Dataset Viewer
Auto-converted to Parquet Duplicate
index
int64
0
1.35k
question
stringlengths
6
657
A
stringlengths
1
149
B
stringlengths
1
140
C
stringlengths
1
159
D
stringlengths
1
274
answer
stringclasses
4 values
image
stringlengths
368
601k
category
stringclasses
7 values
question_type
stringclasses
1 value
0
某工厂对一批产品进行了抽样检测. 有图是根据抽样检测 后的产品净重 (单位: 克) 数据绘制的频率分布直方图, 其中 产品净重的范围是 $[96,106]$, 样本数据分组为 $[96,98),[98$, $100),[100,102),[102,104),[104,106]$, 已知样本中产品 净重小于 100 克的个数是 36 , 则样本中净重大于或等于 98 克并 且小于 104 克的产品的个数是( )
90
75
60
45
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCADvAQ0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/iiiigAooooAKKKKACiucufGHhSz8W6P4CuvEmh23jfxB4e8ReLdC8Iz6pZxeI9Y8L+EdR8M6R4p8Q6bozzC/vNF8Par408I6drOpW8Elpp174m0O2upYptTtEl/ET/gsle/tma/q3wV+HnwS+F/xgvP2fJfEH7Ovib4h/Fb4eePv+Cf3gafR/2h9C/4KXfsBfET4A23w+uP2x/jJ4OudS+MGh+CfhD8e/CXw98J6v4H174SfEX4y/Hj4BeDNc0b4iyXuux/DMA/d6iv5AvGHivxPpv7cV14W8fP+1/dfD/SviB+zN+zt418BeNP+Czf/BQT4L/tHeJvi7+0d4t/4Jkx/H/9pHxZ8JP2TrLxJ+xLpH/Cg/Ev/BT39mnwB4W+AH7NPx3/AGcfgnaXV9+0PqngDw98Rvh/dfBjTf2d/p//AIKo+KPjz45+DX7btt4Z+Ln7b9v4k+F/xg+DvwsufgR+zUf+Cbfjz4U/DRPH8/g3xL+z38dfhF47+OP7PHgL9oTxZ+0/pcj/AA0+KvhD9jjwD+0R4S/by0/9tDxj8E/Bf7PWseAfg38Zf2UP2zfEIB/S9RX5A/sf/ET40J8bPhr4N8Z/tK/tAfHjxB8QPh/8ePFvxA+Gnxu8b/sCy+BPgj4O+FXxdvfhPKmg+Mv2SP2L/g3e/G/9r/wD8TdN8KfCf9pX4I/Cv4l/EP4E/smax4o+JWm/F74y6n4gvP2ONS/ak+e/2tdd/bY+LHx9/Zc1D4K6h8JdT0Dxvq/7Sl1+zMl343uF+On7P/xD8ZaXp37Lmnf8FBvC/wAF4f2c9a+HXxV+Cv7Fn7Mnj74x/FXxH4X/AGgv2i/Bfw0+O/jb9sbwr8DpZNG+N9v+yN4c8fgH9AVFfyhf8JP8U/J/4W9/wrz/AIKf/wDCW/8AD77/AIVP/wANWf8ADwbxH/wxt/wqz/h/N/wzx/wrT/hlb/h4Z/af/Cv/APhSX/GM/wDwhv8AwxD/AMI59u/4mH9m/wDCJf8AFya9f+NN98ZfEv8AwUu+Kfwj8D6R+2/4u+Mmt/tv/slfGT4N+NvhR+37B4d/ZH+E/wCxL+zhpP8AwSTu/wBuHwD8Yf2Y9N/bm8H6Ro3iA6R8aviHrWt/C/xn+yV4i8cfFjRP2j/BvjfwlZeLvDeuDxF4aAP6XqK/nB/4I7+J/DnizR/2BZPix8PP+Cn/AIf/AGjfir+wBpX7UelfGP8AaQ/4KDfFP42/s4/tFf8ACNeBP2dvA/xr8c6P8FtP/wCChnx48P2f/CQ+IP2pfBvjfwR4Z+MP7N/w3/sK11qPWNE8PeDfGfgy10rRv6PqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP8AP6/bB+Ln/BYqf/g41+GX7Vfw1/Yx/aL1f4W/Bi18WeBfg78KrPSLS3n+LX7Fnw58UeE/AP7RvjLTdOudXttPuJfHPiL4w6V4v0e71qC31LRNQ8T/AAjj1Gzln8IWzWv9cH7Vv7Pd/wDtJfFPwv4b8PfBfxNoeqan4Z+C/iC7/bb8WeKfDd94d+AHh34QftCaB+0TpPhD9nn4O6n8Q9V8VxftS6p8Yvhb8GfHWpt4s+Bmgfsy+L7HwZ8LPFv7T/iP9qPS/wBmXwP+xf4+6Xx9/wApT/2T/wDtH/8A8FCP/Wi/+CZFfoBQB/PDJ/wSf1Hwt8QtD+Jnwk+HHiDwV8Lvhn+0/wDsm+FPhl+zPcfETwrrHjST9nj4JfEz/gmB4E8UfF6b4ta9rfiDSPCXh/w7pH/BKv8AZK+N/wAPfhXrVx8Zvi34x+AXw6+P3hDxv4z0D9pH9tLwF4T/AOCenoH/AAUi/wCCSXiX9pT9kf8Aa1+H3g74+fGD4i3XiPw/+0/8ZfgB+ylrPwS/4JcwfBrTf2lfiZonxa8U+HIvCfiPxf8AsKaf8RPA3iDxD8RPiX4hsbn44S/HPQPjfbz+NPE3jXWPjra+N9Y1vx7N+71FAH4+fs6/8EevAn7KUuuH4K/tNfGLTtD1Lx943+M2l/DLVvgJ/wAE6vDvwe8MfHbxl+zi/wCy6vxd8HeFPgT+xB8DPFPwx8S6T8MUs7WSP4I+P/hRbeJ7z/hIz4x/t60+I/xQtfGnVftY/sFaT8dvGPgHQtB/Yh/4JffETQ/C/wAJfC3w70b9qH9tP4Uf8NL/ABR+FGk+D9U8R3+nfDfw9+zL/wAKm8G/8LK+HrWc0NrpN7/w3R8Ff+EW8Q/EHxV4z/4QnxH/AMIj/wAIx8UP1ZooA/lC/wCGXP2mP+EI/tf/AIdv/wDBT/8A4Xb/AMPP/wDhtb+z/wDh4Z+z3/wzP/wqz/h7h/w29/YH/DM//D2b/hnj/hYH/DPH/Ek/sr/hRf8Awjn/AA0J/wAVT/wlf9p/8Xer7ftP+CZHx9+IP/BRXxj+2V8XdM/YgtPBPhf9p/xV8Yfgz4V8bfDzxp+2D4q1Dwt4u+F//BPH4RP4y0M+J9P/AGY9I/ZM/af8F6R/wTj8K+Lfht8WPCt/+0zp3hTUv2hvHPhY6JqFr8LNO8VfFn93qKAPwB/4JNfs0eI/2btH/ZD0H4ofsB/t/wDw/wDj18NP2QPD37NHjz9oD42/tr/Cz9oP9nH4e+V4E+FetfFvSfhR8KZP+Ck/x2vfht8P/iT8TfgT4BsPCth8G/2aPC/9nWuk+BtJvdB8DeBdM1KLRP3+oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+H/ANoj9vT4X/s5eOb/AMEa14C+L3xEXwR4E0j4tfHzxZ8LND8Ha14X/Zm+DviDX9Q8OaJ8UfjH/wAJH478JeJLjQNSu9A8XahDoHwl8OfFP4iw+HPBXirxTd+CLbw7pqanc/cFfhN+2h4A+K/hv4qf8FCvCPh34R/E74lzf8FHP2Q/hj8EPgL4n8EeAfGnjLwh4b+LfhvQ/jF8KvEnhH4weOPC3h3XNB+AvgnTNL+KHhb4mWvjb4pXHhnwHq9n/wAJxbaX4luPFOnjQJwD9ofiF8QND+Gvw+8V/EvWrHxXrvh/wh4c1DxPfaf8PfBfiv4meMNV0/T7Rrx7fwp4H8BaP4h8XeLtWuolC6fpPhzR9Sv72R1EMDLudfnjwt+2V4L8e/sl/Cr9rjwD8Nvi54y0P43eE/h54m+F3wf0zTPAenfGnxVffE46d/wi/g9dP8TfELQfhtoviRU1D7Trt34i+J2j+DvDenafq2sa34sstH0y7v4+p07xt4b8AfCHxx4NuLD4o6zc/s7fDbQvDXi240f4DfG7UZfFE1j8PLK9hm+Eun6Z4B1G6+OEtzZiOOWx+CY+I1zp2vNL4RvhF4ptbnSY/wAs/wBnnSv2Z9Z/4JA/sbfDH9uX9lX44/EDw5oPwy8D/DXXvhJ4t/4J+/tdfFP4o+Avin4P8HahoGo+IYPhV4R+APif4zfDXUtBC6zD4R+OGleG/Dtha3N1aah4G8fC61PSbq5APvf4jftyxfDHQPhfBrv7Ln7TWqfG/wCKOg+PvGlt+yx4ST9nbxT8cvCHw6+F0lnH4++Ini++0f8AaIuPgcnhrQTrXhSG3tfC/wAafFHirxPqnjHw74a8G+GvEXiuTU9C0z64+HHxC8H/ABa+H3gf4pfD7WYvEXgT4j+EvD3jnwbr0EF3axax4Y8VaTaa3oepLaX8Frf2ZvNNvrad7O/tbW+tHdre8toLmKWJPw88F+G/j7+yj4t/Zc/aK+Mvgf8AaM+O2lL+yN+0Z+zVdQaH4M+In7RHx88E6t4l+OHhz4t/sy6J8VbDwPpvjvxtPrfiT4WaBa/DX4rfGLVl1nw7onxA8M6RefFHxfYWWoN4tvf07/YF+CnjD9nL9i39mX4H/EL7Cnjv4b/B/wAH+H/GVtpl1Ff6fp3ihNOS713SLPUYHeDU7fRtSurnSotUtytvqa2Yv4I4obhIkAPlr9qn9oX4Bfs1/wDBSX9j/wAdftF/HD4P/AHwTq37D/7fvhPS/GPxr+Jfgz4WeFdS8VX3x5/4Ju6xY+GdP8Q+Ota0HSLzxBeaRoOuapaaNb3kmo3GnaNqt9DavbadeSw/cHj/APax/ZY+FHxT8FfAv4pftLfs/wDw2+NvxK/4Rz/hXXwd8f8Axk+HXg74p+P/APhMfEd74P8ACP8AwhXw98ReI9O8W+Kv+Eq8W6dqHhbw5/YWkX/9ueI7C90TTPtWp2s9qnz/AOPv+Up/7J//AGj/AP8AgoR/60X/AMEyK/QCgDwD/hrH9lj/AIXt/wAMuf8ADS37P/8Aw01/0bp/wuT4df8AC9v+RO/4WJ/ySL/hI/8AhYH/ACT/AP4rn/kXv+RO/wCKm/5Av+nUngD9rH9lj4rfFPxr8C/hb+0t+z/8Sfjb8Nf+Ek/4WL8HfAHxk+HXjH4p+AP+EO8R2fg/xd/wmvw98O+I9R8W+Ff+EV8W6jp/hbxJ/bukWH9h+I7+z0TU/sup3UFq/wBAUUAfMHw4/bd/Yv8AjH4V+J3jr4Rftd/swfFTwR8E/D6+LPjN4x+HHx9+FPjjwr8I/Cr6d4g1hPE3xO8Q+GPFmqaT4C8PtpPhPxVqi6z4qvNJ01tO8NeIL4XJttG1GW2NG/bd/Yv8R/BrxZ+0Z4e/a7/Zg139nzwF4gtvCfjr47aN8ffhTqnwb8F+Kryfwza2fhnxZ8T7HxZP4I8OeILq58aeDra20bWNcs9Rnn8WeGoYrZ5Ne0tbr6fooA+YNZ/bd/Yv8OfBrwn+0Z4h/a7/AGYNC/Z88e+ILnwn4F+O2s/H34U6X8G/Gniqzn8TWt54Z8J/E++8WQeCPEfiC1ufBfjG2udG0fXLzUYJ/CfiaGW2STQdUW1PiP8Atu/sX/Bzwr8MfHXxd/a7/Zg+Ffgj42eH28WfBnxj8R/j78KfA/hX4ueFU07w/rD+Jvhj4h8T+LNL0nx74fXSfFnhXVG1nwreatpq6d4l8P3xuRbazp0tz9P0UAfP/j/9rH9lj4UfFPwV8C/il+0t+z/8Nvjb8Sv+Ec/4V18HfH/xk+HXg74p+P8A/hMfEd74P8I/8IV8PfEXiPTvFvir/hKvFunah4W8Of2FpF//AG54jsL3RNM+1anaz2qL/wANY/ssf8L2/wCGXP8Ahpb9n/8A4aa/6N0/4XJ8Ov8Ahe3/ACJ3/CxP+SRf8JH/AMLA/wCSf/8AFc/8i9/yJ3/FTf8AIF/06vf6KAPn/wAAftY/ssfFb4p+NfgX8Lf2lv2f/iT8bfhr/wAJJ/wsX4O+APjJ8OvGPxT8Af8ACHeI7Pwf4u/4TX4e+HfEeo+LfCv/AAivi3UdP8LeJP7d0iw/sPxHf2eian9l1O6gtXwPhx+27+xf8Y/CvxO8dfCL9rv9mD4qeCPgn4fXxZ8ZvGPw4+Pvwp8ceFfhH4VfTvEGsJ4m+J3iHwx4s1TSfAXh9tJ8J+KtUXWfFV5pOmtp3hrxBfC5Nto2oy230/RQB8Af8PYv+CWX/SSz9gD/AMTI/Z1/+eNR/wAPYv8Agll/0ks/YA/8TI/Z1/8AnjUfsb/8nFf8FYv+z/8A4cf+usv+Cadff9AHwB/w9i/4JZf9JLP2AP8AxMj9nX/541egfC3/AIKE/sC/HHx3oXwt+Cn7cP7IHxg+Jvij+0/+EZ+HXwt/aW+C/wAQPHfiL+xNH1HxFrP9heEfCfjXV/EGr/2R4f0jVdd1P+z9PuPsGj6ZqGp3XlWVlczxfX9fAH7ZH/JxX/BJ3/s//wCI/wD66y/4KWUAff8ARRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRX4wfthftIftI2/xG/bT1D4J/F64+E3hL/gnJ+zJ4C+P+q+EbTwR8OvF2kftH/EPxZpfxK+JOo/Dn4r33jnwlr3ivw98MrL4c/C+w0TT5fgxr/w28cf8JF491LXbvx7c2/h2x8NMAfs/RXj3iTX/GXjn4Eaj4r+EWv6H4A8beLfhmviXwF4i8c+Drr4haF4U1bW/D0eraPfeI/BOj+M/AVz4og003EZu9HsvHHh5bySMourRxZ3/C/7MusftQftcf8ABO39jfx5cftQa18GviR8S/gR4F+IXxm+PXgb4dfBm/8AiNqniK+8G2moBvCXhT4ifDnxr8DfC+na54jnbUfF8t/8NNYS38N2V14c8JWXhzVdatvGfhYA/Umivwpuf2pv2vNU/YF/Zb+LXxLP7R3hGPV38Uan+0/+1X+xf8Jv2d/HHi/w38K/A+t634W8FfHPTvgZ8ddO+KGov4G+NmkHwz8avE1v8If2fPjx4m8LeAU8QR+H/Ceg2N5pmu6T+z/w01HTtY+HPgHV9H8eXnxS0jVvBnhjU9J+Jmof8I19v+IemaholleWHje8/wCEM0Dwr4QNz4qtJodcmPhfwx4e8PF75jo+iaXp/wBnsoQD428ff8pT/wBk/wD7R/8A/BQj/wBaL/4JkV+gFfn/AOPv+Up/7J//AGj/AP8AgoR/60X/AMEyK/QCgAooooAKKKKACiiigAooooAKKKKAPgD9jf8A5OK/4Kxf9n//AA4/9dZf8E06+/6+AP2N/wDk4r/grF/2f/8ADj/11l/wTTr7/oAK+AP2yP8Ak4r/AIJO/wDZ/wD8R/8A11l/wUsr7/r4A/bI/wCTiv8Agk7/ANn/APxH/wDXWX/BSygD7/ooooAKKKKACiiigAooooAKKKKACiiigAr85P2l/wBgjVPjp8R/iN4p8HfGdPhZ4L/aV+EXhf4Aftf+DJfh/d+MNY+Knwm8G6x4ovNET4WeNLT4h+C2+CnxFn0Dx/4+8C654z1Pw58WND1Lwl4gs1t/AuneItA0/wAQn9G68q8f/HX4IfCjxJ8PPBnxS+Mnwq+G3i/4u66/hf4T+FPH/wAQ/CPg7xJ8T/EscljDJ4d+Hmh+ItX07VPGuupLqemxPpHhu11PUFk1CxRrcNdwCQAyL7wV8W4vC/xS8LeFvHPwm8PWGoaBaeH/AIAwy/BnxXqFj8LLW38JQaM0fxKsbX456MfjBZx6/HLqmn2nhC5+BJsvDptvDElxeahbv4rufgTQf2Dv2r/Bn7CHwG/Yr8GftdfAqzl+FGl6F4G8dePNf/Y/+JOqeHvjB8H/AAmlvbaL8OdU8A6B+254Q8QeF08Q6baxaP8AFPWNN+Kt/B460efVNI0zQ/Bul6re2T/rBdXVtY21xe3txBaWdpBNdXd3dTR29ta21vG0s9xcTyskUMEMSPJNNI6xxxqzuyqpI8o1v9oL4C+GvhAn7QniT43fCHw/8ApNE0nxNF8cNb+JXgzSvhBJ4b16e0ttD8QJ8S7/AFq38FtomtXGoWFvpOqrrRsNRnvbSKzuJpLmFXAPnTWPgz+3VrHw60DwRJ+1x+zrb6prB8Y6d8YvE8H7FHi2P7b4Y8SXSWei6N+z9oMf7Ysem/CC78IeFHu7HT9V+LTftPpqfieW28Q6tptxodrJ4Kuvrb4ceAPDHwo+H3gX4X+CbFtM8G/Dnwf4a8C+FNOeZ7h7Hw54S0az0HRbWS4lzLcywadYW0ctxKTLPIrTSEyOxPC+OP2mP2cPhl8PPCfxd+JP7QPwR+H3wn8ez+HrXwL8T/HHxW8CeE/h540ufF1i+qeFLfwn4117XrDw34jn8T6ZHJqPh6HR9TvJNasUe701bm3VpB7UrK6q8bK6OoZHUhlZWGVdWBIZWGCCCcg5BxQB+cXxXtvFU/8AwVg/Yjl8Paz4f0vSbP8AYf8A+CiFz46sdZ8Najr2o+I/CrfGH/gndZ2ejeE9UsfFnhy28F+IIPG114O8Q3PiXWNH8e6ddeFdB8TeDovCdnq3izS/HXgv6g8AeHP2p9O+KfjXV/il8ZP2f/GPwSv/APhI/wDhXXw98Afs0/EX4bfFPwr9q8R2V14R/wCE1+MXiL9rH4r+EvH/APYfhJNQ0TxH/YXwL+Gv/CVeI7qy8U6Z/wAIdplhP4P1H5/8ff8AKU/9k/8A7R//APBQj/1ov/gmRX6AUAfMHw48J/toaX4V+J1n8Xfj7+zB448b6t4fW2+DPiH4cfsifFb4V+FfAXioad4gifWfid4O8T/tu/GPVvi54fbVrnwrfL4Z8K+OvgnqS6do3iDSz4se58S6drHhM0bwn+2hB8GvFmh+Ifj7+zBqn7Qd54gtrnwL8T9G/ZE+K2hfBvw54VSfwy15o3iz4E337bviPxv408QT21r4xhtvE2j/ALRngLTrWfXvDVzL4TvI/CeqWvjT6fooA+YNZ8J/toT/AAa8J6H4e+Pv7MGl/tB2fiC5ufHXxP1n9kT4ra78G/EfhV5/EzWejeE/gTY/tu+HPG/gvxBBbXXg6G58Tax+0Z49066n0HxNcxeE7OPxZpdr4LPiP4T/AG0NU8K/DGz+EXx9/Zg8D+N9J8PtbfGbxD8R/wBkT4rfFTwr498VHTvD8Saz8MfB3hj9t34Oat8I/D66tbeKr5vDPirx18bNSbTtZ8P6WPFiXPhrUdY8WfT9FAHz/wCP/Dn7U+o/FPwVq/wt+Mn7P/g74JWH/COf8LF+Hvj/APZp+IvxJ+Kfir7L4jvbrxd/whXxi8O/tY/Cjwl4A/tzwk+n6J4c/t34F/Er/hFfEdre+KdT/wCEx0y/g8H6cv8Awjn7U/8Awvb/AISH/hcn7P8A/wAMy/8ARIv+GafiL/wvb/kTvsP/ACcX/wANY/8ACv8A/koH/FTf8muf8id/xQ3/ACGv+LiV7/RQB8/+APDn7U+nfFPxrq/xS+Mn7P8A4x+CV/8A8JH/AMK6+HvgD9mn4i/Db4p+FftXiOyuvCP/AAmvxi8RftY/Ffwl4/8A7D8JJqGieI/7C+Bfw1/4SrxHdWXinTP+EO0ywn8H6jgfDjwn+2hpfhX4nWfxd+Pv7MHjjxvq3h9bb4M+Ifhx+yJ8VvhX4V8BeKhp3iCJ9Z+J3g7xP+278Y9W+Lnh9tWufCt8vhnwr46+CepLp2jeINLPix7nxLp2seE/p+igD5g0bwn+2hB8GvFmh+Ifj7+zBqn7Qd54gtrnwL8T9G/ZE+K2hfBvw54VSfwy15o3iz4E337bviPxv408QT21r4xhtvE2j/tGeAtOtZ9e8NXMvhO8j8J6pa+NDWfCf7aE/wAGvCeh+Hvj7+zBpf7Qdn4gubnx18T9Z/ZE+K2u/BvxH4VefxM1no3hP4E2P7bvhzxv4L8QQW114OhufE2sftGePdOup9B8TXMXhOzj8WaXa+C/p+igD8Yf2fvCf7aGqfGD/gopZ/CL4+/sweB/G2lftv8Aw7tvjN4h+I/7InxW+Knhbx74qP8AwSg/4JaRJrPwx8HeGP23fg5q/wAI/D66vbeKb5vDPirx18bNSfTtZ8P6WPFqXXhrUdY8Wfo94/8ADn7U+o/FPwVq/wALfjJ+z/4O+CVh/wAI5/wsX4e+P/2afiL8Sfin4q+y+I7268Xf8IV8YvDv7WPwo8JeAP7c8JPp+ieHP7d+BfxK/wCEV8R2t74p1P8A4THTL+Dwfp3gH7G//JxX/BWL/s//AOHH/rrL/gmnX3/QB4B/wjn7U/8Awvb/AISH/hcn7P8A/wAMy/8ARIv+GafiL/wvb/kTvsP/ACcX/wANY/8ACv8A/koH/FTf8muf8id/xQ3/ACGv+LiV+YH7bfgr9vqX9qL/AIJ3z6N+0t+yBYeH9X/b/wDiv/wpTTNT/Ye+NGr6x8P/ADf+Cdv/AAUP1DSv+Fpa7a/8FCdEsvjB9i+GVv4m8I6h/wAIn4d+B39p+O9X0L4i239keH/DuofC3xR+31fAH7ZH/JxX/BJ3/s//AOI//rrL/gpZQAf8K5/4Km/9HkfsAf8AitP9or/6bFR/wrn/AIKm/wDR5H7AH/itP9or/wCmxV9/0UAfAH/Cuf8Agqb/ANHkfsAf+K0/2iv/AKbFXr/7EXxr8VftKfsX/siftF+OtP8AD+k+Nvj7+y/8AvjX4x0vwna6jY+FdN8VfFT4U+E/HXiHT/DNjrGq69q9n4fs9W127t9GtdU1zWdRt9Ojtob3VdRuUlvJvqCvgD/gk7/yiy/4Jp/9mAfsb/8ArOvw5oA+/wCiiigAooooAKKKKACiiigAr+er9uFdEf4gf8FoIviXbwXfiC4/4JofBG1+AdrqdnJf3Vx4cuh+0Xb28PgO0lhnv59ek/aSl8LrOvhiJ2XxWfhs8+3XF0Zl/oVry/xx8EPgv8TvFHw78cfEr4Q/C/4heNfhBrc/iX4TeL/HHgDwp4s8UfC/xHcm0Nz4g+Hev6/pOoat4J1u4On2Bn1Xw1d6ZfymytPMuG+zQ7ADndU8Eaf8SP2cpPAXx18I+HvHtr4r+EVrovxS8GePdA0LxT4c8SXl34VgTxNpXibw7qVpfeHdYs7nURcre2NxZ3GmzMCFiaLaK/Df9meKOH9mv/g3Ih8RRxxfCiIaTFqEUyLHoMXxXj/Y1+J6/AqPUkmA0lJE1sa+vhVLgC9XxiPDg0EDUxAK/eXU/gV8ENbtvivZaz8G/hVq9p8eILe1+OVrqfw88I39t8ZrW08PweE7W2+K8F1o8sXxEgtvCtvb+GreHxeusRw+H4IdGiVdNiS2Xj7D9kf9lLSvgpf/ALNWl/sx/s9ab+znqks8+p/AGw+C/wAN7P4KajPdaxF4hupr/wCFdv4aj8C3ctzr8Fvrk8lxoMjzaxDFqcha9jScAH4HfsevoEP7TXh64+LttpFv+zO3w2/4LJX37NEPiTTrS3+HbeEbj9tbQbzx1L4f07ULZNObSrr4PS39xoKWlsbu5+Gkvit7VJPBM0Zb9if+CYEXjO3/AOCd/wCxfB4/g1W28Twfs6fC+K4ttcga21e30qPwzZJ4Zg1C2lSO5t7iLwwujxvBfRpqUQUR6mi6gtyo+iPHP7Of7PfxQ8DeE/hh8S/gR8GviJ8NPAN74b1LwL8PPHPww8EeLfA3gvUfB1k2m+Eb/wAJ+Etf0PUNA8OXvhXTnaw8N3Wj6fZz6HZM1rpklrAxjPstAH5/+Pv+Up/7J/8A2j//AOChH/rRf/BMiv0Ar8//AB9/ylP/AGT/APtH/wD8FCP/AFov/gmRX6AUAFFFFABRRRQAUUUUAFFFFABRRRQB8Afsb/8AJxX/AAVi/wCz/wD4cf8ArrL/AIJp19/18Afsb/8AJxX/AAVi/wCz/wD4cf8ArrL/AIJp19/0AFfAH7ZH/JxX/BJ3/s//AOI//rrL/gpZX3/XwB+2R/ycV/wSd/7P/wDiP/66y/4KWUAff9FFFABXwB/wSd/5RZf8E0/+zAP2N/8A1nX4c19/18Af8Enf+UWX/BNP/swD9jf/ANZ1+HNAH3/RRRQAUUUUAFFFFABRRRQAV+b/AO09+3v4h+BnxA+Jnhj4ffA63+MHhf8AZm+Dvhv9oX9rrxPd/E//AIV5q/w0+EvivVfFUGkp8KPC8nw/8X2nxn+JqeGvh78QvHOoeCdc8U/CDw9a+HdA02CL4g3XiHxJp+iR/pBX4zftdfs0ftHaj8Tf2zdJ+C/wxf4i+Df+Cj37NPw++AGu+PYvFHgDRNH/AGafHfhDTfiT8OdZ+I3xT0Lxj428K+L/ABV8O9S+GXxOtNV0O3+DOl/EDxiPFvga80XU/BNjp/iC28URgH6A/tI/tLaD8Avgnb/FrS9Ef4l6p4v8Q/DXwD8H/B+kavb6PF8SfiR8aPFWheCPhZoJ8UT2mo2fhvw9rXiDxJpd1r/i6bTtUj8O+FotW16HSNbuLGDR7/wnwd+1X+078TfDXxA8KfD79mT4NS/tQ/BL4vSfCv45fDHxv+1d4h8MfBbwnb3Pgbw98SfDHjPwf8b/AA/+zB45+I3jjRPHPg/xr4RuvC1vf/s0eDLwaofF2k+JV8NyeGLWfxBjftQfBj4n/Ef4J+G/Anwr+GXixvGP7G3xm/Zc+MXwfufG3iD4XaXoX7SK/AnVfC/irXvDngnUtI8eazd+FdR1/wAMW/ib4eW2pfGLwx8N9OtPiFcWWopbv4IVfGcPn3hz4R/tUWfwd/4KEfG7wp8OdW+Hn7Sn7aXiqDUPhR8IPEPij4ZS+Jfgpp2mfCTwF+zv4F1/4h+JvC/j3xd8L7vxX4et/D+qfGXxZY+CPiJ4w0ddHSw8L+GrrXvE0MljfgFTQv8Agpd401n4Hfs5+J9Q+HP7KvgP9ob9qn4u/Ez4a/BL4S/E/wDbdvvAnwm+IWh/DbxZ4k8Mx+OfBPxq1b9mL/hYnjSP4gppPhzUPhv4T8L/ALNOqeJPEKfEDwi1xb6ZpU2p61pv6seG5/Ed14e0K58X6VomheK7jSNOm8TaL4b1++8V+HtI16W0hfVtN0LxPqnhrwbqXiLSLG/ae207W9Q8I+F7zVLSOG9ufD+jzTvp9v8AA/7Qfwx0/wAI/sveFv2JvBf7EXjn9q/4Q+IPg5a/BGPTrTWv2bNN+FHgXSvC+haL4Z8F3vxiHxu+NHgLxq+k211b6f4lk134TfDn4v8Ai7RT4evdd0zw/d+Krbw/pmrfYnwR8Da58MPgz8JPhr4m8VXvjrxH8Pfhn4E8Ea/411F5n1DxdrXhXwvpehap4mvZLmSW5kutcvbCfU53upp7p5LlmuZ55zJK4B+d37VP7PXwC/aU/wCCkv7H/gX9ov4H/B/4/eCdJ/Yf/b98WaX4O+Nfw08GfFPwrpviqx+PP/BN3R7HxNp/h7x1ouvaRZ+ILPSNe1zS7TWbezj1G307WdVsYbpLbUbyKb7B+I/7EX7F/wAY/Cvwx8C/F39kT9mD4qeCPgn4fbwn8GfB3xH+AXwp8ceFfhH4VfTvD+jv4Z+GPh7xP4T1TSfAXh9tJ8J+FdLbRvCtnpOmtp3hrw/Ym2Nto2nRW3j3j7/lKf8Asn/9o/8A/goR/wCtF/8ABMiv0AoA+f8Ax/8AsnfssfFf4p+Cvjp8Uv2af2f/AIk/G34a/wDCOf8ACuvjF4/+Dfw68Y/FPwB/wh3iO98YeEf+EK+IXiLw5qPi3wr/AMIr4t1HUPFPhz+wtXsP7D8R397remfZdTup7p1/4ZO/ZY/4Xt/w1H/wzT+z/wD8NNf9HF/8Kb+HX/C9v+RO/wCFd/8AJXf+Ec/4WB/yT/8A4ob/AJGH/kTv+KZ/5Av+g17/AEUAfP8A4A/ZO/ZY+FPxT8a/HT4W/s0/s/8Aw2+NvxK/4ST/AIWL8YvAHwb+HXg74p+P/wDhMfEdn4w8Xf8ACa/ELw74c07xb4q/4Srxbp2n+KfEn9u6vf8A9ueI7Cz1vU/tWp2sF0mB8OP2Iv2L/g54V+J3gX4RfsifswfCvwR8bPD6+E/jN4O+HHwC+FPgfwr8XPCqad4g0dPDPxO8PeGPCel6T498PrpPizxVpa6N4qs9W01dO8S+ILEWwttZ1GK5+n6KAPmDRv2Iv2L/AA58GvFn7Ofh79kT9mDQv2fPHviC28WeOvgTo3wC+FOl/Bvxp4qs5/DN1Z+JvFnwwsfCcHgjxH4gtbnwX4OubbWdY0O81GCfwn4amiuUk0HS2tTWf2Iv2L/Efwa8J/s5+If2RP2YNd/Z88BeILnxZ4F+BOs/AL4U6p8G/Bfiq8n8TXV54m8J/DC+8Jz+CPDniC6ufGnjG5udZ0fQ7PUZ5/FniaaW5eTXtUa6+n6KAPyA/wCCvv7J37LHib/gll+1x/wkf7NPwA8Qf8Mv/sAftY/8M0f238G/h1qv/DO//CP/ALOuvf2D/wAKL+3+HLj/AIVJ/Yn/AAg/gr+yP+EA/wCEf/s3/hD/AAt9j8n/AIR/Sfsn0B/w6d/4JZf9I0/2AP8AxDf9nX/53NH/AAVi/wCUWX/BSz/swD9sj/1nX4jV9/0AfAH/AA6d/wCCWX/SNP8AYA/8Q3/Z1/8Anc0f8Onf+CWX/SNP9gD/AMQ3/Z1/+dzX3/RQB+YH/BOX4T/Cv4HfE/8A4Ki/C34KfDT4f/B/4ZeF/wBv/wAGf8Iz8Ovhb4N8OfD/AMCeHf7b/wCCZX/BOPxFrP8AYXhHwnpukeH9J/tfxBq+q67qf9n6fb/b9Y1PUNTuvNvb25nl/T+vgD9jf/k4r/grF/2f/wDDj/11l/wTTr7/AKACvgD9sj/k4r/gk7/2f/8AEf8A9dZf8FLK+/6+AP2yP+Tiv+CTv/Z//wAR/wD11l/wUsoA+/6KKKACvgD/AIJO/wDKLL/gmn/2YB+xv/6zr8Oa+/6+AP8Agk7/AMosv+Caf/ZgH7G//rOvw5oA+/6KKKACiiigAooooAKKKKACiiv52v2+fDvhX4nfFH/gqV44+K1pp974s/Yc/YS+EfxQ/Y21rV5I4dU+BPxB13Qfj98RL746/CTWN0M/gb4k658R/ht4P8K3fi3RZrXxPe6T8PtO8MvqT+HtQutIuwD+iWivyw/b98TeKPEv7I37Ovh3xQ93oWiftE/tEfsU/CT9oOK0W70YN8Nvi/8AE/wTpnxN8FahbrJHqlroXj9rsfC/xFpkV1BcS6D4u1LTLyZrWW8il+WfDH7Nvij4i+Hf+Civ7Ff7NFn+zj4M+BXwb/a0+GF58Pvgb8Zfg34h+JX7LmqeH9Y/Z1+EHxi8efs13HgPwJ8R/hrYeB/hd4i+L+r23ibxB4f0S08TeF/C8XibxNa6h8JfF2j+JZPDkwB++tFfzkeA/C/7P37XXxH/AGVfgH8Tv2WfhP8ABv8AZd8I/sZftg/Eez/ZA03Q/Cr/AAH8IftI/DP9o7wj8CPH/ijwlp2g+FvBfhTUJ/hJJP401f4WfEmHwl4d1Kxj+Jtx480TTPCfi24uZLH9WP8Agmp4+8b/ABR/YB/ZA8f/ABH1TUte8aeJ/gF8OtQ1zxDrMt5c6v4lkGg21tZ+J9Vvr+Wa71TUvEmnQWeuX2szTSHWrrUJdVR2jvENAHPePv8AlKf+yf8A9o//APgoR/60X/wTIr9AK/P/AMff8pT/ANk//tH/AP8ABQj/ANaL/wCCZFew/DjxZ+2hqnhX4nXnxd+AX7MHgfxvpPh9bn4M+Hvhx+138Vvip4V8e+Kjp3iCV9G+J3jHxP8AsRfBzVvhH4fXVrbwrYr4m8K+BfjZqTadrPiDVD4TS58Nado/iwA+n6K+YNG8WftoT/BrxZrniH4BfswaX+0HZ+ILa28C/DDRv2u/itrvwb8R+FXn8Mreaz4s+O19+xF4c8b+C/EEFtdeMZrbwzo/7Ofj3TrqfQfDVtL4ss4/FmqXXgs1nxZ+2hB8GvCeueHvgF+zBqn7Qd54gubbx18MNZ/a7+K2hfBvw54VSfxMtnrPhP47WP7EXiPxv408QT21r4OmufDOsfs5+AtOtZ9e8TW0Xiy8j8J6XdeNAD6for5g+I/iz9tDS/CvwxvPhF8Av2YPHHjfVvD7XPxm8PfEf9rv4rfCvwr4C8VDTvD8qaN8MfGPhj9iL4x6t8XPD7atc+KrFvE3irwL8E9SXTtG8P6oPCb3PiXUdH8J7/j/AMR/tT6d8U/BWkfC34N/s/8AjH4JX/8Awjn/AAsX4heP/wBpb4i/Db4p+FftXiO9tfF3/CFfB3w7+yd8V/CXj/8AsPwkmn634c/t346fDX/hKvEd1e+FtT/4Q7TLCDxhqIB9AUV4B/wkf7U//C9v+Ee/4U3+z/8A8My/9Fd/4aW+Iv8Awvb/AJE77d/ybp/wyd/wr/8A5KB/xTP/ACdH/wAid/xXP/Ia/wCLd0ngDxH+1PqPxT8a6R8Uvg3+z/4O+CVh/wAJH/wrr4heAP2lviL8Sfin4q+y+I7K18I/8Jr8HfEX7J3wo8JeAP7c8JPqGt+I/wCwvjp8Sv8AhFfEdrZeFtM/4THTL+fxhpwB4B/wVi/5RZf8FLP+zAP2yP8A1nX4jV9/1+QP7d3iP9qfxB/wSy/4Kqf8NL/Bv9n/AOEn2T9gD9q3/hCv+FGftLfEX9oj/hIPtH7Ovxd/4SP/AISn/hP/ANk79l//AIQ/+yvJ0H+xP7J/4Tj/AISD+0tX+3/8Iz/Yln/wkH2/o3iz9tCf4NeLNc8Q/AL9mDS/2g7PxBbW3gX4YaN+138Vtd+DfiPwq8/hlbzWfFnx2vv2IvDnjfwX4ggtrrxjNbeGdH/Zz8e6ddT6D4atpfFlnH4s1S68FgH0/RXzBrPiz9tCD4NeE9c8PfAL9mDVP2g7zxBc23jr4Yaz+138VtC+Dfhzwqk/iZbPWfCfx2sf2IvEfjfxp4gntrXwdNc+GdY/Zz8Badaz694mtovFl5H4T0u68aHxH8WftoaX4V+GN58IvgF+zB448b6t4fa5+M3h74j/ALXfxW+FfhXwF4qGneH5U0b4Y+MfDH7EXxj1b4ueH21a58VWLeJvFXgX4J6kunaN4f1QeE3ufEuo6P4TAPH/ANjf/k4r/grF/wBn/wDw4/8AXWX/AATTr7/r8gP2dfEf7U+nftu/8FLdI+Fvwb/Z/wDGPwSv/wBv/wCCv/CxfiF4/wD2lviL8Nvin4V+1f8ABNT/AIJwWvi7/hCvg74d/ZO+K/hLx/8A2H4STT9b8Of278dPhr/wlXiO6vfC2p/8IdplhB4w1H9AP+Ej/an/AOF7f8I9/wAKb/Z//wCGZf8Aorv/AA0t8Rf+F7f8id9u/wCTdP8Ahk7/AIV//wAlA/4pn/k6P/kTv+K5/wCQ1/xbugD3+vgD9sj/AJOK/wCCTv8A2f8A/Ef/ANdZf8FLK9/8AeI/2p9R+KfjXSPil8G/2f8Awd8ErD/hI/8AhXXxC8AftLfEX4k/FPxV9l8R2Vr4R/4TX4O+Iv2TvhR4S8Af254SfUNb8R/2F8dPiV/wiviO1svC2mf8Jjpl/P4w0784f2gfFn7aGqfGD/gnXefF34BfsweB/G2lftv/ABEufgz4e+HH7XfxW+Knhbx74qP/AASg/wCCpcr6N8TvGPif9iL4Oav8I/D66vbeFrFfE3hXwL8bNSfTtZ8QaofCSXXhrTtH8WAH7PUV8waN4s/bQn+DXizXPEPwC/Zg0v8AaDs/EFtbeBfhho37XfxW134N+I/Crz+GVvNZ8WfHa+/Yi8OeN/BfiCC2uvGM1t4Z0f8AZz8e6ddT6D4atpfFlnH4s1S68Fms+LP20IPg14T1zw98Av2YNU/aDvPEFzbeOvhhrP7XfxW0L4N+HPCqT+Jls9Z8J/Hax/Yi8R+N/GniCe2tfB01z4Z1j9nPwFp1rPr3ia2i8WXkfhPS7rxoAfT9fAH/AASd/wCUWX/BNP8A7MA/Y3/9Z1+HNewfEfxZ+2hpfhX4Y3nwi+AX7MHjjxvq3h9rn4zeHviP+138VvhX4V8BeKhp3h+VNG+GPjHwx+xF8Y9W+Lnh9tWufFVi3ibxV4F+CepLp2jeH9UHhN7nxLqOj+E/zA/4JlePv+Ckln/wTb/4J82fgX9lD9iDxH4Jtf2IP2ULbwd4h8Wf8FBvjz4L8U674Wg+A3gGLw9rPibwdo//AATK8e6R4T8QappC2d9rPhnS/HXjTTtC1Ge50ux8WeI7W1i1i8AP3eor4A/4WN/wVN/6M3/YA/8AFln7RX/0p2j/AIWN/wAFTf8Aozf9gD/xZZ+0V/8ASnaAPv8Aor4//ZJ/aF+Kfxxuv2lPCPxr+Enw/wDg/wDE39mf9oDT/gX4m0f4W/GbxH8dfAniL+2/2cf2ef2kNG8U6F428WfBD9nzxBH5nh/9oPSfDup6JqHw6t/sGseHNQntdX1SxvLaSL7AoAKKKKACiiigAr5q+MH7IX7PXx58d+DfiV8UvAl3r/i/wRa22l2V5p3jj4h+ENK8U+HbHxDZ+LdO8GfFfwt4K8WeHfCvxt+H+leK7GDxNpPw9+Mei+O/BGk+IGu9Z07QLXUb+/ubn6VooA8Q8a/s6fCb4kaB8X/CfxB0jxL428K/HJdJHj3wz4p+JXxN13w9bvoWnafYaNcfDrRNS8YXGmfBi90ybStN8QWd/wDBu18BXsHjextviCk48cxL4hHmk/7D3wCb4UaP8GdLl+PXhDwhpPizU/Hc+sfDr9r39rj4ZfFfxb4w1oXY1jxF8Tfjx8PPjh4Y+OPxa1PVPth/tC4+KHxE8Xm8Nno7XAkOhaKdP+uqKAPlX4m/sT/szfFzwN8Nvhz4u+HV3Y+FvhBaXOl/DiP4eeP/AIl/B/XvDHh/UtEXw54h8I23jL4SeMfBHjG98DeMtCSHSvH/AIE1PXr7wd8QrO2tIfG+h6+LO18n6Z0nSdK0DStM0LQtM0/RdE0XT7LSdH0fSbK307StJ0rTreOz07TNM06zjhtLDT7C0hhtbKytYYra0too4II44o1VdGigD8//AB9/ylP/AGT/APtH/wD8FCP/AFov/gmRX6AV+X/7SHxY+FnwO/4KKfs2fFH41/Ev4f8Awf8Ahl4X/wCCf/7ev/CTfEX4peMvDnw/8CeHf7b/AGo/+CXHh3Rv7d8XeLNS0jw/pP8Aa/iDV9K0LTP7Q1C3+36xqen6Za+be3ttBL9Q6z+27+xf4c+DXhP9ozxD+13+zBoX7Pnj3xBc+E/Avx21n4+/CnS/g3408VWc/ia1vPDPhP4n33iyDwR4j8QWtz4L8Y21zo2j65eajBP4T8TQy2ySaDqi2oB9P0V8wfEf9t39i/4OeFfhj46+Lv7Xf7MHwr8EfGzw+3iz4M+MfiP8ffhT4H8K/FzwqmneH9YfxN8MfEPifxZpek+PfD66T4s8K6o2s+FbzVtNXTvEvh++NyLbWdOlud/x/wDtY/ssfCj4p+CvgX8Uv2lv2f8A4bfG34lf8I5/wrr4O+P/AIyfDrwd8U/H/wDwmPiO98H+Ef8AhCvh74i8R6d4t8Vf8JV4t07UPC3hz+wtIv8A+3PEdhe6Jpn2rU7We1QA+gKK8A/4ax/ZY/4Xt/wy5/w0t+z/AP8ADTX/AEbp/wALk+HX/C9v+RO/4WJ/ySL/AISP/hYH/JP/APiuf+Re/wCRO/4qb/kC/wCnV4/4s/4Kbf8ABNzwF4q8TeBfHX/BQb9iDwX428F+INZ8J+MfB3iz9q/4DeHPFXhPxV4c1G50fxD4Z8TeHtY8fWer6F4g0LV7O80vWdG1SztNR0vUbS5sb62guoJYlAPt+ivgD/h7F/wSy/6SWfsAf+Jkfs6//PGo/wCHsX/BLL/pJZ+wB/4mR+zr/wDPGoAP+CsX/KLL/gpZ/wBmAftkf+s6/Eavv+vwh/4Kbf8ABTb/AIJuePf+Cbn/AAUG8C+Bf+Cg37EHjTxt40/Yg/av8J+DvB3hP9q/4DeI/FXizxV4j+A3j7R/D3hnwz4e0fx9eavrviDXdXvLPS9G0bS7O61HVNRu7axsbae6niib93qACiiigD4A/Y3/AOTiv+CsX/Z//wAOP/XWX/BNOvv+vgD9jf8A5OK/4Kxf9n//AA4/9dZf8E06+/6ACvgD9sj/AJOK/wCCTv8A2f8A/Ef/ANdZf8FLK+/6+AP2yP8Ak4r/AIJO/wDZ/wD8R/8A11l/wUsoA+/6KKKACvgD/gk7/wAosv8Agmn/ANmAfsb/APrOvw5r7/r4A/4JO/8AKLL/AIJp/wDZgH7G/wD6zr8OaAPv+iiigD4A/Y3/AOTiv+CsX/Z//wAOP/XWX/BNOvv+vgD9jf8A5OK/4Kxf9n//AA4/9dZf8E06+/6ACiiigAooooAKKKKACiiigAooooA/P/x9/wApT/2T/wDtH/8A8FCP/Wi/+CZFfoBX5/8Aj7/lKf8Asn/9o/8A/goR/wCtF/8ABMiv0AoAKKKKACvgD9sj/k4r/gk7/wBn/wDxH/8AXWX/AAUsr7/r4A/bI/5OK/4JO/8AZ/8A8R//AF1l/wAFLKAPv+iiigD4A/4Kxf8AKLL/AIKWf9mAftkf+s6/Eavv+vgD/grF/wAosv8AgpZ/2YB+2R/6zr8Rq+/6ACiiigD4A/Y3/wCTiv8AgrF/2f8A/Dj/ANdZf8E06+/6+AP2N/8Ak4r/AIKxf9n/APw4/wDXWX/BNOvv+gAr4A/bI/5OK/4JO/8AZ/8A8R//AF1l/wAFLK+/6+AP2yP+Tiv+CTv/AGf/APEf/wBdZf8ABSygD7/ooooAK+AP+CTv/KLL/gmn/wBmAfsb/wDrOvw5r7/r4A/4JO/8osv+Caf/AGYB+xv/AOs6/DmgD7/ooooA+AP2N/8Ak4r/AIKxf9n/APw4/wDXWX/BNOvv+vgD9jf/AJOK/wCCsX/Z/wD8OP8A11l/wTTr7/oAKKKKACiiigAooooAKKKKACiiigD8/wDx9/ylP/ZP/wC0f/8AwUI/9aL/AOCZFfoBX5/+Pv8AlKf+yf8A9o//APgoR/60X/wTIr9AKACiiigAr4A/bI/5OK/4JO/9n/8AxH/9dZf8FLK+/wCvgD9sj/k4r/gk7/2f/wDEf/11l/wUsoA+/wCiiigD4A/4Kxf8osv+Cln/AGYB+2R/6zr8Rq+/6+AP+CsX/KLL/gpZ/wBmAftkf+s6/Eavv+gAooooA+AP2N/+Tiv+CsX/AGf/APDj/wBdZf8ABNOvv+vgD9jf/k4r/grF/wBn/wDw4/8AXWX/AATTr7/oAK+AP2yP+Tiv+CTv/Z//AMR//XWX/BSyvv8Ar4A/bI/5OK/4JO/9n/8AxH/9dZf8FLKAPv8AooooAK+AP+CTv/KLL/gmn/2YB+xv/wCs6/Dmvv8Ar4A/4JO/8osv+Caf/ZgH7G//AKzr8OaAPv8AooooA+AP2N/+Tiv+CsX/AGf/APDj/wBdZf8ABNOvv+vgD9jf/k4r/grF/wBn/wDw4/8AXWX/AATTr7/oAKKKKACiiigAooooAKKKKACiiigD8/8Ax9/ylP8A2T/+0f8A/wAFCP8A1ov/AIJkV+gFfnp8f9Qsfhj+3t+xP8afF7Xdh4A8VfCr9qD9ju38RpbwyaNovxi/aA8b/sqfFL4Taf4ovnu4n0XT/G8X7M/jPwP4c1F7Wez1H4ia74K8HG4t9Z8WaDbaj98a1rWj+G9G1bxF4h1TT9D0DQdMv9a1zWtXvLfT9K0fR9LtZb7U9U1PULqSK1sdP0+ygnu728uZY7e2toZZppEjRmABp0V8Q/scftw+Ef2wU8eW9h8PfHnwj8Q+FR4X8Z+GvCfxNtbTTPEnxD/Z6+KVle6r8Df2ifD+mQSvcWXgf4rWGkeI7S10fWI7TxR4T8UeFPE/hXxVpmn6npa/avTv2mf2jtM/Zz8LeD7y38FeJfiv8SPij8RPDfwr+EHwa8EXnh+x8a/E3xprgvNV1Ky0W88V6rofhnS9N8G+BdE8X/Enxlr/AIi1nStE0HwX4N17Uby+SSK2guAD6Qr4A/bI/wCTiv8Agk7/ANn/APxH/wDXWX/BSyk/4az/AGrP+kW37VH/AIe79gL/AOi8r8pv2ov+CnHijxr8Tf2VfHvgH9hL9pn4yj9iX9t7xHrH7QXgf9l/xt+yr+2N8Vfh9qnij9ib9uD4AWHhfxr8Kf2SP2g/jb8RPh7qlv4y+Jdo2o3/AMQvDPhbw/py6HqmkXmsQ+JLvQ9G1UA/pZor+bbwz/wci+APGvj3x98KvBv/AATH/wCCrvi34ofCn+xP+Fo/Dfwz+yN4o17x78Nv+EltWvvDv/CfeD9KuLvxD4O/t+xR7zRP+Ei07Tv7VtUa4sfPhUuM7RP+Dlv4V+Jviz4s+Anhz/gm1/wVN8QfHTwFpFp4h8c/BfRP2Utf1X4s+C9B1CLTJrDW/Fnw5sL2fxh4d0i9h1vRpbTUtY0ezs7mLV9Mkhmdb+0MoB+rf/BWL/lFl/wUs/7MA/bI/wDWdfiNX3/X8fn7TH/BwF4D/bx/Zd/b+/Y3/Zw/4J5/8FLfiD8bde/Z0+Pv7Pfivwz4X/Zg8Q+L9T+EXj/4o/Dfx58M9DtPi3oXg+413xF4EFp4mmvLXUbXXNJtdSifSNWt4rKa7sZ7dPtrxB/wcM6V4S1XwhoXir/glF/wV98Ma38Qddm8L+AtH8QfsWeOdG1Xxv4lttG1PxFc+HvCGn6l9mu/Euu2/h/RdY12bSdGhvb+LRtJ1PU5LdbKwup4gD+imiv5q9X/AODlT4Z6B8V/DPwG13/gmp/wVS0X45eNdCvfFHg34Mav+yd4i074r+LfDWnLqDah4i8M/Dq8vIfF+vaFYLpOqte6tpWj3VharpmoGe4jFlcmM0n/AIOVPhnr/wAV/E3wG0L/AIJqf8FUta+OXgrQrLxR4y+DGk/sneItR+K/hLw1qK6e2n+IvE3w6s7ybxfoOhX66tpTWWraro9rYXS6np5guJBe2xkAP1V/Y3/5OK/4Kxf9n/8Aw4/9dZf8E06+/wCv5NvhF/wWx1D4AfGv9q7XPiR/wSu/4K0aHP8Ato/teeGfiD8DtA1D9jL4gaV4g8Tf8I1+wt+yt8GdT8I6bpmr29hPrvjKPUf2a/iJ4tOh+G11e4j8FwQ61MI47fU0sfddX/4OVPhnoHxX8M/AbXf+Can/AAVS0X45eNdCvfFHg34Mav8AsneItO+K/i3w1py6g2oeIvDPw6vLyHxfr2hWC6TqrXuraVo91YWq6ZqBnuIxZXJjAP6VK+AP2yP+Tiv+CTv/AGf/APEf/wBdZf8ABSyvyf8AC3/BzH8JPHHxR8cfA/wV/wAE4P8AgqP4w+NXwytIL/4k/CDwt+yvrniD4o/D6xuTYrbXvjj4f6TfXfizwnaXB1TTBBca9pNhDKdRsRG7fa7fzPFv2rv+C2OoX3xC/YZ+KviL/gld/wAFaPh54P8A2fP2vLz4g+KNS+IP7GXxB8K22uf8LK/ZH/av/ZV8F+EfDF7qtvb2F/4y8RfFH9ozwHZaLoct1b3GsJ9ss9L+16vJYafeAH9ZFFfzV+P/APg5U+Gfwo8SfDzwb8Uv+Caf/BVL4a+L/i7rr+F/hP4U8f8A7J3iLwd4k+J/iaOSxhk8O/DzQ/EV3p2qeNddjl1PTY30jw3a6nqCyahYo1uGu4BJ1+vf8HCVj4Vv/CuleJ/+CTn/AAWC8Oap4619vCvgjTde/Yp8eaPf+MfFC6Pq3iJvDfhWz1Bbe48Q6+vh/Qdd11tH0iO81EaPouraobcWWnXk8IB/RLXwB/wSd/5RZf8ABNP/ALMA/Y3/APWdfhzX5q+Mf+DhnSvh5pVtrvj/AP4JRf8ABX3wNol7rvh/wvZ6x4x/Yt8c+GdKu/Evi3WbPw74V8O22oa19itJ9d8TeINR0/QvD+kxTPf6zrN/Z6Zp1vc3t1BA/wAa/sw/8F7PDH7DH7Kf7AH7Iv7Q3/BOD/gp74G+MGhfs+fAX9m/wnoniL9lPxV4Vufi98S/hT8LfAvgHxDpXwj0nxZJomu+O7ibWrW3ax07Q9LutXaDVNL8+wgmvIomAP686K/m2+I//ByL4A+Dv/CIf8Lc/wCCY/8AwVd+Fn/CwvF+l/D7wD/wsf8AZG8UeB/+E48e655n9i+CPCH/AAk1xpf/AAkvi/WPJl/svw1ov23WdQ8qT7JZTbGx6V/w/f8AEX/SHD/gtP8A+IGfFD/5DoA/QD9jf/k4r/grF/2f/wDDj/11l/wTTr7/AK/AD9hf9rv9p7xZ4t/bt+NOh/8ABKj9vPS/Cnx+/a/8O/EPwnpvxa074Dfs3+NbLS/C37D37F/wL1CO+8BftI/Gr4S+M760m8T/AAd8QXmn+J9B0LVvB2oWtzHp1n4gm8QaR4k0jRvv/wD4az/as/6RbftUf+Hu/YC/+i8oA/QCiv54/wDgrh/wUH/bo+CH/BOn9p74sfDL9ij9pH9mvx34G8LeF9b8OfHPXvij+xD4o0X4c3SfEbwbbza1qnhrwv8AtCfErW/EFlLZXF1pk+i2vgXxLFqaX5s7/T/7Pmu7iHyD/ggB/wAFf/8AgoZ/wUe8LWtn+1P+wp4k0jwNY6TcHT/24fBEFp8PvhD40vLGF1htLv4f+PNTsNQ1/Vr6a2Ntf+IPglqHjLQ7XWbqOHUfBvgvSUe7iAP6e6KKKACiiigAooooAKKKKAPJPjx8FPA/7Rfwf8ffBP4jW99N4S+IOgy6Pe3ekXj6Z4h0DUIZ4NS8O+L/AAnrMKtcaB408FeI7HSfF3gvxHZ7b/w74q0TR9bsHjvLCB1/I/SvGXxz/bWvtB/4Jx/HHw3rdlq/wP1iI/8ABSv4jReGtQ8PfD743fC/wpc2V38FvCfw2vzDHpeoaF+3fbLpPjz4l+H9DvNQtfh98LvDPxu+BvieW08Qa1ol9L+5dFAHwJ+2l8PfF/hGb4fftm/A3w1f+IPjF+y3a65/wkfw/wDDVsp1f48/sweJG0y4+NvwOs7OIxjU/FNrZaFo/wAV/gnZNtc/GD4d+GfC8V1p3h/xz4uN5yX7KMdz+1f8Y/EX7f3iaw1O3+HUWia78Hf2GvDfiDS9Q0m70/4KTarYzfEr9oq60DWbaz1LRvE/7Tfizw9pf/CL/wBoWVvqNh8AvAPwzu4Y9Jv/AIheONKl/SiigDkfH+h6x4n8CeNvDXh7Wp/Dev8AiHwj4k0PQ/EVrK0F1oGsato17YaZrVtMkNw0M+lXtxBfQyrBO0ckCuIZCoRv5MIvFf7UPwb+Hd5pXhf9n3Xv2fP2gv8Agl//AMEjvjx8Ff2g/it4Z8W/A3x94E8YeKNetfhhdfBXVfBuofCP4leNfGTSwweAviJ+09ofgz48+CPhf8QPDOn+I7fXLjwc8fjqfU9T/ryv7Cx1WxvdL1SytNR0zUbS5sNR06/tobyxv7G8he3u7K9tLhJLe6tLq3kkguLeeOSGeGR4pUZGZTwXwu+Dfwh+B/gTT/hd8FvhV8N/hB8M9JbUX0v4dfC7wN4Y8AeBNMfWLu41DV20/wAI+E9L0nw/Ztql/d3V7qLW2nxm+u7m4ubkyzTSOwB+Uv8AwTH8Ma7+zj8WviZ+xp4N+MWn/tB/sy+Ff2b/ANnP9o/4WePz4b+EmieIvC/ib48638VoPGPh7V9e+EHhPwrafEfSPiK/gu1+MPhz4g/Eh/GPxi8RSeJ9e1Xx/wDE/wCJl/qUXieb4x+Fng342eAP2l/2Vf2RviJ8DfEFp8VvgD+17+2T+2T4t/az8NeNfgz4t8OePP2Qvi/bfH24v9c1/TvB/wARZv2lvCXij4q6/wDE7wB8M9X8P+P/AIK+FvCvjPxd8MdUuvBnijxTF4EsU03+hT4N/s//AAH/AGdPDmo+D/2fPgn8I/gT4S1jXbrxRq/hb4N/Dbwb8MPDmqeJb62s7K+8RajongnRtD0y+128s9PsLS61e5tZb+4trGzgmuHitoUS58Mfgj8F/gnD4st/gz8Ifhf8I7fx74t1Px945g+GPgDwp4Bh8Z+Otb8v+2fGviyLwrpOkp4i8W6v5UX9qeI9YW81i/8AKj+13kuxcAH86/8AwR4eXRf2gPgzpnjI+GvFHw78SfsVfFHWP+CY3xC8C32gw+LJv2J5fj14S13xh4K/bJ8M6Cix237SPhPW9c+Etna+JdCutX+HuqWjeLLW7ubT4wL8QZta/Sb9vjwJ4Hu/2rv+CT/xKuvBvhS5+Iui/toeJPBuj+Prjw7pE3jXSfCGv/sm/tM6xrvhXTPFUlm2u2PhvWtW0LQ9U1bQ7W/i0vUdR0bSr28tZrnTrSWH7o+Gf7Nn7OvwV8UeP/HHwb+AXwV+EvjX4r6l/bPxS8X/AAz+FngbwH4o+JWsfbtR1P8AtXx/4g8LaFpWreMdS/tLV9W1H7d4iu9Ruvt2qajd+b9ovrmSWL4p/sy/s2/HTxH4E8YfG39nz4IfGLxd8LdQ/tb4ZeKfip8J/AfxC8R/DrVft2nap/afgTW/FugavqfhHUP7T0jSdR+2+H7rT7n7fpenXfm/aLK2kiAPwo+LIun0v9vuKW3Fz+0/L/wWR/YmPw5R7OO88Ypo1tqn7IV78ELjwoL6GbUbbQbb4RWvxHuI7x/K8NW9lH8VWWZNKPiTJ+z+Lp9D/wCCcqafbib9pOP/AIKwft3XXxwlis45/GVqI/8AhsW2+PM3iO6uoX1Oy8Nv4dvPhZbs3iCWGa40Of4Ww2fmTnwmo/fbUfgh8F9Y+K3h748av8Ifhfqnxx8I+Hb7wh4U+Muo+APCl98VvDHhPUzenUvC/h74iXOky+L9F8O6gdS1E32iabrFtpt2dQvTPbSfap/MNH+CPwX8O/FLxX8cvD/wh+GGh/Gvx5omneGvHHxg0bwD4U0z4peM/DmjrZLpPh/xX8QLLSYPFniLRNLXTdOXTtK1jV7ywshYWQtoIhaweWAfn7+3x4E8D3f7V3/BJ/4lXXg3wpc/EXRf20PEng3R/H1x4d0ibxrpPhDX/wBk39pnWNd8K6Z4qks212x8N61q2haHqmraHa38Wl6jqOjaVe3lrNc6daSw/BfxZF0+l/t9xS24uf2n5f8Agsj+xMfhyj2cd54xTRrbVP2Qr34IXHhQX0M2o22g23witfiPcR3j+V4at7KP4qssyaUfEmf3X+Kf7Mv7Nvx08R+BPGHxt/Z8+CHxi8XfC3UP7W+GXin4qfCfwH8QvEfw61X7dp2qf2n4E1vxboGr6n4R1D+09I0nUftvh+60+5+36Xp135v2iytpIt/Ufgh8F9Y+K3h748av8Ifhfqnxx8I+Hb7wh4U+Muo+APCl98VvDHhPUzenUvC/h74iXOky+L9F8O6gdS1E32iabrFtpt2dQvTPbSfap/MAPg3VvhP8GvFn7ZH7N3iz4ex+D/h74c/Yi1P4x+EtX8XWhtdGm8b/ABZ/aR8MGC6/Z40PWbkxN4uvZpdSufjR8X42v9Q1CX4hD4eIya14rv8AxtL4Wzv+CvfgTwR4p/Zs+GHibxN4N8KeIvEnw7/bP/YX134f+Idd8PaRq+ueBtc1b9r74KeGdV1nwdq2oWdxf+GNV1Pw3q+q+H9Q1HRLixvL3RNT1HSbmaSwvbm3l+pPAv7Bn7DXwu+JkPxq+Gf7GP7KHw6+MltqGtatb/FrwL+zr8IPCPxMg1XxLBfWviLU4fHnh/wfp/imLUPEFtqmp22tXqaqtzqsGo30N9JPHd3CyelfGv8AZz/Z7/aV8O6Z4Q/aM+BHwa+P3hPRdXTxBo/hf41/DDwR8VPDuk69HaXWnx63pmieOtD17TbDV0sL29sk1K1tor1bS7urZZhDPKjgH4n/ALcK6I/xA/4LQRfEu3gu/EFx/wAE0Pgja/AO11Ozkv7q48OXQ/aLt7eHwHaSwz38+vSftJS+F1nXwxE7L4rPw2efbri6My+ZftA+Nv2lb39s3/gmv4v+Of7Fv7SD+IPB37Yei/Dn4Y+N08Z/sZ3vgG/8LXf7J3xzsPiH4i8N2lv+1bF8Q7Pxl8Q/Eb3fxJ8cN4v+HHga3s/ht8MfDfg/QbO+8d6ZBpPxB/oI8VfAL4E+Ota+F3iXxv8ABX4S+MfEXwP1BdX+Cuv+Kvhx4O8Q618INVSKxgXU/hdqur6NeX3gDUFg0vTIVvfCc+k3KxadYxiXZaW6x9rr3gzwf4qv/Cuq+J/CfhrxHqngXX28VeCNS17QtL1i/wDB3ihtH1bw63iTwreaha3Fx4e19vD+va5oTaxpElnqJ0fWtW0w3BstRvIJgD80f+CvfgTwR4p/Zs+GHibxN4N8KeIvEnw7/bP/AGF9d+H/AIh13w9pGr654G1zVv2vvgp4Z1XWfB2rahZ3F/4Y1XU/Der6r4f1DUdEuLG8vdE1PUdJuZpLC9ubeX49/bhXRH+IH/BaCL4l28F34guP+CaHwRtfgHa6nZyX91ceHLoftF29vD4DtJYZ7+fXpP2kpfC6zr4Yidl8Vn4bPPt1xdGZf2w+Nf7Of7Pf7Svh3TPCH7RnwI+DXx+8J6Lq6eINH8L/ABr+GHgj4qeHdJ16O0utPj1vTNE8daHr2m2GrpYXt7ZJqVrbRXq2l3dWyzCGeVHt+KvgF8CfHWtfC7xL43+Cvwl8Y+IvgfqC6v8ABXX/ABV8OPB3iHWvhBqqRWMC6n8LtV1fRry+8AagsGl6ZCt74Tn0m5WLTrGMS7LS3WMA/m9vvEP7QWiftK/HH9s26+NrRftL/s8/tP8A7DX7FEn7Mfirwp8HNe0/xP8As7fHLR/2eYvFmgafrPiHwjrXxX+HmvfFHxb8UviB8UND8RfBPxh4A0rxh4q+HB034hWHxS8PeCtA0nwJ/U5Xj+s/s9/ALxF8XvDH7QXiD4H/AAg1349+CdGn8OeDPjfrPw08Gan8XvCXh65i1eG50Hwx8Sr3RZ/Geg6NcQ6/rsU+l6VrVrYyxa1q8ckDJqV4JvYKACvP/il8NPDnxg8Ca78OvFmpfEDSPD/iL+zP7Q1D4W/Fj4qfA7x3b/2RrGn67a/2F8Uvgp4y+H/xN8L+be6ZbQan/wAIz4u0j+29Hl1Dw7rP2/w/q+q6Ze+gV5/8UvGXiP4f+BNd8XeE/hP8QPjj4g0j+zP7P+Fvwt1L4V6R478Ufb9Y0/TLr+wtQ+NfxL+D/wAMrf8AsSyvbnxFqf8Awk3xF8O+bo+kahBo39r+IJdK0LUwD+VXwf8A8E+Pjh+314U/Za/a2vf2WPCXib9nr4v/ALHut6zD8D/jf/wcM/8ABYTxn4p8Q6H+1Df/ALK3x4+Ht74j8Xan+zZ4uufBieAbL4RC28afCvwtqeveAviJ4x1zwl4s17UtQ1X4I/DvUa/oD/4JsW/gHU/2JP2b/ix8N9H+LHhfw3+0b8F/g/8AtHR+CfjB+018ef2sdf8AAE/xe+EngTxIngTRvir+0N4y8Y+MX8L+FbCSx0nTtI0b/hFfCLXtvqfiPTvBuh6p4j1v7V+ZHj7/AIIc/s1W37PHj7xRYfsI/sQeI/2kfGv7T/7NP7VHij4ZfDP4DfBDTfBfhT4e/Bb4t/s0698Tf2N/2ZPFHj3wL4Gjl8P/ABE/Z8+A/ij4c3l78Sr/AOEHwz/aF+Pvxa+KfxK+I2i/s2/C741694C+Fv6v/sba/wDF7V/B3xD0b4g/sq/8Mb/DP4f/ABA8P/Dr9lL4KXp+CcXiPSP2cfCnwJ+C1rYT+JNK/Z3+NHxx+EHh37B8YJfjF4T8FeHfB/ibQrXSfhX4X8AW114R0y9FxqGrgH1/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfiD/wUE8ZftCaR+0d8PtQ8M/tHftf/ALO/h/wL/Yem6V4R/Y1/Yr/aY/as0f4zfAn4qXWiQfGvxl8YfiLYfsC/tofs5eAf2gPhz4z8EaNqf7O/w0tvhb4k8Y6D4E8AfEHQvFnxY8L+H/2/rXxF+yf4/wDsm/HH4hftWftQfBL4gfDT/goL+0/ouk/tCeH/ABH+158U/wBlS7/ZU+Jnwp/Zg1v4NeD/AA/8APCvhK9/Ys+O/wC3J/wTxfxt8VPg/o1tq3wc+Hnx40H4c/Eb4Kz/AB48QftF+KP22vhNL+yfq7XXwB+IHQft5f8ABLrVP2+f24rD4kN8OP8AhXPh/wAK/D/4M/B34hfHn45fDn/gnH+0X4E8W/CvwR4t8ffF+G1/ZT+BHx+/ZQ/bF+Jp+IGp3vxY+J3wh+K3jD4j/ED9i/w54K1if4WfE/w/8Pf2wvD/AIBn8F33gH/BJj/gmv8AE/8AZNu/+Cb3xH+HXgj4gfDXU9c/ZA+GOv8A7cus/EX9mf8A4JlfCHRptH8Y/s461beIP2VYPE3wp/Zj+G3/AAUhv/2gPB37UVr8C/id4iPxs8QX/gTVPAngPxc3xR+NHjf422tr4T1gA/X/AP4KK/tT+Mv2S/hF8PfGnhbW/hT8N9M8cfHL4e/Cjxx+0N8edA8S+LPgZ+zX4T8Y/wBrbvir8VvC/hPxt8MdV1Xw3d67p2ifDawnvPij8NPDGh+KvH3h7X/FvjXTNA029tb/AM6vf2gP2uvH3/BJv45/H/w94Jm8N/tkWn7LX7UPiD4P6b8K/AmqeJY/GvxU8C+FviTafAv4i/Cb4T+Mbbxzr+paX8X9Q0HwZ8Rfhx8MfF1p401afT/Fmi+FdXHit5JJ9T9V/b8/Z5+Kv7Rnw6+HHh/4a6Z8GviNpXhD4t6H4z+KX7Nv7Rmo65oXwD/af+HMHh/xNoGofC34o+IfDvgD4r6hpemaVq+vaN8TPD8eo/Cv4l+FdR8ZeA/Dtl4l8GXtpJDqujfJXiz9kn4lfCb/AIJAeNv2QfEHgvwL8efil4q0fUPhf8IPh7cfDlf2mvgP8EPHPxx+Nltov7MVpqnhn42+DfF9z4//AGYP2EvFfjb4beK/Ffjzx98MtcvfDvwQ+ButfElPhR/xT2n/AA8gAPyF1n9uP/gpx4V+Hvx3sfGPxY/bf8H6v4i8QfszeGP2Zvidrnwq/Zb+GeneGPFI+Gf/AAUL+NX7X3ijxz40/wCCk/8AwSe/4JFfC7xT8H/gt+zf+zt4e+OXjbwHF4K0XUdU8VeC/ht8PtH/AGw/hFpHxq8far8PP0f8f/Fj/hdX7Pf/AATk/wCE3+Jf7f8AD4S1z9v/APbC+E/7Rv23xl/wqH9snxf/AMMm/sz/APBVH/hNfhp4k/4dKal4H0zxp/wjPxt/Zt0f/hCvBv7N/wDbH/C0bHwH4A8zTfG/i3VL3+1vyguf2VfBfgD4NeP/ANnfx3+xt8YP2dvEnxe/bf8Aj74mufCH7K3/AASZ+PupeIPgh+yP+0tP/wAFAPhf4stv2j/2vv2Q/C/7WP7On7U3iDwX/wAE9P21/Fngv9jLwn+zPbaton7Kv7UGufBf4VfFrRvGPwb8E/H288M/b/2HS/H37LH7DOrfEz4Rft/6F4S+HP8AwV+/bm+I/wC0be/Cb9nT/go78DfjtH/wt74df8FRfGum/H34aeAPgd8O/B37Y/w2/Z/+NfxI/aE+F+veDdG8L3/jz/hVHg74r6b+zR8Z/jV8VPFvgj4seI9cAF/Zi8Ga78YP2jrT4B+MfAX7QEsNl8QPjZ/wuePwF/wXj/4LJW/7R37HHws0y6+IWsfAT/hrn9m/xH8Qrn4ZeCfiB42srb4WfDTSP+EF/bD+IHh39pq61vxf+1f+xt/wuD9kXwv4n8b+DP2d/wCCZPizxV49/wCCbn/BPnx1468TeIPGnjbxp+xB+yh4s8YeMfFms6j4j8VeLPFXiP4DeAdY8Q+JvE3iHWLm81fXvEGu6veXmqazrOqXl1qOqajd3N9fXM91PLK34RfB3RP2UtH+Kdr4e+NP7I37X/h/wl4P+H/jD/hTXxd/Ya/4J1f8Fof2X/hZ8PvEXiDxF8Pb7xb/AMKW/Z0T9njUPjb/AMEt/iB4s0yXWfDOu/8ADvP9qTxB8LP22/Ds37Qfjn9ur+yfFviD4I/DtP3d/wCCZPhPxV4C/wCCbn/BPnwL468M+IPBfjbwX+xB+yh4T8YeDvFmjaj4c8VeE/FXhz4DeAdH8Q+GfE3h7WLaz1fQfEGhavZ3ml6zo2qWdrqOl6jaXNjfW0F1BLEoB9wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=="]
math
multiple-choice
1
某几何体的三视图如图所示, 则该几何体的体积为 ( )
$\frac{1}{3}+\pi$
$\frac{2}{3}+\pi$
$\frac{1}{3}+2 \pi$
$\frac{2}{3}+2 \pi$
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABoAVIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArD1rxRbaPqFlpy2d3f394xWK2tAm4YVmyxdlVciN8ZPO04zg1c1bU/7Ot0EUXn3k7eVbW4ODI+M8nsoGST2APXpXP3emf2dqnhYyy+feT6xJLc3BGDI/2K5HA7KBgAdgB160ATXPjOezurS2ufCusRT3jmO3Rp7LMjBSxA/wBI9Aatf8JDqn/Qma5/3+sv/kiuY8Y+GbjWfE+kXN5ceTK+omDTXiOTbKtpcSCT/eMqqSOmI0HrXoFmblrG3a8SNLoxqZliYlFfHzBSeoznFAGN/wAJDqn/AEJmuf8Af6y/+SKP+Eh1T/oTNc/7/WX/AMkV0FFAHP8A/CQ6p/0Jmuf9/rL/AOSKP+Eh1T/oTNc/7/WX/wAkV0FFAHP/APCQ6p/0Jmuf9/rL/wCSK1dK1GHWNIstTtg4gvII7iMOMMFdQwyPXBq3XP8AgT/knnhr/sFWv/opaAOgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKr317b6dZS3d0+yGIZY4yT2AAHJJOAAOSSBU5IUEkgAckmsGyB8Q30eqSA/2ZbtmwjP/LZunnn26hPbLd1wAT6TZXElw+r6km29mXZHCTkWsWchB23HALEdTgchRVfxD/yHPCf/AGFZP/SK6roK5/xD/wAhzwn/ANhWT/0iuqAE1ma5Txb4biDwG1klnLI0AZw4hfDK5Py8FhwMnJ5xkHoa5vxDAp8SeFrg3F0j/bZIUSJownNvK5LBkYniMrgFfvZzxXSUB1CiiigAooooAK5/wJ/yTzw1/wBgq1/9FLXQVz/gT/knnhr/ALBVr/6KWgDoKKKKACiiigAoorN1TUpLZ47KyjWbUbgHyo2+6ijrI+OiD9TgDrQAzU9RmE66ZpoVtRlXcWYZS3j6eY/r0IC9WI7AMRg+HLDWda8L6Rqtx4v1iOa9sobmRIoLMIrOgYhc25OMnjJP1rptM02PTbdl8xpriVvMuLh/vzPgDcfTgAADgAADgVmeBP8Aknnhr/sFWv8A6KWgA/4R7VP+hz1z/vzZf/I9H/CPap/0Oeuf9+bL/wCR66CigDn/APhHtU/6HPXP+/Nl/wDI9H/CPap/0Oeuf9+bL/5HroKKAOf/AOEe1T/oc9c/782X/wAj0f8ACPap/wBDnrn/AH5sv/keugooA4vxLp+taN4V1fVLfxhrLT2VlNcRrJBZFSyIWAOLcHGR6iqvifVhofiPS7C48W63A2q3LIiRRWZjtgQSuS0BO0kbRkk4BJJ2mt7x3/yTzxL/ANgq6/8ARTVk+I/DtjNrulG7Vrn+1dUeOcSHpGLC6URrjooyx9csT3oA7KCNobeKJ5pJ3RArSyBQzkD7x2gDJ68AD0AqSoLOBrWxt7d55Lh4o1Rppcb5CBjc2OMnqanoAKKKKACiisa8v7u9vZNL0llR4sC6vGAZbfIztUfxSEEHB4UEE54VgCzqet6dpHli9uQkkn+rhRWklk/3UUFm/AGsq58UX0dtJdReHbxLWNSxnvZordcDvtLFx+Kg+1X7bTtK8O21xeHCEruuby4cvLJj+855PsOg6ADpUVta3GsXMd/qMTRW0bB7SycYIPaSUf3u4X+Hqfm+6AYGh+PdV1kuB4VljcPKEjF4geRY5GjYqJAnRlIIPI4yORndh8V2HnJBqEV3pc7kKqX8JjUsegEgzGx9gxNUPD+mxal4cnR3eKWPWNRkgnj4eFxeT4ZfzIIPBBIIIJrVsrz7cJtJ1aCH7akf72IrmO4jPG9Ac5U9CDyp4PYkA16K542Nx4bUzaUklxpqjMun7izRD+9Bn/0X0P8ADg8NuW1zBe2sVzbSrLBKodHU5DA9DQBLRRRQAUUUUAc/dv8A8JHeyaZC2dLgbF9Kp4mbr5APp3c+ny92xvgBQAAABwAK4jVPB3hzTNSn1ifw5pV1Y3Db70S2McjQt3mUlSdv94f8CH8WddfA3g50Dp4W0JlYZBGnwkEf980AdDXP+If+Q54T/wCwrJ/6RXVH/CCeD/8AoVND/wDBdD/8TWHrvgvwrDrHhhIvDWjIk2pukqrYRAOv2S4bDfLyNyqcHuAe1AFfxjoeur4o0q58Pj91e3m65f8A59Zfs0sPngf7j9+MxIP4q7vT7G30zTrextU2QW8axxjOTgDHJ7n3ryTxfpOlw+JtMTQvCWiS2djeGK9iXTYs3T/Z5ZmiX5eqxpn/AHnT0NelaHonhu0ji1PQtI0y2FzCClxaWqRmSNsMOVAODwcewoA2qKKKACiiigArn/An/JPPDX/YKtf/AEUtdBXP+BP+SeeGv+wVa/8AopaAOgooooAKKKo6nqUemwIfLaa4lby7e3T70r+g9B3J6AAk9KAG6pqf2BYoYIvtF9cErb24ONxHVmP8KDqW/AZJAJpemfYEklnl+0X1wQ1xcEY3kdAo/hQcgL29ySS3S9NktmkvL2RZtSuAPOkX7qqOkaZ6IMn6kknk1pUAFc/4E/5J54a/7BVr/wCilroK5/wJ/wAk88Nf9gq1/wDRS0AdBRRRQAUUUUAFFFFAHP8Ajv8A5J54l/7BV1/6Kan+Jr2/sRpL2VxHEkupQQXAaLcXjdsEAk/L9cH2x1pnjv8A5J54l/7BV1/6KaqHie8stS1HTNKN9c20kOqIJXhKIYitvJcIx8xGDJ+7xxjnPPykUdV6r8wez9H+R19FV7C+g1LT7e+tizQXEYkjZlKkqRkHB55FWKACiiigDK8QahPY2CRWW3+0LyQW1oGGQHbOWI7hVDOfZTUsEVj4d0ba0oitoFLSTStyxJyzMe7MTk+pNZN7dwDxoZruVY7bSNOE5Zum+d2UH6gQsB/v+9XLS0n1W6j1LUomiijO60s3/wCWfpJIP7/oP4frmgAtbWfV7qPUdRiaK3jbfaWbjBU9pJB/f9F/h/3vu7VFFAHP+Df+QHc/9hXUv/S2atLU9MTUYkIkaC6hbfb3CD5om9fcHoR0IOKzfBv/ACA7n/sK6l/6WzV0FAGbpepvdPJZ3kawajAB5sQPysp6SIe6HH4HIPIqin/Ei8RrAPl07VWYxjtFdAFmA9BIoZvTcjd3rR1TTBfpHLDL9nvYCWt7gDJQ9wR/Ehxgr39iARz/AIg1FrvwpqMssPkaro4W+e3zn5oT5gKn+JHCEA+hIOCCAAdfRSKwdQynKkZBpaACiiigArn1/wCKYuBGf+QJM2EPaycn7v8A1yJ6f3Dx90jb0FMlijnieKVFkjdSrowyGB4II7igB9c/4h/5DnhP/sKyf+kV1T7SWTQbuPTbp2ewmbbY3DnJQ9oXPr/dY9R8p+YAszxD/wAhzwn/ANhWT/0iuqAG6zK6+K/DdsbS3eB555RMXYSRyrA4BCjAOVZgSSevTOCOhVQqhVACgYAHaub1+OQ+J/DE6XkcYW8lhERtvMLs0EjnLeYuwbEb+FuSvGM10isGGVIIPcUB1FooooAKKKKACuf8Cf8AJPPDX/YKtf8A0UtdBXP+BP8Aknnhr/sFWv8A6KWgDoKKKKAEYkKSBuIHAHeuJ0jVtTmf+2Ljwtqt5c3MY8qW3uLJ4Y4TyqxH7QMqeCWwCxweAFA7evHtF8Za2mieGPD1lo99aI2k2u2+zbb7j90vEAlkVCfc7iO6UAeg/wDCQ6p/0Jmuf9/rL/5Io/4SHVP+hM1z/v8AWX/yRTn1TVLnRNRkTTLvSbqCAtDLfiCUO2Cc7YpWzjHOSvUYzzTbTWtQXw7o90NJvtVnurSOSZrRoE2sUUkkSSIOST93PQ9OKFrfy/W/+QPS3n+lv8w/4SHVP+hM1z/v9Zf/ACRWP4T1fVLHwbodn/wimq3Hkafbxedb3Nk8cm2NRuRvtHKnGQe4rOg8Za9Z+LV0mLRNU1COZ90sEzWvm2KnnJeKVht9A4U/7R6Vj6L4y1tNE8MeHrLR760RtJtdt9m233H7peIBLIqE+53Ed0oA9B/4SHVP+hM1z/v9Zf8AyRR/wkOqf9CZrn/f6y/+SKRfEGqBQD4O11iB1M1jz/5MUv8AwkOqf9CZrn/f6y/+SKAD/hIdU/6EzXP+/wBZf/JFH/CQ6p/0Jmuf9/rL/wCSKnjudR1m1nhNnqWguCuJ5vs0jsOc7NryKCMDO4d+Ae0Giajqf/CJRXl1BNql2rOq/ZhGj3KCQqkg3MqDcmHPIHJx2FAB/wAJDqn/AEJmuf8Af6y/+SKP+Eh1T/oTNc/7/WX/AMkUf8JDqn/Qma5/3+sv/kij/hIdUx/yJuu/9/rL/wCSKAMfxZq+qX3g3XLP/hFNVt/P0+4i864ubJI490bDc7faOFGck9hWZ410O88Ra/ptzH4c1tUs52junhltAt5b7XXb804OCHYDIBCyP0NZGveMtcGjeJPD15o9/ex/2Vdb7wm2Elr+6bicQyMnvn5CeyGvYqAIrZzJawu1u9uWRSYX27o+PunaSuR04JHoTUtFFABRRRQByepeFdUuPFT63ZatZRho40W2u7B51Vk3bX+WZMkb2xkHGeKufY/GH/Qd0P8A8E03/wAlV0FFAHP/AGPxh/0HdD/8E03/AMlUfY/GH/Qd0P8A8E03/wAlV0FFAHJ6ZoPirSrV7eDX9GZHuJ7gl9HlJ3SytKw4uRxucge2OvWrn2Pxh/0HdD/8E03/AMlV0FFAHP8A2Pxh/wBB3Q//AATTf/JVZmseFvEmtRBbjXtIifY0XmwaRKrmNxh0Obkgqw6gg9ARggEdnRQBBZwNa2NvbtJ5jRRqhfGNxAxnHap6KKACiiigAooooAhu7SC/tJbW6iEsEq7XQ9x/Q+/auH1vVP7C1nwzba7dpHbW+pO8WpXDhEeP7JcKBIxwFcFlHbdkEdwO+ooA8e8Za1pj+JtKvfD3izQlS6uv9Mb+0Yv9Hf7PLCLgfN1CSEe5SMV3Nh4t8EaZp9vY2nifQo7e3jWONf7Ri4UDA/i5rqKKAOf/AOE78H/9DXof/gxh/wDiqP8AhO/B/wD0Neh/+DGH/wCKroKKAOf/AOE78H/9DXof/gxh/wDiqP8AhO/B/wD0Neh/+DGH/wCKroKKAOf/AOE78H/9DXof/gxh/wDiqPAnHw98NA/9Aq1/9FLXQUUAFFFFABWeNC0v+w4dFayik02GFIY7eUeYoRAAo+bJOAByea0KKAK17Zi806eyE0kCyxGLzItu5ARjI3AjP1Bpmk6euk6Ta6elxNcJbRiJJJtu8qOBnaAOBgdO1XKKAILaztbJHS0toYEd2kZYkChmJyWOOpJ6mqVv4e06Hw3aaBNAt3YW1vHbqlyocsqKFUnjGeAcgDn0rUrA8X29jNoivfaZYagqXEIWO9t1lRS8ioSAehwx5oA3lUKoUDAAwKWvNTovgrTvFmq2t34TtZU2W5iW30BrlEyrZ5jiYLn3xVLxFGW8QavbpNqM+nSW8EU8UttCbUsZwEQbVDAKFkXLZB+6WyACAekazph1jTZLIX11ZLJw0tts3le6/OrDB78VJptk9haeTLfXV65YsZrnZuPthFVQB6AD88mvJkt9JFjrsmnWmmxBtN1WGT7FBHGCqXAVFYIBkhNvXnB96wb/AESw/wCEoYJYabZi8eILbpZWMbxRjcD5VpcRedKeDlxsLFhtRwoFC6ef+f8AwAe7Xb/gf5n0FR1Fc/4MhtoPD5is4Ft7Zbu6EUSxeUEXznwNmBt+mBiugoYGVceHdNl8N3mgw262ljdW8lu62yhCA6lWI4xu5JyQeeua1aKKACiiigAooooAKKKQjIIzj3FAC0V5dd3S2Piu+kvPFvifbaRxWaXEGkxzr5jtlo96WrJnJhGPvZOOeBUniF7mfw2JLTX/ABTc3bXUaW0c+m29vIJd6hWxLbx/KCy85AOdu7k0LVXDrY9NorxPVbfRp31B57LT3vJ4tRnEtzaRrcs6PF5bZZQ4IBfgYxzxxweNtMsr3WNYkmsrFWi1OKSS8uLeJCVEUQCNczIYo0BIJX52boEwSaFsn3V/yDq/L/gntlFeWfDmxsrfU7C5itYY7qe1umkkitLZF2b4dqLNboscwGD8w5yTkKflHqdNqwk7hRRRSGFFFFABRRRQAUUUUAFFebeO7+5bX1gaG+jtbW3iZZbVpFlkL3UCyCPy/n/1bbcryd7AVk+HxNNeWtzb2r2cVzJJPcSnxDfGaPCAhnicNG7KuByXVtuOBwBaq/8AWgPt/W1z1+ivELpYzpF22opPdW9sNTnsl1mzt2WMqoAYALsz5gc7SAVyBjGCdO7stKjs1gttL0+408a5I0VqtkZ4DmyyGEUatuGTuwo59R1B38lf8v8AMHpbzbX3HrlFfO2maFpsaajbXFtZTra2lyzCK30+5cyneB5iQxmW2APzD5nVcqpZcYP0NF/qU/3RTtpcHo7D6KKKQBRRRQAUUUUAFFFFABWN4k0rUdZsI7Wwv7WzHmpJI09o0+7Y6uoGJExyvPXI9KKKAM6DQ/FVvqN3epr+jGW6CBwdHlwNgIGP9J96t3mhajdSyyx6wLSW5t4be4lt7fD4QyFjEWYhCTJwSGwB3JyCigDDuvAN5Dp1/pukanBbabMJHhtDC4PmNB5QEkgc7kz82Nmc4OSRT5PCPilr77dB4tgtrkuGJS1unjI7r5Ul20YB6cKCOxB5oooA6Tw/YXmm6WYL+aCa5a4mleSBCiNvkZxhSSRww4yfqa1KKKACiiigAooooAKKKKACmyB2jYRsFcghWIyAfXHeiigDjpvCOuf2Ymm2uuadHapcR3O6bTHkmklWUSlnYTqCWcEnCjg4GK1zpesXlk0GqanYysJ4Jo2tbF4QvlyK5BDSvnO0DqMe9FFFwM2bwdfPfQ6ymsxPrqSFjdXFmXhWMoy+VHEsilFG8t98knqW4xn/APCD69ieFfEMSQNKkiuwu/OkIhjjLO8VzFkkoTg7vXPNFFAGpoegeIbDVbWfVtdttUgt7eaJGFo0Mq72jIBO9g4ATGThvUsSTXVUUUXAKKKKACiiigAooooAKKKKAMLVfDg1XXtP1F7opFaDDwCPPm4dXX5s8YZFPQ5xUOleGrrTrywaTUIJbWxgaOONLUpIzN3Z95BA5woUdetFFHS39ah1uRz+EWvkFpe6i0mlCeW4azjiCebI8jSDzGJO5V3DCgDJXJyOBmf8Ib4hjj00R6/Zu9lsijLWkqRxxLDLHkIs2TIfMGWDL90egFFFHkHmQv4K8VxWl5BbeK7Zobm2khe2ubW5mRywIB3y3MjoRn+E455VsCu+RSsaqeoAFFFFwHUUUUAFFFFAH//Z"]
math
multiple-choice
2
执行下边的程序框图, 输出的 $n=$ ( )
3
4
5
6
B
["iVBORw0KGgoAAAANSUhEUgAAALwAAAFsCAYAAAB2ANMwAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADfnSURBVHhe7Z0HtFTV9YfRmMSlWcaIvSUGomJBwY5YEBUFFVHEEgQURaygoIigNLGCgCACCgJKszdQQAEBFbAgAhZsaGxBTYwtPef//7ZvP++73Jm597558+bM7N9aZ83M7ffOd87dZ5+y67iYevnllyu+mUz+yoA3lZUMeFNZyYA3lZUMeFNZyYA3lZUMeFNZyYA3lZUMeFNZyYA3lZUMeFNZyYA3lZUMeFNZyYA3lZUMeFNZyYA3lZUMeFNZyYA3lZXqAHKcZDKVgmKX8CZTKciAr2H973//c//5z3/cv/71r6JNXB/XWQ4y4GtAwPP3v//d3X///a5NmzauUaNGbt999y3axPUdf/zx7s4773R/+9vfShp+A74GBDTnnXeeO/fcc90rr7wi8FOKFmv65z//6d5880131VVXuRNPPNF9+umnJQu9AZ9nAcrVV1/t+vTp43744QdvwOE6//3vf7uJEye60047TTJBKUJvwOdZa9eudYcddpj77rvvvAOG66XEP+uss9zcuXMNeFNuTZ482Q0YMKDil5964IEH5C1lwJtyasiQIe7uu++u+JU/AZ+moPiNpyW8/L///W/qt8wLL7wg9Y9SlAGfZ918883unnvuqfiVWwpxEMzwd9I//vEPeXusW7duvfU33XSTe/DBB6ss/+qrr1zLli3dn/70pyrL4+jFF19055xzTsWv0pIBn2elAX7x4sVu0qRJYkpceumlrn///vKdNHToUNe+fXs3depUd8MNN4htTemtonTH9fnqq69Wgs0n++IpwiY34H+SAZ9nJQU+rOuvv95Nnz694pdzCxcuFHAzCbOlefPm4hH6/vvvJTOQCTp37uzeffddWf/GG28I+HFlwJtiq1DAAzel+O233+6OPfZY9/jjj7tOnTq5OXPmuEWLFrlRo0YJ/Lgax40b50aMGBEbegPeFFtJgMfUCJsbQeBZp8DzHWC//fbbyv0ovQEecwcbv0WLFu6ll15yXbp0ca+99po0Jq1cuVJMpj333FPMpvD5omTAm2IrKfB//vOf3dKlS93y5csF0osvvtjdcsst8p00YcIEsdFZT6PQcccd5z755JNK6LHvv/jiC/fNN99ISf/666+7gw8+2PXs2dNNmzZN4P3ggw/k+1133WXAV3ya8qSkwP/1r3+VCueaNWvcO++84y688ELp08J3EqU3LZ/6m8Q+uu/ZZ58t3+nCQGbhLUCGwJxRuLHpP/zwo9itpwa8KbaS2vAAqBDyifmyZMkS+Y2yVVqx1zFp2G/06NGVJst1113nhg8f7h566CFJrDvyyGYCfBwZ8KbYqk6lFZv89NNPl85bqkzAAzaVU8yfefPmubZt20q3BpZfccUVYrfzncTbA9OH73FkwJtiKy3wwEgL55VXXlnFz56thGcfKqt0Zdh1112lhRfzRYFXYQZh+sSVAW+KrTTAAy5uxgsuuKCylFZlAx7RFZluAM8//7w75phj3LJlyzICbyW8AZ93pbHhgZbuAatXr5bfQTCfe+65SPjYhkzSr18/t2LFCvn93nvvSYYB+MGDB0t3AxI+eUye4HGzyYA3xVZS4L/++mv36KOPimsxDCS/GUA/ZsyYiiU/iUEljzzyyHp9ZfiO+xH4VZ999pmMvjLgDfi8C+DxnccVbsRMLaAAGnQvBsVy9guvi9qH71HHyCQFPsk+vsiAz7NwAQ4bNqzil5/C3XnJJZcY8KbcotX01FNPzVhqF7t4OzD4I243BN9kwOdZdNY66aST3BNPPOEdMFzvqlWrZIjil19+WbG0tGTA51lAQ3fcww8/3M2YMUMyQLGLa+aNtGDBAte0aVP37LPPlmTpjgz4GhCw0Be9Q4cOUlriX8cmzle66KKLJEWtS5M4Fj58puigt2WminIpyICvIQEM4Hz88cfiS3/mmWfylugrQ2aKWpcmzZ8/X9yYUV6fUpMB76HwqQO9KbkMeA9lwKeXAe+hDPj0MuA9lAGfXga8hzLg08uA91AGfHoZ8B7KgE8vA95DGfDpZcB7KAM+vQx4D2XAp5cB75Fo9icp8PrbFF8GvEf66KOP3NixY2UIIfGYxo8fL8tM8WXAeyQmUtpvv/3cxhtv7H7xi1/I1ByMiTXFlwHvkTBfLr/8clenTh1JZ555phf97YtJBrxnYlrsDTfcUIBn/KzZ8MlkwHsmht796le/cptssolM4WHAJ5MB75kA/Mgjj3R77LFH5SzCpvgy4D0Us4olmRzV9JMMeA/FdNpxgxuYqqpkgOfPZ+Zc5mks9bRu3RcyQWrUOktVUzhWbUkAzw1xc0TPYOS9JUuko48+2p1yyilVJsXyHnhgZ450psK49dZbJWaSJUu0QP/xj3+U+g6zR6i8B56GlxtvvFHmV4kb0sVU2qJEJ6Bz165dZZblkjFpyLn33Xefa9eunZg0wRszladggPi1RD78y1/+sh4TXgNP1AtCNX744YdZYWcdmSP4ajOVnvifaYxr1qyZhOqMYsJL4LmR999/3x166KESlzR4Y9jzBPclwICK9Ux9R2iYqFwfFJ4ewkj6Zh5xT5rKVTDB3Jj8f5meg3fAcyOff/65BOidO3dulRvj+1tvvSVxTQEf+01LdoKFEceUAL/ZoPjhhx8kOBhh3JkiL9u2+RbnovWUiB1JzovNSon28MMPS0S/NOJ8ZHagKfSbkHNzTrpNREVCySW2X7duXaxZm70DHr8q0SkI3ht0N/HAmCdx0KBBrlu3bpIZ6DNOSBgmCGUfutLiyXn77bezPhTWAR51g0JNG03mJB5T48aNJRRl3D+d7XgbEZh4xx13dPfee2/FmvjiGISpp5JHiPpCvt04N/8LffwbNGggEcOTisLt/PPPdyNGjKjCRJS8Ah6o+/TpIxP2c5NBKPiOK4qId7REUkryJsCUwT+Pq4ptyAj4aJnwn3DtwWMExfLjjz++YC2a3A/QNWzYUMLmJBHXx2So2223nUThTir253nh7frtb39bcOApxDBNt9lmm8TAw8TAgYMkkFuc6/YCeB4KORdT46yzzhKzIwwhv5mpl6mfebUPGTJEXs+33XabRMdjhlzma2eU0NNPPy2z7/bo0UMedlgcC1ufEgfThld9HLFfphRH/GF0DEsKPJoyZYpr0qSJPKe45w6vZ+hgUuCD54lK2RRczzl///vfxwaefYF98uTJYsIS0TDX+ZAXwHNjM2fOdC1atHBfffVV5I2xDHOGBzB9+nQJA4mJMHv2bAGeuEXY5ACO754IeJlsZZbx4Ck1evXqtV7FOEqs/+STT+XVTKbierkGImoQ8ylTeuyxxyqO8OOfjochKfA8H+KwUk/hzYVpwpuJgoHfUeclEc6SN58qKfDcM2/RqVOnut69e8v5KEx4yxJKEzMr6ryaqG/oc+Wc9erVSwQ8b2vqckQuz/X/qIoeeG6Eh0czscYxjRLLAZ6Hj9nDQ8eepVchIdqx3Qn/yIPG5KGhChMiLI6DeUGcJkAnw1xzzTVZbUP2oW8LXiD2oU2AQAidO3eWNwXXnSkFx6SmBZ6KHsP9Lr30UqmvkJm33npruW9MuqjzkohUAqSqNMBzf7wpAY9ChWeOWXb77bdL/SfqvJqCoCYBnn3475o3b14Zozauihp4boSHdtRRR0lpQEmW6eZYTsnNJ384lVq2p3mZUpfSmpJfA/n27NlT/Pdhsf9TTz0l8GDKUKHClqekznRutjvhhBPck08+Kdvwet1///0FICqjeBAypeCY1LTAE3UbULHjOf8PP/xdKp+U7rwRo85LIqMEzbU0Jg0FwcknnyyOApwG/F/169eXa+I5RJ1XU7AOFRd4tueegD3spYujogWeG6GkpPMPDyHOjbENgFHKMI0Fr1Rq75RC/JkKPKVwJuCBAJtQQ8CTaLkjJEwme5+6AZlSM9yaNWvkz6MOsXLlSnlDZEqYYKo0wHO+a6+9VuoaZHCEmcL5aZgbPnx45HlJ/fv3l1JWlQZ4vGA777yzPFeuBbORc/OsgD7qvJoYrsg+KC7wZJIzzjjDTZw4sXLfJCpK4LkRwO3evbs0IukfmU1sgymDK5KOZHwnw3Ts2FEeIrZ4LuB56CzXklrFckwjKsTffvttlXV8J1MqpFwHNjQmGKUn64PbZ1Ma4NmHBjhMOT0XbygyYFTlPqjwtWUCPrydimWzZs1y22+/feXbZeDAgfJW1cpzNgWPyzlzAc82eOgozNIOXi9K4HlY+FQBN2hjZhMPDruQkkVNGpYBH6UYfW4AHhseuzYMPA+QDkdUdKP+LCpnBxxwgGvbtm2lH18TvnNsVmAnjPw+++wjGRXTKZvtHxZ/KF4a3IMqjk8GDVYug6KE3WGHHaQOgbh/gFu4cOF695BNbMubCl++As8ySlQNdBYW6ymU+J+4TwopMiyRyHm7JhH1Jrw0eJuixLn4T6knhQudJCo64LkRoKHVLFc3gKDYTrcFWjIMfxJ/BmYKJSDA8wfym0qr9sHB1sTO5xUcPE5QLMPMIRxlq1atJNPotvzpu+yyi2Quwrbvu+++8kbAnIk6VpTIcFT69t57b3f66adLpYx9uQfmoiGDRonMR4WRCioZg8zywgsvRAKaSZyHllrscHzhvCHUzQe8lPpR/n0KoyOOOEI8M2yLXb777rvLcXjGccVxMG84D2/RcD8YvnMOvHTUEYLrkqqogOdGli1bJqWcwphGvJq1JZZ5XCihMDvwxeMV4ZWITa6DoImejQ8/l9iWSiYwqFhGyYbnRzMo3g/eCEmuH0B5E+EqJekfy3LMsIceeqhiy6piG66HTlP0IaGkTCqOwbXruUmU8iznf2jdurXcY1hcG28e3ZZMS+U+W4NelDD99N75DA5O55N7I2OFTdA0KhrguTEqedieQJ/kgYUFLIDJH8JDBHxe/eqRAAqWcw4S21XnfDUlronMw5sp6E0plIAcU1DfZrUhIKdHLCZaPlQUwPMwKWFwb1GSAaDpx+dC5qyt50FBoaV3ocU5sdVpD6Eim69nUOvAc2M8VNyHuNAMdpNmdOx5OtLl8w1c68BTiuDRAHgaFLD/LJV3wp1MtwyAz/cbptaBp4ZOJZWWSfzJlnInvDY030etK5UE7NTD8gk7KgqThgoZOdlSvISLtW/fvpHrSiXx5s837KgoKq2mZMLtaiFv0smA91AGfHoZ8B7KgE8vA95DGfDpZcB7KAM+vQz4IhINLNoTMJuHwoBPLwO+iATw9HZkMDaDM+g/Qg9EHViimcCAT6/EwPOn0PuQQRJMemMpv4lenptttpkELdtggw2kfzp9jOhvz3Onv7sBn16JgaeXIS19jJC3lP/UpUsXt+mmm1aGpgR6htAxKRTD2mh9NODTKzHwdLOlL7kp/8JkYcDFtttuK4PCmVOHPu70L6HlUWXAp5cBX0QCakY65aq4GvDpZcB7KAM+vQx4D2XAp5cB75EYFBH00jCWNWqsqSmzDHiPxEBzJpNlxoU2bU6RCYmCU/WZcsuA90hUapliTl2WuIcp8U3xZcB7JLw2zEqmwDP/ZSZPjilaBrxnWrJkqdtoo42kQYoJpwz4ZDLgPRNjgGmYqlu3bs7QPab1ZcB7JgCnm8FBBx1kHpoUMuA9FBFGmO/eSvfkMuA9FFNTE1LHgE8uAz6lgI1+6lFTTNR0wpShQ1nUukIknffeRxnwKcUfTh915jRneuxySUznzXThZHYfZcBXQ9jSBEtjUEy5JP5/5mk34MtQAE882HIS3RsM+DKVAe+fDPhqyID3TwZ8NWTA+ycDvhoy4P2TAV8NJQUeV2YwxVV4vyT7oursG5YBX8ZKAjx92QkryVQby5cvTwQe2xI2ktZV4pgGZzDIJfZl+7feekuiZNNKi3sxLfgGfBkrKfDMSLDFFltILNckAk7CQxJwmHlrADZKDAYJDwhh25EjR7oDDzzQ1a9fXyZ2YiqQTMfIJQO+jJUEeKAlOvWuu+5aJc5rHLEv3QkI6fnwww9nLJ3nzp3rZs+eXfHrx/0IBco1Ej+LSImXXXaZdC1OEjg4KAO+jJUU+MGDB0vwNvqiUBJnAjdKgNugQQOJW8q+Uf1ZiKBNUrGeuSmBXYVZtfnmm0vs1aDYluPyJqK/TCazyYAvYyU1aYgmDfQDBgxwLVu2dGPGjBGAr7766oyJMPLASFynww47zN11112uU6dOEto+HO07Cvjger4zk1njxo1lsicVka8xeyZOnOTuvfdemcuS4M5RMuDLWEmAp7K49dZbC1AA9thjj8nIJUpg4MuUKG0BtWPHju7EE090a9euFdCxye+44w43bNgw6RtPIogvSX8z/jUMPHFPx40bV7mcc1A3IHQ+y/r06SMZK5ONb8CXseICD0iEcCc8J6DwG68JGWDlypVu0qRJGdPq1avFfq9Xr557/vnnZV/eFpTCdFxjrhpNjz/+uGSk4DIFm0/C2PPW4Hj8Bmqm5eaNw2/SOeecI1N2635hGfBlrLjAA1aHDh1kWwWJqbGJR0oQ3mXLlmVMzNaMWbPHHntUVnYplSnhcTMGwQybNCq2wUQZOHCgVFZ1H1yddPfFnmfZp59+KhkLsyeTDPgyVlzggQ2wAAmwqHBiojDrQBwxyxiBehXU+fPnu7Zt28qAbl2GooBnPZVWop2rzU9iAicyzD777CODSQC4X79+0r+fjBU8blAGfBkrDvCAs3TpMteoUWMpXTEzZsyYIeYI4OcSbwcqu2QOTBlAveCCC6SyG4SS78xiQFKxDP895g92eo8ePSSdffbZUmFesGCB22abbdwzzzzj7rnnHte1a1epJ3B9ma7NgC9jxQWekviBBx5wkydPls/FixcLMEFgM4ltaJkdO3as7EvCDArvy29NKr4/++yz7pprrnG9e/eukjBnMI14ezChE5Vq7H8qu2SS8PFVBnwZK0mlNZySKO3+2bYNHisqZZIBX8aKC3wpyYAvYxnw/smAr4YMeP9kwFdDBrx/MuCrIYDHvZitkldqMuDLVEB+9913S7+Tyy+/vGwSvT3ppmzAl5kAnmehrZuFTHTwoiEpal0hEh3N0g4gqW0Z8B7KovillwHvoQz49DLgPZQBn14GvIcy4NPLgPdQBnx6GfAeyoBPLwPeQxnw6WXAeyTtuqvA891Xf3htyYD3SIw5ZSwsM4f16tXLzZo1S5r6TfFlwHskxpoSZ4np8pjxgFnMgpMsmXLLgPdImDCMO61Tp46kNm3aeNunpbZkwHumhx56yG2wwQYC/IgRIyQTmOLLgPdMzFOzySabuF/+8pdu6dKlFUtNcWXAeya8MgcddJD7wx/+4L74Inr+R1NmGfAeqm/fvu60004zcyaFDHgPtXDhQjd69OiKX6YkKkvgMQuYBYyp53xMzBXPvJNR63xKuFQL/ZYqS+CZPZfp55o0aeKaNWvmZWIm4qjlviSefbt27WJNN5hPlSXwPGQeNjGXTLUjpgunHsL894WUAW+qFTHpqwFfIBnwtS8DvoAy4GtfBnwBZcDXvgz4AsqAr30Z8AVUoYDHxxxM5aI492vAF1CFAp4/86WXXpIYqPzBpaBsGZhlhOVZs+YdifqdTQZ8AVVI4OkGQBylcORrXwXUxJYljE9YxJ8dPny4DE7J1ZPTgC+gCmnDEzuVCVczhXL3UUwiS8zXsGjBJu4sGdyALyIlBZ5SjRKNxB9EJD6OwfdMSV/7jFAiPiowEEQsyaBrtmVYnwYZ5ri5xDnZlpFQ7P/dd9/JdzKcHiMqsZ592VbDYbK9fg/qzjvvdKtWrar49ZPYjoBoO++8swFfTEoCPH/II488In8yoR2Jlzp9+nQJ385A6qhEJGsAAvLdd99dXvNEwGaaaULPhwGKErARvfuuu+6SdN5550lEvmzifEQKPO6449yKFSsk1CX9Vhj0/fLLL0deK4mofgDINpxn8ODB/2+Hr5HwmMcff/x6wwgzAY8wdwz4IlNc4CkhCRc5aNAgAfCdd95xm2++uXvllVcEAo6TKQE1PRq33HJL9/TTTwuMEydOlIEbzD7AMa+88soqiYzEfpyXQMKAxXmoB2y77bYSWjKb2Jfgxw0aNJChgMRhbd++vYSWJwNGXacm1nMuzK877rhDMhvH2GWXXcQ2Hzp0qPTDJ7Vs2VLeXPpbrxsZ8EUo/uBcwPMHsp5efdqN9cUXX5TI1V9//bXAwJjSqESJCkA333yzO/PMMwVg9l+0aJHAgGkDGOHushp/FVB5xsDAb2KzEpw4XNKGxbbDhg0TaImyjTlEiPo5c+a41atXy5sm6npvv/12t3btWgl2DOCjRo0SU4Z1p59+ulw/94znhQT8PAv9jdnEuZEBX4SKCzzmC693vpMuueQSSQBARGxe+1GJ/ur8kZgwwKr7U3LyJ2cTx27durWYJgjITz31VHfTTTfJ72ziHM2bN3fnnHOOnJ9rqV+/vtjVAAtk4WvVRCbkWqlw8ibhvJTkkyZNqjj6TzKTxjPFBb5hw4Zu5syZ8h0zZquttnIPP/xwrD8JaHbbbTeJeM3+lILYw9jJ2cTAlN/97ncCFPAz2dKvf/1r8edzXo5F6cu6sChtt9tuO7lWREnNfcapLHPcLl26SFgbtqW0Z94bzDjMuaDiAE+UkGwy4AuouMAz6VH37t2l8of9jT1OBRIIsol9H330UXf00UeL7c6fitlAqZ0LPMynevXqSYk+depUiRJIRiMsPM+eMPR77rmn1C04T1BUrjFn1PRp27athJXHRMp1Xuz0Ro0aVZbMmEF77bWXVLLJYCrOSYYC7LBYx5tv++23d88888x61xeUAV9AxQV+/vz54qngzwcIzBls12x/JGI9kGAiYBIALucCujj78hbBnAI+3hTdunWTEpV1NGBhshDjKXgsvs+bN8/NnTu3cjktvFQ+yQDBbcNi3ZdffunGjBkjbwN+4+XBs4Q5FNyX75rCwmzifFrhpl6QSQZ8ARUX+EwprvK1nyZdB/QApctUwe1Q+Hcu6fbhFFfBbXPta8AXUHGAL1YxeSqmi3p0fJUBX0D5DDzXrqaRAZ9cBrypVmTAF1AGfO3LgC+gDPjalwFfQPGQmYjpjDPOELejb+n88893nTt3jlznS6LLBS3KBnwBRKUPPzP9TXxMdAbr1KlT5DqfEv9BrgaxfKssgfddFsUvvQx4D2XAp5cB76EM+PQy4D2UAZ9eBryHMuDTy4D3UAZ8ehnwHsqATy8D3jPRYUyB970DWW3IgPdIdA1mUAnThTC9Bt2EGWFkii8D3iMxiopZE+rWrSvjXBmgzUgsU3wZ8B4J8+Xiiy+WsPMkZjPINXWHqaoMeM/EfDgbbrihAM/AcLPhk8mA90wMqt50003dxhtvLDObmZLJgPdM9C489NBDZc4bZhqwEj6ZDHjPBOD9+vWTKfD4bsAnkwHvoRYvXixzyBjsyWXAeyItzRmeCPD44pmWz6BPJgPeAwE18zs++eSTMhaXKbCvuuoqmauSKfl0/kpNpswy4ItYwMuES8xr2azZUeKDZ15HxoFSecVjwwxkRx55pEyCyqB0jeRhipYBX2QCVqBlTknmaGT6ayqpPPcokFnGhK10MzjxxBNl3kkihQTnbDf9JAO+iIR9jm+dSVsZ0U/wMErxOAOdgZtWV6KFMO01szIw8y9TaBv4P8mALwIB+uzZsyunDmFO+m+++SYVqAr+W2+9JeFoMHeIREKEEQPfgK8VAR6JhqPx48e7Y489VuaaYdoKtcGrC6ceg/nmR48e7Q4//HCJI0VYSTJYdY/vqwz4AgrIME8IMYN9TkgZ5pjBXldAawpEelrSj54OZx07dpQ574kBVW7gG/AFEFBRchNhj1m3TjrpJIkkUmgzg3MB/vPPPy92fqtWrSRggwZBKAcZ8DUg4NEEYNjnhJ+hdCWEZW2XrJwbO5/ACtdee62EybntttsknCZvIL32UpQBn2cpLJTehK+kNKdUJ5hZsfnI9Vrx5NDVuEWLFq5Hjx5SlyhVO9+Az5MUnvfee19CzWOf88ksubquWAHSa6ORi/72tOaeffbZ8maihbdYrzuNDPhqSmF5/fXXpSTH44LnRYOB5YJF1+farhDS6w3a+TR8EWmbZbreZxnwKcUfT2WPUpCpnzFdsM9p9o8LBlHvbrzxRpn6+oknnigamPT6seeJ19qr19Xiz7/llltkIDmmma8y4BMKECi9KcVpDWVSfzwuWtmLK7bFQ0KHMGYiIOR7TQRo4DyEvyRzphXHoE5CoGM6rPXs2VP69PgIvgEfU/zpTImB3xyzBfucAMX4s+kKkE3sq0nFd0pLXU4PSN4WwW3yIY53wgkniK+/uuJYzJJAoGYGoNAqTGzYXHFgi0kGfAbxB5LwVrz22msSHLhZs2biedH+KSQiTmcDnm0IG4/pQh92futy/Q4wZ511VrVK4UziHPkCHul1Y7rx5jj33HPdcccdJwGJtTuE3lcxyoAPSf8w4Js1a5ZEvMaH/vjjj0eGZ4kDPMfCBsYMCsPAb45RUzY8x8wn8GFxfDxR11xzjbg1b731VvfBBx/E6vBWGzLgA+LPo+8JvRSphNL/nFJMK6JRygU8okFnjz32EBs9eByFhVDzvEmS1gPiiOPVJPAqzoOJhp3P+eifj+eq2Oz8sgaeP0kTUN5www2uadOmbtCgQQJInD8rTgk/d+5cd8ghh8grn77r2gBFSycjllavXi2duuglyfJ8iuMVAngV58OfTyamUo+dv2DBgko7P9/3l1RlCbw+eBpV6N9y6aWXir957NixlQMn4v4xcYDv3r27uC7pMHbUUUcJgHg9rr76avHyaGLgRtzzxhXHKyTwKs7LG4v+/XRWo9/OtGnTKsfh5vs+46qsgNcHTV8WbGbsc1oVsc/T9m/JBTzm0L777iveHUr3devWuXr16kn9IHw+vb58iuPVBvBBcQ28xbDzAX/IkCFu7dq1NWLC5VLZAM+DxaTAU8L1X3bZZW7JkiXVbjrPBTw2Oj527RnJNTRs2FAaqQrxZ3OO2gZexbVg599xxx3i2cHz9cYbb8jyQjwLVNLA8xCxl7lmzIkjjjjC9e/fv7K1MB8POhvwHHvEiBFix+p58GDsvffelT746opjkIm4DvrBcNygh4T1aYBnPyrSeJhy1WXYljcZb8ko74weK/jMMR15s1Li0wYxf/78gvQiLVngecB4WChFKE3GjRtXI1PTZQOeP5+WSWYd0D+aijGv9HxcB8cAdswyuvg2aNDA7bjjjlXqAnzGBZ5tNWFy0HWYa6ViTTcIPWZQLMMb07t3b3FJMrpK+90gzDgap4CaYYdhUZldtGiRDD5niCN2vv5PUeerrkoKeB4QDxj7mJZAbHRKEUqpmnh4KBvwwIg7cvny5ZIB8cIAfBCI6ohjMFsBpSPg4FKl8k3SNgO2iQM823322WfSekxJywwIPDtK5WHDhsnwQM4RlO5DG4PeIxV0XJN6f6ynCwXz2dPtOEpsy3lw22Ln09OUcbj6FtRj5UPeA68PhFckDTtHH320u/DCC6WvRyG6tgaBD/85fAc0Si36ywCFuueyKXycTGIbujvotnzyDBo1aiTPQ5dlAp51gAbkhNDBa0QpTBeHXXfdtdKjgp290047uffff7/yXIjv2OOYihQ0/KZuQqU8eH5K7M033zwj8Cq25a1IJuFNQct2vufbSQU8A4LpRVcMiYdBqUkpg30eBKAQCgLPnz558mSBoDqJzEFpyX3wNnjqqafcY489ViWRocP3yW9GLuFm1XV8BoHnN4m3HtfODGbUb3iWug+QNWnSpLJEp8JNxZuMq9sgIMQMwVzR5atWrRK46U6hoivGb37zm5zAh8VbinoJbxv65z/33HNyzuooMfA8KB2XWQyJ0uV3v9vFTZ06tVYGK4SB5/U9cuTIaqUZM2ZUvgkAHtOCDlvBBFDBe+U793/KKadIia1ieRB4Sl76A2GikDm1335Qbdq0EbNCl2Mq7b777tI9OCjud//99xczRrflPFtttZWYWqq0wCOOi6eLjEUm1DdHWiUGHlH68HCLIZEBmXyIaS7oywEshajtq7LZ8NnE9fEcAQMbGVOiOtfMvnRTpkQMHofvQeBpBaWnJ5VEWoDD3Sb4TokKYCpMEkwcKq/BbQEe84nMoyKzbbnllnIdqjTAcx7eFnTv4H9lSkHeNFFeoCRKBXxNihsNPtRc0u151fGn8orGvBk2bHiVQck1peoAP2XKFKmcYYphMqRxVbI994gnhJnG9H6DKcqkAXzsfUY1UdJjr+u+Xbt2lYqvwsVzxIbn+KxXkWHxgLG9LgfqzTbbTNo4VHGA1+uiBCcj0nuU66air/WDfKiogOemKHFojUxzg/rQqPQMHz5cXIJUxHjQQRDyqeoAT+sjn1wbPTKjWl9zie2ZPht41e4HMNyKfCcFgQ+KdcBEHYHB29j/1NF4S+61116VrkjqSdtss01l57dgwv4Hes6NGB+www47yL6qXMBzHDIcGY83C5mQIYZaUSXlSwUDngfAREA8XGryJEb74KMmF/Obdfhy8SvzAKojHhIPmnPST0UbNxSKfKk6wOt1ADx9bcioSa6NbSnZsa+ZAoRjcK/Ua/CN6zkyAY90G54L/YpIX331F7GXKaVZN2HCPVJppDCibsEYV+BlHZNK7bffflLp5T6Y3g//vb4dECYRbkm8VOyj4jsZTDMN+2Gv1wToqoIBz4OiggT4JEbOYBPy6qJE1+WatMSornho2PqUgp06dZJSn0pfvuz8tMCruAZAoONa0j+ZbcnQ4UqvVuB1m2zAB6XnJ9FoR0nLmxKvDWYNyzGFDjzwQBnQottSYOEKplILtPx/LEcUXNjfWgeAAVjg7aaDaqh7wIC+hWtSBTdp9CFhpzFUDhcnf0aUtyDf4vhr1rwjYzI5N39m0B2XRtUt4amI4dlRO7U61xIljhcXeJVeB2DSeBYEkU8cBcECiWX8ZnkYWr5rYj0mD28Lug4/+uijkjGD29e0agV4zBe6jPJapJ8JlTVKXZqxdXBwTT0Effi8SgEeGKjo0h89zXmTAK/n1kTph98de5sSjsmakp4/lzheUuDzKc6PaUmnPexzXNovvPDCet6hQqlgwHNzlAL0aeG1h28Xm5UuANrpCDcU9juvUkqDmhbXhGmFWaCDFfgzgvZnLuUCXu8bM4NXu3pGgJsGIgaG0EeeVzu2cb4h4Hi1ATzn5a2N6cNbHE8U9rm2L9SWCgI8N4jpQM9BbGl97dEqSq7HFcVvEq84AKJCWwjpeSndqaRRuQUQMgGZgXXZlAt4/mAyOJVz7huo69evX+lTDqZc50ojjlko4DkXJTcV5m7duksmJpOrTV8T95dUBQMeuIGK1zg5nZo7fwLN6Pz5/MasoJQHemza2hDXyDVg5tB1lUYh9UBEKRvw3DcDTWj91Fc4czjyFst0vHyLc9Y08JxDu0B06NBBPEY0qGlBVkwquA2Pf5Wmayqt4URlktc80NWm+JMAkkwK8Hh28FNHtYZmA57SnUYwugboMWnQwStRKBA4T00Bz7Hx2uA/pyvCRRddJCZhPhuK8q2CA4/ZwNRyUSUc9i2AFcvD4jpIeCpoKudPpQTDLFPvQjbgyTA02Kj5wjHq1q0rvQ99LeE5HteOmxI3JPY5JhvHT1PpL7QKDjz+3VzAF6sosemx17792fLaxs7HuwTwUX80phAdqbDbKeWJxof9TosqJlwhxHVhmlUXeI7D/VPZvuKKK8StSxdePDCsK3bQVbUCPB4RTBtef8FE5/+hQ4dWbFmc4o+lJMOlip1PIwzwa8NMUGxHyzEuWEb10MORzE5dpVCAcB7qEVQc04j9eZvhSqaRkNZc3lSYMoW6h3yq4MADNu4/Sj9e+cGEH55mZh8eJNcI0ETBpiKKrU4dhJKUtxfrNQV/6/dill4nFVE6uOFtwX/+4osvFrV9HkcFBx4g6M4bfmj8Zl1USVns4nopBTFx6MrKfIvco3Zf8OF+9DoBnYYwenHSJ4e3Lo10vtxHLhUc+EwPTpf7/FC5dhqZGERNvx1MHex39ecX671xXdjntHJjn1PJxT6nsu3z/xGlggNfDlLwsdUZzc8YYLrean+hYoBIrwPQ8TTRNkBiirxg569SkwFfQ1KgMBEAnX47TKWBiUDDGxmiNqDSawJqprimWy4Vabwv2jhWG9dVKBnwBRIQYdPTp4YhdEDGJKNUDAshzk8lm5kH8J9T1yDzMSSvlAEPy4AvsIALyBmMQuWWVmfsfBq3ago8SnT6t9CKTWajhybeJZaXmwz4WhJwYz8zEKJXr15i7jB4gwYp1lUHft0fs4kRUfRIbd36ZGn80oxVneP7LAO+SER3adoh6CrMOFy6H5AhkoCpINNBD/scbwveIqasxpwxGfBFI4UVFyYmDqYOdj6mj/bbySTdl8Y8htEBep8+fSr77GTbt9xkwBehAJQKLpVaDRpGcz62fxBevgM03ZmZ/pvtxowZI4135Wifx5EBX8QCaEwRQuPQIEQTP+5NRooxIgz7nAljdeLTcIYwrS8D3gMBMQnPCg1YTBhLwuShqzKZQrcxZZcB75EUanpe4nlR0MPS7cLrMi0vJxnwHuqll16WqS4yiT7qTIFBiy4NS5qYBpuQnOXssTHgPVQu4LHxGZ2FO5Io4poYa4DPv5wrtAa8h8oFPHPcADwuTQbaaNJwO+UsA95DxQGe6U8YX8AkV5oYPI6fvpxlwHuoXMDTjx2fPN1+GYiiiQjjgwcPlm3KteJqwHuoTMArxJTwzPjFSCXseU1kADw89KehQluO0BvwHioKeCqizNbGAA6NA8XgbSa6wm6nYUoTtjx9bKo7JbmPMuA9VBTwlNa0tJIYqscU1wzyYPIoZhtguc7oRistn+XonjTgPVQ2Gx7wmbCWvjUATcWVCixuSfrE44tnLnc6qZWjDHgPlQ14Sm5KdLog8B3g6XlJz0lKe03Y8eUoA95DZQOeHpYM3QNqpsBjzk5mRA6bL+alMXmjTMDTLZjJoHRUE5VShvUddNBBMs0fpg6R+BgcwgSoUcGNS10GvIcKAw+0TE2NZ4Yp8FQsx3tDoxMeHLw1dDOmlyUDuWsrCkdtyoD3SMBJUuAVaP3U71HSfYOpHGXAeyTcjNjl06ZNk4royJGjpIOYKb4MeI9EqUwc1g033FDSFltsIZM8meLLgPdMjFmtU6eOJKKJ0Jhkii8D3jMR/v3nP/+5AI95U662eFoZ8J4Jf/puu+3mfvazn8ksxQZ8MhnwngnAu3bt6nbaaSfpDWlKJgPeQ9EDkhhL5Tw2Na0MeA+lYXbMnEkuA76GBIw0BL366qsSPiafiVFL9JeJWlfIxJBB394yBnwNCeAJ4Ibr8J577pHQ86WU6J7QtGlT6ZHpkwz4GhCwE3iAyH6Eqiwl04N7wTVKQGK6HPt2bwZ8DYheisz3yBA7zJpSEj0yCcXP+FgfM7IBn2fximfGXyqVpeZFYUZjAhP7PHuZAZ9HEcBgwIABrkePHhJ9Q6VmAJkhWCqyDd12ASmuCJwQPHahxL0Refy6666rlfPnSwZ8nkSJN378eCkBwxU5gMYMWL58uQCvicjWe+21V9aBGLqtijdH//79K5fp+uA2+RTHBfZRo0bJTAfAXlPnKoQM+DwIABhK16pVqyqRxPlkjpglS5ZIL0cidDz44IMyURKZghD8zz33nMBEyR0Gid9Mh81wPRUByRitpGIKPc4d3jdfog7CwJLWrVtL3aSmzlMoGfDVFACsWbNGwrQzK0AQCGABSEyB66+/Xr4/8sgjMpMvkOOuZPsVK1a4iy66SEK+81uPwefAgQPdhAkT5DcKAz9lypQqJX6+xT0RiIFMV1PnKKQM+JRSMCmtAYKSOgwEvzEHmBYD2CkpGVbHVNYAv2jRYukmgN3P0DvGnvIZDPlOIxOTJ6nCwBP3dcSIERW/1pdepx4v+D2TdBtadHE/8obKtY8vMuBTCgCY2wWbnYaYTEBQWaX0JtI1A6rp4ThnzhwxaRhsrSYQbwNKU+x5vrOMxHyQuYAnDE74/NQpMEEomblO+s1zbDqcZbpWFesJn3nKKaeICZZre59kwKcUlTdMFcyJTF4LQLnyyisFWkAlagemDXO0U8ElLusll1wiw/TogsB8kGQGBQxo6ULA1Hi8CUjnn3++ZBz93b17dzlmGEqCIowdO9btsMMOcvxhw4a5Aw44QOoN2QBmHbOUcQ4Gepeaa9WATyGguPPOO8VrgQcmE0AsZwgeFVJMHtyVzCoA8AQkpsRl+gymzaCkpn/K0qVLK4+H+UNJG8xQWsLrNpgd+pYIXwf1hf3331+O/cEHH8j5u3Tpst52QfF2AXTeSqUYJM2ATygAwHfOdNQMqs4FBOtJmDS8EdgH4BmqRwmvwDMJKqABvIrMQsxVZv5VhU0aMkWHDh3Wa+bn+wUXXCDdiJlmD5AbN27s7r///ozXzHLW45HRuW1KTQZ8AgEA5gHRsukrkwsI1uN7Z5YBhuNhE9OhDPCffvppqcRmAx6XJmYQc86owsBTKW7Xrp376KOPqlwPNnv9+vUlQDGw4xLdbrvt5DNK7MtU2nR2462R6958lQGfQMBCiQkYcYBgG5rhZ82aJYD37t1blgH/U089Jd4agGc2sOoAj10eHv1ExgRwhZeuvGRUKrDsExTrca0SCrPUOruFZcDHEAAwxTQdwnjlU2LGlXpc1KThe9++fcUXv3LlSgGejEQlU2141ccffyJvBbwt1BVIeGTIRPqbOgElfBB4zkEFmOV8JxHAmDkmZ86cWeX6WUcmoCW4FDu7hWXAxxCVN8aREgUPQNIIXzZTWLM/JT0tqBwPMLHRR48eLT5v7G09B1Pk4aUBRN4SJDIc3hnA5TcuS2ANAg+0vD0o5TkWiRKeuSXD0+uRaTp27CiV8ODyUpUBn0O8/il5L7744mp1msLm1y61dAXA+zJjxgwxJViGJ4eW1yCQfGpShX8DN75+9lPp+uBneD/E/dAZjDdPqbkfM8mAzyAFhBL11FNPjezr4qv03shgzCVfqh6ZKBnwEVIgMDsYtYRpUSpA6L3xlqEC/vnnfy6Ze4sjAz5CAKAdwujYVUpAcC+rVq2SjIwpVE6wIwM+Qtjtbdu2lUoklcZSSlSYgZ0o3eUGOzLgIwQIuAdpmi/GdOuttwq0UetyJfz9uETLEXZkwHuobDGeTNllwHsoAz69DHgPZcCnlwHvoQz49DLgPZQBn14GvIcy4NPLgPdQBnx6GfAeyoBPLwPeQxnw6WXAeygDPr0MeA9lwKeXAe+hDPj0MuA9lAGfXga8R6KHI0mB19+m+DLgPRIzFDCXzbx582VoHgPDmYDJFF8GvEdiwHaLFi3cLrvs4rbYYguZd4Yp9EzxZcB7JMwXJlatU6eOJOaNDE7SZMotA94zESZno402EuB1nhtTfBnwnol55bfddlu3wQYblNzc7YWQAe+ZAJx4UXXr1nVvv/22AZ9QBrxnAnCmzWvSpEmV2cZM8WTAeyjC2DDlhpXuyWXA17CYv/G9996TkDb5Sswxz4SqUevSJCZwZUJX3J6lnokM+BoQ0DDjMDGWDjnkEIkWQvAzGouKMTEHPZNOtWzZ0s2bN6+kwTfg8yxAwTdOjCTCVfowLyXXx+zBBENgvknmnzfgTbEEKKNG3SHR+SjlfRLXjmlDpJBs4fB9lgGfZzEvJQGGwyFofBGQE0yBABAGvCmnmHW4VatWeYOF4yQ5VtLto0RsKeI9+faGiiMDPs/CDk7bV53Ie+EKI9+JHsLyOMI3j+elOjFWiTelYTlLTQZ8nkVcJeKmJhVwEn4GcyIMPBVJWlXjiC7EYRucTzITFdPgsTPJgDfFVlrgKZkBm9hPYShZriW/xoAi0Ree8JezZ8+uTGSYgw8+2E2fPr1yGSEzO3fu7AYOHBgrlpMBb4qttMADKpACNjY0gztIHI9uBHzSU7J79+6V87sDJF4VSnVNxGXFn05dgt9sQ1hKvhPLKY5pZMCbYisp8IBLD8gBAwZIqyyxW9u0aSMRvGmhXbt2rQQ/4FMTALMfosQnWDERAhcsWCChLA899FAJfMDvOXPmSDdiMkJcGfCm2EoKPJCPGDFComtT4cX0wARRoBHw8Ru41aRRsf9JJ50k+xLAmBFQxG1dvXq1/OZtcMwxx7jPP/+8Yo/cMuBNsZUUeGzqwYMHu2HDhomNPWrUKDE7KN3vu+8+6fN+8sknyydvAcLWB0PHazyqd999V35jtpABMHUQ4TZPOOEE+YwrA94UW2lMGgDH9UhUbrwpLKPkJtw9GUITcLM8qoTHhCEuFZXYpk2bSvRufmPqNGvWTCrDcWXAm2IrDfAfffSR69Gjh9jf06ZNE2g//PBD17PnlTJLAeHlScOHD3e33HJLFU+LAk+FFvt/t912dw0bNnSDBg2SiiumTb9+/STzxJUBb4qtNMBPmDBBPCvADWyU5JTIRABXu500adIkqaAGS3j16rC+W7du7rbbbpMMsHDhQjdy5EjJEGwT3CeXDHhTbKUBHsAVSjww+NexyRnKF9SUKVPc+PHjK379KPYBakp/Gq6AFZv9008/lQyC3c8yA/5HGfB5VlLggR0PC11yGcUE0JgmVDoBnoygiUpsEHiFnQovpTndCfC346UBeNYNHTpU3Jrjxo0Tl2Yc8A14U2wlBR57vH///lJC40bkN1DynconlVFNl19+eWVfdRKZApcmDVS6H5DSMqv98MlQM2fOlMYr6gFB+z+TDHhTbCUFHinAQQEbLa9BYergV0eU+KtWrVrPL0/ldMiQIVLSq1ivGSKODHhTbGGetG/fvuJXekVlguAy/Z5pm/DyJFLgg5mmVGTA51n405n/0WdhKjVv3lzaBEpNBnyehalx2GGHVZoevok3w7333uuuuOKKar0lilUGfJ4FJHhTGATim0nAteMOJcO++eabBrwpt4AEU6Bv376uXbt2MhAjjmekNsU1f//999JF+YgjjpAGsFKEHRnwNSBgwQeOG5BGoMaNG8v8NAzMKMbEtXGN5557rluxYkXJwo4M+BoS0Gii9MTFV8yJDKrXXcoy4E1lJQPeVFYy4E1lJQPeVFYy4E1lJQPeVFYy4E1lJQPeVFYy4E1lJQPeVFYy4E1lJOf+D0vOhuNT5HRkAAAAAElFTkSuQmCC"]
math
multiple-choice
3
执行如图所示的程序框图, 输出的 $S$ 值为( )
2
4
8
16
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAFrAOsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKrazqNhpGk3OqapeQWdjZwtNc3NxIEjhjUZZmY8AAAnJoAs0V43H+1R8DpV32/ijVbiI/cmt/CuqyxSD1R0tirKexBIPY0v/AA1L8FP+g/rv/hHav/8AItAHsdFeOf8ADUvwU/6D+u/+Edq//wAi0f8ADUvwU/6D+u/+Edq//wAi0Aex0V45/wANS/BT/oP67/4R2r//ACLR/wANS/BT/oP67/4R2r//ACLQB7HRXOfC/wAe+EPiL4Z/t/wXrlvq1gJWhkeNWR4ZF6xyRuA8bjIyrqDyOK6OgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8X/butoL/wCDWlaZdp5tpqHjLQra6hJO2aJ9QhDI2OoIPIr2ivHP23v+SX+H/wDsevD/AP6cYaAPYY0SONY40VVUYVVGAB6AVw3xi+Ilz8PrO3v7zw1NfWN5qtnpdvNBeIrNNcypEhKMOFDuMnPQZweld3Xgf7YOi6ldab4J8Pw+LdZub3XvHmlpZ2rRWe2MQzG6klwsAfbHHAxz8wB27hjJoA6rxR8TfF0Xj6T4e+HvA9rP4pfQzrVsL/WBFZGAXCwMHkSNnDZbIAQ59RVz9pf4mH4W/A3VvFrNpkeuW9kG07T7ufclzcsyIIxgozqHkUEjGAcnArz/AF7wvqOo/ttto0njjxFC138LrhWvrdbOO5jVtRjUqjC32r1yG27gQOe1dV+0t4e1b/hSekaWi6l4k0/R9X0688QSz3MC3dzp9pKJ5XYMqRSsTCm5MLuG7GTgEAPiH8WrhPg79r+Hd/oPifxpdXsGi2lnZyedbnUm2GZWVHJVI08yVst8qJkk9/QPAfiTT/Eekyta6jbXd5ps7WOqpDG0f2e7jwJEMbksnPIBJypUgsCCfjv4c2Wl+ONY+E3iYTy6ve+OtU8T3LxQeJbiwSw3tLdqrtZPxMIyquCM42qwG2vZv2O9B0yD4h/FLXLfS5dOvrXX4/D10o1q5v0uhawJKszPcZkaTF1s3Mx+WNFAUA7gDS+H9vDYftzfEKGyTyI9Q8J6NeXUcZws0/nXcfmMOm7Yirn0Fe0V454Q/wCT7PG3/Yj6P/6VXtex0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnn7T/gbWvH/AMKZNK8N3tta61p+o2eraabpSYZbi1nSdI5MchWKBSecZzg16HRQB4vY/F/4qpZxpqf7N3i77aqhbj7Hq2myQbx97y2adSy5zgkA47Vzum+KvG0fxEuPG+pfs7/EHU9YaE21i1xqWl+VpluTkx26C4whfALvyzkDJ2hVH0VRQB85t4o8cN8a1+JTfs9fEL7cnh46GlsNR0ryfKa4E7Of9IyW3KoHOAM9c8Z1p8bNY+Mnht3034E+N9X8Mw3slrf2kV3pyJdzwuA0Mpe4BaIMPmQDD4wSVJU/S+pXlpp+nz39/dQ2trbRtLPPPIEjiRRkszHgAAEkmvnf/gmXqem3XwV16yttQtZrmHxdqk0sMcys6RvOdjlQchW2tg9Dg46UAY2pWc954003xGf2WfHMb6dqd7qrWa6jpRtrm6u7dIJZJEa4P8EakBdo3ZY5JNdB8N/E3iPwKusp4a/Zi8d2qa9qsmq3kf8AammFfPeOOM7F+04VdsSDA9PevoeigDyH4AeHfG1/8T/FHxZ8e6LH4dvPEFna6ZpugrcpcSWlnbtK6vPInymV2mYlVJCgYye3r1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVTX9TsdE0K91nVLgW9jp1tJdXUxUkRRIpZ2IAJOFBPAzxVuuN/aK/5N98d/wDYr6j/AOkslAHGx/tV/ASSNZI/HZZWAKsujXxBB7g+RS/8NUfAf/oeX/8ABLf/APxiuy/Z3/5N/wDAv/Ysad/6Sx12NAHjn/DVHwH/AOh5f/wS3/8A8Yo/4ao+A/8A0PL/APglv/8A4xXsdFAHhPjT9oz9nrxP4P1Xw3qXjZns9YsZrK4X+w705jlQo3DQEHhj1BFfO3/BL/x78I/g98MfEn/CW+KFtdd1fXHRmTSbyTfawKEi+ZYT/G07YJyN3IBzX3/Udrb29rGY7aCOFGd5CsaBQWZizNgdyzEk9ySaAPIP+GqPgP8A9Dy//glv/wD4xR/w1R8B/wDoeX/8Et//APGK9jooA8c/4ao+A/8A0PL/APglv/8A4xR/w1R8B/8AoeX/APBLf/8AxivY6KAPHP8Ahqj4D/8AQ8v/AOCW/wD/AIxXW/CH4u/Dv4oXGqW/gXxGmrTaL5P9oRi0nha383f5eRKi53eW/TPT6V21fPf7Ov8Ayfh+0T9PDH/puegD6EooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuN/aK/5N98d/wDYr6j/AOksldlXG/tFf8m++O/+xX1H/wBJZKAF/Z3/AOTf/Av/AGLGnf8ApLHVL493+r2sXhKx0XXLvS7jV/FVlaSG3WP9/Au+4njZnVtoMNvLyME9M81d/Z3/AOTf/Av/AGLGnf8ApLHXKftMeBvEHxH1TTvDOmz6lptjFouq3Dapa3HkrFfPClvaoxByQRNOxwOiYzhiCAdJqXxZ8IWDMbuPxCsRmeKGeHw3f3EVzs27njaKFgyZYAN0bB2kgZqx4Z+J3hLX7i5g019Z32lq91Kbvw/fWaCNMbsPPCik8j5Qcnnjg1j+GPDDfET4b+HL34k6DrWk65aWKJdWsGt3FpiYonmN/os4DKWU43/MB2GTnW8P/C/wpoTXkmkjWI5ryzktHa6169vFCPjOEnmdAeBzjPvyaAPMPEXxP8ZWn7L1l8fbfVUW3ZbbVp9A+zxNbHTZZ1UxBygl88QuG3bwpkGNoU4r6Br5ysfh/wCL9W/ZDsfgDqehzWmpQRwaNfahx9j/ALPhnUm6jmB+ZngQBUxvEjfMiqCR69N40u5PjdD4A07RGuYINH/tTVtUMpWOyDyNHBCBtIaSQpI2NwwqEnquQDjrH4iJ4x+LXjbwDF43TwleeGJobOzgga0N7eNJbrK1ztuEkDRgyKqhU4KMWLbgB1F54907wVpek6P43vdUu9c/syGS9uNO8O3t1DPLt2u4NvC6Jl0c7MggEcYIrzf44fDzTPjJ4F1nR/EXwsjh8bSSXNlpmrz2aoLCPzWFteC8Q/MqRmNygYsSGXZya9O134YeGNdjsG1uXW7q40+xjs1nh1+9tDIqZ+Z1gmRWckkliMnPXAFAE3h3x3pvi+x1KLwf9sfULS3LRLq+jX1hCXIOzLTQoWGRzsyQO3SuX+A/irxlq/xY+Jfhbxdqen3w8Kahp8Fk9hYG2jCz2SXLfKzuxIMoXJY8KOmTXYeBfAvh3wfNczaGmqK10qrL9s1m7vRhckbRPK4Xqfu4zXn/AMCItVh/aG+K2r33hzWrDT/E2oadcaTdXdi8cdykGnxQSHJ5Qh4zgOFJBGPYA9kr57/Z1/5Pw/aJ+nhj/wBNz19CV89/s6/8n4ftE/Twx/6bnoA+hKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArnPjFo994h+EfirQNMRZL7VdDvLO1RmChpZIHRASeAMsOa6OigD5l8Ba5+1v4X8C6L4ah+CfhG4j0bTbexSZ/FSq0gijWMMQOhO3Na3/AAnP7Xf/AEQvwd/4Vi/4V9CUUAfPf/Cc/td/9EL8Hf8AhWL/AIUf8Jz+13/0Qvwd/wCFYv8AhX0JRQB89/8ACc/td/8ARC/B3/hWL/hVW68d/tXaZa3mot8BvBcS7TcXTp4pXdJtQDc2BljtRR9FA7V9HVl+N/8AkS9X/wCwfP8A+i2oA+ePAPxf/al8ZeCdK8V6F8EfCU2mazaR3dnJJ4oCM0bqGUlSMg4PQ1r/APCc/td/9EL8Hf8AhWL/AIV2v7Ff/JpHw4/7Fiy/9FLXp9AHz3/wnP7Xf/RC/B3/AIVi/wCFH/Cc/td/9EL8Hf8AhWL/AIV9CUUAfPf/AAnP7Xf/AEQvwd/4Vi/4VN+yX4P+Kdj8bvil8Rvid4Z03QJ/Gw0j7LaWGpLdov2WCWF/mHI48s8/3j6V79RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWX43/wCRL1f/ALB8/wD6LatSsvxv/wAiXq//AGD5/wD0W1AHCfsV/wDJpHw4/wCxYsv/AEUten18VfD/APa/8CfB39l/wDoupeFvF2oajB4btI126U1rayOIQflnm2h1+78yBxhgRmvT/hL+114E8S/D/T9d8Radr2lX18rSNZ2Ph3U7+KJdxCjz0tgjnaATtyATgE4zQB9DUV45/wANPfCj/np4t/8ACL1X/wCR6P8Ahp74Uf8APTxb/wCEXqv/AMj0Aex0V45/w098KP8Anp4t/wDCL1X/AOR6P+GnvhR/z08W/wDhF6r/API9AHsdFeOf8NPfCj/np4t/8IvVf/kej/hp74Uf89PFv/hF6r/8j0Aex1m+Mrqex8H6rfWr+XPbWM0sT4B2ssbEHB4PIHWvLv8Ahp74Uf8APTxb/wCEXqv/AMj1meNv2l/hZdeDNXtYZPFfmTafPGm7wbqijJjYDJNvgDnqaAOX/Zk0/wCO3xS+BPhzx/e/tE6pp9xrls80lrD4T0p0iIldMBjDk/dz+Nd3/wAKw+Nn/RzWtf8AhH6R/wDGarf8E5/+TKfAH/YPl/8ASiWvSvE3i+30Xx14c8Ly6XqFxN4kknSC5hEZht/JhaVjJlwwGFUDCnlx74APPv8AhWHxs/6Oa1r/AMI/SP8A4zR/wrD42f8ARzWtf+EfpH/xmvY6KAPHP+FYfGz/AKOa1r/wj9I/+M0f8Kw+Nn/RzWtf+EfpH/xmvQfhr4vt/Gel6hfWul6hp66fq11pbpeiMM8tvIYpGXy3YFRIrrnPJU9sV0WRuxnn0oA8c/4Vh8bP+jmta/8ACP0j/wCM0f8ACsPjZ/0c1rX/AIR+kf8AxmvQPiR488K+A9JOo+KNVW0j8qSWOJInmnmSMAuY4YwzuFDLnaDjIzitLwjrdh4l8J6X4j0p3ex1iyhvbVnQqzRSoHQkHodrDigD5t/aDl+N/wAJLHwlrn/C+NR16DVvGGm6PdWNz4Y0yBXhnkO/50h3A4XHGOvWvqOvnv8A4KMf8k98Af8AZS9E/wDQ5K+hKACiiigAooooAKKKKACiiigArL8b/wDIl6v/ANg+f/0W1alZfjf/AJEvV/8AsHz/APotqAPPP2P7Cx1L9jv4d2Wo2dveW0nhix3w3ESyI2IlIyrAg8gGvRfCfh/RPDGix6N4d0u10vTYWZobK0jEcEO45IjjHyoMknCgDJPHNcF+xX/yaR8OP+xYsv8A0Uten0AFFFFABRRRQAUUUUAFY/xE/wCSf65/2DLj/wBFNWxWP8RP+Sf65/2DLj/0U1AHlf8AwTn/AOTKfAH/AGD5f/SiWqP7Snjmfwp8ZNH1eLT5ZrLw3o6Jq16sqFNJi1XUba1S8MbA5kjW0uAmAcq8ueFKvn/8E/PHHgrTP2OfAthqXi/QbO6hsJBLb3GpwxyRn7RKcMrMCOCOteia5f8AwR1ka8NV8ReEbv8A4SixjsNY83WYT9rt0EgSM/vPlVfOlI24wXY9TmgDE+IngPxvBNp9n4FutYurCC2bzprz4h3dnM8rSO7Ft1pcl/vDB3qAMKqhVFaXwZ0bxv4butUv/HMksVktruSSfxlLq6ptJLHY9nbiPAH3gWz0wOtdDpPjn4Y6Zp0NhYeNPC1vbQLtjjTV4MKP++6brnjb4Y6vot5pOoeN/DUtnf2729xGNbhQvG6lWG5XBGQTyCCO1AHk/wCyjq8niuVPDev2usaHd6Nb2niq2tYtTeI6n/aLy3LTztEVMqrK0kZjclWwGdSWAXQ8TN8X/wDhp7wxsg8E/av+ET137KGmu/LMH2zSN+/5c78+VjHGN+e1dlDq3wOh8UadrEXiHwYmqaRp32CxmXVoA1va5BEajfjaCoxxxzjGTW8fiJ8OjIJD458L71BAb+17fIBxkZ3ew/KgCt8bPtP/AAz/AOLvtgiFx/wjF953kk7N/wBlfdtzzjOcZqH9mf8A5Nv+H3/Yp6Z/6SRUzxl4l+E/irw7caFrnjbw/Np94jR3EMXiNYPNRgVZGaOVWKkEgrnBpngfxD8JPCHhu30DQPGvh+306zRY7aCXxGs4hRVCqiGWViqgKAFBwOwoA84/4KMf8k98Af8AZS9E/wDQ5K+hK+Yv2+vF3hTXPBfgGy0XxPo2pXI+JGiuYbPUIpnCiR8ttViccjn3r6doAKKKKACiiigAooooAKKKKACsvxv/AMiXq/8A2D5//RbVqVl+N/8AkS9X/wCwfP8A+i2oA4T9iv8A5NI+HH/YsWX/AKKWvT68w/Yr/wCTSPhx/wBixZf+ilr0+gAooooAKKKKACiiigAqO8t4buzltbmNZIZ42jkRujKRgg/UGpKjvLi3tLOW7u544LeCNpJZZXCpGgGSzMeAAASSaAPJf+GWv2ev+iTeHf8Avw3+NH/DLX7PX/RJvDv/AH4b/Gu2/wCFk/Dr/ofvC/8A4Obf/wCLo/4WT8Ov+h+8L/8Ag5t//i6AOJ/4Za/Z6/6JN4d/78N/jR/wy1+z1/0Sbw7/AN+G/wAa7b/hZPw6/wCh+8L/APg5t/8A4uj/AIWT8Ov+h+8L/wDg5t//AIugD4R8VaF8DLH/AIKgaT8MU+H+gL4X+wJo93aC3PltqEsbTJJ/rPvBmijzjuwweDX1x/wy1+z1/wBEm8O/9+G/xrzPxB4n+Hsn/BSTQdVHiHwy2nL8PZ/MuxewGEXP27euXzt8zgMOc8Zr6C/4WT8Ov+h+8L/+Dm3/APi6AOJ/4Za/Z6/6JN4d/wC/Df40f8Mtfs9f9Em8O/8Afhv8a7b/AIWT8Ov+h+8L/wDg5t//AIuj/hZPw6/6H7wv/wCDm3/+LoA5LSf2afgNperWup6f8LtAt7yynSe3mSE7opEYMrDnqCAa9Vrl/wDhZPw6/wCh+8L/APg5t/8A4urWi+N/Ber6lHp2k+LtBv7ybPlW1rqcMsj4BY7VViTgAnjsDQBvUUUUAFFFFABRRRQAUUUUAFZfjf8A5EvV/wDsHz/+i2rUrL8b/wDIl6v/ANg+f/0W1AHCfsV/8mkfDj/sWLL/ANFLXp9eYfsV/wDJpHw4/wCxYsv/AEUten0AFFFFABRRRQAUUUUAFcN+0/8A8m0/EP8A7FHVP/SSWu5rhv2n/wDk2n4h/wDYo6p/6SS0AedfCD9mr4Dal8JfC+o3/wALfD9xdXmiWc9xM9uS0kjQIzMeepJJrov+GXP2e/8Aok3hz/wHP+Ndl8C/+SJeDv8AsXrD/wBJ46y/EPjq8m+OEHwu8Pyafb6kmgnXL26v43lCQNOYI0jiV0LszLIWbeAgVeDvGADB/wCGXP2e/wDok3hz/wABz/jR/wAMufs9/wDRJvDn/gOf8a7fSNZ1LR9L1S68f3+i2MFlfeVb6ipNpbzwsqFGYSyNsbc5TG45KZHUClsviH4AvLyG0tPHHhu4uLiRY4YYtXgZ5HY4CqobJJJAAHWgDh/+GXP2e/8Aok3hz/wHP+NH/DLn7Pf/AESbw5/4Dn/GtTwf4317x9rXiyHwheaJYWnhfWZ9ELX9pLdS3F1Cq+YzKksfloHYqPvFgpbgECuss9d/sz4fQ+IfGs1jorQWCXOqvLMI7ezbaC4LscAKcjJPagDz/wD4Zc/Z7/6JN4c/8Bz/AI0f8Mufs9/9Em8Of+A5/wAa7TUPFEuteCbTV/hxcaTr7arIsdjeC5MliqnJaV3izlVCtwCMthcgnNea6145+IMXiLxb8L/Fmmafdas/g2413QdS8NLcx/aQrCAwvDmSRJBK8ZBUsGVunBFAGt/wy5+z3/0Sbw5/4Dn/ABrhfE/wl+G3w4/au+C154F8G6XoU99qesR3MlnEVMqrpNwQDz0BNfQXg+6vbvREk1JJUvFdluEe2MIR85KqDkMozgMCQcZz1rzD48f8nQfAv/sL61/6aLigD2OiiigAooooAKKKKACiiigArjf2g/F+k+BPg5r3ibXVuf7Otbby7iS3i8xoRKwiEhXOSqlwWxkgAkA4rsq80/am8T/DjS/hDr/h/wCIHinS9Jt9e0ueySK5lDTSGWNkUxxAM7kE54U4xntQBzH/AATu8baL4w/ZX8MWuifanHhvTrbSb2aWAxxtcxwRmRIyeWC7gCcYz0z1r3Kvj/8AYV+KXw9+EHwF8N+APHUGu+C764WS7OoeI9HksrLUJJWLs0c7DbtUFUBcqTtHrgfXOm3tnqNjFe6fdwXVtOgeKeCQSRyKRkFWHBBBByKAJ6KKKACiiigAooooAK4b9p//AJNp+If/AGKOqf8ApJLXc1x37RFhe6r+z/460vTLSa7vb7wxqNvbW8CF5JpHtZFVFUcliSAAOpNAE/wL/wCSJeDv+xesP/SeOuH+N3hP4N+Mfidb2vxK0yOz1XTdKSfStafUrnTWdHklV4o7iNo1YxlUYpvYjzVJUAgnD+Gfxtl0H4b+H9Dvvgv8XzdaZpNraTmPwhIy744lRtp38jKmtv8A4aDi/wCiLfGP/wAI9/8A4ugDJ+CPw+8QXWieONFl8beKpvB+papbTeFtQ1WVL7UkjSJPtGPt8UoMLSrhC6HIDMuAyseo0L4LrpmuWepf8LE8SXP2O4jn8iXSdCVJdrBtrNHpyuAcYJRlbngg81m/8NBxf9EW+Mf/AIR7/wDxdH/DQcX/AERb4x/+Ee//AMXQBznirwP8Cdf8TeIvE96dV8JeMjqE9tey6JrN/Y6lcPHI0aSR28TKZjKm1gUjbcJMAt1rW0v4Q658Rf2KbP4VfF3W9TGrXlmqXmoRXAe6Xy7nzbcyMwIdwiQiQHOSGw2cNV3/AIaDi/6It8Y//CPf/wCLrA+KP7VOn+Dvh/qniS9+EvxQsY7GDKXGqeGWt7VZGISMSSNIAql2Qfjgc0AdP4D0LwX+y3+zbBpEmq6ld6Topkfzp4zNcXU8shcqkcS92Y4VQcAZJOC1YP7Mvj/wJ4n+IWpX7+K7jXfHWvwDztugX9paWNnCXaO1t2ngQBE8xmZmO6R2LEABVTQ079o6yv8AT4L6z+Dvxfnt7qJZYZY/CLskiMAVZSHwQQQQam/4aDi/6It8Y/8Awj3/APi6APY68c+PH/J0HwL/AOwvrX/pouKP+Gg4v+iLfGP/AMI9/wD4uuX1DxfqnxJ/aY+E95p/wy+IOi2Ph2/1WfUb7XvD72lvEsumTxJ8+SMlyo5xyRQB9F0UUUAFFFFABRXHfFj4q/Dv4aWH2rxv4t03SS2PKt5Jd1xMTwBHCuZHzg9FNedf8LU+MPxCkaH4S/C19F0xgMeJPHW60jIJIYxWSfvnx1BYqDjntkA9yup4ba2kuLmaOGGFC8kkjBVRQMkkngADvXjfiP8AaW8Ey6w/h/4aadrHxN15W2Na+Frfz7W3YjKtPesRBGhPG4O2PSqtl+zlH4nu4tT+N/jvXPiJdIVddNmf7Do0LjullCQrccHeWz3Hp7F4Z0PRfDmi2+j+H9JstL0+1TZBaWVusMUS+iqoAHegDx6Hw9+0R8RhFL4s8UaZ8LtFkw0mkeGCL/VnQnJSS+lURRMOOYo2B555wOs+FfwN+GngC/OraR4fF9rsjb5te1iZr/Upn5y5nmLMpOSSE2gkk4r0C+ubaztZLq8uIreCJd0ksrhEQepJ4Ap8Esc8KTQyLJHIoZHRsqwIyCCOooAra5pema1pM+l6zp1pqFjdJsntbuBZoZV9GRgQw9iK8d1f9mvw/pWqTa38IvFGufDLVZtpdNFl83TZ2GSDLYyZiYey7O/qSfbajkuII5likmjWST7iM4Bb6DvQB4iPGX7QPw78weOvANj8QtGib5dY8Et5OoCPGN0unTth3JHPlS4Geh5x1nwr+Ovwt+IF/wD2XoXim3g1pWCyaJqatZahG3J2m3lCuTgZ+UEYI9a9Grj/AIsfCz4e/EzSzY+OPCem6uApWKeWLbcQZ7xTLh4zwOVYUAdhRXhc3wk+LHgJvtHwf+K1xe2Me3Z4a8cb9QtQo/giul/fxDAAA+YfzDl/aD1LwddtZfG34ba14NVZdia5YA6ro8o4+czxLviySAA6A8j3AAPcqKxvA/i3wv4y0VNY8J+INN1qwkJC3FhdJMmR1BKk4Psa2aACiiigAooooAKKKKACvnD/AIKn+G/EPiX9kzVU0e8s7Wx0mZdU1Yzs3mTwwglYY1CkEmRkYksMBOhzx9H15F+3r/yZz8Q/+wHJ/NaAOl/Zs8N+IfB3wL8NeE/FF5Z3moaJYLZfabN2aOaGPKwt8yqQxjCbhzg55bqe4qHT/wDkHwf9cl/kKmoAKKKKACiiigAr4x174vfE3xF4zbw98a/E1/8As/aPPeG3tI7PSnmbUMEHaNZYNbx8ZyyhR8uejAV9nVX1awsdU06aw1Oyt7y0uEKTW9xEJI5FIwQytwR9aAPN/gj8G/hD4Vgh8TeD9LstZvb4ecPEt5d/2ld3eTneLpyxIyB9wgcV6hXies/s0+FtO1Rta+FGv618MtWbJY+H5v8AQJsnJ82yfMLD2AXt6DFceLf2hvh5MkfjPwRp/wAR9FVtrav4Q/0bUY15JeSxlYhz2xE/bpyAQD3SivOPhT8dvhj8QNQOk6P4iSz1yPcJtD1aJrLUImX7wMEuGOO5XI4PPFej0Aeb/tcCzn/Z48SaVetbJHrcEekB7l1VI2u5ktg+58KGUy7gSQAQM0i/EWW2+G978RNF0Jda8F2+lpcaJaeHomudS1BAQAyQjaiJg8R5LKq5ba2Y16P4keFpvFUmgRG+jgs9K1uDU7yB4TJ9rEIZo4/vADE3lSZIODGMDOCM/wCBngKf4ceG7zw3DrC3mipqVzcaNa/ZtjafBNM83kF9xMgVpGCnAwoA5xQBzvwh1zxb8Ube18Wy+L9C03QY7hZI9G8NTLeTllOTDe3cg4PADxRxoQcguwrnv2ovh7o0/gnxhqUPw8vvFvijWLZ5rXWEjh83RWEaxQtBIzrLGsXlrIUgDMxDEgl+fUdR+HvhO58YReLINMGn65HKjy6jpzm2mu1U58ucpjzoyONsm4c8YPNMh03x9Ff6lB/wkekyafc3LvYytp7/AGuzifkoT5hSQqSdpKgYChg3OQCX4Na1pXiL4U+HtY0TXn16xudNh8rVJFZXu9qhWkcMAyuWVtwIBDZBGRXTVi/Dvwto/gnwRpvhTQIDDp2lwCGBScseSWZj3ZmLMT3JJrWu7iC1tnuLqeOGGMZeSRwqqPUk8CgCSkdVdSrKGVhggjgivGPE37Svgs6xNoHw403V/iVr0RVWs/DFv51vCScZmuziGNQep3HHp1xR/wCEY/aK+JEhfxd4u0/4Y6JIq/8AEq8LEXeqOMncJL1xsjJHQxKccc8ZIBk/tFeA/wBnTwbfSeKdS8Sr8L/Elyv7nUPC+oPY3tyRkgfZIci4y3UeUxY4Gea5z4EfEb9qG8vLwad4Gfxx4PQK2k634qRPDOo3SFe6DzQ44yHMS7hzxuAHtHwn+BPwx+Ht5/ami+HEu9bcDztc1aRr3UJiP4jPLlgf93aOBxwK9HoA8c/4Tj9ov/ogfh3/AMOCv/yHR/wnH7Rf/RA/Dv8A4cFf/kOvY6KAPHP+E4/aL/6IH4d/8OCv/wAh0f8ACcftF/8ARA/Dv/hwV/8AkOvY6KAPHP8AhOP2i/8Aogfh3/w4K/8AyHR/wnH7Rf8A0QPw7/4cFf8A5Dr2OvID8T/ErfH3xp4GitbX7B4ctNLuLaVNHvbuVjdRzF1c24YKAYRjIBO49ccAEf8AwnH7Rf8A0QPw7/4cFf8A5Drkfjyf2iviV8HfEPgM/Bbw7pg16xa1+2Dxys3kZI+bZ9lXd06bhXf/AAR+I3iLxf8AFnx74X1WxsYbHwmdOW1mitLm2nla4gMreZHPggDAAOBn3616lQBHZo0dpFG33lQA/UCpKKKACiiigAooooAKKKKACiiigDk/ih8MPh98RrRYPG3hDS9ZMalYp7iAefCD/wA85lxJH65VhyAeorzWP4O/FL4fwf8AFm/i1PLYwoFg8N+OI21GyAHRUulInhUc4A39h0GK92ooA8Mj/aB1nwbtt/jj8L9e8GqGKtrunAatoxA/jaaH95CDgnbJGMAcmvWvAvi7wv400GLWvCXiDTda0+ZQy3FhcrMvPY7T8p4IIOCCCCMithgGUqwBB6gjrXknjr9m74Za5rP/AAkGgWV54H8RqjJHrfhG5Om3ABIJ3LH+7kzjHzq3HFAHrlcf8Wfir8OvhlYrdeO/F+maL5i74beaXfczjOMxQIDLJzx8imvn9bb4263+0ld/AHV/jlqEej2fhVdcl1vStGt7PVbmN5xCITMMiNgcnzEUEjrzzXtXwo+Bfww+Huotq+h+Go7jXJcmfXdUka91GZiMMxuJSWG7qQuBz0oA48fFX4x/ENhF8I/hTJoumSZx4l8flrKE4PWKxjzcSKynKs2wetPs/wBnCLxRMl/8cPH2vfEa5WTzBpkj/wBn6NEQ25NtlCQGK8jdIzZHUV6b8UL7w5pmix33iS/1G3jSTZBFp15dRT3MjcCNI7dg8rHsoBxyeOTXz98PD8RNQ/ac8RWesLrsVrceDLXWtD8K3Hi6/hNjG13NDsnlWRh9ocRbzkME3CPOFLEA+lvC2j6FoGjppXhzS9P02wt2IS1sIEhijPfCIAAfWtGvJ/2a7/wFe694vi8N+GtY8O+J7W9iHivT9Wlmkn89lYxys7SOkoZQSsiMcqB7CvWKACiiigAooooAKKKKAIr5bh7OVLWZIZ2QiOR496o3YlcjI9sj618nfGDWJ/DXir42eMNGkj1DxB4U0TTJtVupreWGzllETtDbBIrtXBEcm8sQclyMjAz9Z3Cu8DpHK0TMpCyKAShx1APHHvXmHjT9nz4a+KPBE3hrUbC/iF088l3qNlfPb3l485zM08iY80OcEo4KfKuFAVQADk/hj4UMfxevb3w74p8T6Zfao9nq2rs/hS8isdQSGE262puLrcv3W3FVYPkhgcLge/V5l4Z+EuraX4mXULv4weP9W09C2NJu723SDaQQoLwwpL8vGPn5xzmvTaACiiigAooooAKKKKACiiigAooooAKK+efiFYWf7SXxYu/h/I8k/wAMvBc2PEclvK0a61quPks0lRgQkGd8hU/f2qexp3/DEf7Nf/Qh3P8A4P7/AP8Aj1AH0JRXz3/wxH+zX/0Idz/4P7//AOPUf8MR/s1/9CHc/wDg/v8A/wCPUAeU+FdZ+J1x/wAFetW0aee0W1g0hre5uIbZSf7HGLuFD83DmSSKIsBnHOOpr7ar5uT9hf8AZ4HiOS+PhW6Nk1qsS2P9sXmFlDsTL5nnbjlSq7eg256k1d/4Yj/Zr/6EO5/8H9//APHqAO9/ayUWX7OvjvxDZgW+r6Z4T1NrDUYRsubQm3YkxSj5kOVU/KRyo9K5bTYfCI+GC+IPJ8cf23N4ajSXUB/bfmSbYWdQZR1QO7sBnaCzEdTWWf2Iv2ayMHwFc/8Ag/v/AP49R/wxF+zX0/4QO5/8H9//APHqAO4/Y9tJYv2afA95fwzf2reeHbJtQuLrc1zNIIh/rXb5mIyQAx4HAwK9Mr57/wCGI/2a/wDoQ7n/AMH9/wD/AB6j/hiP9mv/AKEO5/8AB/f/APx6gD6Eor40/aU/Zq/Z18C+F7PS/Dfw7kv/ABr4ouP7O8MadJr2oFZrg9ZZMTcRRKfMc8cLjOSK+i/2Y/hPofwX+D+neB9FJmaHM+oXjAb726cDzJWwB6Kq+ioo5xmgD0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8q/ac8aa5p1npnw68Bvnxv41d7bT5FAYaVbKP9I1CUHokSn5c/ecqo613HxM8X6H4C8B6p4v8AEl19m0zSbczzsMFm7KiA/edmIVV6lmA715x+y14L8QPeat8YfiPaCHxr402lLJ23/wBgaYpzb2EZ6AgYeQgLudjkErkgHefBnwHonw0+G+meDdBRvs2nxfvJ5OZLuZjuknkJyS7sSxye+OgFbHifXNH8OaHcazr2p2um6faIXnubqURxxqBnkn6VoV5/+1FHb3fwR1rSrvxZpPhi31REs7jUdUuPJiEDsPPRWyPnaESqo9T0oA53wp+0J4d1f4OP4xksXh1T+wzq0ehwO9zI6tJ5cEPmIm3zpXaILF/rB5i5Wu2+EvjJ/Fmg7dWsbfRvEtiqjWtBW8E8umu2SgY7VJV1G5W2gMDxnFfFFr4r1+1+FegeJZNUj8Q6db+O9Ss9Gs7lbxLezEQ1GWOaCX7RErbVt4FjCOPJVWA5kOdH9hrWm+JH7Umk+IfEmkaWNTtvDlzdveWyz+fdT+TpcivNJLK7SBReuqoTsBUNt3YIAPt2TxLoKeNI/CL6pbrrk1idQjsC3717cPsMgHcBjiuO+HPxi8PeIfhTbePtbCeG9NvtYm0q1+2XAfzJUu3tFyQMLvljYAH2yayNS0nTNX/bAuL7TPGOo2HiDS/BSW11p8Wmo8YtZrwukomdSuS8TjZ14BHGa8Y+HWh27/sQ+Hte8R+N7vTdF0HxxJqc8Y01LhWMPiObagCASZdyozkhdxOMDFAH1r4m1rTPD+jyapq90ttaxuiFypYl3cIiqqglmZmVQACSSBWZ4b8XQ6r4qvPD0uh61pt5aWsd3m9tlEUsTsyqVkRmUHKH5WIbrxwcc5+0l4Mfx94Z0fQtO8UL4e16z1u21jRLt7QXKfabRvMG+Ikb0xnIyO30OV+zn4p+Jmo+NfF3g/4oaZ4dbVPDCWHlazoCSrb36TxyNsZZclZE27iAcYmXAHUgHrVUfE2s6Z4e8O32va1eR2enabbPc3dxJnbFEilmY454APTmr1fP3xKWX48/HFPhrbK8nw+8D3cd14vuACI9U1FMPDpysPvLHlZJQPVVOOKAL/7NWgar448b337QXjO0kt7rW7b7L4Q0ydSr6RpGcqzqek05/eMcngqBjkV7lSKAqhVACgYAA6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV5r+1cvxRuvhDe6P8JNKW617Vv9Fa6bUI7VrCBh+8lRn6yYyq4+6W3fw4IBxFtLJ8fvj4zKRN8M/hvqA2EKGh8Qa3HnnJ+9DbZ7ZVpMHnAx9A18/wDw11P4x+A/A2m+EvDX7NGn2um6XAIoUHj213Of4pHIgG52OWZu5JNbv/Cwv2gf+jdbL/wvrb/4xQB7HVbVNPsNSgSHUbG2vI45VlRLiFZFV1OVYBgcMDyD1FeS/wDCwv2gf+jdbL/wvrb/AOMUf8LC/aB/6N1sv/C+tv8A4xQByvir9nPxHqfwr0vwvbeIdHS6sfGOreIXlubaSWEpdrehItoIJZfta5OR90kZ6Vp/s+fs/wCo/Db4oaTrraloMum6L4QTRENhpz29zf3LC1WS4uMsykhbKIBgckNggbAW1/8AhYX7QP8A0brZf+F9bf8Axij/AIWF+0D/ANG62X/hfW3/AMYoA6KT4datD8ctY+I2meKobZ9X0a00trKTS/NEawSSuH3+YMkmZuMcYFcT4o+Aeuj9nG4+E/h3xjbPZy6it2H1Cw2t82pi+ly6Me5k2jb/AHQT1as34e/tAfFzxrqniLT9A/Z/t5p/C2rSaTqiyeN4IxHcoAWVSYPmGCORxXTf8LC/aB/6N1sv/C+tv/jFAHpPivwpoXiO8sLvVbWZrrS3d7O5trua2mgLgBwskTK2GAGRnBwMjgVb8PaNpmh2T2ul2iwJLK00rbi7zSN96SR2JZ3OBlmJJwOa8r/4WF+0D/0brZf+F9bf/GKP+FhftA/9G62X/hfW3/xigC5+1R8Qda8M6HpngvwIEm8feN520/w/GcFbQYzNeyjBxFAmXJ2kZ2gjBNdZ8E/AOkfDT4b6f4R0dnmW1VpLu8lH76/uXO6a4lOSS7uWY8nGQBwAK5H4A+BvEw8Ya58VvibZWkHjHXv9EtLGCZZ49D02Nj5drHKOHLHMjuANzMB0UV6zQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUOofav7Pn+w+V9q8pvI84Hy9+Dt3Y5xnGcUAeA/sO/wDJQvjr/wBlLvP/AEBK+hK+M/8AgmD4/wDFHjH4vfF1b3w3b6Zp91rkmragTI7S299M4RbdcqBtCwzEkgNnbx1r7MoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooACccmvBvC/wAS/jV8T2vPEPwn8M+CrXwal1La6Xqfia+ufN1gRSvG1zClup2QsV+XfyevQ17vN/qm/wB015B+wB/yZr8Pf+wOv/ob0AZd54k/aRs/E1j4du7n4IwatqUMs1lZSajqSzXKR48xo1MeW27lzjpmk/4Sj9o4eMv+ESN58Dxrv2EagNNOpakLg2xcx+cE8vJTepXcOAcA9RXOatP8QtS/ake5s/Dsmi65dCKJdTuDFejSvDltMzyhYY94828lUqNxDbT8oBjY1T8bfabf4+a541utU+JVz4dufAdtpI1PTNHFtdz3J1CbNtFJ9njEbASowcFDlsB84FAE/wAGfhZ+0N8M9Y8Xaj4esvhF5njHW31e9Et1qOInYf6tNsIOwEuQDnG811Fx4n/aQg8XW/haa4+Cces3do95b2LX2piWWFGCu6jy+QCwB9Miuh/aK1pPAX7OOoeNozrGpzeG9MjkgjuNVubKS5y0a5nMJQl8HJ3LkHPTJryzWFP/AA2foI+06f8A8iNqHzf8J/fFf+P2063Hl71P/TMDB6nlRQB6L5n7Vv8Az5fBz/wL1P8A+N1a+EvxJ8Zt8U7n4YfFbQdG0rxG+ntqmkXeiXUk1jqloriOTb5gDpJGzLlW6hsjgGq/7HMlt4r+HNv8Vp9PubHV/FETR3UY8Q319A6QSvEjCO4cqjfIeVGcHryQOc+KH/KR74X/APYp6v8A0oA+hKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBsgJjYDuDXi//AATz1Cyu/wBkbwjp9vcxyXeiQSabqUAYb7S6ildXikH8LDg89QQRkEGvaq8u8Zfs7fB/xP4svfEup+FJotT1Jw97Npus3uni5f8AvyJbTRqznJyxG49yaAMzQ/hzrD/GrxF4l/4Qzw/pdrqeoI9xqd9q1zqN1qMcSgRlLT5YYBkkjLMVOfkOcjxS48Aa5efsK3mj/wDCpbu41+41qaVLo6fG15JE2vNKrBCPOKmAjBxjZz93mvbf+GW/gp/0ANd/8LHV/wD5Ko/4Zb+Cn/QA13/wsdX/APkqgDsfi00uoaFJ4SsfB8PiGfUoMLBqMBXS4gpyrXMhUjaGVf3aBnPGFxlh86237P8Ad6b+1Zb3ba5eXHibWvCN/qV74rGnhYItQS8s1gjSDmNYlhUxeVnLRl+cnI9Z/wCGW/gp/wBADXf/AAsdX/8Akqj/AIZb+Cn/AEANd/8ACx1f/wCSqAOh/Z5HjKx8JtoHiz4faL4SXSHNvZLol8ktneIGOZYogA0KtkMFbLfMc+/n3jxDqP8AwUg8ArYlbhtG8HalNqKxuCbRJHCRtIOq7mOBnrzjoa6D/hlv4Kf9ADXf/Cx1f/5KrsfhP8K/APw1jvP+EM8OxWE2ouHvLuW4lurq5wAFD3EzPKyqBwpbavOAMmgDsaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//Z"]
math
multiple-choice
4
某几何体的三视图如图所示(单位: $\mathrm{cm}$ ), 则该几何体的体积是()
$8 \mathrm{~cm}^{3}$
$12 \mathrm{~cm}^{3}$
$\frac{32}{3} \mathrm{~cm}^{3}$
$\frac{40}{3} \mathrm{~cm}^{3}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAF8AToDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACim5O78aVaAG28MVvCsUESRRr0RFCqO/AFPoooAKKhvH8tTK0m1I1LE54GB1PtXF/C/4oeGPH2u6xo+hXkkl5oM4ivFK7QckhXU55U7TQB3VFFFADIYoolYRRpGGYswVQMsTkk+5NPoY4XNU7y+gtLOS7uZVht4ozJJK5+VFAyST2GBQBcorzGT9oP4IxSNFN8VfCyOjEMp1SPII6g801P2hvghtVD8WPCu/1/tOPn9aAPUKK8w/4aB+Cssyw2/xR8MyysdixrqiZYn0GeTXpltIstvHKjh1kUMrDoQeQaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRVW+u4rOyluridI4YQXkkc4Cgdc0AWqK4b4P/ABL8PfEfTdQufD9xKf7Muja3KSrtaNxyBjPIIwR9a7SNslQCeB3PT60AS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAwfe/GnLTR978actAC0zf84G04Pf0p9QFgpOeSMkDPWgDz39pDxLdab4ctfDOjMTrXiif7BZAfwjG6Rj6Dy1fn1rkvGXhWD4TS+FPFugxM9tosaaZrAAAaa3faomkPfywrH15PWtP4Wl/HXxb1jx/dxb9L0s/wBmeH2K5EqDDPOv+1vaRMjsK9O8SaTYa5oF7ompRma0vbdobhO7IwwRQBds7yC6tIbmBw8c0ayIw6FSMg/rU6nPavK/2dNYvLa31T4fa6SdT8MTmISMf+PmBvnjYeyq6p9RXqcOdnzde9ACsCVIBx71FJbI6FXRXDDaQwyCPQipqKAMKTwr4X3MT4a0hmJzzYRc/wDjtfGn/BVD4k6D4Js9F8G+GNI0mLU5riO+ujHZxArGjhlBwvGWQgj0r7imQMx5b14PQ18Sft8fszaTqU2ofFDUPEF5Ne3+sWNqIDnbCk9zHEQvPQByfrQB9B/sva54L+J/wb0XxbYaDo5mlt1iugLGL5bhAA/8OR8wOK9bt1CQqgGAowB6V4/+yn8D7D4G6Jf6NpOt3F/Y30qzJDcE/uSN2SuT3LV7DFjyxjP49aAHUUUUAFFFFABRRRQAUUUUAFFFFAA33TXk37RV/cat/Zvwy01iL7xUXjupEPzQ2K4E7D0fa4xmvU9QuYrPT57udwkVvE0kjH+FVBJP5CvJ/gNbv4p8Vax8Ur+M41KT7JpJYfctYyQsqe0ikE49BQBm+L9Mh+FPxK8O+ItLh26FqkaaRrQVdqQ4Usl0+O5KInH97pXtSkF1ZffOKxviJoFn4q8DajoN9HuivINu3uGBDIfwZVP4Vy37OPiHUNS8It4f1+bzNc8OztY6g5PNyyYHnD2Y5/LrQB6RRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADB978actNH3vxpSwXigB1eZftGa1dp4eh8I6HcmLXfEz/AGG0Kn5oEb5WuPomV/PpXo9xcRwwvLKQkaKWZmOAABkk/hXkfwhj/wCE5+J2sfEy5X/RbGV9K0IN/AiErM49Q5VCCPTvQB6R4B0K18OeErHRbWMJHZxBdoHRurH8SSfxrZIHXFNhBVcFi3uetOc4UmgDyL462914U8YaL8UNNQ+RYt9j17YPv2jE4OO5Ehj59BXrGnzRXFok8EqyxyDKOpyCPY1S8QaZb6xo11pV5ErWtzC0bI3Rsjr+B/lXnX7NupyaGmo/CzVJZHvvCxC2rSHmayOVibPc/I2aAPWKKjjl3zFFU4Uck9j6VJQAV47+3Pj/AIUUmR/zMej/APpfDXsVeO/t0f8AJCU/7GPR/wD0vhoA9dwD94A8cUjFiu1QVx3FQ6hM1vaTTJHukVMge/pXg3jjxn8Y/AvibS/E+ty6PfeFNVv1tptJt7Ex3dgrHarPPvIk+Yjog60RBn0BG2ZOOnOc1LUMJzJhV+UKMcdKmoEgooooGFFFFABRRRQAVHcb9uEODjg+lSVU1i7tbGwlvb2dYLeFC0sjthVXuSTQB5l+0Nqmoanc6Z8OtDn26h4hlH2mZD/x52qnc0jezbGj7/er0Tw9pdlomi2ul2MIis7KFYYUHYAYA/SvNv2frS91/WtY+J2rxkNr8nkaRG6/NbWSEfu2+siO2ePvDivWvLycsehyKAGMMYOeAea8l+JEf/Cv/jJp3jqEFNK1wJpurgfdV84gfHb5nbJr1zY3GWH+1x1rH+IXhuz8V+DNQ0DUOYb63eMsRkxkggMvuM5FAGnalJFEsbblYApg8AHvU8e7bhjk+tea/s7+Ibu58NXXhvWAV1jw3N9ju0Jydg/1Te+Y9h/GvSo87eRgntnpQA6iiigAooooAKKKKACiiigAooooAYPvfjSSAEYzilH3vxqK6lEMZkfaFVSSWOBQB5z+0hrt/Dolh4P0X59X8U3H2SFV+8sQGZW9v3Yeuy8D6DY+G/C1joFlHiHToI4kbGN20Y3H1PHJrzv4OxS+OPiNqfxLu13afGPsGg7h/wAsVOTMM9yzOv0FewUANiGBk9T1pzdOKKKAImPH971x2ryj4/Ws3hXxFo3xP0yHdJp0wtNVVf8AlpbSEKXb1EY3N+NeuVneJNNs9Y0i60nUYvNtL2B4Z4+zoy4YfkaAJdOuob+1t7y2kDQXEayxuP4lYZH6GrleU/s76nfaRe6l8Ntem3X+hyF7F2/5bWjHchHqEDIn4V6tQAV45+3V/wAkHXP/AEMej/8ApfDXsdeO/t0f8kJTn/mY9H/9L4aAPWJpVjiZpNu1VyCTwR715Trmq6J458YRz3ep2sfh/wAOyhjmZSb256BSufuDKkHrkV6nqlja6jps1pe2y3FvcLtlhf7rL6GvN7P9nf4JWt4t9b/DfQ4biKUSpKsJ3K4bIOc+tC0A9K02VLiGOeKTfGy5Vh0INW6htkCKqqAAo6DoKmoAKKKKACiiigAooooATIK5NeUftE3zeI77Sfhdp8jLN4kkJ1BlPK2CkLNgjo3zrivSNbv7bTNLudQvX8mG1haaV84G1QSf5V5r+z/YXniDVtW+J2sQbJ9alEWmQkf6m0TIRx/10Uqx+lAHpWi2MWm6Tb6faIqQWyCONAMcAd60KhC7VUZxs6mpqACkfAU5OPelpG+6aAPHfioX8CfFfSfH9pEV07U/9A15R0jQnK3Le42on/Aq9ggZWjDKcqwyDmsTx1oNj4o8Jajod/Cr297DsI/vEcr+RArjf2d9ev7nQLjwfr9xv8ReGXFrfZP+uQcCYezHcM+1AHqGaKjjH7zJ9PlHtUlABRRRQAUUUUAFFFFABRRRQAwkB+teYftKazcT6XY+ANIuGh1fxVN9lRkOHt4Dw8w9ApK8+9ek6hPDDayXE7hIoAWkYnoBzk15N8FYD448fax8Tr63LRpK+maL5ikbIUbbKQD2do0YHoRQB6Z4R0a10Hw/Y6RYxrFb2kQRUQfL7/qSfxrWqEbgwOMdgvapqACiiigAqKUZbjj1qWo5gDhT65GBQB5P+0FZz+H9b0n4o6ZGxl0BvJ1NI+s1mx5XHf5thz7V6hpeo21/p8F7ayLNBcIHjeM5BU96NWsrbUNLubO6iDQ3MZSRSM5Bry/9nu9n8O6pqvwt1GVjceH5N+nM5/1tgxxGc9zlXoA9a3Hjjqa8d/bilP8AwoxABg/8JHpAyRx/x/w168eEIXj3r83f+CjXxR+MXg74pXvgrUdUVvDt1Pb6jpf7s42xyh4wTnGQ8dAH6QMSPlXcHbuelSbFePnpXzf/AME6PGfxQ+Ivw3vvGvxD1ASW9zc+Xp0ewqQqlg5wT3O3FfScf3Rxj2oARVx3/SnUUUAFFFFABRRRQAjHFJk+2KH+8vNU9Yv7bS9LuNQvJVjggQs7OcBQPU9qAPMf2gb278Qa9pPw00iYrLqcwuNVkXloLRDuBx6OUKfjXqGj2NrYabBY2aCO2t4ljhjX+BAMAflXmf7Othc6xeat8TdWjb7X4jkK2SSDDW9mp+WIg8j5wx/4FXqluML05oAXy+Rhvl9KfRRQAUUUUAReT1w3046V5J8ZIV8A/EjR/iXZwt9nu3j0vWgn8aO22F2/3WkZia9grJ8baLZeIvDN7omoLuhvreSE8dNykZHuM5oAvWsyzpHNEwaN1DK46OCMjHtVivMf2bdb1B9FvvBuvnGr+F7gWrKT963OTAw9f3QTOO57V6dQAUUUUAFFFFABRRRQAUUUUAeNftieMr/w/wCFdP8AC+jaVqmpap4tujaRW2l2/mzGBAGuCBkc+UXx9KZ4P+KsPh/w3ZaJafB34pLDp8CQJt8OryqKFDH971IGTV742Af8NHfCDIzm91X/ANIjXrCxquQB3oA8r/4Xa/8A0R/4qf8AhOr/APHaP+F2v/0R/wCKn/hOr/8AHa9V2r6UbV9KAPKv+F2v/wBEf+Kn/hOr/wDHaP8Ahdr/APRH/ip/4Tq//Ha9V2r6UbV9KAPKv+F2v/0R/wCKn/hOr/8AHaP+F2v/ANEf+Kn/AITq/wDx2vVdq+lG1fSgDymT42ttOfhD8Ul/2m8Orgf+Ra83+MHxG1KLxFpXj/RPhT8RbO60VnOqSXmhiOJ7IjEpZvMOfLTzGGR19OtfTrKu3pXIfHWPHwR8Y5Ynb4cv85/i/wBHk60ALq3jW3s/AVh4r0/Qtc1m11G3intrbTLQTXLJIgdSU3DHBGeetfKH/BQKbSvij4D0qe5+GfxD0q60vUoFS7u9AVVkjkkRGQv5mc4J2juSBx1r6t+CMaD4N+D5OAf+EfsduTwM26cV8Sf8FbvjPMPE2k/Dnw7etC2lyLe30kTdJQ3yxt7qVVvxoA+mfhb4/svCvg3SfCumfCL4k21nYwRwLK/h5UViFA3tiTqcZNe4Wrb7eN9rLuUHa4+YZ7H3rxX9hH4rQ/Fj4C6Xqc8qtqWnKLO+UnL7k+UO3+9tJr22P7o5z9KAFooooAKKKKACiiigBsoHBJ6V4L+2B4ukivdC+GNr4f8AEGsSeIi13qUOjW/mzHT42Cy7fmB3bnjx/OvepAGXBFeM+M1Dft1eClPRfBWqkex+0W1AFnTfjAljYRWVt8HvijFFAgVQPDi9AP8ArrVhfjY+c/8ACoPioc/9S4v/AMdr1XaDg0bRuyfyoA8r/wCF2v8A9Ef+Kn/hOr/8do/4Xa//AER/4qf+E6v/AMdr1XavpRtX0oA8q/4Xa/8A0R/4qf8AhOr/APHaP+F2v/0R/wCKn/hOr/8AHa9V2r6UbV9KAPKv+F2v/wBEf+Kn/hOr/wDHajm+NbnBPwg+KfHT/inVH/tWvWdq+lJsHPuOlAHy38SPis/hb4m2fxRX4afEHS9KtbZoPEU1/owhiS2JU+cf3hBZdqgZ7E819TV47+3tEq/sd/ENx/0BHyPX5lr2KgAooooAKKKKACiiigAooooA8l+Nf/Jx3wf/AOv3Vv8A0hNetd68l+Nf/Jx3wf8A+v3Vv/SE1613oAKKKKACiiigAooooAG6VyPx2/5Ij4z/AOxcv/8A0nkrrm6VyPx2/wCSI+M/+xcv/wD0nkoAPgigb4K+D/lB/wCKescgj/p3SvBP25vgj8Oz4JuvGkmhK+tX3iDTI7i5Zsl1kvIo37d1JFfQHwN/5In4P/7F6x/9J464b9uj/khKf9jHo/8A6Xw0AdR8Jvhb4L+GaXcXg3Sf7OS/KvcJHyrFQQOPXk13EYxGOAPYULTqEAUUn8VLQAUUUUAFFFFACN0rxnxh/wAn3eC/+xJ1b/0ota9mbpXjPjD/AJPu8F/9iTq3/pRa0Aez0UUUAFFFFABRRRQAUUUUAeQ/t8f8mb/EL/sCP/6EtevV5D+3x/yZv8Qv+wI//oS169QAUUUUAFFFFABRRRQAUUUUAeS/Gv8A5OO+D/8A1+6t/wCkJr1rvXkvxr/5OO+D/wD1+6t/6QmvWu9ABRRRQAUUUUAFFFFAA3SuR+O3/JEfGf8A2Ll//wCk8ldc3SuR+O3/ACRHxn/2Ll//AOk8lAEvwN/5In4P/wCxesf/AEnjrhv26P8AkhKf9jHo/wD6Xw13PwN/5In4P/7F6x/9J464b9uj/khKf9jHo/8A6Xw0AekeLL7VrXw/PLoVrFeagw220TybFZ/Rjg4FeS6B4v8Air4T+OGj+EvHOqabr+meI4X+y3NjpwtmtJVDuUcBm3AKvXjrXr3iLUtO0jSZr/Vru3s7SIEyyyttUD615r4H1XQPEPjZfGmsaxZBpB9n0SyE6PIiZPzEKT8xJb8MUIGetxyZkC7u2fr9KlqGIL53DZxxU1AkFFFFAwooooARuleM+MP+T7vBf/Yk6t/6UWtezN0rxnxh/wAn3eC/+xJ1b/0otaAPZ6KKKACiiigAooooAKKKKAPIf2+P+TN/iF/2BH/9CWvXq8h/b4/5M3+IX/YEf/0Ja9eoAKKKKACiiigAooooAKKKKAPJfjX/AMnHfB//AK/dW/8ASE1613ryX41/8nHfB/8A6/dW/wDSE1613oAKKKKACiiigAooooAG6VyPx2/5Ij4z/wCxcv8A/wBJ5K65ulcj8dv+SI+M/wDsXL//ANJ5KAJfgb/yRPwf/wBi9Y/+k8dcP+3Nj/hRK5x/yMWkdRn/AJf4a7T4Isw+Cvg8AjP/AAj1iQPX/R464b9uZx/wotVLc/8ACR6Ocen+nw0Ael+MPDPh/wAW6LJoviTSrPVLCYYktLqIOh47g1ynhH4I/CTwvr0Ot+HPh54f0zULckw3NrYLHImQQcEexNd9JswAGXn+I9c9qlVQU+YfXFAEVrlpN+VBP3h3PpmrFIFUNuA5NLQAUUUUAFFFFACN0rxnxh/yfd4L/wCxJ1b/ANKLWvZm6V4z4w/5Pu8F/wDYk6t/6UWtAHs9FFFABRRRQAUUUUAFFFFAHkP7fH/Jm/xC/wCwI/8A6EtevV5D+3x/yZv8Qv8AsCP/AOhLXr1ABRRRQAUUUUAFFFFABRRRQB5L8bTj9oz4QN6Xuq5A6/8AHka9ZU55FeRfHKSKH9oj4RySyrGBe6r87MAF/wBCPc+tenx6rppBb+0LYc8AzL/jQBfoql/ammf9BC1/7/r/AI0f2ppn/QQtf+/6/wCNAF2iqX9qaZ/0ELX/AL/r/jR/ammf9BC1/wC/6/40AXaKpf2ppn/QQtf+/wCv+NH9qaZ/0ELX/v8Ar/jQBccgKSa5H46EN8EfGhHT/hHb/wD9J5K6CTU9NKEDUbUH3nX/ABrkPjlqemn4J+MAt/asG8PXwUCcc5t3wBg0AX/gi2Pgr4QyR/yLtiQT2/0eOvif/goB+0f4y0HxXqHwv1Xw3FFbW+qWt/Z3OeZ4oZ0kUj6tGRX134L8WeGPBn7PfhHVfFGrwaZp/wDYVijTz5K7jbodvAPofyr5L/4KRXvwd+LGkaPr3hnxxpc+uWN3HbzCBZN72zOF/u9E3Mx+lAH0D+w78ZvFXxu8K6p4k1vQo9OsLa4WGzZf+Wx+YMfwKgfjXv0ZBQEHPuK+ev2fPif8BvAXw10TwXo/jzSQ8EKI4iWT95OQN7ElerNk19BWjxy2scsTh0dQysBwQe9AElFFFABRRRQAUUUUANmYIm45xnsK8Z8YMP8Ahu3wX/2JOq/+lFrXslwDtBHb+XevE/HdxBbftxeC5ZZokB8F6oEaV9i5NxbYGaAPcB0oqiNU0zHOoWv/AH/X/Gl/tTTP+gha/wDf9f8AGgC7RVL+1NM/6CFr/wB/1/xo/tTTP+gha/8Af9f8aALtFUv7U0z/AKCFr/3/AF/xo/tTTP8AoIWv/f8AX/GgC7RVL+1NM/6CFr/3/X/Gj+1NM/6CFr/3/X/GgDy79vj/AJM3+IX/AGBH/wDQlr16vFv28tQsJf2PfiDHFe27u2iuFVZlJPzL0Ga9poAKKKKACiiigAooooAKKKKAOW+JXw88FfEK3tLbxp4cs9ZisZWktluQT5TMMErgjqBXKD9mz4F4/wCSa6P+T/8AxVeoj7340M4XAIPNAHl3/DNnwL/6Jpo35P8A/FUf8M2fAv8A6Jpo35P/APFV6gsqMcKwJBwcHp9aXzFGM8ZOBmgDy7/hmz4F/wDRNNG/J/8A4qj/AIZs+Bf/AETTRvyf/wCKr1BZUJwDkg4I/u/WneYu4r3HUUAeW/8ADNnwL/6Jpo35P/8AFUf8M2fAv/ommjfk/wD8VXqLSov3jjPTPeoft9p/z3j/AO+xQB5p/wAM2fAv/ommjfk//wAVQf2a/gUVIPw00UgjBBV+f/Hq9M+3WmcfaIs4z98U+O4ikAMbBt3Iwc5HqKAILHStNs9Kg0y2soY7O1iSGGDZlURFCqoB7AACnf2bp3/Pha/9+V/wqyrBlyKWgCp/ZWmbg39n2uVGAfJXj9KtqABgDAFFFABRRRQAUUUUAFFFFAAQD1rkPiV8LPh78Qb60vPGfhSw1i4sI2jtpblTuiViCwBBHBIH5V19FAHlf/DNnwL/AOia6N+T/wDxVH/DNnwL/wCiaaN+T/8AxVeo+YgOCcYGaQTIWIBztGTQB5f/AMM2fAv/AKJpo35P/wDFUf8ADNnwL/6Jpo35P/8AFV6j5q8+1N+0R7dxOAfunP3vpQB5h/wzZ8C/+iaaN+T/APxVH/DNnwL/AOiaaN+T/wDxVepFwASeMUiSq3T8fagDy7/hmz4F/wDRNNG/J/8A4qj/AIZs+Bf/AETTRvyf/wCKr06a5ghOJZUQ4yNzAZFNa+tApb7RFhevzigDzJv2avgSy7W+GeisD1DK5B/DdXqtQ293bzNtimRjjI2sDmpqACiiigAooooAKKKKACiiigBg+9+NcX8V7T4oXNzaH4fap4XsoRG4vP7atJ5mLZG3Z5bAAYznPtXYszF8H5fmIA/vcVgfEHTvE2raCLXwt4lj8P33nKTdvp6Xg2c5Uo5A545z2oA+evDln8fdL/aW1zw9pniHwNFcXuhw6veRmxuzazSNMYvM2+ZuEuEAJB24A4zXu3wvh+JEKXi/EG/8OXkpZfsbaLazQgDndv8AMY5PTGPevDdP8KfFmT9rbUrOL4u2q6kng23kk1EeGISHh+1yAReVvwMMCd2c84r6F+Htjr+neG1t/EviSPxBfCRi19HYJaBgTwPLUkDHrmgDwfVPHeueGfitqSP8NvEHh+58VWd0Hmj1W2uLczRQuy3zxoWdCViVATheAMZrn/hXYeKte0/4c2mrfGj4jDU/HGgSao01vdWogtzHHG7LtMJbB8zjntVjxX4L+IPjD9pjU/7W8RJo+u/8IJLJpUFl81tYq128Xky/dF0rAlsuBtZ+Adgyvhm7i8AfEr4WaB4gJF34B0KDQtZFuN6fadRRI7byzxuXdA+48YGOuaAPRv2edZ1zXP2Uvt+uatc6rqHkalHNeXJHmyiOaeNSSABnCr0rwLwb4T+H1t+zN8OrvTvAuk+JvHGvWFjPcWt5qEkbXEbY85mcyqscjKTs3Ebm4AOCK+kPhT4V1fwR+zjdeHNcWH7bbx6lK4t33oVllmkXBwM/K6598184/CuPXZ/2cvBGm+JLjwT4SXVNGtLTQpJ5UmvfE7Rj91GZGRWtXQuCroXKmTI5HIB2Pg/wf8MfEPizVfB+sfs/zeGb200eW++0y6v9pRCuAFYxSEIx3AgNgkDNevfsVOZP2VfA8p3bn0aMkls9z3PNeY+CNB+M3g3wrrg0bQbO6kAMV/pmr3bYfMRP2hNUZGlu9o+XayALnbn5a9I/YlZm/ZN8BbwAx0eMEfw5yenrQB6xb58v5t2cnqakpsZytOoAKKKKACiiigAooooAKKKKACg0UUAZHiTUrDQdFn1bU7qK1trVS7ySnhfYDqSegA5JOBXwxrfxH1vWPG2pfE218Y+JdD0nUdM1q6vbLRGWB5o9Kljit9qzoxR2SRi2R17CvvDWtM07V7QWeqWNveW/mLJ5VxEHTcpDK2DxkEAj0Ir4B8caDrFx8PPF/iODS7mXSbCx8dQXd4qHyonkvYyiM3YsFbH0NAHqnw/+J2r6JpvjDwZ4g1vXPEv9o61daXpF9fzR+daRjR1u/nKqobksOB1NdBpt7qs37IHgGCDwXqXiBT4dtLmTUbTVoLOTS5UiUpPvnYKWBJIzkDHNeezeB/GCeJ7rXn8PaiuljxFdX63Jtz5Ytj4eEQm3f3DJlM+vFdP42Pi+f/gnTpVr4fays9NXwB52p3suJJAi2ylYUiIx+8G4F85XAwDmgC83ifxR8TfF2jtbeLfGHgrTbfwJPq9xZWcsIuJpobxoMuzRspLKucgYOQal+Cuq+Iz8QPhbrMfxB8Xazovj3Q769m0vXZ4JPK2QxunMUa8guc1Do3hHVfhno8/xB1fXZ9U8JL8PYtKtFlzJd2kk88ZEZYnMq75M7iRtB2gYFaP7OPhjVb0fDN4nt/8Ai19pqXh3XiG6XYiijIhH8ablPzcfSgC18cvD/g/xL+1ZpUHj2yhutFsPA9zdPHcTukcTC7jUP8rDJwSPxrzAaZ4JtdF1nxJ/wzhDrHh23vZTpupWmuLbGS3AGxHgmm8wT9fkKhiSBtr0f9oE+JW/at0uHw54d0PXlm8EXAvoNYuvIhhhF5GTJ9xw5VgDtIA964y38M+JPE3iSHxX4a8S2Hi7T31BFuPEOiwLPbw3hYZL6Qv7mR0JRmuC+5RhsfKKAOw+GHhbwp4X/aw8IT+D/DraDa6/4Cub+6s/NclXM1uQHDMfmUMQce9fS1fN3gq68f3X7bmhw+PdI0uzktPBt/HZXOn3pm+3Ri6gzK6bFETHAOwEgZ68V9I0AFFFFABRRRQAUUUUAFFFFAETBi7ENxjAB7VwHji3+Mz6/MPB134HTSmRRGurQ3bT5x82TGwXr0r0CTj86ADgGgDwS38B/tBwfFi58fLrHw3N9caNHpLQG2vfKEaStKGHzZ3ZYjrjFd98O7f4xx+IFPjW78EyaUInymjw3SzmXjacyErjrmu9YfLmkUr60Aed+LvAvie4+K19428N6vp1rcT+F10WBbpHYxP9r81pfl9EJx/tYzxVTxR8GbS4+Gtromk6k39s2GqQayuqXo3Nf30Lbw9xtH3Wb7wQDGTtxXp6laXK0AeWfCT4feONLg8d3njbWtHutR8YXIljTS1mFvagWyw4AkyRyuePWuK8F/C343aF8I9I+Hk9x8L9U0zR9OXT4nvLS9MrxhdpJYMNpI7rivopj8tMUjr/ABUAfPngP4a/H/wfo+paHo+v/D1dHvW/0awlivnSwBQh1jYsWIZiWO4nk+nFeo/ATwXeeBPg34d8G6nfQXl5o9glvNPACIpHBJ3KDyBz3rs+D9489qbgeZ17UAPhICY3Z96fnNQRlQuPepYyMcUAOooooAKKKKACiiigAooooAKKKKAGlTkGvFPCXwU12xtrLRtU1nT5dGg8XXviW4WBH86Z5LhpYYCG+Ux7XYOCMkgYr22igDynxN8OvGej+B9S8N/DfXNLFpqs0q/ZfECyyQ6bbyRbTFbGLDffLP8AOW5Y9sCpJvhZqL/skt8JP7StPt58Mf2OL0q3k7/K8vfjrtzz616lRQB5t4f+Gt9ceItPvfGF7aahY+HrWGDRNPtw4hjdYlVriUH70ud6gfd2kcbua5DxX8GfHja82n+GfEejW/hi88XxeKL43STfbzMJlkkhRkwnlnaAARnrk17xRQB5N8VvAnxEuvjNpvj3wHqXhmN7XQpdKuLbXIZ3Vw8yy7l8rH90DmuG8SfCD423/ii18TaTe/DTQdctXiA1DTYL9GeFWy0JjLGPa4LKTt3YPBHFfSVFAHj/AIH8BfE2b49WPxC8fap4Vkj03Q7jS7e20SK4Vj5sscm5jKT08vHHrXsFFFABRRRQAUUUUAFFFFABRRRQAz+L8acvSmj73405aAFowPSiigAwPSjA9KKKACjA9KKKADA9KMD0oooAMD0owPSiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGfxfjTl6V418WvjXqXhr4wr8PdB8EDXL7+z4r6SebWorGJFkdkVMyKQSSmMZ6mrsPjj41hcL8C4/ofGVrx/5DoA9Zoryn/hOPjb/wBEKh/8LK1/+N0f8Jx8bf8AohUP/hZWv/xugD1aivKf+E4+Nv8A0QqH/wALK1/+N0f8Jx8bf+iFQ/8AhZWv/wAboA9Woryn/hOPjb/0QqH/AMLK1/8AjdH/AAnHxt/6IVD/AOFla/8AxugD1ajI9a8obxx8bNvPwJh/8LK1/wDjdYXh344eJrj4t2Pw7174bR6Vquo2t1LbNH4igux5kMTSbHCKNhOAMnpmgD3TI9aMjpmvI38bfGeHP/FkIJFUkCU+MbUZH/fHFL4P+IPxN1qS0uf+FR20em3WM6gni22m+TOCQqp82OeBQB63miq0bHlmVlXH3i3SrCfdFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeEXmg6Z4k/bL8YaZqkCyQzeBtPGejI32qfDKeoIOOR6V0/hHxFqngrXrfwZ4tkkmtpiE0jVpB8sijgQyH+/ggA852kk5rL8OjP7dXihSMq3gfT//AEquK9I8baBpfibw/NpOr23nW8vtkqexHoaANcOMAnG096kxXmPhHxDqnhPxBF4P8ZzmSKQ/8SnV34SRe0crdA/B5OM8DGa9PBB6GgBMUYpVIIyDn6UE45NACYpkrbMcU/coGSRj1zXAfErxdfSawvg7weqXGuXGPNmPMVhH3dz03AZIGc8UAM+JHjC/n1hfBfhBVm1m5j3XM45Sxi6Fj/tcjj3riNY8JWPhT9oD4S21qDNdSvrT3d7L80lw5shksTz+HSvUPhv4RsPCemyQQE3F3eP5t7dycyXMnck+g6D2xXI/FrA/aV+EnG0eZrXH/bkKAOU/4KHfFpfhd8A79bK5WHWdXT7NYYOHjZgcyAegxj8a8k/4JI/GKTxB4av/AIbeIL3fe6aftFi0rZLxt/AvqQQx/Gvon4//AAO8BfFVo9R8Z6fLeS6fbSJbAOAqA89CD6CvL/2DvgH8PNK+HHhL4lWGmyxa/NaSNJPvGCSzoeMf3aAPqBYlC7e3uc0+PO0ZpABwB2FOU5XNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeO+HP+T6/FH/Yjad/6VXFevr97pXkHhz/AJPr8Uf9iNp3/pVcV7An9aAMjxl4b03xNosmmanEGjYHY4+9G3ZgexHX8K4vwT4g1LwjrUXgvxfKzxuRHpGqN0uVHASQ/wB/pzznnJr0sqMdKxfHHhvT/FXh240fVIlaOZflf+KNuxB9aANi227Tt6E9ex+lPkGUIzjjrivM/AviXU/CutReDPGc24uMaXqT8LcJ2R26Bxg+nAFaPxO8ZXlvdx+FvCiLeeIL5WCAH5LNe8sh6ADOQCQWwcUAR/ETxbdfbl8MeEIlvNevF+fcf3VonQySHnaPTjqRWt8N/Bdj4T0qSBJpLy9uW8y81CYfvrlz1J64HsDgZo+GfhK18LaZJ5jNdajdt51/fycvcS46/QDAHsBXTqidV6nvQA2MYZW5GBtxXl3xf/5OW+En/XTWf/SMV6oqgHPf1ryv4v8A/Jy3wk/66az/AOkYoA9M1b/kEXX/AFxf/wBBNeZ/sR/8mseDf+vFv/Rr16Zq3/IIuv8Ari//AKCa8y/YnJX9lbwaQM/6C3/o16APV6K4P4k3/wARrm6TTfh+mj2siAvPf6vC8kAA6RhEZWLHPXoMVR/Zr+Ies+PfCd9/wkelpp+t6LetY6lHEP3RlADZTk/KVZe5pRfNsEtD0qio43Lf1FSUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPHfDn/J9fij/sRtO/8ASq4r2BOn414/4c/5Pr8Uf9iNp3/pVcV7AnT8aAHN0qHAOMjocDB/nUx6VwPxO8XXGmahF4d8Not34ivxiNSC0duv/PSXHQDI4zk9s0AZnx+vbTWLL/hCNOsV1PXrwCWJF/5h6bsGdnHKAYIBA5OB3rD+CdufhzrreEfFc5vbzU5TJa+IZ/v6hk8Rsx6EZ4XJA3Gu9+Gvg238MWLSz3L32rXbebe303LzOR+igYAHtWh428M6Z4o0V9N1SESxsDsdeHibsyHtigDZUhlX1HYdKkh/1eSME8kV5p4D8R6n4b1xfA/jSb9+BjStR/hvY+wJ7MBkc4+7XpduQ0eQOD096AH15T8X/wDk5b4Sf9dNZ/8ASMV6tXlPxf8A+TlvhJ/101n/ANIxQB6Zq3/IIuv+uL/+gmvMv2Jsf8MreDc/8+Lf+jXr03Vv+QRdf9cX/wDQTXmP7E//ACar4N4/5cW/9GvQB1nxE8Sf2Hpf2bTkjutZvPksbOR9u9z0LHkqo7nBxmqvwn0fSvDektpEN8lxqTOZ9QfPzvKe7fQYH4VW+IPwi+HfjrW49W8U+GoNRvLddsczTyrgcf3GHoK0Ph/4D8IeBbOew8KaLDp1vPJ5kyJJI+9+Bnc7E9AO9FNWbFV2R1MJDMDx04xU1QW4AmYlRuPVh+lT0k73GFFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPHfDn/J9fij/sRtO/8ASq4r15n2gnp1JJ6V5B4dIH7dXign/oR9O/8ASq4rq/if40bSDDomgWy6j4ivWxa2hztiHeWUjGFGRxnJzwDQAfErxrc6ZeReHPD9v9t8RXyZggUZWBCcGWU/wqMHHHJGKtfDPwbD4cjmvLuc3+r6gfM1C+k5Z39F9FGTgZwBTfhj4OHhy3lvr64a+1rUG8y9vZesjeg9AMDgAV1jqGXB7HPFABGgK/P17+9OZAFyqjIHAojJ5z+AobBUigDnvHnhvTfE+iyWGpRtuUZgmiH72F+zqeox7dq5bwD4o1bw/rEfgjxi+64XK6bqbDamoRr39nxjIyeor0R433Eq7AH0/lWP448LaZ4o0OTTtTQ84eGaM4e3kHKyIfUHBweDjkUAbiyEtjHGeMf1ry34v/8AJy3wk/66az/6RirngPxRqWg+KI/BHjKUfahETp1/0jvowQOT2cZAI46HFUfi8wP7S3wjwf49Z/8ASMUAemawW/su6AH/ACxfP/fJrzP9iXJ/Zb8HRsjcWDZJHB/evXlv/BR74mfFH4U6RYeJPB8kL6HcZtr1ZFzslYHb09g1eR/8Ex/iv8V/G3imx8DJPGPCvh20YzsU+ZVYsVGf940AfoCsSqflG3HYdKXy0cZYfgaFIGATkgdadEd0YNAPUXaM5paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPlv4yfFDSPhp+2JrsupXtnaXereDrC3097uURxbxczFmZjxhQc474rrvhf8Q/gx4djm1TVPiz4Y1DXNRIkvL2bVoiSeyLluFXOAM8ACvXdc8P6Bq179p1XQ9OvZo12rLcWkcjY9MsCaqL4N8HHaP8AhEtD4GcnTYf/AImgDmx8dvgz8o/4Wj4VJHf+14v8ad/wvb4Mf9FR8Kf+DeL/AOKrpD4L8Gnj/hEdD5PUabD/APE1J/whHgz/AKFLQv8AwWw//E0Acv8A8L2+DH/RUfCn/g3i/wDiqP8Ahe3wY/6Kj4U/8G8X/wAVXUf8IR4M/wChS0L/AMFsP/xNH/CEeDP+hS0L/wAFsP8A8TQBy/8Awvb4Mf8ARUfCn/g3i/8AiqG+Ofwbblfij4V6HpqkR/8AZq6j/hCPBn/QpaF/4LYf/iaZJ4M8HK21fCWh/X+zocf+g0AedeOPiZ8CfFGi/Yb/AOJfhb5H3wXC6rEsltJjiSNs8Hkjj1Nea+EfibpXir9qb4c+EovEmmeILvw/Fq0jajYXKyR3EL2m1WbBO1vlORk9q+jV8GeDCMf8InoYBPH/ABLYeT/3zU2n+GvDWnXS3Fh4f0qzuACFlgso45Bnr8yjPSgDyL9rrWfDev8AgnWPhzrfhHxhqQvrT91d6Z4elvIYnK5VkkXgMM44968q/YZv9B+CnwvOnX/w9+Ija7fu0moTJ4UncgdFQN3AwD+NfZUMaBBtB4p+xfSgDA8F+ILfxF4dg1e303VLJJM/utQs2t7gY9Y25Fb8JzEp/rRsUU5QAMCgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8O8dfFObwZ+0B4qtdXXUbrQtJ8J2eoR2dhavO4me4lRn2rnjCrk44Ar46/aR/bt8b+I7ibRPh9bN4dsNxWSdsm5bBxlSMFO/GDX6JzeGNFHjK+8T/YC2pX1nHYXMrfMHt0ZmC7TxjLt2715B+0J+yX8Mfimsl+dPTQdXkAVL3TYwox2zHwuemTigCr8G/2i9BHwx0VtZ8O/EK+1D7Ivn3S+F7uZZWyeRIFw1dV/wANI+EP+hP+I3/hHXn/AMRXefDHw83hHwHpXhtpvPXToBAJf7wGcE+nWuk/A0AeP/8ADSPg/v4Q+Io+vg68/wDiKT/hpHwceR4R+Ip+ng68/wDia9D8feJvD3hPRm1nxNqcOn2NuQWllLYBPHRQSevpUfw88ZeGPHGi/wBs+FNbttUsRK0TSW+Rhx1UhgCMfSgDgf8AhpHwh/0J/wARv/COvP8A4isrxt+0b4YbwnqX2Hwv8Qre6a0kEcr+EbtAh2nBLFeMevavdfwNZfi+xbVPDmoaYr+Wby1khLn+DcpGf1oA/Nb4KftyePvB/im5s/FyzeJdFN26ItyxF3Gu44G854H93FfXv7Nvxjl+KPx48QCxGp2mh2/hjT7iGz1C3eFkneaYOy7gMqQqjcBg4rP+Bv7HPwx8C6w+v6nA/iHVpJ2mWa8X92hZi2An3TjPcV7ZpXhDw/pviu68UWGnRWupXllFZTNEML5MTMyKF6DBdug70AdLGMLjJ/E0tMgJaMEjFPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBmBvzjvTgBTCwWTBPU0nnKOGyD6H09aAH7FDFgvJ6mlzxTGmQYz3/SkMoB2kHJ6e9AdTK8QaRpF3qlrqmqW6StYBngeXGyE4OW9jgnmvNv2dfDNva/ELxn4y0uIW+ma/eqIY1HyzOjOXmU9Cr7wQR+taX7Q1l8UNZsrOx+HtroM1nK3/EwGp30luZVBJ2KURuMgZPHcVP8H7f4mpdPF430jw3ounWsaLZWmh3kkynGfvF0XaBxwKUQkelUhVT1FNWVWzgHjrSecg6nFMB+BnOKRkVhgqDzmmmVQu5vlHqaFlDAEA4IzmgB6gKMAYpaRTuXIpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAhfmUqCB3YEdvavKPid40ubn45eFfhnoGqfYr/AObXtUlimVt9lbFVa1kTqDL5ykE8YQ16vMR5vA+b6187XHhPRvDH7bHhg6dBMJNQ8Ka5c3c1zO0s8ztc2zYLtlii7iFXOFGAMCgDBm+PPxI1Px94M1/w78NNUfRfFzXFlbWVxrVt5d2IVkfzIhwYpMocl+CowBnmvVPhD8Yrnxd4H8ReJ9a8Faj4ftPDt1PayKLlLyS4khZllVEiBY7SuOhznivmH9nfVdZ0bxFo9tq3jO4s4bvwok2jak+iw3Fr4ckfUZ4/mV227pP9WJMbjvC9BXtX7GC694e+E/jbV9V1S98SLb+KtW8qzsNLjWd5EuH8xkUN85kbBCEgL0FAGOvx6ubD4Z+LIPDmv3Wqa5o7QXWkrr2iXNtKtrNcxQE3BkCCUh5HAKYGAo6g1L4+8bfHTw5Z+LWXxh8P7y/8FaQNUvrNdBu1byXR2QBzLtJYRt9MV5veaf8AGLxnN8VrldFs76eXxXYWF7pAlMk2m2yi0uAbeQruYcAtD8qgl25I5734mTJ4g+IXxq03Qn+23fiTwimmaRbQjLX91axTrcRRf3mjMiBh23ChaA9T0v8AaC8Sa9D+ybqHibSb+TSdXuNMspku7Q7WiaWSEMUJzjh2HNeb/F63t/h54r0nSdU+MPxdv0vo5WuJNLmS7l08KoKGSKK3ZwJCSAcAfKa7P9ppJ9O/Yh1CK8tpPOstH05ZYQP3m5ZbfKY9cgj61xnidPGc3iSTxz4O8G+JvD9vJcSyS6lJEbrW2kkxuQ6c7eXJbDjYTJiPLlVHcAxPEGpm8+DXi7xn4E+N3xRuL3wmYRPa6uRb7HdkwrxyQKxBVs8V9a6Zk6fCS7yN5a7nb7zcckmvjnxt4o1Wx/ZR8U6feeC7q6g14lk8QaTK1/HIwuVDtfzOFaF1YFfLG8IBtBwBX2XpYH9nQcf8sV/lQBPDu2/MQTntTqB0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCOSMvkNyp7V5b8QfBfieb9oTQvH2kWFve2WkeGNRsHga6EUklxNJA0ajIIAxG2T24r1aigD58+Dvwi8YfDrXYL97DT9ejsvB8WlpEt0IfOuBfS3BHzqQAFkGCepHau3/Zl8H+IPCngvUofE9lb2l/qHiLUNSWCC5EyxRTzGRQWAALYPNemUUAeKeHfAvxE8P+KPiLd6Nb6aj+MfEyXlhfTXORZW4s4YmkZAMl8xuAo6EgnjinXXwl1Dwj4y8KeKvB9qusy6DFfrqEF1dLDcalPdiPfctIRsDZjywwM54Ar2migDxTxF4I+Jnib9kfUPCfiCa2u/GV4zP+9uwY+LwSohkC44iULnHUVR+JHg3xb4o1r/AISOx+H194e8TLEsCa9pnii3FykQzmMB0ZMEEg/LnnrXvNFAHz1400L41eLf2fNQ+H+reBdKTU76LyP7Qi1uIRbRMrK7oFyXKr82OrE44r3+xjaKzijf7yxhTj1AqaigAoorl/iF4jvtB1TQLazit3TVdRW2nMqsSqnuuCMH65oA6iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK5fXvEd9ZfE3RfDsUVu1rqNvLJK7K3mKUHG05wB9Qa6ijoB/9k="]
math
multiple-choice
5
某四面体的三视图如图所示, 该四面体四个面的面积中 最大的是( )
8
$6 \sqrt{2}$
10
$8 \sqrt{2}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAEcARADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKM03eN23B756e3+NADqKKKACiiigAopu8b9vOaVSGUMOhGRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEchxmuE+FvxBt/F3xC+IHh6NoS3g/WYLNdv3jE9nby7m9/Oa5X6IPfHcXDrErSOdqIMs2cYGTnNfA3/AAS5+JR8SftZfFhfmePxg02uRGQ8gx3ThE691u+392gD7/TIUA+nalpEAVAo6AcUtABRRRQB8o/tJftOXPwS/bFsfDPiVftPgfV/D9tLdeWmZ9NuGnuFNwgBy67VUOg7BSvz5En09oWuaVrOg22taVfQXmnXkC3FvdwyK0UkTDIcODjGOa+Xfif4e0Txb/wU6h8MeI9Ng1DTNS+F0kVzayr8siG6lyN3VfUFcFSAQQea5PS73xb+xP4+j0fWJ9Q8QfBPX71lsL4/vLjw9O7H5SAMcYJK4CuMuoVwyMAfbwORmis/Qdb0nWtBttb0jULe+028gW4t7yCVXhljYZDq4OCMc1oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAed/tYeJ28G/s4+NvEkc6wT2WhXItZCekzp5cf8A4+6j8a/L3/gm54mHhf8AbM8GTzXHlW2o3UulzD/np58Txxqf+2piI9wK+3v+CvfiYaJ+yZLoybWk8SazaWLDPRELXOfput1H41+YngbXbrwt410fxJYD/StF1CC+tsjrJFIJEz/wJR+VAH7xR52Ln0pag027gv8AT7e+tm3wXUSyxOOjKwBB/Iip6ACiiigD5g1oZ/4K16V/2TJv/SqavoPxt4a0bxb4X1Hw34j0yHUtK1OHyby1nGUlQnpxgg8DDA5BAIOQK+fdZ/5S16X/ANkyb/0qmr6d5oA+ItOvfFn7EnxAj0jWbm/8QfBXxBeMthen95caBM/O0gDHGCSMbXGWUKwZG+ztB1rStZ0K21rSb+3vdNu4FngvLeQPDJGwyHVhxjHNU/HPhzR/FvhfUfDfiHTIdS0rVIPJvLS4GY5lPbjkHgYYEEEAjkCvj3T73xZ+xJ8QE0jWLm/1/wCCniC8dbC8P7y40CZ+dpAHbByMbXGWUKwZGAPt6is/Qda0rWdCtta0m/t73TbuBZ4Ly3kDwyRsMh1YcYxzWhQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHy7/wUc+AfxG+PC+FLDwZf6Ha2eivdTXi6ldyR+ZJIIlQqEjfO1UfrjlzXxF8LP2TPiX4/+IHjTwZoupeHIdR8CXkNpqjXd3MkTPJ5oQxMsLFhmF85A6jGecfr3IPlOema+WP2HRn9r39pTPP/ABUWn9f9++/woA97+A2g654Y+C3hXw34jlt5dW0bRrWxu5YJGeOR4o1QsCwBOdvcda7AUij5QPaloAKKKKAPmHWf+Utel/8AZMm/9Kpq+nq+YdZ/5S16X/2TJv8A0qmr6eoATnisTxz4b0fxb4X1Lw34h0yHUtK1OAw3lpOMxzKe3HIPAwwIIIBHIFblHNAHxDp974s/Yk+ICaRrFzf6/wDBTxBeOtheH95caBM/O0gDtg5GNrjLKFYMjfZ2g61pWs6Fba1pN/b3um3cCzwXlvIHhkjYZDqw4xjmqfjnw3o/i3wvqXhvxDpkOpaVqcBhvLScZjmU9uOQeBhgQQQCOQK+PdPvfFn7EnxATSNYub/X/gp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRgD7eorP0HWtK1nQrbWtJv7e9027gWeC8t5A8MkbDIdWHGMc1oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJPu4r5Z/YbH/ABl7+0of+ph08/8Aj19/jX1MwzXhv7NPws8UeBPj98YPGGurZnT/ABxq1tdaUYZ98nlxG4zvXHB/ergZPQ5xQB7opyoI9KWkXhQM9qWgAooooA+YdZ/5S16X/wBkyb/0qmr6er5h1n/lLXpf/ZMm/wDSqavp6gAooooAOaw/HPhvR/FvhfUvDfiHTIdS0rU4DDeWk4zHMp7ccg8DDAgggEcgVuUc0AfEOn3viz9iT4gJpGsXN/r/AMFPEF462F4f3lxoEz87SAO2DkY2uMsoVgyN9naDrWlazoVtrWk39ve6bdwLPBeW8geGSNhkOrDjGOap+OfDej+LfC+peG/EOmQ6lpWpwGG8tJxmOZT245B4GGBBBAI5Ar490+98WfsSfEBNI1i5v9f+CniC8dbC8P7y40CZ+dpAHbByMbXGWUKwZGAPt6is/Qda0rWdCtta0m/t73TbuBZ4Ly3kDwyRsMh1YcYxzWhQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU0L82Sfw9KdRQADpRRRQAUUUUAfMOs/8pa9L/7Jk3/pVNX09XzDrP8Aylr0v/smTf8ApVNX09QAUUUUAFFFFABzWH458N6P4t8L6l4b8Q6ZDqWlanAYby0nGY5lPbjkHgYYEEEAjkCtyjmgD4h0+98WfsSfEBNI1i5v9f8Agp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRvs7Qda0rWdCtta0m/t73TbuBZ4Ly3kDwyRsMh1YcYxzVPxz4b0fxb4X1Lw34h0yHUtK1OAw3lpOMxzKe3HIPAwwIIIBHIFfHun3viz9iT4gJpGsXN/r/wU8QXjrYXh/eXGgTPztIA7YORja4yyhWDIwB9vUVn6DrWlazoVtrWk39ve6bdwLPBeW8geGSNhkOrDjGOa0KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCQOpoATzFDbc0LIrfdO76Vw/xw8dL4B8Jm+srE6nrmqXC2GgaSh2vqd9IMRx5zwo2lnc8JGjHoOfAP8AgmHrHivWfEXxej8Z61Nq2q2PidILmZ2by9yecjCJD/q03LwMcDAxQB9c0Ui/dH0paACiiigD5h1n/lLXpf8A2TJv/Sqavp6vmHWf+Utel/8AZMm/9Kpq+nqACiiigAooooAKKKKADmsPxz4b0fxb4X1Lw34h0yHUtK1OAw3lpOMxzKe3HIPAwwIIIBHIFblHNAHxDp974s/Yk+ICaRrFzf6/8FPEF462F4f3lxoEz87SAO2DkY2uMsoVgyN9naDrWlazoVtrWk39ve6bdwLPBeW8geGSNhkOrDjGOap+OfDej+LfC+peG/EOmQ6lpWpwGG8tJxmOZT245B4GGBBBAI5Ar490+98WfsSfEBNI1i5v9f8Agp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRgD7eorP0HWtK1nQrbWtJv7e9027gWeC8t5A8MkbDIdWHGMc1oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUda1Gx03TrrUdRuIrazsoZJ7i4lcBIo0Xc7sewUZye2KvVzXxU8HaZ498B6t4Q1vz/AOzdZtmtrnyZNj7D12nnaffH1BoA4D4LWF18QvF0nxm8Q2kkVpNC9t4L0y5TBs9PfAe8kU9JrkBSR/DEqLn5mFeUf8ExWK/ET46792T41f74OeZrkck9TkH8q11/YO+CgVUN74vyAAT/AGz9f9jjp0rxj/gnj8C/BGv/ABg8c6zeTawk3w/8Yxpo4ivBHGyxyylfOG395/q0znGefWgD9CxyM4opsZzGv09MfpTqACiiigD5h1n/AJS16X/2TJv/AEqmr6er5h1n/lLXpf8A2TJv/Sqavp6gAooooAKKKKACiiigAooooAOaw/HPhvR/FvhfUvDfiHTIdS0rU4DDeWk4zHMp7ccg8DDAgggEcgVuUc0AfEOn3viz9iT4gJpGsXN/r/wU8QXjrYXh/eXGgTPztIA7YORja4yyhWDI32doOtaVrOhW2taTf297pt3As8F5byB4ZI2GQ6sOMY5qn458N6P4t8L6l4b8Q6ZDqWlanAYby0nGY5lPbjkHgYYEEEAjkCvj3T73xZ+xJ8QE0jWLm/1/4KeILx1sLw/vLjQJn52kAdsHIxtcZZQrBkYA+3qKz9B1rStZ0K21rSb+3vdNu4FngvLeQPDJGwyHVhxjHNaFABRRRQAUUUUAFFFFABRRRQAUUUUAFHPrRRQBFJuLYXGRzyKxvC/hHwz4clvrnw94c0fSZ9VnNzfyWNjHC13KcnfKUUGRssx3Nk5Nb3NFACKMLiloooAKKKKAPmHWf+Utel/9kyb/ANKpq+nq+YdZ/wCUtel/9kyb/wBKpq+nqACiiigAooooAKKKKACiiigAooooAOaw/HPhvR/FvhfUvDfiHTIdS0rU4DDeWk4zHMp7ccg8DDAgggEcgVuUc0AfEOn3viz9iT4gJpGsXN/r/wAFPEF462F4f3lxoEz87SAO2DkY2uMsoVgyN9naDrWlazoVtrWk39ve6bdwLPBeW8geGSNhkOrDjGOap+OfDej+LfC+peG/EOmQ6lpWpwGG8tJxmOZT245B4GGBBBAI5Ar490+98WfsSfEBNI1i5v8AX/gp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRgD7eorP0HWtK1nQrbWtJv7e9027gWeC8t5A8MkbDIdWHGMc1oUAFFFFABRRRQAUUUUAFFFFABRRRQAU3epbAP056+tJJjn2rzD4M/F6y+InxY+IXgm30a4s5fh9fwWU9xLMGW8MpmAKgfdAMB/MUAepUUDpRQAUUUUAfMOs/8pa9L/7Jk3/pVNX09XzDrP8Aylr0v/smTf8ApVNX09QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAc1h+OfDej+LfC+peG/EOmQ6lpWpwGG8tJxmOZT245B4GGBBBAI5Arco5oA+IdPvfFn7EnxATSNYub/X/AIKeILx1sLw/vLjQJn52kAdsHIxtcZZQrBkb7O0HWtK1nQrbWtJv7e9027gWeC8t5A8MkbDIdWHGMc1T8c+G9H8W+F9S8N+IdMh1LStTgMN5aTjMcyntxyDwMMCCCARyBXx7p974s/Yk+ICaRrFzf6/8FPEF462F4f3lxoEz87SAO2DkY2uMsoVgyMAfb1FZ+g61pWs6Fba1pN/b3um3cCzwXlvIHhkjYZDqw4xjmtCgAooooAKKKKACiiigAooooAbJ9018r/sN/wDJ337Sn/Yxaf8A+hX1fU8v3T9RXyx+w3/yd9+0p/2MWn/+hX1AH1Uv3aKF+7RQAUUUUAfMOs/8pa9L/wCyZN/6VTV9PV8w6z/ylr0v/smTf+lU1fT1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAc1h+OfDej+LfC+peG/EOmQ6lpWpwGG8tJxmOZT245B4GGBBBAI5Arco5oA+IdPvfFn7EnxATSNYub/X/gp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRvs7Qda0rWdCtta0m/t73TbuBZ4Ly3kDwyRsMh1YcYxzVPxz4b0fxb4X1Lw34h0yHUtK1OAw3lpOMxzKe3HIPAwwIIIBHIFfHun3viz9iT4gJpGsXN/r/wAFPEF462F4f3lxoEz87SAO2DkY2uMsoVgyMAfb1FZ+g61pWs6Fba1pN/b3um3cCzwXlvIHhkjYZDqw4xjmtCgAooooAKKKKACiiigBknII+lfLH7DZz+19+0n/ANjFp/8A6FfGvY/jl8cfhf8ACK8sLf4h+JW0d9XWRrPGnXNwJfL27+YY3xjevX1r5I/ZW/aO+DXhD9oz42eJvEXjD7HpnjDV7S50ScaZdubpIzd7sqsRaM/vU4cL1oA+/h0orH8B+JNI8XeENO8TeH7przS9Vt1ubO5MTx+bGwyrbXAYZBzggH1rYoAKKKKAPmHWf+Utel/9kyb/ANKpq+nq+YdZ/wCUtel/9kyb/wBKpq+nqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAOaw/HPhvR/FvhfUvDfiHTIdS0rU4DDeWk4zHMp7ccg8DDAgggEcgVuUc0AfEOn3viz9iT4gJpGsXN/r/wAFPEF462F4f3lxoEz87SAO2DkY2uMsoVgyN9naDrWlazoVtrWk39ve6bdwLPBeW8geGSNhkOrDjGOap+OfDej+LfC+peG/EOmQ6lpWpwGG8tJxmOZT245B4GGBBBAI5Ar490+98WfsSfEBNI1i5v8AX/gp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRgD7eorP0HWtK1nQrbWtJv7e9027gWeC8t5A8MkbDIdWHGMc1oUAFFFFABRRRQB8Y/wDBaXwwNQ+CPhnxSsPmS6LrptmfJ/dQ3EJ3Hr/fgjH41+bVqks06wRRtJJI3lhFXJyeAAO//wBbtX7E/wDBQrwyPFX7HnjyyGN1npn9oqcfd+zSJcEj/gMTj/gRr8v/ANjDw3/wl37VngLRCgkjbXre5nRhw8cDGeQEe6RMPxoA/Yz4a+HYvCfw60DwvalfK0XS7axTA42xRqnA7Z21vL90ZpEOVBznjrS0AFFFFAHzDrP/AClr0v8A7Jk3/pVNX09XzDrP/KWvS/8AsmTf+lU1fT1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABzWH458N6P4t8L6l4b8Q6ZDqWlanAYby0nGY5lPbjkHgYYEEEAjkCtyjmgD4h0+98WfsSfEBNI1i5v8AX/gp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRvs7Qda0rWdCtta0m/t73TbuBZ4Ly3kDwyRsMh1YcYxzVPxz4b0fxb4X1Lw34h0yHUtK1OAw3lpOMxzKe3HIPAwwIIIBHIFfHun3viz9iT4gJpGsXN/r/AMFPEF462F4f3lxoEz87SAO2DkY2uMsoVgyMAfb1FZ+g61pWs6Fba1pN/b3um3cCzwXlvIHhkjYZDqw4xjmtCgAooooAzfFWlW+t+H7/AEa8iWW11G1ltp42PEiuhQqfYgnNfmn/AMEmfAsy/thazLqtvibwZpl4rSc/uroyLb4/75ebr6V+nUoYk4APHy5PQ8//AFq+f/2S/hqngn9oD45a2FIj1jxRB5G5cKFa2F42D6br/HH/ADz9qAPoNc7eaWhelFABRRRQB8wa0yj/AIK1aWSenwzYHjoftUx/lX0/XiH7RH7Lnw0+M3jyHxZ4y/tr7fb2KWMYsr4RR+Uru4ypQnJMjA84xjiuFX/gn58A9oy3io8dTqcef/RVAH1TmjP+cV8rf8O+/gF/e8Vf+DNP/jVH/Dvv4Bf3vFX/AIM0/wDjVAH1Tn/OKM/5xXyt/wAO+/gF/e8Vf+DNP/jVH/Dvv4Bf3vFX/gzT/wCNUAfVOf8AOKM/5xXyt/w77+AX97xV/wCDNP8A41R/w77+AX97xV/4M0/+NUAfVOf84oz/AJxXyt/w77+AX97xV/4M0/8AjVH/AA77+AX97xV/4M0/+NUAfVOf84oz/nFfK3/Dvv4Bf3vFX/gzT/41R/w77+AX97xV/wCDNP8A41QB9U5/zijP+cV8rf8ADvv4Bf3vFX/gzT/41R/w77+AX97xV/4M0/8AjVAH1Tn/ADijP+cV8rf8O+/gF/e8Vf8AgzT/AONUf8O+/gF/e8Vf+DNP/jVAH1Tn/OKM/wCcV8rf8O+/gF/e8Vf+DNP/AI1R/wAO+/gF/e8Vf+DNP/jVAH1Tn/OKM/5xXyt/w77+AX97xV/4M0/+NUf8O+/gF/e8Vf8AgzT/AONUAfVOf84oz/nFfK3/AA77+AX97xV/4M0/+NUf8O+/gF/e8Vf+DNP/AI1QB9Uf56VieOPDekeLfC+o+G/EOmQ6lpWqQGG8tJ1zHMp7ccg8DDAgggEcgV85f8O+/gF/e8Vf+DNP/jVH/Dvv4Bf3vFP/AINE/wDjVAHE6bfeK/2JfiCukatcah4g+CevXjiyvtvmz+HZnOdrBR1HJIxhxllAYOjfaOg6vpetaNbatpF/bX1hdxLLb3NtKJIpUZQysrDgggg/jXzFJ+wD8CvlXf4pz0DDVlyoHI6xkZ7dMAHpnmvYvgJ8HdA+D/hOfw14V1XXp9Kkn8+Gz1K8W4js3LZYQ5T5FYkkjkEnPByaAPSaKKKACq7QKJJMKq+acthR83QHPrkAD6AVYooARQQOaWiigAooooAOaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiims4HXjnHNADqKaXAGcHr2GaFcFiO69aAHUmfQZrkPHPxS+G/g6Qp4q8e+HNGkVS3kXuqQxysB/djLbm+gFeMePP26f2e9AhZrHXtU8RzRsR5Gk6ZIG69d0/lIR7hjQB9L5orkfgj48034lfCvR/HelWtxa2WsQGeKK5ULIihmX5gpYZyp6E11oOBjn8qAFopM/X8qM/X8qAFopjSKMA55OAMdf8AODT+tABRRRQAZoqGaZEOC3zZwB6nGcD8AawfCXjfwp4p1bVtO8Pa7aajdaDcfZ9Uit33/ZZefkcjgNweOvBoA6SiiigAooprOq9ePTJHNADqKaHBGRn8BS5+v5UALSbhz7daM/X8q8C+Pv7Wvw4+DnxcXwL4y07xAsz2kV0L6ztI5bdFkLD58yB+Np+6jdRQB79kUA5rxfwP+1V+z94oUjTfiho9s2QCmrF7Bsnpjz1Td17Zr1rQtV0vV7FbvSdStNQt2AKzWs6yowPQhlJBoAvUUm4Um5ex74oAdRRRQAUUUUAFFFFABVa8S4a3kFrLHHNtPlPJGXVW7FlDLuHtkfWrNHNAHzn8bvCX7YOoMx+H/wAT/AllFtYMqaG1nKy9lDSi65x3yor44+OXwn/bcuYbs+ME8Z+IdP3bmisdZ+2Wzj1W1hfj/v2Pwr9Udrc5I/AVG0WWzjaegKgZH0NAH4QeKPDviHw5ffZPEWg6lpFyRlYb+zkgc++JMGszIbggFvT/AD3r97L7TrS/tHtdQtYLu3kBDRXEYdHB6gqRgj65ry3xz+y/8BvFsLpqvww0GFmYt5mmwGxfcT94tBsyfqDQB8u/ss+Cf2z9T/Z/8MX/AMOviz4P0jwvNas+mWeoWqST28fmODvL2Mp6hujngj3r0D/hXn/BQn/ouXw//wDAGL/5W19P/DDwZoXgDwJp3g/wzbPbaTpcZjtYZJTIUUsWPzNyeWPWuh+tAHx//wAK8/4KE/8ARcvh/wD+AEX/AMraP+Fef8FCf+i5fD//AMAIv/lbX2BRQB82/AnwX+2JpXxV0q/+KfxU8Ja34ThaY6lYadaRpNOTC4i2lbGLpKYyfnHCnr0r6QjGI1GOgp1FABTfMXdj3xx+P+FOrmPif4t0zwL4F17xfrXmNYaLZNd3AhXdI6qOUUd2Py46ct1HNAHK/tA+KdbFxYfDbwJciPxf4rjfyrkKGGi2SHE9846ZXIWMH70rIDxux4R/wSm02DR/Enxo0aCWWSHTfFgto3mkLuyxtcIGZjyzEDknqeatfAb9pX4DaXHqPjHxl8S7STxr4teOfUVj0u9ZNOgUHyNPiPk48uIM2T/G7yMeoxw//BOT4x/DbRfit8SNM1LxMsV1468ZB/D0TWk7NeiSaQJkhMISZU+8R1PpQB96r90fSlpE+6KWgAqCZH3MVJGSDleD/XPQVPRjvQB8fL8Pf+Cg7LuT44/D9FPIX7DGdo9MnTST+JJ96X/hXn/BQn/ouXw//wDACL/5W19gUUAfH/8Awrz/AIKE/wDRcvh//wCAEX/ytr4x/bu0n4q6N8bxZfGTxJpPiDxN/ZcMhvtLijSHySzhEwsMPzDa3Ve9fsdXk/xU/Zx+EfxI+Iw8beN/Co1nVFt47dTNfTpEI03YBjRwrffPUGgD8YV+/sAzk4AHzcn6Hk16J8Kfhj8ctV1K3vfh74N8ZrMSPLvrC1mt0HoTOAqr+LV+wngf4Y/D7wZJv8J+B/DuiyY2vNZaZFFJIP8AadQGY+5Jrqo4gsKpjhe3GP0FAHwb8D/ht/wUCsoVSf4g2+jQhgfL8UatDqcjrnJGRHcNjHbcv4V9g/C3TfifZ2Kj4geJfDGqS+TtC6Rok1qyv6mSS4kDD2Ea12aoRnn8BThwMUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUdZ02z1WwnsNStLe8s7hSk1vcRCSOVTjIYMCCOKvUUAcd/wrL4cjch+Hvhf5ycgaNb8nBI52V87f8E+fhi2ifED4r33ij4dvpw/4S1p9An1DRvK/ch5yrWzOn3ANpBQ45GOMV9cNx+Waaw+Un0HrQA+MELzS0i/dH0paACiiigAooooAKKKKACiiigAooooA/9k="]
math
multiple-choice
6
如图, 一环形花坛分成 A, B, C, D 四块, 现有 4 种不同的花供选种, 要求在每块里种 1 种花, 且相邻的 2 块种不同的花, 则不同的种法总数为()
96
84
60
48
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCABdAGwDASIAAhEBAxEB/8QAGgABAAMBAQEAAAAAAAAAAAAAAAMEBQECBv/EABQBAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhADEAAAAfvwHKhbUYDV7kWC92jdOgAFM82lQvQwTCxWlK/jL+gPaldAGfoYht1oeHex6RR8aOaT288dv4m2AKF+gX+M096FKI0s/wAwmv2ldKF+hfAEMwq5Ov4JuTQCGWyQc89O2AAARSihHpjLlviGYAAP/8QAJxAAAgIBAwMEAgMAAAAAAAAAAgMBBAATFCAQITQREiIjJDMwMUD/2gAIAQEAAQUC4/1kTEx/ETvloGeOp19FNOvKNAgyHSM85mXGIwI+uP8AHR4+Q5DJ/RPF5TAAEANhsgNTtVf49efxzKABwxFQhghRM8R+dzJQsp7KzahObVcZ6Q3F11KnGfC1wVZSDN7Xze18rHDT6Wpheb2vm9r4+0k44I7N6D9dnoz7HdLPfiX12se81sCYs1z10gE2HAfqDFrYDM/Zb4MXqLUfuiwtrjWMit/jo8dqJNgCQww/ZCl6YcWK90g7vj/HR4+G6IIFzE8yATHQYGHuiWG6Fei08BYrj/H/AP/EABQRAQAAAAAAAAAAAAAAAAAAAFD/2gAIAQMBAT8BK//EABQRAQAAAAAAAAAAAAAAAAAAAFD/2gAIAQIBAT8BK//EADYQAAIAAwMIBwcFAAAAAAAAAAECAAMREBIhEyAiMUFRcqEjMDIzUmFxBGKBscHh8CRAQpHR/9oACAEBAAY/As6o6u5KW+3IR0s1uFNERMORQm6cSKmEOQSt0YgYx0U5h5NpCLs5bp8WzqLimiDtN9IoooLJnCYl8IsuCZLauwGACayzqPhzrq9t8BAUahFFDFj4dgiX6RM4TEvhEFjsiWg75jVaa6wQdRgymxZMPUbM1jsli78Tj/ljEoKtg3nAkyVAPyiszTPvRVBcO9YMj2gBtvrFUlhTZKfxaB+Y/PPNn3nocpujvORjvORibMGomgtlzNziO85R3nKECPVsomz3hmz19+vIWsDqfEWomxTeNspN8xeWP0zUf+Li4fXZ9bEVBLxBOkYVmWlYJ0ZgArjgYB0JakV3mE9nlYM+LOd0GswslMK2V2SxzP5zzSp/uLrdtdcTP017C6jEjDzhVJqQNcTOExL4RCzEe467aVjSa8d8YYsdQims6yfPOvKbrjUYuPovu3+lkzhMS+EWXF0n8Ii+5q/y6ijAER0U408L6QhkyUrEUrlPtCpkpWApXKfaOknfCWKRRVA/af/EACkQAQACAAQEBgIDAAAAAAAAAAEAESExQVEQYaHwIHGBkbHRMMFA4fH/2gAIAQEAAT8h43LigtaCAEsckly/wXEVQMFy8x+pqkdhWPWBqym1N2UzWiUybzri/kx6w5iagNv109ZfjaLwAZrsgYgZAQDk3OzbTv20yIia4Kr0hbtgk1beUvwiHpL9t30IDNZE1B0KXuQNu7z3EdtlAa3/ACjmAC8YOgHIYE30gBiFNwwyzifUd7eHkpj3HTge4ETZKN4Yhod4KxN9Rxy3ypoFaWYGW5TUOHJl/mOieFjJLvFoB+p3vone+iJHdk5HERWql8nBneX1O8vqZDgi2x8Ph8j0eSnzfHz2/nqcLmGcg+1ZdeODqdc8NtD0Kx+XRwbAGFyqjAKbraImtsSGDMVhg3XEYwg/c9YDG+B6L92weETary2OjGTBwj+zlBrOwD+5ZKccDunZtp37aVrEgqEdEmefbaV7ErQZPeZV3teaWfiQu4keUFPm7LzNZc7NtH22nDm4/s2mORlWZDY/By10k0A2H9nWY5F1C+J06KxTqoOU+7b7VKLnNrV3/if/2gAMAwEAAgADAAAAEPKPDNPPLAIAGHPPJDDPHPKDLBIHPLALCEPPPPDPPPPP/8QAFBEBAAAAAAAAAAAAAAAAAAAAUP/aAAgBAwEBPxAr/8QAFBEBAAAAAAAAAAAAAAAAAAAAUP/aAAgBAgEBPxAr/8QAJxABAAEDBAEEAwADAAAAAAAAAREAITFBUWFxgSCRofAQscEwQOH/2gAIAQEAAT8Q/MCo809MCVWAKFAaUSJ2VCo/4Exml8rls/5XgLvFZq7KQebvmHFPkRBAivefmm0vwpheAM8zRfDlyRd6fAKk4XRT3J2HAtRmNvVNsU0zZWNQmnLpgvMFsOIQCg5Ibl6+p319PtpRFQAlWpcXJu72PdNKRIy6CdVgXDbDYD6HFLog43mPsi9wa0F8ECoy0kCvJvQ0g/5RlgFZLzRpkJG/aoIGBt1pZJUqDzR8qUElvUmXYpVqAuEpfY2qW672kXdehxUp0fBZ8L3taUwLYFwwPFIYujM26P0b1Cp2WIdGAq0A4QvJhOKjMyMFnMaIxJTCyhuI7/CuMGTdhR16M0ofIqJbj4NhXBqWMakFWWCQMWm8Lf8AJimxCYf9C1wa3BrHdhyHKLpuejSr6IRPeWfD4qKkvQxRTQBI7NfNSVCjF55BEnthbYakmooGWUDyPhvocVnsgjueGYZ3RUiIN6iqJBcdhnNRv3MrvRH+1LeMNACxYRxm1QLkYIknEAdzTl4TdYPKUDQmiYSSUZ26oEkBFtWpqEa7J6WF8+y9HSkQR2MkyHIw+KGcYFw2tuLJ7ZrEYT6+zrUs2JsUjhYtQZr6nfX0+2t+MyIpBODWnYmAUcSMHlq6nE+f5BldKV+YbmSvdsaAHqAUFIJEchr+mnJfj6k8mg13NQoCwN6X0ddBFN/56kqDKhC6husC2WKTAmljI4yxLlSdg9aJ7zKOzZ5oXOjIZwMh8qpohobkSZWZxLUWX+h2AJA4Yt3WTsuJwzPapO0WA+Q5Xlu/6n//2Q=="]
math
multiple-choice
7
4、为了得到函数 $y=\sin 3 x+\cos 3 x$ 的图象, 可以将函 数 $y=\sqrt{2} \cos 3 x$ 的图像()
向右平移 $\frac{\pi}{12}$ 个单位
向右平移 $\frac{\pi}{4}$ 个单位
向左平移 $\frac{\pi}{12}$ 个单位
向左平移 $\frac{\pi}{4}$ 个单位
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACzAP0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACio7y4gtLOW7upkhggjaSWR2wqKBksT2AANeVfCbxpqPiL4+eJbS41dH0xvD+nXmmaasin7OHmvFZiBz5jLHGzA/dyF7ci1dgekXL+t0v1PWaKKKACiiigAooqDU7y207Tp7+9mWG3to2llkboqgZJ/KjYNyeiuA+CPi3X/FGueNIddgjtl0fXI7axt1j2vDA9lbThZD3fMzZ9DwOBXf07aLzSf3q4BRRRSAKKKKACiiigAoryn4watP4d+LXgu4PirXrCPV9aSzlh+yM+lNE0TgQSMIyqyySbdjMwOfbAPq1C1jfzt+X+YPSVvK/5/5BRRRQAUUVwP7R3iDVPCvw01DxHp/izTPDg063klE9/arMk8wH7uI7mUKrHIJHOOQRgmlKSSuyoxcnZHfUVT8O3Ut94fsb2drdpbi1jldraTfEWZQSUb+Jcng9xirlVKLi2mRGSkk0FFFFIYUUUUAFeFft1eJtZ8L2PwputI1bVdPS7+Kui2moLpssqyXlqwnMluyRfNKj7RmPBDEAYPFe614/+154J8T+Nf8AhV//AAjOmfbv+Ed+Juj63qn+kRxfZ7KDzvNl+dl3bd6/KuWOeAaAPLvGX7c+gaV8Y9P8BWHwr8cTTT3qQXZvNPa3vFQn70Fngyyn0B2Hg4B6H0f/AIaW8P8A/RMPi7/4Ql5/8TXr+o6XpmoXFtPf6daXUtlKJrWSeBXaCQfxoSPlb3HNW6APEbr9o/wzc2sltc/Cr4szQzIUkjk8BXbK6kYIIK4II7Vyfhf4kfCzw58Q77xlonwW+KNjf31hDYtHbfDqaKKJI3lbcgWMEM3mkMc4IVeBjn6aooWjuG6t/Xc8V/4aW8P/APRMPi7/AOEJef8AxNcz8Yv2vNJ8HfDu/wDEln8LPiJJNZNDhNZ8N3Om2hV5kRt9y6MsZ2sduQcttXvX0hVXWNN07V9Paw1Wwtb61kZGeC6hWWNmVg6kqwIJDKrD0IB7UAfFP7UX7QugfHD/AIJ++ObvSPCPizRyqaeWl1HS3+xyEala5Ed0mY2x6Eqfau++M37c3w08C+OE8JweG/FOpagtxHFcvPpslhHArPtZtsyiZioyQBFhugNUf+CrXxM8Gaf+zX4i+GSapHceJtVWyddNtFMj2kMd5BIZZ9vESEIFXdgsXUAHnHZeJvGPxO8Rpbr4g/ZButUFpMs9t9t8S6PN5EikFXTc52sCAQRggigDU/4ap+E/p4v/APCO1L/4xWf4o/aO+CniLQp9H1i28YXFlchfNjHhPVYycMGGGSEMMEA8HtWh/wALW+OH/Rr+uf8AhX6V/wDHKP8Aha3xw/6Nf1z/AMK/Sv8A45RuBwfwj+K/wO+H/iTxPq2l3PjeX/hIr6O4WKXwprEn2VFgii8vMivvO6ItuwD823oorvP+GqfhP6eL/wDwjtS/+MUf8LW+OH/Rr+uf+FfpX/xyj/ha3xw/6Nf1z/wr9K/+OUXdku2n3B1Of+KP7ZPwz8K+Bb7XtP0nxRqlxaGLZZz6Be2KSbpUQ5nmhCJgMT8x5ICjkivJ/wBqj9pTwD8c/wBg7x6nhbT/ABHZ3kA0/wA+G/0mTy4yNRtSc3Ee+EdRgM4Y5Hy17V4k8efFjxFos2j6/wDslahqmnXO3z7O98UaRNDLtYMu5GkIbDKDyOoFeU/tv+K/idrn7JXiHwjqH7P974O0e6fT4P7RfxBp81vZf6fblAYYHLkFgq/KvG7PQGgD7Or5/wD+Co//ACYn46/7h3/pyta+gK8V/wCCinh+98TfsV/EDTbCWCOWDTo9QZp2IUx2s8V1IBgH5ikLhexYjJAyQAcH+2D+1H8SvhPJc2+g/AfXZLaIMB4h1ch9PGOjYti4Knrh5Y29V647iz+OnjuW1ikb9m/4jMXQMSrWODkds3GcVDo/xl+Mmr6La6pYfsya3NZ39uk8En/CW6WvmRuoZThpARkEcEZq1/wtb44Dgfsva5/4V+lf/HKAOX1nx/481nxAl3rXwN+K19ptvew31rpLppKwQzRYKHesgkYBwHALdeuRxXUf8Lx8df8ARt3xI/77sP8A5Io/4Wt8cP8Ao1/XP/Cv0r/45R/wtb44f9Gv65/4V+lf/HKNlYN3c8q1z9rz4qWHx8m8E2v7OXiS/tVht3NggYalbiQfNK5i82Ip1xkqODlhziHwF8RPGXh/9pb9oPxVoPwc8Ta9qk8XhiSTQVu7SK4tMabJgSlZZMk9hCJT6gHivWh8VfjeCSP2Xtb56/8AFX6Vz/5Erxv4KfEH4qWn7XXxu1Sw+A+q6hqmpf8ACPf2lpKeJNPjfSfLsXWLfKz7JfNUlxsJ24w2DQBt/AD9p/43eNNV8Sw6t+zrrEx0q4hjitLCdLOazDByVnF46F2O0EFVA65A79V46+J3x21mzfTtM/Z41u1sbu2lgvUvbiwuXYOMAoRdooGC2QytnI9MHoP+FrfHD/o1/XP/AAr9K/8AjlH/AAtb44f9Gv65/wCFfpX/AMcpSipKz2GpNO6M3wb8R/iT4Z8I6X4c039mbxp9j0myis7ffremltkaBFyfO5OAKwfj1+0T8YvB/wAK9S8RWH7PeuaXcWklssd1qt9a3Vsu+4ijKtFbzeaxYOVXb0ZlJ4BrsP8Aha3xw/6Nf1z/AMK/Sv8A45R/wtb44f8ARr+uf+FfpX/xyqlJybb3ZMYqKSWx434v+Onxc8Y6H8JbrW/hn4s+Gn2/4qaJZ3V0dQMEOqQOZhJbtETHOY3ADbXRoyF5Y/Ln7Or5C/aE8W/Ezx78Svgx4P134Maj4Tk/4WTp+sw3Nzr9jdLNFZLLJcKBE5wViZn567CACSBX17SGFFFFABRRRQAUUUUAFFFeW/GD426R4V8RL4I8J6TdeNfHlwm6Dw5pTjdAD0ku5j8lrFyPmfnkYB60Aeg+LNf0Twx4eute8RarZ6XpllH5lzd3cwjiiX3Y8ewHcnArxFvGfxO+OzG1+FqXXgfwHIcS+NNRtSuoapH3/s22flFI6TygdcquVrR8J/BPWPF/iG18a/H/AFe18UarbSedpvhq0Vl0LRW7FIm5uZRz+9lz14HANe3KAqhVGAOgFAHyP+3R8LvBnwv/AGB/F+n+FNMMc15eadLqOpXUhnvtSl+3QEy3E7fNIxJJ54GTgAcV9cV88/8ABU7/AJMj8Vf9fOnf+l0FfQ1ABRRRQAUUUUAFeKf8FDv+TR/En/X7pP8A6dLSva68U/4KHf8AJo/iT/r90n/06WlAHtdec/tff8mpfEr/ALFHU/8A0lkr0avOf2vv+TUviV/2KOp/+kslAHQ/Bn/kj/hP/sA2X/ohK6Wua+DP/JH/AAn/ANgGy/8ARCV0tABRRRQAV8//ALO//J9n7RX/AHK3/ptkr6Ar5/8A2d/+T7P2iv8AuVv/AE2yUAfQFFFFABRRRQB4r+0R/wAnOfAj/sN6v/6a5q9qrxX9oj/k5z4Ef9hvV/8A01zV7VQAUUUUAFFFFABWV418S+H/AAh4ZuvEPijWLPSdLsk3z3d3KI40HYZPUnoAOSeACa89+LXxv0/QfFB8B+BNFuPHPj2RcjRNNkAjsAf+Wl9cH5LaMcfe+Y5GF5zWZ4K+CGoeIPE1r46+O+tW/jDxDbP5unaNDGV0PQm/6d7dv9bIP+e0uWPGAMA0AZX/AAk3xT+PP7jwCL/4efD2bh/FN5b7NY1iP/pwgf8A4942HSeQbsEFVBBFepfB/wCGngz4Y+HW0fwfpCWizv5t7dyMZbq/lPWWeZstI5JJyTxnAAHFdbRQAUUUUAfPP/BU7/kyPxV/186d/wCl0FfQ1fPP/BU7/kyPxV/186d/6XQV9DUAFFFFABRRRQAV4p/wUO/5NH8Sf9fuk/8Ap0tK9rrxT/god/yaP4k/6/dJ/wDTpaUAe115z+19/wAmpfEr/sUdT/8ASWSvRq85/a+/5NS+JX/Yo6n/AOkslAHQ/Bn/AJI/4T/7ANl/6ISulrmvgz/yR/wn/wBgGy/9EJXS0AFFFFABXz/+zv8A8n2ftFf9yt/6bZK+gK+f/wBnf/k+z9or/uVv/TbJQB9AUUUUAFFFFAHiv7RH/JznwI/7Der/APprmr2qvFf2iP8Ak5z4Ef8AYb1f/wBNc1e1UAFFFFABXL/F7wnqfjTwdN4f03xnrPhT7VlZ7/RvLW7KEYKpI6t5ef7y4b0IrqKKAPnP4cfsoS+AdJm03wd8b/H2j29xM09wLZbENPIxyXkc25Z256sSccdK6L/hRfjX/o5D4mf99WP/AMj17VRQB4r/AMKL8a/9HIfEz/vqx/8Akej/AIUX41/6OQ+Jn/fVj/8AI9e1UUAeK/8ACi/Gv/RyHxM/76sf/kej/hRfjX/o5D4mf99WP/yPXtVFAHzz8RP2XdS8deE7jwz4s+PXxE1TSbtkae0uGstjlHDrnEAPDKp69qpeKPh2/h9PM1T48fHyKE3sVkkq3EDI80sqxRqpFryGd1APTnPSvpPOOTXz78VtUF74g8W2h1+RYo/F/hMW226Drbg3VqWaNH3Ipzyfl575xR9uK7tL72kHRleP4U6mbHUru5+OXx00+HT0UpJqOr2Nul0SOFjZrfrnC/Nt5I6jmsTRvC9lrEdm2k/tCfGy8N3ZpclV17TIzAzOY/Ik8yJQJg6lTGMkEYr3i3kuf7J1nT9A8aLrWrK4Z5L2W2kbSw6Db+7gjTjCl1VxliT82Onzzptlrei+Cvh/qdzd2Os3d62kSCCKIwyLatcLK91dOMjzDcXG3IX5yQeDuwldysvL8b/0/T1CWkG+qv8Ap/S/4Y2ZPAUv/CP+F9Xg+Ovx0ni8WY+xRrrOnI8Y+zSXOZN8IVRsibox5xXP29lp134b/tjT/jv8dLpPsSX32ePxBpPni3aRYxIY9m4Dcw6ivS/GNnpumeGPhl4cXVtOuLfSdWm0i4u78eXA7Q6beQvvQOMglT8m4ZzgnmvO9QmaxsPHVta+LdPVbmaCW8tL+xDS3ivLlPsk0bLFEquX/dI04+YtiNnOb0dRpbf1/wAD+tUpaRXf/g/8C39a+k/8M/az/wBHEfGP/wAHNp/8i1Q8SfsxJ4j0ltJ8R/HD4r6vpsk0Us1jeataPDMY5FlQMPswyA6Kfwr3mipGFYvxJ8MWPjX4e654P1Oa4hstf02fT7mW2ZVlSOWNkYoWBAYBjjIIz2NbVFAHhuk/s432maXbabY/tBfGGG1s4UggiXWrTCIqhVUZtewAFWP+GftZ/wCjiPjH/wCDm0/+Ra9qooA+fvHXwe1Dwv4TvNduv2gPjVcraINlvb6xZmW4kZgqRIDbAFndlUZIGSK5yy8O+Hbvy1h/ab+NKyS2xnRJr6CHdyiiMM9oF3kyIAM85yOOa9k/aO05L7wXp00s0ipZeIdKmESnCyP9vgVd3qBuJx64PavB/DHg/Vv7Uuo4havc2dyJpoBOA7wwfZIpZoycLIiPbyqxUkg7Rj5hWcpO/lr+CX+f3I0jFP8Ard9vwNy58E2drb+Grm+/aO+MlnD4mjjeFrjX9PQ2vmx74hMPI+UOfkBGRvKrnLCsXwX8JPDx8af29ovxh+NNrqvju4ggvNQXWNM8y6MNvMYDOqxF1AjhlCkr2xXfeJLPxXqPg34RWujahp9pb7rN4oLuEzRXlxHp00yecBgrGjRKRtO7dhuNgBx/hLYw2nxUuluL+EaT4Yl06e21QIQupkpeWRVF6BBNcOA+458s4GDmuicUqsoLo39yOeMn7NSf8qfzd0vxsY+veGI9H1y40y8+Ovx13Q6yNHWYa5paxy3Btlufl3xqQojcEsQACD7ZveCPAT+KfEEWm6Z8fPjb5dxpz38F7/b+mSQSos3kkK0UT5O7PtweatfEmC2vbr4lxNqltazR68mxbeZVvyPsFi/7ti26FS0a5aOOSQ4GB8uD0PwAvXvPiVp3/FQaTq1ungxRZ/YNOaya2g8+PZFNEW4kHIPyRdP9WvSs6Pvcl+qv/wCU3L81+nrpV91Nr+veS/J/r6S/8M/az/0cR8Y//Bzaf/ItH/DP2s/9HEfGP/wc2n/yLXtVFAHjXhf9nq2034neHfHGs/FX4ieKLzwvLPLp1rrmpW81srTQtC5KpApztc4II5HpkH2WiigAooooAK574ueKV8D/AAr8SeM3sTfL4e0i51E2ol8sziGJpNm/B2524zg4z0NdDXnX7Xn/ACan8Sv+xQ1P/wBJZKAOO0H4ufHvWdCstXsf2aUe11C2juYGbx9ZKSjqGUkGPjgirf8Awsr9ob/o2aL/AMOBZf8AxuvRfgv/AMkd8J/9gGy/9EJXTUAeKf8ACyv2hv8Ao2aL/wAOBZf/ABuj/hZX7Q3/AEbNF/4cCy/+N17XRQB4p/wsr9ob/o2aL/w4Fl/8bo/4WV+0N/0bNF/4cCy/+N17XRQB86/FD48fG3wH4B1Pxf4h/Zujt9L0mHzrqUeO7STYm4LnasRY8sOgNT6f4j+NV1Yw3UP7K/hERzxrIgPjW1BwRkZ/0T3rf/4KEf8AJmPxB/7BP/tVK9V8K/8AIr6b/wBecX/oAoA8Z0/xZ8frESCx/Zm8M23mjD+T47t03D3xa89aoxan8aI9Cm0Vf2VPB5024jWOezbxtbNDKigBVZDaYYKAAAeAAAOlfQdFAHz/AKVq/wAbNLt7K30z9lbwhYw6bM89nFa+NraJLeR1ZXdFW0AViHcEjk7j61e1Pxl+0JqVjJZah+zZ4duraXHmQz+PoHR8EEZU2uDyBXuVFAHiv/CwP2kf+jdtE/8ADhQ//I1c18QPjz8d/B2oaDZar+zlp81x4k1H+zdNhtvH0BM1x5bSBCWtwF+WNzkkDjryK+j68V/aw/5KR8FP+ygJ/wCkN1QBy6/Hr9oRvF7+Fh+ytF/bEdiuoNZf8LK07zBbtI0Yk/1eMb1YfhXqXwL8W/E/xT/an/Cx/hH/AMIB9k8n7B/xUttqv2/d5nmf6lR5ezbH9773mcfdNfP9np/xNs/+Cs2oa/ePp0Wg/wDCI+dMrX2BFo+4wpnI4f7VEZSvQDPNfXOm3lnqFjHeWF1BdW0wzHNBIHRx6hhwaAJ6KKKAKeu6Vp2taabDVLSO6tmkjkMcnTcjh0b6hlUj3FVNa8K+GdX0P+xtU8P6bd6f9na2FtNaI0axNjKAEcKdq8D+6PQVr0UWQXaM2+8P6HeafaWN1pNnNa2GPssLwqUgwhjwo6AbGZcf3WI6Gq+r+D/CWq31ne6p4X0W+udPVVs57nT4pZLYKdyiNmUlACARjGDW1RRd3v1CytboV7GwsrKa6mtLSGGS+m8+5eNApmk2qm9j3O1EGT2UDtR9hs/7U/tL7JD9s8nyPtHljzPLzu2buu3POOmasUUAFFFFABRRRQAUUUUAFedftef8mp/Er/sUNT/9JZK9Frzr9rz/AJNT+JX/AGKGp/8ApLJQBv8AwX/5I74T/wCwDZf+iErpq5n4L/8AJHfCf/YBsv8A0QldNQAUUUUAFFFFAHjf/BQj/kzH4g/9gn/2qleq+Ff+RX03/rzi/wDQBXlX/BQj/kzH4g/9gn/2qleq+Ff+RX03/rzi/wDQBQBfooooAKKKKACvFf2sP+SkfBT/ALKAn/pDdV7VXiv7WH/JSPgp/wBlAT/0huqAKeqWNvqP/BQLUbS5sre8RvhTbMLe5/1UjLq0xUNweMgdj9DXTfsqx3Fn4X8SaPe6Da6Peab4pvkuYrCcyWcjyMs2+3yq7U2yqNu0YYNnnNeYax4n+GniT/go5e+FNY1DS9SabwDDpX2GdC+b+LUZZzDgjiRU2yfTkV9K6Pp2n6Tp8dhpdlb2drFnZBbxCNFycnAHHJJP40R0bfdW/FP9Nv8AIJapLzv+DX6lqiiigAooooAKKKKACiiigAooooAKKKKACiiigArzr9rz/k1P4lf9ihqf/pLJXotV9UsbLU9MuNO1Kzt7yzu4mhuLa4iEkU0bDDI6NkMpBIIPBBoA8x+D/wAWfhZb/CXwtb3HxL8HxSxaHZpJG+vWysjCBAQQXyCD2ro/+FvfCb/oqHgz/wAKC1/+OVF/wpj4Pf8ARJ/A/wD4Tlp/8bo/4Ux8Hv8AolHgf/wnLT/43QBL/wALe+E3/RUPBn/hQWv/AMco/wCFvfCb/oqHgz/woLX/AOOVF/wpj4Pf9Eo8D/8AhOWn/wAbo/4Ux8Hv+iUeB/8AwnLT/wCN0AS/8Le+E3/RUPBn/hQWv/xyj/hb3wm/6Kh4M/8ACgtf/jlRf8KY+D3/AESjwP8A+E5af/G6P+FMfB7/AKJR4H/8Jy0/+N0AeU/t3fE34b6v+yL4603SfiD4Vvr250wJBbWutW8ssreanCorksfYCvf/AAr/AMivpv8A15xf+gCvAv23vhd8M9C/ZO8davofw68J6bqFnpLSW15ZaHbQzQtvX5kdUDKeeoNfQWggDQ7MAYAt48Af7ooAtUUUUAFFFFABXhH7aGr6VoPi/wCDmsa5qdnpmnWnj1Huby9uFhhhX7FdDc7uQqjkck17vXhH7aGkaVr3i/4OaPrmmWep6dd+PUS5s723WaGZfsV0dro4KsOBwRQBwVivwHg/b2vPjh/wt74d/ZJfDSRIP+Eostw1EnyGkA8zp9mQD6ua+lPAvjvwR41+1f8ACG+MvD/iL7Ds+1/2RqkN39n37tm/ymbbu2PjPXacdDXzbYn4Dz/t53nwP/4VD8O/ssPhpJkP/CL2W46iD57Rg+X0+zOrfVDX0l4F8CeCPBX2r/hDfBvh/wAO/btn2v8AsjS4bT7Rs3bN/lKu7bvfGem446mgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDx/9v7/kzX4hf9gZv/Q0r1bQ/wDkC2f/AF7p/wCgivKf2/v+TNfiF/2Bm/8AQ0r1bQ/+QLZ/9e6f+gigC1RRRQAUUUUAFeK/tYf8lI+Cn/ZQE/8ASG6r2qvFf2sP+SkfBT/soCf+kN1QBxmoeDPAujf8FHr/AMTt4YEt7b/D+LWUa1ikknkv5NQlgMqqDzI0YCegX0Ga+gPh54t0vxnoL6rpSXkKw3Utpc295btDPbTxMVeN0PQgjtkEEEEivH/Emq2ejft9alfX815DCPhVbIZbS0kuJIy2rTKGCIjngkclSB1PFdz+zfpeu6R4X1i11a9vr6zfXrqfR7vUbUQXk9rIVfdMoRCW8xpQGKglQpI5ojq36fqv8/6tqS0S9f0f+R6JRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeP/t/f8ma/EL/sDN/6GleraH/yBbP/AK90/wDQRXH/ALTXgjUviR8BfFHgbSLq1tb7XLA20E12WESMWU5YqCccdga4mxh/a6t7KG33fBRvKjVN2NVGcDGaAPcKK8U/4y6/6op/5VaP+Muv+qKf+VWgD2uivFP+Muv+qKf+VWj/AIy6/wCqKf8AlVoA9rrxX9rD/kpHwU/7KAn/AKQ3VJ/xl1/1RT/yq1yHxR+GP7UfxJ1fwu+r+MPhn4VHhrVxqltqehWN5d3MMoieMEQ3P7qQYkb5WI7HPGCAc5petfFKT/grdeaNIun/ANjx+ExE8wtDltIDmeNgd3+sF1J5RbpjPy5r69r5tX4CftBr4xfxWP2qIv7ZksF09r3/AIVrp3mG2WRpBH/rMY3sx/GvUvgX4S+J/hb+1P8AhY/xc/4T/wC1+T9g/wCKattK+wbfM8z/AFLHzN+6P733fL4+8aAPQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzz4/wCvXVlb6B4d06S8in17WrWG5ubSYxPa2yyKztvHI3kLFxyfMJHQkeh1yXxk0DWfEPhuzttBkto7221KC5V7hiqqEJyeAckZBx3xUTUna3dfddXKVrSv2f32dvxPEfDPxN13VtIm8Ur4n1g3wi0rTDb2en745pJzbPPKkZhaMGM3YVGydxBU54rqvj14zuvD/wASLKxsvF9vYXV74dv3mtpo5I1WJYgYju8zaLozFRHwDtMowx21fm+FWo2W200rTdLnhg1vTHtLy5vGjmtbK2isRIVURsGdjZ42kqPunPauq8ZeEry58fafr2k6Zo86Q2F5FOl7wpuJZbV45mAU79otz3ByEAI6rc0nou7/APSf83166ekwlZ3a7fn/AMD9Tjfgz4h1LVfibp9vLe3ht4rLUYZI21GeZLhohpxEjrI7AODPKOAODXDeIfEviXTrGHUrDXtQnmXVtYtWsBqF5cPIWv7hIp5Y4pQY7eBYlGFGSGbap2AN6f8ADvwB4t8E+Mb5tMk0e60vWtYXU9W1Ge6kjvZ2NvslUQLCU5mAcfvQFX5cccwJ8J9evvAV1oF14gsNLabWb7UYpLTTzcFDLeSTxM6yP5UrKGQ/PEcEcdM05+9y/j+vbv8AhpbQUFypq/8AWtv0/wCCWf2fdVs9V8VeJpNM8Vr4jsUt9N8u8g1B7m3eTyX81o90j7MuDlQeCMHpXqVcj4C8N63pHjTxHrGr3tjdLq62gha1gaE/uo2Vi6FmAJLdmOeeBXXU5O7FHRIKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k="]
math
multiple-choice
8
一空间几何体的三视图如图所示,则该几何体的体积为( ).
$2 \pi+2 \sqrt{3}$
$4 \pi+2 \sqrt{3}$
$2 \pi+\frac{2 \sqrt{3}}{3}$
$4 \pi+\frac{2 \sqrt{3}}{3}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAElAgsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCtrWoWmk6Pd6rqEvk2ljA9xcSbC2yNFLMcKCTgA8AE0mi6jYaxo9rq2lXkN5Y30KT21zA4eOaNgGV1YcEEEEGrVeORf8WM8aCE/J8M/El7iI/wDLPwtqEr/dP9yznduP4YpWxwsg2gHsdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV5J40uL34Q+PLrxsZri58B+IbhW8Rwu5c6BdEBBfx56W74VZlHCECUceZQB63RTYnSWNZI3V0cBlZTkMD0IPenUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/jTXk8RfFKH4U2+kWGrabLpUt34vN4hkjt7OVXiggABx5s0gY4bIEcMhxllNdD8UPF2m+BfAOp+KtWWSS306HcsEIzLcysQsUMY7ySSMiKO7MK4Twrv+EHwP13x/wCOVF14m1Rm1nXxbnc097IFSGxgPdU/c20Q74B6saAPKtV+LPjL4K/GTQPh3f39rrPw+0jWItK1HWbjfJfW0N5ayzWUEzHjdbLbSPJLlt0LRMwDEk/V9fPd18Ols/D/AMM9B8bwQahqni/xlqF74t7pc3N14f1cTRg/3EQrCn+xEld3+zXrGpJ4f1H4feI7p7jxB4DuV0y5uJT899aFd1ndn1MkO0Mf+ekco7UAek0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/8AFTxJoPhL4e6rr3iWJp9MtrcrNapCJnuy5CLAkZ4d5GZUVT94sB3roK8nuP8Ai53x8W3H7zwr8NbkSTH+C/11kyi+jLaxOGP/AE1lXvFQBz//AAl9p+zfZz6Z41kv0+HBga48Oak0L3EmjkDJ0qfbuJAz+4YnlQYycopb3S1mhubaO4t5UlhmQPHIjBldSMggjqCK+bv20v8Ai4WgePvD6/vNA+HPg3UtU1T+7cavLYTfZID6+TEzTkdmktz2r0P9nOebwxda18HtSldpvB7JJockrEtdaLMWNqcn7xhKyW7f9cVJ++KAPUqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKq65diw0W8vj0tbeSU/wDAVJ/pVqvGvix8aNA/4R3xhp9p4f8AFd/omirLpeveKNMsIZrLR5mGyUsjTJPP5AcPJ5EcgUZycggHWw7N/wBfh6nxx+zX+1z4l8ffFjwN4a+MVjeeILLR7tp7FtD0wyXV5qGAlvPcwof3ixK0rARoDuKvhigr7V8Un/hYn7Qmm+F0/eaB8PvK1rWP7s+qSKfsVuf+uSb7hh2Y25rmvhb8MPhH+y98EtQ8X+GdN/tW7jsFkfV5Nst7q8j7RDDEwGFEsjRoqJgEsucnmvR/gD4RvvCHw8ii1yWO48R6xcSat4huU+7NfzndKFP9xPliT0SNB2oaadmSmmroqfGT/kovwn/7HO4/9MOr1kfHL/ihviBoPxgg+Sxt9uh+LMdDp00g8m5b/r3uGVie0c05rX+Mn/JRfhP/ANjncf8Aph1eu08RaVp+u6BfaJq1rHdafqVtJa3dvIMrLE6lXU+xBIoGXKK81/Zr1XULfQ9S+HHiG6kuNd8B3K6dJcSn576xZd1ldn1Lw4Vj/wA9IpfSvSqACiiigAooooAKKKKACiiigAooooAKKKxfG3jDwl4N0+K/8X+KNF8P2txL5MM+rahFaRySYJ2K0jAFsAnA5wDRsB84/tEftk6P8Ovi34t+E82ivba5Yx2sOi6xLKrWImuYIXD3QOGjSIzbyV3blQjg9fWNJ1Hwr8IP2ZY9V0S+XxDY2Nl5tvdW8yyya/fTvwwdSQ8tzcy9QSN0npXz/wCIP2QLf42/tTeI/i7408QW7eCdXntp9IttJullk1eBbaFFkMyErHE2zgqSzDps4J9k0Hwv4e1D4waT4B8KaPaab4J+FKpfXFpaRhYZdYmQm3iP94wxO07E5JeeFicihpp2YbkPjjwhd+Df2FPiJZ6xOl1r+peEta1PX7tOlxfz2krzEf7CkhEHZI0Hauh/aOt5/Dc2jfGDS4ZHuPBjuNZiiUlrvRptou1wOWMW2O4UesBA+8a0f2sf+TWfiX/2Jmrf+kUtd7cRRT28kE8aSRSqUkR13KykYIIPUEUAJZ3EF3aRXVrNHNBOgkiljYMrqRkMCOoIIOakryz9nWWXwrqOtfBzUJHZvCbJPoEkjZa50WYt9mwT1MDLJbn2iQn74r1OgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvAfGctz8VtR1v4RfC3T7fQ/B63s9v468U29ukSSPISbmxsVAxLcyFmEs5+WPc33nIA3P2pv2lPhv8DNJZfEF/8A2hr8se600GxcNcy56NJ2iT/abrztDEYrmbXTPgxd/sx2fxp8TfA/wHJqGs6PDqpsY/DlpLLd3VyFMMCu0e55JJJY0BPVnzSt72quv+G37ry6u19Lpu7S0dn/AFt5+fr1s11WoWdt4y+O2keDLGIDwv8AC+KDUL+MHKS6m0eLK3Pr5EW6cj+89ue1evVxH7PPgmXwH8MbTS9Q8h9ZvZH1DW5oECxyXsx3SBAOBGnyxoB0jjQdq7eqk7tu5MVZJWPP/jJ/yUX4T/8AY53H/ph1evQK8/8AjJ/yUX4T/wDY53H/AKYdXr0CkM8p+O4PgfxxoPxit/ks7HGi+KwOjaZPINlw3/XtOVfPaOSevVgc8iqmvaZYa1od5o+q2sd1Y6hbyW11byDKyxOpV0I9CCR+Neffs16nf2Wj6n8M9fupLjWvAdwlh9olOXvtPZd1ldE9y0Q2Mf8AnpDLQB6ZRRRQAUUUUAFFFFABRRRQAUUUUAFeV/Ge68AfDvxonxe8UTahfa42mjQtB0iBBcTXMjyFzFY24Xe1xKWVWIONqLnaoJr1KV0ijaSR1REBZmY4CgdST2rwjRtN8A/Gj43ap8QPAPxV8SJqvhK3XQ2utIi064sbYvudxbG6tJvnYYDyRnBGFyQCKlrVf10a/Hbyvez2b6P+uqf4b+drXW5Z+Fi6h8Dv2W7/AFfxJo8NpqE19d6lZ+GbCUPHZz3tyWttLgI+UnzJY4/lG3czEcc16B8CfB9z4L+HVtp+qXCXeuX0smo69eKOLq/nbzJ3H+yGO1R2REHauG0TSr7xV8crXw9qHiXVPEui/DOQX97fanHbI91rM8f+jwkW0MUZFtbuZPuZ3XEJJJSvaa0k7slX1b3d3827s8//AGsf+TWfiX/2Jmrf+kUtegV5/wDtY/8AJrPxL/7EzVv/AEilr0CpGeX/ALSFtceH/wCx/i7pMEkl54JkdtVihUl7zR5dovI8DljGFS4Uf3oMD7xr0uxube9sYbyznjnt7iNZYZY2DLIjDKsCOoIIOafNHHNC0UqLJHIpV0YZDA8EEdxXlv7O8knhLWNb+Dd87f8AFLlbvw68hyZ9FnZvIUE9TA6yW59FjiJ+/QB6pRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVxnx18YXnhDwSDolvHeeJNauU0vw7ZP924vZc7C3/TONQ8rnskbmgD5E/aY/ZL0b42fHDxdqXwruodCutFRRrN1eySTWmqavJiQwIckwmOIo0jDcN0qKEBDGvcPhb4fu9Y8ReBPh1eqh0r4N6Bpz60qNujn1z7IkdvDkcMII98x/2pYD2rtmGlfAj9nuWQefq0+mQl2Zv+PnXNTuJOp9Zbi5lA9i/oK1vgP4PuvBfw6t7DVrhLvXtQmk1LX7xOl1fztvmYf7IY7EHZEQdqAOyooooA8/+Mn/ACUX4T/9jncf+mHV69Arz/4yf8lF+E//AGOdx/6YdXr0CgAryn4+A+CfGOg/GS2BW10r/iUeKgv8elTyDE7f9e05SXPaNp/WvVqra1p9lq+j3elanbR3VlfQPb3MEgyksbqVZWHcEEj8aALKkFQQcg9CKK8y/Zr1C907TNU+F+u3Mlxq/gOdLOKeY5e+01wWsbknuTEDEx7yQSV6bQAUUUUAFFFFABRRRQAUUUUAfKv/AAVG8GfEjxb8PtJsPBPje4gj1S/i0xfCECLE2vTyMT/r8jhEV3ZJCIwsbMSCBXI/8E7bfX/gV+yv8QtS8Y+GdQstctPE5tLXSLmIxzX101vbJbwx5+95ksyKrDIO7IOK+gPhb/xcf4rX3xSn/eaDonn6L4PU/dmAbbeagPXzHQQxt/zziYjiWnX3/Fw/2jIbIfvPDvwzK3Fx3S51uaL90nofs9vIXI7PcxnqlAHT/A3wfN4J+HNppWo3K3ms3Ukl/rl8B/x+X87GSeQf7O9iFHZFRe1dfRRQB5/+1j/yaz8S/wDsTNW/9Ipa9Arz/wDax/5NZ+Jf/Ymat/6RS16BQAV5f+0laXWhw6R8WtHt5Jb/AMDyPLqEMK5e90iXaL2HA+8VVUnUd3t1H8Rr1CmyIkkbRyIro4IZWGQQeoIoAj027tdQ0+3v7K4juLW6iWaCaNtyyIwBVlI6ggg1NXlf7Pbv4P1/XPg1eM3l+HCt94aZz/rtGnZvKjB7m3kEkB9EWEn71eqUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVneLNe0Xwx4du9e8Q6pa6ZpljGZLm7upQkca+5PqcADqSQBzXm0Go/En4qASaG138PvB8v3NSnt1OuapH/ehhkUpZxsOQ0qtKRg7I+DQB2/xB8feC/A1rHP4t8TabpPnnFvFcTgTXB/uxRDLyN7ICa5Rfi9f6rz4N+E/jzXo2+5dT2EWk27D1zfyQyEe4jNb/w7+GHgjwTcyX+iaJG2rXH/AB961fO13qN2e5lupS0rfTdgdgBXKeKvE2u/EzxHeeBfhvqMunaPYTG38TeL7fGbdh9+ysGPD3PZ5eVhz3kwFAOH1r41fEjxh8RLX4WaF4Vh8JTalqbaTf8AiqLVI9TXSJxaT3bW6IIxG10YbaTje4iJUuOQDu6J8XPiT4d8af8ACt/Fvw4uPEWvWdoZ4dS0bUbW3/t22U4N1BBcvEoYZXzIlkJRj02MhO/4s8M6F4O1z4N+HPDenRafptj4wuFhgjyeug6uSzMeWZiSWZiSxJJJJrrPi14F03x34ejs7i5n07UtPnF3o+sWmBc6XdKCFmiJ4PUhlPyupZWBBNAHOw/HXwTZzpb+MrbXvA80jBQfFGkyWdvk8Y+1jdbHn0lr0bT7u1vrKK8sbmG5t5lDxTQyB0kU9CrDgj6VwXwo8aXmtXt98PviBY2tn4y0uDdeWyr/AKLq9qTtF7ahvvQv0ZDkxsSjfwlqmqfBnTtJvJtY+Ferz+AdVkYySQadEJNJvH/6eLA4iOecvF5cnP36APTqK838HfEy+tPFFt4K+J+kQeGvEd2dmm3MMxk0vXCOv2SdgCsnGTBIBIB03j5q9IoAKKKKACiiigAooooAKKKKACiiigAryf4W/wDFx/itffFKf95oWiefovg9T92UBtt5qA9fMkTyY2/55xMRxLV39obVtS1BNM+Fvhm7kttc8aGSKe7gPz6XpiY+13ef4W2usUZ/56TIf4TWx4+1rRvhL8GZbrTNLX7LolnFY6NpVvwbiY7YbW1jHq8jRoPrmgDnNW/4uH+0ZbaSP3nh74alL6+/uXOszRn7PEfXyIHaUj+/PCeq16tXH/AvwfP4J+HNrpmpXK3mtXkkmoa7eqP+Pu/nYyTyD/Z3sVUdkVB2rsKACiiigDz/AOMn/JRfhP8A9jncf+mHV69Arz/4yf8AJRfhP/2Odx/6YdXr0CgAooooA8q+P6t4M8VaF8ZLVStvon/Es8UBR/rNIncZmPr9mm2TZ7J5/wDer1RWVlDKQysMgg8EVBq1jZ6ppVzpmoW0dzZ3kLwXEEi5SWN1KsrDuCCQfrXnP7Nl9eaTY6t8KtbuZJtU8CTJbWs8zZe+0qQFrK4J/iPlq0LHvJA570AenUUUUAFFFFABRRRQAV5p+0Nq2pagmmfC3wzeSW2ueNDJFPdwH95pemJj7Xdj+6211ijP/PSZD/Ca9B13U7DRdEvNY1W7jtLHT7d7m6uJThIYkUszsewABP4V55+zzpl/rEmp/FjxHaS2+reMRGbC0nGH0vSY8m1tyP4XYO00g/vzFT9wUAbHxC1rSvhL8GXm0bSkMWkWkOnaFpEHH2m4YrBa2qD/AGpGjT2BJ7GrHwP8HSeB/hzZ6Pe3QvdWmaS91q+A5vb+djJcS/QyM20dlCr0FctP/wAXE/aNSAfvPDvwyIkk7pda3PF8q+h+zW0m72e5XulerUAFFFFAHn/7WP8Ayaz8S/8AsTNW/wDSKWvQK8//AGsf+TWfiX/2Jmrf+kUtegUAFFFFAHmH7Sdld6PZ6T8V9Ft5JtS8CyvcXkEK5e90qQAXsAA+8QirMo7vboO9ej6Xe2mpaXbajp9xHc2l5Ck9vPG25JY2AZWU9wQQR9andVdCjqGVhggjIIryv9n5m8GeJtd+DV2xEOg41LwwWP8ArdHndtsQ9fs0u+HHZPIP8VAHqtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWZ4y8Q6N4U8K3/iPxBfx2OmabA091cSZwij0A5JJwABkkkAAk1p15JNEPix8aZYZgZPBfw8vVDRn/AFera4uG+b+9HaArx0MzesNADvA/hbWPiL4hs/iL8SrCa1tbWX7R4W8J3IG3TB/Bd3adHvGByFORADgfPuavWaSR1jjZ3YKqjLMxwAPUmvG76/1L47Xs2k+H7u5074ZwSNFqWs27mOfxOynDW1o45S0yCJJxzJykZ27noAl1rXdY+MmsXXhjwPqNxpvgqzma317xTaOUl1F1OHstOcdACCslyOF5WPLZZPUPCuh6P4Z8OWegaBp1vp2mafCIbW1t02xxIOwH6k9SSSeam0TTdP0fR7XStJsrexsbKFYba2t4xHHDGowqqo4AAHQVaoA8/wDjJ/yUX4T/APY53H/ph1evQK8/+Mn/ACUX4T/9jncf+mHV69AoA4/4weArbxtpdrNbX8mj+ItFlN1oOuW6BptPnxg8HiSJx8skR+V1ODggEVfg749ufEc174X8VWEej+NdBVRq2mo5aKZGyEu7VjzJbSYO09VOUbDLz3VcT8YvALeLIbLWtC1AaL4v0Fml0PWFj3eUWxvgmUY8y3kAAeP6MMMqkAG/468L6D4y8L3Xh3xLpsOoabeLiWGTPBByrqw5R1IBVlIZSAQQRXA+Adf1/wABeNLX4a+PtSn1S01ElfCXie5A334VSxsrthwLtFUlX4EyKT99WB6H4O+Pl8YWt7pmraedF8V6E6wa7oskm5raQjKyRtx5kEgBaOQcMMg4ZWUanxQ8H6T478FXnhvWPNSK42vBcwNsns50YPFcQv8AwyRuFZT6j0yKAOgorhPgL4r1XXvD97oXivy08W+Fbr+zddWNNiTuFDRXca9o54yki+hZl6oa7ugAooooAKKKKACiiigAqpr2p2Gi6Jeaxqt3HaWGn273N1cSnCQxIpZnY9gACfwrmvi1c+PdKisde8FWlrrEOns51XQJAI59RhO3m2mJASZNpKq3yPuKkqcMOb182Xx08MeH49A1O3fwg2qeb4qtJw8V65t8MunywlcxkzBPOV8Ham3BEmQAT/s86ZqGryan8WPEdpJb6v4xEZsLScYfS9JjybW3I/hdgzTSD+/MVP3BVbUP+Lh/tGQaeP3nh74Zlbq67pc61NH+5jPY/Z7dzIR2e4iPVK674yeMIvAnw51HxGbVry6hVYdOsUPz315Kwjt7dfd5XRfbJPaofgd4Pl8EfDmz0i+ulvdYuHkvtbvgP+P2/nYyXEv0LsQo7KFXtQB11FFFABRRRQB5/wDGT/kovwn/AOxzuP8A0w6vXoFef/GT/kovwn/7HO4/9MOr16BQAUUUUAFeV/tBI/g7xFofxks1Ii8P50/xMqD/AFujzuvmSH1+zyiOfPZBMB96vVKg1KztdR0240++t47i1u4mhnhkXckqMCrKw7ggkH60ATRuskaujBlYZVlOQR6g0teYfs23l1otvq3wn1m4km1DwNKkNjNM2XvdJlBNlMSfvFUV4GPd7dj3Fen0AFFFFABRWX411PUdG8LXuqaVoVxrl3ax+YmnW0qRzXIBG5ULkLu25IBIyQBkZzXP2/xL0PVfhHqHjzwtb32vR2NvKf7MtLZ/t32mMYNo8JG+OYNhWVgNucnjmgDm/i3/AMXG+J2n/Ca3/eaLpyw6z4ycfdeEPm0sCfWaRC7j/nlCQeJBXXfGjxgvgX4cahr8Vr9tv1CW2lWCn5r69mYRW8C/78roCewyegqn8B/CF/4U8GyT+IJo7nxRr902q+IrqPlZLyQDMaH/AJ5xIqQp/sRr3Jrn/wDkon7Rv/PTw78MT9Uutcni/I/ZraT8HuvVKAOq+Cfg4+BvhzY6Hc3X27U2L3esX+Ob6+mcy3Ex/wB6RmwOy7R0FdZRRQAUUUUAef8A7WP/ACaz8S/+xM1b/wBIpa9Arz/9rH/k1n4l/wDYmat/6RS16BQAUUUUAFeY/tKWF7penaV8U9DtpJ9W8BzPdzwQjL32mOAt9bgdz5aiVR3kgj9a9OpGAZSrAEEYIPegCvo+oWWq6Ta6pptzHdWd9AlxbTxnKSxuoZWU9wQQfxqzXlPwBJ8FeLte+Dd0Stto/wDxNfCxb+PSZ3P7lf8Ar2m3xY7RtB616tQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByPx28WXHgn4T6x4gsIVuNTjhW30m3bpcX0zrDbRY/wBqaSMH2Jqb4W+GdP8Ah18LNO0F71Wi0q1aS/1C4cL9omJMlxcyMeAXkaSRif7xrkP2gtQsW+JXw50bVry3s9LtdQvPEupz3EgSNINPtjtLseFVZ7m3ck9NgqhZ2WpfHi8i1LW7a5074YQyCSw0qdGin8VMDlbi6Q4KWeQCkJ5l4ZwFwhAEJ1D4+3G1Dc6d8Ko3+ZhuiuPF+D0HRo7D34af2j+/7FY21tZWUNnZ28Vvb28axwwxIESNFGFVVHAAAAAFPiRIo1jjRURAFVVGAoHQAdqdQAUUUUAef/GT/kovwn/7HO4/9MOr16BXn/xk/wCSi/Cf/sc7j/0w6vXoFABRRRQBwfxi8B3mvXVl4u8IXsOkeNtCRhpt/IpMN3ETl7K7UcvbyEf7yNh15GDe+EPj2z8caPc77KbSdd0ib7LruiXTA3Gm3GM7WI4eNh8ySL8rqQR3A66vPfi94G1S81m28f8AgKa3sfGukw+UnnErba1a53NY3WP4CclJMExOdwyCysAZ/wATFHg747eE/HcB8ux8SMvhXXsfdYvvksJm91n3wg/9PY9BXqVeN/EjxDZfFf8AZZ8XT6JFPYa3pVnLLLpl4u260rVbPbcxwzKOjLLFGQw4ZSrKSCDXqXg/WIPEPhHS9ftRiDVbGG8iGc/LIgcc/RhQBpUUUUAFFFFABRRRQBj+NvFnhXwdpUep+LvEuj+H7GaYQR3Wq38VrE8pVmCB5GALFVY4znCk9jXiPxH8bfCSLxNJ8Qfhr8bvhvpfizYq39rP4ptFsPEMSj5YbtVkysgHCTqN6dDvTK1658b/AB5pPwy+E+u+O9bYfZNFs2n8vdgzyfdjiU/3ncqo92r4a/4JW/tDatqfx48TeDfG2pmZ/Ht5NrFnI7YVNQwWkjUH7qvGOB28lVHWgD1a1/af+DvxB+MmiXfibxbY+H9G8E2xvmsb6YSLdazIZIRski3xzR28SyMHRirNcIw+7XrH/DVX7PH/AEVjQP8Avt//AImuh8Of8nTeMv8AsTPD3/pbrdegUAePf8NVfs8f9FY0D/vt/wD4mj/hqr9nj/orGgf99v8A/E17DRQB49/w1V+zx/0VjQP++3/+Jo/4aq/Z4/6KxoH/AH2//wATXsNFAHzX8Uf2lPgTqPjj4b3dl8TdEmg0nxTNd30iu+LeE6NqcIdvl6eZNEv1cV2f/DVX7PH/AEVjQP8Avt//AImvYaKAPHv+Gqv2eP8AorGgf99v/wDE0f8ADVX7PH/RWNA/77f/AOJr2GigDx7/AIaq/Z4/6KxoH/fb/wDxNH/DVX7PH/RWNA/77f8A+Jr2GigD5X+Mn7SHwN07xx4Y+JXhn4kaPe32k3A0vWbO2MjSXulXLqsmFC/M0EoinH+ykoH36+p1YMoZSGVhkEHgiuA/ax/5NZ+Jf/Ymat/6RS16BQAUUUUAFecfEb4f6rb+J5PiF8M7m20zxWyKuoWdwSth4iiUcRXQUfLIBwlwoLJ0IdPlr0eigDyfVvjhpY+FesaxZaZcQeLtMlj01vCl9hL2PVJ2EdtbsoPzJJIylZUJRk3MDgHHXfBbwcPAvw5sNAluvt2oDfc6rfkfNfXszmW4nP8Avyu5A7DA6CvOP2pvh1pvin4u/CbWotW1LQdYHiG605dT0lLYXKxHSr+5HzTQyZKvbAKCCAJJDjcVZd3/AIU74g/6L78VP/AjSv8A5AoA9Uoryv8A4U74g/6L78VP/AjSv/kCj/hTviD/AKL78VP/AAI0r/5AoA9Uoryv/hTviD/ovvxU/wDAjSv/AJAo/wCFO+IP+i+/FT/wI0r/AOQKANT9rH/k1n4l/wDYmat/6RS16BXj3ib4DX3iDw5qGg6z8c/ijd6bqlpLZ3tu9zpYWaGRCjoSLEHBViOD3q7/AMKd8Qf9F9+Kn/gRpX/yBQB6pRXlf/CnfEH/AEX34qf+BGlf/IFH/CnfEH/Rffip/wCBGlf/ACBQB6pRXlf/AAp3xB/0X34qf+BGlf8AyBR/wp3xB/0X34qf+BGlf/IFAFj9pTTb6w0nS/idoNrJcaz4Dne+a3hGXvtOdQt7agdy0Q8xR/z0hjr0LQ9SsdY0Wz1fS7qO6sb+3S4tZ4zlZYnUMrqfQgg/jXmp+DmvkYPx9+KZB/6eNK/+QKj/AGS9AfwTo3i74cwa5qmr6T4M8SLp+jy6o0TXEVtJptheGItHGgZVlu5tvy/KpVRwoAAPWKKKKACiiigAooooAKKKKACiiigAooooA+Tv2s/EfgLSf22PA8XxX1Oy/wCEVg8ONss5bpI0iupr1dkt3GzZnti1tH8oUhXjV2BVSV9x/wCF7fBD/osnw/8A/Cosv/jlZvim3tx+1poMOoQRzWev+BtVszHKgdJTFd2TNGynggpM/B6gGszSbm4+BOt2+g6pPLN8MtRnWHR9Rmcs3heZzhLO4c8/ZGJAilP+rJEbHaUIAOl/4Xt8EP8Aosnw/wD/AAqLL/45R/wvb4If9Fk+H/8A4VFl/wDHK9AooA8//wCF7fBD/osnw/8A/Cosv/jlH/C9vgh/0WT4f/8AhUWX/wAcr0CigDwf4sfGf4PXnjz4ZXFp8V/A88Nh4tnnvJIvEdoy20R0TVIw8hEmEUySRpk4G51HUiu4/wCF7fBD/osnw/8A/Cosv/jlHxk/5KL8J/8Asc7j/wBMOr16BQB5/wD8L2+CH/RZPh//AOFRZf8Axyj/AIXt8EP+iyfD/wD8Kiy/+OV6BRQB5/8A8L2+CH/RZPh//wCFRZf/AByj/he3wQ/6LJ8P/wDwqLL/AOOV6BWf4q13R/DPhy81/X9Rt9O0zT4TNdXVw+2OJB3J/QDqSQBzQB4F8ZvH3wlTWJPiL4A+L3w6/wCEmgtfs+p6ZJ4qs0t/E1kAc2sx8z5ZVBbypsZUnacoxFd9+xZff2h+yZ8PJ90jeX4ctLfdIjKT5UYizhgDj5OD3GDWHJZ6j8TYZPHvxC0+40vwJoqNqGjeF7tNkuoeUC63uooegG3dHbHheGky2FTqf2S9Pn0v9l/4fWV0Ns6+GLF5h6O0COwPvljQB6FRRRQAUUUUAFFFFAFHxBo2j69prafrmlWOp2bMGNve2yTRkjoSrgjIrx/9mbwH4GtvEnxAvLbwZ4fhuNP8e3X2OaPSoVe2xb2rDy2C5TDEnjHJJr26vMv2cP8AkLfEz/sfrv8A9JbSgC74c/5Om8Zf9iZ4e/8AS3W69Arz/wAOf8nTeMv+xM8Pf+lut16BQAUUUUAFFFFABRRRQAUUUUAFFFFAHn/7WP8Ayaz8S/8AsTNW/wDSKWvQK8//AGsf+TWfiX/2Jmrf+kUtegUAFFFFABRRRQB5/wDGT/kovwn/AOxzuP8A0w6vXoFef/GT/kovwn/7HO4/9MOr16BQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/wb/5KL8WP+xzt/wD0w6RXoFef/Bv/AJKL8WP+xzt//TDpFAHoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeYftEH+xPEPgDx7nbFoPiWOzv3P3VtL9Gs2LegE8lq5PbZzXoutadYaxo91pWq2cF7Y3sLQXNtPGHjmjYYZWU8EEEjBrO+JXhiw8a/D/AFnwlqhZbTWrGW0kdPvR71IDr6MpIYHsQKwv2ffFV/4o+Hcaa/sTxJoNxJpHiGFf4L2AhXcD+5INkyf7Eq0Acv4V1G/+DXiSy8EeJrye88EalOtt4X125kLvpkrHCabdyHkqekEzdeI2O4KX9grP8VaHpHiXw5e6Br2nwahpmowtBdWs6bklRhggj+vUHkV5r4G1zV/hj4ssvhx451Ce/wBF1GXyPCHia6fc0xxldOvHP/LyoH7uQ/65R/z0BDAHrVFFFAHn/wAZP+Si/Cf/ALHO4/8ATDq9egV5/wDGT/kovwn/AOxzuP8A0w6vXoFABRRWH8RfF+g+B/Cs/iDxFefZ7SFljRUQyTXMrHCQwxr80kjtgKigkk0ATeOfE2heDvCt54j8SajFp+m2Kbpp5M9zgKqjlnYkBVUEsSAASa878KeGdd+JniOz8dfEjTpdO0ewmFx4Z8IXGM27D7l7fqOHue6RcrDnvJkrP4H8Ia9408VWfxE+J9n9mksn83w14VZxJDouRgXFwR8st6QevKxAlUydzt6nQB5v+1le3EfwM1bQ7CUpqXixofDtht+95l7ItuWX/cSSSQnsIye1eg6XZ2+n6bb2FpGI7e1hWGFB/CigAD8ABXmd0/8Awnn7S1vaxESaL8M4jcXDDlZdZuoSkcfpmC1kkY+huo/SvU6ACiiigAooooAKKKKACvMv2cP+Qt8TP+x+u/8A0ltK9Nrk/hf4SufC174rnuLuK4HiHxHNq0QjUjykeGGMI2epBiJyPUUAZfhz/k6bxl/2Jnh7/wBLdbr0CvP/AA5/ydN4y/7Ezw9/6W63XoFABRRRQAUUUUAFFFFABRRRQAUUUUAef/tY/wDJrPxL/wCxM1b/ANIpa9Arz/8Aax/5NZ+Jf/Ymat/6RS16BQAUUUUAFFFFAHn/AMZP+Si/Cf8A7HO4/wDTDq9egV5/8ZP+Si/Cf/sc7j/0w6vXoFABRRRQAUUUUAFFFFABRRRQAUUUUAFef/Bv/kovxY/7HO3/APTDpFegV5/8G/8AkovxY/7HO3/9MOkUAegUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5N8Wo7j4a+Pv+Fv6bBJLod3BHZ+N7SFCzLbof3OpIo5ZoAzLJjloTn/lkor1mkkVXRkdQysMEEZBHoaAIrC6tr6xhvbK4iuLa5jWWGaFw6SowyrKw4IIIII61n+OfDWh+MPCd74b8R6fHfabqEflzwvkd8hlI5VlIDKwIKkAggivMWtdV+BN7LcaXY3Wq/DC4laWextImmuvCjMcs8Ea5aWyJJJjUFockqGT5U9Y8O6vpevaHa6zomo2uoaffRCW2u7WUSRTIejKy8EUAeb/AA58S654J8XWvwv+ImoSXrXW5fCniWfA/tmNRn7NcEcLexqOeglUb15DqPVKw/iN4R0Pxx4RuvDniG1aazudrK0bmOa3lU7kmikHMciMAyuOQQDXG/C7xdrmheLI/hd8SbpZtcEbPoOuFBHF4ktkHLYHCXUYx5sQ6/6xPlJCgF74yf8AJRfhP/2Odx/6YdXr0CvP/jJ/yUX4T/8AY53H/ph1etj4reO9I8CaHDdX0VxfahqE32bSNIslD3eqXJGRFCnc92Y4VFBZiACaAJvif420PwH4ZOsa3JMxllW3srK1jMt1qFw/3Le3iHMkjHoB05JIAJHKfDnwTrmt+KoPiR8UI4W12JW/sTQo5PNtPDUTDBCnpLdMvEk/blEwuS03wv8AAery+Jh8RfiTLb33i6WJo7G0gYvZ+HLd+tvbZ+9Iwx5k5AZyMDagC16PQAVxPxu8cXHhPR7PS9AtYtS8XeIpjZ+HtMdsCWbGWmlxysEK5kkbsBgfMygu+LHxH07wdJbaNZWU+veK9UU/2R4esWH2i6wceY5PEMCn70z4VR6nCmr8I/AeoaRq95428bX9vq/jXWYliurqBSLbTrcHctlZq3KwqeSx+aRvnb+EKAa/wf8ABlv4E8CWugx3cl/dl3utT1GVcS6jeSsXnuH93ck4/hGFHAFdPRRQAUUUUAFFFFABRRRQBzXxe8Rax4V+H19rXh/w1d+I9ViMcVlpdqG3TyySLGpZlVikal9ztg7VVj2rjPC/jL4i6F8bNF+H/wAQZvC+rL4l0W4v7K98P2M9m1lPbMnnRSxTTzeZEwmj2ShkOVYFOQR1Px28X6r4F+F+peItC8Lan4m1SALHZaXp1pLPJNK7BQWWJWcRrncxCkhVOATivPP2Y7fSV8XX3iHxFc+K9d+IfiC3A1HV9T8F6rpdjZwIdy2Nmbm3SOG3QnIUtvlbLtk4ClPWT7L/AC0t89W/kE9Irv8A8Ff8Mv6a7Lw5/wAnTeMv+xM8Pf8ApbrdegV5/wCHP+TpvGX/AGJnh7/0t1uvQKACiiigAooooAKKKKACiiigAooooA8//ax/5NZ+Jf8A2Jmrf+kUtegV5/8AtY/8ms/Ev/sTNW/9Ipa9AoAKKKKACiiigDz/AOMn/JRfhP8A9jncf+mHV69Arz/4yf8AJRfhP/2Odx/6YdXr0CgAooooAKKKKACiiigAooooAKKKKACvP/g3/wAlF+LH/Y52/wD6YdIr0CvP/g3/AMlF+LH/AGOdv/6YdIoA9AooooAKKKKACiiigAooooAKKKKACiiigAooooAK8y1r4WX2ha3c+JPhLrkfhfULuUz32kXEJn0XU5DyzSW4IMMrHrLCVJPLCTpXptFAHl0fxfuPDQ+z/FfwZq3hR4+H1a1jbUtGk/2hdQruhU/9PEcWPfrWt4gt/h58avAj2On+ItP1e1WRLmz1PRNRjkn065TmO4gljJ8uVDyD9QQQSD3dcT4w+D/ws8VagdQ174f+H7y/Jz9uNgiXP/f5AH/8eoA8W+JHxL8W+G/Gvw68HeL/AA5d69450bxTNNpq6XCI4fFFs2j6nAl1ET8sJWSaIXCscQ5LjKFa9e+FPgC/0/XJvHfjy9g1jxtqEPlSTxA/ZdItyc/Y7JW5SMEDc5+eVhub+FVy7v8AZz+FNxdWtydP8RRzWMjSWjw+MdWjNuxRkJj23I2Eo7r8uPlYjoasf8M+/CWXjUPDVzq6/wDPPWdavtRjP1S4mdT+VAGr4x+MPw18M6h/ZmoeLbG41Y8JpGmlr7UJD6LawB5T/wB81hy638W/HuYPDOh/8K+0WThtY8QRJPqki+tvYqxSI+jTuSO8RrvfB/hXwx4T0/7B4W8OaTolr/zw02yjt0/75QAVr0Acr8Mfh54c8DQ3Uulx3V3qmpMH1PWdSnNzf6g46GWZuSBzhFwi5wqqOK6qiigAooooAKKKKACiiigAooooAKx/CXibS/Ec+sQ6Y0rNoepyaZeeZHtxOiI7BfUYkXn61sV5l+zh/wAhb4mf9j9d/wDpLaUAXfDn/J03jL/sTPD3/pbrdegV5/4c/wCTpvGX/YmeHv8A0t1uvQKACiiigAooooAKKKKACiiigAooooA8/wD2sf8Ak1n4l/8AYmat/wCkUtegV5/+1j/yaz8S/wDsTNW/9Ipa9AoAKKKKACiiigDz/wCMn/JRfhP/ANjncf8Aph1evQK8/wDjJ/yUX4T/APY53H/ph1evQKACiiigAooooAKKKKACiiigAooooAK8/wDg3/yUX4sf9jnb/wDph0ivQK8/+Df/ACUX4sf9jnb/APph0igD0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqvq1xNZ6Vc3dvYXF/NBC8kdnbNGstyyqSI0MjIgZiMDeyrkjJA5oAr6Nrel6rqWrWFhdedcaHerY6gnlsvkTtbw3ATJADfuriFsrkfNjOQQDwtrel+I9Bg1jR7r7RaXG4KxjaN0dWKPHJG4DxyI6sjxuA6OrKwDKQPjDxBH/aFh4Qj+ImgeH9Z8XeJr3xfo816dD/tSxstWn8T6XpcV8FuI3BjtYtqxeftDRww2+9d6ivT/AIAxeDrn9o64m8N/ADT/AA7p6+GdM1HStVtNL8Pr9h+0tqatdC4s7iSR47mOKKJPKMn+rYsqK+5wD3iXxV4eguNbgu9Wt7NvDkK3Gqm8Jt1tYGjMi3DNJgGEqsg80EpuilXduikC4/hb4sfCzxNr0GieG/iX4P1jU7rd5Fjp+vW1xPNtUu22NHLNhVZjgcAE9q+YPidqvgzT9S+K0ehHxh/Z+rfCa6s9I1bUtfvNStdfkkt9WuFYfarmaQxrHp921tKEjjKm8bc63Fs0nq994qm1/wCPmjabNq1veQ6N8U5IdMijMeYrT/hE75HI28uovo9RjLHOJIJo85iKqAekeKfix8LPDOvT6J4k+Jfg/R9Ttdvn2Ooa9bW88O5Q67o3cMuVZWGRyCD3qvpPxn+D2qarbaZpnxX8D3t9ezJBa2tt4jtJJZ5XYKiIiyEszMQAAMkkAV4h8YNZh1DUvjJ8NbPxpo+k33iDxAn23TYlkvdb1G0bQdIRrezsoYppQsyC4V7tYZvIWN2EMnLxWNU8WPF4XHh/xx8TNQuvE2pfEDw2NL8LeJbeysdSs7eLXLLJjWG3t/tm7ZI7zwiS3GwxxSSCF5pQD6fooooAKKKKACiiigAooooAKKKKACvMv2cP+Qt8TP8Asfrv/wBJbSvTa8y/Zw/5C3xM/wCx+u//AEltKALvhz/k6bxl/wBiZ4e/9Ldbr0CvP/Dn/J03jL/sTPD3/pbrdegUAFFFFABRRRQAUUUUAFFFFABRRRQB5/8AtY/8ms/Ev/sTNW/9Ipa9Arz/APax/wCTWfiX/wBiZq3/AKRS16BQAUUUUAFFFFAHn/xk/wCSi/Cf/sc7j/0w6vXoFef/ABk/5KL8J/8Asc7j/wBMOr16BQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/wAG/wDkovxY/wCxzt//AEw6RXoFef8Awb/5KL8WP+xzt/8A0w6RQB6BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfO9n8JfGs9nd6nq1jbtdWfjkTaDYxXSFoNNl8YJq15dyPlV3TQRWp8klyi2alSHnkiX0D4S+C77w/8V/GOutodvo+m6jDBa2sUd+10buUX+qX010CwyiyNqi5RsFJFmRQYlikk9IooA831vTPGtl8aPEWu+HNHt5l1zw/oulWeoXcyG1s5YbjVpZ5pog6yyLGlxBiNMGR5UTfGvmSxc/Z+EfFvw08dW3/CC+HbjxDY6rpmgaNc6jc3Nv5luttqV3LqN9fF5IWkmmh1CWUPEsjPOsjSKMjf7RRQB4f4p8J/Fe71b4n6Ponh3w//AGJ4w1qG4h1C+8QxwTywf2Xp9tMgtpNNvYWjY20sZ81ckF/kA2Oc+18KfG9Phd4c8F6t4K+H62+n+JtIvLmfw74mvQltbQazb3bLbWl1bYSOOKMqIvtACom2JQAkVfQFFABRRRQAUUUUAFFFFABRRRQAUUUUAcP+0h4d8U+Kfgrr2k+CNfvtD8SG1M2k3tlcGFxOnzrGWH8L42HPQNnqBXwl/wAEt5/jL48/aC1S41jxz4oTw9oVy+qeIraa9kC3t9IPLjilBPUmPLA/wwle9fob42tvFV1pUcfhHWdH0q+EwMk+q6RLqETRbWyojjuICG3FTu3kAAjac5HmvgH4XfEjwXd67c+HPF/w7spPEmqyatqRTwHe/vrl1UM3/IW4B25x0yzHvQB0Xhz/AJOm8Zf9iZ4e/wDS3W69ArwPS7v4taB+0R4wmmXwH4lnXwhoct3dzXV14ct7SAXWsbAEK35kOfNLOXjAG0BTya7i11/40XVrHc23gL4dzQzIHilj8fXjK6kZDKRpOCCCDkUAeiUV5/8A2x8b/wDonnw//wDC8vf/AJU0f2x8b/8Aonnw/wD/AAvL3/5U0AegUV5//bHxv/6J58P/APwvL3/5U0f2x8b/APonnw//APC8vf8A5U0AegUV5/8A2x8b/wDonnw//wDC8vf/AJU0f2x8b/8Aonnw/wD/AAvL3/5U0AegUV5//bHxv/6J58P/APwvL3/5U0f2x8b/APonnw//APC8vf8A5U0AegUV5/8A2x8b/wDonnw//wDC8vf/AJU1DqPiP4yafp899f8Agb4c2trbRtLPPP8AEC7SOJFGWZmOk4UAAkk8CgCb9rH/AJNZ+Jf/AGJmrf8ApFLXoFeDftLax8Xrn9mn4gG/8D+BYdOm8I6n9oubTxtd3EiQm0l3PGh0xFkYLkhS6gnA3DOR7zQAUUUUAFFFFAHn/wAZP+Si/Cf/ALHO4/8ATDq9egV5f+0br2h+GfFHwu1vxJrOn6Pplr4zm8++1C6S3gh3aHqyLukchVyzKoyeSQO9aH/C9vgh/wBFk+H/AP4VFl/8coA9Aorz/wD4Xt8EP+iyfD//AMKiy/8AjlH/AAvb4If9Fk+H/wD4VFl/8coA9Aorz/8A4Xt8EP8Aosnw/wD/AAqLL/45R/wvb4If9Fk+H/8A4VFl/wDHKAPQKK8//wCF7fBD/osnw/8A/Cosv/jlH/C9vgh/0WT4f/8AhUWX/wAcoA9Aorz/AP4Xt8EP+iyfD/8A8Kiy/wDjlH/C9vgh/wBFk+H/AP4VFl/8coA9Aorz/wD4Xt8EP+iyfD//AMKiy/8AjlH/AAvb4If9Fk+H/wD4VFl/8coA9Arz/wCDf/JRfix/2Odv/wCmHSKP+F7fBD/osnw//wDCosv/AI5WJ+zTruleJ/iB8WvEHh3XLLWNEu/FlqtpdWFyk9vI6aNpySFJEJVuQFOD1XHagD1uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqO8FwbOUWrxpOUbymlQsivjgsAQSM4yAR9RUlFAH5T/APBQbRv2kZPip4gl8ezHU9Pg0yxlu28MRSjTIbEzXn2Tz0A3DEi3mDNuIJb5iCufur4R2/7QJ+FPhgwav8NUiOi2flq+lX7Mq+QmAWFwMnHfA+gr21gGUqwBBGCCOtJDGkUKxRIqRooVVUYCgdAB2FAHmn2b9ob/AKDXwy/8E9//APJNH2b9ob/oNfDL/wAE9/8A/JNem0UAeZfZv2hv+g18Mv8AwT3/AP8AJNd14NXxEnhu2XxXPpk2rjf9pk0uGSK2Pztt2LIzMPk25yx5z24rTooA8B/aQ8IfDHSJvEvjz4yrH4xXW44tK8LaBNZedcWrNEE+y6bHuJNzNLlzLGFcfLyFTNdn8NdK+LGlfs5+FtKm1PSm8a2un26alca6JbyPIX5ldonVnkHyqX3HJBJznNY+sfCPxxL8edQ+J9j458M3F3JAtrotvrnhO4vv7Cg2gSJbNHqEKq0hyXfZuOdudvFer+H49Vh0a3i1u9s7zUFTFzcWVo1tDI3qkTSSMg9i7fWiGlO3e2na1/x1vJ9X3s2yWs15X177f5aeW/RLz77N+0N/0Gvhl/4J7/8A+SaPs37Q3/Qa+GX/AIJ7/wD+Sa9NooA8y+zftDf9Br4Zf+Ce/wD/AJJrhv2nbf46r+zf4/bV9X+HkmnjwtqP2xLTSr1Zmh+zSbxGzXBUPtzgkEA4yDX0NTLiKKeB4Z40kjkUq6OoZWB6gg9RQB+VX7Peg/tWWv7OfjS50ua60/4anwpqT3sHiPd9nntvskhf7FGwMiuV3bWTbGWxuJ6V+q8e4RqHILY+YgYBPsKWigAooooAKKKKAPj3/gov+0t44+E/iDQtN8KeDNasZLDUGuf7c1FCNK1INaXEPkKI2/fbTOs212Xa8CEoeCHf8E/v2gPHnin4NanrHjHwt468a6lN4huM6jpljbNbxp5UBEKBpYwoXJO1Vx83qTX0L8aPB58Ya54FgutFtdW0jTfEc11rFvdpHJCLZtI1G3BaN+HBluIV2gE/NnGASNH4R/Djwd8MdBvND8D6Ouk6be38l+9pHIzRpK6orbAxJVTsX5RwO2BxQBzn/C3tS/6Iv8Tf/BbZ/wDyVR/wt7Uv+iL/ABN/8Ftn/wDJVem0UAeZf8Le1L/oi/xN/wDBbZ//ACVXR/DvxpdeKbq5huPA3irw6LdFYSa3awRLNk4whjlckjHOcV1VFAHDfFi3+Iuq+I/D+g+Db46Fo90802v+IYY7ea6tEjCGKC3inDoXlYsC7RuqqjcZKmsD9nTxd4i1O58faFrOtHxbB4N157Gw12G2iim1BTCkzQSLEEhaaFnMLMgRSVGVUg5h/am/4WlqY0fwx4G0PX20HUjIfEur+Hryxi1KCAABbe1+1XEIR5MkGYElAMqNxGOq+BFlZaL4Et/Dek/DbVfAul6OogstP1CWykMinJLhra5n3EsSWaRgzMSTkkmintJ/1utfJK1klvq/ORPov666evX8N9sb/hb2pf8ARF/ib/4LbP8A+SqP+Fval/0Rf4m/+C2z/wDkqvTaKAPMv+Fval/0Rf4m/wDgts//AJKo/wCFval/0Rf4m/8Agts//kqvTaKAPzYj/bY+LXgX9pXxXoc+i3fiHQJPEl1Fa+HdVi8vUbJTMwEMUke4hhwAp8xeMLjrX2H+xjrk/inw/wCN/FdzoepaJLrXjO4nfT9SjEdzbFbS0h2SKCcMPKwR146Cuu8D/CP4deEvG2seMdE8LWUfiHXrya8vtVlXzbl3lYswV2yY05+6mBxyCeal+C/hbUvCuk67Dqklu8+q+J9U1RDA5YCGe6d4gSQPmEZQEdAcgE9aAOxooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuX8bWHxFutVjk8I+KvC+lWIhAkg1XwzcahK0u5ssJI76ABdpUbdhIIJ3HOB1Fef/GT/kovwn/7HO4/9MOr0Ac/8NL/AON/i3w7c6r/AMJr8P7P7PrWqaZ5f/CEXsm77Hf3Fn5mf7VGN/2ffjHy7sZOMn0Lxp4t07w3faLp9xBdXl/r+oLZWNnZorSucFpJSGZQsUSBndieAMDLMqt5r+z54A0K/wBN1DxPPf8Aihb5fHPiKYQweLNThst0evXoUGzjuBblTtG5THtfJ3Btxzd1DdP+3Npcd6F8q0+H91LpuWz+9e+hWcgdiFWAZ9GxRHWpGPe/4Jy/G1vncJaQlLtb8Wl+F7nR+P8AxV4otbjUNF0j4a+OL1WhMcGuaNc6KFVnjH7yFby8U7kZsfvYdpZOjL1x/hP8U/Efi3wr4Z1X/hVXjB7TXbK0uP7azpFvatHMiN9p8j+0pZo48Nv8vDyKvHzMOeo8beFdd1zVY7vTPiV4o8NQpCI2s9KttMkikYMx8wm6s5n3EEDhguFGADknz/8AY78K67a/Av4ba1P8SvFF7Yt4S06QaHPbaYLJVeyTbGGjs1uNqbgVzNuOwbi3OQD0TS/Gdnqc3iWx0/TNQn1bwvKY7rSsRR3E5MfmQmIvIIysy42MzquchihVgvla/FX4grovjKyPh+40fVtM8W6Jp+k3HiK3tbyOG31W7tITFONPutjTQGeZhF5iP5DWTOWaVnbY18ain7Zi2+gXUFrd3/w4uTcSTwNNCksd7GLSSWJXQyBTLccB1JG4BlzmuAbwf/YepfFPXLvxp4gudP0TxnpV5f2VwPt11r17bW/h6/t1gRpI447mWSO4tkihVFdryFAu23giUjrTjLvf8G4/ja/zB6TlHtb8Un+F7Ho/w18Z+Mrz4r6d4f1fxN4X8QaTqWma5IJ9K8N3Wly213pl/aWUsZ867nDr5lxMvCrzGCCymuH8b/GD4kaVpNvqlv4m8Hpca14z1HQdF8OQ+CdR1PUp7az1Sa1uLkC3vt83k20L3L7YVHATguudj9nrR76w+Ik8nizWtHttW8Nanq2iC0tdwj1G+1e30rX7vyHkYMyxz/bRGmzd5AQsd0bs/If2Tq1v8MfEGu3+raPHo11451mMQW+jT2dwy2/iLUJl/tDWY47w2tpExuZ1uEt4Ggcoy3EJy7AHb+APiT401XxF4Suf+Eo8P65oOveJrzw9dovgLU9BuoJ7ewvbhyhvLtydktn5TfuiN3mLuDIQPcK+f9L07X7PXPgdLF4o0/UvCMutF9HtG0e1iv7dG8Pam0avc2M32GSNELIq29uqbfLw77S8n0BQAUUUUAFFFFABRRRQAUUUUAeP/Ev4v654c+IF7pOkaR4fvtMt7210p73V9XfSoLG9GnX+qXn2ifypv3cdnBYOCItublsudjBDwn8aLjXde8KaC+m6fp+t6h4mvdJ1/To55btLWCBdcjjlguDHEH8yfRJMZTITcCoJVq8Y+LPgCbTPhv8AFDSfD0dxfLY+OdUuLyaeaP7ReXeoeCfIDBBtDzXOoajEqxQoMvcBY41UBR0HgLwvrOmfHrwh4ouYLdtG8R+LbqfSb62vYbiK8ik/4Ta9R0aN2yrW2oWcgPQiUDqrAAH0H4q8eeG/D2rTaVfTahcahBYDUJbLTNIutQuFtzMsKuY7aORuXbAGMkJIwBWNyvB3Px70VvipZ6DZaL4wm0yPRri71Zv+Ff659qtJ2mgSyHl/ZdwjlVdQ+bYQWt8blwQzf2edStV1b4ueM/EF5FZtD4xu7e8ur2ZY47SysreJI9zk7UjVN8mTgDzGJ6msHxHc/FPSp9R+LOlah4f0r/hK9a0fQ7XSte8NXM91aac+pLZWrs6Xlvtz9tmvTFJCsyNctA7fu12C1hF90n96uvwaXqD+KS7Nr7nZ/in8j1Lw78SfDmtyXi2lh4sg+w2b3czah4N1WxUxpjIRp7ZBI/IxGhLtzhTg4d4s8b6Va/DmHxLo95dXlvq0A/sq90zw/e62m+SNmile3s1MjRcZPKA8LvUsK1PBNt4qtdKkj8Xazo+q3xmJjn0rSJdPiWLauFMclxOS24Md28AggbRjJ8o+BaeJZdK8e+DfC+oW+m2ekeP72xtr51DvpllJFHdSfZYirI8qyzuiCT5ELb2WQR+RIR1k15X+5pP/ANKX3MJaRT87fg3+j+8ntfjjq2seGfCmp6B4U0e3m1rw/qmr62nifXZ9Ii0BtOmtre8t5XNnIxaKe4kRmZI1xAzZwRWwvxT1zT/hj8SvEfiTwnp9rqfw3+0+fYafrT3UF75WmW+oLtuHt4mTctwqHMR2lSfmrxDwf4T8X6n+zt8ONO1HVNPvIfF3w/l8F6ARlbyODVbDSZ5JZVEaxN9khsdWlC7kMkVvbx7mmkZ67fWnvtZ/Yw+LvxGu7e3tIfiP4Sm8S2dnFO0zWkUvhmzhMUjlFBYSW8nIGCpU8ElQAaHj747eKvBHj7T/AAj4u0n4T6Hfalpk+pRyal8TpbaKOKKWKMBzJpikNI0reWMEMIJuRsruPhF4+1zxT4q1TRNb0Xw/afZNG03WbG+0HxC+q2t/bXr3aRssjW0GMfYywKhgyyKQa8n8W+HdWufiUdFvbLwvoWt+JoWn1nT9Hnn8QtfQNdRLHNrKvcWd1c2BdzbpHHbsluqFXnS0ee3f0D4T3Piq6/aS8bSeLtG0fSr4eEvD4jg0rVpdQiaL7XrWGMklvAQ24sNuwgAA7jnAAPWKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4/xT8J/hZ4m16fW/Enw08H6xqd1t8++1DQba4nm2qEXdI6FmwqqoyeAAO1dhRQB5/wD8KJ+CH/RG/h//AOEvZf8Axur3ij4fWN3qHhHUfDssGgXXg2cJp621oPs/2FkWOay8pWUCNo1Tbj7jRxsAQpVuyoo6p9g7nD6t8GPg9qmq3Op6n8J/A97fXszz3V1c+HLSSWeV2LO7u0ZLMzEkknJJJNV/+FE/BD/ojfw//wDCXsv/AI3XoFFAHM+EPCC6R4z8Q+K72/bUNU1+WNPMMPlraWkIIhtoxknCl5HY5+Z5GOAMKJrfwT4Yh8XS+J00zOpzXr37SvcSOguXtYbQzrEzFFk+z28cQcKGVGlAI86Xf0FFHRIOrZy958PPCV18RLTxvLp9wus2UxuIni1C4jt2nNu9r9oktlkEEk32eRovNdGcIFXdhFAx5PgX8GJry8vLz4VeD9Qu9Qvbi+u7vUNFgu55555XmkdpZVZzl5GwM4UYVQFAA9AooA4fQ/g18JtD8Tab4i0D4b+F9F1bSJnms73StKhs5Y2eGSFgWhVS6mOaQbWyuSGxuVSO4oooAKKKKACiiigAooooAKKKKAOPX4caG3i6+124utQuU1DWk1ufTZpENm17Ha2ltBKUCBm8pbJHRWYqJXMmC8cLRWJvAHh5/GWl+Io47i3bSJp7q2sIJjHZfa5RcB7swjgTFby9DMMeZ9oLSCRo4Wj6iigDgtJ8ANpvxW1/Vkh0278NeJzbane2F0m57bV7ZoxHcxJsKkMsULEkhkkt0ZcliVqal8DPAeo262+oXfji7hSaKdY5/iFrsirLFIskbgG8wGSREdT1VlBGCBXpFFHRLt/X4bLyDq2cj4d8Bad4TkvNT8N3XiG81F7N4oYdd8Y6pf2rMcMuUuZplT5lUeYqFgCwHBIMnwZ8HHwT4JTTLm7S+1S8uZtQ1i/WPYLy9ncySyBey5O1R2RVHauqooWjf9f1/wABA9bf1/X/AAWcf8MPhxofgiz06GyutQ1F9H0a20TTZ9RkR3srKGKKPyogiKq+Y0KyytjdI4UMSkUKR8/pPwM8N2HhXxV4bGveILjTPE/hmHwskEslv/xKNLhS6SG3tWWEMdi3koDzmZzhdzNg59QooA8v8Qfs+/DXXfsX9tr4w1L+zb2O/sftvj3W5vstzHny54912dki5OHXDDJwa6D4e/DbQPBfirV9e0i+8QXFxrVlaWlwur67dansS2e5dCkl08kq5N1Jld+zgEKCWLdhRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=="]
math
multiple-choice
9
中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的$x=2,n=2$,依次输入的$a$为$2,2,5$,则输出的$s=$()
7
12
17
34
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAF5AJ0DASIAAhEBAxEB/8QAGgABAAMBAQEAAAAAAAAAAAAAAAMEBQIBBv/EABQBAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhADEAAAAfvwAHFE0WeNBnjQZ/pfAAAiliJQAZepn6BDzBwWus6I3I5Bn6GfoAACKWIlABm2rFckVYy3Hkahdo+2yC0AACKWIlAA8zJC/wAUx8p91SF1SF1SqGx7QvgCKWIlAzurB7gfSY5LJ7aJMu32VfZx7DzoAACKWIlBQ8scESURR2fDB2vk/sSLvoW1QW0cgAiliJQZt6noFSf5/wCgOYqQ1HWUafPWWXLGVsmdo5+gAIpYiUGfoU4y/wC540PKHJe7+fyD7h892bvuCL2hlTl5RF6KSMlAAUPDQ4pD5L6ab0ud0BfUBfZOuec98lOzWskoFHro6qadEp6/z2ycXKvp5co3hl9XjroHPXJTs1rJL56MW1oDPaAz2hEZs/yf3hn86QilABz1yU7NayS89cGbL3dM9X1Skmpkdq7ilz2WiWXV4zdLP0Bz1yU7NayS8d8FW7SujO0cU2POuSnZzNA69j6LAM/Qz9Ac9clOzWskvnozvdAZ7QGf5oxmLe+R++M9oDPaAp3Ac9clOzWskoB4es4SxQ6ZQ6sSEVqnEaLO0D2ldrGXt17BTs1rJKBjbIzb/dEqa1H0sw2KZIjulHnUGe0BntAc8SxEoAAHnsRl6Xw/2xnbGXpEgAAEUsRKAUTzyx2VFe6V++bZWWJii0Ms41+egBFLESnhTkz7JoR0xj3rQ8mpznV7P5PNDmUAARSxEoACCqaMVQfLfc4V00GfyaQAAEUsRKADN0s7RPKctAvw+5ZuS0rpm6WdogACKWIlABQ80Bn8aQzO9AUOdH0gnAABFLESgAAAAAAAARSxEoAAAAAAAAEUsR//xAArEAABBAAFBAICAgMBAAAAAAACAAEDBBESExQgBRAyNCQwIUAjMRUiJTP/2gAIAQEAAQUC/TPiZjGO4M1q2Fq2Fq2Fq2Fq2ENps3M+ItuLCORgWriZTCMrSYmjAZArOQvyPjT/APNWGd0Ak9ifLuBHGHsP56hyPjIJwzRzxStgOZmFieOMk0EYtiyktCzwRaQcj5HXhlfZVUVWmAxRU9bZVVsqqEBBuZ8sWWLIspj0mho9QxZYssWWLLFuR8TJ7J7SomqVCbaVMdlVWzrLZ1ls6y2dZTw1Ymq1RrBwPhLIUhiAxRMbjHXPGScnzs+LTyGNmyZxw1pDkKaVoQghdn4n3mlLNFEMIP8AliqPhHCUcgBlUcTxFoxoIABE8daKGMiPkfd6cBHsoFsoFsoFsoFJWrxxwvTOfZQLZQIakIFzPuU8QPuq63Vdbqut1XT2azt0uvBVv7qut1XW6rrdV1uq6AxkbgfeMRK5pgmeJ5tME4xi0bwSrTBaYLTBOEYtGUEq0wVVsC4H3i9xV5NS2TEroSFSjfU6kxM75yK6WKuhKVEH1Ooqt58D7xe4sG74YIQEXwbvhh2refA+51YZD2VdbKutlXWyroqlUWjgqtJYv9Nicf8AH5f+av8Amr/mqOelCO9rLe1lvayZ2Jj+gxYw6TROPqNjplWyhHAcGWDLBlgywZYMiZstP0j4yzFqZLSyWlktLTsrJaWS0slpZLSyWlXksSTdi8afpHwmmdihhaELUuQ9bExfEKx5hd2FhsMUvYye0YiwD2Lxp+kfeeZwUMLRCrAES0STiRBLGTKaN568cBDYUhlPIADGHcvGn6R9nxwihtRv8tfLXy18tfLQSWzP5a+Wna2TRxjEHAvGn6R/RKLlF0yzcs3/AKC8afpH2J8BiK3LDhbWFtYW1hbWFtR1p4pMLafdMsLawtrC2mknGx2Lxp+kfY/Cp6St4ueH+uVwaoLtLg+eTLJclAnKaTLNTFwqKX3OxeNP0j7H4VPS7ST5LeLMzGLqzM8ZPKOnMbxwRHqQ9pfc7F40/SPsfhU9Ltt5mtu2KYWZWa8ss8kWrHMGNeAXCv2l9zsXjT9I+39s1GFm2cS2cS2cS2cSepCzRV4nl2cS2cS2cS2cS2cSCrFGfYvGn6R/QYNJH0mnK3UfoLxp+kfOSzHGXyZlsgFZrMSjsRSvwmdsY/xA/jT9I+H9LdMS0ZZVI41TzYg0zZjkGNYQWh0ZolusiZ2JlKJE7ibzF40/SPhNUkOVrLRoTE2mrSyWXZ3EYhF5onlmqxFDAdqMS+TMg6fXAdlXWyrrZV1sq6EWAT5FUid8LUSa3GzlIADuSkW3ORAARjzP6Hwdq8EO4lfCJ8dNnYm5n9EgNLF0qCwXUZheQHGQZAxycz4yyk8mnZWnZWnZTQTi+nZWnZWnZWnZWnZVc55JuB8JpSzQxDCEhZI2mIoY5XIRmznEeoMswxIXzCid7RszCPA+88zi8MLQijbMGng0WIV/xqwf1Yg3AqQysGADGHE+z44RQWolhbWFtYW1hbWFtAdszwtrC2nC2TRxjEHI/olYni6bdtWr31HxllGEcbZrLbWW2oac8EuW2stta8kK/vmfGFtWdO+Da/8AEEuYXsfyAeftX/ik5HxqfhlNl0RwywumAxkrPHpKP/a9yPjLEbSbyNlvKyKzUJ2s0xW7q5t5WT2DlUMTQx8j/UP9Q/1D/UP9Q1//xAAUEQEAAAAAAAAAAAAAAAAAAABw/9oACAEDAQE/AXD/xAAUEQEAAAAAAAAAAAAAAAAAAABw/9oACAECAQE/AXD/xAA/EAABAwEDBgkLBAIDAQAAAAABAAIDERIhMRAyM0FRkhMiMDRhcZGToQQgI0JSYnKBotHhQ3OxwSRAU2CCg//aAAgBAQAGPwL/AGC55AA1lei8ne4bXcVc2+tc2+tc2+tc2+tc2+tBsjHROOFrX8+Vc52jiNGjp25LwcaKyGuqMUGbRXFObs17chY8VaU+B5qY8DtGrlHt1iR1e3IwWsXhTekIwTWu9cinyvUOdRxHr4ZZKao2g+PKGaNtprs9o/lcR4Kta0XazijaoetMA9TC9YqxF6SX2W/2jaNXuNXHp5Wr4mOPSFzePdRc6GIAa7KlBZFe8Bl3Qubx7q5vHuqjGho6By2KxRaaUNync/CLisWKxWKxWPJmFhpGNI4fwtDFd0KogiIPuqnARVPurm8e6ubx7q5vHurm8e6ubx7qAHk0bpHZrbOKNKWnXuIHI8BCaH13+z+VYYKAbERIHYmvTrRAcbONKJln1OO7qVRgo2NkoJARhgmBh9I5waFNU1aH0aqm84ADWUZZb5XeHRyPAxaU6/ZG1WW/M7VROsgYk49FE4gClm69HWTiUaP9HqbsWY3G1hrWF9ou+aLqBrehcPMOP6rfYHJOfZNp2JtFYO3ysHb5WDt8rB2+UXuD6C88dye3hC607iASHYsHb5WDt8oODTUYVcTydHysadhK08e8tPHvLTx7y08e8qGaPeXlEjpY6NNI+MtPHvLTx7y08e8tPHvLTx7yqxwcOg8h5RUA5v8ACzG9idFYFporgsxvYiS1oA6EbIF3u0WY3sWY3sWY3sVS1oA6FxQN2izG9i8op/y/0OQ8o/8AP8ZHlxLRIbTKHOAuXFUoxuVthqwQ0JG2qIBF2KAtExuwocCMVxVMBebKD4zVghoSOvJ5R+7/AEOQ8o/8/wAZMMtycQL3GpWGW7J5R+7/AEOQtuYC7atH4rR+K0fitH4qrmADrU9ulA+gq7oViKPhX9Bu7ULTobWuj1nxb6z4t9Z8W+rMcsQGOctPHvLTx7y08e8qg1B5EsdgRQqYyVIhubVVdHZf7TbigDf0rBYLBYLBYI3KH4B53Aw0MmsnBoWnj7v8rTx93+Vp4+7/ACtNH3f5Wnj7v8rTx93+Vp4+7/K08fd/laePu/yjx2OhbdaDaVOUqH4B5oiivlP09JVBeTeXHWVGLVBWpVu2LQwrhRAm5OF9xursRJuATY7LqubaHVlMUZpGM9419AQa0UA1ZSofgHmBjBaldgP7RvtPde523I2hNLQuA6U82XXA+r0lNjwFOMUHw0tt1HAjYiytkn5p0z32iWhuGGQwRGgGkfs6OtBjRQDzCofgGW7FOcTC57sXGq/Q8V+h4r9DxX6Hiv0PFSNpDxDTWv0PFfoeKs2om11trVBjBcPNKh+Aci5rXWXEXFPZIbIaayUGJw5EqH4BlJTJKwi0K4FZ0O6VnQ7pWdDulZ0O6VnQ7pUr2mGshqeKVnQ7pV74OwrOh3Ss6HdKzod0pjJODIdXNGUqH4Bld1KD9sfxkZZvsm9m0FUCtE1A6/upbV9DxX7QVW0abE253BPFl2N5CjoTnJzXhzmtZaApnFRh1bVKmuTyfqdlKh+AZXdSg/bH8ZQy1RgbV39KpKucFEGmlp1/VrXCYhPe2lWit6Y8+s0HL5P1OylQ/AMrupQftj+MpnuvdSlfVpdk19q4RvqAWRXG+9UIFVIxgvLSFG12IaBl8n6nZSofgHmUHCAfuu+6xl7133WMveu+6xl7133WMveu+6qXSD/6u+6mDnyUD6N9K7Z1rGXvXfdYy9677rGXvXfdYy9677rGXvXfdB4tWhteTlKh+Aci5jsHChUvCucRAaCu3kSofgHIWa2n+w28rVA3tcrTHyNfrfaxXGaJm7W3HsVGu43sm4+bS60fWOATG8SV3suN5RUPwDzb1SBplO0Ydq9NLQexHd4qJkQDGkkuoNStMFeu5WXVY7YULRpU0Rq0OoaYYL0MtoezJf4qk7DF04t7VUGoyRlvqur4JjjSgqiofgHm8JbErf8AjkwVJonRdOIVWuBHQuGaRxbNgV7VjQ7Vaxd7RUR9RnG+aDX0tVJdTarIq9/ssvWqFu85UsE68VmfUVmfUVmfUVo/qKDWigGHn2gCx3tMuVzmzN97ilUlDoj74/tWnPAbtqv8eIu953FavTyl3ut4oVljQ0dH+hfgpzwbeK/i9FydffS5MvNatrf09aqDUf6DmOwcKKXh3uc2A6ziVYF1dexOPBuILQOIQhUEdB5XgYaW/WJwaucN7tc4b3a5w3u04idlXY+jXOG92ucN7tc4b3a5w3u1zlvdonhA6EXVs0tHkeBhvlP0jarI+ZOtOdsCa0uoTi6qdabQtUBtAWmEkV6kT7xHimV9c2QgaEV1HIYmGkQz3begIACgHICOMVldgNnSsauN7nbchFAfiTP6HvLygNvLbrttkKI2DQNNeL1J/wAZpciwu4pGzA7chhiNGjSPH8BBrRQDkLsU424XPdi4grOh7Cs6HsKzoewrOh7Cs6HsKkbWHiGmBWdD2FZ0PYVZMkbQdbQaoMYKAcu4MNH0uKfGWhgrakp2f6FXfIDEqobHGPevK0kO4futJDuH7qWRj4bUpqeIfutJDuH7rSQ7h+6/yGCz7bMOVkmOo2GdG3JUpzjQOArZVaGtKpjQ24g6wjxSBtqL8knk/qt4zOo8pJHrbIfG/I61Zp72CbGAOPWpCkBusmmPQorN7GsoLryqRvtUN+SVwwa0M+ePKcNDn4Fp9YL0lqM7HBaVqFqRhojR7LzVB3CtqFpWqz5O0/G4UAVkX7SdZ/7Z/8QAKRABAAIABAQGAwEBAAAAAAAAAQARITFBURBhwfAgcYGRofEwsdFA4f/aAAgBAQABPyH/AB6PDmFWSGO0CwH3xnJe2cl7ZyXtnJe2cl7ZkbBoeQYfg0eEcd7Huv0Ze/ClwqAhqwKNIGDK4h0xEuTL+wqyhVizanA8JKRiiXFua5n5PTx6PDgdk/uP6ThT7tQUaY9IIm6gbQo4EKdbW6Tc1hzLO8uOM5POFrx6PCiQgZ7DIc5Yt+LxPM0hZwNatcoPqwc20QQVT2NkaxxXDkIk5EmXm0I/qDv/ABp49Hi5wSNZ9CmO3JQwl9cEUbw5T6FPoU5XkqPwaPFynvOU94LtHY5RXdtYud6+37nKe85T3nKe85T3nKe8Ecnw6PC3JNarl6woaqwOHCETBYgxiAQZBTGfQp9an1qfWp9aikoqpi/kLhawALyNvDo8DfaFp2OaGKKwM0NYuquy5nGw4MUUNph7Q9W3oFebj7QCS0WJLo8OBvmPwxw6nUY7/Axg0ytjH5uUyUdW2iJwCxrI7PFo41NaNujedIRu3TNbsFivHDBmdImt23rQgGg3G1f3ANm3e9LzrYqZ+TtO2nNMSC4g6LOLKwuhmvVmDgiuwx38eji5LSyO/mdn9Z2f1nZ/Wdn9ZTseAmHvMPJRjZR3852f1nZ/WNVY+CPd/Bo48rwkZ9Dn0OfQ59DiJMSkrMUCkjEcbn0OfQ59Dn0OfQ5o2y7vDo4+aOCPpELFQWGqcv1PpEOtFqjCUh7RRspyaSfSJ9In0iJTRaowiCPQGmynJxMp9IgAAFsDwmjw0ukAmYKnX1jAtXr/AMh2VUaG7Lx02gIYTKLWD2/cTCXQHKJMUTVfAmzCwtT5y1ZMg3e+m0I80ALbB++HzHhNHhoBVDDLiAUA8pmIgbsAbBfEGQHlw+Y8Jo4tljBszl/dOX905f3Tl/dFZbmqwlBSS02uGMz2asQlfXqbC/eV3HWV3HWV3HWPEpsAzn0yfTJ9MhkwLE1mj8A+W4OUcdPzjr7RipmGeS/1wpRnOQ9pyHtOQ9pyHtOQ9pyHtMgMp3TaaPCkaoxm6f5PvEfeI+8QGqGue+PvEfeI+8R94j7xFj4wehWOXPj8Cd02mjwFGDvHIdnnLNKNU3mJT26DfdPaKo0mBJuetkckJLS7mnhca7bgxywFq6SmkhE0a/PFIi67i5sCAKgacfgTum00cURvR/NylyJFvNcMnpf7hcSExTha1pPmYjKXkbEyLCsr9JHvT56P7MNC4UKXlwYFkH4O1QkQqA8HwJ3TaaOGJw4MLjZHvGORyJ5YeWHlh5YeWBoGlbsB6zyw8sH6DgbgOVyvh83Pw/AndNpo/AmpCnRhDMmygofH4fgTum00cORBcEBjrlWec7c6ztzrO3Os7c6ztzrC7eeyvOdudZgqFtGt8ztzrO3Os7c6xtw8SCV5vH4E7ptNHD5Sdx2cHjlgVYYTDmZxz6sKIpVTaBZjIh96FPMhcxgrLRzgVtTRQVh1ipXLtBgUx6x291ttXzFsSu5rcXh2nY4/AndNpo4fKTuOziqQxXNVrqjUAN3CJ0h2GB91EuiWu94Cq8GoUiSDJhGCAoBzOPadjj8Cd02mjh8pO47OISqXTwGAvO/3KFN+jUUsfUmDXNjDMv6ELEXWNc5SnSDLFIEVOC9jj2nY4/AndNpo4IIOTA1MKAoPCzZs2anCNWSgVV20a8TNmzZsxFsEGrvzePwJ3TaaPwFlbAiLjMWCsB9vw/AndNpo8eLLRH4TL1n1H+R8wcoOIJfNeDOzhdWD7xxUOZ0+jj4cGhwO0t5Q4RiLIVOZPjTum00eBQKgDVi98rk9tp01j1zPxNiZhsxfepbHBLDMjQactXydZt+TDWNWFsVFH6nYXbZv3Aq3b/0OtQyZMkb4UkZq9rHWYL1tXOfAndNpo8CHYGX8q6jBCobPlOsJuWquYwipECXd+9JRTlRL6vfbf+ekWVWKLzpR+2YgClqTbEz7It/z1lFTf07A+ZRFhsrxZz/ZznP9nOc/2c53v6QKAqBoTR4me6bf/s9pb9kwfYgjaOo6Pmc2zMEyY/eavoTOmd7q+85KNFfg0fgKAisxgsgxgwwHCVMonm1qNjzmZUuK4twfwaPwZ8wUJMmGBkj7R5trtRbkC6S9/ONXLWZj+DR4eblFY8+fKd9/s77/AGd9/sOsS0Z33nff7O+/2d9/s77/AGd5/sb3T7GOXPw6PAY0Bu3LefyYrVW8892YOjjUsKHljFzz5zCgGLYjhLBACYL+0dWsB1sI6REXv1Wl6TJUL1Dg6BdHr7rYaYVAaeHRxBN5eG7lGJZ9jN8HBtaCyWy2PJtrDggqUuxDYVMXojXDQwGDCKNBis1mR3hgRCmA0XU/UAMKgPFo4YnDgwuJWhu5PLPKdrdZ2t1na3WdrdZ2t1hoGm+ZgO/OdrdZ2t1jPAQ0Q5W/gKC0fgxNc5TCJSyNQKcsvx6PCMdtaBabBDlRi/xUcWjQBLieNHjllvrHmZkEAjY6+PR4c7d/IGb1f1wB0oMWFCUlDdal+kAwlCArPziYwcXYrnzmPUDgk+DEERLGHkxyLsPRHx6PCr7XfJU+HhlB0116pjaDsUHDesZQYFnblU/sD8ZAnBq2OpLGxFbpNOC1o59S/Z49HhIVVMkP7c4YY6tZ85MXKXi4hkvSVAxYOcVRQIN7yu6xdoDbXrvdZwK7qzSZr49Hjo2lG0o2lG0o2/Do/wAmj/Jo/wAmj/Jon//aAAwDAQACAAMAAAAQ8808888888880EU8088888oEAAc88888ocAAE8888ssgE8U888888o8s88888MMAAYk88888c8g4w4w0888ssMMMM880Mc000c88s88488c8884c8w4U8888o8ogA888888c8oU88c08884ooQ4sE888s0ok88sc888scQ888884cw444c884ks8Ess888880sc8088888cYsM888888o8ssc88888888888888888888888/8QAFBEBAAAAAAAAAAAAAAAAAAAAcP/aAAgBAwEBPxBw/8QAFhEBAQEAAAAAAAAAAAAAAAAAATAA/9oACAECAQE/EIkiRIkSJEiRIkSJEiRIkSJEiRIkSN//xAApEAEAAQIFAwQDAQEBAAAAAAABEQAhMUFRYcEgcfAQgZGhMLHx4UDR/9oACAEBAAE/EP8Aj5ekKLTEBQsw/IgGB7V5/wAV5/xXn/Fef8VFi3b/AM6k2uAk2iFO0jt+Dl6TevEuMvGamGkL0nypEIoAY6tW9fqAiRZcO00C6gIEUA7rZ2okMYsRDIGxH3p6QGZPI1OQksjqjNIRzuz6+XpRYBhnKX5R7+jg0U2BzcMiiBDWeLUoWHKBBHnWQxjcpZBJm280q2Z1l9WXshGsh3hH36+XpIJQstsHmCyZgRcvPIlrJ9EutkoclEEiGhoUw4vmaEFPVMVTEEGkINs6iSARkqCX+WoifsoWxrSA9Qt3r6DScbBiBrW0AANA6+XqKDmHzQk15FxREXsgNW2FOdCC6LBzLrbevIuK8i4o+U4E+I/By9X8VX8VTlqVJCiEqbwdhK+Hxp/FV/FV/FV/FV/FVgoxo9PL0zH6FCtXXUYFsWy3Wqs8jGbULiiyBwRipXkTiwxgi9QbvnhXmfFeZ8V5nxXmfFQL3UXUWLDFcj2qwXvWkBgMA5np5ehGog5h+gwMi7lL9lx13vmurnS/TAArwMMZHUg1q8qqOyEKhdbDtRCb2xKEUO5Duo/5SEiODRjnIwMg2xQYWPijhnK4WWiIXvtQP3GgYBhytE6VH867MwDX9EtQbFO7Fm2ZubfSOnl9ceogTgO5ozdhqfldZl+LZq0LwAUoN9EuU4ywSAgTc4y3mm+FKTfxIsTup2uZS7w9gLBQmyyVExzOzLKl1V5mkX57t6ZtGTlkiNLKdqPIk7t2AGKOGa1fOaXImW7zexYv1cvqFdfDZYmBgdI8ePHhrvRQGLBlxohuf6lyRhGSvqPHoYCQF4SDE7/g5fVuSAsMOFlrzHmvMea8x5rzHmmOWRCjiY0EuzONBfIg+a8x5rzHmvMea8x5rzHmkgm2QzpJ08vqxLERNi7WvKuKkOD28Eu1uttXlXFP3oOAMVaQDpHDIAwww4MV5VxXlXFeVcUwkgwAxVpNVl+QACqGHBivKuKLq4AgOk5fXy93pMlNUZwBkR91Eyob2HKkra8oAgAZGmfJhKTIMyTtDWotTIK4mHRhKQsYsTRm2pqRR9dL2HDTlWxNARAAxCUcB6kwHdAKMp36yHL6+Xu9LIMIgYGh6xYszAijSGocQE9gD2pWQsULvqWgqygi/WQ5fUbYkAUMJhrxXmvFea8V5rxXmg+LI4G7NWiaUAMLuK0kkkMacLpw7DQSUFCQzBOCv6Sn9JT+kowB9wlaWXYrxzmvHOa8c5oLxF5A4I1y/gFS0GaIf3SwozlErCe35Kg/DgBqks+40JkOFFmbv1ylKUpbreW1eJ0Vy9JBIAp0AElcpXxw6ChQomgZQrsL9QoUKFCjHMyFYKOcjPVY9ft/1XidFcvRFk0xYV2tDNbVGquXRmKa/QWKLYnIMwIJstKTRdqaTpIVlJkMpMJiCJhkHYwQEmsE0MQEUiYb2TcNim6kWgBitBseSCQJXklECTf1nM8yFZproYYF8AK6NgBgB6/b/qvE6K5fUR4MzYZ6J+8C7TpCQf8AGGAZHoSyIgKwFVyAUfJGiKIEYyB2o4CikhsvvOC5G9RRMO25E+Dk7LQrC5FjEYyhaHC1EoKIMScTAqW2x9FkvGRufqMdDqlaNtzHR9v+q8Torl9N5LTnKdqs+IlQYBkGAd8Wp/2Vn/ZWf9lZ/wBlZ/2VW6MlvMwpP+ys/wCytlDxZiRZMYTUTyZsqbqc1bq49P2/6rxOiuX8AcOsbHZ+YpHF2mEIchZQRMP4ft/1XidFcvog4K4HYotoZugGJ7+pWLVqxZp+riiFvm919FacqXi+iYPa9CtWrZ9uKgjma+v2/wCq8Torl9PPaPr0Ky3JC81fOyvrWX0CM2jsj90y9BtAJgFS+1HknG6LZlmpE6JQnsEMkC2WmXvFqDLtiIGcQwWTg20qLDQJIqbk5nzTxAoURlKIsFndpQi2ILuy+K9KD7f9V4nRXL6ee0ejoraKSoExNU+JR1ji7yoS/wCAVpEk8oy20sBNCapkghRQG/ekCtwigsMdqwKhECCh89SD7f8AVeJ0Vy+nntHo6WKgS7YIwSY30E8DcXyULbTRPhagCSLMpC2wgFKCCncCAofdLFPHAUBLRCy2CSAw+3Ug+3/VeJ0Vy+hhSCJqVF8IdAwALDpwYMGBtiiDD3pEUSAgYzNKvVgwYMGCFhgsYoGCY9ft/wBV4nRXL+A7WuoJDTUjE6BAHb9n4FAlYK+3/VeJ0Vy9c2vFzbvgN4G9RiTMiWd6zCfkJYWy7CVln6Zm6fAO1R9Zeu9i90R0lsVWpZW65EoPeC9HJSxA1ZGyhDCHcrSRfb2rxOiuXoOoUqQBRsyw3Fu7PyaxaJmvY/RUiHCIzKS0qoTjenNAD+5JJ8U+kYPE/g9jO1HpwDyRWBbD3qZL6ti6FhW5WOQMJh2Gz3oOwGxT6CgIfyME2T0PWdzwf+kKGSOyMyAMe1fb/qvE6K5eiLnImT6Wd2b0KDEH0s4HYVgVuOH3KjJRqjdiZ2jHBTQjAXEOaDzUCI0fS8hsAqUKuVOWdCT4pyE5CiSS96OCdL94t7hS0toQCHv+qi5gsvpisIHsB0UqFKYhVAxzyoAsBXL0oJCSUnd3Uq7xb3DWSBlWe0t37lOD7BI3YK/ajGNZjHyrFBYTBuKfKG9F4tjOOzD80NqMCGBx9fg5fwWakBEe81AyQyYW2YCq4UQQLwFkiN6EMBoAgv7rQM2wmjb8oGRhhufg5fwGlMUYgkSb0gapKYM7VDIu1JS4K92N0sfOVBaBCmU28TBTDC0gR3S09vwcvSNnQN6GJJWUt21fy1f5av8ALVBCgyJAC9oFfy1f5av8tX+WrAT9KoAbYJsFnKz5NjXp5egRpoCcJ/45nYWpQrGJbi2a/wCU5MgtExvDQWQI6N4AAJbDGD2mzfzmyGCoxCjri41Gyo6UIT2lR/ElGREvduoA1FBAbQrYso1YKZJowIkyd/R/RG4SxTTQ7F5g4wB4AYAdPL6joRk7jRH22K+2RT10MgwC3o7KiXDfMzoUgU3kKQFtjObFPIkI8BWIvcwioRpLo4WwjsatsM5ZlOEGat9anuUEhJJVhaO1CAlYIlpjryF99rMXJvQD3DQB1cvpvJac5TtTn7W/giwFgP2vSqVKl0NOW4sJ7pv0eqpV3EOPTADGC4Ub0cBiuquat1cevl/BLTrUNm0jiTUmifZRBnMyff8AHy9L8Gy4YMWhZbxUPcYO0vr9+gXArBIRBpmXuvp9hztoasDL4X71iHe4ZpRlgSBkTr5ekQ8S7guA3FJ0Hoe4ajkVKGYQzCMSywU3qQz9IsyYD80R3JILgQkaJCiQg1RJgyXijbAhEkSmMVhi/wDgQDZDLr5ekrPhW5X3H4fSJSEoN0bScCYqKbYSs1fgWwIqSyZJyCTcI/8AFSgEUzBCS0mA4xvUfe2ALCxCJwQ9Av4kYMiex8/Xy9KExKkIyC5CWNyNqtU+BE7AfYagyMYZeKRYq30SQ2jSiSdCLMAmI2KRjnEsQn9FEsJUt0r8XpkmtSjqEF6ARvSrKVyXJVqvXy9SDiTW0+K2nxW0+K2nxW0+Pw8v/Jy/8nL/AMnL/wAnLX//2Q=="]
math
multiple-choice
10
一空间几何体的三视图如图所示, 则该几何体的体积为( )
$2 \pi+2 \sqrt{3}$
$4 \pi+2 \sqrt{3}$
$2 \pi+\frac{2 \sqrt{3}}{3}$
$4 \pi+\frac{2 \sqrt{3}}{3}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCABvAG0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/iiiigAooooAKKK8u+N3xh8E/s+/CD4lfG/4j3s9h4H+FfgvxB448SS2Vu17qdxp3h/Tp79tM0TTYyJ9X8Q6xLFFpPh7RLQPfa1rd7YaVYxS3l5BE4B+aP7d2mfHH9rb4xaZ+yt+y98UNW+FXiT9mDwlon7Ynj3x3pN/cWmial8dtP1DVX/Yq/Z88ffZSU1r4b+NfG3hbxZ8V/jl4WEkWof8IR4B+H+nXUQ0r4l2s7/oT+zN8eNB/aZ+BPw2+N3h/TL7w9H430JpPEHg7V2Rtf8Ah7480LUL3wx8SPhj4nWICOLxZ8MviBoviXwD4qgjHlweIPDupRRs0aKzeT/sL/B7xt8NPg7f+OPjLZQWn7R37SXjPV/2if2iYobhb5dC+IXjyx0q10b4X2WpBV/tDw/8BvhpongP4E+F70BRqOg/Dey1iZPt2qXssvlvgP8A4xa/br8a/CiX/Qvgx+3fHr/x1+E2fk03wx+1b4C0Oxh/aJ+HdpkmO1Pxl+HOn+HPj94Z0m3WP7f4q8E/tLeKboyXOo5YA/SCiiigAooooAKKKKACiiigAooooAK/N/4/j/hp39rr4O/snWn+m/Cz9n4eDv2xP2owv73T9W1/SPEmoJ+x98G9Txvgn/tv4p+EvEP7Qeu2LlbmwtfgD4HtNSgk0b4hwfaPtf4x/FnwR8BvhP8AEf41fErVDo3gH4V+C/Efj3xbqKQtc3MGheGNLudWvo7CyQibUdVuobY2mk6VbBrzVdTntNOso5bq6hib5x/YS+E3jfwL8I9Z+J/xo0saV+0d+1H401L9on496dJMt3P4Q8T+MdN0nTPBfwdhvQP9I0v4A/CbQvAPwU0+eFvs2py+Br7xIEF74gvpZgD7Xr5M/bV+Bfib47fAvU9P+Gd5YaN8ePhh4h8O/HD9m7xLqTGKw0H47/Cy8fxB4Gg1e4QrLD4Q8b7dS+F/xIiiO7Uvhj468Z6OQY9RcH6zooA8S/Zv+Onhn9pb4GfDP45eErPUNJ0v4heGoNUvPDWsqsfiDwT4osri40Xxv8PPFNuqqLPxf8OvGema/wCBvF1htB0/xL4f1WyYboDXttfm/wDDPP7Ln7cfxD+CU/8AoXwb/baj8T/tI/BHPyab4a/aR8K2mmwftS/DCz6x2v8AwszQW8L/ALSHhjTEZZ9Z8UD9pnxCyeVYsV/SCgAooooAKKKKACiiigAoorz74s/FHwT8Efhf8Q/jH8SdZh8PfD/4W+C/Evj/AMZ63MrSLpnhrwnpF3resXSQJ+9urhLGymFrZwB7m9uTFaW0clxNGjAHxB+0d/xk1+1X8F/2PbL/AE34Z/B//hEP2xv2rgn7ywv7Xwv4rvF/ZL+DOqgb4n/4T/40eENY+M+r2Mysknhn9nI6Hq0DaX4/tvtH6QV8QfsHfC7xv4W+FfiH4zfGjRpdE/aJ/ax8aXn7Qvxo0W8YTX/gK48S6TpOjfDH4ItP84Fv8BPg7oXgP4U3S2sradqfirw34r8X2yJdeK9Qkm+36ACiiigD5D/bb+CHiz41/A+4l+FMlhY/tB/BrxR4f+Pn7NesajMLSxs/jb8MHutS8OaBq19y1l4R+KOi3XiP4M/EaZFeR/hr8R/GFtEvmzxlfV/2evjf4S/aS+CXwy+OngiO/tPDvxL8Kad4ii0fWIDaeIPC+qSK9p4j8FeKLBgsml+LvA/iS11bwh4u0iZVuNI8S6JqumXCJPaSKvstfnB8JP8AjF79tj4nfs+XH+hfB/8AbCTxb+1P+z+CPL03w78cdKn0yH9rj4UWRx5NofGV1qvhb9pnwzYNI1/4h8Q+Mf2jdWghTTfCkhiAP0fooooAKKKKACiiigAr84P2nP8AjJb9pv4JfsXWP+m/DvwCfC37YH7WoT95Z3Hg7wT4uuB+zD8HNW2kqP8Ahb/x18JXvxF1GxnSay1f4f8A7OXjfwrrVudP8a23n/c/xO+JHgv4OfDjx78WviPrtp4Y+H/wy8HeJfH3jbxFfFhaaJ4V8I6Pea9r+qThA0jpZaXYXVx5USPNMYxFCjyuiH5Q/YK+G/jTSPhp4q+P3xk0O68P/tAftfeM5fj98UvD2pgNqvw40bV9H0zQfgx8C7g7pFt3+B/wZ0bwV4G8Q29lKdK1H4k2vxC8Y2cUdx4vvnlAPueiiigAooooAK+PP24fgt4x+L3wVXW/hDHZp+0V8BvF2hftCfs23l9cLY2s3xe+G8OoSWvgrVNSIY6d4V+M/g3VPGPwK8e3qpJJb+Afib4mmt0F3HbOn2HRQB5H8BPjT4N/aL+DHwz+OXgCS9PhL4oeD9H8W6XaarbtY65or6lbKdS8M+JNNc+do/irwrqqX3hrxVolyEvNE8RaVqek3scd3ZzRr65X5wfBT/jGD9sv4sfs0XP+hfCT9qdfGH7XH7N+793p2hfE8arpkX7YXwhsOFgtf7T8W+IvC/7S/hyxMkmo6/qnxZ+OdzZwR6N4Dl8j9H6ACiiigAoorj/iF4+8H/CnwD42+KHxC16x8LeAvhz4S8R+OvGviXU3MWneH/CfhPSLzXvEOtX0iqzLaaZpNhd3twUVn8uFtisxCkA+EP2q/wDjJP8AaJ+CH7ENh/pngPRG8Pfta/tchPntW+FXw98Xt/woD4RattPyD48fHrwydevbGdZ9O8R/C39n/wCMHhLV4Da+JbcTfo/Xwh+wR4B8Xx/D3xl+0r8XdCvvDvx0/bI8Xp8dPHHhrWUC618MvAtxo9joHwD+Bd5GGkWxuvhD8G9O8LaP4w0+zk/sy6+L2p/FLxXaRpN4ru2k+76ACiiigAooooAKKKKAPjP9ub4OeNfif8G7Pxj8G7S2uP2jf2c/GOj/ALRH7OYuLhbCPV/iV4As9Vg1D4a3+pFW/s7w58dvhzrXjr4D+Lr7a50/wx8StV1SBDfWFnLF7x8DvjF4K/aE+D3w0+N/w6u7m88E/FPwZoPjXw8b+2ax1azs9csIbx9I17TZCZ9H8R6HcvPoviTQ7sJfaJrthqOk38UV5ZzxJ6pX5w/AUf8ADMX7X3xg/ZWu/wDQvhV+0UPGX7YX7MIb91p2j+K9S8Q6dH+2H8HNNzsggNh8S/Ffhz9orQbIF7zVR8d/iTDp9vFovw8n+zgH6PUUUUAFfnB+1zn9o/47fA/9hXTv9L8GXT6R+1J+1yE+e3T4E/DLxbCfhN8KNWwQYx+0V8d9EsLa70+cS2Pij4QfBv48eGr+ExajGH+9/G/jTwr8NvBfi74ieOtdsPC/gjwF4Y1/xp4y8S6tN9n0vw94V8L6Vd654g1zUpyG8mw0nSbG7v7uXB8u3gkfB2gV8Y/sC+CvFV/4H8dftV/FXQ7/AMP/ABl/bQ8VWnxm1zw3rcRh1v4ZfCK30mHQf2b/AIJX0DMx02++HPwig0bUPHGkw7bRPjT4y+LWtQRq+vTFgD72ooooAKKKKACiiigAooooAK+LP26vhJ428f8Awi0r4kfBjTU1H9o79mHxnpn7RP7P9l5y2cnijxh4L03V9O8V/CO4vyp+yaP8ffhVrvj74H6xcyEw6ZB4/i8Qqn27QrCWH7TooA8z+DPxb8EfHv4S/Df41/DfUn1bwH8VfBfh3x34UvZ4GtLxtG8S6XbapaW2p2EhM+mazYrcGx1rSLoJe6Rq1te6ZfRxXdpNEnplfnB+ztj9mT9rD4z/ALId5/oXwx+NX/CX/tjfsqB/3dhpz+I/FNkn7XXwa0vOyGP/AIQv4xeLtD+OOjWMS5fQv2itS0jSoE0n4e3P2f8AR+gD84f2xv8AjIr4xfBH9grTR9r8KeL3tP2jf2tvL+e3tv2avhX4osn8JfDLVcbQv/DSnxss9B8GXOmTsYPE/wAHfAf7QWmsjfZjX6PV+Jf7NnxV/av+GvjD9oz4wfFr/gl3+2r4i+M37Qnxb1HWNS1Hwj8Tv+CaGo+HPC3wU+HjXvgz9nT4XeHdQ17/AIKGeG9Wk0/w18P4ZPG/iiK40PT4G+MXxO+LGpaek+n6pa3Mv1h/w2h+0D/0il/b8/8ADh/8Euf/AKZNQB+glFfn3/w2h+0D/wBIpf2/P/Dh/wDBLn/6ZNR/w2h+0D/0il/b8/8ADh/8Euf/AKZNQB+glFfn3/w2h+0D/wBIpf2/P/Dh/wDBLn/6ZNR/w2h+0D/0il/b8/8ADh/8Euf/AKZNQB+glFfn3/w2h+0D/wBIpf2/P/Dh/wDBLn/6ZNR/w2h+0D/0il/b8/8ADh/8Euf/AKZNQB+glFfn3/w2h+0D/wBIpf2/P/Dh/wDBLn/6ZNR/w2h+0D/0il/b8/8ADh/8Euf/AKZNQB+glFfn3/w2h+0D/wBIpf2/P/Dh/wDBLn/6ZNR/w2h+0D/0il/b8/8ADh/8Euf/AKZNQB1P7d/ws8b+L/hToHxf+DGjvrP7RX7KXjSx/aG+COkWrrb3vjnUvC2latpHxG+Cn2o7Qln8ffg/rvj34RKbmQWGl6/4r8O+LZka78L2EkP0x8I/in4J+OPwt+Hfxl+G2sR6/wDD/wCKXgvw34+8G6wiNEb/AMOeKtJtda0qae3f97Z3gtLyOO+sLgJdWF4k9ldRx3EEsa/H3/DaH7QP/SKX9vz/AMOH/wAEuf8A6ZNXmX7Adx8fPAOs/tPeCfFP7IPx1+BnwBvPi9J8XP2cNE+J3jT9k7WvE2jR/Gn+1vF/xw+HFnpnwP8A2mvjHo+m+EfCvxmXxJ478H3Gp61o5h0T4uW/gnRtFi0vwDHcTAH/2Q=="]
math
multiple-choice
End of preview. Expand in Data Studio

No dataset card yet

Downloads last month
4