{
"input": "1 1 352875518515340737 1",
"output": "45212126"
},
{
"input": "978837295 606974665 846646545585165081 745145208",
"output": "154788991"
},
{
"input": "277677243 142088706 8846851 253942280",
"output": "221036825"
},
{
"input": "1 192783664 1000000000000000000 596438713",
"output": "42838179"
},
{
"input": "1 1000000000 1000000000000000000 1",
"output": "999999665"
},
{
"input": "1 1000000000 1000000000000000000 1000000000",
"output": "999999657"
},
{
"input": "1 100000000 10000000000000 1000000000",
"output": "48993"
},
{
"input": "1 1171281 1000000000000000000 100",
"output": "57392869"
},
{
"input": "1 1000000000 100000000000000000 1000000000",
"output": "899999965"
},
{
"input": "1 100000000 100000000000000000 10000",
"output": "490010000"
},
{
"input": "1 100000456 10000000000000000 54165",
"output": "129054389"
},
{
"input": "1 1000000000 10000000000000 1",
"output": "490001"
},
{
"input": "1 100000000 10000000000000000 10000",
"output": "49010000"
},
{
"input": "1 1000000000 10000000000 12",
"output": "502"
},
{
"input": "1 999999999 999999999999999999 12345678",
"output": "12345294"
},
{
"input": "1 1000000 1000000000000000000 100000",
"output": "49100000"
},
{
"input": "1 1000000000 1000000000000 12",
"output": "49012"
},
{
"input": "1 10000 1000000000000000000 5",
"output": "490005"
},
{
"input": "1 10000 1000000000000000000 10000",
"output": "500000"
},
{
"input": "1 1000000000 10000000000000 12",
"output": "490012"
},
{
"input": "1 1000000000 1000000000000000 12",
"output": "49000012"
},
{
"input": "1 1000000000 1000000000000000000 12",
"output": "999999676"
},
{
"input": "1 10000000 100000000000000000 100000",
"output": "49100000"
},
{
"input": "114514 114514 114514 114514",
"output": "623380685"
},
{
"input": "2 1 1000000006 1",
"output": "1"
},
{
"input": "1 1234 10 9",
"output": "12349"
}
] | 1,689,648,685
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 0
|
print("_RANDOM_GUESS_1689648685.0296812")# 1689648685.029703
|
Title: Iterated Linear Function
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Consider a linear function *f*(*x*)<==<=*Ax*<=+<=*B*. Let's define *g*(0)(*x*)<==<=*x* and *g*(*n*)(*x*)<==<=*f*(*g*(*n*<=-<=1)(*x*)) for *n*<=><=0. For the given integer values *A*, *B*, *n* and *x* find the value of *g*(*n*)(*x*) modulo 109<=+<=7.
Input Specification:
The only line contains four integers *A*, *B*, *n* and *x* (1<=≤<=*A*,<=*B*,<=*x*<=≤<=109,<=1<=≤<=*n*<=≤<=1018) — the parameters from the problem statement.
Note that the given value *n* can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
Output Specification:
Print the only integer *s* — the value *g*(*n*)(*x*) modulo 109<=+<=7.
Demo Input:
['3 4 1 1\n', '3 4 2 1\n', '3 4 3 1\n']
Demo Output:
['7\n', '25\n', '79\n']
Note:
none
|
```python
print("_RANDOM_GUESS_1689648685.0296812")# 1689648685.029703
```
| 0
|
|
777
|
A
|
Shell Game
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms",
"implementation",
"math"
] | null | null |
Bomboslav likes to look out of the window in his room and watch lads outside playing famous shell game. The game is played by two persons: operator and player. Operator takes three similar opaque shells and places a ball beneath one of them. Then he shuffles the shells by swapping some pairs and the player has to guess the current position of the ball.
Bomboslav noticed that guys are not very inventive, so the operator always swaps the left shell with the middle one during odd moves (first, third, fifth, etc.) and always swaps the middle shell with the right one during even moves (second, fourth, etc.).
Let's number shells from 0 to 2 from left to right. Thus the left shell is assigned number 0, the middle shell is 1 and the right shell is 2. Bomboslav has missed the moment when the ball was placed beneath the shell, but he knows that exactly *n* movements were made by the operator and the ball was under shell *x* at the end. Now he wonders, what was the initial position of the ball?
|
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=2·109) — the number of movements made by the operator.
The second line contains a single integer *x* (0<=≤<=*x*<=≤<=2) — the index of the shell where the ball was found after *n* movements.
|
Print one integer from 0 to 2 — the index of the shell where the ball was initially placed.
|
[
"4\n2\n",
"1\n1\n"
] |
[
"1\n",
"0\n"
] |
In the first sample, the ball was initially placed beneath the middle shell and the operator completed four movements.
1. During the first move operator swapped the left shell and the middle shell. The ball is now under the left shell. 1. During the second move operator swapped the middle shell and the right one. The ball is still under the left shell. 1. During the third move operator swapped the left shell and the middle shell again. The ball is again in the middle. 1. Finally, the operators swapped the middle shell and the right shell. The ball is now beneath the right shell.
| 500
|
[
{
"input": "4\n2",
"output": "1"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "2\n2",
"output": "0"
},
{
"input": "3\n1",
"output": "1"
},
{
"input": "3\n2",
"output": "0"
},
{
"input": "3\n0",
"output": "2"
},
{
"input": "2000000000\n0",
"output": "1"
},
{
"input": "2\n0",
"output": "1"
},
{
"input": "2\n1",
"output": "2"
},
{
"input": "4\n0",
"output": "2"
},
{
"input": "4\n1",
"output": "0"
},
{
"input": "5\n0",
"output": "0"
},
{
"input": "5\n1",
"output": "2"
},
{
"input": "5\n2",
"output": "1"
},
{
"input": "6\n0",
"output": "0"
},
{
"input": "6\n1",
"output": "1"
},
{
"input": "6\n2",
"output": "2"
},
{
"input": "7\n0",
"output": "1"
},
{
"input": "7\n1",
"output": "0"
},
{
"input": "7\n2",
"output": "2"
},
{
"input": "100000\n0",
"output": "2"
},
{
"input": "100000\n1",
"output": "0"
},
{
"input": "100000\n2",
"output": "1"
},
{
"input": "99999\n1",
"output": "1"
},
{
"input": "99998\n1",
"output": "2"
},
{
"input": "99997\n1",
"output": "0"
},
{
"input": "99996\n1",
"output": "1"
},
{
"input": "99995\n1",
"output": "2"
},
{
"input": "1999999995\n0",
"output": "2"
},
{
"input": "1999999995\n1",
"output": "1"
},
{
"input": "1999999995\n2",
"output": "0"
},
{
"input": "1999999996\n0",
"output": "2"
},
{
"input": "1999999996\n1",
"output": "0"
},
{
"input": "1999999996\n2",
"output": "1"
},
{
"input": "1999999997\n0",
"output": "0"
},
{
"input": "1999999997\n1",
"output": "2"
},
{
"input": "1999999997\n2",
"output": "1"
},
{
"input": "1999999998\n0",
"output": "0"
},
{
"input": "1999999998\n1",
"output": "1"
},
{
"input": "1999999998\n2",
"output": "2"
},
{
"input": "1999999999\n0",
"output": "1"
},
{
"input": "1999999999\n1",
"output": "0"
},
{
"input": "1999999999\n2",
"output": "2"
},
{
"input": "2000000000\n1",
"output": "2"
},
{
"input": "2000000000\n2",
"output": "0"
},
{
"input": "1234567890\n0",
"output": "0"
},
{
"input": "1234567890\n1",
"output": "1"
},
{
"input": "1234567890\n2",
"output": "2"
},
{
"input": "123456789\n0",
"output": "2"
},
{
"input": "123456789\n1",
"output": "1"
},
{
"input": "123456789\n2",
"output": "0"
},
{
"input": "123456790\n0",
"output": "2"
},
{
"input": "12\n2",
"output": "2"
},
{
"input": "32\n1",
"output": "2"
},
{
"input": "20\n2",
"output": "0"
},
{
"input": "10\n1",
"output": "0"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "76994383\n1",
"output": "0"
},
{
"input": "25\n2",
"output": "2"
},
{
"input": "1\n2",
"output": "2"
},
{
"input": "12\n0",
"output": "0"
},
{
"input": "150\n2",
"output": "2"
},
{
"input": "15\n0",
"output": "2"
},
{
"input": "21\n2",
"output": "0"
},
{
"input": "18\n2",
"output": "2"
},
{
"input": "8\n2",
"output": "0"
},
{
"input": "10\n0",
"output": "2"
},
{
"input": "16\n0",
"output": "2"
}
] | 1,603,552,171
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 68
| 187
| 0
|
l = '122100'
m = '001221'
r = '210012'
n = int(input())
b = input()
n = n%6-1
if l[n]==b:
print(0)
elif m[n]==b:
print(1)
elif r[n]==b:
print(2)
|
Title: Shell Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bomboslav likes to look out of the window in his room and watch lads outside playing famous shell game. The game is played by two persons: operator and player. Operator takes three similar opaque shells and places a ball beneath one of them. Then he shuffles the shells by swapping some pairs and the player has to guess the current position of the ball.
Bomboslav noticed that guys are not very inventive, so the operator always swaps the left shell with the middle one during odd moves (first, third, fifth, etc.) and always swaps the middle shell with the right one during even moves (second, fourth, etc.).
Let's number shells from 0 to 2 from left to right. Thus the left shell is assigned number 0, the middle shell is 1 and the right shell is 2. Bomboslav has missed the moment when the ball was placed beneath the shell, but he knows that exactly *n* movements were made by the operator and the ball was under shell *x* at the end. Now he wonders, what was the initial position of the ball?
Input Specification:
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=2·109) — the number of movements made by the operator.
The second line contains a single integer *x* (0<=≤<=*x*<=≤<=2) — the index of the shell where the ball was found after *n* movements.
Output Specification:
Print one integer from 0 to 2 — the index of the shell where the ball was initially placed.
Demo Input:
['4\n2\n', '1\n1\n']
Demo Output:
['1\n', '0\n']
Note:
In the first sample, the ball was initially placed beneath the middle shell and the operator completed four movements.
1. During the first move operator swapped the left shell and the middle shell. The ball is now under the left shell. 1. During the second move operator swapped the middle shell and the right one. The ball is still under the left shell. 1. During the third move operator swapped the left shell and the middle shell again. The ball is again in the middle. 1. Finally, the operators swapped the middle shell and the right shell. The ball is now beneath the right shell.
|
```python
l = '122100'
m = '001221'
r = '210012'
n = int(input())
b = input()
n = n%6-1
if l[n]==b:
print(0)
elif m[n]==b:
print(1)
elif r[n]==b:
print(2)
```
| 3
|
|
559
|
A
|
Gerald's Hexagon
|
PROGRAMMING
| 1,600
|
[
"brute force",
"geometry",
"math"
] | null | null |
Gerald got a very curious hexagon for his birthday. The boy found out that all the angles of the hexagon are equal to . Then he measured the length of its sides, and found that each of them is equal to an integer number of centimeters. There the properties of the hexagon ended and Gerald decided to draw on it.
He painted a few lines, parallel to the sides of the hexagon. The lines split the hexagon into regular triangles with sides of 1 centimeter. Now Gerald wonders how many triangles he has got. But there were so many of them that Gerald lost the track of his counting. Help the boy count the triangles.
|
The first and the single line of the input contains 6 space-separated integers *a*1,<=*a*2,<=*a*3,<=*a*4,<=*a*5 and *a*6 (1<=≤<=*a**i*<=≤<=1000) — the lengths of the sides of the hexagons in centimeters in the clockwise order. It is guaranteed that the hexagon with the indicated properties and the exactly such sides exists.
|
Print a single integer — the number of triangles with the sides of one 1 centimeter, into which the hexagon is split.
|
[
"1 1 1 1 1 1\n",
"1 2 1 2 1 2\n"
] |
[
"6\n",
"13\n"
] |
This is what Gerald's hexagon looks like in the first sample:
<img class="tex-graphics" src="https://espresso.codeforces.com/84d193e27b02c38eb1eadc536602a2ec0b9f9519.png" style="max-width: 100.0%;max-height: 100.0%;"/>
And that's what it looks like in the second sample:
<img class="tex-graphics" src="https://espresso.codeforces.com/e29076a96da8ca864654cc6195654d9bf07d31ce.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 500
|
[
{
"input": "1 1 1 1 1 1",
"output": "6"
},
{
"input": "1 2 1 2 1 2",
"output": "13"
},
{
"input": "2 4 5 3 3 6",
"output": "83"
},
{
"input": "45 19 48 18 46 21",
"output": "6099"
},
{
"input": "66 6 65 6 66 5",
"output": "5832"
},
{
"input": "7 5 4 8 4 5",
"output": "175"
},
{
"input": "3 2 1 4 1 2",
"output": "25"
},
{
"input": "7 1 7 3 5 3",
"output": "102"
},
{
"input": "9 2 9 3 8 3",
"output": "174"
},
{
"input": "1 6 1 5 2 5",
"output": "58"
},
{
"input": "41 64 48 61 44 68",
"output": "17488"
},
{
"input": "1 59 2 59 1 60",
"output": "3838"
},
{
"input": "30 36 36 32 34 38",
"output": "7052"
},
{
"input": "50 40 46 38 52 34",
"output": "11176"
},
{
"input": "4 60 4 60 4 60",
"output": "4576"
},
{
"input": "718 466 729 470 714 481",
"output": "2102808"
},
{
"input": "131 425 143 461 95 473",
"output": "441966"
},
{
"input": "125 7 128 8 124 11",
"output": "20215"
},
{
"input": "677 303 685 288 692 296",
"output": "1365807"
},
{
"input": "1 577 7 576 2 582",
"output": "342171"
},
{
"input": "1000 1000 1000 1000 1000 1000",
"output": "6000000"
},
{
"input": "1 1 1000 1 1 1000",
"output": "4002"
},
{
"input": "1000 1000 1 1000 1000 1",
"output": "2004000"
},
{
"input": "1000 1 1000 999 2 999",
"output": "2003997"
},
{
"input": "1 1000 1 1 1000 1",
"output": "4002"
},
{
"input": "888 888 888 887 889 887",
"output": "4729487"
}
] | 1,650,174,786
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 26
| 62
| 0
|
a = list(map(int, input().split(' ')))
x = (a[0] + a[1] + a[2])**2
y = a[0]**2 + a[2]**2 + a[4]**2
print(x - y)
|
Title: Gerald's Hexagon
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Gerald got a very curious hexagon for his birthday. The boy found out that all the angles of the hexagon are equal to . Then he measured the length of its sides, and found that each of them is equal to an integer number of centimeters. There the properties of the hexagon ended and Gerald decided to draw on it.
He painted a few lines, parallel to the sides of the hexagon. The lines split the hexagon into regular triangles with sides of 1 centimeter. Now Gerald wonders how many triangles he has got. But there were so many of them that Gerald lost the track of his counting. Help the boy count the triangles.
Input Specification:
The first and the single line of the input contains 6 space-separated integers *a*1,<=*a*2,<=*a*3,<=*a*4,<=*a*5 and *a*6 (1<=≤<=*a**i*<=≤<=1000) — the lengths of the sides of the hexagons in centimeters in the clockwise order. It is guaranteed that the hexagon with the indicated properties and the exactly such sides exists.
Output Specification:
Print a single integer — the number of triangles with the sides of one 1 centimeter, into which the hexagon is split.
Demo Input:
['1 1 1 1 1 1\n', '1 2 1 2 1 2\n']
Demo Output:
['6\n', '13\n']
Note:
This is what Gerald's hexagon looks like in the first sample:
<img class="tex-graphics" src="https://espresso.codeforces.com/84d193e27b02c38eb1eadc536602a2ec0b9f9519.png" style="max-width: 100.0%;max-height: 100.0%;"/>
And that's what it looks like in the second sample:
<img class="tex-graphics" src="https://espresso.codeforces.com/e29076a96da8ca864654cc6195654d9bf07d31ce.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
a = list(map(int, input().split(' ')))
x = (a[0] + a[1] + a[2])**2
y = a[0]**2 + a[2]**2 + a[4]**2
print(x - y)
```
| 3
|
|
71
|
A
|
Way Too Long Words
|
PROGRAMMING
| 800
|
[
"strings"
] |
A. Way Too Long Words
|
1
|
256
|
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
|
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
|
[
"4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n"
] |
[
"word\nl10n\ni18n\np43s\n"
] |
none
| 500
|
[
{
"input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis",
"output": "word\nl10n\ni18n\np43s"
},
{
"input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm",
"output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m"
},
{
"input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd",
"output": "n20n\nj27b\nk15d"
},
{
"input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt",
"output": "t41t"
},
{
"input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings",
"output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz",
"output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz"
},
{
"input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij",
"output": "a98j"
},
{
"input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco",
"output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco"
},
{
"input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt",
"output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t"
},
{
"input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr",
"output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr"
}
] | 1,684,483,025
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 30
| 0
|
list_str = input().split()
number_words = int(list_str[0])
print(list_str[1])
print(list_str[2])
print(list_str[3])
|
Title: Way Too Long Words
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Output Specification:
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
Demo Input:
['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n']
Demo Output:
['word\nl10n\ni18n\np43s\n']
Note:
none
|
```python
list_str = input().split()
number_words = int(list_str[0])
print(list_str[1])
print(list_str[2])
print(list_str[3])
```
| -1
|
483
|
A
|
Counterexample
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation",
"math",
"number theory"
] | null | null |
Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one.
Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime.
You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*.
More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime.
|
The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50).
|
Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.
If the counterexample does not exist, print the single number -1.
|
[
"2 4\n",
"10 11\n",
"900000000000000009 900000000000000029\n"
] |
[
"2 3 4\n",
"-1\n",
"900000000000000009 900000000000000010 900000000000000021\n"
] |
In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are.
In the second sample you cannot form a group of three distinct integers, so the answer is -1.
In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
| 500
|
[
{
"input": "2 4",
"output": "2 3 4"
},
{
"input": "10 11",
"output": "-1"
},
{
"input": "900000000000000009 900000000000000029",
"output": "900000000000000009 900000000000000010 900000000000000021"
},
{
"input": "640097987171091791 640097987171091835",
"output": "640097987171091792 640097987171091793 640097987171091794"
},
{
"input": "19534350415104721 19534350415104725",
"output": "19534350415104722 19534350415104723 19534350415104724"
},
{
"input": "933700505788726243 933700505788726280",
"output": "933700505788726244 933700505788726245 933700505788726246"
},
{
"input": "1 3",
"output": "-1"
},
{
"input": "1 4",
"output": "2 3 4"
},
{
"input": "1 1",
"output": "-1"
},
{
"input": "266540997167959130 266540997167959164",
"output": "266540997167959130 266540997167959131 266540997167959132"
},
{
"input": "267367244641009850 267367244641009899",
"output": "267367244641009850 267367244641009851 267367244641009852"
},
{
"input": "268193483524125978 268193483524125993",
"output": "268193483524125978 268193483524125979 268193483524125980"
},
{
"input": "269019726702209402 269019726702209432",
"output": "269019726702209402 269019726702209403 269019726702209404"
},
{
"input": "269845965585325530 269845965585325576",
"output": "269845965585325530 269845965585325531 269845965585325532"
},
{
"input": "270672213058376250 270672213058376260",
"output": "270672213058376250 270672213058376251 270672213058376252"
},
{
"input": "271498451941492378 271498451941492378",
"output": "-1"
},
{
"input": "272324690824608506 272324690824608523",
"output": "272324690824608506 272324690824608507 272324690824608508"
},
{
"input": "273150934002691930 273150934002691962",
"output": "273150934002691930 273150934002691931 273150934002691932"
},
{
"input": "996517375802030516 996517375802030524",
"output": "996517375802030516 996517375802030517 996517375802030518"
},
{
"input": "997343614685146644 997343614685146694",
"output": "997343614685146644 997343614685146645 997343614685146646"
},
{
"input": "998169857863230068 998169857863230083",
"output": "998169857863230068 998169857863230069 998169857863230070"
},
{
"input": "998996101041313492 998996101041313522",
"output": "998996101041313492 998996101041313493 998996101041313494"
},
{
"input": "999822344219396916 999822344219396961",
"output": "999822344219396916 999822344219396917 999822344219396918"
},
{
"input": "648583102513043 648583102513053",
"output": "648583102513044 648583102513045 648583102513046"
},
{
"input": "266540997167959130 266540997167959131",
"output": "-1"
},
{
"input": "267367244641009850 267367244641009850",
"output": "-1"
},
{
"input": "268193483524125978 268193483524125979",
"output": "-1"
},
{
"input": "269019726702209402 269019726702209402",
"output": "-1"
},
{
"input": "269845965585325530 269845965585325530",
"output": "-1"
},
{
"input": "270672213058376250 270672213058376254",
"output": "270672213058376250 270672213058376251 270672213058376252"
},
{
"input": "271498451941492378 271498451941492379",
"output": "-1"
},
{
"input": "272324690824608506 272324690824608508",
"output": "272324690824608506 272324690824608507 272324690824608508"
},
{
"input": "273150934002691930 273150934002691931",
"output": "-1"
},
{
"input": "996517375802030516 996517375802030518",
"output": "996517375802030516 996517375802030517 996517375802030518"
},
{
"input": "997343614685146644 997343614685146644",
"output": "-1"
},
{
"input": "2147483647 2147483649",
"output": "-1"
},
{
"input": "3 5",
"output": "-1"
},
{
"input": "1 7",
"output": "2 3 4"
},
{
"input": "9 12",
"output": "9 11 12"
},
{
"input": "4 4",
"output": "-1"
},
{
"input": "11 13",
"output": "-1"
},
{
"input": "2 2",
"output": "-1"
}
] | 1,601,486,356
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 42
| 140
| 0
|
def main():
n, m = map(int, input().split())
if n % 2 == 1:
n += 1
if m - n < 2:
print(-1)
else:
print(n, n + 1, n + 2)
if __name__ == '__main__':
main()
|
Title: Counterexample
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one.
Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime.
You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*.
More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime.
Input Specification:
The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50).
Output Specification:
Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.
If the counterexample does not exist, print the single number -1.
Demo Input:
['2 4\n', '10 11\n', '900000000000000009 900000000000000029\n']
Demo Output:
['2 3 4\n', '-1\n', '900000000000000009 900000000000000010 900000000000000021\n']
Note:
In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are.
In the second sample you cannot form a group of three distinct integers, so the answer is -1.
In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
|
```python
def main():
n, m = map(int, input().split())
if n % 2 == 1:
n += 1
if m - n < 2:
print(-1)
else:
print(n, n + 1, n + 2)
if __name__ == '__main__':
main()
```
| 3
|
|
919
|
A
|
Supermarket
|
PROGRAMMING
| 800
|
[
"brute force",
"greedy",
"implementation"
] | null | null |
We often go to supermarkets to buy some fruits or vegetables, and on the tag there prints the price for a kilo. But in some supermarkets, when asked how much the items are, the clerk will say that $a$ yuan for $b$ kilos (You don't need to care about what "yuan" is), the same as $a/b$ yuan for a kilo.
Now imagine you'd like to buy $m$ kilos of apples. You've asked $n$ supermarkets and got the prices. Find the minimum cost for those apples.
You can assume that there are enough apples in all supermarkets.
|
The first line contains two positive integers $n$ and $m$ ($1 \leq n \leq 5\,000$, $1 \leq m \leq 100$), denoting that there are $n$ supermarkets and you want to buy $m$ kilos of apples.
The following $n$ lines describe the information of the supermarkets. Each line contains two positive integers $a, b$ ($1 \leq a, b \leq 100$), denoting that in this supermarket, you are supposed to pay $a$ yuan for $b$ kilos of apples.
|
The only line, denoting the minimum cost for $m$ kilos of apples. Please make sure that the absolute or relative error between your answer and the correct answer won't exceed $10^{-6}$.
Formally, let your answer be $x$, and the jury's answer be $y$. Your answer is considered correct if $\frac{|x - y|}{\max{(1, |y|)}} \le 10^{-6}$.
|
[
"3 5\n1 2\n3 4\n1 3\n",
"2 1\n99 100\n98 99\n"
] |
[
"1.66666667\n",
"0.98989899\n"
] |
In the first sample, you are supposed to buy $5$ kilos of apples in supermarket $3$. The cost is $5/3$ yuan.
In the second sample, you are supposed to buy $1$ kilo of apples in supermarket $2$. The cost is $98/99$ yuan.
| 500
|
[
{
"input": "3 5\n1 2\n3 4\n1 3",
"output": "1.66666667"
},
{
"input": "2 1\n99 100\n98 99",
"output": "0.98989899"
},
{
"input": "50 37\n78 49\n96 4\n86 62\n28 4\n19 2\n79 43\n79 92\n95 35\n33 60\n54 84\n90 25\n2 25\n53 21\n86 52\n72 25\n6 78\n41 46\n3 68\n42 89\n33 35\n57 43\n99 45\n1 82\n38 62\n11 50\n55 84\n1 97\n12 67\n51 96\n51 7\n1 100\n79 61\n66 54\n97 93\n52 75\n80 54\n98 73\n29 28\n73 96\n24 73\n3 25\n1 29\n43 50\n97 95\n54 64\n38 97\n68 16\n22 68\n25 91\n77 13",
"output": "0.37000000"
},
{
"input": "5 1\n5 100\n55 6\n53 27\n57 53\n62 24",
"output": "0.05000000"
},
{
"input": "10 7\n83 93\n90 2\n63 51\n51 97\n7 97\n25 78\n17 68\n30 10\n46 14\n22 28",
"output": "0.50515464"
},
{
"input": "1 100\n100 1",
"output": "10000.00000000"
},
{
"input": "1 1\n59 1",
"output": "59.00000000"
},
{
"input": "1 100\n1 100",
"output": "1.00000000"
},
{
"input": "1 100\n1 99",
"output": "1.01010101"
},
{
"input": "1 1\n100 1",
"output": "100.00000000"
},
{
"input": "15 100\n1 2\n3 4\n10 11\n12 13\n20 21\n28 29\n34 35\n42 43\n59 60\n61 62\n74 75\n89 90\n96 97\n98 99\n99 100",
"output": "50.00000000"
},
{
"input": "15 100\n3 2\n5 4\n12 11\n14 13\n22 21\n30 29\n36 35\n44 43\n61 60\n63 62\n76 75\n91 90\n98 97\n99 98\n100 99",
"output": "101.01010101"
},
{
"input": "1 1\n100 10",
"output": "10.00000000"
},
{
"input": "1 1\n100 3",
"output": "33.33333333"
},
{
"input": "1 100\n100 3",
"output": "3333.33333333"
},
{
"input": "1 100\n100 1",
"output": "10000.00000000"
},
{
"input": "7 8\n9 8\n5 1\n3 1\n6 2\n7 3\n2 1\n3 1",
"output": "9.00000000"
},
{
"input": "5 8\n9 8\n3 1\n2 1\n4 2\n13 5",
"output": "9.00000000"
},
{
"input": "2 1\n1 2\n2 10",
"output": "0.20000000"
},
{
"input": "2 1\n99 100\n95 95",
"output": "0.99000000"
},
{
"input": "1 5\n10 1",
"output": "50.00000000"
},
{
"input": "5 10\n9 1\n10 1\n11 1\n12 1\n13 1",
"output": "90.00000000"
},
{
"input": "1 100\n3 1",
"output": "300.00000000"
}
] | 1,630,835,876
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 77
| 6,758,400
|
N, M = map(int,input().split())
minCost = float('inf')
for i in range(N):
A, B = map(int,input().split())
minCost = min(M*A/B, minCost)
print(minCost)
|
Title: Supermarket
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
We often go to supermarkets to buy some fruits or vegetables, and on the tag there prints the price for a kilo. But in some supermarkets, when asked how much the items are, the clerk will say that $a$ yuan for $b$ kilos (You don't need to care about what "yuan" is), the same as $a/b$ yuan for a kilo.
Now imagine you'd like to buy $m$ kilos of apples. You've asked $n$ supermarkets and got the prices. Find the minimum cost for those apples.
You can assume that there are enough apples in all supermarkets.
Input Specification:
The first line contains two positive integers $n$ and $m$ ($1 \leq n \leq 5\,000$, $1 \leq m \leq 100$), denoting that there are $n$ supermarkets and you want to buy $m$ kilos of apples.
The following $n$ lines describe the information of the supermarkets. Each line contains two positive integers $a, b$ ($1 \leq a, b \leq 100$), denoting that in this supermarket, you are supposed to pay $a$ yuan for $b$ kilos of apples.
Output Specification:
The only line, denoting the minimum cost for $m$ kilos of apples. Please make sure that the absolute or relative error between your answer and the correct answer won't exceed $10^{-6}$.
Formally, let your answer be $x$, and the jury's answer be $y$. Your answer is considered correct if $\frac{|x - y|}{\max{(1, |y|)}} \le 10^{-6}$.
Demo Input:
['3 5\n1 2\n3 4\n1 3\n', '2 1\n99 100\n98 99\n']
Demo Output:
['1.66666667\n', '0.98989899\n']
Note:
In the first sample, you are supposed to buy $5$ kilos of apples in supermarket $3$. The cost is $5/3$ yuan.
In the second sample, you are supposed to buy $1$ kilo of apples in supermarket $2$. The cost is $98/99$ yuan.
|
```python
N, M = map(int,input().split())
minCost = float('inf')
for i in range(N):
A, B = map(int,input().split())
minCost = min(M*A/B, minCost)
print(minCost)
```
| 3
|
|
510
|
A
|
Fox And Snake
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
|
The only line contains two integers: *n* and *m* (3<=≤<=*n*,<=*m*<=≤<=50).
*n* is an odd number.
|
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
|
[
"3 3\n",
"3 4\n",
"5 3\n",
"9 9\n"
] |
[
"###\n..#\n###\n",
"####\n...#\n####\n",
"###\n..#\n###\n#..\n###\n",
"#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n"
] |
none
| 500
|
[
{
"input": "3 3",
"output": "###\n..#\n###"
},
{
"input": "3 4",
"output": "####\n...#\n####"
},
{
"input": "5 3",
"output": "###\n..#\n###\n#..\n###"
},
{
"input": "9 9",
"output": "#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########"
},
{
"input": "3 5",
"output": "#####\n....#\n#####"
},
{
"input": "3 6",
"output": "######\n.....#\n######"
},
{
"input": "7 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "7 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####"
},
{
"input": "49 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 27",
"output": "###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n....................."
},
{
"input": "11 15",
"output": "###############\n..............#\n###############\n#..............\n###############\n..............#\n###############\n#..............\n###############\n..............#\n###############"
},
{
"input": "11 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "19 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "23 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "49 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "33 43",
"output": "###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#.................."
},
{
"input": "33 44",
"output": "############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#......."
},
{
"input": "45 45",
"output": "#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#########################################..."
},
{
"input": "45 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "45 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###"
},
{
"input": "45 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####"
},
{
"input": "5 4",
"output": "####\n...#\n####\n#...\n####"
},
{
"input": "5 5",
"output": "#####\n....#\n#####\n#....\n#####"
},
{
"input": "5 6",
"output": "######\n.....#\n######\n#.....\n######"
},
{
"input": "7 5",
"output": "#####\n....#\n#####\n#....\n#####\n....#\n#####"
},
{
"input": "7 6",
"output": "######\n.....#\n######\n#.....\n######\n.....#\n######"
},
{
"input": "7 7",
"output": "#######\n......#\n#######\n#......\n#######\n......#\n#######"
}
] | 1,695,555,957
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 28
| 46
| 0
|
height,length=map(int,input().split())
side=1
for i in range(height):
if i%2==0:
print('#'*length)
elif side:
print('.'*(length-1),'#',sep='')
side=0
else:
print('#','.'*(length-1),sep='')
side=1
|
Title: Fox And Snake
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
Input Specification:
The only line contains two integers: *n* and *m* (3<=≤<=*n*,<=*m*<=≤<=50).
*n* is an odd number.
Output Specification:
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
Demo Input:
['3 3\n', '3 4\n', '5 3\n', '9 9\n']
Demo Output:
['###\n..#\n###\n', '####\n...#\n####\n', '###\n..#\n###\n#..\n###\n', '#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n']
Note:
none
|
```python
height,length=map(int,input().split())
side=1
for i in range(height):
if i%2==0:
print('#'*length)
elif side:
print('.'*(length-1),'#',sep='')
side=0
else:
print('#','.'*(length-1),sep='')
side=1
```
| 3
|
|
447
|
A
|
DZY Loves Hash
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
DZY has a hash table with *p* buckets, numbered from 0 to *p*<=-<=1. He wants to insert *n* numbers, in the order they are given, into the hash table. For the *i*-th number *x**i*, DZY will put it into the bucket numbered *h*(*x**i*), where *h*(*x*) is the hash function. In this problem we will assume, that *h*(*x*)<==<=*x* *mod* *p*. Operation *a* *mod* *b* denotes taking a remainder after division *a* by *b*.
However, each bucket can contain no more than one element. If DZY wants to insert an number into a bucket which is already filled, we say a "conflict" happens. Suppose the first conflict happens right after the *i*-th insertion, you should output *i*. If no conflict happens, just output -1.
|
The first line contains two integers, *p* and *n* (2<=≤<=*p*,<=*n*<=≤<=300). Then *n* lines follow. The *i*-th of them contains an integer *x**i* (0<=≤<=*x**i*<=≤<=109).
|
Output a single integer — the answer to the problem.
|
[
"10 5\n0\n21\n53\n41\n53\n",
"5 5\n0\n1\n2\n3\n4\n"
] |
[
"4\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "10 5\n0\n21\n53\n41\n53",
"output": "4"
},
{
"input": "5 5\n0\n1\n2\n3\n4",
"output": "-1"
},
{
"input": "10 6\n811966798\n734823552\n790326404\n929189974\n414343256\n560346537",
"output": "4"
},
{
"input": "2 2\n788371161\n801743052",
"output": "-1"
},
{
"input": "10 6\n812796223\n122860157\n199259103\n597650585\n447742024\n521549402",
"output": "3"
},
{
"input": "300 2\n822454942\n119374431",
"output": "-1"
},
{
"input": "300 2\n823284367\n507345500",
"output": "-1"
},
{
"input": "2 5\n791579811\n35613889\n997079893\n878677665\n693717467",
"output": "2"
},
{
"input": "20 5\n793926268\n28931770\n842870287\n974950617\n859404206",
"output": "-1"
},
{
"input": "100 15\n805069249\n778178198\n633897389\n844316223\n146759898\n870527016\n82668754\n42060733\n943602929\n979451110\n746979598\n47406033\n607284062\n850870259\n229415316",
"output": "5"
},
{
"input": "100 15\n806204335\n189490323\n718805086\n716787474\n262315718\n822030596\n894644222\n724054623\n141384399\n579354205\n192622443\n672556242\n97417563\n243354557\n208957882",
"output": "8"
},
{
"input": "100 15\n807033760\n577461392\n275221433\n532633429\n295714486\n783298996\n255799943\n99107143\n729119412\n59302896\n37640015\n313610861\n630550567\n534283052\n681062462",
"output": "8"
},
{
"input": "100 15\n808103310\n136224397\n360129131\n405104681\n263786657\n734802577\n67808179\n928584682\n926900882\n511722343\n483348395\n938695534\n120684068\n74152694\n808088675",
"output": "9"
},
{
"input": "2 2\n2\n2",
"output": "2"
},
{
"input": "300 2\n0\n300",
"output": "2"
},
{
"input": "2 2\n0\n0",
"output": "2"
}
] | 1,685,466,131
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 29
| 46
| 0
|
s = set()
p, n = map(int, input().split())
for k in range(n):
buc = int(input()) % p
if buc in s:
print(k+1)
break
else:
s.add(buc)
else:
print(-1)
|
Title: DZY Loves Hash
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
DZY has a hash table with *p* buckets, numbered from 0 to *p*<=-<=1. He wants to insert *n* numbers, in the order they are given, into the hash table. For the *i*-th number *x**i*, DZY will put it into the bucket numbered *h*(*x**i*), where *h*(*x*) is the hash function. In this problem we will assume, that *h*(*x*)<==<=*x* *mod* *p*. Operation *a* *mod* *b* denotes taking a remainder after division *a* by *b*.
However, each bucket can contain no more than one element. If DZY wants to insert an number into a bucket which is already filled, we say a "conflict" happens. Suppose the first conflict happens right after the *i*-th insertion, you should output *i*. If no conflict happens, just output -1.
Input Specification:
The first line contains two integers, *p* and *n* (2<=≤<=*p*,<=*n*<=≤<=300). Then *n* lines follow. The *i*-th of them contains an integer *x**i* (0<=≤<=*x**i*<=≤<=109).
Output Specification:
Output a single integer — the answer to the problem.
Demo Input:
['10 5\n0\n21\n53\n41\n53\n', '5 5\n0\n1\n2\n3\n4\n']
Demo Output:
['4\n', '-1\n']
Note:
none
|
```python
s = set()
p, n = map(int, input().split())
for k in range(n):
buc = int(input()) % p
if buc in s:
print(k+1)
break
else:
s.add(buc)
else:
print(-1)
```
| 3
|
|
134
|
A
|
Average Numbers
|
PROGRAMMING
| 1,200
|
[
"brute force",
"implementation"
] | null | null |
You are given a sequence of positive integers *a*1,<=*a*2,<=...,<=*a**n*. Find all such indices *i*, that the *i*-th element equals the arithmetic mean of all other elements (that is all elements except for this one).
|
The first line contains the integer *n* (2<=≤<=*n*<=≤<=2·105). The second line contains elements of the sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). All the elements are positive integers.
|
Print on the first line the number of the sought indices. Print on the second line the sought indices in the increasing order. All indices are integers from 1 to *n*.
If the sought elements do not exist, then the first output line should contain number 0. In this case you may either not print the second line or print an empty line.
|
[
"5\n1 2 3 4 5\n",
"4\n50 50 50 50\n"
] |
[
"1\n3 ",
"4\n1 2 3 4 "
] |
none
| 500
|
[
{
"input": "5\n1 2 3 4 5",
"output": "1\n3 "
},
{
"input": "4\n50 50 50 50",
"output": "4\n1 2 3 4 "
},
{
"input": "3\n2 3 1",
"output": "1\n1 "
},
{
"input": "2\n4 2",
"output": "0"
},
{
"input": "2\n1 1",
"output": "2\n1 2 "
},
{
"input": "10\n3 3 3 3 3 4 3 3 3 2",
"output": "8\n1 2 3 4 5 7 8 9 "
},
{
"input": "10\n15 7 10 7 7 7 4 4 7 2",
"output": "5\n2 4 5 6 9 "
},
{
"input": "6\n2 2 2 2 2 2",
"output": "6\n1 2 3 4 5 6 "
},
{
"input": "6\n3 3 3 3 3 3",
"output": "6\n1 2 3 4 5 6 "
},
{
"input": "4\n6 6 6 7",
"output": "0"
},
{
"input": "2\n1 2",
"output": "0"
},
{
"input": "3\n3 3 4",
"output": "0"
},
{
"input": "5\n7 6 6 6 6",
"output": "0"
},
{
"input": "4\n3 5 5 9",
"output": "0"
},
{
"input": "3\n99 100 99",
"output": "0"
},
{
"input": "4\n5 6 5 5",
"output": "0"
},
{
"input": "6\n1 1 2 1 1 1",
"output": "0"
},
{
"input": "2\n4 5",
"output": "0"
},
{
"input": "4\n1 1 1 2",
"output": "0"
},
{
"input": "3\n1 2 4",
"output": "0"
},
{
"input": "6\n1 1 2 3 3 3",
"output": "0"
},
{
"input": "4\n4 5 5 4",
"output": "0"
},
{
"input": "3\n2 3 5",
"output": "0"
},
{
"input": "3\n2 1 1",
"output": "0"
},
{
"input": "3\n1 1 2",
"output": "0"
},
{
"input": "4\n1 2 3 4",
"output": "0"
},
{
"input": "5\n1 2 3 4 6",
"output": "0"
},
{
"input": "3\n2 2 3",
"output": "0"
},
{
"input": "4\n3 4 5 1",
"output": "0"
},
{
"input": "3\n2 3 2",
"output": "0"
},
{
"input": "3\n3 4 4",
"output": "0"
},
{
"input": "3\n10 5 7",
"output": "0"
},
{
"input": "3\n5 6 5",
"output": "0"
},
{
"input": "4\n1 2 3 7",
"output": "0"
},
{
"input": "5\n2 2 3 3 3",
"output": "0"
},
{
"input": "3\n4 3 6",
"output": "0"
},
{
"input": "3\n1 1 3",
"output": "0"
},
{
"input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "15\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 "
}
] | 1,459,305,575
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 58
| 233
| 24,268,800
|
n, t = int(input()), list(map(int, input().split()))
s = sum(t)
temp = [i + 1 for i in range(n) if t[i] * n == s]
print(len(temp))
print(' '.join(map(str, temp)))
|
Title: Average Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a sequence of positive integers *a*1,<=*a*2,<=...,<=*a**n*. Find all such indices *i*, that the *i*-th element equals the arithmetic mean of all other elements (that is all elements except for this one).
Input Specification:
The first line contains the integer *n* (2<=≤<=*n*<=≤<=2·105). The second line contains elements of the sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). All the elements are positive integers.
Output Specification:
Print on the first line the number of the sought indices. Print on the second line the sought indices in the increasing order. All indices are integers from 1 to *n*.
If the sought elements do not exist, then the first output line should contain number 0. In this case you may either not print the second line or print an empty line.
Demo Input:
['5\n1 2 3 4 5\n', '4\n50 50 50 50\n']
Demo Output:
['1\n3 ', '4\n1 2 3 4 ']
Note:
none
|
```python
n, t = int(input()), list(map(int, input().split()))
s = sum(t)
temp = [i + 1 for i in range(n) if t[i] * n == s]
print(len(temp))
print(' '.join(map(str, temp)))
```
| 3
|
|
78
|
A
|
Haiku
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Haiku
|
2
|
256
|
Haiku is a genre of Japanese traditional poetry.
A haiku poem consists of 17 syllables split into three phrases, containing 5, 7 and 5 syllables correspondingly (the first phrase should contain exactly 5 syllables, the second phrase should contain exactly 7 syllables, and the third phrase should contain exactly 5 syllables). A haiku masterpiece contains a description of a moment in those three phrases. Every word is important in a small poem, which is why haiku are rich with symbols. Each word has a special meaning, a special role. The main principle of haiku is to say much using a few words.
To simplify the matter, in the given problem we will consider that the number of syllable in the phrase is equal to the number of vowel letters there. Only the following letters are regarded as vowel letters: "a", "e", "i", "o" and "u".
Three phases from a certain poem are given. Determine whether it is haiku or not.
|
The input data consists of three lines. The length of each line is between 1 and 100, inclusive. The *i*-th line contains the *i*-th phrase of the poem. Each phrase consists of one or more words, which are separated by one or more spaces. A word is a non-empty sequence of lowercase Latin letters. Leading and/or trailing spaces in phrases are allowed. Every phrase has at least one non-space character. See the example for clarification.
|
Print "YES" (without the quotes) if the poem is a haiku. Otherwise, print "NO" (also without the quotes).
|
[
"on codeforces \nbeta round is running\n a rustling of keys \n",
"how many gallons\nof edo s rain did you drink\n cuckoo\n"
] |
[
"YES",
"NO"
] |
none
| 500
|
[
{
"input": "on codeforces \nbeta round is running\n a rustling of keys ",
"output": "YES"
},
{
"input": "how many gallons\nof edo s rain did you drink\n cuckoo",
"output": "NO"
},
{
"input": " hatsu shigure\n saru mo komino wo\nhoshige nari",
"output": "YES"
},
{
"input": "o vetus stagnum\n rana de ripa salit\n ac sonant aquae",
"output": "NO"
},
{
"input": " furuike ya\nkawazu tobikomu\nmizu no oto ",
"output": "YES"
},
{
"input": " noch da leich\na stamperl zum aufwaerma\n da pfarrer kimmt a ",
"output": "NO"
},
{
"input": " sommerfuglene \n hvorfor bruge mange ord\n et kan gore det",
"output": "YES"
},
{
"input": " ab der mittagszeit\n ist es etwas schattiger\n ein wolkenhimmel",
"output": "NO"
},
{
"input": "tornando a vederli\ni fiori di ciliegio la sera\nson divenuti frutti",
"output": "NO"
},
{
"input": "kutaburete\nyado karu koro ya\nfuji no hana",
"output": "YES"
},
{
"input": " beginnings of poetry\n the rice planting songs \n of the interior",
"output": "NO"
},
{
"input": " door zomerregens\n zijn de kraanvogelpoten\n korter geworden",
"output": "NO"
},
{
"input": " derevo na srub\na ptitsi bezzabotno\n gnezdishko tam vyut",
"output": "YES"
},
{
"input": "writing in the dark\nunaware that my pen\nhas run out of ink",
"output": "NO"
},
{
"input": "kusaaiu\nuieueua\nuo efaa",
"output": "YES"
},
{
"input": "v\nh\np",
"output": "NO"
},
{
"input": "i\ni\nu",
"output": "NO"
},
{
"input": "awmio eoj\nabdoolceegood\nwaadeuoy",
"output": "YES"
},
{
"input": "xzpnhhnqsjpxdboqojixmofawhdjcfbscq\nfoparnxnbzbveycoltwdrfbwwsuobyoz hfbrszy\nimtqryscsahrxpic agfjh wvpmczjjdrnwj mcggxcdo",
"output": "YES"
},
{
"input": "wxjcvccp cppwsjpzbd dhizbcnnllckybrnfyamhgkvkjtxxfzzzuyczmhedhztugpbgpvgh\nmdewztdoycbpxtp bsiw hknggnggykdkrlihvsaykzfiiw\ndewdztnngpsnn lfwfbvnwwmxoojknygqb hfe ibsrxsxr",
"output": "YES"
},
{
"input": "nbmtgyyfuxdvrhuhuhpcfywzrbclp znvxw synxmzymyxcntmhrjriqgdjh xkjckydbzjbvtjurnf\nhhnhxdknvamywhsrkprofnyzlcgtdyzzjdsfxyddvilnzjziz qmwfdvzckgcbrrxplxnxf mpxwxyrpesnewjrx ajxlfj\nvcczq hddzd cvefmhxwxxyqcwkr fdsndckmesqeq zyjbwbnbyhybd cta nsxzidl jpcvtzkldwd",
"output": "YES"
},
{
"input": "rvwdsgdsrutgjwscxz pkd qtpmfbqsmctuevxdj kjzknzghdvxzlaljcntg jxhvzn yciktbsbyscfypx x xhkxnfpdp\nwdfhvqgxbcts mnrwbr iqttsvigwdgvlxwhsmnyxnttedonxcfrtmdjjmacvqtkbmsnwwvvrlxwvtggeowtgsqld qj\nvsxcdhbzktrxbywpdvstr meykarwtkbm pkkbhvwvelclfmpngzxdmblhcvf qmabmweldplmczgbqgzbqnhvcdpnpjtch ",
"output": "YES"
},
{
"input": "brydyfsmtzzkpdsqvvztmprhqzbzqvgsblnz naait tdtiprjsttwusdykndwcccxfmzmrmfmzjywkpgbfnjpypgcbcfpsyfj k\nucwdfkfyxxxht lxvnovqnnsqutjsyagrplb jhvtwdptrwcqrovncdvqljjlrpxcfbxqgsfylbgmcjpvpl ccbcybmigpmjrxpu\nfgwtpcjeywgnxgbttgx htntpbk tkkpwbgxwtbxvcpkqbzetjdkcwad tftnjdxxjdvbpfibvxuglvx llyhgjvggtw jtjyphs",
"output": "YES"
},
{
"input": "nyc aqgqzjjlj mswgmjfcxlqdscheskchlzljlsbhyn iobxymwzykrsnljj\nnnebeaoiraga\nqpjximoqzswhyyszhzzrhfwhf iyxysdtcpmikkwpugwlxlhqfkn",
"output": "NO"
},
{
"input": "lzrkztgfe mlcnq ay ydmdzxh cdgcghxnkdgmgfzgahdjjmqkpdbskreswpnblnrc fmkwziiqrbskp\np oukeaz gvvy kghtrjlczyl qeqhgfgfej\nwfolhkmktvsjnrpzfxcxzqmfidtlzmuhxac wsncjgmkckrywvxmnjdpjpfydhk qlmdwphcvyngansqhl",
"output": "NO"
},
{
"input": "yxcboqmpwoevrdhvpxfzqmammak\njmhphkxppkqkszhqqtkvflarsxzla pbxlnnnafqbsnmznfj qmhoktgzix qpmrgzxqvmjxhskkksrtryehfnmrt dtzcvnvwp\nscwymuecjxhw rdgsffqywwhjpjbfcvcrnisfqllnbplpadfklayjguyvtrzhwblftclfmsr",
"output": "NO"
},
{
"input": "qfdwsr jsbrpfmn znplcx nhlselflytndzmgxqpgwhpi ghvbbxrkjdirfghcybhkkqdzmyacvrrcgsneyjlgzfvdmxyjmph\nylxlyrzs drbktzsniwcbahjkgohcghoaczsmtzhuwdryjwdijmxkmbmxv yyfrokdnsx\nyw xtwyzqlfxwxghugoyscqlx pljtz aldfskvxlsxqgbihzndhxkswkxqpwnfcxzfyvncstfpqf",
"output": "NO"
},
{
"input": "g rguhqhcrzmuqthtmwzhfyhpmqzzosa\nmhjimzvchkhejh irvzejhtjgaujkqfxhpdqjnxr dvqallgssktqvsxi\npcwbliftjcvuzrsqiswohi",
"output": "NO"
},
{
"input": " ngxtlq iehiise vgffqcpnmsoqzyseuqqtggokymol zn\nvjdjljazeujwoubkcvtsbepooxqzrueaauokhepiquuopfild\ngoabauauaeotoieufueeknudiilupouaiaexcoapapu",
"output": "NO"
},
{
"input": "ycnvnnqk mhrmhctpkfbc qbyvtjznmndqjzgbcxmvrpkfcll zwspfptmbxgrdv dsgkk nfytsqjrnfbhh pzdldzymvkdxxwh\nvnhjfwgdnyjptsmblyxmpzylsbjlmtkkwjcbqwjctqvrlqqkdsrktxlnslspvnn mdgsmzblhbnvpczmqkcffwhwljqkzmk hxcm\nrghnjvzcpprrgmtgytpkzyc mrdnnhpkwypwqbtzjyfwvrdwyjltbzxtbstzs xdjzdmx yjsqtzlrnvyssvglsdjrmsrfrcdpqt",
"output": "NO"
},
{
"input": "ioeeaioeiuoeaeieuuieooaouiuouiioaueeaiaiuoaoiioeeaauooiuuieeuaeeoauieeaiuoieiaieuoauaaoioooieueueuai\nuooaoeeaoiuuoeioaoouaououoeioiaeueoioaiouaeaoioiuuaueeuaiuoiueoiuaoeeieeouaeeaeeieioeoiiieuuueuuieuo\naeeouieeieoueaioeoioooiouaeeeiaaioueauaueiouuuaieuuioiaeiueauueaoieauauoeueuaiueuuaueeoueauaeaoieeoo",
"output": "NO"
},
{
"input": "mkgycgmrqtmlwj vddlbsgdptyfrcj nmrddjchydvbsyhgzytfzvwbhqmmhkpsyrcnknpsqrr wcnf wfvgskrnsmnrcqgcnc q\npn cclcyjjdp rqkpgyrvyyd hhynrochfa pthyffqvskazfshvzcmvhmsrxvquzkdvivlbfypwbgltfbjmhzljvgzmxjlrjdjq\nauuouieuaaauoooeoiuoaueuueauiuuuiaeuwuoiaeoeaieauieouoaeiiieiioiuuuiuauioiiuoeauueieaueiaioeuaoaaau",
"output": "NO"
},
{
"input": "ab\na\na",
"output": "NO"
},
{
"input": "on codeforcs\nbeta round is runnineg\na rustling of keys",
"output": "NO"
},
{
"input": "coooooooooooooooood\nd\nd",
"output": "NO"
},
{
"input": "on codeforces \nbeta round is runninog\n a rustling of keys",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaa\na\na",
"output": "NO"
},
{
"input": "aaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\naaaaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\naaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc",
"output": "YES"
},
{
"input": "cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\ncccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\ncccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc",
"output": "NO"
},
{
"input": "aaaaaa\naaaaaa\naaaaa",
"output": "NO"
}
] | 1,636,364,049
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 92
| 4,505,600
|
def countVowel(s):
res=0
for i in s:
if i in ('a','e','i','o','u'):
res+=1
return res
s1=input()
s2=input()
s3=input()
if countVowel(s1)==5 and countVowel(s2)==7 and countVowel(s3)==5:
print('YES')
else:
print('NO')
|
Title: Haiku
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Haiku is a genre of Japanese traditional poetry.
A haiku poem consists of 17 syllables split into three phrases, containing 5, 7 and 5 syllables correspondingly (the first phrase should contain exactly 5 syllables, the second phrase should contain exactly 7 syllables, and the third phrase should contain exactly 5 syllables). A haiku masterpiece contains a description of a moment in those three phrases. Every word is important in a small poem, which is why haiku are rich with symbols. Each word has a special meaning, a special role. The main principle of haiku is to say much using a few words.
To simplify the matter, in the given problem we will consider that the number of syllable in the phrase is equal to the number of vowel letters there. Only the following letters are regarded as vowel letters: "a", "e", "i", "o" and "u".
Three phases from a certain poem are given. Determine whether it is haiku or not.
Input Specification:
The input data consists of three lines. The length of each line is between 1 and 100, inclusive. The *i*-th line contains the *i*-th phrase of the poem. Each phrase consists of one or more words, which are separated by one or more spaces. A word is a non-empty sequence of lowercase Latin letters. Leading and/or trailing spaces in phrases are allowed. Every phrase has at least one non-space character. See the example for clarification.
Output Specification:
Print "YES" (without the quotes) if the poem is a haiku. Otherwise, print "NO" (also without the quotes).
Demo Input:
['on codeforces \nbeta round is running\n a rustling of keys \n', 'how many gallons\nof edo s rain did you drink\n cuckoo\n']
Demo Output:
['YES', 'NO']
Note:
none
|
```python
def countVowel(s):
res=0
for i in s:
if i in ('a','e','i','o','u'):
res+=1
return res
s1=input()
s2=input()
s3=input()
if countVowel(s1)==5 and countVowel(s2)==7 and countVowel(s3)==5:
print('YES')
else:
print('NO')
```
| 3.968608
|
337
|
A
|
Puzzles
|
PROGRAMMING
| 900
|
[
"greedy"
] | null | null |
The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces).
The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on.
Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*.
|
The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop.
|
Print a single integer — the least possible difference the teacher can obtain.
|
[
"4 6\n10 12 10 7 5 22\n"
] |
[
"5\n"
] |
Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
| 500
|
[
{
"input": "4 6\n10 12 10 7 5 22",
"output": "5"
},
{
"input": "2 2\n4 4",
"output": "0"
},
{
"input": "2 10\n4 5 6 7 8 9 10 11 12 12",
"output": "0"
},
{
"input": "4 5\n818 136 713 59 946",
"output": "759"
},
{
"input": "3 20\n446 852 783 313 549 965 40 88 86 617 479 118 768 34 47 826 366 957 463 903",
"output": "13"
},
{
"input": "2 25\n782 633 152 416 432 825 115 97 386 357 836 310 530 413 354 373 847 882 913 682 729 582 671 674 94",
"output": "3"
},
{
"input": "4 25\n226 790 628 528 114 64 239 279 619 39 894 763 763 847 525 93 882 697 999 643 650 244 159 884 190",
"output": "31"
},
{
"input": "2 50\n971 889 628 39 253 157 925 694 129 516 660 272 738 319 611 816 142 717 514 392 41 105 132 676 958 118 306 768 600 685 103 857 704 346 857 309 23 718 618 161 176 379 846 834 640 468 952 878 164 997",
"output": "0"
},
{
"input": "25 50\n582 146 750 905 313 509 402 21 488 512 32 898 282 64 579 869 37 996 377 929 975 697 666 837 311 205 116 992 533 298 648 268 54 479 792 595 152 69 267 417 184 433 894 603 988 712 24 414 301 176",
"output": "412"
},
{
"input": "49 50\n58 820 826 960 271 294 473 102 925 318 729 672 244 914 796 646 868 6 893 882 726 203 528 498 271 195 355 459 721 680 547 147 631 116 169 804 145 996 133 559 110 257 771 476 576 251 607 314 427 886",
"output": "938"
},
{
"input": "50 50\n374 573 323 744 190 806 485 247 628 336 491 606 702 321 991 678 337 579 86 240 993 208 668 686 855 205 363 177 719 249 896 919 782 434 59 647 787 996 286 216 636 212 546 903 958 559 544 126 608 993",
"output": "937"
},
{
"input": "6 50\n6 8 7 8 5 4 4 5 7 8 6 5 7 4 7 7 7 8 6 4 6 6 8 8 7 7 8 7 5 8 5 4 4 7 8 4 4 6 6 6 8 7 4 7 6 6 5 8 4 7",
"output": "0"
},
{
"input": "37 50\n14 5 11 17 8 20 19 16 20 11 17 20 16 9 14 14 13 18 11 20 8 8 8 5 19 17 6 18 10 20 9 7 12 6 14 17 4 4 10 13 7 4 11 6 20 19 12 12 15 19",
"output": "12"
},
{
"input": "40 50\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4",
"output": "0"
},
{
"input": "40 50\n17 20 43 26 41 37 14 8 30 35 30 24 43 8 42 9 41 50 41 35 27 32 35 43 28 36 31 16 5 7 23 16 14 29 8 39 12 16 36 18 49 39 33 37 38 6 6 27 23 17",
"output": "31"
},
{
"input": "2 2\n1000 4",
"output": "996"
},
{
"input": "2 3\n4 502 1000",
"output": "498"
},
{
"input": "3 3\n4 1000 4",
"output": "996"
}
] | 1,669,833,719
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 18
| 92
| 0
|
def intmaker(list1):
for i in range(len(list1)):
list1[i]=int(list1[i])
return list1
nm=input().split(' ')
n,m=intmaker(nm)
list_puzzle=input().split(' ')
puzzle=intmaker(list_puzzle)
puzzle=sorted(puzzle)
min=puzzle[n-1]-puzzle[0]
for i in range(1,(m-n)+1,1):
if puzzle[i+n-1] - puzzle[i] < min:
min = puzzle[i+n-1] - puzzle[i]
print(min)
|
Title: Puzzles
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces).
The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on.
Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*.
Input Specification:
The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop.
Output Specification:
Print a single integer — the least possible difference the teacher can obtain.
Demo Input:
['4 6\n10 12 10 7 5 22\n']
Demo Output:
['5\n']
Note:
Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
|
```python
def intmaker(list1):
for i in range(len(list1)):
list1[i]=int(list1[i])
return list1
nm=input().split(' ')
n,m=intmaker(nm)
list_puzzle=input().split(' ')
puzzle=intmaker(list_puzzle)
puzzle=sorted(puzzle)
min=puzzle[n-1]-puzzle[0]
for i in range(1,(m-n)+1,1):
if puzzle[i+n-1] - puzzle[i] < min:
min = puzzle[i+n-1] - puzzle[i]
print(min)
```
| 3
|
|
490
|
A
|
Team Olympiad
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*:
- *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE
Each child happens to be good at exactly one of these three subjects.
The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team.
What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that?
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child.
|
In the first line output integer *w* — the largest possible number of teams.
Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them.
If no teams can be compiled, print the only line with value *w* equal to 0.
|
[
"7\n1 3 1 3 2 1 2\n",
"4\n2 1 1 2\n"
] |
[
"2\n3 5 2\n6 7 4\n",
"0\n"
] |
none
| 500
|
[
{
"input": "7\n1 3 1 3 2 1 2",
"output": "2\n3 5 2\n6 7 4"
},
{
"input": "4\n2 1 1 2",
"output": "0"
},
{
"input": "1\n2",
"output": "0"
},
{
"input": "2\n3 1",
"output": "0"
},
{
"input": "3\n2 1 2",
"output": "0"
},
{
"input": "3\n1 2 3",
"output": "1\n1 2 3"
},
{
"input": "12\n3 3 3 3 3 3 3 3 1 3 3 2",
"output": "1\n9 12 2"
},
{
"input": "60\n3 3 1 2 2 1 3 1 1 1 3 2 2 2 3 3 1 3 2 3 2 2 1 3 3 2 3 1 2 2 2 1 3 2 1 1 3 3 1 1 1 3 1 2 1 1 3 3 3 2 3 2 3 2 2 2 1 1 1 2",
"output": "20\n6 60 1\n17 44 20\n3 5 33\n36 21 42\n59 14 2\n58 26 49\n9 29 48\n23 19 24\n10 30 37\n41 54 15\n45 31 27\n57 55 38\n39 12 25\n35 34 11\n32 52 7\n8 50 18\n43 4 53\n46 56 51\n40 22 16\n28 13 47"
},
{
"input": "12\n3 1 1 1 1 1 1 2 1 1 1 1",
"output": "1\n3 8 1"
},
{
"input": "22\n2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 1 2 2 2 2",
"output": "1\n18 2 11"
},
{
"input": "138\n2 3 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 3 2 2 2 1 2 3 2 2 2 3 1 3 2 3 2 3 2 2 2 2 3 2 2 2 2 2 1 2 2 3 2 2 3 2 1 2 2 2 2 2 3 1 2 2 2 2 2 3 2 2 3 2 2 2 2 2 1 1 2 3 2 2 2 2 3 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 3 2 3 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 3",
"output": "18\n13 91 84\n34 90 48\n11 39 77\n78 129 50\n137 68 119\n132 122 138\n19 12 96\n40 7 2\n22 88 69\n107 73 46\n115 15 52\n127 106 87\n93 92 66\n71 112 117\n63 124 42\n17 70 101\n109 121 57\n123 25 36"
},
{
"input": "203\n2 2 1 2 1 2 2 2 1 2 2 1 1 3 1 2 1 2 1 1 2 3 1 1 2 3 3 2 2 2 1 2 1 1 1 1 1 3 1 1 2 1 1 2 2 2 1 2 2 2 1 2 3 2 1 1 2 2 1 2 1 2 2 1 1 2 2 2 1 1 2 2 1 2 1 2 2 3 2 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 1 2 2 1 3 2 1 1 1 2 1 1 2 1 1 2 2 2 1 1 2 2 2 1 2 1 3 2 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 2 1 1 1 1 1 1 2 2 3 1 1 2 3 1 1 1 1 1 1 2 2 1 1 1 2 2 3 2 1 3 1 1 1",
"output": "13\n188 72 14\n137 4 197\n158 76 122\n152 142 26\n104 119 179\n40 63 38\n12 1 78\n17 30 27\n189 60 53\n166 190 144\n129 7 183\n83 41 22\n121 81 200"
},
{
"input": "220\n1 1 3 1 3 1 1 3 1 3 3 3 3 1 3 3 1 3 3 3 3 3 1 1 1 3 1 1 1 3 2 3 3 3 1 1 3 3 1 1 3 3 3 3 1 3 3 1 1 1 2 3 1 1 1 2 3 3 3 2 3 1 1 3 1 1 1 3 2 1 3 2 3 1 1 3 3 3 1 3 1 1 1 3 3 2 1 3 2 1 1 3 3 1 1 1 2 1 1 3 2 1 2 1 1 1 3 1 3 3 1 2 3 3 3 3 1 3 1 1 1 1 2 3 1 1 1 1 1 1 3 2 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 3 2 3 1 3 3 1 3 3 3 3 1 1 3 3 3 3 1 1 3 3 3 2 1 1 1 3 3 1 3 3 3 1 1 1 3 1 3 3 1 1 1 2 3 1 1 3 1 1 1 1 2 3 1 1 2 3 3 1 3 1 3 3 3 3 1 3 2 3 1 1 3",
"output": "20\n198 89 20\n141 56 131\n166 204 19\n160 132 142\n111 112 195\n45 216 92\n6 31 109\n14 150 170\n199 60 18\n173 123 140\n134 69 156\n82 191 85\n126 200 80\n24 97 46\n62 86 149\n214 101 26\n79 171 78\n125 72 118\n172 103 162\n219 51 64"
},
{
"input": "61\n2 3 1 3 2 2 2 3 1 3 2 3 1 2 1 1 2 2 2 2 3 2 3 1 2 1 3 1 3 2 1 1 3 2 1 3 3 3 1 3 3 1 1 3 1 3 2 2 1 2 2 2 1 3 2 3 1 3 3 1 1",
"output": "20\n9 55 2\n24 34 27\n3 5 37\n35 17 41\n61 11 4\n60 19 54\n15 20 59\n26 14 29\n16 22 38\n43 50 12\n49 25 36\n57 51 40\n39 6 33\n32 30 10\n31 48 8\n13 47 23\n45 1 58\n53 52 56\n42 18 21\n28 7 44"
},
{
"input": "5\n1 2 2 3 3",
"output": "1\n1 3 4"
}
] | 1,668,766,868
| 2,147,483,647
|
PyPy 3-64
|
RUNTIME_ERROR
|
TESTS
| 0
| 77
| 2,867,200
|
n=int(input())
for i in range(n):
a=int(input())
L[i]=a
k1,k2,k3=0,0,0
for i in range(len(L)):
if L[i]==1:
k1+=1
elif L[i]==2:
k2+=1
else:
k3+=1
x=min(k1,k2,k3)
print(x)
for _ in range(x):
i1,i2,i3=L.index(1),L.index(2),L.index(3)
print(i1+1,i2+1,i3+1)
L[i1],L[i2],L[i3]=0,0,0
|
Title: Team Olympiad
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*:
- *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE
Each child happens to be good at exactly one of these three subjects.
The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team.
What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that?
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child.
Output Specification:
In the first line output integer *w* — the largest possible number of teams.
Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them.
If no teams can be compiled, print the only line with value *w* equal to 0.
Demo Input:
['7\n1 3 1 3 2 1 2\n', '4\n2 1 1 2\n']
Demo Output:
['2\n3 5 2\n6 7 4\n', '0\n']
Note:
none
|
```python
n=int(input())
for i in range(n):
a=int(input())
L[i]=a
k1,k2,k3=0,0,0
for i in range(len(L)):
if L[i]==1:
k1+=1
elif L[i]==2:
k2+=1
else:
k3+=1
x=min(k1,k2,k3)
print(x)
for _ in range(x):
i1,i2,i3=L.index(1),L.index(2),L.index(3)
print(i1+1,i2+1,i3+1)
L[i1],L[i2],L[i3]=0,0,0
```
| -1
|
|
584
|
A
|
Olesya and Rodion
|
PROGRAMMING
| 1,000
|
[
"math"
] | null | null |
Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them.
Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1.
|
The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by.
|
Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them.
|
[
"3 2\n"
] |
[
"712"
] |
none
| 500
|
[
{
"input": "3 2",
"output": "222"
},
{
"input": "2 2",
"output": "22"
},
{
"input": "4 3",
"output": "3333"
},
{
"input": "5 3",
"output": "33333"
},
{
"input": "10 7",
"output": "7777777777"
},
{
"input": "2 9",
"output": "99"
},
{
"input": "18 8",
"output": "888888888888888888"
},
{
"input": "1 5",
"output": "5"
},
{
"input": "1 10",
"output": "-1"
},
{
"input": "100 5",
"output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555"
},
{
"input": "10 2",
"output": "2222222222"
},
{
"input": "18 10",
"output": "111111111111111110"
},
{
"input": "1 9",
"output": "9"
},
{
"input": "7 6",
"output": "6666666"
},
{
"input": "4 4",
"output": "4444"
},
{
"input": "14 7",
"output": "77777777777777"
},
{
"input": "3 8",
"output": "888"
},
{
"input": "1 3",
"output": "3"
},
{
"input": "2 8",
"output": "88"
},
{
"input": "3 8",
"output": "888"
},
{
"input": "4 3",
"output": "3333"
},
{
"input": "5 9",
"output": "99999"
},
{
"input": "4 8",
"output": "8888"
},
{
"input": "3 4",
"output": "444"
},
{
"input": "9 4",
"output": "444444444"
},
{
"input": "8 10",
"output": "11111110"
},
{
"input": "1 6",
"output": "6"
},
{
"input": "20 3",
"output": "33333333333333333333"
},
{
"input": "15 10",
"output": "111111111111110"
},
{
"input": "31 4",
"output": "4444444444444444444444444444444"
},
{
"input": "18 9",
"output": "999999999999999999"
},
{
"input": "72 4",
"output": "444444444444444444444444444444444444444444444444444444444444444444444444"
},
{
"input": "76 8",
"output": "8888888888888888888888888888888888888888888888888888888888888888888888888888"
},
{
"input": "12 5",
"output": "555555555555"
},
{
"input": "54 5",
"output": "555555555555555555555555555555555555555555555555555555"
},
{
"input": "96 10",
"output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110"
},
{
"input": "15 9",
"output": "999999999999999"
},
{
"input": "100 2",
"output": "2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222"
},
{
"input": "99 3",
"output": "333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333"
},
{
"input": "98 4",
"output": "44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444"
},
{
"input": "97 5",
"output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555"
},
{
"input": "100 6",
"output": "6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666"
},
{
"input": "99 7",
"output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "98 8",
"output": "88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888"
},
{
"input": "97 9",
"output": "9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999"
},
{
"input": "100 10",
"output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110"
},
{
"input": "3 10",
"output": "110"
},
{
"input": "2 4",
"output": "44"
},
{
"input": "2 10",
"output": "10"
},
{
"input": "10 10",
"output": "1111111110"
},
{
"input": "4 10",
"output": "1110"
},
{
"input": "25 10",
"output": "1111111111111111111111110"
},
{
"input": "50 10",
"output": "11111111111111111111111111111111111111111111111110"
},
{
"input": "5 10",
"output": "11110"
},
{
"input": "99 10",
"output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110"
},
{
"input": "100 10",
"output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110"
},
{
"input": "1 2",
"output": "2"
},
{
"input": "20 10",
"output": "11111111111111111110"
},
{
"input": "99 7",
"output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "89 5",
"output": "55555555555555555555555555555555555555555555555555555555555555555555555555555555555555555"
},
{
"input": "6 10",
"output": "111110"
},
{
"input": "3 8",
"output": "888"
},
{
"input": "1 9",
"output": "9"
},
{
"input": "1 4",
"output": "4"
},
{
"input": "100 7",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
}
] | 1,689,129,616
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
https://codeforces.com/problemset/problem/584/A
|
Title: Olesya and Rodion
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them.
Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1.
Input Specification:
The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by.
Output Specification:
Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them.
Demo Input:
['3 2\n']
Demo Output:
['712']
Note:
none
|
```python
https://codeforces.com/problemset/problem/584/A
```
| -1
|
|
841
|
A
|
Generous Kefa
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
One day Kefa found *n* baloons. For convenience, we denote color of *i*-th baloon as *s**i* — lowercase letter of the Latin alphabet. Also Kefa has *k* friends. Friend will be upset, If he get two baloons of the same color. Kefa want to give out all baloons to his friends. Help Kefa to find out, can he give out all his baloons, such that no one of his friens will be upset — print «YES», if he can, and «NO», otherwise. Note, that Kefa's friend will not upset, if he doesn't get baloons at all.
|
The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of baloons and friends.
Next line contains string *s* — colors of baloons.
|
Answer to the task — «YES» or «NO» in a single line.
You can choose the case (lower or upper) for each letter arbitrary.
|
[
"4 2\naabb\n",
"6 3\naacaab\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample Kefa can give 1-st and 3-rd baloon to the first friend, and 2-nd and 4-th to the second.
In the second sample Kefa needs to give to all his friends baloons of color a, but one baloon will stay, thats why answer is «NO».
| 500
|
[
{
"input": "4 2\naabb",
"output": "YES"
},
{
"input": "6 3\naacaab",
"output": "NO"
},
{
"input": "2 2\nlu",
"output": "YES"
},
{
"input": "5 3\novvoo",
"output": "YES"
},
{
"input": "36 13\nbzbzcffczzcbcbzzfzbbfzfzzbfbbcbfccbf",
"output": "YES"
},
{
"input": "81 3\nooycgmvvrophvcvpoupepqllqttwcocuilvyxbyumdmmfapvpnxhjhxfuagpnntonibicaqjvwfhwxhbv",
"output": "NO"
},
{
"input": "100 100\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
"output": "YES"
},
{
"input": "100 1\nnubcvvjvbjgnjsdkajimdcxvewbcytvfkihunycdrlconddlwgzjasjlsrttlrzsumzpyumpveglfqzmaofbshbojmwuwoxxvrod",
"output": "NO"
},
{
"input": "100 13\nvyldolgryldqrvoldvzvrdrgorlorszddtgqvrlisxxrxdxlqtvtgsrqlzixoyrozxzogqxlsgzdddzqrgitxxritoolzolgrtvl",
"output": "YES"
},
{
"input": "18 6\njzwtnkvmscqhmdlsxy",
"output": "YES"
},
{
"input": "21 2\nfscegcqgzesefghhwcexs",
"output": "NO"
},
{
"input": "32 22\ncduamsptaklqtxlyoutlzepxgyfkvngc",
"output": "YES"
},
{
"input": "49 27\noxyorfnkzwsfllnyvdhdanppuzrnbxehugvmlkgeymqjlmfxd",
"output": "YES"
},
{
"input": "50 24\nxxutzjwbggcwvxztttkmzovtmuwttzcbwoztttohzzxghuuthv",
"output": "YES"
},
{
"input": "57 35\nglxshztrqqfyxthqamagvtmrdparhelnzrqvcwqxjytkbuitovkdxueul",
"output": "YES"
},
{
"input": "75 23\nittttiiuitutuiiuuututiuttiuiuutuuuiuiuuuuttuuttuutuiiuiuiiuiitttuututuiuuii",
"output": "NO"
},
{
"input": "81 66\nfeqevfqfebhvubhuuvfuqheuqhbeeuebehuvhffvbqvqvfbqqvvhevqffbqqhvvqhfeehuhqeqhueuqqq",
"output": "YES"
},
{
"input": "93 42\npqeiafraiavfcteumflpcbpozcomlvpovlzdbldvoopnhdoeqaopzthiuzbzmeieiatthdeqovaqfipqlddllmfcrrnhb",
"output": "YES"
},
{
"input": "100 53\nizszyqyndzwzyzgsdagdwdazadiawizinagqqgczaqqnawgijziziawzszdjdcqjdjqiwgadydcnqisaayjiqqsscwwzjzaycwwc",
"output": "YES"
},
{
"input": "100 14\nvkrdcqbvkwuckpmnbydmczdxoagdsgtqxvhaxntdcxhjcrjyvukhugoglbmyoaqexgtcfdgemmizoniwtmisqqwcwfusmygollab",
"output": "YES"
},
{
"input": "100 42\naaaaaiiiiaiiiaaiaiiaaiiiiiaaaaaiaiiiaiiiiaiiiaaaaaiiiaaaiiaaiiiaiiiaiaaaiaiiiiaaiiiaiiaiaiiaiiiaaaia",
"output": "NO"
},
{
"input": "100 89\ntjbkmydejporbqhcbztkcumxjjgsrvxpuulbhzeeckkbchpbxwhedrlhjsabcexcohgdzouvsgphjdthpuqrlkgzxvqbuhqxdsmf",
"output": "YES"
},
{
"input": "100 100\njhpyiuuzizhubhhpxbbhpyxzhbpjphzppuhiahihiappbhuypyauhizpbibzixjbzxzpbphuiaypyujappuxiyuyaajaxjupbahb",
"output": "YES"
},
{
"input": "100 3\nsszoovvzysavsvzsozzvoozvysozsaszayaszasaysszzzysosyayyvzozovavzoyavsooaoyvoozvvozsaosvayyovazzszzssa",
"output": "NO"
},
{
"input": "100 44\ndluthkxwnorabqsukgnxnvhmsmzilyulpursnxkdsavgemiuizbyzebhyjejgqrvuckhaqtuvdmpziesmpmewpvozdanjyvwcdgo",
"output": "YES"
},
{
"input": "100 90\ntljonbnwnqounictqqctgonktiqoqlocgoblngijqokuquoolciqwnctgoggcbojtwjlculoikbggquqncittwnjbkgkgubnioib",
"output": "YES"
},
{
"input": "100 79\nykxptzgvbqxlregvkvucewtydvnhqhuggdsyqlvcfiuaiddnrrnstityyehiamrggftsqyduwxpuldztyzgmfkehprrneyvtknmf",
"output": "YES"
},
{
"input": "100 79\naagwekyovbviiqeuakbqbqifwavkfkutoriovgfmittulhwojaptacekdirgqoovlleeoqkkdukpadygfwavppohgdrmymmulgci",
"output": "YES"
},
{
"input": "100 93\nearrehrehenaddhdnrdddhdahnadndheeennrearrhraharddreaeraddhehhhrdnredanndneheddrraaneerreedhnadnerhdn",
"output": "YES"
},
{
"input": "100 48\nbmmaebaebmmmbbmxvmammbvvebvaemvbbaxvbvmaxvvmveaxmbbxaaemxmxvxxxvxbmmxaaaevvaxmvamvvmaxaxavexbmmbmmev",
"output": "YES"
},
{
"input": "100 55\nhsavbkehaaesffaeeffakhkhfehbbvbeasahbbbvkesbfvkefeesesevbsvfkbffakvshsbkahfkfakebsvafkbvsskfhfvaasss",
"output": "YES"
},
{
"input": "100 2\ncscffcffsccffsfsfffccssfsscfsfsssffcffsscfccssfffcfscfsscsccccfsssffffcfcfsfffcsfsccffscffcfccccfffs",
"output": "NO"
},
{
"input": "100 3\nzrgznxgdpgfoiifrrrsjfuhvtqxjlgochhyemismjnanfvvpzzvsgajcbsulxyeoepjfwvhkqogiiwqxjkrpsyaqdlwffoockxnc",
"output": "NO"
},
{
"input": "100 5\njbltyyfjakrjeodqepxpkjideulofbhqzxjwlarufwzwsoxhaexpydpqjvhybmvjvntuvhvflokhshpicbnfgsqsmrkrfzcrswwi",
"output": "NO"
},
{
"input": "100 1\nfnslnqktlbmxqpvcvnemxcutebdwepoxikifkzaaixzzydffpdxodmsxjribmxuqhueifdlwzytxkklwhljswqvlejedyrgguvah",
"output": "NO"
},
{
"input": "100 21\nddjenetwgwmdtjbpzssyoqrtirvoygkjlqhhdcjgeurqpunxpupwaepcqkbjjfhnvgpyqnozhhrmhfwararmlcvpgtnopvjqsrka",
"output": "YES"
},
{
"input": "100 100\nnjrhiauqlgkkpkuvciwzivjbbplipvhslqgdkfnmqrxuxnycmpheenmnrglotzuyxycosfediqcuadklsnzjqzfxnbjwvfljnlvq",
"output": "YES"
},
{
"input": "100 100\nbbbbbbbtbbttbtbbbttbttbtbbttttbbbtbttbbbtbttbtbbttttbbbbbtbbttbtbbtbttbbbtbtbtbtbtbtbbbttbbtbtbtbbtb",
"output": "YES"
},
{
"input": "14 5\nfssmmsfffmfmmm",
"output": "NO"
},
{
"input": "2 1\nff",
"output": "NO"
},
{
"input": "2 1\nhw",
"output": "YES"
},
{
"input": "2 2\nss",
"output": "YES"
},
{
"input": "1 1\nl",
"output": "YES"
},
{
"input": "100 50\nfffffttttttjjjuuuvvvvvdddxxxxwwwwgggbsssncccczzyyyyyhhhhhkrreeeeeeaaaaaiiillllllllooooqqqqqqmmpppppp",
"output": "YES"
},
{
"input": "100 50\nbbbbbbbbgggggggggggaaaaaaaahhhhhhhhhhpppppppppsssssssrrrrrrrrllzzzzzzzeeeeeeekkkkkkkwwwwwwwwjjjjjjjj",
"output": "YES"
},
{
"input": "100 50\nwwwwwwwwwwwwwwxxxxxxxxxxxxxxxxxxxxxxxxzzzzzzzzzzzzzzzzzzbbbbbbbbbbbbbbbbbbbbjjjjjjjjjjjjjjjjjjjjjjjj",
"output": "YES"
},
{
"input": "100 80\nbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm",
"output": "YES"
},
{
"input": "100 10\nbbttthhhhiiiiiiijjjjjvvvvpppssssseeeeeeewwwwgggkkkkkkkkmmmddddduuuzzzzllllnnnnnxxyyyffffccraaaaooooq",
"output": "YES"
},
{
"input": "100 20\nssssssssssbbbbbbbhhhhhhhyyyyyyyzzzzzzzzzzzzcccccxxxxxxxxxxddddmmmmmmmeeeeeeejjjjjjjjjwwwwwwwtttttttt",
"output": "YES"
},
{
"input": "1 2\na",
"output": "YES"
},
{
"input": "3 1\nabb",
"output": "NO"
},
{
"input": "2 1\naa",
"output": "NO"
},
{
"input": "2 1\nab",
"output": "YES"
},
{
"input": "6 2\naaaaaa",
"output": "NO"
},
{
"input": "8 4\naaaaaaaa",
"output": "NO"
},
{
"input": "4 2\naaaa",
"output": "NO"
},
{
"input": "4 3\naaaa",
"output": "NO"
},
{
"input": "1 3\na",
"output": "YES"
},
{
"input": "4 3\nzzzz",
"output": "NO"
},
{
"input": "4 1\naaaa",
"output": "NO"
},
{
"input": "3 4\nabc",
"output": "YES"
},
{
"input": "2 5\nab",
"output": "YES"
},
{
"input": "2 4\nab",
"output": "YES"
},
{
"input": "1 10\na",
"output": "YES"
},
{
"input": "5 2\nzzzzz",
"output": "NO"
},
{
"input": "53 26\naaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbb",
"output": "NO"
},
{
"input": "4 1\nabab",
"output": "NO"
},
{
"input": "4 1\nabcb",
"output": "NO"
},
{
"input": "4 2\nabbb",
"output": "NO"
},
{
"input": "5 2\nabccc",
"output": "NO"
},
{
"input": "2 3\nab",
"output": "YES"
},
{
"input": "4 3\nbbbs",
"output": "YES"
},
{
"input": "10 2\nazzzzzzzzz",
"output": "NO"
},
{
"input": "1 2\nb",
"output": "YES"
},
{
"input": "1 3\nb",
"output": "YES"
},
{
"input": "4 5\nabcd",
"output": "YES"
},
{
"input": "4 6\naabb",
"output": "YES"
},
{
"input": "5 2\naaaab",
"output": "NO"
},
{
"input": "3 5\naaa",
"output": "YES"
},
{
"input": "5 3\nazzzz",
"output": "NO"
},
{
"input": "4 100\naabb",
"output": "YES"
},
{
"input": "3 10\naaa",
"output": "YES"
},
{
"input": "3 4\naaa",
"output": "YES"
},
{
"input": "12 5\naaaaabbbbbbb",
"output": "NO"
},
{
"input": "5 2\naabbb",
"output": "NO"
},
{
"input": "10 5\nzzzzzzzzzz",
"output": "NO"
},
{
"input": "2 4\naa",
"output": "YES"
},
{
"input": "1 5\na",
"output": "YES"
},
{
"input": "10 5\naaaaaaaaaa",
"output": "NO"
},
{
"input": "6 3\naaaaaa",
"output": "NO"
},
{
"input": "7 1\nabcdeee",
"output": "NO"
},
{
"input": "18 3\naaaaaabbbbbbcccccc",
"output": "NO"
},
{
"input": "8 2\naabbccdd",
"output": "YES"
},
{
"input": "4 2\nzzzz",
"output": "NO"
},
{
"input": "4 2\nabaa",
"output": "NO"
},
{
"input": "3 2\naaa",
"output": "NO"
},
{
"input": "3 1\nzzz",
"output": "NO"
},
{
"input": "5 4\nzzzzz",
"output": "NO"
},
{
"input": "6 2\naabbbc",
"output": "NO"
},
{
"input": "3 6\naaa",
"output": "YES"
},
{
"input": "2 1\nzz",
"output": "NO"
},
{
"input": "10 3\naaaeeeeeee",
"output": "NO"
},
{
"input": "4 5\naabb",
"output": "YES"
},
{
"input": "3 1\naaa",
"output": "NO"
},
{
"input": "5 2\naazzz",
"output": "NO"
},
{
"input": "6 2\nabbbbc",
"output": "NO"
},
{
"input": "4 2\nxxxx",
"output": "NO"
},
{
"input": "6 3\nzzzzzz",
"output": "NO"
},
{
"input": "3 2\nabb",
"output": "YES"
},
{
"input": "3 2\nzzz",
"output": "NO"
},
{
"input": "6 5\nzzzzzz",
"output": "NO"
},
{
"input": "6 3\nbcaaaa",
"output": "NO"
},
{
"input": "100 100\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "YES"
},
{
"input": "3 6\nabc",
"output": "YES"
}
] | 1,586,479,933
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 114
| 124
| 0
|
ballons, friends = map(int, input().split())
color = input()
lencolor = len(color)
x = 0
count = [0] * 26 # букв всего 26б значит и индекс не мсжет быть болше 26
# tkcb кол-во одного цвета больше чем друзейб кто-то получит два одного цвета
for i in color:
nomer = ord(i) - 97
count[nomer] += 1 # индексы плюсуются
for i in range(26):
if count[i] > friends:
# print(chr(i + 97), count[i])
# elif count[i] > friends:
x += 1
if x > 0:
print('NO')
else:
print('YES')
|
Title: Generous Kefa
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Kefa found *n* baloons. For convenience, we denote color of *i*-th baloon as *s**i* — lowercase letter of the Latin alphabet. Also Kefa has *k* friends. Friend will be upset, If he get two baloons of the same color. Kefa want to give out all baloons to his friends. Help Kefa to find out, can he give out all his baloons, such that no one of his friens will be upset — print «YES», if he can, and «NO», otherwise. Note, that Kefa's friend will not upset, if he doesn't get baloons at all.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of baloons and friends.
Next line contains string *s* — colors of baloons.
Output Specification:
Answer to the task — «YES» or «NO» in a single line.
You can choose the case (lower or upper) for each letter arbitrary.
Demo Input:
['4 2\naabb\n', '6 3\naacaab\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample Kefa can give 1-st and 3-rd baloon to the first friend, and 2-nd and 4-th to the second.
In the second sample Kefa needs to give to all his friends baloons of color a, but one baloon will stay, thats why answer is «NO».
|
```python
ballons, friends = map(int, input().split())
color = input()
lencolor = len(color)
x = 0
count = [0] * 26 # букв всего 26б значит и индекс не мсжет быть болше 26
# tkcb кол-во одного цвета больше чем друзейб кто-то получит два одного цвета
for i in color:
nomer = ord(i) - 97
count[nomer] += 1 # индексы плюсуются
for i in range(26):
if count[i] > friends:
# print(chr(i + 97), count[i])
# elif count[i] > friends:
x += 1
if x > 0:
print('NO')
else:
print('YES')
```
| 3
|
|
801
|
B
|
Valued Keys
|
PROGRAMMING
| 900
|
[
"constructive algorithms",
"greedy",
"strings"
] | null | null |
You found a mysterious function *f*. The function takes two strings *s*1 and *s*2. These strings must consist only of lowercase English letters, and must be the same length.
The output of the function *f* is another string of the same length. The *i*-th character of the output is equal to the minimum of the *i*-th character of *s*1 and the *i*-th character of *s*2.
For example, *f*("ab", "ba") = "aa", and *f*("nzwzl", "zizez") = "niwel".
You found two strings *x* and *y* of the same length and consisting of only lowercase English letters. Find any string *z* such that *f*(*x*,<=*z*)<==<=*y*, or print -1 if no such string *z* exists.
|
The first line of input contains the string *x*.
The second line of input contains the string *y*.
Both *x* and *y* consist only of lowercase English letters, *x* and *y* have same length and this length is between 1 and 100.
|
If there is no string *z* such that *f*(*x*,<=*z*)<==<=*y*, print -1.
Otherwise, print a string *z* such that *f*(*x*,<=*z*)<==<=*y*. If there are multiple possible answers, print any of them. The string *z* should be the same length as *x* and *y* and consist only of lowercase English letters.
|
[
"ab\naa\n",
"nzwzl\nniwel\n",
"ab\nba\n"
] |
[
"ba\n",
"xiyez\n",
"-1\n"
] |
The first case is from the statement.
Another solution for the second case is "zizez"
There is no solution for the third case. That is, there is no *z* such that *f*("ab", *z*) = "ba".
| 1,000
|
[
{
"input": "ab\naa",
"output": "ba"
},
{
"input": "nzwzl\nniwel",
"output": "xiyez"
},
{
"input": "ab\nba",
"output": "-1"
},
{
"input": "r\nl",
"output": "l"
},
{
"input": "d\ny",
"output": "-1"
},
{
"input": "yvowz\ncajav",
"output": "cajav"
},
{
"input": "lwzjp\ninjit",
"output": "-1"
},
{
"input": "epqnlxmiicdidyscjaxqznwur\neodnlemiicdedmkcgavqbnqmm",
"output": "eodnlemiicdedmkcgavqbnqmm"
},
{
"input": "qqdabbsxiibnnjgsgxllfvdqj\nuxmypqtwfdezewdxfgplannrs",
"output": "-1"
},
{
"input": "aanerbaqslfmqmuciqbxyznkevukvznpkmxlcorpmrenwxhzfgbmlfpxtkqpxdrmcqcmbf\naanebbaqkgfiimcciqbaoznkeqqkrgapdillccrfeienwbcvfgbmlfbimkqchcrmclcmbf",
"output": "aanebbaqkgfiimcciqbaoznkeqqkrgapdillccrfeienwbcvfgbmlfbimkqchcrmclcmbf"
},
{
"input": "mbyrkhjctrcrayisflptgfudwgrtegidhqicsjqafvdloritbjhciyxuwavxknezwwudnk\nvvixsutlbdewqoabqhpuerfkzrddcqptfwmxdlxwbvsaqfjoxztlddvwgflcteqbwaiaen",
"output": "-1"
},
{
"input": "eufycwztywhbjrpqobvknwfqmnboqcfdiahkagykeibbsqpljcghhmsgfmswwsanzyiwtvuirwmppfivtekaywkzskyydfvkjgxb\necfwavookadbcilfobojnweqinbcpcfdiahkabwkeibbacpljcghhksgfajgmianfnivmhfifogpffiheegayfkxkkcmdfvihgdb",
"output": "ecfwavookadbcilfobojnweqinbcpcfdiahkabwkeibbacpljcghhksgfajgmianfnivmhfifogpffiheegayfkxkkcmdfvihgdb"
},
{
"input": "qvpltcffyeghtbdhjyhfteojezyzziardduzrbwuxmzzkkoehfnxecafizxglboauhynfbawlfxenmykquyhrxswhjuovvogntok\nchvkcvzxptbcepdjfezcpuvtehewbnvqeoezlcnzhpfwujbmhafoeqmjhtwisnobauinkzyigrvahpuetkgpdjfgbzficsmuqnym",
"output": "-1"
},
{
"input": "nmuwjdihouqrnsuahimssnrbxdpwvxiyqtenahtrlshjkmnfuttnpqhgcagoptinnaptxaccptparldzrhpgbyrzedghudtsswxi\nnilhbdghosqnbebafimconrbvdodjsipqmekahhrllhjkemeketapfhgcagopfidnahtlaccpfpafedqicpcbvfgedghudhddwib",
"output": "nilhbdghosqnbebafimconrbvdodjsipqmekahhrllhjkemeketapfhgcagopfidnahtlaccpfpafedqicpcbvfgedghudhddwib"
},
{
"input": "dyxgwupoauwqtcfoyfjdotzirwztdfrueqiypxoqvkmhiehdppwtdoxrbfvtairdbuvlqohjflznggjpifhwjrshcrfbjtklpykx\ngzqlnoizhxolnditjdhlhptjsbczehicudoybzilwnshmywozwnwuipcgirgzldtvtowdsokfeafggwserzdazkxyddjttiopeew",
"output": "-1"
},
{
"input": "hbgwuqzougqzlxemvyjpeizjfwhgugrfnhbrlxkmkdalikfyunppwgdzmalbwewybnjzqsohwhjkdcyhhzmysflambvhpsjilsyv\nfbdjdqjojdafarakvcjpeipjfehgfgrfehbolxkmkdagikflunnpvadocalbkedibhbflmohnhjkdcthhaigsfjaibqhbcjelirv",
"output": "fbdjdqjojdafarakvcjpeipjfehgfgrfehbolxkmkdagikflunnpvadocalbkedibhbflmohnhjkdcthhaigsfjaibqhbcjelirv"
},
{
"input": "xnjjhjfuhgyxqhpzmvgbaohqarugdoaczcfecofltwemieyxolswkcwhlfagfrgmoiqrgftokbqwtxgxzweozzlikrvafiabivlk\npjfosalbsitcnqiazhmepfifjxvmazvdgffcnozmnqubhonwjldmpdsjagmamniylzjdbklcyrzivjyzgnogahobpkwpwpvraqns",
"output": "-1"
},
{
"input": "zrvzedssbsrfldqvjpgmsefrmsatspzoitwvymahiptphiystjlsauzquzqqbmljobdhijcpdvatorwmyojqgnezvzlgjibxepcf\npesoedmqbmffldqsjggmhefkadaesijointrkmahapaahiysfjdiaupqujngbjhjobdhiecadeatgjvelojjgnepvajgeibfepaf",
"output": "pesoedmqbmffldqsjggmhefkadaesijointrkmahapaahiysfjdiaupqujngbjhjobdhiecadeatgjvelojjgnepvajgeibfepaf"
},
{
"input": "pdvkuwyzntzfqpblzmbynknyhlnqbxijuqaincviugxohcsrofozrrsategwkbwxcvkyzxhurokefpbdnmcfogfhsojayysqbrow\nbvxruombdrywlcjkrltyayaazwpauuhbtgwfzdrmfwwucgffucwelzvpsdgtapogchblzahsrfymjlaghkbmbssghrpxalkslcvp",
"output": "-1"
},
{
"input": "tgharsjyihroiiahwgbjezlxvlterxivdhtzjcqegzmtigqmrehvhiyjeywegxaseoyoacouijudbiruoghgxvxadwzgdxtnxlds\ntghaksjsdhkoiiahegbjexlfrctercipdhmvjbgegxdtggqdpbhvhiseehhegnaseoooacnsijubbirjnghgsvpadhaadrtimfdp",
"output": "tghaksjsdhkoiiahegbjexlfrctercipdhmvjbgegxdtggqdpbhvhiseehhegnaseoooacnsijubbirjnghgsvpadhaadrtimfdp"
},
{
"input": "jsinejpfwhzloulxndzvzftgogfdagrsscxmatldssqsgaknnbkcvhptebjjpkjhrjegrotzwcdosezkedzxeoyibmyzunkguoqj\nkfmvybobocdpipiripysioruqvloopvbggpjksgmwzyqwyxnesmvhsawnbbmntulspvsysfkjqwpvoelliopbaukyagedextzoej",
"output": "-1"
},
{
"input": "nttdcfceptruiomtmwzestrfchnqpgqeztpcvthzelfyggjgqadylzubpvbrlgndrcsursczpxlnoyoadxezncqalupfzmjeqihe\nkttdcfceohrjiaahmoldanpfchnfpgheqpdahqhxecfpbgigqadrkjubjfbrlgndbcgcgmcjpeleinaadretncqaiqpfkmjeqihe",
"output": "kttdcfceohrjiaahmoldanpfchnfpgheqpdahqhxecfpbgigqadrkjubjfbrlgndbcgcgmcjpeleinaadretncqaiqpfkmjeqihe"
},
{
"input": "diuopwglduasnaxgduwslbzoyayoypzznqspljcyqehweydhlwifcvnjmaowuvyqfwynjghecqvxdvuquuwpvwrjljozocaxnktv\ntrdydprdzmjhgbhzytelrfjpgsebijicsigmwhynmcyjtqrvojcndodchzxfcvyqjxqzwibccdvsjqhsnectdjyrrhzkeamukang",
"output": "-1"
},
{
"input": "ftfr\nftfr",
"output": "ftfr"
},
{
"input": "ftr\nftr",
"output": "ftr"
},
{
"input": "shftr\nshftr",
"output": "shftr"
},
{
"input": "vkvkkv\nvkvkkv",
"output": "vkvkkv"
},
{
"input": "ftrd\nftrd",
"output": "ftrd"
},
{
"input": "fztr\nfztr",
"output": "fztr"
},
{
"input": "frtr\nfrtr",
"output": "frtr"
},
{
"input": "shdftr\nshdftr",
"output": "shdftr"
},
{
"input": "zzz\nzzz",
"output": "zzz"
},
{
"input": "shtr\nshtr",
"output": "shtr"
},
{
"input": "aaaaa\nzzzzz",
"output": "-1"
},
{
"input": "efr\nefr",
"output": "efr"
}
] | 1,613,719,790
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 9
| 62
| 307,200
|
x = input()
y = input()
z = ""
for i in range(len(x)):
if ord(x[i])<ord(y[i]):
print(-1)
break
elif x[i]==y[i]=="z":
print(-1)
break
else:
if ord(x[i])==ord(y[i]):
z+=chr(ord(x[i])+1)
else:
z+=y[i]
else:
print(z)
|
Title: Valued Keys
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You found a mysterious function *f*. The function takes two strings *s*1 and *s*2. These strings must consist only of lowercase English letters, and must be the same length.
The output of the function *f* is another string of the same length. The *i*-th character of the output is equal to the minimum of the *i*-th character of *s*1 and the *i*-th character of *s*2.
For example, *f*("ab", "ba") = "aa", and *f*("nzwzl", "zizez") = "niwel".
You found two strings *x* and *y* of the same length and consisting of only lowercase English letters. Find any string *z* such that *f*(*x*,<=*z*)<==<=*y*, or print -1 if no such string *z* exists.
Input Specification:
The first line of input contains the string *x*.
The second line of input contains the string *y*.
Both *x* and *y* consist only of lowercase English letters, *x* and *y* have same length and this length is between 1 and 100.
Output Specification:
If there is no string *z* such that *f*(*x*,<=*z*)<==<=*y*, print -1.
Otherwise, print a string *z* such that *f*(*x*,<=*z*)<==<=*y*. If there are multiple possible answers, print any of them. The string *z* should be the same length as *x* and *y* and consist only of lowercase English letters.
Demo Input:
['ab\naa\n', 'nzwzl\nniwel\n', 'ab\nba\n']
Demo Output:
['ba\n', 'xiyez\n', '-1\n']
Note:
The first case is from the statement.
Another solution for the second case is "zizez"
There is no solution for the third case. That is, there is no *z* such that *f*("ab", *z*) = "ba".
|
```python
x = input()
y = input()
z = ""
for i in range(len(x)):
if ord(x[i])<ord(y[i]):
print(-1)
break
elif x[i]==y[i]=="z":
print(-1)
break
else:
if ord(x[i])==ord(y[i]):
z+=chr(ord(x[i])+1)
else:
z+=y[i]
else:
print(z)
```
| 0
|
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,620,226,393
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 124
| 0
|
s = input()
low = 0
up = 0
for i in range(0, len(s)):
if s[i].islower():
low += 1
elif s[i].isupper():
up += 1
if low < up:
s = s.upper()
elif low > up:
s = s.lower()
elif low == up:
s = s.lower()
print(s)
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
s = input()
low = 0
up = 0
for i in range(0, len(s)):
if s[i].islower():
low += 1
elif s[i].isupper():
up += 1
if low < up:
s = s.upper()
elif low > up:
s = s.lower()
elif low == up:
s = s.lower()
print(s)
```
| 3.969
|
764
|
A
|
Taymyr is calling you
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation",
"math"
] | null | null |
Comrade Dujikov is busy choosing artists for Timofey's birthday and is recieving calls from Taymyr from Ilia-alpinist.
Ilia-alpinist calls every *n* minutes, i.e. in minutes *n*, 2*n*, 3*n* and so on. Artists come to the comrade every *m* minutes, i.e. in minutes *m*, 2*m*, 3*m* and so on. The day is *z* minutes long, i.e. the day consists of minutes 1,<=2,<=...,<=*z*. How many artists should be killed so that there are no artists in the room when Ilia calls? Consider that a call and a talk with an artist take exactly one minute.
|
The only string contains three integers — *n*, *m* and *z* (1<=≤<=*n*,<=*m*,<=*z*<=≤<=104).
|
Print single integer — the minimum number of artists that should be killed so that there are no artists in the room when Ilia calls.
|
[
"1 1 10\n",
"1 2 5\n",
"2 3 9\n"
] |
[
"10\n",
"2\n",
"1\n"
] |
Taymyr is a place in the north of Russia.
In the first test the artists come each minute, as well as the calls, so we need to kill all of them.
In the second test we need to kill artists which come on the second and the fourth minutes.
In the third test — only the artist which comes on the sixth minute.
| 500
|
[
{
"input": "1 1 10",
"output": "10"
},
{
"input": "1 2 5",
"output": "2"
},
{
"input": "2 3 9",
"output": "1"
},
{
"input": "4 8 9",
"output": "1"
},
{
"input": "7 9 2",
"output": "0"
},
{
"input": "10000 10000 10000",
"output": "1"
},
{
"input": "24 22 9235",
"output": "34"
},
{
"input": "74 8 417",
"output": "1"
},
{
"input": "972 1 203",
"output": "0"
},
{
"input": "550 1 754",
"output": "1"
},
{
"input": "860 1 884",
"output": "1"
},
{
"input": "358 2 809",
"output": "2"
},
{
"input": "33 27 216",
"output": "0"
},
{
"input": "2940 1 9311",
"output": "3"
},
{
"input": "4624 1 1953",
"output": "0"
},
{
"input": "2696 2 7345",
"output": "2"
},
{
"input": "3443 2 6701",
"output": "0"
},
{
"input": "3 613 2275",
"output": "1"
},
{
"input": "1 10000 10000",
"output": "1"
},
{
"input": "10000 1 10000",
"output": "1"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "1 1 10000",
"output": "10000"
},
{
"input": "34 27 10000",
"output": "10"
},
{
"input": "2 2 9999",
"output": "4999"
},
{
"input": "2 2 1",
"output": "0"
},
{
"input": "6 4 36",
"output": "3"
},
{
"input": "33 6 3005",
"output": "45"
},
{
"input": "5 1 20",
"output": "4"
},
{
"input": "1 2 10",
"output": "5"
},
{
"input": "2 1 100",
"output": "50"
},
{
"input": "10 20 10000",
"output": "500"
},
{
"input": "8 12 12",
"output": "0"
}
] | 1,595,260,893
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 21
| 1,000
| 7,270,400
|
n,m,z=map(int,input().split())
a,b,c=n,m,0
l=[]
k=[]
for i in range(1,z+1):
if(n*i<=z):
l.append(n*i)
if(m*i<=z):
k.append(m*i)
for i in range(1,z+1):
if i in l:
if i in k:
c=c+1
print(c)
|
Title: Taymyr is calling you
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Comrade Dujikov is busy choosing artists for Timofey's birthday and is recieving calls from Taymyr from Ilia-alpinist.
Ilia-alpinist calls every *n* minutes, i.e. in minutes *n*, 2*n*, 3*n* and so on. Artists come to the comrade every *m* minutes, i.e. in minutes *m*, 2*m*, 3*m* and so on. The day is *z* minutes long, i.e. the day consists of minutes 1,<=2,<=...,<=*z*. How many artists should be killed so that there are no artists in the room when Ilia calls? Consider that a call and a talk with an artist take exactly one minute.
Input Specification:
The only string contains three integers — *n*, *m* and *z* (1<=≤<=*n*,<=*m*,<=*z*<=≤<=104).
Output Specification:
Print single integer — the minimum number of artists that should be killed so that there are no artists in the room when Ilia calls.
Demo Input:
['1 1 10\n', '1 2 5\n', '2 3 9\n']
Demo Output:
['10\n', '2\n', '1\n']
Note:
Taymyr is a place in the north of Russia.
In the first test the artists come each minute, as well as the calls, so we need to kill all of them.
In the second test we need to kill artists which come on the second and the fourth minutes.
In the third test — only the artist which comes on the sixth minute.
|
```python
n,m,z=map(int,input().split())
a,b,c=n,m,0
l=[]
k=[]
for i in range(1,z+1):
if(n*i<=z):
l.append(n*i)
if(m*i<=z):
k.append(m*i)
for i in range(1,z+1):
if i in l:
if i in k:
c=c+1
print(c)
```
| 0
|
|
777
|
A
|
Shell Game
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms",
"implementation",
"math"
] | null | null |
Bomboslav likes to look out of the window in his room and watch lads outside playing famous shell game. The game is played by two persons: operator and player. Operator takes three similar opaque shells and places a ball beneath one of them. Then he shuffles the shells by swapping some pairs and the player has to guess the current position of the ball.
Bomboslav noticed that guys are not very inventive, so the operator always swaps the left shell with the middle one during odd moves (first, third, fifth, etc.) and always swaps the middle shell with the right one during even moves (second, fourth, etc.).
Let's number shells from 0 to 2 from left to right. Thus the left shell is assigned number 0, the middle shell is 1 and the right shell is 2. Bomboslav has missed the moment when the ball was placed beneath the shell, but he knows that exactly *n* movements were made by the operator and the ball was under shell *x* at the end. Now he wonders, what was the initial position of the ball?
|
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=2·109) — the number of movements made by the operator.
The second line contains a single integer *x* (0<=≤<=*x*<=≤<=2) — the index of the shell where the ball was found after *n* movements.
|
Print one integer from 0 to 2 — the index of the shell where the ball was initially placed.
|
[
"4\n2\n",
"1\n1\n"
] |
[
"1\n",
"0\n"
] |
In the first sample, the ball was initially placed beneath the middle shell and the operator completed four movements.
1. During the first move operator swapped the left shell and the middle shell. The ball is now under the left shell. 1. During the second move operator swapped the middle shell and the right one. The ball is still under the left shell. 1. During the third move operator swapped the left shell and the middle shell again. The ball is again in the middle. 1. Finally, the operators swapped the middle shell and the right shell. The ball is now beneath the right shell.
| 500
|
[
{
"input": "4\n2",
"output": "1"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "2\n2",
"output": "0"
},
{
"input": "3\n1",
"output": "1"
},
{
"input": "3\n2",
"output": "0"
},
{
"input": "3\n0",
"output": "2"
},
{
"input": "2000000000\n0",
"output": "1"
},
{
"input": "2\n0",
"output": "1"
},
{
"input": "2\n1",
"output": "2"
},
{
"input": "4\n0",
"output": "2"
},
{
"input": "4\n1",
"output": "0"
},
{
"input": "5\n0",
"output": "0"
},
{
"input": "5\n1",
"output": "2"
},
{
"input": "5\n2",
"output": "1"
},
{
"input": "6\n0",
"output": "0"
},
{
"input": "6\n1",
"output": "1"
},
{
"input": "6\n2",
"output": "2"
},
{
"input": "7\n0",
"output": "1"
},
{
"input": "7\n1",
"output": "0"
},
{
"input": "7\n2",
"output": "2"
},
{
"input": "100000\n0",
"output": "2"
},
{
"input": "100000\n1",
"output": "0"
},
{
"input": "100000\n2",
"output": "1"
},
{
"input": "99999\n1",
"output": "1"
},
{
"input": "99998\n1",
"output": "2"
},
{
"input": "99997\n1",
"output": "0"
},
{
"input": "99996\n1",
"output": "1"
},
{
"input": "99995\n1",
"output": "2"
},
{
"input": "1999999995\n0",
"output": "2"
},
{
"input": "1999999995\n1",
"output": "1"
},
{
"input": "1999999995\n2",
"output": "0"
},
{
"input": "1999999996\n0",
"output": "2"
},
{
"input": "1999999996\n1",
"output": "0"
},
{
"input": "1999999996\n2",
"output": "1"
},
{
"input": "1999999997\n0",
"output": "0"
},
{
"input": "1999999997\n1",
"output": "2"
},
{
"input": "1999999997\n2",
"output": "1"
},
{
"input": "1999999998\n0",
"output": "0"
},
{
"input": "1999999998\n1",
"output": "1"
},
{
"input": "1999999998\n2",
"output": "2"
},
{
"input": "1999999999\n0",
"output": "1"
},
{
"input": "1999999999\n1",
"output": "0"
},
{
"input": "1999999999\n2",
"output": "2"
},
{
"input": "2000000000\n1",
"output": "2"
},
{
"input": "2000000000\n2",
"output": "0"
},
{
"input": "1234567890\n0",
"output": "0"
},
{
"input": "1234567890\n1",
"output": "1"
},
{
"input": "1234567890\n2",
"output": "2"
},
{
"input": "123456789\n0",
"output": "2"
},
{
"input": "123456789\n1",
"output": "1"
},
{
"input": "123456789\n2",
"output": "0"
},
{
"input": "123456790\n0",
"output": "2"
},
{
"input": "12\n2",
"output": "2"
},
{
"input": "32\n1",
"output": "2"
},
{
"input": "20\n2",
"output": "0"
},
{
"input": "10\n1",
"output": "0"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "76994383\n1",
"output": "0"
},
{
"input": "25\n2",
"output": "2"
},
{
"input": "1\n2",
"output": "2"
},
{
"input": "12\n0",
"output": "0"
},
{
"input": "150\n2",
"output": "2"
},
{
"input": "15\n0",
"output": "2"
},
{
"input": "21\n2",
"output": "0"
},
{
"input": "18\n2",
"output": "2"
},
{
"input": "8\n2",
"output": "0"
},
{
"input": "10\n0",
"output": "2"
},
{
"input": "16\n0",
"output": "2"
}
] | 1,617,808,857
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 68
| 109
| 0
|
a = [1 , 2 , 2 , 1 , 0 , 0]
b = [0 , 0 , 1 , 2 , 2 , 1]
c = [2 , 1 , 0 , 0 , 1 , 2]
n = int(input())
n = n%6
if not n: n = 6
x = int(input())
if a[n-1] == x: print(0)
elif b[n-1] ==x: print(1)
else: print(2)
|
Title: Shell Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bomboslav likes to look out of the window in his room and watch lads outside playing famous shell game. The game is played by two persons: operator and player. Operator takes three similar opaque shells and places a ball beneath one of them. Then he shuffles the shells by swapping some pairs and the player has to guess the current position of the ball.
Bomboslav noticed that guys are not very inventive, so the operator always swaps the left shell with the middle one during odd moves (first, third, fifth, etc.) and always swaps the middle shell with the right one during even moves (second, fourth, etc.).
Let's number shells from 0 to 2 from left to right. Thus the left shell is assigned number 0, the middle shell is 1 and the right shell is 2. Bomboslav has missed the moment when the ball was placed beneath the shell, but he knows that exactly *n* movements were made by the operator and the ball was under shell *x* at the end. Now he wonders, what was the initial position of the ball?
Input Specification:
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=2·109) — the number of movements made by the operator.
The second line contains a single integer *x* (0<=≤<=*x*<=≤<=2) — the index of the shell where the ball was found after *n* movements.
Output Specification:
Print one integer from 0 to 2 — the index of the shell where the ball was initially placed.
Demo Input:
['4\n2\n', '1\n1\n']
Demo Output:
['1\n', '0\n']
Note:
In the first sample, the ball was initially placed beneath the middle shell and the operator completed four movements.
1. During the first move operator swapped the left shell and the middle shell. The ball is now under the left shell. 1. During the second move operator swapped the middle shell and the right one. The ball is still under the left shell. 1. During the third move operator swapped the left shell and the middle shell again. The ball is again in the middle. 1. Finally, the operators swapped the middle shell and the right shell. The ball is now beneath the right shell.
|
```python
a = [1 , 2 , 2 , 1 , 0 , 0]
b = [0 , 0 , 1 , 2 , 2 , 1]
c = [2 , 1 , 0 , 0 , 1 , 2]
n = int(input())
n = n%6
if not n: n = 6
x = int(input())
if a[n-1] == x: print(0)
elif b[n-1] ==x: print(1)
else: print(2)
```
| 3
|
|
369
|
C
|
Valera and Elections
|
PROGRAMMING
| 1,600
|
[
"dfs and similar",
"graphs",
"trees"
] | null | null |
The city Valera lives in is going to hold elections to the city Parliament.
The city has *n* districts and *n*<=-<=1 bidirectional roads. We know that from any district there is a path along the roads to any other district. Let's enumerate all districts in some way by integers from 1 to *n*, inclusive. Furthermore, for each road the residents decided if it is the problem road or not. A problem road is a road that needs to be repaired.
There are *n* candidates running the elections. Let's enumerate all candidates in some way by integers from 1 to *n*, inclusive. If the candidate number *i* will be elected in the city Parliament, he will perform exactly one promise — to repair all problem roads on the way from the *i*-th district to the district 1, where the city Parliament is located.
Help Valera and determine the subset of candidates such that if all candidates from the subset will be elected to the city Parliament, all problem roads in the city will be repaired. If there are several such subsets, you should choose the subset consisting of the minimum number of candidates.
|
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=105) — the number of districts in the city.
Then *n*<=-<=1 lines follow. Each line contains the description of a city road as three positive integers *x**i*, *y**i*, *t**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*, 1<=≤<=*t**i*<=≤<=2) — the districts connected by the *i*-th bidirectional road and the road type. If *t**i* equals to one, then the *i*-th road isn't the problem road; if *t**i* equals to two, then the *i*-th road is the problem road.
It's guaranteed that the graph structure of the city is a tree.
|
In the first line print a single non-negative number *k* — the minimum size of the required subset of candidates. Then on the second line print *k* space-separated integers *a*1,<=*a*2,<=... *a**k* — the numbers of the candidates that form the required subset. If there are multiple solutions, you are allowed to print any of them.
|
[
"5\n1 2 2\n2 3 2\n3 4 2\n4 5 2\n",
"5\n1 2 1\n2 3 2\n2 4 1\n4 5 1\n",
"5\n1 2 2\n1 3 2\n1 4 2\n1 5 2\n"
] |
[
"1\n5 \n",
"1\n3 \n",
"4\n5 4 3 2 \n"
] |
none
| 1,500
|
[
{
"input": "5\n1 2 2\n2 3 2\n3 4 2\n4 5 2",
"output": "1\n5 "
},
{
"input": "5\n1 2 1\n2 3 2\n2 4 1\n4 5 1",
"output": "1\n3 "
},
{
"input": "5\n1 2 2\n1 3 2\n1 4 2\n1 5 2",
"output": "4\n5 4 3 2 "
},
{
"input": "5\n1 5 1\n5 4 2\n4 3 1\n3 2 2",
"output": "1\n2 "
},
{
"input": "2\n1 2 1",
"output": "0"
},
{
"input": "10\n7 5 1\n2 1 2\n8 7 2\n2 4 1\n4 5 2\n9 5 1\n3 2 2\n2 10 1\n6 5 2",
"output": "3\n8 6 3 "
},
{
"input": "2\n2 1 1",
"output": "0"
},
{
"input": "2\n1 2 2",
"output": "1\n2 "
},
{
"input": "5\n3 1 1\n4 5 1\n1 4 1\n1 2 1",
"output": "0"
},
{
"input": "5\n1 3 2\n5 4 2\n2 1 2\n4 3 2",
"output": "2\n5 2 "
},
{
"input": "10\n1 9 1\n3 2 2\n1 2 2\n4 7 2\n3 5 2\n4 3 2\n10 3 2\n7 8 2\n3 6 1",
"output": "3\n8 10 5 "
},
{
"input": "10\n7 9 2\n2 6 2\n7 4 1\n5 4 2\n3 2 1\n8 5 2\n4 3 2\n7 10 1\n1 2 2",
"output": "3\n9 8 6 "
},
{
"input": "10\n3 9 1\n2 10 2\n1 7 1\n3 4 1\n7 8 2\n1 2 1\n5 3 1\n5 6 2\n2 3 2",
"output": "3\n6 10 8 "
},
{
"input": "10\n1 10 2\n10 9 2\n10 8 2\n9 7 2\n8 6 1\n7 5 1\n6 4 1\n5 3 1\n4 2 1",
"output": "2\n7 8 "
},
{
"input": "10\n1 10 2\n10 9 2\n10 8 2\n9 7 2\n8 6 2\n7 5 2\n6 4 2\n5 3 2\n4 2 2",
"output": "2\n3 2 "
},
{
"input": "4\n1 2 2\n2 3 1\n2 4 2",
"output": "1\n4 "
}
] | 1,465,392,751
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 6
| 1,000
| 19,660,800
|
from collections import defaultdict,deque,Counter,OrderedDict
import sys
sys.setrecursionlimit(20000)
def main():
n = int(input())
adj = [ [] for i in range(n)]
white = [0]*n
d = [0]*n
for i in range(n-1):
a,b,c = map(int,input().split())
a,b = a-1,b-1
adj[a].append(b)
adj[b].append(a)
if c == 2:
white[a] = white[b] = 1
par = [0]*n
ispar = [0]*n
def go(v,prev):
dq = deque([(0,-1)])
while len(dq) > 0:
(v,prev) = dq.pop()
par[v] = prev
if prev != -1:
ispar[prev] = 1
for i in adj[v]:
if i != prev:
dq.append((i,v))
go(0, -1)
for i in range(n):
if ispar[i] == 0:
now = i
prev = par[i]
while now != 0:
if white[now]:
d[now] += 1
d[prev] += d[now]
now = prev
prev = par[prev]
ans = []
for i in range(n):
if white[i] and d[i] == 1:
ans.append(i+1)
print(len(ans))
print(" ".join(map(str,ans)))
if __name__ == "__main__":
main()
|
Title: Valera and Elections
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The city Valera lives in is going to hold elections to the city Parliament.
The city has *n* districts and *n*<=-<=1 bidirectional roads. We know that from any district there is a path along the roads to any other district. Let's enumerate all districts in some way by integers from 1 to *n*, inclusive. Furthermore, for each road the residents decided if it is the problem road or not. A problem road is a road that needs to be repaired.
There are *n* candidates running the elections. Let's enumerate all candidates in some way by integers from 1 to *n*, inclusive. If the candidate number *i* will be elected in the city Parliament, he will perform exactly one promise — to repair all problem roads on the way from the *i*-th district to the district 1, where the city Parliament is located.
Help Valera and determine the subset of candidates such that if all candidates from the subset will be elected to the city Parliament, all problem roads in the city will be repaired. If there are several such subsets, you should choose the subset consisting of the minimum number of candidates.
Input Specification:
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=105) — the number of districts in the city.
Then *n*<=-<=1 lines follow. Each line contains the description of a city road as three positive integers *x**i*, *y**i*, *t**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*, 1<=≤<=*t**i*<=≤<=2) — the districts connected by the *i*-th bidirectional road and the road type. If *t**i* equals to one, then the *i*-th road isn't the problem road; if *t**i* equals to two, then the *i*-th road is the problem road.
It's guaranteed that the graph structure of the city is a tree.
Output Specification:
In the first line print a single non-negative number *k* — the minimum size of the required subset of candidates. Then on the second line print *k* space-separated integers *a*1,<=*a*2,<=... *a**k* — the numbers of the candidates that form the required subset. If there are multiple solutions, you are allowed to print any of them.
Demo Input:
['5\n1 2 2\n2 3 2\n3 4 2\n4 5 2\n', '5\n1 2 1\n2 3 2\n2 4 1\n4 5 1\n', '5\n1 2 2\n1 3 2\n1 4 2\n1 5 2\n']
Demo Output:
['1\n5 \n', '1\n3 \n', '4\n5 4 3 2 \n']
Note:
none
|
```python
from collections import defaultdict,deque,Counter,OrderedDict
import sys
sys.setrecursionlimit(20000)
def main():
n = int(input())
adj = [ [] for i in range(n)]
white = [0]*n
d = [0]*n
for i in range(n-1):
a,b,c = map(int,input().split())
a,b = a-1,b-1
adj[a].append(b)
adj[b].append(a)
if c == 2:
white[a] = white[b] = 1
par = [0]*n
ispar = [0]*n
def go(v,prev):
dq = deque([(0,-1)])
while len(dq) > 0:
(v,prev) = dq.pop()
par[v] = prev
if prev != -1:
ispar[prev] = 1
for i in adj[v]:
if i != prev:
dq.append((i,v))
go(0, -1)
for i in range(n):
if ispar[i] == 0:
now = i
prev = par[i]
while now != 0:
if white[now]:
d[now] += 1
d[prev] += d[now]
now = prev
prev = par[prev]
ans = []
for i in range(n):
if white[i] and d[i] == 1:
ans.append(i+1)
print(len(ans))
print(" ".join(map(str,ans)))
if __name__ == "__main__":
main()
```
| 0
|
|
365
|
A
|
Good Number
|
PROGRAMMING
| 1,100
|
[
"implementation"
] | null | null |
Let's call a number *k*-good if it contains all digits not exceeding *k* (0,<=...,<=*k*). You've got a number *k* and an array *a* containing *n* numbers. Find out how many *k*-good numbers are in *a* (count each number every time it occurs in array *a*).
|
The first line contains integers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=9). The *i*-th of the following *n* lines contains integer *a**i* without leading zeroes (1<=≤<=*a**i*<=≤<=109).
|
Print a single integer — the number of *k*-good numbers in *a*.
|
[
"10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n",
"2 1\n1\n10\n"
] |
[
"10\n",
"1\n"
] |
none
| 500
|
[
{
"input": "10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560",
"output": "10"
},
{
"input": "2 1\n1\n10",
"output": "1"
},
{
"input": "1 0\n1000000000",
"output": "1"
},
{
"input": "1 1\n1000000000",
"output": "1"
},
{
"input": "6 0\n10\n102\n120\n1032\n1212103\n1999999",
"output": "5"
},
{
"input": "1 3\n1000000000",
"output": "0"
},
{
"input": "1 9\n1000000000",
"output": "0"
},
{
"input": "1 0\n1",
"output": "0"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "1 3\n1",
"output": "0"
},
{
"input": "1 9\n1",
"output": "0"
},
{
"input": "2 8\n123456780\n123",
"output": "1"
},
{
"input": "2 8\n12345678\n1230",
"output": "0"
},
{
"input": "6 1\n10\n102\n120\n1032\n1212103\n1999999",
"output": "5"
},
{
"input": "6 2\n10\n102\n120\n1032\n1212103\n1999999",
"output": "4"
},
{
"input": "6 3\n10\n102\n120\n1032\n1212103\n1999999",
"output": "2"
},
{
"input": "6 9\n10\n102\n120\n1032\n1212103\n1999999",
"output": "0"
},
{
"input": "1 2\n2220",
"output": "0"
}
] | 1,690,506,525
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 0
|
print("_RANDOM_GUESS_1690506524.9195805")# 1690506524.9196017
|
Title: Good Number
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Let's call a number *k*-good if it contains all digits not exceeding *k* (0,<=...,<=*k*). You've got a number *k* and an array *a* containing *n* numbers. Find out how many *k*-good numbers are in *a* (count each number every time it occurs in array *a*).
Input Specification:
The first line contains integers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=9). The *i*-th of the following *n* lines contains integer *a**i* without leading zeroes (1<=≤<=*a**i*<=≤<=109).
Output Specification:
Print a single integer — the number of *k*-good numbers in *a*.
Demo Input:
['10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n', '2 1\n1\n10\n']
Demo Output:
['10\n', '1\n']
Note:
none
|
```python
print("_RANDOM_GUESS_1690506524.9195805")# 1690506524.9196017
```
| 0
|
|
263
|
A
|
Beautiful Matrix
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
|
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
|
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
|
[
"0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n",
"0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n"
] |
[
"3\n",
"1\n"
] |
none
| 500
|
[
{
"input": "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "0"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1",
"output": "4"
},
{
"input": "0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0",
"output": "3"
}
] | 1,696,590,791
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 92
| 0
|
arr=[]
for i in range(5):
temp=list(map(int,input().split()))
for j in range(len(temp)):
if temp[j]==1:
cell=[i,j]
tar=[2,2]
print(abs(cell[0]-tar[0])+abs(cell[1]-tar[1]))
|
Title: Beautiful Matrix
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
Input Specification:
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
Output Specification:
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
Demo Input:
['0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n', '0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n']
Demo Output:
['3\n', '1\n']
Note:
none
|
```python
arr=[]
for i in range(5):
temp=list(map(int,input().split()))
for j in range(len(temp)):
if temp[j]==1:
cell=[i,j]
tar=[2,2]
print(abs(cell[0]-tar[0])+abs(cell[1]-tar[1]))
```
| 3
|
|
617
|
A
|
Elephant
|
PROGRAMMING
| 800
|
[
"math"
] | null | null |
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=><=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
|
The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house.
|
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
|
[
"5\n",
"12\n"
] |
[
"1\n",
"3\n"
] |
In the first sample the elephant needs to make one step of length 5 to reach the point *x*.
In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
| 500
|
[
{
"input": "5",
"output": "1"
},
{
"input": "12",
"output": "3"
},
{
"input": "999999",
"output": "200000"
},
{
"input": "41",
"output": "9"
},
{
"input": "1000000",
"output": "200000"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "1"
},
{
"input": "4",
"output": "1"
},
{
"input": "534204",
"output": "106841"
},
{
"input": "469569",
"output": "93914"
},
{
"input": "502877",
"output": "100576"
},
{
"input": "942212",
"output": "188443"
},
{
"input": "97",
"output": "20"
},
{
"input": "53",
"output": "11"
},
{
"input": "89",
"output": "18"
},
{
"input": "574",
"output": "115"
},
{
"input": "716",
"output": "144"
},
{
"input": "729",
"output": "146"
},
{
"input": "8901",
"output": "1781"
},
{
"input": "3645",
"output": "729"
},
{
"input": "4426",
"output": "886"
},
{
"input": "46573",
"output": "9315"
},
{
"input": "86380",
"output": "17276"
},
{
"input": "94190",
"output": "18838"
},
{
"input": "999990",
"output": "199998"
},
{
"input": "999991",
"output": "199999"
},
{
"input": "999992",
"output": "199999"
},
{
"input": "999993",
"output": "199999"
},
{
"input": "999994",
"output": "199999"
},
{
"input": "999995",
"output": "199999"
},
{
"input": "999996",
"output": "200000"
},
{
"input": "999997",
"output": "200000"
},
{
"input": "999998",
"output": "200000"
}
] | 1,699,462,130
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 46
| 0
|
x=int(input(''))
if x%5==0:
steps=x//5
print(steps)
else:
steps=(int((x/5)))+1
print(steps)
|
Title: Elephant
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=><=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
Input Specification:
The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house.
Output Specification:
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
Demo Input:
['5\n', '12\n']
Demo Output:
['1\n', '3\n']
Note:
In the first sample the elephant needs to make one step of length 5 to reach the point *x*.
In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
|
```python
x=int(input(''))
if x%5==0:
steps=x//5
print(steps)
else:
steps=(int((x/5)))+1
print(steps)
```
| 3
|
|
125
|
B
|
Simple XML
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Let's define a string <x> as an opening tag, where *x* is any small letter of the Latin alphabet. Each opening tag matches a closing tag of the type </x>, where *x* is the same letter.
Tegs can be nested into each other: in this case one opening and closing tag pair is located inside another pair.
Let's define the notion of a XML-text:
- an empty string is a XML-text - if *s* is a XML-text, then *s*'=<a>+*s*+</a> also is a XML-text, where *a* is any small Latin letter - if *s*1, *s*2 are XML-texts, then *s*1+*s*2 also is a XML-text
You are given a XML-text (it is guaranteed that the text is valid), your task is to print in the following form:
- each tag (opening and closing) is located on a single line - print before the tag 2<=*<=*h* spaces, where *h* is the level of the tag's nestedness.
|
The input data consists on the only non-empty string — the XML-text, its length does not exceed 1000 characters. It is guaranteed that the text is valid. The text contains no spaces.
|
Print the given XML-text according to the above-given rules.
|
[
"<a><b><c></c></b></a>\n",
"<a><b></b><d><c></c></d></a>\n"
] |
[
"<a>\n <b>\n <c>\n </c>\n </b>\n</a>\n",
"<a>\n <b>\n </b>\n <d>\n <c>\n </c>\n </d>\n</a>\n"
] |
none
| 1,500
|
[
{
"input": "<a><b><c></c></b></a>",
"output": "<a>\n <b>\n <c>\n </c>\n </b>\n</a>"
},
{
"input": "<a><b></b><d><c></c></d></a>",
"output": "<a>\n <b>\n </b>\n <d>\n <c>\n </c>\n </d>\n</a>"
},
{
"input": "<z></z>",
"output": "<z>\n</z>"
},
{
"input": "<u><d></d></u><j></j>",
"output": "<u>\n <d>\n </d>\n</u>\n<j>\n</j>"
},
{
"input": "<a></a><n></n><v><r></r></v><z></z>",
"output": "<a>\n</a>\n<n>\n</n>\n<v>\n <r>\n </r>\n</v>\n<z>\n</z>"
},
{
"input": "<c><l></l><b><w><f><t><m></m></t></f><w></w></w></b></c>",
"output": "<c>\n <l>\n </l>\n <b>\n <w>\n <f>\n <t>\n <m>\n </m>\n </t>\n </f>\n <w>\n </w>\n </w>\n </b>\n</c>"
},
{
"input": "<u><d><g><k><m><a><u><j><d></d></j></u></a></m><m></m></k></g></d></u>",
"output": "<u>\n <d>\n <g>\n <k>\n <m>\n <a>\n <u>\n <j>\n <d>\n </d>\n </j>\n </u>\n </a>\n </m>\n <m>\n </m>\n </k>\n </g>\n </d>\n</u>"
},
{
"input": "<x><a><l></l></a><g><v></v><d></d></g><z></z><y></y></x><q><h></h><s></s></q><c></c><w></w><q></q>",
"output": "<x>\n <a>\n <l>\n </l>\n </a>\n <g>\n <v>\n </v>\n <d>\n </d>\n </g>\n <z>\n </z>\n <y>\n </y>\n</x>\n<q>\n <h>\n </h>\n <s>\n </s>\n</q>\n<c>\n</c>\n<w>\n</w>\n<q>\n</q>"
},
{
"input": "<b><k><t></t></k><j></j><t></t><q></q></b><x><h></h></x><r></r><k></k><i></i><t><b></b></t><z></z><x></x><p></p><u></u>",
"output": "<b>\n <k>\n <t>\n </t>\n </k>\n <j>\n </j>\n <t>\n </t>\n <q>\n </q>\n</b>\n<x>\n <h>\n </h>\n</x>\n<r>\n</r>\n<k>\n</k>\n<i>\n</i>\n<t>\n <b>\n </b>\n</t>\n<z>\n</z>\n<x>\n</x>\n<p>\n</p>\n<u>\n</u>"
},
{
"input": "<c><l><i><h><z></z></h><y><k></k><o></o></y></i><a></a><x></x></l><r><y></y><k><s></s></k></r><j><a><f></f></a></j><h></h><p></p></c><h></h>",
"output": "<c>\n <l>\n <i>\n <h>\n <z>\n </z>\n </h>\n <y>\n <k>\n </k>\n <o>\n </o>\n </y>\n </i>\n <a>\n </a>\n <x>\n </x>\n </l>\n <r>\n <y>\n </y>\n <k>\n <s>\n </s>\n </k>\n </r>\n <j>\n <a>\n <f>\n </f>\n </a>\n </j>\n <h>\n </h>\n <p>\n </p>\n</c>\n<h>\n</h>"
},
{
"input": "<p><q><l></l><q><k><r><n></n></r></k></q></q><x><z></z><r><k></k></r><h></h></x><c><p></p><o></o></c><n></n><c></c></p><b><c><z></z></c><u><u><f><a><d></d><q></q></a><x><i></i></x><r></r></f></u></u></b><j></j>",
"output": "<p>\n <q>\n <l>\n </l>\n <q>\n <k>\n <r>\n <n>\n </n>\n </r>\n </k>\n </q>\n </q>\n <x>\n <z>\n </z>\n <r>\n <k>\n </k>\n </r>\n <h>\n </h>\n </x>\n <c>\n <p>\n </p>\n <o>\n </o>\n </c>\n <n>\n </n>\n <c>\n </c>\n</p>\n<b>\n <c>\n <z>\n </z>\n </c>\n <u>\n <u>\n <f>\n <a>\n <d>\n </d>\n <q>\n </q>\n </a>\n <x>\n <i>\n ..."
},
{
"input": "<w><q><x></x></q><r></r><o></o><u></u><o></o></w><d><z></z><n><x></x></n><y></y><s></s><k></k><q></q><a></a></d><h><u></u><s></s><y></y><t></t><f></f></h><v><w><q></q></w><s></s><h></h></v><q><o></o><k></k><w></w></q><c></c><p><j></j></p><c><u></u></c><s></s><x></x><b></b><i></i>",
"output": "<w>\n <q>\n <x>\n </x>\n </q>\n <r>\n </r>\n <o>\n </o>\n <u>\n </u>\n <o>\n </o>\n</w>\n<d>\n <z>\n </z>\n <n>\n <x>\n </x>\n </n>\n <y>\n </y>\n <s>\n </s>\n <k>\n </k>\n <q>\n </q>\n <a>\n </a>\n</d>\n<h>\n <u>\n </u>\n <s>\n </s>\n <y>\n </y>\n <t>\n </t>\n <f>\n </f>\n</h>\n<v>\n <w>\n <q>\n </q>\n </w>\n <s>\n </s>\n <h>\n </h>\n</v>\n<q>\n <o>\n </o>\n <k>\n </k>\n <w>\n </w>\n</q>\n<c>\n</c>\n<p>\n <j>\n </j>\n</p>\n<c>\n <u>\n </u..."
},
{
"input": "<g><t><m><x><f><w><z><b><d><j></j><g><z></z><q><l><j></j><l><k></k><l><n><d></d><m></m></n></l><i><m><j></j></m></i></l></l><w><t><h><r><h></h><b></b></r></h></t><d><j></j></d><x><w><r><s><s></s></s></r></w><x></x></x></w><m><m><d></d><x><r><x><o><v></v><d><n></n></d></o></x></r></x></m></m></q></g><y></y></d></b></z></w></f></x><a></a></m></t></g>",
"output": "<g>\n <t>\n <m>\n <x>\n <f>\n <w>\n <z>\n <b>\n <d>\n <j>\n </j>\n <g>\n <z>\n </z>\n <q>\n <l>\n <j>\n </j>\n <l>\n <k>\n </k>\n <l>\n <n>\n ..."
},
{
"input": "<d><d><w><v><g><m></m></g><b><u></u><j><h><n><q><q><c></c></q></q></n></h><c></c><l><r><l></l><b><d></d><x><k><o><w><q><x></x></q></w></o></k><p></p></x><g><m></m></g></b></r></l></j><k><l></l></k><c><v><g><p><p><d><e><z><x></x></z></e><v></v></d><u><o><u></u><k></k></o></u><m><x><h><z><f></f></z></h></x><w></w></m></p></p></g></v><t><n><u><b><h></h></b></u><r><m><k><z></z></k></m><j><e><w><s></s><e><s><p></p><o></o></s><g></g></e><u></u></w></e></j></r></n></t></c></b></v></w></d></d>",
"output": "<d>\n <d>\n <w>\n <v>\n <g>\n <m>\n </m>\n </g>\n <b>\n <u>\n </u>\n <j>\n <h>\n <n>\n <q>\n <q>\n <c>\n </c>\n </q>\n </q>\n </n>\n </h>\n <c>\n </c>\n <l>\n <r>\n <l>\n </l>\n <b>\n ..."
}
] | 1,591,200,115
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 5
| 216
| 307,200
|
a =[]
s =""
b = 0
c = []
for x in input():
if x == "<" or x == ">" :pass
elif x =="/":s = "/"
else:
a.append(s + x)
s = ""
for x in range(len(a)):
for y in a[:x]:
if len(a[x]) == 2:b = c[a.index(a[x][-1])]
elif len(y) == 1:b+= 1
else:b -= 1
c.append(b)
b = 0
for x in range(len(a)):
print(" "*(c[x]*2) + "<" + a[x] + ">")
a[x] = "0"
|
Title: Simple XML
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Let's define a string <x> as an opening tag, where *x* is any small letter of the Latin alphabet. Each opening tag matches a closing tag of the type </x>, where *x* is the same letter.
Tegs can be nested into each other: in this case one opening and closing tag pair is located inside another pair.
Let's define the notion of a XML-text:
- an empty string is a XML-text - if *s* is a XML-text, then *s*'=<a>+*s*+</a> also is a XML-text, where *a* is any small Latin letter - if *s*1, *s*2 are XML-texts, then *s*1+*s*2 also is a XML-text
You are given a XML-text (it is guaranteed that the text is valid), your task is to print in the following form:
- each tag (opening and closing) is located on a single line - print before the tag 2<=*<=*h* spaces, where *h* is the level of the tag's nestedness.
Input Specification:
The input data consists on the only non-empty string — the XML-text, its length does not exceed 1000 characters. It is guaranteed that the text is valid. The text contains no spaces.
Output Specification:
Print the given XML-text according to the above-given rules.
Demo Input:
['<a><b><c></c></b></a>\n', '<a><b></b><d><c></c></d></a>\n']
Demo Output:
['<a>\n <b>\n <c>\n </c>\n </b>\n</a>\n', '<a>\n <b>\n </b>\n <d>\n <c>\n </c>\n </d>\n</a>\n']
Note:
none
|
```python
a =[]
s =""
b = 0
c = []
for x in input():
if x == "<" or x == ">" :pass
elif x =="/":s = "/"
else:
a.append(s + x)
s = ""
for x in range(len(a)):
for y in a[:x]:
if len(a[x]) == 2:b = c[a.index(a[x][-1])]
elif len(y) == 1:b+= 1
else:b -= 1
c.append(b)
b = 0
for x in range(len(a)):
print(" "*(c[x]*2) + "<" + a[x] + ">")
a[x] = "0"
```
| 0
|
|
262
|
A
|
Roma and Lucky Numbers
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Roma (a popular Russian name that means 'Roman') loves the Little Lvov Elephant's lucky numbers.
Let us remind you that lucky numbers are positive integers whose decimal representation only contains lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Roma's got *n* positive integers. He wonders, how many of those integers have not more than *k* lucky digits? Help him, write the program that solves the problem.
|
The first line contains two integers *n*, *k* (1<=≤<=*n*,<=*k*<=≤<=100). The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — the numbers that Roma has.
The numbers in the lines are separated by single spaces.
|
In a single line print a single integer — the answer to the problem.
|
[
"3 4\n1 2 4\n",
"3 2\n447 44 77\n"
] |
[
"3\n",
"2\n"
] |
In the first sample all numbers contain at most four lucky digits, so the answer is 3.
In the second sample number 447 doesn't fit in, as it contains more than two lucky digits. All other numbers are fine, so the answer is 2.
| 500
|
[
{
"input": "3 4\n1 2 4",
"output": "3"
},
{
"input": "3 2\n447 44 77",
"output": "2"
},
{
"input": "2 2\n507978501 180480073",
"output": "2"
},
{
"input": "9 6\n655243746 167613748 1470546 57644035 176077477 56984809 44677 215706823 369042089",
"output": "9"
},
{
"input": "6 100\n170427799 37215529 675016434 168544291 683447134 950090227",
"output": "6"
},
{
"input": "4 2\n194041605 706221269 69909135 257655784",
"output": "3"
},
{
"input": "4 2\n9581849 67346651 530497 272158241",
"output": "4"
},
{
"input": "3 47\n378261451 163985731 230342101",
"output": "3"
},
{
"input": "2 3\n247776868 480572137",
"output": "1"
},
{
"input": "7 77\n366496749 549646417 278840199 119255907 33557677 379268590 150378796",
"output": "7"
},
{
"input": "40 31\n32230963 709031779 144328646 513494529 36547831 416998222 84161665 318773941 170724397 553666286 368402971 48581613 31452501 368026285 47903381 939151438 204145360 189920160 288159400 133145006 314295423 450219949 160203213 358403181 478734385 29331901 31051111 110710191 567314089 139695685 111511396 87708701 317333277 103301481 110400517 634446253 481551313 39202255 105948 738066085",
"output": "40"
},
{
"input": "1 8\n55521105",
"output": "1"
},
{
"input": "49 3\n34644511 150953622 136135827 144208961 359490601 86708232 719413689 188605873 64330753 488776302 104482891 63360106 437791390 46521319 70778345 339141601 136198441 292941209 299339510 582531183 555958105 437904637 74219097 439816011 236010407 122674666 438442529 186501223 63932449 407678041 596993853 92223251 849265278 480265849 30983497 330283357 186901672 20271344 794252593 123774176 27851201 52717531 479907210 196833889 149331196 82147847 255966471 278600081 899317843",
"output": "44"
},
{
"input": "26 2\n330381357 185218042 850474297 483015466 296129476 1205865 538807493 103205601 160403321 694220263 416255901 7245756 507755361 88187633 91426751 1917161 58276681 59540376 576539745 595950717 390256887 105690055 607818885 28976353 488947089 50643601",
"output": "22"
},
{
"input": "38 1\n194481717 126247087 815196361 106258801 381703249 283859137 15290101 40086151 213688513 577996947 513899717 371428417 107799271 11136651 5615081 323386401 381128815 34217126 17709913 520702093 201694245 570931849 169037023 417019726 282437316 7417126 271667553 11375851 185087449 410130883 383045677 5764771 905017051 328584026 215330671 299553233 15838255 234532105",
"output": "20"
},
{
"input": "44 9\n683216389 250581469 130029957 467020047 188395565 206237982 63257361 68314981 732878407 563579660 199133851 53045209 665723851 16273169 10806790 556633156 350593410 474645249 478790761 708234243 71841230 18090541 19836685 146373571 17947452 534010506 46933264 377035021 311636557 75193963 54321761 12759959 71120181 548816939 23608621 31876417 107672995 72575155 369667956 20574379 210596751 532163173 75726739 853719629",
"output": "44"
},
{
"input": "8 6\n204157376 10514197 65483881 347219841 263304577 296402721 11739011 229776191",
"output": "8"
},
{
"input": "38 29\n333702889 680931737 61137217 203030505 68728281 11414209 642645708 590904616 3042901 607198177 189041074 700764043 813035201 198341461 126403544 401436841 420826465 45046581 20249976 46978855 46397957 706610773 24701041 57954481 51603266 593109701 385569073 178982291 582152863 287317968 1474090 34825141 432421977 130257781 151516903 540852403 548392 117246529",
"output": "38"
},
{
"input": "19 3\n562569697 549131571 50676718 84501863 74567295 702372009 365895280 451459937 40378543 167666701 158635641 53639293 442332661 825055617 100109161 326616021 862332843 533271196 4791547",
"output": "18"
},
{
"input": "1 1\n44",
"output": "0"
},
{
"input": "1 1\n4",
"output": "1"
},
{
"input": "10 3\n444 447 774 777 7777 4447 4 7 7 4",
"output": "8"
}
] | 1,623,517,677
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 124
| 0
|
n,k=map(int,input().split())
cnt=0
for a in input().split():
cnt+=a.count('4')+a.count('7')<=k
print(cnt)
|
Title: Roma and Lucky Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Roma (a popular Russian name that means 'Roman') loves the Little Lvov Elephant's lucky numbers.
Let us remind you that lucky numbers are positive integers whose decimal representation only contains lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Roma's got *n* positive integers. He wonders, how many of those integers have not more than *k* lucky digits? Help him, write the program that solves the problem.
Input Specification:
The first line contains two integers *n*, *k* (1<=≤<=*n*,<=*k*<=≤<=100). The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — the numbers that Roma has.
The numbers in the lines are separated by single spaces.
Output Specification:
In a single line print a single integer — the answer to the problem.
Demo Input:
['3 4\n1 2 4\n', '3 2\n447 44 77\n']
Demo Output:
['3\n', '2\n']
Note:
In the first sample all numbers contain at most four lucky digits, so the answer is 3.
In the second sample number 447 doesn't fit in, as it contains more than two lucky digits. All other numbers are fine, so the answer is 2.
|
```python
n,k=map(int,input().split())
cnt=0
for a in input().split():
cnt+=a.count('4')+a.count('7')<=k
print(cnt)
```
| 3
|
|
92
|
A
|
Chips
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] |
A. Chips
|
2
|
256
|
There are *n* walruses sitting in a circle. All of them are numbered in the clockwise order: the walrus number 2 sits to the left of the walrus number 1, the walrus number 3 sits to the left of the walrus number 2, ..., the walrus number 1 sits to the left of the walrus number *n*.
The presenter has *m* chips. The presenter stands in the middle of the circle and starts giving the chips to the walruses starting from walrus number 1 and moving clockwise. The walrus number *i* gets *i* chips. If the presenter can't give the current walrus the required number of chips, then the presenter takes the remaining chips and the process ends. Determine by the given *n* and *m* how many chips the presenter will get in the end.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=50, 1<=≤<=*m*<=≤<=104) — the number of walruses and the number of chips correspondingly.
|
Print the number of chips the presenter ended up with.
|
[
"4 11\n",
"17 107\n",
"3 8\n"
] |
[
"0\n",
"2\n",
"1\n"
] |
In the first sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, four chips to the walrus number 4, then again one chip to the walrus number 1. After that the presenter runs out of chips. He can't give anything to the walrus number 2 and the process finishes.
In the third sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, then again one chip to the walrus number 1. The presenter has one chip left and he can't give two chips to the walrus number 2, that's why the presenter takes the last chip.
| 500
|
[
{
"input": "4 11",
"output": "0"
},
{
"input": "17 107",
"output": "2"
},
{
"input": "3 8",
"output": "1"
},
{
"input": "46 7262",
"output": "35"
},
{
"input": "32 6864",
"output": "0"
},
{
"input": "36 6218",
"output": "14"
},
{
"input": "25 9712",
"output": "11"
},
{
"input": "9 7601",
"output": "5"
},
{
"input": "1 9058",
"output": "0"
},
{
"input": "29 7772",
"output": "26"
},
{
"input": "45 9465",
"output": "14"
},
{
"input": "46 866",
"output": "5"
},
{
"input": "29 1241",
"output": "20"
},
{
"input": "17 4248",
"output": "12"
},
{
"input": "20 8082",
"output": "11"
},
{
"input": "50 9555",
"output": "0"
},
{
"input": "4 7455",
"output": "2"
},
{
"input": "36 880",
"output": "4"
},
{
"input": "24 7440",
"output": "9"
},
{
"input": "44 7888",
"output": "12"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "50 10000",
"output": "40"
},
{
"input": "1 10000",
"output": "0"
},
{
"input": "50 1",
"output": "0"
},
{
"input": "50 50",
"output": "5"
}
] | 1,637,749,610
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 124
| 0
|
N, M = map(int, input().split())
S = int(N * (N + 1) / 2)
Imax = int((-1.0 + (1 + 8 * (M % S)) ** 0.5) / 2.0)
result = int(M % S - Imax * (Imax + 1) / 2)
print(result)
|
Title: Chips
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
There are *n* walruses sitting in a circle. All of them are numbered in the clockwise order: the walrus number 2 sits to the left of the walrus number 1, the walrus number 3 sits to the left of the walrus number 2, ..., the walrus number 1 sits to the left of the walrus number *n*.
The presenter has *m* chips. The presenter stands in the middle of the circle and starts giving the chips to the walruses starting from walrus number 1 and moving clockwise. The walrus number *i* gets *i* chips. If the presenter can't give the current walrus the required number of chips, then the presenter takes the remaining chips and the process ends. Determine by the given *n* and *m* how many chips the presenter will get in the end.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=50, 1<=≤<=*m*<=≤<=104) — the number of walruses and the number of chips correspondingly.
Output Specification:
Print the number of chips the presenter ended up with.
Demo Input:
['4 11\n', '17 107\n', '3 8\n']
Demo Output:
['0\n', '2\n', '1\n']
Note:
In the first sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, four chips to the walrus number 4, then again one chip to the walrus number 1. After that the presenter runs out of chips. He can't give anything to the walrus number 2 and the process finishes.
In the third sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, then again one chip to the walrus number 1. The presenter has one chip left and he can't give two chips to the walrus number 2, that's why the presenter takes the last chip.
|
```python
N, M = map(int, input().split())
S = int(N * (N + 1) / 2)
Imax = int((-1.0 + (1 + 8 * (M % S)) ** 0.5) / 2.0)
result = int(M % S - Imax * (Imax + 1) / 2)
print(result)
```
| 3.969
|
897
|
B
|
Chtholly's request
|
PROGRAMMING
| 1,300
|
[
"brute force"
] | null | null |
— I experienced so many great things.
— You gave me memories like dreams... But I have to leave now...
— One last request, can you...
— Help me solve a Codeforces problem?
— ......
— What?
Chtholly has been thinking about a problem for days:
If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not.
Given integers *k* and *p*, calculate the sum of the *k* smallest zcy numbers and output this sum modulo *p*.
Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help!
|
The first line contains two integers *k* and *p* (1<=≤<=*k*<=≤<=105,<=1<=≤<=*p*<=≤<=109).
|
Output single integer — answer to the problem.
|
[
"2 100\n",
"5 30\n"
] |
[
"33\n",
"15\n"
] |
In the first example, the smallest zcy number is 11, and the second smallest zcy number is 22.
In the second example, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/68fffad54395f7d920ad0384e07c6215ddc64141.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 1,000
|
[
{
"input": "2 100",
"output": "33"
},
{
"input": "5 30",
"output": "15"
},
{
"input": "42147 412393322",
"output": "251637727"
},
{
"input": "77809 868097296",
"output": "440411873"
},
{
"input": "5105 443422097",
"output": "363192634"
},
{
"input": "75615 376679484",
"output": "373089399"
},
{
"input": "22951 23793302",
"output": "1898631"
},
{
"input": "12785 993582106",
"output": "286204743"
},
{
"input": "60276 428978808",
"output": "376477293"
},
{
"input": "84776 104860385",
"output": "10209596"
},
{
"input": "41984 653766991",
"output": "17823101"
},
{
"input": "100000 1000000000",
"output": "495495496"
},
{
"input": "41163 472310076",
"output": "207304047"
},
{
"input": "6983 765352180",
"output": "586866999"
},
{
"input": "33493 967727004",
"output": "305705165"
},
{
"input": "90898 94010922",
"output": "65928728"
},
{
"input": "67298 349286579",
"output": "156435206"
},
{
"input": "92452 296773064",
"output": "229486976"
},
{
"input": "58832 563860457",
"output": "16775206"
},
{
"input": "90234 156145441",
"output": "44023160"
},
{
"input": "91454 977186148",
"output": "681779748"
},
{
"input": "11108 444095250",
"output": "188075844"
},
{
"input": "46304 584475527",
"output": "275627129"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 1000000000",
"output": "11"
},
{
"input": "100000 1",
"output": "0"
}
] | 1,512,476,742
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 155
| 5,529,600
|
k,p=list(map(int,input().split()))
a=0
for i in range(1,k+1):
s=str(i)
a=(a+int(s+s[::-1]))%p
print(a)
|
Title: Chtholly's request
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
— I experienced so many great things.
— You gave me memories like dreams... But I have to leave now...
— One last request, can you...
— Help me solve a Codeforces problem?
— ......
— What?
Chtholly has been thinking about a problem for days:
If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not.
Given integers *k* and *p*, calculate the sum of the *k* smallest zcy numbers and output this sum modulo *p*.
Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help!
Input Specification:
The first line contains two integers *k* and *p* (1<=≤<=*k*<=≤<=105,<=1<=≤<=*p*<=≤<=109).
Output Specification:
Output single integer — answer to the problem.
Demo Input:
['2 100\n', '5 30\n']
Demo Output:
['33\n', '15\n']
Note:
In the first example, the smallest zcy number is 11, and the second smallest zcy number is 22.
In the second example, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/68fffad54395f7d920ad0384e07c6215ddc64141.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
k,p=list(map(int,input().split()))
a=0
for i in range(1,k+1):
s=str(i)
a=(a+int(s+s[::-1]))%p
print(a)
```
| 3
|
|
166
|
A
|
Rank List
|
PROGRAMMING
| 1,100
|
[
"binary search",
"implementation",
"sortings"
] | null | null |
Another programming contest is over. You got hold of the contest's final results table. The table has the following data. For each team we are shown two numbers: the number of problems and the total penalty time. However, for no team we are shown its final place.
You know the rules of comparing the results of two given teams very well. Let's say that team *a* solved *p**a* problems with total penalty time *t**a* and team *b* solved *p**b* problems with total penalty time *t**b*. Team *a* gets a higher place than team *b* in the end, if it either solved more problems on the contest, or solved the same number of problems but in less total time. In other words, team *a* gets a higher place than team *b* in the final results' table if either *p**a*<=><=*p**b*, or *p**a*<==<=*p**b* and *t**a*<=<<=*t**b*.
It is considered that the teams that solve the same number of problems with the same penalty time share all corresponding places. More formally, let's say there is a group of *x* teams that solved the same number of problems with the same penalty time. Let's also say that *y* teams performed better than the teams from this group. In this case all teams from the group share places *y*<=+<=1, *y*<=+<=2, ..., *y*<=+<=*x*. The teams that performed worse than the teams from this group, get their places in the results table starting from the *y*<=+<=*x*<=+<=1-th place.
Your task is to count what number of teams from the given list shared the *k*-th place.
|
The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50). Then *n* lines contain the description of the teams: the *i*-th line contains two integers *p**i* and *t**i* (1<=≤<=*p**i*,<=*t**i*<=≤<=50) — the number of solved problems and the total penalty time of the *i*-th team, correspondingly. All numbers in the lines are separated by spaces.
|
In the only line print the sought number of teams that got the *k*-th place in the final results' table.
|
[
"7 2\n4 10\n4 10\n4 10\n3 20\n2 1\n2 1\n1 10\n",
"5 4\n3 1\n3 1\n5 3\n3 1\n3 1\n"
] |
[
"3\n",
"4\n"
] |
The final results' table for the first sample is:
- 1-3 places — 4 solved problems, the penalty time equals 10 - 4 place — 3 solved problems, the penalty time equals 20 - 5-6 places — 2 solved problems, the penalty time equals 1 - 7 place — 1 solved problem, the penalty time equals 10
The table shows that the second place is shared by the teams that solved 4 problems with penalty time 10. There are 3 such teams.
The final table for the second sample is:
- 1 place — 5 solved problems, the penalty time equals 3 - 2-5 places — 3 solved problems, the penalty time equals 1
The table shows that the fourth place is shared by the teams that solved 3 problems with penalty time 1. There are 4 such teams.
| 500
|
[
{
"input": "7 2\n4 10\n4 10\n4 10\n3 20\n2 1\n2 1\n1 10",
"output": "3"
},
{
"input": "5 4\n3 1\n3 1\n5 3\n3 1\n3 1",
"output": "4"
},
{
"input": "5 1\n2 2\n1 1\n1 1\n1 1\n2 2",
"output": "2"
},
{
"input": "6 3\n2 2\n3 1\n2 2\n4 5\n2 2\n4 5",
"output": "1"
},
{
"input": "5 5\n3 1\n10 2\n2 2\n1 10\n10 2",
"output": "1"
},
{
"input": "3 2\n3 3\n3 3\n3 3",
"output": "3"
},
{
"input": "4 3\n10 3\n6 10\n5 2\n5 2",
"output": "2"
},
{
"input": "5 3\n10 10\n10 10\n1 1\n10 10\n4 3",
"output": "3"
},
{
"input": "3 1\n2 1\n1 1\n1 2",
"output": "1"
},
{
"input": "1 1\n28 28",
"output": "1"
},
{
"input": "2 2\n1 2\n1 2",
"output": "2"
},
{
"input": "5 3\n2 3\n4 2\n5 3\n2 4\n3 5",
"output": "1"
},
{
"input": "50 22\n4 9\n8 1\n3 7\n1 2\n3 8\n9 8\n8 5\n2 10\n5 8\n1 3\n1 8\n2 3\n7 9\n10 2\n9 9\n7 3\n8 6\n10 6\n5 4\n8 1\n1 5\n6 8\n9 5\n9 5\n3 2\n3 3\n3 8\n7 5\n4 5\n8 10\n8 2\n3 5\n3 2\n1 1\n7 2\n2 7\n6 8\n10 4\n7 5\n1 7\n6 5\n3 1\n4 9\n2 3\n3 6\n5 8\n4 10\n10 7\n7 10\n9 8",
"output": "1"
},
{
"input": "50 6\n11 20\n18 13\n1 13\n3 11\n4 17\n15 10\n15 8\n9 16\n11 17\n16 3\n3 20\n14 13\n12 15\n9 10\n14 2\n12 12\n13 17\n6 10\n20 9\n2 8\n13 7\n7 20\n15 3\n1 20\n2 13\n2 5\n14 7\n10 13\n15 12\n15 5\n17 6\n9 11\n18 5\n10 1\n15 14\n3 16\n6 12\n4 1\n14 9\n7 14\n8 17\n17 13\n4 6\n19 16\n5 6\n3 15\n4 19\n15 20\n2 10\n20 10",
"output": "1"
},
{
"input": "50 12\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "50"
},
{
"input": "50 28\n2 2\n1 1\n2 1\n1 2\n1 1\n1 1\n1 1\n2 2\n2 2\n2 2\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 1\n2 2\n1 2\n2 2\n2 2\n2 1\n1 1\n1 2\n1 2\n1 1\n1 1\n1 1\n2 2\n2 1\n2 1\n2 2\n1 2\n1 2\n1 2\n1 1\n2 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n2 1\n1 1\n2 2\n2 2\n2 2\n2 2",
"output": "13"
},
{
"input": "50 40\n2 3\n3 1\n2 1\n2 1\n2 1\n3 1\n1 1\n1 2\n2 3\n1 3\n1 3\n2 1\n3 1\n1 1\n3 1\n3 1\n2 2\n1 1\n3 3\n3 1\n3 2\n2 3\n3 3\n3 1\n1 3\n2 3\n2 1\n3 2\n3 3\n3 1\n2 1\n2 2\n1 3\n3 3\n1 1\n3 2\n1 2\n2 3\n2 1\n2 2\n3 2\n1 3\n3 1\n1 1\n3 3\n2 3\n2 1\n2 3\n2 3\n1 2",
"output": "5"
},
{
"input": "50 16\n2 1\n3 2\n5 2\n2 2\n3 4\n4 4\n3 3\n4 1\n2 3\n1 5\n4 1\n2 2\n1 5\n3 2\n2 1\n5 4\n5 2\n5 4\n1 1\n3 5\n2 1\n4 5\n5 1\n5 5\n5 4\n2 4\n1 2\n5 5\n4 4\n1 5\n4 2\n5 1\n2 4\n2 5\n2 2\n3 4\n3 1\n1 1\n5 5\n2 2\n3 4\n2 4\n5 2\n4 1\n3 1\n1 1\n4 1\n4 4\n1 4\n1 3",
"output": "1"
},
{
"input": "50 32\n6 6\n4 2\n5 5\n1 1\n2 4\n6 5\n2 3\n6 5\n2 3\n6 3\n1 4\n1 6\n3 3\n2 4\n3 2\n6 2\n4 1\n3 3\n3 1\n5 5\n1 2\n2 1\n5 4\n3 1\n4 4\n5 6\n4 1\n2 5\n3 1\n4 6\n2 3\n1 1\n6 5\n2 6\n3 3\n2 6\n2 3\n2 6\n3 4\n2 6\n4 5\n5 4\n1 6\n3 2\n5 1\n4 1\n4 6\n4 2\n1 2\n5 2",
"output": "1"
},
{
"input": "50 48\n5 1\n6 4\n3 2\n2 1\n4 7\n3 6\n7 1\n7 5\n6 5\n5 6\n4 7\n5 7\n5 7\n5 5\n7 3\n3 5\n4 3\n5 4\n6 2\n1 6\n6 3\n6 5\n5 2\n4 2\n3 1\n1 1\n5 6\n1 3\n6 5\n3 7\n1 5\n7 5\n6 5\n3 6\n2 7\n5 3\n5 3\n4 7\n5 2\n6 5\n5 7\n7 1\n2 3\n5 5\n2 6\n4 1\n6 2\n6 5\n3 3\n1 6",
"output": "1"
},
{
"input": "50 8\n5 3\n7 3\n4 3\n7 4\n2 2\n4 4\n5 4\n1 1\n7 7\n4 8\n1 1\n6 3\n1 5\n7 3\n6 5\n4 5\n8 6\n3 6\n2 1\n3 2\n2 5\n7 6\n5 8\n1 3\n5 5\n8 4\n4 5\n4 4\n8 8\n7 2\n7 2\n3 6\n2 8\n8 3\n3 2\n4 5\n8 1\n3 2\n8 7\n6 3\n2 3\n5 1\n3 4\n7 2\n6 3\n7 3\n3 3\n6 4\n2 2\n5 1",
"output": "3"
},
{
"input": "20 16\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "20"
},
{
"input": "20 20\n1 2\n2 2\n1 1\n2 1\n2 2\n1 1\n1 1\n2 1\n1 1\n1 2\n2 2\n1 2\n1 2\n2 2\n2 2\n1 2\n2 1\n2 1\n1 2\n2 2",
"output": "6"
},
{
"input": "30 16\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "30"
},
{
"input": "30 22\n2 1\n1 2\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n2 2\n1 2\n2 2\n1 2\n1 2\n2 1\n1 2\n2 2\n2 2\n1 2\n2 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 2\n2 2\n1 2\n2 2\n2 1\n1 1",
"output": "13"
},
{
"input": "30 22\n1 1\n1 3\n2 3\n3 1\n2 3\n3 1\n1 2\n3 3\n2 1\n2 1\n2 2\n3 1\n3 2\n2 3\n3 1\n1 3\n2 3\n3 1\n1 2\n1 2\n2 3\n2 1\n3 3\n3 2\n1 3\n3 3\n3 3\n3 3\n3 3\n3 1",
"output": "5"
},
{
"input": "50 16\n2 1\n3 2\n5 2\n2 2\n3 4\n4 4\n3 3\n4 1\n2 3\n1 5\n4 1\n2 2\n1 5\n3 2\n2 1\n5 4\n5 2\n5 4\n1 1\n3 5\n2 1\n4 5\n5 1\n5 5\n5 4\n2 4\n1 2\n5 5\n4 4\n1 5\n4 2\n5 1\n2 4\n2 5\n2 2\n3 4\n3 1\n1 1\n5 5\n2 2\n3 4\n2 4\n5 2\n4 1\n3 1\n1 1\n4 1\n4 4\n1 4\n1 3",
"output": "1"
},
{
"input": "50 22\n4 9\n8 1\n3 7\n1 2\n3 8\n9 8\n8 5\n2 10\n5 8\n1 3\n1 8\n2 3\n7 9\n10 2\n9 9\n7 3\n8 6\n10 6\n5 4\n8 1\n1 5\n6 8\n9 5\n9 5\n3 2\n3 3\n3 8\n7 5\n4 5\n8 10\n8 2\n3 5\n3 2\n1 1\n7 2\n2 7\n6 8\n10 4\n7 5\n1 7\n6 5\n3 1\n4 9\n2 3\n3 6\n5 8\n4 10\n10 7\n7 10\n9 8",
"output": "1"
},
{
"input": "50 22\n29 15\n18 10\n6 23\n38 28\n34 40\n40 1\n16 26\n22 33\n14 30\n26 7\n15 16\n22 40\n14 15\n6 28\n32 27\n33 3\n38 22\n40 17\n16 27\n21 27\n34 26\n5 15\n34 9\n38 23\n7 36\n17 6\n19 37\n40 1\n10 28\n9 14\n8 31\n40 8\n14 2\n24 16\n38 33\n3 37\n2 9\n21 21\n40 26\n28 33\n24 31\n10 12\n27 27\n17 4\n38 5\n21 31\n5 12\n29 7\n39 12\n26 14",
"output": "1"
},
{
"input": "50 14\n4 20\n37 50\n46 19\n20 25\n47 10\n6 34\n12 41\n47 9\n22 28\n41 34\n47 40\n12 42\n9 4\n15 15\n27 8\n38 9\n4 17\n8 13\n47 7\n9 38\n30 48\n50 7\n41 34\n23 11\n16 37\n2 32\n18 46\n37 48\n47 41\n13 9\n24 50\n46 14\n33 49\n9 50\n35 30\n49 44\n42 49\n39 15\n33 42\n3 18\n44 15\n44 28\n9 17\n16 4\n10 36\n4 22\n47 17\n24 12\n2 31\n6 30",
"output": "2"
},
{
"input": "2 1\n50 50\n50 50",
"output": "2"
},
{
"input": "2 2\n50 50\n50 50",
"output": "2"
},
{
"input": "2 1\n50 50\n50 49",
"output": "1"
},
{
"input": "2 2\n50 50\n50 49",
"output": "1"
},
{
"input": "50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50",
"output": "50"
},
{
"input": "50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n49 50",
"output": "1"
},
{
"input": "50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 49",
"output": "49"
},
{
"input": "10 1\n3 1\n3 2\n3 2\n2 3\n2 3\n2 3\n2 4\n2 4\n2 4\n2 4",
"output": "1"
},
{
"input": "4 3\n1 1\n1 2\n2 1\n2 2",
"output": "1"
},
{
"input": "4 2\n1 2\n1 3\n1 5\n1 2",
"output": "2"
},
{
"input": "6 1\n4 3\n4 2\n5 1\n5 2\n5 3\n5 3",
"output": "1"
},
{
"input": "5 3\n2 1\n1 3\n1 2\n1 1\n1 1",
"output": "2"
},
{
"input": "3 1\n1 1\n1 2\n1 3",
"output": "1"
},
{
"input": "10 10\n3 1\n3 2\n3 2\n2 3\n2 3\n2 3\n2 4\n2 4\n2 4\n2 4",
"output": "4"
},
{
"input": "5 1\n5 5\n5 6\n5 7\n5 8\n5 5",
"output": "2"
},
{
"input": "4 1\n1 1\n1 1\n1 2\n1 3",
"output": "2"
}
] | 1,649,847,883
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 60
| 0
|
from collections import Counter
#x = [1,2,4,5,5,6,6,6]
#print(max(Counter(x).values()))
n, k = map(int,input().split())
lst = []
problems = []
penalty = []
for i in range(n):
n1,n2 = map(int,input().split())
problems.append(int(n1))
penalty.append(int(n2))
print(max(penalty))
penalty = [max(penalty) - num for num in penalty]
lst = [int(str(problems[i])+str(penalty[i])) for i in range(0,len(problems))]
#print(sorted(lst)[::-1])
print((Counter(lst)[sorted(lst)[::-1][k-1]]))
|
Title: Rank List
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Another programming contest is over. You got hold of the contest's final results table. The table has the following data. For each team we are shown two numbers: the number of problems and the total penalty time. However, for no team we are shown its final place.
You know the rules of comparing the results of two given teams very well. Let's say that team *a* solved *p**a* problems with total penalty time *t**a* and team *b* solved *p**b* problems with total penalty time *t**b*. Team *a* gets a higher place than team *b* in the end, if it either solved more problems on the contest, or solved the same number of problems but in less total time. In other words, team *a* gets a higher place than team *b* in the final results' table if either *p**a*<=><=*p**b*, or *p**a*<==<=*p**b* and *t**a*<=<<=*t**b*.
It is considered that the teams that solve the same number of problems with the same penalty time share all corresponding places. More formally, let's say there is a group of *x* teams that solved the same number of problems with the same penalty time. Let's also say that *y* teams performed better than the teams from this group. In this case all teams from the group share places *y*<=+<=1, *y*<=+<=2, ..., *y*<=+<=*x*. The teams that performed worse than the teams from this group, get their places in the results table starting from the *y*<=+<=*x*<=+<=1-th place.
Your task is to count what number of teams from the given list shared the *k*-th place.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50). Then *n* lines contain the description of the teams: the *i*-th line contains two integers *p**i* and *t**i* (1<=≤<=*p**i*,<=*t**i*<=≤<=50) — the number of solved problems and the total penalty time of the *i*-th team, correspondingly. All numbers in the lines are separated by spaces.
Output Specification:
In the only line print the sought number of teams that got the *k*-th place in the final results' table.
Demo Input:
['7 2\n4 10\n4 10\n4 10\n3 20\n2 1\n2 1\n1 10\n', '5 4\n3 1\n3 1\n5 3\n3 1\n3 1\n']
Demo Output:
['3\n', '4\n']
Note:
The final results' table for the first sample is:
- 1-3 places — 4 solved problems, the penalty time equals 10 - 4 place — 3 solved problems, the penalty time equals 20 - 5-6 places — 2 solved problems, the penalty time equals 1 - 7 place — 1 solved problem, the penalty time equals 10
The table shows that the second place is shared by the teams that solved 4 problems with penalty time 10. There are 3 such teams.
The final table for the second sample is:
- 1 place — 5 solved problems, the penalty time equals 3 - 2-5 places — 3 solved problems, the penalty time equals 1
The table shows that the fourth place is shared by the teams that solved 3 problems with penalty time 1. There are 4 such teams.
|
```python
from collections import Counter
#x = [1,2,4,5,5,6,6,6]
#print(max(Counter(x).values()))
n, k = map(int,input().split())
lst = []
problems = []
penalty = []
for i in range(n):
n1,n2 = map(int,input().split())
problems.append(int(n1))
penalty.append(int(n2))
print(max(penalty))
penalty = [max(penalty) - num for num in penalty]
lst = [int(str(problems[i])+str(penalty[i])) for i in range(0,len(problems))]
#print(sorted(lst)[::-1])
print((Counter(lst)[sorted(lst)[::-1][k-1]]))
```
| 0
|
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,690,453,685
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 62
| 0
|
palavra = str(input("Digite uma palavra: "))
maiusculas = 0
minusculas = 0
for i in palavra:
if i.islower():
minusculas += 1
elif i.isupper():
maiusculas += 1
if(maiusculas > minusculas):
palavra = palavra.upper()
elif minusculas > maiusculas:
palavra = palavra.lower()
else:
palavra = palavra.lower()
print(palavra)
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
palavra = str(input("Digite uma palavra: "))
maiusculas = 0
minusculas = 0
for i in palavra:
if i.islower():
minusculas += 1
elif i.isupper():
maiusculas += 1
if(maiusculas > minusculas):
palavra = palavra.upper()
elif minusculas > maiusculas:
palavra = palavra.lower()
else:
palavra = palavra.lower()
print(palavra)
```
| 0
|
907
|
A
|
Masha and Bears
|
PROGRAMMING
| 1,300
|
[
"brute force",
"implementation"
] | null | null |
A family consisting of father bear, mother bear and son bear owns three cars. Father bear can climb into the largest car and he likes it. Also, mother bear can climb into the middle car and she likes it. Moreover, son bear can climb into the smallest car and he likes it. It's known that the largest car is strictly larger than the middle car, and the middle car is strictly larger than the smallest car.
Masha came to test these cars. She could climb into all cars, but she liked only the smallest car.
It's known that a character with size *a* can climb into some car with size *b* if and only if *a*<=≤<=*b*, he or she likes it if and only if he can climb into this car and 2*a*<=≥<=*b*.
You are given sizes of bears and Masha. Find out some possible integer non-negative sizes of cars.
|
You are given four integers *V*1, *V*2, *V*3, *V**m*(1<=≤<=*V**i*<=≤<=100) — sizes of father bear, mother bear, son bear and Masha, respectively. It's guaranteed that *V*1<=><=*V*2<=><=*V*3.
|
Output three integers — sizes of father bear's car, mother bear's car and son bear's car, respectively.
If there are multiple possible solutions, print any.
If there is no solution, print "-1" (without quotes).
|
[
"50 30 10 10\n",
"100 50 10 21\n"
] |
[
"50\n30\n10\n",
"-1\n"
] |
In first test case all conditions for cars' sizes are satisfied.
In second test case there is no answer, because Masha should be able to climb into smallest car (so size of smallest car in not less than 21), but son bear should like it, so maximum possible size of it is 20.
| 500
|
[
{
"input": "50 30 10 10",
"output": "50\n30\n10"
},
{
"input": "100 50 10 21",
"output": "-1"
},
{
"input": "100 50 19 10",
"output": "100\n50\n19"
},
{
"input": "99 50 25 49",
"output": "100\n99\n49"
},
{
"input": "3 2 1 1",
"output": "4\n3\n1"
},
{
"input": "100 99 98 100",
"output": "-1"
},
{
"input": "100 40 30 40",
"output": "-1"
},
{
"input": "100 50 19 25",
"output": "100\n51\n25"
},
{
"input": "100 50 19 30",
"output": "100\n61\n30"
},
{
"input": "49 48 25 49",
"output": "-1"
},
{
"input": "48 47 23 46",
"output": "94\n93\n46"
},
{
"input": "37 23 16 20",
"output": "42\n41\n20"
},
{
"input": "98 2 1 1",
"output": "98\n3\n1"
},
{
"input": "99 22 13 14",
"output": "99\n29\n14"
},
{
"input": "97 95 3 2",
"output": "97\n95\n3"
},
{
"input": "27 3 2 3",
"output": "-1"
},
{
"input": "13 7 6 2",
"output": "-1"
},
{
"input": "19 17 11 6",
"output": "19\n17\n11"
},
{
"input": "15 6 4 5",
"output": "15\n11\n5"
},
{
"input": "21 3 1 3",
"output": "-1"
},
{
"input": "100 99 98 97",
"output": "196\n195\n98"
},
{
"input": "99 32 13 5",
"output": "-1"
},
{
"input": "5 4 3 1",
"output": "-1"
},
{
"input": "50 20 4 8",
"output": "50\n20\n8"
},
{
"input": "60 30 10 1",
"output": "-1"
},
{
"input": "100 50 10 1",
"output": "-1"
},
{
"input": "40 30 20 10",
"output": "40\n30\n20"
},
{
"input": "50 49 5 10",
"output": "50\n49\n10"
},
{
"input": "99 98 50 97",
"output": "196\n195\n97"
},
{
"input": "50 30 10 5",
"output": "50\n30\n10"
},
{
"input": "4 3 2 1",
"output": "4\n3\n2"
},
{
"input": "100 50 3 1",
"output": "-1"
}
] | 1,627,286,831
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 5
| 62
| 6,963,200
|
arr = input().split()
a = int(arr[0])
b = int(arr[1])
c = int(arr[2])
d = int(arr[3])
a1 = 2 * a
b1 = b * 2
c1 = min(c, d) * 2
if c1 < b1 and c1 >= c and c1 >= d:
print(a1)
print(b1)
print(c1)
else:
print(-1)
|
Title: Masha and Bears
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A family consisting of father bear, mother bear and son bear owns three cars. Father bear can climb into the largest car and he likes it. Also, mother bear can climb into the middle car and she likes it. Moreover, son bear can climb into the smallest car and he likes it. It's known that the largest car is strictly larger than the middle car, and the middle car is strictly larger than the smallest car.
Masha came to test these cars. She could climb into all cars, but she liked only the smallest car.
It's known that a character with size *a* can climb into some car with size *b* if and only if *a*<=≤<=*b*, he or she likes it if and only if he can climb into this car and 2*a*<=≥<=*b*.
You are given sizes of bears and Masha. Find out some possible integer non-negative sizes of cars.
Input Specification:
You are given four integers *V*1, *V*2, *V*3, *V**m*(1<=≤<=*V**i*<=≤<=100) — sizes of father bear, mother bear, son bear and Masha, respectively. It's guaranteed that *V*1<=><=*V*2<=><=*V*3.
Output Specification:
Output three integers — sizes of father bear's car, mother bear's car and son bear's car, respectively.
If there are multiple possible solutions, print any.
If there is no solution, print "-1" (without quotes).
Demo Input:
['50 30 10 10\n', '100 50 10 21\n']
Demo Output:
['50\n30\n10\n', '-1\n']
Note:
In first test case all conditions for cars' sizes are satisfied.
In second test case there is no answer, because Masha should be able to climb into smallest car (so size of smallest car in not less than 21), but son bear should like it, so maximum possible size of it is 20.
|
```python
arr = input().split()
a = int(arr[0])
b = int(arr[1])
c = int(arr[2])
d = int(arr[3])
a1 = 2 * a
b1 = b * 2
c1 = min(c, d) * 2
if c1 < b1 and c1 >= c and c1 >= d:
print(a1)
print(b1)
print(c1)
else:
print(-1)
```
| 0
|
|
109
|
A
|
Lucky Sum of Digits
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation"
] |
A. Lucky Sum of Digits
|
2
|
256
|
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya wonders eagerly what minimum lucky number has the sum of digits equal to *n*. Help him cope with the task.
|
The single line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the sum of digits of the required lucky number.
|
Print on the single line the result — the minimum lucky number, whose sum of digits equals *n*. If such number does not exist, print -1.
|
[
"11\n",
"10\n"
] |
[
"47\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "11",
"output": "47"
},
{
"input": "10",
"output": "-1"
},
{
"input": "64",
"output": "4477777777"
},
{
"input": "1",
"output": "-1"
},
{
"input": "4",
"output": "4"
},
{
"input": "7",
"output": "7"
},
{
"input": "12",
"output": "444"
},
{
"input": "1000000",
"output": "4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "47",
"output": "44477777"
},
{
"input": "100",
"output": "4444777777777777"
},
{
"input": "700",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "485",
"output": "44447777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "111",
"output": "444447777777777777"
},
{
"input": "85",
"output": "4477777777777"
},
{
"input": "114",
"output": "444477777777777777"
},
{
"input": "474",
"output": "444777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "74",
"output": "47777777777"
},
{
"input": "1000",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "1024",
"output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "4444",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "45784",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "10000",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "9854",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "186",
"output": "477777777777777777777777777"
},
{
"input": "10416",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "10417",
"output": "4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "3840",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "100000",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "9876",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "99999",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "777777",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "854759",
"output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "11000",
"output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "18951",
"output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999999",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "888887",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999998",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "40008",
"output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "10691",
"output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "5",
"output": "-1"
},
{
"input": "6",
"output": "-1"
},
{
"input": "9",
"output": "-1"
},
{
"input": "8",
"output": "44"
},
{
"input": "2",
"output": "-1"
},
{
"input": "3",
"output": "-1"
},
{
"input": "999997",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999996",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999990",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999980",
"output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "800000",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "980000",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
}
] | 1,587,709,211
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 186
| 0
|
from sys import stdin , stdout
num = int(stdin.readline())
count7=0
count4=0
while(num>0):
#print(num)
if num >= 7:
num = num - 7
count7+=1
#print(num)
if num < 7:
num = num -4
count4+=1
#print(num)
if num < 0:
stdout.write(str(-1)+"\n")
else:
str1='4'*count4
str2='7'*count7
str3 = str1+str2
stdout.write(str3+"\n")
|
Title: Lucky Sum of Digits
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya wonders eagerly what minimum lucky number has the sum of digits equal to *n*. Help him cope with the task.
Input Specification:
The single line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the sum of digits of the required lucky number.
Output Specification:
Print on the single line the result — the minimum lucky number, whose sum of digits equals *n*. If such number does not exist, print -1.
Demo Input:
['11\n', '10\n']
Demo Output:
['47\n', '-1\n']
Note:
none
|
```python
from sys import stdin , stdout
num = int(stdin.readline())
count7=0
count4=0
while(num>0):
#print(num)
if num >= 7:
num = num - 7
count7+=1
#print(num)
if num < 7:
num = num -4
count4+=1
#print(num)
if num < 0:
stdout.write(str(-1)+"\n")
else:
str1='4'*count4
str2='7'*count7
str3 = str1+str2
stdout.write(str3+"\n")
```
| 0
|
452
|
C
|
Magic Trick
|
PROGRAMMING
| 2,100
|
[
"combinatorics",
"math",
"probabilities"
] | null | null |
Alex enjoys performing magic tricks. He has a trick that requires a deck of *n* cards. He has *m* identical decks of *n* different cards each, which have been mixed together. When Alex wishes to perform the trick, he grabs *n* cards at random and performs the trick with those. The resulting deck looks like a normal deck, but may have duplicates of some cards.
The trick itself is performed as follows: first Alex allows you to choose a random card from the deck. You memorize the card and put it back in the deck. Then Alex shuffles the deck, and pulls out a card. If the card matches the one you memorized, the trick is successful.
You don't think Alex is a very good magician, and that he just pulls a card randomly from the deck. Determine the probability of the trick being successful if this is the case.
|
First line of the input consists of two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000), separated by space — number of cards in each deck, and number of decks.
|
On the only line of the output print one floating point number – probability of Alex successfully performing the trick. Relative or absolute error of your answer should not be higher than 10<=-<=6.
|
[
"2 2\n",
"4 4\n",
"1 2\n"
] |
[
"0.6666666666666666\n",
"0.4000000000000000\n",
"1.0000000000000000\n"
] |
In the first sample, with probability <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/64c94d13eeb330b494061e86538db66574ad0f7d.png" style="max-width: 100.0%;max-height: 100.0%;"/> Alex will perform the trick with two cards with the same value from two different decks. In this case the trick is guaranteed to succeed.
With the remaining <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/14b21b617fcd2e25700376368355f7bbf975d8de.png" style="max-width: 100.0%;max-height: 100.0%;"/> probability he took two different cards, and the probability of pulling off the trick is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb946338365d9781f7d2e9ec692c26702d0ae3a7.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
The resulting probability is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f54a03c9fa9df64ba08161730756d50b780a5f43.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 1,000
|
[
{
"input": "2 2",
"output": "0.6666666666666666"
},
{
"input": "4 4",
"output": "0.4000000000000000"
},
{
"input": "1 2",
"output": "1.0000000000000000"
},
{
"input": "2 1",
"output": "0.5000000000000000"
},
{
"input": "10 10",
"output": "0.1818181818181818"
},
{
"input": "1000 1000",
"output": "0.0019980019980020"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "987 123",
"output": "0.0020170953866492"
},
{
"input": "999 999",
"output": "0.0020000000000000"
},
{
"input": "1 999",
"output": "1.0000000000000000"
},
{
"input": "998 1",
"output": "0.0010020040080160"
},
{
"input": "2 987",
"output": "0.7498732894069944"
},
{
"input": "555 543",
"output": "0.0035970508143694"
},
{
"input": "321 123",
"output": "0.0061956542837219"
},
{
"input": "2 3",
"output": "0.7000000000000000"
},
{
"input": "461 1000",
"output": "0.0043315295751250"
},
{
"input": "678 231",
"output": "0.0029413109179425"
}
] | 1,406,539,095
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 1
| 61
| 0
|
def C(a,b):
return fact(a)/fact(b)/fact(a-b)
def fact(a):
res=1
for i in range(2,a+1):
res*=i
return res
n,m=map(int,input().split())
ans=0
for i in range(m+1):
ans += min((1.0 * i) / n, 1.0) * (C(n, i) / ((n * (m + 1)) / 2));
print(ans)
|
Title: Magic Trick
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Alex enjoys performing magic tricks. He has a trick that requires a deck of *n* cards. He has *m* identical decks of *n* different cards each, which have been mixed together. When Alex wishes to perform the trick, he grabs *n* cards at random and performs the trick with those. The resulting deck looks like a normal deck, but may have duplicates of some cards.
The trick itself is performed as follows: first Alex allows you to choose a random card from the deck. You memorize the card and put it back in the deck. Then Alex shuffles the deck, and pulls out a card. If the card matches the one you memorized, the trick is successful.
You don't think Alex is a very good magician, and that he just pulls a card randomly from the deck. Determine the probability of the trick being successful if this is the case.
Input Specification:
First line of the input consists of two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000), separated by space — number of cards in each deck, and number of decks.
Output Specification:
On the only line of the output print one floating point number – probability of Alex successfully performing the trick. Relative or absolute error of your answer should not be higher than 10<=-<=6.
Demo Input:
['2 2\n', '4 4\n', '1 2\n']
Demo Output:
['0.6666666666666666\n', '0.4000000000000000\n', '1.0000000000000000\n']
Note:
In the first sample, with probability <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/64c94d13eeb330b494061e86538db66574ad0f7d.png" style="max-width: 100.0%;max-height: 100.0%;"/> Alex will perform the trick with two cards with the same value from two different decks. In this case the trick is guaranteed to succeed.
With the remaining <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/14b21b617fcd2e25700376368355f7bbf975d8de.png" style="max-width: 100.0%;max-height: 100.0%;"/> probability he took two different cards, and the probability of pulling off the trick is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb946338365d9781f7d2e9ec692c26702d0ae3a7.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
The resulting probability is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f54a03c9fa9df64ba08161730756d50b780a5f43.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
def C(a,b):
return fact(a)/fact(b)/fact(a-b)
def fact(a):
res=1
for i in range(2,a+1):
res*=i
return res
n,m=map(int,input().split())
ans=0
for i in range(m+1):
ans += min((1.0 * i) / n, 1.0) * (C(n, i) / ((n * (m + 1)) / 2));
print(ans)
```
| 0
|
|
515
|
C
|
Drazil and Factorial
|
PROGRAMMING
| 1,400
|
[
"greedy",
"math",
"sortings"
] | null | null |
Drazil is playing a math game with Varda.
Let's define for positive integer *x* as a product of factorials of its digits. For example, .
First, they choose a decimal number *a* consisting of *n* digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number *x* satisfying following two conditions:
1. *x* doesn't contain neither digit 0 nor digit 1.
2. = .
Help friends find such number.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=15) — the number of digits in *a*.
The second line contains *n* digits of *a*. There is at least one digit in *a* that is larger than 1. Number *a* may possibly contain leading zeroes.
|
Output a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation.
|
[
"4\n1234\n",
"3\n555\n"
] |
[
"33222\n",
"555\n"
] |
In the first case, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f5a4207f23215fddce977ab5ea9e9d2e7578fb52.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 1,000
|
[
{
"input": "4\n1234",
"output": "33222"
},
{
"input": "3\n555",
"output": "555"
},
{
"input": "15\n012345781234578",
"output": "7777553333222222222222"
},
{
"input": "1\n8",
"output": "7222"
},
{
"input": "10\n1413472614",
"output": "75333332222222"
},
{
"input": "8\n68931246",
"output": "77553333332222222"
},
{
"input": "7\n4424368",
"output": "75333332222222222"
},
{
"input": "6\n576825",
"output": "7755532222"
},
{
"input": "5\n97715",
"output": "7775332"
},
{
"input": "3\n915",
"output": "75332"
},
{
"input": "2\n26",
"output": "532"
},
{
"input": "1\n4",
"output": "322"
},
{
"input": "15\n028745260720699",
"output": "7777755533333332222222222"
},
{
"input": "13\n5761790121605",
"output": "7775555333322"
},
{
"input": "10\n3312667105",
"output": "755533332"
},
{
"input": "1\n7",
"output": "7"
},
{
"input": "15\n989898989898989",
"output": "777777777777777333333333333333322222222222222222222222222222"
},
{
"input": "15\n000000000000007",
"output": "7"
},
{
"input": "15\n999999999999990",
"output": "77777777777777333333333333333333333333333322222222222222"
},
{
"input": "1\n2",
"output": "2"
},
{
"input": "1\n3",
"output": "3"
},
{
"input": "1\n4",
"output": "322"
},
{
"input": "1\n5",
"output": "5"
},
{
"input": "1\n6",
"output": "53"
},
{
"input": "1\n7",
"output": "7"
},
{
"input": "1\n9",
"output": "7332"
},
{
"input": "2\n09",
"output": "7332"
},
{
"input": "13\n1337251172966",
"output": "777555333333222"
},
{
"input": "15\n987654329876543",
"output": "777777555533333333332222222222222"
},
{
"input": "9\n234567899",
"output": "777755333333322222222"
},
{
"input": "2\n99",
"output": "77333322"
},
{
"input": "2\n66",
"output": "5533"
},
{
"input": "3\n999",
"output": "777333333222"
},
{
"input": "5\n99999",
"output": "77777333333333322222"
},
{
"input": "9\n123456789",
"output": "77755333332222222"
},
{
"input": "9\n987654321",
"output": "77755333332222222"
},
{
"input": "3\n666",
"output": "555333"
},
{
"input": "2\n26",
"output": "532"
},
{
"input": "6\n555777",
"output": "777555"
},
{
"input": "10\n1234567899",
"output": "777755333333322222222"
},
{
"input": "4\n6666",
"output": "55553333"
},
{
"input": "4\n9754",
"output": "775333222"
},
{
"input": "2\n95",
"output": "75332"
},
{
"input": "14\n11122233344455",
"output": "55333333222222222"
},
{
"input": "12\n836544897832",
"output": "77777553333333222222222222222"
}
] | 1,620,844,890
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 45
| 108
| 20,172,800
|
import sys
import math
input = sys.stdin.readline
def primefactors(n):
l = []
while n % 2 == 0:
l.append(2)
n = n // 2
for i in range(3, int(math.sqrt(n)) + 1, 2):
while n % i == 0:
l.append(i)
n = n // i
if n > 2:
l.append(n)
return l
q = int(input())
n = int(input())
d = {}
s = str(n)
for i in s:
x = int(i)
r = 1
while x > 1:
r = r*x
x -= 1
l = primefactors(r)
for i in l:
if i in d:
d[i] +=1
else:
d[i] = 1
ans = []
e = []
# print(d)
for i in d:
e.append(i)
e.sort(reverse = True)
for i in e:
v = d[i]
for j in range(i-1,1,-1):
h = primefactors(j)
for k in h:
d[k] -= v
while v > 0:
ans.append(i)
v -= 1
w = []
for i in ans:
w.append(str(i))
print("".join(w))
|
Title: Drazil and Factorial
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Drazil is playing a math game with Varda.
Let's define for positive integer *x* as a product of factorials of its digits. For example, .
First, they choose a decimal number *a* consisting of *n* digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number *x* satisfying following two conditions:
1. *x* doesn't contain neither digit 0 nor digit 1.
2. = .
Help friends find such number.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=15) — the number of digits in *a*.
The second line contains *n* digits of *a*. There is at least one digit in *a* that is larger than 1. Number *a* may possibly contain leading zeroes.
Output Specification:
Output a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation.
Demo Input:
['4\n1234\n', '3\n555\n']
Demo Output:
['33222\n', '555\n']
Note:
In the first case, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f5a4207f23215fddce977ab5ea9e9d2e7578fb52.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
import sys
import math
input = sys.stdin.readline
def primefactors(n):
l = []
while n % 2 == 0:
l.append(2)
n = n // 2
for i in range(3, int(math.sqrt(n)) + 1, 2):
while n % i == 0:
l.append(i)
n = n // i
if n > 2:
l.append(n)
return l
q = int(input())
n = int(input())
d = {}
s = str(n)
for i in s:
x = int(i)
r = 1
while x > 1:
r = r*x
x -= 1
l = primefactors(r)
for i in l:
if i in d:
d[i] +=1
else:
d[i] = 1
ans = []
e = []
# print(d)
for i in d:
e.append(i)
e.sort(reverse = True)
for i in e:
v = d[i]
for j in range(i-1,1,-1):
h = primefactors(j)
for k in h:
d[k] -= v
while v > 0:
ans.append(i)
v -= 1
w = []
for i in ans:
w.append(str(i))
print("".join(w))
```
| 3
|
|
199
|
A
|
Hexadecimal's theorem
|
PROGRAMMING
| 900
|
[
"brute force",
"constructive algorithms",
"implementation",
"number theory"
] | null | null |
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.
Let's remember how Fibonacci numbers can be calculated. *F*0<==<=0, *F*1<==<=1, and all the next numbers are *F**i*<==<=*F**i*<=-<=2<=+<=*F**i*<=-<=1.
So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number *n* by three not necessary different Fibonacci numbers or say that it is impossible.
|
The input contains of a single integer *n* (0<=≤<=*n*<=<<=109) — the number that should be represented by the rules described above. It is guaranteed that *n* is a Fibonacci number.
|
Output three required numbers: *a*, *b* and *c*. If there is no answer for the test you have to print "I'm too stupid to solve this problem" without the quotes.
If there are multiple answers, print any of them.
|
[
"3\n",
"13\n"
] |
[
"1 1 1\n",
"2 3 8\n"
] |
none
| 500
|
[
{
"input": "3",
"output": "1 1 1"
},
{
"input": "13",
"output": "2 3 8"
},
{
"input": "0",
"output": "0 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "2",
"output": "1 1 0"
},
{
"input": "1597",
"output": "233 377 987"
},
{
"input": "0",
"output": "0 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "2",
"output": "1 1 0"
},
{
"input": "3",
"output": "1 1 1"
},
{
"input": "5",
"output": "1 1 3"
},
{
"input": "8",
"output": "1 2 5"
},
{
"input": "13",
"output": "2 3 8"
},
{
"input": "21",
"output": "3 5 13"
},
{
"input": "34",
"output": "5 8 21"
},
{
"input": "55",
"output": "8 13 34"
},
{
"input": "89",
"output": "13 21 55"
},
{
"input": "144",
"output": "21 34 89"
},
{
"input": "233",
"output": "34 55 144"
},
{
"input": "377",
"output": "55 89 233"
},
{
"input": "610",
"output": "89 144 377"
},
{
"input": "987",
"output": "144 233 610"
},
{
"input": "1597",
"output": "233 377 987"
},
{
"input": "2584",
"output": "377 610 1597"
},
{
"input": "4181",
"output": "610 987 2584"
},
{
"input": "6765",
"output": "987 1597 4181"
},
{
"input": "10946",
"output": "1597 2584 6765"
},
{
"input": "17711",
"output": "2584 4181 10946"
},
{
"input": "28657",
"output": "4181 6765 17711"
},
{
"input": "46368",
"output": "6765 10946 28657"
},
{
"input": "75025",
"output": "10946 17711 46368"
},
{
"input": "121393",
"output": "17711 28657 75025"
},
{
"input": "196418",
"output": "28657 46368 121393"
},
{
"input": "317811",
"output": "46368 75025 196418"
},
{
"input": "514229",
"output": "75025 121393 317811"
},
{
"input": "832040",
"output": "121393 196418 514229"
},
{
"input": "1346269",
"output": "196418 317811 832040"
},
{
"input": "2178309",
"output": "317811 514229 1346269"
},
{
"input": "3524578",
"output": "514229 832040 2178309"
},
{
"input": "5702887",
"output": "832040 1346269 3524578"
},
{
"input": "9227465",
"output": "1346269 2178309 5702887"
},
{
"input": "14930352",
"output": "2178309 3524578 9227465"
},
{
"input": "24157817",
"output": "3524578 5702887 14930352"
},
{
"input": "39088169",
"output": "5702887 9227465 24157817"
},
{
"input": "63245986",
"output": "9227465 14930352 39088169"
},
{
"input": "102334155",
"output": "14930352 24157817 63245986"
},
{
"input": "165580141",
"output": "24157817 39088169 102334155"
},
{
"input": "267914296",
"output": "39088169 63245986 165580141"
},
{
"input": "433494437",
"output": "63245986 102334155 267914296"
},
{
"input": "701408733",
"output": "102334155 165580141 433494437"
},
{
"input": "701408733",
"output": "102334155 165580141 433494437"
},
{
"input": "102334155",
"output": "14930352 24157817 63245986"
},
{
"input": "63245986",
"output": "9227465 14930352 39088169"
}
] | 1,613,328,322
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 124
| 0
|
print(0,0,int(input()))
|
Title: Hexadecimal's theorem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.
Let's remember how Fibonacci numbers can be calculated. *F*0<==<=0, *F*1<==<=1, and all the next numbers are *F**i*<==<=*F**i*<=-<=2<=+<=*F**i*<=-<=1.
So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number *n* by three not necessary different Fibonacci numbers or say that it is impossible.
Input Specification:
The input contains of a single integer *n* (0<=≤<=*n*<=<<=109) — the number that should be represented by the rules described above. It is guaranteed that *n* is a Fibonacci number.
Output Specification:
Output three required numbers: *a*, *b* and *c*. If there is no answer for the test you have to print "I'm too stupid to solve this problem" without the quotes.
If there are multiple answers, print any of them.
Demo Input:
['3\n', '13\n']
Demo Output:
['1 1 1\n', '2 3 8\n']
Note:
none
|
```python
print(0,0,int(input()))
```
| 3
|
|
834
|
A
|
The Useless Toy
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Walking through the streets of Marshmallow City, Slastyona have spotted some merchants selling a kind of useless toy which is very popular nowadays – caramel spinner! Wanting to join the craze, she has immediately bought the strange contraption.
Spinners in Sweetland have the form of V-shaped pieces of caramel. Each spinner can, well, spin around an invisible magic axis. At a specific point in time, a spinner can take 4 positions shown below (each one rotated 90 degrees relative to the previous, with the fourth one followed by the first one):
After the spinner was spun, it starts its rotation, which is described by a following algorithm: the spinner maintains its position for a second then majestically switches to the next position in clockwise or counter-clockwise order, depending on the direction the spinner was spun in.
Slastyona managed to have spinner rotating for exactly *n* seconds. Being fascinated by elegance of the process, she completely forgot the direction the spinner was spun in! Lucky for her, she managed to recall the starting position, and wants to deduct the direction given the information she knows. Help her do this.
|
There are two characters in the first string – the starting and the ending position of a spinner. The position is encoded with one of the following characters: v (ASCII code 118, lowercase v), < (ASCII code 60), ^ (ASCII code 94) or > (ASCII code 62) (see the picture above for reference). Characters are separated by a single space.
In the second strings, a single number *n* is given (0<=≤<=*n*<=≤<=109) – the duration of the rotation.
It is guaranteed that the ending position of a spinner is a result of a *n* second spin in any of the directions, assuming the given starting position.
|
Output cw, if the direction is clockwise, ccw – if counter-clockwise, and undefined otherwise.
|
[
"^ >\n1\n",
"< ^\n3\n",
"^ v\n6\n"
] |
[
"cw\n",
"ccw\n",
"undefined\n"
] |
none
| 500
|
[
{
"input": "^ >\n1",
"output": "cw"
},
{
"input": "< ^\n3",
"output": "ccw"
},
{
"input": "^ v\n6",
"output": "undefined"
},
{
"input": "^ >\n999999999",
"output": "ccw"
},
{
"input": "> v\n1",
"output": "cw"
},
{
"input": "v <\n1",
"output": "cw"
},
{
"input": "< ^\n1",
"output": "cw"
},
{
"input": "v <\n422435957",
"output": "cw"
},
{
"input": "v >\n139018901",
"output": "ccw"
},
{
"input": "v ^\n571728018",
"output": "undefined"
},
{
"input": "^ ^\n0",
"output": "undefined"
},
{
"input": "< >\n2",
"output": "undefined"
},
{
"input": "> >\n1000000000",
"output": "undefined"
},
{
"input": "v v\n8",
"output": "undefined"
},
{
"input": "< <\n1568",
"output": "undefined"
},
{
"input": "^ v\n2",
"output": "undefined"
},
{
"input": "^ <\n1",
"output": "ccw"
},
{
"input": "< v\n1",
"output": "ccw"
},
{
"input": "v >\n1",
"output": "ccw"
},
{
"input": "> ^\n1",
"output": "ccw"
},
{
"input": "v <\n422435957",
"output": "cw"
},
{
"input": "v v\n927162384",
"output": "undefined"
},
{
"input": "v ^\n571728018",
"output": "undefined"
},
{
"input": "^ <\n467441155",
"output": "cw"
},
{
"input": "^ >\n822875521",
"output": "cw"
},
{
"input": "^ <\n821690113",
"output": "ccw"
},
{
"input": "^ <\n171288453",
"output": "ccw"
},
{
"input": "^ <\n110821381",
"output": "ccw"
},
{
"input": "^ ^\n539580280",
"output": "undefined"
},
{
"input": "^ >\n861895563",
"output": "ccw"
},
{
"input": "v v\n4",
"output": "undefined"
},
{
"input": "^ ^\n4",
"output": "undefined"
},
{
"input": "> >\n4",
"output": "undefined"
},
{
"input": "< <\n8",
"output": "undefined"
},
{
"input": "v v\n0",
"output": "undefined"
},
{
"input": "^ <\n11",
"output": "cw"
},
{
"input": "< <\n4",
"output": "undefined"
},
{
"input": "< <\n0",
"output": "undefined"
},
{
"input": "< v\n3",
"output": "cw"
},
{
"input": "^ <\n3",
"output": "cw"
},
{
"input": "^ <\n7",
"output": "cw"
},
{
"input": "< >\n6",
"output": "undefined"
},
{
"input": "v >\n3",
"output": "cw"
},
{
"input": "> >\n300",
"output": "undefined"
},
{
"input": "> >\n0",
"output": "undefined"
},
{
"input": "v <\n3",
"output": "ccw"
},
{
"input": "> >\n12",
"output": "undefined"
}
] | 1,603,438,185
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 77
| 0
|
dirs = ['v','<','^','>']
a,b = map(dirs.index(), input().split())
k = (b-a+4)%4
n = int(input())
if k==0 or k==2:
print('undefined')
elif k==n%4:
print('cw')
else:
print('ccw')
|
Title: The Useless Toy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Walking through the streets of Marshmallow City, Slastyona have spotted some merchants selling a kind of useless toy which is very popular nowadays – caramel spinner! Wanting to join the craze, she has immediately bought the strange contraption.
Spinners in Sweetland have the form of V-shaped pieces of caramel. Each spinner can, well, spin around an invisible magic axis. At a specific point in time, a spinner can take 4 positions shown below (each one rotated 90 degrees relative to the previous, with the fourth one followed by the first one):
After the spinner was spun, it starts its rotation, which is described by a following algorithm: the spinner maintains its position for a second then majestically switches to the next position in clockwise or counter-clockwise order, depending on the direction the spinner was spun in.
Slastyona managed to have spinner rotating for exactly *n* seconds. Being fascinated by elegance of the process, she completely forgot the direction the spinner was spun in! Lucky for her, she managed to recall the starting position, and wants to deduct the direction given the information she knows. Help her do this.
Input Specification:
There are two characters in the first string – the starting and the ending position of a spinner. The position is encoded with one of the following characters: v (ASCII code 118, lowercase v), < (ASCII code 60), ^ (ASCII code 94) or > (ASCII code 62) (see the picture above for reference). Characters are separated by a single space.
In the second strings, a single number *n* is given (0<=≤<=*n*<=≤<=109) – the duration of the rotation.
It is guaranteed that the ending position of a spinner is a result of a *n* second spin in any of the directions, assuming the given starting position.
Output Specification:
Output cw, if the direction is clockwise, ccw – if counter-clockwise, and undefined otherwise.
Demo Input:
['^ >\n1\n', '< ^\n3\n', '^ v\n6\n']
Demo Output:
['cw\n', 'ccw\n', 'undefined\n']
Note:
none
|
```python
dirs = ['v','<','^','>']
a,b = map(dirs.index(), input().split())
k = (b-a+4)%4
n = int(input())
if k==0 or k==2:
print('undefined')
elif k==n%4:
print('cw')
else:
print('ccw')
```
| -1
|
|
371
|
A
|
K-Periodic Array
|
PROGRAMMING
| 1,000
|
[
"greedy",
"implementation",
"math"
] | null | null |
This task will exclusively concentrate only on the arrays where all elements equal 1 and/or 2.
Array *a* is *k*-period if its length is divisible by *k* and there is such array *b* of length *k*, that *a* is represented by array *b* written exactly times consecutively. In other words, array *a* is *k*-periodic, if it has period of length *k*.
For example, any array is *n*-periodic, where *n* is the array length. Array [2,<=1,<=2,<=1,<=2,<=1] is at the same time 2-periodic and 6-periodic and array [1,<=2,<=1,<=1,<=2,<=1,<=1,<=2,<=1] is at the same time 3-periodic and 9-periodic.
For the given array *a*, consisting only of numbers one and two, find the minimum number of elements to change to make the array *k*-periodic. If the array already is *k*-periodic, then the required value equals 0.
|
The first line of the input contains a pair of integers *n*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100), where *n* is the length of the array and the value *n* is divisible by *k*. The second line contains the sequence of elements of the given array *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2), *a**i* is the *i*-th element of the array.
|
Print the minimum number of array elements we need to change to make the array *k*-periodic. If the array already is *k*-periodic, then print 0.
|
[
"6 2\n2 1 2 2 2 1\n",
"8 4\n1 1 2 1 1 1 2 1\n",
"9 3\n2 1 1 1 2 1 1 1 2\n"
] |
[
"1\n",
"0\n",
"3\n"
] |
In the first sample it is enough to change the fourth element from 2 to 1, then the array changes to [2, 1, 2, 1, 2, 1].
In the second sample, the given array already is 4-periodic.
In the third sample it is enough to replace each occurrence of number two by number one. In this case the array will look as [1, 1, 1, 1, 1, 1, 1, 1, 1] — this array is simultaneously 1-, 3- and 9-periodic.
| 500
|
[
{
"input": "6 2\n2 1 2 2 2 1",
"output": "1"
},
{
"input": "8 4\n1 1 2 1 1 1 2 1",
"output": "0"
},
{
"input": "9 3\n2 1 1 1 2 1 1 1 2",
"output": "3"
},
{
"input": "1 1\n2",
"output": "0"
},
{
"input": "2 1\n1 1",
"output": "0"
},
{
"input": "2 2\n2 2",
"output": "0"
},
{
"input": "100 1\n1 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2",
"output": "8"
},
{
"input": "2 1\n1 2",
"output": "1"
},
{
"input": "2 2\n2 1",
"output": "0"
},
{
"input": "3 1\n2 1 2",
"output": "1"
},
{
"input": "3 3\n1 2 1",
"output": "0"
},
{
"input": "4 2\n2 1 2 2",
"output": "1"
},
{
"input": "10 2\n2 2 2 1 1 2 2 2 2 1",
"output": "3"
},
{
"input": "10 5\n2 2 1 2 1 1 2 1 1 1",
"output": "2"
},
{
"input": "20 4\n2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2",
"output": "0"
},
{
"input": "20 5\n2 2 1 1 1 2 1 1 1 1 2 2 1 1 2 2 2 1 1 2",
"output": "3"
},
{
"input": "20 10\n1 2 2 2 2 1 1 1 2 1 1 2 2 2 2 1 2 2 2 1",
"output": "2"
},
{
"input": "100 2\n2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2",
"output": "5"
},
{
"input": "100 4\n1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 2 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 2 1 1 1 2 1 2 1 2 1 1 1 2 1 1 1 2 1 1",
"output": "8"
},
{
"input": "100 5\n2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 1 2 2 2 1 1 2 1 2 2 2 2 2 2 2 1 2 2 2",
"output": "16"
},
{
"input": "100 10\n2 1 1 1 1 2 2 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 1 1 1 2 2 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 1 1 1 2 1 2 2 1 2 1 1 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 1 1 2 2 1 2 1 1",
"output": "6"
},
{
"input": "100 20\n2 2 2 1 1 2 1 2 1 2 1 1 2 2 2 2 2 1 2 1 2 2 2 2 1 2 1 2 1 1 1 1 2 2 2 2 1 2 1 1 2 2 2 2 1 2 1 2 1 2 1 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 1 2 1 1 1 1 2 2 2 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 2 2 1 1 1",
"output": "13"
},
{
"input": "100 25\n2 2 1 2 2 2 2 2 1 2 2 1 2 1 1 2 1 2 1 2 2 2 1 2 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1 1 2 2 2 1 2 2 1 2 2 2 2 1 1 2 1 2 2 1 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 2 1 1 2 2 2 2 2 1 2 2 1 1 2 1 2 2 2 1 2 2 2 2 2 2",
"output": "15"
},
{
"input": "100 10\n2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1",
"output": "0"
}
] | 1,658,682,431
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 24
| 77
| 0
|
I=lambda:map(int,input().split())
n,k=I()
a=[0]*n
i=0
for v in I():a[i]+=v-1;i=(i+1)%k
print(sum(map(lambda x:min(x,n//k-x),a)))
|
Title: K-Periodic Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This task will exclusively concentrate only on the arrays where all elements equal 1 and/or 2.
Array *a* is *k*-period if its length is divisible by *k* and there is such array *b* of length *k*, that *a* is represented by array *b* written exactly times consecutively. In other words, array *a* is *k*-periodic, if it has period of length *k*.
For example, any array is *n*-periodic, where *n* is the array length. Array [2,<=1,<=2,<=1,<=2,<=1] is at the same time 2-periodic and 6-periodic and array [1,<=2,<=1,<=1,<=2,<=1,<=1,<=2,<=1] is at the same time 3-periodic and 9-periodic.
For the given array *a*, consisting only of numbers one and two, find the minimum number of elements to change to make the array *k*-periodic. If the array already is *k*-periodic, then the required value equals 0.
Input Specification:
The first line of the input contains a pair of integers *n*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100), where *n* is the length of the array and the value *n* is divisible by *k*. The second line contains the sequence of elements of the given array *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2), *a**i* is the *i*-th element of the array.
Output Specification:
Print the minimum number of array elements we need to change to make the array *k*-periodic. If the array already is *k*-periodic, then print 0.
Demo Input:
['6 2\n2 1 2 2 2 1\n', '8 4\n1 1 2 1 1 1 2 1\n', '9 3\n2 1 1 1 2 1 1 1 2\n']
Demo Output:
['1\n', '0\n', '3\n']
Note:
In the first sample it is enough to change the fourth element from 2 to 1, then the array changes to [2, 1, 2, 1, 2, 1].
In the second sample, the given array already is 4-periodic.
In the third sample it is enough to replace each occurrence of number two by number one. In this case the array will look as [1, 1, 1, 1, 1, 1, 1, 1, 1] — this array is simultaneously 1-, 3- and 9-periodic.
|
```python
I=lambda:map(int,input().split())
n,k=I()
a=[0]*n
i=0
for v in I():a[i]+=v-1;i=(i+1)%k
print(sum(map(lambda x:min(x,n//k-x),a)))
```
| 3
|
|
219
|
A
|
k-String
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] | null | null |
A string is called a *k*-string if it can be represented as *k* concatenated copies of some string. For example, the string "aabaabaabaab" is at the same time a 1-string, a 2-string and a 4-string, but it is not a 3-string, a 5-string, or a 6-string and so on. Obviously any string is a 1-string.
You are given a string *s*, consisting of lowercase English letters and a positive integer *k*. Your task is to reorder the letters in the string *s* in such a way that the resulting string is a *k*-string.
|
The first input line contains integer *k* (1<=≤<=*k*<=≤<=1000). The second line contains *s*, all characters in *s* are lowercase English letters. The string length *s* satisfies the inequality 1<=≤<=|*s*|<=≤<=1000, where |*s*| is the length of string *s*.
|
Rearrange the letters in string *s* in such a way that the result is a *k*-string. Print the result on a single output line. If there are multiple solutions, print any of them.
If the solution doesn't exist, print "-1" (without quotes).
|
[
"2\naazz\n",
"3\nabcabcabz\n"
] |
[
"azaz\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "2\naazz",
"output": "azaz"
},
{
"input": "3\nabcabcabz",
"output": "-1"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "2\nabba",
"output": "abab"
},
{
"input": "2\naaab",
"output": "-1"
},
{
"input": "7\nabacaba",
"output": "-1"
},
{
"input": "5\naaaaa",
"output": "aaaaa"
},
{
"input": "3\naabaaaaabb",
"output": "-1"
},
{
"input": "2\naaab",
"output": "-1"
},
{
"input": "2\nbabac",
"output": "-1"
},
{
"input": "3\nbbbccc",
"output": "bcbcbc"
},
{
"input": "2\naa",
"output": "aa"
},
{
"input": "250\ncececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececece",
"output": "cececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececece"
},
{
"input": "15\nabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaa",
"output": "aaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbc"
},
{
"input": "1\naaa",
"output": "aaa"
},
{
"input": "1\naabaab",
"output": "aaaabb"
},
{
"input": "2\naabbbbccccccdddddddd",
"output": "abbcccddddabbcccdddd"
},
{
"input": "3\naaaaaaaaacccdddddd",
"output": "aaacddaaacddaaacdd"
},
{
"input": "3\naaaaaaaaacccbbbbbb",
"output": "aaabbcaaabbcaaabbc"
},
{
"input": "2\naazzzz",
"output": "azzazz"
},
{
"input": "2\naaaa",
"output": "aaaa"
},
{
"input": "2\naaaazz",
"output": "aazaaz"
},
{
"input": "2\naaaabb",
"output": "aabaab"
},
{
"input": "2\naabbbb",
"output": "abbabb"
},
{
"input": "2\naaaazzzz",
"output": "aazzaazz"
},
{
"input": "2\naaazz",
"output": "-1"
},
{
"input": "2\nbbbbaa",
"output": "abbabb"
},
{
"input": "2\naaaaaabbbb",
"output": "aaabbaaabb"
},
{
"input": "2\naaaaaazz",
"output": "aaazaaaz"
},
{
"input": "2\naaaabbbb",
"output": "aabbaabb"
},
{
"input": "2\naabaab",
"output": "aabaab"
},
{
"input": "1\naaaaa",
"output": "aaaaa"
},
{
"input": "2\nbbaaaa",
"output": "aabaab"
},
{
"input": "2\nacaccc",
"output": "accacc"
}
] | 1,672,318,703
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 6
| 92
| 0
|
from sys import exit
n=int(input())
s=input()
z=list(s)
if len(s)%n!=0:
print (-1)
exit()
o=sorted(z)
f=[o.count(o[0])]
a=[]
for i in o:
if i not in a:
a.append(i)
if o.count(i)!=f[0]:
print( -1)
exit()
p=''
x=int(o.count(a[0])/n)
for i in range(len(a)):
p=p+str(a[i])*x
p=p*int(len(s)/(n))
print(p)
#print(a)
|
Title: k-String
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A string is called a *k*-string if it can be represented as *k* concatenated copies of some string. For example, the string "aabaabaabaab" is at the same time a 1-string, a 2-string and a 4-string, but it is not a 3-string, a 5-string, or a 6-string and so on. Obviously any string is a 1-string.
You are given a string *s*, consisting of lowercase English letters and a positive integer *k*. Your task is to reorder the letters in the string *s* in such a way that the resulting string is a *k*-string.
Input Specification:
The first input line contains integer *k* (1<=≤<=*k*<=≤<=1000). The second line contains *s*, all characters in *s* are lowercase English letters. The string length *s* satisfies the inequality 1<=≤<=|*s*|<=≤<=1000, where |*s*| is the length of string *s*.
Output Specification:
Rearrange the letters in string *s* in such a way that the result is a *k*-string. Print the result on a single output line. If there are multiple solutions, print any of them.
If the solution doesn't exist, print "-1" (without quotes).
Demo Input:
['2\naazz\n', '3\nabcabcabz\n']
Demo Output:
['azaz\n', '-1\n']
Note:
none
|
```python
from sys import exit
n=int(input())
s=input()
z=list(s)
if len(s)%n!=0:
print (-1)
exit()
o=sorted(z)
f=[o.count(o[0])]
a=[]
for i in o:
if i not in a:
a.append(i)
if o.count(i)!=f[0]:
print( -1)
exit()
p=''
x=int(o.count(a[0])/n)
for i in range(len(a)):
p=p+str(a[i])*x
p=p*int(len(s)/(n))
print(p)
#print(a)
```
| 0
|
|
235
|
A
|
LCM Challenge
|
PROGRAMMING
| 1,600
|
[
"number theory"
] | null | null |
Some days ago, I learned the concept of LCM (least common multiple). I've played with it for several times and I want to make a big number with it.
But I also don't want to use many numbers, so I'll choose three positive integers (they don't have to be distinct) which are not greater than *n*. Can you help me to find the maximum possible least common multiple of these three integers?
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the *n* mentioned in the statement.
|
Print a single integer — the maximum possible LCM of three not necessarily distinct positive integers that are not greater than *n*.
|
[
"9\n",
"7\n"
] |
[
"504\n",
"210\n"
] |
The least common multiple of some positive integers is the least positive integer which is multiple for each of them.
The result may become very large, 32-bit integer won't be enough. So using 64-bit integers is recommended.
For the last example, we can chose numbers 7, 6, 5 and the LCM of them is 7·6·5 = 210. It is the maximum value we can get.
| 500
|
[
{
"input": "9",
"output": "504"
},
{
"input": "7",
"output": "210"
},
{
"input": "1",
"output": "1"
},
{
"input": "5",
"output": "60"
},
{
"input": "6",
"output": "60"
},
{
"input": "33",
"output": "32736"
},
{
"input": "21",
"output": "7980"
},
{
"input": "2",
"output": "2"
},
{
"input": "41",
"output": "63960"
},
{
"input": "29",
"output": "21924"
},
{
"input": "117",
"output": "1560780"
},
{
"input": "149",
"output": "3241644"
},
{
"input": "733",
"output": "392222436"
},
{
"input": "925",
"output": "788888100"
},
{
"input": "509",
"output": "131096004"
},
{
"input": "829",
"output": "567662724"
},
{
"input": "117",
"output": "1560780"
},
{
"input": "605",
"output": "220348260"
},
{
"input": "245",
"output": "14526540"
},
{
"input": "925",
"output": "788888100"
},
{
"input": "213",
"output": "9527916"
},
{
"input": "53",
"output": "140556"
},
{
"input": "341",
"output": "39303660"
},
{
"input": "21",
"output": "7980"
},
{
"input": "605",
"output": "220348260"
},
{
"input": "149",
"output": "3241644"
},
{
"input": "733",
"output": "392222436"
},
{
"input": "117",
"output": "1560780"
},
{
"input": "53",
"output": "140556"
},
{
"input": "245",
"output": "14526540"
},
{
"input": "829",
"output": "567662724"
},
{
"input": "924",
"output": "783776526"
},
{
"input": "508",
"output": "130065780"
},
{
"input": "700",
"output": "341042100"
},
{
"input": "636",
"output": "254839470"
},
{
"input": "20",
"output": "6460"
},
{
"input": "604",
"output": "218891412"
},
{
"input": "796",
"output": "501826260"
},
{
"input": "732",
"output": "389016270"
},
{
"input": "412",
"output": "69256788"
},
{
"input": "700",
"output": "341042100"
},
{
"input": "244",
"output": "14289372"
},
{
"input": "828",
"output": "563559150"
},
{
"input": "508",
"output": "130065780"
},
{
"input": "796",
"output": "501826260"
},
{
"input": "636",
"output": "254839470"
},
{
"input": "924",
"output": "783776526"
},
{
"input": "245",
"output": "14526540"
},
{
"input": "828",
"output": "563559150"
},
{
"input": "21",
"output": "7980"
},
{
"input": "605",
"output": "220348260"
},
{
"input": "636",
"output": "254839470"
},
{
"input": "924",
"output": "783776526"
},
{
"input": "116",
"output": "1507420"
},
{
"input": "700",
"output": "341042100"
},
{
"input": "732",
"output": "389016270"
},
{
"input": "20",
"output": "6460"
},
{
"input": "508",
"output": "130065780"
},
{
"input": "148",
"output": "3154620"
},
{
"input": "828",
"output": "563559150"
},
{
"input": "763116",
"output": "444394078546562430"
},
{
"input": "756604",
"output": "433115377058855412"
},
{
"input": "447244",
"output": "89460162932862372"
},
{
"input": "372636",
"output": "51742503205363470"
},
{
"input": "546924",
"output": "163597318076822526"
},
{
"input": "540412",
"output": "157823524476316788"
},
{
"input": "714700",
"output": "365063922340784100"
},
{
"input": "520731",
"output": "141201007712496270"
},
{
"input": "695019",
"output": "335728459024850814"
},
{
"input": "688507",
"output": "326379736779169710"
},
{
"input": "862795",
"output": "642275489615199390"
},
{
"input": "668827",
"output": "299184742915995150"
},
{
"input": "810411",
"output": "532248411551110590"
},
{
"input": "836603",
"output": "585540171302562606"
},
{
"input": "978187",
"output": "935975171582120670"
},
{
"input": "816923",
"output": "545182335484592526"
},
{
"input": "958507",
"output": "880611813728059710"
},
{
"input": "984699",
"output": "954792870629291694"
},
{
"input": "642635",
"output": "265393998349453470"
},
{
"input": "296604",
"output": "26092892528622606"
},
{
"input": "1000000",
"output": "999996000003000000"
},
{
"input": "8",
"output": "280"
},
{
"input": "3",
"output": "6"
},
{
"input": "4",
"output": "12"
},
{
"input": "30",
"output": "21924"
},
{
"input": "18",
"output": "4080"
},
{
"input": "12",
"output": "990"
}
] | 1,619,598,646
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 2
| 218
| 0
|
from math import gcd
def lcm(a,b):
return (a*b)//gcd(a,b)
n=int(input())
print(lcm(lcm(n,n-1),n-2))
|
Title: LCM Challenge
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Some days ago, I learned the concept of LCM (least common multiple). I've played with it for several times and I want to make a big number with it.
But I also don't want to use many numbers, so I'll choose three positive integers (they don't have to be distinct) which are not greater than *n*. Can you help me to find the maximum possible least common multiple of these three integers?
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the *n* mentioned in the statement.
Output Specification:
Print a single integer — the maximum possible LCM of three not necessarily distinct positive integers that are not greater than *n*.
Demo Input:
['9\n', '7\n']
Demo Output:
['504\n', '210\n']
Note:
The least common multiple of some positive integers is the least positive integer which is multiple for each of them.
The result may become very large, 32-bit integer won't be enough. So using 64-bit integers is recommended.
For the last example, we can chose numbers 7, 6, 5 and the LCM of them is 7·6·5 = 210. It is the maximum value we can get.
|
```python
from math import gcd
def lcm(a,b):
return (a*b)//gcd(a,b)
n=int(input())
print(lcm(lcm(n,n-1),n-2))
```
| 0
|
|
305
|
C
|
Ivan and Powers of Two
|
PROGRAMMING
| 1,600
|
[
"greedy",
"implementation"
] | null | null |
Ivan has got an array of *n* non-negative integers *a*1,<=*a*2,<=...,<=*a**n*. Ivan knows that the array is sorted in the non-decreasing order.
Ivan wrote out integers 2*a*1,<=2*a*2,<=...,<=2*a**n* on a piece of paper. Now he wonders, what minimum number of integers of form 2*b* (*b*<=≥<=0) need to be added to the piece of paper so that the sum of all integers written on the paper equalled 2*v*<=-<=1 for some integer *v* (*v*<=≥<=0).
Help Ivan, find the required quantity of numbers.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The second input line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=2·109). It is guaranteed that *a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n*.
|
Print a single integer — the answer to the problem.
|
[
"4\n0 1 1 1\n",
"1\n3\n"
] |
[
"0\n",
"3\n"
] |
In the first sample you do not need to add anything, the sum of numbers already equals 2<sup class="upper-index">3</sup> - 1 = 7.
In the second sample you need to add numbers 2<sup class="upper-index">0</sup>, 2<sup class="upper-index">1</sup>, 2<sup class="upper-index">2</sup>.
| 1,500
|
[
{
"input": "4\n0 1 1 1",
"output": "0"
},
{
"input": "1\n3",
"output": "3"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "1\n2000000000",
"output": "2000000000"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "26\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2",
"output": "5"
}
] | 1,554,170,524
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 2
| 500
| 6,656,000
|
n = int(input())
ant = 0
v = input().split()
s = 0
for i in v:
s += 2**int(i)
s = bin(s)
s = list((s))[2:]
resp = 0
for i in s:
if(i == '0'):
resp+=1
print(resp)
|
Title: Ivan and Powers of Two
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ivan has got an array of *n* non-negative integers *a*1,<=*a*2,<=...,<=*a**n*. Ivan knows that the array is sorted in the non-decreasing order.
Ivan wrote out integers 2*a*1,<=2*a*2,<=...,<=2*a**n* on a piece of paper. Now he wonders, what minimum number of integers of form 2*b* (*b*<=≥<=0) need to be added to the piece of paper so that the sum of all integers written on the paper equalled 2*v*<=-<=1 for some integer *v* (*v*<=≥<=0).
Help Ivan, find the required quantity of numbers.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The second input line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=2·109). It is guaranteed that *a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n*.
Output Specification:
Print a single integer — the answer to the problem.
Demo Input:
['4\n0 1 1 1\n', '1\n3\n']
Demo Output:
['0\n', '3\n']
Note:
In the first sample you do not need to add anything, the sum of numbers already equals 2<sup class="upper-index">3</sup> - 1 = 7.
In the second sample you need to add numbers 2<sup class="upper-index">0</sup>, 2<sup class="upper-index">1</sup>, 2<sup class="upper-index">2</sup>.
|
```python
n = int(input())
ant = 0
v = input().split()
s = 0
for i in v:
s += 2**int(i)
s = bin(s)
s = list((s))[2:]
resp = 0
for i in s:
if(i == '0'):
resp+=1
print(resp)
```
| 0
|
|
331
|
D1
|
Escaping on Beaveractor
|
PROGRAMMING
| 2,400
|
[
"dfs and similar",
"implementation"
] | null | null |
Don't put up with what you're sick of! The Smart Beaver decided to escape from the campus of Beaver Science Academy (BSA). BSA is a *b*<=×<=*b* square on a plane. Each point *x*,<=*y* (0<=≤<=*x*,<=*y*<=≤<=*b*) belongs to BSA. To make the path quick and funny, the Beaver constructed a Beaveractor, an effective and comfortable types of transport.
The campus obeys traffic rules: there are *n* arrows, parallel to the coordinate axes. The arrows do not intersect and do not touch each other. When the Beaveractor reaches some arrow, it turns in the arrow's direction and moves on until it either reaches the next arrow or gets outside the campus. The Beaveractor covers exactly one unit of space per one unit of time. You can assume that there are no obstacles to the Beaveractor.
The BSA scientists want to transport the brand new Beaveractor to the "Academic Tractor" research institute and send the Smart Beaver to do his postgraduate studies and sharpen pencils. They have *q* plans, representing the Beaveractor's initial position (*x**i*,<=*y**i*), the initial motion vector *w**i* and the time *t**i* that have passed after the escape started.
Your task is for each of the *q* plans to determine the Smart Beaver's position after the given time.
|
The first line contains two integers: the number of traffic rules *n* and the size of the campus *b*, 0<=≤<=*n*, 1<=≤<=*b*. Next *n* lines contain the rules. Each line of the rules contains four space-separated integers *x*0, *y*0, *x*1, *y*1 — the beginning and the end of the arrow. It is guaranteed that all arrows are parallel to the coordinate axes and have no common points. All arrows are located inside the campus, that is, 0<=≤<=*x*0,<=*y*0,<=*x*1,<=*y*1<=≤<=*b* holds.
Next line contains integer *q* — the number of plans the scientists have, 1<=≤<=*q*<=≤<=105. The *i*-th plan is represented by two integers, *x**i*, *y**i* are the Beaveractor's coordinates at the initial time, 0<=≤<=*x**i*,<=*y**i*<=≤<=*b*, character *w**i*, that takes value U, D, L, R and sets the initial direction up, down, to the left or to the right correspondingly (the Y axis is directed upwards), and *t**i* — the time passed after the escape started, 0<=≤<=*t**i*<=≤<=1015.
- to get 30 points you need to solve the problem with constraints *n*,<=*b*<=≤<=30 (subproblem D1); - to get 60 points you need to solve the problem with constraints *n*,<=*b*<=≤<=1000 (subproblems D1+D2); - to get 100 points you need to solve the problem with constraints *n*,<=*b*<=≤<=105 (subproblems D1+D2+D3).
|
Print *q* lines. Each line should contain two integers — the Beaveractor's coordinates at the final moment of time for each plan. If the Smart Beaver manages to leave the campus in time *t**i*, print the coordinates of the last point in the campus he visited.
|
[
"3 3\n0 0 0 1\n0 2 2 2\n3 3 2 3\n12\n0 0 L 0\n0 0 L 1\n0 0 L 2\n0 0 L 3\n0 0 L 4\n0 0 L 5\n0 0 L 6\n2 0 U 2\n2 0 U 3\n3 0 U 5\n1 3 D 2\n1 3 R 2\n"
] |
[
"0 0\n0 1\n0 2\n1 2\n2 2\n3 2\n3 2\n2 2\n3 2\n1 3\n2 2\n1 3\n"
] |
none
| 30
|
[] | 1,680,714,189
| 189
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS1
| 5
| 3,462
| 62,771,200
|
"""Railway construction
Recursive algorithm
"""
import logging
from functools import lru_cache, partial
from typing import Dict, List, Literal, Optional, Tuple
DirectionType = Literal["U", "D", "L", "R"]
PositionType = Tuple[int, int]
RuleType = Tuple[PositionType, PositionType]
PlanType = Tuple[PositionType, str, int]
ArrowMapType = Dict[PositionType, DirectionType]
def __get_direction_change_position(x1, y1, x2, y2) -> DirectionType:
if x1 > x2:
return "L"
elif x1 < x2:
return "R"
elif y1 > y2:
return "D"
elif y1 < y2:
return "U"
else:
raise NotImplemented
def __make_arrows(rules: List[RuleType]) -> Dict[PositionType, DirectionType]:
arrow_map: ArrowMapType = dict()
for rule in rules:
direction = __get_direction_change_position(*rule[0], *rule[1])
x_start, x_end = (
min(rule[0][0], rule[1][0]),
max(rule[0][0], rule[1][0]) + 1,
)
for x in range(x_start, x_end):
y_start, y_end = (
min(rule[0][1], rule[1][1]),
max(rule[0][1], rule[1][1]) + 1,
)
for y in range(y_start, y_end):
arrow_map[tuple((x, y))] = direction
return arrow_map
def __in() -> Tuple[
int,
List[RuleType],
List[PlanType],
]:
n, b = map(int, input().split())
rules_raw = [input().split() for _ in range(n)]
rules = [
(
(int(rule_raw[0]), int(rule_raw[1])),
(int(rule_raw[2]), int(rule_raw[3])),
)
for rule_raw in rules_raw
]
plans_raw = [input().split() for _ in range(int(input()))]
plans_ = [
(
(int(plan_raw[0]), int(plan_raw[1])),
plan_raw[2],
int(plan_raw[3]),
)
for plan_raw in plans_raw
]
return (
b,
rules,
plans_,
)
def __get_step(
current: PositionType,
direction: DirectionType,
arrows: ArrowMapType,
) -> Tuple[PositionType, DirectionType]:
if current in arrows.keys():
direction = arrows[current]
if direction == "U":
new_position = (current[0], current[1] + 1)
elif direction == "D":
new_position = (current[0], current[1] - 1)
elif direction == "L":
new_position = (current[0] - 1, current[1])
elif direction == "R":
new_position = (current[0] + 1, current[1])
else:
raise NotImplemented
if new_position in arrows.keys():
direction = arrows[new_position]
return (
new_position,
direction,
)
@lru_cache(typed=True)
def __check_on_limit(
current: PositionType,
max_position: int,
) -> Optional[PositionType]:
if current[0] < 0:
return 0, current[1]
elif current[0] > max_position:
return max_position, current[1]
elif current[1] < 0:
return current[0], 0
elif current[1] > max_position:
return current[0], max_position
if __name__ == "__main__":
b_: int
rules_: List[RuleType]
plans: List[PlanType]
b_, rules_, plans = __in()
map_arrows_ = __make_arrows(rules_)
__get_step_for_existing_map = lru_cache(typed=True)(
partial(__get_step, arrows=map_arrows_),
)
for plan in plans:
latest_position, direction_, = (
plan[0],
plan[1],
)
already_been = list((latest_position,))
for current_step in range(0, plan[2]):
latest_position, direction_ = __get_step_for_existing_map(
latest_position,
direction_,
)
if latest_position in already_been:
trash = already_been.index(latest_position)
already_been = already_been[trash:]
latest_position = already_been[
(plan[2] - trash) % len(already_been)
]
logging.debug(
latest_position,
already_been,
plan[2] % len(already_been),
plan[2],
len(already_been),
current_step,
)
break
elif len(already_been) < 1000:
already_been.append(latest_position)
position = __check_on_limit(latest_position, b_)
if position is not None:
latest_position = position
break
print(*latest_position)
|
Title: Escaping on Beaveractor
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Don't put up with what you're sick of! The Smart Beaver decided to escape from the campus of Beaver Science Academy (BSA). BSA is a *b*<=×<=*b* square on a plane. Each point *x*,<=*y* (0<=≤<=*x*,<=*y*<=≤<=*b*) belongs to BSA. To make the path quick and funny, the Beaver constructed a Beaveractor, an effective and comfortable types of transport.
The campus obeys traffic rules: there are *n* arrows, parallel to the coordinate axes. The arrows do not intersect and do not touch each other. When the Beaveractor reaches some arrow, it turns in the arrow's direction and moves on until it either reaches the next arrow or gets outside the campus. The Beaveractor covers exactly one unit of space per one unit of time. You can assume that there are no obstacles to the Beaveractor.
The BSA scientists want to transport the brand new Beaveractor to the "Academic Tractor" research institute and send the Smart Beaver to do his postgraduate studies and sharpen pencils. They have *q* plans, representing the Beaveractor's initial position (*x**i*,<=*y**i*), the initial motion vector *w**i* and the time *t**i* that have passed after the escape started.
Your task is for each of the *q* plans to determine the Smart Beaver's position after the given time.
Input Specification:
The first line contains two integers: the number of traffic rules *n* and the size of the campus *b*, 0<=≤<=*n*, 1<=≤<=*b*. Next *n* lines contain the rules. Each line of the rules contains four space-separated integers *x*0, *y*0, *x*1, *y*1 — the beginning and the end of the arrow. It is guaranteed that all arrows are parallel to the coordinate axes and have no common points. All arrows are located inside the campus, that is, 0<=≤<=*x*0,<=*y*0,<=*x*1,<=*y*1<=≤<=*b* holds.
Next line contains integer *q* — the number of plans the scientists have, 1<=≤<=*q*<=≤<=105. The *i*-th plan is represented by two integers, *x**i*, *y**i* are the Beaveractor's coordinates at the initial time, 0<=≤<=*x**i*,<=*y**i*<=≤<=*b*, character *w**i*, that takes value U, D, L, R and sets the initial direction up, down, to the left or to the right correspondingly (the Y axis is directed upwards), and *t**i* — the time passed after the escape started, 0<=≤<=*t**i*<=≤<=1015.
- to get 30 points you need to solve the problem with constraints *n*,<=*b*<=≤<=30 (subproblem D1); - to get 60 points you need to solve the problem with constraints *n*,<=*b*<=≤<=1000 (subproblems D1+D2); - to get 100 points you need to solve the problem with constraints *n*,<=*b*<=≤<=105 (subproblems D1+D2+D3).
Output Specification:
Print *q* lines. Each line should contain two integers — the Beaveractor's coordinates at the final moment of time for each plan. If the Smart Beaver manages to leave the campus in time *t**i*, print the coordinates of the last point in the campus he visited.
Demo Input:
['3 3\n0 0 0 1\n0 2 2 2\n3 3 2 3\n12\n0 0 L 0\n0 0 L 1\n0 0 L 2\n0 0 L 3\n0 0 L 4\n0 0 L 5\n0 0 L 6\n2 0 U 2\n2 0 U 3\n3 0 U 5\n1 3 D 2\n1 3 R 2\n']
Demo Output:
['0 0\n0 1\n0 2\n1 2\n2 2\n3 2\n3 2\n2 2\n3 2\n1 3\n2 2\n1 3\n']
Note:
none
|
```python
"""Railway construction
Recursive algorithm
"""
import logging
from functools import lru_cache, partial
from typing import Dict, List, Literal, Optional, Tuple
DirectionType = Literal["U", "D", "L", "R"]
PositionType = Tuple[int, int]
RuleType = Tuple[PositionType, PositionType]
PlanType = Tuple[PositionType, str, int]
ArrowMapType = Dict[PositionType, DirectionType]
def __get_direction_change_position(x1, y1, x2, y2) -> DirectionType:
if x1 > x2:
return "L"
elif x1 < x2:
return "R"
elif y1 > y2:
return "D"
elif y1 < y2:
return "U"
else:
raise NotImplemented
def __make_arrows(rules: List[RuleType]) -> Dict[PositionType, DirectionType]:
arrow_map: ArrowMapType = dict()
for rule in rules:
direction = __get_direction_change_position(*rule[0], *rule[1])
x_start, x_end = (
min(rule[0][0], rule[1][0]),
max(rule[0][0], rule[1][0]) + 1,
)
for x in range(x_start, x_end):
y_start, y_end = (
min(rule[0][1], rule[1][1]),
max(rule[0][1], rule[1][1]) + 1,
)
for y in range(y_start, y_end):
arrow_map[tuple((x, y))] = direction
return arrow_map
def __in() -> Tuple[
int,
List[RuleType],
List[PlanType],
]:
n, b = map(int, input().split())
rules_raw = [input().split() for _ in range(n)]
rules = [
(
(int(rule_raw[0]), int(rule_raw[1])),
(int(rule_raw[2]), int(rule_raw[3])),
)
for rule_raw in rules_raw
]
plans_raw = [input().split() for _ in range(int(input()))]
plans_ = [
(
(int(plan_raw[0]), int(plan_raw[1])),
plan_raw[2],
int(plan_raw[3]),
)
for plan_raw in plans_raw
]
return (
b,
rules,
plans_,
)
def __get_step(
current: PositionType,
direction: DirectionType,
arrows: ArrowMapType,
) -> Tuple[PositionType, DirectionType]:
if current in arrows.keys():
direction = arrows[current]
if direction == "U":
new_position = (current[0], current[1] + 1)
elif direction == "D":
new_position = (current[0], current[1] - 1)
elif direction == "L":
new_position = (current[0] - 1, current[1])
elif direction == "R":
new_position = (current[0] + 1, current[1])
else:
raise NotImplemented
if new_position in arrows.keys():
direction = arrows[new_position]
return (
new_position,
direction,
)
@lru_cache(typed=True)
def __check_on_limit(
current: PositionType,
max_position: int,
) -> Optional[PositionType]:
if current[0] < 0:
return 0, current[1]
elif current[0] > max_position:
return max_position, current[1]
elif current[1] < 0:
return current[0], 0
elif current[1] > max_position:
return current[0], max_position
if __name__ == "__main__":
b_: int
rules_: List[RuleType]
plans: List[PlanType]
b_, rules_, plans = __in()
map_arrows_ = __make_arrows(rules_)
__get_step_for_existing_map = lru_cache(typed=True)(
partial(__get_step, arrows=map_arrows_),
)
for plan in plans:
latest_position, direction_, = (
plan[0],
plan[1],
)
already_been = list((latest_position,))
for current_step in range(0, plan[2]):
latest_position, direction_ = __get_step_for_existing_map(
latest_position,
direction_,
)
if latest_position in already_been:
trash = already_been.index(latest_position)
already_been = already_been[trash:]
latest_position = already_been[
(plan[2] - trash) % len(already_been)
]
logging.debug(
latest_position,
already_been,
plan[2] % len(already_been),
plan[2],
len(already_been),
current_step,
)
break
elif len(already_been) < 1000:
already_been.append(latest_position)
position = __check_on_limit(latest_position, b_)
if position is not None:
latest_position = position
break
print(*latest_position)
```
| 0
|
|
903
|
A
|
Hungry Student Problem
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation"
] | null | null |
Ivan's classes at the university have just finished, and now he wants to go to the local CFK cafe and eat some fried chicken.
CFK sells chicken chunks in small and large portions. A small portion contains 3 chunks; a large one — 7 chunks. Ivan wants to eat exactly *x* chunks. Now he wonders whether he can buy exactly this amount of chicken.
Formally, Ivan wants to know if he can choose two non-negative integers *a* and *b* in such a way that *a* small portions and *b* large ones contain exactly *x* chunks.
Help Ivan to answer this question for several values of *x*!
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the number of testcases.
The *i*-th of the following *n* lines contains one integer *x**i* (1<=≤<=*x**i*<=≤<=100) — the number of chicken chunks Ivan wants to eat.
|
Print *n* lines, in *i*-th line output YES if Ivan can buy exactly *x**i* chunks. Otherwise, print NO.
|
[
"2\n6\n5\n"
] |
[
"YES\nNO\n"
] |
In the first example Ivan can buy two small portions.
In the second example Ivan cannot buy exactly 5 chunks, since one small portion is not enough, but two small portions or one large is too much.
| 0
|
[
{
"input": "2\n6\n5",
"output": "YES\nNO"
},
{
"input": "100\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n14\n15\n16\n17\n18\n19\n20\n21\n22\n23\n24\n25\n26\n27\n28\n29\n30\n31\n32\n33\n34\n35\n36\n37\n38\n39\n40\n41\n42\n43\n44\n45\n46\n47\n48\n49\n50\n51\n52\n53\n54\n55\n56\n57\n58\n59\n60\n61\n62\n63\n64\n65\n66\n67\n68\n69\n70\n71\n72\n73\n74\n75\n76\n77\n78\n79\n80\n81\n82\n83\n84\n85\n86\n87\n88\n89\n90\n91\n92\n93\n94\n95\n96\n97\n98\n99\n100",
"output": "NO\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES"
},
{
"input": "3\n6\n6\n6",
"output": "YES\nYES\nYES"
},
{
"input": "47\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "NO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO"
},
{
"input": "3\n1\n52\n76",
"output": "NO\nYES\nYES"
},
{
"input": "87\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100",
"output": "YES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES"
},
{
"input": "3\n3\n2\n1",
"output": "YES\nNO\nNO"
},
{
"input": "100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100",
"output": "YES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES"
}
] | 1,580,635,066
| 166
|
Python 3
|
OK
|
TESTS
| 8
| 109
| 307,200
|
for _ in " "*int(input()):print("NO" if int(input()) in [2,5,11,4,1,8] else "YES")
|
Title: Hungry Student Problem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ivan's classes at the university have just finished, and now he wants to go to the local CFK cafe and eat some fried chicken.
CFK sells chicken chunks in small and large portions. A small portion contains 3 chunks; a large one — 7 chunks. Ivan wants to eat exactly *x* chunks. Now he wonders whether he can buy exactly this amount of chicken.
Formally, Ivan wants to know if he can choose two non-negative integers *a* and *b* in such a way that *a* small portions and *b* large ones contain exactly *x* chunks.
Help Ivan to answer this question for several values of *x*!
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the number of testcases.
The *i*-th of the following *n* lines contains one integer *x**i* (1<=≤<=*x**i*<=≤<=100) — the number of chicken chunks Ivan wants to eat.
Output Specification:
Print *n* lines, in *i*-th line output YES if Ivan can buy exactly *x**i* chunks. Otherwise, print NO.
Demo Input:
['2\n6\n5\n']
Demo Output:
['YES\nNO\n']
Note:
In the first example Ivan can buy two small portions.
In the second example Ivan cannot buy exactly 5 chunks, since one small portion is not enough, but two small portions or one large is too much.
|
```python
for _ in " "*int(input()):print("NO" if int(input()) in [2,5,11,4,1,8] else "YES")
```
| 3
|
|
463
|
D
|
Gargari and Permutations
|
PROGRAMMING
| 1,900
|
[
"dfs and similar",
"dp",
"graphs",
"implementation"
] | null | null |
Gargari got bored to play with the bishops and now, after solving the problem about them, he is trying to do math homework. In a math book he have found *k* permutations. Each of them consists of numbers 1,<=2,<=...,<=*n* in some order. Now he should find the length of the longest common subsequence of these permutations. Can you help Gargari?
You can read about longest common subsequence there: https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
|
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1000; 2<=≤<=*k*<=≤<=5). Each of the next *k* lines contains integers 1,<=2,<=...,<=*n* in some order — description of the current permutation.
|
Print the length of the longest common subsequence.
|
[
"4 3\n1 4 2 3\n4 1 2 3\n1 2 4 3\n"
] |
[
"3\n"
] |
The answer for the first test sample is subsequence [1, 2, 3].
| 2,000
|
[
{
"input": "4 3\n1 4 2 3\n4 1 2 3\n1 2 4 3",
"output": "3"
},
{
"input": "6 3\n2 5 1 4 6 3\n5 1 4 3 2 6\n5 4 2 6 3 1",
"output": "3"
},
{
"input": "41 4\n24 15 17 35 13 41 4 14 23 5 8 16 21 18 30 36 6 22 11 29 26 1 40 31 7 3 32 10 28 38 12 20 39 37 34 19 33 27 2 25 9\n22 13 25 24 38 35 29 12 15 8 11 37 3 19 4 23 18 32 30 40 36 21 16 34 27 9 5 41 39 2 14 17 31 33 26 7 1 10 20 6 28\n31 27 39 16 22 12 13 32 6 10 19 29 37 7 18 33 24 21 1 9 36 4 34 41 25 28 17 40 30 35 23 14 11 8 2 15 38 20 26 5 3\n8 18 39 38 7 34 16 31 15 1 40 20 37 4 25 11 17 19 33 26 6 14 13 41 12 32 2 21 10 35 27 9 28 5 30 24 22 23 29 3 36",
"output": "4"
},
{
"input": "1 2\n1\n1",
"output": "1"
},
{
"input": "28 5\n3 14 12 16 13 27 20 8 1 10 24 11 5 9 7 18 17 23 22 25 28 19 4 21 26 6 15 2\n7 12 23 27 22 26 16 18 19 5 6 9 11 28 25 4 10 3 1 14 8 17 15 2 20 13 24 21\n21 20 2 5 19 15 12 4 18 9 23 16 11 14 8 6 25 27 13 17 10 26 7 24 28 1 3 22\n12 2 23 11 20 18 25 21 13 27 14 8 4 6 9 16 7 3 10 1 22 15 26 19 5 17 28 24\n13 2 6 19 22 23 4 1 28 10 18 17 21 8 9 3 26 11 12 27 14 20 24 25 15 5 16 7",
"output": "3"
},
{
"input": "6 3\n2 5 1 4 6 3\n5 1 4 6 2 3\n5 4 2 6 3 1",
"output": "4"
},
{
"input": "41 4\n24 15 17 35 13 41 4 14 23 5 8 16 21 18 30 36 6 22 11 29 26 1 40 31 7 3 32 10 28 38 12 20 39 37 34 19 33 27 2 25 9\n22 13 25 24 38 35 29 12 15 8 11 37 3 19 4 23 18 32 30 40 36 21 16 34 27 9 5 41 39 2 14 17 31 33 26 7 1 10 20 6 28\n31 27 39 16 22 12 13 32 6 10 19 29 37 7 18 33 24 21 1 9 36 4 34 41 25 28 17 40 30 35 23 14 11 8 2 15 38 20 26 5 3\n8 18 39 38 7 34 16 31 15 1 40 20 37 4 25 11 17 19 33 26 6 14 13 41 12 32 2 21 10 35 27 9 28 5 30 24 22 23 29 3 36",
"output": "4"
},
{
"input": "37 3\n6 3 19 20 15 4 1 35 8 24 12 21 34 26 18 14 23 33 28 9 36 11 37 31 25 32 29 22 13 27 16 17 10 7 5 30 2\n10 3 35 17 34 21 14 8 26 28 11 19 27 7 4 23 24 22 12 13 16 1 25 29 5 31 30 20 32 18 15 9 2 36 37 33 6\n19 9 22 32 26 35 29 23 5 6 14 34 33 10 2 28 15 11 24 4 13 7 8 31 37 36 1 27 3 16 30 25 20 21 18 17 12",
"output": "7"
}
] | 1,699,101,867
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 40
| 93
| 4,403,200
|
n, k = map(int, input().split())
a = [[]]*6
b = []
for i in range(6):
b.append([0]*(n + 1))
for i in range(k):
a[i] = list(map(int, input().split()))
for j in range(n):
b[i][a[i][j]] = j
dp = [1] * n
for i in range(n):
for j in range(i):
key = 1
for t in range(1, k):
if b[t][a[0][j]] > b[t][a[0][i]]:
key = 0
break
if key:
dp[i] = max(dp[i], dp[j] + 1)
print(max(dp))
|
Title: Gargari and Permutations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Gargari got bored to play with the bishops and now, after solving the problem about them, he is trying to do math homework. In a math book he have found *k* permutations. Each of them consists of numbers 1,<=2,<=...,<=*n* in some order. Now he should find the length of the longest common subsequence of these permutations. Can you help Gargari?
You can read about longest common subsequence there: https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1000; 2<=≤<=*k*<=≤<=5). Each of the next *k* lines contains integers 1,<=2,<=...,<=*n* in some order — description of the current permutation.
Output Specification:
Print the length of the longest common subsequence.
Demo Input:
['4 3\n1 4 2 3\n4 1 2 3\n1 2 4 3\n']
Demo Output:
['3\n']
Note:
The answer for the first test sample is subsequence [1, 2, 3].
|
```python
n, k = map(int, input().split())
a = [[]]*6
b = []
for i in range(6):
b.append([0]*(n + 1))
for i in range(k):
a[i] = list(map(int, input().split()))
for j in range(n):
b[i][a[i][j]] = j
dp = [1] * n
for i in range(n):
for j in range(i):
key = 1
for t in range(1, k):
if b[t][a[0][j]] > b[t][a[0][i]]:
key = 0
break
if key:
dp[i] = max(dp[i], dp[j] + 1)
print(max(dp))
```
| 3
|
|
998
|
B
|
Cutting
|
PROGRAMMING
| 1,200
|
[
"dp",
"greedy",
"sortings"
] | null | null |
There are a lot of things which could be cut — trees, paper, "the rope". In this problem you are going to cut a sequence of integers.
There is a sequence of integers, which contains the equal number of even and odd numbers. Given a limited budget, you need to make maximum possible number of cuts such that each resulting segment will have the same number of odd and even integers.
Cuts separate a sequence to continuous (contiguous) segments. You may think about each cut as a break between two adjacent elements in a sequence. So after cutting each element belongs to exactly one segment. Say, $[4, 1, 2, 3, 4, 5, 4, 4, 5, 5]$ $\to$ two cuts $\to$ $[4, 1 | 2, 3, 4, 5 | 4, 4, 5, 5]$. On each segment the number of even elements should be equal to the number of odd elements.
The cost of the cut between $x$ and $y$ numbers is $|x - y|$ bitcoins. Find the maximum possible number of cuts that can be made while spending no more than $B$ bitcoins.
|
First line of the input contains an integer $n$ ($2 \le n \le 100$) and an integer $B$ ($1 \le B \le 100$) — the number of elements in the sequence and the number of bitcoins you have.
Second line contains $n$ integers: $a_1$, $a_2$, ..., $a_n$ ($1 \le a_i \le 100$) — elements of the sequence, which contains the equal number of even and odd numbers
|
Print the maximum possible number of cuts which can be made while spending no more than $B$ bitcoins.
|
[
"6 4\n1 2 5 10 15 20\n",
"4 10\n1 3 2 4\n",
"6 100\n1 2 3 4 5 6\n"
] |
[
"1\n",
"0\n",
"2\n"
] |
In the first sample the optimal answer is to split sequence between $2$ and $5$. Price of this cut is equal to $3$ bitcoins.
In the second sample it is not possible to make even one cut even with unlimited number of bitcoins.
In the third sample the sequence should be cut between $2$ and $3$, and between $4$ and $5$. The total price of the cuts is $1 + 1 = 2$ bitcoins.
| 1,000
|
[
{
"input": "6 4\n1 2 5 10 15 20",
"output": "1"
},
{
"input": "4 10\n1 3 2 4",
"output": "0"
},
{
"input": "6 100\n1 2 3 4 5 6",
"output": "2"
},
{
"input": "2 100\n13 78",
"output": "0"
},
{
"input": "10 1\n56 56 98 2 11 64 97 41 95 53",
"output": "0"
},
{
"input": "10 100\n94 65 24 47 29 98 20 65 6 17",
"output": "2"
},
{
"input": "100 1\n35 6 19 84 49 64 36 91 50 65 21 86 20 89 10 52 50 24 98 74 11 48 58 98 51 85 1 29 44 83 9 97 68 41 83 57 1 57 46 42 87 2 32 50 3 57 17 77 22 100 36 27 3 34 55 8 90 61 34 20 15 39 43 46 60 60 14 23 4 22 75 51 98 23 69 22 99 57 63 30 79 7 16 8 34 84 13 47 93 40 48 25 93 1 80 6 82 93 6 21",
"output": "0"
},
{
"input": "100 10\n3 20 3 29 90 69 2 30 70 28 71 99 22 99 34 70 87 48 3 92 71 61 26 90 14 38 51 81 16 33 49 71 14 52 50 95 65 16 80 57 87 47 29 14 40 31 74 15 87 76 71 61 30 91 44 10 87 48 84 12 77 51 25 68 49 38 79 8 7 9 39 19 48 40 15 53 29 4 60 86 76 84 6 37 45 71 46 38 80 68 94 71 64 72 41 51 71 60 79 7",
"output": "2"
},
{
"input": "100 100\n60 83 82 16 17 7 89 6 83 100 85 41 72 44 23 28 64 84 3 23 33 52 93 30 81 38 67 25 26 97 94 78 41 74 74 17 53 51 54 17 20 81 95 76 42 16 16 56 74 69 30 9 82 91 32 13 47 45 97 40 56 57 27 28 84 98 91 5 61 20 3 43 42 26 83 40 34 100 5 63 62 61 72 5 32 58 93 79 7 18 50 43 17 24 77 73 87 74 98 2",
"output": "11"
},
{
"input": "100 100\n70 54 10 72 81 84 56 15 27 19 43 100 49 44 52 33 63 40 95 17 58 2 51 39 22 18 82 1 16 99 32 29 24 94 9 98 5 37 47 14 42 73 41 31 79 64 12 6 53 26 68 67 89 13 90 4 21 93 46 74 75 88 66 57 23 7 25 48 92 62 30 8 50 61 38 87 71 34 97 28 80 11 60 91 3 35 86 96 36 20 59 65 83 45 76 77 78 69 85 55",
"output": "3"
},
{
"input": "100 100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "49"
},
{
"input": "10 10\n94 32 87 13 4 22 85 81 18 95",
"output": "1"
},
{
"input": "10 50\n40 40 9 3 64 96 67 19 21 30",
"output": "1"
},
{
"input": "100 50\n13 31 29 86 46 10 2 87 94 2 28 31 29 15 64 3 94 71 37 76 9 91 89 38 12 46 53 33 58 11 98 4 37 72 30 52 6 86 40 98 28 6 34 80 61 47 45 69 100 47 91 64 87 41 67 58 88 75 13 81 36 58 66 29 10 27 54 83 44 15 11 33 49 36 61 18 89 26 87 1 99 19 57 21 55 84 20 74 14 43 15 51 2 76 22 92 43 14 72 77",
"output": "3"
},
{
"input": "100 1\n78 52 95 76 96 49 53 59 77 100 64 11 9 48 15 17 44 46 21 54 39 68 43 4 32 28 73 6 16 62 72 84 65 86 98 75 33 45 25 3 91 82 2 92 63 88 7 50 97 93 14 22 20 42 60 55 80 85 29 34 56 71 83 38 26 47 90 70 51 41 40 31 37 12 35 99 67 94 1 87 57 8 61 19 23 79 36 18 66 74 5 27 81 69 24 58 13 10 89 30",
"output": "0"
},
{
"input": "100 10\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43",
"output": "0"
},
{
"input": "100 50\n2 4 82 12 47 63 52 91 87 45 53 1 17 25 64 50 9 13 22 54 21 30 43 24 38 33 68 11 41 78 99 23 28 18 58 67 79 10 71 56 49 61 26 29 59 20 90 74 5 75 89 8 39 95 72 42 66 98 44 32 88 35 92 3 97 55 65 51 77 27 81 76 84 69 73 85 19 46 62 100 60 37 7 36 57 6 14 83 40 48 16 70 96 15 31 93 80 86 94 34",
"output": "1"
},
{
"input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "1"
},
{
"input": "100 10\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "10"
},
{
"input": "100 50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "49"
},
{
"input": "100 30\n2 1 2 2 2 2 1 1 1 2 1 1 2 2 1 2 1 2 2 2 2 1 2 1 2 1 1 2 1 1 2 2 2 1 1 2 1 2 2 2 1 1 1 1 1 2 1 1 1 1 1 2 2 2 2 1 2 1 1 1 2 2 2 2 1 2 2 1 1 1 1 2 2 2 1 2 2 1 2 1 1 2 2 2 1 2 2 1 2 1 1 2 1 1 1 1 2 1 1 2",
"output": "11"
},
{
"input": "100 80\n1 1 1 2 2 1 1 2 1 1 1 1 2 2 2 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2 1 1 1 1 2 2 1 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 1 1 1 2 1 1 2 1 2 1 2 2 1 1 2 1 1 1 1 2 2 2 1 2 2 1 2",
"output": "12"
},
{
"input": "100 30\n100 99 100 99 99 100 100 99 100 99 99 100 100 100 99 99 99 100 99 99 99 99 100 99 99 100 100 99 100 99 99 99 100 99 100 100 99 100 100 100 100 100 99 99 100 99 99 100 99 100 99 99 100 100 99 100 99 99 100 99 100 100 100 100 99 99 99 100 99 100 99 100 100 100 99 100 100 100 99 100 99 99 100 100 100 100 99 99 99 100 99 100 100 99 99 99 100 100 99 99",
"output": "14"
},
{
"input": "100 80\n99 100 100 100 99 99 99 99 100 99 99 99 99 99 99 99 99 100 100 99 99 99 99 99 100 99 100 99 100 100 100 100 100 99 100 100 99 99 100 100 100 100 100 99 100 99 100 99 99 99 100 99 99 99 99 99 99 99 99 100 99 100 100 99 99 99 99 100 100 100 99 100 100 100 100 100 99 100 100 100 100 100 100 100 100 99 99 99 99 100 99 100 100 100 100 100 99 100 99 100",
"output": "4"
},
{
"input": "100 30\n100 100 39 39 39 100 100 39 39 100 39 39 100 39 100 39 100 100 100 100 100 39 100 100 100 39 39 39 100 39 100 100 39 39 100 39 39 39 100 100 39 100 39 100 39 39 100 100 39 100 39 100 39 39 39 100 39 100 39 39 39 100 39 39 100 100 39 39 39 100 100 39 39 39 100 100 100 100 39 100 100 100 39 39 100 39 100 100 39 100 39 100 39 39 100 39 39 100 100 100",
"output": "5"
},
{
"input": "100 80\n39 100 39 100 100 100 100 39 39 100 100 39 39 100 39 39 39 39 100 39 39 39 39 100 100 100 100 39 100 39 39 100 100 39 39 100 39 100 39 100 100 39 39 100 39 39 39 100 39 100 39 100 100 100 100 100 100 100 39 100 39 100 100 100 39 39 39 39 39 100 100 100 39 100 100 100 100 39 100 100 39 39 100 39 39 39 100 39 100 39 39 100 100 39 100 39 39 39 100 39",
"output": "6"
},
{
"input": "4 1\n1 2 3 4",
"output": "1"
},
{
"input": "4 1\n1 2 1 2",
"output": "1"
},
{
"input": "4 4\n1 2 6 7",
"output": "1"
},
{
"input": "4 8\n1 2 10 11",
"output": "1"
},
{
"input": "6 2\n1 2 3 4 5 6",
"output": "2"
},
{
"input": "6 1\n1 2 1 2 1 2",
"output": "1"
},
{
"input": "6 4\n1 2 4 5 7 8",
"output": "2"
},
{
"input": "6 3\n1 2 5 10 15 20",
"output": "1"
}
] | 1,532,578,662
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 124
| 0
|
n, b = map(int,input().split())
v = list(map(int,input().split()))
costs = []
odds = 0
evens = 0
for i in range(n-1):
if v[i] % 2 == 0:
evens += 1
else:
odds += 1
if odds == evens and odds != 0 and i != (n-1):
costs.append(abs(v[i+1]-v[i]))
odds = 0
evens = 0
count = 0
acc = 0
for cost in sorted(costs):
if acc + cost <= b:
count += 1
acc = acc + cost
else:
break
print(count)
|
Title: Cutting
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are a lot of things which could be cut — trees, paper, "the rope". In this problem you are going to cut a sequence of integers.
There is a sequence of integers, which contains the equal number of even and odd numbers. Given a limited budget, you need to make maximum possible number of cuts such that each resulting segment will have the same number of odd and even integers.
Cuts separate a sequence to continuous (contiguous) segments. You may think about each cut as a break between two adjacent elements in a sequence. So after cutting each element belongs to exactly one segment. Say, $[4, 1, 2, 3, 4, 5, 4, 4, 5, 5]$ $\to$ two cuts $\to$ $[4, 1 | 2, 3, 4, 5 | 4, 4, 5, 5]$. On each segment the number of even elements should be equal to the number of odd elements.
The cost of the cut between $x$ and $y$ numbers is $|x - y|$ bitcoins. Find the maximum possible number of cuts that can be made while spending no more than $B$ bitcoins.
Input Specification:
First line of the input contains an integer $n$ ($2 \le n \le 100$) and an integer $B$ ($1 \le B \le 100$) — the number of elements in the sequence and the number of bitcoins you have.
Second line contains $n$ integers: $a_1$, $a_2$, ..., $a_n$ ($1 \le a_i \le 100$) — elements of the sequence, which contains the equal number of even and odd numbers
Output Specification:
Print the maximum possible number of cuts which can be made while spending no more than $B$ bitcoins.
Demo Input:
['6 4\n1 2 5 10 15 20\n', '4 10\n1 3 2 4\n', '6 100\n1 2 3 4 5 6\n']
Demo Output:
['1\n', '0\n', '2\n']
Note:
In the first sample the optimal answer is to split sequence between $2$ and $5$. Price of this cut is equal to $3$ bitcoins.
In the second sample it is not possible to make even one cut even with unlimited number of bitcoins.
In the third sample the sequence should be cut between $2$ and $3$, and between $4$ and $5$. The total price of the cuts is $1 + 1 = 2$ bitcoins.
|
```python
n, b = map(int,input().split())
v = list(map(int,input().split()))
costs = []
odds = 0
evens = 0
for i in range(n-1):
if v[i] % 2 == 0:
evens += 1
else:
odds += 1
if odds == evens and odds != 0 and i != (n-1):
costs.append(abs(v[i+1]-v[i]))
odds = 0
evens = 0
count = 0
acc = 0
for cost in sorted(costs):
if acc + cost <= b:
count += 1
acc = acc + cost
else:
break
print(count)
```
| 3
|
|
4
|
A
|
Watermelon
|
PROGRAMMING
| 800
|
[
"brute force",
"math"
] |
A. Watermelon
|
1
|
64
|
One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem.
Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight.
|
The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys.
|
Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case.
|
[
"8\n"
] |
[
"YES\n"
] |
For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
| 0
|
[
{
"input": "8",
"output": "YES"
},
{
"input": "5",
"output": "NO"
},
{
"input": "4",
"output": "YES"
},
{
"input": "3",
"output": "NO"
},
{
"input": "2",
"output": "NO"
},
{
"input": "1",
"output": "NO"
},
{
"input": "7",
"output": "NO"
},
{
"input": "6",
"output": "YES"
},
{
"input": "10",
"output": "YES"
},
{
"input": "9",
"output": "NO"
},
{
"input": "53",
"output": "NO"
},
{
"input": "77",
"output": "NO"
},
{
"input": "32",
"output": "YES"
},
{
"input": "44",
"output": "YES"
},
{
"input": "98",
"output": "YES"
},
{
"input": "99",
"output": "NO"
},
{
"input": "90",
"output": "YES"
},
{
"input": "67",
"output": "NO"
},
{
"input": "100",
"output": "YES"
},
{
"input": "88",
"output": "YES"
}
] | 1,691,222,195
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 60
| 0
|
def fn(n):
s="NO"
if n%2==0:
s= "YES"
return s
|
Title: Watermelon
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem.
Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight.
Input Specification:
The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys.
Output Specification:
Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case.
Demo Input:
['8\n']
Demo Output:
['YES\n']
Note:
For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
|
```python
def fn(n):
s="NO"
if n%2==0:
s= "YES"
return s
```
| 0
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,682,109,115
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 62
| 0
|
stri1 = input()
stri2 = input()
solut = []
for i in range(len(stri1)):
if stri1[i] == stri2[i]:
solut.append("0")
else:
solut.append("1")
print("".join(solut))
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
stri1 = input()
stri2 = input()
solut = []
for i in range(len(stri1)):
if stri1[i] == stri2[i]:
solut.append("0")
else:
solut.append("1")
print("".join(solut))
```
| 3.9845
|
697
|
A
|
Pineapple Incident
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
Ted has a pineapple. This pineapple is able to bark like a bulldog! At time *t* (in seconds) it barks for the first time. Then every *s* seconds after it, it barks twice with 1 second interval. Thus it barks at times *t*, *t*<=+<=*s*, *t*<=+<=*s*<=+<=1, *t*<=+<=2*s*, *t*<=+<=2*s*<=+<=1, etc.
Barney woke up in the morning and wants to eat the pineapple, but he can't eat it when it's barking. Barney plans to eat it at time *x* (in seconds), so he asked you to tell him if it's gonna bark at that time.
|
The first and only line of input contains three integers *t*, *s* and *x* (0<=≤<=*t*,<=*x*<=≤<=109, 2<=≤<=*s*<=≤<=109) — the time the pineapple barks for the first time, the pineapple barking interval, and the time Barney wants to eat the pineapple respectively.
|
Print a single "YES" (without quotes) if the pineapple will bark at time *x* or a single "NO" (without quotes) otherwise in the only line of output.
|
[
"3 10 4\n",
"3 10 3\n",
"3 8 51\n",
"3 8 52\n"
] |
[
"NO\n",
"YES\n",
"YES\n",
"YES\n"
] |
In the first and the second sample cases pineapple will bark at moments 3, 13, 14, ..., so it won't bark at the moment 4 and will bark at the moment 3.
In the third and fourth sample cases pineapple will bark at moments 3, 11, 12, 19, 20, 27, 28, 35, 36, 43, 44, 51, 52, 59, ..., so it will bark at both moments 51 and 52.
| 500
|
[
{
"input": "3 10 4",
"output": "NO"
},
{
"input": "3 10 3",
"output": "YES"
},
{
"input": "3 8 51",
"output": "YES"
},
{
"input": "3 8 52",
"output": "YES"
},
{
"input": "456947336 740144 45",
"output": "NO"
},
{
"input": "33 232603 599417964",
"output": "YES"
},
{
"input": "4363010 696782227 701145238",
"output": "YES"
},
{
"input": "9295078 2 6",
"output": "NO"
},
{
"input": "76079 281367 119938421",
"output": "YES"
},
{
"input": "93647 7 451664565",
"output": "YES"
},
{
"input": "5 18553 10908",
"output": "NO"
},
{
"input": "6 52 30",
"output": "NO"
},
{
"input": "6431 855039 352662",
"output": "NO"
},
{
"input": "749399100 103031711 761562532",
"output": "NO"
},
{
"input": "21 65767 55245",
"output": "NO"
},
{
"input": "4796601 66897 4860613",
"output": "NO"
},
{
"input": "8 6728951 860676",
"output": "NO"
},
{
"input": "914016 6 914019",
"output": "NO"
},
{
"input": "60686899 78474 60704617",
"output": "NO"
},
{
"input": "3 743604 201724",
"output": "NO"
},
{
"input": "571128 973448796 10",
"output": "NO"
},
{
"input": "688051712 67 51",
"output": "NO"
},
{
"input": "74619 213344 6432326",
"output": "NO"
},
{
"input": "6947541 698167 6",
"output": "NO"
},
{
"input": "83 6 6772861",
"output": "NO"
},
{
"input": "251132 67561 135026988",
"output": "NO"
},
{
"input": "8897216 734348516 743245732",
"output": "YES"
},
{
"input": "50 64536 153660266",
"output": "YES"
},
{
"input": "876884 55420 971613604",
"output": "YES"
},
{
"input": "0 6906451 366041903",
"output": "YES"
},
{
"input": "11750 8 446010134",
"output": "YES"
},
{
"input": "582692707 66997 925047377",
"output": "YES"
},
{
"input": "11 957526890 957526901",
"output": "YES"
},
{
"input": "556888 514614196 515171084",
"output": "YES"
},
{
"input": "6 328006 584834704",
"output": "YES"
},
{
"input": "4567998 4 204966403",
"output": "YES"
},
{
"input": "60 317278 109460971",
"output": "YES"
},
{
"input": "906385 342131991 685170368",
"output": "YES"
},
{
"input": "1 38 902410512",
"output": "YES"
},
{
"input": "29318 787017 587931018",
"output": "YES"
},
{
"input": "351416375 243431 368213115",
"output": "YES"
},
{
"input": "54 197366062 197366117",
"output": "YES"
},
{
"input": "586389 79039 850729874",
"output": "YES"
},
{
"input": "723634470 2814619 940360134",
"output": "YES"
},
{
"input": "0 2 0",
"output": "YES"
},
{
"input": "0 2 1",
"output": "NO"
},
{
"input": "0 2 2",
"output": "YES"
},
{
"input": "0 2 3",
"output": "YES"
},
{
"input": "0 2 1000000000",
"output": "YES"
},
{
"input": "0 10 23",
"output": "NO"
},
{
"input": "0 2 999999999",
"output": "YES"
},
{
"input": "10 5 11",
"output": "NO"
},
{
"input": "1 2 1000000000",
"output": "YES"
},
{
"input": "1 10 20",
"output": "NO"
},
{
"input": "1 2 999999937",
"output": "YES"
},
{
"input": "10 3 5",
"output": "NO"
},
{
"input": "3 2 5",
"output": "YES"
},
{
"input": "0 4 0",
"output": "YES"
},
{
"input": "0 215 403",
"output": "NO"
},
{
"input": "5 2 10",
"output": "YES"
},
{
"input": "0 2 900000000",
"output": "YES"
},
{
"input": "0 79 4000",
"output": "NO"
},
{
"input": "5 1000 1000",
"output": "NO"
},
{
"input": "1 5 103",
"output": "NO"
},
{
"input": "5 2 6",
"output": "NO"
},
{
"input": "120 2 1000000000",
"output": "YES"
},
{
"input": "2 2 1000000000",
"output": "YES"
},
{
"input": "5 5 13",
"output": "NO"
},
{
"input": "10 5 15",
"output": "YES"
},
{
"input": "11 2 0",
"output": "NO"
},
{
"input": "3 8 53",
"output": "NO"
},
{
"input": "2 2 4",
"output": "YES"
},
{
"input": "4 4 0",
"output": "NO"
},
{
"input": "1 2 3",
"output": "YES"
},
{
"input": "5 3 9",
"output": "YES"
},
{
"input": "5 6 19",
"output": "NO"
},
{
"input": "3 10 125",
"output": "NO"
},
{
"input": "5 3 8",
"output": "YES"
},
{
"input": "6 3 9",
"output": "YES"
},
{
"input": "0 3 5",
"output": "NO"
},
{
"input": "5 3 300000035",
"output": "YES"
},
{
"input": "5 2 7",
"output": "YES"
},
{
"input": "1 5 6",
"output": "YES"
},
{
"input": "4 2 6",
"output": "YES"
},
{
"input": "0 3 999999998",
"output": "NO"
},
{
"input": "0 10001 0",
"output": "YES"
},
{
"input": "6 5 3",
"output": "NO"
},
{
"input": "1 5 1000000000",
"output": "NO"
},
{
"input": "1 3 6",
"output": "NO"
},
{
"input": "3 3 1000000000",
"output": "YES"
},
{
"input": "3 3 4",
"output": "NO"
},
{
"input": "3 3 5",
"output": "NO"
},
{
"input": "3 3 0",
"output": "NO"
},
{
"input": "1 2 4",
"output": "YES"
},
{
"input": "5 5 10",
"output": "YES"
}
] | 1,672,196,973
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 15
| 0
|
[t,s,x] = map(int, input().split())
if x<t:
print("no")
if x==t:
print("no")
else:
if x==t+1 or s!=1:
print("yes")
else:
if (x-t)%s==0 or (x-t)%s==1 :
print("yes")
else:
print("no")
|
Title: Pineapple Incident
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ted has a pineapple. This pineapple is able to bark like a bulldog! At time *t* (in seconds) it barks for the first time. Then every *s* seconds after it, it barks twice with 1 second interval. Thus it barks at times *t*, *t*<=+<=*s*, *t*<=+<=*s*<=+<=1, *t*<=+<=2*s*, *t*<=+<=2*s*<=+<=1, etc.
Barney woke up in the morning and wants to eat the pineapple, but he can't eat it when it's barking. Barney plans to eat it at time *x* (in seconds), so he asked you to tell him if it's gonna bark at that time.
Input Specification:
The first and only line of input contains three integers *t*, *s* and *x* (0<=≤<=*t*,<=*x*<=≤<=109, 2<=≤<=*s*<=≤<=109) — the time the pineapple barks for the first time, the pineapple barking interval, and the time Barney wants to eat the pineapple respectively.
Output Specification:
Print a single "YES" (without quotes) if the pineapple will bark at time *x* or a single "NO" (without quotes) otherwise in the only line of output.
Demo Input:
['3 10 4\n', '3 10 3\n', '3 8 51\n', '3 8 52\n']
Demo Output:
['NO\n', 'YES\n', 'YES\n', 'YES\n']
Note:
In the first and the second sample cases pineapple will bark at moments 3, 13, 14, ..., so it won't bark at the moment 4 and will bark at the moment 3.
In the third and fourth sample cases pineapple will bark at moments 3, 11, 12, 19, 20, 27, 28, 35, 36, 43, 44, 51, 52, 59, ..., so it will bark at both moments 51 and 52.
|
```python
[t,s,x] = map(int, input().split())
if x<t:
print("no")
if x==t:
print("no")
else:
if x==t+1 or s!=1:
print("yes")
else:
if (x-t)%s==0 or (x-t)%s==1 :
print("yes")
else:
print("no")
```
| 0
|
|
538
|
A
|
Cutting Banner
|
PROGRAMMING
| 1,400
|
[
"brute force",
"implementation"
] | null | null |
A large banner with word CODEFORCES was ordered for the 1000-th onsite round of Codeforcesω that takes place on the Miami beach. Unfortunately, the company that made the banner mixed up two orders and delivered somebody else's banner that contains someone else's word. The word on the banner consists only of upper-case English letters.
There is very little time to correct the mistake. All that we can manage to do is to cut out some substring from the banner, i.e. several consecutive letters. After that all the resulting parts of the banner will be glued into a single piece (if the beginning or the end of the original banner was cut out, only one part remains); it is not allowed change the relative order of parts of the banner (i.e. after a substring is cut, several first and last letters are left, it is allowed only to glue the last letters to the right of the first letters). Thus, for example, for example, you can cut a substring out from string 'TEMPLATE' and get string 'TEMPLE' (if you cut out string AT), 'PLATE' (if you cut out TEM), 'T' (if you cut out EMPLATE), etc.
Help the organizers of the round determine whether it is possible to cut out of the banner some substring in such a way that the remaining parts formed word CODEFORCES.
|
The single line of the input contains the word written on the banner. The word only consists of upper-case English letters. The word is non-empty and its length doesn't exceed 100 characters. It is guaranteed that the word isn't word CODEFORCES.
|
Print 'YES', if there exists a way to cut out the substring, and 'NO' otherwise (without the quotes).
|
[
"CODEWAITFORITFORCES\n",
"BOTTOMCODER\n",
"DECODEFORCES\n",
"DOGEFORCES\n"
] |
[
"YES\n",
"NO\n",
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "CODEWAITFORITFORCES",
"output": "YES"
},
{
"input": "BOTTOMCODER",
"output": "NO"
},
{
"input": "DECODEFORCES",
"output": "YES"
},
{
"input": "DOGEFORCES",
"output": "NO"
},
{
"input": "ABACABA",
"output": "NO"
},
{
"input": "CODEFORCE",
"output": "NO"
},
{
"input": "C",
"output": "NO"
},
{
"input": "NQTSMZEBLY",
"output": "NO"
},
{
"input": "CODEFZORCES",
"output": "YES"
},
{
"input": "EDYKHVZCNTLJUUOQGHPTIOETQNFLLWEKZOHIUAXELGECABVSBIBGQODQXVYFKBYJWTGBYHVSSNTINKWSINWSMALUSIWNJMTCOOVF",
"output": "NO"
},
{
"input": "OCECFDSRDE",
"output": "NO"
},
{
"input": "MDBUWCZFFZKFMJTTJFXRHTGRPREORKDVUXOEMFYSOMSQGHUKGYCRCVJTNDLFDEWFS",
"output": "NO"
},
{
"input": "CODEFYTORCHES",
"output": "NO"
},
{
"input": "BCODEFORCES",
"output": "YES"
},
{
"input": "CVODEFORCES",
"output": "YES"
},
{
"input": "COAKDEFORCES",
"output": "YES"
},
{
"input": "CODFMWEFORCES",
"output": "YES"
},
{
"input": "CODEVCSYRFORCES",
"output": "YES"
},
{
"input": "CODEFXHHPWCVQORCES",
"output": "YES"
},
{
"input": "CODEFORQWUFJLOFFXTXRCES",
"output": "YES"
},
{
"input": "CODEFORBWFURYIDURNRKRDLHCLXZCES",
"output": "YES"
},
{
"input": "CODEFORCQSYSLYKCDFFUPSAZCJIAENCKZUFJZEINQIES",
"output": "YES"
},
{
"input": "CODEFORCEVENMDBQLSVPQIIBGSHBVOPYZXNWVSTVWDRONUREYJJIJIPMEBPQDCPFS",
"output": "YES"
},
{
"input": "CODEFORCESCFNNPAHNHDIPPBAUSPKJYAQDBVZNLSTSDCREZACVLMRFGVKGVHHZLXOHCTJDBQKIDWBUXDUJARLWGFGFCTTXUCAZB",
"output": "YES"
},
{
"input": "CODJRDPDEFOROES",
"output": "NO"
},
{
"input": "CODEFOGSIUZMZCMWAVQHNYFEKIEZQMAZOVEMDRMOEDBHAXPLBLDYYXCVTOOSJZVSQAKFXTBTZFWAYRZEMDEMVDJTDRXXAQBURCES",
"output": "YES"
},
{
"input": "CODEMKUYHAZSGJBQLXTHUCZZRJJJXUSEBOCNZASOKDZHMSGWZSDFBGHXFLABVPDQBJYXSHHAZAKHSTRGOKJYHRVSSUGDCMFOGCES",
"output": "NO"
},
{
"input": "CODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCES",
"output": "YES"
},
{
"input": "CCODEFORCESODECODEFORCCODEFORCESODCODEFORCESEFCODEFORCESORCODEFORCESCESCESFORCODEFORCESCES",
"output": "NO"
},
{
"input": "CCODEFORCESC",
"output": "NO"
},
{
"input": "CODEAFORBCES",
"output": "NO"
},
{
"input": "CODERRRRRFORCRRRRES",
"output": "NO"
},
{
"input": "CODELFORCELS",
"output": "NO"
},
{
"input": "CPOPDPEPFPOPRPCPEPS",
"output": "NO"
},
{
"input": "COXDEXFORXCEXS",
"output": "NO"
},
{
"input": "CODAAAAAFORCES",
"output": "NO"
},
{
"input": "CAOADEFORCES",
"output": "NO"
},
{
"input": "FORCESXCODE",
"output": "NO"
},
{
"input": "FORCESACODE",
"output": "NO"
},
{
"input": "ACAOADAEFORCES",
"output": "NO"
},
{
"input": "CCODEFORCESS",
"output": "NO"
},
{
"input": "ZCODEFORCEZ",
"output": "NO"
},
{
"input": "CODXEFORXCES",
"output": "NO"
},
{
"input": "CODEFORCEZ",
"output": "NO"
},
{
"input": "CODEFORCEST",
"output": "YES"
},
{
"input": "AXODEFORCES",
"output": "NO"
},
{
"input": "RCODEFORCESR",
"output": "NO"
},
{
"input": "CODECODEFORCESFORCES",
"output": "YES"
},
{
"input": "TTTWWWCODEFORCES",
"output": "YES"
},
{
"input": "CODEFORRCEST",
"output": "NO"
},
{
"input": "UJYTYUCODEFORCES",
"output": "YES"
},
{
"input": "CODEXXXXXXXXXXXXXXXXXXCODEFORCESXXXXXXXXXXXXXXXXXXXXXFORCES",
"output": "YES"
},
{
"input": "COXEDYFORCES",
"output": "NO"
},
{
"input": "UJYTYCODEFORCES",
"output": "YES"
},
{
"input": "UJYTCODEFORCES",
"output": "YES"
}
] | 1,629,382,578
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 55
| 78
| 6,758,400
|
# Problem: A. Cutting Banner
# Contest: Codeforces - Codeforces Round #300
# URL: https://codeforces.com/contest/538/problem/A
# Memory Limit: 256 MB
# Time Limit: 2000 ms
# Powered by CP Editor (https://github.com/cpeditor/cpeditor)
from sys import stdin
def get_ints(): return list(map(int, stdin.readline().strip().split()))
t = "CODEFORCES"
s = input()
n = len(s)
for i in range(n):
for j in range(n+1):
if s[:i]+s[j:] == t:
print("YES")
exit()
print("NO")
|
Title: Cutting Banner
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A large banner with word CODEFORCES was ordered for the 1000-th onsite round of Codeforcesω that takes place on the Miami beach. Unfortunately, the company that made the banner mixed up two orders and delivered somebody else's banner that contains someone else's word. The word on the banner consists only of upper-case English letters.
There is very little time to correct the mistake. All that we can manage to do is to cut out some substring from the banner, i.e. several consecutive letters. After that all the resulting parts of the banner will be glued into a single piece (if the beginning or the end of the original banner was cut out, only one part remains); it is not allowed change the relative order of parts of the banner (i.e. after a substring is cut, several first and last letters are left, it is allowed only to glue the last letters to the right of the first letters). Thus, for example, for example, you can cut a substring out from string 'TEMPLATE' and get string 'TEMPLE' (if you cut out string AT), 'PLATE' (if you cut out TEM), 'T' (if you cut out EMPLATE), etc.
Help the organizers of the round determine whether it is possible to cut out of the banner some substring in such a way that the remaining parts formed word CODEFORCES.
Input Specification:
The single line of the input contains the word written on the banner. The word only consists of upper-case English letters. The word is non-empty and its length doesn't exceed 100 characters. It is guaranteed that the word isn't word CODEFORCES.
Output Specification:
Print 'YES', if there exists a way to cut out the substring, and 'NO' otherwise (without the quotes).
Demo Input:
['CODEWAITFORITFORCES\n', 'BOTTOMCODER\n', 'DECODEFORCES\n', 'DOGEFORCES\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n', 'NO\n']
Note:
none
|
```python
# Problem: A. Cutting Banner
# Contest: Codeforces - Codeforces Round #300
# URL: https://codeforces.com/contest/538/problem/A
# Memory Limit: 256 MB
# Time Limit: 2000 ms
# Powered by CP Editor (https://github.com/cpeditor/cpeditor)
from sys import stdin
def get_ints(): return list(map(int, stdin.readline().strip().split()))
t = "CODEFORCES"
s = input()
n = len(s)
for i in range(n):
for j in range(n+1):
if s[:i]+s[j:] == t:
print("YES")
exit()
print("NO")
```
| 3
|
|
851
|
B
|
Arpa and an exam about geometry
|
PROGRAMMING
| 1,400
|
[
"geometry",
"math"
] | null | null |
Arpa is taking a geometry exam. Here is the last problem of the exam.
You are given three points *a*,<=*b*,<=*c*.
Find a point and an angle such that if we rotate the page around the point by the angle, the new position of *a* is the same as the old position of *b*, and the new position of *b* is the same as the old position of *c*.
Arpa is doubting if the problem has a solution or not (i.e. if there exists a point and an angle satisfying the condition). Help Arpa determine if the question has a solution or not.
|
The only line contains six integers *a**x*,<=*a**y*,<=*b**x*,<=*b**y*,<=*c**x*,<=*c**y* (|*a**x*|,<=|*a**y*|,<=|*b**x*|,<=|*b**y*|,<=|*c**x*|,<=|*c**y*|<=≤<=109). It's guaranteed that the points are distinct.
|
Print "Yes" if the problem has a solution, "No" otherwise.
You can print each letter in any case (upper or lower).
|
[
"0 1 1 1 1 0\n",
"1 1 0 0 1000 1000\n"
] |
[
"Yes\n",
"No\n"
] |
In the first sample test, rotate the page around (0.5, 0.5) by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9d845923f4d356a48d8ede337db0303821311f0c.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test, you can't find any solution.
| 1,000
|
[
{
"input": "0 1 1 1 1 0",
"output": "Yes"
},
{
"input": "1 1 0 0 1000 1000",
"output": "No"
},
{
"input": "1 0 2 0 3 0",
"output": "No"
},
{
"input": "3 4 0 0 4 3",
"output": "Yes"
},
{
"input": "-1000000000 1 0 0 1000000000 1",
"output": "Yes"
},
{
"input": "49152 0 0 0 0 81920",
"output": "No"
},
{
"input": "1 -1 4 4 2 -3",
"output": "No"
},
{
"input": "-2 -2 1 4 -2 0",
"output": "No"
},
{
"input": "5 0 4 -2 0 1",
"output": "No"
},
{
"input": "-4 -3 2 -1 -3 4",
"output": "No"
},
{
"input": "-3 -3 5 2 3 -1",
"output": "No"
},
{
"input": "-1000000000 -1000000000 0 0 1000000000 999999999",
"output": "No"
},
{
"input": "-1000000000 -1000000000 0 0 1000000000 1000000000",
"output": "No"
},
{
"input": "-357531221 381512519 -761132895 -224448284 328888775 -237692564",
"output": "No"
},
{
"input": "264193194 -448876521 736684426 -633906160 -328597212 -47935734",
"output": "No"
},
{
"input": "419578772 -125025887 169314071 89851312 961404059 21419450",
"output": "No"
},
{
"input": "-607353321 -620687860 248029390 477864359 728255275 -264646027",
"output": "No"
},
{
"input": "299948862 -648908808 338174789 841279400 -850322448 350263551",
"output": "No"
},
{
"input": "48517753 416240699 7672672 272460100 -917845051 199790781",
"output": "No"
},
{
"input": "-947393823 -495674431 211535284 -877153626 -522763219 -778236665",
"output": "No"
},
{
"input": "-685673792 -488079395 909733355 385950193 -705890324 256550506",
"output": "No"
},
{
"input": "-326038504 547872194 49630307 713863100 303770000 -556852524",
"output": "No"
},
{
"input": "-706921242 -758563024 -588592101 -443440080 858751713 238854303",
"output": "No"
},
{
"input": "-1000000000 -1000000000 0 1000000000 1000000000 -1000000000",
"output": "Yes"
},
{
"input": "1000000000 1000000000 0 -1000000000 -1000000000 1000000000",
"output": "Yes"
},
{
"input": "-999999999 -1000000000 0 0 1000000000 999999999",
"output": "Yes"
},
{
"input": "-1000000000 -999999999 0 0 1000000000 999999999",
"output": "No"
},
{
"input": "-1 -1000000000 0 1000000000 1 -1000000000",
"output": "Yes"
},
{
"input": "0 1000000000 1 0 0 -1000000000",
"output": "Yes"
},
{
"input": "0 1000000000 0 0 0 -1000000000",
"output": "No"
},
{
"input": "0 1 1 2 2 3",
"output": "No"
},
{
"input": "999999999 1000000000 0 0 -1000000000 -999999999",
"output": "Yes"
},
{
"input": "0 0 1 1 2 0",
"output": "Yes"
},
{
"input": "0 0 1 1 2 2",
"output": "No"
},
{
"input": "1 1 2 2 3 3",
"output": "No"
},
{
"input": "0 2 0 3 0 4",
"output": "No"
},
{
"input": "1 1 1 2 1 3",
"output": "No"
},
{
"input": "0 0 3 4 3 9",
"output": "Yes"
},
{
"input": "589824 196608 262144 196608 0 0",
"output": "Yes"
},
{
"input": "0 0 1000000000 1 1000000000 -999999999",
"output": "No"
},
{
"input": "0 0 2 45 0 90",
"output": "Yes"
},
{
"input": "0 0 0 2 0 1",
"output": "No"
},
{
"input": "0 2 4 5 4 0",
"output": "Yes"
},
{
"input": "0 0 2 0 4 0",
"output": "No"
},
{
"input": "1 1 3 3 5 5",
"output": "No"
},
{
"input": "1 1 2 2 3 1",
"output": "Yes"
}
] | 1,508,530,392
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 46
| 61
| 5,529,600
|
def main():
ax, ay, bx, by, cx, cy = [int(i) for i in input().split()]
if ax*by + bx*cy + cx*ay - bx*ay - cx*by - ax*cy == 0:
print("No")
elif (bx - ax)**2 + (by - ay)**2 == (cx - bx)**2 + (cy - by)**2:
print("Yes")
else:
print("No")
main()
# 1508530390696
|
Title: Arpa and an exam about geometry
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Arpa is taking a geometry exam. Here is the last problem of the exam.
You are given three points *a*,<=*b*,<=*c*.
Find a point and an angle such that if we rotate the page around the point by the angle, the new position of *a* is the same as the old position of *b*, and the new position of *b* is the same as the old position of *c*.
Arpa is doubting if the problem has a solution or not (i.e. if there exists a point and an angle satisfying the condition). Help Arpa determine if the question has a solution or not.
Input Specification:
The only line contains six integers *a**x*,<=*a**y*,<=*b**x*,<=*b**y*,<=*c**x*,<=*c**y* (|*a**x*|,<=|*a**y*|,<=|*b**x*|,<=|*b**y*|,<=|*c**x*|,<=|*c**y*|<=≤<=109). It's guaranteed that the points are distinct.
Output Specification:
Print "Yes" if the problem has a solution, "No" otherwise.
You can print each letter in any case (upper or lower).
Demo Input:
['0 1 1 1 1 0\n', '1 1 0 0 1000 1000\n']
Demo Output:
['Yes\n', 'No\n']
Note:
In the first sample test, rotate the page around (0.5, 0.5) by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9d845923f4d356a48d8ede337db0303821311f0c.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test, you can't find any solution.
|
```python
def main():
ax, ay, bx, by, cx, cy = [int(i) for i in input().split()]
if ax*by + bx*cy + cx*ay - bx*ay - cx*by - ax*cy == 0:
print("No")
elif (bx - ax)**2 + (by - ay)**2 == (cx - bx)**2 + (cy - by)**2:
print("Yes")
else:
print("No")
main()
# 1508530390696
```
| 3
|
|
551
|
E
|
GukiZ and GukiZiana
|
PROGRAMMING
| 2,500
|
[
"binary search",
"data structures",
"implementation"
] | null | null |
Professor GukiZ was playing with arrays again and accidentally discovered new function, which he called *GukiZiana*. For given array *a*, indexed with integers from 1 to *n*, and number *y*, *GukiZiana*(*a*,<=*y*) represents maximum value of *j*<=-<=*i*, such that *a**j*<==<=*a**i*<==<=*y*. If there is no *y* as an element in *a*, then *GukiZiana*(*a*,<=*y*) is equal to <=-<=1. GukiZ also prepared a problem for you. This time, you have two types of queries:
1. First type has form 1 *l* *r* *x* and asks you to increase values of all *a**i* such that *l*<=≤<=*i*<=≤<=*r* by the non-negative integer *x*. 1. Second type has form 2 *y* and asks you to find value of *GukiZiana*(*a*,<=*y*).
For each query of type 2, print the answer and make GukiZ happy!
|
The first line contains two integers *n*, *q* (1<=≤<=*n*<=≤<=5<=*<=105,<=1<=≤<=*q*<=≤<=5<=*<=104), size of array *a*, and the number of queries.
The second line contains *n* integers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=109), forming an array *a*.
Each of next *q* lines contain either four or two numbers, as described in statement:
If line starts with 1, then the query looks like 1 *l* *r* *x* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*, 0<=≤<=*x*<=≤<=109), first type query.
If line starts with 2, then th query looks like 2 *y* (1<=≤<=*y*<=≤<=109), second type query.
|
For each query of type 2, print the value of *GukiZiana*(*a*,<=*y*), for *y* value for that query.
|
[
"4 3\n1 2 3 4\n1 1 2 1\n1 1 1 1\n2 3\n",
"2 3\n1 2\n1 2 2 1\n2 3\n2 4\n"
] |
[
"2\n",
"0\n-1\n"
] |
none
| 2,500
|
[
{
"input": "4 3\n1 2 3 4\n1 1 2 1\n1 1 1 1\n2 3",
"output": "2"
},
{
"input": "2 3\n1 2\n1 2 2 1\n2 3\n2 4",
"output": "0\n-1"
},
{
"input": "8 5\n1 1 1 2 1 3 1 1\n2 1\n1 1 8 1\n2 2\n1 2 5 2\n2 4",
"output": "7\n7\n4"
},
{
"input": "8 8\n1 9 1 9 2 3 4 5\n1 3 7 1\n2 6\n2 8\n2 9\n1 1 7 3\n2 11\n2 1000000000\n1 1 1 1",
"output": "-1\n-1\n0\n-1\n-1"
},
{
"input": "7 3\n2 4 5 2 3 2 8\n2 2\n1 3 4 1\n2 4",
"output": "5\n0"
},
{
"input": "2 2\n1000000000 1000000000\n1 1 2 1\n2 1000000000",
"output": "-1"
},
{
"input": "4 4\n1000000000 1000000000 1000000000 1000000000\n2 1000000000\n1 1 2 1000000000\n1 1 3 1000000000\n2 1000000000",
"output": "3\n0"
},
{
"input": "6 4\n1 9 9 2 3 4\n1 2 6 6\n1 5 6 5\n2 15\n2 1",
"output": "4\n0"
},
{
"input": "1 5\n1\n2 4\n2 1\n1 1 1 999\n2 1000\n2 1000",
"output": "-1\n0\n0\n0"
},
{
"input": "9 10\n1 1 2 1 3 3 7 8 9\n1 4 6 5\n2 8\n1 1 3 6\n2 1001212\n2 7\n1 3 3 1\n2 9\n2 8\n1 1 9 0\n2 6",
"output": "3\n-1\n6\n6\n3\n0"
},
{
"input": "1 1\n1\n2 1",
"output": "0"
},
{
"input": "1 1\n1\n2 5",
"output": "-1"
}
] | 1,537,294,388
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 0
| 140
| 0
|
n, q = map(int, input().split())
a = list(map(int, input().split()))
for _ in range(q):
inpt = list(map(int, input().split()))
if inpt[0] == 1:
for i in range(inpt[1], inpt[2] + 1):
a[i] += inpt[3]
else:
i = 0
j = len(a) - 1
while (a[i] != inpt[1]) and (i < len(a) - 1):
i += 1
while (a[j] != inpt[1]) and (j > 0):
j -= 1
if i > j:
print(-1)
else:
print(j - i)
|
Title: GukiZ and GukiZiana
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Professor GukiZ was playing with arrays again and accidentally discovered new function, which he called *GukiZiana*. For given array *a*, indexed with integers from 1 to *n*, and number *y*, *GukiZiana*(*a*,<=*y*) represents maximum value of *j*<=-<=*i*, such that *a**j*<==<=*a**i*<==<=*y*. If there is no *y* as an element in *a*, then *GukiZiana*(*a*,<=*y*) is equal to <=-<=1. GukiZ also prepared a problem for you. This time, you have two types of queries:
1. First type has form 1 *l* *r* *x* and asks you to increase values of all *a**i* such that *l*<=≤<=*i*<=≤<=*r* by the non-negative integer *x*. 1. Second type has form 2 *y* and asks you to find value of *GukiZiana*(*a*,<=*y*).
For each query of type 2, print the answer and make GukiZ happy!
Input Specification:
The first line contains two integers *n*, *q* (1<=≤<=*n*<=≤<=5<=*<=105,<=1<=≤<=*q*<=≤<=5<=*<=104), size of array *a*, and the number of queries.
The second line contains *n* integers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=109), forming an array *a*.
Each of next *q* lines contain either four or two numbers, as described in statement:
If line starts with 1, then the query looks like 1 *l* *r* *x* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*, 0<=≤<=*x*<=≤<=109), first type query.
If line starts with 2, then th query looks like 2 *y* (1<=≤<=*y*<=≤<=109), second type query.
Output Specification:
For each query of type 2, print the value of *GukiZiana*(*a*,<=*y*), for *y* value for that query.
Demo Input:
['4 3\n1 2 3 4\n1 1 2 1\n1 1 1 1\n2 3\n', '2 3\n1 2\n1 2 2 1\n2 3\n2 4\n']
Demo Output:
['2\n', '0\n-1\n']
Note:
none
|
```python
n, q = map(int, input().split())
a = list(map(int, input().split()))
for _ in range(q):
inpt = list(map(int, input().split()))
if inpt[0] == 1:
for i in range(inpt[1], inpt[2] + 1):
a[i] += inpt[3]
else:
i = 0
j = len(a) - 1
while (a[i] != inpt[1]) and (i < len(a) - 1):
i += 1
while (a[j] != inpt[1]) and (j > 0):
j -= 1
if i > j:
print(-1)
else:
print(j - i)
```
| 0
|
|
774
|
D
|
Lie or Truth
|
PROGRAMMING
| 1,500
|
[
"*special",
"constructive algorithms",
"implementation",
"sortings"
] | null | null |
Vasya has a sequence of cubes and exactly one integer is written on each cube. Vasya exhibited all his cubes in a row. So the sequence of numbers written on the cubes in the order from the left to the right equals to *a*1,<=*a*2,<=...,<=*a**n*.
While Vasya was walking, his little brother Stepan played with Vasya's cubes and changed their order, so now the sequence of numbers written on the cubes became equal to *b*1,<=*b*2,<=...,<=*b**n*.
Stepan said that he swapped only cubes which where on the positions between *l* and *r*, inclusive, and did not remove or add any other cubes (i. e. he said that he reordered cubes between positions *l* and *r*, inclusive, in some way).
Your task is to determine if it is possible that Stepan said the truth, or it is guaranteed that Stepan deceived his brother.
|
The first line contains three integers *n*, *l*, *r* (1<=≤<=*n*<=≤<=105, 1<=≤<=*l*<=≤<=*r*<=≤<=*n*) — the number of Vasya's cubes and the positions told by Stepan.
The second line contains the sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the sequence of integers written on cubes in the Vasya's order.
The third line contains the sequence *b*1,<=*b*2,<=...,<=*b**n* (1<=≤<=*b**i*<=≤<=*n*) — the sequence of integers written on cubes after Stepan rearranged their order.
It is guaranteed that Stepan did not remove or add other cubes, he only rearranged Vasya's cubes.
|
Print "LIE" (without quotes) if it is guaranteed that Stepan deceived his brother. In the other case, print "TRUTH" (without quotes).
|
[
"5 2 4\n3 4 2 3 1\n3 2 3 4 1\n",
"3 1 2\n1 2 3\n3 1 2\n",
"4 2 4\n1 1 1 1\n1 1 1 1\n"
] |
[
"TRUTH\n",
"LIE\n",
"TRUTH\n"
] |
In the first example there is a situation when Stepan said the truth. Initially the sequence of integers on the cubes was equal to [3, 4, 2, 3, 1]. Stepan could at first swap cubes on positions 2 and 3 (after that the sequence of integers on cubes became equal to [3, 2, 4, 3, 1]), and then swap cubes in positions 3 and 4 (after that the sequence of integers on cubes became equal to [3, 2, 3, 4, 1]).
In the second example it is not possible that Stepan said truth because he said that he swapped cubes only between positions 1 and 2, but we can see that it is guaranteed that he changed the position of the cube which was on the position 3 at first. So it is guaranteed that Stepan deceived his brother.
In the third example for any values *l* and *r* there is a situation when Stepan said the truth.
| 0
|
[
{
"input": "5 2 4\n3 4 2 3 1\n3 2 3 4 1",
"output": "TRUTH"
},
{
"input": "3 1 2\n1 2 3\n3 1 2",
"output": "LIE"
},
{
"input": "4 2 4\n1 1 1 1\n1 1 1 1",
"output": "TRUTH"
},
{
"input": "5 1 3\n2 2 2 1 2\n2 2 2 1 2",
"output": "TRUTH"
},
{
"input": "7 1 4\n2 5 5 5 4 3 4\n2 5 5 5 4 3 4",
"output": "TRUTH"
},
{
"input": "10 1 10\n6 7 6 1 10 10 9 5 3 9\n7 10 9 6 1 5 9 3 10 6",
"output": "TRUTH"
},
{
"input": "1 1 1\n1\n1",
"output": "TRUTH"
},
{
"input": "4 3 4\n1 2 3 4\n2 1 3 4",
"output": "LIE"
},
{
"input": "7 2 4\n1 2 3 4 5 7 6\n1 2 3 4 5 6 7",
"output": "LIE"
},
{
"input": "5 1 2\n1 2 3 4 5\n1 2 3 5 4",
"output": "LIE"
},
{
"input": "8 3 6\n5 3 1 1 1 1 3 5\n3 3 1 1 1 1 5 5",
"output": "LIE"
},
{
"input": "4 2 2\n2 1 2 2\n1 2 2 2",
"output": "LIE"
}
] | 1,686,493,729
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 52
| 140
| 19,046,400
|
import sys
input = lambda: sys.stdin.readline().rstrip()
from collections import deque,defaultdict,Counter
from itertools import permutations,combinations
from bisect import *
from heapq import *
from math import ceil,gcd,lcm,floor,comb
N,L,R = map(int,input().split())
A = list(map(int,input().split()))
B = list(map(int,input().split()))
a,b = sorted(A[L-1:R]),sorted(B[L-1:R])
num = 0
for i in range(L-1,R):
A[i] = a[num]
B[i] = b[num]
num+=1
if A==B:
print("TRUTH")
else:
print("LIE")
|
Title: Lie or Truth
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya has a sequence of cubes and exactly one integer is written on each cube. Vasya exhibited all his cubes in a row. So the sequence of numbers written on the cubes in the order from the left to the right equals to *a*1,<=*a*2,<=...,<=*a**n*.
While Vasya was walking, his little brother Stepan played with Vasya's cubes and changed their order, so now the sequence of numbers written on the cubes became equal to *b*1,<=*b*2,<=...,<=*b**n*.
Stepan said that he swapped only cubes which where on the positions between *l* and *r*, inclusive, and did not remove or add any other cubes (i. e. he said that he reordered cubes between positions *l* and *r*, inclusive, in some way).
Your task is to determine if it is possible that Stepan said the truth, or it is guaranteed that Stepan deceived his brother.
Input Specification:
The first line contains three integers *n*, *l*, *r* (1<=≤<=*n*<=≤<=105, 1<=≤<=*l*<=≤<=*r*<=≤<=*n*) — the number of Vasya's cubes and the positions told by Stepan.
The second line contains the sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the sequence of integers written on cubes in the Vasya's order.
The third line contains the sequence *b*1,<=*b*2,<=...,<=*b**n* (1<=≤<=*b**i*<=≤<=*n*) — the sequence of integers written on cubes after Stepan rearranged their order.
It is guaranteed that Stepan did not remove or add other cubes, he only rearranged Vasya's cubes.
Output Specification:
Print "LIE" (without quotes) if it is guaranteed that Stepan deceived his brother. In the other case, print "TRUTH" (without quotes).
Demo Input:
['5 2 4\n3 4 2 3 1\n3 2 3 4 1\n', '3 1 2\n1 2 3\n3 1 2\n', '4 2 4\n1 1 1 1\n1 1 1 1\n']
Demo Output:
['TRUTH\n', 'LIE\n', 'TRUTH\n']
Note:
In the first example there is a situation when Stepan said the truth. Initially the sequence of integers on the cubes was equal to [3, 4, 2, 3, 1]. Stepan could at first swap cubes on positions 2 and 3 (after that the sequence of integers on cubes became equal to [3, 2, 4, 3, 1]), and then swap cubes in positions 3 and 4 (after that the sequence of integers on cubes became equal to [3, 2, 3, 4, 1]).
In the second example it is not possible that Stepan said truth because he said that he swapped cubes only between positions 1 and 2, but we can see that it is guaranteed that he changed the position of the cube which was on the position 3 at first. So it is guaranteed that Stepan deceived his brother.
In the third example for any values *l* and *r* there is a situation when Stepan said the truth.
|
```python
import sys
input = lambda: sys.stdin.readline().rstrip()
from collections import deque,defaultdict,Counter
from itertools import permutations,combinations
from bisect import *
from heapq import *
from math import ceil,gcd,lcm,floor,comb
N,L,R = map(int,input().split())
A = list(map(int,input().split()))
B = list(map(int,input().split()))
a,b = sorted(A[L-1:R]),sorted(B[L-1:R])
num = 0
for i in range(L-1,R):
A[i] = a[num]
B[i] = b[num]
num+=1
if A==B:
print("TRUTH")
else:
print("LIE")
```
| 3
|
|
818
|
A
|
Diplomas and Certificates
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
There are *n* students who have taken part in an olympiad. Now it's time to award the students.
Some of them will receive diplomas, some wiil get certificates, and others won't receive anything. Students with diplomas and certificates are called winners. But there are some rules of counting the number of diplomas and certificates. The number of certificates must be exactly *k* times greater than the number of diplomas. The number of winners must not be greater than half of the number of all students (i.e. not be greater than half of *n*). It's possible that there are no winners.
You have to identify the maximum possible number of winners, according to these rules. Also for this case you have to calculate the number of students with diplomas, the number of students with certificates and the number of students who are not winners.
|
The first (and the only) line of input contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=1012), where *n* is the number of students and *k* is the ratio between the number of certificates and the number of diplomas.
|
Output three numbers: the number of students with diplomas, the number of students with certificates and the number of students who are not winners in case when the number of winners is maximum possible.
It's possible that there are no winners.
|
[
"18 2\n",
"9 10\n",
"1000000000000 5\n",
"1000000000000 499999999999\n"
] |
[
"3 6 9\n",
"0 0 9\n",
"83333333333 416666666665 500000000002\n",
"1 499999999999 500000000000\n"
] |
none
| 0
|
[
{
"input": "18 2",
"output": "3 6 9"
},
{
"input": "9 10",
"output": "0 0 9"
},
{
"input": "1000000000000 5",
"output": "83333333333 416666666665 500000000002"
},
{
"input": "1000000000000 499999999999",
"output": "1 499999999999 500000000000"
},
{
"input": "1 1",
"output": "0 0 1"
},
{
"input": "5 3",
"output": "0 0 5"
},
{
"input": "42 6",
"output": "3 18 21"
},
{
"input": "1000000000000 1000",
"output": "499500499 499500499000 500000000501"
},
{
"input": "999999999999 999999",
"output": "499999 499998500001 500000999999"
},
{
"input": "732577309725 132613",
"output": "2762066 366285858458 366288689201"
},
{
"input": "152326362626 15",
"output": "4760198832 71402982480 76163181314"
},
{
"input": "2 1",
"output": "0 0 2"
},
{
"input": "1000000000000 500000000000",
"output": "0 0 1000000000000"
},
{
"input": "100000000000 50000000011",
"output": "0 0 100000000000"
},
{
"input": "1000000000000 32416187567",
"output": "15 486242813505 513757186480"
},
{
"input": "1000000000000 7777777777",
"output": "64 497777777728 502222222208"
},
{
"input": "1000000000000 77777777777",
"output": "6 466666666662 533333333332"
},
{
"input": "100000000000 578485652",
"output": "86 49749766072 50250233842"
},
{
"input": "999999999999 10000000000",
"output": "49 490000000000 509999999950"
},
{
"input": "7 2",
"output": "1 2 4"
},
{
"input": "420506530901 752346673804",
"output": "0 0 420506530901"
},
{
"input": "960375521135 321688347872",
"output": "1 321688347872 638687173262"
},
{
"input": "1000000000000 1000000000000",
"output": "0 0 1000000000000"
},
{
"input": "99999999999 15253636363",
"output": "3 45760909089 54239090907"
},
{
"input": "19 2",
"output": "3 6 10"
},
{
"input": "999999999999 1000000000000",
"output": "0 0 999999999999"
},
{
"input": "1000000000000 5915587276",
"output": "84 496909331184 503090668732"
},
{
"input": "1000000000000 1000000006",
"output": "499 499000002994 500999996507"
},
{
"input": "549755813888 134217728",
"output": "2047 274743689216 275012122625"
},
{
"input": "99999999999 3333333",
"output": "14999 49996661667 50003323333"
},
{
"input": "9 1",
"output": "2 2 5"
},
{
"input": "1000000000000 250000000001",
"output": "1 250000000001 749999999998"
},
{
"input": "5 1",
"output": "1 1 3"
},
{
"input": "3107038133 596040207",
"output": "2 1192080414 1914957717"
},
{
"input": "1000000000000 73786977",
"output": "6776 499980556152 500019437072"
},
{
"input": "1000000000000 73786976",
"output": "6776 499980549376 500019443848"
},
{
"input": "1000000000000 25000000000",
"output": "19 475000000000 524999999981"
},
{
"input": "216929598879 768233755932",
"output": "0 0 216929598879"
},
{
"input": "1000000000000 250000000000",
"output": "1 250000000000 749999999999"
},
{
"input": "1000000000000 100000000001",
"output": "4 400000000004 599999999992"
},
{
"input": "100000000000 100000000001",
"output": "0 0 100000000000"
},
{
"input": "900000000000 100281800001",
"output": "4 401127200004 498872799992"
},
{
"input": "906028900004 109123020071",
"output": "4 436492080284 469536819716"
},
{
"input": "1000000000000 1",
"output": "250000000000 250000000000 500000000000"
}
] | 1,516,853,999
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 44
| 62
| 5,632,000
|
n, k = map(int,input().split())
d = 0
g = 0
nul = n
l = 0
r = n
while r-l!=1:
x = (l+r)//2
if x+x//k<=n//2:
if x%k==0:
d = x//k
g = d*k
nul = n - d - g
l = x
else:
r = x
d = l//k
g = d*k
nul = n - d - g
print(d,g,nul)
|
Title: Diplomas and Certificates
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* students who have taken part in an olympiad. Now it's time to award the students.
Some of them will receive diplomas, some wiil get certificates, and others won't receive anything. Students with diplomas and certificates are called winners. But there are some rules of counting the number of diplomas and certificates. The number of certificates must be exactly *k* times greater than the number of diplomas. The number of winners must not be greater than half of the number of all students (i.e. not be greater than half of *n*). It's possible that there are no winners.
You have to identify the maximum possible number of winners, according to these rules. Also for this case you have to calculate the number of students with diplomas, the number of students with certificates and the number of students who are not winners.
Input Specification:
The first (and the only) line of input contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=1012), where *n* is the number of students and *k* is the ratio between the number of certificates and the number of diplomas.
Output Specification:
Output three numbers: the number of students with diplomas, the number of students with certificates and the number of students who are not winners in case when the number of winners is maximum possible.
It's possible that there are no winners.
Demo Input:
['18 2\n', '9 10\n', '1000000000000 5\n', '1000000000000 499999999999\n']
Demo Output:
['3 6 9\n', '0 0 9\n', '83333333333 416666666665 500000000002\n', '1 499999999999 500000000000\n']
Note:
none
|
```python
n, k = map(int,input().split())
d = 0
g = 0
nul = n
l = 0
r = n
while r-l!=1:
x = (l+r)//2
if x+x//k<=n//2:
if x%k==0:
d = x//k
g = d*k
nul = n - d - g
l = x
else:
r = x
d = l//k
g = d*k
nul = n - d - g
print(d,g,nul)
```
| 3
|
|
918
|
A
|
Eleven
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
Eleven wants to choose a new name for herself. As a bunch of geeks, her friends suggested an algorithm to choose a name for her. Eleven wants her name to have exactly *n* characters.
Her friend suggested that her name should only consist of uppercase and lowercase letters 'O'. More precisely, they suggested that the *i*-th letter of her name should be 'O' (uppercase) if *i* is a member of Fibonacci sequence, and 'o' (lowercase) otherwise. The letters in the name are numbered from 1 to *n*. Fibonacci sequence is the sequence *f* where
- *f*1<==<=1, - *f*2<==<=1, - *f**n*<==<=*f**n*<=-<=2<=+<=*f**n*<=-<=1 (*n*<=><=2).
As her friends are too young to know what Fibonacci sequence is, they asked you to help Eleven determine her new name.
|
The first and only line of input contains an integer *n* (1<=≤<=*n*<=≤<=1000).
|
Print Eleven's new name on the first and only line of output.
|
[
"8\n",
"15\n"
] |
[
"OOOoOooO\n",
"OOOoOooOooooOoo\n"
] |
none
| 500
|
[
{
"input": "8",
"output": "OOOoOooO"
},
{
"input": "15",
"output": "OOOoOooOooooOoo"
},
{
"input": "85",
"output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooo"
},
{
"input": "381",
"output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooo"
},
{
"input": "805",
"output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo..."
},
{
"input": "1000",
"output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo..."
},
{
"input": "1",
"output": "O"
},
{
"input": "2",
"output": "OO"
},
{
"input": "3",
"output": "OOO"
},
{
"input": "5",
"output": "OOOoO"
},
{
"input": "17",
"output": "OOOoOooOooooOoooo"
},
{
"input": "49",
"output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooo"
},
{
"input": "256",
"output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooo"
},
{
"input": "512",
"output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo..."
},
{
"input": "933",
"output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo..."
},
{
"input": "61",
"output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooo"
},
{
"input": "781",
"output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo..."
},
{
"input": "999",
"output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo..."
}
] | 1,592,548,012
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 18
| 155
| 1,433,600
|
n=int(input())
f=0
s=1
lst=[]
while f<=(n+1):
lst.append(f)
f,s=s,f+s
for i in range(1,n+1):
if i in lst:
print('O',end='')
else:
print('o',end='')
print()
|
Title: Eleven
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Eleven wants to choose a new name for herself. As a bunch of geeks, her friends suggested an algorithm to choose a name for her. Eleven wants her name to have exactly *n* characters.
Her friend suggested that her name should only consist of uppercase and lowercase letters 'O'. More precisely, they suggested that the *i*-th letter of her name should be 'O' (uppercase) if *i* is a member of Fibonacci sequence, and 'o' (lowercase) otherwise. The letters in the name are numbered from 1 to *n*. Fibonacci sequence is the sequence *f* where
- *f*1<==<=1, - *f*2<==<=1, - *f**n*<==<=*f**n*<=-<=2<=+<=*f**n*<=-<=1 (*n*<=><=2).
As her friends are too young to know what Fibonacci sequence is, they asked you to help Eleven determine her new name.
Input Specification:
The first and only line of input contains an integer *n* (1<=≤<=*n*<=≤<=1000).
Output Specification:
Print Eleven's new name on the first and only line of output.
Demo Input:
['8\n', '15\n']
Demo Output:
['OOOoOooO\n', 'OOOoOooOooooOoo\n']
Note:
none
|
```python
n=int(input())
f=0
s=1
lst=[]
while f<=(n+1):
lst.append(f)
f,s=s,f+s
for i in range(1,n+1):
if i in lst:
print('O',end='')
else:
print('o',end='')
print()
```
| 3
|
|
794
|
B
|
Cutting Carrot
|
PROGRAMMING
| 1,200
|
[
"geometry",
"math"
] | null | null |
Igor the analyst has adopted *n* little bunnies. As we all know, bunnies love carrots. Thus, Igor has bought a carrot to be shared between his bunnies. Igor wants to treat all the bunnies equally, and thus he wants to cut the carrot into *n* pieces of equal area.
Formally, the carrot can be viewed as an isosceles triangle with base length equal to 1 and height equal to *h*. Igor wants to make *n*<=-<=1 cuts parallel to the base to cut the carrot into *n* pieces. He wants to make sure that all *n* pieces have the same area. Can you help Igor determine where to cut the carrot so that each piece have equal area?
|
The first and only line of input contains two space-separated integers, *n* and *h* (2<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=105).
|
The output should contain *n*<=-<=1 real numbers *x*1,<=*x*2,<=...,<=*x**n*<=-<=1. The number *x**i* denotes that the *i*-th cut must be made *x**i* units away from the apex of the carrot. In addition, 0<=<<=*x*1<=<<=*x*2<=<<=...<=<<=*x**n*<=-<=1<=<<=*h* must hold.
Your output will be considered correct if absolute or relative error of every number in your output doesn't exceed 10<=-<=6.
Formally, let your answer be *a*, and the jury's answer be *b*. Your answer is considered correct if .
|
[
"3 2\n",
"2 100000\n"
] |
[
"1.154700538379 1.632993161855\n",
"70710.678118654752\n"
] |
Definition of isosceles triangle: [https://en.wikipedia.org/wiki/Isosceles_triangle](https://en.wikipedia.org/wiki/Isosceles_triangle).
| 1,000
|
[
{
"input": "3 2",
"output": "1.154700538379 1.632993161855"
},
{
"input": "2 100000",
"output": "70710.678118654752"
},
{
"input": "1000 100000",
"output": "3162.277660168379 4472.135954999579 5477.225575051661 6324.555320336759 7071.067811865475 7745.966692414834 8366.600265340755 8944.271909999159 9486.832980505138 10000.000000000000 10488.088481701515 10954.451150103322 11401.754250991380 11832.159566199232 12247.448713915890 12649.110640673517 13038.404810405297 13416.407864998738 13784.048752090222 14142.135623730950 14491.376746189439 14832.396974191326 15165.750888103101 15491.933384829668 15811.388300841897 16124.515496597099 16431.676725154983 16733.2..."
},
{
"input": "2 1",
"output": "0.707106781187"
},
{
"input": "1000 1",
"output": "0.031622776602 0.044721359550 0.054772255751 0.063245553203 0.070710678119 0.077459666924 0.083666002653 0.089442719100 0.094868329805 0.100000000000 0.104880884817 0.109544511501 0.114017542510 0.118321595662 0.122474487139 0.126491106407 0.130384048104 0.134164078650 0.137840487521 0.141421356237 0.144913767462 0.148323969742 0.151657508881 0.154919333848 0.158113883008 0.161245154966 0.164316767252 0.167332005307 0.170293863659 0.173205080757 0.176068168617 0.178885438200 0.181659021246 0.184390889146 0..."
},
{
"input": "20 17",
"output": "3.801315561750 5.375872022286 6.584071688553 7.602631123499 8.500000000000 9.311283477588 10.057335631269 10.751744044572 11.403946685249 12.020815280171 12.607537428063 13.168143377105 13.705838172108 14.223220451079 14.722431864335 15.205262246999 15.673225577398 16.127616066859 16.569550386175"
},
{
"input": "999 1",
"output": "0.031638599858 0.044743737014 0.054799662435 0.063277199717 0.070746059996 0.077498425829 0.083707867056 0.089487474029 0.094915799575 0.100050037531 0.104933364623 0.109599324870 0.114074594073 0.118380800867 0.122535770349 0.126554399434 0.130449289063 0.134231211043 0.137909459498 0.141492119993 0.144986278734 0.148398187395 0.151733394554 0.154996851658 0.158192999292 0.161325838061 0.164398987305 0.167415734111 0.170379074505 0.173291748303 0.176156268782 0.178974948057 0.181749918935 0.184483153795 0..."
},
{
"input": "998 99999",
"output": "3165.413034717700 4476.570044210349 5482.656203071844 6330.826069435401 7078.078722492680 7753.646760213179 8374.895686665300 8953.140088420697 9496.239104153101 10009.914924893578 10498.487342658843 10965.312406143687 11413.059004696742 11843.891063542002 12259.591967329534 12661.652138870802 13051.332290848021 13429.710132631046 13797.715532900862 14156.157444985360 14505.744837393740 14847.103184390411 15180.787616204127 15507.293520426358 15827.065173588502 16140.502832606510 16447.968609215531 16749.7..."
},
{
"input": "574 29184",
"output": "1218.116624752432 1722.677051277028 2109.839883615525 2436.233249504864 2723.791577469041 2983.764177844748 3222.833656968322 3445.354102554056 3654.349874257297 3852.022989934325 4040.035795197963 4219.679767231051 4391.981950040022 4557.775066957079 4717.745401404559 4872.466499009729 5022.423508175150 5168.031153831084 5309.647268742708 5447.583154938083 5582.111638212139 5713.473414041731 5841.882108059006 5967.528355689497 6090.583123762161 6211.200439444432 6329.519650846576 6445.667313936643 6559.75..."
},
{
"input": "2 5713",
"output": "4039.701040918746"
},
{
"input": "937 23565",
"output": "769.834993893392 1088.711089153444 1333.393322867831 1539.669987786784 1721.403377803760 1885.702921177414 2036.791944396843 2177.422178306887 2309.504981680176 2434.432003204934 2553.253825229922 2666.786645735663 2775.679544129132 2880.458791498282 2981.558110676796 3079.339975573568 3174.110994119182 3266.133267460331 3355.632941582547 3442.806755607520 3527.827132142336 3610.846187821139 3691.998931463184 3771.405842354828 3849.174969466960 3925.403656108988 4000.179968603494 4073.583888793686 4145.688..."
},
{
"input": "693 39706",
"output": "1508.306216302128 2133.067107306117 2612.463000007259 3016.612432604256 3372.675230537060 3694.580605808168 3990.603149268227 4266.134214612233 4524.918648906384 4769.683052505315 5002.485788434792 5224.926000014517 5438.275401978402 5643.565095743912 5841.644856719264 6033.224865208513 6218.905845589392 6399.201321918350 6574.554372775177 6745.350461074120 6911.927407376938 7074.583247583148 7233.582498950279 7389.161211616337 7541.531081510641 7690.882829397851 7837.389000021776 7981.206298536455 8122.47..."
},
{
"input": "449 88550",
"output": "4178.932872810542 5909.903544975429 7238.124057127628 8357.865745621084 9344.377977012855 10236.253207728862 11056.417127089408 11819.807089950858 12536.798618431626 13214.946067032045 13859.952363194553 14476.248114255256 15067.356749640443 15636.135052384012 16184.937421313947 16715.731491242168 17230.181636963718 17729.710634926286 18215.546084421264 18688.755954025709 19150.276213793575 19600.932605874766 20041.458005232581 20472.506415457724 20894.664364052710 21308.460264455309 21714.372171382883 221..."
},
{
"input": "642 37394",
"output": "1475.823459881026 2087.129552632132 2556.201215516026 2951.646919762052 3300.041579082908 3615.014427137354 3904.661853880105 4174.259105264265 4427.470379643078 4666.963557534173 4894.752673229489 5112.402431032051 5321.157158133711 5522.025750238117 5715.839682061424 5903.293839524104 6084.976009853978 6261.388657896397 6432.965320127946 6600.083158165816 6763.072717296425 6922.225614943105 7077.800671741869 7230.028854274709 7379.117299405130 7525.252620551370 7668.603646548077 7809.323707760210 7947.55..."
},
{
"input": "961 53535",
"output": "1726.935483870968 2442.255582633666 2991.139999458060 3453.870967741935 3861.545134691976 4230.110754190240 4569.041820575576 4884.511165267332 5180.806451612903 5461.049501197232 5727.597037150849 5982.279998916119 6226.554436514989 6461.600909707837 6688.392369006905 6907.741935483871 7120.337408627144 7326.766747900998 7527.537256208063 7723.090269383951 7913.812575143900 8100.045409746687 8282.091632275692 8460.221508380480 8634.677419354839 8805.677730973862 8973.419998374179 9138.083641151152 9299.83..."
},
{
"input": "4 31901",
"output": "15950.500000000000 22557.413426632053 27627.076406127377"
},
{
"input": "4 23850",
"output": "11925.000000000000 16864.496731299158 20654.705880258862"
},
{
"input": "4 72694",
"output": "36347.000000000000 51402.420351574886 62954.850702705983"
},
{
"input": "4 21538",
"output": "10769.000000000000 15229.665853195861 18652.455146709240"
},
{
"input": "4 70383",
"output": "35191.500000000000 49768.296580252774 60953.465994560145"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "5 1",
"output": "0.447213595500 0.632455532034 0.774596669241 0.894427191000"
},
{
"input": "20 1",
"output": "0.223606797750 0.316227766017 0.387298334621 0.447213595500 0.500000000000 0.547722557505 0.591607978310 0.632455532034 0.670820393250 0.707106781187 0.741619848710 0.774596669241 0.806225774830 0.836660026534 0.866025403784 0.894427191000 0.921954445729 0.948683298051 0.974679434481"
},
{
"input": "775 1",
"output": "0.035921060405 0.050800050800 0.062217101684 0.071842120811 0.080321932890 0.087988269013 0.095038192662 0.101600101600 0.107763181216 0.113592366849 0.119136679436 0.124434203368 0.129515225161 0.134404301006 0.139121668728 0.143684241621 0.148106326235 0.152400152400 0.156576272252 0.160643865780 0.164610978351 0.168484707835 0.172271353843 0.175976538026 0.179605302027 0.183162187956 0.186651305051 0.190076385325 0.193440830330 0.196747750735 0.200000000000 0.203200203200 0.206350781829 0.209453975235 0..."
},
{
"input": "531 1",
"output": "0.043396303660 0.061371641193 0.075164602800 0.086792607321 0.097037084957 0.106298800691 0.114815827305 0.122743282386 0.130188910981 0.137231161599 0.143929256529 0.150329205601 0.156467598013 0.162374100149 0.168073161363 0.173585214641 0.178927543753 0.184114923580 0.189160102178 0.194074169913 0.198866846404 0.203546706606 0.208121361089 0.212597601381 0.216981518301 0.221278599182 0.225493808401 0.229631654609 0.233696247231 0.237691344271 0.241620392998 0.245486564773 0.249292785005 0.253041759057 0..."
},
{
"input": "724 1",
"output": "0.037164707312 0.052558833123 0.064371161313 0.074329414625 0.083102811914 0.091034569355 0.098328573097 0.105117666246 0.111494121937 0.117525123681 0.123261389598 0.128742322627 0.133999257852 0.139057601643 0.143938292487 0.148658829249 0.153234013794 0.157676499368 0.161997203441 0.166205623829 0.170310084440 0.174317928887 0.178235674883 0.182069138710 0.185823536562 0.189503567803 0.193113483940 0.196657146194 0.200138073886 0.203559485381 0.206924332929 0.210235332491 0.213494989396 0.216705620524 0..."
},
{
"input": "917 1",
"output": "0.033022909334 0.046701446249 0.057197356781 0.066045818668 0.073841470086 0.080889277691 0.087370405666 0.093402892499 0.099068728003 0.104427608461 0.109524599747 0.114394713561 0.119065792869 0.123560412643 0.127897177895 0.132091637337 0.136156943250 0.140104338748 0.143943524609 0.147682940172 0.151329981692 0.154891174376 0.158372309576 0.161778555382 0.165114546671 0.168384459091 0.171592070342 0.174740811332 0.177833809176 0.180873923568 0.183863777748 0.186805784998 0.189702171441 0.192554995756 0..."
},
{
"input": "458 100",
"output": "4.672693135160 6.608186004551 8.093341918275 9.345386270320 10.448459488214 11.445713905748 12.362783988552 13.216372009102 14.018079405480 14.776353114139 15.497569889795 16.186683836551 16.847634693328 17.483616785299 18.097262694412 18.690772540640 19.266007352363 19.824558013653 20.367797170339 20.896918976429 21.412969991171 21.916873521973 22.409449036367 22.891427811495 23.363465675800 23.826153477212 24.280025754826 24.725567977104 25.163222626003 25.593394344267 26.016454316384 26.432744018204 26...."
}
] | 1,647,695,984
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 46
| 0
|
from math import sqrt
n, h = map(int, input().split())
for i in range(1, n):
print(h*sqrt(i/n), end=' ' if i +1 < n else '\n')
|
Title: Cutting Carrot
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Igor the analyst has adopted *n* little bunnies. As we all know, bunnies love carrots. Thus, Igor has bought a carrot to be shared between his bunnies. Igor wants to treat all the bunnies equally, and thus he wants to cut the carrot into *n* pieces of equal area.
Formally, the carrot can be viewed as an isosceles triangle with base length equal to 1 and height equal to *h*. Igor wants to make *n*<=-<=1 cuts parallel to the base to cut the carrot into *n* pieces. He wants to make sure that all *n* pieces have the same area. Can you help Igor determine where to cut the carrot so that each piece have equal area?
Input Specification:
The first and only line of input contains two space-separated integers, *n* and *h* (2<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=105).
Output Specification:
The output should contain *n*<=-<=1 real numbers *x*1,<=*x*2,<=...,<=*x**n*<=-<=1. The number *x**i* denotes that the *i*-th cut must be made *x**i* units away from the apex of the carrot. In addition, 0<=<<=*x*1<=<<=*x*2<=<<=...<=<<=*x**n*<=-<=1<=<<=*h* must hold.
Your output will be considered correct if absolute or relative error of every number in your output doesn't exceed 10<=-<=6.
Formally, let your answer be *a*, and the jury's answer be *b*. Your answer is considered correct if .
Demo Input:
['3 2\n', '2 100000\n']
Demo Output:
['1.154700538379 1.632993161855\n', '70710.678118654752\n']
Note:
Definition of isosceles triangle: [https://en.wikipedia.org/wiki/Isosceles_triangle](https://en.wikipedia.org/wiki/Isosceles_triangle).
|
```python
from math import sqrt
n, h = map(int, input().split())
for i in range(1, n):
print(h*sqrt(i/n), end=' ' if i +1 < n else '\n')
```
| 3
|
|
864
|
B
|
Polycarp and Letters
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation",
"strings"
] | null | null |
Polycarp loves lowercase letters and dislikes uppercase ones. Once he got a string *s* consisting only of lowercase and uppercase Latin letters.
Let *A* be a set of positions in the string. Let's call it pretty if following conditions are met:
- letters on positions from *A* in the string are all distinct and lowercase; - there are no uppercase letters in the string which are situated between positions from *A* (i.e. there is no such *j* that *s*[*j*] is an uppercase letter, and *a*1<=<<=*j*<=<<=*a*2 for some *a*1 and *a*2 from *A*).
Write a program that will determine the maximum number of elements in a pretty set of positions.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=200) — length of string *s*.
The second line contains a string *s* consisting of lowercase and uppercase Latin letters.
|
Print maximum number of elements in pretty set of positions for string *s*.
|
[
"11\naaaaBaabAbA\n",
"12\nzACaAbbaazzC\n",
"3\nABC\n"
] |
[
"2\n",
"3\n",
"0\n"
] |
In the first example the desired positions might be 6 and 8 or 7 and 8. Positions 6 and 7 contain letters 'a', position 8 contains letter 'b'. The pair of positions 1 and 8 is not suitable because there is an uppercase letter 'B' between these position.
In the second example desired positions can be 7, 8 and 11. There are other ways to choose pretty set consisting of three elements.
In the third example the given string *s* does not contain any lowercase letters, so the answer is 0.
| 1,000
|
[
{
"input": "11\naaaaBaabAbA",
"output": "2"
},
{
"input": "12\nzACaAbbaazzC",
"output": "3"
},
{
"input": "3\nABC",
"output": "0"
},
{
"input": "1\na",
"output": "1"
},
{
"input": "2\naz",
"output": "2"
},
{
"input": "200\nXbTJZqcbpYuZQEoUrbxlPXAPCtVLrRExpQzxzqzcqsqzsiisswqitswzCtJQxOavicSdBIodideVRKHPojCNHmbnrLgwJlwOpyrJJIhrUePszxSjJGeUgTtOfewPQnPVWhZAtogRPrJLwyShNQaeNsvrJwjuuBOMPCeSckBMISQzGngfOmeyfDObncyeNsihYVtQbSEh",
"output": "8"
},
{
"input": "2\nAZ",
"output": "0"
},
{
"input": "28\nAabcBabcCBNMaaaaabbbbbcccccc",
"output": "3"
},
{
"input": "200\nrsgraosldglhdoorwhkrsehjpuxrjuwgeanjgezhekprzarelduuaxdnspzjuooguuwnzkowkuhzduakdrzpnslauejhrrkalwpurpuuswdgeadlhjwzjgegwpknepazwwleulppwrlgrgedlwdzuodzropsrrkxusjnuzshdkjrxxpgzanzdrpnggdwxarpwohxdepJ",
"output": "17"
},
{
"input": "1\nk",
"output": "1"
},
{
"input": "1\nH",
"output": "0"
},
{
"input": "2\nzG",
"output": "1"
},
{
"input": "2\ngg",
"output": "1"
},
{
"input": "2\nai",
"output": "2"
},
{
"input": "20\npEjVrKWLIFCZjIHgggVU",
"output": "1"
},
{
"input": "20\niFSiiigiYFSKmDnMGcgM",
"output": "2"
},
{
"input": "20\nedxedxxxCQiIVmYEUtLi",
"output": "3"
},
{
"input": "20\nprnchweyabjvzkoqiltm",
"output": "20"
},
{
"input": "35\nQLDZNKFXKVSVLUVHRTDPQYMSTDXBELXBOTS",
"output": "0"
},
{
"input": "35\nbvZWiitgxodztelnYUyljYGnCoWluXTvBLp",
"output": "10"
},
{
"input": "35\nBTexnaeplecllxwlanarpcollawHLVMHIIF",
"output": "10"
},
{
"input": "35\nhhwxqysolegsthsvfcqiryenbujbrrScobu",
"output": "20"
},
{
"input": "26\npbgfqosklxjuzmdheyvawrictn",
"output": "26"
},
{
"input": "100\nchMRWwymTDuZDZuSTvUmmuxvSscnTasyjlwwodhzcoifeahnbmcifyeobbydwparebduoLDCgHlOsPtVRbYGGQXfnkdvrWKIwCRl",
"output": "20"
},
{
"input": "100\nhXYLXKUMBrGkjqQJTGbGWAfmztqqapdbjbhcualhypgnaieKXmhzGMnqXVlcPesskfaEVgvWQTTShRRnEtFahWDyuBzySMpugxCM",
"output": "19"
},
{
"input": "100\nucOgELrgjMrFOgtHzqgvUgtHngKJxdMFKBjfcCppciqmGZXXoiSZibgpadshyljqrwxbomzeutvnhTLGVckZUmyiFPLlwuLBFito",
"output": "23"
},
{
"input": "200\nWTCKAKLVGXSYFVMVJDUYERXNMVNTGWXUGRFCGMYXJQGLODYZTUIDENHYEGFKXFIEUILAMESAXAWZXVCZPJPEYUXBITHMTZOTMKWITGRSFHODKVJHPAHVVWTCTHIVAWAREQXWMPUWQSTPPJFHKGKELBTPUYDAVIUMGASPUEDIODRYXIWCORHOSLIBLOZUNJPHHMXEXOAY",
"output": "0"
},
{
"input": "200\neLCCuYMPPwQoNlCpPOtKWJaQJmWfHeZCKiMSpILHSKjFOYGpRMzMCfMXdDuQdBGNsCNrHIVJzEFfBZcNMwNcFjOFVJvEtUQmLbFNKVHgNDyFkFVQhUTUQDgXhMjJZgFSSiHhMKuTgZQYJqAqKBpHoHddddddddddddddddXSSYNKNnRrKuOjAVKZlRLzCjExPdHaDHBT",
"output": "1"
},
{
"input": "200\nitSYxgOLlwOoAkkkkkzzzzzzzzkzkzkzkkkkkzkzzkzUDJSKybRPBvaIDsNuWImPJvrHkKiMeYukWmtHtgZSyQsgYanZvXNbKXBlFLSUcqRnGWSriAvKxsTkDJfROqaKdzXhvJsPEDATueCraWOGEvRDWjPwXuiNpWsEnCuhDcKWOQxjBkdBqmFatWFkgKsbZuLtRGtY",
"output": "2"
},
{
"input": "200\noggqoqqogoqoggggoggqgooqggogogooogqqgggoqgggqoqogogggogggqgooqgqggqqqoqgqgoooqgqogqoggoqqgqoqgoooqoogooqoogqoqoqqgoqgoqgggogqqqoqoggoqoqqoqggqoggooqqqoqggoggqqqqqqqqqgogqgggggooogogqgggqogqgoqoqogoooq",
"output": "3"
},
{
"input": "200\nCtclUtUnmqFniaLqGRmMoUMeLyFfAgWxIZxdrBarcRQprSOGcdUYsmDbooSuOvBLgrYlgaIjJtFgcxJKHGkCXpYfVKmUbouuIqGstFrrwJzYQqjjqqppqqqqqpqqqjpjjpjqjXRYkfPhGAatOigFuItkKxkjCBLdiNMVGjmdWNMgOOvmaJEdGsWNoaERrINNKqKeQajv",
"output": "3"
},
{
"input": "200\nmeZNrhqtSTSmktGQnnNOTcnyAMTKSixxKQKiagrMqRYBqgbRlsbJhvtNeHVUuMCyZLCnsIixRYrYEAkfQOxSVqXkrPqeCZQksInzRsRKBgvIqlGVPxPQnypknSXjgMjsjElcqGsaJRbegJVAKtWcHoOnzHqzhoKReqBBsOhZYLaYJhmqOMQsizdCsQfjUDHcTtHoeYwu",
"output": "4"
},
{
"input": "200\nvFAYTHJLZaivWzSYmiuDBDUFACDSVbkImnVaXBpCgrbgmTfXKJfoglIkZxWPSeVSFPnHZDNUAqLyhjLXSuAqGLskBlDxjxGPJyGdwzlPfIekwsblIrkxzfhJeNoHywdfAGlJzqXOfQaKceSqViVFTRJEGfACnsFeSFpOYisIHJciqTMNAmgeXeublTvfWoPnddtvKIyF",
"output": "6"
},
{
"input": "200\ngnDdkqJjYvduVYDSsswZDvoCouyaYZTfhmpSakERWLhufZtthWsfbQdTGwhKYjEcrqWBOyxBbiFhdLlIjChLOPiOpYmcrJgDtXsJfmHtLrabyGKOfHQRukEtTzwoqBHfmyVXPebfcpGQacLkGWFwerszjdHpTBXGssYXmGHlcCBgBXyGJqxbVhvDffLyCrZnxonABEXV",
"output": "7"
},
{
"input": "200\nBmggKNRZBXPtJqlJaXLdKKQLDJvXpDuQGupiRQfDwCJCJvAlDDGpPZNOvXkrdKOFOEFBVfrsZjWyHPoKGzXmTAyPJGEmxCyCXpeAdTwbrMtWLmlmGNqxvuxmqpmtpuhrmxxtrquSLFYVlnSYgRJDYHWgHBbziBLZRwCIJNvbtsEdLLxmTbnjkoqSPAuzEeTYLlmejOUH",
"output": "9"
},
{
"input": "200\nMkuxcDWdcnqsrlTsejehQKrTwoOBRCUAywqSnZkDLRmVBDVoOqdZHbrInQQyeRFAjiYYmHGrBbWgWstCPfLPRdNVDXBdqFJsGQfSXbufsiogybEhKDlWfPazIuhpONwGzZWaQNwVnmhTqWdewaklgjwaumXYDGwjSeEcYXjkVtLiYSWULEnTFukIlWQGWsXwWRMJGTcI",
"output": "10"
},
{
"input": "200\nOgMBgYeuMJdjPtLybvwmGDrQEOhliaabEtwulzNEjsfnaznXUMoBbbxkLEwSQzcLrlJdjJCLGVNBxorghPxTYCoqniySJMcilpsqpBAbqdzqRUDVaYOgqGhGrxlIJkyYgkOdTUgRZwpgIkeZFXojLXpDilzirHVVadiHaMrxhzodzpdvhvrzdzxbhmhdpxqqpoDegfFQ",
"output": "11"
},
{
"input": "200\nOLaJOtwultZLiZPSYAVGIbYvbIuZkqFZXwfsqpsavCDmBMStAuUFLBVknWDXNzmiuUYIsUMGxtoadWlPYPqvqSvpYdOiJRxFzGGnnmstniltvitnrmyrblnqyruylummmlsqtqitlbulvtuitiqimuintbimqyurviuntqnnvslynlNYMpYVKYwKVTbIUVdlNGrcFZON",
"output": "12"
},
{
"input": "200\nGAcmlaqfjSAQLvXlkhxujXgSbxdFAwnoxDuldDvYmpUhTWJdcEQSdARLrozJzIgFVCkzPUztWIpaGfiKeqzoXinEjVuoKqyBHmtFjBWcRdBmyjviNlGAIkpikjAimmBgayfphrstfbjexjbttzfzfzaysxfyrjazfhtpghnbbeffjhxrjxpttesgzrnrfbgzzsRsCgmz",
"output": "15"
},
{
"input": "200\nYRvIopNqSTYDhViTqCLMwEbTTIdHkoeuBmAJWhgtOgVxlcHSsavDNzMfpwTghkBvYEtCYQxicLUxdgAcaCzOOgbQYsfnaTXFlFxbeEiGwdNvxwHzkTdKtWlqzalwniDDBDipkxfflpaqkfkgfezbkxdvzemlfohwtgytzzywmwhvzUgPlPdeAVqTPAUZbogQheRXetvT",
"output": "20"
},
{
"input": "200\nNcYVomemswLCUqVRSDKHCknlBmqeSWhVyRzQrnZaOANnTGqsRFMjpczllcEVebqpxdavzppvztxsnfmtcharzqlginndyjkawzurqkxJLXiXKNZTIIxhSQghDpjwzatEqnLMTLxwoEKpHytvWkKFDUcZjLShCiVdocxRvvJtbXHCDGpJvMwRKWLhcTFtswdLUHkbhfau",
"output": "25"
},
{
"input": "200\nDxNZuvkTkQEqdWIkLzcKAwfqvZQiptnTazydSCTIfGjDhLMrlPZiKEsqIdDhgKPAlEvXyzNwWtYorotgkcwydpabjqnzubaksdchucxtkmjzfretdmvlxgklyvicrtftvztsbiUaQorfNIYUOdwQDRsKpxLUiLknbLbinilpPXPTTwLAnXVpMHBaAcKWgDBeOFabPtXU",
"output": "26"
},
{
"input": "4\nabbc",
"output": "3"
},
{
"input": "3\naaa",
"output": "1"
},
{
"input": "3\naba",
"output": "2"
},
{
"input": "3\nabb",
"output": "2"
},
{
"input": "3\nbba",
"output": "2"
},
{
"input": "3\nAaa",
"output": "1"
},
{
"input": "3\nAba",
"output": "2"
},
{
"input": "3\naBa",
"output": "1"
},
{
"input": "3\naAa",
"output": "1"
},
{
"input": "3\naAb",
"output": "1"
},
{
"input": "3\nAaA",
"output": "1"
},
{
"input": "5\naBacd",
"output": "3"
},
{
"input": "5\naAabc",
"output": "3"
}
] | 1,506,854,277
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 55
| 62
| 0
|
n=int(input())
s=input()+'ZZ'
j=0
m=0
past=set()
for x in range(n+1):
if s[x].islower() and s[x] not in past:
j+=1
past.add(s[x])
elif s[x].isupper():
m=max(m,j)
j=0
past.clear()
print(m)
|
Title: Polycarp and Letters
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp loves lowercase letters and dislikes uppercase ones. Once he got a string *s* consisting only of lowercase and uppercase Latin letters.
Let *A* be a set of positions in the string. Let's call it pretty if following conditions are met:
- letters on positions from *A* in the string are all distinct and lowercase; - there are no uppercase letters in the string which are situated between positions from *A* (i.e. there is no such *j* that *s*[*j*] is an uppercase letter, and *a*1<=<<=*j*<=<<=*a*2 for some *a*1 and *a*2 from *A*).
Write a program that will determine the maximum number of elements in a pretty set of positions.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=200) — length of string *s*.
The second line contains a string *s* consisting of lowercase and uppercase Latin letters.
Output Specification:
Print maximum number of elements in pretty set of positions for string *s*.
Demo Input:
['11\naaaaBaabAbA\n', '12\nzACaAbbaazzC\n', '3\nABC\n']
Demo Output:
['2\n', '3\n', '0\n']
Note:
In the first example the desired positions might be 6 and 8 or 7 and 8. Positions 6 and 7 contain letters 'a', position 8 contains letter 'b'. The pair of positions 1 and 8 is not suitable because there is an uppercase letter 'B' between these position.
In the second example desired positions can be 7, 8 and 11. There are other ways to choose pretty set consisting of three elements.
In the third example the given string *s* does not contain any lowercase letters, so the answer is 0.
|
```python
n=int(input())
s=input()+'ZZ'
j=0
m=0
past=set()
for x in range(n+1):
if s[x].islower() and s[x] not in past:
j+=1
past.add(s[x])
elif s[x].isupper():
m=max(m,j)
j=0
past.clear()
print(m)
```
| 3
|
|
217
|
A
|
Ice Skating
|
PROGRAMMING
| 1,200
|
[
"brute force",
"dfs and similar",
"dsu",
"graphs"
] | null | null |
Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created.
We assume that Bajtek can only heap up snow drifts at integer coordinates.
|
The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift.
Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct.
|
Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.
|
[
"2\n2 1\n1 2\n",
"2\n2 1\n4 1\n"
] |
[
"1\n",
"0\n"
] |
none
| 500
|
[
{
"input": "2\n2 1\n1 2",
"output": "1"
},
{
"input": "2\n2 1\n4 1",
"output": "0"
},
{
"input": "24\n171 35\n261 20\n4 206\n501 446\n961 912\n581 748\n946 978\n463 514\n841 889\n341 466\n842 967\n54 102\n235 261\n925 889\n682 672\n623 636\n268 94\n635 710\n474 510\n697 794\n586 663\n182 184\n806 663\n468 459",
"output": "21"
},
{
"input": "17\n660 646\n440 442\n689 618\n441 415\n922 865\n950 972\n312 366\n203 229\n873 860\n219 199\n344 308\n169 176\n961 992\n153 84\n201 230\n987 938\n834 815",
"output": "16"
},
{
"input": "11\n798 845\n722 911\n374 270\n629 537\n748 856\n831 885\n486 641\n751 829\n609 492\n98 27\n654 663",
"output": "10"
},
{
"input": "1\n321 88",
"output": "0"
},
{
"input": "9\n811 859\n656 676\n76 141\n945 951\n497 455\n18 55\n335 294\n267 275\n656 689",
"output": "7"
},
{
"input": "7\n948 946\n130 130\n761 758\n941 938\n971 971\n387 385\n509 510",
"output": "6"
},
{
"input": "6\n535 699\n217 337\n508 780\n180 292\n393 112\n732 888",
"output": "5"
},
{
"input": "14\n25 23\n499 406\n193 266\n823 751\n219 227\n101 138\n978 992\n43 74\n997 932\n237 189\n634 538\n774 740\n842 767\n742 802",
"output": "13"
},
{
"input": "12\n548 506\n151 198\n370 380\n655 694\n654 690\n407 370\n518 497\n819 827\n765 751\n802 771\n741 752\n653 662",
"output": "11"
},
{
"input": "40\n685 711\n433 403\n703 710\n491 485\n616 619\n288 282\n884 871\n367 352\n500 511\n977 982\n51 31\n576 564\n508 519\n755 762\n22 20\n368 353\n232 225\n953 955\n452 436\n311 330\n967 988\n369 364\n791 803\n150 149\n651 661\n118 93\n398 387\n748 766\n852 852\n230 228\n555 545\n515 519\n667 678\n867 862\n134 146\n859 863\n96 99\n486 469\n303 296\n780 786",
"output": "38"
},
{
"input": "3\n175 201\n907 909\n388 360",
"output": "2"
},
{
"input": "7\n312 298\n86 78\n73 97\n619 594\n403 451\n538 528\n71 86",
"output": "6"
},
{
"input": "19\n802 820\n368 248\n758 794\n455 378\n876 888\n771 814\n245 177\n586 555\n844 842\n364 360\n820 856\n731 624\n982 975\n825 856\n122 121\n862 896\n42 4\n792 841\n828 820",
"output": "16"
},
{
"input": "32\n643 877\n842 614\n387 176\n99 338\n894 798\n652 728\n611 648\n622 694\n579 781\n243 46\n322 305\n198 438\n708 579\n246 325\n536 459\n874 593\n120 277\n989 907\n223 110\n35 130\n761 692\n690 661\n518 766\n226 93\n678 597\n725 617\n661 574\n775 496\n56 416\n14 189\n358 359\n898 901",
"output": "31"
},
{
"input": "32\n325 327\n20 22\n72 74\n935 933\n664 663\n726 729\n785 784\n170 171\n315 314\n577 580\n984 987\n313 317\n434 435\n962 961\n55 54\n46 44\n743 742\n434 433\n617 612\n332 332\n883 886\n940 936\n793 792\n645 644\n611 607\n418 418\n465 465\n219 218\n167 164\n56 54\n403 405\n210 210",
"output": "29"
},
{
"input": "32\n652 712\n260 241\n27 154\n188 16\n521 351\n518 356\n452 540\n790 827\n339 396\n336 551\n897 930\n828 627\n27 168\n180 113\n134 67\n794 671\n812 711\n100 241\n686 813\n138 289\n384 506\n884 932\n913 959\n470 508\n730 734\n373 478\n788 862\n392 426\n148 68\n113 49\n713 852\n924 894",
"output": "29"
},
{
"input": "14\n685 808\n542 677\n712 747\n832 852\n187 410\n399 338\n626 556\n530 635\n267 145\n215 209\n559 684\n944 949\n753 596\n601 823",
"output": "13"
},
{
"input": "5\n175 158\n16 2\n397 381\n668 686\n957 945",
"output": "4"
},
{
"input": "5\n312 284\n490 509\n730 747\n504 497\n782 793",
"output": "4"
},
{
"input": "2\n802 903\n476 348",
"output": "1"
},
{
"input": "4\n325 343\n425 442\n785 798\n275 270",
"output": "3"
},
{
"input": "28\n462 483\n411 401\n118 94\n111 127\n5 6\n70 52\n893 910\n73 63\n818 818\n182 201\n642 633\n900 886\n893 886\n684 700\n157 173\n953 953\n671 660\n224 225\n832 801\n152 157\n601 585\n115 101\n739 722\n611 606\n659 642\n461 469\n702 689\n649 653",
"output": "25"
},
{
"input": "36\n952 981\n885 900\n803 790\n107 129\n670 654\n143 132\n66 58\n813 819\n849 837\n165 198\n247 228\n15 39\n619 618\n105 138\n868 855\n965 957\n293 298\n613 599\n227 212\n745 754\n723 704\n877 858\n503 487\n678 697\n592 595\n155 135\n962 982\n93 89\n660 673\n225 212\n967 987\n690 680\n804 813\n489 518\n240 221\n111 124",
"output": "34"
},
{
"input": "30\n89 3\n167 156\n784 849\n943 937\n144 95\n24 159\n80 120\n657 683\n585 596\n43 147\n909 964\n131 84\n345 389\n333 321\n91 126\n274 325\n859 723\n866 922\n622 595\n690 752\n902 944\n127 170\n426 383\n905 925\n172 284\n793 810\n414 510\n890 884\n123 24\n267 255",
"output": "29"
},
{
"input": "5\n664 666\n951 941\n739 742\n844 842\n2 2",
"output": "4"
},
{
"input": "3\n939 867\n411 427\n757 708",
"output": "2"
},
{
"input": "36\n429 424\n885 972\n442 386\n512 511\n751 759\n4 115\n461 497\n496 408\n8 23\n542 562\n296 331\n448 492\n412 395\n109 166\n622 640\n379 355\n251 262\n564 586\n66 115\n275 291\n666 611\n629 534\n510 567\n635 666\n738 803\n420 369\n92 17\n101 144\n141 92\n258 258\n184 235\n492 456\n311 210\n394 357\n531 512\n634 636",
"output": "34"
},
{
"input": "29\n462 519\n871 825\n127 335\n156 93\n576 612\n885 830\n634 779\n340 105\n744 795\n716 474\n93 139\n563 805\n137 276\n177 101\n333 14\n391 437\n873 588\n817 518\n460 597\n572 670\n140 303\n392 441\n273 120\n862 578\n670 639\n410 161\n544 577\n193 116\n252 195",
"output": "28"
},
{
"input": "23\n952 907\n345 356\n812 807\n344 328\n242 268\n254 280\n1000 990\n80 78\n424 396\n595 608\n755 813\n383 380\n55 56\n598 633\n203 211\n508 476\n600 593\n206 192\n855 882\n517 462\n967 994\n642 657\n493 488",
"output": "22"
},
{
"input": "10\n579 816\n806 590\n830 787\n120 278\n677 800\n16 67\n188 251\n559 560\n87 67\n104 235",
"output": "8"
},
{
"input": "23\n420 424\n280 303\n515 511\n956 948\n799 803\n441 455\n362 369\n299 289\n823 813\n982 967\n876 878\n185 157\n529 551\n964 989\n655 656\n1 21\n114 112\n45 56\n935 937\n1000 997\n934 942\n360 366\n648 621",
"output": "22"
},
{
"input": "23\n102 84\n562 608\n200 127\n952 999\n465 496\n322 367\n728 690\n143 147\n855 867\n861 866\n26 59\n300 273\n255 351\n192 246\n70 111\n365 277\n32 104\n298 319\n330 354\n241 141\n56 125\n315 298\n412 461",
"output": "22"
},
{
"input": "7\n429 506\n346 307\n99 171\n853 916\n322 263\n115 157\n906 924",
"output": "6"
},
{
"input": "3\n1 1\n2 1\n2 2",
"output": "0"
},
{
"input": "4\n1 1\n1 2\n2 1\n2 2",
"output": "0"
},
{
"input": "5\n1 1\n1 2\n2 2\n3 1\n3 3",
"output": "0"
},
{
"input": "6\n1 1\n1 2\n2 2\n3 1\n3 2\n3 3",
"output": "0"
},
{
"input": "20\n1 1\n2 2\n3 3\n3 9\n4 4\n5 2\n5 5\n5 7\n5 8\n6 2\n6 6\n6 9\n7 7\n8 8\n9 4\n9 7\n9 9\n10 2\n10 9\n10 10",
"output": "1"
},
{
"input": "21\n1 1\n1 9\n2 1\n2 2\n2 5\n2 6\n2 9\n3 3\n3 8\n4 1\n4 4\n5 5\n5 8\n6 6\n7 7\n8 8\n9 9\n10 4\n10 10\n11 5\n11 11",
"output": "1"
},
{
"input": "22\n1 1\n1 3\n1 4\n1 8\n1 9\n1 11\n2 2\n3 3\n4 4\n4 5\n5 5\n6 6\n6 8\n7 7\n8 3\n8 4\n8 8\n9 9\n10 10\n11 4\n11 9\n11 11",
"output": "3"
},
{
"input": "50\n1 1\n2 2\n2 9\n3 3\n4 4\n4 9\n4 16\n4 24\n5 5\n6 6\n7 7\n8 8\n8 9\n8 20\n9 9\n10 10\n11 11\n12 12\n13 13\n14 7\n14 14\n14 16\n14 25\n15 4\n15 6\n15 15\n15 22\n16 6\n16 16\n17 17\n18 18\n19 6\n19 19\n20 20\n21 21\n22 6\n22 22\n23 23\n24 6\n24 7\n24 8\n24 9\n24 24\n25 1\n25 3\n25 5\n25 7\n25 23\n25 24\n25 25",
"output": "7"
},
{
"input": "55\n1 1\n1 14\n2 2\n2 19\n3 1\n3 3\n3 8\n3 14\n3 23\n4 1\n4 4\n5 5\n5 8\n5 15\n6 2\n6 3\n6 4\n6 6\n7 7\n8 8\n8 21\n9 9\n10 1\n10 10\n11 9\n11 11\n12 12\n13 13\n14 14\n15 15\n15 24\n16 5\n16 16\n17 5\n17 10\n17 17\n17 18\n17 22\n17 27\n18 18\n19 19\n20 20\n21 20\n21 21\n22 22\n23 23\n24 14\n24 24\n25 25\n26 8\n26 11\n26 26\n27 3\n27 27\n28 28",
"output": "5"
},
{
"input": "3\n1 2\n2 1\n2 2",
"output": "0"
},
{
"input": "6\n4 4\n3 4\n5 4\n4 5\n4 3\n3 1",
"output": "0"
},
{
"input": "4\n1 1\n1 2\n2 1\n2 2",
"output": "0"
},
{
"input": "3\n1 1\n2 2\n1 2",
"output": "0"
},
{
"input": "8\n1 3\n1 1\n4 1\n2 2\n2 5\n5 9\n5 1\n5 4",
"output": "1"
},
{
"input": "10\n1 1\n1 2\n1 3\n1 4\n5 5\n6 6\n7 7\n8 8\n9 9\n100 100",
"output": "6"
},
{
"input": "7\n1 1\n2 2\n3 3\n4 4\n1 2\n2 3\n3 4",
"output": "0"
},
{
"input": "6\n1 1\n2 1\n2 2\n2 4\n4 3\n2 3",
"output": "0"
},
{
"input": "4\n3 1\n2 1\n2 2\n1 2",
"output": "0"
},
{
"input": "6\n1 1\n2 2\n2 1\n2 4\n4 3\n2 3",
"output": "0"
},
{
"input": "3\n1 2\n1 3\n1 4",
"output": "0"
},
{
"input": "4\n1 1\n2 2\n1 2\n2 1",
"output": "0"
},
{
"input": "4\n1 3\n2 1\n3 2\n3 1",
"output": "1"
},
{
"input": "7\n1 1\n1 2\n2 2\n3 3\n3 4\n4 4\n1 4",
"output": "0"
},
{
"input": "21\n12 12\n13 12\n12 11\n13 13\n10 10\n11 10\n11 11\n501 500\n501 501\n503 502\n500 500\n503 503\n502 501\n502 502\n700 700\n702 702\n703 702\n701 701\n702 701\n703 703\n701 700",
"output": "2"
},
{
"input": "6\n1 11\n6 8\n11 10\n1 10\n11 11\n6 9",
"output": "1"
},
{
"input": "4\n1 1\n2 2\n3 2\n3 1",
"output": "0"
},
{
"input": "3\n1 2\n3 4\n3 2",
"output": "0"
},
{
"input": "3\n1 1\n1 2\n2 2",
"output": "0"
},
{
"input": "4\n5 5\n5 4\n6 3\n6 4",
"output": "0"
},
{
"input": "3\n1 1\n2 2\n2 1",
"output": "0"
}
] | 1,625,408,805
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 11
| 154
| 0
|
n = int(input())
listx = []
listy = []
ans = 0
for _ in range(n):
x, y = map(int, input().split())
if x not in listx and y not in listy:
listx.append(x)
listy.append(y)
ans += 1
else:
listx.append(x)
listy.append(y)
print(ans -1)
|
Title: Ice Skating
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created.
We assume that Bajtek can only heap up snow drifts at integer coordinates.
Input Specification:
The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift.
Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct.
Output Specification:
Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.
Demo Input:
['2\n2 1\n1 2\n', '2\n2 1\n4 1\n']
Demo Output:
['1\n', '0\n']
Note:
none
|
```python
n = int(input())
listx = []
listy = []
ans = 0
for _ in range(n):
x, y = map(int, input().split())
if x not in listx and y not in listy:
listx.append(x)
listy.append(y)
ans += 1
else:
listx.append(x)
listy.append(y)
print(ans -1)
```
| 0
|
|
580
|
B
|
Kefa and Company
|
PROGRAMMING
| 1,500
|
[
"binary search",
"sortings",
"two pointers"
] | null | null |
Kefa wants to celebrate his first big salary by going to restaurant. However, he needs company.
Kefa has *n* friends, each friend will agree to go to the restaurant if Kefa asks. Each friend is characterized by the amount of money he has and the friendship factor in respect to Kefa. The parrot doesn't want any friend to feel poor compared to somebody else in the company (Kefa doesn't count). A friend feels poor if in the company there is someone who has at least *d* units of money more than he does. Also, Kefa wants the total friendship factor of the members of the company to be maximum. Help him invite an optimal company!
|
The first line of the input contains two space-separated integers, *n* and *d* (1<=≤<=*n*<=≤<=105, ) — the number of Kefa's friends and the minimum difference between the amount of money in order to feel poor, respectively.
Next *n* lines contain the descriptions of Kefa's friends, the (*i*<=+<=1)-th line contains the description of the *i*-th friend of type *m**i*, *s**i* (0<=≤<=*m**i*,<=*s**i*<=≤<=109) — the amount of money and the friendship factor, respectively.
|
Print the maximum total friendship factir that can be reached.
|
[
"4 5\n75 5\n0 100\n150 20\n75 1\n",
"5 100\n0 7\n11 32\n99 10\n46 8\n87 54\n"
] |
[
"100\n",
"111\n"
] |
In the first sample test the most profitable strategy is to form a company from only the second friend. At all other variants the total degree of friendship will be worse.
In the second sample test we can take all the friends.
| 1,250
|
[
{
"input": "4 5\n75 5\n0 100\n150 20\n75 1",
"output": "100"
},
{
"input": "5 100\n0 7\n11 32\n99 10\n46 8\n87 54",
"output": "111"
},
{
"input": "1 1000000000\n15 12",
"output": "12"
},
{
"input": "5 1\n5 9\n2 10\n8 5\n18 12\n1 1",
"output": "12"
},
{
"input": "3 3\n4 15\n0 17\n9 11",
"output": "17"
},
{
"input": "5 10\n8 90\n1009 1000000\n9 121\n10 298\n0 109092",
"output": "1000000"
},
{
"input": "5 9\n0 98\n2 1000000000\n8 1000000000\n5 999999999\n3 989898989",
"output": "3989899086"
},
{
"input": "4 2\n10909234 9\n10909236 8\n10909237 10\n10909235 98",
"output": "107"
},
{
"input": "3 1\n801 10101\n802 134509124\n801 1",
"output": "134509124"
},
{
"input": "4 1\n2 4\n2 2\n3 3\n3 3",
"output": "6"
},
{
"input": "8 5\n3 227589091\n12 131068951\n8 492784630\n20 918918112\n11 6972428\n20 585402296\n12 220234661\n1 225083234",
"output": "1504320408"
},
{
"input": "15 1234\n2738 322313356\n1160 970909702\n2594 902749351\n3126 324754476\n3151 177963947\n3424 396145897\n5578 737768323\n3423 687640543\n381 848813098\n1058 197211286\n936 650181776\n1025 776492538\n3598 142176544\n3595 680519527\n1191 32199940",
"output": "3634263641"
},
{
"input": "5 6\n5 11\n10 11\n11 11\n12 11\n100 1",
"output": "33"
},
{
"input": "7 6\n5 11\n9 11\n10 11\n11 11\n12 11\n13 11\n100 1",
"output": "55"
},
{
"input": "4 2\n1 1\n2 100\n3 100\n4 1",
"output": "200"
}
] | 1,688,651,771
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 0
| 0
|
def max_friendship_factor(n, d, friends):
max_friendship_factor = 0
cumulative_sum = 0
min_money = min(friends, key=lambda x: x[0])[0]
prefix_sums = [0]
for i in range(n):
cumulative_sum += friends[i][1]
prefix_sums.append(cumulative_sum)
left = 0
right = n
while left <= right:
mid = (left + right) // 2
i = mid
while i <= n and friends[i - 1][0] - min_money < d:
i += 1
if i <= n:
max_friendship_factor = max(max_friendship_factor, prefix_sums[i] - prefix_sums[mid])
left = mid + 1
else:
right = mid - 1
return max_friendship_factor
def main():
n, d = map(int, input().split())
friends = []
for _ in range(n):
money, friendship = map(int, input().split())
friends.append((money, friendship))
result = max_friendship_factor(n, d, friends)
print(result)
if __name__ == '__main__':
main()
|
Title: Kefa and Company
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kefa wants to celebrate his first big salary by going to restaurant. However, he needs company.
Kefa has *n* friends, each friend will agree to go to the restaurant if Kefa asks. Each friend is characterized by the amount of money he has and the friendship factor in respect to Kefa. The parrot doesn't want any friend to feel poor compared to somebody else in the company (Kefa doesn't count). A friend feels poor if in the company there is someone who has at least *d* units of money more than he does. Also, Kefa wants the total friendship factor of the members of the company to be maximum. Help him invite an optimal company!
Input Specification:
The first line of the input contains two space-separated integers, *n* and *d* (1<=≤<=*n*<=≤<=105, ) — the number of Kefa's friends and the minimum difference between the amount of money in order to feel poor, respectively.
Next *n* lines contain the descriptions of Kefa's friends, the (*i*<=+<=1)-th line contains the description of the *i*-th friend of type *m**i*, *s**i* (0<=≤<=*m**i*,<=*s**i*<=≤<=109) — the amount of money and the friendship factor, respectively.
Output Specification:
Print the maximum total friendship factir that can be reached.
Demo Input:
['4 5\n75 5\n0 100\n150 20\n75 1\n', '5 100\n0 7\n11 32\n99 10\n46 8\n87 54\n']
Demo Output:
['100\n', '111\n']
Note:
In the first sample test the most profitable strategy is to form a company from only the second friend. At all other variants the total degree of friendship will be worse.
In the second sample test we can take all the friends.
|
```python
def max_friendship_factor(n, d, friends):
max_friendship_factor = 0
cumulative_sum = 0
min_money = min(friends, key=lambda x: x[0])[0]
prefix_sums = [0]
for i in range(n):
cumulative_sum += friends[i][1]
prefix_sums.append(cumulative_sum)
left = 0
right = n
while left <= right:
mid = (left + right) // 2
i = mid
while i <= n and friends[i - 1][0] - min_money < d:
i += 1
if i <= n:
max_friendship_factor = max(max_friendship_factor, prefix_sums[i] - prefix_sums[mid])
left = mid + 1
else:
right = mid - 1
return max_friendship_factor
def main():
n, d = map(int, input().split())
friends = []
for _ in range(n):
money, friendship = map(int, input().split())
friends.append((money, friendship))
result = max_friendship_factor(n, d, friends)
print(result)
if __name__ == '__main__':
main()
```
| 0
|
|
611
|
A
|
New Year and Days
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015.
Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016.
Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month.
Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.
|
The only line of the input is in one of the following two formats:
- "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month.
|
Print one integer — the number of candies Limak will save in the year 2016.
|
[
"4 of week\n",
"30 of month\n"
] |
[
"52\n",
"11\n"
] |
Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday.
In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total.
In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
| 500
|
[
{
"input": "4 of week",
"output": "52"
},
{
"input": "30 of month",
"output": "11"
},
{
"input": "17 of month",
"output": "12"
},
{
"input": "31 of month",
"output": "7"
},
{
"input": "6 of week",
"output": "53"
},
{
"input": "1 of week",
"output": "52"
},
{
"input": "2 of week",
"output": "52"
},
{
"input": "3 of week",
"output": "52"
},
{
"input": "5 of week",
"output": "53"
},
{
"input": "7 of week",
"output": "52"
},
{
"input": "1 of month",
"output": "12"
},
{
"input": "2 of month",
"output": "12"
},
{
"input": "3 of month",
"output": "12"
},
{
"input": "4 of month",
"output": "12"
},
{
"input": "5 of month",
"output": "12"
},
{
"input": "6 of month",
"output": "12"
},
{
"input": "7 of month",
"output": "12"
},
{
"input": "8 of month",
"output": "12"
},
{
"input": "9 of month",
"output": "12"
},
{
"input": "10 of month",
"output": "12"
},
{
"input": "11 of month",
"output": "12"
},
{
"input": "12 of month",
"output": "12"
},
{
"input": "13 of month",
"output": "12"
},
{
"input": "14 of month",
"output": "12"
},
{
"input": "15 of month",
"output": "12"
},
{
"input": "16 of month",
"output": "12"
},
{
"input": "18 of month",
"output": "12"
},
{
"input": "19 of month",
"output": "12"
},
{
"input": "20 of month",
"output": "12"
},
{
"input": "21 of month",
"output": "12"
},
{
"input": "22 of month",
"output": "12"
},
{
"input": "23 of month",
"output": "12"
},
{
"input": "24 of month",
"output": "12"
},
{
"input": "25 of month",
"output": "12"
},
{
"input": "26 of month",
"output": "12"
},
{
"input": "27 of month",
"output": "12"
},
{
"input": "28 of month",
"output": "12"
},
{
"input": "29 of month",
"output": "12"
}
] | 1,451,491,821
| 3,921
|
Python 3
|
WRONG_ANSWER
|
PRETESTS
| 4
| 46
| 0
|
def month(a):
return {
'31': 7,
'30': 11,
}.get(a,12)
def week(a):
return{
'1': 53,
'2': 53,
}.get(a,52)
a,b,s=input().split()
if(s=="month"):
print(month(a))
else:
print(week(a))
|
Title: New Year and Days
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015.
Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016.
Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month.
Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.
Input Specification:
The only line of the input is in one of the following two formats:
- "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month.
Output Specification:
Print one integer — the number of candies Limak will save in the year 2016.
Demo Input:
['4 of week\n', '30 of month\n']
Demo Output:
['52\n', '11\n']
Note:
Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday.
In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total.
In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
|
```python
def month(a):
return {
'31': 7,
'30': 11,
}.get(a,12)
def week(a):
return{
'1': 53,
'2': 53,
}.get(a,52)
a,b,s=input().split()
if(s=="month"):
print(month(a))
else:
print(week(a))
```
| 0
|
|
723
|
A
|
The New Year: Meeting Friends
|
PROGRAMMING
| 800
|
[
"implementation",
"math",
"sortings"
] | null | null |
There are three friend living on the straight line *Ox* in Lineland. The first friend lives at the point *x*1, the second friend lives at the point *x*2, and the third friend lives at the point *x*3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year?
It's guaranteed that the optimal answer is always integer.
|
The first line of the input contains three distinct integers *x*1, *x*2 and *x*3 (1<=≤<=*x*1,<=*x*2,<=*x*3<=≤<=100) — the coordinates of the houses of the first, the second and the third friends respectively.
|
Print one integer — the minimum total distance the friends need to travel in order to meet together.
|
[
"7 1 4\n",
"30 20 10\n"
] |
[
"6\n",
"20\n"
] |
In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.
| 500
|
[
{
"input": "7 1 4",
"output": "6"
},
{
"input": "30 20 10",
"output": "20"
},
{
"input": "1 4 100",
"output": "99"
},
{
"input": "100 1 91",
"output": "99"
},
{
"input": "1 45 100",
"output": "99"
},
{
"input": "1 2 3",
"output": "2"
},
{
"input": "71 85 88",
"output": "17"
},
{
"input": "30 38 99",
"output": "69"
},
{
"input": "23 82 95",
"output": "72"
},
{
"input": "22 41 47",
"output": "25"
},
{
"input": "9 94 77",
"output": "85"
},
{
"input": "1 53 51",
"output": "52"
},
{
"input": "25 97 93",
"output": "72"
},
{
"input": "42 53 51",
"output": "11"
},
{
"input": "81 96 94",
"output": "15"
},
{
"input": "21 5 93",
"output": "88"
},
{
"input": "50 13 75",
"output": "62"
},
{
"input": "41 28 98",
"output": "70"
},
{
"input": "69 46 82",
"output": "36"
},
{
"input": "87 28 89",
"output": "61"
},
{
"input": "44 45 40",
"output": "5"
},
{
"input": "86 97 68",
"output": "29"
},
{
"input": "43 92 30",
"output": "62"
},
{
"input": "16 70 1",
"output": "69"
},
{
"input": "40 46 19",
"output": "27"
},
{
"input": "71 38 56",
"output": "33"
},
{
"input": "82 21 80",
"output": "61"
},
{
"input": "75 8 35",
"output": "67"
},
{
"input": "75 24 28",
"output": "51"
},
{
"input": "78 23 56",
"output": "55"
},
{
"input": "85 31 10",
"output": "75"
},
{
"input": "76 50 9",
"output": "67"
},
{
"input": "95 37 34",
"output": "61"
},
{
"input": "84 61 35",
"output": "49"
},
{
"input": "87 85 37",
"output": "50"
},
{
"input": "1 3 2",
"output": "2"
},
{
"input": "4 2 6",
"output": "4"
},
{
"input": "6 9 3",
"output": "6"
},
{
"input": "12 4 8",
"output": "8"
},
{
"input": "15 10 5",
"output": "10"
},
{
"input": "1 50 17",
"output": "49"
},
{
"input": "10 5 15",
"output": "10"
},
{
"input": "8 1 9",
"output": "8"
},
{
"input": "3 5 4",
"output": "2"
},
{
"input": "2 1 3",
"output": "2"
},
{
"input": "1 8 2",
"output": "7"
},
{
"input": "1 100 2",
"output": "99"
},
{
"input": "1 4 6",
"output": "5"
}
] | 1,686,238,453
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 48
| 46
| 0
|
x1, x2, x3 = map(int, input().split())
coordinates = [x1, x2, x3]
coordinates.sort()
median = coordinates[1]
total_distance = abs(x1 - median) + abs(x2 - median) + abs(x3 - median)
print(total_distance)
|
Title: The New Year: Meeting Friends
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are three friend living on the straight line *Ox* in Lineland. The first friend lives at the point *x*1, the second friend lives at the point *x*2, and the third friend lives at the point *x*3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year?
It's guaranteed that the optimal answer is always integer.
Input Specification:
The first line of the input contains three distinct integers *x*1, *x*2 and *x*3 (1<=≤<=*x*1,<=*x*2,<=*x*3<=≤<=100) — the coordinates of the houses of the first, the second and the third friends respectively.
Output Specification:
Print one integer — the minimum total distance the friends need to travel in order to meet together.
Demo Input:
['7 1 4\n', '30 20 10\n']
Demo Output:
['6\n', '20\n']
Note:
In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.
|
```python
x1, x2, x3 = map(int, input().split())
coordinates = [x1, x2, x3]
coordinates.sort()
median = coordinates[1]
total_distance = abs(x1 - median) + abs(x2 - median) + abs(x3 - median)
print(total_distance)
```
| 3
|
|
3
|
C
|
Tic-tac-toe
|
PROGRAMMING
| 1,800
|
[
"brute force",
"games",
"implementation"
] |
C. Tic-tac-toe
|
1
|
64
|
Certainly, everyone is familiar with tic-tac-toe game. The rules are very simple indeed. Two players take turns marking the cells in a 3<=×<=3 grid (one player always draws crosses, the other — noughts). The player who succeeds first in placing three of his marks in a horizontal, vertical or diagonal line wins, and the game is finished. The player who draws crosses goes first. If the grid is filled, but neither Xs, nor 0s form the required line, a draw is announced.
You are given a 3<=×<=3 grid, each grid cell is empty, or occupied by a cross or a nought. You have to find the player (first or second), whose turn is next, or print one of the verdicts below:
- illegal — if the given board layout can't appear during a valid game; - the first player won — if in the given board layout the first player has just won; - the second player won — if in the given board layout the second player has just won; - draw — if the given board layout has just let to a draw.
|
The input consists of three lines, each of the lines contains characters ".", "X" or "0" (a period, a capital letter X, or a digit zero).
|
Print one of the six verdicts: first, second, illegal, the first player won, the second player won or draw.
|
[
"X0X\n.0.\n.X.\n"
] |
[
"second\n"
] |
none
| 0
|
[
{
"input": "X0X\n.0.\n.X.",
"output": "second"
},
{
"input": "0.X\nXX.\n000",
"output": "illegal"
},
{
"input": "XXX\n.0.\n000",
"output": "illegal"
},
{
"input": "XXX\n...\n000",
"output": "illegal"
},
{
"input": "X.X\nX..\n00.",
"output": "second"
},
{
"input": "X.X\nX.0\n0.0",
"output": "first"
},
{
"input": "XXX\nX00\nX00",
"output": "the first player won"
},
{
"input": "000\nX.X\nX.X",
"output": "illegal"
},
{
"input": "XXX\n0.0\n0..",
"output": "illegal"
},
{
"input": "X0X\n0X0\nX0X",
"output": "the first player won"
},
{
"input": "XX.\nX0X\nX..",
"output": "illegal"
},
{
"input": "X0X\n0X0\nX..",
"output": "the first player won"
},
{
"input": "XX0\n0..\n000",
"output": "illegal"
},
{
"input": "XXX\n0..\n.0.",
"output": "the first player won"
},
{
"input": "XXX\nX..\n.00",
"output": "illegal"
},
{
"input": "X00\n0.0\nXX0",
"output": "illegal"
},
{
"input": "0.0\n0XX\n..0",
"output": "illegal"
},
{
"input": ".00\nX.X\n0..",
"output": "illegal"
},
{
"input": "..0\n.00\n.0X",
"output": "illegal"
},
{
"input": "..0\n0..\n00X",
"output": "illegal"
},
{
"input": "..0\n.XX\nX..",
"output": "illegal"
},
{
"input": "0.X\n0X0\n.00",
"output": "illegal"
},
{
"input": "..X\n0X0\n0X.",
"output": "first"
},
{
"input": "0X0\nX..\nX.0",
"output": "first"
},
{
"input": ".0.\nX.X\n0..",
"output": "first"
},
{
"input": "0X0\n00X\n.00",
"output": "illegal"
},
{
"input": ".0.\n.X0\nX..",
"output": "first"
},
{
"input": "00X\n0.X\n00X",
"output": "illegal"
},
{
"input": "00X\n0XX\n0X.",
"output": "the second player won"
},
{
"input": "X00\n..0\nX.X",
"output": "first"
},
{
"input": "X00\nX00\n.X0",
"output": "illegal"
},
{
"input": "X0X\n.X0\n0..",
"output": "first"
},
{
"input": "..0\nXXX\n000",
"output": "illegal"
},
{
"input": "XXX\n...\n.0.",
"output": "illegal"
},
{
"input": "0..\n000\nX0X",
"output": "illegal"
},
{
"input": ".00\n0X.\n0.0",
"output": "illegal"
},
{
"input": "X..\nX00\n0.0",
"output": "illegal"
},
{
"input": ".X0\nXX0\nX.X",
"output": "illegal"
},
{
"input": "X.X\n0.0\nX..",
"output": "second"
},
{
"input": "00X\n.00\n..0",
"output": "illegal"
},
{
"input": "..0\n0.X\n00.",
"output": "illegal"
},
{
"input": "0.X\nX0X\n.X0",
"output": "illegal"
},
{
"input": "0X.\n.X.\n0X0",
"output": "illegal"
},
{
"input": "00.\nX0.\n..X",
"output": "illegal"
},
{
"input": "..X\n.00\nXX.",
"output": "second"
},
{
"input": ".00\n.0.\n.X.",
"output": "illegal"
},
{
"input": "XX0\nX.0\nXX0",
"output": "illegal"
},
{
"input": "00.\n00.\nX.X",
"output": "illegal"
},
{
"input": "X00\nX.0\nX.0",
"output": "illegal"
},
{
"input": "0X.\n0XX\n000",
"output": "illegal"
},
{
"input": "00.\n00.\n.X.",
"output": "illegal"
},
{
"input": "X0X\n00.\n0.X",
"output": "illegal"
},
{
"input": "XX0\nXXX\n0X0",
"output": "illegal"
},
{
"input": "XX0\n..X\nXX0",
"output": "illegal"
},
{
"input": "0X.\n..X\nX..",
"output": "illegal"
},
{
"input": "...\nX0.\nXX0",
"output": "second"
},
{
"input": "..X\n.0.\n0..",
"output": "illegal"
},
{
"input": "00X\nXX.\n00X",
"output": "first"
},
{
"input": "..0\nXX0\n..X",
"output": "second"
},
{
"input": ".0.\n.00\nX00",
"output": "illegal"
},
{
"input": "X00\n.XX\n00.",
"output": "illegal"
},
{
"input": ".00\n0.X\n000",
"output": "illegal"
},
{
"input": "X0.\n..0\nX.0",
"output": "illegal"
},
{
"input": "X0X\n.XX\n00.",
"output": "second"
},
{
"input": "0X.\n00.\n.X.",
"output": "illegal"
},
{
"input": ".0.\n...\n0.0",
"output": "illegal"
},
{
"input": "..X\nX00\n0.0",
"output": "illegal"
},
{
"input": "0XX\n...\nX0.",
"output": "second"
},
{
"input": "X.X\n0X.\n.0X",
"output": "illegal"
},
{
"input": "XX0\nX.X\n00.",
"output": "second"
},
{
"input": ".0X\n.00\n00.",
"output": "illegal"
},
{
"input": ".XX\nXXX\n0..",
"output": "illegal"
},
{
"input": "XX0\n.X0\n.0.",
"output": "first"
},
{
"input": "X00\n0.X\nX..",
"output": "first"
},
{
"input": "X..\n.X0\nX0.",
"output": "second"
},
{
"input": ".0X\nX..\nXXX",
"output": "illegal"
},
{
"input": "X0X\nXXX\nX.X",
"output": "illegal"
},
{
"input": ".00\nX0.\n00X",
"output": "illegal"
},
{
"input": "0XX\n.X0\n0.0",
"output": "illegal"
},
{
"input": "00X\nXXX\n..0",
"output": "the first player won"
},
{
"input": "X0X\n...\n.X.",
"output": "illegal"
},
{
"input": ".X0\n...\n0X.",
"output": "first"
},
{
"input": "X..\n0X0\nX.0",
"output": "first"
},
{
"input": "..0\n.00\nX.0",
"output": "illegal"
},
{
"input": ".XX\n.0.\nX0X",
"output": "illegal"
},
{
"input": "00.\n0XX\n..0",
"output": "illegal"
},
{
"input": ".0.\n00.\n00.",
"output": "illegal"
},
{
"input": "00.\n000\nX.X",
"output": "illegal"
},
{
"input": "0X0\n.X0\n.X.",
"output": "illegal"
},
{
"input": "00X\n0..\n0..",
"output": "illegal"
},
{
"input": ".X.\n.X0\nX.0",
"output": "second"
},
{
"input": ".0.\n0X0\nX0X",
"output": "illegal"
},
{
"input": "...\nX.0\n0..",
"output": "illegal"
},
{
"input": "..0\nXX.\n00X",
"output": "first"
},
{
"input": "0.X\n.0X\nX00",
"output": "illegal"
},
{
"input": "..X\n0X.\n.0.",
"output": "first"
},
{
"input": "..X\nX.0\n.0X",
"output": "second"
},
{
"input": "X0.\n.0X\nX0X",
"output": "illegal"
},
{
"input": "...\n.0.\n.X0",
"output": "illegal"
},
{
"input": ".X0\nXX0\n0..",
"output": "first"
},
{
"input": "0X.\n...\nX..",
"output": "second"
},
{
"input": ".0.\n0.0\n0.X",
"output": "illegal"
},
{
"input": "XX.\n.X0\n.0X",
"output": "illegal"
},
{
"input": ".0.\nX0X\nX00",
"output": "illegal"
},
{
"input": "0X.\n.X0\nX..",
"output": "second"
},
{
"input": "..0\n0X.\n000",
"output": "illegal"
},
{
"input": "0.0\nX.X\nXX.",
"output": "illegal"
},
{
"input": ".X.\n.XX\nX0.",
"output": "illegal"
},
{
"input": "X.X\n.XX\n0X.",
"output": "illegal"
},
{
"input": "X.0\n0XX\n..0",
"output": "first"
},
{
"input": "X.0\n0XX\n.X0",
"output": "second"
},
{
"input": "X00\n0XX\n.X0",
"output": "first"
},
{
"input": "X00\n0XX\nXX0",
"output": "draw"
},
{
"input": "X00\n0XX\n0X0",
"output": "illegal"
},
{
"input": "XXX\nXXX\nXXX",
"output": "illegal"
},
{
"input": "000\n000\n000",
"output": "illegal"
},
{
"input": "XX0\n00X\nXX0",
"output": "draw"
},
{
"input": "X00\n00X\nXX0",
"output": "illegal"
},
{
"input": "X.0\n00.\nXXX",
"output": "the first player won"
},
{
"input": "X..\nX0.\nX0.",
"output": "the first player won"
},
{
"input": ".XX\n000\nXX0",
"output": "the second player won"
},
{
"input": "X0.\nX.X\nX00",
"output": "the first player won"
},
{
"input": "00X\nX00\nXXX",
"output": "the first player won"
},
{
"input": "XXX\n.00\nX0.",
"output": "the first player won"
},
{
"input": "XX0\n000\nXX.",
"output": "the second player won"
},
{
"input": ".X0\n0.0\nXXX",
"output": "the first player won"
},
{
"input": "0XX\nX00\n0XX",
"output": "draw"
},
{
"input": "0XX\nX0X\n00X",
"output": "the first player won"
},
{
"input": "XX0\n0XX\n0X0",
"output": "the first player won"
},
{
"input": "0X0\nX0X\nX0X",
"output": "draw"
},
{
"input": "X0X\n0XX\n00X",
"output": "the first player won"
},
{
"input": "0XX\nX0.\nX00",
"output": "the second player won"
},
{
"input": "X.0\n0X0\nXX0",
"output": "the second player won"
},
{
"input": "X0X\nX0X\n0X0",
"output": "draw"
},
{
"input": "X.0\n00X\n0XX",
"output": "the second player won"
},
{
"input": "00X\nX0X\n.X0",
"output": "the second player won"
},
{
"input": "X0X\n.00\nX0X",
"output": "the second player won"
},
{
"input": "0XX\nX00\nX0X",
"output": "draw"
},
{
"input": "000\nX0X\n.XX",
"output": "the second player won"
},
{
"input": "0.0\n0.X\nXXX",
"output": "the first player won"
},
{
"input": "X.0\nX0.\n0X.",
"output": "the second player won"
},
{
"input": "X0X\n0X0\n..X",
"output": "the first player won"
},
{
"input": "0X0\nXX0\n.X.",
"output": "the first player won"
},
{
"input": "X0.\n.X.\n0.X",
"output": "the first player won"
},
{
"input": "0XX\nX00\n.X0",
"output": "the second player won"
},
{
"input": "0.0\nXXX\n0.X",
"output": "the first player won"
},
{
"input": ".0X\n.X.\nX.0",
"output": "the first player won"
},
{
"input": "XXX\nX.0\n0.0",
"output": "the first player won"
},
{
"input": "XX0\nX..\nX00",
"output": "the first player won"
},
{
"input": "XXX\n00X\n00X",
"output": "the first player won"
},
{
"input": "X00\n00X\nXXX",
"output": "the first player won"
},
{
"input": "0X0\nX0X\n0X.",
"output": "the second player won"
},
{
"input": "XX0\nX00\n0X.",
"output": "the second player won"
},
{
"input": "..X\n0X0\nX..",
"output": "the first player won"
},
{
"input": "X0.\n00.\nXXX",
"output": "the first player won"
},
{
"input": "0.X\nX00\nXX0",
"output": "the second player won"
},
{
"input": "X0.\n0X.\n..X",
"output": "the first player won"
},
{
"input": "00X\nX0.\nXX0",
"output": "the second player won"
},
{
"input": "XX.\n000\n0XX",
"output": "the second player won"
},
{
"input": "..X\n0.X\n.0X",
"output": "the first player won"
},
{
"input": "X00\n.0X\n0XX",
"output": "the second player won"
},
{
"input": "00X\n0X.\nXX.",
"output": "the first player won"
},
{
"input": "X00\nXX.\n0.X",
"output": "the first player won"
},
{
"input": "XXX\n00X\n0X0",
"output": "the first player won"
},
{
"input": "X00\nXX0\n0XX",
"output": "the first player won"
},
{
"input": "0X0\nX00\nXXX",
"output": "the first player won"
},
{
"input": "XX0\nX00\n.X0",
"output": "the second player won"
}
] | 1,539,878,207
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 218
| 0
|
l1=input()
l2=input()
l3=input()
l = l1+l2+l3
co = 0
cx = 0
i = 0
while(i<9):
char = l[i]
if char == 'X':
cx=cx+1
if char == '0':
co=co+1
i=i+1
cd = 9 - (cx+co)
if (co <= cx-2 )or ((cx+cd+co) != 9) or (co>cx):
print("illegal")
elif ((l[0]+l[1]+l[2])=="000") or ((l[3]+l[4]+l[5])=="OO0") or ((l[6]+l[7]+l[8])=="000") or ((l[0]+l[3]+l[6])=="000") or ((l[1]+l[4]+l[7])=="000") or ((l[2]+l[5]+l[8])=="000") or ((l[0]+l[4]+l[8])=="000") or ((l[7]+l[4]+l[2])=="000"):
print("the second player won")
elif ((l[0]+l[1]+l[2])=="XXX") or ((l[3]+l[4]+l[5])=="XXX") or ((l[6]+l[7]+l[8])=="XXX") or ((l[0]+l[3]+l[6])=="XXX") or ((l[1]+l[4]+l[7])=="XXX") or ((l[2]+l[5]+l[8])=="XXX") or ((l[0]+l[4]+l[8])=="XXX") or ((l[7]+l[4]+l[2])=="XXX"):
print("the first player won")
elif cx==co and cd>0:
print("first")
elif cx>co and cd>0:
print("second")
else:
print("draw")
|
Title: Tic-tac-toe
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
Certainly, everyone is familiar with tic-tac-toe game. The rules are very simple indeed. Two players take turns marking the cells in a 3<=×<=3 grid (one player always draws crosses, the other — noughts). The player who succeeds first in placing three of his marks in a horizontal, vertical or diagonal line wins, and the game is finished. The player who draws crosses goes first. If the grid is filled, but neither Xs, nor 0s form the required line, a draw is announced.
You are given a 3<=×<=3 grid, each grid cell is empty, or occupied by a cross or a nought. You have to find the player (first or second), whose turn is next, or print one of the verdicts below:
- illegal — if the given board layout can't appear during a valid game; - the first player won — if in the given board layout the first player has just won; - the second player won — if in the given board layout the second player has just won; - draw — if the given board layout has just let to a draw.
Input Specification:
The input consists of three lines, each of the lines contains characters ".", "X" or "0" (a period, a capital letter X, or a digit zero).
Output Specification:
Print one of the six verdicts: first, second, illegal, the first player won, the second player won or draw.
Demo Input:
['X0X\n.0.\n.X.\n']
Demo Output:
['second\n']
Note:
none
|
```python
l1=input()
l2=input()
l3=input()
l = l1+l2+l3
co = 0
cx = 0
i = 0
while(i<9):
char = l[i]
if char == 'X':
cx=cx+1
if char == '0':
co=co+1
i=i+1
cd = 9 - (cx+co)
if (co <= cx-2 )or ((cx+cd+co) != 9) or (co>cx):
print("illegal")
elif ((l[0]+l[1]+l[2])=="000") or ((l[3]+l[4]+l[5])=="OO0") or ((l[6]+l[7]+l[8])=="000") or ((l[0]+l[3]+l[6])=="000") or ((l[1]+l[4]+l[7])=="000") or ((l[2]+l[5]+l[8])=="000") or ((l[0]+l[4]+l[8])=="000") or ((l[7]+l[4]+l[2])=="000"):
print("the second player won")
elif ((l[0]+l[1]+l[2])=="XXX") or ((l[3]+l[4]+l[5])=="XXX") or ((l[6]+l[7]+l[8])=="XXX") or ((l[0]+l[3]+l[6])=="XXX") or ((l[1]+l[4]+l[7])=="XXX") or ((l[2]+l[5]+l[8])=="XXX") or ((l[0]+l[4]+l[8])=="XXX") or ((l[7]+l[4]+l[2])=="XXX"):
print("the first player won")
elif cx==co and cd>0:
print("first")
elif cx>co and cd>0:
print("second")
else:
print("draw")
```
| 0
|
570
|
A
|
Elections
|
PROGRAMMING
| 1,100
|
[
"implementation"
] | null | null |
The country of Byalechinsk is running elections involving *n* candidates. The country consists of *m* cities. We know how many people in each city voted for each candidate.
The electoral system in the country is pretty unusual. At the first stage of elections the votes are counted for each city: it is assumed that in each city won the candidate who got the highest number of votes in this city, and if several candidates got the maximum number of votes, then the winner is the one with a smaller index.
At the second stage of elections the winner is determined by the same principle over the cities: the winner of the elections is the candidate who won in the maximum number of cities, and among those who got the maximum number of cities the winner is the one with a smaller index.
Determine who will win the elections.
|
The first line of the input contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of candidates and of cities, respectively.
Each of the next *m* lines contains *n* non-negative integers, the *j*-th number in the *i*-th line *a**ij* (1<=≤<=*j*<=≤<=*n*, 1<=≤<=*i*<=≤<=*m*, 0<=≤<=*a**ij*<=≤<=109) denotes the number of votes for candidate *j* in city *i*.
It is guaranteed that the total number of people in all the cities does not exceed 109.
|
Print a single number — the index of the candidate who won the elections. The candidates are indexed starting from one.
|
[
"3 3\n1 2 3\n2 3 1\n1 2 1\n",
"3 4\n10 10 3\n5 1 6\n2 2 2\n1 5 7\n"
] |
[
"2",
"1"
] |
Note to the first sample test. At the first stage city 1 chosen candidate 3, city 2 chosen candidate 2, city 3 chosen candidate 2. The winner is candidate 2, he gained 2 votes.
Note to the second sample test. At the first stage in city 1 candidates 1 and 2 got the same maximum number of votes, but candidate 1 has a smaller index, so the city chose candidate 1. City 2 chosen candidate 3. City 3 chosen candidate 1, due to the fact that everyone has the same number of votes, and 1 has the smallest index. City 4 chosen the candidate 3. On the second stage the same number of cities chose candidates 1 and 3. The winner is candidate 1, the one with the smaller index.
| 500
|
[
{
"input": "3 3\n1 2 3\n2 3 1\n1 2 1",
"output": "2"
},
{
"input": "3 4\n10 10 3\n5 1 6\n2 2 2\n1 5 7",
"output": "1"
},
{
"input": "1 3\n5\n3\n2",
"output": "1"
},
{
"input": "3 1\n1 2 3",
"output": "3"
},
{
"input": "3 1\n100 100 100",
"output": "1"
},
{
"input": "2 2\n1 2\n2 1",
"output": "1"
},
{
"input": "2 2\n2 1\n2 1",
"output": "1"
},
{
"input": "2 2\n1 2\n1 2",
"output": "2"
},
{
"input": "3 3\n0 0 0\n1 1 1\n2 2 2",
"output": "1"
},
{
"input": "1 1\n1000000000",
"output": "1"
},
{
"input": "5 5\n1 2 3 4 5\n2 3 4 5 6\n3 4 5 6 7\n4 5 6 7 8\n5 6 7 8 9",
"output": "5"
},
{
"input": "4 4\n1 3 1 3\n3 1 3 1\n2 0 0 2\n0 1 1 0",
"output": "1"
},
{
"input": "4 4\n1 4 1 3\n3 1 2 1\n1 0 0 2\n0 1 10 0",
"output": "1"
},
{
"input": "4 4\n1 4 1 300\n3 1 2 1\n5 0 0 2\n0 1 10 100",
"output": "1"
},
{
"input": "5 5\n15 45 15 300 10\n53 15 25 51 10\n5 50 50 2 10\n1000 1 10 100 10\n10 10 10 10 10",
"output": "1"
},
{
"input": "1 100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "1"
},
{
"input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "1 100\n859\n441\n272\n47\n355\n345\n612\n569\n545\n599\n410\n31\n720\n303\n58\n537\n561\n730\n288\n275\n446\n955\n195\n282\n153\n455\n996\n121\n267\n702\n769\n560\n353\n89\n990\n282\n801\n335\n573\n258\n722\n768\n324\n41\n249\n125\n557\n303\n664\n945\n156\n884\n985\n816\n433\n65\n976\n963\n85\n647\n46\n877\n665\n523\n714\n182\n377\n549\n994\n385\n184\n724\n447\n99\n766\n353\n494\n747\n324\n436\n915\n472\n879\n582\n928\n84\n627\n156\n972\n651\n159\n372\n70\n903\n590\n480\n184\n540\n270\n892",
"output": "1"
},
{
"input": "100 1\n439 158 619 538 187 153 973 781 610 475 94 947 449 531 220 51 788 118 189 501 54 434 465 902 280 635 688 214 737 327 682 690 683 519 261 923 254 388 529 659 662 276 376 735 976 664 521 285 42 147 187 259 407 977 879 465 522 17 550 701 114 921 577 265 668 812 232 267 135 371 586 201 608 373 771 358 101 412 195 582 199 758 507 882 16 484 11 712 916 699 783 618 405 124 904 257 606 610 230 718",
"output": "54"
},
{
"input": "1 99\n511\n642\n251\n30\n494\n128\n189\n324\n884\n656\n120\n616\n959\n328\n411\n933\n895\n350\n1\n838\n996\n761\n619\n131\n824\n751\n707\n688\n915\n115\n244\n476\n293\n986\n29\n787\n607\n259\n756\n864\n394\n465\n303\n387\n521\n582\n485\n355\n299\n997\n683\n472\n424\n948\n339\n383\n285\n957\n591\n203\n866\n79\n835\n980\n344\n493\n361\n159\n160\n947\n46\n362\n63\n553\n793\n754\n429\n494\n523\n227\n805\n313\n409\n243\n927\n350\n479\n971\n825\n460\n544\n235\n660\n327\n216\n729\n147\n671\n738",
"output": "1"
},
{
"input": "99 1\n50 287 266 159 551 198 689 418 809 43 691 367 160 664 86 805 461 55 127 950 576 351 721 493 972 560 934 885 492 92 321 759 767 989 883 7 127 413 404 604 80 645 666 874 371 718 893 158 722 198 563 293 134 255 742 913 252 378 859 721 502 251 839 284 133 209 962 514 773 124 205 903 785 859 911 93 861 786 747 213 690 69 942 697 211 203 284 961 351 137 962 952 408 249 238 850 944 40 346",
"output": "34"
},
{
"input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2",
"output": "100"
},
{
"input": "1 1\n0",
"output": "1"
},
{
"input": "2 1\n0 0",
"output": "1"
},
{
"input": "2 2\n0 0\n0 0",
"output": "1"
},
{
"input": "2 2\n1 2\n0 0",
"output": "1"
},
{
"input": "3 3\n0 0 0\n0 0 0\n0 0 0",
"output": "1"
},
{
"input": "2 3\n0 0\n0 0\n0 1",
"output": "1"
},
{
"input": "3 2\n1 1 3\n0 0 0",
"output": "1"
},
{
"input": "3 4\n1 10 3\n0 0 0\n0 0 0\n0 0 0",
"output": "1"
},
{
"input": "2 4\n2 1\n1 2\n0 0\n1 2",
"output": "1"
},
{
"input": "2 2\n0 1\n0 1",
"output": "2"
},
{
"input": "2 3\n1 2\n0 0\n2 1",
"output": "1"
},
{
"input": "2 2\n0 0\n4 5",
"output": "1"
},
{
"input": "3 2\n10 15 20\n0 0 0",
"output": "1"
},
{
"input": "3 4\n0 0 0\n0 0 0\n0 0 0\n1 2 3",
"output": "1"
},
{
"input": "3 3\n0 0 0\n0 0 0\n0 0 1",
"output": "1"
},
{
"input": "3 3\n0 0 0\n1 2 3\n1 3 2",
"output": "1"
},
{
"input": "3 1\n0 0 0",
"output": "1"
},
{
"input": "3 3\n0 0 1\n0 0 0\n0 0 0",
"output": "1"
}
] | 1,552,714,174
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 62
| 109
| 0
|
m, n = input().split()
cand = []
for i in range (int(m)):
cand.append(0)
for i in range (int(n)):
a = [int(x) for x in input().split()]
cand[a.index(max(a))] += 1
print(cand.index(max(cand)) + 1)
|
Title: Elections
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The country of Byalechinsk is running elections involving *n* candidates. The country consists of *m* cities. We know how many people in each city voted for each candidate.
The electoral system in the country is pretty unusual. At the first stage of elections the votes are counted for each city: it is assumed that in each city won the candidate who got the highest number of votes in this city, and if several candidates got the maximum number of votes, then the winner is the one with a smaller index.
At the second stage of elections the winner is determined by the same principle over the cities: the winner of the elections is the candidate who won in the maximum number of cities, and among those who got the maximum number of cities the winner is the one with a smaller index.
Determine who will win the elections.
Input Specification:
The first line of the input contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of candidates and of cities, respectively.
Each of the next *m* lines contains *n* non-negative integers, the *j*-th number in the *i*-th line *a**ij* (1<=≤<=*j*<=≤<=*n*, 1<=≤<=*i*<=≤<=*m*, 0<=≤<=*a**ij*<=≤<=109) denotes the number of votes for candidate *j* in city *i*.
It is guaranteed that the total number of people in all the cities does not exceed 109.
Output Specification:
Print a single number — the index of the candidate who won the elections. The candidates are indexed starting from one.
Demo Input:
['3 3\n1 2 3\n2 3 1\n1 2 1\n', '3 4\n10 10 3\n5 1 6\n2 2 2\n1 5 7\n']
Demo Output:
['2', '1']
Note:
Note to the first sample test. At the first stage city 1 chosen candidate 3, city 2 chosen candidate 2, city 3 chosen candidate 2. The winner is candidate 2, he gained 2 votes.
Note to the second sample test. At the first stage in city 1 candidates 1 and 2 got the same maximum number of votes, but candidate 1 has a smaller index, so the city chose candidate 1. City 2 chosen candidate 3. City 3 chosen candidate 1, due to the fact that everyone has the same number of votes, and 1 has the smallest index. City 4 chosen the candidate 3. On the second stage the same number of cities chose candidates 1 and 3. The winner is candidate 1, the one with the smaller index.
|
```python
m, n = input().split()
cand = []
for i in range (int(m)):
cand.append(0)
for i in range (int(n)):
a = [int(x) for x in input().split()]
cand[a.index(max(a))] += 1
print(cand.index(max(cand)) + 1)
```
| 3
|
|
1,007
|
A
|
Reorder the Array
|
PROGRAMMING
| 1,300
|
[
"combinatorics",
"data structures",
"math",
"sortings",
"two pointers"
] | null | null |
You are given an array of integers. Vasya can permute (change order) its integers. He wants to do it so that as many as possible integers will become on a place where a smaller integer used to stand. Help Vasya find the maximal number of such integers.
For instance, if we are given an array $[10, 20, 30, 40]$, we can permute it so that it becomes $[20, 40, 10, 30]$. Then on the first and the second positions the integers became larger ($20>10$, $40>20$) and did not on the third and the fourth, so for this permutation, the number that Vasya wants to maximize equals $2$. Read the note for the first example, there is one more demonstrative test case.
Help Vasya to permute integers in such way that the number of positions in a new array, where integers are greater than in the original one, is maximal.
|
The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the length of the array.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array.
|
Print a single integer — the maximal number of the array's elements which after a permutation will stand on the position where a smaller element stood in the initial array.
|
[
"7\n10 1 1 1 5 5 3\n",
"5\n1 1 1 1 1\n"
] |
[
"4\n",
"0\n"
] |
In the first sample, one of the best permutations is $[1, 5, 5, 3, 10, 1, 1]$. On the positions from second to fifth the elements became larger, so the answer for this permutation is 4.
In the second sample, there is no way to increase any element with a permutation, so the answer is 0.
| 500
|
[
{
"input": "7\n10 1 1 1 5 5 3",
"output": "4"
},
{
"input": "5\n1 1 1 1 1",
"output": "0"
},
{
"input": "6\n300000000 200000000 300000000 200000000 1000000000 300000000",
"output": "3"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "9"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "7\n3 5 2 2 5 2 4",
"output": "4"
},
{
"input": "5\n1 5 4 2 3",
"output": "4"
}
] | 1,664,990,151
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 33
| 93
| 20,070,400
|
# from heapq import *
# from collections import deque
def lets_do_it():
n = int(input())
count = {}
for a in input().split():
a = int(a)
count[a] = count.get(a, 0) + 1
max_val = 0
for value in count.values():
max_val = max(max_val, value)
print(n - max_val)
def main():
# test_cases = int(input())
test_cases = 1
while test_cases:
lets_do_it()
test_cases -= 1
main()
|
Title: Reorder the Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given an array of integers. Vasya can permute (change order) its integers. He wants to do it so that as many as possible integers will become on a place where a smaller integer used to stand. Help Vasya find the maximal number of such integers.
For instance, if we are given an array $[10, 20, 30, 40]$, we can permute it so that it becomes $[20, 40, 10, 30]$. Then on the first and the second positions the integers became larger ($20>10$, $40>20$) and did not on the third and the fourth, so for this permutation, the number that Vasya wants to maximize equals $2$. Read the note for the first example, there is one more demonstrative test case.
Help Vasya to permute integers in such way that the number of positions in a new array, where integers are greater than in the original one, is maximal.
Input Specification:
The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the length of the array.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array.
Output Specification:
Print a single integer — the maximal number of the array's elements which after a permutation will stand on the position where a smaller element stood in the initial array.
Demo Input:
['7\n10 1 1 1 5 5 3\n', '5\n1 1 1 1 1\n']
Demo Output:
['4\n', '0\n']
Note:
In the first sample, one of the best permutations is $[1, 5, 5, 3, 10, 1, 1]$. On the positions from second to fifth the elements became larger, so the answer for this permutation is 4.
In the second sample, there is no way to increase any element with a permutation, so the answer is 0.
|
```python
# from heapq import *
# from collections import deque
def lets_do_it():
n = int(input())
count = {}
for a in input().split():
a = int(a)
count[a] = count.get(a, 0) + 1
max_val = 0
for value in count.values():
max_val = max(max_val, value)
print(n - max_val)
def main():
# test_cases = int(input())
test_cases = 1
while test_cases:
lets_do_it()
test_cases -= 1
main()
```
| 3
|
Subsets and Splits
Successful Python Submissions
Retrieves all records from the train dataset where the verdict is 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Retrieves records of users with a rating of 1600 or higher and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a rating above 2000 and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a 'OK' verdict, providing a basic overview of a specific category within the dataset.