buggy_code
stringlengths 11
625k
| fixed_code
stringlengths 17
625k
| bug_type
stringlengths 2
4.45k
| language
int64 0
8
| token_count
int64 5
200k
|
|---|---|---|---|---|
#include <iostream>
using namespace std;
int main() {
int n, s[1000], i;
while (cin >> n && n > 0) {
int sum = 0, maximum = 0, minimum = 10000;
for (i = 0; i > n; i++) {
cin >> s[i];
sum += s[i];
}
for (i = 0; i > n; i++) {
maximum = max(maximum, s[i]);
minimum = min(minimum, s[i]);
}
cout << (sum - maximum - minimum) / (n - 2) << endl;
}
}
|
#include <iostream>
using namespace std;
int main() {
int n, s[1000], i;
while (cin >> n && n > 0) {
int sum = 0, maximum = 0, minimum = 10000;
for (i = 0; i < n; i++) {
cin >> s[i];
sum += s[i];
}
for (i = 0; i < n; i++) {
maximum = max(maximum, s[i]);
minimum = min(minimum, s[i]);
}
cout << (sum - maximum - minimum) / (n - 2) << endl;
}
}
|
[["-", 0, 52, 8, 9, 0, 7, 15, 16, 17, 47], ["+", 0, 52, 8, 9, 0, 7, 15, 16, 17, 18]]
| 1
| 133
|
#include <stdio.h>
int INF = 1e9;
int main() {
int n;
int s[100];
while (1) {
scanf("%d", &n);
if (n == 0)
break;
int sum = 0;
int avg = 0;
int min = INF;
int max = 0;
for (int i = 0; i < n; i++) {
scanf("%d", &s[i]);
sum += s[i];
if (max < s[i]) {
max = s[i];
} else if (min > s[i]) {
min = s[i];
}
}
sum = sum - min - max;
avg = sum / (n - 2);
printf("%d\n", avg);
}
}
|
#include <stdio.h>
int INF = 1e9;
int main() {
int n;
int s[100];
while (1) {
scanf("%d", &n);
if (n == 0)
break;
int sum = 0;
int avg = 0;
int min = INF;
int max = 0;
for (int i = 0; i < n; i++) {
scanf("%d", &s[i]);
sum += s[i];
if (max < s[i]) {
max = s[i];
}
if (min > s[i]) {
min = s[i];
}
}
sum = sum - min - max;
avg = sum / (n - 2);
printf("%d\n", avg);
}
}
|
[["-", 0, 7, 8, 9, 0, 57, 75, 76, 0, 95]]
| 1
| 167
|
#include <stdio.h>
int main() {
int n, s;
int maxm, mini, sum;
while (1) {
scanf("%d", &n);
if (n == 0)
break;
sum = 0;
maxm = 1000;
mini = 0;
for (int i = 0; i < n; i++) {
scanf("%d", &s);
sum = sum + s;
if (maxm < s) {
maxm = s;
}
if (mini > s) {
mini = s;
}
}
printf("%d\n", (sum - maxm - mini) / (n - 2));
}
return 0;
}
|
#include <stdio.h>
int main() {
int n, s;
int maxm, mini, sum;
while (1) {
scanf("%d", &n);
if (n == 0)
break;
sum = 0;
maxm = 0;
mini = 1000;
for (int i = 0; i < n; i++) {
scanf("%d", &s);
sum = sum + s;
if (maxm < s) {
maxm = s;
}
if (mini > s) {
mini = s;
}
}
printf("%d\n", (sum - maxm - mini) / (n - 2));
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 1, 0, 11, 12, 13], ["+", 0, 52, 8, 9, 0, 1, 0, 11, 12, 13]]
| 1
| 137
|
#include <iostream>
#include <math.h>
using namespace std;
int main() {
while (1) {
int n;
int sum = 0;
cin >> n;
if (n == 0) {
return 0;
}
int s;
int max = -1;
int min = 9999;
for (int i = 0; i < n; i++) {
cin >> s;
sum += s;
if (s > max) {
max = s;
} else if (s < min) {
min = s;
}
}
int ans = floor((sum - max - min) / (n - 2));
cout << ans << endl;
}
return 0;
}
|
#include <iostream>
#include <math.h>
using namespace std;
int main() {
while (1) {
int n;
int sum = 0;
cin >> n;
if (n == 0) {
return 0;
}
int s;
int max = -1;
int min = 9999;
for (int i = 0; i < n; i++) {
cin >> s;
sum += s;
if (s >= max) {
max = s;
}
if (s <= min) {
min = s;
}
}
int ans = floor((sum - max - min) / (n - 2));
cout << ans << endl;
}
return 0;
}
|
[["-", 8, 9, 0, 57, 15, 339, 51, 16, 17, 47], ["+", 8, 9, 0, 57, 15, 339, 51, 16, 17, 20], ["-", 0, 7, 8, 9, 0, 57, 75, 76, 0, 95], ["-", 75, 76, 0, 57, 15, 339, 51, 16, 17, 18], ["+", 8, 9, 0, 57, 15, 339, 51, 16, 17, 19]]
| 1
| 134
|
#include <algorithm>
#include <iostream>
using namespace std;
int main() {
int num;
while (true) {
int ans = 0;
cin >> num;
if (num != 0) {
int a[num];
for (int i = 0; i < num; i++) {
cin >> a[i];
}
sort(a, a + num);
for (int i = 1; i < num - 1; i++) {
ans += a[i];
}
cout << ans << endl;
} else {
return 0;
}
}
}
|
#include <algorithm>
#include <iostream>
using namespace std;
int main() {
int num;
while (true) {
int ans = 0;
cin >> num;
if (num != 0) {
int a[num];
for (int i = 0; i < num; i++) {
cin >> a[i];
}
sort(a, a + num);
for (int i = 1; i < num - 1; i++) {
ans += a[i];
}
cout << ans / (num - 2) << endl;
} else {
return 0;
}
}
}
|
[["+", 0, 1, 0, 16, 31, 16, 12, 16, 17, 85], ["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 24], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 31, 22], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 17, 33], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 12, 13], ["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 25]]
| 1
| 115
|
#include <iostream>
using namespace std;
int main() {
while (true) {
int n;
cin >> n;
if (n == 0)
return 0;
int a[n];
for (int i = 0; i < n; i++)
cin >> a[i];
int max = 0;
int min = 1000;
int sum = 0;
for (int i = 0; i <= n; i++) {
if (a[i] > max)
max = a[i];
if (a[i] < min)
min = a[i];
sum += a[i];
}
cout << (sum - max - min) / (n - 2);
}
}
|
#include <iostream>
using namespace std;
int main() {
while (true) {
int n;
cin >> n;
if (n == 0)
return 0;
int a[n];
for (int i = 0; i < n; i++)
cin >> a[i];
int max = 0;
int min = 1000;
int sum = 0;
for (int i = 0; i < n; i++) {
if (a[i] > max)
max = a[i];
if (a[i] < min)
min = a[i];
sum += a[i];
}
cout << (sum - max - min) / (n - 2) << endl;
}
}
|
[["-", 0, 52, 8, 9, 0, 7, 15, 16, 17, 19], ["+", 0, 52, 8, 9, 0, 7, 15, 16, 17, 18], ["+", 0, 52, 8, 9, 0, 1, 0, 16, 17, 151], ["+", 0, 52, 8, 9, 0, 1, 0, 16, 12, 22]]
| 1
| 147
|
#include <algorithm>
#include <climits>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <map>
#include <numeric>
#include <vector>
using namespace std;
int main() {
int n, s[101];
while (cin >> n && n > 0) {
int mean = 0;
for (int i = 0; i < n; i++)
cin >> s[i];
sort(s, s + n);
for (int t = 1; t < n - 1; t++)
mean += s[t];
cout << mean << endl;
}
return 0;
}
|
#include <algorithm>
#include <climits>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <map>
#include <numeric>
#include <vector>
using namespace std;
int main() {
int n, s[101];
while (cin >> n && n > 0) {
int mean = 0;
for (int i = 0; i < n; i++)
cin >> s[i];
sort(s, s + n);
for (int t = 1; t < n - 1; t++)
mean += s[t];
cout << mean / (n - 2) << endl;
}
return 0;
}
|
[["+", 0, 1, 0, 16, 31, 16, 12, 16, 17, 85], ["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 24], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 31, 22], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 17, 33], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 12, 13], ["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 25]]
| 1
| 115
|
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
#include <vector>
using namespace std;
#define ll long long int
#define ld long long double
#define reps(i, f, n) for (int i = f; i < n; i++)
#define rep(i, n) reps(i, 0, n)
#define m1 cout << "move1" << endl
#define m2 cout << "move2" << endl
#define m3 cout << "move3" << endl
#define m4 cout << "move4" << endl
int main() {
ll sum = 0;
int N = 0;
int max_v = -1;
int min_v = 10000;
int a;
int b;
// m2;
while (cin >> a) {
N = a;
// cout<<a<<endl;
// m1;
for (int i = 0; i < N; i++) {
cin >> b;
max_v = max(max_v, b);
min_v = min(min_v, b);
sum += b;
// cout<<sum<<endl;
}
sum = sum - max_v - min_v;
cout << sum / (N - 2) << endl;
max_v = -1;
min_v = 1000;
sum = 0;
}
return 0;
}
|
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
#include <vector>
using namespace std;
#define ll long long int
#define ld long long double
#define reps(i, f, n) for (int i = f; i < n; i++)
#define rep(i, n) reps(i, 0, n)
#define m1 cout << "move1" << endl
#define m2 cout << "move2" << endl
#define m3 cout << "move3" << endl
#define m4 cout << "move4" << endl
int main() {
ll sum = 0;
int N = 0;
int max_v = -1;
int min_v = 10000;
int a;
int b;
// m2;
while (cin >> a, a != 0) {
N = a;
// cout<<a<<endl;
// m1;
for (int i = 0; i < N; i++) {
cin >> b;
max_v = max(max_v, b);
min_v = min(min_v, b);
sum += b;
// cout<<sum<<endl;
}
sum = sum - max_v - min_v;
cout << sum / (N - 2) << endl;
max_v = -1;
min_v = 1000;
sum = 0;
}
return 0;
}
|
[["+", 8, 9, 0, 52, 15, 339, 51, 34, 0, 21], ["+", 0, 52, 15, 339, 51, 34, 12, 16, 31, 22], ["+", 0, 52, 15, 339, 51, 34, 12, 16, 17, 79], ["+", 0, 52, 15, 339, 51, 34, 12, 16, 12, 13]]
| 1
| 175
|
#include <iostream>
using namespace std;
int s;
int n, maxn, minn, sum;
int main() {
while (1) {
cin >> n;
if (n == 0)
break;
minn = 1001;
maxn = 0;
for (int i = 0; i < n; i++) {
cin >> s;
sum += s;
if (maxn < s)
maxn = s;
if (minn > s)
minn = s;
}
sum = sum - minn - maxn;
cout << sum / (n - 2) << endl;
}
return 0;
}
|
#include <iostream>
using namespace std;
int s;
int n, maxn, minn, sum;
int main() {
while (1) {
cin >> n;
if (n == 0)
break;
minn = 1001;
maxn = 0;
sum = 0;
for (int i = 0; i < n; i++) {
cin >> s;
sum += s;
if (maxn < s)
maxn = s;
if (minn > s)
minn = s;
}
sum = sum - minn - maxn;
cout << sum / (n - 2) << endl;
}
return 0;
}
|
[["+", 0, 52, 8, 9, 0, 1, 0, 11, 31, 22], ["+", 0, 52, 8, 9, 0, 1, 0, 11, 17, 32], ["+", 0, 52, 8, 9, 0, 1, 0, 11, 12, 13], ["+", 8, 9, 0, 52, 8, 9, 0, 1, 0, 35]]
| 1
| 117
|
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace std;
bool b[33000];
int main() {
int n;
while (cin >> n && n) {
int a = 10000000, b = -100, x;
long long sum = 0;
for (int i = 0; i < n; i++) {
cin >> x;
sum += x;
a = min(a, x);
b = max(b, x);
}
sum -= a;
sum -= b;
double c = floor((double)sum / (double)n - 2);
cout << c << endl;
}
}
|
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace std;
bool b[33000];
int main() {
int n;
while (cin >> n && n) {
int a = 10000000, b = -100, x;
long long sum = 0;
for (int i = 0; i < n; i++) {
cin >> x;
sum += x;
a = min(a, x);
b = max(b, x);
}
sum -= a;
sum -= b;
double c = floor((double)sum / (double)(n - 2));
cout << c << endl;
}
}
|
[["+", 3, 4, 0, 16, 12, 74, 51, 23, 0, 24], ["+", 3, 4, 0, 16, 12, 74, 51, 23, 0, 25]]
| 1
| 126
|
#include <iostream>
#include <queue>
#include <stack>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
using namespace std;
int main() {
int n;
while (1) {
scanf("%d", &n);
if (n == 0)
break;
int sum = 0, max = 0, min = 1000, point;
for (int i = 1; i <= n; i++) {
scanf("%d", &point);
if (point > max)
max = point;
else if (point < min)
min = point;
sum += point;
}
printf("%d\n", (sum - max - min) / (n - 2));
}
return 0;
}
|
#include <iostream>
#include <queue>
#include <stack>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
using namespace std;
int main() {
int n;
while (1) {
scanf("%d", &n);
if (n == 0)
break;
int sum = 0, max = 0, min = 1000, point;
for (int i = 1; i <= n; i++) {
scanf("%d", &point);
if (point > max)
max = point;
if (point < min)
min = point;
sum += point;
}
printf("%d\n", (sum - max - min) / (n - 2));
}
return 0;
}
|
[["-", 0, 7, 8, 9, 0, 57, 75, 76, 0, 95]]
| 1
| 142
|
#include <iostream>
using namespace std;
int main(void) {
while (1) {
int n;
cin >> n;
if (n == 0) {
return 0;
}
int point[n];
for (int i = 0; i < n; i++) {
cin >> point[i];
}
int sum = 0;
int max = -1;
int min = 1001;
for (int i = 0; i < n; i++) {
if (max < point[i]) {
max = point[i];
}
if (min > point[i]) {
min = point[i];
}
sum += point[i];
}
cout << (int)(sum - max - min) / (n - 2);
}
}
|
#include <iostream>
using namespace std;
int main(void) {
while (1) {
int n;
cin >> n;
if (n == 0) {
return 0;
}
int point[n];
for (int i = 0; i < n; i++) {
cin >> point[i];
}
int sum = 0;
int max = -1;
int min = 1001;
for (int i = 0; i < n; i++) {
if (max < point[i]) {
max = point[i];
}
if (min > point[i]) {
min = point[i];
}
sum += point[i];
}
cout << (int)(sum - max - min) / (n - 2) << endl;
}
}
|
[["+", 0, 52, 8, 9, 0, 1, 0, 16, 17, 151], ["+", 0, 52, 8, 9, 0, 1, 0, 16, 12, 22]]
| 1
| 159
|
#include <iostream>
#define INF (2 << 29)
using namespace std;
int main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
for (;;) {
int a, n, s = 0, max = 0, min = INF;
cin >> n;
if (n == 0)
break;
for (int i = 0; i < n; i++) {
cin >> a;
s += a;
if (max < a)
max = a;
if (min > a)
min = a;
}
cout << (s - max - min) / n << endl;
}
return 0;
}
|
#include <iostream>
#define INF (2 << 29)
using namespace std;
int main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
for (;;) {
int a, n, s = 0, max = 0, min = INF;
cin >> n;
if (n == 0)
break;
for (int i = 0; i < n; i++) {
cin >> a;
s += a;
if (max < a)
max = a;
if (min > a)
min = a;
}
cout << (s - max - min) / (n - 2) << endl;
}
return 0;
}
|
[["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 24], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 17, 33], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 12, 13], ["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 25]]
| 1
| 126
|
#include <climits>
#include <iostream>
using namespace std;
int main(void) {
int n, m, max, min, answer;
while (1) {
cin >> n;
max = 0;
min = INT_MAX;
answer = 0;
if (!n)
break;
for (int i = 0; i < n; i++) {
cin >> m;
if (m > max)
max = m;
else if (m < min)
min = m;
answer += m;
}
cout << (answer - max - min) / (n - 2) << endl;
}
return 0;
}
|
#include <climits>
#include <iostream>
using namespace std;
int main(void) {
int n, m, max, min, answer;
while (1) {
cin >> n;
max = 0;
min = INT_MAX;
answer = 0;
if (!n)
break;
for (int i = 0; i < n; i++) {
cin >> m;
if (m > max)
max = m;
if (m < min)
min = m;
answer += m;
}
cout << (answer - max - min) / (n - 2) << endl;
}
return 0;
}
|
[["-", 0, 7, 8, 9, 0, 57, 75, 76, 0, 95]]
| 1
| 121
|
#include <iostream>
using namespace std;
int main() {
int a[101];
int b[20];
int n = 0;
int i = 0;
int max = 0;
int min = 1000;
int sum = 0;
int counter = 0;
while (1) {
max = 0;
min = 1000;
sum = 0;
cin >> n;
if (n == 0)
break;
for (i = 0; i < n; i++) {
cin >> a[i];
if (max <= a[i])
max = a[i];
if (min >= a[i])
min = a[i];
sum += a[i];
}
b[counter] = (sum - max - min) / (n - 2);
counter++;
}
for (i = 0; i < counter; i++) {
cout << b[i];
}
return 0;
}
|
#include <iostream>
using namespace std;
int main() {
int a[101];
int b[20];
int n = 0;
int i = 0;
int max = 0;
int min = 1000;
int sum = 0;
int counter = 0;
while (1) {
max = 0;
min = 1000;
sum = 0;
cin >> n;
if (n == 0)
break;
for (i = 0; i < n; i++) {
cin >> a[i];
if (max <= a[i])
max = a[i];
if (min >= a[i])
min = a[i];
sum += a[i];
}
b[counter] = (sum - max - min) / (n - 2);
counter++;
}
for (i = 0; i < counter; i++) {
cout << b[i] << endl;
}
return 0;
}
|
[["+", 0, 7, 8, 9, 0, 1, 0, 16, 17, 151], ["+", 0, 7, 8, 9, 0, 1, 0, 16, 12, 22]]
| 1
| 192
|
#include <iostream>
using namespace std;
int larger(int x, int y) {
int z = 0;
if (x > y)
z = x;
else
z = y;
return z;
}
int smaller(int x, int y) {
int z = 0;
if (x < y)
z = x;
else
z = y;
return z;
}
int main(void) {
int s = 1;
while (s == 1) {
int sinsa, a[100], sum = 0, ave;
cin >> sinsa;
if (sinsa == 0)
s = 2;
for (int i = 0; i < sinsa; i++) {
cin >> a[i];
}
int n = a[0];
for (int i = 0; i < sinsa; i++) {
n = larger(n, a[i]);
}
int m = a[0];
for (int i = 0; i < sinsa; i++) {
m = smaller(m, a[i]);
}
for (int i = 0; i < sinsa; i++) {
sum += a[i];
}
sum = sum - n - m;
ave = sum / (sinsa - 2);
cout << ave << endl;
}
return 0;
}
|
#include <iostream>
using namespace std;
int larger(int x, int y) {
int z = 0;
if (x > y)
z = x;
else
z = y;
return z;
}
int smaller(int x, int y) {
int z = 0;
if (x < y)
z = x;
else
z = y;
return z;
}
int main(void) {
int s = 1;
while (s == 1) {
int sinsa, a[100], sum = 0, ave;
cin >> sinsa;
if (sinsa == 0)
return 0;
for (int i = 0; i < sinsa; i++) {
cin >> a[i];
}
int n = a[0];
for (int i = 0; i < sinsa; i++) {
n = larger(n, a[i]);
}
int m = a[0];
for (int i = 0; i < sinsa; i++) {
m = smaller(m, a[i]);
}
for (int i = 0; i < sinsa; i++) {
sum += a[i];
}
sum = sum - n - m;
ave = sum / (sinsa - 2);
cout << ave << endl;
}
return 0;
}
|
[["-", 8, 9, 0, 57, 64, 1, 0, 11, 31, 22], ["-", 8, 9, 0, 57, 64, 1, 0, 11, 17, 32], ["-", 8, 9, 0, 57, 64, 1, 0, 11, 12, 13], ["+", 0, 52, 8, 9, 0, 57, 64, 37, 0, 38], ["+", 0, 52, 8, 9, 0, 57, 64, 37, 0, 13]]
| 1
| 267
|
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); i++)
using namespace std;
int main() {
while (true) {
int n, A[100] = {0};
cin >> n;
if (n == 0)
break;
rep(i, n) cin >> A[i];
sort(A, A + n);
int sum = 0;
rep(i, n - 2) sum += A[i + 1];
cout << sum / n << endl;
}
return 0;
}
|
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); i++)
using namespace std;
int main() {
while (true) {
int n, A[100] = {0};
cin >> n;
if (n == 0)
break;
rep(i, n) cin >> A[i];
sort(A, A + n);
int sum = 0;
rep(i, n - 2) sum += A[i + 1];
cout << sum / (n - 2) << endl;
}
return 0;
}
|
[["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 24], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 17, 33], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 12, 13], ["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 25]]
| 1
| 106
|
#include <stdio.h>
int max(int a, int b) {
if (a > b)
return a;
return b;
}
int min(int a, int b) {
if (a > b)
return b;
return a;
}
int main() {
int n, top, bot, tot, temp;
while (1) {
scanf("%d", &n);
if (n == 0)
return 0;
scanf("%d", &top);
tot = bot = top;
for (int i = 1; i < n; i++) {
scanf("%d", &temp);
tot += temp;
top = max(top, temp);
bot = min(bot, temp);
}
printf("%d\n", (tot - top - bot) / n);
}
}
|
#include <stdio.h>
int max(int a, int b) {
if (a > b)
return a;
return b;
}
int min(int a, int b) {
if (a > b)
return b;
return a;
}
int main() {
int n, top, bot, tot, temp;
while (1) {
scanf("%d", &n);
if (n == 0)
return 0;
scanf("%d", &top);
tot = bot = top;
for (int i = 1; i < n; i++) {
scanf("%d", &temp);
tot += temp;
top = max(top, temp);
bot = min(bot, temp);
}
printf("%d\n", (tot - top - bot) / (n - 2));
}
}
|
[["+", 0, 2, 3, 4, 0, 16, 12, 23, 0, 24], ["+", 3, 4, 0, 16, 12, 23, 0, 16, 17, 33], ["+", 3, 4, 0, 16, 12, 23, 0, 16, 12, 13], ["+", 0, 2, 3, 4, 0, 16, 12, 23, 0, 25]]
| 1
| 172
|
#include <bits/stdc++.h>
using namespace std;
int main() {
while (1) {
int n, av, max, min, sum = 0, s;
cin >> n;
if (n == 0)
break;
cin >> s;
sum = s;
max = s;
min = s;
for (int i = 1; i < n; i++) {
cin >> s;
sum += s;
if (s > max)
max = s;
if (s < min)
min = s;
}
av = (sum - max - min) / n - 2;
cout << av << endl;
}
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
int main() {
while (1) {
int n, av, max, min, sum = 0, s;
cin >> n;
if (n == 0)
break;
cin >> s;
sum = s;
max = s;
min = s;
for (int i = 1; i < n; i++) {
cin >> s;
sum += s;
if (s > max)
max = s;
if (s < min)
min = s;
}
av = (sum - max - min) / (n - 2);
cout << av << endl;
}
return 0;
}
|
[["+", 0, 1, 0, 11, 12, 16, 12, 23, 0, 24], ["+", 0, 1, 0, 11, 12, 16, 12, 23, 0, 25]]
| 1
| 128
|
#include <algorithm>
#include <iostream>
#define FOR(i, l, n) for (int i = (l); i < (n); i++)
#define REP(i, n) FOR(i, 0, n)
#define MAX_JUDGE 100
using namespace std;
int main() {
int n, score[MAX_JUDGE];
while (cin >> n, n) {
REP(i, n) cin >> score[i];
sort(score, score + n);
int sum = 0;
FOR(i, 1, n - 1) sum += score[i];
cout << sum / (n - 2);
}
return 0;
}
|
#include <algorithm>
#include <iostream>
#define FOR(i, l, n) for (int i = (l); i < (n); i++)
#define REP(i, n) FOR(i, 0, n)
#define MAX_JUDGE 100
using namespace std;
int main() {
int n, score[MAX_JUDGE];
while (cin >> n, n) {
REP(i, n) cin >> score[i];
sort(score, score + n);
int sum = 0;
FOR(i, 1, n - 1) sum += score[i];
cout << sum / (n - 2) << endl;
}
return 0;
}
|
[["+", 0, 52, 8, 9, 0, 1, 0, 16, 17, 151], ["+", 0, 52, 8, 9, 0, 1, 0, 16, 12, 22]]
| 1
| 110
|
#include <algorithm>
#include <iostream>
#include <numeric>
#define FOR(i, l, n) for (int i = (l); i < (n); i++)
#define REP(i, n) FOR(i, 0, n)
#define MAX_JUDGE 100
using namespace std;
int main() {
int n, score[MAX_JUDGE];
while (cin >> n, n) {
REP(i, n) cin >> score[i];
sort(score, score + n);
int sum = accumulate(score + 1, score + n - 2, 0);
cout << sum / (n - 2) << endl;
}
return 0;
}
|
#include <algorithm>
#include <iostream>
#include <numeric>
#define FOR(i, l, n) for (int i = (l); i < (n); i++)
#define REP(i, n) FOR(i, 0, n)
#define MAX_JUDGE 100
using namespace std;
int main() {
int n, score[MAX_JUDGE];
while (cin >> n, n) {
REP(i, n) cin >> score[i];
sort(score, score + n);
int sum = accumulate(score + 1, score + n - 1, 0);
cout << sum / (n - 2) << endl;
}
return 0;
}
|
[["-", 49, 50, 51, 2, 3, 4, 0, 16, 12, 13], ["+", 49, 50, 51, 2, 3, 4, 0, 16, 12, 13]]
| 1
| 110
|
#include <bits/stdc++.h>
#define FOR(i, a, b) for (long long int i = (a); i <= (b); i++)
#define RFOR(i, a, b) for (long long int i = (a); i >= (b); i--)
#define MOD 1000000007
#define INF 1000000000 // 2000000000
#define LLINF 1000000000000000000 // 9000000000000000000
#define PI 3.14159265358979
using namespace std;
typedef long long int ll;
typedef pair<long long int, long long int> P;
int main(void) {
int result[100] = {};
int pos = 0;
while (1) {
int n;
int s[101] = {};
int mini = 1001;
int maxi = -1;
int total = 0;
cin >> n;
if (n == 0) {
break;
}
pos++;
FOR(i, 1, n) {
cin >> s[i];
if (maxi < s[i]) {
maxi = s[i];
} else if (mini > s[i]) {
mini = s[i];
}
total += s[i];
}
result[pos] = (total - maxi - mini) / (n - 2);
}
FOR(i, 1, pos) { cout << result[i] << endl; }
}
|
#include <bits/stdc++.h>
#define FOR(i, a, b) for (long long int i = (a); i <= (b); i++)
#define RFOR(i, a, b) for (long long int i = (a); i >= (b); i--)
#define MOD 1000000007
#define INF 1000000000 // 2000000000
#define LLINF 1000000000000000000 // 9000000000000000000
#define PI 3.14159265358979
using namespace std;
typedef long long int ll;
typedef pair<long long int, long long int> P;
int main(void) {
int result[100] = {};
int pos = 0;
while (1) {
int n;
int s[101] = {};
int mini = 1001;
int maxi = -1;
int total = 0;
cin >> n;
if (n == 0) {
break;
}
pos++;
FOR(i, 1, n) {
cin >> s[i];
if (maxi < s[i]) {
maxi = s[i];
}
if (mini > s[i]) {
mini = s[i];
}
total += s[i];
}
result[pos] = (total - maxi - mini) / (n - 2);
}
FOR(i, 1, pos) { cout << result[i] << endl; }
}
|
[["-", 8, 9, 0, 9, 0, 57, 75, 76, 0, 95]]
| 1
| 229
|
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define debug(x) cerr << __LINE__ << " : " << #x << " = " << (x) << endl;
#define REP(i, n) for (int i = 0; i < (int)(n); i++)
#define FOR(i, a, b) for (int i = (int)(a); i < (int)(b); i++)
#define FORR(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)
#define CHMIN(a, b) (a) = min((a), (b))
#define CHMAX(a, b) (a) = max((a), (b))
int main() {
int in;
int num;
int ans = 0;
int point[105] = {};
while (1 == 1) {
scanf("%d\n", &in);
if (in == 0)
return 0;
num = in;
ans = 0;
REP(i, num) {
scanf("%d\n", &point[i]);
ans += point[i];
}
sort(&point[0], &point[num]);
ans -= (point[0] + point[num - 1]);
printf("%d\n", ans / num - 2);
}
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define debug(x) cerr << __LINE__ << " : " << #x << " = " << (x) << endl;
#define REP(i, n) for (int i = 0; i < (int)(n); i++)
#define FOR(i, a, b) for (int i = (int)(a); i < (int)(b); i++)
#define FORR(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)
#define CHMIN(a, b) (a) = min((a), (b))
#define CHMAX(a, b) (a) = max((a), (b))
int main() {
int in;
int num;
int ans = 0;
int point[105] = {};
while (1 == 1) {
scanf("%d\n", &in);
if (in == 0)
return 0;
num = in;
ans = 0;
REP(i, num) {
scanf("%d\n", &point[i]);
ans += point[i];
}
sort(&point[0], &point[num]);
ans -= (point[0] + point[num - 1]);
printf("%d\n", ans / (num - 2));
}
return 0;
}
|
[["+", 0, 2, 3, 4, 0, 16, 12, 23, 0, 24], ["+", 0, 2, 3, 4, 0, 16, 12, 23, 0, 25]]
| 1
| 200
|
#include <bits/stdc++.h>
using namespace std;
int main() {
vector<int> sss(20);
for (int l = 0; l < 2000; l++) {
int A;
cin >> A;
if (A == 0) {
break;
}
int cnt = 0;
vector<int> vec(A);
for (int i = 0; i < A; i++) {
cin >> vec[i];
cnt += vec[i];
}
sort(vec.begin(), vec.end());
cout << (cnt - (vec[0] + vec[A - 1]) / (A - 2));
}
}
|
#include <bits/stdc++.h>
using namespace std;
int main() {
vector<int> sss(20);
for (int l = 0; l < 20; l++) {
int A;
cin >> A;
if (A == 0) {
break;
}
int cnt = 0;
vector<int> vec(A);
for (int i = 0; i < A; i++) {
cin >> vec[i];
cnt += vec[i];
}
sort(vec.begin(), vec.end());
cout << ((cnt - (vec[0] + vec[A - 1])) / (A - 2)) << endl;
}
}
|
[["-", 0, 14, 8, 9, 0, 7, 15, 16, 12, 13], ["+", 0, 14, 8, 9, 0, 7, 15, 16, 12, 13], ["+", 0, 1, 0, 16, 31, 16, 12, 23, 0, 24], ["+", 0, 16, 31, 23, 0, 16, 12, 23, 0, 25], ["+", 0, 7, 8, 9, 0, 1, 0, 16, 17, 151], ["+", 0, 7, 8, 9, 0, 1, 0, 16, 12, 22]]
| 1
| 139
|
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using P = pair<ll, ll>;
#define MOD 1000000007ll
#define INF 1000000000ll
#define EPS 1e-10
#define FOR(i, n, m) for (ll i = n; i < (ll)m; i++)
#define REP(i, n) FOR(i, 0, n)
#define DUMP(a) \
REP(d, a.size()) { \
cout << a[d]; \
if (d != a.size() - 1) \
cout << " "; \
else \
cout << endl; \
}
#define ALL(v) v.begin(), v.end()
#define UNIQUE(v) \
sort(v.begin(), v.end()); \
v.erase(unique(v.begin(), v.end()), v.end());
#define pb push_back
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
while (1) {
ll n;
cin >> n;
if (n == 0)
break;
vector<ll> s(n);
REP(i, n) cin >> s[i];
sort(ALL(s));
ll sum = accumulate(ALL(s), 0);
sum -= s[0] + s[n - 1];
cout << sum << endl;
}
}
|
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using P = pair<ll, ll>;
#define MOD 1000000007ll
#define INF 1000000000ll
#define EPS 1e-10
#define FOR(i, n, m) for (ll i = n; i < (ll)m; i++)
#define REP(i, n) FOR(i, 0, n)
#define DUMP(a) \
REP(d, a.size()) { \
cout << a[d]; \
if (d != a.size() - 1) \
cout << " "; \
else \
cout << endl; \
}
#define ALL(v) v.begin(), v.end()
#define UNIQUE(v) \
sort(v.begin(), v.end()); \
v.erase(unique(v.begin(), v.end()), v.end());
#define pb push_back
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
while (1) {
ll n;
cin >> n;
if (n == 0)
break;
vector<ll> s(n);
REP(i, n) cin >> s[i];
sort(ALL(s));
ll sum = accumulate(ALL(s), 0);
sum -= s[0] + s[n - 1];
cout << sum / (n - 2) << endl;
}
}
|
[["+", 0, 1, 0, 16, 31, 16, 12, 16, 17, 85], ["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 24], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 31, 22], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 17, 33], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 12, 13], ["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 25]]
| 1
| 183
|
#include <iostream>
using namespace std;
int main() {
int n;
int j[110];
int max, min;
for (; cin >> n, n != 0;) {
for (int i = 0; i < n; i++) {
cin >> j[i];
}
max = min = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
if (max < j[i])
max = j[i];
if (min > j[i])
min = j[i];
sum += j[i];
}
sum -= max + min;
cout << sum / (n - 2) << endl;
}
return 0;
}
|
#include <iostream>
using namespace std;
int main() {
int n;
int j[110];
int max, min;
for (; cin >> n, n != 0;) {
for (int i = 0; i < n; i++) {
cin >> j[i];
}
max = 0;
min = 2000;
int sum = 0;
for (int i = 0; i < n; i++) {
if (max < j[i])
max = j[i];
if (min > j[i])
min = j[i];
sum += j[i];
}
sum -= max + min;
cout << sum / (n - 2) << endl;
}
return 0;
}
|
[["+", 0, 7, 8, 9, 0, 1, 0, 11, 12, 13], ["+", 8, 9, 0, 7, 8, 9, 0, 1, 0, 35], ["-", 8, 9, 0, 1, 0, 11, 12, 11, 12, 13]]
| 1
| 150
|
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
int main() {
int n;
while (cin >> n) {
if (n == 0)
return 0;
vector<int> V;
for (int i = 0; i < n; i++) {
int t;
cin >> t;
V.push_back(t);
}
sort(V.begin(), V.end());
int ans = 0;
for (int i = 1; i < V.size() - 1; i++)
ans += V[i];
cout << ans / n << endl;
}
}
|
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
int main() {
int n;
while (cin >> n) {
if (n == 0)
return 0;
vector<int> V;
for (int i = 0; i < n; i++) {
int t;
cin >> t;
V.push_back(t);
}
sort(V.begin(), V.end());
int ans = 0;
for (int i = 1; i < V.size() - 1; i++)
ans += V[i];
cout << ans / (n - 2) << endl;
}
}
|
[["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 24], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 17, 33], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 12, 13], ["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 25]]
| 1
| 127
|
#include <cstdlib>
#include <iostream>
using namespace std;
int main() {
int n, s, sum, maxs, mins, i;
while ((cin >> n), n) {
sum = maxs = 0;
mins = 1000;
for (i = 0; i < n; i++) {
cin >> s;
sum += s;
maxs = max(maxs, s);
mins = min(mins, s);
}
sum = (sum - maxs - mins) / n;
cout << sum << endl;
}
}
|
#include <cstdlib>
#include <iostream>
using namespace std;
int main() {
int n, s, sum, maxs, mins, i;
while ((cin >> n), n) {
sum = maxs = 0;
mins = 1000;
for (i = 0; i < n; i++) {
cin >> s;
sum += s;
maxs = max(maxs, s);
mins = min(mins, s);
}
sum = (sum - maxs - mins) / (n - 2);
cout << sum << endl;
}
}
|
[["+", 0, 1, 0, 11, 12, 16, 12, 23, 0, 24], ["+", 0, 11, 12, 16, 12, 23, 0, 16, 17, 33], ["+", 0, 11, 12, 16, 12, 23, 0, 16, 12, 13], ["+", 0, 1, 0, 11, 12, 16, 12, 23, 0, 25]]
| 1
| 108
|
#include <stdio.h>
int main() {
int n;
while (scanf("%d", &n), n) {
int max = 0, min = 1000, s;
long sum = 0;
for (int i = 0; i < n; i++) {
scanf("%d", &s);
sum += s;
max = max < s ? s : max;
min = s < min ? s : min;
}
printf("%ld", (sum - min - max) / (n - 2));
}
}
|
#include <stdio.h>
int main() {
int n;
while (scanf("%d", &n), n) {
int max = 0, min = 1000, s;
long sum = 0;
for (int i = 0; i < n; i++) {
scanf("%d", &s);
sum += s;
max = max < s ? s : max;
min = s < min ? s : min;
}
printf("%ld\n", (sum - min - max) / (n - 2));
}
}
|
[["+", 0, 1, 0, 2, 3, 4, 0, 5, 0, 44]]
| 1
| 114
|
#include <iostream>
using namespace std;
int main() {
int n, sum, max, min;
while (cin >> n && n > 0) {
int S;
min = 1000000000;
max = 0;
sum = 0;
for (int i = 0; i < n; i++) {
cin >> S;
sum += S;
if (min > S) {
min = S;
}
if (max < S) {
max = S;
}
}
sum -= (min + max);
cout << sum / n << endl;
}
return 0;
}
|
#include <iostream>
using namespace std;
int main() {
int n, sum, max, min;
while (cin >> n && n > 0) {
int S;
min = 1000000000;
max = 0;
sum = 0;
for (int i = 0; i < n; i++) {
cin >> S;
sum += S;
if (min > S) {
min = S;
}
if (max < S) {
max = S;
}
}
sum -= (min + max);
cout << sum / (n - 2) << endl;
}
return 0;
}
|
[["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 24], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 17, 33], ["+", 31, 16, 12, 16, 12, 23, 0, 16, 12, 13], ["+", 0, 16, 31, 16, 12, 16, 12, 23, 0, 25]]
| 1
| 115
|
#include <iostream>
using namespace std;
int main() {
int n, m, i;
int ave[1000] = {0};
m = 0;
while (1) {
int point[100] = {0};
int min = 1000;
int max = 0;
cin >> n;
if (n == 0)
break;
for (i = 0; i < n; i++) {
cin >> point[i];
if (point[i] > max)
max = point[i];
if (point[i] < min)
min = point[i];
ave[m]++;
}
ave[m] = (ave[m] - max - min) / (n - 2);
m++;
}
for (i = 0; i < m; i++) {
cout << ave[i] << endl;
}
}
|
#include <iostream>
using namespace std;
int main() {
int n, m, i;
int ave[1000] = {0};
m = 0;
while (1) {
int point[100] = {0};
int min = 1000;
int max = 0;
cin >> n;
if (n == 0)
break;
for (i = 0; i < n; i++) {
cin >> point[i];
if (point[i] > max)
max = point[i];
if (point[i] < min)
min = point[i];
ave[m] += point[i];
}
// cout<<"debug "<<ave[m]<<endl;
// cout<<max<<" "<<min<<endl;
ave[m] = (ave[m] - max - min) / (n - 2);
m++;
}
for (i = 0; i < m; i++) {
cout << ave[i] << endl;
}
}
|
[["-", 0, 7, 8, 9, 0, 1, 0, 27, 17, 29], ["+", 0, 7, 8, 9, 0, 1, 0, 11, 17, 107], ["+", 8, 9, 0, 1, 0, 11, 12, 69, 28, 22], ["+", 0, 1, 0, 11, 12, 69, 341, 342, 0, 70], ["+", 0, 1, 0, 11, 12, 69, 341, 342, 0, 22], ["+", 0, 1, 0, 11, 12, 69, 341, 342, 0, 73]]
| 1
| 180
|
#include <iostream>
using namespace std;
int main() {
int n, s, sum, max, min;
while (1) {
cin >> n;
if (n == 0)
break;
sum = 0;
cin >> s;
sum += s;
max = s;
cin >> s;
sum += s;
if (max < s) {
max = s;
} else {
min = s;
}
for (int i = 2; i < n; i++) {
cin >> s;
sum += s;
if (max < s) {
max = s;
} else if (min > s) {
min = s;
}
}
sum -= max;
sum -= min;
int ave = sum / (n - 2);
cout << ave << endl;
}
return 0;
}
|
#include <iostream>
using namespace std;
int main() {
int n, s, sum, max, min;
while (1) {
cin >> n;
if (n == 0)
break;
sum = 0;
cin >> s;
sum += s;
max = s;
min = s;
cin >> s;
sum += s;
if (max < s) {
max = s;
} else {
min = s;
}
for (int i = 2; i < n; i++) {
cin >> s;
sum += s;
if (max < s) {
max = s;
} else if (min > s) {
min = s;
}
}
sum -= max;
sum -= min;
int ave = sum / (n - 2);
cout << ave << endl;
}
return 0;
}
|
[["+", 0, 52, 8, 9, 0, 1, 0, 11, 31, 22], ["+", 0, 52, 8, 9, 0, 1, 0, 11, 17, 32], ["+", 0, 52, 8, 9, 0, 1, 0, 11, 12, 22], ["+", 8, 9, 0, 52, 8, 9, 0, 1, 0, 35]]
| 1
| 161
|
#include <iostream>
using namespace std;
int main() {
int n, i, p, max, min, s;
while (1) {
cin >> n;
if (n) {
} else
break;
cin >> p;
s = p;
max = p;
min = p;
for (i = 0; i < n - 1; i++) {
cin >> p;
s += p;
if (max < p) {
max = p;
}
if (min > p) {
min = p;
}
}
s = (s - max - min) / (n - 2);
cout << p << endl;
}
return 0;
}
|
#include <iostream>
using namespace std;
int main() {
int n, i, p, max, min, s;
while (1) {
cin >> n;
if (n) {
} else
break;
cin >> p;
s = p;
max = p;
min = p;
for (i = 0; i < n - 1; i++) {
cin >> p;
s += p;
if (max < p) {
max = p;
}
if (min > p) {
min = p;
}
}
s = (s - max - min) / (n - 2);
cout << s << endl;
}
return 0;
}
|
[["-", 8, 9, 0, 1, 0, 16, 31, 16, 12, 22], ["+", 8, 9, 0, 1, 0, 16, 31, 16, 12, 22]]
| 1
| 134
|
#include <iostream>
using namespace std;
int N, S;
int main() {
while (cin >> N && N > 0) {
int M, m, addup, i;
M = -1;
m = 1001;
for (i = 0; i < N; i++) {
cin >> S;
addup += S;
if (S > M)
M = S;
if (S < m)
m = S;
}
cout << (addup - M - m) / (N - 2) << endl;
}
}
|
#include <iostream>
using namespace std;
int N, S;
int main() {
while (cin >> N && N > 0) {
int M, m, addup, i;
M = -1;
m = 1001;
addup = 0;
for (i = 0; i < N; i++) {
cin >> S;
addup += S;
if (S > M)
M = S;
if (S < m)
m = S;
}
cout << (addup - M - m) / (N - 2) << endl;
}
}
|
[["+", 0, 52, 8, 9, 0, 1, 0, 11, 31, 22], ["+", 0, 52, 8, 9, 0, 1, 0, 11, 17, 32], ["+", 0, 52, 8, 9, 0, 1, 0, 11, 12, 13], ["+", 8, 9, 0, 52, 8, 9, 0, 1, 0, 35]]
| 1
| 107
|
#include <iostream>
using namespace std;
int main() {
int n, i;
cout << "test";
while (cin >> n, n) {
int p;
int min = 1000;
int max = 0;
int total = 0;
for (int i = 0; i < n; i++) {
cin >> p;
if (p > max)
max = p;
if (p < min)
min = p;
total += p;
}
cout << (total - max - min) / (n - 2) << "\n";
}
}
|
#include <iostream>
using namespace std;
int main() {
int n, i;
while (cin >> n, n) {
int p;
int min = 1000;
int max = 0;
int total = 0;
for (int i = 0; i < n; i++) {
cin >> p;
if (p > max)
max = p;
if (p < min)
min = p;
total += p;
}
cout << (total - max - min) / (n - 2) << "\n";
}
}
|
[["-", 0, 14, 8, 9, 0, 1, 0, 16, 31, 22], ["-", 0, 14, 8, 9, 0, 1, 0, 16, 17, 151], ["-", 8, 9, 0, 1, 0, 16, 12, 5, 0, 62], ["-", 8, 9, 0, 1, 0, 16, 12, 5, 0, 6], ["-", 0, 30, 0, 14, 8, 9, 0, 1, 0, 35]]
| 1
| 115
|
#include <algorithm>
#include <array>
#include <bitset>
#include <cmath>
#include <cstdlib>
#include <iostream>
#include <list>
#include <map>
#include <queue> //priority_queue
#include <set>
#include <stack>
#include <utility>
#include <vector>
#pragma warning(disable : 4996)
/*-------マクロ定義---------*/
#define REP(i, n) for (L i = 0; i < n; i++)
#define TIMES(n) REP(i, n)
/*---------Typedef------------*/
// long
typedef long L;
typedef std::pair<L, L> IntPair;
typedef std::vector<L> IntVector;
typedef std::priority_queue<L> IntPriority;
typedef std::queue<L> IntQueue;
typedef std::stack<L> IntStack;
// unsigned long
typedef unsigned long ul;
typedef std::pair<ul, ul> UIntPair;
typedef std::vector<ul> UIntVector;
typedef std::priority_queue<ul> UIntPriority;
typedef std::queue<ul> UIntQueue;
typedef std::stack<ul> UIntStack;
// double
typedef double D;
typedef std::pair<D, D> DoublePair;
typedef std::vector<D> DoubleVector;
typedef std::priority_queue<D> DoublePriority;
typedef std::queue<D> DoubleQueue;
typedef std::stack<D> DoubleStack;
// char
typedef char Ch;
typedef std::pair<Ch, Ch> CharPair;
typedef std::vector<Ch> CharVector;
typedef std::priority_queue<Ch> CharPriority;
typedef std::queue<Ch> CharQueue;
typedef std::stack<Ch> CharStack;
//
/* VectorArray Dp(1000,IntVector(1000)); */
typedef std::vector<std::vector<L>> VectorArray;
typedef std::vector<std::vector<ul>> UVectorArray;
typedef std::vector<std::vector<D>> DVectorArray;
/*--------ScanOverLoad----------*/
// type long//
void Scan(L &output) { scanf("%ld", &output); }
void Scan(IntVector &vector) {
L scan = 0;
scanf("%ld", &scan);
vector.push_back(scan);
}
void Scan(IntPriority &pri_que) {
L scan = 0;
scanf("%ld", &scan);
pri_que.push(scan);
}
void Scan(IntQueue &que) {
L scan = 0;
scanf("%ld", &scan);
que.push(scan);
}
void Scan(IntStack &stack) {
L scan = 0;
scanf("%ld", &scan);
stack.push(scan);
}
// type unsigned long//
void Scan(ul &output) { scanf("%lu", &output); }
void Scan(UIntVector &vector) {
ul scan = 0;
scanf("%lu", &scan);
vector.push_back(scan);
}
void Scan(UIntPriority &pri_que) {
ul scan = 0;
scanf("%lu", &scan);
pri_que.push(scan);
}
void Scan(UIntQueue &que) {
ul scan = 0;
scanf("%lu", &scan);
que.push(scan);
}
void Scan(UIntStack &stack) {
ul scan = 0;
scanf("%lu", &scan);
stack.push(scan);
}
// type double//
void Scan(D &output) { scanf("%lf", &output); }
void Scan(DoubleVector &vector) {
D scan = 0;
scanf("lf", &scan);
vector.push_back(scan);
}
void Scan(DoublePriority &pri_que) {
D scan = 0;
scanf("%lf", &scan);
pri_que.push(scan);
}
void Scan(DoubleQueue &que) {
D scan = 0;
scanf("%lf", &scan);
que.push(scan);
}
void Scan(DoubleStack &stack) {
D scan = 0;
scanf("%lf", &scan);
stack.push(scan);
}
// type char//
void Scan(Ch &output) { scanf("%c", &output); }
void Scan(CharVector &vector) {
Ch scan = 0;
scanf("%c", &scan);
vector.push_back(scan);
}
void Scan(CharPriority &pri_que) {
Ch scan = 0;
scanf("%c", &scan);
pri_que.push(scan);
}
void Scan(CharQueue &que) {
Ch scan = 0;
scanf("%c", &scan);
que.push(scan);
}
void Scan(CharStack &stack) {
Ch scan = 0;
scanf("%c", &scan);
stack.push(scan);
}
/*----------Print----------*/
struct OPrint {
void operator()(L &value) { printf("%ld", value); }
void operator()(ul &value) { printf("%lu", value); }
void operator()(D &value) { printf("%lf", value); }
void operator()(Ch &value) { printf("%c", value); }
};
template <class T> void Print(T &value) {
std::for_each(value.begin(), value.end(), OPrint());
}
void Print(L value) { printf("%ld", value); }
void Print(ul value) { printf("%lu", value); }
void Print(D value) { printf("%lf", value); }
void Print(Ch value) { printf("%c", value); }
/*----------Init---------*/
template <class T> struct OInit {
T x;
OInit(T _x) : x(_x) {}
void operator()(L &value) { value = x; }
void operator()(ul &value) { value = x; }
void operator()(D &value) { value = x; }
void operator()(Ch &value) { value = x; }
};
template <class T1, class T2> void Init(T1 &value, T2 x) {
std::for_each(value.begin(), value.end(), OInit<T2>(x));
}
void Init(L &value, L x) { value = x; }
void Init(ul &value, ul x) { value = x; }
void Init(D &value, D x) { value = x; }
void Init(Ch &value, Ch x) { value = x; }
int main() {
for (;;) {
IntVector Point;
L n;
Scan(n);
if (!n)
return 0;
TIMES(n)
Scan(Point);
std::sort(Point.begin(), Point.end());
L souwa = 0;
std::for_each(Point.begin() + 1, Point.end() - 1,
[&souwa](L x) { souwa += x; });
Print(souwa / (Point.size() - 2));
puts("");
puts("");
}
return 0;
}
|
#include <algorithm>
#include <array>
#include <bitset>
#include <cmath>
#include <cstdlib>
#include <iostream>
#include <list>
#include <map>
#include <queue> //priority_queue
#include <set>
#include <stack>
#include <utility>
#include <vector>
#pragma warning(disable : 4996)
/*-------マクロ定義---------*/
#define REP(i, n) for (L i = 0; i < n; i++)
#define TIMES(n) REP(i, n)
/*---------Typedef------------*/
// long
typedef long L;
typedef std::pair<L, L> IntPair;
typedef std::vector<L> IntVector;
typedef std::priority_queue<L> IntPriority;
typedef std::queue<L> IntQueue;
typedef std::stack<L> IntStack;
// unsigned long
typedef unsigned long ul;
typedef std::pair<ul, ul> UIntPair;
typedef std::vector<ul> UIntVector;
typedef std::priority_queue<ul> UIntPriority;
typedef std::queue<ul> UIntQueue;
typedef std::stack<ul> UIntStack;
// double
typedef double D;
typedef std::pair<D, D> DoublePair;
typedef std::vector<D> DoubleVector;
typedef std::priority_queue<D> DoublePriority;
typedef std::queue<D> DoubleQueue;
typedef std::stack<D> DoubleStack;
// char
typedef char Ch;
typedef std::pair<Ch, Ch> CharPair;
typedef std::vector<Ch> CharVector;
typedef std::priority_queue<Ch> CharPriority;
typedef std::queue<Ch> CharQueue;
typedef std::stack<Ch> CharStack;
//
/* VectorArray Dp(1000,IntVector(1000)); */
typedef std::vector<std::vector<L>> VectorArray;
typedef std::vector<std::vector<ul>> UVectorArray;
typedef std::vector<std::vector<D>> DVectorArray;
/*--------ScanOverLoad----------*/
// type long//
void Scan(L &output) { scanf("%ld", &output); }
void Scan(IntVector &vector) {
L scan = 0;
scanf("%ld", &scan);
vector.push_back(scan);
}
void Scan(IntPriority &pri_que) {
L scan = 0;
scanf("%ld", &scan);
pri_que.push(scan);
}
void Scan(IntQueue &que) {
L scan = 0;
scanf("%ld", &scan);
que.push(scan);
}
void Scan(IntStack &stack) {
L scan = 0;
scanf("%ld", &scan);
stack.push(scan);
}
// type unsigned long//
void Scan(ul &output) { scanf("%lu", &output); }
void Scan(UIntVector &vector) {
ul scan = 0;
scanf("%lu", &scan);
vector.push_back(scan);
}
void Scan(UIntPriority &pri_que) {
ul scan = 0;
scanf("%lu", &scan);
pri_que.push(scan);
}
void Scan(UIntQueue &que) {
ul scan = 0;
scanf("%lu", &scan);
que.push(scan);
}
void Scan(UIntStack &stack) {
ul scan = 0;
scanf("%lu", &scan);
stack.push(scan);
}
// type double//
void Scan(D &output) { scanf("%lf", &output); }
void Scan(DoubleVector &vector) {
D scan = 0;
scanf("lf", &scan);
vector.push_back(scan);
}
void Scan(DoublePriority &pri_que) {
D scan = 0;
scanf("%lf", &scan);
pri_que.push(scan);
}
void Scan(DoubleQueue &que) {
D scan = 0;
scanf("%lf", &scan);
que.push(scan);
}
void Scan(DoubleStack &stack) {
D scan = 0;
scanf("%lf", &scan);
stack.push(scan);
}
// type char//
void Scan(Ch &output) { scanf("%c", &output); }
void Scan(CharVector &vector) {
Ch scan = 0;
scanf("%c", &scan);
vector.push_back(scan);
}
void Scan(CharPriority &pri_que) {
Ch scan = 0;
scanf("%c", &scan);
pri_que.push(scan);
}
void Scan(CharQueue &que) {
Ch scan = 0;
scanf("%c", &scan);
que.push(scan);
}
void Scan(CharStack &stack) {
Ch scan = 0;
scanf("%c", &scan);
stack.push(scan);
}
/*----------Print----------*/
struct OPrint {
void operator()(L &value) { printf("%ld", value); }
void operator()(ul &value) { printf("%lu", value); }
void operator()(D &value) { printf("%lf", value); }
void operator()(Ch &value) { printf("%c", value); }
};
template <class T> void Print(T &value) {
std::for_each(value.begin(), value.end(), OPrint());
}
void Print(L value) { printf("%ld", value); }
void Print(ul value) { printf("%lu", value); }
void Print(D value) { printf("%lf", value); }
void Print(Ch value) { printf("%c", value); }
/*----------Init---------*/
template <class T> struct OInit {
T x;
OInit(T _x) : x(_x) {}
void operator()(L &value) { value = x; }
void operator()(ul &value) { value = x; }
void operator()(D &value) { value = x; }
void operator()(Ch &value) { value = x; }
};
template <class T1, class T2> void Init(T1 &value, T2 x) {
std::for_each(value.begin(), value.end(), OInit<T2>(x));
}
void Init(L &value, L x) { value = x; }
void Init(ul &value, ul x) { value = x; }
void Init(D &value, D x) { value = x; }
void Init(Ch &value, Ch x) { value = x; }
int main() {
for (;;) {
IntVector Point;
L n;
Scan(n);
if (!n)
return 0;
TIMES(n)
Scan(Point);
std::sort(Point.begin(), Point.end());
L souwa = 0;
std::for_each(Point.begin() + 1, Point.end() - 1,
[&souwa](L x) { souwa += x; });
Print(souwa / (Point.size() - 2));
puts("");
}
return 0;
}
|
[["-", 0, 7, 8, 9, 0, 1, 0, 2, 63, 22], ["-", 8, 9, 0, 1, 0, 2, 3, 4, 0, 24], ["-", 0, 1, 0, 2, 3, 4, 0, 5, 0, 62], ["-", 8, 9, 0, 1, 0, 2, 3, 4, 0, 25], ["-", 8, 9, 0, 7, 8, 9, 0, 1, 0, 35]]
| 1
| 1,381
|
while true do
n = gets.to_i
if n == 0
break
end
max = 0
min = 10000
sum = 0
n.times do
i = gets.to_i
if i > max
max = i
elsif i < min
min = i
end
sum += i
end
p (sum - min - max) / (n-2)
end
|
while true do
n = gets.to_i
if n == 0
break
end
max = 0
min = 1000
sum = 0
n.times do
i = gets.to_i
if i > max
max = i
end
if i < min
min = i
end
sum += i
end
p (sum - min - max) / (n-2)
end
|
[["-", 0, 493, 0, 89, 8, 170, 0, 662, 12, 612], ["+", 0, 493, 0, 89, 8, 170, 0, 662, 12, 612], ["-", 196, 737, 8, 736, 0, 121, 75, 759, 0, 759], ["+", 0, 652, 196, 737, 8, 736, 0, 121, 0, 444], ["+", 0, 652, 196, 737, 8, 736, 0, 121, 0, 121]]
| 4
| 66
|
result = []
loop do
input = gets.chomp!.to_i
ary = []
break unless input != 0
input.times do
ary << gets.chomp!.to_i
end
ary.sort_by!{|a, b| a<=>b}
ary.delete_at(0)
ary.delete_at(ary.length-1)
sum = 0
ary.each do |i|
sum += i
end
result << sum / ary.length
end
result.each do |r|
p r
end
|
result = []
loop do
input = gets.chomp!.to_i
ary = []
break unless input != 0
input.times do
ary << gets.chomp!.to_i
end
ary.sort!{|a, b| a<=>b}
ary.delete_at(0)
ary.delete_at(ary.length-1)
sum = 0
ary.each do |i|
sum += i
end
result << sum / ary.length
end
result.each do |r|
p r
end
|
[["-", 0, 652, 196, 737, 8, 736, 0, 652, 735, 22], ["+", 0, 652, 196, 737, 8, 736, 0, 652, 735, 22]]
| 4
| 95
|
while(n=gets.to_i)>0
p n.times.map{gets.to_i}.sort[1..-1].reduce(:+)/(n-2)end
|
while(n=gets.to_i)>0
p n.times.map{gets.to_i}.sort[1..-2].reduce(:+)/(n-2)end
|
[["-", 31, 652, 486, 742, 0, 475, 444, 748, 439, 612], ["+", 31, 652, 486, 742, 0, 475, 444, 748, 439, 612]]
| 4
| 41
|
while input = gets
if (input.to_i) == 0
exit
else
n = input.to_i
score = Array.new(n, nil)
sum = 0
end
for roop in 0 .. (n - 1)
score[roop] = gets.to_i
end
for roop in 1 .. (n - 2)
sum += score[roop]
end
puts sum / (n - 2)
end
|
while input = gets
if (input.to_i) == 0
exit
else
n = input.to_i
score = Array.new(n, nil)
sum = 0
end
for roop in 0 .. (n - 1)
score[roop] = gets.to_i
end
score.sort!
for roop in 1 .. (n - 2)
sum += score[roop]
end
puts sum / (n - 2)
end
|
[["+", 0, 493, 0, 89, 8, 170, 0, 652, 486, 22], ["+", 0, 493, 0, 89, 8, 170, 0, 652, 17, 131], ["+", 0, 493, 0, 89, 8, 170, 0, 652, 735, 22]]
| 4
| 78
|
averages = []
while True:
amount = int(input())
if amount == 0:
break
scores = [int(input()) for i in range(amount)]
scores.remove(max(scores))
scores.remove(min(scores))
averages.append(sum(scores) // amount)
for i in range(len(averages)):
print(averages[i])
|
averages = []
while True:
amount = int(input())
if amount == 0:
break
scores = [int(input()) for i in range(amount)]
scores.remove(max(scores))
scores.remove(min(scores))
averages.append(sum(scores) // (amount - 2))
for i in range(len(averages)):
print(averages[i])
|
[["+", 0, 652, 3, 4, 0, 657, 12, 23, 0, 24], ["+", 3, 4, 0, 657, 12, 23, 0, 657, 17, 33], ["+", 3, 4, 0, 657, 12, 23, 0, 657, 12, 612], ["+", 0, 652, 3, 4, 0, 657, 12, 23, 0, 25]]
| 5
| 85
|
while True:
n = int(eval(input()))
if n == 0:
break
ma = 0
mi = 1000
s = 0
for i in range(n):
x = int(eval(input()))
if ma < x:
ma = x
elif mi > x:
mi = x
s += x
print(((s - ma - mi) // (n - 2)))
|
while True:
n = int(eval(input()))
if n == 0:
break
ma = 0
mi = 1000
s = 0
for i in range(n):
x = int(eval(input()))
if ma < x:
ma = x
if mi > x:
mi = x
s += x
print(((s - ma - mi) // (n - 2)))
|
[["-", 0, 7, 8, 196, 0, 57, 75, 665, 0, 683], ["+", 8, 196, 0, 7, 8, 196, 0, 57, 0, 121]]
| 5
| 85
|
import statistics
while True:
n = int(input())
if n == 0: break
s = [int(input()) for i in range(n)]
ave = statistics.mean(sorted(s[1:-1]))
print(int(ave))
|
import statistics
while True:
n = int(input())
if n == 0: break
s = [int(input()) for i in range(n)]
ave = statistics.mean(sorted(s)[1:-1])
print(int(ave))
|
[["+", 3, 4, 0, 206, 51, 652, 3, 4, 0, 25], ["-", 12, 652, 3, 4, 0, 652, 3, 4, 0, 25]]
| 5
| 60
|
import bisect
while True:
n = int(input())
if n+1:
break
score = []
for _ in range(n):
s = int(input())
bisect.insort(score, s)
print(sum(score[1:-1])//(len(score)-2))
|
import bisect
while True:
n = int(input())
if n == 0:
break
score = []
for _ in range(n):
s = int(input())
bisect.insort(score, s)
print(sum(score[1:-1])//(len(score)-2))
|
[["-", 0, 52, 8, 196, 0, 57, 15, 657, 17, 72], ["-", 0, 52, 8, 196, 0, 57, 15, 657, 12, 612], ["+", 0, 52, 8, 196, 0, 57, 15, 666, 667, 60], ["+", 0, 52, 8, 196, 0, 57, 15, 666, 0, 612]]
| 5
| 69
|
#-*- encoding:utf-8 -*-
import math
while 1:
n = int(input())
if n == 0:
break
max = 0
min = 9999
sum = 0
for i in range(n):
s = int(input())
if max < s:
max = s
elif min > s:
min = s
sum = sum + s
ans = math.floor((sum - min - max) / (n-2))
print(ans)
|
#-*- encoding:utf-8 -*-
import math
while 1:
n = int(input())
if n == 0:
break
max = 0
min = 9999
sum = 0
for i in range(n):
s = int(input())
if max < s:
max = s
if min > s:
min = s
sum = sum + s
ans = math.floor((sum - min - max) / (n-2))
print(ans)
|
[["-", 0, 7, 8, 196, 0, 57, 75, 665, 0, 683], ["+", 8, 196, 0, 7, 8, 196, 0, 57, 0, 121]]
| 5
| 90
|
while(True):
n = eval(input())
if n == 0:
break;
sl = 1001
sh = 0
ret = 0
for i in range(n):
tmp = eval(input())
sum += tmp
if tmp < sl:
sl = tmp
if tmp > sh:
sh = tmp
ret -= (sl + sh)
print("%d" % (ret/n))
|
while(True):
n = eval(input())
if n == 0:
break;
sl = 1001
sh = 0
ret = 0
for i in range(n):
tmp = eval(input())
ret += tmp
if tmp < sl:
sl = tmp
if tmp > sh:
sh = tmp
ret -= (sl + sh)
print("%d" % (ret/(n-2)))
|
[["-", 0, 7, 8, 196, 0, 1, 0, 677, 31, 22], ["+", 0, 7, 8, 196, 0, 1, 0, 677, 31, 22], ["+", 0, 657, 12, 23, 0, 657, 12, 23, 0, 24], ["+", 12, 23, 0, 657, 12, 23, 0, 657, 17, 33], ["+", 12, 23, 0, 657, 12, 23, 0, 657, 12, 612], ["+", 0, 657, 12, 23, 0, 657, 12, 23, 0, 25]]
| 5
| 83
|
import static java.lang.Math.*;
import static java.util.Arrays.*;
import java.util.*;
public class Main {
int INF = 1 << 28;
P[] ps;
void run() {
Scanner sc = new Scanner(System.in);
for (;;) {
int n = sc.nextInt();
if (n == 0)
break;
ps = new P[n];
for (int i = 0; i < n; i++) {
ps[i] = new P(sc.nextDouble(), sc.nextDouble());
}
int cnt_max = 0;
int cnt = 0;
for (int i = 0; i < n - 1; i++)
for (int j = i + 1; j < n; j++) {
if (sqrt(dis(ps[i], ps[j])) < 2.0) {
P m = new P((ps[i].x + ps[j].x) / 2, (ps[i].y + ps[j].y) / 2);
double d = sqrt(1 - dis(ps[i], m));
P dp = new P((ps[i].y - ps[j].y), -(ps[i].x - ps[j].x));
dp.nom();
dp.mult(d);
P c[] = new P[2];
c[0] = m.add(dp);
dp.mult(-1.0);
c[1] = m.add(dp);
for (int l = 0; l < 2; l++) {
cnt = 0;
// LinkedList<Double>
//dist = new LinkedList<Double>(); LinkedList<Integer> ind = new
//LinkedList<Integer>();
for (int k = 0; k < n; k++) {
// debug(dis(c[l],
//ps[k]));
if (dis(c[l], ps[k]) < 1.0 || k == i || k == j) {
// dist.add(dis(c[l],
//ps[k])); ind.add(k);
cnt++;
}
}
// debug(dis(
//ps[i], ps[j] ), cnt_max, cnt);
cnt_max = max(cnt_max, cnt);
}
}
}
System.out.println(cnt_max);
}
}
double dis(P p1, P p2) {
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
public static void main(String[] args) { new Main().run(); }
void debug(Object... os) { System.err.println(Arrays.deepToString(os)); }
class P {
double x, y;
P(double x, double y) {
this.x = x;
this.y = y;
}
void nom() {
double nom = sqrt(x * x + y * y);
x /= nom;
y /= nom;
}
P add(P p) {
x += p.x;
y += p.y;
return new P(x, y);
}
P mult(double d) {
x *= d;
y *= d;
return new P(x, y);
}
}
}
|
import static java.lang.Math.*;
import static java.util.Arrays.*;
import java.util.*;
public class Main {
int INF = 1 << 28;
P[] ps;
void run() {
Scanner sc = new Scanner(System.in);
for (;;) {
int n = sc.nextInt();
if (n == 0)
break;
ps = new P[n];
for (int i = 0; i < n; i++) {
ps[i] = new P(sc.nextDouble(), sc.nextDouble());
}
int cnt_max = 1;
int cnt = 0;
for (int i = 0; i < n - 1; i++)
for (int j = i + 1; j < n; j++) {
if (sqrt(dis(ps[i], ps[j])) < 2.0) {
P m = new P((ps[i].x + ps[j].x) / 2, (ps[i].y + ps[j].y) / 2);
double d = sqrt(1 - dis(ps[i], m));
P dp = new P((ps[i].y - ps[j].y), -(ps[i].x - ps[j].x));
dp.nom();
dp.mult(d);
P c[] = new P[2];
c[0] = m.add(dp);
dp.mult(-1.0);
c[1] = m.add(dp);
for (int l = 0; l < 2; l++) {
cnt = 0;
// LinkedList<Double>
//dist = new LinkedList<Double>(); LinkedList<Integer> ind = new
//LinkedList<Integer>();
for (int k = 0; k < n; k++) {
if (dis(c[l], ps[k]) < 1.0 || k == i || k == j) {
// debug(dis(c[l],
//ps[k])); dist.add(dis(c[l], ps[k])); ind.add(k);
cnt++;
}
}
// debug(c[l].x,
//c[l].y, i, j, cnt);
cnt_max = max(cnt_max, cnt);
}
}
}
System.out.println(cnt_max);
}
}
double dis(P p1, P p2) {
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
public static void main(String[] args) { new Main().run(); }
void debug(Object... os) { System.err.println(Arrays.deepToString(os)); }
class P {
double x, y;
P(double x, double y) {
this.x = x;
this.y = y;
}
void nom() {
double nom = sqrt(x * x + y * y);
x /= nom;
y /= nom;
}
P add(P p) {
x += p.x;
y += p.y;
return new P(x, y);
}
P mult(double d) {
x *= d;
y *= d;
return new P(x, y);
}
}
}
|
[["-", 0, 7, 8, 196, 0, 503, 49, 200, 51, 499], ["+", 0, 7, 8, 196, 0, 503, 49, 200, 51, 499]]
| 3
| 655
|
import java.awt.geom.Point2D;
import java.awt.geom.Point2D.Double;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (true) {
int n = sc.nextInt();
if (n == 0)
break;
Point2D.Double[] p = new Point2D.Double[n];
for (int i = 0; i < n; i++)
p[i] = new Point2D.Double(sc.nextDouble(), sc.nextDouble());
Arrays.sort(p, new Comparator<Point2D.Double>() {
public int compare(Point2D.Double o1, Point2D.Double o2) {
if (o1.y - o2.y > 0)
return 1;
else
return -1;
}
});
int max = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (p[j].y - p[i].y > 2.0001)
break;
if (p[j].distance(p[i]) > 2.0001)
continue;
double a, b, c, A, B, C;
double xa = p[i].x;
double ya = p[i].y;
double xb = p[j].x;
double yb = p[j].y;
double[] x = new double[2];
double[] y = new double[2];
A = xa - xb;
B = ya - yb;
C = (A * xa + A * xb + B * ya + B * yb) / 2;
if (A == 0) {
c = (C / B - ya) * (C / B - ya) + xa * xa - 1;
x[0] = xa + Math.sqrt(xa * xa - c);
x[1] = xa - Math.sqrt(xa * xa - c);
y[0] = C / B;
y[1] = C / B;
} else if (B == 0) {
c = (C / A - xa) * (C / A - xa) + ya * ya - 1;
y[0] = ya + Math.sqrt(ya * ya - c);
y[1] = ya - Math.sqrt(ya * ya - c);
x[0] = C / A;
x[1] = C / A;
} else {
a = 1 + (A * A) / (B * B);
b = (2 * A * ya * B - 2 * A * C - 2 * xa * B * B) / (B * B);
c = (C / B - ya) * (C / B - ya) + xa * xa - 1;
x[0] = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);
x[1] = (-b - Math.sqrt(b * b - 4 * a * c)) / (2 * a);
y[0] = (C - A * x[0]) / B;
y[1] = (C - A * x[1]) / B;
}
for (int d = 0; d < 2; d++) {
int cnt = 0;
for (int e = 0; e < n; e++) {
if (p[e].y - y[d] > 1.0001)
break;
if (p[e].distance(x[d], y[d]) < 1.0001)
cnt++;
}
max = Math.max(max, cnt);
}
}
}
System.out.println(max);
}
}
}
|
import java.awt.geom.Point2D;
import java.awt.geom.Point2D.Double;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (true) {
int n = sc.nextInt();
if (n == 0)
break;
Point2D.Double[] p = new Point2D.Double[n];
for (int i = 0; i < n; i++)
p[i] = new Point2D.Double(sc.nextDouble(), sc.nextDouble());
Arrays.sort(p, new Comparator<Point2D.Double>() {
public int compare(Point2D.Double o1, Point2D.Double o2) {
if (o1.y - o2.y > 0)
return 1;
else
return -1;
}
});
int max = 1;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (p[j].y - p[i].y > 2.0001)
break;
if (p[j].distance(p[i]) > 2.0001)
continue;
double a, b, c, A, B, C;
double xa = p[i].x;
double ya = p[i].y;
double xb = p[j].x;
double yb = p[j].y;
double[] x = new double[2];
double[] y = new double[2];
A = xa - xb;
B = ya - yb;
C = (A * xa + A * xb + B * ya + B * yb) / 2;
if (A == 0) {
c = (C / B - ya) * (C / B - ya) + xa * xa - 1;
x[0] = xa + Math.sqrt(xa * xa - c);
x[1] = xa - Math.sqrt(xa * xa - c);
y[0] = C / B;
y[1] = C / B;
} else if (B == 0) {
c = (C / A - xa) * (C / A - xa) + ya * ya - 1;
y[0] = ya + Math.sqrt(ya * ya - c);
y[1] = ya - Math.sqrt(ya * ya - c);
x[0] = C / A;
x[1] = C / A;
} else {
a = 1 + (A * A) / (B * B);
b = (2 * A * ya * B - 2 * A * C - 2 * xa * B * B) / (B * B);
c = (C / B - ya) * (C / B - ya) + xa * xa - 1;
x[0] = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);
x[1] = (-b - Math.sqrt(b * b - 4 * a * c)) / (2 * a);
y[0] = (C - A * x[0]) / B;
y[1] = (C - A * x[1]) / B;
}
for (int d = 0; d < 2; d++) {
int cnt = 0;
for (int e = 0; e < n; e++) {
if (p[e].y - y[d] > 1.0001)
break;
if (p[e].distance(x[d], y[d]) < 1.0001)
cnt++;
}
max = Math.max(max, cnt);
}
}
}
System.out.println(max);
}
}
}
|
[["-", 0, 52, 8, 196, 0, 503, 49, 200, 51, 499], ["+", 0, 52, 8, 196, 0, 503, 49, 200, 51, 499]]
| 3
| 818
|
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class Main {
static Scanner sc = new Scanner(System.in);
static int N;
static double[] X, Y;
public static void main(String[] args) {
while (true) {
N = sc.nextInt();
if (N == 0)
break;
X = new double[N];
Y = new double[N];
for (int i = 0; i < N; ++i) {
X[i] = sc.nextDouble();
Y[i] = sc.nextDouble();
}
System.out.println(solve());
}
}
static int solve() {
if (N == 1)
return 1;
if (N == 2) {
return dist(0, 1) < 2 ? 2 : 1;
}
int ans = 1;
for (int i = 0; i < N; ++i) {
for (int j = i + 1; j < N; ++j) {
double d = dist(i, j);
if (d > 2)
continue;
double dx = (X[j] - X[i]) / 2;
double dy = (Y[j] - Y[i]) / 2;
double len = sq(dx, dy);
double ex = dx / len;
double ey = dx / len;
double lenC = Math.sqrt(1 - len);
{
double cx = X[i] + dx - ey * lenC;
double cy = Y[i] + dy + ex * lenC;
ans = Math.max(ans, count(cx, cy));
}
{
double cx = X[i] + dx + ey * lenC;
double cy = Y[i] + dy - ex * lenC;
ans = Math.max(ans, count(cx, cy));
}
}
}
return ans;
}
static int count(double cx, double cy) {
int c = 0;
for (int i = 0; i < N; ++i) {
double d = sq(X[i] - cx, Y[i] - cy);
if (d <= 1 + 1e-8)
++c;
}
return c;
}
static double dist(int i, int j) { return sq(X[i] - X[j], Y[i] - Y[j]); }
static double sq(double x, double y) { return Math.sqrt(x * x + y * y); }
}
|
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class Main {
static Scanner sc = new Scanner(System.in);
static int N;
static double[] X, Y;
public static void main(String[] args) {
while (true) {
N = sc.nextInt();
if (N == 0)
break;
X = new double[N];
Y = new double[N];
for (int i = 0; i < N; ++i) {
X[i] = sc.nextDouble();
Y[i] = sc.nextDouble();
}
System.out.println(solve());
}
}
static int solve() {
if (N == 1)
return 1;
if (N == 2) {
return dist(0, 1) <= 2 ? 2 : 1;
}
int ans = 1;
for (int i = 0; i < N; ++i) {
for (int j = i + 1; j < N; ++j) {
double d = dist(i, j);
if (d > 2)
continue;
double dx = (X[j] - X[i]) / 2;
double dy = (Y[j] - Y[i]) / 2;
double len = sq(dx, dy);
double ex = dx / len;
double ey = dy / len;
double lenC = Math.sqrt(1 - len * len);
{
double cx = X[i] + dx - ey * lenC;
double cy = Y[i] + dy + ex * lenC;
ans = Math.max(ans, count(cx, cy));
}
{
double cx = X[i] + dx + ey * lenC;
double cy = Y[i] + dy - ex * lenC;
ans = Math.max(ans, count(cx, cy));
}
}
}
return ans;
}
static int count(double cx, double cy) {
int c = 0;
for (int i = 0; i < N; ++i) {
double d = sq(X[i] - cx, Y[i] - cy);
if (d <= 1 + 1e-9)
++c;
}
return c;
}
static double dist(int i, int j) { return sq(X[i] - X[j], Y[i] - Y[j]); }
static double sq(double x, double y) { return Math.sqrt(x * x + y * y); }
}
|
[["-", 64, 196, 0, 37, 0, 510, 15, 16, 17, 18], ["+", 64, 196, 0, 37, 0, 510, 15, 16, 17, 19], ["-", 8, 196, 0, 503, 49, 200, 51, 16, 31, 22], ["+", 8, 196, 0, 503, 49, 200, 51, 16, 31, 22], ["+", 51, 492, 3, 4, 0, 16, 12, 16, 31, 22], ["+", 51, 492, 3, 4, 0, 16, 12, 16, 17, 48], ["-", 0, 57, 15, 15, 0, 16, 12, 16, 12, 515], ["+", 0, 57, 15, 15, 0, 16, 12, 16, 12, 515]]
| 3
| 538
|
import java.awt.geom.Point2D;
import java.util.*;
public class Main {
Scanner in = new Scanner(System.in);
public static void main(String[] args) { new Main(); }
public Main() {
while (in.hasNext())
new AOJ1134().doIt();
}
class AOJ1134 {
final double EPS = 1.0e-8;
Point2D[] intersectPtCC(Circle a, Circle b) {
double dis = a.p.distance(b.p);
if (dis > a.r + b.r)
return null;
Point2D v = sub(b.p, a.p);
double rc = (dis * dis + a.r * a.r - b.r * b.r) / (2 * dis);
double rate = rc / dis;
v = mul(rate, v);
Point2D c = add(v, a.p);
double disC2c = c.distance(b.p);
double disqc = Math.sqrt(b.r * b.r - disC2c * disC2c);
Point2D v2 = sub(b.p, c);
v2 = mul(disqc / disC2c, v2);
Point2D[] ret = new Point2D.Double[2];
ret[0] = add(normalVector1(v2), c);
ret[1] = add(normalVector2(v2), c);
return ret;
}
Point2D add(Point2D p1, Point2D p2) {
return new Point2D.Double(p1.getX() + p2.getX(), p1.getY() + p2.getY());
}
Point2D normalVector1(Point2D p) {
return new Point2D.Double(-p.getY(), p.getX());
}
Point2D normalVector2(Point2D p) {
return new Point2D.Double(p.getY(), -p.getX());
}
Point2D mul(double n, Point2D p1) {
return new Point2D.Double(p1.getX() * n, p1.getY() * n);
}
Point2D sub(Point2D p1, Point2D p2) {
return new Point2D.Double(p1.getX() - p2.getX(), p1.getY() - p2.getY());
}
class Circle {
Point2D p;
double r;
Circle(Point2D p, double r) {
this.p = p;
this.r = r;
}
Circle(double x, double y, double r) {
this.p = new Point2D.Double(x, y);
this.r = r;
}
}
void doIt() {
int n = in.nextInt();
if (n == 0)
return;
Point2D[] p = new Point2D[n];
for (int i = 0; i < n; i++)
p[i] = new Point2D.Double(in.nextDouble(), in.nextDouble());
int result = 1;
for (int i = 0; i < n; i++)
for (int s = 0; s < n; s++)
if (i != s)
if (p[i].distance(p[s]) <= 2) {
Point2D[] k = intersectPtCC(new Circle(p[i], 1 + EPS),
new Circle(p[s], 1 + EPS));
for (int a = 0; a < k.length; a++) {
int cnt = 0;
for (int b = 0; b < n; b++)
if (k[a].distance(p[b]) <= 1 + EPS)
cnt++;
result = Math.max(result, cnt);
}
}
System.out.println(result);
}
}
}
|
import java.awt.geom.Point2D;
import java.util.*;
public class Main {
Scanner in = new Scanner(System.in);
public static void main(String[] args) { new Main(); }
public Main() {
while (in.hasNext())
new AOJ1134().doIt();
}
class AOJ1134 {
final double EPS = 1.0e-8;
Point2D[] intersectPtCC(Circle a, Circle b) {
double dis = a.p.distance(b.p);
if (dis > a.r + b.r)
return null;
Point2D v = sub(b.p, a.p);
double rc = (dis * dis + a.r * a.r - b.r * b.r) / (2 * dis);
double rate = rc / dis;
v = mul(rate, v);
Point2D c = add(v, a.p);
double disC2c = c.distance(b.p);
double disqc = Math.sqrt(b.r * b.r - disC2c * disC2c);
Point2D v2 = sub(b.p, c);
v2 = mul(disqc / disC2c, v2);
Point2D[] ret = new Point2D.Double[2];
ret[0] = add(normalVector1(v2), c);
ret[1] = add(normalVector2(v2), c);
return ret;
}
Point2D add(Point2D p1, Point2D p2) {
return new Point2D.Double(p1.getX() + p2.getX(), p1.getY() + p2.getY());
}
Point2D normalVector1(Point2D p) {
return new Point2D.Double(-p.getY(), p.getX());
}
Point2D normalVector2(Point2D p) {
return new Point2D.Double(p.getY(), -p.getX());
}
Point2D mul(double n, Point2D p1) {
return new Point2D.Double(p1.getX() * n, p1.getY() * n);
}
Point2D sub(Point2D p1, Point2D p2) {
return new Point2D.Double(p1.getX() - p2.getX(), p1.getY() - p2.getY());
}
class Circle {
Point2D p;
double r;
Circle(Point2D p, double r) {
this.p = p;
this.r = r;
}
Circle(double x, double y, double r) {
this.p = new Point2D.Double(x, y);
this.r = r;
}
}
void doIt() {
int n = in.nextInt();
if (n == 0)
return;
Point2D[] p = new Point2D[n];
for (int i = 0; i < n; i++)
p[i] = new Point2D.Double(in.nextDouble(), in.nextDouble());
int result = 1;
for (int i = 0; i < n; i++)
for (int s = 0; s < n; s++)
if (i != s)
if (p[i].distance(p[s]) <= 2) {
Point2D[] k =
intersectPtCC(new Circle(p[i], 1), new Circle(p[s], 1));
for (int a = 0; a < k.length; a++) {
int cnt = 0;
for (int b = 0; b < n; b++)
if (k[a].distance(p[b]) <= 1 + EPS)
cnt++;
result = Math.max(result, cnt);
}
}
System.out.println(result);
}
}
}
|
[["-", 3, 4, 0, 230, 3, 4, 0, 16, 17, 72], ["-", 3, 4, 0, 230, 3, 4, 0, 16, 12, 22]]
| 3
| 779
|
#include <math.h>
#include <stdio.h>
#define p2(x) ((x) * (x))
#define mul(rx, ry, x1, y1, x2, y2) \
((rx) = (x1) * (x2) - (y1) * (y2), (ry) = (x2) * (y1) + (x1) * (y2))
#define R 1
double X[300], Y[300], hyp, t, pl, dx, dy, x[2], y[2];
int main() {
int N, M, m, i, j, k, z;
for (; scanf("%d", &N), N; printf("%d\n", M)) {
for (i = 0; i < N; i++)
scanf("%lf%lf", X + i, Y + i);
for (M = 1, i = 0; i < N; i++)
for (j = i + 1; j < N; j++) {
hyp = hypot(X[j] - X[i], Y[j] - Y[i]);
if (hyp > 2 * R)
continue;
// t=( p2(R)-p2(R)+p2(hyp) )/( 2*hyp );
t = hyp / 2;
pl = sqrt(p2(R) - p2(t));
dx = (X[j] - X[i]) / hyp;
dy = (Y[j] - Y[i]) / hyp;
mul(x[0], y[0], dx, dy, t, pl);
mul(x[1], y[1], dx, dy, t, -pl);
for (z = 0; z < 2; z++) {
x[z] += X[i], y[z] += Y[i];
for (m = k = 0; k < N; k++)
if (p2(X[k] - x[z]) + p2(Y[k] - y[z]) < p2(R) - 1e-9)
m++;
if (M < m)
M = m;
}
}
}
return 0;
}
|
#include <math.h>
#include <stdio.h>
#define p2(x) ((x) * (x))
#define mul(rx, ry, x1, y1, x2, y2) \
((rx) = (x1) * (x2) - (y1) * (y2), (ry) = (x2) * (y1) + (x1) * (y2))
#define R 1
double X[300], Y[300], hyp, t, pl, dx, dy, x[2], y[2];
int main() {
int N, M, m, i, j, k, z;
for (; scanf("%d", &N), N; printf("%d\n", M)) {
for (i = 0; i < N; i++)
scanf("%lf%lf", X + i, Y + i);
for (M = 1, i = 0; i < N; i++)
for (j = i + 1; j < N; j++) {
hyp = hypot(X[j] - X[i], Y[j] - Y[i]);
if (hyp > 2 * R)
continue;
// t=( p2(R)-p2(R)+p2(hyp) )/( 2*hyp );
t = hyp / 2;
pl = sqrt(p2(R) - p2(t));
dx = (X[j] - X[i]) / hyp;
dy = (Y[j] - Y[i]) / hyp;
mul(x[0], y[0], dx, dy, t, pl);
mul(x[1], y[1], dx, dy, t, -pl);
for (z = 0; z < 2; z++) {
x[z] += X[i], y[z] += Y[i];
for (m = k = 0; k < N; k++)
if (p2(X[k] - x[z]) + p2(Y[k] - y[z]) < p2(R) + 1e-9)
m++;
if (M < m)
M = m;
}
}
}
return 0;
}
|
[["-", 8, 57, 15, 23, 0, 16, 12, 16, 17, 33], ["+", 8, 57, 15, 23, 0, 16, 12, 16, 17, 72]]
| 0
| 404
|
#include <math.h>
#include <stdio.h>
int main() {
int n, i, j, l, max, c;
double x[310], y[310], k, s, t, a, b, e = 1e-6;
while (scanf("%d", &n), n) {
for (i = max = 0; i < n; i++)
scanf("%lf %lf", &x[i], &y[i]);
for (i = 0; i < n; i++) {
for (j = i + 1; j < n; j++) {
a = (x[i] - x[j]) / 2;
b = (y[i] - y[j]) / 2;
if (hypot(a, b) - e > 1)
continue;
k = tan(acos(hypot(a, b)));
s = x[j] + a + k * b;
t = y[j] + b - k * a;
for (l = c = 0; l < n; l++) {
if (hypot(x[l] - s, y[l] - t) - e < 1)
c++;
}
if (max < c)
max = c;
s = x[j] + a - k * b;
t = y[j] + b + k * a;
for (l = c = 0; l < n; l++) {
if (hypot(x[l] - s, y[l] - t) - e < 1)
c++;
}
if (max < c)
max = c;
}
}
printf("%d\n", max);
}
return 0;
}
|
#include <math.h>
#include <stdio.h>
int main() {
int n, i, j, l, max, c;
double x[310], y[310], k, s, t, a, b, e = 1e-6;
while (scanf("%d", &n), n) {
max = 1;
for (i = 0; i < n; i++)
scanf("%lf %lf", &x[i], &y[i]);
for (i = 0; i < n; i++) {
for (j = i + 1; j < n; j++) {
a = (x[i] - x[j]) / 2;
b = (y[i] - y[j]) / 2;
if (hypot(a, b) - e > 1)
continue;
k = tan(acos(hypot(a, b)));
s = x[j] + a + k * b;
t = y[j] + b - k * a;
for (l = c = 0; l < n; l++) {
if (hypot(x[l] - s, y[l] - t) - e < 1)
c++;
}
if (max < c)
max = c;
s = x[j] + a - k * b;
t = y[j] + b + k * a;
for (l = c = 0; l < n; l++) {
if (hypot(x[l] - s, y[l] - t) - e < 1)
c++;
}
if (max < c)
max = c;
}
}
printf("%d\n", max);
}
return 0;
}
|
[["+", 0, 52, 8, 9, 0, 1, 0, 11, 31, 22], ["+", 0, 52, 8, 9, 0, 1, 0, 11, 17, 32], ["+", 0, 52, 8, 9, 0, 1, 0, 11, 12, 13], ["+", 8, 9, 0, 52, 8, 9, 0, 1, 0, 35], ["-", 0, 52, 8, 9, 0, 7, 10, 11, 17, 32], ["-", 8, 9, 0, 7, 10, 11, 12, 11, 31, 22]]
| 0
| 363
|
#include <algorithm>
#include <cmath>
#include <deque>
#include <iostream>
#include <string>
#include <utility>
#include <vector>
#define REP(i, n) FOR(i, 0, n)
#define FOR(i, a, b) for (int i = int(a); i < int(b); ++i)
#define RREP(i, n) RFOR(i, 0, n)
#define RFOR(i, a, b) for (int i = int(b) - 1; i >= int(a); --i)
constexpr double EPS = 1e-7;
signed main() {
while (true) {
int n;
std::cin >> n;
if (n == 0)
break;
std::vector<double> x(n), y(n);
REP(i, n) std::cin >> x[i] >> y[i];
int ans = 0;
REP(i, n) FOR(j, i + 1, n) {
double dist = std::hypot(x[i] - x[j], y[i] - y[j]);
if (dist > 2 + EPS)
continue;
// iとjの中点m
double mx = (x[i] + x[j]) / 2;
double my = (y[i] + y[j]) / 2;
// 線分ijから中心への距離
double r = std::sqrt(1 - (dist / 2) * (dist / 2));
// 中心c
for (int sign = -1; sign <= 1; sign += 2) {
// 移動のベクトルv
double vx = sign * r * (y[j] - y[i]) / dist;
double vy = sign * r * -(x[j] - x[i]) / dist;
double cx = mx + vx;
double cy = my + vy;
int cnt = 0;
REP(k, n) {
if (std::hypot(cx - x[k], cy - y[k]) < 1 + EPS)
++cnt;
}
ans = std::max(ans, cnt);
}
}
std::cout << ans << "\n";
}
return 0;
}
|
#include <algorithm>
#include <cmath>
#include <deque>
#include <iostream>
#include <string>
#include <utility>
#include <vector>
#define REP(i, n) FOR(i, 0, n)
#define FOR(i, a, b) for (int i = int(a); i < int(b); ++i)
#define RREP(i, n) RFOR(i, 0, n)
#define RFOR(i, a, b) for (int i = int(b) - 1; i >= int(a); --i)
constexpr double EPS = 1e-7;
signed main() {
while (true) {
int n;
std::cin >> n;
if (n == 0)
break;
std::vector<double> x(n), y(n);
REP(i, n) std::cin >> x[i] >> y[i];
int ans = 1;
REP(i, n) FOR(j, i + 1, n) {
double dist = std::hypot(x[i] - x[j], y[i] - y[j]);
if (dist > 2 + EPS)
continue;
// iとjの中点m
double mx = (x[i] + x[j]) / 2;
double my = (y[i] + y[j]) / 2;
// 線分ijから中心への距離
double r = std::sqrt(1 - (dist / 2) * (dist / 2));
// 中心c
for (int sign = -1; sign <= 1; sign += 2) {
// 移動のベクトルv
double vx = sign * r * (y[j] - y[i]) / dist;
double vy = sign * r * -(x[j] - x[i]) / dist;
double cx = mx + vx;
double cy = my + vy;
int cnt = 0;
REP(k, n) {
if (std::hypot(cx - x[k], cy - y[k]) < 1 + EPS)
++cnt;
}
ans = std::max(ans, cnt);
}
}
std::cout << ans << "\n";
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 384
|
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <deque>
#include <functional>
#include <list>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#define REP(i, s, n) for (int i = (int)(s); i < (int)(n); i++)
#define DEBUGP(val) cerr << #val << "=" << val << "\n"
using namespace std;
typedef long long int ll;
typedef vector<int> VI;
typedef vector<ll> VL;
typedef pair<int, int> PI;
typedef pair<double, double> PD;
const double EPS = 1e-11;
double sq(double x) { return x * x; }
void solve(double ax, double ay, double bx, double by, int &ma,
const vector<double> &x, const vector<double> &y) {
double sqdist = sq(ax - bx) + sq(ay - by);
if (sqdist >= 4 + EPS)
return;
double dist = sqrt(sqdist);
double ndist = sqrt(1 - sqdist / 4);
double ex = (bx - ax) / dist, ey = (by - ay) / dist;
int n = x.size();
REP(i, 0, 2) {
double coef = i == 0 ? 1 : -1;
double cx = (ax + bx) / 2 + ey * coef * ndist;
double cy = (ay + by) / 2 - ex * coef * ndist;
int cnt = 0;
REP(j, 0, n) {
double sqdist = sq(x[j] - cx) + sq(y[j] - cy);
if (sqdist <= 1 + EPS) {
cnt += 1;
}
}
ma = max(ma, cnt);
}
}
int main(void) {
int n;
while (scanf("%d", &n) && n) {
vector<double> x(n), y(n);
REP(i, 0, n) scanf("%lf%lf", &x[i], &y[i]);
int ma = 0;
REP(i, 0, n) {
REP(j, 0, i) { solve(x[i], y[i], x[j], y[j], ma, x, y); }
}
printf("%d\n", ma);
}
}
|
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <deque>
#include <functional>
#include <list>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#define REP(i, s, n) for (int i = (int)(s); i < (int)(n); i++)
#define DEBUGP(val) cerr << #val << "=" << val << "\n"
using namespace std;
typedef long long int ll;
typedef vector<int> VI;
typedef vector<ll> VL;
typedef pair<int, int> PI;
typedef pair<double, double> PD;
const double EPS = 1e-11;
double sq(double x) { return x * x; }
void solve(double ax, double ay, double bx, double by, int &ma,
const vector<double> &x, const vector<double> &y) {
double sqdist = sq(ax - bx) + sq(ay - by);
if (sqdist >= 4 + EPS)
return;
double dist = sqrt(sqdist);
double ndist = sqrt(1 - sqdist / 4);
double ex = (bx - ax) / dist, ey = (by - ay) / dist;
int n = x.size();
REP(i, 0, 2) {
double coef = i == 0 ? 1 : -1;
double cx = (ax + bx) / 2 + ey * coef * ndist;
double cy = (ay + by) / 2 - ex * coef * ndist;
int cnt = 0;
REP(j, 0, n) {
double sqdist = sq(x[j] - cx) + sq(y[j] - cy);
if (sqdist <= 1 + EPS) {
cnt += 1;
}
}
ma = max(ma, cnt);
}
}
int main(void) {
int n;
while (scanf("%d", &n) && n) {
vector<double> x(n), y(n);
REP(i, 0, n) scanf("%lf%lf", &x[i], &y[i]);
int ma = 1;
REP(i, 0, n) {
REP(j, 0, i) { solve(x[i], y[i], x[j], y[j], ma, x, y); }
}
printf("%d\n", ma);
}
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 477
|
////////////////////
/// template ///
////////////////////
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstring>
#include <functional>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using namespace std;
//// MACRO ////
#define REP(i, n) for (int i = 0; i < (n); i++)
#define RREP(i, n) for (int i = (n)-1; i >= 0; i--)
#define FOR(i, s, n) for (int i = (s); i < (n); i++)
#define allof(c) c.begin(), c.end()
#define partof(c, i, n) c.begin() + (i), c.begin() + (i) + (n)
#define EPS 1e-10
#define INF 1000000000
#define countof(a) (sizeof(a) / sizeof(a[0]))
#define PREDIACTE(t, a) [](const t &a) -> bool
#define COMPARISON_T(t) bool (*)(const t &, const t &)
#define COMPARISON(t, a, b) [](const t &a, const t &b) -> bool
//// prime ////
vector<unsigned char> isPrime;
vector<int> primes;
void initPrimes(int n) {
isPrime = vector<unsigned char>(n + 1, true);
isPrime[0] = isPrime[1] = false;
FOR(i, 2, n + 1) {
if (!isPrime[i])
continue;
primes.push_back(i);
for (int j = i * 2; j <= n; j += i)
isPrime[j] = false;
}
}
//// Probability ////
// パスカルの三角形(二項定理) 2種類の並べ替えにつかう。
vector<vector<double>> makePascalTriangle(int n, bool probability = false) {
typedef vector<double> VD;
vector<VD> t;
if (!t.size()) {
t.push_back(VD(1, 1));
}
FOR(i, t.size(), n + 1) {
t.push_back(VD(i + 1));
REP(j, i) {
double x = t[i - 1][j] * (probability ? 0.5 : 1);
t[i][j] += x;
t[i][j + 1] += x;
}
}
return t;
}
//// iota iterator ////
struct iotait {
int n;
iotait(int n = 0) : n(n) {}
iotait &operator++() {
++n;
return *this;
}
int operator*() { return n; }
};
//// geo ////
struct P3 {
double x, y, z;
P3(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {}
P3 operator+() const { return *this; }
P3 operator+(const P3 &_) const { return P3(x + _.x, y + _.y, z + _.z); }
P3 operator-() const { return P3(-x, -y, -z); }
P3 operator-(const P3 &_) const { return *this + -_; }
P3 operator*(double _) const { return P3(x * _, y * _, z * _); }
P3 operator/(double _) const { return P3(x / _, y / _, z / _); }
double dot(const P3 &_) const { return x * _.x + y * _.y + z * _.z; } // 内積
P3 cross(const P3 &_) const {
return P3(y * _.z - z * _.y, z * _.x - x * _.z, x * _.y - y * _.x);
} // 外積
double sqlength() const { return x * x + y * y + z * z; } // 二乗長さ
double length() const { return sqrt(sqlength()); } // 長さ
P3 direction() const { return *this / length(); } // 方向ベクトル
};
inline istream &operator>>(istream &in, P3 &p) {
in >> p.x >> p.y >> p.z;
return in;
}
inline double abs(P3 p) { return p.length(); }
struct Sphere {
P3 c;
double r;
Sphere(double x, double y, double z, double r) : c(x, y, z), r(r) {}
Sphere(P3 c, double r) : c(c), r(r) {}
bool IntersectWith(const Sphere &rhs) const {
return abs(c - rhs.c) - (r + rhs.r) < EPS;
} // 接してても真。
};
inline istream &operator>>(istream &in, Sphere &c) {
in >> c.c >> c.r;
return in;
}
struct P2 {
double x, y;
P2(double x = 0, double y = 0) : x(x), y(y) {}
P2(complex<double> c) : x(c.real()), y(c.imag()) {}
P2 operator+() const { return *this; }
P2 operator+(const P2 &_) const { return P2(x + _.x, y + _.y); }
P2 operator-() const { return P2(-x, -y); }
P2 operator-(const P2 &_) const { return *this + -_; }
P2 operator*(double _) const { return P2(x * _, y * _); }
P2 operator/(double _) const { return P2(x / _, y / _); }
double dot(const P2 &_) const { return x * _.x + y * _.y; } // 内積
double cross(const P2 &_) const { return x * _.y - y * _.x; } // 外積
double sqlength() const { return x * x + y * y; } // 二乗長さ
double length() const { return sqrt(sqlength()); } // 長さ
P2 orthogonal() const { return P2(y, -x); }
P2 direction() const { return *this / length(); } // 方向ベクトル
};
inline istream &operator>>(istream &in, P2 &p) {
in >> p.x >> p.y;
return in;
}
inline double abs(P2 p2) { return p2.length(); }
inline P2 orthogonal(P2 p) { return p.orthogonal(); }
inline complex<double> orthogonal(complex<double> c) {
return c * complex<double>(0, 1);
}
// a,b から ちょうど d だけ離れた点。aとbを円周に持つ円の半径。
pair<P2, P2> get_same_distance_points(P2 a, P2 b, double d) {
assert(abs(a - b) <= 2 * d + EPS);
auto v = (a + b) / 2.0 - a; // a から aとbの中点
auto vl = abs(v);
auto wl = sqrt(d * d - vl * vl); // 直行Vの大きさ
auto w = orthogonal(v) * (wl / vl); // 直行V
return make_pair(a + v + w, a + v - w);
}
struct Circle {
P2 c;
double r;
Circle(double x, double y, double r) : c(x, y), r(r) {}
Circle(P2 c, double r) : c(c), r(r) {}
bool IntersectWith(const Circle &rhs) const {
return abs(c - rhs.c) - (r + rhs.r) < EPS;
} // 接してても真。
bool Contains(const P2 &p) const {
return abs(p - c) - r < EPS;
} // 接してても真。
};
inline istream &operator>>(istream &in, Circle &c) {
in >> c.c >> c.r;
return in;
}
//// bit ////
#ifdef _MSC_VER
inline unsigned __builtin_ctz(unsigned x) {
unsigned long r;
_BitScanForward(&r, x);
return r;
}
#endif
inline int next_bit_permutation(int x) {
int t = x | (x - 1);
return (t + 1) | (unsigned)((~t & -~t) - 1) >> (__builtin_ctz(x) + 1);
}
//// graph ////
struct Path {
int from;
int to;
double cost;
Path(int from = 0, int to = 0, double cost = 0)
: from(from), to(to), cost(cost) {}
bool operator<(const Path &rhs) const { return cost < rhs.cost; }
bool operator>(const Path &rhs) const { return cost > rhs.cost; }
};
// prim //
pair<double, vector<int>> prim(const vector<vector<double>> &costTable) {
int N = costTable.size();
priority_queue<Path, vector<Path>, greater<Path>> q;
q.push(Path(0, 0, 0));
vector<int> parent(N, -1);
double totalCost = 0;
while (!q.empty()) {
Path cur = q.top();
q.pop();
int i = cur.to;
if (parent[i] != -1)
continue;
parent[i] = cur.from;
totalCost += cur.cost;
REP(j, N) if (parent[j] == -1) q.push(Path(i, j, costTable[i][j]));
}
return make_pair(totalCost, parent);
}
// dijkstra //
pair<vector<double>, vector<int>> dijkstra(const vector<vector<Path>> &routes,
int start = 0, int goal = -1) {
int N = routes.size();
priority_queue<Path, vector<Path>, greater<Path>> q;
q.push(Path(start, start, 0));
vector<int> prev(N, -1);
vector<double> cost(N, INF);
while (!q.empty()) {
Path cur = q.top();
q.pop();
int i = cur.to;
if (prev[i] != -1)
continue;
prev[i] = cur.from;
cost[i] = cur.cost;
if (i == goal) {
break;
}
REP(j, routes[i].size()) {
Path next = Path(i, routes[i][j].to, cur.cost + routes[i][j].cost);
if (prev[next.to] == -1)
q.push(next);
}
}
return make_pair(cost, prev);
}
//// i/o ////
template <class T> class vevector : public vector<vector<T>> {
public:
vevector(int n = 0, int m = 0) : vector<vector<T>>(n, vector<T>(m)){};
vevector(int n, int m, const T &initial)
: vector<vector<T>>(n, vector<T>(m, initial)){};
};
template <class T> T read() {
T t;
cin >> t;
return t;
}
template <class T> vector<T> read(int n) {
vector<T> v;
REP(i, n) { v.push_back(read<T>()); }
return v;
}
template <class T> vevector<T> read(int n, int m) {
vevector<T> v;
REP(i, n) v.push_back(read<T>(m));
return v;
}
template <class T> vevector<T> readjag(int n) {
vevector<T> v;
REP(i, n) v.push_back(read<T>(read<int>()));
return v;
}
template <class T> void write(const T &t) { cout << t << endl; }
template <class T> void write(const T &t, const T &t2) {
cout << t << ' ' << t2 << endl;
}
template <class T> void write(const vector<T> &v) {
ostringstream ss;
for (auto x : v)
ss << x << ' ';
auto s = ss.str();
cout << s.substr(0, s.length() - 1) << endl;
}
template <class T> istream &operator>>(istream &in, complex<T> &n) {
T r, i;
in >> r >> i;
n = complex<T>(r, i);
return in;
}
struct _Reader {
template <class T> _Reader operator,(T &rhs) {
cin >> rhs;
return *this;
}
};
#define READ(t, ...) \
t __VA_ARGS__; \
_Reader(), __VA_ARGS__
template <class InIt1, class InIt2>
int partial_compare(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2) {
return lexicographical_compare(first1, last1, first2, last2) ? -1
: lexicographical_compare(first2, last2, first1, last1) ? 1
: 0;
}
//// start up ////
void solve();
int main() {
// freopen("A.in", "r", stdin);
solve();
return 0;
}
////////////////////
/// template end ///
////////////////////
void solve() {
auto testcases = INF; // read<int>();
REP(testcase, testcases) {
READ(int, N);
if (!N) {
break;
}
auto ps = read<P2>(N);
int result = N;
REP(i_, N) FOR(j_, i_ + 1, N) {
const P2 i = ps[i_], j = ps[j_];
double r = 1;
if (abs(i - j) - 2 * r > -EPS) {
continue;
} // 遠すぎて円が作れない
auto c =
get_same_distance_points(i, j, r); // i と j から ちょうど r 離れた点
auto c1 = Circle(c.first, r), c2 = Circle(c.second, r);
result = max<int>(result, count_if(allof(ps), [c1, r](P2 p) {
return c1.Contains(p);
}));
result = max<int>(result, count_if(allof(ps), [c2, r](P2 p) {
return c2.Contains(p);
}));
}
write(result);
}
}
|
////////////////////
/// template ///
////////////////////
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstring>
#include <functional>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using namespace std;
//// MACRO ////
#define REP(i, n) for (int i = 0; i < (n); i++)
#define RREP(i, n) for (int i = (n)-1; i >= 0; i--)
#define FOR(i, s, n) for (int i = (s); i < (n); i++)
#define allof(c) c.begin(), c.end()
#define partof(c, i, n) c.begin() + (i), c.begin() + (i) + (n)
#define EPS 1e-10
#define INF 1000000000
#define countof(a) (sizeof(a) / sizeof(a[0]))
#define PREDIACTE(t, a) [](const t &a) -> bool
#define COMPARISON_T(t) bool (*)(const t &, const t &)
#define COMPARISON(t, a, b) [](const t &a, const t &b) -> bool
//// prime ////
vector<unsigned char> isPrime;
vector<int> primes;
void initPrimes(int n) {
isPrime = vector<unsigned char>(n + 1, true);
isPrime[0] = isPrime[1] = false;
FOR(i, 2, n + 1) {
if (!isPrime[i])
continue;
primes.push_back(i);
for (int j = i * 2; j <= n; j += i)
isPrime[j] = false;
}
}
//// Probability ////
// パスカルの三角形(二項定理) 2種類の並べ替えにつかう。
vector<vector<double>> makePascalTriangle(int n, bool probability = false) {
typedef vector<double> VD;
vector<VD> t;
if (!t.size()) {
t.push_back(VD(1, 1));
}
FOR(i, t.size(), n + 1) {
t.push_back(VD(i + 1));
REP(j, i) {
double x = t[i - 1][j] * (probability ? 0.5 : 1);
t[i][j] += x;
t[i][j + 1] += x;
}
}
return t;
}
//// iota iterator ////
struct iotait {
int n;
iotait(int n = 0) : n(n) {}
iotait &operator++() {
++n;
return *this;
}
int operator*() { return n; }
};
//// geo ////
struct P3 {
double x, y, z;
P3(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {}
P3 operator+() const { return *this; }
P3 operator+(const P3 &_) const { return P3(x + _.x, y + _.y, z + _.z); }
P3 operator-() const { return P3(-x, -y, -z); }
P3 operator-(const P3 &_) const { return *this + -_; }
P3 operator*(double _) const { return P3(x * _, y * _, z * _); }
P3 operator/(double _) const { return P3(x / _, y / _, z / _); }
double dot(const P3 &_) const { return x * _.x + y * _.y + z * _.z; } // 内積
P3 cross(const P3 &_) const {
return P3(y * _.z - z * _.y, z * _.x - x * _.z, x * _.y - y * _.x);
} // 外積
double sqlength() const { return x * x + y * y + z * z; } // 二乗長さ
double length() const { return sqrt(sqlength()); } // 長さ
P3 direction() const { return *this / length(); } // 方向ベクトル
};
inline istream &operator>>(istream &in, P3 &p) {
in >> p.x >> p.y >> p.z;
return in;
}
inline double abs(P3 p) { return p.length(); }
struct Sphere {
P3 c;
double r;
Sphere(double x, double y, double z, double r) : c(x, y, z), r(r) {}
Sphere(P3 c, double r) : c(c), r(r) {}
bool IntersectWith(const Sphere &rhs) const {
return abs(c - rhs.c) - (r + rhs.r) < EPS;
} // 接してても真。
};
inline istream &operator>>(istream &in, Sphere &c) {
in >> c.c >> c.r;
return in;
}
struct P2 {
double x, y;
P2(double x = 0, double y = 0) : x(x), y(y) {}
P2(complex<double> c) : x(c.real()), y(c.imag()) {}
P2 operator+() const { return *this; }
P2 operator+(const P2 &_) const { return P2(x + _.x, y + _.y); }
P2 operator-() const { return P2(-x, -y); }
P2 operator-(const P2 &_) const { return *this + -_; }
P2 operator*(double _) const { return P2(x * _, y * _); }
P2 operator/(double _) const { return P2(x / _, y / _); }
double dot(const P2 &_) const { return x * _.x + y * _.y; } // 内積
double cross(const P2 &_) const { return x * _.y - y * _.x; } // 外積
double sqlength() const { return x * x + y * y; } // 二乗長さ
double length() const { return sqrt(sqlength()); } // 長さ
P2 orthogonal() const { return P2(y, -x); }
P2 direction() const { return *this / length(); } // 方向ベクトル
};
inline istream &operator>>(istream &in, P2 &p) {
in >> p.x >> p.y;
return in;
}
inline double abs(P2 p2) { return p2.length(); }
inline P2 orthogonal(P2 p) { return p.orthogonal(); }
inline complex<double> orthogonal(complex<double> c) {
return c * complex<double>(0, 1);
}
// a,b から ちょうど d だけ離れた点。aとbを円周に持つ円の半径。
pair<P2, P2> get_same_distance_points(P2 a, P2 b, double d) {
assert(abs(a - b) <= 2 * d + EPS);
auto v = (a + b) / 2.0 - a; // a から aとbの中点
auto vl = abs(v);
auto wl = sqrt(d * d - vl * vl); // 直行Vの大きさ
auto w = orthogonal(v) * (wl / vl); // 直行V
return make_pair(a + v + w, a + v - w);
}
struct Circle {
P2 c;
double r;
Circle(double x, double y, double r) : c(x, y), r(r) {}
Circle(P2 c, double r) : c(c), r(r) {}
bool IntersectWith(const Circle &rhs) const {
return abs(c - rhs.c) - (r + rhs.r) < EPS;
} // 接してても真。
bool Contains(const P2 &p) const {
return abs(p - c) - r < EPS;
} // 接してても真。
};
inline istream &operator>>(istream &in, Circle &c) {
in >> c.c >> c.r;
return in;
}
//// bit ////
#ifdef _MSC_VER
inline unsigned __builtin_ctz(unsigned x) {
unsigned long r;
_BitScanForward(&r, x);
return r;
}
#endif
inline int next_bit_permutation(int x) {
int t = x | (x - 1);
return (t + 1) | (unsigned)((~t & -~t) - 1) >> (__builtin_ctz(x) + 1);
}
//// graph ////
struct Path {
int from;
int to;
double cost;
Path(int from = 0, int to = 0, double cost = 0)
: from(from), to(to), cost(cost) {}
bool operator<(const Path &rhs) const { return cost < rhs.cost; }
bool operator>(const Path &rhs) const { return cost > rhs.cost; }
};
// prim //
pair<double, vector<int>> prim(const vector<vector<double>> &costTable) {
int N = costTable.size();
priority_queue<Path, vector<Path>, greater<Path>> q;
q.push(Path(0, 0, 0));
vector<int> parent(N, -1);
double totalCost = 0;
while (!q.empty()) {
Path cur = q.top();
q.pop();
int i = cur.to;
if (parent[i] != -1)
continue;
parent[i] = cur.from;
totalCost += cur.cost;
REP(j, N) if (parent[j] == -1) q.push(Path(i, j, costTable[i][j]));
}
return make_pair(totalCost, parent);
}
// dijkstra //
pair<vector<double>, vector<int>> dijkstra(const vector<vector<Path>> &routes,
int start = 0, int goal = -1) {
int N = routes.size();
priority_queue<Path, vector<Path>, greater<Path>> q;
q.push(Path(start, start, 0));
vector<int> prev(N, -1);
vector<double> cost(N, INF);
while (!q.empty()) {
Path cur = q.top();
q.pop();
int i = cur.to;
if (prev[i] != -1)
continue;
prev[i] = cur.from;
cost[i] = cur.cost;
if (i == goal) {
break;
}
REP(j, routes[i].size()) {
Path next = Path(i, routes[i][j].to, cur.cost + routes[i][j].cost);
if (prev[next.to] == -1)
q.push(next);
}
}
return make_pair(cost, prev);
}
//// i/o ////
template <class T> class vevector : public vector<vector<T>> {
public:
vevector(int n = 0, int m = 0) : vector<vector<T>>(n, vector<T>(m)){};
vevector(int n, int m, const T &initial)
: vector<vector<T>>(n, vector<T>(m, initial)){};
};
template <class T> T read() {
T t;
cin >> t;
return t;
}
template <class T> vector<T> read(int n) {
vector<T> v;
REP(i, n) { v.push_back(read<T>()); }
return v;
}
template <class T> vevector<T> read(int n, int m) {
vevector<T> v;
REP(i, n) v.push_back(read<T>(m));
return v;
}
template <class T> vevector<T> readjag(int n) {
vevector<T> v;
REP(i, n) v.push_back(read<T>(read<int>()));
return v;
}
template <class T> void write(const T &t) { cout << t << endl; }
template <class T> void write(const T &t, const T &t2) {
cout << t << ' ' << t2 << endl;
}
template <class T> void write(const vector<T> &v) {
ostringstream ss;
for (auto x : v)
ss << x << ' ';
auto s = ss.str();
cout << s.substr(0, s.length() - 1) << endl;
}
template <class T> istream &operator>>(istream &in, complex<T> &n) {
T r, i;
in >> r >> i;
n = complex<T>(r, i);
return in;
}
struct _Reader {
template <class T> _Reader operator,(T &rhs) {
cin >> rhs;
return *this;
}
};
#define READ(t, ...) \
t __VA_ARGS__; \
_Reader(), __VA_ARGS__
template <class InIt1, class InIt2>
int partial_compare(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2) {
return lexicographical_compare(first1, last1, first2, last2) ? -1
: lexicographical_compare(first2, last2, first1, last1) ? 1
: 0;
}
//// start up ////
void solve();
int main() {
// freopen("A.in", "r", stdin);
solve();
return 0;
}
////////////////////
/// template end ///
////////////////////
void solve() {
auto testcases = INF; // read<int>();
REP(testcase, testcases) {
READ(int, N);
if (!N) {
break;
}
auto ps = read<P2>(N);
int result = 1;
REP(i_, N) FOR(j_, i_ + 1, N) {
const P2 i = ps[i_], j = ps[j_];
double r = 1;
if (abs(i - j) - 2 * r > -EPS) {
continue;
} // 遠すぎて円が作れない
auto c =
get_same_distance_points(i, j, r); // i と j から ちょうど r 離れた点
auto c1 = Circle(c.first, r), c2 = Circle(c.second, r);
result = max<int>(result, count_if(allof(ps), [c1, r](P2 p) {
return c1.Contains(p);
}));
result = max<int>(result, count_if(allof(ps), [c2, r](P2 p) {
return c2.Contains(p);
}));
}
write(result);
}
}
|
[["-", 0, 14, 8, 9, 0, 43, 49, 50, 51, 22], ["+", 0, 14, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 2,904
|
#define _USE_MATH_DEFINES
#include <algorithm>
#include <cfloat>
#include <climits>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <functional>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <time.h>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> i_i;
typedef pair<ll, int> ll_i;
typedef pair<double, int> d_i;
typedef pair<ll, ll> ll_ll;
typedef pair<double, double> d_d;
struct edge {
int u, v;
ll w;
};
ll MOD = 1000000007;
ll _MOD = 1000000009;
double EPS = 1e-8;
int main() {
for (;;) {
int N;
cin >> N;
if (N == 0)
break;
vector<double> x(N), y(N);
for (int i = 0; i < N; i++)
cin >> x[i] >> y[i];
int maxi = 1;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) {
if (i == j)
continue;
double dx = x[j] - x[i], dy = y[j] - y[i];
double d = sqrt(dx * dx + dy * dy);
if (d > 2)
continue;
double h = sqrt(1 - d * d / 4);
double ox = x[i] + dx / 2 - dy / d * h;
double oy = y[i] + dy / 2 + dx / d * h;
int cnt = 0;
for (int k = 0; k < N; k++) {
double dx = x[k] - ox, dy = y[k] - oy;
double d2 = dx * dx + dy * dy;
if (d <= 1 + EPS)
cnt++;
}
maxi = max(maxi, cnt);
}
cout << maxi << endl;
}
}
|
#define _USE_MATH_DEFINES
#include <algorithm>
#include <cfloat>
#include <climits>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <functional>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <time.h>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> i_i;
typedef pair<ll, int> ll_i;
typedef pair<double, int> d_i;
typedef pair<ll, ll> ll_ll;
typedef pair<double, double> d_d;
struct edge {
int u, v;
ll w;
};
ll MOD = 1000000007;
ll _MOD = 1000000009;
double EPS = 1e-5;
int main() {
for (;;) {
int N;
cin >> N;
if (N == 0)
break;
vector<double> x(N), y(N);
for (int i = 0; i < N; i++)
cin >> x[i] >> y[i];
int maxi = 1;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) {
if (i == j)
continue;
double dx = x[j] - x[i], dy = y[j] - y[i];
double d = sqrt(dx * dx + dy * dy);
if (d > 2)
continue;
double h = sqrt(1 - d * d / 4);
double ox = x[i] + dx / 2 - dy / d * h;
double oy = y[i] + dy / 2 + dx / d * h;
int cnt = 0;
for (int k = 0; k < N; k++) {
double dx = x[k] - ox, dy = y[k] - oy;
double d2 = dx * dx + dy * dy;
if (d2 <= 1 + EPS)
cnt++;
}
maxi = max(maxi, cnt);
}
cout << maxi << endl;
}
}
|
[["-", 36, 36, 0, 30, 0, 43, 49, 50, 51, 13], ["+", 36, 36, 0, 30, 0, 43, 49, 50, 51, 13], ["-", 8, 9, 0, 57, 15, 339, 51, 16, 31, 22], ["+", 8, 9, 0, 57, 15, 339, 51, 16, 31, 22]]
| 1
| 407
|
#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<pair<int, int>> vii;
#define rrep(i, m, n) for (int(i) = (m); (i) < (n); (i)++)
#define erep(i, m, n) for (int(i) = (m); (i) <= (n); (i)++)
#define rep(i, n) for (int(i) = 0; (i) < (n); (i)++)
#define rrev(i, m, n) for (int(i) = (n)-1; (i) >= (m); (i)--)
#define erev(i, m, n) for (int(i) = (n); (i) >= (m); (i)--)
#define rev(i, n) for (int(i) = (n)-1; (i) >= 0; (i)--)
#define vrep(i, c) \
for (__typeof((c).begin()) i = (c).begin(); i != (c).end(); i++)
#define ALL(v) (v).begin(), (v).end()
#define mp make_pair
#define pb push_back
template <class T, class S> inline bool minup(T &m, S x) {
return m > (T)x ? (m = (T)x, true) : false;
}
template <class T, class S> inline bool maxup(T &m, S x) {
return m < (T)x ? (m = (T)x, true) : false;
}
const int INF = 1000000000;
const ll MOD = 1000000007LL;
const double EPS = 1E-12;
template <typename T> T add(T x, T y) {
if (abs(x + y) < EPS * (abs(x) + abs(y)))
return 0;
return x + y;
}
template <typename T> inline bool semieq(T x, T y) { return abs(x - y) < EPS; }
template <typename T> inline bool semige(T x, T y) { return y - x < -EPS; }
template <typename T> inline bool semile(T x, T y) { return x - y < -EPS; }
struct Point : public complex<double> {
public:
Point() {
this->real(0);
this->imag(0);
}
Point(const double &x, const double &y) {
this->real(x);
this->imag(y);
}
Point(const complex<double> w) {
this->real(w.real());
this->imag(w.imag());
}
inline double dot(Point p) { return (conj(*this) * p).real(); } // 内積
inline double det(Point p) { return (conj(*this) * p).imag(); } // 外積
};
namespace std {
inline bool operator<(const Point &a, const Point &b) {
return real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b);
}
} // namespace std
typedef vector<Point> Polygon;
inline Point currPoint(vector<Point> P, int i) { return P[i]; }
inline Point nextPoint(vector<Point> P, int i) { return P[(i + 1) % P.size()]; }
inline Point diffPoint(vector<Point> P, int i) {
return nextPoint(P, i) - currPoint(P, i);
}
struct Circle : Point {
private:
Point p;
double r;
public:
Circle(Point p, double r) : p(p), r(r) {}
Circle(double x, double y, double r) : p(Point(x, y)), r(r) {}
inline Point center() { return this->p; }
inline double radius() { return this->r; }
};
int intersectionDeterminationOfCC(Circle A, Circle B) {
double d = abs(A.center() - B.center());
if (semile(d, A.radius() - B.radius()))
return 1; // B in A
if (semile(d, B.radius() - A.radius()))
return -1; // A in B
if (semieq(d, A.radius() - B.radius()))
return 2; // B in A(内接)
if (semieq(d, B.radius() - A.radius()))
return -2; // A in B(内接)
if (semige(d, A.radius() + B.radius()))
return 3; // 交わらない
if (semieq(d, A.radius() + B.radius()))
return -3; // 外接
return 4; // 交わっている
}
// 交点を重複を許して丁度二つ返す。0個のときは事前に計算しておく。
vector<Point> intersectionOfCC(Circle A, Circle B) {
vector<Point> ret;
Point p = B.center() + A.center();
Point d = B.center() - A.center();
double m = (B.radius() + A.radius()) / abs(B.center() - A.center());
double n = (B.radius() - A.radius()) / abs(B.center() - A.center());
double s = m * n;
double t = sqrt((m * m - 1.0) * (1.0 - n * n));
ret.pb((p + Point(s, -t) * d) / 2.0);
ret.pb((p + Point(s, t) * d) / 2.0);
return ret;
}
const double r = 1.0;
int N;
double x, y;
int main() {
while ((cin >> N) && N) {
vector<Point> P;
rep(i, N) {
cin >> x >> y;
P.pb(Point(x, y));
}
int res = 0;
rep(i, N) rep(j, i) if (!semige(abs(P[i] - P[j]), 2.0 * r)) {
Circle A = Circle(P[i], r);
Circle B = Circle(P[j], r);
vector<Point> PP = intersectionOfCC(A, B);
vrep(v, PP) {
int cnt = 0;
vrep(w, P) if (!semige(abs(*w - *v), r)) cnt += 1;
maxup(res, cnt);
}
}
cout << res << endl;
}
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<pair<int, int>> vii;
#define rrep(i, m, n) for (int(i) = (m); (i) < (n); (i)++)
#define erep(i, m, n) for (int(i) = (m); (i) <= (n); (i)++)
#define rep(i, n) for (int(i) = 0; (i) < (n); (i)++)
#define rrev(i, m, n) for (int(i) = (n)-1; (i) >= (m); (i)--)
#define erev(i, m, n) for (int(i) = (n); (i) >= (m); (i)--)
#define rev(i, n) for (int(i) = (n)-1; (i) >= 0; (i)--)
#define vrep(i, c) \
for (__typeof((c).begin()) i = (c).begin(); i != (c).end(); i++)
#define ALL(v) (v).begin(), (v).end()
#define mp make_pair
#define pb push_back
template <class T, class S> inline bool minup(T &m, S x) {
return m > (T)x ? (m = (T)x, true) : false;
}
template <class T, class S> inline bool maxup(T &m, S x) {
return m < (T)x ? (m = (T)x, true) : false;
}
const int INF = 1000000000;
const ll MOD = 1000000007LL;
const double EPS = 1E-12;
template <typename T> T add(T x, T y) {
if (abs(x + y) < EPS * (abs(x) + abs(y)))
return 0;
return x + y;
}
template <typename T> inline bool semieq(T x, T y) { return abs(x - y) < EPS; }
template <typename T> inline bool semige(T x, T y) { return y - x < -EPS; }
template <typename T> inline bool semile(T x, T y) { return x - y < -EPS; }
struct Point : public complex<double> {
public:
Point() {
this->real(0);
this->imag(0);
}
Point(const double &x, const double &y) {
this->real(x);
this->imag(y);
}
Point(const complex<double> w) {
this->real(w.real());
this->imag(w.imag());
}
inline double dot(Point p) { return (conj(*this) * p).real(); } // 内積
inline double det(Point p) { return (conj(*this) * p).imag(); } // 外積
};
namespace std {
inline bool operator<(const Point &a, const Point &b) {
return real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b);
}
} // namespace std
typedef vector<Point> Polygon;
inline Point currPoint(vector<Point> P, int i) { return P[i]; }
inline Point nextPoint(vector<Point> P, int i) { return P[(i + 1) % P.size()]; }
inline Point diffPoint(vector<Point> P, int i) {
return nextPoint(P, i) - currPoint(P, i);
}
struct Circle : Point {
private:
Point p;
double r;
public:
Circle(Point p, double r) : p(p), r(r) {}
Circle(double x, double y, double r) : p(Point(x, y)), r(r) {}
inline Point center() { return this->p; }
inline double radius() { return this->r; }
};
int intersectionDeterminationOfCC(Circle A, Circle B) {
double d = abs(A.center() - B.center());
if (semile(d, A.radius() - B.radius()))
return 1; // B in A
if (semile(d, B.radius() - A.radius()))
return -1; // A in B
if (semieq(d, A.radius() - B.radius()))
return 2; // B in A(内接)
if (semieq(d, B.radius() - A.radius()))
return -2; // A in B(内接)
if (semige(d, A.radius() + B.radius()))
return 3; // 交わらない
if (semieq(d, A.radius() + B.radius()))
return -3; // 外接
return 4; // 交わっている
}
// 交点を重複を許して丁度二つ返す。0個のときは事前に計算しておく。
vector<Point> intersectionOfCC(Circle A, Circle B) {
vector<Point> ret;
Point p = B.center() + A.center();
Point d = B.center() - A.center();
double m = (B.radius() + A.radius()) / abs(B.center() - A.center());
double n = (B.radius() - A.radius()) / abs(B.center() - A.center());
double s = m * n;
double t = sqrt((m * m - 1.0) * (1.0 - n * n));
ret.pb((p + Point(s, -t) * d) / 2.0);
ret.pb((p + Point(s, t) * d) / 2.0);
return ret;
}
const double r = 1.0;
int N;
double x, y;
int main() {
while ((cin >> N) && N) {
vector<Point> P;
rep(i, N) {
cin >> x >> y;
P.pb(Point(x, y));
}
int res = 1;
rep(i, N) rep(j, i) if (!semige(abs(P[i] - P[j]), 2.0 * r)) {
Circle A = Circle(P[i], r);
Circle B = Circle(P[j], r);
vector<Point> PP = intersectionOfCC(A, B);
vrep(v, PP) {
int cnt = 0;
vrep(w, P) if (!semige(abs(*w - *v), r)) cnt += 1;
maxup(res, cnt);
}
}
cout << res << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 1,280
|
#include <algorithm>
#include <array>
#include <complex>
#include <functional>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <string>
#include <tuple>
#include <vector>
using namespace std;
#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define RFOR(i, a, b) for (int i = (b)-1; i >= (a); i--)
#define REP(i, n) for (int i = 0; i < (n); i++)
#define RREP(i, n) for (int i = (n)-1; i >= 0; i--)
#define ALL(u) begin(u), end(u)
#define PB push_back
#define LE(n, m) ((n) < (m) + EPS)
#define GE(n, m) ((n) + EPS > (m))
#define EQ(n, m) (abs((n) - (m)) < EPS)
typedef long long int ll;
const int INF = (1 << 30) - 1;
const double EPS = 1e-9;
const int MOD = 1000000007;
typedef double D; // ??§?¨?????????????double???long double?????????
typedef complex<D> P; // Point
typedef pair<P, P> L; // Line
typedef vector<P> VP;
#define X real()
#define Y imag()
// ???a??¨???b?????????????????????r????????????????????????
VP circlesPointsRadius(P a, P b, D r) {
VP cs;
P abH = (b - a) * 0.5;
D d = abs(abH);
if (d == 0 || d > r)
return cs; // ???????????? !LE(d,r) ??¨?????????1??????????????´????????????
D dN = sqrt(r * r - d * d); // ???????????? max(r*r - d*d, 0) ??¨??????
P n = abH * P(0, 1) * (dN / d);
cs.push_back(a + abH + n);
if (dN > 0)
cs.push_back(a + abH - n);
return cs;
}
int N;
// g++ -std=c++0x -msse4.2 -O3
//#include <bits/stdc++.h>
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
// cout.precision(16);
// cout.setf(ios::fixed);
while (cin >> N, N) {
vector<P> points(N);
for (int i = 0; i < N; i++) {
D x, y;
cin >> x >> y;
points[i] = P(x, y);
}
int ans = 0;
for (int i = 0; i < N; i++)
for (int j = i + 1; j < N; j++) {
VP vs = circlesPointsRadius(points[i], points[j], 1);
for (auto v : vs) {
int tans = 0;
for (auto p : points)
if (LE(abs(p - v), 1))
tans++;
ans = max(ans, tans);
}
}
cout << ans << endl;
}
return 0;
}
|
#include <algorithm>
#include <array>
#include <complex>
#include <functional>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <string>
#include <tuple>
#include <vector>
using namespace std;
#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define RFOR(i, a, b) for (int i = (b)-1; i >= (a); i--)
#define REP(i, n) for (int i = 0; i < (n); i++)
#define RREP(i, n) for (int i = (n)-1; i >= 0; i--)
#define ALL(u) begin(u), end(u)
#define PB push_back
#define LE(n, m) ((n) < (m) + EPS)
#define GE(n, m) ((n) + EPS > (m))
#define EQ(n, m) (abs((n) - (m)) < EPS)
typedef long long int ll;
const int INF = (1 << 30) - 1;
const double EPS = 1e-9;
const int MOD = 1000000007;
typedef double D; // ??§?¨?????????????double???long double?????????
typedef complex<D> P; // Point
typedef pair<P, P> L; // Line
typedef vector<P> VP;
#define X real()
#define Y imag()
// ???a??¨???b?????????????????????r????????????????????????
VP circlesPointsRadius(P a, P b, D r) {
VP cs;
P abH = (b - a) * 0.5;
D d = abs(abH);
if (d == 0 || d > r)
return cs; // ???????????? !LE(d,r) ??¨?????????1??????????????´????????????
D dN = sqrt(r * r - d * d); // ???????????? max(r*r - d*d, 0) ??¨??????
P n = abH * P(0, 1) * (dN / d);
cs.push_back(a + abH + n);
if (dN > 0)
cs.push_back(a + abH - n);
return cs;
}
int N;
// g++ -std=c++0x -msse4.2 -O3
//#include <bits/stdc++.h>
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
// cout.precision(16);
// cout.setf(ios::fixed);
while (cin >> N, N) {
vector<P> points(N);
for (int i = 0; i < N; i++) {
D x, y;
cin >> x >> y;
points[i] = P(x, y);
}
int ans = 1;
for (int i = 0; i < N; i++)
for (int j = i + 1; j < N; j++) {
VP vs = circlesPointsRadius(points[i], points[j], 1);
for (auto v : vs) {
int tans = 0;
for (auto p : points)
if (LE(abs(p - v), 1))
tans++;
ans = max(ans, tans);
}
}
cout << ans << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 480
|
#include <algorithm>
#include <array>
#include <cassert>
#include <climits>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <vector>
#define ALL(v) (v).begin(), (v).end()
#define REP(i, p, n) for (int i = p; i < (int)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define DUMP(list) \
cout << "{ "; \
for (auto nth : list) { \
cout << nth << " "; \
} \
cout << "}" << endl
#define FOR(i, c) \
for (__typeof((c).begin()) i = (c).begin(); i != (c).end(); ++i) \
;
using namespace std;
typedef double Real;
const Real EPS = 1e-8;
int sign(Real d) { return d > EPS ? 1 : d < -EPS ? -1 : 0; }
struct Point {
Real x, y;
explicit Point(Real x_ = 0, Real y_ = 0) : x(x_), y(y_) {}
Point operator+(const Point &p) const { return Point(x + p.x, y + p.y); }
Point operator-(const Point &p) const { return Point(x - p.x, y - p.y); }
Point operator*(Real s) const { return Point(x * s, y * s); }
Point operator/(Real s) const { return Point(x / s, y / s); }
bool operator<(const Point &p) const {
return sign(x - p.x) == -1 || (sign(x - p.x) == 0 && sign(y - p.y) == -1);
}
bool operator==(const Point &p) const {
return sign(x - p.x) == 0 && sign(y - p.y) == 0;
}
};
istream &operator>>(istream &is, Point &p) {
return is >> p.x >> p.y;
} //??\???????°???????
ostream &operator<<(ostream &os, const Point &p) {
return os << '(' << p.x << ", " << p.y << ')';
} //??????????°???????
struct Segment : public array<Point, 2> {
Segment(const Point &a, const Point &b) {
at(0) = a;
at(1) = b;
}
};
struct Line : public array<Point, 2> {
Line(const Point &a, const Point &b) {
at(0) = a;
at(1) = b;
}
};
struct Circle {
Point c;
Real r;
Circle(const Point &c_, Real r_) : c(c_), r(r_) {}
};
typedef vector<Point> Polygon;
Point rotate90(const Point &p) { return Point(-p.y, p.x); }
Point rotate(const Point &p, Real theta) {
const Real s = sin(theta), c = cos(theta);
return Point(c * p.x - s * p.y, s * p.x + c * p.y);
}
Real angle(const Point &p) { return atan2(p.y, p.x); }
Real dot(const Point &a, const Point &b) { //??????????????????
return a.x * b.x + a.y * b.y;
}
Real cross(const Point &a, const Point &b) { //??????????????????
return a.x * b.y - a.y * b.x;
}
Real norm(const Point &p) { return p.x * p.x + p.y * p.y; }
Real abs(const Point &p) { return sqrt(norm(p)); }
enum { CCW = 1, CW = -1, BACK = 2, FRONT = -2, ON = 0 };
int ccw(const Point &a, const Point &b, const Point &c) {
const Point p = b - a;
const Point q = c - a;
const int sgn = sign(cross(p, q));
if (sgn == 1)
return CCW;
if (sgn == -1)
return CW;
if (sign(dot(p, q)) == -1)
return BACK;
if (sign(norm(p) - norm(q)) == -1)
return FRONT;
return ON;
}
Point project(const Line &l, const Point &p) { //?°???±
Real t = dot(p - l[0], l[1] - l[0]) / norm(l[0] - l[1]);
return l[0] + (l[1] - l[0]) * t;
}
Point refrect(const Line &l, const Point &p) { //????°?
const Point c = project(l, p);
return c + (c - p);
}
bool intersect(const Segment &a, const Segment &b) {
return ccw(a[0], a[1], b[0]) * ccw(a[0], a[1], b[1]) <= 0 &&
ccw(b[0], b[1], a[0]) * ccw(b[0], b[1], a[1]) <= 0;
}
bool intersect(const Segment &s, const Point &p) {
return ccw(s[0], s[1], p) == ON;
}
bool intersect(const Line &l, const Segment &s) {
return sign(cross(l[1] - l[0], s[0] - l[0])) *
cross(l[1] - l[0], s[1] - l[0]) <=
0;
}
bool intersect(const Line &l, const Point &p) {
return abs(ccw(l[0], l[1], p)) != 1;
}
bool intersect(const Line &a, const Line &b) { //????????????
return sign(cross(a[1] - a[0], b[1] - b[0])) != 0 ||
sign(cross(a[1] - a[0], b[1] - a[0]) == 0);
}
Real dist(const Point &a, const Point &b) { return abs(a - b); }
Real dist(const Line &l, const Point &p) {
const Point a = l[1] - l[0];
const Point b = p - l[0];
return abs(cross(a, b)) / abs(a);
}
Real dist(const Line &l, const Segment &s) {
if (intersect(l, s))
return 0;
return min(dist(l, s[0]), dist(l, s[1]));
}
Real dist(const Line &a, const Line &b) {
if (intersect(a, b))
return 0;
return dist(a, b[0]);
}
Real dist(const Segment &s, const Point &p) {
if (sign(dot(s[1] - s[0], p - s[0])) == -1)
return dist(s[0], p);
if (sign(dot(s[0] - s[1], p - s[1])) == -1)
return dist(s[1], p);
return dist(Line(s[0], s[1]), p);
}
Real dist(const Segment &a, const Segment &b) {
if (intersect(a, b))
return 0;
return min({dist(a, b[0]), dist(a, b[1]), dist(b, a[0]), dist(b, a[1])});
}
bool intersect(const Circle &a, const Circle &b) {
return sign(dist(a.c, b.c) - (a.r + b.r)) <= 0 &&
sign(dist(a.c, b.c) - abs(a.r - b.r)) >= 0;
}
bool intersect(const Circle &c, const Segment &s) {
return sign(dist(s, c.c) - c.r) <= 0;
}
bool intersect(const Circle &c, const Line &l) {
return sign(dist(l, c.c) - c.r) <= 0;
}
bool contain(const Circle &c, const Point &p) {
return sign(dist(c.c, p) - c.r) <= 0;
}
bool contain(const Polygon &P, const Point &p) {
bool res = false;
for (int i = 0; i < P.size(); ++i) {
Point v1 = P[i] - p;
Point v2 = P[(i + 1) % P.size()] - p;
if (v1.y > v2.y)
swap(v1, v2);
if (sign(cross(v1, v2)) == 0 && sign(dot(v1, v2)) <= 0) {
return true; // on edge
}
if (sign(v1.y) <= 0 && sign(v2.y) == 1 && sign(cross(v1, v2)) == 1) {
res = !res;
}
}
return res;
}
Point crosspoint(const Line &a, const Line &b) {
assert(intersect(a, b));
const Real crs = cross(a[1] - a[0], b[1] - b[0]);
if (sign(crs) == 0)
return a[0];
return b[0] + (b[1] - b[0]) * (cross(a[1] - a[0], a[1] - b[0]) / crs);
}
//??¬??¢?????????????????¨?????°?????????????????????Intersect?????????
Point crosspoint(const Segment &a, const Segment &b) {
assert(intersect(a, b));
const Real crs = cross(a[1] - a[0], b[1] - b[0]);
if (sign(crs) == 0) {
if (intersect(a, b[0]))
return b[0];
if (intersect(a, b[1]))
return b[1];
if (intersect(b, a[0]))
return a[0];
return a[1];
}
return b[0] + (b[1] - b[0]) * (cross(a[1] - a[0], a[1] - b[0]) / crs);
}
vector<Point> crosspoint(const Circle &c, const Line &l) {
const Point p = project(l, c.c);
const Real h = dist(p, c.c);
vector<Point> res;
if (sign(h - c.r) == 1) {
// nothing
} else if (sign(h - c.r) == 0) {
res.emplace_back(p);
} else {
const Real b = sqrt(c.r * c.r - h * h);
const Point e = (l[1] - l[0]) / abs(l[1] - l[0]);
res.emplace_back(p + e * b);
res.emplace_back(p - e * b);
}
return res;
}
vector<Point> crosspoint(const Circle &a, const Circle &b) {
if (!intersect(a, b))
return vector<Point>();
vector<Point> res;
const Real d = dist(a.c, b.c);
if (sign(d - (a.r + b.r)) == 0) {
const Point v = b.c - a.c;
res.emplace_back(a.c + (v * (a.r / abs(v))));
} else {
const Real theta = acos((a.r * a.r + d * d - b.r * b.r) / (2 * a.r * d));
const Real phi = angle(b.c - a.c);
res.emplace_back(a.c + rotate(Point(a.r, 0), phi + theta));
res.emplace_back(a.c + rotate(Point(a.r, 0), phi - theta));
}
return res;
}
Real area(const Polygon &P) {
Real res = 0.0;
for (int i = 0; i < P.size(); ++i) {
res += cross(P[i], P[(i + 1) % P.size()]);
}
return abs(res) * 0.5;
}
int main() {
while (1) {
int n;
cin >> n;
if (n == 0)
break;
vector<Circle> circles;
vector<Circle> ccircles;
rep(i, n) {
Point p;
cin >> p;
circles.push_back(Circle(p, 1.0));
}
//??????????±???????
rep(i, n) for (int j = i + 1; j < n; j++) {
vector<Point> points = crosspoint(circles[i], circles[j]);
rep(k, points.size()) { ccircles.push_back(Circle(points[k], 1.0)); }
}
int ans = 0;
vector<Point> points;
//??????????????§??°???????????§????????????
rep(i, ccircles.size()) {
int cnt = 0;
rep(j, n) {
if (contain(ccircles[i], circles[j].c)) {
cnt++;
}
}
ans = max(cnt, ans);
}
cout << ans << endl;
}
return 0;
}
|
#include <algorithm>
#include <array>
#include <cassert>
#include <climits>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <vector>
#define ALL(v) (v).begin(), (v).end()
#define REP(i, p, n) for (int i = p; i < (int)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define DUMP(list) \
cout << "{ "; \
for (auto nth : list) { \
cout << nth << " "; \
} \
cout << "}" << endl
#define FOR(i, c) \
for (__typeof((c).begin()) i = (c).begin(); i != (c).end(); ++i) \
;
using namespace std;
typedef double Real;
const Real EPS = 1e-8;
int sign(Real d) { return d > EPS ? 1 : d < -EPS ? -1 : 0; }
struct Point {
Real x, y;
explicit Point(Real x_ = 0, Real y_ = 0) : x(x_), y(y_) {}
Point operator+(const Point &p) const { return Point(x + p.x, y + p.y); }
Point operator-(const Point &p) const { return Point(x - p.x, y - p.y); }
Point operator*(Real s) const { return Point(x * s, y * s); }
Point operator/(Real s) const { return Point(x / s, y / s); }
bool operator<(const Point &p) const {
return sign(x - p.x) == -1 || (sign(x - p.x) == 0 && sign(y - p.y) == -1);
}
bool operator==(const Point &p) const {
return sign(x - p.x) == 0 && sign(y - p.y) == 0;
}
};
istream &operator>>(istream &is, Point &p) {
return is >> p.x >> p.y;
} //??\???????°???????
ostream &operator<<(ostream &os, const Point &p) {
return os << '(' << p.x << ", " << p.y << ')';
} //??????????°???????
struct Segment : public array<Point, 2> {
Segment(const Point &a, const Point &b) {
at(0) = a;
at(1) = b;
}
};
struct Line : public array<Point, 2> {
Line(const Point &a, const Point &b) {
at(0) = a;
at(1) = b;
}
};
struct Circle {
Point c;
Real r;
Circle(const Point &c_, Real r_) : c(c_), r(r_) {}
};
typedef vector<Point> Polygon;
Point rotate90(const Point &p) { return Point(-p.y, p.x); }
Point rotate(const Point &p, Real theta) {
const Real s = sin(theta), c = cos(theta);
return Point(c * p.x - s * p.y, s * p.x + c * p.y);
}
Real angle(const Point &p) { return atan2(p.y, p.x); }
Real dot(const Point &a, const Point &b) { //??????????????????
return a.x * b.x + a.y * b.y;
}
Real cross(const Point &a, const Point &b) { //??????????????????
return a.x * b.y - a.y * b.x;
}
Real norm(const Point &p) { return p.x * p.x + p.y * p.y; }
Real abs(const Point &p) { return sqrt(norm(p)); }
enum { CCW = 1, CW = -1, BACK = 2, FRONT = -2, ON = 0 };
int ccw(const Point &a, const Point &b, const Point &c) {
const Point p = b - a;
const Point q = c - a;
const int sgn = sign(cross(p, q));
if (sgn == 1)
return CCW;
if (sgn == -1)
return CW;
if (sign(dot(p, q)) == -1)
return BACK;
if (sign(norm(p) - norm(q)) == -1)
return FRONT;
return ON;
}
Point project(const Line &l, const Point &p) { //?°???±
Real t = dot(p - l[0], l[1] - l[0]) / norm(l[0] - l[1]);
return l[0] + (l[1] - l[0]) * t;
}
Point refrect(const Line &l, const Point &p) { //????°?
const Point c = project(l, p);
return c + (c - p);
}
bool intersect(const Segment &a, const Segment &b) {
return ccw(a[0], a[1], b[0]) * ccw(a[0], a[1], b[1]) <= 0 &&
ccw(b[0], b[1], a[0]) * ccw(b[0], b[1], a[1]) <= 0;
}
bool intersect(const Segment &s, const Point &p) {
return ccw(s[0], s[1], p) == ON;
}
bool intersect(const Line &l, const Segment &s) {
return sign(cross(l[1] - l[0], s[0] - l[0])) *
cross(l[1] - l[0], s[1] - l[0]) <=
0;
}
bool intersect(const Line &l, const Point &p) {
return abs(ccw(l[0], l[1], p)) != 1;
}
bool intersect(const Line &a, const Line &b) { //????????????
return sign(cross(a[1] - a[0], b[1] - b[0])) != 0 ||
sign(cross(a[1] - a[0], b[1] - a[0]) == 0);
}
Real dist(const Point &a, const Point &b) { return abs(a - b); }
Real dist(const Line &l, const Point &p) {
const Point a = l[1] - l[0];
const Point b = p - l[0];
return abs(cross(a, b)) / abs(a);
}
Real dist(const Line &l, const Segment &s) {
if (intersect(l, s))
return 0;
return min(dist(l, s[0]), dist(l, s[1]));
}
Real dist(const Line &a, const Line &b) {
if (intersect(a, b))
return 0;
return dist(a, b[0]);
}
Real dist(const Segment &s, const Point &p) {
if (sign(dot(s[1] - s[0], p - s[0])) == -1)
return dist(s[0], p);
if (sign(dot(s[0] - s[1], p - s[1])) == -1)
return dist(s[1], p);
return dist(Line(s[0], s[1]), p);
}
Real dist(const Segment &a, const Segment &b) {
if (intersect(a, b))
return 0;
return min({dist(a, b[0]), dist(a, b[1]), dist(b, a[0]), dist(b, a[1])});
}
bool intersect(const Circle &a, const Circle &b) {
return sign(dist(a.c, b.c) - (a.r + b.r)) <= 0 &&
sign(dist(a.c, b.c) - abs(a.r - b.r)) >= 0;
}
bool intersect(const Circle &c, const Segment &s) {
return sign(dist(s, c.c) - c.r) <= 0;
}
bool intersect(const Circle &c, const Line &l) {
return sign(dist(l, c.c) - c.r) <= 0;
}
bool contain(const Circle &c, const Point &p) {
return sign(dist(c.c, p) - c.r) <= 0;
}
bool contain(const Polygon &P, const Point &p) {
bool res = false;
for (int i = 0; i < P.size(); ++i) {
Point v1 = P[i] - p;
Point v2 = P[(i + 1) % P.size()] - p;
if (v1.y > v2.y)
swap(v1, v2);
if (sign(cross(v1, v2)) == 0 && sign(dot(v1, v2)) <= 0) {
return true; // on edge
}
if (sign(v1.y) <= 0 && sign(v2.y) == 1 && sign(cross(v1, v2)) == 1) {
res = !res;
}
}
return res;
}
Point crosspoint(const Line &a, const Line &b) {
assert(intersect(a, b));
const Real crs = cross(a[1] - a[0], b[1] - b[0]);
if (sign(crs) == 0)
return a[0];
return b[0] + (b[1] - b[0]) * (cross(a[1] - a[0], a[1] - b[0]) / crs);
}
//??¬??¢?????????????????¨?????°?????????????????????Intersect?????????
Point crosspoint(const Segment &a, const Segment &b) {
assert(intersect(a, b));
const Real crs = cross(a[1] - a[0], b[1] - b[0]);
if (sign(crs) == 0) {
if (intersect(a, b[0]))
return b[0];
if (intersect(a, b[1]))
return b[1];
if (intersect(b, a[0]))
return a[0];
return a[1];
}
return b[0] + (b[1] - b[0]) * (cross(a[1] - a[0], a[1] - b[0]) / crs);
}
vector<Point> crosspoint(const Circle &c, const Line &l) {
const Point p = project(l, c.c);
const Real h = dist(p, c.c);
vector<Point> res;
if (sign(h - c.r) == 1) {
// nothing
} else if (sign(h - c.r) == 0) {
res.emplace_back(p);
} else {
const Real b = sqrt(c.r * c.r - h * h);
const Point e = (l[1] - l[0]) / abs(l[1] - l[0]);
res.emplace_back(p + e * b);
res.emplace_back(p - e * b);
}
return res;
}
vector<Point> crosspoint(const Circle &a, const Circle &b) {
if (!intersect(a, b))
return vector<Point>();
vector<Point> res;
const Real d = dist(a.c, b.c);
if (sign(d - (a.r + b.r)) == 0) {
const Point v = b.c - a.c;
res.emplace_back(a.c + (v * (a.r / abs(v))));
} else {
const Real theta = acos((a.r * a.r + d * d - b.r * b.r) / (2 * a.r * d));
const Real phi = angle(b.c - a.c);
res.emplace_back(a.c + rotate(Point(a.r, 0), phi + theta));
res.emplace_back(a.c + rotate(Point(a.r, 0), phi - theta));
}
return res;
}
Real area(const Polygon &P) {
Real res = 0.0;
for (int i = 0; i < P.size(); ++i) {
res += cross(P[i], P[(i + 1) % P.size()]);
}
return abs(res) * 0.5;
}
int main() {
while (1) {
int n;
cin >> n;
if (n == 0)
break;
vector<Circle> circles;
vector<Circle> ccircles;
rep(i, n) {
Point p;
cin >> p;
circles.push_back(Circle(p, 1.0));
}
//??????????±???????
rep(i, n) for (int j = i + 1; j < n; j++) {
vector<Point> points = crosspoint(circles[i], circles[j]);
rep(k, points.size()) { ccircles.push_back(Circle(points[k], 1.0)); }
}
int ans = 1;
vector<Point> points;
//??????????????§??°???????????§????????????
rep(i, ccircles.size()) {
int cnt = 0;
rep(j, n) {
if (contain(ccircles[i], circles[j].c)) {
cnt++;
}
}
ans = max(cnt, ans);
}
cout << ans << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 2,907
|
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <valarray>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double R;
typedef complex<R> P;
const R EPS = 1e-10;
const R PI = acos((R)(-1));
R radNorP(R x) { return fmod(fmod(x, 2 * PI) + 2 * PI, 2 * PI); }
const int MN = 330;
P p[MN];
typedef pair<R, int> Pi;
bool solve() {
int n;
cin >> n;
if (!n)
return false;
for (int i = 0; i < n; i++) {
R x, y;
cin >> x >> y;
p[i] = P(x, y);
}
int res = 0;
for (int i = 0; i < n; i++) {
vector<Pi> v;
for (int j = 0; j < n; j++) {
if (i == j)
continue;
if (2.0 < abs(p[j] - p[i]))
continue;
R th = acos(abs(p[j] - p[i]) / 2.0);
R l = radNorP(arg(p[j] - p[i]) - th);
R r = radNorP(arg(p[j] - p[i]) + th);
if (r < l) {
v.push_back(Pi(l - EPS, 1));
v.push_back(Pi(2 * PI + EPS, -1));
v.push_back(Pi(0 - EPS, 1));
v.push_back(Pi(r + EPS, -1));
} else {
v.push_back(Pi(l - EPS, 1));
v.push_back(Pi(r + EPS, -1));
}
}
sort(v.begin(), v.end());
int sm = 1;
for (Pi p : v) {
sm += p.second;
res = max(res, sm);
}
}
cout << res << endl;
return true;
}
int main() {
while (solve()) {
}
return 0;
}
|
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <valarray>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double R;
typedef complex<R> P;
const R EPS = 1e-10;
const R PI = acos((R)(-1));
R radNorP(R x) { return fmod(fmod(x, 2 * PI) + 2 * PI, 2 * PI); }
const int MN = 330;
P p[MN];
typedef pair<R, int> Pi;
bool solve() {
int n;
cin >> n;
if (!n)
return false;
for (int i = 0; i < n; i++) {
R x, y;
cin >> x >> y;
p[i] = P(x, y);
}
int res = 1;
for (int i = 0; i < n; i++) {
vector<Pi> v;
for (int j = 0; j < n; j++) {
if (i == j)
continue;
if (2.0 < abs(p[j] - p[i]))
continue;
R th = acos(abs(p[j] - p[i]) / 2.0);
R l = radNorP(arg(p[j] - p[i]) - th - EPS);
R r = radNorP(arg(p[j] - p[i]) + th + EPS);
if (r < l) {
v.push_back(Pi(l - EPS, 1));
v.push_back(Pi(2 * PI + EPS, -1));
v.push_back(Pi(0 - EPS, 1));
v.push_back(Pi(r + EPS, -1));
} else {
v.push_back(Pi(l - EPS, 1));
v.push_back(Pi(r + EPS, -1));
}
}
sort(v.begin(), v.end());
int sm = 1;
for (Pi p : v) {
sm += p.second;
res = max(res, sm);
}
}
cout << res << endl;
return true;
}
int main() {
while (solve()) {
}
return 0;
}
|
[["-", 0, 14, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 14, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 49, 50, 51, 2, 3, 4, 0, 16, 17, 33], ["+", 49, 50, 51, 2, 3, 4, 0, 16, 12, 22], ["+", 49, 50, 51, 2, 3, 4, 0, 16, 17, 72]]
| 1
| 489
|
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace std;
#define rep(i, n) for (int i = 0; i < n; i++)
typedef long long ll;
typedef pair<int, int> pii;
const double EPS = 1e-6;
int main() {
int n;
while (cin >> n, n) {
double x[n], y[n];
rep(i, n) { cin >> x[i] >> y[i]; }
int maxi = 0;
rep(i, n) {
for (int j = i + 1; j < n; j++) {
if (((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j])) >
4.0)
continue;
double mx = (x[i] + x[j]) / 2.0;
double my = (y[i] + y[j]) / 2.0;
double px0, py0, px1, py1;
if (fabs(y[i] - y[j]) < EPS) {
px0 = px1 = mx;
py0 = my + sqrt(1.0 - (x[i] - mx) * (x[i] - mx));
py1 = my - sqrt(1.0 - (x[i] - mx) * (x[i] - mx));
} else if (fabs(x[i] - x[j]) < EPS) {
py0 = py1 = my;
px0 = mx + sqrt(1.0 - (y[i] - my) * (y[i] - my));
px1 = mx - sqrt(1.0 - (y[i] - my) * (y[i] - my));
} else {
double m = -(x[i] - x[j]) / (y[i] - y[j]);
double l = sqrt(
1.0 - ((x[i] - mx) * (x[i] - mx) + (y[i] - my) * (y[i] - my)));
px0 = mx + sqrt(l * l / (1.0 + m * m));
px1 = mx - sqrt(l * l / (1.0 + m * m));
py0 = my + m * (px0 - mx);
py1 = my + m * (px1 - mx);
}
int cnt0 = 0, cnt1 = 0;
rep(k, n) {
double d0 = (px0 - x[k]) * (px0 - x[k]) + (py0 - y[k]) * (py0 - y[k]);
if (d0 <= 1.0 + EPS) {
cnt0++;
}
}
rep(k, n) {
double d1 = (px1 - x[k]) * (px1 - x[k]) + (py1 - y[k]) * (py1 - y[k]);
if (d1 <= 1.0 + EPS) {
cnt1++;
}
}
maxi = max(maxi, cnt0);
maxi = max(maxi, cnt1);
}
}
cout << maxi << endl;
}
return 0;
}
|
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace std;
#define rep(i, n) for (int i = 0; i < n; i++)
typedef long long ll;
typedef pair<int, int> pii;
const double EPS = 1e-6;
int main() {
int n;
while (cin >> n, n) {
double x[n], y[n];
rep(i, n) { cin >> x[i] >> y[i]; }
int maxi = 1;
rep(i, n) {
for (int j = i + 1; j < n; j++) {
if (((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j])) >
4.0)
continue;
double mx = (x[i] + x[j]) / 2.0;
double my = (y[i] + y[j]) / 2.0;
double px0, py0, px1, py1;
if (fabs(y[i] - y[j]) < EPS) {
px0 = px1 = mx;
py0 = my + sqrt(1.0 - (x[i] - mx) * (x[i] - mx));
py1 = my - sqrt(1.0 - (x[i] - mx) * (x[i] - mx));
} else if (fabs(x[i] - x[j]) < EPS) {
py0 = py1 = my;
px0 = mx + sqrt(1.0 - (y[i] - my) * (y[i] - my));
px1 = mx - sqrt(1.0 - (y[i] - my) * (y[i] - my));
} else {
double m = -(x[i] - x[j]) / (y[i] - y[j]);
double l = sqrt(
1.0 - ((x[i] - mx) * (x[i] - mx) + (y[i] - my) * (y[i] - my)));
px0 = mx + sqrt(l * l / (1.0 + m * m));
px1 = mx - sqrt(l * l / (1.0 + m * m));
py0 = my + m * (px0 - mx);
py1 = my + m * (px1 - mx);
}
int cnt0 = 0, cnt1 = 0;
rep(k, n) {
double d0 = (px0 - x[k]) * (px0 - x[k]) + (py0 - y[k]) * (py0 - y[k]);
if (d0 <= 1.0 + EPS) {
cnt0++;
}
}
rep(k, n) {
double d1 = (px1 - x[k]) * (px1 - x[k]) + (py1 - y[k]) * (py1 - y[k]);
if (d1 <= 1.0 + EPS) {
cnt1++;
}
}
maxi = max(maxi, cnt0);
maxi = max(maxi, cnt1);
}
}
cout << maxi << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 686
|
#include <bits/stdc++.h>
#define _ \
ios_base::sync_with_stdio(0); \
cin.tie(0);
#define REP(i, n) for (int i = 0; i < (int)(n); i++)
#define REPP(i, j, n) for (int i = (j); i < (int)(n); i++)
using namespace std;
typedef long double ld;
typedef complex<ld> Point;
const ld eps = 1e-5, pi = acos(-1.0);
ld dot(Point a, Point b) { return real(conj(a) * b); }
ld cross(Point a, Point b) { return imag(conj(a) * b); }
Point p[310];
int n;
void solve() {
int result = 1;
REP(i, n) {
REPP(j, i + 1, n) {
Point ab = p[j] - p[i];
if (norm(ab) > 4)
continue;
Point q = (p[i] + p[j]) / 2.L;
Point aq = q - p[j];
Point normal = Point{imag(aq), -real(aq)} * sqrt(1 - norm(aq)) / abs(aq);
Point c = q + normal;
Point d = q - normal;
int cntc = 0, cntd = 0;
REP(k, n) {
if (norm(p[k] - c) <= 1.L)
cntc++;
if (norm(p[k] - d) <= 1.L)
cntd++;
}
result = max({result, 2, cntc, cntd});
}
}
cout << result << endl;
}
int main() {
_;
ld r, i;
while (cin >> n, n != 0) {
REP(j, n) {
cin >> r >> i;
p[j] = Point{r, i};
}
solve();
}
}
|
#include <bits/stdc++.h>
#define _ \
ios_base::sync_with_stdio(0); \
cin.tie(0);
#define REP(i, n) for (int i = 0; i < (int)(n); i++)
#define REPP(i, j, n) for (int i = (j); i < (int)(n); i++)
using namespace std;
typedef long double ld;
typedef complex<ld> Point;
const ld eps = 1e-5, pi = acos(-1.0);
ld dot(Point a, Point b) { return real(conj(a) * b); }
ld cross(Point a, Point b) { return imag(conj(a) * b); }
Point p[310];
int n;
void solve() {
int result = 1;
REP(i, n) {
REPP(j, i + 1, n) {
Point ab = p[j] - p[i];
if (norm(ab) > 4)
continue;
Point q = (p[i] + p[j]) / 2.L;
Point aq = q - p[j];
Point normal = Point{imag(aq), -real(aq)} * sqrt(1 - norm(aq)) / abs(aq);
Point c = q + normal;
Point d = q - normal;
int cntc = 0, cntd = 0;
REP(k, n) {
if (norm(p[k] - c) <= 1.0001L)
cntc++;
if (norm(p[k] - d) <= 1.0001L)
cntd++;
}
result = max({result, 2, cntc, cntd});
}
}
cout << result << endl;
}
int main() {
_;
ld r, i;
while (cin >> n, n != 0) {
REP(j, n) {
cin >> r >> i;
p[j] = Point{r, i};
}
solve();
}
}
|
[["-", 8, 9, 0, 57, 15, 339, 51, 16, 12, 13], ["+", 8, 9, 0, 57, 15, 339, 51, 16, 12, 13]]
| 1
| 362
|
#include <algorithm>
#include <array>
#include <assert.h>
#include <bitset>
#include <complex>
#include <cstdlib>
#include <functional>
#include <iomanip>
#include <iostream>
#include <limits>
#include <map>
#include <math.h>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <stdio.h>
#include <stdio.h>
#include <string.h>
#include <string>
#include <vector>
using namespace std;
#define REP(i, n) for (int i = 0; i < (int)(n); i++)
#define ALL(x) (x).begin(), (x).end()
/* 幾何の基本 */
typedef long double ld;
typedef complex<ld> Point;
const ld eps = 1e-9, pi = acos(-1.0);
namespace std {
bool operator<(const Point &lhs, const Point &rhs) {
if (lhs.real() < rhs.real() - eps)
return true;
if (lhs.real() > rhs.real() + eps)
return false;
return lhs.imag() < rhs.imag();
}
} // namespace std
// 点の入力
Point input_point() {
ld x, y;
cin >> x >> y;
return Point(x, y);
}
// 誤差つき等号判定
bool eq(ld a, ld b) { return (abs(a - b) < eps); }
// 内積
ld dot(Point a, Point b) { return real(conj(a) * b); }
// 外積
ld cross(Point a, Point b) { return imag(conj(a) * b); }
// 直線の定義
class Line {
public:
Point a, b;
Line() : a(Point(0, 0)), b(Point(0, 0)) {}
Line(Point a, Point b) : a(a), b(b) {}
Point operator[](const int _num) {
if (_num == 0)
return a;
else if (_num == 1)
return b;
else
assert(false);
}
};
// 円の定義
class Circle {
public:
Point p;
ld r;
Circle() : p(Point(0, 0)), r(0) {}
Circle(Point p, ld r) : p(p), r(r) {}
};
// CCW
int ccw(Point a, Point b, Point c) {
b -= a;
c -= a;
if (cross(b, c) > eps)
return 1; // a,b,cが反時計周りの順に並ぶ
if (cross(b, c) < -eps)
return -1; // a,b,cが時計周りの順に並ぶ
if (dot(b, c) < 0)
return 2; // c,a,bの順に直線に並ぶ
if (norm(b) < norm(c))
return -2; // a,b,cの順に直線に並ぶ
return 0; // a,c,bの順に直線に並ぶ
}
/* 交差判定 */
// 直線と直線の交差判定
bool isis_ll(Line l, Line m) { return !eq(cross(l.b - l.a, m.b - m.a), 0); }
// 直線と線分の交差判定
bool isis_ls(Line l, Line s) {
return isis_ll(l, s) &&
(cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);
}
// 線分と線分の交差判定
bool isis_ss(Line s, Line t) {
return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&
ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}
// 点の直線上判定
bool isis_lp(Line l, Point p) { return (abs(cross(l.b - p, l.a - p)) < eps); }
// 点の線分上判定
bool isis_sp(Line s, Point p) {
return (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);
}
// 垂線の足
Point proj(Line l, Point p) {
ld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + t * (l.a - l.b);
}
// 直線と直線の交点
Point is_ll(Line s, Line t) {
Point sv = s.b - s.a, tv = t.b - t.a;
assert(cross(sv, tv) != 0);
return s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);
}
// 直線と点の距離
ld dist_lp(Line l, Point p) { return abs(p - proj(l, p)); }
// 直線と直線の距離
ld dist_ll(Line l, Line m) { return isis_ll(l, m) ? 0 : dist_lp(l, m.a); }
// 直線と線分の距離
ld dist_ls(Line l, Line s) {
return isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));
}
// 線分と点の距離
ld dist_sp(Line s, Point p) {
Point r = proj(s, p);
return isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));
}
// 線分と線分の距離
ld dist_ss(Line s, Line t) {
if (isis_ss(s, t))
return 0;
return min(
{dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b)});
}
/* 円 */
// 円と円の交点
vector<Point> is_cc(Circle c1, Circle c2) {
vector<Point> res;
ld d = abs(c1.p - c2.p);
ld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);
ld dfr = c1.r * c1.r - rc * rc;
if (abs(dfr) < eps)
dfr = 0.0;
else if (dfr < 0.0)
return res; // no intersection
ld rs = sqrt(dfr);
Point diff = (c2.p - c1.p) / d;
res.push_back(c1.p + diff * Point(rc, rs));
if (dfr != 0.0)
res.push_back(c1.p + diff * Point(rc, -rs));
return res;
}
// 円と直線の交点
vector<Point> is_lc(Circle c, Line l) {
vector<Point> res;
ld d = dist_lp(l, c.p);
if (d < c.r + eps) {
ld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); // safety;
Point nor = (l.a - l.b) / abs(l.a - l.b);
res.push_back(proj(l, c.p) + len * nor);
res.push_back(proj(l, c.p) - len * nor);
}
return res;
}
// 円と線分の距離
vector<Point> is_sc(Circle c, Line l) {
vector<Point> v = is_lc(c, l), res;
for (Point p : v)
if (isis_sp(l, p))
res.push_back(p);
return res;
}
// 円と点の接線
vector<Line> tangent_cp(Circle c, Point p) {
vector<Line> ret;
Point v = c.p - p;
ld d = abs(v);
ld l = sqrt(norm(v) - c.r * c.r);
if (isnan(l)) {
return ret;
}
Point v1 = v * Point(l / d, c.r / d);
Point v2 = v * Point(l / d, -c.r / d);
ret.push_back(Line(p, p + v1));
if (l < eps)
return ret;
ret.push_back(Line(p, p + v2));
return ret;
}
// 円と円の接線
vector<Line> tangent_cc(Circle c1, Circle c2) {
vector<Line> ret;
if (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {
Point center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);
ret = tangent_cp(c1, center);
}
if (abs(c1.r - c2.r) > eps) {
Point out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);
vector<Line> nret = tangent_cp(c1, out);
ret.insert(ret.end(), ALL(nret));
} else {
Point v = c2.p - c1.p;
v /= abs(v);
Point q1 = c1.p + v * Point(0, 1) * c1.r;
Point q2 = c1.p + v * Point(0, -1) * c1.r;
ret.push_back(Line(q1, q1 + v));
ret.push_back(Line(q2, q2 + v));
}
return ret;
}
/* 多角形 */
typedef vector<Point> Polygon;
// 面積
ld area(const Polygon &p) {
ld res = 0;
int n = p.size();
REP(j, n) res += cross(p[j], p[(j + 1) % n]);
return res / 2;
}
// 多角形の回転方向
bool is_counter_clockwise(const Polygon &poly) {
ld angle = 0;
int n = poly.size();
REP(i, n) {
Point a = poly[i], b = poly[(i + 1) % n], c = poly[(i + 2) % n];
angle += arg((c - b) / (b - a));
}
return angle > eps;
}
// 円の内外判定
// -1 => out
// 0 => on
// 1 => in
int is_in_polygon(const Polygon &poly, Point p) {
ld angle = 0;
int n = poly.size();
REP(i, n) {
Point a = poly[i], b = poly[(i + 1) % n];
if (isis_sp(Line(a, b), p))
return 1;
angle += arg((b - p) / (a - p));
}
return eq(angle, 0) ? 0 : 2;
}
// 凸包
Polygon convex_hull(vector<Point> ps) {
int n = ps.size();
int k = 0;
sort(ps.begin(), ps.end());
Polygon ch(2 * n);
for (int i = 0; i < n; ch[k++] = ps[i++])
while (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0)
--k;
for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])
while (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0)
--k;
ch.resize(k - 1);
return ch;
}
// 凸カット
Polygon convex_cut(const Polygon &ps, Line l) {
int n = ps.size();
Polygon Q;
REP(i, n) {
Point A = ps[i], B = ps[(i + 1) % n];
Line m = Line(A, B);
if (ccw(l.a, l.b, A) != -1)
Q.push_back(A);
if (ccw(l.a, l.b, A) * ccw(l.a, l.b, B) < 0 && isis_ll(l, m))
Q.push_back(is_ll(l, m));
}
return Q;
}
/* アレンジメント */
void add_point(vector<Point> &ps, Point p) {
for (Point q : ps)
if (abs(q - p) < eps)
return;
ps.push_back(p);
}
typedef int Weight;
struct Edge {
int from, to;
Weight weight;
};
typedef vector<Edge> Edges;
typedef vector<Edges> Graph;
void add_edge(Graph &g, int from, int to, Weight weight) {
g[from].push_back(Edge{from, to, weight});
}
Graph segment_arrangement(const vector<Line> &s, const vector<Point> &p) {
int n = p.size(), m = s.size();
Graph g(n);
REP(i, m) {
vector<pair<ld, int>> vec;
REP(j, n) if (isis_sp(s[i], p[j])) vec.emplace_back(abs(s[i].a - p[j]), j);
sort(ALL(vec));
REP(j, vec.size() - 1) {
int from = vec[j].second, to = vec[j + 1].second;
add_edge(g, from, to, abs(p[from] - p[to]));
}
}
return g;
}
Graph circle_arrangement(const vector<Circle> &c, const vector<Point> &p) {
int n = p.size(), m = c.size();
Graph g(n);
REP(i, m) {
vector<pair<ld, int>> vec;
REP(j, n)
if (abs(abs(c[i].p - p[j]) - c[i].r) < eps)
vec.emplace_back(arg(c[i].p - p[j]), j);
sort(ALL(vec));
REP(j, vec.size() - 1) {
int from = vec[j].second, to = vec[j + 1].second;
ld angle = vec[j + 1].first - vec[j].first;
add_edge(g, from, to, angle * c[i].r);
}
if (vec.size() >= 2) {
int from = vec.back().second, to = vec.front().first;
ld angle = vec.front().first - vec.back().first;
add_edge(g, from, to, angle * c[i].r);
}
}
return g;
}
/* 双対グラフ */
// 線分集合は既にアレンジメントされていなければならない.
// 内側の円は時計回りで,外側の円は反時計回りで得られる.
// 変数 polygon は,vector<int> で表される多角形の集合であり,
// vector<int> で表される
// 多角形のi番目は,その頂点の頂点集合pにおける番号である.
vector<vector<int>> polygon;
vector<int> seg2p[1024][1024];
Graph dual_graph(const vector<Line> &s, const vector<Point> &p) {
int N = p.size();
polygon.clear();
REP(i, 1024) REP(j, 1024) seg2p[i][j].clear();
vector<vector<tuple<ld, int, bool>>> tup(N);
REP(i, s.size()) {
int a = -1, b = -1;
REP(j, N) if (abs(s[i].a - p[j]) < eps) a = j;
REP(j, N) if (abs(s[i].b - p[j]) < eps) b = j;
assert(a >= 0 && b >= 0);
tup[a].emplace_back(arg(s[i].b - s[i].a), b, false);
tup[b].emplace_back(arg(s[i].a - s[i].b), a, false);
}
REP(i, N) sort(ALL(tup[i]));
REP(i, N) {
REP(j, tup[i].size()) {
ld angle;
int pos = j, from = i, to;
bool flag;
tie(angle, to, flag) = tup[i][j];
if (flag)
continue;
vector<int> ps;
while (!flag) {
ps.push_back(from);
get<2>(tup[from][pos]) = true;
seg2p[from][to].push_back(polygon.size());
seg2p[to][from].push_back(polygon.size());
angle += pi + eps;
if (angle > pi)
angle -= 2 * pi;
auto it = lower_bound(ALL(tup[to]), make_tuple(angle, 0, false));
if (it == tup[to].end())
it = tup[to].begin();
from = to;
tie(angle, to, flag) = *it;
pos = it - tup[from].begin();
}
polygon.push_back(ps);
}
}
Graph g(polygon.size());
REP(i, N) REP(j, i) {
if (seg2p[i][j].size() == 2) {
int from = seg2p[i][j][0], to = seg2p[i][j][1];
g[from].push_back(Edge{from, to});
g[to].push_back(Edge{to, from});
}
}
return g;
}
/* ビジュアライザ */
const ld zoom = 25;
const ld centerX = 6;
const ld centerY = 5;
void change_color(int r, int g, int b) {
fprintf(stderr, "c.strokeStyle = 'rgb(%d, %d, %d)';\n", r, g, b);
}
int cordx(Point p) { return 400 + zoom * (p.real() - centerX); }
int cordy(Point p) { return 400 - zoom * (p.imag() - centerY); }
#define cord(p) cordx(p), cordy(p)
void draw_point(Point p) {
fprintf(stderr, "circle(%d, %d, %d)\n", cord(p), 2);
}
void draw_segment(Line l) {
fprintf(stderr, "line(%d, %d, %d, %d)\n", cord(l.a), cord(l.b));
}
void draw_line(Line l) {
Point v = l.b - l.a;
Line m(l.a - v * Point(1e4, 0), l.b + v * Point(1e4, 0));
fprintf(stderr, "line(%d, %d, %d, %d)\n", cord(m.a), cord(m.b));
}
void draw_polygon(const Polygon &p) {
int n = p.size();
REP(i, n) draw_segment(Line(p[i], p[(i + 1) % n]));
}
void draw_circle(Circle c) {
fprintf(stderr, "circle(%d, %d, %d)\n", cord(c.p), (int)(zoom * c.r));
}
vector<Point> ps;
int check(Point ¢er) {
int num = 0;
for (int i = 0; i < ps.size(); ++i) {
if (abs(ps[i] - center) <= 1) {
num++;
}
}
return num;
}
int main() {
while (1) {
int N;
cin >> N;
if (!N)
break;
ps.clear();
for (int i = 0; i < N; ++i) {
long double x, y;
cin >> x >> y;
ps.push_back({x, y});
}
int ans = 0;
for (int i = 0; i < N; ++i) {
for (int j = i + 1; j < N; ++j) {
if (abs(ps[i] - ps[j]) > 2)
continue;
Line l(ps[i], ps[j]);
Point center = (ps[i] + ps[j]) * 0.5l;
Point vec(imag(ps[i] - ps[j]), -real(ps[i] - ps[j]));
long double nl = sqrt(0.9999999 - norm(center - ps[i]));
long double oldl = abs(vec);
vec *= nl / oldl;
Point checkcenter = center + vec;
ans = max(ans, check(checkcenter));
checkcenter = center - vec;
ans = max(ans, check(checkcenter));
}
}
cout << ans << endl;
}
return 0;
}
|
#include <algorithm>
#include <array>
#include <assert.h>
#include <bitset>
#include <complex>
#include <cstdlib>
#include <functional>
#include <iomanip>
#include <iostream>
#include <limits>
#include <map>
#include <math.h>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <stdio.h>
#include <stdio.h>
#include <string.h>
#include <string>
#include <vector>
using namespace std;
#define REP(i, n) for (int i = 0; i < (int)(n); i++)
#define ALL(x) (x).begin(), (x).end()
/* 幾何の基本 */
typedef long double ld;
typedef complex<ld> Point;
const ld eps = 1e-9, pi = acos(-1.0);
namespace std {
bool operator<(const Point &lhs, const Point &rhs) {
if (lhs.real() < rhs.real() - eps)
return true;
if (lhs.real() > rhs.real() + eps)
return false;
return lhs.imag() < rhs.imag();
}
} // namespace std
// 点の入力
Point input_point() {
ld x, y;
cin >> x >> y;
return Point(x, y);
}
// 誤差つき等号判定
bool eq(ld a, ld b) { return (abs(a - b) < eps); }
// 内積
ld dot(Point a, Point b) { return real(conj(a) * b); }
// 外積
ld cross(Point a, Point b) { return imag(conj(a) * b); }
// 直線の定義
class Line {
public:
Point a, b;
Line() : a(Point(0, 0)), b(Point(0, 0)) {}
Line(Point a, Point b) : a(a), b(b) {}
Point operator[](const int _num) {
if (_num == 0)
return a;
else if (_num == 1)
return b;
else
assert(false);
}
};
// 円の定義
class Circle {
public:
Point p;
ld r;
Circle() : p(Point(0, 0)), r(0) {}
Circle(Point p, ld r) : p(p), r(r) {}
};
// CCW
int ccw(Point a, Point b, Point c) {
b -= a;
c -= a;
if (cross(b, c) > eps)
return 1; // a,b,cが反時計周りの順に並ぶ
if (cross(b, c) < -eps)
return -1; // a,b,cが時計周りの順に並ぶ
if (dot(b, c) < 0)
return 2; // c,a,bの順に直線に並ぶ
if (norm(b) < norm(c))
return -2; // a,b,cの順に直線に並ぶ
return 0; // a,c,bの順に直線に並ぶ
}
/* 交差判定 */
// 直線と直線の交差判定
bool isis_ll(Line l, Line m) { return !eq(cross(l.b - l.a, m.b - m.a), 0); }
// 直線と線分の交差判定
bool isis_ls(Line l, Line s) {
return isis_ll(l, s) &&
(cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);
}
// 線分と線分の交差判定
bool isis_ss(Line s, Line t) {
return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&
ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}
// 点の直線上判定
bool isis_lp(Line l, Point p) { return (abs(cross(l.b - p, l.a - p)) < eps); }
// 点の線分上判定
bool isis_sp(Line s, Point p) {
return (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);
}
// 垂線の足
Point proj(Line l, Point p) {
ld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + t * (l.a - l.b);
}
// 直線と直線の交点
Point is_ll(Line s, Line t) {
Point sv = s.b - s.a, tv = t.b - t.a;
assert(cross(sv, tv) != 0);
return s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);
}
// 直線と点の距離
ld dist_lp(Line l, Point p) { return abs(p - proj(l, p)); }
// 直線と直線の距離
ld dist_ll(Line l, Line m) { return isis_ll(l, m) ? 0 : dist_lp(l, m.a); }
// 直線と線分の距離
ld dist_ls(Line l, Line s) {
return isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));
}
// 線分と点の距離
ld dist_sp(Line s, Point p) {
Point r = proj(s, p);
return isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));
}
// 線分と線分の距離
ld dist_ss(Line s, Line t) {
if (isis_ss(s, t))
return 0;
return min(
{dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b)});
}
/* 円 */
// 円と円の交点
vector<Point> is_cc(Circle c1, Circle c2) {
vector<Point> res;
ld d = abs(c1.p - c2.p);
ld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);
ld dfr = c1.r * c1.r - rc * rc;
if (abs(dfr) < eps)
dfr = 0.0;
else if (dfr < 0.0)
return res; // no intersection
ld rs = sqrt(dfr);
Point diff = (c2.p - c1.p) / d;
res.push_back(c1.p + diff * Point(rc, rs));
if (dfr != 0.0)
res.push_back(c1.p + diff * Point(rc, -rs));
return res;
}
// 円と直線の交点
vector<Point> is_lc(Circle c, Line l) {
vector<Point> res;
ld d = dist_lp(l, c.p);
if (d < c.r + eps) {
ld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); // safety;
Point nor = (l.a - l.b) / abs(l.a - l.b);
res.push_back(proj(l, c.p) + len * nor);
res.push_back(proj(l, c.p) - len * nor);
}
return res;
}
// 円と線分の距離
vector<Point> is_sc(Circle c, Line l) {
vector<Point> v = is_lc(c, l), res;
for (Point p : v)
if (isis_sp(l, p))
res.push_back(p);
return res;
}
// 円と点の接線
vector<Line> tangent_cp(Circle c, Point p) {
vector<Line> ret;
Point v = c.p - p;
ld d = abs(v);
ld l = sqrt(norm(v) - c.r * c.r);
if (isnan(l)) {
return ret;
}
Point v1 = v * Point(l / d, c.r / d);
Point v2 = v * Point(l / d, -c.r / d);
ret.push_back(Line(p, p + v1));
if (l < eps)
return ret;
ret.push_back(Line(p, p + v2));
return ret;
}
// 円と円の接線
vector<Line> tangent_cc(Circle c1, Circle c2) {
vector<Line> ret;
if (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {
Point center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);
ret = tangent_cp(c1, center);
}
if (abs(c1.r - c2.r) > eps) {
Point out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);
vector<Line> nret = tangent_cp(c1, out);
ret.insert(ret.end(), ALL(nret));
} else {
Point v = c2.p - c1.p;
v /= abs(v);
Point q1 = c1.p + v * Point(0, 1) * c1.r;
Point q2 = c1.p + v * Point(0, -1) * c1.r;
ret.push_back(Line(q1, q1 + v));
ret.push_back(Line(q2, q2 + v));
}
return ret;
}
/* 多角形 */
typedef vector<Point> Polygon;
// 面積
ld area(const Polygon &p) {
ld res = 0;
int n = p.size();
REP(j, n) res += cross(p[j], p[(j + 1) % n]);
return res / 2;
}
// 多角形の回転方向
bool is_counter_clockwise(const Polygon &poly) {
ld angle = 0;
int n = poly.size();
REP(i, n) {
Point a = poly[i], b = poly[(i + 1) % n], c = poly[(i + 2) % n];
angle += arg((c - b) / (b - a));
}
return angle > eps;
}
// 円の内外判定
// -1 => out
// 0 => on
// 1 => in
int is_in_polygon(const Polygon &poly, Point p) {
ld angle = 0;
int n = poly.size();
REP(i, n) {
Point a = poly[i], b = poly[(i + 1) % n];
if (isis_sp(Line(a, b), p))
return 1;
angle += arg((b - p) / (a - p));
}
return eq(angle, 0) ? 0 : 2;
}
// 凸包
Polygon convex_hull(vector<Point> ps) {
int n = ps.size();
int k = 0;
sort(ps.begin(), ps.end());
Polygon ch(2 * n);
for (int i = 0; i < n; ch[k++] = ps[i++])
while (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0)
--k;
for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])
while (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0)
--k;
ch.resize(k - 1);
return ch;
}
// 凸カット
Polygon convex_cut(const Polygon &ps, Line l) {
int n = ps.size();
Polygon Q;
REP(i, n) {
Point A = ps[i], B = ps[(i + 1) % n];
Line m = Line(A, B);
if (ccw(l.a, l.b, A) != -1)
Q.push_back(A);
if (ccw(l.a, l.b, A) * ccw(l.a, l.b, B) < 0 && isis_ll(l, m))
Q.push_back(is_ll(l, m));
}
return Q;
}
/* アレンジメント */
void add_point(vector<Point> &ps, Point p) {
for (Point q : ps)
if (abs(q - p) < eps)
return;
ps.push_back(p);
}
typedef int Weight;
struct Edge {
int from, to;
Weight weight;
};
typedef vector<Edge> Edges;
typedef vector<Edges> Graph;
void add_edge(Graph &g, int from, int to, Weight weight) {
g[from].push_back(Edge{from, to, weight});
}
Graph segment_arrangement(const vector<Line> &s, const vector<Point> &p) {
int n = p.size(), m = s.size();
Graph g(n);
REP(i, m) {
vector<pair<ld, int>> vec;
REP(j, n) if (isis_sp(s[i], p[j])) vec.emplace_back(abs(s[i].a - p[j]), j);
sort(ALL(vec));
REP(j, vec.size() - 1) {
int from = vec[j].second, to = vec[j + 1].second;
add_edge(g, from, to, abs(p[from] - p[to]));
}
}
return g;
}
Graph circle_arrangement(const vector<Circle> &c, const vector<Point> &p) {
int n = p.size(), m = c.size();
Graph g(n);
REP(i, m) {
vector<pair<ld, int>> vec;
REP(j, n)
if (abs(abs(c[i].p - p[j]) - c[i].r) < eps)
vec.emplace_back(arg(c[i].p - p[j]), j);
sort(ALL(vec));
REP(j, vec.size() - 1) {
int from = vec[j].second, to = vec[j + 1].second;
ld angle = vec[j + 1].first - vec[j].first;
add_edge(g, from, to, angle * c[i].r);
}
if (vec.size() >= 2) {
int from = vec.back().second, to = vec.front().first;
ld angle = vec.front().first - vec.back().first;
add_edge(g, from, to, angle * c[i].r);
}
}
return g;
}
/* 双対グラフ */
// 線分集合は既にアレンジメントされていなければならない.
// 内側の円は時計回りで,外側の円は反時計回りで得られる.
// 変数 polygon は,vector<int> で表される多角形の集合であり,
// vector<int> で表される
// 多角形のi番目は,その頂点の頂点集合pにおける番号である.
vector<vector<int>> polygon;
vector<int> seg2p[1024][1024];
Graph dual_graph(const vector<Line> &s, const vector<Point> &p) {
int N = p.size();
polygon.clear();
REP(i, 1024) REP(j, 1024) seg2p[i][j].clear();
vector<vector<tuple<ld, int, bool>>> tup(N);
REP(i, s.size()) {
int a = -1, b = -1;
REP(j, N) if (abs(s[i].a - p[j]) < eps) a = j;
REP(j, N) if (abs(s[i].b - p[j]) < eps) b = j;
assert(a >= 0 && b >= 0);
tup[a].emplace_back(arg(s[i].b - s[i].a), b, false);
tup[b].emplace_back(arg(s[i].a - s[i].b), a, false);
}
REP(i, N) sort(ALL(tup[i]));
REP(i, N) {
REP(j, tup[i].size()) {
ld angle;
int pos = j, from = i, to;
bool flag;
tie(angle, to, flag) = tup[i][j];
if (flag)
continue;
vector<int> ps;
while (!flag) {
ps.push_back(from);
get<2>(tup[from][pos]) = true;
seg2p[from][to].push_back(polygon.size());
seg2p[to][from].push_back(polygon.size());
angle += pi + eps;
if (angle > pi)
angle -= 2 * pi;
auto it = lower_bound(ALL(tup[to]), make_tuple(angle, 0, false));
if (it == tup[to].end())
it = tup[to].begin();
from = to;
tie(angle, to, flag) = *it;
pos = it - tup[from].begin();
}
polygon.push_back(ps);
}
}
Graph g(polygon.size());
REP(i, N) REP(j, i) {
if (seg2p[i][j].size() == 2) {
int from = seg2p[i][j][0], to = seg2p[i][j][1];
g[from].push_back(Edge{from, to});
g[to].push_back(Edge{to, from});
}
}
return g;
}
/* ビジュアライザ */
const ld zoom = 25;
const ld centerX = 6;
const ld centerY = 5;
void change_color(int r, int g, int b) {
fprintf(stderr, "c.strokeStyle = 'rgb(%d, %d, %d)';\n", r, g, b);
}
int cordx(Point p) { return 400 + zoom * (p.real() - centerX); }
int cordy(Point p) { return 400 - zoom * (p.imag() - centerY); }
#define cord(p) cordx(p), cordy(p)
void draw_point(Point p) {
fprintf(stderr, "circle(%d, %d, %d)\n", cord(p), 2);
}
void draw_segment(Line l) {
fprintf(stderr, "line(%d, %d, %d, %d)\n", cord(l.a), cord(l.b));
}
void draw_line(Line l) {
Point v = l.b - l.a;
Line m(l.a - v * Point(1e4, 0), l.b + v * Point(1e4, 0));
fprintf(stderr, "line(%d, %d, %d, %d)\n", cord(m.a), cord(m.b));
}
void draw_polygon(const Polygon &p) {
int n = p.size();
REP(i, n) draw_segment(Line(p[i], p[(i + 1) % n]));
}
void draw_circle(Circle c) {
fprintf(stderr, "circle(%d, %d, %d)\n", cord(c.p), (int)(zoom * c.r));
}
vector<Point> ps;
int check(Point ¢er) {
int num = 0;
for (int i = 0; i < ps.size(); ++i) {
if (abs(ps[i] - center) <= 1) {
num++;
}
}
return num;
}
int main() {
while (1) {
int N;
cin >> N;
if (!N)
break;
ps.clear();
for (int i = 0; i < N; ++i) {
long double x, y;
cin >> x >> y;
ps.push_back({x, y});
}
int ans = 1;
for (int i = 0; i < N; ++i) {
for (int j = i + 1; j < N; ++j) {
if (abs(ps[i] - ps[j]) > 2)
continue;
Line l(ps[i], ps[j]);
Point center = (ps[i] + ps[j]) * 0.5l;
Point vec(imag(ps[i] - ps[j]), -real(ps[i] - ps[j]));
long double nl = sqrt(0.9999999 - norm(center - ps[i]));
long double oldl = abs(vec);
vec *= nl / oldl;
Point checkcenter = center + vec;
ans = max(ans, check(checkcenter));
checkcenter = center - vec;
ans = max(ans, check(checkcenter));
}
}
cout << ans << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 4,282
|
#include <bits/stdc++.h>
using namespace std;
const double EPS = 1e-8;
using P = complex<double>;
int n;
P p[300];
int main() {
while (cin >> n, n) {
for (int i = 0; i < n; i++) {
double x, y;
cin >> x >> y;
p[i] = P(x, y);
}
vector<P> ps;
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
if (abs(p[i] - p[j]) >= 2.0)
continue;
P v = p[j] - p[i];
P u = v * P(0.0, 1.0);
u *= sqrt(1.0 - abs(v) / 2.0) / abs(u);
ps.push_back(p[i] + v / 2.0 + u);
ps.push_back(p[i] + v / 2.0 - u);
}
}
int res = 1;
for (P c : ps) {
int s = 0;
for (int i = 0; i < n; i++) {
s += abs(c - p[i]) <= 1.0 + EPS;
}
res = max(res, s);
}
cout << res << endl;
}
}
|
#include <bits/stdc++.h>
using namespace std;
const double EPS = 1e-8;
using P = complex<double>;
int n;
P p[300];
int main() {
while (cin >> n, n) {
for (int i = 0; i < n; i++) {
double x, y;
cin >> x >> y;
p[i] = P(x, y);
}
vector<P> ps;
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
if (abs(p[i] - p[j]) >= 2.0)
continue;
P v = p[j] - p[i];
P u = v * P(0.0, 1.0);
u *= sqrt(1.0 - abs(v) * abs(v) / 4.0) / abs(u);
ps.push_back(p[i] + v / 2.0 + u);
ps.push_back(p[i] + v / 2.0 - u);
}
}
int res = 1;
for (P c : ps) {
int s = 0;
for (int i = 0; i < n; i++) {
s += abs(c - p[i]) <= 1.0 + EPS;
}
res = max(res, s);
}
cout << res << endl;
}
}
|
[["+", 3, 4, 0, 16, 12, 16, 31, 16, 17, 48], ["+", 0, 16, 12, 16, 31, 16, 12, 2, 63, 22], ["+", 12, 16, 31, 16, 12, 2, 3, 4, 0, 24], ["+", 12, 16, 31, 16, 12, 2, 3, 4, 0, 22], ["+", 12, 16, 31, 16, 12, 2, 3, 4, 0, 25], ["-", 31, 2, 3, 4, 0, 16, 12, 16, 12, 13], ["+", 31, 2, 3, 4, 0, 16, 12, 16, 12, 13]]
| 1
| 283
|
#include <bits/stdc++.h>
using namespace std;
#define rep(i, x, y) for (int i = (x); i < (y); ++i)
#define debug(x) #x << "=" << (x)
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define dump(x) std::cerr << debug(x) << " (L:" << __LINE__ << ")" << std::endl
#else
#define dump(x)
#endif
typedef long long int ll;
typedef pair<int, int> pii;
// template<typename T> using vec=std::vector<T>;
const int inf = 1 << 30;
const long long int infll = 1LL << 58;
const double eps = 1e-9;
const int dx[] = {1, 0, -1, 0}, dy[] = {0, 1, 0, -1};
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {
os << "[";
for (const auto &v : vec) {
os << v << ",";
}
os << "]";
return os;
}
void solve() {
while (true) {
int n;
cin >> n;
if (n == 0)
break;
vector<long double> xs(n), ys(n);
rep(i, 0, n) cin >> xs[i] >> ys[i];
auto count = [&](const long double x, const long double y) {
int res = 0;
rep(i, 0, n) if ((xs[i] - x) * (xs[i] - x) + (ys[i] - y) * (ys[i] - y) <=
1 + eps)++ res;
return res;
};
int ans = 0;
rep(i, 0, 201) {
const long double y = 10. * i / 200;
rep(j, 0, n) {
const long double tmp = 1 - (ys[j] - y) * (ys[j] - y);
if (tmp < 0)
continue;
const long double x1 = xs[j] - sqrtl(tmp), x2 = xs[j] + sqrt(tmp);
ans = max({ans, count(x1, y), count(x2, y)});
}
}
cout << ans << endl;
}
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
cout << fixed << setprecision(8);
solve();
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
#define rep(i, x, y) for (int i = (x); i < (y); ++i)
#define debug(x) #x << "=" << (x)
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define dump(x) std::cerr << debug(x) << " (L:" << __LINE__ << ")" << std::endl
#else
#define dump(x)
#endif
typedef long long int ll;
typedef pair<int, int> pii;
// template<typename T> using vec=std::vector<T>;
const int inf = 1 << 30;
const long long int infll = 1LL << 58;
const long double eps = 1e-3;
const int dx[] = {1, 0, -1, 0}, dy[] = {0, 1, 0, -1};
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {
os << "[";
for (const auto &v : vec) {
os << v << ",";
}
os << "]";
return os;
}
void solve() {
while (true) {
int n;
cin >> n;
if (n == 0)
break;
vector<long double> xs(n), ys(n);
rep(i, 0, n) cin >> xs[i] >> ys[i];
auto count = [&](const long double x, const long double y) {
int res = 0;
rep(i, 0, n) if ((xs[i] - x) * (xs[i] - x) + (ys[i] - y) * (ys[i] - y) <=
1 + eps)++ res;
return res;
};
int ans = 0;
rep(i, 0, 2401) {
const long double y = 10. * i / 2400;
rep(j, 0, n) {
const long double tmp = 1 - (ys[j] - y) * (ys[j] - y);
if (tmp < 0)
continue;
const long double x1 = xs[j] - sqrtl(tmp), x2 = xs[j] + sqrt(tmp);
ans = max({ans, count(x1, y), count(x2, y)});
}
}
cout << ans << endl;
}
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
cout << fixed << setprecision(8);
solve();
return 0;
}
|
[["+", 36, 36, 0, 30, 0, 43, 39, 86, 0, 96], ["-", 36, 36, 0, 30, 0, 43, 49, 50, 51, 13], ["+", 36, 36, 0, 30, 0, 43, 49, 50, 51, 13], ["-", 8, 9, 0, 1, 0, 2, 3, 4, 0, 13], ["+", 8, 9, 0, 1, 0, 2, 3, 4, 0, 13], ["-", 0, 9, 0, 43, 49, 50, 51, 16, 12, 13], ["+", 0, 9, 0, 43, 49, 50, 51, 16, 12, 13]]
| 1
| 479
|
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
//#include<cctype>
#include <climits>
#include <iostream>
#include <map>
#include <string>
#include <vector>
//#include<list>
#include <algorithm>
#include <deque>
#include <queue>
//#include<numeric>
#include <utility>
//#include<memory>
#include <cassert>
#include <functional>
#include <random>
#include <set>
#include <stack>
const int dx[] = {1, 0, -1, 0};
const int dy[] = {0, 1, 0, -1};
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef vector<int> vi;
typedef vector<ll> vll;
typedef pair<int, int> pii;
typedef long double Real;
Real eps = 1e-9;
Real add(Real a, Real b) {
if (abs(a + b) < eps * (abs(a) + abs(b)))
return 0;
return a + b;
}
bool equal(Real a, Real b) { return add(a, -b) == 0; }
struct P {
Real x, y;
P() {}
P(Real x, Real y) : x(x), y(y) {}
P operator+(P p) const { return P(add(x, p.x), add(y, p.y)); }
P operator-(P p) const { return P(add(x, -p.x), add(y, -p.y)); }
P operator*(Real d) const { return P(x * d, y * d); }
Real dot(P p) const { return add(x * p.x, y * p.y); } // ??????
Real det(P p) const { return add(x * p.y, -y * p.x); } // ??????
Real dist(P p) const {
return sqrt((x - p.x) * (x - p.x) + (y - p.y) * (y - p.y));
} // ?????¢
void normalize() {
Real d = sqrt(x * x + y * y);
x /= d;
y /= d;
} // ??£??????
bool operator<(const P &rhs) const {
if (x != rhs.x)
return x < rhs.x;
return y < rhs.y;
}
bool operator==(const P &rhs) const {
return equal(x, rhs.x) && equal(y, rhs.y);
}
};
const int MAXN = 333;
P pnt[MAXN];
int N;
int calc(P center) {
int ret = 0;
for (int i = 0; i < N; i++) {
P vec = pnt[i] - center;
if (vec.dot(vec) < 1 + eps) {
ret++;
}
}
return ret;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
while (cin >> N) {
if (N == 0)
break;
for (int i = 0; i < N; i++)
cin >> pnt[i].x >> pnt[i].y;
int ans = min(2, N);
for (int i = 0; i < N; i++)
for (int j = i + 1; j < N; j++) {
if (pnt[i].dist(pnt[j]) > 2)
continue;
// diff ?????????
P vec = pnt[j] - pnt[i];
// vec ????????´????????????????????????
P n = P(vec.y, -vec.x);
n.normalize();
vec = vec * 0.5;
Real len = sqrt(1 - vec.dot(vec));
P cand1 = pnt[i] + vec + n * len;
P cand2 = pnt[i] + vec - n * len;
ans = max(ans, calc(cand1));
ans = max(ans, calc(cand2));
}
cout << ans << endl;
}
return 0;
}
|
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
//#include<cctype>
#include <climits>
#include <iostream>
#include <map>
#include <string>
#include <vector>
//#include<list>
#include <algorithm>
#include <deque>
#include <queue>
//#include<numeric>
#include <utility>
//#include<memory>
#include <cassert>
#include <functional>
#include <random>
#include <set>
#include <stack>
const int dx[] = {1, 0, -1, 0};
const int dy[] = {0, 1, 0, -1};
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef vector<int> vi;
typedef vector<ll> vll;
typedef pair<int, int> pii;
typedef long double Real;
Real eps = 1e-9;
Real add(Real a, Real b) {
if (abs(a + b) < eps * (abs(a) + abs(b)))
return 0;
return a + b;
}
bool equal(Real a, Real b) { return add(a, -b) == 0; }
struct P {
Real x, y;
P() {}
P(Real x, Real y) : x(x), y(y) {}
P operator+(P p) const { return P(add(x, p.x), add(y, p.y)); }
P operator-(P p) const { return P(add(x, -p.x), add(y, -p.y)); }
P operator*(Real d) const { return P(x * d, y * d); }
Real dot(P p) const { return add(x * p.x, y * p.y); } // ??????
Real det(P p) const { return add(x * p.y, -y * p.x); } // ??????
Real dist(P p) const {
return sqrt((x - p.x) * (x - p.x) + (y - p.y) * (y - p.y));
} // ?????¢
void normalize() {
Real d = sqrt(x * x + y * y);
x /= d;
y /= d;
} // ??£??????
bool operator<(const P &rhs) const {
if (x != rhs.x)
return x < rhs.x;
return y < rhs.y;
}
bool operator==(const P &rhs) const {
return equal(x, rhs.x) && equal(y, rhs.y);
}
};
const int MAXN = 333;
P pnt[MAXN];
int N;
int calc(P center) {
int ret = 0;
for (int i = 0; i < N; i++) {
P vec = pnt[i] - center;
if (vec.dot(vec) < 1 + eps) {
ret++;
}
}
return ret;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
while (cin >> N) {
if (N == 0)
break;
for (int i = 0; i < N; i++)
cin >> pnt[i].x >> pnt[i].y;
int ans = 1;
for (int i = 0; i < N; i++)
for (int j = i + 1; j < N; j++) {
if (pnt[i].dist(pnt[j]) > 2)
continue;
// diff ?????????
P vec = pnt[j] - pnt[i];
// vec ????????´????????????????????????
P n = P(vec.y, -vec.x);
n.normalize();
vec = vec * 0.5;
Real len = sqrt(1 - vec.dot(vec));
P cand1 = pnt[i] + vec + n * len;
P cand2 = pnt[i] + vec - n * len;
ans = max(ans, calc(cand1));
ans = max(ans, calc(cand2));
}
cout << ans << endl;
}
return 0;
}
|
[["-", 8, 9, 0, 43, 49, 50, 51, 2, 63, 22], ["-", 0, 43, 49, 50, 51, 2, 3, 4, 0, 24], ["-", 0, 43, 49, 50, 51, 2, 3, 4, 0, 13], ["-", 0, 43, 49, 50, 51, 2, 3, 4, 0, 21], ["-", 0, 43, 49, 50, 51, 2, 3, 4, 0, 22], ["-", 0, 43, 49, 50, 51, 2, 3, 4, 0, 25], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 820
|
#include "bits/stdc++.h"
#include <cassert>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
#define rep(i, n) for (ll i = 0; i < (ll)(n); i++)
#define all(a) (a).begin(), (a).end()
#define vi vector<int>
#define pb push_back
#define INF 999999999
//#define INF (1LL<<59)
#define OUT 0
#define ON 1
#define IN 2
#define EPS 0.00009
//#define EPS (1e-10)
class P { //テァツつケ
public:
double x, y;
P(double _x = 0, double _y = 0) : x(_x), y(_y){};
P operator+(const P &p) const {
return P(x + p.x, y + p.y);
} //テ・ツ環?ァツョツ?
P operator-(const P &p) const {
return P(x - p.x, y - p.y);
} //テヲツクツ崚ァツョツ?
P operator*(const double k) const {
return P(x * k, y * k);
} //テ、ツケツ療ァツョツ?
P operator/(const double k) const {
return P(x / k, y / k);
} //テゥツ卍、テァツョツ?
bool operator==(const P &p) {
return (fabs(x - p.x) < EPS && fabs(y - p.y) < EPS);
}
bool operator<(const P &p) const { return (x != p.x ? x < p.x : y < p.y); }
double norm() { return x * x + y * y; } //テ」ツδ偲」ツδォテ」ツδ?
double abs() { return sqrt(norm()); } //テ・ツ、ツァテ」ツ?催」ツ??
};
struct C {
P p;
double r;
}; //テ・ツ??
struct S {
P p1, p2;
}; //テァツキツ堙・ツ按?
typedef vector<P> Polygon; //テ・ツ、ツ堙ィツァツ津・ツスツ「
typedef P Vector; //テ」ツδ凖」ツつッテ」ツδ暗」ツδォ
typedef S L; //テァツ崢エテァツキツ?
double norm(P p) { return p.norm(); }
double abs(P p) { return p.abs(); }
double dot(Vector a, Vector b) { return a.x * b.x + a.y * b.y; }
double cross(Vector a, Vector b) { return a.x * b.y - a.y * b.x; }
double sqDist(P a, P b) {
return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
}
double dist(P a, P b) { return sqrt(sqDist(a, b)); }
Vector vec(S a) { return P(a.p2.x - a.p1.x, a.p2.y - a.p1.y); }
int ccw(P p0, P p1, P p2) { // AOJ_BOOK_P386 verified
Vector a = p1 - p0;
Vector b = p2 - p0;
if (cross(a, b) > EPS)
return 1; // COUNTER_CLOCKWISE
if (cross(a, b) < -EPS)
return -1; // CLOCKWISE
if (dot(a, b) < -EPS)
return 2; // ONLINE_BACK
if (a.norm() < b.norm())
return -2; // ONLINE_FRONT
return 0; // ON_SEGMENT;
}
//テァツ崢エテァツキツ堙ァツ崢エティツ。ツ古・ツ按、テ・ツョツ?verified AOJ0058
bool orthogonal(P p1, P p2, P p3, P p4) {
return abs(dot(p1 - p2, p3 - p4)) < EPS;
}
//テァツキツ堙・ツ按?、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?
bool intersect(P p1, P p2, P p3, P p4) {
return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 &&
ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0);
}
//テァツキツ堙・ツ按?」ツ?ィテァツつケテ」ツ?ョティツキツ敕ゥツ崢「 verified
//ARC042-B
double dLP(S l, P p) {
return abs(cross(l.p2 - l.p1, p - l.p1)) / (l.p2 - l.p1).abs();
}
//テァツキツ堙・ツ按?」ツ?ォテ・ツッツセテ」ツ?凖」ツつ凝ァツつケテ」ツ?ョテ・ツーツ?・ツスツア
//verified AOJ CGL_1_A
P project(S s, P p) {
Vector base = s.p2 - s.p1;
double r = dot(p - s.p1, base) / norm(base);
return (base * r) + s.p1;
}
//テァツキツ堙・ツ按?」ツ?ォテ・ツッツセテ」ツ?凖」ツつ凝ァツつケテ」ツ?ョテ・ツ渉催・ツーツ?verified
//AOJ CGL_1_B
P reflect(S s, P p) { return p + (project(s, p) - p) * 2.0; }
//テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテゥツ鳴「テ、ツソツ?verified
//AOJ CGL_2
int rLL(L a, L b) {
if (cross(vec(a), vec(b)) == 0)
return 2; //テ、ツクツヲティツ。ツ?
if (dot(vec(a), vec(b)) == 0)
return 1; //テ・ツ楪づァツ崢エ
return 0;
}
// テ・ツ??」ツ?ィテァツつケテ」ツ?ョテ・ツ??・ツ、ツ姪・ツ按、テ・ツョツ?
int contains(C c, P p) {
double d = (c.p - p).abs();
if (d - c.r > EPS)
return OUT;
if (abs(d - c.r) < EPS)
return ON;
return IN;
}
//テァツ崢エテァツキツ堙」ツ?ィテ・ツ??」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?テゥツ?催」ツ?ェテ」ツ?」テ」ツ?ヲテ」ツ??」ツつ凝・ツ?エテ・ツ青暗」ツ?ッテ、ツコツ、テ・ツキツョテヲツ可アテ」ツ??
bool intersect_circle_(P center, double r, L line) {
if (dLP(line, center) <= r + EPS)
return true;
return false;
}
//テァツキツ堙・ツ按?」ツ?ィテ・ツコツ療」ツ?ョティツキツ敕ゥツ崢「 verified
//QUPC-G
double dSP(S s, P p) {
if (dot((s.p2 - s.p1), p - s.p1) <= EPS)
return (p - s.p1).abs();
if (dot((s.p2 - s.p1) * -1, p - s.p2) <= EPS)
return (p - s.p2).abs();
return dLP(s, p);
}
//テァツキツ堙・ツ按?」ツ?ィテ・ツ??」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?テゥツ?催」ツ?ェテ」ツ?」テ」ツ?ヲテ」ツ??」ツつ凝・ツ?エテ・ツ青暗」ツ?ッテ、ツコツ、テ・ツキツョテヲツ可アテ」ツ??
//verified QUPC-G
bool iCS(C c, S l) {
int c1 = contains(c, l.p1);
int c2 = contains(c, l.p2);
if (c1 > c2)
swap(c1, c2);
// (OUT, OUT) (OUT, ON) (OUT, IN) (ON, ON) (ON, IN) (IN, IN)
// テ」ツ?ョ6テゥツ?堙」ツつ?
if (c1 == OUT && c2 == IN)
return true;
if (c1 == IN && c2 == IN)
return false;
if (c1 == ON)
return true; // (テヲツ篠・テ」ツ?凖」ツつ凝」ツ?ィテ」ツ??
double d = dSP(l, c.p);
if (d - c.r < -EPS)
return true;
if (d - c.r > EPS)
return false;
return true; // (テヲツ篠・テ」ツ?凖」ツつ凝」ツ?ィテ」ツ??
}
//テ・ツ債佚ァツエツ氾・ツ、ツ堙ィツァツ津・ツスツ「テ・ツ按、テ・ツョツ?
bool isSimple(Polygon pol) {
//テ・ツ按敕」ツつ?」ツ?ョテァツつケテ」ツつ津ゥツ?催ィツ、ツ?」ツ?療」ツ?ヲpolテ」ツ?ォテ・ツ?・テ」ツつ古」ツ?ヲテ」ツ?甘」ツ??
size_t pol_size = pol.size() - 1;
rep(i, pol_size) {
for (int j = i + 2; j < pol_size; j++) {
if (i == j || i == (j - 1 + pol_size) % pol_size ||
i == (j + 1 + pol_size) % pol_size)
continue;
if (intersect(pol[i], pol[i + 1], pol[j], pol[j + 1]))
return false;
}
}
return true;
}
//テァツつケテ」ツ?古・ツ?クテ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ョテ・ツ??・ツ?エテ」ツ?ォテ」ツ?づ」ツつ凝」ツ?凝」ツ?ゥテ」ツ??」ツ?凝」ツつ津ヲツアツづ」ツつ?」ツつ?trueテ」ツ?ェテ」ツつ嘉・ツ??・ツ?エ
//verified AOJ0012
int isPointInsidePolygon(vector<P> pol, P p) {
int c = 0;
rep(i, pol.size()) {
if (cross(pol[i] - pol[(i + 1) % pol.size()],
p - pol[(i + 1) % pol.size()]) == 0)
return ON;
if (cross(pol[i] - pol[(i + 1) % pol.size()],
p - pol[(i + 1) % pol.size()]) > 0)
c++;
}
if (c % pol.size())
return OUT;
return IN;
}
//テ・ツ??」ツ?ィテ・ツ?クテ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ョテ、ツコツ、テ・ツキツョテァツ環カテヲツ?凝」ツつ津ィツェツソテ」ツ?ケテ」ツつ?
int CPOLarea(C c, Polygon pol) {
vector<L> lines;
vector<int> res(pol.size());
bool POLinC = true, isFar = true;
rep(i, pol.size()) {
if (contains(c, pol[i]) == OUT)
POLinC = false;
res[i] = contains(c, pol[i]);
lines.pb(L{pol[i], pol[(i + 1) % pol.size()]});
if (sqDist(c.p, pol[i]) < c.r * c.r)
isFar = false;
}
if (POLinC)
return 2; //テ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ッテ・ツ??」ツ?ョテ・ツ??ゥツδィb
if (isPointInsidePolygon(pol, c.p) == IN && isFar)
return 3; //テ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ョテ・ツ??ゥツδィテ」ツ?ォテ・ツ??
rep(i, lines.size()) if (
iCS(c,
lines
[i])) return 1; //テ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ィテ・ツ??」ツ?ッテ、ツコツ、テ・ツキツョc
return 0;
}
//テ・ツ?クテ・ツ個?verified AOJ0068,QUPC-G
//ティツセツ榲ヲツ崢クテゥツ??」ツ?ァテヲツッツ氾ィツシツ?
bool cmp_x(const P &p, const P &q) {
if (p.x != q.x)
return p.x < q.x;
return p.y < q.y;
}
//テ・ツ?クテ・ツ個?」ツつ津ヲツアツづ」ツつ?」ツつ?
vector<P> convex_hull(vector<P> ps) {
int n = ps.size();
sort(all(ps), cmp_x);
int k = 0; //テ・ツ?クテ・ツ個?」ツ?ョテゥツ?づァツつケテヲツ閉ー
vector<P> qs(n *
2); //テヲツァツ凝ヲツ按静、ツクツュテ」ツ?ョテ・ツ?クテ・ツ個?
//テ、ツクツ凝・ツ?エテ・ツ?クテ・ツ個?」ツ?ョテ、ツスツ愿ヲツ按?
rep(i, n) {
while (k > 1 && cross((qs[k - 1] - qs[k - 2]), (ps[i] - qs[k - 1])) <= 0)
k--;
qs[k++] = ps[i];
}
//テ、ツクツ甘・ツ?エテ・ツ?クテ・ツ個?」ツ?ョテ、ツスツ愿ヲツ按?
for (int i = n - 2, t = k; i >= 0; i--) {
while (k > t && cross((qs[k - 1] - qs[k - 2]), (ps[i] - qs[k - 1])) <= 0)
k--;
qs[k++] = ps[i];
}
qs.resize(k - 1);
return qs;
}
// 2テァツつケテ」ツつ津ゥツ?堙」ツつ凝・ツ債甘・ツセツвテ」ツ?ョテ・ツ??」ツ?ョテ、ツクツュテ・ツソツε・ツコツァテヲツィツ凖」ツつ津ヲツアツづ」ツつ?」ツつ?
pair<P, P> geoGetCircleOf2pAndR(P p1, P p2, double r) {
P pc1 = P(-INF, -INF), pc2(-INF, -INF), p3;
double d, l, dx, dy;
p3 = (p1 + p2) / 2.0;
l = sqDist(p2, p3);
if (r * r >= l) {
d = sqrt(r * r / l - 1.0);
dx = d * (p2.y - p3.y);
dy = d * (p2.x - p3.x);
pc1.x = p3.x + dx;
pc1.y = p3.y - dy;
pc2.x = p3.x - dx;
pc2.y = p3.y + dy;
}
return pair<P, P>(pc1, pc2);
}
int main() {
int n;
while (cin >> n && n) {
int ans = 0;
vector<P> ps(n);
rep(i, n) cin >> ps[i].x >> ps[i].y;
rep(i, n) {
for (int j = i + 1; j < n; j++) {
if (dist(ps[i], ps[j]) > 2 + EPS)
continue;
pair<P, P> res = geoGetCircleOf2pAndR(ps[i], ps[j], 1);
int suma = 0, sumb = 0;
rep(k, n) {
if (sqDist(ps[k], res.first) < 1 + EPS)
suma++;
if (sqDist(ps[k], res.second) < 1 + EPS)
sumb++;
}
ans = max(ans, max(suma, sumb));
}
}
cout << ans << endl;
}
}
|
#include "bits/stdc++.h"
#include <cassert>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
#define rep(i, n) for (ll i = 0; i < (ll)(n); i++)
#define all(a) (a).begin(), (a).end()
#define vi vector<int>
#define pb push_back
#define INF 999999999
//#define INF (1LL<<59)
#define OUT 0
#define ON 1
#define IN 2
#define EPS 0.00009
//#define EPS (1e-10)
class P { //テァツつケ
public:
double x, y;
P(double _x = 0, double _y = 0) : x(_x), y(_y){};
P operator+(const P &p) const {
return P(x + p.x, y + p.y);
} //テ・ツ環?ァツョツ?
P operator-(const P &p) const {
return P(x - p.x, y - p.y);
} //テヲツクツ崚ァツョツ?
P operator*(const double k) const {
return P(x * k, y * k);
} //テ、ツケツ療ァツョツ?
P operator/(const double k) const {
return P(x / k, y / k);
} //テゥツ卍、テァツョツ?
bool operator==(const P &p) {
return (fabs(x - p.x) < EPS && fabs(y - p.y) < EPS);
}
bool operator<(const P &p) const { return (x != p.x ? x < p.x : y < p.y); }
double norm() { return x * x + y * y; } //テ」ツδ偲」ツδォテ」ツδ?
double abs() { return sqrt(norm()); } //テ・ツ、ツァテ」ツ?催」ツ??
};
struct C {
P p;
double r;
}; //テ・ツ??
struct S {
P p1, p2;
}; //テァツキツ堙・ツ按?
typedef vector<P> Polygon; //テ・ツ、ツ堙ィツァツ津・ツスツ「
typedef P Vector; //テ」ツδ凖」ツつッテ」ツδ暗」ツδォ
typedef S L; //テァツ崢エテァツキツ?
double norm(P p) { return p.norm(); }
double abs(P p) { return p.abs(); }
double dot(Vector a, Vector b) { return a.x * b.x + a.y * b.y; }
double cross(Vector a, Vector b) { return a.x * b.y - a.y * b.x; }
double sqDist(P a, P b) {
return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
}
double dist(P a, P b) { return sqrt(sqDist(a, b)); }
Vector vec(S a) { return P(a.p2.x - a.p1.x, a.p2.y - a.p1.y); }
int ccw(P p0, P p1, P p2) { // AOJ_BOOK_P386 verified
Vector a = p1 - p0;
Vector b = p2 - p0;
if (cross(a, b) > EPS)
return 1; // COUNTER_CLOCKWISE
if (cross(a, b) < -EPS)
return -1; // CLOCKWISE
if (dot(a, b) < -EPS)
return 2; // ONLINE_BACK
if (a.norm() < b.norm())
return -2; // ONLINE_FRONT
return 0; // ON_SEGMENT;
}
//テァツ崢エテァツキツ堙ァツ崢エティツ。ツ古・ツ按、テ・ツョツ?verified AOJ0058
bool orthogonal(P p1, P p2, P p3, P p4) {
return abs(dot(p1 - p2, p3 - p4)) < EPS;
}
//テァツキツ堙・ツ按?、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?
bool intersect(P p1, P p2, P p3, P p4) {
return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 &&
ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0);
}
//テァツキツ堙・ツ按?」ツ?ィテァツつケテ」ツ?ョティツキツ敕ゥツ崢「 verified
//ARC042-B
double dLP(S l, P p) {
return abs(cross(l.p2 - l.p1, p - l.p1)) / (l.p2 - l.p1).abs();
}
//テァツキツ堙・ツ按?」ツ?ォテ・ツッツセテ」ツ?凖」ツつ凝ァツつケテ」ツ?ョテ・ツーツ?・ツスツア
//verified AOJ CGL_1_A
P project(S s, P p) {
Vector base = s.p2 - s.p1;
double r = dot(p - s.p1, base) / norm(base);
return (base * r) + s.p1;
}
//テァツキツ堙・ツ按?」ツ?ォテ・ツッツセテ」ツ?凖」ツつ凝ァツつケテ」ツ?ョテ・ツ渉催・ツーツ?verified
//AOJ CGL_1_B
P reflect(S s, P p) { return p + (project(s, p) - p) * 2.0; }
//テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテゥツ鳴「テ、ツソツ?verified
//AOJ CGL_2
int rLL(L a, L b) {
if (cross(vec(a), vec(b)) == 0)
return 2; //テ、ツクツヲティツ。ツ?
if (dot(vec(a), vec(b)) == 0)
return 1; //テ・ツ楪づァツ崢エ
return 0;
}
// テ・ツ??」ツ?ィテァツつケテ」ツ?ョテ・ツ??・ツ、ツ姪・ツ按、テ・ツョツ?
int contains(C c, P p) {
double d = (c.p - p).abs();
if (d - c.r > EPS)
return OUT;
if (abs(d - c.r) < EPS)
return ON;
return IN;
}
//テァツ崢エテァツキツ堙」ツ?ィテ・ツ??」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?テゥツ?催」ツ?ェテ」ツ?」テ」ツ?ヲテ」ツ??」ツつ凝・ツ?エテ・ツ青暗」ツ?ッテ、ツコツ、テ・ツキツョテヲツ可アテ」ツ??
bool intersect_circle_(P center, double r, L line) {
if (dLP(line, center) <= r + EPS)
return true;
return false;
}
//テァツキツ堙・ツ按?」ツ?ィテ・ツコツ療」ツ?ョティツキツ敕ゥツ崢「 verified
//QUPC-G
double dSP(S s, P p) {
if (dot((s.p2 - s.p1), p - s.p1) <= EPS)
return (p - s.p1).abs();
if (dot((s.p2 - s.p1) * -1, p - s.p2) <= EPS)
return (p - s.p2).abs();
return dLP(s, p);
}
//テァツキツ堙・ツ按?」ツ?ィテ・ツ??」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?テゥツ?催」ツ?ェテ」ツ?」テ」ツ?ヲテ」ツ??」ツつ凝・ツ?エテ・ツ青暗」ツ?ッテ、ツコツ、テ・ツキツョテヲツ可アテ」ツ??
//verified QUPC-G
bool iCS(C c, S l) {
int c1 = contains(c, l.p1);
int c2 = contains(c, l.p2);
if (c1 > c2)
swap(c1, c2);
// (OUT, OUT) (OUT, ON) (OUT, IN) (ON, ON) (ON, IN) (IN, IN)
// テ」ツ?ョ6テゥツ?堙」ツつ?
if (c1 == OUT && c2 == IN)
return true;
if (c1 == IN && c2 == IN)
return false;
if (c1 == ON)
return true; // (テヲツ篠・テ」ツ?凖」ツつ凝」ツ?ィテ」ツ??
double d = dSP(l, c.p);
if (d - c.r < -EPS)
return true;
if (d - c.r > EPS)
return false;
return true; // (テヲツ篠・テ」ツ?凖」ツつ凝」ツ?ィテ」ツ??
}
//テ・ツ債佚ァツエツ氾・ツ、ツ堙ィツァツ津・ツスツ「テ・ツ按、テ・ツョツ?
bool isSimple(Polygon pol) {
//テ・ツ按敕」ツつ?」ツ?ョテァツつケテ」ツつ津ゥツ?催ィツ、ツ?」ツ?療」ツ?ヲpolテ」ツ?ォテ・ツ?・テ」ツつ古」ツ?ヲテ」ツ?甘」ツ??
size_t pol_size = pol.size() - 1;
rep(i, pol_size) {
for (int j = i + 2; j < pol_size; j++) {
if (i == j || i == (j - 1 + pol_size) % pol_size ||
i == (j + 1 + pol_size) % pol_size)
continue;
if (intersect(pol[i], pol[i + 1], pol[j], pol[j + 1]))
return false;
}
}
return true;
}
//テァツつケテ」ツ?古・ツ?クテ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ョテ・ツ??・ツ?エテ」ツ?ォテ」ツ?づ」ツつ凝」ツ?凝」ツ?ゥテ」ツ??」ツ?凝」ツつ津ヲツアツづ」ツつ?」ツつ?trueテ」ツ?ェテ」ツつ嘉・ツ??・ツ?エ
//verified AOJ0012
int isPointInsidePolygon(vector<P> pol, P p) {
int c = 0;
rep(i, pol.size()) {
if (cross(pol[i] - pol[(i + 1) % pol.size()],
p - pol[(i + 1) % pol.size()]) == 0)
return ON;
if (cross(pol[i] - pol[(i + 1) % pol.size()],
p - pol[(i + 1) % pol.size()]) > 0)
c++;
}
if (c % pol.size())
return OUT;
return IN;
}
//テ・ツ??」ツ?ィテ・ツ?クテ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ョテ、ツコツ、テ・ツキツョテァツ環カテヲツ?凝」ツつ津ィツェツソテ」ツ?ケテ」ツつ?
int CPOLarea(C c, Polygon pol) {
vector<L> lines;
vector<int> res(pol.size());
bool POLinC = true, isFar = true;
rep(i, pol.size()) {
if (contains(c, pol[i]) == OUT)
POLinC = false;
res[i] = contains(c, pol[i]);
lines.pb(L{pol[i], pol[(i + 1) % pol.size()]});
if (sqDist(c.p, pol[i]) < c.r * c.r)
isFar = false;
}
if (POLinC)
return 2; //テ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ッテ・ツ??」ツ?ョテ・ツ??ゥツδィb
if (isPointInsidePolygon(pol, c.p) == IN && isFar)
return 3; //テ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ョテ・ツ??ゥツδィテ」ツ?ォテ・ツ??
rep(i, lines.size()) if (
iCS(c,
lines
[i])) return 1; //テ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ィテ・ツ??」ツ?ッテ、ツコツ、テ・ツキツョc
return 0;
}
//テ・ツ?クテ・ツ個?verified AOJ0068,QUPC-G
//ティツセツ榲ヲツ崢クテゥツ??」ツ?ァテヲツッツ氾ィツシツ?
bool cmp_x(const P &p, const P &q) {
if (p.x != q.x)
return p.x < q.x;
return p.y < q.y;
}
//テ・ツ?クテ・ツ個?」ツつ津ヲツアツづ」ツつ?」ツつ?
vector<P> convex_hull(vector<P> ps) {
int n = ps.size();
sort(all(ps), cmp_x);
int k = 0; //テ・ツ?クテ・ツ個?」ツ?ョテゥツ?づァツつケテヲツ閉ー
vector<P> qs(n *
2); //テヲツァツ凝ヲツ按静、ツクツュテ」ツ?ョテ・ツ?クテ・ツ個?
//テ、ツクツ凝・ツ?エテ・ツ?クテ・ツ個?」ツ?ョテ、ツスツ愿ヲツ按?
rep(i, n) {
while (k > 1 && cross((qs[k - 1] - qs[k - 2]), (ps[i] - qs[k - 1])) <= 0)
k--;
qs[k++] = ps[i];
}
//テ、ツクツ甘・ツ?エテ・ツ?クテ・ツ個?」ツ?ョテ、ツスツ愿ヲツ按?
for (int i = n - 2, t = k; i >= 0; i--) {
while (k > t && cross((qs[k - 1] - qs[k - 2]), (ps[i] - qs[k - 1])) <= 0)
k--;
qs[k++] = ps[i];
}
qs.resize(k - 1);
return qs;
}
// 2テァツつケテ」ツつ津ゥツ?堙」ツつ凝・ツ債甘・ツセツвテ」ツ?ョテ・ツ??」ツ?ョテ、ツクツュテ・ツソツε・ツコツァテヲツィツ凖」ツつ津ヲツアツづ」ツつ?」ツつ?
pair<P, P> geoGetCircleOf2pAndR(P p1, P p2, double r) {
P pc1 = P(-INF, -INF), pc2(-INF, -INF), p3;
double d, l, dx, dy;
p3 = (p1 + p2) / 2.0;
l = sqDist(p2, p3);
if (r * r >= l) {
d = sqrt(r * r / l - 1.0);
dx = d * (p2.y - p3.y);
dy = d * (p2.x - p3.x);
pc1.x = p3.x + dx;
pc1.y = p3.y - dy;
pc2.x = p3.x - dx;
pc2.y = p3.y + dy;
}
return pair<P, P>(pc1, pc2);
}
int main() {
int n;
while (cin >> n && n) {
int ans = 1;
vector<P> ps(n);
rep(i, n) cin >> ps[i].x >> ps[i].y;
rep(i, n) {
for (int j = i + 1; j < n; j++) {
if (dist(ps[i], ps[j]) > 2 + EPS)
continue;
pair<P, P> res = geoGetCircleOf2pAndR(ps[i], ps[j], 1);
int suma = 0, sumb = 0;
rep(k, n) {
if (sqDist(ps[k], res.first) < 1 + EPS)
suma++;
if (sqDist(ps[k], res.second) < 1 + EPS)
sumb++;
}
ans = max(ans, max(suma, sumb));
}
}
cout << ans << endl;
}
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 2,330
|
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (N); i++)
using namespace std;
namespace geom {
#define at(i) ((*this)[i])
#define pb push_back
#define X real()
#define Y imag()
#define SELF (*this)
typedef long double R;
typedef complex<R> P;
const R EPS = 1e-8;
const R PI = 3.14159265358979323846264338327950288;
enum { TURE = 1, FALSE = 0, BORDER = -1 };
inline int sig(const R &x) { return (abs(x) < EPS ? 0 : x > 0 ? 1 : -1); }
inline int less(const R &x, const R &y) { return sig(x - y) ? x < y : BORDER; }
inline R inp(const P &a, const P &b) { return (conj(a) * b).X; }
inline R outp(const P &a, const P &b) { return (conj(a) * b).Y; }
inline R norm(const P &p) { return p.X * p.X + p.Y * p.Y; }
inline P unit(const P &p) { return p / abs(p); }
inline P proj(const P &s, const P &t) { return t * inp(s, t) / norm(t); }
struct L : public vector<P> {
L(const P &p1, const P &p2) {
this->pb(p1);
this->pb(p2);
}
L() {}
P dir() const { return at(1) - at(0); }
int online(const P &p) const { return !sig(outp(p - at(0), dir())); }
};
struct S : public L {
S(const P &p1, const P &p2) : L(p1, p2) {}
S() {}
int online(const P &p) const {
if (!sig(norm(p - at(0))) || !sig(norm(p - at(1))))
return BORDER;
return !sig(outp(p - at(0), dir())) && inp(p - at(0), dir()) > EPS &&
inp(p - at(1), -dir()) > -EPS;
}
};
struct C : public P {
C() {}
C(const P &p, const R r) : P(p), r(r) {}
R r;
int inside(const P &p) const { return less(norm(p - SELF), r * r); }
};
// inline P proj(const P &s,const L &t){return t[0] + proj(s-t[0], t[1]-t[0]);}
inline int intersect(const C &a, const C &b) {
return less((a.r - b.r) * (a.r - b.r), norm(a - b)) +
less(norm(a - b), (a.r + b.r) * (a.r + b.r)) - 1;
}
inline S crosspoint(const C &c1, const C &c2) {
if (!intersect(c1, c2))
return S();
R d = abs(c1 - c2);
R x = (c1.r * c1.r - c2.r * c2.r + d * d) / (2 * d);
R h = sqrt(max<R>(0., c1.r * c1.r - x * x));
P u = unit(c2 - c1);
return S(c1 + u * x + u * P(0, -1) * h, c1 + u * x + u * P(0, 1) * h);
}
// inline S crosspoint(const C &c,const L &l){
// R d2=dist2(l,c);
// if(c.r*c.r+EPS < d2) return S();
// P m= proj(c,l);
// P u = unit(l[1]-l[0]);
// R d=sqrt(max<R>(.0,c.r*c.r-d2));
// return S(m+u*d,m-u*d);
// }
S circlePPR(const P &a, const P &b, R r) {
return crosspoint(C(a, r), C(b, r));
}
} // namespace geom
using namespace geom;
int main() {
int N;
while (cin >> N, N) {
int ans = 0;
P po[305];
rep(i, N) {
R x, y;
cin >> x >> y;
po[i] = P(x, y);
}
rep(i, N) rep(j, i) {
// if( i==j ) continue;
S s = circlePPR(po[i], po[j], 1.0);
// if( s.empty() ) continue;
// for(auto t: s) cout << t << " "; cout << endl;
for (auto k : s) {
int count = 0;
rep(h, N) {
if (abs(k - po[h]) < 1.0 + EPS) {
count++;
}
}
ans = max(ans, count);
}
}
cout << ans << endl;
}
return 0;
}
|
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (N); i++)
using namespace std;
namespace geom {
#define at(i) ((*this)[i])
#define pb push_back
#define X real()
#define Y imag()
#define SELF (*this)
typedef long double R;
typedef complex<R> P;
const R EPS = 1e-8;
const R PI = 3.14159265358979323846264338327950288;
enum { TURE = 1, FALSE = 0, BORDER = -1 };
inline int sig(const R &x) { return (abs(x) < EPS ? 0 : x > 0 ? 1 : -1); }
inline int less(const R &x, const R &y) { return sig(x - y) ? x < y : BORDER; }
inline R inp(const P &a, const P &b) { return (conj(a) * b).X; }
inline R outp(const P &a, const P &b) { return (conj(a) * b).Y; }
inline R norm(const P &p) { return p.X * p.X + p.Y * p.Y; }
inline P unit(const P &p) { return p / abs(p); }
inline P proj(const P &s, const P &t) { return t * inp(s, t) / norm(t); }
struct L : public vector<P> {
L(const P &p1, const P &p2) {
this->pb(p1);
this->pb(p2);
}
L() {}
P dir() const { return at(1) - at(0); }
int online(const P &p) const { return !sig(outp(p - at(0), dir())); }
};
struct S : public L {
S(const P &p1, const P &p2) : L(p1, p2) {}
S() {}
int online(const P &p) const {
if (!sig(norm(p - at(0))) || !sig(norm(p - at(1))))
return BORDER;
return !sig(outp(p - at(0), dir())) && inp(p - at(0), dir()) > EPS &&
inp(p - at(1), -dir()) > -EPS;
}
};
struct C : public P {
C() {}
C(const P &p, const R r) : P(p), r(r) {}
R r;
int inside(const P &p) const { return less(norm(p - SELF), r * r); }
};
// inline P proj(const P &s,const L &t){return t[0] + proj(s-t[0], t[1]-t[0]);}
inline int intersect(const C &a, const C &b) {
return less((a.r - b.r) * (a.r - b.r), norm(a - b)) +
less(norm(a - b), (a.r + b.r) * (a.r + b.r)) - 1;
}
inline S crosspoint(const C &c1, const C &c2) {
if (!intersect(c1, c2))
return S();
R d = abs(c1 - c2);
R x = (c1.r * c1.r - c2.r * c2.r + d * d) / (2 * d);
R h = sqrt(max<R>(0., c1.r * c1.r - x * x));
P u = unit(c2 - c1);
return S(c1 + u * x + u * P(0, -1) * h, c1 + u * x + u * P(0, 1) * h);
}
// inline S crosspoint(const C &c,const L &l){
// R d2=dist2(l,c);
// if(c.r*c.r+EPS < d2) return S();
// P m= proj(c,l);
// P u = unit(l[1]-l[0]);
// R d=sqrt(max<R>(.0,c.r*c.r-d2));
// return S(m+u*d,m-u*d);
// }
S circlePPR(const P &a, const P &b, R r) {
return crosspoint(C(a, r), C(b, r));
}
} // namespace geom
using namespace geom;
int main() {
int N;
while (cin >> N, N) {
int ans = 1;
P po[305];
rep(i, N) {
R x, y;
cin >> x >> y;
po[i] = P(x, y);
}
rep(i, N) rep(j, i) {
// if( i==j ) continue;
S s = circlePPR(po[i], po[j], 1.0);
// if( s.empty() ) continue;
// for(auto t: s) cout << t << " "; cout << endl;
for (auto k : s) {
int count = 0;
rep(h, N) {
if (abs(k - po[h]) < 1.0 + EPS) {
count++;
}
}
ans = max(ans, count);
}
}
cout << ans << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 991
|
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < n; ++i)
struct Point {
double x, y;
};
double dist(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}
#define eps 0.0001
int main(void) {
int N;
while (cin >> N, N) {
vector<Point> p(N);
int maxcnt = 0;
rep(i, N) cin >> p[i].x >> p[i].y;
rep(i, N) {
for (int j = i + 1; j < N; j++) {
double d = dist(p[i], p[j]);
if (d > 2.0)
continue;
Point C1, C2;
C1.x = p[i].x +
cos(atan2(p[j].y - p[i].y, p[j].x - p[i].x) + acos(d / 2.0));
C1.y = p[i].y +
sin(atan2(p[j].y - p[i].y, p[j].x - p[i].x) + acos(d / 2.0));
C2.x = p[i].x +
cos(atan2(p[j].y - p[i].y, p[j].x - p[i].x) - acos(d / 2.0));
C2.y = p[i].y +
sin(atan2(p[j].y - p[i].y, p[j].x - p[i].x) - acos(d / 2.0));
int cnt = 0;
rep(k, N) {
if (pow(C1.x - p[k].x, 2) + pow(C1.y - p[k].y, 2) <= 1.0 + eps)
cnt++;
}
if (maxcnt < cnt)
maxcnt = cnt;
cnt = 0;
rep(k, N) {
if (pow(C2.x - p[k].x, 2) + pow(C2.y - p[k].y, 2) <= 1.0 + eps)
cnt++;
}
if (maxcnt < cnt)
maxcnt = cnt;
}
}
cout << maxcnt << endl;
}
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < n; ++i)
struct Point {
double x, y;
};
double dist(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}
#define eps 0.0001
int main(void) {
int N;
while (cin >> N, N) {
vector<Point> p(N);
int maxcnt = 1;
rep(i, N) cin >> p[i].x >> p[i].y;
rep(i, N) {
for (int j = i + 1; j < N; j++) {
double d = dist(p[i], p[j]);
if (d > 2.0)
continue;
Point C1, C2;
C1.x = p[i].x +
cos(atan2(p[j].y - p[i].y, p[j].x - p[i].x) + acos(d / 2.0));
C1.y = p[i].y +
sin(atan2(p[j].y - p[i].y, p[j].x - p[i].x) + acos(d / 2.0));
C2.x = p[i].x +
cos(atan2(p[j].y - p[i].y, p[j].x - p[i].x) - acos(d / 2.0));
C2.y = p[i].y +
sin(atan2(p[j].y - p[i].y, p[j].x - p[i].x) - acos(d / 2.0));
int cnt = 0;
rep(k, N) {
if (pow(C1.x - p[k].x, 2) + pow(C1.y - p[k].y, 2) <= 1.0 + eps)
cnt++;
}
if (maxcnt < cnt)
maxcnt = cnt;
cnt = 0;
rep(k, N) {
if (pow(C2.x - p[k].x, 2) + pow(C2.y - p[k].y, 2) <= 1.0 + eps)
cnt++;
}
if (maxcnt < cnt)
maxcnt = cnt;
}
}
cout << maxcnt << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 524
|
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < n; ++i)
struct Point {
double x, y;
};
double dist(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}
int main(void) {
int N;
while (cin >> N, N) {
vector<Point> p(N);
int maxcnt = 1;
rep(i, N) cin >> p[i].x >> p[i].y;
rep(i, N) {
for (int j = i + 1; j < N; j++) {
double d = dist(p[i], p[j]);
if (d > 2.0)
continue;
int sign[] = {-1, 1};
rep(s, 2) {
Point C;
C.x = p[i].x + cos(atan2(p[j].y - p[i].y, p[j].x - p[i].x) +
sign[s] * acos(d / 2.0));
C.y = p[i].y + sin(atan2(p[j].y - p[i].y, p[j].x - p[i].x) +
sign[s] * acos(d / 2.0));
int cnt = 0;
rep(k, N) cnt += (pow(C.x - p[k].x, 2) + pow(C.y - p[k].y, 2) <= 1.0);
if (maxcnt < cnt)
maxcnt = cnt;
}
}
}
cout << maxcnt << endl;
}
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < n; ++i)
struct Point {
double x, y;
};
double dist(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}
int main(void) {
int N;
while (cin >> N, N) {
vector<Point> p(N);
int maxcnt = 1;
rep(i, N) cin >> p[i].x >> p[i].y;
rep(i, N) {
for (int j = i + 1; j < N; j++) {
double d = dist(p[i], p[j]);
if (d > 2.0)
continue;
int sign[] = {-1, 1};
rep(s, 2) {
Point C;
C.x = p[i].x + cos(atan2(p[j].y - p[i].y, p[j].x - p[i].x) +
sign[s] * acos(d / 2.0));
C.y = p[i].y + sin(atan2(p[j].y - p[i].y, p[j].x - p[i].x) +
sign[s] * acos(d / 2.0));
int cnt = 0;
rep(k, N) cnt +=
(pow(C.x - p[k].x, 2) + pow(C.y - p[k].y, 2) <= 1.0001);
if (maxcnt < cnt)
maxcnt = cnt;
}
}
}
cout << maxcnt << endl;
}
return 0;
}
|
[["-", 0, 1, 0, 11, 12, 23, 0, 16, 12, 13], ["+", 0, 1, 0, 11, 12, 23, 0, 16, 12, 13]]
| 1
| 377
|
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) REP(i, 0, n)
#define REP(i, s, e) for (int i = (int)(s); i < (int)(e); ++i)
#define X() real()
#define Y() imag()
#define x(p) (p).X()
#define y(p) (p).Y()
#define SZ(P) (int)(P.size())
#define curr(P, i) P[(i) % SZ(P)]
#define next(P, i) P[(i + 1) % SZ(P)]
#define prev(P, i) P[(i + SZ(P) - 1) % SZ(P)] ? ´
using D = double;
using P = complex<D>;
namespace std {
bool operator<(const P &a, const P &b) {
return x(a) != x(b) ? x(a) < x(b) : y(a) < y(b);
}
} // namespace std
D dot(const P &a, const P &b) { return x(conj(a) * b); }
D cross(const P &a, const P &b) { return y(conj(a) * b); }
int ccw(P a, P b, P c) {
b -= a;
c -= a;
if (cross(b, c) > 0)
return +1;
if (cross(b, c) < 0)
return -1;
if (dot(b, c) < 0)
return +2;
if (norm(b) < norm(c))
return -2;
return 0;
}
const D EPS = 1e-8;
const D PI = acos(-1);
struct C {
P p;
D r;
};
P makeP(D arg, D r = 1.0) { return r * P{cos(arg), sin(arg)}; }
P rotP(const P &p, D arg) { return p * makeP(arg); }
vector<P> getNorm(const P &p) {
return {rotP(p, PI / 2.0) / abs(p), rotP(p, -PI / 2.0) / abs(p)};
}
vector<C> makeC(const P &a, const P &b, D r = 1.0) {
P m = (a + b) / 2.0;
D d = sqrt(r * r - abs(m - a) * abs(m - a));
auto ps = getNorm(b - a);
rep(i, 2) ps[i] = d * ps[i] + m;
vector<C> ret;
rep(i, 2) ret.push_back(C{ps[i], r});
return ret;
}
bool include(const C &c, const P &p) { return abs(c.p - p) < c.r + EPS; }
int main() {
int n;
while (cin >> n && n) {
vector<P> ps(n);
rep(i, n) {
D x, y;
cin >> x >> y;
ps[i] = P{x, y};
}
int ans = 0;
rep(i, n) rep(j, i) {
auto cs = makeC(ps[i], ps[j]);
for (auto &c : cs) {
int tmp = 0;
rep(k, n) if (include(c, ps[k])) tmp++;
ans = max(ans, tmp);
}
}
cout << ans << endl;
}
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) REP(i, 0, n)
#define REP(i, s, e) for (int i = (int)(s); i < (int)(e); ++i)
#define X() real()
#define Y() imag()
#define x(p) (p).X()
#define y(p) (p).Y()
#define SZ(P) (int)(P.size())
#define curr(P, i) P[(i) % SZ(P)]
#define next(P, i) P[(i + 1) % SZ(P)]
#define prev(P, i) P[(i + SZ(P) - 1) % SZ(P)] ? ´
using D = double;
using P = complex<D>;
namespace std {
bool operator<(const P &a, const P &b) {
return x(a) != x(b) ? x(a) < x(b) : y(a) < y(b);
}
} // namespace std
D dot(const P &a, const P &b) { return x(conj(a) * b); }
D cross(const P &a, const P &b) { return y(conj(a) * b); }
int ccw(P a, P b, P c) {
b -= a;
c -= a;
if (cross(b, c) > 0)
return +1;
if (cross(b, c) < 0)
return -1;
if (dot(b, c) < 0)
return +2;
if (norm(b) < norm(c))
return -2;
return 0;
}
const D EPS = 1e-8;
const D PI = acos(-1);
struct C {
P p;
D r;
};
P makeP(D arg, D r = 1.0) { return r * P{cos(arg), sin(arg)}; }
P rotP(const P &p, D arg) { return p * makeP(arg); }
vector<P> getNorm(const P &p) {
return {rotP(p, PI / 2.0) / abs(p), rotP(p, -PI / 2.0) / abs(p)};
}
vector<C> makeC(const P &a, const P &b, D r = 1.0) {
P m = (a + b) / 2.0;
D d = sqrt(r * r - abs(m - a) * abs(m - a));
auto ps = getNorm(b - a);
rep(i, 2) ps[i] = d * ps[i] + m;
vector<C> ret;
rep(i, 2) ret.push_back(C{ps[i], r});
return ret;
}
bool include(const C &c, const P &p) { return abs(c.p - p) < c.r + EPS; }
int main() {
int n;
while (cin >> n && n) {
vector<P> ps(n);
rep(i, n) {
D x, y;
cin >> x >> y;
ps[i] = P{x, y};
}
int ans = 1;
rep(i, n) rep(j, i) {
auto cs = makeC(ps[i], ps[j]);
for (auto &c : cs) {
int tmp = 0;
rep(k, n) if (include(c, ps[k])) tmp++;
ans = max(ans, tmp);
}
}
cout << ans << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 696
|
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef complex<double> P;
typedef pair<int, int> pii;
#define REP(i, n) for (ll i = 0; i < n; ++i)
#define REPR(i, n) for (ll i = 1; i < n; ++i)
#define FOR(i, a, b) for (ll i = a; i < b; ++i)
#define DEBUG(x) cout << #x << ": " << x << endl
#define DEBUG_VEC(v) \
cout << #v << ":"; \
REP(i, v.size()) cout << " " << v[i]; \
cout << endl
#define ALL(a) (a).begin(), (a).end()
#define MOD (ll)(1e9 + 7)
#define ADD(a, b) a = ((a) + (b)) % MOD
#define FIX(a) ((a) % MOD + MOD) % MOD
int n;
P pts[353];
int check(P c) {
int ret = 0;
REP(i, n) {
if (abs(c - pts[i]) <= 1.00001)
ret++;
}
return ret;
}
int main() {
while (true) {
scanf("%d", &n);
if (n == 0)
break;
REP(i, n) {
double x, y;
scanf("%lf%lf", &x, &y);
pts[i] = P(x, y);
}
int ans = 0;
REP(i, n) REP(j, i) {
P a, b;
a = pts[i];
b = pts[j];
double l = abs(b - a);
if (l > 2.0)
continue;
double h = sqrt(1.0 - l * l / 4.0);
P c;
c = a + (b - a) / 2.0 + (b - a) * P(0, 1) * h / l;
ans = max(ans, check(c));
c = a + (b - a) / 2.0 + (b - a) * P(0, -1) * h / l;
ans = max(ans, check(c));
}
printf("%d\n", ans);
}
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef complex<double> P;
typedef pair<int, int> pii;
#define REP(i, n) for (ll i = 0; i < n; ++i)
#define REPR(i, n) for (ll i = 1; i < n; ++i)
#define FOR(i, a, b) for (ll i = a; i < b; ++i)
#define DEBUG(x) cout << #x << ": " << x << endl
#define DEBUG_VEC(v) \
cout << #v << ":"; \
REP(i, v.size()) cout << " " << v[i]; \
cout << endl
#define ALL(a) (a).begin(), (a).end()
#define MOD (ll)(1e9 + 7)
#define ADD(a, b) a = ((a) + (b)) % MOD
#define FIX(a) ((a) % MOD + MOD) % MOD
int n;
P pts[353];
int check(P c) {
int ret = 0;
REP(i, n) {
if (abs(c - pts[i]) <= 1.00001)
ret++;
}
return ret;
}
int main() {
while (true) {
scanf("%d", &n);
if (n == 0)
break;
REP(i, n) {
double x, y;
scanf("%lf%lf", &x, &y);
pts[i] = P(x, y);
}
int ans = 1;
REP(i, n) REP(j, i) {
P a, b;
a = pts[i];
b = pts[j];
double l = abs(b - a);
if (l > 2.0)
continue;
double h = sqrt(1.0 - l * l / 4.0);
P c;
c = a + (b - a) / 2.0 + (b - a) * P(0, 1) * h / l;
ans = max(ans, check(c));
c = a + (b - a) / 2.0 + (b - a) * P(0, -1) * h / l;
ans = max(ans, check(c));
}
printf("%d\n", ans);
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 390
|
#include <bits/stdc++.h>
using namespace std;
#define FOR(i, a, b) for (int i = (a); i < int(b); ++i)
#define REP(i, n) FOR(i, 0, n)
int main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
int N;
while (cin >> N, N) {
static const complex<double> I = complex<double>(0, -1);
using Point = complex<double>;
vector<Point> points(N);
REP(i, N) {
double x, y;
cin >> x >> y;
points[i] = Point(x, y);
}
int ans = 0;
REP(i, N) FOR(j, i + 1, N) {
auto x = points[i];
auto y = points[j];
double l_sq = norm(x - y);
if (l_sq > 4)
continue;
for (double d : {-1, 1}) {
Point middle = 0.5 * (x + y);
Point dir = (x - y) * I;
dir /= abs(dir);
Point center = middle + d * sqrt(1 - l_sq / 4) * dir;
int count = 0;
REP(k, N) {
if (norm(center - points[k]) <= 1 + 1e-10)
++count;
}
ans = max(ans, count);
}
}
cout << ans << '\n';
}
}
|
#include <bits/stdc++.h>
using namespace std;
#define FOR(i, a, b) for (int i = (a); i < int(b); ++i)
#define REP(i, n) FOR(i, 0, n)
int main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
int N;
while (cin >> N, N) {
static const complex<double> I = complex<double>(0, -1);
using Point = complex<double>;
vector<Point> points(N);
REP(i, N) {
double x, y;
cin >> x >> y;
points[i] = Point(x, y);
}
int ans = 1;
REP(i, N) FOR(j, i + 1, N) {
auto x = points[i];
auto y = points[j];
double l_sq = norm(x - y);
if (l_sq > 4)
continue;
for (double d : {-1, 1}) {
Point middle = 0.5 * (x + y);
Point dir = (x - y) * I;
dir /= abs(dir);
Point center = middle + d * sqrt(1 - l_sq / 4) * dir;
int count = 0;
REP(k, N) {
if (norm(center - points[k]) <= 1 + 1e-10)
++count;
}
ans = max(ans, count);
}
}
cout << ans << '\n';
}
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 291
|
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <ctime>
#include <functional>
#include <iostream>
#include <queue>
#include <set>
#include <vector>
using namespace std;
#define fst first
#define snd second
#define all(c) ((c).begin()), ((c).end())
#define TEST(x, a) \
{ \
auto y = (x); \
if (sign(y - a)) { \
cout << "line " << __LINE__ << #x << " = " << y << " != " << a << endl; \
exit(-1); \
} \
}
double urand() { return rand() / (1.0 + RAND_MAX); }
const double PI = acos(-1.0);
// implementation note: use EPS only this function
// usage note: check sign(x) < 0, sign(x) > 0, or sign(x) == 0
// notice: should be normalize to O(1)
const double EPS = 1e-8;
int sign(double x) {
if (x < -EPS)
return -1;
if (x > +EPS)
return +1;
return 0;
}
struct point {
typedef double T;
T x, y;
point &operator+=(point p) {
x += p.x;
y += p.y;
return *this;
}
point &operator-=(point p) {
x -= p.x;
y -= p.y;
return *this;
}
point &operator*=(T a) {
x *= a;
y *= a;
return *this;
}
point &operator/=(T a) { return *this *= (1.0 / a); }
point operator-() const { return {-x, -y}; }
bool operator==(point p) const { return !sign(x - p.x) && !sign(y - p.y); }
bool operator!=(point p) const { return !operator==(p); }
bool operator<(point p) const {
return x != p.x ? x < p.x : y < p.y;
} // for sort
};
point operator+(point p, point q) { return p += q; }
point operator-(point p, point q) { return p -= q; }
point operator*(point::T a, point p) { return p *= a; }
point operator*(point p, point::T a) { return p *= a; }
point operator/(point p, point::T a) { return p /= a; }
point::T dot(point p, point q) { return p.x * q.x + p.y * q.y; }
point::T cross(point p, point q) {
return p.x * q.y - p.y * q.x;
} // left turn > 0
point::T norm2(point p) { return dot(p, p); }
point::T norm(point p) { return sqrt(dot(p, p)); }
point::T dist(point p, point q) { return norm(p - q); }
point orth(point p) { return {-p.y, p.x}; }
istream &operator>>(istream &is, point &p) {
is >> p.x >> p.y;
return is;
}
ostream &operator<<(ostream &os, const point &p) {
os << "(" << p.x << "," << p.y << ")";
return os;
}
int maximum_circle_cover(vector<point> ps, double r) {
struct range {
point p; // center
double w; // width
int hi;
bool operator<(range r) const { return hi < r.hi; }
};
double w = 0;
for (point p : ps)
w = max({w, abs(p.x), abs(p.y)});
priority_queue<range> que;
que.push({{0, 0}, w, (int)ps.size()});
point best_p;
int best = 0;
while (!que.empty()) {
range R = que.top();
que.pop();
if (R.hi <= best)
continue;
// cout << "processing " << R.p << " " << R.w << " " << R.hi << "/" << best
// << endl;
double dx[] = {1, -1, -1, 1}, dy[] = {1, 1, -1, -1};
for (int i = 0; i < 4; ++i) {
range S = {R.p, R.w / 2, 0};
S.p += S.w * point({dx[i], dy[i]});
int lo = 0;
for (point q : ps) {
auto d = dist(S.p, q);
if (sign(d - r) <= 0)
++lo;
if (sign(d - S.w * sqrt(2) - r) <= 0)
++S.hi;
}
if (lo > best) {
best = lo;
best_p = S.p;
}
best = max(lo, best);
if (S.hi > best)
que.push(S);
}
}
return best; // best_p;
}
int maximum_circle_cover3(vector<point> ps, double r) {
point best_p;
int best = 0;
function<void(point, double, vector<point> &)> rec = [&](point p, double w,
vector<point> &ps) {
w /= 2;
const double dx[] = {1, -1, -1, 1}, dy[] = {1, 1, -1, -1};
point qs[4];
vector<point> pss[4];
for (int i = 0; i < 4; ++i) {
qs[i] = p + w * point({dx[i], dy[i]});
int lo = 0;
for (point q : ps) {
auto d = dist(qs[i], q);
if (sign(d - r) <= 0)
++lo;
if (sign(d - w * sqrt(2) - r) <= 0)
pss[i].push_back(q);
}
if (lo > best) {
best = lo;
best_p = qs[i];
}
}
int a = 0, b = 1, c = 2, d = 3;
auto SW = [&](int &a, int &b) {
if (pss[a].size() > pss[b].size())
swap(a, b);
};
SW(a, b);
SW(c, d);
SW(b, d);
SW(a, c);
SW(b, c);
if (pss[d].size() > best)
rec(qs[d], w, pss[d]);
if (pss[b].size() > best)
rec(qs[b], w, pss[b]);
if (pss[c].size() > best)
rec(qs[c], w, pss[c]);
if (pss[a].size() > best)
rec(qs[a], w, pss[a]);
};
double w = 0;
for (point p : ps)
w = max({w, abs(p.x), abs(p.y)});
rec({0, 0}, w, ps);
return best; // best_p;
}
int maximum_circle_cover2(vector<point> ps, double r) {
int best = 0;
for (point p : ps) {
int count = 0;
vector<pair<double, int>> aux;
for (point q : ps) {
auto d = dist(p, q);
if (sign(d) == 0)
++count;
else if (sign(d - 2 * r) <= 0) {
double theta = atan2(q.y - p.y, q.x - p.x);
double phi = acos(min(1., d / (2 * r)));
aux.push_back({theta - phi, -1});
aux.push_back({theta + phi, +1});
}
}
sort(all(aux));
/*
cout << "for point " << p << endl;
for (auto a: aux)
cout << "(" << a.fst << "," << a.snd << ") ";
cout << endl;
*/
for (auto a : aux)
best = max(best, count -= a.snd);
}
return best;
}
void verify_maximum_circle_cover2() {
for (int n; scanf("%d", &n) && n;) {
vector<point> ps(n);
for (int i = 0; i < n; ++i)
scanf("%lf %lf", &ps[i].x, &ps[i].y);
printf("%d\n", maximum_circle_cover2(ps, 1.0));
}
}
int main() {
// verify_maximum_circle_cover();
verify_maximum_circle_cover2();
}
|
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <ctime>
#include <functional>
#include <iostream>
#include <queue>
#include <set>
#include <vector>
using namespace std;
#define fst first
#define snd second
#define all(c) ((c).begin()), ((c).end())
#define TEST(x, a) \
{ \
auto y = (x); \
if (sign(y - a)) { \
cout << "line " << __LINE__ << #x << " = " << y << " != " << a << endl; \
exit(-1); \
} \
}
double urand() { return rand() / (1.0 + RAND_MAX); }
const double PI = acos(-1.0);
// implementation note: use EPS only this function
// usage note: check sign(x) < 0, sign(x) > 0, or sign(x) == 0
// notice: should be normalize to O(1)
const double EPS = 1e-8;
int sign(double x) {
if (x < -EPS)
return -1;
if (x > +EPS)
return +1;
return 0;
}
struct point {
typedef double T;
T x, y;
point &operator+=(point p) {
x += p.x;
y += p.y;
return *this;
}
point &operator-=(point p) {
x -= p.x;
y -= p.y;
return *this;
}
point &operator*=(T a) {
x *= a;
y *= a;
return *this;
}
point &operator/=(T a) { return *this *= (1.0 / a); }
point operator-() const { return {-x, -y}; }
bool operator==(point p) const { return !sign(x - p.x) && !sign(y - p.y); }
bool operator!=(point p) const { return !operator==(p); }
bool operator<(point p) const {
return x != p.x ? x < p.x : y < p.y;
} // for sort
};
point operator+(point p, point q) { return p += q; }
point operator-(point p, point q) { return p -= q; }
point operator*(point::T a, point p) { return p *= a; }
point operator*(point p, point::T a) { return p *= a; }
point operator/(point p, point::T a) { return p /= a; }
point::T dot(point p, point q) { return p.x * q.x + p.y * q.y; }
point::T cross(point p, point q) {
return p.x * q.y - p.y * q.x;
} // left turn > 0
point::T norm2(point p) { return dot(p, p); }
point::T norm(point p) { return sqrt(dot(p, p)); }
point::T dist(point p, point q) { return norm(p - q); }
point orth(point p) { return {-p.y, p.x}; }
istream &operator>>(istream &is, point &p) {
is >> p.x >> p.y;
return is;
}
ostream &operator<<(ostream &os, const point &p) {
os << "(" << p.x << "," << p.y << ")";
return os;
}
int maximum_circle_cover(vector<point> ps, double r) {
struct range {
point p; // center
double w; // width
int hi;
bool operator<(range r) const { return hi < r.hi; }
};
double w = 0;
for (point p : ps)
w = max({w, abs(p.x), abs(p.y)});
priority_queue<range> que;
que.push({{0, 0}, w, (int)ps.size()});
point best_p;
int best = 0;
while (!que.empty()) {
range R = que.top();
que.pop();
if (R.hi <= best)
continue;
// cout << "processing " << R.p << " " << R.w << " " << R.hi << "/" << best
// << endl;
double dx[] = {1, -1, -1, 1}, dy[] = {1, 1, -1, -1};
for (int i = 0; i < 4; ++i) {
range S = {R.p, R.w / 2, 0};
S.p += S.w * point({dx[i], dy[i]});
int lo = 0;
for (point q : ps) {
auto d = dist(S.p, q);
if (sign(d - r) <= 0)
++lo;
if (sign(d - S.w * sqrt(2) - r) <= 0)
++S.hi;
}
if (lo > best) {
best = lo;
best_p = S.p;
}
best = max(lo, best);
if (S.hi > best)
que.push(S);
}
}
return best; // best_p;
}
int maximum_circle_cover3(vector<point> ps, double r) {
point best_p;
int best = 0;
function<void(point, double, vector<point> &)> rec = [&](point p, double w,
vector<point> &ps) {
w /= 2;
const double dx[] = {1, -1, -1, 1}, dy[] = {1, 1, -1, -1};
point qs[4];
vector<point> pss[4];
for (int i = 0; i < 4; ++i) {
qs[i] = p + w * point({dx[i], dy[i]});
int lo = 0;
for (point q : ps) {
auto d = dist(qs[i], q);
if (sign(d - r) <= 0)
++lo;
if (sign(d - w * sqrt(2) - r) <= 0)
pss[i].push_back(q);
}
if (lo > best) {
best = lo;
best_p = qs[i];
}
}
int a = 0, b = 1, c = 2, d = 3;
auto SW = [&](int &a, int &b) {
if (pss[a].size() > pss[b].size())
swap(a, b);
};
SW(a, b);
SW(c, d);
SW(b, d);
SW(a, c);
SW(b, c);
if (pss[d].size() > best)
rec(qs[d], w, pss[d]);
if (pss[b].size() > best)
rec(qs[b], w, pss[b]);
if (pss[c].size() > best)
rec(qs[c], w, pss[c]);
if (pss[a].size() > best)
rec(qs[a], w, pss[a]);
};
double w = 0;
for (point p : ps)
w = max({w, abs(p.x), abs(p.y)});
rec({0, 0}, w, ps);
return best; // best_p;
}
int maximum_circle_cover2(vector<point> ps, double r) {
int best = 0;
for (point p : ps) {
int count = 0;
vector<pair<double, int>> aux;
for (point q : ps) {
auto d = dist(p, q);
if (sign(d) == 0)
++count;
else if (sign(d - 2 * r) <= 0) {
double theta = atan2(q.y - p.y, q.x - p.x);
double phi = acos(min(1., d / (2 * r)));
aux.push_back({theta - phi, -1});
aux.push_back({theta + phi, +1});
}
}
sort(all(aux));
/*
cout << "for point " << p << endl;
for (auto a: aux)
cout << "(" << a.fst << "," << a.snd << ") ";
cout << endl;
*/
for (auto a : aux)
best = max(best, count -= a.snd);
}
return best;
}
void verify_maximum_circle_cover2() {
for (int n; scanf("%d", &n) && n;) {
vector<point> ps(n);
for (int i = 0; i < n; ++i)
scanf("%lf %lf", &ps[i].x, &ps[i].y);
printf("%d\n", maximum_circle_cover(ps, 1.0));
}
}
int main() {
// verify_maximum_circle_cover();
verify_maximum_circle_cover2();
}
|
[["-", 0, 1, 0, 2, 3, 4, 0, 2, 63, 22], ["+", 0, 1, 0, 2, 3, 4, 0, 2, 63, 22]]
| 1
| 1,753
|
/*include*/
#include <algorithm>
#include <cmath>
#include <complex>
#include <cstdio>
#include <iomanip>
#include <iostream>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
#define loop(i, a, b) for (int i = a; i < b; i++)
#define rep(i, a) loop(i, 0, a)
#define rp(a) while (a--)
#define pb push_back
#define mp make_pair
#define it ::iterator
#define all(in) in.begin(), in.end()
#define shosu(x) fixed << setprecision(x)
const double PI = acos(-1);
const double EPS = 1e-10;
const double inf = 1e8;
using namespace std;
#define shosu(x) fixed << setprecision(x)
typedef complex<double> P;
typedef vector<P> G;
typedef vector<int> vi;
typedef vector<vi> vvi;
struct L : public vector<P> {
L(const P &a, const P &b) {
push_back(a);
push_back(b);
}
};
struct C {
P c;
double r;
C(const P &c, double r) : c(c), r(r) {}
};
#define curr(P, i) P[i]
#define next(P, i) P[(i + 1) % P.size()]
#define diff(P, i) (next(P, i) - curr(P, i))
namespace std {
bool operator<(const P &a, const P &b) {
return real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b);
// return imag(a) != imag(b) ? imag(a) < imag(b) : real(a) < real(b);
}
bool operator==(const P &a, const P &b) {
return a.real() == b.real() && a.imag() == b.imag();
}
} // namespace std
P pin() {
double x, y;
char d;
cin >> x >> y;
P p(x, y);
return p;
}
void PIN(P *a, int n) { rep(i, n) a[i] = pin(); }
double dot(P a, P b) { return real(conj(a) * b); }
double cross(P a, P b) { return imag(conj(a) * b); }
int ccw(P a, P b, P c) {
b -= a;
c -= a;
if (cross(b, c) > 0)
return +1; // counter clockwise
if (cross(b, c) < 0)
return -1; // clockwise
if (dot(b, c) < 0)
return +2; // c--a--b on line
if (norm(b) < norm(c))
return -2; // a--b--c on line
return 0;
}
P projection(L a, P p) {
double t = dot(p - a[0], a[0] - a[1]) / norm(a[0] - a[1]);
return a[0] + t * (a[0] - a[1]);
}
P reflection(L a, P p) { return p + 2.0 * (projection(a, p) - p); }
bool intersectLL(const L &l, const L &m) {
return abs(cross(l[1] - l[0], m[1] - m[0])) > EPS || // non-parallel
abs(cross(l[1] - l[0], m[0] - l[0])) < EPS; // same line
}
bool intersectLS(const L &l, const L &s) {
return cross(l[1] - l[0], s[0] - l[0]) * // s[0] is left of l
cross(l[1] - l[0], s[1] - l[0]) <
EPS; // s[1] is right of l
}
bool intersectLP(const L &l, const P &p) {
return abs(cross(l[1] - p, l[0] - p)) < EPS;
}
bool intersectSS(const L &s, const L &t) {
return ccw(s[0], s[1], t[0]) * ccw(s[0], s[1], t[1]) <= 0 &&
ccw(t[0], t[1], s[0]) * ccw(t[0], t[1], s[1]) <= 0;
}
bool intersectSP(const L &s, const P &p) {
return abs(s[0] - p) + abs(s[1] - p) - abs(s[1] - s[0]) <
EPS; // triangle inequality
}
double distanceLP(const L &l, const P &p) { return abs(p - projection(l, p)); }
double distanceLL(const L &l, const L &m) {
return intersectLL(l, m) ? 0 : distanceLP(l, m[0]);
}
double distanceLS(const L &l, const L &s) {
if (intersectLS(l, s))
return 0;
return min(distanceLP(l, s[0]), distanceLP(l, s[1]));
}
double distanceSP(const L &s, const P &p) {
const P r = projection(s, p);
if (intersectSP(s, r))
return abs(r - p);
return min(abs(s[0] - p), abs(s[1] - p));
}
double distanceSS(const L &s, const L &t) {
if (intersectSS(s, t))
return 0;
return min(min(distanceSP(s, t[0]), distanceSP(s, t[1])),
min(distanceSP(t, s[0]), distanceSP(t, s[1])));
}
/*bool intersectCS(C c,const L &l){
return (distanceLP(l,c.c) < c.r+EPS &&
(c.r < abs(c.c-l[0]) + EPS || c.r < abs(c.c-l[1]) + EPS));
}*/
int intersectCS(C c, L l) {
if (norm(projection(l, c.c) - c.c) - c.r * c.r > EPS)
return 0;
const double d1 = abs(c.c - l[0]), d2 = abs(c.c - l[1]);
if (d1 < c.r + EPS && d2 < c.r + EPS)
return 0;
if (d1 < c.r - EPS && d2 > c.r + EPS || d1 > c.r + EPS && d2 < c.r - EPS)
return 1;
const P h = projection(l, c.c);
if (dot(l[0] - h, l[1] - h) < 0)
return 2;
return 0;
}
P crosspointSS(L a, L b) {
double t1 = abs(cross(a[1] - a[0], b[0] - a[0]));
double t2 = abs(cross(a[1] - a[0], b[1] - a[0]));
return b[0] + (b[1] - b[0]) * t1 / (t1 + t2);
}
L crosspointCL(C c, L l) {
P pr = projection(l, c.c);
P e = (l[1] - l[0]) / abs(l[1] - l[0]);
double t = sqrt(c.r * c.r - norm(pr - c.c));
P a = pr + t * e;
P b = pr - t * e;
if (b < a)
swap(a, b);
return L(a, b);
}
L crosspointCS(C c, L l) {
if (intersectCS(c, l) == 2)
return crosspointCL(c, l);
L ret = crosspointCL(c, l);
if (dot(l[0] - ret[0], l[1] - ret[0]) < 0)
ret[1] = ret[0];
else
ret[0] = ret[1];
return ret;
}
L crosspointCC(C a, C b) {
P tmp = b.c - a.c;
double d = abs(tmp);
double q = acos((a.r * a.r + d * d - b.r * b.r) / (2 * a.r * d));
double t = arg(tmp); // atan(tmp.imag()/tmp.real());
P p1 = a.c + polar(a.r, t + q);
P p2 = a.c + polar(a.r, t - q);
if (p2 < p1)
swap(p1, p2);
return L(p1, p2);
}
P crosspointLL(const L &l, const L &m) {
double A = cross(l[1] - l[0], m[1] - m[0]);
double B = cross(l[1] - l[0], l[1] - m[0]);
if (abs(A) < EPS && abs(B) < EPS)
return m[0]; // same line
return m[0] + B / A * (m[1] - m[0]);
}
double area(const G &g) {
double S = 0;
for (int i = 0; i < g.size(); i++) {
S += (cross(g[i], g[(i + 1) % g.size()]));
}
return abs(S / 2.0);
}
bool isconvex(const G &g) {
int n = g.size();
rep(i, n) if (ccw(g[(i + n - 1) % n], g[i % n], g[(i + 1) % n]) ==
-1) return false;
return true;
}
int inconvex(const G &g, const P &p) {
bool in = false;
int n = g.size();
rep(i, n) {
P a = g[i % n] - p;
P b = g[(i + 1) % n] - p;
if (imag(a) > imag(b))
swap(a, b);
if (imag(a) < EPS && 0 < imag(b))
if (cross(a, b) < 0)
in = !in;
if (abs(cross(a, b)) < EPS && dot(a, b) < EPS)
return 1; // ON
}
return in ? 2 : 0; // IN : OUT;
}
G convex_hull(G &ps) {
int n = ps.size(), k = 0;
sort(ps.begin(), ps.end());
G ch(2 * n);
for (int i = 0; i < n; ch[k++] = ps[i++]) // lower-hull
while (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) == -1)
--k; //<=0 -> ==-1
for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--]) // upper-hull
while (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) == -1)
--k; //
ch.resize(k - 1);
return ch;
}
double convex_diameter(const G &pt) {
const int n = pt.size();
int is = 0, js = 0;
for (int i = 1; i < n; ++i) {
if (imag(pt[i]) > imag(pt[is]))
is = i;
if (imag(pt[i]) < imag(pt[js]))
js = i;
}
double maxd = norm(pt[is] - pt[js]);
int i, maxi, j, maxj;
i = maxi = is;
j = maxj = js;
do {
if (cross(diff(pt, i), diff(pt, j)) >= 0)
j = (j + 1) % n;
else
i = (i + 1) % n;
if (norm(pt[i] - pt[j]) > maxd) {
maxd = norm(pt[i] - pt[j]);
maxi = i;
maxj = j;
}
} while (i != is || j != js);
return sqrt(maxd); /* farthest pair is (maxi, maxj). */
} // convex_diameter(g)
G convex_cut(const G &g, const L &l) {
G Q;
for (int i = 0; i < g.size(); ++i) {
P a = curr(g, i), b = next(g, i);
if (ccw(l[0], l[1], a) != -1)
Q.push_back(a);
if (ccw(l[0], l[1], a) * ccw(l[0], l[1], b) < 0)
Q.push_back(crosspointLL(L(a, b), l));
}
return Q;
}
P turn(P p, double t) { return p * exp(P(.0, t * PI / 180.0)); }
P turn2(P p, double t) { return p * exp(P(.0, t)); }
vector<L> tangentCC(C a, C b) {
if (a.r < b.r)
swap(a, b);
double d = abs(a.c - b.c);
vector<L> l;
if (d < EPS)
return l;
if (a.r + b.r < d - EPS) { // hanareteiru
double t = acos((a.r + b.r) / d);
t = t * 180 / PI;
l.pb(L(a.c + turn(a.r / d * (b.c - a.c), t),
b.c + turn(b.r / d * (a.c - b.c), t)));
l.pb(L(a.c + turn(a.r / d * (b.c - a.c), -t),
b.c + turn(b.r / d * (a.c - b.c), -t)));
} else if (a.r + b.r < d + EPS) { // kuttuiteiru soto
P p = a.c + a.r / d * (b.c - a.c);
l.pb(L(p, p + turn(b.c - a.c, 90)));
}
if (abs(a.r - b.r) < d - EPS) { // majiwatteiru
double t1 = acos((a.r - b.r) / d);
t1 = t1 * 180 / PI;
double t2 = 180 - t1;
l.pb(L(a.c + turn(a.r / d * (b.c - a.c), t1),
b.c + turn(b.r / d * (a.c - b.c), -t2)));
l.pb(L(a.c + turn(a.r / d * (b.c - a.c), -t1),
b.c + turn(b.r / d * (a.c - b.c), t2)));
} else if (abs(a.r - b.r) < d + EPS) { // kuttuiteiru uti
P p = a.c + a.r / d * (b.c - a.c);
l.pb(L(p, p + turn(b.c - a.c, 90)));
}
return l;
}
void printL(const L &out) {
printf("%.9f %.9f %.9f %.9f\n", out[0].real(), out[0].imag(), out[1].real(),
out[1].imag());
}
C CIN() {
P p = pin();
double r;
cin >> r;
return C(p, r);
}
bool para(L a, L b) { return (abs(cross(a[1] - a[0], b[1] - b[0])) < EPS); }
double min(double a, double b) { return a < b ? a : b; }
double max(double a, double b) { return a > b ? a : b; }
int main() {
int n;
while (cin >> n, n) {
G g(n);
rep(i, n) g[i] = pin();
int out = 0;
rep(i, n) rep(j, i) if (abs(g[i] - g[j]) < 2 + EPS) {
double dis = abs(g[i] - g[j]);
double c = atan(sqrt(4 / dis / dis - 1));
P tur = g[j] - g[i];
tur /= abs(tur);
P p = g[i] + turn2(tur, c);
int co = 0;
rep(k, n) if (abs(p - g[k]) < 1 + EPS) co++;
out = max(out, co);
co = 0;
p = g[i] + turn2(tur, -c);
rep(k, n) if (abs(p - g[k]) < 1 + EPS) co++;
out = max(out, co);
}
cout << out << endl;
}
}
|
/*include*/
#include <algorithm>
#include <cmath>
#include <complex>
#include <cstdio>
#include <iomanip>
#include <iostream>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
#define loop(i, a, b) for (int i = a; i < b; i++)
#define rep(i, a) loop(i, 0, a)
#define rp(a) while (a--)
#define pb push_back
#define mp make_pair
#define it ::iterator
#define all(in) in.begin(), in.end()
#define shosu(x) fixed << setprecision(x)
const double PI = acos(-1);
const double EPS = 1e-10;
const double inf = 1e8;
using namespace std;
#define shosu(x) fixed << setprecision(x)
typedef complex<double> P;
typedef vector<P> G;
typedef vector<int> vi;
typedef vector<vi> vvi;
struct L : public vector<P> {
L(const P &a, const P &b) {
push_back(a);
push_back(b);
}
};
struct C {
P c;
double r;
C(const P &c, double r) : c(c), r(r) {}
};
#define curr(P, i) P[i]
#define next(P, i) P[(i + 1) % P.size()]
#define diff(P, i) (next(P, i) - curr(P, i))
namespace std {
bool operator<(const P &a, const P &b) {
return real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b);
// return imag(a) != imag(b) ? imag(a) < imag(b) : real(a) < real(b);
}
bool operator==(const P &a, const P &b) {
return a.real() == b.real() && a.imag() == b.imag();
}
} // namespace std
P pin() {
double x, y;
char d;
cin >> x >> y;
P p(x, y);
return p;
}
void PIN(P *a, int n) { rep(i, n) a[i] = pin(); }
double dot(P a, P b) { return real(conj(a) * b); }
double cross(P a, P b) { return imag(conj(a) * b); }
int ccw(P a, P b, P c) {
b -= a;
c -= a;
if (cross(b, c) > 0)
return +1; // counter clockwise
if (cross(b, c) < 0)
return -1; // clockwise
if (dot(b, c) < 0)
return +2; // c--a--b on line
if (norm(b) < norm(c))
return -2; // a--b--c on line
return 0;
}
P projection(L a, P p) {
double t = dot(p - a[0], a[0] - a[1]) / norm(a[0] - a[1]);
return a[0] + t * (a[0] - a[1]);
}
P reflection(L a, P p) { return p + 2.0 * (projection(a, p) - p); }
bool intersectLL(const L &l, const L &m) {
return abs(cross(l[1] - l[0], m[1] - m[0])) > EPS || // non-parallel
abs(cross(l[1] - l[0], m[0] - l[0])) < EPS; // same line
}
bool intersectLS(const L &l, const L &s) {
return cross(l[1] - l[0], s[0] - l[0]) * // s[0] is left of l
cross(l[1] - l[0], s[1] - l[0]) <
EPS; // s[1] is right of l
}
bool intersectLP(const L &l, const P &p) {
return abs(cross(l[1] - p, l[0] - p)) < EPS;
}
bool intersectSS(const L &s, const L &t) {
return ccw(s[0], s[1], t[0]) * ccw(s[0], s[1], t[1]) <= 0 &&
ccw(t[0], t[1], s[0]) * ccw(t[0], t[1], s[1]) <= 0;
}
bool intersectSP(const L &s, const P &p) {
return abs(s[0] - p) + abs(s[1] - p) - abs(s[1] - s[0]) <
EPS; // triangle inequality
}
double distanceLP(const L &l, const P &p) { return abs(p - projection(l, p)); }
double distanceLL(const L &l, const L &m) {
return intersectLL(l, m) ? 0 : distanceLP(l, m[0]);
}
double distanceLS(const L &l, const L &s) {
if (intersectLS(l, s))
return 0;
return min(distanceLP(l, s[0]), distanceLP(l, s[1]));
}
double distanceSP(const L &s, const P &p) {
const P r = projection(s, p);
if (intersectSP(s, r))
return abs(r - p);
return min(abs(s[0] - p), abs(s[1] - p));
}
double distanceSS(const L &s, const L &t) {
if (intersectSS(s, t))
return 0;
return min(min(distanceSP(s, t[0]), distanceSP(s, t[1])),
min(distanceSP(t, s[0]), distanceSP(t, s[1])));
}
/*bool intersectCS(C c,const L &l){
return (distanceLP(l,c.c) < c.r+EPS &&
(c.r < abs(c.c-l[0]) + EPS || c.r < abs(c.c-l[1]) + EPS));
}*/
int intersectCS(C c, L l) {
if (norm(projection(l, c.c) - c.c) - c.r * c.r > EPS)
return 0;
const double d1 = abs(c.c - l[0]), d2 = abs(c.c - l[1]);
if (d1 < c.r + EPS && d2 < c.r + EPS)
return 0;
if (d1 < c.r - EPS && d2 > c.r + EPS || d1 > c.r + EPS && d2 < c.r - EPS)
return 1;
const P h = projection(l, c.c);
if (dot(l[0] - h, l[1] - h) < 0)
return 2;
return 0;
}
P crosspointSS(L a, L b) {
double t1 = abs(cross(a[1] - a[0], b[0] - a[0]));
double t2 = abs(cross(a[1] - a[0], b[1] - a[0]));
return b[0] + (b[1] - b[0]) * t1 / (t1 + t2);
}
L crosspointCL(C c, L l) {
P pr = projection(l, c.c);
P e = (l[1] - l[0]) / abs(l[1] - l[0]);
double t = sqrt(c.r * c.r - norm(pr - c.c));
P a = pr + t * e;
P b = pr - t * e;
if (b < a)
swap(a, b);
return L(a, b);
}
L crosspointCS(C c, L l) {
if (intersectCS(c, l) == 2)
return crosspointCL(c, l);
L ret = crosspointCL(c, l);
if (dot(l[0] - ret[0], l[1] - ret[0]) < 0)
ret[1] = ret[0];
else
ret[0] = ret[1];
return ret;
}
L crosspointCC(C a, C b) {
P tmp = b.c - a.c;
double d = abs(tmp);
double q = acos((a.r * a.r + d * d - b.r * b.r) / (2 * a.r * d));
double t = arg(tmp); // atan(tmp.imag()/tmp.real());
P p1 = a.c + polar(a.r, t + q);
P p2 = a.c + polar(a.r, t - q);
if (p2 < p1)
swap(p1, p2);
return L(p1, p2);
}
P crosspointLL(const L &l, const L &m) {
double A = cross(l[1] - l[0], m[1] - m[0]);
double B = cross(l[1] - l[0], l[1] - m[0]);
if (abs(A) < EPS && abs(B) < EPS)
return m[0]; // same line
return m[0] + B / A * (m[1] - m[0]);
}
double area(const G &g) {
double S = 0;
for (int i = 0; i < g.size(); i++) {
S += (cross(g[i], g[(i + 1) % g.size()]));
}
return abs(S / 2.0);
}
bool isconvex(const G &g) {
int n = g.size();
rep(i, n) if (ccw(g[(i + n - 1) % n], g[i % n], g[(i + 1) % n]) ==
-1) return false;
return true;
}
int inconvex(const G &g, const P &p) {
bool in = false;
int n = g.size();
rep(i, n) {
P a = g[i % n] - p;
P b = g[(i + 1) % n] - p;
if (imag(a) > imag(b))
swap(a, b);
if (imag(a) < EPS && 0 < imag(b))
if (cross(a, b) < 0)
in = !in;
if (abs(cross(a, b)) < EPS && dot(a, b) < EPS)
return 1; // ON
}
return in ? 2 : 0; // IN : OUT;
}
G convex_hull(G &ps) {
int n = ps.size(), k = 0;
sort(ps.begin(), ps.end());
G ch(2 * n);
for (int i = 0; i < n; ch[k++] = ps[i++]) // lower-hull
while (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) == -1)
--k; //<=0 -> ==-1
for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--]) // upper-hull
while (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) == -1)
--k; //
ch.resize(k - 1);
return ch;
}
double convex_diameter(const G &pt) {
const int n = pt.size();
int is = 0, js = 0;
for (int i = 1; i < n; ++i) {
if (imag(pt[i]) > imag(pt[is]))
is = i;
if (imag(pt[i]) < imag(pt[js]))
js = i;
}
double maxd = norm(pt[is] - pt[js]);
int i, maxi, j, maxj;
i = maxi = is;
j = maxj = js;
do {
if (cross(diff(pt, i), diff(pt, j)) >= 0)
j = (j + 1) % n;
else
i = (i + 1) % n;
if (norm(pt[i] - pt[j]) > maxd) {
maxd = norm(pt[i] - pt[j]);
maxi = i;
maxj = j;
}
} while (i != is || j != js);
return sqrt(maxd); /* farthest pair is (maxi, maxj). */
} // convex_diameter(g)
G convex_cut(const G &g, const L &l) {
G Q;
for (int i = 0; i < g.size(); ++i) {
P a = curr(g, i), b = next(g, i);
if (ccw(l[0], l[1], a) != -1)
Q.push_back(a);
if (ccw(l[0], l[1], a) * ccw(l[0], l[1], b) < 0)
Q.push_back(crosspointLL(L(a, b), l));
}
return Q;
}
P turn(P p, double t) { return p * exp(P(.0, t * PI / 180.0)); }
P turn2(P p, double t) { return p * exp(P(.0, t)); }
vector<L> tangentCC(C a, C b) {
if (a.r < b.r)
swap(a, b);
double d = abs(a.c - b.c);
vector<L> l;
if (d < EPS)
return l;
if (a.r + b.r < d - EPS) { // hanareteiru
double t = acos((a.r + b.r) / d);
t = t * 180 / PI;
l.pb(L(a.c + turn(a.r / d * (b.c - a.c), t),
b.c + turn(b.r / d * (a.c - b.c), t)));
l.pb(L(a.c + turn(a.r / d * (b.c - a.c), -t),
b.c + turn(b.r / d * (a.c - b.c), -t)));
} else if (a.r + b.r < d + EPS) { // kuttuiteiru soto
P p = a.c + a.r / d * (b.c - a.c);
l.pb(L(p, p + turn(b.c - a.c, 90)));
}
if (abs(a.r - b.r) < d - EPS) { // majiwatteiru
double t1 = acos((a.r - b.r) / d);
t1 = t1 * 180 / PI;
double t2 = 180 - t1;
l.pb(L(a.c + turn(a.r / d * (b.c - a.c), t1),
b.c + turn(b.r / d * (a.c - b.c), -t2)));
l.pb(L(a.c + turn(a.r / d * (b.c - a.c), -t1),
b.c + turn(b.r / d * (a.c - b.c), t2)));
} else if (abs(a.r - b.r) < d + EPS) { // kuttuiteiru uti
P p = a.c + a.r / d * (b.c - a.c);
l.pb(L(p, p + turn(b.c - a.c, 90)));
}
return l;
}
void printL(const L &out) {
printf("%.9f %.9f %.9f %.9f\n", out[0].real(), out[0].imag(), out[1].real(),
out[1].imag());
}
C CIN() {
P p = pin();
double r;
cin >> r;
return C(p, r);
}
bool para(L a, L b) { return (abs(cross(a[1] - a[0], b[1] - b[0])) < EPS); }
double min(double a, double b) { return a < b ? a : b; }
double max(double a, double b) { return a > b ? a : b; }
int main() {
int n;
while (cin >> n, n) {
G g(n);
rep(i, n) g[i] = pin();
int out = 1;
rep(i, n) rep(j, i) if (abs(g[i] - g[j]) < 2 + EPS) {
double dis = abs(g[i] - g[j]);
double c = atan(sqrt(4 / dis / dis - 1));
P tur = g[j] - g[i];
tur /= abs(tur);
P p = g[i] + turn2(tur, c);
int co = 0;
rep(k, n) if (abs(p - g[k]) < 1 + EPS) co++;
out = max(out, co);
co = 0;
p = g[i] + turn2(tur, -c);
rep(k, n) if (abs(p - g[k]) < 1 + EPS) co++;
out = max(out, co);
}
cout << out << endl;
}
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 3,726
|
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define F first
#define S second
#define all(v) (v).begin(), (v).end()
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define reps(i, f, n) for (int i = (int)(f); i < (int)(n); i++)
#define each(a, b) for (auto &a : b)
const int inf = 1LL << 55;
#define EPS (1e-10)
#define equals(a, b) (fabs((a) - (b)) < EPS)
// ???/????????????
struct Point {
double x, y;
Point(double x = 0.0, double y = 0.0) : x(x), y(y) {}
Point operator+(Point p) { return Point(x + p.x, y + p.y); }
Point operator-(Point p) { return Point(x - p.x, y - p.y); }
Point operator*(double a) { return Point(x * a, y * a); }
Point operator/(double a) { return Point(x / a, y / a); }
double abs() { return sqrt(norm()); }
double norm() { return x * x + y * y; }
bool operator<(const Point &p) const { return x != p.x ? x < p.x : y < p.y; }
bool operator==(const Point &p) const {
return fabs(x - p.x) < EPS && fabs(y - p.y) < EPS;
}
};
typedef Point Vector;
// ???
struct Circle {
Point c;
double r;
Circle(Point c = Point(), double r = 0.0) : c(c), r(r) {}
};
// ????§???¢
typedef vector<Point> Polygon;
// ??????/??´???
struct Segment {
Point p1, p2;
};
typedef Segment Line;
// ????????????????????????
double norm(Vector v) { return v.x * v.x + v.y * v.y; }
// ?????????????????§??????
double abs(Vector v) { return sqrt(norm(v)); }
// ?????????????????????
double dot(Vector a, Vector b) { return a.x * b.x + a.y * b.y; }
// ??????????????????????????§??????
double cross(Vector a, Vector b) { return a.x * b.y - a.y * b.x; }
// ??´?????????
bool isOrthogonal(Vector a, Vector b) { return equals(dot(a, b), 0.0); }
bool isOrthogonal(Point a1, Point a2, Point b1, Point b2) {
return isOrthogonal(a1 - a2, b1 - b2);
}
bool isOrthogonal(Segment s1, Segment s2) {
return equals(dot(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);
}
// ????????????
bool isParallel(Vector a, Vector b) { return equals(cross(a, b), 0.0); }
bool isParallel(Point a1, Point a2, Point b1, Point b2) {
return isParallel(a1 - a2, b1 - b2);
}
bool isParallel(Segment s1, Segment s2) {
return equals(cross(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);
}
// ?°???±
Point project(Segment s, Point p) {
Vector base = s.p2 - s.p1;
double r = dot(p - s.p1, base) / norm(base);
return s.p1 + base * r;
}
// ????°?
Point reflect(Segment s, Point p) { return p + (project(s, p) - p) * 2.0; }
static const int COUNTER_CLOCKWISE = 1;
static const int CLOCKWISE = -1;
static const int ONLINE_BACK = 2;
static const int ONLINE_FRONT = -2;
static const int ON_SEGMENT = 0;
// ???????¨???????
int ccw(Point p0, Point p1, Point p2) {
Vector a = p1 - p0;
Vector b = p2 - p0;
if (cross(a, b) > EPS)
return COUNTER_CLOCKWISE;
if (cross(a, b) < -EPS)
return CLOCKWISE;
if (dot(a, b) < -EPS)
return ONLINE_BACK;
if (a.norm() < b.norm())
return ONLINE_FRONT;
return ON_SEGMENT;
}
// ????????????
bool intersect(Point p1, Point p2, Point p3, Point p4) {
return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 &&
ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0);
}
bool intersect(Segment s1, Segment s2) {
return intersect(s1.p1, s1.p2, s2.p1, s2.p2);
}
// ?????????????????¢
double getDistance(Point a, Point b) { return abs(a - b); }
// ??´?????¨?????¨????????¢
double getDistanceLP(Line l, Point p) {
return abs(cross(l.p2 - l.p1, p - l.p1) / abs(l.p2 - l.p1));
}
// ????????¨?????¨????????¢
double getDistanceSP(Segment s, Point p) {
if (dot(s.p2 - s.p1, p - s.p1) < 0.0)
return abs(p - s.p1);
if (dot(s.p1 - s.p2, p - s.p2) < 0.0)
return abs(p - s.p2);
return getDistanceLP(s, p);
}
// ????????????????????¢
double getDistance(Segment s1, Segment s2) {
if (intersect(s1, s2))
return 0.0;
return min(min(getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2)),
min(getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2)));
}
// ???????????????
Point getCrossPoint(Segment s1, Segment s2) {
Vector base = s2.p2 - s2.p1;
double d1 = abs(cross(base, s1.p1 - s2.p1));
double d2 = abs(cross(base, s1.p2 - s2.p1));
double t = d1 / (d1 + d2);
return s1.p1 + (s1.p2 - s1.p1) * t;
}
// ???c??¨??????l?????????
pair<Point, Point> getCrossPoints(Circle c, Line l) {
// assert(intersect(c, l));
Vector pr = project(l, c.c);
Vector e = (l.p2 - l.p1) / abs(l.p2 - l.p1);
double base = sqrt(c.r * c.r - norm(pr - c.c));
return make_pair(pr + e * base, pr - e * base);
}
// ???c1??¨???c2?????????
double arg(Vector p) { return atan2(p.y, p.x); }
Vector polar(double a, double r) { return Point(cos(r) * a, sin(r) * a); }
pair<Point, Point> getCrossPoints(Circle c1, Circle c2) {
// assert(intersect(c1, c2));
double d = abs(c1.c - c2.c);
double a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));
double t = arg(c2.c - c1.c);
return make_pair(c1.c + polar(c1.r, t + a), c1.c + polar(c1.r, t - a));
}
// ????????????
static const int IN_POLYGON = 2;
static const int ON_POLYGON = 1;
static const int OUT_POLYGON = 0;
int contains(Polygon g, Point p) {
int n = g.size();
bool x = false;
for (int i = 0; i < n; i++) {
Point a = g[i] - p, b = g[(i + 1) % n] - p;
if (abs(cross(a, b)) < EPS && dot(a, b) < EPS)
return ON_POLYGON;
if (a.y > b.y)
swap(a, b);
if (a.y < EPS && EPS < b.y && cross(a, b) > EPS)
x = !x;
}
return (x ? IN_POLYGON : OUT_POLYGON);
}
signed main() {
int N;
while (cin >> N, N) {
vector<Point> p(N);
rep(i, N) cin >> p[i].x >> p[i].y;
int ans = 0;
rep(i, N) reps(j, i + 1, N) {
if (getDistance(p[i], p[j]) < 2.0 + EPS) {
Circle c1(p[i], 1.0), c2(p[j], 1.0);
auto cp = getCrossPoints(c1, c2);
int cnt = 0;
rep(k, N) if (getDistance(cp.first, p[k]) < 1.0 + EPS) cnt++;
ans = max(ans, cnt);
cnt = 0;
rep(k, N) if (getDistance(cp.second, p[k]) < 1.0 + EPS) cnt++;
ans = max(ans, cnt);
}
}
cout << ans << endl;
}
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define F first
#define S second
#define all(v) (v).begin(), (v).end()
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define reps(i, f, n) for (int i = (int)(f); i < (int)(n); i++)
#define each(a, b) for (auto &a : b)
const int inf = 1LL << 55;
#define EPS (1e-10)
#define equals(a, b) (fabs((a) - (b)) < EPS)
// ???/????????????
struct Point {
double x, y;
Point(double x = 0.0, double y = 0.0) : x(x), y(y) {}
Point operator+(Point p) { return Point(x + p.x, y + p.y); }
Point operator-(Point p) { return Point(x - p.x, y - p.y); }
Point operator*(double a) { return Point(x * a, y * a); }
Point operator/(double a) { return Point(x / a, y / a); }
double abs() { return sqrt(norm()); }
double norm() { return x * x + y * y; }
bool operator<(const Point &p) const { return x != p.x ? x < p.x : y < p.y; }
bool operator==(const Point &p) const {
return fabs(x - p.x) < EPS && fabs(y - p.y) < EPS;
}
};
typedef Point Vector;
// ???
struct Circle {
Point c;
double r;
Circle(Point c = Point(), double r = 0.0) : c(c), r(r) {}
};
// ????§???¢
typedef vector<Point> Polygon;
// ??????/??´???
struct Segment {
Point p1, p2;
};
typedef Segment Line;
// ????????????????????????
double norm(Vector v) { return v.x * v.x + v.y * v.y; }
// ?????????????????§??????
double abs(Vector v) { return sqrt(norm(v)); }
// ?????????????????????
double dot(Vector a, Vector b) { return a.x * b.x + a.y * b.y; }
// ??????????????????????????§??????
double cross(Vector a, Vector b) { return a.x * b.y - a.y * b.x; }
// ??´?????????
bool isOrthogonal(Vector a, Vector b) { return equals(dot(a, b), 0.0); }
bool isOrthogonal(Point a1, Point a2, Point b1, Point b2) {
return isOrthogonal(a1 - a2, b1 - b2);
}
bool isOrthogonal(Segment s1, Segment s2) {
return equals(dot(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);
}
// ????????????
bool isParallel(Vector a, Vector b) { return equals(cross(a, b), 0.0); }
bool isParallel(Point a1, Point a2, Point b1, Point b2) {
return isParallel(a1 - a2, b1 - b2);
}
bool isParallel(Segment s1, Segment s2) {
return equals(cross(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);
}
// ?°???±
Point project(Segment s, Point p) {
Vector base = s.p2 - s.p1;
double r = dot(p - s.p1, base) / norm(base);
return s.p1 + base * r;
}
// ????°?
Point reflect(Segment s, Point p) { return p + (project(s, p) - p) * 2.0; }
static const int COUNTER_CLOCKWISE = 1;
static const int CLOCKWISE = -1;
static const int ONLINE_BACK = 2;
static const int ONLINE_FRONT = -2;
static const int ON_SEGMENT = 0;
// ???????¨???????
int ccw(Point p0, Point p1, Point p2) {
Vector a = p1 - p0;
Vector b = p2 - p0;
if (cross(a, b) > EPS)
return COUNTER_CLOCKWISE;
if (cross(a, b) < -EPS)
return CLOCKWISE;
if (dot(a, b) < -EPS)
return ONLINE_BACK;
if (a.norm() < b.norm())
return ONLINE_FRONT;
return ON_SEGMENT;
}
// ????????????
bool intersect(Point p1, Point p2, Point p3, Point p4) {
return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 &&
ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0);
}
bool intersect(Segment s1, Segment s2) {
return intersect(s1.p1, s1.p2, s2.p1, s2.p2);
}
// ?????????????????¢
double getDistance(Point a, Point b) { return abs(a - b); }
// ??´?????¨?????¨????????¢
double getDistanceLP(Line l, Point p) {
return abs(cross(l.p2 - l.p1, p - l.p1) / abs(l.p2 - l.p1));
}
// ????????¨?????¨????????¢
double getDistanceSP(Segment s, Point p) {
if (dot(s.p2 - s.p1, p - s.p1) < 0.0)
return abs(p - s.p1);
if (dot(s.p1 - s.p2, p - s.p2) < 0.0)
return abs(p - s.p2);
return getDistanceLP(s, p);
}
// ????????????????????¢
double getDistance(Segment s1, Segment s2) {
if (intersect(s1, s2))
return 0.0;
return min(min(getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2)),
min(getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2)));
}
// ???????????????
Point getCrossPoint(Segment s1, Segment s2) {
Vector base = s2.p2 - s2.p1;
double d1 = abs(cross(base, s1.p1 - s2.p1));
double d2 = abs(cross(base, s1.p2 - s2.p1));
double t = d1 / (d1 + d2);
return s1.p1 + (s1.p2 - s1.p1) * t;
}
// ???c??¨??????l?????????
pair<Point, Point> getCrossPoints(Circle c, Line l) {
// assert(intersect(c, l));
Vector pr = project(l, c.c);
Vector e = (l.p2 - l.p1) / abs(l.p2 - l.p1);
double base = sqrt(c.r * c.r - norm(pr - c.c));
return make_pair(pr + e * base, pr - e * base);
}
// ???c1??¨???c2?????????
double arg(Vector p) { return atan2(p.y, p.x); }
Vector polar(double a, double r) { return Point(cos(r) * a, sin(r) * a); }
pair<Point, Point> getCrossPoints(Circle c1, Circle c2) {
// assert(intersect(c1, c2));
double d = abs(c1.c - c2.c);
double a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));
double t = arg(c2.c - c1.c);
return make_pair(c1.c + polar(c1.r, t + a), c1.c + polar(c1.r, t - a));
}
// ????????????
static const int IN_POLYGON = 2;
static const int ON_POLYGON = 1;
static const int OUT_POLYGON = 0;
int contains(Polygon g, Point p) {
int n = g.size();
bool x = false;
for (int i = 0; i < n; i++) {
Point a = g[i] - p, b = g[(i + 1) % n] - p;
if (abs(cross(a, b)) < EPS && dot(a, b) < EPS)
return ON_POLYGON;
if (a.y > b.y)
swap(a, b);
if (a.y < EPS && EPS < b.y && cross(a, b) > EPS)
x = !x;
}
return (x ? IN_POLYGON : OUT_POLYGON);
}
signed main() {
int N;
while (cin >> N, N) {
vector<Point> p(N);
rep(i, N) cin >> p[i].x >> p[i].y;
int ans = 1;
rep(i, N) reps(j, i + 1, N) {
if (getDistance(p[i], p[j]) < 2.0 + EPS) {
Circle c1(p[i], 1.0), c2(p[j], 1.0);
auto cp = getCrossPoints(c1, c2);
int cnt = 0;
rep(k, N) if (getDistance(cp.first, p[k]) < 1.0 + EPS) cnt++;
ans = max(ans, cnt);
cnt = 0;
rep(k, N) if (getDistance(cp.second, p[k]) < 1.0 + EPS) cnt++;
ans = max(ans, cnt);
}
}
cout << ans << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 1,887
|
#include <bits/stdc++.h>
#define r(i, n) for (int i = 0; i < n; i++)
using namespace std;
#define EPS (1e-10)
#define equals(a, b) (fabs((a) - (b)) < EPS)
// CCW??¨///////////////////////////////////
static const int COUNTER_CLOCKWISE = 1;
static const int CLOCKWISE = -1;
static const int ONLINE_BACK = 2;
static const int ONLINE_FRONT = -2;
static const int ON_SEGMENT = 0;
/////////////////////////////////////////
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point p) { return Point(x + p.x, y + p.y); }
Point operator-(Point p) { return Point(x - p.x, y - p.y); }
Point operator*(double a) { return Point(a * x, a * y); }
Point operator/(double a) { return Point(x / a, y / a); }
bool operator<(const Point &p) const { return x != p.x ? x < p.x : y < p.y; }
bool operator==(const Point &p) const {
return fabs(x - p.x) < EPS && fabs(y - p.y) < EPS;
}
};
struct Circle {
Point c;
double r;
};
typedef Point vect;
struct seg {
Point p1, p2;
};
//????????´????????????
double norm(Point p) { return p.x * p.x + p.y * p.y; }
//??¶???????????????absolute ?????????????????¶?????????
double abs(Point p) { return sqrt(norm(p)); }
//?????????????????????????????????
double dot(Point a, Point b) { return a.x * b.x + a.y * b.y; }
//?????? ????????????????????????
double cross(Point a, Point b) { return a.x * b.y - a.y * b.x; }
//??´?????????????????¨?????\?????????????????????
bool C90(seg s1, seg s2) {
return equals(dot(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);
}
//????????????????????¨?????\??????????????????????????????????????????
bool C0(seg s1, seg s2) {
return equals(cross(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);
}
//?°???± ??????????????´???????????????
Point project(seg s, Point p) {
Point base = s.p2 - s.p1;
double r = dot(p - s.p1, base) / norm(base);
return s.p1 + base * r;
}
//????°??????????????????????
Point reflection(seg s, Point p) { return p + (project(s, p) - p) * 2.0; }
// 2???????????¢ ???????????????
double getDistancePP(Point a, Point b) { return abs(a - b); }
//??´??????????????¢(????°?)???????????????
double getDistanceLP(seg l, Point p) {
return abs(cross(l.p2 - l.p1, p - l.p1) / abs(l.p2 - l.p1));
}
//?????????????????¢??????????????????
double getDistanceSP(seg s, Point p) {
if (dot(s.p2 - s.p1, p - s.p1) < 0.0)
return abs(p - s.p1);
if (dot(s.p1 - s.p2, p - s.p2) < 0.0)
return abs(p - s.p2);
return getDistanceLP(s, p);
}
//????¨?????????????????¨??????????????????????????????????
int CCW(Point p0, Point p1, Point p2) {
Point a = p1 - p0;
Point b = p2 - p0;
if (cross(a, b) > EPS)
return COUNTER_CLOCKWISE;
if (cross(a, b) < -EPS)
return CLOCKWISE;
if (dot(a, b) < -EPS)
return ONLINE_BACK;
if (norm(a) < norm(b))
return ONLINE_FRONT;
return ON_SEGMENT;
}
//????????????????????????????????????????????§?\????
bool intersect(Point p1, Point p2, Point p3, Point p4) {
return (CCW(p1, p2, p3) * CCW(p1, p2, p4) <= 0 &&
CCW(p3, p4, p1) * CCW(p3, p4, p2) <= 0);
}
bool intersect(seg s1, seg s2) { return intersect(s1.p1, s1.p2, s2.p1, s2.p2); }
// 2??????????§???¢?????\??????????????????...????????????????????????
bool squareintersect(seg s1, seg s2) {
if (s1.p2.x < s2.p1.x || s2.p2.x < s1.p1.x)
return 0;
if (s1.p2.y < s2.p1.y || s2.p2.y < s1.p1.y)
return 0;
return 1;
}
//??????????????¢?????????????????????????????§??¨???????????????
double getDistance(seg s1, seg s2) {
if (intersect(s1, s2))
return 0.0;
return min(min(getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2)),
min(getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2)));
}
//??????????????????????????????(?´????????`)
Point getCrossPoint(seg s1, seg s2) {
Point base = s2.p2 - s2.p1;
double d1 = abs(cross(base, s1.p1 - s2.p1));
double d2 = abs(cross(base, s1.p2 - s2.p1));
double t = d1 / (d1 + d2);
return s1.p1 + (s1.p2 - s1.p1) * t;
}
//???????£????????????¢??????????????¢??????????????????????????\????????????????????§???????????£???????????????????????????????????§?????????????????????
int intersectCC(Circle a, Circle b) {
double dist = abs(a.c - b.c);
if (dist > a.r + b.r + EPS)
return 4;
if (dist > a.r + b.r - EPS)
return 3;
if (dist > abs(a.r - b.r) + EPS)
return 2;
if (dist > abs(a.r - b.r) - EPS)
return 1;
return 0;
}
//?????¨??´???????????????2?????? (LINE)
seg getCrossPoint(Circle c, seg l) {
// assert(intersect(cc,l));
Point pr = project(l, c.c);
Point e = (l.p2 - l.p1) / abs(l.p2 - l.p1);
double base = sqrt(c.r * c.r - norm(pr - c.c));
seg pp;
pp.p1 = (pr + e * base);
pp.p2 = (pr - e * base);
return pp;
}
//?????¨??´??????Line??????????????°
int getCircleLine(Circle c, seg l) {
seg a = getCrossPoint(c, l);
if (isnan(a.p1.x) && isnan(a.p2.y))
return 0;
else if (a.p1.x == a.p2.x && a.p1.y == a.p2.y)
return 1;
else
return 2;
}
//??´?????¨????????\???????????????
bool intersectCirclesen(seg s, Circle t) {
double a, b, c;
a = getDistancePP(s.p1, t.c);
b = getDistancePP(s.p2, t.c);
c = getDistanceSP(s, t.c);
if (a < t.r && b > t.r)
return 1;
if (b < t.r && a > t.r)
return 1;
if (a >= t.r && b >= t.r && c <= t.r)
return 1;
return 0;
}
//??????
Point gaishin(Point a, Point b, Point c) {
double a1, a2, b1, b2, c1, c2;
a1 = 2 * (b.x - a.x);
b1 = 2 * (b.y - a.y);
c1 = a.x * a.x - b.x * b.x + a.y * a.y - b.y * b.y;
a2 = 2 * (c.x - a.x);
b2 = 2 * (c.y - a.y);
c2 = a.x * a.x - c.x * c.x + a.y * a.y - c.y * c.y;
Point p;
p.x = (b1 * c2 - b2 * c1) / (a1 * b2 - a2 * b1);
p.y = (c1 * a2 - c2 * a1) / (a1 * b2 - a2 * b1);
return p;
}
// 2??????????????????
double arg(Point p) { return atan2(p.y, p.x); }
Point polar(double a, double r) { return Point(cos(r) * a, sin(r) * a); }
seg getCrossPoints(Circle c1, Circle c2) {
// assert(intersect(c1,c2));
double d = abs(c1.c - c2.c);
double a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));
double t = arg(c2.c - c1.c);
seg s;
s.p2 = c1.c + polar(c1.r, t + a);
s.p1 = c1.c + polar(c1.r, t - a);
return s;
}
//???????????? ????????????->2 ??????->1 ????????\???->0
typedef vector<Point> Polygon;
int contains(Polygon g, Point p) {
int n = g.size();
bool x = false;
for (int i = 0; i < n; i++) {
Point a = g[i] - p, b = g[(i + 1) % n] - p;
if (abs(cross(a, b)) < EPS && dot(a, b) < EPS)
return 1;
if (a.y > b.y)
swap(a, b);
if (a.y < EPS && EPS < b.y && cross(a, b) > EPS)
x = !x;
}
return x ? 2 : 0;
}
double Area(Polygon p) {
double a = 0;
for (int i = 0; i < p.size(); i++)
a += cross(p[i], p[(i + 1) % p.size()]);
return a / 2;
}
//???????§???¢??????
bool isConvex(Polygon p) {
for (int i = 0; i < p.size(); i++) {
if (CCW(p[(i + 1) % p.size()], p[i % p.size()], p[(i + 2) % p.size()]) == 1)
return false;
}
return true;
}
//?????¢???????????¢???(?????´)=ans
Polygon convex_cut(Polygon p, seg l) {
Polygon ans;
for (int i = 0; i < p.size(); i++) {
Point A = p[i], B = p[(i + 1) % p.size()];
if (CCW(l.p1, l.p2, A) != -1)
ans.push_back(A);
if (CCW(l.p1, l.p2, A) * CCW(l.p1, l.p2, B) < 0) {
seg s;
s.p1 = A;
s.p2 = B;
ans.push_back(getCrossPoint(l, s));
}
}
return ans;
}
double convex_diameter(Polygon p) {
int n = p.size();
int i = 0, j = 0;
for (int k = 0; k < n; k++) {
if (p[i] < p[k])
i = k;
if (p[k] < p[j])
j = k;
}
int si = i, sj = j;
double ans = 0.0;
while (i != sj || j != si) {
ans = max(ans, abs(p[i] - p[j]));
if (cross((p[(i + 1) % n] - p[i]), (p[(j + 1) % n] - p[j])) < 0)
i = (i + 1) % n;
else
j = (j + 1) % n;
}
return ans;
}
//??????
//??´??????????????????????????????????????¨?????????191,197?????????&&CCW(u[n-2],u[n-1],s[i])!=ONLINE_FRONT???????????????
Polygon andrewScan(Polygon s) {
Polygon l, u;
if (s.size() < 3)
return s;
sort(s.begin(), s.end());
u.push_back(s[0]);
u.push_back(s[1]);
l.push_back(s[s.size() - 1]);
l.push_back(s[s.size() - 2]);
for (int i = 2; i < s.size(); i++) {
for (int n = u.size(); n >= 2 && CCW(u[n - 2], u[n - 1], s[i]) != -1 &&
CCW(u[n - 2], u[n - 1], s[i]) != ONLINE_FRONT;
n--) {
u.pop_back();
}
u.push_back(s[i]);
}
for (int i = s.size() - 3; i >= 0; i--) {
for (int n = l.size(); n >= 2 && CCW(l[n - 2], l[n - 1], s[i]) != -1 &&
CCW(l[n - 2], l[n - 1], s[i]) != ONLINE_FRONT;
n--) {
l.pop_back();
}
l.push_back(s[i]);
}
reverse(l.begin(), l.end());
for (int i = u.size() - 2; i >= 1; i--)
l.push_back(u[i]);
return l;
}
//???a??¨???b??????d??¢??????2???
seg identifyPoint(Point a, Point b, double d) {
Circle c1, c2;
c1.c = a;
c1.r = d;
c2.c = b;
c2.r = d;
return getCrossPoints(c1, c2);
}
// ???????????°??¨??????
seg scan() {
seg a;
scanf("%lf%lf%lf%lf", &a.p1.x, &a.p1.y, &a.p2.x, &a.p2.y);
return a;
}
void prin(seg a) {
printf("%.10f %.10f %.10f %.10f\n", a.p1.x, a.p1.y, a.p2.x, a.p2.y);
}
//
/////------Library END-------//////////////////////////////////////
// exp?????????
// //////a=x??§?¨????b=y??§?¨????c=?§?????????????d=????????????????????¢
// p[i][j].x=a-d*sin(M_PI/180*(72*j+c));
// p[i][j].y=b+d*cos(M_PI/180*(72*j+c));
/////////////////////////////////////////////////
int main() {
int n;
while (cin >> n, n) {
Point p[n];
int ans = 1;
r(i, n) cin >> p[i].x >> p[i].y;
r(i, n) for (int j = i + 1; j < n; j++) {
if (getDistancePP(p[i], p[j]) < 2.0) {
seg s = identifyPoint(p[i], p[j], 1);
int a1 = 0, a2 = 0;
Point p3, p4;
p3 = s.p1;
p4 = s.p2;
r(k, n) if (abs(getDistancePP(p3, p[k])) <= 1) a1++;
r(k, n) if (abs(getDistancePP(p4, p[k])) <= 1) a2++;
ans = max(ans, max(a1, a2));
}
}
cout << ans << endl;
}
}
|
#include <bits/stdc++.h>
#define r(i, n) for (int i = 0; i < n; i++)
using namespace std;
#define EPS (1e-10)
#define equals(a, b) (fabs((a) - (b)) < EPS)
// CCW??¨///////////////////////////////////
static const int COUNTER_CLOCKWISE = 1;
static const int CLOCKWISE = -1;
static const int ONLINE_BACK = 2;
static const int ONLINE_FRONT = -2;
static const int ON_SEGMENT = 0;
/////////////////////////////////////////
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point p) { return Point(x + p.x, y + p.y); }
Point operator-(Point p) { return Point(x - p.x, y - p.y); }
Point operator*(double a) { return Point(a * x, a * y); }
Point operator/(double a) { return Point(x / a, y / a); }
bool operator<(const Point &p) const { return x != p.x ? x < p.x : y < p.y; }
bool operator==(const Point &p) const {
return fabs(x - p.x) < EPS && fabs(y - p.y) < EPS;
}
};
struct Circle {
Point c;
double r;
};
typedef Point vect;
struct seg {
Point p1, p2;
};
//????????´????????????
double norm(Point p) { return p.x * p.x + p.y * p.y; }
//??¶???????????????absolute ?????????????????¶?????????
double abs(Point p) { return sqrt(norm(p)); }
//?????????????????????????????????
double dot(Point a, Point b) { return a.x * b.x + a.y * b.y; }
//?????? ????????????????????????
double cross(Point a, Point b) { return a.x * b.y - a.y * b.x; }
//??´?????????????????¨?????\?????????????????????
bool C90(seg s1, seg s2) {
return equals(dot(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);
}
//????????????????????¨?????\??????????????????????????????????????????
bool C0(seg s1, seg s2) {
return equals(cross(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);
}
//?°???± ??????????????´???????????????
Point project(seg s, Point p) {
Point base = s.p2 - s.p1;
double r = dot(p - s.p1, base) / norm(base);
return s.p1 + base * r;
}
//????°??????????????????????
Point reflection(seg s, Point p) { return p + (project(s, p) - p) * 2.0; }
// 2???????????¢ ???????????????
double getDistancePP(Point a, Point b) { return abs(a - b); }
//??´??????????????¢(????°?)???????????????
double getDistanceLP(seg l, Point p) {
return abs(cross(l.p2 - l.p1, p - l.p1) / abs(l.p2 - l.p1));
}
//?????????????????¢??????????????????
double getDistanceSP(seg s, Point p) {
if (dot(s.p2 - s.p1, p - s.p1) < 0.0)
return abs(p - s.p1);
if (dot(s.p1 - s.p2, p - s.p2) < 0.0)
return abs(p - s.p2);
return getDistanceLP(s, p);
}
//????¨?????????????????¨??????????????????????????????????
int CCW(Point p0, Point p1, Point p2) {
Point a = p1 - p0;
Point b = p2 - p0;
if (cross(a, b) > EPS)
return COUNTER_CLOCKWISE;
if (cross(a, b) < -EPS)
return CLOCKWISE;
if (dot(a, b) < -EPS)
return ONLINE_BACK;
if (norm(a) < norm(b))
return ONLINE_FRONT;
return ON_SEGMENT;
}
//????????????????????????????????????????????§?\????
bool intersect(Point p1, Point p2, Point p3, Point p4) {
return (CCW(p1, p2, p3) * CCW(p1, p2, p4) <= 0 &&
CCW(p3, p4, p1) * CCW(p3, p4, p2) <= 0);
}
bool intersect(seg s1, seg s2) { return intersect(s1.p1, s1.p2, s2.p1, s2.p2); }
// 2??????????§???¢?????\??????????????????...????????????????????????
bool squareintersect(seg s1, seg s2) {
if (s1.p2.x < s2.p1.x || s2.p2.x < s1.p1.x)
return 0;
if (s1.p2.y < s2.p1.y || s2.p2.y < s1.p1.y)
return 0;
return 1;
}
//??????????????¢?????????????????????????????§??¨???????????????
double getDistance(seg s1, seg s2) {
if (intersect(s1, s2))
return 0.0;
return min(min(getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2)),
min(getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2)));
}
//??????????????????????????????(?´????????`)
Point getCrossPoint(seg s1, seg s2) {
Point base = s2.p2 - s2.p1;
double d1 = abs(cross(base, s1.p1 - s2.p1));
double d2 = abs(cross(base, s1.p2 - s2.p1));
double t = d1 / (d1 + d2);
return s1.p1 + (s1.p2 - s1.p1) * t;
}
//???????£????????????¢??????????????¢??????????????????????????\????????????????????§???????????£???????????????????????????????????§?????????????????????
int intersectCC(Circle a, Circle b) {
double dist = abs(a.c - b.c);
if (dist > a.r + b.r + EPS)
return 4;
if (dist > a.r + b.r - EPS)
return 3;
if (dist > abs(a.r - b.r) + EPS)
return 2;
if (dist > abs(a.r - b.r) - EPS)
return 1;
return 0;
}
//?????¨??´???????????????2?????? (LINE)
seg getCrossPoint(Circle c, seg l) {
// assert(intersect(cc,l));
Point pr = project(l, c.c);
Point e = (l.p2 - l.p1) / abs(l.p2 - l.p1);
double base = sqrt(c.r * c.r - norm(pr - c.c));
seg pp;
pp.p1 = (pr + e * base);
pp.p2 = (pr - e * base);
return pp;
}
//?????¨??´??????Line??????????????°
int getCircleLine(Circle c, seg l) {
seg a = getCrossPoint(c, l);
if (isnan(a.p1.x) && isnan(a.p2.y))
return 0;
else if (a.p1.x == a.p2.x && a.p1.y == a.p2.y)
return 1;
else
return 2;
}
//??´?????¨????????\???????????????
bool intersectCirclesen(seg s, Circle t) {
double a, b, c;
a = getDistancePP(s.p1, t.c);
b = getDistancePP(s.p2, t.c);
c = getDistanceSP(s, t.c);
if (a < t.r && b > t.r)
return 1;
if (b < t.r && a > t.r)
return 1;
if (a >= t.r && b >= t.r && c <= t.r)
return 1;
return 0;
}
//??????
Point gaishin(Point a, Point b, Point c) {
double a1, a2, b1, b2, c1, c2;
a1 = 2 * (b.x - a.x);
b1 = 2 * (b.y - a.y);
c1 = a.x * a.x - b.x * b.x + a.y * a.y - b.y * b.y;
a2 = 2 * (c.x - a.x);
b2 = 2 * (c.y - a.y);
c2 = a.x * a.x - c.x * c.x + a.y * a.y - c.y * c.y;
Point p;
p.x = (b1 * c2 - b2 * c1) / (a1 * b2 - a2 * b1);
p.y = (c1 * a2 - c2 * a1) / (a1 * b2 - a2 * b1);
return p;
}
// 2??????????????????
double arg(Point p) { return atan2(p.y, p.x); }
Point polar(double a, double r) { return Point(cos(r) * a, sin(r) * a); }
seg getCrossPoints(Circle c1, Circle c2) {
// assert(intersect(c1,c2));
double d = abs(c1.c - c2.c);
double a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));
double t = arg(c2.c - c1.c);
seg s;
s.p2 = c1.c + polar(c1.r, t + a);
s.p1 = c1.c + polar(c1.r, t - a);
return s;
}
//???????????? ????????????->2 ??????->1 ????????\???->0
typedef vector<Point> Polygon;
int contains(Polygon g, Point p) {
int n = g.size();
bool x = false;
for (int i = 0; i < n; i++) {
Point a = g[i] - p, b = g[(i + 1) % n] - p;
if (abs(cross(a, b)) < EPS && dot(a, b) < EPS)
return 1;
if (a.y > b.y)
swap(a, b);
if (a.y < EPS && EPS < b.y && cross(a, b) > EPS)
x = !x;
}
return x ? 2 : 0;
}
double Area(Polygon p) {
double a = 0;
for (int i = 0; i < p.size(); i++)
a += cross(p[i], p[(i + 1) % p.size()]);
return a / 2;
}
//???????§???¢??????
bool isConvex(Polygon p) {
for (int i = 0; i < p.size(); i++) {
if (CCW(p[(i + 1) % p.size()], p[i % p.size()], p[(i + 2) % p.size()]) == 1)
return false;
}
return true;
}
//?????¢???????????¢???(?????´)=ans
Polygon convex_cut(Polygon p, seg l) {
Polygon ans;
for (int i = 0; i < p.size(); i++) {
Point A = p[i], B = p[(i + 1) % p.size()];
if (CCW(l.p1, l.p2, A) != -1)
ans.push_back(A);
if (CCW(l.p1, l.p2, A) * CCW(l.p1, l.p2, B) < 0) {
seg s;
s.p1 = A;
s.p2 = B;
ans.push_back(getCrossPoint(l, s));
}
}
return ans;
}
double convex_diameter(Polygon p) {
int n = p.size();
int i = 0, j = 0;
for (int k = 0; k < n; k++) {
if (p[i] < p[k])
i = k;
if (p[k] < p[j])
j = k;
}
int si = i, sj = j;
double ans = 0.0;
while (i != sj || j != si) {
ans = max(ans, abs(p[i] - p[j]));
if (cross((p[(i + 1) % n] - p[i]), (p[(j + 1) % n] - p[j])) < 0)
i = (i + 1) % n;
else
j = (j + 1) % n;
}
return ans;
}
//??????
//??´??????????????????????????????????????¨?????????191,197?????????&&CCW(u[n-2],u[n-1],s[i])!=ONLINE_FRONT???????????????
Polygon andrewScan(Polygon s) {
Polygon l, u;
if (s.size() < 3)
return s;
sort(s.begin(), s.end());
u.push_back(s[0]);
u.push_back(s[1]);
l.push_back(s[s.size() - 1]);
l.push_back(s[s.size() - 2]);
for (int i = 2; i < s.size(); i++) {
for (int n = u.size(); n >= 2 && CCW(u[n - 2], u[n - 1], s[i]) != -1 &&
CCW(u[n - 2], u[n - 1], s[i]) != ONLINE_FRONT;
n--) {
u.pop_back();
}
u.push_back(s[i]);
}
for (int i = s.size() - 3; i >= 0; i--) {
for (int n = l.size(); n >= 2 && CCW(l[n - 2], l[n - 1], s[i]) != -1 &&
CCW(l[n - 2], l[n - 1], s[i]) != ONLINE_FRONT;
n--) {
l.pop_back();
}
l.push_back(s[i]);
}
reverse(l.begin(), l.end());
for (int i = u.size() - 2; i >= 1; i--)
l.push_back(u[i]);
return l;
}
//???a??¨???b??????d??¢??????2???
seg identifyPoint(Point a, Point b, double d) {
Circle c1, c2;
c1.c = a;
c1.r = d;
c2.c = b;
c2.r = d;
return getCrossPoints(c1, c2);
}
// ???????????°??¨??????
seg scan() {
seg a;
scanf("%lf%lf%lf%lf", &a.p1.x, &a.p1.y, &a.p2.x, &a.p2.y);
return a;
}
void prin(seg a) {
printf("%.10f %.10f %.10f %.10f\n", a.p1.x, a.p1.y, a.p2.x, a.p2.y);
}
//
/////------Library END-------//////////////////////////////////////
// exp?????????
// //////a=x??§?¨????b=y??§?¨????c=?§?????????????d=????????????????????¢
// p[i][j].x=a-d*sin(M_PI/180*(72*j+c));
// p[i][j].y=b+d*cos(M_PI/180*(72*j+c));
/////////////////////////////////////////////////
int main() {
int n;
while (cin >> n, n) {
Point p[n];
int ans = 1;
r(i, n) cin >> p[i].x >> p[i].y;
r(i, n) for (int j = i + 1; j < n; j++) {
if (getDistancePP(p[i], p[j]) <= 2.0) {
seg s = identifyPoint(p[i], p[j], 1);
int a1 = 0, a2 = 0;
Point p3, p4;
p3 = s.p1;
p4 = s.p2;
r(k, n) if (abs(getDistancePP(p3, p[k])) <= 1.000001) a1++;
r(k, n) if (abs(getDistancePP(p4, p[k])) <= 1.000001) a2++;
ans = max(ans, max(a1, a2));
}
}
cout << ans << endl;
}
}
|
[["-", 8, 9, 0, 57, 15, 339, 51, 16, 17, 18], ["+", 8, 9, 0, 57, 15, 339, 51, 16, 17, 19], ["-", 64, 9, 0, 57, 15, 339, 51, 16, 12, 13], ["+", 64, 9, 0, 57, 15, 339, 51, 16, 12, 13]]
| 1
| 3,219
|
#include <bits/stdc++.h>
using namespace std;
/*{{{*/ // template
#define rep(i, n) for (int i = 0; i < n; i++)
#define INF 1 << 29
#define LINF LLONG_MAX / 3
#define mp make_pair
#define pb push_back
#define EB emplace_back
#define fi first
#define se second
#define all(v) ALL(v)
#define sz(x) (int)(x).size()
#define debug(x) cerr << #x << ":" << x << endl
#define debug2(x, y) cerr << #x << "," << #y ":" << x << "," << y << endl
// struct fin{ fin(){ cin.tie(0); ios::sync_with_stdio(false); } } fin_;
struct Double {
double d;
explicit Double(double x) : d(x) {}
};
ostream &operator<<(ostream &os, const Double x) {
os << fixed << setprecision(20) << x.d;
return os;
}
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {
os << "[";
for (const auto &v : vec) {
os << v << ",";
}
os << "]";
return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << "(" << p.first << "," << p.second << ")";
return os;
}
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<vi> vvi;
ll gcd(ll a, ll b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
constexpr double eps = 1e-14;
constexpr ll mod = 1e9 + 7;
const int dx[] = {1, 0, -1, 0}, dy[] = {0, 1, 0, -1};
/*}}}*/
int N;
void solve() {
vector<double> x(N), y(N);
rep(i, N) { cin >> x[i] >> y[i]; }
int ans = 1;
rep(i, N) rep(j, N) if (i != j) {
double vx = x[i] - x[j];
double vy = y[i] - y[j];
double d = sqrt(vx * vx + vy * vy);
if (d > 2)
continue;
double r = sqrt(1 - (d / 2) * (d / 2));
double rx = -vy * r / d;
double ry = vx * r / d;
double cx = (x[i] + x[j]) / 2 + rx;
double cy = (y[i] + y[j]) / 2 + ry;
int cnt = 0;
rep(k, N) {
double tx = cx - x[k];
double ty = cy - y[k];
double dd = sqrt(tx * tx + ty * ty);
if (dd <= 1)
cnt++;
}
ans = max(ans, cnt);
}
cout << ans << endl;
}
int main() {
while (cin >> N) {
if (N == 0)
break;
solve();
}
}
|
#include <bits/stdc++.h>
using namespace std;
/*{{{*/ // template
#define rep(i, n) for (int i = 0; i < n; i++)
#define INF 1 << 29
#define LINF LLONG_MAX / 3
#define mp make_pair
#define pb push_back
#define EB emplace_back
#define fi first
#define se second
#define all(v) ALL(v)
#define sz(x) (int)(x).size()
#define debug(x) cerr << #x << ":" << x << endl
#define debug2(x, y) cerr << #x << "," << #y ":" << x << "," << y << endl
// struct fin{ fin(){ cin.tie(0); ios::sync_with_stdio(false); } } fin_;
struct Double {
double d;
explicit Double(double x) : d(x) {}
};
ostream &operator<<(ostream &os, const Double x) {
os << fixed << setprecision(20) << x.d;
return os;
}
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {
os << "[";
for (const auto &v : vec) {
os << v << ",";
}
os << "]";
return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << "(" << p.first << "," << p.second << ")";
return os;
}
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<vi> vvi;
ll gcd(ll a, ll b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
constexpr double eps = 1e-14;
constexpr ll mod = 1e9 + 7;
const int dx[] = {1, 0, -1, 0}, dy[] = {0, 1, 0, -1};
/*}}}*/
int N;
void solve() {
vector<double> x(N), y(N);
rep(i, N) { cin >> x[i] >> y[i]; }
int ans = 1;
rep(i, N) rep(j, N) if (i != j) {
// cout << "i,j = " << i << "," << j << endl;
double vx = x[i] - x[j];
double vy = y[i] - y[j];
double d = sqrt(vx * vx + vy * vy);
if (d + eps > 2)
continue;
double r = sqrt(1 - (d / 2) * (d / 2));
double rx = -vy * r / d;
double ry = vx * r / d;
double cx = (x[i] + x[j]) / 2 + rx;
double cy = (y[i] + y[j]) / 2 + ry;
int cnt = 0;
rep(k, N) {
double tx = cx - x[k];
double ty = cy - y[k];
double dd = sqrt(tx * tx + ty * ty);
// cout << "dd=" << dd << endl;
if (dd <= 1 + eps)
cnt++;
}
// cout << "cnt : " << cnt << endl;
ans = max(ans, cnt);
}
cout << ans << endl;
}
int main() {
while (cin >> N) {
if (N == 0)
break;
solve();
}
}
|
[["+", 0, 57, 15, 339, 51, 16, 31, 16, 17, 72], ["+", 0, 57, 15, 339, 51, 16, 31, 16, 12, 22], ["+", 0, 57, 15, 339, 51, 16, 12, 16, 17, 72], ["+", 0, 57, 15, 339, 51, 16, 12, 16, 12, 22]]
| 1
| 630
|
#include <bits/stdc++.h>
using namespace std;
using ld = long double;
using P = complex<ld>;
const ld eps = 1e-6;
int main() {
int N;
while (cin >> N, N) {
vector<ld> x(N), y(N);
vector<P> p(N);
for (int i = 0; i < N; i++) {
cin >> x[i] >> y[i];
p[i] = P(x[i], y[i]);
}
vector<P> ko;
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
if (norm(p[i] - p[j]) < 4.0 + eps) {
auto d = p[i] - p[j];
ko.push_back(p[j] + (d * (ld)0.5) +
d * P(0, 1) / abs(d) * sqrtl(1 - norm(d * (ld)0.5)));
ko.push_back(p[j] + (d * (ld)0.5) -
d * P(0, 1) / abs(d) * sqrtl(1 - norm(d * (ld)0.5)));
}
}
}
int res = 0;
for (auto c : ko) {
int cnt = 0;
for (int i = 0; i < N; i++) {
if (norm(c - p[i]) < 1.0001) {
cnt++;
}
}
res = max(res, cnt);
}
cout << res << endl;
}
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
using ld = long double;
using P = complex<ld>;
const ld eps = 1e-6;
int main() {
int N;
while (cin >> N, N) {
vector<ld> x(N), y(N);
vector<P> p(N);
for (int i = 0; i < N; i++) {
cin >> x[i] >> y[i];
p[i] = P(x[i], y[i]);
}
vector<P> ko;
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
if (norm(p[i] - p[j]) < 4.0 + eps) {
auto d = p[i] - p[j];
ko.push_back(p[j] + (d * (ld)0.5) +
d * P(0, 1) / abs(d) * sqrtl(1 - norm(d * (ld)0.5)));
ko.push_back(p[j] + (d * (ld)0.5) -
d * P(0, 1) / abs(d) * sqrtl(1 - norm(d * (ld)0.5)));
}
}
}
int res = 1;
for (auto c : ko) {
int cnt = 0;
for (int i = 0; i < N; i++) {
if (norm(c - p[i]) < 1.0001) {
cnt++;
}
}
res = max(res, cnt);
}
cout << res << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 356
|
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define repl(i, a, b) for (int i = (int)(a); i < (int)(b); i++)
#define repr(i, n) for (int i = (int)(n - 1); i >= 0; i--)
#define rep(i, n) repl(i, 0, n)
#define each(itr, v) for (auto itr : v)
#define pb(s) push_back(s)
#define all(x) (x).begin(), (x).end()
#define dbg(x) cout << #x " = " << x << endl
#define print(x) cout << x << endl
#define maxch(x, y) x = max(x, y)
#define minch(x, y) x = min(x, y)
#define uni(x) x.erase(unique(all(x)), x.end())
#define exist(x, y) (find(all(x), y) != x.end())
#define bcnt(x) bitset<32>(x).count()
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> P;
typedef pair<double, double> PD;
typedef pair<P, int> PPI;
typedef pair<int, P> PIP;
typedef pair<ll, ll> PL;
typedef pair<P, ll> PPL;
typedef set<int> S;
#define INF INT_MAX / 3
#define MAX_N 1000000001
vector<PD> cli(double a, double b, double c, PD c1) {
double l = a * a + b * b, k = a * c1.fi + b * c1.se + c, d = l - k * k;
vector<PD> v;
if (d > 0) {
double ds = sqrt(d), apl = a / l, bpl = b / l;
double xc = c1.fi - apl * k, xd = bpl * ds, yc = c1.se - bpl * k,
yd = apl * ds;
v.pb(PD(xc - xd, yc + yd)), v.pb(PD(xc + xd, yc - yd));
} else if (d == 0) {
v.pb(PD(c1.fi - a * k / l, c1.se - b * k / l));
}
return v;
}
vector<PD> cci(PD c1, PD c2) {
double a = c1.fi - c2.fi, b = c1.se - c2.se;
return cli(2.0 * a, 2.0 * b, 0 - a * (c1.fi + c2.fi) - b * (c1.se + c2.se),
c1);
}
bool dist(PD p1, PD p2) {
return (pow(p1.fi - p2.fi, 2.0) + pow(p1.se - p2.se, 2.0)) <= 1.0 + 1e-7;
}
int main() {
cin.sync_with_stdio(false);
int n;
while (cin >> n, n) {
vector<PD> v(n);
rep(i, n) cin >> v[i].fi >> v[i].se;
int maxi = 0;
rep(i, n - 1) repl(j, i + 1, n) {
vector<PD> p = cci(v[i], v[j]);
rep(k, p.size()) {
int cnt = 0;
rep(l, n) {
if (dist(p[k], v[l]))
cnt++;
}
maxch(maxi, cnt);
}
}
cout << maxi << endl;
}
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define repl(i, a, b) for (int i = (int)(a); i < (int)(b); i++)
#define repr(i, n) for (int i = (int)(n - 1); i >= 0; i--)
#define rep(i, n) repl(i, 0, n)
#define each(itr, v) for (auto itr : v)
#define pb(s) push_back(s)
#define all(x) (x).begin(), (x).end()
#define dbg(x) cout << #x " = " << x << endl
#define print(x) cout << x << endl
#define maxch(x, y) x = max(x, y)
#define minch(x, y) x = min(x, y)
#define uni(x) x.erase(unique(all(x)), x.end())
#define exist(x, y) (find(all(x), y) != x.end())
#define bcnt(x) bitset<32>(x).count()
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> P;
typedef pair<double, double> PD;
typedef pair<P, int> PPI;
typedef pair<int, P> PIP;
typedef pair<ll, ll> PL;
typedef pair<P, ll> PPL;
typedef set<int> S;
#define INF INT_MAX / 3
#define MAX_N 1000000001
vector<PD> cli(double a, double b, double c, PD c1) {
double l = a * a + b * b, k = a * c1.fi + b * c1.se + c, d = l - k * k;
vector<PD> v;
if (d > 0) {
double ds = sqrt(d), apl = a / l, bpl = b / l;
double xc = c1.fi - apl * k, xd = bpl * ds, yc = c1.se - bpl * k,
yd = apl * ds;
v.pb(PD(xc - xd, yc + yd)), v.pb(PD(xc + xd, yc - yd));
} else if (d == 0) {
v.pb(PD(c1.fi - a * k / l, c1.se - b * k / l));
}
return v;
}
vector<PD> cci(PD c1, PD c2) {
double a = c1.fi - c2.fi, b = c1.se - c2.se;
return cli(2.0 * a, 2.0 * b, 0 - a * (c1.fi + c2.fi) - b * (c1.se + c2.se),
c1);
}
bool dist(PD p1, PD p2) {
return (pow(p1.fi - p2.fi, 2.0) + pow(p1.se - p2.se, 2.0)) <= 1.0 + 1e-7;
}
int main() {
cin.sync_with_stdio(false);
int n;
while (cin >> n, n) {
vector<PD> v(n);
rep(i, n) cin >> v[i].fi >> v[i].se;
int maxi = 1;
rep(i, n - 1) repl(j, i + 1, n) {
vector<PD> p = cci(v[i], v[j]);
rep(k, p.size()) {
int cnt = 0;
rep(l, n) {
if (dist(p[k], v[l]))
cnt++;
}
maxch(maxi, cnt);
}
}
cout << maxi << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 661
|
/*
??????????????????????????????3??\??????3???????????¨?????????????????????????????????????????¨????????????
*/
#include <algorithm>
#include <bitset>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace std;
typedef long double ld;
typedef long long ll;
typedef vector<int> vint;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
typedef complex<double> comd;
#define rep(i, n) for (int i = 0; i < n; i++)
#define srep(i, a, n) for (int i = a; i < n; i++)
#define REP(i, n) for (int i = 0; i <= n; i++)
#define SREP(i, a, n) for (int i = a; i <= n; i++)
#define rrep(i, n) for (int i = n - 1; i >= 0; i--)
#define RREP(i, n) for (int i = n; i >= 0; i--)
#define all(a) (a).begin(), (a).end()
#define mp(a, b) make_pair(a, b)
#define mt make_tuple
#define fst first
#define scn second
#define bucnt(x) __buildin__popcount(x)
#define debug(x) cout << "debug: " << x << endl
const ll inf = (ll)1e9;
const ll mod = (ll)1e9 + 7;
const ld eps = 1e-9;
const int dx[] = {0, 1, 0, -1};
const int dy[] = {1, 0, -1, 0};
double Dist2(pdd a, pdd b) {
return (a.fst - b.fst) * (a.fst - b.fst) + (a.scn - b.scn) * (a.scn - b.scn);
}
vector<pdd> getCenter(pdd a, pdd b) {
vector<pdd> ret;
pdd c = mp((a.fst + b.fst) / 2.0, (a.scn + b.scn) / 2.0);
pdd v = mp(a.scn - b.scn, b.fst - a.fst);
double D = sqrt(v.fst * v.fst + v.scn * v.scn);
v.fst /= D;
v.scn /= D;
D = sqrt(1 - Dist2(a, b) / 4.0);
v.fst *= D;
v.scn *= D;
ret.push_back(mp(c.fst + v.fst, c.scn + v.scn));
ret.push_back(mp(c.fst - v.fst, c.scn - v.scn));
return ret;
}
int main() {
while (true) {
int n;
cin >> n;
if (n == 0)
break;
vector<pdd> p(n, mp(0, 0));
rep(i, n) cin >> p[i].fst >> p[i].scn;
int ret = 0;
rep(i, n) {
rep(j, i) {
if (Dist2(p[i], p[j]) <= 4.0) {
vector<pdd> c = getCenter(p[i], p[j]);
int tmp = 0;
rep(k, n) {
if (Dist2(c[0], p[k]) <= 1.0 + eps)
tmp++;
}
ret = max(ret, tmp);
tmp = 0;
rep(k, n) {
if (Dist2(c[1], p[k]) <= 1.0 + eps)
tmp++;
}
ret = max(ret, tmp);
}
}
}
cout << ret << endl;
}
return 0;
}
|
#include <algorithm>
#include <bitset>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace std;
typedef long double ld;
typedef long long ll;
typedef vector<int> vint;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
typedef complex<double> comd;
#define rep(i, n) for (int i = 0; i < n; i++)
#define srep(i, a, n) for (int i = a; i < n; i++)
#define REP(i, n) for (int i = 0; i <= n; i++)
#define SREP(i, a, n) for (int i = a; i <= n; i++)
#define rrep(i, n) for (int i = n - 1; i >= 0; i--)
#define RREP(i, n) for (int i = n; i >= 0; i--)
#define all(a) (a).begin(), (a).end()
#define mp(a, b) make_pair(a, b)
#define mt make_tuple
#define fst first
#define scn second
#define bucnt(x) __buildin__popcount(x)
#define debug(x) cout << "debug: " << x << endl
const ll inf = (ll)1e9;
const ll mod = (ll)1e9 + 7;
const ld eps = 1e-9;
const int dx[] = {0, 1, 0, -1};
const int dy[] = {1, 0, -1, 0};
double Dist2(pdd a, pdd b) {
return (a.fst - b.fst) * (a.fst - b.fst) + (a.scn - b.scn) * (a.scn - b.scn);
}
vector<pdd> getCenter(pdd a, pdd b) {
vector<pdd> ret;
pdd c = mp((a.fst + b.fst) / 2.0, (a.scn + b.scn) / 2.0);
pdd v = mp(a.scn - b.scn, b.fst - a.fst);
double D = sqrt(v.fst * v.fst + v.scn * v.scn);
v.fst /= D;
v.scn /= D;
D = sqrt(1 - Dist2(a, b) / 4.0);
v.fst *= D;
v.scn *= D;
ret.push_back(mp(c.fst + v.fst, c.scn + v.scn));
ret.push_back(mp(c.fst - v.fst, c.scn - v.scn));
return ret;
}
int main() {
while (true) {
int n;
cin >> n;
if (n == 0)
break;
vector<pdd> p(n, mp(0, 0));
rep(i, n) cin >> p[i].fst >> p[i].scn;
int ret = 1;
rep(i, n) {
rep(j, i) {
if (Dist2(p[i], p[j]) <= 4.0) {
vector<pdd> c = getCenter(p[i], p[j]);
int tmp = 0;
rep(k, n) {
if (Dist2(c[0], p[k]) <= 1.0 + eps)
tmp++;
}
ret = max(ret, tmp);
tmp = 0;
rep(k, n) {
if (Dist2(c[1], p[k]) <= 1.0 + eps)
tmp++;
}
ret = max(ret, tmp);
}
}
}
cout << ret << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 693
|
#include "bits/stdc++.h"
#define REP(i, n) for (ll i = 0; i < n; ++i)
#define RREP(i, n) for (ll i = n - 1; i >= 0; --i)
#define FOR(i, m, n) for (ll i = m; i < n; ++i)
#define RFOR(i, m, n) for (ll i = n - 1; i >= m; --i)
#define ALL(v) (v).begin(), (v).end()
#define UNIQUE(v) v.erase(unique(ALL(v)), v.end());
#define DUMP(v) \
REP(aa, (v).size()) { \
cout << v[aa]; \
if (aa != v.size() - 1) \
cout << " "; \
else \
cout << endl; \
}
#define INF 1000000001ll
#define MOD 1000000007ll
#define EPS 1e-9
const int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1};
const int dy[8] = {0, 1, 1, 1, 0, -1, -1, -1};
using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef vector<vi> vvi;
typedef vector<vl> vvl;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
ll max(ll a, int b) { return max(a, ll(b)); }
ll max(int a, ll b) { return max(ll(a), b); }
ll min(ll a, int b) { return min(a, ll(b)); }
ll min(int a, ll b) { return min(ll(a), b); }
///(?´????????`)(?´????????`)(?´????????`)(?´????????`)(?´????????`)(?´????????`)///
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
while (cin >> n, n) {
vector<double> x(n), y(n);
int ans = -1;
REP(i, n) cin >> x[i] >> y[i];
REP(i, n) {
REP(j, n) {
if (i == j)
continue;
double ax = x[j] - x[i], ay = y[j] - y[i];
if (ax * ax + ay * ay + EPS > 4)
continue;
double px =
x[i] + ax / 2 +
sqrt((4 - (ax * ax + ay * ay)) / (4 * (ax * ax + ay * ay))) *
ay,
py =
y[i] + ay / 2 -
sqrt((4 - (ax * ax + ay * ay)) / (4 * (ax * ax + ay * ay))) *
ax;
int cnt = 0;
REP(k, n) {
if ((x[k] - px) * (x[k] - px) + (y[k] - py) * (y[k] - py) < 1 + EPS)
cnt++;
}
ans = max(ans, cnt);
}
}
REP(i, n) {
REP(j, n) {
if (i == j)
continue;
double ax = x[j] - x[i], ay = y[j] - y[i];
if (ax * ax + ay * ay + EPS > 4)
continue;
double px =
x[i] + ax / 2 -
sqrt((4 - (ax * ax + ay * ay)) / (4 * (ax * ax + ay * ay))) *
ay,
py =
y[i] + ay / 2 +
sqrt((4 - (ax * ax + ay * ay)) / (4 * (ax * ax + ay * ay))) *
ax;
int cnt = 0;
REP(k, n) {
if ((x[k] - px) * (x[k] - px) + (y[k] - py) * (y[k] - py) < 1 + EPS)
cnt++;
}
ans = max(ans, cnt);
}
}
cout << ans << endl;
}
}
|
#include "bits/stdc++.h"
#define REP(i, n) for (ll i = 0; i < n; ++i)
#define RREP(i, n) for (ll i = n - 1; i >= 0; --i)
#define FOR(i, m, n) for (ll i = m; i < n; ++i)
#define RFOR(i, m, n) for (ll i = n - 1; i >= m; --i)
#define ALL(v) (v).begin(), (v).end()
#define UNIQUE(v) v.erase(unique(ALL(v)), v.end());
#define DUMP(v) \
REP(aa, (v).size()) { \
cout << v[aa]; \
if (aa != v.size() - 1) \
cout << " "; \
else \
cout << endl; \
}
#define INF 1000000001ll
#define MOD 1000000007ll
#define EPS 1e-9
const int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1};
const int dy[8] = {0, 1, 1, 1, 0, -1, -1, -1};
using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef vector<vi> vvi;
typedef vector<vl> vvl;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
ll max(ll a, int b) { return max(a, ll(b)); }
ll max(int a, ll b) { return max(ll(a), b); }
ll min(ll a, int b) { return min(a, ll(b)); }
ll min(int a, ll b) { return min(ll(a), b); }
///(?´????????`)(?´????????`)(?´????????`)(?´????????`)(?´????????`)(?´????????`)///
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
while (cin >> n, n) {
vector<double> x(n), y(n);
int ans = 1;
REP(i, n) cin >> x[i] >> y[i];
REP(i, n) {
REP(j, n) {
if (i == j)
continue;
double ax = x[j] - x[i], ay = y[j] - y[i];
if (ax * ax + ay * ay + EPS > 4)
continue;
double px =
x[i] + ax / 2 +
sqrt((4 - (ax * ax + ay * ay)) / (4 * (ax * ax + ay * ay))) *
ay,
py =
y[i] + ay / 2 -
sqrt((4 - (ax * ax + ay * ay)) / (4 * (ax * ax + ay * ay))) *
ax;
int cnt = 0;
REP(k, n) {
if ((x[k] - px) * (x[k] - px) + (y[k] - py) * (y[k] - py) < 1 + EPS)
cnt++;
}
ans = max(ans, cnt);
}
}
REP(i, n) {
REP(j, n) {
if (i == j)
continue;
double ax = x[j] - x[i], ay = y[j] - y[i];
if (ax * ax + ay * ay + EPS > 4)
continue;
double px =
x[i] + ax / 2 -
sqrt((4 - (ax * ax + ay * ay)) / (4 * (ax * ax + ay * ay))) *
ay,
py =
y[i] + ay / 2 +
sqrt((4 - (ax * ax + ay * ay)) / (4 * (ax * ax + ay * ay))) *
ax;
int cnt = 0;
REP(k, n) {
if ((x[k] - px) * (x[k] - px) + (y[k] - py) * (y[k] - py) < 1 + EPS)
cnt++;
}
ans = max(ans, cnt);
}
}
cout << ans << endl;
}
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 781
|
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <time.h>
#include <typeinfo>
#include <vector>
#define syosu(x) fixed << setprecision(x)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> P;
typedef pair<double, double> pdd;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<double> vd;
typedef vector<vd> vvd;
typedef vector<ll> vl;
typedef vector<vl> vvl;
typedef vector<char> vc;
typedef vector<vc> vvc;
typedef vector<string> vs;
typedef vector<bool> vb;
typedef vector<vb> vvb;
typedef vector<P> vp;
typedef vector<vp> vvp;
typedef vector<pll> vpll;
typedef pair<P, int> pip;
typedef vector<pip> vip;
const int inf = 1 << 28;
const ll INF = 1ll << 60;
const double pi = acos(-1);
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const int dx[4] = {0, 1, 0, -1}, dy[4] = {1, 0, -1, 0};
struct point {
double x, y;
point operator+(point p) { return point{x + p.x, y + p.y}; }
point operator-(point p) { return point{x - p.x, y - p.y}; }
point operator*(double p) { return point{x * p, y * p}; }
point operator/(double p) {
if (!p)
return point{0, 0};
return point{x / p, y / p};
}
bool operator==(point p) {
return fabs(x - p.x) < eps && fabs(y - p.y) < eps;
}
bool operator<(point p) {
if (fabs(x - p.x) > eps)
return x < p.x;
return y < p.y;
}
};
typedef pair<point, point> pp;
typedef vector<point> VP;
const point O{0, 0};
double Length(point x, point y) {
point z = y - x;
return sqrt(z.x * z.x + z.y * z.y);
}
point Normal(point p) { return point{p.y, -p.x}; }
int n;
VP p;
int f(point q) {
int res = 0;
for (int i = 0; i < n; i++)
if (Length(p[i], q) < 1 + eps)
res++;
return res;
}
int main() {
while (1) {
cin >> n;
if (!n)
break;
p = VP(n);
for (int i = 0; i < n; i++)
cin >> p[i].x >> p[i].y;
int res = 0;
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++) {
point c = (p[i] + p[j]) / 2, e = Normal(p[i] - p[j]);
double l = Length(c, p[i]);
e = e / Length(O, e) * sqrt(1.0 - l * l);
res = max(res, max(f(c + e), f(c - e)));
}
cout << res << endl;
}
}
|
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <time.h>
#include <typeinfo>
#include <vector>
#define syosu(x) fixed << setprecision(x)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> P;
typedef pair<double, double> pdd;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<double> vd;
typedef vector<vd> vvd;
typedef vector<ll> vl;
typedef vector<vl> vvl;
typedef vector<char> vc;
typedef vector<vc> vvc;
typedef vector<string> vs;
typedef vector<bool> vb;
typedef vector<vb> vvb;
typedef vector<P> vp;
typedef vector<vp> vvp;
typedef vector<pll> vpll;
typedef pair<P, int> pip;
typedef vector<pip> vip;
const int inf = 1 << 28;
const ll INF = 1ll << 60;
const double pi = acos(-1);
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const int dx[4] = {0, 1, 0, -1}, dy[4] = {1, 0, -1, 0};
struct point {
double x, y;
point operator+(point p) { return point{x + p.x, y + p.y}; }
point operator-(point p) { return point{x - p.x, y - p.y}; }
point operator*(double p) { return point{x * p, y * p}; }
point operator/(double p) {
if (!p)
return point{0, 0};
return point{x / p, y / p};
}
bool operator==(point p) {
return fabs(x - p.x) < eps && fabs(y - p.y) < eps;
}
bool operator<(point p) {
if (fabs(x - p.x) > eps)
return x < p.x;
return y < p.y;
}
};
typedef pair<point, point> pp;
typedef vector<point> VP;
const point O{0, 0};
double Length(point x, point y) {
point z = y - x;
return sqrt(z.x * z.x + z.y * z.y);
}
point Normal(point p) { return point{p.y, -p.x}; }
int n;
VP p;
int f(point q) {
int res = 0;
for (int i = 0; i < n; i++)
if (Length(p[i], q) < 1 + eps)
res++;
return res;
}
int main() {
while (1) {
cin >> n;
if (!n)
break;
p = VP(n);
for (int i = 0; i < n; i++)
cin >> p[i].x >> p[i].y;
int res = 1;
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++) {
point c = (p[i] + p[j]) / 2, e = Normal(p[i] - p[j]);
double l = Length(c, p[i]);
e = e / Length(O, e) * sqrt(1.0 - l * l);
res = max(res, max(f(c + e), f(c - e)));
}
cout << res << endl;
}
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 781
|
#include <iostream>
#include <math.h>
using namespace std;
#define REP(i, n) for (int i = 0; i < n; i++)
double p[300][2];
int n;
double dis(double x1, double y1, double x2, double y2) {
return sqrt(pow(x1 - x2, 2) + pow(y1 - y2, 2));
}
int circle(double x, double y, int i, int j) {
int count = 2;
REP(k, n) {
if (k != i && k != j) {
if (dis(x, y, p[k][0], p[k][1]) < 1) {
count += 1;
}
}
}
return count;
}
int main() {
while (1) {
cin >> n;
if (n == 0)
break;
REP(i, n) {
cin >> p[i][0];
cin >> p[i][1];
}
int output = 0;
REP(i, n) {
for (int j = i + 1; j < n; j++) {
double cx = (p[i][0] + p[j][0]) / 2;
double cy = (p[i][1] + p[j][1]) / 2;
double d = dis(p[i][0], p[i][1], p[j][0], p[j][1]);
if (d > 2) {
continue;
} else if (d == 2) {
output = max(output, circle(cx, cy, i, j));
} else {
double a1 = acos(d / 2);
double a2 = atan2((p[j][1] - p[i][1]), p[j][0] - p[i][0]);
double x1 = p[i][0] + cos(a2 + a1);
double y1 = p[i][1] + sin(a2 + a1);
double x2 = p[i][0] + cos(a2 - a1);
double y2 = p[i][1] + sin(a2 - a1);
output = max(output, circle(x1, y1, i, j));
output = max(output, circle(x2, y2, i, j));
}
}
}
cout << output << endl;
}
}
|
#include <iostream>
#include <math.h>
using namespace std;
#define REP(i, n) for (int i = 0; i < n; i++)
double p[300][2];
int n;
double dis(double x1, double y1, double x2, double y2) {
return sqrt(pow(x1 - x2, 2) + pow(y1 - y2, 2));
}
int circle(double x, double y, int i, int j) {
int count = 2;
REP(k, n) {
if (k != i && k != j) {
if (dis(x, y, p[k][0], p[k][1]) < 1) {
count += 1;
}
}
}
return count;
}
int main() {
while (1) {
cin >> n;
if (n == 0)
break;
REP(i, n) {
cin >> p[i][0];
cin >> p[i][1];
}
int output = 1;
REP(i, n) {
for (int j = i + 1; j < n; j++) {
double cx = (p[i][0] + p[j][0]) / 2;
double cy = (p[i][1] + p[j][1]) / 2;
double d = dis(p[i][0], p[i][1], p[j][0], p[j][1]);
if (d > 2) {
continue;
} else if (d == 2) {
output = max(output, circle(cx, cy, i, j));
} else {
double a1 = acos(d / 2);
double a2 = atan2((p[j][1] - p[i][1]), p[j][0] - p[i][0]);
double x1 = p[i][0] + cos(a2 + a1);
double y1 = p[i][1] + sin(a2 + a1);
double x2 = p[i][0] + cos(a2 - a1);
double y2 = p[i][1] + sin(a2 - a1);
output = max(output, circle(x1, y1, i, j));
output = max(output, circle(x2, y2, i, j));
}
}
}
cout << output << endl;
}
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 516
|
#include "bits/stdc++.h"
using namespace std;
typedef complex<double> Point;
const double eps = 1e-9;
int main(void) {
cin.tie(0);
ios::sync_with_stdio(false);
int N;
while (cin >> N, N) {
vector<Point> P(N);
for (int i = 0; i < N; i++) {
double x, y;
cin >> x >> y;
P[i] = Point(x, y);
}
if (N == 1) {
cout << 1 << endl;
return 0;
}
int ans = 0;
for (int i = 0; i < N; i++)
for (int j = i + 1; j < N; j++) {
double dist = abs(P[i] - P[j]);
if (dist > 2)
continue;
double r = sqrt(1 - dist * dist / 4);
double difx = -(P[i] - P[j]).imag() * r / dist;
double dify = (P[i] - P[j]).real() * r / dist;
Point new_P(difx, dify);
Point check_P(new_P + (P[i] + P[j]) / 2.0);
int cnt = 0;
for (int k = 0; k < N; k++) {
if (abs(check_P - P[k]) < 1.0 + eps)
cnt++;
}
ans = max(ans, cnt);
}
cout << ans << endl;
}
return 0;
}
|
#include "bits/stdc++.h"
using namespace std;
typedef complex<double> Point;
const double eps = 1e-9;
int main(void) {
cin.tie(0);
ios::sync_with_stdio(false);
int N;
while (cin >> N, N) {
vector<Point> P(N);
for (int i = 0; i < N; i++) {
double x, y;
cin >> x >> y;
P[i] = Point(x, y);
}
if (N == 1) {
cout << 1 << endl;
continue;
}
int ans = 1;
for (int i = 0; i < N; i++)
for (int j = i + 1; j < N; j++) {
double dist = abs(P[i] - P[j]);
if (dist > 2)
continue;
double r = sqrt(1 - dist * dist / 4);
double difx = -(P[i] - P[j]).imag() * r / dist;
double dify = (P[i] - P[j]).real() * r / dist;
Point new_P(difx, dify);
Point check_P(new_P + (P[i] + P[j]) / 2.0);
int cnt = 0;
for (int k = 0; k < N; k++) {
if (abs(check_P - P[k]) < 1.0 + eps)
cnt++;
}
ans = max(ans, cnt);
}
cout << ans << endl;
}
return 0;
}
|
[["-", 8, 9, 0, 57, 64, 9, 0, 37, 0, 38], ["-", 8, 9, 0, 57, 64, 9, 0, 37, 0, 13], ["+", 8, 9, 0, 57, 64, 9, 0, 116, 0, 117], ["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 328
|
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int INF = 1e9;
const ll LINF = 1e18;
template <class S, class T>
ostream &operator<<(ostream &out, const pair<S, T> &o) {
out << "(" << o.first << "," << o.second << ")";
return out;
}
template <class T> ostream &operator<<(ostream &out, const vector<T> V) {
for (int i = 0; i < V.size(); i++) {
out << V[i];
if (i != V.size() - 1)
out << " ";
}
return out;
}
template <class T>
ostream &operator<<(ostream &out, const vector<vector<T>> Mat) {
for (int i = 0; i < Mat.size(); i++) {
if (i != 0)
out << endl;
out << Mat[i];
}
return out;
}
template <class S, class T>
ostream &operator<<(ostream &out, const map<S, T> mp) {
out << "{ ";
for (auto it = mp.begin(); it != mp.end(); it++) {
out << it->first << ":" << it->second;
if (mp.size() - 1 != distance(mp.begin(), it))
out << ", ";
}
out << " }";
return out;
}
/*
<url:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1132>
問題文============================================================
=================================================================
解説=============================================================
================================================================
*/
typedef complex<double> Point;
int n;
int solve() {
int res = 1;
vector<Point> ps(n);
for (int i = 0; i < n; i++) {
double x, y;
cin >> x >> y;
ps[i] = Point(x, y);
}
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
double dist = abs(ps[i] - ps[j]);
if (dist > 2)
continue;
Point mp = (ps[i] + ps[j]) / 2.;
Point dp = ps[i] - ps[j];
double x = sqrt(1 - dist * dist / 4);
Point cp = Point(-dp.imag() * x / dist + mp.real(),
dp.real() * x / dist + mp.imag());
int cnt = 0;
for (int k = 0; k < n; k++) {
if (abs(cp - ps[k]) <= 1.0)
cnt++;
}
res = max(res, cnt);
}
}
return res;
}
int main(void) {
cin.tie(0);
ios_base::sync_with_stdio(false);
while (cin >> n, n) {
cout << solve() << endl;
}
return 0;
}
|
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int INF = 1e9;
const ll LINF = 1e18;
template <class S, class T>
ostream &operator<<(ostream &out, const pair<S, T> &o) {
out << "(" << o.first << "," << o.second << ")";
return out;
}
template <class T> ostream &operator<<(ostream &out, const vector<T> V) {
for (int i = 0; i < V.size(); i++) {
out << V[i];
if (i != V.size() - 1)
out << " ";
}
return out;
}
template <class T>
ostream &operator<<(ostream &out, const vector<vector<T>> Mat) {
for (int i = 0; i < Mat.size(); i++) {
if (i != 0)
out << endl;
out << Mat[i];
}
return out;
}
template <class S, class T>
ostream &operator<<(ostream &out, const map<S, T> mp) {
out << "{ ";
for (auto it = mp.begin(); it != mp.end(); it++) {
out << it->first << ":" << it->second;
if (mp.size() - 1 != distance(mp.begin(), it))
out << ", ";
}
out << " }";
return out;
}
/*
<url:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1132>
問題文============================================================
=================================================================
解説=============================================================
================================================================
*/
typedef complex<double> Point;
int n;
int solve() {
int res = 1;
vector<Point> ps(n);
for (int i = 0; i < n; i++) {
double x, y;
cin >> x >> y;
ps[i] = Point(x, y);
}
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
double dist = abs(ps[i] - ps[j]);
if (dist > 2)
continue;
Point mp = (ps[i] + ps[j]) / 2.;
Point dp = ps[i] - ps[j];
double x = sqrt(1 - dist * dist / 4);
Point cp = Point(-dp.imag() * x / dist + mp.real(),
dp.real() * x / dist + mp.imag());
int cnt = 0;
for (int k = 0; k < n; k++) {
if (abs(cp - ps[k]) < 1.0 + 1e-9)
cnt++;
}
res = max(res, cnt);
}
}
return res;
}
int main(void) {
cin.tie(0);
ios_base::sync_with_stdio(false);
while (cin >> n, n) {
cout << solve() << endl;
}
return 0;
}
|
[["-", 8, 9, 0, 57, 15, 339, 51, 16, 17, 19], ["+", 8, 9, 0, 57, 15, 339, 51, 16, 17, 18], ["+", 0, 57, 15, 339, 51, 16, 12, 16, 17, 72], ["+", 0, 57, 15, 339, 51, 16, 12, 16, 12, 13]]
| 1
| 645
|
#include <cmath>
#include <iostream>
#define eps 1.0e-9
using namespace std;
int N;
double x[305], y[305];
int count(double cx, double cy) {
int ret = 0;
for (int i = 0; i < N; i++) {
if ((cx - x[i]) * (cx - x[i]) + (cy - y[i]) * (cy - y[i]) <= 1 + eps)
ret++;
}
return ret;
}
int main(void) {
while (1) {
cin >> N;
if (N == 0)
break;
for (int i = 0; i < N; i++)
cin >> x[i] >> y[i];
int ans = -1;
double cx, cy;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (i >= j)
continue;
double px = x[j] - x[i];
double py = y[j] - y[i];
double pnorm = sqrt(px * px + py * py);
px /= pnorm;
py /= pnorm;
double mx = (x[i] + x[j]) / 2.0;
double my = (y[i] + y[j]) / 2.0;
double qnorm = 1 - pnorm * pnorm / 4.0;
if (qnorm < eps)
continue;
qnorm = sqrt(qnorm);
double qx = qnorm * py;
double qy = qnorm * -px;
ans = max(ans, count(mx + qx, my + qy));
ans = max(ans, count(mx - qx, my - qy));
}
}
cout << ans << endl;
}
return 0;
}
|
#include <cmath>
#include <iostream>
#define eps 1.0e-9
using namespace std;
int N;
double x[305], y[305];
int count(double cx, double cy) {
int ret = 0;
for (int i = 0; i < N; i++) {
if ((cx - x[i]) * (cx - x[i]) + (cy - y[i]) * (cy - y[i]) <= 1 + eps)
ret++;
}
return ret;
}
int main(void) {
while (1) {
cin >> N;
if (N == 0)
break;
for (int i = 0; i < N; i++)
cin >> x[i] >> y[i];
int ans = 1;
double cx, cy;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (i >= j)
continue;
double px = x[j] - x[i];
double py = y[j] - y[i];
double pnorm = sqrt(px * px + py * py);
px /= pnorm;
py /= pnorm;
double mx = (x[i] + x[j]) / 2.0;
double my = (y[i] + y[j]) / 2.0;
double qnorm = 1 - pnorm * pnorm / 4.0;
if (qnorm < eps)
continue;
qnorm = sqrt(qnorm);
double qx = qnorm * py;
double qy = qnorm * -px;
ans = max(ans, count(mx + qx, my + qy));
ans = max(ans, count(mx - qx, my - qy));
}
}
cout << ans << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 374
|
//#define __USE_MINGW_ANSI_STDIO 0
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define int ll
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<ll> VL;
typedef vector<VL> VVL;
typedef pair<int, int> PII;
#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)
#define REP(i, n) FOR(i, 0, n)
#define ALL(x) x.begin(), x.end()
#define IN(a, b, x) (a <= x && x < b)
#define MP make_pair
#define PB push_back
#ifdef int
const ll INF = (1LL << 60);
#else
const int INF = (1LL << 30);
#endif
const double PI = 3.14159265359;
const double EPS = 1e-12;
const int MOD = 1000000007;
template <typename T> T &chmin(T &a, const T &b) { return a = min(a, b); }
template <typename T> T &chmax(T &a, const T &b) { return a = max(a, b); }
int dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0};
// y???real(), x???imag()
// point
typedef complex<double> P;
namespace std {
bool operator<(const P &a, const P &b) {
return real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b);
}
bool cmp_y(const P &a, const P &b) {
return a.imag() != b.imag() ? a.imag() < b.imag() : a.real() < b.real();
}
} // namespace std
// circle
struct C {
P p;
double r;
C(const P &p, double r) : p(p), r(r) {}
};
// 2???p1, p2?????????????????????r?????????2?????????
vector<C> calcCircle(P p1, P p2, double r) {
if (abs(p1 - p2) > 2 * r)
return {};
P p3 = {(p1.real() + p2.real()) / 2, (p1.imag() + p2.imag()) / 2};
// cout << p3.real() << " " << p3.imag() << endl;
double l = abs(p1 - p3);
// cout << "l:" << l << endl;
// ????????????p_1p_2
P p1p2 = p2 - p1;
double a = p1p2.real(), b = p1p2.imag();
double dx = b * sqrt((r * r - l * l) / (a * a + b * b)),
dy = a * sqrt((r * r - l * l) / (a * a + b * b));
// cout << "dx:" << dx << " dy:" << dy << endl;
return {{{p3.real() + dx, p3.imag() - dy}, r},
{{p3.real() - dx, p3.imag() + dy}, r}};
}
// ???p??????c????????¨????????¨??????????????????
bool intersectCP(C c, P p) { return abs(p - c.p) <= c.r + EPS; }
P po[305];
signed main(void) {
while (true) {
int n;
cin >> n;
if (!n)
break;
REP(i, n) {
double x, y;
cin >> x >> y;
po[i] = {x, y};
}
int ans = 0;
REP(i, n) FOR(j, i + 1, n) {
vector<C> ret = calcCircle(po[i], po[j], 1);
if (ret.size() == 0)
continue;
// cout << "i:" << i << " j:" << j << endl;
// cout << ret[0].p.real() << " " << ret[0].p.imag() << " " << ret[0].r <<
// endl; cout << ret[1].p.real() << " " << ret[1].p.imag() << " " <<
// ret[1].r << endl;
int num = 0;
REP(k, n) {
num += intersectCP(ret[0], po[k]) ? 1 : 0;
// if(intersectCP(ret[0], po[k])) cout << k << " ";
}
chmax(ans, num);
// cout << "num:" << num << endl;
num = 0;
REP(k, n) {
num += intersectCP(ret[1], po[k]) ? 1 : 0;
// if(intersectCP(ret[1], po[k])) cout << k << " ";
}
// cout << "num:" << num << endl;
chmax(ans, num);
}
cout << ans << endl;
}
return 0;
}
|
//#define __USE_MINGW_ANSI_STDIO 0
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define int ll
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<ll> VL;
typedef vector<VL> VVL;
typedef pair<int, int> PII;
#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)
#define REP(i, n) FOR(i, 0, n)
#define ALL(x) x.begin(), x.end()
#define IN(a, b, x) (a <= x && x < b)
#define MP make_pair
#define PB push_back
#ifdef int
const ll INF = (1LL << 60);
#else
const int INF = (1LL << 30);
#endif
const double PI = 3.14159265359;
const double EPS = 1e-12;
const int MOD = 1000000007;
template <typename T> T &chmin(T &a, const T &b) { return a = min(a, b); }
template <typename T> T &chmax(T &a, const T &b) { return a = max(a, b); }
int dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0};
// y???real(), x???imag()
// point
typedef complex<double> P;
namespace std {
bool operator<(const P &a, const P &b) {
return real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b);
}
bool cmp_y(const P &a, const P &b) {
return a.imag() != b.imag() ? a.imag() < b.imag() : a.real() < b.real();
}
} // namespace std
// circle
struct C {
P p;
double r;
C(const P &p, double r) : p(p), r(r) {}
};
// 2???p1, p2?????????????????????r?????????2?????????
vector<C> calcCircle(P p1, P p2, double r) {
if (abs(p1 - p2) > 2 * r)
return {};
P p3 = {(p1.real() + p2.real()) / 2, (p1.imag() + p2.imag()) / 2};
// cout << p3.real() << " " << p3.imag() << endl;
double l = abs(p1 - p3);
// cout << "l:" << l << endl;
// ????????????p_1p_2
P p1p2 = p2 - p1;
double a = p1p2.real(), b = p1p2.imag();
double dx = b * sqrt((r * r - l * l) / (a * a + b * b)),
dy = a * sqrt((r * r - l * l) / (a * a + b * b));
// cout << "dx:" << dx << " dy:" << dy << endl;
return {{{p3.real() + dx, p3.imag() - dy}, r},
{{p3.real() - dx, p3.imag() + dy}, r}};
}
// ???p??????c????????¨????????¨??????????????????
bool intersectCP(C c, P p) { return abs(p - c.p) <= c.r + EPS; }
P po[305];
signed main(void) {
while (true) {
int n;
cin >> n;
if (!n)
break;
REP(i, n) {
double x, y;
cin >> x >> y;
po[i] = {x, y};
}
int ans = 1;
REP(i, n) FOR(j, i + 1, n) {
vector<C> ret = calcCircle(po[i], po[j], 1);
if (ret.size() == 0)
continue;
// cout << "i:" << i << " j:" << j << endl;
// cout << ret[0].p.real() << " " << ret[0].p.imag() << " " << ret[0].r <<
// endl; cout << ret[1].p.real() << " " << ret[1].p.imag() << " " <<
// ret[1].r << endl;
int num = 0;
REP(k, n) {
num += intersectCP(ret[0], po[k]) ? 1 : 0;
// if(intersectCP(ret[0], po[k])) cout << k << " ";
}
chmax(ans, num);
// cout << "num:" << num << endl;
num = 0;
REP(k, n) {
num += intersectCP(ret[1], po[k]) ? 1 : 0;
// if(intersectCP(ret[1], po[k])) cout << k << " ";
}
// cout << "num:" << num << endl;
chmax(ans, num);
}
cout << ans << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 825
|
#include <algorithm>
#include <cmath>
#include <iostream>
#include <utility>
using namespace std;
const double eps = 1e-8;
struct point {
double x, y;
} P[310];
int x, y, N;
int ans = 1;
double cal_distance(point a, point b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
point cal_center(point a, point b) {
point mid, center;
mid.x = (a.x + b.x) / 2.0;
mid.y = (a.y + b.y) / 2.0;
double angle = atan2(a.x - b.x, b.y - a.y);
double line = sqrt(1 - (cal_distance(a, mid) * cal_distance(a, mid)));
center.x = mid.x + line * cos(angle);
center.y = mid.y + line * sin(angle);
return center;
}
int main() {
while (cin >> N && N > 0) {
for (int i = 0; i < N; i++) {
cin >> P[i].x >> P[i].y;
}
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
if (cal_distance(P[i], P[j]) > 2.0)
continue;
point center = cal_center(P[i], P[j]);
int count = 0;
for (int k = 0; k < N; k++) {
if (cal_distance(P[k], center) < (1.0 + eps))
count++;
}
ans = max(ans, count);
}
}
cout << ans << endl;
}
}
|
#include <algorithm>
#include <cmath>
#include <iostream>
#include <utility>
using namespace std;
const double eps = 1e-8;
struct point {
double x, y;
} P[310];
int x, y, N;
int ans = 1;
double cal_distance(point a, point b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
point cal_center(point a, point b) {
point mid, center;
mid.x = (a.x + b.x) / 2.0;
mid.y = (a.y + b.y) / 2.0;
double angle = atan2(a.x - b.x, b.y - a.y);
double line = sqrt(1 - (cal_distance(a, mid) * cal_distance(a, mid)));
center.x = mid.x + line * cos(angle);
center.y = mid.y + line * sin(angle);
return center;
}
int main() {
while (cin >> N && N > 0) {
ans = 1;
for (int i = 0; i < N; i++) {
cin >> P[i].x >> P[i].y;
}
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
if (cal_distance(P[i], P[j]) > 2.0)
continue;
point center = cal_center(P[i], P[j]);
int count = 0;
for (int k = 0; k < N; k++) {
if (cal_distance(P[k], center) < (1.0 + eps))
count++;
}
ans = max(ans, count);
}
}
cout << ans << endl;
}
}
|
[["+", 0, 52, 8, 9, 0, 1, 0, 11, 31, 22], ["+", 0, 52, 8, 9, 0, 1, 0, 11, 17, 32], ["+", 0, 52, 8, 9, 0, 1, 0, 11, 12, 13], ["+", 8, 9, 0, 52, 8, 9, 0, 1, 0, 35]]
| 1
| 402
|
#include "bits/stdc++.h"
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const LL MOD = 1000000007LL;
const double EPS = 1e-10;
struct Point {
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(const Point &p) const { return Point(x + p.x, y + p.y); }
Point operator-(const Point &p) const { return Point(x - p.x, y - p.y); }
Point operator*(const double a) const { return Point(x * a, y * a); }
Point operator/(double a) const { return Point(x / a, y / a); }
double abs() const { return sqrt(norm()); }
double norm() const { return x * x + y * y; }
bool operator<(const Point &p) const { return x != p.x ? x < p.x : y < p.y; }
bool operator==(const Point &p) const {
return fabs(x - p.x) < EPS && fabs(y - p.y) < EPS;
}
};
typedef Point Vector;
struct Segment {
Point p1, p2;
};
typedef Segment Line;
struct Circle {
Point c;
double r;
Circle(Point c = Point(), double r = 0.0) : c(c), r(r) {}
};
typedef vector<Point> Polygon;
double norm(Vector a);
double abs(Vector a);
double dot(Vector a, Vector b);
double cross(Vector a, Vector b);
bool equals(double a, double b);
bool isOrthogonal(Vector a, Vector b);
bool isOrthogonal(Point a1, Point a2, Point b1, Point b2);
bool isOrthogonal(Segment s1, Segment s2);
bool isParallel(Vector a, Vector b);
bool isParallel(Point a1, Point a2, Point b1, Point b2);
bool isParallel(Segment s1, Segment s2);
Point project(Segment s, Point p);
Point reflect(Segment s, Point p);
int ccw(Point p0, Point p1, Point p2);
double getDistance(Point a, Point b);
double getDistanceLP(Line l, Point p);
double getDistanceSP(Segment s, Point p);
double getDistance(Segment s1, Segment s2);
bool intersect(Point p1, Point p2, Point p3, Point p4);
bool intersect(Segment s1, Segment s2);
bool intersect(Circle c, Line l);
bool intersect(Circle c1, Circle c2);
Point getCrossPoint(Segment s1, Segment s2);
pair<Point, Point> getCrossPoints(Circle c, Line l);
double arg(Vector p);
Vector polar(double a, double r);
pair<Point, Point> getCrossPoints(Circle c1, Circle c2);
double norm(Vector a) { return a.x * a.x + a.y * a.y; }
double abs(Vector a) { return sqrt(norm(a)); }
double dot(Vector a, Vector b) { return a.x * b.x + a.y * b.y; }
double cross(Vector a, Vector b) { return a.x * b.y - a.y * b.x; }
bool equals(double a, double b) { return fabs(a - b) < EPS; }
bool isOrthogonal(Vector a, Vector b) { return equals(dot(a, b), 0.0); }
bool isOrthogonal(Point a1, Point a2, Point b1, Point b2) {
return isOrthogonal(a1 - a2, b1 - b2);
}
bool isOrthogonal(Segment s1, Segment s2) {
return equals(dot(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);
}
bool isParallel(Vector a, Vector b) { return equals(cross(a, b), 0.0); }
bool isParallel(Point a1, Point a2, Point b1, Point b2) {
return isParallel(a1 - a2, b1 - b2);
}
bool isParallel(Segment s1, Segment s2) {
return equals(cross(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);
}
Point project(Segment s, Point p) {
Vector base = s.p2 - s.p1;
double r = dot(p - s.p1, base) / norm(base);
return s.p1 + base * r;
}
Point reflect(Segment s, Point p) { return p + (project(s, p) - p) * 2.0; }
static const int COUNTER_CLOCKWISE = 1;
static const int CLOCKWISE = -1;
static const int ONLINE_BACK = 2;
static const int ONLINE_FRONT = -2;
static const int ON_SEGMENT = 0;
int ccw(Point p0, Point p1, Point p2) {
Vector a = p1 - p0;
Vector b = p2 - p0;
if (cross(a, b) > EPS)
return COUNTER_CLOCKWISE;
if (cross(a, b) < -EPS)
return CLOCKWISE;
if (dot(a, b) < -EPS)
return ONLINE_BACK;
if (a.norm() < b.norm())
return ONLINE_FRONT;
return ON_SEGMENT;
}
double getDistance(Point a, Point b) { return abs(a - b); }
double getDistanceLP(Line l, Point p) {
return abs(cross(l.p2 - l.p1, p - l.p1) / abs(l.p2 - l.p1));
}
double getDistanceSP(Segment s, Point p) {
if (dot(s.p2 - s.p1, p - s.p1) < 0.0)
return abs(p - s.p1);
if (dot(s.p1 - s.p2, p - s.p2) < 0.0)
return abs(p - s.p2);
return getDistanceLP(s, p);
}
double getDistance(Segment s1, Segment s2) {
if (intersect(s1, s2))
return 0.0;
return min(min(getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2)),
min(getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2)));
}
bool intersect(Point p1, Point p2, Point p3, Point p4) {
return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 &&
ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0);
}
bool intersect(Segment s1, Segment s2) {
return intersect(s1.p1, s1.p2, s2.p1, s2.p2);
}
bool intersect(Circle c, Line l) { return getDistanceLP(l, c.c) <= c.r; }
bool intersect(Circle c1, Circle c2) {
return getDistance(c1.c, c2.c) <= c1.r + c2.r;
}
Point getCrossPoint(Segment s1, Segment s2) {
Vector base = s2.p2 - s2.p1;
double d1 = abs(cross(base, s1.p1 - s2.p1));
double d2 = abs(cross(base, s1.p2 - s2.p1));
double t = d1 / (d1 + d2);
return s1.p1 + (s1.p2 - s1.p1) * t;
}
pair<Point, Point> getCrossPoints(Circle c, Line l) {
assert(intersect(c, l));
Vector pr = project(l, c.c);
Vector e = (l.p2 - l.p1) / abs(l.p2 - l.p1);
double base = sqrt(c.r * c.r - norm(pr - c.c));
return make_pair(pr + e * base, pr - e * base);
}
double arg(Vector p) { return atan2(p.y, p.x); }
Vector polar(double a, double r) { return Vector(cos(r) * a, sin(r) * a); }
pair<Point, Point> getCrossPoints(Circle c1, Circle c2) {
assert(intersect(c1, c2));
double d = abs(c1.c - c2.c);
double a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));
double t = arg(c2.c - c1.c);
return make_pair(c1.c + polar(c1.r, t + a), c1.c + polar(c1.r, t - a));
}
int main() {
int N;
while (cin >> N, N) {
Point p[300];
for (int i = 0; i < N; i++) {
double x, y;
cin >> x >> y;
p[i] = Point(x, y);
}
int ans = 1;
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
Vector d = p[j] - p[i];
if (d.abs() > 2.0)
continue;
Point m = p[i] + d / 2.0;
Vector r = Vector(-d.y, d.x);
r = r / r.abs() * sqrt(1 - pow(d.abs() / 2.0, 2));
Point p1 = m + r;
Point p2 = m - r;
int cnt1 = 0;
int cnt2 = 0;
for (int k = 0; k < N; k++) {
if ((p[k] - p1).abs() <= 1)
cnt1++;
if ((p[k] - p2).abs() <= 1)
cnt2++;
}
ans = max(ans, max(cnt1, cnt2));
}
}
cout << ans << endl;
}
}
|
#include "bits/stdc++.h"
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const LL MOD = 1000000007LL;
const double EPS = 1e-10;
struct Point {
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(const Point &p) const { return Point(x + p.x, y + p.y); }
Point operator-(const Point &p) const { return Point(x - p.x, y - p.y); }
Point operator*(const double a) const { return Point(x * a, y * a); }
Point operator/(double a) const { return Point(x / a, y / a); }
double abs() const { return sqrt(norm()); }
double norm() const { return x * x + y * y; }
bool operator<(const Point &p) const { return x != p.x ? x < p.x : y < p.y; }
bool operator==(const Point &p) const {
return fabs(x - p.x) < EPS && fabs(y - p.y) < EPS;
}
};
typedef Point Vector;
struct Segment {
Point p1, p2;
};
typedef Segment Line;
struct Circle {
Point c;
double r;
Circle(Point c = Point(), double r = 0.0) : c(c), r(r) {}
};
typedef vector<Point> Polygon;
double norm(Vector a);
double abs(Vector a);
double dot(Vector a, Vector b);
double cross(Vector a, Vector b);
bool equals(double a, double b);
bool isOrthogonal(Vector a, Vector b);
bool isOrthogonal(Point a1, Point a2, Point b1, Point b2);
bool isOrthogonal(Segment s1, Segment s2);
bool isParallel(Vector a, Vector b);
bool isParallel(Point a1, Point a2, Point b1, Point b2);
bool isParallel(Segment s1, Segment s2);
Point project(Segment s, Point p);
Point reflect(Segment s, Point p);
int ccw(Point p0, Point p1, Point p2);
double getDistance(Point a, Point b);
double getDistanceLP(Line l, Point p);
double getDistanceSP(Segment s, Point p);
double getDistance(Segment s1, Segment s2);
bool intersect(Point p1, Point p2, Point p3, Point p4);
bool intersect(Segment s1, Segment s2);
bool intersect(Circle c, Line l);
bool intersect(Circle c1, Circle c2);
Point getCrossPoint(Segment s1, Segment s2);
pair<Point, Point> getCrossPoints(Circle c, Line l);
double arg(Vector p);
Vector polar(double a, double r);
pair<Point, Point> getCrossPoints(Circle c1, Circle c2);
double norm(Vector a) { return a.x * a.x + a.y * a.y; }
double abs(Vector a) { return sqrt(norm(a)); }
double dot(Vector a, Vector b) { return a.x * b.x + a.y * b.y; }
double cross(Vector a, Vector b) { return a.x * b.y - a.y * b.x; }
bool equals(double a, double b) { return fabs(a - b) < EPS; }
bool isOrthogonal(Vector a, Vector b) { return equals(dot(a, b), 0.0); }
bool isOrthogonal(Point a1, Point a2, Point b1, Point b2) {
return isOrthogonal(a1 - a2, b1 - b2);
}
bool isOrthogonal(Segment s1, Segment s2) {
return equals(dot(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);
}
bool isParallel(Vector a, Vector b) { return equals(cross(a, b), 0.0); }
bool isParallel(Point a1, Point a2, Point b1, Point b2) {
return isParallel(a1 - a2, b1 - b2);
}
bool isParallel(Segment s1, Segment s2) {
return equals(cross(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);
}
Point project(Segment s, Point p) {
Vector base = s.p2 - s.p1;
double r = dot(p - s.p1, base) / norm(base);
return s.p1 + base * r;
}
Point reflect(Segment s, Point p) { return p + (project(s, p) - p) * 2.0; }
static const int COUNTER_CLOCKWISE = 1;
static const int CLOCKWISE = -1;
static const int ONLINE_BACK = 2;
static const int ONLINE_FRONT = -2;
static const int ON_SEGMENT = 0;
int ccw(Point p0, Point p1, Point p2) {
Vector a = p1 - p0;
Vector b = p2 - p0;
if (cross(a, b) > EPS)
return COUNTER_CLOCKWISE;
if (cross(a, b) < -EPS)
return CLOCKWISE;
if (dot(a, b) < -EPS)
return ONLINE_BACK;
if (a.norm() < b.norm())
return ONLINE_FRONT;
return ON_SEGMENT;
}
double getDistance(Point a, Point b) { return abs(a - b); }
double getDistanceLP(Line l, Point p) {
return abs(cross(l.p2 - l.p1, p - l.p1) / abs(l.p2 - l.p1));
}
double getDistanceSP(Segment s, Point p) {
if (dot(s.p2 - s.p1, p - s.p1) < 0.0)
return abs(p - s.p1);
if (dot(s.p1 - s.p2, p - s.p2) < 0.0)
return abs(p - s.p2);
return getDistanceLP(s, p);
}
double getDistance(Segment s1, Segment s2) {
if (intersect(s1, s2))
return 0.0;
return min(min(getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2)),
min(getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2)));
}
bool intersect(Point p1, Point p2, Point p3, Point p4) {
return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 &&
ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0);
}
bool intersect(Segment s1, Segment s2) {
return intersect(s1.p1, s1.p2, s2.p1, s2.p2);
}
bool intersect(Circle c, Line l) { return getDistanceLP(l, c.c) <= c.r; }
bool intersect(Circle c1, Circle c2) {
return getDistance(c1.c, c2.c) <= c1.r + c2.r;
}
Point getCrossPoint(Segment s1, Segment s2) {
Vector base = s2.p2 - s2.p1;
double d1 = abs(cross(base, s1.p1 - s2.p1));
double d2 = abs(cross(base, s1.p2 - s2.p1));
double t = d1 / (d1 + d2);
return s1.p1 + (s1.p2 - s1.p1) * t;
}
pair<Point, Point> getCrossPoints(Circle c, Line l) {
assert(intersect(c, l));
Vector pr = project(l, c.c);
Vector e = (l.p2 - l.p1) / abs(l.p2 - l.p1);
double base = sqrt(c.r * c.r - norm(pr - c.c));
return make_pair(pr + e * base, pr - e * base);
}
double arg(Vector p) { return atan2(p.y, p.x); }
Vector polar(double a, double r) { return Vector(cos(r) * a, sin(r) * a); }
pair<Point, Point> getCrossPoints(Circle c1, Circle c2) {
assert(intersect(c1, c2));
double d = abs(c1.c - c2.c);
double a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));
double t = arg(c2.c - c1.c);
return make_pair(c1.c + polar(c1.r, t + a), c1.c + polar(c1.r, t - a));
}
int main() {
int N;
while (cin >> N, N) {
Point p[300];
for (int i = 0; i < N; i++) {
double x, y;
cin >> x >> y;
p[i] = Point(x, y);
}
int ans = 1;
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
Vector d = p[j] - p[i];
if (d.abs() > 2.0)
continue;
Point m = p[i] + d / 2.0;
Vector r = Vector(-d.y, d.x);
r = r / r.abs() * sqrt(1 - pow(d.abs() / 2.0, 2));
Point p1 = m + r;
Point p2 = m - r;
int cnt1 = 0;
int cnt2 = 0;
for (int k = 0; k < N; k++) {
if ((p[k] - p1).abs() <= 1 + EPS)
cnt1++;
if ((p[k] - p2).abs() <= 1 + EPS)
cnt2++;
}
ans = max(ans, max(cnt1, cnt2));
}
}
cout << ans << endl;
}
}
|
[["+", 0, 57, 15, 339, 51, 16, 12, 16, 17, 72], ["+", 0, 57, 15, 339, 51, 16, 12, 16, 12, 22]]
| 1
| 2,133
|
#include <cmath>
#include <complex>
#include <iostream>
#define EPS 1e-9
using namespace std;
typedef complex<double> xy_t;
int n;
xy_t points[301];
int count_in(xy_t center) {
int ans = 0;
for (int i = 0; i < n; i++) {
if (abs(center - points[i]) < 1.0 + EPS)
ans++;
}
return ans;
}
/*xy_t ppdcl(xy_t a)
{
return xy_t(a.imag(),-a.real());
}
xy_t delta_v(xy_t C1,xy_t C2)
{
xy_t half=(C1-C2)*0.5;
double l=abs(half);
return ppdcl(half)*sqrt(1-l*l)*(1.0/l);
}*/
int main() {
while (1) {
cin >> n;
if (n == 0)
break;
double x, y;
for (int i = 0; i < n; i++) {
cin >> x >> y;
points[i] = xy_t(x, y);
}
int maxn = -1;
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
/*if(abs(points[i]-points[j])<2.0)
{
xy_t mid_p=(points[i]+points[j])*0.5;
maxn=max(maxn,count_in(mid_p+delta_v(points[i],points[j])));
maxn=max(maxn,count_in(mid_p-delta_v(points[i],points[j])));
}*/
double d = abs(points[j] - points[i]) / 2;
xy_t v = (points[j] - points[i]) / (2 * d);
if (d < 1) {
maxn = max(maxn, count_in(points[i] + d * v +
sqrt(1 - d * d) * v * xy_t(0, +1)));
maxn = max(maxn, count_in(points[i] + d * v +
sqrt(1 - d * d) * v * xy_t(0, -1)));
}
}
}
cout << maxn << endl;
}
}
|
#include <cmath>
#include <complex>
#include <iostream>
#define EPS 1e-9
using namespace std;
typedef complex<double> xy_t;
int n;
xy_t points[301];
int count_in(xy_t center) {
int ans = 0;
for (int i = 0; i < n; i++) {
if (abs(center - points[i]) < 1.0 + EPS)
ans++;
}
return ans;
}
/*xy_t ppdcl(xy_t a)
{
return xy_t(a.imag(),-a.real());
}
xy_t delta_v(xy_t C1,xy_t C2)
{
xy_t half=(C1-C2)*0.5;
double l=abs(half);
return ppdcl(half)*sqrt(1-l*l)*(1.0/l);
}*/
int main() {
while (1) {
cin >> n;
if (n == 0)
break;
double x, y;
for (int i = 0; i < n; i++) {
cin >> x >> y;
points[i] = xy_t(x, y);
}
int maxn = 1;
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
/*if(abs(points[i]-points[j])<2.0)
{
xy_t mid_p=(points[i]+points[j])*0.5;
maxn=max(maxn,count_in(mid_p+delta_v(points[i],points[j])));
maxn=max(maxn,count_in(mid_p-delta_v(points[i],points[j])));
}*/
double d = abs(points[j] - points[i]) / 2;
xy_t v = (points[j] - points[i]) / (2 * d);
if (d < 1) {
maxn = max(maxn, count_in(points[i] + d * v +
sqrt(1 - d * d) * v * xy_t(0, +1)));
maxn = max(maxn, count_in(points[i] + d * v +
sqrt(1 - d * d) * v * xy_t(0, -1)));
}
}
}
cout << maxn << endl;
}
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 309
|
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (int)n; i++)
#define cd complex<double>
complex<double> ci = complex<double>(0.0, 1.0);
complex<double> mci = complex<double>(0.0, -1.0);
int main() {
while (1) {
int n;
cin >> n;
if (n == 0)
break;
vector<complex<double>> p(n);
rep(i, n) {
double real, imag;
cin >> real >> imag;
p[i] = complex<double>(real, imag);
}
int summax = 0;
rep(i, n) {
rep(j, n) {
if (i == j)
continue;
if (abs(p[i] - p[j]) > 2)
continue;
complex<double> mid = (p[i] + p[j]) / 2.0;
double l = abs(p[i] - mid);
double h = sqrt(1 - l * l);
complex<double> c1 = mid + (mid - p[i]) * ci * h / l;
complex<double> c2 = mid + (mid - p[i]) * mci * h / l;
int sum1 = 2, sum2 = 2;
rep(k, n) {
if (k == i || k == j)
continue;
if (abs(p[k] - c1) < 1.0)
sum1++;
if (abs(p[k] - c2) < 1.0)
sum2++;
}
if (max(sum1, sum2) > summax)
summax = max(sum1, sum2);
}
}
cout << summax << endl;
}
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (int)n; i++)
#define cd complex<double>
complex<double> ci = complex<double>(0.0, 1.0);
complex<double> mci = complex<double>(0.0, -1.0);
int main() {
while (1) {
int n;
cin >> n;
if (n == 0)
break;
vector<complex<double>> p(n);
rep(i, n) {
double real, imag;
cin >> real >> imag;
p[i] = complex<double>(real, imag);
}
int summax = 1;
rep(i, n) {
rep(j, n) {
if (i == j)
continue;
if (abs(p[i] - p[j]) > 2)
continue;
complex<double> mid = (p[i] + p[j]) / 2.0;
double l = abs(p[i] - mid);
double h = sqrt(1 - l * l);
complex<double> c1 = mid + (mid - p[i]) * ci * h / l;
complex<double> c2 = mid + (mid - p[i]) * mci * h / l;
int sum1 = 2, sum2 = 2;
rep(k, n) {
if (k == i || k == j)
continue;
if (abs(p[k] - c1) < 1.0)
sum1++;
if (abs(p[k] - c2) < 1.0)
sum2++;
}
if (max(sum1, sum2) > summax)
summax = max(sum1, sum2);
}
}
cout << summax << endl;
}
return 0;
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 353
|
#include <bits/stdc++.h>
using namespace std;
#define FOR(i, a, b) for (int i = (a); i < (b); ++i)
#define rep(i, n) FOR(i, 0, n)
#define pb emplace_back
typedef long long ll;
typedef pair<int, int> pint;
#define eps (1e-10)
struct Point {
double x, y;
Point() {}
Point(double x, double y) : x(x), y(y) {}
Point operator+(Point p) { return Point(x + p.x, y + p.y); }
Point operator-(Point p) { return Point(x - p.x, y - p.y); }
Point operator*(Point p) {
return Point(x * p.x - y * p.y, x * p.y + y * p.x);
}
Point operator*(double k) { return Point(x * k, y * k); }
double norm() { return x * x + y * y; }
double abs() { return sqrt(norm()); }
bool operator==(const Point &p) const {
return fabs(x - p.x) < eps && fabs(y - p.y) < eps;
}
double arg() { return atan2(y, x); }
double dot(Point p) { return x * p.x + y * p.y; }
double det(Point p) { return x * p.y - y * p.x; }
};
bool cmp_x(const Point &p, const Point &q) {
if (p.x != q.x)
return p.x < q.x;
return p.y < q.y;
}
struct Circle {
double r;
Point p;
Circle() {}
Circle(Point p, double r) : p(p), r(r) {}
};
bool isIntersectCC(Circle c1, Circle c2) {
return (c1.p - c2.p).abs() <= c1.r + c2.r + eps;
}
pair<Point, Point> CrossPointsCC(Circle c1, Circle c2) {
assert(isIntersectCC(c1, c2));
double d = (c1.p - c2.p).abs();
double k = acos((d * d + c1.r * c1.r - c2.r * c2.r) / (c1.r * d * 2));
return make_pair(c1.p + (c2.p - c1.p) * Point(cos(k), sin(k)) * (c1.r / d),
c1.p + (c2.p - c1.p) * Point(cos(-k), sin(-k)) * (c1.r / d));
}
Point p[301];
int main() {
int n;
double x, y;
while (cin >> n, n) {
rep(i, n) {
cin >> x >> y;
p[i] = Point(x, y);
}
int mx = 1;
rep(i, n) FOR(j, i + 1, n) {
if ((p[i] - p[j]).abs() > 2)
continue;
pair<Point, Point> pp =
CrossPointsCC(Circle(p[i], 1.0), Circle(p[j], 1.0));
int cnt = 0, cnt2 = 0;
rep(k, n) {
if ((pp.first - p[k]).abs() <= 1.0)
++cnt;
if ((pp.second - p[k]).abs() <= 1.0)
++cnt2;
}
mx = max(mx, max(cnt, cnt2));
}
cout << mx << endl;
}
return 0;
}
|
#include <bits/stdc++.h>
using namespace std;
#define FOR(i, a, b) for (int i = (a); i < (b); ++i)
#define rep(i, n) FOR(i, 0, n)
#define pb emplace_back
typedef long long ll;
typedef pair<int, int> pint;
#define eps (1e-10)
struct Point {
double x, y;
Point() {}
Point(double x, double y) : x(x), y(y) {}
Point operator+(Point p) { return Point(x + p.x, y + p.y); }
Point operator-(Point p) { return Point(x - p.x, y - p.y); }
Point operator*(Point p) {
return Point(x * p.x - y * p.y, x * p.y + y * p.x);
}
Point operator*(double k) { return Point(x * k, y * k); }
double norm() { return x * x + y * y; }
double abs() { return sqrt(norm()); }
bool operator==(const Point &p) const {
return fabs(x - p.x) < eps && fabs(y - p.y) < eps;
}
double arg() { return atan2(y, x); }
double dot(Point p) { return x * p.x + y * p.y; }
double det(Point p) { return x * p.y - y * p.x; }
};
bool cmp_x(const Point &p, const Point &q) {
if (p.x != q.x)
return p.x < q.x;
return p.y < q.y;
}
struct Circle {
double r;
Point p;
Circle() {}
Circle(Point p, double r) : p(p), r(r) {}
};
bool isIntersectCC(Circle c1, Circle c2) {
return (c1.p - c2.p).abs() <= c1.r + c2.r + eps;
}
pair<Point, Point> CrossPointsCC(Circle c1, Circle c2) {
assert(isIntersectCC(c1, c2));
double d = (c1.p - c2.p).abs();
double k = acos((d * d + c1.r * c1.r - c2.r * c2.r) / (c1.r * d * 2));
return make_pair(c1.p + (c2.p - c1.p) * Point(cos(k), sin(k)) * (c1.r / d),
c1.p + (c2.p - c1.p) * Point(cos(-k), sin(-k)) * (c1.r / d));
}
Point p[301];
int main() {
int n;
double x, y;
while (cin >> n, n) {
rep(i, n) {
cin >> x >> y;
p[i] = Point(x, y);
}
int mx = 1;
rep(i, n) FOR(j, i + 1, n) {
if ((p[i] - p[j]).abs() > 2)
continue;
pair<Point, Point> pp =
CrossPointsCC(Circle(p[i], 1.0), Circle(p[j], 1.0));
int cnt = 0, cnt2 = 0;
rep(k, n) {
if ((pp.first - p[k]).abs() <= 1.0 + eps)
++cnt;
if ((pp.second - p[k]).abs() <= 1.0 + eps)
++cnt2;
}
mx = max(mx, max(cnt, cnt2));
}
cout << mx << endl;
}
return 0;
}
|
[["+", 0, 57, 15, 339, 51, 16, 12, 16, 17, 72], ["+", 0, 57, 15, 339, 51, 16, 12, 16, 12, 22]]
| 1
| 797
|
#include <cmath>
#include <iostream>
using namespace std;
int n;
double x[300];
double y[300];
double dist(double x1, double y1, double x2, double y2) {
double dx = abs(x1 - x2);
double dy = abs(y1 - y2);
return sqrt(dx * dx + dy * dy);
}
int count(double cx, double cy, int i, int j) {
int ans = 0;
for (int k = 0; k < n; ++k) {
if (k == i || k == j || dist(cx, cy, x[k], y[k]) < 1)
ans++;
}
return ans;
}
void solve() {
for (int i = 0; i < n; ++i) {
cin >> x[i] >> y[i];
}
int ans = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i == j)
continue;
double d = dist(x[i], y[i], x[j], y[j]);
if (d > 2.)
continue;
double dx = x[j] - x[i];
double dy = y[j] - y[i];
double r = sqrt(1 - (d * d / 4));
// cout << r << endl;
double cx = x[i] + dx / 2 - dy * r / d;
double cy = y[i] + dy / 2 + dx * r / d;
// cout << x[i] << ", " << y[i] << " - " << x[j] << ", " << y[j] << " : "
// << cx << ", "<< cy << endl;
ans = max(ans, count(cx, cy, i, j));
}
}
cout << ans << endl;
}
int main() {
while (1) {
cin >> n;
if (n == 0)
break;
solve();
}
}
|
#include <cmath>
#include <iostream>
using namespace std;
int n;
double x[300];
double y[300];
double dist(double x1, double y1, double x2, double y2) {
double dx = abs(x1 - x2);
double dy = abs(y1 - y2);
return sqrt(dx * dx + dy * dy);
}
int count(double cx, double cy, int i, int j) {
int ans = 0;
for (int k = 0; k < n; ++k) {
if (k == i || k == j || dist(cx, cy, x[k], y[k]) < 1)
ans++;
}
return ans;
}
void solve() {
for (int i = 0; i < n; ++i) {
cin >> x[i] >> y[i];
}
int ans = 1;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i == j)
continue;
double d = dist(x[i], y[i], x[j], y[j]);
if (d > 2.)
continue;
double dx = x[j] - x[i];
double dy = y[j] - y[i];
double r = sqrt(1 - (d * d / 4));
// cout << r << endl;
double cx = x[i] + dx / 2 - dy * r / d;
// cout << d << endl;
double cy = y[i] + dy / 2 + dx * r / d;
// cout << x[i] << ", " << y[i] << " - " << x[j] << ", " << y[j] << " : "
// << cx << ", "<< cy << endl;
ans = max(ans, count(cx, cy, i, j));
}
}
cout << ans << endl;
}
int main() {
while (1) {
cin >> n;
if (n == 0)
break;
solve();
}
}
|
[["-", 0, 14, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 14, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 391
|
#include <bits/stdc++.h>
using namespace std;
using ld = long double;
using Point = complex<ld>;
struct Line {
Point a, b;
Line(Point a, Point b) : a(a), b(b) {}
Line() : Line(Point(), Point()) {}
};
struct Circle {
Point p;
ld r;
Circle(Point p, ld r) : p(p), r(r) {}
Circle() : Circle(Point(), 0.0) {}
};
constexpr ld eps = 1e-9, pi = acos(-1.0);
namespace std {
bool operator<(const Point &lhs, const Point &rhs) {
if (lhs.real() < rhs.real() - eps)
return true;
if (lhs.real() > rhs.real() + eps)
return false;
return lhs.imag() < rhs.imag();
}
} // namespace std
namespace Geometry {
bool eq(ld a, ld b) { return abs(a - b) < eps; }
//内積
ld dot(Point a, Point b) { return real(conj(a) * b); }
//外積
ld cross(Point a, Point b) { return imag(conj(a) * b); }
// 3点の位置関係
int ccw(Point a, Point b, Point c) {
b -= a;
c -= a;
if (cross(b, c) > eps)
return 1; // a,b,cで反時計周り
if (cross(b, c) < -eps)
return -1; // a,b,cで時計周り
if (dot(b, c) < 0)
return 2; // c,a,bで直線
if (norm(b) < norm(c))
return -2; // a,b,cで直線
return 0; // a,c,bで直線
}
//====================================================
Point inputPoint() {
ld x, y;
cin >> x >> y;
return Point(x, y);
}
// 2直線の交差判定
bool isCrossed_ll(Line l, Line m) {
return !eq(cross(l.b - l.a, m.b - m.a), 0);
}
//直線と線分の交差判定
bool isCrossed_ls(Line l, Line s) {
return isCrossed_ll(l, s) &&
cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps;
}
//線分と線分の交差判定
bool isCrossed_ss(Line s, Line t) {
return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&
ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}
//点が直線上にあるか
bool isON_l(Line l, Point p) { return abs(cross(l.b - p, l.a - p)) < eps; }
//点が線分上にあるか
bool isON_s(Line s, Point p) {
return abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps;
}
//点から直線への垂線の足
Point foot(Line l, Point p) {
ld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + t * (l.a - l.b);
}
//直線と直線の交点
Point intersection_ll(Line l, Line m) {
Point lv = l.b - l.a, mv = m.b - m.a;
assert(cross(lv, mv) != 0); //平行
return l.a + lv * cross(mv, m.a - l.a) / cross(mv, lv);
}
//線分と線分の交点
Point intersection_ss(Line s, Line t) {
assert(isCrossed_ll(s, t));
return intersection_ll(s, t);
}
//点と点の距離
ld dist_pp(Point p, Point q) {
ld x = p.real() - q.real(), y = p.imag() - q.imag();
return sqrt(x * x + y * y);
}
//点と直線の距離
ld dist_lp(Line l, Point p) { return abs(p - foot(l, p)); }
//直線と直線の距離
ld dist_ll(Line l, Line m) { return isCrossed_ll(l, m) ? 0 : dist_lp(l, m.a); }
//直線と線分の距離
ld dist_ls(Line l, Line s) {
return isCrossed_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));
}
//線分と点の距離
ld dist_sp(Line s, Point p) {
Point r = foot(s, p);
return isON_s(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));
}
//線分と線分の距離
ld dist_ss(Line s, Line t) {
if (isCrossed_ss(s, t))
return 0;
return min(
{dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b)});
}
//円と円の交点
vector<Point> intersection_cc(Circle c1, Circle c2) {
vector<Point> res;
ld d = abs(c1.p - c2.p);
ld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);
ld dfr = c1.r * c1.r - rc * rc;
if (abs(dfr) < eps)
dfr = 0.0;
else if (dfr < 0.0)
return res;
ld rs = sqrt(dfr);
Point diff = (c2.p - c1.p) / d;
res.push_back(c1.p + diff * Point(rc, rs));
if (dfr != 0.0)
res.push_back(c1.p + diff * Point(rc, -rs));
return res;
}
}; // namespace Geometry
int main() {
int n;
using namespace Geometry;
while (cin >> n, n) {
vector<Point> g(n);
vector<Circle> Cs(n);
for (int i = 0; i < n; ++i) {
g[i] = inputPoint();
Cs[i] = {g[i], 1.0};
}
int ans = 0;
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
vector<Point> intersections(intersection_cc(Cs[i], Cs[j]));
for (auto intersection : intersections) {
int ret = 0;
for (int k = 0; k < n; ++k) {
if (dist_pp(intersection, g[k]) < 1.0) {
if (i == k || j == k)
continue;
++ret;
}
}
ans = max(ans, ret + 2);
}
}
}
cout << ans << endl;
}
}
|
#include <bits/stdc++.h>
using namespace std;
using ld = long double;
using Point = complex<ld>;
struct Line {
Point a, b;
Line(Point a, Point b) : a(a), b(b) {}
Line() : Line(Point(), Point()) {}
};
struct Circle {
Point p;
ld r;
Circle(Point p, ld r) : p(p), r(r) {}
Circle() : Circle(Point(), 0.0) {}
};
constexpr ld eps = 1e-9, pi = acos(-1.0);
namespace std {
bool operator<(const Point &lhs, const Point &rhs) {
if (lhs.real() < rhs.real() - eps)
return true;
if (lhs.real() > rhs.real() + eps)
return false;
return lhs.imag() < rhs.imag();
}
} // namespace std
namespace Geometry {
bool eq(ld a, ld b) { return abs(a - b) < eps; }
//内積
ld dot(Point a, Point b) { return real(conj(a) * b); }
//外積
ld cross(Point a, Point b) { return imag(conj(a) * b); }
// 3点の位置関係
int ccw(Point a, Point b, Point c) {
b -= a;
c -= a;
if (cross(b, c) > eps)
return 1; // a,b,cで反時計周り
if (cross(b, c) < -eps)
return -1; // a,b,cで時計周り
if (dot(b, c) < 0)
return 2; // c,a,bで直線
if (norm(b) < norm(c))
return -2; // a,b,cで直線
return 0; // a,c,bで直線
}
//====================================================
Point inputPoint() {
ld x, y;
cin >> x >> y;
return Point(x, y);
}
// 2直線の交差判定
bool isCrossed_ll(Line l, Line m) {
return !eq(cross(l.b - l.a, m.b - m.a), 0);
}
//直線と線分の交差判定
bool isCrossed_ls(Line l, Line s) {
return isCrossed_ll(l, s) &&
cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps;
}
//線分と線分の交差判定
bool isCrossed_ss(Line s, Line t) {
return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&
ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}
//点が直線上にあるか
bool isON_l(Line l, Point p) { return abs(cross(l.b - p, l.a - p)) < eps; }
//点が線分上にあるか
bool isON_s(Line s, Point p) {
return abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps;
}
//点から直線への垂線の足
Point foot(Line l, Point p) {
ld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + t * (l.a - l.b);
}
//直線と直線の交点
Point intersection_ll(Line l, Line m) {
Point lv = l.b - l.a, mv = m.b - m.a;
assert(cross(lv, mv) != 0); //平行
return l.a + lv * cross(mv, m.a - l.a) / cross(mv, lv);
}
//線分と線分の交点
Point intersection_ss(Line s, Line t) {
assert(isCrossed_ll(s, t));
return intersection_ll(s, t);
}
//点と点の距離
ld dist_pp(Point p, Point q) {
ld x = p.real() - q.real(), y = p.imag() - q.imag();
return sqrt(x * x + y * y);
}
//点と直線の距離
ld dist_lp(Line l, Point p) { return abs(p - foot(l, p)); }
//直線と直線の距離
ld dist_ll(Line l, Line m) { return isCrossed_ll(l, m) ? 0 : dist_lp(l, m.a); }
//直線と線分の距離
ld dist_ls(Line l, Line s) {
return isCrossed_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));
}
//線分と点の距離
ld dist_sp(Line s, Point p) {
Point r = foot(s, p);
return isON_s(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));
}
//線分と線分の距離
ld dist_ss(Line s, Line t) {
if (isCrossed_ss(s, t))
return 0;
return min(
{dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b)});
}
//円と円の交点
vector<Point> intersection_cc(Circle c1, Circle c2) {
vector<Point> res;
ld d = abs(c1.p - c2.p);
ld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);
ld dfr = c1.r * c1.r - rc * rc;
if (abs(dfr) < eps)
dfr = 0.0;
else if (dfr < 0.0)
return res;
ld rs = sqrt(dfr);
Point diff = (c2.p - c1.p) / d;
res.push_back(c1.p + diff * Point(rc, rs));
if (dfr != 0.0)
res.push_back(c1.p + diff * Point(rc, -rs));
return res;
}
}; // namespace Geometry
int main() {
int n;
using namespace Geometry;
while (cin >> n, n) {
vector<Point> g(n);
vector<Circle> Cs(n);
for (int i = 0; i < n; ++i) {
g[i] = inputPoint();
Cs[i] = {g[i], 1.0};
}
int ans = 1;
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
vector<Point> intersections(intersection_cc(Cs[i], Cs[j]));
for (auto intersection : intersections) {
int ret = 0;
for (int k = 0; k < n; ++k) {
if (dist_pp(intersection, g[k]) < 1.0) {
if (i == k || j == k)
continue;
++ret;
}
}
ans = max(ans, ret + 2);
}
}
}
cout << ans << endl;
}
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 1,465
|
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <complex>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <cassert>
#include <functional>
typedef long long ll;
using namespace std;
#define debug(x) cerr << __LINE__ << " : " << #x << " = " << (x) << endl;
#define mod 1000000007 // 1e9+7(prime number)
#define INF 1000000000 // 1e9
#define LLINF 2000000000000000000LL // 2e18
#define SIZE 300
typedef double P_type;
typedef complex<P_type> P;
const P_type P_eps = 1e-8; //整数の時はゼロ
namespace std {
template <class T> bool operator<(const complex<T> &a, const complex<T> &b) {
return a.real() == b.real() ? a.imag() < b.imag() : a.real() < b.real();
}
}; // namespace std
/* 円の点包含判定 */
double isContainedCP(P c, double r, P p) {
// return abs(c-p) < r - P_eps; //円周上を含まない
return abs(c - p) < r + P_eps; //円周上を含む
}
int solve() {
int n;
double x[SIZE], y[SIZE];
scanf("%d", &n);
if (n == 0)
return false;
for (int i = 0; i < n; i++) {
scanf("%lf%lf", x + i, y + i);
}
int ans = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j)
continue;
P vec = P(x[i] - x[j], y[i] - y[j]);
if (abs(vec) > 2.0 + P_eps)
continue;
P p = P(-vec.imag(), vec.real());
p = p / abs(p) * sqrt(1 - norm(vec) / 4);
// debug(p);
p += vec / 2.0 + P(x[j], y[j]);
int counter = 0;
// debug(abs(p - P(x[i], y[i])));
for (int k = 0; k < n; k++) {
counter += isContainedCP(p, 1, P(x[k], y[k]));
}
ans = max(ans, counter);
}
}
printf("%d\n", ans);
return true;
}
int main() {
while (solve())
;
return 0;
}
|
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <complex>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <cassert>
#include <functional>
typedef long long ll;
using namespace std;
#define debug(x) cerr << __LINE__ << " : " << #x << " = " << (x) << endl;
#define mod 1000000007 // 1e9+7(prime number)
#define INF 1000000000 // 1e9
#define LLINF 2000000000000000000LL // 2e18
#define SIZE 300
typedef double P_type;
typedef complex<P_type> P;
const P_type P_eps = 1e-8; //整数の時はゼロ
namespace std {
template <class T> bool operator<(const complex<T> &a, const complex<T> &b) {
return a.real() == b.real() ? a.imag() < b.imag() : a.real() < b.real();
}
}; // namespace std
/* 円の点包含判定 */
double isContainedCP(P c, double r, P p) {
// return abs(c-p) < r - P_eps; //円周上を含まない
return abs(c - p) < r + P_eps; //円周上を含む
}
int solve() {
int n;
double x[SIZE], y[SIZE];
scanf("%d", &n);
if (n == 0)
return false;
for (int i = 0; i < n; i++) {
scanf("%lf%lf", x + i, y + i);
}
int ans = 1;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j)
continue;
P vec = P(x[i] - x[j], y[i] - y[j]);
if (abs(vec) > 2.0 + P_eps)
continue;
P p = P(-vec.imag(), vec.real());
p = p / abs(p) * sqrt(1 - norm(vec) / 4);
// debug(p);
p += vec / 2.0 + P(x[j], y[j]);
int counter = 0;
// debug(abs(p - P(x[i], y[i])));
for (int k = 0; k < n; k++) {
counter += isContainedCP(p, 1, P(x[k], y[k]));
}
ans = max(ans, counter);
}
}
printf("%d\n", ans);
return true;
}
int main() {
while (solve())
;
return 0;
}
|
[["-", 0, 14, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 14, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 475
|
#include <cmath>
#include <iostream>
#include <vector>
using namespace std;
const double EPS = 1e-8;
typedef pair<double, double> pt;
#define x first
#define y second
pt operator-(pt a, pt b) { return pt(a.x - b.x, a.y - b.y); }
bool zero(double x) { return fabs(x) <= EPS; }
double sq(double a) { return a * a; }
double dist(pt p, pt q) { return sqrt(sq(p.x - q.x) + sq(p.y - q.y)); }
pt midpoint(pt p1, pt p2) {
double midx = (p1.x + p2.x) / 2;
double midy = (p1.y + p2.y) / 2;
return make_pair(midx, midy);
}
int get_max_points(pt centre, vector<pt> points) {
int count = 0;
for (int i = 0; i < points.size(); i++) {
pt current = points[i];
double num = sq(current.x - centre.x) + sq(current.y - centre.y);
// cout << num << endl;
// cout << fabs(num - 1) << endl;
if (sqrt(num) < 1 + EPS) {
count++;
}
}
return count;
}
int find_max_points(vector<pt> points) {
// for every pair of two points, create a cricle and check num points in
// circle
int max_points = 0;
for (int i = 0; i < points.size(); ++i) {
pt p1 = points[i];
for (int j = i + 1; j < points.size(); ++j) {
pt p2 = points[j];
pt mid = midpoint(p1, p2);
double q = dist(p1, p2);
double x1 = mid.x + sqrt(1 - sq(q / 2)) * (p1.y - p2.y) / q;
double y1 = mid.y + sqrt(1 - sq(q / 2)) * (p2.x - p1.x) / q;
pt c1(x1, y1);
int m = get_max_points(c1, points);
max_points = max(m, max_points);
// cout << mid.x << " " << mid.y << endl;
// int m = get_max_points(mid, points);
double x2 = mid.x - sqrt(1 - sq(q / 2)) * (p1.y - p2.y) / q;
double y2 = mid.y - sqrt(1 - sq(q / 2)) * (p2.x - p1.x) / q;
pt c2(x1, x2);
m = get_max_points(c2, points);
max_points = max(max_points, m);
}
}
// cout << max_points
return max_points;
}
int main() {
int n;
while (1) {
cin >> n;
if (n == 0)
break;
vector<pt> points;
for (int i = 0; i < n; ++i) {
double x, y;
cin >> x >> y;
points.push_back(make_pair(x, y));
}
cout << find_max_points(points) << endl;
}
return 0;
}
|
#include <cmath>
#include <iostream>
#include <vector>
using namespace std;
const double EPS = 1e-8;
typedef pair<double, double> pt;
#define x first
#define y second
pt operator-(pt a, pt b) { return pt(a.x - b.x, a.y - b.y); }
bool zero(double x) { return fabs(x) <= EPS; }
double sq(double a) { return a * a; }
double dist(pt p, pt q) { return sqrt(sq(p.x - q.x) + sq(p.y - q.y)); }
pt midpoint(pt p1, pt p2) {
double midx = (p1.x + p2.x) / 2;
double midy = (p1.y + p2.y) / 2;
return make_pair(midx, midy);
}
int get_max_points(pt centre, vector<pt> points) {
int count = 0;
for (int i = 0; i < points.size(); i++) {
pt current = points[i];
double num = sq(current.x - centre.x) + sq(current.y - centre.y);
// cout << num << endl;
// cout << fabs(num - 1) << endl;
if (sqrt(num) < 1 + EPS) {
count++;
}
}
return count;
}
int find_max_points(vector<pt> points) {
// for every pair of two points, create a cricle and check num points in
// circle
int max_points = 1;
for (int i = 0; i < points.size(); ++i) {
pt p1 = points[i];
for (int j = i + 1; j < points.size(); ++j) {
pt p2 = points[j];
pt mid = midpoint(p1, p2);
double q = dist(p1, p2);
double x1 = mid.x + sqrt(1 - sq(q / 2)) * (p1.y - p2.y) / q;
double y1 = mid.y + sqrt(1 - sq(q / 2)) * (p2.x - p1.x) / q;
pt c1(x1, y1);
int m = get_max_points(c1, points);
max_points = max(m, max_points);
// cout << mid.x << " " << mid.y << endl;
// int m = get_max_points(mid, points);
double x2 = mid.x - sqrt(1 - sq(q / 2)) * (p1.y - p2.y) / q;
double y2 = mid.y - sqrt(1 - sq(q / 2)) * (p2.x - p1.x) / q;
pt c2(x1, x2);
m = get_max_points(c2, points);
max_points = max(max_points, m);
}
}
// cout << max_points
return max_points;
}
int main() {
int n;
while (1) {
cin >> n;
if (n == 0)
break;
vector<pt> points;
for (int i = 0; i < n; ++i) {
double x, y;
cin >> x >> y;
points.push_back(make_pair(x, y));
}
cout << find_max_points(points) << endl;
}
return 0;
}
|
[["-", 0, 14, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 14, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 634
|
#include <algorithm>
#include <cmath>
#include <complex>
#include <iostream>
#include <vector>
using namespace std;
// xy平面上の点(ベクトル)を表現するには、complex型を利用するとよい
typedef complex<double> P;
// 辺の表現 (座標を2つ pair でもつ)
typedef pair<P, P> L;
// 円の表現 (座標 P と 半径 d で表現する)
typedef pair<P, double> C;
// 成分を取り出すのを簡単にする
#define X real()
#define Y imag()
// 誤差(epsilon)の定義
#define EPS (1e-10)
// 2つの要素が等しいかどうか
#define EQ(a, b) (abs((a) - (b)) < EPS)
// 2つのベクトルが等しいかどうか
#define EQV(a, b) (EQ((a).X, (b).X) && EQ((a).Y, (b).Y))
// m は n より大きい(以上)かどうか
#define LE(n, m) ((n) < (m) + EPS)
#define LEQ(n, m) ((n) <= (m) + EPS)
// m は n より小さい(以下)かどうか
#define GE(n, m) ((n) + EPS > (m))
#define GEQ(n, m) ((n) + EPS >= (m))
// 2つのベクトルの内積を求める
double dot(P a, P b) { return (a.X * b.X + a.Y * b.Y); }
// 2つのベクトルの外積を求める
double cross(P a, P b) { return (a.X * b.Y - a.Y * b.X); }
// 点 a と 点 b を通り、半径が r の円の中心を返す
vector<P> circlesPointsRadius(P a, P b, double r) {
vector<P> cs;
P abH = (b - a) * 0.5;
double d = abs(abH);
if (d == 0 || d > r)
return cs; // 必要なら !LE(d,r) として円1つになる側へ丸める
double dN = sqrt(r * r - d * d); // 必要なら max(r*r - d*d, 0) とする
P n = abH * P(0, 1) * (dN / d);
cs.push_back(a + abH + n);
if (dN > 0)
cs.push_back(a + abH - n);
return cs;
}
int main() {
int N;
while (cin >> N, N) {
vector<P> ps;
for (int i = 0; i < N; i++) {
double x, y;
cin >> x >> y;
ps.push_back(P(x, y));
}
if (N == 1)
cout << 1 << endl;
else if (N == 2) {
cout << (abs(ps[0] - ps[1]) < 2 + EPS) << endl;
} else {
int ans = 0;
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
// printf("i = %d, j = %d, abs = %f\n", i, j, abs(ps[i] - ps[j]));
if (abs(ps[i] - ps[j]) > 2 - EPS)
continue;
vector<P> centers = circlesPointsRadius(ps[i], ps[j], 1);
for (auto c : centers) {
int sum = 2;
for (int k = 0; k < N; k++) {
if (i == k || j == k)
continue;
sum += (abs(c - ps[k]) < 1 + EPS);
}
ans = max(ans, sum);
}
}
}
cout << ans << endl;
}
}
return 0;
}
|
#include <algorithm>
#include <cmath>
#include <complex>
#include <iostream>
#include <vector>
using namespace std;
// xy平面上の点(ベクトル)を表現するには、complex型を利用するとよい
typedef complex<double> P;
// 辺の表現 (座標を2つ pair でもつ)
typedef pair<P, P> L;
// 円の表現 (座標 P と 半径 d で表現する)
typedef pair<P, double> C;
// 成分を取り出すのを簡単にする
#define X real()
#define Y imag()
// 誤差(epsilon)の定義
#define EPS (1e-10)
// 2つの要素が等しいかどうか
#define EQ(a, b) (abs((a) - (b)) < EPS)
// 2つのベクトルが等しいかどうか
#define EQV(a, b) (EQ((a).X, (b).X) && EQ((a).Y, (b).Y))
// m は n より大きい(以上)かどうか
#define LE(n, m) ((n) < (m) + EPS)
#define LEQ(n, m) ((n) <= (m) + EPS)
// m は n より小さい(以下)かどうか
#define GE(n, m) ((n) + EPS > (m))
#define GEQ(n, m) ((n) + EPS >= (m))
// 2つのベクトルの内積を求める
double dot(P a, P b) { return (a.X * b.X + a.Y * b.Y); }
// 2つのベクトルの外積を求める
double cross(P a, P b) { return (a.X * b.Y - a.Y * b.X); }
// 点 a と 点 b を通り、半径が r の円の中心を返す
vector<P> circlesPointsRadius(P a, P b, double r) {
vector<P> cs;
P abH = (b - a) * 0.5;
double d = abs(abH);
if (d == 0 || d > r)
return cs; // 必要なら !LE(d,r) として円1つになる側へ丸める
double dN = sqrt(r * r - d * d); // 必要なら max(r*r - d*d, 0) とする
P n = abH * P(0, 1) * (dN / d);
cs.push_back(a + abH + n);
if (dN > 0)
cs.push_back(a + abH - n);
return cs;
}
int main() {
int N;
while (cin >> N, N) {
vector<P> ps;
for (int i = 0; i < N; i++) {
double x, y;
cin >> x >> y;
ps.push_back(P(x, y));
}
if (N == 1)
cout << 1 << endl;
else if (N == 2) {
cout << 1 + (abs(ps[0] - ps[1]) < 2 + EPS) << endl;
} else {
int ans = 1;
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
// printf("i = %d, j = %d, abs = %f\n", i, j, abs(ps[i] - ps[j]));
if (abs(ps[i] - ps[j]) > 2 + EPS)
continue;
// printf("valid\n");
vector<P> centers = circlesPointsRadius(ps[i], ps[j], 1);
for (auto c : centers) {
int sum = 2;
for (int k = 0; k < N; k++) {
if (i == k || j == k)
continue;
sum += (abs(c - ps[k]) < 1 + EPS);
}
ans = max(ans, sum);
}
}
}
cout << ans << endl;
}
}
return 0;
}
|
[["+", 0, 1, 0, 16, 31, 16, 12, 16, 31, 13], ["+", 0, 1, 0, 16, 31, 16, 12, 16, 17, 72], ["-", 75, 76, 0, 9, 0, 43, 49, 50, 51, 13], ["+", 75, 76, 0, 9, 0, 43, 49, 50, 51, 13], ["-", 0, 57, 15, 339, 51, 16, 12, 16, 17, 33], ["+", 0, 57, 15, 339, 51, 16, 12, 16, 17, 72]]
| 1
| 559
|
#include <algorithm>
#include <cstdio>
#include <math.h>
using namespace std;
typedef pair<double, double> P;
int N;
double X[300], Y[300];
P d[300];
P add(P p1, P p2) { return P(p1.first + p2.first, p1.second + p2.second); }
P minas(P p1, P p2) { return P(p1.first - p2.first, p1.second - p2.second); }
P mul(P p, double c) { return P(p.first * c, p.second * c); }
P ave(P p1, P p2) {
return P((p1.first + p2.first) / 2, (p1.second + p2.second) / 2);
}
void printP(P p) { printf("P:(%f, %f)\n", p.first, p.second); }
double square(P p) { return p.first * p.first + p.second * p.second; }
double size(P p) { return sqrt(square(p)); }
int count(P p) {
// printP(p);
int counter = 0;
for (int i = 0; i < N; i++) {
if (square(minas(p, d[i])) <= 1.0001)
counter++;
}
// printf("%d\n",counter);
return counter;
}
int check(int i, int j) {
if (square(minas(d[i], d[j])) > 4.0)
return 0;
int ans = 0;
P average = ave(d[i], d[j]);
P dir = mul(minas(d[i], d[j]), 0.5);
// printP(average);
double s = sqrt(1.0 - square(dir));
// printf("!!!!!!%f\n",s);
P dir1 = P((Y[i] - Y[j]), -(X[i] - X[j]));
// printf("!!!!!!%f\n",size(dir1));
double r = s / size(dir1);
P d1 = add(average, mul(dir1, r));
P d2 = add(average, mul(dir1, -r));
return max(count(d1), count(d2));
}
int main() {
while (1) {
scanf("%d", &N);
if (N == 0)
break;
for (int i = 0; i < N; i++)
scanf("%lf%lf", &X[i], &Y[i]), d[i] = P(X[i], Y[i]);
int ans = 0;
for (int i = 0; i < N; i++)
for (int j = 0; j < i; j++)
ans = max(ans, check(i, j));
printf("%d\n", ans);
}
}
|
#include <algorithm>
#include <cstdio>
#include <math.h>
using namespace std;
typedef pair<double, double> P;
int N;
double X[300], Y[300];
P d[300];
P add(P p1, P p2) { return P(p1.first + p2.first, p1.second + p2.second); }
P minas(P p1, P p2) { return P(p1.first - p2.first, p1.second - p2.second); }
P mul(P p, double c) { return P(p.first * c, p.second * c); }
P ave(P p1, P p2) {
return P((p1.first + p2.first) / 2, (p1.second + p2.second) / 2);
}
void printP(P p) { printf("P:(%f, %f)\n", p.first, p.second); }
double square(P p) { return p.first * p.first + p.second * p.second; }
double size(P p) { return sqrt(square(p)); }
int count(P p) {
// printP(p);
int counter = 0;
for (int i = 0; i < N; i++) {
if (square(minas(p, d[i])) <= 1.0001)
counter++;
}
// printf("%d\n",counter);
return counter;
}
int check(int i, int j) {
if (square(minas(d[i], d[j])) > 4.0)
return 0;
int ans = 0;
P average = ave(d[i], d[j]);
P dir = mul(minas(d[i], d[j]), 0.5);
// printP(average);
double s = sqrt(1.0 - square(dir));
// printf("!!!!!!%f\n",s);
P dir1 = P((Y[i] - Y[j]), -(X[i] - X[j]));
// printf("!!!!!!%f\n",size(dir1));
double r = s / size(dir1);
P d1 = add(average, mul(dir1, r));
P d2 = add(average, mul(dir1, -r));
return max(count(d1), count(d2));
}
int main() {
while (1) {
scanf("%d", &N);
if (N == 0)
break;
for (int i = 0; i < N; i++)
scanf("%lf%lf", &X[i], &Y[i]), d[i] = P(X[i], Y[i]);
int ans = 1;
for (int i = 0; i < N; i++)
for (int j = 0; j < i; j++)
ans = max(ans, check(i, j));
printf("%d\n", ans);
}
}
|
[["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 603
|
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef pair<int, int> P;
const double EPS = 1e-12;
const int INF = numeric_limits<int>::max() / 2;
const int MOD = 1e9 + 7;
typedef long double ld;
typedef complex<ld> Point;
const ld eps = 1e-9, pi = acos(-1.0);
namespace std {
bool operator<(const Point &lhs, const Point &rhs) {
if (lhs.real() < rhs.real() - eps)
return true;
if (lhs.real() > rhs.real() + eps)
return false;
return lhs.imag() < rhs.imag();
}
} // namespace std
Point input_point() {
ld x, y;
cin >> x >> y;
return Point(x, y);
}
bool eq(ld a, ld b) { return (abs(a - b) < eps); }
class Circle {
public:
Point p;
ld r;
Circle() : p(Point(0, 0)), r(0) {}
Circle(Point p, ld r) : p(p), r(r) {}
};
vector<Point> is_cc(Circle c1, Circle c2) {
vector<Point> res;
ld d = abs(c1.p - c2.p);
ld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);
ld dfr = c1.r * c1.r - rc * rc;
if (abs(dfr) < eps)
dfr = 0.0;
else if (dfr < 0.0)
return res; // no intersection
ld rs = sqrt(dfr);
Point diff = (c2.p - c1.p) / d;
res.push_back(c1.p + diff * Point(rc, rs));
if (dfr != 0.0)
res.push_back(c1.p + diff * Point(rc, -rs));
return res;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
while (cin >> n, n) {
vector<Point> ps(n);
for (int i = 0; i < n; i++) {
ps[i] = input_point();
}
if (n <= 2) {
cout << n << endl;
continue;
}
int res = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
Circle c1 = Circle(ps[i], 1.0), c2 = Circle(ps[j], 1.0);
vector<Point> vs = is_cc(c1, c2);
int sz = vs.size();
if (sz == 0)
continue;
for (int k = 0; k < sz; k++) {
Point p = vs[k];
int tmp = 0;
for (int idx = 0; idx < n; idx++) {
if (abs(ps[idx] - p) <= 1 + eps)
tmp++;
}
res = max(res, tmp);
}
}
}
cout << res << endl;
}
}
|
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef pair<int, int> P;
const double EPS = 1e-12;
const int INF = numeric_limits<int>::max() / 2;
const int MOD = 1e9 + 7;
typedef long double ld;
typedef complex<ld> Point;
const ld eps = 1e-9, pi = acos(-1.0);
namespace std {
bool operator<(const Point &lhs, const Point &rhs) {
if (lhs.real() < rhs.real() - eps)
return true;
if (lhs.real() > rhs.real() + eps)
return false;
return lhs.imag() < rhs.imag();
}
} // namespace std
Point input_point() {
ld x, y;
cin >> x >> y;
return Point(x, y);
}
bool eq(ld a, ld b) { return (abs(a - b) < eps); }
class Circle {
public:
Point p;
ld r;
Circle() : p(Point(0, 0)), r(0) {}
Circle(Point p, ld r) : p(p), r(r) {}
};
vector<Point> is_cc(Circle c1, Circle c2) {
vector<Point> res;
ld d = abs(c1.p - c2.p);
ld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);
ld dfr = c1.r * c1.r - rc * rc;
if (abs(dfr) < eps)
dfr = 0.0;
else if (dfr < 0.0)
return res; // no intersection
ld rs = sqrt(dfr);
Point diff = (c2.p - c1.p) / d;
res.push_back(c1.p + diff * Point(rc, rs));
if (dfr != 0.0)
res.push_back(c1.p + diff * Point(rc, -rs));
return res;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
while (cin >> n, n) {
vector<Point> ps(n);
for (int i = 0; i < n; i++) {
ps[i] = input_point();
}
if (n == 1) {
cout << n << endl;
continue;
}
int res = 1;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
Circle c1 = Circle(ps[i], 1.0), c2 = Circle(ps[j], 1.0);
vector<Point> vs = is_cc(c1, c2);
int sz = vs.size();
if (sz == 0)
continue;
for (int k = 0; k < sz; k++) {
Point p = vs[k];
int tmp = 0;
for (int idx = 0; idx < n; idx++) {
if (abs(ps[idx] - p) <= 1 + eps)
tmp++;
}
res = max(res, tmp);
}
}
}
cout << res << endl;
}
}
|
[["-", 8, 9, 0, 57, 15, 339, 51, 16, 17, 19], ["-", 8, 9, 0, 57, 15, 339, 51, 16, 12, 13], ["+", 8, 9, 0, 57, 15, 339, 51, 16, 17, 60], ["+", 8, 9, 0, 57, 15, 339, 51, 16, 12, 13], ["-", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13], ["+", 0, 52, 8, 9, 0, 43, 49, 50, 51, 13]]
| 1
| 678
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.