index
int64
0
1.35k
question
stringlengths
6
657
A
stringlengths
1
149
B
stringlengths
1
140
C
stringlengths
1
159
D
stringlengths
1
274
answer
stringclasses
4 values
image
stringlengths
368
601k
category
stringclasses
7 values
question_type
stringclasses
1 value
0
某工厂对一批产品进行了抽样检测. 有图是根据抽样检测 后的产品净重 (单位: 克) 数据绘制的频率分布直方图, 其中 产品净重的范围是 $[96,106]$, 样本数据分组为 $[96,98),[98$, $100),[100,102),[102,104),[104,106]$, 已知样本中产品 净重小于 100 克的个数是 36 , 则样本中净重大于或等于 98 克并 且小于 104 克的产品的个数是( )
90
75
60
45
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCADvAQ0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/iiiigAooooAKKKKACiucufGHhSz8W6P4CuvEmh23jfxB4e8ReLdC8Iz6pZxeI9Y8L+EdR8M6R4p8Q6bozzC/vNF8Par408I6drOpW8Elpp174m0O2upYptTtEl/ET/gsle/tma/q3wV+HnwS+F/xgvP2fJfEH7Ovib4h/Fb4eePv+Cf3gafR/2h9C/4KXfsBfET4A23w+uP2x/jJ4OudS+MGh+CfhD8e/CXw98J6v4H174SfEX4y/Hj4BeDNc0b4iyXuux/DMA/d6iv5AvGHivxPpv7cV14W8fP+1/dfD/SviB+zN+zt418BeNP+Czf/BQT4L/tHeJvi7+0d4t/4Jkx/H/9pHxZ8JP2TrLxJ+xLpH/Cg/Ev/BT39mnwB4W+AH7NPx3/AGcfgnaXV9+0PqngDw98Rvh/dfBjTf2d/p//AIKo+KPjz45+DX7btt4Z+Ln7b9v4k+F/xg+DvwsufgR+zUf+Cbfjz4U/DRPH8/g3xL+z38dfhF47+OP7PHgL9oTxZ+0/pcj/AA0+KvhD9jjwD+0R4S/by0/9tDxj8E/Bf7PWseAfg38Zf2UP2zfEIB/S9RX5A/sf/ET40J8bPhr4N8Z/tK/tAfHjxB8QPh/8ePFvxA+Gnxu8b/sCy+BPgj4O+FXxdvfhPKmg+Mv2SP2L/g3e/G/9r/wD8TdN8KfCf9pX4I/Cv4l/EP4E/smax4o+JWm/F74y6n4gvP2ONS/ak+e/2tdd/bY+LHx9/Zc1D4K6h8JdT0Dxvq/7Sl1+zMl343uF+On7P/xD8ZaXp37Lmnf8FBvC/wAF4f2c9a+HXxV+Cv7Fn7Mnj74x/FXxH4X/AGgv2i/Bfw0+O/jb9sbwr8DpZNG+N9v+yN4c8fgH9AVFfyhf8JP8U/J/4W9/wrz/AIKf/wDCW/8AD77/AIVP/wANWf8ADwbxH/wxt/wqz/h/N/wzx/wrT/hlb/h4Z/af/Cv/APhSX/GM/wDwhv8AwxD/AMI59u/4mH9m/wDCJf8AFya9f+NN98ZfEv8AwUu+Kfwj8D6R+2/4u+Mmt/tv/slfGT4N+NvhR+37B4d/ZH+E/wCxL+zhpP8AwSTu/wBuHwD8Yf2Y9N/bm8H6Ro3iA6R8aviHrWt/C/xn+yV4i8cfFjRP2j/BvjfwlZeLvDeuDxF4aAP6XqK/nB/4I7+J/DnizR/2BZPix8PP+Cn/AIf/AGjfir+wBpX7UelfGP8AaQ/4KDfFP42/s4/tFf8ACNeBP2dvA/xr8c6P8FtP/wCChnx48P2f/CQ+IP2pfBvjfwR4Z+MP7N/w3/sK11qPWNE8PeDfGfgy10rRv6PqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP8AP6/bB+Ln/BYqf/g41+GX7Vfw1/Yx/aL1f4W/Bi18WeBfg78KrPSLS3n+LX7Fnw58UeE/AP7RvjLTdOudXttPuJfHPiL4w6V4v0e71qC31LRNQ8T/AAjj1Gzln8IWzWv9cH7Vv7Pd/wDtJfFPwv4b8PfBfxNoeqan4Z+C/iC7/bb8WeKfDd94d+AHh34QftCaB+0TpPhD9nn4O6n8Q9V8VxftS6p8Yvhb8GfHWpt4s+Bmgfsy+L7HwZ8LPFv7T/iP9qPS/wBmXwP+xf4+6Xx9/wApT/2T/wDtH/8A8FCP/Wi/+CZFfoBQB/PDJ/wSf1Hwt8QtD+Jnwk+HHiDwV8Lvhn+0/wDsm+FPhl+zPcfETwrrHjST9nj4JfEz/gmB4E8UfF6b4ta9rfiDSPCXh/w7pH/BKv8AZK+N/wAPfhXrVx8Zvi34x+AXw6+P3hDxv4z0D9pH9tLwF4T/AOCenoH/AAUi/wCCSXiX9pT9kf8Aa1+H3g74+fGD4i3XiPw/+0/8ZfgB+ylrPwS/4JcwfBrTf2lfiZonxa8U+HIvCfiPxf8AsKaf8RPA3iDxD8RPiX4hsbn44S/HPQPjfbz+NPE3jXWPjra+N9Y1vx7N+71FAH4+fs6/8EevAn7KUuuH4K/tNfGLTtD1Lx943+M2l/DLVvgJ/wAE6vDvwe8MfHbxl+zi/wCy6vxd8HeFPgT+xB8DPFPwx8S6T8MUs7WSP4I+P/hRbeJ7z/hIz4x/t60+I/xQtfGnVftY/sFaT8dvGPgHQtB/Yh/4JffETQ/C/wAJfC3w70b9qH9tP4Uf8NL/ABR+FGk+D9U8R3+nfDfw9+zL/wAKm8G/8LK+HrWc0NrpN7/w3R8Ff+EW8Q/EHxV4z/4QnxH/AMIj/wAIx8UP1ZooA/lC/wCGXP2mP+EI/tf/AIdv/wDBT/8A4Xb/AMPP/wDhtb+z/wDh4Z+z3/wzP/wqz/h7h/w29/YH/DM//D2b/hnj/hYH/DPH/Ek/sr/hRf8Awjn/AA0J/wAVT/wlf9p/8Xer7ftP+CZHx9+IP/BRXxj+2V8XdM/YgtPBPhf9p/xV8Yfgz4V8bfDzxp+2D4q1Dwt4u+F//BPH4RP4y0M+J9P/AGY9I/ZM/af8F6R/wTj8K+Lfht8WPCt/+0zp3hTUv2hvHPhY6JqFr8LNO8VfFn93qKAPwB/4JNfs0eI/2btH/ZD0H4ofsB/t/wDw/wDj18NP2QPD37NHjz9oD42/tr/Cz9oP9nH4e+V4E+FetfFvSfhR8KZP+Ck/x2vfht8P/iT8TfgT4BsPCth8G/2aPC/9nWuk+BtJvdB8DeBdM1KLRP3+oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+H/ANoj9vT4X/s5eOb/AMEa14C+L3xEXwR4E0j4tfHzxZ8LND8Ha14X/Zm+DviDX9Q8OaJ8UfjH/wAJH478JeJLjQNSu9A8XahDoHwl8OfFP4iw+HPBXirxTd+CLbw7pqanc/cFfhN+2h4A+K/hv4qf8FCvCPh34R/E74lzf8FHP2Q/hj8EPgL4n8EeAfGnjLwh4b+LfhvQ/jF8KvEnhH4weOPC3h3XNB+AvgnTNL+KHhb4mWvjb4pXHhnwHq9n/wAJxbaX4luPFOnjQJwD9ofiF8QND+Gvw+8V/EvWrHxXrvh/wh4c1DxPfaf8PfBfiv4meMNV0/T7Rrx7fwp4H8BaP4h8XeLtWuolC6fpPhzR9Sv72R1EMDLudfnjwt+2V4L8e/sl/Cr9rjwD8Nvi54y0P43eE/h54m+F3wf0zTPAenfGnxVffE46d/wi/g9dP8TfELQfhtoviRU1D7Trt34i+J2j+DvDenafq2sa34sstH0y7v4+p07xt4b8AfCHxx4NuLD4o6zc/s7fDbQvDXi240f4DfG7UZfFE1j8PLK9hm+Eun6Z4B1G6+OEtzZiOOWx+CY+I1zp2vNL4RvhF4ptbnSY/wAs/wBnnSv2Z9Z/4JA/sbfDH9uX9lX44/EDw5oPwy8D/DXXvhJ4t/4J+/tdfFP4o+Avin4P8HahoGo+IYPhV4R+APif4zfDXUtBC6zD4R+OGleG/Dtha3N1aah4G8fC61PSbq5APvf4jftyxfDHQPhfBrv7Ln7TWqfG/wCKOg+PvGlt+yx4ST9nbxT8cvCHw6+F0lnH4++Ini++0f8AaIuPgcnhrQTrXhSG3tfC/wAafFHirxPqnjHw74a8G+GvEXiuTU9C0z64+HHxC8H/ABa+H3gf4pfD7WYvEXgT4j+EvD3jnwbr0EF3axax4Y8VaTaa3oepLaX8Frf2ZvNNvrad7O/tbW+tHdre8toLmKWJPw88F+G/j7+yj4t/Zc/aK+Mvgf8AaM+O2lL+yN+0Z+zVdQaH4M+In7RHx88E6t4l+OHhz4t/sy6J8VbDwPpvjvxtPrfiT4WaBa/DX4rfGLVl1nw7onxA8M6RefFHxfYWWoN4tvf07/YF+CnjD9nL9i39mX4H/EL7Cnjv4b/B/wAH+H/GVtpl1Ff6fp3ihNOS713SLPUYHeDU7fRtSurnSotUtytvqa2Yv4I4obhIkAPlr9qn9oX4Bfs1/wDBSX9j/wAdftF/HD4P/AHwTq37D/7fvhPS/GPxr+Jfgz4WeFdS8VX3x5/4Ju6xY+GdP8Q+Ota0HSLzxBeaRoOuapaaNb3kmo3GnaNqt9DavbadeSw/cHj/APax/ZY+FHxT8FfAv4pftLfs/wDw2+NvxK/4Rz/hXXwd8f8Axk+HXg74p+P/APhMfEd74P8ACP8AwhXw98ReI9O8W+Kv+Eq8W6dqHhbw5/YWkX/9ueI7C90TTPtWp2s9qnz/AOPv+Up/7J//AGj/AP8AgoR/60X/AMEyK/QCgDwD/hrH9lj/AIXt/wAMuf8ADS37P/8Aw01/0bp/wuT4df8AC9v+RO/4WJ/ySL/hI/8AhYH/ACT/AP4rn/kXv+RO/wCKm/5Av+nUngD9rH9lj4rfFPxr8C/hb+0t+z/8Sfjb8Nf+Ek/4WL8HfAHxk+HXjH4p+AP+EO8R2fg/xd/wmvw98O+I9R8W+Ff+EV8W6jp/hbxJ/bukWH9h+I7+z0TU/sup3UFq/wBAUUAfMHw4/bd/Yv8AjH4V+J3jr4Rftd/swfFTwR8E/D6+LPjN4x+HHx9+FPjjwr8I/Cr6d4g1hPE3xO8Q+GPFmqaT4C8PtpPhPxVqi6z4qvNJ01tO8NeIL4XJttG1GW2NG/bd/Yv8R/BrxZ+0Z4e/a7/Zg139nzwF4gtvCfjr47aN8ffhTqnwb8F+Kryfwza2fhnxZ8T7HxZP4I8OeILq58aeDra20bWNcs9Rnn8WeGoYrZ5Ne0tbr6fooA+YNZ/bd/Yv8OfBrwn+0Z4h/a7/AGYNC/Z88e+ILnwn4F+O2s/H34U6X8G/Gniqzn8TWt54Z8J/E++8WQeCPEfiC1ufBfjG2udG0fXLzUYJ/CfiaGW2STQdUW1PiP8Atu/sX/Bzwr8MfHXxd/a7/Zg+Ffgj42eH28WfBnxj8R/j78KfA/hX4ueFU07w/rD+Jvhj4h8T+LNL0nx74fXSfFnhXVG1nwreatpq6d4l8P3xuRbazp0tz9P0UAfP/j/9rH9lj4UfFPwV8C/il+0t+z/8Nvjb8Sv+Ec/4V18HfH/xk+HXg74p+P8A/hMfEd74P8I/8IV8PfEXiPTvFvir/hKvFunah4W8Of2FpF//AG54jsL3RNM+1anaz2qL/wANY/ssf8L2/wCGXP8Ahpb9n/8A4aa/6N0/4XJ8Ov8Ahe3/ACJ3/CxP+SRf8JH/AMLA/wCSf/8AFc/8i9/yJ3/FTf8AIF/06vf6KAPn/wAAftY/ssfFb4p+NfgX8Lf2lv2f/iT8bfhr/wAJJ/wsX4O+APjJ8OvGPxT8Af8ACHeI7Pwf4u/4TX4e+HfEeo+LfCv/AAivi3UdP8LeJP7d0iw/sPxHf2eian9l1O6gtXwPhx+27+xf8Y/CvxO8dfCL9rv9mD4qeCPgn4fXxZ8ZvGPw4+Pvwp8ceFfhH4VfTvEGsJ4m+J3iHwx4s1TSfAXh9tJ8J+KtUXWfFV5pOmtp3hrxBfC5Nto2oy230/RQB8Af8PYv+CWX/SSz9gD/AMTI/Z1/+eNR/wAPYv8Agll/0ks/YA/8TI/Z1/8AnjUfsb/8nFf8FYv+z/8A4cf+usv+Cadff9AHwB/w9i/4JZf9JLP2AP8AxMj9nX/541egfC3/AIKE/sC/HHx3oXwt+Cn7cP7IHxg+Jvij+0/+EZ+HXwt/aW+C/wAQPHfiL+xNH1HxFrP9heEfCfjXV/EGr/2R4f0jVdd1P+z9PuPsGj6ZqGp3XlWVlczxfX9fAH7ZH/JxX/BJ3/s//wCI/wD66y/4KWUAff8ARRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRX4wfthftIftI2/xG/bT1D4J/F64+E3hL/gnJ+zJ4C+P+q+EbTwR8OvF2kftH/EPxZpfxK+JOo/Dn4r33jnwlr3ivw98MrL4c/C+w0TT5fgxr/w28cf8JF491LXbvx7c2/h2x8NMAfs/RXj3iTX/GXjn4Eaj4r+EWv6H4A8beLfhmviXwF4i8c+Drr4haF4U1bW/D0eraPfeI/BOj+M/AVz4og003EZu9HsvHHh5bySMourRxZ3/C/7MusftQftcf8ABO39jfx5cftQa18GviR8S/gR4F+IXxm+PXgb4dfBm/8AiNqniK+8G2moBvCXhT4ifDnxr8DfC+na54jnbUfF8t/8NNYS38N2V14c8JWXhzVdatvGfhYA/Umivwpuf2pv2vNU/YF/Zb+LXxLP7R3hGPV38Uan+0/+1X+xf8Jv2d/HHi/w38K/A+t634W8FfHPTvgZ8ddO+KGov4G+NmkHwz8avE1v8If2fPjx4m8LeAU8QR+H/Ceg2N5pmu6T+z/w01HTtY+HPgHV9H8eXnxS0jVvBnhjU9J+Jmof8I19v+IemaholleWHje8/wCEM0Dwr4QNz4qtJodcmPhfwx4e8PF75jo+iaXp/wBnsoQD428ff8pT/wBk/wD7R/8A/BQj/wBaL/4JkV+gFfn/AOPv+Up/7J//AGj/AP8AgoR/60X/AMEyK/QCgAooooAKKKKACiiigAooooAKKKKAPgD9jf8A5OK/4Kxf9n//AA4/9dZf8E06+/6+AP2N/wDk4r/grF/2f/8ADj/11l/wTTr7/oAK+AP2yP8Ak4r/AIJO/wDZ/wD8R/8A11l/wUsr7/r4A/bI/wCTiv8Agk7/ANn/APxH/wDXWX/BSygD7/ooooAKKKKACiiigAooooAKKKKACiiigAr85P2l/wBgjVPjp8R/iN4p8HfGdPhZ4L/aV+EXhf4Aftf+DJfh/d+MNY+Knwm8G6x4ovNET4WeNLT4h+C2+CnxFn0Dx/4+8C654z1Pw58WND1Lwl4gs1t/AuneItA0/wAQn9G68q8f/HX4IfCjxJ8PPBnxS+Mnwq+G3i/4u66/hf4T+FPH/wAQ/CPg7xJ8T/EscljDJ4d+Hmh+ItX07VPGuupLqemxPpHhu11PUFk1CxRrcNdwCQAyL7wV8W4vC/xS8LeFvHPwm8PWGoaBaeH/AIAwy/BnxXqFj8LLW38JQaM0fxKsbX456MfjBZx6/HLqmn2nhC5+BJsvDptvDElxeahbv4rufgTQf2Dv2r/Bn7CHwG/Yr8GftdfAqzl+FGl6F4G8dePNf/Y/+JOqeHvjB8H/AAmlvbaL8OdU8A6B+254Q8QeF08Q6baxaP8AFPWNN+Kt/B460efVNI0zQ/Bul6re2T/rBdXVtY21xe3txBaWdpBNdXd3dTR29ta21vG0s9xcTyskUMEMSPJNNI6xxxqzuyqpI8o1v9oL4C+GvhAn7QniT43fCHw/8ApNE0nxNF8cNb+JXgzSvhBJ4b16e0ttD8QJ8S7/AFq38FtomtXGoWFvpOqrrRsNRnvbSKzuJpLmFXAPnTWPgz+3VrHw60DwRJ+1x+zrb6prB8Y6d8YvE8H7FHi2P7b4Y8SXSWei6N+z9oMf7Ysem/CC78IeFHu7HT9V+LTftPpqfieW28Q6tptxodrJ4Kuvrb4ceAPDHwo+H3gX4X+CbFtM8G/Dnwf4a8C+FNOeZ7h7Hw54S0az0HRbWS4lzLcywadYW0ctxKTLPIrTSEyOxPC+OP2mP2cPhl8PPCfxd+JP7QPwR+H3wn8ez+HrXwL8T/HHxW8CeE/h540ufF1i+qeFLfwn4117XrDw34jn8T6ZHJqPh6HR9TvJNasUe701bm3VpB7UrK6q8bK6OoZHUhlZWGVdWBIZWGCCCcg5BxQB+cXxXtvFU/8AwVg/Yjl8Paz4f0vSbP8AYf8A+CiFz46sdZ8Najr2o+I/CrfGH/gndZ2ejeE9UsfFnhy28F+IIPG114O8Q3PiXWNH8e6ddeFdB8TeDovCdnq3izS/HXgv6g8AeHP2p9O+KfjXV/il8ZP2f/GPwSv/APhI/wDhXXw98Afs0/EX4bfFPwr9q8R2V14R/wCE1+MXiL9rH4r+EvH/APYfhJNQ0TxH/YXwL+Gv/CVeI7qy8U6Z/wAIdplhP4P1H5/8ff8AKU/9k/8A7R//APBQj/1ov/gmRX6AUAfMHw48J/toaX4V+J1n8Xfj7+zB448b6t4fW2+DPiH4cfsifFb4V+FfAXioad4gifWfid4O8T/tu/GPVvi54fbVrnwrfL4Z8K+OvgnqS6do3iDSz4se58S6drHhM0bwn+2hB8GvFmh+Ifj7+zBqn7Qd54gtrnwL8T9G/ZE+K2hfBvw54VSfwy15o3iz4E337bviPxv408QT21r4xhtvE2j/ALRngLTrWfXvDVzL4TvI/CeqWvjT6fooA+YNZ8J/toT/AAa8J6H4e+Pv7MGl/tB2fiC5ufHXxP1n9kT4ra78G/EfhV5/EzWejeE/gTY/tu+HPG/gvxBBbXXg6G58Tax+0Z49066n0HxNcxeE7OPxZpdr4LPiP4T/AG0NU8K/DGz+EXx9/Zg8D+N9J8PtbfGbxD8R/wBkT4rfFTwr498VHTvD8Saz8MfB3hj9t34Oat8I/D66tbeKr5vDPirx18bNSbTtZ8P6WPFiXPhrUdY8WfT9FAHz/wCP/Dn7U+o/FPwVq/wt+Mn7P/g74JWH/COf8LF+Hvj/APZp+IvxJ+Kfir7L4jvbrxd/whXxi8O/tY/Cjwl4A/tzwk+n6J4c/t34F/Er/hFfEdre+KdT/wCEx0y/g8H6cv8Awjn7U/8Awvb/AISH/hcn7P8A/wAMy/8ARIv+GafiL/wvb/kTvsP/ACcX/wANY/8ACv8A/koH/FTf8muf8id/xQ3/ACGv+LiV7/RQB8/+APDn7U+nfFPxrq/xS+Mn7P8A4x+CV/8A8JH/AMK6+HvgD9mn4i/Db4p+FftXiOyuvCP/AAmvxi8RftY/Ffwl4/8A7D8JJqGieI/7C+Bfw1/4SrxHdWXinTP+EO0ywn8H6jgfDjwn+2hpfhX4nWfxd+Pv7MHjjxvq3h9bb4M+Ifhx+yJ8VvhX4V8BeKhp3iCJ9Z+J3g7xP+278Y9W+Lnh9tWufCt8vhnwr46+CepLp2jeINLPix7nxLp2seE/p+igD5g0bwn+2hB8GvFmh+Ifj7+zBqn7Qd54gtrnwL8T9G/ZE+K2hfBvw54VSfwy15o3iz4E337bviPxv408QT21r4xhtvE2j/tGeAtOtZ9e8NXMvhO8j8J6pa+NDWfCf7aE/wAGvCeh+Hvj7+zBpf7Qdn4gubnx18T9Z/ZE+K2u/BvxH4VefxM1no3hP4E2P7bvhzxv4L8QQW114OhufE2sftGePdOup9B8TXMXhOzj8WaXa+C/p+igD8Yf2fvCf7aGqfGD/gopZ/CL4+/sweB/G2lftv8Aw7tvjN4h+I/7InxW+Knhbx74qP8AwSg/4JaRJrPwx8HeGP23fg5q/wAI/D66vbeKb5vDPirx18bNSfTtZ8P6WPFqXXhrUdY8Wfo94/8ADn7U+o/FPwVq/wALfjJ+z/4O+CVh/wAI5/wsX4e+P/2afiL8Sfin4q+y+I7268Xf8IV8YvDv7WPwo8JeAP7c8JPp+ieHP7d+BfxK/wCEV8R2t74p1P8A4THTL+Dwfp3gH7G//JxX/BWL/s//AOHH/rrL/gmnX3/QB4B/wjn7U/8Awvb/AISH/hcn7P8A/wAMy/8ARIv+GafiL/wvb/kTvsP/ACcX/wANY/8ACv8A/koH/FTf8muf8id/xQ3/ACGv+LiV+YH7bfgr9vqX9qL/AIJ3z6N+0t+yBYeH9X/b/wDiv/wpTTNT/Ye+NGr6x8P/ADf+Cdv/AAUP1DSv+Fpa7a/8FCdEsvjB9i+GVv4m8I6h/wAIn4d+B39p+O9X0L4i239keH/DuofC3xR+31fAH7ZH/JxX/BJ3/s//AOI//rrL/gpZQAf8K5/4Km/9HkfsAf8AitP9or/6bFR/wrn/AIKm/wDR5H7AH/itP9or/wCmxV9/0UAfAH/Cuf8Agqb/ANHkfsAf+K0/2iv/AKbFXr/7EXxr8VftKfsX/siftF+OtP8AD+k+Nvj7+y/8AvjX4x0vwna6jY+FdN8VfFT4U+E/HXiHT/DNjrGq69q9n4fs9W127t9GtdU1zWdRt9Ojtob3VdRuUlvJvqCvgD/gk7/yiy/4Jp/9mAfsb/8ArOvw5oA+/wCiiigAooooAKKKKACiiigAr+er9uFdEf4gf8FoIviXbwXfiC4/4JofBG1+AdrqdnJf3Vx4cuh+0Xb28PgO0lhnv59ek/aSl8LrOvhiJ2XxWfhs8+3XF0Zl/oVry/xx8EPgv8TvFHw78cfEr4Q/C/4heNfhBrc/iX4TeL/HHgDwp4s8UfC/xHcm0Nz4g+Hev6/pOoat4J1u4On2Bn1Xw1d6ZfymytPMuG+zQ7ADndU8Eaf8SP2cpPAXx18I+HvHtr4r+EVrovxS8GePdA0LxT4c8SXl34VgTxNpXibw7qVpfeHdYs7nURcre2NxZ3GmzMCFiaLaK/Df9meKOH9mv/g3Ih8RRxxfCiIaTFqEUyLHoMXxXj/Y1+J6/AqPUkmA0lJE1sa+vhVLgC9XxiPDg0EDUxAK/eXU/gV8ENbtvivZaz8G/hVq9p8eILe1+OVrqfw88I39t8ZrW08PweE7W2+K8F1o8sXxEgtvCtvb+GreHxeusRw+H4IdGiVdNiS2Xj7D9kf9lLSvgpf/ALNWl/sx/s9ab+znqks8+p/AGw+C/wAN7P4KajPdaxF4hupr/wCFdv4aj8C3ctzr8Fvrk8lxoMjzaxDFqcha9jScAH4HfsevoEP7TXh64+LttpFv+zO3w2/4LJX37NEPiTTrS3+HbeEbj9tbQbzx1L4f07ULZNObSrr4PS39xoKWlsbu5+Gkvit7VJPBM0Zb9if+CYEXjO3/AOCd/wCxfB4/g1W28Twfs6fC+K4ttcga21e30qPwzZJ4Zg1C2lSO5t7iLwwujxvBfRpqUQUR6mi6gtyo+iPHP7Of7PfxQ8DeE/hh8S/gR8GviJ8NPAN74b1LwL8PPHPww8EeLfA3gvUfB1k2m+Eb/wAJ+Etf0PUNA8OXvhXTnaw8N3Wj6fZz6HZM1rpklrAxjPstAH5/+Pv+Up/7J/8A2j//AOChH/rRf/BMiv0Ar8//AB9/ylP/AGT/APtH/wD8FCP/AFov/gmRX6AUAFFFFABRRRQAUUUUAFFFFABRRRQB8Afsb/8AJxX/AAVi/wCz/wD4cf8ArrL/AIJp19/18Afsb/8AJxX/AAVi/wCz/wD4cf8ArrL/AIJp19/0AFfAH7ZH/JxX/BJ3/s//AOI//rrL/gpZX3/XwB+2R/ycV/wSd/7P/wDiP/66y/4KWUAff9FFFABXwB/wSd/5RZf8E0/+zAP2N/8A1nX4c19/18Af8Enf+UWX/BNP/swD9jf/ANZ1+HNAH3/RRRQAUUUUAFFFFABRRRQAV+b/AO09+3v4h+BnxA+Jnhj4ffA63+MHhf8AZm+Dvhv9oX9rrxPd/E//AIV5q/w0+EvivVfFUGkp8KPC8nw/8X2nxn+JqeGvh78QvHOoeCdc8U/CDw9a+HdA02CL4g3XiHxJp+iR/pBX4zftdfs0ftHaj8Tf2zdJ+C/wxf4i+Df+Cj37NPw++AGu+PYvFHgDRNH/AGafHfhDTfiT8OdZ+I3xT0Lxj428K+L/ABV8O9S+GXxOtNV0O3+DOl/EDxiPFvga80XU/BNjp/iC28URgH6A/tI/tLaD8Avgnb/FrS9Ef4l6p4v8Q/DXwD8H/B+kavb6PF8SfiR8aPFWheCPhZoJ8UT2mo2fhvw9rXiDxJpd1r/i6bTtUj8O+FotW16HSNbuLGDR7/wnwd+1X+078TfDXxA8KfD79mT4NS/tQ/BL4vSfCv45fDHxv+1d4h8MfBbwnb3Pgbw98SfDHjPwf8b/AA/+zB45+I3jjRPHPg/xr4RuvC1vf/s0eDLwaofF2k+JV8NyeGLWfxBjftQfBj4n/Ef4J+G/Anwr+GXixvGP7G3xm/Zc+MXwfufG3iD4XaXoX7SK/AnVfC/irXvDngnUtI8eazd+FdR1/wAMW/ib4eW2pfGLwx8N9OtPiFcWWopbv4IVfGcPn3hz4R/tUWfwd/4KEfG7wp8OdW+Hn7Sn7aXiqDUPhR8IPEPij4ZS+Jfgpp2mfCTwF+zv4F1/4h+JvC/j3xd8L7vxX4et/D+qfGXxZY+CPiJ4w0ddHSw8L+GrrXvE0MljfgFTQv8Agpd401n4Hfs5+J9Q+HP7KvgP9ob9qn4u/Ez4a/BL4S/E/wDbdvvAnwm+IWh/DbxZ4k8Mx+OfBPxq1b9mL/hYnjSP4gppPhzUPhv4T8L/ALNOqeJPEKfEDwi1xb6ZpU2p61pv6seG5/Ed14e0K58X6VomheK7jSNOm8TaL4b1++8V+HtI16W0hfVtN0LxPqnhrwbqXiLSLG/ae207W9Q8I+F7zVLSOG9ufD+jzTvp9v8AA/7Qfwx0/wAI/sveFv2JvBf7EXjn9q/4Q+IPg5a/BGPTrTWv2bNN+FHgXSvC+haL4Z8F3vxiHxu+NHgLxq+k211b6f4lk134TfDn4v8Ai7RT4evdd0zw/d+Krbw/pmrfYnwR8Da58MPgz8JPhr4m8VXvjrxH8Pfhn4E8Ea/411F5n1DxdrXhXwvpehap4mvZLmSW5kutcvbCfU53upp7p5LlmuZ55zJK4B+d37VP7PXwC/aU/wCCkv7H/gX9ov4H/B/4/eCdJ/Yf/b98WaX4O+Nfw08GfFPwrpviqx+PP/BN3R7HxNp/h7x1ouvaRZ+ILPSNe1zS7TWbezj1G307WdVsYbpLbUbyKb7B+I/7EX7F/wAY/Cvwx8C/F39kT9mD4qeCPgn4fbwn8GfB3xH+AXwp8ceFfhH4VfTvD+jv4Z+GPh7xP4T1TSfAXh9tJ8J+FdLbRvCtnpOmtp3hrw/Ym2Nto2nRW3j3j7/lKf8Asn/9o/8A/goR/wCtF/8ABMiv0AoA+f8Ax/8AsnfssfFf4p+Cvjp8Uv2af2f/AIk/G34a/wDCOf8ACuvjF4/+Dfw68Y/FPwB/wh3iO98YeEf+EK+IXiLw5qPi3wr/AMIr4t1HUPFPhz+wtXsP7D8R397remfZdTup7p1/4ZO/ZY/4Xt/w1H/wzT+z/wD8NNf9HF/8Kb+HX/C9v+RO/wCFd/8AJXf+Ec/4WB/yT/8A4ob/AJGH/kTv+KZ/5Av+g17/AEUAfP8A4A/ZO/ZY+FPxT8a/HT4W/s0/s/8Aw2+NvxK/4ST/AIWL8YvAHwb+HXg74p+P/wDhMfEdn4w8Xf8ACa/ELw74c07xb4q/4Srxbp2n+KfEn9u6vf8A9ueI7Cz1vU/tWp2sF0mB8OP2Iv2L/g54V+J3gX4RfsifswfCvwR8bPD6+E/jN4O+HHwC+FPgfwr8XPCqad4g0dPDPxO8PeGPCel6T498PrpPizxVpa6N4qs9W01dO8S+ILEWwttZ1GK5+n6KAPmDRv2Iv2L/AA58GvFn7Ofh79kT9mDQv2fPHviC28WeOvgTo3wC+FOl/Bvxp4qs5/DN1Z+JvFnwwsfCcHgjxH4gtbnwX4OubbWdY0O81GCfwn4amiuUk0HS2tTWf2Iv2L/Efwa8J/s5+If2RP2YNd/Z88BeILnxZ4F+BOs/AL4U6p8G/Bfiq8n8TXV54m8J/DC+8Jz+CPDniC6ufGnjG5udZ0fQ7PUZ5/FniaaW5eTXtUa6+n6KAPyA/wCCvv7J37LHib/gll+1x/wkf7NPwA8Qf8Mv/sAftY/8M0f238G/h1qv/DO//CP/ALOuvf2D/wAKL+3+HLj/AIVJ/Yn/AAg/gr+yP+EA/wCEf/s3/hD/AAt9j8n/AIR/Sfsn0B/w6d/4JZf9I0/2AP8AxDf9nX/53NH/AAVi/wCUWX/BSz/swD9sj/1nX4jV9/0AfAH/AA6d/wCCWX/SNP8AYA/8Q3/Z1/8Anc0f8Onf+CWX/SNP9gD/AMQ3/Z1/+dzX3/RQB+YH/BOX4T/Cv4HfE/8A4Ki/C34KfDT4f/B/4ZeF/wBv/wAGf8Iz8Ovhb4N8OfD/AMCeHf7b/wCCZX/BOPxFrP8AYXhHwnpukeH9J/tfxBq+q67qf9n6fb/b9Y1PUNTuvNvb25nl/T+vgD9jf/k4r/grF/2f/wDDj/11l/wTTr7/AKACvgD9sj/k4r/gk7/2f/8AEf8A9dZf8FLK+/6+AP2yP+Tiv+CTv/Z//wAR/wD11l/wUsoA+/6KKKACvgD/AIJO/wDKLL/gmn/2YB+xv/6zr8Oa+/6+AP8Agk7/AMosv+Caf/ZgH7G//rOvw5oA+/6KKKACiiigAooooAKKKKACiiv52v2+fDvhX4nfFH/gqV44+K1pp974s/Yc/YS+EfxQ/Y21rV5I4dU+BPxB13Qfj98RL746/CTWN0M/gb4k658R/ht4P8K3fi3RZrXxPe6T8PtO8MvqT+HtQutIuwD+iWivyw/b98TeKPEv7I37Ovh3xQ93oWiftE/tEfsU/CT9oOK0W70YN8Nvi/8AE/wTpnxN8FahbrJHqlroXj9rsfC/xFpkV1BcS6D4u1LTLyZrWW8il+WfDH7Nvij4i+Hf+Civ7Ff7NFn+zj4M+BXwb/a0+GF58Pvgb8Zfg34h+JX7LmqeH9Y/Z1+EHxi8efs13HgPwJ8R/hrYeB/hd4i+L+r23ibxB4f0S08TeF/C8XibxNa6h8JfF2j+JZPDkwB++tFfzkeA/C/7P37XXxH/AGVfgH8Tv2WfhP8ABv8AZd8I/sZftg/Eez/ZA03Q/Cr/AAH8IftI/DP9o7wj8CPH/ijwlp2g+FvBfhTUJ/hJJP401f4WfEmHwl4d1Kxj+Jtx480TTPCfi24uZLH9WP8Agmp4+8b/ABR/YB/ZA8f/ABH1TUte8aeJ/gF8OtQ1zxDrMt5c6v4lkGg21tZ+J9Vvr+Wa71TUvEmnQWeuX2szTSHWrrUJdVR2jvENAHPePv8AlKf+yf8A9o//APgoR/60X/wTIr9AK/P/AMff8pT/ANk//tH/AP8ABQj/ANaL/wCCZFew/DjxZ+2hqnhX4nXnxd+AX7MHgfxvpPh9bn4M+Hvhx+138Vvip4V8e+Kjp3iCV9G+J3jHxP8AsRfBzVvhH4fXVrbwrYr4m8K+BfjZqTadrPiDVD4TS58Nado/iwA+n6K+YNG8WftoT/BrxZrniH4BfswaX+0HZ+ILa28C/DDRv2u/itrvwb8R+FXn8Mreaz4s+O19+xF4c8b+C/EEFtdeMZrbwzo/7Ofj3TrqfQfDVtL4ss4/FmqXXgs1nxZ+2hB8GvCeueHvgF+zBqn7Qd54gubbx18MNZ/a7+K2hfBvw54VSfxMtnrPhP47WP7EXiPxv408QT21r4OmufDOsfs5+AtOtZ9e8TW0Xiy8j8J6XdeNAD6for5g+I/iz9tDS/CvwxvPhF8Av2YPHHjfVvD7XPxm8PfEf9rv4rfCvwr4C8VDTvD8qaN8MfGPhj9iL4x6t8XPD7atc+KrFvE3irwL8E9SXTtG8P6oPCb3PiXUdH8J7/j/AMR/tT6d8U/BWkfC34N/s/8AjH4JX/8Awjn/AAsX4heP/wBpb4i/Db4p+FftXiO9tfF3/CFfB3w7+yd8V/CXj/8AsPwkmn634c/t346fDX/hKvEd1e+FtT/4Q7TLCDxhqIB9AUV4B/wkf7U//C9v+Ee/4U3+z/8A8My/9Fd/4aW+Iv8Awvb/AJE77d/ybp/wyd/wr/8A5KB/xTP/ACdH/wAid/xXP/Ia/wCLd0ngDxH+1PqPxT8a6R8Uvg3+z/4O+CVh/wAJH/wrr4heAP2lviL8Sfin4q+y+I7K18I/8Jr8HfEX7J3wo8JeAP7c8JPqGt+I/wCwvjp8Sv8AhFfEdrZeFtM/4THTL+fxhpwB4B/wVi/5RZf8FLP+zAP2yP8A1nX4jV9/1+QP7d3iP9qfxB/wSy/4Kqf8NL/Bv9n/AOEn2T9gD9q3/hCv+FGftLfEX9oj/hIPtH7Ovxd/4SP/AISn/hP/ANk79l//AIQ/+yvJ0H+xP7J/4Tj/AISD+0tX+3/8Iz/Yln/wkH2/o3iz9tCf4NeLNc8Q/AL9mDS/2g7PxBbW3gX4YaN+138Vtd+DfiPwq8/hlbzWfFnx2vv2IvDnjfwX4ggtrrxjNbeGdH/Zz8e6ddT6D4atpfFlnH4s1S68FgH0/RXzBrPiz9tCD4NeE9c8PfAL9mDVP2g7zxBc23jr4Yaz+138VtC+Dfhzwqk/iZbPWfCfx2sf2IvEfjfxp4gntrXwdNc+GdY/Zz8Badaz694mtovFl5H4T0u68aHxH8WftoaX4V+GN58IvgF+zB448b6t4fa5+M3h74j/ALXfxW+FfhXwF4qGneH5U0b4Y+MfDH7EXxj1b4ueH21a58VWLeJvFXgX4J6kunaN4f1QeE3ufEuo6P4TAPH/ANjf/k4r/grF/wBn/wDw4/8AXWX/AATTr7/r8gP2dfEf7U+nftu/8FLdI+Fvwb/Z/wDGPwSv/wBv/wCCv/CxfiF4/wD2lviL8Nvin4V+1f8ABNT/AIJwWvi7/hCvg74d/ZO+K/hLx/8A2H4STT9b8Of278dPhr/wlXiO6vfC2p/8IdplhB4w1H9AP+Ej/an/AOF7f8I9/wAKb/Z//wCGZf8Aorv/AA0t8Rf+F7f8id9u/wCTdP8Ahk7/AIV//wAlA/4pn/k6P/kTv+K5/wCQ1/xbugD3+vgD9sj/AJOK/wCCTv8A2f8A/Ef/ANdZf8FLK9/8AeI/2p9R+KfjXSPil8G/2f8Awd8ErD/hI/8AhXXxC8AftLfEX4k/FPxV9l8R2Vr4R/4TX4O+Iv2TvhR4S8Af254SfUNb8R/2F8dPiV/wiviO1svC2mf8Jjpl/P4w0784f2gfFn7aGqfGD/gnXefF34BfsweB/G2lftv/ABEufgz4e+HH7XfxW+Knhbx74qP/AASg/wCCpcr6N8TvGPif9iL4Oav8I/D66vbeFrFfE3hXwL8bNSfTtZ8QaofCSXXhrTtH8WAH7PUV8waN4s/bQn+DXizXPEPwC/Zg0v8AaDs/EFtbeBfhho37XfxW134N+I/Crz+GVvNZ8WfHa+/Yi8OeN/BfiCC2uvGM1t4Z0f8AZz8e6ddT6D4atpfFlnH4s1S68Fms+LP20IPg14T1zw98Av2YNU/aDvPEFzbeOvhhrP7XfxW0L4N+HPCqT+Jls9Z8J/Hax/Yi8R+N/GniCe2tfB01z4Z1j9nPwFp1rPr3ia2i8WXkfhPS7rxoAfT9fAH/AASd/wCUWX/BNP8A7MA/Y3/9Z1+HNewfEfxZ+2hpfhX4Y3nwi+AX7MHjjxvq3h9rn4zeHviP+138VvhX4V8BeKhp3h+VNG+GPjHwx+xF8Y9W+Lnh9tWufFVi3ibxV4F+CepLp2jeH9UHhN7nxLqOj+E/zA/4JlePv+Ckln/wTb/4J82fgX9lD9iDxH4Jtf2IP2ULbwd4h8Wf8FBvjz4L8U674Wg+A3gGLw9rPibwdo//AATK8e6R4T8QappC2d9rPhnS/HXjTTtC1Ge50ux8WeI7W1i1i8AP3eor4A/4WN/wVN/6M3/YA/8AFln7RX/0p2j/AIWN/wAFTf8Aozf9gD/xZZ+0V/8ASnaAPv8Aor4//ZJ/aF+Kfxxuv2lPCPxr+Enw/wDg/wDE39mf9oDT/gX4m0f4W/GbxH8dfAniL+2/2cf2ef2kNG8U6F428WfBD9nzxBH5nh/9oPSfDup6JqHw6t/sGseHNQntdX1SxvLaSL7AoAKKKKACiiigAr5q+MH7IX7PXx58d+DfiV8UvAl3r/i/wRa22l2V5p3jj4h+ENK8U+HbHxDZ+LdO8GfFfwt4K8WeHfCvxt+H+leK7GDxNpPw9+Mei+O/BGk+IGu9Z07QLXUb+/ubn6VooA8Q8a/s6fCb4kaB8X/CfxB0jxL428K/HJdJHj3wz4p+JXxN13w9bvoWnafYaNcfDrRNS8YXGmfBi90ybStN8QWd/wDBu18BXsHjextviCk48cxL4hHmk/7D3wCb4UaP8GdLl+PXhDwhpPizU/Hc+sfDr9r39rj4ZfFfxb4w1oXY1jxF8Tfjx8PPjh4Y+OPxa1PVPth/tC4+KHxE8Xm8Nno7XAkOhaKdP+uqKAPlX4m/sT/szfFzwN8Nvhz4u+HV3Y+FvhBaXOl/DiP4eeP/AIl/B/XvDHh/UtEXw54h8I23jL4SeMfBHjG98DeMtCSHSvH/AIE1PXr7wd8QrO2tIfG+h6+LO18n6Z0nSdK0DStM0LQtM0/RdE0XT7LSdH0fSbK307StJ0rTreOz07TNM06zjhtLDT7C0hhtbKytYYra0too4II44o1VdGigD8//AB9/ylP/AGT/APtH/wD8FCP/AFov/gmRX6AV+X/7SHxY+FnwO/4KKfs2fFH41/Ev4f8Awf8Ahl4X/wCCf/7ev/CTfEX4peMvDnw/8CeHf7b/AGo/+CXHh3Rv7d8XeLNS0jw/pP8Aa/iDV9K0LTP7Q1C3+36xqen6Za+be3ttBL9Q6z+27+xf4c+DXhP9ozxD+13+zBoX7Pnj3xBc+E/Avx21n4+/CnS/g3408VWc/ia1vPDPhP4n33iyDwR4j8QWtz4L8Y21zo2j65eajBP4T8TQy2ySaDqi2oB9P0V8wfEf9t39i/4OeFfhj46+Lv7Xf7MHwr8EfGzw+3iz4M+MfiP8ffhT4H8K/FzwqmneH9YfxN8MfEPifxZpek+PfD66T4s8K6o2s+FbzVtNXTvEvh++NyLbWdOlud/x/wDtY/ssfCj4p+CvgX8Uv2lv2f8A4bfG34lf8I5/wrr4O+P/AIyfDrwd8U/H/wDwmPiO98H+Ef8AhCvh74i8R6d4t8Vf8JV4t07UPC3hz+wtIv8A+3PEdhe6Jpn2rU7We1QA+gKK8A/4ax/ZY/4Xt/wy5/w0t+z/AP8ADTX/AEbp/wALk+HX/C9v+RO/4WJ/ySL/AISP/hYH/JP/APiuf+Re/wCRO/4qb/kC/wCnV4/4s/4Kbf8ABNzwF4q8TeBfHX/BQb9iDwX428F+INZ8J+MfB3iz9q/4DeHPFXhPxV4c1G50fxD4Z8TeHtY8fWer6F4g0LV7O80vWdG1SztNR0vUbS5sb62guoJYlAPt+ivgD/h7F/wSy/6SWfsAf+Jkfs6//PGo/wCHsX/BLL/pJZ+wB/4mR+zr/wDPGoAP+CsX/KLL/gpZ/wBmAftkf+s6/Eavv+vwh/4Kbf8ABTb/AIJuePf+Cbn/AAUG8C+Bf+Cg37EHjTxt40/Yg/av8J+DvB3hP9q/4DeI/FXizxV4j+A3j7R/D3hnwz4e0fx9eavrviDXdXvLPS9G0bS7O61HVNRu7axsbae6niib93qACiiigD4A/Y3/AOTiv+CsX/Z//wAOP/XWX/BNOvv+vgD9jf8A5OK/4Kxf9n//AA4/9dZf8E06+/6ACvgD9sj/AJOK/wCCTv8A2f8A/Ef/ANdZf8FLK+/6+AP2yP8Ak4r/AIJO/wDZ/wD8R/8A11l/wUsoA+/6KKKACvgD/gk7/wAosv8Agmn/ANmAfsb/APrOvw5r7/r4A/4JO/8AKLL/AIJp/wDZgH7G/wD6zr8OaAPv+iiigD4A/Y3/AOTiv+CsX/Z//wAOP/XWX/BNOvv+vgD9jf8A5OK/4Kxf9n//AA4/9dZf8E06+/6ACiiigAooooAKKKKACiiigAooooA/P/x9/wApT/2T/wDtH/8A8FCP/Wi/+CZFfoBX5/8Aj7/lKf8Asn/9o/8A/goR/wCtF/8ABMiv0AoAKKKKACvgD9sj/k4r/gk7/wBn/wDxH/8AXWX/AAUsr7/r4A/bI/5OK/4JO/8AZ/8A8R//AF1l/wAFLKAPv+iiigD4A/4Kxf8AKLL/AIKWf9mAftkf+s6/Eavv+vgD/grF/wAosv8AgpZ/2YB+2R/6zr8Rq+/6ACiiigD4A/Y3/wCTiv8AgrF/2f8A/Dj/ANdZf8E06+/6+AP2N/8Ak4r/AIKxf9n/APw4/wDXWX/BNOvv+gAr4A/bI/5OK/4JO/8AZ/8A8R//AF1l/wAFLK+/6+AP2yP+Tiv+CTv/AGf/APEf/wBdZf8ABSygD7/ooooAK+AP+CTv/KLL/gmn/wBmAfsb/wDrOvw5r7/r4A/4JO/8osv+Caf/AGYB+xv/AOs6/DmgD7/ooooA+AP2N/8Ak4r/AIKxf9n/APw4/wDXWX/BNOvv+vgD9jf/AJOK/wCCsX/Z/wD8OP8A11l/wTTr7/oAKKKKACiiigAooooAKKKKACiiigD8/wDx9/ylP/ZP/wC0f/8AwUI/9aL/AOCZFfoBX5/+Pv8AlKf+yf8A9o//APgoR/60X/wTIr9AKACiiigAr4A/bI/5OK/4JO/9n/8AxH/9dZf8FLK+/wCvgD9sj/k4r/gk7/2f/wDEf/11l/wUsoA+/wCiiigD4A/4Kxf8osv+Cln/AGYB+2R/6zr8Rq+/6+AP+CsX/KLL/gpZ/wBmAftkf+s6/Eavv+gAooooA+AP2N/+Tiv+CsX/AGf/APDj/wBdZf8ABNOvv+vgD9jf/k4r/grF/wBn/wDw4/8AXWX/AATTr7/oAK+AP2yP+Tiv+CTv/Z//AMR//XWX/BSyvv8Ar4A/bI/5OK/4JO/9n/8AxH/9dZf8FLKAPv8AooooAK+AP+CTv/KLL/gmn/2YB+xv/wCs6/Dmvv8Ar4A/4JO/8osv+Caf/ZgH7G//AKzr8OaAPv8AooooA+AP2N/+Tiv+CsX/AGf/APDj/wBdZf8ABNOvv+vgD9jf/k4r/grF/wBn/wDw4/8AXWX/AATTr7/oAKKKKACiiigAooooAKKKKACiiigD8/8Ax9/ylP8A2T/+0f8A/wAFCP8A1ov/AIJkV+gFfnp8f9Qsfhj+3t+xP8afF7Xdh4A8VfCr9qD9ju38RpbwyaNovxi/aA8b/sqfFL4Taf4ovnu4n0XT/G8X7M/jPwP4c1F7Wez1H4ia74K8HG4t9Z8WaDbaj98a1rWj+G9G1bxF4h1TT9D0DQdMv9a1zWtXvLfT9K0fR9LtZb7U9U1PULqSK1sdP0+ygnu728uZY7e2toZZppEjRmABp0V8Q/scftw+Ef2wU8eW9h8PfHnwj8Q+FR4X8Z+GvCfxNtbTTPEnxD/Z6+KVle6r8Df2ifD+mQSvcWXgf4rWGkeI7S10fWI7TxR4T8UeFPE/hXxVpmn6npa/avTv2mf2jtM/Zz8LeD7y38FeJfiv8SPij8RPDfwr+EHwa8EXnh+x8a/E3xprgvNV1Ky0W88V6rofhnS9N8G+BdE8X/Enxlr/AIi1nStE0HwX4N17Uby+SSK2guAD6Qr4A/bI/wCTiv8Agk7/ANn/APxH/wDXWX/BSyk/4az/AGrP+kW37VH/AIe79gL/AOi8r8pv2ov+CnHijxr8Tf2VfHvgH9hL9pn4yj9iX9t7xHrH7QXgf9l/xt+yr+2N8Vfh9qnij9ib9uD4AWHhfxr8Kf2SP2g/jb8RPh7qlv4y+Jdo2o3/AMQvDPhbw/py6HqmkXmsQ+JLvQ9G1UA/pZor+bbwz/wci+APGvj3x98KvBv/AATH/wCCrvi34ofCn+xP+Fo/Dfwz+yN4o17x78Nv+EltWvvDv/CfeD9KuLvxD4O/t+xR7zRP+Ei07Tv7VtUa4sfPhUuM7RP+Dlv4V+Jviz4s+Anhz/gm1/wVN8QfHTwFpFp4h8c/BfRP2Utf1X4s+C9B1CLTJrDW/Fnw5sL2fxh4d0i9h1vRpbTUtY0ezs7mLV9Mkhmdb+0MoB+rf/BWL/lFl/wUs/7MA/bI/wDWdfiNX3/X8fn7TH/BwF4D/bx/Zd/b+/Y3/Zw/4J5/8FLfiD8bde/Z0+Pv7Pfivwz4X/Zg8Q+L9T+EXj/4o/Dfx58M9DtPi3oXg+413xF4EFp4mmvLXUbXXNJtdSifSNWt4rKa7sZ7dPtrxB/wcM6V4S1XwhoXir/glF/wV98Ma38Qddm8L+AtH8QfsWeOdG1Xxv4lttG1PxFc+HvCGn6l9mu/Euu2/h/RdY12bSdGhvb+LRtJ1PU5LdbKwup4gD+imiv5q9X/AODlT4Z6B8V/DPwG13/gmp/wVS0X45eNdCvfFHg34Mav+yd4i074r+LfDWnLqDah4i8M/Dq8vIfF+vaFYLpOqte6tpWj3VharpmoGe4jFlcmM0n/AIOVPhnr/wAV/E3wG0L/AIJqf8FUta+OXgrQrLxR4y+DGk/sneItR+K/hLw1qK6e2n+IvE3w6s7ybxfoOhX66tpTWWraro9rYXS6np5guJBe2xkAP1V/Y3/5OK/4Kxf9n/8Aw4/9dZf8E06+/wCv5NvhF/wWx1D4AfGv9q7XPiR/wSu/4K0aHP8Ato/teeGfiD8DtA1D9jL4gaV4g8Tf8I1+wt+yt8GdT8I6bpmr29hPrvjKPUf2a/iJ4tOh+G11e4j8FwQ61MI47fU0sfddX/4OVPhnoHxX8M/AbXf+Can/AAVS0X45eNdCvfFHg34Mav8AsneItO+K/i3w1py6g2oeIvDPw6vLyHxfr2hWC6TqrXuraVo91YWq6ZqBnuIxZXJjAP6VK+AP2yP+Tiv+CTv/AGf/APEf/wBdZf8ABSyvyf8AC3/BzH8JPHHxR8cfA/wV/wAE4P8AgqP4w+NXwytIL/4k/CDwt+yvrniD4o/D6xuTYrbXvjj4f6TfXfizwnaXB1TTBBca9pNhDKdRsRG7fa7fzPFv2rv+C2OoX3xC/YZ+KviL/gld/wAFaPh54P8A2fP2vLz4g+KNS+IP7GXxB8K22uf8LK/ZH/av/ZV8F+EfDF7qtvb2F/4y8RfFH9ozwHZaLoct1b3GsJ9ss9L+16vJYafeAH9ZFFfzV+P/APg5U+Gfwo8SfDzwb8Uv+Caf/BVL4a+L/i7rr+F/hP4U8f8A7J3iLwd4k+J/iaOSxhk8O/DzQ/EV3p2qeNddjl1PTY30jw3a6nqCyahYo1uGu4BJ1+vf8HCVj4Vv/CuleJ/+CTn/AAWC8Oap4619vCvgjTde/Yp8eaPf+MfFC6Pq3iJvDfhWz1Bbe48Q6+vh/Qdd11tH0iO81EaPouraobcWWnXk8IB/RLXwB/wSd/5RZf8ABNP/ALMA/Y3/APWdfhzX5q+Mf+DhnSvh5pVtrvj/AP4JRf8ABX3wNol7rvh/wvZ6x4x/Yt8c+GdKu/Evi3WbPw74V8O22oa19itJ9d8TeINR0/QvD+kxTPf6zrN/Z6Zp1vc3t1BA/wAa/sw/8F7PDH7DH7Kf7AH7Iv7Q3/BOD/gp74G+MGhfs+fAX9m/wnoniL9lPxV4Vufi98S/hT8LfAvgHxDpXwj0nxZJomu+O7ibWrW3ax07Q9LutXaDVNL8+wgmvIomAP686K/m2+I//ByL4A+Dv/CIf8Lc/wCCY/8AwVd+Fn/CwvF+l/D7wD/wsf8AZG8UeB/+E48e655n9i+CPCH/AAk1xpf/AAkvi/WPJl/svw1ov23WdQ8qT7JZTbGx6V/w/f8AEX/SHD/gtP8A+IGfFD/5DoA/QD9jf/k4r/grF/2f/wDDj/11l/wTTr7/AK/AD9hf9rv9p7xZ4t/bt+NOh/8ABKj9vPS/Cnx+/a/8O/EPwnpvxa074Dfs3+NbLS/C37D37F/wL1CO+8BftI/Gr4S+M760m8T/AAd8QXmn+J9B0LVvB2oWtzHp1n4gm8QaR4k0jRvv/wD4az/as/6RbftUf+Hu/YC/+i8oA/QCiv54/wDgrh/wUH/bo+CH/BOn9p74sfDL9ij9pH9mvx34G8LeF9b8OfHPXvij+xD4o0X4c3SfEbwbbza1qnhrwv8AtCfErW/EFlLZXF1pk+i2vgXxLFqaX5s7/T/7Pmu7iHyD/ggB/wAFf/8AgoZ/wUe8LWtn+1P+wp4k0jwNY6TcHT/24fBEFp8PvhD40vLGF1htLv4f+PNTsNQ1/Vr6a2Ntf+IPglqHjLQ7XWbqOHUfBvgvSUe7iAP6e6KKKACiiigAooooAKKKKAPJPjx8FPA/7Rfwf8ffBP4jW99N4S+IOgy6Pe3ekXj6Z4h0DUIZ4NS8O+L/AAnrMKtcaB408FeI7HSfF3gvxHZ7b/w74q0TR9bsHjvLCB1/I/SvGXxz/bWvtB/4Jx/HHw3rdlq/wP1iI/8ABSv4jReGtQ8PfD743fC/wpc2V38FvCfw2vzDHpeoaF+3fbLpPjz4l+H9DvNQtfh98LvDPxu+BvieW08Qa1ol9L+5dFAHwJ+2l8PfF/hGb4fftm/A3w1f+IPjF+y3a65/wkfw/wDDVsp1f48/sweJG0y4+NvwOs7OIxjU/FNrZaFo/wAV/gnZNtc/GD4d+GfC8V1p3h/xz4uN5yX7KMdz+1f8Y/EX7f3iaw1O3+HUWia78Hf2GvDfiDS9Q0m70/4KTarYzfEr9oq60DWbaz1LRvE/7Tfizw9pf/CL/wBoWVvqNh8AvAPwzu4Y9Jv/AIheONKl/SiigDkfH+h6x4n8CeNvDXh7Wp/Dev8AiHwj4k0PQ/EVrK0F1oGsato17YaZrVtMkNw0M+lXtxBfQyrBO0ckCuIZCoRv5MIvFf7UPwb+Hd5pXhf9n3Xv2fP2gv8Agl//AMEjvjx8Ff2g/it4Z8W/A3x94E8YeKNetfhhdfBXVfBuofCP4leNfGTSwweAviJ+09ofgz48+CPhf8QPDOn+I7fXLjwc8fjqfU9T/ryv7Cx1WxvdL1SytNR0zUbS5sNR06/tobyxv7G8he3u7K9tLhJLe6tLq3kkguLeeOSGeGR4pUZGZTwXwu+Dfwh+B/gTT/hd8FvhV8N/hB8M9JbUX0v4dfC7wN4Y8AeBNMfWLu41DV20/wAI+E9L0nw/Ztql/d3V7qLW2nxm+u7m4ubkyzTSOwB+Uv8AwTH8Ma7+zj8WviZ+xp4N+MWn/tB/sy+Ff2b/ANnP9o/4WePz4b+EmieIvC/ib48638VoPGPh7V9e+EHhPwrafEfSPiK/gu1+MPhz4g/Eh/GPxi8RSeJ9e1Xx/wDE/wCJl/qUXieb4x+Fng342eAP2l/2Vf2RviJ8DfEFp8VvgD+17+2T+2T4t/az8NeNfgz4t8OePP2Qvi/bfH24v9c1/TvB/wARZv2lvCXij4q6/wDE7wB8M9X8P+P/AIK+FvCvjPxd8MdUuvBnijxTF4EsU03+hT4N/s//AAH/AGdPDmo+D/2fPgn8I/gT4S1jXbrxRq/hb4N/Dbwb8MPDmqeJb62s7K+8RajongnRtD0y+128s9PsLS61e5tZb+4trGzgmuHitoUS58Mfgj8F/gnD4st/gz8Ifhf8I7fx74t1Px945g+GPgDwp4Bh8Z+Otb8v+2fGviyLwrpOkp4i8W6v5UX9qeI9YW81i/8AKj+13kuxcAH86/8AwR4eXRf2gPgzpnjI+GvFHw78SfsVfFHWP+CY3xC8C32gw+LJv2J5fj14S13xh4K/bJ8M6Cix237SPhPW9c+Etna+JdCutX+HuqWjeLLW7ubT4wL8QZta/Sb9vjwJ4Hu/2rv+CT/xKuvBvhS5+Iui/toeJPBuj+Prjw7pE3jXSfCGv/sm/tM6xrvhXTPFUlm2u2PhvWtW0LQ9U1bQ7W/i0vUdR0bSr28tZrnTrSWH7o+Gf7Nn7OvwV8UeP/HHwb+AXwV+EvjX4r6l/bPxS8X/AAz+FngbwH4o+JWsfbtR1P8AtXx/4g8LaFpWreMdS/tLV9W1H7d4iu9Ruvt2qajd+b9ovrmSWL4p/sy/s2/HTxH4E8YfG39nz4IfGLxd8LdQ/tb4ZeKfip8J/AfxC8R/DrVft2nap/afgTW/FugavqfhHUP7T0jSdR+2+H7rT7n7fpenXfm/aLK2kiAPwo+LIun0v9vuKW3Fz+0/L/wWR/YmPw5R7OO88Ypo1tqn7IV78ELjwoL6GbUbbQbb4RWvxHuI7x/K8NW9lH8VWWZNKPiTJ+z+Lp9D/wCCcqafbib9pOP/AIKwft3XXxwlis45/GVqI/8AhsW2+PM3iO6uoX1Oy8Nv4dvPhZbs3iCWGa40Of4Ww2fmTnwmo/fbUfgh8F9Y+K3h748av8Ifhfqnxx8I+Hb7wh4U+Muo+APCl98VvDHhPUzenUvC/h74iXOky+L9F8O6gdS1E32iabrFtpt2dQvTPbSfap/MNH+CPwX8O/FLxX8cvD/wh+GGh/Gvx5omneGvHHxg0bwD4U0z4peM/DmjrZLpPh/xX8QLLSYPFniLRNLXTdOXTtK1jV7ywshYWQtoIhaweWAfn7+3x4E8D3f7V3/BJ/4lXXg3wpc/EXRf20PEng3R/H1x4d0ibxrpPhDX/wBk39pnWNd8K6Z4qks212x8N61q2haHqmraHa38Wl6jqOjaVe3lrNc6daSw/BfxZF0+l/t9xS24uf2n5f8Agsj+xMfhyj2cd54xTRrbVP2Qr34IXHhQX0M2o22g23witfiPcR3j+V4at7KP4qssyaUfEmf3X+Kf7Mv7Nvx08R+BPGHxt/Z8+CHxi8XfC3UP7W+GXin4qfCfwH8QvEfw61X7dp2qf2n4E1vxboGr6n4R1D+09I0nUftvh+60+5+36Xp135v2iytpIt/Ufgh8F9Y+K3h748av8Ifhfqnxx8I+Hb7wh4U+Muo+APCl98VvDHhPUzenUvC/h74iXOky+L9F8O6gdS1E32iabrFtpt2dQvTPbSfap/MAPg3VvhP8GvFn7ZH7N3iz4ex+D/h74c/Yi1P4x+EtX8XWhtdGm8b/ABZ/aR8MGC6/Z40PWbkxN4uvZpdSufjR8X42v9Q1CX4hD4eIya14rv8AxtL4Wzv+CvfgTwR4p/Zs+GHibxN4N8KeIvEnw7/bP/YX134f+Idd8PaRq+ueBtc1b9r74KeGdV1nwdq2oWdxf+GNV1Pw3q+q+H9Q1HRLixvL3RNT1HSbmaSwvbm3l+pPAv7Bn7DXwu+JkPxq+Gf7GP7KHw6+MltqGtatb/FrwL+zr8IPCPxMg1XxLBfWviLU4fHnh/wfp/imLUPEFtqmp22tXqaqtzqsGo30N9JPHd3CyelfGv8AZz/Z7/aV8O6Z4Q/aM+BHwa+P3hPRdXTxBo/hf41/DDwR8VPDuk69HaXWnx63pmieOtD17TbDV0sL29sk1K1tor1bS7urZZhDPKjgH4n/ALcK6I/xA/4LQRfEu3gu/EFx/wAE0Pgja/AO11Ozkv7q48OXQ/aLt7eHwHaSwz38+vSftJS+F1nXwxE7L4rPw2efbri6My+ZftA+Nv2lb39s3/gmv4v+Of7Fv7SD+IPB37Yei/Dn4Y+N08Z/sZ3vgG/8LXf7J3xzsPiH4i8N2lv+1bF8Q7Pxl8Q/Eb3fxJ8cN4v+HHga3s/ht8MfDfg/QbO+8d6ZBpPxB/oI8VfAL4E+Ota+F3iXxv8ABX4S+MfEXwP1BdX+Cuv+Kvhx4O8Q618INVSKxgXU/hdqur6NeX3gDUFg0vTIVvfCc+k3KxadYxiXZaW6x9rr3gzwf4qv/Cuq+J/CfhrxHqngXX28VeCNS17QtL1i/wDB3ihtH1bw63iTwreaha3Fx4e19vD+va5oTaxpElnqJ0fWtW0w3BstRvIJgD80f+CvfgTwR4p/Zs+GHibxN4N8KeIvEnw7/bP/AGF9d+H/AIh13w9pGr654G1zVv2vvgp4Z1XWfB2rahZ3F/4Y1XU/Der6r4f1DUdEuLG8vdE1PUdJuZpLC9ubeX49/bhXRH+IH/BaCL4l28F34guP+CaHwRtfgHa6nZyX91ceHLoftF29vD4DtJYZ7+fXpP2kpfC6zr4Yidl8Vn4bPPt1xdGZf2w+Nf7Of7Pf7Svh3TPCH7RnwI+DXx+8J6Lq6eINH8L/ABr+GHgj4qeHdJ16O0utPj1vTNE8daHr2m2GrpYXt7ZJqVrbRXq2l3dWyzCGeVHt+KvgF8CfHWtfC7xL43+Cvwl8Y+IvgfqC6v8ABXX/ABV8OPB3iHWvhBqqRWMC6n8LtV1fRry+8AagsGl6ZCt74Tn0m5WLTrGMS7LS3WMA/m9vvEP7QWiftK/HH9s26+NrRftL/s8/tP8A7DX7FEn7Mfirwp8HNe0/xP8As7fHLR/2eYvFmgafrPiHwjrXxX+HmvfFHxb8UviB8UND8RfBPxh4A0rxh4q+HB034hWHxS8PeCtA0nwJ/U5Xj+s/s9/ALxF8XvDH7QXiD4H/AAg1349+CdGn8OeDPjfrPw08Gan8XvCXh65i1eG50Hwx8Sr3RZ/Geg6NcQ6/rsU+l6VrVrYyxa1q8ckDJqV4JvYKACvP/il8NPDnxg8Ca78OvFmpfEDSPD/iL+zP7Q1D4W/Fj4qfA7x3b/2RrGn67a/2F8Uvgp4y+H/xN8L+be6ZbQan/wAIz4u0j+29Hl1Dw7rP2/w/q+q6Ze+gV5/8UvGXiP4f+BNd8XeE/hP8QPjj4g0j+zP7P+Fvwt1L4V6R478Ufb9Y0/TLr+wtQ+NfxL+D/wAMrf8AsSyvbnxFqf8Awk3xF8O+bo+kahBo39r+IJdK0LUwD+VXwf8A8E+Pjh+314U/Za/a2vf2WPCXib9nr4v/ALHut6zD8D/jf/wcM/8ABYTxn4p8Q6H+1Df/ALK3x4+Ht74j8Xan+zZ4uufBieAbL4RC28afCvwtqeveAviJ4x1zwl4s17UtQ1X4I/DvUa/oD/4JsW/gHU/2JP2b/ix8N9H+LHhfw3+0b8F/g/8AtHR+CfjB+018ef2sdf8AAE/xe+EngTxIngTRvir+0N4y8Y+MX8L+FbCSx0nTtI0b/hFfCLXtvqfiPTvBuh6p4j1v7V+ZHj7/AIIc/s1W37PHj7xRYfsI/sQeI/2kfGv7T/7NP7VHij4ZfDP4DfBDTfBfhT4e/Bb4t/s0698Tf2N/2ZPFHj3wL4Gjl8P/ABE/Z8+A/ij4c3l78Sr/AOEHwz/aF+Pvxa+KfxK+I2i/s2/C741694C+Fv6v/sba/wDF7V/B3xD0b4g/sq/8Mb/DP4f/ABA8P/Dr9lL4KXp+CcXiPSP2cfCnwJ+C1rYT+JNK/Z3+NHxx+EHh37B8YJfjF4T8FeHfB/ibQrXSfhX4X8AW114R0y9FxqGrgH1/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfiD/wUE8ZftCaR+0d8PtQ8M/tHftf/ALO/h/wL/Yem6V4R/Y1/Yr/aY/as0f4zfAn4qXWiQfGvxl8YfiLYfsC/tofs5eAf2gPhz4z8EaNqf7O/w0tvhb4k8Y6D4E8AfEHQvFnxY8L+H/2/rXxF+yf4/wDsm/HH4hftWftQfBL4gfDT/goL+0/ouk/tCeH/ABH+158U/wBlS7/ZU+Jnwp/Zg1v4NeD/AA/8APCvhK9/Ys+O/wC3J/wTxfxt8VPg/o1tq3wc+Hnx40H4c/Eb4Kz/AB48QftF+KP22vhNL+yfq7XXwB+IHQft5f8ABLrVP2+f24rD4kN8OP8AhXPh/wAK/D/4M/B34hfHn45fDn/gnH+0X4E8W/CvwR4t8ffF+G1/ZT+BHx+/ZQ/bF+Jp+IGp3vxY+J3wh+K3jD4j/ED9i/w54K1if4WfE/w/8Pf2wvD/AIBn8F33gH/BJj/gmv8AE/8AZNu/+Cb3xH+HXgj4gfDXU9c/ZA+GOv8A7cus/EX9mf8A4JlfCHRptH8Y/s461beIP2VYPE3wp/Zj+G3/AAUhv/2gPB37UVr8C/id4iPxs8QX/gTVPAngPxc3xR+NHjf422tr4T1gA/X/AP4KK/tT+Mv2S/hF8PfGnhbW/hT8N9M8cfHL4e/Cjxx+0N8edA8S+LPgZ+zX4T8Y/wBrbvir8VvC/hPxt8MdV1Xw3d67p2ifDawnvPij8NPDGh+KvH3h7X/FvjXTNA029tb/AM6vf2gP2uvH3/BJv45/H/w94Jm8N/tkWn7LX7UPiD4P6b8K/AmqeJY/GvxU8C+FviTafAv4i/Cb4T+Mbbxzr+paX8X9Q0HwZ8Rfhx8MfF1p401afT/Fmi+FdXHit5JJ9T9V/b8/Z5+Kv7Rnw6+HHh/4a6Z8GviNpXhD4t6H4z+KX7Nv7Rmo65oXwD/af+HMHh/xNoGofC34o+IfDvgD4r6hpemaVq+vaN8TPD8eo/Cv4l+FdR8ZeA/Dtl4l8GXtpJDqujfJXiz9kn4lfCb/AIJAeNv2QfEHgvwL8efil4q0fUPhf8IPh7cfDlf2mvgP8EPHPxx+Nltov7MVpqnhn42+DfF9z4//AGYP2EvFfjb4beK/Ffjzx98MtcvfDvwQ+ButfElPhR/xT2n/AA8gAPyF1n9uP/gpx4V+Hvx3sfGPxY/bf8H6v4i8QfszeGP2Zvidrnwq/Zb+GeneGPFI+Gf/AAUL+NX7X3ijxz40/wCCk/8AwSe/4JFfC7xT8H/gt+zf+zt4e+OXjbwHF4K0XUdU8VeC/ht8PtH/AGw/hFpHxq8far8PP0f8f/Fj/hdX7Pf/AATk/wCE3+Jf7f8AD4S1z9v/APbC+E/7Rv23xl/wqH9snxf/AMMm/sz/APBVH/hNfhp4k/4dKal4H0zxp/wjPxt/Zt0f/hCvBv7N/wDbH/C0bHwH4A8zTfG/i3VL3+1vyguf2VfBfgD4NeP/ANnfx3+xt8YP2dvEnxe/bf8Aj74mufCH7K3/AASZ+PupeIPgh+yP+0tP/wAFAPhf4stv2j/2vv2Q/C/7WP7On7U3iDwX/wAE9P21/Fngv9jLwn+zPbaton7Kv7UGufBf4VfFrRvGPwb8E/H288M/b/2HS/H37LH7DOrfEz4Rft/6F4S+HP8AwV+/bm+I/wC0be/Cb9nT/go78DfjtH/wt74df8FRfGum/H34aeAPgd8O/B37Y/w2/Z/+NfxI/aE+F+veDdG8L3/jz/hVHg74r6b+zR8Z/jV8VPFvgj4seI9cAF/Zi8Ga78YP2jrT4B+MfAX7QEsNl8QPjZ/wuePwF/wXj/4LJW/7R37HHws0y6+IWsfAT/hrn9m/xH8Qrn4ZeCfiB42srb4WfDTSP+EF/bD+IHh39pq61vxf+1f+xt/wuD9kXwv4n8b+DP2d/wCCZPizxV49/wCCbn/BPnx1468TeIPGnjbxp+xB+yh4s8YeMfFms6j4j8VeLPFXiP4DeAdY8Q+JvE3iHWLm81fXvEGu6veXmqazrOqXl1qOqajd3N9fXM91PLK34RfB3RP2UtH+Kdr4e+NP7I37X/h/wl4P+H/jD/hTXxd/Ya/4J1f8Fof2X/hZ8PvEXiDxF8Pb7xb/AMKW/Z0T9njUPjb/AMEt/iB4s0yXWfDOu/8ADvP9qTxB8LP22/Ds37Qfjn9ur+yfFviD4I/DtP3d/wCCZPhPxV4C/wCCbn/BPnwL468M+IPBfjbwX+xB+yh4T8YeDvFmjaj4c8VeE/FXhz4DeAdH8Q+GfE3h7WLaz1fQfEGhavZ3ml6zo2qWdrqOl6jaXNjfW0F1BLEoB9wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=="]
math
multiple-choice
1
某几何体的三视图如图所示, 则该几何体的体积为 ( )
$\frac{1}{3}+\pi$
$\frac{2}{3}+\pi$
$\frac{1}{3}+2 \pi$
$\frac{2}{3}+2 \pi$
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABoAVIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArD1rxRbaPqFlpy2d3f394xWK2tAm4YVmyxdlVciN8ZPO04zg1c1bU/7Ot0EUXn3k7eVbW4ODI+M8nsoGST2APXpXP3emf2dqnhYyy+feT6xJLc3BGDI/2K5HA7KBgAdgB160ATXPjOezurS2ufCusRT3jmO3Rp7LMjBSxA/wBI9Aatf8JDqn/Qma5/3+sv/kiuY8Y+GbjWfE+kXN5ceTK+omDTXiOTbKtpcSCT/eMqqSOmI0HrXoFmblrG3a8SNLoxqZliYlFfHzBSeoznFAGN/wAJDqn/AEJmuf8Af6y/+SKP+Eh1T/oTNc/7/WX/AMkV0FFAHP8A/CQ6p/0Jmuf9/rL/AOSKP+Eh1T/oTNc/7/WX/wAkV0FFAHP/APCQ6p/0Jmuf9/rL/wCSK1dK1GHWNIstTtg4gvII7iMOMMFdQwyPXBq3XP8AgT/knnhr/sFWv/opaAOgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKr317b6dZS3d0+yGIZY4yT2AAHJJOAAOSSBU5IUEkgAckmsGyB8Q30eqSA/2ZbtmwjP/LZunnn26hPbLd1wAT6TZXElw+r6km29mXZHCTkWsWchB23HALEdTgchRVfxD/yHPCf/AGFZP/SK6roK5/xD/wAhzwn/ANhWT/0iuqAE1ma5Txb4biDwG1klnLI0AZw4hfDK5Py8FhwMnJ5xkHoa5vxDAp8SeFrg3F0j/bZIUSJownNvK5LBkYniMrgFfvZzxXSUB1CiiigAooooAK5/wJ/yTzw1/wBgq1/9FLXQVz/gT/knnhr/ALBVr/6KWgDoKKKKACiiigAoorN1TUpLZ47KyjWbUbgHyo2+6ijrI+OiD9TgDrQAzU9RmE66ZpoVtRlXcWYZS3j6eY/r0IC9WI7AMRg+HLDWda8L6Rqtx4v1iOa9sobmRIoLMIrOgYhc25OMnjJP1rptM02PTbdl8xpriVvMuLh/vzPgDcfTgAADgAADgVmeBP8Aknnhr/sFWv8A6KWgA/4R7VP+hz1z/vzZf/I9H/CPap/0Oeuf9+bL/wCR66CigDn/APhHtU/6HPXP+/Nl/wDI9H/CPap/0Oeuf9+bL/5HroKKAOf/AOEe1T/oc9c/782X/wAj0f8ACPap/wBDnrn/AH5sv/keugooA4vxLp+taN4V1fVLfxhrLT2VlNcRrJBZFSyIWAOLcHGR6iqvifVhofiPS7C48W63A2q3LIiRRWZjtgQSuS0BO0kbRkk4BJJ2mt7x3/yTzxL/ANgq6/8ARTVk+I/DtjNrulG7Vrn+1dUeOcSHpGLC6URrjooyx9csT3oA7KCNobeKJ5pJ3RArSyBQzkD7x2gDJ68AD0AqSoLOBrWxt7d55Lh4o1Rppcb5CBjc2OMnqanoAKKKKACiisa8v7u9vZNL0llR4sC6vGAZbfIztUfxSEEHB4UEE54VgCzqet6dpHli9uQkkn+rhRWklk/3UUFm/AGsq58UX0dtJdReHbxLWNSxnvZordcDvtLFx+Kg+1X7bTtK8O21xeHCEruuby4cvLJj+855PsOg6ADpUVta3GsXMd/qMTRW0bB7SycYIPaSUf3u4X+Hqfm+6AYGh+PdV1kuB4VljcPKEjF4geRY5GjYqJAnRlIIPI4yORndh8V2HnJBqEV3pc7kKqX8JjUsegEgzGx9gxNUPD+mxal4cnR3eKWPWNRkgnj4eFxeT4ZfzIIPBBIIIJrVsrz7cJtJ1aCH7akf72IrmO4jPG9Ac5U9CDyp4PYkA16K542Nx4bUzaUklxpqjMun7izRD+9Bn/0X0P8ADg8NuW1zBe2sVzbSrLBKodHU5DA9DQBLRRRQAUUUUAc/dv8A8JHeyaZC2dLgbF9Kp4mbr5APp3c+ny92xvgBQAAABwAK4jVPB3hzTNSn1ifw5pV1Y3Db70S2McjQt3mUlSdv94f8CH8WddfA3g50Dp4W0JlYZBGnwkEf980AdDXP+If+Q54T/wCwrJ/6RXVH/CCeD/8AoVND/wDBdD/8TWHrvgvwrDrHhhIvDWjIk2pukqrYRAOv2S4bDfLyNyqcHuAe1AFfxjoeur4o0q58Pj91e3m65f8A59Zfs0sPngf7j9+MxIP4q7vT7G30zTrextU2QW8axxjOTgDHJ7n3ryTxfpOlw+JtMTQvCWiS2djeGK9iXTYs3T/Z5ZmiX5eqxpn/AHnT0NelaHonhu0ji1PQtI0y2FzCClxaWqRmSNsMOVAODwcewoA2qKKKACiiigArn/An/JPPDX/YKtf/AEUtdBXP+BP+SeeGv+wVa/8AopaAOgooooAKKKo6nqUemwIfLaa4lby7e3T70r+g9B3J6AAk9KAG6pqf2BYoYIvtF9cErb24ONxHVmP8KDqW/AZJAJpemfYEklnl+0X1wQ1xcEY3kdAo/hQcgL29ySS3S9NktmkvL2RZtSuAPOkX7qqOkaZ6IMn6kknk1pUAFc/4E/5J54a/7BVr/wCilroK5/wJ/wAk88Nf9gq1/wDRS0AdBRRRQAUUUUAFFFFAHP8Ajv8A5J54l/7BV1/6Kan+Jr2/sRpL2VxHEkupQQXAaLcXjdsEAk/L9cH2x1pnjv8A5J54l/7BV1/6KaqHie8stS1HTNKN9c20kOqIJXhKIYitvJcIx8xGDJ+7xxjnPPykUdV6r8wez9H+R19FV7C+g1LT7e+tizQXEYkjZlKkqRkHB55FWKACiiigDK8QahPY2CRWW3+0LyQW1oGGQHbOWI7hVDOfZTUsEVj4d0ba0oitoFLSTStyxJyzMe7MTk+pNZN7dwDxoZruVY7bSNOE5Zum+d2UH6gQsB/v+9XLS0n1W6j1LUomiijO60s3/wCWfpJIP7/oP4frmgAtbWfV7qPUdRiaK3jbfaWbjBU9pJB/f9F/h/3vu7VFFAHP+Df+QHc/9hXUv/S2atLU9MTUYkIkaC6hbfb3CD5om9fcHoR0IOKzfBv/ACA7n/sK6l/6WzV0FAGbpepvdPJZ3kawajAB5sQPysp6SIe6HH4HIPIqin/Ei8RrAPl07VWYxjtFdAFmA9BIoZvTcjd3rR1TTBfpHLDL9nvYCWt7gDJQ9wR/Ehxgr39iARz/AIg1FrvwpqMssPkaro4W+e3zn5oT5gKn+JHCEA+hIOCCAAdfRSKwdQynKkZBpaACiiigArn1/wCKYuBGf+QJM2EPaycn7v8A1yJ6f3Dx90jb0FMlijnieKVFkjdSrowyGB4II7igB9c/4h/5DnhP/sKyf+kV1T7SWTQbuPTbp2ewmbbY3DnJQ9oXPr/dY9R8p+YAszxD/wAhzwn/ANhWT/0iuqAG6zK6+K/DdsbS3eB555RMXYSRyrA4BCjAOVZgSSevTOCOhVQqhVACgYAHaub1+OQ+J/DE6XkcYW8lhERtvMLs0EjnLeYuwbEb+FuSvGM10isGGVIIPcUB1FooooAKKKKACuf8Cf8AJPPDX/YKtf8A0UtdBXP+BP8Aknnhr/sFWv8A6KWgDoKKKKAEYkKSBuIHAHeuJ0jVtTmf+2Ljwtqt5c3MY8qW3uLJ4Y4TyqxH7QMqeCWwCxweAFA7evHtF8Za2mieGPD1lo99aI2k2u2+zbb7j90vEAlkVCfc7iO6UAeg/wDCQ6p/0Jmuf9/rL/5Io/4SHVP+hM1z/v8AWX/yRTn1TVLnRNRkTTLvSbqCAtDLfiCUO2Cc7YpWzjHOSvUYzzTbTWtQXw7o90NJvtVnurSOSZrRoE2sUUkkSSIOST93PQ9OKFrfy/W/+QPS3n+lv8w/4SHVP+hM1z/v9Zf/ACRWP4T1fVLHwbodn/wimq3Hkafbxedb3Nk8cm2NRuRvtHKnGQe4rOg8Za9Z+LV0mLRNU1COZ90sEzWvm2KnnJeKVht9A4U/7R6Vj6L4y1tNE8MeHrLR760RtJtdt9m233H7peIBLIqE+53Ed0oA9B/4SHVP+hM1z/v9Zf8AyRR/wkOqf9CZrn/f6y/+SKRfEGqBQD4O11iB1M1jz/5MUv8AwkOqf9CZrn/f6y/+SKAD/hIdU/6EzXP+/wBZf/JFH/CQ6p/0Jmuf9/rL/wCSKnjudR1m1nhNnqWguCuJ5vs0jsOc7NryKCMDO4d+Ae0Giajqf/CJRXl1BNql2rOq/ZhGj3KCQqkg3MqDcmHPIHJx2FAB/wAJDqn/AEJmuf8Af6y/+SKP+Eh1T/oTNc/7/WX/AMkUf8JDqn/Qma5/3+sv/kij/hIdUx/yJuu/9/rL/wCSKAMfxZq+qX3g3XLP/hFNVt/P0+4i864ubJI490bDc7faOFGck9hWZ410O88Ra/ptzH4c1tUs52junhltAt5b7XXb804OCHYDIBCyP0NZGveMtcGjeJPD15o9/ex/2Vdb7wm2Elr+6bicQyMnvn5CeyGvYqAIrZzJawu1u9uWRSYX27o+PunaSuR04JHoTUtFFABRRRQByepeFdUuPFT63ZatZRho40W2u7B51Vk3bX+WZMkb2xkHGeKufY/GH/Qd0P8A8E03/wAlV0FFAHP/AGPxh/0HdD/8E03/AMlUfY/GH/Qd0P8A8E03/wAlV0FFAHJ6ZoPirSrV7eDX9GZHuJ7gl9HlJ3SytKw4uRxucge2OvWrn2Pxh/0HdD/8E03/AMlV0FFAHP8A2Pxh/wBB3Q//AATTf/JVZmseFvEmtRBbjXtIifY0XmwaRKrmNxh0Obkgqw6gg9ARggEdnRQBBZwNa2NvbtJ5jRRqhfGNxAxnHap6KKACiiigAooooAhu7SC/tJbW6iEsEq7XQ9x/Q+/auH1vVP7C1nwzba7dpHbW+pO8WpXDhEeP7JcKBIxwFcFlHbdkEdwO+ooA8e8Za1pj+JtKvfD3izQlS6uv9Mb+0Yv9Hf7PLCLgfN1CSEe5SMV3Nh4t8EaZp9vY2nifQo7e3jWONf7Ri4UDA/i5rqKKAOf/AOE78H/9DXof/gxh/wDiqP8AhO/B/wD0Neh/+DGH/wCKroKKAOf/AOE78H/9DXof/gxh/wDiqP8AhO/B/wD0Neh/+DGH/wCKroKKAOf/AOE78H/9DXof/gxh/wDiqPAnHw98NA/9Aq1/9FLXQUUAFFFFABWeNC0v+w4dFayik02GFIY7eUeYoRAAo+bJOAByea0KKAK17Zi806eyE0kCyxGLzItu5ARjI3AjP1Bpmk6euk6Ta6elxNcJbRiJJJtu8qOBnaAOBgdO1XKKAILaztbJHS0toYEd2kZYkChmJyWOOpJ6mqVv4e06Hw3aaBNAt3YW1vHbqlyocsqKFUnjGeAcgDn0rUrA8X29jNoivfaZYagqXEIWO9t1lRS8ioSAehwx5oA3lUKoUDAAwKWvNTovgrTvFmq2t34TtZU2W5iW30BrlEyrZ5jiYLn3xVLxFGW8QavbpNqM+nSW8EU8UttCbUsZwEQbVDAKFkXLZB+6WyACAekazph1jTZLIX11ZLJw0tts3le6/OrDB78VJptk9haeTLfXV65YsZrnZuPthFVQB6AD88mvJkt9JFjrsmnWmmxBtN1WGT7FBHGCqXAVFYIBkhNvXnB96wb/AESw/wCEoYJYabZi8eILbpZWMbxRjcD5VpcRedKeDlxsLFhtRwoFC6ef+f8AwAe7Xb/gf5n0FR1Fc/4MhtoPD5is4Ft7Zbu6EUSxeUEXznwNmBt+mBiugoYGVceHdNl8N3mgw262ljdW8lu62yhCA6lWI4xu5JyQeeua1aKKACiiigAooooAKKKQjIIzj3FAC0V5dd3S2Piu+kvPFvifbaRxWaXEGkxzr5jtlo96WrJnJhGPvZOOeBUniF7mfw2JLTX/ABTc3bXUaW0c+m29vIJd6hWxLbx/KCy85AOdu7k0LVXDrY9NorxPVbfRp31B57LT3vJ4tRnEtzaRrcs6PF5bZZQ4IBfgYxzxxweNtMsr3WNYkmsrFWi1OKSS8uLeJCVEUQCNczIYo0BIJX52boEwSaFsn3V/yDq/L/gntlFeWfDmxsrfU7C5itYY7qe1umkkitLZF2b4dqLNboscwGD8w5yTkKflHqdNqwk7hRRRSGFFFFABRRRQAUUUUAFFebeO7+5bX1gaG+jtbW3iZZbVpFlkL3UCyCPy/n/1bbcryd7AVk+HxNNeWtzb2r2cVzJJPcSnxDfGaPCAhnicNG7KuByXVtuOBwBaq/8AWgPt/W1z1+ivELpYzpF22opPdW9sNTnsl1mzt2WMqoAYALsz5gc7SAVyBjGCdO7stKjs1gttL0+408a5I0VqtkZ4DmyyGEUatuGTuwo59R1B38lf8v8AMHpbzbX3HrlFfO2maFpsaajbXFtZTra2lyzCK30+5cyneB5iQxmW2APzD5nVcqpZcYP0NF/qU/3RTtpcHo7D6KKKQBRRRQAUUUUAFFFFABWN4k0rUdZsI7Wwv7WzHmpJI09o0+7Y6uoGJExyvPXI9KKKAM6DQ/FVvqN3epr+jGW6CBwdHlwNgIGP9J96t3mhajdSyyx6wLSW5t4be4lt7fD4QyFjEWYhCTJwSGwB3JyCigDDuvAN5Dp1/pukanBbabMJHhtDC4PmNB5QEkgc7kz82Nmc4OSRT5PCPilr77dB4tgtrkuGJS1unjI7r5Ul20YB6cKCOxB5oooA6Tw/YXmm6WYL+aCa5a4mleSBCiNvkZxhSSRww4yfqa1KKKACiiigAooooAKKKKACmyB2jYRsFcghWIyAfXHeiigDjpvCOuf2Ymm2uuadHapcR3O6bTHkmklWUSlnYTqCWcEnCjg4GK1zpesXlk0GqanYysJ4Jo2tbF4QvlyK5BDSvnO0DqMe9FFFwM2bwdfPfQ6ymsxPrqSFjdXFmXhWMoy+VHEsilFG8t98knqW4xn/APCD69ieFfEMSQNKkiuwu/OkIhjjLO8VzFkkoTg7vXPNFFAGpoegeIbDVbWfVtdttUgt7eaJGFo0Mq72jIBO9g4ATGThvUsSTXVUUUXAKKKKACiiigAooooAKKKKAMLVfDg1XXtP1F7opFaDDwCPPm4dXX5s8YZFPQ5xUOleGrrTrywaTUIJbWxgaOONLUpIzN3Z95BA5woUdetFFHS39ah1uRz+EWvkFpe6i0mlCeW4azjiCebI8jSDzGJO5V3DCgDJXJyOBmf8Ib4hjj00R6/Zu9lsijLWkqRxxLDLHkIs2TIfMGWDL90egFFFHkHmQv4K8VxWl5BbeK7Zobm2khe2ubW5mRywIB3y3MjoRn+E455VsCu+RSsaqeoAFFFFwHUUUUAFFFFAH//Z"]
math
multiple-choice
2
执行下边的程序框图, 输出的 $n=$ ( )
3
4
5
6
B
["iVBORw0KGgoAAAANSUhEUgAAALwAAAFsCAYAAAB2ANMwAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADfnSURBVHhe7Z0HtFTV9YfRmMSlWcaIvSUGomJBwY5YEBUFFVHEEgQURaygoIigNLGCgCACCgJKszdQQAEBFbAgAhZsaGxBTYwtPef//7ZvP++73Jm597558+bM7N9aZ83M7ffOd87dZ5+y67iYevnllyu+mUz+yoA3lZUMeFNZyYA3lZUMeFNZyYA3lZUMeFNZyYA3lZUMeFNZyYA3lZUMeFNZyYA3lZUMeFNZyYA3lZUMeFNZyYA3lZUMeFNZyYA3lZXqAHKcZDKVgmKX8CZTKciAr2H973//c//5z3/cv/71r6JNXB/XWQ4y4GtAwPP3v//d3X///a5NmzauUaNGbt999y3axPUdf/zx7s4773R/+9vfShp+A74GBDTnnXeeO/fcc90rr7wi8FOKFmv65z//6d5880131VVXuRNPPNF9+umnJQu9AZ9nAcrVV1/t+vTp43744QdvwOE6//3vf7uJEye60047TTJBKUJvwOdZa9eudYcddpj77rvvvAOG66XEP+uss9zcuXMNeFNuTZ482Q0YMKDil5964IEH5C1lwJtyasiQIe7uu++u+JU/AZ+moPiNpyW8/L///W/qt8wLL7wg9Y9SlAGfZ918883unnvuqfiVWwpxEMzwd9I//vEPeXusW7duvfU33XSTe/DBB6ss/+qrr1zLli3dn/70pyrL4+jFF19055xzTsWv0pIBn2elAX7x4sVu0qRJYkpceumlrn///vKdNHToUNe+fXs3depUd8MNN4htTemtonTH9fnqq69Wgs0n++IpwiY34H+SAZ9nJQU+rOuvv95Nnz694pdzCxcuFHAzCbOlefPm4hH6/vvvJTOQCTp37uzeffddWf/GG28I+HFlwJtiq1DAAzel+O233+6OPfZY9/jjj7tOnTq5OXPmuEWLFrlRo0YJ/Lgax40b50aMGBEbegPeFFtJgMfUCJsbQeBZp8DzHWC//fbbyv0ovQEecwcbv0WLFu6ll15yXbp0ca+99po0Jq1cuVJMpj333FPMpvD5omTAm2IrKfB//vOf3dKlS93y5csF0osvvtjdcsst8p00YcIEsdFZT6PQcccd5z755JNK6LHvv/jiC/fNN99ISf/666+7gw8+2PXs2dNNmzZN4P3ggw/k+1133WXAV3ya8qSkwP/1r3+VCueaNWvcO++84y688ELp08J3EqU3LZ/6m8Q+uu/ZZ58t3+nCQGbhLUCGwJxRuLHpP/zwo9itpwa8KbaS2vAAqBDyifmyZMkS+Y2yVVqx1zFp2G/06NGVJst1113nhg8f7h566CFJrDvyyGYCfBwZ8KbYqk6lFZv89NNPl85bqkzAAzaVU8yfefPmubZt20q3BpZfccUVYrfzncTbA9OH73FkwJtiKy3wwEgL55VXXlnFz56thGcfKqt0Zdh1112lhRfzRYFXYQZh+sSVAW+KrTTAAy5uxgsuuKCylFZlAx7RFZluAM8//7w75phj3LJlyzICbyW8AZ93pbHhgZbuAatXr5bfQTCfe+65SPjYhkzSr18/t2LFCvn93nvvSYYB+MGDB0t3AxI+eUye4HGzyYA3xVZS4L/++mv36KOPimsxDCS/GUA/ZsyYiiU/iUEljzzyyHp9ZfiO+xH4VZ999pmMvjLgDfi8C+DxnccVbsRMLaAAGnQvBsVy9guvi9qH71HHyCQFPsk+vsiAz7NwAQ4bNqzil5/C3XnJJZcY8KbcotX01FNPzVhqF7t4OzD4I243BN9kwOdZdNY66aST3BNPPOEdMFzvqlWrZIjil19+WbG0tGTA51lAQ3fcww8/3M2YMUMyQLGLa+aNtGDBAte0aVP37LPPlmTpjgz4GhCw0Be9Q4cOUlriX8cmzle66KKLJEWtS5M4Fj58puigt2WminIpyICvIQEM4Hz88cfiS3/mmWfylugrQ2aKWpcmzZ8/X9yYUV6fUpMB76HwqQO9KbkMeA9lwKeXAe+hDPj0MuA9lAGfXga8hzLg08uA91AGfHoZ8B7KgE8vA95DGfDpZcB7KAM+vQx4D2XAp5cB75Fo9icp8PrbFF8GvEf66KOP3NixY2UIIfGYxo8fL8tM8WXAeyQmUtpvv/3cxhtv7H7xi1/I1ByMiTXFlwHvkTBfLr/8clenTh1JZ555phf97YtJBrxnYlrsDTfcUIBn/KzZ8MlkwHsmht796le/cptssolM4WHAJ5MB75kA/Mgjj3R77LFH5SzCpvgy4D0Us4olmRzV9JMMeA/FdNpxgxuYqqpkgOfPZ+Zc5mks9bRu3RcyQWrUOktVUzhWbUkAzw1xc0TPYOS9JUuko48+2p1yyilVJsXyHnhgZ450psK49dZbJWaSJUu0QP/xj3+U+g6zR6i8B56GlxtvvFHmV4kb0sVU2qJEJ6Bz165dZZblkjFpyLn33Xefa9eunZg0wRszladggPi1RD78y1/+sh4TXgNP1AtCNX744YdZYWcdmSP4ajOVnvifaYxr1qyZhOqMYsJL4LmR999/3x166KESlzR4Y9jzBPclwICK9Ux9R2iYqFwfFJ4ewkj6Zh5xT5rKVTDB3Jj8f5meg3fAcyOff/65BOidO3dulRvj+1tvvSVxTQEf+01LdoKFEceUAL/ZoPjhhx8kOBhh3JkiL9u2+RbnovWUiB1JzovNSon28MMPS0S/NOJ8ZHagKfSbkHNzTrpNREVCySW2X7duXaxZm70DHr8q0SkI3ht0N/HAmCdx0KBBrlu3bpIZ6DNOSBgmCGUfutLiyXn77bezPhTWAR51g0JNG03mJB5T48aNJRRl3D+d7XgbEZh4xx13dPfee2/FmvjiGISpp5JHiPpCvt04N/8LffwbNGggEcOTisLt/PPPdyNGjKjCRJS8Ah6o+/TpIxP2c5NBKPiOK4qId7REUkryJsCUwT+Pq4ptyAj4aJnwn3DtwWMExfLjjz++YC2a3A/QNWzYUMLmJBHXx2So2223nUThTir253nh7frtb39bcOApxDBNt9lmm8TAw8TAgYMkkFuc6/YCeB4KORdT46yzzhKzIwwhv5mpl6mfebUPGTJEXs+33XabRMdjhlzma2eU0NNPPy2z7/bo0UMedlgcC1ufEgfThld9HLFfphRH/GF0DEsKPJoyZYpr0qSJPKe45w6vZ+hgUuCD54lK2RRczzl///vfxwaefYF98uTJYsIS0TDX+ZAXwHNjM2fOdC1atHBfffVV5I2xDHOGBzB9+nQJA4mJMHv2bAGeuEXY5ACO754IeJlsZZbx4Ck1evXqtV7FOEqs/+STT+XVTKbierkGImoQ8ylTeuyxxyqO8OOfjochKfA8H+KwUk/hzYVpwpuJgoHfUeclEc6SN58qKfDcM2/RqVOnut69e8v5KEx4yxJKEzMr6ryaqG/oc+Wc9erVSwQ8b2vqckQuz/X/qIoeeG6Eh0czscYxjRLLAZ6Hj9nDQ8eepVchIdqx3Qn/yIPG5KGhChMiLI6DeUGcJkAnw1xzzTVZbUP2oW8LXiD2oU2AQAidO3eWNwXXnSkFx6SmBZ6KHsP9Lr30UqmvkJm33npruW9MuqjzkohUAqSqNMBzf7wpAY9ChWeOWXb77bdL/SfqvJqCoCYBnn3475o3b14Zozauihp4boSHdtRRR0lpQEmW6eZYTsnNJ384lVq2p3mZUpfSmpJfA/n27NlT/Pdhsf9TTz0l8GDKUKHClqekznRutjvhhBPck08+Kdvwet1///0FICqjeBAypeCY1LTAE3UbULHjOf8PP/xdKp+U7rwRo85LIqMEzbU0Jg0FwcknnyyOApwG/F/169eXa+I5RJ1XU7AOFRd4tueegD3spYujogWeG6GkpPMPDyHOjbENgFHKMI0Fr1Rq75RC/JkKPKVwJuCBAJtQQ8CTaLkjJEwme5+6AZlSM9yaNWvkz6MOsXLlSnlDZEqYYKo0wHO+a6+9VuoaZHCEmcL5aZgbPnx45HlJ/fv3l1JWlQZ4vGA777yzPFeuBbORc/OsgD7qvJoYrsg+KC7wZJIzzjjDTZw4sXLfJCpK4LkRwO3evbs0IukfmU1sgymDK5KOZHwnw3Ts2FEeIrZ4LuB56CzXklrFckwjKsTffvttlXV8J1MqpFwHNjQmGKUn64PbZ1Ma4NmHBjhMOT0XbygyYFTlPqjwtWUCPrydimWzZs1y22+/feXbZeDAgfJW1cpzNgWPyzlzAc82eOgozNIOXi9K4HlY+FQBN2hjZhMPDruQkkVNGpYBH6UYfW4AHhseuzYMPA+QDkdUdKP+LCpnBxxwgGvbtm2lH18TvnNsVmAnjPw+++wjGRXTKZvtHxZ/KF4a3IMqjk8GDVYug6KE3WGHHaQOgbh/gFu4cOF695BNbMubCl++As8ySlQNdBYW6ymU+J+4TwopMiyRyHm7JhH1Jrw0eJuixLn4T6knhQudJCo64LkRoKHVLFc3gKDYTrcFWjIMfxJ/BmYKJSDA8wfym0qr9sHB1sTO5xUcPE5QLMPMIRxlq1atJNPotvzpu+yyi2Quwrbvu+++8kbAnIk6VpTIcFT69t57b3f66adLpYx9uQfmoiGDRonMR4WRCioZg8zywgsvRAKaSZyHllrscHzhvCHUzQe8lPpR/n0KoyOOOEI8M2yLXb777rvLcXjGccVxMG84D2/RcD8YvnMOvHTUEYLrkqqogOdGli1bJqWcwphGvJq1JZZ5XCihMDvwxeMV4ZWITa6DoImejQ8/l9iWSiYwqFhGyYbnRzMo3g/eCEmuH0B5E+EqJekfy3LMsIceeqhiy6piG66HTlP0IaGkTCqOwbXruUmU8iznf2jdurXcY1hcG28e3ZZMS+U+W4NelDD99N75DA5O55N7I2OFTdA0KhrguTEqedieQJ/kgYUFLIDJH8JDBHxe/eqRAAqWcw4S21XnfDUlronMw5sp6E0plIAcU1DfZrUhIKdHLCZaPlQUwPMwKWFwb1GSAaDpx+dC5qyt50FBoaV3ocU5sdVpD6Eim69nUOvAc2M8VNyHuNAMdpNmdOx5OtLl8w1c68BTiuDRAHgaFLD/LJV3wp1MtwyAz/cbptaBp4ZOJZWWSfzJlnInvDY030etK5UE7NTD8gk7KgqThgoZOdlSvISLtW/fvpHrSiXx5s837KgoKq2mZMLtaiFv0smA91AGfHoZ8B7KgE8vA95DGfDpZcB7KAM+vQz4IhINLNoTMJuHwoBPLwO+iATw9HZkMDaDM+g/Qg9EHViimcCAT6/EwPOn0PuQQRJMemMpv4lenptttpkELdtggw2kfzp9jOhvz3Onv7sBn16JgaeXIS19jJC3lP/UpUsXt+mmm1aGpgR6htAxKRTD2mh9NODTKzHwdLOlL7kp/8JkYcDFtttuK4PCmVOHPu70L6HlUWXAp5cBX0QCakY65aq4GvDpZcB7KAM+vQx4D2XAp5cB75EYFBH00jCWNWqsqSmzDHiPxEBzJpNlxoU2bU6RCYmCU/WZcsuA90hUapliTl2WuIcp8U3xZcB7JLw2zEqmwDP/ZSZPjilaBrxnWrJkqdtoo42kQYoJpwz4ZDLgPRNjgGmYqlu3bs7QPab1ZcB7JgCnm8FBBx1kHpoUMuA9FBFGmO/eSvfkMuA9FFNTE1LHgE8uAz6lgI1+6lFTTNR0wpShQ1nUukIknffeRxnwKcUfTh915jRneuxySUznzXThZHYfZcBXQ9jSBEtjUEy5JP5/5mk34MtQAE882HIS3RsM+DKVAe+fDPhqyID3TwZ8NWTA+ycDvhoy4P2TAV8NJQUeV2YwxVV4vyT7oursG5YBX8ZKAjx92QkryVQby5cvTwQe2xI2ktZV4pgGZzDIJfZl+7feekuiZNNKi3sxLfgGfBkrKfDMSLDFFltILNckAk7CQxJwmHlrADZKDAYJDwhh25EjR7oDDzzQ1a9fXyZ2YiqQTMfIJQO+jJUEeKAlOvWuu+5aJc5rHLEv3QkI6fnwww9nLJ3nzp3rZs+eXfHrx/0IBco1Ej+LSImXXXaZdC1OEjg4KAO+jJUU+MGDB0vwNvqiUBJnAjdKgNugQQOJW8q+Uf1ZiKBNUrGeuSmBXYVZtfnmm0vs1aDYluPyJqK/TCazyYAvYyU1aYgmDfQDBgxwLVu2dGPGjBGAr7766oyJMPLASFynww47zN11112uU6dOEto+HO07Cvjger4zk1njxo1lsicVka8xeyZOnOTuvfdemcuS4M5RMuDLWEmAp7K49dZbC1AA9thjj8nIJUpg4MuUKG0BtWPHju7EE090a9euFdCxye+44w43bNgw6RtPIogvSX8z/jUMPHFPx40bV7mcc1A3IHQ+y/r06SMZK5ONb8CXseICD0iEcCc8J6DwG68JGWDlypVu0qRJGdPq1avFfq9Xr557/vnnZV/eFpTCdFxjrhpNjz/+uGSk4DIFm0/C2PPW4Hj8Bmqm5eaNw2/SOeecI1N2635hGfBlrLjAA1aHDh1kWwWJqbGJR0oQ3mXLlmVMzNaMWbPHHntUVnYplSnhcTMGwQybNCq2wUQZOHCgVFZ1H1yddPfFnmfZp59+KhkLsyeTDPgyVlzggQ2wAAmwqHBiojDrQBwxyxiBehXU+fPnu7Zt28qAbl2GooBnPZVWop2rzU9iAicyzD777CODSQC4X79+0r+fjBU8blAGfBkrDvCAs3TpMteoUWMpXTEzZsyYIeYI4OcSbwcqu2QOTBlAveCCC6SyG4SS78xiQFKxDP895g92eo8ePSSdffbZUmFesGCB22abbdwzzzzj7rnnHte1a1epJ3B9ma7NgC9jxQWekviBBx5wkydPls/FixcLMEFgM4ltaJkdO3as7EvCDArvy29NKr4/++yz7pprrnG9e/eukjBnMI14ezChE5Vq7H8qu2SS8PFVBnwZK0mlNZySKO3+2bYNHisqZZIBX8aKC3wpyYAvYxnw/smAr4YMeP9kwFdDBrx/MuCrIYDHvZitkldqMuDLVEB+9913S7+Tyy+/vGwSvT3ppmzAl5kAnmehrZuFTHTwoiEpal0hEh3N0g4gqW0Z8B7KovillwHvoQz49DLgPZQBn14GvIcy4NPLgPdQBnx6GfAeyoBPLwPeQxnw6WXAeyTtuqvA891Xf3htyYD3SIw5ZSwsM4f16tXLzZo1S5r6TfFlwHskxpoSZ4np8pjxgFnMgpMsmXLLgPdImDCMO61Tp46kNm3aeNunpbZkwHumhx56yG2wwQYC/IgRIyQTmOLLgPdMzFOzySabuF/+8pdu6dKlFUtNcWXAeya8MgcddJD7wx/+4L74Inr+R1NmGfAeqm/fvu60004zcyaFDHgPtXDhQjd69OiKX6YkKkvgMQuYBYyp53xMzBXPvJNR63xKuFQL/ZYqS+CZPZfp55o0aeKaNWvmZWIm4qjlviSefbt27WJNN5hPlSXwPGQeNjGXTLUjpgunHsL894WUAW+qFTHpqwFfIBnwtS8DvoAy4GtfBnwBZcDXvgz4AsqAr30Z8AVUoYDHxxxM5aI492vAF1CFAp4/86WXXpIYqPzBpaBsGZhlhOVZs+YdifqdTQZ8AVVI4OkGQBylcORrXwXUxJYljE9YxJ8dPny4DE7J1ZPTgC+gCmnDEzuVCVczhXL3UUwiS8zXsGjBJu4sGdyALyIlBZ5SjRKNxB9EJD6OwfdMSV/7jFAiPiowEEQsyaBrtmVYnwYZ5ri5xDnZlpFQ7P/dd9/JdzKcHiMqsZ592VbDYbK9fg/qzjvvdKtWrar49ZPYjoBoO++8swFfTEoCPH/II488In8yoR2Jlzp9+nQJ385A6qhEJGsAAvLdd99dXvNEwGaaaULPhwGKErARvfuuu+6SdN5550lEvmzifEQKPO6449yKFSsk1CX9Vhj0/fLLL0deK4mofgDINpxn8ODB/2+Hr5HwmMcff/x6wwgzAY8wdwz4IlNc4CkhCRc5aNAgAfCdd95xm2++uXvllVcEAo6TKQE1PRq33HJL9/TTTwuMEydOlIEbzD7AMa+88soqiYzEfpyXQMKAxXmoB2y77bYSWjKb2Jfgxw0aNJChgMRhbd++vYSWJwNGXacm1nMuzK877rhDMhvH2GWXXcQ2Hzp0qPTDJ7Vs2VLeXPpbrxsZ8EUo/uBcwPMHsp5efdqN9cUXX5TI1V9//bXAwJjSqESJCkA333yzO/PMMwVg9l+0aJHAgGkDGOHushp/FVB5xsDAb2KzEpw4XNKGxbbDhg0TaImyjTlEiPo5c+a41atXy5sm6npvv/12t3btWgl2DOCjRo0SU4Z1p59+ulw/94znhQT8PAv9jdnEuZEBX4SKCzzmC693vpMuueQSSQBARGxe+1GJ/ur8kZgwwKr7U3LyJ2cTx27durWYJgjITz31VHfTTTfJ72ziHM2bN3fnnHOOnJ9rqV+/vtjVAAtk4WvVRCbkWqlw8ibhvJTkkyZNqjj6TzKTxjPFBb5hw4Zu5syZ8h0zZquttnIPP/xwrD8JaHbbbTeJeM3+lILYw9jJ2cTAlN/97ncCFPAz2dKvf/1r8edzXo5F6cu6sChtt9tuO7lWREnNfcapLHPcLl26SFgbtqW0Z94bzDjMuaDiAE+UkGwy4AuouMAz6VH37t2l8of9jT1OBRIIsol9H330UXf00UeL7c6fitlAqZ0LPMynevXqSYk+depUiRJIRiMsPM+eMPR77rmn1C04T1BUrjFn1PRp27athJXHRMp1Xuz0Ro0aVZbMmEF77bWXVLLJYCrOSYYC7LBYx5tv++23d88888x61xeUAV9AxQV+/vz54qngzwcIzBls12x/JGI9kGAiYBIALucCujj78hbBnAI+3hTdunWTEpV1NGBhshDjKXgsvs+bN8/NnTu3cjktvFQ+yQDBbcNi3ZdffunGjBkjbwN+4+XBs4Q5FNyX75rCwmzifFrhpl6QSQZ8ARUX+EwprvK1nyZdB/QApctUwe1Q+Hcu6fbhFFfBbXPta8AXUHGAL1YxeSqmi3p0fJUBX0D5DDzXrqaRAZ9cBrypVmTAF1AGfO3LgC+gDPjalwFfQPGQmYjpjDPOELejb+n88893nTt3jlznS6LLBS3KBnwBRKUPPzP9TXxMdAbr1KlT5DqfEv9BrgaxfKssgfddFsUvvQx4D2XAp5cB76EM+PQy4D2UAZ9eBryHMuDTy4D3UAZ8ehnwHsqATy8D3jPRYUyB970DWW3IgPdIdA1mUAnThTC9Bt2EGWFkii8D3iMxiopZE+rWrSvjXBmgzUgsU3wZ8B4J8+Xiiy+WsPMkZjPINXWHqaoMeM/EfDgbbrihAM/AcLPhk8mA90wMqt50003dxhtvLDObmZLJgPdM9C489NBDZc4bZhqwEj6ZDHjPBOD9+vWTKfD4bsAnkwHvoRYvXixzyBjsyWXAeyItzRmeCPD44pmWz6BPJgPeAwE18zs++eSTMhaXKbCvuuoqmauSKfl0/kpNpswy4ItYwMuES8xr2azZUeKDZ15HxoFSecVjwwxkRx55pEyCyqB0jeRhipYBX2QCVqBlTknmaGT6ayqpPPcokFnGhK10MzjxxBNl3kkihQTnbDf9JAO+iIR9jm+dSVsZ0U/wMErxOAOdgZtWV6KFMO01szIw8y9TaBv4P8mALwIB+uzZsyunDmFO+m+++SYVqAr+W2+9JeFoMHeIREKEEQPfgK8VAR6JhqPx48e7Y489VuaaYdoKtcGrC6ceg/nmR48e7Q4//HCJI0VYSTJYdY/vqwz4AgrIME8IMYN9TkgZ5pjBXldAawpEelrSj54OZx07dpQ574kBVW7gG/AFEFBRchNhj1m3TjrpJIkkUmgzg3MB/vPPPy92fqtWrSRggwZBKAcZ8DUg4NEEYNjnhJ+hdCWEZW2XrJwbO5/ACtdee62EybntttsknCZvIL32UpQBn2cpLJTehK+kNKdUJ5hZsfnI9Vrx5NDVuEWLFq5Hjx5SlyhVO9+Az5MUnvfee19CzWOf88ksubquWAHSa6ORi/72tOaeffbZ8maihbdYrzuNDPhqSmF5/fXXpSTH44LnRYOB5YJF1+farhDS6w3a+TR8EWmbZbreZxnwKcUfT2WPUpCpnzFdsM9p9o8LBlHvbrzxRpn6+oknnigamPT6seeJ19qr19Xiz7/llltkIDmmma8y4BMKECi9KcVpDWVSfzwuWtmLK7bFQ0KHMGYiIOR7TQRo4DyEvyRzphXHoE5CoGM6rPXs2VP69PgIvgEfU/zpTImB3xyzBfucAMX4s+kKkE3sq0nFd0pLXU4PSN4WwW3yIY53wgkniK+/uuJYzJJAoGYGoNAqTGzYXHFgi0kGfAbxB5LwVrz22msSHLhZs2biedH+KSQiTmcDnm0IG4/pQh92futy/Q4wZ511VrVK4UziHPkCHul1Y7rx5jj33HPdcccdJwGJtTuE3lcxyoAPSf8w4Js1a5ZEvMaH/vjjj0eGZ4kDPMfCBsYMCsPAb45RUzY8x8wn8GFxfDxR11xzjbg1b731VvfBBx/E6vBWGzLgA+LPo+8JvRSphNL/nFJMK6JRygU8okFnjz32EBs9eByFhVDzvEmS1gPiiOPVJPAqzoOJhp3P+eifj+eq2Oz8sgaeP0kTUN5www2uadOmbtCgQQJInD8rTgk/d+5cd8ghh8grn77r2gBFSycjllavXi2duuglyfJ8iuMVAngV58OfTyamUo+dv2DBgko7P9/3l1RlCbw+eBpV6N9y6aWXir957NixlQMn4v4xcYDv3r27uC7pMHbUUUcJgHg9rr76avHyaGLgRtzzxhXHKyTwKs7LG4v+/XRWo9/OtGnTKsfh5vs+46qsgNcHTV8WbGbsc1oVsc/T9m/JBTzm0L777iveHUr3devWuXr16kn9IHw+vb58iuPVBvBBcQ28xbDzAX/IkCFu7dq1NWLC5VLZAM+DxaTAU8L1X3bZZW7JkiXVbjrPBTw2Oj527RnJNTRs2FAaqQrxZ3OO2gZexbVg599xxx3i2cHz9cYbb8jyQjwLVNLA8xCxl7lmzIkjjjjC9e/fv7K1MB8POhvwHHvEiBFix+p58GDsvffelT746opjkIm4DvrBcNygh4T1aYBnPyrSeJhy1WXYljcZb8ko74weK/jMMR15s1Li0wYxf/78gvQiLVngecB4WChFKE3GjRtXI1PTZQOeP5+WSWYd0D+aijGv9HxcB8cAdswyuvg2aNDA7bjjjlXqAnzGBZ5tNWFy0HWYa6ViTTcIPWZQLMMb07t3b3FJMrpK+90gzDgap4CaYYdhUZldtGiRDD5niCN2vv5PUeerrkoKeB4QDxj7mJZAbHRKEUqpmnh4KBvwwIg7cvny5ZIB8cIAfBCI6ohjMFsBpSPg4FKl8k3SNgO2iQM823322WfSekxJywwIPDtK5WHDhsnwQM4RlO5DG4PeIxV0XJN6f6ynCwXz2dPtOEpsy3lw22Ln09OUcbj6FtRj5UPeA68PhFckDTtHH320u/DCC6WvRyG6tgaBD/85fAc0Si36ywCFuueyKXycTGIbujvotnzyDBo1aiTPQ5dlAp51gAbkhNDBa0QpTBeHXXfdtdKjgp290047uffff7/yXIjv2OOYihQ0/KZuQqU8eH5K7M033zwj8Cq25a1IJuFNQct2vufbSQU8A4LpRVcMiYdBqUkpg30eBKAQCgLPnz558mSBoDqJzEFpyX3wNnjqqafcY489ViWRocP3yW9GLuFm1XV8BoHnN4m3HtfODGbUb3iWug+QNWnSpLJEp8JNxZuMq9sgIMQMwVzR5atWrRK46U6hoivGb37zm5zAh8VbinoJbxv65z/33HNyzuooMfA8KB2XWQyJ0uV3v9vFTZ06tVYGK4SB5/U9cuTIaqUZM2ZUvgkAHtOCDlvBBFDBe+U793/KKadIia1ieRB4Sl76A2GikDm1335Qbdq0EbNCl2Mq7b777tI9OCjud//99xczRrflPFtttZWYWqq0wCOOi6eLjEUm1DdHWiUGHlH68HCLIZEBmXyIaS7oywEshajtq7LZ8NnE9fEcAQMbGVOiOtfMvnRTpkQMHofvQeBpBaWnJ5VEWoDD3Sb4TokKYCpMEkwcKq/BbQEe84nMoyKzbbnllnIdqjTAcx7eFnTv4H9lSkHeNFFeoCRKBXxNihsNPtRc0u151fGn8orGvBk2bHiVQck1peoAP2XKFKmcYYphMqRxVbI994gnhJnG9H6DKcqkAXzsfUY1UdJjr+u+Xbt2lYqvwsVzxIbn+KxXkWHxgLG9LgfqzTbbTNo4VHGA1+uiBCcj0nuU66air/WDfKiogOemKHFojUxzg/rQqPQMHz5cXIJUxHjQQRDyqeoAT+sjn1wbPTKjWl9zie2ZPht41e4HMNyKfCcFgQ+KdcBEHYHB29j/1NF4S+61116VrkjqSdtss01l57dgwv4Hes6NGB+www47yL6qXMBzHDIcGY83C5mQIYZaUSXlSwUDngfAREA8XGryJEb74KMmF/Obdfhy8SvzAKojHhIPmnPST0UbNxSKfKk6wOt1ADx9bcioSa6NbSnZsa+ZAoRjcK/Ua/CN6zkyAY90G54L/YpIX331F7GXKaVZN2HCPVJppDCibsEYV+BlHZNK7bffflLp5T6Y3g//vb4dECYRbkm8VOyj4jsZTDMN+2Gv1wToqoIBz4OiggT4JEbOYBPy6qJE1+WatMSornho2PqUgp06dZJSn0pfvuz8tMCruAZAoONa0j+ZbcnQ4UqvVuB1m2zAB6XnJ9FoR0nLmxKvDWYNyzGFDjzwQBnQottSYOEKplILtPx/LEcUXNjfWgeAAVjg7aaDaqh7wIC+hWtSBTdp9CFhpzFUDhcnf0aUtyDf4vhr1rwjYzI5N39m0B2XRtUt4amI4dlRO7U61xIljhcXeJVeB2DSeBYEkU8cBcECiWX8ZnkYWr5rYj0mD28Lug4/+uijkjGD29e0agV4zBe6jPJapJ8JlTVKXZqxdXBwTT0Effi8SgEeGKjo0h89zXmTAK/n1kTph98de5sSjsmakp4/lzheUuDzKc6PaUmnPexzXNovvPDCet6hQqlgwHNzlAL0aeG1h28Xm5UuANrpCDcU9juvUkqDmhbXhGmFWaCDFfgzgvZnLuUCXu8bM4NXu3pGgJsGIgaG0EeeVzu2cb4h4Hi1ATzn5a2N6cNbHE8U9rm2L9SWCgI8N4jpQM9BbGl97dEqSq7HFcVvEq84AKJCWwjpeSndqaRRuQUQMgGZgXXZlAt4/mAyOJVz7huo69evX+lTDqZc50ojjlko4DkXJTcV5m7duksmJpOrTV8T95dUBQMeuIGK1zg5nZo7fwLN6Pz5/MasoJQHemza2hDXyDVg5tB1lUYh9UBEKRvw3DcDTWj91Fc4czjyFst0vHyLc9Y08JxDu0B06NBBPEY0qGlBVkwquA2Pf5Wmayqt4URlktc80NWm+JMAkkwK8Hh28FNHtYZmA57SnUYwugboMWnQwStRKBA4T00Bz7Hx2uA/pyvCRRddJCZhPhuK8q2CA4/ZwNRyUSUc9i2AFcvD4jpIeCpoKudPpQTDLFPvQjbgyTA02Kj5wjHq1q0rvQ99LeE5HteOmxI3JPY5JhvHT1PpL7QKDjz+3VzAF6sosemx17792fLaxs7HuwTwUX80phAdqbDbKeWJxof9TosqJlwhxHVhmlUXeI7D/VPZvuKKK8StSxdePDCsK3bQVbUCPB4RTBtef8FE5/+hQ4dWbFmc4o+lJMOlip1PIwzwa8NMUGxHyzEuWEb10MORzE5dpVCAcB7qEVQc04j9eZvhSqaRkNZc3lSYMoW6h3yq4MADNu4/Sj9e+cGEH55mZh8eJNcI0ETBpiKKrU4dhJKUtxfrNQV/6/dill4nFVE6uOFtwX/+4osvFrV9HkcFBx4g6M4bfmj8Zl1USVns4nopBTFx6MrKfIvco3Zf8OF+9DoBnYYwenHSJ4e3Lo10vtxHLhUc+EwPTpf7/FC5dhqZGERNvx1MHex39ecX671xXdjntHJjn1PJxT6nsu3z/xGlggNfDlLwsdUZzc8YYLrean+hYoBIrwPQ8TTRNkBiirxg569SkwFfQ1KgMBEAnX47TKWBiUDDGxmiNqDSawJqprimWy4Vabwv2jhWG9dVKBnwBRIQYdPTp4YhdEDGJKNUDAshzk8lm5kH8J9T1yDzMSSvlAEPy4AvsIALyBmMQuWWVmfsfBq3ago8SnT6t9CKTWajhybeJZaXmwz4WhJwYz8zEKJXr15i7jB4gwYp1lUHft0fs4kRUfRIbd36ZGn80oxVneP7LAO+SER3adoh6CrMOFy6H5AhkoCpINNBD/scbwveIqasxpwxGfBFI4UVFyYmDqYOdj6mj/bbySTdl8Y8htEBep8+fSr77GTbt9xkwBehAJQKLpVaDRpGcz62fxBevgM03ZmZ/pvtxowZI4135Wifx5EBX8QCaEwRQuPQIEQTP+5NRooxIgz7nAljdeLTcIYwrS8D3gMBMQnPCg1YTBhLwuShqzKZQrcxZZcB75EUanpe4nlR0MPS7cLrMi0vJxnwHuqll16WqS4yiT7qTIFBiy4NS5qYBpuQnOXssTHgPVQu4LHxGZ2FO5Io4poYa4DPv5wrtAa8h8oFPHPcADwuTQbaaNJwO+UsA95DxQGe6U8YX8AkV5oYPI6fvpxlwHuoXMDTjx2fPN1+GYiiiQjjgwcPlm3KteJqwHuoTMArxJTwzPjFSCXseU1kADw89KehQluO0BvwHioKeCqizNbGAA6NA8XgbSa6wm6nYUoTtjx9bKo7JbmPMuA9VBTwlNa0tJIYqscU1wzyYPIoZhtguc7oRistn+XonjTgPVQ2Gx7wmbCWvjUATcWVCixuSfrE44tnLnc6qZWjDHgPlQ14Sm5KdLog8B3g6XlJz0lKe03Y8eUoA95DZQOeHpYM3QNqpsBjzk5mRA6bL+alMXmjTMDTLZjJoHRUE5VShvUddNBBMs0fpg6R+BgcwgSoUcGNS10GvIcKAw+0TE2NZ4Yp8FQsx3tDoxMeHLw1dDOmlyUDuWsrCkdtyoD3SMBJUuAVaP3U71HSfYOpHGXAeyTcjNjl06ZNk4royJGjpIOYKb4MeI9EqUwc1g033FDSFltsIZM8meLLgPdMjFmtU6eOJKKJ0Jhkii8D3jMR/v3nP/+5AI95U662eFoZ8J4Jf/puu+3mfvazn8ksxQZ8MhnwngnAu3bt6nbaaSfpDWlKJgPeQ9EDkhhL5Tw2Na0MeA+lYXbMnEkuA76GBIw0BL366qsSPiafiVFL9JeJWlfIxJBB394yBnwNCeAJ4Ibr8J577pHQ86WU6J7QtGlT6ZHpkwz4GhCwE3iAyH6Eqiwl04N7wTVKQGK6HPt2bwZ8DYheisz3yBA7zJpSEj0yCcXP+FgfM7IBn2fximfGXyqVpeZFYUZjAhP7PHuZAZ9HEcBgwIABrkePHhJ9Q6VmAJkhWCqyDd12ASmuCJwQPHahxL0Refy6666rlfPnSwZ8nkSJN378eCkBwxU5gMYMWL58uQCvicjWe+21V9aBGLqtijdH//79K5fp+uA2+RTHBfZRo0bJTAfAXlPnKoQM+DwIABhK16pVqyqRxPlkjpglS5ZIL0cidDz44IMyURKZghD8zz33nMBEyR0Gid9Mh81wPRUByRitpGIKPc4d3jdfog7CwJLWrVtL3aSmzlMoGfDVFACsWbNGwrQzK0AQCGABSEyB66+/Xr4/8sgjMpMvkOOuZPsVK1a4iy66SEK+81uPwefAgQPdhAkT5DcKAz9lypQqJX6+xT0RiIFMV1PnKKQM+JRSMCmtAYKSOgwEvzEHmBYD2CkpGVbHVNYAv2jRYukmgN3P0DvGnvIZDPlOIxOTJ6nCwBP3dcSIERW/1pdepx4v+D2TdBtadHE/8obKtY8vMuBTCgCY2wWbnYaYTEBQWaX0JtI1A6rp4ThnzhwxaRhsrSYQbwNKU+x5vrOMxHyQuYAnDE74/NQpMEEomblO+s1zbDqcZbpWFesJn3nKKaeICZZre59kwKcUlTdMFcyJTF4LQLnyyisFWkAlagemDXO0U8ElLusll1wiw/TogsB8kGQGBQxo6ULA1Hi8CUjnn3++ZBz93b17dzlmGEqCIowdO9btsMMOcvxhw4a5Aw44QOoN2QBmHbOUcQ4Gepeaa9WATyGguPPOO8VrgQcmE0AsZwgeFVJMHtyVzCoA8AQkpsRl+gymzaCkpn/K0qVLK4+H+UNJG8xQWsLrNpgd+pYIXwf1hf3331+O/cEHH8j5u3Tpst52QfF2AXTeSqUYJM2ATygAwHfOdNQMqs4FBOtJmDS8EdgH4BmqRwmvwDMJKqABvIrMQsxVZv5VhU0aMkWHDh3Wa+bn+wUXXCDdiJlmD5AbN27s7r///ozXzHLW45HRuW1KTQZ8AgEA5gHRsukrkwsI1uN7Z5YBhuNhE9OhDPCffvppqcRmAx6XJmYQc86owsBTKW7Xrp376KOPqlwPNnv9+vUlQDGw4xLdbrvt5DNK7MtU2nR2462R6958lQGfQMBCiQkYcYBgG5rhZ82aJYD37t1blgH/U089Jd4agGc2sOoAj10eHv1ExgRwhZeuvGRUKrDsExTrca0SCrPUOruFZcDHEAAwxTQdwnjlU2LGlXpc1KThe9++fcUXv3LlSgGejEQlU2141ccffyJvBbwt1BVIeGTIRPqbOgElfBB4zkEFmOV8JxHAmDkmZ86cWeX6WUcmoCW4FDu7hWXAxxCVN8aREgUPQNIIXzZTWLM/JT0tqBwPMLHRR48eLT5v7G09B1Pk4aUBRN4SJDIc3hnA5TcuS2ANAg+0vD0o5TkWiRKeuSXD0+uRaTp27CiV8ODyUpUBn0O8/il5L7744mp1msLm1y61dAXA+zJjxgwxJViGJ4eW1yCQfGpShX8DN75+9lPp+uBneD/E/dAZjDdPqbkfM8mAzyAFhBL11FNPjezr4qv03shgzCVfqh6ZKBnwEVIgMDsYtYRpUSpA6L3xlqEC/vnnfy6Ze4sjAz5CAKAdwujYVUpAcC+rVq2SjIwpVE6wIwM+Qtjtbdu2lUoklcZSSlSYgZ0o3eUGOzLgIwQIuAdpmi/GdOuttwq0UetyJfz9uETLEXZkwHuobDGeTNllwHsoAz69DHgPZcCnlwHvoQz49DLgPZQBn14GvIcy4NPLgPdQBnx6GfAeyoBPLwPeQxnw6WXAeygDPr0MeA9lwKeXAe+hDPj0MuA9lAGfXga8R6KHI0mB19+m+DLgPRIzFDCXzbx582VoHgPDmYDJFF8GvEdiwHaLFi3cLrvs4rbYYguZd4Yp9EzxZcB7JMwXJlatU6eOJOaNDE7SZMotA94zESZno402EuB1nhtTfBnwnol55bfddlu3wQYblNzc7YWQAe+ZAJx4UXXr1nVvv/22AZ9QBrxnAnCmzWvSpEmV2cZM8WTAeyjC2DDlhpXuyWXA17CYv/G9996TkDb5Sswxz4SqUevSJCZwZUJX3J6lnokM+BoQ0DDjMDGWDjnkEIkWQvAzGouKMTEHPZNOtWzZ0s2bN6+kwTfg8yxAwTdOjCTCVfowLyXXx+zBBENgvknmnzfgTbEEKKNG3SHR+SjlfRLXjmlDpJBs4fB9lgGfZzEvJQGGwyFofBGQE0yBABAGvCmnmHW4VatWeYOF4yQ5VtLto0RsKeI9+faGiiMDPs/CDk7bV53Ie+EKI9+JHsLyOMI3j+elOjFWiTelYTlLTQZ8nkVcJeKmJhVwEn4GcyIMPBVJWlXjiC7EYRucTzITFdPgsTPJgDfFVlrgKZkBm9hPYShZriW/xoAi0Ree8JezZ8+uTGSYgw8+2E2fPr1yGSEzO3fu7AYOHBgrlpMBb4qttMADKpACNjY0gztIHI9uBHzSU7J79+6V87sDJF4VSnVNxGXFn05dgt9sQ1hKvhPLKY5pZMCbYisp8IBLD8gBAwZIqyyxW9u0aSMRvGmhXbt2rQQ/4FMTALMfosQnWDERAhcsWCChLA899FAJfMDvOXPmSDdiMkJcGfCm2EoKPJCPGDFComtT4cX0wARRoBHw8Ru41aRRsf9JJ50k+xLAmBFQxG1dvXq1/OZtcMwxx7jPP/+8Yo/cMuBNsZUUeGzqwYMHu2HDhomNPWrUKDE7KN3vu+8+6fN+8sknyydvAcLWB0PHazyqd999V35jtpABMHUQ4TZPOOEE+YwrA94UW2lMGgDH9UhUbrwpLKPkJtw9GUITcLM8qoTHhCEuFZXYpk2bSvRufmPqNGvWTCrDcWXAm2IrDfAfffSR69Gjh9jf06ZNE2g//PBD17PnlTJLAeHlScOHD3e33HJLFU+LAk+FFvt/t912dw0bNnSDBg2SiiumTb9+/STzxJUBb4qtNMBPmDBBPCvADWyU5JTIRABXu500adIkqaAGS3j16rC+W7du7rbbbpMMsHDhQjdy5EjJEGwT3CeXDHhTbKUBHsAVSjww+NexyRnKF9SUKVPc+PHjK379KPYBakp/Gq6AFZv9008/lQyC3c8yA/5HGfB5VlLggR0PC11yGcUE0JgmVDoBnoygiUpsEHiFnQovpTndCfC346UBeNYNHTpU3Jrjxo0Tl2Yc8A14U2wlBR57vH///lJC40bkN1DynconlVFNl19+eWVfdRKZApcmDVS6H5DSMqv98MlQM2fOlMYr6gFB+z+TDHhTbCUFHinAQQEbLa9BYergV0eU+KtWrVrPL0/ldMiQIVLSq1ivGSKODHhTbGGetG/fvuJXekVlguAy/Z5pm/DyJFLgg5mmVGTA51n405n/0WdhKjVv3lzaBEpNBnyehalx2GGHVZoevok3w7333uuuuOKKar0lilUGfJ4FJHhTGATim0nAteMOJcO++eabBrwpt4AEU6Bv376uXbt2MhAjjmekNsU1f//999JF+YgjjpAGsFKEHRnwNSBgwQeOG5BGoMaNG8v8NAzMKMbEtXGN5557rluxYkXJwo4M+BoS0Gii9MTFV8yJDKrXXcoy4E1lJQPeVFYy4E1lJQPeVFYy4E1lJQPeVFYy4E1lJQPeVFYy4E1lJQPeVFYy4E1lJOf+D0vOhuNT5HRkAAAAAElFTkSuQmCC"]
math
multiple-choice
3
执行如图所示的程序框图, 输出的 $S$ 值为( )
2
4
8
16
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAFrAOsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKrazqNhpGk3OqapeQWdjZwtNc3NxIEjhjUZZmY8AAAnJoAs0V43H+1R8DpV32/ijVbiI/cmt/CuqyxSD1R0tirKexBIPY0v/AA1L8FP+g/rv/hHav/8AItAHsdFeOf8ADUvwU/6D+u/+Edq//wAi0f8ADUvwU/6D+u/+Edq//wAi0Aex0V45/wANS/BT/oP67/4R2r//ACLR/wANS/BT/oP67/4R2r//ACLQB7HRXOfC/wAe+EPiL4Z/t/wXrlvq1gJWhkeNWR4ZF6xyRuA8bjIyrqDyOK6OgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8X/butoL/wCDWlaZdp5tpqHjLQra6hJO2aJ9QhDI2OoIPIr2ivHP23v+SX+H/wDsevD/AP6cYaAPYY0SONY40VVUYVVGAB6AVw3xi+Ilz8PrO3v7zw1NfWN5qtnpdvNBeIrNNcypEhKMOFDuMnPQZweld3Xgf7YOi6ldab4J8Pw+LdZub3XvHmlpZ2rRWe2MQzG6klwsAfbHHAxz8wB27hjJoA6rxR8TfF0Xj6T4e+HvA9rP4pfQzrVsL/WBFZGAXCwMHkSNnDZbIAQ59RVz9pf4mH4W/A3VvFrNpkeuW9kG07T7ufclzcsyIIxgozqHkUEjGAcnArz/AF7wvqOo/ttto0njjxFC138LrhWvrdbOO5jVtRjUqjC32r1yG27gQOe1dV+0t4e1b/hSekaWi6l4k0/R9X0688QSz3MC3dzp9pKJ5XYMqRSsTCm5MLuG7GTgEAPiH8WrhPg79r+Hd/oPifxpdXsGi2lnZyedbnUm2GZWVHJVI08yVst8qJkk9/QPAfiTT/Eekyta6jbXd5ps7WOqpDG0f2e7jwJEMbksnPIBJypUgsCCfjv4c2Wl+ONY+E3iYTy6ve+OtU8T3LxQeJbiwSw3tLdqrtZPxMIyquCM42qwG2vZv2O9B0yD4h/FLXLfS5dOvrXX4/D10o1q5v0uhawJKszPcZkaTF1s3Mx+WNFAUA7gDS+H9vDYftzfEKGyTyI9Q8J6NeXUcZws0/nXcfmMOm7Yirn0Fe0V454Q/wCT7PG3/Yj6P/6VXtex0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnn7T/gbWvH/AMKZNK8N3tta61p+o2eraabpSYZbi1nSdI5MchWKBSecZzg16HRQB4vY/F/4qpZxpqf7N3i77aqhbj7Hq2myQbx97y2adSy5zgkA47Vzum+KvG0fxEuPG+pfs7/EHU9YaE21i1xqWl+VpluTkx26C4whfALvyzkDJ2hVH0VRQB85t4o8cN8a1+JTfs9fEL7cnh46GlsNR0ryfKa4E7Of9IyW3KoHOAM9c8Z1p8bNY+Mnht3034E+N9X8Mw3slrf2kV3pyJdzwuA0Mpe4BaIMPmQDD4wSVJU/S+pXlpp+nz39/dQ2trbRtLPPPIEjiRRkszHgAAEkmvnf/gmXqem3XwV16yttQtZrmHxdqk0sMcys6RvOdjlQchW2tg9Dg46UAY2pWc954003xGf2WfHMb6dqd7qrWa6jpRtrm6u7dIJZJEa4P8EakBdo3ZY5JNdB8N/E3iPwKusp4a/Zi8d2qa9qsmq3kf8AammFfPeOOM7F+04VdsSDA9PevoeigDyH4AeHfG1/8T/FHxZ8e6LH4dvPEFna6ZpugrcpcSWlnbtK6vPInymV2mYlVJCgYye3r1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVTX9TsdE0K91nVLgW9jp1tJdXUxUkRRIpZ2IAJOFBPAzxVuuN/aK/5N98d/wDYr6j/AOkslAHGx/tV/ASSNZI/HZZWAKsujXxBB7g+RS/8NUfAf/oeX/8ABLf/APxiuy/Z3/5N/wDAv/Ysad/6Sx12NAHjn/DVHwH/AOh5f/wS3/8A8Yo/4ao+A/8A0PL/APglv/8A4xXsdFAHhPjT9oz9nrxP4P1Xw3qXjZns9YsZrK4X+w705jlQo3DQEHhj1BFfO3/BL/x78I/g98MfEn/CW+KFtdd1fXHRmTSbyTfawKEi+ZYT/G07YJyN3IBzX3/Udrb29rGY7aCOFGd5CsaBQWZizNgdyzEk9ySaAPIP+GqPgP8A9Dy//glv/wD4xR/w1R8B/wDoeX/8Et//APGK9jooA8c/4ao+A/8A0PL/APglv/8A4xR/w1R8B/8AoeX/APBLf/8AxivY6KAPHP8Ahqj4D/8AQ8v/AOCW/wD/AIxXW/CH4u/Dv4oXGqW/gXxGmrTaL5P9oRi0nha383f5eRKi53eW/TPT6V21fPf7Ov8Ayfh+0T9PDH/puegD6EooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuN/aK/5N98d/wDYr6j/AOksldlXG/tFf8m++O/+xX1H/wBJZKAF/Z3/AOTf/Av/AGLGnf8ApLHVL493+r2sXhKx0XXLvS7jV/FVlaSG3WP9/Au+4njZnVtoMNvLyME9M81d/Z3/AOTf/Av/AGLGnf8ApLHXKftMeBvEHxH1TTvDOmz6lptjFouq3Dapa3HkrFfPClvaoxByQRNOxwOiYzhiCAdJqXxZ8IWDMbuPxCsRmeKGeHw3f3EVzs27njaKFgyZYAN0bB2kgZqx4Z+J3hLX7i5g019Z32lq91Kbvw/fWaCNMbsPPCik8j5Qcnnjg1j+GPDDfET4b+HL34k6DrWk65aWKJdWsGt3FpiYonmN/os4DKWU43/MB2GTnW8P/C/wpoTXkmkjWI5ryzktHa6169vFCPjOEnmdAeBzjPvyaAPMPEXxP8ZWn7L1l8fbfVUW3ZbbVp9A+zxNbHTZZ1UxBygl88QuG3bwpkGNoU4r6Br5ysfh/wCL9W/ZDsfgDqehzWmpQRwaNfahx9j/ALPhnUm6jmB+ZngQBUxvEjfMiqCR69N40u5PjdD4A07RGuYINH/tTVtUMpWOyDyNHBCBtIaSQpI2NwwqEnquQDjrH4iJ4x+LXjbwDF43TwleeGJobOzgga0N7eNJbrK1ztuEkDRgyKqhU4KMWLbgB1F54907wVpek6P43vdUu9c/syGS9uNO8O3t1DPLt2u4NvC6Jl0c7MggEcYIrzf44fDzTPjJ4F1nR/EXwsjh8bSSXNlpmrz2aoLCPzWFteC8Q/MqRmNygYsSGXZya9O134YeGNdjsG1uXW7q40+xjs1nh1+9tDIqZ+Z1gmRWckkliMnPXAFAE3h3x3pvi+x1KLwf9sfULS3LRLq+jX1hCXIOzLTQoWGRzsyQO3SuX+A/irxlq/xY+Jfhbxdqen3w8Kahp8Fk9hYG2jCz2SXLfKzuxIMoXJY8KOmTXYeBfAvh3wfNczaGmqK10qrL9s1m7vRhckbRPK4Xqfu4zXn/AMCItVh/aG+K2r33hzWrDT/E2oadcaTdXdi8cdykGnxQSHJ5Qh4zgOFJBGPYA9kr57/Z1/5Pw/aJ+nhj/wBNz19CV89/s6/8n4ftE/Twx/6bnoA+hKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArnPjFo994h+EfirQNMRZL7VdDvLO1RmChpZIHRASeAMsOa6OigD5l8Ba5+1v4X8C6L4ah+CfhG4j0bTbexSZ/FSq0gijWMMQOhO3Na3/AAnP7Xf/AEQvwd/4Vi/4V9CUUAfPf/Cc/td/9EL8Hf8AhWL/AIUf8Jz+13/0Qvwd/wCFYv8AhX0JRQB89/8ACc/td/8ARC/B3/hWL/hVW68d/tXaZa3mot8BvBcS7TcXTp4pXdJtQDc2BljtRR9FA7V9HVl+N/8AkS9X/wCwfP8A+i2oA+ePAPxf/al8ZeCdK8V6F8EfCU2mazaR3dnJJ4oCM0bqGUlSMg4PQ1r/APCc/td/9EL8Hf8AhWL/AIV2v7Ff/JpHw4/7Fiy/9FLXp9AHz3/wnP7Xf/RC/B3/AIVi/wCFH/Cc/td/9EL8Hf8AhWL/AIV9CUUAfPf/AAnP7Xf/AEQvwd/4Vi/4VN+yX4P+Kdj8bvil8Rvid4Z03QJ/Gw0j7LaWGpLdov2WCWF/mHI48s8/3j6V79RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWX43/wCRL1f/ALB8/wD6LatSsvxv/wAiXq//AGD5/wD0W1AHCfsV/wDJpHw4/wCxYsv/AEUten18VfD/APa/8CfB39l/wDoupeFvF2oajB4btI126U1rayOIQflnm2h1+78yBxhgRmvT/hL+114E8S/D/T9d8Radr2lX18rSNZ2Ph3U7+KJdxCjz0tgjnaATtyATgE4zQB9DUV45/wANPfCj/np4t/8ACL1X/wCR6P8Ahp74Uf8APTxb/wCEXqv/AMj0Aex0V45/w098KP8Anp4t/wDCL1X/AOR6P+GnvhR/z08W/wDhF6r/API9AHsdFeOf8NPfCj/np4t/8IvVf/kej/hp74Uf89PFv/hF6r/8j0Aex1m+Mrqex8H6rfWr+XPbWM0sT4B2ssbEHB4PIHWvLv8Ahp74Uf8APTxb/wCEXqv/AMj1meNv2l/hZdeDNXtYZPFfmTafPGm7wbqijJjYDJNvgDnqaAOX/Zk0/wCO3xS+BPhzx/e/tE6pp9xrls80lrD4T0p0iIldMBjDk/dz+Nd3/wAKw+Nn/RzWtf8AhH6R/wDGarf8E5/+TKfAH/YPl/8ASiWvSvE3i+30Xx14c8Ly6XqFxN4kknSC5hEZht/JhaVjJlwwGFUDCnlx74APPv8AhWHxs/6Oa1r/AMI/SP8A4zR/wrD42f8ARzWtf+EfpH/xmvY6KAPHP+FYfGz/AKOa1r/wj9I/+M0f8Kw+Nn/RzWtf+EfpH/xmvQfhr4vt/Gel6hfWul6hp66fq11pbpeiMM8tvIYpGXy3YFRIrrnPJU9sV0WRuxnn0oA8c/4Vh8bP+jmta/8ACP0j/wCM0f8ACsPjZ/0c1rX/AIR+kf8AxmvQPiR488K+A9JOo+KNVW0j8qSWOJInmnmSMAuY4YwzuFDLnaDjIzitLwjrdh4l8J6X4j0p3ex1iyhvbVnQqzRSoHQkHodrDigD5t/aDl+N/wAJLHwlrn/C+NR16DVvGGm6PdWNz4Y0yBXhnkO/50h3A4XHGOvWvqOvnv8A4KMf8k98Af8AZS9E/wDQ5K+hKACiiigAooooAKKKKACiiigArL8b/wDIl6v/ANg+f/0W1alZfjf/AJEvV/8AsHz/APotqAPPP2P7Cx1L9jv4d2Wo2dveW0nhix3w3ESyI2IlIyrAg8gGvRfCfh/RPDGix6N4d0u10vTYWZobK0jEcEO45IjjHyoMknCgDJPHNcF+xX/yaR8OP+xYsv8A0Uten0AFFFFABRRRQAUUUUAFY/xE/wCSf65/2DLj/wBFNWxWP8RP+Sf65/2DLj/0U1AHlf8AwTn/AOTKfAH/AGD5f/SiWqP7Snjmfwp8ZNH1eLT5ZrLw3o6Jq16sqFNJi1XUba1S8MbA5kjW0uAmAcq8ueFKvn/8E/PHHgrTP2OfAthqXi/QbO6hsJBLb3GpwxyRn7RKcMrMCOCOteia5f8AwR1ka8NV8ReEbv8A4SixjsNY83WYT9rt0EgSM/vPlVfOlI24wXY9TmgDE+IngPxvBNp9n4FutYurCC2bzprz4h3dnM8rSO7Ft1pcl/vDB3qAMKqhVFaXwZ0bxv4butUv/HMksVktruSSfxlLq6ptJLHY9nbiPAH3gWz0wOtdDpPjn4Y6Zp0NhYeNPC1vbQLtjjTV4MKP++6brnjb4Y6vot5pOoeN/DUtnf2729xGNbhQvG6lWG5XBGQTyCCO1AHk/wCyjq8niuVPDev2usaHd6Nb2niq2tYtTeI6n/aLy3LTztEVMqrK0kZjclWwGdSWAXQ8TN8X/wDhp7wxsg8E/av+ET137KGmu/LMH2zSN+/5c78+VjHGN+e1dlDq3wOh8UadrEXiHwYmqaRp32CxmXVoA1va5BEajfjaCoxxxzjGTW8fiJ8OjIJD458L71BAb+17fIBxkZ3ew/KgCt8bPtP/AAz/AOLvtgiFx/wjF953kk7N/wBlfdtzzjOcZqH9mf8A5Nv+H3/Yp6Z/6SRUzxl4l+E/irw7caFrnjbw/Np94jR3EMXiNYPNRgVZGaOVWKkEgrnBpngfxD8JPCHhu30DQPGvh+306zRY7aCXxGs4hRVCqiGWViqgKAFBwOwoA84/4KMf8k98Af8AZS9E/wDQ5K+hK+Yv2+vF3hTXPBfgGy0XxPo2pXI+JGiuYbPUIpnCiR8ttViccjn3r6doAKKKKACiiigAooooAKKKKACsvxv/AMiXq/8A2D5//RbVqVl+N/8AkS9X/wCwfP8A+i2oA4T9iv8A5NI+HH/YsWX/AKKWvT68w/Yr/wCTSPhx/wBixZf+ilr0+gAooooAKKKKACiiigAqO8t4buzltbmNZIZ42jkRujKRgg/UGpKjvLi3tLOW7u544LeCNpJZZXCpGgGSzMeAAASSaAPJf+GWv2ev+iTeHf8Avw3+NH/DLX7PX/RJvDv/AH4b/Gu2/wCFk/Dr/ofvC/8A4Obf/wCLo/4WT8Ov+h+8L/8Ag5t//i6AOJ/4Za/Z6/6JN4d/78N/jR/wy1+z1/0Sbw7/AN+G/wAa7b/hZPw6/wCh+8L/APg5t/8A4uj/AIWT8Ov+h+8L/wDg5t//AIugD4R8VaF8DLH/AIKgaT8MU+H+gL4X+wJo93aC3PltqEsbTJJ/rPvBmijzjuwweDX1x/wy1+z1/wBEm8O/9+G/xrzPxB4n+Hsn/BSTQdVHiHwy2nL8PZ/MuxewGEXP27euXzt8zgMOc8Zr6C/4WT8Ov+h+8L/+Dm3/APi6AOJ/4Za/Z6/6JN4d/wC/Df40f8Mtfs9f9Em8O/8Afhv8a7b/AIWT8Ov+h+8L/wDg5t//AIuj/hZPw6/6H7wv/wCDm3/+LoA5LSf2afgNperWup6f8LtAt7yynSe3mSE7opEYMrDnqCAa9Vrl/wDhZPw6/wCh+8L/APg5t/8A4urWi+N/Ber6lHp2k+LtBv7ybPlW1rqcMsj4BY7VViTgAnjsDQBvUUUUAFFFFABRRRQAUUUUAFZfjf8A5EvV/wDsHz/+i2rUrL8b/wDIl6v/ANg+f/0W1AHCfsV/8mkfDj/sWLL/ANFLXp9eYfsV/wDJpHw4/wCxYsv/AEUten0AFFFFABRRRQAUUUUAFcN+0/8A8m0/EP8A7FHVP/SSWu5rhv2n/wDk2n4h/wDYo6p/6SS0AedfCD9mr4Dal8JfC+o3/wALfD9xdXmiWc9xM9uS0kjQIzMeepJJrov+GXP2e/8Aok3hz/wHP+Ndl8C/+SJeDv8AsXrD/wBJ46y/EPjq8m+OEHwu8Pyafb6kmgnXL26v43lCQNOYI0jiV0LszLIWbeAgVeDvGADB/wCGXP2e/wDok3hz/wABz/jR/wAMufs9/wDRJvDn/gOf8a7fSNZ1LR9L1S68f3+i2MFlfeVb6ipNpbzwsqFGYSyNsbc5TG45KZHUClsviH4AvLyG0tPHHhu4uLiRY4YYtXgZ5HY4CqobJJJAAHWgDh/+GXP2e/8Aok3hz/wHP+NH/DLn7Pf/AESbw5/4Dn/GtTwf4317x9rXiyHwheaJYWnhfWZ9ELX9pLdS3F1Cq+YzKksfloHYqPvFgpbgECuss9d/sz4fQ+IfGs1jorQWCXOqvLMI7ezbaC4LscAKcjJPagDz/wD4Zc/Z7/6JN4c/8Bz/AI0f8Mufs9/9Em8Of+A5/wAa7TUPFEuteCbTV/hxcaTr7arIsdjeC5MliqnJaV3izlVCtwCMthcgnNea6145+IMXiLxb8L/Fmmafdas/g2413QdS8NLcx/aQrCAwvDmSRJBK8ZBUsGVunBFAGt/wy5+z3/0Sbw5/4Dn/ABrhfE/wl+G3w4/au+C154F8G6XoU99qesR3MlnEVMqrpNwQDz0BNfQXg+6vbvREk1JJUvFdluEe2MIR85KqDkMozgMCQcZz1rzD48f8nQfAv/sL61/6aLigD2OiiigAooooAKKKKACiiigArjf2g/F+k+BPg5r3ibXVuf7Otbby7iS3i8xoRKwiEhXOSqlwWxkgAkA4rsq80/am8T/DjS/hDr/h/wCIHinS9Jt9e0ueySK5lDTSGWNkUxxAM7kE54U4xntQBzH/AATu8baL4w/ZX8MWuifanHhvTrbSb2aWAxxtcxwRmRIyeWC7gCcYz0z1r3Kvj/8AYV+KXw9+EHwF8N+APHUGu+C764WS7OoeI9HksrLUJJWLs0c7DbtUFUBcqTtHrgfXOm3tnqNjFe6fdwXVtOgeKeCQSRyKRkFWHBBBByKAJ6KKKACiiigAooooAK4b9p//AJNp+If/AGKOqf8ApJLXc1x37RFhe6r+z/460vTLSa7vb7wxqNvbW8CF5JpHtZFVFUcliSAAOpNAE/wL/wCSJeDv+xesP/SeOuH+N3hP4N+Mfidb2vxK0yOz1XTdKSfStafUrnTWdHklV4o7iNo1YxlUYpvYjzVJUAgnD+Gfxtl0H4b+H9Dvvgv8XzdaZpNraTmPwhIy744lRtp38jKmtv8A4aDi/wCiLfGP/wAI9/8A4ugDJ+CPw+8QXWieONFl8beKpvB+papbTeFtQ1WVL7UkjSJPtGPt8UoMLSrhC6HIDMuAyseo0L4LrpmuWepf8LE8SXP2O4jn8iXSdCVJdrBtrNHpyuAcYJRlbngg81m/8NBxf9EW+Mf/AIR7/wDxdH/DQcX/AERb4x/+Ee//AMXQBznirwP8Cdf8TeIvE96dV8JeMjqE9tey6JrN/Y6lcPHI0aSR28TKZjKm1gUjbcJMAt1rW0v4Q658Rf2KbP4VfF3W9TGrXlmqXmoRXAe6Xy7nzbcyMwIdwiQiQHOSGw2cNV3/AIaDi/6It8Y//CPf/wCLrA+KP7VOn+Dvh/qniS9+EvxQsY7GDKXGqeGWt7VZGISMSSNIAql2Qfjgc0AdP4D0LwX+y3+zbBpEmq6ld6Topkfzp4zNcXU8shcqkcS92Y4VQcAZJOC1YP7Mvj/wJ4n+IWpX7+K7jXfHWvwDztugX9paWNnCXaO1t2ngQBE8xmZmO6R2LEABVTQ079o6yv8AT4L6z+Dvxfnt7qJZYZY/CLskiMAVZSHwQQQQam/4aDi/6It8Y/8Awj3/APi6APY68c+PH/J0HwL/AOwvrX/pouKP+Gg4v+iLfGP/AMI9/wD4uuX1DxfqnxJ/aY+E95p/wy+IOi2Ph2/1WfUb7XvD72lvEsumTxJ8+SMlyo5xyRQB9F0UUUAFFFFABRXHfFj4q/Dv4aWH2rxv4t03SS2PKt5Jd1xMTwBHCuZHzg9FNedf8LU+MPxCkaH4S/C19F0xgMeJPHW60jIJIYxWSfvnx1BYqDjntkA9yup4ba2kuLmaOGGFC8kkjBVRQMkkngADvXjfiP8AaW8Ey6w/h/4aadrHxN15W2Na+Frfz7W3YjKtPesRBGhPG4O2PSqtl+zlH4nu4tT+N/jvXPiJdIVddNmf7Do0LjullCQrccHeWz3Hp7F4Z0PRfDmi2+j+H9JstL0+1TZBaWVusMUS+iqoAHegDx6Hw9+0R8RhFL4s8UaZ8LtFkw0mkeGCL/VnQnJSS+lURRMOOYo2B555wOs+FfwN+GngC/OraR4fF9rsjb5te1iZr/Upn5y5nmLMpOSSE2gkk4r0C+ubaztZLq8uIreCJd0ksrhEQepJ4Ap8Esc8KTQyLJHIoZHRsqwIyCCOooAra5pema1pM+l6zp1pqFjdJsntbuBZoZV9GRgQw9iK8d1f9mvw/pWqTa38IvFGufDLVZtpdNFl83TZ2GSDLYyZiYey7O/qSfbajkuII5likmjWST7iM4Bb6DvQB4iPGX7QPw78weOvANj8QtGib5dY8Et5OoCPGN0unTth3JHPlS4Geh5x1nwr+Ovwt+IF/wD2XoXim3g1pWCyaJqatZahG3J2m3lCuTgZ+UEYI9a9Grj/AIsfCz4e/EzSzY+OPCem6uApWKeWLbcQZ7xTLh4zwOVYUAdhRXhc3wk+LHgJvtHwf+K1xe2Me3Z4a8cb9QtQo/giul/fxDAAA+YfzDl/aD1LwddtZfG34ba14NVZdia5YA6ro8o4+czxLviySAA6A8j3AAPcqKxvA/i3wv4y0VNY8J+INN1qwkJC3FhdJMmR1BKk4Psa2aACiiigAooooAKKKKACvnD/AIKn+G/EPiX9kzVU0e8s7Wx0mZdU1Yzs3mTwwglYY1CkEmRkYksMBOhzx9H15F+3r/yZz8Q/+wHJ/NaAOl/Zs8N+IfB3wL8NeE/FF5Z3moaJYLZfabN2aOaGPKwt8yqQxjCbhzg55bqe4qHT/wDkHwf9cl/kKmoAKKKKACiiigAr4x174vfE3xF4zbw98a/E1/8As/aPPeG3tI7PSnmbUMEHaNZYNbx8ZyyhR8uejAV9nVX1awsdU06aw1Oyt7y0uEKTW9xEJI5FIwQytwR9aAPN/gj8G/hD4Vgh8TeD9LstZvb4ecPEt5d/2ld3eTneLpyxIyB9wgcV6hXies/s0+FtO1Rta+FGv618MtWbJY+H5v8AQJsnJ82yfMLD2AXt6DFceLf2hvh5MkfjPwRp/wAR9FVtrav4Q/0bUY15JeSxlYhz2xE/bpyAQD3SivOPhT8dvhj8QNQOk6P4iSz1yPcJtD1aJrLUImX7wMEuGOO5XI4PPFej0Aeb/tcCzn/Z48SaVetbJHrcEekB7l1VI2u5ktg+58KGUy7gSQAQM0i/EWW2+G978RNF0Jda8F2+lpcaJaeHomudS1BAQAyQjaiJg8R5LKq5ba2Y16P4keFpvFUmgRG+jgs9K1uDU7yB4TJ9rEIZo4/vADE3lSZIODGMDOCM/wCBngKf4ceG7zw3DrC3mipqVzcaNa/ZtjafBNM83kF9xMgVpGCnAwoA5xQBzvwh1zxb8Ube18Wy+L9C03QY7hZI9G8NTLeTllOTDe3cg4PADxRxoQcguwrnv2ovh7o0/gnxhqUPw8vvFvijWLZ5rXWEjh83RWEaxQtBIzrLGsXlrIUgDMxDEgl+fUdR+HvhO58YReLINMGn65HKjy6jpzm2mu1U58ucpjzoyONsm4c8YPNMh03x9Ff6lB/wkekyafc3LvYytp7/AGuzifkoT5hSQqSdpKgYChg3OQCX4Na1pXiL4U+HtY0TXn16xudNh8rVJFZXu9qhWkcMAyuWVtwIBDZBGRXTVi/Dvwto/gnwRpvhTQIDDp2lwCGBScseSWZj3ZmLMT3JJrWu7iC1tnuLqeOGGMZeSRwqqPUk8CgCSkdVdSrKGVhggjgivGPE37Svgs6xNoHw403V/iVr0RVWs/DFv51vCScZmuziGNQep3HHp1xR/wCEY/aK+JEhfxd4u0/4Y6JIq/8AEq8LEXeqOMncJL1xsjJHQxKccc8ZIBk/tFeA/wBnTwbfSeKdS8Sr8L/Elyv7nUPC+oPY3tyRkgfZIci4y3UeUxY4Gea5z4EfEb9qG8vLwad4Gfxx4PQK2k634qRPDOo3SFe6DzQ44yHMS7hzxuAHtHwn+BPwx+Ht5/ami+HEu9bcDztc1aRr3UJiP4jPLlgf93aOBxwK9HoA8c/4Tj9ov/ogfh3/AMOCv/yHR/wnH7Rf/RA/Dv8A4cFf/kOvY6KAPHP+E4/aL/6IH4d/8OCv/wAh0f8ACcftF/8ARA/Dv/hwV/8AkOvY6KAPHP8AhOP2i/8Aogfh3/w4K/8AyHR/wnH7Rf8A0QPw7/4cFf8A5Dr2OvID8T/ErfH3xp4GitbX7B4ctNLuLaVNHvbuVjdRzF1c24YKAYRjIBO49ccAEf8AwnH7Rf8A0QPw7/4cFf8A5Drkfjyf2iviV8HfEPgM/Bbw7pg16xa1+2Dxys3kZI+bZ9lXd06bhXf/AAR+I3iLxf8AFnx74X1WxsYbHwmdOW1mitLm2nla4gMreZHPggDAAOBn3616lQBHZo0dpFG33lQA/UCpKKKACiiigAooooAKKKKACiiigDk/ih8MPh98RrRYPG3hDS9ZMalYp7iAefCD/wA85lxJH65VhyAeorzWP4O/FL4fwf8AFm/i1PLYwoFg8N+OI21GyAHRUulInhUc4A39h0GK92ooA8Mj/aB1nwbtt/jj8L9e8GqGKtrunAatoxA/jaaH95CDgnbJGMAcmvWvAvi7wv400GLWvCXiDTda0+ZQy3FhcrMvPY7T8p4IIOCCCCMithgGUqwBB6gjrXknjr9m74Za5rP/AAkGgWV54H8RqjJHrfhG5Om3ABIJ3LH+7kzjHzq3HFAHrlcf8Wfir8OvhlYrdeO/F+maL5i74beaXfczjOMxQIDLJzx8imvn9bb4263+0ld/AHV/jlqEej2fhVdcl1vStGt7PVbmN5xCITMMiNgcnzEUEjrzzXtXwo+Bfww+Huotq+h+Go7jXJcmfXdUka91GZiMMxuJSWG7qQuBz0oA48fFX4x/ENhF8I/hTJoumSZx4l8flrKE4PWKxjzcSKynKs2wetPs/wBnCLxRMl/8cPH2vfEa5WTzBpkj/wBn6NEQ25NtlCQGK8jdIzZHUV6b8UL7w5pmix33iS/1G3jSTZBFp15dRT3MjcCNI7dg8rHsoBxyeOTXz98PD8RNQ/ac8RWesLrsVrceDLXWtD8K3Hi6/hNjG13NDsnlWRh9ocRbzkME3CPOFLEA+lvC2j6FoGjppXhzS9P02wt2IS1sIEhijPfCIAAfWtGvJ/2a7/wFe694vi8N+GtY8O+J7W9iHivT9Wlmkn89lYxys7SOkoZQSsiMcqB7CvWKACiiigAooooAKKKKAIr5bh7OVLWZIZ2QiOR496o3YlcjI9sj618nfGDWJ/DXir42eMNGkj1DxB4U0TTJtVupreWGzllETtDbBIrtXBEcm8sQclyMjAz9Z3Cu8DpHK0TMpCyKAShx1APHHvXmHjT9nz4a+KPBE3hrUbC/iF088l3qNlfPb3l485zM08iY80OcEo4KfKuFAVQADk/hj4UMfxevb3w74p8T6Zfao9nq2rs/hS8isdQSGE262puLrcv3W3FVYPkhgcLge/V5l4Z+EuraX4mXULv4weP9W09C2NJu723SDaQQoLwwpL8vGPn5xzmvTaACiiigAooooAKKKKACiiigAooooAKK+efiFYWf7SXxYu/h/I8k/wAMvBc2PEclvK0a61quPks0lRgQkGd8hU/f2qexp3/DEf7Nf/Qh3P8A4P7/AP8Aj1AH0JRXz3/wxH+zX/0Idz/4P7//AOPUf8MR/s1/9CHc/wDg/v8A/wCPUAeU+FdZ+J1x/wAFetW0aee0W1g0hre5uIbZSf7HGLuFD83DmSSKIsBnHOOpr7ar5uT9hf8AZ4HiOS+PhW6Nk1qsS2P9sXmFlDsTL5nnbjlSq7eg256k1d/4Yj/Zr/6EO5/8H9//APHqAO9/ayUWX7OvjvxDZgW+r6Z4T1NrDUYRsubQm3YkxSj5kOVU/KRyo9K5bTYfCI+GC+IPJ8cf23N4ajSXUB/bfmSbYWdQZR1QO7sBnaCzEdTWWf2Iv2ayMHwFc/8Ag/v/AP49R/wxF+zX0/4QO5/8H9//APHqAO4/Y9tJYv2afA95fwzf2reeHbJtQuLrc1zNIIh/rXb5mIyQAx4HAwK9Mr57/wCGI/2a/wDoQ7n/AMH9/wD/AB6j/hiP9mv/AKEO5/8AB/f/APx6gD6Eor40/aU/Zq/Z18C+F7PS/Dfw7kv/ABr4ouP7O8MadJr2oFZrg9ZZMTcRRKfMc8cLjOSK+i/2Y/hPofwX+D+neB9FJmaHM+oXjAb726cDzJWwB6Kq+ioo5xmgD0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8q/ac8aa5p1npnw68Bvnxv41d7bT5FAYaVbKP9I1CUHokSn5c/ecqo613HxM8X6H4C8B6p4v8AEl19m0zSbczzsMFm7KiA/edmIVV6lmA715x+y14L8QPeat8YfiPaCHxr402lLJ23/wBgaYpzb2EZ6AgYeQgLudjkErkgHefBnwHonw0+G+meDdBRvs2nxfvJ5OZLuZjuknkJyS7sSxye+OgFbHifXNH8OaHcazr2p2um6faIXnubqURxxqBnkn6VoV5/+1FHb3fwR1rSrvxZpPhi31REs7jUdUuPJiEDsPPRWyPnaESqo9T0oA53wp+0J4d1f4OP4xksXh1T+wzq0ehwO9zI6tJ5cEPmIm3zpXaILF/rB5i5Wu2+EvjJ/Fmg7dWsbfRvEtiqjWtBW8E8umu2SgY7VJV1G5W2gMDxnFfFFr4r1+1+FegeJZNUj8Q6db+O9Ss9Gs7lbxLezEQ1GWOaCX7RErbVt4FjCOPJVWA5kOdH9hrWm+JH7Umk+IfEmkaWNTtvDlzdveWyz+fdT+TpcivNJLK7SBReuqoTsBUNt3YIAPt2TxLoKeNI/CL6pbrrk1idQjsC3717cPsMgHcBjiuO+HPxi8PeIfhTbePtbCeG9NvtYm0q1+2XAfzJUu3tFyQMLvljYAH2yayNS0nTNX/bAuL7TPGOo2HiDS/BSW11p8Wmo8YtZrwukomdSuS8TjZ14BHGa8Y+HWh27/sQ+Hte8R+N7vTdF0HxxJqc8Y01LhWMPiObagCASZdyozkhdxOMDFAH1r4m1rTPD+jyapq90ttaxuiFypYl3cIiqqglmZmVQACSSBWZ4b8XQ6r4qvPD0uh61pt5aWsd3m9tlEUsTsyqVkRmUHKH5WIbrxwcc5+0l4Mfx94Z0fQtO8UL4e16z1u21jRLt7QXKfabRvMG+Ikb0xnIyO30OV+zn4p+Jmo+NfF3g/4oaZ4dbVPDCWHlazoCSrb36TxyNsZZclZE27iAcYmXAHUgHrVUfE2s6Z4e8O32va1eR2enabbPc3dxJnbFEilmY454APTmr1fP3xKWX48/HFPhrbK8nw+8D3cd14vuACI9U1FMPDpysPvLHlZJQPVVOOKAL/7NWgar448b337QXjO0kt7rW7b7L4Q0ydSr6RpGcqzqek05/eMcngqBjkV7lSKAqhVACgYAA6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV5r+1cvxRuvhDe6P8JNKW617Vv9Fa6bUI7VrCBh+8lRn6yYyq4+6W3fw4IBxFtLJ8fvj4zKRN8M/hvqA2EKGh8Qa3HnnJ+9DbZ7ZVpMHnAx9A18/wDw11P4x+A/A2m+EvDX7NGn2um6XAIoUHj213Of4pHIgG52OWZu5JNbv/Cwv2gf+jdbL/wvrb/4xQB7HVbVNPsNSgSHUbG2vI45VlRLiFZFV1OVYBgcMDyD1FeS/wDCwv2gf+jdbL/wvrb/AOMUf8LC/aB/6N1sv/C+tv8A4xQByvir9nPxHqfwr0vwvbeIdHS6sfGOreIXlubaSWEpdrehItoIJZfta5OR90kZ6Vp/s+fs/wCo/Db4oaTrraloMum6L4QTRENhpz29zf3LC1WS4uMsykhbKIBgckNggbAW1/8AhYX7QP8A0brZf+F9bf8Axij/AIWF+0D/ANG62X/hfW3/AMYoA6KT4datD8ctY+I2meKobZ9X0a00trKTS/NEawSSuH3+YMkmZuMcYFcT4o+Aeuj9nG4+E/h3xjbPZy6it2H1Cw2t82pi+ly6Me5k2jb/AHQT1as34e/tAfFzxrqniLT9A/Z/t5p/C2rSaTqiyeN4IxHcoAWVSYPmGCORxXTf8LC/aB/6N1sv/C+tv/jFAHpPivwpoXiO8sLvVbWZrrS3d7O5trua2mgLgBwskTK2GAGRnBwMjgVb8PaNpmh2T2ul2iwJLK00rbi7zSN96SR2JZ3OBlmJJwOa8r/4WF+0D/0brZf+F9bf/GKP+FhftA/9G62X/hfW3/xigC5+1R8Qda8M6HpngvwIEm8feN520/w/GcFbQYzNeyjBxFAmXJ2kZ2gjBNdZ8E/AOkfDT4b6f4R0dnmW1VpLu8lH76/uXO6a4lOSS7uWY8nGQBwAK5H4A+BvEw8Ya58VvibZWkHjHXv9EtLGCZZ49D02Nj5drHKOHLHMjuANzMB0UV6zQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUOofav7Pn+w+V9q8pvI84Hy9+Dt3Y5xnGcUAeA/sO/wDJQvjr/wBlLvP/AEBK+hK+M/8AgmD4/wDFHjH4vfF1b3w3b6Zp91rkmragTI7S299M4RbdcqBtCwzEkgNnbx1r7MoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooACccmvBvC/wAS/jV8T2vPEPwn8M+CrXwal1La6Xqfia+ufN1gRSvG1zClup2QsV+XfyevQ17vN/qm/wB015B+wB/yZr8Pf+wOv/ob0AZd54k/aRs/E1j4du7n4IwatqUMs1lZSajqSzXKR48xo1MeW27lzjpmk/4Sj9o4eMv+ESN58Dxrv2EagNNOpakLg2xcx+cE8vJTepXcOAcA9RXOatP8QtS/ake5s/Dsmi65dCKJdTuDFejSvDltMzyhYY94828lUqNxDbT8oBjY1T8bfabf4+a541utU+JVz4dufAdtpI1PTNHFtdz3J1CbNtFJ9njEbASowcFDlsB84FAE/wAGfhZ+0N8M9Y8Xaj4esvhF5njHW31e9Et1qOInYf6tNsIOwEuQDnG811Fx4n/aQg8XW/haa4+Cces3do95b2LX2piWWFGCu6jy+QCwB9Miuh/aK1pPAX7OOoeNozrGpzeG9MjkgjuNVubKS5y0a5nMJQl8HJ3LkHPTJryzWFP/AA2foI+06f8A8iNqHzf8J/fFf+P2063Hl71P/TMDB6nlRQB6L5n7Vv8Az5fBz/wL1P8A+N1a+EvxJ8Zt8U7n4YfFbQdG0rxG+ntqmkXeiXUk1jqloriOTb5gDpJGzLlW6hsjgGq/7HMlt4r+HNv8Vp9PubHV/FETR3UY8Q319A6QSvEjCO4cqjfIeVGcHryQOc+KH/KR74X/APYp6v8A0oA+hKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBsgJjYDuDXi//AATz1Cyu/wBkbwjp9vcxyXeiQSabqUAYb7S6ildXikH8LDg89QQRkEGvaq8u8Zfs7fB/xP4svfEup+FJotT1Jw97Npus3uni5f8AvyJbTRqznJyxG49yaAMzQ/hzrD/GrxF4l/4Qzw/pdrqeoI9xqd9q1zqN1qMcSgRlLT5YYBkkjLMVOfkOcjxS48Aa5efsK3mj/wDCpbu41+41qaVLo6fG15JE2vNKrBCPOKmAjBxjZz93mvbf+GW/gp/0ANd/8LHV/wD5Ko/4Zb+Cn/QA13/wsdX/APkqgDsfi00uoaFJ4SsfB8PiGfUoMLBqMBXS4gpyrXMhUjaGVf3aBnPGFxlh86237P8Ad6b+1Zb3ba5eXHibWvCN/qV74rGnhYItQS8s1gjSDmNYlhUxeVnLRl+cnI9Z/wCGW/gp/wBADXf/AAsdX/8Akqj/AIZb+Cn/AEANd/8ACx1f/wCSqAOh/Z5HjKx8JtoHiz4faL4SXSHNvZLol8ktneIGOZYogA0KtkMFbLfMc+/n3jxDqP8AwUg8ArYlbhtG8HalNqKxuCbRJHCRtIOq7mOBnrzjoa6D/hlv4Kf9ADXf/Cx1f/5KrsfhP8K/APw1jvP+EM8OxWE2ouHvLuW4lurq5wAFD3EzPKyqBwpbavOAMmgDsaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//Z"]
math
multiple-choice
4
某几何体的三视图如图所示(单位: $\mathrm{cm}$ ), 则该几何体的体积是()
$8 \mathrm{~cm}^{3}$
$12 \mathrm{~cm}^{3}$
$\frac{32}{3} \mathrm{~cm}^{3}$
$\frac{40}{3} \mathrm{~cm}^{3}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAF8AToDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACim5O78aVaAG28MVvCsUESRRr0RFCqO/AFPoooAKKhvH8tTK0m1I1LE54GB1PtXF/C/4oeGPH2u6xo+hXkkl5oM4ivFK7QckhXU55U7TQB3VFFFADIYoolYRRpGGYswVQMsTkk+5NPoY4XNU7y+gtLOS7uZVht4ozJJK5+VFAyST2GBQBcorzGT9oP4IxSNFN8VfCyOjEMp1SPII6g801P2hvghtVD8WPCu/1/tOPn9aAPUKK8w/4aB+Cssyw2/xR8MyysdixrqiZYn0GeTXpltIstvHKjh1kUMrDoQeQaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRVW+u4rOyluridI4YQXkkc4Cgdc0AWqK4b4P/ABL8PfEfTdQufD9xKf7Muja3KSrtaNxyBjPIIwR9a7SNslQCeB3PT60AS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAwfe/GnLTR978actAC0zf84G04Pf0p9QFgpOeSMkDPWgDz39pDxLdab4ctfDOjMTrXiif7BZAfwjG6Rj6Dy1fn1rkvGXhWD4TS+FPFugxM9tosaaZrAAAaa3faomkPfywrH15PWtP4Wl/HXxb1jx/dxb9L0s/wBmeH2K5EqDDPOv+1vaRMjsK9O8SaTYa5oF7ompRma0vbdobhO7IwwRQBds7yC6tIbmBw8c0ayIw6FSMg/rU6nPavK/2dNYvLa31T4fa6SdT8MTmISMf+PmBvnjYeyq6p9RXqcOdnzde9ACsCVIBx71FJbI6FXRXDDaQwyCPQipqKAMKTwr4X3MT4a0hmJzzYRc/wDjtfGn/BVD4k6D4Js9F8G+GNI0mLU5riO+ujHZxArGjhlBwvGWQgj0r7imQMx5b14PQ18Sft8fszaTqU2ofFDUPEF5Ne3+sWNqIDnbCk9zHEQvPQByfrQB9B/sva54L+J/wb0XxbYaDo5mlt1iugLGL5bhAA/8OR8wOK9bt1CQqgGAowB6V4/+yn8D7D4G6Jf6NpOt3F/Y30qzJDcE/uSN2SuT3LV7DFjyxjP49aAHUUUUAFFFFABRRRQAUUUUAFFFFAA33TXk37RV/cat/Zvwy01iL7xUXjupEPzQ2K4E7D0fa4xmvU9QuYrPT57udwkVvE0kjH+FVBJP5CvJ/gNbv4p8Vax8Ur+M41KT7JpJYfctYyQsqe0ikE49BQBm+L9Mh+FPxK8O+ItLh26FqkaaRrQVdqQ4Usl0+O5KInH97pXtSkF1ZffOKxviJoFn4q8DajoN9HuivINu3uGBDIfwZVP4Vy37OPiHUNS8It4f1+bzNc8OztY6g5PNyyYHnD2Y5/LrQB6RRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADB978actNH3vxpSwXigB1eZftGa1dp4eh8I6HcmLXfEz/AGG0Kn5oEb5WuPomV/PpXo9xcRwwvLKQkaKWZmOAABkk/hXkfwhj/wCE5+J2sfEy5X/RbGV9K0IN/AiErM49Q5VCCPTvQB6R4B0K18OeErHRbWMJHZxBdoHRurH8SSfxrZIHXFNhBVcFi3uetOc4UmgDyL462914U8YaL8UNNQ+RYt9j17YPv2jE4OO5Ehj59BXrGnzRXFok8EqyxyDKOpyCPY1S8QaZb6xo11pV5ErWtzC0bI3Rsjr+B/lXnX7NupyaGmo/CzVJZHvvCxC2rSHmayOVibPc/I2aAPWKKjjl3zFFU4Uck9j6VJQAV47+3Pj/AIUUmR/zMej/APpfDXsVeO/t0f8AJCU/7GPR/wD0vhoA9dwD94A8cUjFiu1QVx3FQ6hM1vaTTJHukVMge/pXg3jjxn8Y/AvibS/E+ty6PfeFNVv1tptJt7Ex3dgrHarPPvIk+Yjog60RBn0BG2ZOOnOc1LUMJzJhV+UKMcdKmoEgooooGFFFFABRRRQAVHcb9uEODjg+lSVU1i7tbGwlvb2dYLeFC0sjthVXuSTQB5l+0Nqmoanc6Z8OtDn26h4hlH2mZD/x52qnc0jezbGj7/er0Tw9pdlomi2ul2MIis7KFYYUHYAYA/SvNv2frS91/WtY+J2rxkNr8nkaRG6/NbWSEfu2+siO2ePvDivWvLycsehyKAGMMYOeAea8l+JEf/Cv/jJp3jqEFNK1wJpurgfdV84gfHb5nbJr1zY3GWH+1x1rH+IXhuz8V+DNQ0DUOYb63eMsRkxkggMvuM5FAGnalJFEsbblYApg8AHvU8e7bhjk+tea/s7+Ibu58NXXhvWAV1jw3N9ju0Jydg/1Te+Y9h/GvSo87eRgntnpQA6iiigAooooAKKKKACiiigAooooAYPvfjSSAEYzilH3vxqK6lEMZkfaFVSSWOBQB5z+0hrt/Dolh4P0X59X8U3H2SFV+8sQGZW9v3Yeuy8D6DY+G/C1joFlHiHToI4kbGN20Y3H1PHJrzv4OxS+OPiNqfxLu13afGPsGg7h/wAsVOTMM9yzOv0FewUANiGBk9T1pzdOKKKAImPH971x2ryj4/Ws3hXxFo3xP0yHdJp0wtNVVf8AlpbSEKXb1EY3N+NeuVneJNNs9Y0i60nUYvNtL2B4Z4+zoy4YfkaAJdOuob+1t7y2kDQXEayxuP4lYZH6GrleU/s76nfaRe6l8Ntem3X+hyF7F2/5bWjHchHqEDIn4V6tQAV45+3V/wAkHXP/AEMej/8ApfDXsdeO/t0f8kJTn/mY9H/9L4aAPWJpVjiZpNu1VyCTwR715Trmq6J458YRz3ep2sfh/wAOyhjmZSb256BSufuDKkHrkV6nqlja6jps1pe2y3FvcLtlhf7rL6GvN7P9nf4JWt4t9b/DfQ4biKUSpKsJ3K4bIOc+tC0A9K02VLiGOeKTfGy5Vh0INW6htkCKqqAAo6DoKmoAKKKKACiiigAooooATIK5NeUftE3zeI77Sfhdp8jLN4kkJ1BlPK2CkLNgjo3zrivSNbv7bTNLudQvX8mG1haaV84G1QSf5V5r+z/YXniDVtW+J2sQbJ9alEWmQkf6m0TIRx/10Uqx+lAHpWi2MWm6Tb6faIqQWyCONAMcAd60KhC7VUZxs6mpqACkfAU5OPelpG+6aAPHfioX8CfFfSfH9pEV07U/9A15R0jQnK3Le42on/Aq9ggZWjDKcqwyDmsTx1oNj4o8Jajod/Cr297DsI/vEcr+RArjf2d9ev7nQLjwfr9xv8ReGXFrfZP+uQcCYezHcM+1AHqGaKjjH7zJ9PlHtUlABRRRQAUUUUAFFFFABRRRQAwkB+teYftKazcT6XY+ANIuGh1fxVN9lRkOHt4Dw8w9ApK8+9ek6hPDDayXE7hIoAWkYnoBzk15N8FYD448fax8Tr63LRpK+maL5ikbIUbbKQD2do0YHoRQB6Z4R0a10Hw/Y6RYxrFb2kQRUQfL7/qSfxrWqEbgwOMdgvapqACiiigAqKUZbjj1qWo5gDhT65GBQB5P+0FZz+H9b0n4o6ZGxl0BvJ1NI+s1mx5XHf5thz7V6hpeo21/p8F7ayLNBcIHjeM5BU96NWsrbUNLubO6iDQ3MZSRSM5Bry/9nu9n8O6pqvwt1GVjceH5N+nM5/1tgxxGc9zlXoA9a3Hjjqa8d/bilP8AwoxABg/8JHpAyRx/x/w168eEIXj3r83f+CjXxR+MXg74pXvgrUdUVvDt1Pb6jpf7s42xyh4wTnGQ8dAH6QMSPlXcHbuelSbFePnpXzf/AME6PGfxQ+Ivw3vvGvxD1ASW9zc+Xp0ewqQqlg5wT3O3FfScf3Rxj2oARVx3/SnUUUAFFFFABRRRQAjHFJk+2KH+8vNU9Yv7bS9LuNQvJVjggQs7OcBQPU9qAPMf2gb278Qa9pPw00iYrLqcwuNVkXloLRDuBx6OUKfjXqGj2NrYabBY2aCO2t4ljhjX+BAMAflXmf7Othc6xeat8TdWjb7X4jkK2SSDDW9mp+WIg8j5wx/4FXqluML05oAXy+Rhvl9KfRRQAUUUUAReT1w3046V5J8ZIV8A/EjR/iXZwt9nu3j0vWgn8aO22F2/3WkZia9grJ8baLZeIvDN7omoLuhvreSE8dNykZHuM5oAvWsyzpHNEwaN1DK46OCMjHtVivMf2bdb1B9FvvBuvnGr+F7gWrKT963OTAw9f3QTOO57V6dQAUUUUAFFFFABRRRQAUUUUAeNftieMr/w/wCFdP8AC+jaVqmpap4tujaRW2l2/mzGBAGuCBkc+UXx9KZ4P+KsPh/w3ZaJafB34pLDp8CQJt8OryqKFDH971IGTV742Af8NHfCDIzm91X/ANIjXrCxquQB3oA8r/4Xa/8A0R/4qf8AhOr/APHaP+F2v/0R/wCKn/hOr/8AHa9V2r6UbV9KAPKv+F2v/wBEf+Kn/hOr/wDHaP8Ahdr/APRH/ip/4Tq//Ha9V2r6UbV9KAPKv+F2v/0R/wCKn/hOr/8AHaP+F2v/ANEf+Kn/AITq/wDx2vVdq+lG1fSgDymT42ttOfhD8Ul/2m8Orgf+Ra83+MHxG1KLxFpXj/RPhT8RbO60VnOqSXmhiOJ7IjEpZvMOfLTzGGR19OtfTrKu3pXIfHWPHwR8Y5Ynb4cv85/i/wBHk60ALq3jW3s/AVh4r0/Qtc1m11G3intrbTLQTXLJIgdSU3DHBGeetfKH/BQKbSvij4D0qe5+GfxD0q60vUoFS7u9AVVkjkkRGQv5mc4J2juSBx1r6t+CMaD4N+D5OAf+EfsduTwM26cV8Sf8FbvjPMPE2k/Dnw7etC2lyLe30kTdJQ3yxt7qVVvxoA+mfhb4/svCvg3SfCumfCL4k21nYwRwLK/h5UViFA3tiTqcZNe4Wrb7eN9rLuUHa4+YZ7H3rxX9hH4rQ/Fj4C6Xqc8qtqWnKLO+UnL7k+UO3+9tJr22P7o5z9KAFooooAKKKKACiiigBsoHBJ6V4L+2B4ukivdC+GNr4f8AEGsSeIi13qUOjW/mzHT42Cy7fmB3bnjx/OvepAGXBFeM+M1Dft1eClPRfBWqkex+0W1AFnTfjAljYRWVt8HvijFFAgVQPDi9AP8ArrVhfjY+c/8ACoPioc/9S4v/AMdr1XaDg0bRuyfyoA8r/wCF2v8A9Ef+Kn/hOr/8do/4Xa//AER/4qf+E6v/AMdr1XavpRtX0oA8q/4Xa/8A0R/4qf8AhOr/APHaP+F2v/0R/wCKn/hOr/8AHa9V2r6UbV9KAPKv+F2v/wBEf+Kn/hOr/wDHajm+NbnBPwg+KfHT/inVH/tWvWdq+lJsHPuOlAHy38SPis/hb4m2fxRX4afEHS9KtbZoPEU1/owhiS2JU+cf3hBZdqgZ7E819TV47+3tEq/sd/ENx/0BHyPX5lr2KgAooooAKKKKACiiigAooooA8l+Nf/Jx3wf/AOv3Vv8A0hNetd68l+Nf/Jx3wf8A+v3Vv/SE1613oAKKKKACiiigAooooAG6VyPx2/5Ij4z/AOxcv/8A0nkrrm6VyPx2/wCSI+M/+xcv/wD0nkoAPgigb4K+D/lB/wCKescgj/p3SvBP25vgj8Oz4JuvGkmhK+tX3iDTI7i5Zsl1kvIo37d1JFfQHwN/5In4P/7F6x/9J464b9uj/khKf9jHo/8A6Xw0AdR8Jvhb4L+GaXcXg3Sf7OS/KvcJHyrFQQOPXk13EYxGOAPYULTqEAUUn8VLQAUUUUAFFFFACN0rxnxh/wAn3eC/+xJ1b/0ota9mbpXjPjD/AJPu8F/9iTq3/pRa0Aez0UUUAFFFFABRRRQAUUUUAeQ/t8f8mb/EL/sCP/6EtevV5D+3x/yZv8Qv+wI//oS169QAUUUUAFFFFABRRRQAUUUUAeS/Gv8A5OO+D/8A1+6t/wCkJr1rvXkvxr/5OO+D/wD1+6t/6QmvWu9ABRRRQAUUUUAFFFFAA3SuR+O3/JEfGf8A2Ll//wCk8ldc3SuR+O3/ACRHxn/2Ll//AOk8lAEvwN/5In4P/wCxesf/AEnjrhv26P8AkhKf9jHo/wD6Xw13PwN/5In4P/7F6x/9J464b9uj/khKf9jHo/8A6Xw0AekeLL7VrXw/PLoVrFeagw220TybFZ/Rjg4FeS6B4v8Air4T+OGj+EvHOqabr+meI4X+y3NjpwtmtJVDuUcBm3AKvXjrXr3iLUtO0jSZr/Vru3s7SIEyyyttUD615r4H1XQPEPjZfGmsaxZBpB9n0SyE6PIiZPzEKT8xJb8MUIGetxyZkC7u2fr9KlqGIL53DZxxU1AkFFFFAwooooARuleM+MP+T7vBf/Yk6t/6UWtezN0rxnxh/wAn3eC/+xJ1b/0otaAPZ6KKKACiiigAooooAKKKKAPIf2+P+TN/iF/2BH/9CWvXq8h/b4/5M3+IX/YEf/0Ja9eoAKKKKACiiigAooooAKKKKAPJfjX/AMnHfB//AK/dW/8ASE1613ryX41/8nHfB/8A6/dW/wDSE1613oAKKKKACiiigAooooAG6VyPx2/5Ij4z/wCxcv8A/wBJ5K65ulcj8dv+SI+M/wDsXL//ANJ5KAJfgb/yRPwf/wBi9Y/+k8dcP+3Nj/hRK5x/yMWkdRn/AJf4a7T4Isw+Cvg8AjP/AAj1iQPX/R464b9uZx/wotVLc/8ACR6Ocen+nw0Ael+MPDPh/wAW6LJoviTSrPVLCYYktLqIOh47g1ynhH4I/CTwvr0Ot+HPh54f0zULckw3NrYLHImQQcEexNd9JswAGXn+I9c9qlVQU+YfXFAEVrlpN+VBP3h3PpmrFIFUNuA5NLQAUUUUAFFFFACN0rxnxh/yfd4L/wCxJ1b/ANKLWvZm6V4z4w/5Pu8F/wDYk6t/6UWtAHs9FFFABRRRQAUUUUAFFFFAHkP7fH/Jm/xC/wCwI/8A6EtevV5D+3x/yZv8Qv8AsCP/AOhLXr1ABRRRQAUUUUAFFFFABRRRQB5L8bTj9oz4QN6Xuq5A6/8AHka9ZU55FeRfHKSKH9oj4RySyrGBe6r87MAF/wBCPc+tenx6rppBb+0LYc8AzL/jQBfoql/ammf9BC1/7/r/AI0f2ppn/QQtf+/6/wCNAF2iqX9qaZ/0ELX/AL/r/jR/ammf9BC1/wC/6/40AXaKpf2ppn/QQtf+/wCv+NH9qaZ/0ELX/v8Ar/jQBccgKSa5H46EN8EfGhHT/hHb/wD9J5K6CTU9NKEDUbUH3nX/ABrkPjlqemn4J+MAt/asG8PXwUCcc5t3wBg0AX/gi2Pgr4QyR/yLtiQT2/0eOvif/goB+0f4y0HxXqHwv1Xw3FFbW+qWt/Z3OeZ4oZ0kUj6tGRX134L8WeGPBn7PfhHVfFGrwaZp/wDYVijTz5K7jbodvAPofyr5L/4KRXvwd+LGkaPr3hnxxpc+uWN3HbzCBZN72zOF/u9E3Mx+lAH0D+w78ZvFXxu8K6p4k1vQo9OsLa4WGzZf+Wx+YMfwKgfjXv0ZBQEHPuK+ev2fPif8BvAXw10TwXo/jzSQ8EKI4iWT95OQN7ElerNk19BWjxy2scsTh0dQysBwQe9AElFFFABRRRQAUUUUANmYIm45xnsK8Z8YMP8Ahu3wX/2JOq/+lFrXslwDtBHb+XevE/HdxBbftxeC5ZZokB8F6oEaV9i5NxbYGaAPcB0oqiNU0zHOoWv/AH/X/Gl/tTTP+gha/wDf9f8AGgC7RVL+1NM/6CFr/wB/1/xo/tTTP+gha/8Af9f8aALtFUv7U0z/AKCFr/3/AF/xo/tTTP8AoIWv/f8AX/GgC7RVL+1NM/6CFr/3/X/Gj+1NM/6CFr/3/X/GgDy79vj/AJM3+IX/AGBH/wDQlr16vFv28tQsJf2PfiDHFe27u2iuFVZlJPzL0Ga9poAKKKKACiiigAooooAKKKKAOW+JXw88FfEK3tLbxp4cs9ZisZWktluQT5TMMErgjqBXKD9mz4F4/wCSa6P+T/8AxVeoj7340M4XAIPNAHl3/DNnwL/6Jpo35P8A/FUf8M2fAv8A6Jpo35P/APFV6gsqMcKwJBwcHp9aXzFGM8ZOBmgDy7/hmz4F/wDRNNG/J/8A4qj/AIZs+Bf/AETTRvyf/wCKr1BZUJwDkg4I/u/WneYu4r3HUUAeW/8ADNnwL/6Jpo35P/8AFUf8M2fAv/ommjfk/wD8VXqLSov3jjPTPeoft9p/z3j/AO+xQB5p/wAM2fAv/ommjfk//wAVQf2a/gUVIPw00UgjBBV+f/Hq9M+3WmcfaIs4z98U+O4ikAMbBt3Iwc5HqKAILHStNs9Kg0y2soY7O1iSGGDZlURFCqoB7AACnf2bp3/Pha/9+V/wqyrBlyKWgCp/ZWmbg39n2uVGAfJXj9KtqABgDAFFFABRRRQAUUUUAFFFFAAQD1rkPiV8LPh78Qb60vPGfhSw1i4sI2jtpblTuiViCwBBHBIH5V19FAHlf/DNnwL/AOia6N+T/wDxVH/DNnwL/wCiaaN+T/8AxVeo+YgOCcYGaQTIWIBztGTQB5f/AMM2fAv/AKJpo35P/wDFUf8ADNnwL/6Jpo35P/8AFV6j5q8+1N+0R7dxOAfunP3vpQB5h/wzZ8C/+iaaN+T/APxVH/DNnwL/AOiaaN+T/wDxVepFwASeMUiSq3T8fagDy7/hmz4F/wDRNNG/J/8A4qj/AIZs+Bf/AETTRvyf/wCKr06a5ghOJZUQ4yNzAZFNa+tApb7RFhevzigDzJv2avgSy7W+GeisD1DK5B/DdXqtQ293bzNtimRjjI2sDmpqACiiigAooooAKKKKACiiigBg+9+NcX8V7T4oXNzaH4fap4XsoRG4vP7atJ5mLZG3Z5bAAYznPtXYszF8H5fmIA/vcVgfEHTvE2raCLXwt4lj8P33nKTdvp6Xg2c5Uo5A545z2oA+evDln8fdL/aW1zw9pniHwNFcXuhw6veRmxuzazSNMYvM2+ZuEuEAJB24A4zXu3wvh+JEKXi/EG/8OXkpZfsbaLazQgDndv8AMY5PTGPevDdP8KfFmT9rbUrOL4u2q6kng23kk1EeGISHh+1yAReVvwMMCd2c84r6F+Htjr+neG1t/EviSPxBfCRi19HYJaBgTwPLUkDHrmgDwfVPHeueGfitqSP8NvEHh+58VWd0Hmj1W2uLczRQuy3zxoWdCViVATheAMZrn/hXYeKte0/4c2mrfGj4jDU/HGgSao01vdWogtzHHG7LtMJbB8zjntVjxX4L+IPjD9pjU/7W8RJo+u/8IJLJpUFl81tYq128Xky/dF0rAlsuBtZ+Adgyvhm7i8AfEr4WaB4gJF34B0KDQtZFuN6fadRRI7byzxuXdA+48YGOuaAPRv2edZ1zXP2Uvt+uatc6rqHkalHNeXJHmyiOaeNSSABnCr0rwLwb4T+H1t+zN8OrvTvAuk+JvHGvWFjPcWt5qEkbXEbY85mcyqscjKTs3Ebm4AOCK+kPhT4V1fwR+zjdeHNcWH7bbx6lK4t33oVllmkXBwM/K6598184/CuPXZ/2cvBGm+JLjwT4SXVNGtLTQpJ5UmvfE7Rj91GZGRWtXQuCroXKmTI5HIB2Pg/wf8MfEPizVfB+sfs/zeGb200eW++0y6v9pRCuAFYxSEIx3AgNgkDNevfsVOZP2VfA8p3bn0aMkls9z3PNeY+CNB+M3g3wrrg0bQbO6kAMV/pmr3bYfMRP2hNUZGlu9o+XayALnbn5a9I/YlZm/ZN8BbwAx0eMEfw5yenrQB6xb58v5t2cnqakpsZytOoAKKKKACiiigAooooAKKKKACg0UUAZHiTUrDQdFn1bU7qK1trVS7ySnhfYDqSegA5JOBXwxrfxH1vWPG2pfE218Y+JdD0nUdM1q6vbLRGWB5o9Kljit9qzoxR2SRi2R17CvvDWtM07V7QWeqWNveW/mLJ5VxEHTcpDK2DxkEAj0Ir4B8caDrFx8PPF/iODS7mXSbCx8dQXd4qHyonkvYyiM3YsFbH0NAHqnw/+J2r6JpvjDwZ4g1vXPEv9o61daXpF9fzR+daRjR1u/nKqobksOB1NdBpt7qs37IHgGCDwXqXiBT4dtLmTUbTVoLOTS5UiUpPvnYKWBJIzkDHNeezeB/GCeJ7rXn8PaiuljxFdX63Jtz5Ytj4eEQm3f3DJlM+vFdP42Pi+f/gnTpVr4fays9NXwB52p3suJJAi2ylYUiIx+8G4F85XAwDmgC83ifxR8TfF2jtbeLfGHgrTbfwJPq9xZWcsIuJpobxoMuzRspLKucgYOQal+Cuq+Iz8QPhbrMfxB8Xazovj3Q769m0vXZ4JPK2QxunMUa8guc1Do3hHVfhno8/xB1fXZ9U8JL8PYtKtFlzJd2kk88ZEZYnMq75M7iRtB2gYFaP7OPhjVb0fDN4nt/8Ai19pqXh3XiG6XYiijIhH8ablPzcfSgC18cvD/g/xL+1ZpUHj2yhutFsPA9zdPHcTukcTC7jUP8rDJwSPxrzAaZ4JtdF1nxJ/wzhDrHh23vZTpupWmuLbGS3AGxHgmm8wT9fkKhiSBtr0f9oE+JW/at0uHw54d0PXlm8EXAvoNYuvIhhhF5GTJ9xw5VgDtIA964y38M+JPE3iSHxX4a8S2Hi7T31BFuPEOiwLPbw3hYZL6Qv7mR0JRmuC+5RhsfKKAOw+GHhbwp4X/aw8IT+D/DraDa6/4Cub+6s/NclXM1uQHDMfmUMQce9fS1fN3gq68f3X7bmhw+PdI0uzktPBt/HZXOn3pm+3Ri6gzK6bFETHAOwEgZ68V9I0AFFFFABRRRQAUUUUAFFFFAETBi7ENxjAB7VwHji3+Mz6/MPB134HTSmRRGurQ3bT5x82TGwXr0r0CTj86ADgGgDwS38B/tBwfFi58fLrHw3N9caNHpLQG2vfKEaStKGHzZ3ZYjrjFd98O7f4xx+IFPjW78EyaUInymjw3SzmXjacyErjrmu9YfLmkUr60Aed+LvAvie4+K19428N6vp1rcT+F10WBbpHYxP9r81pfl9EJx/tYzxVTxR8GbS4+Gtromk6k39s2GqQayuqXo3Nf30Lbw9xtH3Wb7wQDGTtxXp6laXK0AeWfCT4feONLg8d3njbWtHutR8YXIljTS1mFvagWyw4AkyRyuePWuK8F/C343aF8I9I+Hk9x8L9U0zR9OXT4nvLS9MrxhdpJYMNpI7rivopj8tMUjr/ABUAfPngP4a/H/wfo+paHo+v/D1dHvW/0awlivnSwBQh1jYsWIZiWO4nk+nFeo/ATwXeeBPg34d8G6nfQXl5o9glvNPACIpHBJ3KDyBz3rs+D9489qbgeZ17UAPhICY3Z96fnNQRlQuPepYyMcUAOooooAKKKKACiiigAooooAKKKKAGlTkGvFPCXwU12xtrLRtU1nT5dGg8XXviW4WBH86Z5LhpYYCG+Ux7XYOCMkgYr22igDynxN8OvGej+B9S8N/DfXNLFpqs0q/ZfECyyQ6bbyRbTFbGLDffLP8AOW5Y9sCpJvhZqL/skt8JP7StPt58Mf2OL0q3k7/K8vfjrtzz616lRQB5t4f+Gt9ceItPvfGF7aahY+HrWGDRNPtw4hjdYlVriUH70ud6gfd2kcbua5DxX8GfHja82n+GfEejW/hi88XxeKL43STfbzMJlkkhRkwnlnaAARnrk17xRQB5N8VvAnxEuvjNpvj3wHqXhmN7XQpdKuLbXIZ3Vw8yy7l8rH90DmuG8SfCD423/ii18TaTe/DTQdctXiA1DTYL9GeFWy0JjLGPa4LKTt3YPBHFfSVFAHj/AIH8BfE2b49WPxC8fap4Vkj03Q7jS7e20SK4Vj5sscm5jKT08vHHrXsFFFABRRRQAUUUUAFFFFABRRRQAz+L8acvSmj73405aAFowPSiigAwPSjA9KKKACjA9KKKADA9KMD0oooAMD0owPSiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGfxfjTl6V418WvjXqXhr4wr8PdB8EDXL7+z4r6SebWorGJFkdkVMyKQSSmMZ6mrsPjj41hcL8C4/ofGVrx/5DoA9Zoryn/hOPjb/wBEKh/8LK1/+N0f8Jx8bf8AohUP/hZWv/xugD1aivKf+E4+Nv8A0QqH/wALK1/+N0f8Jx8bf+iFQ/8AhZWv/wAboA9Woryn/hOPjb/0QqH/AMLK1/8AjdH/AAnHxt/6IVD/AOFla/8AxugD1ajI9a8obxx8bNvPwJh/8LK1/wDjdYXh344eJrj4t2Pw7174bR6Vquo2t1LbNH4igux5kMTSbHCKNhOAMnpmgD3TI9aMjpmvI38bfGeHP/FkIJFUkCU+MbUZH/fHFL4P+IPxN1qS0uf+FR20em3WM6gni22m+TOCQqp82OeBQB63miq0bHlmVlXH3i3SrCfdFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeEXmg6Z4k/bL8YaZqkCyQzeBtPGejI32qfDKeoIOOR6V0/hHxFqngrXrfwZ4tkkmtpiE0jVpB8sijgQyH+/ggA852kk5rL8OjP7dXihSMq3gfT//AEquK9I8baBpfibw/NpOr23nW8vtkqexHoaANcOMAnG096kxXmPhHxDqnhPxBF4P8ZzmSKQ/8SnV34SRe0crdA/B5OM8DGa9PBB6GgBMUYpVIIyDn6UE45NACYpkrbMcU/coGSRj1zXAfErxdfSawvg7weqXGuXGPNmPMVhH3dz03AZIGc8UAM+JHjC/n1hfBfhBVm1m5j3XM45Sxi6Fj/tcjj3riNY8JWPhT9oD4S21qDNdSvrT3d7L80lw5shksTz+HSvUPhv4RsPCemyQQE3F3eP5t7dycyXMnck+g6D2xXI/FrA/aV+EnG0eZrXH/bkKAOU/4KHfFpfhd8A79bK5WHWdXT7NYYOHjZgcyAegxj8a8k/4JI/GKTxB4av/AIbeIL3fe6aftFi0rZLxt/AvqQQx/Gvon4//AAO8BfFVo9R8Z6fLeS6fbSJbAOAqA89CD6CvL/2DvgH8PNK+HHhL4lWGmyxa/NaSNJPvGCSzoeMf3aAPqBYlC7e3uc0+PO0ZpABwB2FOU5XNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeO+HP+T6/FH/Yjad/6VXFevr97pXkHhz/AJPr8Uf9iNp3/pVcV7An9aAMjxl4b03xNosmmanEGjYHY4+9G3ZgexHX8K4vwT4g1LwjrUXgvxfKzxuRHpGqN0uVHASQ/wB/pzznnJr0sqMdKxfHHhvT/FXh240fVIlaOZflf+KNuxB9aANi227Tt6E9ex+lPkGUIzjjrivM/AviXU/CutReDPGc24uMaXqT8LcJ2R26Bxg+nAFaPxO8ZXlvdx+FvCiLeeIL5WCAH5LNe8sh6ADOQCQWwcUAR/ETxbdfbl8MeEIlvNevF+fcf3VonQySHnaPTjqRWt8N/Bdj4T0qSBJpLy9uW8y81CYfvrlz1J64HsDgZo+GfhK18LaZJ5jNdajdt51/fycvcS46/QDAHsBXTqidV6nvQA2MYZW5GBtxXl3xf/5OW+En/XTWf/SMV6oqgHPf1ryv4v8A/Jy3wk/66az/AOkYoA9M1b/kEXX/AFxf/wBBNeZ/sR/8mseDf+vFv/Rr16Zq3/IIuv8Ari//AKCa8y/YnJX9lbwaQM/6C3/o16APV6K4P4k3/wARrm6TTfh+mj2siAvPf6vC8kAA6RhEZWLHPXoMVR/Zr+Ies+PfCd9/wkelpp+t6LetY6lHEP3RlADZTk/KVZe5pRfNsEtD0qio43Lf1FSUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPHfDn/J9fij/sRtO/8ASq4r2BOn414/4c/5Pr8Uf9iNp3/pVcV7AnT8aAHN0qHAOMjocDB/nUx6VwPxO8XXGmahF4d8Not34ivxiNSC0duv/PSXHQDI4zk9s0AZnx+vbTWLL/hCNOsV1PXrwCWJF/5h6bsGdnHKAYIBA5OB3rD+CdufhzrreEfFc5vbzU5TJa+IZ/v6hk8Rsx6EZ4XJA3Gu9+Gvg238MWLSz3L32rXbebe303LzOR+igYAHtWh428M6Z4o0V9N1SESxsDsdeHibsyHtigDZUhlX1HYdKkh/1eSME8kV5p4D8R6n4b1xfA/jSb9+BjStR/hvY+wJ7MBkc4+7XpduQ0eQOD096AH15T8X/wDk5b4Sf9dNZ/8ASMV6tXlPxf8A+TlvhJ/101n/ANIxQB6Zq3/IIuv+uL/+gmvMv2Jsf8MreDc/8+Lf+jXr03Vv+QRdf9cX/wDQTXmP7E//ACar4N4/5cW/9GvQB1nxE8Sf2Hpf2bTkjutZvPksbOR9u9z0LHkqo7nBxmqvwn0fSvDektpEN8lxqTOZ9QfPzvKe7fQYH4VW+IPwi+HfjrW49W8U+GoNRvLddsczTyrgcf3GHoK0Ph/4D8IeBbOew8KaLDp1vPJ5kyJJI+9+Bnc7E9AO9FNWbFV2R1MJDMDx04xU1QW4AmYlRuPVh+lT0k73GFFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPHfDn/J9fij/sRtO/8ASq4r15n2gnp1JJ6V5B4dIH7dXign/oR9O/8ASq4rq/if40bSDDomgWy6j4ivWxa2hztiHeWUjGFGRxnJzwDQAfErxrc6ZeReHPD9v9t8RXyZggUZWBCcGWU/wqMHHHJGKtfDPwbD4cjmvLuc3+r6gfM1C+k5Z39F9FGTgZwBTfhj4OHhy3lvr64a+1rUG8y9vZesjeg9AMDgAV1jqGXB7HPFABGgK/P17+9OZAFyqjIHAojJ5z+AobBUigDnvHnhvTfE+iyWGpRtuUZgmiH72F+zqeox7dq5bwD4o1bw/rEfgjxi+64XK6bqbDamoRr39nxjIyeor0R433Eq7AH0/lWP448LaZ4o0OTTtTQ84eGaM4e3kHKyIfUHBweDjkUAbiyEtjHGeMf1ry34v/8AJy3wk/66az/6RirngPxRqWg+KI/BHjKUfahETp1/0jvowQOT2cZAI46HFUfi8wP7S3wjwf49Z/8ASMUAemawW/su6AH/ACxfP/fJrzP9iXJ/Zb8HRsjcWDZJHB/evXlv/BR74mfFH4U6RYeJPB8kL6HcZtr1ZFzslYHb09g1eR/8Ex/iv8V/G3imx8DJPGPCvh20YzsU+ZVYsVGf940AfoCsSqflG3HYdKXy0cZYfgaFIGATkgdadEd0YNAPUXaM5paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPlv4yfFDSPhp+2JrsupXtnaXereDrC3097uURxbxczFmZjxhQc474rrvhf8Q/gx4djm1TVPiz4Y1DXNRIkvL2bVoiSeyLluFXOAM8ACvXdc8P6Bq179p1XQ9OvZo12rLcWkcjY9MsCaqL4N8HHaP8AhEtD4GcnTYf/AImgDmx8dvgz8o/4Wj4VJHf+14v8ad/wvb4Mf9FR8Kf+DeL/AOKrpD4L8Gnj/hEdD5PUabD/APE1J/whHgz/AKFLQv8AwWw//E0Acv8A8L2+DH/RUfCn/g3i/wDiqP8Ahe3wY/6Kj4U/8G8X/wAVXUf8IR4M/wChS0L/AMFsP/xNH/CEeDP+hS0L/wAFsP8A8TQBy/8Awvb4Mf8ARUfCn/g3i/8AiqG+Ofwbblfij4V6HpqkR/8AZq6j/hCPBn/QpaF/4LYf/iaZJ4M8HK21fCWh/X+zocf+g0AedeOPiZ8CfFGi/Yb/AOJfhb5H3wXC6rEsltJjiSNs8Hkjj1Nea+EfibpXir9qb4c+EovEmmeILvw/Fq0jajYXKyR3EL2m1WbBO1vlORk9q+jV8GeDCMf8InoYBPH/ABLYeT/3zU2n+GvDWnXS3Fh4f0qzuACFlgso45Bnr8yjPSgDyL9rrWfDev8AgnWPhzrfhHxhqQvrT91d6Z4elvIYnK5VkkXgMM44968q/YZv9B+CnwvOnX/w9+Ija7fu0moTJ4UncgdFQN3AwD+NfZUMaBBtB4p+xfSgDA8F+ILfxF4dg1e303VLJJM/utQs2t7gY9Y25Fb8JzEp/rRsUU5QAMCgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8O8dfFObwZ+0B4qtdXXUbrQtJ8J2eoR2dhavO4me4lRn2rnjCrk44Ar46/aR/bt8b+I7ibRPh9bN4dsNxWSdsm5bBxlSMFO/GDX6JzeGNFHjK+8T/YC2pX1nHYXMrfMHt0ZmC7TxjLt2715B+0J+yX8Mfimsl+dPTQdXkAVL3TYwox2zHwuemTigCr8G/2i9BHwx0VtZ8O/EK+1D7Ivn3S+F7uZZWyeRIFw1dV/wANI+EP+hP+I3/hHXn/AMRXefDHw83hHwHpXhtpvPXToBAJf7wGcE+nWuk/A0AeP/8ADSPg/v4Q+Io+vg68/wDiKT/hpHwceR4R+Ip+ng68/wDia9D8feJvD3hPRm1nxNqcOn2NuQWllLYBPHRQSevpUfw88ZeGPHGi/wBs+FNbttUsRK0TSW+Rhx1UhgCMfSgDgf8AhpHwh/0J/wARv/COvP8A4isrxt+0b4YbwnqX2Hwv8Qre6a0kEcr+EbtAh2nBLFeMevavdfwNZfi+xbVPDmoaYr+Wby1khLn+DcpGf1oA/Nb4KftyePvB/im5s/FyzeJdFN26ItyxF3Gu44G854H93FfXv7Nvxjl+KPx48QCxGp2mh2/hjT7iGz1C3eFkneaYOy7gMqQqjcBg4rP+Bv7HPwx8C6w+v6nA/iHVpJ2mWa8X92hZi2An3TjPcV7ZpXhDw/pviu68UWGnRWupXllFZTNEML5MTMyKF6DBdug70AdLGMLjJ/E0tMgJaMEjFPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBmBvzjvTgBTCwWTBPU0nnKOGyD6H09aAH7FDFgvJ6mlzxTGmQYz3/SkMoB2kHJ6e9AdTK8QaRpF3qlrqmqW6StYBngeXGyE4OW9jgnmvNv2dfDNva/ELxn4y0uIW+ma/eqIY1HyzOjOXmU9Cr7wQR+taX7Q1l8UNZsrOx+HtroM1nK3/EwGp30luZVBJ2KURuMgZPHcVP8H7f4mpdPF430jw3ounWsaLZWmh3kkynGfvF0XaBxwKUQkelUhVT1FNWVWzgHjrSecg6nFMB+BnOKRkVhgqDzmmmVQu5vlHqaFlDAEA4IzmgB6gKMAYpaRTuXIpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAhfmUqCB3YEdvavKPid40ubn45eFfhnoGqfYr/AObXtUlimVt9lbFVa1kTqDL5ykE8YQ16vMR5vA+b6187XHhPRvDH7bHhg6dBMJNQ8Ka5c3c1zO0s8ztc2zYLtlii7iFXOFGAMCgDBm+PPxI1Px94M1/w78NNUfRfFzXFlbWVxrVt5d2IVkfzIhwYpMocl+CowBnmvVPhD8Yrnxd4H8ReJ9a8Faj4ftPDt1PayKLlLyS4khZllVEiBY7SuOhznivmH9nfVdZ0bxFo9tq3jO4s4bvwok2jak+iw3Fr4ckfUZ4/mV227pP9WJMbjvC9BXtX7GC694e+E/jbV9V1S98SLb+KtW8qzsNLjWd5EuH8xkUN85kbBCEgL0FAGOvx6ubD4Z+LIPDmv3Wqa5o7QXWkrr2iXNtKtrNcxQE3BkCCUh5HAKYGAo6g1L4+8bfHTw5Z+LWXxh8P7y/8FaQNUvrNdBu1byXR2QBzLtJYRt9MV5veaf8AGLxnN8VrldFs76eXxXYWF7pAlMk2m2yi0uAbeQruYcAtD8qgl25I5734mTJ4g+IXxq03Qn+23fiTwimmaRbQjLX91axTrcRRf3mjMiBh23ChaA9T0v8AaC8Sa9D+ybqHibSb+TSdXuNMspku7Q7WiaWSEMUJzjh2HNeb/F63t/h54r0nSdU+MPxdv0vo5WuJNLmS7l08KoKGSKK3ZwJCSAcAfKa7P9ppJ9O/Yh1CK8tpPOstH05ZYQP3m5ZbfKY9cgj61xnidPGc3iSTxz4O8G+JvD9vJcSyS6lJEbrW2kkxuQ6c7eXJbDjYTJiPLlVHcAxPEGpm8+DXi7xn4E+N3xRuL3wmYRPa6uRb7HdkwrxyQKxBVs8V9a6Zk6fCS7yN5a7nb7zcckmvjnxt4o1Wx/ZR8U6feeC7q6g14lk8QaTK1/HIwuVDtfzOFaF1YFfLG8IBtBwBX2XpYH9nQcf8sV/lQBPDu2/MQTntTqB0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCOSMvkNyp7V5b8QfBfieb9oTQvH2kWFve2WkeGNRsHga6EUklxNJA0ajIIAxG2T24r1aigD58+Dvwi8YfDrXYL97DT9ejsvB8WlpEt0IfOuBfS3BHzqQAFkGCepHau3/Zl8H+IPCngvUofE9lb2l/qHiLUNSWCC5EyxRTzGRQWAALYPNemUUAeKeHfAvxE8P+KPiLd6Nb6aj+MfEyXlhfTXORZW4s4YmkZAMl8xuAo6EgnjinXXwl1Dwj4y8KeKvB9qusy6DFfrqEF1dLDcalPdiPfctIRsDZjywwM54Ar2migDxTxF4I+Jnib9kfUPCfiCa2u/GV4zP+9uwY+LwSohkC44iULnHUVR+JHg3xb4o1r/AISOx+H194e8TLEsCa9pnii3FykQzmMB0ZMEEg/LnnrXvNFAHz1400L41eLf2fNQ+H+reBdKTU76LyP7Qi1uIRbRMrK7oFyXKr82OrE44r3+xjaKzijf7yxhTj1AqaigAoorl/iF4jvtB1TQLazit3TVdRW2nMqsSqnuuCMH65oA6iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK5fXvEd9ZfE3RfDsUVu1rqNvLJK7K3mKUHG05wB9Qa6ijoB/9k="]
math
multiple-choice
5
某四面体的三视图如图所示, 该四面体四个面的面积中 最大的是( )
8
$6 \sqrt{2}$
10
$8 \sqrt{2}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAEcARADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKM03eN23B756e3+NADqKKKACiiigAopu8b9vOaVSGUMOhGRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEchxmuE+FvxBt/F3xC+IHh6NoS3g/WYLNdv3jE9nby7m9/Oa5X6IPfHcXDrErSOdqIMs2cYGTnNfA3/AAS5+JR8SftZfFhfmePxg02uRGQ8gx3ThE691u+392gD7/TIUA+nalpEAVAo6AcUtABRRRQB8o/tJftOXPwS/bFsfDPiVftPgfV/D9tLdeWmZ9NuGnuFNwgBy67VUOg7BSvz5En09oWuaVrOg22taVfQXmnXkC3FvdwyK0UkTDIcODjGOa+Xfif4e0Txb/wU6h8MeI9Ng1DTNS+F0kVzayr8siG6lyN3VfUFcFSAQQea5PS73xb+xP4+j0fWJ9Q8QfBPX71lsL4/vLjw9O7H5SAMcYJK4CuMuoVwyMAfbwORmis/Qdb0nWtBttb0jULe+028gW4t7yCVXhljYZDq4OCMc1oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAed/tYeJ28G/s4+NvEkc6wT2WhXItZCekzp5cf8A4+6j8a/L3/gm54mHhf8AbM8GTzXHlW2o3UulzD/np58Txxqf+2piI9wK+3v+CvfiYaJ+yZLoybWk8SazaWLDPRELXOfput1H41+YngbXbrwt410fxJYD/StF1CC+tsjrJFIJEz/wJR+VAH7xR52Ln0pag027gv8AT7e+tm3wXUSyxOOjKwBB/Iip6ACiiigD5g1oZ/4K16V/2TJv/SqavoPxt4a0bxb4X1Hw34j0yHUtK1OHyby1nGUlQnpxgg8DDA5BAIOQK+fdZ/5S16X/ANkyb/0qmr6d5oA+ItOvfFn7EnxAj0jWbm/8QfBXxBeMthen95caBM/O0gDHGCSMbXGWUKwZG+ztB1rStZ0K21rSb+3vdNu4FngvLeQPDJGwyHVhxjHNU/HPhzR/FvhfUfDfiHTIdS0rVIPJvLS4GY5lPbjkHgYYEEEAjkCvj3T73xZ+xJ8QE0jWLm/1/wCCniC8dbC8P7y40CZ+dpAHbByMbXGWUKwZGAPt6is/Qda0rWdCtta0m/t73TbuBZ4Ly3kDwyRsMh1YcYxzWhQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHy7/wUc+AfxG+PC+FLDwZf6Ha2eivdTXi6ldyR+ZJIIlQqEjfO1UfrjlzXxF8LP2TPiX4/+IHjTwZoupeHIdR8CXkNpqjXd3MkTPJ5oQxMsLFhmF85A6jGecfr3IPlOema+WP2HRn9r39pTPP/ABUWn9f9++/woA97+A2g654Y+C3hXw34jlt5dW0bRrWxu5YJGeOR4o1QsCwBOdvcda7AUij5QPaloAKKKKAPmHWf+Utel/8AZMm/9Kpq+nq+YdZ/5S16X/2TJv8A0qmr6eoATnisTxz4b0fxb4X1Lw34h0yHUtK1OAw3lpOMxzKe3HIPAwwIIIBHIFblHNAHxDp974s/Yk+ICaRrFzf6/wDBTxBeOtheH95caBM/O0gDtg5GNrjLKFYMjfZ2g61pWs6Fba1pN/b3um3cCzwXlvIHhkjYZDqw4xjmqfjnw3o/i3wvqXhvxDpkOpaVqcBhvLScZjmU9uOQeBhgQQQCOQK+PdPvfFn7EnxATSNYub/X/gp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRgD7eorP0HWtK1nQrbWtJv7e9027gWeC8t5A8MkbDIdWHGMc1oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJPu4r5Z/YbH/ABl7+0of+ph08/8Aj19/jX1MwzXhv7NPws8UeBPj98YPGGurZnT/ABxq1tdaUYZ98nlxG4zvXHB/ergZPQ5xQB7opyoI9KWkXhQM9qWgAooooA+YdZ/5S16X/wBkyb/0qmr6er5h1n/lLXpf/ZMm/wDSqavp6gAooooAOaw/HPhvR/FvhfUvDfiHTIdS0rU4DDeWk4zHMp7ccg8DDAgggEcgVuUc0AfEOn3viz9iT4gJpGsXN/r/AMFPEF462F4f3lxoEz87SAO2DkY2uMsoVgyN9naDrWlazoVtrWk39ve6bdwLPBeW8geGSNhkOrDjGOap+OfDej+LfC+peG/EOmQ6lpWpwGG8tJxmOZT245B4GGBBBAI5Ar490+98WfsSfEBNI1i5v9f+CniC8dbC8P7y40CZ+dpAHbByMbXGWUKwZGAPt6is/Qda0rWdCtta0m/t73TbuBZ4Ly3kDwyRsMh1YcYxzWhQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU0L82Sfw9KdRQADpRRRQAUUUUAfMOs/8pa9L/7Jk3/pVNX09XzDrP8Aylr0v/smTf8ApVNX09QAUUUUAFFFFABzWH458N6P4t8L6l4b8Q6ZDqWlanAYby0nGY5lPbjkHgYYEEEAjkCtyjmgD4h0+98WfsSfEBNI1i5v9f8Agp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRvs7Qda0rWdCtta0m/t73TbuBZ4Ly3kDwyRsMh1YcYxzVPxz4b0fxb4X1Lw34h0yHUtK1OAw3lpOMxzKe3HIPAwwIIIBHIFfHun3viz9iT4gJpGsXN/r/wU8QXjrYXh/eXGgTPztIA7YORja4yyhWDIwB9vUVn6DrWlazoVtrWk39ve6bdwLPBeW8geGSNhkOrDjGOa0KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCQOpoATzFDbc0LIrfdO76Vw/xw8dL4B8Jm+srE6nrmqXC2GgaSh2vqd9IMRx5zwo2lnc8JGjHoOfAP8AgmHrHivWfEXxej8Z61Nq2q2PidILmZ2by9yecjCJD/q03LwMcDAxQB9c0Ui/dH0paACiiigD5h1n/lLXpf8A2TJv/Sqavp6vmHWf+Utel/8AZMm/9Kpq+nqACiiigAooooAKKKKADmsPxz4b0fxb4X1Lw34h0yHUtK1OAw3lpOMxzKe3HIPAwwIIIBHIFblHNAHxDp974s/Yk+ICaRrFzf6/8FPEF462F4f3lxoEz87SAO2DkY2uMsoVgyN9naDrWlazoVtrWk39ve6bdwLPBeW8geGSNhkOrDjGOap+OfDej+LfC+peG/EOmQ6lpWpwGG8tJxmOZT245B4GGBBBAI5Ar490+98WfsSfEBNI1i5v9f8Agp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRgD7eorP0HWtK1nQrbWtJv7e9027gWeC8t5A8MkbDIdWHGMc1oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUda1Gx03TrrUdRuIrazsoZJ7i4lcBIo0Xc7sewUZye2KvVzXxU8HaZ498B6t4Q1vz/AOzdZtmtrnyZNj7D12nnaffH1BoA4D4LWF18QvF0nxm8Q2kkVpNC9t4L0y5TBs9PfAe8kU9JrkBSR/DEqLn5mFeUf8ExWK/ET46792T41f74OeZrkck9TkH8q11/YO+CgVUN74vyAAT/AGz9f9jjp0rxj/gnj8C/BGv/ABg8c6zeTawk3w/8Yxpo4ivBHGyxyylfOG395/q0znGefWgD9CxyM4opsZzGv09MfpTqACiiigD5h1n/AJS16X/2TJv/AEqmr6er5h1n/lLXpf8A2TJv/Sqavp6gAooooAKKKKACiiigAooooAOaw/HPhvR/FvhfUvDfiHTIdS0rU4DDeWk4zHMp7ccg8DDAgggEcgVuUc0AfEOn3viz9iT4gJpGsXN/r/wU8QXjrYXh/eXGgTPztIA7YORja4yyhWDI32doOtaVrOhW2taTf297pt3As8F5byB4ZI2GQ6sOMY5qn458N6P4t8L6l4b8Q6ZDqWlanAYby0nGY5lPbjkHgYYEEEAjkCvj3T73xZ+xJ8QE0jWLm/1/4KeILx1sLw/vLjQJn52kAdsHIxtcZZQrBkYA+3qKz9B1rStZ0K21rSb+3vdNu4FngvLeQPDJGwyHVhxjHNaFABRRRQAUUUUAFFFFABRRRQAUUUUAFHPrRRQBFJuLYXGRzyKxvC/hHwz4clvrnw94c0fSZ9VnNzfyWNjHC13KcnfKUUGRssx3Nk5Nb3NFACKMLiloooAKKKKAPmHWf+Utel/9kyb/ANKpq+nq+YdZ/wCUtel/9kyb/wBKpq+nqACiiigAooooAKKKKACiiigAooooAOaw/HPhvR/FvhfUvDfiHTIdS0rU4DDeWk4zHMp7ccg8DDAgggEcgVuUc0AfEOn3viz9iT4gJpGsXN/r/wAFPEF462F4f3lxoEz87SAO2DkY2uMsoVgyN9naDrWlazoVtrWk39ve6bdwLPBeW8geGSNhkOrDjGOap+OfDej+LfC+peG/EOmQ6lpWpwGG8tJxmOZT245B4GGBBBAI5Ar490+98WfsSfEBNI1i5v8AX/gp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRgD7eorP0HWtK1nQrbWtJv7e9027gWeC8t5A8MkbDIdWHGMc1oUAFFFFABRRRQAUUUUAFFFFABRRRQAU3epbAP056+tJJjn2rzD4M/F6y+InxY+IXgm30a4s5fh9fwWU9xLMGW8MpmAKgfdAMB/MUAepUUDpRQAUUUUAfMOs/8pa9L/7Jk3/pVNX09XzDrP8Aylr0v/smTf8ApVNX09QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAc1h+OfDej+LfC+peG/EOmQ6lpWpwGG8tJxmOZT245B4GGBBBAI5Arco5oA+IdPvfFn7EnxATSNYub/X/AIKeILx1sLw/vLjQJn52kAdsHIxtcZZQrBkb7O0HWtK1nQrbWtJv7e9027gWeC8t5A8MkbDIdWHGMc1T8c+G9H8W+F9S8N+IdMh1LStTgMN5aTjMcyntxyDwMMCCCARyBXx7p974s/Yk+ICaRrFzf6/8FPEF462F4f3lxoEz87SAO2DkY2uMsoVgyMAfb1FZ+g61pWs6Fba1pN/b3um3cCzwXlvIHhkjYZDqw4xjmtCgAooooAKKKKACiiigAooooAbJ9018r/sN/wDJ337Sn/Yxaf8A+hX1fU8v3T9RXyx+w3/yd9+0p/2MWn/+hX1AH1Uv3aKF+7RQAUUUUAfMOs/8pa9L/wCyZN/6VTV9PV8w6z/ylr0v/smTf+lU1fT1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAc1h+OfDej+LfC+peG/EOmQ6lpWpwGG8tJxmOZT245B4GGBBBAI5Arco5oA+IdPvfFn7EnxATSNYub/X/gp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRvs7Qda0rWdCtta0m/t73TbuBZ4Ly3kDwyRsMh1YcYxzVPxz4b0fxb4X1Lw34h0yHUtK1OAw3lpOMxzKe3HIPAwwIIIBHIFfHun3viz9iT4gJpGsXN/r/wAFPEF462F4f3lxoEz87SAO2DkY2uMsoVgyMAfb1FZ+g61pWs6Fba1pN/b3um3cCzwXlvIHhkjYZDqw4xjmtCgAooooAKKKKACiiigBknII+lfLH7DZz+19+0n/ANjFp/8A6FfGvY/jl8cfhf8ACK8sLf4h+JW0d9XWRrPGnXNwJfL27+YY3xjevX1r5I/ZW/aO+DXhD9oz42eJvEXjD7HpnjDV7S50ScaZdubpIzd7sqsRaM/vU4cL1oA+/h0orH8B+JNI8XeENO8TeH7przS9Vt1ubO5MTx+bGwyrbXAYZBzggH1rYoAKKKKAPmHWf+Utel/9kyb/ANKpq+nq+YdZ/wCUtel/9kyb/wBKpq+nqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAOaw/HPhvR/FvhfUvDfiHTIdS0rU4DDeWk4zHMp7ccg8DDAgggEcgVuUc0AfEOn3viz9iT4gJpGsXN/r/wAFPEF462F4f3lxoEz87SAO2DkY2uMsoVgyN9naDrWlazoVtrWk39ve6bdwLPBeW8geGSNhkOrDjGOap+OfDej+LfC+peG/EOmQ6lpWpwGG8tJxmOZT245B4GGBBBAI5Ar490+98WfsSfEBNI1i5v8AX/gp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRgD7eorP0HWtK1nQrbWtJv7e9027gWeC8t5A8MkbDIdWHGMc1oUAFFFFABRRRQB8Y/wDBaXwwNQ+CPhnxSsPmS6LrptmfJ/dQ3EJ3Hr/fgjH41+bVqks06wRRtJJI3lhFXJyeAAO//wBbtX7E/wDBQrwyPFX7HnjyyGN1npn9oqcfd+zSJcEj/gMTj/gRr8v/ANjDw3/wl37VngLRCgkjbXre5nRhw8cDGeQEe6RMPxoA/Yz4a+HYvCfw60DwvalfK0XS7axTA42xRqnA7Z21vL90ZpEOVBznjrS0AFFFFAHzDrP/AClr0v8A7Jk3/pVNX09XzDrP/KWvS/8AsmTf+lU1fT1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABzWH458N6P4t8L6l4b8Q6ZDqWlanAYby0nGY5lPbjkHgYYEEEAjkCtyjmgD4h0+98WfsSfEBNI1i5v8AX/gp4gvHWwvD+8uNAmfnaQB2wcjG1xllCsGRvs7Qda0rWdCtta0m/t73TbuBZ4Ly3kDwyRsMh1YcYxzVPxz4b0fxb4X1Lw34h0yHUtK1OAw3lpOMxzKe3HIPAwwIIIBHIFfHun3viz9iT4gJpGsXN/r/AMFPEF462F4f3lxoEz87SAO2DkY2uMsoVgyMAfb1FZ+g61pWs6Fba1pN/b3um3cCzwXlvIHhkjYZDqw4xjmtCgAooooAzfFWlW+t+H7/AEa8iWW11G1ltp42PEiuhQqfYgnNfmn/AMEmfAsy/thazLqtvibwZpl4rSc/uroyLb4/75ebr6V+nUoYk4APHy5PQ8//AFq+f/2S/hqngn9oD45a2FIj1jxRB5G5cKFa2F42D6br/HH/ADz9qAPoNc7eaWhelFABRRRQB8wa0yj/AIK1aWSenwzYHjoftUx/lX0/XiH7RH7Lnw0+M3jyHxZ4y/tr7fb2KWMYsr4RR+Uru4ypQnJMjA84xjiuFX/gn58A9oy3io8dTqcef/RVAH1TmjP+cV8rf8O+/gF/e8Vf+DNP/jVH/Dvv4Bf3vFX/AIM0/wDjVAH1Tn/OKM/5xXyt/wAO+/gF/e8Vf+DNP/jVH/Dvv4Bf3vFX/gzT/wCNUAfVOf8AOKM/5xXyt/w77+AX97xV/wCDNP8A41R/w77+AX97xV/4M0/+NUAfVOf84oz/AJxXyt/w77+AX97xV/4M0/8AjVH/AA77+AX97xV/4M0/+NUAfVOf84oz/nFfK3/Dvv4Bf3vFX/gzT/41R/w77+AX97xV/wCDNP8A41QB9U5/zijP+cV8rf8ADvv4Bf3vFX/gzT/41R/w77+AX97xV/4M0/8AjVAH1Tn/ADijP+cV8rf8O+/gF/e8Vf8AgzT/AONUf8O+/gF/e8Vf+DNP/jVAH1Tn/OKM/wCcV8rf8O+/gF/e8Vf+DNP/AI1R/wAO+/gF/e8Vf+DNP/jVAH1Tn/OKM/5xXyt/w77+AX97xV/4M0/+NUf8O+/gF/e8Vf8AgzT/AONUAfVOf84oz/nFfK3/AA77+AX97xV/4M0/+NUf8O+/gF/e8Vf+DNP/AI1QB9Uf56VieOPDekeLfC+o+G/EOmQ6lpWqQGG8tJ1zHMp7ccg8DDAgggEcgV85f8O+/gF/e8Vf+DNP/jVH/Dvv4Bf3vFP/AINE/wDjVAHE6bfeK/2JfiCukatcah4g+CevXjiyvtvmz+HZnOdrBR1HJIxhxllAYOjfaOg6vpetaNbatpF/bX1hdxLLb3NtKJIpUZQysrDgggg/jXzFJ+wD8CvlXf4pz0DDVlyoHI6xkZ7dMAHpnmvYvgJ8HdA+D/hOfw14V1XXp9Kkn8+Gz1K8W4js3LZYQ5T5FYkkjkEnPByaAPSaKKKACq7QKJJMKq+acthR83QHPrkAD6AVYooARQQOaWiigAooooAOaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiims4HXjnHNADqKaXAGcHr2GaFcFiO69aAHUmfQZrkPHPxS+G/g6Qp4q8e+HNGkVS3kXuqQxysB/djLbm+gFeMePP26f2e9AhZrHXtU8RzRsR5Gk6ZIG69d0/lIR7hjQB9L5orkfgj48034lfCvR/HelWtxa2WsQGeKK5ULIihmX5gpYZyp6E11oOBjn8qAFopM/X8qM/X8qAFopjSKMA55OAMdf8AODT+tABRRRQAZoqGaZEOC3zZwB6nGcD8AawfCXjfwp4p1bVtO8Pa7aajdaDcfZ9Uit33/ZZefkcjgNweOvBoA6SiiigAooprOq9ePTJHNADqKaHBGRn8BS5+v5UALSbhz7daM/X8q8C+Pv7Wvw4+DnxcXwL4y07xAsz2kV0L6ztI5bdFkLD58yB+Np+6jdRQB79kUA5rxfwP+1V+z94oUjTfiho9s2QCmrF7Bsnpjz1Td17Zr1rQtV0vV7FbvSdStNQt2AKzWs6yowPQhlJBoAvUUm4Um5ex74oAdRRRQAUUUUAFFFFABVa8S4a3kFrLHHNtPlPJGXVW7FlDLuHtkfWrNHNAHzn8bvCX7YOoMx+H/wAT/AllFtYMqaG1nKy9lDSi65x3yor44+OXwn/bcuYbs+ME8Z+IdP3bmisdZ+2Wzj1W1hfj/v2Pwr9Udrc5I/AVG0WWzjaegKgZH0NAH4QeKPDviHw5ffZPEWg6lpFyRlYb+zkgc++JMGszIbggFvT/AD3r97L7TrS/tHtdQtYLu3kBDRXEYdHB6gqRgj65ry3xz+y/8BvFsLpqvww0GFmYt5mmwGxfcT94tBsyfqDQB8u/ss+Cf2z9T/Z/8MX/AMOviz4P0jwvNas+mWeoWqST28fmODvL2Mp6hujngj3r0D/hXn/BQn/ouXw//wDAGL/5W19P/DDwZoXgDwJp3g/wzbPbaTpcZjtYZJTIUUsWPzNyeWPWuh+tAHx//wAK8/4KE/8ARcvh/wD+AEX/AMraP+Fef8FCf+i5fD//AMAIv/lbX2BRQB82/AnwX+2JpXxV0q/+KfxU8Ja34ThaY6lYadaRpNOTC4i2lbGLpKYyfnHCnr0r6QjGI1GOgp1FABTfMXdj3xx+P+FOrmPif4t0zwL4F17xfrXmNYaLZNd3AhXdI6qOUUd2Py46ct1HNAHK/tA+KdbFxYfDbwJciPxf4rjfyrkKGGi2SHE9846ZXIWMH70rIDxux4R/wSm02DR/Enxo0aCWWSHTfFgto3mkLuyxtcIGZjyzEDknqeatfAb9pX4DaXHqPjHxl8S7STxr4teOfUVj0u9ZNOgUHyNPiPk48uIM2T/G7yMeoxw//BOT4x/DbRfit8SNM1LxMsV1468ZB/D0TWk7NeiSaQJkhMISZU+8R1PpQB96r90fSlpE+6KWgAqCZH3MVJGSDleD/XPQVPRjvQB8fL8Pf+Cg7LuT44/D9FPIX7DGdo9MnTST+JJ96X/hXn/BQn/ouXw//wDACL/5W19gUUAfH/8Awrz/AIKE/wDRcvh//wCAEX/ytr4x/bu0n4q6N8bxZfGTxJpPiDxN/ZcMhvtLijSHySzhEwsMPzDa3Ve9fsdXk/xU/Zx+EfxI+Iw8beN/Co1nVFt47dTNfTpEI03YBjRwrffPUGgD8YV+/sAzk4AHzcn6Hk16J8Kfhj8ctV1K3vfh74N8ZrMSPLvrC1mt0HoTOAqr+LV+wngf4Y/D7wZJv8J+B/DuiyY2vNZaZFFJIP8AadQGY+5Jrqo4gsKpjhe3GP0FAHwb8D/ht/wUCsoVSf4g2+jQhgfL8UatDqcjrnJGRHcNjHbcv4V9g/C3TfifZ2Kj4geJfDGqS+TtC6Rok1qyv6mSS4kDD2Ea12aoRnn8BThwMUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUdZ02z1WwnsNStLe8s7hSk1vcRCSOVTjIYMCCOKvUUAcd/wrL4cjch+Hvhf5ycgaNb8nBI52V87f8E+fhi2ifED4r33ij4dvpw/4S1p9An1DRvK/ch5yrWzOn3ANpBQ45GOMV9cNx+Waaw+Un0HrQA+MELzS0i/dH0paACiiigAooooAKKKKACiiigAooooA/9k="]
math
multiple-choice
6
如图, 一环形花坛分成 A, B, C, D 四块, 现有 4 种不同的花供选种, 要求在每块里种 1 种花, 且相邻的 2 块种不同的花, 则不同的种法总数为()
96
84
60
48
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCABdAGwDASIAAhEBAxEB/8QAGgABAAMBAQEAAAAAAAAAAAAAAAMEBQECBv/EABQBAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhADEAAAAfvwHKhbUYDV7kWC92jdOgAFM82lQvQwTCxWlK/jL+gPaldAGfoYht1oeHex6RR8aOaT288dv4m2AKF+gX+M096FKI0s/wAwmv2ldKF+hfAEMwq5Ov4JuTQCGWyQc89O2AAARSihHpjLlviGYAAP/8QAJxAAAgIBAwMEAgMAAAAAAAAAAgMBBAATFCAQITQREiIjJDMwMUD/2gAIAQEAAQUC4/1kTEx/ETvloGeOp19FNOvKNAgyHSM85mXGIwI+uP8AHR4+Q5DJ/RPF5TAAEANhsgNTtVf49efxzKABwxFQhghRM8R+dzJQsp7KzahObVcZ6Q3F11KnGfC1wVZSDN7Xze18rHDT6Wpheb2vm9r4+0k44I7N6D9dnoz7HdLPfiX12se81sCYs1z10gE2HAfqDFrYDM/Zb4MXqLUfuiwtrjWMit/jo8dqJNgCQww/ZCl6YcWK90g7vj/HR4+G6IIFzE8yATHQYGHuiWG6Fei08BYrj/H/AP/EABQRAQAAAAAAAAAAAAAAAAAAAFD/2gAIAQMBAT8BK//EABQRAQAAAAAAAAAAAAAAAAAAAFD/2gAIAQIBAT8BK//EADYQAAIAAwMIBwcFAAAAAAAAAAECAAMREBIhEyAiMUFRcqEjMDIzUmFxBGKBscHh8CRAQpHR/9oACAEBAAY/As6o6u5KW+3IR0s1uFNERMORQm6cSKmEOQSt0YgYx0U5h5NpCLs5bp8WzqLimiDtN9IoooLJnCYl8IsuCZLauwGACayzqPhzrq9t8BAUahFFDFj4dgiX6RM4TEvhEFjsiWg75jVaa6wQdRgymxZMPUbM1jsli78Tj/ljEoKtg3nAkyVAPyiszTPvRVBcO9YMj2gBtvrFUlhTZKfxaB+Y/PPNn3nocpujvORjvORibMGomgtlzNziO85R3nKECPVsomz3hmz19+vIWsDqfEWomxTeNspN8xeWP0zUf+Li4fXZ9bEVBLxBOkYVmWlYJ0ZgArjgYB0JakV3mE9nlYM+LOd0GswslMK2V2SxzP5zzSp/uLrdtdcTP017C6jEjDzhVJqQNcTOExL4RCzEe467aVjSa8d8YYsdQims6yfPOvKbrjUYuPovu3+lkzhMS+EWXF0n8Ii+5q/y6ijAER0U408L6QhkyUrEUrlPtCpkpWApXKfaOknfCWKRRVA/af/EACkQAQACAAQEBgIDAAAAAAAAAAEAESExQVEQYaHwIHGBkbHRMMFA4fH/2gAIAQEAAT8h43LigtaCAEsckly/wXEVQMFy8x+pqkdhWPWBqym1N2UzWiUybzri/kx6w5iagNv109ZfjaLwAZrsgYgZAQDk3OzbTv20yIia4Kr0hbtgk1beUvwiHpL9t30IDNZE1B0KXuQNu7z3EdtlAa3/ACjmAC8YOgHIYE30gBiFNwwyzifUd7eHkpj3HTge4ETZKN4Yhod4KxN9Rxy3ypoFaWYGW5TUOHJl/mOieFjJLvFoB+p3vone+iJHdk5HERWql8nBneX1O8vqZDgi2x8Ph8j0eSnzfHz2/nqcLmGcg+1ZdeODqdc8NtD0Kx+XRwbAGFyqjAKbraImtsSGDMVhg3XEYwg/c9YDG+B6L92weETary2OjGTBwj+zlBrOwD+5ZKccDunZtp37aVrEgqEdEmefbaV7ErQZPeZV3teaWfiQu4keUFPm7LzNZc7NtH22nDm4/s2mORlWZDY/By10k0A2H9nWY5F1C+J06KxTqoOU+7b7VKLnNrV3/if/2gAMAwEAAgADAAAAEPKPDNPPLAIAGHPPJDDPHPKDLBIHPLALCEPPPPDPPPPP/8QAFBEBAAAAAAAAAAAAAAAAAAAAUP/aAAgBAwEBPxAr/8QAFBEBAAAAAAAAAAAAAAAAAAAAUP/aAAgBAgEBPxAr/8QAJxABAAEDBAEEAwADAAAAAAAAAREAITFBUWFxgSCRofAQscEwQOH/2gAIAQEAAT8Q/MCo809MCVWAKFAaUSJ2VCo/4Exml8rls/5XgLvFZq7KQebvmHFPkRBAivefmm0vwpheAM8zRfDlyRd6fAKk4XRT3J2HAtRmNvVNsU0zZWNQmnLpgvMFsOIQCg5Ibl6+p319PtpRFQAlWpcXJu72PdNKRIy6CdVgXDbDYD6HFLog43mPsi9wa0F8ECoy0kCvJvQ0g/5RlgFZLzRpkJG/aoIGBt1pZJUqDzR8qUElvUmXYpVqAuEpfY2qW672kXdehxUp0fBZ8L3taUwLYFwwPFIYujM26P0b1Cp2WIdGAq0A4QvJhOKjMyMFnMaIxJTCyhuI7/CuMGTdhR16M0ofIqJbj4NhXBqWMakFWWCQMWm8Lf8AJimxCYf9C1wa3BrHdhyHKLpuejSr6IRPeWfD4qKkvQxRTQBI7NfNSVCjF55BEnthbYakmooGWUDyPhvocVnsgjueGYZ3RUiIN6iqJBcdhnNRv3MrvRH+1LeMNACxYRxm1QLkYIknEAdzTl4TdYPKUDQmiYSSUZ26oEkBFtWpqEa7J6WF8+y9HSkQR2MkyHIw+KGcYFw2tuLJ7ZrEYT6+zrUs2JsUjhYtQZr6nfX0+2t+MyIpBODWnYmAUcSMHlq6nE+f5BldKV+YbmSvdsaAHqAUFIJEchr+mnJfj6k8mg13NQoCwN6X0ddBFN/56kqDKhC6husC2WKTAmljI4yxLlSdg9aJ7zKOzZ5oXOjIZwMh8qpohobkSZWZxLUWX+h2AJA4Yt3WTsuJwzPapO0WA+Q5Xlu/6n//2Q=="]
math
multiple-choice
7
4、为了得到函数 $y=\sin 3 x+\cos 3 x$ 的图象, 可以将函 数 $y=\sqrt{2} \cos 3 x$ 的图像()
向右平移 $\frac{\pi}{12}$ 个单位
向右平移 $\frac{\pi}{4}$ 个单位
向左平移 $\frac{\pi}{12}$ 个单位
向左平移 $\frac{\pi}{4}$ 个单位
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACzAP0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACio7y4gtLOW7upkhggjaSWR2wqKBksT2AANeVfCbxpqPiL4+eJbS41dH0xvD+nXmmaasin7OHmvFZiBz5jLHGzA/dyF7ci1dgekXL+t0v1PWaKKKACiiigAooqDU7y207Tp7+9mWG3to2llkboqgZJ/KjYNyeiuA+CPi3X/FGueNIddgjtl0fXI7axt1j2vDA9lbThZD3fMzZ9DwOBXf07aLzSf3q4BRRRSAKKKKACiiigAoryn4watP4d+LXgu4PirXrCPV9aSzlh+yM+lNE0TgQSMIyqyySbdjMwOfbAPq1C1jfzt+X+YPSVvK/5/5BRRRQAUUVwP7R3iDVPCvw01DxHp/izTPDg063klE9/arMk8wH7uI7mUKrHIJHOOQRgmlKSSuyoxcnZHfUVT8O3Ut94fsb2drdpbi1jldraTfEWZQSUb+Jcng9xirlVKLi2mRGSkk0FFFFIYUUUUAFeFft1eJtZ8L2PwputI1bVdPS7+Kui2moLpssqyXlqwnMluyRfNKj7RmPBDEAYPFe614/+154J8T+Nf8AhV//AAjOmfbv+Ed+Juj63qn+kRxfZ7KDzvNl+dl3bd6/KuWOeAaAPLvGX7c+gaV8Y9P8BWHwr8cTTT3qQXZvNPa3vFQn70Fngyyn0B2Hg4B6H0f/AIaW8P8A/RMPi7/4Ql5/8TXr+o6XpmoXFtPf6daXUtlKJrWSeBXaCQfxoSPlb3HNW6APEbr9o/wzc2sltc/Cr4szQzIUkjk8BXbK6kYIIK4II7Vyfhf4kfCzw58Q77xlonwW+KNjf31hDYtHbfDqaKKJI3lbcgWMEM3mkMc4IVeBjn6aooWjuG6t/Xc8V/4aW8P/APRMPi7/AOEJef8AxNcz8Yv2vNJ8HfDu/wDEln8LPiJJNZNDhNZ8N3Om2hV5kRt9y6MsZ2sduQcttXvX0hVXWNN07V9Paw1Wwtb61kZGeC6hWWNmVg6kqwIJDKrD0IB7UAfFP7UX7QugfHD/AIJ++ObvSPCPizRyqaeWl1HS3+xyEala5Ed0mY2x6Eqfau++M37c3w08C+OE8JweG/FOpagtxHFcvPpslhHArPtZtsyiZioyQBFhugNUf+CrXxM8Gaf+zX4i+GSapHceJtVWyddNtFMj2kMd5BIZZ9vESEIFXdgsXUAHnHZeJvGPxO8Rpbr4g/ZButUFpMs9t9t8S6PN5EikFXTc52sCAQRggigDU/4ap+E/p4v/APCO1L/4xWf4o/aO+CniLQp9H1i28YXFlchfNjHhPVYycMGGGSEMMEA8HtWh/wALW+OH/Rr+uf8AhX6V/wDHKP8Aha3xw/6Nf1z/AMK/Sv8A45RuBwfwj+K/wO+H/iTxPq2l3PjeX/hIr6O4WKXwprEn2VFgii8vMivvO6ItuwD823oorvP+GqfhP6eL/wDwjtS/+MUf8LW+OH/Rr+uf+FfpX/xyj/ha3xw/6Nf1z/wr9K/+OUXdku2n3B1Of+KP7ZPwz8K+Bb7XtP0nxRqlxaGLZZz6Be2KSbpUQ5nmhCJgMT8x5ICjkivJ/wBqj9pTwD8c/wBg7x6nhbT/ABHZ3kA0/wA+G/0mTy4yNRtSc3Ee+EdRgM4Y5Hy17V4k8efFjxFos2j6/wDslahqmnXO3z7O98UaRNDLtYMu5GkIbDKDyOoFeU/tv+K/idrn7JXiHwjqH7P974O0e6fT4P7RfxBp81vZf6fblAYYHLkFgq/KvG7PQGgD7Or5/wD+Co//ACYn46/7h3/pyta+gK8V/wCCinh+98TfsV/EDTbCWCOWDTo9QZp2IUx2s8V1IBgH5ikLhexYjJAyQAcH+2D+1H8SvhPJc2+g/AfXZLaIMB4h1ch9PGOjYti4Knrh5Y29V647iz+OnjuW1ikb9m/4jMXQMSrWODkds3GcVDo/xl+Mmr6La6pYfsya3NZ39uk8En/CW6WvmRuoZThpARkEcEZq1/wtb44Dgfsva5/4V+lf/HKAOX1nx/481nxAl3rXwN+K19ptvew31rpLppKwQzRYKHesgkYBwHALdeuRxXUf8Lx8df8ARt3xI/77sP8A5Io/4Wt8cP8Ao1/XP/Cv0r/45R/wtb44f9Gv65/4V+lf/HKNlYN3c8q1z9rz4qWHx8m8E2v7OXiS/tVht3NggYalbiQfNK5i82Ip1xkqODlhziHwF8RPGXh/9pb9oPxVoPwc8Ta9qk8XhiSTQVu7SK4tMabJgSlZZMk9hCJT6gHivWh8VfjeCSP2Xtb56/8AFX6Vz/5Erxv4KfEH4qWn7XXxu1Sw+A+q6hqmpf8ACPf2lpKeJNPjfSfLsXWLfKz7JfNUlxsJ24w2DQBt/AD9p/43eNNV8Sw6t+zrrEx0q4hjitLCdLOazDByVnF46F2O0EFVA65A79V46+J3x21mzfTtM/Z41u1sbu2lgvUvbiwuXYOMAoRdooGC2QytnI9MHoP+FrfHD/o1/XP/AAr9K/8AjlH/AAtb44f9Gv65/wCFfpX/AMcpSipKz2GpNO6M3wb8R/iT4Z8I6X4c039mbxp9j0myis7ffremltkaBFyfO5OAKwfj1+0T8YvB/wAK9S8RWH7PeuaXcWklssd1qt9a3Vsu+4ijKtFbzeaxYOVXb0ZlJ4BrsP8Aha3xw/6Nf1z/AMK/Sv8A45R/wtb44f8ARr+uf+FfpX/xyqlJybb3ZMYqKSWx434v+Onxc8Y6H8JbrW/hn4s+Gn2/4qaJZ3V0dQMEOqQOZhJbtETHOY3ADbXRoyF5Y/Ln7Or5C/aE8W/Ezx78Svgx4P134Maj4Tk/4WTp+sw3Nzr9jdLNFZLLJcKBE5wViZn567CACSBX17SGFFFFABRRRQAUUUUAFFFeW/GD426R4V8RL4I8J6TdeNfHlwm6Dw5pTjdAD0ku5j8lrFyPmfnkYB60Aeg+LNf0Twx4eute8RarZ6XpllH5lzd3cwjiiX3Y8ewHcnArxFvGfxO+OzG1+FqXXgfwHIcS+NNRtSuoapH3/s22flFI6TygdcquVrR8J/BPWPF/iG18a/H/AFe18UarbSedpvhq0Vl0LRW7FIm5uZRz+9lz14HANe3KAqhVGAOgFAHyP+3R8LvBnwv/AGB/F+n+FNMMc15eadLqOpXUhnvtSl+3QEy3E7fNIxJJ54GTgAcV9cV88/8ABU7/AJMj8Vf9fOnf+l0FfQ1ABRRRQAUUUUAFeKf8FDv+TR/En/X7pP8A6dLSva68U/4KHf8AJo/iT/r90n/06WlAHtdec/tff8mpfEr/ALFHU/8A0lkr0avOf2vv+TUviV/2KOp/+kslAHQ/Bn/kj/hP/sA2X/ohK6Wua+DP/JH/AAn/ANgGy/8ARCV0tABRRRQAV8//ALO//J9n7RX/AHK3/ptkr6Ar5/8A2d/+T7P2iv8AuVv/AE2yUAfQFFFFABRRRQB4r+0R/wAnOfAj/sN6v/6a5q9qrxX9oj/k5z4Ef9hvV/8A01zV7VQAUUUUAFFFFABWV418S+H/AAh4ZuvEPijWLPSdLsk3z3d3KI40HYZPUnoAOSeACa89+LXxv0/QfFB8B+BNFuPHPj2RcjRNNkAjsAf+Wl9cH5LaMcfe+Y5GF5zWZ4K+CGoeIPE1r46+O+tW/jDxDbP5unaNDGV0PQm/6d7dv9bIP+e0uWPGAMA0AZX/AAk3xT+PP7jwCL/4efD2bh/FN5b7NY1iP/pwgf8A4942HSeQbsEFVBBFepfB/wCGngz4Y+HW0fwfpCWizv5t7dyMZbq/lPWWeZstI5JJyTxnAAHFdbRQAUUUUAfPP/BU7/kyPxV/186d/wCl0FfQ1fPP/BU7/kyPxV/186d/6XQV9DUAFFFFABRRRQAV4p/wUO/5NH8Sf9fuk/8Ap0tK9rrxT/god/yaP4k/6/dJ/wDTpaUAe115z+19/wAmpfEr/sUdT/8ASWSvRq85/a+/5NS+JX/Yo6n/AOkslAHQ/Bn/AJI/4T/7ANl/6ISulrmvgz/yR/wn/wBgGy/9EJXS0AFFFFABXz/+zv8A8n2ftFf9yt/6bZK+gK+f/wBnf/k+z9or/uVv/TbJQB9AUUUUAFFFFAHiv7RH/JznwI/7Der/APprmr2qvFf2iP8Ak5z4Ef8AYb1f/wBNc1e1UAFFFFABXL/F7wnqfjTwdN4f03xnrPhT7VlZ7/RvLW7KEYKpI6t5ef7y4b0IrqKKAPnP4cfsoS+AdJm03wd8b/H2j29xM09wLZbENPIxyXkc25Z256sSccdK6L/hRfjX/o5D4mf99WP/AMj17VRQB4r/AMKL8a/9HIfEz/vqx/8Akej/AIUX41/6OQ+Jn/fVj/8AI9e1UUAeK/8ACi/Gv/RyHxM/76sf/kej/hRfjX/o5D4mf99WP/yPXtVFAHzz8RP2XdS8deE7jwz4s+PXxE1TSbtkae0uGstjlHDrnEAPDKp69qpeKPh2/h9PM1T48fHyKE3sVkkq3EDI80sqxRqpFryGd1APTnPSvpPOOTXz78VtUF74g8W2h1+RYo/F/hMW226Drbg3VqWaNH3Ipzyfl575xR9uK7tL72kHRleP4U6mbHUru5+OXx00+HT0UpJqOr2Nul0SOFjZrfrnC/Nt5I6jmsTRvC9lrEdm2k/tCfGy8N3ZpclV17TIzAzOY/Ik8yJQJg6lTGMkEYr3i3kuf7J1nT9A8aLrWrK4Z5L2W2kbSw6Db+7gjTjCl1VxliT82Onzzptlrei+Cvh/qdzd2Os3d62kSCCKIwyLatcLK91dOMjzDcXG3IX5yQeDuwldysvL8b/0/T1CWkG+qv8Ap/S/4Y2ZPAUv/CP+F9Xg+Ovx0ni8WY+xRrrOnI8Y+zSXOZN8IVRsibox5xXP29lp134b/tjT/jv8dLpPsSX32ePxBpPni3aRYxIY9m4Dcw6ivS/GNnpumeGPhl4cXVtOuLfSdWm0i4u78eXA7Q6beQvvQOMglT8m4ZzgnmvO9QmaxsPHVta+LdPVbmaCW8tL+xDS3ivLlPsk0bLFEquX/dI04+YtiNnOb0dRpbf1/wAD+tUpaRXf/g/8C39a+k/8M/az/wBHEfGP/wAHNp/8i1Q8SfsxJ4j0ltJ8R/HD4r6vpsk0Us1jeataPDMY5FlQMPswyA6Kfwr3mipGFYvxJ8MWPjX4e654P1Oa4hstf02fT7mW2ZVlSOWNkYoWBAYBjjIIz2NbVFAHhuk/s432maXbabY/tBfGGG1s4UggiXWrTCIqhVUZtewAFWP+GftZ/wCjiPjH/wCDm0/+Ra9qooA+fvHXwe1Dwv4TvNduv2gPjVcraINlvb6xZmW4kZgqRIDbAFndlUZIGSK5yy8O+Hbvy1h/ab+NKyS2xnRJr6CHdyiiMM9oF3kyIAM85yOOa9k/aO05L7wXp00s0ipZeIdKmESnCyP9vgVd3qBuJx64PavB/DHg/Vv7Uuo4havc2dyJpoBOA7wwfZIpZoycLIiPbyqxUkg7Rj5hWcpO/lr+CX+f3I0jFP8Ard9vwNy58E2drb+Grm+/aO+MlnD4mjjeFrjX9PQ2vmx74hMPI+UOfkBGRvKrnLCsXwX8JPDx8af29ovxh+NNrqvju4ggvNQXWNM8y6MNvMYDOqxF1AjhlCkr2xXfeJLPxXqPg34RWujahp9pb7rN4oLuEzRXlxHp00yecBgrGjRKRtO7dhuNgBx/hLYw2nxUuluL+EaT4Yl06e21QIQupkpeWRVF6BBNcOA+458s4GDmuicUqsoLo39yOeMn7NSf8qfzd0vxsY+veGI9H1y40y8+Ovx13Q6yNHWYa5paxy3Btlufl3xqQojcEsQACD7ZveCPAT+KfEEWm6Z8fPjb5dxpz38F7/b+mSQSos3kkK0UT5O7PtweatfEmC2vbr4lxNqltazR68mxbeZVvyPsFi/7ti26FS0a5aOOSQ4GB8uD0PwAvXvPiVp3/FQaTq1ungxRZ/YNOaya2g8+PZFNEW4kHIPyRdP9WvSs6Pvcl+qv/wCU3L81+nrpV91Nr+veS/J/r6S/8M/az/0cR8Y//Bzaf/ItH/DP2s/9HEfGP/wc2n/yLXtVFAHjXhf9nq2034neHfHGs/FX4ieKLzwvLPLp1rrmpW81srTQtC5KpApztc4II5HpkH2WiigAooooAK574ueKV8D/AAr8SeM3sTfL4e0i51E2ol8sziGJpNm/B2524zg4z0NdDXnX7Xn/ACan8Sv+xQ1P/wBJZKAOO0H4ufHvWdCstXsf2aUe11C2juYGbx9ZKSjqGUkGPjgirf8Awsr9ob/o2aL/AMOBZf8AxuvRfgv/AMkd8J/9gGy/9EJXTUAeKf8ACyv2hv8Ao2aL/wAOBZf/ABuj/hZX7Q3/AEbNF/4cCy/+N17XRQB4p/wsr9ob/o2aL/w4Fl/8bo/4WV+0N/0bNF/4cCy/+N17XRQB86/FD48fG3wH4B1Pxf4h/Zujt9L0mHzrqUeO7STYm4LnasRY8sOgNT6f4j+NV1Yw3UP7K/hERzxrIgPjW1BwRkZ/0T3rf/4KEf8AJmPxB/7BP/tVK9V8K/8AIr6b/wBecX/oAoA8Z0/xZ8frESCx/Zm8M23mjD+T47t03D3xa89aoxan8aI9Cm0Vf2VPB5024jWOezbxtbNDKigBVZDaYYKAAAeAAAOlfQdFAHz/AKVq/wAbNLt7K30z9lbwhYw6bM89nFa+NraJLeR1ZXdFW0AViHcEjk7j61e1Pxl+0JqVjJZah+zZ4duraXHmQz+PoHR8EEZU2uDyBXuVFAHiv/CwP2kf+jdtE/8ADhQ//I1c18QPjz8d/B2oaDZar+zlp81x4k1H+zdNhtvH0BM1x5bSBCWtwF+WNzkkDjryK+j68V/aw/5KR8FP+ygJ/wCkN1QBy6/Hr9oRvF7+Fh+ytF/bEdiuoNZf8LK07zBbtI0Yk/1eMb1YfhXqXwL8W/E/xT/an/Cx/hH/AMIB9k8n7B/xUttqv2/d5nmf6lR5ezbH9773mcfdNfP9np/xNs/+Cs2oa/ePp0Wg/wDCI+dMrX2BFo+4wpnI4f7VEZSvQDPNfXOm3lnqFjHeWF1BdW0wzHNBIHRx6hhwaAJ6KKKAKeu6Vp2taabDVLSO6tmkjkMcnTcjh0b6hlUj3FVNa8K+GdX0P+xtU8P6bd6f9na2FtNaI0axNjKAEcKdq8D+6PQVr0UWQXaM2+8P6HeafaWN1pNnNa2GPssLwqUgwhjwo6AbGZcf3WI6Gq+r+D/CWq31ne6p4X0W+udPVVs57nT4pZLYKdyiNmUlACARjGDW1RRd3v1CytboV7GwsrKa6mtLSGGS+m8+5eNApmk2qm9j3O1EGT2UDtR9hs/7U/tL7JD9s8nyPtHljzPLzu2buu3POOmasUUAFFFFABRRRQAUUUUAFedftef8mp/Er/sUNT/9JZK9Frzr9rz/AJNT+JX/AGKGp/8ApLJQBv8AwX/5I74T/wCwDZf+iErpq5n4L/8AJHfCf/YBsv8A0QldNQAUUUUAFFFFAHjf/BQj/kzH4g/9gn/2qleq+Ff+RX03/rzi/wDQBXlX/BQj/kzH4g/9gn/2qleq+Ff+RX03/rzi/wDQBQBfooooAKKKKACvFf2sP+SkfBT/ALKAn/pDdV7VXiv7WH/JSPgp/wBlAT/0huqAKeqWNvqP/BQLUbS5sre8RvhTbMLe5/1UjLq0xUNweMgdj9DXTfsqx3Fn4X8SaPe6Da6Peab4pvkuYrCcyWcjyMs2+3yq7U2yqNu0YYNnnNeYax4n+GniT/go5e+FNY1DS9SabwDDpX2GdC+b+LUZZzDgjiRU2yfTkV9K6Pp2n6Tp8dhpdlb2drFnZBbxCNFycnAHHJJP40R0bfdW/FP9Nv8AIJapLzv+DX6lqiiigAooooAKKKKACiiigAooooAKKKKACiiigArzr9rz/k1P4lf9ihqf/pLJXotV9UsbLU9MuNO1Kzt7yzu4mhuLa4iEkU0bDDI6NkMpBIIPBBoA8x+D/wAWfhZb/CXwtb3HxL8HxSxaHZpJG+vWysjCBAQQXyCD2ro/+FvfCb/oqHgz/wAKC1/+OVF/wpj4Pf8ARJ/A/wD4Tlp/8bo/4Ux8Hv8AolHgf/wnLT/43QBL/wALe+E3/RUPBn/hQWv/AMco/wCFvfCb/oqHgz/woLX/AOOVF/wpj4Pf9Eo8D/8AhOWn/wAbo/4Ux8Hv+iUeB/8AwnLT/wCN0AS/8Le+E3/RUPBn/hQWv/xyj/hb3wm/6Kh4M/8ACgtf/jlRf8KY+D3/AESjwP8A+E5af/G6P+FMfB7/AKJR4H/8Jy0/+N0AeU/t3fE34b6v+yL4603SfiD4Vvr250wJBbWutW8ssreanCorksfYCvf/AAr/AMivpv8A15xf+gCvAv23vhd8M9C/ZO8davofw68J6bqFnpLSW15ZaHbQzQtvX5kdUDKeeoNfQWggDQ7MAYAt48Af7ooAtUUUUAFFFFABXhH7aGr6VoPi/wCDmsa5qdnpmnWnj1Huby9uFhhhX7FdDc7uQqjkck17vXhH7aGkaVr3i/4OaPrmmWep6dd+PUS5s723WaGZfsV0dro4KsOBwRQBwVivwHg/b2vPjh/wt74d/ZJfDSRIP+Eostw1EnyGkA8zp9mQD6ua+lPAvjvwR41+1f8ACG+MvD/iL7Ds+1/2RqkN39n37tm/ymbbu2PjPXacdDXzbYn4Dz/t53nwP/4VD8O/ssPhpJkP/CL2W46iD57Rg+X0+zOrfVDX0l4F8CeCPBX2r/hDfBvh/wAO/btn2v8AsjS4bT7Rs3bN/lKu7bvfGem446mgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDx/9v7/kzX4hf9gZv/Q0r1bQ/wDkC2f/AF7p/wCgivKf2/v+TNfiF/2Bm/8AQ0r1bQ/+QLZ/9e6f+gigC1RRRQAUUUUAFeK/tYf8lI+Cn/ZQE/8ASG6r2qvFf2sP+SkfBT/soCf+kN1QBxmoeDPAujf8FHr/AMTt4YEt7b/D+LWUa1ikknkv5NQlgMqqDzI0YCegX0Ga+gPh54t0vxnoL6rpSXkKw3Utpc295btDPbTxMVeN0PQgjtkEEEEivH/Emq2ejft9alfX815DCPhVbIZbS0kuJIy2rTKGCIjngkclSB1PFdz+zfpeu6R4X1i11a9vr6zfXrqfR7vUbUQXk9rIVfdMoRCW8xpQGKglQpI5ojq36fqv8/6tqS0S9f0f+R6JRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeP/t/f8ma/EL/sDN/6GleraH/yBbP/AK90/wDQRXH/ALTXgjUviR8BfFHgbSLq1tb7XLA20E12WESMWU5YqCccdga4mxh/a6t7KG33fBRvKjVN2NVGcDGaAPcKK8U/4y6/6op/5VaP+Muv+qKf+VWgD2uivFP+Muv+qKf+VWj/AIy6/wCqKf8AlVoA9rrxX9rD/kpHwU/7KAn/AKQ3VJ/xl1/1RT/yq1yHxR+GP7UfxJ1fwu+r+MPhn4VHhrVxqltqehWN5d3MMoieMEQ3P7qQYkb5WI7HPGCAc5petfFKT/grdeaNIun/ANjx+ExE8wtDltIDmeNgd3+sF1J5RbpjPy5r69r5tX4CftBr4xfxWP2qIv7ZksF09r3/AIVrp3mG2WRpBH/rMY3sx/GvUvgX4S+J/hb+1P8AhY/xc/4T/wC1+T9g/wCKattK+wbfM8z/AFLHzN+6P733fL4+8aAPQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzz4/wCvXVlb6B4d06S8in17WrWG5ubSYxPa2yyKztvHI3kLFxyfMJHQkeh1yXxk0DWfEPhuzttBkto7221KC5V7hiqqEJyeAckZBx3xUTUna3dfddXKVrSv2f32dvxPEfDPxN13VtIm8Ur4n1g3wi0rTDb2en745pJzbPPKkZhaMGM3YVGydxBU54rqvj14zuvD/wASLKxsvF9vYXV74dv3mtpo5I1WJYgYju8zaLozFRHwDtMowx21fm+FWo2W200rTdLnhg1vTHtLy5vGjmtbK2isRIVURsGdjZ42kqPunPauq8ZeEry58fafr2k6Zo86Q2F5FOl7wpuJZbV45mAU79otz3ByEAI6rc0nou7/APSf83166ekwlZ3a7fn/AMD9Tjfgz4h1LVfibp9vLe3ht4rLUYZI21GeZLhohpxEjrI7AODPKOAODXDeIfEviXTrGHUrDXtQnmXVtYtWsBqF5cPIWv7hIp5Y4pQY7eBYlGFGSGbap2AN6f8ADvwB4t8E+Mb5tMk0e60vWtYXU9W1Ge6kjvZ2NvslUQLCU5mAcfvQFX5cccwJ8J9evvAV1oF14gsNLabWb7UYpLTTzcFDLeSTxM6yP5UrKGQ/PEcEcdM05+9y/j+vbv8AhpbQUFypq/8AWtv0/wCCWf2fdVs9V8VeJpNM8Vr4jsUt9N8u8g1B7m3eTyX81o90j7MuDlQeCMHpXqVcj4C8N63pHjTxHrGr3tjdLq62gha1gaE/uo2Vi6FmAJLdmOeeBXXU5O7FHRIKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k="]
math
multiple-choice
8
一空间几何体的三视图如图所示,则该几何体的体积为( ).
$2 \pi+2 \sqrt{3}$
$4 \pi+2 \sqrt{3}$
$2 \pi+\frac{2 \sqrt{3}}{3}$
$4 \pi+\frac{2 \sqrt{3}}{3}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAElAgsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCtrWoWmk6Pd6rqEvk2ljA9xcSbC2yNFLMcKCTgA8AE0mi6jYaxo9rq2lXkN5Y30KT21zA4eOaNgGV1YcEEEEGrVeORf8WM8aCE/J8M/El7iI/wDLPwtqEr/dP9yznduP4YpWxwsg2gHsdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV5J40uL34Q+PLrxsZri58B+IbhW8Rwu5c6BdEBBfx56W74VZlHCECUceZQB63RTYnSWNZI3V0cBlZTkMD0IPenUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/jTXk8RfFKH4U2+kWGrabLpUt34vN4hkjt7OVXiggABx5s0gY4bIEcMhxllNdD8UPF2m+BfAOp+KtWWSS306HcsEIzLcysQsUMY7ySSMiKO7MK4Twrv+EHwP13x/wCOVF14m1Rm1nXxbnc097IFSGxgPdU/c20Q74B6saAPKtV+LPjL4K/GTQPh3f39rrPw+0jWItK1HWbjfJfW0N5ayzWUEzHjdbLbSPJLlt0LRMwDEk/V9fPd18Ols/D/AMM9B8bwQahqni/xlqF74t7pc3N14f1cTRg/3EQrCn+xEld3+zXrGpJ4f1H4feI7p7jxB4DuV0y5uJT899aFd1ndn1MkO0Mf+ekco7UAek0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/8AFTxJoPhL4e6rr3iWJp9MtrcrNapCJnuy5CLAkZ4d5GZUVT94sB3roK8nuP8Ai53x8W3H7zwr8NbkSTH+C/11kyi+jLaxOGP/AE1lXvFQBz//AAl9p+zfZz6Z41kv0+HBga48Oak0L3EmjkDJ0qfbuJAz+4YnlQYycopb3S1mhubaO4t5UlhmQPHIjBldSMggjqCK+bv20v8Ai4WgePvD6/vNA+HPg3UtU1T+7cavLYTfZID6+TEzTkdmktz2r0P9nOebwxda18HtSldpvB7JJockrEtdaLMWNqcn7xhKyW7f9cVJ++KAPUqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKq65diw0W8vj0tbeSU/wDAVJ/pVqvGvix8aNA/4R3xhp9p4f8AFd/omirLpeveKNMsIZrLR5mGyUsjTJPP5AcPJ5EcgUZycggHWw7N/wBfh6nxx+zX+1z4l8ffFjwN4a+MVjeeILLR7tp7FtD0wyXV5qGAlvPcwof3ixK0rARoDuKvhigr7V8Un/hYn7Qmm+F0/eaB8PvK1rWP7s+qSKfsVuf+uSb7hh2Y25rmvhb8MPhH+y98EtQ8X+GdN/tW7jsFkfV5Nst7q8j7RDDEwGFEsjRoqJgEsucnmvR/gD4RvvCHw8ii1yWO48R6xcSat4huU+7NfzndKFP9xPliT0SNB2oaadmSmmroqfGT/kovwn/7HO4/9MOr1kfHL/ihviBoPxgg+Sxt9uh+LMdDp00g8m5b/r3uGVie0c05rX+Mn/JRfhP/ANjncf8Aph1eu08RaVp+u6BfaJq1rHdafqVtJa3dvIMrLE6lXU+xBIoGXKK81/Zr1XULfQ9S+HHiG6kuNd8B3K6dJcSn576xZd1ldn1Lw4Vj/wA9IpfSvSqACiiigAooooAKKKKACiiigAooooAKKKxfG3jDwl4N0+K/8X+KNF8P2txL5MM+rahFaRySYJ2K0jAFsAnA5wDRsB84/tEftk6P8Ovi34t+E82ivba5Yx2sOi6xLKrWImuYIXD3QOGjSIzbyV3blQjg9fWNJ1Hwr8IP2ZY9V0S+XxDY2Nl5tvdW8yyya/fTvwwdSQ8tzcy9QSN0npXz/wCIP2QLf42/tTeI/i7408QW7eCdXntp9IttJullk1eBbaFFkMyErHE2zgqSzDps4J9k0Hwv4e1D4waT4B8KaPaab4J+FKpfXFpaRhYZdYmQm3iP94wxO07E5JeeFicihpp2YbkPjjwhd+Df2FPiJZ6xOl1r+peEta1PX7tOlxfz2krzEf7CkhEHZI0Hauh/aOt5/Dc2jfGDS4ZHuPBjuNZiiUlrvRptou1wOWMW2O4UesBA+8a0f2sf+TWfiX/2Jmrf+kUtd7cRRT28kE8aSRSqUkR13KykYIIPUEUAJZ3EF3aRXVrNHNBOgkiljYMrqRkMCOoIIOakryz9nWWXwrqOtfBzUJHZvCbJPoEkjZa50WYt9mwT1MDLJbn2iQn74r1OgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvAfGctz8VtR1v4RfC3T7fQ/B63s9v468U29ukSSPISbmxsVAxLcyFmEs5+WPc33nIA3P2pv2lPhv8DNJZfEF/8A2hr8se600GxcNcy56NJ2iT/abrztDEYrmbXTPgxd/sx2fxp8TfA/wHJqGs6PDqpsY/DlpLLd3VyFMMCu0e55JJJY0BPVnzSt72quv+G37ry6u19Lpu7S0dn/AFt5+fr1s11WoWdt4y+O2keDLGIDwv8AC+KDUL+MHKS6m0eLK3Pr5EW6cj+89ue1evVxH7PPgmXwH8MbTS9Q8h9ZvZH1DW5oECxyXsx3SBAOBGnyxoB0jjQdq7eqk7tu5MVZJWPP/jJ/yUX4T/8AY53H/ph1evQK8/8AjJ/yUX4T/wDY53H/AKYdXr0CkM8p+O4PgfxxoPxit/ks7HGi+KwOjaZPINlw3/XtOVfPaOSevVgc8iqmvaZYa1od5o+q2sd1Y6hbyW11byDKyxOpV0I9CCR+Neffs16nf2Wj6n8M9fupLjWvAdwlh9olOXvtPZd1ldE9y0Q2Mf8AnpDLQB6ZRRRQAUUUUAFFFFABRRRQAUUUUAFeV/Ge68AfDvxonxe8UTahfa42mjQtB0iBBcTXMjyFzFY24Xe1xKWVWIONqLnaoJr1KV0ijaSR1REBZmY4CgdST2rwjRtN8A/Gj43ap8QPAPxV8SJqvhK3XQ2utIi064sbYvudxbG6tJvnYYDyRnBGFyQCKlrVf10a/Hbyvez2b6P+uqf4b+drXW5Z+Fi6h8Dv2W7/AFfxJo8NpqE19d6lZ+GbCUPHZz3tyWttLgI+UnzJY4/lG3czEcc16B8CfB9z4L+HVtp+qXCXeuX0smo69eKOLq/nbzJ3H+yGO1R2REHauG0TSr7xV8crXw9qHiXVPEui/DOQX97fanHbI91rM8f+jwkW0MUZFtbuZPuZ3XEJJJSvaa0k7slX1b3d3827s8//AGsf+TWfiX/2Jmrf+kUtegV5/wDtY/8AJrPxL/7EzVv/AEilr0CpGeX/ALSFtceH/wCx/i7pMEkl54JkdtVihUl7zR5dovI8DljGFS4Uf3oMD7xr0uxube9sYbyznjnt7iNZYZY2DLIjDKsCOoIIOafNHHNC0UqLJHIpV0YZDA8EEdxXlv7O8knhLWNb+Dd87f8AFLlbvw68hyZ9FnZvIUE9TA6yW59FjiJ+/QB6pRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVxnx18YXnhDwSDolvHeeJNauU0vw7ZP924vZc7C3/TONQ8rnskbmgD5E/aY/ZL0b42fHDxdqXwruodCutFRRrN1eySTWmqavJiQwIckwmOIo0jDcN0qKEBDGvcPhb4fu9Y8ReBPh1eqh0r4N6Bpz60qNujn1z7IkdvDkcMII98x/2pYD2rtmGlfAj9nuWQefq0+mQl2Zv+PnXNTuJOp9Zbi5lA9i/oK1vgP4PuvBfw6t7DVrhLvXtQmk1LX7xOl1fztvmYf7IY7EHZEQdqAOyooooA8/+Mn/ACUX4T/9jncf+mHV69Arz/4yf8lF+E//AGOdx/6YdXr0CgAryn4+A+CfGOg/GS2BW10r/iUeKgv8elTyDE7f9e05SXPaNp/WvVqra1p9lq+j3elanbR3VlfQPb3MEgyksbqVZWHcEEj8aALKkFQQcg9CKK8y/Zr1C907TNU+F+u3Mlxq/gOdLOKeY5e+01wWsbknuTEDEx7yQSV6bQAUUUUAFFFFABRRRQAUUUUAfKv/AAVG8GfEjxb8PtJsPBPje4gj1S/i0xfCECLE2vTyMT/r8jhEV3ZJCIwsbMSCBXI/8E7bfX/gV+yv8QtS8Y+GdQstctPE5tLXSLmIxzX101vbJbwx5+95ksyKrDIO7IOK+gPhb/xcf4rX3xSn/eaDonn6L4PU/dmAbbeagPXzHQQxt/zziYjiWnX3/Fw/2jIbIfvPDvwzK3Fx3S51uaL90nofs9vIXI7PcxnqlAHT/A3wfN4J+HNppWo3K3ms3Ukl/rl8B/x+X87GSeQf7O9iFHZFRe1dfRRQB5/+1j/yaz8S/wDsTNW/9Ipa9Arz/wDax/5NZ+Jf/Ymat/6RS16BQAV5f+0laXWhw6R8WtHt5Jb/AMDyPLqEMK5e90iXaL2HA+8VVUnUd3t1H8Rr1CmyIkkbRyIro4IZWGQQeoIoAj027tdQ0+3v7K4juLW6iWaCaNtyyIwBVlI6ggg1NXlf7Pbv4P1/XPg1eM3l+HCt94aZz/rtGnZvKjB7m3kEkB9EWEn71eqUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVneLNe0Xwx4du9e8Q6pa6ZpljGZLm7upQkca+5PqcADqSQBzXm0Go/En4qASaG138PvB8v3NSnt1OuapH/ehhkUpZxsOQ0qtKRg7I+DQB2/xB8feC/A1rHP4t8TabpPnnFvFcTgTXB/uxRDLyN7ICa5Rfi9f6rz4N+E/jzXo2+5dT2EWk27D1zfyQyEe4jNb/w7+GHgjwTcyX+iaJG2rXH/AB961fO13qN2e5lupS0rfTdgdgBXKeKvE2u/EzxHeeBfhvqMunaPYTG38TeL7fGbdh9+ysGPD3PZ5eVhz3kwFAOH1r41fEjxh8RLX4WaF4Vh8JTalqbaTf8AiqLVI9TXSJxaT3bW6IIxG10YbaTje4iJUuOQDu6J8XPiT4d8af8ACt/Fvw4uPEWvWdoZ4dS0bUbW3/t22U4N1BBcvEoYZXzIlkJRj02MhO/4s8M6F4O1z4N+HPDenRafptj4wuFhgjyeug6uSzMeWZiSWZiSxJJJJrrPi14F03x34ejs7i5n07UtPnF3o+sWmBc6XdKCFmiJ4PUhlPyupZWBBNAHOw/HXwTZzpb+MrbXvA80jBQfFGkyWdvk8Y+1jdbHn0lr0bT7u1vrKK8sbmG5t5lDxTQyB0kU9CrDgj6VwXwo8aXmtXt98PviBY2tn4y0uDdeWyr/AKLq9qTtF7ahvvQv0ZDkxsSjfwlqmqfBnTtJvJtY+Ferz+AdVkYySQadEJNJvH/6eLA4iOecvF5cnP36APTqK838HfEy+tPFFt4K+J+kQeGvEd2dmm3MMxk0vXCOv2SdgCsnGTBIBIB03j5q9IoAKKKKACiiigAooooAKKKKACiiigAryf4W/wDFx/itffFKf95oWiefovg9T92UBtt5qA9fMkTyY2/55xMRxLV39obVtS1BNM+Fvhm7kttc8aGSKe7gPz6XpiY+13ef4W2usUZ/56TIf4TWx4+1rRvhL8GZbrTNLX7LolnFY6NpVvwbiY7YbW1jHq8jRoPrmgDnNW/4uH+0ZbaSP3nh74alL6+/uXOszRn7PEfXyIHaUj+/PCeq16tXH/AvwfP4J+HNrpmpXK3mtXkkmoa7eqP+Pu/nYyTyD/Z3sVUdkVB2rsKACiiigDz/AOMn/JRfhP8A9jncf+mHV69Arz/4yf8AJRfhP/2Odx/6YdXr0CgAooooA8q+P6t4M8VaF8ZLVStvon/Es8UBR/rNIncZmPr9mm2TZ7J5/wDer1RWVlDKQysMgg8EVBq1jZ6ppVzpmoW0dzZ3kLwXEEi5SWN1KsrDuCCQfrXnP7Nl9eaTY6t8KtbuZJtU8CTJbWs8zZe+0qQFrK4J/iPlq0LHvJA570AenUUUUAFFFFABRRRQAV5p+0Nq2pagmmfC3wzeSW2ueNDJFPdwH95pemJj7Xdj+6211ijP/PSZD/Ca9B13U7DRdEvNY1W7jtLHT7d7m6uJThIYkUszsewABP4V55+zzpl/rEmp/FjxHaS2+reMRGbC0nGH0vSY8m1tyP4XYO00g/vzFT9wUAbHxC1rSvhL8GXm0bSkMWkWkOnaFpEHH2m4YrBa2qD/AGpGjT2BJ7GrHwP8HSeB/hzZ6Pe3QvdWmaS91q+A5vb+djJcS/QyM20dlCr0FctP/wAXE/aNSAfvPDvwyIkk7pda3PF8q+h+zW0m72e5XulerUAFFFFAHn/7WP8Ayaz8S/8AsTNW/wDSKWvQK8//AGsf+TWfiX/2Jmrf+kUtegUAFFFFAHmH7Sdld6PZ6T8V9Ft5JtS8CyvcXkEK5e90qQAXsAA+8QirMo7vboO9ej6Xe2mpaXbajp9xHc2l5Ck9vPG25JY2AZWU9wQQR9andVdCjqGVhggjIIryv9n5m8GeJtd+DV2xEOg41LwwWP8ArdHndtsQ9fs0u+HHZPIP8VAHqtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWZ4y8Q6N4U8K3/iPxBfx2OmabA091cSZwij0A5JJwABkkkAAk1p15JNEPix8aZYZgZPBfw8vVDRn/AFera4uG+b+9HaArx0MzesNADvA/hbWPiL4hs/iL8SrCa1tbWX7R4W8J3IG3TB/Bd3adHvGByFORADgfPuavWaSR1jjZ3YKqjLMxwAPUmvG76/1L47Xs2k+H7u5074ZwSNFqWs27mOfxOynDW1o45S0yCJJxzJykZ27noAl1rXdY+MmsXXhjwPqNxpvgqzma317xTaOUl1F1OHstOcdACCslyOF5WPLZZPUPCuh6P4Z8OWegaBp1vp2mafCIbW1t02xxIOwH6k9SSSeam0TTdP0fR7XStJsrexsbKFYba2t4xHHDGowqqo4AAHQVaoA8/wDjJ/yUX4T/APY53H/ph1evQK8/+Mn/ACUX4T/9jncf+mHV69AoA4/4weArbxtpdrNbX8mj+ItFlN1oOuW6BptPnxg8HiSJx8skR+V1ODggEVfg749ufEc174X8VWEej+NdBVRq2mo5aKZGyEu7VjzJbSYO09VOUbDLz3VcT8YvALeLIbLWtC1AaL4v0Fml0PWFj3eUWxvgmUY8y3kAAeP6MMMqkAG/468L6D4y8L3Xh3xLpsOoabeLiWGTPBByrqw5R1IBVlIZSAQQRXA+Adf1/wABeNLX4a+PtSn1S01ElfCXie5A334VSxsrthwLtFUlX4EyKT99WB6H4O+Pl8YWt7pmraedF8V6E6wa7oskm5raQjKyRtx5kEgBaOQcMMg4ZWUanxQ8H6T478FXnhvWPNSK42vBcwNsns50YPFcQv8AwyRuFZT6j0yKAOgorhPgL4r1XXvD97oXivy08W+Fbr+zddWNNiTuFDRXca9o54yki+hZl6oa7ugAooooAKKKKACiiigAqpr2p2Gi6Jeaxqt3HaWGn273N1cSnCQxIpZnY9gACfwrmvi1c+PdKisde8FWlrrEOns51XQJAI59RhO3m2mJASZNpKq3yPuKkqcMOb182Xx08MeH49A1O3fwg2qeb4qtJw8V65t8MunywlcxkzBPOV8Ham3BEmQAT/s86ZqGryan8WPEdpJb6v4xEZsLScYfS9JjybW3I/hdgzTSD+/MVP3BVbUP+Lh/tGQaeP3nh74Zlbq67pc61NH+5jPY/Z7dzIR2e4iPVK674yeMIvAnw51HxGbVry6hVYdOsUPz315Kwjt7dfd5XRfbJPaofgd4Pl8EfDmz0i+ulvdYuHkvtbvgP+P2/nYyXEv0LsQo7KFXtQB11FFFABRRRQB5/wDGT/kovwn/AOxzuP8A0w6vXoFef/GT/kovwn/7HO4/9MOr16BQAUUUUAFeV/tBI/g7xFofxks1Ii8P50/xMqD/AFujzuvmSH1+zyiOfPZBMB96vVKg1KztdR0240++t47i1u4mhnhkXckqMCrKw7ggkH60ATRuskaujBlYZVlOQR6g0teYfs23l1otvq3wn1m4km1DwNKkNjNM2XvdJlBNlMSfvFUV4GPd7dj3Fen0AFFFFABRWX411PUdG8LXuqaVoVxrl3ax+YmnW0qRzXIBG5ULkLu25IBIyQBkZzXP2/xL0PVfhHqHjzwtb32vR2NvKf7MtLZ/t32mMYNo8JG+OYNhWVgNucnjmgDm/i3/AMXG+J2n/Ca3/eaLpyw6z4ycfdeEPm0sCfWaRC7j/nlCQeJBXXfGjxgvgX4cahr8Vr9tv1CW2lWCn5r69mYRW8C/78roCewyegqn8B/CF/4U8GyT+IJo7nxRr902q+IrqPlZLyQDMaH/AJ5xIqQp/sRr3Jrn/wDkon7Rv/PTw78MT9Uutcni/I/ZraT8HuvVKAOq+Cfg4+BvhzY6Hc3X27U2L3esX+Ob6+mcy3Ex/wB6RmwOy7R0FdZRRQAUUUUAef8A7WP/ACaz8S/+xM1b/wBIpa9Arz/9rH/k1n4l/wDYmat/6RS16BQAUUUUAFeY/tKWF7penaV8U9DtpJ9W8BzPdzwQjL32mOAt9bgdz5aiVR3kgj9a9OpGAZSrAEEYIPegCvo+oWWq6Ta6pptzHdWd9AlxbTxnKSxuoZWU9wQQfxqzXlPwBJ8FeLte+Dd0Stto/wDxNfCxb+PSZ3P7lf8Ar2m3xY7RtB616tQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByPx28WXHgn4T6x4gsIVuNTjhW30m3bpcX0zrDbRY/wBqaSMH2Jqb4W+GdP8Ah18LNO0F71Wi0q1aS/1C4cL9omJMlxcyMeAXkaSRif7xrkP2gtQsW+JXw50bVry3s9LtdQvPEupz3EgSNINPtjtLseFVZ7m3ck9NgqhZ2WpfHi8i1LW7a5074YQyCSw0qdGin8VMDlbi6Q4KWeQCkJ5l4ZwFwhAEJ1D4+3G1Dc6d8Ko3+ZhuiuPF+D0HRo7D34af2j+/7FY21tZWUNnZ28Vvb28axwwxIESNFGFVVHAAAAAFPiRIo1jjRURAFVVGAoHQAdqdQAUUUUAef/GT/kovwn/7HO4/9MOr16BXn/xk/wCSi/Cf/sc7j/0w6vXoFABRRRQBwfxi8B3mvXVl4u8IXsOkeNtCRhpt/IpMN3ETl7K7UcvbyEf7yNh15GDe+EPj2z8caPc77KbSdd0ib7LruiXTA3Gm3GM7WI4eNh8ySL8rqQR3A66vPfi94G1S81m28f8AgKa3sfGukw+UnnErba1a53NY3WP4CclJMExOdwyCysAZ/wATFHg747eE/HcB8ux8SMvhXXsfdYvvksJm91n3wg/9PY9BXqVeN/EjxDZfFf8AZZ8XT6JFPYa3pVnLLLpl4u260rVbPbcxwzKOjLLFGQw4ZSrKSCDXqXg/WIPEPhHS9ftRiDVbGG8iGc/LIgcc/RhQBpUUUUAFFFFABRRRQBj+NvFnhXwdpUep+LvEuj+H7GaYQR3Wq38VrE8pVmCB5GALFVY4znCk9jXiPxH8bfCSLxNJ8Qfhr8bvhvpfizYq39rP4ptFsPEMSj5YbtVkysgHCTqN6dDvTK1658b/AB5pPwy+E+u+O9bYfZNFs2n8vdgzyfdjiU/3ncqo92r4a/4JW/tDatqfx48TeDfG2pmZ/Ht5NrFnI7YVNQwWkjUH7qvGOB28lVHWgD1a1/af+DvxB+MmiXfibxbY+H9G8E2xvmsb6YSLdazIZIRski3xzR28SyMHRirNcIw+7XrH/DVX7PH/AEVjQP8Avt//AImuh8Of8nTeMv8AsTPD3/pbrdegUAePf8NVfs8f9FY0D/vt/wD4mj/hqr9nj/orGgf99v8A/E17DRQB49/w1V+zx/0VjQP++3/+Jo/4aq/Z4/6KxoH/AH2//wATXsNFAHzX8Uf2lPgTqPjj4b3dl8TdEmg0nxTNd30iu+LeE6NqcIdvl6eZNEv1cV2f/DVX7PH/AEVjQP8Avt//AImvYaKAPHv+Gqv2eP8AorGgf99v/wDE0f8ADVX7PH/RWNA/77f/AOJr2GigDx7/AIaq/Z4/6KxoH/fb/wDxNH/DVX7PH/RWNA/77f8A+Jr2GigD5X+Mn7SHwN07xx4Y+JXhn4kaPe32k3A0vWbO2MjSXulXLqsmFC/M0EoinH+ykoH36+p1YMoZSGVhkEHgiuA/ax/5NZ+Jf/Ymat/6RS16BQAUUUUAFecfEb4f6rb+J5PiF8M7m20zxWyKuoWdwSth4iiUcRXQUfLIBwlwoLJ0IdPlr0eigDyfVvjhpY+FesaxZaZcQeLtMlj01vCl9hL2PVJ2EdtbsoPzJJIylZUJRk3MDgHHXfBbwcPAvw5sNAluvt2oDfc6rfkfNfXszmW4nP8Avyu5A7DA6CvOP2pvh1pvin4u/CbWotW1LQdYHiG605dT0lLYXKxHSr+5HzTQyZKvbAKCCAJJDjcVZd3/AIU74g/6L78VP/AjSv8A5AoA9Uoryv8A4U74g/6L78VP/AjSv/kCj/hTviD/AKL78VP/AAI0r/5AoA9Uoryv/hTviD/ovvxU/wDAjSv/AJAo/wCFO+IP+i+/FT/wI0r/AOQKANT9rH/k1n4l/wDYmat/6RS16BXj3ib4DX3iDw5qGg6z8c/ijd6bqlpLZ3tu9zpYWaGRCjoSLEHBViOD3q7/AMKd8Qf9F9+Kn/gRpX/yBQB6pRXlf/CnfEH/AEX34qf+BGlf/IFH/CnfEH/Rffip/wCBGlf/ACBQB6pRXlf/AAp3xB/0X34qf+BGlf8AyBR/wp3xB/0X34qf+BGlf/IFAFj9pTTb6w0nS/idoNrJcaz4Dne+a3hGXvtOdQt7agdy0Q8xR/z0hjr0LQ9SsdY0Wz1fS7qO6sb+3S4tZ4zlZYnUMrqfQgg/jXmp+DmvkYPx9+KZB/6eNK/+QKj/AGS9AfwTo3i74cwa5qmr6T4M8SLp+jy6o0TXEVtJptheGItHGgZVlu5tvy/KpVRwoAAPWKKKKACiiigAooooAKKKKACiiigAooooA+Tv2s/EfgLSf22PA8XxX1Oy/wCEVg8ONss5bpI0iupr1dkt3GzZnti1tH8oUhXjV2BVSV9x/wCF7fBD/osnw/8A/Cosv/jlZvim3tx+1poMOoQRzWev+BtVszHKgdJTFd2TNGynggpM/B6gGszSbm4+BOt2+g6pPLN8MtRnWHR9Rmcs3heZzhLO4c8/ZGJAilP+rJEbHaUIAOl/4Xt8EP8Aosnw/wD/AAqLL/45R/wvb4If9Fk+H/8A4VFl/wDHK9AooA8//wCF7fBD/osnw/8A/Cosv/jlH/C9vgh/0WT4f/8AhUWX/wAcr0CigDwf4sfGf4PXnjz4ZXFp8V/A88Nh4tnnvJIvEdoy20R0TVIw8hEmEUySRpk4G51HUiu4/wCF7fBD/osnw/8A/Cosv/jlHxk/5KL8J/8Asc7j/wBMOr16BQB5/wD8L2+CH/RZPh//AOFRZf8Axyj/AIXt8EP+iyfD/wD8Kiy/+OV6BRQB5/8A8L2+CH/RZPh//wCFRZf/AByj/he3wQ/6LJ8P/wDwqLL/AOOV6BWf4q13R/DPhy81/X9Rt9O0zT4TNdXVw+2OJB3J/QDqSQBzQB4F8ZvH3wlTWJPiL4A+L3w6/wCEmgtfs+p6ZJ4qs0t/E1kAc2sx8z5ZVBbypsZUnacoxFd9+xZff2h+yZ8PJ90jeX4ctLfdIjKT5UYizhgDj5OD3GDWHJZ6j8TYZPHvxC0+40vwJoqNqGjeF7tNkuoeUC63uooegG3dHbHheGky2FTqf2S9Pn0v9l/4fWV0Ns6+GLF5h6O0COwPvljQB6FRRRQAUUUUAFFFFAFHxBo2j69prafrmlWOp2bMGNve2yTRkjoSrgjIrx/9mbwH4GtvEnxAvLbwZ4fhuNP8e3X2OaPSoVe2xb2rDy2C5TDEnjHJJr26vMv2cP8AkLfEz/sfrv8A9JbSgC74c/5Om8Zf9iZ4e/8AS3W69Arz/wAOf8nTeMv+xM8Pf+lut16BQAUUUUAFFFFABRRRQAUUUUAFFFFAHn/7WP8Ayaz8S/8AsTNW/wDSKWvQK8//AGsf+TWfiX/2Jmrf+kUtegUAFFFFABRRRQB5/wDGT/kovwn/AOxzuP8A0w6vXoFef/GT/kovwn/7HO4/9MOr16BQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/wb/5KL8WP+xzt/wD0w6RXoFef/Bv/AJKL8WP+xzt//TDpFAHoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeYftEH+xPEPgDx7nbFoPiWOzv3P3VtL9Gs2LegE8lq5PbZzXoutadYaxo91pWq2cF7Y3sLQXNtPGHjmjYYZWU8EEEjBrO+JXhiw8a/D/AFnwlqhZbTWrGW0kdPvR71IDr6MpIYHsQKwv2ffFV/4o+Hcaa/sTxJoNxJpHiGFf4L2AhXcD+5INkyf7Eq0Acv4V1G/+DXiSy8EeJrye88EalOtt4X125kLvpkrHCabdyHkqekEzdeI2O4KX9grP8VaHpHiXw5e6Br2nwahpmowtBdWs6bklRhggj+vUHkV5r4G1zV/hj4ssvhx451Ce/wBF1GXyPCHia6fc0xxldOvHP/LyoH7uQ/65R/z0BDAHrVFFFAHn/wAZP+Si/Cf/ALHO4/8ATDq9egV5/wDGT/kovwn/AOxzuP8A0w6vXoFABRRWH8RfF+g+B/Cs/iDxFefZ7SFljRUQyTXMrHCQwxr80kjtgKigkk0ATeOfE2heDvCt54j8SajFp+m2Kbpp5M9zgKqjlnYkBVUEsSAASa878KeGdd+JniOz8dfEjTpdO0ewmFx4Z8IXGM27D7l7fqOHue6RcrDnvJkrP4H8Ia9408VWfxE+J9n9mksn83w14VZxJDouRgXFwR8st6QevKxAlUydzt6nQB5v+1le3EfwM1bQ7CUpqXixofDtht+95l7ItuWX/cSSSQnsIye1eg6XZ2+n6bb2FpGI7e1hWGFB/CigAD8ABXmd0/8Awnn7S1vaxESaL8M4jcXDDlZdZuoSkcfpmC1kkY+huo/SvU6ACiiigAooooAKKKKACvMv2cP+Qt8TP+x+u/8A0ltK9Nrk/hf4SufC174rnuLuK4HiHxHNq0QjUjykeGGMI2epBiJyPUUAZfhz/k6bxl/2Jnh7/wBLdbr0CvP/AA5/ydN4y/7Ezw9/6W63XoFABRRRQAUUUUAFFFFABRRRQAUUUUAef/tY/wDJrPxL/wCxM1b/ANIpa9Arz/8Aax/5NZ+Jf/Ymat/6RS16BQAUUUUAFFFFAHn/AMZP+Si/Cf8A7HO4/wDTDq9egV5/8ZP+Si/Cf/sc7j/0w6vXoFABRRRQAUUUUAFFFFABRRRQAUUUUAFef/Bv/kovxY/7HO3/APTDpFegV5/8G/8AkovxY/7HO3/9MOkUAegUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5N8Wo7j4a+Pv+Fv6bBJLod3BHZ+N7SFCzLbof3OpIo5ZoAzLJjloTn/lkor1mkkVXRkdQysMEEZBHoaAIrC6tr6xhvbK4iuLa5jWWGaFw6SowyrKw4IIIII61n+OfDWh+MPCd74b8R6fHfabqEflzwvkd8hlI5VlIDKwIKkAggivMWtdV+BN7LcaXY3Wq/DC4laWextImmuvCjMcs8Ea5aWyJJJjUFockqGT5U9Y8O6vpevaHa6zomo2uoaffRCW2u7WUSRTIejKy8EUAeb/AA58S654J8XWvwv+ImoSXrXW5fCniWfA/tmNRn7NcEcLexqOeglUb15DqPVKw/iN4R0Pxx4RuvDniG1aazudrK0bmOa3lU7kmikHMciMAyuOQQDXG/C7xdrmheLI/hd8SbpZtcEbPoOuFBHF4ktkHLYHCXUYx5sQ6/6xPlJCgF74yf8AJRfhP/2Odx/6YdXr0CvP/jJ/yUX4T/8AY53H/ph1etj4reO9I8CaHDdX0VxfahqE32bSNIslD3eqXJGRFCnc92Y4VFBZiACaAJvif420PwH4ZOsa3JMxllW3srK1jMt1qFw/3Le3iHMkjHoB05JIAJHKfDnwTrmt+KoPiR8UI4W12JW/sTQo5PNtPDUTDBCnpLdMvEk/blEwuS03wv8AAery+Jh8RfiTLb33i6WJo7G0gYvZ+HLd+tvbZ+9Iwx5k5AZyMDagC16PQAVxPxu8cXHhPR7PS9AtYtS8XeIpjZ+HtMdsCWbGWmlxysEK5kkbsBgfMygu+LHxH07wdJbaNZWU+veK9UU/2R4esWH2i6wceY5PEMCn70z4VR6nCmr8I/AeoaRq95428bX9vq/jXWYliurqBSLbTrcHctlZq3KwqeSx+aRvnb+EKAa/wf8ABlv4E8CWugx3cl/dl3utT1GVcS6jeSsXnuH93ck4/hGFHAFdPRRQAUUUUAFFFFABRRRQBzXxe8Rax4V+H19rXh/w1d+I9ViMcVlpdqG3TyySLGpZlVikal9ztg7VVj2rjPC/jL4i6F8bNF+H/wAQZvC+rL4l0W4v7K98P2M9m1lPbMnnRSxTTzeZEwmj2ShkOVYFOQR1Px28X6r4F+F+peItC8Lan4m1SALHZaXp1pLPJNK7BQWWJWcRrncxCkhVOATivPP2Y7fSV8XX3iHxFc+K9d+IfiC3A1HV9T8F6rpdjZwIdy2Nmbm3SOG3QnIUtvlbLtk4ClPWT7L/AC0t89W/kE9Irv8A8Ff8Mv6a7Lw5/wAnTeMv+xM8Pf8ApbrdegV5/wCHP+TpvGX/AGJnh7/0t1uvQKACiiigAooooAKKKKACiiigAooooA8//ax/5NZ+Jf8A2Jmrf+kUtegV5/8AtY/8ms/Ev/sTNW/9Ipa9AoAKKKKACiiigDz/AOMn/JRfhP8A9jncf+mHV69Arz/4yf8AJRfhP/2Odx/6YdXr0CgAooooAKKKKACiiigAooooAKKKKACvP/g3/wAlF+LH/Y52/wD6YdIr0CvP/g3/AMlF+LH/AGOdv/6YdIoA9AooooAKKKKACiiigAooooAKKKKACiiigAooooAK8y1r4WX2ha3c+JPhLrkfhfULuUz32kXEJn0XU5DyzSW4IMMrHrLCVJPLCTpXptFAHl0fxfuPDQ+z/FfwZq3hR4+H1a1jbUtGk/2hdQruhU/9PEcWPfrWt4gt/h58avAj2On+ItP1e1WRLmz1PRNRjkn065TmO4gljJ8uVDyD9QQQSD3dcT4w+D/ws8VagdQ174f+H7y/Jz9uNgiXP/f5AH/8eoA8W+JHxL8W+G/Gvw68HeL/AA5d69450bxTNNpq6XCI4fFFs2j6nAl1ET8sJWSaIXCscQ5LjKFa9e+FPgC/0/XJvHfjy9g1jxtqEPlSTxA/ZdItyc/Y7JW5SMEDc5+eVhub+FVy7v8AZz+FNxdWtydP8RRzWMjSWjw+MdWjNuxRkJj23I2Eo7r8uPlYjoasf8M+/CWXjUPDVzq6/wDPPWdavtRjP1S4mdT+VAGr4x+MPw18M6h/ZmoeLbG41Y8JpGmlr7UJD6LawB5T/wB81hy638W/HuYPDOh/8K+0WThtY8QRJPqki+tvYqxSI+jTuSO8RrvfB/hXwx4T0/7B4W8OaTolr/zw02yjt0/75QAVr0Acr8Mfh54c8DQ3Uulx3V3qmpMH1PWdSnNzf6g46GWZuSBzhFwi5wqqOK6qiigAooooAKKKKACiiigAooooAKx/CXibS/Ec+sQ6Y0rNoepyaZeeZHtxOiI7BfUYkXn61sV5l+zh/wAhb4mf9j9d/wDpLaUAXfDn/J03jL/sTPD3/pbrdegV5/4c/wCTpvGX/YmeHv8A0t1uvQKACiiigAooooAKKKKACiiigAooooA8/wD2sf8Ak1n4l/8AYmat/wCkUtegV5/+1j/yaz8S/wDsTNW/9Ipa9AoAKKKKACiiigDz/wCMn/JRfhP/ANjncf8Aph1evQK8/wDjJ/yUX4T/APY53H/ph1evQKACiiigAooooAKKKKACiiigAooooAK8/wDg3/yUX4sf9jnb/wDph0ivQK8/+Df/ACUX4sf9jnb/APph0igD0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqvq1xNZ6Vc3dvYXF/NBC8kdnbNGstyyqSI0MjIgZiMDeyrkjJA5oAr6Nrel6rqWrWFhdedcaHerY6gnlsvkTtbw3ATJADfuriFsrkfNjOQQDwtrel+I9Bg1jR7r7RaXG4KxjaN0dWKPHJG4DxyI6sjxuA6OrKwDKQPjDxBH/aFh4Qj+ImgeH9Z8XeJr3xfo816dD/tSxstWn8T6XpcV8FuI3BjtYtqxeftDRww2+9d6ivT/AIAxeDrn9o64m8N/ADT/AA7p6+GdM1HStVtNL8Pr9h+0tqatdC4s7iSR47mOKKJPKMn+rYsqK+5wD3iXxV4eguNbgu9Wt7NvDkK3Gqm8Jt1tYGjMi3DNJgGEqsg80EpuilXduikC4/hb4sfCzxNr0GieG/iX4P1jU7rd5Fjp+vW1xPNtUu22NHLNhVZjgcAE9q+YPidqvgzT9S+K0ehHxh/Z+rfCa6s9I1bUtfvNStdfkkt9WuFYfarmaQxrHp921tKEjjKm8bc63Fs0nq994qm1/wCPmjabNq1veQ6N8U5IdMijMeYrT/hE75HI28uovo9RjLHOJIJo85iKqAekeKfix8LPDOvT6J4k+Jfg/R9Ttdvn2Ooa9bW88O5Q67o3cMuVZWGRyCD3qvpPxn+D2qarbaZpnxX8D3t9ezJBa2tt4jtJJZ5XYKiIiyEszMQAAMkkAV4h8YNZh1DUvjJ8NbPxpo+k33iDxAn23TYlkvdb1G0bQdIRrezsoYppQsyC4V7tYZvIWN2EMnLxWNU8WPF4XHh/xx8TNQuvE2pfEDw2NL8LeJbeysdSs7eLXLLJjWG3t/tm7ZI7zwiS3GwxxSSCF5pQD6fooooAKKKKACiiigAooooAKKKKACvMv2cP+Qt8TP8Asfrv/wBJbSvTa8y/Zw/5C3xM/wCx+u//AEltKALvhz/k6bxl/wBiZ4e/9Ldbr0CvP/Dn/J03jL/sTPD3/pbrdegUAFFFFABRRRQAUUUUAFFFFABRRRQB5/8AtY/8ms/Ev/sTNW/9Ipa9Arz/APax/wCTWfiX/wBiZq3/AKRS16BQAUUUUAFFFFAHn/xk/wCSi/Cf/sc7j/0w6vXoFef/ABk/5KL8J/8Asc7j/wBMOr16BQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/wAG/wDkovxY/wCxzt//AEw6RXoFef8Awb/5KL8WP+xzt/8A0w6RQB6BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfO9n8JfGs9nd6nq1jbtdWfjkTaDYxXSFoNNl8YJq15dyPlV3TQRWp8klyi2alSHnkiX0D4S+C77w/8V/GOutodvo+m6jDBa2sUd+10buUX+qX010CwyiyNqi5RsFJFmRQYlikk9IooA831vTPGtl8aPEWu+HNHt5l1zw/oulWeoXcyG1s5YbjVpZ5pog6yyLGlxBiNMGR5UTfGvmSxc/Z+EfFvw08dW3/CC+HbjxDY6rpmgaNc6jc3Nv5luttqV3LqN9fF5IWkmmh1CWUPEsjPOsjSKMjf7RRQB4f4p8J/Fe71b4n6Ponh3w//AGJ4w1qG4h1C+8QxwTywf2Xp9tMgtpNNvYWjY20sZ81ckF/kA2Oc+18KfG9Phd4c8F6t4K+H62+n+JtIvLmfw74mvQltbQazb3bLbWl1bYSOOKMqIvtACom2JQAkVfQFFABRRRQAUUUUAFFFFABRRRQAUUUUAcP+0h4d8U+Kfgrr2k+CNfvtD8SG1M2k3tlcGFxOnzrGWH8L42HPQNnqBXwl/wAEt5/jL48/aC1S41jxz4oTw9oVy+qeIraa9kC3t9IPLjilBPUmPLA/wwle9fob42tvFV1pUcfhHWdH0q+EwMk+q6RLqETRbWyojjuICG3FTu3kAAjac5HmvgH4XfEjwXd67c+HPF/w7spPEmqyatqRTwHe/vrl1UM3/IW4B25x0yzHvQB0Xhz/AJOm8Zf9iZ4e/wDS3W69ArwPS7v4taB+0R4wmmXwH4lnXwhoct3dzXV14ct7SAXWsbAEK35kOfNLOXjAG0BTya7i11/40XVrHc23gL4dzQzIHilj8fXjK6kZDKRpOCCCDkUAeiUV5/8A2x8b/wDonnw//wDC8vf/AJU0f2x8b/8Aonnw/wD/AAvL3/5U0AegUV5//bHxv/6J58P/APwvL3/5U0f2x8b/APonnw//APC8vf8A5U0AegUV5/8A2x8b/wDonnw//wDC8vf/AJU0f2x8b/8Aonnw/wD/AAvL3/5U0AegUV5//bHxv/6J58P/APwvL3/5U0f2x8b/APonnw//APC8vf8A5U0AegUV5/8A2x8b/wDonnw//wDC8vf/AJU1DqPiP4yafp899f8Agb4c2trbRtLPPP8AEC7SOJFGWZmOk4UAAkk8CgCb9rH/AJNZ+Jf/AGJmrf8ApFLXoFeDftLax8Xrn9mn4gG/8D+BYdOm8I6n9oubTxtd3EiQm0l3PGh0xFkYLkhS6gnA3DOR7zQAUUUUAFFFFAHn/wAZP+Si/Cf/ALHO4/8ATDq9egV5f+0br2h+GfFHwu1vxJrOn6Pplr4zm8++1C6S3gh3aHqyLukchVyzKoyeSQO9aH/C9vgh/wBFk+H/AP4VFl/8coA9Aorz/wD4Xt8EP+iyfD//AMKiy/8AjlH/AAvb4If9Fk+H/wD4VFl/8coA9Aorz/8A4Xt8EP8Aosnw/wD/AAqLL/45R/wvb4If9Fk+H/8A4VFl/wDHKAPQKK8//wCF7fBD/osnw/8A/Cosv/jlH/C9vgh/0WT4f/8AhUWX/wAcoA9Aorz/AP4Xt8EP+iyfD/8A8Kiy/wDjlH/C9vgh/wBFk+H/AP4VFl/8coA9Aorz/wD4Xt8EP+iyfD//AMKiy/8AjlH/AAvb4If9Fk+H/wD4VFl/8coA9Arz/wCDf/JRfix/2Odv/wCmHSKP+F7fBD/osnw//wDCosv/AI5WJ+zTruleJ/iB8WvEHh3XLLWNEu/FlqtpdWFyk9vI6aNpySFJEJVuQFOD1XHagD1uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqO8FwbOUWrxpOUbymlQsivjgsAQSM4yAR9RUlFAH5T/APBQbRv2kZPip4gl8ezHU9Pg0yxlu28MRSjTIbEzXn2Tz0A3DEi3mDNuIJb5iCufur4R2/7QJ+FPhgwav8NUiOi2flq+lX7Mq+QmAWFwMnHfA+gr21gGUqwBBGCCOtJDGkUKxRIqRooVVUYCgdAB2FAHmn2b9ob/AKDXwy/8E9//APJNH2b9ob/oNfDL/wAE9/8A/JNem0UAeZfZv2hv+g18Mv8AwT3/AP8AJNd14NXxEnhu2XxXPpk2rjf9pk0uGSK2Pztt2LIzMPk25yx5z24rTooA8B/aQ8IfDHSJvEvjz4yrH4xXW44tK8LaBNZedcWrNEE+y6bHuJNzNLlzLGFcfLyFTNdn8NdK+LGlfs5+FtKm1PSm8a2un26alca6JbyPIX5ldonVnkHyqX3HJBJznNY+sfCPxxL8edQ+J9j458M3F3JAtrotvrnhO4vv7Cg2gSJbNHqEKq0hyXfZuOdudvFer+H49Vh0a3i1u9s7zUFTFzcWVo1tDI3qkTSSMg9i7fWiGlO3e2na1/x1vJ9X3s2yWs15X177f5aeW/RLz77N+0N/0Gvhl/4J7/8A+SaPs37Q3/Qa+GX/AIJ7/wD+Sa9NooA8y+zftDf9Br4Zf+Ce/wD/AJJrhv2nbf46r+zf4/bV9X+HkmnjwtqP2xLTSr1Zmh+zSbxGzXBUPtzgkEA4yDX0NTLiKKeB4Z40kjkUq6OoZWB6gg9RQB+VX7Peg/tWWv7OfjS50ua60/4anwpqT3sHiPd9nntvskhf7FGwMiuV3bWTbGWxuJ6V+q8e4RqHILY+YgYBPsKWigAooooAKKKKAPj3/gov+0t44+E/iDQtN8KeDNasZLDUGuf7c1FCNK1INaXEPkKI2/fbTOs212Xa8CEoeCHf8E/v2gPHnin4NanrHjHwt468a6lN4huM6jpljbNbxp5UBEKBpYwoXJO1Vx83qTX0L8aPB58Ya54FgutFtdW0jTfEc11rFvdpHJCLZtI1G3BaN+HBluIV2gE/NnGASNH4R/Djwd8MdBvND8D6Ouk6be38l+9pHIzRpK6orbAxJVTsX5RwO2BxQBzn/C3tS/6Iv8Tf/BbZ/wDyVR/wt7Uv+iL/ABN/8Ftn/wDJVem0UAeZf8Le1L/oi/xN/wDBbZ//ACVXR/DvxpdeKbq5huPA3irw6LdFYSa3awRLNk4whjlckjHOcV1VFAHDfFi3+Iuq+I/D+g+Db46Fo90802v+IYY7ea6tEjCGKC3inDoXlYsC7RuqqjcZKmsD9nTxd4i1O58faFrOtHxbB4N157Gw12G2iim1BTCkzQSLEEhaaFnMLMgRSVGVUg5h/am/4WlqY0fwx4G0PX20HUjIfEur+Hryxi1KCAABbe1+1XEIR5MkGYElAMqNxGOq+BFlZaL4Et/Dek/DbVfAul6OogstP1CWykMinJLhra5n3EsSWaRgzMSTkkmintJ/1utfJK1klvq/ORPov666evX8N9sb/hb2pf8ARF/ib/4LbP8A+SqP+Fval/0Rf4m/+C2z/wDkqvTaKAPMv+Fval/0Rf4m/wDgts//AJKo/wCFval/0Rf4m/8Agts//kqvTaKAPzYj/bY+LXgX9pXxXoc+i3fiHQJPEl1Fa+HdVi8vUbJTMwEMUke4hhwAp8xeMLjrX2H+xjrk/inw/wCN/FdzoepaJLrXjO4nfT9SjEdzbFbS0h2SKCcMPKwR146Cuu8D/CP4deEvG2seMdE8LWUfiHXrya8vtVlXzbl3lYswV2yY05+6mBxyCeal+C/hbUvCuk67Dqklu8+q+J9U1RDA5YCGe6d4gSQPmEZQEdAcgE9aAOxooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuX8bWHxFutVjk8I+KvC+lWIhAkg1XwzcahK0u5ssJI76ABdpUbdhIIJ3HOB1Fef/GT/kovwn/7HO4/9MOr0Ac/8NL/AON/i3w7c6r/AMJr8P7P7PrWqaZ5f/CEXsm77Hf3Fn5mf7VGN/2ffjHy7sZOMn0Lxp4t07w3faLp9xBdXl/r+oLZWNnZorSucFpJSGZQsUSBndieAMDLMqt5r+z54A0K/wBN1DxPPf8Aihb5fHPiKYQweLNThst0evXoUGzjuBblTtG5THtfJ3Btxzd1DdP+3Npcd6F8q0+H91LpuWz+9e+hWcgdiFWAZ9GxRHWpGPe/4Jy/G1vncJaQlLtb8Wl+F7nR+P8AxV4otbjUNF0j4a+OL1WhMcGuaNc6KFVnjH7yFby8U7kZsfvYdpZOjL1x/hP8U/Efi3wr4Z1X/hVXjB7TXbK0uP7azpFvatHMiN9p8j+0pZo48Nv8vDyKvHzMOeo8beFdd1zVY7vTPiV4o8NQpCI2s9KttMkikYMx8wm6s5n3EEDhguFGADknz/8AY78K67a/Av4ba1P8SvFF7Yt4S06QaHPbaYLJVeyTbGGjs1uNqbgVzNuOwbi3OQD0TS/Gdnqc3iWx0/TNQn1bwvKY7rSsRR3E5MfmQmIvIIysy42MzquchihVgvla/FX4grovjKyPh+40fVtM8W6Jp+k3HiK3tbyOG31W7tITFONPutjTQGeZhF5iP5DWTOWaVnbY18ain7Zi2+gXUFrd3/w4uTcSTwNNCksd7GLSSWJXQyBTLccB1JG4BlzmuAbwf/YepfFPXLvxp4gudP0TxnpV5f2VwPt11r17bW/h6/t1gRpI447mWSO4tkihVFdryFAu23giUjrTjLvf8G4/ja/zB6TlHtb8Un+F7Ho/w18Z+Mrz4r6d4f1fxN4X8QaTqWma5IJ9K8N3Wly213pl/aWUsZ867nDr5lxMvCrzGCCymuH8b/GD4kaVpNvqlv4m8Hpca14z1HQdF8OQ+CdR1PUp7az1Sa1uLkC3vt83k20L3L7YVHATguudj9nrR76w+Ik8nizWtHttW8Nanq2iC0tdwj1G+1e30rX7vyHkYMyxz/bRGmzd5AQsd0bs/If2Tq1v8MfEGu3+raPHo11451mMQW+jT2dwy2/iLUJl/tDWY47w2tpExuZ1uEt4Ggcoy3EJy7AHb+APiT401XxF4Suf+Eo8P65oOveJrzw9dovgLU9BuoJ7ewvbhyhvLtydktn5TfuiN3mLuDIQPcK+f9L07X7PXPgdLF4o0/UvCMutF9HtG0e1iv7dG8Pam0avc2M32GSNELIq29uqbfLw77S8n0BQAUUUUAFFFFABRRRQAUUUUAeP/Ev4v654c+IF7pOkaR4fvtMt7210p73V9XfSoLG9GnX+qXn2ifypv3cdnBYOCItublsudjBDwn8aLjXde8KaC+m6fp+t6h4mvdJ1/To55btLWCBdcjjlguDHEH8yfRJMZTITcCoJVq8Y+LPgCbTPhv8AFDSfD0dxfLY+OdUuLyaeaP7ReXeoeCfIDBBtDzXOoajEqxQoMvcBY41UBR0HgLwvrOmfHrwh4ouYLdtG8R+LbqfSb62vYbiK8ik/4Ta9R0aN2yrW2oWcgPQiUDqrAAH0H4q8eeG/D2rTaVfTahcahBYDUJbLTNIutQuFtzMsKuY7aORuXbAGMkJIwBWNyvB3Px70VvipZ6DZaL4wm0yPRri71Zv+Ff659qtJ2mgSyHl/ZdwjlVdQ+bYQWt8blwQzf2edStV1b4ueM/EF5FZtD4xu7e8ur2ZY47SysreJI9zk7UjVN8mTgDzGJ6msHxHc/FPSp9R+LOlah4f0r/hK9a0fQ7XSte8NXM91aac+pLZWrs6Xlvtz9tmvTFJCsyNctA7fu12C1hF90n96uvwaXqD+KS7Nr7nZ/in8j1Lw78SfDmtyXi2lh4sg+w2b3czah4N1WxUxpjIRp7ZBI/IxGhLtzhTg4d4s8b6Va/DmHxLo95dXlvq0A/sq90zw/e62m+SNmile3s1MjRcZPKA8LvUsK1PBNt4qtdKkj8Xazo+q3xmJjn0rSJdPiWLauFMclxOS24Md28AggbRjJ8o+BaeJZdK8e+DfC+oW+m2ekeP72xtr51DvpllJFHdSfZYirI8qyzuiCT5ELb2WQR+RIR1k15X+5pP/ANKX3MJaRT87fg3+j+8ntfjjq2seGfCmp6B4U0e3m1rw/qmr62nifXZ9Ii0BtOmtre8t5XNnIxaKe4kRmZI1xAzZwRWwvxT1zT/hj8SvEfiTwnp9rqfw3+0+fYafrT3UF75WmW+oLtuHt4mTctwqHMR2lSfmrxDwf4T8X6n+zt8ONO1HVNPvIfF3w/l8F6ARlbyODVbDSZ5JZVEaxN9khsdWlC7kMkVvbx7mmkZ67fWnvtZ/Yw+LvxGu7e3tIfiP4Sm8S2dnFO0zWkUvhmzhMUjlFBYSW8nIGCpU8ElQAaHj747eKvBHj7T/AAj4u0n4T6Hfalpk+pRyal8TpbaKOKKWKMBzJpikNI0reWMEMIJuRsruPhF4+1zxT4q1TRNb0Xw/afZNG03WbG+0HxC+q2t/bXr3aRssjW0GMfYywKhgyyKQa8n8W+HdWufiUdFvbLwvoWt+JoWn1nT9Hnn8QtfQNdRLHNrKvcWd1c2BdzbpHHbsluqFXnS0ee3f0D4T3Piq6/aS8bSeLtG0fSr4eEvD4jg0rVpdQiaL7XrWGMklvAQ24sNuwgAA7jnAAPWKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4/xT8J/hZ4m16fW/Enw08H6xqd1t8++1DQba4nm2qEXdI6FmwqqoyeAAO1dhRQB5/wD8KJ+CH/RG/h//AOEvZf8Axur3ij4fWN3qHhHUfDssGgXXg2cJp621oPs/2FkWOay8pWUCNo1Tbj7jRxsAQpVuyoo6p9g7nD6t8GPg9qmq3Op6n8J/A97fXszz3V1c+HLSSWeV2LO7u0ZLMzEkknJJJNV/+FE/BD/ojfw//wDCXsv/AI3XoFFAHM+EPCC6R4z8Q+K72/bUNU1+WNPMMPlraWkIIhtoxknCl5HY5+Z5GOAMKJrfwT4Yh8XS+J00zOpzXr37SvcSOguXtYbQzrEzFFk+z28cQcKGVGlAI86Xf0FFHRIOrZy958PPCV18RLTxvLp9wus2UxuIni1C4jt2nNu9r9oktlkEEk32eRovNdGcIFXdhFAx5PgX8GJry8vLz4VeD9Qu9Qvbi+u7vUNFgu55555XmkdpZVZzl5GwM4UYVQFAA9AooA4fQ/g18JtD8Tab4i0D4b+F9F1bSJnms73StKhs5Y2eGSFgWhVS6mOaQbWyuSGxuVSO4oooAKKKKACiiigAooooAKKKKAOPX4caG3i6+124utQuU1DWk1ufTZpENm17Ha2ltBKUCBm8pbJHRWYqJXMmC8cLRWJvAHh5/GWl+Io47i3bSJp7q2sIJjHZfa5RcB7swjgTFby9DMMeZ9oLSCRo4Wj6iigDgtJ8ANpvxW1/Vkh0278NeJzbane2F0m57bV7ZoxHcxJsKkMsULEkhkkt0ZcliVqal8DPAeo262+oXfji7hSaKdY5/iFrsirLFIskbgG8wGSREdT1VlBGCBXpFFHRLt/X4bLyDq2cj4d8Bad4TkvNT8N3XiG81F7N4oYdd8Y6pf2rMcMuUuZplT5lUeYqFgCwHBIMnwZ8HHwT4JTTLm7S+1S8uZtQ1i/WPYLy9ncySyBey5O1R2RVHauqooWjf9f1/wABA9bf1/X/AAWcf8MPhxofgiz06GyutQ1F9H0a20TTZ9RkR3srKGKKPyogiKq+Y0KyytjdI4UMSkUKR8/pPwM8N2HhXxV4bGveILjTPE/hmHwskEslv/xKNLhS6SG3tWWEMdi3koDzmZzhdzNg59QooA8v8Qfs+/DXXfsX9tr4w1L+zb2O/sftvj3W5vstzHny54912dki5OHXDDJwa6D4e/DbQPBfirV9e0i+8QXFxrVlaWlwur67dansS2e5dCkl08kq5N1Jld+zgEKCWLdhRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=="]
math
multiple-choice
9
中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的$x=2,n=2$,依次输入的$a$为$2,2,5$,则输出的$s=$()
7
12
17
34
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAF5AJ0DASIAAhEBAxEB/8QAGgABAAMBAQEAAAAAAAAAAAAAAAMEBQIBBv/EABQBAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhADEAAAAfvwAHFE0WeNBnjQZ/pfAAAiliJQAZepn6BDzBwWus6I3I5Bn6GfoAACKWIlABm2rFckVYy3Hkahdo+2yC0AACKWIlAA8zJC/wAUx8p91SF1SF1SqGx7QvgCKWIlAzurB7gfSY5LJ7aJMu32VfZx7DzoAACKWIlBQ8scESURR2fDB2vk/sSLvoW1QW0cgAiliJQZt6noFSf5/wCgOYqQ1HWUafPWWXLGVsmdo5+gAIpYiUGfoU4y/wC540PKHJe7+fyD7h892bvuCL2hlTl5RF6KSMlAAUPDQ4pD5L6ab0ud0BfUBfZOuec98lOzWskoFHro6qadEp6/z2ycXKvp5co3hl9XjroHPXJTs1rJL56MW1oDPaAz2hEZs/yf3hn86QilABz1yU7NayS89cGbL3dM9X1Skmpkdq7ilz2WiWXV4zdLP0Bz1yU7NayS8d8FW7SujO0cU2POuSnZzNA69j6LAM/Qz9Ac9clOzWskvnozvdAZ7QGf5oxmLe+R++M9oDPaAp3Ac9clOzWskoB4es4SxQ6ZQ6sSEVqnEaLO0D2ldrGXt17BTs1rJKBjbIzb/dEqa1H0sw2KZIjulHnUGe0BntAc8SxEoAAHnsRl6Xw/2xnbGXpEgAAEUsRKAUTzyx2VFe6V++bZWWJii0Ms41+egBFLESnhTkz7JoR0xj3rQ8mpznV7P5PNDmUAARSxEoACCqaMVQfLfc4V00GfyaQAAEUsRKADN0s7RPKctAvw+5ZuS0rpm6WdogACKWIlABQ80Bn8aQzO9AUOdH0gnAABFLESgAAAAAAAARSxEoAAAAAAAAEUsR//xAArEAABBAAFBAICAgMBAAAAAAACAAEDBBESExQgBRAyNCQwIUAjMRUiJTP/2gAIAQEAAQUC/TPiZjGO4M1q2Fq2Fq2Fq2Fq2ENps3M+ItuLCORgWriZTCMrSYmjAZArOQvyPjT/APNWGd0Ak9ifLuBHGHsP56hyPjIJwzRzxStgOZmFieOMk0EYtiyktCzwRaQcj5HXhlfZVUVWmAxRU9bZVVsqqEBBuZ8sWWLIspj0mho9QxZYssWWLLFuR8TJ7J7SomqVCbaVMdlVWzrLZ1ls6y2dZTw1Ymq1RrBwPhLIUhiAxRMbjHXPGScnzs+LTyGNmyZxw1pDkKaVoQghdn4n3mlLNFEMIP8AliqPhHCUcgBlUcTxFoxoIABE8daKGMiPkfd6cBHsoFsoFsoFsoFJWrxxwvTOfZQLZQIakIFzPuU8QPuq63Vdbqut1XT2azt0uvBVv7qut1XW6rrdV1uq6AxkbgfeMRK5pgmeJ5tME4xi0bwSrTBaYLTBOEYtGUEq0wVVsC4H3i9xV5NS2TEroSFSjfU6kxM75yK6WKuhKVEH1Ooqt58D7xe4sG74YIQEXwbvhh2refA+51YZD2VdbKutlXWyroqlUWjgqtJYv9Nicf8AH5f+av8Amr/mqOelCO9rLe1lvayZ2Jj+gxYw6TROPqNjplWyhHAcGWDLBlgywZYMiZstP0j4yzFqZLSyWlktLTsrJaWS0slpZLSyWlXksSTdi8afpHwmmdihhaELUuQ9bExfEKx5hd2FhsMUvYye0YiwD2Lxp+kfeeZwUMLRCrAES0STiRBLGTKaN568cBDYUhlPIADGHcvGn6R9nxwihtRv8tfLXy18tfLQSWzP5a+Wna2TRxjEHAvGn6R/RKLlF0yzcs3/AKC8afpH2J8BiK3LDhbWFtYW1hbWFtR1p4pMLafdMsLawtrC2mknGx2Lxp+kfY/Cp6St4ueH+uVwaoLtLg+eTLJclAnKaTLNTFwqKX3OxeNP0j7H4VPS7ST5LeLMzGLqzM8ZPKOnMbxwRHqQ9pfc7F40/SPsfhU9Ltt5mtu2KYWZWa8ss8kWrHMGNeAXCv2l9zsXjT9I+39s1GFm2cS2cS2cS2cSepCzRV4nl2cS2cS2cS2cS2cSCrFGfYvGn6R/QYNJH0mnK3UfoLxp+kfOSzHGXyZlsgFZrMSjsRSvwmdsY/xA/jT9I+H9LdMS0ZZVI41TzYg0zZjkGNYQWh0ZolusiZ2JlKJE7ibzF40/SPhNUkOVrLRoTE2mrSyWXZ3EYhF5onlmqxFDAdqMS+TMg6fXAdlXWyrrZV1sq6EWAT5FUid8LUSa3GzlIADuSkW3ORAARjzP6Hwdq8EO4lfCJ8dNnYm5n9EgNLF0qCwXUZheQHGQZAxycz4yyk8mnZWnZWnZTQTi+nZWnZWnZWnZWnZVc55JuB8JpSzQxDCEhZI2mIoY5XIRmznEeoMswxIXzCid7RszCPA+88zi8MLQijbMGng0WIV/xqwf1Yg3AqQysGADGHE+z44RQWolhbWFtYW1hbWFtAdszwtrC2nC2TRxjEHI/olYni6bdtWr31HxllGEcbZrLbWW2oac8EuW2stta8kK/vmfGFtWdO+Da/8AEEuYXsfyAeftX/ik5HxqfhlNl0RwywumAxkrPHpKP/a9yPjLEbSbyNlvKyKzUJ2s0xW7q5t5WT2DlUMTQx8j/UP9Q/1D/UP9Q1//xAAUEQEAAAAAAAAAAAAAAAAAAABw/9oACAEDAQE/AXD/xAAUEQEAAAAAAAAAAAAAAAAAAABw/9oACAECAQE/AXD/xAA/EAABAwEDBgkLBAIDAQAAAAABAAIDERIhMRAyM0FRkhMiMDRhcZGToQQgI0JSYnKBotHhQ3OxwSRAU2CCg//aAAgBAQAGPwL/AGC55AA1lei8ne4bXcVc2+tc2+tc2+tc2+tc2+tBsjHROOFrX8+Vc52jiNGjp25LwcaKyGuqMUGbRXFObs17chY8VaU+B5qY8DtGrlHt1iR1e3IwWsXhTekIwTWu9cinyvUOdRxHr4ZZKao2g+PKGaNtprs9o/lcR4Kta0XazijaoetMA9TC9YqxF6SX2W/2jaNXuNXHp5Wr4mOPSFzePdRc6GIAa7KlBZFe8Bl3Qubx7q5vHuqjGho6By2KxRaaUNync/CLisWKxWKxWPJmFhpGNI4fwtDFd0KogiIPuqnARVPurm8e6ubx7q5vHurm8e6ubx7qAHk0bpHZrbOKNKWnXuIHI8BCaH13+z+VYYKAbERIHYmvTrRAcbONKJln1OO7qVRgo2NkoJARhgmBh9I5waFNU1aH0aqm84ADWUZZb5XeHRyPAxaU6/ZG1WW/M7VROsgYk49FE4gClm69HWTiUaP9HqbsWY3G1hrWF9ou+aLqBrehcPMOP6rfYHJOfZNp2JtFYO3ysHb5WDt8rB2+UXuD6C88dye3hC607iASHYsHb5WDt8oODTUYVcTydHysadhK08e8tPHvLTx7y08e8qGaPeXlEjpY6NNI+MtPHvLTx7y08e8tPHvLTx7yqxwcOg8h5RUA5v8ACzG9idFYFporgsxvYiS1oA6EbIF3u0WY3sWY3sWY3sVS1oA6FxQN2izG9i8op/y/0OQ8o/8AP8ZHlxLRIbTKHOAuXFUoxuVthqwQ0JG2qIBF2KAtExuwocCMVxVMBebKD4zVghoSOvJ5R+7/AEOQ8o/8/wAZMMtycQL3GpWGW7J5R+7/AEOQtuYC7atH4rR+K0fitH4qrmADrU9ulA+gq7oViKPhX9Bu7ULTobWuj1nxb6z4t9Z8W+rMcsQGOctPHvLTx7y08e8qg1B5EsdgRQqYyVIhubVVdHZf7TbigDf0rBYLBYLBYI3KH4B53Aw0MmsnBoWnj7v8rTx93+Vp4+7/ACtNH3f5Wnj7v8rTx93+Vp4+7/K08fd/laePu/yjx2OhbdaDaVOUqH4B5oiivlP09JVBeTeXHWVGLVBWpVu2LQwrhRAm5OF9xursRJuATY7LqubaHVlMUZpGM9419AQa0UA1ZSofgHmBjBaldgP7RvtPde523I2hNLQuA6U82XXA+r0lNjwFOMUHw0tt1HAjYiytkn5p0z32iWhuGGQwRGgGkfs6OtBjRQDzCofgGW7FOcTC57sXGq/Q8V+h4r9DxX6Hiv0PFSNpDxDTWv0PFfoeKs2om11trVBjBcPNKh+Aci5rXWXEXFPZIbIaayUGJw5EqH4BlJTJKwi0K4FZ0O6VnQ7pWdDulZ0O6VnQ7pUr2mGshqeKVnQ7pV74OwrOh3Ss6HdKzod0pjJODIdXNGUqH4Bld1KD9sfxkZZvsm9m0FUCtE1A6/upbV9DxX7QVW0abE253BPFl2N5CjoTnJzXhzmtZaApnFRh1bVKmuTyfqdlKh+AZXdSg/bH8ZQy1RgbV39KpKucFEGmlp1/VrXCYhPe2lWit6Y8+s0HL5P1OylQ/AMrupQftj+MpnuvdSlfVpdk19q4RvqAWRXG+9UIFVIxgvLSFG12IaBl8n6nZSofgHmUHCAfuu+6xl7133WMveu+6xl7133WMveu+6qXSD/6u+6mDnyUD6N9K7Z1rGXvXfdYy9677rGXvXfdYy9677rGXvXfdB4tWhteTlKh+Aci5jsHChUvCucRAaCu3kSofgHIWa2n+w28rVA3tcrTHyNfrfaxXGaJm7W3HsVGu43sm4+bS60fWOATG8SV3suN5RUPwDzb1SBplO0Ydq9NLQexHd4qJkQDGkkuoNStMFeu5WXVY7YULRpU0Rq0OoaYYL0MtoezJf4qk7DF04t7VUGoyRlvqur4JjjSgqiofgHm8JbErf8AjkwVJonRdOIVWuBHQuGaRxbNgV7VjQ7Vaxd7RUR9RnG+aDX0tVJdTarIq9/ssvWqFu85UsE68VmfUVmfUVmfUVo/qKDWigGHn2gCx3tMuVzmzN97ilUlDoj74/tWnPAbtqv8eIu953FavTyl3ut4oVljQ0dH+hfgpzwbeK/i9FydffS5MvNatrf09aqDUf6DmOwcKKXh3uc2A6ziVYF1dexOPBuILQOIQhUEdB5XgYaW/WJwaucN7tc4b3a5w3u04idlXY+jXOG92ucN7tc4b3a5w3u1zlvdonhA6EXVs0tHkeBhvlP0jarI+ZOtOdsCa0uoTi6qdabQtUBtAWmEkV6kT7xHimV9c2QgaEV1HIYmGkQz3begIACgHICOMVldgNnSsauN7nbchFAfiTP6HvLygNvLbrttkKI2DQNNeL1J/wAZpciwu4pGzA7chhiNGjSPH8BBrRQDkLsU424XPdi4grOh7Cs6HsKzoewrOh7Cs6HsKkbWHiGmBWdD2FZ0PYVZMkbQdbQaoMYKAcu4MNH0uKfGWhgrakp2f6FXfIDEqobHGPevK0kO4futJDuH7qWRj4bUpqeIfutJDuH7rSQ7h+6/yGCz7bMOVkmOo2GdG3JUpzjQOArZVaGtKpjQ24g6wjxSBtqL8knk/qt4zOo8pJHrbIfG/I61Zp72CbGAOPWpCkBusmmPQorN7GsoLryqRvtUN+SVwwa0M+ePKcNDn4Fp9YL0lqM7HBaVqFqRhojR7LzVB3CtqFpWqz5O0/G4UAVkX7SdZ/7Z/8QAKRABAAIABAQGAwEBAAAAAAAAAQARITFBURBhwfAgcYGRofEwsdFA4f/aAAgBAQABPyH/AB6PDmFWSGO0CwH3xnJe2cl7ZyXtnJe2cl7ZkbBoeQYfg0eEcd7Huv0Ze/ClwqAhqwKNIGDK4h0xEuTL+wqyhVizanA8JKRiiXFua5n5PTx6PDgdk/uP6ThT7tQUaY9IIm6gbQo4EKdbW6Tc1hzLO8uOM5POFrx6PCiQgZ7DIc5Yt+LxPM0hZwNatcoPqwc20QQVT2NkaxxXDkIk5EmXm0I/qDv/ABp49Hi5wSNZ9CmO3JQwl9cEUbw5T6FPoU5XkqPwaPFynvOU94LtHY5RXdtYud6+37nKe85T3nKe85T3nKe8Ecnw6PC3JNarl6woaqwOHCETBYgxiAQZBTGfQp9an1qfWp9aikoqpi/kLhawALyNvDo8DfaFp2OaGKKwM0NYuquy5nGw4MUUNph7Q9W3oFebj7QCS0WJLo8OBvmPwxw6nUY7/Axg0ytjH5uUyUdW2iJwCxrI7PFo41NaNujedIRu3TNbsFivHDBmdImt23rQgGg3G1f3ANm3e9LzrYqZ+TtO2nNMSC4g6LOLKwuhmvVmDgiuwx38eji5LSyO/mdn9Z2f1nZ/Wdn9ZTseAmHvMPJRjZR3852f1nZ/WNVY+CPd/Bo48rwkZ9Dn0OfQ59DiJMSkrMUCkjEcbn0OfQ59Dn0OfQ5o2y7vDo4+aOCPpELFQWGqcv1PpEOtFqjCUh7RRspyaSfSJ9In0iJTRaowiCPQGmynJxMp9IgAAFsDwmjw0ukAmYKnX1jAtXr/AMh2VUaG7Lx02gIYTKLWD2/cTCXQHKJMUTVfAmzCwtT5y1ZMg3e+m0I80ALbB++HzHhNHhoBVDDLiAUA8pmIgbsAbBfEGQHlw+Y8Jo4tljBszl/dOX905f3Tl/dFZbmqwlBSS02uGMz2asQlfXqbC/eV3HWV3HWV3HWPEpsAzn0yfTJ9MhkwLE1mj8A+W4OUcdPzjr7RipmGeS/1wpRnOQ9pyHtOQ9pyHtOQ9pyHtMgMp3TaaPCkaoxm6f5PvEfeI+8QGqGue+PvEfeI+8R94j7xFj4wehWOXPj8Cd02mjwFGDvHIdnnLNKNU3mJT26DfdPaKo0mBJuetkckJLS7mnhca7bgxywFq6SmkhE0a/PFIi67i5sCAKgacfgTum00cURvR/NylyJFvNcMnpf7hcSExTha1pPmYjKXkbEyLCsr9JHvT56P7MNC4UKXlwYFkH4O1QkQqA8HwJ3TaaOGJw4MLjZHvGORyJ5YeWHlh5YeWBoGlbsB6zyw8sH6DgbgOVyvh83Pw/AndNpo/AmpCnRhDMmygofH4fgTum00cORBcEBjrlWec7c6ztzrO3Os7c6ztzrC7eeyvOdudZgqFtGt8ztzrO3Os7c6xtw8SCV5vH4E7ptNHD5Sdx2cHjlgVYYTDmZxz6sKIpVTaBZjIh96FPMhcxgrLRzgVtTRQVh1ipXLtBgUx6x291ttXzFsSu5rcXh2nY4/AndNpo4fKTuOziqQxXNVrqjUAN3CJ0h2GB91EuiWu94Cq8GoUiSDJhGCAoBzOPadjj8Cd02mjh8pO47OISqXTwGAvO/3KFN+jUUsfUmDXNjDMv6ELEXWNc5SnSDLFIEVOC9jj2nY4/AndNpo4IIOTA1MKAoPCzZs2anCNWSgVV20a8TNmzZsxFsEGrvzePwJ3TaaPwFlbAiLjMWCsB9vw/AndNpo8eLLRH4TL1n1H+R8wcoOIJfNeDOzhdWD7xxUOZ0+jj4cGhwO0t5Q4RiLIVOZPjTum00eBQKgDVi98rk9tp01j1zPxNiZhsxfepbHBLDMjQactXydZt+TDWNWFsVFH6nYXbZv3Aq3b/0OtQyZMkb4UkZq9rHWYL1tXOfAndNpo8CHYGX8q6jBCobPlOsJuWquYwipECXd+9JRTlRL6vfbf+ekWVWKLzpR+2YgClqTbEz7It/z1lFTf07A+ZRFhsrxZz/ZznP9nOc/2c53v6QKAqBoTR4me6bf/s9pb9kwfYgjaOo6Pmc2zMEyY/eavoTOmd7q+85KNFfg0fgKAisxgsgxgwwHCVMonm1qNjzmZUuK4twfwaPwZ8wUJMmGBkj7R5trtRbkC6S9/ONXLWZj+DR4eblFY8+fKd9/s77/AGd9/sOsS0Z33nff7O+/2d9/s77/AGd5/sb3T7GOXPw6PAY0Bu3LefyYrVW8892YOjjUsKHljFzz5zCgGLYjhLBACYL+0dWsB1sI6REXv1Wl6TJUL1Dg6BdHr7rYaYVAaeHRxBN5eG7lGJZ9jN8HBtaCyWy2PJtrDggqUuxDYVMXojXDQwGDCKNBis1mR3hgRCmA0XU/UAMKgPFo4YnDgwuJWhu5PLPKdrdZ2t1na3WdrdZ2t1hoGm+ZgO/OdrdZ2t1jPAQ0Q5W/gKC0fgxNc5TCJSyNQKcsvx6PCMdtaBabBDlRi/xUcWjQBLieNHjllvrHmZkEAjY6+PR4c7d/IGb1f1wB0oMWFCUlDdal+kAwlCArPziYwcXYrnzmPUDgk+DEERLGHkxyLsPRHx6PCr7XfJU+HhlB0116pjaDsUHDesZQYFnblU/sD8ZAnBq2OpLGxFbpNOC1o59S/Z49HhIVVMkP7c4YY6tZ85MXKXi4hkvSVAxYOcVRQIN7yu6xdoDbXrvdZwK7qzSZr49Hjo2lG0o2lG0o2/Do/wAmj/Jo/wAmj/Jon//aAAwDAQACAAMAAAAQ8808888888880EU8088888oEAAc88888ocAAE8888ssgE8U888888o8s88888MMAAYk88888c8g4w4w0888ssMMMM880Mc000c88s88488c8884c8w4U8888o8ogA888888c8oU88c08884ooQ4sE888s0ok88sc888scQ888884cw444c884ks8Ess888880sc8088888cYsM888888o8ssc88888888888888888888888/8QAFBEBAAAAAAAAAAAAAAAAAAAAcP/aAAgBAwEBPxBw/8QAFhEBAQEAAAAAAAAAAAAAAAAAATAA/9oACAECAQE/EIkiRIkSJEiRIkSJEiRIkSJEiRIkSN//xAApEAEAAQIFAwQDAQEBAAAAAAABEQAhMUFRYcEgcfAQgZGhMLHx4UDR/9oACAEBAAE/EP8Aj5ekKLTEBQsw/IgGB7V5/wAV5/xXn/Fef8VFi3b/AM6k2uAk2iFO0jt+Dl6TevEuMvGamGkL0nypEIoAY6tW9fqAiRZcO00C6gIEUA7rZ2okMYsRDIGxH3p6QGZPI1OQksjqjNIRzuz6+XpRYBhnKX5R7+jg0U2BzcMiiBDWeLUoWHKBBHnWQxjcpZBJm280q2Z1l9WXshGsh3hH36+XpIJQstsHmCyZgRcvPIlrJ9EutkoclEEiGhoUw4vmaEFPVMVTEEGkINs6iSARkqCX+WoifsoWxrSA9Qt3r6DScbBiBrW0AANA6+XqKDmHzQk15FxREXsgNW2FOdCC6LBzLrbevIuK8i4o+U4E+I/By9X8VX8VTlqVJCiEqbwdhK+Hxp/FV/FV/FV/FV/FVgoxo9PL0zH6FCtXXUYFsWy3Wqs8jGbULiiyBwRipXkTiwxgi9QbvnhXmfFeZ8V5nxXmfFQL3UXUWLDFcj2qwXvWkBgMA5np5ehGog5h+gwMi7lL9lx13vmurnS/TAArwMMZHUg1q8qqOyEKhdbDtRCb2xKEUO5Duo/5SEiODRjnIwMg2xQYWPijhnK4WWiIXvtQP3GgYBhytE6VH867MwDX9EtQbFO7Fm2ZubfSOnl9ceogTgO5ozdhqfldZl+LZq0LwAUoN9EuU4ywSAgTc4y3mm+FKTfxIsTup2uZS7w9gLBQmyyVExzOzLKl1V5mkX57t6ZtGTlkiNLKdqPIk7t2AGKOGa1fOaXImW7zexYv1cvqFdfDZYmBgdI8ePHhrvRQGLBlxohuf6lyRhGSvqPHoYCQF4SDE7/g5fVuSAsMOFlrzHmvMea8x5rzHmmOWRCjiY0EuzONBfIg+a8x5rzHmvMea8x5rzHmkgm2QzpJ08vqxLERNi7WvKuKkOD28Eu1uttXlXFP3oOAMVaQDpHDIAwww4MV5VxXlXFeVcUwkgwAxVpNVl+QACqGHBivKuKLq4AgOk5fXy93pMlNUZwBkR91Eyob2HKkra8oAgAZGmfJhKTIMyTtDWotTIK4mHRhKQsYsTRm2pqRR9dL2HDTlWxNARAAxCUcB6kwHdAKMp36yHL6+Xu9LIMIgYGh6xYszAijSGocQE9gD2pWQsULvqWgqygi/WQ5fUbYkAUMJhrxXmvFea8V5rxXmg+LI4G7NWiaUAMLuK0kkkMacLpw7DQSUFCQzBOCv6Sn9JT+kowB9wlaWXYrxzmvHOa8c5oLxF5A4I1y/gFS0GaIf3SwozlErCe35Kg/DgBqks+40JkOFFmbv1ylKUpbreW1eJ0Vy9JBIAp0AElcpXxw6ChQomgZQrsL9QoUKFCjHMyFYKOcjPVY9ft/1XidFcvRFk0xYV2tDNbVGquXRmKa/QWKLYnIMwIJstKTRdqaTpIVlJkMpMJiCJhkHYwQEmsE0MQEUiYb2TcNim6kWgBitBseSCQJXklECTf1nM8yFZproYYF8AK6NgBgB6/b/qvE6K5fUR4MzYZ6J+8C7TpCQf8AGGAZHoSyIgKwFVyAUfJGiKIEYyB2o4CikhsvvOC5G9RRMO25E+Dk7LQrC5FjEYyhaHC1EoKIMScTAqW2x9FkvGRufqMdDqlaNtzHR9v+q8Torl9N5LTnKdqs+IlQYBkGAd8Wp/2Vn/ZWf9lZ/wBlZ/2VW6MlvMwpP+ys/wCytlDxZiRZMYTUTyZsqbqc1bq49P2/6rxOiuX8AcOsbHZ+YpHF2mEIchZQRMP4ft/1XidFcvog4K4HYotoZugGJ7+pWLVqxZp+riiFvm919FacqXi+iYPa9CtWrZ9uKgjma+v2/wCq8Torl9PPaPr0Ky3JC81fOyvrWX0CM2jsj90y9BtAJgFS+1HknG6LZlmpE6JQnsEMkC2WmXvFqDLtiIGcQwWTg20qLDQJIqbk5nzTxAoURlKIsFndpQi2ILuy+K9KD7f9V4nRXL6ee0ejoraKSoExNU+JR1ji7yoS/wCAVpEk8oy20sBNCapkghRQG/ekCtwigsMdqwKhECCh89SD7f8AVeJ0Vy+nntHo6WKgS7YIwSY30E8DcXyULbTRPhagCSLMpC2wgFKCCncCAofdLFPHAUBLRCy2CSAw+3Ug+3/VeJ0Vy+hhSCJqVF8IdAwALDpwYMGBtiiDD3pEUSAgYzNKvVgwYMGCFhgsYoGCY9ft/wBV4nRXL+A7WuoJDTUjE6BAHb9n4FAlYK+3/VeJ0Vy9c2vFzbvgN4G9RiTMiWd6zCfkJYWy7CVln6Zm6fAO1R9Zeu9i90R0lsVWpZW65EoPeC9HJSxA1ZGyhDCHcrSRfb2rxOiuXoOoUqQBRsyw3Fu7PyaxaJmvY/RUiHCIzKS0qoTjenNAD+5JJ8U+kYPE/g9jO1HpwDyRWBbD3qZL6ti6FhW5WOQMJh2Gz3oOwGxT6CgIfyME2T0PWdzwf+kKGSOyMyAMe1fb/qvE6K5eiLnImT6Wd2b0KDEH0s4HYVgVuOH3KjJRqjdiZ2jHBTQjAXEOaDzUCI0fS8hsAqUKuVOWdCT4pyE5CiSS96OCdL94t7hS0toQCHv+qi5gsvpisIHsB0UqFKYhVAxzyoAsBXL0oJCSUnd3Uq7xb3DWSBlWe0t37lOD7BI3YK/ajGNZjHyrFBYTBuKfKG9F4tjOOzD80NqMCGBx9fg5fwWakBEe81AyQyYW2YCq4UQQLwFkiN6EMBoAgv7rQM2wmjb8oGRhhufg5fwGlMUYgkSb0gapKYM7VDIu1JS4K92N0sfOVBaBCmU28TBTDC0gR3S09vwcvSNnQN6GJJWUt21fy1f5av8ALVBCgyJAC9oFfy1f5av8tX+WrAT9KoAbYJsFnKz5NjXp5egRpoCcJ/45nYWpQrGJbi2a/wCU5MgtExvDQWQI6N4AAJbDGD2mzfzmyGCoxCjri41Gyo6UIT2lR/ElGREvduoA1FBAbQrYso1YKZJowIkyd/R/RG4SxTTQ7F5g4wB4AYAdPL6joRk7jRH22K+2RT10MgwC3o7KiXDfMzoUgU3kKQFtjObFPIkI8BWIvcwioRpLo4WwjsatsM5ZlOEGat9anuUEhJJVhaO1CAlYIlpjryF99rMXJvQD3DQB1cvpvJac5TtTn7W/giwFgP2vSqVKl0NOW4sJ7pv0eqpV3EOPTADGC4Ub0cBiuquat1cevl/BLTrUNm0jiTUmifZRBnMyff8AHy9L8Gy4YMWhZbxUPcYO0vr9+gXArBIRBpmXuvp9hztoasDL4X71iHe4ZpRlgSBkTr5ekQ8S7guA3FJ0Hoe4ajkVKGYQzCMSywU3qQz9IsyYD80R3JILgQkaJCiQg1RJgyXijbAhEkSmMVhi/wDgQDZDLr5ekrPhW5X3H4fSJSEoN0bScCYqKbYSs1fgWwIqSyZJyCTcI/8AFSgEUzBCS0mA4xvUfe2ALCxCJwQ9Av4kYMiex8/Xy9KExKkIyC5CWNyNqtU+BE7AfYagyMYZeKRYq30SQ2jSiSdCLMAmI2KRjnEsQn9FEsJUt0r8XpkmtSjqEF6ARvSrKVyXJVqvXy9SDiTW0+K2nxW0+K2nxW0+Pw8v/Jy/8nL/AMnL/wAnLX//2Q=="]
math
multiple-choice
10
一空间几何体的三视图如图所示, 则该几何体的体积为( )
$2 \pi+2 \sqrt{3}$
$4 \pi+2 \sqrt{3}$
$2 \pi+\frac{2 \sqrt{3}}{3}$
$4 \pi+\frac{2 \sqrt{3}}{3}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCABvAG0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/iiiigAooooAKKK8u+N3xh8E/s+/CD4lfG/4j3s9h4H+FfgvxB448SS2Vu17qdxp3h/Tp79tM0TTYyJ9X8Q6xLFFpPh7RLQPfa1rd7YaVYxS3l5BE4B+aP7d2mfHH9rb4xaZ+yt+y98UNW+FXiT9mDwlon7Ynj3x3pN/cWmial8dtP1DVX/Yq/Z88ffZSU1r4b+NfG3hbxZ8V/jl4WEkWof8IR4B+H+nXUQ0r4l2s7/oT+zN8eNB/aZ+BPw2+N3h/TL7w9H430JpPEHg7V2Rtf8Ah7480LUL3wx8SPhj4nWICOLxZ8MviBoviXwD4qgjHlweIPDupRRs0aKzeT/sL/B7xt8NPg7f+OPjLZQWn7R37SXjPV/2if2iYobhb5dC+IXjyx0q10b4X2WpBV/tDw/8BvhpongP4E+F70BRqOg/Dey1iZPt2qXssvlvgP8A4xa/br8a/CiX/Qvgx+3fHr/x1+E2fk03wx+1b4C0Oxh/aJ+HdpkmO1Pxl+HOn+HPj94Z0m3WP7f4q8E/tLeKboyXOo5YA/SCiiigAooooAKKKKACiiigAooooAK/N/4/j/hp39rr4O/snWn+m/Cz9n4eDv2xP2owv73T9W1/SPEmoJ+x98G9Txvgn/tv4p+EvEP7Qeu2LlbmwtfgD4HtNSgk0b4hwfaPtf4x/FnwR8BvhP8AEf41fErVDo3gH4V+C/Efj3xbqKQtc3MGheGNLudWvo7CyQibUdVuobY2mk6VbBrzVdTntNOso5bq6hib5x/YS+E3jfwL8I9Z+J/xo0saV+0d+1H401L9on496dJMt3P4Q8T+MdN0nTPBfwdhvQP9I0v4A/CbQvAPwU0+eFvs2py+Br7xIEF74gvpZgD7Xr5M/bV+Bfib47fAvU9P+Gd5YaN8ePhh4h8O/HD9m7xLqTGKw0H47/Cy8fxB4Gg1e4QrLD4Q8b7dS+F/xIiiO7Uvhj468Z6OQY9RcH6zooA8S/Zv+Onhn9pb4GfDP45eErPUNJ0v4heGoNUvPDWsqsfiDwT4osri40Xxv8PPFNuqqLPxf8OvGema/wCBvF1htB0/xL4f1WyYboDXttfm/wDDPP7Ln7cfxD+CU/8AoXwb/baj8T/tI/BHPyab4a/aR8K2mmwftS/DCz6x2v8AwszQW8L/ALSHhjTEZZ9Z8UD9pnxCyeVYsV/SCgAooooAKKKKACiiigAoorz74s/FHwT8Efhf8Q/jH8SdZh8PfD/4W+C/Evj/AMZ63MrSLpnhrwnpF3resXSQJ+9urhLGymFrZwB7m9uTFaW0clxNGjAHxB+0d/xk1+1X8F/2PbL/AE34Z/B//hEP2xv2rgn7ywv7Xwv4rvF/ZL+DOqgb4n/4T/40eENY+M+r2Mysknhn9nI6Hq0DaX4/tvtH6QV8QfsHfC7xv4W+FfiH4zfGjRpdE/aJ/ax8aXn7Qvxo0W8YTX/gK48S6TpOjfDH4ItP84Fv8BPg7oXgP4U3S2sradqfirw34r8X2yJdeK9Qkm+36ACiiigD5D/bb+CHiz41/A+4l+FMlhY/tB/BrxR4f+Pn7NesajMLSxs/jb8MHutS8OaBq19y1l4R+KOi3XiP4M/EaZFeR/hr8R/GFtEvmzxlfV/2evjf4S/aS+CXwy+OngiO/tPDvxL8Kad4ii0fWIDaeIPC+qSK9p4j8FeKLBgsml+LvA/iS11bwh4u0iZVuNI8S6JqumXCJPaSKvstfnB8JP8AjF79tj4nfs+XH+hfB/8AbCTxb+1P+z+CPL03w78cdKn0yH9rj4UWRx5NofGV1qvhb9pnwzYNI1/4h8Q+Mf2jdWghTTfCkhiAP0fooooAKKKKACiiigAr84P2nP8AjJb9pv4JfsXWP+m/DvwCfC37YH7WoT95Z3Hg7wT4uuB+zD8HNW2kqP8Ahb/x18JXvxF1GxnSay1f4f8A7OXjfwrrVudP8a23n/c/xO+JHgv4OfDjx78WviPrtp4Y+H/wy8HeJfH3jbxFfFhaaJ4V8I6Pea9r+qThA0jpZaXYXVx5USPNMYxFCjyuiH5Q/YK+G/jTSPhp4q+P3xk0O68P/tAftfeM5fj98UvD2pgNqvw40bV9H0zQfgx8C7g7pFt3+B/wZ0bwV4G8Q29lKdK1H4k2vxC8Y2cUdx4vvnlAPueiiigAooooAK+PP24fgt4x+L3wVXW/hDHZp+0V8BvF2hftCfs23l9cLY2s3xe+G8OoSWvgrVNSIY6d4V+M/g3VPGPwK8e3qpJJb+Afib4mmt0F3HbOn2HRQB5H8BPjT4N/aL+DHwz+OXgCS9PhL4oeD9H8W6XaarbtY65or6lbKdS8M+JNNc+do/irwrqqX3hrxVolyEvNE8RaVqek3scd3ZzRr65X5wfBT/jGD9sv4sfs0XP+hfCT9qdfGH7XH7N+793p2hfE8arpkX7YXwhsOFgtf7T8W+IvC/7S/hyxMkmo6/qnxZ+OdzZwR6N4Dl8j9H6ACiiigAoorj/iF4+8H/CnwD42+KHxC16x8LeAvhz4S8R+OvGviXU3MWneH/CfhPSLzXvEOtX0iqzLaaZpNhd3twUVn8uFtisxCkA+EP2q/wDjJP8AaJ+CH7ENh/pngPRG8Pfta/tchPntW+FXw98Xt/woD4RattPyD48fHrwydevbGdZ9O8R/C39n/wCMHhLV4Da+JbcTfo/Xwh+wR4B8Xx/D3xl+0r8XdCvvDvx0/bI8Xp8dPHHhrWUC618MvAtxo9joHwD+Bd5GGkWxuvhD8G9O8LaP4w0+zk/sy6+L2p/FLxXaRpN4ru2k+76ACiiigAooooAKKKKAPjP9ub4OeNfif8G7Pxj8G7S2uP2jf2c/GOj/ALRH7OYuLhbCPV/iV4As9Vg1D4a3+pFW/s7w58dvhzrXjr4D+Lr7a50/wx8StV1SBDfWFnLF7x8DvjF4K/aE+D3w0+N/w6u7m88E/FPwZoPjXw8b+2ax1azs9csIbx9I17TZCZ9H8R6HcvPoviTQ7sJfaJrthqOk38UV5ZzxJ6pX5w/AUf8ADMX7X3xg/ZWu/wDQvhV+0UPGX7YX7MIb91p2j+K9S8Q6dH+2H8HNNzsggNh8S/Ffhz9orQbIF7zVR8d/iTDp9vFovw8n+zgH6PUUUUAFfnB+1zn9o/47fA/9hXTv9L8GXT6R+1J+1yE+e3T4E/DLxbCfhN8KNWwQYx+0V8d9EsLa70+cS2Pij4QfBv48eGr+ExajGH+9/G/jTwr8NvBfi74ieOtdsPC/gjwF4Y1/xp4y8S6tN9n0vw94V8L6Vd654g1zUpyG8mw0nSbG7v7uXB8u3gkfB2gV8Y/sC+CvFV/4H8dftV/FXQ7/AMP/ABl/bQ8VWnxm1zw3rcRh1v4ZfCK30mHQf2b/AIJX0DMx02++HPwig0bUPHGkw7bRPjT4y+LWtQRq+vTFgD72ooooAKKKKACiiigAooooAK+LP26vhJ428f8Awi0r4kfBjTU1H9o79mHxnpn7RP7P9l5y2cnijxh4L03V9O8V/CO4vyp+yaP8ffhVrvj74H6xcyEw6ZB4/i8Qqn27QrCWH7TooA8z+DPxb8EfHv4S/Df41/DfUn1bwH8VfBfh3x34UvZ4GtLxtG8S6XbapaW2p2EhM+mazYrcGx1rSLoJe6Rq1te6ZfRxXdpNEnplfnB+ztj9mT9rD4z/ALId5/oXwx+NX/CX/tjfsqB/3dhpz+I/FNkn7XXwa0vOyGP/AIQv4xeLtD+OOjWMS5fQv2itS0jSoE0n4e3P2f8AR+gD84f2xv8AjIr4xfBH9grTR9r8KeL3tP2jf2tvL+e3tv2avhX4osn8JfDLVcbQv/DSnxss9B8GXOmTsYPE/wAHfAf7QWmsjfZjX6PV+Jf7NnxV/av+GvjD9oz4wfFr/gl3+2r4i+M37Qnxb1HWNS1Hwj8Tv+CaGo+HPC3wU+HjXvgz9nT4XeHdQ17/AIKGeG9Wk0/w18P4ZPG/iiK40PT4G+MXxO+LGpaek+n6pa3Mv1h/w2h+0D/0il/b8/8ADh/8Euf/AKZNQB+glFfn3/w2h+0D/wBIpf2/P/Dh/wDBLn/6ZNR/w2h+0D/0il/b8/8ADh/8Euf/AKZNQB+glFfn3/w2h+0D/wBIpf2/P/Dh/wDBLn/6ZNR/w2h+0D/0il/b8/8ADh/8Euf/AKZNQB+glFfn3/w2h+0D/wBIpf2/P/Dh/wDBLn/6ZNR/w2h+0D/0il/b8/8ADh/8Euf/AKZNQB+glFfn3/w2h+0D/wBIpf2/P/Dh/wDBLn/6ZNR/w2h+0D/0il/b8/8ADh/8Euf/AKZNQB+glFfn3/w2h+0D/wBIpf2/P/Dh/wDBLn/6ZNR/w2h+0D/0il/b8/8ADh/8Euf/AKZNQB1P7d/ws8b+L/hToHxf+DGjvrP7RX7KXjSx/aG+COkWrrb3vjnUvC2latpHxG+Cn2o7Qln8ffg/rvj34RKbmQWGl6/4r8O+LZka78L2EkP0x8I/in4J+OPwt+Hfxl+G2sR6/wDD/wCKXgvw34+8G6wiNEb/AMOeKtJtda0qae3f97Z3gtLyOO+sLgJdWF4k9ldRx3EEsa/H3/DaH7QP/SKX9vz/AMOH/wAEuf8A6ZNXmX7Adx8fPAOs/tPeCfFP7IPx1+BnwBvPi9J8XP2cNE+J3jT9k7WvE2jR/Gn+1vF/xw+HFnpnwP8A2mvjHo+m+EfCvxmXxJ478H3Gp61o5h0T4uW/gnRtFi0vwDHcTAH/2Q=="]
math
multiple-choice
11
执行如图所示的程序框图, 输出的 $s$ 值为( )
-3
$-\frac{1}{2}$
$\frac{1}{3}$
2
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAOKAoEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKMjrRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRmmiRCxUNlhjI7jPtQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACobqeOCGSWRlVY1LMWOAAOpJPQe9St92vmD/gph4n1ZPAPhX4SeH7xLTVPihr0WjeYcgCDfGsgBGMBnmhVskZUtQAzxd+19aap4wm8M/BL4c698UL2zlEd1eWA8qwgJzhvOCOedpwxCIcHDHBqu/wAc/wBq7c2z9lZsdt2uJ/hXuvwX+G/hj4WfD7T/AAb4Q0xbWxsVUtISPOupOPMmmYY3yPgZPTgAAKoA7XHtQB8p/wDC9P2s/wDo1b/ytpR/wvT9rP8A6NW/8raV9WY9qMe1AHyn/wAL0/az/wCjVv8AytpR/wAL0/az/wCjVv8AytpX1Zj2ox7UAfKf/C9P2s/+jVv/ACtpR/wvT9rP/o1b/wAraV9WY9qMe1AHyn/wvT9rP/o1b/ytpR/wvT9rP/o1b/ytpX1Zj2ox7UAfKf8AwvT9rP8A6NW/8raUf8L0/az/AOjVv/K2lfVmPajHtQB8p/8AC9P2s/8Ao1b/AMraUf8AC9P2s/8Ao1b/AMraV9WY9qMe1AHyn/wvT9rP/o1b/wAraUf8L0/az/6NW/8AK2lfVmPajHtQB8p/8L0/az/6NW/8raUf8L0/az/6NW/8raV9WY9qMe1AHyn/AML0/az/AOjVv/K2lH/C9P2s/wDo1b/ytpX1Zj2ox7UAfKf/AAvT9rP/AKNW/wDK2lH/AAvT9rP/AKNW/wDK2lfVmPajHtQB8p/8L0/az/6NW/8AK2lH/C9P2s/+jVv/ACtpX1Zj2ox7UAfKTfHn9qK3t2n1H9lG6mijGWW31xN//fOxyfyrtP2c/wBp3wX8UvFH/CFarpGqeDvG9uczeHdbjKyeYBuZYnYDcVBJwyo+ASEwCa93ZWCnaBnHAzj9a+bf+CinwntfE/wXvviNo0f9n+MvAcZ1nTtUhIWYQwEyyRs3GdqhnXkkOg2n533AH0n5iE4Df5/yKdXCfs5eM5fiN8DfCvja4SNZ9Z0yGe5Ea4VZ8bZgoP8ADvDD8Pxru6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvu18f/wDBRkAftTfsynj/AJHMj3P+maZX2D/DXx9/wUa/5Om/Zl/7HP8A9vNMoA+waKKKACiiigAooooAKKKbvQHBYdcde9ADqKbvX+92zS5H64oAWim70/vDv19utG9c4z+Pb86AHUUUUAFFJkUyKeGWNHikV1kUMhXkMD0Ix2560ASUVBc3tnb2xuLi6hihXbmR3CqNxwOTxyeKl8xP7woAdRRRQAUUUUAFFFFABXn37WB/4xb+JXH/ADJmrf8ApHLXoNefftZf8ms/Er/sTdW/9I5aAOW/4J3/APJl3gD/ALBj/wDo+Wvaq8V/4J3/APJlvgH/ALB0n/o+WvaqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAP4a+Pv8Ago1/ydN+zL/2Of8A7eaZX2D/AA18ff8ABRr/AJOm/Zl/7HP/ANvNMoA+waKKKACiiigAooooARvu1g+MNN1+/wBFFv4d1+HRbpZFP2mWw+1LtHVfL3p/PHtW/wBq5Xxl498P+GdVt9O1SHXXubqPzI0sPDl/fqV93t4XUH2JzQB5F+0n4q+KnwxsfBUtl42028bxR40sPD84m0FR5KXPm7pUxJyw2dDxxXpcnh/4jLbtJ/wsmHcFLY/4R6Ht/wADrwr9ubx5oer2PwsFpp/ihDafFPRrtxdeEtTt96p5+Vj823XzZDkbY03O3zbVNe533xT8MvZzKuleNt3lt/zIetfz+yUAeO/BFfib+0b+yxo/iXVvibdeFpNeeczHw9pwt5I1huZYVVJi5cbvKDNz3xX0H4M0/UdL8N2Nhq+rSaxeW8CRzai8CxNdFf42VSVDH2/DFfNH/BPz4jaP4W/Yn8M2s2heLr+8sor+XydM8JahdJck3lzIBHNHC0R3DC/e4PXFe5fAX4gX3xD8HrrGp+BfEfg6/jl8m703X7CW2mQj7rRu6gSofUc9cigD0KiikcgKSaAOO+OnihfB3wX8WeLBL82k6HdXdv8ANgvIkLsoB922j8a8/wD2JfDNj8Nv2W/A+matfJbXesW0U7LeXRBa4uszLCgc4DbSE2LjOw8NXJ/t3eAfBmsaPo3h+08LaV/wk3xG8VafpU2ox2ifakt1cT3E6vt+UiOE5cDOGPNUf2jvhp8Pbn9oD4N+AdB8EeHdP/tDWrnVtQNlpMETPaWcJkKSsibyru4XaSVbncKAOo/bit7zx7Z+GPgToc7C68cagtzq08Z3PYaVayLJNPnnbukMKIT94nAzXqui6p4V8La1pPw8jvWtLr+zg+mWl3LKxuIUO0iOWUnzWTA3KCXUMhIAYE+C/CG3/aQj+K3jHxPq3wu8Lyapqd+bSLWtW8Qvb266fAziCG1gjhkkSLczyF2AaTfkgHGOl/aK+GXxS+KHwputJv38JabqmnuNR0a60x7pp7K9jDMGimOzaWY7CdvAdsg4GAD6Bjljc4VgT6U+uG/Z7/4TH/hSvhc/EGNl8TtpkQ1TzAA/m995HG/H3sHluldzQAUUUUAFFFFABXn37WX/ACaz8Sv+xN1b/wBI5a9Brz79rL/k1n4lf9ibq3/pHLQBy3/BO/8A5Mt8A/8AYOk/9Hy17VXiv/BO/wD5Mt8A/wDYOk/9Hy17VQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB/DXx9/wUa/5Om/Zl/7HP8A9vNMr7B/hr4+/wCCjX/J037Mv/Y5/wDt5plAH2DRRRQAUUUUAFFFFABUJARM8KcdegWpm6Vy3xA8Z2Phi1SNLa61TVrzcun6Vp4V7q8YDqASAqA/ekYhE4LECgDx/wDamjHiz9or4L/D20VpHs9fbxVfCMEi2t7GMtEzjnCtI+wE4+YgA819A3yj7FNxgeW3GPavNfgh8PNZ0jxTq3xF8czWl14z8SIkNz9lJe30qzj5isrd2wxVSdzuRmRySQABXpGqP5elXT8/LE2MDPagDwX/AIJd5P7DfgoqFwTqJIA5/wCQhdY57enSvoDaSMYxxjr/AF7V4B/wS/iu7X9irwjaXlrNbyRtffJLGUbabyZgcHsd1fQdABTZATGw9qdQ3SgDw/41aX4kh+P3hH4mt4avfEPhnwlpF6sdrowWTUYL26KRtP5EhUSotuhUBC0nzt8nIrj/ANnzxbonxh/bU8X+PtLuy2n+D/DsHh/Sra4jaG4Z5ZDPdStA4EiFXXyjuUc8V6d8XvEniXUGk8CfDOON/E9zGI77VpV8y08OQuBvlmcEb58EFIB8zHazBUBauIvv2U/Cmlv4D1HwLdS6L4i8F6pbXE2stg3GsW3nh7uO6cf6x5A0hBIwCWT7jcAEfgeXxf4l/bC+LvhZPiF4h0jS9Eh0SexsrEWsiRtNZESbVuYZgATGGwpUHcc5rO/ba07xn4T+E9hqWmfF3xl9om8Tabag/wCgQf6ydVB3QWqOdoz8udpxypqT4fN40tf23vjRc+FvD2l6nHJbaFFcyanq89jCGWyJwrpbT7z87ZBxjA9RUP7b8XxT1v4U6TYX3gvRhF/wlOlyA6PrtzqFyStxnHkGyj49W38UAfS9rA8UewymQ8ZdwuX/ANo7QOas03Bp1ABRRRQAUUUUAFefftZf8ms/Er/sTdW/9I5a9Brz79rL/k1n4lf9ibq3/pHLQBy3/BO//ky3wD/2DpP/AEfLXtVeK/8ABO//AJMt8A/9g6T/ANHy17VQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB/DXx9/wUa/5Om/Zl/wCxz/8AbzTK+we1fH//AAUa/wCTp/2Zf+xzP/pZplAH2BRRRQAUUUUAFFFFABVXyT9qE3lruwRuwN2OuCeuM+mPoatUUAFRyAbDu+7ggj1qSjHGKAKscTRgKq/IuMDIz2xwMAAcnirVFFABRRRQBVhgxI7FNpYhuCMHtz3JwB1zjoDirO35cfrS0UAVUh27m2AMW3ZGCScY3E8c445z0FSMjHjaQOvGPryf8KmooAKKKKACiiigAooooAK8+/ay/wCTWfiV/wBibq3/AKRy16DXn37WX/JrPxK/7E3Vv/SOWgDlv+Cd/wDyZb4B/wCwdJ/6Plr2qvFf+Cd//JlvgH/sHSf+j5a9qoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5C/4KLRSP+0z+zXdqubaDxoVlkz8qE3mnYBPr8rf98n0r69rxr9tf4Q3Xxj+CdxoOlTfZvEGm3KalodwZPLVbqMEYZhyodWkX0BYMeRQB7F5sZ/iHXFPyK+VfgD+1x4dkt08G/HJpPAnjrSdtvqK6lA0NtdsP+WwkxtjDY5ViBlvlJHT2L/hoD4Gf9Fg8Ef8Ag/tv/i6APSMijIrzf/hoD4Gf9Fg8Ef8Ag/tv/i6P+GgPgZ/0WDwR/wCD+2/+LoA9IyKMivN/+GgPgZ/0WDwR/wCD+2/+Lo/4aA+Bn/RYPBH/AIP7b/4ugD0jIoyK83/4aA+Bn/RYPBH/AIP7b/4uj/hoD4Gf9Fg8Ef8Ag/tv/i6APSMijIrzf/hoD4Gf9Fg8Ef8Ag/tv/i6P+GgPgZ/0WDwR/wCD+2/+LoA9IyKMivN/+GgPgZ/0WDwR/wCD+2/+Lo/4aA+Bn/RYPBH/AIP7b/4ugD0jIoyK83X9oD4GHp8X/BGeOP7fts/lv60f8L/+Bo4Pxf8ABGc4x/b9tkfX5+KAPSMijIrzf/hoD4Gf9Fg8Ef8Ag/tv/i6P+GgPgZ/0WDwR/wCD+2/+LoA9IyKMivN/+GgPgZ/0WDwR/wCD+2/+Lo/4aA+Bn/RYPBH/AIP7b/4ugD0jIoyK83/4aA+Bn/RYPBH/AIP7b/4uj/hoD4Gf9Fg8Ef8Ag/tv/i6APSMijIrzf/hoD4Gf9Fg8Ef8Ag/tv/i6P+GgPgZ/0WDwR/wCD+2/+LoA9IyKMivN/+GgPgZ/0WDwR/wCD+2/+Lo/4aA+Bn/RYPBH/AIP7b/4ugD0ivOP2trqCL9ln4kGSZU3eENVjBY4BY2koA/MgfXjrUN7+0P8AAuC1aZvi94MIRSxCa1A7Y9grEk+w5r5y+NHxP1H9q7VI/gl8DYb3/hFZLiKTxT4suLR4LcW0ZV9kSsoYncFwpCMxUKAE3NQB7l/wT1jkh/Yx8ARyxtG50x22spBw00hBwexBBH1r2isfwX4e0/wt4P0nwxo8LQ6bo9lDZWke7cViiQIgZjyThRk1sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUmD60tFAHI/ED4beCPHQiHjLwZoWueQMQyX1nHLJED94K5XKj6Hn2rlv8Ahmf4Bf8ARJPC3/gvSvV6KAPKP+GZ/gF/0STwt/4L0o/4Zn+AX/RJPC3/AIL0r1eigDyj/hmf4Bf9Ek8Lf+C9KP8Ahmf4Bf8ARJPC3/gvSvV6KAPKP+GZ/gF/0STwt/4L0o/4Zn+AX/RJPC3/AIL0r1eigDyj/hmf4Bf9Ek8Lf+C9KP8Ahmf4Bf8ARJPC3/gvSvV6KAPKP+GZ/gF/0STwt/4L0o/4Zn+AX/RJPC3/AIL0r1eigD5x/aS/Z8+Cejfs7+PNX0n4Y+HbG+0zwtqdza3MFmqSQypayOrqQOCCorm/2HfgV8HPFv7KXgvxBr/w68P6pqV5YS/arq4tBJJMyzyLknv92vfv2irSPUf2ffHWnuxVbvwvqULH0DW0ik/rXmP/AAS+Of2G/BJLk4N+M/TUboAfkBQB1f8AwzP8Av8Aoknhb/wXpR/wzP8AAL/oknhb/wAF6V6vRQB5R/wzP8Av+iSeFv8AwXpR/wAMz/AL/oknhb/wXpXq9FAHlH/DM/wC/wCiSeFv/BelH/DM/wAAv+iSeFv/AAXpXq9FAHlH/DM/wC/6JJ4W/wDBelH/AAzP8Av+iSeFv/Beler0UAeUf8Mz/AL/AKJJ4W/8F6Uf8Mz/AAC/6JJ4W/8ABeler0UAeURfs0/AaN1kj+EvhVZEYFSdPQjI9q7/AMKeHtJ8NaLFpHh7RrHSbCAARWdjbxwQpySxWNFCjOeSAM+1bFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzvxXtBqHwu8SWBbZ9q0e7hL46boWGf1rxj/gliR/wxD4SHX97fjPp/psx6fUmvd/Fls154X1KzQ7TPZyxbv7uY2Gf1r57/AOCTzSf8MY6GH/h1C+CHOeDcMf5k0AfS1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEN5EZrKaIdZEI/MYr5b/wCCQMrn9kSON3ZlTX7tUz2G1Gx+Zavqljxgda+TP+CPcU1r+zf4i026fd/Z3jW8tl9sW1qTz9WagD60ooyKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRvu0tH8NAHlfxm/aH+D/wo8UxeHfH/AItbR9TubQXcUR0u7n3wlnQNuiiZfvRuMZzx7ivkv/gnz+0n8Ifhb8PvF2j+NvFL2M2oeLrnUbMRadczLPDJFCgf5Izt/wBWeDg8dK1P+C2nhLzND8D+OYURRbzz6RdOq/M29fNhGfRfLn4/2q+DvAuhXHibxto/hyz/ANdq+oQWMRxn5pZAin/x4UAfupoeo2uraPaarYszW99Cs8TFGXKMMg4YAjjsRmtGq9nDFbW0VtCoWKNFSNQOAoGAPyqxQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUm5eufxpcg9DQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI33aWhulAHz3/AMFNPCL+LP2OvFGyBJbjRPK1a3zx5YhkUyN9RCZR/wACr86/+Cfvh9PEv7ZHw/0+UFlg1T+0OuMG2je5UfnCPzr9gPG+hWvifwfq/hzUF32es2E1lcLjrHKjRuM+6tX5yf8ABIfwfdwftYeIpdVsmWXwzotzCxdP9TdG4iiIB7Nt88Y9zQB+mKrwMjpTqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopu9QcZ74P5ZoAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBR1u8GmaPdajIrNHaQSTOqY3FVBOBnjoK+YdD/AG5PB+s2Iv8ARvhH8UtQtCxUXFlokMsZI6jesxHY96+lPiBg+BNaBGf+Jbcf+imr5/8A+CTu5v2MdEIJP/Exvec4/wCWzDGPYUAQf8NoaJ/0Q74w/wDhNp/8do/4bQ0T/oh3xh/8JtP/AI7X07j/ADijH+cUAfMX/DaGif8ARDvjD/4Taf8Ax2j/AIbQ0T/oh3xh/wDCbT/47X07j/OKMf5xQB8xf8NoaJ/0Q74w/wDhNp/8do/4bQ0T/oh3xh/8JtP/AI7X07j/ADijH+cUAfMX/DaGif8ARDvjD/4Taf8Ax2j/AIbQ0T/oh3xh/wDCbT/47X07j/OKMf5xQB8xf8NoaJ/0Q74w/wDhNp/8do/4bQ0T/oh3xh/8JtP/AI7X07j/ADijH+cUAfMX/DaGif8ARDvjD/4Taf8Ax2j/AIbQ0T/oh3xh/wDCbT/47X07j/OKMf5xQB8xf8NoaJ/0Q74w/wDhNp/8do/4bQ0T/oh3xh/8JtP/AI7X07j/ADijH+cUAfMX/DaGif8ARDvjD/4Taf8Ax2j/AIbQ0T/oh3xh/wDCbT/47X07j/OKMf5xQB8w/wDDaGiYx/wo34wY9P8AhHE/+O147+zx8YdM+Gfxs+KXjU/B/wCKlza+PNTgv7OGPw9+9t+Z3mWTL45knJ+U9hX6AY/zilwPSgD5h/4bQ0T/AKId8Yf/AAm0/wDjtH/DaGif9EO+MP8A4Taf/Ha+ncf5xRj/ADigD5i/4bQ0T/oh3xh/8JtP/jtH/DaGif8ARDvjD/4Taf8Ax2vp3H+cUY/zigD5i/4bQ0T/AKId8Yf/AAm0/wDjtH/DaGif9EO+MP8A4Taf/Ha+ncf5xRj/ADigD5i/4bQ0T/oh3xh/8JtP/jtH/DaGif8ARDvjD/4Taf8Ax2vp3H+cUY/zigD5i/4bQ0T/AKId8Yf/AAm0/wDjtH/DaGif9EO+MP8A4Taf/Ha+ncf5xRj/ADigD5i/4bQ0T/oh3xh/8JtP/jtH/DaGif8ARDvjD/4Taf8Ax2vp3H+cUY/zigD5i/4bQ0T/AKId8Yf/AAm0/wDjtH/DaGif9EO+MP8A4Taf/Ha+ncf5xRj/ADigD5i/4bQ0T/oh3xh/8JtP/jtH/DaGif8ARDvjD/4Taf8Ax2vp3H+cUY/zigD5hk/bT0KONpJPgj8XkRASzN4djAAAJ6+b6A17D+zj8UNE+MPwwtPHPh2x1CzsbuaWFI79UWXMblDuCMw7etdL4+XHgTWhtBB024GPYRtgV4F/wSYOf2MNFJH/ADEb7Pv+/agD6XooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAyPH3/ACI+tH/qHXH/AKLavn//AIJMf8mXaL/2Er7/ANHtXv8A4+/5EXWv+wdcf+imrwD/AIJMf8mXaL/2Er7/ANHtQB9L0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGP4+/5EXWv+wdcf+imrwD/AIJMf8mXaL/2Er7/ANHtXv8A4+/5EXWv+wdcf+imrwD/AIJMf8mXaL/2Er7/ANHtQB9L0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY/j7/kRda/7B1x/6KavAP8Agkx/yZdov/YSvv8A0e1e/wDj7/kRda/7B1x/6KavAP8Agkx/yZdov/YSvv8A0e1AH0vRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY/j7/kRda/7B1x/6KavAP8Agkx/yZdov/YSvv8A0e1e/wDj7/kRda/7B1x/6KavAP8Agkx/yZdov/YSvv8A0e1AH0vRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBj+Pv+RF1r/sHXH/opq8A/wCCTH/Jl2i/9hK+/wDR7V7/AOPv+RF1r/sHXH/opq8A/wCCTH/Jl2i/9hK+/wDR7UAfS9FFFABRRRQAUUUdKADIpokQ8BunamsyMCnDf7IPNeM6lYfH3/hrjTL2z1jSv+FVrYE3dofLEnm+U4bgr5hfztrLhioUEHB4oA9qoopNwzjNAC0UU1WU9D/n/IoAdTGmiXALjJ7f5/zzT+1fOP7fXxh1/wAC6L4b8AeBJ44fGnxA1BNP0+dhlrGFnSJpQP7xaVFXPqx6rQB9GeYnPzfd+97cZ59KNy+tfOnxE/Zy0XQPg7qGpeA7/WrH4h6PYyX1n4oGqTtf395Gm9vtDtIRKsxBVlbKhX4XgV1f7E/xhj+NfwPsfFM6Qx6razPY6vHCm2P7TGFJZAeQrq6uPrjqMUAexUUUZFABRSblHU/nSeYmcbuuf0oAdRRTd6nof0/z60AOoopqup4DZPcelADqZ5sYxlwNxwM9z6Cn9Fr53+Nvgnx78dviNq3hC38Y6p4M+H/h0x2t8+lkpea9eNGkzoHLYSGOOVBnBDOXyG2jYAfQwkjIyHGOuc0u4Hoa/OX9ob4PfED9kebT/in8JfiBrF7oX2yO31CyvWBK5+ZFmjHyzRs24cqGQlcZPzV95/CHxTF44+FfhzxlBbtbJr2lW1/5H/PEyxo5T3wSRnpQB1FFFFABRRRQAUUUUAY/j7/kRda/7B1x/wCimrwD/gkx/wAmXaL/ANhK+/8AR7V7/wCPv+RF1r/sHXH/AKKavAP+CTH/ACZdov8A2Er7/wBHtQB9L0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY/j7/kRda/7B1x/wCimrwD/gkx/wAmXaL/ANhK+/8AR7V7/wCPv+RF1r/sHXH/AKKavAP+CTH/ACZdov8A2Er7/wBHtQB9L0UUUAFFFFABSNytLRQBi+LLbVLnRpY9I1iLS5tuWuprUXKqvcFGdR+Oa+df+CcfxE+JvxY0/wAYeLPG3iptX0i31NNO0RUsYbUDYu+WQiNQTkPB/F2Ye1eg/t3eNj4C/ZR8Za3BI0d5Pp7afaMpwfNuMQh191Ehb/gJPaqn7APhCHwL+yj4N0ZykV7eWA1a9Q8OXuSZBuHUYDIvPdMdeKAPbW+7XjXxA+NXifw14yv9CsPgX8QPEFvZOEj1LS7WJrW6BCHKsXyepr2VuVrxj4ifEz4w6F401DSfD37PGp+JNLtXUWuqQ+JbS3S6XAJIjkGVwSRyO1AGV/w0R4w/6Nm+Kv8A4AQf/HKu+E/jr4q1jxTpuk3H7PnxI0qC+vIrZ7+9tYVhtVdwvmyEOfkUNknnpWb/AMLo+Pf/AEajrP8A4V1h/hWh4V+LHxr1TxRp2mar+zXq2j2N5dRxXOoyeKLOZLOJnAeYovLhVJbaOTjAoA9yr4H/AGoZn1v/AIK1fDTTLhS1vpiacYVJ/iSWecN6/fI+oAr74r4b/bq0mTwV+3/8H/incfutJ1C7tdPu7g/KkTxXBDMzdB+5nXr/AHD6HAB9wMq7SpAx6EcY6c18If8ABFi8ki1H4n6GjSNaW9xYTQDHAJN0jH2JEcf/AHzX234y1u18P+ENV8QXkvl22l2U13MzjACRxFyT6YAr5D/4Iz+EL3S/hZ4q8cagkkJ8T6rHBb+YpUSJarJl1z1BeeQfVD6UAfalNk+6cd6TzY+zg/Tntn+o/OszxHrmlaDDaS6rfLbpfXsNjbFlJ8yeV9kaDAPLMcZ6etAHzv8AB7x/4l+Nfx6+I3hs+PtS8J2ngXUzpljpGk21obm5VJJI3upnuYpiyl4wNqBQNw3E13H7Mt18UbvxZ8QLL4ka9Dqq6FrkOmaS8FkttHJElvHMLgopILSLcxlgDhWQ4214D+398NfEPwg+JFr+0/8ACaU2c8NyieJrSMfupSxVfNZO8cpHlyAnO5lcDLMy/X3wo8SWnjX4d6F40srXyIfEGmW+orEzZZDLEjbWOBuKj5c/7NAHSt92vCtd+Pni3TvEF9p0P7PHxK1CO1vHgjure0h8q4VXYLKnz/dIUHP0r3ZuleD698W/jhYa7e2Vh+zNquoWdvdvFb3kfiqzQXSKSFkCkZQEAHafWgCE/tD+Mh1/Zn+Kn/gDB/8AHK2/hf8AGLxL4s8b2Wg6j8EfHnhu3vPM36rqlrEtrDtjL/OVYn5ioUe5rAPxn+PeDj9lHWD/ANzdYf4VvfC34kfFvxF46stJ8UfAHVPCulXG/wA7WbjxFa3Qg2ozJuijAY7nCrwTjdk8c0Aext901BGhBDBAdx+Y4xnjqMd+f51O33a5D4seO9I+H/hn+1tQjmu7m4mW007TbNN13qd1ISIreBO7Ngn0ABYkAE0AeLf8FJpbvxZ4C8O/BPw4BP4i+IGsxJDEMfuba3PmzTt3CoVQk+gPoa9++H3h6z8JeB9F8K6crCz0TToLC2LdTHFGqD9EB/GuG+C3w/1Sw8Qaj8S/H32ebxzr8KQ3DRNmDSLMHeljAe6oeXcf6x8knG0D0aw1XT76W6SzvILhrOc29wInDeTIACUfH3SAynB7EHuKAL1FFFABRRRQAUUUUAY/j7/kRda/7B1x/wCimrwD/gkx/wAmXaL/ANhK+/8AR7V7/wCPv+RF1r/sHXH/AKKavAP+CTH/ACZdov8A2Er7/wBHtQB9L0UUUAFFFFABRRRQAU0SITgMOOtObpXyT/wU0bVp/E3wf8OWPiPWNFg8ReKf7NvJtLvXt5DFK8EZ5U8sA5PPFAH1tRXy/wD8MW6PnP8AwvD4vZ9P+EgT/wCNUv8Awxbo/wD0XH4v/wDhQx//ABqgD6for5g/4Yt0f/ouPxf/APChj/8AjVH/AAxbo/8A0XH4v/8AhQx//GqAPp+ivmD/AIYt0f8A6Lj8X/8AwoY//jVH/DFuj/8ARcfi/wD+FDH/APGqAPp+ivmD/hi3R/8AouPxf/8AChj/APjVH/DFuj/9Fx+L/wD4UMf/AMaoA+n6K+YP+GLdH/6Lj8X/APwoY/8A41R/wxbo/wD0XH4v/wDhQx//ABqgD6for5g/4Yt0f/ouPxf/APChj/8AjVH/AAxbo/8A0XH4v/8AhQx//GqAPp+ivmD/AIYt0f8A6Lj8X/8AwoY//jVH/DFuj/8ARcfi/wD+FDH/APGqAPp+ivmD/hi3R/8AouPxf/8AChj/APjVH/DFuj/9Fx+L/wD4UMf/AMaoA+n6K+YP+GLdH/6Lj8X/APwoY/8A41R/wxbo/wD0XH4v/wDhQx//ABqgD6for5g/4Yt0f/ouPxf/APChj/8AjVH/AAxbo/8A0XH4v/8AhQx//GqAPp+ivmD/AIYt0f8A6Lj8X/8AwoY//jVH/DFuj/8ARcfi/wD+FDH/APGqAPp+ivmD/hi3R/8AouPxf/8AChj/APjVH/DFuj/9Fx+L/wD4UMf/AMaoA+n6K+YP+GLdH/6Lj8X/APwoY/8A41R/wxbo/wD0XH4v/wDhQx//ABqgD6for5g/4Yt0f/ouPxf/APChj/8AjVH/AAxbo/8A0XH4v/8AhQx//GqAPp+ivmD/AIYt0f8A6Lj8X/8AwoY//jVL/wAMWaP/ANFx+L3/AIUCf/GqAPpxnUdTTq+ItY+GV18FP2xvg1pWkfEjxxrtl4nvb/7Xb65q7TKBDANo2oFBz5xPP92vt2gAooooAKKKKAMfx9/yIutf9g64/wDRTV4B/wAEmP8Aky7Rf+wlff8Ao9q9/wDH3/Ii61/2Drj/ANFNXgH/AASY/wCTLtF/7CV9/wCj2oA+l6KKKACiiigApGGVxS0UAeK/tu/BTUfjv8KbLwhp/iCLRXs9Xi1AzTW5lSQJFNHsIBB/5a5+oFdl8JfAj+D7OSXUtXuNe168SNNQ1eeCOFpljBEaRxJlYYUBbbGvQszMWZ2Y9xzRQAU3B24GP5CnUUAN5o2k5B/HPSnUUADdK4H4+fC/w58W/hrdeDfE8EwtZmEtvcWxCTWc6f6uaMnPzDng8FSQa76igDwPXPhB8YPF/gNfh145+KemzeGDEsF9eaVoj2+ravAuB5c0r3DRRbxwxSM52n1r1Ky8IWGk/C//AIQjwqr+H7K30xtP09rMAGxyu1ZE65dSc5PVgSeua6qqeo2011ps1slxLbySxtGtxCQJIcjG5d24bh1yaAPkP9ij4S+M/gh+05qngyXxsfEml6j4YbVdVjhhkSC1uDdrHA7BmYGWRY7rHI6NkcDPu/7T3wu1b4qeH9B0rSfFc3hp9G1+DWRfQ2wmk8yBJTEACQOJHRv+AV1fgPwVo3hC1uItIt5TJqE3nahe3UxuLu+lwF8yeZyWchQqjJICqFAwAB01AHivxT+FvxD+JfgZvAfjHxZoMPh+6kjGrTaPpUkd5qMSSrKVXzJWW3Lsi7sb8c4r1bwvo1h4f0Cx0PSrZbbT9NtktbWFBhYo0RVVR+ValFABTcHp656U6igBKTaduPXrnkU6igAbpXy18bv2XPiZ8Rvi9L47/wCGhtT8PvbCWHRbTStGeD+zLeQ/NEskd0hYsAN8mAXIGQAqqPqWigD49f8AY8+M7KVf9sbx3IrfeUxXmCPT/kIV9D/s9/Dqz+Fnwm0fwVZ3DXz2Ebvd37pta9uJHLzSsMk5ZmOOThQF6AV3dFABRRRQAUUUUAFFFFAGP4+/5EXWv+wdcf8Aopq8A/4JMf8AJl2i/wDYSvv/AEe1e/8Aj7/kRda/7B1x/wCimrwD/gkx/wAmXaL/ANhK+/8AR7UAfS9FFFABRRRQAUUUUAFfJv8AwUmH/F1/2f8A/sfoP/R9rX1lXyf/AMFJv+Srfs//APY/Qf8Ao+1oA+rv4qdTf4qdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU3eu4LuG49BnrQA6im717H8KdQAUUUUAFFFFABRRRQB8wftaf8nzfs6j/p91f/0TBX0/Xy/+1p/yfP8As7f9fur/APomCvqCgAooooAKKKKAMfx9/wAiLrX/AGDrj/0U1eAf8EmP+TLtF/7CV9/6Pavf/H3/ACIutf8AYOuP/RTV8/8A/BJgj/hjHRV3DI1K9OM9vPagD6YooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMfx9/yIutf9g64/9FNXgH/BJj/ky7Rf+wlff+j2r374gMq+BNa3ED/iXXHX/rk1eAf8EmSP+GL9F5/5iV9/6PagD6YooooAKKKKACiiigAr5P8A+Ck3/JVv2f8A/sfoP/R9rX1hXyf/AMFJv+Srfs//APY/Qf8Ao+1oA+rv4qdTf4qdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUm4etLXk8/xnstR+IGteDfBXg/XvGV94bKw63NpjWkdtYyNn915lzLGJJBg5RCwUjBINAHqyyIejqfoadXm3wR+Lnh/wCKGteI9P0HTdatJfC9zHa6iuqWv2d47lt+6PYWJBQJz2O4YJr0jcvTP4CgBaKKKACvKf2lPjAPhJ4Gv/EK+CvEPiKSxtftEy2EO21t1LMqtNO+ABlDu2LI6DDMqgg16ruHrXmH7Y0RP7KnxGLH5R4Wv2Izg5EDkEEfh9RQBD+x/wDEjVfjD8A9I8f6tYWljcapPdK1vaFikaR3EkQGXyWJEannHWvVq+df+CVf/JkPhP8A673/AP6Wz19FUAFFFFABRRRQAUUUUAfL/wC1p/yfP+zt/wBfur/+iYK+oK+X/wBrT/k+f9nb/r91f/0TBX1BQAUUUUAFFFFAGR47DP4J1iNFZmbT7gKqjJJ8th/Wvh79in49zfB34B6f4D8RfBz4nXl9Z3VxM02n+Hy0TLJK0mPnZTxnHSvvYqD1/L60mw9eKAPmP/htDRP+iHfGH/wm0/8AjtH/AA2hon/RDvjD/wCE2n/x2vp3H+cUY/zigD5i/wCG0NE/6Id8Yf8Awm0/+O0f8NoaJ/0Q74w/+E2n/wAdr6dx/nFGP84oA+Yv+G0NE/6Id8Yf/CbT/wCO0f8ADaGif9EO+MP/AITaf/Ha+ncf5xRj/OKAPmL/AIbQ0T/oh3xh/wDCbT/47R/w2hon/RDvjD/4Taf/AB2vp3H+cUY/zigD5i/4bQ0T/oh3xh/8JtP/AI7R/wANoaJ/0Q74w/8AhNp/8dr6dx/nFGP84oA+Yv8AhtDRP+iHfGH/AMJtP/jtH/DaGif9EO+MP/hNp/8AHa+ncf5xRj/OKAPmL/htDRP+iHfGH/wm0/8AjtH/AA2hon/RDvjD/wCE2n/x2vp3H+cUY/zigD5i/wCG0NE/6Id8Yf8Awm0/+O0f8NoaJ/0Q74w/+E2n/wAdr6dx/nFGP84oA+XtQ/bZ8OWFlJeX3wX+LVrbwozyzTaBEiRqucliZcKBg9aZpf7b3hfU9Ni1HTfg38V72znXdFc22hQyxuMkZDLMQeQR+Feuftgcfsp/EjIyP+ET1LjA/wCfZ/1HWud/4J5gn9jHwCwA/wCQa4PHbz5egoA4z/htDRP+iHfGH/wm0/8AjtH/AA2hon/RDvjD/wCE2n/x2vp3H+cUY/zigD5i/wCG0NE/6Id8Yf8Awm0/+O0f8NoaJ/0Q74w/+E2n/wAdr6dx/nFGP84oA+Yv+G0NE/6Id8Yf/CbT/wCO0f8ADaGif9EO+MP/AITaf/Ha+ncf5xRj/OKAPmL/AIbQ0T/oh3xh/wDCbT/47R/w2hon/RDvjD/4Taf/AB2vp3H+cUY/zigD5i/4bQ0T/oh3xh/8JtP/AI7R/wANoaJ/0Q74w/8AhNp/8dr6dx/nFGP84oA+Yv8AhtDRP+iHfGH/AMJtP/jtH/DaGif9EO+MP/hNp/8AHa+ncf5xRj/OKAPmL/htDRP+iHfGH/wm0/8AjtH/AA2hon/RDvjD/wCE2n/x2vp3H+cUY/zigD5i/wCG0NE/6Id8Yf8Awm0/+O0f8NoaJ/0Q74w/+E2n/wAdr6dx/nFGP84oA+VPEX7YemX/AId1Cxtvgl8XEnurWWGMyeHVVSzIQCzLISOSOgrof+CXOkalof7IOj6frWmXmnXa394zQXcDRSAGZiCVYA9DX0Vj/OKYEbqV5XuD7dfzoAlooooAKKKKACiiigAr5P8A+Ck3/JVv2f8A/sfoP/R9rX1hXyf/AMFJv+Srfs//APY/Qf8Ao+1oA+rv4qdTf4qdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA12UKeenX2r4L1HxNr/AOyJ+2Nrt74khlvvht8T9TfUDeqrMbeR5jIXB/vxGVwy9WjwcE4r6S/a+8T+MvDXhfwtdeCdD1rWryXxZZm9s9Gh8yeWyTzZZh/dwyxBfmP8Qrgf2ztR0L4zfAG48CeGPDus614p1K4t30m1Oh3Vu+m3AkXMs8k8aC3CoZAzOVJDEAHPAB7z4G8PaDpNzrOuaGySL4s1JdWnljcPHLIbeGEPGR/CY4FccnLOx70nxUn8dWngu4m+H2laVqGvI8fkW+qXLQWrgv8APuZcnhefem/BTwrd+CfhD4W8IXl0Ly40DRrXT5Z0PyyNFEqFlzyFypwD0XFdZQB8/f8ACQ/ti/8AROvhj/4PLj/4mj/hIf2xf+idfDH/AMHlx/8AE19A0UAcX8GLj4k3nheaf4oaNoel6x9rdYoNFunmg+z7V2tlgDu3b/zrI/bGP/GKXxHGD/yKl/0B/wCeD16W3SvGf20tZkj/AGf/ABZ4X03w74i1jVvEGhXVpY2ukeHry+y8qNGCzwxskfXPzkUAc1/wSrI/4Yh8Jj0uNQz/AOBk/wDjX0XXzL/wTRutQ8P/ALPOi/D7xR4U8VaDremz3btHqvhm8tYmRpnl3+e8Yi6Sbcbs8dK+mqACiiigAooooAKKKKAPl/8Aa0/5Pn/Z2/6/dX/9EwV9QV8v/taf8nz/ALO3/X7q/wD6Jgr6goAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACj+Gij+GgDzb9sL/AJNT+JH/AGKepf8ApNJXPf8ABO//AJMt8A/9g6T/ANHy10P7YHP7KfxIx/0Kepf+k0grjP2F/EGg+G/2HfAd/wCIta0/SbVNNkLT390kEajz5erOQBQB75mkyPWvD/Hn7Wv7PXhSTyb/AOJOmX02zhNKik1AMf8AfhVkH4mvGfHH/BRr4eWUMqeEfAviLV5VOFe+lisonH97cpkcfitAH2tuHHPXvSb06Bs4ODjnH19K/Mrxv/wUR+LWqXEkXhrwv4b0G3l/1ZljlvLhPo7MIz/36qf9jH9qTx94k/aa0l/jD8UUh8PR2V2JftrQWNmH8o7NyoqITuGBmgD9MMijIrzf/hoD4Gf9Fg8Ef+D+2/8Ai6P+GgPgZ/0WDwR/4P7b/wCLoA9IyKMivN/+GgPgZ/0WDwR/4P7b/wCLo/4aA+Bn/RYPBH/g/tv/AIugD0jIoyK83/4aA+Bn/RYPBH/g/tv/AIuj/hoD4Gf9Fg8Ef+D+2/8Ai6APSMijIrzf/hoD4Gf9Fg8Ef+D+2/8Ai6P+GgPgZ/0WDwR/4P7b/wCLoA9IyKMivN/+GgPgZ/0WDwR/4P7b/wCLo/4aA+Bn/RYPBH/g/tv/AIugD0jIoyK83/4aA+Bn/RYPBH/g/tv/AIuj/hoD4Gf9Fg8Ef+D+2/8Ai6APSMijIrzf/hoD4Gf9Fg8Ef+D+2/8Ai6P+GgPgZ/0WDwR/4P7b/wCLoA9IyKMivN/+GgPgZ/0WDwR/4P7b/wCLo/4aA+Bn/RYPBH/g/tv/AIugD0jIoyK83/4aA+Bn/RYPBH/g/tv/AIuj/hoD4Gf9Fg8Ef+D+2/8Ai6APSMijIrzf/hoD4Gf9Fg8Ef+D+2/8Ai6P+GgPgZ/0WDwR/4P7b/wCLoA9IyK+T/wDgpLz8Vv2f/wDsfoP/AEfa17R/w0B8DOv/AAuDwR/4P7b/AOLr5v8A25viL4B8bfF74EQ+DvGeg69JZ+PLd7ldN1KK4MKm4tgC4Rjtzg9aAPtb+KnU3+KnUAFFFFABRRRQAdKhuLq2gZFmuI42kbagdgC7YzgDucdqkZlIwD16V8RfAvXPCHij9tz4o+C/jno2nap4kn1N4PC0fiC1juIEskeQC3t0kXbGzRmFxjJkBY5ySWAPttZ4WmMQlUyKoZlzyAc4JHYHB/KpOleN/s1/CaX4beKfH1x5t09lrOvxPpAmuzN5VilujLGCxJVUlluFAOPur0GK9jb7poATcOPf2/z6U6vCNe0T9q6TXr6TRfGnw0g05rqRrOK40i5aWOAs3lqxB5ZVxVf+wP2wv+h7+Fn/AIJbr/GgD33emcFsE9Aac3SvG/hjpX7R1t46sZPHvirwFfeH1Mn2yDR9NuIbhh5beXsZjgfvSmc9VBr2SgCHyj37nIP932z6dBTmRjk4XdjAPXiuL1b4zfB/S9TuNN1P4q+CbK8tZTDcW1z4htY5YZAcFXVpAVIPY1X/AOF7fBD/AKLJ4A/8Kiz/APjlAHoFFef/APC9vgh/0WTwB/4VFn/8co/4Xt8EP+iyeAP/AAqLP/45QB6BRXn/APwvb4If9Fk8Af8AhUWf/wAco/4Xt8EP+iyeAP8AwqLP/wCOUAegUzYSMHp/X+tcF/wvb4If9Fk8Af8AhUWf/wAco/4Xt8EP+iyeAP8AwqLP/wCOUAd5tbPAA/D+tSV5/wD8L1+CH/RZPh//AOFRZ/8Axyuq8IeJ/DfivR11bwtr+ma3p7OyC7027S5hLKcEb0JXI+tAGtRRRQAUUUUAFFFFAHy/+1p/yfP+zt/1+6v/AOiYK+oK+X/2tP8Ak+f9nb/r91f/ANEwV9QUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR/DRR/DQB5r+19x+yl8Sc/wDQqal/6TyGvP8A9ijwV4R8YfsS/D+38VeFNE1yIaa4VNSsIrkD9/L03qcfka9B/bC/5NT+JH/Yp6l/6TSVz3/BO/8A5Mt+H/8A2DpP/R8tAGT44/Yv/Z78RvJOngltFuZFI87R76W2x9Iwxj/8drxvxx/wTc8MXP7zwh8SNV04/MTHqlhHd7ieweNoiv4hq+5KKAPy18d/8E+fjjo6yTaFP4a8Rxg/JFaX5t53+qzqiD/vqrP7GX7M3jfTP2otL0r4wfCm9fQGs7ozfbbMXVjvEZ2bpULR5DkEDdz71+oNRvHlemc84Pc9s0AeWf8ADM/wC/6JJ4W/8F6Uf8Mz/AL/AKJJ4W/8F6V6vRQB5R/wzP8AAL/oknhb/wAF6Uf8Mz/AL/oknhb/AMF6V6vRQB5R/wAMz/AL/oknhb/wXpR/wzP8Av8Aoknhb/wXpXq9FAHlH/DM/wAAv+iSeFv/AAXpR/wzP8Av+iSeFv8AwXpXq9FAHlH/AAzP8Av+iSeFv/BelH/DM/wC/wCiSeFv/Beler0UAeUf8Mz/AAC/6JJ4W/8ABelH/DM/wC/6JJ4W/wDBeler0UAeUf8ADM/wC/6JJ4W/8F6Uf8Mz/AL/AKJJ4W/8F6V6vRQB5R/wzP8AAL/oknhb/wAF6Uf8Mz/AL/oknhb/AMF6V6vRQB5R/wAMz/AL/oknhb/wXpR/wzP8Av8Aoknhb/wXpXq9FAHlH/DM/wAAv+iSeFv/AAXpR/wzP8Av+iSeFv8AwXpXq9FAHlP/AAzP8Adv/JJPC3/gvSvnX9tL4X+APh38YfgXdeC/CGlaDcX3ju3juZLGDyjMguLcqGwecZr7gr5P/wCCk3/JVv2f/wDsfoP/AEfa0AfV38VOpv8AFTqACiiigAooooA4f4xfELTPh7p+i3eq7dus+ILHRlLTbRE1zJsDknsoBY+wJr55/wCCp3ws0vUfhf8A8Ll0KZdN8WeEXjJvYG2tdW/mhQhYHiSNnV0brgMv8XH0T8Xvhh4P+J+j6fpnjjSBq1npt2LuK0ed4omm2NHvYKcnCyPjngmsif4IeDb2OytdbuPEOuaZpsqS2mlatr11dWkbIQyb43f9/tIG3zi+3tQBtfAbWtW8RfBfwlrviC3a31XVdDtbm/hZNpWd4VZ8r2yxY4PTOK7JulQxxbNqogVf9kAYx0/AdKmoA8I8QfDv9pa416+n0n9oDSbHTpryR7S0fwVbTNbQljsj3Fhu2qRyearf8K2/ar/6OV0f/wAIS1/+Kr6AooA8b+FvgX4+6T46stQ8cfGrT/EehQmT7VpcPheC0ebKOE/fKd3ysVbpzivZKKKAOC1T4L/CXVNSuNS1P4V+Cbu+u5DLcXVx4etZZZZGOWdnKbiSe5Oaj/4UR8Ef+iOeAf8Awl7L/wCNV6DRQB59/wAKI+CP/RHPAP8A4S9l/wDGqP8AhRHwR/6I54B/8Jey/wDjVeg0UAeff8KI+CP/AERzwD/4S9l/8ao/4UR8Ef8AojngH/wl7L/41XoBZQMlgMdcmjcucZ59KAPP/wDhRHwR/wCiOeAf/CXsv/jVH/CiPgj/ANEc8A/+EvZf/Gq9Bqjr2taRoejz6trWqWenWFqhee6u51iiiUdSzsQAB70AcX/won4If9Ee8Af+EvZf/Gq6fwf4W8PeFNJGmeF9A0vRLESM4tNNs47aHcTktsjUDNV/hv4x8NeO/DMXiXwnqceqaXPNJDFeRIyo7RuUcAMASAykZxg44ro6ACiiigAooooAKKKKAPl/9rT/AJPn/Z2/6/dX/wDRMFfUFfL/AO1p/wAnz/s7f9fur/8AomCvqCgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKP4aKP4aAPNv2wv+TU/iR/2Kepf+k0lc9/wTv8A+TLfAP8A2DpP/R8tdD+2F/yan8SP+xT1L/0mkrnv+Cd//JlvgH/sHSf+j5aAPaqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+T/8AgpN/yVb9n/8A7H6D/wBH2tfWFfJ//BSb/kq37P8A/wBj9B/6PtaAPq7+KnU3+KnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGahku7ZJ44HuI1lm3eVGWG59v3sDqcZ59KLgu1u/k7Gfb8oY/Lmvh3/AIJ/3fw++KVx418N/F7QLLVPinJqlxNqcuu2qSXckPyrttnI3QmJww8uPbs+THT5QD7kS4gffslRvLbY205w3HH15HHvT26V5R+yf8NdR+GPw1vND1W4uLy9udf1G7kuLm48+WWIzmO3d5NxLFreKE44IztIBBNdX8VPiL4I+HGkQap428SWWiWd1L5UE10zbZHxnaMA5OOaAI/jZ45074a/CzWPHes2t1PZ6HAJ5orTaZXywXCbsDq/f0ro9FvE1DSba/RHVbqGOZVkxuUMAe3sRXyr+2t+0L8FvGH7LPjLw94a+Iukahql9YqlrbQl97nzozgAr6A16D4R/ai+AFr4R0u3m+KGixTQ2ccbK/mHYyoqkcLzz36UAe75rwj9vD4feGfE37OPjTWdb01rq+0bQJ7vTpmnkxaSwq8iSRoH2o+7AZgMsvBLD5a9b8A+K/DvjPwtaeJPC2pw6lpN9u+z3cOdkm0lTjIHQgj8K5D9sT/k1H4jf9ipqH/oh6APPv8AglaGH7EfhUjvcah2x/y+TdB+FfRlfOn/AASr/wCTIfCftcX/AP6WTf419F0AFFFFABRRRQAUUUUAfL/7Wn/J8/7O3/X7q/8A6Jgr6gr5f/a0/wCT5/2dv+v3V/8A0TBX1BQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFH8NFH8NAHm37YX/JqfxI/7FPUv/SaSue/4J3/8mW+Af+wdJ/6Plrof2wv+TU/iR/2Kepf+k0lc9/wTv/5Mt8A/9g6T/wBHy0Ae1UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8n/wDBSb/kq37P/wD2P0H/AKPta+sK+T/+Ck3/ACVb9n//ALH6D/0fa0AfV38VOpv8VOoAKKKKACiiigAooooAKKKKACiiigAooobpQBw/j74gad4Y+JHgzwjeFTdeMbu6t4GabaEMFu02MepOxQOpLADJr5T/AOCmHw+k+H3jLwx+0V8P5XsPE8euQ2d5bwrzfysjGKQAcsxWMxOP41Ze6kt9SfFP4QeB/iLrWk6n4v0m4v7nQ45RpsqX89s1m8jRM0sbROpR/wBymCvTB9ahtPg94UfxRp+vay2t6/d6O/m6Z/bmqPexWDkAb4onJQOAPvlSwzw1AHeae7yWqSumx5PmZc5wfSq+qaTpupQJFqen2t5Gr70juIBIqtjG4Bs4O0kVdXjHy4z1HpT23bTgfSgD5/8A2+vDXh2x/Y68dXlloGlW0kOno0MkFrGjK3npyGABHB7GvTfA/hLwm/grRZP+EX0dmbTYMs2nRbiPLU4yR3rV+IXhLQfHHg/UPCvijTvt2j6ogjvLYSvF5y5B5ZCrDkDo1amm6fDY2MNnaq0cFvCsUSbs7VUYA3H5unvQA2xsLXTrWO10+zgtreLO2KFBGgySThVwB8xJ6dz61wP7Yzqv7KPxGyevha+A9yYHAH516WwJXFcX8Wvhh4V+I+lvp3i221S8sXj2SWdvrl5aQTrnJWWOCZEk6fxA9aAPJ/8AglS6H9ibwwgYFo7m/VwP4T9rkOD+BH519G1558JPgv4C+GMaweBtN1PSrT58WX9v39xarv8AvEQTTvFu6HO3tXodABRRRQAUUUUAFFFFAHy/+1p/yfP+zt/1+6v/AOiYK+oK+X/2tP8Ak+f9nb/r91f/ANEwV9QUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR/DRR/DQB5t+2F/yan8SP+xT1L/0mkrnv+Cd//JlvgH/sHSf+j5a6H9sL/k1P4kf9inqX/pNJXPf8E7/+TLfAP/YOk/8AR8tAHtVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfJ/8AwUm/5Kt+z/8A9j9B/wCj7WvrCvk//gpEC/xa/Z/RRlv+E+gwPX9/a9PWgD6u/ip1N/izTqACiiigAooooAKKKKACiiigAooooAKKKKACiim7lJxnp1/z+NADqKKKACj6UUUAFFFFABRRRQAUUUUAFFFFABRRRQB8v/taf8nz/s7f9fur/wDomCvqCvmD9rQZ/bm/Z2I7Xur5/wC/EFfT9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUfw0Ufw0Aebfthf8mp/Ej/sU9S/9JpK57/gnf/yZb4B/7B0n/o+Wug/bBI/4ZT+JHPXwnqWP/AaSue/4J4kL+xb4A3HGdOkxnvmeWgD2uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKABuleRftQ/ADw18dNN0Wz8S6xrWljQriS4tn0maKNi7qo5Lo3QoDkAGvXaKAPk3/hgfwF/wBFR+Jf/g0t/wD4xTv+GC/An/RUfid/4OIP/jFfWFFAHyf/AMMF+BP+io/E7/wcQf8Axij/AIYL8Cf9FR+J3/g4g/8AjFfWFFAHyf8A8MF+BP8AoqPxO/8ABxB/8Yo/4YL8Cf8ARUfid/4OIP8A4xX1hRQB8n/8MF+BP+io/E7/AMHEH/xij/hgvwJ/0VH4nf8Ag4g/+MV9YUUAfJ//AAwX4E/6Kj8Tv/BxB/8AGKP+GC/An/RUfid/4OIP/jFfWFFAHyf/AMMF+BP+io/E7/wcQf8Axij/AIYL8Cf9FR+J3/g4g/8AjFfWFFAHyf8A8MF+BP8AoqPxO/8ABxB/8Yo/4YL8Cf8ARUfid/4OIP8A4xX1hRQB8nf8MG+BMZ/4Wj8TP/BvB/8AI9fNn7Kfws8KfFb9pbx18Nb/AMfeNodP8P8A2ptCubPVEEtxbw3QgDSMyMoYq0R+VV/ir9IPit4jj8H/AAw8SeLXUSLoekXOobCfveTE8oH47QK/Kj/gml4rk8P/ALaHhWWa6Ig1h7jTrkk/6zzomCZ9cyrEaAPsv/hgvwJ/0VH4nf8Ag4g/+MUf8MF+BP8AoqPxO/8ABxB/8Yr6wyKKAPk//hgvwJ/0VH4nf+DiD/4xR/wwX4E/6Kj8Tv8AwcQf/GK+sKKAPk//AIYL8Cf9FR+J3/g4g/8AjFH/AAwX4E/6Kj8Tv/BxB/8AGK+sKKAPk/8A4YL8Cf8ARUfid/4OIP8A4xR/wwX4E/6Kj8Tv/BxB/wDGK+sKKAPk/wD4YL8Cf9FR+J3/AIOIP/jFH/DBfgT/AKKj8Tv/AAcQf/GK+sKKAPk//hgvwJ/0VH4nf+DiD/4xR/wwX4E/6Kj8Tv8AwcQf/GK+sKKAPk//AIYL8Cf9FR+J3/g4g/8AjFH/AAwV4E/6Kl8Tv/BxB/8AGK+sKKAPmr4X/sY+B/A/xT0fx5aeM/Gup3+iXDTW0OqX8E0TFkZWDYhBOd3bH3a+laKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApG+7S0EZGKAPzg/4KA/tK/F3w18VPHvwYZ9E/4R+5tjZhvsTef9muLZJCRIW+9tlK9O1Yn7Cf7SPxdPjb4f8AwW0YaG+h/wBoJaSCSzY3KWok82ch9/3vL8wLx2qf/gs74Z/s39oLw/4nhjVYdc0FY2IH357eVlJJ/wByWEfgKwP+CQfhhdb/AGtv7XmV9vhvQ7q9jfGf3smy2AJ7HbcSH8KAP1SXpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfO/8AwVA8Tf8ACO/sZ+JkhnMFxrMltpkDZA3CSVXkH4xJMv41+VHwz8Qt4S+ImgeKIRvfRNVttQUc8mKVX2/jt/Wv0V/4K+6T488W+BfB/hPwZ4L8Q+IY5NRn1K8bSdKmu/JMMYjiD+WpxuFxIRn09q/PXRPhl8SNZ1rUdH0j4f8Aii/1HR3CalZ2ujXEs1ixzgTIqFozwfvAdDQB+51rNDcW8dxG6ski7kYHII9Qamrz39lq51m4/Z08EDxDp2oafq0OgWltfW1/bPDOkscSoxdHAYElc8jvXoVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHxb/AMFpfDS33wR8L+KlRmm0XW2syVHCxXMRZifo1vCPxrF/4IkeG/J8I+OvGLqCt7f2ulxHHKmGNpHwffz4/wAhXv3/AAUM8MnxX+xx44soVAmtNPGqRsR0Fq63DYz0JSNx+OKw/wDgl14ZXw3+xp4akNr5Nxrk1zqdz2LM8zxo/wCMMcNAH0VRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAR7DuwVyMYJP6f1r5S/Yf4/bM/aOx1GuWWcZ677vJ69Ov6V9Y18nfsO/8noftIf9huz/APQ7ygD6t2kds8c8n+VSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWdQMk4Hc9qAHZFNLqOp7Z6VjePPFvhrwZ4WuvEXinXLHR9LtVzLd3kwjToSFGfvMcHCjJPYGvlbVvj38V/jrq03hb9mPw1Jp2jJM0N/461mARwxrnloVK8M3PZ3+b7kZ+agD6K+Jnir4ei4/wCFceK/Fmj2OoeKrWazh0y6vI0nukkRo8KhOTuyQP7x4GTxWn8IfDi+Dvhh4c8IpN5w0LSLWwMnQOYYUjLf8CKk/nXz54b/AGGvhxL4Vvk+IGq654t8U6spN14kl1CSO4t5CM7oF3FQARkeYJMnrgcVzb3P7Q/7K+Ev1n+LXwvtT/x+ID/amjwgHIIO47UxxnenyDLQBsUAfZjOi/eYDPrTq87+Avxm+Hnxf0FtT8DeIIbuWFQ13p8h8q7tCSR+9ibkKSCAwG04OCa9CWWMpvDDbjOaAHUUZooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Tv2Hf+T0P2kP8AsN2f/od5X1jXyd+w7/yeh+0h/wBhuz/9DvKAPrGiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiignHJoAKTcvXI4601ZYzjDfe6e9eT/tD/tA/Df4Maev/AAlWtiXVpI99rotl+/vbgE4GE3fKCQQGfapwcGgD1dpY/JL7wFAyWPAA9c181/Gj9qvQtO8SHwD8GNFn+JPjifckdvpTb7OyPdpZlyGCtywXI/vulcTF4Y/aG/aomFz41uLn4VfDOY4TRrMsNS1WE44lzj5SC4zIoVTtPlORuH0j8E/hJ4E+FHh0aL4J8OW+nx5zPdM3m3N2f70krDcxPpwBnigDwjwT+y/4w+JfiSDx3+1J4ok8Q3qHzLLwnp8xj07TgedjFMBscAqmM7fmklr6h0HRNN0PSLbStF0210+ws18u2tLSBYoYU/uqi8KvsMD2rTooAKrtCxQqF4PVSePz9+e3PerFFAHzb8ev2TPDfinxI3jv4bapcfD/AMc27GeLU9LBWC4lwP8AWQrjG7kF1YH523LIOK5Lwv8AtJ/ED4P67b+DP2ofCslnFI/k2PjTSYDJY3pXrJKEAAYncx8sB13DMQr6+bO04rE8Z+GNG8U+HbjQ/EGjWep6fdpsntLqJZInB9Q3p2YYI7UATeF9d0TxJoVtrnh/VbPVNNvF3W95ZzrLFKM4+VlJB5BH1GK1A6FtobJxnA9PWvkPxR+zj8TPgxr1x40/Zd8SyR2kredfeCNZuPMtbnsBEzEA8bR8zoygMRKcha7H4E/tWeEvGXij/hCfiBps/wAPfHEEohn0fWiYoppQR/qpXABLYXarhW5+Qv1oA+jaKZ5seCQ6nAB4OevT86duHrQAtFFFABRRRQAUUUUAFFFFABRRRQAUUU1921sDntQAu4ZxS5rzfU/jF4N0/wCJmqeA7oa5JrOk28FzcQ2OgXd8nlygsrZt432gAfx4rQX4qeFCcC18W/8AhGat/wDI1AHbGRB1YDnHJ706vOfgj8WPDHxSXXD4bj1iM+HdVk0q8/tHS5rPMqffCB8EEcZRsSR5G9VyK9GoAKKKKACiiigAooooAKKKMgc0AFFN3r1zx69qdmgAoozRmgAoozRmgAoozRmgAoozRmgAr5O/Yd/5PQ/aQ/7Ddn/6HeV9Y5HrXyd+w7/yeh+0f/2G7P8A9Du6APrGijNGaACijNGaACijNGaACijNGaACijNGR60AFFFN3ruxnn09aAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR0pqSI/wB1s5GRj09fpTZJogjZkUbQScnp60AP3Lu255HasH4heMfC3gfwrdeIfF2uWWj6Za/625u5Qi5xkKO7MccKASewNfPvxk/a009PFK/D74GaBL8SPGc52RrZAvp9qcgGSWVeJFGRlkKoO8gwaoeBP2W/FHj7xRbeP/2n/FT+KtTj+ez8N2UrR6bpwPJQ7du7ogKxhQdh3NLmgDJ1X47/ABf+P+rT+Gf2bfD02jeHQ/k3vjnWYvLCgZ3fZw+4BiMgfff5gSsZ+avSv2ff2WfBfw41L/hK9bkuPG3jm4bzLvxFrchlfzcDLxI5cJnA+Y7nG5sNjivatH0ez0fSLXS9JsbeysrONY7e1toxFDCo6KiLwqjsOg9DWlQBCEbdnaO3PT8v8OlTUUUAFFFFABRRRQAUUUUAN2+nUjHWvNfj18Evh98YfDo0rxtoKzTRxlLTUbciO8sjz/q5ccL0+Ugqf4lr0yigD40K/tE/sqsRtvPi58L7c/LncdV0iIY6ffbYoAxw0Y2/8sc17/8As/8Axv8Ah38ZNBXUvA+tQ3FxCivd6XMRFeWWSM+ZDnpngOMoexNeiNG5j2hAuPT9cDtn/wDXXz18fv2TvCfjbWh408DX1z4A8dQN51vrOkbo0nlxyZY1YDJ5y6bG+b5t4+WgD6L3of4hTsivj7w5+0V8SPg14itfBP7UfhqRLeRxHZeOdHRntLvBIUyBANxOCSFCuByYh96vqvwh4i0DxV4ftdf8N6raatpl4m+3u7OUSxyD2I7juOoPBoA1qKbvX+9TqACiiigAooooAKKKKACm70zjcM9h606uT8aa94h0bUrW10fwHq2vwTREyT2V5ZQJblfuo4nmRjn1UEUAeH6fB4luv+CiHjdPC2s6TYTr4O04TSanpcl6p/escKsU8JUg+rGvYm0z4vdP+E38FD3/AOEPu/8A5ZV5I+jeEPFHx98S+IdS+FOoeIPFUdjaWWo6Xe6vpE66bGI1kixCZy6Fw2SzcHsaPC9z8OvEHj7xL4O0z9mxW1jwebMalC9vpSiI3MJki2EzgPwpPBPSgC5/wT1W4i8N/E5LuaGS5HxS1kzPFF5cbtmEEomTtUlWxgntycV9D+ZHkDevJwOetfPOl6L4z+Gvw11rSfgt8Fbi11LWNWn1MjXdbs/sYnmZRI5VJ2wVVEVY0ATCqck7t3tHg2XWNT8N2N/r+hHSNSuIUe9sDcpcfZ5V/hWVeHQHLKeDzkhT8tAHQUUUUAFFFFABRRRQAU1gSpFOooA+OtJ/aJ/aS8ZfEXxroXwu+EPhvxDZeDdfuNKlnl1NbZ/kklRCwlnQNkIT8ua3f+Flftyf9G6+Fv8AwobX/wCTKq/8E2f+SsftAH/qfp//AEfdV9ZUAfK//Cyv25P+jdfC3/hQ2v8A8mUf8LK/bk/6N18Lf+FDa/8AyZX1RRQB8r/8LK/bk/6N18Lf+FDa/wDyZR/wsr9uT/o3Xwt/4UNr/wDJlfVFFAHyv/wsr9uT/o3Xwt/4UNr/APJlH/Cyv25P+jdfC3/hQ2v/AMmV9UUUAfK//Cyv25P+jdfC3/hQ2v8A8mUf8LK/bk/6N18Lf+FDa/8AyZX1RRQB8qt8Sf25Sv8Aybn4V/8ACitv/kuvN/g/ov7ZHw/+KnjrxxYfAvSLq58eXkd1eW1x4is/Lt2VpSAhFzk/609fSvvKigD5X/4WV+3J/wBG6+Fv/Chtf/kyj/hZX7cn/Ruvhb/wobX/AOTK+qKKAPlf/hZX7cn/AEbr4W/8KG1/+TKP+Flftyf9G6+Fv/Chtf8A5Mr6oooA+V/+Flftyf8ARuvhb/wobX/5Mo/4WV+3J/0br4W/8KG1/wDkyvqiigD5X/4WV+3J/wBG6+Fv/Chtf/kyj/hZX7cn/Ruvhb/wobX/AOTK+qKKAPlf/hZX7cn/AEbr4W/8KG1/+TKP+Flfty/9G6+Ff/Chtv8A5Mr6oooA+Nfif8e/2t/h74F1Dxj4y+A3hbTNF03y/tN1/bUM3l+ZIsSfJHcM5y7qOAcZyeMmvp/4J+Ibnxh8H/Cfi29gjt7jXtBstRmhjOUR54ElYKTz1cj8K8p/4Ki/8mL+OO3/ACDv/TjbV3/7J/8Aya58Nf8AsTNJ/wDSOKgD0KiiigAooooAKKKKACiiigAooooAKKKKACiim70xncOuPx6YoAdkUwyIRjdznGKwfiJ428I+A/Ck/iPxfr9jo+lW4O+4updoJAJ2qOrscHCqCSeACeK+V9V+Nfxm/aG1S48Ofs66BP4d8L7ntrnx5rAaMuqnk2wIxuIBAADyDeCfJPzUAe0ftIftC/DT4M2Qg8Sau17rk67rPQ9OUS3sxzgMV6RgkEb3wODtzivE4/Bf7QX7U80d18Rrmb4Y/DObBj8P2X/IR1JAePODA46n/WAAbVIiY/NXqv7OX7L/AIE+F94PEt+tx4r8aTyGa78SawfOmErD5ngVsiMkk5bl2y2WIOK9yWNweVHLZJ+9g468n04oA4z4LfCnwR8KfDI0HwN4ftdLtQVaSRQXmuWAJLSysxZzlmwCSF7Cu5oooAKKKKACisjxf4l8P+FdAm1zxJrNjpOnW+PNu7+5S3hjyQAC7kAEkgfU1d02+tdQ0+C+sLmK5tbqMSwTQuGSVCMhlI4III6UAWqKKOlABRTd6YzuGB1PpRvXjJ6nAyPxoAdRRUVxcQQQSSzSrHHCu6R2OFUY6k9KAH719adXl/7Pfxq8H/GT/hID4M+3tbeHb4WU01zCiR3DEEh4Srk7Dg/eAPtXqFABSYJzyRn9KWigDD8UeHNN8RaHc6Nr+k2eq6deoI7qzvIkmimTHCMGX5gDkgnkHnnpXzJ4u/Zr+IPwj8SXfjb9lzxKbJJn86+8F6tOZbG96ErGZDjccADeyEZbEqj5a+t6RgSpx6UAfNvwB/av8N+KPEQ8D/E/TJvh146t5BDNp2r7o7e5f1imcAAt/DG2OvymSvpEyIOrrycDnqfSvOvjx8F/h/8AGHw8NJ8b+Ho7p4VItNRjIju7M+sco+YDp8pypx8wr58msf2iP2W3L6VJcfFr4X25P+jTMw1bSIQDnaRksoBHIEifLwkVAH2RvXdtzz6d6dXl/wCzv8dvhz8ZtDN74L1lGu4033ek3O2O9tBwMvHk55/jQsn+1Xp29cZzx60AOooyKKACiiigAqjrmrabo2i3erandx2tlYW73FzNKcLFEilmcn0Cgkn2PpV6uA+J3gK5+IV1DoviC7WPwahWa+0mAkSavIGDCO4f+GAFQTGvMhxuYKGRwDwD9lm/s9C8c618bviTpX9i/wDC2b8y+H9ZvHAjsLMOUt7Wdyo+zvNGsbq/Cy7UGVKgHoPhLpWuan+2v8ev7D8TzaOqSeHfOEdhFOLjdp7bfmcMV24fOP71fRGraLpur6DNomq6Xa3mm3MPkzWNzbrLbyR4xseM8MvTg56da8Jm/ZSsfDetX2sfBr4j+KPh1damqC7t7dkv7OTywRGTFMNzbcnGZOB020Ad1f8Aw28a33jHQ9duPjL4jWPQ5i50+1tbWK2vg3Di4jCHzMr8q5J2/eXa3zV6crcLltzY4Pr9K+a9Q+EX7W8LbNN/ajtLiMd7nwfaIx/8devdPhz4f1Xw/wCGLfT9Z8Sah4gvsK93qF75YeSTaoO1Y1VFX5egXvQB0lFFFABRRRQAUUisp5BoyP0z0oAWikZlUZYgD1NLketAHyb/AME2f+SsftAf9j9P/wCj7qvrKvk3/gmz/wAlY/aA/wCx+n/9H3VfWVABRRRQAUUUxZY2JAYHacH2P+SKAH0UUUAFFFFABRRTWdRwWxzgZ/OgB1FN3rnGefTH+fUU6gAopNy4znj1paACiiqetatpej6TPqmr6laWFjaqWnurqZYoolHBLOxAUZ9TQBcopqOrqrKchhkH1p1ABRRRQB8/f8FRv+TF/HH/AHDv/TjbV3/7J/8Aya58Nf8AsTNJ/wDSOKuA/wCCo3/Ji/jj/uHf+nG2rv8A9k//AJNc+Gv/AGJmk/8ApHFQB6FRRRQAUUUUAFFFFABRRRQAUUUUAFFFI33aAI554Yo2aSVFUKWJZsYUdT9BkZPavl74yftZWcniL/hXnwC0BviR4wnJjE9oS+nWhPG55R8sg91ZYx3fHFeW/wDBQIfHFfHyf8LIGrN8FFuh9rXwP/rPs+4nN0ZTu8zhCQ/7rj5cHmvpT9jofA8/C+FvgculDStwW8Fvn7YJemLrefM3jGRvHQ5UAUAea/D/APZS13xr4mh8e/tM+KZvGWsq/mWnh+G4caZpysQSmFKh/uplUCKWDbvNByfp3S9Lt9NsIbLTrW3s7a2RY4Le1jEUcaqMBQBwFHYYwPQ1fWVGXIb/APX6fWnZFACe3NLRRQAUUUUAFFFI33aAPHv2mLH4MfETwrH8OviJ4p0a2F3fRG2txrMNtdi5DbVECljudixXaQR8xPUCvRvA+gab4U8I6X4Z0WBodM0ezitLONmyY4o0VFGT1IAzmvkXx94d0Lx1/wAFWfCvh7SdJtIbPwJo41fWHtoFjeW4VmljaQj7+Hls+Tk/er7UbheRmgA3r13Dg4PPSmvLHyu8Z9BXlX7VXxt0X4H+B4vEOr6Hq2qtdOYLaKyh/dq/H+unPywr8wxnk9hxXnvhnwd8UPj3oUGu/ELx/Z+HvBOoDfb+F/A+orM1xEei3WoqTvx0dYSFYc5BoA7H4rftG+CPDGvt4V8MxX3jzxgW2x6F4cj+0TRt6TSrlIV6Zydw9K9a0Oa6udHtLq9tGs7iaJXlttwYwueWXI4ODxkVz3wr+HHgn4a6Iuj+CPDFjo1ptUObeP8Ae3GO8sh+Z256sx9sV1+Qe/t9KAEeRAdpYZPQV4h8b727+KfxBX4HaFO8ekxxJdePNQgkKtb2Tjcmnoy/dmuBw2OVh3Hq4rc/am+K+nfCf4ZnVpJ7BtW1S6TTNFgvLhYoXu5QcNNIcBIUAZ3YkDamM5IB5b4E+PPgT8PfBI02X41+BtS1rUJ3v9e1ZvEVosmqX0hDSzN+86E8KP4UUKKAPJf+CNKBPCvxFgji2RRa7CqrxhQEfCj6YNfbNfBX/BJDx34J8PWHjrTde8XaJpl5q3iKEafb3l/HFJebg6jylZgXyWUcZ61965FABRRRQAUUUUAFQmNznI6n1xxn/P17ipqKAPnn9oj9lLwn481keNPCF7c+BfHcErTw67o7NF50xz88yKw5OT86EP8ANyWA21wnh39oP4ofA/WLfwn+054Ylk0p3MVn440aPzbScf8ATQIgJbqcgI//AEyz81fXzMCuM1z3xEbwovgrUm8bvpY8PND/AMTE6u8YtGiz/wAtfM+XZkjgnHI45oAt+C/FHh3xf4et9d8L61Zavpt0uYbqzmEkbckYyOhBBBB5BBBwRV7VNU03TbdZ9RvreziZ9ivcSCNS2CcZbHOAT9AT0r83PCC6of2lmP7Dq+Ixo6yhdcfUAf8AhHg2Rj/XfPt2k/f/AHoO4R5BBr7i+KXwl0X4wfC/SPDPxWsFuGtpoL25h0q6kghS6WKRGMbcMUxNIMHsR6UAdt/wlPhj/oY9J/8AA6P/AOKo/wCEp8Mf9DHpP/gdH/8AFV8//wDDB/7Of/Qt6t/4Op/8aP8Ahg/9nP8A6FvVv/B1P/jQB9Af8JT4Y/6GPSf/AAOj/wDiqP8AhKfDH/QxaT/4HR//ABVfP/8Awwf+zn/0Lerf+Dqf/Gj/AIYP/Zz/AOhb1b/wdT/40AfQH/CU+GP+hj0n/wADo/8A4qj/AISnwx/0Mek/+B0f/wAVXz//AMMH/s5/9C3q3/g6n/xo/wCGD/2c/wDoW9W/8HU/+NAH0B/wlPhj/oY9J/8AA6P/AOKo/wCEp8Mf9DFpP/gdH/8AFV8//wDDB/7Of/Qt6t/4Op/8aP8Ahg/9nP8A6FvVv/B1P/jQB9Af8JT4Y/6GPSf/AAOj/wDiqP8AhKfDH/Qx6T/4HR//ABVfP/8Awwf+zn/0Lerf+Dqf/Gj/AIYP/Zz/AOhb1b/wdT/40AfQH/CU+GP+hj0n/wADo/8A4qkbxT4Zx/yMek/+B0f/AMVXgH/DB/7Of/Qt6t/4Op/8aP8Ahg/9nMf8y5q3/g6n/wAaAPC/2qv2xfil8Lf2ovFHhvwnfeHta8PWTWrWMN9ZiaOPfZwvIFkgZGbMjv8AxHGat+Bv+CkluzRw+MvheyjH7+60rUg+W9VhkUY/7+V87ftYfBa60L9qrxR4A+FXhHXtV03SfsYt7Wyt5r6VC9nBI+4qGb78j9fp2q14F/Y2/aH8TiKSPwFJpdtJ/wAttXvIbUL9Yi/m/wDjtAH3H4H/AG6P2fNfVf7Q1rVvDc7NtEOq6bICx9S1v5iKOerECvafAfxX+GXjSRYvCnj/AMM6vMwz9ns9UieYD3jDbx+Ir4V8D/8ABN/xvc/P4u+ImhaX0YJpdnLen6EuYdp+mRXs/gb/AIJ7/BbR5IZ9e1DxJ4ikRR5sNxepb2zt6hIUV1/7+GgB/wDwTd+T4r/tAbgf+R+m7f8ATe5r6yr49/4JeaNp+heNfjboOiWptdN0nxk9lZwtIXaGGOSdETeSScBQMnJOOa+wqACiihulADWdfLLbhgdTmvF/2Yvhf8R/AXibxnfeO/ibe+L7fXdSSfTIZ3kf7FGGds7ZDtiZtygpGNoEa4PQLm/8FDNYvvCf7NmveL9P8W69oWo2EMcFidMvBB500ssaDJ2ls8n7rDgH0rpP2M9M8RaZ+zT4QPirV9T1XWdQsF1G8udRunnm3XBMyozuSfkR1T/gNAHq+5QcZ59O9AZT0IqC8M4s5Ps8fmSiNtkZk2ZPYZ7V4Qvjr9qzjHwI8LcHB/4rKP8A+N0Ae/5podSoIO4HoRzXgp8dftWjr8B/Cv8A4Waf/G66j4M+JPjRrXiaa3+JPw10fwzpq2rSQXlnrq3ryT7lAj2AZA2lz0/hoA9Ury39qbwN4w+IXwjn8NeBvGU3hXVpLqOUX0UrRl41O54jJH88e4kNlQeUA6NXqTdK+NfjjceLrr/goV8Pvhp4Z+Ivi5bCWNNZ1+zTVGWDy43lmMTIgX5THCFw5OfMSgD6p+Guk6vofw/0PRtd1ZtX1TT9Ogt7zUWXabyZIlV5PUbmBPNdA+dp29aYoIKj0rL1zxZ4W0W+FlrHiTSdPuWTzBDd3scTlefm2sQccHnpxQBQ8XeOPDfhjxX4c8O6xfNDqHiq7ktdJiEDsJpETey5VSFwvOWIFdPXzL+0/wCMPCN5+0Z8C7uz8UaNcW9j4hvpLuWG/idLdWtdoaQhsKCeMnFe7j4geAyQB428OknpjVYP/iqAOjr4L/4LFeDJNP8AAGh+MJvEuvXjXOutafYbm+zZRK8UkiiK3VQqFVi2bx8xBwxbrX3nuHrXxt/wWs4/Zy8Mgf8AQ1x/+ktzQB9eaCCNDssDpbocevy1eqloP/IFs/8Ar2j/APQau0AFFFFAHz9/wVG/5MX8cf8AcO/9ONtXf/sn/wDJrnw1/wCxM0n/ANI4q4D/AIKjf8mL+OP+4d/6cbau/wD2T/8Ak1z4a/8AYmaT/wCkcVAHoVFFFABRRRQAUUUUAFFFFABRRRQAUN0oooAq3EKSQtFLEGjdNhRgCMehHII+oNfNXxc/ZKt4vFB8f/ALxE3w18YwjdstAV0y+xzslhXKxgsFyFVo8DmJic19P01t2w7Rz6GgD5P+Hv7Uut+CPE9v8P8A9pzwlN4Q1p9sVr4htoy2lahjA3MQxVOdmWRmQbjvEQBUfU2k6lp+qaXBqWmXtveWd1GskFxBIHjlRhkMrDgg5HSsf4ieCfDfjzwrceHPF2hWesabcDDQXcYIU4I3IeSjDOVYfMM9RXy3q/wT+NH7O+qXHiD9nTXLjxH4VeV57rwJrD+b5Yydxt2J54PVSshwoPmUAfY29egOcdcU6vB/2c/2nvAfxS1NfDeoxXHhPxtA/lXXhrWSUmEy/eWEsFEhHPG1ZOD8nFe6+dGWwHGc4oAfRSbl9e+KWgApszqkbMxwFGSadTZV3xsuB8wwc0AfC/8AwT38a6P4i+MnxK+KMp/tDxD418RpZaRpULhrqCxEhleVx/BDHE0GWbAzCFzuZQfugAlcGuP+Hfw28EeA57qXwZ4K0PQG1CQm6fTrSOF5B2DFQDsGSQgOFOMdTjsqAKOqWMd7YzWd1a291BOpSWKdA0ciHOVZCCD16Hr6ivDvE37Nw0LWrjxN8CfFd98OdanfzZ7GBvtGjXj8ZE1o3Ck4+8nT0r3+m4I3YoA+d7H4+eK/h1eR6X+0N4Efw8ryCKHxboKyXuiXLFtoL4zLb89pMnv05r37TL21v7GC8s5o5re6RZYJEB2yIw3Aj8KL6xgvbKSzu7dLi1lQpJBMqukikcqVOQR7H86faWyQW8cMEKwxRKqxxqAAoAwAAOAMelAHKfF74V+BvihpdrpvjzQI9ZtLGbz7eKS4ljVXIILHy2XOQeQa4H/hj79m9Tn/AIVdZf8Agwu//j1e5UN0oA/PH/glb8Jfh34zXxV4g8SeGYdQ1Twz4itTpNw9xKDabSzLtwyg4ZFPzbunvX6GIAOi4rA8F+C/C3hFbqPwr4X0XQY7yYS3CaXp8Vss5GcM4jVctyeTmuhoAKKKKACijpTWddvXvj8aAFDA9D/9amPInlkhl6Zznt6/SvPPj98aPh18HvDo1PxxrsVu8iv9k0+ACW7uyMcRRdyMjLHCjIyRmvnlb39or9qORk0kXHwl+GczkC4mDnVNUi9V2sr4OPmUFEG7702DQB6F+0F+1X4P8A6wPBvg2xm8d+OZmNvBoOhlphFKCflldAwBAB+RFZzjkJ1rivDf7OvxR+OGvQ+LP2n/ABFJHpqyedYeCNGuTHa2/X/XMpODy3Ku78j95hdte4fs9/Av4efBzQ0s/B3h9Ibxhtu9Uuts17dcDJeU9Ado+VAqjPCrk16dj29jzQBi+DfCuheFPD9tonhzRbHStOs1CwWtnCI40Hc4HUnuep71uUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjcrS0UAV1hHykrzu3NgfxAYBHPp9e1TKuBjJ/M5/OnUUAFFFFAHyd/wTZP/ABdb9oD/ALH6f/0fdV9Y18m/8E2f+SsftAf9j9P/AOj7qvrKgAoyBzRTWBKkUAfHn/BTGY+OPiL8K/gRZyP/AMVNriXuqhAd0dup8tWI/wB1rlv+2ftX1j4f1DS9Qsj/AGPc29za200lrmBgyRyRSPE6ZHGUeNkI7FSD0NeS/GP9nHQfiJ8dND+J954o8SaTqOiWIs1j0m7FsZUDStgTAGSLcZ5FbYRuUkcV6x4e0ay0LS7XS9KsYLOxsYlhtbe3G1II1AARV7A4HccgdeSQC/fC4+xyi2VGm8s+WJCdme2cc14It/8AtobefDnwa4HP+m6j8xr6CooA+fxqH7aPfw58Gv8AwN1Guu+Dc3x/m8UTr8U9L8BWuj/Y3MD+Hrm6knNxvTAfzQAE2mQ8c9K9SooAM18W/sZ6paeN/wBsD4vfHTVryKPS4b+Hw1o08hxHLvmSKIIx43EQ24wOSZwOrAV9nTp5kLRncNwwSp6V4X+zP+y74M+DlzNLpmr69rS/bWurODVbhHtrKQoYxPHCiqnnmMhDIQTjoAM0Ae6qwKjHRuhrg/iH8GPhb471tdb8XeBdH1m/ECwLc3duGk8sEnbnjj5jXfAYGAOnSkkBKED04oA+P/2jvgZ8IdF+PXwZ0rTPh/otnZa7rt5BqVvFbALeItvuQPk8gNzxXtC/sxfAFWDL8J/DIZfukWfT9a6Tx58ONI8W+OPCHifU7q/hvPBd9Le2CWrosUzyxeUwlypJGOfl2121AESx/L8w/Wvjn/gtWQf2c/DWDnHiuPOP+vW6r7LbpXiX7RX7OWjfGySGLxt458ZDTbO5N1ZabYzWMMNvIU2HB+yGQ8E/ekfq3rQB6/oLqdDsiDwbWPHv8lXq5j4b+Fb7wpoUekXHirWvEMMEaRQS6wLUyRoi7QuYIY92Rzltxrp6ACiiigD5+/4Kjf8AJi/jj/uHf+nG2rv/ANk//k1z4a/9iZpP/pHFXAf8FRv+TF/HH/cO/wDTjbV3/wCyf/ya58Nf+xM0n/0jioA9CooooAKKKKACiiigAooooAKKKKACiiigAooooAKhkjJVgRnPUdj/ACwamooA8i/aQ/Z1+HPxr0vZ4r0jyNXjjK2muWJEd5B6At0df9lgRy2NpOa8Nj8YftB/ss3S2vxEs7j4ofDS3wqeIrFD/aenQg8ecpbPAzxIxXkASgDbX2fVa4t1lhaN0Vgy7WBA5H05B+hGKAOP+CvxT8DfFjwyuv8AgfX7fVIML58IJWa0Zs5SSM4dDwcEgA9ia7cSIcgMCVxkDqM+1fNHxo/ZN0678VH4g/BHXZfh140jbeHsmK6fdkAHEsI/1YLKuSoZTj5o3yawfh/+1H4m+H3ia38BftQeFZvDWqNhLLxNaR+ZpuojONzbchScLlkLKM8rFg0AfW+RRWfoOq6drOl2+p6TfW99ZXcYkt7m1lEsUyHoyOuQw9xxV8Mp6EHIyMelAC0UUUAFFFFABRRRQAUUUUAFFFNV1OQDnHUelADqbvTGd350jMjLnO4e1fOfx8/as8I+D/EP/CF/D3TpviH45nk8mHSdEJliglBwRNKgOWXB3IuW4w+wc0Ae/eKtd0Xw34eu9b1/VLTTNNsY/Mubu7mEcUS5xlmPAySAPUkDqa+UfE37S3xB+L3iKfwV+y14XlvkiYwXfjTVrcxWNmD/ABosgIJHGPMUs2DiM0/wz+zd8SPjN4it/Gf7UPiR5rSOXzrDwTo8/lWdlngB2QnGBkHy3LkbSZmxtr6i8H+F9D8LaDa6L4e0ex0vT7JQtva2cIjjiHfAHc9z1PegDwn4E/sm+HPDfiRPHXxM1S4+IfjiRxLLqesO00Fu/OPKifIYr8uGf7u1doWvotYykexQMDgD0H+e3FSHPaloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPk3/gmz/yVj9oD/sfp/wD0fdV9ZV8m/wDBNvj4sfH/AD38ezkcf9N7r/A19ZUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHz9/wAFRv8Akxfxx/3Dv/TjbV3/AOyf/wAmufDX/sTNJ/8ASOKvP/8AgqIQf2F/HGOf+Qd/6cbWvQP2T/8Ak1z4a/8AYmaT/wCkcVAHoVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIwz04rnvHvg3w5438NXHh3xdoVlrWmXQzJBeRB1VsEblJ5VwC2GGCvYiuiooA+O9Y+A/wAXvgDqU/ib9m7xFLrXh9pWl1DwNrkokjkXOG8h2KjgHsY5PlwXlHy16L+zr+1J4F+JusDwprNvdeDPG0LeTc+HtaBjkaUEArC7hQ5B7MFk4PycV75tJ6jp/nivKP2jP2evh18adPC+LtIK6pEhW21mxIivLfuFEhzvTOfkcMBuOMUAesb1zgn9KN6ggE4JPAPevjGHxH+0V+yvGIfG1tcfFb4b2wUDWrIf8TLSYRkkyoxYqAgb77MgwoEq/dr6S+CHxX8B/Fnw5/bPgfxBb30EQX7RbbvLuLU91mhPKd+eh7GgDvqKaHU9GFOyKACiiigAopNy+vSszxh4j0Hwr4dute8SaxZ6Tplmm+4vLyZYoohnAyzcZJIAHUkgDk0AaW9M43DOMgetebftA/Gv4dfBzQft3jjXo4LiSJmtdNt/3l5djJA8uLd0yD87YUY5IrwrxF+0T8TfjPr0/gz9mDwxLLaRv5V9441i3MVnbHuUV0I3dD8ys3/TKu0/Z/8A2UPC3gzWl8Z+PdQm8f8Ajq4k8+fWNXUyxRSYH+pik3YIIXEjZYbRt2AlaAPPGH7RP7Va4ZZvhP8ADC4cqY8MNV1iMdck4YKcH+6nzciXFfQnwE+CHgH4OaGth4I0GKC4kCre6pckSXt5gA5klxkgkA7RhBk7VFeipFsXCrtHAAU8ADpgdB9KmoAbg9+1OoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiihulAH5z/Af9pTwN8BvjZ8aLLxhpPiHUJtZ8aXU0DaTbQzYWO4nGX82VMZ3jpXrH/Dxv4I/9Cv4+/wDBdZf/ACXX1wkLjC9gc544Pf35yTyTU20+/wD30aAPkH/h438Ef+hX8ff+C6y/+S6P+HjfwR/6Ffx9/wCC6y/+S6+vtp9/++jRtPv/AN9GgD5B/wCHjfwR/wChX8ff+C6y/wDkuj/h438Ef+hX8ff+C6y/+S6+vtp9/wDvo0bT7/8AfRoA+Qf+HjfwR/6Ffx9/4LrL/wCS6P8Ah438Ef8AoV/H3/gusv8A5Lr6+2n3/wC+jRtPv/30aAPkH/h438Ef+hX8ff8Agusv/kuj/h438Ef+hX8ff+C6y/8Akuvr7aff/vo0bT7/APfRoA+Qf+HjfwR/6Ffx9/4LrL/5Lo/4eN/BH/oV/H3/AILrL/5Lr6+2n3/76NG0+/8A30aAPkH/AIeN/BH/AKFfx9/4LrL/AOS6P+HjfwR/6Ffx9/4LrL/5Lr6+2n3/AO+jRtPv/wB9GgD5B/4eN/BH/oV/H3/gusv/AJLo/wCHjfwR/wChX8ff+C6y/wDkuvr7aff/AL6NG0+//fRoA+Qf+HjfwR/6Ffx9/wCC6y/+S6P+HjfwR/6Ffx9/4LrL/wCS6+vtp9/++jRtPv8A99GgD5B/4eN/BH/oV/H3/gusv/kuj/h438Ef+hX8ff8Agusv/kuvr7aff/vo0bT7/wDfRoA+Qf8Ah438Ef8AoV/H3/gusv8A5LpP+HjXwQ/6Fbx9/wCC2y/+S6+v9p9/++jRtP8AkmgD88v2wP2zvhT8V/2cvEfgDw9ofiyz1PWFtPJlvrO2W3BiuoJjvZJ2b7sRXha+zP2UWVf2Xfhrk/8AMm6SPx+yRDH1zXoLKWUjOPeoLSFo0XEax/KAVXHHtxgYHToOlAFmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooArtCXXEi5yOQcEZwB3/AB7DryK+cfjd+yZo+q+JF8f/AAd1iT4a+OrZ2khuNLyljdNgcSxJjZu2jcUBB3NvSXNfS1Nfdtbb17UAfJHgn9p/xX8OPElv4F/ai8LTaDfH5LPxXYxGXT9QA4WRgmVUccshP3vmSPFfU+havpetaVbapo+oWuoWN4vmWtzaTLLFNH/eRlJDDnqKqeNvCXh3xj4budA8U6HY6tpt1nzbW8jEiE/3hnkP6MMFexFfLXib9n74tfAnVLrxX+zN4klv9FlkMt/4E1qbzYZQeP3LsQOFI6lHGz77g7aAPsDeuM5pvmoyEqdwx2Gf8/1r5W8P/txfDS08J6g3xB0jXvCfi3SMR3nhqXT5JJpZgOVhJAUAekhjPT1Fc8un/tFftTyIdSNz8JPhlN8ptkZ31fVIiuCHyFYqQHGXCKPMzibbQB3Xx7/a08M+GvER8DfDDSpviJ44nlMMWmaQTJBbydzLLGDuK4O5Ez0O5o8VzXg/9mz4ifF3XoPG37Ufiaa8aOTzrLwXpN20VjY5GMO8bcMBkHy2LEBS0r/dr3H4E/BX4ffCDQRpvgjw9FaTS7ReX8h8y8viMfNLKRnGdx2LhFydqjNekUAY/hfw5pHh3w/b6HoWlWemadaEC3tLSBIYYwDnhFG0Z9gPz5rX59/alooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmFT25PPOcY9qfRQB8k/wDBQLTLBP2hPgBq0mn2v2248dWtq10sSiaSIXNufLdsEtH8zfLuAG4nByQPq5YCu0BQoUdABjrwPw7DpXy7/wAFDv8Aktn7O3/ZRLb/ANKbWvqqgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+Vf8Agob/AMlq/Z1/7KNbf+lNrX1VXyr/AMFDiP8AhdX7O3P/ADUW2P8A5M2tfVVABRRRQAE4/wD1U3zE3bd3Pp3plxCs0Dwvu2uu0kHDfmK4C3+EnhmGHy21zxxKXOd0nj3WQW/i4xdYH/AQKAPQvNjwTvGFOCfQ0u4etfB/xm8ZtqXxp8NWvw91X4hyeAbXxXa+HtZ1rT/HGos2tajOWC2do091s8tDGN8ikH5jh1IVm+odF8G/DjVtUvdN0zxZ4qur7TXKXtpH8Q9YM1swOMSR/aty5I4yOeozQB6Np+p6dfy3UVjfW9zJYz/Z7pIZQ5t5cK2xwPuttdTg84YHoatV5z8I/g98P/hvrWo6x4L0u70661pt+pM2sXlyt42Sd7rNKyu253O8jdljzg4Po1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZPjbxFpPhTwpqHiXX7s2ml6VayXd5cCJ5PKijQu7bUBY4VScAE8VrVj+OtCt/E/gfWfDl6ga21jT57KZT/cljKEf+PGgD4Y/bH/aN+DHjn4ofBnV/C/jH7dZ+FPGUGpazKdMu4fstsssDF9skSl+EbhAx46dK+tfgn8ePhb8XdUvrD4eeKG1m402JZbtf7NurcRKxwDumiQHJB4BJ4r8VtTs7mxv57O7hMM9vK0UysOVdSQRg9wQa/RX/AIIn+Gha/C/xn4vbdnVNXh09SR0W2hDnB9Cbo/8AfNAH29RRRQBS1vUYNK0ye/uEuHht03uLe1knkI/2Y41ZnPsoJrx7xh4d+Inxh36Tqcl78PvA87YvLeKVP7a1xP4kZ1YrawsB0y0jLwRH92vaGXdtJxgc8rk59c9jXz7+3JqGsWGsfB+LR9a1PSDrHxEsdMvJtNvGgkkgnVkkQleoI55oAz/2uPD2keF/DfwS8MeEtFhs7DTvirojW9lp8BKxRRid2cKMnocs/fJz149Y+MPwt8I/EOxU63FNZanZKzadrmm3BtdQ0xiCC8U6YZR3IJKN3Bp//CtozIH/AOEw8ZDnkjXpRnkHOOeTgjgj5TivIP2+PC914X/ZJ8X63pnjXxgLu0jtthfXZipDXUKMrKCONrN3oA6b9nWT43+Gvihqnw6+Jdx/wlPh2Cxe90HxnHAI3mVZEj+y3IHAmUMW5yTsJ3NXu1YPga2ktfBmi20l3d3j29hbxm5u5RJPMQije7dCxGdx7kmt6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACj+Gikb7tAH4uftw+GW8KftceP9HCgK+tS30Q7Klxi5UD6LKBX6Vf8ABN3ww3hj9jPwdBJCsdxqUMupzHGBIJ5WkQ/9+TGPwr4//wCCwnhGW0/ae0TWLO0L/wDCTaJCPkBLzXMUjxHGO+xoK/Rz4eaBB4X8CaJ4ZtlH2fRtNt7GHaf4YoljHX6UAb1FFFACYOMZr58/bm0DxL4h1r4R2/hiwuLq6sfiJYX0lwllJcxafHHuzPOiFT5QyM/Mn+8K+hKhaNiVIAGD1PJGevpg+9AHHf2T8XNv/I8eC/8Awjrr/wCWVeP/ALb3g74w+Jv2X/E2hW+qaD4hmvRZxppmkeFrmC6nYXkBARmvZQm37x3K3Az8uN1fS9RbGPOMEHj/AB/n36UAUvC8c8Xh2xjuIjFMlsiyJkHawXBGRwfwrSoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAG703bd3PoKz73xFoFncG3vNb063lVtpjmukRgcZxgnrgg49CK8z/bD+MumfBP4R3HiOUJdazen7JoOntybq7Kkg4HJRRlmz6AZyyg+KfA/wDYx8KeIvAsfin45Rarq3jjxHI2papKuovB5BnO4Qt5eNz5PzcEAkgcAUAfWf8AwlPhj/oY9J/8Do//AIqj/hKfDH/Qx6T/AOB0f/xVfP8A/wAMH/s5/wDQt6t/4Op/8aP+GD/2c/8AoW9W/wDB1P8A40AfQH/CU+GP+hj0n/wOj/8AiqP+Ep8Mf9DHpP8A4HR//FV8/wD/AAwf+zn/ANC3q3/g6n/xo/4YP/Zz/wChb1b/AMHU/wDjQB9Af8JT4Y/6GPSf/A6P/wCKo/4Snwx/0Mek/wDgdH/8VXz/AP8ADB/7Of8A0Lerf+Dqf/Gj/hg/9nP/AKFvVv8AwdT/AONAH0B/wlPhj/oY9J/8Do//AIqkbxT4Zx/yMek/+B0f/wAVXgH/AAwf+zn/ANC3q3/g6n/xo/4YP/Zz/wChb1b/AMHU/wDjQBD+2Z4X8N+O/iz8FdZh1vTJv7F8ZBbrF3GVFuYzdtvIPAzYhef7+O9fQh8U+Fz/AMzHpP8A4HR//FV4Av7CX7PIyP8AhG9WUEdBrUx9Dnr16/hml/4YO/Zz/wChc1b/AMHU/wD8VQB9Af8ACU+GP+hj0n/wOj/+Ko/4Snwx/wBDHpP/AIHR/wDxVfP/APwwf+zn/wBC3q3/AIOp/wDGj/hg/wDZz/6FvVv/AAdT/wCNAH0B/wAJT4Y/6GPSf/A6P/4qj/hKfDH/AEMek/8AgdH/APFV8/8A/DB/7Of/AELerf8Ag6n/AMaP+GD/ANnP/oW9W/8AB1P/AI0AfQH/AAlPhj/oY9J/8Do//iqP+Ep8Mf8AQx6T/wCB0f8A8VXz/wD8MH/s5/8AQt6t/wCDqf8Axo/4YP8A2c/+hb1b/wAHU/8AjQB9Af8ACU+GP+hj0n/wOj/+Ko/4Snwx/wBDHpP/AIHR/wDxVfP/APwwf+zn/wBC3q3/AIOp/wDGj/hg/wDZz/6FvVv/AAdT/wCNAH0B/wAJT4Y/6GPSf/A6P/4qj/hKfDH/AEMek/8AgdH/APFV8/8A/DB/7Of/AELerf8Ag6n/AMaP+GD/ANnP/oW9W/8AB1P/AI0AfQH/AAlPhj/oY9J/8Do//iqP+Ep8Mf8AQx6T/wCB0f8A8VXz/wD8MH/s5/8AQt6t/wCDqf8Axo/4YP8A2c/+hb1b/wAHU/8AjQB9Af8ACU+GP+hj0n/wOj/+Ko/4Snwx/wBDHpP/AIHR/wDxVfP/APwwf+zn/wBC3q3/AIOp/wDGj/hg/wDZz/6FzVv/AAdT/wCNAHv/APwlXhj/AKGPSf8AwOj/APiqdD4m8OTXCQQ6/pkk0j7EjS8jLM2cbQAck57V80eNP2Mf2WfCfhLUfEuv6XqVjpel2z3N1cyazcFY0Uc8Akk9goBYnAAJ4rzD/gmx8CtC8R/EK/8Ajq/h2TT/AAvDeyx+CtJvJGnkXY5T7VIzcN5eCq/7fmEY8tcgH33RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFU9b1TTtJ0W61bU7yG1sbG3e4ubiVtqRRIu5nY9gACSatF1HU4+or5D/bI8Ta18Z/jHpn7LngC9kjhmC3vjjVIDxaWynIhx04yhYHqzxJ/fAAM/9n/TNR/ae/aVm+Ovie0uIvAngy4Nn4I0y5BK3EyHLXLKwwSGw7NjO/y03HyiK+x1VlYcZGev8yfesb4eeFtI8FeDdN8KeHbBbLStIt0trWFWP3VBGW9WJ5J7liTzXQUAFFFFABRTfMT++vHvRvXpu6dfb6+lADqKb5iH+Lr0/wA/gadQAUU3evHPXpQ8iJjcwXPTNADqKbvTnLAY65pWZRnJxgZOaAFooooAKKKKACiiigAooooAKKKKACiiigApu9RwTz/n/EUb1IyMn6Cvn/8Abr+M138NvAtl4S8GB7v4geNHOnaBZW2GlhLERtcbe20kKmfvOwPRGIAPNP2ktU1H9pT9oa3/AGefB9/PH4P8LzreeOdWgORK6Pj7IjDgsCGAXkbwSVxATX1v4X0Ox0DQ7HRtJsYbPT9OgjtrW1iGI4I0Xaqr7AADnqAM9yfN/wBj34K2vwV+EdvoIeO51zUGF54g1Icvd3Z64Y8lEB2rnrySuXavXqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorP8Ta1pfh/wAOX2vazex2em6bbvc3dzJnZFEilmY49ADQB5P+2h8Yrf4L/COXU7JVufFGtSmy8N6eI/Me4uWHLiPkskZbceOpRf41Bzf2F/gtN8K/hrJqfiYtceOfFs41HxFeySB5BI2XEAcZzt3vuPOXeQhiNuPM/wBlvR9S/aO+P19+0Z4ztJl8L6LM9j4F0i7UbVVGwbgp0OCCxbLZlJAIEK5+wdjEgkce/wB7PTP5UAS0UUUAFc14+8d+DfBqQL4r8SWGj/as+QbuXZ5uBk7c/ewOuK6WvC/26fGX9h/CVPBum30Nv4o+IN0vh7SQ7D90txhLifJHypHFIxZ+NuUJIoA4H9lv406Npvws8T/Ebxz461K7l8Ra9d6npvh4mS7n06zaZhBBbwLl/mXLY+VcFWwNpZvUf2jviqPDvwYtL3wVJ/a3iXxiI7HwfBbod1zczJ8soQ8qkaMZGz90DBxmuG0D4pWvw8+LmrfDaw1nw7/whPhbwtpcOiWs9zDbvJdO/kJH9qZwgB27nJViAcjn5aNN8QfDyLxJrvxE8a/GDTYfGmjvd6ZcG08oxaBHbsyy2dtDcQs7DcGZ5Qm6T2XYoAOg/Zpt734Ox6V8HfHXiK6v7y9gFzousXty7xX8mxTcWaM5+WSJwzJHzuhdTyVkC+7s4KkKea+fNW+HGi/G3w3oV5rPxY1bxB4e1Cxa80+wgtbSzNwGC7bgbY1dZIjtMbLgqxIOUZkbQ/Yzh8Qnw9qE1x8aW+ImiWV/JY2DXWkfZ7q1MZUOs0rYkdx8w+bIx7AKAD0T4p/ETwv8Pf7FfxReTWsWvaomk2TpbySh7h1dkQLGpIyY8ZIxz1pvxynvLX4GeMb/AE29ms7qHw9fTW9zAWjeGRbaQrIuCGDBgCOe1eS/t/6tpOn6l8F11PUrK1EfxR0y6f7TMse2GISiWU7j/q1Mibm6DcM9a7H47/E/4a3XwR8ZWtp8QvCs1xc+Hb+OGJNat2aVjbSABVD5J57UAX/2S9S1/wAQfs3eC9d8Sa1catqmqaPDd3F5KkcbN5nzquEUD5VIXP8AFt+bNa/w8+JPhjxd448T+EdJN8mqeELpLfUkltGSJWcZXZIMowI7Zz7V55+yD8Sfh1pP7Lvw+0/VfHvhmxu7fw3ZpNb3WsQRSRsIhkMrOCDz3rN/Y11TTNX+Pnx1v9J1G0vrS48R2UkVxazrLHIv2UjeGUlSCVbnpkEdqAPoykDA9DS1hePfFOg+DPBupeKPEupLY6TpcBnu7hlJMaD2AJJJ4AAJJIABJoA3Ny9M0iupOAc4rxPVv2ibDRvhwvxC8RfDfxtpPhSaCO4i1WSC0m+R8eUzQxTtKit8vLIACwBIr1TwTrEev+E9L1yO1ntY9UsobpbeYAPCskYk2nHcbgKANqiiigAooooAKKKKACjIHNFRyOoVgTjg9eOlAHM/FrxtoHw98Aar4z8S3CwadpMBeZuC8h/gjTJALsxAA6kkAckV85fsQ+CfEHxJ+I+o/tR/EiDGoa3uh8I6fMxxplhl0EigjILL8iEYypkk+YyA1ifEie4/a0/aeX4caReN/wAKu+HN0tx4kvIydurXobaIUIwCDteNSOg85gSCgr7E0+0jsrSGztoIobe3RY4Yol2pEqrgBV7AdAOgAGKAL1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA13QDlgOM88V8e/tXa5rH7QHx0s/2Z/A1/JBounsl9481OA5EMSMCLcHoWB2Er/z0dFbHlOK9S/ba+Ms3wl+GEcGgobzxn4nl/s/w3Yxp5srzMVUziMDLeWGU4xguyqfvCpv2Jfgp/wAKa+FC2upTfa/FmvS/b/El+xDtLOeRFvySyx5IBzyWduN3AB6n4N0DTPDHhnT/AA9odlHZ6bpdultaQR8LHGg2qPyAPuck8k1s0UUAFFFFAA3SuU8eaR4N1OGzuPF9jolxDpkxuLN9UjjaOBgu0uvmfKDtc8/TrgV1dcT8SvhX4E+IV9pd3448K2OuPoryPZrerviVnUBt0ecOp2jh91AHzz4L1b4SXf7bHjGTTLLR/EOkv4W06KzTQdH/ALWhWcSys5xaxuqtwPmOMVW8B2/i4fB39oeTQbvQ7bSl8XeKXmgvLCd7gfuVLFDHIuNygYGOuc5rvfhrbWGn/t9+OrDSLS1tbe38F6WEhhjVI0Blk6KBxwwwBgHua8vs7T4UR/B/49az42tfB66tL438VW+k3msxWwuZJhEpRYHlBZmDMuAnPzDg0AdT8P7KC4+In7LLz26syfD29YCQbiuNPsMYOfmI3HqO+etd7+wPHt+Bd0VADHxVrRYggbj/AGhMNxOMk4wOfSub8GxeDPDfw9+B/wATvG3idtGh8N+Bls4VktWNvM1zZWodpZFBCECPgHGd3GcGui/4J73Fvd/s7rqFrKktre+I9Znt5gDtlja/nZWHsRzQBpfFjxi9l+0l8PPh7c+EtG1q38RQ3t9DeXxAl02a2VD50IKN8+x3GPlJ3D51CkHqfj/aQD4E+NiLWL/kW9QP3O4t3IHGPTrkGvLP2gLi8sv22/hVrK6Br91p+i6RrD3l3p2k3F2iCaMRKp8pGO7cB/30K7L4weOrHXfhP4o0TTPDPjWa81HRLy1tYv8AhEdQXzJZIHRVy0IAyzAZJA5oAP2M7OA/sn/D5xbLuk8N2TuxQDzGMS5Ykck++azvDev6T4a/bA1L4YaJ4Hghn8SeG4/Fmpa5byqsjMLh7bEykZYDCBdpwNxGzBLCv+zT4qj8JfAHwf4Z17wp4ztdS0jRbW2vIV8J377JkjUMFZYSpUEHoa5rwrr9rr//AAU1F9a2WqWqj4RmEpqWlzWcmRqwb7kqq2MEc4x1HUUAfTGQOa8v/a5+HVz8WP2ePEvgWzuBBeajbo9q7nCmaKVZkDHoAWjQH0B4r05gSprwHSfibrOh/tO+OdP8TaJ4lTwZDb2FvpGtR6XcT6fDcxxNJOrMiNtDNcKN/wAq5h255FAHmn7GPxQj+Lfw31/9mn4s2txp3ijTNLl0qXzDtnvbVR5RI3f8t4uMnHQBscHH2JbwrHDGkcQjVVACDGFHHyjHpgCvlew8EN8Qf+Ch2kfGDwlpF7YeHfD2jvDq+r3NjLarrN2Y5YUjiEgV5isUkW6TG3bEFBJAJ+r6ACiiigAooooAKKKRvu0AG5fX86+av28vitrGj6fpXwb+GStdfETx6wtLdIJMSadZsCHuHYZKZAYBiAFCySEjy+fW/j18S/D/AMJfhTqnjrX5Qbawi/0eBWG68mIxHDH6liD9ACTgAmvE/wBgj4Z69qOq6j+0V8UYVk8aeNfn0+FsgaXYEAIEQ/cZ0C/KSzCNVyQXcUAevfsv/CPSfgx8I9O8GaOFlkj/AH2pXYGDeXLBfMlP1ChRn7qqg7En0miigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxvHXifRPB/g7UvFHiG/jstL0m0a5u55CQERR6Dkk9AoBJJAAJOK1y6jv2r41/aQ1XUP2k/2hrP8AZ38I3k0fg7wvOl7461S3PyzFHAW1VhkEgkgLz8+SVxASAC5+yL4d1b46/HC+/ae8d2nlabEz2fgLS5zxb26M6NcFRkZG5xkk/vGkYYAjNfX6/Ssrwvo1hoGg2WiaRp8Vjp+nwJb2ttDkRwRooVVA9AAB79TzWtQAUUUUAFFFFABQ1FFAGHaeF9EtPF174ntdItI9Y1GBILu+EQ86WNBhE354VeuKzrz4feDr7wvqnhy98L6bJpOtXst7qNmLfal3PJIJHlfHLOzjdknPQdAK62igDI1TRrDUfD1xoN5p9rNptxAbaW0lgUwSQldpj2cjbt+Urxntin+HtF03QtDs9G0XTrfT9PsoxHbWtrGESBB0UKOMY/U1qUUAV/IHmBivT0A45zwfchfyFTYp1FADcHFZq6PZDWxrI020GpCAW323yV84why3l7+W25YtjpmtSigA7VD5TbgT1XoR179c9un41NRQBEqsOAq4GMAdAO/6e1S0UUAFFFFABRRRQAVHNJGkbM7qqqCWJOAAPU9qeWA6/wAq+Vf29PiJr2v+ItJ/Zr+GNwreKvGR8vVriOU40uwKguH28qXj3M38QjBAH7xTQByVqs/7YH7UX2iRZJPg78NrzEef9Tr+oYySSOHBIUfxbY8Y2+fX2fbwmKNUVFCrjAUAAduB2x/KuT+Bfw40L4VfDTTPBXhqAfY9PiUSTOAst3KcGSeQjqzHnoPTp07WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRvu0tDdKAPAv2+PjFqfwn+Drp4Vtby68Va5utNLFrA0v2Pj57hgBwEUEKO7MpxgGvnj9j79oT4VfBL4Tw6B/wrv4nXuuag5vNf1OPQoiby6OOFLXGfLUfKucfxMVBdq+/liYYYjLdc5zg98E5wDUm0+tAHyv/wAN4/Dj/omfxW/8EFv/APJNL/w3j8Of+iZ/FX/wn7f/AOSa+p8H3/z+NGD7/wCfxoA+WP8AhvH4c/8ARM/ir/4T9v8A/JNH/DePw5/6Jn8Vf/Cft/8A5Jr6nwff/P40YPv/AJ/GgD5Y/wCG8fhz/wBEz+Kv/hP2/wD8k0f8N4/Dn/omfxV/8J+3/wDkmvqfB9/8/jRg+/8An8aAPlj/AIbx+HP/AETP4q/+E/b/APyTR/w3j8Of+iZ/FX/wn7f/AOSa+p8H3/z+NGD7/wCfxoA+WP8AhvH4c/8ARM/ir/4T9v8A/JNH/DePw5/6Jn8Vf/Cft/8A5Jr6nwff/P40YPv/AJ/GgD5Y/wCG8fhz/wBEz+Kv/hP2/wD8k0f8N4/Dn/omfxV/8J+3/wDkmvqfB9/8/jRg+/8An8aAPlj/AIbx+HP/AETP4q/+E/b/APyTSf8ADeXw4/6Jn8Vf/Cft/wD5Jr6owff/AD+NG0+tAHyu/wC3l8OEyX+GnxUXb1zoFuMf+TNA/by+G524+G3xSO/7uNBtju5I4/0rnkH8q9f/AGulA/ZZ+IrONoXwrqJJU9ALaTGMc8YBxx9a53/gnmpf9jLwE+086e+Ruzn/AEiUZPQHj2oA4P8A4bx+HP8A0TP4q/8AhP2//wAk0f8ADePw5/6Jn8Vf/Cft/wD5Jr6nwff/AD+NGD7/AOfxoA+WP+G8fhz/ANEz+Kv/AIT9v/8AJNH/AA3j8Of+iZ/FX/wn7f8A+Sa+p8H3/wA/jRg+/wDn8aAPlj/hvH4c/wDRM/ir/wCE/b//ACTR/wAN4/Dn/omfxV/8J+3/APkmvqfB9/8AP40YPv8A5/GgD5Y/4bx+HP8A0TP4q/8AhP2//wAk0n/DeXw4/wCiZ/FX/wAJ+3/+Sa+qMH3/AM/jRtPrQB8k+IP27PCCaDetoXww+JE2pi1k+xLe6HEkLTbf3YlZZywTdjcQCfSul/YH+Emr+GNFv/i18QvOuPiD8QpGvL95otr6fbu5kS3UHldxAZxwB8ibf3eT9IbCR0A/L/Coo4zzhe+fvE57dT3xQBYooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKP4aAPNv2wv+TUviR/2Kepf+k0lc9/wTv/AOTLfAP/AGDpP/R8tdD+2F/yan8SP+xT1L/0mkrnv+Cd/wDyZb4B/wCwdJ/6PloA9qooooAKKKKACiiigAooooAKMUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR/DRQ3SgDzX9sIj/hlL4kHI/5FTUR1/6dpK57/gneQP2LfAOTj/iXyDn/AK7y15f+2p+1V8MNM8G/EP4Q3Sa6viRtJu9KGLIGDzpoGA+ctnZ8w5x3rn/2Ef2p/hdpPwv+H/wfuBrh8SPKml7Y7IGDzprhgv7zfnZmUc44xzxQB9t0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflL/AMFdPDI0P9rq41eOJhH4j0a1vmYLhfMUPbkA+uIAf+BVj/8ABLXww3iH9svw7LJCskGiwXWpzKwzjy4mjRvwllQ/UCvfv+C23hp20DwL4zjjCi2urnTJ5Mct5iJLGCPby5/zrD/4IleGEm8Y+OvGDxvusbK202FznDCWR5ZMfT7PD+dAH6IUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZA5oAKMgVGZYzldw3ZIx3z1xj6VwPiz46fBrw3fvY638UfCdndwvsmtm1aFpYj6MisWX8RQB6FRXlP/DTXwA/6K54W/wDA9aP+GmvgB/0Vzwt/4HrQB6tRXlP/AA018AP+iueFv/A9aP8Ahpr4Af8ARXPC3/getAHq1FeU/wDDTXwA/wCiueFv/A9aP+GmvgB/0Vzwt/4HrQB6tRXlP/DTXwA/6K54W/8AA9aP+GmvgB/0Vzwt/wCB60AerUZA5ryn/hpr4Af9Fc8Lf+B601v2mfgAVx/wtvwt/wCB60AcH/wVQ8MnxF+xtrtykLTTaDeWupRL3BSXyXb8I5pTWR/wSD8Nf2H+yauruqlvEmuXN6j9/LTbbAZ74aBzj3NdT8afjh8APGPwf8UeEz8WPCpbXNGu7OPF+vytJG4VvqGKn8Kyf2WfjR8BvAf7O3g3wrcfFDwva3Vho8X22I3y/JcsN8/0PmvJ+dAH0xRXlP8Aw018AP8Aornhb/wPWj/hpr4Af9Fc8Lf+B60AerUV5T/w018AP+iueFv/AAPWj/hpr4Af9Fc8Lf8AgetAHq1FeU/8NNfAD/ornhb/AMD1o/4aa+AH/RXPC3/getAHq1FeU/8ADTXwA/6K54W/8D1o/wCGmvgB/wBFc8Lf+B60AerUV5T/AMNNfAD/AKK54W/8D1o/4aa+AH/RXPC3/getAHq2RRXk4/aY+AJIA+Lfhbn/AKf1ra8G/G34ReK9Sh03w78S/C+oX1w22G0i1WLz5T6LGWDN+AoA76imh0OMMDnpg06gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsPlNOobpQB8f/tK+IfG3xx/aNl/Zw+HWr3ug6Do1qLjxtrNu+13RthNuhHJXa6psyA7u24bYyW9L8B/sjfAPwxocWnj4e6fqkiqnn3urM93POyrt3fPxHnriMKvtXC/8E9oI5P2gP2itQIZrl/Hk1u0rnOY0ubooo7gAEj8vSvq+gDyj/hmX4A/9Ek8K/8AgAtH/DMvwB/6JJ4V/wDABa9XooA8o/4Zl+AP/RJPCv8A4ALR/wAMy/AH/oknhX/wAWvV6KAPKP8AhmX4A/8ARJPCv/gAtH/DMvwB/wCiSeFf/ABa9XooA8o/4Zl+AP8A0STwr/4ALR/wzL8Af+iSeFf/AAAWvV6KAPKP+GZfgD/0STwr/wCAC0f8My/AH/oknhX/AMAFr1eigDyj/hmf4BdvhJ4W/wDABelJ/wAMz/APdn/hUvhfOc5+wqTn3r1iigDyj/hmX4A/9Ek8K/8AgAtH/DMvwB/6JJ4V/wDABa9XooA8o/4Zl+AP/RJPCv8A4ALR/wAMy/AH/oknhX/wAWvV6KAPKP8AhmX4A/8ARJPCv/gAtH/DMvwB/wCiSeFf/ABa9XooA8o/4Zl+AP8A0STwr/4ALR/wzL8Af+iSeFf/AAAWvV6KAPKP+GZfgD/0STwr/wCAC0f8My/AH/oknhX/AMAFr1eigDyc/szfAIAkfCTwvkdP9AWud+If7H/wE8W6C+nf8INa6JPsxBeaMTaywN/ewvySf9tFaveqRt23jrQB8n/sm+LvHfww+O11+zP8VdZOtYsvt/g/XZ3ZpNQtgMmFizMeAjbVP3fKlXLKYzX1jXyf+2cwsf23v2dry2VY7qbU722lnC5eSItAoQn0xJJ/32a+sKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPlX/gnf8A8lr/AGiv+yh3OP8Av/dV9VV8rf8ABPD/AJLZ+0T/ANlFuf8A0ouq+qaACiiigAooooAKKKKAG717Hr0o3ru27hu9K8x/ar+JN98LfhJN4h0XTo9W1y41C107R9MfOL27mlCCPjn7m9sD+7XceHZtTk0Szn1q1tbTUHhDXkFrdGeGOU/eQSMke8D+8UB4PFAGt5iDHzD5hke/T/EUuQe9eSftUeOvFngdfAieEotMlm8TeMrPQrmLUUYxtFNHMSxK8rgxivVITwpJ6jJ9PzoAsUUZooAKKhvLu1tLaS4u7iOCGFC8kkrBVRR1Yk9B71zf/CzPhv0/4WB4W/8AB1b/APxdAHUM6DksBQXULuLAL69q+e/2xfjtaeB/hIniH4c+MfCeoa3DqVpF9ne7iukeJ5MNvWNw4XB6qQa9N0v4leARp9udQ+InhGS68oefJBrECq8gGG2jeTjPvQB3G4A4zz6Uteb2vxx+FNx8ULD4fWnjjSLrXNSg822gt7pZYzzgRGRcqHPZCQx7A16RQAUUUUAFFFFABRRRQB8m/twD/jNP9nH/ALDd3/6Mta+sq+Tf24v+T0v2cf8AsN3f/oy1r6yoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+Vv+CeH/JbP2if+yi3P/pRdV9U18rf8E8P+S2ftE/8AZRbn/wBKLqvqmgAooooAKKKKACjpRSNytAHztqvjz4beN/2iYdS1nxz4YtfD/wANnlSyivdXgi+26y67XnAZhmO3hOxWxjzZnAOYhm18KPFvj740eKPFGo6NrUmgfDm1vhZ+HNZ0yK3a/wBSltyY5pY2njmja3Zg+GKbzhdpHzY4v40al8Brfx3q3w/0TVPBPhO81K6efxvr6NbR30cbuxks4HPzvdSsrKQmfJXcxw7oG9dh8U+A5PhNqGmaDaeIrLw1oeiSsZtP0++08W9rBFnbbTMse9gqDaUJz0PUmgDzT9r7whrVje/CdLj4ieJ9Q+0fE7SoYTcLYr9mkaKf96hitY/n4b724fN92vTvEHwqk1nV9LuNT+LPjiS40q6W+skjvbO2BZSAfMWG2TzEyQCr7l56VwMNt8APGGh6Fq1xefELVoLdodU0ia5v/EsxhlCAxTxnftRwrHlMdTVrwdL8Cf8AhpjQ7bTpPF03jz+y5ZdPutXvdcfbaZYNExupSpU5Y7SNm5SfvbQQD6BVHXGWZv73PWp6KKAIZog8JjZVZWBVlb7pB68d/oa8Z+Ivj2y8FfG7wh8MNK+G9rq7eKLG7u7J7R4IGgeBC8i4kATlQTwy17W33a+aPj9B4ib9u/4S3/hzRYtVnsdF1hpBcTPb26h4mT97Okcmzk4Hyck4GTxQBzX/AAUS1LWZ/wBnGWO8+G0mjw/27pzG5a9tJASJlATbG+ckjHp717fqfiHxFa6beXbfBi5cQwtKf+JnYDeRn/ppxnB6V8w/8FEPjNruoaRN8Ir3whYrqUM+m6peX+k63JfQ6epuF8pZt9vFsd8rjGc7l9RX0Rb+NPiP4t8G65/ZngPw4WtvtmmXVsfFUxuLWeMMhRkFj97ow+f5lZWXIZSQC1+yX4yPxW+Buh/EHUfCljo11qXm+XFAySpiOVk8xDwyjcrAA8jFetV4x+wR4d1/wl+yX4O0DxNplxpWp2kFw01jcKBJGHupZF3AdCVdTjqM4xmvZ6ACiiigAooooAKKKKAPk39uL/k9L9nH/sN3f/oy1r6yr5N/bi/5PS/Zx/7Dd3/6Mta+sqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPlb/gnh/yWz9on/sotz/6UXVfVNfK3/BPD/ktn7RP/ZRbn/0ouq+qaACiiigAooooAKOlFI3K0AfN0fxN/Zv0j41atc+FNAPiT4i3dxtvk8PeHpb2/LxjynzIUEcQG3a5Dqo4LYNdl8StX8Zaz8EPGVzrfg638OaY3hjUTHb3morcXzH7K5AaOIGKPgHpI9ejaH4f0XRbq+m0fRdP099TuTdX0lrarE11MSxMkhUDzHJI5YZ9zT/HWgweJ/BWseG7qWaG31nT57GaSAhZESWMoWU+oDGgDyL9k/4jfD7T/wBmD4f2d9488M2dza+GdPingn1aBHhdYF3IwZ8q3BzmsbQdf0DxH/wUas7zw7rOl6tbxfCyeN57C8juI4yNTiOAUJAbLH8DXsnw+8F6N4R8DaR4Y0y13WWi2UdlatcBZJCkY2qzHaASR1IAJqBPh34fX4wp8SUtpE1qPRP7EUiXEK23neecRjgsW43HnigDsKKKKAGu6jALDLdBnr9K8n+NnxJ1LTNU/wCED+G2lweIviBqEWY7QsfsulRN0u76QD93Ep5CZ3OPlVW616ZrFgb/AE6ay+03Fus6bWltpdki+6nHy/hWd4N8K6J4U017Hw/pkFhHNM09wyZaS6lbG6SWRvmlkbvI5LnuTQB8k/tafC/TfhT+xvqH2rU5tY8TeIPE+nX3iLX7hQJ9Uu2uAWYgfdhX5tiDhe3JY17L8edB8c+C/FknxZ+Fenf2xcyQLH4o8LGTy/7agiGEuLc7WCXUYO0Hb86cHJVQey/aC+F+lfFzwLH4S1y+vrOx+3wXkj2bhZHMRyFyc4BPpXcLGRGQE255wvHP58H8aAPGfgn+1B8IviZdW+l2HiIaP4gmlWF9E1lfst0s27b5Q3fJKc4GEZm5HFe2VzWi+DPC2neML3xZYeHdNt9e1BFiu9UjtFFzcqDnDyABm6kdegXsqgdLQAUUUUAFFFFABRRRQB8m/txf8npfs4/9hu7/APRlrX1lXyb+3F/yel+zj/2G7v8A9GWtfWVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHyt/wTw/5LZ+0T/2UW5/9KLqvqmvlb/gnj8vxr/aI3cbviJc4z3/ANIuf8R+Yr6poAKKKKACiiigAooooAOaKKKACiiigAooooAKKKKACiiigBPzpaKKACiiigAooooAKKKKAPk39uL/AJPS/Zx/7Dd3/wCjLWvrKvk39uDDftofs5MCCF1u7zz0+e1P9R+Yr6yoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApG5WlpG+7QB8d/C/Vbf4D/8ABQTxv4Q8TS/YdC+LU6axol/ctiJrxpJWeIseFZ5JJkA7kRD+IZ+w1kQqCGGGxg9jnpivl3/gqppunXX7Lsl3c2FrNcWet2otppIVZ4d8rq+xiMruUAHHUAA1xH/BL3xZ4p1n4J3v9r+JdY1D7JeCK3+138svkp/dTcx2j2HFAH23RXGfbbz/AJ+5/wDv4aPtt5/z9z/9/DQB2dFcZ9tvP+fuf/v4aPtt5/z9z/8Afw0AdnRXGfbbz/n7n/7+Gj7bef8AP3P/AN/DQB2dFcZ9tvP+fuf/AL+Gj7bef8/c/wD38NAHZ0Vxn228/wCfuf8A7+Gj7bef8/c//fw0AdnRXGfbbz/n7n/7+Gj7bef8/c//AH8NAHZ0Vxn228/5+5/+/ho+23n/AD9z/wDfw0AdnRXGfbbz/n7n/wC/ho+23n/P3P8A9/DQB2dFcZ9tvP8An7n/AO/ho+23n/P3P/38NAHZ0Vxn228/5+5/+/ho+23n/P3P/wB/DQB2dFcZ9tvP+fuf/v4aPtt5/wA/c/8A38NAHZ5/zims6heTjr146VxzXV15Z/0ib/vs18f/APBWbxT4m0jw1pWm6V4i1axsr8mK7trW+kiiuE2fdkRWAZfYgigDsG8RWvx9/wCCifhyTws6X/hD4RWs893qi/NDc3s4KqsMg4YFli29mEMhGRgn7Dr5s/4JY2Nlafsc+Hri0s7eCa+muZruSKJVa4kE8qB5COWbaiLk5OFUdAK+k6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q=="]
math
multiple-choice
12
阅读如图的程序图, 运行相应的程序, 则输出 $\mathrm{S}$ 的值为( )
2
4
6
8
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFdANIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKoapqsWlxRlo5J7iZvLt7aEAyTPjOBngcAkkkADkkVfrndG/4mPibW9Sl+Y2so0+2B/gRUR3I92dsH2RfSgA+zeLb0eY+o6bpanpBDbNcOo95GZQT9Ex9aT+xvEv/AENf/lOj/wAa6OvM9ePhK6+I1o+oeHZLt/sV4tyz+Hp5jLIslsqN/qj5gVQwDjIAYDI3DIB1P9jeJf8Aoa//ACnR/wCNH9jeJf8Aoa//ACnR/wCNc94Hbw3b+KfEC6XoclnPLeiOGRdEmtxHF9lgYozmMCMFgzbWIySDg7gTl2ereLreW7NlHBqM/iH7ZcwvY2yRGDyWgtkuV86YpJG0QWVV/iJUbtp3AA7X+x/Eo6eKx+OnR4/nS+d4n0r95dLZ6xajlzaQtBOg7kIWZZPoCp9MnrD4avr2C8XQ5PDV9pmmQWi/YJZmjcKkYVDE7JLJ83IKkkbhuGPkLN1FAEFneW+oWcV3aSiWCVdyOO4/ofY8ip653Tf+Jf4y1TTY+La6gTUI07JIWZJcexIRvqWPeuioAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK53w7/omteItOfiT7YLyMf3opUXDf8AfaSD/gNdFWXqulSXU0N/YTrbalbgrHKy7kkQ9Y5B3UkA8cgjI7ggGpWPa2NxceIZ9XvI/KWGJrSyhLAsqF8ySErx+8KRYU52rGpypdlFU+JL+0/d6j4a1NZh/FZBbiJ/dWBDY/3lU+1J/wAJb/1L2v8A/gF/9lQBb0axuLTVfEM08eyO71BJoDuB3oLWCMnjp8yMOfT0xXH6z4Q1TUI7i9i0qxkW+lgkfSrmbKwhbuCVhn5kXzFWVptgIZljwJCpd+guvG8FlaTXVzoeuRW8CNJLI9nhUVRkknd0AFS/8Jb/ANS9r/8A4Bf/AGVAFLwnoFxo/iHV7ltA0rR7W4tLWOOPTJQ8cjo85Yn93GQ2HT+Hpjk8gdhXOf8ACW/9S9r/AP4Bf/ZUv9r61qg8rTNGmsUbhrzU9qhPdYlYs59m2D3oALUfa/H+o3EfMdlYxWrt2812aQr9Qvln/gYroqp6ZpsGlWQt4S7ksZJZZDl5XY5Z2Pck/gOgwABVygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorA8ZNIPD6JHNPD52oWMDvBK0T7HuokcBlIYZViMgg80n/CG6X/z9a5/4Pb3/AOPUAdBRXP8A/CG6X/z9a5/4Pb3/AOPUf8Ibpf8Az9a5/wCD29/+PUAcZ8doNdTwWdR0e/uIbeINDqFvGfllgkG0kj2PH0Y+lb/wug11fBFpeeIr+4u7++/0j9+cmKMgbF/Lk+7Y7VoXHgXRbu2ltrmTWJoJVKSRSa3esrqeCCDLgg+lSDwZpYAAudcAH/Udvf8A49QB0FFc/wD8Ibpf/P1rn/g9vf8A49R/whul/wDP1rn/AIPb3/49QB0FFc//AMIbpf8Az9a5/wCD29/+PVL4NuJrzwN4fubmV5p5tNtpJJHbLOxiUkk9yTQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz/jL/kB23/YV03/ANLYa6Cub8czw2vhuO4uJUhgi1LT5JJJGCqii8hJYk8AAc5qT/hO/B//AENeh/8Agxh/+KoA6CvOdZtLF9fOrahbLfaZqrxWtpqURK3OmSn92oQn5lRn53Jghicgg5HTf8J34P8A+hr0P/wYw/8AxVYVtc/DK0ubeeHxBo4FuwkhhOtBoY3x98RGTYH5J3bc5JOckmjqrh0difUNa1PTr6WztL3yreDCRx/8Inf3O1QBgebG4R/qBiq3iTxfeWWjiILqEchs/OkvoNHuUEjtkLFGpVvLYkDPmN8u5cZJyu//AMJ34P8A+hr0P/wYw/8AxVV73xb4G1GAQXfibQpYhIkoU6lEBuRgynhuzAHHtSaurMa0d0aXhiwXTPDGm2itK5jt03vKrK7uRlmYN8wYsSTnnJ5rWrn/APhO/B//AENeh/8Agxh/+Ko/4Tvwf/0Neh/+DGH/AOKqm7u5KVlY6Cuf8Cf8k88Nf9gq1/8ARS0f8J34P/6GvQ//AAYw/wDxVHgT/knvhr/sFWv/AKKWkM6CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiqGs6rHoumteyW89x+9ihSGDbvd5JFjQDcVXlnHJIFZ3/CQ6p/0Jmuf9/rL/AOSKAOgorn/+Eh1T/oTNc/7/AFl/8kUf8JDqn/Qma5/3+sv/AJIoAwfix4u03w74Rv8AT79bgS6rY3NvbPHFuQuYyuGPb7w/yK6Dwn4u03xnpcmo6Stx9lSUxb5otm5gATj1HI5rk/iHYah448H3Wk/8IdrCXWRLayyTWWElXpnFwTggkHg8E1qeGXuvC/huw0W08Ga55VrEE3ebZDe3VmP+kdSST+NAHbUVz/8AwkOqf9CZrn/f6y/+SKP+Eh1T/oTNc/7/AFl/8kUAdBRXP/8ACQ6p/wBCZrn/AH+sv/kitXStRh1jR7LU7YOILy3juIw4wwV1DDI9cGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHP8AjL/kB23/AGFdN/8AS2Gugrn/ABl/yA7b/sK6b/6Ww10FABXI6v40uNM1fVtPj02C4axs0vA/2sqNhDFvM/dnZjYcY3E7lwOu3rqw77wva31lqVv9quoX1GdJ5p4ym8Fdu1RuUjbhAMEHqfWk7jRlat41bTLiGJ5fDVq7wJK0Op679lmQsM4KeU3HvnmtCLxBBd+DrzV7mWykhjhlZ20q/NwhCg8LKFQ7voAQa340EcaRgsQoABZiScepPU1l6/oZ1+zS1bU72yjWRZG+yiI+YVYMobzEbgFQcDGehyOKbs7oUdLD/Dtlc6d4d0+1vJ5Z7qOFfOkllaRi5GW+ZiSeSQMnpitOkUEKASWIHU9TS027u4logrn/AAJ/yTzw1/2CrX/0UtdBXP8AgT/knnhr/sFWv/opaQzoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAy/EGlTazpP2S3uUtp1uILiOWSIyqGimSUAqGUkEpjqOtU/sfjD/oO6H/AOCab/5KroKKAOf+x+MP+g7of/gmm/8Akqj7H4w/6Duh/wDgmm/+Sq6CigDj9duPGGieHtT1b+19Dm+w2ktz5X9kTLv2IW25+0nGcYzg1oG08XgEnXdCAHUnRpf/AJKrivjx4dudT8FHVrKaWObTctMiOVEsDYDggdccHntu9a8ruvAvxK0mx0prh7u50yeWG5kjikeUQudp/fJkMdv4gc8jNAH0T9j8Yf8AQd0P/wAE03/yVR9j8Yf9B3Q//BNN/wDJVH2Pxh/0HdD/APBNN/8AJVH2Pxh/0HdD/wDBNN/8lUAH2Pxh/wBB3Q//AATTf/JVaGhaZ/Ynh7TNJ87zvsNpFbebt279iBd2MnGcZxk1n/Y/GH/Qd0P/AME03/yVR9j8Yf8AQd0P/wAE03/yVQB0FFc/9j8Yf9B3Q/8AwTTf/JVH2Pxh/wBB3Q//AATTf/JVAHQUVz/2Pxh/0HdD/wDBNN/8lUfY/GH/AEHdD/8ABNN/8lUAdBRXP/Y/GH/Qd0P/AME03/yVR9j8Yf8AQd0P/wAE03/yVQB0FFfOWu/HzxboniHUtJNjok/2G6ltvN+zyrv2OV3Y804zjOMmigD6NooooAKKKKACiiigDm/Et/ElxBZ2+t6lbahsLrY6XFDNPMpOFZlkjfYm4FfMJRAW+Zhxjm9D1LV4raG98Qa7riQx3dxHPNFBaSWamK5kj2SMsAkVdseWlKogGTuQkAdB40jvJU0VLa11W6hOoH7VDplybeRo/s82MyB0wu/YeWAJAHJIBw9O02bT/EWhjT9A8T6bbtezNdtd6obiBlaCdjuQXEgBMpVtxUfN3yRkA9Eoopk00VvC800iRRINzO7BVUepJ6UAPornj4rS+Ozw/YT6s3Tz0/dWo9/Obhh/uBz7Un9jazqnOs6w0EJ62el5hX6NMf3jfVfL+lAF3UvEelaVOLa4ud94wylpAhlnYeojQFse+Me9UvtPiXVv+PW0h0W2P/LW8xNcEe0aHav1Zj7rWrpukado0DRadZQ2yMdz+UgBc+rHqx9zk1iaN4o1DWYrO9h0ZG0y+kKwTxXe941BOTMm0BOFIwrP82AcdQeQeZOvg3SZz5mrrJrU5BBk1IiVRnrtjwI0/wCAqKT/AIRu6075tA1ee0UdLS6zc2/0AYh0+iuAPSp9U8V6VompR2mqyyWUciqUvJ4itszHd8hl+6rYXOGIzkYyekXiDxfp2g3NpYvLA+o3vFvBJcJCp7BmdjgLnjjLHnarYIoAb/wkV7pvy69pE0CDreWWbmD6naPMT8VwP71bNjqFlqdqt1YXcF1bt0lgkDqfxFYOteJNW0a0Mx0SKb7NaG6vSt06oqg4KROYsSPwTtbZ29eLt54Z0y/nN/FHLY37gE3dm5hlP+/jh/o4Ye1AG1RXO58T6T1FvrtsPTbbXQH/AKLc/wDfsVZsPFGl310tm0r2l+elneIYZT/uq33x7rke9AGzRRRQAUUUUAFFFFAHxB47/wCSh+Jf+wrdf+jWoo8d/wDJQ/Ev/YVuv/RrUUAfb9FFFABRRSOWCMVXcwHAJxk0AcxdpqWp+Mb3T4NdvtOtrXT7WZUtI7c7nkkuFYsZYnPSJcYx3qx/wj2qf9Dnrn/fmy/+R6800L4vLqXxPnsY/Dl6l5epb6cYWlXMLQyTl2bjoBLz/umva6AOf/4R7VP+hz1z/vzZf/I9H/CPap/0Oeuf9+bL/wCR66CigDn/APhHtU/6HPXP+/Nl/wDI9ZV34IvTqC6l/ap1uZcEW2uorxAjoYxEqrE3+1sY12tFAHOjxXHY4j1+xn0g9PPkxJbH6TLwo/3wh9q34pY54klhkSSNxlXQ5DD1BFPIBBBGQawJfCVjHK9xpMs+j3LHczWDBY3Pq0RBjb6lc+4oA0dZOojSpv7JSNr47REJGCrywBJODgAZPQ9OAelc7oenXq+L7zVotIuNGsZ7c/abaaaJvtVyWGJQsbsqkKCC2QW3DI4zV77d4j0ri/0+LVbcf8vGnfJKB6tC55/4C5J7LWhpmv6Xq7vHZ3StPH/rLeRTHNH/AL0bAMv4ijrcOljlHttT1a9Ya3o3ii4tZHZRarc2dvbRoTj5liuN8g28EOzg5OFGcBNR8PX6XPiDT7DRUaLWIY7aG9DxLBaQCIRlCmd/ynewVVIJYcjkjvqKPId9bmT/AGeJ9QginhmNpYRo0PmFTHLJ2bhiSVxxuUAFsjJA261cjrPxK8M6PMtudRgubpyyrHHNGqZGMgyuyxgjIyC2eelV9N1ibxdcNbw+KdItlCF2s9Fu47m42cDLSnhRkgHanGeG6UXJSsdPqetabo0avqF7Db7ziNWb55D6Ko5Y+wBNYd/Lf+KLVrSDw7ALF/8Alvrkfyn3WAfOf+BGM1saZ4e0vSJHmtLRftLjEl1Kxlmk/wB6RiWP0JrToGY/hvQn8P6c1o+pXd8WcvuuHyI/9lAclUGOAScetbFFFABRRRQAUUUUAfEHjv8A5KH4l/7Ct1/6Naijx3/yUPxL/wBhW6/9GtRQB9cLd+I9T1nWYNPv9KtLawuktlW40+Sd3zBFKWLCdB1lxjHbrU/2Pxh/0HdD/wDBNN/8lUeHv+Q54s/7Csf/AKRWtdBQBz/2Pxh/0HdD/wDBNN/8lUfY/GH/AEHdD/8ABNN/8lVQ8R6ne2niSztZ9Vn0fTJ4gsF5FDG6S3JY/upWdW2jGNv3dxJG7OBWh/amtafDDBc6Ffapc+WGmubFrZIS56hRLMrADoMjpjk0La4dbHL2Xw41Ww8c3vi2HV9GGo3cWxgdIk8tTwGZV+0ZDEAZOTnJ6ZOen+x+MP8AoO6H/wCCab/5Kq4zahqulr5a3WiTO+H81YZJkUd12s8eTxyd3GeK5m51XXrXwdFdvdXEkQvWWbUYLZGnFkGbE4jwVJwFzhCNpLBaANr7H4w/6Duh/wDgmm/+SqPsfjD/AKDuh/8Agmm/+SqseH2upbRriTV4tUs5drWdyiKC8eM7nKgKWJJ5UAYA4BzWxQ1YSdznLO81218UWul6peaddw3VlcXCta2TwMjRPCuDulfIImPpjFdHXP3n/JQ9G/7BV/8A+jbSugoGFFQXt9aabaSXd9dQWttHgvNPIERcnAyx4HJArG/4Tvwf/wBDXof/AIMYf/iqAOgrP1PRNM1lUGoWUU7R8xyEYkjPqjjDKfcEVn/8J34P/wChr0P/AMGMP/xVH/Cd+D/+hr0P/wAGMP8A8VQBjeIrnUfBmjXt7ZeIbedbe2knjsdYPmO21ScJIGVz0/i3k+orQtdCstcVpdU1o68AcNCkiraqfTykOGHtIXPvXAfGmbwn4t8Gmey8R6LNqmmsZoEjv4meRT99AA2SSACAOSVA71ufDe+8G+DPBVlpjeKdBF248+7YajDzKwGR97sML/wGgCXxlp99da/plvpGnX8DWVtOkItZI40mjcwligS9t5AEKqpyNuWHH3TVLwRBq7azp/iCSw1m6s7myMUEkkgKrHM0T+YfOv5mAAQcKoJzyCQBWpqPivR31xNYs/FPhR5LSJ7a2tptVRBNHJsaRnkGdjbo02gKwwjZyZB5eH4Q1TQfDFvp0CN8PIZ4reO1utRtdcRZ5VAUO5HkAsSV3bS3Jxk96APXKK5//hO/B/8A0Neh/wDgxh/+KrdhmiuYI54JUlhkUOkiMGVlIyCCOoI70APooooAKKKKACiiigD4g8d/8lD8S/8AYVuv/RrUUeO/+Sh+Jf8AsK3X/o1qKAPr/wAPf8hzxZ/2FY//AEita6CsO68JaVdX9zes2pQz3Lh5vsuqXMCuwVUBKxyKudqqM47Co/8AhDdL/wCfrXP/AAe3v/x6gClqXhDUNRtdQ059bj/svUpmkuons90wVm5SOTeAo2gDLKxzkgjgDXv/AAt4e1S4FxqOhaZeT7Qnm3NpHI+B0GWBOKq/8Ibpf/P1rn/g9vf/AI9R/wAIbpf/AD9a5/4Pb3/49R5B5lfVPCs8lnBp2hTaXpWlKxaayGmlknJzlW8uWP5T3X+LGDkEg2LjRdYN5DfWetQR3SWy27rPY+ZC3JZm2q6sDnbj5sAA53EgjHtvDdpJ4y1Owa+1w2sOn2k0af25efK7yXIY583PIjT8vc1sf8Ibpf8Az9a5/wCD29/+PUAXPD2ix+H9Fh06OVpijPJJKyhd8juXc4HABZjgdhxWpXP/APCG6X/z9a5/4Pb3/wCPUf8ACG6X/wA/Wuf+D29/+PUAF5/yUPRv+wVf/wDo20roKx9P8M6bpmoC/gN9JdLE0Kvd6hcXO1GKlgBK7AZKLnH90VsUAc/4y/5Adt/2FdN/9LYa6Cuf8Zf8gO2/7Cum/wDpbDXQUAU9S1Sz0i1FxeysiM4jRUjaR5GPRVRQWY+wBPBpmmazYaukjWUxcxECVGjZHiY/wurAFWxztIBwQcciuf8AGF9pMlxFp2pan/Y8sKre2upvII1gmyyqMt8hJG/5GPzKG44JFa1XVfEvhKwvjp0ZvJpGaVo9TudMEyglElzErMQyqrBW6AjnihbXB72O1mmit4ZJppEjijUs7u2FVRySSegrK07xPpOqXCW9tPMJ5FLxxz20sLSIBneodQWTp8wyMkDOSK5sw/2FYXEev2G2x1Ai0l/4n95fgIwbezCVB5ahQSWHYEkgDNL4Y1G/m/tG10qey8Q2+nCOOw1Kafyw6vy8TTIjhmQKmWUc5XdyCaF/X9fcDO0vL21060ku725htraMZeaZwiL25J4FNsL+HUrUXMC3CxkkAT28kLcf7LqGx745rg/Es1pceIrRPFl2bCC2sRcWtraXsiGa7ZmVvKdQjyOqhQAAD+96c12PhsagPDWmjVmZtQ+zJ9oL43b8c5x39fehapv+uv8AkD0dv6/rU1K5/wACf8k88Nf9gq1/9FLXQVz/AIE/5J54a/7BVr/6KWgDoKKKKACiiigAooooA+IPHf8AyUPxL/2Fbr/0a1FHjv8A5KH4l/7Ct1/6NaigD7ePX8KM+3alx3pAPWgAz7UZowKMCgDn7M/8XC1k/wDUKsP/AEbd10GT6c1zl5Z67a+KbrU9Ls9Nu4Lmyt7dlur14GRonmbI2xOCCJR3HQ1J9r8X/wDQC0P/AMHM3/yLQBv7valHNc99q8X/APQC0P8A8HM3/wAi0v2vxeP+YFof/g5m/wDkWgDoKK5/7Z4w/wCgFof/AIOZv/kWj7Z4w/6AWh/+Dmb/AORaAJPFtrd3WhKtlavdTxXtnceRGyKzrFcxSMAXKrnah6kVH/wkOqf9CZrn/f6y/wDkij7Z4w/6AWh/+Dmb/wCRaPtnjD/oBaH/AODmb/5FoAP+Eh1T/oTNc/7/AFl/8kUf8JDqn/Qma5/3+sv/AJIo+2eMP+gFof8A4OZv/kWqWs33i9ND1Bjo2jRhbaQl49YlLL8p5H+jDkfUUAS3/i+70zTrm/vPCOuR2trE80z+ZZnaigljgXGTgA9Ksf8ACQ6p/wBCZrn/AH+sv/kivnE+N/ifL8PbyS6We40CSI2st7dW4LMkgKcOcFuuN3PJ5PSvffhlqXiHW/Btvq/iOSM3F4xlgSOIJth6KTjqTy30IoA0f+Eh1T/oTNc/7/WX/wAkUf8ACQ6p/wBCZrn/AH+sv/kiugooA5//AISHVP8AoTNc/wC/1l/8kVY8J2Nxpng3Q7C8j8u6tdPghmTcDtdY1DDI4PIPStiigAooooAKKKKACiiigD4g8d/8lD8S/wDYVuv/AEa1FHjv/kofiX/sK3X/AKNaigD7fooooAKKKKACiiigAooooAKKKKAMTxZdXdpoStZXL2s8t7Z23nRqrMiy3McbEBgVztc4yDUX/CPap/0Oeuf9+bL/AOR6PGX/ACA7b/sK6b/6Ww10FAHP/wDCPap/0Oeuf9+bL/5HpG8Oak6lW8Y62ykYIMNiQR/4D07xbrF5oum2s9gI3uJbyGAQtA0rSqzYYIFZcMFy2TkfKc+ozk17XGtNXeZraBrW5SGJ7fTZ70AlQzIUjcM5XcBvG0Zz8vFH9fl/mH9f19xLqXgqfV9LuNMv/FetTWdxGY5YjFZAFT7i3yPqORViLwxqEEKQxeL9bSONQqIsFiAoHAA/0es7T/EOpyG6a61KMRxW0ku6Xwxe2ioVGdxeWTaQP7vBPYik0HxJ4j1ObSRc2VpH9rsHuZYWjeNwwC4Yksdilm2hSrHALZH3aP6/P/IP6/r7zV/4R7VP+hz1z/vzZf8AyPR/wj2qf9Dnrn/fmy/+R6q2l14oPiGcTaPo6KYYBIU1WViq7pOQDbjcevBx0HPPEutWltqvi7QbWS3ikexMmoNIyAtGANiAHqNzNu46+XR1QEv/AAj2qf8AQ565/wB+bL/5Hqz4UvrjVPB2iahduHubrT4J5nAA3O0asxwOByTWvXP+BP8Aknnhr/sFWv8A6KWgDoKKKKACiiigAooooA+IPHf/ACUPxL/2Fbr/ANGtRR47/wCSh+Jf+wrdf+jWooA+36KKKACiiigAooooAKKKKACiiigDn/GX/IDtv+wrpv8A6Ww10FV72xs9Ts5LO/tYLq1kxvhnjDo2DkZU8HkA/hWP/wAIJ4P/AOhU0P8A8F0P/wATQBsT2Vvc3NtcTR7pbZmeE7j8rFSpOOhOCRz6modO0ex0lrprOJ0a6maeUvK7kuxJONxOBkk4GACTxyazf+EE8H/9Cpof/guh/wDiaP8AhBPB/wD0Kmh/+C6H/wCJoA2b2yt9RsprO6j8y3mXbIm4jcPTjmoDo9idaGrmJjeiEQBzK+0ICSPkztz8zc4zyRnBryv4tx+FfB3hqRI/A+mMdRgmtob23s4U+zTFDtJ+XIPOQR/dNbngWz8H+N9AOsR+AtJsbdpWjiEtjCxkC9WGF6ZyPqDQB6II0EjSBFDsAC2OSBnAz+J/Os630CwtdbuNYi+1fbZ0EcjPeTOhUEkARsxQAEnGAMZOOpql/wAIJ4P/AOhU0P8A8F0P/wATR/wgng//AKFTQ/8AwXQ//E0AdBXP+BP+SeeGv+wVa/8AopaP+EE8H/8AQqaH/wCC6H/4mtyCCG1t47e3iSGCJAkccahVRQMAADgADtQBJRRRQAUUUUAFFFFAHxB47/5KH4l/7Ct1/wCjWoo8d/8AJQ/Ev/YVuv8A0a1FAH2/RRRQAUUUUAFFFFABRRRQAUUUUAFFFYVz4s05Lh7SwE2q3iHa0Gnp5hQ+jvkIh/3mFAG7VLUtX07R4BNqN7BbIxwnmOAXPoo6sfYZNZX2bxNq3/HzdwaLbH/llZ4nuCPeRxsX6BG9mq7pvhzS9KnNzBb+ZeMMPd3Dmadh6GRiWx7A4HYUAcr4xs734g+F7zRrHQ3SCZd0V7qbm2CuDlWRNrSdf7yrwTzWjousaZ4Y0iy0bULG40OK1iWGN7oAwNgYz5y5TJPPzFSSelddSMoZSrAFSMEEcEUAIjpLGskbK6MMqynII9QadXPv4Stbd2m0S5uNGmJLEWhHksf9qFgU+pAB96b/AGlr+lcanpiajbj/AJetLBDgerQMc/8AfDOfagDoqKztM13S9Z3iwvI5ZI/9ZCcrLH7OjYZT7ECtGgAooooAz9T13R9E8r+1tVsbDzs+X9ruEi34xnG4jOMjp6iqcHjTwrdXEVvb+JdGmnlcJHHHfxMzsTgAANkknjFV/FGrXumvbRrcR2dpcuIRcQ2st5dNJtdikcKIQDsUsJGLAFSDGRXL+Gr+4sYrbT7C71K1uZb29WCx1fTLlYLlTPPOp894w6ytGAdzO+ADmNmoA9MooooA+IPHf/JQ/Ev/AGFbr/0a1FHjv/kofiX/ALCt1/6NaigD7fooooAKKKKACiiigAooooAK5PVPF8sGvHQ7S0jgujgJdapJ9ngkJHSLgmUj0GPrXWVDdWtve2z213BFPBIMPFKgZWHoQeDQBh/8Iu+ofN4g1OfUgetqg8i1Ht5anLj2kZxW7bW1vZ26W9rBHBBGMJHEgVVHoAOBWF/wjEmnfN4f1OfTgOlrLm4tT7eWxyg9kZR7Uf29qemfLrmjSiMdbzTs3MX1ZABIv/fLAf3qAOirlrPx1Y3kttENP1CN5rtrNw4iPkSBmXDlXIOSjYC7jgZIAIJ3LPUbPV7Fp9Lvre4RgVWWJhIqt74PUenFYtp4Q/s99CSzvI4rfTfMeZPs+WuZXXBk3bvlY5bJIbIc9DggW4PYvXXiGHTLmRNXt5bG2B+S+fDWzD/acf6vt/rAoycKWql4216LQtAN697fWkIy7T2Nn577QOACytGmSR8z8YyOCci7daC2p3MjarfS3FmT8lhGPKhK/wDTTB3S9SCGOwjHyZGabqelapeBrK2v7G10mSLyZIBYs0oQjDBH80KvHT5Dj3pNNoatcz799aTw7pb3GtJaOIR9su7JEeSaYqAixI8bKwZieAATxjHIre0c6g2i2Taqsa6gYE+0rH90SYG7H45pP7P23lmyeStpaRlYofLbcrY2ght2AAu4Y2k89RyDW1HxLpem3P2R52nviMiztUM0xHrsXJA9zge9U3q/MlXsrk2p6DpesFGvrOOSWP8A1c65SWP/AHJFwy/gRWRdxav4btnuotbtbqwjGWj1lxEUHtcKOB/vqx96m83xPq3+pgg0O2P8c+Li5I9kU+Wh9yz/AEqe08K6ZBdJeXQl1K+Q5W6v3810PqgPyx/8AC0hmfpvjS51W0FxaeE9bmTJUspt0Qkd0aSVd6nswGPx4q3/AMJDqn/Qma5/3+sv/kiugooA4fXptZ1ptMaHw/4j0+SxuzciWBtOZzmKSPaN87KP9Z1KnpjgnIpiDxAdW0u+uLLxdepYXDTiC6/snaxMMkXBjkQgjzM9SOCMcgj0SigDn/8AhIdU/wChM1z/AL/WX/yRR/wkOqf9CZrn/f6y/wDkiugooA+VPEvwj8e6z4q1fVLfw66QXt7NcRrJeW4YK7lgDiQjOD6mivquigAooooAKKKKACiiigAooooAKKKKACiiigDH1DwzpeoXJvDC1tfYx9stHMM34suCw9myPaquzxNpP+rkg1y2H8Mu23ugP94Dy3P4R/WuiooAwYvGOj7zFqE7aTcgFjBqQ8hsDrtY/K4HqjMPeo/+EobUPl8P6ZcakD0uX/cWv18xhlx7xq9cj8cPEGo6F4PaOHTLa80/UEks55Jc7rd2U7GA6f3sHsQPWuj+HXibVfF/hZNa1SwgshPI32eOIk7oxxuOfU5/AZ70AW/7C1TU/m1zWJBEetnppNvH9Gkz5jfgyg/3a8u8P3XinTNGtook1WykaNXnih0+SP8AeEDdkLpLDOc/xN/vHqfY9bGlto841qCCewO0SQzw+ash3DaoTB3sW2hVAJLYABOK8fksvDEGo+HLW8Hg3StVi0qddWj1PToSguQbYYaMPGAxPmFGzgruK5Vs0AeueGpr658K6RPqgkGoSWUL3Qkj2MJSgL5XA2ndnjAxWpWH4UGgrowXw/Jo0kAfE76QiJA021dx2oSAcbeCSQMcmtygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiioLy8t9Ps5bu6lWKCJSzu3Yf57UAQ6pqcOlWRuJVeRmYJFDGMvNIfuoo9T+Q5JwATWQumeKJ1E0viKK1d/mNvDZI6RZ/hDMctjpk4z1wOlWNLs7i+vRrepxNHNtK2dq/wDy7Rnuf+mjDG70HyjuW3KAOUS01yTUZrBfF+bqGKOaRP7NT5UcuFOenJjf8vcVHZx6tqFxdW9p41jlltX2TKunx/KckevI3K65GRuR16qwHLeK0/sHxtqWp3en6U32zT7m8t7yOfyL7ZawRboY28s7WbdMCynfsfIZfKUVX0PWjFdWi3cuqreWN3HZWsG2GGOKIy2SOMfZIZApF0g8tk2kJkYYRuoB0HijQLjVvC+sWms+L45NNgiY322wjZodqiTJCnIYDawHXBHrWlaaFq+mw2mlW3iyKFY4MW9uLCLPlptU4GckDcoJ/wBoetYviizv5PCnjfU9J1ixbTbyK7eeCbT5GkV4oBbyIsnmqBzAcHYeefmGK30tb6y8TadqOva1YSs0M9jaxW2nyQBmcLMxZmlk6LbMew689BQBN/Y3iX/oa/8AynR/40f2N4l/6Gv/AMp0f+NYcSzyeJprPUtT1O0v7y4aXTruG5ZrS6ts7vKVM7FcICD8of8AjVj27+jpcOtjnP7G8S/9DX/5To/8aP7G8S/9DX/5To/8a6OqOranHpdoJDG008rCK3t0+9NIc4UfkST0ABJ4BoA5fVYvE9pJBZ2fiZZ9RuSfKiOnxhVUY3SOc8KuR9SQBya7VAwRQ5DMByQMZP0rM0fS5LMS3d7Is2pXRDXEq/dAH3Y0z0Rc4HryTyTWpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIzBVLMQFAySTwBXP2inxLeRalKpGkwNvsYiP+Phx0nYf3R/AP+Bf3dujrWkQa7pM+m3Ms8cE4AkMD7WYZzjPoehHccVmDwjgYHiHX/8AwN/+xoA6Oiuc/wCES/6mHX//AAN/+xo/4RL/AKmHX/8AwN/+xoAi17wVZ6xeX95CYLO6vtKutNuJktgXk84RhXZgQW2CPAB/vdRjnLT4cLb3vm2dxptpAdTF55Nvp7RiOJXtXESBZQqkm0Qs5U5JJAXkHZ/4RL/qYdf/APA3/wCxo/4RL/qYdf8A/A3/AOxoArXXgf7TYahpy+JNZh0+/e4aW1jW12gTuzyKGaEuAS7fxZGetOu/Bt1fXNk954o1W6ht5JHMU0VsM74JYcqY4kIYCUkE5HHTkEUfFGgz6T4S1rUrXxFrouLSxnniLXmRuSNmGRjkZFav/CJf9TDr/wD4G/8A2NDV9GGxJZ+FILbUbS6m1HULxLEMLK3uXQpbZXbkEKGchcqC7McE85Oa365z/hEv+ph1/wD8Df8A7Gj/AIRL/qYdf/8AA3/7Gi4G3fX1vptlLeXUmyGIZY4yT2AAHJJJAAHJJAFZulWNxcXZ1nVI9l5IpSC3JyLSI87fQucAsR6ADIXJZaeFre3vIrm4v9Sv2hbfEl5cmREfoGC4AyATgnpmt2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOf8d/8k88S/wDYKuv/AEU1dBXlnx2g11PBZ1HR7+4ht4g0OoW8Z+WWCQbSSPY8fRj6Vv8Awug11fBFpeeIr+4u7++/0j9+cmKMgbF/Lk+7Y7UAdpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZGq6lcreRaVpYjbUZkMjPKCUt4s48xgOvPCrkbiDyACRr1zvhr/AEjVPEd6/Mj6j5APpHFGihfpuLn6saAD/hDrG5G/VLzUtSmP3nmvJET6COMqgH/Afrmk/wCEE8Nf9A3/AMjyf/FVr6tPNa6NfXFvLaQzxW8jxyXjFYEYKSDIRyEB5J9M15nd6T4svfA17ax2uqxNfxXSRWdlLaFH8wEmW5a4SN1aWSSRisYXapA2owIoA7OTwB4XljaOTS1dGGGVppCCPQjdTv8AhA/DX/QN/wDI8n/xVUhLqFh4S1nUtT1HxHbfZ4mm/wBJTT2njSNd7GMRIYzuGV+fPTjb1PL3P/CR/wDCZaZn/hMvO/s+727v7I8zb5ltnbj5Nuduc/Nnbt43UAdr/wAIJ4b7acQfUXEoP/oVL/wjU2nfvdC1O8t3Xn7Nd3D3EEnsQ5LJn1Qj1wehm8J3Ml7ohuJbrUrhzcTRsNRWBZYmjcxMn7gBCAyMQRnr16AblAFDSNUXVbRpDEYLiGQw3NuxyYZB1XPccgg9wQe9X652D/R/iJexpwl3psU0g/20kdc/UqwH/ARXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc7pf/Er8Varp8vyx6g4v7Vj0Y7FSVB7gorfST2OOiqnqWmW2q2vkXKt8rB45EYq8TjoyMOVI9R7joaAJL+H7Rp1zB9mguvMidPIuDiOXII2ucN8p6Hg8Hoelef3Pgi4XUdMZfCnhS8tUiu2ktPKFvbQPIbbb/BIZJMRuPM2JkDovANnX/EGv+EZYLZ7y11KOVS0ck9qUlUD+8UcKx9wq/Ssf/hZ2tf8APrYf9+3/APi6AOj0DQb7TNI8RW3/AAjujQC9vd8OmpcYtHiMEMb/ADCLIBKyZBj5Oex3HLf4T6I+rWol0ixaGS0uWurmC1ijCXJktzEUjIICqI5AFIYY3B95di9D/hZ2tf8APrYf9+3/APi6P+Fna1/z62H/AH7f/wCLoA9D0Cym03S1spbHTbNIXKxJpwKxMvXfs2jyyzFiUBbGfvN1rUryj/hZ2tf8+th/37f/AOLrpdFbVfF+nLd3+pLbWLMUa0sYjE0mOoaUszYP+ztPvQBoaR/xM/FGqaynNrHGmn2z9pCjM0rD1G5gn1jNdFUcEEVtBHBBEkUMahEjRcKqjgAAdBUlABRRRQAUUUUAFFFFABRRRQB//9k="]
math
multiple-choice
13
半径为 $R$ 的球 $O$ 的直径 $A B$ 垂直于平面 $\alpha$, 垂足为 $B, \triangle B C D$ 是平面 $\alpha$ 内边长为 $R$ 的正三角形, 线段 $A C 、 A D$ 分别与球面交于点 $\mathrm{M}, \mathrm{N}$, 那么 $\mathrm{M} 、 \mathrm{~N}$ 两点间的球面距离 是( )
$R \arccos \frac{17}{25}$
$R \arccos \frac{18}{25}$
$\frac{1}{3} \pi R$
$\frac{4}{15} \pi R$
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCADyAUUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK8j/AGrvi5pHw98Ly6MnizR9C8Q6pp1zcWk1/eRRNbQxIS00aSHEspbakUeDudgcFUfEVJqEWyoR5pJHrlFcP+zPbXVp+zx4Iiv5JpLxvD1nLdyTMWkkmeFXkdySSWZ2Ykk9Sa7itqkHCbg+jsZ05qcFJdQoooqCgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorgfjF8UtP8F3dp4e0rTbjxL4y1dCdJ8OWDATzgHBmmc/LBbqfvSvwMHG48UAdprOo6fpGlz6nq1/bWNlaoZJ7m6mWKKJR1ZnYgKPcmvKz8atT8XM0HwZ8B6h4uiLFR4gv5P7M0QdiyzyKZLgA/wDPGNwezd6NA+Dt94r1a38UfHLU7XxVqULiWy8PwRldC0hu3lwN/wAfEg5/fTZP91Ur1yNEjjWONFVFACqowAB0AFAHko8CfGjxL8/jH4wx6Dbv9/TvBOjx25X2+13fnSH6qiU7/hnbwNefN4k13x54kl7Sap401Hj6JDNGgHsFxXrVFAHxB+3Z4T8C/CfVvAmleDPBeoG+8RXl1Nc3KazqVwfs9ssQeNoUuEkkJ+0h12SoxaFUziQle3H7Imvn4Yahomm/HDX7HVdcZotS1BYbyS3vLFkYC3ktJ71/mUOVDl+F4K7iWr13476notj4h0Wbxvpo/wCEM0SxuvEl7qxhuT/Z1/ZXNj9kO+E8ZFxcsUIO8RH+FXBv/DLxvqerfErxn4G8SW1ra6p4eu47nTzbqype6VcLm3mG4klw6TRvjjdHkABgKTSaafUabTTXQ4/wz4Y/aI+HvhqxsNP8XeD/AIiWmn26RfY9S0l9DumRBtVIp4XliB2gD54+3Jrc8M/HHw82v2/hrx7pGqfD/wAQXTbLez8QoiW96/dba8RmgmPoocOc/dr1Cs7xVoGh+J9BuNE8R6RZatpt0u2e0vbdZopB7qwIqpScm29yUklZGjRXidx4T8e/BlTffDV7zxd4MhO648GX1wZL2wj7nTLlzlgByLeUkHGEdSQK9L+GPjjwz8QfCsfiDwrqS3loztFKhUxzWsy8PDNG2GjkU8FGAI/KkM6GiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK574q+MtI+H/AMP9T8Xa4ZPsemw7/KhXdLcSEhY4Y1/id3ZUUdywoA5346/EO+8MNpvhPwdYQ6x468Slo9G06ViIYEX/AFl5dFeUt4gQSerHCLyeLXwT+Gtl4Dsby/vNQm17xVrjifX/ABDdoBPfygcKAOI4UHyxxL8qKO5yTmfs7+CNX0uPUfH/AI7jifx14uKzaltbeul24/1GnQntHEp+Yj78hdjnIr0ygAooooAKKKKAOC+MXhfXPG91N4OklaHwhr/hLWdP1eVViZoryVrNLVwD85KxtfEbflyPm52Uz4keKx8LfhLZeJmtBrtlpTWVrrN+sgSSKz3rFLd4Abf5e4uUyON5zxz0GpaVrk3xU0bW7fUvL0Sz0bUbW9sfPcefczTWL28vlgbG2JBdLuJyvm4XIZsc38A/AVz4W+CjfD/xRbWN7Zw3WpW8cP8ArYp9Plup2hR1YY/1Miqy8jjHNAHoUbpJGskbKyMAVZTkEHuDTq5P4e+L9F1fxN4j8Gafp0ul3fgy4gtJbOSNEUwSQrJBNCEJHksN6r0IMTAgYxXWUAFeS/FzwFr2h+Kpviv8Jook8TrGBrehs3l2viq3TpHJ2S6UZ8qfr/C2VPHrVFAHOfCnxtoXxC8D2fijw9NI1rc7klgnTy57OZTtkgmQ8pIjAqynoR3GDXR14n8UID8Gvig3xZ0uPZ4R8RTRWvjuzjHyWshISHVlXsVJEc2OqFXIJQmva1YMoZSGVhkEHgigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvHPECf8LN/aetvD7nzPDPwvWHU9Qj/gu9amUm1jb1EEJM2P78sRPSvUfGWuaf4Y8I6p4k1aXyrDR7Ka9un/uxRIXY/kprhf2SdBv9J+Ctjq2uQ+Xr/i2eXxFrWfvC5vG83Yf+ucZjiA7CICgD0yiiigAooooAKKKKAOX1bR7Gf40aBr8mtW8N9Y+H9Vs4NLbb5t1FNcac8k6/NnbE1vErYUjNwmSvAbJ+G8/itPjT8RNO1ldRk0RZ9OvNBnuIm8gJJahJoYXIwdssDMwB480Z6itbVrfw83xo0C7ub+4TxDF4f1WPT7NVPlTWjXGnG5kY7cBkkSzC/MOJH4bGVz/EHjPUtK/aC8NeCZre1/sjxHoeoXUM+1vPF5ayW3yZ3bdhimc425yvXGRQBJ8QJvA/gTVpvilr8DWl1JBa6LdalGJGCwSXIEYlVTtCLLLkyMPlDNyASD2lZfjjw9pXi3wdqnhfXLcXGm6xZy2d3F/ejkUq2D2ODwexwaqeAr3Q47WXwlpeuPqd34Ujt9P1D7RLvuo28hGQzHAy7oVbcBg5PuKAN+iiigCpr2mafreh3mjataR3dhqFu9tdW8oyk0TqVZGHoQSPxrzL9lrUNQ0i1134R69eSXWp/D+6jtbO5mOZL3SZV32U7H+JggaFj/egbPJr1ivIfjUB4Q+Pnw/+I8Q8u11Sd/CGuMP4orr95Zu3b5LqMID2+0t60AevUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeS/tnFtQ+Edn4KjJD+OfEWm+H2I7QzXCvcf+S8U9esqAqhVAAAwAB0ryb47EXv7QHwb0aYj7Ous6nq0inu1vp0yIfwa5z+FdF8U/GHjLRdUttF8FfDbUPE9/dw+b9slvobLTbQbiv76dyX3d9iRuSPSgDuKK5Hx34f8Y+JvC+m2mneNrjwdffK2qTaRawXTSZTDxRPcRkINx4fZnA6DPDrTwBpknwwfwL4j1XWvE1jOrLdXWrXx+13IMnmYeWERkAHAAUDgAdKAOqWWMyMgkUtHjeoblc9MjtXKeGfin8NPEfidfDnh74geGdX1Z0ZxY6fq0NxNtUZY7UYkYFSfDD4beBPh1a3UHgfwtp2hrfsrXZtItrXBXO0yMcliNzYyT1NbGh+H9B0VQuj6Jp2ngDAFpaJD/wCggUAcjr3xr+GWjeOm8G6h4l265HcR272UWn3MzJI+0qGZIyoyGXknAzzV34nfFHwf4AvrWz8SS6ws17G0kC2GgX1+CoODlreFwpz2Yg12VFAHlvjj4mfDrQfFHhPxRq+m+IJbzVPDuoTaTd2ujXk8kNm02nGeOW1jUyozu1ofmiyvlsCUzho/EXxs+Hlv4R0vx6+n6rc6eNdTRBd3Gg3FtcWEkyAlxFPGkxQ/Iv7tW3FgoyQQOu1bWLGD40aBoEmi2819feH9VvINUbb5trFDcackkC/LnbK1xEzYYDNumQ3BU+MWneEr7wDdXPjd/K0XRpIdYuLjzHT7MbSRblZdyfMArRAnHUAjvQBS+GPxa8A/EHVbjTPCms3F3d2sHnzQz6ZdWjIm4LnE8aZ5I6Vx2meLvg2n7S1/rum/Frw3a69d2H9gaxoDajAjXlzBOfJcqzBvOj3Tx4AJIfH8Ir2K0nhurWK5t5FkhmQPG69GUjII+oNc18WvAHh74g+BdW8M61ZQ7NUtHgF0IVM1s5Hyyxt1Do2GBz1UUAdCb6yGofYTeW/2raG8jzR5m09Dt644NWK80uPgv4M8X+GdHk+LPhDwx4o8UWumwW2oaw2nL5lxIi4ZlkI8wKW3MBnjca3/AIkeA4PFum2NnF4o8UeGzpxJgl8Pao1oxBAGHGGWQAAYDqQKAOsrzn9rnQ7nX/2bfF9rYHF/Z6a2pWBxyLm0YXUOP+2kKVsS6P420H4VjSfDPiGDX/EdqALfUvFQ+W4Hm7iJ/sqJyIyUDKvUKSG5zX8L6/r914B1m5+LHhvTfCSWCSJeTJrMdzZT24jy9wspVCkeC2RIqkYPUckA6LwPrdv4m8F6P4ksxi31jT4L6EZ/gljV1/RhWpXlP7D93Jd/sneBlllEjWWljTw4OQwtne3B/KIV6tQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAxAXJOAOpNeIeHPEfxZ+LGpat4j+Hfizw/4Z8F2941jotxqHh99Rm1nyiVmu1IuIgkJk3InXcELcZGdD9o7VdR8WeINP8Agd4VvJba/wDElubnxJqFu2H0jRQ22Vg38Ms5zDH6Zkb+CvU/D+ladoWg2Wi6PZxWen6dbpbWltCuEhiRQqqo9AABQB8mftEfDf4peKfjz8KfDXjTxtoXiOwvrq8e5t7PR5NJVrOKWyluonYTzF/MhRgFG3oVJw2R9b2V/YXVxc2tpeW801jIIrmKKVWaByoYK4BypKspwexB715b8e/+Jd8cvg34gf8A1C+Ib7SZD6G6064Kf+P26j8a6PxB8I/AGrfEC18cnQ/7P8SW08czarpdzLZT3WwghLgwsvnoQApWTcCvFAHb0VwvxNs/i+Nei1H4ea54RNitusc2j6/p048yQMxMi3UMmUyCo2mJgNue9XviF4m8T+GdCsL3TvAOpeKp5CBqFvo13bI9r8uSyi4kj8wbuAAc98UAdZRXJ2vj2zX4Xt441nw94k0S2iDGfTrzS3l1CECTy+be38xmyfmGzd8pz0pfhf8AEnwd8Q4r1/CepXF1/ZxRbtLjTrmzkiL7tuUnjRudrdu1AHV1w3xG+JVpoHiyy8FaFpNx4k8X6lbtcwaPaSrGLe3U4NzdTN8sEO7ChiCzHhFcggS+BPi98LPGmrppPhP4ieGdZ1CRGdLKy1SGSdlUZYiMNuIA5PHFeKfBPx14I8C/tKfGhPib4w0PRfEt/r0ElpJqd/HCJ9MW3X7NHE7kAlQzZjU7gTyOhpLWdntZv7rK3439E/VD0jfrdL89fwt6tHoOn/FLxrp37Qvhv4dePfCmhaDb+JtJ1CfTrvTdZl1Jb26gNuwhV3ggMZWJrhmDRkN+72sMMD6V440O38TeC9Y8N3bbbfWNPnsZm27sJLGyE478Ma+d49f/AOE2/bC8P/EfxQkfhrwD4U0TUI/C9zr1zFp0+oX8rQxyXAt5mWbyXidwjFQD5WTjcob6E1bxX4W0vw3D4h1PxLo9lpFwFMOo3N/FHbSbhldsrMFOR0weacfhV1rr+bt+Fg+07bf1f+v0sHw70Wbw14A0Pw5c6gdRm0fTLeykvTF5ZuWiiVDIUydu4rnGTjPU1sV5H+y7eaNoPwo8SunijQdQ8P6R4m1m6tr/AE7VIruC3spLh7wCWSNiEZEnJKk5AwehFdP8NPi78NPiFrFxpXgnxjpuuXdrB58yWTlwke4Lu3Yx1YDr3oArW3hPXtJ/aMuPF+kzRv4f8R6ItvrltLMQ0N5bOPs08S4Od8UkqOBj/Voea76vIviF49g8aQ638NfDenfEPS9WvBPpsPiK08O3ltaadcruVZvtbKqlFdR8ykhh0yDRYeNfjpL4Z0SOD4M2kmq3GmQvqdxqXieCztre6wRIoSNJpGXK7h8o4YDOcgAHrtYXxI8TeFPCPg281rxrqdjp+ixoUuZL0gxuG48sLyXZugQAls4ANZ3xM8PeM/EdjYW/hrx7L4PCljqElppkF5NOCBhY3mBWPB3fNsYnI6Yq1a6Np3hz4fQW2uX134gi0GI3Zv8AWjHPcu8e5/NZgqrvHOCqjGBigDxH9njw/wCLNW+Hba/8EPHEPhLwRrGqXt1puheIvCgu5LH/AEh0kWDZdR+VAzozrEy5Uu3YgDuf+ET/AGhf+iy+EP8Awgn/APk+rH7FNjPY/speBPtK7Zr3Ro9QcehuSbjH/kWvUaAPJv8AhE/2hf8AosvhD/wgn/8Ak+j/AIRP9oX/AKLL4Q/8IJ//AJPr1migDyb/AIRP9oX/AKLL4Q/8IJ//AJPo/wCET/aF/wCiy+EP/CCf/wCT69ZooA8m/wCET/aF/wCiy+EP/CCf/wCT65X40X/x1+HPw9vPE9/8XfCt7LGUg0/ToPAb+fqV3IwSG2iH245d3KjocDJPANfQdeJ+A/8Ai8nxsf4hTfvfBXge4msfCaHmPU9RGY7nUfRkj+aCI8jPmsMZFAHpvwtj8WxfD3SF8d3NlceJGtVfVGsYvLt1mblkjGTlVztznnbnjOK36KKACiiigAooooAKKKKACiiigAooooAKKKKACub+LnjXSfh78PdS8W615j2+nxDy7eEbpruZiFigiX+KSR2VFHqwrpK8U0T/AIvN8eDr7/vfAvw3vng0kdY9X1tQVlufRo7YFo0PQytIwPyCgDpP2cfBWreHtB1DxT4y8uTxt4yuF1HX5EO5bY7cQ2UZ/wCeUEeIx6ne38Vej0UUAeT/ALaEUtr8EJPF9sjPc+B9WsPEkQUZylrcI84+htzOPxr1W3miuLeOeCRZIpVDo6nIZSMgg+mKr69pllrWhXuj6lAs9lqFtJbXMTdJI3Uqyn6gkV5v+yDql43wlHgzWp2k1zwDey+G9RL/AHpBb4FvN6kS2xgkz33H0oA9TooooAKKKKAKkel6ZHfC9j060S5UECdYFEgB6/NjNZmpeCfBmo6z/a+oeEdButQMiyG8n0yGSbeuNrbyu7IwMHPGBW9RQBwnjz4caX4t+Lnh/wAR69o2iatpOlaHqVlNa6jarOzXE89i8Eio6FSEW3uRkkEebgAhmx1F14b8O3Ogw6Hc6Dpk2l2wUQWMlnG1vEFGFCxkbRgdMDisrVtHsZ/jRoGvya1bw31j4f1Wzg0ttvm3UU1xpzyTr82dsTW8SthSM3CZK8BuooA80+G8Gp6L8efG3hcaZ9l8MSaZpmo6MlvYLDaxu4uIbmMMihS+YYmIJJw47Yr0tQAuAMAdAK4vxl40vdC+M/grwj9jgfT/ABZDqStcsT5kVxbxRzRovYho/PJzz8g967SgArgb7VfGGkftGWOmzR3WoeEPEmiutu0VoGXSNQtmLt5kirkRzxScFycPCFGN2K76svxx/b//AAhmrf8ACKNZrrv2GX+zDeoWg+0bD5fmAEHbuxnkcUAaleZ/tiavd6V+zf4nh01salrdsmh6cP4jcXsi2ke0dyDNu/4DXR/BTxnB8Qfhbovi6K2e0k1C3/0q0cENaXKMY54WB5ykqOn/AAGuK+KBHjT9pjwT4Gi/e2PhFH8W62B91ZQGt9PjY+pkeeUD/p3B9KAPUPC+k2mg+GdO0KwXba6ZZxWkAPaONAij8lFXqKKACiiigAoorB+J/i/RfAXgHVPF/iCZo9P0q3MsgQbpJWzhI0X+J3YqqjuzAUAcH+0lrura1qOmfBjwbeyWuv8Ai+J5NTv4D8+iaOp23F1n+GR8+TF/tuT/AAGvSfCOhaT4X8L6f4d0KyjstM0u2S1tLeMfLFGihVHvwOp5PWuD/Zt8Ia1punal498bwqvjXxtKl5qkedw02BRi209D/dhQ4P8AekaRuc16bQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVkePvE+jeDPBep+KvEN4tppekWr3N1MeyqOgHdicAAckkAcmgDg/wBpLxRrTDS/hb4Hu2t/F3jTfEl3GMnRtPTH2q/b0KKwSPON0rpjoa7v4f8AhjRfBfgnTPCnh20W10vSLZLa1iHJCqOrH+Jickk8kkk8muD/AGbfDOsyNqnxU8b2bW/izxpskNnJy2i6cmTa2C+hVWLyYxmV2z0FeqUAFFFFABXjfxGc/DH9oTTPiLjy/DXjZLfw/wCJmHC2l4rEWF4/orF2t2JwBuh9K9krJ8eeGdG8ZeDdT8K+IbNbvS9WtntrqEnG5GHUHswOCCOQQCORQBrUV5P+z34r1jTdYvPg94/vmn8VeG4t+n6hMMHxDpedsV4vrIvEcwGcOM9HFesUAFFFFABRRRQBy+rW/h5vjRoF3c39wniGLw/qsen2aqfKmtGuNONzIx24DJIlmF+YcSPw2Mr1Fcvq1x4eX40aBaXNhcP4hl8P6rJp94rHyobRbjThcxsN2CzyPZlflPEb8rnDdRQByfxa8QeGvCVjpHiPxHpBvBFrNpY2dyltHI+nzXcq2qzBnIMa/vtrMpztYjBziusrm/i9oHhzxN8OdS0rxbM0OihUu7uZZvKMIt5FnEm/+Ha0Stn2rd0u9tNS0u21GwuI7i0vIUmt5ozlZY2AZWB7ggg/jQBPRRRQB5t8TPi1pvw7+I0ek+MIIdN8O3Xh661Sz1gyk+ZcWp33FsUxw3kssiYOWw4xkc/PNj/wnXg3xZP+0Vq19rFm01/ZX/jTQBdyNBHpd4ZIYYHiJ2mWyg+yylsDBlmBOAMa/wC19qF78TNdbxN4Y0CDxD4T+CN+uqausjsI9dvI5ENxZQkZVhBAsjOxDfOQmD8wPrX7Oc918Ufgtq3iHxZpuhtpvxD8y7EOl6lLdK1pNAsHkS+ZBFskjjjETBdwLKx4zgL3k+aO619dVp81e/8Aww/da5ZbPTzXmvT+tLjfCOkDxR+1R4q8SxeIvER0jw3a2FnDp9v4hvF06a/eIzSSG3WXyWCwSWw27dpLMxUsQ1ewV53+y98M5vhP8J4PCd3rEusXiXc009/K7M867tkOc8grAkCY6DZxxXolW7JKMdl/T/H8LEK7bk9/8tF+AUUUVJQV4ov/ABef4+bv9b4E+GWocf8APPWNeUdf9qO0B+hmbv5dbv7SXi/WtP0/TPAHgedU8aeNpXtNMlxuGmW6gG51Bx/dhQ/L/ekaNecmuw+GPhDRfAXgHS/CHh+BotP0m3EMW85eQ9Wkdv4ndizMe7MTQBvUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeKa/wD8Xm+Oy+HE/e+BfhxfR3GsN1j1fWlAeG19GjtgVlcdDIY1I+U10v7R3jbVvDnh+w8M+DhHN428Y3B07w/E43LA23M15IP+eUEeZG45IRf4q6L4ReCdJ+Hnw903wlo5kkhsYz5tzMd015OxLyzyt/FJI7M7H1b0oA6SiiigAooooAKKKKAOI+OHw6h8e6PZT2OpSaJ4n0G4+2eHtdgQNLp9xjBBU/6yFx8kkZ4dT6gEZ/wX+Js3iHVLrwR42sIfD/j/AEeMNf6UJCYb2LoLyyc8y27/APfSHKuARk+j1x/xg+G/h34iaTbw6qLmy1LTZDPpGtafJ5N9pU+P9ZBKOR2ypyrDhgRQB2FFeMW/xI8ZfC2Qab8a7H7doqfLb+PNGsnNqy9B/aFsm5rR+mZF3QnPVOlet+H9W0vXdHt9W0TUrTUtPu03293aTrNDKvqrqSCPoaALlFFFAHL6trFjB8aNA0CTRbea+vvD+q3kGqNt821ihuNOSSBflztla4iZsMBm3TIbgr1Fc/qWq65D8VNG0S303zNEvNG1G6vb7yHPkXMM1ilvF5gOxd6T3TbSMt5WVwFbPE/ti+F7Px38Jh4Dns7e4ufEV4ILRpYldrdkikmeRCeVby4pE3Lz8+O9RUnyRcrF0480rXsem61Y2+qaPd6Zdput72B4Jl9UdSpH5E1hfBnwxeeCfhL4b8HX2prqc+gaVb6e14sJiE4ijCBtpJxwo7mvG/DfxMlP7HPhQ6TqDwag3giO+1e/VgX0mzt7fbPPk8CVnjeKLPV8thlicVy/7C9p4d+AH7OLeIPifFo/hu/8SXiXlpdttkv9Vgmt4JY4gq7p5XSSSZBHgsME4+bJ1lHlqzh0jpf5tfo/uMoyvTjJ6N9Puv8AmvvPrKvF/H3jDXPil4mvvhl8KdTazsLRzb+LfGVudyaaD96zsm6PeMOCwysIOTl8AMnh+JXxrUw3UGpfDn4fzHEkLkxeINcj7q2D/oELdCOZiP8AnnmvWPBvh3QvCfhmz8O+GtKtdL0vT4xHbWlrGEjjX2Hck5JJ5JJJyTUlEPgnwp4e8JeCbHwj4f0uCz0bT7b7PBaKuV2d92fvFiSWJyWJJOSTXjX7LF9o3wu+IWt/s3TQPaTafNc674Xcr+7vdKnlEgUMTzJFJJLGRjkRbvWvfq8Q/bC8P22laj4P+OUNtM918NdT+0akbckSSaTMPKu/u8t5asJcHjakg/ioA9vor5v+Fdno3xk+PvjvxLp3jDxjc+C7K00yHTU03xrqlpaz3c0H2maaOOGdPLAjkt12cAHd8oNdF8FvEPiHQP2nvF3wa1DXL/xBo1jolrrukXuoy+dd2KyOYpLWWbrKNw3oz/OASCW4II+9yrq1dfdf8ldeXnoEtOZ9Fb8bL8G7Pz+89urN8Ya9pPhbwrqHiPXr2Oy0zSrZ7q7uJD8scaKSx9+B0HJPArSrxTxx/wAXk+NqeAYf3vgnwLcw3vilxzHqepDEltp3oyRfLPKORnylPegDS/Zt0HVtX1DU/jL4yspLXxB4wiRNOsJx8+iaQpLW9rj+GRs+dL6u+MfIK9ZoooAKKKKACiiigAooooAKKKKACiiigAooooAKqa/qmn6Hod5rOr3kVnp+n273N3czNtSGJFLM7HsAATVuvFfisT8Xvi9F8JLQl/CnhtoNS8cyr9y7kyHtdLz33kCaUf3FRc/PQBa/Zz0vUfF3iLUPjl4ps5be98R24tfDOn3C4fSdFDbowV/hluDiaT0BjX+CvYKRQFUKoAAGAB2paACiiigAooooAKKKKACiiigBGAZSrAEEYIPevLNc+BHhuDVrjXfh5rGsfDzWbhzLNN4dmCWdzJ/ensZA1vJ7nYGP96vVKKAPI1uv2jPC/wAtxpfgr4hWacCWzuJdDv2/2mjk86Fj9HSnf8Ll8TWH7rxF8BfiRZzjqdOgstShP0eC4J/NRXrVc38W/GEHgD4e6n4wvNG1LVbPR7drm8h04wCZIUUs8gE8sakKoJwG3HoATxSlJRV3sOMXJ2W54X8WP2rbPwN448P6nrngj4iaX4Vmsr631KO+8Mm3Y3Re2NtKryYDBVW4QhXAzOpIOBjzvxd+1b4g1H40aZ4h8PeBPFd74f02CaKHS9Q8HzwMxlRA0huobmY7gUIU/ZsBHddpJD175P8AF/wz4g/sPwr48+HfijQNM+IUf2PTH8QW9lJaaiZYtwt3+z3Mxjd0JwsqpnkdRVf4U6rqXwn8c2nwd8XXs11od/uHgPXbpyzTRqMnTLhz/wAt4lH7tj/rIx/eUg04tPVd1/mn/kybpr1/Luv8z5V8HabrkvwJ1X4Zp4k1TwtpWuM5vjpPw013Wb6eJ3LC3a4mit0SJQxUJHHgAtySzE7n7I/iix8CftI+OIfEXhnx540mttO03+xtXm8E3s2qWg8nE4EcivNbQu7fKhbbhABx1+9q8B8UeKH8D/8ABQjQ9H+zJ9i+KHhpLWSVmI2XNgbyVWHYkpKifiKX/A/DYb1f3/judL/wvi0b/VfCj4syf9ybOn/oZFH/AAvG4b/VfBT4syf9y/En/oc4r1migDyb/hdWuvxB8Afis5/27LTox/49eis7xd8VvHt54X1CC1/Zq8Y36zWzo9tquqaVaW8yFSGWV/tLlVKk5O0/SvUvH3ivw74J8K3XiTxVq1vpel2S7pridsD2VQOWYngKoJJIABNeTw6B4t+O8y33jizv/C3w53B7Tws7GLUNfXqJNRKnMMJ4ItlOW/5aH+GhgeOf8E4b34vad8Ep/C3g/wCFnh+x0+PUryRvFer+JxNaXU/mBdsMFtEzzhFCKHEgRvKbEgPA+lvgz8MovBWq674m1bWZfEHi3xVNHLrWsSQCBXEa7IoIIQSIoUXIVdzMSSWZjjHb6bZ2mnafBYafaw2traxrFBbwRhI4kUYVVUcKAAAAKTVL2003TLjUdQuYrW0s4WmuJ5WCpFGoLMzE8AAAkn2quZ3v1tb5f0hW0t0vf5nC/tE+OtQ8IeFLXTPC8Ed54y8UXX9l+GrJ+Va5YEtPIP8AnjCgaVz0wuOrCtf4L+BdP+HXw7sfDFjPJdyRbp7+/n5m1G7kYvPcynu7uWY+mQBwBXDfs+WV34/8Y3nx28QW0sUep25sfBdjOpDWGkbg32gqfuy3TASHuIxEuetex1IwooooAKKKKACiiigAooooAKKKKACiiigAooqO6mhtraS4uJUhhhQvJJIwVUUDJJJ4AA70AcT+0F48n8CeB1k0ezXUvE2t3KaZ4b0wn/j8vpc7N3pGgDSO3ZEbnpVn4FeAoPh38PYNEa8bUdUuZpL7W9UkH7zU7+U7p52/3m4A/hVVXtXEfAyGb4ofEa4+OOqxONIhil03wFayqR5dkTibUCp6Pcso2nAIhVP75ruvi98QtK8Babp4uLafUtY1y8Ww0PRrRlFxqVy38C7iFVVGWeRiFRQSecAl9v63A66ivHbr40a/pfjCx8A614Etk8b6pe2wstK0/Wzc20lhIGaW9a4a3RkSERTB1MXLBFUneCPYqOl/6/rX9N0w62CiiigAooooAKKKKACiiigAooooAK8d/bQH9v8AgXQ/hdb3rW938QtettLdosGaOzRvtF1IqkEHEMLKdwK/OMg9K9irlfGXwx+G3i7Vxqviz4e+FdevxEIhd6potvdTBASQu+RCdoJOBnHJpPePk0/ud7fPYadk+9nb17/Lc8R0WPb+3Xo3hHU/E118SF0nQJ9RS41EwrL4TuQfLBaO0SK2LSqxUb4RKvBD4OD7r8V/BGh/ELwPd+GNfjk+z3G2SG4gfZcWU6HdHcQuOUkRgGVh3HcEg2/BfhPwr4P019P8JeGdH0Gzkk8x7fSrCK1jZ8Y3FY1AJwBzWxVfZUe1/wAW3/wPkL7Tfp+CS/4PzPL/AIEeN9cOtXnwu+I0ka+NtAhEqXaJ5cXiGwztjv4V7EnCyoPuSZ7Mtcn+1/qnh/wX8YPg/wDEjxNp/wBp0/TtavdHeVbdZXtpLy1JilAbGNr2wy2chSxHofQfjv8ADxvHGi2d/ouoDRvF3h2Y3nhzWQuTaT4wY5APvwSr8kidGU+oGPEP2mNf034vfsp3kXiexuNE1zwf4m0uPxbo8coFxprG5jgmeJyCDG0E8kkUuCGXB6ggID6qrifjF8TdE8AW9pZyW11rPiLV2Mei+HtNUPe6lIOu1eiRr1eV8Ig5J6A8t8ZfjJ/ZOo33g/wE2m6h4i0+EPrGq6ncCHR/DER/5bX8+QA3dYFO9u+1ea5/4NeIPhD4IluPEes+LNW1TxNr+1Lzxj4h0G9s11dyfkt7KaWFYTHn/V29uzZAyAxBahauy3DZXOm8A/DLW9e8VWvxE+Mlza6p4gtW83RtBtmL6X4bz08oH/X3OPvXDDOeECgc+s0UUAFeL/GmST4q/E+D4Kac7HQNOSHU/HtxGcAwE7rfTMjo05Xe44IiQj/loK7T49ePV+H3gGTVLWyOpa1fzpp2gaUpw2o38p2wwj0XOWY/worntTfgF4CbwB4DFjqF6NS8QapcPqXiHVCMG/v5cGWT2QYCIv8ACiKO1AHaQxxwwrFEixxxqFRFGAoHQADoKdRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4z8fLq5+I/jq0+BWiTyR2VxAmoeOryBiDa6YWISzDD7st0ylcZyIlkOORXs1eOL+zpoUPirXvENh8RPiRpt74k1Br/UTY+IzCsspGAMKn3VUBVXoqgAYAAoA9esLW2sbGGys4I7e2to1ihhiUKkaKMKqgcAAAACvG/jJ4Z8WwftPeD/idpng698XaVoehX9gLHT761guLG7mZCLgLcyxI6sgMZw+4Zzg4q/8A8KHh/wCivfFr/wAK2T/4mj/hQ8P/AEV74tf+FbJ/8TRtJS6q/wCKa/Jh0a6P/NP9DJ+EHh34j23x+13xx498IQS6hr9jb21hf2mowvZ6Bp6PIxsMkiaSYuVkZxFsdmxvUKM+4V5L/wAKHh/6K98Wv/Ctk/8AiaP+FDw/9Fe+LX/hWyf/ABNH2VHt/X9dW9Xdi6t9X/X9dtloetUV5L/woeH/AKK98Wv/AArZP/iaP+FDw/8ARXvi1/4Vsn/xNAz1qivJf+FDw/8ARXvi1/4Vsn/xNH/Ch4f+ivfFr/wrZP8A4mgD1qivJf8AhQ8P/RXvi1/4Vsn/AMTR/wAKHh/6K98Wv/Ctk/8AiaAPWqK8l/4UPD/0V74tf+FbJ/8AE0f8KHh/6K98Wv8AwrZP/iaAPWqK8l/4UPD/ANFe+LX/AIVsn/xNH/Ch4f8Aor3xa/8ACtk/+JoA9aoryX/hQ8P/AEV74tf+FbJ/8TR/woeH/or3xa/8K2T/AOJoA9aoryX/AIUPD/0V74tf+FbJ/wDE0f8ACh4f+ivfFr/wrZP/AImgD1qvGP2q/gXJ8T9Pur7wvrcPh/xBfaZLpGoXEsBkg1KxkBxFOikEtG5WSNxyrAjkMRV3/hQ8P/RXvi1/4Vsn/wATR/woeH/or3xa/wDCtk/+JoA4Px94csL79rb4d/DPWdP06Dw5/Zd74rvbOG3SK28Qa0jqpeVOPNZCxmwdxOckcZr3zxxpGi+ILKy0jWplUNqNteWsfmKryzW0yXKBQ2c8wgkDnaG6da8m8WfsteEvFEljJ4i8ffEnVJNMn+0WEt14kaSSzl4/eROUzG3A5Ug8Vbsf2btGtNRbUIvil8VzetF5Ru5PF0skxjyDs8xlLbcgHbnGRTjpGK6pt/O90/VaL0S9ES1k35Jfha35v1b9T2imyOscbO7KqqMszHAA9Sa8n/4UPD/0V74tf+FbJ/8AE1X1f9nfStV0yfTdU+KXxWvLG7jMVzbS+Lpdk8Z4ZHwoJVhkEZ5BIpAQfB5W+LPxVm+Ml8rN4b0YTaZ4DgcfLMhOy51TB7ylTHGf+eSk4/eV7TVbR9PstJ0m10vTLWK1srGBILa3hXakMaKFVFA6AAAAe1WaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z"]
math
multiple-choice
14
如图是某公司 10 个销售店某月销售某产品数量(单位:台)的茎 叶图, 则数据落在区间 $[22,30)$ 内的概率为( )
0.2
0.4
0.5
0.6
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAB3ALsDASIAAhEBAxEB/8QAGgABAQEBAQEBAAAAAAAAAAAAAAUEAwYBAv/EABYBAQEBAAAAAAAAAAAAAAAAAAABAv/aAAwDAQACEAMQAAAB9+Bx7TygAAAAAAAAABOo8Zf3i24rmh5j0+NdgPNei5aAAAAAAAABPoTygAAAAAAAAABw75I+c9eSyhPoYl2gmU5+8+gmU59AAl1OHcfPqPPehxbaAAT6E8oAAAAAAAAAAce2WP3m68rKE7fIWyCdQkVT9gxbZVUAAAAAAT6E8oAAAAAAAAAAAcQ7AAAAAAAAAA//xAAmEAACAQQBAwMFAAAAAAAAAAACAwEEEDVAABITMAURICEjMjNB/9oACAEBAAEFArwyJdrhkNWvGCoA/AMhygiBqLeoDIyHv0edqxcsRgBDIcVSpSViSsm6QZDXDIarBIopSM6YMhynNhNtV94Qu7vC25Q2Kq0/SKWrk3fCoWxoLg4AMhxKTW6zVPNv8tKXy+8L+9dSJFnyDIa4ZDVYRiKWd1IZDiaqWlZ1TKzifeLG4wf5H/rplkqnDIFHUKEs67PUzuCPQFnLltT5gyGuGQ14XEO1P//EABkRAAIDAQAAAAAAAAAAAAAAAAABMDFBYP/aAAgBAwEBPwGRWIzkv//EABgRAAIDAAAAAAAAAAAAAAAAAAABMEFg/9oACAECAQE/AZWXkv/EADEQAAEDAQUGAwgDAAAAAAAAAAIBAxESABAhMVETIEBhc7EycZEEIiMwocHR8EFDgf/aAAgBAQAGPwK8msZEUL1n8cQ90g7nwz6LPgXJbD5We6QdzuyioFpNP7UnxLzvccNpXBohskiQL9iw1eKMeAVs5pXOFiyCkwmqzZ7pB3O6oBhfNcPLS9HCSSHKVwT/ADg3ukHc+Ie6Qdz4aBcVvVUzsBOYlrrzs90g7nd7QLhIVJ4QkYQl6uNuwqRAR4vPcbIXczjZxhG42m3NalVVCEiPSdL1/mzQ7dHFcFVIMPhr+67tIGI61DM/W3xCQi5JFnukHc7njIxJHFmEGI+t6EDraImSE3P33K9sFOmzxRPXcJyc0hOW4rrh1uLhlCInLfe6Qdy4h7pB3PhvcFCXmsJYHKaakmLPdIO53CihSjiVNrOaXkghVQNZ45JaUvAdn7hLFVWPp82lWFeRcxSPvYALNOdnukHc7KmtmawpRgKZnxXvbMKtsFEz4f2bIOiRe2qMkKgU7XDLTX573SDufEPdIO58QTuMkKD6T+eF/8QAJxABAAIBAwIGAgMAAAAAAAAAAREhMQAQQVFhIFBxgaGxQJEwYPD/2gAIAQEAAT8h3GBKTxCB9vLklDgewwdtfCbJONc/0Ar4gqnr+toDoq2TZKWrYutejT3fgDajgLI9TVZYgkX7d0iNcEEsDMBadjdVvMj3DCe+f6CkSF+iGPskTT0ilgiE1DuXukiukYpNHzv0QqqOcSJvFR4MOB1Zc2YmecxWPACiUMyfY8t2qCQUddM2iSIxUFhaejwgB85sXShqFcoY/sS/e6QIISlQAzKaDcyr3kXrjeggCy9d2pHASeQDWXrHggbJEowv/e3gg9652EL+/NWqSY+me7rD9asxBk42SLBLjUxvbGCMkU2dd40uZrkxVtNVoASRs3hDYfkQs0xXX2/liuhfA95Bpm5HugmieYK2SCrgRoozAYmdEkOIOeu88gnQJEksuOzpog8FuDEYNi8hDliE8/SJBgykcQkfb8X/2gAMAwEAAgADAAAAEPPPPPPPPPPPPPn3PLPPPPPPPPPPPPPPPPPPPO9+PPPNPPK3vLDDDHPPPPPPPL9wPNPHPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP/EAB8RAAEEAgIDAAAAAAAAAAAAAAEAEBExIUEwQGHh8P/aAAgBAwEBPxDkKAJQQAEdGOTPUCC0xtjbbQWzzC8oTGUaY3949sb73//EACERAAEDAwQDAAAAAAAAAAAAAAEAETEQIfAwQGHhUYHR/9oACAECAQE/ENQhwicuhZ2ZnigsG2hRlCfXygigighGEdYu1kWeyE5z1QRnPVBG+//EACcQAQEAAQUAAQMDBQAAAAAAAAERIQAQMUFRYSBAcVCRwTBggaHw/9oACAEBAAE/EN6OEIKADNttjs56/TXyogDVqpVClMnDw01/0vNnyglYBl80dsK2RGnObsZphm6fcJeGA4gKqCYNdc6345/3fsKrFY+wqMeEuTDpvEbEg9RX8q7vkDBEi2kAjGIYMYNxdFyYzkM5pBgyz+wXz4+paLA6iPlRxxzRNcsPJHggR87vgIGNghiquVVy+GDZKJoJdJZOSLi1Xrdr5d2qHyMG4iK5d17AjGiD4CvvdS6iPK81PHdraSBwBTRnm/Qt84RfjpB7zkx7otb1ip0IgB6v43fQTlEFRX4AM1+DZI7RGcjYLChTAvrpkEgFBX5xug+S5GOBIZT4MYD6OvedQU5uap+zdsY56uiDQ2ftzUViqlQzAD6HXeq0f7zo113r99H2U+3fXz7xEStIGOllOCo7KmHFo4pyePZnZ8DIAKr0aAmKibKxMSAOC5xNwxm5a7E1jenA5zqHhiHY7pX8SR1zHBYR8Zf6i5ArweVDh/lfjTvUAFZxqzQV3Nn3Iu3+Emn/AKcCUM0SlYGgmLvWFOAsawWawXxm6c2gF7An8bgZcK9MUBYBy9F/Xnz6jhCSEAxbbZ6OO/tP/9k="]
math
multiple-choice
15
某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是()
月接待游客量逐月增加
年接待游客量逐年增加
各年的月接待游客量高峰期大致在7,8月
各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCADEApUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK4f4j+L/ABVpfj7QvCPhHwxo+sX2saZqGpSSarrkunRQRWstnGQDHa3Bdma9XjCgBDyc0AdxRXn/AIX8ZeOP+FqWHg3xl4Q8P6X/AGpo19qdpd6R4jm1D/j1ms4njdJLO325+2oQQW+4QRyDXLyftM/DaWPxRHpniDR9VutG1OLTtKh0q7l1M6q01tavFMVsoZ5YoWuroWnmCORRIoUEu6x0Ae0UVw/w5+LHhLxh4e1XVol1jQl8PQxya9D4k0e40ttIZoBO0c7zose5ImVn2OyqrI2drozc/wCOvjnp3hf4a+IfFt54b1iZtLhvJrLTrfT7ueZlhtY7hBqBht3GltKsqOq3OGWKRHcI3mRRgHrFFcvZ/EPwlJ4Nu/FmoahcaBo1jMIbm88TadcaKsTEoASL2OI7S0iKGxtLHaCSCBx9v8efCt18O4te0m60fX9Wj1Oz0++0Xw3rUWsTRmW4KSSwC0Ekk6rbxXV2iiNZHigcskTBwgB6xRXL2fjrTr/wbd+JdN0XxRc21jMI57aXw7d2d7tBQvJHbXMcUsqojl/3asz7GWMSSYQ8f4x+PPhXQtQ1+xgutH1q60HU9NtZLPRtaivr0xXN9BYzl7OEPcpNbyzHdCI2D5hVX3yOkQB6xRXn/wATvijaeGfgq/xDsLDdbm9s7VI/EX2jQkh8++iszLcm4gMtvGhlMhZojlFyOCDXl/hn9qX+1NYtbFofhfLLL4mtNBkstL+JP22/k+0XcMC3NtCLFUuY9k6TfLIMKHV9kiSIgB9IUUVj3niSxh8ZWnheCK4vNRnhNzcpbKrLp9vhwk9wxICLJIhjRRl3YOVUpFM8YBsUV5v8YfGvxF8HSfbtM8EeF9U0abU9O021uLnxXcWt08t5cwWqF4VsJFRVmnGSJGOxSwGTsrQ0nVfjDJqttHqfgXwPbWLTILqe28aXc0sURYb2SNtMQOwXJCl1BIALL1AB3FFc/wDFjxP/AMIV8K/E3jL7D9u/4R3RrvU/snm+V9o8iF5fL34bbu2Yzg4znB6V0FABRWPZ+JLGbxld+F54riz1GCEXNslyqquoW+EDz27AkOscjiN1OHRihZQksLybFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRXBftBeO9G8FeDxFqPivSfDd3rAlt7K+1K9jt0iIjLO6NIQrOFHyrzliuRjNefQ3PiXxt+yX4J8UeG/E0eswWOhQXutwxa7d2lzrDxQKJYl1K0mWSGVWWbO4OGdQrgcsJ5lyyl0ja/wA7/kkOz5ox6yvb5W/O56d8S9b1TSvGnw9sLC68m31zxNNY6gnlq3nwLpGo3ATJBK/vbeFsrg/LjOCQewryv4qatZDVvg3rCR3xtJfFLSxoIJbi42v4f1XblFDOzcjPU9Se5rtv+Ev0n/n017/wnb7/AOM1pKLjJp9CIyUoprqb1FYP/CX6T/z6a9/4Tt9/8Zo/4S/Sf+fTXv8Awnb7/wCM1JRvUVg/8JfpP/Ppr3/hO33/AMZo/wCEv0n/AJ9Ne/8ACdvv/jNAG9RWD/wl+k/8+mvf+E7ff/GaP+Ev0n/n017/AMJ2+/8AjNAG9RWD/wAJfpP/AD6a9/4Tt9/8Zo/4S/Sf+fTXv/Cdvv8A4zQBvUVg/wDCX6T/AM+mvf8AhO33/wAZo/4S/Sf+fTXv/Cdvv/jNAG9RWD/wl+k/8+mvf+E7ff8Axmj/AIS/Sf8An017/wAJ2+/+M0Ab1FYP/CX6T/z6a9/4Tt9/8Zo/4S/Sf+fTXv8Awnb7/wCM0Ab1FYP/AAl+k/8APpr3/hO33/xmj/hL9J/59Ne/8J2+/wDjNAG9RWD/AMJfpP8Az6a9/wCE7ff/ABmj/hL9J/59Ne/8J2+/+M0Ab1FYP/CX6T/z6a9/4Tt9/wDGaP8AhL9J/wCfTXv/AAnb7/4zQBvUVg/8JfpP/Ppr3/hO33/xmj/hL9J/59Ne/wDCdvv/AIzQBvUVg/8ACX6T/wA+mvf+E7ff/GaP+Ev0n/n017/wnb7/AOM0Ab1eH/tC+HP+Ew+PvhKwt/AHg/x1/ZPhnV5r3T/E8/l2th59zpwt5mItbnbJJ9nuljBRd6x3G1v3bCvUv+Ev0n/n017/AMJ2+/8AjNZ+nap4Wsde1HWrfSteGoat5Qu7l9B1GR3SJSscalojsjXLsI1wgeSV8bpHZgDy34X+EP8AhFP2ptB/4tZ8P/A32vwZrf8AyKN15323be6P/r/9CtcbN3y/f++/3f4vMPjZZePNX8P/ABZGtaHp8P8Aa3iZdHuF0vxhrNta6HJc6FpcbX13Lb26xXdlHDsml+1xQxwrDKu+Xzgo+kbeLwVD8R5fHYsPF0mtyWT2KyT2esSwQQOYS6Q2zqYYdxtoCxjRSxTJJJOcfQfCXwx0i4jnt9K8bXLR6n/arjUTr18tzdiOCNJp1nLido1tbcxeaG8polaPY3NAHO/sx6Drcdvq+raD4bt/D+m3cN2uj6pL8Q9Z8SWWoTyyLMbyOxulhV4ZJnlbzw6PLtZkLRTrM3EaX4TvfEGknRdSsP8AhJ5vEuteJNOu7zV/iPrGgHXXtdUvbcxXEGn2ptJpPscUSgHa7QwMiRiG2wnvPhuXwR4f1XVNQ0Lw9q2mza1N9o1FbTw5fxRXM+5ma4aJYdhmcud8u3e4VA7MI0Cmn3HhCw8M32gWGm+JrOx1Ga9nnFtpWqRS+bdzSzzukyoJI2aWaRgUZShI27cDABwv7Ih1jRPh/wCKfEHje5+x2ltrWqxPqGoeO9Q1hIYLPUb6Jg321VS3jhSNUEqnMyIJJAjDFeMeDdC8e638DfCPgJ/EGsaX4p07U08N6ReTStpN7pKy+Bk1BbKWW0SOYQx36wuyMGZvs8Yk8woK+kdN0v4eWPw7bwNFoniaXQZZpZri1utO1e4a7aW4a5mE8sitJMssruZFkZlkV3RwyMVOfq3hD4U6pHcpqfhrxNere+IH8QXS3NlrMgnvHtjaPvDA7oWtiYDbn9yYyUMe3igCr4W1XQ9O/Z9g8Y2mm/8ACLaLpN62oaN4c8LQJbXMOJDGdKmt8iGa9mmeaGS22DZcTiJCZoUuD4R8QtV+Iun6/wCO9XuI9H1hhpmreILy3t9UuNN0+21LSdH0C2uL3TLy3i+2llmlv7RohcRBlWSJ3jYSBvqGzl8EWtvd20Xh7Vmtr3UxqsttL4cv5IVuxIkvnRxtCVjbzo1m+QLmUtL/AKx2Y8/q3g74Qal4ZudDuvBereTfaY+lXd3Dompw6hc2jzGeWGW9RBcyLLKXkl3SHzWdzJuLtkA439pKw1bw9+yvoMuveLLjQfFOhzafYW9z/wALDngW/VbqAT+dcvPpqXs0lnBM5EhibcZfLZCd9fOHhPx1fan4yurG/wDizcWunR+LdNSaaX4ktaLFpuLF7sRynxTMdpjNzykd0SzMqyRv8lv9s+Ok8JeLfsv9qnx9b/Y9/l/2Q2vaXu3bc7/snleZ90Y35284xuOeXs/h58LbO4u7i0/4WtBNfzCe8ki8QeK1a5lEaRh5CJsuwjjjTJydqKOgFAHr2k2cOnaVbafbvcPDaQpDG1zcyXErKqhQXlkZnkbA5Z2LMckkk5rh/An/ABLPjt450/Vvm1DW/seq6RcSf8tNMjtorZrWNmwx8i6S4leNMpH/AGjE+d1wwra0nxHoenaVbafb2/iZ4bSFIY2udG1K4lZVUKC8skbPI2ByzsWY5JJJzReeIfDd5cWlxd6Pq081hMZ7OSXwxes1tKY3jLxkw5RjHJImRg7XYdCaAOd+PlnD4t1Xwp8M3e4EOuamNV1Q2lzJbXUFhpzJcedDOjKY2+3HTIjtPmbJ3KbSpkjz9E8OW3g79pLw7pmjax4omsdV8Ja1Pd2uq+KNR1OJ5YbvSVicJdTyBGVZ5hlQDhyDXVadqnhax17Udat9K14ahq3lC7uX0HUZHdIlKxxqWiOyNcuwjXCB5JXxukdmz/D8XgrR/FV74ktrDxdcanfeYGn1Cz1i9+zpI4eSO2WdXW2jZlQtHCEQ+XHkHy02gDf2gv8Aid6Dp/w4t/3tx41vUs72Acj+yUZZNSaUr88cb2we2EqjKzXduu6MurrofAvW9U1j4cWVv4kuvP8AE2if8SnxGxjWMtqEACSyiNQuyOb5biLKpuhnhfaocCofDdx4Q0LVdU1Ow03xM19rE3m3l1d6Vql1KwDMyxK8yMY4UaSQpChWNDI5VV3tkvLjwhc+MrTxU2m+JotWs4TAJ7bStUgW4iw+1LiONAlwqGSUoJVcRtI7JtZiSAVfHf8AxM/jt4G0/Sfl1DRPtmq6vcR/8s9MktpbZbWRlyw8+6e3lSN8JJ/Z0r53W6ivQK5mz8Q+G7O4u7i00fVoJr+YT3kkXhi9VrmURpGHkIhy7COONMnJ2oo6AVY/4S/Sf+fTXv8Awnb7/wCM0Ab1FYP/AAl+k/8APpr3/hO33/xmj/hL9J/59Ne/8J2+/wDjNAG9RWD/AMJfpP8Az6a9/wCE7ff/ABmj/hL9J/59Ne/8J2+/+M0Ab1FYP/CX6T/z6a9/4Tt9/wDGaP8AhL9J/wCfTXv/AAnb7/4zQBvUVg/8JfpP/Ppr3/hO33/xmj/hL9J/59Ne/wDCdvv/AIzQBvUVg/8ACX6T/wA+mvf+E7ff/GaP+Ev0n/n017/wnb7/AOM0Ab1FYP8Awl+k/wDPpr3/AITt9/8AGaP+Ev0n/n017/wnb7/4zQBvUVg/8JfpP/Ppr3/hO33/AMZo/wCEv0n/AJ9Ne/8ACdvv/jNAG9RWD/wl+k/8+mvf+E7ff/GaP+Ev0n/n017/AMJ2+/8AjNAG9RWD/wAJfpP/AD6a9/4Tt9/8Zo/4S/Sf+fTXv/Cdvv8A4zQBvUVg/wDCX6T/AM+mvf8AhO33/wAZo/4S/Sf+fTXv/Cdvv/jNAG9RWD/wl+k/8+mvf+E7ff8Axmj/AIS/Sf8An017/wAJ2+/+M0Ab1FYP/CX6T/z6a9/4Tt9/8Zo/4S/Sf+fTXv8Awnb7/wCM0Ab1FYP/AAl+k/8APpr3/hO33/xmtu3kWa3SZA4WRQwDoUYAjPKkAg+xGRQA+iiigAooooAKKKKACiiigAooooAjuoYrm1kt5l3RzIUdckZUjBGR7Vy998N/Cd3oei6LJb6nHpegWy2tnYW+t3sNtJCqqoiuIklCXSbUAKzhwRuBBDNnrKKFo7r+rbfdd/eH9ff/AMMef/GMAfET4TAD/mc7j/0w6vXoFef/ABk/5KL8J/8Asc7j/wBMOr16BQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVifEjxRpfgrwHq3ivWrm3t7HSLOS5leeYRKdo4TcehY4UdSSQACeK+Zf+CdP7S/xC+NfjnxP4f8AHmlaTa/YbKPUrBrSFoJFjdwuzY7EyJgqQ46dydy4APrWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOf+JWtXmj+GZv7IET6vdRvHYLLyquELGRh3RFBYjvjaOWFeX6L4s8beLvDPgXSdP8VzaNql/4GXxLqOpw2FvK13OEgVYmSRGRYmeZ2cIqthVCOnNeofELwN4O8daYlh4x8L6PrkMO4241LT4br7OzDBePzFYK2O49K5WP4J+F7HwT4d8M+HNS1fw3D4csJNPhudHNvDNdW0oXz45swlMysiuzoqOHG5WUk5m0rT7u1vukvzcW+6XXYel4+V7/AHx/RNLte+hi+KvFaa3p3wL8ZXdrPENV19b2SC3tpZnQy+HdVbasaqXOC3p0GT3r0b/hL9J/59Ne/wDCdvv/AIzXK/E6xtNL8YfB3TNPt0t7Sy8WSwW8KfdjjTw/qyqo9gABXpFa1HFzbitCIJqKT3MH/hL9J/59Ne/8J2+/+M0f8JfpP/Ppr3/hO33/AMZreoqCjB/4S/Sf+fTXv/Cdvv8A4zR/wl+k/wDPpr3/AITt9/8AGa3qKAMH/hL9J/59Ne/8J2+/+M0f8JfpP/Ppr3/hO33/AMZreooAwf8AhL9J/wCfTXv/AAnb7/4zR/wl+k/8+mvf+E7ff/Ga3qKAMH/hL9J/59Ne/wDCdvv/AIzR/wAJfpP/AD6a9/4Tt9/8ZreooAwf+Ev0n/n017/wnb7/AOM0f8JfpP8Az6a9/wCE7ff/ABmt6igDB/4S/Sf+fTXv/Cdvv/jNH/CX6T/z6a9/4Tt9/wDGa3qKAMH/AIS/Sf8An017/wAJ2+/+M0f8JfpP/Ppr3/hO33/xmt6igDB/4S/Sf+fTXv8Awnb7/wCM0f8ACX6T/wA+mvf+E7ff/Ga3qKAMH/hL9J/59Ne/8J2+/wDjNH/CX6T/AM+mvf8AhO33/wAZreooAwf+Ev0n/n017/wnb7/4zR/wl+k/8+mvf+E7ff8Axmt6igDB/wCEv0n/AJ9Ne/8ACdvv/jNH/CX6T/z6a9/4Tt9/8ZreooAwf+Ev0n/n017/AMJ2+/8AjNH/AAl+k/8APpr3/hO33/xmt6igDB/4S/Sf+fTXv/Cdvv8A4zR/wl+k/wDPpr3/AITt9/8AGa3qKAMH/hL9J/59Ne/8J2+/+M0f8JfpP/Ppr3/hO33/AMZreooAwf8AhL9J/wCfTXv/AAnb7/4zR/wl+k/8+mvf+E7ff/Ga3qKAMH/hL9J/59Ne/wDCdvv/AIzR/wAJfpP/AD6a9/4Tt9/8ZreooAwf+Ev0n/n017/wnb7/AOM0f8JfpP8Az6a9/wCE7ff/ABmt6igDB/4S/Sf+fTXv/Cdvv/jNH/CX6T/z6a9/4Tt9/wDGa3qKAMH/AIS/Sf8An017/wAJ2+/+M0f8JfpP/Ppr3/hO33/xmt6igDB/4S/Sf+fTXv8Awnb7/wCM0f8ACX6T/wA+mvf+E7ff/Ga3qKAMH/hL9J/59Ne/8J2+/wDjNH/CX6T/AM+mvf8AhO33/wAZreooAwf+Ev0n/n017/wnb7/4zR/wl+k/8+mvf+E7ff8Axmt6igDB/wCEv0n/AJ9Ne/8ACdvv/jNH/CX6T/z6a9/4Tt9/8ZreooAwf+Ev0n/n017/AMJ2+/8AjNH/AAl+k/8APpr3/hO33/xmt6igDB/4S/Sf+fTXv/Cdvv8A4zR/wl+k/wDPpr3/AITt9/8AGa3qKAMH/hL9J/59Ne/8J2+/+M0f8JfpP/Ppr3/hO33/AMZreooAwf8AhL9J/wCfTXv/AAnb7/4zR/wl+k/8+mvf+E7ff/Ga3qKAMH/hL9J/59Ne/wDCdvv/AIzR/wAJfpP/AD6a9/4Tt9/8ZreooAwf+Ev0n/n017/wnb7/AOM1m+Lvid4P8L+G7vX/ABFc6ppel2EfmXN3d6HexxxL05Yw45JAHqSAK624liggeeeRI4o1LO7sFVVAySSegAr4E+Aen/Fj9pf9pCXV/iYNR174Padqt5facjr5GkXjQyPFbLGu0G4UEcg5+6248kEA9G0Jr/8AaX8eWvjX4jaN4g034V6POLjwv4XOi3cv9vuPu314Y42Vo8H5I8kEH+7kydJ+13aT2l5oXxs+GukayfGHgPPnWf8AYN7EmsaSf9fZuTEAMKWdCfukNjkjH0lGiRxrHGqqqgBVUYAA7AU7rwaAOH+HfxZ8H+NvBOm+KvDx1m707VIBNDJFod5IB2ZCyRFdysGU4JwVIra/4S/Sf+fTXv8Awnb7/wCM14P4JJ/Z1/aafwNN+5+G3xQvHuvDjn/VaNrB5ls/RY5vvIOgOFA4Y19LUAYP/CX6T/z6a9/4Tt9/8Zo/4S/Sf+fTXv8Awnb7/wCM1xf7Rfxz8I/C2x/spriXVvGOpRMuieG9MgN3fXcxB2ZhQ5VM9WYjIBxk8V4L+wL8T/jmnx21j4e/tB3t9aXmr6e1/oVrrFmsEk0qSYkW2ZVCsmzcSoJxsBXjdQB9Xf8ACX6T/wA+mvf+E7ff/GaP+Ev0n/n017/wnb7/AOM1vUUAYP8Awl+k/wDPpr3/AITt9/8AGa27eRZrdJkDhZFDAOhRgCM8qQCD7EZFPooAKKKKACiiigAooooAKKKKACiiigAorkfjfcahZfD291Gx17XtH+xr5ss3h/Rk1LUJABhUhheKZTliuSY2wueUGXXiPFnijx3qXwC8L+LfDWptqFvLpkOoeIdV8MPbxXkkQiUu9jBewSxPkl2McmxtqFVO/CmeZWb7W/G/3LTW9iuVtpLrf8Lf5nS/GT/kovwn/wCxzuP/AEw6vXoFeXfFzV9Li134PazcatCNPk8VvKL66kWJXV9A1ba7H5VBbcOw5PTtXZ/8Jx4K/wChv0H/AMGcP/xVXKLi2mRGSkk0b1FYP/CceCv+hv0H/wAGcP8A8VR/wnHgr/ob9B/8GcP/AMVSGb1FYP8AwnHgr/ob9B/8GcP/AMVR/wAJx4K/6G/Qf/BnD/8AFUAb1FYP/CceCv8Aob9B/wDBnD/8VR/wnHgr/ob9B/8ABnD/APFUAb1FYP8AwnHgr/ob9B/8GcP/AMVR/wAJx4K/6G/Qf/BnD/8AFUAb1FYP/CceCv8Aob9B/wDBnD/8VR/wnHgr/ob9B/8ABnD/APFUAb1FYP8AwnHgr/ob9B/8GcP/AMVR/wAJx4K/6G/Qf/BnD/8AFUAb1FYP/CceCv8Aob9B/wDBnD/8VR/wnHgr/ob9B/8ABnD/APFUAb1FfPXwo/bF+Fvjr45ap8N7UXmnNZNOtpq188UdpfGE4fa27KZwSu77wHY4B9n/AOE48Ff9DfoP/gzh/wDiqAN6isH/AITjwV/0N+g/+DOH/wCKo/4TjwV/0N+g/wDgzh/+KoA3qKwf+E48Ff8AQ36D/wCDOH/4qj/hOPBX/Q36D/4M4f8A4qgDeorB/wCE48Ff9DfoP/gzh/8AiqP+E48Ff9DfoP8A4M4f/iqAN6isH/hOPBX/AEN+g/8Agzh/+Ko/4TjwV/0N+g/+DOH/AOKoA3qKwf8AhOPBX/Q36D/4M4f/AIqj/hOPBX/Q36D/AODOH/4qgDeorB/4TjwV/wBDfoP/AIM4f/iqP+E48Ff9DfoP/gzh/wDiqAN6isH/AITjwV/0N+g/+DOH/wCKo/4TjwV/0N+g/wDgzh/+KoA3qKwf+E48Ff8AQ36D/wCDOH/4qj/hOPBX/Q36D/4M4f8A4qgDeorB/wCE48Ff9DfoP/gzh/8AiqP+E48Ff9DfoP8A4M4f/iqAN6q+pX1lp1m13qF5b2lvHjfNPKI0XJwMseByQKyf+E48Ff8AQ36D/wCDOH/4qvk//gpPPpPxo13wP8F/B3jDSRqU13Nq+o3UuooNPsLZImRXuGXPzszEIBk9ePmBoA+uvFHiTw74a0v+0vEev6XpFljP2nULyO3i/wC+3IH618zftPftzfDrwLoccfw2ubHxzrTXIjnSGSVLS0jwTvaYJtckjAVG9SSMYNn4M/s4/s1eE/DulHxZqHhvxn4htLSOK61LWdXFxE7KPux27ymNIx0Vdp4AyTXtRk+DR8Nf8I6ZPAv9j7g39nZtPs2R0PlfdyPpQBJ+zp8R7H4tfBfQfH9hafY11i2Ly2nnCU20qsUkjLDGcMpwSASMEgZxXbV8nfELRo/gn4wvfij+z/4g0G90u9k8/wAUfD1dViW3vx/FPYgN+6nA/hUYbGAD9w+2fCP46fC/4i+C7bxHofi3TYI5hiezv7qO3urOQfeiljZsqwP1B6gkYNAHotFYP/CceCv+hv0H/wAGcP8A8VXjX7SX7Yfwo+EeqaXppuv+Equr92NzHoN3BP8AYI1IBaU7+GOflTqdpyRxkA+g6K5fRfiP4B1XR7TVLLxlob217Ak8DNqEaMUdQykqxBU4I4IBHerX/CceCv8Aob9B/wDBnD/8VQBvUVg/8Jx4K/6G/Qf/AAZw/wDxVH/CceCv+hv0H/wZw/8AxVAG9RWD/wAJx4K/6G/Qf/BnD/8AFUf8Jx4K/wChv0H/AMGcP/xVAG9RWD/wnHgr/ob9B/8ABnD/APFV4j8ev2zvhZ8LPihZ+Db231LXDLbLPd32jGKeK13Z2JjeN7nAJA6Bh1PAAPoyq/2+x/tT+zfttv8AbfK837N5q+bszjdsznbnjOMV8v8A/DQvxf8AiJ+7+G3gzwv4J02T7uteP9cijm2nuLGJvMVgOm4sprzBf2avFl5+0VH8VdU/an8MprMn+kTaxZRQpdRT+X5YjjgMnlGILheSMrkbeaAPveivmH+2P2jPDP8AyDPjl8G/HUS/e/t63/sudx/s/ZXKBj78V5TN+2L8ddI/aUj8L698PdGutJgQJdaboswnMy+XuM8N6zeWefXC4BQ/NzQB96UV802X7a/w9jk8vxD4E+I2hMv3pLnQllh/4C8Ujbuo7dTVbw/+3b8F9Y+MVn4KgbUrbT7zEY8Q38a2tnFKRkLIshDomfl3sAAe235qAPp+iufh8eeBpoVlh8Z+H5I3GVdNUhIYeoIauN/aA+O/gj4a/C3UfE8etaXrGoRqIdM0u0vUllvrp+IogqknBblj2UE0AcX+1lr2r/EXx1p/7Nnge+ktrrXIBeeNNUgPOkaOCN0ee0s+QgB7NyMPke6eENB0jwt4W0/w5oNjHY6ZpdsltaW0Y+WKNAAB78DqeSeTXjH7IukeHPAXgu91/wAY+NvD994+8Z3P9qeKL7+04D++YfJbIQ3EcKnaAOM7iOCAPW/+E48Ff9DfoP8A4M4f/iqAN6isH/hOPBX/AEN+g/8Agzh/+Ko/4TjwV/0N+g/+DOH/AOKoA579qDwDovxJ+B+veG9bSdVFq13Z3Nqm64s7qIF4pogMHeGHQEbgSucMa+UP2Yf2h/j9+0Zo8fw28Lf2N4Yv9JsUOv8AjaVHuJvJwsYMVuQEW4dgx5bH3ioTbmvtD/hOPBX/AEN+g/8Agzh/+KrP0PW/hforXTaNq/hHTmvpjPdG0ubaE3Eh6u+0jc3ueaAMP4C/A3wN8KVuL/Sbe51XxHqGW1TxLq8v2nUr9z94tK3KqePlXA4Gcnml/ae+E9r8VvAkVra3zaP4n0S4GoeGtci4l028TBVgRyUbADr3GDjKjHV/8Jx4K/6G/Qf/AAZw/wDxVH/CceCv+hv0H/wZw/8AxVAHDfsr/Fi6+IXh+/8AD/i2xXR/iB4SmFj4n0g8bZQPluIh3hlA3KRkckZIwx9Xr5h/bKufD/hu4tv2hfh14u0CDxj4PhC6haJqEZTxFppYeZZyqhJLDO5GwSCPZSrPhp+3v8A/EGgNeeJtV1DwjfJKUNje6dcXRdcAh1kt43Urzjnacg8YwSAfUNFfO+rftxfs0Wml3N1bePp7+aGFnjtLfQr5ZLhgCQiGSFUDE8Dcyjnkgc16l+zn8StP+L3wb0f4iaVp1zp1prPn+Va3LK0kflXEkByV45MRP0IoA7aiiigAooooAKKKKACiiigAooooAxPG2h6nrtnDBpnjHW/DLxSbnn0mGykeYYxsb7VbzKB3+UA+9ZOp/D22l8N6X4b0jxJrmhaFp1ubWbTdPa3ZdQgIAMc000MkwyAwLxSRv87HduwR2NFH9f1/kO7PPPi5DFb+PfhHBBGscUXjGdI0QYVVGgauAAOwAr0OvP8A4yf8lF+E/wD2Odx/6YdXr0Ci9xJWVkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkdI42kkZVVQSzMcAAdya+afG3xI8ZfH/xTffDj4E6i+leFbKU2/if4hopKr/ettOPHmSkHmQHAByCMqzeO+L7743/ALQ37W+ueC9G1vWrn4MprX9larc6QRb2BtYQjTxfaNuXkY5UgE7t2B8lfc3gnw3oPhDwrZeG/DOlW2l6Tp0QitbS2Taka/zJJJJJySSSSSc0AfNvxG/Zr034RaDpPxK/Z80eWDxh4LBmu7WW5klbxPZ7cXFvMCSDKygspUD5uAMlSvv3wX8f+Hvif8NdL8beGLjzbDVIQ+xiPMt5Bw8MgHR0YFSPbjIINdRXzL40R/2ZfjtJ46s0aP4VfEK/VPE1ugzH4e1VztS+A/hhlOA/of8AgC0AfTVFNidJI1kjdXRwGVlOQwPQg1leNvFPhvwfoMut+K9e07RdOhHz3V/crDGD6AsRknsBye1AGvRXyt+zD+2Vb/GH9pbUPhvZ+Dzb6SyXL6Tqsd0XeRIed8yFQFDqMjB+UlVO7OR9U0AFFFFABRRRQAUUUUAFFFFABRRUd3PBa2slzczRwwwqXklkYKqKOSSTwAKAJKKjs7iC7tY7m1njnhmUNHLE4ZXU9CCOCKLy4gtLWS6up44IIULySyuFRFAySSeAB60ASUVHZ3Fvd2sdzaTxzwSqGjlicMrg9CCOCKkoA5r4xeOdD+Gvwy1nxx4jm8vT9GtWnkAIDSt0SJc/xO5VR7sK82/Yt8Da7Y6Dq3xX+IEOPHXxGnXUdQjYH/iW2mP9GskzyBHHjI65ODnaDXM+NMftB/tVweCox5/w9+FF1HfeIG6xarrXPk2h7OkIyzjpncrDlTX0pQAUUUUAFfIn7fHwr+IHhzVoPix+zlYazp/irVJjaeJ4/D7DN9CRuSZ7fGHcOMFgM/Nk55I+u6KAPl/wH8BPix8SfBumah+0L8YvFbyXNsjXXhXQmh0y3i4/1dzJAP35PVsYwSQDgV3tn+yl+zvb6LaaWnwp0N4bKUSxySrI87sP+ekxbfIv+y7FfavY6KAPm28+EfxN+Bt5LrP7Pep/254Y3mW7+Heu3ZaJQTlv7PuWJaFuuFclckkluFrpfAv7Vfwg1ewaLxRry+BtetbhbXUNA8TD7Hd2c57ENwyf7Y4Axu25xXtteC/thfsseEvj/rmh6zqut32iX2kAwzTWcKSG7ty27yzu+6wOdrc43HIPGAD3mNleNXRgysMqwOQR6ilr5ws/hN+0R8L7OKD4UfF+z8WaLZxiO38P+O7Pe0ca8BUvIcOflAABCqMDt086+JH7a/xK+HvxS0nwD4x+Ay2etTGMXNpb68J2vBK2yJ7VkjK4ZgeGJOflOCDQB9qVxfxK+Lvwx+HurQ6Z428c6Lod7cW7XMVte3SpI8S5+YL1wSrAf3iCBk8V5Z/xl38RO/g/4QaVKf8AsN6uin8rfp9CDXJeJP2E9A8U/EPSvGPjT4reLvE1/BKkmrf2mIpPt6o2VijIAMEfbb8/BONtAG/J8R/i58f5GsPgpZTeCfA0h2T+PdatCLq+Tof7OtWwSCOkj478owxXW/Dv9lf4M+FrrTtXuPDbeIfEVhdfbW1/XLmS6vbq64JmlJO1jkAgbcA8gZyT7NEiRxrHGioiAKqqMBQOgAp1ABRRRQAUUUUAFedeMPgL8G/Ffje68X+JfhzoWq61eQeTc3V3beZ5q7doLITtLgAAPjcABg8V6LRQB883n7KOk+G7uTUfgn8RPFvwzu2YyfZLG8a90t3PeS0nJDc9twA9OleTfs9+CP2kfE/7bFvq3x4sbvWNB8FG7l06+uoY4dPE5UJDPaxx4RnOFboSvJOGAr7fooAKKKKACiiigAooooAKKKKAKev6VpuuaHd6NrFjBfaffwPBdWs6B45o2GGVlPUEE1g/CX4beBfhh4fl0TwF4as9DsZ5jPNHb7maWQgDc7sSzHAAGTwOldVRQBT1/StN1zQ7vRtYsYL7T7+B4Lq1nQPHNGwwysp6ggms/wCG/g/w34B8F2fhLwhpUel6Np/mfZbSN3dYt8jSPguSxy7seT3rcooAKKKKACiiigAooooAKKKKACiiigDkfjZr994Y8A3eu2fiTw14djsR5l1qniKGSa1t4+w8tJYi7MxVB+8HLcBjhTy994+8aarp/hjT/DMPhu117U/DTeItR+1O99ZiNFiH2eCSF03eZJNgTZZVVC2x9wFdx46s/Fl9ZxQ+Etb0TS5gx+0vq2iy6hHJGR91UjuYNpz3JYdsd64y5+Ek+l6F4fsvAfiRNBudB0eXRWurrTFuzcWcuwuAivEqSh41dGGUUlh5bA4EPmtK39aO3y5uW/ktu9q11/XVfpe3m1qrFLx14t0nWF+CPjSS5hsNO1TxH9tWS5nVUiWbw9qrKGc4HVwPc16B/wAJx4K/6G/Qf/BnD/8AFVxvjrSbLQNd+DGhaeGjs9L8UPaWwZtxEcfh7VkUE9zgDmvTs9MnA55rWo4875duhlBS5VzbmH/wnHgr/ob9B/8ABnD/APFUf8Jx4K/6G/Qf/BnD/wDFVuZO3PfjPtRnp83HrUl2MP8A4TjwV/0N+g/+DOH/AOKo/wCE48Ff9DfoP/gzh/8Aiq2tx/vAcDinqcj8aAsYX/CceCv+hv0H/wAGcP8A8VR/wnHgr/ob9B/8GcP/AMVW9RQIwf8AhOPBX/Q36D/4M4f/AIqj/hOPBX/Q36D/AODOH/4qta5v7G3vYLO4vLeK4us/Z4ZJVV5sDJ2qTlsDrirFAGD/AMJx4K/6G/Qf/BnD/wDFUf8ACceCv+hv0H/wZw//ABVa1zf2NvewWdxeW8VxdZ+zwySqrzYGTtUnLYHXFWKAMH/hOPBX/Q36D/4M4f8A4qvD/wBrb4vJq11pnwW+GPi3S4PEXi9WGp64l7GYfD2mjiadnDYErDKouQcnIIJUn0n9pH4vaD8JfANzq10U1DW5tlvo2hQSA3Wp3cp2wxIg+bBbqQOADjJwDkfsl/C3U/A/h/UfFnji4TUPiJ40mF/4lvgQRG2P3dpFjgRRKdoA4znHG0AA3PhMfhT8OPh3pXgrwt4k0C10vSLcRQqdThLOerSOd3LsxZmPck10X/CceCv+hv0H/wAGcP8A8VW9RQBg/wDCceCv+hv0H/wZw/8AxVZfjTV/hl4s8J6j4a8Q+IfDl9peq2z213bS6lDtkjYYI+9we4I5BAI5FdlRQB+c37OHxi/aCTxrffATw94j0DR9F0Fp7Sy8SeJrYSyaZZxSMIisoYRzsVKKgZWBGMYUZH0P4J+CfwWj16LxT8UPiNbfFDxNHyL7xNq8MlrAepEFmH8qNM87SGx2NfSVFAHzv+0t4J8CeItHtfGHwy8R+D/D3xG8Lzi/0LUra6toftTqu1rW4Kkb4pEGz5jgcfw7gez/AGffj14I+JXw1tPEE+r6bomqITbavpF7exxzWF2nEkZDEErnlW7gjocgeq185/tFaJqvwZ+KB/aK8D2M1zpNwiW/xG0S2XP2y0XhdQjX/ntCD83quc4G8kA9u/4TjwV/0N+g/wDgzh/+Ko/4TjwV/wBDfoP/AIM4f/iqseC/E/h7xd4ft9c8M6xZ6rp91GkkVxazB1IZQwzj7pwQcHBGa1qAMH/hOPBX/Q36D/4M4f8A4qs3xh8TfBOh+E9T1pvFnh+T+z7OW4CNq0KhyiFgud3GSMfjXW3M0NvbyXFxKkUMSF5JJGCqigZJJPAAHevmM/bP2s/iBj99B8EfDF9z1Q+NL6JvwP2ONh/wJh3P+rAPKv2aP2uv2hPiFda1GPBvgu8jR0lt7rUdS/si3s1bP7sF2JnyAMbfmHUkgjHofjbW/wBp3xb4P1PT/wDhaPwO8Km7s5I4f7G1K4kvASpGBNI22NiejqMrnPUV9XW0MNvbx29vEkUMSBI441CqigYAAHAAHan0AfCv7Lr/ALTfwh8C3EVz4l+HHiy1uLxpjomteM92oQcAEwXG4xKr8kqzHB54JbPpMv7aOkeG7WYfEv4W+KvDtxDGztLpk1trFiSB9z7TDIFyTgDIA9SK+oap6/pWm65od3o2sWNvfaffwPBdWtxGHjmjYYZGU8EEEigD5T8M/t3aL4y0kQeA/hV4m1bXi7K1rd3dtZ2UP90yXjuVXPoV7H6nH+Mnh343/Hv4eahoXjX4tfC3wLpN0Fki8P6XeC8e4ZGDIl1cl/lAYA5j3DgfKa+qPhP8OPA/wy8PSaH4D8N2eh2M05nlitwxMshAG52YlmOAAMk4AwOK6igD41+CH7Nvh3wp8N7HRNY/at8aafeQl2ktPCfjiOw02EsxbEUTKx75LcZJJwKf8av2b/Dfin4a6loek/tW+OL+8uFQxWvirxzHfabMVdWxNCqqSOOCCdpwcHGK+x6KAPjT4I/AS98C/Dew0G2/a5v9Imi3tcWekajbNYRFmLYhSU7l6kk8bic4FJ8dPAHxmvvhXquneGP2wbPXbi5iVX0u5isNPa7UMCUS7jk3xHG7I6P91iATX2ZRQB85/wDBP/R7b4S/s9Q+G/G/jHwr/bl1qVxf3S2+rQSFPMK4Ekob94/y5LZPUDJAr27/AITjwV/0N+g/+DOH/wCKreooAwf+E48Ff9DfoP8A4M4f/iqP+E48Ff8AQ36D/wCDOH/4qt6igDB/4TjwV/0N+g/+DOH/AOKo/wCE48Ff9DfoP/gzh/8Aiq3qKAMH/hOPBX/Q36D/AODOH/4qj/hOPBX/AEN+g/8Agzh/+KreooAwf+E48Ff9DfoP/gzh/wDiqP8AhOPBX/Q36D/4M4f/AIqt6igDB/4TjwV/0N+g/wDgzh/+KrP1LWvhdqOr2eq6hq3hG6v9OJNldz3NtJNbE9TG5OUz7EV11FAGD/wnHgr/AKG/Qf8AwZw//FUf8Jx4K/6G/Qf/AAZw/wDxVb1FAGD/AMJx4K/6G/Qf/BnD/wDFUf8ACceCv+hv0H/wZw//ABVb1FAGD/wnHgr/AKG/Qf8AwZw//FUf8Jx4K/6G/Qf/AAZw/wDxVb1FAGD/AMJx4K/6G/Qf/BnD/wDFUf8ACceCv+hv0H/wZw//ABVb1FAGD/wnHgr/AKG/Qf8AwZw//FUf8Jx4K/6G/Qf/AAZw/wDxVb1FAGD/AMJx4K/6G/Qf/BnD/wDFUf8ACceCv+hv0H/wZw//ABVb1FAGD/wnHgr/AKG/Qf8AwZw//FUf8Jx4K/6G/Qf/AAZw/wDxVb1FAGD/AMJx4K/6G/Qf/BnD/wDFUf8ACceCv+hv0H/wZw//ABVb1FAGD/wnHgr/AKG/Qf8AwZw//FUf8Jx4K/6G/Qf/AAZw/wDxVb1FAGD/AMJx4K/6G/Qf/BnD/wDFUf8ACceCv+hv0H/wZw//ABVb1FAGD/wnHgr/AKG/Qf8AwZw//FUf8Jx4K/6G/Qf/AAZw/wDxVb1FAGD/AMJx4K/6G/Qf/BnD/wDFVt28sU9uk8EiSRSKHR0YMrqRkEEdQRT6KACiiigAooooAKKKKACiiigAooooAKFGKxPHcXi6bSVj8G3+iWF8Xy1zrFlLdwqoB4EUcsRJJwM+YNoycN0rznxR8S/G9t8E/DXi5NBTS5tRtludd1FdMfWLPRocDMxt454J5YmLBg0e4omWZcAkK/6fiOzbSX9f10Oh+Mn/ACUX4T/9jncf+mHV69Arzn4qS+d42+EE3nxXHmeLpm86EYSTOgaudyjJwD1HJ+pr0aqas7Ep3VwpsrpHG0kjqiICzMxwFA6kmvmH/gof8Kvjz8R9U8Iz/CDxLLYWmmySfbbaHVmsGSYsuy4LKRvCgEY5ZedoO41uab+yX4Y1u3t7j4veOPG/xGvdqtPBq2vTR2CyADPlQRFNq55AJPvSGH7SH7Yvwm+EesabpRum8VXl47fa4tAuoJ/7PjUgEynfgOc8J1OCTjjPfeDvj78FfFFvDJo/xS8KSSTqrJbzatDDPzjgxOwcHkDGOvFZ97+zP8ArrS7PT5fhN4ZEFhL5sPlWQjctx991w0gOBkOWBxyK2fE3wR+DniBWGsfC3whdMwx5raLAsg+jhQw/A0AT+KvjF8KfDWrWOmeIPiL4a0261KEzWqXOpxIJI+fn3FsBTg4JIBwQM15nq37Tq+KtSm0L4A+A9Y+JGoRSGKXVEU2Wi2rd/Mu5QAxHXao+YDhq5f4hfsE/CDX/AInaX4m0Z7rw9pVq6NqGg2ieZb32193DOxaLcPlYDIwBgKck/UWk6fYaVpsOnaXZW9lZ2yBILa2iWOKJR2VVAAHsKAPiv4mfsi/HD4u/GDRfiP8AEP4naDpd/E0QuIPD8VxG2kQxvvRLN25LgljuYjDHPzV65/wyx/1cb+0B/wCFz/8Aaa+gKKAPir4tfsK+JfEfxg0DxHpnxu8VXlhYCIXN94k1KS81i02SF/8ARZ1VQOuVB27Gy3zZxXqv/DLH/Vxv7QH/AIXP/wBpr6AooA+O/C37Fev6J+19pPxSk+KWpa5o2l3UV6JNcne71i4kjQKIpJiAjJkAbuCF+XbxmvsSiigAooooAKKKKACiiigAqn4i05NX8P3+kySvCl/ayW7SJ95A6lSRnuM1cooA+J/2ef2Rvjt8D9Q1jWvh/wDF3w1HeXjLENOvdJlks9RhUkqZ2zuicE/8swxAZvm5wfT5Pjn8ZPh/G3/C4vgPqU9jBkza/wCBrgalbbR1ka2YiWJBgklm6dq+iabIiSRtHIqsrAhlYZBB7EUAfGGj/GWX9s/xu3wq8Ix6h4V8D2cTX3iu5mmVb/V7QSKiWsQTIiRyw3nJOOOgIf7D8NaPpXh7w/Z6HodhBYabp8C29pa26BY4Y1GFVQOwArm/hT8Jvhx8NLrUrjwJ4Q03Q5dXkD3r2qHMuCSF5J2qCThFwozwK7KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5T4veHvFHifw2mk+GvEemaKJZh9ubUNIlvkuoB1h2x3EBUN0Y7jlSRxnNVdb8OePtS8L2ejN4z0OMTxSw65OvhuTfcRyHGLQfattsVQsqmQXHO0kNghu1opWVmn/X/AAPLYd3dPt/X9M434i/DvSfEvhnR9Phit4bjwzOtzohuYftFvDKsLwASwscSxmKSRCDyA5KsrhWFPwLp3gjXVubC98C6DpuuaYVTU9NewhcwFs7ZEbYPMhfBKSADOCCFdXRdT4ieKZ9Jv9N8N6Mtu/iDX3ePT/teRbwBFLPLIcgvtUEiJTvkIIG1Q8iXvBPhbT/DdrIYme81C7cy6hqdyFNzfSkDLyMAPQAKAFVVVVAVQBTbbuyUklZbDf8AhB/BX/QoaD/4LIf/AImj/hB/BX/QoaD/AOCyH/4mt6ikMwf+EH8Ff9ChoP8A4LIf/iaP+EH8Ff8AQoaD/wCCyH/4mt6igDB/4QfwV/0KGg/+CyH/AOJo/wCEH8Ff9ChoP/gsh/8Aia3qKAMH/hB/BX/QoaD/AOCyH/4mj/hB/BX/AEKGg/8Agsh/+JreooAwf+EH8Ff9ChoP/gsh/wDiaP8AhB/BX/QoaD/4LIf/AImt6igDB/4QfwV/0KGg/wDgsh/+Jo/4QfwV/wBChoP/AILIf/ia3qKAMH/hB/BX/QoaD/4LIf8A4mj/AIQfwV/0KGg/+CyH/wCJreooAwf+EH8Ff9ChoP8A4LIf/iaP+EH8Ff8AQoaD/wCCyH/4mt6igDB/4QfwV/0KGg/+CyH/AOJo/wCEH8Ff9ChoP/gsh/8Aia3qKAMH/hB/BX/QoaD/AOCyH/4mj/hB/BX/AEKGg/8Agsh/+JreooAwf+EH8Ff9ChoP/gsh/wDiaP8AhB/BX/QoaD/4LIf/AImt6igDB/4QfwV/0KGg/wDgsh/+Jo/4QfwV/wBChoP/AILIf/ia3qKAMH/hB/BX/QoaD/4LIf8A4mj/AIQfwV/0KGg/+CyH/wCJreooAwf+EH8Ff9ChoP8A4LIf/iaP+EH8Ff8AQoaD/wCCyH/4mt6igDB/4QfwV/0KGg/+CyH/AOJo/wCEH8Ff9ChoP/gsh/8Aia3qKAMH/hB/BX/QoaD/AOCyH/4mj/hB/BX/AEKGg/8Agsh/+JreooAwf+EH8Ff9ChoP/gsh/wDiaP8AhB/BX/QoaD/4LIf/AImt6igDB/4QfwV/0KGg/wDgsh/+Jo/4QfwV/wBChoP/AILIf/ia3qKAMH/hB/BX/QoaD/4LIf8A4mj/AIQfwV/0KGg/+CyH/wCJreooAwf+EH8Ff9ChoP8A4LIf/iaP+EH8Ff8AQoaD/wCCyH/4mt6igDB/4QfwV/0KGg/+CyH/AOJo/wCEH8Ff9ChoP/gsh/8Aia3qKAMH/hB/BX/QoaD/AOCyH/4mj/hB/BX/AEKGg/8Agsh/+JreooAwf+EH8Ff9ChoP/gsh/wDiaP8AhB/BX/QoaD/4LIf/AImt6igDB/4QfwV/0KGg/wDgsh/+Jo/4QfwV/wBChoP/AILIf/ia3qKAMH/hB/BX/QoaD/4LIf8A4mj/AIQfwV/0KGg/+CyH/wCJreooAwf+EH8Ff9ChoP8A4LIf/iaP+EH8Ff8AQoaD/wCCyH/4mt6igDB/4QfwV/0KGg/+CyH/AOJo/wCEH8Ff9ChoP/gsh/8Aia3qKAMH/hB/BX/QoaD/AOCyH/4mj/hB/BX/AEKGg/8Agsh/+JreooAwf+EH8Ff9ChoP/gsh/wDiaP8AhB/BX/QoaD/4LIf/AImt6igDB/4QfwV/0KGg/wDgsh/+Jo/4QfwV/wBChoP/AILIf/ia3qKAMH/hB/BX/QoaD/4LIf8A4mj/AIQfwV/0KGg/+CyH/wCJreooAwf+EH8Ff9ChoP8A4LIf/iaP+EH8Ff8AQoaD/wCCyH/4mt6igDB/4QfwV/0KGg/+CyH/AOJo/wCEH8Ff9ChoP/gsh/8Aia3qKAMH/hB/BX/QoaD/AOCyH/4mj/hB/BX/AEKGg/8Agsh/+JreooAwf+EH8Ff9ChoP/gsh/wDia27eKKC3SCCNI4o1CIiKFVFAwAAOgAp9FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGd4q0PTfEWhy6VqsBlt5SrAo5SSJ1IZJI3XDI6sAyspBUgEHIrnvhT4h1HUbnVtB1GVtUbQrj7MmvRQ7YNRxwynACieM/JKE+TcDt2nfFG34yv4sfTIbLQNH1S9sZif7TOj3VvFqDx8fubczyxJGW53S+YGRRhBuYPHlaP4z8QaTpVvpmmfs/eOrSztIlit7eG70BUiRRgKoGpcACgD0mivMdW8d+PJr/TJLT4I+Poobe7aS8Q6hoQ82LyJVCjGpc/vGjbnH3fwN7/AIWH4u/6IT8QP/A7Qf8A5Z0AegUV5jq3jvx5Nf6ZJafBHx9FDb3bSXiHUNCHmxeRKoUY1Ln940bc4+7+Bvf8LD8Xf9EJ+IH/AIHaD/8ALOgD0CivMdW8d+PJr/TJLT4I+Poobe7aS8Q6hoQ82LyJVCjGpc/vGjbnH3fwN7/hYfi7/ohPxA/8DtB/+WdAHoFFeY3Hjvx43iS0uo/gj4+WxjtJ454f7Q0LLys8JjbH9pYOFSUdf4u+Ti9/wsPxd/0Qn4gf+B2g/wDyzoA9AorzG48d+PG8SWl1H8EfHy2MdpPHPD/aGhZeVnhMbY/tLBwqSjr/ABd8nF7/AIWH4u/6IT8QP/A7Qf8A5Z0AegUV5jb+O/Hi+JLu6k+CPj5rGS0gjgh/tDQspKrzGRsf2lgZV4h1/h7YGb3/AAsPxd/0Qn4gf+B2g/8AyzoA9AorzG38d+PF8SXd1J8EfHzWMlpBHBD/AGhoWUlV5jI2P7SwMq8Q6/w9sDN7/hYfi7/ohPxA/wDA7Qf/AJZ0AegUV5jb+O/Hi+JLu6k+CPj5rGS0gjgh/tDQspKrzGRsf2lgZV4h1/h7YGb3/Cw/F3/RCfiB/wCB2g//ACzoA9AorzHSfHfjyG/1OS7+CPj6WG4u1ks0GoaEfKi8iJSpzqXH7xZG4z978Be/4WH4u/6IT8QP/A7Qf/lnQB6BRXmOk+O/HkN/qcl38EfH0sNxdrJZoNQ0I+VF5ESlTnUuP3iyNxn734C9/wALD8Xf9EJ+IH/gdoP/AMs6APQKK8x0nx348hv9Tku/gj4+lhuLtZLNBqGhHyovIiUqc6lx+8WRuM/e/AXv+Fh+Lv8AohPxA/8AA7Qf/lnQB6BRXmPh/wAd+PLawkj1H4I+Pp5mu7iRXGoaEcRNO7RLzqQ+7GyL7Y79avf8LD8Xf9EJ+IH/AIHaD/8ALOgD0CivMfD/AI78eW1hJHqPwR8fTzNd3EiuNQ0I4iad2iXnUh92NkX2x361e/4WH4u/6IT8QP8AwO0H/wCWdAHoFFeY+GfHfjy08N6fa6p8EfH1xfQWkUd1MuoaEwllCAOwJ1IE5YE8gdavf8LD8Xf9EJ+IH/gdoP8A8s6APQKK8x8M+O/Hlp4b0+11T4I+Pri+gtIo7qZdQ0JhLKEAdgTqQJywJ5A61e/4WH4u/wCiE/ED/wADtB/+WdAHoFFeY+GfHfjy08N6fa6p8EfH1xfQWkUd1MuoaEwllCAOwJ1IE5YE8gdaPE3jvx5d+G9QtdL+CPj63vp7SWO1mbUNCURSlCEYkakSMMQeAelAHp1Fef8A/Cw/F3/RCfiB/wCB2g//ACzqj4m8d+PLvw3qFrpfwR8fW99PaSx2szahoSiKUoQjEjUiRhiDwD0oA9Oorz//AIWH4u/6IT8QP/A7Qf8A5Z1R8TeO/Hl34b1C10v4I+Pre+ntJY7WZtQ0JRFKUIRiRqRIwxB4B6UAenUV5/8A8LD8Xf8ARCfiB/4HaD/8s6o+IPHfjy5sI49O+CPj6CZbu3kZzqGhDMSzo0q8akfvRq6++e3WgD06ivP/APhYfi7/AKIT8QP/AAO0H/5Z1R8QeO/HlzYRx6d8EfH0Ey3dvIznUNCGYlnRpV41I/ejV1989utAHp1Fef8A/Cw/F3/RCfiB/wCB2g//ACzqjq3jvx5Nf6ZJafBHx9FDb3bSXiHUNCHmxeRKoUY1Ln940bc4+7+BAPTqK8//AOFh+Lv+iE/ED/wO0H/5Z1R1bx348mv9MktPgj4+iht7tpLxDqGhDzYvIlUKMalz+8aNucfd/AgHp1Fef/8ACw/F3/RCfiB/4HaD/wDLOqOreO/Hk1/pklp8EfH0UNvdtJeIdQ0IebF5EqhRjUuf3jRtzj7v4EA9Oorz/wD4WH4u/wCiE/ED/wADtB/+WdUbjx348bxJaXUfwR8fLYx2k8c8P9oaFl5WeExtj+0sHCpKOv8AF3ycAHp1Fef/APCw/F3/AEQn4gf+B2g//LOqNx478eN4ktLqP4I+PlsY7SeOeH+0NCy8rPCY2x/aWDhUlHX+Lvk4APTqK8//AOFh+Lv+iE/ED/wO0H/5Z1RuPHfjxvElpdR/BHx8tjHaTxzw/wBoaFl5WeExtj+0sHCpKOv8XfJwAenUV5//AMLD8Xf9EJ+IH/gdoP8A8s6o2/jvx4viS7upPgj4+axktII4If7Q0LKSq8xkbH9pYGVeIdf4e2BkA9Oorz//AIWH4u/6IT8QP/A7Qf8A5Z1Rt/HfjxfEl3dSfBHx81jJaQRwQ/2hoWUlV5jI2P7SwMq8Q6/w9sDIB6dRXn//AAsPxd/0Qn4gf+B2g/8AyzqjpPjvx5Df6nJd/BHx9LDcXayWaDUNCPlReREpU51Lj94sjcZ+9+AAPTqK8/8A+Fh+Lv8AohPxA/8AA7Qf/lnVHSfHfjyG/wBTku/gj4+lhuLtZLNBqGhHyovIiUqc6lx+8WRuM/e/AAHp1Fef/wDCw/F3/RCfiB/4HaD/APLOqOk+O/HkN/qcl38EfH0sNxdrJZoNQ0I+VF5ESlTnUuP3iyNxn734AA9Oorz/AP4WH4u/6IT8QP8AwO0H/wCWdUfD/jvx5bWEkeo/BHx9PM13cSK41DQjiJp3aJedSH3Y2RfbHfrQB6dRXn//AAsPxd/0Qn4gf+B2g/8Ayzqj4f8AHfjy2sJI9R+CPj6eZru4kVxqGhHETTu0S86kPuxsi+2O/WgD06ivP/8AhYfi7/ohPxA/8DtB/wDlnVHw/wCO/HltYSR6j8EfH08zXdxIrjUNCOImndol51IfdjZF9sd+tAHp1Fef/wDCw/F3/RCfiB/4HaD/APLOqPhnx348tPDen2uqfBHx9cX0FpFHdTLqGhMJZQgDsCdSBOWBPIHWgD06iuP8LeMvEeq69BYX/wAJ/GGh2827fqGoXekPBBhSRuFvfSynJAUbUblhnAyR2FABRRRQAUUUUAFFFFABRRRQAkjKkbO7BVUZJPYV4h8ODL8ZPAt58TPF/iTX9H8N3klzJ4f0/SNbudJWysImZBdTy2zxySyyBDIRIxjRSoCA7mb3Drwa8utfgX4ei01vDj+JfE83gwzPIvg9rqFNNVXJYwlkhW5aDczHyXnaMg7SpQBamUW7+mn9d+3z9VSdkvX+v+D/AEnc/ZM13XvEv7O/hfXPEc9xc3t5aM6XVygWa6txI4gmkAwNzwiNycDJYnAzivRaZbxRQW6QQRpHFGoVERQqqoGAAB0AFPrSbTk2jOKtFI4j4keKvEWg/ErwHo2n2OlyaP4l1S4stSuJ5ZPtMRSyuLiMQxgBeTB8zs3A4CnduXt64v4meDte8SeNvButaZ4h07TrXwtqj6hPa3OkvcyXhaCS3KLItxGIv3c8vJR/m2HopVu0pfZ8ypfErbWX33f6WOC8W6x8QtF+I+h+Unh+98N6xqg05rGO3mXULdTBJJ9p+0GTy3AMR3ReUMLyJCRg97XCXHhXx9L8Vj4k/wCE10MaOAkMOnHw5K11b2+4NIiXBvPLDSFV3OYDwqgAYzXd0o/Cu/8AX/D/ADtskD+J9v6/4b5X3bPOte8aa1pnx+0Pwc2u+D3tdajlcaIztHq8cCQu32wO0u2RTKnl+UIs4LOJCEcD0WuK1rwbrmv/ABA07VfEOuaPcaJoWof2jpFha6K8N3FcCJ4lMt09w6uoWWQ4SKMk7cttDK/a0L4V3/r8f68kS+LTb+v+B/w+r4Pxp471DTPi94S8I6bYwzWesXs1vql3KGzAws5riOOLBALnygWznarLx84I7yvNPEnwU8O6n8UNE8bW2q6/Z3Wl6xJqtzbJr+oNb3UjQPFhYftAih5ZS21MOqlGBViK9LoXwq+4P4n2POvDnjPxHd/HS+8LazDHomnrbyS6TZXejOZdWjjZVa5hv0uWiwGPMDQrKFZW+6c16LXJ6X4Z1+fx0viDxRrml6hDpxmGiWthpD2htVl4YzyPcS+c4QBQVES/M5KnK7OsoXwr+v6/LtZaIfxP+v6/q93qeSeBfi+PGHxpk8Oade2Gm6RBJdQWkd5pd09xrz252TPb3OUt4hG+D5eZpHT5ysalWPrdeaeEfhRcaP4wsbq58RQ3nh/QdSvdU0HTP7MCXFlcXXm+Z5lz5hEkai4nCKsaEBxuZ9oNel0L4I97f1/W3bTQPtPt/X9d/wA3wttdfEW3+Kljp+oa34XuNHvkurhrC20O4S6toIwqpm7a7KO2+SIH9wuRuxjFd02dvAz7VhC1tNN8dS6tqOsW6za1HDp2m2kpWM7olnmZI8nMjsvmuQBwsWcYUmtuZPMhaPcy7lI3KcEZ7g+tJ35LLf8Ar+tQ+0zyb9m34h+M/HOoX58Q2+jfZobcGeHT7Oe3m0K9E0iPpt0ZZHE0yoqMXUR8ENsCyRk+p6veJp+k3V/JHJIlrA8zJGMuwVSSFHcnHFedfBj4Vah4K8VSazqfie11Zo9Ij0i2eDSja3FxAkhdZb+UzSfargZwJAsYG+U7fn49LlDmJhEyq+DtZl3AHsSMjP5inUvyWi9bP9bfp+rbu2429o7rS/6L9b/okrI8q+CvxE8T+IPEGi2viKTQbq08XeGf+Ei0iTR4JI/sUYeEPbTM8sgmIFzFiZRGGKv+7Xiug+OnirxF4Q0HRdQ0Cx0u5W88R6Zp2oNfSyKYbe5u4oGeJEHzyfvBgMygfe+bGxqHwW+EOheA/EGq+KjZ6CfEmuIsV7daJoUWlWoiV2YJFAjOwyzbneSSR2b+IKqIml8cvB2u+N/C9jpWheINP0WS11ez1J5r3SXvlkNtOk6IESeHbmSNMnJ+XcAASGF3jzQ00ur+nNe3naOnd2vuyYp+9d/1b8LvVdvwMD4q/EXxDofiDXn0OPSDpPgfS4NU8QpewyNPeRymQmO3dXVYWSKF33MsgYsq4TBatv45eLPEPhPw/omp+HrLS7qO98RaZp9+99LIDFbXN3FAzxIg+eT94MBmUDO75sbGp/ET4ZXniTxJe3dl4ji03TfENhDp/iaz/s7zZL+CJ3ZfJl8xfIcrLJGzMsmUYYCsoatD44+Dtc8beF7HSdB8Qadoslpq9nqLzXukvfK/2adJ0QIk8O3MkaZOT8u4AAkMJha8b7cyv6XV/lb8PMe7fp+mnzvv/kM+JHirxFoPxK8B6Np9jpcmj+JdUuLLUrieWT7TEUsri4jEMYAXkwfM7NwOAp3blPjp4q8ReENB0XUNAsdLuVvPEemadqDX0simG3ubuKBniRB88n7wYDMoH3vmxsZ3xK8Ha/4k8aeDda03xFpun2/hbVG1Ce2uNIkuXvS0EluVWRbiMRDy55cEq/zbDyFKsvxy8Ha7438L2OlaF4g0/RZLXV7PUnmvdJe+WQ206TogRJ4duZI0ycn5dwABIYONrwv/ADK/pdX/AAv/AMON2b/7d/HX/gFb4wax8QvD0ltrfhxPD93pMN3aW9zpd1bzG9vvOuEibyZ1kVIWXzAVVo5A5GCUzmu7lLiJjEqs+DtVm2gnsCcHH5GuG8eeFfH+seNrDVtG8a6Dp2m2EREdjd+G5buRZmG151lF5Gu/YWVN0bBdzZDZrt3SXDmObDMmEDqCqtz82BgnqMjPbjHNZ6qHzf8AX+Xr0D7X3f1/n/V+O+AHirX/ABj8Of7Z8T2em2eqR6rqNjPBpru9un2a9mt1Cu4DP8sQyxC5OTtXO0dJ4qTXpNFli8NXGnW2ouQIrjUYHnghGeWaJHRpMDOFDpn+8K534GeD9b8D+D7nRtc1/T9amm1a91Bbiy0p7FV+0zvcOhR55icSSyYO4fLtBBILNr/EbTfEer+EbvTfCviC10HUrhdiahc6e14IVP3isayxHdjo2/g84NVU8v6/r/hgXxPtd29Lu34Gf8G9b8Sa54Tnl8WWlhFqdjqd3YST6cHW1vBBM0YniRyzIG2nKMzFSGG5hgnV8eXd/YeEb6907UtI0ya3hMjX+sBmtLONeXmlVXQsqqGbG9Accso5qv8ADfR9b0LwvFpuu6rpuoTQEJCdM0x7G3hhVVVI0ieaZ+NpJLSMSSegwKueLoPENxorxeF9U0zTdRLLsuNS02S9hC5+YGKOeFiSOh3jHoelE9tPL+v87fIUd9f6/rz+ZifAnxTeeM/hdpviO+u9GvJLtpgt5o0pezu40mdEmjBZjGHVVYxszNGWKMSVNdHruowaTpM+oXKyNHAudkS7nkYnCoi92ZiFA7kgVkfC/wAKReD/AAzJp4uIri6vL241C/nhthbxS3M8jSytHEC3lpuY7VLMQANzO2WNnx14X0jxdoq6XrX9oCCOdLhGsNUubCZJEOVZZreRJBj0DYonrt/Xe36aK/kEdL38/wDgf1rbzMj4EeKtX8Z/DeHXtdsrWzv3v762lt7VmaOPyLuaBQGYksdsYyeATkgAHAl+M2u+JPD3gabUPCuiXOqagJFXEFkLw2sfLPObfzoWnCqp/dxuHYkBQTxUHwL+Htp8M/BMnh2z1TUNSWXUbu9ae9u552HnTPIFHnSyFQoYA4I3MGcjc7E7XjW28VXWmxx+Eda0fSrwSgyTarpEt/G0eDlVjjuICGzg7ixHBG3nIJ67f1/wPne22oQ8/P8Ar+tO434dasNe8C6TrI1az1b7daJN9usrOS1huNwzuWGR3eIf7DMWU5BOawPjx8Q1+H3huzltdPbUtX1i7FnplmscrhpNrOzusKSSlERWO2NGdjtRQWYV03g3Q7Tw14Xs9DsWkeGzj2+ZJjfKxJZnbAA3MxZjgAZPAA4rG+KPhG/8SPo2p6FrUOj674evjd6fd3Nibu3O+J4ZI5oRJGzo0cjfdkQhghzwQSer07/r8v8APtqENFr/AF+Za+EuuHxL8OdK1467puuf2hB5o1DTdPlsoJgWPSCWSSSIr91ldiwZWBCn5RY8cR+KpdLRPCeq6LpdyH3TXeradLexLGAcgQxzQkknHzGQAY6HPFL4N6LpWhfDfTbXRdUt9WtbpX1D+0rbZ5N/JcyNcSTx7CVCO8rMu0kbWHJ6nU8Z6VNrnhPUNGgvmsX1C3e3Nyse9o1cbWKjI52k4PY4POMUVNb2CGlr/wBf1/TKXwrv9c1X4f6XqfiKaxm1C8h85pLG0e2hdGYmNhE8kjITGUJBdsEnmuN/aS8feKvBdxoVt4dfRrJdWF2Pt+r2Fxdwy3Ucatb2CJDJGVmuCXCMWbmPaqOzqK9QhjSKFYo0CoihVUDAAHQCvP8A45/DnUvHYt207X9Psgljd6fdWWsaQdTsLmG4CBmNuJocTL5Y2SFiAGkBU7uFUu37v9f16W8mtHVOytzf1/X9NHc6PNdXGk2txfWn2O6lgR57bzA/kOVBZNw4bByMjriuC+LXi/xTZ+NrLwh4NuNBs9Sl0W81p5tbtpJ4riOB4k+zxrHNGVZjKC0pLBAB8j7vl7nw1pq6P4d0/SFuri6XT7SK2FxcvvmmCIF3u3djjJPck1xfx3+Fth8VLew0fX10OXQojIbyK70GO7vjuAH+i3MjFbUkAqziJn2n5GjYBw6usvcemv5Oz67Oztre1no2RR+Bc++n6XXTfVX0tudR8OfEMXi74f6H4qgtpLaLW9NgvkgkOWiEsauFJ7kbsVwlh8Udc0/wz8T9Z8UaTpqnwPq8lrY22nXEjC5h+x208QkkdRiR2nwSECrnHzbdzem6XZWmm6bb6dYW8dva2kKw28Ma4WKNQFVVHYAAD8K870n4W6hLa/ETT/FPiKx1LT/Ht41ysdjpL2kun5t47cfO88okISGFgdq/OGOMMFWpuLnNxWlnb1urfO1wp35I8z10v9zv8jV+F/iHxNP4m1nwh4zl0e41rSLa0vftOkW8lvBNBceaFHlSSSMrK8Eqk7yGAVgFyVDfhL4r8S+ItY8c2Gu6fpVtN4b8RNp1hHYzyOskBtLaeNpZHUHefPO7agC/dG7bua18M/CesaHf6lrfijxDb67ruqJBBPd2unGygWCAMI0SEySkHMkrMS5yznAUAKK/wy8G+IfDPiTxlqupeI9M1FfFOqjUbeK30eS2NkwgjgCuzXEnmjZBD0CfMHPRgFNOaXbl/G8f0uOO2vdfrf5X/QX4AeKtf8Y/Dn+2fE9nptnqkeq6jYzwaa7vbp9mvZrdQruAz/LEMsQuTk7VztFT4c+KvGXiO48fade2Oh2moeHNfbTdKEMs0sLRG0tp45J2IVmb9+SwVVA+6Ccbzd+Bng/W/A/g+50bXNf0/WpptWvdQW4stKexVftM73DoUeeYnEksmDuHy7QQSCzUPB/gjxnoF547v4/GGiyXnizUf7Q09x4elVNMkEEduBIpuz9oAjgiPBi+YOejBVTteXbl/G8f0v8A5j0u/wDF+Gv/AAC98JdY8ZXmpeI9F8ZppFxc6FfxwQappFtJbW96jwRzYMEkkrROnmAEeY4IKkEZIDPiR4q8RaD8SvAejafY6XJo/iXVLiy1K4nlk+0xFLK4uIxDGAF5MHzOzcDgKd25bPwh8N+KvDOiyWHibxNpmtNkGKSw0eSxyxLNJLL5lxO0kjuxJO5V9FHNQ/Ezwdr3iTxt4N1rTPEOnada+FtUfUJ7W50l7mS8LQSW5RZFuIxF+7nl5KP82w9FKs/tK5K+GXezt69DtK4LxbrHxC0X4j6H5SeH73w3rGqDTmsY7eZdQt1MEkn2n7QZPLcAxHdF5QwvIkJGD3tcJceFfH0vxWPiT/hNdDGjgJDDpx8OStdW9vuDSIlwbzyw0hVdzmA8KoAGM1K+Jdv6/Pb8d7Dfwvv/AF/w/wCG1zu68617xprWmfH7Q/Bza74Pe11qOVxojO0erxwJC7fbA7S7ZFMqeX5Qizgs4kIRwPRa4rWvBuua/wDEDTtV8Q65o9xomhah/aOkWFrorw3cVwIniUy3T3Dq6hZZDhIoyTty20Mri+Jdv6/Ht+m6H8L7/wBf1/mtH2tcH408d6hpnxe8JeEdNsYZrPWL2a31S7lDZgYWc1xHHFggFz5QLZztVl4+cEd5XmniT4KeHdT+KGieNrbVdfs7rS9Yk1W5tk1/UGt7qRoHiwsP2gRQ8spbamHVSjAqxFC+JX2CXwu256XXnXhzxn4ju/jpfeFtZhj0TT1t5JdJsrvRnMurRxsqtcw36XLRYDHmBoVlCsrfdOa9Frk9L8M6/P46XxB4o1zS9Qh04zDRLWw0h7Q2qy8MZ5HuJfOcIAoKiJfmclTldgvi+/8Ar+tPnZofw/d/X9fldPrK8k8C/F8eMPjTJ4c069sNN0iCS6gtI7zS7p7jXntzsme3ucpbxCN8Hy8zSOnzlY1KsfW6808I/Ci40fxhY3Vz4ihvPD+g6le6poOmf2YEuLK4uvN8zzLnzCJI1FxOEVY0IDjcz7QaI/HrtZ/1/Wno7MJfDpv/AF/Xf12PS64W2uviLb/FSx0/UNb8L3Gj3yXVw1hbaHcJdW0EYVUzdtdlHbfJED+4XI3Yxiu6rC021tF+I2rXbaxb3F82n2i/2cpUSWVvvn2yMMlsSuJQGIAPkkDJQ0LdMHtY3Wzt4GfavJP2bfiH4z8c6hfnxDb6N9mhtwZ4dPs57ebQr0TSI+m3RlkcTTKioxdRHwQ2wLJGT6zMnmQtHuZdykblOCM9wfWvNPgx8KtQ8FeKpNZ1PxPa6s0ekR6RbPBpRtbi4gSQust/KZpPtVwM4EgWMDfKdvz8Efi12/4D/W3+drqRL4Hbe6/PX8P6vZr0XV7xNP0m6v5I5JEtYHmZIxl2CqSQo7k44rzD4K/ETxP4g8QaLa+IpNBurTxd4Z/4SLSJNHgkj+xRh4Q9tMzyyCYgXMWJlEYYq/7teK9VlDmJhEyq+DtZl3AHsSMjP5ivO/gt8IdC8B+INV8VGz0E+JNcRYr260TQotKtRErswSKBGdhlm3O8kkjs38QVURCGk3zbf8B/rZ+Vra3YS+HTf/gr9Lrre/S1y/8AHTxV4i8IaDouoaBY6XcreeI9M07UGvpZFMNvc3cUDPEiD55P3gwGZQPvfNjY2H8VfiL4h0PxBrz6HHpB0nwPpcGqeIUvYZGnvI5TITHburqsLJFC77mWQMWVcJgtW/8AHLwdrvjfwvY6VoXiDT9FktdXs9Sea90l75ZDbTpOiBEnh25kjTJyfl3AAEhhn/ET4ZXniTxJe3dl4ji03TfENhDp/iaz/s7zZL+CJ3ZfJl8xfIcrLJGzMsmUYYCsoaiOyvvzP7uVWv5Xv8/Icrfh+v526/qXPjl4s8Q+E/D+ian4estLuo73xFpmn3730sgMVtc3cUDPEiD55P3gwGZQM7vmxsZfiR4q8RaD8SvAejafY6XJo/iXVLiy1K4nlk+0xFLK4uIxDGAF5MHzOzcDgKd25X/HHwdrnjbwvY6ToPiDTtFktNXs9Rea90l75X+zTpOiBEnh25kjTJyfl3AAEhgnxK8Ha/4k8aeDda03xFpun2/hbVG1Ce2uNIkuXvS0EluVWRbiMRDy55cEq/zbDyFKtULW1/mf3WX63/4YT+F9+V/frb9PkN+OnirxF4Q0HRdQ0Cx0u5W88R6Zp2oNfSyKYbe5u4oGeJEHzyfvBgMygfe+bGxofjBrHxC8PSW2t+HE8P3ekw3dpb3Ol3VvMb2+864SJvJnWRUhZfMBVWjkDkYJTOas/HLwdrvjfwvY6VoXiDT9FktdXs9Sea90l75ZDbTpOiBEnh25kjTJyfl3AAEhhB488K+P9Y8bWGraN410HTtNsIiI7G78Ny3cizMNrzrKLyNd+wsqbo2C7myGzUx2V9+b8LL9b/N/MJbadvxu/wCvl8ju6KBwOufeigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAzfFlnq2oaK9lo+rNpNxOwVr+OFJZbdP4miWRWQyY4UurKCclWA2nxzS/FXj1rXTfBFz4smkvNa8aX2kaf4pSxt1upNOtoJJ3l8sxG3M4eNrfd5Ww7S2zNer/ABK0vxJrXhG40zwr4htdB1C4wv2+5097sRx/xBUSaFgxHAYPleo5wRyK/DjxXN4d0tbvxboUWt+G75Lnw7Pp3ht7fT7FBA0BiktWuneVWjklB/fr1QrtK5ZR3d9tPzWvyt87vyuS2Vt9fyf6v5WXmcvrnjzx0fg0uo6f4gtINT8PeOoPD+r3cmmrI+pW66pFakqMqkMkkciMxCMAS4QLlWXqP2jPGeu6B4caLwjPHBfWt5p76hdyQCRLe3lvIovLAPymWQM4HXaoZjg7N0Hij4Taxd/CGLwfoniyxs9Qm1yPW9U1S/0Z7pbu5F4L19kKXEXlq0yqAN7bYxt5Pzi38Zvgn4G+JOlSPrvhjwzJr0zWvma3PoEM9wVhlR2QM/zhWVGTG84Dnr0L15Vfe6v5+7G9vLmT009B6a/O3kr6J+duuvqc/wDtIafr2p+K/C1pcaZb6lDeeIDZeG7G28UXmhtFcf2ZeTy39xfWsTTowihuLdIIhsKyu8jOZEW3x/2Q/Dfimae48QeJ4dQ2WOta5aW9y3xP1vVsvDqVzarA9lcIkDxxxoyLKxZ28qOQorsdnpmvfB/4S65qbalrXwu8F6leSJHG9zeeHrWaVlRFjRS7RkkKiqoHYKAOBXN/B74B/DrwlY/aL34c+B21m28QajqVjqFtoduZbWKTUZ7i0CSGIMjRQvCgC8IYwFOFBoEesUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHleuX3jfwv8WtHurvxbJq2j6na6jc6xohsIFh0y3giDxzW0iRrNkP5cbedI4czZUJgBcv4SeMvGE+t+C59f1/+0IviToFxqsFnJaxLFos6JDMkUBjRHeIxzsG81nfdGCGAYiui8O+CviFb+Nb3Vdb8ceHL/T9Sn/0yC38LTQXb2yqwitVne9kRI1LEnEWTuc5DOWB8Nvhfd+Gda0y4v8AxImqWfhfTJdK8L2wsDC9lbSGPP2iTzW+0ShYYkDhYxtVsqSxalHbXt+kr389Y2etrPVK1yXxaf1tb5aO66prS90Zfw38SfES++A/iK+mceJvFthrOr6daNYWkFosrQ3s0ERSKWVUVUVVO15SSFwXYnJufDm+8QeJvheieHvGWuT30+oNbatf+KLC1g1XQQE/ewrbQW0cDTqQoTeGjHm+bmdFWKWz8OfBHjvwj4F1jSofGXh261bUNZutTtr5/DM629ubm4aeVHtxe7pBudwpEqYG3IbBzpRfDbw9q/huWw+IOkaD4vuL2/GpXzX2jRtavdCIQrJFbymQRhYlCLlmYLnLMSSaW7v2X36f8G/y6BK13bbml913b9Ldu3b5r+HugeK9W1X4dReF/ClxpPh7xD4GutW07Q1+OHiSOJIEbS/I3MkGYWhjutixRhkYSPlh5abvr/SbOHTtKttPt3uHhtIUhja5uZLiVlVQoLyyMzyNgcs7FmOSSSc15PqX7Onwsm+Kmja3b/C34fx6JZ6NqNre2P8Awj1sPPuZprF7eXyxFsbYkF0u4ncvm4XIZseoeFtC0PwzoMGieG9G0/R9Mtd3kWOn2qW8EO5i7bY0AVcszMcDkknvSA0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4j45W/iZvB+oalonjmbwlHpWnz3f2m2sbe4aWZUJQSieOQeSMZZUCyMSMOmMN29cT8VvC/jXxHqWlv4d8VaDpljYSi4mstV8PTagt1OpzG7GO8g4QgMFII3AN1UYmSbVl/wxUWk7s8+8S+OPiHfWerXEGpr4e1HwN4Ks9f1XTorSKSLUL+aOaV7SYyo7rAotyuYmSTMh+Y7cHqo/FXiS8+OvguG21a3Xwv4l8K3uoDTRYgTCeNrMrI85YlhtuCAqqmPmLF8rtZ4r+Feu6358reNYYLjxDosejeLZU0j/AJCNupkObUCYfZJMTzqGbzsKy5DMoatbWPA2tTfGDwz4s03XtLs9H8OaZc6eNJfSJJZpknMRcrcC4UJj7PCFzE2PnzncNuia9pe2l38tJfhdxt2tsjNKyS8vv0jb53Ur977vZcN4Z+K+q+IvjRZG7k17RfB93q91o3h6e1sLV7LXLqASCVbqaQtPGS0MxiEccaER5aVy3lpwf7SVp40X/hYmsJZ48VaN8P49ZvtY0vx9qeix6VAf7T+y2ttb2sO2++ztbXEnmXLIZZJ34ijZYovXfDfwguNL8TWscviWK58I6Trtxr2kaKdN23FreTeYxV7vzSJIFknndEESsCyAuypg0fix+zp8LNd+FfibRPDHwt+H+m63qWjXdrpd9/wj1tD9luZIXSKXzEiLptcq25QWGMjmpj8CT3/4C387320taxUvjbW3/Bf6W873Oo+CHhbU/DelX0mtWVxZX13Mo8hvHWqeJIvKRflZZL9UMTFncMqJghUJZuAvcVy/gn4a/Drwdqsmp+EfAHhfw/fTQmCS60rRre1leIsrFC8aAlSyqcZxlQewrqKACiiigAooooAKKKKACiiigAoorg9Z8fG91PxP4Y0Kw1RdY0u1WKznGnyuj3ciSbM/IUjQER4eUhWyT90biAd5RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRrBAt090sMYnkRY3lCDeyqWKqT1IBdiB23H1NFFAElFFFABRRRQB//9k="]
math
multiple-choice
16
直角坐标系$xOy$中,$\vec{i},\vec{j}$分别是与$x,y$轴正方向同向的单位向量.在直角三角形$ABC$中,若$\overrightarrow{AB}=2\vec{i}+\vec{j},\overrightarrow{AC}=3\vec{i}+k\vec{j}$,则$k$的可能值个数是()
1
2
3
4
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADGAG0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+orm5htLd553CRIMsxHAFS1XvbC01K2Nte20VxAWDGOVQy5ByDg+hANNWvqBny+K9Ag1iLSJtYs4tRlA2WzyhXyduFIPRjvXCnk5OAcHGxWBcqF8e6MqgADSr4ADt+9tK36qaSSa6iCiiioGFFQ3V1b2NrJdXc8VvbxLukllcIiD1JPAFVtM1zSNaEh0rVbG/EfDm1uEl2/XaTigC/RRRQBAl7byahNYrJm5hijmkTaeEcuFOenJjf8AL3FT1g2n/I/6x/2C7H/0bd1vVU42dvT8gCiiipAKKKKAMG7/AOR/0f8A7Bd9/wCjbSt6uS1CbVh8StJWKysmtvsF0Fka8dXMZktd7FfKIDA4wu7DdyvQ9bWtRWjH0/ViQUUUVkMwPGwc+DdSEbKr+WNpZcgHcMZGRn8xWXbR6la/EWx/ta6sL2efTZ1ia0t3tzEqyRltyNI+4ElcHIxjpya6nUUsZNNuRqa2zWAjY3AuQpi2AZJfdxjAyc8V4hafEO41cz23wl8DxWxgEdxe3UlrFEAoY5j2IcHcAAMMWI37VyAwBpNuyPeaKhtbqG9s4Lu3ffBPGskbYI3KwyDg89DU1ANNOzMG0/5H/WP+wXY/+jbut6sG0/5H/WP+wXY/+jbut6tKm/yX5IlBRRRWYwooooAwbv8A5H/R/wDsF33/AKNtK3q53Up4bXxtplxcSxwwRaRfvJJIwVUUSWpJJPAAHOaxdV+IpmSNPDGnyX6T3C2iatcRyJp6TOzxp86qWkHmIq5QbPnXLrkVpPaPp+rEjuJ54bW3luLiWOGCJC8kkjBVRQMkkngADnNcnJ4xvNb3weDNM/tL7y/2pdsYbBGHmLkPgtNh0AxGCvzD5xUkfgeHULgXfiu+k1+dXLR280YjsoeXxstwSpIWTbukLtwDkV1EM8NwheCVJUDshZGDAMrFWHHcEEEdiCKzGcRrHgO51XTbi61fUW13VI2E9rbXEYjskZHZ1RbcNt+ZW8stIztjuOlb9vqWg6VoQ1kLa6ZZ3/8ApjkosbSyOu4lgv3pCBzjJOO9blc/Y+GtF0G4+27mBEzi3+0S/u7YzMB5cS8KmWIAwMndjJzioalze71OulOi6fLVvo7q3W+6v02XR210KvhG8giudR0iOGe1iSZrqyguIlib7O7EHagwwUSCTAYAhWT1FdVWB4oWSzht9etwzS6WzSSop/1ls2BMuNygkABxnPMY9a3IpY54UmhkWSKRQyOhyrA8ggjqKVPT3X0Hi2qlq8V8W/qt/v0d+7fYxLT/AJH/AFj/ALBdj/6Nu63qwbT/AJH/AFj/ALBdj/6Nu63q6Km/yX5I4kFFFRwTw3VvHcW8qSwyoHjkjYMrqRkEEcEEd6zGUNR0Kz1S4We4m1FHVNgFtqNxbrjJPKxuoJ564z09BWBrWn6DoItDdz+IG+1TrCvlazeNsz1dv33Cjufeuyrh9f0HVPFWt6nFHLa2thFZNp4+2WMkvmmUBpWQiSPAx5a7hnkN6VaqTSsmxWOB+KPgPQ/+Ex8O3V9daoumTRSR6hNJf+abeMSRpG4e4LYXzLhd3JAXJAByToeLPDs/h7wtcp4qvhrWkNFHE8x1q6tLlnBJZlhmlkhmkAUSKuUyVICniurtIpNcvdFsddtpPMm0PUbO+jdWj8wiW1jcjodrYJBB6EEGq3w60Oxtri+TVWk1HxZo9w1pcX99N505iJZ4Xj3O5iR4pegxk7gckGqlKSSs9/8ANgZPhbU9CPh/S4/F9/r2ia09ufOXVNWv7VZWQhWZXd0Qlsq21Scbsdq6Dwn8MNK8NaIbATaiG+0TSF7fVbmISKXPllljdF3+WIwSFHK1208EN1by29xFHNBKhSSORQyupGCCDwQRxiub/wCED0u0n8/Q7i+0GQy+ay6ZNshc7NhzA4aHkY52ZyoOc1PtZ9wsWv8AhENM/wCfnW//AAeXv/x2qGseBbS9so4ra61QSLdW8p87Wbxl2JMjvgGQ/NtVtp7NgggjIVJPG+jIgnh03xHAiRK0luTY3RO7EjbGLROcYb78YyGGOlSf8J5pdpP5GuW99oMhl8pW1OHZC52bxidC0PIzxvzlSMZqlWqJ35mFkWv+EQ0z/n51v/weXv8A8drF0nw9Yx6vf6Ld3WqLJb7ZrMRavcxK1q3CgIs38BBQ8DgKeprtIJ4bq3iuLeWOaCVA8ckbBldSMggjggjnNYnihZLOG3163DNLpbNJKin/AFls2BMuNygkABxnPMY9aynUmrTu9Py6/wBeR14W070H9rb/ABLb/L0dzmrLwbpVj468SSi41pllsLK5cJql1vLZnQjKOHfiJcBixBJAwDir+lWGk6neSWcsPiiwuViEyxXes3QMkZOA42ztjkYIbDDuBWhbXSHxjrN3bqbpDo9jJGICpMo8y7I2kkA57c4561V0hTdeNJdTsLe/itJrR0vjfwzI3nBlMax+aM7QDJkJ8nIxzW05yT0fb8jkt0Zo/wDCIaZ/z863/wCDy9/+O1Q0PwLaWGgabZ3d1qhube1iilNvrN4sZdVAbYBIAFyDgADjsK62il7apa3MwsgooorIZyWoaxbRfErSbZor0yLYXURK2MzJueS1IIcJtK8ctnavRiCaZ4ok/wCEc8Q6b4r8zZYtt0zVdz4RYXf9zMdzqo8uVsE4J2zOe1aV3/yP+j/9gu+/9G2la1/Y2+p6dc2F5H5lrdRPDMm4jcjAhhkcjIJ6VrUtyxt2/ViRYorl/BGo3EmnXOh6ncedq+iS/Y7l2Yb5kwDDORvY/vIypJJ+9vHauorIYUUUUAcvL4A0KOVp9Ijn0G6by8y6PKbYNsYsu6IfupOrA70bgkVh+KNQ8feENEe4057TxKS7JEj6dKLoEuCu4QZRwE3gnEQyFPJO0+iUUAeS/CLX7rVPEOvWd9pV5pk9pa20UVpcJIWhiEk7ojOw6hZlC5wSo4BAJr0iXX9NhujbvO4YOEaQQuYlb+60gGxT7E1TtP8Akf8AWP8AsF2P/o27qhZ6pp2n+HzpV+sc1+ivG+nsAZLliT0Q/eDdc9Oee9Kq+RpX6L8lodtKH1iUqk027rbzvd/5+u6OtorPt9UEl99kexuoAdwjlkVQkhXqFwd34kAHtkVoUJp7HLOEoO0goorI8RSapHpj/wBlRStMcANAyeYpyOgkBUjrnPOBwCapK7sQQXf/ACP+j/8AYLvv/RtpW9XH3cWsn4iaMwvrJYTp1yfLeyYuEElr5ilhLjcTjBxhehDda7CtKitGOvT9WJHH+KJP+Ec8Q6b4r8zZYtt0zVdz4RYXf9zMdzqo8uVsE4J2zOe1dhVe/sbfU9OubC8j8y1uonhmTcRuRgQwyORkE9K5/wAEajcSadc6Hqdx52r6JL9juXZhvmTAMM5G9j+8jKkkn728dqyGdRRRRQAUUUUAYNp/yP8ArH/YLsf/AEbd1vVg2n/I/wCsf9gux/8ARt3W9WlTf5L8kJGXaWGoxarNdXV9bXETbhGgtWR41zwobeRj1+XJ49BWpRRWSSWxpOpKbvL8kvyCiiimQYN3/wAj/o//AGC77/0baVvVg3f/ACP+j/8AYLvv/RtpW9Wk9o+n6sSCuP8AFEn/AAjniHTfFfmbLFtumarufCLC7/uZjudVHlytgnBO2Zz2rsKr39jb6np1zYXkfmWt1E8MybiNyMCGGRyMgnpWYyxRXJ+B9Xmmtrzw5qU0k2taC6211K6n9/GQTDNnc2S8YDHJyG3ZA4z1lABRRRQBg2n/ACP+sf8AYLsf/Rt3W9WDaf8AI/6x/wBgux/9G3db1aVN/kvyQkFFFFZjCiiigDktQ0PSZviVpN3LpdlJctYXUzTNboXMkclqEctjO5QSAeozxXW1g3f/ACP+j/8AYLvv/RtpW9WtRtxjft+rEgooorIZwHjv/imPEGkePI+Le2xp2r+9nK42v3P7uQq2EXc27GQBXf1XvrK31LT7mwu4/NtrmJoZkyRuRgQwyORkE9K5D4bXtxb6ffeEdRk8zUfDcq2hfaB5tsRm3kwo2rlONuSRsyxyardAdvRRRUgYNp/yP+sf9gux/wDRt3W9WDaf8j/rH/YLsf8A0bd1vVpU3+S/JCQUUUVmMKyfEfiC38N6Pc6jcW9zOkETSlIIWckDrkgYX6kjvWtQRkYPSnGyeoHI32o3I+JGkRJo99JF/Z90gnVoQhVpLUl8GQNtXoQRu5+UNzXXVg3f/I/6P/2C77/0baVvVpUd4x9P1YkFFFFZDCuA8d/8Ux4g0jx5Hxb22NO1f3s5XG1+5/dyFWwi7m3YyAK7+q99ZW+pafc2F3H5ttcxNDMmSNyMCGGRyMgnpTTswLFFcR8Nr24t9PvvCOoyeZqPhuVbQvtA822IzbyYUbVynG3JI2ZY5NdvQ1Z2AwbT/kf9Y/7Bdj/6Nu63qwbT/kf9Y/7Bdj/6Nu63qupv8l+SEgooorMYUUUUAYN3/wAj/o//AGC77/0baVvVyWoQ6sfiVpLRXtktt9guisbWbs4jElrvUt5oBYnGG24XuG6jra1qK0Y+n6sSCiiishhRRRQBwHjv/imPEGkePI+Le2xp2r+9nK42v3P7uQq2EXc27GQBXf1XvrK31LT7mwu4/NtrmJoZkyRuRgQwyORkE9K5D4bXtxb6ffeEdRk8zUfDcq2hfaB5tsRm3kwo2rlONuSRsyxyardAbNp/yP8ArH/YLsf/AEbd1vVg2n/I/wCsf9gux/8ARt3W9VVN/kvyQkFFFFZjCiiqep6pZaNYPe384ht0wGfaW68DAAJP4U0m9EBm3f8AyP8Ao/8A2C77/wBG2lb1YFywfx5ozKcg6VfEH/traVv1c9o+n6sSCiiisxhRRRQAVwHjv/imPEGkePI+Le2xp2r+9nK42v3P7uQq2EXc27GQBXf1T1awXVNGvtPcRlLq3kgYSKzLhlK8hWUkc9AwPoR1pp2YGbaf8j/rH/YLsf8A0bd1vV4z8Eb/AFlNa8QaH4lk8vVNMtbOzhtZFRHSCLzcYC/fUb1+fnO9Tk5Fery65pEGqR6XLqljHqEmClo9wglb6JnJ6Ht2qqjTenZfkCL9FFFQAVS1LSbHVofLvIBJj7rAlXX6MOR07GrtFNNrVAcheaBo7fEbR7htKsWn/s+6l81rdC++OS1EbbiM7lBIB6jPFdfWDd/8j/o//YLvv/RtpW9WlRtxjft+rEgooorIYUUUUAFFFFAHM2On2cfxL1q9S0gW6fS7LdOIwHbMlwDluvIjjB/3F9BWVpbaKPhxctrgVlVpW1IAkSG4Dndjb82/cBtxz93Hat20/wCR/wBY/wCwXY/+jbur0mhaRNqiapLpVi+oR42XbW6GVcej4yOp71dRWenZfkCLaTwtIIRIvm7A/lk/OFPAJHXsfyqWse30pbbxZd6jFbIiXFpGkkoxl3DscHvwCPatioAKKKKAIzBC1wlw0SGZEZEkKjcqsQWAPUAlVyO+0elSUUUAFFFFABRRRQAUUUUARiCFbh7hYkEzoqPIFG5lUkqCepALNgdtx9akoooAKKKKAP/Z"]
math
multiple-choice
17
执行如题 (5) 图所示的程序框图, 若输出 $k$ 的值为 6 , 则判断框内可填入的条件是 ( )
$s>\frac{1}{2}$
$s>\frac{3}{5}$
$s>\frac{7}{10}$
$s>\frac{4}{5}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/4RD0RXhpZgAATU0AKgAAAAgABAE7AAIAAAAOAAAISodpAAQAAAABAAAIWJydAAEAAAAcAAAQ0OocAAcAAAgMAAAAPgAAAAAc6gAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEFkbWluaXN0cmF0b3IAAAWQAwACAAAAFAAAEKaQBAACAAAAFAAAELqSkQACAAAAAzY1AACSkgACAAAAAzY1AADqHAAHAAAIDAAACJoAAAAAHOoAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyMDE0OjA2OjE5IDExOjE0OjA4ADIwMTQ6MDY6MTkgMTE6MTQ6MDgAAABBAGQAbQBpAG4AaQBzAHQAcgBhAHQAbwByAAAA/+ELIGh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2luPSfvu78nIGlkPSdXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQnPz4NCjx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iPjxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+PHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9InV1aWQ6ZmFmNWJkZDUtYmEzZC0xMWRhLWFkMzEtZDMzZDc1MTgyZjFiIiB4bWxuczpkYz0iaHR0cDovL3B1cmwub3JnL2RjL2VsZW1lbnRzLzEuMS8iLz48cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0idXVpZDpmYWY1YmRkNS1iYTNkLTExZGEtYWQzMS1kMzNkNzUxODJmMWIiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyI+PHhtcDpDcmVhdGVEYXRlPjIwMTQtMDYtMTlUMTE6MTQ6MDguNjQ3PC94bXA6Q3JlYXRlRGF0ZT48L3JkZjpEZXNjcmlwdGlvbj48cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0idXVpZDpmYWY1YmRkNS1iYTNkLTExZGEtYWQzMS1kMzNkNzUxODJmMWIiIHhtbG5zOmRjPSJodHRwOi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLyI+PGRjOmNyZWF0b3I+PHJkZjpTZXEgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj48cmRmOmxpPkFkbWluaXN0cmF0b3I8L3JkZjpsaT48L3JkZjpTZXE+DQoJCQk8L2RjOmNyZWF0b3I+PC9yZGY6RGVzY3JpcHRpb24+PC9yZGY6UkRGPjwveDp4bXBtZXRhPg0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICA8P3hwYWNrZXQgZW5kPSd3Jz8+/9sAQwACAQECAQECAgICAgICAgMFAwMDAwMGBAQDBQcGBwcHBgcHCAkLCQgICggHBwoNCgoLDAwMDAcJDg8NDA4LDAwM/9sAQwECAgIDAwMGAwMGDAgHCAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgBigEYAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A/fSiiigBksvl4461Vur/AB/n/V0ap/q5P+mdfMv7UvjLxP8AGX9oHSvgh4Q1688IpeaW+ueJNd0441O3svM8uOC1d/8AVzyfP8//ACz2b6APpbzf3fz3Mcf/AAOmfa4/+f23/wC+46+a9M/4JEfs/R2ccN/4Kvdcu9n7+51TXtRuLi4f+/I/n/6yl/4c/fs2Rf8ANMdP/wDBpqX/AMfoA+k5dUgi+/f2Yz/t1BL4o02L7+saWn+/PHXzf/w6I/ZvlOz/AIVRoY8z+/qF9/8AH6P+HRH7OX2c7PhL4f8AL/6+rv8A+P0Ae/SfFXw9bPsn8SeH4P8Af1CD/wCLo/4W/wCFPL/5HDwn/wCDGD/4uvn2b/gkF+zTHJ83wf8AC4/33uv/AI/Ummf8Ekv2Zjf7E+D/AIHkkP8Acjn/APi6APd5fjd4MtZMv428Jx/9xSD/AOLp+ifF/wAMeIr+Oz03xb4b1K7k+5DbajBJJJ/wBHrxqX/gkl+zRa/80Z8F/wDgLJJ/7PWb4i/4JJ/s66/o89tb/C3w3o0n30vNHSSw1C3f+/HPA/mJJQB9LxS+V86P5n+5WvC26FD6gV8j/sH/ABH8SeFviz8Rvgf4r1S48S3nw0ksbrRNbuX8y51TSLqDzIPP/wCm8fzwO/8Ay08uvra2LbAGBG2gB0wBQnHIqGppf9Waq0ASUUVDLK8X8GKAJqKZF2+lPoAKKKKACiiigAoopssv7zNADqKKKACiiigAooooAKKKKACiiigAooooArar/wAe718u+Aoktf8Agrh44QII5Lj4eadv/wDA6evp/U/+PeT/AHK+VbeaSx/4LB63I+R9t+G1qkCHrJsvpN7p/wCOUAfV/H9+qusX9tpenzzXE3lwRp5jv/zzqSwlcx73fMn/AC0/6Z0X8sYt5N7n95QB80eP/iZpdr+1X4Y0SL4i3EXhvXdE1HUp4U1SCOPz4J7fZs/j/jkrN/Zc+Nvh7xd42k1LW/G2oar4nk8Sa34a06GG9kks/ssE8kiI6R/uPM8tPvyV6F4Gs5viB8dtR8ZPpRg0bw9ZPoulpcp5clw7yeZdTon/ADz+SONKrfsXaDeaB4D8Y22pW0ljJJ421+eN3Ty/MR7uSRJP+/dAHnH7X3xd1rQPj9ol1ZNpUkPw/wBKvfEE9pNdTxm58+SC1tPM2fu/3knn/wDfFYemfHzxb4l8f/EP4haJ8OviBceLfD9k+g6Ro9/pD2FneQWskkj7JpHSN5J5N/lvH/yz8utX9rz9nTW/i38W7t/Ab3NvrN4mnT+JXv8Af/Y+oWtj5k9rY/8APSOSSR/vx15D+0P8Ode1n4R/tQ2z/CvxxrvirVL2+k0G8tp45Lfe+m2myOB/Pjk8vzN//LOgD9A/hz4om8eeCtK1W40+80qfULVLh7C8/wCPi33p9x6veI7qaw0u7eKHz5I0+RKj8HWCWGh2kHMflwJHsd/9X+7rSu4obuzkSVPMj2fc30AfInwQlkl/4LI/Fmcp5a3HgXQ5Anp+8k/+Levs2vjX4WhYv+CyfxMS2BkWP4daP5uzrHJ9rn8uN/8AgCb6+yhnAzQA2X/Vmorn92M+tT1X8p/SgCr5r+Z1qeLt9KPK9hRF2+lAD6KKKACiiigCG/leKz3p/rKfFL+82U+igApTDmRHP/LOkooAKX5PakpghcSSP/z0oAfRRRQAUUUUAFFFFABRRRQAUUUUAVb+J5Y/l7186/ta/s7+MfEXjzwv8UfhfdaZB8SvA8c8H2TU8JYeILGd/wB/YyP99D8nyP8A8s6+kKaNlr9xP3lAHyRpf/BQfx1YpJbap+zH8XIL23/dztYR2t3ZySf7EnmfP/v1Yl/4KJ+MP4P2YPjRJ/25Wn/xdfUl1YedIH/d+Z/f30z+y3l/j/8AH5KAPlCL/goT488yT/jFf4wfvP8AphY//F1T8X/8FK/HPgTwjqWt3/7MfxRs9O0uCS7uZ5ntI44oE+d9/wA9fXculvXk37d3iTTfD37H3xDhvbyztHvfDWowQJNOkf2h/skn7tP79AHjPg7/AIKT/E74g+F7HWdD/Ze+IN7pOpwx3dtc/wBo2n+kRv8AcdPnrTk/bh+Md95ez9lTxxJJH/f1exjrvP8Agm74s0nxb+yF8MLWx1GyubnR/DWmwXdvDcRzfZn+yx/JIEc7X9q+h1sIEOVghB9QgFAHxx/w3N8copdkX7J3ijy/9vxDYx1JF+1p+0P4tH2PS/2ZpNG1K4/1F5rHiiD7HH/v7E8yvscop6qp/CmCziEm8IAx9OKAPGv2MP2dbz4P+GtX8UeLJ7fVPip8QZlvvGGq25nS3upY3lW2t4YZHKxRW0DrAvlqocR+YQWck+00ABRgdBRQAjMFGTUFTsobqKhbhiB0BoASiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCG6l8uqkty8f/PTy5P49lW7r97Xwp+0h8ENN/aQ/4KsaN4P8Ta340sfD9v8AC/8AtaCz0TXrvSY5Lr+1fI8x/IdN/wC7oA+4IpZpfuPn/tnUnmzf3/M/4BXzRbf8El/hFax7BqXxUkEn8b+P9Z/+P0S/8EofgzdSfvZviRIf9vx/rP8A8lUAfS+Zuu+P/co815M/vrf/AL7r5otf+CRHwW8zzv8Ai4m//b8eaz/8lVP/AMOl/gbj/kA+JZJP43fxlrn/AMlUAfSEt19l+d7q3/77r5k/4Kvfs52H7U37C/jzw880b6jb6c+paW6SfvI7q1/fpH/202eX/wBtKsf8OkvgVL8//CMeIJyfub/GWsyf+3VVJf8AgkR8AYpPm8Gap5n+34r1n/5KoA4j/ghF8Cof2a/+Cfvhdb0WdrrPi+R/EWoec6Ryb5/L2R/9s49kdfalt4x0/wAsCe/sUl77Zht/U18t2v8AwR5/Z7tbeNE8DXkcEaeWiJ4l1X938nl/8/X+5UkX/BIj9n7+DwHJJ/v69qv/AMlUAfT91470i3IH9q6Uc9d12gx+tQSfEvQ4R8+s6Kn/AG+pXzGP+CNX7PHmec/w6jkk/wCw3qX/AMlVPF/wR0/Zyl/1/wAN7Myf7eo3cn/tegD6Tl+Knh2JcnXNG/8AA6L/ABqF/jB4Zi+/4g0CP/e1GIf1r52/4c8/s2Wsn/JMdLk/37q7k/8AZ6vRf8EnP2dbXT44U+FfheSP/bSST/0N6APoHRfiboniO58jTtW0fUJh96O0vUncfguavwT/AGiRmAxuNfAXg79njwT+y/8A8Fl/A+k+BfDen+GNK1j4Z6xPPbWcckcdxNHdwfP/AOP1986d/qxQBdoo/wCWVNtd/wDHnNADqKKKACiiigAooooAKKb/AMvMlOoAKKKKACiiigAooooAKKKKACiiigCG6+4P+udfH3ie+e0/4LYeEo0+/e/B+6Lv/ualHX2JL3+lfGnxCTyf+C2nw1d/+Wnwp1SP/vi+jegD7Iii8z5xVSW+EckiP5f3Pkq3FL5UfD1w3x88Wal4D+EfiPWNI0bUPEerafpc8llptgnmXF5P5fyIn/A6APL/ANm79r2Hx5Z+J5vFGveG7SeLW9Uj0Swhfy7y406xnkgkn8j/AFj/ALxH+eOOumtP23Phpqc9rDb+JpZ57x0jRE0u+/eO/wD2wrwX/gm98B/EP7PviDxb4G8Yab4gvtV+xWN3Y+Knso47fyJ4I/PtIJ/4PLu/P+T/AKaV9GWv7MtnbWUCN4k8cP5c3n/Prcnmf9c6APEfi3+2x440zWPjbqPhTT9Gn0j4DvAL2wvEk+0az/osd3Psf/lj+4f93/fkSvpj4VfE/Tfi/wDDPQvFukSF9N8SadBqVq7p/BPH5if+h18s/tt/sXWfxn17xBpvguw13R/EfxYsoNN8V69DdPBpdvYoY9886f8ALe78v93Gn/TSvUNV0zxh8LPi78HfB3gG2s4/hzp1le2HiVLiz8yW3tYLHZYuk2/5P36bKAPdopfNj3ukdcT8S/j94Y+DkcM3ijW9P0aGdJ5/3x/ebIP9c+z+5H/frtpYvKs8b46+R/22/DnjD4jfE/w5J4T8H+I38SeDNVtf7Ov3hgk0fWLG6/d6jaXXz/6jy9/mf8AoA9c8d/tneDPhrrcdhqT+MJriSyS+87S/Cmq6nb+W/wBz9/BayR1o+Fvj9pvxa+F2s694XfVI5NPhnjT+2NIu9Mk89ET/AJYTpHJs+ep/GX7N3hb4laobzUIdbQ7EgH2bWruzj8tP7iQSJVjS/hTpXwg8Carpug22q3Edwk7+Tc3s9/JJI8f9+d5P7lAHKf8ABP8A+PGt/tI/se+B/G3iD7EmueILWSe7+xp5dv8AJPPH8n/fFe1SxfX79fPP/BMvwBrvwt/Ye8B+G/E+i3/h7X9LS6jurO98vzIz9rnf+D/Yk319DXW+L6b6APj/AOKtr5n/AAW0+EHt8OfEUf8A5N2lfYFhFiPsK+P/AIyXX2X/AILQfA/f0/4QDxT/ANtP39hX2DY/6igCzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDdbK+EP20viXbfs3/8FM/hX4/1zSfFN74cj8D6ppLzaPpF1qcnnvPBIibIE/2K+77r97VT7K8Xl7Uj/d/36APlew/4K7fDeWMbPB/xku/9v/hA9R/+IqeT/grR4A+4ngP4yfvP+pDvv/iK+pYoprb5ESOPNO82b+5HQB8rx/8ABV3wZvOz4a/HGfP8aeBr756bL/wVe8Ky/wDNJfjpJ/3JV3X1X5s38KRx/wDAKTzLn+5H/wB8UAfKF3/wVi8P36bI/g18f53+58vgydKq3P8AwVi0i1sw83wR+PZgtxvkd/Ccn7tP9uvrcWry9UrD8eaX5vg/Ut6f6y1ePZ/2zoA+U/Dn/BYrw9430ODUtD+C3x11nTbxPMgvLbw15kcn+4++p7r/AIK2v5Y8r9nX9oC4k3/cTw9/9nXHfsUft1/CL9lX/gnp4AufiJ4/0Pw/dW9lJH/Zs11HJqEn+lz/APLrH+8/8h19AfCT9vT4SfFf4X6X4li8beG9GtdaX7RDba1rtraXkab/AC4/MR3+TzAN+z/boA8sj/4Kw3uwbP2av2gcf9gSP/49UF7/AMFaNZiGyD9mD4+XCSff36PB/wDHK97k/a/+D5wj/FT4Z/8AhUWP/wAfoP7ZvwWi/wBb8XfhlG//AGNFj/8AH6APBf8Ah6z4t+zxpF+yp8cPL/64Wkf/ALPRF/wVF8c3dvG6fsnfGj/cd7T/AOLr3r/huv4G2v8AzWD4XD/uaLH/AOP1m6n/AMFCv2f7aZ0uPjH8M4zH1f8At60/+LoA+afhn438eftXf8FN/hd451D4LeOPhtoHgvw1r1hdXOt+R/pEl19k2Ijo/wDsPX6A6XGPKUEh/l614VF/wUi/Z1sOf+F2fC8f9zDaf/F1DF/wVI/Z3spC0nxp+HmCMYbW4MfpQB9DGFDxsXn2o8lP7or59P8AwVc/ZxVsH40fDtj/ANM9Xjf+VVrv/grr+zRY/wCt+NHgZPrff/WoA+i/JT+6KPJT+6K+Z73/AILJfswafFvk+NXgYD2vGP8A7LVST/gtj+yrDHuf42eDVH/XSX/4igD6j8lP7opPs6f3f1r5PH/BdD9k5/ufGrwvJ/upOf8A2nTbj/guh+yvbQ+Y3xa0hl/2LO6b+UVAH1n5Kf3RR5Kf3RXyFL/wXl/ZTik8v/hatrJJ/dj0i/Y/+iKkT/gu3+y1J934mqf+4HqP/wAYoA+uPs0f90UyeFI4i23GK+TI/wDguh+zHK2F+Ikx+nh7VP8A5Gqrq/8AwXV/ZljjaJPiDeK5xhv+Ec1Tjn/r3oA+uPk9qPNT7m+vju6/4Lo/szWse9/iRqEYj+/v8Pal/wDGK+q/Cev23izQLTVLKYT2uowJcQTf89I3TelAG5RRRQAUUUUAFFFFABRRRQAUzyvYU+igBnlewo8r2FPooAZ5XsKPK9hT6KAI6yPGUTy+H7vZz8kn/outes/xHF5ulyJ/z030AfmX+y//AMEefgn+25+xH4U17XvDV5pXirVEuvP1jSp/s9xJ/pc/3/8Alm//AH7r6F+An/BGD4DfC34b6J4f174a+EvFt9pkIgk1i80tEubweZ+73/8AXOPYldN/wScmji/Yg8JQI5H2N9Rg/wCuey+k/wDi6+mI0C7ZDwAaAPC4/wDglV+zlBHsT4L/AA8K+j6RG/8AOrMH/BL/APZ3twAvwW+GYHr/AMI7a/8AxFe7hwcYI5paAPDov+CZn7PMLbl+CnwwB/7Fu0/+IqaP/gm98AIX3p8Gfhmr+o8OWmf/AECva2baCTnApnnj0NAHkcf/AAT9+Bka4Hwf+GuP+xctP/jdWbb9hP4KWcu+P4S/DhW/7Fy0P/tOvU/PHoaPPHoaAPMX/Yi+Djy7/wDhVfw6Vvbw1ZD/ANpU6P8AYr+EUW/b8Mfh8vmfe/4pux5/8hV6Z549DR549DQB5r/wxh8Jf+iaeAP/AAm7H/41UsH7H3wstRiL4deBIx/s+HbEf+0q9F89fQil81fWgDzxP2S/hqNwbwF4KKnpjQbQEf8AkPmrZ/Zi+HZtvK/4QfwgE/7Alrn/ANF13Hmr602W6SFCSScdgOaAOKs/2Zfh7Yf6rwV4TU+v9jWuf/RdTJ+zz4HibKeFPDaH20q2/wDiK6f+2o8Z8ubH+6P8aX+10/55T/8AfP8A9egDFg+Dvha2XEfh7Q0Htp0A/wDZKn/4Vb4c/wCgHpP/AICR/wCFayakjMAUlUHuV4qT7XH6t/3yaAPlX/grN4Qgs/8AgnF8a10+3s7Z4fDc82fITny9j17D+y1Kl/8Asz/Dybj954a06T/yUjrzr/gqnGL/AP4J6fHNQskYXwffyh/9yEmu+/ZLuv8AjFj4cP5Mn/Ir6X/6SR0AemUVS+3vLH/qZKPtyS/c8ygC7RVL7U+cIlxij7e/l/6uX/foAu/8taKq2sryyfPVqgAooooAKKKKACiiigAooooAjqlrJ8u0kf8A3/8A0XV2qWs/8eciZP3/AP2nQB8v/wDBHS/e/wD2I9Gdk/5i+sf+l09fV/8Ayzr5M/4I1FP+GL7T54/+Ri1//tn/AMTKevrP/lnQA6l3t6mkooAUsTwSSKSiigAooooAKKKKACiiigApkvf6U+mS9/pQB8TfHzWfjZ8ZP28dc+G/w7+LVv8ADLQ/D/g2x8Qyb9Bg1OS4ee7uIH+//wBcantf2PP2qJfnf9re48v/AGPAFp/8XXTeF4oYv+CxHjHeg/0j4S6ds+T/AFn/ABOLuvp77LDFb/Inl/J/BQB8hf8ADHn7TMuEf9rHUPM/2PBVjHVW6/Ye/aWurj5/2uvEkEf+x4Rsa9P/AGwfj/qXwS1H4a2Gi3Wj2uo+NPFcGmTrfweYI9OjguJ7uf7/AMiRoifP/wBNErqte/bC+F3geLTrjUfHXhS3t9YtEvrGb7UkkdxA/wByRNn/ACz+R6APnT4lf8EyPjl8X/h/rPhfxR+1X4s1LQPEFrJaajbf8I9Yx/aIHTY8f3KtaB/wTm+NnhLw5Y6Pa/tafEC007T7VLS1SHR9N/dokexI/uV9GeGP2kvB3xP8D+IPEPhzxLo2saV4fR3vbmF5JI7NEj8yTf8A9s64r9g79pPUfjv8C9GufFWsaG/jW8tTq11ptq8cdxZ2Ukkn2WSSDfvTzINlAHlI/wCCffxyluPn/bD+KH/go03/AOIq9/w7i+NMv/N4fxc/4Bpem/8AxivrmXXraaPZ9s0/959z9/XjP7Qnx18SfB/49fBrSNNTR5PD/wARPEMmi3vnI/2iP/RLidHj/wC+KAPKP+HbHxm/j/bD+NH/AACy03/4xXM/CrQPiX+zT/wUr8B/D3xD8cviB8TfDnjDwpqmpPba9BaRxxzwSRxp/qII/wC/X3Va/vfnf/lpXyT+0EPsn/BYD9n5/wDlnL4U8Sp/4/bvQB9e2H/HnHtz9yrVVbD/AI9E/wByrVABRRRQAUUUUAFFFFABRRRQBHVLWP8Aj3/z/wA86u1S1SMyx+lAHyT/AMEUdn/DHd2m/wAuSPxl4ij2f9xKSvsX/lnXxv8A8EVpf+MW/E8P/Pv4/wDEUf8A5N+Z/wCz19kf8s6AHUUUUAFFFFABRRRQAUUUUAFFFFABTbrqKdTJf9bQB8qWsqWn/BYW+R/9ZcfCWCNP+Aazd19Q/P8AZ/8AgFfE3xf+N3hL4Gf8FgLS/wDGHifR/CtjcfCxIEudSuo7eOR/7Vu/3aeZXtkv/BRj4CbI0f40+A//AAbwUAfNn/BTv4D+P/jn8aIPE+jWGsf2H8G/C/mQWdtB5n/CYSajdwfarRP+ucFl/wCR6+mbr4B6b8btO0DWBeeOfBtrFZJ5Glabq8lhHGn8COifckqtc/8ABSb9n2KPfL8Y/h//ALb/ANrwfvKqRf8ABUD9nS1j2J8bPAaf7+qR0AYf7U3wD8QeB/2O/GvhLwHe+LPEes+OHg0V3v757+SztbqeOC6nT+55dpJO/wD2zrm/+CfH7P8AqHwt+GXjz4UeL9A1S7s9K1STTYfEN5AkcfijTvLjSD59/mHy4/3f/TPy67mb/gq9+zfa/wCt+N/gY5/6fo6Iv+CtH7NN1Jsi+M3gPzP+v2gCSw/4Jd/A3RtQgvLLwNZwXFnJHPA/2q6/dun3P46r/tk+CNb8R/Gf9n7UtI0HVNZtfC/jX7fqM1snmf2favY3cHnv/wBtHjpl9/wVj/Zytfkf42eCxn+N7r/7CoP+HuX7NkUf7342eB8/9fv/ANhQB9GWEX7t/wDnpvr5N/abi8r/AIKyfs3zf89NI8Sx7/8AthHXTH/grv8As0xOn/F7/B6f9t3/APiK8S8WftafDj9qD/gqB+z1N8PPG2jeLY9LstejvfsUmfs++0+SgD9ALX/j3jq1VWwl/wBDj/3KtUAFFFFABRRRQAUUUUAFFFFAEdVr/on+/VmqeqXcNtFvuPLjjjf53d/9XQB8g/8ABFaLyv2f/iHDv/49/ib4ijf/AL/x19lxRf6Pivjf/gj/AH1nY/Cz4m2aOI3k+KHiXYn/AD0/fwV9g2svm9v3dAFqiiigAooooAKKKKACiiigAooooAKZLx/BT6joA8v+J/7LXw3+NOtx6l4z+HvgvxdfW6eRDNrGgwX8lun9xHnSsCw/YA+Btr9z4J/CeP8A7lCx/wDiK9w8r2FHlewoA8aP7B/wQi+58GPhX/wDwhY//GKfa/sUfB+1k8uL4UfDuCP/AFmyHw1aR/8AoCV7F5XsKJYv3e+gD4z/AOCoHhz4S/sq/sNfEnxV/wAK68DwXcekPYafs0S0jkkurr9wnlvs/wBZHv3/APbOuP8A+CMF/wDDr9qr9gvwprF74G8FXfibQ4/7B1eZ9BtPMuJ4I/8AWP8AJ/y0j2PX0z+2Z8FfDHxt+A3iq28UaNp2uW+l6RdX9rDeQeZHb3SQSbJP+2deS/8ABGr4X+G/BH/BPv4c6lo1hZ2N94k0iC71GaH93JeTp+78x/8AppQB7p/wzd4Aikjf/hAPB8ef+oJaf/EVPqH7PvgO6jj/AOKG8H3GP+oJaf8AxFd/F+9j7U/yvYUAcJafAfwNFb7E8E+E4/8AuEQf/EVqaJ8KvDvhy+S80vw9oem3ccezzrbToIJP++9ldP5XsKfQBDa2vlfWpqKKACiiigAoopQCeACTQAlFPWEnknGaesYXtk0ARxIS+7HFSCEDux/GnUUARTxpDDI4XBVSf0rhPjP8P7P4yfCfxD4XuwZLTX9PnsJ9j/vI/MjkT/0ZWp8Yvjb4S+BPge98QeL/ABHofhrR7NN8t5qd9HaQIPd3OK+Uv+Hgnjb9pXVPsf7Pvw01HxBpUj/vPGfieCTTNDjT/npB/wAt7r/tnQB81/8ABvn+xn4h+GvxN+L3inxRJqM8nhvW5/Celw3M0n+vj/4+p/v/AD+Z+4+ev1YsP+PeP5+lfG/h3w3+1F+zLcXeqxP4D+L+m6hO9/qmiWelpoOoRzv9+SCf/Vz/APbT95XafA7/AIKY/Df4mePk8Ga5JefDn4jSPs/4RXxbH/ZmoXEn/TDf+7n/AN+OgD6e833FPqlFdP5nz+XU/mvFjcnligCaimeb+870+gApksv40+q13/q6AJaXzfcVzHjH4oaH8ObCC717WNI0eC4fy43v72O3jkf/AIG9UvCnxt8LeOtfbSdE8S+HNb1GKH7Q9nYanBcXEcG/Z5hRH/1fmfJQB29Qy37xSbAmKLWXzKgv/wB1Hv8A9tKAH/b0/vx1J/aCf89o6+EP2cpPj3+1bq/xJ1G1+OcvhHTfDXjjWPDtjYW/g7TryO3gtZ/LT9/Ileox/smfHiSQl/2oPEnlyf3PAelf/EUAfTv29f78dH29f78dfLEX7GXxv6n9qXxhiR/4PCGlf/EVHJ+xb8aYo/3X7UvjiP8A7lfTaAPqgX6fxvHRJfp9xJrevk8/sIfGmcfP+1j8VAP9jw9pv/xFQ/8ADAHxg/i/a0+Lmf7iaRpsf/slAH0Z8Y40l+FfjFDNH5cmiXUe/wD7YSV4R/wSD2Rf8E4/hOjzR/u9IeNP+/8AJXP6z/wTh+J2u288Nx+1R8ZJ4LhNk8P2HTf3if3PuVgeCf8Agkv4t+H3g+x0HQf2k/jhoejaWjwWtnps9pbxx/8AfCUAfcH2pIvuPH/33R9vT+/HXx/a/wDBNjxzax/vf2qPj5/wO9g/+IqeX/gm745uY/3v7Tn7QE8g/jTUYI//AEBKAPrn7f03vHUkV+nZ46+N/wDh114tluDNL+1F+0ZIP7ia35dSS/8ABLXxDL/zcz+0h/wDxRJHQB9h/b1/vx0yW/Tu8dfH/wDw601v/o5b9pj/AMK+SvK/21/2BfE/7P37IfxK8eaN+0V+0pPrPhLQbrVrVLnxlPJHI8Ee/wC5QB+in2/59n7uiuU+ClzcX3wt8OXNw7vdXGi2VxPM37ySSTyEz+tFAHcrBnliRUiqF4AxRUV3eR2Ue+Rgo7epoAlpskyQjLsqj3715R+0P+2d4A/Zm0T7d4u8UaXoiyBhBbyB5r27cfwRwJ87H6V896n+0R+0F+2GWtPhN4TT4UeCZm8oeM/G9r5moTj+/aadv3/9/wCgD6g+N/7THgj9nfwk+teMfEuk+HbFf472XY7f7sf33/AV8vv+2z8Yv20ZvsPwK+H8/hnwtJz/AMJ349t3s7O5Tf8AfsbNN8lx0/5abK7j4Nf8Ez/BHgXX4vFHiqbVfip44j5fxD4quft8kb7/ADP3EH+ogj/65x19E2ESRSf6k5oA+Yfhr/wTJ8PXXi+Dxb8WvE+ufGbxrbv58dzrb+Xpdm/9yCyT9wn/AG0319O2Gix6NYR21rHFBaxJ8kMMHlxx/wDAKt/YE8v5EqeKLyo9maAKpimkkjw/l1558ff2ZfA37SvhsaT458K6H4nsdn7tLy1TzLf/AKaI/wDrE/7Z16j5Sf3xUcsXm45xigD44tP2M/i7+zJZoPgx8TrfWdDt/wB2nhLx473dnGn/ADzgvY08+P8A8fq58Pv+Cm2m+FPEEHhj45+D9f8Agv4tkfyI5tS/0jQ9QP8A063sf7v95/002V9afZUi+fyY6xvGXgrSfiP4futK1zR7DWdNvfkms7yBJIpP+APQBP4Z8T6b4k0ZL/T7qO+tbn94k8D+ZG//AANK0vtXnSV8g69/wTV1j4GarJrf7Pvj/Ufhdd/ffw9eD+0/Dd5/sfZX/eQf9sJKq6L/AMFDfHP7PEselftFfDHUfBf/AFNvht31fw3cfvP9Y/l/vLX/ALaUAfZ/nJ7VBLvlj+SuK+F/xy8KfGjwtBrfg/xPo/irSpU/4+bCdJI5P++K66W6SWOP995f+wlAHx1/wUM+KGg694s+Hmg2evaNb6t4f8UefPZ6lJJafJ9hu/uP9ln3/wDfuuI/Zv8AiNpHg79qC++JGp+ItG1Xw5qnhi18NWz6FHd6ncSXr6lv+4mnwfu/79e2/GH4OeOvjB8e9K8QaPNpmg2/w3Rx4d/tOGSeDVNQnj8ueedF+5BHG7omzne/9yvFfgZ8FviT8B7TQLPXvgh4k8T65oeqT3f9saD8Qo49L3zzySef9ledJEj8t/uSb6APv3Rpf9DjfJov4vN/d/8APT5Kzf7aTR/DBvLua3sI4k8ybfJ+7t/996i8M+MLDxvp8F5pupWepWMro6XNtOkkcn/A0oA+Z/8AglN+60/40p/q/L+LXiX/ANK6+tvKT1NfJH/BKyUST/HdFfLx/FfXv/RlfW4/dW++gB32V/Q/990v2V4unNQRX6SybN55p/29f79AEnlewoyP75qP7ev9+Ol+3p5fyPQBJ5SeXjeajli5+R+ajN92ej7VDL1ePigD5h/4KD/Fa/8AAE3w0t9P8T6j4UGq+K/M1C5idBH/AGdawSXd15nyPvj8iF69s+D3xo0L45+CbTxF4av7m+0e9/1Fy9jPaR3H+4k6I+yvkL/go/8Ase/EP9pf47WniXTLK9utD+F/h6DVvD1kt9HHHresPfb7qB0/69IET+5+8/jr7J+Ges3niPwXo15q+jx+HL65tUkn03z47j7G/wDzz3p+7/790AdbFE//AD0o+f2qD7UkX3HqSO6837nFAD/n9q+fv+CosX2r/gnP8cY/+pK1j/0kkr6Fi/1ZrwT/AIKd/wDKO/44J/1I2sf+kNxQB3/wCuvtXwT8FPs2f8U9Y/J/2wjorO/ZVv5NU/Zz8B3P/Px4esZP/IEdFAHo19/qa+Xf+CjujftCaz8O7Wz+BV/oemz/APMRmfy/7Y2f9Ou/9x5n/XSvqWWLzcc4xVX5/wDprQB+eH7FPiL9nj4G/ERbPxxpXiXwX8aNVeTztV+KfGo6xNv/AHn2W9n/ANEkT/Yt6/QeI2s0COhkKSfvEdPM/ef8DrlPjN+z54O/aA8FXGh+NvDul+JtNk/5dr+18zZ/uf3P+AV82x/sM/E39lyae5+A/wAUdQh0m333EHgzxhM+oaPH/wBMEn3+fB/5EoA+yIovKk+tSRbJJK+OtF/4KiW3wf12DQf2gvBHiD4O6rez+Xa6zM/9p+F9Q/64Xqfc/wBySNK+q/DPjXSvF+jWt9pl/bX9nep58M1tN9ojlj/vo6UAdBRVWK/Mv8HNSfakii+egCaim/aU/viq91dfut6UATyypH9+mfak2fIlVPt6RRfOJNn+wkkleM/tOft4fDH9lby7PxNrck+v6j/yD9B0qCS71jUH/wCmECfvKAPZrqL95GHT/vuvIP2oP2wvhd+y/pscPjzX9PtL7VB5dlpMMf2zU9U/2ILVN8kn/fFeLW+oftLftrTSSWscf7O/gC8GyB7ny7/xheJ/f2f6u1/8fkr1f9m//gnx8N/2dNYfW7CxufEfjSb/AI+vFXiGd9T1i7f+/wCc/wBz/tnsoA+ObX9jLx/+0t8eLTx/8IPA2ofsp2kc/mXWvJeyR6h4kgf+/pCfuPL/AOulfSdr+zJ+0/5Wx/2n7f8A8Nlpv/xdfVEUTxT799TeUP79AHypL+yr+0hdeZv/AGopIxJ/c+Hlj/8AF0yT9jz9oeW8jk/4au1jy9nzongCxj/9nr6z+y+8tJ9l/wBuSgD40+I37Fvx4v8AwnqUP/DT/ijUvtFrOn2OHwVpsf2z93/q/nevlP8AYA/4InfH74QeKE8Q6p8Y9Y+GVrJdefJo+gv58l4n/POdN/kJ/uR/89K/XC6sEuk2PzH/ABpTJYvKt9if6uN6APjr/gkn9stdY+P1nd3P26Sz+KmqRyTPD5ckn+rffX2ZN/x718df8EsZPL+KH7S8JfzH/wCFoajJ/wB9xx19iyy/6PQB8+ftn/tVal+zBYeDbqHR7CTRvE2tf2Ve6xqTmPT9CTy/kkndOkcknyb/APppVLxv+0j45+FXwn8FalqnhvR7TxVrFkn9t2H2XUdTj0+68uPfGj2ME/7vzP45K2P2lv2Krb9p/wDt221fxZrNjofiTRY9F1TSoUjkt5I0nkn8xN/3JPn2b69m0XRk0XTrSGKaT92iJ8/7ySTYmygDwT9nX9q3xV8Ytb8R2t/4es4xo2nefB5WmarYSXD/AMEf+nWsEf8A378yuO/Zo/b91j4xfDjxJ451HwxBPpXhi2kg1TRNCSS88QaPqqXUkb2M9r/G/kbJN/8A00r6M+Nnwzl+Kvw81PQRresaH/aKbPtmmz+ReW+x9/yPXN/s+fs2WHwM1nxjrcWpXusa7481RNW1i8uf3f2idLeO1T5E/dp+7hSgDtdc1S/h8DX1/pGlfb9RitXntbCaTyPtD/fSP/YrxD/hefx48uN3+Ceh+ZInmbJvF8f7v/xyvomKLykk+T93Xz7p/wC01qVh+2T4r8K6vq3hfTfAnhvw9Y3bzXJS0uPt11JJsj8538t/3cDvQAWvxp/aBuo/3XwW8Lwf7/i+P/4xVu2+Kvx+37H+D/hcf9zX/wDaK9vh1izurGO5t3jnguPnSaFPMj/77SuU+EXxs0z4v+HtUv7ci3j0rWNQ0Z0f/lpJazyRu/8A45voA4W0+IXxymuo3uvhX4Qgt5HTzn/4SjzJI4/4/k8ivcLCV5fvoY68Mi/aH14ft2R/DRrLSx4cuPCD+IYLxJ5PtnnpPHB5ez/nn89e723+r/CgCavDP+CkX739gf407/8AoStY/wDSGSvc68T/AOCicKXP7B/xihf/AJaeDdY/9JJKANL9i3n9lP4c/P8A8y1Y/wDoiioP2H/3v7I/w1d/9Z/wjVj/AOiKKAPYaKKKAIZYklo+y/u/+WVTUvk/SgDnvEfhLTPFuj3Wm6rptnqum3ieXPbXieZHIn/A6+ZvFf8AwTJtPAWpXXiH4G+K9X+D3iUfObSyf7X4evP9iexk+T/gceyvrbykz86VBdWvmyfJmgD400n9tz4vfsozvbftD/DYvodm+xPHHgNH1PS3T+/Pa/6+D/vivo74MftG+DP2ifDA1vwV4p0jxJYHrJZT+Z9m4+5In8H/AAPZXdfYIZUf7Qkj+ZXzV8dv+CZ3w++J+tT+J/DMmufCz4gXDPs8T+Ebr7BcSSfwedH/AKif/tolAH0jdfuv444/9uvn/wDaA/4KVfDv4E+Jv+EaiutY8ceOJP3cPhjwrZHU9R3/AO3/AAR/9tNlfMfwh8EfF79sz4yfEv4XfEj42a5D4Z+DeqWuk6gnhXSE0S88WJPB5m+6n3yf3H/1eyvtX4BfsofDr9m3QU03wN4Q0vQ7SV/MmuUHmT3b/wC27/vHoA8Bh8F/tOftl3dw/inUY/2ffh7JzBpukTpf+KNQT/pvP/q4P+2f7z/br2b9nT9g74cfstPLc+F/DNu+s3m+S61vUX+16rdu/wB/fPJ+8/8AH69jlsP3m9P9ZJU9ra/u/nSOgCCKLPyOkdP+ynzN/NT+UkXSpPJ+lAEflfu+9PoooAKKKKACq11/qj/v1ZqlqP8AqzQB8ff8Euv3Xxw/ah2fux/ws263/wDfiOvsjyv3dfIv/BNi1SL9oT9p5E/1f/Cxn/8ASSOvrqKX/Y6UAHlJ/cP50RRU/wA33FP8x/7n60AQy2v9+mfZfK+dAcVZkd3H3Cf+AZqHD/3BQBUv7qa1k2J+7j/v1+YngPQdYl/bog8efEHwxrHiPwH8WNX1iTS9E/sue4/sfUdOktILGedNn/LSD7V5byf6v/tpX6fy2n2qTLpJUf8AZcPmb9knmUAcl8QfhBofxf8AB/8AYms2cj6bbujpDDPJb+X/AN8V4r+x7+whpXwbvdb1W/0q5sdbj8Uaxf6W6anPJHHazySeX8m/5/v19PeV5XH/AD0oki7J5lAHyvqlte2v/BWfw/e/2fqL2Nx8Obuw+2GB/s8b/boH2b9n+sr6stf7lVJdLSUfOnmfPvq3H3oAdXj37fUX2r9i/wCKibzH/wAUjqn/AKSSV7F839yvKP24bV7r9jv4ow7I/Ml8Kap/6SSUAUf2CpfN/Y3+GW//AKFex/8ARFFZv/BNi/fVP2E/hPcv/wAvPhTTv/RdFAHvVFFFABRRRQAUUUUAMli875Kq3e+KOPb/AH6s1Wuv3skf+/QB8YfsFB7H/gpJ+2IhxGI9Y0C4T/gdrPvr658R/EXRPBsdpHret6XpL3j+XB9sukt/tD/9M9/36+Q/2LP3X/BUT9sROf3b+FpP++4L+vW/2q/H974J8NwzWPhzRGuYoHz4o8QSQR6P4YR/+W8+998n+xHHv/36APSdU/aG8B2FhcTv428Jxx26Pvd9Xg8uP/x+tfwR490v4h+H7PVtG1Gz1XStQgSeC8tn8y3uIz9x0evgH4QaDpX7PGp/FG5sPHnhPTbuPW7W/S/8SfZLuz8STvBHG+/Y/mQRyTuifu/9XX3F8B9f1vxP8NNHvPEfhuLwlrNxD/pOkwTxzx2b79mEdP4KAO9i/wBWafSxf6s0lABRRRQAUUUUAFUr+RP3m7/ln/fqzTZbXzZKAPh7wj4E/aB/Zr/aH+M2oeDPhv4T8VeGPHniFNZsry58VpYSR/6LHG+9Nj/3K6uX45/tY3T/AOj/AAQ+HcGP45vHn7v/ANEV9ZfZP+mMdH2ZP+eEf/fugD5JuvjT+179xfgz8L+P4/8AhPJP/kWoLr4v/tjeZ8nwo+EcY/2/Gs//AMYr7B+yny87I/8Avio4rVP7kf8A3xQB8dy/FX9tLy/k+F3wbP8Ac/4rKf8A+MUyL4n/ALavl/P8N/gvH/3Nc/8A8RX2XNbf7Ef/AHxRDbf7Ef8A3xQB8b/8J5+2lf8A/MjfA+0/3/Et3J/7JQfFH7bEv3PDHwLj/wC49ff/ABFfZH2X/Yj/AO/dR/Zk/wCeEf8A37oA+P4dZ/bYlj/5AnwHjH/YXvpP/ZKj/tT9tiX/AJhvwHT/AH9Rvv8A4ivsT7Mn/PCP/v3R9mT/AJ4R/wDfugD5GtJf2z5beR3T4Fxyf9fWpUH/AIbP/wCe3wLg/wC2mpSV9exWqf3I/wDvij7L/sR/9+6APkW1i/bMl+/f/AOP/f8A7SqD4jfC/wDa0+J/w31zw3f638D7eDXdPnsJ/JgvvMjSeOSN/v8A+/X2D9l/2I/+/dR/Zk/54R/9+6APNf2R/hBd/s//ALN3gbwTqF3Z3174X0S102ea34jneOPY+yivSvs1FAFqiiigAoopnm+4oAfRTPN9xR5vuKAEqG5/1kf+/U/m+4qjql0lrHI7vHHHH+8d/wDnnQB8hfsgxJ/w9I/a6TqZLXwfJ/5A1OvWv27/AII6z8ff2VPFfhXw7Dp8muapDBHYpefu7fel1HJ8/wD2zSvmb9kr9qX4b3P/AAVU/aIey8deGp4/HFr4WsNF/wBNT/iYXUEepefHH/fkjr9ALD/jzjffQB80ftQ/s9eP/iz8DtV0Gw0f4bR3V7dWL7Esp45NkF9BO/z/AO4j19IWuz7RvRPL+Sr3ySyD55c/79HlJ6mgAlleKP8AdJ+8qTzf3fz0Zj/vio4pU8ySgCaimeb7ijzE/vmgB9FM85Pao49QSXU3ttkgeNPvf8s6AJ6KP+WVFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFMl/1YoAgurpIvnf/AFdcp8QfjH4Y+E+mi88TeIdE8P2kj7IZtSuo7eOT/c31u6rqcNhaTyT+WI408yR3fy44/wDOyvi34B+EtK/4KTftKeI/iv4o0qz1X4Y+F5J/DXgawv7XzLfVHT/j61V0f7/mSJsj/wCmcdAH0Fdft6/Bmxs/Puvi18N4I/8AsNwf/F1har/wU7+AOizxpdfGDwBHJIm/5L7zP/QK66w/Yy+Eun/c+G/gdJD/ABpoMH/xFXr/AOA/wx0a3/0jwl4LtI4/3fz6daR/+yUAecy/8FWf2dYjvf4x+B/+ATyVVl/4Kvfs5Sx/vfjB4Lkj/wB+T/4ivSb/AOEvwr0W7sYbvwx4LtJ9QfyLVH061j+0P/sfJWr/AMM++A/v/wDCH+F/3X9zS4P/AIigD8b/ANlPWv2dvgR/wWK8f/EW7+IXhePwDbWv9peF5vLnkjlurr76R/ufvwfv9/8A10r9H7//AILLfs2aLZRu/wAWdAkjI+RYdPvrh5P++Ia9s1P4S+AdGeBLjw34WgFzN5ECPYwDe/8AcT5P9+r8Xwq8HiT914e0ZJI/+nGP/wCIoA8B/wCHzX7OX/RRT/4S+s//ACLSxf8ABZ/9nKb7nxFk/wDCU1n/AORa+j/+EN0SL7lhbx/7fkp+7qT/AIRLSopP+PC38w/9MI6APnP/AIfF/s+/fi8c6g/+54Q1n/5FqC6/4LF/Af7P/o/ifxBd/wB/7N4N1mT/ANta+nYtBtov9VD5f+4lH2CGGT7kg8ygD5Q/4fSfBm6kkhsP+FiarJGnmf6H4A1mT/2hXo/7Jf7d/gz9tOHxA/gyDxAY/C11Haai+paRJYeXM6eZ5fz/APLT+/8A3Ky/+Cgn7SV7+z78KrbSfCgS7+I3xAuToXhHTnf57i6f78/+5BH5kj/RK6H9i39mW2/ZV+A+jeEre5uL67i33eqX8yf6Rql88nmT3b/9NJJKAPZook+5U1Nt/wDVU6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCOoZZX8zZ1qS6l8uvNv2mf2gdF/Zn+CuueM9fmK2GiWvmJEieZJeO+UjgT+/I8n8FAHiH/BQ3xhf/ABo8U+H/ANnzwdf3EGrfECPz/FF/bbz/AGFoiP8Av3fZ9x7j54E/4HX0j8NPhto3wq8B6HoGg2FtYaN4fsoLCxtoU/494I49iJXg/wDwT8/Z11jwZoesfE7x5ILr4qfFLZqWtO5/5Bdr/wAuumx/3I7eP5P9+vpu1iMUcafu/LjoAk/5Z18a/wDBVrxTq2m+HPC8VrD4vk0LT9QfXdXfRtE+320iWv7yCCeTyZPIfz/Lr7Kll/d47/79fPH/AAUI+DviT4q/AfxF/wAI/rHilJLTT5/+JPokyRya4/7vZHI7/wDslAHxf8VfHmq/EbxZfXOveJNU03UvAdleyaJqXi3S547zwvdJB9rfUn+ypHHJPHHPAmzy/L8uP/npJJX3F+x58XvFvxV+GGs3Xiu90O71bR9XvtFe50qCe3jne1k8iR3Sf7knmb/9X+7r5K8efsW+KviD+0R4xSXw34wg8P8AjRLqC11W5ntLy3jgfw/aWn9/zPMknR0/efu6+qv2LfCGv+HPghrEHiHw5f8AhzVtZ8Raxqsem3k8ckkcM91IUDvA7x9H/wCelAHgd/8AFXxV/wAKf+DMPjfw348u/Eel+P4JLqZ9L/1nz3ezy/7/AO72V71+y/4j1/xR8e/i/ealbeMLDRLnVNLk0S21uCS38uD+zo/P8hJPuR+ej15rp/wT+Kmg/Bv4a+Gh4M8PSSeB9btdTeb+3v3dx5ck7/J+4+T929d/8GvD/jPxF+1/rnjjXPD1voehXHg210m1mttRS8juJ47ueR/4E2fu3T+CgDH/AOCrPjNPCX7Kd3pVrrdx4f1Xxhr2laFZX8N99kks993HJPP5++PZ5cCTv/rP+Wdeu/s4ePH+I3w803UE0rXdKstnl2X9qbPtF5An7tJ/+2mzf/20/wBuvK/25P2Hf+G0PEPh6y1u70xvB+gadqlwlhNB5gfVJ7V7e1n2f884/MeT/f2V6b+yj4P8W+A/gnoGj+N9V0zVfEelWqWk9zYI8dvIkfyJ9/8A3P8Ax+gD0+WXyo6yfEfiOz8OaHd6rqFyLSy0uB7ueZ/9XHGieY8lX7+6+yxb/wDWZr42/bO8Waj+1x8dtG/Zx8L6hc2OlXcCa78Rr+2kMclnpSSfJY7/AOCS7k+R/wDpnQAz9hrw3N+1p8f9c/aZ8RpcHRryF9F+HNncp+70/Sv+W98ifwSTyfx/886+z4v9XsdP9X9ysnwr4a0/wP4f07R9IsI9O03TLZLS1toU8uO3RPuR1vf8s6AE8r2FPoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAhuf9X+FfC//AAUO+CP7QPxo+PngO88FeG/A/iP4e/D9/wC1v7H17V/Ij1jVP3mySRET/VwfJ5f/AE0r7rli83HOMUeV7CgD4ti+JX7bfmf8k3+A8cezy9j69dyVPL4t/bbuo9n/AAhP7PdpJ/z2/te+k/8AHK+yPJf/AJ6Cn/N/foA+O7XS/wBti6vI3l1L9m+xt5P+odqsnl/+P1P/AMIv+2fL5iP4q/Zv8vf8n/Ek1X/4uvr3yn/v0zy/eSgD5FPw+/bJijjSLxn+znBj/qWtVk/9r0XXgP8AbKlsII3+JH7P9pPG/WHwhqsnmJ/4FV9c+UP78lVb+68qP78fl/7dAH54x+Pv2tPFH7U+u/BcfGD4R23iPS9BtfEk9zB4Guo40tZ5JI/3f79/3nyV6rF+zT+1j/Zcds37Q/w/j+T5HT4cyf8AyVXFeDfi94dsf+C3/jLUv7e0P+zb34UaXBDc/bY445J/7Snj8vf/AM9K+8rC6eWzg96APkmX9mn9rGWPP/DS3g+M7P4Ph55f/t1UEX7LX7Vfl/vf2mfDckn+x4Aj/wDj9fYnkv8A89BT/K/25KAPjW6/ZQ/ail8v/jKLS/8AgHgCCP8A9r16R+xn+yC/7MHh7XJtU8Qy+MPHHjDUX1bxFr01r5El5O/3Nn/TOP8AgSvfvKH9+l8pOr0AEUXmx470/wAr2FEXb6U+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFl/dR9xUEsvlfWny/wCrFULy7g062mmun2QQQvO7v/yzRKALkV15snyUSyvgbvMr4h+F+tfGT/gotEPGGi+PNR+C/wAJ7yd49BttK0+C41zXI0/5e5J50eOCOST7ieX/AKuu2k/4J9+M5R8/7UXxwk/3P7N/+RaAPqH+1E8z/XR5/wBuo5ZfNtz/AKuT95/BXyvF/wAE4vFV/J/yc18cMx/9N7GP/wBoUyX/AIJf+IZZPOf9pn46f7f+nWn/AMYoA+Pof+Cagtv+DguS8FhcHwd9l/4WEm+D/R/MfzIPI/65+f8AP/2zr9bLWR5bSDY8eY/9uvkWP/glNdS6h9tb9o346SXcieXv/tG08zZ/zz/1FWLH/glM8Un739of9oGf5P49ej/+MUAfWUss0Ue93jH/AAOof7Vf+/H/AOP18rS/8EobaWP5/j58fJD/AH/+El/+wpg/4JOaP5fz/G/4+SD/ALGiT/4igD62iuv3mzfHIP8Alp8/+rp/2lPM2PXwv8SPCPxD/wCCYtlbeNdN8eeJPib8ILN0/wCEr0jxPOlxqGjwb/nvrWfZ8/l/xo9fbWg6rBr1hBfwPHJBcIk6P/sOm+gDZi/1ZpKZF/qzT6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAjrzP8Aa087/hmf4jfZ3ljn/wCEU1HZsf8A6dJK9MrgP2iY2k+AXj9FQO//AAjGoDZ/26vQBxn/AATdijl/YH+DrokUefCGnfc/5Z/uI69sut8Ue8ZrxP8A4JnSJL/wT/8Ag66P5kf/AAiGnf8AoiOvabqTzbfmgDwf9tv9oqb4W+FtK0PSvFXh/wAJeI/E915Y1XUpo/L0uxg/eXV1sd/n8uP/ANGV5t8aP2wfFV/bfCDW/CWg+NbLQ/Eniy1M7ulpb/25ZPa3H7vZO/mJv/dvU3/BSWGwvr/wHo13qfhu1n1C6d49LufDU+tajriRvG/2W18v7ifckk+f+CvN/G/xQ8L6r8f/ABPZ/FDWPh3oE+l6dpc+lp4h8Lxyap572km/em+TZ/uUAfanhH4iax42+Gq6za6VBY6tcxv5Nhc3aSRRv/tzQeZXxh8Yv+CgHjDxrfeCbrw8+lR2Nr8QLXRrt9K/tXy7ySCee3urV3e18uSPz43j/d19E/sP/ECC6/Y08Ka9e/8ACP6bp1xp737zWcCWGn26b/4E/gr4Y8dfCvxVbWngu28C+OfGfhX4UXHxNR9FvL61gj/tTUdR1W7u/tVlA6f8ekbzvseT/X/foA+4P2c/j54z+NnxS1iN18Mad4c8NQ/Z9RtEgvvtpunTekieekf7vy6+g4ovNjx+7zXyj+xj4i0fwx8Y/GPh3XofFulfFHXEj1PVLDV/Mu7e4SCHyPPtboJ5ckf/AI/+8r6uizFHH/uUAfPv/BUWL7V/wT0+Myb/APmStR/9ESV2v7Ho/wCMU/hzJv3+Z4a0uT7/AP06R1zH/BTb91/wT7+M0m/93/whWqf+kklav7Ckvm/sX/Ct/wDnp4U0v/0kjoA9mi/1ZpKWL/Vmo5JfKuI05/eUAPooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiil85JfuPQAlFFFABRRRQAyX/VisPxHo0PijQ76wnfy7XVLV7R/+me+Py626h8rypB15oA+Df2eP2oIf+Cb3hOD4P8Axo07X9K0Pwt5lv4X8YQ2M9/o+saf5n7hJHgR/Inj+5+8r0qX/gsr+zZ9xPH8cn+3DpF9/wDGK+mtQ0WHVYjDdW1ndQSf8sZk8yqNr8OdHi4/sHw/z/05R0AfMt1/wWf/AGdbWSN38dah5cf3NnhrUpP/AECCs61/4LFfsuxa5fXVr4t1D7dqGz7bNbeDdY8y42fu03/6L/yzr6z/AOEE0r/oD6F/4ApT4vBGlRZCaPocf/blHQB8mWv/AAVn/ZsutE/sqLWPEEmlbPL+zJ4D1ny/++PstPu/+Ctf7OOtW1jHcan4pu47CdLu1R/h1rkn2edI/kk/48v9ZX1nF4Xs4v8AmG6WMf3IPLqQaDCPuWenp/uQUAfLX/D4H4FeXvTVfiLP/ufDnxB/8hUS/wDBYb4ISxfJ/wALMk/7pzrn/wAi19URReVH8ltb/wDfFSfP5vyQ2/H+xQB8L/HH9obXP+CkGh3fwh+Fnhnxho/hDxBBHb+K/G2vaRPpNvZ2L/6+C1hnRJJJ5I96f6vZX2l4E8LWfgPw1Y6Jp6eXY6XDHaWqf8840TYla377zPn8v92/3EqeKLzpN+c0ATxf6s1HLF5sm/8A550+igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGSxebGUf/VyUWtolrbxon+rjp9FABRRRQAUUUUAFFFFADPK9hR5XsKfRQAUUUUAFFFFADPK9hR5XsKfTJe/0oAPK9hT6g+1J5lSeb7igB9FM833FEsqfWgB9FM81PMqTzo/75oASimeb7ijzfcUAPopnm+4o81PM+SgB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMl7/Sn0yXv9KAOY8e+PdE+F3hq71vxHrFnoelWSeZPeXknl28f++9edS/t3/CWLVLuz/4T/R5JNP8A+P5E8z/Q/wB35nz/ANz92j1wX/BXqdtV/YU8a6BDYX9/f+ILQWNr5NrPcRxzefH994/uV+e3xL+IFz4c0P4la3oc3jjRvD/xI8X6BpM9+j30cdxAnmWl9Y/bbr7nmb9kaR0Afqn8Nf2w/h78X/GcGg+GfFVvrOpXFl9vT7NBJ9nkg/56eds8uuu0r4n6TrHji40G31K3n1WztUu57ZH8yS3R3+Ten8FfE3/BJLxl4osI/Hk2r6nql9pul+EPDWpaXok2o/aLPS0ntJ5Hgg/74T569h/4Ja6Ne69+zX/wsjXHM/iz4s6hP4h1SbjzNj/u7WD/AGI4IERESgD3TXPjH4S8N60NM1PxVoenatI/lpZ3N7HHcHf9xNm/fUbfGTQbX4kW/g641e3g8R3Fl9rgs3/1k6b9jlP79fn/AONfhn4i/Yu/a/tvil8U/CXws+IPhn4ieOI4IfE1nZTf2x4Qed44LGNN/wB+COT5P+B19N/8FP8AQRpf7NF58RbCc2PiP4SXUHinS7mH/WB4H/fwb/8AnnPA8kEn+xJQB9I+a/lec/3CnmPXinjv/goP8H/hd4l13SNe8eaXpV/4bn+z6ukySeXp7/u5Pnf/AFafI6V65o1y+s+F7S5/eRyXCJPs/wB+vy2/aq0m5+KvxS/ah8CQf8JDqVjqni61u73QfDFtJcaprGzQ7TyI5H/1cFp5kf7/AMz/AFnyJQB9zX3/AAUR+D+kwWk0vju2FveXUFpBM1rP5ckk7+XB8+z/AJaO9e66fL9qj86vxs8G69D4I/ZPg1jXtB8Yf25408c+E9dfW7a9u7/wv9hTXLTy4LWeeeTZ5ce9Nkn7yv2P0uVJreN/+elAGjRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTbr/VfJ/rKdTJe/wBKAPn39uH4G+If2lvAejeDNLms7GwvNYtb/VL+5gjuI7dLWTz40e1f/X+ZIifJXxNZ/sLfHv4RHVtMh+HuieI7TxHquqXWt694W8SQW+qXkE9086WkCXzxx2Uf7x45PL+fZJJX6ow/8fFWZok2fcX8qAPiP9hH4cfEnwd8ZvGUOp/DG4+GnwlvdHsoNN0G98Q2mpxx3cHmRv5HkSPsjkg8tP3n/POvSf2L/hxr/wCzpe+I/hjf6TdyeDdLvZ9S8Kaws3mR/YrqR5HsX/55yW8nyf7lfRNyoxHwPypn/LV/8/8ALSgD5r8K/sN634v1XQ0+KHxN1X4k6F4X1r/hItO06906C3/0pJJPIed0/wBeke/5P9ytj9sjwFr/AO0Hd+HvhxYaZdweF9cvIb7xVqrvH5EdjBIJDaR/33uOE/3N9e9ooHl4AHzp2p0P3P8AtnQBU+ypa6HBbW/lx+X+7T/lpHHXxvdfs3fFrU/jJ8eprWz8L2nhvx54hgu9IvJtXu7DUI0TTbeDzEe1+5+83/6yvtM9XqWJR9mHA/KgD4I8UfsO/HXXv2dJPh7deJ/CfiPTR4u0vWbV7yef7Zp9rBfW928HnbP3nl7Hr7x0z91bxo/7ySnyqN6cD8qlh+/QBZooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k="]
math
multiple-choice
18
已知函数 $f(x)=\left\{\begin{array}{l}e^{x}, x \leqslant 0 \\ \ln x, x>0\end{array}, g(x)=f(x)+x+a\right.$. 若 $g(x)$ 存在 2 个零点, 则 $a$ 的取值范围是 $(\quad)$
$[-1,0)$
$[0,+\infty)$
$[-1,+\infty)$
$[1,+\infty)$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD9APIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3a/uzY2jXH2eadUI3rCu5gueWA6nA5wMk44BPFSwTw3VvHPBKksMihkdDkMD0INSVhzwTaFcSXtlE8thIxe6tIxkoTyZYx+rIOvUfNkMAblFRwTw3VvHPBKksMihkdDkMD0INSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYc9tNodxJfWEby2MjF7qzQZKE8mWIevdk/i6j5sh9i3uIbu3juLeVJYZFDI6HIYHoQakrEuLebRLiS/sInlspWL3dnGMlSessQ9e7IPvdR82Q4Bt0VFb3MN3bR3FtKksMihkkQ5DA9waloAKKKKACiiigAooooAgvbO21CzltLy3iuLeVdskUqBlYehB4Nef6Hrll4a8IaLq3iCN7NLaKLS4ZJk2vIWZQzc87AEB9wrEAjbnv72yg1G0e1ukZ4HxvQOV3AEHBwRkHGCOhGQcgkV5V8ZfA+q+KI9Me31G2tdMtZoLZLYocmSaZIt5xxgBl49AfWhaf1/XcPI9dorH8LafqOk+GbDTtVu47u7tohE08YIEgHCk55zjGfU81sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBWv4Li4tGS0ujbTghkk2BhkHOGB6qehxg46EHmoNM1P7b5kE8X2e/gwJ7cnOM9GU/xIcHDexBwQQNCs/U9M+2+XPBL9nv4MmC4AzjPVWH8SHAyvsCMEAgA0KKz9M1QXpkt54/s+oQY8+3LZxnoyn+JDg4b2IOCCBoUAYlxbTaNcyX+nxNLaSMXu7OMZOT1ljH97uy/xdR833ta2uYby2jubaVZYZFDI6HIYGpaxLm2n0e5kv9Ohea2lYvd2UYycnrLGP7395f4uo+b7wBt0VFa3UF7ax3NtKssMi7kdTkEVLQAUUUUAFFFFABXP+Mv+QHbf9hXTf/S2GtbUbc3VhNCHuFDDn7M+yRh1Kq2RtJ6ZBBGeCDyOAN9K/wAPixS/nuLXXrWM2dxIHuIit/EVhLu2HbaVwxbBDD5iOaF/X9f1+Vx/1/X9fmek0VQ0zULm/WQ3Oj3unFCNounhYv8ATypH6e+OtX6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKGp6YL4RzQy/Z76DJt7gDJXPVWH8SHAyvfAIwQCE0zUzeGS2uYvs+oQY8+DORz0dT/EhwcH2IOCCBoVQ1PTBfCOaGX7PfQZNvcAZK56qw/iQ4GV74BGCAQAX6KztM1M3bSWt1D9m1CADzoN2Rg9HQ/xIccH6ggEEVo0AYt1az6RdSajp0TS28jb7uzQZLHvJGP7/AKr/ABf733tW1uoL21jubaVZYZF3I6nIIqWsW6tLjSbqTUdNjaWCRt93ZL/Ge8kfo/qOjfXkgG1RUNpdwX1rHc20qywyDKuvf/PpU1ABRRRQBWv7aa7tGhgvrixkJGJ7dYy689hIrLz05Fc3r2mRaX4ahiSWWeSTWdOlmnmILyub2DLNgAZ4AwAAAAAAK62uf8Zf8gO2/wCwrpv/AKWw0AdBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUNT0xb9Y5YpTb3sBLW9woyUJ6gj+JTgZXv7EAhumam120lrdRC31CADzoc5BB6Oh/iQ44P1BwQRWjVDU9MXUFjkjla3vICWguUGShPUEfxKcDKnr7EAgAv0VnaZqbXTyWd5GLfUYADLCDlWHZ0PdD69uhwRWjQBi3dpPpV1JqWmxNLFId13Zp/y09ZIx/f9R/F9cVqWl3BfWsdzayrLDIMq69/8+napqxbuzn0u6k1LTIjIkh3XdmvHm/9NE7CT9GHB5wQAbVFQ2l3Bf2sd1ayiSGQZVh+oI6gg8EHkEYqagCtfz3EFqzWlqLm4JCxxs+xST3ZsHao7nBPoCcCuS1PWJtX8Nn7XZfY7u016wtp4hJ5iblvLchkfA3KVZTyAeeldPrN3fWWmSS6dp0t/ddEhjdF5P8AEd7KMD0zk1yWqLdjwcsX9nT6dN/a+nlXvjFI8sjXkJaRlicjBY9NwPGPlGKF1B9DvKKzNNg1yKZzqmo6ddRFcKtrYPAwb1JaZ8j2wPrWnQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFHU9MXUEjdJDb3kBLW9yoy0Z7jHdT0K9/YgER6ZqbXUklneRrb6jAAZYQchl7Oh/iQ+vY8HBFaVUdT0xNRjjZZGgu4CWt7lB80Tf1B6FTwRQBeorN0zU3uJJLK9jWDUYRmSMH5XXoJEPdT+YPB99KgDGu7S40y7k1LTIjKsh3XdkuB5v+2meBIB+DDg84I0rO8t7+0jurWQSQyDhgMexBB5BByCDyCMGp6xryzuNOu5NT0yMyeYc3dmpx5/+2nYSAfgwGD2IANmuf8AGX/IDtv+wrpv/pbDWzZ3lvf2kd1ayCSGQcMBj2IIPIIOQQeQRg1jeMv+QHbf9hXTf/S2GgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiistPEOlzamNOt7oXN1uKuluplERH/AD0ZQQn/AAIigDUooooAKKKKACiiigAooooAKKKKAKOp6YmoRxssjQXUJ329wg+aJv6g9Cp4IqPTdTe4lexvolt9RhXc8YOVkXp5kZ7r+oPB7E6VUtS02PUYk/eNDcwtvguI/vxN6j1B6EHgjg0AXaKzdN1KSeV7G+jWHUYV3Oi/clXp5keeqn06qeD2J0qAMHVkOhG5121eNIFUyX9vI4RJVA5cEkBZAB1PDAYOOGGP4o8UaHd+D9M1OPVbRbO71KwkgllkEe9Vu4Wc4bB+UAk+gBzjFdVqmp2Oj6dNfajdRWtrEuXllbAH+J9u9fK/ijwnreveH9B8QaXZxz6c9tBZbbeZXYTZWMF1HQsxVe54AbB4oXX+u4H1kjrIiujBkYZVlOQR6inVxvwq0+60v4caTaXtwJp0RiwDZ8rLE+Wc9CvQjsQR2rsqACiiigAooooAKKKKACiis/Utd0zSCi3t5HHLJ/q4Vy8sn+5GuWb8AaANCiuf/tTXdR40zRxaRHpc6o+0/VYUyx+jFDR/wjMl782t6teahnrBG32e3+mxDlh7OzUAWL3xRpFlctaG6+0Xq9bS0Rp5h9UQEr9Tge9V/t3iTUf+PLS7fTIj0m1GTzJPqIYzj85Afb02LKws9NtltrG1gtYF+7FBGEUfgOKsUAc//wAIst5zrepXmqZ6wu/lW/08pMBh7OWrbtrW3srdLe1giggQYSOJAqqPYDgVLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRWZqPiHR9JkEV9qNtDM33YS4Mjf7qD5j+Aql/b2pX/Gj6HcMp6XOok2kf/fJBkP0KAe9AGnqWmR6jEn7x4LmFt8FxHjfE3qM9QehB4I4NYFp4wkvJ30qztor3WIiyyGKUC2AGAZPM54yQCgDMp4Ixhjc/4R241L5tf1J7xD1s7dfJtvoygln+jMQf7orQvNGtbmzhghUWjW53WskChTAwGAVHTGOCOhGQeKAILHQ9l2uoancG+1Fc7JGXbHBnqIkydv1JLHuccVW8Zf8AIDtv+wrpv/pbDV3TdSklmawv0SHUYl3Mq/cmTp5kee3qOqng9iaXjL/kB23/AGFdN/8AS2GgCxe2M9jdvqmlR7pHwbq0BAFyAMbhngSAdD0YDB7FdCyvbfUbRLm2ffE+RyCCpBwVIPIIOQQeQRirFY97ZXFldvqmlpvlfBurQEAXIAxuGeBIB0PQgbT2KgGxRVexvrfUbRLm2fdG2QQQQysDgqwPIYHIIPIIqxQAUUVjXniBBdPYaXbtqWoIcPHG22OE/wDTWTkJ9OW9FNAGzWFL4otpZXt9Ht5tWuFO1vsuPKQ9w8pwgx3AJb2pn/CPT6p8/iK7+1qf+XGEGO1X2Zc5l/4Gdp6hRW7FFHBEkUMaRxoNqoi4Cj0AHSgDC/svW9T51TVPsUJ62mmEqcejTsNx+qBDWjpuiabpAf7DZxwvJ/rJcbpJD6u5yzH3JNX6KACiiigAooooAKKKKACiiigBD2ozVHU9HttWWMXMl6nlklfst9NbE59TE65/HNc5ffC3wjqbl9Qsby7c9Wn1S6kJ+uZPYflQBeh8ZaVHfavBqOp6dZpZXawRtNcqm9TBFJuO4+sjD8Kk/wCE20B/+Pe8kvD/ANOVtLc/+i1asbRvA/gUT3KaHJKJbeTbcLY63cZjfphwkvDcY554ra/4Q7Sx/wAvWuf+D29/+O0AJ/wk083/AB5+G9auM9C0UcA/HzXU/oaPt/im44h0Owtgf4rvUCWH/AUjIP8A30KP+EN0v/n61z/we3v/AMdpf+EO0zOftWt/+D29/wDjtAGdoknijxDoGnanPrNlYpe2sVz5dlYZdN6hsb5HYHGf7tXx4StZz/xMtR1XUT3E94yI31ji2If++ao6X4e8KXKyWek6rezLZYheG18Q3TeRjgIVWb5cYIx7e1aH/CHaX/z9a5/4Pb3/AOO0AaWnaPpmkRlNN060s1b7wt4VTP1wOai8RalJo3hjVtVijWSSys5rhEfoxRCwB9uKo/8ACG6X/wA/Wuf+D29/+PVXvvCHh9bN01C81UWsuIXW41682PvO0KczYOScY75xQB1FFc//AMIbpf8Az9a5/wCD29/+PUf8Ibpf/P1rn/g9vf8A49QBp6lpkOpQqrs0U8Tb4LiPAeF/7yn9CDwQSCCDXM+INSlk0qDT9QRItRi1PTmIXhJ0+2wDzI89uRleqk4OQQW0JfCWjwQvNNfa1HFGpZ3fX70KoHJJJm4Fcj4k0Pwtrnh+KfR9cu72WHU7GNLmDXp7r7Oz3MSbhmVlVtrHBxkdRQB6jRXF6d4fsHuG07UZ9ai1GNd3y67fBJ0HHmR5m6cjK9VJwcghjqf8Ibpf/P1rn/g9vf8A49QBZvrG4tLt9U0tN07Y+02uQFuVAxkZ4EgHRuhA2txgrBd+JraJdGnheP7Je3ckE8kuUMISCaVtwP3WBiwQenNMPg7SlUs13rgAGSTr17x/5Gri7jwfpms38N/ZvdvbbjcwWNxrFz5uo7QFM6lpcqVBUI3cHnAYEAHa/wCneI+VefT9IPQjMdxdD1B6xJ+Tn/Z77NnZ22n2qWtnBHBBGMLHGoUD8K52w8OaJqVotzbXmulCSCG1y+DIw4KsDLkMDwQas/8ACG6X/wA/Wuf+D29/+PUAdBWbPqUkXiex0oRqY7mzubhnPUGN4FAHsfNP5CqP/CG6X/z9a5/4Pb3/AOPVnx+HfCl1rL2sWrX02qWsZDwr4iu2nhRtpII87coOEPvhfagDsKK5/wD4Q3S/+frXP/B7e/8Ax6j/AIQ3S/8An61z/wAHt7/8eoA6Cs3TNSkvtQ1q2eNVWwvFt0I6sDBDLk++ZSPoBVH/AIQ3S/8An61z/wAHt7/8eqjeeG/C2iqbi91TULAXMoBkm8Q3cXmybQByZhubaoHrhR6UAddWVrPiTR/D8lour38VmLtzHC8x2oWAzgt0X8cVU/4Q3S/+frXP/B7e/wDx6uL+IXwkfxVFplrpeoXMKRzM9xLf6hcXQVcY+RJHYbvy+tAHqaOsiK6MGRhlWU5BHqKWuH0bwTD4G8GXVjpevahDKF3i6mdXVXHQLGwKKpPBAG4565wa2/Ct7cappcep3N95kt3EkxtFVVS1yPujgOT6ljyQSAo4AgN2iiigAqhNf3Kamlmuj3skDj5r1HhESdeoMgk/JT1q/SMoZSrAFSMEHoaAOV02CWx+IF3byRWrQvpsf2VrePy/s8SSECN1yc5LZDcD5WAAwc9XVLTdG0vRoni0rTbOxjdtzpawLEGPTJCgZNXaOiX9f1/w4dW/6/r/AIYKz7i9uP7RWx/se+lt5Fw14jwiJMg8EGQSfkp61oU2SNJonilRXjcFWVhkMD1BHcUAc9p9pZzeJ/7Vt0ihhitP7PttuF89Q25to7ouMD/gR6YJ6OsvTfDWg6PcNcaXomm2M7LsMlraJExXg4yoBxwOPatSjpYOpDdTPb2sksVtLcui5WGIqHc+g3ELn6kVyfi7bqfhS2u73SZLW4h1K0aKO7ETyRH7TGu4FGYDIJHBzgmuyqnqWkabrMCwapp9pfQq29Y7qFZVDdMgMCM8mjZp+gFyikRFjRURQqqMBQMAD0paAON1Rf7Y+JNjpF+AdOtLA38cD/duZ/M2gkfxCMDOOxZT2Fc/rci6z4qn1jT9rabbT6XYNcp925m/tCFjgjhgg4z2LEdjXoupaNpesxJFqum2d9GjbkS6gWUKfUBgcGsnxbFHB4es4YY1jij1PTFREGAoF5AAAB0FC0t5X/H/AIGn3A9b/L8P+Dqa+o6dDqVuqOzxyxtvhnjOHhcdGU/iRg8EEgggkVX07UZmuG07UVSPUI13AqMJcIOPMTP1GV6qT3BBOpWN4oNtFoct1OJPOtyHtWhIEomPyoEJ/iYkLg8HdgggkUAQ6qTrmonQoifskYV9Scd0PKwD3fq3onH8YNVb20toviTolxHbxJPJp12jyqgDMqtDtBPUgZOB2yal8Lebp0b6XqgVdYkd7qaVTlLoseXQ+i/Ku3qoCjptJ1ptG0u41OLU59Ns5b+EbYrp4FaVBzwrkZHU9D3NC3T/AK2ArX9hcW122qaWoNwQPtFtnC3Sj36CQDo3foeMFb1hf2+pWi3NsxKEkEMMMjDgqwPIYHgg1ZrIv9Pnt7ttU0pR9qIHn25O1bpR69g4HRvwPGCADXrmnsrK58SadNCkUUOktKBL03zSjBjB79SzerbepzjcsL+DUrVbi3Y7clWVhtZGHBVh1DA9RVK18LeHrG/F/aaDpdveAlhcRWcaSAnIJ3AZ5yfzo6h0NaiiigArn/GNjNd+GdRa0eziuPssqGS7j3L5RGXTORt3YHPIGASDiugqjfaLpWqTwT6hplldzW5zDJcQLI0RyDlSQSOQOnpSaurDTs7jtImW50axnW3a3WS3jcQucmMFQdpPqOlXKKKqTu7kpWViGe0trpoWuLeKYwSCWIyIG8twCAy56HBIyPU020sbSwSRLO1gt0kkaV1hjCBnbqxx1J7mrFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQ3U0lvaSzRW8lzIiFlhjKhnI7AsQMn3IFcnqWqnXPAejaqYPIN3faXN5W/ds3XkBxnAz+Vb0Vneaet5cvqOo6puUtHayLbrtPJ2oVRPp87H6965JrC4h+Fei6Zq2ntBLFeaZbT285jkDAXkCn7rMpU/Xp1FC6/L9QPQa5+7/4mvi60shzb6Wn2yf0MzhkiX8B5jEdjsNXNO8PaDokklxpmj6bp8jJteS2tkiJXrglQOOKqeEVM+kSatICJdVna956+W2BEPwiWMfXNAGpqOnQ6lbiKUujo2+GaM4eJx0ZT68n2IJBBBIqtp2ozfaDpupBE1BF3KyjCXKD+NPzG5eqk9wQTqVU1HTYNTtxFNuVkbfFNGcPE46Mp7Hk+xBIOQSKALdFZWnajMLn+zNTCpfKpZJFGEuUH8aehHG5eoJ7ggnVoAyb+wngum1TS1H2rAE9uTtW6UdAT0DgdG/A8YIuafqFvqdqLi3ZsZKujqVeNh1VlPII9KtVk6hp88V0dU0sKLwACaEnCXSDsfRh/C34HjoAa1FVdP1CDUrUTwFgASro4w8bjqrDsR6VaoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8AGX/IDtv+wrpv/pbDXQVz/jL/AJAdt/2FdN/9LYaAHeMJH/4R2WziYrNqEkdihU8jzWCMR9FLN/wGtyONIYkijUJGihVUDgAdBWDqX+meMtFs+qWkc1+/+8AIkH4+bIf+A10FABRRRQBU1HTodStvJmLIysHiljOHicdGU9iPyIJByCRVXT9RmW6/szUwqXyqWjkUYjuUH8SehHG5eo9xgnVqrqGnwala+RPuUhg8ciHDxOOjKexH+IOQSKALVFZWn6hOl1/Zmp7VvQpaOVRhLpB/Evow/iXt7gg1q0AZOoafcR3R1PS9i3mAJoWOEulHRWPZh2bt0ORVzT9Qg1K18+DcpDFJI3GHicdVYdiP8CMgg1arK1DT50uv7T0zat6FCyRMcJdIP4W9GH8LdvcEigDVoqrp+oQala+fBuUhikkbjDxOOqsOxH+BGQQatUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV729t9OtHublmWNMfdRnZieAFVQSxJ4AAJJ6Vy3iLXdM1PwjHqFtdL9lh1ewWZpVMRhZL2HcHVwChGOQwGK0rzXZdGtbq/wDEkOmWNjC37iVL4yNIxyACHjQKSP8AaPU84Ga52S40278Lvc2F/aXstxr2nz3UlnIJIlka8t/kDLwdqhR69zjNC1B6Gl4c1zSdd8Z67cWGqWV20UNvbRrBcJISiguzgA/d3Tbc9MrjtXX1z/g399oBvzydQuZ7wH1R5GMf/kPYPwroKACiiigAooooAq6hp8GpWvkT7lIYPHIhw8TjoynsR/iDkEiqen6hcRXQ0zVCgvMEwzKu1LpR1Kjsw7r26jI6a1VdQ0+DUrUwThgAQyOhw8bjoynsR60AWqKydP1CeK6Gl6oVF4ATDMBhLpB3How/iX8Rx01qAMrUNOmW6/tPTCqX6qFkjY4S5QfwP6H0bqPcEg2tO1GHUrbzoQyMrFJYpBh4nHVWHYj8iCCMgg1brK1HTphc/wBp6YVS+VQrxscJcoP4H9COdrdQT3BIIBq0VU07UYNTtzLCHR0bZLDIMPE46qw7HkexBBBIINW6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK53xsgl8PQxkkBtU05SVOCM3kPSuirM17TZdV06K3hdFZL20uCXzjbFcRysOO5CED3xQBcsrODT7C3srZNlvbxLFEufuqoAA/IVPRRQAUUUUAFFFFABRRRQBV1DT7fU7U29ypIyGR1O1o2HRlPUMOxFU7C/ngul0vVGH2rBMFwBtW6UdSB0DgdV/EcZA1qrX9hBqVq1vcKduQysp2sjDkMp6hgehoAs0VkWGoT292ul6oR9qIPkXAXal0o9OwcDqv4jjIGvQBl6jp032galppRNQRdrKxwlyg/gf8ztbqpPcEg2dO1GHUrcyxB0dG2TQyDDxOOqsPXkexBBBIINW6zrzTGe/i1CykEF2uElJGVnjz9xx7ZJU9VPsSCAaNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBWv7C31K0a2uVJQkEFThkYchlI5DA8giqNhf3FtdrpeqMDcEH7Pc4wt0o9ugkA6r36jjIXXqtf2FvqVo1tcqShIIKnDIw5DKRyGB5BFAFmisixv7i1u00vVXDTtn7NdAbVuQBkgjosgHJXoR8y8ZC69ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe+sbfUbR7a5TdG2CCCQysDkMpHIYHBBHIIqhY31xaXaaXqj7p2z9musALcqBnBxwJAOq9CBuXjIXXqK5tYLuIR3ESyIGVwGHRlOQR6EEA5oAlooooAKKKKAP/2Q=="]
math
multiple-choice
19
设 $a \neq 0$, 若 $x=a$ 为函数 $f(x)=a(x-a)^{2}(x-b)$ 的极大值点, 则()
$a<b$
$a>b$
$a b<a^{2}$
$a b>a^{2}$
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADUAYwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigDl7bxzYXHjmXwobW7ivEgMwklTargEfd7nrnNXfDHiSHxPp9xdQ2lxa+RcyWzx3C4bchwT9K878Sfbbb9oHSZbG1aeWXTGXA6Jyw3N6KDjNeq6dYpp1msCEs2S8jnq7scsx+pJNEfhTfn+YPdr0/ItVmar4g0zRJrKLULpYGvZfJg3dGfGce1adfLnx08TPc/EaG1t52aLSlT5OgWXO4/XjbQB9R0VkeFdZHiHwtpurKpX7VArkH16H9Qa16ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH0XQRpbPc3V3JqGoyqElvJlVWKjooAGAoz0/Ekmtiiim3cErCEEqQDg44PpXzv4u+D4XxTpk+pa3Ncz65qjRSOkQXYhUsCPcYx6V9E1w3jz/AJGTwR/2F/8A2m1IDQ8AeFLjwZ4aGjz35vVjmdonxjahPAxXU0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBIAJJwBQAUVS0zVbLWLd7ixmWaJZGjLD+8pwau0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcN48/5GTwR/2F//AGm1dzXDePP+Rk8Ef9hf/wBptQB3NFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVLV5TBot/KvVLeRh+Cmrtcb8VL+bTfhvrE8DbZDDsBHucGgB3wugSH4c6PIvWeLz3PqzEk12Fc18PrR7H4f6HbSHLJaID+VdLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw3jz/kZPBH/YX/APabV3NcN48/5GTwR/2F/wD2m1AHc0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcP8WhHJ8P7uCT/lvJFEB6kuK7iuC+I4+06h4U00/cu9UUMD0IUbv6UAdrYQi3062hUYCRKoH0AqxR0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4bx5/yMngj/ALC//tNq7muG8ef8jJ4I/wCwv/7TagDuaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuA8bbrnx94JtkHzQ3j3DH/AGdhWu/rhb4C5+MmmI3K2+mSOPqWFAHdUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcN48/5GTwR/wBhf/2m1dzXDePf+Rk8Ef8AYX/9ptQB3NFFFABRRRQAUUUUAFFFFABWdrOuafoFl9q1CcRoWCIoGWkY9FUdya0a8e8X6qE+N2kQanDPLZ2dk1xZwRxF/NnOeePTA5PApX1SH0bO90nxvpOsa/Lolut0l/DH5k0csJXyx6Mex9q6SvIvgzcnWNT8S6/cRSG7vbsguIiERF4ChjwT06enOK9dqui9CerCiiikMKKKKACqupXg07TLq9KbxbxNIV3BcgDJ5PSrVcB8YdZk03wJNZ2xzeapItlCo6ncef04/Gple2m442vqanw/8WXXjTQJNXnsFs4XndLdQ+4ui8bj+Ofyrq68Q0jQD4W+LfhbRtGu7qXytMZ9TVpSUC7SASvRcnbwPUV7fWjtuv6toSr7P+rhXCWMgvPjLqLoCVtNNSNj6MWzXd1wPgb95448dSvy6ahHGp9F8sHFSM76iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAx/+Er8P/8AQZsf+/y0f8JX4f8A+gzY/wDf5ag/4Qfwv/0AbD/vyKP+EH8L/wDQBsP+/IoAn/4Svw//ANBmx/7/AC0f8JX4f/6DNj/3+WoP+EH8L/8AQBsP+/Io/wCEH8L/APQBsP8AvyKAJ/8AhK/D/wD0GbH/AL/LR/wlfh//AKDNj/3+WoP+EH8L/wDQBsP+/Io/4Qfwv/0AbD/vyKAJ/wDhK/D/AP0GbH/v8tH/AAlfh/8A6DNj/wB/lqD/AIQfwv8A9AGw/wC/Io/4Qfwv/wBAGw/78igCf/hK/D//AEGbH/v8tH/CV+H/APoM2P8A3+WoP+EH8L/9AGw/78ij/hB/C/8A0AbD/vyKAJ/+Er8P/wDQZsf+/wCtef8AxD8ZeHo/EXg9v7Vt5Bb6kJ5TG+7Ym0jJx7mu5/4Qfwv/ANAGw/78ivP/AIg+APDLeIfCSR6XDAt3qIgnEI2702lsHHuKAPRh4s8PEAjWrHB/6bLS/wDCV+H/APoM2P8A3+Wq48DeFlAA0GwwOP8AUil/4Qfwv/0AbD/vyKAJ/wDhK/D/AP0GbH/v8tH/AAlfh/8A6DNj/wB/lqD/AIQfwv8A9AGw/wC/Io/4Qfwv/wBAGw/78igCf/hK/D//AEGbH/v8tH/CV+H/APoM2P8A3+WoP+EH8L/9AGw/78ij/hB/C/8A0AbD/vyKAJ/+Er8P/wDQZsf+/wAtIfFnh4ddasf+/wCtQ/8ACD+F/wDoA2H/AH5Fcx4hk8AeHrtNPOhW19qsn+rsLO2Ekp4J5HYcdTQB13/CWeH/APoNWP8A3/Wj/hK/D/8A0GbH/v8ArXmcnw01TxbHjUdM0bw/YOqssNrCJJz3+Zj90j2yK6DTPgj4H011c6a90wAz9olLAn1xQB1n/CV+H/8AoM2P/f8AWj/hK/D4/wCYzY/9/wBa5LXPgp4M1eFvJ0/7BPj5ZLZiAD6kdDXNpo9v4DlitfFPhvT7/RQQkerW9uN0Xp5q9h70Aeo/8JZ4f/6DNj/3/Wj/AISvw/8A9Bmx/wC/y1RtPCfg6/tIrq00fTZreVQ0ciRAqwPcGp/+EH8L/wDQBsP+/IoAn/4Svw//ANBmx/7/AC0f8JX4f/6DNj/3+WoP+EH8L/8AQBsP+/Io/wCEH8L/APQBsP8AvyKAJ/8AhLPD/wD0GbH/AL/rXPeJYvB/im4024uvEEcFxp8pltpLe5jyre4YMp6DtW1/wg/hf/oA2H/fkUh8DeFiCP7BsOev7kUAZmhyeDdBnurqHWra4v71t1ze3NyrTTHsCRgADoAAAPStv/hLPD//AEGbH/v+tZlh8NPB+miUQaDaHzGLHzF3Y9hnoKuf8IP4X/6ANh/35FAEr+LfD6Rs39s2PAJ/1y1w/wAMNf0SPTNVv7nWbMXF/qEkrhpQCADhevtiui17wp4U03Qb+9fQrALDA7E+UBjisn4eeBtB/wCEE0uS90S0e5ljMjtJECTknH6YoA67/hK/D4/5jNj/AN/1o/4Svw//ANBmx/7/AC1B/wAIP4W/6ANh/wB+RR/wg/hf/oA2H/fkUAT/APCV+H/+gzY/9/lo/wCEr8P/APQZsf8Av8tQf8IP4X/6ANh/35FH/CD+F/8AoA2H/fkUAT/8JX4f/wCgzY/9/lo/4Svw/wD9Bmx/7/LUH/CD+F/+gDYf9+RR/wAIP4X/AOgDYf8AfkUAT/8ACV+H/wDoM2P/AH+Wj/hK/D//AEGbH/v8tQf8IP4X/wCgDYf9+RR/wg/hf/oA2H/fkUAcL8Rfi6/hHUNKfSDp2p2c4f7RGJf3gIxjBB46+h6VJoHx98J6pEi6iZtMuWbbskQuv13DgD61T+I/wgk8TXulx+H7XTdOtIt/2mXbhyTjGABzjB796XQf2evDlim7V7i41GbIIw3loPbA60Aes2d7bahaR3VnPHPBIMpJG2QR9anqrp2m2ekWEVjYW8dvbRDCRoMAVaoAKKKKACiiigAooooAKKKKACiiigAooooAhu7uCws5ru6lWK3hQvJIxwFUDJNcH4Y8S6x8RZLy+065k0bw/BL5VvNFEj3N0w6tmRWRU5HG0nP8Q5FL8akvH+F2pizV25QyhOvlhufw6VD4R1fSvBvwU0rUZZoxClkJAFPMkrclB6sWJFJPSTfQbWyXUT4f+OL/AFTxXr3hPVplu7nS5H8m9WIRmaMPj5wPlDDIHAAq949OPEngj/sL/wDtNqxPg34S1DT4tS8U61G0WpazIZBEwwY0LFufQknp6AVt+Pf+Rk8Ef9hf/wBptVNWST3tr6k3u21tfQ7qiiikMKKKKACmvIkUbSSMFRRksxwAKZc3MNnbS3NxIsUMSlndjgKB3Neblb/4p3J+aWy8IRsRwSsl+Qf0T+dAFm48Tax45uZ9M8HsbPT4pPLutbkHp1WAd29zxXS+GfBuj+FLZk0+FmnkO6a6nbfNM3cs39Bge1a9jY2um2UVnZwJDbxKFSNBgAVYoAKKKKACmSxRzxNFNGskbjDKwyCPcU+igDzW8sLv4Y3j6po8clx4Xnk3X1jks1lnrLEB/D6r+Veh2V7bajZQ3lpMs1vMoeORDkMDUzosiMjqGRhhlYZBHoa8wcT/AAp1zzV3v4Lv5cMvJ/s6Vj1/65k5z6E/mAeoUUyGaO4hSaGRZInUMjqchgehFPoAKKKKAOX8FeIrnxHbarNcoq/ZdRltowox8q4x/OuoqtZ6faaesq2lvHCJZDLIEGNznqT71ZoA474pXKQ/DvVoDnzLuL7NEB1LucCuj0aBrXQtPt3+/FbRo31CgVyHxDdLzV/CujAlpLjUkmdB/wA805J/A4rvaACiiigAooooAKKKKACiiigAooooAKK8h+KN3q3hPxNoXiO21e5Ni1x5U9pJJ+7UHvgYyPrnpXeaDoZsdWvdTOtXl79tjRjBNJlIvdR2BzQtVcHo7HRUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA10WRCjqGVhgqRkEVi2vg3w3ZTxz22iWMUkRLIVhHykggkfmfzrcooAK4Xx6M+JPBH/YX/APabV3VcN48/5GTwR/2F/wD2m1AHc0UUUAFMlljgheWV1SNAWZmOAAO5p9eaapPL8TNek0KxldPC9k3/ABMbqM4+1SDpCh9OhJ/yQAtzL8VdSNw/mxeD7SQrHGcq2oSA/ePP+rHb1/l6RDDHbwpDDGscaDaqKMAD0FNtraCztora2iSKCJQkcaDAUDoAKloAKKKKACiiigAooooAKiubaG7tpLe4iSWGRSro4yGB7EVLRQB5pC918K7sW87SXHg2d8RTHc76axP3W65jPY9ifz9HgniuoI54JFkikUMjochge4NLNDHcQvDMiyRSKVdGGQwPUGvNm0rWPhpdPc6IkmoeFmYvPp/3pbXPVovVfagD0yis3RNe0zxFYLe6ZdJPCeuOGU+jDqD7GtKgDkPAGqanqtprL6o7s8OqTQw71xiMBcAe3Jrr6aqImdiquTk4GMn1rK8Ta/beGdAutUuj8sS/Ig6yOeFUe5PFAHMwlte+L8kyKBB4ftDCzf3pJgDj8AK72uQ+HmiXGmaFJqGogf2pq0pvLliSWG7lUOf7oOPauvoAKKKKACiiigAooooAKKKKACiiigDj7n4caRfeHrzR72e8ukuWZvPml3SRZbcAnGFAJ6Yra8PaBB4d0qKxhuLi52KAZ7l98j44GT9OwrWop33FYKKKKQwooooAKKKKACiiigAooooAKKKKACiiigArhvHn/IyeCP8AsL/+02rua4bx5/yMngj/ALC//tNqAO5oorC8W+JrfwpoE2ozL5spIjt4B1mlP3UH1NAGF421m9v9Rg8FaBKY9Uvo/Murlf8Al0tc4Z+v3icAD3rqdC0Sx8OaLbaVp0QjtrddqjufUn1JrD8B+HLrR9Nm1DWJBPrupv597N6f3UHHAUYH1zXW0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcPrfgSRNRbW/Cl2NK1bB3oB+4uPZ19feq1t8TBo2LXxvp02i3IyPtIQyW0pH91hk5PpivQaa8aSLtdFYejDNAHjfgz4q6PaWOrJPfXWqX02qSGztYImaWWNsbdoPbOf8K6fSfDuseKNZtvEPi6NIIrf57DSEbKxE/xy/3n9u1dzFaW0BJit4oyeSUQDNTUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw3jz/kZPBH/AGF//abV3NcN48/5GTwR/wBhf/2m1AHcO6xozuwVVGSScACvOdGhbx94vbxHcjdoemOYtNiYcSSg/NKfoRxVrx1ql1quoWvgvRZcXl6Q1/Iuf9Htv4snHBboK7LTNOttI0230+zjEdvboERfQCgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeYfGHWf+EffwrqnlGX7PqZYRr1Y+W2B+den14d4p16TxV8WvD1gkPm6BY6iITKQCktwASQPXA/rQB3/w/wBBurOyn1zWBnW9VPm3BOcxp/DGM9AK7KiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKZLKkMTyyuqRopZmY4AA6k0Acp4/wDENxpOlQadpnzazq0v2SzAx8jMOXOew/wrm9U8Pw+Fj8PNJtz5nk6r+8kPWRyjFmPrzV/wWjeLfEt743uPmsxutNIRv4YwcO/1ZlOPauo1zw8mtajot287RHTLr7SqgZ3naRg/nQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVPVtPh1bR73TrkuILqB4ZNhw21gQcH6GiigCSxs4NOsLeytYxHbwRrHGg7KBgVYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k="]
math
multiple-choice
20
右图是由圆柱与圆雉组合而成的几何体的三视图,则该几何体的表面积为()
$20\pi$
$24\pi$
$28\pi$
$32\pi$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCACxAKADASIAAhEBAxEB/8QAGgABAQEBAQEBAAAAAAAAAAAAAAUEAwIBBv/EABQBAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhADEAAAAf34DjOK7PoDzNKgAABgN7h3AAEXVzN/WVuMPb7uOPaVVAAPkz5VJVXPyNoAMeOxCKuLR1NAMvzXKKoHHtKO28Eqr4PabSAOEu3EOFBSJqkJvGxzM+zDuH579DNCkJqkIV2bSAEynKPdKbSAHPpzMu7DuE2lNKQAJtKbSAHDvCNdKbSAHPpzMu7DuE2lNKQAJtKbSAOGSkPz+r7zO+O1iPnHXkN+nDuH539F+dN/zppJvvvmPteNZAAPPr5JKWdoOqX3Nn0Hn0AAPPoAAJVWbSBiNs2kPHubSAAAAAAJlOdsOoHn1JOtEAAAAAAE2kJn2kJW7uAAAAAAAAAAAAAAAP/EACoQAAEDAwMCBgIDAAAAAAAAAAMBAgQAECAFFDQSExEjJDAzRSEiMUBQ/9oACAEBAAEFAv6xEIrSPkioSGSzlRrY0pxn5yTuEgStOLLUIzTo0jHWkeoNKG5zBEaYWKr4JFTuuT00zE/da6UqFYDwbLMVABiiUY6b6aXjJ88lHEhwxiqUWDwveXbMBLaPzOTMtID3wxjd4VylaEUUTmMsb08jHUivFUkqiEASADcvppN3epl3c1HsiOVuBR9xpQsHW18dQ2i1tFraLW0WiwuoMRVdDtCjdUTaLW0WtotbRaUHZnYaiBhq+ywf8cLg20/gYH5eEzwr7PB/xwuDbT+Bgfl4SQme77PB/wAcLg20/gYH5eBSoKvs8H/HC4NtP4GB+XhqSmSvssH/ABwuDbT+Bgfl3KJpW7EVbUe+bFA5dkOkANZWyHW2juZHVro1o4ALC2QlRYYmoGMEwXRQMTshDIxVqP1AelRBUMbRMZF6JJIgCvFp8eLULg2FCBM01kGOxSMV6RgqyETTIpWOEwBselOqnlGKmzIzlsiI1LNajW4K1FXH+ER5ZlDiAHThseiw+3QD91fekeebCWxeljkIz3Y/5lWBKHIfaB+Ivuh/Sdgqo1IKLs/dlMcijIww7yF3D/ffHcwm7cyt8KvGUehBYBn+l//EABQRAQAAAAAAAAAAAAAAAAAAAGD/2gAIAQMBAT8Bcf/EABQRAQAAAAAAAAAAAAAAAAAAAGD/2gAIAQIBAT8Bcf/EAD4QAAIAAwMEDgkFAAMAAAAAAAECAAMRBBIgECExYRMiMjRBUVJxcnOSscHRIzAzQkORk6GyFEBigeFQY4L/2gAIAQEABj8C/beiZVP8lrC358gXmuj0R09qDsro3FdWnjkLE0AgrMS5UX01r6hVlKHmvuVMLMXQccktWiuOGlNcUV1Y6jkWyjc7qbzcUCZL9rL2y69ULMTcsMVTohrU3v5k1LFPhTzm1P8A7iVkf3gLlNPHEqWCGEyYPkM57omJ6HMK7RaEQ0xuD7wTM9q5vPz5DL+HOzrqbhGJbKNB20zo8X95GlnNXQeIxt80xTdca8N8TmUckAQs29dlnME/kYExyC4FMwpH/VIPzf8AzKUrQ6VPEYqRRxtXHEcDTG0LBeZ7WYbzatWUWj3G2k3wOKz3Zd+s0cPDG0zzXN1BrhZY4OHjwCf8OZtZmo8B8MFz4UnO2tuDAVYVU5jDWeYavK0HlLwHBTZHTWsJslqn7Zgq5xp+UBTaJ21l1BrrjfVo7Q8o31aO0PKN9WjtDyjfVo7Q8ocNaJ5BGio8okMTUmWvdlR/1E4F9saHhjfVo7Q8o31aO0PKN9WjtDyjfVo7Q8oszbLMcteXbHgphs9+vtQNMHqfHC3NFn6te7LJ6OGydJvxOGR1qwep8cLc0Wfq17ssno4bJ0m/E4QUZd2uYroz88HqfHC3NFn6te7LJ6OGydJvxOFKjdMFg9T44W5os/Vr3ZZPRw2TpN+Jw2fYUDelGmD1Pjhbmiz9Wvdlk9HDZOk34nBRiw6LERu531mi5Wb7OtdlaunnghZs0000nN5xu531mjYqzqXa12Zo3c76zQxWZNYDTSc3nEooLqlBQcWVJrs8sEVzTWAH3jdzvrNFS876rQswNPAYVzzm84q82ao1zm84k+0ZmJulphNM2JlYVBk+MNdl5jnoToi4gosCYHa6FpQmLzy6tEx5a7dgc5MWfq17ssgTlrRcxB0QCJeccMCjXaGuiElTc5u0MXTLoNRixy5a3VDNm/8AJxXqC9ork9I6r0jSKLaJROpxlAAoBoGW6oAA4BhBIFRoxVMejYypHL95+biiolC9ymzn5xRkUjWIvWVtiPJ90/1BR1uTV3S+Pr0svu0vzObiwifL9rKzjWOEQrroYVHrrU38gv2/3LNRK1lNdaoyheQzL8ifXWhOVSYO7wwknQIQnS9X+Zr65J8sVeXwcpeEQHQ1U4P0iaPiniHF/f7AzbMwRjulO5aPTWeap41F8faNqs5uaU0UVf06cps7RdQf7/yf/8QAKhABAAECAwgDAAMBAQAAAAAAAREAITFBURAgMGFxgaHwkbHB0eHxQFD/2gAIAQEAAT8h/wCYpct1jHZKwG1mqwKdwU4/K2CiFKuRU4HE+frqczgNXKEQQXV9zKkLhwcRzHfvM2UiGdF+RAOzQiH1O98DQi3YfLuPylAmQbwMgAlWkNpCF7Pzj8VdYZHlHZ5Oe84nmCIK5scJe1FuMYZH+gUIDa5juDr1qeBDgYrIOtQ9Mo+nQLdtmlGfdL4/O8nBbKZfyLdJoAILFKA4g4hcTo1bQ5Mh+OPfdMBhEkc8SgcMqPYiudQpZAkuAWdXQpwsbj2yeXltDwTPcaQ535Fx3GbtS8+VEf8A1l2Fttt5XI/hbdHlvET8jhyHejgDqAZ9DHtSwrmWKzXq7ljWg9j5u2m5Z4lPFu2PVNw9wYHMqWSAJ6GTzNxCMBmUGrS10Y3CimHg7IsHLluoECBBNK2VE0VkoVzYbVi2QnEruW6gQIEDSuFicV01Dds6oBCMaPE++75ivVaNvh+FIQub2jvH7R4H33fMV6rRt8PwpDrhLcIAt/lR4H33fMV6rRt8PwpFwDGxq0eB993zFeq0bfD8KQPcUuhyelHiffd8xXqtG3w/BkAiQzcfFeiftE7IeeFuSk0LgKinun7SYxnrghGPOvdP2iaEQK7UnOp00WNsy0o6LZKBEhfTGmpYY/70A6QJBS/5IkRSTkIAdxmF03oqCia31egrcfhQSDYFSfEzLdZpEZsWWgHbhMr1Wjaz2DYGgfraScaPeuCayox/lqnkRJkvVm0reHJJgXjTYRI+o05GOR+1jSSQ4UZYUAQBtDWLAQG6kFdSYdN5REAMVq4ZRB/Qc6XlVjc+69cmNA1iX3/WydorVM6z2OZxzCY+pOHc+BoAICA3I9aF7KeYpaJInJ4134g+gX7W3R9gL8tvIo/QR4ONcf3lpetdoBMGOxy4CVogUIh1v1xrsfyczyZnMox5ZHcv5KhP3P0mgAgsHHWScjua8nmUWH+qbd8lSYpp+opxpcUF6BY7z0q0cTKrKtVzf/T/AP/aAAwDAQACAAMAAAAQ8w0488848884YM088oU88IA8o8o8s084U888s88884888888888s088888888s4wsc4008884EAc888888k48U888888ws4U888888sMs888888888888888/8QAFBEBAAAAAAAAAAAAAAAAAAAAYP/aAAgBAwEBPxBx/8QAFBEBAAAAAAAAAAAAAAAAAAAAYP/aAAgBAgEBPxBx/8QAJxABAAEDAwQCAwADAAAAAAAAAREAITFBUWEQIHGBMJGhsfBAUOH/2gAIAQEAAT8Q/wAYIzwAg2Bc4vPqiFfzf8AKy0I5UmbnTbotob0AEq1HtVSyjAhwbOh8E+lstAlNALTuGtRmJcEYQNERE3O8tE9pPIkQkEOk1F8CVJG8D0TcCGYi3vEyfkUf904hEPxMcMtKf6BOQk6JojZNE7kvqQgAytNdCOhNlRou/hGlbwDaAngAnydwt8tbBRKsSBCBlNLKDyQpbJDXmhVMcCBDMwgGwvpQTSQvIYFqpA5aSJMe5IALsgccul8XdaRTwBE8m/uY5iKYWDyD0VBAAQAQBT8wGQTywD6p6KIuMpOBBwO0iLJyE6kRcKNE6wuMahCwkTEy6tDaxXERWfsN96sNbbELHIk+DqkYlA5RD8IeSTWgJJydoPGo6iPYkoaQS7AaqwBu0ETA2ZJBu0XkLr10/hhgTHuJPL3FgUBgCZrNrr6Rhmh+Adhmu4BXCoWCVz2zykV89mtDPpgT2yc9ha/gwpPhLP8AR7GiLwSEJ9UHrpDWfMwPI79isG6Ys2VG1/xR8WlGlGzQ2b1PypGNRjcGk9sCBAgADUtghs0WkJ0qIr76nxKI0ql23XftgQIEAEwIUwNhqvXaVBSkLO7ZzYh0owUzrvaf3tn5nzJRgjlgSv6CRd/cT2hP72z8z5koj8ClHFgSyiJYibHcE/vbPzPmSh9FgWlheLdwT+9s/M+ZKaYFCWe9HlPq9TvMuftP72z8r5kqFqWzqEusUvilM0NeOcBq7gmN6H/aUl0YseOmtK1hntAbcne2j012tuECTK0NohpqaqMqlk1gg6iPzKT0DAcUwcAjlGp+rlTVgcBUjoxlRJJF+jYJdVAcTYCMCi4See4ziT4DIUiISkBRDKZh5WgtSYVYllzy0M0B8IZX0s+70cyQUpggw0Waw4oRYDAeux8u4kQ7ci32JUg1pTQw5imAopQMJgR2YfIUFwGJCEhlwtNPWIIyBmJVs8Xo8gwlY5lXuu7xisk3Zibx0GteAD9tXfxEknwUEAiI3EoEAUQiWSg76JBEABgDTqGoIQDYCx2p8RGK0RVpZS2j3HgZUQAarSbNsWI3kRsoV0gur8blJ3ZV909ZiI59JQtCrwnjSx5TecU6WMsiHGqYYfSD87MEthyo/bcLWgZgQAQB2ClcoZa5uBbYLSjDmJqEj9PzDOuDo39r31vGPMDMu1LPRJIcUP5A6uD5lgMOKTF4T9OqiAVLBl6AVcdgAlaUchmSBHwE+ZIytSiQehwBrURYj/ImiNkbj2LKpCbZb/VGkm0gwAQBgPnlhA874F/vtRqxbZQniSHgpHGny37E+2jdoAbnL8pFDjZTxfLrpqv+z//Z"]
math
multiple-choice
21
如图, 网格纸上小正方形的边长为 1 , 粗线画出的是某几何体的三视图, 则此几何体 的体积为()
6
9
12
18
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAE9AWEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKK8s8UftDfDHw58bLj4W63ql5aa5bWK3kjGwkeDawDBA6AndtYHpjtnPFAHqdFef/APC7fhh/0M3/AJIXP/xuorr47/Ci2aIT+LEjM8gii3WNyN7kEhR+768H8qAPRaK8/wD+F2/DD/oZv/JC5/8AjdNn+OXwshheaXxSqRxqWdmsLkBQOST+7oA9Corzy3+OXwsngSaHxSHjkUMjCwucMCMgj93T/wDhdvww/wChm/8AJC5/+N0AegUV51a/Hf4UXLSiDxYkhgkMUu2xuTscAEqf3fXkfnUv/C7fhh/0M3/khc//ABugD0CivOm+O/woF8tmfFifaHjMqxfYbncUBALY8voCw/Opf+F2/DD/AKGb/wAkLn/43QB6BRXnV58d/hRaoj3HixIlkkWJC1jcjc7EKqj931JIFS/8Lt+GH/Qzf+SFz/8AG6APQKK8/b43fC8Lk+J8AdSbC5/+N1FZfHb4U3lnDd2vitZYLiNZIpFsLkq6sMgj930IIoA9Forz/wD4Xb8MP+hm/wDJC5/+N1Fb/Hf4UTzTxQ+LEke1kEU6rY3OY3Kq+0/u+DtdT9CKAPRaK8//AOF2/DD/AKGb/wAkLn/43XM6x+1N8GdO+JWmeCJ9fvGv9Ut2nimTTJzDGBuwHJXdk7GxhSOOSOKAPZqK8/8A+F2/DD/oZv8AyQuf/jdRXnx3+FFpD51z4sSKMuibnsbkDczBVH+r6lmA/GgD0WivP/8Ahdvww/6Gb/yQuf8A43R/wu34Yf8AQzf+SFz/APG6APQKK86sfjv8KLyzju7XxYk0Myh45EsbkqwPcfu6l/4Xb8MP+hm/8kLn/wCN0AegUV51D8d/hRNcTQReLEaW3IEqCxucoSARkeX3BBqX/hdvww/6Gb/yQuf/AI3QB6BRXnUvx3+FEd1FbSeLEWacMYozY3OXC4zgeX2yPzqX/hdvww/6Gb/yQuf/AI3QB6BRXnV98d/hRZ2rXN14sSGFMbnexuQBk4H/ACz9SKl/4Xb8MP8AoZv/ACQuf/jdAHoFFef/APC7fhh/0M3/AJIXP/xuorL47/Ci8t1uLXxYk0TEgOljckEgkH/ln2II/CgD0WivP/8Ahdvww/6Gb/yQuf8A43UUfx3+FEl3Lax+LEaaAKZUFjc5QNnbn933wfyoA9Forz//AIXb8MP+hm/8kLn/AON1ha1+0v8ACTTvH/hnwcNavLrU/Fd6tnYiDTptiSMyovmM6rgFnUcZ98DmgD12iiigAooooAKKKKACiiigArzm2tLX/hrS8vPs0P2n/hCrdPO8sb9v22bjd1xwPyr0avP7f/k6a8/7Ey3/APS2egD0CvP/AI7/APIR8A/9jna/+iLmvQK8/wDjv/yEfAP/AGOdr/6IuaAPQK5/4s/8kr8Tf9gW7/8ARL10Fc/8Wf8Aklfib/sC3f8A6JegA+E3/JK/DP8A2BbT/wBEpXQVz/wm/wCSV+Gf+wLaf+iUroKAPP8A4Ef8hHx9/wBjndf+iLavQK8/+BH/ACEfH3/Y53X/AKItq9AoA8/1L/k6bRv+xM1H/wBLbGvQK8/1L/k6bRv+xM1H/wBLbGvQKAPP/wBor/kXfDn/AGOeif8ApfDXoFef/tFf8i74c/7HPRP/AEvhr0CgCvq3/IKuv+uL/wDoJrj/ANmX/k234e/9ilpn/pJFXYat/wAgq6/64v8A+gmuP/Zl/wCTbfh7/wBilpn/AKSRUAdxXn/wb/5KL8WP+xzt/wD0w6RXoFef/Bv/AJKL8WP+xzt//TDpFAHoFedeJra2f9rDwXcPbxNMngzxBtkKAsuLzRgMHr0dx/wI+pr0WvP/ABH/AMnTeDf+xM8Q/wDpbolAHoFef/tNf8kuh/7Gbw//AOnmyr0CvP8A9pr/AJJdD/2M3h//ANPNlQB6BRRRQB5/+yr/AMm4+C/+wNB/6DXoFef/ALKv/JuPgv8A7A0H/oNegUAef/DP/ktXxK/6/dO/9IY69Arz/wCGf/JaviV/1+6d/wCkMdegUAef+PP+Tgvh/wD9eWsf+i7evQK8/wDHn/JwXw//AOvLWP8A0Xb16BQB5/8AtSf8kJ13/t2/9KYq9Arz/wDak/5ITrv/AG7f+lMVegUAFef/ALL/APyRXTv+v3UP/S64r0CvP/2X/wDkiunf9fuof+l1xQB6BXn/AID/AOTgviB/15aP/wCi7ivQK8/8B/8AJwXxA/68tH/9F3FAHoFedfFy1tZ/jJ8LJZ7aGSSHWr/y3dAzJ/xLLk8E9OVH5CvRa8/+Kn/JXvhh/wBhm+/9Nd1QB6BRRRQAUUUUAFFFFABRRRQAV5D4v8GeGvGH7UU0fiLTfti23g6Boh58ke0m8nz9xhn8a9erz+3/AOTprz/sTLf/ANLZ6AD/AIUl8MP+hZ/8n7n/AOOVw/xo+D/w6sr/AMErbeHdguvFttBN/p1wdyGCckcyccqORzXvFef/AB3/AOQj4B/7HO1/9EXNAB/wpL4Yf9Cz/wCT9z/8crD+J3wY+Gtt8NvENzB4b2yw6TdOjfbrg4YQsQcGT1FeuVz/AMWf+SV+Jv8AsC3f/ol6AOD+GPwY+Gtz8NvD1zP4b3SzaTau7fbrgZYwqScCT1Nbn/Ckvhh/0LP/AJP3P/xyug+E3/JK/DP/AGBbT/0SldBQB4P8F/g/8Or2/wDGy3Ph3eLXxbcwQ/6dcDagggIHEnPLHk813H/Ckvhh/wBCz/5P3P8A8co+BH/IR8ff9jndf+iLavQKAPB9Q+D/AMOl/aS0nTR4d/0WTwlfztH9uuOXW7s1Bz5mejNxnHNdx/wpL4Yf9Cz/AOT9z/8AHKNS/wCTptG/7EzUf/S2xr0CgDwf48fB/wCHVhoOgSWnh3y2m8W6PA5+3XByj3sSsOZO4J5613H/AApL4Yf9Cz/5P3P/AMco/aK/5F3w5/2Oeif+l8NegUAecap8E/hium3DL4Z5WFiP9PufQ/8ATSuV/Z4+D3w51H9n/wADaheeHfMuLrwxp00z/brhdztaxljgSYGST0r2nVv+QVdf9cX/APQTXH/sy/8AJtvw9/7FLTP/AEkioAr/APCkvhh/0LP/AJP3P/xyuH+E/wAH/h1d+PPibBceHd8dj4tggt1+3XA2IdF0uQjiTn55HOTzzjoBXvFef/Bv/kovxY/7HO3/APTDpFAB/wAKS+GH/Qs/+T9z/wDHK4fX/g/8Oo/2kvCemp4dxa3HhLXZ5Y/t1x8zx3ejqhz5mRgSvwDjnnoK94rz/wAR/wDJ03g3/sTPEP8A6W6JQAf8KS+GH/Qs/wDk/c//AByuH/aG+D/w60/4cRXNn4d8uU+IdDiLfbrhvlk1a0Rxgyd1Zh+PFe8V5/8AtNf8kuh/7Gbw/wD+nmyoAP8AhSXww/6Fn/yfuf8A45R/wpL4Yf8AQs/+T9z/APHK9AooA8H/AGa/g/8ADrUvgH4Sv73w75txcaTC8r/brhdzFeTgSAD8K7j/AIUl8MP+hZ/8n7n/AOOUfsq/8m4+C/8AsDQf+g16BQB4P8Pfg/8ADq4+LnxBtJvDu6Gzu7BYF+3XA2BrONjyJMnknrXcf8KS+GH/AELP/k/c/wDxyj4Z/wDJaviV/wBfunf+kMdegUAeD+NPg/8ADqH45eB7GLw7tt7q01Vpk+3XB3FEg28+ZkYyeldx/wAKS+GH/Qs/+T9z/wDHKPHn/JwXw/8A+vLWP/RdvXoFAHg/7SHwf+HWm/BfWb2y8O+XPH5Gx/t1w2M3EYPBkx0JruP+FJfDD/oWf/J+5/8AjlH7Un/JCdd/7dv/AEpir0CgDz//AIUl8MP+hZ/8n7n/AOOVw/7Ofwf+HWo/COwu7zw75kz3d8rN9uuFyFvJ1HAkx0Ar3ivP/wBl/wD5Irp3/X7qH/pdcUAH/Ckvhh/0LP8A5P3P/wAcrh/Bfwf+HU3xy8cWMvh3db2tppTQp9uuBtLpPu58zJzgda94rz/wH/ycF8QP+vLR/wD0XcUAH/Ckvhh/0LP/AJP3P/xyuY1/4eeD/CXxu+Gl94e0j7HcS6rfRu/2mWTK/wBmXRxh2I7V7PXn/wAVP+SvfDD/ALDN9/6a7qgD0CiiigAooooAKKKKACiiigAryHxfpXiXVP2opl8O+K/7BaPwdAZW/s2O680fbJ8DDkY/CvXq8/t/+Tprz/sTLf8A9LZ6AD/hEvif/wBFd/8ALatv/iq4f40eF/iLFf8AgkXPxR+0GTxbbJCf+Eet08l/Inw/DfNgAjB45r3ivP8A47/8hHwD/wBjna/+iLmgA/4RL4n/APRXf/Latv8A4qsP4neFPiVH8NvEMk/xX86JdJui8X/COW671ELZXIbjI7165XP/ABZ/5JX4m/7At3/6JegDg/hj4U+JUnw28PSQfFfyYm0m1KRf8I5btsUwrhclucDvW5/wiXxP/wCiu/8AltW3/wAVXQfCb/klfhn/ALAtp/6JSugoA8H+C/hf4iy3/jYW3xR+zmPxbcpMf+Eet385/Igy/LfLkEDA44q98Z9X8R/Cz4fX3jLxl8b1stNslwAPDVsZbiQ52xRLu+d2xwPqTgAkGn/EXwp8LPB/xL8ZeMtSWy02y8Y3WAOZbiQ29vtiiX+N2xwPqTgAkfLXw98J/EH9uj4wjx94+W60L4V6FcNHp2nRSFRcAHmGI8bnOB5s3b7q4wAoB4vqn7Ynxtl+NEHj2DXnVYbWS0tbN7GDY1kzqzqQI8Fi0Skv1BX0GK+//wBnzxV4g+Mnw5tfGHg/41ebBL8l1ayeG7UT2MwALQyqG4YZ69CMEEg1886x4W8N2n/BYjw34PttDsI9Aj0B7JdMEC/Z/I/sW5UxlOhUjIIPXNZ/xq+HHj79i34uH4u/CIT6j8PdRmWPVtJldmS2Qt/qJjydmSfKm6qTtbOf3gB9LfHjwv8AEWHQdAa7+KP2pW8W6OiL/wAI9bpsc3sQV8g87Tg46HGK7j/hEvif/wBFd/8ALatv/iq4eb4r+EPjJ8FvCXjDwfe+bBL4z0NLq1kIE9jML6EtDKo6MM9ehGCCQa94oA841Twl8ThptwW+Le4CFsj/AIRq254P+1XK/s8eF/iNP+z/AOBprP4p/ZbeTwxpzQ2//CPW8nkobWMqm4tlsDAyeuK9p1b/AJBV1/1xf/0E1x/7Mv8Aybb8Pf8AsUtM/wDSSKgCv/wiXxP/AOiu/wDltW3/AMVXD/Cfwv8AEWTx58TUt/ij5EkPi2BLiT/hHrdvtD/2LpbB8FvlwjIuBx8mepNe8V5/8G/+Si/Fj/sc7f8A9MOkUAH/AAiXxP8A+iu/+W1bf/FVw+v+F/iKv7SXhOB/ijuun8Ja68Vz/wAI9bjy0W70cOmzdg7iyHJ5GzA+8a94rz/xH/ydN4N/7EzxD/6W6JQAf8Il8T/+iu/+W1bf/FVw/wC0N4X+IsHw4ikvPij9qi/4SHQ1Ef8Awj1vH8x1a0CNkN/CxVsd9uD1r3ivP/2mv+SXQ/8AYzeH/wD082VAB/wiXxP/AOiu/wDltW3/AMVR/wAIl8T/APorv/ltW3/xVegUUAeD/s1+F/iLcfAPwlNZfFH7HbyaTCYrf/hHreTyl28LuJyfqa7j/hEvif8A9Fd/8tq2/wDiqP2Vf+TcfBf/AGBoP/Qa9AoA8H+Hvhf4iv8AFz4gxQ/FHyporuwE83/CPW7eeTZxkHaWwuBgcdcZruP+ES+J/wD0V3/y2rb/AOKo+Gf/ACWr4lf9funf+kMdegUAeD+NPC/xFT45eB4Zfij5lxJaaqYZ/wDhHrceSAkG4bd2G3ZHXpiu4/4RL4n/APRXf/Latv8A4qjx5/ycF8P/APry1j/0Xb16BQB4P+0h4X+IsHwX1mW9+KP2uBfI3w/8I9bx7/8ASIwPmByMHB/Cu4/4RL4n/wDRXf8Ay2rb/wCKo/ak/wCSE67/ANu3/pTFXkX7fH7Utv8ACazHgLwEF1b4iasqxwQRJ5w0sScI7oM75WyNkWOchmGMBwDhv25/2hfGPwU2eEvD/wAVF13xleKC9pFoFqq6bGw+V5G+b94cgrHjp8xwNoa//wAEydQ+KvxB/Zxn1GT4nPZR2Gv3dpDE+iwXDYKxTsS7YJy87nHb9BifAv8AZauPBXwP8c/Fv4tltW+IWreG9TuY47t/OOlmS2lLMzHO+4bJ3N/Dkgdyer/4Iw/8moap/wBjbdf+k1rQB7v/AMIl8T/+iu/+W1bf/FVw/gvwv8RX+OXjiGL4o+XcR2mlGaf/AIR63PnApPtG3dhduD065r3ivP8AwH/ycF8QP+vLR/8A0XcUAH/CJfE//orv/ltW3/xVcxr+h+MNM+N3w0m8Q+OP7dt21W+VIP7Iitdjf2ZdfNuQ5P0r2evP/ip/yV74Yf8AYZvv/TXdUAegUUUUAFFFFABRRRQAUUUUAFeQ+Ltb13R/2opm0Twbf+Imk8GwCRbS8toPKH2yfk+fImfwzXr1ef2//J015/2Jlv8A+ls9AB/wnHj7/oi3iD/wdaX/APJFcP8AGjxj43nv/BJn+EeuWxi8W2zxB9W05vOcQXAEY2znBIJOTgcdele8V5/8d/8AkI+Af+xztf8A0Rc0AH/CcePv+iLeIP8AwdaX/wDJFYfxO8aeOpfht4hil+DuvQRvpN0rytrGmkRgwtliBcEkDrwM165XP/Fn/klfib/sC3f/AKJegDg/hj408dRfDbw9FF8HdenjTSbVUlXWNNAkAhXDAG4BAPXkZqt8WvjxqHwy8E3Hizxv8MNZ0rSrZghlk1jTWaR2+6iItwWdjzwoJwCegJrbvviL4U+Fn7NWj+MvGWpLZabZaJaYA5luJDAu2KJf43bHA+pOACR8dfD3wn8Qf26PjCPH3j5brQvhXoVw0enadFIVFwAeYYjxuc4HmzdvurjACgHE+AfCnxH/AGt/i1f+P9W8Ja3cfDm11ya5bSdO1CCFfNcJmFHnkjDOUWISSqMgAABcjH3v4Z1/xT4e8P2eh6H8BtY0/TdPhWC1tbfVtLSOGNRgKoFxwKd+zLpGmaBY+MdE0WxgsdO0/wAWT29pawIFjhjW2tgqqB0AAFemUAfnr4h1/wARN/wWG0LWG8C6kmqJpzhdDN9aGdx/ZVwuRKJfJHykty/QY64FfYOseKPGGraTc6XqnwK1m8sryFobm2uNW0p45o2GGVlNxgggkEGvmHxN/wApvfD3/YMf/wBM9zX3PQB+Xvxk+HPxF/Zk+JUfxT8I+Dta0z4fSazZXN1pF9qVtOivFOs8cEjQSyHZuTCSsMru2kkn5/tL4I/tD3PxZ8Fp4n8DfDLWNTsvMMM+zWNOR7eUdUdHnV1PORlRkEEcGuo/agsLLVfA+i6ZqVpDd2V74t0aC5t50DxzRtfRKyMp4KkEgg9Qa+OfjV8OPH37FvxcPxd+EQn1H4e6jMseraTK7Mlshb/UTHk7Mk+VN1Una2c/vAD7H1Txv49Om3APwY19QYWyTrOmccH/AKeK5b9nfxl44t/2f/A1vbfCHXLyCHwxpyRXMer6cqzqLWMBwrXAYAjBwQDzyBXYfBL4r+EPjJ8I/wDhMPB975sEsDJdWshAnsZguWhlUdGGevQjBBINWP2Zf+Tbfh7/ANilpn/pJFQBX/4Tjx9/0RbxB/4OtL/+SK4f4T+MfG8Xjz4myQ/CPXLh5/FsDzRrq2nKbZ/7E0tfLYtOAxKqr5XIw4Gcgge8V5/8G/8AkovxY/7HO3/9MOkUAH/CcePv+iLeIP8AwdaX/wDJFcPr/jHxu37SXhO5b4R64lxH4S11I7U6tp2+VGu9HLSBhPtAUqgIJBPmDAIDY94rz/xH/wAnTeDf+xM8Q/8ApbolAB/wnHj7/oi3iD/wdaX/APJFcP8AtDeMfG9x8OIo7n4R65Zx/wDCQ6G/myatpzAsurWjKmFnJyzAKDjALAkgZNe8V5/+01/yS6H/ALGbw/8A+nmyoAP+E48ff9EW8Qf+DrS//kij/hOPH3/RFvEH/g60v/5Ir0CigDwf9mrxj43tvgH4St7X4R65ewx6TCsdzHq2nIso2/eCvOGA+oBruP8AhOPH3/RFvEH/AIOtL/8Akij9lX/k3HwX/wBgaD/0GvQKAPB/h74x8bx/Fz4gzRfCPXJpZruwMsC6tpwa3Is4wAxM+Dkc/KT155ruP+E48ff9EW8Qf+DrS/8A5Io+Gf8AyWr4lf8AX7p3/pDHXoFAHg/jTxj43f45eB55PhHrkc0Vpqoitzq2nFpwUg3EET7RtwM5IznjNdx/wnHj7/oi3iD/AMHWl/8AyRR48/5OC+H/AP15ax/6Lt68i/b4/alt/hNZjwF4CC6t8RNWVY4IIk84aWJOEd0Gd8rZGyLHOQzDGA4Bwv7fv7VFxoPhDUPhVbeCb3T/ABhqqQbUmv7W6FivmK6sywPJmRto2o2Dhgx4wGo/sUfAfxx8PPElx8UPiT8K9f8AFXjnUJGnguZ9X08rY7+Wk/eXG5p2ycswBXJA7k1PhP8AsuXfgf4L698Xfiw8mqfETVjDcIl1J5raX5txHvZmOd9wwY7m/hBKjuT94UAeK/HTxn44n+CXjGC4+EGu2sMnh6/SS4fV9NZYVNvIC5C3BYgDnABPHArwn/gkr4k8UaR+zLqVro3w81TxBbt4nuXN3a6hZQorG3tgU2zSo2QADnGOevWvrD9oT/kgXjj/ALFnUf8A0mkr54/4Iw/8moap/wBjbdf+k1rQB7v/AMJx4+/6It4g/wDB1pf/AMkVw/gvxj43T45eOJ4/hHrkk0tppQltxq2nBoAEn2kkz7TuycYJxjnFe8V5/wCA/wDk4L4gf9eWj/8Aou4oAP8AhOPH3/RFvEH/AIOtL/8AkiuY1/xF4m1f43fDSDWvh/qnh+FdWvmW4utQs51dv7MuvlAhldgfcjFez15/8VP+SvfDD/sM33/pruqAPQKKKKACiiigAooooAKKKKACvIfF3jbwl4O/aimk8U+IbDSVufBsAhN3ME3kXk+cZr16vP7f/k6a8/7Ey3/9LZ6AD/hePwg/6KL4f/8AAxa4f40fGP4WXt/4Ja08eaHMLXxbbTzlLtT5cYguAWPoMsPzr3ivP/jv/wAhHwD/ANjna/8Aoi5oAP8AhePwg/6KL4f/APAxa5T45/tBfBvTfg/4lnk8f6PO76VcRQ29tP5ks8jxMqIijkkkgeg6kgAmvQfjP8RfCnws+H194y8ZaktlptkvAHMtxIc7Yol/jdscD6k4AJHwImh/Er9tLxNrPxS8Y/adA+GfhW1upNIsEY7Z2jRm8qI/xuSo82bHH3VxgBQDmvh9fH9qP4maVqHxj8a2Hhb4deELeK1sdKa9ET3KoqrsjHXc+0GSY9Pur0G3788M/Fj4F+HvD9noeh+NfC+n6bp8KwWtrb3KJHDGowFUDoK6b4IWFlpfwa8Kafp1rDa2tvodosUMKBVQeSvQD8a6igDwf4L/ABj+Fllf+Nmu/Hmhwi68W3M8Be7UeZGYLcBh6jKn8q7j/hePwg/6KL4f/wDAxaPgR/yEfH3/AGOd1/6Itq9AoA/PXxD4+8Fyf8FhtC8ZR+JtObQIdOdJNSE48hT/AGVcJgt0+8wH1NfZX/C8fhB/0UXw/wD+Bi18seJv+U3vh7/sGP8A+me5r7noA8H+PHxj+Fl/oOgR2XjzQ52h8W6PPIEu1O2NL2JnY+wUEn6V1+sfGH4JatpNzpeqeOfDF5ZXkLQ3NtcXCPHNGwwysp4IIJBBqz+0V/yLvhz/ALHPRP8A0vhr0CgD8wPiVNb/ALLXxsb4gfAPxrpviDwXrbGLUtBW+8wwoScwSjqyDJMcwyyHhs/8tPr79lT4/fB+6/Z08F20njzSbS70zQbOwvbW7m8qWCeGBI3Vlb/aU4PQjBFe4+LLGy1TwvqOm6laQ3dnd2ksVxbzxh45UZSCrKeCCD0Nfmva+D/ib+ydp3g/4+fDiafWPBvibQ9PuPEOnSk7InmhR2imA6IXdvKmAyhO05z+8APvj/hePwg/6KL4f/8AAxa4f4T/ABj+Flp48+Jtxc+PNDiiv/FsE9q7XagTRjRNLjLL6jfHIv1U16B+z58V/CHxk+HNr4w8H3vmwS/JdWshAnsZgAWhlUdGGevQjBBINV/g3/yUX4sf9jnb/wDph0igA/4Xj8IP+ii+H/8AwMWuH1/4x/CyT9pLwnqaePNDazt/CWuwTTi7XYkkl3o7IpPqwikI/wBw+le8V5/4j/5Om8G/9iZ4h/8AS3RKAD/hePwg/wCii+H/APwMWuH/AGhvjH8LNR+HEVtY+PNDuJh4h0OUpHdqTsj1a0kdvoqKzH2Br3ivP/2mv+SXQ/8AYzeH/wD082VAB/wvH4Qf9FF8P/8AgYtH/C8fhB/0UXw//wCBi16BRQB4P+zV8Y/hZpnwD8JafqHjzQ7e6ttJhSaGS7UMjBeQR613H/C8fhB/0UXw/wD+Bi0fsq/8m4+C/wDsDQf+g16BQB4P8PfjH8LLf4ufEG8n8eaHHBeXdg1vI12oWULZxqxU98EEV3H/AAvH4Qf9FF8P/wDgYtHwz/5LV8Sv+v3Tv/SGOvIv2+P2pbf4TWY8BeAgurfETVlWOCCJPOGliThHdBnfK2RsixzkMwxgOAcH+3v+1V4f8K+IvDc3wo1zTte8TW9jqEIkg/fRaf8AaBCqSNxtd8I5VOeQCwxgNj/sE+CvhT4Ivm+LPxc+I2g6t8Q9VdrlEutRWc6WXyWZmJO+4bJ3Pk7ckDuTf/Y1/Z01n4f/ABq8HePvincNqfjXxRHqd/PBdN5zac6xxlWdzndOfOcs3ReAOhJ+4qAPB/2kPjH8LNS+C+s2Vh480O4uJfI2RR3almxcRk4H0BP4V3H/AAvH4Qf9FF8P/wDgYtH7Un/JCdd/7dv/AEpir0CgDxX46fGf4U3/AMEvGNjZ+PtCnubnw9fxQxJdqWkdreQKoHckkCvCf+CSvxJ8BeEf2ZdS0zxP4s0vSrx/E9zMsF1cBHKG3tgGwe2VYfhX1h+0J/yQLxx/2LOo/wDpNJXzx/wRh/5NQ1T/ALG26/8ASa1oA93/AOF4/CD/AKKL4f8A/Axa4fwX8Y/hZB8cvHF9N480NLa7tNKWCU3a7ZCiThgD3xuGfrXvFef+A/8Ak4L4gf8AXlo//ou4oAP+F4/CD/oovh//AMDFrmNf+IvgXxf8bvhpYeGPFWl6rdRatfSPDa3AdlX+zLoZIHbmvZ68/wDip/yV74Yf9hm+/wDTXdUAegUUUUAFFFFABRRRQAUUUUAFef2//J015/2Jlv8A+ls9egV5D4v8HaF4u/aimj1tL9lt/B0Bj+yarc2fJvJ+pgkTd+OaAPXq8e/bM8a6B8PPCPhXxh4luWh07SvFUE8uxd0km22uTsRf4mOMAfngZNdD/wAKW8A/88PEH/hV6p/8kV47+2F+zV8P/F+m+DdK+1eIdPN54nis3nGt3N2RHJDKWwly8ig5jXBAB60AfPnhVda/bS+N3/CZfFLxDZ+FfhnoE5Ww0iTUkhecZ/1UW4gs7YHmT44+6uMAL9s+Ltf+G2h/BHV/D3h7X/DNlY2Wg3FtZWVpfwKkaiBgqKoavnz/AIdufCz/AKHrxh/31bf/ABqszxp/wTv+GOjeDdW1iDxv4tkl0+wnuY0c221mSNmAOIumRQB9SfCzxx4Li+GPhyKXxfoKSJo9qrK2pwgqRCmQRu4Nb3/Cd+B/+hy8P/8Ag0h/+Kr498F/8E7/AIY6z4N0nWJ/G/i2OXULCC5kRDbbVZ41YgZi6ZNaf/Dtz4Wf9D14w/76tv8A41QB7n8D/Gng6DUPHRm8WaHGJvGFzJGX1KFd6mC3AYZbkcHn2rvP+E78D/8AQ5eH/wDwaQ//ABVfFXw5/YB+G3iK68SxXXjPxVENF16bTYTGbf50SOJwzZj+9mQ9OOBXTf8ADtz4Wf8AQ9eMP++rb/41QBy3iTxBoLf8FotA1pdb01tNTTXDXou08hT/AGRcLgyZ2jkgdepxX2x/wnfgf/ocvD//AINIf/iq+Krr9gH4bxfGSw8IL4z8VG1utButSeYm38wSRT28QUfu8bSJmJ4zkCum/wCHbnws/wCh68Yf99W3/wAaoA9z/aC8a+DZ/D/h1YfFuhyFfGGiuwTUoWwovoiScN0ABJNd5/wnfgf/AKHLw/8A+DSH/wCKr4q+KX7APw38MaXpV1Z+M/FUzX+vafpsglNvhY7i5SJmGIx8wDkjtn1rpv8Ah258LP8AoevGH/fVt/8AGqAPqfVfHXgg6XcgeMfD5JhfAGqQ+h/2q4r4D+JPh/e/sw+C9D1zxD4bngn8IafbXtld30BV1NpGrxyIzfUEEV4Re/8ABOH4Ww2c0y+OfF5McbMAWtuwz/zyrD+Ef/BPz4a+LPhT4Y8U3vjTxVDc65otnqE0UJt9kbzQJIyrmMnALEDJoA4n4raJqn7IHxqX4o/BDxLp2u+BtWmEep6EmpJN5CE58iUKxYpyfLmwSh+Vs5/efXH7E/xG8P8AxWs/iD458NtKtlq/iuCZYJxtmhI0XS4nV19pIpFyODsJBIrx7/h258LP+h68Yf8AfVt/8arpf2RP2YPh54I8QfEjSFvfEeo/2b4httOimbWZ7MtENMs7sFltWjDNvvZRls8KuMfMWAPqqvP/ABH/AMnTeDf+xM8Q/wDpbolH/ClvAP8Azw8Qf+FXqn/yRXD6/wDCTwRH+0l4T05YNc+z3HhLXZpAfE2ol98d3o6rhzPuUYlfIBAPBIJVcAHvFef/ALTX/JLof+xm8P8A/p5sqP8AhS3gH/nh4g/8KvVP/kiuH/aG+EngjT/hxFcW0GuCQ+IdDi/eeJtRkG19WtEbhpyM7WODjIOCMEA0Ae8UV5//AMKW8A/88PEH/hV6p/8AJFH/AApbwD/zw8Qf+FXqn/yRQAfsq/8AJuPgv/sDQf8AoNegV4P+zV8JPBGo/APwlf3UGuGa40mF5DH4m1GNcleyJOFUewAFdx/wpbwD/wA8PEH/AIVeqf8AyRQB81fte/tMn4L/ABE+IXhnwhAL7xtr91YJZHZ5kenL9hiHmsv8cmWGxOmeW4AVn/sD/BXwf4KvD8W/i34z0HVviFqzNcxx3esQzHSzJyzMxc77hsnc38OSB3Jr61+xF8NviD8d/H003iPxRpsVlfWrRxRXaXBJmtklfMkyu7fMxxlicdzVv/h258LP+h68Yf8AfVt/8aoA9z8ceNPBz/HrwHcJ4s0NoobPVhJINShKoSlvjJ3YGcHH0rvP+E78D/8AQ5eH/wDwaQ//ABVfFXiT9gH4bad8TfDPhqLxn4qa31yC+kmkY2++MwLEV2/u8c+Yc59BXTf8O3PhZ/0PXjD/AL6tv/jVAHuf7TXjTwdc/BDW4LbxZoc0rfZ9qR6lCzHFxEeAG9BXef8ACd+B/wDocvD/AP4NIf8A4qvir4xfsA/Dbwh8OdR8RWXjPxVPPZ+VsjmNvsbfKiHOIwejGum/4dufCz/oevGH/fVt/wDGqAPoL4+eNvBtx8CvGkEHi3QpZZfDeoJHGmpQszsbaQAABuSTXiv/AARh/wCTUNU/7G26/wDSa1rH/wCHbnws/wCh68Yf99W3/wAaru/2NP2fPh7onwJs4wNeuJrnUL2S4mXXry28xkuHhB8uCREHyRIPu5460AfSlef+A/8Ak4L4gf8AXlo//ou4o/4Ut4B/54eIP/Cr1T/5Irh/Bfwk8ETfHLxxZSQa55NraaU0QHibUVbLpPuywn3N0GMk47YzQB7xXn/xU/5K98MP+wzff+mu6o/4Ut4B/wCeHiD/AMKvVP8A5Irmdf8Ah/4Z8KfG74aX2ix6os0uq30bG61q8u12/wBmXR4WaV1B46gZoA9mooooAKKKKACiiigAooooAK8/t/8Ak6a8/wCxMt//AEtnr0CvIfF9p40uv2oph4P1/QdJdfB0Hntq2hzagJB9snwFEd1b7T9S1AHr1ef/AB3/AOQj4B/7HO1/9EXNH9kfG/8A6KH8P/8Awg73/wCW1cP8aNL+MKX/AIJ+2+OvA8zN4tthbmHwVdx+XL5Fxhnzqbb1xu+UbScj5hjBAPeK5/4s/wDJK/E3/YFu/wD0S9c//ZHxv/6KH8P/APwg73/5bVh/E7SfjQvw28QtdeP/AAHJANJujKkfge8R2XyWyFY6qwUkZwSDj0PSgDvPhN/ySvwz/wBgW0/9EpXQV5H8MdJ+NDfDbw81r4/8BxwHSbUxJJ4HvHdV8lcBmGqqGIGMkAZ9B0rc/sj43/8ARQ/h/wD+EHe//LagA+BH/IR8ff8AY53X/oi2r0CvB/gvpfxhe/8AG32Lx14HhZfFtyLgzeCruTzJfIt8smNTXYuNvyncRg/Mc4Hcf2R8b/8Aoofw/wD/AAg73/5bUAGpf8nTaN/2Jmo/+ltjXoFeD6hpfxh/4aS0mNvHXgc3x8JX5SceCrsRLF9rs9ymP+08lixUht4AAI2nII7j+yPjf/0UP4f/APhB3v8A8tqAD9or/kXfDn/Y56J/6Xw16BXg/wAeNL+MKaDoBv8Ax14HnQ+LdHEQg8FXcRWU3sWxmJ1NtyhsEqACwBAZc5Hcf2R8b/8Aoofw/wD/AAg73/5bUAdxq3/IKuv+uL/+gmuP/Zl/5Nt+Hv8A2KWmf+kkVUNU0j42jTbjd8QvABXyWyB4EvASMHv/AGtXLfs76V8Y5P2f/Az6d478DW9m3hjTjbQ3Hgq7mkjj+yx7VeRdUQOwGAWCqCedo6UAe4V5/wDBv/kovxY/7HO3/wDTDpFH9kfG/wD6KH8P/wDwg73/AOW1cP8ACfS/jC3jz4mraeOvA8UyeLYBePL4Ku5Fml/sTSyGjUampjXyzGu0lzuVm3AMEUA94rz/AMR/8nTeDf8AsTPEP/pbolH9kfG//oofw/8A/CDvf/ltXD6/pfxhH7SXhOOTx14Ha+bwlrpgnXwVdiJIhd6P5itH/aZLMzGIqwdQoRwVbeCgB7xXn/7TX/JLof8AsZvD/wD6ebKj+yPjf/0UP4f/APhB3v8A8tq4f9obS/jDH8OIm1Hx14HuIP8AhIdDAS38FXcLbzq1oI23NqbjaHKkrjLAFQVJ3AA94orz/wDsj43/APRQ/h//AOEHe/8Ay2o/sj43/wDRQ/h//wCEHe//AC2oAP2Vf+TcfBf/AGBoP/Qa9Arwf9mrS/jDJ8A/CT6Z468D29m2kwmCG58FXc0iLt4DSLqaBj7hV+ldx/ZHxv8A+ih/D/8A8IO9/wDltQAfDP8A5LV8Sv8Ar907/wBIY69Arwf4e6X8YW+LnxBW38deB47lbuw+1SSeCrt0lP2OPaUQamCgC4ByzZPPHSu4/sj43/8ARQ/h/wD+EHe//LagA8ef8nBfD/8A68tY/wDRdvXoFeD+NNL+MI+OXgdJvHXgd7prTVfs8qeCrtY4wEg3h0OpkuT8uMMuMHO7PHcf2R8b/wDoofw//wDCDvf/AJbUAH7Un/JCdd/7dv8A0pir0CvB/wBpDS/jDH8F9ZfUvHXge4tR5HmRW/gu7hkb/SI8YdtTcDnB+6eOOOtdx/ZHxv8A+ih/D/8A8IO9/wDltQB6BXn/AOy//wAkV07/AK/dQ/8AS64o/sj43/8ARQ/h/wD+EHe//LauH/Zz0v4wyfCOwbTvHXge3tvtd9tjuPBV3M4P2yfcS66mgILZI+UYBA5xkgHvFef+A/8Ak4L4gf8AXlo//ou4o/sj43/9FD+H/wD4Qd7/APLauH8F6X8YT8cvHCQ+OvA6XS2mlfaJX8FXbRyApPsCINTBQj5s5Zs5GNuOQD3ivP8A4qf8le+GH/YZvv8A013VH9kfG/8A6KH8P/8Awg73/wCW1czr9j8RLX43fDR/F3inwxqtodVvhHFpXhq40+RX/sy65LyX04IxnjaPrQB7NRRRQAUUUUAFFFFABRRRQAV5/b/8nTXn/YmW/wD6Wz16BXkPi7xBq2hftRTNpfgfXvExl8GwB10mexjMP+mT8t9quYQf+A5oA9erz/47/wDIR8A/9jna/wDoi5o/4WH4u/6IT8QP/A7Qf/lnXD/Gjx14ouL/AMEmX4MeOLXyfFttIgmvNFPnsILgeWmzUGwxyT821eDkjgEA94rn/iz/AMkr8Tf9gW7/APRL1z//AAsPxd/0Qn4gf+B2g/8AyzrD+J3j/wAVzfDbxDFJ8EPHlukmk3StNJe6GUjBhYFmC6kWwOpwCfQGgDvPhN/ySvwz/wBgW0/9EpXQV5H8MfH/AIrh+G3h6KP4IePLhI9JtVWaO90MJIBCoDKG1INg9RkA+oFbn/Cw/F3/AEQn4gf+B2g//LOgA+BH/IR8ff8AY53X/oi2r0CvB/gv468UW9/42MXwY8cXXneLbmRxDeaKPIYwW48t9+oLlhgH5dy8jBPIHcf8LD8Xf9EJ+IH/AIHaD/8ALOgA1L/k6bRv+xM1H/0tsa9ArwfUPHXig/tJaTdn4MeOFmXwlfxizN5ovmupu7MmQH+0Nm0EAHLBssMAjJHcf8LD8Xf9EJ+IH/gdoP8A8s6AD9or/kXfDn/Y56J/6Xw16BXg/wAePHXii50HQFm+DHjizEfi3R5Fae80UiRlvYiI12agx3MRtGcLkjJUZNdx/wALD8Xf9EJ+IH/gdoP/AMs6AO41b/kFXX/XF/8A0E1x/wCzL/ybb8Pf+xS0z/0kiqhqnxC8WnTbgH4F+P1BhbJN9oOBweeNSrlv2d/Hfim1/Z/8DWsHwW8c30UPhjTo47q3vdEEc6i1jAkQSairhWAyNyq2DyAeKAPcK8/+Df8AyUX4sf8AY52//ph0ij/hYfi7/ohPxA/8DtB/+WdcP8J/HXiiDx58TZYvgx44uWufFsEksUV5ooa1YaJpaeXJu1AAsVVX+Qsu2Red25VAPeK8/wDEf/J03g3/ALEzxD/6W6JR/wALD8Xf9EJ+IH/gdoP/AMs68r8Y/Fjxlb/theCbEfAbx0RJ4V1iEIbjTmldZZ7KRpFZLlrcLGbOJW8ydDm5TjJQSAH0pXn/AO01/wAkuh/7Gbw//wCnmyo/4WH4u/6IT8QP/A7Qf/lnXD/tDeOvFF18OIop/gx44sk/4SHQ3864vNFKkrq1owTEeoM25yAg4xlhuKrlgAe8UV5//wALD8Xf9EJ+IH/gdoP/AMs6P+Fh+Lv+iE/ED/wO0H/5Z0AH7Kv/ACbj4L/7A0H/AKDXoFeD/s1eOvFFp8A/CVtb/BjxxfxRaTCqXVteaKscw2/eUSagrgH/AGlB9q7j/hYfi7/ohPxA/wDA7Qf/AJZ0AHwz/wCS1fEr/r907/0hjr0CvB/h7468URfFz4gzp8GPHE0k93YGSCO80UPb4s4wA5bUApJHI2FuDzg8V3H/AAsPxd/0Qn4gf+B2g/8AyzoAPHn/ACcF8P8A/ry1j/0Xb16BXg/jTx14ok+OXge5f4MeOIpIbTVQls95ovmT7kgyUI1AqAuBncy9RjPOO4/4WH4u/wCiE/ED/wADtB/+WdAB+1J/yQnXf+3b/wBKYq9Arwf9pDx14ou/gvrNvP8ABjxxYxv5G64uLzRTGmLiM8iPUGbnGOFPJ9Oa7j/hYfi7/ohPxA/8DtB/+WdAHoFef/sv/wDJFdO/6/dQ/wDS64o/4WH4u/6IT8QP/A7Qf/lnXD/s5+OvFFr8I7CCD4MeOL6Nbu+Int7zRQjZvJyQBJqCtkEkHI6g4yMEgHvFef8AgP8A5OC+IH/Xlo//AKLuKP8AhYfi7/ohPxA/8DtB/wDlnXD+C/HXiiP45eOLlPgx44lkmtNKD2yXmi+ZBtSfBcnUApDZONrN0OccZAPeK8/+Kn/JXvhh/wBhm+/9Nd1R/wALD8Xf9EJ+IH/gdoP/AMs65jX/ABTrmufG74aW2p/DfxP4bjTVr5ludVudNkjkP9mXXygWt3M+e/KgcdaAPZ6KKKACiiigAooooAKKKKACvP7f/k6a8/7Ey3/9LZ69ArwzxD8W/hn4Y/bH1LRfEvjjRNFu4PB9tHKNSu1to0f7TJKEMsmEDlJEYLuyQ2QKAPc68/8Ajv8A8hHwD/2Odr/6IuaP+F7fBD/osnw//wDCosv/AI5XD/Gj4z/B6+v/AAS1l8V/A9ytp4ttp7gw+I7R/JiEFwC74k+VQWUZPHI9aAPeK5/4s/8AJK/E3/YFu/8A0S9c/wD8L2+CH/RZPh//AOFRZf8AxysP4nfG/wCC918NvENra/F7wHNPNpN1HFFH4ms2eRjCwCqBJkkkgACgDvPhN/ySvwz/ANgW0/8ARKV0FeR/DH43/Be1+G3h61uvi94Dhnh0m1jlik8TWavGwhUFWBkyCCCCDW5/wvb4If8ARZPh/wD+FRZf/HKAD4Ef8hHx9/2Od1/6Itq9Arwf4L/Gf4PWN/42a9+K/ge2W78W3M9uZvEdonnRGC3AdMyfMpKsMjjg+ldx/wAL2+CH/RZPh/8A+FRZf/HKADUv+TptG/7EzUf/AEtsa9ArwfUPjP8AB5v2ktJ1Nfiv4HNjH4Sv4Huh4jtPKWVruzZUL+ZgMVRiBnJCk9jXcf8AC9vgh/0WT4f/APhUWX/xygA/aK/5F3w5/wBjnon/AKXw16BXg/x4+M/we1DQdAjsPiv4Hunh8W6PPKsHiO0cpEl7EzuwEnCqoJJPAAJNdx/wvb4If9Fk+H//AIVFl/8AHKAO41b/AJBV1/1xf/0E1x/7Mv8Aybb8Pf8AsUtM/wDSSKqGqfHT4JPptwq/GLwAzNCwAHiezyTg/wDTSuW/Z3+NPwc039n/AMDadqPxZ8DWl5aeGNOhuba48SWkckMi2sasjq0gKsCCCDyCKAPcK8/+Df8AyUX4sf8AY52//ph0ij/he3wQ/wCiyfD/AP8ACosv/jlcP8J/jP8AB6z8efE24u/iv4Hghv8AxbBPZyS+I7RVuYhomlxl4yZMOokjkTIyNyMOoNAHvFef+I/+TpvBv/YmeIf/AEt0Sj/he3wQ/wCiyfD/AP8ACosv/jleeeJvjz8Fl/al8HyD4p+E5LdPCmt28l5Fq0MlrDLNc6ZJEkk6sY0ZltJyAzD7gHVlyAfQdef/ALTX/JLof+xm8P8A/p5sqP8Ahe3wQ/6LJ8P/APwqLL/45Xnv7UHx4+Cy/CuP7P8AFPwlfyL4h0WYw6bq8N5N5cWp2s0j+XCzNhY4nYnHbHUgEA+gqK8/X47/AAPZQw+MngDkd/E9mP8A2pR/wvb4If8ARZPh/wD+FRZf/HKAD9lX/k3HwX/2BoP/AEGvQK8H/Zq+M/we0v4B+EtP1P4r+B7O8ttJhjnt7nxHaRyRMF5VlaQEH2Ndx/wvb4If9Fk+H/8A4VFl/wDHKAD4Z/8AJaviV/1+6d/6Qx16BXg/w9+M/wAHrb4ufEG8uPiv4Hhtr27sGtZpPEdoqThbONWKMZMMAwIOOhGK7j/he3wQ/wCiyfD/AP8ACosv/jlAB48/5OC+H/8A15ax/wCi7evQK8H8afGf4PT/ABy8D38PxX8DyWtpaaqtxcJ4jtGjhLpAEDsJMKW2tjPXBx0ruP8Ahe3wQ/6LJ8P/APwqLL/45QAftSf8kJ13/t2/9KYq9Arwf9pD4z/B7U/gvrNjpvxX8D3l1L5HlwW/iO0kkfFxGThVkJOACfoK7j/he3wQ/wCiyfD/AP8ACosv/jlAHoFef/sv/wDJFdO/6/dQ/wDS64o/4Xt8EP8Aosnw/wD/AAqLL/45XD/s5/Gf4PaZ8I7Cz1H4r+B7O5S7vmaG48R2kbqGvJ2UlWkBAKkEeoINAHvFef8AgP8A5OC+IH/Xlo//AKLuKP8Ahe3wQ/6LJ8P/APwqLL/45XD+C/jP8HoPjl44v5viv4Hjtbu00pbe4fxHaLHMUScOEYyYYruXOOmRnrQB7xXn/wAVP+SvfDD/ALDN9/6a7qj/AIXt8EP+iyfD/wD8Kiy/+OVwfxE+Nfwj1H45fCnTtI+I3hvVrm4126jVNL1GO8CtJYzQRhzCWCFpZo1XcRktx0OAD3yiiigAooooAKKKKACiiigAry610DQx+2Te6+NIshqh8FQKb0QL5xBu5VPz4z91VH0UDoK9Rrz+3/5OmvP+xMt//S2egD0CvP8A47/8hHwD/wBjna/+iLmvQK8/+O//ACEfAP8A2Odr/wCiLmgD0Cuf+LP/ACSvxN/2Bbv/ANEvXQVz/wAWf+SV+Jv+wLd/+iXoAPhN/wAkr8M/9gW0/wDRKV0Fc/8ACb/klfhn/sC2n/olK6CgDz/4Ef8AIR8ff9jndf8Aoi2r0CvP/gR/yEfH3/Y53X/oi2r0CgDz/Uv+TptG/wCxM1H/ANLbGvQK8/1L/k6bRv8AsTNR/wDS2xr0CgDz/wDaK/5F3w5/2Oeif+l8NegV5/8AtFf8i74c/wCxz0T/ANL4a9AoAr6t/wAgq6/64v8A+gmuP/Zl/wCTbfh7/wBilpn/AKSRV2Grf8gq6/64v/6Ca4/9mX/k234e/wDYpaZ/6SRUAdxXn/wb/wCSi/Fj/sc7f/0w6RXoFef/AAb/AOSi/Fj/ALHO3/8ATDpFAHoFeX+LtB0O6/bC8D6zc6PYzalb+DdeMN5Jbq00ZS60pEKuRkbVubgDngTSD+I59Qrz/wAR/wDJ03g3/sTPEP8A6W6JQB6BWL498H+FvG+hDRfGHh7Tdc09Z0nFrqFss0YkQ/K21gRkZI+hI6EitqigBI1VI1RFCqowqgYAHoKWiigAooooAKKKKACiiigAooooAKKKKACiiigArD8S+DfCfiLX9H1zXfDmmajqXh+Zp9Ku7q1WSWykOMtGxGVPyqeO6qeoBG5RQAUUUUAFFFFABRRRQAUUUUAFeQ+L/Clp4o/aimS61bXtP+z+DoCDpOrz2JfN5P8AeMTLu/GvXq8/t/8Ak6a8/wCxMt//AEtnoAP+FR6R/wBDf8QP/Cxv/wD47XD/ABo+F+l2l/4JVPFPjiT7R4ttoW87xXeybAYLg7kzJ8rcfeHPJ9a94rz/AOO//IR8A/8AY52v/oi5oAP+FR6R/wBDf8QP/Cxv/wD47WH8TvhTpVv8NvENwvizx47RaTdOFk8XXzo2IWOGUyYI9QeteuVz/wAWf+SV+Jv+wLd/+iXoA4P4Y/CnSrj4beHrhvFnjxGl0m1crH4uvkRcwqcKokwB6AdK3P8AhUekf9Df8QP/AAsb/wD+O10Hwm/5JX4Z/wCwLaf+iUroKAPB/gv8L9Lu7/xsr+KfHEf2fxbcwr5Piu9j3gQW53PiT5m5+8eeB6V3H/Co9I/6G/4gf+Fjf/8Ax2j4Ef8AIR8ff9jndf8Aoi2r0CgDwfUPhfpa/tJaTYf8JT442P4Sv5jKfFd75oK3dmNofzNwU7iSucEgHsK7j/hUekf9Df8AED/wsb//AOO0al/ydNo3/Ymaj/6W2NegUAeD/Hj4X6XZ6DoDp4p8cS+b4t0eEifxXeyBQ97EpZQ0nDDOQw5BwRXcf8Kj0j/ob/iB/wCFjf8A/wAdo/aK/wCRd8Of9jnon/pfDXoFAHnGqfCXSF024YeLvH5xCxwfGN+R0P8A01rlv2d/hbpd9+z/AOBr1/FXjmJrnwxp0rR2/iy9ijQtaxnCIsgCqM8ADAHAr2jVv+QVdf8AXF//AEE1x/7Mv/Jtvw9/7FLTP/SSKgCv/wAKj0j/AKG/4gf+Fjf/APx2uH+E/wAL9LufHnxNhbxT44jFn4tghVovFd6jSA6Jpb7pCJMu2XI3Nk7VVeigV7xXn/wb/wCSi/Fj/sc7f/0w6RQAf8Kj0j/ob/iB/wCFjf8A/wAdrn9J8I2nhX9qbwv9l1jxBqH2vwZr27+19ZuL7y9t7o2Nnms2zO45xjOBnoK9grz/AMR/8nTeDf8AsTPEP/pbolAHoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXkPi6HxrL+1FN/wAIfqGg2jjwbB551axmuAw+2T42+XLHj8c169Xn9v8A8nTXn/YmW/8A6Wz0AH2P43/9DD8P/wDwQ3v/AMl1w/xotfjCL/wT9t13wO7HxbbC38nRbtdsvkXGC+bo5XG7gYPTmveK8/8Ajv8A8hHwD/2Odr/6IuaAD7H8b/8AoYfh/wD+CG9/+S6w/idafGgfDbxCbrX/AAG0A0m681Y9DvFcr5LZCk3RAOM4yDXrlc/8Wf8Aklfib/sC3f8A6JegDg/hjafGg/Dbw8bXX/AawHSbXylk0O8ZwvkrgMRdAE4xnAFbn2P43/8AQw/D/wD8EN7/APJddB8Jv+SV+Gf+wLaf+iUroKAPB/gva/GE3/jb7FrvgdGHi25Fx52i3bbpfIt8lMXQwuNvByevNdx9j+N//Qw/D/8A8EN7/wDJdHwI/wCQj4+/7HO6/wDRFtXoFAHg+oWvxh/4aS0lW13wP9u/4RK/KONFu/KEX2uz3Ar9qyW3bcHOMA8HII7j7H8b/wDoYfh//wCCG9/+S6NS/wCTptG/7EzUf/S2xr0CgDwf48WvxhXQdA+3674HdP8AhLdHEQg0W7UiX7bFsLZujlQ2MgYJGcEda7j7H8b/APoYfh//AOCG9/8Akuj9or/kXfDn/Y56J/6Xw16BQB5xqlp8bf7NuN3iHwBt8ls40K8zjB/6e65b9ne1+Mbfs/8AgZtO17wNHZnwxpxtkuNEu3kWP7LHtDst0AWxjJAAJ7CvaNW/5BV1/wBcX/8AQTXH/sy/8m2/D3/sUtM/9JIqAK/2P43/APQw/D//AMEN7/8AJdcP8J7X4wnx58TRaa74HWZfFsAvDLot2yvL/Yml4MYF0Cq+X5YwSTuDHOCAPeK8/wDg3/yUX4sf9jnb/wDph0igA+x/G/8A6GH4f/8Aghvf/kuuf0mHxxF+1N4X/wCEy1Hw/d7vBmvfZP7IsJrfZ/pujb9/mTSbs/JjGMYOc5GPYK8/8R/8nTeDf+xM8Q/+luiUAegUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeQ+L/FH/CN/tRTP/wAI7r2r+f4NgGNJsvtBjxeT/eG4Yr16vP7f/k6a8/7Ey3/9LZ6AD/han/VOPiB/4I//ALOvEP23/wBoweAvD/g/XD8M/Fb/AGPxLHdgarB9ggk8uGUeX5uJMOd+QNp4VvSvq+vKP2tPDGh+NPD/AIT8K+JLBL7StW8VQW93A5I3I1vcg4I5UjqCOQQCKAPmO1/4KPardQCa2+AF5NG3R4/EjMp/EWdUvF//AAUF1rWPCeqaQ3wCv7ZdQsZrYznX3YRB0K7sfYxnGc4yOnWsf/i437BHxo/5ffEvwj8S3X4qf/QY7pFHssyr2x+7+3NS8X+HPHn7O+reLPCeqQ6lpOpaBdyW9xEev7lwVYHlWByCpwQQQRmgD478If8ABQXWtH8J6XpC/AK/uV0+xhthONfdRKEQLux9jOM4zjJ69a0f+Hi+uf8ARvWof+FC/wD8hV9n/Cb/AJJX4Z/7Atp/6JSugoA/O7wB+3prHh+58Qyp8Cr68/tnW5dRYDXXX7OXjiTyj/ohyR5ec8fe6V0X/DxfXP8Ao3rUP/Chf/5Cr6v+BH/IR8ff9jndf+iLavQKAPzuuv29NYl+LFl4t/4UVfLJa6Jc6cLL+3Xy4lngk83d9k4C+SBjbzv6jGD0X/DxfXP+jetQ/wDChf8A+Qq+r9S/5Om0b/sTNR/9LbGvQKAPzu+JP7emseJtN0y2k+BV9Yix1uw1EO2uu/mm3uElEWPsgwX2bc84znB6V0X/AA8X1z/o3rUP/Chf/wCQq+r/ANor/kXfDn/Y56J/6Xw16BQB8GXn/BRLW5rSWE/s+agvmIV3f8JC/GRjP/HnWN8Lf2+NZ8K/DHw54Xj+BF9fpomj2tgt2uvOguBDCkYkC/ZG27tucZOM9T1r9BNW/wCQVdf9cX/9BNed/BnxHofhH9kPwZ4l8S6nb6bpOm+DNNmu7u4bCRqLSL8SScAAckkAAk0AfLNz/wAFHdWt4WmuP2f7yKNfvPJ4kZVH1Js67n9iX9phfiLqXxE1wfDHxRG2pa9bagU0mP8AtGKAHT7W0EbS4j+b/QS/3ekgHbJ8h8Sax8Rf28vjR/wjvh37Z4d+E/h25D3Fw6/f9JJB0kuHGdkfIjBye5b63/ZH8F+Hvh3J8RPBfhSy+x6Ro/i2CK2iLFm50LSWZmY9WZ2Zie5Y0AdB/wALU/6px8QP/BH/APZ1z+keKv8AhJv2pvC//FN+INH+y+DNe/5C9j9n87de6N9z5juxt59Mj1r2CvP/ABH/AMnTeDf+xM8Q/wDpbolAHoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmGp65oui/tSXLaxrFhp6y+DbcRm7uUhDn7ZP03EZr0+vMNT0PRda/akuV1jR7DUFi8G25jF3bJMEP2yfpuBxQB1/wDwnfgf/ocvD/8A4NIf/iq4P44eNPB0+oeBTD4s0OQQ+MLaSQpqULbFEFwCxw3A5HPvXef8IJ4H/wChN8P/APgrh/8Aia4P44eC/B0GoeBRD4T0OMTeMLaOQJpsK71MFwSpwvI4HHtQB0HxGvPhJ488F3/hPxZr3hnUtJ1KIx3FvLqcPPcMpDZVgcEMMEEAg5r8/Nc1LxV+x14+1nQNA8RWvjL4X+MreeFVgvY5TEXjKBmCEiK5QEc4CyqvYj93+j//AAgngf8A6E3w/wD+CuH/AOJrlfjl8M/h5qvwb8UWV74J0Fo20e6YFdOiRkZYmZXVgoKsCAQQcgigA+BvxM+Hmq/Bvwve2XjbQWjbR7VSG1GJGRliVWRlLAqwIIIIyCK6r/hO/A//AEOXh/8A8GkP/wAVX5waHpvir9jrx9o2v6/4etfGXwv8ZW8EzNPZRymIvGHKqXBEVygJ4yFlVexH7v8AQP4c2fwk8eeC7DxZ4T0HwzqWk6lEJLe4i0yHnsVYFcqwOQVOCCCCM0Ac/wDA/wAaeDoNQ8dGbxZocYm8YXMkZfUoV3qYLcBhluRwefau8/4TvwP/ANDl4f8A/BpD/wDFVwfwP8F+Dp9Q8dCbwnocgh8YXMcYfTYW2KILchRleByePeu8/wCEE8D/APQm+H//AAVw/wDxNAHB6h408HH9pzSLoeLNDMC+D9QjaX+0odgY3lkQpO7GSATj2Nd5/wAJ34H/AOhy8P8A/g0h/wDiq4PUPBfg4ftOaRajwnoYgbwfqEjRf2bDsLC8sgGI24yASM+5rvP+EE8D/wDQm+H/APwVw/8AxNAHB/tA+NPB1x4f8PLb+LNDlZPGGiyME1KFtqrfRFmOG4AAJJ7V3n/Cd+B/+hy8P/8Ag0h/+Krg/wBoHwX4Ot/D/h5rfwnocTP4w0WNimmwruVr6IMpwvIIJBHeuo8a6P8ACvwj4VvvEviXQPC+m6TpsJmu7u402EJGo/4DkknAAHJJAAJNAB40+J/w50XwjqWq6l458Pw2traySSv/AGlExACngKGJYnoAASSQACTX5zeGtd8Z/tYXvhH4ZXOvWng74b+CNJsrW+nubtI1meGBI2lO4gSzNtbYnRFOT3LbusWviH9tT4zzad4G8O2vg/4X+GZC1xew2EcLyAc75CoHmTuB8keSsYOT3LfaH7Kfw2+H9j+zX4EFv4L0HddeHLG6uJJNOieSaaW3R5JHZlJZmZick+3QCgDc+Eo+D/w18B2Pg/wfr/hvT9L09MIi6pCXlY/ekkbdl3Y8lj1+mBWP8IfGng6H4gfFOSXxZocaXHjCCSFn1KECRf7D0ldyktyNysMjupHau8/4QTwP/wBCb4f/APBXD/8AE1wfwh8F+DpviB8U45fCehyJb+MII4VfTYSI1/sPSW2qCvA3MxwO7E96AO8/4TvwP/0OXh//AMGkP/xVcfNr2h63+1N4S/sbWdP1HyPBniDzfsd0k3l5vdFxu2k4zg4z6Guw/wCEE8D/APQm+H//AAVw/wDxNcfNoOh6J+1N4S/sbRtP07z/AAZ4g837HapD5mL3RcbtoGcZOM+poA9QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8/t/8Ak6a8/wCxMt//AEtnr0CvIfF/hj/hJf2opk/4SLXtI8jwdAc6Te/ZzJm8n+8dpzQB69Xn/wAd/wDkI+Af+xztf/RFzR/wqv8A6qP8QP8Awef/AGFcP8aPht9lv/BI/wCE+8cTfaPFttFmbWd3l5gnO5Pk4bjr7mgD3iuf+LP/ACSvxN/2Bbv/ANEvXP8A/Cq/+qj/ABA/8Hn/ANhWH8Tvhh5Hw28Qz/8ACw/Hknl6TdPsk1vcj4hY4YbOQe9AHQab4Q8OePP2d9J8J+LNKh1LSdS0C0juLeUdf3KEMpHKsDghhgggEHNfEf8Axcb9gj40f8vviX4R+Jbr8VP/AKDHdIo9lmVe2P3f158Mfhh5/wANvD0//Cw/HkfmaTavsj1vaiZhU4UbOAO1TeOPgJ4f8Y+F7rw54o8X+NNW0u9ULPaXerrJG2DkHBj6ggEHqCARQAn7JfifQ/Gfh/xZ4p8N36X2lat4qnuLSdARuRre2IyDypHQg8ggg16vX5Yuvjn9k34walawar4suvhTN4im0+ebTL827tIio3b5FuFjZDyAJApAxj5PvL4c+GvDnjzwXYeLPCfxb8dalpOpRCS3uItd69irAplWByCpwQQQRmgDc1L/AJOm0b/sTNR/9LbGvQK8H1D4bY/aS0mx/wCE+8cHf4Sv5fPOs/vVxd2Y2htnCndkj1A9K6Txr4P0Pwh4VvvEviX4teONN0nTYTNd3dxr+EjUf8AySTgADkkgAEmgCX9rTW9K8NfDfS/EOuXkdnpul+KdHury4kztiiS9iZmIHJwAeBzXxv4k1j4i/t5fGj/hHfDv2zw78J/DtyHuLh1+/wCkkg6SXDjOyPkRg5Pctw/ifU/HH7VHxSh0fR9X8WxfCqx8QWNjJdatfGdleedIFlYHCNORIzKgB2LnJ6k/efw7/Z78M+BPClv4b8JeLvGmk6bbZK29rqyxqzH7zsFjGWJ5J70Adh8O/Afhf4a/C2Lwf4P0yPT9L0+1cIi8vKxX5pJG6u7Hksev0wKp/sy/8m2/D3/sUtM/9JIqoap8Ldum3Df8LG8fnELHB1zg8H/Yrlf2ePhp9t/Z/wDA15/wn/jm3+0eGNOk8m31nZFHutYztRdnCjOAOwoA9xrz/wCDf/JRfix/2Odv/wCmHSKP+FV/9VH+IH/g8/8AsK4f4T/Db7R48+JsP/CfeOIvsni2CLfFrO1ps6Lpb7pDs+Zvn25/uqo7UAe8V5/4j/5Om8G/9iZ4h/8AS3RKP+FV/wDVR/iB/wCDz/7Cuf0jwr/wjP7U3hf/AIqPxBrH2rwZr3/IXvvtHk7b3RvufKNud3PrgelAHsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn9v/wAnTXn/AGJlv/6Wz16BXkPi6bxrF+1FN/wh+n6DdufBsHnjVr6a3Cj7ZPjb5cUmfxxQB69Xn/x3/wCQj4B/7HO1/wDRFzR9s+N//QvfD/8A8H17/wDIlcP8aLr4wm/8E/bdC8Dow8W2xt/J1q7bdL5FxgPm1GFxu5GT04oA94rn/iz/AMkr8Tf9gW7/APRL1z/2z43/APQvfD//AMH17/8AIlYfxOu/jQfht4hF1oHgNYDpN15rR65eM4XyWyVBtQCcZxkigDvPhN/ySvwz/wBgW0/9EpXQV5H8Mbv40D4beHha6B4DaAaTa+U0muXiuV8lcFgLUgHGM4Jrc+2fG/8A6F74f/8Ag+vf/kSgDE8H+EPDnjzw38TfCfizSodS0nUvF11HcW8o6/uLYhlI5VgcEMMEEAg5r5C/4uN+wR8aP+X3xL8I/Et1+Kn/ANBjukUeyzKvbH7v6g+C918YRf8Ajb7FoXgd2Pi25Nx52tXa7ZfIt8hMWpyuNvJwevFbvxG8OfEzx54Lv/CfizwT8OdS0nUojHcW8uu3vPcMpFplWBwQwwQQCDmgDL/4Wl4AvviRovxRg8UWP/CJ/wDCA6jdtqbPhEQXtiCrDqHDfLsxu3fLjPFfK/iTWPiL+3l8aP8AhHfDv2zw78J/DtyHuLh1+/6SSDpJcOM7I+RGDk9y3Gah+xP8YYfjFb/DKDWdLGg3tvPq8Un9sSG3jgSSJHVh5QYy5aFciLBIU9FwPub4S+D/AIj/AA18B2Pg/wAH+Cvh3p+l6emERdevC8rH70kjfZMu7Hksev0wKADxh4D8L/DX4QeDfB/g/TI9P0vT/GGhhEXl5WN/Dukkbq7seSx6/TAr2SvB/jxdfGFtB0D7foXgdE/4S3RzEYNau2Jl+2xbA2bUYUtjJGSBnAPSu4+2fG//AKF74f8A/g+vf/kSgDuNW/5BV1/1xf8A9BNcf+zL/wAm2/D3/sUtM/8ASSKqGqXnxt/s243eHvAG3yWzjXbzOMH/AKdK5b9ne6+Ma/s/+Bl07QfA0lmPDGnC2e41u7SRo/sse0uq2pAbGMgEgHuaAPcK8/8Ag3/yUX4sf9jnb/8Aph0ij7Z8b/8AoXvh/wD+D69/+RK4f4T3XxhHjz4mm00LwO0zeLYDeCXWrtVSX+xNLwIyLUll8vyzkgHcWGMAEgHvFef+I/8Ak6bwb/2JniH/ANLdEo+2fG//AKF74f8A/g+vf/kSuf0mbxxL+1N4X/4TLTvD9pt8Ga99k/si/muN/wDpujb9/mQx7cfJjGc5OcYGQD2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArz+3/5OmvP+xMt//S2evQK8h8X+K7Twv+1FM91pOvah9o8HQADSdInvSmLyf7wiVtv40AevV5/8d/8AkI+Af+xztf8A0Rc0f8Lc0j/oUPiB/wCEdf8A/wAarh/jR8UNLu7/AMEsnhbxxH9n8W20zed4UvY94EFwNqZj+Zufujng+lAHvFc/8Wf+SV+Jv+wLd/8Aol65/wD4W5pH/QofED/wjr//AONVh/E74raVcfDbxDbr4T8eI0uk3SBpPCN8iLmFhlmMeAPUnpQB3nwm/wCSV+Gf+wLaf+iUroK8j+GPxW0q3+G3h63bwn48dotJtULR+Eb50bEKjKsI8EehHWtz/hbmkf8AQofED/wjr/8A+NUAHwI/5CPj7/sc7r/0RbV6BXg/wX+KGl2l/wCNmfwt44k+0eLbmZfJ8KXsmwGC3G18R/K3H3TzyPWu4/4W5pH/AEKHxA/8I6//APjVABqX/J02jf8AYmaj/wCltjXoFeD6h8UNLb9pLSb/AP4RbxxsTwlfwmI+FL3zSWu7M7gnl7io2kFsYBIHcV3H/C3NI/6FD4gf+Edf/wDxqgA/aK/5F3w5/wBjnon/AKXw16BXg/x4+KGl3mg6AieFvHEXleLdHmJn8KXsYYJexMVUtHyxxgKOScAV3H/C3NI/6FD4gf8AhHX/AP8AGqAO41b/AJBV1/1xf/0E1x/7Mv8Aybb8Pf8AsUtM/wDSSKqGqfFrSG024UeEfH4zCwyfB1+B0P8A0yrlv2d/ilpdj+z/AOBrJ/CvjmVrbwxp0TSW/hO9ljcraxjKOsZDKccEHBHIoA9wrz/4N/8AJRfix/2Odv8A+mHSKP8Ahbmkf9Ch8QP/AAjr/wD+NVw/wn+KGl23jz4mzN4W8cSC88WwTKsXhS9dowNE0tNsgEeUbKE7WwdrK3RgaAPeK8/8R/8AJ03g3/sTPEP/AKW6JR/wtzSP+hQ+IH/hHX//AMarn9J8XWnin9qbwv8AZdH8Qaf9k8Ga9u/tfRrix8zde6NjZ5qrvxtOcZxkZ6igD2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArz+3/wCTprz/ALEy3/8AS2evQK8xbWdItf2sLy2udUs4Zv8AhDrdfLkuFVtwu5WIwT12spx6EGldKxcKc535It2V3bou78j06vP/AI7/APIR8A/9jna/+iLmux/tzRf+gvYf+BKf41wPxz1jSH1DwGU1SybZ4xtWbFwhwPIuOTz0q+SXYg9Nrn/iz/ySvxN/2Bbv/wBEvWj/AG5ov/QXsP8AwJT/ABrA+K2taO/wu8SKurWLM2jXYAFymSfJf3o5JdgL3wm/5JX4Z/7Atp/6JSugrkfhTrWjp8LvDatq1irLo1oCDcpkHyU963/7c0X/AKC9h/4Ep/jRyS7Acd8CP+Qj4+/7HO6/9EW1egV5l8DNY0hNQ8eF9Usl3+MbplzcIMjyLfkc9K77+3NF/wCgvYf+BKf40ckuwHHal/ydNo3/AGJmo/8ApbY16BXmWo6xpB/ai0eX+1LLyx4O1BS32hMAm8suM568H8q77+3NF/6C9h/4Ep/jRyS7Acd+0V/yLvhz/sc9E/8AS+GvQK8y/aF1jSJPDvh0R6pZMV8Y6IxC3CHAF/CSevSu+/tzRf8AoL2H/gSn+NHJLsBPq3/IKuv+uL/+gmuP/Zl/5Nt+Hv8A2KWmf+kkVdDq2t6KdLuQNXsP9S//AC8p/dPvXI/s06zpEf7OXw/jk1WyR08KaYrK1wgKkWkWQRmjkl2A9Frz/wCDf/JRfix/2Odv/wCmHSK7H+3NF/6C9h/4Ep/jXA/B7WNIT4h/FZn1SyVZPGNuyE3CDcP7C0kZHPIyCPwNHJLsB6bXn/iP/k6bwb/2JniH/wBLdErsf7c0X/oL2H/gSn+NcBrmtaPN+1Z4Mhh1axkkPhHXohGlyhYvJdaS6LgHOWW3nIHcROf4TUy91XloXTpzqNqEW7JvTXRbv0XU9OooooICiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorN1nxFoOkarp+maprFjZ3mrSGKwt551SS5cYyEUnLHkDjuQOpFJySV2y6dOdSXLCLb8tdtX9y1NKiiimQFFFFABRRRQAUUUUAFchrnws+HmteNJvFeteEdN1LVbiBYJZb2LzkdVAAJifKbgABu27sDGcV19FJxTabWq1Xk+5tRxFajzeym48ycXZtXT3Ttun1WxyX/CrPhj/0Tjwl/wCCO2/+IpG+FXwubG74beETtORnQrbg+v3K66it/rFb+d/ezCy7HJf8Ks+GP/ROPCX/AII7b/4ikb4V/DBlKt8N/CJB6g6Fbf8AxFddRR9Yrfzv72Fl2ORX4V/DBVCr8N/CIA6AaFbf/EUv/CrPhj/0Tjwl/wCCO2/+IrraKPrFb+d/ewsuxyK/Cr4XLnb8NvCI3HJxoVtyfX7lL/wqz4Y/9E48Jf8Agjtv/iK62ij6xW/nf3sLLscj/wAKq+F3mb/+FbeEdwGA39hW2cen3Pal/wCFWfDH/onHhL/wR23/AMRXW0UfWK387+9hZdjkW+FXwucYb4beEWwQRnQrbqOh+5S/8Ks+GP8A0Tjwl/4I7b/4iutoo+sVv5397Cy7HJf8Ks+GH/ROPCX/AII7b/4ikT4VfC9ECJ8N/CKqowANCtgAP++K66ij6xW/nf3sLLscl/wqz4Y/9E48Jf8Agjtv/iKRfhV8LlZivw28IgscsRoVtycYyfk9APyrrqKPrFb+d/ewsuxyX/CrPhj/ANE48Jf+CO2/+IqLT/hN8N9P8Y2PinTfBulafqmnIy20tlALdF3AgsY0wjNhj8xUkZ68CuyorOpOVVWqO63111N6GIrYduVGbi2mnZ2uno07dGt11CiiipMQooooAKKKKACiiigAooooAKKKKACiiigAooooAK53xZ4F8KeJvEmja/rekR3eo6BN52nTtI6mF8g5wpAbBVSAwOCOK6KiplCM1aSujahiK2Hn7SjNxlqrptOzVmrrunZ90FFFFUYhRRRQAUUUUAf/2Q=="]
math
multiple-choice
22
已知三棱柱 $A B C-A_{1} B_{1} C_{1}$ 的侧棱与底面边长都相等, $A_{1}$ 在底面 $A B C$ 内的射影为 $\triangle A B C$ 的中心,则 $A B_{1}$ 与底面 $A B C$ 所成角的正弦值等于()
$\frac{1}{3}$
$\frac{\sqrt{2}}{3}$
$\frac{\sqrt{3}}{3}$
$\frac{2}{3}$
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCACqAO8DASIAAhEBAxEB/8QAGgABAAMBAQEAAAAAAAAAAAAAAAMEBQECBv/EABUBAQEAAAAAAAAAAAAAAAAAAAAB/9oADAMBAAIQAxAAAAH78AAABTkLAAAAAAABRi8ytWgAAAAMWXVzjP8AWpYKPeDrt8z2gM9oDPaAz2gM6l3XKvu6AAAAB5K/YNArWatoA8UdEZ3q/GSM4aKjdO5MvCW6AAAAADNmlJuhUt1LYAACQY2jny7ePf5Xm5BbAAAAAEcmce73OgFS3VtAAACCfNPflfPQAAAADkJBYgugAFW1WsgAAhK55J7IAAAAAM7twkAABVtVbQAAzvXTxoQzgAAAACpbrmRoVxdZ9on4HHBWt0rxzvOHatikRX0RqKV0AAAAAZukKlsFS2M5oiCtLnHu/l3y+rRkMkGsM7REMwAAAAAAAAAAKlsZUdzHj6VztAAAAAAAAAAAAAVe2QAAAAAAAB//xAAmEAADAAEDBAICAwEAAAAAAAABAgMEABITERQgMBAjM0AhNFAi/9oACAEBAAEFAv8AGvXhlIlpe/KtwY/bP09dsNshMY7X7jMrQZFuvTL1tzNbczW3M1tzNbczW3M1tzNbczW3M1tzNbczW3L1EvmaENoxP6nrp9tJ7uQqGHaKuuuTPQypdfTZ2ydTQTT2WpxrKfGiB+X5Khh2qrrrkz0MqXXxo/IsZke0kKJA0bSKRXyKhh2qrrrkz0MqXXr/AB/YKfdX2v8AfX4moFvOrbZYdq0oVDDt0bIqdxVQq+yzlROYmnxPZzeeTKlZtJp1tQqP+caEZlF9jMESKkn5mU5vRQqqRU6n91Pb+evgjdbej89qdauB0Hss50iBF8ELGvnZjpiMeUp8a+ylBNIoR5Jv5fKjiaSXYsRyP7V++vkisK+S/fV/vr7bMXZQFXyRelvGpLtRuNJTE09l6iEIZcBjHKQSawXRqBQVHItgxWwZeYca1mrNYLpqhX5RyCwZnzESSZUYyipY+2jiazjPJg2K21yul2WcI4oosCDbZyPxLdO53U5F5tyzfbwrxKk20qmho70yJJRH9lMY1MJmUPh8eVDxXnruGTSVSgtYo4agy5M5X4u+4ohodPjtzIpUfpvjyoWxbJdC0qniylWoNMiwjLHiSP2nx5ULRyFWMaUp+5lHpjYchPK/crjzvqUJx/z/AP/EABQRAQAAAAAAAAAAAAAAAAAAAHD/2gAIAQMBAT8BJf/EABYRAAMAAAAAAAAAAAAAAAAAAAFQYP/aAAgBAgEBPwFsK/8A/8QAPRAAAQIEAgUHCQcFAAAAAAAAAQIRAAMSITFREzAyM2EgIkFxkZPSECNAQkNSobHBBBRQY3KC0YGissLh/9oACAEBAAY/AvwZShctYQkqxb0BSwHPR1wDp5mkcVGqx/phrFiYZSlHZJl7PxiagzAopZ74Whf3dEvRp94XMMudJlnJckj/AGjfSO6PijeyO6PijeyO6PijeyO6PijeyO6PijeyO6PijeyO6PijeyO6PijeyO6PijeyO6PijeyO6PijeyO6PijfSO6PiiaibQuRhUlJDntjzk1c0NgpvpEqxHNAYhtZoRhis/SJgI5oamGIePNKVK/Th2RdKZo4WMMt5ZyXbVCUjZV8Rn1QEJwGttdRskQ2J6TnEyrZtTyGIePNKVK/Th2RdKZo4WMMp5ZyXblFStyP74K17aseHDWkk2EaZX7RkPJNL4kMMuWxDx5pSpX6cOyLpTNHCxhlPLOS7Q8flf5f8ir2aNniddo/UTtceHlmkKclnGVtQpTswxhLzKxS6nSzQxDxTLdMtO2AbHhAkIsTichASMBrQlG8VhASPLNp2nFXZqKEFIzeBPmzQFkhPNsGgJRtqwjP6mHVtquo60qVgIM1e0royHImsOc4q7NTUtmEGcvaV8BGlOyNj+dc3s0HtPJmilmIvnqfy0fExoRh65htaJSNtXwEBKcByZgIsGbjqBKRtK+AgJQL4JEZqNydaVGCte2rHhw5UyrZtTyyowqZM2jc8I0yv2Dhrq/Zo2eJz5cwk2LNy6/Zo2eJjR+ona/jXaFGKto5CAkWA5c01O7Wy5WhTido5CBLljnGyRFPbrVTSCaRgIM8qJJPO5t4TMZZCskwnmrNWSXiilfXTaKKV9dNoIoWGzTBNEy2aYromdVF4mTAmYSoh00XFoTzJl8kwE0rvkmKKV9dNoKaVhukphSylYbB0s8VzKgpVy6bmNMvFWAyGu+UJXMQKlXcWgAKTMSPVmJgaeStNOBSbfCBMROPUDaKtIafdaDUpKh0WaDUhNXQEmKjJU/uiCkS5gmLYlxDaPm+88GqhuhoUFzSXyDNFCiojiY0iwNEjYB+cBawyRspjQS1UsHUqFBS6k9D461dakKHqBSHphEsqqpDOzeVyjnZixjzc2oZTP5jz0pSeIuIdCgrqhEtAeYvDhAlzShZpdKglmjziWV8/Lo3ZIuswFLDJGynyaWUuhZDFw7xdVRz9Eco53vCxgTpMwLLUtNy64VN+0oVWbVJDpAgFK8DYpOEKl3Chn0w/T0QFTOtvr6W5RzveFjB0U/vB9Y0v2mmpNkpBsOPpq7O4Zoo0aZa0IuEYK9NFdVslkfKDQMcSS5P4f8A/8QAKRABAAECBAUEAwEBAAAAAAAAAREAITFBUWEwcYGRoRAgsfBA0eHBUP/aAAgBAQABPyH/AI0SoU9D4rHmhY/AQ8GAuCmCoipMVQTcyuhxLWMJoG2regwnEs5EsFLqVATNqZLhV+j/AKqxqck4gCRClSpUqVKlSpQ0CXGHoZbxdY115VPIRAPVYXtrWAsJARBGDxG4SbLT9qVtWFuUXqIIOIlKpa0f8K7qvxsHxTpWhflg0IkjwFAlaaTGd3Ppd2obIOA4qCGXuGseS3bNRVV74L+fZEGNEpdLWj/hXcV+Nh8U6XoT5YUIkjb2KBK2oZUd5bbfNFiw7MmXFGWAlaiOkkN9JfRyzOkHvijG5S5WN38K7yvxsPinSdCfLCoYhGtXzg0CLPwPJ0w40oePL1UD0kiHgAzKxoOI8Em8qijG5RzYgHZTKYFqsEYCA4t+Kzt36VlI4urr6iWlX+B44EDauCsnSjSBjNMN6vBW9u9NkSsAzakSS36HLivhAXo44wuyPYg4hI1ycFJmC5SIMBYe1Qduzrrxnnb74HtMuSZyODlZ9/vlTl+sNNOtAAICwcWand7zRfQHtjOvJycCUnf8lTmFzjVrWRuni4DZkZulb8/Yy9znr4L+ffg9HlpUUdNaUjFA2TLV143NiPeEx5odLX9+PYlnkrAdZ60CLcUA0BIfeWhRAQB7yxk9h7jD5gUeDiG9AxdxWrrxTUEkErV97vK7SMYyrImKVe1ZeySeHPSjUtcje6lO/wBT8qB+qqDy1oRgZVF5a0M7YYueFRiqJOQtyolKb1jnpSgfUqHWtb93yqYmzEO9YMwBpdpxqZ+Nicg0pgCFe41KHFYGrURZSvu5R8DQZjkmHapGvzP03qUaGTlSmUs2CnHJktUdYrce4VFDJxIL4ow0LJyihsPtfigpY3i0FC4HsFX0tyqz3KLyqLPlXbwB3asmYdiGhSA4ycOaeKnMiIVuxu0azBVwNvWOY1fkK8BL/H6rCD/ejDrUXNuoQ06C2Ga0gyucPNqCkTFm249Qe0tkada7AXe76Mh8IWOUlERs1fiRnH0iXofIm+ID/KOzGGwAi/VoBtZrsqbh2E1KdTvsdWtUKCzdX5cdx9Il6Jp2LAMdH6aNnmjf0fmjMFgRIrT9DOJkzW3x+aQLakxvqKu5lynzi3/5/wD/2gAMAwEAAgADAAAAEPPPPHNPPPPPPOnPPPPLAGKCDDDCPPPPPPPHFPHHGNGPPPPPPEHPPPKQrDPPPPPMHPNPPPHOPPPPOLOMPNPPOKHPPPPPDPPPNPPAJPPPPPPAHCPAIEMPPPPPPDPLDFEMDLHPPPPPPPPPPLNvPPPPPPPPPPPPPPPPPPPPPPP/xAAYEQEAAwEAAAAAAAAAAAAAAAABIUBQYP/aAAgBAwEBPxDWeXYLH//EABsRAAICAwEAAAAAAAAAAAAAAAEhIDEwQFBg/9oACAECAQE/EIB1gMwuHby4ex//xAAqEAEAAQMDAwMEAwEBAAAAAAABEQAhMUFRYTBxgSCRoRBAscHR4fBQ8f/aAAgBAQABPxDoSb1P2Em9SbnUcTUrCiZYwIu/zQ0hhkS1JudeatS7Ak4lPFDUywgSUoUEEE3ZVOk4p6XSWDuBluuO1PAKFcCYdyG0xUy3WMohTC+FKaUlBIXYXsFoITEkTqKpWKFChQoUKFCiJUQJZs0AOpG1STcAQI2bmTtgAISwzbLF2yzGNj4wIICRG3PTcN6kKgMhqJb5PHeoLngAmHLW80ns6CRpBMc2cu6fjWlNq/OlPNBKOwJm7H4C0IAiSI56CAABKrinNzQjizcMG8GqYM88b+er+wC0Hgy/3Rm0lzS5WpCCxnBH9n10pcq5EjSia51LdUv2rTi1PnSnzQyrsZd2MnhaFAUSI59CIACVXFPpcYDIsDewcuMmwJxUgYOAXuq9VaDFNgNadvdat35HwaU4ou7wG4CJxKT6tKVKuQmsgWxnbqle1aMGp8qU0JuttW2MnhrhLN1ooEQrSsws/wA79sjGk02Dsx2uHMuh1ZIzSVgxsZwcFl8G9AABEYK0qRwLeAA8l/Pr0pJBYAFINm1JRyhXiACzyJmGnSrkJq41ZTG3NDl8GtLykrXSY2XB5dKNGcbAFjqOGoQ0IRIdXwPmCg+UyLrXU6q/UKkkuBhZ7PXpUXM7cC8XGaTPLKMcoVZctXM1F8nwH6KQBC7rvlWrYqhvoOBY/vqzjcVStII3/qavL9dKdeVRzQw7EHQmhNRziYjvrSXzWJO7V57VrClvh5cHEuvVWzTbF+2Bp/i/agj0FUCCayz4mOhNqeb2IMHb8ooysAORGk8w9poGY4BYNA6jhqzyLJ/w6HLxUDEAN+/PocUKIlHEEr7MnQfBCZPmf65qxX0u76v5XvUK7eG+XsYODqMw1NDDbJgBytHmGONkDBwHuq61NvpeitKsQ1XiP7PXhJbBnQDu0Qa7HAYPAfM0vYD/AKA/h36ujVurvDQ5HsLh5dqj6RUH0cUUlMbMQlmkt/UoDLahAN4aBZ7TBzTWe4D16D8tAIEBgOq32d++BvpgPLpRyyBQAWg9WlGEpyXSSPMT59T0wfcPy4Kjqh8ZlwF6ZVyHL5Xd6jhpRfEpGAA5fFW2iSU4ARsEC2CdaGmNwsbwk80oGMJBHgfKkHEYFJ3JBQJI6S/bFJwhLDjckeFZtudjhJ8KGQ3CL7RlKkaYxICRJJg3qGi5B/wHypRuCJlbgg80f4be2KG5FVFjZENEi7xWgRfCnbriSNLEomChvEPAThctT1HDRiJI1ifB+3YFpRm9FJZIgUiImlrFPigp9xpVlQC0OVIdhRiWl8g3IWmNNLSOxzSOwMgloLLNPbZLQ94DQ8KSQduSSjyCCCCBvtENLUh1JLwGaa1YhiNlkPasYAVQ93zNI2z33lAxxUb8GCIw5LuCs72MW2FvsaVJYcULGCWwu6MbUGHgW5e4AOkWOo4aIaMAu8obqS9ojllsQIjrAyYYDX+Po4aUoGs94GoEmeJr2IE8qscjJedbh2FCt+RamTghg6LQt3+aZ0TNEwiMg2uJU6bXegxwPP00q1S2Hsnn8KZ5BnLQwG+xpTimJQW9saBN58UjCMkiXg0OPs9KSbsD70UkumOIlOSmd13osooJTa4BqgTRVUHYGY74RoQhjAjYQslIgSzHJ+igjYYVdc8uxoc/daUwjnMn5j5VOLoMnAAQ7pUF59xaWryLfeaUur6AgAkMktGwwswtJJHRs0UrX7wjlC4HdkeaMj5jI5avLUf87//Z"]
math
multiple-choice
23
中国古代有计算多项式值的秦九韶算法, 右图是实现该算法的程序框图.执行该 程序框图, 若输入的 $x=2, n=2$, 依次输入的 $a$ 为 $2,2,5$, 则输出的 $s=$()
7
12
17
34
C
["/9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCALDATMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAorP1nW9O8P6dJf6pdR21unVnPU+gHc1wq+LfGHi5j/AMIrpCWGnn7uoaiMFx6qlAHpVFedr4E8V3nz6l46vQ56paxKij6d6X/hWup/9DtrP/fQoA9Dorzz/hWup/8AQ7az/wB9Cj/hWup/9DtrP/fQoA9Dorzz/hWup/8AQ7az/wB9Cj/hWup/9DtrP/fQoA9Dorzz/hWup/8AQ7az/wB9Cj/hWup/9DtrP/fQoA9Dorzz/hWup/8AQ7az/wB9Cj/hWup/9DtrP/fQoA9Dorzz/hWup/8AQ7az/wB9CkbwP4usRv0zxzdO46R3cKup+uOaAPRKK81PjTxR4TcL4v0ZZrHODqNh8yr7svUV32l6rY6zYRX2nXMdxbSDKuhyKALlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVR1jVrTQtIudTvpBHbW6F3P9B71erzbxwD4o8b6J4QBJtE/wBOvlH8SL91T9TQBB4a8PXfjvUY/F/iuJvs2d2maY/3Ik7Ow7sevNenqqooVQFUcAAcCkRFjRURQqqMADsKdQAUUVBdyTxW7PbQefKCMR7gufxNAE9FcxrXii90O3gnutIYrNOkC7J1PzMcCrWoa1qWm6bdX02kZitomlcLOucKCTj8qAN2iuWGs+IdU0qwvtI0q3VZzHK32mcf6ojJAx/FXUKSVBIwccj0oAWiuTj1LULn4lXNlHdbNMs7FWli2ghpGJwc9RgV0d7fW9jp099NIBBDGZGbPGAM0AWaK53wnLq82mm91u4AlvZDLBbFQpgjP3Uz3OMZroqACiiigBskaSxtHIiujDBVhkEV5Zr2kXfwy1J/FHhyNpNDkYHVNLXogJ/1sfpjPI/p09Vpk0MdxBJDKgeORSrKwyCD1FAENhf22qafBfWcqy206CSN16MDVmvN/hwz+H9e13wVKxMNlILmx3H/AJYvzj8D/WvSKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzvwyPtXxf8AFl1Jy8EMNumey4zXoledaI39m/GnxBZycC/tIrmI/wB4jhvyoA9FooooAKq3mo2mnhDdTCMSHC5BOT+FWqQqG6gH60AeffEPW9Pn0rTVjuNxGp27H5G6Bx7VseKtd02TwjrMaXOWaxmAGxuTsPtVfxsi3up+HNKjUNJNqCTuo7RxgsSfbOK2PFqr/wAIbrfyj/jwn7f7BoAyPDviXS7DwNpskszsYbFCyRxMzHCDgADk1v2tzaeI9Ejnj89ILhc4YNG6+xB5Bqt4QVf+EO0b5R/x5xdv9kVsPuETeWBuwdo6c0AeXvpVnHovjbVh5uR5sML+a38KbR39TUiPfWVhoHh9NB1G+0+G2juJpI2BEzjkISx6A8nPoKivZwnh6y8HyB49Y1C9H2mJxj5C+92B6EYGMg966bVrrUY/HWiaTY3xtbaawuJJF8tXDFDGF4P+8aAF1SbVNb0qSAaFc2s2N0UrToDG46EYzVvwTrV5rvhqG51CExXkbNDNxgMynBI9jWd4zl17R/DFzfWut7ZoygU/ZU7sB3rrbRXW0iErh5Ng3uF2hjjk47UATUUUUAFFFFAHnepj7H8ctFkTj7bp00b477OR/OvRK86nb+0/jparGcrpemu0h9GkOMV6LQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFed/Eq0uNKvNK8Z2MZeTS5Nt0ijl4G+9+XWvRKZNDHcQPDMivFIpVlYZBB7UAQadqFtqunQX1pKskE6B0ZTnINWq8pI1P4S38rpBNf8Ag6dy5EY3SWBJ5OO6V6PpGtabr1gl9pd5FdW7jh4znHsR2PsaAL9Vr67a0t96QSTyE4SOMcsf6D3qzRQBg6Pos6anNrWqusmozJ5aIn3LePOdi+p9T3q14lt5rvwtq1tbxmSaazljjQdWYqQBWpRQBleGbaez8L6XbXMZjnitY0kQ/wALBQCKt396LG2MvlSSueEjjGSx9KtUUAcJf+B5vEsV1qGsSmPVHT/QfKcj7FjlcEdTnqaqJBr8fi/woLlYZtSh0i5W5kckR7t0QzkA8nFejUmBnOBn1oA4bx6utzeELpJLezZC0eRC7s/3h0G2u3i/1Kf7opxAIwQCPeloAKKKKACqOs6taaFpFzqd9KI7e3QuzH9APc1FrniHSvDdg17q17FbQqONx5Y+gHUmvPbey1T4qarBqGqW0tj4Ttn8y3s5OHvWHRnHZfagDW+GGnXc1tqPivU4yl9rkvnBG6xwjhF/Ku/pFVUQIqhVUYAA4ApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARlV1KsAVPBBHWuD1P4VaXJfvqXh6+u/D2oMctJYt+7c/7UZ4/LFd7RQB50ulfFXT/kh8Q6LqUY4D3VoY3/HbxTtnxZ/57eGv++JP8a9DooA882fFn/nt4a/74k/xo2fFn/nt4a/74k/xr0OigDzzZ8Wf+e3hr/viT/Gs/XNU+KWg6Ld6pcv4daG2jMjqiSZIHpzXqTMFUsxAA5JPauW+JP8AyTnXf+vRqAOc067+KupabbX0MnhwR3EayKGSTIBGeeatbPiz/wA9vDX/AHxJ/jXU+EyB4O0gk4As4+f+AitkEEAg5B7igDz3Z8Wf+e3hr/viT/GjZ8Wf+e3hr/viT/GvQ6KAPPNnxZ/57eGv++JP8aa2j/FPUfkuPEuj6ZEerWdoZHx7b69FooA4XR/hbo9lfrqesXF1rupjkXF++4Kf9lOg/Wu6AAAAGAO1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEVzbx3dpNbSjMcqMjD1BGDXyzr3jnxL4U/t3wPqchvrPDwRNMfnRD91g3cYxwa+q6+e/2i/DG2ex8SwJww+z3BA79VJ/UUAYugeNvEnxA1nRPCdq5stMjVFnWA/M8aAbizdeen419ORxrFEkaDCqAoHtXhn7O3hjyLC98Rzx4eY+RASP4R1P517rQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVXUdRtNJ0+e/vp1htoFLyO3QCgCtr+vWHhrRp9U1KYRwQrn3Y9lA7k1xdv4/8AFt5bx3Nv8P794JVDxsZ0BKnocE8VU0PTrv4la7F4n1qF4tAtXzpdg/8Ay1I/5auP5CvUgABgDAFAHnn/AAm/jP8A6J5ff+BMf+NH/Cb+M/8Aonl9/wCBMf8AjXodFAHnn/Cb+M/+ieX3/gTH/jR/wm/jP/onl9/4Ex/416HRQB55/wAJv4z/AOieX3/gTH/jWJ4t1PxX4s8NXmj3Hw+vUWdcK/2iM7GHQ9a9eooA8o8Oa34r8OeHrLSbb4eXpjtowm77RGNx7nrWp/wm/jP/AKJ5ff8AgTH/AI16HRQB55/wm/jP/onl9/4Ex/40f8Jv4z/6J5ff+BMf+Neh0UAeef8ACb+M/wDonl9/4Ex/40f8Jv4z/wCieX3/AIEx/wCNeh0UAeef8Jv4z/6J5ff+BMf+NH/Cb+M/+ieX3/gTH/jXodFAHnn/AAm/jP8A6J5ff+BMf+NH/Cb+M/8Aonl9/wCBMf8AjXodFAHnn/Cb+M/+ieX3/gTH/jR/wm/jP/onl9/4Ex/416HXn3jTxPfXuqJ4N8Ltu1a4X/SrgcrZxHqx98dBQBH4U+JOpeJ/Es2j/wDCNS232Y4upmnVli9uOp9q9FrE8LeGLHwpo0en2S5P3pZm+9K56sTW3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFISFBJIAHJJoAZPPFa28k88ixxRqWd2OAAO9eWolx8WNdEsgeLwhYy/Ih4+3SDuf8AZFO1O8uvijrsmiaXK8fhiykxf3acfaWH/LNT6etemWNjbabZQ2dpEsVvCoREUYAAoAljjjghWONVSNAAqjgACsG8125XxlZaNarC0Jtnubt3bBRAQFx7k1vTQx3EDwyrujdSrD1BrynTltD4sNyLCKW11K/ksYi7t8kMK8sDnuwagD0q+1mxsNIl1OSdWto1J3Ic7j6D1OeKw/DGt6rNJ5PiJYra4u8z2cQXGI/7hPdhxke9Zky6Ybz7N9qsdOg09hLDZTHg558xhnn2q1Lax+Mbe2d9Ys57B0Z4vsyFZA46OjZyCp/nQB2lFcx4LOoSaa01xrsWr2hYrbzLFsbaDj5j3NdPQBgXWqajZeLrCwkSBtNvkkCS8h0kVc7fQ5GT26Gt+vPfiDqN/JrOk2OkIHudNJ1i546RRgrs+r5YfhXeWd1DfWUF3buHhmjWRGHcEZFAE1FFBGQRQAUV5drOpal4N+I1hGl3d31jq8DxRwTPu2TD7uD6HNdN4a8Pa9pus3uoatrzX0d0g222zasLd9vtQB1dFV78IbCcyTPCgQs0iNtKgc5z2rzH4balqOueG7+7l1K5a3lnkczu2WiiXIVFPrjJJoA9Worz34R6lfaroeo3NzcTT2v26RbR5m3N5YPr3r0KgAoorlPG/jFPDNnFbWkX2rWb0+XZ2i8lm9T7CgCp448Yz6ZJDoGgxi68RX/ywxjkQL3kf0AFaHgvwfb+E9MZWkNzqVy3mXl2/LSuev4VU8D+Dm0GOfVNVl+16/f/AD3Vy3O30RfQCuxoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzLxPrF9441yTwZ4bnaKzj/5C+pJyI0/55If7x/z3q34y8TX+pamPB/hd86lMP8AS7peVtIz1Of71dR4X8M2HhTRYtOsU4HzSSH70rnqxPc0AW9F0aw8P6TBpmmwLDbQLtVR1PuT3J9av0UUAMlRJIXSXHlspDZOOO9eU61ZeEdO8Q+GtMs2SSCOaUS28MrzMAUbjAJPU16pdW0N7aS2tzGskEyFJEboykYIritU0rT9I8U+ErbTrOG2iE8vyxIBn92eT60AZunwvH411uLTYbe1t00+BViu42yFwcYGePxqj4UjVr7wNvVSVs7xhgcA8c1rXyaZF448R3urWsUltHYwgSywbwpwemQaPC/9kaR4O0PW9UDwNa2sgjlKnbGjnJJA6cAUAa3wy/5EKw/3pf8A0Y1dFqmpW2kabPfXb7YYV3H1J7AepPSub+G7iH4dafNICqESSAkfwl2IP5VbTT7jxDqUV9qMZi0+2bfbWrdZG7SOP5CgBvhLSrhYbzWdTjxqOqt5siHnyo8YSL8B19yapeHL0+HdduPCd822Is0+lyN0eInJjz6qf0xXaVh+KfDFr4o0z7PMzQ3ETeZbXMZw8LjoQaANysnxH4jsPC2lHUtS84W4kWMmKMuQWPHA7Vl+EIfGFrbm38Ry2NwsbFEnjJEjqOhIxiupIDDBAI96APH/AIjG/wBR0uw8YxRTR2+m3sUlrCyEM0ROGkZeoz2B6Ae9d9deM9NsPDU3iG8SeLTUClXMZ3OD3C9evrXREAjBAI9KyvEOjtrumNphkRLWf5bjK5JT0X0PvQBzHxH8RovwuuLzTWaRtUjS3tSAct5vHT/dzVPxHaL4B+C0un2KHzUt1gLIMkyOcM35k16HbWkFpaQ2sMarDCoRFxwABgVKQCMEAj3oA5rwBp8el+CtNsoonRIoh8zDBcnktjr19a6aisrxF4h0/wAMaNNqeoyhIYxwP4nbsoHcmgCp4v8AFln4S0dru4BluJDstrZPvzSHoAKw/BHhO8S8l8VeJSJdevBlUPK2sfZF9/WqnhHw9f8AiLWF8Z+KIis7D/iXWLdLWP1I/vGvR6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4Px/43bR3g0DR3ifXr75Yw7ALAp/jYnpXeVyWo/DPwhq2ozahf6Mk93M26SV5XyT/AN9UAReDdJ0PwpphT+1bS4v5z5l3dPOpaVz179K6X+2NL/6CVn/3/X/GuW/4VH4F/wCgBF/39k/+Ko/4VH4F/wCgBF/39k/+KoA6n+2NL/6CVn/3/X/Gj+2NL/6CVn/3/X/GuW/4VH4F/wCgBF/39k/+Ko/4VH4F/wCgBF/39k/+KoA6n+2NL/6CVn/3/X/GmNqWjvKkjX1izpnaxmTK5645rmf+FR+Bf+gBF/39k/8AiqP+FR+Bf+gBF/39k/8AiqAOnbVNIcMGv7EhhhgZk5+vNNfUdGkt2ge9sWhZdhjMqbSPTGelc1/wqPwL/wBACL/v7J/8VR/wqPwL/wBACL/v7J/8VQB06appEcaxpf2SoowFEyAAfnTv7Y0v/oJWf/f9f8a5b/hUfgX/AKAEX/f2T/4qj/hUfgX/AKAEX/f2T/4qgDqf7Y0v/oJWf/f9f8aP7Y0v/oJWf/f9f8a5b/hUfgX/AKAEX/f2T/4quf8AHPwz8H6V4I1e+stFjhuYLdnjkEjkqfXlqAPSf7Y0v/oJWf8A3/X/ABo/tjS/+glZ/wDf9f8AGuD8OfC3wXe+GtMurjQ4nmlto3dzK/JKjJ+9Wn/wqPwL/wBACL/v7J/8VQB1P9saX/0ErP8A7/r/AI0f2xpf/QSs/wDv+v8AjXLf8Kj8C/8AQAi/7+yf/FUf8Kj8C/8AQAi/7+yf/FUAdT/bGl/9BKz/AO/6/wCNH9saX/0ErP8A7/r/AI1y3/Co/Av/AEAIv+/sn/xVH/Co/Av/AEAIv+/sn/xVAHQX/ibRdNsZry51O1WGFS7ESqTj2APNcJoGlXnxE1yLxXr8LRaPbsTpWnP0b/pq47n0rdj+E3gaORZF8PwblII3SORkexauyRFjRURQqqMAAcAUAO6UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDdxST2c8UUpikeNlSReqkjg/hXz3rHxeuZPD2veE/E9ps1NEktluIh8rsOOR2zX0VXzL+0J4Y/s7xLb67AmIb9NspA6SL/iP5UAbth8XbvU00Lwn4WtiLl0iglu5RnZgAMVHsM8171CjRwojOXZVALHqT6187fs7eF/tGpXviOdPkgHkQEj+I9SPwr6MoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwPEnjTQvCTWy6zdtA1zu8oLEzltuM/dB9RW/XnXjREk+KPgZXVWUtc5DDI+6tAFr/hcPgv/oIz/wDgJL/8TR/wuHwX/wBBGf8A8BJf/ia7T7Daf8+sH/fsUfYbT/n1g/79igDi/wDhcPgv/oIz/wDgJL/8TR/wuHwX/wBBGf8A8BJf/ia7T7Daf8+sH/fsUfYbT/n1g/79igDi/wDhcPgv/oIz/wDgJL/8TR/wuHwX/wBBGf8A8BJf/ia7T7Daf8+sH/fsUfYbT/n1g/79igDi/wDhcPgv/oIz/wDgJL/8TR/wuHwX/wBBGf8A8BJf/ia7T7Daf8+sH/fsUfYbT/n1g/79igDi/wDhcPgv/oIz/wDgJL/8TR/wuHwX/wBBGf8A8BJf/ia7T7Daf8+sH/fsUfYbT/n1g/79igDi/wDhcPgv/oIz/wDgJL/8TXIfErxr4M8Y+C7vTob6VrtcS2+bSUfOPfb36V7H9htP+fWD/v2KPsNp/wA+sH/fsUAeTeAvHngnwn4OsNKN/MJkTdMRaS8ueT/DXS/8Lh8F/wDQRn/8BJf/AImu0+w2n/PrB/37FH2G0/59YP8Av2KAOL/4XD4L/wCgjP8A+Akv/wATR/wuHwX/ANBGf/wEl/8Aia7T7Daf8+sH/fsUfYbT/n1g/wC/YoA4v/hcPgv/AKCM/wD4CS//ABNH/C4fBf8A0EZ//ASX/wCJrtPsNp/z6wf9+xR9htP+fWD/AL9igDi/+Fw+C/8AoIz/APgJL/8AE0f8Lh8F/wDQRn/8BJf/AImu0+w2n/PrB/37FH2G0/59YP8Av2KAOL/4XD4L/wCgjP8A+Akv/wATR/wuHwX/ANBGf/wEl/8Aia7T7Daf8+sH/fsUfYbT/n1g/wC/YoA4v/hcPgv/AKCM/wD4CS//ABNH/C4fBf8A0EZ//ASX/wCJrtPsNp/z6wf9+xR9htP+fWD/AL9igDK8N+L9F8WR3Emj3TTrbsFk3RshUkZ/iArcrzv4eoqeMfGyooVRfrgAYA+UV6JQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV554x/5Kp4F/wB66/8AQVr0OvPPGP8AyVTwL/vXX/oK0Aeh0UUUAFcn8QvEV/4U8MT6vZNakxYAimjZjIxOAAQRj8jXWV5h8SZBrfi7wx4XVh5TT/bLr0EacjP40Ad/oc17c6HZT6iqLeSQq8qxjChiMkCtCuRsNR8S6jrU8dnHp66LFhUu3Rw0h7hVzyB69K66gAorPuLu/jmZIdMaZB0cTIM/gTUf2/VP+gM//gQn+NAGm7rGjO7BVUZJPQCuIHxAuL2G7v8ARfD9xqOk2jMst2J1jL7fvGNCMvj6imfEvV72x+GWs3Jga1nMflKN4Y4bjOR9au/DSyjtfhtosAUYe2DMPUnrQBvaLrNj4g0i31PTpRLbTruU9CPUEdiK0K8i+CN08dz4s0jcTBaaiWiH93dkED/vkV67QAUUUjHapb0GaAForzzQ/F+seKND1bVdKltFntJpI47B4iWAXpuOep+ld1p0lxLpttJdgLcPErSADADEc0AWaKgu5Z4YQ1vbG4fONgcLx65NUvt+qf8AQGf/AMCE/wAaANSub8QeLodG1Oz0e0tJNR1m8BaGziYLhR1d2PCr71qW95qEk6pNpjRRnq5mQ4/AGvL/AANM+sfHXxjfzncbSMW0Of4VDAcf98/rQB3Wi+L1v9bm0LU7F9M1eJBILdpRIsqf3kcAZ/IV01eQ/FKdtL+I3gnUoDtlMzQsR/EpI4/nXr1ABRRRQB554A/5HPxt/wBf6/8AoIr0OvPPAH/I5+Nv+v8AX/0EV6HQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV554x/5Kp4F/wB66/8AQVr0OvPPGP8AyVTwL/vXX/oK0Aeh0UUUAFeEXelXPjnxD421uC6miSyt2s7byjjcVGSM/hXuxAZSD0PBqjpmiabo1rLbafZxW8MrtI6IOGY9SaAOZ+Hfie21fwlosSuJLz7PtmROTHs4Jb0yR+tdrWdpGg6VoMMkWl2MNqkjF3ES43H1NaNAGfcaPa3M7SyNMGbrtlIH5VH/AMI/Zf3rj/v83+NalFAHKeMPCy6t4F1XSLXeZJoi0e9i3zjkdfpWX8PPEVpB8MoJLyZIZNLiaG6WQ4KMmeDXf1iXfhDw9faj9vudItZLnOS7J1PqfWgDjPgtotxaaLqmt3UbRyaxeNPGrDB8v+E/jkmvR7u8trC1e5u544IEGWkkbCj6mplVUUKqhVAwABwKwPGekP4g8OT6OlqJxd/uyzPtWIf3z3OPQUAbsUsc8KTQurxuAyspyCPUVQ1nWrXRI7N7ohVurqO1Qk4AZ84/lUmjaZFo2jWemwsWjtoljVm6nA607UdJsNXiji1C0iuY433osq7gGwRn64JoA8t1bRJvBvxb0nU9DJFtrkrR3lovTPUuB+tevVn2mh6bZXIuYLVBOF2iRssyj0BPQVoUAQXdpFewiKUuFBz8jFT+lUv+Efsv71x/3+b/ABrUooAz7fRrW2nWVGmLL03Skj8q820i1/4RL47aqtyfLtPEMHmWsjcK0oILLn1+9XrNUdU0fTtatfs2pWcVzDnIWRc4PqPSgDzXxdaf8Jd8XvD2n2pEkOkK1xeOvIQkghT78V6xVDS9F03RLcwabZw20ZOSI1xn6nvV+gAooooA888Af8jn42/6/wBf/QRXodeeeAP+Rz8bf9f6/wDoIr0OgAooooAKKKKACiiigAooooAKKKKACiiigArzzxj/AMlU8C/711/6Cteh1xHjfwpret63omraFf21pdaZ5pBuIy4O8AdPwNAHb0V55/ZnxS/6GHRv/AOj+zPil/0MOjf+AdAHodFeef2Z8Uv+hh0b/wAA6P7M+KX/AEMOjf8AgHQB6HRXnn9mfFL/AKGHRv8AwDo/sz4pf9DDo3/gHQB6HRXnn9mfFL/oYdG/8A6P7M+KX/Qw6N/4B0Aeh0V55/ZnxS/6GHRv/AOj+zPil/0MOjf+AdAHodFeef2Z8Uv+hh0b/wAA6ztfk+J2gaFearNrukSR2sZkZFs8EgUAeqUV5lpkXxQ1PS7W/j1/R0S4iWVVNnyARmrX9mfFL/oYdG/8A6APQ6K88/sz4pf9DDo3/gHR/ZnxS/6GHRv/AADoA9Dorzz+zPil/wBDDo3/AIB0f2Z8Uv8AoYdG/wDAOgD0OivPP7M+KX/Qw6N/4B0f2Z8Uv+hh0b/wDoA9Dorzz+zPil/0MOjf+AdH9mfFL/oYdG/8A6APQ6K88/sz4pf9DDo3/gHR/ZnxS/6GHRv/AADoAPAH/I5+Nv8Ar/X/ANBFeh1xfgTwrq/h+61i91q9t7q61GcTM0CFAMDHSu0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAR3VELuwVVGSSeAK5b4kkH4ca6Qcg2jc10tzBHdWstvMoaKVCjqe4Iwa+VfEHi/xL4Nm13wTezteaed8MXnkllQ/dKt9McUAfSvhNgng3SGYgAWceSf90VNq/iTRtBtftOqalbWsWMgyOAT9B1NfOPhvxb4k+ImvaL4WSY2ulQKgmjgJBeNAM7j79Pxr1nxh8GNB8Uu1zHNc2d5jAcOXX/vk9PwoA5bxP+0VYW2+Dw3p7XcnQXNz8iD6L1P6Vb+E1/4g8ZahN4o8S6oWtoiY7S1BEce7u20dcdOa8v8AE/wU8V+Ht8sFuNRtV58y25IHuvWul+D3hzwt4mt7rSNbsJU1e2O4AyshdPpnqKAPo37Tb/8APeL/AL7FH2m3/wCe8X/fYrhv+FN+C/8Anwm/8CH/AMaP+FN+C/8Anwm/8CH/AMaAO5+02/8Az3i/77FH2m3/AOe8X/fYrhv+FN+C/wDnwm/8CH/xo/4U34L/AOfCb/wIf/GgDuftNv8A894v++xR9pt/+e8X/fYrhv8AhTfgv/nwm/8AAh/8aP8AhTfgv/nwm/8AAh/8aAO5+02//PeL/vsUfabf/nvF/wB9iuG/4U34L/58Jv8AwIf/ABo/4U34L/58Jv8AwIf/ABoA7n7Tb/8APeL/AL7FH2m3/wCe8X/fYrhv+FN+C/8Anwm/8CH/AMaP+FN+C/8Anwm/8CH/AMaAO5+02/8Az3i/77FH2m3/AOe8X/fYrhv+FN+C/wDnwm/8CH/xo/4U34L/AOfCb/wIf/GgDuftNv8A894v++xR9pt/+e8X/fYrhv8AhTfgv/nwm/8AAh/8aP8AhTfgv/nwm/8AAh/8aAO5+02//PeL/vsUfabf/nvF/wB9iuG/4U34L/58Jv8AwIf/ABpsnwc8GLGxFhNkAn/j4f8AxoA79WDKGUgg9CDS1wHwedz4HMTyO6w3s8Ue9s7VDcCu/oAKKKKACiiigAooooAKKKKACiiigAoooyPWgAooyPWjI9aACijI9aMj1oAK+f8A9ovwv/x4+JYE/wCne4IH4qT+or6AyPWsXxZ4fg8U+Gb3R5yFFwmFY87W7GgDyj9nfwv9m0u88RTx4kuG8mAkfwDqfzr3Gsvw7o8Hh/w/Y6VBjZbRBMjue5/OtTI9aACs59C0t9Ti1L7FCt5FnbMq4bB7ZHWtHI9aMj1oAKKMj1oyPWgAooyPWjI9aACijI9aMj1oAKKMj1oyPWgAooyPWigAooooAKKKKACmS/6l/wDdNPpkv+pf/dNAHBfB3/kTJ/8AsI3H/oVegV5/8Hf+RMn/AOwjcf8AoVegUAFFFFABRRRQAUUUUAFFFFABSMwVSzEAAZJPalrzDxDrN9491uXwn4cmaLToTjVdRToB/wA80Pr60AJqGran8R9fbR/D93NZaBZSf6bqUJw0zD+CM/1q9/wqpf8Aoate/wDAk12ejaNY6BpUGnafCsVvCuFUd/c+pq/QB57/AMKqX/oate/8CTR/wqpf+hq17/wJNdhqGuWmm6jYWMwlae+dliEaFsYGSTjoPetInAyaAPPf+FVL/wBDVr3/AIEmj/hVS/8AQ1a9/wCBJrpNA8V2XiO6v4rOKYR2kpjEzgBJsHBZOckZBGfat6gDz3/hVS/9DVr3/gSaP+FVL/0NWvf+BJr0Ksq51+1s9cttJuIrhJroHyH8vMbkDJGR0I98UAcl/wAKqX/oate/8CTR/wAKqX/oate/8CTXoVFAHnv/AAqpf+hq17/wJNH/AAqpf+hq17/wJNehUUAee/8ACql/6GrXv/Ak0f8ACql/6GrXv/Ak16FRQB57/wAKqX/oate/8CTR/wAKqX/oate/8CTXoVFAHnv/AAqpf+hq17/wJNH/AAqpf+hq17/wJNehUUAee/8ACql/6GrXv/Ak0f8ACql/6GrXv/Ak16FXDeN/GFzZ3UPhrw6gufEN6MKByLZO8j+lAHn3iTw9cr4gt/DXhnxJrV3qzkNcO9yTHbJ6t7+1ez+H9H/sLRbewN1PdPGPnnncszsep5rN8G+D7XwnprIHNxqFwfMu7t+Wlc9fwrpaACiiigAooooAKZL/AKl/900+mS/6l/8AdNAHBfB3/kTJ/wDsI3H/AKFXoFef/B3/AJEyf/sI3H/oVegUAFFFFABRRRQAUUUUAFFFefeMvFV/faoPB/hRg2rzD/SrocpZRnqSf73pQBB4r8Rah4k1hvBvhWXEp41G/X7tsh6qD/eNdl4c8O2HhfRodM06LbEgyzH70jd2Y9yag8KeFbDwlo6WNmC8hO+ed+Xmc9WY1u0AFNkDtGwjbY5HDEZwfpTqRgSpCnDY4NAHmUl7cn4g+ZearHm3AsbeRbTKmVxuYY3ccY5rYv01OTTpdDiv7q+G4/br2OMCRI2PMSBf4jnGew5rC1LQNV0e+0KN9RglnudWkmMoh/iZT157CrUTT23j2XT5728uFXSY5HNiAoaTzZAWYDvjFAGpf2s3l6bbaBpl3YT2qlIJzFiJFA+446lTj+tavhzW9U1MywapolxYXEB2u5IaKQ+qHuK4vwtqeoxW3h6GO+uCl3ql2k3nnezIrNhTnp0FdR8PZZZtAuXmlkkb7dOoLtnADnAoA6yuK+IurxaNbaRdCNpLpL5GiROu0ffP025rtSQBk9K4rS7dfFniW81uZd+m2yPZWII4cniSQf8AoI+hoA7KGVJ4UmjYMjqGUjuDT65XwhfNbvd+G7s4utObEW7rJCfusP5fhXVUAFVL/U7PS4BNeTrEpOFz1Y+gHc1aZgqlicADJrz/AMHSt4v8R6n4luvmtbWZrTT4jyEC/efHqT3oA6I+MtDWS3iluzFPcTCCKGVCsjOeg2kZ/Gt+vJ2Nv4r+P8LQkSW3h+yPmsOhmJIA/Dd+lesUAFFFFABRRXK+NfGUfhi0igtYjd6xdnZZ2icl29T6AUAV/G/jNtBWHSdIh+2+Ib75bW2Xnb6u/ooqXwR4NXw1bTXd9N9s1y9O+8u25LH+6vooqDwR4Nk0Yza1rUovPEN981xO3IjHZE9AK7SgAooooAKKKKACiiigApkv+pf/AHTT6ZL/AKl/900AcF8Hf+RMn/7CNx/6FXoFef8Awd/5Eyf/ALCNx/6FXoFABRRRQAUUUUAFFFcb438ZPovk6Po8X2vxBe/LbwLzsH99vQCgCv428X3dtdxeGPDSi48Q3gwCOVtU7yP/AErW8G+D7TwjpZhjYz3s58y7u3+/M56kn09BUHgnwanhm0lubuX7XrN4d95dvyWY/wAI9AK6ugAooooAKjmR5IJEikMUjKQrgA7T64NSUUAeZ6/4aeHVvDX9q6rearLLflX85gseNh6IuAK0Bp234q3EFlcyWCJokPFukfP76Tj5lIrrNR0e21O7sLmdpA1jKZowpwC2Mc1Fd+HdOvb25vJo3+0XFutu8iSMpCAkjBB4OWJzQBxngvRJb/TtJvftKhdP1K9d9w+aQl3XtgDrmtn4c/8AIu3P/X/cf+hmtKHwlpdv4dj0SFZkt41YJIJWEoJ5Lbhzkk5qzoegWegaJHpVn5vkIDlncl2J6kn1oAy9buLnX7l9A0uRo4c41G9TpEneJT/z0Yf98jnriuhs7O30+zhtLWJYoIUCRovQAUtrawWcCw28Sxxjso7+p9TU1AHK+L/Dl5qBg1jQ5lt9csQTCzfdmXvG/sf0qLwf45PiMSWt7o+oadqNu/lTo9uzRBx1w4GPzxXX0AAdBQA2WMSxPGejqVP415x4a8B+J/DzXemR+ILVdBlnaVfLhP2kBjkruPC/Xk/SvSaKAOG8GeBbrwx4h1zUJbuB4b+ffEkSncEAIVWJ9Mnp3713NFFABRRWH4q8U6f4S0Z9QvmJJO2GFeXmc9FUd6AIPGPi+08JaUJpFM97MfLtLRPvzOegA9Kx/BPhC7gu5PE/iVhPr92M7TytqnZF/rUHg7wtf6hqh8YeK1DapKP9FtDytnH2AH973r0KgAooooAKKKKACiiigAooooAKZL/qX/3TT6ZL/qX/AN00AcF8Hf8AkTJ/+wjcf+hV6BXn/wAHf+RMn/7CNx/6FXoFABRRRQAUUUUAYvirVNS0jQprjSNLl1G/PywwpjGfVsnoK8o8IXXifQLi61TU/Aeqalrl4xM141xGAB2VB/CK9xooA88/4WB4o/6Jxqn/AIFR0f8ACwPFH/RONU/8Co69DooA88/4WB4o/wCicap/4FR0f8LA8Uf9E41T/wACo69DooA88/4WB4o/6Jxqn/gVHR/wsDxR/wBE41T/AMCo69DooA88/wCFgeKP+icap/4FR0f8LA8Uf9E41T/wKjr0OigDzz/hYHij/onGqf8AgVHR/wALA8Uf9E41T/wKjr0OigDzz/hYHij/AKJxqn/gVHVbUfid4h03T57y5+H2owwwoWeR7qPao9TivTCQBk8CuV+JP/JOdd/69HoAwLX4keJLu0huIfh5qUkcqB1dbqPDA9xU3/CwPFH/AETjVP8AwKjrqvCXHg/R/wDrzj/9BFbPWgDzz/hYHij/AKJxqn/gVHR/wsDxR/0TjVP/AAKjr0OigDzz/hYHij/onGqf+BUdH/CwPFH/AETjVP8AwKjr0OigDzz/AIWB4o/6Jxqn/gVHTPDXhjU/EGv/APCW+MIPLuIyRp+msdy2q+p7FjXo1FABRRRQAUUUUAFFFFABRRRQAUUUUAFMl/1L/wC6afTJf9S/+6aAOC+Dv/ImT/8AYRuP/Qq9Arz/AODv/ImT/wDYRuP/AEKvQKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAhurdLu0mtpf9XMjI2PQjFfL2u/EDxJ4aj17wPrLG/gAe3imlP7xVP3TnuMYr6nr55/aK8L+XdWPiSBPlkH2e4IHccqT+ooAy9C8feI/HWq6J4R05jYaeiok5hPzvGgG4luwI/nX0vFGsMKRIMKihR9BXhX7OvhfyrS98Rzx4aU+RASP4R94/nXvFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMl/1L/wC6afTJf9S/+6aAOC+Dv/ImT/8AYRuP/Qq9Arz/AODv/ImT/wDYRuP/AEKvQKACiiigAooooAzte1q18O6Hd6vehzbWqb5Ngy2MgcD8a4xPjBpEiK6aPrjKwyCLI4IrS+LH/JLfEH/Xt/7MK6Dw7/yLOlf9ecP/AKAKAOP/AOFu6V/0Bdd/8Amo/wCFu6V/0Bdd/wDAJq9CooA89/4W7pX/AEBdd/8AAJqP+Fu6V/0Bdd/8Amr0KigDz3/hbulf9AXXf/AJqP8Ahbulf9AXXf8AwCau9e6t45lheeJZW+6hcBj9BUisrruVgw9Qc0Aeff8AC3dK/wCgLrv/AIBNR/wt3Sv+gLrv/gE1ehUUAee/8Ld0r/oC67/4BNR/wt3Sv+gLrv8A4BNXoVRzTw26b5pUiXpudgo/WgDgf+Fu6V/0Bdd/8AmrA8Z+OdF8W+Fb3R5NG1tWmT925sW+VxyDXrySxyfcdW4B+U54PQ0+gDyXwv8AEHRfDfhqw0mHRNcxbxBWIsm+Zu5/Otj/AIW7pX/QF13/AMAmr0KjpQB57/wt3Sv+gLrv/gE1H/C3dK/6Auu/+ATV38c0UwJjkRwpwdrA4NEcscoJjkRwDg7Wzg+lAHAf8Ld0r/oC67/4BNR/wt3Sv+gLrv8A4BNXa6vqKaRo95qMkbSJawtKyKcFgozirFrOLq0huFBUSorgHtkZoA4L/hbulf8AQF13/wAAmo/4W7pX/QF13/wCavQqiW5geR41mjZ4+XUMCV+o7UAcF/wt3Sv+gLrv/gE1H/C3dK/6Auu/+ATV6CrK6hlYMp6EHINLQB57/wALd0r/AKAuu/8AgE1H/C3dK/6Auu/+ATV6FRQB51L8YtHhiaWXSNbSNRlmazIAFdxpOpwazpNrqVru8i5jEqbxg4PrWd43/wCRG1z/AK8pf/QTUHw+/wCSfaD/ANecf8qAOlooooAKKKKACmS/6l/900+mS/6l/wDdNAHBfB3/AJEyf/sI3H/oVegV5/8AB3/kTJ/+wjcf+hV6BQAUUUUAFFFFAHG/Fj/klviD/r2/9mFdB4d/5FnSv+vOH/0AVz/xY/5Jb4g/69v/AGYV0Hh3/kWdK/684f8A0AUAaVFFFABRRWJ4qudUttG36PbSXF350f7uPGSu7LdfYUAeceHtSij8ceI/CHiqLF9qUzyWdzJ/y1jIwqqe2ByMe9epaFpa6JoNjpiyGT7LCsZc9XIHJ/E5NcN4y0GXxpqnh2Sz066tLyxvUnlu5ojH5UQ5ZQT94kgYxXpNAFTUjGLJjK10qZGTaq7P+AQE1g+Zp/8Az8+I/wDwHu//AIiupooA5y1ksTdRBLjXy24YEsF0E/EsuMfWuO+IWszeGPH2h6xqkDT+HmjaB+MrDIx++R9K9RmZkhdkBZgpIA7muAvWv9f8A3ek63oN7JqE0boiGLcpYk7G3DhccdfSgDpPDmiWWmzajqFjKJIdTlW4TaflVdgAA9s5P41unODjGe2awvBejXHh7wdpelXcvmT20Co7A5GfQew6VvUAYfh2XxHIb3/hILeyhAmItvszk7o+xbPetiaGK5heGZA8bjDK3QipKwfEeuanpE1imnaDc6oLhykjQsAIeOC2e2aAPPbazn0b4par4T06VrWx1i3W6Uq/MQGQ+z3IB+ld94Z8JWXg+xu4NKaebz5DNtuZi3zY6bsEgfnXGeIfDmt6d4o8O+Kbazl1DUEmdb9bfnCOOAM/wr0/M969Os2uHtla6RUmbkopyF9s96AOX8Y3GsnwZrIk06yVDZy7mW9ZiBtPbyhn860NKuNb/smyA02xK+RHgm+bONo7eVV7X9Ok1fw9qGnROqSXNu8Ss/QEjGTVqyga1sLe3YgtFEqEjoSABQByPiXWry/8RWPhLTJTBcXCeffTxnmGEdlPqema5r4tWFrpHhnTdO0ZBb6lqF2tnG0Zw8iN9/J6n+GrF3D4g8O/Fe/1iHQbrVbLUbdIo5Lcj90V7MTwBVfVfD/iPU/ir4d1W/sGmt7WGSX5DmCBzkKmfUcEnv8AlQB6jp9lHp2m21lESUgiWNSepwMZqzRRQAUUUUAYPjf/AJEbXP8Aryl/9BNQfD7/AJJ9oP8A15x/yqfxv/yI2uf9eUv/AKCag+H3/JPtB/684/5UAdLRRRQAUUUUAFMl/wBS/wDumn0yX/Uv/umgDgvg7/yJk/8A2Ebj/wBCr0CvP/g7/wAiZP8A9hG4/wDQq9AoAKKKKACiiigDjfix/wAkt8Qf9e3/ALMK6Dw7/wAizpX/AF5w/wDoArn/AIsf8kt8Qf8AXt/7MK6Dw7/yLOlf9ecP/oAoA0qKKKACiiigAqOaXyYXk2PJtGdqDJP0qSqGt6lHo+h32oysFS2haQk+woAzPDvjGw8S39/Z2cFykli2ybzUwA3p1roq8l8A6tbeEPA8Ws6tbXjza1dNOWgh8xizn5VwDn9K9QsL37faLcfZri3DdEuE2P8AlnigC1RVe8v7SwjWS7uI4EY4DSNgE1T/AOEl0T/oKWv/AH8FAGpRVC21vS7ydYLa/t5ZW6Ijgk1foAwfFHiuy8J2BvtQguWthgNJEgYAnoDzWtY3S31jBdojos0YkCuMEAjPNec/FF21nXfDPhOMki7uxc3Cj/nmnP8AjXUWnjGxn1mbRLbTtTa5tcLKFtvkjz0y+do4980AdNRSNwp+lYHg2+udR0Hz7uVpZftEq7m9AxAFAHQVmp4g0iTVl0qPUbd79gWECPubA65x0rSIyMHpXka2VtZftGWiWsEcKtpjEqi4BODQB65RRRQAUUUUAFFFFAGD43/5EbXP+vKX/wBBNQfD7/kn2g/9ecf8qn8b/wDIja5/15S/+gmoPh9/yT7Qf+vOP+VAHS0UUUAFFFFABTJf9S/+6afTJf8AUv8A7poA4L4O/wDImT/9hG4/9Cr0CvP/AIO/8iZP/wBhG4/9Cr0CgAooooAKKKKAON+LH/JLfEH/AF7f+zCug8O/8izpX/XnD/6AK5/4sf8AJLfEH/Xt/wCzCug8O/8AIs6V/wBecP8A6AKANKiiigAooooAK82+M19MfDVnoNmC93rF2lusYOCV6n/D8a9JrmdU8IJqvjTS/EFxdMU05GEVtt+Xef4s/lQBzPgO7mm8Tapo+tQQLcaNHGloi8pFHtxkZ7+pr0tWV1DKQVIyCO9chfeAobzxq3iFNQngEsAhuLePgTAdMmuuRFjRUQAKowAOwoAhvFu2jX7HJEj55MqkjH4VT8rXP+fmx/79N/jWpRQBQtk1VZ1NzNatF3EaEH9TV+imTI0kLorbWZSA3ofWgDwXXNX1m58ZeK/FWjwxyR6NB9jjmfkJ03FR617H4XksH8PafPZhFF5Cs+c5aQkAliepPPWszQPAlrovhfUdFkna5/tBpWuJmXBYuD/LNTeDvByeFNNitnv5r54U8qJ5ekcefuqO1AGpNosMjO5u74FsnC3DAD8K5nwLo0U3hwsbq9U/aZhhbhgPvmu561WsbC2022+z2kYji3F9o9ScmgCS3gW2gWJXkcL/ABSMWY/UmvL7j/k4+y/7BbfyavVa4aXwJqEnj2PxZ/bKi5jiMKw+QNmwg8frQB3NFIudoycnHNLQAUUUUAFFFFAGD43/AORG1z/ryl/9BNQfD7/kn2g/9ecf8qn8b/8AIja5/wBeUv8A6Cag+H3/ACT7Qf8Arzj/AJUAdLRRRQAUUUUAFMl/1L/7pp9Ml/1L/wC6aAOC+Dv/ACJk/wD2Ebj/ANCr0CvP/g7/AMiZP/2Ebj/0KvQKACiiigAooooAwPG+h3PiTwXqmj2bxpcXcOxGlJCg5B5wD6VydnafFuxsbe0ik8JmOCNYlLLPnCjAzz7V6XRQB53j4vf3/CP/AHzP/jRj4vf3/CP/AHzP/jXolFAHnePi9/f8I/8AfM/+NGPi9/f8I/8AfM/+NeiUUAed4+L39/wj/wB8z/40Y+L39/wj/wB8z/416JRQB53j4vf3/CP/AHzP/jRj4vf3/CP/AHzP/jXolFAHnePi9/f8I/8AfM/+NGPi9/f8I/8AfM/+NeiUUAed4+L39/wj/wB8z/41n63q3xX0HRbvVLo+FWgtYzI6xpMWIHpk16mzBVLMQAOST2rlviT/AMk513/r0egDnNOvPi1qem219C3hMRXEayKGSfIBGeeas4+L39/wj/3zP/jXVeEiB4O0gk4As4+f+AitkEEAg5B7igDzzHxe/v8AhH/vmf8Axox8Xv7/AIR/75n/AMa9EooA87x8Xv7/AIR/75n/AMaMfF7+/wCEf++Z/wDGvRKKAPO8fF7+/wCEf++Z/wDGjHxe/v8AhH/vmf8Axr0SigDzvHxe/v8AhH/vmf8Axox8Xv7/AIR/75n/AMa9EooA87x8Xv7/AIR/75n/AMaMfF7+/wCEf++Z/wDGvRKKAPMNU034satpd1p9xJ4UENzE0TlFmDAEYOK7jwtpc+ieFtM0y5ZGmtbdInKHKkgds1r0UAFFFFABRRRQAUyX/Uv/ALpp9Ml/1L/7poA4L4O/8iZP/wBhG4/9Cr0CvP8A4O/8iZP/ANhG4/8AQq9AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCK5t47u1mtpRmOVCjD2Iwa+Wde8c+JfCn9u+B9UkN7aYeCJ5j86ofusD3GMV9V189/tF+F9k9j4lgj4YfZ7ggd+qk/qPyoAxdA8b+JPH+saJ4TtHNlpkSos6wnDPGgG4s3v0/GvpyONYokjQYVAFA9hXhf7O3hfyLG98Rzx4eY+RASP4R94/nXu1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMl/1L/7pp9Ml/1L/wC6aAOC+Dv/ACJk/wD2Ebj/ANCr0CvP/g7/AMiZP/2Ebj/0KvQKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorL1vxHo/hy1Nzq+owWkeOPMfBb6Dqfwrim8e+IfFDGLwX4fl+znj+09RBji+qr1agD0O5ureygae6mjhiXlnkYKB+Jryvx34u0rxnot54Z0GwudbuZhtElun7qJgeCWPHFatt8MZNVnW88Za1c6xODkW6sY7dT6BR1/Gu7sNNsdLtlt7C0htoVGAkSBRQB5d4b8T6p8P9Ds9I8ReGLi3s4ECi8s/3qe5YDkGvRdE8T6L4igEulajBcgjJVW+YfUda1HRZFKuoZT1BGQa47W/hj4e1ac3dvFLpl/nIurF/LbPqQODQB2dFebbPiN4R+4YPFGnL/Cf3Vyo+vRq1NF+KPh3VLkWN5JLpGpdDaaivlNn0BPBoA7WikVgyhlIIPII70tABRRRQAUUUUAFFFFABRRRQBTvW1EMgsUtmBzvMzEY+mKz76/1bTbGa8u20yK3hQu7s74AH4VqXt7badaSXV3MkMKDLO5wK5hbK78Y3cV1qMMltokL74bSQYe5I6PIOy9wv50AJ4T8Uat4t0RdUtrawiiaRkVXkYtwcZOBx9K0LqLxZLfWj29xpcNsj5uIyrsZF9Ae1c/8PNLt77wPsbfEwv7zbJC5Rl/fv0I/Cpby88V+EtQtzIG13RZZBGzBMXNvk9TjhhQB3dMl/wBS/wDumnA5APrTZf8AUv8A7poA4L4O/wDImT/9hG4/9Cr0CvP/AIO/8iZP/wBhG4/9Cr0CgAooooAKKKKACiiigAooooAKKKjnnhtoWmnlSKJRlndgAPxNAElHSuB1L4p6cblrHw5Z3OvX2du21X92p/2nPFU/+Eb8beLfn8Q6uukWLf8ALlp5+cj0Z6AOg1/4h+HfDz+RPeC4vD920tR5kjH6Dp+Nc/8A2h8QvGHGnWkXhnTX/wCXi7G+5Zf9leg/H866rQPBOgeGk/4l9hGJj96eT55GPqWPNdBQBw2j/DHw9pd2t/qjy6zqhOTdalJ5hz/sqeBXcKqooVQFUcAAYAryrxDaRax8atF0y28wLaQm9vSsjYbn5QRnHb9a9WoAKKgvDciymNmsbXIQ+UJDhS3bPtXOweNI7WYW3iGyl0mbOBLJ80Dn2ccD8cUAdTRTIpY54lkikWSNhlWU5B/Gn0AFZWt+GtF8R2xg1fTbe7TsZEG5fo3UfhWm7pGu52VV9WOBTGuYEhEzTRrEejlgFP40Aedn4fa94aYy+CvEk0UIORp2pEzQfRT1X/PNOi+JOoaHItv4z8PXOnHp9ttx5tu3vkcivRwQRkHIpksMU8bRzRpJG3BV1yD+FAFLSdd0rXLcT6ZfwXUZGcxODWhXDat8LdFurg3ukyXGi3+ciaxfYCfdehrP+3fEPwlxeWkPiTT1/wCWtv8Au5wPcdDQB6TRXIaF8SfDmty/ZjdGxvhw1reL5Tg/j1rrwQQCDkHuKACiiigAooooApT6VaXV7HdXEfnPFzGshyqH1C9M+9cx4e/tDVNU8QK+s30MdtftHFHGIiFXAP8AGjH9a7SuM8Pabrdtqevyp5dvDcX7SR+cmS4wBkYPSgDYg8PPZW3kWusX0EQyQkUVuoBPJOBF61lfDZrt/C7veahc3r/bLhVe4YMyqsjKBnHtW2YNbKn/AEu06f8API/41m+AtOvtL8NG21CHyp/tc749VaRiD+OaAOnpkv8AqX/3TT6ZL/qX/wB00AcF8Hf+RMn/AOwjcf8AoVegV5/8Hf8AkTJ/+wjcf+hV6BQAUUUUAFFFFABRRRQAVn6vrulaDaNdarqFvZwj+KZwM/QdSfYVoVwPi74TaJ4rvf7Ree7ttQB3LKJPMXPujZGPYYoAqP8AEXWfEsjW/gfw9PdR5x/ad+phtx7jPLf54p8Hw0vNamW78a67capIDkWcBMVuvtgcmo0b4j+E0EbQWXiLT4+F8hfJnC/TofwrR0z4q6Bczi11MXGjXmcGG/TZz6BuhoA63TdJ0/R7ZbbTrOG2hUYCxIFq5UUFzBdRCW3mSWM9GRgQaloAKRmCKWY4AGST2pa5/wAcTajD4K1b+ybWa5v5LdooI4RltzfLn8M5/CgDybwv4m0/UfFev30zRy3+u3x0+xSUEqsS9Gb26cdzXq/hrwbpnhmEGBWmujkvcSsSxJ649B7CuA1fwJe6V8MPDiaVYPLq+lzxXbxxL87ufvj3xnH4V6fo02oXdr9q1CD7M0uClscFoxj+IjvQBpVla5q2i6baEaxcW6xvwIpPmaT2VOrH2Aq9eQPc2c0Ec727yIVEseNyZ7jPesvSfCmlaRMbmOFri9b715dN5szf8CPT6DAoA4/TtH1e41eO88L21x4e03fulW9OVnH+zB/D9SR9K9KGcDJyaWigDzr4z3VpaeBn82JWubiVIIGxllLHkj3xWL46t49K+E6G7hL3MqRWtjA3/LMtjBx/e6nPvXQeK9FvfEXxE8O20tnK2j2Ie6mmK/uzIPur9ag8f6TquteMvDEEGny3GmW0jXMzqPkEg+6GP5GgDs/DlpPY+GtNtbly88VtGkjE8khRmtOmx7vLXfjfjnb0zTqACigkAZJwBXKa98RfDegSeRLei5vD921tR5kh/AUAaGu+EdC8SQ7NU02GY9pNuHX6MORXCapoGsfD62a90LxhDFYJz9h1uTMZHor9RV3+1viD4t40rTovDtg//LxfDdOR6hRwDV3TPhVo8d0t/r1xc69qHUyX770B/wBlOgFAGL4d+M0uraXLcTeEdankhIVn02Dzon5xwTitL/hbH/UkeL//AAXj/wCKr0GGGK3iWKGJIo1GFRFAA+gFPoA87/4Wx/1JHi//AMF4/wDiqP8AhbH/AFJHi/8A8F4/+Kr0SigDzv8A4Wx/1JHi/wD8F4/+Ko/4Wx/1JHi//wAF4/8Aiq9EooA87/4Wx/1JHi//AMF4/wDiqP8AhbH/AFJHi/8A8F4/+Kr0SigDzv8A4Wx/1JHi/wD8F4/+KpH+K25GUeCPF2SCP+QeP/iq9FooA4f4T6fe6f4Lxf2ktrLPdTTrFMu1wrNkZHY13FFFABRRRQAUUUUAFFFFABRRRQAVQ1PRNM1mAw6jYW9yhGMSID+tX6KAPPJ/hamnym58K63faPN18oOXhP8AwE1F/wAJB4/8M8a1okWtWi9bnTjtkx6lD/SvSKKAOQ0X4l+GNalFuL77HedDbXi+U4PpzxXXKwZQykEHkEHrWPrXhPQfEMRTVNLt7g9nKYcfRhyK5BvhxrWgky+DPFV1aKORZah+/gPt6qPzoA9IorzcePPFPhw7PF/hSZoV4OoaT++i+pU8gV1GheN/DniNR/Zuq28kveFm2SL9VPNAHQUUUUAFFFFABRXN+IPHnhzw0NuoalH9o/htof3krfRRzXMnxJ488W/L4c0RNEsG6X+qj94R6rGP65oA9BvtRstLtmub+6htoV6vK4UfrXC3XxRTUZ2tPCGkXetz5x56qUgX3LGn2Hwp0+W5W+8T6jeeIL7rm6fEK/7sY4x9c13VraW1lAsFrBFBEowqRqFA/AUAeeDwh4v8Unf4o142Vq3/AC46b8vHoX6mur0HwZoHhtMadp0SSd5nG6Rvqx5reooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAIBGCMiuX134eeGPEDGS60yOK57XFt+6kB9cjv9a6iigDzf/hE/G3hr5vDniQajbL0s9VBc49A/X86fF8TLvSJBB4t8O3umsODcxL5sJ98jpXotcx8RZHh+H+tSxttkS2Yq3oaAMW7+K+n3Mn2bwzp93rt03T7OhEa/VjVf/hHvHfiz5td1lNEsW/5dNO/1pHoz/4V1fg22gg8JaW8UMcbSWsbOUUDcSoyTit6gDmfD/gHw54bIkstPR7nvdXH7yUn13H+lbLatp6Xclo95Ck8YBeNnAIB6GrtcFHFNJ8TNb8mytrnFpBnz327evTg0AdkdUsAMm9t/wDv4KdYajZ6pardWNzFcQMSA8bZGRWRJa3vlt/xJNM6H/lr/wDYVnfC6JIvh/YFY1RnknLBR1PnOP6UAdjRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDdXAtbSa4KPIIkZyiDLNgZwB61wvizxLpHiX4Wa5daTfRXCfZG3Kp+ZDjow6g16AQCMHpXx/8UNFu/BnjvUrazllgs78GZFRiFZH6qfUA5oA+jrDxTo/hrwPosup3kcTPaRLHEDl5GKjAVepNdfFJ5sKSbWXcoO1uo+tfKHwh0a78YeP7W41CWW4ttNUSkyMWA2/cUenP8q+sqAKl3eS2zKI7G4uARyYtuB+ZFckltZXfifUb4W+pveOiRywQ3Kx+UB0yFcHnPeut1PUIdL06e9nbCRKT9T2A9zXE+GGk8OSXGo6/AIZdYl+0PdY4iJ6Rue2Bj2oAuWdxY6jPfW1vYa60lnL5E4+2sNrbQ2P9Zzwwp+mJqHhfw5b6ZpOiX14YpCf9JljX5Wcsxzntk4qn4VhOoeIfFs1rqUkcZ1MY8kqQ37mPmujg0Y2esf2lNrN5IfL8swyyAR49cY6+9AGyjF41YqVJGSp6j2p1IrK6hlIZT0IOQaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorlPF3jeDw1Na2FrZy6nrF22ILGAjeR3Y+grH/AOE48Y/9E8vP/Apf8KAPQ6K88/4Tjxj/ANE8vP8AwKX/AAo/4Tjxj/0Ty8/8Cl/woA9Dorzz/hOPGP8A0Ty8/wDApf8ACj/hOPGP/RPLz/wKX/CgD0OvIP2gPC/9qeFItZgjzcae/wA5A5MbdfyODW5/wnHjH/onl5/4FL/hUF74s8U6jZTWd18OLuSCZCkiNdLgg/hQBB8C/C/9h+CFv5o9tzqLeacjkJ0UV6jXm9t4w8WWdrFbQfDq8SKJAiKLpeABgdql/wCE48Y/9E8vP/Apf8KAO1u9MivruGW5YyRwnckJ+7u/vH1q3LFHPE0UqK8bDBVhkGvP/wDhOPGP/RPLz/wKX/Cj/hOPGP8A0Ty8/wDApf8ACgDaufh34YuJHkXT/IZzuY28jR5P4Gq0Hww8N297HdCO7do2DBZLp2X8QTg1nf8ACceMf+ieXn/gUv8AhR/wnHjH/onl5/4FL/hQB6EiLGgRFCqBgAdqWvPP+E48Y/8ARPLz/wACl/wo/wCE48Y/9E8vP/Apf8KAPQ6K88/4Tjxj/wBE8vP/AAKX/Cj/AITjxj/0Ty8/8Cl/woA9Dorzz/hOPGP/AETy8/8AApf8KP8AhOPGP/RPLz/wKX/CgD0OivK9Z+K2veH7VbnVPBFzbxOwRS12uWY9gMc16D4f1C91XRYL6/046fNMN32dn3Mg7Z4HPtQBp0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXLeNPGMXheyjit4zdatdny7O0Tlnb1PoBU/jHxdZ+EdJ+0zAzXcx8u1tU5eeQ9ABWL4K8I3iXsnijxMRPr10Mqh5W1Tsi+h9aAJ/BHg6XSXm1zW5Rd+IL0ZmmbkRL/cT0ArtaKKACikJA6nFc1pniKW61jXnuZbWHR9PlW3SVztPmBQXJYnGMnH1oA6aisHxTrkulaakdggn1S8byrOIc7nP8R/2R1Jp3h3UbmW3On6rPG+r2wAuAq7d3oyj+6fWgDcooqpDqlhcahPp8V3E15bgGWAN86A9CR1x70AW6K5e51PVB8R7TSoJ4l09rBriaN48sWD4G09q29T1aw0a2W51K7jtYGkWMSSnC7m4AJ7UAXaKQEMAQQQeQRS0AFFFFABRRRQAUUUUAFZmv69YeG9Im1LUJRHDGOndj2AHcmp9V1Wy0TTJ9R1C4SC1gXc8jHp/9f2rzrQtLvviNrMXijXoHg0WBs6Xp0n8f/TVx/KgCbwzoN/4v1pPF/ieIpEnOm6e/wB2FezsP7xr0ukAAAAGAOgpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigArE8U+KdP8JaNJqF+5P8ADFCv35n7Ko7mp/EPiDT/AAzo82p6jKEhjHA/ic9lA7muK8L+H7/xXrKeMfFMRXbzpunP92BezsP7xoAm8H+F9Q1XVv8AhMvFiZ1KQf6FZn7lnH24/vepr0OiigAooooAy/ERsItDurrUbeGeC2jaXZMoYEgccGvPvCen6fbSXGlanoWlziOyivHaS3RpHlmYnZyMHkYH4V6HrttpV5pUlvrLRLZPjf5smwcc9c153py+G734haolratqNstpbGLyCzqHDNzuzjjjvQBrR6jY2ry65Lq2nwzQlrZo3jLLaKrbfLQAjBBHJ7/Sna5pqXdvc6teeIore4tVWS3urSPY9uD2bk7kORwa5N5GPgjxOvnWSA6vd/upMeb/AK8+9XtbRfsvjNtoyLO1Gfb5aAPS9DS/j0mD+0b6K9nKg+dFF5YYY9MmuV0PUdPT4jeK3a5gDAW6biRkEKciuzsf+Qfb/wDXJf5Vz3haa11mTV7t9JtYJY7+W1aRVBM3lsV3HigDPm1Ox/4Wtbyfaotn9ksN27jPmUnxBv7K60jS4o7iKRjrNj8oYHI89almtLb/AIWxbJ9ni2/2SxxsGM+ZVrx19g0vwrPqT6Zb3Js5Yp0jI25YOMcj3oA6uimQtI8EbSx+XIVBZAc7T3GafQByfxJ17UPDfga+1PTEzcRlF3bd3lqzAFsewNQ6Z9q1R9D1PRNcuLrSJcvdeaysW+XjnGQc8EVduPEGm3XiPUfDWo+SsQtY3/e8LJu3blyeOBt4965T4VaTPoeu+J7CzleXw/HcL9jkJyu4jLBT3Azgn2oA9QooooAKr319babZS3l5MkNvCpZ5HOABUlxcQ2tvJcTyLHFGpZ3Y4AAry0C6+LOs7mEkHhCzk4HKm+cf+y0ALY2d38VtZj1bU45IPCVnJmys2yDeOP43HdQRwP8A69eqKqogVVCqowABgAUyCCK2gSGGNY4kAVUUYAFSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVHV9XstD0ufUdQnWG2hXc7Mf0Hqamv7+10yxmvb2dIbaFS0kjnAUV5LY3sHxO11dV1e7htvDNlJ/odlJKFa5cfxuM9PQUAaWgaTffELW4/FPiGBodIgbOl6c/f8A6auD3PavUAAAABgCs5dZ0hECJqFmqqMACVcAfnTv7c0r/oJWn/f5f8aAL9FUP7c0r/oJWn/f5f8AGj+3NK/6CVp/3+X/ABoAv0VQ/tzSv+glaf8Af5f8aP7c0r/oJWn/AH+X/GgCW/02y1SBYL+1iuYlYOElUMMjocVzOkRRw/E3XEhjVI10+1G1BgDl66H+3NK/6CVp/wB/l/xpg1fRlkaRb+yDtjcwlXJx6mgDy+6a1tvA+vRXFrILq81m7Fs32ZjvJnOPmxxn3ra8dSaVpPhfUYmhnj1HUo4YQ3kuwlcFcKDjAPXiu3Os6OwAbULMgHIzKvWkk1bRZgolvrF9rbl3SKcH1HvQBatQ0enwgqSyxL8vfOOlcZ4Jm1ewsNSF14b1GN59TuZwpeEfK75H3pBn69K6z+3NK/6CVp/3+X/Gj+3NK/6CVp/3+X/GgDnZItWfxxFrY0O7+zJYm2KedBv3F92ceZjGPeqXxGvr258CalCdEvogwT52eFgPnXsshP5Cuv8A7c0r/oJWn/f5f8aQ61pDDB1GzI9DKv8AjQBfByAfWlqh/bmlf9BK0/7/AC/40f25pX/QStP+/wAv+NAFqS2glz5kMb567lBzT440iQJGioo6BRgVS/tzSv8AoJWn/f5f8aP7c0r/AKCVp/3+X/GgC/SO6ohd2CqoySTwBVH+3NJ/6CVp/wB/l/xrzzWtUvviVrMvhrQJ3g0G3bGp6jH/AMtP+mUZ/nQAy9urv4ra2+mafJJD4Ss5MXd0hwb1x/Ah/u+tenWVlbafZxWlpCkMEShURBgACotL0uy0XTYNP0+BILWBdqIo6f8A16uUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm63oOneIrH7FqkHn224MYyxAJ98Vzo+E/gtRgaNGB6Bj/jXaUUAcZ/wqnwZ/0B0/77b/ABo/4VT4M/6A6f8Afbf412dFAHGf8Kp8Gf8AQHT/AL7b/Gj/AIVT4M/6A6f99t/jXZ0UAcZ/wqnwZ/0B0/77b/Gj/hVPgz/oDp/323+NdnRQBxn/AAqnwZ/0B0/77b/Gj/hVPgz/AKA6f99t/jXZ0UAcZ/wqnwZ/0B0/77b/ABo/4VT4M/6A6f8Afbf412dFAHGf8Kp8Gf8AQHT/AL7b/Gue8c/DjwtpfgjV76z0xYriG3Z43DnKn869Ou5za2c1wI3l8qNn8tPvNgZwPeuA8T+LdF8VfC7XbjSb1JsWjb4icSRn0ZeooAb4b+GXhK88NaZcz6UjzS20buxc8kqMnrWp/wAKp8Gf9AdP++2/xqO08YaL4X8FaKdRu1E8lrEsVunzSyMVGAq12kUhlhSQoyFlB2t1HsaAOP8A+FU+DP8AoDp/323+NH/CqfBn/QHT/vtv8a7OigDjP+FU+DP+gOn/AH23+NH/AAqnwZ/0B0/77b/GuzooA4v/AIVT4M/6A6f99t/jXTaRo2n6Fp6WGmWqW9snREHf1q9RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAda+QPivoM/hDx9qEdo8kNpfgzxhCQCrH5l+mc8V9f15J8ffDH9r+D01aCPNxpz7jgcmM9f6GgDyr4NaDceKvH0F3fPJPb6cglLSEtyOEXn/PFfWFeZfA7wv/YPgaO8mj23WonzmyOQv8Ir02gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisrxHr1p4a0K61W9bEUC5Cjq7dlHuaAI/EninSfCunG81S5EaniONeXkb0Ve5rjY7/4heNP3mnxw+GdJflJbhPMupF9QvRf881J4O8LXOuXw8Y+K082/m+aztH5S0j7YH96vR6APOh8Jkuvn1fxh4mvpT1xfGNPwUA4/Ol/4U14f/wCgnr//AIMW/wAK9EooA87/AOFNeH/+gnr/AP4MW/wo/wCFNeH/APoJ6/8A+DFv8K9EooA87/4U14f/AOgnr/8A4MW/wpsnwW8OSxtHJqGuujDBVtQYgj6Yr0aigDzpPgx4djQImo66qgYAGoMAP0pf+FNeH/8AoJ6//wCDFv8ACvRKKAPO/wDhTXh//oJ6/wD+DFv8KP8AhTXh/wD6Cev/APgxb/CvRKKAPO/+FNeH/wDoJ6//AODFv8KQ/ClrP59G8ZeJbKUdA955sf4qQM16LRQB5nJrHj3wX8+tW0PiHSV+9dWabLiMerJ0P4V3GgeItM8Taal/pd0s8J4YDhkPow7GtQgEYIyK8x8WeHrvwbqL+M/CsZUL82p6cn3J4+7AdmHWgD06iqOjavaa7pFtqdjIJLa4QOh/ofcVeoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNvFq/8JR8StF8Mt81lYr/aF2nZj/AD+Nek1534WHn/ABb8X3D8vHHDCp9FAzQB6GAFAAGAOAKWiigAooooAK5Y6tquoeNxY6Y8S6XYx/6dI6bt8h6Ip7EDk1ra/Pqlvo08mj2qXN9jEcbvtH1zXFXL6/aaXb+HbG1htNT1Akyzxzl5IlP35WIGM9hzQB6RXL+E9RvtQ1HxELu68yG11FreCMqBsUIp69/vVP8A2ZotgkUOo3HnXXljdLPKQ8mONxxgfpXK+FotAgm8TSXnlrGNTkaPc7cp5acjnnvQB6CdRtPskl0kwmhjJDNADJgjqMLkk+1VP+EisiMiHU//AAWXP/xumeG7fRY9LWfQreKG0uD5n7pdoY+pHrWVLfavP8Q7rSrS+ihtY9NiuNksHmDeZGUkYYY4AoAoa14lb/hNfD8FvNqkFrIJmnjGnzgybVyBtKZPPoOK6ZvEVkqlvs+qHAzgaXc5P/kOuW1m31cfEPw0rajamQx3OxhaEBfk5yPM5/MVZ8XXXiPSrbTJLfV7YGfUYYGC2eMq2c5y59KAN7w7rx8QWL3DaXqOnOjlDDf2zRMfQjcOQfatikGcDPJ70tABSMqujIwBVhgg9xS0UAebeAQfDfjLxB4PJItEYXtiD2jf7yj6H+Vek153qw+zfHHQJE4N1p86PjuF5H869EoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvOdKb+yfjZrNrJwmqWUc8R9WXhq9Grz/4mabd28en+LdLjZ73RpPMkjXrLCfvr/WgD0CiqGi6xZ69o9tqdjKJLedAykHp6g+4q/QAUUUUAQ3TzRWkrwRCWZUJRCcbj2Ga5LQIPEzyTX95p9na3Vycu0spkZV7KAOgFdHrSatJpci6JNaQ3xxse6RmQDvwOayLLwvqEgEmueIr6+kP3ooCLeH6bV5P4mgBl7q15H4us9FWxtbuSXT5LppHO3aVkVSBwePmFM8Q6lqOi6Dd6iNDsSYE3YMoP/stU7u3uLH4n6d/ZlgkkceizoVLmNFzNGfvYPPHT61J43n1ibwZqcb6VCqtCQSl0XI57DZzQB1emyNNpttM0KQtJGrtGnRSRmsPW9J0S01C58Tao7ZFqtvt3kDAYkAAHJYlsYrXtZJItDtnigaWQQJiMEKSdo7npVG30OW7v49S1qVLi4jOYLdP9TB7gH7zf7R/ACgDzGTwze3vjTSb25aa1lv47h7a0MrYgVUyoPPU967PT9N0TxPFArRyWmo6ddJLPB5jFkkXPGCfunPWreso7fEfwyyoxVYroswHA+THJp3ivwZ/bciajpV9JpetwjEV3D0Yf3XH8S0AdXRWP4dttdtdNSPX9Qtb27wMvbwGMA9+c8/kK2KACiisrxJ4gsvDGg3WrX8gWGBcgZ5duyj1JPFAHH7hq3xzXy+U0jTiHI7PIen5Yr0WuF+GOi3lrpN1r2roV1bWpftMynrGn8C/gK7qgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRlV1KsoZWGCCMgilooA8tvNL1j4aarPqmgW0l/wCG7h/MutOTl7cnq8Y9Pau28PeLtF8T2qzaZexyN/FCx2yIfQqea3Otcfrnw18Pa1cm8SGSwvjz9psn8ts++ODQB2FFedr4I8YWPyaf45uWiHRbqEOR+NO/4Rj4g/8AQ6Q/+Ag/xoA9Corz3/hGPiD/ANDpD/4CD/Gj/hGPiD/0OkP/AICD/GgD0KggEYIyK89/4Rj4g/8AQ6Q/+Ag/xo/4Rj4g/wDQ6Q/+Ag/xoA9Corz3/hGPiD/0OkP/AICD/Gj/AIRj4g/9DpD/AOAg/wAaAPQsc5orz3/hGPiD/wBDpD/4CD/Gj/hGPiD/ANDpD/4CD/GgD0KivPf+EY+IP/Q6Q/8AgIP8aa3gXxbf/Lqfjm7ER+8tpEIyR9aAOk8R+NNE8LwF7+7UzH7lvH80jn0CiuQ0zQdX8f63b6/4ptza6RatvsNJb+I9nlHc+1dHoHw68PaBP9qjtmu73vdXbeY/5npXWUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z"]
math
multiple-choice
24
右图是函数 $\mathrm{y}=\mathrm{A} \sin (\omega \mathrm{x}+\varphi) \quad(\mathrm{x} \in \mathrm{R})$ 在区间 $\left[-\frac{\pi}{6}, \frac{5 \pi}{6}\right]$ 上的图象, 为了得到 这个函数的图象, 只要将 $\mathrm{y}=\sin \mathrm{x}(\mathrm{x} \in \mathrm{R})$ 的图象上所有的点( )
向左平移 $\frac{\pi}{3}$ 个单位长度, 再把所得各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍, 纵坐标不变
向左平移 $\frac{\pi}{3}$ 个单位长度, 再把所得各点的横坐标伸长到原来的 2 倍, 纵坐标不变
向左平移 $\frac{\pi}{6}$ 个单位长度, 再把所得各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍, 纵坐标不变
向左平移 $\frac{\pi}{6}$ 个单位长度, 再把所得各点的横坐标伸长到原来的 2 倍, 纵坐标不变
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCADzAW4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKK4m0+K3g+b40y/Cp5tRtvEyWbXsUF1pk8MV1CuNzwzMoSUAkjKkjKsOqmgDtqK8z8YfGvwvp3wN8afEjR/N1C38HNe2s1vNFJAZL23OzyclcgNIUXfggBs9q6r4R+MtL+Ifwx0LxvookWx12wju4o5Mb4iw+aNscblbcpxxlTgmgDoqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+bf2rb3xL4X/a4+Efibwp4ffxHqWo2Or6PHpqkxhNyRMJ3l52xqzKXJHCqxGTgV9ITq7wukcnluykK+M7T2OD1rzr4IfDPWPCt3N4k8d+Nrvxv4xurf7LJrFxaR2sdtbZVjb29vH8kaFkVmI5dgCegAAPnT/gpDNN8Iv2LrbwfY+JIbjW/GOvE69cSwxrPrRdJJbucRHPljzRB9zhAUUEAjPUf8EhfGF/4h/ZjuNA1XUYrm48Mas1raxRoo8izkhiliUsgwx3tPnJLDGGxgCvUv2yvCfhvV/gH4z8S6potnd6toHgvXBpV5NHuks/OsXEhjJ6FgijPXj3Nan7MWjeEofg74V8TeGPDtvpH9ueFNJLhBmQwJaqYEkfq5RZCu45J7k8UAeiUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcP+05FHP+zb8QoJR+7k8Jaor/vli4NpKD87/Kv+83A6nik/ZhvLnUP2a/h5f3kvm3F14S0uaaQgDe7WkRY4HAySelWv2grRtQ+AvjewTTZdSa68M6hCLGGXynui1tIPKV8HaWztBwcZzWd+yf8A8ms/DT/sTNJ/9I4qAPQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK4z4q/Fj4e/DfUNHsPGfiW3028165W2021MbyzXDl1ThI1YhQzqCxAAz1oA1/idetpnw18Q6illdXzWekXU62tqm6a4Kws3lxqcZdsYAz1Irm/2T/8Ak1n4af8AYmaT/wCkcVdJ8TrWa/8Ahr4hsbadLea50i6ijmeMyLGzQsAxUFSwBOcZGfUda5v9k/8A5NZ+Gn/YmaT/AOkcVAHoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfPv/BRfT7C4+FPhnUJ7G3ku7Txvo/2e4eJWkh3XKhtjEZXI4OOtfQVeO/tj/Dbx/wDFPwjo/h7wXq/h/SorLVoNUubjVElkdpIGDxIioMBd3LEnJwAMc0Aem+OpDD4I1mZYpJjHp07COMDc+I2OFyQMn3NfN/7NNh8XvC/wT+Hvi7xL8Z9HXwTD4d06ZdDj8MRC6kgNqhhtEm37nkOUQEDcx6DJr2342eL7bwH8A9d8VeK5IQ2n6NI1wttkJPcGPaIot3PzyEKuf7wzXln7FPwvk1D4P/Df4gfEiWw1vX9L8OWqeF3t4WiTR9PeFDEnBxJMY9u+QjuUHG5nAJfG+p/tG/Eu9s9e+C2o6d4K8Nm3h2/8JbYIZtSDrvNxHGqSSRbQypsk2EkZ4772jab+1LouilJvEfw18WX1xCvz31tdaYllIEAOPJWTz1Zsk5ERGOPvYX2iigDy3wb8X7seMLbwX8RvBGs+EtduEUW10Y/tek6g+9Yz5F1FkJukOFWYRuQyZAZgtepVT8QaXp2uaHeaNq9nFeafqFu9vd20y7kmidSrIw7ggkVw/hPSo/hFp01hNrOoXPgtZLe30a3mie5fw+m1w6y3By7WoIj2vIW8rcQzCNQUAPRKKM55FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVfWL2HTdJutRuBIYbOB5pBFGXcqqljtUcscDgDrVivHfiQNX+Jvxktfh5aQ3sPgzw/5k3jK4X93HqMjwIbfTwxB8yNlmZ5QpyAoDbdy7wCXwa178QfD+o/FTWra8ttPu9Nm/4RPSbxTG1laGMg3M0XIM82N6sSSkTogCsZS+7+yf/wAms/DT/sTNJ/8ASOKuu8XAL4Q1NVACixmAAHT92a5H9k//AJNZ+Gn/AGJmk/8ApHFQB6BRRRQAVHdQQ3NrJbXMMc0MyFJYpFDK6kYKkHggg9KkooA8w+Ht7qPgT4h3Xw+8Q3tkuhXwa68H3LnySQ88pfTVXAQeQjQLEinJjGRwpCen1g/EbwrZeMPC8mlXUjW88ci3On30caPLp92nMNzGHBXfG2GGQRxyCKo/CbxefEulz6dqzWlt4q0QpB4h0qGRS1jMwLKdoZiI5FAkjYn5kYHg5UAHWUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFfJtj8VNe+MXxz1/RPh7+03o/gW30vVDpmneHn8M2l7camIlQSXCS3BUtvkaRVVN3yoDjk0AfWVFeG/H/wDav+E3wa8bR+DPFN3rF9rK2yTTxadZLMYQw+TzCWQBmHzYHYg4GRmz+zd+1F8Mfjf4vu/DXg1dcj1CzsmvWXULARI8SuiNtZWYZBkTg468ZwaAPaaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5f4yeKZvB3w9vtYstPudS1JjHa6ZY2yBpLm7mcRQpg8Bd7qWJ+6oZj0qH4J+ArD4d+BYdFt5VvNQuJPtmt6oYhHJq2oOqie7lA/jkZQTyT0GTjNcjoKH4jftGahrpe9fw18PR/ZtpBNIjWl5rJ3GadYuHSS2jYRh2BD+eShGwlvXKAM7xh/wAilqn/AF4zf+gGuQ/ZP/5NZ+Gn/YmaT/6RxV1/jD/kUtU/68Zv/QDXIfsn/wDJrPw0/wCxM0n/ANI4qAPQKKKKACiiigAry/4xapd/DnxxpXxEijT/AIRq+Yab4vCx8wIf+Pa/O1Cx8pt0TDusyk8RjHqFU/EGk6Xrui3Oj61p9tqGn3kZiubW5iEkcqnsyng0AXKK8n/Zm8RapBeeIvhN4jjuTqXgCeK3sr65cs+q6XIGNncksAWYIhidvmBeJjuJJA9YoAKKKKACiiigAooooAKKKKACiiigAooooAivriGzspru4YrDbxtJIwUthVGScDk8DtXx3+2LdfAj4y/Cux174Z6joWs/Ei61e3Twu+iqq6pcXKzrvWaMFJREqb3ZpAAi4cfw5+xbqeG2tpLi4ljhhiUvJJIwVUUDJJJ4AFc34R8NfDrSNYbWfC+geF7HUNXhNw17ptlbxTXsZIYyGSMAyKS6ktkjLA96APn34w23hPXf29fg94St9K0yXxBpMl/4k8VDTo1REmNmi28srAhmcSW8RAbJ2iPPBqn/AMEp/iJ4R/4UzpPwdgtry28ZaIup3Wu2r2Ji8gregBpWOPnKzxIAfm/cuCAFXP0R4g174X+H/F0ms63rPhHS9e+ziykvb26toLzyeJBCZGIfZyG25xyDio/DurfCjTPGt7ZaDqXg2z8Ra1MHvoLGe1jvb+XBcNIqEPI2GZgWycMT3oA7KiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4744eK9V8KeDUfw5pR1bxFq12mnaLY5KrNcOGcszbSFWOKOaUk8ERkdSK7GvL/CrP46+Pup+JPOuZ/DXg+2XTNKhnhha0uNUfMlxe27gli0cLx24fgAvcIv/AC0yAdJ8DfAumfDf4U6J4O0y1tIF02zjS5a1jKJcXG0ebNg85d9zc8811lFFAGd4w/5FLVP+vGb/ANANch+yf/yaz8NP+xM0n/0jirr/ABh/yKWqf9eM3/oBriP2OryO+/ZP+G80UkMir4T06EmGTeuY7dIyCcD5gVII7EEZOMkA9IooooAKKKKACiiigDx/9qTT9S0LUvDPxe0O+uraXwjepb65BbBB9u0i5nhW4WRmjfCRFY5iTgKkcp3KcMvr0UiSxLLE6ujgMrKchgehB7028t7e7s5bS7gjnt542jlilQMkiEYKsp4IIJBBry39mO5k0BvEPwcvLvUL+5+H08CWuoXcbAXWn3StNaBWZ2LeSoe3JJ5+zg9yAAerUVFJcwpeRWrPiWZWaNcHkLjPPT+IfnUtABRRRQAUUUUAFFFFABRRRQAUUUUAZPjTwv4c8YaC+ieKtC0/WtNkdXez1C2SeJmU5UlWBGQelcRD+zp8B4pJXX4QeDSZn3tu0aFgDtC/KCuFGFHAwM5PUkn02vPf2qfiUPhF8A/EXxAFl9sm0q3RbaAnCvNLIsUe4/3Q8ik+wNAGbdfA79ne21COwuPhh8P4bqYAxW8mk2qySZJA2qVyckEcelbXhj4K/CHw5r1tregfDLwppmpWb77a8tNHhjlhbBGVZVyDgnp6188fsT+PvhbP4o0OLx1Drk3xg8UWQuJtf8W6M1u93JtGbWylfhI0U7VWMKH25xlgK+waACiiigAooooAKKKKACiiigAooooAKKKKACiuR+J3grUvF01i1l8QfFXhaO0L+bHoUlsn2rcON5mhkOQQMYwOvHORyOmfBbxLHaqt/wDtAfE+4m2jc8Vxp8Sk4GSFNo2ATk4ycZxz1oA9coryiP4Ma6HkMnx6+KTKzZjAvNPG1cDgn7Hzzk546gdsl/8AwprWf+i7fFT/AMD9P/8AkOgDpPjn4ztvBHgCW+NxJHqWpTx6VoqRwiVptQuD5duoViFPzkE7iAFU5NaHwq8LweC/h7pfhqDyWNlD/pEkKsqTTuxkmkVWZioeV3bbuON2BwK8w8Sfs1WXiDxJouva18XviZfah4clkm0qaa+sG+ySSKFZ1X7HtLYAwSCRjIwa2/8AhTWs/wDRdvip/wCB+n//ACHQB6pRXlf/AAprWf8Aou3xU/8AA/T/AP5Do/4U1rP/AEXb4qf+B+n/APyHQB6H4w/5FLVP+vGb/wBANcd+yRNFN+yt8NXhlSRR4P0tCyMCAy2kSsOO4IIPoQa57xV8HdYj8MalIfjn8UpAtnKSj3+n7W+Q8HFnnFcJ+xz8NNU8Q/su+B9Yh+NfxIso7jRottpZajaGC2C5Xyo/NtGcKm3aFJOAMAkAGgD6eorw74geDdP8EaONT8VftI/ErTbeRvLhEmoWDS3Mh6RwxLZF5ZCSAERWYkgAE1kfDXSPDPxG1C6tPC37S3xWub/RXV7vT57i3sbqDcnytJbzWEchQh8gspUnBHIGAD6IoryJPgRP/Z7Wsvxv+Lsri4huIbg+I4lkhePjA2wBXRhwySB1PXGea3fD/wAKYtL0N7F/iF8QNQuXthbnUb3xC7z4G7awVQIg43/eEeW2rv3EZoA9Aorym++CDy3E0tp8Y/itYiR4yiReI1kWFUkkkCr50T5BMgBLZYqiKTtBB0x8IdM/4RiHRG8b/ENlj8stef8ACX3gupSqhSWlD5+YA5AwMksAGwQAeh1538Z7Wy8L65Z/GIWsks/hnTriy1NYLbzpZtNmeKSXYAy/PHJBE4Zm2qnnEgkgiv8A8KO8Nf8AQ3/Ez/w4msf/ACTRc/A7wxcWBsp/FPxGkgbduVvH+rHeGABDH7RlhgdDwMn1OQD0qGSOaFZYnWSORQyOpyGB6EEdRTq+cPgf8JtHttb8SfDjVvFnxO+1eEbiJrCX/hPNSgjn0u4Dm0MccUyKoQRyQHCgZgJzyQvof/CjvDX/AEN3xM/8OJrH/wAk0AemUV5n/wAKO8Nf9Dd8TP8Aw4msf/JNH/CjvDX/AEN3xM/8OJrH/wAk0AemUV5n/wAKO8Nf9Df8TP8Aw4msf/JNH/CjvDX/AEN/xM/8OJrH/wAk0AemUV5n/wAKO8Nf9Df8TP8Aw4msf/JNH/CjvDX/AEN/xM/8OJrH/wAk0AemUV5xZ/BXw3b3Al/4Sr4jyYBG2X4g6wynII6faff86TTfgl4VsZpHg8RfEHEknmMh8favt3Fw5OPtPUkYPqCfWgD0iivNbL4G+D7a0kthrfjySOR2k2y+O9WYLIxLeYAbjAcOd4bqHw3XmtLR/hL4R0zT4bO0ufFKxwQCAE+LtT3OgG1Qx+0fNgcDPTtigDuK8p/ba8B698Sf2afEXhLwzbQ3WrXLWs9rbTSKiXBhuopjGWYgLuEZGTxzW9Y/CbwdZ22n21q/iSGDSo1jsoY/FepqkCqhQBVFxgfKxH04ryj4l/Cfw34p/aJ8O+EtB/tnTF0W1GueJNSg8R363E1sxmit7RHEpKlpfMcklSFVtpJZqAKfjeHUfjr8VPhLc6P8PPEvhv8A4QbVk17WL/xFpNxp6WKKqZsIBIqrcSO6rlkyqiIENhufpuvK/wDhm74J/wDQiwf+B1z/APHKkuv2dfg1cztNceC45pG+88moXTMe3JMtAHqFFeXr+zr8GltXtl8FxiGR1d4hqF1tZlDBWI83BIDNg9tx9aj/AOGbvgn/ANCLB/4HXP8A8coA9UqO8laCzlnWCSdo42cRRY3yEDO1ckDJ6DJAry//AIZu+Cf/AEIsH/gdc/8Axymzfs3/AAXELGLwHatIFOxW1C6UE9gSJDge+DQBj+E/2sPg1qOt3eg+JNZuvAuu2N61ncaV4thWxmjYAHczhmiCHPDF+foQT6r4J8X+E/GWnS6h4Q8T6N4gtIJfJluNJ1CK7jjkwG2M0bEBsMpwecEetfEafsC6z47+I934u8ba3pPg7Tby9Vh4d8PrLePDbIdgQXMzcOyIh37XG52O1QAtfRv7M/7L3wx+B2rXeq+FDrN9qF0Nou9Vu1keFMEFUEaIuDnnIJ9CKAPaKKKKACiiigAooooAKKKKACiiigD4L/bCk/aBsfip4nvYfjVdaPDpPhG48SNo3h+Ro7fT4I7rybe3J3q8jyKd7TFfvBgAVC4+lf2MfCHxB8L/AArhu/iB8TdQ8aXevW9tqEa3kPOmM8ILxJKzM0i5K4J2j5SQoLGua1r9nzxJ4s+JXxa8SeMvFVncWvjfw8fD2gWtvE3/ABLrTG5GlOFyyy/NtBOctlucDrP2R/APxK8CeCbm3+KfjdPEusTNBBbpZyN9isrSCJY4kiRkTEjfMzttG47c5IJIB6xRRRQBneMP+RS1T/rxm/8AQDXm37COqXWsfse/Dy7vNnmR6FDarsXA2QZhT8dka59TmvSvFYVvC+pKzhFNnKCxBwo2HnivKf8AgnoAP2MfAIDBgNNfBHQ/v5PWgDlf2JsfF7Udc/aI8T2Us1zq+pz2XhG3vYsro+mQtsHkjG0SSOG8yRc5KYzwRVP4rfaH/wCCpXwtGkuN8fhPUTrKwOA/2UpcCPzQOSnnbNueN3TpWv8ACzQfjB8DfDY+Gfg/4dad4z8M2d7dy6Fqr+I49Pa0tpXadYLiJ42ZmWR5F3qW3DaSF7dV+zj8Hr3wX4i8QfEHxvrUfiDx74ukD6jepGfI06EEstlZ7yXWBCcckbgiEgbRQB63RRRQAUUUUAc58WNJ8Ua74B1DRvB3iKPw7q18qwxau1v57WSFh5kiR5AZ9m4LkgAkHPGD+enwj8MfGDx3rXgDSLj9ofxj/YnxSufEEqvFeyiWGLT3KCQ/vWBaV1J2KdqqBhjnj9FviHpera34D1nRtC1ptE1PULCa3s9TSPe1lK6FVlCgjJUkEcjp1r581j9kq9tPhP8ADbw54D+KGpeGte+Hf2xYNfS13yTpeMz3KiNXUKC7fLktheDuPzUAd/8AGyzuPATeG/iXpaT3k2gCDSfEuof2ct3e3OjM6GV32FDlJESVnAIRTM23Ga9Ys7iC7s4rq1njngnRZIpYnDJIhGQysOCCCCCKzdD8Padp3gez8KSI2oafaadHpzLfn7QbmFYxGRKXz5hZR827OcnOc1yPwJk/4Rv7f8MdU1Oe41LQ7ie509rvIe702WUyRPFkkGOEy/ZsKfk8lRhQyAgHolFFFABRRRQAUUUUAFFFFABRRRQBn+Lda0/w34V1LxDqswhsdJs5by6kLAbY40LscsQOgPUgVxH7N3h1bXw/qXj2/hZdd+IN2Na1FncO0URRUtbcMCQVigWNRg4yWIxnAPijdW3i/wCIWn/CJ7Fbiznsk13X5XJ2x2sVygggAH8U8yEfNwY4ZwMnGPR6ACiiigAooooAKKKKAPE/2+oWsv2edW8Y2Hi/VPC+t+GImutHvLLVJbZZZ2wggeNTtm8zOxQykgtwVyTV79keSbXvBdn8QL34lap4o1DxboljqF7p091CbTSpJFditvBGP3IDbosEscwHJLBjXYeLPhl4K8T/ABD0nxr4g0cahquiQNFp/wBomdoICST5ghzsMg3NhyNwzwRgYk+D3w38F/C3wiPDXgXQ4dK07znndEZneSRjyzuxLOcYAyTgAAcAUAdVRRRQAUUUUAFFFFAGf4q0x9a8M6hpEepX2mPfW0kC31hII7i2LKQJI2IIDrnIODyK8l039n/V4LQx3fx/+LV1KXyJf7ciTAyvGBFjs3P+17CvaqKAPIPDfwM1TS9StL2f45fFLUWtbyC4MN1rMZimWPBaKRREMo5Bz3wcAivQPidN40g8F3cnw/stFu/EGUFpHrVxJDafeG4uY1Zjhc4Axk45Fb9FAHhNzqP7YbS5t/DPwdjj2j5ZNU1FznAyciMcE5I44HHPWpdJv/2vG1a1XUvD/wAH1sjOn2loNQ1AyCPcNxTK43YzjPeur+M3xWg8JeJtF8DeHNNXxD458Ssf7M0VbkQpDCuTJd3UmD5MCAMc4LORtQE5x3HhltZbw/aN4iisYtVaIG8jsJHkt0k7iNnVWZR6lQT1wOlAF6iiigDP8VuY/C+pSKFJWzlIDKGH3D1B4P0NeW/8E/ZIpf2NfAEkMbRq2lHcrMD83mvuIwoABbJAxwCBk4yfWtYmgt9Jup7qLzYIoHeWPaG3oFJIweDkZ4NeU/sFzW9z+yP4LuLSHybea0meGPaF2IbiUhcDgYGOlAHr1FFFABRRRQAUUUUAee/Hg/GwWNuvweTwU0siOl0fEbXKtExHyvGYsg47hhXnus2/7al3G4sb/wCD+ntDNJ5ZRL6T7TGd5UncPk24RcDOd5JPy4PuvirVBofhrUNZOn3+ofYLaS4+x6dbma5uNqk+XFGPvu2MAZGSRXhHhf47/FDT/wBoLwr8O/ih8KLPw5b+Nobl9JurHWRfSRvCm8pKFXAKjaGIwAXBBIBoA9e+DUXj6H4daenxOudGuPFH7w30mjI62vMjbAm/B4TaCcDnNV/iRpVvZaxY/ES2Vk1Hw9bzQXDj5hNp0pRriJgTgANFDNuVTJ/o4Vch2VuwpGVWUqyhlYYII4IoAg0m+stU0u31LTbuC8s7yJZra5t5BJHNGwBV1YcMpBBBHXNWK8y+BGin4datq3wwa9ibSoZn1TwpHLcq0y2Mrky2wQ4YrbzMQDggRzQDcTkD02gAooooAKKKKACiiigArI8f+JNM8HeB9X8V61I0en6LYy3tyVK7ikaFiF3EAscYAJGSQK168y+JQufHHxX0bwBafY7jw/o5XV/F6sQz7lIbT7XGeN8qNM3B+W3UHAkGQC1+zvoGo22h6l418RQ2sfiLxvdJqd+ls7vHbxCJI7e3Vn+bCRIpI6b5JMcGvQ6KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPiXwl8PfGnxR/bb+O2pRfEzxP4P1Pw7FY6dpkmmqqEwzKzwhg2MwgW4O0Y3mXduB5b3D9gX4ieLviT+zzbar46hP8Ab2l6hcaTeXPlqq3jQEL5o2kq2c7WK4BZWwMYrW+JXwL0fxP8RpfHGi+LvFHgvWtRsTp+tXPhy6ihbVrcJtjEokjdRJHwFlADBcjP3SvafC3wV4b+HfgLTvBvhLT/ALDpGlxlLeHeztyxZmZmJLMzMSSe5oA6CiiigBsiJJG0ciqysCGVhkEehFeV/sRRxw/sueFIoo1jjjiuFRFGFUC6mAAA6CvVq8r/AGKP+TYfC/8AuXP/AKVTUAeqUUUUAFFFFABRRRQAV8q/G608a+Av2+vh349bWF8T6T4xmfw3aaLNbASaHG4VpprcjjgKrvIfmK71ORtx9MeMNDsvE3hXUfD2pNcLZ6payWtwbedoZQjqVO11IKnB4I6Vwnwr+BXgzwP4ktvEgv8AxH4k1ywt5LWw1PxNrMuoTWEDsSYoN52xLtITKqCVGCTliQD02iiigDk/i74Ul8TaLY3Omv5GuaDqMOp6Tch9jJJG37yLdggLNCZYWyCNspOMgEaXw78RQ+LPBOmeIYraS1+32ySyWsjBnt3IG6NiOCVORkcHGRwRW1Xnk2j6T8OfiJdeK7SXUIdM8Z3kFtq1orobK0vRGI4b072XyQ6xx277d29jbYVcMxAPQ6KKKACiiigAooo6cmgDnfih4v07wX4XbUr1pJLq4f7NpllBCZp7+6ZSUhijXl2O0k4wAqszFVUsKfwX8HTeDvB6warqDat4h1KQ3uvatKq+ZfXbgbm4AxGgAjjXGEjRFHSuf8JWUHxH+Jlv8R7u2hOkeF5rm08IzRTlxfeYgjuL07W2FGIaOMbc7UZwxWRQPTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKraw9+mk3L6VBbXF8sLG1iupmhikkwdqu6q5VScZIViB2PSgCzXlf7FH/JsPhf/AHLn/wBKpqq/sS/FbXvjL8FD408R6fp2nXzatdWhsrFJVFskbAKknmEkyYOSRwcjhTlRa/Yo/wCTYfC/+5c/+lU1AHqlFFFABRRRQAUUUUAFFFFABRRRQAVFfW0F5Zy2l1EssE6GOSNhwykYIP4VLRQB534fvfEXgfxt/wAI94jvG1Lwtqsip4d1P7OfOsJSWJsrxwcFSNohl2jO0o5L7Gk9Eqj4m0fTPEPh2+0LWbRLvTtStntru3ckCWN1KsuRgjIJ5BBHauB8QeJdT+E1vcNq2h61rvhFWiFhd6NaLcT6OhHli2lt1YSyxgqmyVBIx80q6qI97AHplFc74N8d+D/Fek2eoaD4j028jvQvlRpdJ5oYoj+WyZ3LIFkTKEbhuGRzV7xR4l8O+GrF73xFr+l6RbRqGefULyO3RQWCglnIABZlH1IHegDUrzb4gM/xOvrz4f6LdQHw/bXDWfjO7+cSFDEriytmKFGdw6CVwcxoxCkSEGO34sXxb48s73w7pUd94V0S6hMF1rjyeVqLguVkS1h2kxExg4ndlKFlKo2MjrPCOgaL4X8O2ug+HdLtdM02yTZb2trCsccYJJOFXjJJJJ7kknk0AWND03T9G0W00jSbKCysLGBLe1toIwkcMaAKqKo4AAAAFWqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArD8f+E9L8Y6PHpmrXOsQQxXAnVtK1i606UsFZcGS2kRyuGPyk7ScHGQMblFAHmn/AAorwV/0F/H3/hwda/8Akqt34f8Aw48P+DtWl1HSb7xNPNNAYGXVfFGoajEFLK2RHczSIrZUfMBnGRnBOeuqn4g0uz1vQrzR9RSR7O/ge3uFineFmRgQwDoQynBPKkEdjQB4d/wTvuILv4WeLrq1njngn+IOtyRSxOGSRTOCGUjgggggisH9kT4HeBdZ+BPhzXtUm8TzXUt7c34jj8U6hb28U32yVgUghmSNcFR0XJ6kk817N8GPhL8P/hPp15YfD/QW0e11CRZLiAX1xOjMuQCBLI4U/Mc7cZ4znArnP2H7m3uf2YPDRt545hGbuNzG4ba63cwKnHQg9RQB1vxQ+HPhj4gf2b/wkY1bdpE7XFk+na3eae0UhXaXzbypltpIBOSAzYxuObvgjwdovhPwcvhfRjqQ06NWRBd6rc3UyKRjas0sjSKAMAAMNuOMVvUUAeY/Dz4AfDHwT42Txb4f03WI9XT/AJb3PiO/ug58togXSWZlchHZRuBwDxipfjJ8B/hl8U9Zt9U8caRqOo3FqhSAJrt7BFEDtztiimVFJ2rkgZOBnOK9JooA5vxT4E8NeIfhq3gLU7e8bQXtI7NoIdSuIZGhQABDMjiVgQoByx3DIbOTWL8E/gv8O/hJJqL+A9HutOOrCMXgm1S6uhJ5e7ZgTSOFI3tyMda76igDyW//AGZ/gxe/Et/H1x4UnbXZNS/tN5hrF4I2ud/mbzCJfL5fkrt2n0rovjX8IvAXxZsrC08d6Tc6hDpkjyWqw6lc2uxnADE+TIm7hR97OO2Mmu4ooA5P4e/DTwT4I8D3ng/wzoa2ei38s0tzaNcSzCQyja+WkZmwVAGM4AAAxWJ8PfgL8JvA3iqLxJ4V8Ix6dqkDTNHcJe3DFfN4cbWkK7ccBcYUEgAZNej0UAcN8Sfg58M/H/iC31zxh4TtNU1C2iEUc8skinYN+FIVgGA8xjgg8kHqBjc1HwZ4Xv8A4fr4HvNGt5fDy2sdountnyxDHt2J1zgbF79q3aKAOP8Aht8K/h98P9Qub7wb4Ws9IuLuIRTyQF8yIDkA7ie9Z3jD4G/CbxV4kuvEHiHwPp1/qV6wa4uZS+6QhQoJwwHRQPwr0GmW8SwxlELkF2b53ZzliSeSScZPA6AYAwABQBxnxI+EHwx8f31pe+MfBOk6tc2IYW080GJIwxBI3LgnkA89OfU1a+HPwx8AeA1uh4Q8KadpRvtv2loY8tLtztBZiTgZOBnHJrrKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8G/wCCbf8AyavYf9hvVv8A0vnr3mvBv+Cbf/Jq9h/2G9W/9L56APeaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorJ8ZaBB4j0yGyuNQ1KyWC8guxJp121vIzRSB1RmXkoSo3L0I4Na1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyXwR8KaB4L+HtvoXhqw+w6el1czLD50kuHknkdzudmblmJ6/SiigDraKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k="]
math
multiple-choice
25
如图, 在 $\triangle A B C$ 中, $D$ 是边 $A C$ 上的点, 且 $A B=C D, 2 A B=\sqrt{3} B D, B C=2 B D$, 则 $\sin C$ 的值为( )
$\frac{\sqrt{3}}{3}$
$\frac{\sqrt{3}}{6}$
$\frac{\sqrt{6}}{3}$
$\frac{\sqrt{6}}{6}$
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAC1AUkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKK8F/b48QarYeC/C/hzw/4mutB1bxJ4ktbSK5trkwN5QbdKC45Ubc1i/DS51XR/wBt6bwt4c8X+Idc8K/2A0l/Fe30l9b2tyMbVEr52scZxuzz6cUAfSlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8f/ALQGo/Dv4jftuab4Z8a69pP/AAjPgbRJb7UYrq8WKP7Q3Rd24ZKjqByKo/sv/Efw34Ij+KnibwPoHiDVvBMeqQR6FbwR+a99dMCrx22fmcE4xk8AV9bXXhPwvc3D3Fx4e0uWWQ5eR7RGZj6kkc1558TYtKuvi14F+H2kxW9qsF82uXdvbr5YWOAZUkLxy+0YI5oAT4B/tGfDj4qW7Q6dqJ0nVY8b9K1XFvcnsSit98BgQSuRkV65XzF4p+FXgSw+Lh8CeO/D1vqHhfxZcSX3h2+k3LLpN8Dvkt0n3bow/LKFIGcjvXX6f4T+LvwrEaeENdl8deHYlIOk67cYvLZRjasFxjJAGRh93agD26ivOvh38ZfC/iXXJPDepxXfhnxJDH5sujayghm2cYZTna4wV6HvXotABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXk3wgtT4j+PHjbx+wiktbUx6BpsqOrbliw8xGCf4yo5weDXd/FDxDb+FPh3rXiO68zytNspJiIxliQOAPfOK5b9k/w9N4d+BukJeLIL7VN+p3plJLmWdjIc57gFR+FAHSfFLwbpXjjwnJo+poQyus9ncIcSWs6nKSIexBxWJ8AvGV54i0W+0HxFJEvinwxcmw1eJcL5hABS4VeuyRSCCR1DDtXfV4Z+0gup/Df4jaR8adH3/wBlRBdN8X28MAZpLIuGWf1LRsPwV2oA9P8AHXgHwd4zMLeJvD9pfyW+fJmcFJI8jBw6kMPzrgdX8E/Ev4fQrqHwv1xvEllA8skvhnxDeFfNDKNqwXW0lCrbmw4IOcZHFeu2Nzb3tnFd2k0c0E6B4pY23K6kZBBHUVLQB5T4U+PPhh9Zt/DXj20vPAniacHbpuuJ5cc2Mcw3S5gkBJIAV8/KeOK9WUgjIOQehFc38UPAPhD4ieHW0PxjoVpqtmW3Is8YLRNggMjdVbBPI9a83tfBfxU+FsZ/4QHWz4u8PwRKseg65OzXMWBz5NyeccDCtkckdhQB7ZRXm3w3+M3h3xDNDpOvQXHhfxE7vG+kaqPLk3KSDtY8MODjFekKQRkEEe1AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeM/tfXE+rR+D/h3a3Rhbxbr0UV3smCsbaL95IMEHIYADpivZIY44YViiRY441CoijAUDgAAdBXk+hpbeLf2q9T1ZSZ7bwXpi2EZZcpHdTHc+0+oQYP1r1qgAqvqtjZ6nps+n6haw3VrcxmOaGZAySKRggg8EVYooA8R+FNxrHwt+NFv8GZ7ITeD9WtLq+8JXv2kyT23llHmtJQ3Oxd7FG7KVXtmvbq4n4/eGNU8SfD24/4Ry4Fr4g05kvNJuQPmSaNg+zI5w4UqR6NU/wO8e2fxG+H1r4hgtpLK6DNb6lp8ylZbG6Q4lhcHnKtnnuMHvQB19FFFAGV4q8M+HvEtoLbX9GstRjXOz7RCGaM+qN1Q89VINcDZ/CzxB4Q+03Hw38d6hbmVSV03xEX1Oz3f7JLrKnP+2R7V6nRQB4Xa/tBS+C/FVj4U+OmgweD9Q1SRo9N1K2vBdaffYOMhsB4s+jrgevevcLWeC6tkuLaaOaGRdySRsGVh6gjgiqPiXw/ofiGxez1zSbPUIJFKtHcwq4we3PSvJrz4R+KfAviZvEHwd11be2kQpP4Y1ORmsGzzujI5jbP4UAe10V5F4P+POjpeHRPiRpl14J1qIlXXUkK2s5H8UU5+VgQM4zmvVtNvbTULGK8sbmK5t5kDxyxOGV1IyCCKAJ6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqfiLUrbRtBvdXvG229jbvPKcj7qqWPX6VcrzH9rbUNUt/hBLpGiW0lxqHiK9t9KhSMAkCV8Oxz0AQNz2oAz/wBi21Nx8LbrxlPbzQ3fjDVbjVZPPz5gjZsRqSSeAoGPrXr1UvDmnQaR4fsdKtk2Q2VtHAi+gVQO30q7QAUUVk6Tr8OoeJNS0aOx1COTS9nmTzWrpBLvGR5chG18d8E4oA1q8Y+JEZ+Enxct/iTYGOHwv4su4bHxosrkrbzYEVpfICcJhmEUp6FShxlOfZ6zfGGg6X4o8Lah4d1q1W50/Urdre5iYfeVhjj0I6g9iBQBoRukkayRurowBVlOQR6g06vFf2VfFmp6ZNefBbxuq2viTwigi0wtnOr6UgVILtCfvHA2tgnDDnGa9qoAKKKKACiiigDN8WeH9D8T6JNo/iHSbPU7C4GJba7hEiN+B7+9eWD4Kap4Ika8+C/i668Oxhtw8P6gv2zSGJ+9iMkSRk4H3JAOOBya9looA8R8L/HbUtC8Ww+DvjJ4Un8MaldXBis9Zth5mkXS4wGMzHMRY/wt6jmvaLC7tb6zjurK5hubeVQ0csMgdHB6EMOCKr+ItG0rXtJm0zWdPt760nQpJDPGGVgevWvGbj4Ga74AgudU+CHiy8027Ilf+xdYlN1p824hhGgODCAVwCM4B9qAPdKK8k0v4wan4Z8OQyfGDwlqHhm8jVvtd5bQteaeirGHMhnjBVFJyPmI5GK9O8P6vpeu6TBqmjahbX9lcpvhubaUSRyL6qw4IoAu0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXk3iaZvEH7Wfh/TLeW3mt/C+kT3t7GYAxjlmISP5yflOAT0716wzBVLMQABkk9q8b/ZJn/wCEnm8YfEaaOff4g1uSG1NxEisltAfLRRtZsjgnk/hQB7LRRRQAUUUUAFFFFAHkv7VWk3mm6Pp/xY8OWLXPiHwI7XQjRsNd2DDF1bnqDuQBxkcNGuK9E8C+I9K8XeENP8S6Hcrc6fqdus9vKv8AErDNak0cc0LwyoskcilXRhkMDwQR3FeLeG9Qf4OfFyPwPfwND4K8VXP/ABSksSs0enXOwNLZyHGE3sJHjGSMZGeMUAe10UUUAFFFFABRRRQAUUUUAR3UENzayW1xEk0MyFJI3UMrqRggg9QQa8S8RfAXUfD/AIsPir4L+MLrwbcN81xogQTaRdnduObc/LHuy2Sm05O4c817jRQB5DYfGe88K6rDonxl0KPwtcTqxg1a3labTLjBUbfMxmNvmAw3XB5r1TR9S07VtPS+0u+t721k+5NbyiRG+hHFReJtE0jxFo0uk67pttqFjPjzLe4jDo2DkZB968nm+CF/4O1Kzv8A4L+JW8L20Mxlu9AuN02nXo/u4OWiySTlc89qAPZ6K8dk+N9/4SvobT4veCL7wlDcTiCPWYZlvNMZ2Pyhpk+aPI7uqjrzwa9b068tL+zS7sbqG5gkGUlhkDow9iODQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHE/tEeK4PB3wf1rV3vI7W4kgNrZM4zuuJfkjUD1yf0q98F/D0fhX4W6HoaD5rayTzW/vSMNzE+vJNeV/tneJrPS/GHw50rXbSdvDUmuG+1u5+yTzRRpEh8tWEUbEkuQQMj7vPFdEv7S/wTEnkjxdOHC52DQ7/IHTOPI6UAetUV5of2gPhAFty3jKFTdIHhR7K5V2BOOVMeQc9iM1XtP2jfg5c3KQReK598hwu/Rb5F/FmhAH4mgD1OivJU/aY+Cjsyp4vuGKHDAaHfnaff9xxUlr+0j8GLi7+zReL5fN2F9raNer8o6nmEUAerUV5Vf/tJfBWz1COxm8aqbqW2W6WCLTLuVxExwGZUiJXkdDgjuKSP9pL4MPIqf8JdMu4gbpNFvkUe5ZoQAPcnAoA9Wrl/jD4L0/x54Eu9CvV2z48/TrpTiSyu0BMM8bfwsj4INYfhv48fB7X47t9J+IehzrYzSQzk3Hl4aMKXK7wNygMvzrleetMsfj98FLv/AFPxQ8Mf6tZP3mopHw3T7xHPt1HegB/7NvjG48S+DZtH1p5R4k8MXB0zW45nDSecnHmEgAEOuHHs1eiV8peOPjl8KPDfxYsfih4M+I+l32n6teR6R4p0qOcIWx8sd4qsAxKYwSAQVI5459uT45fBtlDD4oeFMMMjOrQj/wBmoA7+iuHvPjN8JrRgt38R/DMDMMgS6nEpP5mslv2ifgmviR9CPxG0f7ZEgeQhnMManoWn2+WM+7UAenUV5jpf7RPwP1C7mtoPiboCSwMwkW4uPI6EA4MgUHqMEdRyMitD/hePwc/6Kh4T/wDBvD/8VQB31FcD/wALx+Dn/RUPCf8A4N4f/iqP+F4/Bz/oqHhP/wAG8P8A8VQB31FcD/wvH4Of9FQ8J/8Ag3h/+Ko/4Xj8HP8AoqHhP/wbw/8AxVAHfUVwP/C8fg5/0VDwn/4N4f8A4qj/AIXj8HP+ioeE/wDwbw//ABVAHb6lZWeo2Ulnf2sVzbyDDxSoGVh7g14749+AiQ61beJvhRr9x4L1mzYv9ntSRYXuWyyzQjghuhI5rq/+F4/Bz/oqHhP/AMG8P/xVH/C8fg5/0VDwn/4N4f8A4qgDBtfjLd+GNSsNF+K/hybw9dXkhhj1SAmXT5nHGd//ACzB9Gr1TTL6z1GxjvbC6iubeUZjlicMrD2Irz7Wvi98C9X02TT9V+IXgu9tZhiSC41OCRGHuCcV5BqUvw28J6p/bPwa/aD8OeHVjV2bw7fapFd6Xck5OxVMgaDJ7qSB/doA+qKK+cfhN+1v4T1TxEvhf4g/2T4d1NiEiv7LWYr/AEu5O3PE64MbHB+V1H1NfRdtNFcW8dxBIskUqB43U5DKRkEHuCKAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAU2aRIomlldURAWZmOAAOpNOryn9pDU/FGsW8fw78E6PBqs+rwuuuSHUPsx061K8ZbaxBl+ZRxkDJ7g0AHwz+LNn8RvjV4l8I6PZWV5oPhu0gkOpcv588mcov8OAB+telf2Tpfneb/Ztp5m3bu8lc49OlfMf/BOe2ng8efFyO8h+zzWfiNbJbePUHuoYI44lCxoxwGA6Z2g4r6ooAoyaLo8kyzSaXZtJH91jAuR+lSf2bp//AD4Wv/flf8KtUUAU49J0tGZk060UucsRCvJ/Kj+ydL87zf7NtN+3bu8lc49OlXKKAM9dB0RdQa+XSLIXLx+W0v2ddxXOcZx0zUsml6ZJG0b6dasrAhgYVwQfwq3RQBi2fhDwtaKy2vh7TYQyspCWqDIYAMOnfaPyqv8A8ID4J/6FTR//AADT/CuiooA53/hAfBP/AEKmj/8AgGn+FeG/GfxV/wAI38bofhn4K+C+geJtSutJOpQtujhWJAduJc9Pmz9RivpSvn79ny3h8a/tVfET4p2l5HNp9mYfD9i0CkJP5SgyOSepDHbkcZBoA0vhr4z8GeLfiA/gDxp8O7bw94wtrMXJsby2jdJ0/iaGQDDge1ep/wDCGeEtsq/8I3pe2YASD7KnzgdAeK8J16RPHn/BQrQ49MnknsPAujTSX09qF8uO4k+7E745J5+UdMdq+kqAOfm8C+DJZC8nhbSWY9SbNP8ACm/8ID4J/wChU0f/AMA0/wAK6KigDnf+EB8E/wDQqaP/AOAaf4Uf8ID4J/6FTR//AADT/CuiooA53/hAfBP/AEKmj/8AgGn+FH/CA+Cf+hU0f/wDT/CuiooA53/hAfBP/QqaP/4Bp/hR/wAID4J/6FTR/wDwDT/CuiooA5hfhz4CW6a5Hg/RhM6hWf7GmSB0HT3qX/hAfBP/AEKmj/8AgGn+FdFRQBzv/CA+Cf8AoVNH/wDANP8ACql58Lvh1dzCa58FaJI4AAZrJOxyO3rXW0UAcvY/DbwBZ5+y+D9GiyqKdtmnRRhe3YE15z4q8d+IfHXxYk+F/wALNRjsLPQ48+JtfhjEh01+sVvGrfKzNg5HYCvbWBKkA4JHB9K+bv2PdX8LeCfFnxG8J+I9ZttN8SzeK7m+mi1DbbvcQPhopFcna4Kn+HGOhGaAO4tPCvxG8M/FPwv/AGZ4u1XXPD0sl2+vxaiQ2AyHyyj9Vw7AhRxgYr1qsbwn4q0DxO94NB1FL5bCXyp5Ylby9/PCuRtfoc7ScVs0AFFFFABRRRQAUUUUAFFFFABRRRQAVyfhn4c+HNB1zXtY00XiXviQ51CZrksWOCAVz93APGPQV1lFAHC/Cf4R+DPhxqeo3/hW1ubaXVpTNe77guJ5D/GwP8XvXdUUUAFFFFABRRRQAUUUUAFFFFAFHxPZ3uo+H7ux07Um026uIikV2sQkMJP8QUkAnGa8B8B/sw+IvCHhW58N6H8b/EVnpt5cyXM0cFhEkhkdizEPuyOTX0ZRQBy3wj8AeH/h34Ti0PQoWOCXuLqY7p7qQ8tJI3UkmupoooAKKKKACiiigAooooAKKKKACiiigAooooAK5Xx18NPAXjPUIb7xR4V03U7q3UrFNPF86g4yMjB7CuqooAp6DpWm6JpMGmaTZQ2dnbIEihhQKqqBgCrlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k="]
math
multiple-choice
26
执行如图所示的程序框图, 输出的 $S$ 值为 ( )
2
4
8
16
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAMgAfsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7C/4Uh8Fv+iQeA/8AwmbP/wCN0f8ACkPgt/0SDwH/AOEzZ/8Axuu8pjkgnntQBw3/AApD4Lf9Eg8B/wDhM2f/AMbo/wCFIfBb/okHgP8A8Jmz/wDjdb3/AAl2grJsN+xIznEEjDg4PRad/wAJdoP/AD+v/wCAsv8A8TQBz/8AwpD4Lf8ARIPAf/hM2f8A8bo/4Uh8Fv8AokHgP/wmbP8A+N10I8W6D1+2yf8AgLL/APE0f8JboH/P5J/4Cy//ABNAHPf8KQ+C3/RIPAf/AITNn/8AG6P+FIfBb/okHgP/AMJmz/8AjddD/wAJboH/AD+Sf+Asv/xNH/CW6B/z+Sf+Asv/AMTQBz3/AApD4Lf9Eg8B/wDhM2f/AMbo/wCFIfBb/okHgP8A8Jmz/wDjddD/AMJboH/P5J/4Cy//ABNJ/wAJboH/AD+yf+Asv/xNAHP/APCkPgt/0SDwH/4TNn/8bo/4Uh8Fv+iQeA//AAmbP/43W+ni/wAPnn7c/P8A07S//E0n/CYeHt20agxPp9nk/wDiaAMH/hSHwW/6JB4D/wDCZs//AI3R/wAKQ+C3/RIPAf8A4TNn/wDG66D/AIS3Qev25/8AwHk/+JoTxdoDLuF6/wD4Dyf/ABNAHP8A/CkPgt/0SDwH/wCEzZ//ABuj/hSHwW/6JB4D/wDCZs//AI3XQN4v8Pj/AJfX/wDAeT/4mlXxboB/5fW/8B5P/iaAOe/4Uh8Fv+iQeA//AAmbP/43R/wpD4Lf9Eg8B/8AhM2f/wAbrof+Es0D/n+f/wAB5P8A4mkbxf4fDYN63/gPJ/8AE0Ac/wD8KQ+C3/RIPAf/AITNn/8AG6P+FIfBb/okHgP/AMJmz/8AjddA3i7w+Ot+3/gPJ/8AE0i+L/DxP/IQY/8AbvJ/8TQBgf8ACkPgt/0SDwH/AOEzZ/8Axuj/AIUh8Fv+iQeA/wDwmbP/AON10P8Awlugf8/z/wDgPJ/8TR/wlugf8/z/APgPJ/8AE0Ac9/wpD4Lf9Eg8B/8AhM2f/wAbo/4Uh8Fv+iQeA/8AwmbP/wCN10P/AAlugf8AP6//AIDyf/E0h8XeH8f8fzf+A8n/AMTQBz//AApD4Lf9Eg8B/wDhM2f/AMbo/wCFIfBb/okHgP8A8Jmz/wDjddB/wl2gDg3r/hay/wDxNH/CW6B/z+Sf+Asv/wATQBz/APwpD4Lf9Eg8B/8AhM2f/wAbo/4Uh8Fv+iQeA/8AwmbP/wCN10P/AAlugf8AP5J/4Cy//E0f8JboH/P5J/4Cy/8AxNAHPf8ACkPgt/0SDwH/AOEzZ/8Axuj/AIUh8Fv+iQeA/wDwmbP/AON10P8Awlugf8/kn/gLL/8AE0f8JboH/P5J/wCAsv8A8TQBz3/CkPgt/wBEg8B/+EzZ/wDxuj/hSHwW/wCiQeA//CZs/wD43XQ/8JboH/P5J/4Cy/8AxNH/AAlugf8AP5J/4Cy//E0Ac9/wpD4Lf9Eg8B/+EzZ//G6P+FIfBb/okHgP/wAJmz/+N10P/CW6B/z+Sf8AgLL/APE0f8JboH/P5J/4Cy//ABNAHPf8KQ+C3/RIPAf/AITNn/8AG6P+FIfBb/okHgP/AMJmz/8AjddD/wAJboH/AD+Sf+Asv/xNH/CW6B/z+Sf+Asv/AMTQBz3/AApD4Lf9Eg8B/wDhM2f/AMbo/wCFIfBb/okHgP8A8Jmz/wDjddD/AMJboH/P5J/4Cy//ABNH/CW6B/z+Sf8AgLL/APE0Ac9/wpD4Lf8ARIPAf/hM2f8A8bo/4Uh8Fv8AokHgP/wmbP8A+N10P/CW6B/z+Sf+Asv/AMTR/wAJboH/AD+Sf+Asv/xNAHPf8KQ+C3/RIPAf/hM2f/xuj/hSHwW/6JB4D/8ACZs//jddD/wlugf8/kn/AICy/wDxNH/CW6B/z+Sf+Asv/wATQBz3/CkPgt/0SDwH/wCEzZ//ABuj/hSHwW/6JB4D/wDCZs//AI3XQ/8ACW6B/wA/kn/gLL/8TR/wlugf8/kn/gLL/wDE0Ac9/wAKQ+C3/RIPAf8A4TNn/wDG6P8AhSHwW/6JB4D/APCZs/8A43XQ/wDCW6B/z+Sf+Asv/wATR/wlugf8/kn/AICy/wDxNAHPf8KQ+C3/AESDwH/4TNn/APG6P+FIfBb/AKJB4D/8Jmz/APjddD/wlugf8/kn/gLL/wDE0f8ACW6B/wA/kn/gLL/8TQBz3/CkPgt/0SDwH/4TNn/8bo/4Uh8Fv+iQeA//AAmbP/43XQ/8JboH/P5J/wCAsv8A8TR/wlugf8/kn/gLL/8AE0Ac9/wpD4Lf9Eg8B/8AhM2f/wAbo/4Uh8Fv+iQeA/8AwmbP/wCN10P/AAlugf8AP5J/4Cy//E0f8JboH/P5J/4Cy/8AxNAHPf8ACkPgt/0SDwH/AOEzZ/8Axuj/AIUh8Fv+iQeA/wDwmbP/AON10P8Awlugf8/kn/gLL/8AE0f8JboH/P5J/wCAsv8A8TQBz3/CkPgt/wBEg8B/+EzZ/wDxuj/hSHwW/wCiQeA//CZs/wD43XQ/8JboH/P5J/4Cy/8AxNH/AAlugf8AP5J/4Cy//E0Ac9/wpD4Lf9Eg8B/+EzZ//G6P+FIfBb/okHgP/wAJmz/+N10P/CW6B/z+Sf8AgLL/APE0f8JboH/P5J/4Cy//ABNAHPf8KQ+C3/RIPAf/AITNn/8AG6P+FIfBb/okHgP/AMJmz/8AjddD/wAJboH/AD+Sf+Asv/xNH/CW6B/z+Sf+Asv/AMTQBz3/AApD4Lf9Eg8B/wDhM2f/AMbo/wCFIfBb/okHgP8A8Jmz/wDjddCfFug44vJP/AWX/wCJqzpOt6bqNx5NnctKwGcGJl/mooA5X/hSHwW/6JB4D/8ACZs//jdH/CkPgt/0SDwH/wCEzZ//ABuu8ooAKRgD1FLSN900Ac54AGPClkka43q5Zh672/wraYSCZcdB1rI+H0rjwhZgpt+Vuf8AgbVtxYHBkLFvWgCReeVPXtRg+tNjUjpTsH1oAMH1owfWjB9aMH1oAMH1NVNauYbHTZ7y6lCQW8ZkcnpgcmrUgbY2D2NeS/tea1caL4BhSC6Nut9OYHxn51OAR9ME0AcN4s+JnjfxtqU2l+ANGu49KXmHVocESNnBA9MVlW3w6+Ns0Pmt4/1JHbqpUZT+des/sp6HbaR8J7EWy7I2dmCjoT9K9LVMEkjJPrQB8s2/gD42xLJDL491NtwIRimf/Zakj+G/xsjhVB8Q9TyBzle//fNfR/inVbPRNFudZ1G4EFpYRmWVy2AoFeXR/tS/A2VVdvHlgr7grKG5B/EUAcAvw4+Nkcn7z4g6kwPqn/2NMh+HHxvM4QfETUwrH7xTp/47Xocn7UnwMLMG8dWHynBLZ4/T+tEf7UnwNDbP+E6sfm+6Ocn6DOaAPPz8MvjeWlA+JepNg8AJ/wDY0sfw3+NNxGIh8Q9SDZ+9t/8Asa9w+GHxM8G/EOG8vPBuuQalFZOFm8tWXHHfNavjTxHovhDw3ceIdduo7GxtQWkkY5GMZH/oJ/OgD50k+HnxwjheA+O9SaQN8r7f/sakf4e/Gp9iJ491SMqvzvs/+xr6Y0TUrLVtLh1DTplntLxBJFIv8S88/pVDx54q0Pwborax4hvEs7CNlSSZxwGJGB+OaAPnhfhz8b+3xF1M/wDAP/saX/hXHxv/AOih6n/3z/8AY19O6Td2moabBe2ciyW9zGssLj+NWGQasbQe1AHyy3w6+OIHHxA1I/8AAf8A7Gmr4Z+N2gxjUX8Tanq/lEFoAuA3PI6CvqhgCvApkeDCVbo3BzQB5T8DfimviOT+wddg/s3XbdSZLSZj5mzs3vXq8KMqAGQsfX1r5f8Ajtt8M/HO217SYvLuLp4bZ5EOGKk8/UV9OaWXbT4WdmZmjViT7igCfB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aMH1owfWjB9aADB9aFUBs459aMH1oAOetADqKKKAChvumihvu0AYPgD/kT7P/AHT/AOhtW3gcHFYvw/8A+RPs/wDdP/obVtt92gBwopF6UtABRRRQAHpXhn7dAB8D6QMf8xFf5ivc68N/bn/5EfSP+wiv8xQB3X7P6KnwwsAqhRzwBXZyEjbj1rjvgH/yTGw/Guwk6L069zQBX1rT7LUbGaxvoEuLe4TZLC65V1PUEDrXxn+2p8NPAuifGT4X2ukeFNNtLXUNXZbxY4mxKPLfhhke1fT/AMafit4G+F1ja3njbVF0+G9Yxwu6khj/ACH418f/ALXXx5+Gni34sfDXWND11buz0nVDNdvtwIlKN05wfvAUAfWDfBP4QjA/4QTRgD3MZB6f73FfOn7Vvww+Huk/tKfDHTNL8L6bb2uoXDC4tY4/lnwJPvc89O47V6zN+138Cbdio8VqpZuVaHp+XWvBP2kPj98M/FH7RXw18R6VrvnaZo1xm8l2bduSexPPXH40AfZ3g3wb4Z8H6bMnhjw9Z6b9oIMsdqAoc+5OBXzL+3x8dvhfrXwE8U+B9L8SwTa7tMX2NCoYNg8decE9q9d8B/tN/CHxl4qtvD/h3xJ9sv7o5hTysDoOCfXr0rxr9oLwP4Tb9un4e2raFZS2+orI+oJ5RCyvu/i6g/jQB6R+yb8dPhh4j8F+GvBOl+JLaTXV09I/safeDYwRjPqe1ZH7XOrN49+KGmfs/vbC3s/EERvJNTQkvA6FAMdv426/3a8t/am0qT4e/tjeCZPhb4WtG1CXTpGW0hAVZjnjoPx6dqb8K4f2m/CfiHU9dvPhPaa7qV1ctLBd3dywktEJJ2J8v3QccdKAPrLRfFfhTwlq+j/DCTV421pNPU29scK0kaLgt6LwM4rt42O7B9M5z/nNfD3xum/aX8baabo/CS10nWLbmLVrWcrMIxhioYgYX5ema9x/Yh+KuufE74UzXXiHT47O/wBHuPsEuxzmV4yUYkH3Xt3oA9yYgHANKQB0GORUFsWYYkXaw6c9anf734j+dAHy/wDtWkj4paYoPH2qDj8a+m9JAGmW+B/yxT+VfMn7V3/JU9M/6+rf+dfTek/8gy3/AOuKfyoAsUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFDfdoob7tAGF8P/wDkT7P/AHT/AOhtW233axPh/wD8ifZ/7p/9Dattvu0AKv3aWkX7tLQAUUUUAFeGft0f8iPpH/YRX+Yr3OvDP26AT4H0gD/oIr/MUAd38Am/4tpYj612jZ4xXE/ANlT4Y2HmD5ucV2Y3LIc8jtk0AZXirwtoHiNY113SLXUBESY1njDhTjqO4/Cvkv8Abe8GeEbD40fCq00rQLG3hn1Vlu1tkQKV8tuCoHPTvX1j4u17TvDGg3Gs6tctHb2qNLJtxuKgfwr3rwr9mfRtS8V/FrxL8StWt1vPDerMs3h9rnJeLJ6hG/1fAPTHWgD1qH4VfDeWPcPBukOvO0/Zl55PoMV83/tbeAPB2n/tPfCuxstBsbe2vbphPEkG0SY8zGQOvQflX2A2wLhwdzDoD+NfLn7XxkX9rj4RF8Kq3jYx/wBtKAPe9J+HPgPSbqO90/wzptrcWxxFPFbhWQ4I44rxfxhpOo/Bj4pjxxfWw1rw3cytcalqd4C82mnpti6kAsBwPXNfR90+23Z1xubOzK9+RmvJP2kfH0VtpaeCdA0+01rxNrcX+hadcoHgkHO/f1APy8Z/ve9AHlem6tZfGf8Aam8M/En4d41Lw94btZLfULmTKtHIGDAbT/ukfjVHQvjx+0N4417XIfAXgHS9Q0/RdQktXeSYoxZXI5wDnOM9Km+F0etfBn43aT8P7HTYjH44tpL/AFgqhK2c68eWmOCOTXKfslfHnwD8LdW8d6P4quL5Lm78RzPH5Fs0oIDNySOlAG58RvjV+0x4J8OjV/GPw50e101pYoZZhOxK7j/uD19a+qfhxa6ZH4Tsrmx0u2sVv4BdSRwqFXe4DE8d8k/nXyD+2x+0f8M/iH8HV8P+HbnUDezalbuqzWRRWwwzznjjNfYHwxI/4VroDk72Gl2/1P7petAG1YsZFLyKoccAZqwzjzAnfg/rUcAEjbyWGO2ac2xZDI3sBQB8x/tZMB8TtL45+2Qfzr6a0nnTLY/9MU/lXzD+1gpX4p6ZJJ9xrq3Az65r6c0cbdLtlzn9yv8AKgC1RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUN92ihvu0AYXw//AORPs/8AdP8A6G1bbfdrE+H/APyJ9n/un/0Nq22+7QAq/dpaRfu0tABRRRQAjcKfpXjn7ZmlXWpeArOW2QsLK4aaTHYArXsh6Vk+LtLttZ0G60y6QNHdRNEfbdxkUAcT+zXqUGtfCbT7iJ1O2Qqw9MCvRJiw2hQT64NfMn9l/FP4QXn9m+G47W48OqxMbSDfJk9akf43/ENbhkXS/lAxzak8/lQB7H8XfhlpPxB1DSJtVvby3XSbgSiKCYqlwP7rgHDD2NdTp1nZW1qljbWscFtEP3UcaBVXHHQcCvnKb42fERiuNNAK9/sp/wAKbJ8aviG2D/Zir9LQ8/pQB9MKkcf3SXPua4H4jfCfw94x+IXh3xfq1zcJe+G3JtVjYhXJycn8zXkknxu+Ivl4GkqMdxaY/pRN8bfiNHbrONNX92M4+yk/0oA+mdwaRVcH5skD26Yrgfh78LNB8E+ItX8RC4utQutRuTcA3TmU25JHCbs7R06V4F8WP2kPiLoHgG51y006KOSzT5vNtOB0OeR6VmfA/wDau8c+P9Dkubawhmltgq3BS1yASM+lAH2FPplle30N7JY27yLERHOYx5kQPUK3UevHeuB+GnwI8CeC5tXuLfTYdRk1e7a5ka8hWUqzHJClgcc15n/wu34ig4GlqPpaH/Cl/wCF3/Eb/oGDj/p0P+FAHpfxa+CfgXx74Ok0OTSLTTk+0JMs1pbJG42kEKCoBxkCu90PTBpWk2NjbMWjs7eOFMnkqq7cn9K+dW+NfxCKYGmBT2/0U/4Ui/Gv4iCRWGmjgY/49T/hQB9NYk8z5QMd6W4QSqoyBtZSfzFfMzfG/wCIwOf7MAHfFqf8KRfjL8TL28+yadpkfmSLhDLbYGfrQBD+0rnxB8Z7HQ7Jt81pLBPIB1wGz/Svp/Sl26dbgjDCJQfyrxH4H/DbxBceLX8e+P1g/tu5iMflxH92Ix907emea90hG2NRjtjrQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAob7tFDfdoAwvh/8A8ifZ/wC6f/Q2rbb7tYnw/wD+RPs/90/+htW233aAFX7tLSL92loAKKKKACorqLzE46jpUtI3Cnr+FAFCa0iubdftqpJ5Zzt2g4pr6dZOqtBZWoXv+5X/AAqZwkZ3BW/edacsTKoGePQUAMGm6eefsNqd3X9yv+FKdMsD/wAuNr+MK/4VZhAWMAA0+gClNplh5f8Ax42v/flf8Kg/s3SxGC1hAfbyVx/KtNsbeRVdGC5ZslR2oA8P/b+srdf2VfFE1taW6AWuWZYgG6evrTf2D/hR4S8E/BXTdS0e0Z5tdtkubk3AD/N7Zqz/AMFAA4/ZL8WOgwPsvT8K7T9l3H/DPvhPGP8AkGJ0+poA7L+zLD/nxtv+/K/4Uf2bYf8APjbf9+V/wq5RQBT/ALMsP+fG2/78r/hR/Zmnj/lwtv8Avyv+FXKKAKE2m2vRLG0/GFf8KbJpunvt2WNsrL1/cr/hV6blTxUMQaOP9782emOtADZkhXaD8xHAC9qsx42giqskUcXzIH3N0+tT2vneSPPxv74oAlooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKG+7RQ33aAML4f/8AIn2f+6f/AENq22+7WJ8P/wDkT7P/AHT/AOhtW233aAFX7tLSL92loAKKKKACiiigBMD0H5UuB1xRRQAUUUUAI33aYgHYCpD0qOHvQB4r/wAFBN5/ZN8XLx/x6/0rrv2WgR+z/wCE+n/IMT+Zrj/+ChbN/wAMm+LNg/5decfSuv8A2WCp/Z+8J4OT/ZifzNAHoNFFFABRRRQAUYHpRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQ33aKG+7QBhfD/wD5E+z/AN0/+htW4fu1h/D/AP5E+z/3T/6G1bh+7QAlMaTD4wcUjOS+xRjPc0wkx/Jne3vQBLJLt+6palVs8jNQM/mR7YpcHPIBH/66mBKpyR78UAOzRmm7x6/pRvHr+lADs0Zpu8ev6Ubx6/pQA7NGTTd49f0o3j1/SgBWJxWD4+8RDw34XvNVa2adreMssUf3mI9K3WYlcBh+X/16pajY2l/aGG+h81MEMCOoPFAHxj+15+0t4X8WfAHxB4XhtvI1C6hMZieTlGx6fTNXf2Uf2ofDWh/DPTfD+s3EbzWVukS5kwRjIxXhn/BRf4EXXg/xYPFGkWebTUA81y0acREfKAe3OD+dcf8AsO/Au/8AiR4/t7zU7J20qCVRM7j5cEE5NAH6s+BfEtr4m0OPU7RdsUqhlOc5BrZdwo61z/g3RbHwzotvo2n2Rjt4U2B0HyjHStzaHw2RtHqP/r0AS5/WjNNzheo/L/69G8ev6UAOzRmm7x6/pRvHr+lADuaTcoO0tyKTePX9KiYK8jfKQ3Yhf/r0ASmTD47U5Wy1VWdkbymRnLdCB/8AXp43btvmKuPb+tAFmimr9f8A69OoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAob7tFDfdoAwvh/8A8ifZ/wC6f/Q2rcPSsP4f/wDIn2f+6f8A0Nq3O1ADAT5nI49az/Ek0ltpN5cxlgYoHcFfUDNaLfdFZ3ivjwvqZ/6cpv8A0A0AfFvwL0T4z/GfTdW8Qad8WrzRYLbVLi1SLymbG2Rh1I/2TXfj9nz487f+S+3hz/0y/wDsan/4JfLv+EHiLIz/AMVLe9f+u8lfTq8KBQB8t/8ADPnx5/6L7ef9+v8A7Gj/AIZ8+PP/AEXy8/79f/Y19S1U1i+ttM0+W9vJhFBbrvd26Be5NDfKij5m/wCGe/jz/wBF8vP+/P8A9jR/wz38ef8Aovl5/wB+f/sa1fBP7U2neLfjleeA9A01L60s41K6gshXzCcg8V9EbwiqHlOSB/nNK+iJPmL/AIZ7+PP/AEXy8/78/wD2NH/DPfx5/wCi+Xn/AH5/+xr6g34YhuB2NIsrbvu8etJSTdgPl/8A4Z7+PAb/AJL7eD/tl/8AY0p/Z/8AjyrZH7QV78w/55f/AGNfUEjBh8o3eorlPiV478IeCbWKXxVrdvpccv8AqjO+Afoe/wCNHMB81eMv2V/ix4x0+XTfE/xsmurJxho5Y+H5z02+tQ+Af2SPid4E02Sz8L/Gi4022nPziOLg/gFr6a+Hvj7wf46t2l8L67DqUcJ+cQ9vp2rplkEm6CZfLwflB71RJ8xW/wAAPjy1vsPx+vGXs3k9f/HaX/hn3477Sn/C/rzJ/wCmX/2NfTskoSMLEm4+npT9u9lZhtP1oKPl9f2e/j0Bj/hft7j/AK5f/Y07/hnv48/9F8vP+/P/ANjX1CzETY/SlLHHC0AfLn/DPfx5/wCi+Xn/AH5/+xpf+Gevjwevx+vB/wBsv/sa+nJpZVgJSMk+3Nc/408Z+H/CEMU/iPVorKOeRUjLsOWbgD8yKOpSjdXPAv8Ahnv48dP+F+3n18r/AOxoX9n/AOPQfLfH6+x6eX1/8dr6TsdRhu7WOe0mE8b8qwPUVeJ3bc85qnpqZxlzXPltvgD8e2vCp+Pl8kYX7wj/APsa4v4gWHxh+DPjzwfJq3xQvPENrruqC1kTbtG055PAr7akGVx7V8uf8FDkVPFXwvUKAB4hXAA9jUldD6lQYxyTjPWnUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUN92ihvu0AYXw/wD+RPs/90/+htW52rD+H/8AyJ9n/un/ANDatztQA0/dFZ/iv/kVtT/68pv/AEA1oH7orP8AFX/Ir6n/ANeU3/oBoA+df+CXX/JH/EX/AGMt7/6Pevpv+HNfMn/BLv8A5I/4i/7GW9/9HvX03/DQSFU9ZtLe/wBPmtLqJZYZkKOjHgg9RVwdajuATGQDg9sVFT4C0fC3hHw3pPhn9ujXNO0KxSztkhiKxxIAqkl+gFfUPj/43fDDwZrH9jeJvE9vZXUZx5UhBJPFfJPxr8d6J4D/AGzvEmqaxdiCSG1ikiBXPmsCx2k+lezfAPTdI+N943jnxL4Q097a5TdA+NwPOM561Ut4iPQtS/aN+DdnZR3V74xs445B8pLZH86yZP2rPgTuyvj2yx6ZOP51nfFTxL+zP4Iuv7J8YWOi2zRNtWN4gcfhuB/SuL/4Wp+xZtBEPh8c/wDPv/8AZUox94cd0eveEf2hfhJ4lvVtNG8WWlzI7bVC8ZP0715B4Fsz8Xfjt4itvEEZ1TS9HvQkcMwLIq7R09ua1ND8ffs3a3bzWnw+TSU1Rh+48iHDbuvHPoDVP9gxJl+IHj1JAHk+1puGeCdq+tTU3FHWi35ieOtNX4R/Hbw1a+GLdbDR9YcvdRRZWPIyAAOp/GvpvTbh7vTY74WqneAUwc7h6181/ttR3i/Erwulq7u7q+OcbTntX0N8OUki8D6akz7nW3UMSMdu/rVdCkrpGT8RfiZ4O8CWvm+J9Wh015BuUPzx/KsPwH8fPhX4y1qPTfD3iy2vLwpu8pCPTnqfTNeN/tmT614e8fab4g1DwxFrPhm2iJvHuuFjOcYIyM8H1rd+BOtfALxn4n07VPA/9m22qpbHzra1RV2MQfvFnB4GelZxHKJ6D4u/aH+Efh3Vfsms+MLW0uFJBjfOeDg98VnD9qz4En/me7P5uBwf6VzHxK+IP7LGl+IJLbxfForX6MwkMsO5gwODzu6VzcfxR/Yt+UmPQSM54g/+yrdGW2h7l8NfjF8PfH9w1p4U8RQXjMpO5SVx24yK+Zv+Cifw41uG40nxTL4zvprKTVbaMaU+3ygfMX5hjv0/Kvcf2e/GXwI13VDF8L/7MW5KkH7HGEOM8/xZ/SuV/wCCiz+V8M9Fjk+ZTr1sB/3+So6o2p/DI9e+EazN4C02LzDuSFMnPX5FrtYx8gJrjvhLEX8C2DKxB8qPJB/2BXZIMRqPStqmxzUvgCTgV8u/8FE/+Rr+GH/Ywr/I19RSfdr5d/4KJ/8AI1/DD/sYV/kaxibPZH1KKWkHWlqhBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFDfdoob7tAGF8P/8AkT7P/dP/AKG1bnasP4f/APIn2f8Aun/0Nq3O1ADT90Vn+Kv+RX1P/rym/wDQDWgfuis/xV/yK+p/9eU3/oBoA+df+CXf/JH/ABF/2Mt7/wCj3r6b/hr5k/4Jdf8AJH/EX/Yy3v8A6PevptqHsSFUdevItP0ya8uJDHDboZJHAztUcn+VXqr6isMlq0E6ho5VKupGQwPGCO9Z1PgLifnR4+8WfDjxd+1trUmrP9o06/jighkmhJ2OGfJGRjPzD8q7Lwb8TbT4DfFCeynu5J/CcxRbaV1JEYJ5woOK+v4/ht4HS4W5TwtpazKdyv8AZVyD+XFWdQ8HeD9S/dXnh7T59n3RLbggH8RVSldxQSOe8PWXw5+K+h2/iWHRbHVLO4yySzw5Y+5yf6Vd/wCFR/DTyxjwXpAx/wBO4H9K6nQtKsdJ01LLT7SG0t4/9XFCoVFHsB0qxlACjGtFuZrc5PTfhn4I0x2m0vwtptvIeS8cWGz69s/nXz0uoD4HfGLVdY8SlbXR9cuvO86Nd5KgbTld2e1fWbRlogoPHfNZPiPw/o2uRLFrem2t6qgjE8YcYPbmsa25cOqPmSTU4/2g/jZoeu+FpWk0Tw6xS6faV3ZyRwx6ke1ezX3xo+G+g+JIPB9xrDx3zZWNDHxx2z07V2+heH9A0GBrfSNLttOW4ILi2i2AkdCSK8d8aeG/GWq/FWysf+EJ0UaJK5a41ZQPtEXPBBxnniiOuhV+VC/Gr41fDjw9qltofjQQyWGoRl9piEqyf7R5xmvFLqD4c+PPjFpuv/B3Vpbaa1iCy21vCIo2PTJ98Z7V9e3Hgvw1qFvbxavoNhfm2jMavcRiQ4HTGRmrHh/wd4T0Sbz9J0Kxs5R0eK3Ckfjir5SeYw7b4Y+D9Tt7S413wnp11drD+9knhDMWI55xUg+Evwz5U+CNG/G3H+FdtEc9cfgaTC88GnzW0J3dznfDHgnwt4aZpdE0Cysm/vQRBSB7E18wf8FJPiR4Sj0fTvCl3fSLqlrqcN28SxEjy1dW6gdeK+wJEDLySR+ZrmPEXgzwnr2qfbNY8O6feTkY82a3DOR9SKiPxGsfhZyH7MfxE8M+LPAVmNIumkKIEIKFTkLj/wBlNeqWpzD1J56k1kaBoGh6NCYdJ0q0s1/uQoFz+AFa9rkwhmTac9K3qbHNT+Alk+7Xy7/wUT/5Gv4Yf9jCv8jX1E1fLv8AwUU/5G74X/8AYwr/AOgmsYm/RH1KOtLRRVCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKG+7RQ33aAML4f/wDIn2f+6f8A0Nq3G+7WH8P/APkT7P8A3T/6G1bjfdoAaTlgtZvjJ8eF9S29fsc3/oBrRf7wIHNZXi4hPDOotKC3+iycKCc/KR0FAHzx/wAEvSyfCLxFn7v/AAkt7gj/AK7vX08CCua+D/2Pvjv4W+EfhHXdB8TaVrhkk1y5uEMWmyHAaV/6mvXv+G0/hb/0DPEn/grloA+kqbIiuuG/Ovm//htP4W/9AzxJ/wCCuWj/AIbT+Fv/AEDPEn/grko5QPpCOIL9386FjUNnAHuBXzf/AMNp/C3/AKBniT/wVy0f8Np/C3/oGeJf/BXLQB9IFRuGTmho06hVz9K+b/8AhtL4Wf8AQM8Sf+CuSj/htP4W/wDQM8Sf+CuWgD6P2FBkEn61EqeWDKBlz1HpXzq37afwu7aZ4kz/ANguWlH7Z/wvXltN8R89T/ZUho5QPopWDchRu78U9UB69a+bz+2X8NnRvsek+It3bfpcgFQ2H7b3wnuNyJaa7NNCdsyw6c7bG9DjpQB9LvCrMPQdqWOPbxn8K+b/APhtT4W/9AvxN/4KpKP+G0/hb/0DPEn/AIK5aAPpGQZIAOKHGRgHFfN3/Dafwt/6BniT/wAFctH/AA2n8Lf+gZ4k/wDBXLQB9HyRq/FCQomAoA+gr5w/4bT+Fv8A0DPEn/grko/4bT+FvX+zPEn/AIK5aAPo7yl3UIAmcnP1r5x/4bT+Fv8A0DPEn/grkprftpfCsHcdN8SZPTOly0AfR28sSW+UV8v/APBRAs3i74YZPH/CQr/I1pSftmfC2SNfM07xH1GNulygfjXkn7Rnxj0H4x+PPh7Z+E9M1gnT9bWWd5rB4wowe5oA+7wTuxTqReuaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAChvu0UN92gDC+H/APyJ9n/un/0Nq3D0rD+H/wDyJ9n/ALp/9Dattvu0AROJTJx0pGVGiZQu4H7wbmp16UuB6UAYn/CPaA1wytoOmsD3NnGc9/T1qT/hGPDn/QvaV/4BR/4VrYA7D8qWgDI/4Rjw5/0L2lf+AUf+FH/CMeHP+he0r/wCj/wrXooAyP8AhGPDn/QvaV/4BR/4Uf8ACMeHP+he0r/wCj/wrXooAyP+EY8Of9C9pX/gFH/hR/wjHhz/AKF7Sv8AwCj/AMK16KAMVvDHh0nB8PaX/wCAUf8AhSS+HfDq8Hw7pZ/7co/8K26TAPUUAYF14Z8Nyx+TL4e00bweVs4/TPpXzP8A8E/tF0m48ffFCG70qwnWDXSsQltkbYMDgZHFfWUn+q/A/wAq+V/+Cf5dPiN8WSBlf+Eh5x1+6KAPpYeGfDe3/kXtJ/8AAKP/AApD4Z8OY/5F/Sf/AACj/wDia0RggMucY5FCuPJ3Pzg9qAM9fDHhzH/Iv6T/AOAUf+FL/wAIx4c/6F7Sv/AKP/CtWPG0ECnUAZH/AAjHhz/oXtK/8Ao/8KP+EY8Of9C9pX/gFH/hWvRQBkf8Iz4c/wChe0r/AMAo/wDCo5PCvhpxl/D+lgDoBZR/4Vt0YB7UAYQ8NeHE4Hh3Syv/AF5R/wCFPtvDfh2KZZ4tC09HByjC0QFT7HHFbWB6UYHTFACAY6CloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAob7tFDfdoAwvh/wD8ifZ/7p/9Dattvu1ifD//AJE+z/3T/wChtW233aAFX7tLSL92loAKKKKACiiigAooooAKKKKACk9aWk9aAI2+5+Br5W/4J9Z/4Wd8VQD1185/Ja+qGOEzjOAeK+Hv2afir4a+GXiz4s3+tTK0q64zRQBgryDC8gd+aAPs7xBrNjodq1xfXkMMa84dgCas2MqXEMdzaur28yhuDnqMivyt/aC/ak8VeP8Axn9k02+ks9GMozFIOcbvWv0F+DPxM8AQ/DHRIp/F+lRXC2MYmEtyoO7b35oA9cX7opa47/hanw6GAfGmi/hdr/jS/wDC1fhz/wBDpo3/AIFrQB2FFcf/AMLV+HP/AEOmjf8AgWtH/C1fhz/0Omjf+Ba0AdhRXH/8LV+HP/Q6aN/4FrR/wtX4c/8AQ6aN/wCBa0AdhRXH/wDC1fhz/wBDpo3/AIFrR/wtX4c/9Dpo3/gWtAHYUVx//C1fhz/0Omjf+Ba0f8LV+HP/AEOmjf8AgWtAHYUVx/8AwtX4c/8AQ6aN/wCBa0f8LV+HP/Q6aN/4FrQB2FFcf/wtX4c/9Dpo3/gWtH/C1fhz/wBDpo3/AIFrQB2FFcf/AMLV+HP/AEOmjf8AgWtH/C1fhz/0Omjf+Ba0AdhRXH/8LV+HP/Q6aN/4FrR/wtX4c/8AQ6aN/wCBa0AdhRXH/wDC1fhz/wBDpo3/AIFrR/wtX4c/9Dpo3/gWtAHYUVx//C1fhz/0Omjf+Ba0f8LV+HP/AEOmjf8AgWtAHYUVx/8AwtX4c/8AQ6aN/wCBa0f8LV+HP/Q6aN/4FrQB2FFcf/wtX4c/9Dpo3/gWtH/C1fhz/wBDpo3/AIFrQB2FFcf/AMLV+HP/AEOmjf8AgWtH/C1fhz/0Omjf+Ba0AdhRXH/8LV+HP/Q6aN/4FrTZPit8OVXI8Z6O3sLpf8aAOyorK8O+IdF1+0a50bU7e+jQ/M8EgYA+nFaikEZFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUN92ihvu0AYXw//wCRPs/90/8AobVtt92sT4f/APIn2f8Aun/0Nq22+7QAq/dpaRfu0tABRRRQAUUUUAFFFFABRRRQAUnrS0nrQBFJ/q+uODz+FfnL4I+AqfGLxV8VJra5S11Cy1xlt5nGQo2g/r/Wv0ak/wBV/wABP8q+W/8AgnyufiP8Wgo5PiAj/wAdFAH58/Eb4S+JvAnjJdK1uwmkiWUI8wQhX+bkj2xX6J/C/wDZO+BusfDnRtTvvCm66urOOWRzLyxIr1v4r/DHwz45iVNc0+KZ0HDOemDn+ldh4d0230jQbXS7JFjhs4lijA5G0CgDxX/hjz4C8f8AFI/+RqP+GPPgJ/0KP/kavd1Ddz+VLg+tAHg//DHnwE/6FH/yNR/wx58BP+hR/wDI1e8YPrRg+tAHg/8Awx58BP8AoUf/ACNR/wAMefAT/oUf/I1e8YPrRg+tAHg//DHnwE/6FH/yNR/wx58BP+hR/wDI1e8YPrRg+tAHg/8Awx58BP8AoUf/ACNR/wAMefAT/oUf/I1e8YPrRg+tAHg//DHnwE/6FH/yNR/wx58BP+hR/wDI1e8YPrRg+tAHg/8Awx58BP8AoUf/ACNR/wAMefAT/oUf/I1e8YPrRg+tAHg//DHnwE/6FH/yNR/wx58BP+hR/wDI1e8YPrRg+tAHg/8Awx58BP8AoUf/ACNR/wAMefAT/oUf/I1e8YPrRg+tAHg//DHnwE/6FH/yNR/wx58BP+hR/wDI1e8YPrRg+tAHg/8Awx58BP8AoUf/ACNR/wAMefAT/oUf/I1e8Yb1ow/qKAPB/wDhjz4Cf9Cj/wCRqP8Ahjz4Cf8AQo/+Rq94w/qKMN60AeD/APDHnwE/6FH/AMjUf8MefAT/AKFH/wAjV7xg+tGD60AeD/8ADHnwE/6FH/yNR/wx58BP+hR/8jV7xg+tG1j0NAHg4/Y8+An/AEKP/kao5P2QPgWozB4T2uCCred05r3xsjqfyplxu8k7DjkfXrQB8t/8E340sI/HenW/FppeuNbwpnO1QK+p7dty7h0bkV8sf8E6E83UPiYpPP8AwkUmfevqiBQsKjHQUAPooooAKKKKACiiigAooooAKKKKACiiigAob7tFDfdoAwvh/wD8ifZ/7p/9Dattvu1ifD//AJE+z/3T/wChtW233aAFX7tLSL92loAKKKKACiiigAooooAKKKKACk9aWk9aAIpP9X/wE/yr5d/4J6f8lI+LH/Ywn/0EV9RP/q/wP8q+X/8Agnn/AMlI+LH/AGMJ/wDQRQB9SbQQVI4PUUqqoXGBj6UtFABgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEbG3mojIow3rRqFxDaWMtzcyLHDCpZ2Y8ADqTXleoftEfBm0vHtLnxxpkJQkEmQkg+2BQB6kzfNljj0FOiZmYjHFeT2/7RnwVbh/iFpcgXvuOf5U5f2k/gkr/AC+P9NP/AANv8KAPWgD60uK8n/4aV+Cv/Q+6Z/30f8KP+Glfgr/0Pumf99H/AAoA9YxRivJ/+Glfgr/0Pumf99H/AAo/4aV+Cv8A0Pumf99H/CgD1WQY5qK9kKQ70XLDGB+NeXSftJ/BNuP+FgaYOR/EfX6VCv7SPwYljwvjvTj8o+YOfQ+1AHnf/BPSJYNU+I8ytuMniJ8qv8PFfUEeWQEZFfEH7C/xk+GnhXWPHza54usrSPUNcaa2ZywEiHOG6fSvooftJ/BPj/i4Gl4/32/woA9XAPrS4968n/4aV+Cnbx9pn/fR/wAKP+Glfgr/AND7pn/fR/woA9Yx70Y968n/AOGlfgr/AND7pn/fR/wo/wCGlfgr/wBD7pn/AH0f8KAPWMe9H415P/w0r8Ff+h90z/vo/wCFH/DSvwV/6H3TP++j/hQB6vmhsleDXlH/AA0r8EgM/wDCfaZ9Nx/wrpfh38TPCPju5uIvDGswX6wpuJiYcf1oA67cwQZNSR528mo0AVV3DPHekj3i6IOdu2gCeiiigAob7tFDfdoAwvh//wAifZ/7p/8AQ2rbb7tYnw//AORPs/8AdP8A6G1bbfdoAVfu0tIv3aWgAooooAKKKKACiiigAooooAKT1paT1oAif/V/gf5V8v8A/BPP/kpHxY/7GE/+givqB/8AV/gf5V8v/wDBPP8A5KR8WP8AsYT/AOgigD6mooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKD0puaAMH4rsy/DLxAykhhpk+COo+Q18x/sJ/Cn4f+LfgBb+IPEvhSx1a+l1GeN5rhW3YBXqc8/wD16+mvix/yTHxBn/oF3H/os147/wAE0iD+zHanHP8AaNxz+K1EnygdjH+z58G47hpk8AaPhhyuxv8A4qiP4AfBgfvG+HmjrntsP/xVenqcrXiv7bXivxz4V+F8114J0Nr9njcXMqNhrZR/GPpSUtCoQcpG6vwE+CmPl8AaK2ehCk/+zU8fs/fBnH/JPtH5/wCmbf8AxVeb/wDBPXxTrXiv4U2d5r2rzXt20QZ3lYkk496+h1m/eFd/146Vry3jcyTl7TlPPm/Z/wDgyvX4e6Pz/sN/8VTj+z78GgM/8K90f/vhv/iq9C88lS7RgoP4iKcriTaUbIY9KSL3lY83m/Z/+DCKXX4d6QW7fKf/AIqmj4AfBt41Zfh9pCoQMqI2/wDisV5f/wAFD/H3xG8J/DmT/hE9KkS2kg3XOpRyBWtj2xmu4/Yv1bUdX+Etpe6hqU2pXEsSMzStlh171NON6Tl2Y5aG3/wz98GN2P8AhXmkEAcDY3/xVO/4Z++DB4/4V3o//fB/+Kr0VWbzFyuM1FqF5Da2zT3MnlxqcbqJSskyI63ZwH/DPvwYH/NPdH/74P8A8VTf+FAfBgKCfh7o/wD3wf8A4qu30XV9P1W3ZrC684K2xvY0axqFrpGlTXmoXCRxQgljIcAD1zVPRXKiuY4b/hQfwXMhUfD7R8/7h/8AiqUfAH4LtNj/AIV/o+fTy2/+Krzzwr+07o3if46N4K8L28N/arEWkvATlWGQQB9RX0Lp5V1V8fMRyT1pxM60+Sqonn//AAz98Gd3/JPdH/74b/4ql/4Z9+DP/RPdI/79t/8AFV6NDyxzU3emaS6HmUn7PnwZ2k/8K80fp/zzb/GvGv2Y9KsPD/7b/wARvDuhwR2OmWdtGYLOAkJHlnzgH6V9Yy/dP0P8q+WfgMMf8FCPicAMf6PF/wChSVIH1HCS3LD6VIvWhPvEUooAWiiigAob7tFDfdoAwvh//wAifZ/7p/8AQ2rbb7tYnw//AORPs/8AdP8A6G1bbfdoAVfu0tIv3aWgAooooAKKKKACiiigAooooAKT1paT1oAif/V/gf5V8v8A/BPP/kpHxY/7GE/+givqB/8AV/gf5V8v/wDBPP8A5KR8WP8AsYT/AOgigD6mooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARqRlJ6GlalqVuBznxYGPhj4g/7Bk/8A6LNeO/8ABNP/AJNdtD/1E7n/ANlr2P4tf8kx8Qf9guf/ANFmvHf+Caf/ACa/af8AYRuf5rWdUD323+7XDftKpv8Agt4kUAZOnvXc2v3fxrh/2ktw+DPiJwflXT5N30qPsGuH+NHgX7CWoXGlfs/m8sYM3VnZb40yB5p449a3PCnxa/aC1vWNlv8AC6xNk2czrI/T3+Wvk34V698RRoOg2i2htfC0UgM97buQ0ke3ncB2Bwea/RD4ez2w+EsV94Okj1Jmgzbu5Hz8dx2ro/5do53/ALxI8i1z4k/tRW+ozW9j8H7Ga2jOEkM7/MP++apf8LL/AGrHXj4PWSgH7onYD9QBVjxB46/a2t9Umh034ZaNNbLJiF3uGBK/ghH61U/4WF+2EhVT8LdC+Y8k3Tcf+O0qfUf2ib49a38RfEH7JPiqXx74Rt9JvI7f91Esu7dxzzVj9nvxFdeF/wBmdda0a2iub23tYyLQvgMfSq/x61n4jan+yZ4pl+ImiW2jXItx5SW8xYHjvXzp8Jdd8dW+u6Db+MLf+y/C3l4eaByVkHOCw6dPWopS/wBnl6nRE+nfh38Z/i/PejVfGvgW00nw6qgvdLKdwz9QB6d6l8fftW/BKfSrjTV8VETK+1kMIyp/rXs3hO00m/8ABtqkQiutPkiBUH5lcHoSB7VzXxI+G/w9Tw7NM3hPSVkfq4tRk8/Srqfw4mXVnkfwj/ac+CPh/SbiC68VjfPNvHyZPX68V7h8MfiH4N+KGhyXvhy9XUbXfsYMFH14znpXF/Ab4ceALzw/dST+FNLlZZyAz24JAz7ivU/CvhvRPDtm9toumW9nEz7tkUW1c+uK1n8SM6fw/M+VtS8O6P4Y/bwh/sDRra0jk0os4jj2jcQMkjpnk819a2+4QI4HJAJx9K+WviBg/t8QQ7yv/EpHzjv8or6mswRCgVgcKPxpEYv+LEsWzl2ztwDU61Dbrh9wbg9qmWg2nuhJun4H+VfLPwH/AOUhPxO/69ov/QpK+ppun4H+VfLPwH/5SE/E7/r2i/8AQpKkD6nX7xpwpq/eNOFABRRRQAUN92ihvu0AYXw//wCRPs/90/8AobVtt92sT4f/APIn2f8Aun/0Nq22+7QAq/dpaRfu0tABRRRQAUUUUAFFFFABRRRQAUnrS0nrQBE/+r/A/wAq+X/+Cef/ACUj4sf9jCf/AEEV9QP/AKv8D/Kvl/8A4J5/8lI+LH/Ywn/0EUAfU1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSNSnpTaAOe+LX/JL/ABB/2C5//RZrxz/gmpn/AIZhtf8AsI3P81r2T4rZPwz18DHOmz9R/sGvEP8Agm7qumWn7M9pDdajawyrqFzuSWdFI+ZexNY1YgfRVuMKOvWvKf2uLX4jan8PJNI+H2l2t9NqCPDd+e+3ahHY8mvSU13Q9v8AyGNP/C7T/GobjXNCzn+2NPP1uk/xqox90um+WR8e/AL4S/GLSfh7q3hPxN4Z0xLS4tDDayJIS6N1ODt44Fbn7PHhT9oj4d+KItEbRrK58NlxG0s1wzMiYJ4yPXFfUUmt6Gq4Gsac2ecfak/xpkesaLE3mJrNgQ3Xddp+nNbS1jYyvfEMv267FMzuzNkAqpOAcVLIWaSOSP7p6n0qlceIdFVVVdX0457fak/xpra9oQ2qdX08Z6D7UmP51MY6FfbPF/23PD/xU8a+C5vCvgnRrK7stQhIunmkKsD6fiK8p8C/CL4yat8FNQ8DeLvD2n25CLDbXMUhMgUDqDtzmvr4a9pP3ptX07g5XF0n+NOm1/QliVv7X0/HfF0n+NYy92k0VI+cP2XdI/aF8HeJLfw34i0ayHhiEGMXTXDPMEUYBGR9O9fSuqWdvqmntayAhS1VX1/RtyuusaeYv4gblM8/jU66/oGcLrOn/T7Sn+NbS+yZR3ZS8F6FDoFjPbwkFZJd+MVo6w1xHps0liivcLGfKDEgF8cZI96hfX9CV8f2xp+T/wBPSf40i65ooznWdPx7Xaf41T2RUPg+Z8da94R/ab1L46Dx0/hDRsx5t1Pnn5ogcA42+lfW/gWfWT4dik8RQxw3e0CRYckKfyFWDr+iLJuGr2GD/wBPSf40LrmlC4+bV9NMJ6H7Umfx5oMsTG9aLNLT3DsdmSo6E1cH3qyYda0NGONY04DsBdJ/jUv9vaJ/0GdP/wDAtP8AGg2l0NCbp+B/lXyz8B/+UhPxO/69ov8A0KSvpVte0Tac61p/Q/8AL2n+NfM37P8APFcf8FAfiXNbzRyxPariRGDBsMehH1NSB9Vr9404VGv3jz3/AKU5aAHUUUUAFDfdoob7tAGF8P8A/kT7P/dP/obVtt92sT4f/wDIn2f+6f8A0Nq22+7QAq/dpaRfu0tABRRRQAUUUUAFFFFABRRRQAUnrS0nrQBE/wDq/wAD/Kvl/wD4J5/8lI+LH/Ywn/0EV9QP/q/wP8q+X/8Agnn/AMlI+LH/AGMJ/wDQRQB9TUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFPXtOg1bRbvTLnPk3cLRPtODhhivm5f2I/htH5n2XxB4mtY5JGcxwalJGisxycKGwK+nG+7ULZPUigD5oX9ibwBnP/CWeLse2rzf/ABVKf2Jvh8evivxcf+4vN/8AFV9MoAOSRTsr2xQB8yf8MS/D3/oavF3/AIN5v/iqP+GJfh6evivxf/4N5v8A4qvpvI9KNw9KAPmP/hiT4eHr4q8Xf+Deb/4qlP7Evw8PXxX4v/8ABvN/8VX03uHpRuHpQB8yN+xN8Pu3ivxh/wCDeb/4quI+On7NXwt+G/gG813UfGHiqMwoWEZ1iXcwyMEDd64r7QZvbPtX5/8A7dWh/FT4n+MJNN0xXFhas8W1UYBlHr69KAPCf2d38G+Kviy2heIfFviSOzmuG+yuNRlUCPsCd3WvtbTf2Mfh3qFot1F4v8WSRTLujdNXlwR/31X56fD74TeONY1y8tdCjlW60ufyZJIwcowPPT6V+l/7EOqeMh8PX0zxij/aLJ1ihJjKkqBg0AYDfsTfD4MM+KvFp9zq83/xVPb9if4fcD/hKvF3/g3m/wDiq+l85jDKvfvTo8kc0AfMv/DEvw9xg+K/F2PT+15v/iqP+GJfh70/4Svxf/4N5v8A4qvpsEelG4elAHzJ/wAMTfD3/oa/F/8A4N5v/iqP+GJvh7/0Nfi//wAG83/xVfTe4elG4elAHzIf2Jfh4wwfFXi8+39rzf8AxVdv8Bf2ffB/wi8QX2s6Fe6ldXV/HsmkvbhpWb6liSa9kyp7GoZNvmZIJxQA1AWt8htsjdO1S2u/yQJPvd6GCyYO7GKZDKWvGjKnCrwfWgCxRRRQAUN92ihvu0AYXw//AORPs/8AdP8A6G1bbfdrE+H/APyJ9n/un/0Nq22+7QAq/dpaRfu0tABRRRQAUUUUAFFFFABRRRQAUnrS0nrQBE/+r/A/yr5f/wCCef8AyUj4sf8AYwn/ANBFfUD/AOr/AAP8q+X/APgnn/yUj4sf9jCf/QRQB9TUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACMMrim+UtPooAZ5a0qooNOooAMD0owPSiigAwPSjA9KKKAGsoPaqVxYwGYsLa3bceS0YJ61fqBG3M/sR/OgD5Z/YYtLd/Gnj2RoImYa4/3kBP4V9SQWdvGQ6Qxof9lAK+Yv2MMW3xE8YxdPN1h2/SvqUc0AIQR92kYN/wDqp9FADVXHUU7A9KKKADA9KMD0oooAOlRzAn7vWpKKAIVhyMsTUiqFHFOooAKKKKAChvu0UN92gDC+H/8AyJ9n/un/ANDattvu1ifD/wD5E+z/AN0/+htW233aAFX7tLSL92loAKKKKACiiigAooooAKKKKACk9aWk9aAIn/1f4H+VfL//AATz/wCSkfFj/sYT/wCgivqB/wDV/gf5V8v/APBPP/kpHxY/7GE/+gigD6mooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKr3FwI2bf8AKiqWZz0UAZJrjL34wfDW0mkiuPG2kxPGcMrzY5HagDu6K8+X42fCxoRL/wAJ1o6jdj/X9ad/wuz4VH/me9H/AO/9AHf0VwH/AAuv4V/9D3o//f4//E0f8Lr+Ff8A0Pej/wDf4/8AxNAHf0VwH/C6/hX/AND3o/8A3+P/AMTR/wALr+Ff/Q96P/3+P/xNAHf0VwH/AAuv4V/9D3o//f4//E0f8Lr+Ff8A0Pej/wDf4/8AxNAHfd6hjjKO2f4iP51wzfGv4V/9D3o//f7/AOtTW+NHwtkVgvjrSOh6T0AeM/sgnf8AFfxOP+oq9fU9fF/7L/xI8C6V8WPEc114k0+3gl1GRkkeXAZeea+kv+F1/Crt470f/v8A0Ad/RXAf8Lr+Ff8A0Pej/wDf4/8AxNH/AAuv4V/9D3o//f4//E0Ad/RXAf8AC6/hX/0Pej/9/j/8TR/wuv4V/wDQ96P/AN/j/wDE0Ad/RXAf8Lr+Ff8A0Pej/wDf4/8AxNH/AAuv4V/9D3o//f4//E0Ad/RXAf8AC6/hWf8Ame9H/wC//wD9amSfGr4WBXYePNHO0dBPQB6FRXndt8bvhZOBGPHWkKzDg+eK3PB/j7wd4p1N9P8AD3iWx1K6jhM7wQS7nVAwUsfbLKKAOoopF6UtABQ33aKG+7QBhfD/AP5E+z/3T/6G1bbfdrE+H/8AyJ9n/un/ANDattvu0AKv3aWkX7tLQAUUUUAFFFFABRRRQAUUUUAFJ60tJ60ARP8A6v8AA/yr5f8A+Cef/JSPix/2MJ/9BFfUD/6v8D/Kvl//AIJ5/wDJSPix/wBjCf8A0EUAfU1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGP4+LDwXq5Vtv+gTc46fu2r4//Yc+Cnw4+Jvwt1HXfGmgwareLrV1EJJeu0SNjPevr/x+QPBerkjI/s+fP/ftq8D/AOCZID/A3UWX7p127BB/66NQB0n/AAyt8B2j2p4FsWXP3QCacP2TPgQRkeBrPHutex7CGCW6+Xg89qtZxwetAHiX/DJfwI/6Eay/75o/4ZL+BH/QjWX/AHzXtuaM0AeJf8Ml/Aj/AKEay/75o/4ZL+BH/QjWX/fNe25ozQB4l/wyX8CP+hGsv++aD+yX8Cf+hGsv++a9tzRQB4kv7JnwJDZPgay/75pkn7KXwOibcngeyOOwFe4N/SoWXdgAfMOpoA8C8N/sj/ByC8nmn8MWVxHJISse0jaPStZv2TvgM8hJ8CWe7PYV7NDGFU4AFSLtVguBk98UAeK/8Ml/Aj/oRrP/AL5o/wCGS/gR/wBCNZf9817X5gzinK4JxQB4l/wyX8CP+hGsv++aP+GS/gR/0I1l/wB817Z5i+ZszzSNIOmcH070AeKf8Ml/Aj/oRrL/AL5pf+GS/gR38DWX/fNe1LICeGU+vPNOdgoyaAPE/wDhkz4D/wDQi2f/AHzUbfso/AlZMDwHZ89fl/8ArV7grbqhffuLAcHpQB4w/wCyh8B0ZSPAFmeQDgV4H+xPoel+Gf8Agpf8RNA0S3S20+y8M3SQQopAVReWWP519yLkbF/M18Wfsq8f8FU/iYv93wxdf+ltlQB9sr92lpF+7S0AFDfdoob7tAGF8P8A/kT7P/dP/obVtt92sT4f/wDIn2f+6f8A0Nq22+7QAq/dpaRfu0tABRRRQAUUUUAFFFFABRRRQAUnrS0nrQBE/wDq/wAD/Kvl/wD4J5/8lI+LH/Ywn/0EV9QP/q/wP8q+X/8Agnn/AMlI+LH/AGMJ/wDQRQB9TUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZHjr/kTNY/7B8//otq8D/4Jhf8kG1D/sP3n/oxq988df8AIl6x/wBg+f8A9FtXgf8AwTC/5IPqH/YfvP8A0Y1AH0j1607A9KavWnUAFFFFABRRRQAUUUUANk6VFuKqCBn3qZhkYNQI5aRo8cL3oAMFeck57UjMeoU57Gl25ORP07DFHLqQxKkdCKACPJ6qBnvinHEa5IzUcssoh3RRlznA2sOfxry744/FPWPDkn9leC/D48R64fmFgJMYUdTkdcc/lQB6iR5kwYIVb1Brjfjhpep6l4Enj0vxDJo12iuy3CYBcgZxyDjGK8d+H/7Tmt/8LRTwd8TfCSeFbqSFXjyWO4n0J4rtv2uvHmmeDfAFtqV5dCG1nuYw75/gYqC2cH19KALn7Ip8Q/8ACsVHiTWZtXvBcyr9sm6uAeB0FeqOWEYIXd7HNfK3hfwbL8V5LfWvh78V77TNFjKsYrHb5bsv3hyo6kjPrX0t4N0m40jw9Dp9zqMl5Kgw08gG5uOvHFAGrG67fmXb+NPXgcGq0cRVfLY7mPcjn86nhBWIKeoNAC/8tjXxT+yp/wApWPid/wBizdf+ltlX2t/y2r4p/ZT/AOUrHxO/7Fm6/wDS2yoA+2hRRRQAUN92ihvu0AYXw/8A+RPs/wDdP/obVtt92sT4f/8AIn2f+6f/AENq22+7QAq/dpaRfu0tABRRRQAUUUUAFFFFABRRRQAUnrS0nrQBE/8Aq/wP8q+X/wDgnn/yUj4sf9jCf/QRX1A/+r/A/wAq+X/+Cef/ACUj4sf9jCf/AEEUAfU1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGR46/wCRL1j/ALB8/wD6LavA/wDgmF/yQbUP+w/ef+jGr3zx1/yJesf9g+f/ANFtXgf/AATC/wCSD6h/2H7z/wBGNQB9IkkdqgkldTjualbJOAahG/zcEKfc1I4nP/FTxZH4R8K3mrMN8kMTNFG3RiBnGa+cvCv7Q3x31qztdWtPhXbPpFwQPtXnk/KCfmwPpX0T8SvDkXi3w/PpVwWRWjbAVgW5H6dRXkHwf1278E+In+G3iCyhj0qzULZzuQWmJOCMduhoKl8J6Fq3jbxrP8OIdb8NeGV1DUnQlrTDKAcdM15L/wALb/apLZHwRgxjg+e3PP0r234i3PiDQ/C5j8E6PDeXip8kTHAyOvbjrXhf/Cxf2uIsxxfCPS2VidrG6O4j1+7VER2J1+Lv7VI+98D7c/S4YfzFe2/DvxN4quvCC6l420JdGuRF5kkKvu2n04rwuL4jftdhlB+Eulqqn5j9pJP/AKDXtnw7n8W6/wCGNnjvSItLubhMyRq+4ZI6cigS3PENW/aK+MOoeKNas/A/w3tdZ0/SrnynuTIykCvZvgP4113xp4enude0ldLvI2AkiUk445x615c0N78F/iRJFb2yXOh+I7gz300xH7ggFQAPcj9a988MyaTLYJd6WqLBeAMpRcFs0/ssUpWqpHgfxc8b+M/hn8QLfUr23kfwsQftd3K5xCSeOn1FTfFr9o7TpvD9rpfw+kXWNe1CESQ2ytj5D/F/Pg1p/tafEOw0yAeDLXSbTWdd1Pm2sJxw3GAcjj8/SvBPBum+IPg744tfFnjDw3aro1yBJc3LLuazd+BEg/ujP61jhX7+p11Y/u0z6m/Zl0vxfp/geZvF9xcSX17IJlWZxmIMM4U+xrr9H8K6bYahJeOFmvGb5bgjMiqT90+1L8P/ABNpXinQbfUtIm8y3kQbT/snnp61L428RWHhvw+99dTbApIiz3bsMe54retI4qe586ftoeFrLXPiLpkmmW0cutrLAxK/M5jDx56dutdx48+HF/401ey0nW7L7Ro0VhGT5gJVZAq8AHgHNWvhD4avPEvil/HXiOJoZQjQwQn7jJnhiD7AGvXvKiCgI+Ix/En5dqjojRnzh4V0n4g/DD4pHRvCnguOfw06L/pAkxtLHDHFfR9jLIbdGnTbKwG8AdOKkZQFAVNw9TQ4EbeYcnI7mmA55UVsFsZ74pyHPIbP4UxcSRgkZ+tPjIMeQMCgA/5bV8U/sp/8pWPid/2LN1/6W2Vfa3/Lavin9lP/AJSsfE7/ALFm6/8AS2yoA+2qKKKAChvu0UUAYPgD/kT7P/dP/obVuVifD3/kTrL/AHG/9DatsfdoAcKKKKACiiigAooooAKKKKACiiigApPWlpPWgCJ/9X+B/lXy/wD8E8/+SkfFj/sYT/6CK+ofavl3/gnl/wAlG+K3/Yf/APZRQB9T0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY/jv/kS9Y/7B8//AKLavAv+CYJx8B9QP/UfvP8A0Y1e+ePMjwbq/wD2D5//AEW1eAf8ExHB+BeoLj/mPXn/AKMaqA+lM5yahkDYUq2Np5P/AOulxIqgRnvzuqTA/wAako+YvjIn7Rem/GG91f4faDZappLqoiS4uWVQQR/CIyOgrL+E/wAO/i34y+Kc3iz4rafDokcGJYI7CYsrsD0bOD+nevrPA29BSMqheFHHTigiWsWirtMm1kG5XGSasKQMAfjSqQoxij5Q3Aqh0titChW5eRAW3dAeleK/tXWnxek1rRb/AOGGnQXgt8tdxyzGNWx64B/ka9047DFGATyKykEZe8fHN14X/aI+JnjLS7Lx/wCF7DSNHiyJZ7W6LP3OfuDP59zX1b4Z0iLRvDNpo0TyFbWDyFYjLEdM1sMMHgUigbs4GcYqqexFTWSZ53pvwm0Cw8WN4jvLia+uQ5MRuFDeWPQE8gc9q6Txd4X0vxR4ak0vUrKGSGQYCsgbjtwa6E7Nu0qPpilyMYxxUx92VzWVTmjY4X4R+AbX4eeHbyy068luVlcyIknAU9gM9BXgPxztf2mNX8ZeZovg7S7jTI33QpJdkBvQkBCB+dfXBIPGKQ4ApyfMyYxsfJVvrf7XF3Ha6Zc+ANDsbPKpLPBd/OqcZIG0Z4FfS/gHTrrTPDMEE87T3RQNJ5jhiG7jNdAv3aXK9AKobIIS7KTKuG9j0pFRET58tk8Z5qxlc5wKCVPUCgRBMZEwIVBX6VKikIOn0FOUjoBTPmDdVxQAL/rRXxV+yn/ylY+J3/Ys3X/pbZV9pyOqdQ2cHBFfF37KYQ/8FT/iU46/8I1df+lllQB9sUUgpaACiig9KAML4d/8ibY/7rf+htW3WH8P+PB1nj+6f/Q2rcoAdRRRQAUUUUAFFFFABRRRQAUUUUAFJ60tJ60AR/xfjXy5/wAE8/8AkonxW/7D39BX1H/F+NfLn/BPP/konxW/7D39BQB9TbhRuFGPajA9KAHUUDpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFDdKAMTx1uXwnrHIx/Z8/8A6LavBP8AgmKSfgTqO8Bf+J9eYwP+mjV9BeKrA6jod9aI2HurV4UycDcykD+dfI/wx+GH7U3w30i70bwbN4d/s2e9kuk890LDc5b+971XQD7CGd2xsn3qfK8cV8wSW37aP31n8Kb25x+74/WmeT+2t/z38Kf+Q/8AGpA+o8jsKaT81fL6wftrY/1/hT/yH/jSGD9tXd/r/Cf/AJD/AMaAPqHK+lGR6V8v/Z/21f8Ant4T/wDIf+NH2f8AbV/57eE//If+NBR9QZHpRuFfL/2f9tX/AJ7eE/8AyH/jR9n/AG1f+e3hP/yH/jQS9z6gyD2or5eMH7aoGRN4T/8AIf8AjTJB+2iFGZ/CgODk5TH86kD6k464oyPSvz4+I37SX7SHg7xxbeFNS1Dww95cDKvEY2QAcYJPQ16voOoftlavptvf2dx4RaG6jEiENGeD6/NVAfWGR6UN0r5bZf20l5EvhQ464Mf+NSLB+2qVz5/hPnt+7/xoA+oV4Xml3L6Gvl3yP21h0n8Kf+Q/8aTyf21/+e/hT/yH/jQB9R5X0oyvpXy55P7a/wDz38Kf+Q/8aPJ/bX/57+FP/If+NAH1HuXsKiMe+bcTtx2FfMJh/bX/AOe3hP8A8h/40pt/21CQTceFPw8v/GgD6dm3+YPu7cHJP0r4t/ZVGP8Agqp8TOP+ZZucH/t8sq7WS3/bSfcHm8KGM4JA8vOBzxz7VX/ZF+CfxW8I/tReIfif8RZdMf8AtrRZ7N/sjrnzXnt5B0PTbERQB9WUUi0tABQ33aKG+7QBhfD/AP5E+z/3T/6G1bbfdrE+H/8AyJ9n/un/ANDattvu0AKvSlpF+7S0AFFFFABRRRQAUUUUAFFFFABSetLSetAEf8X418u/8E8v+Si/Fb/sPf0FfUX8X418u/8ABPH/AJKL8Vv+w9/QUAfU9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACYHoKXA64oooAPeiiigAooooAKKKKACiiigBH+70z7V4t+2B8Wf+FaeAbp4IJpNRliLW4jBPfpxXtLfdNcb448A+G/G91FL4gtjcNCcIAcL+I70AfjD441XxF4j8ZXGt3iXn2q4n8yJShBTJzgD0zX3f/wTq+PGp31nB4M8T2V5523bA5hKjavqT9Km+NHwq8G2f7Xng7w7aWOyzvLV2mQ92yuK+k/Cnwf8FaBe219Y6cVuIUCq64HYcnFAHe2oHlB4ixUgnn696lVgyh+c9qZZ25hhZFPyk/KM54p1qjRR/OcjPQ0ATjkZpaQdsUtABRRRQAUUUUAFJgeg/KlooAKKKKAChvu0UN92gDC+H/8AyJ9n/un/ANDattvu1ifD/wD5E+z/AN0/+htW233aAFX7tLSL92loAKKKKACiiigAooooAKKKKAA1WV3ViudwZjtOen1qeQkDIqHaFVnbuOaAMq58TaDbyyQXGsWkcsZIdTKAVr5g/YP8R6LpnxJ+J0d7qEFp9p1wtCZZMeYMDkVyH/BQvwj4z8OXZ8VeEbuQQOpe7EaH5WyMZx7GviHTfG/jJNaaaxupEvJn3SKM7mbpk0Aftnp+vaXdsyWuqW9y47RyAmr0cjEkA5r5c/4J9+DvF9p4Wk8Q+M7uSa4uNssCNHg7SOn05r6jhCFSyNyTkgHp7UATj1paRenNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUADfdqGRTtVsZIYfzqZulRg/NsNAHy/wDtBx+Z+254DPf7E/8ANa+m7GPFrGCP4B/IV83/ABoRZv26vAMfB/0J+D9Vr6VhGFRfRf8ACgByrjtTsD0oooAKKKKACiiigAooooAKKKKACiiigAob7tFDfdoAwvh//wAifZ/7p/8AQ2rbb7tYnw//AORPs/8AdP8A6G1bbfdoAVfu0tIv3aWgAooooAKKKZI4TrQA8nFN3Cq8cksrEMhjHY5qVcFcb/0oAfuFLketVFOyZmeXcjfdXPT606eVIFM7uFiAyzMwwKALLY21A7FY2L8j+73Irz7x18afA/h/dbrrtnPfH7lsH+Zj6ZryG++KPxW8f662i6L4S1XQrV22rqR2sjA9xgkkY9qAPaPitrPgAeH7nSfFeo2kVveL86zOOfTj8q+Avh98MfB+nftNya3ql7Z/8Iwb2Rotx+TYORntjOK+tPDP7Pd7qV99r+I2vL4ijDfLFLERtHv8td9dfBH4Zz6b9gfwtbG3AOMA4x6Y+uKAOg8E694Vv9Lto/DmqWtzb267EWKTovb9K6CFAjsyAAM2cDvXz3rnwD8RaHfG98AeJ/7Gs+SbWGMrwOw5ArL8O/Gf4keE9X/sXxN4L1Ke1VtrapIy+WAO/U9aAPqEetIWAbBrg/Bnxd8B+IQsNn4lspLrADQCQb1buK7RZNwDf6xW5DKR0oAs8HnNLkVBsLEEOyj+7T5sbQNxH0NAEmaKqtPIjBVQkepqyhyoNAC0UUUAFFFFABRRRQAHpTY3B4B6U5ulU7o7OEPlk/xE8CgC0zoOrUb16E9elebal8bPhPpmoTafqXj7SY7i3fZMjMdyMO3Gaik/aA+DBwR8QdI475f/AOJoA9P46Z6UZG7Gea8xX48/CG5lVIPiFpPmMcKA7DJ7dVFd/bzpfWyT2k6yRyKrpInRgRQBoUVFbsxXnPHXNS0AFFFFABRRRQAUUUUAFFFFAA3Som+9kDmpG+7ScCPPtQB80/F4Bf2+/AI6Zs5OPxSvpSMktz7/ANK+YvjXcKv/AAUK+HqetlJ/NK+n4zlFPqP6UAOooooAKKKKACiiigAooooAKKKKACiiigAob7tFDfdoAwvh/wD8ifZ/7p/9Dattvu1ifD//AJE+z/3T/wChtW4fu0AC/dpaYrjdtpWcDrQA6imGRfWhnVOSaAH1HN5f8Z+mab5jlznaF9c81xfxH+KfgbwfGP8AhINZtbeQn5EkfBY+nFAHZEyIOPmB9s1m+IPEGl6Dam61a5jtIANxdzgfnXgfiD44+N/Es76b4L8HNfWsnCXkMp4HrjrUPhf4I+OfEt2up+MfG2pm2ZsnSp0UqvtjqaAOi8d/tEaVAzQ+BdPj8TXTEhY7WQZB9DnA/WuNs9H+MvxVuDPfapqXgeDvbEBlkz2zgj9a908E/DLwZ4a2TaZ4fs47lQMzRphs+vPSuz2q3zEY9M0AeN+Bf2fvCGlhJ/ElrDq+pLyt5Ih3E+uRXrOl2Ftp+nrY2kKwxoPlAU4/M1blVHxwD+FHlIGyvyn2oAiV/wByyqwdl6j1pzEm3VhGA393sKcIFGduAT1x3prIF6k0ANmw6qm4Kx7CqniDSdP1bT2sdRhSaNhhlfoauSIrSKwTJHcinKU3ZBy1AHivjT9nXw3OGl8HGLw5dudzTW8eSzdc5/xrhp2+NPwqvAyvqPjS3BxxgBQPavqdkG3KgDPpTGiBhZJAGVuoJoA8Y8B/tA+HL5Ei8XSQ+HL8kAWlxncT+Fes6Rq9jqtmt5YSCeBj8sisvI9hXH+OPhF4D8QtJdXHh+zW9kUhboKxZT656V4/rfwg+JXgS+bUfDHjLVNStR866aoVU+mACT/9agD6d+dmw2VWpYyCMr0r5z8M/H7xJpE4s/HnhI6NbRrh7mWTr74z/SvYPh/8RfB3jCzW48OazDeR9G8vICn0JNAHXUVCsjFsMBjPBDU8OGUMPu0APopnmIe9O3AjINAC0UxXDSFR/DT6ACq8iBlZnUHHFTN9a4H4sfFzwB8PbmGx8aeIYNJlu0LRCbPzD1BHAx7+lAHwR8OozJ8RvHZPwSHj/wD4nb4ui4Bh9gOD+tdutuoQk/sfHr2fH/s9ZN3pvw7sfEmt6t4U/adm0ODWL1rmS3tlGMn/AIDz+VSNJoSoA/7X+pKQu7BSPn80oA5r9oa3jtfBsLR/s9/8IfuvoG/tfJOxvM+5944BA/lX6HfDfCeAfD8jvhTpdufxMS/418DeItK8CeJLSLTfEX7Vd3qNm0yzGCZUYFgcjIC/rX2F8E/jF8LfFMNh4N8NeLbXVL2ztEjWBCfmSNcbs49qAPX1IKg/lS0yHG3C9F460+gAooooAKKKKACiiigAooooAKbkZ24p1RYO7dQB8sfHD/lIn8Ov+vCT/wBCSvqmH/Up/uj+VfLPxwwf+Ci3w4XHWwk/9CSvqeHiNR7CgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFDfdoob7tAGF8P/wDkT7P/AHT/AOhtW4fu1hfD/jwfZ/7p/wDQ2rbYgrz/ADoAMKPmwPrUZ5Vio3EdAaxPGvizQvC+mm/1u/W3gC5LHBz9BXi/ib9oo63KbT4W6fFrdxyHViVAP4igD3qW5EMbyXKLGignJYdvbrXlPxF/aB8D6BdHS7PVIbrVMfLbtwS3Yc8frXn9v8O/iv8AFCQTeNNSvvCa53BLOcMG9q9V+G/wW8KeHLNUv7WHWLqM8Xt1FmTP+9QB5Vfa/wDGv4hzfYrXw9daPps3/MQt5GJwffBHA7Gus+H/AOzxY2Mgl8V6zN4mDHI/tBRwevA217dZ2cFtD5MEKxp2CdKmiRUXyxxj0oAzPD3hzRNDgWLS9OhtkUAARpgVr4BXn8aiWFlyQTS7nIwwxQAyYFG3A7g36UsnyqpB4702JOqls+mTXN+PPHOgeDbqxttavViOoy7IgeSSOf6UAdRhSQyH61LgdcVQ0S6t722F5ayGSGUZU9uvpV/cKAFqK4ZVHIqTPpUU2PMAKqyk85FAArMF4703ao5AAPtUOp3UNlA11cStHBECWIAxgDmvJ7j9pr4Op4o/sE+KALwNt2eWfvenI/rQB7In3RTqq6XdwX1jDd20iyRTRh0dTwQasigAYAjBUH6imSAbdoHB6jFE3zcByv0NNO4DavPvQBh+KfCXh7xDbtDqWmW1wrdRImf0rx3xx+zzmZrzwj4jutAEWXS2sQNrN6EEcZr3zZg/fPPWnOocBN/TrQB8xaX43+MvgST7HrnhSW5023GWv55GJYDv0xXpfwy+O3gTxbINPh1eCPUFP7y3GflPpzXpWpabZ6hb+ReW8cyY5V1zmvMPiV8DPDfiOMrpO3w7cEHdc6fH85z6k0AenrLvKtHFujYZDcc/TFTrhOpx7V8wSeFvjL8KpgnhQ3Xi2CPgyXtxg4Hc8E/pXS+E/wBpDSrKZdO+IyRaLqBIxEvzfN6Z/wDrUAe/KBu3ADnrT6xvC+v6Zr1gl/pl0JoJBlSWAz+ANa4Oe9ADjXH+PPAXg/xY32jxF4esNXmgUiPz03FR6DoR+BrrmPHBrm/iX4v0LwN4Su/EPiG7+y6fbLmRivvjp3ByB+NAHgX7NelfDH4nXvimO5+Fmi2R8O6m1iiiB/3qqev3jXl37S2ifCD4d/tpeExr2jabpvhx9LkNzC0LeUXJXBOSBnnH44r0L9i3V7LwZ4813RvEMn2W68aam99oiuP+PiH+9ntn0NZvx10rSfEP/BRXwTpuvafbXdq2mSl7eUB1bJiwW5wOM0AaEfjz9jA3CwJF4daW4kURIISSefQNXu3w7+HPw78P3Nvrvhfwxp1jLcQfuruCEq2xuQAcnj2zTLf4U/C4LG6+ENFZowNjCIdBz0JrsbEWcaC0tRD+7UBY0PCjoB14oAuQ1JUdvu2/Mu1hwQKkoAKKKKACiiigAooooAKKKKAA01e9Opi/eoA+WPjlx/wUW+HJH/QOm/mtfVEf9T/Ovlb46f8AKRj4df8AYNm/mtfVMff6n+ZoAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSN93mlpG4XPH40AeX6x8TPCnw8+Htnc+JbyW3jKsUMcZcn5264zXlN18Y/iX8Q7hrT4daNZ3ukynBuWnKSBT0OMCvXrnwRoHj/AOGttpWrxKUKsC4UFsbm6Zrx2T4CeJPhxqJ1H4Z3U98u45huZSsaj6UAbfgj9nvUdS1Ia94z8S6p9ozhrDeXhPrkE4r2jwv4H8LeHykml6PaW8qgAyLGoY++AK8R8NfHzxL4avvsPxL0lLHYdqtaRF8++a9m8G+PPDviyzW40q9URsNx3sI2/WgDqGj/AH3mK5I7jNTqAB0qtbyqeY2SSLsQeR9fWrCtnpQAEDOcUu1euBn6UN0psZO7rQA+ggHqKKG6UAVpnVJUGCCTjivlj9tO6vNS+Nvw60nbtgXVQJSp3ZBjfr+lfU14+3p1bhfavg/9p7x/df8AC5tRubGJZrrwvdLPGpjygPQZ/wC+qzj8Rb2PrnxJ8QvBXw8m0nQdY1Fo5bwmO2CRg5PoQvT8a6DUvE+kWmg/2xJe7bdELcsMsOOx5r5z/Zp8B3ni3TH+J+uPJd6pfRrcQWcspkhifp8uc4Bwelct4ym0zVPi4unfFDV9X0FkuMafbaaH8mcYJO/HHbvWxkz2S1+OM/jDxZHpvw1thqcNo2zUpJY2Tym68Z616/p016+nq9/EI5DgkIe9YHw50Xwppnh+BtAt7QB0BeeIJ5knYFsc5rqVVEhJ5I9xUvcDmPiV4cXxb4YfRGvprKKblp4j84Oc4rxj9qjwB4E034QNbQW1tFqkBjRbxIwszEEckj1NfRA2w27SMcDnn0r5W/bF+CV5JYzeOtG1vUri6tZxts5JGaJlJBJKk46ZFYXdvmaI90/Z507VdN8A2cOozyyr5C+W0jEnGB3rvd53ha8l/ZE8ez+O/hoks8Qjl00rbSALj5gMEfpXrK4289e1dfQw+0SRgHqBUlR24IQZPWpKzNRNq/3R+VIwGelOqNifM/CgB1I4yPenL0prMB2oAhjhzlmJO7+HPSuZ8WfDzwn4g3td6PZm4YHE3lqXU+o4rpLqaOMkzyCNMcc4zXHeOviX4W8GWxk1W9Dgjcn2ciRvxxQB5F4q+AWs+GbyfxF4Q8VavcyxgumnvIyw7h/DgdPyqlpXx78b+BJorf4paTaWFjtHlyxyb3K9yRgd/erWs/Gn4h+MryS2+GOg219Aw+d7xTCR75NQ2v7N958Qru11z4jX91aXkOD9lt5g0R9QfagDpW/a5+CcNqskuu321+n+htn881538SPjb+z/AONPGml6/qnjDVmsdNjMc+mPZn7PdZ/vrnB69x7V9C6H8L/Allo9rp3/AAjWmT/ZYyitLbKWYdPSr5+HHgYrkeENGB9Psa/4UAfN3xe+Nv7OnjnQE0wa/qGj3UIxaX9rp4Wa3TIO1CCMDjpn3rxCbSv2fbnWIdYufjR4y/tCzTyre5+zHeq+zGTI6D8hX3+vw78Dhv8AkT9HUdytmuf5VF/wrrwFNNvj8K6WpTr/AKIP8KAPhKKT4IIuG+PPjodPuxE8fTzK6z4J+P8A4JfDnx8mvf8AC3PFerxCAobe8gZkLHPOPMPOD6V9kt8O/A0ke1vCWjn/ALc1/wAKik+G/gX/AFa+EdHz15s1wf0oA8vj/bG+CGCf7bvuTyfsZ/xp3/DY3wO/6Dt9/wCAZ/xr06D4c+Byjeb4P0dT2xZL/hUi/DfwH/0KGj/+Aa/4UAeW/wDDY3wO/wCg7ff+AZ/xo/4bG+B3/Qdvv/AM/wCNep/8K38Bf9Cho/8A4Br/AIUf8K38Bf8AQoaP/wCAa/4UAeWf8NjfA7/oO33/AIBn/Gj/AIbG+B3/AEHb7/wDP+Nep/8ACt/AX/QoaP8A+Aa/4Uf8K38Bf9Cho/8A4Br/AIUAeWf8NjfA7/oO33/gGf8AGj/hsb4Hf9B2+/8AAM/416n/AMK38Bf9Cho//gGv+FH/AArfwF/0KGj/APgGv+FAHln/AA2N8Dv+g7ff+AZ/xo/4bG+B3/Qdvv8AwDP+Nep/8K38Bf8AQoaP/wCAa/4Uf8K38Bf9Cho//gGv+FAHlb/tjfBDb8mu327tmzP+NN/4bG+BqkbvEF7nI/5dD/jXq6/DjwGDkeEdIH/bmv8AhTV+HPgUZJ8JaR+Nmv8AUUAfJd38UvCvxM/by8C634anup7W0tHhZmt8ckqfWvtyFt21h0YZ+vSuc0XwV4SsNSW/0/w7ptrdQ/6uWK3RWH0IHt+ldDajauOw6D0oAmooooAKKKKACiiigAooooAKKKKACiiigAob7poob7tAGB8PgB4LstoHKt0H+21bTp8me9Y/w/8A+RPs/wDdP/oTVuN92gDC8QeGNH1lTb3mm2bq4O5zboWx9SK8Z8afs56c18+peHNZ1a3u8kxwC6dIc9uAcV77MFVRIwz2OO9JCyyncuVI6ZoA+ZNN8XfGn4b3X2bxVp1jJo8I4kiUySMo9+uelem/DP48eCvGL+VZy3FtMvyuLmPysMOuN1ek31taXMbJd20Ug5++gYfrXl3xg+BngvxpN5tw95p8qkbV01jDk9s7cd6APVLG9tLxA1tdRTL6q4P8qsceor5dk8DfGb4Yvv8AA9xa3unJ80n9oStJJs9s55ra8F/tJ6fFfJo3i+y1CLVd2HaK1KwY+vSgD6JyPWmNIo4zWJofibRNXsY57TUbdvNOVVZl3DPYitaFXA3y7evHA6UAVPEtwbTRrm5CnMURZTjJBx2r5P8AhN4CXxx8RPiWuoWr51WIJDLKhXB3rnBP+yDX17P5bqVkxtfjaehqtBZ2llcGSC1ijaU/O0cYUt9SOtTH4ipfCfMP7HvifxF4R8bar8NfEdgY7HS2WHTZljLbhgN1/Fq+hvF3grQ/E1jLb6jp0CswIS5WNfMUHnhuorUj0vTotSa6TT7fz5DlpfJXcT7nGa0VweTWhmeAaB8IPFXw48Xi58EX1xqVleMZLpL+5ZxF/soGPA+le0eHBrD2rnWI4Y2P3VjPHStfA5yO9MmAbC81JRyPxc8faD8PfD0ura7FdvbRjJW3jMhx9BXhviX9prwt4+09vDfgzT9Sm1W6x5aXdgVjCH6jHTNfSurafZX0P2a9s7e4ifqs0QdT+BqjD4W8NwXUd1DoumxSRrtVktI1P0yBWT+D5mi2OO/Zl8E3PgvwTNDcQLDNfzfaJlXpvPXA7V6QsQL7t557ZoXaUAXC8YwO1KoP8TBQK36HN9oXJWTHOKekgY4wahVpDM2Su2i4ZxzGyqAOd1ZrdmpOrUfLyev1Nc34m8ZaBoWnPc3GpW7BAS0YnHme+BXifiT9o19Yum0n4eaffTaluIDXVoRCPTJxVAfQt9qVjZxNLcXkUSqMne4X+deU/Er9oHwZ4Zulsle6uryXKwi3jMi7v9oivP4fhd8UviXN9o+JN4trakbgdNuGibntgEV6p8JPg74N8F2pWzt5r8/39QPnMG+rZoA8quNV+OXxLuvJs7Kzt9Bl/wCWqAxzBTXVeAf2dNA0/UFvtX1bUr65B+aK4naSMn6MSK9xtYbeGPy7aCOFfRECj9KWSSOHC7S2aAKGh6Fp2lQ+XYafawKo2gxwqpwPoKv+Ww+ck7vTsKkhVfvA53etSUARiPPLHmkmUqhKDLelS0UAV4Yiu1j940pgXnHy5644qeigCPZtHHNMmjO7zAPmqeigBucr/OinYHpRQA2inUUANop1FADaKdRQA2inUUANo2kdDinUUAQssm8AcA9xToY/L/iLZ9akooAKKKKACiiigAooooAKKKKACiiigAooooAKG+7RQ33aAML4f/8AIn2f+6f/AENq3G+7WH8P/wDkT7P/AHT/AOhtW233aAIpJlHyshNKgVlyoI+tSKAV5A/KlIG3HSgBj7SuPlb601SqtgDLNSrCBnnrT1UD3oAiZWb5ZAjKexFc3448BeGvE1i1pqFlFHv4LxRhW/MCunaPLZpyqBxmgD5t1v8AZ1v/AA7fPqPw11K5jvsni+u2ePPrgnFUbP4xeOPhpff2d8ULGa/bGxDptqXAPqSO1fUDIpUggc9eKpahpWn30LxXNrDIrrtJaME4+tAHE/D/AOJ/hfxpZrcR3S2WFBWK6fynJ+hNdzbyiSPIlVkONhRgwP41418Sf2cPCWt3g1XTRdW+oxndEyTlU3e4HUVxV3H8b/hrIsl3qFtqGjQnPkW0RaXA7CpA+nphNuUxkfjUyjHXrXinw7/aH8O63PHZ6rp17pdwDh3vF8tcfjXrek61pepR+bYahb3SkZBicMMfhVEl9jhTimYPykk0m4nhjjPTNChyPvjFUUM55yfpmo5zGv8ArA5Of4amnaNGAZGb6Vm654g0jSIfO1LUbWCMDP7yUKQPpWcolcxoIoADZHPr/WoLq4gjtTJeTxwLu43vt4FeKePv2i9Fs7o2Gh6PqN9dbisc1vH5kf1OK5WHw78avidIJ9Q1a0g0dzlYGjMc230PvTiZvc9T+Ifxm8L+EY3mkeS+2j/VWf7xuPQBa8vl+JPxQ+K120Pw0s/7PtyP3h1SBkOz2yo5r0P4c/ADwZ4dnTUHguJrzq/mzF1LY54NeqW+nWcEarb2sMIUYwiAfypR3ZR8/wDhX9nC31W/j1Xx3f3r6kvJFtdMI8+u3OK9r8LeENB0CxFvYWEI2gAPJGpY/U4rfAHAwOmKHUMuCKoCFS4Hyhdq9lFClW/hx9KljjCdKQplsrx9KAFXBXC4FNldV4K5pzxq3t9KVVAHrQA2F1duFIqSgADoKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAob7tFDfdoAwvh//AMifZ/7p/wDQ2rbb7tYnw/8A+RPs/wDdP/obVtt92gBV+7S0i/dpaACiiigAooooAOtJxjpS0N0/woAjm3bh8wC1BcpCZFLQLIp/2QcVLIEk+8poVHHC/doA4L4l/CDwX42ixrGnuxYdYDsx9cV5BrPwf+KHga5+0/DfxBa2enQnBhuFZmK/nX02qyNnJH40FUG3cu4/SgD5w8NftC3+iXi6J408NatPdBtjXccJWL3Oa9QvPi34JttC/tBNatJJVTd9jjuFMpHpjnn8K6rxh4b0jxBYyWuo2qyBkI6AE/jXxp8P/g54Jb9pR4V098fbWDAv8vG09PzoA9J8QfHvxT4zuG0jwH4f1XTLjdtFzdwFosdjwo/nT9B+B/jrxpJ53xX1631O2J+VLQGNh35O48V9C6Fotho9vHbWNuiRqoUnvWd4m8ZeEvC9wlrrniDT9NuJVLLFczBWZc9RmgDO+Hfwx8I+DrPytG08jYoGZTux9M111usBy8cYjx7YrkD8WvhuZFC+ONG+7z/pS/40yT4t/DRvlbxto23uPtS0AdtByxzzU1cRZ/Fj4ZmRIIvGmjl5GCqouV5J6CuyjmiaFZVkBjcBlIPUHvQBLRRnPNFABRRRQAYHpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQ33aKG+7QBhfD//AJE+z/3T/wChtW233axPh/8A8ifZ/wC6f/Q2rbb7tACr92lpF+7S0AFFFFABRRRQAUUUUAGPaiiigAxx0pn8Ipzfd4pjAgUAEgBYgn8K+XvAAQ/tQEBuftrHr7rX0+5bzOBXy78O4yP2omdyARfPgfitAH1BiSSEjlT2wfpXnPxf+Bnw3+JmsQat410CHULu1j8uOR2Awv416A0sjxuxjbain5B1bgdK+cfEXxR+KvxC8TX3w+0DwPrPhSXzyIvEMsYMKKDweCSQcenegDl/j98F/wBnH4deH5jZ+A49V1koTDpttIpmZeu8DHQfyBrzH9h/4UfBTxL8JdY8W/EnRLW2WLVpYImu5Nv2cb2ARie4GBX038Mfgze6FDfeKfiHq8fibxNb2ksVrqbRkbIdpBXkZ7nHNeZ/sL+CvD3j34M+MNE8U2Md3p7eKbiTyXXhj5z4POeeBzigDtPAP7N/7NOvxxa34X0Gz1CO3mBjnt5FIV1OfT2r36ztUjhjgRfLghQJHH/dA6Z/KvnvxZ8B/GfhjU1ufhH4xXwpoFnH5smixR7jcMvJAwAMtjHXvXq3wJ8U694x8Ere694futDvoZTBLFcYzKF43jk4yQT+IoA7ZXLs22QYxgAVLbhggDOWPvVWGJVm+SMjb/Hmrw5FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUN92ihvu0AYXw/wD+RPs/90/+htW233axPh//AMifZ/7p/wDQ2rbb7tACr92lpF+7S0AFFFFABRRRQAUUUUAFFFFABUW47iGGFHQ+tSN92o5BlMcfjQAiuxkYlelfLWh77X9rOzjU/wCuvGPX/dr6jcGVAI5CnrzXy/bKiftWaazZaQXL44wD93vQB9PTMn3TlmHp24FeM/t9eJ/EHhT9m/VdZ8N6lLp+oRzpFHPGMMgOQSK9mUq67lRRITggEV4D/wAFLt//AAynqrKhklS4iPl7S27luMD1oA4nw18Dvjp4j8IWeoTfHi7VdRtlmeBouNrjp37GoPA/7JvxT8G6fPZ+HPjbcadHd3DXEqJF99iSScYHUk/mak+H3x6+N9l4D0u2tvgZeXFvBZxRwzB2xKoU4OCRitdP2gvjsZFI/Z+u+oH38ZGfXcaAMf4FyfE/wX+2rF8N/FnxAufElg2lNd/vOADtGMivrtEcY+bsP6//AFq+KPgf4w8VeMv+ChkWreK/Ckvhy+GhNH9ikYscCPrn8K+3VAHSgBiJhhmpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAob7tFDfdoAwvh//wAifZ/7p/8AQ2rbb7tYnw//AORPs/8AdP8A6G1bbfdoAVfu0tIv3aWgAooooAKKKbIcLnNADqKpX2oQWNnJc3MgjhjXcXZu1cVJ8YvAsUjRya0q+5GT+FAHoVFefx/GHwEIwDryk+6mnf8AC4vAP/QbX/vmgDvX+6agDZOCfzNcS3xh8AEYOtrj/dpi/F3wCP3g1pMdvlNAHzp+3d49+I/w41a3v9DN01jIrMxR/lAB9RXxzH+0N4ni8dW3igmQ3Nrk/wCt53Gv0d+MniX4YfEHwldadqeowP8AIY42K5259M9K/OhvhRpuo/tAr4eS+MOl3dy5WVUPyhTxj8KAPsP9hXx18RfihfSa5rEl5FYQy42tIPmyD68cV9V+KvD2leI9HbRtds49QspHDMky/KcdM9v/ANdeW/BrxJ8LPh/4LtvDemarBF5SBZpNm3ey8bjjqfeuwj+MHgJcY1qNlXjIU9aAOvsbOO0sY7a2t0jht1EUSA5AUdMVayyqMdfpmuI/4XH4B/6DS/8AfNH/AAuHwB/0Gk/75oA6JfCugjxYPEv9l2/9riHyvtm0+YF6YB9PattRiuC/4XD4B/6DS/8AfNH/AAuLwD/0G1/75oA76iuB/wCFxeAf+g2v/fNH/C4vAP8A0G1/75oA76iuB/4XF4B/6Da/980N8Y/AAGTri4H+zQB31Ga8/X4veAwxlGvKyvyAQeKjh+L/AILkuii6wpD8DA6UAeiUVgeDfF2heJXlj0jUFuWt+JAO1b9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUN92ihvu0AYXw//wCRPs/90/8AobVtt92sT4f/APIn2f8Aun/0Nq22+7QAq/dpaRfu0tABRRRQAVDdyJGmZHCqcZJqQkbTg157+0H46s/Bvg1pJWP2q+Jt7RRyTIRgHHYZxQB5z8ffFt54q8Wx/D3wzO/nK4+3NET+7hJ6g9zVvTP2ddAtbeKO4129mXj5mTnJ/nWn+zB4IuIdJPizxNbquuX+RJkZO3qOTXsCooiViqtt7OM4+lAHjv8AwzloHbWLvGe6Cj/hnDQD/wAxi7/75r2mGRZUyM+4NPb7tAHibfs3+HyuDrF3/wB80y3/AGdNCjyraxebV6fL1r20gPGMGonBDLETn3NAHirfs46BPkLrN2gzztUc0xv2cvCpmEi3cq3af6ubYNw9a9vlhjZcByn0OKSHONuAwHc0AeKR/s3aEkbK+tXjM3fHvmpYf2edB+wtbjVro88ttGetezudnvmoot6TABflbqaAPHF/Zw0H/oL3f/fIpf8AhnDQf+gvd/8AfIr23tSUAeJ/8M4aD/0F7v8A75FH/DOGg/8AQXu/++RXtlFAHif/AAzhoP8A0F7v/vkUf8M4aD/0F7v/AL5Fe2UjsF49aAPFP+GcNB/6DF3/AN8ikb9nLQApLavdEDqCgr2wsB170jEFSME8dKAPDF/Zx0IMJY9Zu23H5U2DGPpXEfHT4XaB4H8K3LQa5df2texldPgIBDSDnj04zX01rWoW2l6TLf3jLFb2ybmPpjr+lfOegWF78YvjRJqlwJU0XQrtZrA4wsoPB/nQB1n7Efw+1Dwn4N/tvVL2eW81qMPNFIT+7IOO/ToD+Ne6VXsYIbeNYoY1RFGFUDAA6cD8KsUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQ33aKG+7QBhfD/AP5E+z/3T/6G1bbfdrE+H/8AyJ9n/un/ANDattvu0AKv3aWkX7tLQAVESeRmpW6VVlcx4yehycnsOaAKmvX0Gl6dcX80yqtvEZHDn5So5I+tfO3gm2uPjR8XJ/EN2JR4dtAGtlbPMiNnofcVr/tJ+KdT8R+ILfwD4UbfeCSOa8KHgwt94cd8Zr134YeFNO8I+FbfTNNTEaqGZivzbz1H50Ab1qoSPyo1VIwBt4701gXynmfvB0z0NYPxc8Rf8It8P9W1xJ7aGaztZJrcTyACSRRkDB61xP7KHxPPxL+C+keKPEd9YwareMfNhjlVOccDbQB6vCs/lhpE2nPRTTklEhbcCNvasfx14p03wt4buda1Sby7a1iLugI81/ZF/iPNeLeDfjxqcfiq2v8AxbYyW/hnxTJs8OyrblZFIzu87+6OG5PtQB75aPI0jk/KqngVM5bcpGCx6+1QwOlzbx3FlJHLGy8Oj7gfx7/WuO8ffErQPB3jLQfDOqSS/wBqeIpdtqqj5e/X9aAOxePDMpkzn36VPGdsW1DyvWqsaH7OzMSZTgMewxnmvIP2Vfil4g+InijxvpmtxW8cOgambS0MSgMy4HJoA9kE0UsDF1ZdvXHenQuxh9u3rXK/FDx7o3gbwPe+JtVDraWDBHwvLEjI/lW54b1e21rw9YapZDMWoW6zRkgcAgHn86iQGsvQU6mr0FK1UtgFopB1paYBxTHIJ5FPqNv4vpQAYycntTPMU85AAI5NKvzQ7eeV7Vw/xt8Z2/g7wtKySql5cAx2obu2KAPOv2lvFl7rfiLT/AXhwswvLn7PqRXrHG3Vhj+teofC3wjbeC/BtjpGnBX8iMLNMVG9+vfqa89/ZX8F3W2b4ha1GW1bXYlNxDLkrCeSdoPTniva43TJ2g7h1B6D6UAPttxkJwu3HB71PUduPl/oKkoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAChvu0UN92gDC+H/APyJ9n/un/0Nq22+7WJ8P/8AkT7P/dP/AKG1bbfdoAQbvUVGHfkUozv+Wo/MxcGNwfm4yKAF+0FztjGD71wf7QHjmz8GeEmup23TXLfZ4Y0+8JGG1Tj0yRXY6zeWum6dNcXEiIsKks0jdcfWvnPw3Bc/Gj4sPqF8k48PWZKKuMZmjPH4ZTNAHYfsveBb1N/jnxOhOt3hKYJ+VY8HacH2Ne1DcF5wG7VDZwLaxJCiKscUYUKo64qVSsse51xtoA+e/wBv618J6j8P9K0fxNc6hb3esXhtdM+ySsgadtgAfHVcn9a88+Bv7MPhP4d+B7bxB4u13VG8QaDEL26srDUJGVByQvlKeeMDp3r1b9tv4X+LfijoehQ+C7q1g1HRL43aPOflyCu3uO4GfavnX4B2nx5n/bN8Q2F9rOmzahbon9toceS0e7BEaFsDv09KAOv+KHxCXXtU0f4h+PtM1s+D5LnzfDlrp9pN54cdrhAvK49a1/GH7UXwg8T+Ebjw7e+CfFFva3UZhBi0WSNoRj+BtnynAGMd6xfiJ8QPi3r37RPijwD4O1bwjpek6FgQJqkMSqRuwdoZsVpfs4fFjWf7U+IVv8TLXQdRh8GW3nmTTbOLYVDKMhhnJyf1oA6H9nz4h6t4MbQ9B12z1KXw34gGzwwWgd7iFACxFw5XIPBHJ7Cqf7ZU0Fp+1p8I7i4nSONbh97SPtWMfvOST+FX/iP8bLqXxT8KJ/CFraQaP4uuSXjngVnCESfdOODkCvQPjd8Hvh18adWtx4iupLm50ZmEP2G62yW5Jyc45B+agD0P/hJ/Dg3s3iLSNh7/AGyPpz718wfsF63pFn8RPik82s2UZk10tA0tyiLIuF6etdND+xr8J3yBceIlVOCTqMnH05rw/wDZK/Z78C+OPG3jzS9Wn1RY9F1cw2bW928ZKBRguQeT7mgD3P8A4KH+IdCu/wBlfXoLHWdPkuMoRHFcKWYnuMfXH0r1r4DxGP4N+GUccjTYeDyfujIz+FeSX37GPwlu1SO7bWZIkIzHJfOytj1BODXuHgiHSLLQYtM0i7iuLfTFFupSbeUxwA3vUsqJ59+1d8S9b8CeAmk8MIo1VnQRPMm5OTjBrznwn4v/AGnrPWrO48VjRX0u8jEi/ZoQXAbBHSvafi74S0j4geGJbGWSKZVberRsMq69j+Iriv2cPHF/capL4L8Sva3N5buyW5iUY8peBn1PFOJNU9r0maWewhmmGJJI1ZxnuR6dquVVs1UfdXG3I/WrVXIiOwVDJuLMF6kVNUMgxISWxu4B9Kkso61qEOkaLNqF+4RIUyceg6188aNa3fxp+MD3N67f8I/o7i4sCmV3v0IJHDcZFbf7SPjO61vXLXwF4fkZppbgLqO1d2IWI7jpwD+deofB/wAHWngbwjbeH7JB5NuvysTls98nueaAOqt4IoYVihjWNB0VRgCnNGvJHU9aeOOKWgBqLgdKdRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFDfdoob7tAGF8P/wDkT7P/AHT/AOhtW233axPh/wD8ifZ/7p/9Datxvu0ARyMFQHHNNUIfn3YOOtFwQsecZrh/jd48sfBXg2a/lG6aQ+XHEp+YZ4Bx9TQB5x+0t4mu/EHiOH4b+H3Y38zLPLKOV8rIyMjocA16x8J/B9j4S8I2+n20YV2UPI3ct3P6n8680/ZT8Eag9pN428U/vtbuZn+zzFdoFu2doIPtj8693XlRkg59qAK+2QSGQHEY7Cnq+4YCnDcVNgYxiorhXMY8vAx1FAHn/wAfvibZ/C3w/b6ndaBqWsrcSlTDYRl3XHcgA8Gvj34E+IvHnxN/bX1/xP4KLaLa7IX1K11CLbL5O5+OVHOea++ZRBPvDQhm2kLvGcfSvJPhn8I7/wANftLeLPiPLPb/AGTWoFEEKLgpgt09PvCgD5B+M/8Awgp/bT8eL448M69r0LEfZl0eTa0Zycl9vapP2fZNEHg/47R+HNOvdN09dJ/c2182Zl+dPvZ5r62+HHwk1Dwx+0d4w+IWqXNtfWviNQsEYX5o8EHn9az/AAP8Cn034mfEHU/ElzBeaP42iEC20S4ZV4OD+KUAfO9nLJJafs4bfvRXHOe/+sHFeu/sTXLv+0Z8W1klll26oNoZiQvEfT0rp/iR8Amu/Fnw7uvCE0Gn6P4KuGkNvKNzOuJOF6Y+8PyrgpvgR8efDfxa8U+Kvh3400vS7XxNem5aOWEllXGMH5/YflQB9ayoUjbYQHbOCO3FfL3/AAT2LL8SvissnzMdf6/8BFRy/D/9sIqzD4o6GR3UWzDP/j9ct8OP2e/2m/A+qarqWhfEfRbWbW5/tF8zW5IZz3+/9KAPsvUB/oczY6I3/oJr5o/4J7Nd3dl8Rx57MR4llVd53YJ8wDqfXH5VCvw9/a9aRkl+Kmh+UQePszHeO/8AEa7T9i34UeJ/hR4X1yHxRqUF9f6zqRu3kiQjLEnPX6mjlKUrHntx8NP2n9J1LVI/DnjDRY7W+uZJI1mTcwUnIH3q7v8AZb+C/iHwXcza7441C2vtekcss1uCFCsDn+I85Ne9qq7Rx+FG1QMAD8qBTfMQ2oIyW7nIqbI3dfwpGwqk4+6O1RW7iVfNCFfY0Eomb7p5xx1rhPjx40tvB3hSSWVv9IvgYbTD4Ikx8v64rrdS1G3s7Ce7nbatujSOpOOFGf6V84RQ3vxs+MjSXG//AIRfTSs9qcfL5qnpnoelAzq/2X/A19Fv8b+I/n1rUcpOSuFCDJXA7V7dFt/g+7nv1zUEcUVrbRxRLhcBdv0qzGm1s9c0ASUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUN92ihvu0AYXw//wCRPs/90/8AobVuH7uKw/h//wAifZ/7p/8AQ2rblO2Mt6CgCpq11DY2UlzcOEREJOTjoK+bLBbj41/Fr+1WRjoFgTE8WPlMqHj2zxWz+3F428U6VoI8P+GtGvJ5ZtkjXMKjaFyMqfm7jP51xPwm+NU3gnwitnYfCvVo1chrlhtHmTEctjdQB9Y2UUFtbxRRIAkKCNB6ADGPyq2v3a+aY/2nNW2ll+F+rbc/31/luqcftQarx/xbPV/pvX/4qgD6QqK4DDla+dP+GoNV/wCiZ6uP+Br/APFUH9p/Vjwvw11bPuyf/FUAfRGCcNjpUDSyCbAKsp4CjqPrXz2P2ntXWL5vhpqxY9DuX/4qq8f7S2qxyed/wrTVfMb7+GT/AOKoA+j3WTLBjuLdPaiGKfyiXcbuxPJ/z1r54X9p3Vc5/wCFY6t7/On/AMVRN+07qzMCPhlq3H+2v/xVAH0PI4XYCrM3YgUsW9Jn3v8Ae5ABr53b9p/WBx/wrTVh/wADX/4qkX9pvUWk3n4Z6ru/vZT/ABoA+iI5pJZG3KVVfWpW2t8m3cD1OK+bpP2m9aeXDfDbVtvpuX/4qszVf2wBp3iay0GXwBqK3WoJmGPzEye3HzUAfUcOx/uAfL2xSTI6nKHqecV87Q/tN6nHIVT4ZasAc7mLrgEcf3qa37UGppJhfhrqzA9SHXj/AMeoA+kkztGetOr5v/4ag1U8j4Z6v/32v/xVH/DUGrf9Ey1f/vtf/iqAPo6Q4XNRsS8YKnHvXzqf2ntVf5f+FZ6t/wB9r/8AFVW1D9pXXJ9Nkt7f4b6uss6tHG6lTsYjrgHtQBrftQeMdSvdSt/A/haRm1WaSNbwR5JaBvvEgdBjNenfBrwlaeDvBVtoUUY2ofNJK8FiMmvPP2Y/B+o3Gpy+PvEcEn9vXieW08vDGLBwp78Zr3Ly8xhV4HcetAEeAsmS4weRntUsXmeYSxG2keBGxwvHtT0TawOaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUN92ihvu0AYXw//wCRPs/90/8AobVuH7tYfw//AORPs/8AdP8A6G1bjfdoAztW0mw1KMfa7dZfZh1qmfC2iR24RdPjHPOK2lB654FKrB+MUAYbeGNE2/8AHgn51J/wi2hkD/iXx1rKMtin4PrQBj/8Irof/PglH/CK6H/z4JWxtPrRtPrQBj/8Iron/Pgn50n/AAimhf8AQPjrZw3qKMN60AY//CKaH/z4R0f8Ipof/PhHWxtPrRtPrQBit4U0LHOnx1HH4a0QEp/ZyYrdKnHBxTHBf7rYx1xQBjTeG9Cj4OnxkHv6V8y/HzQ9Gt/26vhhaQ2UawzxtvUdD83cV9FeMviJ4P8ACu1Nf1q3tHwSA5weK+W/jp8SvBGpftqfDXXbLX7WSwtUYTzBuEJbPNAH1m3hbRBbkNZowc5I/Goh4Y8PowiXSkw3UjFY+ifF34da1erYaZ4rsZ55CNsaMc4x7V2tq6SxhozuHrQBmL4U0Lbxp8dH/CK6H20+OtnB9aNp9aAMSTwvoK9bGMfjTYvC+jQDKWC9dwAPf1rbmRDyx/OmgkzY/hHSgCK3hSOHy7dPLUHoasqCAN3JqNiTdFD93bT4fu9c0APooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKG+7RQ33aAML4f8A/In2f+6f/Q2rbb7tYnw//wCRPs/90/8AobVtt92gBV+7QFUdFA/Chfu0tABgelFFFABQ33aKjkbHX1Hf3oAjmZguxMlz156U1maC3zlmz1JOcV5h8YvjDo3hDUpNO06SG+1jobQFj14GcV5jcfGT9o6eZm0r4Kx3dofuSiZhuHrgmgD6itX3x7g24HoaeSd1fLcXxi/aejXavwIjAHpMf8ad/wALk/af/wCiFJ/3+P8AjQB9RN92o1VFzg9etfMP/C5P2nz/AM0JT/v8f8aF+Mf7TW7DfAqIf9tj/jQBuftzfCSTx14HmutI3R3UERw0aDcTkV+WPipdc8PeMGsLx5/tmny7E8xSGJ9q/SyX4uftLys0Vx8CoWhb7wadsfzr5x+Kfwi+Nvi74iw+Kp/gytkiOTLCHJWU5yGPv70Aeh/8E3/ghrLzL468RyTYjYeRbvH8siEZzk+ma+7LUJlSoK8EhfQdK+UPBvxI/aO8P+GbbSdP+BUKpaxiOPEx+YDvV/8A4XF+00sgcfA1VVRtb983+NAH1PmjNfLv/C5f2nu3wKTHb98f8aP+FyftP/8ARCU/7/H/ABoA+oJVDrg/nUSyeY29Oi8V8yf8Lk/af7/AiP8A7/n/ABpLX4zftBWty39qfBtbO325lcSnCD1oA+mJJXL4bgDofWrNsxMfK4PoK8t+Dvxe0DxjN/Y093DDrCLl7YHcV4yfvfSvUbZDGu0uzn1agCWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAob7tFDfdoAwvh/8A8ifZ/wC6f/Q2rbb7tYnw/wD+RPs/90/+htW233aAFX7tLSL92loAKKKKACsX4gag2k+DdU1RDhrOzkmH/AVJ/pW1XLfGwD/hUniLj/mGzD/x00AeHfskaFZfEIy/FPVolvjqWYQsqAhCmDnn/eH5V9I2dvFFGFgASPsoNeDf8E0AP+GUtHOOftE3P/fFe/Q/6v8AGgBXAXndio5JEjKhptpY/IGcZY+gzTLmdoWZpSqx8bWJxj6mvmr41a3rPxG+O/hbTvhxqNyU8Kan5niRN/lx+SVIGWG5WG4rQB9MhyVJByVPIJximTSoAAXUO/3QSAfwzXjHjT9qH4Q+E/Fd5oGr63dLeWcmydYbbeu7rwwxkV4D8fv2nfBOs/HfwBqPh/xJqcej2M2dUXydolXJxld3zdhz2oA+5Mu9vhs7uhzwfx9afsHl/Mx6dM14Ba/thfBSeQ7devAFIAC2hJyQOuTXV/EH9oP4aeDdN0u+17VLqGHWIvOtWjh3l1xnkA/LQB6nGET5ueBTd8Rk8tnU7vmIYjj8K8FP7YfwQ8pgNcvef71of8a8U8dftO+B7v8Aa/8ADPiPT/EmpR+FrbT5FvofKKoXLJhim7njI6dCaAPuliEXcT+A6U7+HO48+9fP9x+2F8EVUqutXbMGC4a0OD156/Sum+Ff7RHw1+IniKPw/wCGNQuri/eMyhHt9i4HXnPsaAPWwBjk1WuoY5oyGgWTeSpz3B96kiZHkI+YMvBHY1In+ragD5g/bQ0yD4eS6H4w8NQLa3WoatBaT+V8rbDIoPI7cmvpTw3dC70e2mU8NCmeO+K+f/8AgpESPh/4Zx/0H4P/AENa91+H3/Ip2f8A1xT+QoA2qKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAChvu0UN92gDC+H/APyJ9n/un/0Nq22+7WJ8P/8AkT7P/dP/AKG1bbfdoAVfu0tIv3aWgAooooAK5f42f8kk8Rf9g6X/ANBrqK5X41HHwq8QZ6f2dL/6CaAPKP8Agmf/AMmo6P8A9d5v/ZK99g/1f414H/wTVXH7Kejr/wBPE3/sle+IMcUAcp8bNP1vWPhhremaAcajcWhW2Ibad2QeD26V8H6zrv7Qfw98M2PwxuPDOkf2p4hC2Q1C3nLXLvzzIypuB46mvvP4w6ze+HPhrrWvaXH5t9YWjSwRsMqWGO1fHvwJ+P3w3stRm8aePLTXbrxVqpEl5atYSSQ2cmAcxAj5TknkY6mgD0zT9T+HnwT+D/hq1+MGhR3GvXEAS4n+wrcPJKM5DMeT9TXg/wC0H8Uvg7rnxu8Aa74b0DbpOlyZ1WNdK2iTk8FRwfxr6j+KXx8+Eei+E/DviDxZpclzba8hbTUl03zJBjqNpGRXDv8AtN/s7ySKF8FXRKvk/wDFPkbW/wC+aANjwH8Xv2c/GHiax0HR/DcRvLsKESTRlVTlRjk9CK9Q+MFx8OfC3guTxP4x0mxbTNMhXYXt0k8teuACeBxXm3wz+PnwQ1zx7puh6HoH2PUtRk/0YvpIhwQDjBxxjFbH/BQ2CV/2T/E4tYpJnEQOxULHC9QB/nrQBw0P7Qv7L1xwvhxfmztZdFXBHHII+orxT4gfFb4L3n7YXhnxTpujqvhuy06WK7tjpoXcxKYOzvxkfQmvSPhZ+0b8BvD/AMM9F0/XfC7xXlnYKlzJNowADjH8RXrwK808efGz4R3/AO2J4X8YWGhyDw3Y6fIlxbLpoAldihDbMYZcZHToTQB7m37QX7MqRiZ/DedrBcDRFJHX1/D8q9U/Z28QfC/x5p8nif4f6VaRxQSGCS4W2RJAcY25HIGQeK8duP2m/wBna90G9Fj4Yaf920bhNFVgsmCOcLxWj/wS3cD4S+IJFs5oI7rXZ5II5IjGdjO5BwfagD6jUYbgLt9cc05P9W1QWZ2fun+Y84Oc/rUwI8vjPegD50/4KSf8k/8ADP8A2H4P/Q1r3b4ff8inZ/8AXFP5CvC/+CkX/JP/AAz/ANjBb/8Aoa17p8P/APkV7T/rin8qANqiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAob7tFDfdoAwvh/8A8ifZ/wC6f/Q2rbb7tYnw/wD+RPs/90/+htW233aAFX7tLSL92loAKKKKACuV+Nf/ACSvxB/2Dpf/AEGuqrl/jQu/4T+IlAOTpk2MDn7hoA8n/wCCapP/AAyzpHP/AC3m/wDZK9+96+fv+Cb7iP8AZr0+3YhZI7qceWeCBlecV9AqQeKAKeqrBJYyJcmEWzLibzgCpXvnPFeN/Gz4k/Cb4Xw2Mt54ds9VF9IR/wASywiuGQDnLbQcZIFereONEt/EPh670S9eVYb6IxM0LFWUH0Irgfgn8APBfw1mup9NW71CS6Qq41KT7QF75UPnFAHg37Tus+GvEvxX+DGtQ2C22l3l8xWG5hEaRod/DKRjHSvqHyfhxnKReFcMwAO23OT69K8o/bD+Amp/F3xb4M+xvDa6Po0zfb/KkMcgjKt9zHQgkHiqK/sY/C3DAap4lGDxjU5eg7dfxoA5X9oCLw1F+2l8K20NdM27j5q2GzGfm5IXivqXxJc6Itm1rrFxYeTcZbyb11AcYHG1uvevmqw/ZLg8I/Hrwl4t8GX11NpmlyN/aC3900jjngpuPHWvWfjp8DvCnxb1KzvvEN3qkMlkB5Asrt4l65BIBGTwKAPL/EWl2Px+8UT+GNC0CytfBtjMYNZuVskguHnBGGicAEpgnp/drmfGngvw9oX7d/gHwfb6Xavpy6HKhRoF/eKBEvzcfMcE9f7x9a+sfCPh7S/DHhq00XToFWG1jWPcUG5wO7HuTzyfWvK/Hnwo8Qaz+114Y+J9pLAul6Pp7wyo7fMSxjOf/HKAOG1DwfH+z74jn1i30C11PwNqE3m6kptFuLpbh+QEyCQuSK+g/Bup+FrzS4G8PyaZGt3GJxb25jR1DDui9CMkGtbVLG0vdPkt7qCOeKQbSki7sHnJ578/pXlnwt/Z58EeA/iJJ4t0a71h7yYOrR3F27xANknCk4A5oA9ctYkjX5T0659frUn8LfQ02Ndm7aSQTnk04EGE7efWgD51/wCCkX/JP/DP/YwW/wD6Gte6fD//AJFe0/64p/KvCf8AgpAy/wDCAeGcHJ/4SCDv/trXu3gHjwrZA/e8hMjHsKANqiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBF6Urfdo+lNYHcCCcDqKAMT4f8A/In2f+6f/Q2rbb7tVNB0+PTNMhsYmZo4VwC5yScknP51doARfu0tFFABRRRQAVR16zTUtKmsZf8AU3KGKUdyrcH9DV6myKGQg5HuOooA+Wbi51b4C+PLi4htLi88IXCCOygtIi8iPyWYgdM4ru9P/aR8Kz2qTPpOoxMw4R1wce49a9du9Ls5bFreRNynuQCf1rzvVvgR4Q1PUnvpL7WImlJLJFNCFB9h5R/nQBQX9ojwjjIsbz3yKX/hofwl/wA+V5+VP/4Z08F851TXuf8Ap5h/+M0n/DOngn/oK6//AOBMP/xmgBp/aH8IkYNleEemKD+0N4RPWxvOevy07/hnTwT/ANBXX/8AwJh/+M0f8M6eCf8AoK6//wCBMP8A8ZoAb/w0N4RJybG8yOny0f8ADQ/hH/nxvOOnFO/4Z08E/wDQV1//AMCYf/jNH/DOngn/AKCuv/8AgTD/APGaAG/8ND+Ej1srz8qD+0N4RPWxu/8Avmnf8M6eCf8AoK6//wCBMP8A8Zo/4Z08E/8AQV1//wACYf8A4zQA3/hofwj/AM+N5+VH/DQ3hEn/AI8bzpjOKd/wzp4J/wCgrr//AIEw/wDxmj/hnTwT/wBBXX//AAJh/wDjNADG/aH8JAcWN5+A/wDrVS1T9o7wvYaabtNK1G6+YgwwoS2PptrRH7PHgtOP7U17n1uYf/jNWvD3wI8HaNq39oW1/rMj4wVmmhZfy8ofzoA8xaLUfj74wt7i5s7i18L2MqXNtBPGUl89Tnv2yD+GK+m9NgFtZxQBQvloFwPQCodH061060WC2X5VGAcDP444q8oAHAoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z"]
math
multiple-choice
27
某工厂对一批产品进行了抽样检测. 有图是根据抽样检测 后的产品净重 (单位: 克) 数据绘制的频率分布直方图, 其中 产品净重的范围是 $[96,106]$, 样本数据分组为 $[96,98),[98$, $100),[100,102),[102,104),[104,106]$, 已知样本中产品 净重小于 100 克的个数是 36 , 则样本中净重大于或等于 98 克并 且小于 104 克的产品的个数是 ( ).
90
75
60
45
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAD4AQoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorB8aeOtA+Hmkwan4j1S30iwmvLewjnuGwrTzyrFEn4u456AZJwASOS/aA/4So+B9OHhG90fTtSHiDSJJLjW9bl0mF4kv4HNsJo4JizXLKlr5e3DC5P3uI3APQNJ1ax17SrPU9MvLfUdNvYUubW8tJVlhnidQySI6khlZSCGBwQQRVuvzAsfh3oF/wCBPgX4evLH4f61J9isXn1y9trvxlLdoJdBtdOtz9sksrjTrZ5Nbiu3sY2CLGqja6TyxSe/+Gr7SPEvwr+GjLpmn+HNKl+H6+K59J8HeItR8H6d4fmng+0yT3slnMsaWM8u9EZ1aaNop3RLhDcvbAH1rpOrWOvaVZ6npl5b6jpt7Clza3lpKssM8TqGSRHUkMrKQQwOCCCKNW1ax0HSrzU9TvLfTtNsoXubq8u5VihgiRSzyO7EBVVQSWJwACTX51/s3+NPC48DveWnjO3uPFlrMmuSQ6d8Rtd1LTdLhuL+4kn1rUIPtUQa08xlZrJ4jNErxHUJ0+0TTwfQf7X3i63t/B+uNfeOtK8HaFYXenaZPDq9mLmDWbmSVLl9MaJ7u1jZZo0to3MsgiFvNdiQpGXkjAPpyivhXwr4F/4Wp8TrvUH8LfC/9oC7fwZo97eax4i1v7TYWt1carr0lxFps32C7LWyTeZCinY0cdtCjFyp28/4nuvD2g/BL9lrxF4l8LeB/G2m2Hw5t7WXRvHNyba2gW7m8O2v9oCV7O4iRYHljEhfYwjnZl3bWFAH6FUV+dXwj+HGh+F9Lu5PEnws+F/xZ0Wy1rwb4Un8WXd0l1cf6Rovh6yV7NXsJFntg1wsykzR7g7/ACqeW/RWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD8+P+CrHwh+LnxqsfBum+Frayi8C2GoWaTSTX6xSXOqXl3HZW2U67IzOg3f9NnOPlFfTvgXSfipN8E/AcPiXRPDFz8UNLKw3eo6xdNPBZSCGW3Oow+XGWmmMb8wh4N4mlTzowcnV/aW/wCSdaR/2OfhP/1IdOr1WgD5/m/ZJ0Nrzw/YWT/2LpGhWRaLVrEp/al7fma1lSSRDF9mjit5NM02WNFjK/6NBAqQWsDW9x0Hhz9nnSpvAPgjTNfl1jSNS0Pw/Y6PJZ+DvGGt6dpsRhiClYkjukLqG3BZJQ0pUIGY4GPYKKAPnX4c/sYeF/Dti8+t3viibXY9T1uW1vdP8d67EYrK81KW6SMFbpCGaMWxmOP3ksW9mkb5z61rfhfxJY6G9v4L13TNJ1SfUJby4vfEOkyamkiSM7GMJFcWxBUtGqsXOEjCkHhh2FFAHyr4o/Zu8T6p8VNU13XfA3w/+NlgdGsNIsNT+I2oRRainkT3s8sjRQaM8Ee43qxbYwMraxsxLMQpo37JPi/XvCPwf0zxL4v0/wANf8IP4Zt9Bmh8NWhvLiSe3u7C5iu4Ly5CxrmXSLB/Kks3ABuEJfckifVVFAHy/wD8M9+ItB+KvibxX/wrf4b/ABN1K81Ox1LTvFvi/Uhaa1A1vp1jbDPlaRKkbCa0kmBiZFBlyqJ0r6goooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5T4ifES0+Hmn6e76ffa5quqXa2GmaLpflfa7+co0jJH50kcY2xRyyMzuqhI2OegPV15J8brO70nxb8NfGyWOoanpXhrVLo6nb6VaS3lykFxZTQLMlvCrSTbZWiBVFLBXZsYU0Ad54E8bab8RPC1nr2leatrcNLE8NwoWWCaKRopoZACQHjljkjYAkbkOCRzXOfD344eH/iP4Z8T69Z2ur6Tp3h3ULrTr3+2tPktJt0CK7yCBh5gQq4IDqrn+6OK5/wDZ+jufCvhlLbWtO1TTtU8W65rfiK3s5bCd1s4J72SeOO4lVDHbyGKWI+XKysXLqoYo2OQ+EGp6PqHh343f8JP4V8QTaBeeKbq+k0/VfCOon+0LOaGCNfLtnt99yrGJwyIj4A+YAMMgHo0/xql0nwi+t694D8T+HbuW9g07T9DvG0+W+1K4mIWNIRBdyRrknkyyRhArs5VFLDpvh/48sfiJ4fbU7O3urCWG5msbzT79FW4s7qFzHLDIEZkLKyn5kZkYYZGZWVj8523gO40HQtC8ReG9J8QxfD/w545g1/SvDk1hdC9tNNOnSWdysFnIv2hIkmuJZkttm8KjCNNpjQet/s96Tfw6Z4z8Q3tjfaXH4q8S3Ws2djqULQ3EVsY4YIjJEwDRF1txL5bgOvmgMFYEAAq/tWanDovwltNQuEuJLe08W+Fp5EtLaS5mZV8QaexCRRqzyNgcIilmOAASQK6vWPi9oWh+G9L1y5sPFEllqWfIis/Ceq3V0mBn99bRWzTQf9tUWuf/AGlv+SdaR/2OfhP/ANSHTq9VoA4/xF8VNF8L3Wk295ZeJJpNTRZIG07wvqd6iBiAPOeC3dYDzyJShHJIGDUuofEvSNN8ZW3hiaz8QPqVxt2T2/hzUZrEbgSN16kBt06c7pBjviurooA5TT/iXpGpeMrnwxDZ+IE1K33b57jw5qMNidoBO29eAW79eNshz2zUXh34qaL4outWt7Oy8SQyaYjSTtqPhfU7JHCkg+S89uiznjgRFyeCAciuwooA4rR/i9oWueG9U1y2sPFEdlpuPPivPCeq2t0+Rn9zbS2yzT/9skaj/hb2hf8ACG/8JP8AYPFH9m+d9n8j/hE9V+3bs4z9i+zfaNv+35e33rtaKAOK1j4vaFofhvS9cubDxRJZalnyIrPwnqt1dJgZ/fW0Vs00H/bVFqXxF8VNF8L3Wk295ZeJJpNTRZIG07wvqd6iBiAPOeC3dYDzyJShHJIGDXYUUAcpqHxL0jTfGVt4Yms/ED6lcbdk9v4c1GaxG4EjdepAbdOnO6QY74o0/wCJekal4yufDENn4gTUrfdvnuPDmow2J2gE7b14Bbv142yHPbNdXRQB5Lf/ALUPgfTddGi3Ft4zXVWSaSO0TwFrryTRxMiSyRhbI+ZGrSxAuuVHmx8/OuZf+GlvCP8A0CPiB/4bjxD/APINHiP/AJOm+Hn/AGJnib/0u0GvVaAPKv8Ahpbwj/0CPiB/4bjxD/8AINVtS/ao8CaLp11qGpWvjbTdOtImnub29+H+vwQW8Sgs8kkj2QVEVQSWYgAAkkCvXq8q/ax/5NZ+Mn/Ymaz/AOkM1AHqtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFeX/GTxPrEOveBfBmhatN4dvvFeozQy61axQy3FnbW9tLcSGFJo5IjI5jjj/eIwCyO2CVFAHqFFedfAjxtqPjfwPctrMqXOs6PrGpaDeXUaBFuXs7uW3WbaAADIkaOwAADMwAwBXJ/BjWvH3jPwv8AErS9a8WWtx4h03xZd6RbaxZ6VHbx2tsEt3xDAzSDciyybDK0vzbS+8ZUgHuNFfPek+KviTpfgj4naStxrHj7UtD15dL0fXtMtdOi1O4tZLe2mmk2P5Nm89sZ7iMNtVGaBFaNmDq3pXwV1628TfDyw1G08T6z4tjklmR77xDZwWl/HKkrRy288MNvAsckUiPGyGMMChByeaAMT9pb/knWkf8AY5+E/wD1IdOr1WvKv2lv+SdaR/2OfhP/ANSHTq9VoAKKKKACiiigAooooAKKKKACiiigDyrxH/ydN8PP+xM8Tf8ApdoNeq15V4j/AOTpvh5/2Jnib/0u0GvVaACvKv2sf+TWfjJ/2Jms/wDpDNXqteVftY/8ms/GT/sTNZ/9IZqAPVaKKKACiiigAooooAKKKKACiiigAooooAK4j4nfD278a/2BqWjarDoXifw9fG/0u/urRru3VnhkgljngWSJpY2imkG0SIQwRs/Lg9vWB428daN8PNE/tXXLiaG2aaO3ijtLSa8uJ5XOFjighR5ZXPJ2orHAY4wCQAYPw6+HOo/DfR9H0qz1q2vbMS319rc13YMbrUb66mad5o5FmCwL5skx2FJPlZFDLsy3IeFfg58RPCPhv4jW1h8Q9Cg1/wAU6rJq1nq0XhWTZpcsqJHKfJe+YTELGhTLKFYEsJFOwes+GvEumeMNBstZ0e7W+028j8yGZAVyOhBUgFWBBBVgGUgggEEVy/hr46eAfGHg3xB4t0bxTYX/AIY0Ge5t9R1iNyLWFoFDTESEBXRVIO9CVPYmgDG8L+AviR4V8FNpNr4z8K/2jC0UdnO3ha7e1ihXcZDJG+ptPNPIzZaZrjkjJUsWZuy8B+D18E6B9ia5F9e3FxNfX14IhELi5mkaSVwgJ2ruYhVySqhQWYjJw7f46+C7jwfqHiQ6ldW1hp91HYXVtd6Xd2+oQ3UhjEVu1lJEtz50nnQ+XH5e6QSxlAwdc9L4Q8YaR480GDWdEuzd2ErSR5eJ4ZI5I3KSRSxSKrxSI6sjxuqsjKysAQRQB5x+1ZZzal8JbS0t7+40u4uPFvhaKO+tFjaa2ZvEGngSIJEdCyk7gHRlyBlSMiuw8ReB9a1q60mWz+IXiTQI7JFSeDTrfTHS/IIJaYz2cjAnGD5RjHJwBxjmv2lv+SdaR/2OfhP/ANSHTq9VoA5TUPBur3njK21qHx34gsdNi27/AA5bwacbGbAIO53tGuBnqdsy9OMUaf4N1ez8ZXOtTeO/EF9psu7Z4cuINOFjDkADa6Wi3Bx1G6ZuvOa6uigDj/DvgfWtFutWlvPiF4k1+O9Rkgg1G30xEsCSSGhMFnGxIzgeaZBwMg85i0fwDrumeG9U0y5+JXijVr28x5Gs3ltpS3Vjx/yxWKySE/8AbWOSu1ooA4r/AIQHXf8AhDf7F/4WV4o/tLzvN/4SP7NpX27bn/V7PsX2fb2z5O7/AGqNY8A67qfhvS9MtviV4o0m9s8+frNnbaU11fcf8tllsnhH/bKOOu1ooA4/xF4H1rWrrSZbP4heJNAjskVJ4NOt9MdL8gglpjPZyMCcYPlGMcnAHGJdQ8G6veeMrbWofHfiCx02Lbv8OW8GnGxmwCDud7RrgZ6nbMvTjFdXRQBymn+DdXs/GVzrU3jvxBfabLu2eHLiDThYw5AA2ulotwcdRumbrzmovDvgfWtFutWlvPiF4k1+O9Rkgg1G30xEsCSSGhMFnGxIzgeaZBwMg857CigD51u/AOu6Z+0H4R0y5+JXijVr288GeJfI1m8ttKW6sf8ATdB/1KxWSQn/ALaxyV6r/wAIDrv/AAhv9i/8LK8Uf2l53m/8JH9m0r7dtz/q9n2L7Pt7Z8nd/tVz/iP/AJOm+Hn/AGJnib/0u0GvVaAOK1jwDrup+G9L0y2+JXijSb2zz5+s2dtpTXV9x/y2WWyeEf8AbKOOvNf2xfB2r6h+zf8AEe8g8da/plvp3g3VftOn2sGntBqm2zlLfaDJaPIu8AqfIeLhjt2nBHv9eVftY/8AJrPxk/7EzWf/AEhmoAP+FN+Lv+i7fED/AMAfD3/yqo/4U34u/wCi7fED/wAAfD3/AMqq9VooA8q/4U34u/6Lt8QP/AHw9/8AKqrn7Pmvax4i+HEsuvarNrmpWWv67pJ1G5ihiluIrPV7u0haRYUSPf5UEeSiKCcnAzXpNeVfs0/8k61f/sc/Fn/qQ6jQB6rRRRQAUUUUAFFFFABRRRQAV4x8e7+28K+OPhN4v1u7h07wnoes3n9p6leOsdtYGfTrmGGeaRiBGm9/J3k43XCg8Ma9nooA8R/Zo1qw03wcsF5qFtYTeK/EPiDXPD2l3Uiw3Fzp8mozTrLDCSGZCk0cxKg4WdCcbq8XtfEWl/EL4S/HseFNZsvEL2HxFt9Yu4dHnS8kaxiudPmmwkZYsHitrlQMfMUYDODX2tRQB8Y+ItfsPE3xXuvinpGs2t98LtN8WaE17rds6yafIsOn6hBPciYHY8MUt7ZB5gSqG3fJHlNj2z9mqYatpfjvxFaS/aNA8QeLL3UtGmVdsc1p5cMXnR/3o5JYZpFccOsgcEhgT7FRQB5V+0t/yTrSP+xz8J/+pDp1eq14/wDtWanDovwltNQuEuJLe08W+Fp5EtLaS5mZV8QaexCRRqzyNgcIilmOAASQK6v/AIW9oX/CG/8ACT/YPFH9m+d9n8j/AIRPVft27OM/Yvs32jb/ALfl7fegDtaK4rWPi9oWh+G9L1y5sPFEllqWfIis/Ceq3V0mBn99bRWzTQf9tUWpfEXxU0XwvdaTb3ll4kmk1NFkgbTvC+p3qIGIA854Ld1gPPIlKEckgYNAHYUVymofEvSNN8ZW3hiaz8QPqVxt2T2/hzUZrEbgSN16kBt06c7pBjvijT/iXpGpeMrnwxDZ+IE1K33b57jw5qMNidoBO29eAW79eNshz2zQB1dFcf4d+Kmi+KLrVrezsvEkMmmI0k7aj4X1OyRwpIPkvPbos544ERcnggHIqLR/i9oWueG9U1y2sPFEdlpuPPivPCeq2t0+Rn9zbS2yzT/9skagDtaK4r/hb2hf8Ib/AMJP9g8Uf2b532fyP+ET1X7duzjP2L7N9o2/7fl7feuV079qrwJrFu8+n2nje/gSaW3aW1+H2vyossUjRyxkrYkB0kR0ZeqsjKcEEUAev0V5V/w0t4R/6BHxA/8ADceIf/kGj/hpbwj/ANAj4gf+G48Q/wDyDQAeI/8Ak6b4ef8AYmeJv/S7Qa9Vr5/0n4l6R8RP2pvBX9lWfiC0+x+DPEXmf274c1HSN2++0PHl/bIIvM+6c7N23K5xuGfoCgAryr9rH/k1n4yf9iZrP/pDNXqteVftY/8AJrPxk/7EzWf/AEhmoA9VooooAK8q/Zp/5J1q/wD2Ofiz/wBSHUa9Vryr9mn/AJJ1q/8A2Ofiz/1IdRoA9VooooAKKKKACiiigAooooAK88+LPjnWPD994T8NeGGsIfE3ii/ks7S81W3e4tbOOGCS4mmkhSSJ5fki2KiyL88qEkKGr0OvPPix4G1nxBqHhHxL4ZWwn8SeFtQkvLay1Sd7e1vY5reW3mhkmSOVovllEgdY3+aJVIwxIAM/wr8bYZvgt4i8b+IoI7Sbwr/a0Otw2eSgl06WaOdogScK/kGRVJJCuoJJBrn/AAj8RviPqOrN4U1pvDFr4r1fw9D4i0m4tLOd7WyUzJFcW88RuN1yYPNhIlV4RN5hHlw7cm7oPwY1S3+Feo+A9Zj03UbPxdHrc/inUobqSJ4bjUJJJGS2h8oiWMGeSPc7xkLEhwxYhZfhh8N/GFj40TxT42fQ21LS9Aj8N6bHo00sizxiRZJ7qVniTymmaODEChxEIz+9k3fKAc9b/F3x14b8O/Eu41+90jXpPD9/baRp+o+HvCmoFRcPFHJPJJZRXNzNPFAJ42by3QnypVyuNw9U+FPiC58VeA9L1m48TaH4wW+Qzw6z4csntLKeIk7dkb3E5BA4P7w8g8DpXP8AhHwv4w+GvwpsbHSdP0TxF4xlnlv9UW/1Waxs5Lq5mee6ZJ1tpnKiSRggMYyoXO3GK6D4X+C5fA/hmW1ufs41C/v7zV71LMt9njuLqd55Uj3AEqGkI3EKXOXKgsQADmP2lv8AknWkf9jn4T/9SHTq9Vryr9pb/knWkf8AY5+E/wD1IdOr1WgAooooAKKKKACiiigAryr9mn/knWr/APY5+LP/AFIdRr1WvKv2af8AknWr/wDY5+LP/Uh1GgD1WiiigDyrxH/ydN8PP+xM8Tf+l2g16rXlXiP/AJOm+Hn/AGJnib/0u0GvVaACvKv2sf8Ak1n4yf8AYmaz/wCkM1eq15V+1j/yaz8ZP+xM1n/0hmoA9VooooAK8q/Zp/5J1q//AGOfiz/1IdRr1WvKv2af+Sdav/2Ofiz/ANSHUaAPVaKKKACiiigAooooAKKKKACsvxN4q0XwVod1rXiHV7DQdGtQpuNQ1O5S2t4QzBVLyOQq5ZlAyepA71qV5B8Zd/8Awtb4JLdY/sZvEN35gfPlm6GmXZtt3bqJCu7jeEx822gD1fT9QtdWsLa+sbmG9srqJZoLm3kEkcsbAFXVhwykEEEcEGsvwv458N+OFv28OeINL19dPuWsrw6Xex3Itp1+9FJsY7HGRlTgjPSvAvBcuuf8Mj/FaTws7/aftHjBvCz25Odn2u9+ymM9du/GzHG3Zt+XFQeG/Dmk+LviFpfh/wAKX6aV4evvhLbWN1daKIzJb2zzqunFA6sgHlNf+XuVgMscEcUAe3aL8aPh94k8M6p4j0jx34a1Xw9peft+rWWr281paYAY+bKrlI+CD8xHBrpdF1zTvEukWeq6Rf2uq6XeRLPbX1lMs0E8bDKujqSrKRyCDg18x+INU8Uve+EPDfirUrXxFpXh34madYXGurbJbLfW5sHntPPiT92s8d9JZodgVC6RMqoTsX0n9nB/Mj+Jj2zRtoreONUOnNAcxlcx/aSPf7Z9s3f7W6gC3+0t/wAk60j/ALHPwn/6kOnV6rXlX7S3/JOtI/7HPwn/AOpDp1dVp/g3V7Pxlc61N478QX2my7tnhy4g04WMOQANrpaLcHHUbpm685oA6uiuP8O+B9a0W61aW8+IXiTX471GSCDUbfTESwJJIaEwWcbEjOB5pkHAyDzmLR/AOu6Z4b1TTLn4leKNWvbzHkazeW2lLdWPH/LFYrJIT/21jkoA7WiuK/4QHXf+EN/sX/hZXij+0vO83/hI/s2lfbtuf9Xs+xfZ9vbPk7v9qjWPAOu6n4b0vTLb4leKNJvbPPn6zZ22lNdX3H/LZZbJ4R/2yjjoA7WiuP8AEXgfWtautJls/iF4k0COyRUng0630x0vyCCWmM9nIwJxg+UYxycAcYl1Dwbq954yttah8d+ILHTYtu/w5bwacbGbAIO53tGuBnqdsy9OMUAdXXlX7NP/ACTrV/8Asc/Fn/qQ6jXVaf4N1ez8ZXOtTeO/EF9psu7Z4cuINOFjDkADa6Wi3Bx1G6ZuvOa8v/Zb8J6pZ+DfFV1L401y+gu/FPim3hsp4bARWTrr1+pniKWyuXYguRIzpuY4RVwoAPe6K4rR/AOu6Z4b1TTLn4leKNWvbzHkazeW2lLdWPH/ACxWKySE/wDbWOSj/hAdd/4Q3+xf+FleKP7S87zf+Ej+zaV9u25/1ez7F9n29s+Tu/2qAOf8R/8AJ03w8/7EzxN/6XaDXqtfPXjnwPrWo/Hj4WaPb/ELxJpeo2vg/wASPL4gtLfTGvbsC80QFZFks3twCWBPlwocouCBuB9V8ReB9a1q60mWz+IXiTQI7JFSeDTrfTHS/IIJaYz2cjAnGD5RjHJwBxgA7CvKv2sf+TWfjJ/2Jms/+kM1dVqHg3V7zxlba1D478QWOmxbd/hy3g042M2AQdzvaNcDPU7Zl6cYryr9qHwbq9n8C/jbrU3jvxBfabL4M1vZ4cuINOFjDmwlA2ulotwcdRumbrzmgD6Aorj/AA74H1rRbrVpbz4heJNfjvUZIINRt9MRLAkkhoTBZxsSM4HmmQcDIPOYtH8A67pnhvVNMufiV4o1a9vMeRrN5baUt1Y8f8sViskhP/bWOSgDta8q/Zp/5J1q/wD2Ofiz/wBSHUa6D/hAdd/4Q3+xf+FleKP7S87zf+Ej+zaV9u25/wBXs+xfZ9vbPk7v9qvFP2fPhP4ov/AeqywfGfxxpyL4t8TxGG2s9CKsya7fo0h8zTGO6RlMjAHaGdtqou1QAfUFFeVf8Kb8Xf8ARdviB/4A+Hv/AJVUf8Kb8Xf9F2+IH/gD4e/+VVAHqtFeLeH4PFXgX48+HPDOofELXvGmj6z4a1jUZINdtNNjME9rdaXHE0bWlpAeVvZgwYsD8uMY59poAKKKKACiiigArL8TeFtF8a6HdaL4h0iw17RroKLjT9TtkubeYKwZQ8bgq2GVSMjqAe1alFAGNH4M8Pw3ei3UehaalzokD2ulzLZxh7CF1VXjgbGYkZY0BVcAhFB6CsuD4R+BbXQ9a0WHwX4ei0bW5mudU0+PSoFt7+ViC0k8YTbKxIGWYEnArraKAOeg+HfhS18GHwhD4Z0eHwmYWtzoMdhEtgYmJLR+QF2bSSSRjBya1NF0TTvDWkWelaRYWulaXZxLBbWNlCsMEEajCoiKAqqBwABgVdooA8q/aW/5J1pH/Y5+E/8A1IdOr1WvJP2oZnt/hfp0scEl1JH4w8KOsEJUPIR4h08hVLELk9Bkgc8kV02j+Ptd1Pw3qmp3Pw18UaTe2ePI0a8udKa6vuP+WLRXrwj/ALayR0AdrRXFf8J9rv8Awhv9tf8ACtfFH9ped5X/AAjn2nSvt23P+s3/AG37Pt7487d/s0ax4+13TPDel6nbfDXxRq17eZ8/RrO50pbqx4/5bNLepCf+2UklAHa0Vx/iLxxrWi3WkxWfw98Sa/Heorzz6dcaYiWBJAKzCe8jYkZyfKEg4OCeM4HxT+Nl38K7hDP8OfFev6XJc2dlHq2kTaX5D3N1cR28EIWe9ilBM0sabjGFG7JbaCQAen0V5V/wuTxd/wBEJ+IH/gd4e/8AlrR/wuTxd/0Qn4gf+B3h7/5a0Aeq15V+zT/yTrV/+xz8Wf8AqQ6jR/wuTxd/0Qn4gf8Agd4e/wDlrVT9lO8m1L4S3d3cWFxpdxP4t8UyyWN20bTWzN4g1AmNzG7oWUnaSjsuQcMRg0AewUUUUAeVeI/+Tpvh5/2Jnib/ANLtBr1WvKvEf/J03w8/7EzxN/6XaDXqtABXlX7WP/JrPxk/7EzWf/SGavVa8q/ax/5NZ+Mn/Ymaz/6QzUAeq0UUUAFeVfs0/wDJOtX/AOxz8Wf+pDqNeq15V+zT/wAk61f/ALHPxZ/6kOo0Aeq0UUUAeVeI/wDk6b4ef9iZ4m/9LtBr1WvKvEf/ACdN8PP+xM8Tf+l2g16rQAUUUUAFFFFABRRRQAUUUUAFFFFAHlX7S3/JOtI/7HPwn/6kOnV6rXlX7S3/ACTrSP8Asc/Cf/qQ6dXqtABRRRQAV5V+0t/yTrSP+xz8J/8AqQ6dXqteVftLf8k60j/sc/Cf/qQ6dQB6rRRRQAV5V+zT/wAk61f/ALHPxZ/6kOo16rXlX7NP/JOtX/7HPxZ/6kOo0Aeq0UUUAeVeI/8Ak6b4ef8AYmeJv/S7Qa9VryrxH/ydN8PP+xM8Tf8ApdoNeq0AFeVftY/8ms/GT/sTNZ/9IZq9Vryr9rH/AJNZ+Mn/AGJms/8ApDNQB6rRRRQAV5V+zT/yTrV/+xz8Wf8AqQ6jXqteVfs0/wDJOtX/AOxz8Wf+pDqNAHqtFFFAHlXiP/k6b4ef9iZ4m/8AS7Qa9VryrxH/AMnTfDz/ALEzxN/6XaDXqtABRRRQAUUUUAFFFFABRRRQAUUUUAeVftLf8k60j/sc/Cf/AKkOnV6rXlX7S3/JOtI/7HPwn/6kOnV6rQAUUUUAFeVftLf8k60j/sc/Cf8A6kOnV6rXlX7S3/JOtI/7HPwn/wCpDp1AHqtFFFABXlX7NP8AyTrV/wDsc/Fn/qQ6jXqteVfs0/8AJOtX/wCxz8Wf+pDqNAHqtFFFAHlXiP8A5Om+Hn/YmeJv/S7Qa9VryrxH/wAnTfDz/sTPE3/pdoNeq0AFeVftY/8AJrPxk/7EzWf/AEhmr1WvKv2sf+TWfjJ/2Jms/wDpDNQB6rRRRQAV5V+zT/yTrV/+xz8Wf+pDqNeq15V+zT/yTrV/+xz8Wf8AqQ6jQB6rRRRQB5V4j/5Om+Hn/YmeJv8A0u0GvVa8q8R/8nTfDz/sTPE3/pdoNeq0AFFFFABRRRQAUUUUAFFFFABRRRQB5V+0t/yTrSP+xz8J/wDqQ6dXqtcD8cvDN/4q+HNxDpds19qOnajpuuW9irhGu3sL+3vRbqx4UyG28sE8AuCcCuo8K+KNO8a+G9N17SJ/tOm6hAtxBIVKttYZwynlWHQqcEEEEAigDWoryGP433jfFI2R02AfDxrz/hHk8Rb23nWwcmLH3fIJ/wBHEnX7QpjxkivSPFnijTvBPhrUte1ab7Pp2nwNPM6qWbAH3VUcsxOAFHJJAHJoA1q8q/aW/wCSdaR/2OfhP/1IdOqtpvir443dhb3DfDvwQnnoJhFeeMru2niDDcI5I00uZQ6AhWKyMCVJGAcDxH9ob42fEi8S08EJ4D8Jah4mh17Qr+Ox0rxbfSJLcW+oW99HZNdz6TDZwzypb/LHNcJIVkVlRy0auAfZlFfFN5+2z8eLPx5beDB+yrLd+JZo/OeysPH1ldfZIyCVe6eKBktVfDbGmZA5Vgu4g1V+If7dnxu+FbW6+Jv2WpbIzRPcHyPHlndC3t0ID3E5ht38iBSy7ppdsa55YUAfcFeVfs0/8k61f/sc/Fn/AKkOo181eI/+CgHxk8J+Kbfw9qX7MDpqMq2ru1v48tLi2tVuZDHbG5uY7dobYSupVDM6byPlzWcn7THx1/Zd+Feuat4x/ZutrDQINX1bWp9SufiLpsYT7dqNxeCFUVGaR1Nx5YC5ZyuQoLbQAffdFfEnjb9uP46/D3S9Nv8AWv2VLhIdSJ+yx2Pjq0vZ5FCeY8nkwW7yCNF5eQqFTI3EZGYPE37efxp8I32j2upfswANq0K3NvPafEGyurdIGZVSeaaKBo7eFmdQsszIjHOGODgA+jfEf/J03w8/7EzxN/6XaDXqtfB/xI/aE+P/AIH8UWPxY8T/ALNNtoGg+FtA1PTrs3fxI0sRlbu4sJBJv28FTYhBGFYuZgByAG0da/bq+OWg+EtC8SXH7Kl1cabrwibSo9P8cWt5d33mRGZRDaw27zOfKV5CAmVVGZsBSQAfb9eVftY/8ms/GT/sTNZ/9IZq+Y/FH/BRD4t+D9J0fVtS/ZoU6NqlvFeQarZeP7O8s4raVlWK4uJ4YHjtoWLcSzMiHa2G+VsW/j18cP2ifEXwP+IGja3+zJbeF9I1TQL7T7rW7z4k6UYrGOa3eIzMCqghd+7G4ZxjIzQB9zUV8Nt+3p8bP+FbaP48i/ZamuvDWsRwSabNaeOrSe4vPOx5SxWqW5nd2BzsWMsAGJACki3qX7cXxv0f4Z3XxCvf2YoLfwfa2TX82pv8SNOwkSg7sp5W/eCCvl7d+/5Nu7igD7Zryr9mn/knWr/9jn4s/wDUh1GvHr39qD9o7TNHn1W9/ZSgstMt4Gup7y6+J2lRRQwqu5pHZkAVQoJJOAADmsX9nz46/EOx/ZwtvHp8E+Drbw3rWtavqsH23xheNdl77WbqSO3SG20mfzZDJOIkETO0h24UFtgAPtCivng/tCePY/h7P44uPDfw3sfC9vuWe+vvHWo2xgkWXyWgkjk0RZEmEv7owsokEnybd3y1v+G/iJ8ZfFWiWuq2Xw38GwWtypZI9S8W6rY3AAJHzwT6GkiHI6MoOMHoRQBp+I/+Tpvh5/2Jnib/ANLtBr1Wvn/UtJ+N+ofFTw94y/4Qr4fx/wBkaNqekfYv+E3vj5v2uewl8zf/AGP8uz7BjbtO7zc5G3DdX/wknxv/AOiefD//AMLy+/8AlNQB6rRXj+peOvjDotulxqHgn4b2Fu80Nsstz8QbyNWllkWKKMFtGALPI6Iq9WZlAySBXwX+xr+0N+1n4g+KWuaNp3hz/hYHgSDWLmC4ufENy8Ntp4EzBkg1Fk3uF4ATZIQoGI17AH6qUU1NxVdwAbHIU5AP1p1ABRRRQAUUUUAFFFFABXhfivTfGPw98R6noPgiwuJdM8bztLaahFF5kPhu/ds3txIOgjdC9winhrhXUn9+uPdKKAOQb4U+HW+GP/CAi0dfD32L7CEEp84KBxL5n3vN3fP5md2/5s55rzvwrpvjH4ieJtM0Txxp88OmeCZlmur6SLy4PEeoI2bO4iHQxRxhZ3UcLcOig/6O2fc6KACvjzxvoPiHxF8TPFvw18Naj4Y8Tafrvi/SvE+o3MGpSnVPCot3sppVuIEgeMbxZr5G+aF2Mp2o6xMR9h0UAfEfwlNzpPxh0m30/wAS6o3xSuvHWuTeN/C02oyNB/Y7LdeRdvZ7gqxhBpYhuiu8h44t7IFjXvv2irzW/DPxSurjwpL4Z8Ua54q8Jt4ffwPqmpS22oS7Z5TBd26xwT74s3FwkplWONQqM0yKrV9PUUAfn78RNNj+GvxJ8O+G5Ndtmu9E0jwrp2r+D9Udg3xE8qXbBLZ5+fzLWWMuRGGEvEc+2L7/ANQftja5p2g/spfF6bU7+106GfwpqlpFJdzLEsk0tpLHFEpYjLu7KqqOWZgBkmvYqKAPmfVPiD4Y8H/EP4f/ABD1zXNPTwHe+BbzTbPWzNG9m9001nMIElBw0k8cTFEXJk+zsBkgA+JaTpd18Lfgn4x8IeNYWtvE/i/4VaPonhzSLpFFxf3S2t7B/ZkCE/vJoJLiLdGPuCYN0yR+gtFAHn3xS1K28H/AnxJceItWtbSO10GaK61G9nWKIyGEpku5AG5yAM9SwHU14R4S8baBoPh/9mn4gaj4i0228BWPhC70q71qS6j+w217JbWQj82bOyMg2l1DkkfvG8v7zAH64ooA+MrT4heCPDP7POk/C7xr4s0TwfrXjrTtTMsXiG8g0+bTtEurm5ZZJUndCjLDcLFHEQWMhPyFIpmT6yXxFoWh+DY9bm1C20vw3b2S3Jvr6XyIYbcIGDyNJjYoXBJbGO9bdFAHxH8E/FGjaf8As+/sneM7rWbBPCHhuA22s6o1xGbXS530qe3R7iQnbDtlbyCWI2tOqnGTXOfFTQfHOofsk/EnV7HRdFvvh/eW/i7XrWLU9TnsbqCO6urySC6jgW1kWYG3kaWNGkjBNxubDKjL9/0UAc/4d1aew8C2OpeJBp+iywWCz3/lXpltbYKmXPnukeUUAksyLwOQK+Rvhr4o0fUv2d/hB4ostcsLvwz4X8f3d3r95bXKTQWkDSaiivOykrGiPd2kzMxARMSHCjNfbNFAHwpqi6RrXiDRvFHirX7nRPgzrHjnW9Wt9bgv5NMt1k+yQQ2U5u0ZDDDLJFfvHOrpvaaEq/70bvpv9mS58QXfwJ8JSeJry81HU/s8ipfaiCLq6tVmdbSabIB817cQu5YBizNkA5FeoUUAFFFFAH56/FL4e/B7VPiJ458I3eo/s7/CC38NeINMWztNc8H2Y1O7ijttP1Eu8hv7cGCWSWS3dRFho1kXdkkj3X9jnSfBF9L481bw3ovwvuLvR9aOgweK/hr4fg0231C1axsLtlyk05O2adkYCUqTCvAIr1Xwd4O1zUPFSeNvGqafb+JIbKbS9P0vR7qS4s9MtZZInnAneKJ7iWZ7eB2d40VFijjRARLLPynwQ8DfEv4ef8Id4U1Z/D8fgHwn4ZOgxT6ffyz3msTxfZIrS7lge0QWuIYLktEk8o3XAGX2B6APa6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyr9p280+x+DetSa9c+V4Sk2Wuv2qXFnaS31hMfJktUuby4ggt/MMiK0jPu8syLFtmeORPhW8/aG+F8PhW58PeJPFXxA1W08N2UusWmqaf8QNGbWI7yWO6t1vo73+35nnuUtVMf2S2Cxb5p3e2IuoI4vv/wCOPgjUPiR4EPhywsNPvPtl7bSSz6hql5YfYPJlWeK7ia02zSywzRQyLEssG/aR50fU+FaT+yXrfhnxb4q1BNR8UeL76bw/pENpf6h8R9c0eG7vVvtSku4TJBcTzxwQxXFv5KSLLgHG9pHnlYA+ivC/hm/8CfDe20eyupNZ1iysm23GoXd3OLm6ILEmS6nnnEZkJwrzOUUhQxCivDv2OPi54l+LE+tvqHiu48U2mmWNpaa1Hqlna2lzpPiINL9usYo4I0Jt4wIiHfzMlgFmlIkCe3eGfAt1pnwl0rwbrPiC+1y9t9Ei0i919naO7vJFgEUl0WZnZZHIL5LMQTyT1rh/gn8A9T+GWuR6vrviWw8Q39r4fs/DNpLpuif2ZutLYsUe5/fy+dNyPmXy0X5tsa7jQB8t/ET4gazqH7YF/p+j/Ea3a3fxzoMFpp9t45gjWO1iOnR31qbUa9EFYyR3qNbtpkzuzMAxMimPtf2J/Hd7rnjuI6jFqEsniXRrrW7YTfEDWtci0mDytHuIbBrW+iWMS/ZtVs5GuEkmJka4CmNGEMfV634I+LVr8cIfiS9h4gutFt73VYINA8N6pps9+LaSXToY4WXUNtuljNHowu2MMyXCyal5YVTHJK+T+zH8N/FfgH4j+Gri++E/iDw3YSaNqFle3eoanplxb6Q7GxWzt7cwXzyzRLZ6faWbzSRl5DYWkoSFprtnAPC9B8MeBdE+GvwodPAfw3024i+HNlq19/bHgbTvENzrLyWlo5vp40ubeaygVxNGL65lW2MhuvtDQBLaSf6f/Zk8J6H4T+KniL+xNG8H6N/aXw/8I6lff8IHapBo91dST615lxbbAN8TbRsdssUCZPFeP+HPhL408I/BfwR4a0z4C6wt9oumWLaloUkPhmPTb3V4bYRy6nb3sGoxXtpqDlQiagGkMS/OLdpMEfQHwQ8H3Nl8aPiT4uT4YXHwz03xBpmkxvFdjTVm1LUIrnU5bq5cWNxMGYrdW+ZJCGY567c0Ae60UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=="]
math
multiple-choice
28
已知函数 $f(x)=\log _{a}\left(2^{x}+b-1\right)(a>0, a \neq 1)$ 的图象如图所示, 则 $a, b$ 满足的关系 是 ( )
$0<a^{-1}<b<1$
$0<b<a^{-1}<1$
$0<b^{-1}<a<-1$
$0<a^{-1}<b^{-1}<1$
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCABZAGsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/iiiigArO1PVtK0W3jvNY1PT9JtJtQ0nSYbrU723sLaXVdf1Wy0LQtMjnupIopNQ1rW9R07R9JslZrnUdVv7LTrOOa7u4IZNGv4tf+DtX4+ft2Xml/sy/sxfsffAX9qjVvCGk/En4Y/G/wCJPx3+E3wY+Kmu+DX+MEnxG03wZ+yz8I9D+IPhzwve+HL7xvJ8VLyw1618JQajdapqXj/U/g1YaTazeIZbewkAP7SqK/CH416/40/b/wD+CHes/Fj45/sq+PPB37TOm/Ai5+KcfwR+KPwa8QeE/ip8Of2rfg5aX8dv4i+G3gzx94XTxdoms3fi7SNS1D4Wa5ouknXdW8IeKLK00uW5k1m6spv1Z+Afw8/4R9viR8VdX8K2ng7x3+0D4s0n4heNdDt7a3t72xfRvBHhf4e+FbbxG9qzQX3i6Lwd4Q0R/E94u9bbVZp9Btbq90nQ9MupAD6FooooAKKKKACiiigAooooAKKKKACvz/8A+ClX/Jvvwv8A+0gH/BKn/wBedfsi1+gFfn//AMFKv+Tffhf/ANpAP+CVP/rzr9kWgD7d8Q+EfDniubw5N4i0qDVm8JeI7TxdoEV085tbLxHp9jqNhp2qyWaSpaX8+mR6pdXemJqUF3Bp2sR6fr1lFBrekaTqFl0dFFABRRRQAUV8pfG79tT9nr4D+JbX4deJPF1/4y+NWq2S6h4f/Z8+DvhvXvjB8fNes5di2+pwfCn4fWOu+KdG8NSSyRR3HjvxbZ+Hfh/o6yC51/xVpNjHNdR+LG6/4KE/tI8WFl4W/wCCevwqvf8Al+1pfBf7Qv7Y+q6fJ3ttEs7jX/2XfgXrAR1kgutS1T9rOGRVkhvfDuiXbBoQD761TxP4b0PUPD+ka14h0PR9V8W6jcaR4V0zVNWsNP1DxNq1ppl7rV1pfh+yu7iG51nUbXR9N1HVriy06K5uYdMsL2/kiW1tZ5Y9yvzE/Ym8E/8ABO3xX438f/ET9n/4j+Gv2of2kfhd4n8U/C74u/Gn4o/Ea8+Nf7TvgTxT4f1rUfDXirwdreo+O7i48VfBnRZtX0u+gh8C+BfD/wAOvhpe29vFd+GPDTaQbOZv07oAKKKKAPg7Vf2E/wC1dU1LU/8Ahsj9vHTf7Rv7y/8A7O0r9ob7Hpdh9suJLj7Fptp/wiEn2WwtfM8iztvMk8i3SOPe23caH/DAn/V6v/BQD/xI7/8AA2v0AooA/JT4+/Aj4Xfsz/D+T4jfFf8Abv8A+Chmn6Vc63pHhHwvoOg/HXVfFXjj4h+PvEsz2nhP4cfDfwT4f8B3/iPxx4+8WX0b2mgeGNAsLu/uzHc3kq2+m2OoX1r+Wf7Si6J41tvCHwF8eeP/APgrH+z98az+0z/wTU+IXhj4cftS/Gr4R61YePvhb4i/4KY/sn/DDWfiX8OvEvwJ8bfGnwBc6/8ADPxF4u0K8Oia14v0P4g+BfFd74L8Q6p4LOmzW01x+p/7c1lrXgj9tL9gX9pjxn8MPjB8V/2dfglpX7S2m+ILb4KfCb4k/HvxN8L/AI5fEnwz4G8P/Cz4q6x8G/hD4e8cfEnxLo0Pgq2+Lngi38TeEvAviCbwNf8Ai4XOqNYWOtLewfC37SfgX4tftBfFHSv+CgHxU+HHjT4JfDrQP2jP+CUn7Mv7JXwr+JFsPD3xW1TwVr//AAVv/Y5+IXxj+NfxV8BJNdXPw8vPiB4k8MeA9F+HXgTxHdxeN9H8G+Fp9W8d+HPCXiLXh4e0sA/VH/hgT/q9X/goB/4kd/8AgbR/wwJ/1er/AMFAP/Ejv/wNr6X+Ov7Q3wc/Zr8Gx+OfjP42sfCOj32p2vh/w5pyWmp6/wCMPHXivUA/9leCfhv4D8NWWr+NfiP461po5E0XwX4H0HXvE2qskn2HS51ilZPkFLL9tf8AbCUTard+If8Agn9+znqOWi0PR5/DuvftxfEvRZCTG2ueIFXxJ8M/2VNI1e0bbcaN4aj+KvxqWxuYp4fGvwP8Y2U+nWoB83/HPwr8IPgn4ss/hRZ/tm/8FL/jZ+0PrOnR6r4e/Zr+BHx0tvHvxkv9LuGKWniDxHpr+H9I8K/CfwPdSq8EXxL+NXiz4b/Dc3SNYjxYdRaKzl5TwJ/wTi/bR+Mt/da58f8A9ur9sL9m34Y38AXS/gT8Ff2pdY8cfGeSFiSsvxK/aVm8J+HvDuiXFzAUXUfBvwb+HEdxoV6s0elfHjxTZFLh/wBdfgT+zj8E/wBmnwrd+D/gn8P9I8Fadq+pSa74p1RJtR1zxl498TXChLzxh8SviB4kvdY8c/ErxrqCgDUfGPjzxF4h8TX4VFu9UmWNFX22gD8pvhJ/wSL+C3wF0rV9G+DH7QX7Y3wysfEWrTeIPE58G/GrS9EvvFviK6Z3u/EvjDVbTwKmq+LfEt68kkl94i8SXuqa1eySPJdX0zuzH1n/AIYE/wCr1f8AgoB/4kd/+BtfoBRQB/DX+xN/wau/tH+Gv25fiz+2L8d/2z/ir8AdHP7Qfxa8YfDGw/Z7+It1N+014+8F6z8R9c1fQ9Z+K/xst7W38OeGrrxtpBsNS8ZaJo+ieOLnxNBqt5b6vP4U1Fp7KD+kf/gqD43tPhL8DvCfjHwt8XPif4S+N/wau0+OPgbQPh/8R9asfEfj34VfBTU/COqftMax46+F0HjHwx4L+MPgHw98I9QvofEU3xN0HxT4U8MeNfFngX+y9OXx74p8G6Xrn6m0UAeR/Ayw8BWfwv8ADNx8MPFni7x34F11NQ8T+H/GPjX4hfED4o6v4ltPEupXmtNrdp4z+JWueIfEWpeG9SmvZLvwnDZ6iPCNj4am0u08C2dj4Oh0S0i9coooAKKKKACvw8/4KvftTW+ueFfCf7M37OmnR/Ev466F+2t/wTRu/HHig2E+q/A/9mrxBL/wUB/Ze1r4Yw/tDeI9O1bSLhdW8beKR4YsbP4Q+CL/AFD4uXXhPWpvHN1ovh/wXbp4of6c+IPxd+Kf7Xvj3xj+zt+yb4r1D4c/CjwFr994J/ab/bK0MWc+paJ4g01xD4o+AP7K7XkF7pet/GrT9zaR8Svi/e2uoeDPgDdyz6BpVl4u+Mdpqmi/Drkv2w/gl8LP2ev2O/gt8LPg74O0zwT4J0P/AIKBf8EtLmDTLBrq7vNT1fVP+Cof7JN/rvifxNrup3F7r3i7xl4n1Sa51rxZ4y8Uanq/ijxVrl3e614g1bUdUvLm7lAPoz4D/sceGfhn4yl+OfxZ8Xat+0f+1Vq2mXOlat8f/iFptha3XhbRNR2Sah4B+A/gSze58NfAT4VvIqI/hLwUX1zxQltZal8U/GfxJ8VwSeJp/siiigAooooAKKKKACiiigAooooAK/O39o74heO/j98WX/Yb/Z88Wa54KnttI0jxP+2L8efB939j134EfCbxHFLN4f8AhZ8PddVJY9J/aP8Aj3Zw3EXhu/gD6n8H/hXHrvxcmGm+JNS+Dsfij6I/at+Pafs1/Arxl8U7Xw9J418XQS+HPBnws+HtvdrY3fxK+M3xL8T6P8O/g/8ADq1vGSU2J8Z/EfxP4b0K81QQXCaHpl5fa7cQSWemXOM79kn9nyb9nH4QWvhfxH4hi8dfFvxr4g1z4rftA/FBbRrKT4o/HTx9NDqXj/xdFaytJcad4dguo7Twp8O/Dks06eCvhh4Z8E+BrKVtO8NWYAB7D8Mvhl4A+DPw/wDCHwq+FnhPRvA3w88B6HZeG/CPhPQLUWmk6Lo+nx7ILa3j3PLLLIxkub2+upZ7/Ur6a51DUbq6vrq4uJfjn/gpV/yb78L/APtIB/wSp/8AXnX7ItfoBX5v/wDBVbxZ4V8Bfsp+FfHXjrxN4f8ABfgnwX+3B/wTC8WeMfGPizWdO8OeFfCfhXw5/wAFKP2TtY8Q+JvEviHWLmz0jQfD+haRZ3mqazrOqXlrp2l6da3N9fXMFtBLKoB+kFFfEFt/wUh/Yl8R+FdZ8Y/CL4+eH/2ptI8M+IPDXhnxbZ/sQ+HvHH7d/irwXqPjLTvFmqeFrnxx4F/Y18L/AB08beCvD+u2vgbxVFp3izxV4e0jwrPqOlNo41kavd2Fjd9/8FP2u/hT8fvFWoeDvAvhP9qDQtW03w/deJri8+Nf7EX7aH7NfhWTTrPUdK0ua20/x1+0X8AvhX4J1bxA9zrNnLa+E9L8Q3nim+06HVdYsdGuNJ0LXL7TgD6gor8wP+Ccvw08OfB/4n/8FRfh14T1L4gav4f8O/t/+DP7P1D4pfFj4qfHHx3cf2v/AMEyv+Cceu3X9u/FL41+MviB8TfFHlXup3MGmf8ACTeLtW/sTR4tP8O6N9g8P6RpWmWX6f0AFFFFABRRRQAUUUUAeL/E74F+E/i343+BfjXxdqHiCVfgB8QtV+KfhLwpaXWnx+Eta8dXngLxX8PdG13xfYT6Xc3+rzeDNK8a+IdU8I20Gp2Fhpvie4svEdzaX+raHoFzpXtFFFABXx9+3B8LfHfxg+D3gPwr8OtC/wCEi17Rf2wP+Cf/AMU9SsP7T0bSfs3gT4I/t1/s6fGT4n679q13UNMs5v8AhGPhv4E8V+I/7Mt7iXWdZ/sr+x/D2n6tr19pul3n2DRQAUUUUAfL/wABv2YoPgP8TP2pvibb/Gj4wfEy5/av+MGl/GvxR4V+I8Hwai8K/DvxVo/w98KfCKw0/wCGJ+Gvwf8Ahx4pi8PxfCn4cfCnwE1r8RPFHxF1KXTvhj4f16TVW8ba/wDEbxT45+oKKKACiiigAooooAKKKKAP/9k="]
math
multiple-choice
29
从某网络平台推荐的影视作品中抽取 400 部, 统计其评分分数据, 将所得 400 个评 分数据分为 8 组: $[66,70) 、[70,74) 、 \cdots 、[94,98]$, 并整理得到如下的费率分布直 方图, 则评分在区间 $[82,86)$ 内的影视作品数量是()
20
40
64
80
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAI6AzkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxPFfiiy8H6DJrGoxzvaxyIjiBQzDcwAOCR61YPiHSYtMtdRur6GytrpA0TXjiAnIyBh8EHHavn/xTdXt1pnxZhnv7qW2tL21EFs8paOPfc5JCnoflHTHU16HdvrvhrRj4m1DWrHVrO106OVNE+xCEAKAPMRy7FWG45bBznGBxgA7X/hMfC/8A0Mmj/wDgdF/8VVKx+IfhbUvFJ8O2WrQXF95fmKY2DRuepVXHDMByQP6HHFeXe+NvHPhzxp/wjOozaHaaf5tshltdzXBYkNtaUfKBgg8HKjiun0T4gSav8QtT8KSaFdWcllbrM0sssbEZCn5grEDO9cbWb3x2AO2oqK5jkmtZY4p2gkdCqSooJQ44IBBBx7iuD8M67b+I3ns4vGusR6paA/a7O4tbWGWIg4bKmE8A4yQSBkc0AbreN9Ig8ZHwtemaz1F1V7bz1AjulIPKMCe4IwcHI4zXSV4PHFceMvG8nii61O6PhTw4JDb6vOsCu8i4LOgEO11DLxke4OeK3dT8b6Y3w3fxPH4v8QNazt9mWCNLSKfzT1QEQ/KwGTkHoMg9KAPW6K53wPpdvpXhWzhstQ1S8s3USwHU8edGjDOz7qnA9DnH0xXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZviDVV0Pw5qWqsARZ2sk4B/iKqSB+JGKANKq99Zrf2M1q808IlXb5lvKY5F91Ycg1T8N6suveGNL1YY/wBMtY5mA/hZlBI/A5H4VH4o1G/0vw7dXGlWMl9qJAjtYI1zmRyFUt2CgnJJIAAPNAHgfj668KRaX4v07RLLUl1G1vLdb66ku55YrzDjPmZfG4PvGCOxKnrjq/GXhzwnb+EL+d5WbxRHoQlGdQuCxiI2/KjyN8mQflOcd/WpNd8AaT4Z+Ddzp+s6uLeWa4S81K+C+Y88uclEBI3E42rnHdj1NZOk/DvV/GWha34q1W2RdW1W3FvpNrcNgWsPCh2OOuwcYHTJxluACpqM86aF8HLe3vbm0e6kWFpLaUxvsZoVYAj2aut8NcftI+MR/wBQ6D/0CCuV1S0uo/Gng/w9p9rJrf8Awhdot1f/AGMAHflSVUMeWGxCFzk5xwc12ngJNK8QfETxD420zWoJ0vYIrf8As/YVngCpGCZAcEHdGwGAQfXtQB6c7rGjO7BVUZLE4AHrXjPiO28G+MvEupy6UHnmltltdV1mK5EFpaRBgS/mEYkkIUKAMgjgkAGvTfFkNtdeHbqyvNJu9UtboeRLb2iqXw38Q3MuMHByDkHB7ZrmrTQLG18Ef8IkPBWrvpjReXKGltN0jcEyEif7+4Bs9iBjGBQB5y+laXrti9tpt/qL+DNHjO9bnVX36u8fIjiRmCIgIxuCjJ6eq7H9veF52svGdtos+r+HtLhWKG3gKA6O/Uk2xAGScHzNzdOMbQTk6rp1nofxj8IWek+FrrTIRbsGs0aDzLkAufmbzCG6DO9s8fSvTtI02z0NdTWw8C6nGupzNNdqZbRhIWzkYM+AvJ+UcDJoA6TQtd0/xJotvq2lz+dZ3AJR9pU8Eggg9CCCK0a4n4fxarpkV1os/g86Fo9u7Np7C9ScshOSJMOzbySWzyMHHYFu2oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8v8Aj5rH9m/DSW1U4k1G5jtxg4IUHzCfp8mP+BV6hXzf+0lrHn+INH0ZT8trbNcPg/xSNgA+4Ef/AI9QB3vwA1j+0fhslmx+fTrmSDBPO1j5gP8A4+R+Fel3z3aWcrWEMM10B+7SeUxoTnuwViB+Br50/Zu1j7P4l1fR2OFu7ZZ1yf4o2xgfUSE/8Br6ToA4yDwEupavDrPi2+/tm9gO63tgnl2dqf8AYiydx/2nJJwOmBjT1qy8R6rM9nZahb6Tp5ADXcIMt044yFDALH3G75z3AFdBRQBi+GvCuk+E7B7XS4GUytvnnlbfLO/dnY8k8n25OAK50fDeG2+K8PjPTroWsbwyC8tUUjz5GUru9MHIY/7Sg9SSO8ooAKKKKAPOPEfhXWdS+M3hrXra2B0zT7ZhPO0ijDHzPlC5yT8w7Yr0eiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8h+N/gvw+3g/W/FTWBOtKIAtyZ5OB5kafc3bfukjp79ea9erz/wCNv/JIdd/7d/8A0ojoAwPgj4K8Pr4P0TxULAjWmFwDcieTkeZJH9zdt+7x09+vNeg674M0HxJdx3Wq2ks00aeWrJdSxYXJOMIwB5Jrnfgl/wAkh0L/ALeP/SiSvQKAOLPws8Fhwh06fcQSF/tG5yQOv/LT3H50v/CqvBv/AEDLj/wY3P8A8crk9Sabxj8cIzDezW2j+EoN91PFLsBlb5mTcOgOAGHpG47iovFvjddZ8T/D+58Ka/LHaajdz2tw9sRnBMIKujggMA2RuXjOR1oA7H/hVXg3/oGXH/gxuf8A45R/wqrwb/0DLj/wY3P/AMcqp4/sdV0zwBrl5D4p1dnitHIBS2UHsRlYQw69QQfetD4YPdS/DfQ5729nvJ5bcSGWcgtgnhc9TgcZOTQBF/wqrwb/ANAy4/8ABjc//HKP+FVeDf8AoGXH/gxuf/jlbXi5pE8F660UrxSLp1wVkjbayHy2wQexFcF4OvPEGrfB2LxFceKNTF6tncuAI7YrmJpFXJaIseEGSTk80AdH/wAKq8G/9Ay4/wDBjc//AByj/hVXg3/oGXH/AIMbn/45Xk+n6/4j/wCEb+Gl2fEWom41TVZ4Jpi4ZvKaZYyp3Ah8YJG8HBPsK9wOh6iQR/wlesD38q0/+MUAZA+FXg4HP9mXH/gwuf8A45XZVjeHtAfw/bTwHWtV1NZZDIG1GVJGQnqFIVTg+hyB2xWzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5/wDG3/kkOu/9u/8A6UR16BXn/wAbf+SQ67/27/8ApRHQAfBL/kkOhf8Abx/6USV1+vyanD4f1CXRYo5dTSB2to5futIBwP8APFch8Ev+SQ6F/wBvH/pRJXcX8tzDp1zLZW63F0kTNDCz7BI4HClsHGTxmgD59ng8Y6D4VtvAywadHrnieWRrhRK010wckyyysPlUbRt43cBjnINaXjDwtb+Edc+FmiaQ0cbxX0v7+WMt5kpaDMjKCCcntkcYAOAK0fAOj/EK81i/8U6nYabY6hqLBftGpI7yQwDGI44FZSo4/iYE4Gc8ks+JX2pvGvw2hXU7e6v49SmR7jyRsWTfAcGNWGMZHG7OO9AHTfEi38Qr8Odea51TS5IBaNvSPTpEZh6BjOQD+BrX+GH/ACTHw7/15JWR8SLfxCvw515rnVNLkgFo29I9OkRmHoGM5AP4Gtf4Yf8AJMfDv/XklAGl4xz/AMIVriholZ7CdEMsixruKEAFmICjJHJIFeRaTJ4s8M6foPwzP9kmTVdOu3EhjdzFu85wu4SANn1wAM/xY59N+Joz8M/EX/XjJ/KvHtF0u0vvFnwusJUkW3n0SXzBDM8THKTE/MhDDJ64POcdKALGu+Grrw1pPwq0Oe+ieePVz/pNphgu+ZHBUsCDjd1Ixx0r1PxTY6tpfhDWtQg8VasZrWwnnjDR2oG5Y2YZxCD1HYg1578QdE0fQda8AaFoMrWscWtKfLS5Mz25d48ECQtt5BIBGM5ODzXo/iHwtqupeGtVsIfE2pSy3NnNCkcyWyo7MhADFYQQDnnBzjpQBT+EFze3vww0i6v7+e9nlEh8ydtzKBIyhc9TgDvk/hgDuK5r4f8Ahu48IeBtN0K7nimuLUSeY8WdpLSM+BnnA3Y/CuloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8/+Nv/ACSHXf8At3/9KI69Arz/AONv/JIdd/7d/wD0ojoAPgl/ySHQv+3j/wBKJK67X4tVm0C9TRLiO31QxE20kqBlDjkAg8YPTPbOea5H4Jf8kh0L/t4/9KJK9AoA840z4e63qFt9p8beJr3V7lk50+Cc21nnHRhGAX574Hfg1n6t4E17VNU8J3+naHoOjW+h3L3BskvG/ebmjOPkgwD+7689a9XooA43xVp3inxJ4W1LRl07Rrc3kJiEp1OVtme+Ps4zWb4K0Lx94em03T7+40KTQbS0W2MMEshl3DnzATGMnPG3IGPfk+iUUAcd8TLDxFq3hGbS/DttaXEl6fs9yLhtuyJuC6nIGRx68dj0rnPD/wAGkjTTZ/FGtXWpXOn232a3htW+zxQx4OU3Jh26nkkZB5FeqUUAeV+OPAd++seDm8KaJp6WOl6gtzOiOIOQyNluOmE5b5myeh79z9q8Uf8AQH0f/wAGsv8A8j1t0UAc34dHjIanqDeIxoxsZW32i2MsjPCOmxtyKGGOd3BznjBAXpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvHPjJ4u1OLXtC8FaNeTWU2pvGbm4gOH2PJsRVI5HIYnGDwB0Jz7HXzp8SMj9o/wANbun2iwx9POoA7rxl8ONC0bwPqOo6DBLp2rabavcw39vO6zEoNzbmzlsgEc+vFa/wl8Y3HjTwPFeXzBtQtpWtrlwAN7AAh8DplWGe2c4ra8d/8k88S/8AYKuv/RTV5f8As1iX/hHtcJ/1X2qPb/vbOf8A2WgD3CvFPHXiG+8T/F7S/h9a3lza6YrKdQFu5RpyUMhUsOduzA+pOc4GPa6+dNNyP2sn3dftE3X/AK9WxQB1XxN8JWHgzwg/iXwij6LqOnyxEyWkjKJUZwm11Jw/LA8g5xzkV2/hXxKfFvw5ttcKiOae1cSqvAWRcq2PQZUkexFZPxt/5JDrv/bv/wClEdY3wRZYvg673txHb2omuP30jBVjTuSTwADu60AeaeD/AAR8UdV0Gxu9E8QT2el3KExf8TOSNEGSv3Fzjp2Fe5+A/Az+Eree41HVrrV9ZuwouLy4kZvlGcIu4k4GTz1PtwBk+Efhxo6eE7OCTxDqGsRKhEU9pqUkUCcnPlLE4Xrnk7iT+Q5L4Z+O9YtPiXqPgTVtQuNUtkubmC0ubk7plaIsfmbqQVU9c4OMUAWfHXiG+8T/ABe0v4fWt5c2umKynUBbuUaclDIVLDnbswPqTnOBi18TfCVh4M8IP4l8Io+i6jp8sRMlpIyiVGcJtdScPywPIOcc5FcrpuR+1k+7r9om6/8AXq2K9L+Nv/JIdd/7d/8A0ojoA3vAviX/AIS7wXpmtsqpLcR4mRegkUlXwOwyCR7EVg/G3/kkOu/9u/8A6UR1n/AESj4Xw+Z903c3l/7uR/XNaHxt/wCSQ67/ANu//pRHQBz3wl8eeFdG+GOj6fqWu2Vrdxed5kMj4ZczOwz+BB/GvS9E8UaH4k8/+xtTt777Pt83yWzs3Zxn67T+VeK/Df4OeF/FXgHTNa1Fr8Xdz5vmeVMFX5ZXQYG09lFeq+C/h7ongP7d/Y5uj9t8vzfPkD/c3YxgDH3zQBq634o0Pw35H9s6nb2P2jd5XnNjftxnH03D86yP+FoeB/8AoZ9O/wC/tO8afD3RPHn2H+2DdD7F5nleRIE+/tznIOfuCuU/4Z68Ff39U/8AAlf/AImgD1auS/4Wh4H/AOhn07/v7XW15T/wz14K/v6p/wCBK/8AxNAHoGieKND8Sef/AGNqdvffZ9vm+S2dm7OM/Xafyo1vxRofhvyP7Z1O3sftG7yvObG/bjOPpuH51leC/h7ongP7d/Y5uj9t8vzfPkD/AHN2MYAx980eNPh7onjz7D/bBuh9i8zyvIkCff25zkHP3BQA3/haHgf/AKGfTv8Av7XW15T/AMM9eCv7+qf+BK//ABNerUAcl/wtDwP/ANDPp3/f2tfRPFGh+JPP/sbU7e++z7fN8ls7N2cZ+u0/lXn/APwz14K/v6p/4Er/APE11fgv4e6J4D+3f2Obo/bfL83z5A/3N2MYAx980Aaut+KND8N+R/bOp29j9o3eV5zY37cZx9Nw/Osj/haHgf8A6GfTv+/tO8afD3RPHn2H+2DdD7F5nleRIE+/tznIOfuCuU/4Z68Ff39U/wDAlf8A4mgD1auS/wCFoeB/+hn07/v7XW15T/wz14K/v6p/4Er/APE0AegaJ4o0PxJ5/wDY2p2999n2+b5LZ2bs4z9dp/KjW/FGh+G/I/tnU7ex+0bvK85sb9uM4+m4fnWV4L+HuieA/t39jm6P23y/N8+QP9zdjGAMffNHjT4e6J48+w/2wbofYvM8ryJAn39uc5Bz9wUAN/4Wh4H/AOhn07/v7XW15T/wz14K/v6p/wCBK/8AxNerUAcl/wALQ8D/APQz6d/39rX0TxRofiTz/wCxtTt777Pt83yWzs3Zxn67T+Vef/8ADPXgr+/qn/gSv/xNdX4L+HuieA/t39jm6P23y/N8+QP9zdjGAMffNAGrrfijQ/Dfkf2zqdvY/aN3lec2N+3GcfTcPzrI/wCFoeB/+hn07/v7TvGnw90Tx59h/tg3Q+xeZ5XkSBPv7c5yDn7grlP+GevBX9/VP/Alf/iaAPVq5L/haHgf/oZ9O/7+11teU/8ADPXgr+/qn/gSv/xNAHoGieKND8Sef/Y2p2999n2+b5LZ2bs4z9dp/KjW/FGh+G/I/tnU7ex+0bvK85sb9uM4+m4fnWV4L+HuieA/t39jm6P23y/N8+QP9zdjGAMffNHjT4e6J48+w/2wbofYvM8ryJAn39uc5Bz9wUAN/wCFoeB/+hn07/v7XW15T/wz14K/v6p/4Er/APE16tQByX/C0PA//Qz6d/39rX0TxRofiTz/AOxtTt777Pt83yWzs3Zxn67T+Vef/wDDPXgr+/qn/gSv/wATXV+C/h7ongP7d/Y5uj9t8vzfPkD/AHN2MYAx980Aaut+KND8N+R/bOp29j9o3eV5zY37cZx9Nw/Osj/haHgf/oZ9O/7+07xp8PdE8efYf7YN0PsXmeV5EgT7+3Ocg5+4K5T/AIZ68Ff39U/8CV/+JoA9Wrkv+FoeB/8AoZ9O/wC/tdbXlP8Awz14K/v6p/4Er/8AE0AegaJ4o0PxJ5/9janb332fb5vktnZuzjP12n8qNb8UaH4b8j+2dTt7H7Ru8rzmxv24zj6bh+dZXgv4e6J4D+3f2Obo/bfL83z5A/3N2MYAx980eNPh7onjz7D/AGwbofYvM8ryJAn39uc5Bz9wUAN/4Wh4H/6GfTv+/tdbXlP/AAz14K/v6p/4Er/8TXq1AHJf8LQ8D/8AQz6d/wB/ami+I/guZSy+KNJABx890qn9SK5D/hnrwV/f1T/wJX/4mvHrbwTpB+KOu+HnE72NkH8rMnz8MgGSBz940AfSf/CwfBv/AENWjf8AgbH/AI0f8LB8G/8AQ1aN/wCBsf8AjXif/CsPDX/PG4/7/Gj/AIVh4a/543H/AH+NAHtn/CwfBv8A0NWjf+Bsf+NH/CwfBv8A0NWjf+Bsf+NeJ/8ACsPDX/PG4/7/ABo/4Vh4a/543H/f40Ae2f8ACwfBv/Q1aN/4Gx/40f8ACwfBv/Q1aN/4Gx/414n/AMKw8Nf88bj/AL/Gj/hWHhr/AJ43H/f40Ae2f8LB8G/9DVo3/gbH/jT4/HvhCWRY4/FGjs7kKqi9jyT6da8Q/wCFYeGv+eNx/wB/jXGfELwnpfh21sZdPWVWmd1fe+4EADFAH2HRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeR/GDwPqup6ro/i7QLZru/0tl821VvmkRH3qV9wS2QOTuGOleuUUAeYeL/ABude8FX2k6Domtz6xqMBtTaS6bLGbcONrmRmXYMAkcE847cja+FvgyTwR4Kh0+6Km+nkNzdbTkK7ADaD7Kqj65Peu1ooA8b+E2v/EjVfFV1B4wh1JNPWyd4zdaaLdfN3oBhgi5O0txn19KPHfhLVdG+KWmfEHR9OudSgVkF/bWo3zDC+WWRf4spgYHdeeDXslFAHkXxI1248deFv+Ea8KaVqd5cX8sYuJJbGW3it0Vg/wAzyKoBJUdPQ89Ady5+HBHwZfwRa3Ki4+zDExztaYSCU57hS4x6gH2r0GigDyTwHrOn/D3wcmiX+keIo9TiZpJrf+z3l82U9fKdAUK8YB3Csj4X+ANauPiBe+PdesZNMEs889rZycSb5S2Sw6gAOwwcEnn6+5UUAeN+O/CWq6N8UtM+IOj6dc6lArIL+2tRvmGF8ssi/wAWUwMDuvPBqf4ka7ceOvC3/CNeFNK1O8uL+WMXEktjLbxW6Kwf5nkVQCSo6eh56A+u0UAYPgvw3H4R8IaboaOJDbR/vJB0eRiWcj23E49sVzvxt/5JDrv/AG7/APpRHXoFef8Axt/5JDrv/bv/AOlEdAB8Ev8AkkOhf9vH/pRJXoFef/BL/kkOhf8Abx/6USV6BQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfNVt/yXnxX/ALsv/ocdfStfNVt/yXnxX/uy/wDocdAHb0UUUAFFFFABRRRQAV5t8Xv+Qfpf/XV/5CvSa82+L3/IP0v/AK6v/IUAfU9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVleIfEmkeFdKbUtZvUtbYMEBYEl2PRVUck8HgehPQVq18+/F68fVvjR4T0CVt1lHLbBo2GQWlmwx9/lCj86APSpvihp1laxX2qaHr+m6bKRi+urIeUM9CwVmZc8Yyo612dtcwXtrFdWs0c1vMgeOWNgyupGQQR1FYHxCgjufhx4kSVQyjTbhwD6qhYH8wK4T9nbVpb3wJdafK+77BeMsQz92NwGx/31vP40Aev1g+J/GGi+EbeGTVbkrJcNst7eJDJLO3oijk9Rz05HPIrer59vLx9e/aqsra4bfb2D+XArDIXy4Gk/9Dyc/T0oA9Nk+Jml2FxbR67pmsaFFcsFhudRtgsTMegLIzBT/vYxg5xXaAhgCCCDyCK88+OUEc3wl1Z3UFoXgdD6HzkXP5MfzqX4L6tLq/wu0pp33y22+1LE9kYhR+C7R+FAHfMwVSzEAAZJPaud8K+N9H8ZS6mujvLImnzCF5WUBJM5wyHJyvB5OKwPF95ceLZtS8M6ZLJHpllCzazexnG47SRaoe7HgvjovHVsVxn7NP8AyCvEP/XeH/0FqAPS/FfxD0DwVf2Nrrcs8IvFdkmSIuihSAd2Pm/i7A9DWPN8bfAiootdUnvZ3IEdvbWcpkkJ4AG5QMk9ia534t2Wg6h4+8LW3iWSSPTHtrreYt28t8u0KFBJOccAHNTeGIPhb4O1q3VLK60zU5uLa41q0niLdiUaVQq9cZGOuKAPXI3MkSOUZCyg7W6r7H3rgfjb/wAkh13/ALd//SiOvQK85+Od3BbfCbVIppVR7mSCKFT/ABuJVfA/4CjH8KAJvgl/ySHQv+3j/wBKJK9Arx34RePPC2lfDnRNIvtatoNQVpVaB87gWncqOncEfnXsVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV81W3/JefFf+7L/6HHX0rXzVbf8AJefFf+7L/wChx0AdvRRRQAUUUUAFFFFABXm3xe/5B+l/9dX/AJCvSa82+L3/ACD9L/66v/IUAfU9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV87/FKFrH9oHwteyg+RJJZSBscfLOQR9eAfxFfRFcp478Bab4702GC7lltru1Yva3cP34mOM8dwcDI46DkUAWvHrKvw78SliAP7KuRz6mJgK83/ZusXi8JatespCz3ojXPcIg5H/ff6V0+r+DPF/iXRP7B1jxVZDTm2i4ntNOMdxcqDnDEyFVzjJ2j26ZFdhoOh2HhrQ7XSNNiMdpbJtQE5JOclie5JJJ+tADdN8S6DrNw1vpet6bfTqhdo7W6SVguQMkKScZIGfcV4XHC2nftZKZgQssrOhxwwe1OMficfga7j4cfB/8A4V/4huNW/t37f51o1t5X2TysZdG3Z3t/cxjHet3xp8PLbxXqFhrFrfy6XrmnsDbX0UYkwA24BkOAwBzxkdT1BxQBR+NzKvwi1sEgFjbgZ7nz4z/SuP8AA82vaB8BLWbQtPurnUdRu5Ahgi8x7dGZlMoQkbsBOATgkrniut17wF4g8awWtj4o8Q2i6XBKJZLfS7NomuCBgbnd2xj0Axz7DHe2dnb6fZQWVpEsNtbxrFFGvRVAwAPwoA8yg8TweG/Blxp1t4I8WxW8VtKZLie1jJZipLyyN5mSSckn/wDVXD/s+a4+mrqVkuj6neC7uYFNxaxK0UGdwzISwwOc8A8A17J4t8Pa94giktdN8Sx6XZT27QTwtp6zmTdkEhiwxwcVyvgf4U614EuW/s/xij2c00cl1btpa5lVTyoYyErkEjI6UATan8RdJg+Mdl4Xl8Pme9hxCmpZUvC0qBiFXGduCuTkd+Mdcr9o9EPgDTpCoLrqiKGxyAYpcj9B+Vdpr3gpr3xFD4m0TUF0zXI4TA8z24minj67XQkHPYMpBxxyMYwNb+GmseNr60fxh4iil0+1YuthptqYVZvUuzMfb6E4xk0Aa3wivbu/+Fegz3rs83lPHuYclEkZE/8AHVWs/wCOdpBc/CbVJZold7aSCWFj/A5lVMj/AIC7D8a9As7S3sLKCztIUht4EEcUaDARQMAD8K4X42/8kh13/t3/APSiOgDnfhF4D8Lar8OdE1e+0W2n1BmlZp3zuJWdwp69gB+VexV5/wDBL/kkOhf9vH/pRJXoFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV81W3/JefFf+7L/6HHX0rXzVbf8AJefFf+7L/wChx0AdvRRRQAUUUUAFFFFABXm3xe/5B+l/9dX/AJCvSa82+L3/ACD9L/66v/IUAfU9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5/wDG3/kkOu/9u/8A6UR16BXn/wAbf+SQ67/27/8ApRHQAfBL/kkOhf8Abx/6USV6BXn/AMEv+SQ6F/28f+lElegUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXzVbf8l58V/7sv/ocdfStfNVt/wAl58V/7sv/AKHHQB29FFFABRRRQAUUUUAFebfF7/kH6X/11f8AkK9Jrzb4vf8AIP0v/rq/8hQB9T0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXjnxk8XanFr2heCtGvJrKbU3jNzcQHD7Hk2IqkcjkMTjB4A6E59jr50+JGR+0f4a3dPtFhj6edQB3XjL4caFo3gfUdR0GCXTtW021e5hv7ed1mJQbm3NnLZAI59eK1/hL4xuPGngeK8vmDahbStbXLgAb2ABD4HTKsM9s5xW147/wCSeeJf+wVdf+imry/9msS/8I9rhP8AqvtUe3/e2c/+y0Ae4V4p468Q33if4vaX8PrW8ubXTFZTqAt3KNOShkKlhzt2YH1JznAx7XXzppuR+1k+7r9om6/9erYoA6r4m+ErDwZ4QfxL4RR9F1HT5YiZLSRlEqM4Ta6k4flgeQc45yK7/wAC+Jf+Eu8F6ZrbKqS3EeJkXoJFJV8DsMgkexFYPxt/5JDrv/bv/wClEdc38Itet/DXwV/tPUS7RJdyrBFGu6SZiQFjQd2ZsgD+lAHeeNfFEvh7TVg06BbrW7xXWytiePlGWkf0RByfXgd686/Z3v7vU7fxPeXtxJPcT3UUkkjnJZiGya7bS9DuoNL1fxFroRtf1G0cSKG3LaQhSVt0PoOrEfebJ54rgP2aSP7K8Q8/8t4f/QWoAt+OvEN94n+L2l/D61vLm10xWU6gLdyjTkoZCpYc7dmB9Sc5wMWvib4SsPBnhB/EvhFH0XUdPliJktJGUSozhNrqTh+WB5BzjnIrldNyP2sn3dftE3X/AK9WxXpfxt/5JDrv/bv/AOlEdAG94F8S/wDCXeC9M1tlVJbiPEyL0Eikq+B2GQSPYisH42/8kh13/t3/APSiOs/4AiUfC+HzPum7m8v/AHcj+ua0Pjb/AMkh13/t3/8ASiOgA+CX/JIdC/7eP/SiSvQK+XfBV98X4fCNjH4Wt3bRR5n2ciK3bP7xt3L/ADfe3da9g+GFz4/uP7V/4TmJo9vk/Y8xxLn7+/8A1f8AwDrQB6FRXnvxPufH9v8A2V/wg0TSbvO+2YjibH3Nn+s/4H0rz7+0vj//AM+r/wDfi1oA+g6KK+fP7S+P/wDz6v8A9+LWgD6Dorz34YXPj+4/tX/hOYmj2+T9jzHEufv7/wDV/wDAOtHxPufH9v8A2V/wg0TSbvO+2YjibH3Nn+s/4H0oA9Cor58/tL4//wDPq/8A34ta+g6ACivnz+0vj/8A8+r/APfi1r0H4YXPj+4/tX/hOYmj2+T9jzHEufv7/wDV/wDAOtAHoVFee/E+58f2/wDZX/CDRNJu877ZiOJsfc2f6z/gfSvPv7S+P/8Az6v/AN+LWgD6Door58/tL4//APPq/wD34taAPoOivPfhhc+P7j+1f+E5iaPb5P2PMcS5+/v/ANX/AMA60fE+58f2/wDZX/CDRNJu877ZiOJsfc2f6z/gfSgD0Kivnz+0vj//AM+r/wDfi1r6DoAKK+fP7S+P/wDz6v8A9+LWvQfhhc+P7j+1f+E5iaPb5P2PMcS5+/v/ANX/AMA60AehUV578T7nx/b/ANlf8INE0m7zvtmI4mx9zZ/rP+B9K8+/tL4//wDPq/8A34taAPoOiivnz+0vj/8A8+r/APfi1oA+g6K89+GFz4/uP7V/4TmJo9vk/Y8xxLn7+/8A1f8AwDrR8T7nx/b/ANlf8INE0m7zvtmI4mx9zZ/rP+B9KAPQqK+fP7S+P/8Az6v/AN+LWvoOgAor58/tL4//APPq/wD34ta9B+GFz4/uP7V/4TmJo9vk/Y8xxLn7+/8A1f8AwDrQB6FRXmfxh1rxpoOm2V/4UYpawpM+oS+VG4RRs2H5wfV+leb6Z8Sfi1q2nx3ljHZzW75CyGOFc4ODwWHcelAH0pRXzt/wm/xl/wCfWz/75g/+Ko/4Tf4y/wDPrZ/98wf/ABVAH0TRXzt/wm/xl/59bP8A75g/+Ko/4Tf4y/8APrZ/98wf/FUAfRNFfO3/AAm/xl/59bP/AL5g/wDiqP8AhN/jL/z62f8A3zB/8VQB9E181W3/ACXnxX/uy/8AocdXP+E3+Mv/AD62f/fMH/xVcx4GvdQ1H4ma1dasV/tCSGX7RtAADiRAQMccYxxQB6lRRRQAUUUUAFFFFABXm3xe/wCQfpf/AF1f+Qr0mvNvi9/yD9L/AOur/wAhQB9T0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXkfxg8D6rqeq6P4u0C2a7v9LZfNtVb5pER96lfcEtkDk7hjpXrlFAHmHi/wAbnXvBV9pOg6Jrc+sajAbU2kumyxm3Dja5kZl2DAJHBPOO3I2vhb4Mk8EeCodPuipvp5Dc3W05CuwA2g+yqo+uT3rtaKAPG/hNr/xI1XxVdQeMIdSTT1sneM3Wmi3Xzd6AYYIuTtLcZ9fSjx34S1XRvilpnxB0fTrnUoFZBf21qN8wwvllkX+LKYGB3Xng17JRQB5F8SNduPHXhb/hGvCmlaneXF/LGLiSWxlt4rdFYP8AM8iqASVHT0PPQHrNJ+HOi2/gLS/C2rWsWoQWeJW3kgGY7izDGD1dsexrsaKAPHvG3gvwVothc2dl4D1K7vp7SQ282n2csyRyEELuYNgHODXGfCHw5FpWqZ8T+Cdda/a8gaxum06UR25DfeZuAoB2kkg8CvpSigDxvx34S1XRvilpnxB0fTrnUoFZBf21qN8wwvllkX+LKYGB3Xng1P8AEjXbjx14W/4RrwppWp3lxfyxi4klsZbeK3RWD/M8iqASVHT0PPQH12igDB8F+G4/CPhDTdDRxIbaP95IOjyMSzke24nHtiud+Nv/ACSHXf8At3/9KI69Arz/AONv/JIdd/7d/wD0ojoAPgl/ySHQv+3j/wBKJK9Arz/4Jf8AJIdC/wC3j/0okr0CgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkvih/yTHxF/wBeT15H8N/+RGsf96X/ANGNXrnxQ/5Jj4i/68nryP4b/wDIjWP+9L/6MagDq6KKKACiiigAooooAK8u8Ff8lU8Q/wDbz/6PWvUa8u8Ff8lU8Q/9vP8A6PWgD1GiiigAooooAKKKKACvNvi9/wAg/S/+ur/yFek15t8Xv+Qfpf8A11f+QoA+p6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorm/GfjfSPA+lJe6o0jvM/l29tCu6SZvQDjgdyeOncgEA6SiuA1Hx9r+g6UNZ1zwXNb6WMGZ7e/SaaBScAtHtUdSOjHHeuy0jVrHXdJttU024W4s7lN8Ui9x9OxByCDyCCKALtFFcn4w8fad4RnsrBoJ7/V79glpYW2N7knAJJ4Vc8Z+uAcHAB1lFcBqvxE1Hwsttc+LPC8mn6bO4j+12l4t0ImPQOoVSOh5GenGa7Y6jZrph1M3UX2EQ/aPtG4bPL27t+emMc5oAs0V59p/wARdU8SWk+oeE/Cw1TTonaMSzalHbySMvUCPDFfUb9pIIOOateAvido/j0z21tDPZ6lbrvltJ8Z25ALKR1AJAPQgnpQB29FcJ4++J9j8PtR0y3v9OuLmC9SR2kgdd0e0qOFOAc59R0rn4fj9omp3EVjoeg61f6lOdsNuY40DN6Fg7Y9ScEAc0Aet15/8bf+SQ67/wBu/wD6UR130ZdokMiBHKgsoOQD3Ge9cD8bf+SQ67/27/8ApRHQAfBL/kkOhf8Abx/6USV6BXn/AMEv+SQ6F/28f+lElegUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcl8UP8AkmPiL/ryevI/hv8A8iNY/wC9L/6MavXPih/yTHxF/wBeT15H8N/+RGsf96X/ANGNQB1dFFFABRRRQAUUUUAFeXeCv+SqeIf+3n/0eteo15d4K/5Kp4h/7ef/AEetAHqNFFFABRRRQAUUUUAFebfF7/kH6X/11f8AkK9Jrzb4vf8AIP0v/rq/8hQB9T0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXz18Vbl7/49eE9NlZvs0MtmoTPGXn+Y/UjaP+AivoWvnr4tWz6X8cvCmsSqRaSyWreYeBujm+YZ9gVP/AqAPY/H0ayfDvxKrqCBpdy2D6iJiP1Fed/s46jJceDdSsHcsLW93IDn5VdRwPbKsfxNeh/ECaOD4deJXkYKp0y4QE+rRsAPxJArz/8AZz0yW18FX+oSRlReXhEZI++iKBke24sPwNAHsdfPX2l9V/awiSdmMdvI0cSk/dCWzNgf8CyfxNeu+G/iJ4V8XajJYaHqv2u6jiMzJ9nljwgIBOXUDqw/OvIprZ9F/aut5bhSsV25khZuN4kt2TI/4HuH4UAeh/G+NX+EWtMyglDAyn0Pnxj+RNZ/wlWPxV8E00m/kkaJkuLCRlbDhCTjBPcKwA7cCr/xwmjj+EmsI7ANK0CID/EfOQ4/IE/hXNeDdWn+HX7PkWuvYNPO7mdYWJUHzJNqMx5427W98gcZzQBoaZH4Y+B2jalbtc6lfXcy/aWH2VyHAyEUMq7F75JP9BWB8BPB9yL678Z3tzbObmNooYYJlkILkMzPtJ2ngDaeeTkDAr0X4aeNZfHvhNtVuLFbSVLhreRFJKOQFO5c9vmx9Qa8Q+H1xcaR+0Headox8vT5dQu7eSCM/uzCpkK/guAQfb3oA9G+JkOn3HxJ8Jxapo9xq9s9rdj7HbxeY8jYXGBkAYPOSQB1JFWbfxL4Y+HV1bxX/gq58Mx3p8tL0RQyqwHZ3idmHbg57mn33xF1qL41ReD7bRIZrBQiyT7WMoV0DtIGzgICQCMHO3r6Zv7R7KPh/p65G46pGQM8keVLn+YoA9eiljnhSaGRJIpFDI6MCrKeQQR1FcF8bf8AkkOu/wDbv/6UR1Z+D4u1+FGgC9Enm+S5XzOvl+Y/l/hs249sVW+Nv/JIdd/7d/8A0ojoA8g8E/HT/hDvCFjoH/COfbPsvmfv/t3l7t0jP93yzjG7HXtXr/wy+Jv/AAsb+1P+JR/Z/wBg8r/l583fv3/7C4xs9+tM+CkUbfCLQy0aE/6RyVH/AD3kr0FY0TOxFXPXAxQBwPxN+Jv/AArn+y/+JR/aH2/zf+XnytmzZ/sNnO/26V5//wANNf8AUo/+VL/7VXvzRo+N6K2OmRmm+RD/AM8k/wC+RQBJXz//AMNNf9Sj/wCVL/7VX0BUfkQ/88k/75FAHB/DL4m/8LG/tT/iUf2f9g8r/l583fv3/wCwuMbPfrS/Ez4m/wDCuTpWdI/tAX/m/wDLz5Xl7Nn+y2c7/bpXerGiZ2Iq564GK88+OSg/CbViQCQ8GDjp++SgDjv+Gl7H/oWbj/wLX/4mj/hpex/6Fm4/8C1/+JqLwX/yJulf9cBW7QBj/wDDS9j/ANCzcf8AgWv/AMTR/wANL2P/AELNx/4Fr/8AE1sUUAY//DS9j/0LNx/4Fr/8TR/w0vY/9Czcf+Ba/wDxNbFFAGP/AMNL2P8A0LNx/wCBa/8AxNH/AA0vY/8AQs3H/gWv/wATWxRQB0Hw6+KVn8Qp76CHTZrKW0VXIeQOGViR1AHORXfV4J8Cf+R/8Zf75/8ARrV73QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcl8UP+SY+Iv+vJ68j+G//IjWP+9L/wCjGr1z4of8kx8Rf9eT15H8N/8AkRrH/el/9GNQB1dFFFABRRRQAUUUUAFeXeCv+SqeIf8At5/9HrXqNeXeCv8AkqniH/t5/wDR60Aeo0UUUAFFFFABRRRQAV5t8Xv+Qfpf/XV/5CvSa82+L3/IP0v/AK6v/IUAfU9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVh+KvCOj+M9J/s7WbYyxg7o5Eba8TYxuU9v1B7ityigDhL34avq+nR6TrXizXNQ0iNlP2WRolMgU5AkkVA7j6nrg9RXZafp9ppWnwWFhAlva26COKJBwqj/AD1qzRQBwfgr4TaD4D1mbVNLu9Smnlt2t2W6kRlCllbI2opzlB39a1/FngbRvGK2z34ngvLRg9te2knlzwnIPytg9wDyDjqOa6WigDhb74aR6+9qvijxDqmtWtq/mRWkoihiLYxlxGiljjvnufU1195pdhqGlS6XdWkUtjLH5TQFfl2dMADpjtjpjirdFAHCwfDifTbFtO0TxfrunaaQQtsrRyeUCc4jdk3qPxz71c8GfDfw94GM0umRTTXs42yXl04eVlznbkAADPoBnAznArrqKAOe1/wfZa5fQanHdXmm6tboYo7+xkCSbCc7GyCrpnnDA+2MmsG5+FVjrWqW1/4o1rU9ea2z5NvcskcC5x/BGo9Bn1xzmu/ooAaiJHGscaqiKAFVRgADsBXA/G3/AJJDrv8A27/+lEdegV5/8bf+SQ67/wBu/wD6UR0AHwS/5JDoX/bx/wClElegV5/8Ev8AkkOhf9vH/pRJXoFABRRRQAUUUUAFed/HH/kkmr/78H/o5K9Erzv44/8AJJNX/wB+D/0clAHEeC/+RN0r/rgK3awvBf8AyJulf9cBW7QAUUUUAFFFFABRRRQBhfAn/kf/ABl/vn/0a1e914J8Cf8Akf8Axl/vn/0a1e90AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHJfFD/AJJj4i/68nryP4b/APIjWP8AvS/+jGr1z4of8kx8Rf8AXk9eR/Df/kRrH/el/wDRjUAdXRRRQAUUUUAFFFFABXl3gr/kqniH/t5/9HrXqNeXeCv+SqeIf+3n/wBHrQB6jRRRQAUUUUAFFFFABXm3xe/5B+l/9dX/AJCvSa82+L3/ACD9L/66v/IUAfU9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVT1XVrDQ9Mn1LU7qO1s4F3SSyHgdh9STwAOSTgVcrwT9pTVpkt9C0iNyIZWluZV/vFdqp+W5/zFAHoI+KWnHTf7WGheITo/X+0RZDytn9/G7ft75211uk6tYa7pkGpaXdR3VnOu6OWM8H19wQeCDyD1p0enW6aOmmFFNstuLfYBgbNu3GPpXhf7NWrSldd0Z3zCvl3USZ+6TlXP44T8qAPf6yvEPiTSPCulNqWs3qWtsGCAsCS7HoqqOSeDwPQnoK1a+ffi9ePq3xo8J6BK26yjltg0bDILSzYY+/yhR+dAHpU3xQ06ytYr7VND1/TdNlIxfXVkPKGehYKzMueMZUda7O2uYL21iurWaOa3mQPHLGwZXUjIII6isD4hQR3Pw48SJKoZRptw4B9VQsD+YFcH+zxqst/4CvNNllJ+w3bLFg8pG4DY/763n8aAOzufiDp4vbm00rS9X1t7VzFcPplsHjicDJQuzKpYccKT1pfC3xF8PeLbyewspp7fUoM+bY3kRimTBweOhweoBJHfFcd4G8G6d8IL/UrzXPFtisd6myCKVxDvVDncVY5ZhnGBnGT1zXJ/DvQ9R8WfGS78cW1vNb6El3cTRXDrs84MGRVX1POW7DBBOSKAPdPEPiTSPCulNqWs3qWtsGCAsCS7HoqqOSeDwPQnoK5yb4oadZWsV9qmh6/pumykYvrqyHlDPQsFZmXPGMqOtea/F68fVvjR4T0CVt1lHLbBo2GQWlmwx9/lCj869e+IUEdz8OPEiSqGUabcOAfVULA/mBQBv21zBe2sV1azRzW8yB45Y2DK6kZBBHUVwnxt/5JDrv/AG7/APpRHWB+ztq0t74EutPlfd9gvGWIZ+7G4DY/763n8a3/AI2/8kh13/t3/wDSiOgA+CX/ACSHQv8At4/9KJK9Arwr4Y/Fjwh4Z+HelaRql/LFe2/neYi2zsBuldhyBjowr1Hwp470Dxr9r/sO6kn+ybPO3wsm3fu2/eAz900AdJRXN+K/HegeCvsn9uXUkH2vf5OyFn3bNu77oOPvCub/AOF6+Af+gpP/AOAkv/xNAHpFFFeb/wDC9fAP/QUn/wDASX/4mgD0ivO/jj/ySTV/9+D/ANHJXQeFPHegeNftf9h3Uk/2TZ52+Fk279237wGfumuO+PuuWFj8PpdJuJWW81JlNsgQkN5ckbPk9BgEdaAOZ8F/8ibpX/XAVu1554a8e+H9N8N2Fnc3MizwxBXAhY4P1xXodABRXI/8LL8Mf8/cv/fhv8K19D8S6Z4i8/8As2Z5PI2+ZuQrjdnHX6GgDXorI1zxLpnh3yP7SmePz93l7ULZ24z0+orI/wCFl+GP+fuX/vw3+FAHXUUVyP8Awsvwx/z9y/8Afhv8KANH4E/8j/4y/wB8/wDo1q97r5/+AFxHd+NfFtzCSYpgJEJGMgyMRXrnivx3oHgr7J/bl1JB9r3+TshZ92zbu+6Dj7woA6SivN/+F6+Af+gpP/4CS/8AxNekUAFFeb/8L18A/wDQUn/8BJf/AImuk8KeO9A8a/a/7DupJ/smzzt8LJt37tv3gM/dNAHSUVzfivx3oHgr7J/bl1JB9r3+TshZ92zbu+6Dj7wrm/8AhevgH/oKT/8AgJL/APE0AekUVgeJvGvh7welu2vaktn9oLCIeW8hbGM8ICcDI5965r/hePw+/wCg2/8A4Bzf/EUAeiUV56vxv+HrZzrzL9bOf+iUN8b/AIerjGvM30s5/wCqUAehUV53/wALx+H3/Qbf/wAA5v8A4ipP+F2/Dz/oYf8AySuP/jdAHoFFed/8Lx+H3/Qbf/wDm/8AiKcvxv8Ah62c68y/Wzn/AKJQBq/FD/kmPiL/AK8nryP4b/8AIjWP+9L/AOjGrpvHvxb8Eax4G1jTdP1kz3dzbNHEgtZlyx92QAV5z4K8a6Do/hW1sb68aO4jLllETtjLkjkDHQ0Ael0UVyn/AAsjwt/0EH/8B5P8KAOrorJ0XxJpfiHz/wCzbgzeRt8zMbLjdnHUD0NGteJNL8PeR/aVwYfP3eXiNmztxnoD6igDWorlP+FkeFv+gg//AIDyf4V1dABXl3gr/kqniH/t5/8AR6103/CyPC3/AEEH/wDAeT/CuU8AXMV58SdbuoG3QzRzyI2MZUzKQcH2NAHq1FZOteJNL8PeR/aVwYfP3eXiNmztxnoD6isr/hZHhb/oIP8A+A8n+FAHV0UVyn/CyPC3/QQf/wAB5P8ACgDq6KydF8SaX4h8/wDs24M3kbfMzGy43Zx1A9DRrXiTS/D3kf2lcGHz93l4jZs7cZ6A+ooA1q82+L3/ACD9L/66v/IVvf8ACyPC3/QQf/wHk/wrB+L3/IP0v/rq/wDIUAfU9Fed/wDC8fh9/wBBt/8AwDm/+IrovC3jnw/4z+1/2Fetc/ZNnnZhePbu3bfvAZ+6enpQB0VFc74p8c+H/Bn2T+3b1rb7Xv8AJxC8m7bt3fdBx94dfWud/wCF4/D7/oNv/wCAc3/xFAHolFFed/8AC8fh9/0G3/8AAOb/AOIoA9EornfC3jnw/wCM/tf9hXrXP2TZ52YXj27t237wGfunp6UeKfHPh/wZ9k/t29a2+17/ACcQvJu27d33QcfeHX1oA6KivPx8bfh4QD/wkGPb7Fcf/EUf8Lt+Hn/Qw/8Aklcf/G6APQKK8/8A+F2/Dz/oYf8AySuP/jdH/C7fh5/0MP8A5JXH/wAboA9Aorz/AP4Xb8PP+hh/8krj/wCN0f8AC7fh5/0MP/klcf8AxugD0CivP/8Ahdvw8/6GH/ySuP8A43R/wu34ef8AQw/+SVx/8boA9AorlPD/AMSvCHinUxpuj6wtxeFC4iMEkZYDrjeoB+grq6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+ev2l7SQXfh68wTEyTREgdCCh5+uT+Rr6FrC8XeEtM8aaBJpGqK/lFhJHJGcPE4zhlz3wSPoTQBsxzxyWy3AYCNkD7jxxjOa+ev2arF21TX7/AGnZHDFCD2JZif8A2UfnXo48HeNV8Mnw0PF1j9g8j7ML06c32sRYxtz5u3OPl3Yz3znmuj8H+ENM8E6Cmk6WrlAxkllkILyuerNj2AH0AoAtw+JdBudUOlwa3psuoB2Q2iXSNKGXO4bAc5GDkY4wa8L+KULWP7QPha9lB8iSSykDY4+Wcgj68A/iK7jRvg//AGR8UJPGn9u+bvu7m5+x/ZNuPODjbv3npv67ecdq6Xx34C03x3psMF3LLbXdqxe1u4fvxMcZ47g4GRx0HIoAtePWVfh34lLEAf2Vcjn1MTAV5T8B7iHw78OPEfiO9WT7LHOWYIMsyxxgnaD1JLY64zXa6v4M8X+JdE/sHWPFVkNObaLie004x3FyoOcMTIVXOMnaPbpkV1Wm+F9I0vwsnhu3tQdMEDQNE5z5itnduPctkkn3oA5vwP450P4o2l8f7I2yWLKskV2iyDa+cEH32nI9q8futRufh9+0BPpvh4vBp099bpLYoT5brKqFgF6DBc7fTjtxXquh/DvWfBK3Vv4S1uwSyuH3mPUNP8yRDjA/eIylsc4BHFR+GfhFBpviyTxV4h1V9a1ppDKjGERRRuR97bk5I7dAPTIBABwXxShax/aB8LXsoPkSSWUgbHHyzkEfXgH8RXs/j1lX4d+JSxAH9lXI59TEwFVfHfgLTfHemwwXcsttd2rF7W7h+/ExxnjuDgZHHQcisjV/Bni/xLon9g6x4qshpzbRcT2mnGO4uVBzhiZCq5xk7R7dMigDmP2brF4vCWrXrKQs96I1z3CIOR/33+ldT8bf+SQ67/27/wDpRHXXaDodh4a0O10jTYjHaWybUBOSTnJYnuSSSfrXI/G3/kkOu/8Abv8A+lEdAHH/AAt+Fvg3xH8ONJ1bVtG+0X0/neZL9qmTdtmdRwrgDgAcCvUPDHgnw74O+1f2Bp/2P7Vs8799JJu252/fY4xubp61z/wS/wCSQ6F/28f+lElegUAc/wCJ/BPh3xj9l/t/T/tn2Xf5P76SPbuxu+4wznavX0rn/wDhSXw8/wChe/8AJ24/+OV6BRQAV5//AMKS+Hn/AEL3/k7cf/HK9AooA5/wx4J8O+DvtX9gaf8AY/tWzzv30km7bnb99jjG5unrXGfHvRdPvfh3Pqtxb773T2QWsu9h5fmSRq/AODkAdQcdq9Trzv44/wDJJNX/AN+D/wBHJQB5P4Y8D+HNR8M6fd3WneZPLEGd/PkGT9A2K76sLwX/AMibpX/XAVu0Acv/AMK68Kf9Ar/yYl/+KrU0fw7pWged/Zlr5Hn7fM/eM27bnH3ifU1qUUAZeseHdK1/yf7TtfP8jd5f7xl27sZ+6R6Csv8A4V14U/6BX/kxL/8AFV1FFABXL/8ACuvCn/QK/wDJiX/4quoooA534BQRWvjbxbbwrtiiwiLknCiRgBzXsHifwT4d8Y/Zf7f0/wC2fZd/k/vpI9u7G77jDOdq9fSvJPgT/wAj/wCMv98/+jWr3ugDz/8A4Ul8PP8AoXv/ACduP/jlegUUUAef/wDCkvh5/wBC9/5O3H/xyug8MeCfDvg77V/YGn/Y/tWzzv30km7bnb99jjG5unrXQUUAc/4n8E+HfGP2X+39P+2fZd/k/vpI9u7G77jDOdq9fSuf/wCFJfDz/oXv/J24/wDjlegUUAeBftCQx3HijwjBKu6OQyI65xkF4warf8K68Kf9Ar/yYl/+Kq58ff8Akb/Bv/XRv/RkdblAHMp8PvCyZxpSnP8AemkP82of4feFnxnSlGP7s0g/k1dNRQBy/wDwrrwp/wBAr/yYl/8Aiqk/4QHwv/0CY/8Av4/+NdJRQBy//CuvCn/QK/8AJiX/AOKpyfD7wsmcaUpz/emkP82rpqKAPPPGvg7QNN8J3t7Z6esNxEE2Osj8ZdQeCcHgmq/gfwdoOseFoLy/sPOuGdwX86RcgMQOAwFdJ8Q/+RF1P6R/+jFqD4af8iTa/wDXST/0I0AddXL/APCuvCn/AECv/JiX/wCKrqKKAMvR/DulaB539mWvkeft8z94zbtucfeJ9TRrHh3Stf8AJ/tO18/yN3l/vGXbuxn7pHoK1KKAOX/4V14U/wCgV/5MS/8AxVdRRRQBy/8Awrrwp/0Cv/JiX/4quR8A20Vn8StctYE2QwpPHGuScKJlAGTz0FerV5d4K/5Kp4h/7ef/AEetAHe6x4d0rX/J/tO18/yN3l/vGXbuxn7pHoKy/wDhXXhT/oFf+TEv/wAVXUUUAFcv/wAK68Kf9Ar/AMmJf/iq6iigDL0fw7pWged/Zlr5Hn7fM/eM27bnH3ifU0ax4d0rX/J/tO18/wAjd5f7xl27sZ+6R6CtSigDl/8AhXXhT/oFf+TEv/xVc98Xv+Qfpf8A11f+Qr0mvNvi9/yD9L/66v8AyFAHs/8AwpL4ef8AQvf+Ttx/8croPDHgnw74O+1f2Bp/2P7Vs8799JJu252/fY4xubp610FFAHP+J/BPh3xj9l/t/T/tn2Xf5P76SPbuxu+4wznavX0rn/8AhSXw8/6F7/yduP8A45XoFFABXn//AApL4ef9C9/5O3H/AMcr0CigDn/DHgnw74O+1f2Bp/2P7Vs8799JJu252/fY4xubp61nfEbwlofiTw5dXerWP2ifTrS4ktW8108timScKQDyi9c9K7GsnxV/yKGtf9eE/wD6LagD5k+HPhnRta8PXFzqNik8y3TRhizDChEOOD6k11//AAgPhf8A6BMf/fx/8ax/hL/yKt1/1+v/AOgJXeUAc3/wgPhf/oEx/wDfx/8AGj/hAfC//QJj/wC/j/410lFAHN/8ID4X/wCgTH/38f8Axo/4QHwv/wBAmP8A7+P/AI10lFAHN/8ACA+F/wDoEx/9/H/xo/4QHwv/ANAmP/v4/wDjXSUUAcH4E0+10v8AaItbOyhENvHG+1AScZtiT19ya+mq+bvCf/JysP8A1zb/ANJTX0jQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/xt/5JDrv/AG7/APpRHXoFef8Axt/5JDrv/bv/AOlEdAB8Ev8AkkOhf9vH/pRJXoFef/BL/kkOhf8Abx/6USV6BQAUUUUAFFFFABXnfxx/5JJq/wDvwf8Ao5K9Erzv44/8kk1f/fg/9HJQBxHgv/kTdK/64Ct2sLwX/wAibpX/AFwFbtABRRRQAUUUUAFFFFAGF8Cf+R/8Zf75/wDRrV73XgnwJ/5H/wAZf75/9GtXvdABRRRQAUUUUAFFFFAHgvx9/wCRv8G/9dG/9GR1uVh/H3/kb/Bv/XRv/RkdblABRRRQAUUUUAFFFFAHMfEP/kRdT+kf/oxag+Gn/Ik2v/XST/0I1P8AEP8A5EXU/pH/AOjFqD4af8iTa/8AXST/ANCNAHXUUUUAFFFFABRRRQAV5d4K/wCSqeIf+3n/ANHrXqNeXeCv+SqeIf8At5/9HrQB6jRRRQAUUUUAFFFFABXm3xe/5B+l/wDXV/5CvSa82+L3/IP0v/rq/wDIUAfU9FFFABRRRQAUUUUAFZPir/kUNa/68J//AEW1a1ZPir/kUNa/68J//RbUAfPfwl/5FW6/6/X/APQErvK4P4S/8irdf9fr/wDoCV3lABRRRQAUUUUAFFFFAHGeE/8Ak5WH/rm3/pKa+ka+bvCf/JysP/XNv/SU19I0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5Z8WvH2paDe6R4Z8PTRw6vqjqDcOu4wxs2xSARjLNnnnAU8ZII9Tr51+JDM37R3hlWJIWewC57Dzs/zJoA73xV4W1Xw34PvNa0bxZr7app0BuGa6uzNFMFGX3RNlRwDjAGPeug+G/jL/hOfBtvq0kaRXau0F1GmdqyrgnGexBVsds4ycZq747/5J54l/wCwVdf+imry/wDZreQ+HtcjI/dLdoyn3Kc/yFAHuFeSeOvGuq3vxH0v4f8Ah++Ng07Kb+8jUGVAV3bEyPlOz5s9ckcjBz63XzrpzM/7WblySfPmHPoLRgP0xQB2PxAsdZ+H/hweJvD/AIi1eZ7SWMXNvqV011FMjMF5D/dOSv3SOCcYrev/AIiInwgfxxY2okdrZWSBiSqylxGQTwSFcnPTIHaovjb/AMkh13/t3/8ASiOsv4ERrefCdLa7hSW3NzPH5ci7ldCRkEHgjJNAGX4EtL/4neE5dbufF/iax1NJ3gf7NdLFArgBgVjRRlcMuQTnOee9V/hj8RfEC+PLnwL4nnF9PHLNDDd7QGDxAkgnA3KQrEE8/XPHpuva1oXw88KyXkkNvZ2cAKwWtuix+ZIckIigYyTn6ck8A15r8Kfh5rD+KZ/H3ieM2t7cPLNb2mCrBpc7nYfwjDEBTzzzjAyAXPjBq3jCy8UeHbTwhc3a3c0Fw5ggwwk27Tko3ytgZ6j19azvD+n/ABo8TTpDrmsS6NpZx50oigjnYdwgRdwb3OAPfGK7zxX4T1vWfGmg6vpOpw6cljBPHLOYxJIu/aPkQjaSRnk8Drg9K5b4j6p4o+Gljp+uaf4kutTtZboW9xZ6nFEwYlWYFWREKjCt09qAPXY0EUSRhmYKoXLHJOPU9zXA/G3/AJJDrv8A27/+lEddT4X8QW3irwzYa3aKUiu49+wnJRgSGXPfDAjPtXLfG3/kkOu/9u//AKUR0AQ/Ba8tYvhJoaSXMKOPPyrOAR+/kr0KK4hnz5M0cm3rsYHH5V8z+B/gbF4x8HWGvN4ge0N15n7kWgfbtkZOu8Zztz0716/8Nfhmnw6/tTZqrX/2/wArO6Dy9mzf/tHOd/6UAdzLcQwY86aOPd03sBn86j/tCy/5+7f/AL+D/GuK+JXwzT4i/wBl79Vaw+webjbB5m/fs/2hjGz9a4H/AIZng/6GqT/wBH/xygD3uq/9oWX/AD92/wD38H+NWK8E/wCGZ4P+hqk/8AR/8coA93iuIZ8+TNHJt67GBx+Vee/HKRF+E+qozqHZ4Nqk8nEyZxVn4a/DNPh1/amzVWv/ALf5Wd0Hl7Nm/wD2jnO/9K5v9oXw2upeELfXTdGM6QSBDsz5vnPGvXPGMZ6HNAHP+Dbm3TwfpatPEGEAyC44ro68h0T4YLq+i2moHVzF9ojD7Ps27b7Z3DNevUAQ/a7b/n4i/wC+xT45opc+XIj467WBxXmf/Cnl/wCg4f8AwF/+zrp/B/g8eE/tuL43X2nZ/wAstm3bu9zn736UAdLJNFFjzJETPTcwGaZ9rtv+fiL/AL7Fc74w8HjxZ9izfG1+zb/+WW/du2+4x939a5j/AIU8v/QcP/gL/wDZ0Aen1D9rtv8An4i/77FTV5h/wp5f+g4f/AX/AOzoA7H4EEN4+8ZEEEFsgjv+9aveJbiGDHnTRx7um9gM/nXz/wDs9Wv2Hxd4os9+/wAhFi34xu2yMM47dK9H+JXwzT4i/wBl79Vaw+webjbB5m/fs/2hjGz9aAO1/tCy/wCfu3/7+D/GrFeCf8Mzwf8AQ1Sf+AI/+OV73QBX/tCy/wCfu3/7+D/GpIriGfPkzRybeuxgcflXhH/DM8H/AENUn/gCP/jld98Nfhmnw6/tTZqrX/2/ys7oPL2bN/8AtHOd/wClAHcy3EMGPOmjj3dN7AZ/Oo/7Qsv+fu3/AO/g/wAa4r4lfDNPiL/Ze/VWsPsHm42weZv37P8AaGMbP1rgf+GZ4P8AoapP/AEf/HKAF+Pv/I3+Df8Aro3/AKMjrW+123/PxF/32Kyfj7/yN/g3/ro3/oyOuM/4U8v/AEHD/wCAv/2dAHpkc0UufLkR8ddrA4okmiix5kiJnpuYDNc14P8AB48J/bcXxuvtOz/lls27d3uc/e/Sjxh4PHiz7Fm+Nr9m3/8ALLfu3bfcY+7+tAHRfa7b/n4i/wC+xU1eYf8ACnl/6Dh/8Bf/ALOvT6AIftdt/wA/EX/fYp8c0UufLkR8ddrA4rzP/hTy/wDQcP8A4C//AGddP4P8Hjwn9txfG6+07P8Alls27d3uc/e/SgBPiI6L4H1FWZQzCPAJ5P7xaq/De4gj8F2yvNGrCSThmAP3jVf4paML7QU1Pz9n9n5/d7M+ZvZF654xj3rk/DPw6HiLRItROqG38xmXy/I3YwcddwoA9nqH7Xbf8/EX/fYqavMP+FPL/wBBw/8AgL/9nQB6ZHNFLny5EfHXawOKJJooseZIiZ6bmAzXNeD/AAePCf23F8br7Ts/5ZbNu3d7nP3v0o8YeDx4s+xZvja/Zt//ACy37t233GPu/rQB0X2u2/5+Iv8AvsVNXmH/AAp5f+g4f/AX/wCzr0+gCH7Xbf8APxF/32K808EkN8U/ELKQQRckEd/3607/AIU8v/QcP/gL/wDZ1U+HFn/Z3j/VrHzPM+zQTQ78Y3bZUGcdulAHq8k0UWPMkRM9NzAZpn2u2/5+Iv8AvsVzvjDwePFn2LN8bX7Nv/5Zb927b7jH3f1rmP8AhTy/9Bw/+Av/ANnQB6fUP2u2/wCfiL/vsVNXmH/Cnl/6Dh/8Bf8A7OgD0yOaKXPlyI+Ou1gcUSTRRY8yREz03MBmua8H+Dx4T+24vjdfadn/ACy2bdu73OfvfpR4w8HjxZ9izfG1+zb/APllv3btvuMfd/WgDovtdt/z8Rf99ivPPi9/yD9L/wCur/yFQ/8ACnl/6Dh/8Bf/ALOk+MJONGGTg+ecf9+6APq6ivlj/hUNp/0Fp/8Av0P8aP8AhUNp/wBBaf8A79D/ABoA+p6K+WP+FQ2n/QWn/wC/Q/xo/wCFQ2n/AEFp/wDv0P8AGgD6nor5Y/4VDaf9Baf/AL9D/Gj/AIVDaf8AQWn/AO/Q/wAaAPqesnxV/wAihrX/AF4T/wDotq+bv+FQ2n/QWn/79D/GqmqfCy10/SL29XVJna3geUKYgAxVScdfagDY+Ev/ACKt1/1+v/6Ald5XB/CX/kVbr/r9f/0BK7ygAooooAKKKKACiiigDjPCf/JysP8A1zb/ANJTX0jXzd4T/wCTlYf+ubf+kpr6RoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArxL41eGr+38TaF450+1muY9OaMXccK5ZFjk8xXx6csCe2Fr22igDzLx18R/DV58PNQi0nVbbUb3VLVrW2s7Z98zNKpXmMfMuASeQOmOpAq38GvCF14R8CpFqEZivr2Y3U0TDmIEAKh98KCR2LEdq7xLW3imaaOCJJX+86oAx+pqagDxv4TfFnXvHniq60vVLTTYYIrJ7hWtY3ViwdFwdzsMYc9vSs7xzpE/g3406Z49eGZtEmdftk8UZYWzbPKYsAM42kNnucjrXutFAHj/wAXPGGk6/4KPh3w7eQazqeqyxpHb2DidlVXDljtzj7oGDzz7HHTeHoLX4VfCa3OsOdthCZboxDcTK752L6/MwUHp0JxXaQWtvbbvIgii3fe8tAufripqAPlJvjNNdeLn8Q6noUF/NCdunQTTnyrFP8AZXHLnAJc88DGAAK7fwR8QtR+JnxQ0czWMdlb6Tb3NwUikZt5dRHls+m4Y+pr3aigDxDxVpFxo/x4svFWs6rNYaEyI0N3tZo1ZVCm3YjhAx3NzgEMe+ar/GnxJp3jTTtL8LeF5hrOpPeC5ZbH96qKqMvLDjkv68AHOOK92ZVdSrAMpGCCMgio4LaC2UrBDHEp5IjQLn8qAOf+H/hybwn4E0rRLmQPcW8bGUr0Du7OwHqAWIz7VifG3/kkOu/9u/8A6UR16BXn/wAbf+SQ67/27/8ApRHQAfBL/kkOhf8Abx/6USV6BXn/AMEv+SQ6F/28f+lElegUAFFFFABRRRQAV538cf8Akkmr/wC/B/6OSvRK87+OP/JJNX/34P8A0clAHEeC/wDkTdK/64Ct2sLwX/yJulf9cBW7QAUUUUAFFFFABRRRQBhfAn/kf/GX++f/AEa1e914J8Cf+R/8Zf75/wDRrV73QAUUUUAFFFFABRRRQB4L8ff+Rv8ABv8A10b/ANGR1uVh/H3/AJG/wb/10b/0ZHW5QAUUUUAFFFFABRRRQBzHxD/5EXU/pH/6MWoPhp/yJNr/ANdJP/QjU/xD/wCRF1P6R/8Aoxag+Gn/ACJNr/10k/8AQjQB11FFFABRRRQAUUUUAFeXeCv+SqeIf+3n/wBHrXqNeXeCv+SqeIf+3n/0etAHqNFFFABRRRQAUUUUAFeXfGH/AJgv/bf/ANp16jXl3xh/5gv/AG3/APadAHqNFFFABRRRQAUUUUAFZfiX/kVdY/68pv8A0A1qVl+Jf+RV1j/rym/9ANAHL/CX/kVbr/r9f/0BK7yuD+Ev/Iq3X/X6/wD6Ald5QAUUUUAFFFFABRRRQBxnhP8A5OVh/wCubf8ApKa+ka+bvCf/ACcrD/1zb/0lNfSNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIzKilmICgZJJ4AoAWism18UeH768FnZ67plxdE48mG7jd8/7oOa1qACiio554baB5p5UiiQZd5GCqo9ST0oAkorM0/wAR6Hq07QabrWnXsyjJjtrpJGH4KTWnQAUVlXvifw/pl19mv9d0y1uP+eU93Gj/AJE5rRhniuYUmglSWJxlXRgysPUEdaAJKKjnnhtoHmnlSKJBl3kYKqj1JPSqGn+I9D1adoNN1rTr2ZRkx210kjD8FJoA068/+Nv/ACSHXf8At3/9KI69Arz/AONv/JIdd/7d/wD0ojoAPgl/ySHQv+3j/wBKJK9Arz/4Jf8AJIdC/wC3j/0okr0CgAooooAKKKKACvO/jj/ySTV/9+D/ANHJXoled/HH/kkmr/78H/o5KAOI8F/8ibpX/XAVu1heC/8AkTdK/wCuArdoAKKKKACiiigAooooAwvgT/yP/jL/AHz/AOjWr3uvBPgT/wAj/wCMv98/+jWr3ugAooooAKKKKACiiigDwX4+/wDI3+Df+ujf+jI63Kw/j7/yN/g3/ro3/oyOtygAooooAKKKKACiiigDmPiH/wAiLqf0j/8ARi1B8NP+RJtf+ukn/oRqf4h/8iLqf0j/APRi1B8NP+RJtf8ArpJ/6EaAOuooooAKKKKACiiigAry7wV/yVTxD/28/wDo9a9Rry7wV/yVTxD/ANvP/o9aAPUaKKKACiiigAooooAK8u+MP/MF/wC2/wD7Tr1GvLvjD/zBf+2//tOgD1GiiigAooooAKKKKACsvxL/AMirrH/XlN/6Aa1Ky/Ev/Iq6x/15Tf8AoBoA5f4S/wDIq3X/AF+v/wCgJXeVwfwl/wCRVuv+v1//AEBK7ygAooooAKKKKACiiigDjPCf/JysP/XNv/SU19I183eE/wDk5WH/AK5t/wCkpr6RoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArwz42a1c6p4y8OeBYZpI7O8lhe7Eb483zJdiqfpgnHTJB7Cvc6+dfiUjRftG+GXcFVaawZSe487GfzBoA9L+IfgzQZPhnq0MGl2cH9n2UlxbNFCFaIxru+UgZGduD655qt8EvFV34o8BL/aEzTXlhMbV5XOWkUAMrE9zhtuep25PWuo8d/8k88S/wDYKuv/AEU1eYfs1xSDw7rkxJ8prtFUdshMn/0IUAe314N4x1FvGnx70jwdcln0axkVpbbd8kziIysWHfjC4PTDY6mvea+dbBGh/azcSAqTPKRn0NoxH6EUAdp8a/Dum2/w9l1mxtIbO/0qWGS3uLZBE6AyKmAy4IHzZ+oFSweJfEPir4BvqujeY/iB7byWMPEhZZNkjLjGGKBmGOhIxzWj8bf+SQ67/wBu/wD6UR1Q+AUUkfwugZydsl1MyZ9M4/mDQBT+FXgmG9+HzQeL/Clkl088iq1zZqlxJEQMM5I3BtxcA8HAB9zw/wALNQvPC3xrvvCFldSSaRLdXUBidsgeUHKv7N8gBPfPsK9j8b+MJtESPR9CtW1DxPfIfsdpHg+WOnnSE8KgPrjJGOgJHO/D7wHpfw/1K2l1rUEu/FWseYsbncR8o3yBDjk45LHGegxzkA5jxjqLeNPj3pHg65LPo1jIrS2275JnERlYsO/GFwemGx1NdH8a/Dum2/w9l1mxtIbO/wBKlhkt7i2QROgMipgMuCB82fqBXF2CND+1m4kBUmeUjPobRiP0Ir0r42/8kh13/t3/APSiOgDV+G3iSbxX4A0vVbpg128ZiuD/AHnRipb05xu49ayvjb/ySHXf+3f/ANKI6ofAKKSP4XQM5O2S6mZM+mcfzBq/8bf+SQ67/wBu/wD6UR0AeHeEvDfxWv8AwxZ3Phq8v49Iff8AZ1i1JYlGHYNhS4x8wbtXs3wk0fxzpP8AbH/CaXF1N5vk/ZPtF4J8Y378YY46p9fwq38Ev+SQ6F/28f8ApRJXoFAHmnxb0fxzq39j/wDCF3F1D5Xnfa/s94IM52bM5YZ6P9PxrzT/AIQ/45/9BDVP/Bwv/wAcr6WooAK+af8AhD/jn/0ENU/8HC//AByvpaigDzT4SaP450n+2P8AhNLi6m83yfsn2i8E+Mb9+MMcdU+v4Vh/tE2mtzeGrC5sZJRpMBf+0VWYKrFmiEW5c/N82ccHFez1538cf+SSav8A78H/AKOSgD530rRvHc+l28umzXq2bJmEJfBBt9huGK9urC8F/wDIm6V/1wFbtAHjv9gfEn/n4v8A/wAGI/8Ai67HwJYeJLH+0P8AhIZLh9/l+R51yJcY3bsYJx1WuxooA47x3YeJL7+z/wDhHpLhNnmef5NyIs527c5Iz0auO/sD4k/8/F//AODEf/F17FRQAV47/YHxJ/5+L/8A8GI/+Lr2KigDxHwXceL7bxDqEHh/UjaagyMbp5GB37XAOSQ2TuPX61199N8XpvLz4gmkxn/j3uFjx064C5/Wsn4f/wDJRNb/ANyb/wBGrXqtAHmn/F3f+g1qH/geP8a1/tnxg/6GWL80/wDjddpRQB5p/wAXd/6DWof+B4/xq5YzfF6HzMeIJo84/wCPi4WTPXpkNj9K7+igDgL6b4vTeXnxBNJjP/HvcLHjp1wFz+tU/wDi7v8A0GtQ/wDA8f416XRQB4x4tvfFreI9H/4SjUBezxMr25G3CjeMjgDuBWl/YfxJ/wCghJ/4FCj4n/8AI1aN/uD/ANDr1WgDlPBdj4ksvt3/AAkNw02/y/I3Sh8Y3bunTqtHjSx8SXv2H/hHrhodnmeftlCZzt29evRq6uigDyr+w/iT/wBBCT/wKFeq0UUAeVf2H8Sf+ghJ/wCBQrqvBdj4ksvt3/CQ3DTb/L8jdKHxjdu6dOq11dFAHBfFODU5NDiltZCtjFu+2KHxuyybOO/Oa5Hw3pfjS60aOXRrt47Is2xROF5zzx9a9E+If/Ii6n9I/wD0YtQfDT/kSbX/AK6Sf+hGgDrq8q/sP4k/9BCT/wAChXqtFAHKeC7HxJZfbv8AhIbhpt/l+RulD4xu3dOnVaPGlj4kvfsP/CPXDQ7PM8/bKEznbt69ejV1dFAHlX9h/En/AKCEn/gUK9VoooA8q/sP4k/9BCT/AMChUPw3S5i8farHesWulgmWZic5cSpuOe/Oa9bry7wV/wAlU8Q/9vP/AKPWgDpvGlj4kvfsP/CPXDQ7PM8/bKEznbt69ejVyv8AYfxJ/wCghJ/4FCvVaKACvKv7D+JP/QQk/wDAoV6rRQByngux8SWX27/hIbhpt/l+RulD4xu3dOnVaPGlj4kvfsP/AAj1w0OzzPP2yhM527evXo1dXRQB5V/YfxJ/6CEn/gUKk+MP/MF/7b/+069Rry74w/8AMF/7b/8AtOgCP+w/iT/0EJP/AAKFdV4LsfEll9u/4SG4abf5fkbpQ+Mbt3Tp1WurooA5TxpY+JL37D/wj1w0OzzPP2yhM527evXo1cr/AGH8Sf8AoISf+BQr1WigAryr+w/iT/0EJP8AwKFeq0UAcp4LsfEll9u/4SG4abf5fkbpQ+Mbt3Tp1Wq3xFtdbuNLWTS5mS1ihna9USBdybRxjvwGrtKy/Ev/ACKusf8AXlN/6AaAPIfCuneLbzS5ZNBunitRMVdRME+fauTj6ba9yrg/hL/yKt1/1+v/AOgJXeUAeVf2H8Sf+ghJ/wCBQrqvBdj4ksvt3/CQ3DTb/L8jdKHxjdu6dOq11dFAHKeNLHxJe/Yf+EeuGh2eZ5+2UJnO3b169Grlf7D+JP8A0EJP/AoV6rRQAV5V/YfxJ/6CEn/gUK9VooA8NsF8V2XxESO3vjD4iUECdnDYzFnrgg/Jx0rvvtnxg/6GWL80/wDjdYX/ADXf/P8Az7V6jQBxf2z4wf8AQyxfmn/xuj7Z8YP+hli/NP8A43XaUUAcX9s+MH/Qyxfmn/xuj7Z8YP8AoZYvzT/43XaUUAcX9s+MH/Qyxfmn/wAbo+2fGD/oZYvzT/43XaUUAeb694r+Knh2xS8vvEmYnkEQ8sRk5IJ/uexr6S8N3s+o+FtIvrlg1xc2UM0rAYyzICTgdOTXz18WP+RUt/8Ar9T/ANAevfvBv/IjeH/+wbbf+iloA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACvNPir8PL3xTLpuu6E0K65pjAokpws6BtyrnsQ2cZwPmOTXpdFAHmnijVPF/ifwlc6Fp/g6+sdRvo/s9zNd3EP2eFG4kKurkvxkDCjrntg9H8P/B0Pgfwlb6Okiyz7jNcyqMCSVsZI9gAFHsorqKKAPG/hNoHxI0rxVdT+MJtSfT2snSMXWpC4Xzd6EYUO2DtDc49fWtHx14B1Y+O9M8d+F7eG61C1ZPtVjJIIjcBflyrHgHYdvPTAPPQ+p0UAeVeOo/FXxD0KPw7pnhu80qC4lRr271OWJFRVO4BVR2ZvmAOcdunOR1kelXngv4eJpnhawXUL2ytxHbQySLGJZC3zOxJAHLM5GRnoDzXU0UAfM9t4V+N9nqV9qNvbzR3l8++5mF1alpCOAMluFA4CjgdhXXfD7wz8RpfH1rrHjgTNb2NrMLZ5bmJwrvtUgKjHGRnnH8PXpXtVFAHlnjrwDqx8d6Z478L28N1qFqyfarGSQRG4C/LlWPAOw7eemAeehb46j8VfEPQo/DumeG7zSoLiVGvbvU5YkVFU7gFVHZm+YA5x26c5HqtFAGV4a0C18L+G7DRbMkw2kQQMRgu3VmPuWJP41ynxt/5JDrv/bv/AOlEdegV5/8AG3/kkOu/9u//AKUR0AHwS/5JDoX/AG8f+lElegV5/wDBL/kkOhf9vH/pRJXoFABRRRQAUUUUAFed/HH/AJJJq/8Avwf+jkr0SvO/jj/ySTV/9+D/ANHJQBxHgv8A5E3Sv+uArdrC8F/8ibpX/XAVu0AFFFFABRRRQAUUUUAeVfD/AP5KJrf+5N/6NWvVa8q+H/8AyUTW/wDcm/8ARq16rQAUUUUAFFFFABRRRQB5V8T/APkatG/3B/6HXqteVfE//katG/3B/wCh16rQAUUUUAFFFFABRRRQBzHxD/5EXU/pH/6MWoPhp/yJNr/10k/9CNT/ABD/AORF1P6R/wDoxag+Gn/Ik2v/AF0k/wDQjQB11FFFABRRRQAUUUUAFeXeCv8AkqniH/t5/wDR616jXl3gr/kqniH/ALef/R60Aeo0UUUAFFFFABRRRQAV5d8Yf+YL/wBt/wD2nXqNeXfGH/mC/wDbf/2nQB6jRRRQAUUUUAFFFFABWX4l/wCRV1j/AK8pv/QDWpWX4l/5FXWP+vKb/wBANAHL/CX/AJFW6/6/X/8AQErvK4P4S/8AIq3X/X6//oCV3lABRRRQAUUUUAFFFFAHl3/Nd/8AP/PtXqNeXf8ANd/8/wDPtXqNABRRRQAUUUUAFFFFAHCfFj/kVLf/AK/U/wDQHr37wb/yI3h//sG23/opa8B+LH/IqW//AF+p/wCgPXv3g3/kRvD/AP2Dbb/0UtAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5/wDG3/kkOu/9u/8A6UR16BXn/wAbf+SQ67/27/8ApRHQAfBL/kkOhf8Abx/6USV6BXn/AMEv+SQ6F/28f+lElegUAFFFFABRRRQAV538cf8Akkmr/wC/B/6OSvRK87+OP/JJNX/34P8A0clAHEeC/wDkTdK/64Ct2sLwX/yJulf9cBW7QAUUUUAFFFFABRRRQB5V8P8A/komt/7k3/o1a9Vryr4f/wDJRNb/ANyb/wBGrXqtABRRRQAUUUUAFFFFAHlXxP8A+Rq0b/cH/odeq15V8T/+Rq0b/cH/AKHXqtABRRRQAUUUUAFFFFAHMfEP/kRdT+kf/oxag+Gn/Ik2v/XST/0I1P8AEP8A5EXU/pH/AOjFqD4af8iTa/8AXST/ANCNAHXUUUUAFFFFABRRRQAV5d4K/wCSqeIf+3n/ANHrXqNeXeCv+SqeIf8At5/9HrQB6jRRRQAUUUUAFFFFABXl3xh/5gv/AG3/APadeo15d8Yf+YL/ANt//adAHqNFFFABRRRQAUUUUAFZfiX/AJFXWP8Arym/9ANalZfiX/kVdY/68pv/AEA0Acv8Jf8AkVbr/r9f/wBASu8rg/hL/wAirdf9fr/+gJXeUAFFFFABRRRQAUUUUAeXf813/wA/8+1eo15d/wA13/z/AM+1eo0AFFFFABRRRQAUUUUAcJ8WP+RUt/8Ar9T/ANAevfvBv/IjeH/+wbbf+ilrwH4sf8ipb/8AX6n/AKA9e/eDf+RG8P8A/YNtv/RS0AbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/AMbf+SQ67/27/wDpRHXoFef/ABt/5JDrv/bv/wClEdAB8Ev+SQ6F/wBvH/pRJXoFef8AwS/5JDoX/bx/6USV6BQAUUUUAFFFFABXnfxx/wCSSav/AL8H/o5K9Erzv44/8kk1f/fg/wDRyUAcR4L/AORN0r/rgK3awvBf/Im6V/1wFbtABRRRQAUUUUAFFFFAHlXw/wD+Sia3/uTf+jVr1WvKvh//AMlE1v8A3Jv/AEateq0AFFFFABRRRQAUUUUAeVfE/wD5GrRv9wf+h16rXlXxP/5GrRv9wf8Aodeq0AFFFFABRRRQAUUUUAcx8Q/+RF1P6R/+jFqD4af8iTa/9dJP/QjU/wAQ/wDkRdT+kf8A6MWoPhp/yJNr/wBdJP8A0I0AddRRRQAUUUUAFFFFABXl3gr/AJKp4h/7ef8A0eteo15d4K/5Kp4h/wC3n/0etAHqNFFFABRRRQAUUUUAFeXfGH/mC/8Abf8A9p16jXl3xh/5gv8A23/9p0Aeo0UUUAFFFFABRRRQAVl+Jf8AkVdY/wCvKb/0A1qVl+Jf+RV1j/rym/8AQDQBy/wl/wCRVuv+v1//AEBK7yuD+Ev/ACKt1/1+v/6Ald5QAUUUUAFFFFABRRRQB5d/zXf/AD/z7V6jXl3/ADXf/P8Az7V6jQAUUUUAFFFFABRRRQBwnxY/5FS3/wCv1P8A0B69+8G/8iN4f/7Btt/6KWvAfix/yKlv/wBfqf8AoD1794N/5Ebw/wD9g22/9FLQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFef8Axt/5JDrv/bv/AOlEdegV5/8AG3/kkOu/9u//AKUR0AHwS/5JDoX/AG8f+lElegV5/wDBL/kkOhf9vH/pRJXoFABRRRQAUUUUAFed/HH/AJJJq/8Avwf+jkr0SvO/jj/ySTV/9+D/ANHJQBxHgv8A5E3Sv+uArdrC8F/8ibpX/XAVu0AFFFFABRRRQAUUUUAeVfD/AP5KJrf+5N/6NWvVa8q+H/8AyUTW/wDcm/8ARq16rQAUUUUAFFFFABRRRQB5V8T/APkatG/3B/6HXqteVfE//katG/3B/wCh16rQAUUUUAFFFFABRRRQBzHxD/5EXU/pH/6MWoPhp/yJNr/10k/9CNT/ABD/AORF1P6R/wDoxag+Gn/Ik2v/AF0k/wDQjQB11FFFABRRRQAUUUUAFeXeCv8AkqniH/t5/wDR616jXl3gr/kqniH/ALef/R60Aeo0UUUAFFFFABRRRQAV5d8Yf+YL/wBt/wD2nXqNeXfGH/mC/wDbf/2nQB6jRRRQAUUUUAFFFFABWX4l/wCRV1j/AK8pv/QDWpWX4l/5FXWP+vKb/wBANAHL/CX/AJFW6/6/X/8AQErvK4P4S/8AIq3X/X6//oCV3lABRRRQAUUUUAFFFFAHl3/Nd/8AP/PtXqNeXf8ANd/8/wDPtXqNABRRRQAUUUUAFFFFAHCfFj/kVLf/AK/U/wDQHr37wb/yI3h//sG23/opa8B+LH/IqW//AF+p/wCgPXv3g3/kRvD/AP2Dbb/0UtAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5/wDG3/kkOu/9u/8A6UR16BXn/wAbf+SQ67/27/8ApRHQAfBL/kkOhf8Abx/6USV6BXn/AMEv+SQ6F/28f+lElegUAFFFFABRRRQAV538cf8Akkmr/wC/B/6OSvRK87+OP/JJNX/34P8A0clAHEeC/wDkTdK/64Ct2sLwX/yJulf9cBW7QAUUUUAFFFFABRRRQB5V8P8A/komt/7k3/o1a9Vryr4f/wDJRNb/ANyb/wBGrXqtABRRRQAUUUUAFFFFAHlXxP8A+Rq0b/cH/odeq15V8T/+Rq0b/cH/AKHXqtABRRRQAUUUUAFFFFAHMfEP/kRdT+kf/oxag+Gn/Ik2v/XST/0I1P8AEP8A5EXU/pH/AOjFqD4af8iTa/8AXST/ANCNAHXUUUUAFFFFABRRRQAV5d4K/wCSqeIf+3n/ANHrXqNeXeCv+SqeIf8At5/9HrQB6jRRRQAUUUUAFFFFABXl3xh/5gv/AG3/APadeo15d8Yf+YL/ANt//adAHqNFFFABRRRQAUUUUAFZfiX/AJFXWP8Arym/9ANalZfiX/kVdY/68pv/AEA0Acv8Jf8AkVbr/r9f/wBASu8rg/hL/wAirdf9fr/+gJXeUAFFFFABRRRQAUUUUAeXf813/wA/8+1eo15d/wA13/z/AM+1eo0AFFFFABRRRQAUUUUAcJ8WP+RUt/8Ar9T/ANAevfvBv/IjeH/+wbbf+ilrwH4sf8ipb/8AX6n/AKA9e/eDf+RG8P8A/YNtv/RS0AbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/AMbf+SQ67/27/wDpRHXoFef/ABt/5JDrv/bv/wClEdAB8Ev+SQ6F/wBvH/pRJXoFef8AwS/5JDoX/bx/6USV6BQAUUUUAFFFFABXnfxx/wCSSav/AL8H/o5K9Erzv44/8kk1f/fg/wDRyUAcR4L/AORN0r/rgK3awvBf/Im6V/1wFbtABRRRQAUUUUAFFFFAHlXw/wD+Sia3/uTf+jVr1WvKvh//AMlE1v8A3Jv/AEateq0AFFFFABRRRQAUUUUAeVfE/wD5GrRv9wf+h16rXlXxP/5GrRv9wf8Aodeq0AFFFFABRRRQAUUUUAcx8Q/+RF1P6R/+jFqD4af8iTa/9dJP/QjU/wAQ/wDkRdT+kf8A6MWoPhp/yJNr/wBdJP8A0I0AddRRRQAUUUUAFFFFABXl3gr/AJKp4h/7ef8A0eteo15d4K/5Kp4h/wC3n/0etAHqNFFFABRRRQAUUUUAFeXfGH/mC/8Abf8A9p16jXl3xh/5gv8A23/9p0Aeo0UUUAFFFFABRRRQAVl+Jf8AkVdY/wCvKb/0A1qVl+Jf+RV1j/rym/8AQDQBy/wl/wCRVuv+v1//AEBK7yuD+Ev/ACKt1/1+v/6Ald5QAUUUUAFFFFABRRRQB5d/zXf/AD/z7V6jXl3/ADXf/P8Az7V6jQAUUUUAFFFFABRRRQBwnxY/5FS3/wCv1P8A0B69+8G/8iN4f/7Btt/6KWvAfix/yKlv/wBfqf8AoD1794N/5Ebw/wD9g22/9FLQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFef8Axt/5JDrv/bv/AOlEdegV5/8AG3/kkOu/9u//AKUR0AHwS/5JDoX/AG8f+lElegV5/wDBL/kkOhf9vH/pRJXoFABRRRQAUUUUAFed/HH/AJJJq/8Avwf+jkr0SvO/jj/ySTV/9+D/ANHJQBxHgv8A5E3Sv+uArdrC8F/8ibpX/XAVu0AFFFFABRRRQAUUUUAeVfD/AP5KJrf+5N/6NWvVa8q+H/8AyUTW/wDcm/8ARq16rQAUUUUAFFFFABRRRQB5V8T/APkatG/3B/6HXqteVfE//katG/3B/wCh16rQAUUUUAFFFFABRRRQBzHxD/5EXU/pH/6MWoPhp/yJNr/10k/9CNT/ABD/AORF1P6R/wDoxag+Gn/Ik2v/AF0k/wDQjQB11FFFABRRRQAUUUUAFeXeCv8AkqniH/t5/wDR616jXl3gr/kqniH/ALef/R60Aeo0UUUAFFFFABRRRQAV5d8Yf+YL/wBt/wD2nXqNeXfGH/mC/wDbf/2nQB6jRRRQAUUUUAFFFFABWX4l/wCRV1j/AK8pv/QDWpWX4l/5FXWP+vKb/wBANAHL/CX/AJFW6/6/X/8AQErvK4P4S/8AIq3X/X6//oCV3lABRRRQAUUUUAFFFFAHl3/Nd/8AP/PtXqNeXf8ANd/8/wDPtXqNABRRRQAUUUUAFFFFAHCfFj/kVLf/AK/U/wDQHr37wb/yI3h//sG23/opa8B+LH/IqW//AF+p/wCgPXv3g3/kRvD/AP2Dbb/0UtAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5/wDG3/kkOu/9u/8A6UR16BXn/wAbf+SQ67/27/8ApRHQAfBL/kkOhf8Abx/6USV6BXn/AMEv+SQ6F/28f+lElegUAFFFFABRRRQAV538cf8Akkmr/wC/B/6OSvRK87+OP/JJNX/34P8A0clAHEeC/wDkTdK/64Ct2sLwX/yJulf9cBW7QAUUUUAFFFFABRRRQB5V8P8A/komt/7k3/o1a9Vryr4f/wDJRNb/ANyb/wBGrXqtABRRRQAUUUUAFFFFAHlXxP8A+Rq0b/cH/odeq15V8T/+Rq0b/cH/AKHXqtABRRRQAUUUUAFFFFAHMfEP/kRdT+kf/oxag+Gn/Ik2v/XST/0I1P8AEP8A5EXU/pH/AOjFqD4af8iTa/8AXST/ANCNAHXUUUUAFFFFABRRRQAV5d4K/wCSqeIf+3n/ANHrXqNeXeCv+SqeIf8At5/9HrQB6jRRRQAUUUUAFFFFABXl3xh/5gv/AG3/APadeo15d8Yf+YL/ANt//adAHqNFFFABRRRQAUUUUAFZfiX/AJFXWP8Arym/9ANalZfiX/kVdY/68pv/AEA0Acv8Jf8AkVbr/r9f/wBASu8rg/hL/wAirdf9fr/+gJXeUAFFFFABRRRQAUUUUAeXf813/wA/8+1eo15d/wA13/z/AM+1eo0AFFFFABRRRQAUUUUAcJ8WP+RUt/8Ar9T/ANAevfvBv/IjeH/+wbbf+ilrwH4sf8ipb/8AX6n/AKA9e/eDf+RG8P8A/YNtv/RS0AbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/AMbf+SQ67/27/wDpRHXoFef/ABt/5JDrv/bv/wClEdAB8Ev+SQ6F/wBvH/pRJXoFef8AwS/5JDoX/bx/6USV6BQAUUUUAFFFFABXnfxx/wCSSav/AL8H/o5K9Erzv44/8kk1f/fg/wDRyUAcR4L/AORN0r/rgK3awvBf/Im6V/1wFbtABRRRQAUUUUAFFFFAHlXw/wD+Sia3/uTf+jVr1WvKvh//AMlE1v8A3Jv/AEateq0AFFFFABRRRQAUUUUAeVfE/wD5GrRv9wf+h16rXlXxP/5GrRv9wf8Aodeq0AFFFFABRRRQAUUUUAcx8Q/+RF1P6R/+jFqD4af8iTa/9dJP/QjU/wAQ/wDkRdT+kf8A6MWoPhp/yJNr/wBdJP8A0I0AddRRRQAUUUUAFFFFABXl3gr/AJKp4h/7ef8A0eteo15d4K/5Kp4h/wC3n/0etAHqNFFFABRRRQAUUUUAFeXfGH/mC/8Abf8A9p16jXl3xh/5gv8A23/9p0Aeo0UUUAFFFFABRRRQAVl+Jf8AkVdY/wCvKb/0A1qVl+Jf+RV1j/rym/8AQDQBy/wl/wCRVuv+v1//AEBK7yuD+Ev/ACKt1/1+v/6Ald5QAUUUUAFFFFABRRRQB5d/zXf/AD/z7V6jXl3/ADXf/P8Az7V6jQAUUUUAFFFFABRRRQBwnxY/5FS3/wCv1P8A0B69+8G/8iN4f/7Btt/6KWvAfix/yKlv/wBfqf8AoD1794N/5Ebw/wD9g22/9FLQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVz/ijxroPg+2SXWL5YpJf9TboC8sp/2VHPtnp70AdBXn/wAbf+SQ67/27/8ApRHVtfGXiS6gW6svh/qrWrDcPtV1BBLj/rmWJB9jiuf1XxHpfxa8Kaz4QsJZdJ15gubPU4zG6tHIrkcZyMrg45HUigDV+CX/ACSHQv8At4/9KJK9Ar51s/gx8T9OtUtbLxda21vHnZDBqVyiLk5OAEwOST+NT/8ACpPiz/0O6f8Ag2uv/iKAPVfiT4yj8EeDrrUVZTfSfubONud0pHBx6KMsfpjvXi/wa8fano/ixdF8Q3F29rrO14JLtmJWVvuMC3VX6Z7nb71pQfAvxlq2sWDeK/ElvfadBJmRftk80gTgsqb1ABbAGc+/OMV0nxx8ApqnhiHXNKgEd5o0W0pEMbrYc4GP7n3h7bvagD2CivnjU/jhJcfCKGGC6ePxROfskrxnayKuN0wI6FlIAIxhixH3ah074X/Fm/022u/+Eue1E8ayCCfVLlZI8jOGAUgH2zQB9G1538cf+SSav/vwf+jkrgP+FSfFn/od0/8ABtdf/EVXvPgv8TtRtWtb7xba3Vu+N0U+pXLo2DkZBTHWgDQ8F/8AIm6V/wBcBW7XGQ/Ar4iW8SxQ+JNPjjUYVEvrgAD2Ajp//CkPiT/0NNl/4MLj/wCN0AdhRXH/APCkPiT/ANDTZf8AgwuP/jdH/CkPiT/0NNl/4MLj/wCN0AdhRXH/APCkPiT/ANDTZf8AgwuP/jdH/CkPiT/0NNl/4MLj/wCN0AdhRXH/APCkPiT/ANDTZf8AgwuP/jdH/CkPiT/0NNl/4MLj/wCN0Ac18P8A/komt/7k3/o1a9VrhoP2f/HdrO89vrmlRTPkNJHdzqzZOTkiPJ5qz/wpD4k/9DTZf+DC4/8AjdAHYUVx/wDwpD4k/wDQ02X/AIMLj/43R/wpD4k/9DTZf+DC4/8AjdAHYUVx/wDwpD4k/wDQ02X/AIMLj/43R/wpD4k/9DTZf+DC4/8AjdAHYUVx/wDwpD4k/wDQ02X/AIMLj/43R/wpD4k/9DTZf+DC4/8AjdAHNfE//katG/3B/wCh16rXDXH7P/ju8kSS51zSp5E4Vpbudiv0Jj4qz/wpD4k/9DTZf+DC4/8AjdAHYUVx/wDwpD4k/wDQ02X/AIMLj/43R/wpD4k/9DTZf+DC4/8AjdAHYUVx/wDwpD4k/wDQ02X/AIMLj/43R/wpD4k/9DTZf+DC4/8AjdAHYUVx/wDwpD4k/wDQ02X/AIMLj/43R/wpD4k/9DTZf+DC4/8AjdAFn4h/8iLqf0j/APRi1B8NP+RJtf8ArpJ/6Eahn+BPxDuoWhuPEenTRN95JL64ZT35BjpLf4D/ABCtIRDbeItNhiHISO9uFUfgI6AO1orj/wDhSHxJ/wChpsv/AAYXH/xuj/hSHxJ/6Gmy/wDBhcf/ABugDsKK4/8A4Uh8Sf8AoabL/wAGFx/8bo/4Uh8Sf+hpsv8AwYXH/wAboA7CiuP/AOFIfEn/AKGmy/8ABhcf/G6P+FIfEn/oabL/AMGFx/8AG6AOwry7wV/yVTxD/wBvP/o9a6H/AIUh8Sf+hpsv/Bhcf/G6rQ/AHx5b3MlzDrulRzyZ3ypdzhmycnJEeTk80AdzRXH/APCkPiT/ANDTZf8AgwuP/jdH/CkPiT/0NNl/4MLj/wCN0AdhRXH/APCkPiT/ANDTZf8AgwuP/jdH/CkPiT/0NNl/4MLj/wCN0AdhRXH/APCkPiT/ANDTZf8AgwuP/jdH/CkPiT/0NNl/4MLj/wCN0AdhXl3xh/5gv/bf/wBp10P/AApD4k/9DTZf+DC4/wDjdVrr4A+PL7Z9s13SrjZnb513O+3PXGY+OgoA7miuP/4Uh8Sf+hpsv/Bhcf8Axuj/AIUh8Sf+hpsv/Bhcf/G6AOworj/+FIfEn/oabL/wYXH/AMbo/wCFIfEn/oabL/wYXH/xugDsKK4//hSHxJ/6Gmy/8GFx/wDG6P8AhSHxJ/6Gmy/8GFx/8boA7CsvxL/yKusf9eU3/oBrD/4Uh8Sf+hpsv/Bhcf8AxumyfAz4jTRvHJ4msHjcFWVr+4IYHqCPL6UAVfhL/wAirdf9fr/+gJXeVxFr8BPiBZRmO08QaZBGTuKxXs6An1wI+vAqf/hSHxJ/6Gmy/wDBhcf/ABugDsKK4/8A4Uh8Sf8AoabL/wAGFx/8bo/4Uh8Sf+hpsv8AwYXH/wAboA7CiuP/AOFIfEn/AKGmy/8ABhcf/G6P+FIfEn/oabL/AMGFx/8AG6AOworj/wDhSHxJ/wChpsv/AAYXH/xuj/hSHxJ/6Gmy/wDBhcf/ABugDnv+a7/5/wCfavUa4b/hQPjz7b9t/t3SvtX/AD3+1z7+mPveXnpx9Ks/8KQ+JP8A0NNl/wCDC4/+N0AdhRXH/wDCkPiT/wBDTZf+DC4/+N0f8KQ+JP8A0NNl/wCDC4/+N0AdhRXH/wDCkPiT/wBDTZf+DC4/+N0f8KQ+JP8A0NNl/wCDC4/+N0AdhRXH/wDCkPiT/wBDTZf+DC4/+N0f8KQ+JP8A0NNl/wCDC4/+N0AVPix/yKlv/wBfqf8AoD1794N/5Ebw/wD9g22/9FLXgtz8BfiBexCK78QaZPGDuCy3s7AH1wY/c1fh+D/xVt4Y4YfGcMcUahERNUugqqBgAAJwBQB9DUV8+f8ACpPiz/0O6f8Ag2uv/iKP+FSfFn/od0/8G11/8RQB9B0V8+f8Kk+LP/Q7p/4Nrr/4ij/hUnxZ/wCh3T/wbXX/AMRQB9B0V8+f8Kk+LP8A0O6f+Da6/wDiKP8AhUnxZ/6HdP8AwbXX/wARQB9B1wH/AAubwZFrd9pN9ez2FzZ3Mls5uIDsZkYqSGXcMZHU4rzv/hUnxZ/6HdP/AAbXX/xFeL6rpepReJ9Q0ycyX2pRXcsMzRbpTLIrkMwJG5skE5IzQB9uaZrmk61GZNL1OzvUAyTbTrJj64PFX6+O9D+Enj3U5Y5rbRbixAbia6cW5Q+uGIb8hXuPg/wF8QtH2HU/iBI0YI3W6xfagw9A8vK/gKAPU6KRQQoBYsQOSe9LQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBi+LfEdv4T8LX+t3S70tY8rHnHmOThV9ssQM9uteO/BbSrjxp4m1Tx94hYXdxFN5Nrv5VJMZJA7bVKhf949wDW/+0Y8i/DqzVCQr6nGHx3Hlynn8QK2vgfaxW/wm0l4wu6dppJCO7eay/yUD8KAPQ6+Z/ihe/2Z+0Dp97p3y3cbWjSbDgu+QMH6ptH0r6UuJ4bW2luLiRIoYkLySOcKqgZJJ7ACvmbwZZT/ABN+ON14iKMdNtLsXjuwxhUOIEPudi8eitQB9O0UUUAFIyhlKsAVIwQehpaKAPEdL+AiWPxKOqyTWz+HYZvtFva5YyFuqowIxtDe5yAAepx7dRRQBHNPFbQvNPKkUSDLO7BVUepJ6VR0/wAQ6Jq87wabrGn3sqDLx21ykjKPcKTivD9D1SL4ufFW+l1qbf4Y0eN57azdtsL7WCo0g6HOSxz6beRXSeJvCGo67468Mat4Nm0iPR9OdDLJZtGpiYOS+SoyylMLtzjrkDOaAPXqzNQ8RaHpEoi1LWdOspG6Jc3SRk/gxFcN8a/HN14O8KwwaZKYtS1J2ijlHWKNQN7D/a5UD03Z7VB4X8KaHo3gSKESaYfFWq2BnNzqRSSV55UyM78kqGIGAOcZIJJoA9QimiuIUmhkSSJwGV0YFWHqCOtPrz74QeFtf8JeFbmw154xI920sMMbhhEpAzjHABIJwOBn1Jr0GgAooooAy9W8R6NoMtpHq2pW9k12zJAZ32KxAyfmPA6jr601fFPh5hlde0s/S8j/AMa89+KPgq7+Ifi/RNFSd7K1tLO4upLw25kQFmRQnUAt8ucZ6ZNefeLfghYeFdJW4bxJPd31w4gsbKKxG+5mPRR8/A7k9h6nAIB9G2erabqLsljqFpcsoyywTK5A9Tg0zUtc0jRgh1TVLGxD/dN1cJFu+m4jNef+DPB1r8JfAOp6xdKtxq4tHubtwePkUssSH0zxnuTn0AwfgXYR+JYdc8W65Gl/qlxeGAT3ChygCBiFB+6PnA47AAcCgD2azvrTUbZbmxuoLqBvuywSB1P0I4qevBNdvE+HP7QGnJpSra6ZrMUH2y1iG2I73aPdtHAIKhuPf1Ne90AFFFFAEVzcQ2drNc3EgjhhRpJHPRVAyT+QrHtPGvhe+to7i38Q6W8ci7lzdIp/EE5B9jzVf4hvOnw819bWCWeeWykhSOJC7MXGzgDn+KvI4/2a447Tzr3xX5RVN8mLIBU4yeTJ0HPPFAHtq+JNCdgq61prMxwALpCSfzrUr53+FvwlsNQ8RSeIJp5b3QLObGntLF5X211P+sK5OIwwOBn5sDOORX0Hc3MFlazXVzMkNvChkkkdsKigZJJ7ACgBl5f2enQrLfXcFrEziNXnkCAseigk9T6VYr5g+LGv6v4g1/w9fTh7fRbmTzNNtWBDNGGUec49XzkDsuPU5+n6ACiiigArFuPF3h201afSrrWrK2voFV5IZ5hGQGGRjdgHj09q2q8I1j4SXPxG8deJNautSk0uCO9W1iRrMuZRHEi7wSy/L7jIPNAHsQ8T+HyMjXdMP/b3H/jV61vLW+h86zuYbiLON8Lh1z6ZFfMusfBOK28T2HhvSNde/wBTn/fXQNqESzt/+ejkOeScAL39Rxn1fxlYj4cfBO/tPDXmQNbRJGJwf3mXkVXkJ/vEMeR04xgAUAdpd+KfD2n3ZtL3XtLtrkHBhmvI0cH/AHSc1qRyJLGskbq6MMqynII9Qa8o+Guv/DvxH4ftdHg07Tbe/ECpcWV3bpvmYL8zBiP3ucE55PcgUvwgIj8Q+MrbSJGfwvDeqtgdxaNX+beIz0K9Pw2nvyAesUUUUAFFFeYfHfWbzR/AcH2bzBBdX0cF35blC8O1mZNw5G7aAT6ZHegDt28W+G0vPsbeIdJW63bfJN7GHz6bc5zWwDkZFeceHNY+GPjDw5NDaWWkRW0URe4srm3jieBQOWI9AP41JA9c1B8DJbyTwVdh3nk0xNQlTTHnzuNuMYxn+HOfxyO1AHoGpa1pWjor6pqdnYq33Wup1iB+m4in6fqmn6tAZ9Ov7W8hBx5lvMsi/mpNeKfC/wAPeI9R8ca/c+OvDiXCSoWNzqNor4lDgBImbOU2lvu5A2r078t8TI1+F3xXs9R8K4shNbJcvaxnEZy7KybR/A2wcdjnGMDAB9P0UUUAFFFI5KoxVdzAZC5xn2oAo6lrukaNs/tTVbGx3/d+1XCRbvpuIzU1jqNjqlsLnT7y3u4DwJbeVZFP4gkV4L8LPH3hW7ub1fF8duniK7unlOoX0QZXBAwgdv8AVhcEBThcYwcnFdHJa2WmfH/SLfwpHHAJrJ31m3tABCEwxRnVeAxJU/ip/i5APYKyrvxP4fsLv7Jea5plvc5x5M13Gj59NpOa8v8Ajp441HSBp/hfRbh7e81BfMnljO11jLbVVSORuIbJHPy47mtbVPA+iab4DvfCnhcaONfe3VA10I2mmOQXLbsnLDdjsCRjAHAB6cCCAQcg9CKWuT+Guiav4c8BadpWtyq95AGGA+/y0LEqm7vgED0HQcCusoAKKKKAI57iG1gee4mjhhQZeSRgqqPUk9Koaf4j0PVp2g03WdOvZlGWjtrpJGH1Ck14T401Sfxf8fdN8L3zltGsruJBat9yQhA7lh3J5X6fU10/xx8Pabp/gi31nS7SDT9Q066i8m4tEETqpyNoK4wASCPTHFAHsVZmoeI9D0iZYdS1nTrKVhkJc3SRsfwYiuCb4j3R+A3/AAlw2jUjbeTnj/X7/K346dfnx6VW+CXh3T7nwCNa1C0ivb/VZpnnuLpRK7qHKYJbJxlST6kmgD1WCeG5gSe3lSWFxlJI2DKw9QR1qSvBvCuonwV+0BqvhG0Yx6Lfybktgf3cMjRCVSo7d047Eegx7zQAUUUUAFZA8V+HTeiyGv6V9rLbfI+2R78+m3Oc15R+0T4ov9M0vTNDspnhi1ASPdMhwXRdoCZ9DuOR3wPeutPgHw+3wp/ss6VZhv7M3eeIV3+d5efM3Yzuzzn8OlAHoNFeOfs+eK7vWfDl9ot9M80mlsnkSSNk+U+cL6kKVP0DAdq9M8S+Ibbw1pDXs6NNK7rDa2sf+suZm4SNB3JP5DJ7UAX3v7OO/jsHu4FvJEMiW5kAkdR1YLnJA9asV85eDJ9Zn/aQk/t+dJdRSOVZBGf3cf7rIRP9lc498Z6mvo2gAooooAKz9S13SNG2/wBqarY2O/lftVwkW76biKr+K9XfQPCWratEoeW0tJJY1IyCwU7c+2cZrx/4DadB4kfxB4j12KPUtRkuEjE90gkZflJOM9M5A47ADpQB7jZ31pqNstzY3UFzA33ZYJA6n6EcVMzKilmYKoGSScACvn67v0+Hf7Q0VppYFvpOrmBLizj+WJTJ8u4L0GG+b2BYDg10Xxw8R/2LfeFIL63kuNCmunmv7ZD/AMfCxlMIR0IG4naeGIHpQB6Tb+K/Dl5di0tvEGlT3JOBDFeRs5PptBzWvXmGo3vw08VfDrUryBNK+w21q5O2BIprViDtwuAVbdwMfePAyDW18JJtVn+GOjSaw0rXLRtsaXO9ot58snP+zjHtigDta5TUvHFvofjW08P6vb/ZYNQjB0++35SaTOGjYYGxgSuOSDuHTpXVMwVSzEBQMkk8AV5t4/1X4b6vZabNr+t2s8dpeo8QsrlZHyeoYJk7OMnp0HOeoB2+o6/YaVdw2tz9rM8yl40gs5ptwHX/AFanpWXP8QPDltqMGnT3F7FfTjMNtJptyskg55VTHk9D09KzviFf6vpOi2vi7w/cmdNOBkubMPmG7tnxuPH8S4DBh0G7rnFcDqHiCz8UfGX4e63YFxbXVkzKHGGUgyhlPuCCPwoA9GPjt28WWmkw+G9eewnXD6k2mzpHFIfuqQyA7fVugyO2SOptrG0s2la1tYIGmcySmKMLvYnJZsdSSScmvM/B91rfjH4lar4qt7+4t/C1sPsNpED8l9szl8HgqGLNuGDyFzwwr1OgArhPBPxGHjTxHrun2umv9g0+XbDqCODHKucDI65JBYYzx1x3rfE3xNeLBH4P8NqZ/EWrqYwEOPssB4aVj/DxkA9uT2Gei8EeELPwT4XttHtCHdf3lxPjBmlP3m/QADsABQBR8JeKdQ1fxN4o0PU4LeKbSLpVh8vcGkgfLRswPGdoHI9egrsK8m+Js8ngTxTpfxAsWjIfGn6laFwpuYjypXPVhj9F7A16D4b8U6P4t0tNQ0a9juIiBvUHDxH+669VP8+oyKANiiiigAooooAKKKKACiiigAooooAKKKKAMfxR4bsPFvh660bUlY284HzIcNGwOVZT6g/4Hg1wHhPw94++HNnLpNlbab4j0gSM9sDdG1mjz1zuVgATk4yeSea9XooA8z1/w3458fQjT9VuLDw7obkGe3tJWubibGDtZ8KoH0/EGuz8MeF9J8IaLHpWj2/lQKdzMxy8rnqznuT/AIAYAArZooAKKKKACiiigAqG8jklsp44jiR42VTnHJHFTUUAfLPwD0W11vxZfw6hGJ7OG2EzWsgzHJIGAUuvRgNzHB4zg9hW98X3Hw78faHrvhiKLTppoG86K3QJHNtcZDquAQQcH6A9RmuotfBet/Dz4kX/AIi0HSzq+iakjia1glRJrcswb5QxAYAjjB6Eg9Mmp4l8E+Ifip420+81TSpdD8P2MYQi5mRp5xuy2FQnaTwOTxjPPSgDA/aPdrh/C14uRDNBMUB7H92T+hFei2fgXQrz4YKt7p9tdX11pommvZog0xlaPO8OeRg9BngAAcVf+JngFPHfhUafBJHb31q/m2kjD5AcYKNgZCkenQgHnGKw4NX8b2vgQeHj4KvH1qOz+xpcJdQfZ2wmwSFt/XGDtx14yKAMP9njxVqOqadqWh387zxWAje1ZzlkRsgpn0GBgdsntivbq86+Enw4l8A6Pcvfyxy6pfMpm8rlIlXO1AT1PzEk+4HbJ9FoAKKKKACvHPB2sf8ACdfG7WtVdhJYaHbta6euchSzbTIPdgH59CB2r2CUOYXERCyFTtJ6A9q8g+BPgrXvCJ199d082jXDQpCGdWLbPM3EbSePmXnv+FAHcfEuN5Php4jVASRYyNx6AZP6A1xP7OBH/CvtQGeRqshx/wBsoq9au7WC+sp7O5jElvPG0UqN0ZWGCD9Qa8m8E+H/ABH8Kr7VNO/sa51zQrqUTW9zYPH5yN0w8bsvUYyQcDHfPABx/wAcIpJ/jL4chhJEslrbKhHXJuJAK+j68msvBOteLPipH408R2I06wsAq6fYySrJM2zlGfaSF+Zi+M5BwOep9ZoAKKKKACvI/jl4knhstL8IWExjudbmCTupwVh3Bcf8CY/krDvXrleNePvBPiLW/jR4Z1q0sRPpVsbbzZt6gRiOZncMCc9Dkcc5xQB69Z2kGn2UFnaxrFb28axRRr0VVGAB+ArzXXfFGg+KPFc2g6lrWm2WgaTKPt0d1dJG1/cKciLaxB8pCMsT95gB0BNeo1kX2g6S0VzdDQLC7uirSBWgjDSv1xuYdSe59aAPA/jlruj6t4p8NS6ZqljeRQKfMe2nSRY/nU8lSccV9D6bq+m6zbNcaXqFrfQK5RpLaZZFDAA4JUkZwQce4r598deAvGHirxFY6lp3gCHTILeJY3t0vbXEhDlsnawHQ46V7l4VNwdLk+0+Go/D7+ccWqSxSBxtX58x8c9PX5fpQBuUUUUAFZniLWoPDnh3UNYuRmKzgaUrnG8gcKPcnA/GtOuL+K+i6n4h+HGp6ZpEHn3cpiIhyAXCyKxAJIGeM/higDD+B6z6h4Z1LxNfsJdS1m/eWabuVX5VX2AO/A7A4re+J/iyz8JeDZ57qxS/e8b7JDaScpKzA5Df7OAc+vA4zml+Feh33hz4b6Tpmp2/kXsYlaWPIJXdK7DJHfBFR/E/wPL468MJZ2lylvf2s4uLZ3ztLAEbWI5AIPX1AoA8d1f9nnXY9Fjv9OurWbUGXfPpoyixk87I5GY7sdPmI6ZzXR/A3xfrEWp3HgTXLYxNZQs9uHi8uSLaRujYY5+9uBPPXk5GO7sPF3iuGzSDV/AmotqKqFZ7KeB4JG/vBi4Kg9cHOKg8I+EtTbxrqnjjxBbwWeo30SwQWEMgl+zxgKCXccM52jpwBn1wAD0CiiigArzn4ua/DbaTZeGE0yDU9Q8QSi2t4LgkRpyo3sQQRgsuMEdznivRq8/+JXgrU/ENzouu6BLCus6LP50MU5IjnGVbaT2OVHoOTkjqADyHxR+z5r2kWC3ejXcer7UBmgVPLlBxzsBJDDr3B6YBr0X4H+ONR8R6Ze6HrEYF7pIREcR7C0fK7WUDAZSuO2QRxkEnpI/GPiU22yT4faqNQx/q1urcw5x/z139M99tM+H3gy78P3Ota5q5g/tjW7k3E8VucxwLliEBPJPzHJ+nXGSAdD4k8Sad4V0eTUtRdtgISKKMbpJ5D92NF/iY/wD1zgAmvK7Hwc93rVx8TPiW6WUURWW301iXW2QECPzMDnHB2gck5PUrWD4k0P4y694uXXotHNm1vuSyiS8tmFsh67cv94926npwMAR/8Ip8ZdeurPT/ABF9pk0iS6iN0r3dvt2BwSSFbJxjOOenSgD6NooooAKp6rqVto2kXmp3jFba0heaQgZO1QScDueOBVys/XdJh17Qb/SbhmSK8t3gZ16ruBGR7jrQB4BD8L7v4q2V740tvsWhNfyu1pZKjMkgDEF5Gz8pZgeVXHGcc1meB9T8T/CTx1baFrNj5Vjqc6RzKygh8naJY5B1256Z6EggHkeoeDv+Ev8Ah/pCeHdS8NTavYWrsLW/0uaMlkZi2GjdlIIJPPTt2yZr7w9rXxA8WaJqWtaP/Y2j6LKbiKGaZJLi6kO0gEISqICoyCcn8cgA8u+PEdynxa05o5THI9pbtC452HzHAP4EE16f8RvA3h21+F+q/ZtLto7mzt/Oju/LBnLqQSzSfeYtg5JPOal+Lfw4uPGtlZ3+kSRxazp5JiEhwsyHB2k9iCMjPHJB65FTxVqXjTxV4OuPD9v4Ku7PUbxBDczzXUP2eJcjcVYMS4IBHTvnnGCAS/AvxTqHiXwRKmpzvcXFhcGBZnOWePaCu49yMkZ9AO9en1yHw28EJ4C8JppjTLPdyyGe6lQfKZCAMLnnaAAOevJwM4rr6ACiiigDyXxx8OtTPxBsPHPhoQ3F/FJHJcafLMIjcbAF+RjwMqADngYzz0rI+Nd74g1XwEZL3SDo1jBcRsyT3EcstzIcgKojYqFALEknJIHAGTWx4/8ABes3PxL0DxhYQ3V9Z2IjE9rayIsylGZhtDkAq2QCM56+vCeLdB8U/FO4stLuNLk8P+HLeYTzS3csbXE7AEAKiE7cAnqcc55xigDiJLSeP9lOOQqdrXfm/RfPK5P4/wAxXqPwRIPwh0MA9PtAP/f+Sui1Hwjpd/4Jl8KCLytOa1FtGByYwoG1uepBAPPUjmuH8BweKPhzo83h7UvDd3qtrFMz2d5pckTB1bkhld1K88598dskA4bWIpJv2r41iJDC6tmOPQWyE/oDX0fXlfgnwHrEnxA1Lx74pgitb64LC0sUlEpgUjYCzDgkIAox1yenSvVKACiiigDz/wCLHw8Hj3Q7fyLmO21GxZmt3mJEbBsBkYjpnC4OD096qSXfjSTwE+i3fh4abcJYm3uNTlvYpIURUw0iqrbyxUEhSAATycDm18YPBup+NPB8dppLg3VtcrcCBnCiYBWUrk8A/NkZOOvrWZqEvjLVPBcPhLRPDN7aO1mtjcalq1xEoRNmxm+RmLkgHkDjOcUAcN+zo8difFOq3UgisrW2iaaVuigb2J/AKTXdeHfFfhzXtb/4S3XfEGkWzIGi0nT576IPaRHgyON3Er9x/CuBnrXUeBfAlh4J8K/2NGRdNMS93LIvEzkYPB6LgAAenuTUmu6PZafp4m0rwXp+rXO8L9nRIITt5y25xjjjj3oA8U0TXtHi/aTv9Vk1WyTTnaXbdtcKIjmLAw+cdeOtfR1vcQ3VtFcW8qTQSoHjkjYMrqRkEEcEEc5r510jwF4w074kXPiWfwBDcWEss0i6eb212oHzgctjjPpX0Lpxc6ZaGSzFk/kputQykQHaMpleDt6ccccUAWaKKKAK2o2FvqumXenXalra6heCVQcEqwIPP0NeT+BPC/ij4Y32rWNtpP8AwkGk3Th4Z7S6iikjZcjDpIy8kEZwTjHfPHr8ieZE6bmXcpG5Tgj3HvXi/wAPdB8SfDD+27Sbw/qWsy3kym3ltJoRA4XOGO5wyE7jnI7D60AcD41ttWu/jrpY1EQrf3dzaN9ngbetsC4Cpu/iIUAk4AyTjivUfiveR+JNX0v4dWlhbXGoah/pDXVxnbZIN3zrgg78K/GcYwMHdU3hH4fapceObnx54vEEeqSnNrYQvvW2G3YNzDgsF44yO+c9LHjXwfri+OdL8c+GI4Lu/sovIn0+aTyxPH8w+VjwGw5HPHAPOMEA8h8X/BDxH4TP9p6NKNXs4CJC0ceJosc5MZzuH0z3yAK9o+EXje78ceEGudRVBqFpMbeZ0XaJeAQ+OgJB5A4yDjAOBak8XeJ57YxWPgLUlvyMf6XcwJAh9S4clgOvAycVL8N/BP8Awg3hk2M00c99czNc3ckYwm8gDavfaAAOevJwM4AB2FeN/tEQQ23w40+KCJIoxq0eERQoH7qbsK9krxz9pCaNfAemwlwJX1NHVe5AikBP4bh+dAHfa0NUMk9vd6poNtpd4y2sEd3aO7zFxt8s/vlBJOQAOteP+KvDEtt8V/CPh5JdPit2sZIYltrSSKNEbzdwKiYsSctyHByc/X0TwbpOq+JNQi8a+KovKuGU/wBlaZnKWMTfxn1lYdT1A9Purz3jQ/8AGRPgof8ATqf5y0AdPd+DfFDtpKab4ttNJtNMI8q0stKZYpABjDgzksuOMZ7564I7W4jnkspY4J1huGjKpN5e4I+OG255wecZqaigDl7D4f8Ah61hm+12SandXEonuby/USyzyDoSSMADoFACgdq81GiaXrX7RX9nWemWKaVo9hm7t44FEMjlTgsoG0tulXqP4PavTfF/jC28L2iRRxNfazdArY6bAN0s7/QchB1LdAAe+BXPeB/D/wDwr/QNQ17xPMz6xqkxudRmhieURZyQvyA8DLEtjGT1wAaAOS+MHh7RoPE/gPT7LSLC2F9qJjlENukYkXfCuG2jkfNXc2Xwk8Lab4vHiKxgntZQCRawTGOFXyDuAXBH+7nb7VwviTW9P8f/ABn8FWmg3IvrXTm+2SzRZ2IQwcg+nEa/iwHXivdKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKp6lpWn6xai21Kzhu4A6yCOZAwDKcg4NXKKACsi68MaNe+I7XxBc2Sy6naReVBMzN+7XJPC5xn5jzjNa9FABRRRQBmaZ4e0rSLq4u7O0Vbu5OZ7mRmkmk9i7EsQOwzgdgK06KKAMjRfC2heHZbqXSNLt7SS6kMkzxr8zknOMnkLk8KOB2ArXoooAKKKKAP/Z"]
math
multiple-choice
30
阅读下边的程序框图, 运行相应的程序, 则输出 $\mathrm{i}$ 的值为 ( )
2
3
4
5
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAHqATMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKxvHHinQvCGhvq3iDUYbK1Xo8rbdx9B715vJ+0P4eMhNn4V8TX0P8M9tZho3HqDuoA9horxz/AIaF0n/oRvF//gAP/iqP+GhdJ/6Ebxf/AOAA/wDiqAPY6K8c/wCGhdJ/6Ebxf/4AD/4qj/hoXSf+hG8X/wDgAP8A4qgD2OivHP8AhoXSf+hG8X/+AA/+Ko/4aF0n/oRvF/8A4AD/AOKoA9jorx0ftDaNn5/BXiyNe7tYgBR6n5q7f4a/EXwt45ilGh6gj3Nv/r7RiPNhB6FlHTPP5UAdXRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHiLxp47/AGpbjT9VQXGkeGrMmO0k5RrkP99lPDDa2MHivY4dL0yGMRw6daRqOipAoA/ACvHvhP8A8nSeMv8Adb/0Ja9soAr/AGCx/wCfK3/79L/hR9gsf+fK3/79L/hXzr+3x4Rns/CbePtK8ZeLNL1CTUdOsDbWGrNDaiN50jYiMD7xVjznrXQ6t+znotvpdzcR/En4lb4oXdc+JX6hSR/DQB7T9gsf+fK3/wC/S/4UfYLH/nyt/wDv0v8AhXgn7BvhCV/hhovxD1Lxf4q1bU9Stp45oNR1VprYYmZQVjI4OEHOfWsz9vD406J4b02x8GaT4g1Cz8UQ67pt1Pb2dvNvazE6vMQyrhl8vOQD0oA+jvsFj/z5W/8A36X/AAo+wWP/AD5W/wD36X/CvLPFnxy8I3vwJ1Pxx4QuZtZgWZtOhjgDQzGcsqHarjdlN4Y8dBWx8G71PCHhzw78N/FPic6p4oi0sTSXUquPtY3kbgzdW5AxnPFAHdNp9gykNY2xB6gxL/hXi/7SVrbeCPEPh3xxoNvHY3MV6tvcLAgRZ1kKoNyjg43HrXuNeKftuf8AIi6T/wBhe2/9HJQB7XRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHifwn/5Ok8Zf7rf+hLXtleJ/Cf/AJOk8Zf7rf8AoS17ZQB8k/tyP8dT8L7gatD4LGg/8JDY/ZTbvP8Aaf8Aj6Tyd2fl67d2PfFeia1J+1J/Y935tt8NfL8h9+2S6zjac4qb4hlPi98VNJ8J6Z/xMfCGhTtceJX+7BPOuDAkUo+88cqfMoIx3r2DxB/yAb7/AK9pP/QTQB8z/sMP8cP+FN+ERDD4N/4RXfJ5jM0/2zyvPffgfd3Zzj8K7fxdFFq37a3hOS7jTT/7C0m+WAXigf2v5sa7jb/3hHj5s4xnir/7CP8Ayar4V/653H/pRJVT9qZNM8eW6fC7SdJXV/EF4yvJKtw0A0mHILSvOnKPtO5EPEhXFAHzxo/hLwYLzW/Gfjf446x4DitPH+rJosEMkSQJONod49yE7ipGe2K0PE2k+DfH9zp+m+EP2wNW1vxlBdCXwzBeXMW0XuCFPyxg9CaseMNXHhP/AIVHa+K/COoT2vhXxdqWmCKDTjcXGrRRWoVboxEfOz5yevTrW78SPiH4M8W/GD4S2Ph3wHr2g3EXjSCR7jUPDn2BHXy3G0P3PtQB9Y6DDd2+h2cF/N513FbxpcS/89JAoDN+Jya8e/bc/wCRF0n/ALC9t/6OSva68U/bc/5EXSf+wvbf+jkoA9rooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDxLw6y+Gf2ttWh1Flhh16wM9tM52qzmQDYCe+ATivbQcjIrlvih4C0TxzpkdvqayQ3Ns/mWd7BgTWsmMB42PQ8n868+/4Uz43i+SD4weKfLX7u+85x/wB80Aev6PpmnaTbvb6ZY29nFJK0zxwRBFZ2OWYgdSTyT3q06q6FGUMrDBB7ivFv+FO+PP8AosHib/wMP/xNH/CnfHn/AEWDxN/4GH/4mgD2HSdPsdK0+Ow02zgs7WLPlwwRhETJycAcDkmkttN0+31K41GCyt4ru8Ci4nSMCSYKMLubqcDpmvnj41eB/H3gb4T+IPF6/FnxNOdF0+S6EX2z7+0Zx92tbwf8L/HuteEtL1g/F3xMh1Cxhudv2z7u9A2Pu+9AHuN9pmnXt5a3d3Y289xYuXtZZIwzQMRglCfukjjijUdN0+/mtpb6xt7iSzmE1s0sYYwyDgOpPQ8nkV4//wAKd8ef9Fg8Tf8AgYf/AImj/hTvjz/osHib/wADD/8AE0Ae1V4n+10y6zN4b8JWLLNf3uopKI0OSixujksB04B607/hTnjw/wDNYPE34Xh/+JrrPhb8K9M8I6i+sXuq6hr+tSjDalqcgkmUf3VYAcDJAoA76iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGJCkgc44paKAPh/8Abo/aq/sXTvGXwh1Lww8NxeWclnFdYba4ZR8wOeetdV+xj+1UfiZrOi/D3SvDDIbHTEimuiG2r5UQByc9TtNc7/wV4+Dw17wZafEfSLXdeaSvlXQRfvRElmdsdcYFdP8A8Ep/g+fA/wAI38W6ra+XquvNuw6/NHGM7SCemVIoA+saKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+ZPBnhDUPit8cfipHrHj7xhpdv4b8RR2NhbaRqpt4kia2jkOVwedxNfTdeGfsp/8lx+On/Y4Qf8ApHFQBa/4ZysP+iqfEv8A8KFv/iaP+GcrD/oqnxL/APChb/4mvaaKAPFv+GcrD/oqnxL/APChb/4mj/hnKw/6Kp8S/wDwoW/+Jr2migDxb/hnKw/6Kp8S/wDwoW/+Jo/4ZysP+iqfEv8A8KFv/ia9pooA8L1z9l/QNZ0mfTNW+JHxFvLO5QpNBNr5ZJFPUEFeRUth+zRpFjZxWlp8TviRDBCgSONPEBCooGAANvTFe30UAeLf8M5WH/RVPiX/AOFC3/xNH/DOVh/0VT4l/wDhQt/8TXtNFAHi3/DOVh/0VT4l/wDhQt/8TR/wzlYf9FU+Jf8A4ULf/E17TRQB4t/wzlYf9FU+Jf8A4ULf/E0f8M5WH/RVPiX/AOFC3/xNe00UAfP/AI/+A8OheA9b1uz+KfxIa403Tbi6hEmvsyl442dcjbyMgV6N+zJql/rf7Pvg/V9UuHuLy90aCWeZzlpHKgkk1rfGb/kj/iv/ALAV7/6Ieud/ZD/5Nh8Cf9gG2/8AQBQB6NRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeGfsp/8lx+On/Y4Qf8ApHFXudeGfsp/8lx+On/Y4Qf+kcVAHudeGfFzxn4t1z46x/Cnwr4kj8KyxWkd2+pmFJpJw4b5Ejfgkbe3rXtmp3SWWmz3kn3LeJpG+gGf6V418RPB/h343+Cf+En0i5bR9c0uZ/sWqWs+JEZAOHZOSuP4c9zWcn7ybV1HVpb9l9z6dTSNrNXs5aJ+ej/K6+dy54Pu/in4f8dQeG/FWpQ6po1rB9qm8RSIsLTANt8towNqeuc110nxb+F0cjI/xC8NKynDA6pFkH0+9XA/stePvEfjL4f+IdI8TWUOsan4auzp8skShItRIUNuUHIAO7uT0rlLyy1L7ZLj9jjS5vnb94b2x+fn73K961ndSUd1ZNO26eq8trGUdm7Wadmr3s1v+J7fD490DX9NvI/Auv6Hr2qQxFo7aDUEYFsHG4qTgZrz79kPxx4/8W3fi23+IS2sF9pOrS262ttIJI7YLt+QOANwGTyau/AO3u4taujcfAaz8Ajyxi7guLZzL14xEAf/ANdZH7K4LfED4oKOp8R3IH/jtOmkqkuvuN+jUl/Wo371J9LSX4/10GeI/EfxD+InxM1/Qfh/4n/4R618KyeRPKtqk4vJiocAl/ujDYyPSu6/Zz8fS+PfA7Xd9D5OoWFzLZ3a/wB5o3Kb/wDgRUn8a8//AGRB/Znj74oWN9Ntnj1yNm8w7cr5C889Rz1qb9hmCVtM8T6kHZra61m4EOQQPlmcHFTRVkobp04zv/edtPxat/d73CrrKUrWany28rPX8E7+fax7frmo2ek6XNf393b2sEK5aW4kCIvpljwK5n4R+KtY8V2+oXt/baKtlHc7NPuNL1IXa3EWB8zEDCnOePan/Ha906w+Fer3Gq20FzbeTsaKdQyEsdoyDx1IryjRPD3grwp+yjpdn4nv9Y0qyaHdcy+H2kjmD89PKBYcVCnb2kn05fvk/wDgP+mU43UEt239yX+bR9C1wnxy+IUngfTbO30vT49S1zVZDHp1lJIUSZhjduYZwAD6V8y/av2cv+ii/GX/AMDNR/8AjddN4dk0W4+PHw6i8P6hrGo6Cv2o2s2tPI9wX8kbsmQBvTtWkabqSjG9rv8ABJyf38tvmZyqKnGUrXsr/ikvld3fkeyfBr4k61r3iG88JeOtCtdA8T2cfntZ2tyZ4XiJ2hlkIGec9q9LrwPxiblf239GNoq/NpMYuSOuze/X8cV75RGXPShUta9/wbX42BrlqShe9rP70mc38Zv+SP8Aiv8A7AV7/wCiHrnf2Q/+TYfAn/YBtv8A0AV0Xxm/5I/4r/7AV7/6Ieud/ZD/AOTYfAn/AGAbb/0AUij0aiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8M/ZT/5Lj8dP+xwg/wDSOKvc6+Zvgf8AEPwN4K+PnxstfFvivStFmuvFkMsEd7crE0iC0iBZQeozxQB9H61ZR6lo91p0zMsd3C8LsvUBgQcfnXkN1+zxY20ItPCfj7xT4U090/0iw0edI4bmQ/fkcFTln710n/C+fgz/ANFN8M/+DBP8aP8AhfPwZ/6Kb4Z/8GCf40WQ+Z2sb3wn8CaD8PfCkWhaDb7Y1+aeZgPMuH/vuR1aumrzv/hfPwZ/6Kb4Z/8ABgn+NH/C+fgz/wBFN8M/+DBP8aqUnJ3ZMYqKsju9YtXvtLntI7ua1aaNkE8Bw8eRjcp9RXmHwU+B0Xw48Wajrlt4+8Uau2qSGa7g1CdGjlkJyXICjk4Fan/C+fgz/wBFN8M/+DBP8aP+F8/Bn/opvhn/AMGCf41Mfdk5Lfb5Dl70eR7blb4pfBjTPF/iA61Y+I9Z8N3c0ZjvH0iRYzeKeokyDngAfhVnxtoVx4O+Dn9g+BNN1M3BkSGE6WVWZHkOGuGJ4wCdzY564o/4Xz8Gf+im+Gf/AAYJ/jR/wvn4M/8ARTfDP/gwT/GiKUY8lvdfT+vn97He81N7r+v69A8WfDW48b/BO18EeLfEOofaGgiW9vrVwJJnUqd2WHqtdZ4E8O2vhfwxa6NbTzXItowrXE5BkmI/iYjvXJ/8L5+DP/RTfDP/AIME/wAaP+F8/Bn/AKKb4Z/8GCf41XM7y/vO7I5dIp68u3zPRMD0rz345fD698VnTtc8OXdvY+JNFkZ9PuZwfLG4AMG284IGOKb/AML5+DP/AEU3wz/4ME/xo/4Xz8Gf+im+Gf8AwYJ/jWbje3dFp2v2ehS+EPw88SWfjS88dfEO+02+8R3MAtY/7OVxbwwhtwCh+Qc5r1GvO/8AhfPwZ/6Kb4Z/8GCf40f8L5+DP/RTfDP/AIME/wAa0crpLoiUrNvqzoPjN/yR/wAV/wDYCvf/AEQ9c7+yH/ybD4E/7ANt/wCgCsL4r/G/4QXvwt8S2dp8R/Dk1xcaNdxxRJfoWd2hcBQM8kkit39kUEfsxeBQRgjQbb/0AVIz0aiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwdV8EeC9Tv5L7UvCOhXl1McyT3GmwySOfUsykmt6igDmf8AhXPw9/6ETwz/AOCiD/4ij/hXPw9/6ETwz/4KIP8A4iumooA5n/hXPw9/6ETwz/4KIP8A4ij/AIVz8Pf+hE8M/wDgog/+IrpqKAOZ/wCFc/D3/oRPDP8A4KIP/iKP+Fc/D3/oRPDP/gog/wDiK6akYZUgHGRQB4p+154D8D2P7MXjm8svBvh+2uIdDneKaHS4UdGC8FWC5B+lbXgrwr8LdJ+Dfh/V9d8L+E7aJdFtZJbi6062XcfJUklmXkn9a+Lf+CknxG+MPgbx9rHg251Z28MeIrdxaqd3zQnCsCc465q5+wrqnj79ojUn8K+O5k1DwVpFkIJonQnDCPEWCTjI2+lAHV/tH/tW/A3ws1xpHgH4d+HNa1BcobhtGgSOJvUZjIYV6L+xT4r+G/jz4SL4g8d6f8PbbVLiQFopLKytyox02EDFeQftJf8ABP6eEXGs/C7UvMQZc6bcZeRj6IRgCvU/2F/2dfCEHwbjt/iX8M9Kk12GQLMb+1V5OnrzQB7Z9n+AX/PH4cf982NH2f4Bf88fhx/3zY0z/hnn4H/9Et8M/wDgAtH/AAzz8D/+iW+Gf/ABaAH/AGf4Bf8APH4cf982NH2f4Bf88fhx/wB82NM/4Z5+B/8A0S3wz/4ALR/wzz8D/wDolvhn/wAAFoAf9n+Af/PH4cf982NdDZeNfh5Z2kdraeLfDNvBCoWOKLUrdURR0AAbAFc3/wAM8/A//olvhn/wAWj/AIZ5+B//AES3wz/4ALQB1P8Awn3gT/odfDv/AINYP/iqP+E+8Cf9Dr4d/wDBrB/8VXLf8M8/A/8A6Jb4Z/8AABaP+Gefgf8A9Et8M/8AgAtAHU/8J94E/wCh18O/+DWD/wCKo/4T7wJ/0Ovh3/wawf8AxVct/wAM8/A//olvhn/wAWj/AIZ5+B//AES3wz/4ALQB1P8Awn3gT/odfDv/AINYP/iqP+E+8Cf9Dr4d/wDBrB/8VXLf8M8/A/8A6Jb4Z/8AABaP+Gefgf8A9Et8M/8AgAtAHU/8J94E/wCh18O/+DWD/wCKo/4T7wJ/0Ovh3/wawf8AxVct/wAM8/A//olvhn/wAWj/AIZ5+B//AES3wz/4ALQB2ui+KvDGr3n2TSfEek39wQW8m1vo5XwOp2qxNa1fN8vgLwZ4D/bm+H1v4N8NadokV74d1ZrlLKARiUqI8FsdcZNfSFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBw3jv4y/CzwXrjaN4r8d6LpGoIoZra7uQjgEZBx9Kxf+GlPgL/0Vbwz/AOBormvhlomjaz+1x8WP7Y0ix1DyY9L8r7XbJL5eYDnbuBx+Fetf8IR4L/6FDQf/AAWQ/wDxNAHFf8NKfAX/AKKt4Z/8DRR/w0p8Bf8Aoq3hn/wNFdr/AMIR4L/6FDQf/BZD/wDE0f8ACEeC/wDoUNB/8FkP/wATQBxX/DSnwF/6Kt4Z/wDA0Uf8NKfAX/oq3hn/AMDRXa/8IR4L/wChQ0H/AMFkP/xNH/CEeC/+hQ0H/wAFkP8A8TQB8g/8FHPFnwM+K/wakl0T4j+G7jXtJ/fWqxXQMkqgEmNfqSK6D9hXxt8A/hF8EbHSrv4n+GV1a7Hn3rtdgPlvmCN/u5Ir6e/4QjwX/wBChoP/AILIf/iaP+EI8F/9ChoP/gsh/wDiaAOK/wCGk/gL/wBFW8M/+BopF/aS+Aa/d+KvhgZ64vBXbf8ACEeC/wDoUNB/8FkP/wATR/whHgv/AKFDQf8AwWQ//E0AcV/w0p8Bf+ireGf/AANFH/DSnwF/6Kt4Z/8AA0V2v/CEeC/+hQ0H/wAFkP8A8TR/whHgv/oUNB/8FkP/AMTQBxX/AA0p8Bf+ireGf/A0Vf8ADPx5+DfiHWrfR9E+I+gX9/dOEgt4LoM8jHoAK6b/AIQjwX/0KGg/+CyH/wCJryH9rbw74f0cfD260nQtNsJ28daehltbOOJypL5GVAOPagD3yiiigAooooAKKKKACiiigAooooA8R+JH/J93w0/7FvWP/ade3V4j8SP+T7vhp/2Lesf+069uoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPFvgv/wAncfFz/rnpX/ohq9prxb4L/wDJ3Hxc/wCuelf+iGr2mgArL8YeINM8MaBNrOrySR2luMyNHE0jDv8AdUEnpWpXi/7WTa+Lrw1F4a8Yaxo97calDC9rYuoS4iZ8Ozgg9OB+NTJu8YrdtL72VFLVvZJv7j13Q9RtdX0i31Oxdmt7qJZYmZCpKsMjIPI4NW68H/aO1Dwxo8ul23if4/614BuFhVfLs51T7SQoyzZRue/415nb+J/hibhAv7a/itzuGFN5H83PT/VVSkpN22u0TZqKvvZH1b428S6T4T8Pza1rUskVnAMyNHC0jD/gKgk1e0u+t9R0uDULRmaC4iWWMspUlSMjIPI4NeG/HSTWrhvA0PhH4i64j3t5FE5tpF23sJY5kkyvPYcV2XxEi+NsVxbxeBJfCL2ccCrK+sibzWYKAT8nHXNKd4wk+t2vuW/9fcC1cbdr/e/69TtfCutR63b3UscDQ/Zbt7chmzuK9/1rj/2jvi/oHwe8ES+IdatLq8YA+RbW6NmVvTcAQv1PFec/CsftKeTfeQ/w9+z/ANqy/aN4ud27I3bfb0rs/wBsVZz+yf4xN6IjcDR5N+wfLnjpmiv7kVJPqvxtc1w0VUrRptbnofgnW4/Efhax1uKBoEvYVlWNjkqCAcE/jWpXJ/A7/klOh/8AXlH/AOgiusravFQqyitkzloycqcW97BXiv7Z/wDx6fDv/sfNO/m9e1V4r+2f/wAenw7/AOx807+b1kantVFFFABRRRQAUUUUAFFFFABRRRQB4j8SP+T7vhp/2Lesf+069urxH4kf8n3fDT/sW9Y/9p17dQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeLfBf/k7j4uf9c9K/wDRDV7TXi3wX/5O4+Ln/XPSv/RDV7TQAV4x8ZvBvxI1749+Ftd0KDTG8O6Zbyx3rTXe2VXZ0KuqbTkgA969nooWk4z7O/8AX9bhd8ko91b7yjeaNpd8sf8AaWnWd9IgxvuLdHP15HFVx4X8Mg5Hh3Sf/AGP/wCJrWooA8Z+J3gr4h6t+0F4a1zRLXS4/DGmWjQ3DNc7ZY2MgYOke3BIGe9eyKpEIRm3Hbgt6+9OopJJU+Tpr+IS1nz+SX3GX4V0WPRLe6ijnab7VdPcEsuNpbt+lcB+13oHj/xb8HtS8J+AtJ0m+uNZha2uG1C9NuIUI+8pCnJyBxXqdFKpHnSv5fgXTqOnJSjujhv2ebPxrpnw1sdM8daVpun6jZxiLy9PuzcRsBxncQOeBXc0UVrUm5ycnuZQioR5UFeK/tn/APHp8O/+x807+b17VXiv7Z//AB6fDv8A7HzTv5vUFHtVFFFABRRRQAUUUUAFFFFABRRRQB4j8SP+T7vhp/2Lesf+069urxH4kf8AJ93w0/7FvWP/AGnXt1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4b4i+G/xj0v42eJ/Gvw68TeErW18TR2omt9Xs55ZEMMewYKcc5NWP7I/ap/6G/4a/8Agsuv8a9qooA8V/sj9qn/AKG/4a/+Cy6/xo/sj9qn/ob/AIa/+Cy6/wAa9qooA8V/sj9qn/ob/hr/AOCy6/xo/sj9qn/ob/hr/wCCy6/xr2qq+rXken6bNezKzRwIXYKMnAoA+efiLrv7S3g1tFGpeLfhw39t6rFptvt026GJZM4zz04rpP7I/ap/6G/4a/8Agsuv8a8b/af/AGnfhV4hu/BcOnawXfRfF9re3gO35Io9wY9fevoj4JfGzwP8Vrm6h8H3j3f2PHnsANqZzjOD7GgDm/7I/ap/6G/4a/8Agsuv8aP7I/ap/wChv+Gv/gsuv8a9qooA8V/sj9qn/ob/AIa/+Cy6/wAaP7I/ap/6G/4a/wDgsuv8a9qooA8V/sj9qn/ob/hr/wCCy6/xrJ8Q/DP48+M9e8Nnxv4t8ESaVoWt2+qvHptjcRzSNEThQWyOcmvoCigAooooAKKKKACiiigAooooAKKKKAPEfiR/yfd8NP8AsW9Y/wDade3V4j8SP+T7vhp/2Lesf+069uoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACivmf4V6/8AtJfFDw/deKfDfjXwTpOm/wBqXdnBaXuhSzSqIZmjyzLIAc7c103/AAjX7V3/AEU74e/+E3N/8coA9yorw3/hGv2rv+infD3/AMJub/45R/wjX7V3/RTvh7/4Tc3/AMcoA9yplxEk9u8MihkkUqwPcGvEP+Ea/au/6Kd8Pf8Awm5v/jlH/CNftXf9FO+Hv/hNzf8AxygD8/f+CjXwdufhz8fJpdNs3/s3xCxuLJIk3BeQpXjuSCcV98f8E8vhHH8LfgVZC7hUarqyi5uZMclW+ZAfoGrlvit8Cf2gPiLc6TceJviD8Pp5NGu0urZk8OTD5lJIVsyHK88iuwt/Cv7VcFvHBF8TPh2scahEUeG5sAAYA/1lAHutFeG/8I1+1d/0U74e/wDhNzf/AByj/hGv2rv+infD3/wm5v8A45QB7lRXhv8AwjX7V3/RTvh7/wCE3N/8co/4Rr9q7/op3w9/8Jub/wCOUAe5UV4b/wAI1+1d/wBFO+Hv/hNzf/HKi+HPir4waH+0dpvw4+JGv+Hdah1bQrjU4ZtJ017XyjFIqbW3Mc53ZoA93ooooAKKKKACiiigAooooAKKKKAPEfiR/wAn3fDT/sW9Y/8Aade3V4j8SP8Ak+74af8AYt6x/wC069uoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPEf+Cfv/JAZf8AsZNW/wDSuSvbq8R/4J+/8kBl/wCxk1b/ANK5K9uoAKKK8q/bG1fXtF+Dkt1oYuQHvIo9Qe2jLyJand5rAD0FRUnyq5dOHPJI9UDKejD86Wvm/wAHfCvw5qHga08TfBTxVdW+p3Ri+2XD6g1ysikjzUZXYhGwWGB0Jrt/E3xi8P8Aw6uIfC994X8bajLaQhTPpuhS3UTY4/1gPJrWSUXaTs+3+Xl/XrlFuSTS0/rfsz1mgkDkmvHdD/aM8L6pq9vp0Pgr4hQyXMgjWS48MypGpPdmJ4HvXPftna3PDf8AhfT9Ym1Cz8G6k+NXntlZSjFl8sOwIKDk5OeKh814pL4nbsvmXGzb8k356dj6C3KehH50teGeH/hDaabeaLefC3xJcR+GLmUyanbtetcrcx7cqUkdiR82Dwa9xX5IwP7oq2klfr/X9f1YhO7/AK/q46ivIfAnxAi8afHS807Sdd8Q2kOjRPFeaPe6KIoJHIBVxMTu4AOPXNevVK1hGXR6/iU9Jyh1X/DhXiPi7/lIF4P/AOxH1D/0ojr26vEfF3/KQLwf/wBiPqH/AKUR0Ae3UUUUAFFFFABRRRQAUUUUAFFFFAHiPxI/5Pu+Gn/Yt6x/7Tr26vEfiR/yfd8NP+xb1j/2nXt1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4j/wT9/5IDL/2Mmrf+lcle3V4j/wT9/5IDL/2Mmrf+lcle3UAFeVan8UNLT43XXgDXJ7eGw+yO0jXMOITwvytK3yjOTwTzXqtc14w+H3grxVp15YeI/DWn6lbahMk11FcRblmdAQrMO5AJpfaT33073TX4XuvND0aaem2vazT/Hb5nz74RsNM8J/ti2OlfC2/abRNUhkm1u2t5vOtIGKFlKbfkUlic4r1f4k+Hfjnf+JHuPBXxG8O6PpZHyW17oP2mQHP9/eK6j4b/DnwL8P4JofBXhfTtDjuP9atlFsD9+a6inaKpwgn8N/xbf3K9l6E3k6k5v7Vvw6+r3Z41ofhX9pKHWLeXVfiz4UubJJAbiGLwz5bSJ3Abfwfem+EfiF4X8ft4j8J+NrrTvs1o3kMt9GsMch+YEoz8MRjt0r2cgEYNcT4w+EHwx8V2UFn4j8EaRqUFrI8kMdzBuEbOcuR7k8mpd3dNJqzX321+VtPVlqy1u07p39L6fO/4Lc8U/ZTi1bTfix438I+B9Wlk8I2VqraXc3W64jhuTIwdUYnBUALgDivU/h3ofxr0rX2vPHXxE8PavpKqc21nof2Zxz137j2rtvBHhXw74O0FNF8L6Pa6Vp8bFktrVNqAnqcfgK1LqCG5t3guI1kjkGHRhwRVzk0lyatRS162W7RnGN23LRN306en9b3PFf2T9Y03xLr3ijxPFcCe61O+25XnYItyY9ule3VgeA/BHhLwVbXFv4T8P2OkRXkvmzpax7BI/PzH35P51v03yqMYx2SS+5W/rvuPVznJ9W39+39fIK8R8Xf8pAvB/8A2I+of+lEde3V4j4u/wCUgXg//sR9Q/8ASiOpGe3UUUUAFFFFABRRRQAUUUUAFFFFAHiPxI/5Pu+Gn/Yt6x/7Tr26vEfiR/yfd8NP+xb1j/2nXt1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8u/sX/ABb+GfhL4P3WieJvHGiaVqMPiLVGktbu7WORQ13IQSD6ivWv+GgPgn/0VDwz/wCDBK6efwF4FnmaabwX4ekkkYs7vpUBZiepJK8mmf8ACvfAP/Qj+G//AAUQf/E0Ac3/AMNAfBP/AKKh4Z/8GCUf8NAfBP8A6Kh4Z/8ABgldJ/wr3wD/ANCP4b/8FEH/AMTR/wAK98A/9CP4b/8ABRB/8TQBzf8Aw0B8E/8AoqHhn/wYJR/w0B8E/wDoqHhn/wAGCV0n/CvfAP8A0I/hv/wUQf8AxNH/AAr3wD/0I/hv/wAFEH/xNAHN/wDDQHwT/wCioeGf/BglH/DQHwT/AOioeGf/AAYJXn/ibwX4OT9u7wvpy+E9DWzk8E3sr2402ERs4uFAYrtwSB3r2T/hXvgH/oR/Df8A4KIP/iaAOb/4aA+Cf/RUPDP/AIMEo/4aA+Cf/RUPDP8A4MErpP8AhXvgH/oR/Df/AIKIP/iaP+Fe+Af+hH8N/wDgog/+JoA5v/hoD4J/9FQ8M/8AgwSj/hoD4J/9FQ8M/wDgwSuk/wCFe+Af+hH8N/8Agog/+Jo/4V74B/6Efw3/AOCiD/4mgDm/+GgPgn/0VDwz/wCDBK8607xt4R8cft6eF7zwh4i0/Wre08F38c8tlOJFjczxkKSOhxXtP/CvfAP/AEI/hv8A8FEH/wATV3Q/CvhfRbs3Wj+G9I0+cqVMtpYxQvg9sqoOKANeiiigAooooAKKKKACiiigAooooA8R+JH/ACfd8NP+xb1j/wBp17dXiPxI/wCT7vhp/wBi3rH/ALTr26gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhf2jrfxTN8H9Zl8F3jW2uW9sZLNhnBYEdQOvGa7qmzKjwskgBRlIbPpQB+Ner/tG/GBfihD4iudYf8AtzTrWTTY32tkRs+5lxnPUV+of7Hw8bzfBXTdT8f3rXOsX6mds5wsbfMnBJ/hIr458YfBvwHd/wDBRC1it/EGm/2Vc3H26e0D/LG6so8gjHVuTiv0T0+CC2sYbe2VVhhjVI1XoFAwP0oAmooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPEfiR/wAn3fDT/sW9Y/8Aade3V4j8SP8Ak+74af8AYt6x/wC069uoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorkPiR8S/Cngq08zVb8STk4S2tlMspPptXJH5VwEh+KvxVcKg/4Q7w1J99W+e7ulP8UciEGPjPUdxQB2PxI+LXhfwqxs45pNV1NjtSx05PtEqt0G9V5UZ749a4+Hw78Tfij++8WXg8MaDJyNOspPMkuk/wBp/laM/T0rvfh18M/Cng2MSadY+fekfvL+7IluZPrIRk12FAHBr8HfAI8Inw9/YymBhgz7z9oz6+b9/v61x83hn4m/DH9/4OvV8S6JGcnTL6Xy3gTuVk+ZnOM4HtXtlFAHAfDf4ueF/FTixmkm0nVVOySx1GM28jMOuwNyw9wK7+uR+I3w28K+M4S2p2Pk3gH7u/tSIrmM9tsgGRXn8afFX4VSHH/FY+GY/uxr8l3aR/3nkckyH6DvQB7dRXH/AA3+JnhTxpa79NvhDcKdr21ypikVu4Ctgn6gV2FABRRRQAUUUUAFFFU/EEeozaHdxaRcw2uoPA62s80fmRxSEfKzL/EAccUAeO/Ebwn8UNIXUvENx+0BJo+lJI8kcLaFbsIVJ+WNWY5Y9AO5NeSfBXxf8S/G2k6/q+s/tCSeF7HTNdfS7M6voFtay3G1FYF0kIKPz92t/XNX8C+Ffigsfx48eal4i8Z2MUc82n6Tp9wNJ8g58lmtFDrvGCdxPUA9q5r4V/FH4My618RP+E90q8vLLWPF8+p6WLvw7PMDE0aqJFBjO08H3oA+n/g74f8AF2g6VdL4s8eP4ue6dZLW4awjtvJTb0AThgeDmuwrxz9mnQbGOO18V/DvxpqOq+B9agkklttZkkuLgzhtqGF3x5UagMCmOePSvY6ACiiigDxH4kf8n3fDT/sW9Y/9p17dXiPxI/5Pu+Gn/Yt6x/7Tr26gAooooAKKKKACiiigAooooAKKKKACiiigAoqHULmGyspbq4bbFChdz6AV4fD8W/E3xTvLjS/hHYpHZW8hhvdYviYjCf70IwVfj1oA9V8f+OPC/gzTDe+ItXt7NDxGrtzI3ZRjuTxXmv8AwkvxQ+JsjQ+FtLl8K6Ixw2oX4xPOn96AoSOevI6V0HgH4N6LpOoDW/Ed5P4i1tuXvLwYAPoEB28fTtXpMUaRRhI0VFXoqjAH4UAcD8NfhH4Z8J6h/bM6yaxr7D95rF/hrl/YsMDr7V37FVXJIUDqaWsH4oaVf658PNZ0fS5vJvb2ylht5C23a7KQDntzUVJOMG0rsqEVKSTdjnV+OHwnbxcfC6+OdMOriQxm0y+/cDgj7uP1rttN1Gy1BZTZXMc4hkMchQ52sOor5q+Aur+Dp9EuPg78QtAi0XxNEJIzJNFt+2A5AkilbDMTjcQPUV6L4y1Wx/Z9+BcUek6VqGsrp8Qjh2RM4JGBumYHKr781c3CnDmk7ro1s/8AL8fl1UYynU5IrW+z3Xn53+XzPWXZUXczBQOpJpJJI0hMruoRRksTxivl3wUfHv7Qpujq/wASNH0DSox5c2j+Fr1L5blCMnzXYB427YBr6Lm8NaZN4JXwzdpJPYraC2cGQqzqE28kHOSPeiopQpOXXoiYyhKaSenV/wCQeEfFnhzxQLo+H9Xt9QFjO1vcmEk+XIpwyn3Fc58RPjR8LPAusLpPi7xppulXjJvEM5bcRnGeFNeb/sI6Jp+gWnjTRdKiaGztfEV5FChcsVUOAOTyfxrtrjwV4d8GaZ4r8Q+I5zrdtqdw140VzaIzW67QvlxnqRxn8aMR+7jzJ6cqfq2lp5fj2LjH35Qe6lb5X3/qweJPh/4B+J1rD4v0C6jh1CRc2mu6dgTAezHtwO3asL/hI/ih8MZFh8T6dN4s0JDgahZjNxCv96YsQOnoPWr/AOxz4Kv/AAb8M5I77zIvt93JcRWrMSIELsVAJ55BBr1qWNJYykiK6t1VhkH8K0qxUZWX9eXy2M4Nta+e2z13+e5z/wAPvHXhfxrpYvvDur294nR1Q8ofQ5roq81+IHwb0XWNROueHb2fw3rq8pfWQz+Hlk7P0rlG+K3in4X6hbaT8WLGOSxuJRDZaxZMZWlzwDMMBU5z0z0rMo91orgJvjh8IoSq3PxE8PQSFQxjlv0VlyM8jNM/4Xt8G/8Aopnhn/wYx/40AehUV57/AML2+Df/AEUzwz/4MY/8aP8Ahe3wb/6KZ4Z/8GMf+NAHjviDxnrngv8Abs8cXOj/AA68Q+MPtnhjSkdNIWPNvtMpy29h1z29K63UPjn43ewnU/s3/ENQ0TDJW2wOOv8ArK7Ffjb8E1unuV+IvhVZpFCvKL6PcwHQE9SBUh+OvwaIwfiZ4Z/8GMf+NAHO/sCNI/7K/hySWCSB3a5ZopBhkJuJDg+4r2SvObX43fBS2hENv8RvCsMa9Ejv41UfgDUn/C9vg3/0Uzwz/wCDGP8AxoA9Corz3/he3wb/AOimeGf/AAYx/wCNH/C9vg3/ANFM8M/+DGP/ABoA5P4kf8n3fDT/ALFvWP8A2nXt1fOV9448IeNP26vh5J4T8SabrKWvhzVlnayuFlEZPl4DY6Zwa+jaACiiigAooooAKKKKACiiigAooooAKKKKAGzRxzRNFKiujDDKwyCPcV5T4y+C9uust4j8AarN4b1leUEZLWZPXm3BCGvWKKAPGtN+LHiLwdqEWj/FTQprcOwSHVrKMzRznpuZUGIx06mvWND1fTNZsVvNLvre7hcZDQyhwPrg8VJq2n2WqafJY6hbR3NvMpWSKRcqw9CK8o1z4Pah4du21f4V642izg7jpkpJsH9f3a45P19KAPYK8h/aK8Q+JtE8YaC2iaTd31lDG93qPkMy7IY3G88D5mx0XqaPDHxlm0rUo9C+Jmi3Hh6+LeXFdyAGC8b1QLkqOv3vSvWLG7try3We1njmjYAhkYEY/ClbVPqmmvVd/LuNNWaa0aa+8+T/AI1+KNH+PPiDQdF+HegazFrVrfxzz6ne6TLYm3iR1ZlEjqN2VUjANe+fGL4geFPh94ftx4utNSvbW8byfLs9Kkvd5Az8yopwOO9d1RT2p+zjtdt+bdl+SX4i3qc8uisvTf56nxX8UPEP7P3iHUP7c8N2/j7wrrcKH7NNpPh2+trffnIaWGNFWT8a+rPC/iC0i+FlrrlxNeXMFvYK8kjWbpNJtjGT5R+bJx0611FFD/gukuv4dw3qKb/4f5nzN+w3430zU/FvjDTU07W7Wa+1q4vbc3mlTQI8Uj5U7nUDPB4r2D4w+IdH0m+0Kz1c3pjvb9UEcGnPcrLkH5XKghBx1PFdzUN7dW1nA011PHDGoyWdgB+tVKV+T+7Zetvy/EHdynL+a79L/mPtyht4zGNqFRtGMYGOOO1Vtc1XTdHsXvNUvre0hQEl5pVQH2GTya8u8VfGZ9R1STQPhnotx4j1FW2TXMIAgsz6uGxuHf5fSo9F+D+p+JLxNX+KuuHWpSQw0qEsLBO4/dt/EPXPapAZqXxZ8QeL9Ql0f4WaBNdbW8ufVb1DDFbn+8quMSjp0Pervgz4MwNrC+I/H+qzeItZJztditmv0gJKZ6c16dpOn2Wl6fHY6dax21vCu2OKNcKo9AKs0Ac3P8PPAE8hkm8EeHZHPVn0qAn8ytR/8K2+Hf8A0Ifhn/wUQf8AxNdRRQBy/wDwrb4d/wDQh+Gf/BRB/wDE0f8ACtvh3/0Ifhn/AMFEH/xNdRRQBy//AArb4d/9CH4Z/wDBRB/8TR/wrb4d/wDQh+Gf/BRB/wDE11FFAHL/APCtvh3/ANCH4Z/8FEH/AMTR/wAK2+Hf/Qh+Gf8AwUQf/E11FFAHL/8ACtvh3/0Ifhn/AMFEH/xNH/Ctvh3/ANCH4Z/8FEH/AMTXUUUAYmheDfCGiagL7RvC2i6fdKpUT2mnxRSAHqNyqDg1t0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBn+ItD0jXtOksdXsIbu3lXa6SL1H1HNeTX3wv8W+BL5tT+FeuOLJSWbw7ePi0PckMAXz17969pooA8t8H/GrSpNTj0PxvZTeFtYc7Eiv18uO5bv5JJyw/oRXqMbK6B0OVPQisXxr4R8P+K9Nez1vToZ1cYEu0CVP91+q/ga8uk8E/EX4Z5n+Huof27o8f/MF1GfDIPUTtuZvpQB7ZSSMqRs7nCqMknsK8Z/4aH0caabVvDXiAa8rCI2H9lzbfM9nxyn+1jFRR+D/iR8TcT+PL8eH9Fc7ho+nzbnmX+EtMu1lOOo98UAbfjL406Rb6pJoXg2zm8T6yjbGhsV8xLdv+mpByozWPZ/DLxh4+vF1P4p6x5dk5yfDti+60I92ID/rXi/xg8W6v8NP2i734f+Etd1bw/o1joNpdxNpPhQaxcyyuzhjK+N4GFHJPWqjfGLx2Bn/hanxB/wDDVvQB9l+GtC0jw/psen6PYQ2lvCMIka9B9Tya0a8p/Yr8Z6/4+/Z70nxN4mvTeajcT3CSTm3EJcJKyrlB904AyK9WoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuH/aLfxbb/AAj1i98ETtHrdrbmS1UfxsCODj2zQBy/iLUrmH9t7w5osYjFrc+D7u5lG3kyLcKoOfpXrGrTz2ulXNza2jXk8MLvFbIwVpmAJCAngEnjJ9a/IPV/2qfi0fitb+Lri/H9saZZS6ZG25uI2fcw/MV+mf7It9451b4M6frfxBuGfVb8GbaScLGeUPPqpFAHh3xI0rxP41+KNz4tm+CvxE0rXprCK1uRovje1tS0CFim5FBOMk8muT8K2mt+JNU1rTdH8A/Gq4uPD979h1JB8Q4h5M20Nt5Tnhh0r2rwP4i0c/tx+Jtc/tKH+zNa0S10PTrncfLub+2kkee3U/30VlJ+tch8K/h9rPjH43fGK+0v4reKPCcUPjAxtbaPNEscx+zxne29Tz2oA9E/ZQk8R+GdMs/h/wD8Kg8QeGdDtUmmXU9V1qC8YyM24q2wAksWPNe31g/DjRbjw54UttGvfE2oeIriDdu1DUXVribJz820AcdOlb1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVNa1PT9H02TUNUvYbO1hGZJpnCoo9ya47/hdnwi/6KR4Z/wDBlH/jXIftfXE2tr4d+Hdi2brWtShupExnfbwyqZVI9CpNd1a/Cf4ZQW6Qp4B8NlY1ABbSoST9TtoAqf8AC7PhF/0Ujwz/AODKP/Gj/hdnwi/6KR4Z/wDBlH/jV/8A4VZ8NP8Aon/hn/wUw/8AxNH/AAqz4af9E/8ADP8A4KYf/iaAKH/C7PhF/wBFI8M/+DKP/Gmz/Gj4PzQtFJ8R/DLK6lSDqUfIP41o/wDCrPhp/wBE/wDDP/gph/8AiaP+FWfDT/on/hn/AMFMP/xNAH55eMvhp8L7n9uq1vbfxv4d/wCEUvJf7SkYX8flIqMqmInPBPJxX3hJ8VfgpJ4bbQm+IfhoWT2ptWjTVI1/dlNmAQcjjvW7/wAKs+Gn/RP/AAz/AOCmH/4mj/hVnw0/6J/4Z/8ABTD/APE0AcFquvfs3aj8O4/BNz4w8L/2REgRETVkWRcY+YSBt244GWzk964K3+Hn7G0EkskHifSI2mbfKyeKZFMjerEScn6171/wqz4af9E/8M/+CmH/AOJo/wCFWfDT/on/AIZ/8FMP/wATQB5X8M4v2XvAPihfEHhrxvo8F8sLwh5vEjTLtbGfldyO1ei/8Ls+EX/RSPDP/gyj/wAav/8ACrPhp/0T/wAM/wDgph/+Jo/4VZ8NP+if+Gf/AAUw/wDxNAFD/hdnwi/6KR4Z/wDBlH/jW34N8eeDPFk0kPhnxRpWrSRffWzullK/XBqhN8MPhnHC8h8AeGcIpJ/4lMPb/gNeafsk+HtIl8feNvGWk6TZ2Gn3eorHpa2dusSeUIwr8KAD8ymgD3uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisrxxrtt4Z8Iaj4gvCBb6dbtPIT0wKAPKPCQHjH9rTVtZb57fwdaC1tJDyCbiP59v0K817ZXkv7HmiXNh8M5dW1IFr7WL+4uHkbq0TSs0f8A46wr1qgDxn9vHxp4k8E/s563feFdN1SfUbiBoY73TpUR9OPB847iCRxjC5PNHgX413sPwlbXvG/gXXPDd3bx29vYWupTQtNrczx5Hk7GIG5hjL4GWGatftYeDfHHim28J6l4Eh0u4vvDWtjUpbXU7hooLhBGy7GKg5GWHHtXzzD4+8WD9l21+J/xK8N+GNb1WTV28O6deX9/LHELW4mkWbztmAgUxqAQM4GaAPa11z4keGQnxG1fUbfVob4j+0/DVrMN1hbf8s2iDNtEiAkynJ3bflr1/R/Emla74NHiPw9fQ31lPatPbTJna42kg4OCPoa+IPg5qfwafWvEFz4u+H3hmSDw3Lpv2e98Lazd3sUstzLsQEyOB8rYzX0n8GvFPhpdH+JU15Y6f4Z03R/E91ZXdyszeXJwi+c244UksBgYFAHUfs0eMtT+IHwU0XxbrEcEd7qKymVYFIQbZXQYB9lFc7+xL4g1rxL8GbnUdf1O41C7XxFqkCzXD7mEaXTqi59AoAFcz4P/AGdvGPh3w7b6T4X/AGh/F+n6RFue0toLC0ZI1di+FJUkjLGvOv2NPhT4+1z4Q3F7pfx28VaFAviDUojaWllbOjOly6tJllJyxBY9snigD6H/AGd/HGq+OtJ8S3OrRW8baR4mvdLg8lSAYoWUKTnvzzXV+NfE+g+EdDk1nxHqMdhYwjMkzqzBfwUE1xP7OXhLRPhra6r4Ci8azeItdkvJNb1FrsIlz/pBA3sicBSVOD9awP2nB4nl8e+D9P8ADvjC+04ahqCQXenRW8UkU0Z3Eu24EjkAcUtXOEe7SGrcspPomz2bT7q3vrGK7tZBJDOgeNwPvKRkHmpqisY2isYYnO5kjVWOMZIHJqWqdr6ERvZXOJ/aK8Tnwh8G9d1yMnz7e2/cqD8zEsq4H4Gj9nnwyPCXwj0fR8DesJlc46l2L8/99VxH7SskniT4oeBvAlt88Mmp/adXT/p2MbgHHf5wK9qt41ht44U+7GoUfQDFIofRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXkP7YV89x4L03wXAxMni7UY9LkVeojkBBb2HHWvXq8SvHHjX9rq3iT95pvhPT3juF67bzerofb5WoA9f8L6emk+G7DTEUKtnaxw8f7Khf6VeoooA5P4v6N4z1rw9HB4K8XReG7yOQtNcSaet0JE2n5NrHjnvXxfpPgpbf9h/w69jqEn9reIviLaC6uLvNxAsq3UyB1gc7VXuVHB719+EAjBHBrETwd4WTRLbR10CwFhZ3Qu7e2EA8uKYMWEijs24k596APiO68D6nc/EL4meHF8WeGNTubU+HrifUIVttMs0WK5LuhCnYrqFIx1JrsdSca1+zD+0DLoitqi3Pi24kt/sA88zqJIDlAmd3APSvpdvhV8N2t9St28E6KYtZkEmop9jXF0wYsGk/vHcSea1/BPhPw14P0ttN8LaHY6RZySGRoLOERoWPViB34oA8Z0P9qn4d2uiWdtN4e+IAkht40cDwfeHkKAf4PavOv2Sfjz4W8AfCu40LxH4Z8dRXkmuaheKsXhS7kXyprh5EOQnXaw47V9h0UAfM37N/jvR/iH+25468QaHaatbWv/CIadD5eqafJZzblmkyfLkAOOetdr4/8LfEbU/2lNE1/T9Osj4asrTypbl7pfMik3k7xGeTxXqsGiaRD4iuNfi063TVLqBLee8WMebJGpJVC3UgEnA96v0LScZ9gesJQ76CRghFDHcwHJ9aViApJOAOpNFc38W9dh8O/DvVdTmfZttnjiOf+WjKVX9SKAPOfg6P+Es/aO8ZeMnG6HR86DDn7uY3D7l/766ivaq8y/ZI0O50n4J6Teaim3U9YhW91DI5MzDDZ/IV6bQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAkgJjYKcEjg14Ba/B34laL4+8TeIfDnjFLYeJb8Xk6s+DuCKg/h9FFfQFFAHiX/CEfHL/AKH9P+/h/wDiaP8AhCPjl/0P6f8Afw//ABNe20UAeJf8IR8cv+h/T/v4f/iaP+EI+OX/AEP6f9/D/wDE17bRQB4l/wAIR8cv+h/T/v4f/iaP+EI+OX/Q/p/38P8A8TXtteQftZfHGL4IaDY6zf6JLfWV5MYjJErN5ZCk5OOgoA8++Gs/xp8XeNfGfh6Hxr5UnhDU47CV2k4lLxLJkfL6NXZ/8IR8cv8Aof0/7+H/AOJr5U+C37aHh/w38TPH2sf2BcXB8Za1Fe20SIxZQsCx7cD3Wv0E8E6rPrfhWx1a4tfszXsCTCLJyoZQwznvzQB5N/whHxy/6H9P+/h/+Jo/4Qj45f8AQ/p/38P/AMTXttFAHiX/AAhHxy/6H9P+/h/+JrP8RfCL4oeLLWHSfFXjkzaX9pinmijfJfy3Dgcr6ivfaKAI7WGK3t0ggQRxxjCqOgFSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXnXx28b6noUmleGfDCQy+IPEEzQ2glBKxbV3MzAc/dzjHcUAei0V4qvwS8YX/wDpWp/HDx3a3MnMkOn3yrAp9FBXIFL/AMKF8Qf9F7+Jf/gyj/8AiKAPaa4P9pT4fWHxN+DuteFb2NS13bMIZCMmNuDkeh4x+Ncl/wAKF8Qf9F7+Jf8A4Mo//iKT/hQviA/817+Jf/gxj/8AiKAPhD9gn4Dajr/7UUtrr1g8dn4TujJcCRflMikFUP1U5r9V4I0hgSGJQqRqFVR0AAwBXgWg/svnRNU1HUtJ+MvxCs7vVphPfzRX8Ya5kChQzHZycACtb/hQviD/AKL38S//AAZR/wDxFAHtNFeLf8KF8Qf9F7+Jf/gyj/8AiKP+FC+IP+i9/Ev/AMGUf/xFAHtNFeF6lF46+DMlrql54s1Hxb4dmuo7e7OqS+ZdwFzgSBgAoQDJPfpXt2m3UF9p8N5bOHhuIxJGw6MpGQaAJqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArxDxh++/bE0NJPmW3tVeIH+ElHBIr2+vEPFP/J5Gk/8AXkn/AKC9AHt9cvq3jzRNP+LWkfDudbj+19a0641C2Kx5i8qFlV9zZ4OXGBiumk3eW2372OPrXxfa3Hxmu/itJ4E1Lwdat4j8TXbS614it9WSYWmmI2x4owv/AB6O0TIQqkFiu7BoA+rPix450b4e+Ex4h11bhrQ3cFpi3j3tvmkEa8Z6ZYZrpq/O/wDaX0H4NxeGbrRPCcPxevdas9XgjlS7OqT25jSceaylsqSFDFSO+CK9y/Zg8LfBfXviKmp+Crn4orqOgqLsL4gvNRjtnB+TBWc7ZPvfd/GgD6erm9b8b6PpfxM0PwNcrcf2n4gtri4tCqZjCwAF9zZ4PIxXgH7Umi/AvQPiosnjjVfiR/bniGFr5LXw/qF/JH5akISIoDhBkDtXgXiwfAb/AIX14T+xyfF3+x/sN79uM51T7bv2jy/J3fPtzndt46ZoA/SCivjH4d6V+zf4g+Iej+HNN1X4vWuqalORYrql/qltFK6DeRukIB4HSvsyNQkaoM4UADJoA87/AGrVDfA3WiR92EsvsQrc10XwdYt8J/DbMck6Tbkn/tmtc9+1X/yQzXP+vdv/AEFq6D4N/wDJJfDX/YJtv/Ra0AdLRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeIeKf+TyNJ/68k/8AQXr2+vEPF37r9sbRXk+VZrRVjJ/iIR8gUAe2yAtGwBwSODXzz8Lfh58bPAPidluPiF4EntdU1H7RfyXOny/2hfR7zhTIW+ZlU7QccV9DsCVIBxkdfSvKvDfwL0b/AISMa/481/UvHWp2l0J9IudY2o2lDdu2RCLaCucH5gegoA8/+Fnib9pD4m6frGveHPFXgbS9Ns9evtNgt73SJpJQsExQFmVsHIArqPgj4s+K8f7QmtfDn4k6r4d1NbPw9FqtvPpFi8ABeby9rb2JPANcv8Nv2cfiLo9prAHxw8S+G49Q129v4tO0RIHt0SaUupzIhbcQee2a6r4HfBvxd4H+Pms+Mtf8fah4utdR0CLT4rnVBGt1G6zbyuI1C7Mfjk0AVf2m/CnjOx+JmnfGDwr4z8OeH00HQZ9Pu/7aspbhXR5BIWVYzkngcda8MvNS/aZ1z42eBdev7nwta+IpNI1mXRLZtNk2ywIgOWG/rKu0pyMZ5r6jvPhQ2qfFKTxT4k8Y6vrelpOLmw8OXaR/YrCZQAskZUByRg/eJHzGn+MPAuqap+0T4L8dW0tumneHdOv7a5iYkSM06KqbR0wMc0AeRfCHRfiz8VPHng7xt448YeFGTwXfzyXWjWGnSw3VvcNF5bxOWJB25HI4PY19QV518SvhQniHxRB4l8NeKtU8Hawdiahe6SkZfUYEOVhlDgjaCScgA89a9DjUrGqlixUAFj396APPP2q/+SGa5/17t/6C1dB8G/8Akkvhr/sE23/ota579qwgfA3W8nrAwH12tXRfBsEfCfw2CORpNv8A+i1oA6SiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK82+PfgzVtWutH8X+FkjfX/AA3M89tFI+xJwy7WVj7LnHvXpNFAHh4/aR0vSv8ARfE/gjxlDerw66foE91Fn2cDml/4ak8D/wDQofEX/wAJK5/wr2+igDxD/hqTwP8A9Ch8Rf8Awkrn/Cj/AIak8D/9Ch8Rf/CSuf8ACvb6KAPEP+GpPA//AEKHxF/8JK5/wo/4ak8D/wDQofEX/wAJK5/wr2+igDxD/hqTwP8A9Ch8Rf8Awkrn/Cj/AIak8D/9Ch8Rf/CSuf8ACvb6KAPBdU1nxL8cWtdF03QLzRfDUVzHcX15qELQXEm05EQicDIYZBOeK9y0qzh0/Tbextl2w20Sxxr6KBgVYooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q=="]
math
multiple-choice
31
执行如图的程序框图, 如果输入的 $\varepsilon$ 为 0.01 , 则输出 $s$ 的值等于( )
$2-\frac{1}{2^{4}}$
$2-\frac{1}{2^{5}}$
$2-\frac{1}{2^{6}}$
$2-\frac{1}{2^{\top}}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAGuAM8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiivL7nWvHXj3WNQt/A+qadoei6VdvZy6hc2rXE91Mn3hEAyqijjkhs57UAeoUV5f/wAIR8V/+ir/APlKSj/hCPiv/wBFX/8AKUlAHqFFeX/8IR8V/wDoq/8A5Sko/wCEI+K//RV//KUlAHqFFeX/APCEfFf/AKKv/wCUpKP+EI+K/wD0Vf8A8pSUAeoUV5dDrPj3wBq2nx+NtW03XdD1O6Wzjvbaza3uLSVslTLl2V1ODyAuMd88eo0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5p+yn/yTCY9zqtyT/wB9CvS680/ZT/5JfL/2FLn/ANCFAHpFwrvA6RyGN2UhXAB2nHBweDivDfBWnfFrW/iH4z8OzfGrUIofDN5aW8EqeHdP3TCa0inJbMWAQZCOOwr2fxJpv9r6FdaZ9vvrD7VGU+1WM3lTxf7SPg7T74rwH4N/C9db8d+PtZsviR8QP7Ll1mK1tL+DXNj3klvbpBcCQlMsY5o5I8kDhOMjBIB2n7Nc3jvUtS8T3fivx7ca7b6Trl7o1vavpVrbL+5dNsxaJAxYjIxnHNYPh39oDTbv9obWPD16uu23hxVtNJsZ7rw9cQQxavuuHuIpJ2jAXMP2ZhuOCDkdTUf7KvgH7DrfinVv+E08X3P9neNNTh+yXOq77e6wQu+ZNvzsd2ScjkA1yfxW0KD/AISx/hz4o0q31F9U8TnxleX006rY6jBFb+V9nZAd8M7CNVVMFXCFg+dyqAetfDf4iSajPPrev3ElnoviPWmsfC6y221BHGPKV2mA2lbmRTJCSfnWVAuSQK9Mr4wPgLSdV+G3hPWdb+BXgPS/DnjSfS7SG40nxFdnUNPS+aNIpY1a3CCSPzVP3uCOK+zLWJYLaOBM7Y0CLk5OAMc0AecftUf8k8sv+w1a/wA2r0qvNf2qP+SeWX/Yatf5tXpVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeafstHyfAupabJ8tzp+t3UNxGeqMGFel1w3jT4ZWGs69Jrema3q/h/ULhQt1Lpl00S3IHQugO1mH94jPX1oA6vxNpz6voN1pkeo3entdRmP7VaFRNED1KllYA445B60nhnRdL8PaHb6Ro1nHaWdsu2OJMn6lmOSzE8lmJJJJJJNcB/wqbVf+ioeLf8AwLP+NH/CptV/6Kh4t/8AAs/40Adl4H8LWHhZdWWwluJP7Y1a41SfzmB2yzEFlXAGFGOM5PvWN/wq3wrPp88WqQz6pe3F99ul1K7kzcmYK6xtuUAARq5VUA2jkkElieN+I3w81zQPh7r2u2vxN8VPPpel3N3Er3Z2lo4mcA89MqKl8C/DjW9Z8EaNrFx8TvFazahp0FzIq3ZwGeNWIHPTJoAk0T9mv4Z6Rp3hyCwj1uOfwzdWN1a3L6zcSmV7VkZN8buYsMUGQqDGTt28Y9erzH/hU2q/9FQ8W/8AgWf8aP8AhU2q/wDRUPFv/gWf8aAH/tSfvPBOlWifNPda7axwxjq7fMcAfQV6XXC+DfhlY6Pr8et6rruseIL62BFo+p3TSJbZ6lIydob/AGgM+9d1QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSMQqlmIAHUmvJtF8ZfFHxdDNrXg7RNBGhSXDpp819K/mXMSnAlwCAAfT2oA9aorzH7Z8dv+gR4S/7+yf8AxVH2z47f9Ajwl/39k/8AiqAPK/8Agpf8WfiB8K/AMT6Do1lfeH/ENtPpl/PLnfbPJGwBGAeCu/n1A9as/wDBNn4rfEH4rfD2e98RaNZWGg6LFBpunSw533LxxgMTkDgDZ+JPpW78dPBPxb+KXwv1TwTr+jeE/supRBRKkkm+FwQyupLcEED8M1J8E/Bvxc+GPwz0vwVoGi+ExZ6ZFsDtLJulYnLOxDckk/yoA94orzH7Z8dv+gR4S/7+yf8AxVH2z47f9Ajwl/39k/8AiqAPTqK8x+2fHb/oEeEv+/sn/wAVVfWNb+Nel6Vcalf6f4PgtbSJpZpXmkCoijJJ+b0oA9WormPg34g1fxT8NdJ8Qa5piabe6hbrLJbKxITP15H0rp6ACiiigAooooAKKKKACiiigAooooAKKKKACiijpyaAPPv2idTvB4Tt/COjytHq3i64GmWzxnDwxt/r5l944i7/APAa7Pw1pVpofh+z0ixiWO3s4VijRRgAAVwPgVh4y+NWs+LT+803w6G0jSieVeUcXEo9CH8yP6CvTKAPP/hz8ZvAPjLxb4i8N6X4h0v+0fD1/LavbjUInkuEjijd50RWz5amQoT2ZGHarngr4maH4k8RDTbeC6tor1Wk0W8uYikOsxpne9ux+8BhiP7yASLlCGPzD4ivvFfgLUviD4Y8a6R4WvbfTdGHieZ7HU5Ib3WWmuriNBK3kbmXy4okdFB2iGMgtuIGfpHjjT/+EO8SXXie+8Xalf8AhuO7fSLaPxDO9oZbfTftqyA3FrDLC6gAKwjIDKDgigD7c1CWeDT55ra2a6mjiZooFcKZWAJCBm4GTxk8c1l/D3xNp/jHwfZ+ItMEi294HGyRcMjo7RyIfXa6MMjg4yOKNX8QWehfD+XxLqJf7PZ2AuZFDAySfJkIucBnY4UDjLEDvXlXwOuvEnhPxtDb+Kzbra/EaF9XthBGVW1vlIDxSbsCPdbmzCxjJMkdwfcgHt9Fec/Hn4i6z4KvNF07Q9G026utYmdTd6xftZafaKi7iZZwj7ScYA28nFdD8Jdd13xJ4HtdW8RaJBpF/MTvt7a8W6hIHR45Rjcp7HAPtRHVNoJe60n1OlrzX4/M3iO60b4ZwEkeJJ86oB2sE5mDegdQyfWvSJpEihaWRgqIpZmPYDqa80+CO/xV4u8QfEm5jYRXk7abo4b+G0gYoWHs8ivIPZxQB6VbRJBbxwRKFSNQqgdgKfRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyPxu8STeGvh/cz2SebqV8y2WnQg8yzycKB+p/Cuurz34x+CfFHijxN4f1fw/4gtdPGhPLKsFzb+YkkrbQr4weV2nH1NAHRfC/wxD4P8B6b4fik817SAC4nI5uJjzJK3u7lmPua6CvNP7B+NX/AEPWif8AgtH/AMTR/YPxq/6HrRP/AAWj/wCJoA4L4kfs+vd678Rrnw1plqIvFfhmzsbOS71CWWUXS3VxJcYeQs0SFJIuFIGR0GK5Px18APFz6X43h8M+DoUOsXV5b6JDN4qaRYYZtL+wm4meaN3ck5cR7htyBuIFe0/2D8av+h60T/wWj/4mj+wfjV/0PWif+C0f/E0AXte8I6x4p1DT9E14wweFdLitp5baGTdJqtzGVZFkOP3cUboHwvzMyodwUMrb3xG8K2vi3QY7OW4ltLqzuUvNOvYcb7O5TOyVQcg43EYIIwT9a4DxtD8aPD3g3V9ffxrosy6VYT3hjGnLlxHGz7fu99tP8J2vxo1vwrpmtL420WJdRsoboRnTlygkQNj7vbNADPiJ8PvHXjvTfD2qXeoaJpuuaHLKlzY3to1/pOog5QSvbh0Ybh86qXJQkDLEZPe/DHRtb0Lwslj4g1W11C88xnJsrMWttCp6RwxZJVF7Asx9zXK/2D8av+h60T/wWj/4mj+wfjV/0PWif+C0f/E0R91NLqEtWmy/+0Fq95beEYPDujvt1fxNcrp9oR/yzB5kkI9AvB/3hXW+F9IstA8N2OiadH5drp9tHbwr32ooUZ9Txya4vwZ4G8UDx/F4r8ceIrfV7iwtWt9Nht7cRx2/mEGRsYGS22Mf8Br0OgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK4v4j/ErS/B/iTT/D8mh+INZ1PUrWa7htdGsPtMghiZEd2G4YAaVB/wKsj/AIXF/wBUs+Jf/hPf/bKAPS6K80/4XF/1Sz4l/wDhPf8A2yj/AIXF/wBUs+Jf/hPf/bKAPS6K80/4XF/1Sz4l/wDhPf8A2yj/AIXF/wBUs+Jf/hPf/bKAPPv+Cgnx2Pwi8EyaPe+FbvULLxVpt1YxX8MgCQSvEyhWB74JP0U1Y/YG+Oj/ABh8FfYrPwpd6bY+GrG2smvp5AUuJVjClUA9AoJ/3hWX+11dWnxj+B+reEJPhV8Rlv3QTaZPJ4ex5NwvKnO/jIyp9mNTfso6hZ/B/wCCOkeDYfhX8RmuoUMuoTJ4d/11w33mzv5wAF+iigD6SorzT/hcX/VLPiX/AOE9/wDbKP8AhcX/AFSz4l/+E9/9soA9LorzT/hcX/VLPiX/AOE9/wDbKP8AhcX/AFSz4l/+E9/9soA9LorzT/hcX/VLPiX/AOE9/wDbK6X4X+N9M8daTfXunWOp2L6bfvYXlpqdt5E8EyojlWTJx8siHr3oA6aiiigAooooAKKKKACiiigAooooAKKKKAPL9f8A+TyPC/8A2I+r/wDpZp9eoV5fr/8AyeR4X/7EfV//AEs0+vUKACiuJ+NvjLWPAmh2/iK30mzvdFtZ1OtTS3LpNaW5OGljRY28zaMkgleBWfc+M/G48DXniNtD8M6Skjxtpceua41qGhbvcusTLE/TCqXBz1ovo32HZ3X9f1/Xc9Gorxnwv8T/AB5qHiKzsrx/hH5E8oST7B45knuMf9M4zbDc3tkVNb6c1h+2pJcDU9RuF1Dwr5pt7i4LwwETMuI1/hHGfrmnGLcku9/wVxdG+1vxdj2CiivMPFXj/wAcxfGB/CHhvwjpV3Z2ttBcXFxf6o9vPMrs4Y28YjZZAgQZyykbh7UlrJR7g9It9j0+ivIvH3xI8b6P4svNO01vhWLWFwI/7X8ZyWl1jH/LSIW7BT/wI1y/jbxVrnje68E+D/ETeHPsfiPXJIdSXw5rDahbXFvFbzSiJpDHGQS6ISMdqI3nbl6hK0b83Q+haK8p/ZyuDpvijxr4FtvM/svw5qiLpqNkiCKSJG8pSeoDBj/wKvVqelk1s0n94lfVPoFea/s8/wDIwfE7/sfJ/wD0hsq9KrzX9nn/AJGD4nf9j5P/AOkNlSGelUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5fr/wDyeR4X/wCxH1f/ANLNPr1CvHPi7rTeEv2lvDHiq+0LxFf6WvhXU7CSbR9FuNQ8qaS5snRXWBGK5WJzk+laf/C9/C3/AEKvxF/8IXU//jNAG38W/Bep+O7WXQbrWIrXw3eWUkN5bRQsLmaVsgHzd2AgBGV25PrUvgLwff2/gdNC8eXmm+JWXC7W08LbhF+6BHIXJPqST04xXP8A/C9/C3/Qq/EX/wAIXU//AIzR/wAL38Lf9Cr8Rf8AwhdT/wDjNG1/P9A3t5fqdhZeA/A1ndR3Vp4M8P288Tbo5YtKhV0PqCFyDXMXXgfxnJ+0TD4/TxDoq6PFpv8AZ/8AZx02U3Jj3FyfO83bu3E/wYxxjvVb/he/hb/oVfiL/wCELqf/AMZo/wCF7+Fv+hV+Iv8A4Qup/wDxmhaST7froHRrudL8LdR8WajDqjeKLeKLyb1o7JksHtS8Y7lHkcnt8wIB9BXK6X8P/iNefEnStd8W+NNFvNP0SeeW0j0/R3t7uQORtjlmaV1ZAAAQqLmi+/aA8HWVlNeXnhz4g29vbxtLNNL4H1NUjRRlmYmHAAAJJqKT9onwMmj/ANrPofj1bDyRN9qPgrUvK8sjIfd5ONuCDmhaNPt/V/UHqmujO81TwR4L1K+kvdR8IaDeXMpzJPcaZDJI592ZSTXP/ED4Y6bqOlaa/hCHTfDuraHffbtLnhsVFukxRo28yJNu9SkjggEHkHNYWhftF+BNa0uHU9H0Xx5f2VwMxXNr4K1KSOQeqssJBq3/AML38Lf9Cr8Rf/CF1P8A+M0rdh3Oi+Efg248KafqFzq1/FqOua1eG81S8hiMUckhVUAjQklUCouASTnPNddXl/8Awvfwt/0KvxF/8IXU/wD4zR/wvfwt/wBCr8Rf/CF1P/4zVN3JSseoV5r+zz/yMHxO/wCx8n/9IbKof+F7+Fv+hV+Iv/hC6n/8ZpP2X559Qh8da4+larp1trPjGe7so9U0+WzmkhNpaIH8qVVYAtG45HakM9RooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDjfj5qWnWvwd8W291f2sMsnh++2RyTKrN/o79ATk18D/tVfD79o7xN8O9FvtL8XQ+LPC8OjWrrpeizCOS0UQr/AKyAHk9sgknHQV7x/wAFYvhdqfir4Mx+N/D091HqHhkk3cUErL59o/yuCoPJBKHnsDVn/glP8L9Q8I/BFvGPiCa6k1PxQQ8UdxKzeRapxGoUngklz9CtAGh+xv4R+Lo/Zt8LCy+JNnosIs8LYXXhMSy2/J+VnadST9QK9O/4RL4z/wDRZNJ/8IxP/kmvSYo44k2RoqLnOFGBTqAPNP8AhEvjP/0WTSf/AAjE/wDkmj/hEvjP/wBFk0n/AMIxP/kmvS6KAPNP+ES+M/8A0WTSf/CMT/5Jo/4RL4z/APRZNJ/8IxP/AJJr0uigDzT/AIRL4z/9Fk0n/wAIxP8A5Jo/4RL4z/8ARZNJ/wDCMT/5Jr0uigDzT/hEvjP/ANFk0n/wjE/+SaP+ES+M/wD0WTSf/CMT/wCSa9LooA80/wCES+M//RZNJ/8ACMT/AOSaP+ES+M//AEWTSf8AwjE/+Sa9LooA8v8AhvqnjzTvjhqPgfxb4osfEFunh2DVbee30gWLRu9xLEUIEj7hiMHOR1r1CvNLT/k8TUP+xDtP/S+5r0ugAooooAKKKKAPHfi5pD+Lf2kfDPhK913xBYaU/hfUtQkh0fWbiwaSeO5s0RmaF1LYWWQYPHNaX/CifC//AENfxG/8LrU//j1Gv/8AJ5Hhf/sR9X/9LNPr1CgDy/8A4UT4X/6Gv4jf+F1qf/x6j/hRPhf/AKGv4jf+F1qf/wAer1CmXEsUEDzTyJHHGpZ3dgqqBySSegoA8y/4UT4X/wChr+I3/hdan/8AHqP+FE+F/wDoa/iN/wCF1qf/AMert7bxf4TuNNn1G38UaNLZ2pxPcx6hE0cR9GYNhfxqtbeP/AlxcJBb+NfDsssjBUjj1WBmYnoAA2SaOtgOL1D9n7wdfWM1le+I/iDcW1xGY5oZfG+pMkikYKsDNggjtS2PwA8H2dnFaWniT4hQW8CBIoo/HGpKqKBgAATYAAr0G88S+HbTWI9Ju9f0uDUJseXaS3kazPnphCdxz9Kf4g1NtNk09FhEn228S2OWxsDAnPv0o7AcB/wonwv/ANDX8Rv/AAutT/8Aj1H/AAonwv8A9DX8Rv8AwutT/wDj1ei6hqul2F1b219qVpazXj7LaKedUaZv7qAnLH2FLY6lp17cXEFlf2txLaPsuI4ZldoW/uuAcqfY0Aec/wDCifC//Q1/Eb/wutT/APj1H/CifC//AENfxG/8LrU//j1eoUUAeX/8KJ8L/wDQ1/Eb/wALrU//AI9R+zFHcWMPjjQpNV1TUbbRPGE9lZSanfy3c6Qi0tHCGWVmZgGkc8nvXqFea/s8/wDIwfE7/sfJ/wD0hsqAPSqKKKACiiigAooooA80tP8Ak8TUP+xDtP8A0vua9LrzS0/5PE1D/sQ7T/0vua9LoAKKKKACiiigDy/X/wDk8jwv/wBiPq//AKWafXqFeX6//wAnkeF/+xH1f/0s0+vUKACuK+PWv+EtF8AzWnjTU303TdbLaebpQcRs6MwJI6DCn+Xeu1opSXMrMqLs7niHwR0ez8R/Ay6fwloPhmyuLmU2sd5e6KZLHU44vlSdrcOpbI4JyMlSfYP0T4W+PrPWLW6uY/g6IYZleQ2vgSSKbaDk7H+1Ha3ocHBr2yircve5luZqPu8vTU+dfCet/Djxf+0ZDcaDaWfiSXVoPPvjJZn7RossHCSCQ/cQ7ipTuSvPBB7P4hfBDwNrGt2epNo2qTT3GppJeNHrt8qhMHJ2rMFUdPugV6vRU6JR02/r9Evkin8Un0f9f5/ezwT49aN4R0z4cXnw/wDBFpLN4s02BtQ0eEXElxdWMozIswmn8wqM89TnpjFegfs93fhPUPANve+ErEQ28iKs9x5Z3XEoHzFpG+aRgc5Letd3RTi2lK7vf+vyt/WgS1tbp/X53+8KKKKQBXmv7PP/ACMHxO/7Hyf/ANIbKvSq81/Z5/5GD4nf9j5P/wCkNlQB6VRRRQAUUUUAFFFFAHmlp/yeJqH/AGIdp/6X3Nel15paf8niah/2Idp/6X3Nel0AFFFFABRRRQBxXxI+Gel+MPFGneIpNd8Q6LqemWk1nDc6LqH2ZmhleN3RvlOQWiQ/hWT/AMKd/wCqp/Ev/wAKH/7XXpdFAHmn/Cnf+qp/Ev8A8KH/AO10f8Kd/wCqp/Ev/wAKH/7XXpdFAHmn/Cnf+qp/Ev8A8KH/AO10f8Kd/wCqp/Ev/wAKH/7XXpdFAHjPxM+GV3ofw38Qa3Y/FT4kfatN0m6uoN+v7l3xxM65Hl8jIFSfD/4XXOseA9E1a8+KnxI+0X+m29xNs8QYXe8Ss2B5fAyTXlP/AAVi0n4gWfwrt/GvgrxBqNnZWO601yzt3/dy28o272GOxwv/AAM1Z/4JT6R4+ufhHN418b+ItRvoNTK2+jWdy/yQW8QxvUY7klf+ACgD2T/hTv8A1VP4l/8AhQ//AGuj/hTv/VU/iX/4UP8A9rr0uigDzT/hTv8A1VP4l/8AhQ//AGuj/hTv/VU/iX/4UP8A9rr0uigDzT/hTv8A1VP4l/8AhQ//AGuuk+FvgbTPAmlX9np1/qmoPqmoPqF5d6pdefPNMyRxkl8D+GJB07V09FABRRRQAUUUUAFFFFAHmlp/yeJqH/Yh2n/pfc16XXmlp/yeJqH/AGIdp/6X3Nel0AFFFFABRRRQAjMo6kClqOXllx60KzdM8554pgeSsfiF4w+MXjXSNI+I9z4b03w3c2VvbW1tpFpceZ5tnHMzM0qFs7nPetT/AIQP4o/9F01X/wAJvTv/AI1UfwkZv+F8fFcgcf2npmf/AAWwV6UrtkHse1FgPOf+ED+KP/RdNV/8JvTv/jVH/CB/FH/oumq/+E3p3/xqvRgzcHsTjFOkJBAB60gPJfF/wm8eeJ/DF94e1v41aldadqUDQXMLeHNOw6Hrz5XB9D2NZy+DNf8Ahv4T0zSrj9oVtB0q3CWVit3omlwoT0VFLRjcx/M17SWbIXIziuF+PtzZ3Xg1/DMunS6hqGuQyx2FukDMN6AEsZMFY8ErySCe2eaUrpXSuOKTersYVnoXjW78QXWhWv7Rk82qWSLJdWUeh6W08CsAVZ0EeVBBGCRzmtH/AIQP4o/9F01X/wAJvTv/AI1VT9lO8tH+G9rYppFza6np6C31i4nt2Qz3gP7473AZyX3NuA2nPBr1WtJxUXZO/wCvmRGV0ea/8IH8Uf8Aoumq/wDhN6d/8arMhb4g+EfjN4N0XWfiLc+JNN8RtfR3Fvc6RaW3lmG2MqsrQoD1HrXrtea/FT/k4L4V/wDXxq3/AKQtUFHpVFFFABRRRQAUUUUAFFFFAHmlp/yeJqH/AGIdp/6X3Nel15paf8niah/2Idp/6X3Nel0AFFFFABRRRQA3aN24DmhQdxYinUUAeafCUD/hfHxY46anpn/ptgr0kKoOQK83+En/ACXj4sf9hPTP/TbBXpVAHmHxc8XeNfBvjjSfsVrpWo6NrrGxtLbyXjuIr08ozzFyvlkZ4CZG3rzxm/Fbxf4v8F+G9JXXPiN4C0PU7hn+0TX+h3ckE/JwIkS5DLgYzljnB6Vu/ET4WHxjeXN3qXiq+WeO4SfRWS3ixo7KMZjXGHJOTl8nnHQCu38P2D6Zo9vZS3txeyRIBJcztl5W7sfTJycDgdBQk+W19b/h/V/w3sDfvbaW/H+v6ueRfAz4j6n4q8af2ZefE/wF4ijEDP8AY9E0W7trjII+bfJcOuBnpjvXZfEq1+Jx1Zbrwj4n8H6TpUcCiRNa0ee4k8zJy3mJcxKFxt425yDzzx3FYfjzw1onijSls/ElvHd6XExluLOcBoLgAdJVPDKOeDxRKWisEVqznPh7afFZtahufE/ivwVqmilX3x6RotxBMzYO0rI91IoAOM/Kfwrv68p/ZT8NReHdB186RHJbeHNQ1qa40OzJ/dwQFjnyl6LGzbmUDjawxxXq1N9H3Sf3q9n5rZiW7XZtfc9/nuFea/FT/k4L4V/9fGrf+kLV6VXmvxU/5OC+Ff8A18at/wCkLUhnpVFFFABRRRQAUUUUAFFFFAHmlp/yeJqH/Yh2n/pfc16XXmlp/wAniah/2Idp/wCl9zXpdABRRRQAUUUUAFFFFAHj/gXxP4a0H4/fFSHXPEOlaZJNqGmPGl7exws6/wBmwDIDkZGa7v8A4WL8Pv8AoevDX/g3g/8Ai6ta14O8I6xqDX2r+FdEv7pwA091p0UsjADABZlJOBVT/hXXw+/6ETwz/wCCeD/4igBf+Fi/D7/oevDX/g3g/wDi6P8AhYvw+/6Hrw1/4N4P/i6T/hXXw+/6ETwz/wCCeD/4ij/hXXw+/wChE8M/+CeD/wCIoAX/AIWL8Pv+h68Nf+DeD/4uuR+MWueH/F/htNJ0D4zeF/D+6TdcyNNb3fnp/cKmZMD155qx8aPh/wCA7f4O+LJ4PBPh2KWLQb145E0mBWRhA5BBC8EGpvhP8PvAU3wt8NTTeCPDkkkmjWjO76TAWYmFCSSV5NJpPcabWxV+GfiPRdBt518S/GjwrrzttS3W3ktrGG3jAA2iMTPk8dc11X/Cxfh9/wBD14a/8G8H/wAXSf8ACuvh9/0Inhn/AME8H/xFH/Cuvh9/0Inhn/wTwf8AxFU22SkkL/wsX4ff9D14a/8ABvB/8XXC+NPE3hvXv2iPhfFoXiDS9Tkhm1VpUsr2OYoDZMAWCE4H1ruf+FdfD7/oRPDP/gng/wDiKuaJ4P8ACOjX632keFtF0+6UELPaadFFIAeCAyqDzSGbVFFFABRRRQAUUUUAFFFFAHmlp/yeJqH/AGIdp/6X3Nel15paf8niah/2Idp/6X3Nel0AFFFFABRRRQAUUUUAFFFFABRRTZHSONndlVVGWZjgAe5oA+XP+CnPxJ+Jnwz+HcN74Wgs7jw9rcM2l6p5sAZ4GljYBgccAru59cVZ/wCCaHxH+JvxN+Gs+r+LoLO30HS0i03SRDCEeYxIAzE45GCnPrmux/aGv9K+LPgXWPhf4a0VvEsupReVNeBvLsbBgQVkeY/ewwHEYb0OBzT/AIAappnwq8E6P8MvE2iN4Zk02EQ293u8yxvjnLOkwA2kk8iQJ14zQB7RRTY3WSNXRlZWGVZTkEeoNOoAKKKKACiiigAooooAKKKKACiiigDzS0/5PE1D/sQ7T/0vua9LrzS0/wCTxNQ/7EO0/wDS+5r0ugAooooAKKKKACiiigAorF8ceLfD/hDSxf6/qMVrG7bYUPzSTv2SNB8zseyqCTXG+f8AEH4hL/oiz+DfD8n/AC2kQf2ldL/sqf8AUgj12uOMUAb3jj4iaH4evU0qBZtW1qYfuNLsF8yZ/c/3V9SawI/B/i3xzcLefELUDp2l53R+HdLmKqR6XE4+Zz/ubB2INdd4C8GeHvB9jJBotiscs53XV3IS9xdP/elkPzOfdia36AKmiaXp2j6dHYaVYwWdtEMJFCgVR+Ao1rS9O1jTpLDVbKC8tpRh4pkDKfwNW6yNH8S6RqnibUtC0+aS4utIEYvXSJjDE75IiMmNvmAAMyZ3KroSAGXIBxMng7xZ4GuGvPh5fnUdMzuk8O6pOWUDuLec/NGf9/ePQCt/wN8RNE8Q3r6VOk+k61AMz6Xfr5cye4/vD0Irrq5/x94L8O+MbGODXNPSWW3bda3aHZcWj/34pR80be6kdaAOgorzPzviD8Pl/wBKWbxl4fj6Sxr/AMTK1X/aUf64D23Oec12Xgfxb4f8X6Wb/wAP6lFdxo2yaMHEtu/dJEPzIw7qwBFAG1RRRQAV83ftFapqump4mn8D/GDxnfeIrWxuNSj0PT5NP+x6dEsbSb5JGtHZYlC4GWLMxVcjdkfSJ54NfL3jq68N6Z4/8bfCt/iz4d+FfhaKwtkg0eGy022W7F3A/wBocGVQ2Se69M0Ab3wr1KSy8UaAniz4u/EOO8u4oJbe01u1sIdP1l3iDukDpbBnVSwz8ykZHJr6Dr5v+F/iGxv/AIs+HfhpafGDRfib4ZvNAvWvNPW10+VbU2rWogLmBc873+91KZ7V9IUAFFFFAHmlp/yeJqH/AGIdp/6X3Nel15paf8niah/2Idp/6X3Nel0AFFFFABRRRQAVx3xw1LxppXglrrwNpcd/feaqyqSDJFEfvPGhwrsP7pZc+tdjRQB5X8ENN8EardNrw1e41/xKFxdzashS6tz3RYW/1ag8DGR6MeteqVyfjz4e6F4mmF+DcaVrEXMGrac4iuIz2JyCr/R1Ye1c9F4r8YeA/wDR/Htj/a2kocJ4g02Egxr63EWTt93BAz/CKAPR9QhFxYzQGeWASIVMsT7XT3B7GvEPgpLrGr+NtX8O6p8Q9UubHwhqoSycXRE+ph8SKJ5Co8xVDCPaowduc84r1tm8PeOPCMkMdymoaVqUW1zb3DJvU/7SEMvTsQaqWPw/8H2Xie18Q2uiRxajZ2wtoZVlkwIwMDKbtrEf3iC3vTjpO/8AXr69Pm30CV3G39f1b8kXfH1lrWo+DdQsvDuopp+qTQFba5cZCt3GRyuRldwBK53YOMHjfBOtaTYfCHU9O0iOPw7qug20g1C0viS9pOQSZpCATIjnLCQA7s44YFR6VVS70rTLp7l7jT7aR7yAQXDtEu6WMZwjHqVG5sA9Nx9aiabi0tyoNKSb2PC/2VW8S399puu614t8XXEd5pwLDV7mCXTtZkZdxmsQJPNROdwDorbcZAPFe/1xXgX4S/D/AMG6yuq+HdBa1uY1ZYi99cTJCD1EaSSMsfBx8oHHFdR4g1fTND0uXUdWvobO1hXc8sr7QBWkpJ2srGcYtXuXa8s+N+m+CNKul15tXn0DxKVxaTaShe6uD2QwrzIpPXOB6kVPN4r8YeO/9G8BWP8AZOktw/iDUoiTIvrbxZG72cnH+ya6DwH8PdC8MzNqBNxqusS8z6rqLiW4kbuRwFQeyKo9qko4nwjr/wC0PeeHYJ28FeEWZiwD6trU1ncOv8LPFDbzIhI7Bzj1rS/tb9ob/oR/h1/4VV5/8hV6hRQB5f8A2t+0N/0I/wAOv/CqvP8A5CrJOm/GQ65eaw/ws+Fb3+oCNbq4k8R3TPKIwQgJNj2BIFezUUAeMx6b8ZI/EFrrkXwt+FkWo2UMsNvcx+I7tXjjkKF1BFj0by0z/uitb+1v2hv+hH+HX/hVXn/yFXqFFAHl/wDa37Q3/Qj/AA6/8Kq8/wDkKj+1v2hv+hH+HX/hVXn/AMhV6hRQB5h8M/D/AMRpvjNqPjjx1p3hvTVl0CHSba30fU5rssUuJJS7mSGLH+sxgZ6V6fRRQAUUUUAFFFFABRRRQAUMAVwRkHqKKKAPPtd+Ga2WrTa/4A1J/DeqStvnhiGbK8b/AKawfd3Hu4G73pmk/EuTSNSi0X4kaavh2+kYJDf7s6ddt0GyY8KSeiOQ3tXolVdZ03T9W0+Sx1OzhureVSrxSpuUg0AWUZXUMhDKwyCO9DsqKWYhVUZJPYV5T4l8PeIfhhod94g8D6qlxomm28l1daBqbt5SRIpZjBKAxTABwu0g+op3h/w34k+Jej2eueOtVjttGvoEuLbQNLkbynjdQymeYhTJkEfLtAHqaANHVviZJq+pS6L8NtOTxFfRsUmvtxGnWjDg75hwxB6ohLcdK43+1PhLZ+Lnufix8XPCmreI9NmIOn3+sW8Vvpko7LbMwAdem9l39eea9hkGieEPCs1wluljpmm27SSLb27PsjRcnCICzHA6AEmviDxdqq2PjXxRrVn4o8vS9Y16e/t5GvdY08Is7gIrR/2VIobJA4c5JFAH2l4F8d+B/GTXEXg/xdoevGyVTcLpeoRXHkBs7dwRjtztbGeuDXRV8ofsaajaaP8AGPX77W9bkmuvE1jYafYQCPU7tt0D3LsXnmsbdUU+cMA+h55r6voAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqjretaRo0aSavqlnYpIcI1zOsYY+gLHmgC9RXP/APCdeCv+ht0T/wAGEX/xVH/CdeCv+ht0T/wYRf8AxVAHnX7YXxi8CfD34f6x4d8Vam9nfa9od7Fp6mPKzMYWQAH6sv51P+yV8YvAnxH8E6fonhLU5L260LSLSO/HlYWFvKC4z9Ub8q4L/gol4V8E/F34BXkWneI9Fm17Qz9u0zZfRl5CoIeMYOTlS3HcgVY/4J8+GfBPwi/Z/sLK+8R6JFrmsH7dqha+iDq7ABYzzkBVA47EmgD6I13U7DRtFutW1S5S1srGFp7md/uxRqMsxx2ABr5Z+M3iyDT/AIF+K9A8V6jqug6l4l8VW+r6J9rjPniyfUraUNEGDANCiMzKQQvHBr6R/wCE68Ff9Dbon/gwi/8AiqP+E68Ff9Dbon/gwi/+KoA85+CfjzwBB4ibSIPjpqXjW+1Zkis7XVPs+Y2G4/u/Jt4uWzzuJ+6MY5z7NXP/APCdeCv+ht0T/wAGEX/xVH/CdeCv+ht0T/wYRf8AxVAHQUVhW/jXwfPOkMPinR5JJGCoiX0ZZiegAzya3aACiiigAooooAKKKKACiiigAooooAKKKKACiiigCHULq2sbGa8vJ0gt7eMySyyHCooGSSewArzDwT4csviTq11488W6YtzZzg2+g2VypxBa5BMpXs0hCnHbb71b+JjyeOfGkHw6spGGm25S68RyoesXDLa5/wCmnAYf3WPSvR7aGK3t0ggjWOONQqKowAB2oA4K38HfCafxZdeGYvD+lNq1jZw3txa+Q26OGVpEjcnpgtFIODn5fpTB4V+D58XHwuNG0X+1xD5xtPLO7b169N2Odud2OcY5rxDxRFFpn7Xeu3194N8R2fiLWmkTQddVrl9NitrOCKT7S0IlAlO+4mVhkIuyM7MsxOV8M/EMnjG+t9Cg8Wado+n3NzbatZ6vqnhme31i6+03AjhnjuvtTRm4dmUAGLyskL5Wz5KAPpO6+HXwzt5YIrnw3o0L3UnlQJIApmfaW2qCfmO1WOB2BPaqdr4O+Etx4su/DEPh/Sm1aws4by5tRA26OGVpEjcnphmhkHBz8v0rjfEUvirx94H+FXjnwnb6f4iv9J1X+2J4Jp/7MF3CbO6tiyhvMKHdOhwc/Wuf8N+Jvisv7V3iy5j+FenPfyeEtISazPitAsUYub8o4k8j5ixLjbgY2A5OeAD16x+HXwzvYWls/Dej3EayNGzwgOodWKspIPUMCCOxBFTf8Kv+H3/Qpab/AN+q5L4PyXPwp+BOsan4+hhs7i31fVtYvbSxuBdGFLm8muUjDALubZIo6DJrtvhr40tPGdjcXNro+taW1rIEeDVrL7PIcjIIXJyOOtC1vboD0t5lb/hV/wAPv+hS03/v1R/wq/4ff9Clpv8A36rrq5P4veKbnw34dWLSIEutd1SQWuk2rdJJm4DNjnYuQWPYZoA871rwB4P8WfFi18PaJ4fsrXS/DUyXmsXUMeDLODmG3U+zfOx7eXjvXt6gKoUDAAwBXPfC/wALReEfCUOmec1zdOTNfXcn37mduXdvcmuioAKKKKACiiigAooooAKKKKACiiigAooooAK5r4reKR4U8Ktdwwm51C6kFtp1qv3ridvuqP5/hXSOwRCzHCqMk+grwjw98SPBniL4rX3ijxHrsdrZ6FK9hodlLBJncMedckberNhAOwjz/FQB6f8ACXwo3hTwz5V7OLrV9Qla71W76me4c7mweu0EkKOygAdK6muH/wCFw/Db/oabf/vxL/8AE0f8Lh+G3/Q02/8A34l/+JoA4L4yeBvE+qftDeG9cn1vWtS0i30rWZLaztbcQQ6dKYbdUjeWIBpVlIb5JSQSvA4rwX4V/DK88G3Wi3d1pGuQppugeGtR1Q2vgiSNhcRXsFy9sotod1zKFGGdtzKc7yMGvrf/AIXD8Nv+hpt/+/Ev/wATR/wuH4bf9DTb/wDfiX/4mgDx/wCDmi/ETwzo/wAMvFGmfDzUNYFj4HutKv7F7yCwuLSaW5t5V3pcMp+7C2RjIJFb2j3nxcs/jrr3jt/grqDWuraDp+mR248Rad5iPbzXUjMT5uMEXKgf7pr0FvjH8NFUs3iu2VVGSTDLgD/vmhfjF8NWUMviu2IIyCIZef8Ax2gDzLw/N8RLnxR8RLy/+C95d2/iLV7WO70m61K1Um3XTYI96Ss/lSAspB2k45B5Br1b4E2HinTPhnYWfjBTHqUYP7lrjz3gj/hjeUE72A4LZOfWq/8AwuH4bf8AQ02//fiX/wCJo/4XD8Nv+hpt/wDvxL/8TRHS/mEtbeX9f16I7S8uIbSzluriRY4YULyOx4VQMk1518K4Z/Gniub4malCyWhVrbw5DIPuW3INwB6y8sD3RlFZ/ijxJY/FTWrXwV4UvZLjSTi41++SN0VYQfkgUsBlnIbOOgXnrXqtrBDbWsdtbxrHDCgSNFGAqgYAA9MUASUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUADAFSCMg9QazW8PaAzFm0PTSxOSTaR8/pWlRQBmf8ACOeHv+gFpn/gHH/hR/wjnh7/AKAWmf8AgHH/AIVp1yPjb4n+BfCmp/2ZrXiG1iv9u42cbeZOq+pjXLAe+KANv/hHPD3/AEAtM/8AAOP/AAo/4Rzw9/0AtM/8A4/8K4r/AIXt8Nv+gxcf+AMv/wATR/wvb4bf9Bi4/wDAGX/4mgDkf2vPiH8J/hv4F1XQvEsFjp+pa3ot4mmbbBP3khiZRhgODuZam/ZP+IXwn+Jfg2x0jwtb2OoX2i6TaJqJNgmI38sLy2OSSjflXmH/AAUGvPhx8ZvgZcWWl300niHR5Bd6UfsUgLsOGjzt6FWbj1Aqf9gPUfhv8GvgPaaXqN/LHr2pubvVWFjISrkALHnb0VQOPUmgD6l/4Rzw9/0AtM/8A4/8KP8AhHPD3/QC0z/wDj/wriv+F7fDb/oMXH/gDL/8TR/wvb4bf9Bi4HubKX/4mgD0DT7CxsFZbGyt7VWOWEMSoD9cCrFYvgnxd4a8X6a194a1uy1OGNtkptp1cxN/dcA/K3I4PNbVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZfjbUpNH8H6pq0ShpLGzlnVT3KqTj9K5H9nfQNPg+Fel6lcW0V1qOqQ/ar67lQNJPK3JYk10Hxc/5Jb4i/7BVx/6LaqnwI/5I74d/wCvBKAOjkstOSNne0tVVRlmMagAepNV2bQF0f8AtZm00WHk+f8AayU8ny8bt+/ptxznOMVxv7UWp+I9J+Et1deHPsu4zIl/512ts/2U5EghkZXUSn5QMow5PFeBfE7w98S9Q/Z3utHm0/4i6Peax4dntdL8HeGrO2u9LsLcI0Vra3MssRmDmIRiX585LEbeAAD64Wy09lDLaWzKwyCIlwRUV9Fo9lavdXkVjbwRjLyzKiIo6ck8CvLP2edK1+602/fUPFXxQQrYCzW38U2FlbCF2Ufvrfy4FLMm0gbiRzyDXhPx01nUNW+B3iC60/xp8cNY0/DQi4u9G08afOY7gRtukS3Vtu5GAII5AoA+z/sFj/z5W/8A36X/AAo+wWP/AD5W/wD36X/CvAPh3qOoSfFHQdG1Px18a7We/meS1tvEWkadb2l75KebJE7JbhsFVOdpB54Ir6HoA8u8f2lr4e+OPgvU9HgjtJdYa4sr9Yl2rcRgIybgOCVJbB/2jXqNeafGb/kq/wAOf+wjcf8AoMdel0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzvxc/5Jb4i/wCwVcf+i2qp8CP+SO+Hf+vBK6PWrGDVNIutNuhugu4WhkA7qwwf0NeUeDfGGp/Dbw7a+DfE/hXXbyTS08m21HTrdZobyIHhx8wZW9QR9CaAOj/aM0zw1qfgO3XxPYeJLyC21KGe0Xw6Lr7ZHcqGEbq1t+8QDJy3AGeTXhmvtBpfxM0bw54xh+LumWMfheS5j0vSNe1LVLtJzfSDzJ5rKRywKY2liQBheMYr2T/hdelf9Ch4t/8ABaP/AIqmf8Lm0bzvO/4QzxX5m3bv/ssbsdcZ3dKAOV/Zb1uyi8Z/EePTbrx1c6LpMGnTW9r4m+3y3sTGKdpfLjusy4bauAB8xAxmvM/i98K7W8+DPifxbo95448OeFoLd3sNFvNdv4Teyy3Cs8stpI4EEYZm2xlVJJZiMbDXuy/GbRllaRfBnisPJjew0sZbHTJ3c0TfGbRpo2jl8GeK5EbqraWCD9QWoA5Pwf8ADy0+G/xi0298Q3HjrxSZLyVPDmrT6nf6nHZG4yjQ3ERZ0iCqxUTMApUDc27Ne+V5l/wuvSv+hQ8W/wDgtH/xVH/C69K/6FDxb/4LR/8AFUAO+M3/ACVf4c/9hG4/9Bjr0uvK9Kl1P4k/EjRPEP8AYOoaNofhoTSRvqKKkt7PJsA2IrHCqEOS2Cd3TivVKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k="]
math
multiple-choice
32
如图是下列四个函数中的某个函数在区间 $[-3,3]$ 的大致图像, 则该函数是()
$y=\frac{-x^{3}+3 x}{x^{2}+1}$
$y=\frac{x^{3}-x}{x^{2}+1}$
$y=\frac{2 x \cos x}{x^{2}+1}$
$y=\frac{2 \sin x}{x^{2}+1}$
A
["iVBORw0KGgoAAAANSUhEUgAAAQoAAAC0CAYAAABsfGJ4AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABgpSURBVHhe7Z0JuE3V+8cjSZOhAZlKRBNKk1SkklKKUKlUIjwlkZTSJGnSYIgSJUNCEgolQ6FEGSJKEkkyF1GKWv//Z9n313U79+47nH32Put8P8+zn1jnup1z9t7f/a533M8IIYQPEgohhC8SCiGELxIKIYQvEgohhC8SCiGELxIKIYQvEgohhC8SCiGELxKKFObvv/82O3fuNNu2bfNW9rJjxw6zadMm729CSChSlvnz55tWrVqZ008/3bRs2dL89ddfdv2ff/4xXbp0MTVq1DDr1q2za0JIKBwk7abPivXr15sZM2aYWrVqmfLly5uNGzd6rxjTr18/c/TRR5sFCxZ4KyLVkVA4yJgxY8zq1au9v2VN3759TZEiRcx3333nrey1Ktq1a2c2bNjgrYhUR0LhGNzkjRs3NsOHD/dWsmbcuHGmUKFCZuHChd7K3m1Jnz597O8SAiQUjoFjsmjRoqZFixZm9+7d3mrmzJw50xxyyCFm2rRp9u+///676dq1638cnCK1kVA4BhZCvnz5TKVKlawfwo/FixebwoULm5EjR9ooyNChQ82cOXO8V4XYi4TCIdgqtG3b1hQoUMBaCdOnT/deyRx8GTgue/fubbccr776qhUMIdIjoXCIrVu3mm7dupnDDz/cNGjQwAwYMMB7JXM2b95sKlasaFq3bm169uxpfvvtN+8VIf5FQuEQq1atMitWrDBHHHGEad++vZk3b575888/vVdjg0+iSpUqpmbNmmbt2rXeqhD7IqFwiD179tgbH6G466677BbCL3KBw7NJkyb7RD2EyIiEwjH++OOP/wmFH4jE2LFj5bwUvkgoHMNPKLZs2WIGDRpk1qxZY3r06GEmTZqkfAnhi4TCMfyEYvDgwaZgwYLWLzFlyhRvVYiskVA4hp9QkFsxatSobKd4CwESCsfIiY9CiOwioXAMCYUIAgmFY0goRBBIKBxDQiGCQELhGBIKEQQSCseQUIggSLhQ7Nq1y3z88cfqdxAQEgoRBAkXitmzZ5vixYubXr16eSsinkgoRBAkXCgoWmrYsKEpUaLEPn0aRXyQUIggCMVHQVel0qVLm6ZNm/qWQYucIaEQQRCKUFCE9OSTT9ouTLRgE/FDQiGCIBShgF9//dWcdtppplq1amoLH0ckFCIIQhMKmDx5srUqHnzwQfVpjBMSChEEoQoFodKbb77Z9nj86quvvFWRFyQUIghCFQpYunSpKVWqlLnmmmuyNQpPZI2EQgRB6EKBY/OZZ54xBx98sHnnnXe8VZFbJBQiCEIXCqBFfPXq1c2ZZ54px2YekVCIIIiEUMCECRPMoYceasOm6uGYeyQUIggiIxQkXtE2vkyZMuabb77xVkVOkVCIIIiMUMCCBQtMyZIlTfPmzWVV5BIJhQiCSAkFuRRM0j7ooIPMrFmzvFWREyQUIggiJRTAWLvKlSubiy66yOzcudNbFdlFQiGCIHJCAYzeP/DAA+2gGpEzJBQiCCIpFDg2a9eubU488UQ70UpkHwmFCIJICgVMnTrVHHbYYeaBBx5QHUgOkFCIIIisUJDO3aJFC3vRL1myxFsVfkgoRBBEVijg66+/NuXKlTNXX311ytaBsA377LPPzPPPP++tZI2EQgRBpIUCnnjiCZuxOX78eG8ldVi0aJHp1KmTKVKkiKlRo4a3mjUSChEEkRcKxvRXrVrV3ig0u0klqHth23XcccdJKESoRF4o4O2337bVpZjfqZaxuWPHDnP++edLKESoJIVQ0Lm7UaNGpmzZsmbVqlXeamqAUBAqllCIMEkKoYC5c+faTlh33HFHSoVLwxAKvt8VK1aYESNGmEcffdTce++95qmnnjJvvfWWWblypTqnpyBJIxS7d+82HTt2tLkV8+bN81bdJ7dCUb9+fTN69OiYx48//uj99L6wrVu4cKFp1qyZ/R1kx9LTFGdqoUKF7FGsWDFTp04dmzW7detW718K10kaoYCff/7ZOvbq1atnm92kArkVinz58pn8+fPHPEaNGuX99L/w7+gFUrRoUVO+fHnb8Hj+/Pn2e96zZ4/975w5c+zPnHPOOdZnRKUvlgbnRbhNUgkFDBgwwF6kQ4YM8VbcJrdCgU9nypQpMY/169d7P70XRODOO++0Yehbb73Vd4Lb9u3bbeYsfU75NyeffLKtz6FZsnCTpBMKKkp5ojEPZN26dd6quwTtoyCRrUOHDnaL8dBDD1nHcXZBGD788EMblWFLeN1115kffvjBe1W4RNIJBfBUZN9M7wrXw6VBCgVOy969e1uRuP/++60fKDdgYdAgmXmyxx9/vJk4cWKuf5eIJkkpFDwFW7ZsaaMgrteBBCkUOIX5DpkBGw+fD5EpGiQj4o8//niOrBMRbZJSKGDZsmW2DqRx48bW2eYq3MDnnnuuHb+YHespu0LBFq5WrVqmQoUKNhQaL9gO3nLLLTZC0qZNm5TLpnWVpBUKbppnn33WOjbHjh3rrboFTYb79u1rowuEJQcOHOibcJZdoejfv79tOThs2DBvJX7gu+jevbvd0hCmpWuZSG6SViiAp+0ZZ5xhZ4K4OA9k06ZNNgKR/vDLXciOUOBwrFSpkrnkkksCq8rF/zF48GBz1FFHWefzt99+670ikpGkFgrAcYZVQXxfDW78hQJLrFu3bvZpP3PmTG81GDgf1OkwMpKtk+bLJi9JLxSYuYTluBg1D8RfKMjKxJq46qqrEuLbQZiIUrF9Qix0jpKTpBcK4ElVunRpc+2116Z8WM5PKJ577jmbJEX+QyLBejn66KPNqaeeKrFIQpwQCkhrcDNu3DhvJTXJSiiIdJx00kmmbt26oYxCmD59ujnmmGOsT0mJWcmFM0JBg5vTTz/dHjgBU5WshOK9996zYcvXX3/dW0ksbEMmT55styEXXHDBf1LJRXRxRihg0qRJ1kmHsy5VHZuZCQU3KX6JE044IdQiLt4HVh/FZ1dccYXZvHmz94qIMk4JBaE+kn2KFy9uy6VTkcyEgvAkuRj33XeftxIuhE6pD7n55ptt9qmINk4JBaRlbFI9mYqOzcyEomfPnjaMHBUB5dzgV0orRlNtSLRxTijYclCgVLBgQfPOO+94q6lDLKEgMY0KT1LBozT2gPfatm1bKxZknYro4pxQwLZt2+xNwUjCn376yVtNDWIJBcVaWBP9+vXzVqID0ZeGDRva4jScrSKaOCkUQNyem+Puu+9OKbM2o1DgPHzkkUdM4cKFbb/LKEISGNEqCtQWL17srYoo4axQcIPcfvvt9qYhfp8qZBQKth1nnXWWueyyyyLdgYppaPiWKFNXxWn0cFYogCcV24/zzjvPbkdSgYxCgfMSHwBVqFEGYR8zZoy1fOg1wucQ0cFpoYA33njDhuFoApsKZBSKp59+2u7/k8GkxxFNJISkMIY9udxnJNlwXijoskQNCLkVS5cu9VbdJb1QcKPRnIYy72RpfEtUhqHUfAayOEU0SLhQbNy40XZ8ZphMokAgSBumG5brJm16oaB/BdYEzsxEwPYBC+axxx7L05AgtowUj5FFmtkMkjBhG4eTPJWyfxMuFHjeSd9l+lQi4eQy0Oa1116zF7SrpBcKRhuw7fr000+9V4OFG4f+nkQw8pptOXv2bCvuDRo0iFzvTVLhqYRNpa1RyggF3v8LL7zQDhByudtSmlBgtZGfwMwNPnsiiKdQIOaIO47YqDUlklAkgLCEAniy0prthhtucDa3Ik0o2GYde+yxNkScKOIpFMBn4VzxeRLdPyMrJBQJIEyh4EKmjTyJWCNHjvRW3SJNKBgLSPPcRGY7xlsogMzaKlWqWMtozZo13mq4SCgSQJhCAeRTcDEzqIb34hppQsHsUS7mRJaUByEUMGPGDHPkkUfaEYZ8vrCJt1Dgg6GHSpTqcDKSckIBZAEypIY5m1E+ObkhTSj2228/2+8hkVusoISC30v1KxZSFBLH4i0URIhmzZplB0O//PLL5uuvv7afOUpkKRRkNcb7qFixotl///3txRzr9UQchN1I6qHCFMsi1s8k68Fn4/vFoiA0GutngjzY1nFDV65cOebruT2oAylQoIBtd8hnjPUziTqIJPFeYr2Wl4NcH34vD9Kzzz7bhpm//PLLSETpshQKEl9cPhCJ/Pnz2xLsWK8n40GkAwHkZr300ktj/kyyHvQY4UlOmPuiiy6K+TPJevDZ8MPwACMyR2d5WhZGpfo54VuPKPHRRx9Zy4YtSF4ShKIEWw+eSBSC+RVX8Zkxc8ePH2+GDh1qJ659//33kTN70zNixAhbD8JQ5Si/z5zAOZs6dartkE47R8YyJtXWw3XYY5K1iLn85ptveqvJDZPEMF9vu+22TC82TFmKxW666SabYciQng8++MB2mqpatarp06dPZG9CUtFpdsMWxJWqYD5TonJdcktKCwXQOKVmzZrWd7J8+XJvNXl59913rX8irSgsIzhvX3rpJbvnx4JILwj8macapj3iEVV44jJM6JRTTgm1UXAqkfJCAV988YUNvzVp0iSu3vowIMGKiEcsoUAIiB6QdJaZBcWeGD8A4hnG7I/swraRLQiWUxRCpkERy5EZhnNTQvH/8MUzGZ104d69e3uryQc5ItWqVctUKN5//33rsW/dunWmPhnMYAqy8N2sWLHCW40enDO2SpwzV7aNaSDo+CyIetClPG2kAdZTu3btTKtWrRJeDSyh8Ni+fbv1PGNZLFiwwFtNLj7//HMrBLG2Hr/88osVEUJwixYt8lb/C8k/hDb5PVH/HvhMNCXi/a5atcpbTX7YHtLflOvxgAMOsH/GMU06O1tkPq/fVPt4Ewmh4OnA04vS89GjR9vZlGGYVxSLETLF7E7GwTRYReRQ4JzNKBRcbDg5mzVrlmWiEKP+EBOO3Iz9w6oheShRFZ+ffPKJfa/cREEnz61du9Y6etnuYM3QDCjI65Tvkn4iiOErr7xiLUIeaGH4ZUIXCr5oTEccU2XKlLGONPbQo0aNCkUsaMfGjdaxY8ekCpmyT6cvJkJHolV6ocDXUKdOHZsz4tcHhNoQzkGNGjVy5KPAt0NoL61CF4djIsBMx0RnC0LoNCjoi1GvXj1745IMRb5D2bJlzZw5c7yfCIauXbva67F///77OJ4TTehCsWTJEtO+fXs7kRxH2pAhQ2weACYWTW4SDU9b3g8nB+smWSBiU6pUKStw+BfSCwVmeYkSJexnyiqBh8+OM5StS06b3fD/Z1/NEGQEP1FCAWxBGM+ASK5evdpbjS+IEaKA1YK1RHQI4WUyXbxSuWOB+CJKYc+oCV0o5s+fv08MGSsC045aDEQkDLjwGKKL9z9Z2ucxoo+n6pQpU/4jFER12JIgvlltCUi24ibHIsnNjc65a9GiRcKFAvDP8IC5/vrr4x4FQQgybsPwETCZvWnTpoFtebAgsCQQ+DBroyCSzkzmY2L6hpmEgiMP0xKTPer+Ci5kLti0vIKMQoHzku0E9QSZ3URclJi5CApPz9yAUGCRhCEU/L979Ohhn77Dhg3zVoMDocCCCbJdAQ9RfBOUGJCyHmYYOHJCgQPnyiuvNB9//LG3Eh5ccGQAshUJ2lGWF9avX29vTm5SLIaMQrFhwwZTqVIluzXh+40Fref4d9SHbNmyxVvNGWEKBfC+sQTpxRF0r026u3fu3DnuTlsc6liFbKGoJuUh1aVLF/udYtWw/Qnju42MUPBUxPSl7oKLlYs/bHhPnTp1sqHCKPfanDBhgjVP+S9PnYxCgbVAbQShtlgZl2yvsEZ4auWlOUzYQgEIHlsncg3iXWLP5+P7YfQDDvc2bdrE9Trl92PNcb3VrVv3f2Fs0uuxCJs3b26d0WFch5ERCpqT0JiEE4CTiJh/FBrL8AS+/PLLbQguUU1qcwoONSwGHJWxhAIwlbHUEASeWDiKeeoOHz7cht8I9+V1QlcUhIL3wGfBEox3GjpJTkRWECH8Vzh96flByDJe8LBkpkn6vq6cU8Lb06ZNCy3ykRCh4OTxAdMfsVSRdRyYNAbhJODBZy1s8OhTAsxNFrX28The2VJgifFdZSYUQLgTYWArhdncrVs32yiFizMeREEoAMGjFoSHDbkPQbBs2TLboAefDtEe10mIUPTq1cs+ldMfmPKZwUVGhiSmcFTqDbB4MGnpHRDPJ0he4alJ7wm2HZCVUKSBoGCWx1uEoyIUkJauHuT8DXJu2BIwFsF1EiIUtFsnUSX9QQVjZnDB0YAFs44LPyoQguSm5CaMwvviZmcKGmHPtJTe7AhFUERJKPhuOnToYLcgQXXwZsASW1L6ebhOQoQCpyBZjukP1jKDJ0D9+vWt0yjWFiUsuPgI3fKkYiJWUE+q7MKFyl6ZLVoaEop/wfHI9oMtQhAT0mfOnGl/f1S6UAVJqM5MLiwa3TJjMn15NycAqyOKJ4BtB3UFJISFnbn54osvWtOXhKo0whYKmsqULl06MueOKAERoe7du+da2HH83nPPPTZrmBAsnxNfFdYczs0oPcyCIlShwItMpANznkG6pA1zQnDMRbmVPnkJ1DRgdoblyEKwSMThSL8NCksoyDNBHIigcGNOnDgxEv4l3hfCzrlKL6g5AcuEzl88HHCSMlyJDFTOfVaWsUuEKhSAQuOQGzRokH1C401OBoXGm169enVrZlPBmGi4SBFY/CbpCUsoSAai7ybnMe0I43uJBe+NLRpO9Nw6okms4tokKseDItUIXSiSGQrZaB1PfwBKjhMFJjSWGCnEGUuOw9x6RBUePGzTsHQGDhzorYqcIKHII6TUUhxEngXCkQjI2MOhSmJRRutLQhEbLAmyHcuVKxdYboXLSCjiAGJBfQEl1hTyBAl7YtqjccHH6uokocgcHOf4KvAvxDu923UkFHGCGgMatiAWQaZ6ExEi8YtCoVhIKDIH6wsrjKa8dCsX2UdCEUcQC3wWlKfTDi7eIALUa2BNZBZ+lFBkDc5zpqMzIInBwCJ7SCjiDH4KQmiYuEQB4mniEuHAIUffxsyQUPiDNcH3SKVm2ElzyYKEIgCIRNBfkY5TbBEy6wGRE2g+TIiPvphZ/T4JhT9kBpOrQ0cshgALfyQUAYGJS5Um0Qlu7rxERDCRKZAj49HPWSqhyB50ej/22GNNgwYN7HcmskZCESBcgEykxhIgKkJbs5x2RKKM/MYbb7TWCW3X/JLRJBTZg++RYU9sQRLROi/ZkVAkADL6sCrIpCTFmcYx2ekHStEX2YRYJZTqZwcJRfahhICaIhLm4tWTw1UkFAkCSwJnJA1ueYpdfPHF1trgAuWCxanGU47aBBKCyCCkfBynKP0OsltTIKHIGUSq8FUwqk+5FZkjoUgwODoxeQnRMbmrZMmStiEs2wscbPTgINOT18gk5ELOiWdeQpEzEGD6VlDwxeBjERsJRUhgYcydO9c2vaWZMIOBSQPHFObpRmJVbgbRSihyDtWhfPfkVvD9if8ioYgAWAxcoJRl59X8lVDkDhya+JBeeOEFX4dxKiKhcAwJRe5ApNOyXgmdin2RUDiGhCL30CqACFPLli1tUpb4FwmFY0go8sbDDz9sc1aY6i7+RULhGBKKvEF/TGp1aMib1tlcSCicQ0KRd5jXwRaEhrxiLxIKx5BQ5B2S3pjzSbIbU+2FhMI5JBTxgdmf9BUhEhLvieXJiITCMSQU8YP6Ghyb9BVJ9dwKCYVjSCjiB30/ateuHbPbeaohoXAMCUV8odamWLFipk2bNindDUtC4RgSivhCSn3nzp3tsONp06Z5q6mHhMIxJBTxh8lgtAeglwidy1IRCYVjSCiCYdy4cSndkFdC4RgSimCgbwU9Q+gfQnuAVENC4RgSiuBYvny5qVChgm10nGq5FRIKx5BQBAtT2tP6VqQSEgrHkFAEC99vs2bNzJFHHmkWLlzorbqPhMIxJBTBs3LlStOoUSOzZMkSb8V9JBSOIaFIDHzPqYSEwjEkFCIIJBSOIaEQQSChcAwJhQgCCYVjSChEEEgoHENCIYJAQuEYEgoRBBIKx5BQiCCQUDiGhEIEgYTCMSQUIggkFI4hoRBBIKFwDAmFCAIJhWNIKEQQSCgcQ0IhgkBC4Ri7du0y1apVM48++qi3IkTekVAIIXyRUAghfJFQCCF8kVAIIXyRUAghfJFQCCF8kVAIIXyRUAghfJFQCCF8kVAIIXyRUAghfJFQCCF8kVAIIXyRUAghfJFQCCF8kVAIIXyRUAghfJFQCCF8kVAIIXyRUAghfJFQCCF8kVAIIXyRUAghfDDm/wDA+lowwIWwMgAAAABJRU5ErkJggg=="]
math
multiple-choice
33
如图,在平行四边形$\mathrm{ABCD}$中,下列结论中错误的是( )
$\overrightarrow{AB}=\overrightarrow{DC}$;
$\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AC}$;
$\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{BD}$;
$\overrightarrow{AD}+\overrightarrow{CB}=\overrightarrow{0}$.
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCABBAJYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/iiiigAooooAKK/Kv9tV/wBoS+/bD/Ya+Fvwp/bD+Ov7OngP4/SfHjw38QtB+FPgj9krxKJpvhX8KtY+JOgeI9I1T9oH9mP44a1pmu3+ppbaNrca6lN4en0CzgTTtA0zWZLvWrnyv4Mftm/Eb9lX9p/9q79kX9vX9obwt8SfAXwR+Ang/wDbB+Fv7WvjHwt4M+FfjC7+B3jz4j+JPh3qHgP46aF8ONH8M/C7UPiF4H8Z2ekeGfCviH4aeBvBEPxG0zUNLI8C23im6ktrgA/aiivz/wD+HpH7CX/Rc/8AzGXxi/8AnfUf8PSP2Ev+i5/+Yy+MX/zvqAP0Aor8/wD/AIekfsJf9Fz/APMZfGL/AOd9R/w9I/YS/wCi5/8AmMvjF/8AO+oA/QCivz//AOHpH7CX/Rc//MZfGL/531H/AA9I/YS/6Ln/AOYy+MX/AM76gD9AKK/P/wD4ekfsJf8ARc//ADGXxi/+d9R/w9I/YS/6Ln/5jL4xf/O+oA/QCivz/wD+HpH7CX/Rc/8AzGXxi/8AnfVnax/wVg/4J++HtJ1TX9e/aGsNF0PQ9OvdX1nWNU+HvxbsNM0rStNtpb3UdS1G+uvAMVtZWFjZwzXV3d3EscFvbxSTTOkaMwAP0Ror8dm/aY+I/wC3Z+1nf/s9/sqftE+K/wBn34BfCj9m/wCCv7Sfjz49/C74ffDTxH8V/i7eftMQeK7v4JeDfh+f2jvhR8Wfhl4R+G8Hgvw1f+PvGetax8K9V8c+JL+/8I6L4WvfC+lWfia91X9Cv2dvC/7RXhHwx4s0j9pP4o+CvjB4nX4gazN4I8aeCfBP/Cu4bn4YHSdAh8NWfibwgtxqdrpnjW2v4NdbxNcabr+t6NrN9N/buijwvpOp2fgLwiAe/wBFFFABRRRQAUUUUAfnd+1r+zF+0f8AFb48/s7/ALQXwb/aT+AfwUsf2YrH4m6tpmgfGD9lzx38cLbWdc+JXg3VfBHivWPEHiTwt+1/+zrDYeG9O8JXUMulaRb6THeWGt2lzq+peJtS0y5XRLP85P2Af2KNf/aX/ah8ef8ABSr9pX4r3X7RWh6x4h0Ifs8+Irn4d2vwl+H3xWtvhlqXiH/hWvxe+H3waHiHxxfeB/2cfhmde1WX9lvw94v+IPxG8VfEnxff6/8Atd+OPFviDUta+AK/DT7s+LF5eft//FfxX+y34Uu7qL9jz4PeIRof7ZfjrTZ5YIfjv4+08QXj/sW+DdUt2Q3Hg3TEltL79rbX9Pm8ltNn0/8AZ4tJ7nVfEnxdh8CfpvZ2dnp1na6fp9rbWNhYW0FnY2NnBFa2dlZ2sSwW1ra20CJDbW1vDGkMEEKJFDEixxoqKAACzRRRQAUUUUAFFFFABRRRQAV+XHign/goz8WtW+G1iTc/sFfALxxLpfxg1VCW0v8AbC+PfgbWB9p+CWmSL+51n9nT4IeJtPU/G+6jaXS/iv8AFnS4vgzK914O8B/F3QvFXZftKfEXxz8fvidefsL/ALPHijV/COo/2PpOuftg/HvwrdNa6r+z18IfE0Lz6X8OvAmtRB0sP2mPjtpUd1a+CXhLXvwh+HMmsfGrU0tdXk+Eml+OPuH4c/DrwP8ACLwF4P8Ahd8M/C+keCvh94A8O6T4T8G+E9BtVs9I8P8Ah3RLOKw0zTLGAFmEVtbQopkleS4uJN89zNNcSyyuAfF3xp/Y0+I+oftLWH7YP7KPx28M/s//ABy1X4ZWPwU+LmmfE34Oar8ffgf8Z/hl4f1PWfEPgUeKvht4a+Mf7P8A4r0n4i/DbxDrurTeCfH/AIa+KmmCDQNd8ReF/EfhzxLpt/pzaL9YfB3wJ4v8A+EDY/EP4l6r8WviBreq3vibxr4zu9Ok8N6Bca/qcdtFNpXw98BDWNftfhv8N9CtbO00jwd4Lh13xFqdnplmuq+M/GHj74hax4v8feKPVaKACiiigAoor5E/bk/bA8IfsMfs5+MP2h/GPhTxP4+tPC8+nW9l4D8ExR3PjDxTJNJJf64NBs3SVrr/AIRTwXpvin4ga8I4ZWtPCnhDX9RdVgspZYwD67r4A/aj+L/xD8e+PtP/AGJv2YfEVx4d+NPjTw7aeKfjb8ZtLhtb6P8AZJ+AWr3d7pb+PEW7iudMn+OXxOn07WvCn7OfhPU7e6t/7a07xL8VvEOl6n4M+GOq6H4jq/tff8FAvhf+z58MfhDdeCfGPws8S/Gf9rPytI/ZF8K+M/H2i+E/B3jy6vfD9n4m1D4o+KPEVzfwHTfgd8LvCWp2Xj34m+LNOae4/sWbRvCvhhNT8feOPA+g63V/Zd8R/sh/s3+AdQ0i5/a6+B/xI+K3xB8RXfxH+PXxp1/4s/DKz8U/GT4t63aWVprni/VLW28TS2+iaJY2On6Z4U+HvgjT5pND+HPw58P+FfAmgf8AEq0C2eQA+yfg78IPh58A/hj4M+D3wp8O2/hbwB4C0aLRfD2jwzXN5OIhLLd32p6tql/Nc6pr3iPXtUub7XvE/iXWru+13xN4i1LVNf13UL/V9Svbyf0qvn//AIay/ZY/6OX/AGf/APw8vw6/+aOj/hrL9lj/AKOX/Z//APDy/Dr/AOaOgD6Aor5//wCGsv2WP+jl/wBn/wD8PL8Ov/mjo/4ay/ZY/wCjl/2f/wDw8vw6/wDmjoA+gKK+f/8AhrL9lj/o5f8AZ/8A/Dy/Dr/5o6P+Gsv2WP8Ao5f9n/8A8PL8Ov8A5o6APoCivn//AIay/ZY/6OX/AGf/APw8vw6/+aOj/hrL9lj/AKOX/Z//APDy/Dr/AOaOgD6Ar4z/AGsv2hvF3w9k8GfAj9n/AE7RvFv7W/x6TWLL4TeH9biuLzwp8OfCujNYwePP2jPi9BYz215bfCP4SRatps11YRXVhqXxG8dat4N+FHhu+sta8ZJq2kVfjL+37+zV8LfBM+teF/iX4E+N3xE1rUdP8I/Cj4H/AAh+IPgnxZ8UfjH8TfETva+Evh54K0PT9cuH+36xeI9xq2v6iLXw14J8L2OveOfGWp6N4Q8Na7rFj8FfCj41fEf9mj9pH4geA/iX+xr+1H+1X+3f8dPhho3x8+LHxO+But/saWPwjsfhNoGsweGvDXwa+B158fP2wvgx4z0n4PfALxD4uuPBOlaN4h8H+G/FHj/xvqPjf4y32i399471bUkAP1O/Zs/Z58IfszfDC0+HvhrUdZ8U6zqOsav42+JvxN8Wy2954++MXxW8VzJfeOfip8QNTtoLaC+8T+KtSVXNvZ29ponhvRLXRfB3hTTdF8IeHNA0TTvfa8M/Zu/aE8A/tS/Bvwl8bfhtB4o07w54pbXNPuvD3jnw5eeEvHHg3xZ4Q8Q6r4O8deBPGvhu+Mj6R4t8DeM9B13wp4itba61HS/7W0i6l0bVtX0mSy1O79zoAKKKKACiiigAr8qf2jfgb+0D+1n+1tp3gXUL39pj9mX9nD4N/CPxLeeEfjv8Lrj9hXxt4O+N/wATvixYjwf498LeI/h58fPDP7RnjHR7Hwl8M77UPDHhzUr34CaEuuyeLvilazeLdE0i10CL4hfqtRQB+H//AASl/Zb+JPhH9nU/sxftw/sdM9l+yn4t8Z/DX9lX4w/tAw/sm/FTxL8Tv2Xr/wAV6tqfwwt76y+Efjz4nHwD4x8HeHINI8M+L9AubPRNA1G007wvrOh3d5dXGsaF4W/UD/hk39lj/o2j9n//AMM18Ov/AJnK+gKKAPn/AP4ZN/ZY/wCjaP2f/wDwzXw6/wDmco/4ZN/ZY/6No/Z//wDDNfDr/wCZyvoCigD5/wD+GTf2WP8Ao2j9n/8A8M18Ov8A5nKP+GTf2WP+jaP2f/8AwzXw6/8Amcr6AooA+f8A/hk39lj/AKNo/Z//APDNfDr/AOZyj/hk39lj/o2j9n//AMM18Ov/AJnK+gKKAPn/AP4ZN/ZY/wCjaP2f/wDwzXw6/wDmco/4ZN/ZY/6No/Z//wDDNfDr/wCZyvoCigDyHwp+z78BPAeuWnifwP8ABH4Q+DPEtglzHY+IfCnw18GeHdcso7y2ls7tLTVtI0Wzv7ZLq0nntblYbhFntppYJQ0UjqfxU/bVi+E3iX/gprpOr/GbwR/wUnh+Gngb9inXvh5L8Q/2N/hL/wAFWvD+k3HxO8T/ABd8KeM9M8LH4pfsF+EdOg+IFkfBqX2pXWnXfiXxP4H0XWrUWGuRWHiuxjs4f6CaKAPy4/4I5eGfjp4N/YS8AeGPjn4B1f4ZSaR4z+KifBvwd4x+H3gX4VfFLTf2dr3x/rmqfBab41fDz4baH4Y8IeFfjFqPg++tdR+IGn2nhrQdbk1q5kvPG2nR+OrrxLNN+o9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q=="]
math
multiple-choice
34
设 $\mathrm{P}$ 是 $\triangle \mathrm{ABC}$ 所在平面内的一点, $\overrightarrow{B C}+\overrightarrow{B A}=2 \overrightarrow{B P}$, 则( )
$\overrightarrow{P A}+\overrightarrow{P B}=0$
$\overrightarrow{P B}+\overrightarrow{P C}=0$
$\overrightarrow{P C}+\overrightarrow{P A}=0$
$\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}=0$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCACYAKcDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAor+Uj4tft7/Hrwp8Nf25/jG37a3/BQHw18Tf2fv2hf2qPD/wx+Gfhn/gnN4e+Iv7Clp4Z+DXxT13Rfh74a+KH7ROi/wDBOfxDDY+AJdA0q0svi74sm/bK8N+KfCunPrWoS+KPDevWMcEf9TvhvUX1fw7oGrSXmkajJqmi6XqMmoeH5pLnQb572xguXvNEuJWaWfSLppTPps8jNJLZvC7sWYkgG1RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFct448b+D/AIaeDfFPxD+IPibRPBngXwRoGq+KfF/i3xJqNtpOgeG/Dmh2U2o6xrWsaneSRWtjp2nWNvNdXVzPIscUUbMT2IBzHxn+Mnw5/Z++GXi34vfFfxDF4Y8C+DLCO81bUDbXeo393c3l3b6Zovh/w9ommQXeseJvFvinXL3TvDnhDwnoNlqHiHxV4m1XSvD2g6df6vqVnZzfk7/wT3/b+/ag/aC/as/aH+HP7Tnwv8NfB34c+LNW8YXH7G/heylTUPGWk2n7O6/Drwz+0j8P/i34ltbqfQNU+KHh3xP8W/Ax1DQ/DzXWn6H4l0L4w+H9B1vxf4b8EW/iWb1Xw9Le/HO7v/8Agob+1VouteAf2cf2e/Dniz4s/so/APxhp8+lap4d0Dwz4Z1bUtW/a/8Ajl4X1IW8tp8Y/EXhOPVP+FN/D7XoY7r4C/D7UrjUtctdP+L/AIz8Rad4B8Ol+F3jX4Mf8E0/2Vv2odQ0S8Hx9/Zc1+0/4KGfFjSNOt57rWNTvPjjfeNviZ+334GtYYYvt2t3msfDb48/HyLwxpbW8p1Hx7ongPUTpzX+l2CW4B6bcf8ABPr9ryx8EftK/Avwb+2V8A/DX7PH7TvxS/aG8beK9Mvf2J/HHiH49eGfCv7TPirX9d+Ifhfwp8XJ/wBtmw+GaeIbDS/E2raN4R8Ya5+zprWm6XcGz1XVvBOv/ZpNPuf1V8BeCfD3w18C+C/hz4StGsPCngDwn4c8E+GbF381rLw94V0ez0LRbRpNq+Y1tpthbQl9q7yhbaM4G7pWqabrmmabrejX9pquj6xYWeqaVqen3EV3YajpuoW8d3Y39ldQM8NzaXlrNFcW1xE7xTQyJJGzIwJv0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBWvbyz060u9Q1C6trCwsLae8vr68nitbOys7WJ57m6u7md44be2t4UkmnnmdIoYkeSR1RSa/L7wjZXn/AAUi8d+H/i14ltLm3/YC+GPibT/E3wH8FahBLbr+2R8R/DGox32g/tE+OdOuFRrj9nHwNrVpBqv7O3hC/hNr8V/FFlZfHrW7e48J6V8Iv7Qb4murn/gpR451z4a6DcTxf8E+Phj4nv8Aw98Y/FlnLJFF+2v8SvC2pSWWt/AzwfewspvP2X/h/rtlPpfx18T2cjWXxs8YWF38FdInuvh7ofxTTxV+otra21jbW9lZW8FpZ2kENraWlrDHb21rbW8axQW9vBEqRQwQxIkcMMaLHHGqoiqqgAA+BP8AgpST4q/Z30f9nm3Jkvf2wvjV8G/2WbqyBO7UPh18R/GVnqf7Q8AQfNKbX9mDwt8bNV8jHlzf2d5Vw0Nq888X3zd2Vnf2dzp19aW17p97bTWV5Y3cEVxZ3dncxNBcWlzbTI8M9tPA7wzQSo0UsTtG6MjEH4F+JOPih/wUc/Zt8BD/AEjQ/wBl/wCBPxd/ad8SRffGnfEn4x3cP7N3wIvCn3I/t/w9P7YVoJnxKTbeVbB43vTH+gdAH59f8E7ry78C/Db4h/sg69dXM/iL9iD4nap8BNDkv5pJ73VfgFNpWlfED9lfXvPnZ59SSD9n/wAX+BvAOt640syaj8Qvh749gMkd3p95aWn6C1+eXxe/4sN+3f8As/fG+L/RPA37VvhS7/Y2+Lkq/Jaw/Erwevi/40fsoeKdSdcR29upk/aH+EzXMyNNq3ij4s/DTRluYzbWdtc/obQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfmj8YvGXiz9tL4l+Lv2R/gf4j1rwr8C/h9qf8Awjv7a37QvhLUrrSdVkvnt4Lu8/ZD+B/inTpYbmz+J3iDS7q3b48/EfQrpL34I+B9Th8KeG76y+MXjCz1j4YdP+0R8YPiL8XviXffsV/sr+JLnwz8QF0vStU/ab/aE0iG1voP2Uvhl4ltzcabpfht7yC70jUv2ofippPnH4S+Fr+C9svh74dkn+Nvj7TbrRbLwH4P+KH158Hfg/8ADr4B/DPwh8IfhP4btvCfgHwRpn9maFpEE11ezsZrmfUNU1fWdW1Ge61fxD4m8Raxeah4g8VeKNdvdQ8QeKPEmp6p4h1/UdR1jUr28nAOm8G+DfCfw78JeGfAXgPw3ovg7wT4L0HSfC/hLwn4b0210fw/4b8OaFZQ6bo2iaLpVjFDZ6dpmmWFtBZ2VnbRRwW9vDHHGiqoFdLRXmnxo+Kfhz4GfB34sfGvxjJ5PhL4P/DXx18UfFEodYjH4d8AeF9U8V604kcMqMunaTckOykKcEqehAPkf9jr/i4fxy/bz/aMk/f2fiv9oOw/Zu8AX33t/wANv2PfC8Pw61vTvNPDDTf2ovEf7UgEcREUP2ny2X7WLtn/AEDr5H/YN+FniP4Nfsefs9+BvHEXl/EofDrS/Gfxeby2iN18a/ihPdfE/wCNWoGNy0qHU/it4w8YaiVmeScG6/fyyzb5G+uKAPmT9sj4Iat+0P8As2fFD4ZeFNRttC+JE+l6Z40+DPii7Gbfwd8d/hdr+k/E34GeMp8FHa28K/Fnwj4P1y+hjlhe7sLG6svOiS5dx1P7M/xw0j9pP4AfCL466NptzoUPxM8DaH4k1LwxftnVfBfieW2Fr4y8Ba4uFMXiHwF4ttdb8HeIbcqDba3od/bnmI17lX55fsyf8WP/AGqv2sP2Vbj/AEXwr4z1eH9tz4DW7fJar4b+Oet6hpn7R3hDSlGFmuPCX7SmkeIfit4hKxxpZ237TPhK0UzMJHUA/Q2iiigAooooAKKKKACiiigAooooAKKKKACvh/8Aaf8A2gvHll4s0H9lX9l4aPq/7VXxM0I6/Nr2s2B1zwR+zJ8I5r640fUv2hvi1p0U0C38Ud7a6hovwb+Gcl3Y6p8aPiLYzaPbTab4F8K/E7xn4L6f9qb9pPVvhBH4Q+Fnwg8M6f8AFD9qr42Pqul/A74WXt7c2WiRRaQLNPFfxg+LGp6ek194R+BPwoh1PTdT+IHieOI3+qXt/wCHvh34Nh1T4ieOPCOi6h0P7MH7Nmlfs6+E9eOpeJtQ+KHxo+KGujx5+0B8c/EVlb2Xir4vfEeext7CTVZ7G2kntfC/gvwzplta+FPhf8N9Infw98OfAml6R4a0o3MsGoarqgB037PH7PvgP9mj4aWPw38CHWNTaXVNV8WeOPHXi2/Gt/EL4r/EnxPcDUPG3xT+JfiUw28viTx14y1Uvf6vqJhtrKzgWx0Hw/p2j+GNG0TRNO9yoooAK/Pz/go1/wAVh8JvhR+zhCPNu/2uf2mfgl8Cb+yHzf2l8NLDxBcfHD9obS3i6yRar+zV8GfjFpTswaGBr6Oe4jnhje3m/QOvz98Wf8XR/wCClvwl8Lj/AEjQv2S/2XfHPxn16Dh47b4mftR+M4/hB8G9U3crDc6d8Ofgv+1JpjRY86a28WxyB4YY2S7AP0CooooAK/PL9vL/AItJqf7Of7bFl/o8f7MHxQTw98X7pPl879lX9oi40P4Y/G59QlGDD4f+G/iJfhN+0hr8u8FdO+AkqJHO8ogk/Q2uP+IXgPwp8U/APjj4YePNIt/EPgf4j+EPEvgPxnoF4C1prfhTxfot74f8RaRdKOWt9S0jULyzmA5MczAc0AdhRXxF/wAE+/HnivxJ+zvY/Db4m6vca58Z/wBl7xd4o/ZW+Mer37Z1TxJ4s+DE9ro3hv4j6mowIrj42/Ci7+HHx1togkWzTPibYKYLdgbeL7doAKKKKACiiigAooooAKKKKACvmz9pz9pLQ/2cfBuj3kXhzVPiV8WfiPr8fgH4DfA/wvc2tv4y+MvxOvrK6vrDwxpE95utNC0DSdOsr7xR8RPH2rovhr4b+AdH1/xn4imXT9JMNz0/7QXx++H/AOzV8MtU+J/xCl1W5s4b7SvDvhXwj4W059e8e/Ez4geJrxNK8FfDD4a+F4JI7vxV4/8AHGuTW2jeHNEtniR7iaS/1O703RLDVNVsfBv2Y/gD4/bxlrH7Wn7U0OlXn7UPxC0CTw7ofg7StRXX/Bf7Kvwevb211a0+Anwz1Py47bVdZvbuy0vW/jr8U7S3trv4ueP9Oszb/ZPhz4K+GXhnw0AdP+yz+zbrnwqk8X/GL41+I9L+Jf7WPxsTSbv4zfEfS7W6t/DWhaVo7Xk/hL4HfBzT9S3ah4Y+BnwrXVNRs/Celz+Xq/ivXdQ8SfE7xsbrxz4012cfX1FFABRRRQAV+fv7Ef8AxcD4g/tv/tJS/v7b4q/tU+KfhP4FuzhhF8Mv2QdI0z9m2TTLeTkz2Enx58FftB+LbKYEQyp4xdrcPAUuJ/p39oz4x6R+zx+z/wDG74969D9q0f4L/Cb4h/FLULJd5l1G38B+E9W8THS7ZIszTXmqNpq6fZW1ur3N1d3MNvbRyTyxo3D/ALFvwd1f4Afsm/s9fCHxNN9s8a+DPhR4QtfiPqZ2b9d+Kep6XDrvxU8STeWTGbnxN8RdU8T6/dFCUNxqUpVmXBIB9O0UUUAFFFFAH543R/4UF/wUX0+8/wCPT4eft9/C59EuP4LK1/aq/Zf0S81fSHAO3zfEPxh/ZkvfEEVzIWkEeh/sl6ZEscDOz3P6HV8Xft9/DXxh49/Zx1/xR8LNLfWPjh+z/wCIvCv7THwL023JS8134mfA/VU8Z23gC3nCuba3+Mnha08VfBHXZgjMPDHxJ1yNCjyLIn0p8LPiX4P+M/wy+Hfxf+HuqJrfgP4p+B/CnxF8F6zGAqar4U8aaFYeI/D+oBQzhPtelalaTmPexjZyhJKmgDvaKKKACiiigAooooAK86+LfxZ+HnwK+G3jD4ufFfxRYeDvh94E0eXWvEviDUFuJktrZZIra1tLKwsobnUtZ1vWNRuLPRvD3h7RrO+13xHr2oaboOhafqGr6jZWU/TeKvFXhnwL4Y8ReNfGniDR/Cng/wAI6JqniXxT4o8RajaaPoHh3w9odlPqWs65rWrX8sFjpulaXp9tcXuoX13NDbWlrBLPPIkaMw/O34SeFfE37cHxJ8H/ALVvxi8P6z4a/Zy+HWrxeKP2MPgN4q0670nVPFOtRRyxaX+2H8bPC+pRQXdn4q1CzuJZf2cPhnr1pHefCnwtfH4meLbC1+L3ijStD+EAB037Pvwl+Ifxv+Jul/tp/tR+F7/wn4osbHVbP9lT9nPXmgnb9mL4e+JLR7HUfGXji1t5rrTbz9qj4q6FN5HxB1a2mu7X4R+Drz/hSfgm+lST4n+LfiZ+hdFFABRRRQAUUUUAfn7/AMFCP+K18L/s4/s2Q/vJv2ov2tfgt4H1u1X5zcfDP4RX2q/tV/GSxvU5CaN4o+F37P8A4n+Hup3EoEIfxvZ2Mci6hqGnrJ+gVfn5qH/F0f8Agpr4esP+PjQv2QP2RtV8T3sed1p/ws39sb4kDw34Vu93KjXfCHw4/Ze+I1qYEYS2eifF5ZruMxavpklfoHQAUUUUAFFFFABX55fsOf8AFoPGX7T37Fd5/o1r8Avia3xT+Ctq/wAvm/sv/tRal4n+I/w9tbFGwYtG+G/xX0/48fAjw/ZRiVNP8KfCTwyHm33axR/obX55ftWf8WS/aR/ZL/a3tv8ARfDdz4pl/Y0+PdwvyWw+HP7S2veH7X4MeKdSP+rmufBf7Ueh/CzwfpVxcmGLQ/Dfxu+I2oC5RJri3ugD9DaK8Q+O/wC0d8Gv2avDOkeKfjF4ul8P2/ibxFYeD/BfhzQfC/jD4i/Ef4i+MNSWWWz8H/C/4T/DXQPF3xQ+KHi2Syt73VX8M/D7wh4l1y30PTdW165sItG0jU760yfgD+1P8D/2m7bxk3wi8Ua3ea38ONasfD3xH8AePvh18S/gt8XPh1q2rabHrWhW3xA+DPxq8H/D74seCYvE2iyprXhS+8UeDNKsPFejE6t4cutT09WuVAPoWiiigAr+f3/gs7+1dYaP40+Dv7F3hj9uLwJ+wf478XfDf4w/tL698avF/wC0B4V/Z7ezHww8N3/h79nr4eR+JfE2u+HW13S/if8AtCa1oOq+M/C2k3t2+t/Db4V+ONE1/SdQ8Pa5d2lz/QFXz38Of2avAPw3+OXx+/aKsb7xL4i+KP7RLfDux8V6x4outFu4fDHg34WeHJtB8FfDjwHDpWhaPLo3gjTb3UvE3i6ey1O41zV9R8X+MPEWq6hrVxbyaXY6WAeT/sefHz4V/wDBR/8AYU+E/wAZ9U8OeDfHHw9/aM+Ecmm/Ez4f63Y6P438D3+o3Vtf+Cvi78ONd03U7O60HxX4ctvEtj4o8K39ve2FzoviHSomlEN1pl/GZec/4dO/8Esv+kaf7AH/AIhv+zr/APO5r3D9n39l/wAA/s06p8eLr4b6v4wOifH744eKv2gtc8Ga7qGi3vhXwV4/8e2OkJ48Hw8gsfD+l6vpGg+Mdf0ufxrq+k65rPiQQ+K9b1y60e40rS7yLSLb6PoA+AP+HTv/AASy/wCkaf7AH/iG/wCzr/8AO5o/4dO/8Esv+kaf7AH/AIhv+zr/APO5r7/ooA+AP+HTv/BLL/pGn+wB/wCIb/s6/wDzuaP+HTv/AASy/wCkaf7AH/iG/wCzr/8AO5r7/ooA+AP+HTv/AASy/wCkaf7AH/iG/wCzr/8AO5o/4dO/8Esv+kaf7AH/AIhv+zr/APO5r7/ooA/mIj+CX7PviPwj+0h8Y/hv/wAEBf8Agj34r+Bv7OHxT/aH8AavdazrHwx8JfHHxlpH7NnijxB4f8Z614a+Fz/8E19a+Gltr+uweGtQvfCHhnxB+0HpOj3VzLY2GveNfD1vLcanafp78Lv+CcH/AAST+Lvwz+HXxX8Kf8E0P2EI/C/xP8C+EfiH4bj1b9i79nCz1VNA8aeH9P8AEmjpqdpD4Au4bXUE07U7Zb23iurmKC5EkUdxMqiR/EfgN/wSr+HXi/Q/2k2/av8AD/7QEjfFv9rn9qbx7L8L9N/be/an0D4FeO/hL4/+MPiLxD4KbxN+z58I/wBorTP2f9V0Lxp4Uu7K48V+EfFHw+ebxDDeXdj8RNDu7y61G1k/Z2wsLHSrGy0vS7K007TNOtLew07TrC2hs7GwsbOFLe0srK0t0jt7W0tbeOOC3t4I44YIY0iiRUVVAB8F/wDDp3/gll/0jT/YA/8AEN/2df8A53NH/Dp3/gll/wBI0/2AP/EN/wBnX/53Nff9FAHwB/w6d/4JZf8ASNP9gD/xDf8AZ1/+dzR/w6d/4JZf9I0/2AP/ABDf9nX/AOdzX3/RQB8Af8Onf+CWX/SNP9gD/wAQ3/Z1/wDnc1ueGP8AgmJ/wTW8FeJPD3jPwZ/wT0/Yc8JeL/CWuaT4n8KeK/DH7JvwE0HxJ4Z8SaDf2+q6F4h8Pa7pXgC01TRdc0XVLS11LSdW026tr/Tr+2t7yzuIbiGORfuOigD8jP2yPFXh79nn9v39jr9rj486vaeE/wBlnwr8EP2jvgXrvxb8SM9r8N/gP8Zfi54q+CWp+BfGHxN8SyqdH+HHhjx94f8ABfij4cW/xG8VXOkeEtM1+/0jwzrOv6ddeLdIt9R+lf2bf2mv2V/2n/jL8YfFP7M+gaV8Tk8NeFPh94X8Yftm/D7wv4S1b4NfFGaK88ValpXwa8DftB6PfTTfGbUvhONQv9a8Uab4WfxD4C+HOoeOk0WXxFa+Nr/xL4e077eooAKKKKACiiigAooooAKKKKACv5of+Ct3xU+Bnw7/AGuPhffftB/Gf4waB428E+H/AAz4r+DGj/BD9uT9j39gfTtI/Zq+Iutw+Hv2jfhB8RpfiD/wVQ/YN/ax+LXiD46eMfhPp/jqx+Knh7VNH+CHw88VfBb9lqz8KeDPFlz8Mv2uvB37T39L1flB+0R/wT+8cftRftcH4u614y8Qfs3fDvQ/D/wj8Da749/Zm/a7/ba+H37Q/wC038M/htrnij4m6D8NvGWg/CD4n/s7/An4B+H/AAV8SfH/AMU/Cuo65q3hX9sn4hfFL4SfFvxgfh942/ZJ+ImneGvFFgAflD/wTj+PX7LH7f8A+2T8IfiB8Nvi9+1/p37QHjj4f+Lv24v2k7HTf2uPh14Z/Z7+P/8Awitj+zX8NfCcnjL9j/8AYO/4Kb/FT/hmL4gfCL+1P2ePhh8NPhr+1T8N/FX/AAsD9mbwX8WPhD+1Zpf7SX7QGnN8ePh/+pn/AAUh/aA+LXwy+Mf7JPwv8JfGb4t/A34W/FGP45618UvF37K3wa8E/tN/tcXupfD/AMKaBP8AD7QPAH7PevfBz9pjxdrnwrvdW8Qale/Fj4ieB/2b/iA/gi+03wHpPiPxP8ONG8Yya3eeJfsBf8E4vjn+z54f/wCCZ89/4i+MHwrtv2ev2YPhPP8AtOeGvE3/AAUN/bC+OenePPjKn7L/AIv+Cvjb9mK2/ZE8RePPF/7Hngn4P+CfHni/wv8AGjwn8YPhr421aDw74q+D+jfC74c/BfR/BOs2vxH0j9Bf2h/2YPil46+NPwt/aV/Z1+Nng/4LfG/4ceBfHvwj1CT4rfBjUvj98JfHPwo+Iup+GPE2r6HrvgLw58X/AIBeM9M8U6L4w8EeFtd8K+LvDXxa0e2tbdNe0fxJ4a8VWeq2D6GAfHHjP9on4t+MP+CGPxh+N/xA+Nfwv+Gf7QHir9jP46eGPDXxw0v45fCX4L+ELD46a7oXjb4T/BHxEnxttfiVpvwg+EnxF8S/Ei68B213c2HxM0XQPh/8XtYn8Oafq2iTaRBb2f8AOHpX7SHxb1f4S/tMRaP+1D4g8UeCfGPiD9mzQvD/AMR/D/8AwVo/aH0Of9mKD4Qfs8f8FUf2r/2s/jGupfsif8FT/wDgul8adF8Qat+zT8BIvD3wx8PeMdYvfg18RPjLpvw48Y+If2Sfi9bfs9eIdG+If9T1/wDsgfFP4C/8E7fiL+yt+zt468a+Kfjj8YZ/Gfh3X/2gNK1rSPhb4x8C+P8A9sL4sT2/x6/a48G2Gna34fttCk/Z0j+K3jv9orwJ8JPDHi/SPE+v2Xwy0X4VeF/H0HjXWrDxmfyg8b/si/tmTfDLXf2e/jX+xv8AtP8A7SGkeOf23/jv+0b4ul+C/wAcf+Cf2ofswfA/4NftV/EL9rvxj+0f8Kv2VNY+IvxQ/YY/a2+MHiD9oL9nb9rr4h/sW/F3xJ+1NoXgif4UeIPiX8QP2mP2X7/w9q3wb+D/AIe+IIB6/wCMrHwJ+0H+z3/wTB8J/GD9lj/hcXh/wl/wU/8A29/hb4z/AGWfiX8cNY/b5/4WX47/AGTv2Zv+CyHw5k0LTfjf+3S/gm9+LP8AwlnxN+DkPib4T6n8ernwJo/gb7d4N0a71DwV4f8AB1jfaT8gfsZfBj9kD4vftHfBL4d67+zt/wAEQfiV8N/jH8QP2rfEVzo8f/BNv9n/AMPXWu+BPB118TNd8J/Dr9hb9tnwz8VW+CX/AAUe/wCFVane+BtHvvF3wN/ZPsNZ8Efs4/Dvxnq37esH7JH7Y91o3wQ8efX97+zP8aPiF+yx+x74b+P3/BMr4gfG/TPgZ/wU/wD2sfjj8bf2aPiZrH7AvxC8Y/HP4WfGH4df8FB7/wADftJeKNB8VftSz/spat8QPGHxT/ag+FXj/wCM/gfRfGvw58OeDPjsnxQvf2fvgn4M+CXhT4UaSh4N+G3xyPxT+LNx+0h/wSC/aA/bJ+GXxu+H+m6F8SPHPxg8Lf8ABHfwh8dfixrPgjxH8NNc+H+n/tieCfhh/wAFA9A/ZF/bX/4Q+bwzJD+z58UtY+APwJ8d/sd+DvAOl/D3wRpnxbvfjt8XviTpgB+n/wDwSd/5RZf8E0/+zAP2N/8A1nX4c19/18gf8E9vhb47+B37Av7D3wU+KWhf8Iv8Tfg/+yB+zT8LfiL4Z/tPR9b/AOEd8d/D/wCC/grwn4u0L+2fDuo6v4f1f+yPEGkahp/9p6Fqup6Pf/Z/tWmahe2UsFzL9f0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k="]
math
multiple-choice
35
如图,在菱形$ABOC$中,$\angleA=60^{\circ}$,它的一个顶点$C$在反比例函数$y=\frac{\mathrm{k}}{\mathrm{x}}$的图象上,若将菱形向下平移2个单位,点$A$恰好落在函数图象上,则反比例函数解析式为()
$y=-\frac{3\sqrt{3}}{\mathrm{x}}$
$y=-\frac{\sqrt{3}}{\mathrm{x}}$
$y=-\frac{3}{\mathrm{x}}$
$y=\frac{\sqrt{3}}{\mathrm{x}}$
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACLAL0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAoorj9b8U61c+LvEXg/wvp1hJq+leHYNRtbnULh1tTc3D3McEUoRCwTNqzMVJOCMDkGgDC8A+M/F2p69c+HNSudBn1TSPFU+n6gbSxliWawSyjuBKkZncxODdWqlmZly2No3gr0vhT4h+FPEfxC8R+CtI1IT6z4VMI1OHYQE81dy7G6PjGGxna3Bway9D8H6vomi+J/EWmW2hx+PPFCtc3EwaYWK3KwrFAh3bmKRpHErOqqZShfYm4KvmPw2+F8ugfGHVZfCd+p1nwtc6Z9pvL5mU6vBcxFtQE5UH55XP2gcY86OPouaNkl/Wwbtn0VRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV598GwdR8ffETxMfmjuvECabaP6w2drFE4/C5a7H4V2PizWbDw54X1LxBqkvlWOk2ct5dSf3Io0LsfwCmue/Z/0i+0T4O6DbatEYtUubY6hqiH+G8uXa5uB/3+mkoA7GvP8A4d/8l2+I3/cK/wDSZq9Arz/4d/8AJdviN/3Cv/SZqAPQKKKKACiiigAooooAKKKKACiiigAooqloer6brNvPPpd7Fdx211LaSvE2VSaJzHImfVXVlPoQR2oAu0UUUAFFFFABRRRQAUVx3xF8dnQfEmleEtD0eTXPFGuRTT2VgJxBDBBFtElzdTbWMMAZ403KjuWcBUbnEvw38U67ruq6zpHiDwxHo19obQRXDW+ofa7a4kkQyfuJDHGzIqNHkuiNuLjbhQ7gGP8AtAH+2o/Dvw9jG9vFerxi9T0062IuLot/sOI44D73K+teiV538MSPFfxO8RfEE5ewtQfD2gMRw0MMhN3OntJcjy89GW0jYcHn0SgArz/4d/8AJdviN/3Cv/SZq9Arz/4d/wDJdviN/wBwr/0magD0CiiigAooooAKKKKACiiigAooooA83+Mnj+C3uLrwL4V1rQG8XNYPf3dtf639hGnaehTzrmWVY5WhO1wEJQ8sHwVRiKv7HOoaLqHwE0+50W+0u4gfUNQeRdN1EXkFvJJezS+SsuFLBRIoGVU7dp2jNepVx3x2+HmlfE74c3fhnU2aKXcLnTrtWYGyvEB8mcBSN21jnaeCMg0IGdjRXjPwi+Hnwz8YeB7fU7vwctlqkDvZ6xYjUbk/Y72Fik8WfMyVDglW/iQo3RhXTf8ACkvhh/0LP/k/c/8AxygD0CivP/8AhSXww/6Fn/yfuf8A45R/wpL4Yf8AQs/+T9z/APHKAPQKK8//AOFJfDD/AKFn/wAn7n/45R/wpL4Yf9Cz/wCT9z/8coAyfGGkeK/DP7Q0nxI0Xwpe+LNO1bw5Bot1ZadeWsN5YSQTzTLKq3UsUbxP5xVsSBgyqdrAnbb+I3iPxXJ4VsPCtrDDpXjDxlLLb2MNtN5zaRaDHnXcj/dLwxMDwNnnSRRgsCHav4y+GPwb8LeF77xDrmhi10/T4TLPIb66Y47KqiTLMxIVVGSxIABJFcR4d+FGpeFdFuPjBoWi3en+MI5lvYPD0V3JJjSlB36U4Z2WSZ4y8hbkC48sA7IxkWit/XcHq7/12PevCui6b4c8M6f4f0e2W30/S7WO1tYR/BGihVGe/AHPetCqPhnWNN8Q+HbDXtHukutP1O2jurSdPuyxuoZWH1BFXqACvP8A4d/8l2+I3/cK/wDSZq9Arz/4d/8AJdviN/3Cv/SZqAPQKKKKACiiigAooooAKKKKACiiigAoppJDHrj0oZgOtAHnGuf8UH8bbXXV/d6D48kj0/U+y22qou21nPp50a/Z2P8Aejth3Nek1i/ELw5p3jDwVqXhrU/MW21G3MZlhbbJA3VJUb+F0cK6nsyg9qyfgr4m1DX/AAk9r4gVI/Emg3TaXrsca7V+1RgHzUXtHNG0cyf7EqjqDQB2FFIxx2z9KN3OMfjQAtVdc1PTtF0a61fV763sbCxhaa5urmQRxwxqMszMeAAB1NZnjzxfoXg/RRqWuXTRrLKILW3ijaW4vJj92GCJcvLIcHCqCeCegJrktL8L654+1q18R/EayWx0uylWfSPCXmLKscinKXN8y5SWYHBWJSY4jzmRwrqAR+ErTUfid4ktPGviC0uLHwvpswn8MaNcxmOS7kH3dRukPIPeGJvuA+Yw3lRF6dRRQB5t8Ps+BfilqHw/l+TRtdM2teGCfuwsWDXtkPTbI4mQf3ZnUcRV6TXJfGfwve+JvCAbRJY7fxFo1ymp6DcycLFdxA7Vcj/lnIrPC/8AsSv3rR+G/iiy8ZeCdP8AEdjFJAt5GfNtpv8AW2kyMUlgkHZ45FdGH95TQBuV5/8ADv8A5Lt8Rv8AuFf+kzV6BXn/AMO/+S7fEb/uFf8ApM1AHoFFFFABRRRQAUUUUAFFFFABRRRQA3GPU5pdvygZ6d6Wq2rahYaXYve6ne29nbRjLz3MqxxoPdmIAoAsbc9/r715v8QwPA/xS0z4gR/u9I1ww6H4mA4WMlyLK8PpslkMLH+7OpPEVWm+M3gW6kaHwzd33i6ZSVC+GdPm1GLd6NcRKYE/4HIorO8VW/xL+Ivhu/8AD83hbQvCuh6tayWt0den/tK9eKRSrL9mtnWJDtJw32l8H+HjkA9H1W9stN0+bUNRvYLO1tkLzXFxKsccSjqWZuAPc1wMnj7XfF+bf4WaH9rtZOP+En1hHh0tB/fgTiW89vL2xN/z2Fcx8C/BOmancX+nfEu6vvF/jDwfqH2aWbXZ/Pg8vG+0u7e2wIYy8JUlwm8SLIpdima9uoA47wP8O9N0TWf+Ek1a+uvEXieSMpJrWpbTJGh+9FbxgBLaL/YjAzgFy7fNXYKMd6WigAooooAK82h/4oD43ND/AKvw78Qpi8fZLPWUjyy+gW5hj3D/AKaQN1aavSawPid4WtvGfge+8P3FxJaSTqslpexD95Y3MbCSG4j/ANuORUcdsrg8ZoA368/+Hf8AyXb4jf8AcK/9JmrW+Dfim58V+DFn1W3jtNd0yd9O12zQ/LbXsWBIFzyUbKyIe8ciHvWT8O/+S7fEb/uFf+kzUAegUUUUAFFFFABRRRQAUUUUAFFFZ/inVf7E0GfU/wCzdQ1HyNv+i6fB508mWC/KmRnGcnnoCaAK/jbw3a+KNLj0+91HWLKFJxK7aTqk9hLKArDY0sLLIFO7OFYHIHPFc7pXwZ+FtjfR3x8EaXqF9Ecx3urRnUblD6ia5LuP++qh/wCFqf8AVOPiB/4I/wD7Oj/han/VOPiB/wCCP/7OgDvo0SONY41VVUAKqjAA9AKdXn//AAtT/qnHxA/8Ef8A9nR/wtT/AKpx8QP/AAR//Z0AV/jID4P8VaX8V7cbbWwQaZ4oA6Ppkj5W4b/r2lbzM9onuPWvSFIK5ByD0IrznUPiTbX+nz2N78MfHlxbXMTRTQy6AGSRGBDKwL8ggkEVxnwT+KN14f064+Hmq+CfHl3eeGtq2EjaSXnn0t2YWkkmXyXVUeFm53NAzZ+bAAPeaK8//wCFqf8AVOPiB/4I/wD7Oj/han/VOPiB/wCCP/7OgD0CivP/APhan/VOPiB/4I//ALOj/han/VOPiB/4I/8A7OgD0CivP/8Ahan/AFTj4gf+CP8A+zo/4Wp/1Tj4gf8Agj/+zoAreNv+KD+Ldj43j/d6H4oaDR/EQHCwXOdljeHsMs32Zz38yAniOrPw7/5Lt8Rv+4V/6TNWd4t8caZ4m8L6h4e1n4X+PrnT9UtntrqI6HjcjqVODvyDzwRyDgivMf2a/iZrdj468bab4p8IeMtR1zTxptrdyQaRulmRIXWG4lXcNjTRhXIHG4uBwKAPp+ivP/8Ahan/AFTj4gf+CP8A+zo/4Wp/1Tj4gf8Agj/+zoA9Aorz/wD4Wp/1Tj4gf+CP/wCzo/4Wp/1Tj4gf+CP/AOzoA9AorwT4v/FrxL4dVvGmkaT4o0+wsLcLf6X4j0VINNmQMTvF0p8y2lO7G8+YhAA8vPzV6n8HfGX/AAn3w+sfFP8AwjutaB9tB/0HWLbyZ1wcbguTlG6q3G5SDgZxQB1FFFFABRRRQAUUUUAFFFFAGN8RNSsNG8A65q2qPKllY6bcT3LQzvDII1jYtskQhkbAOGUhgcEc14Z+ypB4jsvibbaJq+o+MdM1DS/CMMniTR/FmuTalPqlzNIvlXttunuIoYFMdyn7uUOS2JI12qzeyfFrwWfHfhldDfxRrWg2/wBojmmfSVtS9wEYOqP9ogmXZuVSQAM4wSVJBq/Df4daf4U8Sav4mudd1rxH4h1xIYbzV9ZliM3kQg+VBHHBHFDFGpeRsJGpZnZmLHGCOkr/ANdf8we1v63R2VFFFABRRRQAVj/ETxHZeD/AOt+LNSVms9C02e/uFU4ZkijZyBnuQuBWxVPxDpWn67oF9omr2qXWn6lbSWt3bvnbNFIpV0OOcFSR+NKV7O2442ur7HgHxWsvFuj/ALPdz8UtZ8W+IIPiHPFbXGk2On6zPDp1tdzSRi306OyDCC4Qs4jZpkeR97ncoCCP0T4bW0A/aA+I16beJbp4tJjeUIN5UW7kLu64BJOPepfC3wj03TtS0i717xT4k8Wr4d2nQrbXZrdodMdUKCVUghiEsoQ7RLP5rryVZSzlnfDv/ku3xG/7hX/pM1W2umxKvpc9AoooqRhRRRQBzfiTwL4c17xRbeItUtHutS0+HZp0k8pmisH+b9/DBJuiWb5seZs3YAGccVyX7P2sa/r13qTaz45fVhoN/daXFAlpbxf2jGDHLFezFY1JcwTQYMPlxEPu2sHQr6Nr2laXrmj3Gka1ptpqWn3kZjubO8gWaGdD1V0YFWHsRUGl+HtA0zWLrVtO0PTbPUL6KKG6u7e0SOa4jiG2JHdQGZUBIUE4UHjFC3/r+v8Ah/IOhpUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/AMO/+S7fEb/uFf8ApM1egVXt7Cxt7+5voLK3iurzZ9pnSJVkn2jC72Ay2BwM9BQBYooooAKKKKACiiigAooooA//2Q=="]
math
multiple-choice
36
如图, 数轴上 $A 、 B$ 两点分别对应实数 $a 、 b$, 则下列结论正确的是 ( )
$a+b>0$
$a b>0$
$a-b>0$
$|a|-|b|>0$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCABAAJoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/iiivw0/4Kz/AApsf2jPjN+yR8NNF/ZO/Zi/bA8U/AzTvjl+1r4t+HP7T2t6d4P8Ft8O/DHgWX4XaL4ZufGN78GPjlFFH43+I3j7QvEVr4J1jwto/hLxzffCRW8R+MPDdp4aXUIgD9y6K/Mr/gjppXhCz/4Jx/s1a74A8QeJNb8FfEbw74h+LPhfT/EXh1/B1v4C0T4oeM/EXjew+FPg7wafFXjmHwn8OvhXBrS+AfAGh2PjLxNpUHhXQNMn0fVp9KubNI/01oAKK5+28WeFbzxVrPgWz8TeH7rxt4c8P+GvFniHwdbazp0/irQvCvjTUfFmj+DvE2s+HorltX0vw/4s1fwF460vw1rN9Zwadr2o+C/FljpdzdXPhzWIrPoKACiiigAoorn9G8WeFfEeo+LNH8PeJvD+u6v4C8QW3hPx1pejazp2qaj4L8VXnhXw146s/DPiyxsbme58OeILrwT408HeMbbRtYis9Rn8K+LPDXiGK2bSNe0u8ugDoKKK/Fj4mftNan8df+Civ7KPwO8JL8YPDfw5+GXxy8daxf3uofBD9oLwl8K/jbceCv2avi/qOu+JNF+O2peAdI+BnxJ8MeDPGmteD/DvhXwr4Z+Ieu3lx4v0fxv4l1nw/e2mi+CNY04A/aeiiufufFnhWz8VaN4FvPE3h+18beI/D/iXxZ4e8HXOs6dB4q13wr4L1Hwno/jHxNo3h6W5XV9U8P8AhPV/HvgXS/Eus2NnPp2g6j408J2OqXNrc+I9HivADoKKKKACiiigAooooA+DtV8Wf8FO49U1KPRPgH+wdd6Kl/eJpF1qv7XX7Qen6pc6YtxIthcalp9p+xJqlpY381oIpLyztdS1C3trlpIYb67jRZ5P51P+C4H7En/BVz4sfCH4ifHL9nz9nfw4v7QHxK1f4beBfi/L+y9/wUY/bk+JuqeJPgP4Y0jX7Q+ArX9k/wAfeHvgT+zPrfw/u9YuLMeLPDcXgzxdHqEvizxt4iufh7qes+MvGXjvTP7HK+e/2hv2h9K/Z1074Wajq/w8+IvxET4rfG34cfAvTLT4b/8ACvZdR8P6/wDE7VZNH0bxNr1j49+IPgGe98JaTdoJvEh8GL4u8WaZpX2nXI/Cd5oul6zqGmgH5z/sWy/8FfvA37JP7OHgvx7+y7/wT/8AC/i7wl8GvAHhvWvDbftFfE74Xz6FNonh2x0230q++Hfws/ZB8c/DTwVqdjZW1tb6r4b+H/ivWfBmlalHdWnhqeHR47O0t/pz/hLv+Cp//Rvf/BP/AP8AExv2i/8A6Bav0AooA/IDw58Pf+Cp2gftT/GT9pP/AIU3/wAE/wC5/wCFsfAD9mn4Hf8ACK/8Nb/tFx/2N/wz38Rf2sfHv/CQf2n/AMMPN9r/AOEm/wCGnP7O+w/ZYf7O/wCET+0faLn+1PLtPf8A/hLv+Cp//Rvf/BP/AP8AExv2i/8A6BavoD9qr9pDwJ+x/wDs4/Gj9qD4naP8QPEHw/8AgZ8P9f8AiL4s0b4W+CdZ+IXjvUNH8P2pubmDQvDOjR/7r6n4i8QX3h/wJ4K0dNQ8afEfxd4M+H/h/wATeLNF+gKAPz//AOEu/wCCp/8A0b3/AME//wDxMb9ov/6Baj/hLv8Agqf/ANG9/wDBP/8A8TG/aL/+gWr9AKKAPz//AOEu/wCCp/8A0b3/AME//wDxMb9ov/6BavAPg38Pf+Cp3wn+Iv7WPj3/AIU3/wAE/wDWf+GnPj/4c+OP9nf8Nb/tF2n/AAif9gfssfs0/s2f8I/9o/4Yem/tT7T/AMM9/wDCVfbvLtPL/wCEm/sz7O39nfarn9I/j58avBn7OPwU+Kfx5+Ibal/whXwj8DeI/HniKHRbRdQ1q+0/w7p09+2l6JYvNbRXmtatLFFpmk2091aW82o3dtHc3drA0lxH4T+zP+0/8RPin49+IPwV+PvwY8O/AT45eB/BHw2+LcPg/wAI/F7/AIXX4Y1/4TfFiTxTpnhnXLTxhdfDn4T6lb+LfD/ijwN4s8J/EXwsfBlzovh7VbTR7nw5428baNr9pqcYB5P47h/4KX/EnwP4y+Hfiv8AZ3/YUl8LePvCniHwX4li0L9un9q7wbrkmgeKdIvND1mPRvF/g39izQPF/hXVX06+uV07xJ4V13RfEmh3hh1PQ9W07U7W1vIf5x/Ff7NP/Bd61/4LO/sj3nhn4DaLZ/sefsq/DXw54Z+DHh7Sv2zf2j7/APZK0PwPpPw1fStfuPiN8ar2Gy+NXjr4k6n4kmPh/UrXx/8AB7xLqvivTtF8L+HfEfhPxz8NdNu/E+rf2xV8feG/29f2VPGHxk074C+FfiTqfiH4ia3408WfDvw8dI+GHxbvvAHifxt8P/D+v+JviN4c8KfGO38CP8HvFWofDTT/AA1qtl8TF8PeO9Ti+HPiX+zPBvjaXQvF+u6FoepAHAf8Jd/wVP8A+je/+Cf/AP4mN+0X/wDQLV4B4j+Hv/BU7X/2p/g3+0n/AMKb/wCCf9t/wqf4AftLfA7/AIRX/hrf9ouT+2f+GhPiL+yd49/4SD+0/wDhh5fsn/CM/wDDMf8AZ32H7LN/aP8Awln2j7Rbf2X5d3+v9fnj44+J/wAf/Dn/AAU5/Z7+Ea/Erw037N3xT/ZZ/aP8ZTfCmw+GtnaeKY/iV8KPGfwE0+08W+IfipqPiLW9Q1jTm0v4kX9loPhfwz4b8BWWlE6pc+Jbzx1cXuht4XAL3/CXf8FT/wDo3v8A4J//APiY37Rf/wBAtR/wl3/BU/8A6N7/AOCf/wD4mN+0X/8AQLV+gFFAH5//APCXf8FT/wDo3v8A4J//APiY37Rf/wBAtR/wl3/BU/8A6N7/AOCf/wD4mN+0X/8AQLV+gFFAH+fn8K/2k/8Ag5Ch/wCCx/7Z/gf9krwNY/E74Zab+0RqNr8WPhj478Q+LfHf7CHw6nm03Qri8s/C3xq+Ifh/4YeJPBt/Hpdyms3Ok/DW08N+J9Z1We8vZfh14sjhSC5/vK8L3/xVn8NeHZvGfhX4fab4wm0LSJfFeneGPH3iPWvDdh4lk0+3fXbLw9rOqfDbQdT1bQ7XVDdQaTqeo6Ho1/f2EdvdXmk6dcSyWcPfRxRQqVijjiVpJJWWNFRWlmkaWaQhQAZJZXeSRyN0kjs7EsxJkoAK/KT/AIKKaRoHjb4lfs3+DPiz+z98Wv2hfgho1v8AFrx+vww8A/Bzxp8XvB/xf+PLeFrf4Z/Cn4V/FhvDug6v4A8C/Dy48N/ET4m69rfiL9obXfh78GJ9TtvDSa74smstP1uwT9W6KAPmn9jb4QeI/gD+yr+z/wDBfxfPp8/ij4bfCvwh4V1+PR72/wBR0PTtW07S4VvdD8PX+qO+o3fhzw9MzaF4envW+0yaLp1iZVR8out8dPDn7U3iD/hFv+GaPjJ+z/8ACT7J/bf/AAmv/C9P2afiL+0R/wAJB9o/sj/hG/8AhFv+EB/ax/Zf/wCEP/sryde/tv8Atb/hOP8AhIP7S0j7B/wjP9iXn/CQfQFFAH5Qft4eHv2lbP8A4JQf8FDfB3xm13w/+0l8ZPiH+zB+0b8NvhrpX7If7JPxv8Majruo/Fr4P3/wx+HPgmy+Cth8Y/2vviJ4k8QXPxE8SPLr3jnTfEOm+FdC8K6pFrHibQ/CvhvwV4n8aXn6f+E/EuneNPCvhrxjo9t4gs9J8WeH9G8S6XZ+LPCfirwF4qtdO17TrbVLG28S+BfHWjeHPG3gvxBBbXUUWs+E/GPh7QfFXhzUVudH8Q6NperWd5YwdBXP23izwreeKtZ8C2fibw/deNvDnh/w14s8Q+DrbWdOn8VaF4V8aaj4s0fwd4m1nw9Fctq+l+H/ABZq/gLx1pfhrWb6zg07XtR8F+LLHS7m6ufDmsRWYB0FFc/4a8WeFfGmnXOseDvE3h/xZpFn4g8WeE7zVPDWs6dr2nWvirwF4q1nwL468M3N9pdzdW0HiDwX428OeIfB3izRpZV1Hw54q0LWfD2sW1nq+l31nB0FAHyz+258AtX/AGo/2TPj58AvDmr6boHir4k/DvWNI8H61rS3TaJpnjWzMOteDbzWhZRzXf8AYsPijS9JbVzbW95MunfaWSxvmAtJ/D/2XfAPxu8c/tKfFf8AbC+Ofwh139njVfE3wK+DX7Onhj4PeKfFXwy8aeKWT4b+JPiL4/8AHPxC1TXvhH43+Ifgp/DniLxV8R00T4d20XiDT/FEnh/w1eaz4z8KeF9R1my0Sw/RaigDz74t+HfF3jD4VfE3wl4A8Tr4J8d+KPh94z8O+CvGbRPOvhHxbrfhvUtM8N+J2hjV3lGgazdWWqmJEd5BaFFRmYA/mv8Asu/se/tH+Bfi/wDsteMPi/on7NXhH4W/sv8A7J3iP4H/AA9+FPwY8XeO/GK+CPiN4p1LwfpninxvpniXxl8I/h9f+Mf+Eu8H+AdI+065qUPhO90KTxD4i8OS+G/FV4bz4i+I/wBaaKACviD4ifsyfGHxj+3D8BP2q9E+NXw10D4dfBb4W/FP4XX3wf1X4EeKPEfjXxZY/GLU/BGseLtVtPjHaftBeGtC8NXdrffDLwMPDcE3wW8Rw6daJ4rh1Ntcm17R7rwp9v0UAFFFFABRRRQAUUUUAFFFFABRRRQB8AfCv/i//wC2n+09438bf6d4f/Ye+IHw/wD2cPgV4D1D/iYaP4U+KfjH9mL4d/tCfGX9pzTGi/s+yX4gfEb4Zftb+Bv2b9Cj1zR/EXiP4R+BPhP8UpPht8QNF8P/ALXfxw8CXP4A/wDBTH4gfDr4UftMftI/tCw/sp/8NP8Axt/YV/4WV4yl/at1bS/2p/iN8U/hX/b/AOz34N/aI8GfCfQb++/4Ia/tef8ABPj9nf8A4Zct/EXwf+Lf7NGpWnxv8P8A/CufEfh6w+M3x6+Jen6n+1B+3Tb/ABy/p91D4F/Zv2jtM/aQ8E+Kf+EX8QeIPh/oXwd+O3h3UNE/4SXR/i58LPh/dfFLxf8ABq10yeXV9Lvfhr8QPhF8Tfiz451jQvGGhyan4c8V+BPiR8UvBHxJ+HvjPxBL8D/iL8APyh/bd/4InfD39tS3/a7+KvxX0f8AZg+IP7S3xM+D/wAffAv7Mupw/sufDP4ReFvAvjTxX8GvFnwl/Z7+Kfx++LiaJ8a/2o/jT8YPhDofiO38N3HjGT4qaf8AAKy07w78PfiH8O/2NvBfxp+E3gLx5ZAHn/8AwS++CHwQ+If7XHxO/aMu/wDgmd4f/ZO+K3wa+D/w20DRfjtqHw//AGldY1H4/eKfitrfxqtfFvjfVfif/wAFBv8Agnh+xx+1Hqf7T/w/0PRPEVv8a/jl4J1zxVqP7RHhX9qe1h/ac8d/FvxT4O+Gi/DT6L/4Kq33i34Uy/BH496R4h/a08N6VoXxt+AmieJvi38H/i7rfh74Afsw/DYfGLwifiN45+PP7O/hjx/pM37SulfE7SdUbwFfaf4p+E3xd0PwRoKzeIIdU+EMNhq2veLPdPgJ/wAE0vgF+zn+1x4j/ac+EHwr/Zg+BukW3wf8T/BT4c/Dz9mH9lrwX+z1qM3hX4l638GPGfxK1D9ofxx4X8QarbfHrxBZeN/gb4au/ghdaF4J+DOnfCfwr4r+JXh3X9J+KWr+KbDxb4f9r+Mf7KUnx28Zfa/iD+0J8dLz4H3segr4o/ZMsLL9n+w+BXjhvD13DqdsvizX1+A0n7SN5puo6zZ6dqfiLw3p/wC0FpnhTxJFYf8ACNa5oN/4L1XxB4Z1gA+VP+C1fgif4qfsBeNfhPYaF4g8S6v48+MH7Mdzp2iaN8CfjL+0Hp2rQfCf9oz4Y/H/AMT6N4s8H/Bn9kT9uq50jw/4h8E/CPxP4ctvEvxK/Zc+LHwaTxVq/hnw38RvCfiHSPEqeHNZ/li+F/wE8CeL/An7NfhDUfAH7IGo/BL9of8Aa/8AEf7XPw01X4r/APBN/WPi1o2raP4q1n/ghz+wp8DvCHgbw3rX7OX/AAQs0zSv2f8A4qfG39pTwb+0X8bfHv7M3wZ8K+BPjT4E+EvhX4c+MNX/AGh9M1H9oX4f/FH+z39s/wCBfxT/AGivAnwy+HXw18U/D/wVZaZ+0B8JfjF438U+OdE8R+KLrRv+GctYuf2h/gbdeFfCmgav4bh8X7v2uvhd+zjB8V/B+r+LvAv/AAln7OMvxt8O+EPiF8P/AIm6n4E8aaF+MHhH/glz+2N8Mfh7+yt+z3pnwV/Zf+M3wb/ZL8P+IvD1n8QfiJ/wU8/bk8JfHP41ajb/AAz+HXws8C67o+rap+x18dtW/Yv+D+nav8NvCP7Uuk/sk/s4fEzUPCvwV/bC+Ev7J/xm+BXxj8JeJP2XrHWvicAfo/8AA3wV/wANq/8ABLL9jTxToVl8P/2aPi14q/ZA/Z4+N37Pfi74NeAP7O8Hfse/HbxJ+zrpE/gTxb8Efh0viOw+y/D/AOGv/CY6n4Lf4Nah4rPg74m/AnUfFv7PHxSfxV8JfiH488O+IPsD9k746f8ADUH7LH7NP7S//CLf8IP/AMNEfs//AAb+On/CFf23/wAJN/wh/wDwtv4deHPH/wDwi3/CR/2R4f8A+Eg/4R//AISD+yf7b/sHRP7V+yfb/wCyNN+0fY4fl/wB+yf8ZfiB/wAE9PgR+xt+0/q3wf8ABdzB8H/C3wB/a+8P/s66PBdfD34wfBrw54B1T4b+L/h78GdRs/h5+z9pHwA8P/HXSLLw3H4vh8G/BS1n+EHwz8R/Eb4Q/AK48F+N4Phf+0p4A/R+gAooooAKKKKACiiigAooooA//9k="]
math
multiple-choice
37
如图, 在 $\triangle A B C$ 中, $A C \perp B C, \angle A B C=30^{\circ}$, 点 $D$ 是 $C B$ 延长线上的一点, 且 $B D=B A$, 则 $\tan \angle D A C$ 的值为()
$2+\sqrt{3}$
$2 \sqrt{3}$
$3+\sqrt{3}$
$3 \sqrt{3}$
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCABZAQwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopk0scMTSzSLHGoyzOwAH1JoAzfG3iLSvCnhe81/W72CzsrKMvJNNIEUfUmvPP2b9ZvPEvizxtr0+t2eqWs99bLZPY3q3FvCgt03xoUJX5XyCQeSMmsb4u+NfCWk+Ootb8W/FjQP8AhGrOF0Xw+ul/aC87AbXklWRgxBHClB161t/sr6dcjw7feI4fFGn6xpWvXDXNrFaaB/ZvkHOCCvmvn06CgD1aiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACisrxV4n8OeGLP7X4j17TdJgxnzb67SBfzcgVwl18c/Dd3cfZfCWi+IPFM5+4+m6XMbVv+3llEP8A49QB6hSMQoyxAHqa8w/tP43+IP8Ajx8OaH4Tt3/j1O7FzcqPZYS6Z+tH/Cp9a1n5vHHxL8SaqrctbafcHTYf90rAV3L/AL3XvQB1fjL4g+CvCkPm+IfE2m6evbzZxk+2K5T/AIXJ/a52eCPA3iLxDn7lz9mNtZt9J2BH6V0Hgj4V/Dzwlc/a9A8I6VaXjHL3i2q/aJD6tJjcx+ppvxJ+Jfh7whcR6Y7Taprlz/x7aPpyGe6kz0JRclEz/G2F96AOfuE+OPiCMma58N+DLU8sI0a9ukHtKW8v80rzXV9H0/Wtcl0Ww1jxV8UtehbbPLPqTWWm2L/9NjaCJDj+4Rz616IPB/jn4jfvviJfPoWiyf8AMt6Zc4eVf7tzOh+b3RWKnpXpHhfQ9I8OaJBo+hadbafY267Yre3jCIg9gOKAPIfh5+zx4a025fXvFtrp+qapsJitYLNIbK046LGBmU/7Uxc+hA4rov2TTj4StB/z66zqMA/4BdSL/SvS2AIIPcV5l+ymdngvxDbHrB4z1wf8B/tCcj9MUAenUUUUAFFFFABRRRQAUUUUAFFIxCjJNKCCMigAooooAKKKKACiiigAoqO6uLe2j8y4njhX+9I4Ufma4jxV8Yvh3oF59iuPEMNzfHhLOzBmlc+gA4P50Ad3RXl5+I3jrXF2+DvhbqXlv9261+4FgoH94JtYsPbIzUTeEfjD4j58R/EW10C3b/l38NacqTKPRpZzKp+oUUAelavqumaVb/aNU1G0sov+elzOsa/mxFcNrXxs8B2tx9k0y7vdevP4bfSLKSff9JMCP83puifBHwJazfatWt7/AMQXp+9cavfST7/rFkRfkld1o+k6XpFt9n0rTbOxiH/LO1gWJfyUAUAea/8ACYfF/wARvjwz8OLbQ7Zv+XnxNqIimUeqxQLKGPsXFTL8OvHmujd4w+KWoLG/3rTQLUWKqP7pcs5ce+BXqFFAHB+F/g58PNDvPt0WgR3d9nL3l65mlc+pJ4/Su3tLa3tY/LtoIoU/uxoFH5Cpahvrm2s7V7m7njhhjG55JGCqo9yaAJqxvGnivw/4S0ltS8Q6pBYwL03kl5D6IgyzH2AJrhdR+Jms+LLqXSfhPpKakyMY5tevVZdPtj0O3GDMw/ugr9a0fA/wq0/T9UXxD4u1CfxV4iPJvb8DyoD6QwgbEA7Egt/tGgDHXVviN8TJjH4ft5fBvhhuG1O8XOoXi/8ATGIcRqf77NuH92uy+Hfw/wDDPgu3f+yLItdznddX9y3mXFy/dnc9T9MV1AGBgCigAooooAK8x/ZsHlN4ztP+eXiu/fH+/O7/ANa9OrzT4EjyvHXxDtP+eWvK/wD33GH/AK0Ael0UUUAFFFFABRRRQAUUUUANmP7th7U2QsrZzxj0709gDyR06Vz/AIx8a+EPC8LS+I/E+kaXHGMsLq8SN/wUnJ/AUDNxmcKozkkZp2WPAOPlzxXjeoftJ+Br2Y23guz1HxbODj/QkS2jB/66XTRKR7qTSL4t+JviVcpqngfwfat91p9SW9u1/wB6IAR/lIaAueyBmfaAduVz0rk/GnxS+H/hKb7Lr/i3SbO9bhLNrpPtEh9FjzuJ+griT4D8O6xhvG/xcvPEGfv2q6pHa2jfWFWI/Wuq8GaH8JPCcPleH4vDNiuOTHPFk/iTQBjr8W9X1nK+Cfhz4k1cMPluL62Omwf7wacLvX/dPNL/AGf8cdfz9u8Q6F4Ut2GQunWourlR7mUNHn6V3kfiTwui7U1/SVHoL2P/ABo/4STwvjH9v6Tz/wBPsf8A8VQFzgYfghoF5Obnxfrmv+KZsAvHqOpy/ZWz/wBOyt5X/jtd94T8LeGvC9n9k8N6Bpukw4x5djaJCp+oUCj/AISTwv8A9B/Sf/A2P/4ql/4Sfw0OP+Eh0r/wNj/xoBmtRWV/wk/hr/oYdK/8DY/8aP8AhJ/DX/Qw6V/4Gx/40CNWisr/AISfw1/0MOlf+Bsf+NH/AAk/hr/oYdK/8DY/8aANWiuN8efFXwB4Q0g3+reJ9PO7iG3t51mmnbsqImSfr0GeSK4GHXPEnxOTzdV8SWPgfw1L92yh1KI6pdp6yOrFYQR2VmOOoB4oA7Hx38VNL0nXH8MeHLG48TeJhwdL0/5vs5PQzv8AdhX3cism3+G2v+NbuPU/ivq32q3Vg8Phywcx2MXtNjmc+z7l9K6PwHbfDfwdo66Z4dvdDsoV5YpeR7pD3Zmzkk1u/wDCT+Gv+hh0r/wNj/xoAv6faWthYxWdlbxW9vAgSKGJAqIo6AAcAVNWV/wk/hr/AKGHSv8AwNj/AMaP+En8Nf8AQw6V/wCBsf8AjQBq0Vlf8JP4a/6GHSv/AANj/wAaP+En8Nf9DDpX/gbH/jQBq0Vlf8JP4a/6GHSv/A2P/Gj/AISfw1/0MOlf+Bsf+NAGrXmvwjxF8b/ijb4wBqOnyL/wKxiJ/U1wdv4f8FeLfj94zvvEGueXAiWq2kkepiKNxs52nODz6V0H7PmmaHoHxl8c6T4dvPtVky2cyv8AaRMc+QgOWHvQB7NRRRQAUUUUAFFFFABRRRQBz/xR8VWPgrwNf+JdTsNRvbKwiMlxFp8IkmCDqwUsvAHXmvJLCT4M+MfGllonir4YaxpOoasjSac/iay2JesBuKRt5r/PtDNg44Bruvj7cw3tnovgz7VAkniXUo4JoJG+aa0Ug3AUevlmuS+PV9p/jP4neEPh3oH+narpWrw6tqUlu27+yYIgWDSkfd3kBAD130Adtb/B74ZwxCKHwhZRovAVGcAfQBqd/wAKi+HH/Qq2n/fyT/4qu2ooA4r/AIVF8OP+hVtP++5P/iqP+FRfDj/oVbT/AL7k/wDiq7WigDiv+FRfDj/oVbT/AL7k/wDiqP8AhUXw4/6FW0/77k/+KrtaKAOK/wCFRfDj/oVbT/vuT/4qj/hUXw4/6FW0/wC+5P8A4qu1ooA4r/hUXw4/6FW0/wC+5P8A4qj/AIVF8OP+hVtP++5P/iq7WigDiv8AhUXw4/6FW0/77k/+KrM8YeA/g/4V8O3OveINDsbHTbNd1xcSNKVjGcZOCT3r0iuA/aYu7sfCXUNE05BJfeI9ujwIc4/0hhC7HbztVXZiQQQAcEUAct4B0b9nHx9qhHhiy0XVbyzj3gKJlkRG7rvwSOByPauy/wCFRfDj/oVbX/v5J/8AFV5t8E7K8u/2kryz8ZpZnxF4J8PRWli2kKy2H2W5YEnDEv5ubVc7mI9AOc+/0AcV/wAKi+HH/Qq2n/fcn/xVH/Covhx/0Ktp/wB9yf8AxVdrRQBxX/Covhx/0Ktp/wB9yf8AxVH/AAqL4cf9Craf99yf/FV2tFAHFf8ACovhx/0Ktp/33J/8VR/wqL4cf9Craf8Afcn/AMVXa0UAcV/wqL4cf9Craf8Afcn/AMVR/wAKi+HH/Qq2n/fcn/xVdrRQBwt58KvhlaWkl1c+GbKOGFC8jtJIAqgZJPzVwfgXxlp2naLd+M/hr8LPN8H+W8t3q5vzBc3UUeSZLe3KN5ylVyuXTdx0ruP2otI13XvgD4p0nw0sr6ndae626QsQ7njKqRyCRmsP4W/Fj4a6l4R0nwp4bura81GG1hspPDdugNzZAAIyTQdYlTkNuGFAOelAHpPhHU31rwzZatJZtaNeQiUwO25o89icDmtGmwoqRKiIsaqMBVHA9qdQAUUUUAFFFFABRRRQBx/j34U/DbxvrEeq+LvBOi61fRR+VHcXtosjqn90E9BWr4F8H+FvBeknTPCegWGj2ZcuYLKARqWPU4FbdFABRRRQAUUUUAFFFFABRRRQAUUUUAFcR8Tvhfo/jnXNP1XUtd8TWM+llmtRpWsy2iRsQVL7U43bSRn0NdvRQByXws+G/hj4f/2nNocNzLfa1OJ9T1K+uGuLu9dQQpllb5mwCcZ6ZNdbRRQAUUUUAFFFFABRRRQAUUUUAFRxwQJIZEhjVj1YKAfzqSigAooooAKKKKACiiigD//Z"]
math
multiple-choice
38
如图, $\mathrm{A} 、 \mathrm{~B} 、 \mathrm{C}$ 三点在 $\odot 0$ 上, 若 $\angle \mathrm{BOC}=76^{\circ}$, 则 $\angle \mathrm{BAC}$ 的度数是 ( )
$152^{\circ}$
$76^{\circ}$
$38^{\circ}$
$14^{\circ}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAB1AIADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAqve31pptpJd31zFbW8Yy8srhVH4ms/Vtc+xXEenWFv9t1aZd0dsrbQi9PMkbnYme+CT0AJqGx8OD7XHqWsz/2lqaHcjMuIbc+kMfIX/eOWPc9qAIxrmqar/wAgPSiID0vdS3QIfdI8eY34hAexNL/wj2pXnOqeJL6QHrDYqtpH+BXMn/j9dDRQBz//AAhHh1uZ7A3bf3ry4kuG/ORmNH/CC+Eh93w1pCN/eSzjVj+IGa6CigDnv+EK0aPm0W8sT2+xX00IH/AVYKfxBo/srxDYfNp+ui9Qf8sNUhU5HoJIwpH1KvXQ0UAc8vilLKRYfEFnJpLsdqzu3mWrn2mAAH0cIT2FdCCCAQcg02SNJY2jkRXRgVZWGQQeoIrnG0W98PHz/Dg8yzHMmkSPiPHrAx/1Z/2fuH/Z60AdLRVHStWtNZs/tNqzfKxSWKRdskLjqjqeVYen49CKvUAFFFFABWPrmrTWZg0/To0m1a8yLeN/uRqPvSvjnYuR7kkAdav6hfW+mafcX93J5dvbxtJI2M4UDJ+p9qy/Dmn3CrNrGpRldU1DDSIxybeIZ8uEf7oPOOrFj3oAt6No0Gj2zqrtPdTN5lzdSf6yeT+838gBwBgDgVpUUUAFFFFABRRRQAUUUUAFFFFAGDrGk3Ed4Nb0ZVGpxqFlhJ2pexj/AJZuezD+Fux46EitLS9TttY06K9tS3lvkFXGGRgcMjDswIII7EVcrmb1f+Ec8QpqcY26bqciw3qjpHOcLHN7buI2+qHsaAOmooooA5zWx/a3iLTND628f/EwvB6qjARIfZpPm9/KIro653w2Pteqa/qp5869NrEf+mcA8sj/AL+ecfxroqACiiigAooooAKKxvEGvDRUtIYbc3eoX0wgtLUPs8xsEks2DtVVBJODgDoTgVnJq+t6X4m0vTNXm066h1NZRE1pbvC0Lou7B3SPvUjIyNpzjjngQPQ6qiiigAooooAKrajYW+q6bc2F0m63uI2jkAODgjHB7H0NWaKAMXwtf3F7oqx3r7r+zke0umxjdJGcbsf7Q2uPZhTdZ8QjTdU0vToYRNcXtysT/NxChDNuPfJCMAPYnoDWPp+s2jePtf0/SLq0u7qaxju/JEvyLOhaJg7KDtyPJB4JGDwagPhTWP8AhItD1ny7aS4ilNxqRfVbjYZGjaM+VCUKYUNwcKSAAccmhboHszb8Djd4N06fvcq1031ldpD+rmugrn/AvHgDw6vddNgQ/URqD+oroKACiiigAooooA53xBot9dazpGt6Z9mkvNO81Bb3UjRxyJIAG+dVYqw2jB2nPI75C6doV5Lrv9v63JA18kLQW1tbktFaoxy2GYAu7YGWwvAAAHJNLx9f6rJol1ofhl3PiG7gLQ+WwUwxg/M5Y8JkZVT13EY6EjK+HN74i0XS7XQvHDzDU5mdrOeaYS+avUxNICcyDBbBJypGCdpAEDPQ6KKKACiszVde0/RzHHcSs91L/qbWBDJNL/uoOSPU9B3IrN+ya9r3N9K+i2B/5dbWQG5kH+3KOI/omT/t0AXNS8S2lldmwto5dQ1PAIsrQBnUHoXJIWNfdiPbNU/7E1PXPn8Q3YitT00yxkZYyPSWXhpPoNq9iGrZ03S7HSLQWun2sdvDksVQfeJ6sT1JPcnk1V8T6jLpXhu+urcZuhH5dsv96ZyEjH4uyigDjdDtbeLxZp+s2sEcMN7d3dhbJEoVVto4wFCgdAWt2cf79ekVydxp0Wk3XgnTIOUtLhkBPUqtnMuT9SQa6ygDnfBf7vw+bM8NY3dza49FSZwn5ptP410OK57Tv+Jd401axbiPUY01CD3ZQsUo/DbEf+B10VACY4ox7UtFACdqyNb1h7DybKxhW51W6yLa3JwAB1kc/wAKLkZPuAMkgVJrWsrpMMSRQm5v7ljHaWiHDSvj1/hUDlm6Ae+AWaJozaf513ezC61W6wbm4AwOOiIP4UXJwPqTkkmgB+jaMukwStJK1zfXDCS6u3GGmf6dlA4VRwB+JNjU9LtNY0+SxvYvMhfB4OGVgchlI5VgcEEcgipbu8trC1kury4it7eMbnllcKqj3J4FYP8AbGra58ug2v2W0PXUr+IgMPWKHhm/3m2juNwoArw+I28NSDTPFFz2/wBD1DZxeKP4Cqj/AFw4yoHzdVHUCx5+v6/xbRvoent/y2mQNdyD/ZQ5WL6tuP8Asinf8ITpE8Ev9orNqN5KuGvrp8zKc5BjIwIsEAgIFAIB60ml6pd6ZqEeha7L5kz5FjfkALeKBna2OFlA6jowG4dwoBpaVoWn6MJDaQnz5eZrmVjJNMfV3bJP54HbFaVFFABXO63/AKf4m0LShzHG76jOP9mIBUB/7aSKw/65muirndB/0/xDrurnlBMunwH/AGIc7z/39eQf8BFAC3x+0+PNHgHK2tlc3L+zExxp+YMn5V0Nc7oB/tDX9c1jrEZV0+3PqkG7cR/21eUf8BFdFQBgeKbeZLa31mzjaS80qQziNBlpYiMSxj1JXJA/vKtbVrcw3tpDdW0qywTIJI5FOQykZBH4VLXMWJPhjWBpcvGk30rPYSdoJWyzQH0BOWT/AIEvZcgHT1n6xq8Oj2ayyI800riK3touZJ5D0RR+BJPQAEnABp+q6rbaNYNd3RYqCESONdzyueFRF7sTwBXIWOpSzarNeLaf2t4hIMQt4JB9m0xDz5bTfdDdC5GWJHC7QKAOh0fSpLSSbV9Xljk1WdMSyA/u7eMciKPPRR1J6seT2ArN4ln1VjD4ZtFvRnB1CYlLRPo3WU+yZHYsKVfDU2qOs/ia7W/wdy2MSlLSM+6dZD7uSO4Va6JVVFCqAqgYAAwAKAMK08MRG7jv9YuX1XUIzujeZQIoT/0yiHyp9TlvVjW9RRQAVT1TS7TWNPksr2LzIXweCQysDkMpHKsDggjkEVcooA5vS9Uu9M1CPQtdl8yZ8ixvyAFvFAztbHCygdR0YDcO4XpKp6ppdprGnyWV7F5kL4PBIZWByGUjlWBwQRyCKx9L1S70zUI9C12XzJnyLG/IAW8UDO1scLKB1HRgNw7hQDW1rUk0bRL7UpF3LawPLtHViBkAe5PH41hZufC3gixsISsmszqtvCDyJLuTLO5HoGLyN/sqam8WSxzTaTpcsipDPdfarlmOAsFv+9Yk+m8RKfZqXRY5dc1P/hI7qNktwhi0yFxgrEcbpmB6M+BgdQoHQswoA19J02HR9JtdPgLNHbxhN7fec92PuTkn3NXaKKACuN1/xTpzf2ppeq6DqcmnWzRxXd0ohaKMORtf5ZfM4yDwu5eDgcV11xMttbSzuJGSNC7CONnYgDPCqCWPsASe1eU2dpPq2pWF1babq/8Aad3qv23UUv7W4jtIoFbCgpMBGZAgjClAW3LnOAaF8S/rqD2Zfn0CdvFtvH4x1e5uLBF8nSnQ+TFKSMFZmU584jjjarjIHUrXotpaW1hax2tpbxW9vENqRRIFVR6ADgUXdpb31pLa3cEc9vKu2SKRQysPQg1z4tda8ODFh5mr6WvS0lkH2mBfSORjiQD+65B/2jwKAOmorM0zX9N1d3itrjbcxjMtrMpjmj/3o2wwHvjB7E1p0AFFFFABRRRQAVn63Z6dfaRcQ6qUWzC73kd9nlbeQ4b+EqRkNnjFU7zxRZxXEllp0Uuq6ghw1vZgMIz/ANNHPyR/8COfQGoYdBu9UuI7zxJNFOY2Dw6fBn7PCw6M2eZWHYsAB1Cg80Aczomgap4n1dNU1y5M+jW0It7MPGY5L9A+/wAyVeynEfy/xmMHAHyn0iuP1Y/2947i8OXUjDTLew+3XFuCQLpmcoqP/ejGCSvRsgHI4rW0nw7pmkandXGmRx28TRJD9jgAWKEgsxKoOFLblzgDO0Ghaq4Pt/X9WNqiiigAooooAKKKKAKGp6LpusIi6hZQ3Gw5jd1+eM+qt1U+4IrN/wCEe1Gz/wCQV4kvolH3Yb1Vu4x+LYkP/fdFFAHI+IfiLrPhS7+zXsFhfvkjfDG9uPyLv6etcxbftFS3l01qnhhI3XOXa+LA49vLH86KKAO68O+I/EPi+3M1pc6dpseMlWs3nft0bzFHfuprb/4RRLv/AJDOq6jqi94ZZRFCfYxxBQw9m3UUUAbdraW1jbJbWdvFbwIMJFCgRV+gHAqaiigDM1Xw/pusyQTXkMont8+VPb3EkEqA9QJI2VsHuM4OB6VasbC2021W2tI9kYJJyxZmJ6szEksx7kkk9zRRQBZooooA/9k="]
math
multiple-choice
39
如图,在一笔直的海岸线1上有$A、B$两个观测站,$AB=2km$、从$\mathrm{A}$测得船$\mathrm{C}$在北偏东$45^{\circ}$的方向,从$\mathrm{B}$测得船$\mathrm{C}$在北偏东$22.5^{\circ}$的方向,则船$\mathrm{C}$离海岸线1的距离(即$\mathrm{CD}$的长)为( )
$4\mathrm{~km}$
$(2+\sqrt{2})\mathrm{km}$
$2\sqrt{2}\mathrm{~km}$
$(4-\sqrt{2})\mathrm{km}$
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAB7AK8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKAM/U5tYi8r+ybGxus58z7XePb7emMbYnz364xgdc8cHoV1d2tv8P2stPkvZ38LyIqLKkapkWXzOzHIQHGdoZueFau81PSv7U8pJL++t7dc+ZDaTeT53TGZFAkXBGfkZc8g5HFc/ZeHtY0fTvDL2aWN1faVpR02aGa4eGN9wh3OriNjwYAACoyGzkYwQDrIBMtvEtxJHJOEAkeNCis2OSFJJAz2ycepqSqekx30OjWMWqTRz6glvGt1LGMK8oUb2HA4LZPQfQVcoAKKKKACiiigAooooAwJfEF3dand2Gh6dHevYuqXU1xcmCFHIDeWrBHLOAVJGABuHzZ4rS0jUG1XSoL5raS284FhDKQXUZOM44zjHQke561zekQ6z4ck1LT00eS8juL6e7gvluIkiAlcviXc29SpOPlV8jB9QOvTOxdzBjjkqMA/SjoHUdRRRQAUUUUAFFFFABRWH4yeGHwVrdxPZWl6ltZS3At7uISRO0al1DKeo3KDXkd/wCGLfTLu51W8g8Kx6Va62yzXX/CPEwKi2JVuBKcxiUGPywf9d33fJQB7xRXH+GL/TNC8Kma5ttN05f7QuraT+zrIwxSSRzSRBvLXcQSsQJyT9elaH/Cb+Hf+gh/5Bk/+JoA6Cuf8Ef8ihY/9tP/AEY1H/Cb+Hf+gh/5Bk/+JrD8H+MNBtvC1lFLfbXXfkeS5/jY/wB2gDvKjM8K3CW7Sxid0Z0jLDcyqQGIHUgFlBPbcPWsP/hKvD+pf6AuoSFrn9yBGssbZbjhwAVPPUEEdcivN7z/AEHxALu90bxGkC3bWa7/ABH81vALQ3EgL/bfkkZkV23Ns8uNDgN1APaKKx/D2nRWdm06W+q20k/34NS1B7p02kgcmWRVznPynnIzyMDYoAKKKKACq97fWum2ct5ezxwW8Q3PJIcACq+r6za6PAjz75JpW2QW0K7pZ3/uovf3PQDkkDmsy20ue5nXWvErxCS3zLBZhswWYA+8SfvyY6ueB/CBySAYd/Lqvi3xBpunuJdP0hibua1YbZp4EPHnf3FdyAI+pUOW6bR1+iReTo8Ef9o/2jjd/pW7dv8AmPfJ6dOvaqHheKS5guNduEK3GqsJUVhgxwAYhT2+X5iOzO1W/DsljLoNs+mwyQ2Z3eXHIcsPmOc8nvnvQBqUUUUAFFFFABRRRQBn67pn9t+HtT0nzvJ+3Wktt5u3ds3oV3YyM4znGRWXBpniq1t4re31fw/DBEgSOOPRJVVFAwAALrAAHGK6SigDL8P6VNo2k/ZLi5juZ2uLi4kljiMSlpZnlIClmIAL46npWpRRQAVz/gj/AJFCx/7af+jGroKw/B8E1t4WsobiKSKVd+5JFKsPnY8g0AbE4ma3lW3kjjnKERvIhdVbHBKggkZ7ZGfUVhxeGPK1OwnN5vhtJWu2LxZnuLpo3iMkkmcFdjkBAg27VAIVQldBRQBl6HpDaJb3Nqt5JPaG4aS0idFX7LEQMQrjqitu2/3VKr0UVqUUUAFY2ra6bW5XTdOg+26tIu5bcNhYl/56St/An6nGAD2rXmsXeqXkumeHym+Jtl1qLruitj3VR0kk9ui/xf3Tp6To9po1s0Vsrs8jb5p5W3STP3Z27n9AOBgACgCtpGhCynfUL6f7bq0y7ZLplwFXr5ca87EHp1PUknmq3iQ/2ncWfh1OVvSZbz2tUI3A/wC+SqfRm9K6BmVELuwVVGSScACsDwwrXwuvEMykPqTA24I5S1XIiH45aT6yY7UAdB0qnpcl9LpsT6nDHDeHPmRxnKjk4xye2O9XKz9Ei8nR4I/7R/tHG7/St27f8x75PTp17UAaFFFFABRRRQAUUUUAFFFFABRRRQB4Z4m1OxiAt5pY7KEXsjRyXvjC+Z2W0uTnMIVipk8iQIw3YIGDv2Bu38A3cd9e3D+TIjiygnVk8Rz6pEVleVSvznYHVoGBK7u4B65kvPATX2kCCW5nW6Gqtd/udQuIovJN+bgjYjAeZsYgNjIbGGGARsaNoU+l+IdSuc5sZLS2trYyXctxM2x5nZpGkyRzNgDc3C9ugAOgooqpqOpWmk2T3d9MIoVIGcElieAqgcsxPAAySelAFmSSOGJ5ZXVI0BZnY4CgdST2FcyZ7zxcdtnJNZaCfvXSkpNej0i7pH/t9W/hwMMXR6beeJZUutcha305SGg0pjkvjkPcY4J7iPlR33HG3pqAILOzttPtIrSzgjgt4l2xxRrhVHoBU9FBIAyeBQBz3idjf/ZfDsRO7Ui32kr1S1XHmn/gWVj/AO2me1dAqhFCqAFAwABwBXP+Gx/aU954ifkXxEdnntaoTsI/3yWf6Mo7V0NABWX4dksZdBtn02GSGzO7y45Dlh8xznk98961Kp6XJfS6bE+pwxw3hz5kcZyo5OMcntjvQBcooooAKKKKADvSUtFAGZr2vaf4a0iXU9TmMVrGyqSqliSSAMAcnr+QJrRR1kRXjZWRhlWU5BHqK4rx7pU15az39y8ZsrKFPssIJJMzyBXkbtwnyr1++/tXQ+H9Mn0azl095Eks4ZSLLBJZITghGz/dJKjr8oXvmgDWooooASlorD1PXJReHSdGhS71TAMm4nybVT0aUj9EHzN7DLAAs6xrcGkiKIRvc31xkW1nDgyTEdevAUd2OAO56VV03RJ5L1NW1ySO51Fc+TEmTDZg9RGD1bHBc8nttHFWNI0OLSzLcSzPd6jcY+0XkoG+THRQOioOyjge5JJ1aACs2413TrXUGsZpZFnWIy/6iQoQBkqHC7S+OdgO7HOMU3X9WbSNLaWGMTXkzrBaQE482ZuFH07k9lBPauF8Hav4pvpbeyvorC/ktIHuYLm5u3hkuNxdA21YmGFOUPPAYHByKAO+i1qxn0ltTiaZrZd2QLeTzAQdpXy9u/dkY27c57VieIdYh1F7Tw1aSTpeasoLkwyIYrbGZTuIG19vy7fvAupIqVdP1efw3LZajoui3c8p3ywPeuYZXLlmOTCSoHBHBwcDtmofCVkt5dT+Ip8TSvCthaXDjLtbRk5bJ5+eTe/uNlAHUxRpDEkUSKkaKFVVGAAOgFPoooAKz9Ei8nR4I/7R/tHG7/St27f8x75PTp17VoVl+HZLGXQbZ9Nhkhszu8uOQ5YfMc55PfPegDUooooAKKKKACiiigDn/G//ACKF9/2z/wDRi1z/AMQtZjjSOzli1JI7e8spd0NhcPHK32iM43ohUgAH5c5LEDGQM7/jllTwbqDuwVVEZJJwAPMWm3PiLwdrIGny6/pFwfNjkEKagm7ejh14Vs8Mq8UDRW1eyMfiSx1m8sNO1CzaWKCEzWxFzZMzAK6M2QcuRkAIRwcnbirtv4b8jxTLrPmWp35O4WuLlsjGx5t3zRDqE2jBC88c2bjTtLs7yXXLueZPLUuzz3spgiAXG4Rs3locdwoPJ9TWbsvPF/MonsdAPSM5jnvh/td44j6cM3faOGEIfNql54gnkstAl8m0RilzquAwBHBSAHh37FjlV/2jkDZ0zS7PR7IWtlF5ceSzEks0jHqzMeWY9yeTViGGK2gjggiSKGNQqRooVVA6AAdBUlABRRRQBHJbwyyxSyQxvJCxaJ2UEoSCCQe3BI+hrn/BVvC/hjTbhoY2mjWZUkKgsoaQ5APUA7Rn6Cukrh/C2oa3B4btI7PQkuYF3kSterHvG9s4XB5zxzgcdaANvxRcTPZwaRaSNHeapJ9nV1ODFHjMsnthAcH+8V9a2Le3htLaK2t41jhhQRxoowFUDAA/Cua8L3MniDUr3xFPaTWyLmxs4pipIjU5kcFSQd0gxkEgiJTXVUAFFFFABVPS5L6XTYn1OGOG8OfMjjOVHJxjk9sd6uVn6JF5OjwR/wBo/wBo43f6Vu3b/mPfJ6dOvagDQooooAKKKKACiuf/ALX8Rf8AQr/+T8f+FH9r+Iv+hX/8n4/8KAE8cKG8HX6sAQRGCD3/AHi1e1q80vTdM/4mMcbwORFHbeV5hmY9ERP4ifQfyrnPE1x4o1Pw/c2dv4WzLKUC/wDEwj7ODz7cUzTIfEcF62qan4fF7qjAqJftsaxwIf4Il52jpk5JbuegABJofg0Ndi/v4PslmHEttoUcm63t2H3XZfu7x6LhFPQEjce1rn/7X8Rf9Cv/AOT8f+FH9r+Iv+hX/wDJ+P8AwoA6Ciuf/tfxF/0K/wD5Px/4Uf2v4i/6Ff8A8n4/8KAOgorn/wC1/EX/AEK//k/H/hR/a/iL/oV//J+P/CgDoK4TT7uePwBpmn2UhS/1KR7WB16x5dy8n/AEDMPcAd62/wC1/EX/AEK//k/H/hXOaBp/iXSZoJ7nQVne3tmt4EW8jAj3SF3bPct+7HbGz3oA7yztINPsoLO1jEdvBGsUaDoqqMAfkKnrn/7X8Rf9Cv8A+T8f+FH9r+Iv+hX/APJ+P/CgDoKK5/8AtfxF/wBCv/5Px/4Uf2v4i/6Ff/yfj/woA1bnVNPsplhur+1glZd6pLMqsVzjOCelVPDNxp114etZtJjaOxbf5Ss24j5yDzk98965y5ttavfEi6ndeEreeJbT7Osct3ExDb92eR+FXdK1HxNb6bFFL4Rggdc5jgvI0QcnoOcfnQB1lFc//a/iL/oV/wDyfj/wo/tfxF/0K/8A5Px/4UAdBRWPY6jrM95HHd6D9lgbO6b7Yj7eDj5QMnnA/Gm32658VaVBHPMgt4prmZY5WVXBAjVXUHDAlmYZ6GPigDaoormviDql7ovgHWdS0+byLu3ty8Um0NtORzggik3ZXBakF74kjuvGenaJp+o2xeG5b7bAk6mUgQuwBTqFB2ZOOSQM8EHrK8Kh8U61F4n+F9ml8fIvtPimuVMaEyu4IdiSM5Pc565PU17rT6CuFFFFAwooooAKKKKAKGt3MNnod/cTxLNFHA5aJl3CTg/LjvnpjvmuF8DaHHovigafJp9ppl7Y6VGJo7Bg8d6JGwJZH2plw0bgKV43EhiDgdzrGiWWu2qW1/8AaTEjiQCC6lgO4cjJjZScHB57gHqKZpPh/TdEa5ksYHE1ywaeeaZ5pZdowu6SQsxAHABOBzihb3DpY06KKKACiiigDnfEFmuq6xpGnme+hGZbiY2l5Nb7o1ULtJjZc5d4yM+hx3qLww81trOu6OLua7srGSIwPcTGaSMyJuaJnYlmxwRuJIDgZwBjwn4kfEjxboHxQ1qDTNXMEcQjt418iJ9qbQ2BuU/xMTnqePQY+ifD2m2umaNBHaRlRKBNK7uzvJIwBZndiWZj6kk9PShbXB72NSiiigArPj0iOLXrjVxcXBlmgSAxFh5YCliCABnPzN1JHJwBk1oUUAf/2Q=="]
math
multiple-choice
40
如图,$AB$是半圆的直径,$O$为圆心,$C$是半圆上的点,$D$是$\widehat{AC}$上的点,若$\angleBOC=40^{\circ}$,则$\angleD$的度数为()
$100^{\circ}$
$110^{\circ}$
$120^{\circ}$
$130^{\circ}$
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCABlAMoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7SqC7/wBSanqC7/1JrYzN3wT/AMi3B/vy/wDoxq1qyfBP/Itwf78v/oxq1qxNAooooAKKKKAML4h+L9D8EeH11rxC9+lm1zFbBrLS7m+fzJG2Rr5dvG7/ADMQoOMbmUZyQDB8P/HnhjxpLqFvoV3eC70p40vrHUdMudPvLbzF3Rs9vcxxyhHAba+3axVwCSrAcX8ePiF4G0j4g+EvB/iXxjo2j5vf7Z1CK/ukiBgtlLQgszAIxumt3XP3hDJgfKSr/htcDxv8eNR+I+k2U8fh208Ppomn6lKjRrrTtOZ3liVgC0EeECS/dcySFSVGSAeq0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHJ1Bd/6k1PUF3/AKk1sZm74J/5FuD/AH5f/RjVrVk+Cf8AkW4P9+X/ANGNWtWJoFFFQ6hd21jYy3l5cR29vAheWWVgqoo6kk9BQBNXO+OPHHhjwjHENb1RI7i4bZbWcKNNc3Lf3YoUBdz7KCa5f+3vFnxF/deDDJoHhuTh/EVzD/pF2v8A05wt2PaVxt6FVcVqWPh7wJ8LdB1DxROgieGAvqGs38jXF5Oo7NK2WOT0RcLk4VR0oA4/4k/Fjx9Z6TbyeF/hy8FxqVwlppSa/dC3nvpm5CxW0e6ThQWYy+UFVWYkAVlj4UftAtptzef8NEy2+p3sn2iSzt/DtubSFicmKJ5N7qg+6GIPAB25znu/hfoWqavr0nxI8YWj2+q3kJh0jTJef7FsmIOwj/nvJhWkPbCoOFJbv6APnj7D4v0E+X8S7v4lNCv39V0LUYb6zY9C5W3t454x3O6IIM+3HV+C9F0fxRYi78G/HXxZcJ93/R7+xuCn+wyy2zEEY5z83HXrXrlcn40+GvgrxTeHUNT0OKPUsYXU7J2tbxfTE8RVz9CSPagDJbQfi7pXOl+OtD1uJR8sGs6O0ErH3uIZMD8IaafiRregqR498B6ppUSff1LS/wDiZWIH94tGPNRR3aSNAKj/AOEW+Jvhn5vC3jODxBZqcjTvE0WJcZ+6t3CuRxwN0bHplqF+LH9iYi+IfhTVvC7Lw168f2qw+v2iLKqP9/afagDuPDeuaP4h0mLU9D1O11CzmXdHPbSiRGH1FaFebzeDPCXiSZ/FXw816PRNXnPmnUdFkVoLlvW5twdkoOMEkB8dGFW/DvjrUtN1u38M/EPTo9J1K5fy7HUYGLafqbekbnmOQgE+W+DwcbgM0Ad7RRWR4w8UeHfCmm/b/Ems2emWxIAkuZQoJyBx68kfnQBr0VR0DWdK1yx+2aPqFvfW4IBlgkDLkorgZHfa6n8avUAFFFFABRRRQAUUUUAcnUF3/qTU9QXf+pNbGZu+Cf8AkW4P9+X/ANGNWtWT4J/5FuD/AH5f/RjVrViaFfVr6z0zTLjUdQuYrW0tYmlnmlYKkaKMliT0AFeZaDp9/wDFy8j8ReJIZrXwXHKJNG0SRSjaqB926uwefLPVITwRhmznFTa6i/FL4iy+HjmTwf4WuAdWwfk1XUBgran+9FECGkHQuUU/dYV6eoCqABgDoBQA1jHFDklY4415J4CgfyFeZaCrfFXxdD4lulP/AAhmh3G7RIGHy6vdIcfbHHeKMgiId2y/ZDUnje5uPiN4suPh/pM0keg6cw/4Sq/hYjzSRkafGw/iYEGQj7qHb1bj0aytrezs4rS0gjgt7eNY4oo1CrGoGAoA6AACgCWiiigAooooAKRgGUgjIPUEUtFAHDeIPhJ4M1C+bUtOs5/D2psdxvtCnNnIW9WVf3bn/fVqwPFPhX4kR6DcaNeS6P8AEDRJ12yWepJ9ivcDBBWVcozgjIb5CDgjBFesVgfEHxfpHhDSkutRaSa4uX8qysbdN9xeynpHEg5Y/oO9AHj3w1+L1x4I8WR+BfidDrGk2NztTQtX1yHad2cC0mnX5JHHG2QHD9DhhzteD7/SF/ai8f6r4zvLW11LSY7Gx8OLeyBFj01rZJZJIN3BaS4kmV2Xk+Uin7vNzW/hdd/FHQb+b4q4H2+zlg07RbeXMOkCRColLD/WXAznf0U/d9awv2Vdfg8feEbfw38TtF03UPGnhAPbSz3tokrXCxStA08ZcEgiWFkfGPmUN0ZaAPW/h/p+hWWgNceHYPKstWuptSyE2+Y87mRnxgcMWz+NblFFABRRRQAUUUUAFFFFAHJ1Bd/6k1PUF3/qTWxmbngs48Mwcf8ALSX/ANGNWV8ZvE134Z8DyS6PGk+uanMmnaLA3IlvJjtj3f7K/NI3okbHtWr4LBPhu3GOPMl/9GtXKXw/4SL9oqzsx81l4K0o30g7G+vN0UX4pBFcfhcLWJodL8NvDNn4O8D6f4dspGmWyixNcSf6y5mYlpJnPd3csxPqxrD+K3iXUxf2vgfwhKv/AAkmsRlzcFdyaTa5w91IPX+FFP3n9g1aPxO8VxeEdASaO1a/1W/mW10nTY2/eX1w33UHooALM3RVBPaofhX4Qm8Oafc6jrFymoeI9ZlFzrF8BgSPjCxRg/dijHyovoMnkk0Aa3gTw3pfhLwva6FpMbLb24JaSRt0k8jHLyyN1Z2YliT1JrYyOuabg+XtpMHrt79PWgB+R60ZFM2nI47GhFIK8duaAH0UUUAFFFcD4v8AGeqapr03g74eJDdatCdmpapKu6z0cH+9/wA9JvSMdOrYHBAND4ieN00O9h0DRLJta8TXyZtNMibARennTv0jiHqeT0Ge0fw/8DvpurP4o8UXy6z4ouU2yXhXEVmh/wCWNsh/1aD1+83UntV/4d+DNL8I2U32d5r3Ub1/M1DU7tt9zeyf3nb09FHAHAro6ACvnvx5YXXgz45a1rOk27vcQRr4tsYIh815b7UtdXtFHc7FtZ1HeVlPrX0JXm/7RAGix+G/iIi/8inq6f2gcddOuv8ARrnP+ygeOY/9cBQB6Bpd7aalpltqNhOlxa3kKTQTIcrJGwDKwPoQQasV5/8As9k6XoOreBJSd/g3VZdPtwe9k4We0x7LBNHHn1iavQKACiiigAooooAKKKKAOTqC7/1JqeoLv/UmtjM3fBP/ACLcH+/L/wCjGrhPhprml6Vp/wARviJrd0ttp8/ie7VpmGdsVikdhsUDkky2suFHJZ8Dk13fgn/kWoP9+X/0Y1fN/wAJdZ1G8u4ofF3grxauh+H9b1G/sLKLRpCuo309/cXBuZQ2Plj83Eakctuc9ExiaHs3ww0TU9Z15/iP4utGt9UvITDo+mSc/wBjWZOQh7efJgNIR04QHC8+gV5//wALXsf+hM8af+CVv/iqP+Fr2P8A0JnjT/wSt/8AFUAegUV5/wD8LYsf+hM8af8Aglb/AOKo/wCFsWP/AEJnjT/wSt/8VQB6BRXn/wDwtix/6Ezxp/4JW/8AiqP+FsWP/QmeNP8AwSt/8VQB6BSSMqIzuwVVGSScAD1NcB/wtix/6Ezxp/4JW/8Aiq8/8S+NNT8eeIJ7DxF4N8aab4OtZNv9nQaU3n60w6m4YN8kGekSk7+rHB2UAdpea/rXxMu5NK8EXkum+GI2Md/4lj4kvMcNFY+3Yz9P7mT8w7nwh4f0fwvoMGjaHYx2lnbj5UQcsT1Zj1ZieSTya46y+J+lWdrHa2vgXxjDBCgSOOPQyqoo6AANwKk/4WxY/wDQmeNP/BK3/wAVQB6BRXn/APwtix/6Ezxp/wCCVv8A4qj/AIWxY/8AQmeNP/BK3/xVAHoFZ/ivRrHxF4X1Lw/qkXm2Oq2ctpcxn+KORCjD8ia4/wD4WxY/9CZ40/8ABK3/AMVR/wALYsf+hM8af+CVv/iqAOH/AGZdZvz8SW0/WZS+q3PhhdP1Mnq99o95JazzH/rql3auP9krXvFfPPgO31K7/bSbxbpuga3Y+H9U0S5E/wBv094fKvpBarK2eV2vHp9r3+8retfQ1ABRRRQAUUUUAFFFFAHJ1Bd/6k1PUF3/AKk1sZmT408bweDvh7Zgf2h9rv5Z0jksNJuNQe0QM7PO8cEcjBQAACy7d7IDxmt74EW97a/BHwfBqc8lxfJoFl9rmkdmaWbyEMjEuSxJbceSTzzWZoHw98NanpOt3l0urCfxTClrqbwa3eQlooZJBGkWyUeQPnfPlbN29t2dxz13hfRrLw94ds9E003X2OxiEMH2q7luZAg6BpZWZ2x6sSaxNDQooooAKKKKACiiigDiPjj4p1Xw9pGjaV4cWH+3vFesRaPpks67o7ZmjkmlnZf4hHDBM4XozKqnANcjNp9/4I+PHgHRNH8WeJdYm8QrqB8RW+q6pJdxy20NsX+1iJzst2F0bdAIVRMTsu3AXb6H8SvB1j4z0mztri+vtNvNLv49Q0zUrBoxcWNygZRJH5iOhyjyIVdGUrIwI5qt4C8Bab4b1i71+51LUdf8RahCsF3rmrPG1zJCjFkhVYkSKGJSxOyJEUklmBcsxAOrooooAKKKKACkdlRSzEKqjJJPAFLWJ8RPD0vivwbf+Ho9e1TQxqEJhkvdL8kXCI3DBDLHIq5BIztyM5BBwQAfP/wIvtbuPip4XRNY8ZaedYl1XWQPEWtTXlprmjF3+zR2cTTSqrRrPYszyCGUAcKwdgn03XBeAvhXY+HvGkPizU/E+v8AibVrPSzpOnTaq1tHHp1qXV3SGC1hhiBcpHucoXIjVd20Yq7rGoePY/ialnpujafPoX9mPJHLNdtEsk/mRg73WJyjAE7UxhgWbcSNqgHYUVn+E9M/sTwrpmjef5/9nWUNr5uzb5mxAu7bk4zjOMmtCgAooooAKKKKAOTqC7/1JoorYzN3wT/yLcH+/L/6MataiisTQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k="]
math
multiple-choice
41
如图, 已知 $D 、 E$ 在 $\triangle A B C$ 的边上, $D E / / B C, \angle B=60^{\circ}, \angle A E D=40^{\circ}$, 则 $\angle$ $A$ 的度数为()
$100^{\circ}$
$90^{\circ}$
$80^{\circ}$
$70^{\circ}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABdAJkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKAMTxLrq6NZKFS4e4myFMFrJOYlH3pCsascD6YJIBIzkReB/NbwPoss8sks01qkzySnLszjcSx9fm5qv4hXw7pL3Nzqr3cbavst5miuJ87EUnICN+7RRuLMuBySepra0ewsdM0i1tNNLGyjQCDdO03ydRh2JJGOnPTGOKF1/ruDL1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjMqIXdgqqMkk4AFLXN+IWbWb+HwzCT5UyefqTqfuW2cCP6yEFf90P7UAHh5G1m+m8TTqfLnTydORh9y2znfj1kIDf7oQdjSSaXeeHJXutBi8+wYlp9JBAAzyWgJ4Vu5Q4U9tpyT0iqqKFUBVAwABgAUtAFPTNUs9Yslu7KXzIySrAgqyMOqsp5Vh3B5FXKw9T0KVr1tV0aZLPVMASbgTDdKOiyqOvs4+ZfcZUzaRrsWpSS2k8L2epwAGezlILKOzKejoezDjscHIABrUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUtW1ODR9LuL+53GOFc7UGWdicKqjuzEgAdyRVPw5pk9jZS3N/tOqX0n2i8ZTkKxGBGp/uooCj6Z6k1TH/FReKM/e0zRpOPSa8x+ojU/wDfbeqV0tABRRRQAVm6voltrCRM7SQXcBLW13CcSwMe6nuD3U5B7g1pUUAYFjrdzaXsela+scN5IdttdxjEF57Ln7j+qE/7pYZxv1Wv7C01Syls76BJ7eUYeNxwfT6EHkEcg1gC8vfCmI9TllvdFHCag3zS2o9J/wC8v/TTt/F3YgHUUU1HSSNXRgyMAVZTkEeop1ABRWIvjPws1yLZfEujmcv5YiF9FuLZxtxuznPGK26ACiiigAooooAKKKjnhS5t5YJC4SVCjGORkYAjHDKQVPuCCO1AHn9j4a8NaxP4n8RavpWnmCe5kjSeWFQY44V2PIH6qxcOdwIPA54qWw8R3th8OND+13ijWtSjEVrJdsAeckSyZ6hY8M3qcDqwrbg8EeHbGKIfZ7h7a3+dILq/nmgTHOfLkcpkHkHHB5qHRrKDxJdTeItQto5oJl8rTYp4wwS3Bz5mD0Mh+b/dCDsaForen4Cd73L2lXegaPpdvp9tqtn5UK43NcoWc9WZjnliSST3JNXP7e0f/oK2P/gQn+NH9haP/wBAqx/8B0/wo/sLR/8AoFWP/gOn+FAw/t3SP+grY/8AgQn+NH9vaP8A9BWx/wDAhP8AGj+wtH/6BVj/AOA6f4Uf2Fo//QKsf/AdP8KAD+3tH/6C1j/4EJ/jR/b2j/8AQWsf/AhP8aP7B0f/AKBNj/4Dp/hR/YOj/wDQJsf/AAHT/CgA/t7R/wDoLWP/AIEJ/jSHXdGIIOq2BB/6eE/xpf7B0f8A6BNj/wCA6f4Uf2Do/wD0CbH/AMB0/wAKAOYa7tPDEjXGh6hZ3OlklptKF0mY/Vrck4HvGeD/AA7TweksvEGlajoz6vZ3sU1lGjM8in7m0ZYMOqkDqDgin/2Do/8A0CbH/wAB0/wrF1nwZaXEcsul2ljFLIB59nPArWl6FIIWWPGMggYcDcvHUcUntoCMbwtbXapaz69cWn2bWWa8gsxEUkM8jiUBvmO8oiLyAoABz616HXKeGbHwv9sd7Lw5p2ka1ajE8C2ccc0WeMhlHzIecMDg/XIHV1WlrIWt7sKKKKQwooooAKKKpatqcGj6XcX9zuMcK52oMs7E4VVHdmJAA7kigDI8Qs2s38PhmEnypk8/UnU/cts4Ef1kIK/7of2ro1VUUKoCqBgADAArH8OaZPY2Utzf7Tql9J9ovGU5CsRgRqf7qKAo+mepNbNABRRRQAUUUUAFFFFABRRRQAUUUUAZesaHBqyxS+ZJbX0GTbXkGBJCT1xngqe6nIPcVU07XLiC9TSdejjt9QfiCePIgvAO6E/dfHJjPI7FhzW/VXUNOtNVspLO+gWeB+qt2I5BB6gg8gjkHkUAWqK5cahe+FWEOszPd6PnEWpsMvb+i3GO3/TUcf3sfePTqwdQykFSMgg8EUALRRRQB5v4t1/ULXxHqFvZ67qdmkFnGIo4bOF4Gu3J2I8skRVBjbkPIud4wRW/quleIdSn0W5D6b/oaedPby79jXO3AYY/hXLYB7kHqBWfJ4G1a/tr2x1TXrSWw1C6+03yW2nNFLN0xHvaZwq4VB93OBjPOa7gAAADoKF8P9f1/wAMD3/r+v8AhzA/4rD/AKgf/kaj/isP+oH/AORq6CigDn/+Kw/6gf8A5Go/4rD/AKgf/kaugooA5/8A4rD/AKgf/kaj/isP+oH/AORq6CigDn/+Kw/6gf8A5Go/4rD/AKgf/kaugooA5/8A4rD/AKgf/kaj/isP+oH/AORq6CigDn/+Kw/6gf8A5Go/4rD/AKgf/kaugooA5/8A4rD/AKgf/kaj/isP+oH/AORq6CigDnmXxcylWGhFSMEES81Q0PTNa8NT3Mt3dabFoCxtIbWLzCLYgEkxluif7HQdsdD2FUtX02PWNGvtMmd0iu4HgdkOGUMpBI9+aUr2dtxq19TnYtY8Ualoz69p1nZJaNE01rps8bm4uUxlSZAwWNm4IXY+OMnn5drOu+lj/wB8N/8AFV574H+Id9rHil/A5tYoZdIV45r9Wz9oWFgnEZ+4W4OdzY59QR6vWiko6xV09rmU4OWjdmt7H//Z"]
math
multiple-choice
42
实数 $a 、 b$ 在数轴上的位置如图所示, 下列式子错误的是()
$a<b$
$|a|>|b|$
$-a<-b$
$b-a>0$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAWALYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1/wDtfxF/0K//AJPx/wCFH9r+Iv8AoV//ACfj/wAK6DPOKKAOf/tfxF/0K/8A5Px/4Uf2v4i/6Ff/AMn4/wDCugooA4vWpvE2of2d5fhjH2e9juG/0+Pouc/zrU/tfxF/0K//AJPx/wCFWdV8T6RokpivrpkdY/NcRwSS+WvOC+xTt3EELuxuIIXJ4rXoA5/+1/EX/Qr/APk/H/hR/a/iL/oV/wDyfj/wroKKAOf/ALX8Rf8AQr/+T8f+FH9r+Iv+hX/8n4/8K6CigDn/AO1/EX/Qr/8Ak/H/AIVm6vJ4l1L7Bs8Nqn2a8juTm/j+YLnjp712Vc7a+J2udShU2Sppt1cy2drdeaS7zR79waPaNqny5AG3HOBwNwoAd/a/iL/oV/8Ayfj/AMKP7X8Rf9Cv/wCT8f8AhXQUUAc//a/iL/oV/wDyfj/wo/tfxF/0K/8A5Px/4V0FFAHI6ld+K7v7H9m0FoPJuUlkxqKDzEGcpx6/lV7+1/EX/Qr/APk/H/hUuueIY9CvdOW6azhsbhpBcXVzdiEQBVG04K4YFiF5ZcFh17bdAHP/ANr+Iv8AoV//ACfj/wAKP7X8Rf8AQr/+T8f+FdBRQBz/APa/iL/oV/8Ayfj/AMK5jxDrviRNVjjtdN1u2vDECILJop4WGTy5aJlU9R95TxXo9FAHEaLc/EeZC2oWOixR4O1bh2SbOf4vLLoePQj6UV29FACdW/Cm9jyeBRRQMX2z3oHOB9aKKAOOvdC1+ea4jiTTDaT6lFdTyPO4luYlKkIQI8Jt2qOrbgMfLnNdj1IHOOaKKAE5Pc9BTh0oooAWiiigQV57pMwuPFMXhIsfP0G7fUZZdvyyRSCTykXnO4ecN2R/CcdeCigD0KiiigAooooA8+8Uarbv4+tvDhg36tqWnPFp07oDHbK28zuSedxVBhQMEoASAxI7+KNYokjX7qKFGfQUUUAOooooAKKKKACiiigD/9k="]
math
multiple-choice
43
小红同学将自己 5 月份的各项消费情况制作成扇形统计图(如图), 从图中可看 出 ( ) \section{小红5月份消费情况扇形统计图}
各项消费金额占消费总金额的百分比
各项消费的金额
消费的总金额
各项消费金额的增减变化情况
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAEYAXwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAK5f4uePNI+HXhNvEOt219cWqyCMpZxo0mT7Myj9aPjF4sh8GfD7UNbchriOIrZw5w1xOQdka+5OBXhP7QFj4js/wBj+3bxVq93qOp3d2tzI90QWiEjM6x8AfdVgv4UR1lbzX4smo3GDfk/wR9NWsyz20c6BgsiBxnrgjNc58RvHWkeDf7Pjvre9vLnU7pLe3tbFEeU7mAMhDMoCLkFjnIHQGvM/FnijxL8NvjBoOqatq1xdeCfEtvHZyJNyml3AUkMMdFb5F5zya4z49QeKbr9oJdObxr4Qg0vW7MQyJcOY7rTrXGJGjdnChpFbrg/dFG7SX9eX9dNStk79r/1/W+h634k/aD+DXh/UptP1zx/pdjdW+POimL5jPoSFI/WtT4d/GD4aeO9WbTPCPi6x1a7RN7RQB8hfXlRXnP7XXh/w9o37Gev2ei29rJb2+mBYp0CuZMFfm3DqT1/GvX/AAvYRR+CrT7BBb29zJYKI5REBhinBOOcZqre65edvwv+onvHzVzIv/i78NrLxuvg+68XWMeuPIIlsTv8wsTgDgYzn3qH41fFLTvhwulx3PhvxDr93rF0trZ2eh28Mszuc44lljHY964HwfrHjD4a+OodA+ImjaPf6fr14Ws9e0uExrHcOw+WUSEsWYlQCMDOarftoWkWo+M/h/p7+Jrjw5u1qN21K2uEhkt1AYFldwVB571O6j5sL25vI6CT48arHGzv+z/8YFVQSSdJsOB/4GV3fwk8b2PxA8IL4gsNL1TTE854JLTU4kjuInXGQyo7qOvZjXkGoeC9NGnzH/hqnxW+Im+U6/Y88dP9XVv9n/V7rwv+zjfXGmSXWv3Y1i4t7WfervcyMVVZGZeCM4JIwKLpJ+Q7ao9O0v4i+Hr/AMWa/oUX2lD4aEZ1G9kVRbJvTeAGDZzj1A6VS0/4s+FL3xxpvhu1+2SDWLM3Wn6kI0+x3IDspRXLbt42McbcYHWvlXw7e/ES7/Z1uGfwbeaxpmoaxqDeLLi0vYYbiWNLmRfKDO2MKPl6dhXXeO/iC/iD4S6GL/4J+I/D2jiSNNH1uHVbQyWD7wgdVBJ5OQeOhNNxaly7tNL7/wDg7d7BLS99Fr+H9a9rn0R8RPiR4a8Ea1pFh4ikuLaPWJjDFe7AbeCTgKsjZyC5YBcA89cVm3nxh8J2mn+Ip7qLUIbjwzB9ovLF44/tEkWMh4xv2sGGCMkcEdK4b4geGvidY6boZ13U9D8VWovY7TUNNn/ci5hZlVZVLsB5q5ZjzzxgV4h4wtfAOv8AxQ8Qnx38QvHej3VlEdLtrTRrCSaGOzYDdFuSFxj5E6ntWbu00t9f+B+a+XmVpZPpp/wf69D6yb4p+GBdeHbbF4bjxIC1tCI1LQJhjvl+b5V+UjjPJFc/4/8A2kPg34POpwap4xtnvtJ3i4sIEZpy6A5RQQFLcYGWAz3r5t8N6p4b8OfHPwDF8P8A4nePNXk1PUWsNQttcsXhhNqIZHCgvCmfnUHANT/tl3njfTPFGvxaqfFNrp+qXBs9KWw1rToLWUSMUQvFIDJglhk5HHpVPpbq2vy/zEtPi7X/AD/yPcIP2ufgZJNpMZ8VGP8AtS3ExZ4eLPIB2Tc8N838O4cHmvR/BvxI8F+LvCt94i8Ka7b61YaaG+0SWmTtKruK4bHOK+Ab7/hKrHxZ4Ss7i88Yi4tbIRLt8V6O20rsBETAbUXjo/PT3r1/4RXOun4U+NPD/gjTNettQlvJJdY1DUdVtLt/+PdfmWSD5OgUY69aJNKEmvl+BK5rx/H8f10PeNL/AGhPhbL4A0Xxfq2v/wBg2WvQ+bZxamm2YjAOGEZcAgEdzWN4a/aw+BesSXiHxlFYfZJjHm8jKibkjcm3dleO+DyOK+X/AIc/8JP4P+BPgeCDVPFEmleIrc3NmdK1OztGinKKZEd7lSvlgbNo65zyaydHm8VeA9N1rV9YvPG0VvPcmf8A4lfivRpJGGWPzrhizc/wj1prV/1vp/mXVSi35N/dr/kfeGkfEvwtqXiIaPb3EvnTWRvrR3UKl5CDjfEc5PORyB0NcVB+0H9tuLkaL8GPilrFtbTtB9ssNMsmhkZepUtdqSOR1ApPE1l4V1zwf4H13xit7oeuRktpCzSo90ZTDJ8jMg2tlCzccc15t8M/jP4n8BWl34Y/4VDruqMtxdXcVzHqFvCJYo0Ds4RyGACqTzQ7KTTe1/w/4BK1in3t/X3nsfwx+M9l4v8AHknhC58B+M/C+qJbm4Ca/Z28Kugx90xTyHuO1N8SftDfBnQtSvNN1Lx9psV9YkrPbAOXVgM7eFxn8a82+A/jTWfiP+0xF4tu/BGqeHbGXRHWA3cqTCUFU5DJwOnQ8145rEut6H421mfT5/H0q634gNvDHoN7Z29vHIIt2HM8Zxwp5JA7daNdPNP87CT39f0ufRngj9rT4IeItJe+n8TvobJM0f2bVoDHMwGPnAQuNpzxzng8V1Xiz4y+F9M+E8nxE0Gw1fxhokTESP4ehjldFXO9yJZIxtXHPOfavlS31PxRqF1Dp2nz/Fy6vJmaKaFtZ0uJYnA5QyNEFJ+h713ei+IbnTP2HfEVv4Z8D+Ir/wDfana6il/qFsbi1lEjLLJIy4VhuBOFFTN2oymt0VFPniuj/pfqd5b/ALUNjNPpcS/Bf4rA60wWwJ0uxxP1+7/pnsfyr0rxJ8RND0Gx0ptSt76O/wBYlWK10oIhuyxI3ZXdtG0HJ+boDjPSvlu08e+PxcfDNf8AhTmtq1m3+jEarag3fySfdy3y9Sfm9K9G8G6vpdn4iWfw/wCHrq+8faiFfWbvV5VmGlQ5yY5J0xE2Pn4Q5GeeK0a/P+v+C+hCff8Ar+vxPYfF3xB0bw9420Xwpc219cajrodrdbaNGWJEKhnkLMCFG4dAah+J3xM8M+BLWwu9YeaW2vrwWrT2pjdbUkE75cuCE4xkAnJHFfPOs+KvF8Xx91hdZ0PSRqOoW62+n6jeapA1jBaAEMwgWTzSZAVPHXHFed2dz+zLqfxJ1K98X+G00y302IomnLo98yXj5G64fAPy78gdOCKzi7qL+fy/r8fQuWja/q/9f1qfdd1rNhHpc99DMt0sEDTGO3dWkYBScKM9Tiqnw/8AFejeM/DUWt6JO0kEhKOjgCSGQfejcAkBlPBwSM96+cv2T7nwH4h0zWn+FvhfRfDvjGxby4by7srpLa8g7TIjsGKHLDHXit74L3/xZ1rQddg8OnwJpWt2OszwX8xsLk21wVkYF1UPuBOCeveqvZ2a1tf+vv1J31T62PZdP8caTefEm68ExW94NQs7b7RJKyL5JXKjAO7dn5h/DWV8afijYfDmbRbafwv4k8RXuvXEkFlZ6DbwyzFkTexIlljGNvoTXhPh2w+P3/DT2rpB4g8BDVhpf72R9OuvIKZj4C7856d62Pj3F8RYfEHw3j8SSWmqa82p6gIf+EaBtSVNmQNhnJAYc8nihK6j8/1/yLjZykvJ/lc2ov2qtKk8WXPhhPg78Ujq9nGstxZ/2fp4eNWyVJ/0zHODW1o/7Q1ldeKdG0XU/hZ8RNCGu3y2NrfanY2S2wlKswDNHdOw4U9FNfJGueEk0/4i6npVx8LorTXJrUXU83jiQ3DX8hBP7u6t3SGN2Oc7z1Ir0v4f+HbnwhY/DjRW+H2qeHYpvG0Fw93e6pBdrdO0Ex+QxMcKNxAz2AqqSUmrkyvdryf5XPtCiiipAKKKKACiiigAooooAKKKKACiiigDB8Z+D9E8U32l3OtQyT/2RcfabaLf+780FSrsvQlSowe2T614b+1l4tPjXRX+HPh/wl4sm1R71FFw+iTLZfXz8bce9fSBooWjXk7/AJf5CkuaLXdW/r7zm/GPg3RfGfgNfDPiS1M9pJHF5iKcMGQqwIPYgqK8C8efB7S9Y+Kl1c6B8NhrdzDYR2E2s+J5xNBaKoKo8VvImJiOScMM4HrX1CKT3pW1uPpY+Sfjx4+TUv2bNZ+GumeC/Gl5rH2Y2kb2vg6e2tJGVgMoBkKvHFeu/DP4w2Wu2tn4f0rwZ4yh1JLMLH/amhTWdszqn3WmcYXJGM161RV8zs0+uv4WE1tboeQ2um/Ej4ha1YQ/ELwXpvhvS9Luo7xBbaut69xKjBk6KuwAqPXOaxfF3gm4+LX7RMc3ifw8kvg7wrbmJbfUbbcl/cPtYOqsMFVAdc89a94oqdNPLX5j11/rQ8J+MXgr4FeBdLRrr4JW+pSXaskQ0bwqLwo2043bF+Ue5rpf2R9Hl0f4NxxNo8mkRXV5Lc2tjJCYmgifaVUoQNpA7dq9RpMUraNdwetj5S8I2nj64+FMnwp0jwzfWlx4h1fVZb7UruBo4rO0N5IdwJGGchlKrkEjJFbXxD1iHxDF4e+Enhnwn4oDWN9HHcXl9ossdmFQbywmI2kEj9a+lKOatyTlzW8/u2+7/MJ+85Pvf8dzx7466bq3iv4xeCfDUOkXMulWtxJqF/eGMiKNogjxDdjGSyniuX8C/BhPEni/xXq2ta7440Qy6gPJi0zWZrKGVfm+YIvB7c+9fRNJUpW/H8bf5JA9X934X/zZ8aap4QsdW+Ongm08KL8Wb1tI1mV9RuPEz3TWkMX2eRd8TyDbu3EAEetaGveH/hrafGK4fVvB/wAQPGU1uz2sUGv6BPf2zTHKqVuHBVY8kfNjAHNfXeKWpSsl8/xG3f8Ar5nyDN8LvEraXqqa7+zT4Bh0+4yYbzT54GubOLnlYljzI+McAg16p+zxYeFLX4FazpHg7wjqGivBBNFdLdaG2nyXkxjOHCHl+CFz7V7VSYptXhKPdWF1T7Hx1ZfC/wAVeJf2efg/4XbSorO7s4pvti6vo32uG1/dR4EsLY5JBAyetcT8dPhLrmj30vhG00jSNS1KTZ5c2jfDH7PCdwyMXiOQhGeT2r78oNOPuy5l3v8Agl+gVLVOa/W/4tv9Txy+8MamPEdp4v8AGGlfbtJ8K6XENHsbaPzpjc7VUyBBzuwzr06c1S0Lwj4t8U3fij4heK7BbG7vdGnsdD0lH3tBGY5AHY8Yd9+CuMjFe4UUpLmTT/q97/mC0t/Wx8u/Cv4m+K9E8O6B4N0bwR4nSfSy39rveaFKkLRoQGEUhGGJ5xjrVHXfAes23wftbjx9e6+2malNNPf6R4d0qSS+acyOY28yM7lUJtGMda+sDzRQ19/9f8AFp6f1/wAE+NdF8GzR/Bmyn8XHxsvhmTUpLm30yw0ueTWt+EKSPMvzochc5Xsa3PhXoPii1/Zfl8BW2ha4s/i/Xb5PM1BX862sZpm/fTOwyJNrKcHknNfV3eiqTsmujt+Aaq39d/8AM8d+I+g3WmeMvh79m066urLRWAuXggMm1VicEnHqf51m+H/DWvfEW6VodJk8E+B2uzdGygQ297qx4w0yjDRZKjcpByMjvXulJihN3uK1tj5U8dfD+KPxxrvi/RvhdCLaIxqNe1K2GpXMRtwVEdtp5UMFPZlbnArpf+EP8W+JfCPivxnrOkra3+oaStlpdjGmJPIBjY7l6qxZCduOM4r6HoqHG8bX/q1h6c3N/Wh86/s++LtT1nxZ4d0qz8E6xp0Ok6YYtUvtW0J7ZyQH2pFI45GcdPWq37Ph+KsPxC8SWuneEV03QLjxJPNNquoybJZIhMxZUgZQSGB4cH3r6TpKp6zU3vr+LuK1o8vp+CseUeGtK1KP9qzWNVksLhbGXStiXJjIjZsx8BumeD+VZf7Vlp4xbx18O9S8GeGG166sdQvDJCbn7PHGr2xXc020hOvBI617ZRQtOXy/4P8AmUnZt9/8rHxr4++Dnxb8U2t0l/4A1a7M0hnjtb/4lm4sllzld0DRbWUH+H04rZ02w+P73nwz0T4g+AtJitdH8TRSyajot4siRRrFKqhoUX5VAIG7PUe9fWNJjmnB8kroT1/H8RaKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFI7KiFnYKqjkntQAtFcB4y+M3w/8OzvbSayNSvEOGstKX7VcKfeNMkVzSfFjx74mGPAfwwvpY3+7PrUx04oPUpImT9KAPZKK8abR/wBorWW+fxd4d8PROPmi/soXTAegYOv50+L4QeMb795r/wAVNakmPJOnSPapn/dDHigD2Kivm748fC3UPDfw4utai+Jnjn7VBLEsRi12WNfmcA5Hfiuj8L/BJ5/DOm31r8S/HiyXdnFLP9p1+WXLMgJ2+g5NAHt1FeOyfCDxlYnzdA+KmtRzDkf2jI90mf8AdLDimro/7RWjH5fF3h3xDGg+WP8AsoWjH2LF2/OgD2SivG3+LPjzwyuPHvwwv4Y0+9Pokp1EsPUJGmR9K6bwb8Zfh/4imW2i1ldOvH4Wy1RfstwT7RuQ1AHfUUiMrqGUhlPQiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKDQAVDfXVtZ2r3N1MkMMalndzgACuL+LXxQ0bwXHHZRQS6xrl18tnpNnhppm7Anog92IFcdZ/Dnxl8SbyPVvinqf2XSciSDw1ZMVjx2E55y3+62OBQBb1743f2xfS6N8KtDm8V36MUe7jBFjbt6SSDkfgDVWH4SeMfGyi6+KfjS7aKQ5OjaQ5ghiH90TJskb8a9b8P6NpWiafHY6Rp8FnbxLtRIkxgfXqavkUAcx4L+Hvg7wrarFo+g2kbr/y8SxiSY/WRssfxNdPRRQAUUUUAea/taf8AJFb7/r4g/wDRgrs/AP8AyIujf9g6D/0WtcZ+1p/yRW+/6+IP/RgrtPAP/Ii6L/2DoP8A0WtAGtRRRQAVy/jX4eeDvFVq0WsaFaO7f8vEUYimH0kXDD866iigDxSX4SeM/BEZuvhb40u/Kj5XRtXczwyj0M775B+FW/D/AMb10i+j0b4qaHN4T1BmCLdSgmxuG9IpDyfxAr2Cs/xDouk65psljrGnwXlvMpV0lTOR9eooAt2Vzb3lqlxazJNFIoZHQ5BB71LXil58O/Gnw0vJNV+Fupm80gEvP4avWLIB3FueMN/vMRya7L4SfFDRfG0clm8Uuk63a/LeaTefLNC3cA9HHupIoA7mijmigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooJxQAjccntXknxK+I+sa14pk+H3wvWO51oD/AE/U3XdbaavfJ6M/DfLkEEVT+K/jPXvGnjCT4ZfDecLNGduv6uoyunRnqi9cyHgY4wGzmvQvhX4G0LwF4Zj0fRYDxzPcyndNcP3Z3OSxPuaAMn4R/C7R/BkkmrXEsmreIrsZvNWuzvmcnqqk8qnoueAB6V3lFFABRRRQAUUUUAFFFFAHmv7Wn/JFb7/r4g/9GCu08A/8iLov/YOg/wDRa1xf7Wn/ACRW+/6+IP8A0YK7TwD/AMiLov8A2DoP/Ra0Aa1FFFABRRRQAUUUUAFcH8W/hdpHjGaPWLSWTSPEdoP9D1a0OyZSOisRyyeq55BPrXeUc0AeSfDX4j6vpHiiP4ffE9Y7XXMf6DqSLtttTXttPRX5Hy5Jya9bznkdK5j4reBND8feGZNI1mEq33re6iO2a2fsyOMEEexrz/4TeNNe8H+ME+GPxJnBuXONB1ZhhdRjHRT0xIORjnIUnNAHs9FIDnmloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAryv49eMtYbVrP4ceCJceItbH726XkabB0aZvcErgc9eldT8ZPGlr4E8DXOtTjzbgkQ2VuPvXE7cRoPq2B+NYH7PPgm90TTbnxV4nl+1eJvELC4vJmHMKEfJEuem1Sqn1K9qAOi+E3gbSPAXhWPStMj3zN893dPzJcyHq7H1/wAK6c+tLQaAMfx5q+o6H4XutT0rw/ea9dwITHYWkiJLMfRS5Cj8TXzV8L/2kPHMd1r8GtfDLXtRlh1IrHHJrOnQtaLsX90Q8q59cjPWvpD4i+KrDwd4Xm1vUrTUrqCLgx6dYyXUx4PSNAWPSvz81CC01nx94k1q58LJEmp6iZ7ZdZ+E95qNw0exRkyArjkHjFJP3n6fqhv4V6/5nt3xK/aP8ez+JvDVtofw08QWBmvCJrWLWNPma9XK/INkrY79cda9V+OXxD1rT/hDax2FtL4d8XeJ5V0/SbS7lRpbe4kB2sSpKkDHUV8geGTa+Hvih4d8QW3hWSa3066LXX9hfCy802ZFyvViW3dDxivoT4y6dpPjXxZ8PfiYf7TMU3i6ytNPstRs3tXtoyH8wNFIM/MyAjgVfLeKXd/5fmJP336f5/kZ11+0vbaTaeNvCniDXki1Tw7PHbabfWdrLO11mOJmd3RWQHczjt0Fdv8ABL446nr2seFfDWseCNdt4/ENlLLYeILmaHyL/wAqPezhA29cgj7yjrXn3w50XSfD8nx30rRNPt7Cxg1yPyre3QIiZhticAe5J/Gtvwrd6/B4p+H3irxhoa6N4c0CB7LTrxNRS4bUJLpFhQmJQDHzt6560UmpKN+qX4qX43sFVcqduif5R/4d/M+l/fFLRRUgea/taf8AJFb7/r4g/wDRgrtPAP8AyIui/wDYOg/9FrXF/taf8kVvv+viD/0YK7TwD/yIui/9g6D/ANFrQBrUUUUAFFFFABRRRQAUUUUAFcr8XPAukePfCsml6khSZPns7uPiS2kHR1P5/nXVUUAeWfATxlq51K8+HfjaQf8ACR6JwlweBqMHRZl9ckNx146V6nXmn7Q/gm+1jT7Xxb4Xk+y+JvDrG4tJlHM8YHzxN67l3AehbvXQ/B3xpaeOvA1rrcC+VMR5V5bk/Nbzrw8Z+jZH4UAdVRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjkKpYnAAyTS155+0t4ul8L/DuW308NJq2tOLHT4E++7OQrFf91SW/CgDk9HWT4ufHabVJ08zwn4LmaC0X+G6vgcSFh0PlsqEdevavb8cYrlPgr4Pj8C/DbTPDok864t4Qbu4xzcTEDfIfckZrq6ACkNLQaAMbxzpmt6t4fks9A8RvoN65+W9SzS5KD02Pwa5T4e/B7QfC3ik+KDq2valrUy/6RPdapO0Ejeoty5jT6AV2Pi7W7Tw94fuNWvd7R26FtiDLOfQDua8++Gnxsg8RePm8G+IvB+seEdWkg8+yh1R4m+2x5xuQxsw7E4JB4ojvpuEttdi346+DHh/xD4ok8UQ6xr+ma3jME9vqs/kROOVY2+8Rvg84IwehrQ1zwBe69onhu28QeKJr698PazDqhvBZpEbpo92EKKcKDu6j0rA8Z/HC00XxhPplj4S1fWdM0+VYtV1qzeL7Np7E4YSBmDHbyTtBpvxi+O+leCb6ztdP8N6p4lNzpzalM2mvGotrYbT5jeYRkYdTgZPPSkmkk+l/6/4fbqDfvO+/9aefoQ+JPgzr7+OdZ8ReEfiNL4dXxA4k1GzOh297HM4CqGPmn0Re3anaf8HPE15rWly+NvidP4j0rSZRPBpa6Hb2UfmKQUbdEc/KyggdOK7668X6VD4Jh8TIzS21zGjwon35CxA2gdzk/pW1p80lxZRTS2727yKC0TkFkPoccU4+7t0E7SWvUmooooGea/taf8kVvv8Ar4g/9GCu08A/8iLov/YOg/8ARa1xf7Wn/JFb7/r4g/8ARgrtPAP/ACIui/8AYOg/9FrQBrUUUUAFFFcFoXxa8Jan8RNa8JJe28MugkJdXU13GkfmEKwQAnJOGB9KOtg6XO9orHXxV4XLBV8SaSSTwBfR8/8Aj1aUt3axxRyPcRKspAjJcAOT0A9c0N2VwJs0ZryPwP8AtB+D/F/h/UJ/D9pf3Wsacspk0YxGORtkpjwJXAi5PP3u9V/Avx01bWfilpvgfW/hN4l8OXOpRvJFc3t1ayRqqqWywikYgHaQPemk3K39f1oEvdvfoeyUUUUgA4xg14hqSyfCP47Q6hEvl+E/Gkyw3I/htL4nCYHT94zsT06d69vrk/jd4QTxz8N9S8PhxDczRFrO47wTgHZIPcE5oA6tSCoIOQelLXnv7Nfi5/FXw5hivgY9W0djY38Ln50eMlVZv95VDfjXoVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFHfNABivF7hR48/awiQjzNN8CWnmoeoW+fcjL9fLdTXpnxI1yXw34G1TXIbKS8ksbZpVgjGWcjsK+dv2XfjL4F8P+G77WfHFzc+HNS8Vag1/cXGrRiGGRyAgCOTyPkHYc0AfUtFZfhfxFoXiLTxfaFqttqFs3SWCTcp/GtTNABRRRQBFdW8E/lmeJX8lxIhYfdYdCPevJvFGiR+OvjNZeI9PYfZfBkUu24H/AC2uWjdfLX1ULIDuHGeK9C+Imj6tr3hO60rRfEEmhXdwhVb6O2Wdo/orEA1534D+EPjfQ59Nt9T+Ltzqej2MhkksI9BgtWucg/fmjbd1Oe/TFC37BK3L/XTU5v4P/Yl/Zg+IzztGssl9rBvi5A/emL581h6b8IvFHjX4c+H/ABB4e8W2+hy3OgHTtQ+3WbTia2YJtKYZdpCooB5r0rxF8FvtviS/m0zxXcaXoOszefq2iJZJJHdyE5c+YTlN2ecDmu48QeGY7/wfH4asbyTTbJI0gYQL8xhVduwHIK8AfMORipte7fkvu0+5/kK3T1f36/f+p41r3iSz8G+HtL1o6dLqVhpUgsvDGmiQRNqF1/HKXIIQYaQYI7da9Q+DXj4eONNvxdaRJo+q6TeyWWoae84m8mVMA4kAAcZPUcHFQ/F34Zad438EWuhQ3raTcabIs2m3sMIc2sg/i8skBsjIwfWp/g34BTwNpt/9o1eXWNU1a9kvdQ1CSEQmeV8ZIjUkIMjoOBmqjfmlzbf8N/wfwG7WVt/6/wCB+J2VFFFAHmv7Wn/JFb7/AK+IP/RgrtPAP/Ii6L/2DoP/AEWtcX+1p/yRW+/6+IP/AEYK7TwD/wAiLov/AGDoP/Ra0Aa1FFFAHI/HTV7nRPhTrN9Z3d5Z3QtXW3ubTT5LySGQg4cQx/M+MdBXypZn9maz8F3Ka18LvFXiDW5LeR7jV9T8CXsk00xBO8u0XABPGegAr7ZxVDxRFLP4Z1CCGNnkktZFRAOWJUgAVEtFJ+RSd7I+Iv2c9Q/Znt/g74bfxD8GdU1DWorNGub6LwLdXAllHO4SrGQ31BrpP2rp/FvjbQ/DniTwpNceHPAuk3MUiS3d8uiXNuYsZAinwzNwdmBxjvX0L+yho+qeH/2d/Cej61YT2N/Z6akdxbTrteJhnII7Gsz9pX4b6T4k8E+I9b/si91nWDo00FnYeY00TOUwpS3J2eZxw2M+9XiWlzO17ahFXqNd21+J8WeD/G/xC8K+FbzwR4ck8V6roV5I5lvdY8JXuoW7qzFz5MYA2/Mc7skEgnvXv37HdjqMHiO012x8Vw+MLy409LPW4tVU2uracyFmzslbesWWwIyvB3c81xej/A74i3eh291oPgHVo7IwjZFrHxH1TTroEDDBrdAypyDgA9MVtfsp/C/V08a3Vn4z8L+MNFddRa7jxE4hRgARu1PcJrpSVxtkGPzNVHSWu/f+vJ/8NuRNvl/rf+v66H2L1opPalqRhRiiigDxexUeA/2r7i3A8vTfHVp9oZuim8j2xqn1KKxr2ivJP2wbJ7f4e2nja3Rjd+Dr5NTh2febGY8e4/eHivUdEvItQ0e2vYXDxzxK6sO+RQBaooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTIPAIoAWiiigDzH9rzUp7P4G6tYWTlL7WFFlaMO0jcj9FNdX4Z8JaFb+CdP0efSrS4ht7VUCywK3UZPUepNcF+04x1Hxp8OfDycibxPDc3C/3oVSQEfmRXr6KFQKOijAoA8v8T/AL4f6jcNe6VZz6FqJ6XlhcSBl+isxT9KyLLwD8aPCDGTw18SovEsKcrbeJo8cf3QbdF/U17RRQB4s/wAXviD4cuPJ8a/CfVDAv39T0qSNrUe+1pPMx+FdT4L+NXw48TOIbLxHDFc5w8FzFJCyN6EuoH5GvQK5jx98OvA/jaLy/FXhjTdWGMA3UAcj6ZoA6Czu7W8Tfa3UM6/3opAw/MVPXkNx8B7PSI/M8AeL/EXhmRf9Xa219iy/GIKM/nVWzT9ovwq5+1S6B42tI/uR20QsJ9vo0kkjBj74oA9oorxuP9oTTdLvksPG3g3xH4fumOCY7GW9gU+80abAPcmvQvCvj3wb4jiRtH8TaXcyP/ywW8j81fYpnIP1FAHRUUZz0ooAKKKKAPNf2tP+SK33/XxB/wCjBXaeAf8AkRdF/wCwdB/6LWuL/a0/5Irff9fEH/owV2ngH/kRdF/7B0H/AKLWgDWooozQAVEbm3F0LZp4xMy7hEXG4jpnHXFVvEWrWWh6LcapqMhS3tkLuVXcxA7ADkn2FfPujjWh+2ZYa3rdzKZL7whLPFal9y20YucBV9MgA/U0LWaj/Wzf6Dto2fQt5qmm2l0ltdahawzSfcikmVWb6AnJpdR1LTrDb9vv7W18z7nnzKm76ZPNfOGkeDtI+Jnhvxx8SPFdpFea1pd9d/8ACP3brl9PigjEkWwnkEMTmuA+NF1L4v0Hwzr/AI28N6p4itLjwzNb2X2Wxku/L1DZEBKQitsJcEhj0qeay8/0e3z6W72E+vb+r/Lr6H2s0iCPzTIoTGd2eMeuaEZXUOjBlboQcg147puqXsngbR/CGs6jHZpbWSS+IL6eURpawcbYzKx2o/MfB5xnivU/Ct3ol3ocD+Hr2yu9PVdsMllMssWPZlJFX3FfY0eaKKKQwooooAx/H+kW+veC9T0i6XdDdWzKw9eMj9QK4v8AZF1W41D4G6Ra3zbr7S0Npdn/AKaKSf5EV6VIoeNkPRgQa8g/ZdY6f4s+Ivh5+Ba+KJpLZfSExxgfrmgD2GiiigAooooAKKKKACiiigAooooAKKKKACiiigAqNRh3IHPantnacdaSNSMljyetADfMbaDtHPQZoaTacED35oUAycHgHP40rqd2Rjn1oA8f+JWbn9rTwTa43CPR7i5APYrMgz+tew7/AJSSOR1rx3xXuf8Abi8Kw8bV8F30gz6i6hH9a9h2EqcnknNACqzbsMMZ6YpXbHbk9KRQxYFscelDBivbINACbyFJZcYoDnOGX6YrC+JXirR/Bfg281/X9Tt9OtbdP+Pi4V2jVicLuCAtgsR0Hevn+T9rfSW8FyXsb6eNa0+98q6tWsbzy76FSN0lqdmfmGdu/HbNCs3Ydna59N+aeDt74p0bbs+vevnbUv2tPAY8S6PZWd9Hb6bNEtzqd/fWVyEthxmIbU/1nzdxt+U813fxe8a+LNI8P2fibwdqXg1NDuUVnutcS8JJY4G0QKTjkdRQ9FcmLu7Hpd5bW15A0F3bxTxN96OVAyn6g1wXjL4JfDnxGHMuhDS5W+9Po0hsZSfXfFtOfxrB0vVP2h9StxPp8/wkuoz/ABRT37D8cdKsfCnx18Q7r4uaj4G8eWPhlJrO1W4jn0RpyrAhTg+b/vU7a2C+lylb/CXx34TQv4A+J1/HCvSx1a3F75g/umaViy/UCmQeOfjf4amMfiz4cWuq2adLrQbp7m4kH/XERqAfxr2nNFIZ5Vpf7Q3w1e8Sy1/UbjwteOdottfiFrIW9ACx5r0rRdT0/V7BL3TLyG6t5BlJYm3K30NVtc8N6BrMLRano9ldK/UyQKW/PGa848Qfs+eDZLhr3wtc6j4Wv35N1p9y7nPrskLL+lAGh+1of+LK33/XxB/6MFdr4B/5EXRf+wdB/wCi1r5b/a0svi98N/g3NnxfH42tbi9t4YoNTjCXsrGVQNoiVU4JGc19EfALxPYeKfhVo15ZzI01vZxW97Cuc286IFkjIPPDBh+FAHZUUUUAc78UfBWi+P8AwnJ4c19r5bKVw7GyvHtpcjOMOhBHU14DZ/s6aXoX7VGi3+mHxlNotroLs15da9d3CLcecQIi7ufl2HOzp3xX1BRSStJSHfRo+eVsvGHgWPxd8P8AT/DOr6nb+KLyefS9TtLQyW1ok6hCszdF2gZ79a9M8M6Vf/Dz4NafoumWU2p6na2scKrGuVecqAWY/wAKbhye2a7qjvT6f1shdb/1qeEftCfD/XG+C8Uel2lzrE63q3ut2cKF5tRTBzGE/wCWmMrwey1rfsm6FqumQ+JtSm0K78P6Tq2ryXGl6Tdw+TJbQlUxmLpH0PyjgV7B0pR60RVm33/4H+QPVJBRRRQAUUUUAFePfC8fZv2qvG1ovAm06G5IHcmUjP6V7Ca8d8H/ALv9tfxTGv3W8I2kh/3jcyD+lAHsVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQCMGiigBFUL0GKWiigDxzx0PJ/bM8H3XTf4au4M/W4jOP0r2OvHfjwP7L+Onw5108C61EaTntmTc+P/HK9ioAKKM0UAcZ8cNc8I6F4P8AtHjTSb3U9OaVf3Fppkt625SGB8uNSeCAc47V85/ED4nfDWWbUvED+Pvjxp6uXmFpbafeW1tGeSEXdb4Re3J4r6+5rx79pLT/AIueKLa68IeFPCnh+50HUIFjm1O71lobiItkPiERkHAPHzc1OtyujPnf9nv4mWz6xq2qfEjWfilq/h3VIGt7Tw7q2hXuoJ5RIxI8iQhH3AAjAGA2K+xNN1rwhF8PbW+lltdI0K4g2xpqQFoqocjayyY29+D61qeDdOk0jwjpWlTMGksbGG3cjoSiBSf0rD8ZfDfwr4q8VWuu+ILSbUGtIfKSyuJ2ezcZJy9ufkZuepGeB6Vcu3yIj3Z5LpPij4SeAPiFNbfDnTdfubq8j/daboVlK2jXczZAYzojRBycZYtgcE1t/DGe8vv2qvE11qVgbK7Gm2m62aUSmAtAhZNw4PPceldN44PxC8JQ2um/CX4d+FbvTQCZI7jU/wCzliP+yiRMDVL4A+DvGFl4o8ReO/iDDY2mveIZIV+wWNx58FpHEhQBZCFLbhtJ4HNTFK6tsr/k1Zff9yHLZ+dvzT/Q9UooopgFFFHbJoA8b+MRi8UftEeB/CB+eDTftOo6gn/bMGE/99xmqvxI0vUPhL42l+JPhmB28OXhB8S6VboSf+vlFHUqN+QASS3FTfBe3PiD9pDx942Yl4bNk0CA/wAKPbu5bHuRKM17JdQQ3MDwXESSxSDa6OoZWHoQetAFXw5q1hruh22raZcJPa3UYkjkRgQR/j2q9XhVu9z8CPHn2aeSaXwDr0+YpHJK6POf4ST0jODzkfM4GK9zjdZI1dGDKwyCO9ADqKKKACiiigAooooAKKKKACiiigArx74fjzv2wPGF118vQLeDP0nc4/WvYa8d+AP/ABNPjV8SNdBytrqzaWD2+QI//s9AHsVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUGiigDyT9sSJrb4fab4nA+Xwvq0Wpsw/hCqy5/8fr1TS5hcabbzqciWJWB+oBrE+LXh+LxV8NdZ8PTAGO/tGjIP5/0rn/2Wtem1/wCB+h3N4T9uhgMN0hPKOrMMH8MUAehUUUUAUPFGqR6J4fvdXmieWOygeZo48bmCjOBnvxXhkn7TerJ4Lj8XP8CfHo0WS3Fwl7us9hjIyG/12cY9q9e+MDKvwu14sxUf2fNyOv3D096+E77xF4SX9l+1sD8QvjJ9uXR0RrB7K5Gnq2z7gbyNuz/gXTvU33+X6g+nz/Cx9Ia5+0xq2i+D28V6t8CvHlnoqW63L30jWflrEwBDnE2cYIPSvQvip8T7fwX4O0vXY/Dmqa1JrDKtrYWHl+czFd2PnYL096+Mfi54k8IXH7M89lafEP4xXl62jRItjqVlcrprNsX5GZoAvl9gd2Md691/aa8SeEZPDfg7wjq3iHxBpOow2kOpB9D0m4urhYdmzKtEjbDuBGSK1lFKF+vNb5aCjdtejf8Akdf/AMLt8c9f+Gc/iJ/31Zf/AB+uo+BfxQj+JC6zDJ4V1fw5e6HPHDdWeqeX5gLqWBHlsw6D1rw99a+HyfDmbxtL8dvjLHpcF+unuJJpVuBOWChPJMG/OWA6Vq/sceK/BGlfEbX/AAzZeLPFGsap4mdL61PiDR7m3uDHENjbpJUUPy69BSjq2vL8dP0FK6tbv+Gv62PpuiiipKCsrxxqUWkeD9T1OaQIttaSPuPrtOP1xWrXk/7Y2qSw/Cj/AIRyzfbfeJbuKytcdch1kb/xxGoAk/Y0tLhPgRput3sTR3niRjq90jD5hJMq5B9/lr1Squh6da6To9vpllH5dvaxiOJR2UdKtUAZvizRNN8R+H7rRtVtkuLW6jKOjD8iPcHFeUfCjW9S+GnjJPhZ4tnkm02QE+HNYnP+vQZ/cMf76gA9Odw5Ne01y3xd8D6X498IyaPqK7JUYTWdwv3redTuRwfZgp/CgDqaK8t+BPjjVH1G4+HvjkiHxPpAwkjHC6hB/BKh/iO3aWwTgtzivUqACiiigAooooAKKKKACiiigCvqswt9NuJ3basUTNn6A15Z+xzC1x8N73xMQceJ9Tk1JWP8QYKuf/HK1v2qtcn0P4Ha3LYk/wBoXMIgs0BwXkZhwPwzXS/CvQYfDHw70jQYABHY2qoAPz/rQB0FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIwDKQehHNeM/Bknwb8e/F/gWZilrqzDXNODfdVWIiMa/Ty2OB617PXjv7UWn3uiah4f8AihpETSXHhq7H26FOtxbyfu8H2UyF/wAKAPYRmlqpoeo2er6Pbanp86z2t3EJYZFPDqRkEVboA4H9o7+3Z/hrPpfhzS5b++1GWKFVTO2NPMUuzEZwNu6s/wCNXhe8i/ZtvvC2i2s17PBp32eCKFMs+EIGAK9C1zU7DR9Lm1LVLpLW1t1Lyyv0UD6Vz/w2+JXgXx+Z/wDhD/EdrqhtcecsaujJnplXAPY0bpr+v6/zB9Dxv9ozU9V1H9nH/hVWneCfFl5rWoeHra1SeDSWezjk8lAQ8oPy4OQeOMGrfiaz+LGg/HfS9W8DeB7HW1XwXBZXUmo6g1nBE6zliqyBG3P0+X05r1Hxx8Wfh54P8QxaH4k8T29jqEwBS3aKR2Oen3VIHUdak8ZfFP4f+E9WsdL8ReJ7WwvNRRXtYpFcmRWOAeFOMn1xT5n97f4q1haJWfRf8G/4HzP4+8MfFrU/hLqVxP4CZfEknxBt9RTTbeZpYWVbqN9wl2g+Xwcvt4AzXaaLafGDXP2tvCev+OfANlo1jp2hXcAudM1Fr2Hc8sJxI5RdjfKcDvzX0TqmpWGm2P22+uo4YMgeYx4yenSrEMiTQrLG2UdQyn1B6UR91RX8v+SX6Dvq33TX3u/6j6KKKQBXjHxWtz4s/ai8E+HkO+PwxC2vzqDxz5luAfX74OK9nrxX9nZ5PEXxu+I3i6UZht9QXS9Pc/xQCKKQ49t+6gD2qimzOkcZkkdURRlmY4AHuaIZEljWSKRZEYZVlOQR7GgB2aKTpTHlhSZInmRZJM7ELAFsdcDvQBwPx4+H83irT4Nb8PSrZeKtGbztKvOmWHPlOe6MQuQeOOlWPgb8QYPG2hzW95EbPXtJf7Pq1g/DQygdcdcEEN0/irt4ZYpN3lyo+04O1gcH3ryj44eDtW0vXIfib4ETbrOmr/xMLJOF1SDujD+8ODng/LjNAHrVFc98MPGOkeOfCFrr+jyExTr88T8PC3dGHYiuhoAKKKKACiiigAooqnr2pWWjaLdatqMyw2tnE0s0jHhVAyTQB5J8X2PjL9oLwj4HhJe00cnXNQx907CYxG318wHB9K9mUBVCgcAYFeP/ALLmnXur3niD4navEyXPie8Js4n629vGPLAHs2wP+New0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFU9e0621fRbvS7xA8F5C0Uin0YEf1q5RQB43+zPqU3hfV9U+D+rlluNBfzNJZukti2REq+pVU5x0yOleyV5X+0p4X1Frew+IPheMjXvDDmbbGPmurbgyxYHUlVwPrXbfDXxVpnjPwdZ6/pUyyRXCfOoOTFIOHQ+6sCD9KALniTQ9P12CG31OLzreKQSGBvuSEdNw74IB/CvKbLwzbz/tjHxNoNssMdjpRh1iaNcJOWVhEuehZTuyOozzXf/F+fxtD4MuB4B0qx1DV5BtjS8vPs6KD33bTzjPavPPgrD8cdPubPSPEHg3QNG04b5r/UINc+2zXMpAP3DGuNxHXPGaI/Fft+qt+X6BL4bf1o7/mUdc1H4hfCrxxeeJfFVto/iDwrq9yBc3NlbmG508DIR5WdjvVVyMKB2rL+OXgXxtqHjjVdT8OeG49b07xVpcFu1293HD/Zu2dZSxDnLDavRe5rrNcs/i14+u7jwp4t8FaFo/he4lZZ7221r7VNPCDgL5RjXaWGDnPGMV3/AI0sdck8P2+j+H0hVZdsM88kmDBEByVX+IkDHbGc1PKvZpfL5Wtr/nuH2n9/zv0/qx5j4i8VaF4e0ezuvF95K/hbw7JHaxvHC076neAgApEgLsEbaQQMc16v4B8U6H4y8Nw654eu/tNlMSASpRlIOCrKeVIIIIPPFecfH34aa1eeG/DM/wAP7O1ur/wreLLbWF7c+VHcplN2+TBwQF64NbX7MngbV/A3ga6t9eMC6lqeo3F9cQ27booGlleTYpHXG/GcDOM1Sk5OV/62/wCD6WDlSirf1v8Alp638j0eiiigDB+J3iODwj8PtX8TXBXytLtHuH3dMKM1yv7KegyaF8EtK+0j/Tr4SXNy7Dl2aRypP/AStZf7ZDfb/hlaeDY2/eeL9Vh0dkB5KShwT9OBXp+k266Z4ftrUIdtnaqm1BknaoGAPwoA+cP2lj8dNW8XxfDfR/F3hP7J4qkmWGCPSp/tFraquW86TzNpypI6DOCBWh8P7D49WE1x4C0H4gfDsS+Fra2hnhPhy7Hlq8eY/m87BJVe1ZPxgf4deLviO/iPVfBnxut9Vt4RaC40Syu7aJkXP3fLYA/ePPevK/Bun+BW+MHjFJdK+PjW6rY+StrLe/a1/cnd9ow+7r93PbOKVPa3l+un4MqfV9rfi1c+nPEafEDRvgn4iu/iT4ttWuYVD2954UibT5YUyowGlLgMWPXpg18j+JNb8R3vxS8KXj6540eRFumgeb4j6W0qZi52yBdsWR13deg5r6e0LxBqOo/COTwx4C+HPiLWFs1MUtv4+8y2M8Z+bJklDmUgkcH09q8IvfhfF4U029+JPxB1/wAF+DG1KQWiaVeeCrWaNFQ5BiV2UE/PywHIAobSqN9F8vL9UTq4W7/8P+n4nI+AdY+IZs9bXw54q8S2N82oOUmuPiBpqwg725kQ4Mn1UgHn1r9CfDMjz+GbB550uJGtY/NkRw6u20bjuHB5zyK+FvDHwn03xLeRaL4B8f8AgXxPa685bUp7TwdaSS6YrnPUMTHwx4yMYr7l8F6LB4c8K2OiWzb47GBYg2MbsDk47c9qtaU0n/WhNv3jf9bnkvxA03UPhH46l+IXhyCWfw7qkwHiDTIR/qmY4+0oB3yQW68J2r2Hw/qthrej2+qaZcx3FrdRiSKRDkFSMj+dT3ltBeWctrcxLLDOhSRGGQykYII+leI6XJdfAzx6ulXRkfwHrtyTbXLsSNLuHbPlknpGxY45AULwKko90opsMiSwrLGwZJFDKw6EHoadQAUUUUAFeNftLajN4r1zS/g/o5Lz624l1dl+7FYqR5qN6F1bjPoetejfEzxXpngvwbea/qkyxx26YjUnmWQ8Ig92YgfjXFfs2eFtQitL7x94njY6/wCJ3E7CQfNbW/Jii56FVbB+lAHpOh6dbaTo1rplogSCzhSGNR2VQAP5VboooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEZVZSrAMpGCCOteHaysnwS+J39rW6FfBHiW4Av1H3dNuT0kHoh+cn3I4r3KqHiTR9O17RLnSNWtI7qyu4zHNDIMqyntQBbtZ4rm1juLeRZI5FDI6nIIPcVJXg/hXW9U+CXjCHwZ4quZrrwhqUuzQtTfJ+xE8+RKew4JB4HzAda92hkjljWSJ1dGGVZTkEeoNADqKKKACiiigAoooJwMmgDxXx0ZfEn7YXhfRh8+n+H9Lnvrof3bnfE0J/75L17VXjX7NkyeKPiP498ekb47zUI9PtW7KLYPDIB9WUV7JntQAtZel+HdI07xLqWvWlmI9Q1gRC9m3E+b5SlU4PAwCRxXmvxC+JXjTRP2iPCngqHwzFB4f1sXO/VJplcztHHu2xoDuQjgksOc8V0nxw8W3nh/SrXT9D1jRdO1vU5hHay6w4FvGvRnYblLAEjgHNCfuqS66Dejafa/8AX3HSeNfDeleLPDdzoWtwyy2N2u2VIp3hYjIPDoQw6Doa5TwT8Evhr4Vu5rjTPD5madQrjULuW9XAz0WZmAPPUCue8beLviV4A+D91qfiXUPDura/czpFps2nWkkVom4qMyK7knqehHatD4I/EDXr2HxHpPj6bTW1TwzdSJc3mnRNHbyxjoVRiSDweM56UaJu39f1dE3vZP8Ar+rG140+EPw88UW8cOo+HYYViOV/s+R7In6mEqT+NdlY28VnZw2sCkRQoEQFixCgYHJ5NY/gDUdW1jS5NS1K3jt4biQmzjA+YxZO12/3hg47d63qNbWHo9Q9qy/GXh7SvFPhu60LWrVbiyvIykiN6EYyCOQeeorUooA8Z+EniDVfh/4yHwu8aXTSQSEnw7qkp4uo8/6pj/fHzY9l65r2b3rlPjB4G03x54Tk0y8BiuYj5tjdpxJayjo6nseo+hNc18B/HWpXV9c+AfGpEPirRlxI+NqX8XQTR565w3GSRigD1Co7y4htbWS4uJFjiiUs7scBQPWnTSRxQtLLIscaDLOxwFHqSa8J8Uazqfxw8XzeD/DFxNaeDdNl2a3qSZH29hz5MR7jkZOCPlIoAm0JJPjZ8Tv7cukZvBXhq4I06Mj5dSuB1lPqgBUj3U8V7ioCqAoCgdAB0ql4d0nTtC0W20jSrWO1s7SMRwxRjCqBV6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDJ8a+HNH8VeHbjRNcso7qzuV2sjqDg9iM9CCAQfavH9D1fX/gbrEeheKZ59S8DTNs0/V3JeXTz0Ec5P8ACPlG4n14r3aqur6dY6pp8tjqNrFc20ylXilQMpH0NADtMvrTUdPivrG4juLedA8UsbbldTyCCOtWM14jqXhDxh8I9Ql1r4dpca14dkcyXnhyRy0keTktbseSevylgOa734X/ABL8L+ObZ10u9Ed/b/Ld6fP8s1s/91h0zyOhPWgDsaKKKACuc+Lusr4f+GOvawX2Pa6bO8XPWQRsVA9ycV0deO/tlXVzc+END8J6ef8AS9e1y0Tb6wRzRmb/AMcJoA6D9lvw/wD8I98FNJj2BZNSVtTlH+3cnzmz75c16FVfS7SKx0y2sYBtitoUiQf7KgAfoKsYoA8Z/aC/5OB+E/8A19an/wCk6V6F8RfAXhHx1pv2LxToVnqKqhSKSaFWkgz1MbEZU+4rB8ffBP4eeM/HFr4u8QaVd3GrWW37PMmpTxLHtORhFcKPfjnvVr4kfCXwX47nspfEdrqErafEYoDb6pcW+FOOojddx4HJpRVqfK+7f3lSd2vS34t/qcN8GfCMXij4c+KPAHia4vNT0Cz1EW2l3slyzTyQBVfcsp5yr5UHttxSaZ4M0Lw/a6toegrql1o+imXUtWu7q9ee41C5Rd3ktMeTgxqSOchvevYtB0XTNH0GPRtNtxDZxR+WqBjnHuepPPWk0HQ9M0XSP7M0+2CWxzuRmLl8jBLE5Jz705a7dl+C/pkRXfu/x6fofPvwL+LPjy/+Inh+w8QX+nXukeKo72Sxs7azWGTTUgkRFQsOZOHGTxjHvX0nXD+BfhF4B8H+KrrxHoGifZ9Qu3kd5XuJJApc7m2KzEICeygV3FC+FDe/9f0gooooAK81/aJ8GRaro8Xi3S9Qh0fxB4fzcWuoOwRWUctHI3HysARz03E1sfFL4meFvA1uianeCbULni00+D5p7lv7qjpng9SOlcHpng7xf8WdSi1v4jrPo3h6NhJZeG43KvJjkNcMOQenyhiOPegDG0/WvGvx6s7XSLVW0XwrHGg1rUbeQ7r+THzx27jHyZ3DeD3BxXuXg3w7pHhbw/b6LollHa2dsu1EjUDPqTjqSckn3q5pNhZaXp8djp9rFbW8KhUiiQKqj6CrNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAHXrXn/xS+Evh7xddJq9q0uja/b822rWJCTIfQnBBHXt3r0CigDxFfGnxQ+GjCDx9ov/AAkmjR8f21pSkPEvrJGSXdv90V6R4D+IHhHxhYpc6HrVtMZP+WEjeXMp9DG2GH4iulYbhgjIPUV5144+CXgPxFeSahFYTaLqUhy1/o8v2Sdm9S6cmgD0bNeM65OPFH7Y2laQR5kPg3SnvZF/h3XSNGufcGKiPwz8bPBfy+G/Ell4q09f9XY6kohmA9DcMWLflWD4d8aP4K8dar4p8ZfDHxFp2ra1HHDfT6WJNThCoWKgMqKAoLtzQB9CUV5vpvx5+FlzIsd14rs9Lkb/AJZ6nItu2fTDHrXWaP4z8JarCJdM8R6ZdxkZDQ3KsMfgaANyiq9jf2V4WFpdRTFfveW4bFF9f2Vkyi7uoYS33fMcLmgCxiisLWPGnhLSYfN1PxHplpHjO6a5VRj8TXJ6n8efhZbMyWviqz1WRf8Alnpki3DZ9MKetAHpPtRXjr/GjxBrzmPwB8Nda1F84V9ZifTYmPs7KRj3pknhj41+NPl8S+JbPwtp7/6yw0xBLMR6C4UqR+VAHfePPiD4R8H2MlzrmtW8TR/8u8beZMx9BGuWP4CvOG8ZfFL4mZh8B6N/wjOiycf21qikySr6xRgh0b03Cup8DfBLwH4cu49QksJtZ1KPldQ1iX7XcKfUO4yK9EAwuFGAKAOA+Fvwl8O+ELh9WnMusa9cDNzq18Q80h9M4AA4GOO1d+B2peaOaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKbIiSIUkRWU9QwyDRRQBjal4O8JagrC+8M6RPu6tJYxlvzxmuV1b4FfCzUZzLceGpI2Jzi21S7t1/75jlUUUUAZl9+zZ8H7vb5ug6wu3p5XirVIvz2XIzRY/s2/B+03eVoWsNu6+b4q1SX8t9ycUUUAaek/Ar4WadcCa38NSSMDkC61S7uF/wC+ZJWH6V1em+D/AAnp6qLHwzpFvt6GOxjB/PGaKKANiNEjQJGiqo6BRgCnUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k="]
math
multiple-choice
44
已知直线 $m / / n$, 将一块含 $30^{\circ}$ 角的直角三角板 $A B C$ 按如图方式放置 ( $\angle A B C=$ $30^{\circ}$ ), 其中 $A, B$ 两点分别落在直线 $m, n$ 上, 若 $\angle 1=20^{\circ}$, 则 $\angle 2$ 的度数为()
$20^{\circ}$
$30^{\circ}$
$45^{\circ}$
$50^{\circ}$
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACEANADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACimv93JOKp65f2emaPcajqFzFbWltGZJZZWAVVHJJJoAvUV4b8FfF/wDwnfx01bXbPxDp+paSmhwCzg0++SaO2Jnm4cKSBIy7WIPI3AHpXuK0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHIxWQDI5Hc0sZ+Y5zx+tc98QvBdh4vjtVvdR1Sy+ylipsLnyi+ccNwc9K5j/hSfh4f8zH4r/8Gn/2NAHpWRRkV5t/wpTw/wD9DJ4r/wDBp/8AYUf8KU8P/wDQyeK//Bp/9hQB6TkUZFebf8KU8P8A/QyeK/8Awaf/AGFH/ClPD/8A0Mniv/waf/YUAek5FGfSvMJvg14fj3lvEvilVQZLtqvAHv8ALVbS/hV4P1NWfTfGfiG8jU7We31pZFB9CVXigG7Hqs7EJwM5PQdT+dcX8Q/CmveJfEWkvF4oWz0SzmEl9pP9nCT+0AM/K0pcbV6cbTyK8v8Aip4FtvBniDS9Tvda8Sz+Ept1tqcyagTNYysV8qYnGPK4ZSMZy6nOAc6Xjvwf4I8NeD119/FXim7S4wlhDb6qGe8kb7iRgJzn9AKAOu+H/wAP9Y8N/FDWPE8niezuLHVwFTS4NFW3EAXhf3gc5x3+XmvR1Ir5Eh0DVPh/q2nJ8Vde1mWy8RCSaD+y71xNpIHJjlUhvNCqVzIu3qfk4r2TTPhR4T1HTItRsPFvia5tZlDxyxauGVl9iFo6Aer5FGRXmkPwW8PyRq48SeK8MM/8hT/7Cnf8KU8P/wDQyeK//Bp/9hQB6TkUZFebf8KU8P8A/QyeK/8Awaf/AGFH/ClPD/8A0Mniv/waf/YUAek5FGRXm3/ClPD/AP0Mniv/AMGn/wBhR/wpTw//ANDJ4r/8Gn/2FAHpORS15r/wpTw//wBDJ4r/APBp/wDYV3PhPRoPD/h+20e2uLq4itQwWW6l8yVssW+ZsDPX8qAE8ValJpGg3mpRWNxfNaW7SrbWxQSzEDO1d7KuT/tMB6kV5PZ/tKeD7mFM6PryyzaIdXhh8iLfKFKh4F/ef6xS3zZwgAJ3YGa7/wCNWka14h+G+raBoFwtvfanaSW0VwX2m33gr5g4OSM5xXlXiz4Lakmn+J7jw5p+mfbp9Di0PQY5LtoxFaMoW53PtbazDODgnnnNAHtXgvW4PEXh201q0WVYL2ISxrKAGQHscEjP0JrWrH8C6edL8K6fp72kVrJa2qRNDFJvRCAAQGwM9OuBWxQAUUUUAFFFFABRRRQAUUUUAZfijS7XWtLn0u9aYW1wmyYRuULoeCu4cjI44INeb/Cvwlp2h/HLxHqvhOxg07w7LZpaz21qgjtpbxWX5kQfKCqhlYgck816J400y/1Xw/eWOma1caPdXERjjvoI0keAkY3KrgrmuP8Ahd4A1vwUY21b4hX+sabY2zLHbTWdvaxx9zK5iVS5xnls9c04ky2Or8aaho+n+F7698QPB/ZkUDG589AyMn90g8HPpXgHgP4Gv4s1JPGc+sa54c05ZZbjwtokN4xTTM7dtzh84ZsN8n3ArDC5JNdzpsc3xi8VR6zc7l8DaLcb7C2dfl1i4U8TtnrEhB29i3P8Ix6ypVWxvUbVBIB+7/n+lJbldDzH4V+DvGM3jrUvEvxKuNPvry0gXTdJa2QrE9tjc05QkgSOXYNj+6BwMCo9a8I6/wDD3Up9c+G9uLvSpmMt/wCF3YiJ+eXtD/yyf/ZHyeiitXUvjN4It9QuLDS5tT8QXFnKY7pfDulzal5Djqr+QrbWB6g8ir3g34peDfEut/2La381nqjKSmn6navZ3LY6lY5ArHHfA4oA1fhx420PxnpH2vSJ28yE7Lm1lGya2k7pIh5BFdFG4kXcvTPX1rz34ifDwX2tDxZ4V1BtE8UxrtF3EvyXqdorhBxIvuQSvUYIqT4b/EZL/Wf+EQ8WW/8AY3iqNC32SU/u71BgGW3fpIvqASVyM4yKAPQAaKa0ijv+A70B1LbQecZoAdRRRQAUUUUARzRlzkHHHNCxnqxye4xxUlFADI02sxJznpx0FPoooAKKKKACiiigAooooAKKKb3oAbKwVufr+NeS+MLu7+Kfiy48D6PcSJ4Y02TZ4i1CE4+1sD/x5xsOoP8AGR0AKnk4rQ+LviPVNX8QR/DnwXceTq99EG1HUlGV0m2PV/8ArqRnYvrgnA5rs/h/4c0vwp4Yt9E0e38m1t1AG7l3PdnPdj3NAFvTrGy0zT4bOygEFtaxiOFEXCoAMYArzTxxNe/EH4mN8PbGW5tdD0i3S58R3MMm03JkLCK2UjnojM/sU9a9YmxtH1rzT4GyJH8SPiTZz4+2N4kFyAfvfZntLdY/w3xzfrQB2/h3QdK0LSrfTNJ0+G0tbZQIooowFTHpWf488FaF4w0z7HrmnrM0b+bbzphJoJAcq6OOVYHBB9q6eigDzP4J6xq8N/qfgPxRcNc6t4edfKvJDzfWrA7Jf97H3vciui+IfgvRvGmirZ6tasZIm821uYjtmtZB9143HKkc9K5xWWb9rJ3t/uWnhOSO82f89Hubdo8++1Xx7Zr0uM5Xn9KAPI9O8WeIfh7q1vofxLk+16TOfKsPE6IfLLdo7sD/AFbdMOflPcg5Feq2M8c6+dE4eNxuSRejD1z3pmvWNjqWmyWWo2sVzbTArJFKu5WB9RXkGtR6t8EQ2paXcHVPA4ObjTbiZRcaWCeWgdyA6D/nmSCMfeNAHteR0zSFlBALDnpzXJJ458NyfDe48dw6h5mh21i+oNcop5iVC5O0gdh0rzrwXp/xG8feBR4+v/FeqaFfXcT3WiaLpjottGmCYkuQykysSBnBTgke9AHuW4ZxkUtc/wDDuHWoPBdhF4hnM+rCLN3IyhQXJycAE4Htmt9fu/40ALRRRQAUUUUAFFFFAATjrQDmmyfdpuSMYoAkoqIF8Dn605iwXNAD64T4weNLnw7Bb6NoMK33iTWHMWnWh+6vrK+OQi5yTWj8S/Gdn4O8NNqdyWmmkkFvZWiLmS6uG+7GoHU8E8dgTWH8HfCN/Z3d1418WMt34p1vBnfIKafCOFtYR/CqjlvV2c96ANT4S+CbfwdobrLdPqGrX8nn6rqUo+e8mbljj+FM8KvZQB2rr4c4OeuentTFHBwfw9KVQV6GgB04yv3sDv715n8S9A1fRvGVp8R/B9q11fxQfZdZ06OTb/aNqCShH/TSMl9vqHIOeMekszDn07U1lRV2gKM8jP8AICgDjvBfxQ8IeJbfda6xHaXURK3FnfEQzW7DqHVsYP0NUvGXxY0LTLxdI0IP4j16ViINK05tzOfVpOVRB1Lc8dqm+LS/CS0sf7R+I2n+FpY2wFk1izgldiOijzFJJ9K53w7r109q1p8JvhTBplo4AW+vLBdOtQP73lgK0i+m00AdF8HPC19oOmXuv+JLhLjxFrkv2rU5gf3ceAdkMf8A0zTOB39TUnin4qeD9DuhpqX8mpam3+rsNNT7RMx9ABx+ZrJk+Gev+JGE3xB8b6hex8Z03SJn0+1XkHaHhKyuOMYdyCOua7jwb4U8N+F9P+yeH9CsNMiJy62tukfmH+8+0Dcfc5NAHDNqnxb8Vx7dI0ix8H2Lni61TN1eOPaFSgjb6lh7VZ0f4Q6DJdC+8W6hqfiy+6mXVpwYj/s+QgWLA91J969IMaE520CNB/D+dAHN+PfB+m+JPhjrHgrYtjZatp01j/o0aqIFkjKZVQMcZ9K4T4d2vxj0nw/p/gy+0fQbaDT1WE+IIr5pDNChHItSuUcqMZMjAHnB6V6/sB9fzo2L3FABCu2FVLFiFALHqfc06iigAooooAKKKKACiiigBGGaQrkYzTqbI4RctnHsKAEcYGfy4rN8U67p3h/w/eaxrE6W1lYxNJPI57DjAHckkADuSB1NXbu4iS1eWSVYo0Uu8jsAqKOpJ6YFeS6LDL8XfGKa5eCRPBOi3G/TLd1K/wBrXC8eewP/ACyXkqDyTg8Y5ALnw10O/wDGHieP4meLreSFwjJ4c0uY8WEDdZSvTzZMDPcAKO5r05YlORweO47U1QIsAsqgDpjAA/pXI+KPir4K0SZrJdTbVdQVigsdLia7m3/3W8sEIf8AfKigDtFAUDBqrq2pWWm2r3l9dW9taxruknnlWNEHqWYgAV53Hqvxb8YLjS9HtPBdjKcC51ZluL5R6i3jJj+mZQfUdqtaR8INDmvI9R8V6lqHiq+jO5ZNSmJijb1jiHCj2yaAI9Q+MOl3922n+BdF1TxddcgS6dCVsh/29viE/QPmo10H4qeKmH9v+JLXwvYyDDWOiZknx6NM33G90Jr0axsLeztxBaRR28ajASJAo/ACpwh+X296AOP8G/CvwV4a1E6raaSt1rDjEur3x8+9l/3pmyx/OuvEQGMMRjpipKKAGLGoOe/qetORdq4FLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjMB1pkzLt+906881zfxefUIPBtxead4kh8PNa4lm1CaESJFGvXKnjvXjXhnW9W+Isk+jeFP2hdI1C4eE5Sw0+Evg8blJX69KOoGr8XPG+g+K/Ek3g6fxBDp/hXS5gPEF6kv7y9Yf8ucarliCeHYdtyjrkb1j458Q6tYw6d8NPAc32CNRHDqOryCztUTH3o0VWZ8f3SEznrXGfDn9nHVvBCAaB4p037QrmRru70tbqbzCfmYPKWKkkknGMmu5/wCEP+Lqt/yVCHHodIi/oOaAOPvNB8V33xksPDnxZ8Vz6hpeuWTyabBo6GwsxPEw3wyjc8jMVkQqQ4ztfivYdH8H6DoulPYaDYR6VuhMfn2aKJsepdgSxHq2a8e+MPgD4wXqeH7218bDUrrTdbhuIRDpMYa3+SRWkY4+7hjke49K6648I/GAwkxfFK1V9pxu0iPb7Z4z196AKX7HCXcHgDXLK81W+1J7PxZq9v8Aa76bzJpAl9Mo3EADOAOgAHYAV7DGfoK8C+Enwl+MvhLTtQtpfilpbJqGo3GoSfZtFAPmzytK+S5Yfec9K61fCHxd6D4oQDj/AKBEX+FAHqWaM15f/wAIh8Xv+iowf+CiL/Cj/hEPi9/0VGD/AMFEX+FAHqGaM15f/wAIh8Xv+iowf+CiL/Cj/hEPi9/0VGD/AMFEX+FAHqGaM15f/wAIh8Xv+iowf+CiL/Cj/hEPi9/0VGD/AMFEX+FAHqGaM15f/wAIh8Xv+iowf+CiL/Cj/hEPi9/0VGD/AMFEX+FAHqGaTcvrXmA8IfF3PPxQgI/7BEX+FP03wp8VYdQt5Lz4kw3MEcqNNENLjTzVByRuA4yKAPTAynoRS5zXhPxa8T+Lrf43XejeGPEl7Da2nhmS71OGS1ga1sMsfKnV9m/zG2SgKzFTtzjg59M+B9zrV78J9CvfEF293qFzaCWS4kVVaVWJZGYIAoJQpnAAzQB1VFFFABRRRQAUUUUAcX8etal0L4Z6teW5b7S9v5FsqgktI+VAwOvU/lXj3wm0jUrD48eFfBfjaLTRqPg7w352ito2428yMphkeYv8/mbkbPO09epNew/Fz4caZ4/+wf2nq/iCyXT5RLCulam1qN46OwXqRk4+tN+GPwv8N+C9Z1LW7Q6hqGsasqJearqt211dyogCqhkbnaAOBSA7CMnzh05z09PWpqMDriimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcnrngXw7qX9ui5t5vM8RwRwai63Lq7pGWKBWBygG5sbcck1ueFdJttC8O2ej2clzJb2UQiia6uHml2jpudyWY/U1f2j0penAoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k="]
math
multiple-choice
45
如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以$\mathrm{A}$为圆心,$\mathrm{r}$为半径画圆,选取的格点中除点$\mathrm{A}$外恰好有3个在圆内,则$r$的取值范围为()
$2\sqrt{2}<$r$<\sqrt{17}$
$\sqrt{17}<$r$<3\sqrt{2}$
$\sqrt{17}<$r$<5$
$5<$r$<\sqrt{29}$
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAD0ARkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKgvry1s4TLdzxwRggF5GCrk9Bk1VGv6Gf+YxYfX7Sn+NAGjRWd/b+hjrrOn/+BSf41HN4l8PQxmSXW9OVAQCzXcYA/HNAGrRWcNf0M8jWdP8A/ApP8aX+3tD/AOgzp/8A4FJ/jQBoUVmyeItAjjLya3p6qoyWN0mB9eaSPxFoEi7o9a09lPRhdxkH6c0AadFZ/wDb2h/9BnT/APwKT/Gm/wDCQaFuwNZ08/S6T/GgDSorLtvEnh64hEkOuac6nut3Gf5GpP7e0P8A6DOn/wDgUn+NAGhRWd/b2h/9Biw/8Ck/xpkfiXw9IxWPXdNcqcMFu4ztPoeeKANSis/+3tD/AOgxp/8A4FJ/jTJvEWgxIzvrNgFUZJ+0p/jQBp0V872/7avwSl+M4+HP2rWEuGuzaDV2tov7OM3QLv8AM8zlvlz5eMnrjmvdV8RaEwUjV7HDd/tUeP50BsadFZ/9vaH/ANBnT/8AwKT/ABqNvEvh5ZRE2uaaJCMhDdx7iPYZoA1KKzhr+hn/AJjFh/4FJ/jQdf0IddZ0/wD8Ck/xoA0aKypPEvh6NkEmt6cvmNtXddxjJ9BzzUv9vaH/ANBnT/8AwKT/ABoA0KKz/wC3tD/6DOn/APgUn+NRz+JPD0Kb5td02Nf7zXcYH55oA1KKzV8QaE3TWLD/AMCk/wAad/b2h/8AQZ0//wACk/xoA0KKzW8QaEOus2H/AIFJ/jWipyoPrQAtFFFABRRRQAUUUUAcf8aIoZfDdlHMivG+s2CujJuDA3CAgj6VrJ4U8M9/Dmk/jYx/4VmfGL/kXtP/AOw7p/8A6Ux11i9/rQBjSeE/DLLj/hHNI/8AAGL/AOJrl/ip4b8N2vg+aWLRdHt/3ifvDbWkYHPrOpj/ADGfSvQJBlelct8XJvJ8GSSeb5aiWPLfaBDj5v7xR/y28+ooAv2vhXwybWM/8I7o5yg5+wxensuKk/4RTwz/ANC5pH/gDH/8TWpanNrGf9gd/apKAOR8ceGfDcPhLUJE0HSImW2fEn2S3ULx1JkXZ/31xUfgfwz4am8L6dI+g6PMz24PmCztm3D1zEoQ/wDAeK2vHz+X4P1F923Fs/Pm+Xjjrv2tt+u0/SmeBG3+F9NdZC+bdeTL5m733bV3fXaPpQA//hFPDP8A0Lmkf+AMf/xNVrnwn4ZSGRh4c0ncqk8WUS/rtroar3HFrIB12nv7UAcV8J/Dfhu48IpI+i6NcHz5BvW1s3HB6ZgUJ/X1rpf+EU8M/wDQuaR/4Ax//E1n/CCbz/Bccnm+Z++cbvtAm7/3wiZ/75rqKAMZvCvhnbz4c0j8LGP/AOJrlPAfh3w5NqmvCXRdGmEd+QF+zWbeVyflPlKGB/3/AJq9DkzsOK5HwBKJdU18CVjt1Bhg3Il2cnjHlrs+mW+tAGv/AMIp4Z/6FzSP/AGP/wCJqtfeEfDM0MkD+HNLWOSMqzJZxg8jHGBnPNdCM45pjD95n2pNXC9j4K0v9hi3f9qae+fxTZ/8I3Z3q6n9iR1a7I3hxEydk3EAkjkd6+2bXwj4YhRYF8N6T5aKAv8AoMfb/gNVNDlz8UtWhMuStpGdn2gNj7vPl7Bt+u859BXVU07ITVzH/wCEU8M/9C5pH/gDH/8AE1yureHPDi/E/S7ddF0dUe1kPkG1s8v97kKy+bx/snHHNehVyWry4+KWlxGQ82kh2C4C7vvc+XsO7HrvH0NAzSh8K+GDGNvhzSMf9eMf/wATRN4T8MsvPhzSOP8Apwi/+JrYt/8AVjnPofWllGQOKAPPvHXhzw5b6toSJoujwrJfqCDb2a78kfKBKuT/ANs8NXV/8Ip4Z/6FzSP/AABj/wDiay/iBN5eteHx5uwSX6r/AMfAj3dOMbG3/TK/WusoAx/+EU8M/wDQuaR/4Ax//E1zHxa8OeHLbwk8iaLo9sfOjzI1rZoBz0zOpT+vpXf1yvxgl8rwi7GUxjzo/mFyIMc/3yj/AJbefUUAW7Hwr4ZMK58OaRu2Lk/YYvT2XH5VMfCnhrHHhzR//AGP/wCJrRsM+WpHQoMgnpxVigDgPi14c8P23w51i5g0HS4pI7RikiWSBkPqCBkV3dqAtrGo7KP5VzXxm/5Jbr3/AF5PXTW3/HvH/uigB9FFFABRRRQAUUUUAcd8Z3RfD+nmRwq/27p3JbGT9pjwK6CPVtOLKBf2pLEEYmUg5zjv32t+RrnvjXbwXHh3TVnjEirr+nMASeGF1GQePQ81qWvgzw1AymLTEXy9m353ONhcr37GR/zoAuNq+mugxqVptcZRvPXBypYd/wC6C30BNfJX7dX7XSfDXxfD4G0LQf7VuFijnvJ11J7byyfmVVeI7jkYPuDX1KPBPhiK3jjTSY9sKKiDzH4CxNCO/wDzzZl/H1rwb9r39lD4dfEhYfEoTVNL1iARwvNpkZmNwgAVQ8ZBJCqAMjHTnNL7QHrnwP8AiboXxE+FWj+MdPnW1i1O1Ept7mdfMhIwGVuexK5PuK6/+1dPVth1C2445mXk7tnr/eO368Vy/gb4U+BPDPhCx8P6RoMdvYWlu0SRB36PsLk5bOSY0P4Vt/8ACHeHPmP9mJlpDITvb7xmExPX/noA3/1uKpgQ+MNXsf8AhF77y9RhWTyDsMdwQxySBtMeX5IIG0ZyDimeB9WsH8KWDf2pDIxt4/ne4ZmfKkgkyYYkgE/NzgGqvi/wf4fi8M3jW2kK8yQZiVRLI2Ud5FwqMGOHdjgEHmo/BHhHQF8M6ZE+jrC0dtFiMiZChRGRRtdiwwsjjDEnmkB0javp20Eahat8uSRMvTbvz16bfm+nNR3Oq6alnMzalaoqq2SZ1G3ABPfsGU/8CFVT4M8NEEf2XHgp5eN7fd8nyMdf+efy/wD1+ahvvB/huaznSXSo2WRZQyl353oit0PdY0H4UAUPhXrFkfCq+bqiMRLJnzriVmGHCkZnAcYJA5GMkCuj/taw3Bft1sCWAH75ecttHf8AvAr9RiuR+GfhHRZfCu680cRzSTSlw8c8THdKspysrs3Lop6444wK6KPwf4cSRZF0yPcjh1O9uCJTMD1/56MW/H0oAuLq2nMw26hakNjBEynrnHfvtbH0Ncv4D1iwk1TWTJq8citfHyy9zKyqNrMNvmAKAVBb5Mrgda2ofBvhq32NHpka+X5e35242b9vft5j/wDfVcv4F8HaDDd6xDJoIhiivdsO6O4TcgjaIYMkhDDy2K5TA56UAdr/AGxpoRi2pWg25LZnX5cKGOef7pDfQg0f2tpwkIa/tUYBtytMvGCAe/Ysuf8AeFUJvBPheWGSOTSYysyssg3v8waJYj3/ALiKv4UXHg7w3NIxk0uNi+/cS7c7yjP37mNP++aAMvS9Ysf+FmapH/a0ZVbeNSpuZSituVeAw8oHd8vyknJwec10n9rWDOAl7bNuxtCzLySSAOvcgge4Ncfo/g/Qz8StVdtFVYniSQSGOcK7+asxw5fyz+8G7CqDkenFdJB4O8OQyxyR6aitEUKHe3BR2kXv2aRz+NAFtdX05o1ZNRtZAQMETL8wIJGOe4BP0Brm9Y1ix/4WRpwGrR+WLORii3MuwjYzZZVHlHC/N8xBxyO1a0XgvwzHGiR6VGqxhAgDt8uxHRe/ZZHH41zmpeENCHxH0/y9DVoGsZIpJRHcFQPJMO0uH8tf3YC4ZSfQ55oA7H+1tOj5bUbVVAbkzL2AJ79gy5/3hSyapYKzK99bqUJzmZeMMFOeezEL9SKz28H+G7i2ZJdLjZZfM3fM/O8Ird+4jQf8Bp9x4S8PPLLK+mRs07M0h3tyWlWVu/d0VvwoAyPHurWS61oKR6oitJfqNkVzKN/zbdp8oEHLArh8LnIrpF1fT2RSmoWshOMYmXnOcY577W/I1x3jTwjoket+H5LbRg7Q36OXWO4k8vExmBJRwF/eMzZfIyemOK6OHwb4ai2+Xpca7PL24duNm/b37eY/50AXF1jTmw39pWu1hlT5ycjaWB691Bb6c187fto/tTeB/hZJB4UZdQ1XWLjZPJHpt2Yfs0ecgvIrA89gM8deK98TwV4ZSOONdKjCxoEUb24URGEDr/zzYr+PrXyz+25+x1YfEXxnH418O61PpNw8UcF7bJYPeeaFG1GVVIIwoAPPQCgD6Y+H3jvwv4s8Had4j0LWrefT9RtRPFKzhfl4BJDYIIJAOR1Iz1Fbr6tp27H2+1xnaf3y8Hdsx1/vfL9eK4f4O/BzwZ4G+HeleFbGyluYNNtDD51y7eZJvKM5bBABLRoTgcbRjvXVf8IZ4a37jpcZJkMh+dvved5+ev8Az0+b/wCtxQBj/GPVNPb4X64iX9uxks224mUnnIAxnuQwHuDXZWvNtH/uivP/AIueEPD1v8NdYni05Fkhs8o25uCjs6d+zSOfxr0C1GLaMf7IoAkooooAKKKKACiiigDkvjF/yL2n/wDYd0//ANKY66xe/wBa5P4xc+H9PA/6Dmnn/wAmUrq1IyRmgAkxt5rlvi7DHN4LkSWHzh5sZ2m3Sbo3913QE/8AAq6iRl2ferlvi8Y/+EMkMjQKPOjH782+0/N/03+T8+fSjrcDp7MYtY+P4B2x2qWorUj7LFyPuDpj09uPyqTI65oAyPH0aS+DtSjkTejWzhlMavuGOm1mUH6Ej60zwGiJ4V06NE2otuu1fLVNv/AVZgv0BI96f49wfB+okmMAWz5MnlbQMd/N+T/vrj1qPwHsPhXTShiwLZdpiMW3Ht5XyY/3OKANyq9xg2snGV2ngCp8j1qC4INrJ8wxtPJx/WgDn/g/DHB4KijihESiZ8KLdIR17KjuPxz+VdRXLfB9o/8AhCYijQFfOfmE2+3r/wBO/wC7/Ln1rqMj1oAG+6a5H4fxRQ6pr3lRbC+osXP2dI95yeSVdt592Cn2rrWIZSAevvXJeANh1TXxutmJ1Ft/lG2yDk/e8nnP/XT5qAOvHAwKjb/WcU/IAHNMZh5nBzQBzOhwxr8U9WlWHa7WkYaT7Og3cLwZA5Y/QoB711VcpoZj/wCFp6uA8Bb7JHuCm38zovXb++x/v8enauq3D1oAWuS1iGE/FTS5mizKLOQLJ5CHaPm48wuGX6BCD6iusyPWuT1javxT0vLW4f7JJtDG38zHzZxu/ff98fL696AOqh/1YPr1pZccfWmw7RFwcD+VLIRwM9+lAHLfEKGOTWvD7vD5jR36lT9nSTaeOcs67fqAx9q6yuS+IRT+2/D29rcE342iU2+e33fN+bP/AFz+ausyPWgBa5T4xQQXHg2SO4gWZPPjOw26TZIPHyu6D8d1dVketcr8YNn/AAh7mRrcJ50eTObfZ1/6eP3f9fSgDo9NGLdV9FHbrx+lWKr2OPLU5GdgBxjB4qfcMdaAOX+M3/JLde/68nrpbb/j3T/dFcl8dL6ysPhF4gur67gtoUsn3SzSBFXjuTwK3PB+vaH4j0WPUvD+s6fq1m2UFzY3STxFh1G5CRkdxSuHQ1aKKKYBRRRQAUUUUAcV8cLZLrw7pqSM6hdf02QFDg5W6jIB9uOasWngjTrdoyl7qWEMWN1xyTGZCM8d/NbP0HpSfGRVPh7T8jP/ABPdO/8ASmOutUDnjvQByEfgPTI4YYRe6mVgjVATdcsFgaAZ4/uuT/vAGuc+K3grR4fBd082oamElcIf+JkkON0KQHDNE4B2oD937xJ716jIAEP+Fcz8VZJIfCEhiuJLdvMQB0lmjI57NCrOPwGPWgCv/wAITp1zCZXvdS/eLJkLdDA8wxkgHb28pcfU+tSHwVYNI5N9qILSGUqLngE3Anx06Bht/wB3iuotebWPPPyDkk+nvUmBQBwHi/wfptr4XvLr7fqK/ZoQ67r5YwdkkkoyxRgMmRgcqeAOOKb4H8GaWfCGlvFe6ltW3gKH7ar5CRyIMsEUNkSsThRkhT2rq/HDtF4T1B45WiYWz4kV5FKnHrGC4/4CCaj8Es7eG9PkkkaVnt13yF5GLH3MgDn6sAaAMxvBGneXj7dqTbovLz9p7fZ/s+enXZ83+9zTNQ8DaZPZ3ET3upKsizFtt0B/rI40ODt4wIlx6Et612GBVefi2kbPY8jjt7UAed/DPwrpmoeGTcLfX4E80xITUEmGWnSU4ZY0HDIAPl4BI5roY/Blgk0cgvdRXy5VcZuepFwZ+eOhZiv+7gVN8KJJJvB8cktw87GV/neWaQ9fWZVfHsRXS4HpQBydt4H06B49t7qR8vysFrnP+r8zb27+a2fovpXLfD3wbpL3Or2yahqT/Y7zyt/9pJKx2wvACdsS7TtYnB3fMAc8V6m3Ck4rlfA8ksuqa5vuWn8u/YRhpp28sZPAEiqF+iZX3oAjl8B6ZNbzxPqGqbZldG23XKhoEhODt67UB/3iTTrrwPp08zyPeakrSCXOy6wF8xo2IHy9vKXHoC3rXWjBXpTGH736CgDzXTPCOlf8LM1aBb/UA4jSZv8AiYoxBM6T48sRAqN2By5+XjAro4PBWnwXEMiXeos0JjI3XPB2SPIAeO5kYH2AqTRZZH+JeqRtcSNGtrHtiMsxVT8vO1l8sfVWJ9cc10+B6UAcjb+BtNht4UW/1OQRiMKWueuyOSME8ekjE+4Fc5qng/Sk+JVhZnUNRZp9OkTB1FFIH2c25IjMZYnaM5Dj5ucV6jgelcrq8sp+JWmw/aWWJrSTfD5swVj82CVC+Uf+BMD6DpQAyfwRp08ckLX+pqs3mk4uRkeYsakD5eMCJSPdm9afc+DNPmmuJXutQ/fu7MBc92nSY444wyAD/ZJFdNb/AOrGRyODSyj5cep9KAPNPGvhPS7PXPDsjXuoM/8AaKGMNqKRhiLgzgYMTb/mcjAKnbgZrobfwRp0KRlL7UpNnlbd1z18vzMZ4/6atn6D0qXx5LImsaEkdxJEHvlDBZZk3jjg+WpBHs5C+9dRgelAHIx+BdNWGOP+0NTIhjWMf6TyQLdoATx1KsT/AL2DXM/FrwZpMXg2ZptQ1JFkl2sP7SSHh4khOGaJx91AQNvUnmvVMD0rmPivLND4TdoLl7d/Ojw6Szxnr0zCrP8Apj1oArSeCdNnJna+1JGlWTcFuhgeY0Tkj5exiUD0DN61I3gfTvMJ+26lkymUn7T0JuPtGOnTd8v+7xXR2PEaj+8oIPrxzVnA9KAPkz/go58JPE2t/Al5PBN3f3P9nkG/sXudwuIVdpAQABlgZGz6jA7VW/4JQ/Cz4kfDrwn4gufHNnc6Tb6pJH9k0q6J81WTO6Qr/AOePXPtX0l8Z1B+F2vHH/Lk9dNagfZ0P+yKI+6rITV9ySiiigYUUUUAFFFFAHI/GMn+wNPAx/yHNPPTt9pjrqlk/U9Olcf8cIJJ/DemrFcNBjX9NZmUZ3AXUZ2/Q9PxqxZ+GNdjdDL4supNnlZPlY3bDIWz838W9B/wAUAdO0g5XIz9a534ppJL4QkSGB5mMifIiTOSc+kLK+PocVXj8La+lvCsnjG7YxRort5XLkQNGT17uwk+qge9c18XPCetXHgm5il8U3kyu4CKLJZtuYUjBCmRASHVpB8w5agD021k/wBDjJGMKPX09+aesoPTBGOoNcr/AMIxrske6HxXdQq6SbVEI+TcYiuBu/hCOP8AgZ9Kkbwzrhd2Hiu6G6UsB5fAU3Al29eyAx/Q59qANLxm3m+Fb8LGZD5DDaocnOPSMhyf90g+lN8Fb4/C9gZIjGywKGQrIu0+hEhLj/gRJrnPF/hnWV8MXjT+J7qdFgG+P7MHEoWSR2BUuoO5XVDyOEHNM8B+GNXi8J6XFH4nu1CW0IINsI9wWN1IKh2C5Z1bgn7g5oA7xpQMZ4z6nvUcxzbyEDJ2nHv+Vc5/wjGu7So8W3X+q2AmLv8AZvK3deu/979ePeotS8Na5NY3Mcfi68j8xZsMsQJXckarj5v4Sjn/AIGaALXwqEkXhNI5YHiYSudrpMjdeMiZmfn649K6LzgeBgnOCM15v8MPC+qjwmfs3iC6tEeeYpELRYgm6dJBhRI4wFVkBzyGJ46V0kfhrWxNGz+K7plSRWYeUPmAuGlx17oRH9Bn2oA6RnBbZ39K5jwKkg1TWi1u0Ya+LISk67hzyDIxBH+5hfai18M69H5fm+LbqQJ5W4GL720ybu/8W9M/7grlvh/4V1aK81dV8TXiyre4klNksZmYQvGXyJW3EuwkydvI6UAeoLLlc4+nPWk3hmyDkY6g1yV54d1ryZkHjS6ieZZFR/KH7tjAkYI+bs6mT6sRUk3h3XJpHkh8W3Ue/wA3aoiGF3tGVxz/AAhHA/66GgCbShInxK1OQwMFa1jAcpMFJ+XgMzeUf+AgH1710jSqrYJA+przTR/Curf8LQ1iUeI7wPJGj+b9jUZX7QkoTf5hJwg8vGwcc57V01r4a12OeF5PFV1IsZjLIYvv7ZZHYdf4ldVPsgoA6UygKC3y+uT0rmtWV/8AhZWmuLdjGtrIHk2TEA4bAyG8oHP95SfTtTLfwvr0UMUbeLruQxrEGZoh8+2ORGzz/Ezq31QVzeq+F9V/4WTp5k8S3byf2dLGkps1Owm3MWd/mAr8+ZMBTycZHWgD0uN8fJjp15oaQNwMZz0zXMT+GdcmtnEXiy7jZhLsIiHy7ljC/wAX8JRyP981JdeHdae4nkHim6RZXcxqIv8AVgzpIAOeyKyfRjQAnjxJH1XQ2SB5FjvgWIjnYKMjkmNgAPd8r7V0plAUFuPXnpXmvjjwzqza/wCHJrjxDdXHk6ij7fsayAYuDJ1Mi7coRGSA3C5x2ro7bwxrsXlhvFt1IE8rO6L723zN2ef4t6f98CgDpxJweOnvXN/FQPL4TbyIGndpU2qiTOTg+kLK/wCRx61EnhbXliiX/hL7sskaqzGIfMRbtFu69S5En1GPeua+LnhTWZvBdxHL4pvJBJLgAWSy7cxIgIUyIDtZWf73VjQB6TatshUgfeUY7fzqVpAG28ZPTJ61yo8NazMXMPiu7hjkWTCCEfLuaNlx838IRh/wM0//AIRjXi5P/CW3QUzF8eUOF+0+bt6/88/3f059qAE+Mz/8Wt14HGfsT4GevFdRa820f+6K8z+LXh3XIvhvq0kvii6ljjs1LxGPG/ZI7MM5/iV1U/7gr0y14tYx/sigCSiiigAooooAKKKKAOS+MX/Ivaf/ANh3T/8A0pjrrF7/AFrk/jF/yL2n/wDYd0//ANKY66xe/wBaAEk+7XK/F4I3guTzFhKiaPiYW5X73/Tc7Pz59K6qQZXpXK/F+VIfBcjyTLEgljy5njix8396RHX8Mc+1AHUWn/HrF0+4OmPT24qSo7Q5tYiP7g7+1SUAY/j5Q3g/UQRGR9mfIkEZXGO4l+Q/8C49aj8Bqg8LaaFWNdtsu0RiPbj0Aj+T/vnipPiA4j8G6kzPsUWz5bzFjxx13MrKv1Kke1R+AmD+FdNeOTzFNsuG8xX3D13Kqg/gAPagDcqvcc20gz/CeT/9erFV7ji1kHfae/tQBz3weCL4JiCLCo86TiJbcL19IPkH4c+tdTXLfB2VJvBMbxzCYedJ8wnjm5z/AHo0RT/3zXTyZ4IHSgAk5QiuR+H6INU1/CW43ai27yltwScn73lck/8AXT5q1fGniXQfCnh+bWfEusWeladbDM93dSiNE+pNeZeH9avviL4N8RXHwi8c6Gkl1fMsepkpqESKc5KrF5ZRvQOW/Gh3sBk/Grx5ZeIfiJoXg3QvEmmt9g8UafHqNnDfxrdTN5qM6BA24oEZSccHJB6Yr3e32CNdh3LjAx0/CvHfEnwk8TTal4Vu/D+q+E7K40Mxzajc3GhNLPf3AbLOHWVSoPoc/lxXsFmCsKbvvYw3GOfp2oVrAc7oaoPipqxAh3G0jywFvvP3epU+aR/vcenaurrlNDlQ/FTVofOUyLaRkx+fGxUfLzsCB1+pYg+grq6ACuS1hV/4WnpblYNwtJNpZbfzAPmzgt++/wC+Pl9e9dbXI6xKg+K2lxtN85tJCI/PjG773PllC7Y9Q4HsaAOrtwBGMdOw9KWTpSW+RHjOfQ+tLKMgcUAcp8QlQ614eZ1hP/EwXb5gtyR0+6ZTkH/rn81dbXJfEKZI9a8PB5lj36goXM8ce88cYdGLfRSp9662gArlPjAiP4QcSJAyedHkTrbsvX0uP3f9fSurrk/jFKkXg9zLP5K+dH8/2iOHHP8AekR1/DbzQB0lgP3anjOwZxjnirFV9Pz5akdCg/DirFAHLfGb/kluvf8AXk9dNbf8e8f+6K5n4zf8kt17/ryeumtv+PeP/dFAD6KKKACiiigAooooA4v44faj4d00WjRq41/TS28ZBT7VHux74zj3qazi8dq8fn3+mv8A6rzNqEDgyeZjj0MWPoaPjEudB0/5sf8AE8089P8Ap5jrrAg/XOBQBx8cHj/7PCkupaX5gjTziI2xuEDBiPl/57bD/u5rnvipH8QF8G3LLrWm2zBx5UqNNGQ3koFyYo2bHnbzwMbSBXqDrhSRXM/FYOfBsixJJI3mphY0nY9fSAh8euOPWgCAx+Oni3W+oaaI9knlllYnkxeWT8vYCXP1WpDH45Z32X2m7fMJXKNnZ9oBA6dfIyP96umtUH2WMeqgnOfT35qTYM59qAOC8WDxzH4ZvJJNS05Y44VMzp5iMAJJDJtZELA+WYwCATkGm+B4/HX/AAiemSPqunTt5EHmyMZHL/u5PMO50DElzFjIHAauq8cKR4R1AIkjsbZ9qxiQseOwjIcn/d5qPwPu/wCEY09XV0Jtl+R1kVl+ok+cf8COaAM1o/HYQk3+mBjFgfI3+s+zY9Onn8/7tRahB48+w3CW2o6WrlZ/LZkb5fkj8vOF7P5pPsVrsNg49hUM3EEp/wBk8fh7UAed/DYeNZfC7G31axnjM03lPK80jKPPQoC0sascRCQHjqRW/wCV44MiE32msiyqZMIfu/aCTjjr5O0f72am+E6OPCEfmRyxt5rjbKk6tjPcTkv+fHpXS7BQB8pf8FBPhD8WPin8JYbbRri01C402RJf7Otm2NcyHdvI3YHTZjJ/vVz3/BM34VfEv4deCtffU3g0q6u9RKS6XeKzNEUidFZiAVyX2n5S3y5z6V9mNGo+Yt0rlfAaMmq68WgmjH287TIlwA3J5XzSQfrHhaAI57fx8befyb7SVkKv5LGM4DeQgQn5e0wc/wC7inXEPjozSNbahpYVhL5YeNv70flk/L2US59ytdcEXbj1prD94KAPNdKXxyvxK1aP+17B/kQrAXmKqn2hSPlMYQHyMjKsTurorePxwlxD9ov9NMYMfmhUbJAlkMmOP+eZjA9wak0hXb4m6qWjlCfZY8OUnCk/L0Zj5R99oz6966baM5oA5OCLx8LeI3F/pYkxF5u1GwT5cgfHy95DGR7A1zuqL47HxGsYX1fT0ZtOk2RB5gjP9mIyyCPy2AnyeWB29q9OCAKAO1cvq4kPxN0wpFMU+ySAyBJyin5urA+UD/vDPp2oAjni8dmGVLe/0wP+98slG4BWPy8/L2YTZ9itPuovGrXE5iv9NWPe5h3Rn5QZ0KA8c/ufMB/2iK6eEBkD96JFwvFAHmvjNPG0eueHmm1ixhjOoqJFjedPMX7QSwwkZDZh2rhiBuzz3robePx2Fja4v9M/5ZeZtQ9vM8zHHfMWPo1P8fCQ6voISOR8Xy7iiTsFHHLeUQAP9/K11GwAADtQByUcXj8wx7r/AEvcqKJCEbBf7OwbHy9PO2n/AHQa5z4rjx+ng2dotZ063LS7Y5keaIqTEgT5oo2b/WiQnjG0ivUNg5965j4tK3/CIyCOKaVvOj+SJLh2xn0gIfH6etAFdovHQYtbX+l+UyybA6tuyWi8vPy/3BNn3K1IYvHYk/4/9MwZiVGxvufac46dfIyP96uksxuiCsTwo9RU7IDQB5f8WofGy/DjVjc32nNCLMeaiq24gSOZMHb/AHDEB7g16daZ+yx5/uiuZ+Myj/hVmvDn/jyfv7V09t/x7x/7ooAfRRRQAUUUUAFFFFAHIfGRgNBsB6a1p5/8mUrq1lUKM556CuN+Okl1H4b002sAlY69pquCQNqG6j3N+AzUttqfjKVYvO8MwwlhFvAuV+UEyb+h6qFjP/Az6UAdazoykdcdfauX+LsazeC5QUEn7xGx9n87gHOdm9M/99VXh1Txube3d/DEIkeNDKn2ofITbs7DrziUIn0Ymuc+L2peMH8EXQfwvZMFkBVZprd1dhCjKCJmCYMpdMk8BcigD1GzdfsceOyAYxjt6VIHU8A8+lccdS8Zxw7YPDcEiqknl/6So3BTEE6HHzBpD/wAetS/2l4xWRyvh2LYJCq5uRkr9oCBuv8Azxy/1GKANXx4Em8I6hCRu8y3cBPL8zdx027lz9Nw+tM8DBYvCmnKy+WFt1wpi8vacdNu5tv03H61zPi7UPF7+GbyO48OW6wSQDzt9xEwUGSRX4kbaQI1jbB4O4im+AdR8Xx+EdLUeG7Rd1tBuWGeJUTMchfHlttwHWNflyPn9qAPQfNTjn73SobgqbaQdtpGMZ5xXL/2n402sf8AhGYd3lbtv2ocv9m37Rz0875PpzSajqnjOOxuPJ8N28jhJvLDXIwcRxlM5P8AEzSD/gA9aALPwhjFv4NjhMXlFZpPk+z+T3/u73/PdXT71HU15h8K77xVB4TZLPw/atCs8/llJLdA2J0VTthYoCYy7HvlcGulh1HxgZ4wfD0Sq0qhz9pGFX7QyE9f+eIV/qcUAdUxG0jNcn8P4RDqmvFY9ok1AnP2by9+cnOd7b/rhfpRa6p4ydojL4bhj3eVvP2kcbjJ5nf+HbH/AN9n0rlfh3qHi9bzV5R4bs0le9zOiTW4w5gdmBMbEnEoVMvhsHNAHqysuOD0ppIMmB1x+dclcar43S3mMXhiB2VJDChuR85ECMoJzxmUun0XNPuNU8ZRSSCHw5DJGvm7N1yMthoxH3/iVpSf9wetAEmixrH8UNVn8raslpGPM+z43fdH+s3nP02D6mup3CvLdIv/ABb/AMLU1hx4ds/M8tFBEtuGaP7QiBiyt5p/c/PhhgHgdq6a31LxhJcQibw7HGjGMSOLkfKDLIr8Z7Isbf8AAqAOrDqQCD16VyusQg/FLS5/LLFbSQeYLfO3hjjzN42/TYc+oqODVPGrwRGfw1CsjCLzAtyPlJjkZ8HPZ1jX/gRrm9Wv/Fr/ABM0+R/DtoJl02RkJmtyxb7MX2gs3mAedlPlGMcnjNAHqELKFx/EetEjLgH9fSuVuNU8ZJDJJB4dhkZRLtH2gfPtWMx9+NzNIP8AgA9afcaj4uS4uBDoERRHcRMbgfOBOiqcZ4zEXf6qBQAnxBh83WtAfyvMMeoKSwtvM28jnO9dv1w30rqg6kAg9a8v8d3/AIpm1/w2Ljw9aJH/AGkgLPLbsyD7QUJHmMCD5QV/ky2Tiukt9T8Zusaz+HIVz5O/bcj5d3mb8c/w7Y/++z6UAdZvXOM1y3xcjW48HuvlGXE8Z2fZvO7/AN3en/oVRQ6p42MMTN4ahEjRgupuQdrmBnI69pQqfQ5r4D/4KkfEz4v2fxWt/DE9xqGh6BHbRS2kdpK6x3khGXLMvD7WyMHpjPegD9IrJlWFN3ZBjIqyzAV4n+zV4u+K3iD4I+HNW8TeGMarcacWmMzLCzsrRhCyZG3erSHGONg6ZrvzqfjIyceHIeJioP2kcp9p2Z6/88cyfXigCT4zMP8AhVmvHP8Ay5P/ACrp7b/j3j/3RXmHxY1TxdJ8OdWWbw/FFG9mvmSC4+6DI6ycZ/hRY2HruPpXp1p/x6x5/uigCSiiigAooooAKKKKAOT+MH/ID0//ALDen/8ApTHXVYy1cp8Yv+Rf08/9RzT/AP0pjrrF70AJJ93Fcp8YpY4vBMjyTpCgmjy7TRRgfN03Sqy/hjJ7V1cn3a5f4tzSQeDZHjlaJvNjwwneHHzf3kRyPy/KgDprM5tYiDn5Bz+HtUlR2vNrGc5+Qc5z2qSgDF+IThPBmpM0gjUWr5YuibeOu5wVH1YEe1M8AMr+E9MeOUSKbZcMHRtw9QyAKf8AgIAqbx5I0Xg/UZEfy2W2ch/MaPacf3lVmH1Ck+1R+BZJH8L6bJI+9ntl3P5rSZP+8yqW+pA+lAG3Ve44tZB0O0/yqxVe4OLWQ5/hPTigDnfg3LHN4HieOdZx50nzrNFKM5/vRKqn8q6quY+EM0k/guKSSUysZX+Y3Dzd+zOiN/47XT0AJJnacVx3w7kjk1bxCI7gOV1Ftw86GTyzk/KRGilT7Pub3rsX4U8VyXgGaabVNeDzeaI9RYIPtMkm0ZPZkUL9FLD3oA64dOaY3+syaeDkZqNv9Z+FAHL6FIh+LGsReehkWzjJi86Iso+XnYFEg+rMQewFdZXLaHNI3xQ1aIysUW0jIT7Q5A4XnYUCj6hifYV1D/dODj3oAWuQ1iWMfFjSY2nAc2cmIvOiBf73IQqZDj1VgPUV1RfGSc+3vXMavLL/AMLN0uITsFNpITH57qH+9/yzCFW+pYH2NAHU2+RGBnPv60soyBTbY/u8Zzg4pZu31oA5T4iyxx634dDzpHv1BQoaaJN544AdWLfRCD7111cp8QJpI9a0BElaPffgMBcPHuHHGFRg30YqPeuroAK4X48aZpF34VF3qVpZSSQzIsUtwbdSmTyA88bqM+mOe1d1XK/F6eWDwfI0M3lN50YDfaJIe/TciO3/AI7QB0Ombfs0ZU8bBt6dMe1War2B/drn+JAQc9eOasUAct8Zv+SW69/15PXTW3/HvH/uiuZ+M3/JLde/68nrprb/AI94/wDdFAD6KKKACiiigAooooA4v44XJtvDemsIJJd3iDTUIQcjN1GMn2Gcn2qez8aXEzRhvDWqR+Z5X3ovu7zIOf8Ad8sZ/wB9ab8ZMjQdPIXP/E808de32mOuqEY/HPU+lAHJx+N7qS1hk/4RbVlM0aNtMJypa3aYg8dimz/eYCub+LHjG9k8F3Qg8K64zxOG2xQ3O59sKTYXyPn5LlOONykGvT2jUZY+mK5r4sQNN4LkjWHzWMsZ2i3abOD/AHVdCf8AvqgCNvGVxBH5a+GdVk8pJBlYm+YxmIcZ5+bzCR/uNUj+Mp1kZP8AhG9UyspTPlHBAuRBu+mDv/3RmujtIsWca4x8o4xjAxUixAHgDGOlAHCeMPF9xP4Zuof+Ea1dGmhVQywy5TfJJHn918/GzcdvOGFM8C+LrtfCmltL4Z1dWkt4AweGXcpeKRzu8z5/l8vad/OXX1rqPHMG/wAHanGED+ZbOCpiMm7j+6GUn6Bh9ab4Hi2+E9PhMZXbbrwYyn5qWYr9Nx+tAGf/AMJpcbCw8M6rgQ+bjyj/AM+3n7enXP7v/e4qHUfGV1DY3D/8Ixq0jos2FSEnfsjjYYwP4vMIHujV1zRZAz2/nUUyjyJcDPyn37UAeefDPxVd2fhVoJfDusO8U82GeK4y4WdI8jz/AJ+Q+8dtqnFdFH4xnM0aN4b1RRJIqZMR+XNw0OTx0AXf/ukGj4R2zQeD40aHyj5r5X7O0PfqFZ3OP+BV0vk85GM5ySaAOXtvGdxP5YbwzqqCTysloj8u/wA3r/u+WM/761yvw/8AF94bjVbl/C2tqs935irJDcgoDA823EvHBUJ+7+XcRXqflgNu9Olcp8P4DDq2vEw7fM1FiCLdo88nnJdt/wBRt+lACT+ObiO3mlXwtq7mFHbYITl9sCSgDjqS+z/eUinXnjK5hnkX/hGdWkWPzfmSInJjaNeOOd3mEj2Rq6pY8Ljj2xTdihgoHQdKAPNtI8WXifE3V5X8NayIvLSJSYbjYf8ASEh3Dd+65B8z5OdvJ710lv4yuJZYoz4b1RPNMYLNEcJvlkj5+gjDH2YUaTbt/wALS1Wbydoa1jxJ9nYA/dyN+8hvoEH1NdO0fzbh17ZoA8t+K3jvxPH8K9TvfDHhjVV1drJfsgaDJjZ0dyxGP4dmD7stfCH7APxJ+MuoftRMdR1PxN4gtkhvJdXsLm4lljhwkhA2sSsR3jCjjnAHpX6fNDluFHQ9f5YrjLjQdOsfi1p17p+lWds72kglmg0/axzuzmVXAH0KN9RRH3QZcm8ZS29rI6eGdWbYZsKIT82xYm44/i8wge6NUl34uuUnniXw5qbiF3GVi4kCzpFkfUPvH+yprpIY+AQMD070PGApJ6k0Aea+NPFN7c694cSLw3rCqdRQOwhudqg3Bhyxi4wAu/8AefLtINdJa+NJ5/LI8Naqok8r70RG3f5uc8fw+WM/760fEG3MuraBiDzAl+CxFu0m0ZHOQ67fqQ30rqPKyoDc+tAHKx+N53hiceGNWBkjVyphOVzbtNg8dQV2f7xArmfi54xvG8H3Hk+FtbaWOTKiGG53NtiSXA+z/Pzv2emVOa9QEeM9Oelcv8XLYy+DWiSLzP38ZCi3aY9eu1XQ/wDj34GgCL/hMZ7V2hPhrVnCLLhkhYg+W8S8cfxebkdyEb0qX/hNLgMQfDOq4ExjyIj0+0+Ru6dMfvP93muitE3W6ALt2qMZqZoxuyB06UAeZfFnxfcT/DfVoW8O6nGs1moMjQnam+SROeP4RGGPs616banNrGf9kVy/xmTPwt148ZFk+OPauoteLaP/AHRQBJRRRQAUUUUAFFFFAHJfGLnw/p4H/Qc0/wD9KY66pSDnBr4H/wCCpHx/+JHg34sWXgjwnftotlaRwXxuVgRnupPldSC4I2q2Og6qc+lfSX7MHxiPjf4M+Hte8SxNb6tfW0LXCxQtsdpDIEdf9k+U/wCIoirxYSfKezOfl61ynxkijl8DyLNbpMvnR/u5IoZAfm64mZU/EnI7U2P4g+HJYoZUuJilxGrp+4bOGgacf+Q0b8eK5n4xfEPwzF4GuZHvJI1hcGRnWNAoWJJyMzKyZ8t16jJPA5pLYD1Kz4tIuMfIPT09uKkrj18eeH7e38uWeYNGsm4iEkfuzGGxj3lTp6mpf+E60FZXVpptyyGJsQtjcLgW5/8AIhH4c0wNH4hRrL4L1JGjWVWtXDIyRuGGOhWQhD9GIHrTPh/HGnhLTFjiWJUtlCqixqqjHQCMlB/wEkVznjDx14fl8K3sYupFMsACO0YVRvkkiXJcFB88b8sCAMZpvw/8deHpPBmlPHcSMsttAYnVFYMHjkkXmMBfuxv90AcCgD0Kq9wM2sg/2Tz+HvXNt498P+XuE8wCw+bzC33fs/2j8/L5+vFR6l498O2+n3Ms00wESzFwIW/5ZpG7f+Oyp+vpQBL8GI4ovA0SRW8cCiaT5EigjHX+7CzIPzz611deX/CrxxoMPhUq900jRTzh2jEUi5WdIW+aFVQ/PIvQZxXSp450F5o41nlYySqi4hbqbg24/wDIin8OaAOpk5UiuP8Ah3DFHq/iLbaxRNJqTGQpFAhdsnk+WxLfWTDe1TW/j3w/cNH5c8x83yto8ls/vPM2f+in/IVyfw58feHJL7WZ47t5I5r3cNoiYqDA8w3CNQVOxTw+WzxmgD1gcDrTG/1n4VyU3xB8OQW9xLJcThYFd5GEDdEgSYkf8AdfxzUk/jzw9BM6TTzBohLuKwtj920av+sqY/GgBNBiiX4taxIIIxI1nFulEUIZuF4LBvMP/AlAHY9K62vLNJ8d+Hj8VNYQXTkxxRxGMCMspFwlv91V8wDzCOWYgjkcYrqYPHWg3FxFFFPLunMYQGFuryPGv/j0b/lQB1VcfrUMf/C2dJmNvEZFs5QkrRQllHzZAct5o+iqR696db+P/D01vDJFPMFlWMpuhbnzI3kXP/AY3/IVzOr+PPDzfE/TWW6cMunSzeWwjDFfsxnyFZfMP7s/wkDPB70Aeo24Aj46dh6UsnbmuVuPHnh63jeaSaYLF5u7ELHBjWNn/SVPzNOuPG+hRXE8Mk0pa3d1kAhbgpMkLf8Aj8i/hmgCL4jRRvrnhxpLdJSuoqVLxQMYzxyDIwK/VMt7V19eXePvHPh+TxB4bgS7ZXn1JETeIk3sbgwADzFJP7xSMJhsc5rpbfx54fnSMRTzDzPK27oW/wCWnmbc/wDfp/yFAHWZHrXI/GiKKbwXIs9vHPH58e5JYoJF6/3Z2VPxzn0pIfH/AIdeGOUTzbZoxIuIGztMDTj/AMhqT9eK+fP2u/2t/AXgjVh4H/s/VdS1BxFLdvaLEv2ZWUOnE6OrEqw4xkUAfVVgP3SngHYAcdDxVjNea/Dv4y+B/F/gfT/EWjXl1JZ3ts80e+2ZW2xtGj5HYhpU/M1vP498P+YV8+biUxEeS33vtH2f/wBGcfTmgB/xm/5Jbr3/AF5PXTW3/HvH/uivMvi1430G5+G+sWsMszSXFooVfJbrI7xp/wCPRP8AlXplp/x6x/7ooAkooooAKKKKACiiigDy39p34e+CfGmh6TL4r8M6fqzwaxZRRtdRbiqPOiuoPoVJH416Pp+m6fY2cVpZ2cMMMCLHFGiAKiqMAAe1c78Yv+Re0/8A7Dun/wDpTHXWL3+tAEL21uqcQxjAwPkHpj+Vcv8AFwR2/g2R4wkbGaP5vOMPUgfeVHPT/Z/KutkJC1y/xaLDwXJsaZW81OYTcbuv/TD95j1xx60AdFbW8DWsZaGNjsHJGeoGefwFSfZ4D/yxj65+6PXP86LX/j1j/wBwevp78/nUlAGH48SKDwfqUkaRxsts5DbzHtIGfvBWK/UKfpTfAqrJ4V02SREctbLlt/mZOP7xVS3fkqPpU/jw48I6gR5m4WzkeX5m7OO3lfPn/d59Kj8BsT4Y04kyZa2UnzPN3fj5vz5/3+aANf7PB/zxj/75Hpj+XFV7iGH7LIxiT7rfwgdv/rCrlV7g/wCjyH/ZP+eKAOb+EIS58FRyShJS0z/N5xm/iz95kQ/+O11AggByIY+ufuj1z/Ouc+ERY+DYy7TMfOk5mNxv69/P+f8Ap6V09AEJt4FXKwJx0wo/z3Ncn4AIl1TX1by5Fi1FggE5k2jkdDGuzjsCw967F8bTmuS8Bs39q69uM+F1Ageb9owBk8L5vGP+ufy0AdT9nt2X/UxkEf3R3GP5UxreEyYMUeMc/IP89h+VWKY2TJigDldD2P8AFLVojtKraxsE88tg/Kc+WUAXnuHP0FdStvAOkMYx0+UfX+prmtFLH4pasN020WkeATcbB937u791/wB88+veupoAj+z2/wDzwj7fwjt/+s1yesEL8U9LgXy1jeyk3R+eVzww/wBWIyrcdy4+hrsK5PWCf+FoaWo87a1pJnH2jyyfm67f3Of9/n07UAdLDBC0WHhTuCCoP+egpZYIevlR5Y8/KOe/86fbnMKmllJxQByXxA2Q614fRNse+/AIE5izyDjAjbdyehK/Wur+zwdfJj7fwjt0/ma5j4gFhrHh8K0w/wBPXPlm4weR97yuMf8AXT5a6ugCBreEEYijyv8AsjpjH8q+Uf27v2UtA+JusReOLPxGdB1FEWG7823MkU6AnaTt5VhnGcHPHSvrPZnkmuW+L4x4PkK+fu81B+4NxuwT/wBO/wA+P09aAGfBvwToHgL4d6V4Q0KDNjpdsIomk+Z34GSxwOScV1X2eAc+TH1z90euf581HYY2jrnYuQc+nvVigDkfjJbW6/C7XNsMY22T4wo47/1rqrXi3j/3RXNfGb/kluvf9eT101t/x7x/7ooAfRRRQAUUUUAFFFFAHH/GmeGDw7ppmlWMNr2nKCxxkm6jAH1J4rYt/FPh6ZgItXtX3bNuH67twX89j/8AfJrF+NUUMvh7T1mRXUa9pzAMM4YXUZB/DitiHw1oaFCuk2o2FNoWIfLs3FT+G9/++jQAn/CWeG3hR11i1ZZFVkIkHIMZkB/74Vm+gNcz8XPEmgy+C5hHqNtMySKzBY3m2hVWUkqjoeEZW+90NdKvhfQEVVXR7NUiUBAIR8oEZjH5IzL9DXM/Frwt4cfwTcB9CsJRLKgdXsoZQwKrGcrKyqfkVV5PQCgDqI/E/h+C3VJdWtkZEbcC+NuzYGyO2C6f99CpG8T6ANwOq22VfYRv6N5gix/38IX61Xh8M6HJbB5NItGZ1bcTCvzbtpbp6lE/75FSDw1oZkZm0m1ZmJct5I5YyCUn6mQBvrQBm+NfEOhXfhW+gg1K3lkmgKxxrmQyFmZFAVWVjlkYYBBJB5qPwH4j0IeFdMDalbrm3jwpBjwWRmUbWZiMqjnBJPynml8b+GdC/wCER1AnR7NituSg+zRvt2szr8rkKcMzNyQMsaTwN4a0FfCGmRro1igit4tiLbRqE2oyrhUJUYV3Hykj5jQBsnxR4eGSdXtcBd+fMH3fK83P08v5vpUF54n8PJYzvJq1qqxrJvy/3SiqzfkHQ/8AAhUh8M6Fs2jSLRQU2EeSPu+V5W3/AL9/J9KZeeGtBlt5km0izdWWTIaBSDvVVbOfUIgPrtHpQBg/CjXtHs/BwgubyC2khmlDxNE8JTEixnKu7twzKM56kV0sfibQHkVF1W2LMwVRvHJMhiA/77BX6iuX+FHhvQ38JKzaLZrvllLBbSGLkyK7ZWJmXJdVY89QK6QeG9FDq/8AZVrlXDLiEfKRIZAfwclvqaAHR+KPD0wVY9XtWMgTb84537tv57Hx/umuT+H/AIh0OPUNalOo26R3F8XicxPGJlKNKGBZ2D5RS2VCjAziuqj8M6FGy7NJtFCbduIh/Du2/lvfH+8a5T4d+F/DsN9rkKaHYRRrflUVbKCPI2NGP9WzZ+RiuWwcHpQB1knivw5FC8j6xaqkSszkyfdCxiQk/RGVvoRSTeKfD0c7I+rWqMofcDIP4Cob8i6A/wC8KafCvh9oZEbRbMrICrgwjDAxrGRj02Kq/QUs3hnQpWPnaTZuZN+8tAPm3FS35lEz/uj0oA5zRNf0Rfijq8v263WMwRxCQxuAziRYiPMLlTiT5cBQc9zXUQ+J9AlkSOPVbZmkK7AH5O52RfzZGH1BrldL8NaD/wALS1dhollloI3ZhZwhnbzFlyXDbz+8Ab5lAyODXTr4b0SOVXj0q0QxlShEIyCrM6/kzMfqxoAWPxV4ddFdNXtWV9m0iQfNuVnXH1VGP0Brl9X1/RD8TNOuV1CBo47GRnmEblYx5Rl5kDhFHlkNyhJB6iuli8L6DHDGkWj2kaoFCjyR8oVWVcfRXYfRjXMat4Y8Pr8UtNcaJYjdYSRs5s4SdvltFt3lvMA8sbcKpGO9AHU/8JP4fht2kk1a1UJv3kv02hS35B0P/AhS3PiXQY5HSTVLZWhZlkzJ9wq4jOfo7Kv1IpjeGdBl3B9Hs2WTeW/cjBLBQxP1CIP+AinSeHdGZpJX0u1LSElyYRzukWQ5+rqrfUCgDmfHmvaNca94dEN7BM39oLkrE8m3MnlDlXULl1K5YMMjpXUR+KPD77dmrWrbtm3Eg537tv57H/75Nct488N6CmteHXTRbHfHqKsjmzgcxkSeYCC7KVO9i2VycnOK6aHwzoUSJ5WkWkZXZt/cj5du7b+W98f7xoAcPFXh0ojjV7UrIoZSJByDGZQf++AW+grl/i94j0GXwdMU1G3m8uVWZBG82AqrIxKo6NwjK33uhHWulj8L6AqBRo1phFCoPJHAEZjAH0Qlfoa5f4v+FfD0vguRZdBsZ9067lezgkDZVUOVlZV5RVXOc4AoA6a28S6BEPLl1a2V41YEM+CNhVXz9C6A+m4VN/wlHh/dt/ta1zvKY3j73m+Vj/v58v1quvhrQZ0Ej6RZyOVYMfIXJ3lGYfiUQn/dFSv4Z0LcSdJtMb95/cjlvM83P/fz5vrQBzfxe8S6FP8ADTWoYtTt2kmsjsQPydzMi/myOB/umu6tf+PeP/dFcH8YPDmhx/DHWpY9JtVaKzJQrCMgqS6kH2Z2I92Nd5ajFrGP9kUASUUUUAFFFFABRRRQByXxi/5F7T/+w7p//pTHXWL3+tcj8ZZFTw7YlyAq63p5JJwAPtKc10X9p6dnjULb/v8AL/jQBbkyV4rlPjCyJ4JkZ5Yo182PLyPAqj5u5nBT8xn0roG1PTyP+P8Atf8Av8v+Ncp8XdZsIfBM0h1W1hCyoS325bcj5v72yT/0GgDtLP8A49Isf3B0x6e3FSVn2mqaebWM/wBoWp+Qc+ep7VJ/aen/APP/AGv/AH/WgCl8QWC+DdSLOqD7K+WZo1A46kyAoB/vDHrTPAJB8J6YUkWRfsy/MpjIb3BjAQj/AHRioPHWrWCeENRcanapttn5+1rHg4/vYbb9dp+lN8C6rYSeFdPkGqWsm63XcxuVkyf9/C5/75FAHS1XuOLWUd9p6/T3qP8AtPT/APn/ALX/AL/rVe41SwWGTGoWvC9fNUDv3zQBk/BtkfwREySxSDzpMtE8DDOfWABM/QZ9a6quK+D+s6fN4Ljb+1bWUiaQFvt4m5B6btif+g/nXU/2np//AD/2v/f9aALcnCnFcd8PGRtW8Q7Jo2P9otkK9u2zk8N5QBB9pMtXStqenleNQtf+/wAv+Ncp8P8AWLCbVteA1a1cpfttX7csu0ZPbYu36Zb60AdwOnNMb/WZNVf7U0//AKCFr/3/AFpr6np4bIv7Xk/89VP9aAMLQmQ/FbV182IuLOP92HgLqPl5IUeaB/vHHp2rrK4nRNZ08/FTVYjqtqSLKJvL+3g44Xny9g2/XefoK6r+09P/AOf+1/7/AK0AXK5DWHT/AIWxpQaWMN9jkxHvg3N97kKw80/VDt9e9dH/AGnp/wDz/wBr/wB/1rlNY1jT1+KGlwtq1qqtayZQXwXJ+bH7vYd313j6UAdpb5EeCc+/rSyjIFU49TsAuG1C1z/12Uf1ok1PT+v2+14/6bKf60Ac/wDER0XW/DweWFA2oKF3vANx44Hmgkn/AHMNXXVw3xC1rT4tY8P7tWtYw2oqMfblhLZxxjY+/wCmV+tdb/aen/8AP/a/9/1oAuVyXxlZF8HPvmjiUzx/PI8CqOe5nBT9M+ldD/aen/8AP/a/9/1rl/i5rFjD4RZ11W1jJmjAP25Ye/8Ae2P+W38RQB1mn/6tSOhRfTjirFZljqen/Z0K6jasrICD5y88evep/wC1NP8A+f8Atf8Av+v+NAGF8Zv+SW69/wBeT101t/x7x/7orkPjBf2U3wx1qOK9ty0lo6geapJPtg111mQbWMjP3B1+lAElFFFABRRRQAUUUUAVtW07T9VszZ6nYW17bswYw3MKyISDkHawIyDzWR/wgvgj/oTfD/8A4K4f/iaKKAD/AIQTwOevg3w//wCCuH/4mj/hBPA+4N/whvh/IBAP9lw8D0+7RRQAf8IJ4I/6E3w//wCCuH/4mj/hBPBH/Qm+H/8AwVw//E0UUAH/AAgngfg/8Ib4f4OR/wASuHg/980f8IJ4H/6E3w//AOCuH/4miigA/wCEE8Ef9Cb4f/8ABXD/APE0jeAvAxXafBnh4qeoOlQ4/wDQaKKAHN4F8EsxJ8HaASepOlw//E0n/CCeCP8AoTfD/wD4K4f/AImiigA/4QTwR/0Jvh//AMFcP/xNA8CeBwoA8G+H8AYA/suHp6fdoooAP+EE8Ef9Cb4f/wDBXD/8TQPAnggHI8G+H8+v9lw//E0UUAC+A/A6qEXwZ4fCr0A0uHA/8do/4QTwR/0Jvh//AMFcP/xNFFAB/wAIJ4I/6E3w/wD+CuH/AOJo/wCEE8DjOPBvh/k5P/Erh6/980UUAH/CCeCP+hN8P/8Agrh/+Jo/4QTwOevg3w//AOCuH/4miigA/wCEE8D7mb/hDfD+WADH+y4ecdM/LR/wgngj/oTfD/8A4K4f/iaKKAD/AIQTwR/0Jvh//wAFcP8A8TR/wgngfcD/AMIb4fyOh/suH/4miigA/wCEE8D/APQm+H//AAVw/wDxNB8CeBzwfBvh/wD8FcP/AMTRRQAR+BPA6DCeDfD6/TS4R/7LXQAADAHFFFABRRRQAUUUUAf/2Q=="]
math
multiple-choice
46
如图, 图 ①、图 ②、图 ③ 分别表示甲、乙、丙三人由 $A$ 地到 $B$ 地的路线图(箭头 表示行进的方向). 其中 $E$ 为 $A B$ 的中点, $A H>H B$, 判断三人行进路线长度的大小关系 为 $(\quad)$
甲 $<$ 乙 $<$ 丙
乙 $<$ 丙 $<$ 甲
丙 $<$ 乙 $<$ 甲
甲 $=$ 乙 $=$ 丙
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAChAeoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooA4fRLCz8XXOsapr1vHexw6hNaWtpdKHitUhYpuCHgOxDMX64IGcCuo0TT00vRrazjuHuVRSfPdizSEksWJJJJJOcknNc74gs/Dmn6o9xLpt5c3lzHJc3NrZTOEljjXmSWEOsb5+VfmBLEgc4466CaK5gjnhdZIpFDo6nIZSMgihbB1JKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqjq+qQaNpst7cB2C4VI4xl5XJwqKO7MSAPrV0kKpZiAAMkntXFjWtKutSg8Qa1qdlY6XGWXR1u7hYhMcYe4+YjOQcL6KSf4+ADc0DS57RJ7/AFEo+rXxD3LKcrGB92JD/dQEj3JZurVW8O/8Su9vfDrcJanz7L3tnJwo/wBxgyY7KE9a0jrmkBLJzqliFvji0Y3CYuD6R8/P1HTPWsTxNqNja6hb3lve276rpIM89mkqmZrRsCX5M7sAbXHHJRR3oA6uimo6SxrJGwZGAKspyCD3p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWPr+qzWEMNpYKkmq3rGK0jblQcfNI/+wg5PrwOrCgClq7N4h1NvD1uzCyiAbVJVPVTytuD6uOW9E/3wat+Ipjp+hTvZIkd5Kq2lqQv3XdgidOwLA49Aat6PpUOjaclpEzSNkyTTP8AfmkY5Z29yef0HAFW5YIpjGZYkcxtvTcoO1vUeh5PNAHnuq2dpp0fiqxdCI7fw/BDZKQT+7USgBMfxbwucc52e1dTY6Bsu4764u7pmb969m3l+UJimxn4XdkgkY3beenStO506xvJ7ee6sreea2bfBJLErNE3qpI+U+4q1R5gc94ZJ057vw7ITnTyGtST961fPl/984aP/gAPeuhrnvEwOnS2fiKMf8g8lLrH8Vq+PMP/AAAhZPohHeugBBAIIIPcUALRVW21C1u7m7toZd01pII5kKkFSVDDr1BBHI46+hq1QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFct4klkvvEmieHWklis71J7i6MTlGlWIJiLcOQCZATjqFx0JoA6miuU0S10my8WXllpfh2fTfssOJJYUhjtX3kEEIj53nZ12g4UZ/hrq6ACiiigAooooAKKKKACiiigAooooAKKKKACkZgqljnAGeBk0tUtW1S30bTJr653FIwAqIMtI5OFRR3ZmIAHqaAOI8SeNdfins7fS9LWzE8sZd735pliaRY95jBwgLMFG47jk/KMEj0SuZsfDLXOnyTaw5/tK8uoLy5aJgQhikWSOFSR9xdoX3yx4LV01AFbUdQttL0+e+vJPLt4U3u2Mn6AdyTwAOSSBWXoFhcvNNreqR7NRvFCrCTn7LCDlYh792I6sfQLVaD/AIqjWhdnnRtOlItx2urhTgye6IchfVsn+FTXTUAFFFFABRRRQA2REljaORQyOCrKwyCD2NYPhd3s4rnQJ2ZptLZUiZjzJbNkwt78AoT3aNjXQVzviL/iVX1l4iTiO3P2e+97dyPmP+4+1s9l3+tADfEMb6TeReJrZGb7OnlahGgyZbbOd2O7Rklh7Fx3FdFHIk0SSxurxuoZWU5DA9CDSkZBB5Fc1oh/sDVn8OScWcgafS2PQR5+eD6oTkD+4wH8JoA6aiiigAooooAKKKKACiiigAooooAKyG8VeHU1H+zm1/SxfeYIfsxvI/N35xt25zuzxjrWvXAX95pz+Bdav78R3I1yWYWtuoDNdEjy4EjH8TFURhjpknoM0rgd/RVLR4bq20WwgvZDJdxW0aTOTks4UBjnvk5q7TYlqgooooGFFFFABVXUdQt9K06e/vGkW2gQvI0cTSFVHU7VBJx7CrVcv421Oyi0+DRZdSgtLrV5ktYw8qK+xmHmMA3X5cgZBBJUHrihgXtP8VaXqeoR2MAv0uJImmRbnTri3DIu0MQZEUHG5e/cVtVk6JpE2mrO15ePf3UkzuLqZUEmwhQF+VVA4RcgADgVrUAFFFFABRRRQAUUUUAFFFFABRRRQAVk+IrLS7rSZJ9WAWG0BuFnEzwtCVB+ZZEIZOMglTkgkcg4rWrmG/4qnWimN2iabN83pd3Knp7pGR+Lj/YOQBPAMkF14ZW+is57Oa5mkNxDcXctzKjq3l4d5PmyAgGO1dRXNr/xJPGJT7tlrYLD0S7ReR/wONc/WI9zXSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcxZ/wDFTa9/abc6TpsjR2Q7TzjKvN7heUX33n+6am8Q3M99dReHNPlaO4uk33c6HBtrbOCwPZ3OVX/gTfw1t2ttBZWkNrbRLFBCgjjjQYCqBgAe2KAJq53XLmbU71fDlhK0ckiCS/uIzhreA5GAezvghfQBm7DN/XNX/smxVooftF7O4htLYHBmlPQZ7AAFmPZQT2o0PSf7JsmWWb7RezuZru5IwZpT1OOwAAUDsoA7UAXra2hs7WK1tolighQRxxoMBVAwAPwqWiigAooooAKKKKACo7iCK6t5beeNZIZUKOjDIZSMEH8KkooAwfC88sdpPo11Iz3eluLcux5lixmKQ+uUwCf7yt6VW8ayxJp0RkS5hkifz7fUY4vMjtJl+6ZAvzBTkgnGNpYEjNS65/xKdYsdfXiHIsr7/rk7fI5/3JCPosjntXRUAcf4F8Rf8JJNrN4sjGPzosRGXesJ8lQ6qem3crEEcHOe9dhVGx0fTtMnup7GygtpLtw85iQL5jDjJA7+9XqACiiigAooooAKKKKACiiigDO1250600O8n1aOOWwWMiaJ4xIJAeNm0/eJJAA7kgVy/gyxtbHV7iC88M6LpOqtCLm3NhaJG32dzgxlgOXRgA2ODlTjmr9v/wAVXr4vTzoulykWo/hurlchpfdU5VfVtx/hU1a8VW80Vtb63Zxs95pTmcIo5lhIxLGPXK8gf3lWgDoKKit7iG7torm3kWSGZBJG68hlIyCPwqWgAooooAKKiup/strLOYpZfLUt5cS7nb2A7muDn8YeIZ/Gml6VDp8FlZvcKl2JGEsy7kd1Rip2IxVGbAL4AByMgEA9Brjtb1/VXv7mTRFD2OikSagQm43LcFoE/wBpYyWJH8Wxf71aniPVLm3W30vSyp1fUCUgJGRCg+/Mw/uqCOO7FR3rQ0jS7bRdLgsLUN5UQOWc5Z2Jyzse7MSST3JNAFm3niureK4gkWSGVA8bqchlIyCPwqSub8Of8Sm/vfDb8R25+02PvbOT8o/3G3Ljsuz1rpM84zzQAUUUUAFFFFABRRRQAUyWWOCF5ZpEjjQbmd2ACj1JPSn1zvixrVre0tzYW2oalLLiwt7hdyCTHMjD+6g+Yn6AckUAS6R4v0XXtWudO0u6N1JbRLLJJGh8rDHjD9Gz14yPet2uW8N+G5NE17UZ23SLNa26G6cjdcShpmkcgHjJkUY6AAAcCtjW9WTR7DzvKae4lcQ21upw08rfdQenck9gCTwKAKOvXtxdXUfh/TJWjvLlN9xcJ1tIOhf/AH25VPfJ5CmteysrbTrGCytIlit4EEcaL0AHSsmw8M239lTQ6ykOoXN64mv2kTMcz9l2n+BQAFU9gO+TXI6dpOmMmkQxWFpb6RruqT3L2kUKrDPGkL+ShUDBBWNZMdCQevcA7nX9KbWNHmtopBFdKVltpiP9VMh3I30DAZHcZHenaHqi6zo1vfeWYpHBWaEnmKVSVdD7qwI/CuOsPDh1/T0CzWv2fT767tbf7Ta/aPKiWYhTCdw8uRAu1X+bG0ccVvRf8SPxg8PSx1rMkfol0i/MP+Bxru+sbnvR0uB0lFYmuahc6RfadfGT/iVmT7NeIVH7suQI5c9cBgFPbD57Vt0AFFFFABRRVDWP7TOk3C6Qls18yFYjcytGik8biVVjx1xjn1HWhgcro3iDxJrsM0djPpkkiXksbXgsX8iGJHZQGHnZaRsBgFOFH3sEjPcDIA3EE45IGM1xWgeH9a8N6jbR6Zb6cmjzQRi9tmvZCY7gYDSRfusHIHzZI3NzhTkt21HQAooooAQnGKMijHNAHBoAq21ha2l1d3UMeJ7tw8zkkliFCgc9AAOg46+pqW5uoLO1lurmVYoIkMkkjnAVQMkn2xUuPp+VczOP+Eo1o2i86NpsoNwe11cKciP3RDgt6tgfwsKAJdDt5tSvW8R6hE0byoY7C3kGDbwHByR2d8At6AKvY56HIoxxijB9aADIpc5pNvv2oA5oAWiiigAooooAKKKKAILy0gv7KezuoxJbzxtFIh6MrDBH5GsvwxdzyWEun3shkv8ATZPss7t1kAAKSf8AAkKsfckdq2653Vv+JR4hstaXi2udthe+g3N+5c/R2KfSX2oA6KiiigAooooAKKKKACobsXJtJRZtEtyV/dmZSUB9wCCR+NTVzmt3E2rX48OafK0ZZA+o3MZwbeE9EU9pHwQPQZbrtyAcfHHqmq+NdDvJtburvT01B4U2/uoZ3SGVndI1/gVkVQWLEktzgDPX+Iru4v7uLw1psrx3NynmXlxGebW2zgsD2d8FV/4E38NWdXn07w5pEE6WEcj22LfT7aNAGaRhtWOP+7np7DJPANP8PaPLpdpLNeyLPql4/n3s6jhnxgKvoijCqPQepNAGR5uraDqemadHPpCaVtlb7JDZSB4LaJOokMuGIJjX7g+9Udt4m1owQTT2ls7anYSXthBFGweHbtPlyfMfMbbIDlQvKsMcg1u/2S8+t315dlGhltUtYUUnKp8xcnjqxIHfhBWbofh/ULS709tSmgePSbRrO0aJyWnU7B5kgKja22MDaCw5Jz0wv6/r8AKPgG9ntxdaFdFyIibmwdrKS08y3ZvmVYpCXURuSuCfulD0Irf0fVJ7q71HT75US+spuQgIWSFyTFIAfUZU/wC0jVW8VW80Vtb63Zxs95pTmcIo5lhIxLH75XkD+8q1Br0iQx2Pi7Tz5yWseZ/L58+zfBYj1K8SD/dIH3qYHT0VRs9Vtr6+urSDczWyxuz8FGDglSpB54FXWYKpY5wBngZNAGT4h1h9Ks40tIln1O7fyLK3J4eQjOW9EUAsx9Ae+KzG0fTPDWi2uoahdTO+mzPfzXGBuubh43jZiMZJPmEKo/2QOBipvD9pcahfS+JNSheKedDFZW0gw1tb5zyOzuQGb0+Vf4ahg/4qvXxdn5tF0uYi3Ha6ul4MnukZyB6vk/wg0AUktNds7S88TXF1p9jezQma5+12z3P2aBASkKhZEA2jJY5O5mPYClk8S+II7KR2gsVuNM06K+1OMxPiVmDMYYvn+QgI3zNu6rx1ro9c0+bVbBLONkWKSeM3G4/eiVgzKOP4sbfoTWTrfh7ULu91E2E0C2+r2i2l4ZWIaALuHmRjaQ7FXIwxA+VTnqKWttAMTXtV1X/hILfVba2ZoNMJm8tbCUGS0ZAZG8/PltngiIDduVecA10HiEMkFn4m03M8lipkdYuftFq4BkUY6nADr6lAO5roIokhhSFBhEUKo9gMVgeGs6VdXnhqThLLEtkT/FauTtUf7jBkx6BD3pgjfgniureK4gkWSGVA8bqchlIyCPYipK5rQ/8AiR6xceHX+W1cNdaaT08sn95EP9xiCB/ddR/Ca6GCeG6hWa3ljlibO142DKe3BFAElFFFABRRRQBW1C/ttL0+e+vJRFbwIXdjzx7DuewA5J4rK0GwuJbiXXtTjMeoXaBY4G5+yQZysf8AvH7znu3HIUVNe6VPqeuW0t20Z0yzAmigBJMtxk4ZxjGEGCo5+Y5/hFbFAEc80VtBJPPIscMal3dzgKoGSSewrA0SGXWb/wD4SO9jZIyhTTYHGDFCeshHZ34PqFwOCWzHef8AFUaw2mr82jWMgN63a5mHIh91Xhn9Thf7wrp6AI54UuIJIZATHIpRgCQcEYPI5H4VUutGsLzTY9PlhYW0QXyhFI0bR7fulHUhlI9QQav0UAQ2lrBY2sdtbRiOGNdqqOcfieSfc8mqPiHS31bR5YIJBFeRlZ7SU/8ALOZDuQn2yMEdwSO9alFAGTYXNr4p8NBri3/c3cTQ3NtJyUblJI29wwZT9Kr+GLuf7PcaPfytJf6Y4heRus0RGYpf+BL1/wBpWHaoYP8AiR+L5bY8WWs5mh9EukX51/4GgDgeqOe9Z3iTWrHSPEtvqAkaG7tU8u7ikQqLm0bBZ0J4cxHDnGSAHGPmoA7Wobqf7Layz+VLN5alvLiXc7ewHc1meFr+41Pw7b3lzKJZZHl+cADIEjAdOOgFHiHWJdMtYoLKNZtUvX8myhY8F8ZLt/sKMsx9BjqRQBy03i/xFceNNL0mKwt7Kze4VLsOwmmXMbyKjFTsViqMxCl8DByMgV1PiHVJ7G2htdPVX1W+fybRGGVU4y0jf7CD5j68DqRVSHQNN0PTbO6vLx86bJLfz3UhA86Vo3WSSTj0duB04A4GKf4etZ7y4m8RajE0d1doEtoHGDbW2cqpHZm+83vgfwigCt4Wsx4avrjw00ryxFPttpLJ96QMcTAnuRIdx9pVHaulW4ge4kt0mRpolVpIww3KGztJHbODj6GsbxTBLHZQaxaoz3WlyfaAijmSLGJY/fKE4H94L6VV1yaOxnsPFtq4e1jjEV6ych7RzkSf8AYh8/3S/rQB1FFAIIyORRQAUUVQ1jVYdG057uVWkbISGFPvzSMcKi+5PH6ngUAUdfv7l5odE0uTZqN4pZpgM/ZYQcNKffsoPVj6A1qafYW2l6fBY2cfl28K7UXOT9Se5J5JPJJzXP2X2nQ/3k+n3Oqa3qJ868+xtGBEBgKoMjoAi52qM5PzNjJar0/iezg1Y2JguXjSaO3nu0CmGCZ8bI2O7duO5OikDeuSM0AbdFZMOvRTau1iLO6WPzGhW7bZ5TyqNxjA3b8gBjkqF+U89M61ABRRRQAUUUUAFFFFABRRRQAVW1Gwt9U025sLpd0FxG0UgBwcEY4PY+9ZieKbGR72VYp/7NskkafUyFFurJ99QSdzEYOSqlcgjOQRUUfiyFreYyaZqEN5GYwtjKsYmkEhIjK/PsAYqw+ZhgqQcUAWPDV/cXemNb3zA6jYyG1uzjG51xh8ejqVcezVs1yn21bfW7HXEikgtdSP9n3sUmMxTqxERbaSMht8ZIJBLJyQK6ugAooooAKKKKAILw3QspzZLE92EPkrMxVC+ONxAJxn0qno2lR6HprI83nTyMZ7u6k4M0h+859BxgDoAAOgrTrltaZvEmqnw1Ax+wxBZNWkU9UPK24Pq/VvRP8AfFABoqt4k1YeJZ1P2GINHpMbDqh4a4I9X6L6J/vmuppFVURURQqqMAAYAFLQAUUUUAFcRa6R5eoXPh9L26sZbPdd6VNC/H2eQ/NGyHKuqONuCOFKYwea6oatppnvIBqFoZrJQ91GJl3QKRkFxn5RjnnHFc54r1bTYNEsvFtrqVmyafL5kUy3CbLiM/LLErZwxZQcD+8i+lADfAnhzVvDs2qxam9tJE7xraPATjylDYXaeVC5wBk4AHJ612VRW1xDd2sNzbyLJBMgkjkU5DKRkEfhVPXNYi0TS3u5I2mkLCOC3T788rHCIvuT+XJPAoAzfEV5cXt1F4b0yZoru6TzLq4Q82ttnBYHs7cqvvlv4TW5Z2dvp9lBZ2kKw28CCOONRwqgYArN8O6RLplrLPfSLNqt6/nXky9C+MBF/wBhRhVHoM9Sa2aACiiigArnfFUb2SWviKBSZdLLNMqjJktWx5q++AA4Hcxgd66KkYBlKkAg8EHvQBxfi+PXmiTUtMt4dRitnW6sjb/LPCwXBHUiWN1LA4wwDcBiBWl4DdpPBOmyNFJEXV2McqlWXLscEHoaPDBOmzXnhuQ/8g8h7Qn+K1fPlj/gBDR/RFPeujoAKKKKACiiigArD1/UbkSQaNpbY1O9BxJjItYRw8xHtnCjuxHYHF3WNVh0bTZLyZXkIISKGMZeaRjhUUdySQP/AK1VtA0qayjnvdQZZNVvmEl06nKpj7sSf7CA4Hqct1Y0AXdN0620nToLGzQpBCuFycknqST3JJJJPUkmrdFFABRRRQAUUUUAZXiLTJNV0eSK2dY72FluLSRuiTIdyE+xIwfUEjvUUI0zxl4ahe8skltrhcvbzDJikBIZfZ1YEZHII4rarm7X/iSeLp7M8WesZuYPRblQPNT/AIEoDj3WQ0Aaui6Ra6DpFtpdiHFrbLtjDsWIGSep69atG1t2u0umhjNwiNGspUblUkEqD1wSo49hUtYviHU7i0hgsNO2nVr9jFahhkR4HzSsP7qDn3O0fxCgChqEaeLNZfSWXfo2nuGvv7tzPwVh91Xh299g/vCubm0nTLQalcaZYWmn2N7qtppT/ZIViV4UlCyAhQPvSPJGfYD8PQNJ0u30bTIbG23FIwcu5y0jE5Z2PdmJJJ9Sab/Y+nnSW0s24NkwIMZYnqck5znOTnOc55oA49PDkWpzazo1mmnx6fp1+jW9pdWf2i1TdAjMnlBlHDMWABGCxPerOmJf6JYXfhi2tY9SNjtaGG4k2G4spARtU4xuVgyYOBgLkjdmur0/TrbS7UW1ojKmSxMkjSO7HqWdiWY+5JNZPicHTzZ+IYxzpzEXOP4rV8CX/vnCyf8AbP3oA5XwNqRuvF76XIlykmkWElui3SFZfKaRDHuB7gDYTyG2bgSGBr0umCOIyCcIhkK7fMAGdvXGfSn0AI7rGjO7BVUZLE4AFc3pCt4h1NfENwrCyiBXS4mHVTw1wR6uOF9E/wB8ipfFtidW0630w6olhHeTiJwYt5uBtLeUBkcHbk9cqGHQ1fey1AiwEWpiMQYFwBbqftGMZ/3Oh6evtQBh+LLayvLuKO3sroeIUQGxvobOX9ycnAa4VdoTruQtyD0ORmhfWN6ZtW0NbOdpNQ1WG9huRExiEIMRcs4G0MvlsApIJ+XHXjsI7a9XVJrh7/fZsmEtfJA2Hjnf1PQ8e/tVeOx1VdKmt31nfeM+UuvsqjYOONnQ9Dz7+1AFlNL0+PU5NTSwtV1CRPLe6WFRKycfKXxkjgcZ7CrdZ8tpqL/YPL1TZ5OPtP8Ao6n7R0z/ALmcHp6+1SR216uqTXD3++zZMJa+SBsPHO/qeh49/agC5RWXHY6qulTW76zvvGfKXX2VRsHHGzoeh59/apJbTUX+weXqmzycfaf9HU/aOmf9zOD09fagDQoqnHbXq6pNcPf77Nkwlr5IGw8c7+p6Hj39qrx2OqrpU1u+s77xnyl19lUbBxxs6Hoeff2oA1KKz5bTUX+weXqmzycfaf8AR1P2jpn/AHM4PT19qkjtr1dUmuHv99myYS18kDYeOd/U9Dx7+1AFyo5ld4JEjfY7KQrehxwaz47HVV0qa3fWd94z5S6+yqNg442dD0PPv7VJLaai/wBg8vVNnk4+0/6Op+0dM/7mcHp6+1DA8xs/C811pK2ml6PcWGow6NJaan58LRR3dwNgjBkYYm+ZHIdSQFbkjIFdnY2sfiPXL/ULvTX/ALNlsYrPyNQtipkYO7vmNx90blGcEE5xwMnfjtr1dUmuHv8AfZsmEtfJA2Hjnf1PQ8e/tVeOx1VdKmt31nfeM+UuvsqjYOONnQ9Dz7+1ArD7zRbK70GXRlhS3s3h8lEgUIIhj5SgH3SvBGOhAqLw7qM2o6SPte0X9s7W14qjAEqcEgejDDj2YVNLaai32Dy9U2eTj7T/AKOp+09M/wC5nB6evtWVo2oeH7nxLqU2neIrG9u7sIXs7e5ifYI127tqksTzgk9to7UDOlooooAKKKiubmGztZrq5lWKCFDJJI5wEUDJJ9gKAMzxFrEml2ccVnGs+qXj+RZQMeGfGSzeiKMsx9BjqRWfP4Ulj8KHSbOe1mnkk8+7k1C3MqXrk7n8xQy8M2PUADGCOKnsdJvT4vu9buprae1kt1hsgAweBPlJGDx8zZJPU4QdqL7TNW1XQ3hvZIEvllDQmzvLm3jxwPmaNlc8FuM46UMDnrS303Xb/SdLvNItbXS47C6l/stVXyFnSZY2ZQAAdpLYbA+/ng1N4e0OfW7Pw94hubq3lmFrAzSz2vmXHy8gxTbhsDjG/wCU7gT0zWxqHh6S+tNItTbWSxW2BPslmiZBgBhGyEHaRuBDHB4zmta3jv4tQeMpZppaRhYFjDCQEAcEfdx97p7UCL1Y3iy8utP8IaxeWRIuYbOV42AyVIU/Njvjrj2qWP8At7+y5vN/s3+0d/7rbv8AK28fe75+909qkl/tj/QfK+w9vtu/f7Z8v/x7r7UMZ53Jbvo0Y0KO++3aDHNpt20uxAUWS4O4OUA3oxVXLNliCxYtnNdFZ6UdT1vX3t7y6sRBqKtBcWyplZDbxrLgSKykHoeOue+a19P0SPT57uyt9L0e20SZSfItrfY0jkKG3qBtIIBH0xRYWeqWGgNa29to9tcRti3ht0ZLdUyOMDkH73T2oApeGkTQLu78MuxFvbJ9psGc9bZjyuf+mb5HsrJSaMp8S6uPEcwP9nwBo9JjP8Snhrgj1bovonP8ZpPEvhm78SJpCzSQR+Q3+nGN2UyRsAJIlOOUYZyDjovNbcMd+moSRstmumCMLCse4Sg4HB7Afe6e1AHC6nHc+GrTxC0ltp6apNYTXUet2Vv5UzJuUOJMliChZSDuIIHAXbVx/Dto2s6n4d0uO1tbBrK2umt2g82Ay+ZIMyR5G4OEG4ZG7YDng1raZoN9p+j3ibLSbUJyEDXVzcXKNHx8rNKzNjl/lHHPTk1Y0/RrrRobOLTIrRQ5U37TzTSscADEbMScAbgATgcYxzR2A0NH07+ytJt7HdG3lAj91H5ca5JO1EydqDOFXJwABk1fqnH/AGl/ak3m/ZP7O2futu7zd3H3u2PvdPaq8f8Ab39lTeb/AGb/AGjv/dbd/lbePvd8/e6e1AHGJ4g1F9cj1q/guG0qW6ubTTlgvGRY2jEgzLCoAk3mJsMzHadoCryxmsBqflaSkOqXEl1r2lSzzvJO7RrOFjYNGCT5S/Oy4THG09RzpReE7y11Wxu4LpGtxO9zcWErZgimcfvHhAXdk7pTh2KguSAD0s6J4Zm0fXZJhKkunRW5gsEc5ktYyVJjXCgbMr3LHCqM4FLoHUzJ9PvvD+nW2vTgibTpmaaFbyW8Is32iVfNkAd8FRKMjjbtHFdurK6q6MGVhkEHIIrIkfWI9Cu3vW0lblckMxcW4jGNxfPPTd7dKreEb3Rzpi6ZpWv2OqrZ5VPs1wkjRQlj5attY/dXC54ztpgdFRRRQAUjMsaM7sFVRksTgAUtZHiLSp9a037HFOkcTNmaJ1JE6gHEbEHIUtt3YzlcjvQBzV7b6n4qi/tuzh821jbbp1s129q0kX8c4kVSVdx8qdMIScqXOHW0kWvXWl6VbXOqWmnfYp7l1a9lF15yyrHteXeWOwl8jcQTt6gVsarYeJbzQraGw1ODTdSWTMsluimMp8w2gSI/+z27Hmob7wvPNfaetnciztbaJ0a5ib/SmD5LrllZSrEISSM5GQQaQGfo0eua6mh609wCj28TSuL2WIIwz5n7hR5cu/pliNmeM4FdxWRp9rqNhZ3FnFFp8VvBGI9Oji34RVBCiTPoAvT3p8n9vf2XD5X9m/2jv/e7t/lbefu98/d6+9MDUoqnJ/aX9qQ+V9k/s7Z+93bvN3c/d7Y+7196ji/tj/T/ADfsPf7Ft3++PM/8d6e9AGhXn2r6zqEviOa6miuD4f0y+gs3FtetA/nPs/esqDMqAyqpQsowCSH429bJ/b39lQ+V/Zv9o7/3u7f5W3n7vfP3evvWTeeFJ5/Fi38V2Y9JmaOe9sg3E88Y+RyNueNsWQGAOwZB7nUOhlWd5fP/AGZrX2+5+0anqc9lJEZWaFIv3wjCxk7VZfLQkgZJ3Anni0nhnWG0O7jmmUahE8dxYs1/LdD7RHk7y0gBQPwpjX5QucH5jVqx8MXdrqt9etLA0aSyz6ZaZPkwSybt0h+Xdubcc4Yj5nwBmtaT+3v7Lh8r+zf7R3/vd2/ytvP3e+fu9fehAFpr9jceG012ST7PaCEyy+Z1i2/fVvdSCCPUVyl0dUih/wCEhuotTtZL0/vZbKKKWXTrReUTY4bJJO99qOcgjHCkWpPDWpy+MnjHkjwuZl1GWFz80l1hvlUD+AMqSEHGWOeea1b+28V3Juktb7R7WE7hFutZJXYHOMneoU4xztYc9OMFMDK1PV9ScajLpuqMLfRtOivA5SNvt7srviT5flUqg5TacufTFWG1TVLTUrjVrxruPRI4GuGZvs/2dYRHu4x++83d1z8mM45xVS98H6s+kiCwubC2lubNNPvosSGN4E3BPLbO5HCsVJwcg9sCtvXtIvtXsp9Ihe1g0u4tGhd9rGWNirBSo+7gHbwfQ031EulzCsfG17eWN1OVt0vHnt7e3017eVJLZpm2o0rsR5i4y2UUL8rAM2N1T3mvautnd2EqW73Vrc/Z7q5h0ya6jaNow6sLeNy/IbafmOCCTwRUDeGPEeqS3mp6q+kwasiWwsfsjyPHmGRpB5hZQcMW2nA4BPU1qadpniGztLu9Z9MOs39yJbhcyGCNFQIqocBjwqnJHUn2oH1F8Fz3EWmNo18hjvNNCJsZsnyWXMRz3wMoT3aNjXTVjTabeN4ttdUhaBLZLVrecZO+TJ3DjGDtIGPTc/rWzQB5y2tx6n458O3Vzc6dHaXLNPpmL/8AfSRGF1BMJQAby2c7iflUYyDXo1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFc3EVnaTXM7BIYUaR2PZQMk/kK820SC5/4SzQLDVmt5pXiudbjht0MclrJIcHz8lt4/fMqkbBlSNpwMei3+nWOqWjWmo2dveWzEFobiJZEJHIypBFQaZoekaKsi6VpdlYCXBkFrbpFvx0ztAzjJ/Ohb3A0KKKKACvNfHXiO11XQr9bK+0uTSIGa1u7iTUfK/fsBtVMIwcqDuxlecc/Ka9KooAZFJHLCkkLq8TqGR1OQwPQg9xT6KKACiiigAooooAKKKKAPP/ABbpY1zxXCsWgaXqhs7ZIZpbxAxh8+UAMqlGDlFRmwSoAbPOa7HRtPsNL0mC00tY1sV3PCseNoV2LfLjjHzce1ZU/gbQ7mS7eX+1Cbwk3Crq92qy5GDlRLjGOMYxgY6V0MUSQQpFEoSNFCqo6ADoKFsHUfRRRQAUUUUAFFFFAGdrt+2l6FeXcY3TJGRCv96Q8Iv4sQPxrjfCVk1p4zbSr2a3u7nQtKihhns0MaRpKclJELMfMPlK2d2CDnaCST22paPpeswpDqmm2d9EjblS6gWVVbpkBgcGnadpWnaPbG20ywtbKAsXMVtCsalj1OFAGeB+VC3uDLdFFFABXI6f4lj1zxyLTT9RtprG0trgTRwTq7earxqC4HIHLhQcdCeQRjf1jTX1bTZbJNRvLDzBhprMoJMdwCysB9QM+hFV4tBEOvJqiajdhY7f7OtmFiECpx0ATcOQD979OKOoGvRRRQAUUUUAFFFFABRRRQAUhIAJJwB3pao6tpx1XS57EXtzZiZdjTW2zzAp6gb1YDI4zjPpg0MDzyCW+n8OmzSz8SRf2zej7NqT6plY43kLRlD9oMqgRc42jJHIxXplvAlrbRwRmRkjUKplkaRiB6sxJY+5JNZLeHN11pE7arfFdLX93FthCStsKb3AjznaxHylQM8AVt0AFFFFABRRRQB5746ufL1rzSmtSWljpsk12dO1CS3SIs2I3kCSKdoCSk7VdsdjgA9Ro9rqY0SwFzrC3M4to/MnWEYlbaMsPYnn8azbzwLHqMt+L3X9YmtdQdTd2u6BElQYAj3JEHCYGMBgSCcnk56pEWNFRFCqowABwBTi3EUlcdRRRSGFFFFABRRRQAVi+L55bbwVrs8ErxTR6fO8ckbFWRhGxBBHIIPetqszxFp82r+GdV023ZFmu7OWCNpCQoZkKgnAJxk0DjujxjUbnVY/El5bWV7q5byQ0GntLqshRd5XzX3TxSsCcZMUcoUDpxluwt73U7HwP4wn0zUrhLiwJlhlv455WTFnDIwCXDF1yxYgOTjPIPQ2NV8Aa7q0wuJvEdmlykqzRP8AY7mRIZF6MsMl20QI7fJxnI55rS/4RbWrnQPEun3mqWP2rWZD/pUVm+xYzBHEf3RkyGwjfxkdD/s0tbNBG102dXbO0lrE7HLMgJPvipar2MU8FjBDcyxyzIgV5I4zGrEDqFLMR9MmrFU99CVsFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZPii8uNO8I6zfWknl3NvYzSxPtB2uqEg4OQeR3rWrJ8U2dxqPhLWbG0j8y5uLGaKJNwG52QgDJ4HJ70Djurnkl/411611O++z+J5J7CBVVA17Zby+4rmSSK0kihDHAUSsnqT1C914b1HXdTsNRistYtb2SK7RY765CTxoht4ZCo8gRCT53YBvl45PQA5WreF/GeoaumsQrpkF/CV8jdqXyKoOfLZo7NJmjzklPNwT1yOK1oLLxesGsuthpsF3fagsj41FwnkiCFCY3EJYMSjDlQR1GeCRbMSOh8N6pPrPh+1vrqBYLlwyyxoSVDqxUlSeqkqSPYitWqOkx3cWmxR3ttZ2sifKsFm5eONBwqhiq54A/hHpjjJvUMEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVy/iTxvaeGZbsXOnXs8VnbJdXE8LwKkauzqo/eSoSxMbYCg54HU4rqK8q+ID6YvibUBe6nHZ3P9mWptVP2Lczb7lSwF0QpC7udrKcHGeaTGjd0/4oaXqUsS29hcyK8kSM8V5ZS+V5kixqzLHcM4G51B+XjNdLB4g0251d9Ljnk+1qHIV4JEWTaQH2OyhX2kgHaTg9a8d0TV9KuA8UniIvqzalp8f2OW+iujOguYirCTDv2dvLWeQJuOcZxXocN3bX/j+1n0rWbfU4Y4JYLq1ieORbHphgU+4zMu0hsk84wFNUI7KiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYFr/yP+rf9guy/9G3NFFAdH/XVB4w/5AkH/YSsP/SuKt+iihbfP/IYUUUUCCiiigAooooAKKKKAP/Z"]
math
multiple-choice
47
12, 如图, 已知正方形 $\mathrm{ABCD}$, 顶点 $\mathrm{A}(1,3) 、 \mathrm{~B}(1,1) 、 \mathrm{C}(3,1)$. 规定 “把正方形 $\mathrm{ABCD}$ 先沿 $\mathrm{x}$ 轴翻折, 再向左平移 1 个单位” 为一次变换. 如此这样, 连续经过 2014 次变换后, 正方 形 $\mathrm{ABCD}$ 的对角线交点 $M$ 的坐标变为()
$(-2012,2)$
$(-2012,-2)$
$(-2013,-2)$
$(-2013,2)$
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACSAMMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7M+Il7e22tRJb3c8Km3BKxyFRnc3OBWD/AGrqn/QSvP8Av+3+Na3xN/5D0P8A17L/AOhNXO0AXP7V1T/oJXn/AH/b/Gj+1dU/6CV5/wB/2/xqnRQBc/tXVP8AoJXn/f8Ab/Gj+1dU/wCglef9/wBv8ap0UAXP7V1T/oJXn/f9v8aP7V1T/oJXn/f9v8ap1HcTxQW7zyyKscalmbPQDk0AaH9q6p/0Erz/AL/t/jR/auqf9BK8/wC/7f41n2dxDdWqXFu4kjkGVYdCKkoAuf2rqn/QSvP+/wC3+NH9q6p/0Erz/v8At/jVOigC5/auqf8AQSvP+/7f40f2rqn/AEErz/v+3+NU6KALn9q6p/0Erz/v+3+NJ/auqdtSvP8Av+3+NVKKALf9q6p31K8/7/t/jR/auqf9BK8/7/t/jVSigC5/auqf9BK8/wC/7f40f2rqn/QSvP8Av+3+NU6KALn9q6p/0Erz/v8At/jR/auqf9BK8/7/ALf41TooAuf2rqn/AEErz/v+3+NH9q6p/wBBK8/7/t/jVOigD0jwXLLP4atpZpHkkbflnYsT87dzRTPAn/Iq2v8AwP8A9DaigDnPib/yHof+vZf/AEJq52ui+Jv/ACHof+vZf/QmrnaACiiigAooooAhv4Wns5IUlMbSKQHHVfevC/EUfiG28C+MbJPtk8WkSzpYSead0m/cMk9woJ/KvcNatJb7TJrWG7ktXkXAmi+8nuM1geJtLg0f4WazaQySP/xL7hnlc5eRijEsT6k0AZ37N02oy/B3SF1VGW6hi2OW/ix3/Wu6rA+Fox8PdIBO7/RV5rfxQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAei+BP+RVtf+B/+htRR4E/5FW1/wCB/wDobUUAc58Tf+Q9D/17L/6E1c7XRfE3/kPQ/wDXsv8A6E1c7QAUUUUAFFFFABWD8UWKfDfXWGcjTZ8Y/wCubVvVz3xaJHwx1/b1/sy4xj/rm1AEnwxz/wAK/wBJ3Zz9lXOa3a4H4AzeM5PCNqvia0sIrdbZPsr2zkuw/wBoHp2rvqACiiigAooooAKKKKACiiigAooooAKKKKACiiigD0XwJ/yKtr/wP/0NqKPAn/Iq2v8AwP8A9DaigDnPib/yHof+vZf/AEJq52ui+Jv/ACHof+vZf/QmrnaACiiigAooooAg1O7hsLCW8uG2xQqWYgdq888SeO9M8ReFfE+iJa31leW2kzTeVcwNGzxlDhlBA45r0LVLm1tNPlub2VIreNSZHf7qj1NeG+JLW8h8XeKtVsNZXWrHVPDtw7SIoxa4Q7UDA9OBQB7D8PP+RH0vr/x6p169K5f44+Nb7w1DZQ6SgaV7mP7U+M+VEzY/M4P5VD8HNW8d3Gm2Vpq/hq1tLBLIGK5W73M7cYBXHGazPH3w81nX/Ctzctb2reILm8EnmNMdiRq3yqDj0x+OaAPWlOVzRXh/jj4ieP7D4hSaNp8WnWmmWphhuLy4RnSKV1BwxAJAycZxXVRQfGORVlj1Xwy8bLlSFkwfx2UAejUV56bf4xBeL3w2x75En/xFOt4vi+I38248Ns2PkwZAP/QKAPQKw/iR4iXwp4J1DX2hE32KEusZON57CvMPiD4u+Lfhe3iUr4evr2fPlWVszmVwOWblAAAO5NM+Ket6t4r+Ffhi2nsJ1k1q6R9R+zxM6wxq+GzgexoA7LR/Ht/Hqeh2niLSUsf7fT/RWSTdtfYW2MM9cA13leWyaRd+Mvi5o+sJbT2+h+G4maBpUKGeZlKjCnnABPWvUqACiiigAooooAjfzfOXbt8v+LPX8KkoooA9F8Cf8ira/wDA/wD0NqKPAn/Iq2v/AAP/ANDaigDnPib/AMh6H/r2X/0Jq52ui+Jv/Ieh/wCvZf8A0Jq52gAooooAKKKKAI7qCG5t3guIlkjkGGRhkMPcVy/xJ0zT9O+FevxWNlFbp/Zs3yxKF/5ZmusrmPjQSPhT4gIUsf7Nn4B5PyGgDQ8A8+C9MJz/AMeqdfpWvXCfBrxXNq+i2WnSeHdWsPJtV/fXUDLG2MDhiMHrXd0Aef8AhGzsdS+InjWzuoEmilkhSVHGQf3YqGxvrz4c6uul6o0tx4cunxaXrnLWbH/lm57r6H2q58OUx8UPGTnq1xD/AOixXZatY2mpafLY3sCTQTKVdHGQRQBNBLHNCssTq6OAVYHgiua+IXi6PQY0sLG3a+1i8+W0s4zySf4m9FHU/SuD13xTefCS/j8P3Eo1DTtQyNJMknz2pz92Qn+AHoT/AErtfhv4VfTWl13WbpdQ1u/G6e66qinnZH6KPagCr4f8MTaX4e1HW9dlW+1u5tpHmmI4iG0/u0HYCr3wWZZ/hjpMhQfNGxwecfO1bniY48OX5/6dZP8A0E1ifBQqfhfpBXODC3X/AH2oA6kADgCiiigAooooAKKKKACiiigD0XwJ/wAira/8D/8AQ2oo8Cf8ira/8D/9DaigDnPib/yHof8Ar2X/ANCaudrovib/AMh6H/r2X/0Jq52gAooooAKKOc0UAA5Fcx8ZE834W69HjO6wlHJx/Aa6Zs7Tt644ryHXvEPiC78K/ESy1eW1m/smJ1txEhQBDGTg5J5oA9L8FR+X4S05MY22yfyrUrlfhT4p0XxD4dtYtMuxLJb2yeagUjZx7/Ss7XvibZ6drOt2KaVc3C6DEkt5MjAKAwzge4FAC/DZy/xK8Zgj7t3EM/8AbMVofEjxeugwx6fp0BvtavfltLSPr7u391R6mvNfDfxH0+18TeJJ9JC3Goa3cQvptvI2zcGiyGY9lHU/Suy8O2Vj4d0S+8Q6vqUGo67cxFppg6/L6JGM8AE0AcL8MtQgl8R+L7bx5YJd3ttAJbi9dt6PGQf3cYPQAgj65qx8CfH+o2OlpNrVlcQeF7y6eHTLqU7mtQCQqS+g6AHp0rJ8U2V9DrWo6/bIj2T6LGfJVwWuLgl2CnnsW5r034T2Ogp8HdK0a/a1aOWyUXEUrryxX5u/rQB12uSRTeG7yRHV43tXIYHII2msz4TxrF8PNLRMbRCcY/3ia4uXUJvAltfaNd3yXmg3UTrYXJlBa1YqcRv6g9j7Vo6b4pfw78N/D9tBafa9T1FBFaW6tgMc9Sew5oA9FornfDF54n/t6ew1y1tjCsIkiubcEKTkfIQc889c9q6KgAooooAKKKKACiiigD0XwJ/yKtr/AMD/APQ2oo8Cf8ira/8AA/8A0NqKAOc+Jv8AyHof+vZf/Qmrnam/aI1+58PXlrdW2iX2rNJCqmK0Cll+ZuTuI4rzM/E/VBnPw78R/ewP3cXPv9+gD0aivH/HHxF8Q6l4ZubLTfAfiW3undBHJsjGAGBPIf0BrTt/ijqFvZQxy+APEzuiKrsIEOTjk/foA9NorzR/i3Ov/MgeKD823i1X8/vVgWPxW19PG17eXPgjxQdLlhjS2iFsMo4J3HG7vxQB7UeleQeIdK1rTNE+ImqajYRw2+pxPJbkyBgyhNvI961H+L8ceDN4L8TRKTgs1mMD9a5r4tfFm11L4b6zZweFde3TW0kYd7T5F+U8sQeBQB6l4XFjpngq3vhb29uqWavI0aBcgLnkivnOOD+2/D+ta3b6pdS6p4g1whdKjbi4hUhAGXrjC/rXpnhf4v28fhmwgl8FeJT+5VDtsCV6devSrY+LekxsBH4I8SK/OCNMPFAG7efCrwLqN4mo3nh6BbvyVjLRsybQBgAYIxgUx/hF4EbO7SHOf+nqXj/x6uX8D/F+9/s2X+3vCniQztdSmPbp7HbEWOzP4YrZX4x6U23/AIprxJz1/wCJY/FAF6P4QeBEcMmlzLj0vJf/AIqo7j4N+A5rjzn064DZ6LfTAD8N1YHiD4tzXV9pP9j6D4gji+1/6cH05x+6GM9vrW3/AMLe0MMFbRfEAbuP7Ml4/SgCSb4N+A5QRNptxIrDlXvZiv5FqdregrpHjPQtSt7CWbTNLtGt40iVpGhbnBx16Y5qOX4s6MEbbo+vFgpP/INk/wAKxPh98Xo5tNkj1/StbW68+Uof7Mlx5e87P4f7uKAPQ/CeqX2qi6mutMmsYUl224mUq8i/3iD0rYrz26+L/h63mWN9L13lc5XS5iB/47WH4o+NVql5pqaPo+uSRtc5vWOly/JFtOcZXrnHSgD16ivOofjN4XkBIsNcG1dxzpU//wATS/8AC5vCnB+y61yM/wDIKn/+IoA9EorgpPi74WjXc0OrbdoOf7Mn49vuVzHir9ozwponiC3099K1idLiPfvWydSvP91gCfwoA9korD8B+KtM8W6QNR0tblYfSe3eJvyYDP4VuUAei+BP+RVtf+B/+htRR4E/5FW1/wCB/wDobUUAc58Tf+Q9D/17L/6E1c5zXR/E3/kPQ/8AXsv/AKE1c7QA3B9ad+FFFACY9qMD0paD0oA818fXGoa58YtH8Ho/l6ZHam+vgAQZfmIVc+nymuS8XzXc3ir4hQ2LiPS7XSljIxlRNtGce/WvVte8LrfeII9ctL2Wyv47c25lQBg6ZJwQQR1J/Oud+IGg2Phn4M+IFgdneWCSe6uJfmaZzklm/WgDs/Cyr/wjdjkKf9HTnHsKtXkbNayCAokm07GK5wfXFcx8MPGvhrxJp8Njo2pw3U9tbIZUjP3eMV1cu7y22j5scUAcZ8Fb3V77SNSGuXaXk9tqc8KyCPaNquwGB+Fdn5af3F/KuV+FWi6votvqceqxxKbq/luYzG+eHYtj8M11lADfLj/uL+VHlR9fLX/vkU6igDO8R2LXmkywQzm1LD5pY0BYL3A964X4EzhtZ8Raa1zdTQWl4BbR3qjzVUouTnHQtuxXfeIE1OTS3XSJoYrvI2NMu5foRWZ4T0O8tNWu9Z1WaGS+vFVGEC7UVVHAGeeuaAN0wwnrEn/fIpPIg/54x/8AfAqSigCP7Pb/APPCP/vgUn2a3/594v8AvgVLRQBEba3PBgi/74FebfGvUX0PXNLvLXStHm86VLYm6QF8s2Bg/wAIGc16dWJr/hLQdaeZ9TsVuGmC7izHjb028/L+FAFnwmJBoFsZpbeaQoN0lvHsjY+oHYVpVHZwQ2trHbwRrHHGoVFUcACpKAPRfAn/ACKtr/wP/wBDaijwJ/yKtr/wP/0NqKAOc+Jv/Ieh/wCvZf8A0Jq52ui+Jv8AyHof+vZf/QmrnaACiiigAooooAK5X427f+FW60GfYGtWGcZ6iuqrkvjnIsXwp1p2YKotmySM4oA1/B+n2Vnodq9tbQxNJAm9kQDdxWtWF4B13SNY0O3XS9QhumggQSCM52nHf8jW7QAUUUUAFFGB1ooAKKKKACiiigAooooAKKKKACiiigD0XwJ/yKtr/wAD/wDQ2oo8Cf8AIq2v/A//AENqKAOc+Jv/ACHof+vZf/QmrnaKKACg0UUAFFFFABXI/HUBvhTrCsAQbc5B70UUAWPhjpunafosZsNPtbUyRIXMEKpu474HNdNRRQAUUUUAFFFFABRRRQAUyP7zfWiigB9FFFABRRRQAUUUUAei+BP+RVtf+B/+htRRRQB//9k="]
math
multiple-choice
48
$\square A B C D$ 中, 对角线 $A C$ 与 $B D$ 交于点 $O, \angle D A C=42^{\circ}, \angle C B D=23^{\circ}$, 则 $\angle$ $C O D$ 是 ( )
$61^{\circ}$
$63^{\circ}$
$65^{\circ}$
$67^{\circ}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCABlAN4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAoornfiZ4q03wh4cOpaje2tr5jiGD7TOsSSSN91SzEAD8aAOiorif2e9U1fW/hfaavrl8L28vLm6ZpkYNGUFxIqCPAxs2KuOvHUnrXbUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFRSMQzYJ4H615Zf/GvT9MudR/tDwh4xt9N0i8NrqGrNZwta2mCMyORMXKKGBJCHA7UAesUVHazRXFrHcQSLLFKgeN0OVdSMgg9wRUlABRRRQAUUUUAFFFFABRRRQBFMxBxuxnpzXB+JfAura34i1HUtV8SQXdnNaGDTrC60mOSHT3PWX5m/eNjjkCvQMVn+KNWsNC0W61fUp1gtLOIyzSN2UCgDzC8l1z4b/DbSfh/o2rR6z4q1iZ7TRpRZLAsSnLPcSRqSBHEpZyc8nYvVgK5/wCGq+NtV1a48LeKviPrGkeKrBS9xZiNDFcx54nt2PLxn8x0OCK7j4J6ReaxqV98S/EcLLqOtxCHTLaT/mH6eDuRAOzyHDv34QH7grZ+LHgaw8XabbyLPLp2sabJ52l6rbnE1nIB2P8AEpwAyHhh1oAxk8A+L2bb/wALV1zjv9nj5p//AAr3xf8A9FV1z/wHj/xp3wu8cX13q0ng/wAZQx6f4qs4t+FBEGpxA48+3JPP+0nVSfTmu/iYsx+bI6jmgDz7/hXvi/8A6Krrn/gPH/jR/wAK98X/APRVdc/8B4/8a9FooA86/wCFe+L/APoquuf+A8f+NH/CvfF//RVdc/8AAeP/ABr0WigDzr/hXvi//oquuf8AgPH/AI0f8K98X/8ARVdc/wDAeP8Axr0WoUeTdg9MnrQBwH/CvfF//RVdc/8AAeP/ABpv/Cv/ABeDz8Vtc9z9nj/lmtPxZ8TPDGh3x05LubVNUzj+zdLi+0XAPo2Plj/4GRWO0vxT8XqQn2XwLpb9JNi3mqOncjd+4gbtysvtigDO8VaPf+GdNa/8QfG3UdPtlODJcLEgJ9Bk9a868Z6/8RIvC95r/hzxX4kGkWcZd9V1e2FtFKB0WGL/AFsrMcBdqkMSBmvafCfwx8KaHqaaxPbTaxrKc/2trE5u7n1JRnyIR/sxhV9qwrX/AIuX8UFv2/eeFfB91m0U8pqWpr0kPqkHUf7ZB/goAseBNV1rwN8EG8SfFTxCjXkcL3l5JcEBbYN8yQA9CQML7n6153pPxE8P618E7zw14KvLXxb4s8TJOWsbNxL5Uk5IEl0VyIY1UoGZsDjHU4r6OjRfvDqepz1pxjU+vX1o6iaurWMvwDoo8N+BNF8OiYzjSNNt7ISnrJ5UapuP125rWoUYUAdqKBpWVgooooAKKKKACiiigAooprNg0ANlcqcDHSvLfEjn4lfEpfDQIk8M+G7hZNVdDlb276pb+6p1b34rc+NHirUNH0y10Lw6Fk8UeIpDa6PERkQkf625f/YiQljnqdi9WrZ+GvhWw8I+DrXQrDcywrummc5kuJW5eV26lmOSTQBu26qqYQADtj0p7KG4PT0oVdueScnvS0Acn8VPA2meMtFjhmllsdRs383TNTtztmsZsYDoe/XBU8EEisX4Z+N9SGvN4I8cxRWXia1j3RyINsGqwjgTwH/0JOqng16Kw3VzHxR8E6V4y0BLW9aW2vLN/O03UbY7biwmA4kjbt7jow4IoA6OGQvIfmG0EjHvUtebfDXxnqltrg8C+PFitvEUMZNnfINttrMSj/Wx/wB1wM7o+3UcdOn8Y+NvDnha3jk17V7WzeUZigyZJ5faOJQXk/4CKAOiY4XNVdSvoLCza6u54oIUGWeVgoAHWvP/APhLviB4tTZ4P8LRaHZSdNW8SBixX+8lpEwY5/25IyPSpNN+FGkXl0l9441S/wDGV+hDAaqyizjP/TOzQLDx2Z1dx/eoALj4qx6vO9n8P9DvPFMyko11APLsY277rhsISP7oOahbwZ4v8UDzPG/ipobWQc6RoRMMOPR5j88g9RgD0NejW9pbwQpDDEsccahUjUYVR6AdKeI0AwABxgYFAGT4S8KeHfDNitpoWkWtjGByYk+Zvqx5P4mtfy16Yp1YvjnxLp/hPwtfeINXl22djHvbYMu5PCoo/iZmIUDuWAoA5X4065qEs9p4D8NuV1rXgRJKP+XG1H3529OOF9Tn0rrvB/h/TvD3hmz0bTYfKt7OIIgHUnqWJ7ljkk981ynwb8PanAl74x8URgeJPETCW4i3ZFlD/wAsrVD3CLjJ7tk967+P7goAVQAMCloooAKKKKACiiigAooooAKKKKACs3xNqtlomkXWrajcJBa2cLSyu5woAFXnkwxAGSO3r7V5d4pH/CzfiQPDCg/8Iz4cmWXWj/Df3Q5S2B7qpwX+m33oAt/BfRr3W9UvPid4jgePUdZQRaVbSDnTtPByiYPR5D87/wDAR/DXpEa7Qec80y34iwB+nFEkoUgENk9MCgCWmyNtqhrutaVoumyajrGo2lhaR/enup1jjH/AmIFcNcfEzUvEDeR8OPCl3rWTj+1dRJsNOX6M6mWT/gEZU/3qAPRJJ9il3G1R1J7CuK8TfFPw9Z6i2j6Olz4g1heDYaVGZmRu29h8qD3PFUIPhzrPiRvO+Ini681KP/oE6QrafYL/ALLbWM0n4yBT3Wu20HQNG0DSU07RNKs9OtI+kFnAsSj3woAzQB5d408E+NvihYwr4nuLTwlZW8qz2qWJWfUIZFOQxm+6hBA+59DVH4J2GmeB/FreDfGemwHxRNmWz8R3HznxAg6yb2+7MON6ceo4IrU23HxT+IWv6Ve39/ZeFPC9yLI2um3slrLqN3t3OZJoisixplcKjLuJ5OAVOP8ACXw/a+OPC/jPwtql9f3+h6L4puLfw1qU9wZbq2EaJvaO4OWYxXBnjVmySqYJbmgD29cswLKBmptg/wDrV5n8P/Fer+H/ABLB4C+Ikkf9ouSNG1lBtg1hAPut2ScDqn8XUV6V5vzABW5OD7fWgCSiiigCNpCOu0c9zXltuv8Aws34oC8cGTwr4PuiIFP3NR1LGN/oyQgnHbec9UrS+NGv6hI9p4F8My413XwQZgu77BbA4knYZ9MhRkZPfiut8IeHdO8N+GrLQ9JQxWVjEI4gTliOpYnuzMSxPck+tAGn5YKjBx/hT1G1celKOBiigAooooAKKKKACiiigAooooAKaWAz7VzfxI8feGfAlra3HiS4voY72byIPselXV6zSYzt228bkEjOMgZwcdKh0v4g+E9T8F3Xi611Zf7IsUka6mmhkga22DLiRJFVkYDqrAEelG4FD40+KrzRtNtNF8P7ZPEXiGU2mmR4z5XGZLhh/cjXnPqVHetb4c+F7Dwl4StdEsm3tEuZ53OXnlblnY9yx71438L/AIhWuv8AiK+8eWWkal4r8Rauv2fTNO0yIeRo2nq2Y45blysKSucySAOXBYIV/d897H4X+I/itfM8W+JIPDli/XSvDzGSYj+7JeSKCR6hI1Po1AHQeNPiD4V8LSJb6pqiteSnEFjbL51xM391Y15Jrn/7Y+Jfi8hdF0iLwpp0nS91NfMu2X1SHoh9nrqPBfgbwx4URzomkw29xNjzrty0txP/AL8zku30LECug2fMTx+XNAHD+HfhZ4fg1NNY12S58SatGcpe6s/mmEnqIkPyxr7Diu3igSONY41VVUYAAwKcmR/hTs0AIqANuzk4xRINy4pc0ZoA821b4VXreJ9W1DQPG2p6DY+IJlm1axs4YyZ5MbWdJT88TMuBleRgV2Pgvwvo/hPwxZ+H9AtEs9PsU2RRJ+ZJPdiSST1JJNbGaM0AYHj/AMI6P4v8MT6LrkPmwSfMjqcSQuOVkRuqsDyCK4zwL4p1vwr4mt/AvxCufOnn40TX2GI9WQD/AFch6LOo6j+LG7ua9RblSKxPG3hXRvFnhubRdctfOtpgDwxV4XH3ZI2HKuOoIoA2POzjCNzWZ428S6d4W8L3uu6qWS3soy5A5aQ5wqKO7MSAB6kVwXg/xPrHgnxDbeB/H1z9oguX8vQfEJXbHfAdIZ+0c4HH91+2DxTIz/wsz4pee77vCPg+6xCOianqo6tnvHbg4H96Ryf+WXIBrfBvQNSijvPGPiZAPEHiFhJMnX7FD/yzgX0CjGfU816Cv3R9Krs4HQc47f09asKcqD7UALRRRQAUUUUAFFFFABRRRQAUUUUAeL/tB6naan440nQbbxvZeHJNAjm1y7vH8mU27qpjiBjkyDkGY9M8cdawfhv8O9K+Ln7M9na66l5p0et6g2p37xMSdQk8zIkYPztbap2njt0r2DWPAPgzVtWm1LVPB+gXt5K4drm40yGSZyBgFnZSTjHGegroYYvLgWJEVFUBVVeigdABRHYGeaaX8JNQ0+zW1sfiJ4ktYE+5HDKqKvsABjFWl+GeuBcf8LQ8Vf8Af9f8K9FXhaWgDzr/AIVnrn/RUPFf/gQKP+FZ65/0VDxX/wCBAr0WigDzr/hWeuf9FQ8V/wDgQKP+FZ65/wBFQ8V/+BAr0WigDzr/AIVnrn/RUPFf/gQKP+FZ65/0VDxX/wCBAr0WigDzr/hWeuf9FQ8V/wDgQKP+FZ65/wBFQ8V/+BAr0WigDzr/AIVnrn/RUPFf/gQKP+FZ65/0VDxX/wCBC16LRQB5J4t+CUnibQ5tG17x94jvrG4XE0M0qsGHpyMiqngnVNYRLrwJ8KNM01dJ8Humn3Wraw0jxXM+0PJHGIyGaQb1LOTjLEdQa9lYZUj1FeK/DHTviJ8N/wC1/CNr4CuNctr7WbzUdP12DUrSOzVbmVpdt0skqzqyMcExxSAjbjJyAdQ6Hofwx1bVde8Jw6prGkrpVxM75tN+4xjOBk9ya6dfuiq1pFcizjF0yNNt/ebPu59s1ZQYUD2oe4LYWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z"]
math
multiple-choice
49
如图,矩形$OABC$的边$OA,OC$分别在$x$轴、$y$轴的正半轴上,若$A(2,0),D(4,0)$,以$O$为圆心、$OD$长为半径的弧经过点$B$,连接$DE,BE(\quad)$
$15^{\circ}$
$22.5^{\circ}$
$30^{\circ}$
$45^{\circ}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACXAKIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigArmfEvjjS/C+s6Hpl82JdVuDCpzgRLjAc+24qv4k9q6avIPiR8LofFHjPSb+71q6Q39z9iWNI1xAiW80vy+uWj/APHjQB6Pqmsz6ZrGk2zWkT2moTm3M/nkPHJsdx8m3BBCEZ3A5PQ1fsLmS8tBNJEsZLuAEfeGUMQrA4HUAHp379awr/QrnU4tK0u6luXhsfLnl1FZVjeZ1Vl2gDJyQSWPy4DDac/d6SONIo1jjUIiAKqqMAAdAKFtqD30HUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBkat4m0zRLy2tL03hnuQxhS3sZ7gvt5OPLRuQOcelZN7qtprN/4Tu7JpTF/bE0Z82B4WDLZ3QYFXAYYI7iua8S65o2q+ML2KXxhZ6VHpNr9mx9qhBlkkbMyEMCeFRV+XDAkjPUVp+KtbuI4fCGraLost/HLfyXKQKywu4NpOeAe5VmfHX5cdTQtrg97Hf0V58nxR2QxzXvhrUbaFxuEzyxLCR7Suyx5/4FW5b+NrGaBZpNP1aKJuki2TXCf99w71x75xQB0tFZ2na9pGrll0/UrW5dfvRxygunsy9QfqK0aACiiqmp3w0zTLm+aGSZbeMyNHEVDEDk4LMq9PUik3ZXY0r6It0VgaJ4qh1m++xSaZqGnXLWq3ccd4sf7yJjjcDG7AYOMgkEZHFb9U1YlO4UUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAc/ceIbq51W503QdPiv57MgXc1xcmCCJiMiPcEcs+CDgLgA8kHAOfcalLqt74VuZrKWzZdbni8qVgWylpdqTxxgkHHqMHvTNJg1vw1d6rZros2pRXl/LeQXkM8KIPNOdsodgy7TxlVfK4wM/LVjxTYx6jc+E7TUY0kWTU281ULKpIs7k8HOcZFC2B7mhdW02j3Umo2ETS2sp3XlmgySe8sY/vf3l/i6j5vvRDw14c1NV1Czto4XmUOt3p8jW7uOxLxlSfxzR/wAIR4d/6B//AJGk/wDiqyL7wNpGmXBv7PTGntTzc2iSyFveSP5slvVf4u3zcMAWNR8G3N0Fzf2upKn3I9ZsUnK/7sibGX6ncazvK8U6HzBBeiJf+Wcc41K3x9JDHOPopYD0Nbdt4R8L3lrFc21mssEqh0kSeQhgehHzVL/whHh3/oH/APkaT/4qgDK0/wCJWktdrYa0f7KvW6Cfcsbe+XVWUf76r7E1a8eXStokWmG3v5odSlWKd7Ozmn2W+QZSTEpIyuVHc7uOhxPN4C8MXEZjm0pJUPVXldgfwLVh+GtDuNB1DxHD4bZIrO11JVXTJiTEwNrbudr8sjFnPPK9tvcAFzwRZTR6rrd6lreRaZM8UdlJqSv9rcKCH3NJ+98vcflD8jJxgEV2lUNM1a31NZFQPDcwkCe1mG2WEn+8PQ9iMg9iav0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/4h/5DnhP/ALCsn/pFdV0Fc/4h/wCQ54T/AOwrJ/6RXVAHQUUUUAYlxbzaJcSX9hE8tlKxe7s4xkqT1liHr3ZB97qPmyH17e4hu7eO4t5UlhkUMjochgehBqSsO4gm0O5kv7KJ5LGVi93aRjJVj1ljHr3ZR97qPmyGANyuf8Pf8hzxZ/2FY/8A0ita3IJ4bq3jnglSWGRQyOhyGB6EGsPw9/yHPFn/AGFY/wD0itaAL+p6Sl80dzDIbbUIAfIukXJXPVWH8SHup+owQCE0zU3uZJLO9iFvqMIBkiByrr0Doe6n8weDWlWfqumfb445IZfs99bkvbXAGdjdwR/Ep6Fe49CAQAaFFZ+kan/aVvIJYvIvLd/KuYM58txzwe6kEMD3BHTpWhQAUUUUAFFFFABRRRQAUUUUAFFFFABXP+If+Q54T/7Csn/pFdV0Fc/4h/5DnhP/ALCsn/pFdUAdBRRRQAUUUUAYc8E2hXEl7ZRPLYSMXurSMZKE8mWMfqyDr1HzZDV/C08N1qniie3lSWGTU42R0OQwNla4INdJXD6R5+i6/wCK7m1h36aNVX7RbQx/NGTaW7GVAOWOWO5ep6ryCGAO4opkM0VzBHPBIksUih0dDlWB5BB7in0AYWuxSafMmv2iM0luu28iQZM9vnJ47smSy9/vL/FW1FLHPCk0Tq8UihkdTkMDyCDT65/RP+JVqt3oB4gVftVgOwhY4aMf7j/kroO1AHQUUUUAFFFFABRRRQAUUUUAFJS0UAFc/wCIf+Q34T/7Csn/AKRXVdBXP+If+Q54T/7Csn/pFdUAdBRRRQAUlLRQAVz/AIe/5Dniz/sKx/8ApFa10Fc/4e/5Dniz/sKx/wDpFa0APnik0Cd7y0jaTTZGL3VsgyYSeTLGB2zyyDryw5yG2opY7iFJoZFkikUMjochgeQQe4p9YUsUnh+Z7q1jaTS5GL3FsgyYCeTJGB1HdkH1HOQwBu1geKwbO1tdcQYfS5hNIR3gPyzA+wQl8eqLW5FLHcQpNDIskUihkdDkMDyCD3FE0MdxBJDMgeKRSjq3RgRgg0APBBGQciisLwfNI/hq2t53Lz2TPZSs3Vmhcx7j/vBQ341u0AFFFFABRRRQAUUUUAFFFFABXP8AiH/kOeE/+wrJ/wCkV1XQVz/iH/kOeE/+wrJ/6RXVAHQUUUUAFFFFABXP+Hv+Q54s/wCwrH/6RWtdBXP+Hv8AkOeLP+wrH/6RWtAHQUUUUAYUsUnh2aS6tkaTSpGL3ECDJt2PJkQDqp6so92HcHbiljmiSWJ1kjdQyOhyGB6EHuKdWDLG/hyV7m3Rn0h2LTwKMm2JPMiD+53Ze3LDuCAN0X/R/FHiOzHCvJBeqvoJI9hx9WhY/UmugrnYpEPj8yROrJdaQjblOQwSU7SD/wBtT+ddFQAUUUUAFFBIHU4ooAKKKKAKGpw6tKsf9lXtlasCfMN1ZvOGHbG2VMd/Ws77H4w/6Duh/wDgmm/+Sq6CkJCgknAHJNAGB9j8Yf8AQd0P/wAE03/yVWHrtr4qGseGBLrOjM51NxEV0mVQrfZLjlh9pO4bdwwMckHPGDJo5bxlpE3iHVL++tdNlaRrKC0u5LURQKSBI7RsrMzY3YYlQMYGck1dFvr3U9E+H95fvJJPLqMhEkgw0ifZLsI7e5XaT9aAZ0X2Pxh/0HdD/wDBNN/8lUfY/GH/AEHdD/8ABNN/8lV0FFAHP/Y/GH/Qd0P/AME03/yVR9j8Yf8AQd0P/wAE03/yVXQUUAc/9j8Yf9B3Q/8AwTTf/JVU7LQfFVjdajcRa/oxe/uBcShtHlwGEUcWF/0nptjU855J+g6yuLt/FcetfEG10zS9StpbO2huWuYoZVZ2dCiAtgkqoLkAHGSCegBJu7B0uan2Pxh/0HdD/wDBNN/8lUfY/GH/AEHdD/8ABNN/8lV0FFAHP/Y/GH/Qd0P/AME03/yVR9j8Yf8AQd0P/wAE03/yVXQUUAcRZ+EPEdhrB1G38QaSuIniS3/siTyow7KzbR9pyOUBxnAyeK1/sfjD/oO6H/4Jpv8A5KrDsdGTxBqfiTUZNV1mC1F01vaGDVJ0SIxriSRVD7f9ZuGCCvydOTW94K1S81nwZpeo35DXM8O53C7RJyQHx23AA/jQtVf0/EHvYb9j8Yf9B3Q//BNN/wDJVH2Pxh/0HdD/APBNN/8AJVdBRQB518QdO8XT+AtZibUtMuw8GPItNJlWWQ5GAp+0Ng/8BNUPhNpfxIsLZP8AhJ76MaZt/d2t3+9uR6fMD8o6cMW9MCvT7lp0tpWtYo5bgKTGkshRWbsCwViB74P0rJ0DW7vXIhcnTRa2oUo7STZfz1O11C7eUBDLuJBJU4XGCQDbooooAKKKKAOXTwLYrAbA6hqL6LuLDSTIgtwCSduQokKZJ+QuV7YxxU+voses+EURQqrqjgKBgAfYrriuhrn/ABD/AMhzwn/2FZP/AEiuqA8zoKKKKACiiigChrGmyatpz2ceo3lh5nDTWZQSYxyAXVsfUDPoapr4bRPEdvrK6leqbe3NsloBCIBGcZGPL3dVU8N29OK26KFpqD1CiiigAqK5iee2lijuJLd3Uqs0QUsh9RuBXP1BHtUtFAHJ2ngWK3sF06417WbzTcsXs5nhRZdxJbe0caOwJJJBbBzg5HFdTFFHBCkMMaxxRqFREGAoHAAA6Cn0UAFFFFAFW/tJL228mO9ubMlgTJb7NxHdcsrYB9Rg+hFVNH0C20SS5+yTXHkTOXS2Zh5cJJy20AA8nkliTknGBxWrRQtAeoUUUUAFFFFABVDUNMF/e6VcmXZ/Z901yF2535hlix7f63OfbHeiigC/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k="]
math
multiple-choice
50
如图, 已知直线 $A B / / C D, B E$ 平分 $\angle A B C$, 交 $C D$ 于 $D, \angle C D E=150^{\circ}$, 则 $\angle C$ 的度数为 ( )
$150^{\circ}$
$130^{\circ}$
$120^{\circ}$
$100^{\circ}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABnAJwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0rx3Z/wBqXGnW0OhafrNxapNe/Z77hNqpsA+4+SWcELgZ2dRit/w/o2naJp7wabDBFFJIXkS3RVjEgAR8KoAHK8j1zWDJaaDfeIJTqQ1nTNVuCI1V9UuYEnVc7RGY5RGR1O0cjJJUZrq9PsLbS9PgsLKPyraBAkabi2APUkkk+5OaFoDLNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQXdnbX9q9reW8VxbyDDxSoGVh7g1jf2Vqmj/ADaLd/abYf8ALhfyMwA9I5uWX6NuHYbRXQUUAZFh4htLu6FlOkthqOCfsd2ArtjqUIJWQe6Egd8Vr1Vv9Os9UtTbX1tHcQkg7ZFzgjoR6EdiORWT9i1rRedOuDqdmP8Al0vJMTIP9iY/e+kmSf74oA6CiszTdesdSma2VpLe+QbpLO5Xy5kHrtPVf9pcr6GtOgAooooAKKKKACiiigAooooAKKKz9T1vT9IMa3czedLkxQQxPNNIBjJWNAXYDIyQOM80AaFFVNO1Sz1a3aexnEsaOY2O0ja4xlSCMgjOCOoIIOCCKt0AFFFFABRRRQAUUUUAUtS0mx1eFYr63WUI26N8lXjb+8jjDK3uCDWZ5Wu6LzC51qyH/LKRlS6Qf7LHCSfRtp9WJroK5nU9Ni1rxYkElxqUUNpZb5ltdQnt1dnfEefLdQSAknvyM9qAFj8feG3lkge+eK5iOJYJbeRZIz6MpXI/lUv/AAm/h3/oI/8AkGT/AOJrM0DToNc066g1CSS7fTL+a0stREpFx5aEY/erhtwJKE/xbPmyc50/M13Rf9cra1ZD/lpGqpdIP9peEk+q7T6KxoAP+E38O/8AQR/8gyf/ABNH/Cb+Hf8AoI/+QZP/AImtPTdWsdXhaSxuFl2HbImCrxN/ddDhlPsQDV2gDn/+E38O/wDQR/8AIMn/AMTR/wAJv4d/6CP/AJBk/wDia6CigDn/APhN/Dv/AEEf/IMn/wATR/wm/h3/AKCP/kGT/wCJroKKAMnTvE2j6td/ZLK9WW42GTyyjKSoIBIyBnGR+dc7b6pp+jePtfm1+8gs7i4EEenSXLhBLbqgJSMnhj5rPlRzkrntXSa7p0t/ZpLZsqahaP59o7dN4BG1v9lgSp9mz1Aqxpeoxarp0V5ErJuyrxv96NwcMje6sCD9KAHaekAtfNt4HhWdjMVkUq2WOSSDyCfQ8j0HSrVFFABRRRQAUUUlAC0UlLQAVzLeEJmvb64HijXEW9cNPFG1uowBtCqwi3oABj5WB6nOSTXTUUAVrCwtNLsIbGxgWC2hXaka9B/iSeSTySSTVmkpaAMzUtBsdSmW5ZXt71BtjvLZvLmQem4dR/stlT3FUvtutaNxqNudUsx/y92ceJkH+3CPvfWPJP8AcFdBRQBVsNRs9UtRc2NzFcQkkbo2zgjqD6EdweRVqsm/8PWl5dG+geWx1HAH2y0IV2A6BwQVkHs4IHbFVf7V1TR/l1q0+02w/wCX+wjZgB6yQ8sv1XcO52igDoKKgtLy2v7VLqzuIri3kGUlicMrD2IqegArn7n/AIkOvC9HGnak6x3PpFccKkn0fhD7hPUmugqC8tIL+yms7qMSQTIY5EPcEYNAE9FY2g3c48/Sb+QyX9jhTI3WeI58uX6kAg/7St2xWzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYt34cge6e+02eTTL9zl5rfG2U/9NIz8r/Ujd6MKh/t280n5fEFoI4R/zEbQF4D7uvLRfjlR/froKKAGQzRXEKTQSpLE4DI6MGVh6gjrT6wpvDa28z3Wh3J0u5c7nSNN1vKfV4uBk92Uqx9aaviKTTmEXiG1FhzgXkbb7V/q+AYz7OAOwZqAJdetJ18jV7CMyX1juPlL1uITjfF9TgFf9pV7ZrUtLuC/s4bu1kEtvOgkjdejKRkGpVYOoZSCpGQQeCKwLb/iQ68bE8adqUjS2p7RT8tJH9G+Zx77/YUAdBRRRQAUUUUAFFZHiK5ktdPieLUjYu9xHErrAJi7OdoUKfcg57AE9M1W/sjxF/0NH/lPj/xoA6Ciuf8A7I8Rf9DR/wCU+P8Axo/sjxF/0NH/AJT4/wDGgDoKK5/+yPEX/Q0f+U+P/Gj+yPEX/Q0f+U+P/GgDoKK5/wDsjxF/0NH/AJT4/wDGj+yPEX/Q0f8AlPj/AMaAOgorn/7I8Rf9DR/5T4/8aP7I8Rf9DR/5T4/8aAOgorn/AOyPEX/Q0f8AlPj/AMaP7I8Rf9DR/wCU+P8AxoA6CkZQylWAKkYIPesD+yPEX/Q0f+U+P/Gj+yPEX/Q0f+U+P/GgBW8OvpzGXw9dfYDnJs3Xfav/AMAyDGfdCB3IaqmoalBe2baV4hgfR7iUgQ3O8ND5oOUeOXAG4MAQHCsSOhq1/ZHiL/oaP/KfH/jTJdD164heGbxIkkTgqyPp0ZDD0IJ5oA0ND1KW/s3ju1WPULV/Iu416BwAdw/2WBDD2Yd81p15/DoU3gG5fXBe3+pW8ix2jafawxKMs4Ee3e4AAZiAoOBv4HWun0vxJaaktyrwXNlcWsxgntrlVLxvtVgCULKcq6nIY9fXIoSbdkDdldmzUdxPHa20txM22KJC7tgnCgZJ4oopN2Vxrc8s1nxnpWptoWuyatbJot5fpDaQSWErSsYpgWcOGwuWVeCh4A6EnHq9FFPuv62RP9fiwooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAed/EHxn4W07V9O0LXtUms03fbLjyVnV9oBEYDxDcCXwcg/wHPXnb+H0VwvhOKe4iaMXU0txD5pVpWhdyYmlZc7nKbcsSSe5JzRRRHZv+v60E37yX9f1qf/2Q=="]
math
multiple-choice
51
如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若\angleAGE=32^{\circ},则\angleGHC等于()
112^{\circ}
110^{\circ}
108^{\circ}
106^{\circ}
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAByAKoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+oops0kcUTSSuqIoyzMcAD1JoAbPPBAYxNNHH5rhI97Ab2PRRnqeDx7VJXhmqa9f+Mv2hfA076TqVv4dttRuLzQ79p7RrLVIxp1whnRVmM25nmXYzRhdiblb96RXudHQPQKKKKACiiigArndV8f+A9M8Vf8ACM6l428O2et+UZv7LuNVgjuvLCFy/lMwfaEVmzjGAT0FQ/G3VNe0T4N+K9Y8LWzXOuafod3caZCkfmM9wkLNGAv8R3AfL36V5Yo0bRf2c/B+g+C/C/h3xnaeMLi1ivE1DWXtzqFzOolkvZJUhmaWTejyuxww2EgkqBR1+78Q2V/X8D3sEEZByDRTY95jUyBVfA3BTkA98HjNOoAKKKKACiiigArkvFnxU+GHhfXJNG8TfEfwloupRKrSWWo65bW86BhlSY3cMAQQRxyDXW+5rye18U+ErfUPiF4/8V6ppi6Fbyx6AjzlWSWC1VhJHgj52a6ubmLYM7iijknFK+v9f1vYdj1hSCMg5B6EUV59+yrpGr6F+z54X0vW7W6s7qG0Zks7viaygaR3gt3H8LRRNHGV7bMdq9BqnoyYu6TCiiikMKqa9pWl63o8+k61ptpqVhdLsuLS8gWaGZeuHRgQwyBwRVuigDz74teGvC/h74c6j4t0fwX4TOt+DdAuZvDs15pcOzT2ghd4kRgA0UQYDhCuATjFYXhGb9oLWfDOkawdY+Hirfaak8kf9nXgJeRAykHzTtAyMrzn1Fdd+0Mu/wCAPjhPKt5d3hjUR5dy22J/9Fk4c9lPc+ma0PhN/wAkr8M/9gW0/wDRKUAcfDZftCjyfN134dNthZZtum3i75OzL+9O1R/d5z6iiGy/aFHk+brvw6bbCyzbdNvF3ydmX96dqj+7zn1FeoUUAeXw2X7Qo8nzdd+HTbYWWbbpt4u+Tsy/vTtUf3ec+oohsv2hR5Pm678Om2wss23Tbxd8nZ1/enao/u859RXo+r6hY6Vp0uoaleQ2lrApaWaZwiIB3JNeeHxb4s8f/uPh1ajS9Ffh/FGp252yr62ducGX2kbancF+lAHL+OvFvxk8HQ2aax4m+H1xfXUbRW+mWWkXst5qE+Pl8mJZC2B3GCMcllHNZHwH0TxVB8XBL458DfDXwv4nvtJn1Szu9K8Mp9tu3ZzHMz3Cy5SSNpImkQM+9bhf3gO6vY/h/wCAtB8JTTX1stxqGsXigX2s6jJ515dd8M+BtQHoiBUHZRWX8frS5tvDln430uB5tS8F3X9qLHGMvcWoUpdwAD7xaBpCq95Ej9KANyzsfGi/Y/tXiTR5fLspEvPL0SRPPuT9yVM3J8tBxmM7i399aLOw8aJ9j+1eJNHl8uykS88vRJE8+5P3JUzcny0HGYzuLf31ra028ttQ063v7KdJ7a6iWaCWM5WRGAKsD3BBBqagDn7Ow8aJ9j+1eJNHl8uykS88vRJE8+5P3JUzcny0HGYzuLf31os7Dxon2P7V4k0eXy7KRLzy9EkTz7k/clTNyfLQcZjO4t/fWugooA5+zsPGifY/tXiTR5fLspEvPL0SRPPuT9yVM3J8tBxmM7i399aLOw8aJ9j+1eJNHl8uykS88vRJE8+5P3JUzcny0HGYzuLf31roKKAOdh03xg8NrFfeIdFuIxYyRXyDQnUXM7Z2yKDcnZGO8Z3lv761y3wn+Gvg3R9RnuJvhl4N0/W9CvFht9a0zw1bWP2zNvFIZ4FXe8S7ppIsFycxtzg16XXP+DbfyfEfiyT+z7q2+0a1HJ5s0+9Lv/QLNfMiX+BBt2bf70bt/FQB0FFFFABRRRQAUUVj+OPFfh3wdog1jxRq9vpdiZkhFxcEhd7cKvHckcUAY/7Qy7/gD44Ux28m7wzqI2XJxE3+iycOey+vtmtD4Tf8kr8M/wDYFtP/AESlcd8S/HHhHxr8A/iInhfW9N1Y2Phm+F1GzERx77WbaJcgYVtrfgDWnoPjHw94P+Dfhe51u+ETS6PZrb20amSe5YwphY41+ZiT6CgDvq4bxZ8R7aDWJPDfhDTpfE3iFR89raOBBZ56NcTH5Yh7fePYE8Vmf2d47+InzazJc+DfDb9NPt5B/ad4v/TWQcQKf7q5f1Kmu68J+HtE8MaNHpOgaZb6fZxkkRQrjcx6sx6sx7sSSe5oA47SPhxc61qUOufE3Uo/EF7EwkttLjUrpdiwOQViP+ucf35M+oVTXoYAAwBxRRQAUjAMpVhkEYIPelooA89+BZPh+41v4Zzkj/hF7hZNJDfx6XOWe3A9oystv9IAe9ehV558ZP8AimfE/h74kxfLDpk39l64R0On3LqvmN/1ynEMmT0TzfWvQ6ACiiigAooooAK5/wAG2/k+I/Fkn9nz232jWo5PNln3rd/6BZr5iL/Ao27Nv96Nm/iroK5/wbb+T4j8WSf2fLbfaNajk81594u/9As18xV/gA27NvrGW/ioA6CiiigAooooAK8r/aO1m1ub7w34Ht/FGl6LfalqaX89xeGNxb29p+/DtG7KGzOtuoBIzuJ7GvVKyNc8K+F9ZvPtmseHNI1C42hPOu7GKV9o6Dcyk45PHvSA8k1h4tQ/Y/8AG91Y6rpmra9F4YvbHWtWkG61vLqK3keYbgcNGrzTLkHA5HRa0P2QdG8J3nww0TxbaPPqevNYRW1/eai2+5s5kjVXt1B4iVSMAKBkYOTkGuo+N2m6dpX7OPjax0uw02xtY/DOpFIBCsVsubaQncqgAKSST+Ncfptld+BfC/h34maDayTWE2hWSeK9OgXLTwrAgW8jUdZYh94Dlo8jqq0wPaqKg0u9tNR0231CwuY7m1uollgmibckiMMhgR1BBFT0AFFFFABRRRQBT8RaVY65oN9ouqW63FjqNtJbXMTdJI3UqwP1BNcn8BdVv7nwdL4d1u4abW/Cd02j6jK/3p/LCmG4P/XWBopPq5Hau4rzzxX/AMUl8btI8Sr8mm+LY10PVD/Cl0m57KU+m7M0JPcvCO1AHodFFFABRRRQAVz/AINt/J8R+LJP7Pe2+0a1HJ5rT7xd/wCgWa+YF/gA27NvrGW/iroK5/wbb+T4j8WSf2f9m+0a1HJ5vn7/ALX/AKBZr5m3+DG3Zt/6Z7v4qAOgooooAKKKKACmyY2kU6snx9qFnpPgfWdU1CeWC0stPnnnlhkMckaLGxJVhyrYHB7HFKTsmxrVmH+0KSPgH44BNuP+KZ1Hm5H7oD7NJ9//AGfX2q98KPm+FXhsEBlOi2oIP/XFK8G+Cen+J/FtxqHgHxF4k8VW7XfgR7fxTY+JJhLdNdXYEcdzaoSyrCoFyud3zEAMo28+i6J8IfE2l6XYafb/ABj8Vi3sbIWyp5cA3YG1G+7xgAcDinb+vwF1J9EZvhX40h8PSsR4N8Q3JGkTN93SL1ySbQntFISTH2Vsp3WvUFPHJ715D4i+Cet6/oL6Lrnxb8UX1jcWzQ3UMkUAEzHlZOF+VlOCMdwDVn4Y3Pi6y8UHwD4q8X3B1PSLCU2Uz2cONdtScR3e4jImiyqSIOCcMRh+AD1TJ25z/wDWpMnjnvWFZ6L4ii+x+d4xuJ/IspIbjOnwL9qmP3ZzhflK/wB1flPcUWei+IovsfneMbif7PZSQ3GdPgX7TMfuznC/KV/ur8pxyKAN1WPHPfFPrn7PRfEUX2PzvGNxP5FnJDcZ0+BftMx+7OcL8pXj5V+U45FFno3iOL7H5/jG4n8iykhuM6fAv2mY/dnOF+Ur/dX5TjkUAdBWB8UPDMXjDwFqfh552tpLuHNrcqPmtbhCHhmX/aSRUce60210fxDAto1z4znmFvZSRXJawgX7TKfuznC/KV/ujCnHIrgLrxj4kv8AULfR/AGuXPi2/tLSS2vrwWcEOnLOfuzyThcFk/55xZBxgkGgDuvhD4ml8WfD+w1e8gW21EB7bVLYH/j2vIWMU8f0WRHAPcYPeumr5x+EUnxI8MXXxK1HW9SF42hPNcancRNbw2eo3wsYGDxJ5RMAWIRs3LAuWByc16l8KT4217wPoOu69ql1pd1c6WxudPeC3lZ5JBmOZ2VFCuqkZRQFzkHPWha/13B6HeUVz9no3iOL7H5/jG4n8iykhuM6fAv2mY/dnOF+Ur/dX5T3FFnoviOL7H5/jG4n8iykhuM6fAv2mY/dnOF+Ur/dX5T3FAHQVz/g238nxH4sk/s9bb7RrUcnmiff9rxYWa+YV/gI27Nv/TMN/FRZ6N4ji+x+d4yuJ/IspIbjOnwL9pmb7s5wvylf7q/Ke4rzL4Ynxf4q17xX/wAI34pGm6bp2tm0vNbOnwy3Ou6jBDFbzuY2HlxQoIY4hsAJaJjnBo6h0ue20Vh/DWXxJceCLCfxfFbw63KjPeRW64jiYuxCLyThVKjkknHPNblABRRRQAVynxh8HXXjrwn/AGDB4lvdDhkmR7l7W3hlNwisGEbCVWG0lRnHUZB4Jrq6KAOK+G/w7j8NeLNY8W6pr+o+IfEOtQwWs+oXyxx+XbQ7jHBFFGqoihnkY4GWZyTmu1oooAK5X4reEW8UaTb3Gm3Y0/X9Hm+16LqIXP2ecAjaw/ijcEo691Y98GuqooA5n4WeLk8W6BJLcWh0/WNOnNnrGmu2XsrlQCy5/iQghkb+JWU+1dNXn3xS0fVNC8QR/ErwnaSXN/ZxCHW9MhHOsWIJOFHeeLLNGe+WTgPkaGsfFHwVY6Bp2qRasNROswCfS7LT0M93fKehjhX5sZ4LNhVP3itAHY1xvjH4j6RpOrNoGj2tz4i8Qgf8gvTAHaH0M8h+SEf7x3Y5CtWT/ZnxB8efNr11L4N0GTppmnzhtSuF9JrleIv92Lkf89CK7Lwd4Y0HwrpC6Z4f0u3sLdeSsSYLnuzHqxPUk9aAONXwP4k8aMLj4l6qq2Dcr4a0qRltAPSeXh7g+oOE9FFdrNHa+G/DEn9k6LJJDYwkw6fp0SB5MDhI1YquTjuR9a06KAPmTXvhzHrfw0sNS1f4RandeLvFmv8An67cMluZ9Nha9Dylj52Cot/3ce0nIUEgdD9NqAFwBgDoBRRQtFYOtwooooAK8u8O/Drxl4U1bWrHwh4r06z8Oa7qtxqkkVzpzS3tjNcO0k/2eQOE2l2LASI2CT2wB6jRR1DpYZbxiKBIgzsEUKGdizHHck9T70+iigAooooAKKKKACiiigAooooA5v4q+MrLwP4V/ta5tZ765ubmKx06wt8ebfXcrbYoUzwMnkseFUMx4FeaeD4tU+HHxe0Kx1jw34Ltx8R768VjoVnLFc2N0kEl3iSWR2FyhWOVS6pD82G2DeQuv+1qy6d4Z8OeLoblTfeEtfj1Wz057eeZdSIgmikiK28Usq4hmlk3rG+zZuI2g1kfBHXNG+J/xSg8e33jPwvrOo6bpckej6H4Y1FtQtdFhmKeZNcTFEb7TLhVAeOIqiuqqxWRqI6t/wBaW/zv9wS0/rr/AFY9vooooAKKKKACiiigAooooAKKKKACiqfiDVdO0TRrjVtWu47WztU3zTSHhR06DkkkgADkkgDJNR22p+b4qvNG8jb9ksre683f9/zXnXbtxxjyM5zzu7Y5ANCiiigAooooAKKKKACiiigAwD1FIqqv3VA+goooAWiiigAooooAKKKKACiiigAooooA87/apggm+B2rySwxyPbvbyQsyAmNvPjXcpPQ7WYZHZiO9dxouk6Vo1q1rpGmWenwO5kaK0t1iQsQAWIUAZwAM+woooAuUUUUAf/Z"]
math
multiple-choice
52
如图, 已知 $\triangle A O B$ 是正三角形, $O C \perp O B, O C=O B$, 将 $\triangle O A B$ 绕点 $O$ 按逆时针 方向旋转, 使得 $O A$ 与 $O C$ 重合, 得到 $\triangle O C D$, 则旋转的角度是()
$150^{\circ}$
$120^{\circ}$
$90^{\circ}$
$60^{\circ}$
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABNAIwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0Tx1rrs0OiWjXkTTXVtFNPFbSlDvmQGIyBSi/KSWywOCAM7uO7rn5fBeiTabbae8d79mtpjcRBdRuFYSFt24sJNzHdyCScHpWdqeh2Nx4/ie5WdGvtPKxzQXEkLo8L5wGRgeVl6dDsoW39eQdTsaK5/8AsfXLLnTvETyqOkOp26zAewZNjfixaj+1tesv+P8A8PfaEHWXTLlZfxKSbGH0G6gDoKKw4PF+hyzLBNeiyuGOFgv42tnY+gEgXd+Ga2wQwBBBB5BFAC0UUUAFFcYU/wCEr8a6tp1+C+j6QkUZs2/1dzNIu8tIv8aqu0BTkZJOMgYb4Ihgi1zxMukwJBoKXUcVtFCNsXnKmJjGo4A3YBxxlT3zQtQeh2tFFFABRWRfeKNE06c29xqUJuh/y7Qkyzf9+0yx/Kq39vanecaX4cu2B6Tag62sZ/A7pB/3xQB0FFc//Z/iW9/4+9at7CM/8s9Otgzj/tpLuB/BBWRqPhyyTxH4et/MvLu7Ny13JNd3TykRwrnKgnav7xoh8oHU0AXNcfVL3xjpmlabrV3YRG1luLwW8UD/ACghUwZI2wSxPthTx3rn7j4gaj4Z1O/0XULd9XktJsJeIBGzIyK6iQKu3eN2CQADgHAroD4e8RR6/qWqW2u6YhvFSJRJpTu0MSFtqhvPAJ+YkkjknoBxWrpXh6x0qCZQHup7iUz3Fzc4aSaQgAscAAcAABQAAAABWlFwjJOautTOtGcotQdma1c/4r/0aDTdWHB0+/ikc/8ATN8wv+AWQt/wGugqnq2nx6to97p0pxHdQPCx9AykZ/WszQuUVl+G9Qk1Tw3p95OMXDwqJ1/uyr8rj8GDD8K1KAI54IbmFoZ4kliYYZJFDKfqDWIfB2kxEtpy3GlP1zp07Qpn/rmD5Z/FTW/RQBz/ANi8T2P/AB66vaajGP8AlnqFv5ch/wC2kWFH/fs0f8JDqFnxqvh2+iA6zWRF3H+AXEh/7910FUtS1KLTYFZleWaVtkEEfLzP/dUfgSSeAASSACaAOV1G98BardPeXmrQ290YxFMgv5bOWRecJJGrIzjk4DA9SO5rStdehS2jtfD/AIev57eNdsYjthaQIO2PN2fL/ug1L/wjjXv+n6hPt1gfNDcQ8iz9Ejz1Xs2R8/fAwFvabqUk8r2N9GsOowrudF+7KvTzI89VPcdVPB7EgFHy/Fd9/rJ9M0qM/wAMKtdSY/3m2KD/AMBYfWj/AIRG1uedVv8AUdUJ6rc3BWM/WKPah/FTXQUUAVrHTrHTLcQWFnb2kI6R28Sxr+QGKs0UUAFc/Y/6d411W66x2EEVins7fvZPzVoPyrfZgilmICgZJJ4ArB8Gq0nh6PUHBEmpSyXxyOQsrFkB+iFB+FAG/RRRQAUUh6ijNAGB4d/0PVNd0o8CK7+1wj/pnON5P/f0TflXQVz14TZeN9MugMJqFvJZP7yJ+9j/ACUT/nXQZoAWikzxmqepanFpsCsyNLNK2yCCPl5n/ur/ADJPAAJJAFABqWpRabArMryzStsggj5eZ/7qj8CSTwACSQATUGm6bLHO2oagyS6jIu3K8pAnXy489umW6sRk4AAVNN06WOdtR1Bkl1GRduVOUgTr5cee3Ay3ViMnAAA1AeaAFqlqWmx6jEn7xobmFt8FxH9+JvUeoPQg8EcGrtFAGbpupSTyvY30aw6jCu50X7sq9PMjz1U9x1U8HsTpVS1LTY9RiT940NzC2+C4j+/E3qPUHoQeCODUWm6lJPK9jfRrDqMK7nRfuyr08yPPVT3HVTwexIBpUUUUAYXjCWRfDF1bQsVnvillER1DTMI9w+gYt+FbUMUdvBHDEoWONQiqOwAwBWFqv+m+LdEsOqWyy6hJ9VHlID9TKxH+5XQUAFFFFABjnNJilooA5/xiPJ8PtqSg79MmjvsjrsjYGQfjHvH41vjDAEcjsRTJ4Y7m3kglUNHIhR1PcEYIrmtB1gWPhCxjud899AzaeIU5knmiYxnA99m7JwADk4HNAG5qWoxabArOjyzSt5cEEfLzP2VR+BJJ4ABJIAqDTdMljnbUNRZZdRkXblSSkCdfLjz26ZbqxGTgABTTdNljnbUNQZJdRkXbleUgTr5cee3TLdWIycAALqUAJgUuKKKACiiigAqlqWmx6jEn7xobmFt8FxH9+JvUeoPQg8EcGrtFAGbpupSTyvY30aw6jCu50X7sq9PMjz1U9x1U8HsTpVS1LTY9RiT940NzC2+C4j+/E3qPUHoQeCODVODXVgt7tNVVLa7soWmmC/ckjUcyR56r6jqp4PYkAg0X/TPEmvakeVSSOwiP+zEu5iP+ByuP+A10FYvhO1ltPC9iLhdt1MhubgeksrGRx/305raoAKKKKACiis/XtT/sTw9qeq+T532G0lufK3bd+xC23ODjOMZwaAOLv/GesReI9UsNPvdGvJLK5hij0tbaT7XOG2l+RKdoUMP3hTbkHOMVvS+C7c63d6ta6tqlnPcnLLA8exeFDbQyMV3bQTg8kewryfwB4wb4haxpmgtYiwNhdPrM90JfMeeQPnavC7ATIQfvfKMV79Ts1FX/AK/p3Fe8nb+v6Vjn/wDhGbr/AKGnXP8AvuD/AONUf8Izdf8AQ065/wB9wf8AxqugopDOf/4Rm6/6GnXP++4P/jVH/CM3X/Q065/33B/8aroKKAOf/wCEZuv+hp1z/vuD/wCNUf8ACM3X/Q065/33B/8AGq6CigDn/wDhGbr/AKGnXP8AvuD/AONUf8Isx5fxDrrN3P2oLn8AoH6V0FFAHP8A/CK/9R/Xf/Az/wCtVS/8BWOqRrHfarrFwik/LJd5yCMMvTowyCO4JFdXRQByMktx4m8WalpRvJ7XStKWJZktJmiluJnXfgyKQyoq7eFIJJ5OODtaNpdxpbXiS39xdQPKDbLPIZGhjCKNpY8sd245JJIIyTiq154Xjm1eXVLDU7/Sru4RUuWs/KInC/dLLIjjIHAYAHHBJAGNaztIrK1S3h3lE7u5dmJOSSTySTzk0Lb+v6/qwPcnooooA//Z"]
math
multiple-choice
53
某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是()
从图中可以直接看出喜欢各种球类的具体人数,
从图中可以直接看出全班的总人数\rightarrow
从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况
从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACSAOEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7Qkq14G/5CF//ALkX85KqyVa8Df8AIQv/APci/nJWktiI7nSUUUVmWFFFFABRRTLiaK3t5J55EiiiUvJI7BVRQMkknoAKAH0V57/wtEa9I0Hwz8O3PjDadp1RJ1tNHQ/9fjg+aPe3SbHfFDeGPidry7vEPxEi0GF+tl4U02NXUf3WursSl/8AeSKI+mDzQB6FRXnq/BfwRP8ANrbeIfEDHG8a34kvruJ/+2DzeSAe4VAD3FcT8bvg18JbL/hEDB8NPCu658W2NvM0ujwSNJE2/dGSyklDgZXofSgD3iivPz8D/hOnNn4I07TXH3ZdLL2MiD0V4GRlHsDjgelN/wCFXXWmEP4S+JPjbR2XpDd6p/bED+zi/E0mP9yRD70AehUV582q/Ffwzzq/h/S/GdinW60B/sF8B72lxI0b8dStwpPZOcVu+A/Hfhbxg9xb6Lqeb+yA+26ZdRPbX1mT/wA9reQLInsSuD2JFAHSUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcjJVrwN/wAhC/8A9yL+clVZKteBv+Qhf/7kX85K0lsRHc6Siiisywoorkfip40bw0llo+i2K6t4p1xmj0fS9+0SFcb55mAPl28YZS747qqgu6qQCX4j+OtL8JNaWH2a61bXdU3DStD09Q91elcbiASFjjXI3SyFUXIyckA4Nr8PdS8YTRap8WLuDUlVxLb+F7RidIsyDlfNBAa9kHHzSjy8gFYkIzW18M/A8PhmS61jU75ta8UasFOq6zMm1psZKwxJkiG3TJ2RKcDJJLOzM3W0ANhjSKJYokVI0UKqqMBQOgA7CnUUUAFef/H7/mSf+x00/wD9qV6BXn/x+/5kn/sdNP8A/alAHoFFFV/t1kNUGmm8t/tjQmcW3mjzTGCFL7Ou3JAzjGTigCxXN/EDwJ4b8Yi3m1W0eLULEltP1WylNvfWLesM6YZQe65KsOGDDiukqvY31letOtneW9wbWYwTiGUP5UgAJRsfdYAjg88igDztvFviL4bzLa/Emf8AtPw6zBLfxhBbiP7MTwF1KJPli5/5eEAiP8Sw8bvSo3V41dGDKwBUg5BHqKS5hiuLeSC4iSWKVSkkbqGV1IwQQeCCO1eVtv8Agldx/vJZPhrcSBCHJY+FHY4XBPP2Ek45/wBQSP8Alkf3QB6vRSIysoZWDKwyCDwRS0AFFFFABRRRQAUUUUAFFFFABRRRQByMlWvA3/IQv/8Aci/nJVWSrXgb/kIX/wDuRfzkrSWxEdzpKKKKzLMvxt4h0zwp4T1DxHrMzR2OmwNNMUXc7Y6IijlnY4VVHLMQBya5r4QeGdSt7i98c+LYl/4SrxEiG4i3710q1XJhsIj/AHU3Euw+/Izt02haPiJf+E4+N1l4eI8zQ/BAi1XVB/Bcam4zZwH18lN1wR2Z7Zu1ej0Acj8QvHUnhrxJpXh+w8Ha/wCJtS1a1uruK30h7JPKht2gSR3a6uIV+9cxABSScnjisq2+KN9F4q0PRdf+F/jHw+PEN81hZ3t/PpUsHniCWfawtr2WQZSCTnYRkAHGa5r4/wB78O7j47eBNB8U65qdjql1bXtvC1h4mutIW3inMJQyyWzI7NLNbJHFG0iK58zAdkUDivgd4E8Y6vqXh3xXLYz6la6D4q1GSC/1X4pavdStClxeWeW0+4tpoNyQuwXbKrMUXMi7nBI629f1/wAgbjt1t/w36Hqtp8ZNDt9a1m18XaNfeCbDQ7hbW51nxLqWmW9i87okkcSOl27FnjkDjKgYBBIYbaPhT8dfhp8RPFUnh3wx4ksLrUBbPcxQx39tM0yJK8TlRFK5BG1WwwXKSIy5G7b5jpp0m28c+NLjwJd+P9V1bVNftbjRL3S7vUtS0u5aKKBZkluZZDYCNZEuIpEeRWVVKIAyRKNP9kmXxTa62bbxzrs0ZuH1N/DunWmRYSpJfSyXKNKQDPcQuoVCyxkQ4ZU+abbNOTa18wloz6Drz/4/f8yT/wBjpp//ALUr0CvP/j9/zJP/AGOmn/8AtSqA4r4/eBv+E8/aJ8N6d9i8F3f2bwrqM+3xX4X/ALbtx/pVmuY4vPh2P8339x4yMc5D/wBnHwTqWhfEPxDPZ6V8KdHt9F1I6Tenwz8P20u7v4zaW9yp88XrhFDzplSjg+X1BIK6/iz4EeDPGPxSk8R+J/BHghtPhmWdUj0C3mvdXm2DdLe3EkedgJIEK5zsDNIwbyk6LTPgv8HdOvkvdP8AhN4HtLmLPlzQeHLSN0yCDhhHkcEj8aIuyXz/ABd/+ATKLcnr2/K356/geQR/Cf8A4TL4kfErX/7I+Fl35Pido93ij4ff2xeHbYWZwLj7ZFhOeF2cHccnPDrjwlf3H7EGtXVx4P8Ahbe2OseHF1y00PTfDbaLaafI9oZJJjl7oSzICmxhHGSU5YZBX1DUPgD8DLyxmtJvg74FWO4iaN2h8O2sUgDDBKuiBkPPDKQQeQQaxvAPwJ0Xw74d1fw1DZ6Hptne7Lb+1tB0SysNR1SwK4ktL4pBsbPzAywiNiGBURuu9plFunKC7Jf1+D/IqOk1J92/vd/w1Xnc8k+N01x4D8F6HZaxfal4D0OK70m4sdF8JQ6beaYym4BvDbpJpgnaeIb7hoyGDqxYAgOq++fs96HNZfBWw0bV4dYmtXSZILbxA9rNcCyZ28mORYIo41HlFP3W393ny8sFBrLuPgrpdv4i0y50W8jjsYbiCXUm1k3msaldpBJ5kVvFe3V0xhgD8mLY6ncxAUkmu78E+HbPwtoa6NptxdvYQyMbSC4l8wWcR6QRnGfKXkKrE7RhQdqqBpf4vNt/1+hPLZryX9f8H5HG/C95fAXi4fCu/uJJdLktnu/CN1M5ZjaoQJLB2P3ng3JsJ5aFl6mJ2PpNcj8afDF74m8FN/YjxweIdHnXU9AuXOFivYslFY/3JFLxP6xyuO9anw78S2fjDwPpniWxjkhi1G3EjQS/6y2k6SQuOzo4ZGHZlIqSjaooooAKKKKACiiigAooooAKKKKAORkq14G/5CF//uRfzkqrJVrwN/yEL/8A3Iv5yVpLYiO50lV9UvbXTdMuNQvZlhtbSF5p5WPCIoLMx9gATVivPv2oWkm+C+oaHE7K/ia6s9AypwwS+uorWQg9sRzSN/wGsyyf9nWzuV+Gdv4g1KEx6n4snk16+RvvRtckPHC3vFD5MP0iFd1TYY0ijWONFREAVVUYAA6ACnUAZmoeHPD1/b6nb32g6ZdRa0gj1SOezjdb9QmwLMCP3g2jbhs8cdK5a1+CHwWtrqO4t/hD4DhmhcPHJH4Zs1ZGByCCI8gg967i8uILSzlu7qeOCCBGklllcKkaAZLMx4AABJJrk7v4o+CIPBGi+LRql1caV4ht0udMez0u6uZriFoxJ5vkRRtKqBCCzMgCZG4rkUbAdLr2l6Zrej3Gk6zp1pqOn3kZjubS8gWaGZD1V0YFWHsRS6Hpmm6NpFtpWj6fa6fp9nEIra0tIFihgQcBURQAqjsAMVgzfEXwbH420/wn/bHmanqsEc9p5NtNJbusiSvGDcqhhVnWCVkVnDOEJUEV0FpfWt1eXVrBL5ktk6x3ACnEbsgcKT0ztZTjsGHqKALFef8Ax+/5kn/sdNP/APalegV5/wDH7/mSf+x00/8A9qUAegV5b8R/AmiX/wAUPDmtaLbRx+ModXiv7jWAcXMWmplZoHcYJt3VvKWHlS7+ZtJV3HqVcVqXwq8H3/jCfxPdHxC19dTxTXEa+KdSS0mMRBRXtVuBAyDH3Cm05OQcnIviTE9YtHPW+gyaD+0Rb634h8PeFtYl8STTw6P4hg0sxarpJSB3FrI7mTfC0McnzxtEA2QY2MpYcb4V0/V/hg3ifUNQl02HVZLSL+1b3Ro5L+SQBnc390WiR5r6d5fLhtgHEYCgM6cV7P4f8F6Fo3iS8161bVri/vC5Z9Q1u8vkgDtuZYI55XS3UnGViCDCqMYUAOk8F+HZPB9z4Yazn/s+8Ja4IvZxcSOSG803IfzvNBCkSb94KggjApdF6f1/X66hZX+f9f1+hR+C9/pd/wCDW/s3SNQ0mS1vJre/tNTlhlu0ulb94ZpIZJY5HbIYssjfewcEFR1tZvhHQNJ8MeH7fRNEtPs1nb7iqtK8ju7sXeR5HJeSR3ZmZ3JZmZmYkkmtKqYIK8++Gv8AxT/xa8Y+DCdtrePF4l0xeyrdF0uY1HtcwvKfe6Feg1558SB/ZXxy+Hevodv9oS6h4duD2KTWxvEJ+j6coH/XQjvSGeh0UUUAFFFFABRRRQAUUUUAFFFFAHIyVa8Df8hC/wD9yL+clVZKteBv+Qhf/wC5F/OStJbER3Okrz/44/vvEnw4sG5S78Zx7l9fKsL64H5NAp/CvQK8/wDjV8njT4X3PaDxm2f+B6RqUX85BWZZ6BRSZ9aXNFwOR+LFt40u4tNh8KaPoWqW63Bl1G21bWptPEoTBiUPFa3BZd+GZcLnYASVZlPhv7N+tw+E/h/8H/FvjgafpOlv8NjpdlqBvd0Kys1lJFAWdUxNcRxBhGAfmgZVZzgn6gzRmgDwL4d/DM6P4T+Ht7dXeqWPiiLRrCFfD7SRGzWe3t5ESe4TYZP9GjuWBCSrGWWJOTsNa3we8favL8btW+G7R6dJY6Y195kCRuNSsGia2KXN64YowvTczTR4ji4Q48z5yns9GaACvMP2ndb0XQ7XwTc63q9hpsJ8Z2BEl5cpCvAkJ5YgcV6fmvnv4o/C7wt+1F4y0/UPEiXX/CFeDLiaLTJrSYI2u3TPGLhtxB/0VPJEYK4Z23kMFVS4B7J/wnngf/oc/D//AINIf/iqP+E88D/9Dn4f/wDBpD/8VXmFn4Z8NfCjUItK8VeHNH1LwXcyiLTfEF3p8Uk2juxwttfSMuWiJIEdyx9FlOcSP6f/AMIJ4H/6E3w//wCCuH/4mgA/4TzwP/0Ofh//AMGkP/xVH/CeeB/+hz8P/wDg0h/+Ko/4QPwP/wBCb4f/APBXD/8AE15bqmqWVp8WPE/hi2/Z+GpWeiaNZX1rNaWOjq9w8011Gz5lu0/dkQKVBCuPLm3AZjDJuyGotnqX/CeeB/8Aoc/D/wD4NIf/AIqj/hPPA/8A0Ofh/wD8GkP/AMVXifwX8TWvjC0shf8Awh8P+Xe+FtJ1afWbLSrFbDS5ru0aaQ3CTXKTNGrAYEasductnmsv4ceN9A1Hw/qd2PD3w6+It4t7e21laeCdK0y1aBLV3HnzC71ImVJE8uRRFyqk53BlNOfuSal0/wA7Cj7yTXU+gP8AhPPA/wD0Ofh//wAGkP8A8VXF/GzxL4c1TT/DMujeINLv7qx8YaPJstL2OV0WW8jtmbCkkDFwVz/te9Yv7O9zYeOY5h4m+D+gaKH0yx1Oxl+zaY3nwXEfUww3E8iqZI5SkjhAy5GA0bZ2vjl4a8OaT4d0M6PoGl6fcXXjDQYzLaWUcTsqapbTFSVAOP3QOPYU2mnZiTurnqlFFFIYUUUUAFFFFABRRRQAUUUUAcjJVrwN/wAhC/8A9yL+clVZKteBv+Qhf/7kX85K0lsRHc6SvPf2mD9j+H1j4h6f8I74i0rUpG/uQLexJcN+FvJMa9CrJ8faBaeK/Aus+F9Q/wCPXWtOnsZyByEljZCR74asyzVoxxXKfA7XrvxJ8KdG1HUuNUjgNnqyZz5d9bsYLlPwmjkH4V1lKwCYpcUUUWAKKK4z4teK9Q0lbLwz4VihufFviDfHpkUo3RWka4829nA58mIMCRwXdkjBBfIYGT8Sb698b+KZfhf4du5ra0ijWTxbqtu+1rO3cZWyiccrcTqeSOY4iX4Z4ifQNIsLPS9LttN021htbOzhWC3t4UCRxRqAqqqjgAAAAD0rgI9f+F/wP0fRvDPifxppuj3Oty3EwvtbvEhk1W5A8y4uJpWwoZiRksQoLIi4+VasWvxy+DVx4ifQo/il4R/tBfI2wPrECef56h4vKLMBLuVlI2FvvD1FFgud1f2ttfWM1le20VzbXEbRTQzIHjlRhhlZTwQQSCD1zXmMc178GZFgvJbi++HLNthupGaSfwv6JKxyZLL0c5aDo2Y/mj6nwX8RfDPirxRqPh7SE137dpRIvRe+G9QsoomGw7fOngSMsRIjBQxLKdwBXmrvh3xd4Z8SX02mabfC4mWFpGilt5IxJGJXhcrvUCQLJGyttzjK5xuXIBuQyRzQrLE6yRyKGR1OQwPIII6ivAPF3w7l8c/GLx3cw6fY3yjStMtBceOPCE+o2DMk2oSSQWkLvbo4UPakSxs65zksxJHXTW198G5mutNguL74dsxa5sIUaSfwznkywKMl7Pu0Qy0PVMx/InoN7qFxd+FX1Twv/Z2qTT2vnacZbwx2tySuUJmRJCEOR8yq3ByAamVuV3KjJo+cf2bfhv4ntNU8OeKbzwzolrdaB4K8PQY1rwi02q70sWWe3s7uS4hFrJyUYMrAFvmxyK2fF2hePY/AN2Nb0G20XS21y81uzvdOjuta8QWklzJM6wpZWtu8UUoFw0byiW4i27wUdXyvYab8TdZn/Zc8N/EK9hhttW13S7O4uJrTRLzULSweWMPJM9vATMYUG88uBwoZ1B3Cl8UfijrXhXwH4Zns/EvhHU7/AF+Gae31iGwkey1QqFMNtY2qXReae4MsaxqJ24WR/mC7aqr785S83+LT/wAv6uTH3LL+u3+ZP+yd8Prv4aeF00CXQwsFxYW1zHqclyZLlD5SKbGfzGL4hIxFtJQR/LhSuZNv4wn7f8SPht4fX5vM1+fVLhP+mFrZXGG/C4mtfzresde1PVtehsdMsoYobMj+2LmbMiRybcm2hKkB5ASNz/dXGMMxIXB8OgeIP2jde1pfmtfCOkxaFbv2F1clLu6UfSJNO/EsO1Nu5MVZWPQqKKKRQUUUUAFFFFABRRRQAUUUUAcjJVrwN/yEL/8A3Iv5yVVkq14G/wCQhf8A+5F/OStJbER3OkooorMs868PyHwd8dNR8PS/LpXjdW1fS2P3Y7+JFS7gHpvjWKdR3IuT2r0WuY+LXhR/FvhFrSyulsdYsJ0v9Fvyu77HexZMbkDkoclHX+KN3X+Kn/C3xbD4w8MfbWtWsNTs5Ws9Y0yRgZNOvEA8yFvUchlbo6MjjhhQB0lFFQape2em6bcajqF1Da2lpE01xPM4SOKNQSzMx4AABJJ9KAMn4jeKtP8ABvhWbWtQSadg6QWlnbrunvrhztit4V/ikdiAOw5JIAJGR8JvCuo6Y174p8VvDceLfEGxtRkibdFZRLnyrKAn/llEGbnje7SSEDfgZfw6srzx14qh+J2v201vYW6OvhDS7hCrW0Dja19Kh5E8ykhQRmOI7eGkkFekUAeC/tW6n4f8H63/AMJLNHc/2s2lNqEMtpo95fXELWNxAyzmSGGQW9vEk1wHDMiN9ofKvuauA+GbmX48aDOnjDxlYyajqFwJdO0/wfLpllot9cRfa7izWS+0pfMtZkiRyDLFIZFE3ls8peL1b4raJ8GPFfxVj0LxjfeI/wC29Utn0hEh1rWbLT51kj8x7LzIJEtPMeOMO0Gd7qqsVIwaraR4E+Ctx8Sm0O11PxpLrlnefbFebxf4gaCS7iiCNsuHuPJmnSIhWRWZ1TIYBQRRHS39ddfw/qwpWd/66afjc4fxtb+G4PHnj7w74o8eWXiXVpvEWn3un+DvEWl6bqB1UfZLb5Y7OK189vkZ4hKgPliMO+QspaT9iDw7YWvjC6urjwV4P8J3ljHqB0+2s9Gtk1LUbWa+fEslwi/KLcKLYxxO65yzEhoa9m8F3vw68RaTq/gzwgGsrK2eVblNHguNKjZnlcSyW1xEIg/71ZA0sDnD7gWDVqfD3S/B6+G9NXw3ax3FjpDSx6fdT+ZPIrEsJJEnmy8m8lsy7m35J3NmphHl/r+v67Dk77HTV5P4r0vxF8J4NQ174f6ONZ8OTLLPeeF/NeP7BMcsbizKJIyxFjmWBEY8l4lL5jl9YoptXVgPJfgXH440L9mXwZp/h7T/AAb4hvrLToLXzY/E1xFYXFske1Z47hbJ2Zm2p+7MQAyfnO3npdH8K65pHg3T/C+lX9vaQSy3E2qX0LsJoDLK0zR2qFSAC0jqrM37tQuAx6ZfiDQNY8Aa5deLfAlhJf6TeStca/4XgxmVicvd2IPC3HUvFws3JG2Tl+38I6/o/ijw7a67oF/FfafeKWhmjzzgkMrA8qysCrKwBUgggEEU3qD1dzxr4m+DF8G+OP8AhZE2n6Sug+F4Ip9Pljmkl1RSscka6baRNHsi+0zzqZJlkLzbhEyEYdfTfgz4dvvDXgG2ttZkjl1u/ll1HWpYzlXvbhzLMFPdFZtieiIg7Vz6svxJ+KkbxHzfCfge8Lbx/q9S1hMrgf3o7Ubs9vPYdGgNelUX0DrcKKKKACiiigAooooAKKKKACiiigDkZKteBv8AkIX/APuRfzkqrJVrwN/yEL//AHIv5yVpLYiO50lFFFZlhXnnxH8P61ofiw/ErwPaNdaiIEg17RUIX+3bVCSpQnAF1EC3lsThwTGxAKsnodFAGV4L8R6N4s8N2+u6Berd2N0DtcAqyMCQyOjYZHVgVZGAZSCCARiuE1L/AIuz40k0lPn8C+G7zbqTfwa9qETf8ew/vW8DjMnZ5VCdI5FaP4wfDbxFM2qeIPhbrzeH9a1iLy9Ys1fy7fV1wFLh9rfZrsICqXKqxHAdXCoU3fgz4k8JXGjQ+ENE05/Dt9oNqkU3hm8QRXWnxr8oO3JEkZxxMhdH5IYnNAHb0UUUAeQ/Erx58LtT+I2meAdR8aeHbO80XWbXULmx/tGEXk16Jd9vbRQBvMaRpSrttUnAC4JkyvOeBnSS78H+BbdVXxN4b8c6nqmt2ayL51nbO2osLyRQdyx3AuY9hx83n47Nj6Boo6Jed/6+4TWrflb+vvPnm70fTfC/w98Q6/4b1KfWfD9pZRWw1LWb6OG3uLaI7YbKKaGNFj0+JpHeachnkG8M8gBI9U+A+v6h4k+HkOpX8mnXKC5mgs7/AEyye0tNRt0crHcQQvJKViYD5T5jB1AkU7XUDsqKI6K39f1/TuxsKKKivrm3s7OW7vLiK3t4ELyzSuESNQMlmY8AAdzQBLXh/jTStQ1T4zXuhfCTXptEl1AH/hPru2iElrZhkGySLPCamy7QCMgRkPKpIhz0V54l8R/Ezdp3w6uZNI8NyfLdeMXh+e4U9V0yNxiQn/n5ceWOCglOdvb+B/DOieEPDVvoXh+yW1s7fJC7i7yOx3PJI7ZaSRmJZnYlmJJJJNAEvhHQdJ8L+GLHw9oVmlnp2mwLBbQJ/CoHcnkk8kk8kkk5JrSoooAKKKKACiiigAooooAKKKKACiiigDkZKteBv+Qhf/7kX85KqyVa8Df8hC//ANyL+claS2IjudJRRRWZYUUUUAFc94+8FeHPGVtbprdkxubJzJYX9rM1veWMhGN8E8ZDxn1wcMOCCMiuhooA87jj+Kng793Gbf4haSn3DLJFYazGvoThba5Pufs/vuPNTW/xk8CQTJa+Jr+48IXjME+z+J7V9OBY/wAKTSAQyn3jkcE8A5rvqZcww3Fu8FxEksUilXjkUMrA9iDwRQAzT7u1vrNLqyuobm3kGUlhkDow9Qw4NTVwl98FvhRc3j3kfgHRLC7kOXu9LthYXDHsTLBsckdjniov+FM+Cl/1F34ytR3W08d61Ap9yI7sAn3NAHoFc34y+IXgXwlMsHiXxdo2mXEhxFbXF6izzH+7HFne59lBNYZ+Cnw4k4vdJ1HUk7xapr1/exsfVkmmdWPuRnk+tdF4M8EeDPCEbR+E/COhaErDDDTNNhttw9/LUZoA5w/EHxDr/wC78A+AdUvkb7uqeIFfR7FfcLKhuX9Rtg2t/fGQaS1+Gc2u30Wp/E7Xm8VTQyCWDSUg+zaNauDlWW13MZmU9GneTBGVCGvQqKABQAMAYA6CiiigAooqO7ggurWW1uoY5oJkMcsUihkkUjBVgeCCCQQaAMePxRp12ujz6VJHf2msahLZJcxvhFMcU7sy8fON1uV44OcgkYzuVz/gfwV4a8JW/l6JpVvDIPMX7SYlM5R5C/ltLjcyjgDcScKuSSM10FABRRRQAUUUUAFFFFABRRRQByMlWvA3/IQv/wDci/nJRRWktiI7nSUUUVmWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=="]
math
multiple-choice
54
如图, 在平面直角坐标系中, 菱形 $A B C D$ 的边 $A D \perp y$ 轴, 顶点 $A$ 在第二象限, 顶点 $B$ 在 $y$ 轴正半轴上 $\frac{\mathrm{k}}{\mathrm{x}}(k \neq 0, x>0)$ 的图象同时经过顶点 $C 、 D$. 若点 $C$ 的横坐标为 $5, B E=2 D E( )
$\frac{40}{3}$
$\frac{5}{2}$
$\frac{5}{4}$
$\frac{20}{3}$
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACfAMoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAoopDnaduM44zQBk2/iXTLrxReeHYpwdRtIEuJY/RWJ/UfKT/vrWvXhvh74c+J9P+MFzrMuvWkt5EIr26xG4WaOd5VMY9MCI49Pl9K73SNFjj1/XtOi09IdO/tGC9TbGFjVhHG2EA43F1BOB3OeSKOtgO1ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisTUfFuk6Xqh024+3tdiLzjHb6bcT/JnG7McbDGeOvFAEVn/yUPWf+wVYf+jbutu3t4rWBYYU2xr0GSfxJPJPuetc3od/bap4z1K+tHZ7efR9PeNmRkJUy3eOGAI/EV1NAeYUUUUAFFIrK6hlYMp6EHIrmpvGJj1XUbCLw7rNydO2m4mhEBQBl3AqDKGbIHQLn25ouB01FVtO1C01XTre/sZlmtbhBJFIvRlP8vpVmhqwbhRRRQAUUUUAFFFFABRRRQAVFc3CWlu80mSF6AdWJ4AHuTgD61LXMeINH1XWvtsZjhEUKA6b5Wp3FszSFSGaUxKCAMkAAsCOuM8KV7aDW5qeHdUk1vw/Z6nJCsJuk8wRq24KpJwM9+Mc1p1zWn+H73/hALPQbq4+xXcFtHB51hcyHBTABD4RsHaMgYOCQD3qnpmgabdtJa3Uut2+oQAedD/b98QQejofN+ZDjg/UHBBFVJJN2JWx2NFc/wD8Ibpf/P1rn/g9vf8A49R/whul/wDP1rn/AIPb3/49SGdBRXP/APCG6X/z9a5/4Pb3/wCPUf8ACG6X/wA/Wuf+D29/+PUAdBXksvijQL7xLqWvS+MLSC2trmG3jsobiJzdQw/PkKAZDmRjjaQCFGciu6/4Q3S/+frXP/B7e/8Ax6j/AIQ3S/8An61z/wAHt7/8eoW9w6WGaaFXx5qoSLyl/sjT8R4A2/vbvjjiujrg7XwnpzeOtWgNzrOxNMsnBGtXgbLS3QOW83JHyjAJwOcYyc7n/CG6X/z9a5/4Pb3/AOPUAdBRXP8A/CG6X/z9a5/4Pb3/AOPUf8Ibpf8Az9a5/wCD29/+PUAR6LMukXGu6bKJPLs5WvYVjjZ2ME25/lVQST5gmAABPAArC8Pa5PDp+oSwaJq8+tajdy3Bhn0+a3RcnbGHlkUIAEVM4JPBwCam1fSH8K61pWtaO15OZZDY3UN5fzTiRH5TDSu21t6hV6DMnPByOysL+31KzS5tmJRiQQwwysDgqwPIIIIIPQiiwFDwtoz+HvDGn6VJKJZbeLEkijAZySzEe2ScVsUUU27u4BRRRSAKKKKACiiigAooooAKKKKACqGp6Yt+scsUpt72Alre4UZKE9QR/EpwMr39iARfooAztL1NrzzLa6iFvqEAHnwZyOejof4kODg+xBwQQNGqGp6YL4RzQy/Z76DJt7gDJXPVWH8SHAyvfAIwQCE0zUze+bb3EX2e/t8CeDOQM9GU/wASHnB9iDgggAGhRRRQAUUUUAc/Z/8AJQ9Z/wCwVYf+jbuugrn7P/koes/9gqw/9G3ddBQAUUUUAUNa01dX0a6sC5jaZCI5B1jcco491YAj6ViWE1zc2EPiGwgxdyLs1KwU4EjoSjhc8CRWUqD0YAA/wleqrn7L/iVeLL2xPy2+pL9tt/TzVAWZR+HlvjuWc9jQBs2V7b6haR3VrIJIZBkHBB9CCDyCDkEHkEEGp6xb21n0q7k1XTomljkO69s0GTLgY8xB/wA9AB0/iHHUCtW1uoL21jubaVZYZF3I6nIIoAlooooAKKKKACiiigAooooAKKKKACiiigArP1PTPtvlzwS/Z7+DJguAM4z1Vh/EhwMr7AjBAI0KKAM/TNT+2+ZBPF9nv4MCe3JzjPRlP8SHBw3sQcEEDQrP1PTDeGK5tpfs+oW+fInxkDPVGH8SHAyPYEYIBC6ZqYvhJDNF9nvoMC4tyclc9GU/xIcHDd8EHBBAAL9FFFAHP2f/ACUPWf8AsFWH/o27roK5+z/5KHrP/YKsP/Rt3XQUAFFFFABWV4g0+e+sElstv9oWcgubQscAuucqT2DKWQn0Y1q0UAVdN1CDVdOgvbfd5cq52sMMpHBVh2YEEEdiDWbdQTaJdSajZRPLZysXvLSMZIJ6yxj1/vKPvdR83DRyf8U9rLXHTS9RlHm+lvcHADf7r8A+jYP8RI6CgCOCeG6t454JUlhkUMjochgehBqSsGeOTw9cSXtsjPpcrF7q3QZMDE5MqD0PVlH+8OchtyOSOaJJYnV43UMrqchgehB7igB1FFFABRRRQAUUUUAIaM0tFACZozS0UAFFGKKACs3VNNa8MdzayC31CDJgnxkYPVGH8SHHI+hGCARpUYoAoaZqa36yRSxG3vYCFuLdjkoT0IP8SnBw3f2IIF+s7U9MN20d1ayi31CAHyZsZBB6o4/iQ45H0IwQDTtL1NdQjkSSI295AQtxbMcmNuxB/iU9Q3cehBAAM6z/AOSh6z/2CrD/ANG3ddBXP2f/ACUPWf8AsFWH/o27roKACiiigAooooAjuLeG7tpbe4iSWGVSkkbjIZSMEEVjW93JoVwmn6jKz2cjBLS8kOcEnAikb+90CsfvdD833t2o54IbqCSC4iSWGRSrxyKGVgeoIPUUASVgSA+GZXnQE6K5LTIP+XM93Uf88z1I/h69M4T7Fq2h86Y39o6eP+XKeTE0Y9IpD94eiv8A99AYFXdO17T9Uke3hlMd2gzLaTqY5o/qh5x7jg9iaANIEMoZSCCMgjvS1gDPheQA/wDIDduD/wA+TE9P+uR/8c/3fub+eM0AFFcjpF3q/i21OsW+pyaZp7yt9ihgijdpkUkb5S6twxBIVdpA/iyeOi0kX40i0/tRo2vzEpuPLGFDkchfYHgfSgC5RRRQAUUUUAFFFFABRRRQAUUUUAFczr+qaFb6hEr+INL03XIQPJW4ukRmVv4HQkFkb/AjkV01eV+MLq7d/EOspPbf2egj0X7OYQZ7gEjzBC5JUMWkK4ZGyY+3Wl1sv6/p2H0/r+trmxaeLNItPHWrNrN9aaROdMso2hvbhI/nWW6LbSxAcYZTkdmHQ8Vuf8J34P8A+hr0P/wYw/8AxVQaPaxWXjTUbSBSsMGi6dHGpOSFWS7AH5CunqnvoStVqc//AMJ34P8A+hr0P/wYw/8AxVH/AAnfg/8A6GvQ/wDwYw//ABVdBRSGc/8A8J34P/6GvQ//AAYw/wDxVH/Cd+D/APoa9D/8GMP/AMVXQUUAc/8A8J34P/6GvQ//AAYw/wDxVH/Cd+D/APoa9D/8GMP/AMVXQUUAc/8A8J34P/6GvQ//AAYw/wDxVUtS8R/D/V4lS+8Q+H5thzG51GIPGfVGDBlPuCDXW0UAefN4n0zT1K6f488PahbYx9k1TUIi2PQTKc4/3lc+9Z2j/E/w5peoJo97qFrDYy8W5F3FcJAf7nmRsR5f90ttI6EYxj1KigDkPDGjyWumxW+i+JLW68OBmNusUIkkRd2fLWdX2lQcj7pb/azzXX1i3XhTSLm4e6jt2s7t+WubGRreRj/tFCN30bIqH7F4l0//AI9NUttTiH/LLUYvKkP/AG1iGB+MZoA6Cisey1u4lu0s9Q0e9sbh87X2iaFsDPEiZ29P4wua2KACiiigAooooAKKKKACiiigArHs/CXhvTrpLqx8PaTa3Cfclgso0dfoQMitiigDn7P/AJKHrP8A2CrD/wBG3ddBXP2f/JQ9Z/7BVh/6Nu66CgAooooAKKKKACiiigAooooAKKKKACiiigAooooAoanrmk6KsbarqllYLKSIzdXCRByOuNxGeorO/wCE78H/APQ16H/4MYf/AIqugooA5/8A4Tvwf/0Neh/+DGH/AOKo/wCE78H/APQ16H/4MYf/AIqugooA5/8A4Tvwf/0Neh/+DGH/AOKo/wCE78H/APQ16H/4MYf/AIqugooA5/8A4Tvwf/0Neh/+DGH/AOKo/wCE78H/APQ16H/4MYf/AIqugooA5/8A4Tvwf/0Neh/+DGH/AOKo/wCE78H/APQ16H/4MYf/AIqruv65b+H9Je+nR5WLrFDBH9+aVztRFz3JI/nWJeaz4g0W50y41U6Y9pf3cdo1rbxuJYGk4UiUtiQAjn5F457YItfyB6K5RtfGnhVfHWrXDeJdGED6ZZIkhv4trMst0WAO7BIDKSO24etbn/Cd+D/+hr0P/wAGMP8A8VRZ/wDJQ9Z/7BVh/wCjbuugoA5//hO/B/8A0Neh/wDgxh/+Ko/4Tvwf/wBDXof/AIMYf/iq6CigDn/+E78H/wDQ16H/AODGH/4qj/hO/B//AENeh/8Agxh/+KroKKAOf/4Tvwf/ANDXof8A4MYf/iqP+E78H/8AQ16H/wCDGH/4qugooA5//hO/B/8A0Neh/wDgxh/+Ko/4Tvwf/wBDXof/AIMYf/iq6CigDn/+E78H/wDQ16H/AODGH/4qj/hO/B//AENeh/8Agxh/+KroKKAOf/4Tvwf/ANDXof8A4MYf/iq5fxF8afDPh7XLK0+0Q6jZXEZZ7vT7hJvIYHGGVT079c+xr0iuS8TfDrQvF+u2Op60ktwLOIxpbB9sbZOctjk/TIHrmgDc0XXtK8R6et/o9/DeWzHG+Js7T6MOqn2ODWjUFlY2mnWkdpY20NtbRjCRQoEVR7AcVPQAUUUUAFFFFABRRRQAUUUUAYPinQ7jWbfT5bN4headex3sCTkiORlBG1iASMhjggHBwcHpUEeialq2tWeqa+bWNLAl7SwtJGlRZSNvmvIyqWIBIUbQBknk4x0tFC0B6nP2f/JQ9Z/7BVh/6Nu66CqEOmCLxBear5uTc2sFt5e37vlPM2c98+djHbb71foAKKKKACiiigAooooAKKKKACiiigArjfEVrDL4is76LSJ5xC/2TUZEtmzPDIuVT7uZUD7CcfKvzAn7wHZUUARwQxW9vFDDCsMUahUiRQoQAcAAcAD2qSiigD//2Q=="]
math
multiple-choice
55
如图, 点 $A(2, t)$ 在第一象限, $O A$ 与 $x$ 轴所夹锐角为 $\alpha, \tan \alpha=2$, 则 $t$ 值为 $(\quad)$
4
3
2
1
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACTAKIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+oopkxwuT0B54zQBQ8T+IvD/AIb09b/xFrmm6RatII1uNQu47eMueihnIGT2FSW+taPPqn9mQatYy3v2ZLr7KlyjS+S5YJLsBzsYqwDYwSpx0rnvjTpyan8K/EFq9p9qc6dNJHFtDbnVCV2+hziue/Z5jvb3wTpPizWrGSwlOh2ltHFcKVljjjiBYuCMht5fj0CnqSAAen7lJwGHHXmlznkV4L8Mvj0niv8AaC1jwbLYfZ9DfMWhagxx9sli+WVWHZSwOw/xAjFe8r93igBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApsn3R9adQwB4NAHGeOPAek+K/EGm6pq19qajTEkQWVvdeXb3SsUYiVAMtho0IwR0rR8eaDdeIfBl9odlqj6U97CI/tUce9o174XI5I4610Hlof4RQUU5460AfPlv8ADjSNV+JXijwtps76T/ZFhpp0m8ij8ySzkijUJIBxkgjn1r6Ct1dbdFdlZgo3MowCfYV5r4FUf8NKeNv+vKy7/wDTNa9N6dKACiiigAopsrbUzz+FQwzAzeUZFL4zjPUeoFAFiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8z8C/8nKeNv8Arzsv/Ra16ZXmfgX/AJOU8bf9edl/6LWvTKACmyPt9B7mnUyYDrjt2FAGd4o1iz0Tw/d6vqsy29lZxNLLI3GFArxv9nPxVH48+OPiXxLaa5b6nYLo9lFbx20paOzJluCY8dm27GOcnLYzgADuPiloX2rVtL17VvHdzpGhaPcLNcaa0UIt7x/uqJXddxG5xxnGcelO8B+B9R0T4iat4puPGt/q0etKmLCa0t44oFXO3YyKGOAe55oA76iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8z8C/wDJynjb/rzsv/Ra16ZXmfgX/k5Txt/152X/AKLWvTKACmS+mcZp+a4v46eLW8J+CmmsV87WtRlWx0a2H3pbmTgEDuEXc5/2UagDlPEQk+Jnxii8MxgP4a8ISLdauSMrd33PkwDsQi7nYdi0desxxMGXPIXpXM/BvwnF4N8F2+lb/OupM3F9cH709w/LsfXngewFdZQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFRqcOaduFAHmvgX/k5Txt/152X/ota9MrzLwKf+Mk/G3/XnZf+i1r0tWGKAGXBA+csFCcknpj3ryf4dofiH8Vbvx3dgvouh77Dw7G/3ZZCf310PfACr7M9X/2gNZ1G7+w/Dvw3cGLWfFJ8mSZPvWdmObibPY+WHVT2dlruPCOkafoHh2z0bTolitbGJY4kUcDA6/U0AaUZBbjpjipKYpQfdx+VKXGKAHUU1WzTqACiiigAooooAKKKKACiiigAooooAKRvu0tFAEaA85pAD5ZJ61LikxQB5j4Ez/w0n424/wCXOy/9FrXdeI9Vs9D0K81jU7uO1s7GB555ZDhY0UEsxPsAa4bwMw/4aU8bL3+xWWT/ANs1qj8U/wDi4fxItfhrEpk0ew8u/wDEuPuyKMNFansd527geqE0AWvgLp19rV5qHxN1y3aO+8SYFhC4+aysAcxpj+FiAC3qRXpkIwuQv3uajXEUKrGvCrxsBx+lTW771LcdexoACCf4cUm31qWjFAEcYIb2qSjFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFYXxB8UW/hPRY9SudN1K/SS4EIi0+382QEqzbiMj5flxn1IoA3cj1pMj1rzMfGnSScf8ACIeL+mf+QWP/AIukPxq0naf+KQ8XdP8AoFj/AOLoA5nXvFdv4L+LXxE12ZHllWyso7O2jGZLm4aNQkSDuzHpXRfsvx2A8H39xLfx3viK51GY+I2wytFehiHjwwDBFOQhIAKgEcV4vb+KtP1z9rjVfEup+G/Er6bplray2tkmn5ka58tQJJBuwNuAV5NddeeO49N+N1r4s0TwV4o+xaxbNaa9EunbQSqkxTj5vmOQqk9cetAI539ojV7K+17xl/aif214m07y7XwhoK486zkIyb6NCRkpjfu6YUjPNe//AALi0e2+Fuj2uhXn2qxt7VI0m3bldgMsQ3RvmJ5GRXJN8VPDkl6L5/AXiY3QXb57aKhlx3G7dnpxVjT/AIw6Na2qwReCvFcUaDCpHpQCj6AMKAPVMj1oyPWvMv8AhdOlf9Ch4v8A/BWP/i6P+F06V/0KHi//AMFY/wDi6APTcj1oyPWvMv8AhdOlf9Ch4v8A/BWP/i6P+F06V/0KHi//AMFY/wDi6APTcj1oyPWvMv8AhdOlf9Ch4v8A/BWP/i6P+F06V/0KHi//AMFY/wDi6APTcj1prOF5J715p/wunSv+hQ8X/wDgrH/xdNm+M+kvGVPg/wAXHP8A1Cx/8XQB6Z5g6gcZwD60eam7Ge+Oa+ZviV8WtV8L6pceNPD48QrayFftej6/ZiGzbaoX9zKGJiYgDja2TnpXsnwN+IFt8SfANv4nt9E1XSPPO1rbUbfypFYcEgZOV9D3FAHcUUUUAFFFFABTZSQvHXPFOps2dnGM570AcD+0J4x1Dwf4EgfRIo5Na1m/j0zTBL90TSbjuI77VRj+Aryr48eCofh58PLLxbputaxdeORqNuqalLfyFtQuGPzJ5G7y/LIyNoUHCjnOSfXfjd4Gk8ceGbS1s9RGnanpN/HqOmXrp5ixToGA3oCNylXYYyOtYWkfDrxBrnjOx8U/FDXrHWJ9FbfpGm6RZvbWNu/H79ld3d5fq+0ADCg5JAJPAe4/tH+NSRtP2Gy5I4z5a9BXp3ToOK828Df8nJeNv+vOy/8ARa16YvSgBoz6Uc+lOooAbz6Uc+lOooAbz6Uc+lOooAbz6Uc+lOooAbz6Uy4DeUQBz2qWigDgdY+Guiaz4ym8SeJZ7/WxHt+x6ZdShrSywo4SMAbiSCcuW69qr6P8UNFu9Wk0Cz0HXl1W1vRaSaebJPMt06iZgHCiHaQwOc47ZrvtUkuYdNmltLYXM6ITHCZNgkbsN2Dj615Z4N0T4g2vxgk8V3mk6dHa+ILNF1SNbwM2nPG2FRMAeb+7Cjdx82T04oA9booooAKKKKACggEYIoooARVUHIAFLgGiigDzPwL/AMnKeNv+vOy/9FrXplFFABRRRQAUUUUAFFFFABRRRQAUUUUAHWm7F/ujnrxTqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z"]
math
multiple-choice
56
如图, 等边三角形 $\mathrm{ABC}$ 和正方形 $\mathrm{ADEF}$ 都内接于 $\lceil O$, 则 $A D: A B=$()
$2 \sqrt{2}: 3$
$\sqrt{2}: \sqrt{3}$
$\sqrt{3}: \sqrt{2}$
$\sqrt{3}: 2 \sqrt{2}$
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGyAaIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikZgqlmICgZJPQUAVdT1Oz0bTLnUdQnWC0tkMksjdAB/M9gO5rkfhp41ufHdprGqPH5Nml8YLSIqMrGEU5Y92Ocn06Vw/xUu7nxX4C1XXN8kOgWrRppsedpvZDIqmdv9gAsEHfJb0rX/Z3hEfw5nfj95qEh/JUH9KIa8zfRf5BPS3m/wBD1qiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAridZ83x3d3Xh+xu5bfRbcmPUr63K7pZP+feMkEccFzgj+Hucddf2gv9OurMzzQC4ieLzoG2yR7gRuU9mGcg+tYng/wfb+C9NbTrHU9QurPcWjivGjbyySSSpVFPJPcn2xRZPcL22PP/jNo91pfwxud/iLUruASwxrbTRWqR/eGP8AVwq3GOACOla3wFjKfCy0Y5+e5mYcf7WP6VveMvh9a+OIxBqmtavHZK4kW0tnhSMMBjPMZY9T1J68VP4M8D2vgezey07VdTuLJiWW3u3jdY2OMlSqKR06ZxyeM80Q05r9f+AE1flt0/4J1FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUN1d21jbPc3dxFbwIMtLM4RVHuTwKAJqK811z45+DNIcw2tzPqtwDtCWUe5c/7zYB/DNY3/AAsP4meIv+Rb8B/Y4W+7PqLEceo3FB/P8aAPY6K8eHhD4v63zqnjW102Nv8AlnZJ8ye2VVf/AEI0v/Ch0v8AnXvGmuaiT9479uf++y9AHqNzrmkWZIutUsYCOvm3CLj8zWe3jrwgpIbxVoYI6j+0Iv8A4quOt/gD4GhAEkF9cY7y3RGf++QK0F+CPw8AAPh8kjub2fn/AMfoA24/iH4MlbavinRwf9q8RR+ZNWYfGnhW4bbD4l0aRvRL+In9Gr57+LR+H+iO/h/w1oNvJqobE90k0hW3P90fNhn9c5A+vTl/E3gDUPAlvoGpaxaC6t75N89uSyCN85MRYcg7SDn13dcUAfYNte2l4CbW6hnA6mKQN/Kp68L8OfCX4eeNdCg1jQr7VbXPDIlwpeGQdVYFTyPbqMEda1D8HPEWmfNoHxF1a3A6RT7mU+mcPj/x00AewUV46bX43+HvmivNJ8QxL0jcKrY98iM/+PGhfjVq2hOI/GfgnUdOXODcW4LIfoGwPyY0AexUVyPh74m+EPEzLHp+tQLcNwLe4zDJn0AbG4/7ua66gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisvXvEWkeGdOa/1i+itLcdC55c+iqOWPsKANSue8T+OPDvg+38zWdSihkIyluvzyv9EHP49PevNZPGvjj4m3L2vgezbR9FDFZNWuhhn/3Tzg+y5PqRXQ+GPgt4f0a4/tDWXk17VWO97i9+ZN3qEJOfqxagDBHxC+IHjpmXwN4dFhpxOF1K/AyfcZ+X8AHqxa/BO61q4S98d+KL7V5xz9nhcrEvsCecf7oWvX1VUUKqhVAwABgAUtAGJofhDw74bjVdH0e0tCBjzEjzIfq5yx/E1t0UUAFFFFABXjnxC+JN5qF/P4S8FyqbpUY6jqm7EVnGB85DdsDq3boMseE8YeOdV8aa2/gnwC+4n5dQ1VD8kSdGCsOg9WHJ6L61zGt6Bb2d1Y/Cfwed93dMkuuajt+ZgPmw3ooHzbf90cknIBU+CngCDXPEkniO4jaTSdOl22plXm5nH8ZHYL97HYlRk4Ne5+OvCkHjPwje6PLtErrvt5G/5Zyj7rfTsfYmtPQ9FsvD2iWmk6fH5draxhEHc+pPqSck+5rQoA+SfA+qa54Gnu9a06KSRdPmFtrulsTnZkgSY9iGGedrDnhsV9R+H/EGneJ9Ft9W0ucTWs65HZkPdWHYjuK8l+JFm3gL4haf47toPM0rUD9j1eDblXBGDkd8qM/7yc9aqX1refB3XU8TeHg994I1Qo1zbRnd5G77rKfTB+Vu+dp7GgD3ikdFdCjqGVhggjIIqnpOrWOuaXb6lptwlxaXCb45FPUeh9COhHY1doA4fxF8JPBniRWafSY7O4P/AC3scQt9SANpP1BrkP8AhAPiP4L+bwf4o/tOyTpp+oen91d2V/EFK9nooA8j0r41HTr9dK8e6JcaFfdp1jZoW98ckD3G4e9ep2GoWWqWcd5p91DdW0gyksLh1P4iotW0XTNesmstVsbe8t2/gmQMAfUeh9xzXld/8HtV8NXcmqfDnX59OmPzNYXD7opPbJyD7BwfqKAPYqK8n8OfGL7PqI0Hx7YNoWrphfOdSIJPfP8ADn1yV9xXq0ciSxrJG6ujAFWU5BHqDQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKjnnitoJJ55UihjUu8jsFVVHJJJ6CvF9X8ZeJPihq1x4e8BlrPR4jsvNYcFcj0U9QD2A+Y+wzQB0Hjf4rxaVf/wDCO+FrY6z4jlby1iiG+OBv9rHUj0HTnJGKz9B+EN1q+oJr/wARdRfVtRPK2Qf9zD32nHBx/dXC9fvV2Hgj4e6J4FsPL0+LzbyRcT3soHmSe3+yvsPxyea6ygCOCCK2gSCCJIoY1CpHGoVVA6AAdBUlFFABRRRQAUUU2SRIo2kkdURAWZmOAAOpJoAUkKpZiAAMkntXi3ijxhq/xJ1uXwZ4FkKWC8alqyk7AnQqp/u9Rxy3QfLkmLxB4m1j4ta3L4U8HSNb6BEcajquCBIvdV/2T2HVvZc16l4d8OaN4H8OixsEW3tIFMk08hG5yBlndvXA+gHoBQBx+qvoXwR+HMg02JWvZf3cLOB5l1OR95/9kcnHQDgdal+EXgqfQNHm1zWd0niDWD59zJJy6KTuCn3Odze+B2rlvDsMvxe+JUvie8jb/hGdFfyrCFxxNIOQSPyY/wDABzXuNABRRRQBleJdAtPE/h2+0a9H7m6iKbsZKN1Vh7g4P4V5r8ItUeWw1b4c+JYkkvNKLRCKb5hNbk4IweoGf++WX0r1+vHPi5pl14X8Q6T8SNHjJls5Fh1BFH+sjPALfUEoT7r6UAZrrqXwL8T+ZGJ7zwPqU3zLyzWjn+o/8eA9RXt1le22pWMF7ZTpPbToJIpUOQynoRVBf7J8Y+GEZ40vNL1K3DbXH3kYZ59CPzBHtXkFheal8D/Ey6VqTzXfgvUJSba5IybVz1B/qO4+Yc5FAHutFRwTxXMEc8EiSwyKHSRGyrKRkEEdRUlABRRRQBj+I/C2i+LNONjrNjHcxc7GPDxn1VhyD/k15NcaJ40+DrNe6DcS694VRt01hNzJAvcjHT/eXjuV717jRQBzvhDxtonjbTBeaTc5dQPOtpMCWE+jD+o4NdFXlPjD4UTJqf8Awk/gO5/snXYyXaGM7Yrj1GOik9wflPcDk1o/D/4nL4jupNA1+2Gl+JrYlJLZxtWbHUpnoe+305GR0APRaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKr319a6ZYz3t7OkFrAheSWQ4VVHc1LNNFbwvNNIkcUalndzhVA5JJPQV4bqN5qPxw8UNpOmSS2vgzTpQbm5A2m6YdMZ/QHoPmPOBQAl1fa78cdYew00z6Z4KtZMXFyRh7ojnHuemF6DqcnAr2XQtC03w3pEGl6VbJb2sIwFXqx7sx7k9yam0zTbPR9Nt9O0+3S3tLdAkUSDhQP5n371boAKKKKACiiigAooqC8vLbT7Oa8vJ44LaFS8ksjYVVHUk0APnnhtbeS4uJUihjUu8jsFVQOpJPQV4hq+t6z8aNal8P+G3ksvClu4F9qBUgz4PQe3ovfq2OlNvb/Wvjhrb6ZpTTad4LtJMXN0Rhrpgc4A/Iheg6tzgV7Lomiad4d0mDTNLtkt7SEYVF7+pJ7k9yaAIvD3h3TPC2jQ6VpNuIbaL8Wdu7Me5PrXmnxZ1+91/V7P4b+HXze37KdQlXpDF12n0GPmPsAP4q7rx74xtfBHhW51Wfa8/+rtYSf8AWykcD6Dkn2Brl/hB4PutM0+48U67uk1/Wj50jSD5o42OQvsT1I7fKOMUAd14c0Cy8MaBZ6Pp6bbe2TaCernqWPuTkn61qUUUAFFFFABVTU9NtdY0u6029iEtrdRNFKh7qRg/Q+9W6KAPG/hJqV14V8R6t8NtXkzJayNPpznpJGfmIH1BDge7elep67oen+JNHuNK1S3We1nXDKeoPZgexHUGvN/jRoF3BDp/jrRgV1TQ5FaQj+OHOefUAnkejNXofhnX7TxR4csdZsyPKuogxXOSjdGU+4II/CgDyTw9rWpfB7xKnhTxLM0/hq6cnTdRbpDk9D6DJGR2PI4Ne4KyuoZWDKRkEHIIrH8UeGNN8XaFPpOqQ74ZBlXH3on7Op7Ef/WPBry7wd4n1P4beIU8CeMZt2nucaVqbcJt7KSei9v9k8dMEAHtVFFFABRRRQAVwnxD+Gtp4zgS+tJfsGv2uGtb6MlTkchXI5xnoeo7dwe7ooA8s8A/Ei8fVT4O8axGy8RwnZHK4wl16c9NxHTHDdueK9Tri/iL8P7Txzo4CMLbV7X57K7HBRuu1iOdpP5Hke+N8M/iBd6jcS+EfFSG18TWGUPmcfaVA+8PVscnHUfMO+AD02iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorzn4reOLnw/Y2+gaErS+I9W/dWyR8tEpO3f9c8D3ye1AHOeOtZv/iP4xX4e+HLho9PgbdrF4nIAU8p7gHjHdsDgAmvV9A0HTvDWi2+k6XAIbWBcAd2PdmPcnqTWB8OPAtv4G8NrakrLqVxiW9uOu9/QH+6MkD8T3rsaACiiigAooooAKKKo6vq9hoOlXGp6ncpb2kC7nkb+Q9SegA60ASajqNnpGnT3+oXEdvaQLvklkOAo/wA9u9eJu+tfHTWjHEZ9N8D2cuGbo92w/mfzC+5pbe21r4562t3eifTfBFnKfKhB2vdsO59T6novQZOTXttjY2umWMNjY28dvawIEjijGFUDsKAI9L0ux0XTYNO022jtrSBdscUYwAP6nuSeSatO6RRtJI6oigszMcAAdSTTq8j+LviW91C7s/h54dbfquqkC6ZT/qYTzg46ZAJP+yD/AHqAMjTEf4yfE19WnUt4T0F9ltGw+W4k65I9yAx/2QoPWvc6xvCvhuy8JeHLPRrEfuoE+ZyMGVz95z7k/wCHatmgAooooAKKKKACiiigCOeCK5t5LeeNZIZVKOjDIZSMEH2xXjHw+nl+HXxJ1LwBfSN/Zt832rSpJDxyOn4gEH/aT3r2uvNPjN4Un1nw1Frul7k1nRH+1QPGPmKDlgPcYDD/AHcd6APS653xn4N0zxvoEmmaimG5aC4UfPA/Zh/UdxTfAniuHxn4QstYjwJXXy7mMf8ALOVeGH07j2IrpKAPHvAPjLUvCuuj4f8AjV9lzHhdNvnPyTp0Vdx65/hP/ATyK9hrk/H3gTT/AB3oRs7nEN5DlrS7A+aJ/wCqnAyP6gVynw58d6hbaq3gXxnmHXbX5La4kPF2g6fN3bHIP8Q9+oB6vRRRQAUUUUAFeefE/wCHp8T2ces6MTbeJdOAktZ4ztaXachCfX+6ex9ia9DooA4f4ZePE8a6CVuwIdasSIr63I2ncON4HYHB47EEV3FeN/EjQb/wX4li+JHhmLJQ7dWtV4WVDjLkeh4z6HDepr1Lw/rtj4l0K01fTpN9tcpuXPVT0Kn3ByD9KANKiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKOs6vZ6Do13quoSeXa2sZkkbvgdh6knAA9SK8s+FGkXnijxBqHxK1yLE12zRabE3IiiHylh+Hyg/7x71D8SLi58ffEDTvh1p8xjsoMXeqyoeQBzj8ARj/AGnX0r2Czs7fT7KCztIlit4I1jijXoqgYA/KgCeiiigAooooAKKKyPEvibS/Ceizarq1wIoI+FUcvI3ZVHcn/wCueKAJde17TfDWjz6rqtysFrCMknqx7Ko7k9hXjunaVrPxt1uPWtdSaw8HWshNnZZKtckcZJ/m3bkL3NP0Pw/rPxh1uLxN4qje08NQNu0/TMkecPU+x7t36DAr26GGK3hSGGNI4o1CoiDCqBwAAOgoAbbW0FlaxWtrCkMEShI441wqqOAAOwqWikJCqWYgADJJ7UAYHjXxXaeC/C91rF3hjGNkEWcGWU/dX+p9ACa4v4P+FLyOG68a6/mTXNazIpccxQk5GPTdwcdgFHrWAgb4z/E8uwLeENAbAB+7dSZ/XcR/3yOxavcwABgDAoAKKKKACiiigAooooAKKKKACggEYIyKKKAPEdD/AOLVfGGfQX/d+HfERElmf4Ypc4C+2CSn0KE17dXDfFfwafGHg2aO1QnU7I/abNl4JYDlP+BDj67fSpPhb4yHjPwZb3Uzg6jbf6PeL33gcN/wIYP1yO1AHa1xPxG+Htr440pWicWus2nz2V4Mgqeu1iOdpP5Hkdwe2ooA8y+GvxCutSuZfCfipDaeJ7HKESYH2lQPvDsWxyccEfMOM49Nrz/4lfDseLbaLVNJk+x+JLHD2lyh2l8HIRj9eh7H2Jpnw0+Ih8URTaLrcf2PxNYZS5t3G0y7eC6jsfUdvoaAPQ6KKKACiiigBk0MVzBJBNGskUilHRhkMpGCCPTFeLeD55fhb8S7nwXeu39hau/n6XK54RzwFz6nG0+4U969srh/ip4K/wCEz8JulsNuq2JNxZSLwdw6pn/aA/MKe1AHcUVxPws8Yt4z8FwXdyR/aNs32a7Hcuo4bH+0MH65Hau2oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsnxPr1v4Y8NahrN0R5dpCXCk43t0VfxYgfjWtXjfxdll8U+MfDHgC1kYJdTC6vth5EYzj8lEhx/u0AX/AIJaBcLo974v1XL6rr0rTF2HIi3HGPTccn6ba9VqO3t4bS2itreNY4YUEcaKMBVAwAPwqSgAooooAKKK5zxp410rwPojajqUmXbK29uh+ed/Qe3qeg/IUATeLPFuleDNEk1PVZtqD5Yol+/M+OFUev6DvXl/hvwrq/xS1uLxh41jMWjod2m6SSdrL2Zh/dPByeW9lwDN4S8F6t4/1uLxt48T9xw2naUQQiJ1BZT/AA9Dg8t1PHB9nAAGAMCgBERY0VEUKijCqowAPQUtFFABXlPxg8U3jLaeBfD58zWtZIjk2n/VQng5Pbdzk9lDH0ru/Fviay8IeGrvWb45SFfkjBwZXP3UH1P5DJ7VwPwh8M3t3NefEDxEN+r6uS1uGH+qhPQgdsgAD0UD1NAHd+DfCtn4N8MWmjWYB8pd00uMGWQ/eY/Xt6AAdq3qKKACiiigAooooAKKKKACiiigAooooAK8R1H/AItT8ZI9SX934b8SHbcdkhmzyfbDHd9Hb0r26uX+IPhGLxr4PvNJYKLnHm2sjfwSr938Dyp9mNAHUUV5z8HPFsviHwo2maiXXWNGb7LcpJwxUZCMffAKn3U+tejUAFea/Ev4eT61LF4n8MyG08UWGHjeM7ftAH8J7bscAnr0PHT0qigDhvhx8Q4PGunSW91GLTXbP5L2zYbSCDguoPOM8EdQeD2J7mvK/iR4BvhqKeNvBxNv4hs/nlijHF0o68d2xxj+IcdcV0vw+8fWHjvRPtEQEGoQYW8tCfmib1Hqp7H8OooA6+iiigAooooA8UAPwy+OIUfu9B8U9B0WOfP9Hb6ASe1e11wHxi8MDxJ8P7x4kzfacPtluw6jaPmA+q549QPStX4ceJD4r8B6Xqkj77kxeVcnv5qfKxP1xu/GgDqqKKKACiiigAooooAKKKKACiiigAooooAKKKKAEZlRSzEBQMkk8AV438KlPi74heKfHcwLQGX7FYk/3Bjn2IRU/wC+jXYfFnXf7A+Gur3CPtnnj+yxYPO6T5Tj3Clj+FTfC7Qh4e+HOjWZTbNJALibjnfJ8xz7gED8KAOvooooAKKK474gfELTvAmlh5QLnU5xi0skPzSHpk+i57/gKAJ/HXjzSvAmjm7vW826kyLa0Q/PM39FHc9vc4FcR4L8B6p4p1tfHHj9fMumw1jprrhIFHKllPTHUL+J5qfwJ8PdR1TWB428eH7RrEpD2tlIPktV6qSvYjsv8PU5bp61QAUUUUAFFFeX/F/xfdWVnbeEdBzJr2tHylWM/NFExwT7FuQD2AY8YoA5y9ZvjL8TlsImZvCOgPumYH5bmXOPx3EED/ZDHjdXuSIsaKiKFVRgKBgAVzngXwja+CfCtrpFvtaUDzLmYD/WykfM307D2ArpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDxPxzE/w0+KOn+OLRCNI1Rvs2qIgJwx6tj1IAYe6H1r2mKWOeJJYnV43UMrKchgeQRWT4r8O2vizwzfaLd8Jcx4V8cxuOVYfQgGuD+C3iO6bT73wZrJ2avoTmIKxyWhBwMeoU8Z9CtAHqtFFFABXkPxB8Fal4f1v/AIWB4JXy9Qhy9/ZIPluU6s20dc/xDvjI+Yc+vUUAc14I8a6b450BNSsG2Srhbm2Y5aB/Q+o9D3H4gdLXi/jbwrqfw/8AED+PvBkWbfrqmmqPkdCcswA7dzj7p5HGcem+FPFWmeMdBh1bS5d0b8SRt9+J+6sOxH6jB70AbdFFFACMqupVgCpGCCOCK8b+FZbwh8Q/FPgSYlYPM+22IPQocdPU7Cn/AHya9lrxv4rf8Ux8RvB3jNPkiE32O7ccfIT3/wCAvJ/3zQB7JRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB478as634h8GeEkyy3t9506g9EBC5/JpPyr2EAKoVQAAMADtXj7j+2/2n0BG5dF0zJHYEr/AIzivYaACiiuB+I3xJg8HxR6bp0X2/xFd4W1s0BbaTwGcDn6Dqf1oAm+IfxHsvBFkkESfbdbuhi0sUySSTgM2OQue3UngdyMPwB8OL0aofGXjZ/tviK4O+KGTBW0HbjpuHYDhe3PNT/Dv4bT6Zev4q8WS/b/ABPdEuS5DLbZ7DtuxxkcAcDjk+m0AFFFFABRRRQBk+JfENl4W8PXms6g+ILZN20Hl26Ko9ycCvN/hJ4evda1K8+I/iJN2o6kT9hRhxDD03AHpkAKP9kZ53Vma5LJ8YPiZH4etXY+FtDfzL2VD8s8gOCAfflR7byK9uiijghSGJFjjjUKiKMBQOAAPSgB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4z8VbC58G+LtK+JGkxMVjdbfU4k48xDwCfqPlyehCV7NVHWNJtNd0a70q+j8y2uojFIPY9x7jqD6igCXT7+21TTre/s5RLbXEayxOOjKRkVZrx74Patd6Bq2q/DnWZCbrTZGlsnIwJIickD25Dj2Y+lew0AFFFFACEBgQQCDwQa8R8TaDqXwk8Rv4x8LQtL4fuGA1PTV4WME9VHYc8H+E8dDivb6ZLFHPE8UqLJG6lXRhkMDwQR3FAGf4f1/TvE+i2+raXOJrWcZB6FT3Vh2I7itOvC9V07Uvgl4mbXdGiluvB19IBeWYOTbMT1Gf/HT3+6exr2fSdWsdc0u31LTbhLi0uE3xyIeo9PYjoR2NAF2vPvjVpH9rfC7UyqbpbMpdp7bT8x/74L16DVPVrFNU0a+09wCl1byQtnphlI/rQBk+AtW/tzwFoeoltzy2iCQ56uo2t/48proq8q/Z+vWn+HcllJkSWF9LDsPVQcP/Nmr1WgAooooAKKKKACiiigAooqO4keG3kljgkndFLLFGVDOfQbiBk+5A96AJKK8wv8A446HpmuNot5oPiCLUVkWIwGGEnc2MAYlwc5H51u3HxL0PS9Ui03X4b3QrmYZi/tCJdjj2kjZ0/8AHuKFrt1DY7KikR1kRXRgysMhgcgj1paAPH/hj/xMvi58QtW6iK4W1VvUB2HH/fofpXsFeQfAP/SdO8T6l1Nzqzc+uBu/9nrT+InxJm0q7Twt4Vi+3+J7v5FSMBhbZ7t23Y5weAOTxwQCf4i/EoeG3TQdBh/tDxPd4SG3jXf5OejMB37hfxPHVPh18Nf+Edmk8QeIJv7Q8T3eXlnc7hBu6qp9exb8Bx1n+HXw2h8JJJquqS/2h4ju8vc3jndsLclUJ5+rdT9OK7+gAooooAKKKKACvNfi74zuNE0qDw9om6TxBrJ8iBI/vxox2lh6E/dHvk9q7nXtbsvDmh3er6hJstbWMux7segUe5OAPc15d8KtEvfFGv3nxK8Qx/6RdMU02FukMY43D2x8o/4Ee+aAO4+Hvgy38D+FLfTI9r3TfvbuYf8ALSUjn8B0HsPUmuqoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8i+M2iXemzaZ8QdFULqOjyKLjH/LSEnjPqASQfZz6V6X4f1u08SaBZaxYtut7uISL6qehU+4IIP0q5dWsF9ZzWlzGssE8bRyI3RlIwQfwNeOfDW6n8BePtU+HeoysbSZzdaVLIfvA84/FR/30jetAHtNFFFABRRRQBDd2lvf2k1pdwpPbzIUkikXKsp6givD2XUfgX4n3p5154H1KX5lzua0c/wBQP++gPUV7tVTU9MstZ02407ULdLi0uEKSROOGH9D79qAJLK9ttSsYb2ynSe2nQPFKhyrKehFT14Vp95qXwP8AEy6Tqck134L1CUm1uiMm1Y9QcfqB1HzDnIr3KGaK5gjngkSWGRQ6OhyrKRkEHuKAPI/hB/xLvHXxB0Y8LFqHnRL/ALJeQfy2V6/XkPhb/RP2kfGFqOFmsEmHucQn/wBmNevUAFFFFABRRRQAUUUUAFISFBJOAOSaWuR+J2uf8I98OtZvVYrM0BgiK9Q8nyA/hnP4VMnaLY4q7seEeD1HxA+P8mpmPfapdSXpz2jj4jz+Pl16f+0FZW9x8NxcyKvnW13G0THr82VIH4H9K5z9m3QwllrOvSIN0jraRN7Abn/mv5VP+0d4hii0fTfDsUmbi4l+0yqCOEUELn6knH+6adSPLCMF5f19wQfNOU/X+vvN74Aazdap8PGt7qRpPsF01vEzHJEe1WAz7biB6DAr1CdtlvK+cbUJz6cVwnwe8J3PhLwHDBfJsvbyQ3U0Z6x7gAqn3CgZ9CTXcXieZY3CZxujYZ/CtKnxGcNj5f8Ah/431XTfBJ8I+FLOSfxFqV9I6yAfLBGURd3PGflPJ4AGTXt3w8+HFn4KtHuriT7brt0N13fPySTyVUnnbnqerHk9gPCvhL4rl8BT/wBrajpu/QdSl+ySXyR5eCRQGxnrjDAle/UZKkV9U29xDd20VzbSpLBKoeORGyrKeQQe4qCyWiiigAooooAKKK88+LXjaXwxoMemaVuk17Vj9ntI4+XQHguB684HufY0Acn4ruJviz8R4fB+nysPD2kSebqc6HiRwcFQfzUe5Y8gV7Vb28NpbRW1vEsUEKCOONBgKoGAAPQCuU+G3gmLwP4Uism2vqE+Jr2Uc7pCPug+i9B+J712FABRRRQAUUUUAFFFFABRRRQAVBeXlvp9lNeXcyQ28CGSSRzgKoGSTU9YHjbw63izwbqehpOIJLqIBJD0DKwZc+xKgH2JoAxPDfxd8J+KdcOkWFzOl0xIh8+LYs2M/dOfQdDg13VfNXgL4KeK7Hxxp9/rEEdlZafcrceaJ0czFGyoUKSeSBnOOM/SvpWgAooooAKKKKACiiigAooooAK8w+NHhe4v9Ct/E+kbk1nQn+0RvGPmaMEFvrtxu/BvWvT6RlV0KOoZWGCCMgigDB8F+KLfxh4UsdZt9qtMmJowc+XIOGX8+nsQe9b9eJeFmb4XfFu78KTEroOut5+nsfuxyHoufzT1OEPevbaACiiigAooooAztd0LT/EmjXGlapbrPazrhlPUHswPYjqDXj/h3W9S+D3iRPCfiWZ5/DV05Om6iw4iyeh9Bk8jseehr3GsXxX4b0rxX4fuNM1iMG2YbhJkBoWA4dSehH+IPBoA84sHA/ae1BlYMs2kqQQeMbY/z6V7DXzN8HN0fxlktF1EanDaWc1vDdpkq0akBSM84xgD8McYr6ZoA8R+NPjLxN4J1TT/AOxPEk0a3qyO9rJbW7iILtA2kx7sHJ6k9Otdv4Y0vxJqfhbTb7U/F2rw39zbrNKkVtZqiFhkAAwE8AjvXiPxIe48d/HFdGsljm8mSOxjVnKqQvzSZYAkAEvk4OMV7BqN54xuvF2heH7jStPsdGmJmuJbS5a43JFg+WSUTaCdoI28g4z1FFPWC83+AT0nZdF+Jb8JxeMLbxvrdjruuNqWl20ET2jNaxRFjITydijldhB55yDXdUUUdLB1uFFFFABXl/xV8F+MPHkcWmadPo9rpMMglzPPL5sz7cfMBGQoGWwATng+w9QopNJ7jTa2POPBPhvxl4O8HxaDDa+HnliZ2F2byYglmJy0flDOM4++OgqTQfhVa2viR/E/iPUZNd1xnEiyyxiOKFh02Jk9O2TgY4ANeh0VV9ebqTbS3QKRlDKVIyCMGlopDPEvglo9jrfw31/w9qsC3FsNTkSRG/3EwQexBXIPY1Bpep6p8EvES6Hrck154OvJD9ivSMm2J5IOP1Xv94dxWr8GybHxb4/0duPs+p+Yg9QXkGfyVfzr03XtC07xLo1xpWqW4ntZ1wyngqezA9iOxoAvwzRXEKTQyJJFIoZHQ5VgeQQR1FPrw3Q9Z1T4M+IU8NeI5ZbnwrdOf7P1AjPkZPQ+g5+Ze3UcHn3CORJY1kjdXRwGVlOQQehBoAdRRRQBS1jVrPQtHutU1CURWlrGZJG9h2HqSeAO5Iryb4ZaTeeNvFd38SteiIVmMOk27ciNBkbh9OQD3JY+lQ+OLy4+J/xAt/AelTMukae/natcIeCVPK59s7R/tHp8ua9lsrO306xgsrSFYbaCMRxRoMBVAwAKAJ6KKKACiiigAooooAKKKKACiiigAooooAKKKzPEOu2fhnQLzWL9ytvaxl2A6segUe5OAPrSbSV2NK7si3fX9nplo93f3cFrbp96WeQIo+pPFYM/xB8M2jQ/a76a1imbbFcXNlPFA5xniVkCHj3ryT4dPqPxa8eXPiTxGPM0zSiDa2XWFJG+6MHrgDJPUnHbivSvi+sDfCrXvtCoVEKldw6NvXbj3ziiTcY8z+7+uoRtKXKjtUdJY1kjZXRgGVlOQQehBp1eKfs56/d3/h/VNHuZGki0+SNoCxzsWTdlR7ZUn8a9rq5KzJi7hRRRUjCiiigAooooA4D4u+Dm8V+D3ms1P9raYTc2jLwxxyyD3IHHuFrQ+GnjFPGvgy11B2X7bF+4vFHGJVHJx6MMN+OO1dfXiL/8Wo+Mwf8A1fhrxMecnCQzZ/TDN9Ar+1AHt1FFFABRRUN3d29haTXd3MkFvCheSWRsKqjqSaAHzTRW8Ek88iRRRqWd3YBVA6kk9BXiOta/rPxj1uXw34WkktPDEDAX+pFSPOHoPY9l79TgUy/1LWvjfrUmk6M82n+DLWTF1eEYa6I5wAfzC9uC3OBXsehaFpvhvSINL0q2W3tYRhVXqT3YnuT3JoA8e8B+H9P0D9oDWNJ0uNks9O0hUBZslmIhJLHuSWJr2TWtTh0XRL7U5yBFaQPM2TjO0E4/HpXl3w5J1H4z/EDU+ogkW0z9GK/+0q9D8Q+ENF8VRCLWYLi5gAA8lbyaOM4OQSiOFJz3IzSkm1ZDVr6ngvwD05te+IWqeIrsq0trG0v/AG1mY8/lv/OvpQxxmVZSimRQVVyOQDjIB98D8hXJ6L8MvCXhy+F5o+n3FlOCMtFqFwAwBzhh5mGHsQRXXVTaskuhOt231CiiikMKKKKACiiigAooooAKKKKAPH/Dv/En/aQ8SWROItSsVuI/dsIf/jlewV478QP+JB8b/BPiD7sV4DYSHtySuT+Ew/75r2KgDK8ReHdN8U6JPpOqwCW2mH0ZG7Mp7Ef54ryTw7r+qfCLxCnhLxVK8/h24b/iW6mR8sYz0PoOeR/D16GvcKx/E/hnTPFuhzaTqsPmQScqw4aNuzKexH/1jwaANdWV1DKwZSMgg5BFcH8VvHDeEPDYgsCX1vUSYLKNBlgTwXx7ZGPcj3ri/DvivUvhHrB8JeM5JZtEILaZqYQsAg/hxycdsdVP+yQRY+HmnXXxD8bXXxF1qFlsoHMOkW79FCkjd/wHJ5/vEnjbQB2fwv8AA6+CfC6x3GH1a8Invpc5Jc9Ez3C5P4knvXbUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeH/tJalNDoGi6cjMI7m4klkAPDbAAAf++8/hXuFcD8WvAcvjrwssNiUGp2b+dbB2wr5GGQntkdD6gdBk1E1oVB6lL4EaWun/AAwtJ9uJL6aW4Y+vzbB+ij86yf2iNeWx8F2ujpIBPqNwCy46xR/Mfp8xT9a1Ph5r914f8D2uja3oGuwajpytF5cemSyrMASVKSIpToQOWHPtzWTB8PNZ8e+Of+Eo8a2ws9Ng2rZaSZA7FAcgSEcAE8kdSTjgCtKi552W36LYim+SN3v/AJmj8B/C02geBjfXaFLnVZBOFK4KxAYTP15b6MK9SpFUKoVQAAMADtS05O7uKKsgoooqSgooooAKKKKACuR+JPg+Pxr4Mu9OVV+2RjzrNz2lUcDPowyp+vtXXUUAeffCHxhJ4o8Ii2vmYavpbfZbtX++ccK5HuAQfdTXoNeJeLUb4X/Fiz8XQKV0PW2MGooo4SQ8lvqeH9Th/WvXtV1rTtE0ibVdRu44LKJN7Sk8EdsepPYDrQBLqOo2ek6fPf6hcx21pAu+SWQ4CivFJJda+OmtGGEz6Z4Hs5fnfGHu2H8z7dF6nJxRb22tfHPWlu70T6b4ItJT5UIO17th3PqfU9F6DJya9tsLC00uwhsbG3jt7WBQkcUa4VRQBHpWk2Oh6ZBpum2yW1pAu2ONBwB/UnuTyatSSLFG0jsFRQWYnsBTq5f4j6t/Yvw51693bWFo0SH0d/kU/mwoA4n4BRvd6P4h16QYfUtUc89wBuz+ch/KvXq4X4PaUdJ+F2ixsuJLiNrpvfzGLL/46VruqACiiigAooooAKKKKACiiigAooooAKKKKAPLvj1pEl78P11O3yLjSrqO5Vl6hSdpx+LKf+A133h3V49e8N6bq0eNt5bJMQP4SQCR+ByPwqXWtLh1vQ77Srj/AFN5A8DHHQMCMj3Gc15t8CtVnHh7UvC1/wDLfaFdvCyE8hGYn9HDj8qAPV6KK4j4oeOF8FeF2ktyH1a8JgsYsZJc9Xx3C5H4kDvQBxHxJuZfiT45sfh9pBX7NZSfaNSuwobyiBggH2DY92YDsad4M8T6h8MtcTwJ4wbGnsxGl6njCFSeFJ9Mnv8AdJweMEdf8KvA7eD/AA2Z78F9b1Eie9lY5YE8hM+2Tn1JPtW94w8H6X410KTS9Tj4+9DMo+eF+zL/AFHcUAb9FeM+CvF+qeBdeTwH43kOzIXTNSY/JImcKpPp2BPQ8H29moAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKxvE/ijS/COiS6rq04jhThEHLyt2VR3J/8ArnigDH+KMGiXPw81WLXrlLa2MeYpWGSsw5TaOpOR0HUZ7ZrxL4b6de/FW7s9J8Q6uzaN4fgQpYKSrTjJAz7AYUt1AwBjJNddoXhzWPi9rcXijxdG9r4dhbOnaWCR5q/3j7Hu3Vu2BipfiTp8nw+8a6R8QdIt9tmStnqVvEAqlMbRwPVRj0BRfWgD2a2toLK1itbWFIYIlCRxxrhVUcAAdhUtQ2d3Bf2UF5ayrLbzxrJFIvRlIyCPwNTUAFeRfHm7lu9L0LwraH/StYv1XH+ypA5/4E6n8K9drxq0P/Cb/tD3FyPn07wxB5Sn+Ezcj89zP/37FAHr1laRWFhb2cA2w28SxIPRVGB+gqeiigAooooAKKKKACiiigAooooAKKKKACiiigArxnVv+KG/aDsNSH7vTfEsPkSnool4X/0IRnP+2a9mrgPjB4TfxR4Gna0QnUdOP2u2K/eO0fMo+q5x7gUAdxe3lvp1jPe3cyw20EZklkc4CqBkk1414Hs7j4neP7jx7qsLLpGnv5Ok28g4JU8Nj2zk/wC0f9msG+8a6n8XbHw94N0vfDLcxrLrc4XhQhwfw4347lkHrXvukaTZ6FpFrpenxCK1tYxHGvsO59SepPck0AXaKKKAOc8a+C9M8caE+m6iu11y1vcKPnhf1HqPUd/yI4DwL401Pwnrq+AfHDlbhCE07UHOUnToqlj1z2J/3TgivYq5fx14G0zx3obWF8PLuI8tbXSjLQv6+4Pcd/qAQAdRRXkPgHxzqega2PAXjljHqURCWN85ytynRQW7k9m79Dhhz69QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFcx448c6V4F0Vr7UH3zuCLa1U/PM3oPQDue31wCAT+L/ABjpXgrRH1LVJcfwwwJ9+Z/7qj+Z6CvNPDHhDV/iZrUXjLxzGU01fm03SDnZt7Fgf4TweeW7/LgGfwh4G1XxrraeNvH6bifm0/SmHyRJ1UsvYeink9W9K9koARVVFCqoVQMAAYAFZ+vaLaeItBvdIvl3W93EY245U9mHuDgj3FaNFAHkXwb1q70q61T4e622NQ0iRmtSx/1kJPQewyGHs/tXrteP/GLSLvQtT0r4i6Kn+maZIsd4qj/WRHgE+3JU+zD0r1HRdXtNe0Wz1axffbXcSyoT1APY+4PB9xQBV8Wa9H4Z8KanrMmP9FgZ0DdGfoi/ixA/GuL+BmhSab4FOrXeTfazM13I7feKZwmfry3/AAOsf4sXc/jDxfonw506QgSyrdai6/8ALNACQD9F3Ng9SUr2C1tYbK0htLaNY4II1jjReiqowAPoBQBLRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZEEsTxsWCsCpKsVPPoRyD7ivmi8vNZv/AI5Hwvo/iXXk0sXqxNG2qzthUUGUBt+ezjrmvovWdSi0bRL7U5v9XaW7ztz1CqTj9K+b/gpZa5qPinWfE9hY2V7cRIwP2y6aECSUkkqQj5OAw5x97rSh/Ev2X/DDl8Hrp/mb3xc1PWfhz4h0m58O+IdVSO6jdntLu8kuowUIGcSluDu9e3Fe2eG9VfXPDGl6rJEIpLy1jnaMdFLKCQPbmvCNOs9J8e/E+a3+Id9dQa7C/kRaSsIit8LkhFkDMWBBJ/hJzwTkV9ExxpDEkcaKkaAKqqMAAdABTjpDXqTLWenQ+ZNY+G2h6f8AGf8AsLWpbu10fV8y6fNbOqbXY8ISysMBsqB15U9673/hnvRF+WPxDriRjhV81OB2H3a6n4peCh408JyRWy41WzJuLGQHB3gcpntuHH1we1N+FfjU+MvCim7O3V7Ai3vo24bcOjkdt2D+IYdqBnMf8KKdfmj8ca4rjlW3dD2P3qP+FL69H81v8TNcilHR/n4/KUV7BRQB4/8A8Km8bQfNB8VdXdjwRKsuMfjMaP8AhXHxJg4g+JU7g9fNR+PpkmvYKKAPBfEHwc8f+I0hj1PxbYX6wEtE86MHQnrhghOOBxnHtWFp3iH4rW/itfBlx4qttNvoxsgOowoyz/3dsnlMWyOhPXp14r6Xrj/iD8P7Dx3pAikb7PqVvlrO8UfNG3ofVT3H4igDj/7O+Oaf8xnQ5Nv+wvzf+QxRv+Ocfz+VocuP4MqN36j+dW/h18QL+PU28EeNA1v4gtjsgnkPF2vbnu2Oh/iHv19VoA8f/tb45w/P/wAI9odx22eYo/H/AFw/nR/wlPxrg5n8EaS4PTypRx9cTmvYKKAPH/8AhOvixB8s/wAPYXY8gxSHGPwY0f8ACzPiLF8k3wyuncdTG74/9BP869gooA8f/wCFu+Mk+V/hPrRccEq0uCfb9waP+F2aqvzSfDrXEQcs2G4Hc/6uvYKKAPH/APhfUMfzXHg7XIoh1fYOPzx/Oj/hofw9FzdaFrkKHgN5MZyfTlxXsFFAHkkX7RXg2TO601mPH9+3j5/KQ1Zj/aB8DuuWfUYz6Nbc/oTXp0tvDOQZYY5MdN6g4qtJo2lzNul02zdsYy0Ck/yoA4NPjv4CZAx1G5Qn+FrSTI/IVZX42/DxgP8AioME9jZz8f8AjldU/hbw9I5d9B0tmPUtZxkn9Kqt4E8IPnd4V0Qk9T/Z8Wf/AEGgDJT4veAncKPElvk+scgH5lasx/FDwPK+1fE+ng/7Um0fmakf4a+CnQqfC+l4PpbqD+YqtJ8J/Akq7W8NWYH+zuU/mDQBei+IXg2YkL4p0cY/v3sa/wAzVmLxl4WmBMXiXR5AOCUvoj/7NXPy/Bn4fTABvDsYx/cuZl/k9Vpfgb8P5GBXRpIxjot5Nz+bGgDso/EWiSoHj1jT3U91ukI/nVldRsXUMl5bspGQRKpB/WvO5PgJ4Edyy2l4g/urdNj9c15/8RfAHw88E2axx/2pdazdcWdhHcgkknALfLkLn8T0HcgA9e8ffEHTPAmkia4xcahMMWtkh+aU+p9FHc/gOa5HwR8PtT1zWh438ffv9Tkw9pYOMJar/DlexHZe3U5bpzfg79nqK70RLzxPe3tnfy4eO3tHQeSO28spy3sMY9fTof8Ahn/TY/mt/FGuRyj7r+YvH5AfzoA9gorx/wD4UbcxfNa+PNchfoW3E5Hpwwo/4U14ki/49PijrkOfvf6w59OkwoA9gorx/wD4VV47h+WD4p6m6dcyrJnP4yn+dH/Cu/idH8kXxIdkHQujZP16/wA6APWL+xt9T0+4sbuIS21xG0UqHoysMEflXiPgfxKnwr1fxF4N8RTkWdmHvdPlbrImN20e7DBA/vBhWt/whvxhThPHtiQv3d0XX6/uzXmes+HfGnj34kL4a1TV9P1LUbCIia8gjCxW6dSrMsakkEgYweWxxzQB6h8FtJu9Sk1fx9qyf6drUzCAEfchDc49iQAPZB6165UNnaW9hZQWdrEsVvBGscUajhVAwAPwqrrOu6V4esGvdXv4LO3X+OVsZPoB1J9hk0N23A0KK5Wy8bjVbX7bpXhzXL6wPKXSRRRLIv8AeVZZEdh7hee1J4Z+IOjeLNWudN02K+FzaRl7lbi3Mfkndt2NnndnPHsaOtgemp1dFFFABRRRQAUUUUAFFFFABRRRQB5V8fPEMeleAH0xJVF1qcqxhA3zeWp3McenAH/Aqd8HLWx8I/CiHU9TuILRL13vJZZXCgKflXk+yg4967u+8J+G9TvJLy/8P6Vd3UmN809lHI7YAAyxGTgAD8KgXwN4RRgy+FtEDA5BGnxZH/jtEdE/MHrbyPnXS7e/+J3xufWtLhmSwjvo53udpAiijxtJPZmCDA65PtX1TUVvbW9nCsNtBFBEvRIkCqPwFS01ZRUV0E7uTk+oV4p41tbr4YfEGLx5plu0mi6gwh1a3j/hZjy2Pc8g/wB4EfxV7XVXUtOtNX0240+/gWe1uEMcsbdGB/z1pDF0+/tdU0+3v7KZZ7W4QSRSIeGU9Ks14h4O1K8+FPjZ/A+uTM+h30hk0q8fopY/dJ7ZPBHZuejZr2+gAooooAKKKKAOL+Inw9s/HOmIVf7JrFr81neLwUPXa2OdufxB5HcHC+HHxDvLi/fwb4vRrXxLafIrycC6UDqD0LY544YcjvXqNcP8Rvh3beNrCO4tpfseu2fzWd4pKkEHIViOcZ6Hqp5HcEA7iivMvht8RbnU7qTwn4qjNn4os8oRIAv2kAdR23Y5OOCPmHGcem0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFedfEX4lDw5ImgaBD/AGh4nu8JDbxjf5OejMPXuF/E8dQCf4i/Em38HxR6bp8X2/xFd4W1s0BbaTwGYDnGeg6n9Rn/AA8+G1xp983ivxdL9v8AE90d/wC8IYWuR0GON2OMjgdB6mx8OvhqfD00niDxDN/aHie7y8s7neIM9VU+vYt+A46+jUAFFFFABRRRQAUUVm69rth4b0S61bUphFa26bmPdj2UDuSeAKAOb+JnjuPwT4e3QAS6veZisYAMkv8A3yPQZH1OB3qv8KfBMvhHw49xqWX1zUm+0XsjHcwJyQhPfGST7k1y/wAOtDv/AB34ok+I/iWLEe7bpFo3KxoCcPj0HOPU5b0r2agDO17WbXw7oN7q96T9ntIjKwXq2OgHuTgD6188+A7e8+MXxKuNa8SHz9O09RL9lJzEuT+7iA/u8En1289a9O+OwnPwqv8AyQSomhMuP7m8f121z37NscI8J6vKpHntfBXH+yEG3+bUU9ZOXb+v1CekUl1/r9D2kAKAAAAOABWHpXhqDTPFOua1Gkavqnk7tuc5RSCSOgzmtxmCqWYgKBkk9BQjrIiujBlYZDA5BHrQHkLRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcz458E6d468Pvpt6PLmXL21yoy0L+vuD0I7j3wRxXw68balpWsN4B8aExavbfLZXTtkXSfwjcepx0PfofmHPrdcX8Rfh9aeOtHAVhbava/PZXg4KN12sRztJ/LqPcA7SivKvAPxIu11P/hDfG0ZsfENuRHFNJwt36c9Nx7EcN254r1WgAooooAKKKKAOC+JHw5i8Y2sWoafL9i8Q2XzWl2h2liDkIxHOM9D2P4g0/hr8Rpddkk8NeJIzZeKLLKSxSDb9oA6so/vY5IH1HHT0mvPviT8OR4qji1jR5fsXiWxw1tcodvmY5CMf5Ht9KAPQaK87+GvxHPiZZNC12M2XiexylxA67PO29WUevqPxHHT0SgAooooAKKKKACiiigAooooAKKK8r8f/Ea9OqjwZ4Jj+2eIZyY5Zo8FbT156bgOpPC9+eAAT/EP4lT6Zep4V8Jw/b/E90dgEYDLbZ7ntuxzg8Acnjg3vh18NoPCMcmqanL/AGh4ju8tc3kh3FCeSqE8/U9T9OKsfDz4cWXgiyeeWT7brd0N13fPkkknJVc8hc9+pPJ7AdvQAUUUUAFFFFABRRVa/wBQtNLsJr6/uI7e1gUvJLI2FUUALf39rpdhPfX06QWtuhkllc8Ko6mvEraDUPjl4pF7dLNa+CdNlxDCcqbtx6+57n+EHA5JNLc3Or/HPWxZ2az6f4Is5szTkbXu2HYe/oOi5yecCvadM0yy0fTYNO062jtrSBdkcUYwFH+OeSe5OaAJ4IIra3jggjWOGJQiIgwFUDAAHYVJRRQBXv7C11TT7iwvYVmtbiMxyxt0ZSMEV5Fpnwp8WeBdcnvPA+v2LWVwf3lnqiuFIHQEoDuI9RtNey0ULR3QPVWZyen6L4m1Jo38Wanp7QLy2n6XC6QyHt5juSzL/s4APfI4rrKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOS8efD/S/HeliG6HkX8IJtb1B88R9D6r6j8sHmuI8KfEXU/CGqjwf8RSYZ0wtpqrHMcydBubuP9r8GwQTXslY3iXwto/i7Sm07WLRZ4TyjdHib+8rdj/k5oA2EdZEV0YMrDIYHIIpa8MSfxZ8ErkRXIm13wWzYWQf6y0BPT/Z+n3T22k1674f8S6R4p01b/Rr6K6gON20/NGfRl6qfY0Aa1FFFABRRRQB518Sfhy/iNovEGgSmy8T2OHgmQ7fP29FY+vofwPHSX4bfEZPFsEmlarH9i8SWQK3Vq67S+OC6g+/Udj7Yr0CvNfiT8Op9ani8T+GZTZeJ7HDxvGdv2kD+E/7WOATwRweOgB6VRXB/Df4jQeM7OSxvo/sfiCzG28s3G0kg4LqDzjPUdVPB7E95QAUUUUAFFFFABRRXjnjHx1qvjHW38E+AG3ynK3+qIxCQr0YKw6DsWHXovPNAE/jj4g6lrOsnwR4C/wBI1WTKXd9GfktV6NhuxHdu3QZbp1ngD4fab4E0oxw/6RqU4Bu71x80h9B6Lnt+J5qx4H8CaV4E0YWVgnmXEmDc3br88ze/oo7Dt7nJPUUAFFFFABRRRQAUUVwfjr4paT4PH2G3H9p65IQkNhAdxDHpvx0+nU+negDp/EPiTSfC2lSalrF4ltbpwM8s7f3VHUn2FeQW1nr3xx1dL3UVn0vwVbSZgtwcPdkd/c+rdB0GTk1peHvhpq/i7VY/E/xJmM8v3rbSQcRwr1AYDoP9kdf4ieRXsEcccMSRRIqRoAqoowFA6ADtQBBp+n2elWEFhYW8dvawKEjijGAoqzRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMlijnieKaNZI3BVkcZDA9QQeoryfxB8IJtO1Ftf8Ah7qL6Lqa/M1pu/cS98Drj/dIK9OBXrdFAHk3h74xGz1D+wvH+ntoeqpx57KRBL799ufUEr7ivVbe4gu7dLi2mjmhkG5JI2DKw9QRwazdf8M6L4osfsetadDeQj7u8fMh9VYcqfoa8vuPhd4q8E3D33w71+UwEln0u9YFX9gT8pPbkKR/eoA9moryLSvjfFYXQ0zxzot3oWoLw0giZom/2sfeA+m4e9em6Rruk69a/adJ1G2vYu7QSBtvsQOQfY0AaFFFFAHmPxI+Hl1f3kfi7wnIbPxNZDf+7wBdADoe27HHPBHB7Y1vhz8RLXxvpzwzoLTXLQbbyzYFSCDgsoPO3PbqDwexPcV5b8Rvh9fSaivjTwc5tfEdp88kcY4u1HXju2OMH7w4oA9SorjPh58QrHx1pRO0W2rWwC3lm3BRum5QeSpP5dD79nQAUhIVSzEAAZJPaklljhieWV1jjRSzu5wFA6knsK8S1/xLrHxb1uXwr4Pke28PxHGo6qQQJB/dHsew6t3wuaAJfFHjHVviRrcngzwLIVsF+XUtXH3AnQqp/u9Rxy3QcZJ9J8HeDdK8E6Imm6ZFycNPOw+ed/7zH+Q6Cp/C/hbSvCGiRaXpMHlwpy7ty8rd2Y9z/wDqHFbVABRRRQAUUVy3iP4i+FPCoddT1iAXC/8ALtCfMlz6FVzj8cCgDqayPEHijRPC1kbvWdRgtI8Eqrt87+yqOWP0FeWyfEPxx8QJGtvAWhtp9gSVOq34A49R1UH2G8/StXQPglpkd5/avi2/uPEWqNyxuGPlA/QnLfice1AGNN4v8b/FOd7LwZayaLoW4rLqtx8ruO+0jofZcn1YZrtvBPwu0DwXi5iRr7VWH7y/uRl8nrtH8A69OfUmu0hhitoEhgiSKKMBURFCqoHYAdBT6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAp6lpOnazam11Oxt7yA/8s54w4+vPQ+9ebat8CtFa6+3+GNSvvD9+OUa3kZkB+mQw/Bse1eq0UAeNi4+M3g/5Jbax8UWSfxof3uP/HWJ/BqntPj7pdvMtt4k8P6to11/Erx71H57W/8AHa9dqG6tLa9gMF3bxTxHrHKgZT+BoA5fTfih4I1UL9m8SWClui3D+Qc+mHxXUW13bXsXm2txFPGf44nDD8xXI6j8JvAup7jN4ctI2Pe23QY/BCBXM3H7PfhQyebYX+r2Mo+6Yp1IH5rn9aAH/EPwDqFtqo8ceCmNvr1t89xbxji7Xv8AL3YjqP4vr16TwP8AEfSPGHh2XUHljsrqzTN/byvt8ggctk/wcHB/A81yg+DXiC1wNN+JmuWyA8Kd7DjoOJQP0rm779nrXbq4nuW8WwzT3J/0h5IGUyDOSWIY7jkA8/WgC/qms6z8atbk0Lw88tj4RtnAvb8gg3HsB39l/Fuwr1/w94e0zwvo0OlaTbLBbRD/AIE7d2Y92PrXlGmfCr4haNYR2Om+O4bS1j+5FDCVUZ69uvvVwfCzx5LlJvilqSIepjSTP/owfzoA9frO1DX9G0kE6jq1jZ46/aLhI/5mvMT8DZr041nx1rt+p6jeRn1+8zVoWHwC8DWZBnt76+x2uLojP/fAWgC/qvxp8CaUGH9sfbJB/BZxNJn/AIFgL+tc4fjLr/iBvL8F+B7+8DfdubsERj6hflH/AH2K9B0vwH4T0Vg+n+HtPikXpIYA7j/gTZP610XQYFAHjR8GfFHxmf8Aip/E0Wi2Lfes9P5Yj0O0gEfVm+ldR4c+Dngzw6VlXTf7Qul58+/IlOfULjaPyzXe0UAIqqiBEUKqjAAGABS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFfKPxa0rTr34vx6JoVlBbSSeTBKtugVWmc5JwOM4Zc/SvoOT4eeCRYR2c/hzSNrKIg/2WNJHOP7wAbdxng5pK7hzA9Jcp1dFcb8OPBSeB9I1CxTJWa/lljLEE+VwEyR32j9a7KmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHPMltbyTysFjjUuxPYAZNSV5t8Z/GNh4f8ABN/pn2qP+1NQh8mK3Vvn8tyQzkdQuAwz3PFTNtRdiopN6njvw4tdQ8cfGG71y2lt4ZYpJdQ3XULTIpLYUFQ6E43DHzDG2vbdP0/xVcfE7dr2oWt1pdhZ/aLRbSAwoJpCUyylmO4KJByxGDxjJrzj9n/U/DmhaRrF7qmt6dZXk86RiO6uEjby1XII3EZBLHp6V1viT4wWN9qFt4a8Gz/bdVv5ltvtiqfKtwxwWGfvkDJGOO+TjB0ty8sI/wBX/r8CL83NKX9f1qesUUyGPyYY4gzMEULudiScDqSepp9SNBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k="]
math
multiple-choice
57
如图, 在 Rt $\triangle A B C$ 中, $\angle A C B=90^{\circ}, C D \perp A B$, 垂足为 $D, A F$ 平分 $\angle C A B$, 交 $C D$ 于点 $E$, 交 $C B$ 于点 $F$. 若 $A C=3, A B=5$, 则 $C E$ 的长为 ( )
$\frac{3}{2}$
$\frac{4}{3}$
$\frac{5}{3}$
$\frac{8}{5}$
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACCASADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigArL8aeJND8JeG7rX/Eeoxafp1mm+aeQEhR6AAEsT2ABJ7CtSvD/2upIl8afDNNcKr4X/AOEjV9UMn+p3qAYPM7bfMC9ePWjql3Y+77HRWvxs0r7daRan4M8XaTbapcJb6Te31nB5OpSMeBGEmZ1+UM/71U+VD3wp9Ormb7UfCOueILDRWe31K8tz9tt44W3i3Cjb5hKnAHz4/wCBCumo6f1/XcnqFFFFAwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArl/jNqvhPRfhnq+o+OLe1utChtmN5bXUIlS4XH+r2EHeW6BcHJOK6aV0jjaSRgqqCWYngAd68C+IZb4sWPiLxDIG/4RDwvaXK6UrcLqV4iMGnx3RHBC+pUMODQB3v7Od58L9S8EnUPhbpGk6Vp9w4N1aWFilq0cnpLGoBVuvUZr0KvEvCfw+u5vhz4d8Z+BrxdI8Tw6ZGHyP8ARtTQD/VTqPXswyQcHBrufhb8QrPxQ02kalbPo/iWw+W/0m4OHU/34z0kjPZh+IFAHaUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVx/xk8aDwj4eijsYxda9q8ws9Gshy087AnJH91VDOx9FNAHPfF7Vr3xd4mj+Fnhi5eKSZBN4hvoTzY2hJART2kkIYD0Cnjmuh+IWl6fonwN1rSNKtY7WystEmhghjHCIsRAH5Cn/AAe8Gr4Q8OSC6l+1a1qkxvNXvTy1xcMADz6KAqj2UVZ+MX/JKPEn/YJuP/RbUAQfAz/kj/h3/sHR/wAqi+KfgCw8Xww3tvPJpWvWHzafq9rhZoD/AHT2dD3VgRUvwM/5I/4d/wCwdH/KuroA86+Hvj7UYdej8FfEK1h03xEB/o1xHkWuqoP+WkJPQkdUySDkZr0WsH4ieDtD8a+H20jXbYyR7g8M0bFJraQcrJE45RwcEMCCCK4bQ/F2u/DnWLbwv8R7hrvTLmQQ6V4m2fu3P8MV0RxG56BjgMeMkkCgD1emyOkcZd2VVUZLMcACljZXjV0YMrDIIOQRXP8AxY1LS9I+Geu6nrVtBdafa6fNJcwToGjlQISVZT1BHGKmUuWLY0ruxqrq+lMwVdTsyTwALheT+dXMg9DXyf8ABH4L+EteW18M6/8ABbS/C8+k2NteHVHtbOW7urhbiKVXWWIkqCqspBIOG6V9XRokcaoihVQAKB0AFXayJvcdRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRkAZNAFHxJrGm6BoV3rGr3aWtjZRNNPNIeEVRkn36V578HtJvvFPiSb4o+J7V4Z7pDDoNjKObC0JB3EdpHwufTGMnNU9VP/AAtv4kf2RExfwd4XuwdQYfc1S8Q5EOe8cbAbh3KlTxxXq11IlpYySrC7rBGWEcSbmYAfdVe544FAE1c38Yv+SUeJP+wVcf8Aotq4i1/aE8Lz2iXo8JeOUsWuDb/bZPD8iwBw2w5fPQEEZrt/jF/ySfxJ/wBgq4/9FtRurh1sQfAz/kj/AId/7B0f8q6uuT+Bf/JH/Dv/AGDo/wCVdZQAfhVPX9K07W9Jn0vVbSK6tLlCksMq5Vgai8T69o3hzR5tU13UrfT7OBd0k1xIFVR615y3jnxt4+3QfDbRRp2lycHxFrETBGX1ghBBf2Ykj1BoAy77WdQ+ButWthqWo/2r4IvpNlqJJAb7SWP8O3rLD7jlfQ5yOn+LvhnVfil4MsoPCfjmx0vTLh0nmk/ssX63iAhgv+tTCnoRznkcVN4E+E3h/Rbw6xrk1z4n16QHzdU1dhKwz2jjAEcY6/dUE9yaxNY8L698MdYn8R/D6zl1DQbh/N1LwwpJ8s9WltO6t38vlT2AzQB6lZQGG3jWQpJKqBXkVNu7A9OcfTNT1ieAfFmh+MvD0Ws6DeLcW8nDL0eJh1R17MO4rboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAM0UjUhJFADqKaSRQSefagB1ec/GrxHqNxqVn8OfCc+3XtbQtcXCc/wBmWmcNM/oTyFB64bHQ10XxS8X2fgzwnNqtwpmuGIhsbRPv3U7cJGo9z1PYAntWT8FfB91oWn3XiHxA4uPE2vuLjUpz/wAshj5IE9EQce5LHvQB0fgXw3pfhHwnZeHtHh8q0sYgi55Zz/E7HuzHJJPJJJqD4n60PD3w/wBW1jdiS3tW8nnGZW+WMfi7KPxrcya5z4keBPCXj3TYtP8AF+iQarbW8gljimZwqt2PykZ60pJtWGtGeYfCPwtq3hPXNOh8feKotVsNW0+KLRdNmtIozFcyySS3CBE5cDMWXYemT0r0/wCMX/JJ/En/AGCrj/0W1Y3hb4SfDDwbrUfiPSPDFjp15ZoypdtNIfJU43YLsQOg/KuT+OXxWt9T8DeItB8AaTceJrxdPnjubuI+XY2Y2HJeY/ewP7itn1FUyUdv8H72z034H6FfahdwWtrBpkbyzzyCOONcdWY8AfWuen+KGteMLuXTPhRoLaikbbJdf1BGh0+I+sZbDT/WMMvqa5/4E/Cv+3/h74d1n4h61Pr7JZxyWmlqDFY2nHA2Akuw/vEgH0r26xtreztltrWCOCGMYSONAqqPYCkM898N/CSzl1iDxD4+1SbxdrcDiSB75R9ls26jyIPuIR/eABPU16QowMAdKKKACiiigDzfx14B1TT/ABJP44+HFxHYa5N82oWDnba6wB2kHQSf3ZOoPBOCa2vhX4/0vxnazwCOTT9a09vL1LSbobLi1f12n7yHBw4ypwcHg111cR8UPh7b+I7iLXtFvG0XxPYgmy1OFfvf9M5V43occjrQB29Fef8Awx+IVxf6mfCXjWwXRfFVsMNBu3W98o6S27nG4HrtIBByOcZPoFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGBnNJglulLRQAYBqG/ubezspby8mSGCBC8sjnCooGSSfTFTV5N8RJpPif46k+HOnybvDumlX8UXEZ+WfgMLIHvuBG8f3SQeeKAF+HNnN8SPHI+JOsQONG0/dF4Xs5BgEHhrxh/eYcL6Bm9a9YxUVnBDaWkVtbRrHDEgREUYCgcAVxnxE+KfhzwxfDR7fztc16TiLR9LTz7jJ6GQLxEv+1IVHvQB2zbVUljgdya8+8X/FfSbTWZPDnhTT7nxT4gTh7LT+Utj2M8vIiX3NZn/CKfEL4gqJfHerP4b0eTn+wdHuSJpF/uz3CH81UlTXf+C/C/h/wjocej+G9JtdNsovuw28QRc9ycdT70AcBbfDrxT41vF1H4pa8xs87o/DekuYbRP+usgPmSt6/PsP8AdrpviNpWmaL8Fdf07SNPtrG0h0i4EcFtEsaKPLboBxXYVzfxj/5JR4k/7BVx/wCi2oAr/A0Z+D/hz/sHR/yrrK5P4Gf8kf8ADv8A2Do/5V1lABRRRQAUUUUAFFFFAHN/EzwRovjfRhZ6mkkNxCd9nf2z+Xc2cnZ43HII9Oh7g1yPhPxvrXhDXLXwZ8TpU864bytK8QKmyDUj2STsk2B0GAcHAFepVmeL9A0jxP4fudE12xivbG7TbLDKoI9QR6EEAg9iBQBpggjIORRXkNrq3iL4PXUWn+JZrnWfBUjiO01g5kuNKz0juB95o/STnHQ44z6zY3NveWcV1aTxzwToHilicMjqRkEEcEEd6AJaKKKACiiigAooooAKKKKACiiigAooooAKKKKACqun6lYX81zFZ3Uc72cpiuAhz5bjqp965b41eMZvCnhnGm6fqWoapesIbWDTbNrqdM8NKIl5YIMtjviuH/Zy1S08NfBTxN4suodTkhOsXl6Y7u2Md24+XCsh+beTxzzzQtbg9Ejr/jd4tvtJsrXw14ZVZvFGvsYdPjb7sC8b55MdEXI+pNZ9jqvgb4L+D7bQrjUZbzUZCXlit4/OvdSuXOXkKDozsSeSAM9cV89+FfiF4l17xprGvareT+GZtWcJ/aYs/tN3bWgHyQWyMCkXVixdWJZjzgAD1j4deL/gx4NLXNhHql1qco/f6pfWslxdzE9cyOSVB/urhR2AoA3hZfFD4kMW1Od/Avh1+lpbsJNTul/23+5BkdQA/wBRXc+AfA/hjwbYfZtA0uOAnmSdvnmlPcs55JP5Vyv/AAvbwB/z31L/AMAXo/4Xt4A/576l/wCAL0Ael0V5p/wvbwB/z31L/wAAXo/4Xt4A/wCe+pf+AL0Ael1zfxi/5JP4k/7BVx/6LauY/wCF7eAP+e+pf+AL1jfET4y+CtY8BazpVlLqDXN7YTQwhrJlBZkIGT25NAFD4QeOfiHb/DHQ4Lb4WXNzDHZIscw1BVEgx1xt4r0H4IeNbzx34Rm1e+0T+x7i3vpbSS0M/mlSmOd2B1zXEfC/4w+DND+Hmj6RqEt+t1Z2aRTBLNmAYDnB71k/A/4peFPDHh/VLTVnvUkutYnuohHaMwMb7cE46Hg8UAe/0V5p/wAL28Af899S/wDAF6P+F7eAP+e+pf8AgC9AHpdFeaf8L28Af899S/8AAF6P+F7eAP8AnvqX/gC9AHpdFeaf8L28Af8APfUv/AF6P+F7eAP+e+pf+AL0Ael0V5p/wvbwB/z31L/wBej/AIXt4A/576l/4AvQB6NfW1veWslrdQpNDMpWSN1yrA9iK8lv9G1/4P6g+reFLe51jwbI5kv9EU7p9OyctJbZ+8vUmM474PYan/C9vAH/AD31L/wBej/he3gD/nvqX/gC9AHb+EPEOjeKNCh1jQr6O8s51yrp1HsQeQfY1qV8y+L/AB94b8MeIpfGnwxnvY7iVt+q6A9k62upjuyD/llN3DLgE9Qam+PXjLw/8QfBvgfUIbTxggvNSeW8stFku4r6O3jT9+rRQOrMAzRcnp260m7DSufSlFeM/sbLczeG9d1Oz1m4vPDF5qjnQLW7v3vLiyiVVSRJZJC0m/zVkJVySudvavZqfYXcKKKKACiiigAooooAKKKKACiiigDj4Phxo0XjbVvFa6przalrFm1nIzarKUt4mO7EC5xFg8jb0qf4WeAtI8A6PcaZo97q91b3M5mYanqEl0yseu0uTjP9K6mijYBvlx/3F/Kjy0/uL+VOooAb5af3F/Kjy0/uL+VOooAb5af3F/Kjy0/uL+VOooAb5af3F/KvPf2hb3xLZ6Potp4O8QQ6Nqmp6xb2au+nx3W+N5FVztbptUls+1eiV4v8TPE2vxfHfSZz8LvGGraN4dt5ZIr3T7WCRZrmRSh2hplyoUjk9weO9LdpD6Mm0fxD418EfGjRfBXjXXrfxPYeK4ZBpt/Hp0dpLa3ESl2R0T5SrKHIOc5UeteweWn9xfyryXwPoHivxt8XLf4k+MtKk0HT9Gt5IPD+iyuHuN0mA1xcY4R9oKhFLAbz8xxXrlV0RC3Y3y0/uL+VHlp/cX8qdRSKG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyo8tP7i/lTqKAG+Wn9xfyrx3xV4V+NE/xZuvFejDwKbeOwax0tby6uxLbK5y8hCxFSzFUyM4+QV7JRStrcOljhP2ePh43w2+H40a61M6nqV5dz3+p3nl7FmuZpGkk2r2UFyB7AV3dFFU3cAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q=="]
math
multiple-choice
58
如图,由四个全等的直角三角形围成的大正方形的面积是169,小 正方形的面积为49,则$\sin\alpha-\cos\alpha=(\quad)$
$\frac{5}{13}$
$-\frac{5}{13}$
$\frac{7}{13}$
$-\frac{7}{13}$
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABTAFQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDqPDvh7VE8L6RrE97rmuwXllDczxjWrqG5iZ41ZtmJVR1yT8p2kerdK6jStG8Oa1A0tjqWtyGM7ZY21y+SSJv7roZQyn2IFX/An/JPPDX/AGCrX/0UtWtV8PWepzpdhpbTUYxiO+tW2SqPQnoy/wCywK+1AFX/AIQ3S/8An61z/wAHt7/8eo/4Q3S/+frXP/B7e/8Ax6ov7a1LQfk8QwCa0HTVbOM7APWaPkx/7w3L3JXpXQwTw3UEc9vKk0MgDJJGwZWB7gjqKAMP/hDdL/5+tc/8Ht7/APHqP+EN0v8A5+tc/wDB7e//AB6ugooA5/8A4Q3S/wDn61z/AMHt7/8AHqP+EN0v/n61z/we3v8A8eroKKAOf/4Q3S/+frXP/B7e/wDx6uL8S6Uv2bxFc6TqeuQW+iabcO0o1q7fzLvyiyqN0p4jGCfUsB2IrvfEWqy6ZpyrZosmpXcgt7KJujSsDyf9lQC7eymsjxFpcWjfCfX7GJ2k8vSbsvK/3pXMbl3b3ZiSfrQB11FFFAHP+BP+SeeGv+wVa/8Aopa6Cuf8Cf8AJPPDX/YKtf8A0UtdBQAVz0/hprOeS88O3I024di8luU3Ws57lo8jax/vIQfXd0roaztb1ZNG0qS7MbTS5EcECn5ppWOEQe5JA9uT0FAGZYeMLV9VbRtWjXTdWUqPKaQPFKWzjy5OASQCQpCt/s45rpKw9L8OwRaHLZ6rHBfT3rGa/aRAyTSt14P8IACqOyqvpVb+zdY8P/No8zajYD/mHXcv7yMekUx/9BfI9GUUAdLRWZpOv2GsGSKB3iu4QPOtLhfLmi/3kPOPRhkHsTVDxLNJfy2/hu0kZJr9S11IhwYbUcO2ezNkIvuxP8JoAZon/E+1ibxG/Noga20wHoY8/vJv+BsAAf7qqf4jUvjv/knniX/sFXX/AKKat2GGK3gjghjWOKNQiIowFUDAAHpWF47/AOSeeJf+wVdf+imoA6CiiigDn/An/JPPDX/YKtf/AEUtdBXP+BP+SeeGf+wVa/8Aopa6CgArmbD/AIqLxE+qt82m6a7wWI7Sz8rLN7gcxr/wM9xUvim8vJYYtC0mcQ6pqKsqz43fZYh9+YjI6ZAHP3mX3qDStXTQobTRtYsY9LEarBbTRsWtJQBhQrn7jf7L4PoW60AdRRRRQBi+JNP0ibTpL/VMw/YkaVbyJik0AAySjjkfToehBql4M0vUrWzuNS1qZptTv2VyZECyRQhQI4m24XcuWJ2gDczcU6//AOKg8SR6WvOnaYyXF6e0k33oovw4kP8A2z9TXS0AFc/47/5J54l/7BV1/wCimroK5/x3/wAk88S/9gq6/wDRTUAdBRRRQBz/AIE/5J74Z/7BVr/6KWti8vLfT7Ge9u5VitoI2kkkboqgZJrH8Cf8k88Nf9gq1/8ARS1Df/8AFReIl0pfm03TXSe+PaWbhoofoOJG/wCADuaAJ/DdncSfaNc1CJo7/UdpET9beAZ8uL6gEs3+0zdgK2p7eG6geC4ijmhkBV45FDKwPYg9RUtFAHM/2Rqnh/59Bk+12I66XdSfdH/TGU5K/wC42V7AoKS48Z2X9mzNao/9rBlhTTLhfLm85zhFZf7uedwyuASCQK6eszV9A0/WvJe6iZbm3Ja3u4W2TQEjqjjke46HuCKADQtJGjaWlsZPOuGJluZyMGaVjl3P1PQdhgdq065n+09W8PfJrUbahp46alaxfPGP+m0S/wDoaZHqqiugtbq3vrWO5tJ457eVd0csTBlYeoI4NAE1c/47/wCSeeJf+wVdf+imroK5/wAd/wDJPPEv/YKuv/RTUAdBRRRQBxWias+k/Cvwy1tGJr+4020t7OAn/WTNCuM/7IALMeyqTXSaJpKaNpUdoJDNLkyTzsPmmlY5dz7kkn24HQV554I1VYLLS59b0zXLebTNOhsLW2/sW7fyysaiWQlYiNzMNo54Vf8AaIrtP+Ey0v8A59dc/wDBFe//ABmgDoKK5/8A4TLS/wDn11z/AMEV7/8AGaP+Ey0v/n11z/wRXv8A8ZoA6Ciuf/4TLS/+fXXP/BFe/wDxmj/hMtL/AOfXXP8AwRXv/wAZoA0NW1eDR4InlSWaaeUQ29vCAZJ5CCdq5IHQEkkgAAkkAVzmnWyap9q1bw0J9Gu1uGiuLe4jU29xKoG8PGrEZDZUuhB3KeWAGYtc1q21GSzudPl1myvLVnMcknhq9mXDqVPy+WvPOQc49QayUvY9M0KLw/pz+Imsprgq9x/Yd6stvbnc8nzGPLyMxK7hjG8HA25IgOn0XxrZajfPpl6q2WoxymHb5geGaQdVil4Dkd14Yd1FT+O/+SeeJf8AsFXX/opqoPq/hiTSF0l9G1RtPVAi258PXmwAdMDye3rXK+JNVvbfwvq+l6PDrurWl5ZTW0dtd6PerPAXQqNsrRYdQT0c5/2j0oA9Zoo7UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k="]
math
multiple-choice
59
某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资$\mathrm{m}$(吨)与时间$\mathrm{t}$(小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是()
8.4小时
8.6小时
8.8小时
9小时
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACQAK0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigDntV8YadpHifTNCuA5nvs5kGNsOeE3+m9gVHuKm17XpdGutPhjtYrgXbSKcz7HUqhYEDaQV4+Y5G0c4PNc7qfhi2k8QWVvfyG6k1SS8e4lA2EDywI1Xk7dihQPcFuproZfDi31rENSvJp7tbB7F7iICMkSbfMdRztZtg78dqAMfTfiDHfaVLqU+myQW8ekR6ngSF3Ibd8oG0cZUhT1bBOAMEt12+12xe1T+0zDMLSS5mWKGMozCWJQnzKTtAdh1BPrWpqXhKC8ttbSG6mibU7RbcIVTy4NikIVG3PBOcEkegFOk0Wz8SfZL7VbO4huYI2iNu0hUKxZSeVPzDKDBzgj9ADmbTVNcm11rufWYFglhtY1SDTiv37iSMDDTMByOWHbHAxXY2V5cx63d6ZdyrKSv2q2kC7T5RYgow7lT34yGXuCTzU3gaaz1lbvSljmj2REG+v5/3ciSvJu8tflcfMML8oBHvmuhtIJbrxHdanJA8UUEX2ODzBgyfNudwOy5CgZwTtJ5BUkA2aKKKACiiigAooooAKKKKACiiigAooooAKKKKAObj8XW934om0azNo4tAxu3muxHIMDnyogC0gB4ZjtUHgFiCBJo3iSTU7q2S4sRaxX9sbuwfzSzSxDbnepUeW+JEO3LcE88GsKDw1ey3NvpVxppigs9Rur0amsibZkmEvygBt+/99hsqF+QnJ4FaWhaZqn23Sm1G28gaRZPaeZuUi6dvLHmJhiVTEZ4YBst7cnQC3q//I4eHP8At5/9FiugrmdZt93jrwzP50o2i6HlhvkP7vuPxrSbRd1jLa/2nqQ8yXzfNE/7xf8AZU44X2oA1KKpnT830t19rux5kXleUJP3a/7QGOG96hXR9lvZw/2jqB+zSeZvM/zS852ucfMO2PSgDSorPbSt323/AE++H2vHSb/U4z/q+Pl605NN23FnL9tvT9mj8vYZfll4xucY+Y98+tAF6ivO4NQ1DR/Gl7fC7u7nwwHSwuZLmbf5NyTnzF9I1LrG2O5JP3ePRKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDn9X/wCRw8Of9vP/AKLFdBXP6v8A8jh4c/7ef/RYroKACiiigArL8Qam+laPLPAgku5CsNrEejzOdqA+2Tk+gBPatSudX/ic+MGfrZ6KNq+jXUi8n/gEbY/7an0oALDwwLSNLOa4NzpxsGtp4JckTyMxaSRh0y2Wz9TS+G7me1kn8PX8rSXdgoMMznm4tjwj57sMFW91z/EKv/ZLb/hJvtv2lftX2Pyvs+RnZvzvx168elVPElhcvHBq2mpv1PTiZIkBx58Z/wBZCf8AeAGPRlU9qAN2iq2nX9vqmnW9/aSeZbzoHRsY4PqOx7EdjVmgAooooAKKKKACiiigAooooAKKKKACiiigDn9X/wCRw8Of9vP/AKLFdBXP6v8A8jh4c/7ef/RYroKACiiigDP1vUxo+j3F75ZlkQBYogeZZWIVEHuzFR+NN0HTDpGjwWskgluOZLiUD/WzOSzt+LE49BgVnz/8TnxdFbDmz0cCeX0a5dSI1/4ChZiPV0PauioAzdun/wDCTbt7f2l9jxs5x5O/r0x978a0qzftFl/wk32fyG+3/Y9/nYGPK3425znrz0rSoA5mD/inPEptT8ul6vI0kB7Q3XJdPYSAFx/tB/7wrpqo6xpcOs6VPYzsyLIAVkT70bg5V1PZlYAj3FVfDuqTahZSQXyqmp2Un2e8RRgbwAQ6j+66kMPY46g0AbFFFFABRRRQAUUUUAFFFFABRRRQAUUd6M0Ac/q//I4eHP8At5/9Fiugrn9X/wCRv8Of9vP/AKLFdBQAVT1XUYdI0q51CcMyQRlti/ec9lHqScAD1Iq5XO6h/wATjxRZ6YObXTwt9dejSZIgQ/QhpD6FE9aALvh3TptN0hFuyrX1wzXF268gzPywHsOFHsorVoyKKAM/7Z/xUX2H7J/y6ed9p/4HjZ0/Hr+FaFUfPvf7d+z+Qv2D7Nv87Bz5u7G3OfTnpV6gArm/EKNo19F4mgUlIUEOpIo/1ltnO/HrGSW/3S46kV0lIyhlKsAVIwQe9ACI6yIrowZGGVZTkEetOrmtBY6HqUnhqYn7OqmfS3PeDPzRfWMkAf7DJ6GuloAKKKKACiiigAooooAKKKKACkrnPFLazaWj6lp2omJrcx+VZCJGS6JYAo5I3Atnau0rgnJ3dBSvNY1Nbm+1SO6KWVhqMNj9iCIVmRmjV5GYruDgyNtAIHyDOc8AGhq3/I3+HP8At5/9Fiuhrm9dnjt/Fnht5W2qXnQHGfmZVUD8yK1LrXNOsdRgsLi42XU+3y49jHduOByBgcigCe/vYNM065vrp9lvbxtLI3oAMms/w1Y3FtpjXV6mzUb+Q3V0Ou1mAwn/AABQqf8AAayvEmq2Vx4m0jw5PPtR3S8uF2k7wGxDHwP4pBu9MRkHrW9da5p1jqMFhcXGy6n2+XHsY7txwOQMDkUAX8UtZ91rmnWOowWFxcbLqfb5cexju3HA5AwORRda5p1jqMFhcXGy6n2+XHsY7txwOQMDkUAO26h/bu/ev9m/ZsbOM+bu69M42++KvVg3eoW9l4ugS41JkE9ssUdptchnaTh+Bt7Y9avXWuadY6jBYXFxsup9vlx7GO7ccDkDA5FAGhRWfda5p1jqMFhcXGy6n2+XHsY7txwOQMDkUXWuadY6jBYXFxsup9vlx7GO7ccDkDA5FAEHiHSpdTsEezdYtStJBcWcrdFlAIwf9lgSrezGrGi6rFrWlQ3saNEzZWWF/vQyKdro3urAj8KS61zTrHUYLC4uNl1Pt8uPYx3bjgcgYHIrnNT1ew8J+M4mluFitNX2i6RgQsU33Y5s4wA2Nje4Q9MmgDs6KKKACiiigAooooAKKKKAMHVtL1271OK5sNXsLaCJCI4bjT3mKuRgvkTIM4OBkcZPrUcvhcy38jG+zp9xcRXlzbNGS8k8ezaQ4YBUPloWTackHkZIroqKAOf1f/kcPDn/AG8/+ixW3c3ENnazXNxIscEKNJI7dFUDJJ/CsTV/+Rw8Of8Abz/6LFN8Q/8AE11Cx8PLzHOftN97W8ZHyn/ffauO6h/SgCXwvbzGym1W7jZLzVJPtMiN1iTAEcfttQLn/aLHvW7RRQAUUUUAZv2S2/4Sb7b9pX7V9j8r7PkZ2b878devHpWlWbt0/wD4Sbdvb+0vseNnOPJ39emPvfjWlQAUUUUAFZXiXTbDWPDt5p+pz+RZzqFkl3hNvIxyeBzitWs/XLSzvdHnt7+4+z2r7d8u8JtwwI5PHUAUAQeGr+e/0ZBeEfb7Z2tbvHH71Dgtj0bhh7MK1655/wDiUeM1fpa6zHsPoLmNcj8WiBH/AGxHrXQ0AFFFFABRRRQAUUUUAFFFFAHO606ReLPD0kjBUUXTMzHAAEYyTTvC6PdxXOvzqRLqjCSJWGClsuRCvtkEuR2MjVT8a+GtS8QmxGn3NrCkXmLcLOG/eI+0MgK9AVDKfY1bA8XqAANCAHAA86gDoaK5/wD4rD/qBf8Akaj/AIrD/qBf+RqAOgorn/8AisP+oF/5Go/4rD/qBf8AkagC99osv+Em+z+Q32/7Hv8AOwMeVvxtznPXnpWlXN7PGH2jf5fh/wC5jzP327r06dPxqT/isP8AqBf+RqAOgorn/wDisP8AqBf+RqP+Kw/6gX/kagDoKz9ctLO90ee3v7j7Pavt3y7wm3DAjk8dQBWf/wAVh/1Av/I1U9V03xVq+my2Nw2jLFLjcYzKG4IPGQfSgDX8RadNqeizRWpVb2IrPaMeizIdyZ9iRg+xIqzpOoxavpNrqEAKx3EYcK3VSeqn3ByD7isv/isP+oF/5GqhpmmeLdL+1pDJohhnuXuFjIlxGXwWA9i25vqxoA6+iuf/AOKw/wCoF/5Go/4rD/qBf+RqAOgpFYMMggjOOKwP+Kw/6gX/AJGriZP+El/4SST/AIRb+zftvnH7f9m8z7Fv/i87d8u/PXy/3mfvcUAerUU2Pf5a+Zt8zA3beme+KdQAVyP2aHxX4o1e11SJLjS9JeO3jspVzHLK0ayNJIp4cASKFDAgEFhzgjrqxtR8LaPqt491d28rPIqpMsdzLHHOozhZUVgsg5Iw4PBx04oAy/h+IzpWpS2eBpEupTNpiKfkW3AVfkHZDIJCoHGCMcYFdbTY40iiSONFSNAFVVGAoHQAdhTqACiiigAqOeUQW8kxV3EalisalmOBnAA5J9qkooA4HwxqqX/xC1ORk1BZ7jS7ZmS4sZ4VjxLP8o8xFwACBnjcQxHcDvqrLYWyalLqCx4upYUgeTceUQsyjHTgu3PvVmjoD3CiiigArz3x7eXVrrdqovL6CCS3C289rM6R2M/mcTXKqRuiPA+bKjawIG4kehVz+teErXWruW4e9vbYXNuLS8itnQLdQgkhH3KSPvOMoVbDnnpg6oOh0FFIoCqFAwAMAUtABUEN7bXFzc28MyPNbMqzIpyY2KhgD74IP0I9anrj/DWl2+m+OfFkg0v7PLd3EU8VwtoVWWMwx78SBdpJk3krnOcnHOaAOk1XUodI0u4v51kdIUyI4gC8rdFRASNzsxCqO5IHeuW1XxTruix6kP7I026bTNNGp3hW9eEBXaciOMeU28gQkFjs3E52rnA3fFFjcX+gypZx+bdQSw3cMO4L5zwypMse48LvMYXcem7ODjFef+M7SDxDL4gvrbwrPriz+H0hsrtLWJjazq10GUCUq6yKxXKIC6lcEA4BAOo1Hx9aW19pMUFpqvl3V20U/m6JeBgghlcbAYxltyLwAfl3HGASNCbxRZ6PqNxZeIb6x0/pLa3M0ohjuI2LfKN55kTGGAJGGRuN+1cu6jsYfGGlWFjNI1yNYk1C4tCMeQjWUyGRFwP3TSMMuMgyyOCdxIGH8QPAv/C1dRghg1H7DaaPvjF0IPOWeZyBJGBuX/V+WoLAkFnZeGRhQB//2Q=="]
math
multiple-choice
60
如图,小敏做了一个角平分仪$ABCD$,其中$AB=AD,BC=DC$.将仪器上的点$A$与$\anglePRQ$的顶点$R$重合,调整$AB$和$AD$,使它们分别落在角的两边上,过点$A,C$画一条射线$AE,AE$就是$\anglePRQ$的平分线.此角平分仪的画图原理是:根据仪器结构,可得$\triangleABC\cong\triangleADC$,这样就有$\angleQAE=\anglePAE$.则说明这两个三角形全等的依据是()
$SAS$
$ASA$
$AAS$
SSS
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAB9AMsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7huLzWriFop/CqSxt1R72NlPfkEVW8q5/6Eay/wC/8P8A8TXR3ESzQtE5cK3UpIyN+BUgiqv9l23/AD1vf/A6b/4qgDG8q5/6Eay/7/w//E0aDd6ta6eYbTw0nlLPMQEu40CkysSAMdiSPfGa2f7Ltv8Anre/+B03/wAVU9haw2dsIIA4QMzfPIznLMWJLMSTyTQBl/2lr/8A0LX/AJPx/wCFH9pa/wD9C1/5Px/4VtUUAYv9pa//ANC1/wCT8f8AhR/aWv8A/Qtf+T8f+FbVFAGL/aWv/wDQtf8Ak/H/AIUf2lr/AP0LX/k/H/hW1RQBi/2lr/8A0LX/AJPx/wCFH9pa/wD9C1/5Px/4VtUUAYv9pa//ANC1/wCT8f8AhR/aWv8A/Qtf+T8f+FOTxPo7+Lrrw2txm+sbJb264+SGNmKrubsTtY49BmuM8afGnSPDtm+pf8Ip4l1LSYrKa+k1OyjtRCltEyq8u2W4jkZcsMbUJfqobIyAdj/aWv8A/Qtf+T8f+FH9pa//ANC1/wCT8f8AhVvSdWtdQvLu1hWRZLMp5gkUDIdQykc9CD3weKv0AYv9pa//ANC1/wCT8f8AhR/aWv8A/Qtf+T8f+FbVFAGL/aWv/wDQtf8Ak/H/AIUf2lr/AP0LX/k/H/hW1RQBi/2lr/8A0LX/AJPx/wCFH9pa/wD9C1/5Px/4VtUUAYv9pa//ANC1/wCT8f8AhR/aWv8A/Qtf+T8f+FbVFAGL/aWv/wDQtf8Ak/H/AIUf2lr/AP0LX/k/H/hW1RQAUUUUAFFFFABRRRQAUUUUAFFFFABWX4yutbs/Dd1ceHdKh1PU1T/RrWa5EEbt23OQcD8K1K5n4ieKZdFW20rR7VdQ8Q6oSmnWRbC8femlI5WJMgsevQDkigDy+98DeLbObxwlzqF5dx6xpkKf2jNc2onXMpedESGFGVMSOFLlyAoG7pVrx14K1XVvFE3iq68JaS0Hhd7QaClxqEflzWce8z7iRiPcHVucj90nvVKbwDquj/G+HV9A1Y3Hi6Hw813e3lz8serM1xhoJQPuRELhMfcwpGec+veA/Etl4o0X7dbRy288MhgvbKcYms5l+9G47EevQggjg0AZPwxtru71rXfF1yGji1uaIWMJ7W8UYVXx/tks30IrsaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiuL+PPivUPB3gMatpV1ptvdyaha2qPqNtJNCBLKqOxWN1b5VLPweiHis3wT8SZZPhX/wAJV4nht2d7uS3sP7MRsauA5WJoImZmUydlLHHUnFC1uGx0/wAQPFEHhnS4mSB73U76T7PpmnQn97eTEZ2j0UAFmY8KoJNVvh34Yn0lrnXNdnS+8R6pg310B8sSj7lvCD92JMnA7kljkk1X+H/hzUf7Ul8YeK/LfX76PZHBG26LS4Cci3jPc9N78bmHYAAdhQBxMHzftFXX/TPwrB/49dTf/E07x5oGp2Otf8Jr4QhVtWijEeoWG4Kmr269EJPAlXJ2OfUqTg8N035v2htWb+54as0/8mLg/wBa7agDM8Ia/pnibQYdX0mZngmyGV1KyQuDho5EPKOpBBU8gitOuE8X6XqHhTX5vG/hm1e5hnwde0iIc3aAY+0Qj/nugA46OoI6hTT/AIgeIrnUvA2kXXgvXvs1xr2o2tvY3kNuk42O+ZSVcEfLEsp55BXFAHcUVwnwt1nXz448T+Dte1NNYbQhazwakIEheRLhXPlSIny70MZOQBkOvHc93QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFV9Wv7PS9Nn1HULmO2tbWMyTTSNhUUDJJNAHC/HLTdS22XihPGdjoNj4eElxsudIN5vmZDGrLiVCXw5VVAJLN3yBXnPhXwDq/gjwzofxD1A3k8nhl5HGm3KIZIbGYs1zM6qAPtBZvNO3hAmxeN270rwvYXnjjX7bxlrtvJb6TZv5nh/S5lw2e15MvZzzsU/cUgnDHC95IiyRtG6qysMMpGQR6EUANtJ4bq1iubeVZIZkDxupyGUjIIPoQakrg/hW7eGdev/hzcsfI09ftegsx+9YM3EIPfyWyn+55dd5QBxOhfN8fPEDf3NEsl/wDIkx/rXbVxPhf5vjl4qb+5p9gv6SH+tdtQBDqV3bWGnz317OkFtbRtLNK5wqIoyST6ACvnjUPDPiNr63+KNtrev+HPDM1/PfHR9Ggt2k0+KRQgvzHPDMCzKGkkRQNofIBYMW9O8dMfGvjSLwJbMf7K0/Ze+I5geJBnMNmPdz87+iJj+PjvQiiPYFUKBjbjjHpQBz/w18N6D4f0RpNDuJL/APtR/tlzqk9z9om1GRgP3rydGyMYC4UAAKAABXRV50wf4W6sZFBfwVqE3zqOuhTMfvAf8+7k8/8APNvVWO30SNldFdGDKwyCDwRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFeA6r4p8T6n8JdJ+KUPiO+s9S8RX1r/wjui20i/ZmimmXy4ZEx+9dotzOT93nGAuaAPfJpI4YWlldY441LOzHAUDqSe1ee6aknxO1iLVbtGXwbYyiTT7dhj+2ZVPy3EnrApGUXo5wxyAtWfFen6r418TSaBe2s1n4WsChvi3ytrMhAYQr/wBMFBG8/wAZ+XoGrt4gkUaxxxqkaDaqqMAADoB2FAEmBjAopqtwcjpRuPp196AOR+MGk3smmWvijQod+ueG5Td2iDj7VFjE9sfaSPOPRwjfw10XhvVrHXdBs9Y06XzbW+hWaJvYjOCOxHQjsRVvf/s/rXB+DT/wh3xFvPB8g26Vrhk1LQ2/hhlzm5tfwJEqeodx/ByAWfBnzfGnxo39yHT1/wDITn+ta3xK8Sjwv4Ze8htvtmoXEi22mWSthru5fhEB7DPLHsoY9qyPAhH/AAtjx1KxCgSWCkn2tz/jVbwSp8b+N5fHEwP9j6YXs/D0bf8ALY9Jrw/7xGxP9lS38fAB0Hw08NHwz4aW2urn7Zqd3I11ql7twbq5fl2x2UcKo7KoFdBRRQBHdwQXVrJbXMMc0MyFJI5FDK6nggg9RXAaPcTfDfWoNA1CZ5PCd9MItIvZmLf2ZIxwtpK5/wCWZJxGzdMhCfu59Dqrrmm2Or6Pc6XqdtHc2d5E0U8Mi5V1IwQRQBaorg/Ceo3/AIO16DwZ4juZLmxujt0DVpTkzAf8usx7SqPusfvr/tA1qeF/iJ4L8Ra8+i6Pr9vc36GQG32ujExnEgG4DcVPUDpQB1FFFFABRRRQAUUUUAFFFFABRRRQAV478NfhLrvhbxsmpSSeHrq0ineS0Ym9ZtMjk+aSG1t5ZnhhBORujCcdRxivYqKOoDcDoRS4HXFLRQAmB6UbV9KWigBNq+lc18VPDtxr/hf/AIlTpBrWmyre6VO3AS4TlQx/usMo3sxrpq8lme18Z/GLxhp/ivUprXRPB0FpHb6ct41ukpli8572RlZSRyI152jy3PJPAHQ5Twj4rk+IXizxD4c8PfaLO68QXFu2tMRtl0i1ihCXEbekpkDQqPXe3ISvfdLsrXTdNg0+xgSC2tY1ihiQYVFUYAH4CvLv2YfCun+GNU8aJbTte3U+rRG61GYfvrxvs8bb3J7ksT+Nes0AFFFFABRRRQBmeMNRt9H8N3er3Fhd3wsYzMlvZ2Ul1PIwHAjjjVmZieOBXn3wV8C6r9n8P+K/FGuzXtzb2897a2J0trI2lxeEyXDSiQ+YzguygME2gnK5xj1SigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsXXvB/hPXNatdX1nwzpGoahY/8et3dWMcs0HOfkdgSvPPBraooA4n4S/N4j8cP/wBTGyfla2/+NdtXE/Bv5tQ8aSf3/FU/6W9uv9K7agAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivmf9mG/0nxz8cvGcTaTcafdeDtWaZblNTll+1vNNOMFG+VY1WPATnrnPShaysD0Vz2L4KcxeKJP+enii8P5bF/8AZa7asrwnoNroFveRWks0gvr+a9kMpBIeVtxAwBwO1atABRRRQAUUUUAFFFFABRXN6L4ln1LxFaWS20cMEyaoHyxZ91pdxW6kHgAMGZiMccDPBz0lABRRRQAUUUUAf//Z"]
math
multiple-choice
61
如图, 要制作一个圆雉形的烟图帽, 使底面圆的半径与母线长的比是 4: 5 , 那么 所需扇形铁皮的圆心角应为()
$288^{\circ}$
$144^{\circ}$
$216^{\circ}$
$120^{\circ}$
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACVAQUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAoopM+tAC0V43+2j8bx8E/hXJ4g0+3tL7VJJRDbW04LruIOGdVZTjjsRXK/sNftPx/GvR7qDxNBp2k63asMQ26PHHMpzyod3PAHPNAH0dRSAgrlTketLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFQ3tzbWdu1zd3EUEMYy0krhVUe5PArxj4jfHyIalL4f+Heky6/qagh7kgpZxe4mwUYjPTPPNAHrXijxBo3hvSJNT1zUYLG1iGWlncKv5mvC/Gvxv8SeLLiTS/hfpIW0I/e61fZjXYeN1uRkOfr2rmx4V1PxFrSa/8Qdam1m/TDwW8RMNrB/sNEDskx0yRzjNdbtiXIhghgTPEcMYRF9go4AoA4uT4Y+H9UjuJvGEk3ijUbn/AFl/fEq+0jldinaPrjtTj8LfBMehx6XZaPHZx25LWzwMytC55DAg84ODg8V2VFAGL4R8cfEv4arDDrAk8YeHs7BOnzahCB1HlIANoGOSfWvcPhr8QfCvjuxNx4e1SG4kjH7+3DDzYD/ddR0NeUgkdDjjFcvrngezu9Yh1bRdQl8PapAP3V1aAiMNnO6SJSBJ+NAH1NRXz34X+OGv+Drq20r4n6a8ttMdltrNhEZBKAcZkjQfuh7k+9e6+Hdb0nXtNjvtI1C2vIJFBDwSq+PY4PB9qAL9FGaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACigZ71xXxY+KfhH4e26DXdRj+23HFrYIw8+5bsqA9TxQB2jsqKWdgqjqScAV5h8V/jf4Z8JXX9lackmu65IP3Wn2Z5J9S5G0fie1eZ+M/E3xP8AiNcC2ke68FaC4J2RDbfTL2EitldrD07GrXhPw9o3hqxe20ewitvPUfaXXJad+pdic8k88UAY2qQ+N/iLcfb/AB1q81hprrvt9G09jEU/2Lg5Kyd+ntXTaNY2Oj6X/ZukWcFjZkhjb26bELDvgd+v51PRQAUUUUAFFFFABRRRQBHeQQ3VrJbXESywzKUkRhkMD1BrlbbwpqnhS7XVPhtrbaNcqS0tjcEvYSAc4WJcYY88564rrqTvQBsfDH49afeXsOgeO9Ol8N604Aj88ho7r/aUrkKOvU9q9jtZobiFZreVJY3GVZGBB/EV88a1o+kazaNaa1psF/bOMPDKDhh9Rg1g6DdfED4ZXP2jwnqUuvaIAWk0a+P/AB7KP4LcKMk4/vHqaAPqmjNecfCL40eEvHV1/ZKzNpuuxrmbSbwhbheOu0Z4616PQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVV1jUrDS7JrvUryG1hQZLzSBB+ZoAtVieNvFvh3wlpbX/iDVbayiA+USyBWc+ignk+1eSeNvjnqGs3lxofwr0p9QuosifVLhdlva/wC1tfHmAZz8pridJ8GzX2qDXvHOot4g1ZiS8cuTZJ6FIGyFI9fUUAbni/4veOPHNwdP8A6dLomjuxWTWL2IpcY9UhcYYHjBz3rO8I+DdM0aZ7+436jqlyv+lXd4xk8xv7yq2QnQfdro14jSMfdjUKi9lA6AUUAKzMxyxJ4xyaSiigAooooAKKKKACiiigAooooAKKKKACiiigDE8XeFNF8RW0aXtsY5oCWhuLZzDIr9QSy4LAEDgnFL4W+I/wAQvhxNHaeIIJPFPh9FA+2wx/6XCP7ohQEvjjknua2qVWZGyrFTjqKAPWPh3498L+NtPFzoGqQzsBmS3LATQn0dM5U/Wulr5X1jwJbT6tHqvhvUX8N6tHyl1a5WF3z96aNMeZ+JrqPBnxv13wrNDpPxU04+U7eXb63ZxZin5wMxLlk7ck0AfQFFUNA1vSdbs1udK1G2u42QP+5lViAemQDxV+gAooooAKKKKACiiigAooooAK8Q/ay+DfiH4mXMGoaZ4klFtY2ioPD90xNhdyB3JeRAMkkOB1/gWvb6DQB8oeFvFtrpZsPBfiLRrnwzqtqPIgs7oAR3HP3ocZwvI6muwX655r13x34N8NeNNJk03X9LiuopBgtja4+jDBH514v4l+EnxA8E/wCkeA9Uj8QabHnZo2qOIUt1PUo6guxx0B7gUAXKK46H4habZXH2LxTaXnh66jAWQ6lF5MTv38tmPzD3rrraWO4tY7mB1khmXdHIpyrj1BoAfRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRkUUAHNFQ311a2Nq13fXMVtbxkB5pm2ome5PauXufHA1HUH0vwVpd14juzxDc2kZkss5/jlXoPfFAHXcdyOTjk4rjL7xbP4nnn8MeAtEn8QX8xMFxcIoNpaKeGE2SGPf7ueAa67w18E/FXi8i7+JesfY7GVg8nh7TnD25/7a/K4/8Ar17b4R8NaJ4Y0qPTtE0+G0giGFCLz+J6n8aAPOP2Wfgrb/CmwvLp7zzNQ1U7rqKHi3iOc7YwRkAEnrXrtFFABRRRQAUUUUAFFFFABRRRQAUUUjAlcA0ANXO58etIGbYST39Kci7cknrTWAMmB+NMRk+KPDWg+ILMwa3o9jehxjdPbI7L9CQcV5Lq/wCzzFpupvq/w98T3ui3pyduoSPfW6n/AGYXbao9hXuTLnGOo6UbTtIJ60DPjjwXrvxbuYdUV/C9r4gXS7ryri9huEtiBk8iIA54HatBvinoltdR2Gp6br1nescSK2kTeUn/AG027a9N/ZHXOpeLhngaj/V69f1jS7HVLc29/aQ3ETdUlXcKBHztZ+KfDk6rjXdOV3GRG90ivj3UnIrUhmjnUPBKkin+JGDD8xXc658BfhRqUxuG8FaTBdMcm5htlWT865zXP2bPDt1CY7Dxf4r0tc5WOz1Dy0GO2NvSgZl5IXnrRlgeTnNK37PfiCyx/ZXj++fsft0zycdug60H4R/F6ICO38Y+GDGnCGWxmZiPc55NADdzc+1KpORnvWXffCH9oV7qRrXx54FSJj8qvpVwSB/31TtN+EX7QSXga98deB5IcH5Y9KnDfnup6CNQ0Un/AAqH4uXH7q88ZeG1hb7xt7KZZPwOaX/hnbWL9T/a/wAQdVjLcN/Z9y0XHtkHmpGRXVxb20e+4nihX+9I4UfrWVe+LvDNtDJIdbsJTGMtHDcpJJ+Cg5rsNH/Zt8LWsKxah4l8TavGvVNQvxKrfUba6Xw78DPhRo0wuLTwPo5uQf8Aj4a1UyH8aAPCYfihpupyPZ+H9E16+vlbCpJpU0UTfSQrtqprmo/GF/FegaJ/Y1j4Tm1eQeVczSR3w27sbinGPpX17p9na2NstvZwJDEvREGAK8a/aA/5L14F/wB4f+jRQAeGP2ddHbVv7a8a63fa5qGQWWKd4LVj7wAlD+VeuaBoejaJai30fSrOxjAxttrdI8/XaBWgaBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUABGRg0iqF6ClooAKKKM0AeKfskHGoeMCT01H+r11Hjj42/DfwtqDaZfeJrKTVF/5h8UoM5PoFr5g8Jtrvirx94u8MW+stp2iWmoqdQgjfZNd5LEBGGGAxkEjpmvStC8JeHNItUtrPTImWNiUkuR58o+sj5Y/nQBv6p+0PqlxdC20L4beIRvGY7nULXZA49Qyt0rH1b4ofHu5ZVsPDnguC3k6u13cCZB9Oma0+ihR0UYA9KKAOfOs/GW/+e78Upp7PwyWbhlQeo3L1qtqGh/Ea8s3QfHPxhZyKMxtBDbHcfQ5TpXU0UAcB/wiPxY/6OK8b/8Afm1/+N0f8Il8WP8Ao4nxv/35tf8A43Xf0UAczZ6P8RrO2RF+N3i69YDLPcRW4Jb04TpUy6/8abD95a+IbbUG6FLyTauPX5V610FIeaAKGkfFb47W6M2r+F/B0kMZ4+zXVw0rj1weM1saP+0ZNHM0Ov8Aw78SWyxf628htQbdPcsWziq2DQ6q8bRuoZG6qRkH6igD0X4ffGH4d+M7z7DoXiiwuL8ffsxKDKh9CK4z9oD/AJLz4Fx/eH/o0Vx3iDwT4Z1q3EN3pwhXduL2Tm2kJ93TBriNBv8AxDpf7RPhDwjrerjVbeJvM0+XILwRCQZSQjnOT35xQB9q0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUYFFFAHxZpHg2HWPEmuatpd9NpuvW+on7Nd7ibfG9s+bGOXHA79M1tnxD480aRrbWfDP9tLCd1xq9jIlvCQf7sJy3/66t/DX/kOeIP8Ar+b/ANCauvoA4mx+K/gy6vVskvbpbnpIj2MqrG3puK4NdMuu6KVQ/wBr2K+YMqrXKBj+GatX1rb3lm1pdQpLAxy0bDg1yMnwi+GEuofbrnwNpNxcYO2SSI5UnuOetAHWQ31lKAYry3cE4BWUGrKqxBIBOOuB0ri3+GmgxZGmNLpqdUS2wAh9RnvVS/8Ah94gntWgt/ip4tsxIMSGGaMFx6HK0Ad9RXl3/CpfEX/RZPG//gRF/wDE0n/CpfEX/RZPG/8A4ERf/E0AepOCo+YbeM8+lVpL+wjXMt7boPVpVH9a421+H+upbrFd/E7xVe7Rt3TzISV/u8L0qzH8M/DUhA1OA6lGORHcjKg+vFAHQTeINDjgeX+17J1j+8EuFY/kDmuYn+LHg9bt7G3uLya9HEcIspQJD6B9u0VYs/hN8MrHUGvdO8EaTZysQSYYyOfXrXXQRxxWkdtEirFF9xAOFoA4hdW+I+vTLa6ZokPhbd80eo6kVvIpFPH+rQgiqfhnwjp3hz4veFJxNc3eqXNyrX13PKWEj7/+WYPKLjtXoy1zOpf8lm8J/wDXyn/odAH1JRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB85eEfBHifStW1eW60e7K3V2zxGOB2yNx9vet/+wtb/AOgNqH/gK/8AhXt1FAHiP9ha3/0BtQ/8BX/wo/sLXP8AoDah/wCAr/4V7dRQB4j/AGFrn/QG1D/wFf8Awo/sLXP+gNqH/gK/+Fe3UUAeI/2Frf8A0BtQ/wDAV/8ACj+wtb/6A2of+Ar/AOFe3UUAeI/2Frf/AEBtQ/8AAV/8KP7C1v8A6A2of+Ar/wCFe3UUAeI/2Frf/QG1D/wFf/Cj+wtb/wCgNqH/AICv/hXt1FAHiP8AYWt/9AbUP/AV/wDCsl/BXiW7+Jnh/VE0m6S2sZ1MzSQuuBuz6V9CUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q=="]
math
multiple-choice
62
如图, 在 $\triangle A B C$ 中, $\angle A C B=90^{\circ}$, 过 $B, C$ 两点的 $\odot O$ 交 $A C$ 于点 $D$, 交 $A B$ 于点 $E$, 连接 $E O$ 并延长交 $\odot O$ 于点 $F$, 连接 $B F, C F$, 若 $\angle E D C=135^{\circ}, C F=2 \sqrt{2}$, 则 $A E^{2}+B E^{2}$ 的值为 ( )
8
12
16
20
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAC4AM8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCnr2p22kaTNqF2W8uFfuoMs56BVHck4ArK+FfiC78U+AdO8QX1ktlNfxmQ26knyxuIAJPfA5rD+KXge/8Yag8Gra1oz6D9lZLLSrvSHkxfErsuJJBcL5oTDbYwqctndkAjd+Fvh+88K+AdM8O3+oWl9Np0Ah+0Wlk1rG4HTEbSSFeP8AbNC6gdBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUvEWradoWi3GratdR2tnaoXllc8AD+Z9AOTUuqX1npunTahqFzFbWttGZJppWCpGoGSST0FcF4fsbz4i65b+Ktctpbbw3ZyCTQtKnUq90w6Xlwp6Z6xxnlRhm+Y7VAOU8TR+IfEPjLwX401xrrTbN/EcMWjaLuKmKFo5Mz3IH3pnwML0ReOpY17hXC/Gj/AJC3gn/saIP/AEXLXdUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFcr8b9bvfDvwn13WtMu/st/a2hNlJ9lNxmckLGnlDl9zlVwMk7uATgUm7K4LVnVVHcTQ29vJPPKkUUalpJHYKqKOSST0Fef/ArU/FOuW1xrep+I/7W0aYNFaGfRjp1wsschSQtG2GC5UjDAEY5qCRn+LGqNFEzDwNZzFZJFOBr0inBVT3t1IwT0kI4yvVgLp8U3xU1aLVruOSLwTZyh9Ot3UqdbdTxcOp/5YAjKA/f4f7pXPpSgBQAMAdAKbGiRxrHGqqigBVUYAA7CnUAcL8aP+Qt4J/7GiD/ANFy13VcL8aP+Qt4J/7GiD/0XLXdUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFYHjrxhpHhaGFLsy3N/eErZadap5lzdN6InoO7HAHc0Ab9cv4p+IXhLQdSOl3Wqi51QAE6bYRNdXYB6FoogzKD6sAPesZPD3jLxk3n+LtVn0DSn+7omj3BSaRfS4ulw31WLb/vHpXW+FfDmgeGdNXT/D2jWOmWynPlWsCxhierNgfMx7k8nvQBy//CaeM9ROdB+GuoLETxNrF9FZ5HrsG84+uDTvtPxgm5j0zwhbZ5xNdXEm32O1eTXdUUAcKbv4vQcyaR4SutvVYLyeMv8AQspx+Ncf8V7z4ia1Hpcd74c1LQ7fTb6O9kk023g1eOV4jujLqXiYKrANgAnKr6V7VXmHxG8RyeJP7W0bStRk0/w7osMknifXIXKMsaKWe2gcdHKg73HKDp82CADzb4QeMdM+LPjDXvANr4+bULK0ui2to9sNNmu1A5tbe3Dbli3b/Nf7zEkd819KWdvBaWcVpawRwQQRrHFFGoVI1AwFUDgAAAYFfKF38DfDh8H+E/EGoaVFot14hlDT3MEWx9HupzusjxggIpS3IyP4cEHBHoHw71/4heHdSm8OXssutX2mpuudGv5wbqSEHAnsrlsefGf7svzqeCx60Ae50Vi+CPFWjeK9Ne70m4Zngfyru1lUx3FpJ3jljPKN9eo5GQc1tUAcL8aP+Qt4J/7GiD/0XLXdVwvxo/5C3gn/ALGiD/0XLXdUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVi/EDxJaeFPCtxrN1HJO0ZWO2tYuZLudyFjhQd2ZiAPrk8CgDO+Ivi6bR7i20LQbRNS8SamD9is2fakajrNMw+7Gvc9SeBzR8O/BFv4fmn1jU7ptY8Sahg6hq06YZvSKJeRFCvRUX6ksxJLPhb4UudGiutd8QSx3XibWmEupXCcpCP4LeL0jjHA/vHLHk111ABRRRQAUUVw/j3xFqmpa4fA/guVV1aRA2pakV3R6NAf4z2aZh9xP8AgR4HIBD401vU/E/iCbwN4Qu3tfLwNc1qIA/2fGf+WUOeDcMOB2QHccnAOb8VtF0y28K+G/hRodolvZ+IdQjt7mFCSfsEJE10WJ5bzFURMxySZ8nmu78G+HdM8L6DDpGkxMkMeS8kjbpJnPLSSMeWdjkkn1rkvCf/ABUXx017Xj81r4ctk0ezPbzWxLcMPf8A1an/AHRQB1vjTQLHxP4S1Dw/qG9bbULdoWaM7XiJHyuh/hZThlPYgGuH0fTT8SPAFuusXLab4y8M3L2kmp2ahZbO+i4MqA8GKVSr7DwySAH1HptcDrX/ABSfxis9XX5NM8WItje/3UvIwTC59Ny7098L6CgDmIYr/W/FHlz/AGfwz8UNHh+W4iB+x69bDvj/AJawt3U/PEx49/QPhz4ui8S2tza3Vq2n63pcgh1TTZWy9u+Mhgf4o2HKuOCPcEB/xE8H6f4u0uOOaaay1CzfztO1K2wJ7GYdHQnqOxU8MMg15rqF7rsniaCa9tYLD4j+HIWKrCNtt4n0/q6xE9c43bD80bgdQckA7L40f8hbwT/2NEH/AKLlruq808da3Y+I7D4e63psm+2vfEdvImeq/u5cqR2IOQR6ivS6ACiiigAooooAKKKKACiiigAooooAK8/t0PjL4ySXUg36P4MPlW6/wzag6/O/v5cbBR6F2rrfGWtWvh/wjqmvXb7YNMs5bmU+iohY/wAqyfgxpFxo3w406O/XGoXiG+1DPX7RMfMkH/AS20eyigDqaKKKACiiuS+I/iu60y4t/Dvh23jvvEuqKfslux/d2ydGuJiPuxr+bHCjk0ARfETxPqKarF4O8IrHP4jvo97yON0OlQE4NxN+uxOrt7Aka/gPwxp/hTQxp9k0k0kjmW7u5zumu5m+9JI3dify6Diovh34UtvC2lyp9okvtSvpPP1LUZh+9vJiOWb0A6Ko4UYAroKAMzxprVr4b8I6nr96+y302zkuZT7Ipb+lYnwN0W60T4a2Cakm3U9Q3ahqQPUXE5Mjqf8Ad3BfoorM+N3/ABPdY8MfD5PmTXdSF5qY9LCzKzSA+zyi3iPqJWr0GgArD+I3h2PxV4NvdFaY280yBrW5AybadSGilH+64U474x3rcooA5z4VeIpPE/gm01C6hFvqERe11O1zk213Exjmj9wHU4PcEHvT/iF4R03xdo62l48ttdWz+dY39uds9lMOkkbdj6joRweKwefCXxqY/d0vxqgLf3YtRhQDP/bSFQPrEvqa76gD5btdS8TeFvjxofw98VWHlLqfiCHVtPvLdCLS5mVZEnaL+55gZJDFnKv53VSpPuHxS1XxbB4g8N6F4N1PQ7O81e4n+0nVdKmvQlvFCXaVVjuIcYfykOScmVemOeR/bKluLDwz4V1yxiWS80XxPb3sAPfYkhYZ9Cu4GtnWPDvj3W/HEfjXw1438PWlhcaQLXT7e88Ny3MlvHKyyPIJFu0BdysfVMARrx1ygNf4PeKdY1+LWtK8RwWa6x4d1FrG7msUdLa6+VXWWNHZmQFWGVLNg5+Y12Vc78M/CFp4O0KSyhu7m/ury4e71C/uiPNvJ3+9I2AAOwAAAAAAroqYkFFFFAwooooAKKKKACg8UUUAcD+0QhvPAdroI/5mHXdO02RP78L3UbTr+MCTV3fzbsZriPjAN/jD4bwn7svi5t3/AAHStRkH6oK7qgCMbtvf3pwzt7+1OrnfiJ4rt/C+mxeXbPqGq38nkaZpsJ/eXcxHAH91R1ZzwoBPoCAV/iN4sbQILfTtLtTqPiDVGMem6eGxvbHMkh/hiTqzfgOSKPh14TPh6C5v9Ru21HXtUKy6nqLLgysOiIP4IkHCoOAOepJpvw58J3GlTXHiDxBcpqHiXVFH2y6Ufu4E6rbwA/diX82PJ5rrKAGx55zn8adXneseM/FGt69rWneAbbSVtvDTGHUtS1dJWhluQgc20KxspO1SN8hOFJChWO7bl+MvjOmh/spTfGE6DdXLLpyzjT7ZtzeYziMYbH3QxznH3R0o6XA1/h7/AMVD8XvFHixvmt9NCaFp7dsR/POw+sj499gr0GuC/ZjxJ8CfDd6bS6tZ9Rsxe3Md1Hsl86Ul3LDt8zHHtiu9oAKKKKAOb+K3h6bxJ4LubOxdYtSt2W602UnHl3MZ3RknsCRg+xNWfhz4hh8U+C7DXIkaNrmPE8LjDQTKSskbDsyurKR6ituuA0PHhH4yX2in5NK8YBtSsP7sV+gAuYx6eYgWUD+8sx70AN+PlpFfv4SsZxmK58RRROPVWilB/Q1c/Z5uZbj4Q6PFOczWMb2cvPRonZMfkoqL40f8hbwT/wBjRB/6Llo+AHy+GdYiHSHxLqca/QXL0Ad1RRRQAUUUUAFFFFABRRRQAUUUUAcL8bj9mu/BOqtxHp/i+03t6faIp7Nfza6UfjXdVx/x80y61b4Q63Dp67r+0hTULFfW5tpEuIf/ACJElXtU8a6Fp/w9t/GFzO32G8t4ZrVI13y3LSgGKKNRy7uWACjqTQBN4+8Uaf4U0P7deLLcTzSCCysrcbp72dvuxRr3J9egAJJABNZXw78L38OpS+LvFrxXHiO+j2bIzuh0yEnIt4c/hufqxGeBgVD4B8Oanfa5/wAJv4yiVdYljKWFgG3x6RA38CnoZW43sPoOBXb0AFFFFAHlc3w08Vw/8JBoGleKLOx8N+I9Tnv7p0tXOow+ed00Ucm7YAW3YYrkBvYVN480uxk1zwL8LNJhWPT4ZRql9COQtjY7Cin/AH7l7Yc9Qsnoa9Orz74T/wDE++IXi3xs3zRSXKaLpzf9O9qW3kf707yn3AX0oWisG7ueg0UUUAFFFFABXKfGLQ7vWfB7XGkj/ib6RMuoaaR1M0fOz/gQ3L/wKurooA8x8aa5aeJdJ+HWvWLZgv8AxBbSqM/dJikyp9wcj8K0/wBnc+d8PpNQH3NS1a+u0Pqr3DkGvJvj5qrfDfxFHozArYXmsf29oTfwo5SRLmAem2aSKQD0nIH3K91+Fujt4f8AhzoujSDElpYxrKPRyMt/48TQBv0UUUAFFFFABRRRQAUUUUAFQapMltptxcSyGOOKJnZwRlQATnmp6xfiF4dHivwjd6A2s6lpMd6nly3OmmITbD95QZY3UAjgnbn0IpO9tAW543+zl4j8Zaz8QotO1nxHrl3bSaNNe3tjr9tbRs6STAWstr5Ma7o9gcMWJ5xwO/L+GU8WaP8AtD3Hg3UtY0u0i0Fyng8alavJb+XPuYbCrACbBaMZ52rhe9e6fDv4c6Z4U167159X1fXNXu7WKzN9qksRaG2jzshjjhjjijQEk/KgJJ5J4rG/aD8L2l1aw+K5NK/tKHT4mg1mxVCWvNPYhnKY582FgJUK/MCrAckGn0SDq2aP2D4t/wDQweF//BfL/wDF0fYPi5/0MHhf/wAF8v8A8XWd4S8U3XhZrDTPEerf2t4f1IJ/YfiZnDCVWx5cVyw43kEBZOj8Z+br6XQBwv2D4uf9DB4X/wDBfL/8XR9g+Ln/AEMHhf8A8F8v/wAXXdUUAeS/FLUvix4X8BalrL694aZ4YtkKR2Eu+SVyFRV+fqWYYqb4d+Evip4Y8Fabodvr3hlVtYAG3WEpZnPLEndySxPNaXxJ/wCKh+LHhPwcvzW9mz+INTXtsgIS3Rv96dw49fIavQqAOF+wfFz/AKGDwv8A+C+X/wCLo+wfFz/oYPC//gvl/wDi67qigDhfsHxc/wChg8L/APgvl/8Ai6PsHxc/6GDwv/4L5f8A4uu6rlfFHxC8O6PqTaVDLNq2rLx/ZumRm4nU/wC2F4j/AOBEUAZ/2H4t/wDQweF//BfN/wDF1jeMNd8deF7eOXXfGvhC0ac4ghNhM01w392ONWLOfZQa1vI+JHin/j4uoPBumv8A8s7YJdaiw/32BiiP4OfpVq38O+Cfh3pN94mltt1xFCXvNWv5Wur64A6K00hLtk8KgO0E4AFAHzd8fPEHxE8R61oc/iHSdNTS/B8p8VM89m8M00UOYlRo9xKLK8m0bsZ2scfIa998M6F8R3j0LXL7xpJLc3k8Uus6aLeFbOGAqXKW42eYG3CNSzO2QXwASCJfA/g2PX/Cuuah42sBNeeNlBv7VyR9ntQpWC2BHI2KSTj+N3bvWx4F8Dp4bmjln8T+INeNrD5FkNWuInW0j4yFEcaBmwAN8m98ZAbDNkW4PY6qiiigAooooAKKKKACiiigAooooAKRgCCCM57GlooA8o1OwtPh/d3ej6zaQ3nw716VspOm+PR5pD88bg8C3diSD0RiegIxesdRv/hncw6drV3NqPg6ZgmnatM5kl0vP3Ybhzy8fQLKeQMBifvH0S+tre8s5LW7gjngmQpLFIoZXU8EEHqK82k0jWvh5bzWllZS+JPA0wIfS2XzbvSUPVYgf9dB1/dn5kHCkrhQAemRurxq6MrKwyrKcginV5H4V8QWvgyxW/0LUDrfw9lfAKMZLjw6x6ow+8bf/Zb5ounKYC9Z8YfEn9mfCq91LR50mudQiS10x4m3CSWchIypHXls/hQBnfBT/ieeIPFXj2T5l1nUBY6cx7WNpujjx7NK1xJ/20Feg1zOknw/8Ovh7pun6lqVrYWem2qQCSeQLvKqM49STk4HrWR/wmviXxJmLwF4YZoG6azrm62tAPVIwPNm9sBVP98UAd1cTQ29u89xKkUUalnkdgqqB1JJ6CuJu/iVaX9w1l4K0m88UXSnaZbTCWcZ9XuGwmP93J9KS3+G0WqXCXvj3XLvxTcqQy2sq+Rp0Lf9M7VDtOOxkMjD+9XbWdvb2lutvawRwxRjCxxoFVR7AUAcN/wiPi3xN8/jjxO9rZtydF8OyPbRkekt1xNJ9E8oHoQRXVeF/D2heHNNWw0HSbPTrZekdtCEH1OOp9zWnWP4w8UaH4X09brWr9IBIdsMQBaWdv7saD5mPsBQBqXlxBaWsl1dTRwwQoXkkkYKqKOSST0Fec6TFc/E/wAUW2vXcbw+DtIm83SraRSravcL0uXHaFP4FP3j8x4C5fHofiD4jXsN/wCL7Z9I8MwuJLTw+T+/viOVkvWBwq9xCPYuc/KPRYkSKNY40VEQAKqjAA9AKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHH+LPh1o2q6nJrGmXF1oOsSDD3+msFM3tNGQY5h7OprxXxd8NvjVoPiTR4dHv8AT9Q8I2OonUJYtJtV+1W0oRgGgtbiQRoNzBtokkXcNyxjlT7v8XNVuNE+Get6raXslndW1m7W08UImZZeiYQghiWIGMHOeBmuO+Al54w12+k1m+8X6tqWj24ls5rTV9EisLhrpRCfMSMQxyIgLTKQ/J2qRwaFq2g6GX4V1f4UaRqi33ia61VdeyAbvxfazJcbvRPMUIo9BGAvpXpFn468F3IXyfFWjtuGR/psY4/E1vSxpLGY5EV0YYKsMg/hWPdeEPCV1n7T4X0WbccnzNPibJ9eVoAr3nj3wTaKzT+K9HUJ1/01D/I1jN8XPCFxIYtBOp+Ips4Eej6dLcjPu4XYv1Yge9dHZ+E/Ctoyta+GdHgKfdMVhEu36YXitdVVVCqoVR0AHSgDhWvPid4k+Sw0qw8G2TdbrUpFvr8j/ZgjPkxn0ZpHx3TtWl4P8A6JoWpNq8r3Wr6zIMSapqcvnXB9l6LGP9lAo9q6migAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmfiX4TuvFtnY2kfiC60uC1vY7qaOC3ikF1sYMEfzFOFyO2DXSQxpGpCIq7jubauNxPUn3oooAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z"]
math
multiple-choice
63
在一个不透明的口袋中有四个完全相同的小球, 把它们分别标号为 $1,2,3,4$. 若随机摸出一个小球后 不放回, 再随机摸出一个小球, 则两次取出小球标号的和等于 5 的概率为()
$\frac{1}{4}$
$\frac{2}{3}$
$\frac{1}{3}$
$\frac{3}{16}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABxAToDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKr31vLd2ckEN7PZSNjE8AQumCDwHVl56cg9fXmrFYfitNNk0YrqGk2mryF/8AQrC5jV/tFxtbaq7gQDjdlsYVdzHCgmgDk4W8QSeBNC1w+LtV+1ah/Z3moLez2L9oliR9o8jPAkbGSegzmtTxT4ovPDF1pcC2mpX0FvbzX2oXCC3zLbQxMshwWT5xI8DkKoBBO3PK1l6t4A8N6N4O0m1Oi6VPdQXemW0t2bCNXn/0mBHZuCfnBbIJOdxBzVjxdo9nbWb6dodntb+z5oLuwsrYMI7GQkymJRgRTOQwTGfMf7ysE3RAEkHxM8Pf2peXE/iLTf7ONxHZW0a3UJII3b7hhuD7GdhH0IAjEn3GLDvK8rn1y7uklW41fWZjLrp0+Sxk0hGsHtzf+QYzKbfBBi4/1md3HXivVKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqKe5gtYjLcTRwxjq8jBR+ZrGbxr4c3FIdWhvHHBSxDXTA+mIgxz7UAb1Fc/wD8JPNP/wAeHhzWrkdmeFLYfj5zI36Z9qPtXiy5/wBVpWl2S/3ri9eVh/wBUA/8foA6Ciuf/svxJc/8fXiWO3B7afYIhH4ymTP1x+FH/CI2s3/H9qWsXp7iW/kjU/VIiin8RQBsXd9Z2EXm3l1BbR/3ppAg/M1kHxt4ec4tb/7efTT4ZLr/ANFK1T2nhPw9Yy+bb6JYJN3l+zqZD9WIyfzrYAAGAMCgDn/+EjvZ/wDjx8M6tMD0eYRW6/iHcP8A+Omka58WTIX+x6Np8YGS81zJcED3UKgH/fRqa48RJJcSWej2zaneIdsnltthhb0kl5AP+yAzf7NRr4ek1FxN4huRfEHK2aLstUP+51kPu5I4yAtAHPm48S64THpGvtMh4a9tbOO3tV/3Wk81pP8AgHHbep5qy/gjWIrfz7TxrrQ1Tq0ssgeBvYQkFVHoeSM87uldqAFAAAAHAApaAOGtNT8TWl1HY32oWcd252xxajbYW4P/AEyuIyFP+6Yw3faB12f7Y161/wCP7w08o7vpt2kw+uJPLb8ADW1d2ltf2sltd28VxBIMPHKgZWHuDWL9g1XRPm0uVtQsh1sbqX94g/6ZSt1/3Xz/ALyigA/4TTRYuL+a400jr/aFtJbqP+BuAh+oJFbNpe2l/CJrO6huIj0eGQOv5iq2ma1ZaqZI4XaO5ix51rMpSaL/AHlPOPQjIPYmq134T8P3sxnm0i0Fx/z3ijEcv/fa4b9aANmiuf8A+EYmt+dN8QaxaY6JJOLpT7Hzg7Y+jCjy/Ftp92fR9TUdBIklo34sDICf+Aj6UAdBRXP/APCQ6jbcah4a1GMDrLaNHcp+AVg5/wC+KfF4y8PSSrFJqcVpMxwsV8rWshPoFlCn9KAN2imo6SIHRlZSMhlOQadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2SWOGMySuqIvVmOAPxrEm8Z+G4ZWiGs2k0y8GK2k86Qf8BTJ/StG/0jTNUaFtQ060u2hJMRuIFkMZPUrkHGfarMMMVvEsUMSRxrwERQAPwFAGF/wlPnf8eGg63eeh+yfZx/5HMdH27xTc/6jQ7C1U/xXl+Sw/4BGjA/99iugooA5/8As7xPc/8AHxr9pbKf4bGwww/4FI7g/wDfIo/4RSOb/j/1rW7313XpgB+ogEY/DFdBRQBiQeDvDlvKJl0SyeYf8tpohLJ/322W/WtpUVFCooVRwABgClooAKKKKACiimTRLPDJE5cK6lSUcowB44YEEH3ByKAMzUPEFrZ3JsoElvtRwCLO1AZwD0LkkLGPdiAe2TxVX+yNR1j5tcuhFbHpp1k5VCPSSThn+g2r2IbrWtp+m2WlWwtrG2jgiyWKoMbiepJ6knuTyatUARW9tBZ28dvbQxwQRjakcShVUegA4AqWiigAooooAKKKKAKGp6NZaqI2uI2WeLJhuImKSxH/AGXHI9x0PcEVnfbNX0PjUY31OxH/AC+W0f76MeskS/e/3ox/wADmugooAgs7211C1S6s7iK4gkGVkiYMp/EVPVOHSrK21Ga/gt1iuZxiZoyVEnuyjgtxjcRnHGcVcoAKZLDHPE0U0aSRsMMjqCD9QafRQBgv4M8P7zJb6etjIeTJp8j2rE+5iK5/Gm/2Bqlt/wAg/wATXyjtFexR3CD8cK5/F66CigDn/O8W2n+ss9J1FR1aGZ7Zz9EYOPzcUf8ACUm3/wCQloWs2XqwtvtK/XMBfj3IHviugooAybLxRoOozeRa6vZyT94DKFkH1Q4YflWtVa902x1OHyb+yt7qL+5PEsi/kRWR/wAIbpEPNh9s009hYXckKD/tmDsP4rQB0FFc/wD2T4htf+PPxILhR0XUrJJPw3RGP8zn8a0dMfVmWRdVgso2Ujy3tZncOO+VZRt7d2/CgC/RRRQAUUUUAFFFFABXPXV7qUPj7TLIXcf9m3NhcyG3EIDeZG0QDFyTkYc4AA75zxjoaxLzRr658W6drEd/bx21nBLAbZrVmd/MKlj5nmAD/Vpj5T365GDqBt0UUUAFFFFABRRRQAUUUUAFZ+r2MV/aFLm8uLW1QF5Tb3DQMQB3kUhlA6nBGcDPGQdCsvXNGbWrWOAaleWKpIJCbYRHfjkBhIjgjPOMUAR+FV1BfDNiuqSSy3QQgyTDEjJuOwuOMMU25981sVU020aytPJe/ub6QMxee4Kl2JPQhFVRjpgAdPXmrdDBBRRRQAUUUUAFFFFABRRRQBkat4gj0ieNZbC9ltyyLLdQopjg3sFXdlgx5P8ACGwOTgYrXrkfGCJqUltY2q6mNXt5o7i0eK3m+zhwwOZH2+SRgHIYkj+H5iM9dQAUUUUAFFFFABRRRQAUUUUAFFFRXFxFaW8lxO+2KNSzHGePoOv0oAlornfDOpalf6lr8WolV+zXkaQwqo/co0ET7SR945c5OTznHGK6KgAooooAKKKp6pqlpo+nyXt7L5cKYHAJZmJwFUDlmJwABySaADVNUtNH0+S9vZfLhTA4BLMxOAqgcsxOAAOSTXC6ha+JdS8QaPeS6lPpNxcec1rZI26OBVQECZQcSM38Q6AcKQRuPRaXpd3qeoR67rsXlzJk2NgSCtmpGNzY4aUjqeig7R3LSav/AMjf4c/7ef8A0WKALGh65/afnWl3B9k1W1wLq0LZ256Oh/ijbBw31BwQQNisfXND/tPybu0n+yara5Nrdhc7c9UcfxRtgZX6EYIBBoeuf2n51pdwfZNVtcC6tC2duejof4o2wcN9QcEEAA2KKKKACiiigAooooAK5vVNUu9T1CTQtCl8uZMC+vwAVs1IztXPDSkdB0UHcewY1TVLvU9Qk0LQpfLmTAvr8AFbRSM7Vzw0pHQdFB3HsG2NL0u00fT47Kyi8uFMnkkszE5LMTyzE5JJ5JNAHBeHtEutA/tXUPDyyTeTqM0dzYPIT9rQY+YMx4mGSdx+90bsV73S9UtNY0+O9spfMhfI5BDKwOCrA8qwOQQeQRWX4V/5jf8A2FZ//Zaj1TS7vTNQk13QovMmfBvrAEBbxQMblzwsoHQ9GA2nsVAOkoqnpeqWmsafHe2UvmQvkcghlYHBVgeVYHIIPIIq5QAUUUUAFFFFABRRVPVNUtNH0+S9vZfLhTA4BLMxOAqgcsxOAAOSTQAapqlpo+nyXt7L5cKYHAJZmJwFUDlmJwABySazfDPiyx8UWzvbxT2txHzJa3KhZFUkgNwSCpweQSMgjqCKh0vS7vU9Qj13XYvLmTJsbAkFbNSMbmxw0pHU9FB2juWy9E0P+0/CGl3dpP8AZNVtfNNrdhc7cyNlHH8UbYGV+hGCAQAdxRWPoeuf2n51pdwfZNVtcC6tC2duejof4o2wcN9QcEEDYoAKKKKACiiigAooooAKgvLK11C0ktL22hubaQYeGaMOjDryp4NT1yt3d3Hiu7l0zTJnh0mFzHfX8TYaVhwYYW/RnHToPmyVALXh7wnpXh7UNVvNNtrOFL+VHVLa2WIRKsarsBXqNys3blj9T0FebeFLa68LeGrTU9NikuNJfebywjBZocOw82EfQfMg69R82Q3odpd299aRXdpMk1vMgeOSNsqynoQaAJqKKKACsG20W5utbbVtZeOV4HZbC2jJMduvTzOQN0jDqcfKDtHctb1yw0q9sGOtQxT2MWXeGZd8bHtlf4iOw55IwM4xF4V0+50vwzY2V2zmWJCAJH3sibiUQtk5KqVXOT0oA2Ky77TZrnXtJvkaMRWfneYGJ3HeoAxxWhcLK9vIsDrHKVIR2XIU9jjvj0rnPB+pz351aGXUbi9W0uxFGby3WC5UbFJ8xFVAASSVO0Eg9+tAHT1j65of9p+Td2k/2TVbXJtbsLnbnqjj+KNsDK/QjBAI2K5jxdrV7p9rEumSKkiXVoLmRlDbY5J0TaM8bmDN9AD0JU0AdDaNcNZwteRxx3JQGVInLIrY5AJAJGfYVNRRQAUUUUAFU9Utru706W3sb37HPJhfPEYdkXPzFQeN2M4JyAcHB6VcrC8Z3WoWHgzWL3S7qO2vLa0lnSWSHzQNqluFJAzxwTkDuD0pN2VxpXdjR0vS7TR9PjsrKLy4UyeSSzMTksxPLMTkknkk1cqK3dpLWJ2OWZASffFLcRtNbyRLK0TOpUSJ95c9x702raCWpT0rTP7M+2/vvM+1Xclz93G3dj5evOMda0K5TwZNJ9o1uzk/tGE290oS01Cdp5IkKLhhKWbcrEE43Njkew6ugDH/ALD+z+IBqthcfZhPxfW+zKXGBhXxkbZBwN3ccEHAI2KbJIkMTyyuqRoCzMxwFA6kmsPw7rl1rF7rUVxbLbpZ3SRQLg7yjQxyAvno3z9MDHTqM0Ab1FFFABRRRQBT1TVLTR9Pkvb2Xy4UwOASzMTgKoHLMTgADkk1j6Xpd3qeoR67rsXlzJk2NgSCtmpGNzY4aUjqeig7R3LWo9S03VPEk+kvZSvd6Wsdyss9vtRS+9QY2bqcBgWHHOM5yBtUAFc/4I/5FCx/7af+jGrXv7wWNqZhBNcOSFjggALyMegGSB+JIAGSSAKpeHtSstS01jZWklkLeZ4JbSSNUaCRT8ykKSvcHIJBBBBOaAG65of9p+Td2k/2TVbXJtbsLnbnqjj+KNsDK/QjBAIND1z+0/OtLuD7JqtrgXVoWztz0dD/ABRtg4b6g4IIGxVWdLCK+trm4Ful2263gkk2h2yNxRSeTkJnA/u57UAWqKKKACiiigAoorN1rTbjVrNLOK+e0gdx9paIYkePByitn5CTgFuuM4wcEAGPd3dx4ru5dM0yZ4dJhcx31/E2GlYcGGFv0Zx06D5slektLS3sbSK0tIUht4UCRxxrhVUdABRaWlvY2kVpaQpDbwoEjjjXCqo6ACpqAOf8Ef8AIoWP/bT/ANGNVW7tLjwpdy6npkLzaTMxkvrCJctEx5M0K/qyDr1HzZDbWiaZ/Y2jwWHned5W759u3OWJ6ZPrWhQBDaXdvfWkV3aTJNbzIHjkjbKsp6EGpqx9P0L+ytXuJ7G48rT7kF5bHZlVmJz5iHPy553LggnB4Oc7FAGdq+iWWtxRRXv2nbFIJE+z3csBDDocxspOPeptO0620u0FtaiXywxYtNM8rsScks7ksx+pPp2q3RQBDdLcPayLaSxRXBX93JLGZEU+pUMpI9siqOk6XPZTXV5fXMVzf3RXzpIYTDHtQEKFQsxHU5JYkknoMAalFABXN+JfA+ieJUL3Gm6f9taWF2u5LNJJGWN1YoSecMqlevQ9+ldJRQAiqqIqIoVVGAoGABS0UUAFFFFABWX4j0ufW/DmoaVb3Udq95A0BmkhMoVWG1vlDLzgnHPB9elalFDVwTsV7GKeCxghuZY5ZkQK8kcZjViB1ClmI+mTTrqGS4tZIYrmW2d1ws0QUuh9RuDLn6g1NRQ9QWhn6XpS6aJne6uLy6nIM11c7N744UYRVUADoAo7nqSToUUUAVtQsLfVLCWyuhIYJQA4jlaNuueGUhh07GsXw34XGgatrd0s88kd9PG8ImvZp2CrEind5jH5tytzycbRnAAHR0UAFFFFABRRRQBy1pMT8TdS/wBGvBGdMt4lma0lETOskrMBIV2EgSL0PcjqDjqaKKOlgeruUdY1NdI0yW8NtdXJQYWG1geV2J6DagJx744qh4Wkgms7mWGC8SWWcy3EtzaSW/mysBnasiq20DaoOOijkkE1u0UAFed+I7rUG8Z6BLcaDflYtX8q1mEluY2j8ibJA83dk/eOQPlQDr970SopbeCd4nmhjkaF/MiLqCUbBG5c9DgkZHYmjqmBLRRRQAUUUUAFcz4la6i1/wALSQ39zFFJqLQy28bARygwTN8/GTgqMDOO+CQCOmrI1jQRrF5ptydRvLU6fP8AaI0txFtd9pX5t6Mfusw4I+8e4BB1QdzXpr7/AC28sKXwdoY4Ge2adTXDmNhGyq+DtLDIB9xkZ/OgDndMbWLTxXNp93qTajaPZC5LvCiG3k37Qo2AfIw3YDZYbD8xrpKwNE0nXLC6kfUdYs7uKRmkcQWDQvI5wAWZpX4AGAAB0HPHO/QBiXmtXtnr1nZtpsbWV1L5CTi5/e7ghYt5W3mMYwW3Zz/DjmtuuW1PT5NW8T2E6aJcWtxYThxqzvEA8QB3RrscyENuxtZQvU9QAepoWwdQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q=="]
math
multiple-choice
64
如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为$S_{1}$,正八边形外侧八个扇形(阴影部分)面积之和为$S_{2}$,则$\frac{S_{1}}{S_{2}}=(\quad)$
$\frac{3}{4}$
$\frac{3}{5}$
$\frac{2}{3}$
1
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACAAL4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx/G/ijRPCWgy6xr16lrbRDvyznsqjuTWxXxt+0B4zuPF/xLvZWuS2m6RK1tp8Gfl3DhpD7n17VMpWQ4q7O88SftL6m1y3/CP+GLeO2B+WXUpW3OOx2qRj86Twz+0vqiXu3xJ4YtntTjM2mytlBnklWJz+Brwe8VLiEqD91skjv+FSW6gN8g6/d3HGKx55GqgnofdfgnxPovi3QY9Y0G9S6tZOMj7yH0YdjWN8VviV4c8BWqf2pK897Op+zWNuN0sp/oPevlb4O/EaT4XeMP7SuhI2i3iNFqFuh3EtjKSIOgbcAp9mNZmt6xqnibxLceINTm33d9KXBP8AyzT+FFHZQKr2unmTyWZ69qH7RPiuS4aXT/C2mwW27CpczO8mPcqQP0roPAf7ROm3t5FZeLNIbSWkO1buJ/MgJzgZ7qPrmvAJHljU7WKtkg55pPljt0ErhhIcMGGc+xrP2ki3GNj7qtZori3SeCRZIpFDI6nIYHuDUleCfsZeMJ7iTUvA95M0i2Uf2vT2dslYtwV48nqFLLj6mve66IyurmLVmFFFFUIKKKKACiiigAooooAKKKKACiiigAorm/in410nwJ4Ul1rVXJwdkECffnkPRVFfKPjz4oeO/GN1M+oaxcaTYH7lhYMUAXtuccsaiU1EpRufaR6V+fuqwTRX2o2cy7Z4byVX3dchj1q5pd3q1lOl1pWv6vaTK2RJFdNke5qPS9H1jxJ41utb8Q6jcL4auLlE1nXBBhbYk4O4jgE9C3bqazcuYpLlNr4L/DzV/iPr32LT5JbbTLV8alqRT5V/6Zx/3n+nTvXvCfsy+BQoDanrrMO/2tev/fNel/DjTPDWjeD7HTvCYthpcUQ+zmBwwcf3iR94nrmtPVdRsdNspLu/u4beGJdzvI4UKK0UI21J5mfOfxv+AfgDwx8Ob3WTqet7opYAqvcCTO6ZFOF28naSfwrqtP8A2bvAk2nwyx6pru2SNWBF2vcZ/u13dhEfGutRapd2ki6HY7vsUU6lftcjKVMpU/whWYDPXcT2pdF1D/hELhNB1pvL0/ONOv3/ANXjtE7dmHbPWlyq+2gXZ57rf7Nfh9dJnOh63qiX4y0Bu5hJEW7BgAOK8E13T9R0nWZ9G1u0a2v7STEkB7+jr6qexFfdiOrrlGDD1Bryr9qXw34Y1fwouoahfwafrNudmmzZHmTyHpBjq249qUqatoVGo1ueW/sl2E3/AAvPzYlZUg0aZpsdMNJGAD75/lX1RXwj4fk8beGdY1KyvNRvdBu7pFF3aRExyKgzgbuuDk9K0tPvNUt7j7ZZa9q0N0vIljvH35HepjLlVgcW9T7cor50+Dfxp1yx1CHS/GswvNOmcRx6my7ZIT0Ak9R/tV9FKwZQynIYZBHetlJMhpoWiiimIKKKKACiiigAooooAKKKKAPln9s7VH1X4nW+iPKy2+i2ayrHu4MsnO7HrtIH4V5Yq5tmkYllYY5r1P8AbM0WbTfifb68yn7LrFmsXmbflEsfG0/VQK8khlkkbyzEQAMKvb61yzvzGytynYfBn4fax8R9YEFo8lno9m4W/vx1Pfy4z/eI6ntX1nY+DvD1j4Dfwha6dFHpLWzQPABw6sMMW9Se5rzv9h0Y+C8w/wCovcfySvVPEmqWmi6Hdanevthtoy7epwOgHcnsK2hFJGcndnB/C7wb4d1DwbY3i29xY3kMZtbiXTbuS0MrxkozN5TLkkqa6Ww8BeGbbUVv5bOa/ukx5c2pXMl20ZHQqZWbafpU3wx0240vwRY294my6kTz7lf7srnc4/76JrfqklYQVHdwQXVrJbXMKTQyqUkjkUMrqeoIPUVJRVCObXwNoMRIsv7Q0+MnPk2Goz20Q+iRsFH5Vg3Xg/w6vxR0VU01Zp7OGa9e6uSZpi+VVP3j5bAzJxnvXoVc34mI0/xto+ryAiCVJbKZ88KzbWjJ9B8rj8RUtAYnx1+GOn+PtIWeEraa5ZqTZXoH/jj/AN5D6dutfMmoWt9pOqS6Pq1q9nqNqStwnt6g9wa+2q+XP2oH/wCL5XEYXJOnw9Oo4qKiSVzSnLWxwUmwwvAgEglTa+ece9fUH7MOt3GtfBzTTdu0lxp7SWMjsc7vLbCn/vjbXy3dPFbZuJBjYOB0yPc19Sfsx6DPoPwf09LtGjuNQeS+lQ/w+Y2VH/fO2lT3KqWtoegUUUVsYhRRRQAUUUUAFFFFABRRRQBz/wATvB2j+OvCVxoGsxkxS/NHKv34XHR1PqK+O/i94P8AEPwn1RE12e21CwmfFndW0g82RfV4c7gfcAj3r6a/aU+Ik3gXwvFDpe19Z1MmO0DHiIAcyEegr5G1a5n1DVJNRv7uS+vZzukuJ2LOx/HoPasqli43Pbf2X/ir4W8K/BeU38GrM7atKVSDTJ5FO4JjMgXYvT+JhjvXseg2WoeL7i113XhbJpsZWaw06CYTBm6iSVx8pI6hRkZ7muM/Yjjif4KyLNCjZ1WckFQc8JXXeItLm8IzS+JvDUDfZoxv1LS0PyTxj7zxr2kAyeOvTvVJOyJe53FFQabeW9/Yw3lrIskFxGskTqchlIyCDUu7nGPxqxDqKbu9vpRv/wBmgB1VtYsLXVNNlsbyPzIZhhh3HoQexBqwpyKyPGWrTaZYxRWSLJqF9KILSNuhcjJY+wAJ/L1oA5/WfE0vw+01T4nka800NsgvIBvuAMgAPEPmc89UDH1Ar5z/AGi/H/h66+Lk2oWf22SOWwiSNnsZYW3e4kVSB7nivqfw54YtNPdr29P2/U5l/f3cw3E98KD91R2FfOv7UzW9v8bJswo27TogVKjGOO1ZzvYqO5t/BH4N6hrdxZ+JfGQhh05Qs1rp0UqyNP3VpGXK7ehwCfwr6LRVRQqqFVRgADgCvj34b+PtT8B68kum3EsmkO4a709iSjKerIP4WFfXWjX9rquk22pWMoltruFZoXH8SsMg/rRTasErlmiiitCQooooAKKKKACiiigAooooA+Tf2y7ye5+L72rhvLstOiWPnjDfMf1JryVWgjjQISzBfmzX0X+2l4QmeSy8b2kLyRW8X2XUVjXlUySsh9cZx9BXzt9mT7QrDcyMCSV71zy3ZtFqx9IfsL+INIbwRe+FTeKuqwX0t0bZ+C8ThQGX1GQc17uyAowJzkYr8/NPlv8ATdVtdS0u5msb6yk8y2u4+GQ+h9VIyCDwRX0z8P8A49Qa74Fmt5rAyeM4YzHDpUXS/kx8rRk9FJ65PHvWkZ6amclqeg/BfcvgOG2yfLs7ie1gyc4jjlZE/wDHVFdVt561wHw70r4hWng3T7CZ9F0doLZFdHikvJHfHzMzB4wCTkkYNa0knj7THWWVdI1u3A+eK3he0mHupZ5Ax9vl+tUnoSdTs96NnTnpWf4Z1yx12zae0MiPE+yeCVdskL/3WHb+RqLxD4gtdMmW0jhmvr+QZjs7YAyEepzwo9z+tVcDWUY71zl43n/FKzikX5bXTZJIsj+J3Ab9EX86j87x7dSCSO10XTo8f6qVpLl/xYbAPyNc/wCMNY8S6F4k0XXNV8PLJaW5lt9QvLCcyLHC+0+Y0ZAIAKjoWxk1LYHpDEAZJwB1Jr5B/aU1rTNc+OE1zpdyJ7e2tVt5ZkOVMg6gHviuy/aE+MM2tQSeGvAt5/oTDF/qsR5Yf884j2z3b04FeO2tmYkjCxLtUDaMYPPX8aznK+iNILXUj8zIbjKHoPQelfUf7IN/Le/BS0jk+7Z3lxbxE90Dlh+W4j8K+Y57SZZsWqSSXN1J5dvAi5ZieAAOtfYPwV8MN4P+GelaHMVNzFEZLpgMZlcl2/Itj8KKa1HN6HVUUUVsZBRRRQAUUUUAFFFFABRRRQBHeW8F1ayW1zCk0MqlZI3XKsD1BFeF/EL9m2xvLqa98Ga42jtKdxsriPzbcMeu0j5lHtzXvFFJxT3Gm0fL+l/sz+NJLpV1PxXo8Nv0ZraKSR/++WCj9a8lsdEfRPHl5qeja1dmewvGTT79sLImw43beRz6V99V8KT6fcWuo31nckrNbXssUqN1B3HrWU0olJ33Ppz9n/4tWnji2Oj6uIrPxDaJ+9hBwl0o/wCWsPqD3HUfrXp9fCcayW7Jd2txLa3tq2+3nhbDxt6giulj+JXxJWEOfGt2wYd4lytNVNAUWz6M+Lt3/wAIbCPH9pbySLZkRanbw/euoXO1cDuyyMnPpura+HelSWmk/wBqagFfVdTAmu5fTPIQeigdq+PfiJ8RviDdeG5bKTxTeX0dy6AQpCMvtYN09tufwrb0L4m/ESdVjXxjcqvljA8tTto9orhys+x2IVSzEAAZJPavnv4+fFiTWri48K+E5m/s+NvK1HUU6Tno0UXqPVunYVxOqeMfHWoWM1hqPjG7kt5l2yRxoFZh3GRWRbWkUNqscITy0Py7e3fn86Uql0Pka1Y74W/DceJPGeo6Jo+vnS/9C+1WdtLDviYhlV1JzkfeB4B713kXwC+IRYxya14cWPGFkVpmYe+0xgfrVP8AZ3tJp/jppstsMrbWFxLcEdlO1Rn/AIEwr6gpwimrhKTuec/CT4Q6P4OvBq17dPq+sbdouZUCpD/1zTnH1zmvRqKK1M73CiiigAooooAKKKKACiiigAooooAKKKKACvn/APae+GeqLq0/jfwxZm8WZR/alhGvznH/AC1Qdz6ivoCilJXQHwnHd2c0Mj+akLKcMj/Kw9iDUU1xaw/Ip84yYCJGN7E+wFfZvinwB4K8RytLrfhjTbuVm3NK0AWRj6l1wT+Jp3hfwF4M8OuH0Xw1ptpIDkSLAGcfRjkj86y9mzRTsjyX9mP4UXcF8vjPxdZeVN5LR6dYSc+WjrhpHH94qSMehNec/Gj4c33w98STTx2kk+g3Mha0ukBIgyc+XJjpjsa+wqju7eC6tnt7qCOaGRdrxyIGVh6EHg1TppqxPM73Ph7Tbm3uVw0iswGAVPWrf2kKyWdrD9ouHbbFbwDc7semAK+ndQ+C3wxvLtrmXwnbxyOcnyLiaFf++UcAflW14N8BeDvCjF9A8P2dnK3WbaZJf++3Jb9an2bLdS6OU/Zt+H9z4U0m51rWo1TWdWC+ZGOltEvKx/XJyfoPSvTqKK1SsjIKptqunLr6aIbuP+0JLVroWwOX8lWVC59BuYAZ684ztOLlc3q3gLwnqni7/hI9R0SzurxrU28ongSSOYZUq7KwILqF2huu1iDkAYYGp4T1P+2/Cumaz5Hkf2jZQ3Xlb93l70Dbd2BnGcZwK0KKKACiiigD/9k="]
math
multiple-choice
65
如图, 已知 $\mathrm{AB} / / \mathrm{CD}, \angle 1=70^{\circ}$, 则 $\angle 2$ 的度数是()
$60^{\circ}$
$70^{\circ}$
$80^{\circ}$
$110^{\circ}$
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADKAMUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fxB4puNN8UaBoOmWP2+8v5TJdorAfZrRRhpmOfl+YrjIIbayjDEVuarqtjoel3Gp6ncx21nbpvllfoo/mSTgADkkgDJNcP8MdHu7p9U8daxBGmp+IXWW3QMjmCz2jyk3BRyV259QqEgMDQB6JRRRQAUUUUAFFFFABRRRQAUUUUAV7++t9M065v7yTy7W1ieaZ9pO1FBLHA5OAD0qvoes2fiHQ7LV7B99rdxLKmSCVz1VsEgMDkEZ4IIrD8XXs817pmj2emXeon7RHfXiWjRB4YoXDxnMjqoLzIgAP3lSXHK5GH8NLiXTNc8T+F7mynsFiu/7SsLW5KKVt5+SkcaMy+WjgjKMRl+QpyKAPSKKKKACiiigAooooAKKKKACiiigAoorn/Gniyz8FeF7rWrxPN8rCQwBwjTSMcKoJ/EnGSFDHBxigDk/GQPj7xjbeBraSRdN05477XnKSKrr8pitwykAlwSxz0wGBJQivTK4/4d+E5fDGhy3Gov52u6rKb7U5iiKfOfkxjZxtUk45IyWIwDgdhQBzfj4Xa+BdauLLUruwntrKedZLUoGbbEx2kspIGcHK4YYGCKseC55rrwL4euLiWSaeXTLZ5JJGLM7GJSSSeSSec1X8fSlfAutW6W93cT3dlPbQx2ttJOzSPEwUEIpIGeNxwBxk80eAZS3gXRbd7e7t57Sygtpo7q2kgZZEiUMAHUEjPG4ZB5weKAOkooooAKKKKACiiigAooooAw9N8NDTvEupa4dW1K6l1BFR7e4aMxRqhJQIAgKhdzDGedxJyeap3XgmC68cweLRrOqwX0MS26wwvEIWhByY2UxkspJJOTnJyCMLjqKKACiiigAooooAKKKKACiiigAooooAK8nv7EfFf4gXNheR7vCXhqV4Zk3TJ9uu2UhhkbQPKOemSPcScdR8RPFkvhjQ4rfTk87XdVlFjpkIdFPnPwJDv42qSM8EZKg4ByNDwX4Ts/BXhe10WzfzfKy805QI00jHLMQPwAzkhQoycZoA4dDcfB3XLW1M/n+BdVuxDAJpgH0qd8nG5jzCcMTk8YJPIPmesVj+KvD1v4r8L6jod02yO7iKB8E+W4OUfAIztYKcZ5xg8Vh/CjxDN4l+G+k3t3cxz3kaNb3DK5ZtyMVBfJJ3lQjHPXdnoRQB2lFFFABRRRQAV4/YT6JZ/EfxfpOv8Aii+s7Gz+xfYIrvxHcw43wlpMEzAtyVPJOMjpXsFeX+HdXSx+I/jTVrnTdcSx1L7D9kl/sW7PmeXCVfgRZGCccgZ7UAbHw+v7y7vPEEUN3PqHhqC7C6Rf3EhleXIPnIJG5kjR/lVznPI3Njgrg/EHgrxL4n8Y6lq/gKe78NWcyRi7kuXuLD7dcfMzOsYXcQAygllUFixGTuNFAHulFFFAHH634d8ZX2sT3Ok+O/7LsX2+XZ/2RDP5eFAPzscnJBPPTOO1Z/8AwiXxD/6Kf/5QLf8Axr0CigDz/wD4RL4h/wDRT/8AygW/+NH/AAiXxD/6Kf8A+UC3/wAa9AooA8//AOES+If/AEU//wAoFv8A40f8Il8Q/wDop/8A5QLf/GvQKKAPP/8AhEviH/0U/wD8oFv/AI0f8Il8Q/8Aop//AJQLf/GvQKKAPP8A/hEviH/0U/8A8oFv/jR/wiXxD/6Kf/5QLf8Axr0CigDz/wD4RL4h/wDRT/8AygW/+NH/AAiXxD/6Kf8A+UC3/wAa9Arzv4naxd3T6X4F0eeNNT8Qu0Vw5VHMFntPmvtLDkrux6hXAIYCgDzDwd4d8f8AjLxiPEVv4nu/7NtLi6Flrd3FvVs5QmG2c4AYHpgKuCM5UCvU/wDhEviH/wBFP/8AKBb/AONdppWlWOh6Xb6ZpltHbWdumyKJOij+ZJOSSeSSSck1coA8/wD+ES+If/RT/wDygW/+NZeh/C/xb4at7m30b4hR2cFxcNcyRx6DBt8xgASAWwowoG0YAxwBXqlFAHn/APwiXxD/AOin/wDlAt/8aP8AhEviH/0U/wD8oFv/AI16BRQB5/8A8Il8Q/8Aop//AJQLf/Gj/hEviH/0U/8A8oFv/jXoFFAGfolpqNjo8Ftq2qf2pfJu8y8+zrB5mWJHyLwMAgcdcZ71oUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe/vrfTNOub+8k8u1tYnmmfaTtRQSxwOTgA9K4P4X2t9q6X/jnWkkF/rTkWcUvJtLJWPlxrlFIBJLEjhwEbqTVPx3J/wAJp450j4fW8m6xixqeubHx+5QjZCdrg/MSMjGRujcdDXqFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/irxDb+FPC+o65dLvjtIi4TJHmOThEyAcbmKjOOM5PFbFeZ3kc3jr4s2sCiRvDvhV/NmkUny59Q4KplXwTGCD0ypDqww4oA2PhnoV9pfho6nrjyTeINYcXt/LMuHBI+SM/KCoRcDZ0UlgOK7SiigAooooAKKKKACiiigAooooAKKKKACiiigAoqnqWrabo1utxqmoWljAzhFkupliUtgnALEDOATj2NFnq2m6ikD2OoWl0k6O8LQTK4kVGCuVweQrEAkdCQDQBcooooAKz9M13R9b83+ydVsb/AMnHmfZLhJdmc4ztJxnB6+ho1vR7fX9Hn0u8edLW42iYQSmNnQMCyFhztYAq2OqsRkVxbeEbGy+LOi3nhuytNNSyspm1eO1XyFlikysClFAViXWRun/LMZPCAgHolFFFABRRRQByfxA8UN4c8P8Ak2Ekba9qTiz0q3LqGknchQw3AjC7gx3fL0BI3CrHgPwpD4M8HWGjIIzOib7qRMfvJm5c5wCRn5QSM7VUHpXL+FQfHvjyXx0ZJDoemo9jokbpJGZGIAluME4wcsg45AGQrJXplABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwfgmZvEviDxJrOqCOe40zWJ9MsFMalbSKIAFo8jKu+872z82FHAAFbieE7OLx83i2F/LupdPNjcRBABL86MshI53ALtOc5G3pt5z/wDhG9Y0LxHqGreG5LGW11SVJbzTLxnhRZAjK0sUiBgrMdhYGNi2Cdw4rc0221J7hr/VZI45yhjjs7WZnghXIJJYqpkckA7io2jCqB8zOAalFFFAFPVTqS6XcHR47R9Q2YgF27LFu9WKgnA64HXGMjORw/h7SPiVZ3EEGoXnhiO0e4We/u7VJ5Lq4IILZ34TLBQnQBFICgBVA9ErP1zWbPw9od7q9++y1tImlfBALY6KuSAWJwAM8kgUAaFcfqfxU8DaR5X2nxNYyebnb9kY3OMYznyg23r3xnnHQ1z48L+IPiTLDf8AjBp9H0BokaHw/a3LB5DuDE3TbRnO0YUcrkfcYNu7DRPA3hbw55DaToNjbzQbvLuPKDzLuzn962XPBI5PTjpQBj2Pxg8A6heR2sPiOBJHzgzxSQoMAnl3UKOnc89OtU/iH4hGp2+meDdDuY5b/wAUJsFzC8brBZkZllwT8waPeFxjOGw2QAes8Raf4fuNOkv/ABDp1jd2thFJMXu7VZ/KQDLkAgnovbrgV5/8HfBtlYy6j4wtrH7Db6rmPTLRvMDwWgbgvvZstJtRupHAKnDYAB6RoejWfh7Q7LSLBNlraRLEmQAWx1ZsAAsTkk45JJrQoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACio55Ght5ZUhkndELLFGVDOQPujcQMnpyQPUivI/wDhb/jD/ok2ufnN/wDGKAPYKK8f/wCFv+MP+iTa5+c3/wAYo/4W/wCMP+iTa5+c3/xigD2CvL9YtP8AhPvi4miXcHmaB4YiS5u4ZRlLm6lXMasu/wCZQvIJXs6nhxWf/wALf8Yf9Em1z85v/jFcx4S8V+J/Cuo+Ib9fhbrlxda1qD3cj7Zk2ISSsePKIO0s/wA3Gd3TgUAfQ9FeP/8AC3/GH/RJtc/Ob/4xVPVfjZ4q07S7i6n+GmpWCImBc3bSiKNjwpbMS5G4jjcM9MjNAHQePZx418S2vw1tJZI4pEW+1m5iaMmK3Q5WIA8h2fyznqoKnDAkD0iCCG1t4re3ijhgiQJHHGoVUUDAAA4AA4xXzp4E+JGt239r6zZ+A9V1y/1S7L3t9bzytGCuSkSKI32KiuAAWJweuMAdf/wt/wAYf9Em1z85v/jFAHsFFeP/APC3/GH/AESbXPzm/wDjFH/C3/GH/RJtc/Ob/wCMUAewUV4//wALf8Yf9Em1z85v/jFH/C3/ABh/0SbXPzm/+MUAewUV4/8A8Lf8Yf8ARJtc/Ob/AOMUf8Lf8Yf9Em1z85v/AIxQB7BRXj//AAt/xh/0SbXPzm/+MV6ppN5NqOjWN7cWklnPcW8csltJndCzKCUOQDkE46Dp0FAFyiiigAooooAKKKKACiiigAooooAKKKKACiiigAry/UHT4i/FA6C6QXPhrw1tuL1GVXW4vWDBEJDZ2qC2RjG5HVgciuk+I3iebwr4OuLqySSTVLp1s9OjjQsz3EmQuBtYEgAtgjB247irngvw3/wi3he106WTz75sz31yW3NPcOd0jlsAtycAtztC56UAdBRRRQAUUUUAFFFFABRRRQAVn6zrVloGnPf6i06WqZLvDbSTbAASWYRqxVQAcseB61oVz/jv/knniX/sFXX/AKKagCuPiF4c+xw3sk99DYzbCl5Ppd1FBhyArGVowgUlh8xIHPWukgnhureK4t5Y5oJUDxyRsGV1IyCCOCCOc1z/AILghuvhp4et7iKOaCXR7ZJI5FDK6mFQQQeCCOMVh/CX/R9H8Q6TF8tjpXiC9srKLr5UIYMFz1bl2OSSeetAHoFFFFABRRRQAUUUUAFFFFABRRRQAUUVwfxQ13UrPS7Dw9oEskeva/cC1tZE3AwRjBllyFbAVSASMEBiw+7QBj+HY4fiJ8TdR8UTiO50PQH+waSpIdHuAQ0k4w5GRxtbGCGjPDJXqlZ+h6NZ+HtDstIsE2WtpEsSZABbHVmwACxOSTjkkmtCgAooooAKKKKACiiigAooooAKx/FGk3mveHrzSbO9gs/tkT280s1sZv3boyttAdMNyCCSRx0NbFFAHF23hTxNB4atfD6eKbS3s4LeK18+00xo7rykAU7ZGnZVcqMbthwTkDIFdRpWlWOh6Xb6ZpltHbWdumyKJOij+ZJOSSeSSSck1cooAKKKKACiiigAooooAKKKKACiiigAryvwUdS1Dxrq3ijUtNu49U1FxbWVldBoWsNNRv8AWSAs2wuynCYyzoxX5C7L6pXB/DeZr6/8bX9wI3uz4juLUzCNVYxQoiRISByFXp9SepJIBJqXiTxAurWmqaTbWNz4Zl22atcTtAZZ5JFVJwyxuTDnbGpAGTIX5j2vVO88XeJrY2uvNaaNH4c2fZpWlv2SMyvIAlwJTCS0H3UB2LkyFuYwslV/G01nL4lu21HStNFnY2UbNqGoeFbjUQTmRnUSoQqoi7D3GXbnIIHF6PpWka54Vulit9K8m8lvEjvLbwNdzOqNNIFeOVWwMAgqOdmApyVNAHtkmqzWGlwzanbRrfSv5cdnZSmYyyHJVI2ZUySoySQoUBiSFUtVPw54us/El5qljHZ31jf6XKsV1aXsQV03AlWBVmVlbBwQecZ6EE3NKu7TUvDVvcaAY4bSS3xYs9q6IqgYQ+Udh2cAgDbkYwcEGuH8CXOr6T8Qdf8ADniOO0udUuLePUY9Wt4QjXsKnygZQGwpUbFCBQBtc853MASeJfG+taXc+JjaywJHpGfJibQru5EmLaOb5543EaZLkcj5QATxRqHi7XbLXjo8GrWN7dW8qpqAtPDF7N9kR4mkRzsmYNuIVcA/xE/wmsfxVZSS65qIe7zb32qnT7yGC11Bt2bLzVJit7vEv7tY42IRc8kjA5r6bY6poXj8654guPPt7y7tLhb/AOzeQZIo9PuIpJpIMloVV5og7OFVS+TtBwADuH1q8Hwq1HXbfVPtl0NPury3vRYm2B4d4ysT5IUDaBuzuAByc5OXq/iLxfpniW00S3uNN1C4nt2mYW+kshj5+Rcy3iIxYJMcBtwETHaRkixPC1t8ApYHMZePwuUYxyK6ki1xwykhh7gkHtWX4ls11yJtEuLX+zmvZWum06DUrf8Ati63KyM48wsiqFDJhXOYuNyBDE4AP428U29n4e1GUWJs9V1uDTPLl04xO0bk5mjZLqVSp2naejcMMqQT6Bpmp/bvNt7iH7NqFvgXFsW3bc52urYG+NsHa2BnBBCsrKvm/jqHWLL/AIQewvLbShYweJbBIZ7EvDnG4KotyCI1AyOJG+6OBnC7niOZrL4weCGtxHG9/b6ha3TiNd0sSRpIqFsZwHGR9T6nIB3lFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXL2mjf8I14o1HUbRJ5dP1uWJp4IhlbW4A2mUIo5WTK726hlDHKkmPqKKAObm8NTa8gHii4jurfesg0u3BW1UqwZd5PzzEHj5tsbAA+UCKIfDt8nh24sYdUksL83t5dW93bfOIzLPK6bkYbXG2QAqwxnkEEKw6SigDn5vCiN4e0jRrPWNV0+PS/JEM9pMqySCJNqrJlSrqeCVK4JA4xxVzStDh0y4uLxrq7vL+5REnurqQFnVC2wBVCogG9uEVc5JOSSTqUUAcW3gFoEtbnTdYkstUhvX1CWUW6vb3E8jPvZ4Sc42yyxja4YKUBZtikSWvhrxJa6jPqJ1nQ59Qm3K13NoshkWMnIiUi5G2MYGFHGRuOWLMewooA5d/CrxfDrUfDVp9himubS6ij8iFoIFebeeELOUXL9ATjsAMAF94PuNTs5LO/8Uard2smN8M9rYSI2CCMqbbBwQD+FdRRQB53P8MZ47fwzY2niXUp9P0bU4bwQX/lSbUiDEKpWNXJyQoy2FUng4AroLPTG1jxLB4mvY5I47a3eDTbWeJQ8YcgyTtldyO4VVC5yqg7sM7KvSUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k="]
math
multiple-choice
66
如图,点$A、B、C$在边长为1的正方形网格格点上,下列结论错误的是()
$\sinB=\frac{1}{3}$
$\sinC=\frac{2\sqrt{5}}{5}$
$\tanB=\frac{1}{2}$
$\sin^{2}B+\sin^{2}C=1$
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABfAHgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD27VLnU4Whj0u0sLmVwzMl3etbkKMcrtjfd156YyPWku59bSS3Fnp+nzIwHnma+eMoe+0CFt34labPb2reKtPuXudt5HZXMcUH9+NngLt/wErGP+B1qUAZ8s2sDVEjhsbF9PON873rrKPXEYiIP/fYqGDUNRk8Q3GnyWunrbwxrLvS9dptjFghMZiCjJRx98/drWrLg+w/8JVqHl+Z/aH2K28/P3fK3z+Xj33ebn8KAHWk+tvJcC80/T4UUHyDDfPIXPbcDCu38C1Nt59eaxuHudN02O8X/URR6g7xv/vOYQV/BWrUooAyVu9bfTXZbDS21JJNrW41FzEowDzJ5O4HBBxs79adcT68tjbvbabpsl43+vik1B0jT/dcQkt+KrRpVvaw6jrklvc+bLPerJcJ/wA8ZPs8Khf++FRv+BVqUAUJptWW5tVgsrJ7dgPtLveOrRnvsUREP+JX8KoWmsarq2laTqelabZva31tFcv9qvWieIOobACxOGwD6it6s3w9dvf+GdKvZLZbV7izhla3UYERZASgHbGcfhQA6WbWBqiRw2Ni+nnG+d711lHriMREH/vsU1brVU1J1ubPT4tNztS4F8xlYkgKDGYgoyTj75/GrdveW93532eZJfJkMUhQ5CuMZX6jPNUtft7W506KO8ufs8QvbSRX9ZFuI2Rf+BOFX/gVADrSfW3kuBeafp8KKD5BhvnkLntuBhXb+Bam28+vNY3D3Om6bHeL/qIo9Qd43/3nMIK/grVqUUAU7Ce8eFV1KG0trxtxENvcmZSoxyGZEJ6jPy8ZFFV57e1bxVp9y9ztvI7K5jig/vxs8Bdv+AlYx/wOigAn+w/8JVp/meZ/aH2K58jH3fK3weZn33eVj8a1KwNYkmbxDp9pp5tYNTktLmSO7ubdplSJXgDptV0OWLxnOf4OlW7iDXmsbdLbUtNjvF/18smnu8b/AO6gmBX8WagDUrLguLVvFWoWyW228jsraSWf+/GzzhF/4CVkP/A6ddwa28lubPUNPhRQPPE1i8hc99pEy7fxDVRE2sS+Nbm2hexi0+G0t5XZ7N2ll3tMCgkEgA27M/dP3+ncgHQUVnxQ6wNUeSa+sX0852QJZOso9MyGUg/98Cm2kGtpJcG81DT5kYHyBDYvGUPbcTM278AtADdK+w/2jrn2TzPP+2r9s3dPN+zw42+3l+X+Oa1K5fQjqkj+I4Dc6aNQivVja4jsHSNpPs8LbmQzMW+VkXhl+7Wp5Gvf2X5f9pab/aG/Pn/2e/lbfTy/Ozn33/hQBqVx0viK/Xw/p2nvLZQ+J59NS7uobmcQC3UKPNkJ2vtw24D5SMjuAad4t8RX/hjRLNzf2UmqTP5cdsmnvI17J2WKMTAr7kswFYvhHxP4msb+Dw743NnZajNaoNPmELMt04Ubt0vmbWkB+8gC5PIOCKANb4X3Npd+EGltZLVt19dNIlrP5qRsZWIG7AJ+UqckAkEHvW/r/wBh/s6L+0fM8j7babdnXzftEflfh5mzPtmi3g15bG4S51LTZLxv9RLHp7pGn+8hmJb8GWsvXzqlt4ai+2XOm3F4dQtEWT7A/lAtcRqh8vzs5VirZ3/w9KbA6iisu4g15rG3S21LTY7xf9fLJp7vG/8AuoJgV/Fmp13BrbyW5s9Q0+FFA88TWLyFz32kTLt/ENSAbP8AYf8AhKtP8zzP7Q+xXPkY+75W+DzM++7ysfjRVWWSVPHllFL9mdJNOuXgIgYSx7ZLcODJvwQxZDjYPu9fUoAuT3bp4msbIWysktncSm4xyhR4QEz/ALW8n/gA9K0qz5pb4eIbKGOPOntaXDTvjpKHhEYz7q0v5e1aFABWfDLfHxDewyR409bS3aB8dZS8wkGfZVi/P3rQrPhivh4hvZpJM6e1pbrAmekoeYyHHurRfl7UAaFFFFAGbpl29zqGsxNbLCLa8WJXAx5wMET7z68uV/4DWf4q8WQeHIoLeKB77WLwlLHT4T88zep/uoOpY8AVlax4yv8AStT1DR7ay+361PchdKs14Bh8mItLK38MYkMgyeuMD1Gh4W8Jf2NLPquqXP8AaPiG8H+lXzDAA7Rxj+GMenfqfYAh8MeE57S/fxD4inS+8R3C7TIo/dWif88oQeijPJ6nnPWrCeFbHVvAmnaDrDLfxxWcMZuUbkuqACVG6g5GQfeulrL8NW9raeFdItrG5+02cNlDHBP/AM9YwgCt+IwfxoA5bS9f1HwjqUHh7xbOZ7aZvL03W2GFn9Ipv7snoejfXr1euXb2WnxSpbLclry1i2MM4DzxoX/4CGLf8BqbVNLsda02fTtSto7m0nXbJFIMgj+h7gjkGvOrvVde+HBtNKu5mv8AQ5722hstUmIL2sZmQSRT56jy9+1/YfgAeo0UUUAZs926eJrGyFsrJLZ3EpuMcoUeEBM/7W8n/gA9KKdNLfDxDZQxx509rS4ad8dJQ8IjGfdWl/L2ooAr6npsmpavbRXUUNzozWk6XVtModJJC8JjJUjBwFk/On/8I3oX9l/2X/Ymm/2fv3/ZPsqeVu/vbMYz74p89m7+JrG9F0qpFZ3ERt88uXeEhsf7Owj/AIGPWtLvQBlXHhvQbyyt7G50TTZrO2/1EElojRxf7qkYX8KoS+FtJvfE8t/fWOnXaxWVtDbQTQI7W2x5iWUEfKG3KOMf6v2rpMVlwW1ovinULlLjddyWVtHLBj7kavOUb/gRZx/wCgCSXQtHn1RNUm0mxk1GPGy7e3RpVx0w5GR+dcn4hvtO07xH9i8MaHp114yu1LNOLdAbZD1lnkAyBjtnLcCrXiLxPe3GqN4Y8KKk+slQbm6cbodOQ/xv6v8A3U79Tx1t6Vpeg+AdIke61CKKSdvMu9RvplWS5k7szE+/A7UAZ3gPwFF4UXWftcdvd3V9clmuzEgaaNoo96kAYVfN8zC9MYro7fw5oNpYz2Ntommw2dz/AK+CO1RY5f8AeUDDfjXGaf46SfUNYbw1pmp+Izd3iyxSQRmG2hAgiQoZpMAcoW4B+9WgdM8e66c3+r2Ph+1b/lhpsX2ifHoZZPlB91WgDav9M8J6VoLWmo2Oi2mjq+8wzwxJAG9dpG3NcTo/iHwp/wAI6mk+DfB91rdtNCiSpHYLFDIQoA8+WQBWb1Pzc5rp7D4beG7W5W8vLWXV74f8veqym5f8m+UfgBWz4auLW78K6Rc2Nt9ms5rKGSCD/nlGUBVfwGB+FAHEf8Ib4i13Sv7Mu7bw74c0Zm8z+z7GxS6fPuXURhvcKalf4R6BZadbJa2Z1C7iubb95qUnnBYRMhlVUI2KDGHGAo64r0aszXrN77To4Y7oWrC7tZfMJxkJPG5X6sFK/wDAqGBzlw9l4ivPN03wlperWumOYFvL0pHhkPK2+Y33bSMZJRcgAE8kbWnWGk62lj4juNBtYtRliSWOWe3Q3EQIyoL4yCAex4rG8MQ6/wCHdEt/DraK88lqWjj1ITxC2kUsWDsN/mg4PKhD83fB3DtaA6mCNAhtvGkOsWdhZwCSzuI7yeOFFllkZ4Cm5gNzcJJ39KKuT2jv4msb0XKqkVncRG3zy5d4SHx/s7CP+Bj1ooAramIYNfs79Fmub+GxuUhsYCgeZGkgLsC7KvylU6kfeqf+1bz+y/tf/CP6l5+/b9i8y383H97Pm7Mf8Cz7UT/Yf+Eq0/zPM/tD7Fc+Rj7vlb4PMz77vKx+NalAGXcareQ2NvcR+H9Snll+/bRyW4kh/wB4tKFP/AWNcR431XX4tam0/wAH6Ldy69fafAbq6ZkEdpAHm2DJO3zCxl744yN2Ko6lcXVxr19cW1zrFktzqsVnp2oPqUhs0dGAkBiDtkswkUK0YQ4A3AmvRYLi1bxVqFslttvI7K2kln/vxs84Rf8AgJWQ/wDA6Fqr/wBf1qD0djzbQvC/jWw8rRsSaNpsh3z3WlCCaWVm5Z5Z5nDl/UrGe2OK6HSPBOh2mvObnwzqN9cLn/icatPFdByOhAMhYH/gArvKKAOY8PXWdU8R+XpV/CxvFklEr2+PMFvCoRNkrHlFRvmC/frTt9VvJrG4uJPD+pQSxfctpJLcyTf7pWUqP+BMKNK+w/2jrn2TzPP+2r9s3dPN+zw42+3l+X+Oa1KAMv8AtW8/sv7X/wAI/qXn79v2LzLfzcf3s+bsx/wLPtVHwtrl7quhWlxceHLzTibOOVUZoQjkqDsjAkLD23heOuK6Ks/QZb6fw9pk2qR+XqElpE10mMbZSgLjHb5s0AR2+q3k1jcXEnh/UoJYvuW0kluZJv8AdKylR/wJhWXr961z4aiuLzSNSt2GoWjLa77bzS63EbIM+bswzhV+9n5uldRWXr/2H+zov7R8zyPttpt2dfN+0R+V+HmbM+2aAC41W8hsbe4j8P6lPLL9+2jktxJD/vFpQp/4Cxp13qd3bSW6xaHqF0JQC7wvbgQ+zb5VJx/shq0qKAMGVo5PHlkJILmOWHTrkQyEx+VKrSW5fA378qVTqoHzdelFWp/sP/CVaf5nmf2h9iufIx93yt8HmZ993lY/GigAnuLVfFWn2z2268ksrmSKf+5GrwB1/wCBFoz/AMArQnjaa3liSaSB3QqssYUshI+8NwIyOvII9QagvrOS7QiG6e0k2FBcQxo0qZKn5S4ZQPl5BU546Yqt/ZV5/Zf2T/hINS8/fu+2+Xb+bj+7jytmP+A596AMjT/AlrZvYC51bVNRt9PkM1tbXTQiNJc58w+XGhdgSSNxPJJ681swXbv4mvrI2yqkVnbyi4xy5d5gUz/s7Af+Bn1ptxpV5NY29vH4g1KCWL79zHHbmSb/AHg0RUf8BUUy50rUri/jlTxFe21tHEi+RBBBmRwTuZ2eNuo2jC7cYPrwAa9FZ8unXUmqJdrrN9FAuM2SJB5TfUmMvz7MKItOuo9Ue7bWb6WBs4snSDyl+hEYfj3Y0AR6VcWs2o65Hb23lSwXqx3D/wDPaT7PCwb/AL4ZF/4DWpWTYaRd2dxfSS65eXQuTlFkht18rgDIKRgsRjGWzwAMcZLrfSryGxuLeTxBqU8sv3LmSO3EkP8AuhYgp/4EpoA1Kz9BivoPD2mQ6pJ5moR2kS3T5zulCAOc9/mzUf8AZV5/Zf2T/hINS8/fu+2+Xb+bj+7jytmP+A596q+HvD97omlQ2Vx4i1DUDHbJArTRwqEKqBuXCbu38bP7560Ab1Zev3FrbadFJeW32iI3tpGqekjXEao3/AXKt/wGi30q8hsbi3k8QalPLL9y5kjtxJD/ALoWIKf+BKajm0a8l0cWX9v3xnEqyfbHht2kwGBxt8rZ24O3IOD2oA2KKy7jSryaxt7ePxBqUEsX37mOO3Mk3+8GiKj/AICop13pl3cyW7Ra5qFqIgA6QpbkTe7b4mIz/slaAGz3FqvirT7Z7bdeSWVzJFP/AHI1eAOv/Ai0Z/4BRUwsJv7b+3m/laHyGiFo0cexSSp3KwXePu8gsQcjgYooA//Z"]
math
multiple-choice
67
小颖有两顶帽子, 分别为红色和黑色, 有三条围巾, 分别为红色、 黑色和白色, 她随机拿出一顶帽子和一条围巾戴上, 恰好为红色帽子和红色围巾的概率是 ( )
$\frac{1}{2}$
$\frac{2}{3}$
$\frac{1}{6}$
$\frac{5}{6}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCABlAK4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooA+EPFngnwpq/7VmiSXP7Kz3gm8Navd32kzad4ZeW/me9sdt8wN95blSZF3yMJMzHaCC5HPfDPUbD4UfCv41eLPDfwftfh1remav4iEHjK+0rR3g0yJJSy6e4tr5bjOVWFREGiV2Q5dFOfs7wP8J5fD/jbWvGniDXZfE3ivUovsMdx9nFta2FisrSR2ttCGYqPmUu7O7SOuchQiJ5hqWoeGvg7Z+L/h/L8QLfS/EPi7WL3WjqM2iNdW+jx39wdq3OS0MZbLxxPcMqSOPuOAUMKNocvk/xd7fd/lsU3efN5r8Fb8/6ueBah8RvFPhHwr4f+Evi1vh5f+CPDuq2miyaxquuQeGNNvk0+xtLj7NIbie5mmAuJI0doYGDeSVZUWVin05+yv8AEjxb8QtF8Tt4l1Pwz4ns7PVHGmeJPCWvW2q2lxDJmT7K8kMUOJrcMqEtDHuVozhjuY834X/Yg0z4bXnhhPAHxB8UeC9I0OO9EVnax2N24e6S3EzRvdW8qxq72/mOmxhvc+X5S5U+q/B/4V3Xwth8Vi98U33i+617Wm1h9Q1K2ghuBm2t4NjiBI42IFuDuWNOGAIyCza31d/6ehklZLy/LX+v+GPQaKKKksKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivL/id8TtTt9ch8C+BYbfUvHt9CJnkuAXtNEtWJX7Zd4IOMhhHCCGlZSBtVXdAA+J3xO1O31yHwL4Fht9S8e30ImeS4Be00S1Ylftl3gg4yGEcIIaVlIG1Vd02PAfwh0LwP4Uv9GkjbX5dWZ5tc1HV1WafWJnXbJJcZG1gV+UIAEVAqKoUAVY+GPwx0z4X6HNaWk1xqWp30xvNV1q+Ie71K6YANNMwAGcABVACoqqqhVUAdhQB4n9j1z9nH5rGO+8T/AAqT79km+51Lw4nrCOXubQf88+ZYh9zzEwkfr2h65p3ibR7PVtIvrfU9MvIlntry0lEkU0bDIZWBwQR3FXq8h1z4e638MdYvfFHw1t1ubW7la51jwS0ixW1+7HL3FmzELb3R5JBxFMfv7WPmgA9eorm/APxC0T4laH/amiXDukcrW91a3ETQ3NlOuN8E8TANFIuRlWGeQRkEE9JQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVwPxM8Xa7Ag8OeBk02+8Z3Xl7heXMezSLaTzAL+4h3iR4wYnVVQfO4C7lG5lAM34nfE7U7fXIfAvgWG31Lx7fQiZ5LgF7TRLViV+2XeCDjIYRwghpWUgbVV3ToPhj8MdM+F+hzWlpNcalqd9MbzVdaviHu9SumADTTMABnAAVQAqKqqoVVAB8Mfhjpnwv0Oa0tJrjUtTvpjearrV8Q93qV0wAaaZgAM4ACqAFRVVVCqoA7CgAooooAKKKKAPN/H3wquNQ13/hMfBl/F4c8dxRrE1zIhaz1WFc7ba+jX/WIMnbIP3kRJKnBZHu/Dn4rW3ja5vNF1Kwk8NeNNNRW1Lw9eSBpI1JwJ4XGBPbsc7Zl4P3WCOGRe7rxL49+IPAEmvaRomuT+JLPxtawNqukal4R8P3+pajp6bxG0qta20yiNmAVo5QUcYDKwxQB7bRXjnh/wDa0+G/iNtCWzvPEYg1q9j03T7+98Iava2lxcu5RYxcS2iRBiysOWAyD6V7HQAUUUUAfkXqHjjxN428dfEODxT4z8/RPEBgm1m31PTIJLWSGwv8wx7LezklOI4zGFCPvL/OG6j179n7wLb+GvjHp2oQ+CVbVbPSNSl/4R638NppV5q1qwhhkWJ59A0W3cI00W5ZZX4cbdvIb6H8cfsT+FvF9x8TZ7X+ydFuPGNjZ6fb3FvoMDSaVFE5ecRknDrO5DMuFUsMsHq78If2OfD3wV+Kdr4y0LV/MMek3elTWX/CP6Pp/medLbSK+/T7O1zt+zkYkWT/AFmVKfNuI72fb/P/AIApX3Xf/I8O+MHgnwvNeeF/COg/sl2vhPUPEl3LbtqTeG/CdxdpBFC0sotE+3GJZiq8STHYnJ2SnCV9LfszeENL+G3w9h8HaD8NNe+G+iaTjyIddurC4lvHkLNJLvtbu4LNu+8ZCv3lCjAwt3Uvhf4n8QfGPw74s1XxRpb+HvDsl3Npui2WiSQ3JeeAwnz7prp1cKGcgJDHkkZ6c+nY/lihX+8H08haWk5/GigYZozRSbaAHV8Q/AnQfDPxy+MfxGTxncR/EfSrfW7y3t0bwjfR6PfXEZCySXc0vnWkxtlC29snmgKiySCPfKXr7er5d8fWvwx8DfFDQdG1T4reIdD+KOqTtLb69ObbUbq3jmLqsCm7tZ7XTopSQirDHB5xiQEuVOV1v/XQe6sWP2J/hH4F8P8AgO48RaX4K8O6b4gj8R+IrNNWs9Kgiu1gTV7uNIhKqBgioiIFzgKqgDAFfTVeS/CT4A3PwfkihsfiV4u1nRlury9k0bVYtKNvNPcyyTSuzw2Mcw/eyvIAsgAOBjb8tetU+iJ+1J92397CiiigYUUUUAFfFv7Y2h3fiD4raXe6NZeK01LTbCGJr/R7DUgsbrP58bRTQ+HNSTepx88cyMMsjLgnP2lXB+L/AIJeB/G1x4iu/EOirqU2uWEWm309xdTblton8xEhbePs4EmJMw7CXVXJLKpC10aH5M/O74D+DPE2mav4J1Txpo3j520zVbe8lgudJ1eQ26Q3TyoscaeFcqhLeYYku0WRiGYqfu/qbXnt18B/AeqG6mk0QNJdX8Or/aIbydJIr2NAguoZFkDQzMgCvJEVaQEhywJz6FVdLInrcKKKKQwooooAKKKKACiiigAoory/4nfE7U7fXIfAvgWG31Lx7fQiZ5LgF7TRLViV+2XeCDjIYRwghpWUgbVV3QAPid8TtTt9ch8C+BYbfUvHt9CJnkuAXtNEtWJX7Zd4IOMhhHCCGlZSBtVXdPOtW+CPhrw34++G/hu+t/8AhJV1z+2pNevtYVZp9Ymks0WSS4OMHIAUKAFRQqqFVQB7L8Mfhjpnwv0Oa0tJrjUtTvpjearrV8Q93qV0wAaaZgAM4ACqAFRVVVCqoA5n4if8l2+EX/cX/wDSVaAMXw/4g1P9n/XLHwn4tvrjU/Al9Mtr4e8VXkheWykY4j0+/kPJJOFhuG+/xG58za0vuFZ/iDw/pvizQ77RtZsLfU9KvoWt7qzuow8U0bDDKynggivH/D/iDU/2f9csfCfi2+uNT8CX0y2vh7xVeSF5bKRjiPT7+Q8kk4WG4b7/ABG58za0oB7hRRRQAUUUyaaO3heWV1iijUs8jkBVUDJJJ6CgAmmjt4XlldYoo1LPI5AVVAySSegr5k+Jl7f/ALS3gPxXd2ss+nfCGw027liljJjl8VTJE5Vgeq2CsAfW4I/54/63pP8ASP2qLz/lpa/BiCT3R/FrqfzGngj/ALeMf88f9b6Z8UoY7f4TeL4okWKKPRLxUjQAKqiBwAAOgoA8P+Gd7f8A7NPgPwpd3Us+o/CG/wBNtJZZZCZJfCszxIWYnq1gzEn1tyf+eP8AqvpuGaO4hSWJ1likUMkiEFWUjIII6iuU+FsMdx8JvCEUqLLFJolmrxuAVZTAgIIPUV5n/pH7K95/y0uvgxPJ7u/hJ2P5nTyT/wBu+f8Anj/qgD3qimQzR3EKSxOssUihkkQgqykZBBHUU+gD4A+Kn7dfxF8Aya7cLfeCraGHxDfaXY2N5YWqyG3g1SSy3u0+v200jhY/MLR23lAnBdAHZPTvg9+1J4s8R61FeeIrzw/rHhWTQta1XfoNharcB9Pax3BZbbWdQgcMt442syOGjGcAgnyvXPhB4s8UeDfHelW/wu+J91q83jvUL61vrPxUul6VPajXWufMW0fVbfczRbikpgBLFGV8BXHQfD34ZfEyPxBd6Vr+heNbq4uPCnipLfUfEs8U1ukt3/ZSQWUMv9q6g8YH2eRgJ5xks5XIVtsRbUId3H8eW/5hL4/Lm/C56jfftW+K7jxV8OYNJ+DXi1tG8UwXVyq3U+jC6uolt1mjaAjU9iYDAsJtp2nA+bivX/hV8Ubf4q6Pqt5Fomq+HbnS9Tn0m807WPs5niniClxm3mljYfOMFXNeUah4b8R+FtU/Z9mXwzqesXPhvRb6G/s9NETskw02OMRea7rCrM6lVLyKpP8AF3rtf2d/DuvaLo3jC/8AEGh3Phy517xPfaxBpl7Nby3EMEmwIJDBJJHuOwnCu2ARznIGrtzNLZf5olX5U3v/AMA9XoooqSjC8ceMbHwD4Xvtd1BLieC2CqltZxmWe5ldwkUESD70kkjIir3ZwK+dfC37QWi/DfwrNr9h8JfFF2mva7Hbarq2iX1jeW8+tXFwts1utzd3cE1wsc7LbiVY/JUR7UbYnHYftsaPF4j/AGftY0ho/Db3OoXFtaW3/CTafLqEQkeQKfItoYpZZrnYXEaxLv3HIIxmvDfiH8aPCOg/A7wh4Q8Q+KfCvhzXNB8Y+G0j0Fjb6NPbabBqVnJHK1g99czW6LAA5E7JIqgl448EUo6ys+6Xyur/AJ/1Z3crqLkuzfzSbX5f1c+zvCGv33iTRUvdR8Nap4UuWdlOm6xJayTqAeGJtp5o8Hth8+oFfI97+1vqevX/AIZ8TTfD7wjFd21+bTT31TxrfWUtpFcvLAbqQHS/JaHFu4d0eURkYOGyK+p9H+J3hnxl4P1PxF4Q8S+HvE+nWaSg31nq0UlisqJvKS3EXmCMAFSxwSqtnB7/AJneNvgjD4s/srWFtvBNgtxD/wAJkrSWlnvvtNjlKzSRhfBsbyrl1Y7/ADRsZZHjdGVqPtJf1/Vrh0f9f1qffHwA+PepfGTWPFWm6n4dsdEl0WOxniuNO1G5u4byK5SRkdftFnayKMR5BKEMGDKSCCc74+fHvwto2k+LfBieEtZ+JfiCC1gjvvC2n+HtRvLeSK5IAE9xBaTRIpj3vg5YhCACcCuJ/Y38Pf8ACvfFfivwwLXwvZme0ttRK6PNaJJOh/1U8SW2g6ZHcW7CRh9oV51DLsGCXrC1/Wv7J/as+Lo/4TL4ieFd9noZ2eB/CX9tpNi3m5mb+zLzyyP4RlM5PDY4b6WEup7h8PfjR4FW98N+BdMHiywu5YGtdMj8TeGtas2uFgiLMPtN9boJHCIWO5yxx3r1mvjzSdc/tb9pD4PJ/wAJt8SfFOy41U+R438Hf2LBF/xLpfmik/suz3v227n452jrX2HQAV5D8eLHQvEGqeE9A8XeKV0vwpqUtwbvw+kD7tZMMXnbZ5lJ8uzjRHabcFRsxq7hWKSevV8b/tDW9vH+1Bpd/wCItL8W6p4Ct9Msjq7XC6XaeH3lF3mztftV41uxxOVnlijmlMrLbq0bBAoXVLuHRvse66b+0/8ABO4ltbCw+LXgGSR2WC3tbbxJZEsThVRFEvJ6AAVrfG/xboHhX4eahD4hvruwttaVtFgksNLudRnae4RkRUt7dHkc9TgDt1Fcf4K/5PA+Kv8A2Knhz/0o1Wsz9s6xXWvhzpOnR2Gr399/asV5brpen3d0qmJWz5vkaVqS7SHxslg2uCRu4Iovon/W4/tOPb9Un+o/wr+1B8OfCfhuLQGl8ZTy+GdOt4dQc/D7Xka3RYRtkmX7GfKDKhYbjjAPJxmvatF1jTfGXhuw1Wwdb7R9VtI7mCR4yFmglQMpKsAQCrDhgDzgivym0v4feO5vEWuW+o2XxEm0WOG0hsvtVlq0kcwS3aIE7vB0nmNErbY2aGJos/IWPzD9B4fs0f7Itxb2ltfWdvZ+DprJYNSt7iCdPJtGiIZbiCCXqhwzQx7hhgihgKJPli5dgj70lHuW/hho+k/Cvx9qvw80vxE82mvYJreleF5bSRjo9uZWikWO5+4Ldnx5cDfMm2QKTGAqetV8TfB/9n7+0vhJ4Iu/+GaPgXqv2jQ7GX7fqGpbbm53W6HzZR/Yb4ds7mG9uSfmPU+q/sa6H/wjeg/ErTP+Ee0bwp9m8a3if2N4ek8ywtf9GtTshbyYcrzn/VJyTx3qrWbj2/z/AOCTuub+tj6EooopDCiiigAooooAKKKKACiiigAooooAKKKKACuK1z4N+D/Enia68R6jpBn8RTWhso9YW6mS8soSjIy2cyuHtCyu25rcxls5JJANFFAHJ2v7J/gCy1u51iCfxpFq11FFBcXy+P8AX/OmjiLmNHf7bllUySEKcgb2x1NeheJPAuh+LtT0G/1ix+3z6Hd/b7BJJZPJiuNpVZTEG2O6hiVLqxQncuDzRRQBy2mfs5/DjSLa3trfwtbGzht7yzWznllmt3tbqQyT2zxO5SSAuSywuDGh+4q11Fh4D0XTvA//AAiEcFxLoH2R7D7Pc3k87mBlKlDLI5kI2sQPmyBgDGBRRS6WHd3ucFp/7IPwM0zT7azh+DvgV4beJYka48O2k0hVQAC0jxlnbA5ZiSTySTXZ/Dz4W+E/hLpd7png3QLPw3pl5ePfy2Onx+XAJnVVZkjHyxghF+VAF4zjJNFFMR//2Q=="]
math
multiple-choice
68
如图, 在正方形 $A B C D$ 中, $A B=1$, 点 $E, F$ 分别在边 $B C$ 和 $C D$ 上, $A E=A F$, $\angle E A F=60^{\circ}$, 则 $C F$ 的长是 ( )
$\frac{\sqrt{3}+1}{4}$
$\frac{\sqrt{3}}{2}$
$\sqrt{3}-1$
$\frac{2}{3}$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABvAGsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD03x/rb2mj3WmWjXSXVxbSZmgtZZBECMKCyKRGWJ4LEYAY5BArsI0EcaovRQAKxJPB+jy6fdWTpemC7uPtM/8AxMLjc8mAMl9+7GFX5c44HHFcXbeJfHt7q99ZaTBoslnZySrGssUr3DRJcTQKctMqu37jLEsv3h60Aeo0V58vijWoWEeqa5pmjyE4xqWgTxJn0Ev2oxn8GNb0UPiueJZYfEOgSRuMq6aRKQR7EXVAHR0Vz/2Pxh/0HdD/APBNN/8AJVH2Pxh/0HdD/wDBNN/8lUAdBRXP/Y/GH/Qd0P8A8E03/wAlUfY/GH/Qd0P/AME03/yVQB0FFc/9j8Yf9B3Q/wDwTTf/ACVR9j8Yf9B3Q/8AwTTf/JVAHQVg+Moo7vwxc6fJDHN9vZLNUkUMMyMF3YP93Jb/AIDTfsfjD/oO6H/4Jpv/AJKrGvNIvNT8X6XYeIruC7j+yXN3bvp32qwaGSNoUz8twwbKzsM4BHrgmgBy6Vpmg+P9GtPD1nb2DT207ahb2kQRHgUAI7qvGRIQAx55YZxmu3rO0rQtO0UTGxgKyTsGmmlleWWUjgb5HJZsDgZJwOBWjQAV57oX+h6tpV90S51PWdPc+pa7mlTP08lwP973r0KvPnUx/D6+v0BL6brV7fjHXbFqEruPxQMPxoA9AZQ6lWAKkYII4IrBl8GaKZWnsoJNMuGOTLpsrW5J9WVCFf8A4EDW8rBlDKQVIyCO9LQBzv2HxRp//Hpq1pqkQ6RajD5Uh/7axDH/AJDNH/CUT2XGs6DqNkB1mgT7XD+ceXA92Ra6KigChput6XrKM+m6hbXYX74hlDFD6MByD7Gr9ZmpeHdH1iRZb/TreaZfuzlMSp/uuMMPwNUP+Ed1Kx50fxFeRqOkGoL9sj/NiJf/ACJQB0VFc7/aviKwONQ0FLyMf8t9LuAx+pjk2kfRWaprTxfod1cLbNei0u24Fteo1tKT7JIAT+GRQBuVz95/yUPRv+wVf/8Ao20roK5+8/5KHo3/AGCr/wD9G2lAHQUVza+OtCZwM6kFM4tvMbSboIJS+wKXMe0HcQvJ610lHmAVzXha3ju/DV9bTLuil1LU43HqDeTg10tc/wCDf+QHc/8AYV1L/wBLZqAH+DbiSfwlYJO264tkazmPrJCxiY/iUJ/Gt2ud0H/Q/EPiHTOi+fHfRD0SZMH/AMiRyn8a6KgAooooAKKKKACoLuztb+3a3vLaG4gb70cyB1P1B4qeigDnf+EOsrU7tHvL/R27JZz5iH/bFw0Y/BRWFf6hc+GfFlnfeJNXsZbSDR75o5xD9nY/vbX5Wy5VmJwBtxk9q7+ufvP+Sh6N/wBgq/8A/RtpQwM/wlok4gtNTutWOowXFqJliPltFHLI4lcxlFG4bgCCxY8ZzXYUUUAFc/4N/wCQHc/9hXUv/S2at853D6dK5/waw/sO4/7CupH/AMnZqAEvv9C8daTc9Ev7aayf3dcSx/kqzfnXRVznjNhDokWpjhtMu4bsn0RXAl/8hNJXRZ9qAFopM8Zoz7H6UALRSbh70oOaACiiigArn7z/AJKHo3/YKv8A/wBG2ldBXP3n/JQ9G/7BV/8A+jbSgDoKKKKAExzmuf8ABozodznvqupf+ls1dDXP+Df+QHc/9hXUv/S2agDW1Cxi1LTLqxn5iuYXhf8A3WUg/oaz/Cd5Jf8AhTTJ5yftIgEU/wD11T5JB/30rVtVzvhv/RNU8QaWeBDfG5iH/TOdRIT/AN/PN/KgDoccYox7mlooATb7mlAxRRQAUUUUAFc/ef8AJQ9G/wCwVf8A/o20roK5+8/5KHo3/YKv/wD0baUAdBRRRQAVz/g3/kB3P/YV1L/0tmrR1PW9J0VY21XVLKwWUkRm6uEiDkdcbiM9a5Xwv4o0600meN4dUlD6jfTJLbaVdTxSI91K6MkkcbKylWBBBI5oA7muduP9C8f2k3RNSsHt2P8AtwtvQf8AfMk35U7/AITLS/8An11z/wAEV7/8ZrG8Q+I7S6/su6s7HXJLmxv4pgv9h3ikxnMcnJi7RyOcd8etAHc0Vz//AAmWl/8APrrn/givf/jNH/CZaX/z665/4Ir3/wCM0AdBRXP/APCZaX/z665/4Ir3/wCM0f8ACZaX/wA+uuf+CK9/+M0AdBRXP/8ACZaX/wA+uuf+CK9/+M0f8Jlpf/Prrn/givf/AIzQB0Fc/ef8lD0b/sFX/wD6NtKP+Ey0v/n11z/wRXv/AMZqnbalHrPjrTri0tdSWC30y8SWS606e2UM8tsVAMqKCSEfgZ6GgDrKKoWeuaRqMskVjqlldSRyeU6QXCOVfBO0gHg4VuPY+lX6AOR8WPdz6rYxWV3Y2p02KXU5pr6JpIUwpjTcA6EZ3SHOcDYTg8VZ8ALC3gjTbqCGWEXqG8dZWDNvlYyMcgAYJYkYA4xwKu3XhLw3fXr3l54e0m4unIZ55rKN3YjoSxGT0rYoQMK53xnez2OjQtbX95ZTy3cUSyWdsLiQqW+cCMo5b5Ax4XPA7Zroq5/WdH1q+1mzvrHVdPt4rQMY4bnT3m+dhtLllmT+EkDj+JuueABPCf2+eyOoXGrXd/Z3kaS2ovIokljHzdfLjQfMChwRkcj69DWbolheafYtFfXyXc7SF90UHkxovAVETc21QAB1OeT1NaVABRRRQAUUUUAFch8QJN1jpGnzv5em6hqcVtfvu2jySGbYT2DsqofUMR3rr6iuba3vbaS2uoIp7eVSskUqBlcHqCDwRQBn/YdKl1y0aNYhe6bAyxxxgfuo5MDBAHyg7OBx0PpWrVXT9M0/SbX7LptjbWVvuLeVbRLGmT1OFAGatUAf/9k="]
math
multiple-choice
69
如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于 大正方体的棱长. 该几何体的主视图、俯视图和左视图的面积分别是 $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$, 则 $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ 的大小关系是 ( )
$\mathrm{S}_{1}>\mathrm{S}_{2}>\mathrm{S}_{3}$
$\mathrm{S}_{3}>\mathrm{S}_{2}>\mathrm{S}_{1}$
$\mathrm{S}_{2}>\mathrm{S}_{3}>\mathrm{S}_{1}$
$\mathrm{S}_{1}>\mathrm{S}_{3}>\mathrm{S}_{2}$
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACeAHEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKK86+NWs6pqmqWfwu8J3strrWvwmbUdQgPzaLpgO2W4B7SucxQ/7ZZ+RE1AHUXPjbwZb3ElvceLtCimicpJHJqUKsjA4IILZBB7Uz/hPPA/8A0Ofh/wD8GkP/AMVVXRvhp8PdK0m10yx8E6BHbWcKQwqdNiYhFAAyxUknA6k5PerX/CB+B/8AoTPD/wD4K4f/AImgA/4TzwP/ANDn4f8A/BpD/wDFUf8ACeeB/wDoc/D/AP4NIf8A4qj/AIQPwP8A9CZ4f/8ABXD/APE0h8CeBgMnwb4f/wDBXD/8TQBZ0vxd4U1PUI7HTvE+j3l1Nny4Le/ikkfALHCqxJwAT9Aa2K+aPD9npHir9qjwT4z0bQdL0/wvZSaraeHWtbJIm1GRLcrPfEqBujJPlxeyO44kXH0vQAUUUUAFFFFABRRRQAUUUUAcn8bPiN4X+Fnw9vPF3ivUbe1tYB5dvFLOkb3s5UlIIt5ALttPsAGY4VSR5v8ABX4lfCHQNKvdc8T/ABo+HVx4s8SzC81yeLxTZtHGwGI7WEmTPkwphF9Tuc/M7V2nxmUN8RPhMGAP/FaTnkdxoOr16BQB5/8A8L2+CH/RZPh//wCFRZf/AByj/he3wQ/6LJ8P/wDwqLL/AOOV6BRQB5//AML2+CH/AEWT4f8A/hUWX/xyuV8afETwx8WvEdp8Jfhz430fVF1S1e98S6houqxTtZ6WjqkkUbxscTTM6RZHMaM78HZu9qrz7xEo/wCGqfBzYG4+C/EIJx2+26J/iaAIPGFlZ6b8ZPhjp2n20VraWcOpQ28EKBUijW1RVVQOAAAAB7V6RXi/xKs/FXj79oTQ7bwL4jj0S08AR3J17UWs0uQ9zdwoIrSNXGC6xjzH5G1ZYupOB1H/AAiPxP8A+iu/+W1bf/FUAegUV438Xj8Q/Afwx1vxfffF5Wj0myeaOI+Grb/SJsYihX5uWeQogHcsK9E+Euoavq3wp8M6r4gMR1a+0W0uNQMQAT7Q8KNJtA4xuLYxQB0FFFFABRRRQAUUUUAef/GT/kovwn/7HO4/9MOr16BXn/xk/wCSi/Cf/sc7j/0w6vXoFABRRRQAV4r+0l4m1Hwd8UdH8R6PZ293qFn4F8QC0huZCkRlfUNCjUuVBO0FwSAMkDGRnI9qr5//AGyP+Rw0r/sTNZ/9O3h+gDovht4V+Mfg3wnDotnP4Fun8yS4vL25N4Z765kYvLPKQAC7uxJwABwAAAAN7/i+H/VP/wDydr0CigD56+JsHjbxF4wvtC+IMugNp2geEb7XrK00hJts15h4I5JjKeRGrSMqgffYNnKLj2X4S/8AJK/DP/YFtP8A0Slee/FsgfFTxMSQP+LZXY5/67vXoXwl/wCSV+Gf+wLaf+iUoA6CiiigAooooAKKKKAPP/jJ/wAlF+E//Y53H/ph1evQK8j/AGjPFFlonxM+F0D2WrX81n4gutWu4tK0m61CW3s00u9tGmeK2jkkC+de26A7cEt1ABI3P+FyeEf+gR8QP/Dca9/8h0AegUV5/wD8Lk8I/wDQI+IH/huNe/8AkOj/AIXJ4R/6BHxA/wDDca9/8h0AegV87/tuXtpp3iDT72+uI7e3h8F6yXkc4A/4m3h4fmSQAO5OK9I/4XJ4R/6BHxA/8Nxr3/yHXmvxJiPxh/aN+HMWkeHvET+GdJtNTk8Ty634Wv8ATYPLE+nXNtEPtkEayl7mzi+Rdx2oxIwKAPSf+F3fDD/oZ/8Ayn3P/wAbpf8Ahd3ww/6Gf/yQuf8A43XoFZHj7xHp3hHwZqXibVjJ9k0y2aeRYl3SSEfdjRf4nZiFVe7MB3oA+bvi9f6T8XvjFqkfhy/mvPD3hvwTJfa5MltJHHJcJLJLaWrF1GCZFWfHcW4HRjX0R8Jf+SV+Gf8AsC2n/olK43SfDmo6D+z54qvfEIQ+JPEGn32q66yNuVbmS3IEKt3SGNY4VPdYlPUmuy+Ev/JK/DP/AGBbT/0SlAHQUUUUAFFFFABTLiWOGF5ppFjjjUs7uwCqBySSegp9ecftW2qal8G20aee6itdZ8Q6Fpd8LW6kt5JbW51izt54vMjKsFeKWRGwRlXI70AL8BopPEM2rfFS+jZZPFjIujpIpDW+kQlhajB6GXfJcH/ruFP3BXo1eewfBbwbDCkMOqePY441CoifEXXgqgcAAC84FO/4U34R/wCgv8QP/Dj69/8AJlAHoFFef/8ACm/CP/QX+IH/AIcfXv8A5Mo/4U34R/6C/wAQP/Dj69/8mUAegUV5/wD8Kb8I/wDQX+IH/hx9e/8Akyj/AIU34R/6C/xA/wDDj69/8mUAegV5v4q/4rn41WHhVPn0XwY0Osa1/dnv2ybK2Pr5eDcsOzLbHo1WP+FN+Ef+gv8AED/w4+vf/JlUv2TNKt9K+GGoxRTXlzK3i7X45ru+u5Lm5ufI1W6tYmlmkJeRhDbwpuYk4QUAdb8Wv+SV+Jv+wLd/+iXo+Ev/ACSvwz/2BbT/ANEpR8Wv+SV+Jv8AsC3f/ol6PhL/AMkr8M/9gW0/9EpQB0FFFFABRRRQAV5/+0t/yTrTf+xz8Mf+n6wr0CvP/wBpb/knWm/9jn4Y/wDT9YUAd9u65wMH1pdw9Rx1pDwpLEDNG0lffOetPQQ7IHU0ZGcZ5ppU4wO4xRg59ic0DHEgdTRkZxnmmsCT29KMHPsTmgB2R615/wDs0/8AJOtS/wCxz8T/APp+v673YcdF7/rXBfs0/wDJOdS/7HPxP/6fr+gDoPi1/wAkr8Tf9gW7/wDRL0fCX/klfhn/ALAtp/6JSj4tf8kr8Tf9gW7/APRL0fCX/klfhn/sC2n/AKJSkB0FFFFABRRRQAV5/wDtLf8AJOtN/wCxz8Mf+n6wr0CvP/2lv+Sdab/2Ofhj/wBP1hQB6BRRRQAUUUUAZE3ijw7D42h8ITazZx69c2ZvYNOeULNNAGKmRFP3gCDnHTvWvXzh+0l4Lh1f4rav8RNc0m9OmeDNO0cC5TzIX+y+bfNfy2864ZXhSa3n3RkMGtVGfmIr3bwHp+r6X4bisdZ8RHxBNEzeTqElskMs0Ofk83YdjyAYBdVQN12rQBs15/8As0/8k61L/sc/E/8A6fr+vQK8/wD2af8AknWpf9jn4n/9P1/QB0Hxa/5JX4m/7At3/wCiXo+Ev/JK/DP/AGBbT/0SlYP7Qmp3Z8Hx+C9FcDXfGsjaPYNtDfZo3RjcXTA/wwwiR+eC/lp/GK7Hw3pkOi+HbDRraSWSHT7WO2ieUguyogUFiABnA5wAPagC7RRRQAUUUUAFef8A7S3/ACTrTf8Asc/DH/p+sK9Arz/9pb/knWm/9jn4Y/8AT9YUAegUUUUAFFFFAEd5BDdWstrcwpNDMhjljkXcrqRggg9QQa4X4ATz6foN/wCAb+Z5L3wVd/2ajyNl57EqHs5ST94mBkRm7yRSeld9XnvxC/4pX4seHfG6fJY6vs8N64f4QJHLWMzf7lwzQj/r8J7UAehV5/8As1cfDnUv+xz8T/8Ap+v69Ar5+0G9u9U+Gv8AwrXRbmSDUvGHjXxXFdXELYksdMj16++13AI5VirrCjDkSTof4TQB3Hwh/wCKz8Z6p8VJ/msZkfSfCwPQaej5lul/6+ZkDA94oYD3Nek1X0qytNM0u203T7aO2tLOFILeCJdqRRqAqqoHQAAAD2qxQAUUUUAFFFFABXH/AB08Pa54m+H62HhtNPk1O11nSdTgi1C5e3gm+x6jbXbRtKkcjJuWBlBCNgkcV2FFAHn/APa/xv8A+iefD/8A8Ly9/wDlTR/bHxv/AOiefD//AMLy9/8AlTXoFcN4o8QfEi28W3GleHvC/ge/hWIT2/2/xlcWl5JFwGdrdNPlCqHyuQ7A4HIJwE3YCD+2Pjf/ANE8+H//AIXl7/8AKmj+2Pjf/wBE8+H/AP4Xl7/8qay/gt8RfiJ478H6H4zuvAXhrTPDusWYvWeDxTdXd9DEVJGLYaeqyPwBtEnfgk8GDxR8f/DljNFa6J4W8c61frNA15p8fgjWobmG0kcobhVezwwUqxwxTcEfaxZQrPZ2A2/7Y+N//RPPh/8A+F5e/wDyprH+IFp8YvF3gnVPDOofD/wHHb6pavbtLH49vQ8JI+WRD/ZPDo2GU9ioNbrfF7wZHoeoaxdxeKrCz0xI3uJdQ8GataZ3yLEixrLbKZXLuo2Rhm5zjHNZOm/HDRZ9e1K1u/B/xAtbG1MQsrw+Atcc325NzkRiyzGFJC/McsQTgDBIBnfC7xv8bfEXhJJpPAfgSW+0+eXTtSM3jO7gf7XbuYpSYl0xwgZlLqAzDY6kEgg1ofs2/DTWPBbeINf8XXNjceIPEOr310sNjM89vpdnNfXF2lpFK8cbSYkupXZyibiwGMIpqDwB4m0Z/ivDrvh+4ml8N/EqCQwPNaS2zR6vYhopUaKVVdHkt4SNrKCPsLevPrNAXuFFFFABRRRQAUUUUAFFFFABXi3iD4q/C/Rv2mLiLV/iR4R097Pw09ncrd67bRGC4F0CYXDONrgDO08+1e00VLV/x/FWDo1/Xc+W/wBifxF8EdH+Efgi6m+LNlD4kXSUSbSrv4jTvFHKykMn9nyXRhUjJwoiG08gAiuiaLwV4q8V678ZfHviS/8ACXhe9hs9E8NXkniq88Oi+t4TPKblzFPAWWWSeTyhJkmOIOoAk5+gqKp66g2235nzaksVz+zD4ovNP1jVNX0W48cQf2Leahq1xqPm2ianaRI0VxcO7yRFo3KsGKnJIJByZPEHhjx9ovim48ZeJNbt/DWi2PjL7fca5q3xT1OCH+zBfZWE6bsNkqvEVjVWkH3hkBjivo6ipStNS7JL8v8AL8wsmnHo/wDg/wCZ4V8N9FufFP7J1vdeHJIZtVtNZ1HW/Dtwrjy5Z49UuZ4CHHBimX5CwyDHK2Mg17B4H8QWHivwbpfiXTC/2TVbSO6iDjDoHUHa47MpJBHUEEdq1az/AAzoel+HtPksNHtfs1tLdz3bRB2ZRLNK00hGSdoMju2BgDPAFUKKskjQooooGFFFFABRRRQB/9k="]
math
multiple-choice
70
有一把磨损严重的直尺, 能看清的只有 5 个刻度(如下图), 那么, 用这把直尺能量 出 $\quad$ ) 种不同的长度。
4
6
9
11
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCABPAuEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorwb4V6Z8Y/HnhH/hJx8brrS0ur+8jjsovDFhKsCRXUsSqHZMt8qDk810f/AAr34x/9HB3/AP4SWnf/ABNAHq1FeU/8K9+Mf/Rwd/8A+Elp3/xNeb/tcXPxv+D/AOz7r3xE0/44XGp3Gjm2CWk/hbT0STzbmKE5YJkYEhP4UAfT1FeM+E/Bvxm1fwrpmrSfH++je/sobhkXwnpxCl0DYB2ds1of8K9+Mf8A0cHf/wDhJad/8TQB6tRXlP8Awr34x/8ARwd//wCElp3/AMTR/wAK9+Mf/Rwd/wD+Elp3/wATQB6tRXlP/CvfjH/0cHf/APhJad/8TR/wr34x/wDRwd//AOElp3/xNAHq1FeU/wDCvfjH/wBHB3//AISWnf8AxNeU+KNX+OWlftbeGfg+nxsnks9e0S51GS/bwvp4kiaIPhQuzBB29fegD6soryn/AIV78Y/+jg7/AP8ACS07/wCJo/4V78Y/+jg7/wD8JLTv/iaAPVqK8p/4V78Y/wDo4O//APCS07/4mj/hXvxj/wCjg7//AMJLTv8A4mgD1aivKf8AhXvxj/6ODv8A/wAJLTv/AImj/hXvxj/6ODv/APwktO/+JoA9Woryn/hXvxj/AOjg7/8A8JLTv/ia8p+O+r/HLwD8Wvhp4QtfjZPeQ+O9WlsLieXwvp6taqgQ7lATDH5+/pQB9WUV5T/wr34x/wDRwd//AOElp3/xNH/CvfjH/wBHB3//AISWnf8AxNAHq1FeU/8ACvfjH/0cHf8A/hJad/8AE0f8K9+Mf/Rwd/8A+Elp3/xNAHq1FeU/8K9+Mf8A0cHf/wDhJad/8TR/wr34x/8ARwd//wCElp3/AMTQB6tRXlP/AAr34x/9HB3/AP4SWnf/ABNH/CvfjH/0cHf/APhJad/8TQB6tRXlP/CvfjH/ANHB3/8A4SWnf/E0f8K9+Mf/AEcHf/8AhJad/wDE0AerUV5T/wAK9+Mf/Rwd/wD+Elp3/wATR/wr34x/9HB3/wD4SWnf/E0AerUV5T/wr34x/wDRwd//AOElp3/xNH/CvfjH/wBHB3//AISWnf8AxNAHq1FeU/8ACvfjH/0cHf8A/hJad/8AE0f8K9+Mf/Rwd/8A+Elp3/xNAHq1FeU/8K9+Mf8A0cHf/wDhJad/8TR/wr34x/8ARwd//wCElp3/AMTQB6tRXlP/AAr34x/9HB3/AP4SWnf/ABNH/CvfjH/0cHf/APhJad/8TQB6tRXlP/CvfjH/ANHB3/8A4SWnf/E0f8K9+Mf/AEcHf/8AhJad/wDE0AerUV5T/wAK9+Mf/Rwd/wD+Elp3/wATR/wr34x/9HB3/wD4SWnf/E0AerUV5T/wr34x/wDRwd//AOElp3/xNH/CvfjH/wBHB3//AISWnf8AxNAHq1FeU/8ACvfjH/0cHf8A/hJad/8AE0f8K9+Mf/Rwd/8A+Elp3/xNAHq1FeU/8K9+Mf8A0cHf/wDhJad/8TR/wr34x/8ARwd//wCElp3/AMTQB6tRXlP/AAr34x/9HB3/AP4SWnf/ABNH/CvfjH/0cHf/APhJad/8TQB6tRXlP/CvfjH/ANHB3/8A4SWnf/E14/8As2z/ABu8cfFH4paBcfHTUrePwjrsdjDI2gWUwmDK53BXXEf3ei8UAfW1FeU/8K9+Mf8A0cHf/wDhJad/8TR/wr34x/8ARwd//wCElp3/AMTQB6tRXlP/AAr34x/9HB3/AP4SWnf/ABNH/CvfjH/0cHf/APhJad/8TQB6tRXlP/CvfjH/ANHB3/8A4SWnf/E0f8K9+Mf/AEcHf/8AhJad/wDE0AerUV5T/wAK9+Mf/Rwd/wD+Elp3/wATR/wr34x/9HB3/wD4SWnf/E0AerUV5T/wr34x/wDRwd//AOElp3/xNH/CvfjH/wBHB3//AISWnf8AxNAHq1FeU/8ACvfjH/0cHf8A/hJad/8AE0f8K9+Mf/Rwd/8A+Elp3/xNAHq1FeU/8K9+Mf8A0cHf/wDhJad/8TR/wr34x/8ARwd//wCElp3/AMTQB6tRXlP/AAr34x/9HB3/AP4SWnf/ABNH/CvfjH/0cHf/APhJad/8TQB6tRXlP/CvfjH/ANHB3/8A4SWnf/E0f8K9+Mf/AEcHf/8AhJad/wDE0AerUV5T/wAK9+Mf/Rwd/wD+Elp3/wATR/wr34x/9HB3/wD4SWnf/E0AerUV5T/wr34x/wDRwd//AOElp3/xNH/CvfjH/wBHB3//AISWnf8AxNAHq1FeU/8ACvfjH/0cHf8A/hJad/8AE0f8K9+Mf/Rwd/8A+Elp3/xNAHq1FeU/8K9+Mf8A0cHf/wDhJad/8TXj/wCzLN8bvHfj/wCJ+j3Px01K2Twl4lOnRO2gWU/nKN3zBXXEf3furxQB9bUV5T/wr34x/wDRwd//AOElp3/xNH/CvfjH/wBHB3//AISWnf8AxNAHq1FeU/8ACvfjH/0cHf8A/hJad/8AE0f8K9+Mf/Rwd/8A+Elp3/xNAHq1FeU/8K9+Mf8A0cHf/wDhJad/8TR/wr34x/8ARwd//wCElp3/AMTQB6tRXlP/AAr34x/9HB3/AP4SWnf/ABNH/CvfjH/0cHf/APhJad/8TQB6tRXi+kn4meEfjx4R8P8AiH4nzeKNL8QWuoNNbzaHaWhjaCONkYPEoY8ueM17RQAUUUUAFFFFAHmv7JP/ACQ+x/7CWpf+l9xXpVea/sk/8kPsf+wlqX/pfcV6VQAV51+1h8Mrj4xfAPXfh1a6vHpMusG2K3kkBmWLyrmKY5QEE5EeOvevRa87+JHxM1DSfiTY/D3wf4Yj8R+JLrTZdUuILjUfsNvZ2qllV3l8uQ7nkGxVC+pJAFAHa+FdObSPC+m6S0olaws4rcyBcByiBc47ZxV+uV+DHjzS/iR8P7XxTpcE9qs0ksFzaXGPNtLiJzHLC+ONyurDjg9a6qgAooooAKKKKACvLfE3wludV/av8NfGFdbiig0DRrjTW0425LzGUN84k3YAG7pg9K9Srx74M/FDxf4n/aR+IHw68TaNpGmx+D7HTZYV0+7kug73MbSEmV44yRt2DGwYIPXrQB7DRRRQAUUUUAFFFFABXlvxy+Etz4/+K3w38YQ63FYx+A9Vlv5bZ7cyG8DhBtVgw2Y2dSD1r1KvDfiR8YPGdh4O8feNvC2naHJpPw7vZra90zUoZ1utR+zhWndJlYLCCrHZmOQNjOQDgAHuVFZvg/WYPEXhHSvEFrFJFBq1jDeRRyrh0WRA4DA9CAwzWlQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw/wr+Fvh/wD4v8AF/iLR7i9kuvGmorf6gtxIGRJFDACMADA+Y9c1k/tTePb7wR4P0e00e9gsNW8U65a6NZ31wqtHZea+ZJ2ViAdsavjPGSCeM074EvqU3iXxBPZ/FPS/HPhci3WwMV1Fc3dlciMeckskOE2t8rquMjce2MgHplFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcP8Jfhb4f+HviTxdrei3F7JceM9VOqagLiQMqSnPEYAGF+Y9c1m/tX/Ee8+GHwhm13SoIZdWvr+20vTRcAmJJ7iQRrI4HVUBZscZ24yM5rN0Pxj4n8KfH/Q/hl4v8QW+ur4o0S4v9PvfsSWssdxbFPNi2odrIyuXXjcNrZJFAHrlFY2peLvCeneI7fw/qHifRrTV7vH2fT59QijuZs9NkRbc2cHGB2qlrnxH+Hmja3No2sePPDOn6lblBNZXesW8U8RYArujZwwyGXGRzketAHTUVl+F/Evh3xLDcTeHdf0vV47SYwXD6feR3CwyAAlHKE7WwQcHnmtSgAooooAKKKKAPL/iZ/wAnNfDH/r11n/0TDXqFeX/Ez/k5r4Y/9eus/wDomGvUKACiiigAooooA81/ZJ/5IfY/9hLUv/S+4r0qvNf2Sf8Akh9j/wBhLUv/AEvuK9KoAK8E8Mw3Gn/8FHPFD6hP+71bwHZyaarH+CO4KyBfXDAk4/vV73XMfET4e+EfHL2cviTTJJ59PEgtbq2vZ7S4hWRCkirNA6OFZSQV3YPccUAeMfsO61Y+Hvhj4m1PWdSWOx8S/ErWpdFJ+6YWm2gg9Nu6ORs9OfevoTQ7uS+0mC8kh8lpk3bCeg7fpiq+h+HtD0bQbHRNL0q0tdP0tVFlbRRAJb7Rhdo7Ec8+9aVABRRRQAUUUUAFfNPwD1vRrj/goZ8azBq1jL9s07QlttlwjeeUtcMEwfmIPXHSvpasqx8MeG7K7S6s/D2lW88ZyksNlGjqfUEDIoAo+H9b1fWNami/sa60+1sbyWGZ7jZiZVUbSuCTySD0xjueldHRRQAUUUUAFFFFABXjvx11Twv44s9T8Gaz4lsdP8K6a2/xTIb2KOS9WP5zZJlsqpKr5jcHHyDkkj2KvPtc+BXwY1rWrvV9X+FvhK+v7+d7i6urjSIXknkclmd2K5LEkkk+tAGldeL7G1stP07Q9OupJtQ0Y3mlolm7xABVEaMU4HLLnkBR1IyDXX1Fb28FvDFDBDHHHAgjiVVACKAAAPQYA/KpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPB/wBu7wYviHw74L8UXOjTa1pvgvxVa6pq2nwwee01lnZMfKAJk2ghio7BuDiqPgl7vWv2wPE/xB+Htst94Xj8C22nzvCnk2+paqtxJIiq5ADMkJRSRkDcFJyMV9DUUAY3g2TWrq0+361AtrJcQQkWoYnymC5Y4PTJPTqMVs0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB55+1Xb+CpvgL4gk+IUGpSeH7WKOe6fTI2e6gKyoUliCgkMj7WzjAAJPGa8e8B+GbDxP+3PofifRfFuteMLPwV4XnF9rF/cxSRw3NyPKitk8iOOIOIvNdwF3fOCxJxj6inijmhaGaNZI5FKujrlWB6gg9RUGl6fYaZa/ZtNsbazh3FvLt4VjXJ74UAZoA+X/AIM6d4MuF+KulfF1rVfED/EBr94pJTDd3EEZhfTzFyHZcrhApwTkDrXkH7f0tncfF74zs3lecnw20jYr43xt/atqSMdQdp59jX35c6TpVxqUeo3GmWct5D/qriS3VpE/3WIyPwqG88PaBd3U1zdaHps89woWaWW0RnkAxgMSMkfKOvoKAPln9jrxCdI/aS+LGlaZpFxqFtfX2j+WLJowkCLprsGALAc7VHYYHXOAfq/RxeLo9quosrXggQXLJ90ybRuI9s5pmm6RpOnztPYaXZ2sjoqM8FuqMyqAFUkDkAAYHbFXKACiiigAooooA8v+Jn/JzXwx/wCvXWf/AETDXqFeX/Ez/k5r4Y/9eus/+iYa9QoAKKKKACiiigDxLwX4G+O3g/RW0Lw/4s8Ctpsd5cz232zSbppgss7y4YrKASPMxwO1a39m/tH/APQ1fDn/AME13/8AHq9XooA8o/s39o//AKGr4c/+Ca7/APj1H9m/tH/9DV8Of/BNd/8Ax6vV6KAPKP7N/aP/AOhq+HP/AIJrv/49R/Zv7R//AENXw5/8E13/APHq9XooA8o/s39o/wD6Gr4c/wDgmu//AI9R/Zv7R/8A0NXw5/8ABNd//Hq9XooA8o/s39o//oavhz/4Jrv/AOPUf2b+0f8A9DV8Of8AwTXf/wAer1eigDyj+zf2j/8Aoavhz/4Jrv8A+PUf2b+0f/0NXw5/8E13/wDHq9XooA8o/s39o/8A6Gr4c/8Agmu//j1H9m/tH/8AQ1fDn/wTXf8A8er1eigDyj+zf2j/APoavhz/AOCa7/8Aj1H9m/tH/wDQ1fDn/wAE13/8er1eigDyj+zf2j/+hq+HP/gmu/8A49R/Zv7R/wD0NXw5/wDBNd//AB6vV6KAPKP7N/aP/wChq+HP/gmu/wD49R/Zv7R//Q1fDn/wTXf/AMer1eigDyj+zf2j/wDoavhz/wCCa7/+PUf2b+0f/wBDV8Of/BNd/wDx6vV6KAPKP7N/aP8A+hq+HP8A4Jrv/wCPUf2b+0f/ANDV8Of/AATXf/x6vV6KAPKP7N/aP/6Gr4c/+Ca7/wDj1H9m/tH/APQ1fDn/AME13/8AHq9XooA8o/s39o//AKGr4c/+Ca7/APj1H9m/tH/9DV8Of/BNd/8Ax6vV6KAPKP7N/aP/AOhq+HP/AIJrv/49R/Zv7R//AENXw5/8E13/APHq9XooA8o/s39o/wD6Gr4c/wDgmu//AI9R/Zv7R/8A0NXw5/8ABNd//Hq9XooA8o/s39o//oavhz/4Jrv/AOPUf2b+0f8A9DV8Of8AwTXf/wAer1eigDyj+zf2j/8Aoavhz/4Jrv8A+PUf2b+0f/0NXw5/8E13/wDHq9XooA8o/s39o/8A6Gr4c/8Agmu//j1H9m/tH/8AQ1fDn/wTXf8A8er1eigDyj+zf2j/APoavhz/AOCa7/8Aj1H9m/tH/wDQ1fDn/wAE13/8er1eigDyj+zf2j/+hq+HP/gmu/8A49R/Zv7R/wD0NXw5/wDBNd//AB6vV6KAPKP7N/aP/wChq+HP/gmu/wD49R/Zv7R//Q1fDn/wTXf/AMer1eigDyj+zf2j/wDoavhz/wCCa7/+PUf2b+0f/wBDV8Of/BNd/wDx6vV6KAPKP7N/aP8A+hq+HP8A4Jrv/wCPUf2b+0f/ANDV8Of/AATXf/x6vV6KAPKP7N/aP/6Gr4c/+Ca7/wDj1H9m/tH/APQ1fDn/AME13/8AHq9XooA8o/s39o//AKGr4c/+Ca7/APj1H9m/tH/9DV8Of/BNd/8Ax6vV6KAPKP7N/aP/AOhq+HP/AIJrv/49R/Zv7R//AENXw5/8E13/APHq9XooA8o/s39o/wD6Gr4c/wDgmu//AI9R/Zv7R/8A0NXw5/8ABNd//Hq9XooA8o/s39o//oavhz/4Jrv/AOPUf2b+0f8A9DV8Of8AwTXf/wAer1eigDyj+zf2j/8Aoavhz/4Jrv8A+PUf2b+0f/0NXw5/8E13/wDHq9XooA8o/s39o/8A6Gr4c/8Agmu//j1H9m/tH/8AQ1fDn/wTXf8A8er1eigDyj+zf2j/APoavhz/AOCa7/8Aj1H9m/tH/wDQ1fDn/wAE13/8er1eigDyj+zf2j/+hq+HP/gmu/8A49R/Zv7R/wD0NXw5/wDBNd//AB6vV6KAPKP7N/aP/wChq+HP/gmu/wD49R/Zv7R//Q1fDn/wTXf/AMer1eigDyj+zf2j/wDoavhz/wCCa7/+PUf2b+0f/wBDV8Of/BNd/wDx6vV6KAPKP7N/aP8A+hq+HP8A4Jrv/wCPUf2b+0f/ANDV8Of/AATXf/x6vV6KAPKP7N/aP/6Gr4c/+Ca7/wDj1H9m/tH/APQ1fDn/AME13/8AHq9XooA8o/s39o//AKGr4c/+Ca7/APj1H9m/tH/9DV8Of/BNd/8Ax6vV6KAPKP7N/aP/AOhq+HP/AIJrv/49R/Zv7R//AENXw5/8E13/APHq9XooA8o/s39o/wD6Gr4c/wDgmu//AI9R/Zv7R/8A0NXw5/8ABNd//Hq9XooA8o/s39o//oavhz/4Jrv/AOPUf2b+0f8A9DV8Of8AwTXf/wAer1eigDyZtO/aSEiqPE/w5KkHc39j3fHpx51O/s39o/8A6Gr4c/8Agmu//j1er0UAeUf2b+0f/wBDV8Of/BNd/wDx6j+zf2j/APoavhz/AOCa7/8Aj1er0UAeUf2b+0f/ANDV8Of/AATXf/x6j+zf2j/+hq+HP/gmu/8A49Xq9FAHkvhzwP8AFS++Lvh/xd488R+Fbq18P295HDb6Rp88MjtOiKSzSSMMDYK9aoooAKKKKAP/2Q=="]
math
multiple-choice
71
如图所示,图中三角形的个数为()
4个
7个
9个
10个
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCACPALsDASIAAhEBAxEB/8QAGgABAAIDAQAAAAAAAAAAAAAAAAQFAgMGAf/EABYBAQEBAAAAAAAAAAAAAAAAAAABAv/aAAwDAQACEAMQAAAB78AAAAjRJc/0FgKAAAAAAAAAiS+XLayrrEAAAAAAAAAAw4rpK4dLSziYAAAAAAAABhnWEKVmD2YbkKaAAAAAAAAa4eEgjpcQleSq08s9cUnAAAAAAA81bqw2a7OsLKts6ss6y0rCzrLPAzQJ4AAAAABp0abM1RtVmKyzqy0rrHSbfYU0rLPCEWAAAAAGndAM5lWPbOl3FpW4ai6VY9s6XcWlZ5iWyPIAAAAPOL7Sji1r7HTZhYQppz0jycTNW3XLzPVUt1qMcsc3lOtr7CwFAA//xAAqEAACAgECBgIBBAMAAAAAAAACAwEEABIjEBETIjBABSExFCAkMjQ1UP/aAAgBAQABBQL/AINhsJT8c0dfrMURtOrJWfW+ZtEpFF/6ir6pFACwZe+rsH6tmeocRzXC4KxWZJq9MygAnVFVwwLG9l5mxZ9N+81m5dd93bv0pgQ1VY5JfomcLCqM6KveZ/7F4669YtdZuzY9F28+yzpV0L6SPz8llL6BgQxdU5kPOw4UusEwFjvdgffyGL7PkMdsv87d6zidy3iPu5j+y3hhBhVKdPlayFKrLkFsOFqphIVsq/bsux/HiecY/Zb5Wb9nLnfHCl/XGjrTULXVwhgwqlPLxtZClVlyCsjcv8KP+NwqdvGxtM8dlBPjo2s6NrF1bC86NrOjaxVWwoOjazo2sGrYFvRtZ0bWFXskKQlSfDMc4kYhSJ1IusLWNWFsxNVbGUGHwYMEuoAEPCY5jUATLwz+Ip2YWlQoTYrxYFanasGraEq9cay8OCIF1bIL4Tz01EHXD9//xAAZEQABBQAAAAAAAAAAAAAAAAABABAgMWD/2gAIAQMBAT8B0QpihP8A/8QAGREAAQUAAAAAAAAAAAAAAAAAAQAQIDFg/9oACAECAQE/AdEbYIz/AP/EADsQAAIAAwQGCAELBQAAAAAAAAECAAMREBIhMQQiMkFRYTA0QEJScaLBExQjM1BygZGhseHwU2Jjc7L/2gAIAQEABj8C+oSzEDzidIE0TLpvBga59nVviUVe7TOFnLMuXRSgXPs4lyjrtw4QjHaybsxY5CDMffT84r3bxRvPd2ZZG7afyiU++bPr90aTJPfAf+fhFG201W7IWOQhph+lnnDlwjRZYyBiS3iBWFm919V/bsiyBltP5RLTcgvGNHH2jCzPAwMFTvi622mB7EXbIQZr7czE8onTvE1B5DCJfJDDryiWeULO7rar+3Ylkd0azw7coSXwEHlL9zZMl+ByPeChyMFG20wPYC7ZCL77b4mJMrneNk3kiiyavjUNYs8bJ1X7AsrurrNZOmbl1BZpJ5gflZo78ap/PwsKnIwZbbcvDpmc7ovPtvi0M5yAhb20dZvM2aUf8nsLL29SDANi6QMtl/Lpll9xNZvaxJP9RqHytmnjMNjrxESzypYVbI4QZT7UvDzHSM53RVttsWsY7pa0++2vF3/6Ns6X4XtTSBkMH8ukS7Mu3TXKOs+iOs+iGppO0anVjrPojrPpi4uk4fZjrPojrPohnGk4tSurHWfRHWfRBVtIBB/shULXiBn0VIn0TSLysbsy+aD84Qlr2GYiTIVrvxWoSOEK0t3AGYLVrZpAJmYNQfOHCJ0l2v8AwmoGPCxgeES6y9IvV275p+tpBi6Un1vnXvmn69FhnDp8qSjnH5r94WWuSwNa664qw3GKzpwemV1LvvZMK6Umua/RfvFASxOLMd5sIU0PGlYEv5Ul3/Vj+tpoaGCrTA9TXBadB//EACkQAAECAwcEAwEBAAAAAAAAAAEAESExQRBRYXGBkcEwQKHh0fDxsVD/2gAIAQEAAT8h/wAEE1k5MmxuckPZ+3fVmmyEOfKAEHbnyCMTMEoqhg39sYlgOUNaYALhINgDqiuhYW5y2Lbds0HxFNU/sl5gPACkDAs5cFWQag7Qq7AcqW4AYBk2Vyq9AsAlfBHKhGG8Vf3tPp0U1X06pLQX8FBU+N5UsYZo6n/xnsjWMNyUGJYjRooNAo9q/cVBUQbzuscjV6LQcxBQ/wDadxr2UGfcYJhZiAXlX2DBN5qtl+UTCiz5z2UnVZTc3OuPYFvYblH4o7d2CwadOLI3+oTzZgINmHB4sfxw6Hf+qfXyX8YsyIcvmzK3hDzZgEiaxsA/cLFFn4jsRQ9aRmL5owmXqU9VEr9DYGzOI+BWSmTd/hCGSIez98iuhQLhx1b2s45o50syOf0eLY/xstxZjyhXoDwQsHs43DBBnnNEdA9SmgleblOQV7E2ZcTN6sMAVOvK0jXu2RH7b76LXSaBcOOmKMyzrB7Fg9iLGF3RqwexEwIbtQeAwky1LrB7Fg9iDNZCDR/lYPYsHsQEJMQQiEce1Pr0gFKRDJxgKBqPojjwiLyinNr4QqZT8OIG5GIU3s0UQxRpLlXgsBD4xseaY0FkNAiOOQJ4XWjlIhixZCkGIhjfVOk4kCZkCQ6HtyEnvG5Xx2mDpsiMZooAACkeREjKCAgxkcKQU4MOs31gz5wwKBooPyYsQIO81AYAWCQBMQJDsg/8oSb6nof/2gAMAwEAAgADAAAAEPPPPOt/PPPPPPPPPKFPPPPPPPPPPOEPPPPPPPPPLLBNPPPPPPOPPFIEPPPPPPLPLLOKFPPPPPPJDLLHDPPPPPLHNDPNOHPPPPB14S6WPv8Azzz/xAAhEQACAQQABwAAAAAAAAAAAAAAAREgITFBMFFgcYGh4f/aAAgBAwEBPxChKSeJuekOXckobgRl59X+FjQlGRG26P/EACARAAICAQMFAAAAAAAAAAAAAAABETEgIUGRMGBxgeH/2gAIAQIBAT8QwbgjqUo7QavwQctpHRoXpc6feRJTGx0bJYf/xAAqEAEAAQIFAwUAAgMBAAAAAAABEQAhEDFBUWFxgaEwQJGxwdHwIFDh8f/aAAgBAQABPxD/AEIWQQKBbZuVPJFAQEpIuQ+R7cdpJkBurem1obIjKLn/AB7dt+jlk5936pJyDzAIZ9RHv7YZCCOxTvFbdY/TW7q/bNdCfdGnj2wXFxKafsD8UgmOxVG2SeM0MzotUp70HPQe4j39oEJZHQKiyitzTHZhPM0S0HDwQVDJ1XdozptloXPDod5NvaPPQSHY2fV4owRLSMpWPijR4T4x/OiiPBZVS5tFBo5idGGnriBusfYR3n2QKWXaBTudchPxDtVlLINtFwo70v8A3sB+UbBLA6hJ5Kk9ldIJeRotuwmZEvhZ/wCNFyT1h3qTC+kgbKGb1Yk2qP0uC1LAUM0Im2Lu7LQdQ/gflIIN5pKq4ZxAVAWUrc5OTOkP+OvoT6fWizNRI1PoNs2A03aj1zZvy7S1W/eAd0Hq2qLZU7VQpF8q27zC3i4QLZcGifHA6KhAIyNx9WJwsm67FRl+8PQrIq+byLpfyJ/gDYtWyN0g/rfCZcpcJU5aTv8AWQ8es4t7AzWgcraoYmYbLkODKmChS4CofwLJvfYuC4CD/WywX6r0AfJpA5EOjgEDmDNyD4l9poASRJH1TB3OwFlO8YFrXRG5Z+7DTEUCwEpfVGKRRzHq38YEFZVqiEpnsozP0D1LhZODPIBysHepUyG80OhhvE3FdX5RgpWxR5nyMHiMNK6+B4yecQSF2I1TN1R0DQEkiSPp2W1YgsmBHZh6hjLKta5jSv8AGEqcjSKwswE5yLyuMsobIRacp8sZZVcyjlLJR8hMIYavpTKylCjDyXKbngGihGSkNbrUsHzMO5Q3VoNBZGwoRPNLIJZTyJZqdmOKAg5JFCLggaFrZc1b1AEhxOsCyCE6xhff6Z32RErMdAfkFpDovimwnSCh5LlPAzDDNQhQ5Rf0hLbIgA6KST80COLoMYZWluGkSQWcry0RD0oiyYczc1KvfQWE7yl8UFQgYspNKs5eZUFziGlPPrm0zUWODQwZj6DOVxPyULVnJwSBKE3JiosyCL4NiKIwtFJJ6SUooCSRSjM3j0P/2Q=="]
math
multiple-choice
72
如图图形以虚线为轴快速旋转后形成的图形是
三角形
圆雉
圆柱
null
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABcADEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2bxBrMujjTvKiWT7VeR27bj90Nnn9K2RWL4hGln+zRqe/P21Ps23P+t5259utbI6UALRRRQAUUUUAFFFFAHJeO57C0i0a61K8FrBDqMb7ipIJ5AB9PrXVo6uoZSCrDII6EVx3xAtLfUP7As7uNZbebUkSSNujDa3FR+H7qfwtrS+FdTlL2smW0m5c8uneJj/eXt6igDt6KKKACiiigAooooA5Hxrg6j4YHrqif+gtWt4k8P2/iPSns5mMcikSW86/ehkH3WB9jWX4wUPq/hdT/wBBIH8kaur7UAc14T165vYp9K1YCPWrAhLheglXtKv+yf5101cv4s0O5uHg1vRsJrNgCYucCeP+KJvY9vQ1qaBrdtr+lRX1sSN3yyRNw0Tj7ysOxBoA1KKKKACiiigDl/FQzrXhgf8AT+f/AEBq6fNct4l58U+FUB5N1K2PpGa6kUAFcXrMcvhLWZPEllEz6dcYXU7dP4T0Eyj1Hf2rtcUyWJJo2jdQyMCrKehB7UANt7iK5t454ZFkikUMjKcgg1LXD6bI/gvXI9EuSTot45/s+Zj/AKh+piY+h7V245oAM0UtFAtTjvFd1a2fi7wtPd3EcESyT/PIwUD5PU1sHxb4dXg63Yf+BC/41R1945/Euh6ZcW1tPbXPnNIs0Qc/KoIxnpWmvhvQwONIsR/27r/hQMgPjHw2M51yw4/6brTP+E28Mf8AQesP+/4q4PD2jDppNj/4Dr/hR/wj+jH/AJhNj/4Dr/hQBha1r/gzXdKnsLzW7BopB1E4yjDowPYg1D4D8UpqbXWiXF/DeX2n4AuIWytxF/C/17EetdJ/wj+j4x/ZVl/34X/Cp7bTLGycva2dvAxGCYowpI/CgC1RRRQBk3k9uuv6bBJZGWZ0kaK425EWAMjPbNao6UbR6UvSgAooooAKKKKACiiigD//2Q=="]
math
multiple-choice
73
按如图的规律, 用小三角形摆图形, 摆第 6)个图形共需要小三角形()
25
36
40
49
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAC+AlsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKa3WigB1FNooAdRTaKAHUU2igB1FNooAdRTaKAHUU2igB1FNooAdRTaKAHUU2igB1FNooAdRTaKAHUU2igB1FNooAdRTaKAHUU2igB1FNooAdRTaKAHUU2igB1FNooAdRTaKAHUU2igB1FNooAdRTaKAHUU2igB1FcL8a/FR8L+FWls18zVL4i10+P+JpWOAPoCQT7VwPwostT+Fnja18OazeyXWmeJ18+3nk/wCWN6f9Yh9iDH+VAHvFFV4MBtu7d7+vrU1ADqKbRQA6im0UAOoptFADqKbRQA6im0UAOoptFADqKbRQA6ikX7o+lLQAUUUUAFFFFABRRRQA1utFDdaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAR87Tg496gkm8pS8kg2YJDHgAdefoKnk5Q15p8ftevFsbLwXohP8Aa3iKTyF2dYIcEySew2hh9SKAM3wKW+IfxYvPF9yo/sXQWaz0pXX5ZpQMPMB3wSVH+7XW/GLwsnizwZLYI7Q30J82xnB5jlHQg1q+C/Dlp4d8L2mjWSqsVtGoGB95h1J+p5P1rWkTapJPb9fagDjvgf4rbxN4QWS+UxapYt9m1CIjBSVeDx2GQa7TcehOM9DXkHjhJvh58XIPGFsrDRtdK2mpKv3I5TysxH4EH/eFetrIj8xnerEYYdMUAT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAKv3R9KWkX7o+lLQAUUUUAFFFFABRRRQA1utFDdaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGYKu5jgDqTS1jePtes/DPhW61q9YCO2TIH99jwqj6kigDXV1b7rA8Z49KdXi3wR8T+LbLxcdI8eygf8JEGvtIzwIlPzfZz7gZP/Aa9poAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjNFMkPzrjrn9KAK+sahbadpVxf3EqJDbIXkZjgACvNvgrZ3XiXxJqPxK1a3cG+Jh0eN1wYrUHhgP8AaABz71g/tQ3mv+LLeX4a+EJmjvZoWuNQnjOPKhXGFz6kn9Kyfg74C1LxF4Bs5rT4keIrfy4hA9qjDbaypwyn6EEUAfRC/dprgk8dvXoa8nHwi1/HPxU8TZ74kFH/AAqLX/8Aoqnib/v4KAO/8d6FaeIfCt5o16Mx3ce0HH3G7Ee+a5L4A61fm0u/B2vuw1bw63kESDDzW44jkI9128+9Zc3wm8QRLvX4p+Jc9iXBA9zXlGj2Hifwv8ZLvxzofiK81/SNC2adqrXLYM+4gP0zny+f++aAPrLI9enWlqjo2oWuqabDqVnIJLe6jDKwq9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAq/dH0paRfuj6UtABRRRQAUUUUAFFFFADW60UN1ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKYzkEfLnNADbhmH3fTp3/AArynxasnxE+LMPhuJ/M8P8Ahpxc6m2crNc9Eix3x8+foK6n4zeKm8L+EWuLePzdRunFtYwjkyytwAB7cU74M+E38KeDobO7lE2oTnz7656tPM3LMT+dAFX40+GJNf8ACS3emjZq2kMLvTXHDK6c7Qe24ZU+xNaXwu8VReK/B1vqQO2fYY7uL+KKZTh1P4jP0IrpWRQpP4mvJLxV+G3xdW63iLQfFkgVs/ctbw/KG9gw2DnvmgD11PuilqK3kLxK20/N0Pt609G3Z6daAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA3gZ55PasP4ieJLHwj4NvNd1J8R2qFlX+KRuyr6k1sTSFZgAmf89q8h1uZviV8bIdARPM0HwnItxft1juLkn5U9Dt25/wCBUAbnwE0G7stFuPE2vRZ17xA/2i5D8tFH1WPPoM1l3TJ8Nvi+s/3dA8WykNjiO3uz827HQbsHn1avUljZNqAgHZg59u1YPxM8M23i3wbc6NIAHkQSWsmOYpVIKkfQigDpd2VAHfoQab+8yQWAx0rhvgd4ofWvDL6VqW5dX0SU2l/G3UFfuv8ARl2n8a7S8lSC3knlZVjRSzZOOKAOK+OHimfRfDK6ZpZaTWNYnFpYxqfmBP3n9gAD+daHgfwdpugeAV8NvEk8csTC9LLn7Q758wt65JYmuX+FtufHPxCvPiHdhjYWpa00RCOCgPzTYPQthcfjXqaxKuCTkLyB6UAeXfBu6u/Cviq/+HOqSsYbcm60iVz/AK23bnYP907uPQCvVVORXnXx20K9vdHtPEuiD/iceH5TcQgfelQcvEfZgCPxrpfAnii18TeG7TV7HDQ3EYJHcP0K47EEc/UUAdBRTY2ZvvDsKdQAUUUUAFFFFABRRRQAUUUUAFFFFACr90fSlpF+6PpS0AFFFFABRRRQAUUUUANbrRQ3WigAooooAKKKKACiiigAooooAKKKKACmNKqtghu3QetPqnq13b2emT3lxKI44ELMxP3cdaALIlQttB5yaWN1fpng9xXkHwd+L7+LfG17o+p6abG3uw02hTn/AJe7dTy36rXrkLIXwnQKKAJaKKKACiiigAooooAKKKKACiiigAqvIdpOSRubnngAe/arGa8l/aq8V63ongS40XwpEs3iDWYJYrSMgsUAU5kwMHpnHuKAGeE1l+InxYn8USHfomgsbXTU/ha4HLy++BswfY16vAWDHK4B7elfPvwYT46N8N9L/wCEf1DwWLIQ4AewkLhsnduIlHOa6gQftHqONS8Ff+C+X/49QB6+TxXL/FDwvb+LvBN9ot2PmliLQygfNHIOVZfQg4riPK/aQPH9o+Cv/BfL/wDHqa8P7R24MdU8Erjgf8S+Xn/yNQBvfAnxTc6z4fn0bWG2614fk+zXq5+ZiOjY7gjHPsa9BhIOQOvU8V8kXXir4h+Dv2ll1vxAujXdrHZpFrzaXbOixgs212y7cj5vzr6y0u4hu7GK6glEscyBlcHhgR1oAsUUUUAFFFFABRRRQAUUUUAFFFFABSbhnHtmlqG4mSGMyu21VBLn2AoA4347eMf+ES8FtLZR+dq2oOLTTIRyzzSHaCB6AkE+wqb4IeE18H+B4NOlzJezk3N9O3LSzPycn2GB+FfP/jbxh4z8YftKaZeeHF0iz0q2ElnpF3q8LSwzTjduKqGX5skqOe1enxx/tGfdTUPBuQOSdPlx+XndaAPX9pP3znByDR8ytkKpHYeleR+V+0h/0EfBX/gvl/8Aj1HlftIf9BHwV/4L5f8A49QBN8UIn8D+PrT4h2eF0+622muRoOGBbakxH+zkZPotWPjXrD65FpfgTQLphdeIMPcTRn5re14y/tnPH0rkfH7fG9fBmoN4ivvBjabHayG6zZSfNweh83j0+orzD9l+L4zp4i1BGvPD0esfZ42j/tO2eWT7KWfbsIkXC/e7UAfXvhnTbTRtHt9MsYFht7eMRqqjgY4rQY5Uj2rx+OP9o8qo/tDwUGxyP7Pl4/8AI1O8r9pD/oI+Cv8AwXy//HqAPVZ43OdsIb1yeG+v0ryzw0P+Fc/F1vDrnZofiV2n08n7ttccb09gwK4z6HFN8r9pD/oJeCf/AAXy/wDx6vPf2jF+OCeC0/te88LzXDXUf2FLOxkWYzDONpMpoA+nbVtyHjgEge49alri/gX4tk8WeCIbi+g+y6pZgW+o2x48qZRhhj0yDXaUAFFFFABRRRQAUUUUAFFFFABRRRQAq/dH0paRfuj6UtABRRRQAUUUUAFFFFADW60UN1ooAKKKKACiiigAooooAKKKKACiimysVjLDt1oAdXkXx81G58Ta5Y/C7Q5SJ9T/AHmsSp/y72oPP4nnH0Neg+OPE2n+FfC99r2pzBbaygMzDHLYHAHqTiuL/Z30G7Nnf+ONdiI1nxK4ldX+9DAM7EA7dWPHrQAz4y+BYm8D6de+GIRBqPhILLpm3vGowyfiua7H4XeJrPxf4NsdetTg3EWJYz96Nxw6keoYEfhWsUBJUqdoOMHo34entXkmhuvwv+NM2mu23w/4ukaa2Y/ct7s8lP8AZ3EHjpk0Aez0VDG77ly2d3PT7tTUAFFFFABRRRQAUUUUAFB6UU2Q4QnOPegChqt3Bpun3GoXUnlW8KF5G/uKoyf5V5x8GbK48S+INS+JGrxsjXkjW+lRuOY7UfLke7HcfoRT/jRf3niTxNp3w50hztu5BNrUi/8ALG2XnBPYs20fQ16XpunWllp9vZW8QWG2jWOJfQKMD+VAHlnhvzPh98XpdAlZhoXiXNxp5P3YLrpJH/wIeXj8a9Ws8gYPJ/iI6D2rmPjL4W/4SnwZNZ27mK+t/wB9YzA4aOUdCD2qL4K+KpPFXguOW7VYNVsz9m1CErgxyrwePTg0AdniuV+Knii08G+C7rWpRvmRStpABzJK3CqPq2K6RnfvgAE/iK8mV/8AhZXxeLBPN8PeEpgMn7l1dYBOPUJkfiDQBe+FHgKKHwJeR+I0+0al4mDzanIR95nAwh9lGMfU1S+AOo3Hh+8vvhfq0rtcaE2dMZ/+Xq06L+IG3P1r1mGEAAknOAODx+VeY/tGaFeWi2HxC0BG/tXw6+50Qcz27ECRSO/Y/hQB6bC37woTnaeD9ecVNWN4N1qz8QaHaavpzrJa3kQlQg5+8MnPuCcYrZoAKKKKACiiigAooooAKKKD6k4oAK8t/aK8RXkdjY+B9Ay+teJZhbqF/wCXe35Mkh9BtBH1Ir0LWNUg0zS7q/vZBFBbIzuzcAACvMfgLZXfinxJqXxP1WJlk1UeRpUUg5gswwKsB2LBVJ780AXvG/wzs7n4P23hbRh9nvdIjW4024xz9ojO4E/7zLz9a3/gr4ui8W+B4LuUeVqFqxtr6BvvRSpwQfrwfxrqSnmMT1+UgZ7GvIvFEb/DX41Q+J1OzQfFLpa6iB9y2nH3JCO27dgn/ZFAHsan1p1QrJu6OrcZBHcVz3xO8VR+E/CF5qzndNGojghxzLK3yooHf5iKAON+JTy+O/iJZ+ArN/8AiWWJW71uRemVbckP44Un2arfxu0efS7fTfHeiWpa88Nn95Eg5ntuN6fX5ePrWn8DPC82heG31DU/m1bWpTeagzcncwGF9sDaPwrs5IkkhMU2GUghwehBoApeEtVs9c0mHVLCZZrW4jV4ZAeoI5H4VqHGK8m+GNz/AMIH8Srz4eXJ8vTL7deaHI33QCfnhB9RlcD616o0v3lPKjgn8cYoAimwInYsFYjOT0Uj+L+VeXeFll+IPxUn8Uy7m0Pw2xttLB6XM55kf6DCY/GtL48a1exaXaeEtElP9seIW+zxSKOYYs4eQjsFUn8q7LwT4esfDnhez0exQrFaxBfvH5j3Y+pzQB5r4ydvh98VbTxdbq40LxEy2urrj/VynmOU/kQf96vXLdkZlaMhlZMqw6Y9KyfHnh6y8S+F7zRL1QYrqM4z/C/UMD2wa4r9nbxHf/Z7zwP4iJXWfDrGLLdbi2H+rlHrldufc0Aeo0Uwk4yG4659afQAUUUUAFFFFABRRRQAUUUUAKv3R9KWkX7o+lLQAUUUUAFFFFABRRRQA1utBOKG601iAwBPJ6UALn2pvmZxhTg9/Ssfx74m0vwl4RvfEOrTLHa2cZdznr6Ae9Z3wp8Z6Z488G2/iDS2YQy5SSF/vRupwQR2IwaAOrz7UoOab9KVaAFooooAKTNLTaAFz82MUyZh5bAEZHTPrTmOOveuI/aC8eWXw8+GOpa7Ou+dYGS1iBw0srDChfXBOfwoA47x5cD4j/GSz8D2+JdF8POl1rRU5WSXO5ITjr/Dkehr2NbZ0ijji2IqKAAB6dPwr52/Zv8AFOsab8PYtTtvh5q2qXWsu93eX0ec3DkkddvYAL+Fehf8LG8V/wDRLNe/Jv8A4mgD0xoyY9uce/pXI/GfwXF4w8EXVgMJexkXNlKODFOmGUj6lQD9awv+FjeK/wDolmvfk3/xNI3xG8Vcf8Ws17Pbr/8AE0AaHwB8XHxT4KWO9ITVtLlNnqELEb1kTuR6EEH8a7yR9q7tuea+Wr74jr4J/aY02/1Lw5eaDZeJYvIv4rg7UD5IWY5A6Z5P+zX0/ayxSxpJG2UkGRQBYByM0UikFcjp2paACiiigAooooAbI4Rdx6Ac1i+OvEdn4b8J32s3ziOO1jyMn77HhQPcmti4JAB7d8182/H7x9/bHx20f4fWWl3Gq2OnyNdahb2+c3E64Cx59ssfyoA9O/Z/0G+ttKu/FOvRN/bGvOZ5Q4+aKMnKR/gMD8K9IUfKPpXl4+I3icbdvwr13aeFUE5+v3elO/4WN4r/AOiWa9+R/wDiaAPSrhScewPavJfGTSfDr4sw+KolZNB15lttTAU7Y5j9yU+n8QP1FaDfEjxUrLj4W67u56kj/wBlrD8feMtY8Q+Cb7TNR+F2tfZZoWLyEkiIjkH7vY0AdZ8cPFb6J4XjsNMZX1XW3FrYLGdx+fgyDHZRk59q2Phj4Yj8K+D7PSoQvnAF7l/+ekjHLMffJNfLv7OfxC8T+JvGTX+reFNS1qfwxb/Y9PijH+rQYXzG46kd/evev+Fj+Kycj4W65u9SD/8AE0AemxgmMEkH3FR3sEc8DQyoHSRSjKRwQRzmvNh8RfFY4Hwt138A3/xNNk+I3izJ2/C3XQ23gnIHX/doAy/hnIfhv8WL3wBeSMuj6qzXmhyP0DsN8kIJ9DvIHoK9ejnZmwYiuT3YdPWvnD9prxXrF34FXWpvh/q+l3mgzR3djfyk4jk3j5T8vRslf+BV698EPGtj8Qfhpp/iS2OJLmMR3UeeYpRwyn09fxoA7eihfu0UAFFFFABRRRQAU2YAxkEHB4OKVmVVyxAA65rA+J3irTvBvge98R6k3+j2cZcAHl2xwo9SaAPPfjhfXHjDxxpvwr0qUqkxW71mVT/q4F6KSO7E/oa9Y0/T4bGxhsrONIbe3jEcSKMbVAwAPYCvmn9mnxzr11oeoeL08B6tq15rl4zSXMX8G3pEDtOAu4/nXqf/AAsbxX/0SzXvyb/4mgD0ow8BQcDvjqTWH8SvDVh4s8I3mgaiuYb6Ixggcq2OGB7Eetcj/wALG8V/9Es178m/+JprfEbxVxn4V68Wzx1A/wDQaAH/ALPniDULrSLzwr4gdRrPhyQW8+9humj52SD2O05/Csvj4kfGZdxMnh/wm56cpPeDjBxwduW/FRXkX7TXxB8TeGPEVj4x0bwZqWj6lcK2m3CzEhbpHwS3I5K7ePqa9F+D/ijWdA+H2m2Nh8NNauoZIhNLdJn/AEqRhuaTO3ncST+NAHuypxkY+Yc8U2WJ22gEAZ+b3rzUfEbxVjj4Wa9jt1/+Jpf+FjeK/wDolmvfk3/xNAGh8cvCdzrnhldSsCq6vo8v2ywkUch1BBX6EE5HqBVv4feONN1/4cR+JZ5khW1gY6grEAwyoCJFYeoYN+VYM/xH8UiIk/CzXeOmc4/H5a+d/ih4z8Q6P8V38Had4W1DTNM8TTRXGo2Dfe3FlJC8cBzx/wACoA9/+Clle+JfEmo/ErWY2C3LNb6RE3/LG1X+Ie7Nv59CK9YjB8sZrynSfHfiDT9NtdOs/hXrUcEEYjVADgKO33etWR8RvFeP+SWa9+Tf/E0AelXCscbeo56V5H8fbG78MeJNL+J+jwyM+nbYNURFJM1sx2kkD+7nd9FrSHxH8W7sD4Wa57k5/wDiar6t468RahplzZXfwq1xoLqJo5FYFgQwx02+9AHomi38GqaTb6jZzLJb3KpJE46EEDitKvnL9jj4jG48Ra58NdQtpbWTS7h308XB+Zoz8xQZ6lST+lfRe5d23POM4oAdRQpBGQciigAooooAKazYOMU6vO/2hbj4n2+k6UfhjZ2lxdNfxi9Fz0EG4bj1HbNAHoW/OCOQe+aN6lc56nA5rzP4sTfFlLnw0vgqwsHRp1/tgzN9xeN23np1pvxSn+L0Pjjw+ngrT9Nm0R3/AOJu1w2HTpyvP1oA9RX7o+lLSL90fSloAKKKKACiiigAooooAa3Wo7hiu3j7xx+dOcsWYDjGPyrjfjh4v/4Q/wAD3F9bKZdQn/cafbj7087cKB+OKAOK8cvN8S/i9beDbf8AeeHPD7C61lx92a46RxfT75P0FRgD4V/G2KRF8rwz4vPkug+5Z3uNwP0baw+prsfgT4Tm8KeDVj1Fll1XUZPtWpTgcyTMOST371c+Knhe18Y+B7rRp49skg32kpHMMycow9DkCgDr4yDGpByMcGlrzv4B+L7jxB4Xl0vViya1oTm01CJj82U+6/vuXafxr0GEkrknNAD6KKKACiio2LCQf3ehoAJnVFJY4Crkk9AK8X06OL4sfGe41C6TzfDXhVmtreNhlLu5ZSrN7hQzfiK6b9ofxPdaV4bg0HRiX1zxBN9js4lPzRgg7pT6AAEfiK3/AIWeF7Hwd4IsdDtFG63i/wBIkAwZZDy7E9yWyfxoA89+GLyfDn4r6h4CvHMej6xIbrQC33VYj95Fn6gn/gVe0jpXnvx+8JXHiXwas+jhU1zSnN3pb9Csi/MFz2DYAP1rS+EPi2Pxh4Ft9WTck2fKuYSfmhdeGB96AOwrP8Uana6Notxqt9II7WzjaWUn0AzxVq4chVGTuJx8teR/G65vPGnjjTvhtpkjfZdyXutyIf8AVwKQRGcd2IGR6GgDL+HnglPiXp/iDxb4wgY/8JGjWmnQMObS1GQrLnoSSzfiK6L9nbW737HfeB/EM+/WvDknkyM5x5sHOxx65wc/QV6RpltBZWMFlAoWGGMRoF4CKBxXlfx00u58M+I9P+KWkQbptN/c6xDGMefasRkn1IIH5mgD16E7o1YdxTqp6LqNnquk2+oWFytxb3UYeKVDwwIyDVqMk5zQA6iiigAooqOZ9uST0689B60Acr8afFR8JeDZL63Tzb+ZvJsoO8sh6AfpXn1x8L57P4RwzWjbvFljN/ahvP45ZsfMpPXBBPHtWl4fMvxI+LkuuyZbw94Wm+z6fnlbi54LuB7DYAfUGvVvLQrgk/KpU0Ac38L/ABRb+MfBtrq0QxI6AXUXRoZh95f++gRXVL90cY46V5Fvi+G3xgEQBXQfF0uVA4jt7r7x46Ddhj9TXrmTuznK0AJKM8Hp3rzD47azeXV1Y+AdCfbqWvvid1/5drZfvsfqSo/GvQPE2qWmj6TPf3k4iggjaRpG+6oA6GuC+AunXGt3l58StYt2ivddH+hwyD5ra1zlVHoTxn6CgDE+IPhmP4d32geMPC1v5cOkxpZapCg/19ucAs3upw2favXdJv7bUdMh1CzcSQ3MYkjYdwafq1ha6hpVzYXUKSQXUTRyowyGVgQQR+NeZ/Ba8vfDnibUvhtrEjEWJM+iyu3M9q3O0e6tvGOwAoA9VXhajum2hRjlmwufX/OaUN+7zk7RxXJfGrxfH4P8ET36hpLyci3sIR96WZ+FA+nJ/CgDhviAG+JXxitfBlrIX0Pw8yXmruOVnkGCkP4Ern6VHDEnwt+NUcsYEPhfxdII9q8JbXmAg+gbCCux+BPg1vCngsLqDefq+pOb7UpW5Jmf5iue+0nA+laXxY8H2vjPwRe6HKQjTASQy45ilH3XU9mBAwfagDqlIKgg8EcUteefs/8Ai2517wu+lawWTXtBlNpqMLNySOj+4I/ka9BjIZSRnr3oAdRRRQAUUU0+ufwoAbMCXUj+Ht614z4olPxM+MUPhyIGTw34ZZbrUm6rPPnKx/QbR+ddn8dPFzeEfBM09upl1O/ItNOgXq8z/Kp/AnJ+lHwP8JL4T8DxWk37y/vM3N/M3LySt13HvgYH4UAcVpqf8Kw+OLWqfu/DPi4h4+yQXg7D0DBj/wB817ZXJfGHwlD4w8F3OlEBbiMie0lxzHKucEHsazfgL4uvfEvhQ2usHZrmkyGz1KEnkSJlS/uGIyPrQB39V9SkjjtWeZxHEoLSMewHWnNlmUbipx+B7V5b+0Brd7qcunfDnQJ3XVNeb/SXjYhrW2BwzkjoTk4+lAFHwNpUHxQ8aan441WDztEhjew0a3kHyupPzzfU7Vx+NXvgpc3HhbxFqHw21act9izcaNM5/wBbalhhfqu4L+Fd74T0iz0Pw7Y6PpcQit7WAJEmMDA4JI9a5H45aBczafaeLdCRhq3htvPjxwZohxJHn0KliB9KAPSV+70orF8G6/b+JPC9nrVg+5LqNWZf7h/iU+4OR+Fanmg8YO5hwM0AZnj/AF+z8MeE7zW759sVrGTjuzHhQPckivKPCfw6u/FHw91LVfEa+X4i8SN9sgmIy1mAd8AHpgBAa1PGRf4ifFi38JQuz6L4fYXWqODlJZxwkRHcDLk+4FerRou3hAMnp646UAcJ8E/FT674V+x6i5XWdFkNpqUTcMWXo4+qlT+Nd/HzGDXk3xKQeBPiNZ/EG1DjTb5ls9bVPc4SQ+uCR+Ar1O1njmtY5kbcsihlZTwQeaAJpPvLXA/HzxdL4a8JtaaUPM1rWT9k09B1VnO3f/wEEt+FdxeOI42lkcRrGpZmPQDrk/hmvI/hkD8SPi1eeO7lGbQ9Ed7HQkkGVkkXKSzAdsneAfQ0AZXib4Z3Xhj4T6Xq/htQ3ifw2/25pgPmvXJ3yox7hhxXqfw78SW/izwhZ69Y48u4jBKE/Mkn8SmujaGJsbo1OBgcdq8c8Jlvht8aJ/Csg8vw94nZrvS36RwXAxviA7ZDLj6GgD2SP/VinVHandbqwBAYZAPapKACiiigAooooAKKKKAFX7o+lLSL90fSloAKKKKACiiigAooooAr3RIZueq4+g9a8f8ADZb4m/GqfW2HmeH/AAnJ9nsifuz3XV399o2YPrmtH9rLx1J4O8A/ZbSSSO81qUWcUyIWNuG4Z+OmASfwrG+GvxV+E/hPwfZaNa6y6rDFmTNuwMkh+8546k0Ae0Rooww6Z2rinNEG4J47j1rzVfj38MP+g8R7eQ1O/wCF+/DD/oPN/wB+GoAx/itE3w9+Jlj8RtPiI0/UXSy1xV6YJ2LKwHpkc+gr1zTZYprOOW3kV4ZFDRsD94HmvJfE3xf+EniDQ77SNQ1oy2uoRNHIpgbgFcce/eq37I/jqHW9Bv8Awz581z/YU5S2u3jI82A8pye/3hj2FAHtSnJ4/Glpik5UEc45NPoAKp6ldx2cc088qpFFEXkYnARR3NXK8R/a88ZW+nWOn+DTczWi67cAX91FGWMVuPvAEdzn9KAL/wAF7VvHfjrU/idfK32YM1poQYcCHOWkAPTdtXn6167s4Az0ryfw58Z/hLoejW+lWOr+RbWsSpDGtuwCqBxV7/hfvww/6Dzf9+GoA9IWHCn5iSe9eO3m/wCGXxvW8VvL8O+MX2OMYjtrsdD6DeD/AOO1tf8AC/fhh/0Hm/78NXLfFT4pfCnxj4LvNFuNdOZkzbMsLbopB0dT2NAHqHxI8S2vhPwXea5dOoNvFhI/+ekp4VR6knFc5+zr4YvNM8OT+Idd3NrniKT7Zdl/vRo3KRfRV2jHtXz94W+L2l+OPEPh/S/HF7Jb6b4Xi33L+UxGo3K4VXYemCx+uK95g+PPwwTP/E+PIHSBqAPTvLUMSB1OT9ag1Oxg1Cxms7pFkgnjKSIyghgfWvPP+F+/DD/oPN/34aj/AIX78MP+g83/AH4agDL+CU8ngrxxqXwuv5W8i3zd6I8h+/bZ+4D3K7lFeuQHKn6185/Hn4l+AtY0+z8R+HNYlHiDQZxPZtHbtmZScPETjoVY/iBXufw31+38UeDLDXrZWRb2BXZGUqUbHKkH0ORQBu0UUHpQBF5jdCo5yQe2K88/aB8R3tnptn4Y0Hcdc8RuLWBk6wRH78p9Aq7jn2rvNQuVsrKa5m4jjQuR3wBngV85/Dj4r+ELr4maz408W6m0N6sjWOl2jwti2t1OC31J3H6GgD3r4d+H7fwv4YtdDtUURWsY+ZR99jyzH1JJP6VtyDALDGcd68zi+PXwxTKnXTx0IhanP8e/hey4OvN/34agDpPiX4Yi8V+EbrTXVVmaLfay94ZVIZSvpyKzfgf4rl17ws1jqCGPVtJc2l7E3XcnAbn+8MH8ayv+F9fDIk7tfO09vIbivLviR8Z/B/hTx4njnwrcyagbyAwX1jHEwD4ztb/ezjn0FAHpHxYnPjfx5YfDq0LGyj23esyIePKyQsZPvtbP4V6jZRRwKsMKqsSLhFUYAHp7V4D8Ffif8OtE8Py6lq3iBm1nWpjdXsjQNuTPAjHsAP1rtofj38Mxy2ukZySPJbigD1AnAzXm/wAfNDvZtJg8XaEjf2x4ck+0whBzNEOZIvfcoIx6moz8ffhhjjXm/wC/DVVk+O/wzZSv9t5XoAYWwc9zQB2/gfxJZeJfClnrdgwaC4iDsO6t3U+h4rznSVPxK+Nk2suwk8P+D5Whtc8x3N10Zx2O3BAP+1XjniP4waZ4O1DW/DXgy8km0vxE/m2s6xtjTXfIkx7YCkfjXrPwz+KPwl8FeCbHw5p+tbo7WMB5HhYtK2OXY9yaAPaIVIYKD1G4/jUuwYx715mvx7+GOQTrxJHfyGp3/C/fhh/0Hm/78NQBjfFuCXwH8SbL4mWKH7BdbbLXIkHVSfllIH93LZPuK9etJYms0e3cSR7QUZTkMvqD3rybxJ8Y/hLrug3Wk32rGSC5jKSIbduh96q/sk+Mo9U0HUPC0V3NqEfh+XyrO+kQr59vnCZJ6kADNAHtCtn8s4p1RRLiZv0NS0AFV5phGWduiDJPYD1qxXkv7Vnjv/hEfA62EPmx3WtT/ZY7lELCBDnexx/sgj8aAK3hQn4lfGi48SmPzdC8Ls1rYbvuXFxtw8gz12sWUH/Zr16MN5x7cc1418O/ix8JPCfg+x0Ow1vatpCAx8lsu55Zj7liTW3H8evhiMbtfYkd/IagD00j3rx74mxy/Dv4qWXj+yixpOslLLW1UHahOAkxx7hQT/tVr/8AC/fhh/0Hm/78NWP4r+L3wn8QeGtQ0jUda8y3voijZgY7f7pHuDj8qAPTvEGs6fpPhmfXby4VbK2gM5fI5UDIx65Feffs56Pc6pdal8SdcgdNS159ttHKPmt7ZSdij0zlj+NeC6f8WbDX4dM+G2u6hcJomi3ebrUvLY/boVbdEn5bQfxr33T/AI6/Cq1hS2h1vYkKBEVYG4A6UAeoGLIwW78cdKHgR1dXG5XABU9K83/4X78MP+g83/fhqP8Ahfvww/6Dzf8AfhqAKPg8yfD34rXXhm5Lf2L4ila60xz/AKuGY/fiB7ZILfVq6j4xeKW8K+EZbyGBptQmIt7GFessr8DA79BXmvxj+KHw18VeDp7e08QPHqFoRcafOtu2Ypl+ZfzIGfauQ8B/Grwz408dWet+LbmWxtPD8Ais7ZomPmXJ+/KfwCY+poA96+DPhVvCvhKO0u5RPqV0TcahcjnzZW5Jz+ddewJU4PPavMY/j18MBJn+3T/34YVIfj78MP8AoPN/34agDtvFGkWWt+HbvSL6JZIbyFoirj5eQf8AGuH+BOs3Nj/aHgDW52bU9AcCNn6z2zZ2SD15DA49BTV+PPwx2gHXu+eYGrzr4yfFnwHDq+m+PPDmqNNrOlv5UsCQsPtdueqMO+McfU0Aei/tAa5fXUVj4C0Nyuq+IpPLlkQ/Na245dz6ZHy8/wB6u48G6JY+HdBstF0yIRWdnbpFEgXBOABuPucc+pNeA/CH4t+ArrXNS8deJNQeLVNSbyre2kibNrbg8KPQnjP0r0Zfj38MvOJOuEDsfJbp6UAeoVxPxu8Inxd4JuLe1fytQtXFzp864DRSpnaVP4msn/hfvww/6Dzf9+GqEfHj4Yg7v7eJwMBfJagDa+B/jGbxb4LSa5jjh1Kxc2uowknMcycPx6Egke1drC5dd3GD0r5usviZ4Q0r9oS1v/C189zp/isfZ9Rt1hYLFOOVlHucMD/vV9Ixhc7lx04we1AD6KKKACiiigAooooAVfuj6UtIv3R9KWgAooooAKKKKACiiigCjqljZ3sgF3axXKryqyIG2t6iq0eg6Jnd/ZNlg9P9HWtU9aoeJNTtdH0mXUL2YQwQqWeQjOB7D1oAZ/YWhf8AQJsv+/C/4Uf2Fof/AECLL/vwv+FcvDq3iLVFa6gW20LT1wUnu8PJIp6fJwFB9d1SXGp+INHmWfUjDqOmMPmu7ZdjRf8AAOQV/GgDoDoeiOQBpFmwU9RAvH6VPa6fp9ncbrWyggaQYYpGFJx06fWpbGeC7tIZrZleOZQyOKsR4K5/OgBkOPNK5+ZR8341LRRQAVRvtNsb1t13Z29w6k7DJGG2g1eooAyYPD+hoMf2TYnoOLdak/sLQ/8AoEWf/gOv+FaVFAGb/YWh/wDQIs//AAHX/Co/7C0M8jSLMf3WFuv+Fa1YPiXXLXQ7XzZizyyMFihQfNM/bFAFqTRNGaPYdKsyT1It15/SkTQ9E3bW0my4HA+zr/hXJHWdcRke+1zT9JlmHy20kPmsPcnIwTVi38S6hYX0dvrwt5LW4lWO21C2f5WY4AVlx8uTxwT1oA6j+wtC/wCgRZf9+F/wo/sLQ/8AoEWf/gOv+FWY8NIpz8oA2kdj3FWaAMk6BoXO/SrEqTwPIUVoWcUMEIhgjSNV4CIMBamooAKD0oooAhddyldoHGMEZyKox6FoxGTpFnuJJJNuvJrUooAzf7B0PvpFl/4Dr/hR/YWh/wDQIs//AAHX/CtKigDN/sLQ/wDoEWf/AIDr/hTF0PRt27+y7MnsVtlx/KtWigDN/sHROp0mzJ/691/wo/sLQ/8AoEWf/fhf8K0qz/Emo2uk6VJf3kojii6n1PQAe9ADf7C0P/oEWX/fhf8ACj+wtD/6BFl/34X/AArlZNa8QXS/aJZ7TQbMsBA9x+9nlGO6cBT75NLH4k1TSo1ur2W31XS2JBvLZQrx+7ICRtHc5z7UAdK2haKH/wCQTa8/3bZcfjxTxoeikkHSrE7emLdf8KuWc0Vzbx3MEiyRuoKsvQipV2kkgfWgDP8A7C0P/oEWf/gOv+FH9haH/wBAiz/8B1/wrSooAy/7C0TqNItFb/r3X/CprHT7Gzkka0s7e3aXGfLjC7seuKvUUANjwG4B+YZJp1FFABVDULS2vPkurSGcodyCWIHHbPP1q/RQBlRaFoZ3MNIssE9RAv8AhT/7C0P/AKBFn/4Dr/hWlRQBm/2Fof8A0CLP/wAB1/wo/sHRR00iyx/17r/hWlRQBlnRNFDbRpFl+EC5/lRHoWi7ip0m0OOmbZf8K1KKAM3+wtD/AOgRZ/8AgOv+FH9haH/0CLL/AL8L/hWhIP3Z5x71j+J9YttE04312WVFHCpy8jk4CAfU0ATf2Bow4/su0x6i3X/ClXRNG24/suz+v2df8K5i41PxRJpb6tqF7YaBZJyqzJ5zY7Fs7cUW+vatpMsM2ttBcaXJgrqFsm1cf7Q/u0AdQNC0Pp/ZFn9fIX/Cj+wtD/6BFn/4Dr/hVjT2LjcQvzfMSpyOfSrVAGb/AGFof/QIs/8AwHX/AApraHo21gdKs/bbbrkfpWpRQBlw6Dou35tJtD/vW65/lTv7C0P/AKBFn/4Dr/hWlRQBm/2Fof8A0CLP/wAB1/wo/sLQ/wDoEWf/AIDr/hWlRQBlpomkxXAki0q0Qghg4iUbSBjjj3q/b5HDHJ7EDHFS0UAFFFFABRRRQAUUUUAKv3R9KWkX7o+lLQAUUUUAFFFFABRRRQA1utcl8Soo7/WvD+kXJ/0a6u2klU/dfZtIUjvnJrrj161zPxM0y7vtPtbrTsG+0+4E8AJwCRjIP1wKAOe/aO0q1u/g3rTNGR9ntw8QWQrzvXsK6LwHCtx8OdLjba/m2EO9W9CoyMenWuZ8b6gfG/w+v9C0+6tdO1C6QRTw358t0wc5CnBI47VPY+IF8PeD7HQzc2+oa3DbrBHDZHfghcbmAzgfWgC/8J5Wh0m8tBmRLPUJI42B4wXJwPYA4/CuyhxtIHY1hfD7RJNF8MwwSMDcSlp5j/00clj+WcfhW7EpUYJHtQA6ij8RR+IoAKKPxFH4igAoo/EUfiKACuIuEivvi4Umx/xK7IPAGXOC5OWH02DH1Ndv+IrivHEd1pfiCDxXY2jzfZ4mhvUjUszp1GFHJxz09aAOc1/RtN8M6H4kvvE01vqz6xPI1hG0IaX5idkYOM9x7cUnwt8MX1h8AX0vxEga4jgmnjDMS1uCWdACehTjp6cVlWdr4u1TxVd+I7TU/C13HK5NhFfibdZRZzsZAQFbGMkjPH1q9p9/4nvP7S0a8vrTUNS1aYB304MbWzt8BSAT3IB6HOTQB6J4Dnku/CemzTOWkaAbie+OAf0rcqlpNkljp9vax4Cwxqh98Crv4igAoo/EUfiKACij8RR+IoAKKPxFH4igAoo/EUfiKACij8RR+IoAYzEN144rkPiIftvibQ9HnLC3kuvOcD+MqpwD6jnp7V2LKC2ciua+ImmXdxZ2up2DK19ps4mhT/nrwQU/I/pQBh+LNDtP+E2l8TXUMmsLHaeRHpRVXETZH7wBjwTgjPvXMfs+29ofFni5VdbaO7uFYaA4wLUbFByvQbiCcDIOfXNamj3TXPi288TaNqNta6jdRCG807UpHURFcAFUyD26is7RbQ+HPFOr+IZ72HVvE+uARRQ6cN8dugGFyBkjnJJbn8KAO4+EGYvD91ZeZvjsL+W2hJ/uAKR9eWNdZGcr9Dg1h+AdGk0jwjBZySBrh8yTOTnc56n+VbqqFzyOTmgBaKPxFH4igAoo/EUfiKACij8RR+IoAKKPxFH4igAoo/EUfiKACij8RR+IoAKKPxFH4igBsozGw9q4zXIotS+I2j6fecxWlq11GhPWQfLz64DH8q7OUAxkE1y3jywuo5bLXtNiMlzYuS6Dq6HOVH50Aeb/ALUF1D4i8BeIdLhu1S00exlluG80B5ZQhZUznOB8p/SvQPh7FZX/AMH9OsisU8MmnojxjDLgjoa5f4gaD4e8aeAdU07RP7Nsr7WY3iuzcvtkRiu0nbnJ+tWdHu28O+C7fwhoyw3ertD5PmWhzFFwAHc9u/X0oA6r4QyO/gm1jeQy+QDGshOS4Hc+tdRWL4H0yHR9BtNLiz/o0W1iTwT3x61tfiKACij8RR+IoAKKPxFH4igAoo/EUfiKACij8RR+IoAKKPxFH4igAoo/EUfiKACij8RQenUUAKv3R9KWkX7o+lLQAUUUUAFFFFABRRRQAmAabJGjjDDIp9FAGTqfhnRdRkWW/sknkX/lo3DfTIxUml6BpGnZ+x2MUTHq4GW/M81pUUAIoAXAHSjA9KWigBNo9KNo9KWigBNo9KNo9KWigBNo9KNo9KWigBNo9KY0Ksm3JHvUlFAGLc+E9BnnaWSwXc/LbSVyffFX9M0yw0+HyrK1jhX/AGV/rVuigBqxqq7Rnrnml2j0paKAE2j0o2j0paKAE2j0o2j0paKAE2j0o2j0paKAE2j0o2j0paKAE2j0o2j0paKAE2j0pksSyAA54OeKkooAzNS8O6JfyB7vToZHH8eCrfmOadpmg6Tp7FrOyjic/wAYHzfnWjRQA1UVVxS7R6UtFACbR6UbR6UtFACbR6UbR6UtFACbR6UbR6UtFACbR6UbR6UtFACbR6UbR6UtFACbR6UbR6UtFACbR6UbR6UtFACbR6Umwf8A1qdRQBkX/hjQ7uZppbCNZm6yJ8rVNpeh6Zpy4srZYs/fI6v9Sa0aKAI44lTpn2B7fSn7R6UtFACbR6UbR6UtFACbR6UbR6UtFACbR6UbR6UtFACbR6UbR6UtFACbR6UbR6UtFACbR6UbR6UtFACbR6UjKCuOnuKdRQA2NdkaqWZtoA3N1PuadRRQAUUUUAFFFFAH/9k="]
math
multiple-choice
74
如图: $r=3 \mathrm{dm}$, 这个扇形的面积是 ( ) $\mathrm{dm} 2$.
28.26
9.42
7.065
4.71
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACZALIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAG6U2lb7pzUcjKuKAH0oqMvjnPFJvV+RnK+lADmyGzSKMtXL/Ez4heFvAWivqfibVbeyiC5WORwHf6A1876l8fPib8TdWn0z4S+FJ0sWJVNTuY2C/UE4FAH0/rmqaRpUZm1W/tbVFGSZ5gv8zXnWvftDfCzR7yS2l8SW87RjJ8pg4X8R9K8r8Ofsx+MPFN6mrfE/wAe390JDl9Nifan0yK7TWv2aPhdpPg7UTYaA8tx9mcK8kpZgcUATal+1H8LIPLMeoXN4W53QxMce3ArV+Hn7RHgDxp4kj0TSpbr7W44V4mH9K8i/wCCfHgnwZfeF9a0/U9Kt7q706+Mf70btoOeP0r6M0H4a+CdF1g6lpmg2tvdn+NVwaAK/iH4n+BvD3iRdE1fxDa2l7KcLFLIBk/jXUaffW2oWYurG4juEYZR42BVvxFee/FL4CfD7x9rC6trmnSm8jbcsiSlTmoviZ8Oteh+E6eHfhxrD6XcWhDRMx3E85xk0AemQh3xJP8AK2eBVvtzXhn7NMnxo0yS7s/ifHBNZ26kxXaj5jjqcZ9K9A8I/E3wT4k1ibTNL1+zkvrZiskBlG8fhmgDtKKhEincAeUFKkoHB7UAS0VGkoOakBzQAUUUUAFFFFABRRRnFAAahmUH+E8VJnPSopC3mbcnpnJ6UARbSW4bAJxz2rw/9pP9oXTfA83/AAinhe3bWvFV1lIrW3+byz0ywGayv2tvjjeaFfR+APh7B/aPirUh5ReM5W1B4LEjoea0/wBlj4CWvgy3/wCEt8XP/a3iy/xLc3U3OwnqBn60AcX8K/2e/EXjvWIvGXxx1OW8lnbzrfSA21IweQCDnpX034d0TStB02PT9Ks4bS3iXaiRoBgVakij5PmqrHuT/KpR5ccfzHdxxk9aAARvyCdysOhpk1tE1tLAF4dCDnvUa6lbR2/nXMqwx5xmQ4qYOJNkkbBlYHkHr0oA+SP2J5BoX7SPjzw28hQS3Zljjz7tz+tfXkfIG7rivjvS7Y+Gf+Cj0wLeXDqdoSAP4m3D/GvsQ53H6cUAOpMelLg0YNAEdxEkkTK67gy7SPUV4d4u/Zw8JX/xItfGOgXVxomoRzK9x9nkwsoBydwr3UrnnFQvbncz7gT6YoA8V8UftB+FvBfxRh8HeJ4bqy85FiivJFxHKenevZbO5t7+xiu7aVWilUMrD+IGuO+MPwn8KfErTIbbxJYLLJbvvhuFwHQ1xfin4r+Hfg/4w0X4f6ra3K2E8SrHfuPkU8AAmgD2tRk9No7DFTYxxVTTry3vrdbu1nWaCRQySIcqwPoatFhxjn6UAOooBzRQAUUUUAFNbsaG60yYgLyaAFdsrle3avNf2pPiRbfDf4Y3Oobt99cgwWcYPJkI4r0TcWUhV69/Svjbxxr1t8Yf217PwvdajHaaP4W+doZ/l82Td2zx2oA739iP4P3ejWcnxM8a/wCl+JvEH72TzBn7MjfNgZr3vxVq9tofh281a9LeVYxNM3uBV3T/AC0iURKBCFAXYcjFcx8dtF1DXfhTrOk6Xj7RdWzIgH8XtQB8xfC34qXfxf8AjBd6vqni19B0GzuCtnbAkfaNh6dR1wan1jx78QfHvizxdeeHdTa00vwYhkgVXP8ApARQe3rXmq+F4rv4c6b8PLPw3cWvjSG+KNOseAg3H5s/St/4b2HiP4NxeMvBWs6bc3t1rtkYbO62lg8siAdfqaAO3+Ij+Ovjn8B9H8Q+D7+WwulBju4kYjdIpxnj8K97/Zt0fxJofwo0+w8V3TXGqKuJXYk49q579jvwlqPgb4L2Wl6xF/p08jStH6BjmvWYzsVl3lmHzAentQB8j/tbb/D/AO2F4I19PkW5cwOw78rX2B5inaVOdxxXyz/wUa06VYfCPiONdv2XU08x/QV9JeDbqO98K6ddI4fzbdHDD6UAbFFJuo3UALRSA5pW6UANkOE4rzv46/C3wz8VvDh0rXYAskMgeK4C/MuPevRKikTczj5TuAxmgDzD4e+NfB3hXxBZ/ClNU239nCEiWXrIBgV6kvHHevDfj78BLHxd8TtG+IWmX66ZqWlyZnlHG9e+SPpXr3h3UbXUNPDWt3FeLHiMyo2csODn8jQBrrnbzS02I5jFOoAKKKKADFRzfKBxn1qQ1DdORHhVLEkDAoA4P9oP4iWXw4+GN74nuHx5aN5KY++wHSvG9P8Agv4c+OHgm18fyQXfh7xFer5gubWQxGTuCdpr1f48H4c65DY+D/G00eLuYeRAxxvbjiu58O6ZZaPoVrp2lRCO2t4xHCnZVoA+VYdd+PXwG1CSPWLCbxd4XgG1ZYwGmRR0J7nivX/g/wDtD+APHjR28V8NN1J1G60vcxkH05r1m5tYrmBoZ41eOQYKsNwI9wa8d+Mf7NvgDxw73MFqdF1EAlLuxJibd6nFAHqVrpGjNq39sQ2Fo11IP+PlY1JI9mp2oaZpt5dRz3mnQTyQnKPJGrEH8a+U7SD9oL4FXRtrYSeM/DkR+Uk7pYk9ycE16n8H/wBojwP43ul0/UJf7G1eL5Zra7zHhu+CeKAPZSV2sQn+r4Bx0FNmuLa2QTTyxxJ/ekO3+dVNU1rTbHQZdZe6iNlDE0ryq4K4A9fwr5IWT4lftLeO76PTdeuPD/g/T5DGskXym4IPOGHtigD0D9v+50TXPgDdyWmsWUktnMrqsdwp559DXon7K2onUPgD4bumJZzZRg8552ivC/iZ+yVoFn8JdUK+JdSkniiMpL3TsrEeoJr0H/gnrqb3HwFt7B3Mg02b7MpPXgEf0oA954pcCmqC1PVSBQADijNLijFABikKA/nmnUUAZ/iaxXUdCu9PLFftMLJuBwQSK+b/ANjDRPiH4J+I3irwn4jtbmbRXu5JbG5kbcAC2RgnnvX07IPmz3x0NeA/tUfGLVvhd8RvDEHkbtM1m5W3lZVGQSDzn6igD322G2FRnPX+dSVW0e6S90q3vIzlZ4lcEe4qzQAUUUUAI1RSberHAHepG602QbsLtyD19qAPnL9oL4Z+KfGv7S3hbVYYymh6am9pVH8YbPJr6JtY1ihVFH3VC/lXg+pfFPW7P9sC1+HkpC2Fxbh046kkj+le+Qt8tADlPAzUMgPm54K46E1NTWAPWgCHy0aPayhgeqNyD9RXl3xX+A/gTx7bSyPp40/UGP8Ax+WqmJwfw616vtUcikX7p+tAHw98aPhl8ePh58N9U0fw9q03iPQpImTyHO6QKc9Mc9DXd/sX/Gf4f6R8PbDwPq5bQdXtRtuFvIzCHY99zAZr6jkRXjKzbWDDlWHFec/Fj4H/AA+8fae0ep6OlvMOVubT5JM/WgDrfEUFn4h8G38VpPDPb3VuwSSFgwbj1FeA/wDBOy8FjB4s8LSfes9VYqp6gZYdK56++Gvxy+D2oyXngLxBJ4j0JFbFjP8AMyL+FUf2Br7xZc/HbxVeeIvDtxpq6gS4yhVQ27J60AfZg4pwqJm+anhqAHUUinNLQAUUUUAMm7D868z/AGiNH+HV1pdhq3j5YzBp9wGgaQ4Ctnj+del3HI29OM5ryj9sL4eaj8R/hHcaDo77b0yK8XbowJ/TNAHpPhGewufDNlPpZzZyQgwH1TtWlXJ/A3RNS8OfCXQdC1dt15YWgilOc9GOP0xXWUAFFFFADW60ycsFyMdDnNSYyaguGBwpHU4z6UAeYeN9O+Hdr8atL1rWJEh8ReSFtWLAE88D869PtuIYyTnt9a+ff2xPhX4g8V+LvDPinww7/a9KvIzMFP3kDA/4177pYk+wwrMNsiou4Z74oAt0YpE+6OaWgAwKTA6YpaKADA9KbJgcgZPpTqMc5oArlGwWx/wE9KrWdrbQ3DSQWcMcjHLMq4Jq+y7u9N8oDpQAuB6U5RRijkUAL0ozQM0UAOopM0ooAjuF3DBPBGK8X/bb8e6l4B+EMt9ohm+3TSpDE8fVSWAzXs91yuOnv6V5Z8efGvgHStU0jwp4xt1up9VuFW2iIHXqD+lAHWfAnUL3VfhD4f1HUWZru4sleZm6lsnJNdZVTQbe2tdHt7eziEVukYEaAdBVugAooooAO9VrpNxUNwM9as01lDcGgDj/AIwXmraX8M9a1PRd639vayPAvqwXiuG/Yn+JWo/Ef4Wtd66jLqlncNHc7hyD2zXs1xFHNC0UkayKRgqwyD9a8W8SePfAnwZ8fWPhcaX9hj12XJuFUBN5P/16APbF5XNFV47gTwpLA4dHUFWHQip0OV5oAWiiigAooooAKKKKAClUUlKtAA1JStSUAFKCKR+Ki3Fid3AHSgBbhgAWPKheRXhHjz4NW3j79onS/iDNrsdxZ6LjZabshXAxgj869N+MWpatZfDHWrnQ7Zpr6O2YQIvUsfSvKv2DPBvivQvBN5r/AI3ubn+0tXuHlFvMxPlAsSOPpQB9BW/+pX5doHAHsKfTYyCoIp1ABRRRQAUUUUANfG0k/jXl/wC0t8IdH+LPhmOwv8Wt3ZzCW1vE4ePHuOR2r1I9KgZVQEdW75NAHDfC/WNCsbe38BJ4gjvtW0mEJKpk/eNt4zzya7yPv+hr5z+P3wI1/UfilY/Eb4eavJpOrI4W8Cv8sqZyePwr23w/rthHNBomoataNrSwL50CyDcTjk4oA6HilwD0NVLiYqnZuei9V+tSWbM6bjxQBYwKMCkzSigAwKMCiigAwKKKKACjAoqJZSWIxgD1oAe65Qiqe8+XJ8rhoQSCeh9akEjLHvbHPXvgV87fFL49a7e/HK0+GPw80aS+uIZs6ldGNtsKg4Iz070AQaP8VvHXjj9qWbwv4Xs2t/DOkgx30s0OPMk46Ej2NfRcir/r4/mdfk29hj0FVtD0fTbFmubXT7a2urj553ijAYseTk1qeSu7PegBbfPkruGDT6FGBiigAooooAKKKKAAnAqKQZ+YdalpNtAFb7hwPvNySea+fP2ovgPr3iPxpZ/ELwDr11puv20qiSMSfu5UzzkH6V9F7RuqOX59yAkcYyO1AHn8Pj7SPCFjpGmeO9TgtNXvIljdpDtWR8evTtXdafdw3VussEkbwuu5XRgVI+orz/49fB/wx8VvDf8AZviCKZJ4B/o13G22RG7EVgWOj+Kfgz+z/JY6A83ifULFiYRJlmZc8LxQB7PvXBwc49OacrDaODz7V4X+zp8fR4/1U+G9f8OXmj67BzKjoVUD8RXpsPj7wfPq02mQ+IbFruE7Xi84ZB9OtAHUbhS5FVYZ4mRJFkUq44cNwaeWZeVXdnvQBKHUnANKGU96zdS1ew0+RI7+9hgeQ4VScE1yvxa+K/gn4aaQt94o1mC280ZjQsN0nptFAHdM6noeR2qpqVxFFGQZVjdV3fh9O9eW2/xMuviT8K77VvhhDM99tItzcRkAn17Zrj/2dPhd8VbXxpJ4w+JHieWeWQ/Lpw4jX2xQBjap8aviD43+Olv4Q8B6HNa6bYTbNRuZ4iqyLnnBP0Ne/wDh/wAFaDo2rz6xYadFDqF4M3FyoG9j35rT0nSNL095Lix063hmlb948aDcfxrSVP4sk/WgCKDczFmXb7VazTVGe1Ge1ADqKF6UUAFFFFABRRRQAUUUUAFMk45/h70+igCBssuY6i8srIQQCr+tXKKAMqLRtNg1A3cVjCLiQYeZUAOK8S+JX7K3hHxJ4qk8R6fqV9pN68gd3gf/AFhznpX0FRQB5X8VPhv4g1r4Y2nh/QPElxp11ZqoFz1LYGOa5n9nX4W/EjwXqF3J4v8AG0urW8kZWNcHK5/E171RQB8x6t+zBreu+O28Qav8RtUkhW88+2tRwsQyTg816140+EfgnxfZ2Nv4o0j+1G09VEbyt1IHU16FRQBhaFoem6DpMen6NbR2NvCu1YoxxitGMylB/EPWrlFAEIG7GO1SU6igBtFOooAF6UUUUAFFFFAH/9k="]
math
multiple-choice
75
11.有一张方格纸,每个小方格的边长是1厘米,上面堆叠有棱长1厘米的小正方体(如左下图),小正方体A的位置用(1,1,1)表示,小正方体B的位置用(2,6,5)表示,那么小正方体 C的位置可以表示成()。
(6,2,3)                            
(2,2,3)                            
(2,6,3)
null
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAFWAacDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACimOx3AL64Nc58WPF9p4H8DX3iO9w0VooOPXJA/rQB01Fct8JPF8fjfwDY+I7ZVVbyPcAOmcA/wBa6iM5UH86AFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQgdTRkdM0y4YKuSaZCGbDZ47UAT0U3JpVoAWiiigAooooAKKKKACiimyEjpQA6imIxK80bmzQA+iiigAooooAKKKKACiiigAooooAa33sV8vf8FS/Fa6F+z8+lxy7JtRfaCDzgEH+lfT8gPJX73bPevm/9v74Rab8QPBbaxrWpTW8ekKHjijY7XJOPX3oAh/4Je+K4de/ZzsrA3IludNfZKu7JTgDkdulfTEf3fx7V86fsD/B3Tfhz4Ij1vR9SmuYNZgSSSNj0bGf619GL93IFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV7yJpm2g4FPjQoir6VLQ3SgBtKtJSrQAtFFFABRRRQAUUUUAFBGaKKAG4x0p2BRRQAUUUUAFFFFABRRRQAUUUUAFFFFADGUGQMewrzD9rZSfgfqg3H7q8+vzrXqDEbq8x/a2bb8EdUJ/ur/6GtAGl+zaq/8ACl9CKjZm1Q4X/dFd5H92uD/Zr+b4K6Cf+nVP/QRXeRjC/jQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATFKBiiigAooooAKKKKACiiigAooozQAUUZzRQAUUUUAFFFFABRRRQAUUUUAFFIxwM01XYtgigAb7w+teYftgf8kT1L/gP/oa16buHU9jXlP7Z12lt8E78sRh2QD/vtaAOh/ZxTy/gzoSn/n0T/wBBFd1XE/s+nd8H9CYdPsUeP++RXbKcigAooooAKKKKACiiigAooooAKKKDQAUVH5h+bIwFpysSucUAOopMn0oyfSgBaKYz46nFCsS2cjaelAD6KKKACiiigAooobOOKACimF8DHeliLMuWoAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWp1NagAjp1Njp1ABRRRQAUUUUAFFFFABRRRQA2T7vNec/Hz4p2Hww0RNQm0q81GaU4WG0jaR/wAlBPevRpCAhJOPeszWNM0y6WO81C1gn+zqWBkjBx+f0oA8V+EH7TGmeOPHNv4bHhjV9NmuBnN3aSR+n95R61d/b2cD4CXB3fN58fT/AH1qH4VxxeMfj7q3ii1soI9P0VPsqlFABc4ORgf7Jpv/AAUGPl/AK6aJf3n2hMehO5aAPRP2eQF+Dfh5M9bCPP8A3yK7VcY4NeBfBm/+KqfDHw1DZaXbfZms4t0mOduB/s17xYGQ2URmAEmwbwP72Of1oAmooooAKKKKACiiigAooooAMimyYKkZxTZDjcSM47Cub+J3jPRfBXhW51jWrxIVij3JEThpDnAA/GgA+JvjXRvBHhW41/WLhUhiX5YywVpD6KO5rwNf2ydKbJt/APiKaPPyyLayAMPb93TvDuiav8X/ABXD4z8eTx2eh2rZ0/Ti/wC7mHUFhwD1HY9K9at9P09PkgsNJjhTiNVhQgDt2pXKUbnkn/DY+n5x/wAK78Sf+A8n/wAbpf8Ahsax5H/CufEvBwf9Gk4/8h160LXSgx+0W+mL7+Sg/XFZvjjxD4Y8FeGp9a1WDS2t4YyyqkaM0j9h09cUynCx5P4h/be8OaHafaNU8Ga1Y7vufaYnj3/TcgzXvHwG+IVp8TPA1t4psLWW3t7k/Irvn19h6V8t6l4Uu/iv4c174leNdFWz0y3s3bS7FowoACkhwuAOcA17h+wHGsf7PmnJGirGJZdgH8I8xqDPY9uooooAKKKKADNIx4pG60UARbSZM4qeiigAooooAKKKKACiiigAooooAKKKKACiiigAprU6kblaAEjORxTqbCMA/WnUAFFFFABRRRQAUUUUAFFFFACN0rM8WW91daFcW1k6rNLEUXd05GK02+7UeO7KG9KAOG+AvgmbwP4LaxvHEl5Pcyz3Eg/jLOxX8gcVxH/BQBA/wLdC3W5j/wDQ1r3FiNuO+OleIft7ru+Cx5/5eo//AENaAPQ/gXH5Pwj8PoGJ22MY5/3RXXR/d/GuV+DKlfhXoSkEf6FH/wCgiurWgBaKKKACiiigAooooAKKKKAGSLlsg7c9xXyn+3R4OXx18XPCPhu91G5t7C4cmZYmwHHzcGvq5uvNfNv7UEs4/aK8GLGccn+bUDW5gzfsxaHpcsKS/EHVvsEYAjthJjn/AL5+lSXX7L2nG6SSDxprUcUnKoZuv04r1rU7SK+11YZlXasg5A6V4JpviL4n+Lv2pta8CaF45g03R9HQuZHBPl9cjO4elSavQ6K4/Zn0i4jiA8W6uGCkyB5sdDj0ryv43/CrT/B3xf8ABVodavtS0/UL4LPbXEpK8c9q9O/ZX8eeK/FvjLxb4d8RagNWg8P3Gy2v9hTzOmepOepql+13Np6fG74chYipGocr+HWmiU7o9N+P0q6f8H9dtLOERww2DpHHjAVQhAHHtTv+CfmW/Zz0x2GCZZf/AEY9XP2iBF/wq3xE8xX5rJypz22nFVP2AXDfs86btPAll/8ARj0yGe30UUUCA03JpzdKbQAjE4zRGSetKOaXGDQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAA33aaOKc3Sm0AKtLTVIPQ07NABRRRQAUUUUAFFFFABRRRQANjHNVNRu7SwsZLm7nWGGMZaRzgCrMv8AqzXyn+214x8R6h8SvDvw18Ow3MqXDeff/Zj82xdpIGfbNAH0J4R8deG/EurT2Wiagt1Lbj59oG38wa8z/b0kC/CO3ST5d19HlR3+Zaj/AGdPiX4Ym8VP8N4/Db6HqdnDkJIvzyjjLE5PJyD+NH/BQG5Fj8E0vFgabybxGWJRkv8AMvFAHrPwr/5J3ouOn2GP/wBBroFx2r5v+EPx18R3Wn6Foh+G+qxI8SRm5IXywoAGfvZr6OtmL26OV2llBI9MjpQA+iiigAooooAKKKKACiiigBj/AHvwr5w/aYw37SngxPWM/wA2r6Pk9emB1r5q/aSSa7/ai8HWyLwYjhs+7UDW56L4k1CHR9M1DWZFWNba2eQuzdwpI/WvkT9nzw/a+M/BvxO+Jt7rc+n3M8lx5U8NwyY2mTA4I619XfETwbD4n8O3fh+8u2t4b1AHkif5gM9s1wnhH9nDwloWmjRo7i7uNNY75rcyhUmJ67sEH1/OpN+VHOf8E99Qi1T4Q6g7ad5dzHcsj3WMNKu4/MT37VT/AGqYkf8AaE8AxNJvb7Vxz7Gvd9J0LSfDWjR6PommRWttHwqRMB/Xmvnv9sC+g8OfHTwTrV8dsMcpcKWBJwDkce1BMrI9n/aMns9O+DPiKfVLiKDbasIjKeG+VuBmj9gFoZf2dtMlhIKvJKQR0/1jdK8c+I3h/wAQ/Hbw9rfjDV7q70jwnpccps7RcA3JTPL+xwOh717f+w/FaxfAfTIrKPy4I2dVQdBh25oIcj2SiiiqIBulNp1JigAWloHFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAdaQjtQ33aTkoQaAEVQvApabGMZGc806gB1FFFABRRRQAUUUUAFFFFADZDhCa8C+PGg6l4f8AjVoPxMs7OS4srKJ4btYVLO24AdBz69q9+bpzUVxDHPGY5Y1kU/wsM0AfPfgPR7vx5+0vH8TLPTpLHTrO28n99GVeU/LnrjP3T2rc/bdZU8A6aG5V9RRQuOvIr2azt7e1jEcEKxLzhUGBXif7cu//AIQvQx2bV0/pQB6x4MhQeF9NKw42Wy4HAxxW1HnbzVDwqMeG7L/rgv8AKtBelAC0UUUAFFFFABRRRQAUUUUARv8A6zB5Vh0r5T/ag8CeKPHf7S2i2vh3xFJos1tZFo5UJyvzdR+dfVzctivINaG/9rTTW/u6Q3/oygDzO6/Z3+M0rMf+FyX+ccHLf402L9nX40Ko3fGXUScdmb/Gvq+ilYNT5On/AGcPjFIpJ+MGoMfQu3+NcdrH7Pmrf8NEeFNP8b+LZtetW3yxJMT8pVWY9fpX3Ea8L+KUrN+1p4OhH/PvL/6LeiwHZfGrT7XT/gPrdhZ26x28enOkarwAAhArB/Yni8j4G6dHjHzycD/faus+Pybvg/raH/nzf/0E1z37HaCP4MWQH99//Q2osB6rRkDqaRmxUEis8m4dKYFiimxhgvNOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprfdNOprYHJoAbGc5+tOqON1diU9alagBaKKKACiiigAooooAKKKKAGyHCk5xUMkqxqJJisaBcs7NgCp35WvCP27PFt94b+F8aWtle3EN9N5cr2iFpI1yATgAnvQB7ZbahY3L4guoZGHZXBrxj9uLLeD/D+Af8AkLpgevSuT/YVtPBl4suqaN4p1G+uyuZbG9YhoCOuQVHeuk/bwu4bLwHol5dFvIh1VWkK9VHHSgD2jw25Tw/ZqxUFYVyD9K0l+7mvLfBvxn8B3y6bo8GpXDXl0iqsZt368d8Yr1CBg8YYDA7UAPooooAKKKKACiiigAooooAbnDGvItS/5OysR/1CG/8ARgr1xvvV5HqX/J2Vie39jtz/ANtBQB6/RRkHoaKAEbO3ivDPiJsk/a+8IEAnbbS9P+ub17oeleBfFG/stJ/aw8MXuoXMdvaxWczF3YKD+7k4yaAPRP2hbhIPg/rzzEKq2kh6/wCya5v9i+6W6+CVjLFyvmPz6/O3SvJfj9qPi342eHdei8NXs2leG9MjYPcMpX7UVB3AZ6jj9a9l/ZEsbbTvgno9lbH5IYyD7tuOTQB6ew3Uipj+KnUq0AGPeloozQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAaaeRg05ulNoAbDEqZx3NSHmkWloAKKKKACiiigAooooAKKKKAGzDMeOfwrlfHfiDwjYXUOk+JJrdGuFxCJgCD+ddYRmsPxN4R0HxBcRz6tYJcyw/6t2zlaAPB/hd4d0qH9rK91fwbbCPSHstt20SbYmk+Tpjjsa2P25lhufCHh+2u1G2TVE3r2I4Fe1aLomm6RF5Om2sdsuctsUZb6mvEv26p1t9A8NR8ZfV0AzQB6d4W8D+F7WzsbqHQ7JZreJSkwiXcPxxXXxgBeMY9qo+HTnQrQsesK/wAqvr93pQAtFFFABRRRQAUUUUAFFFFADJMHjHevnT4tQeM7n9rLT4/DE0UO3R2yzjIH7zuK+inLCTrxkcV4peXkZ/bNtbMf9AVj1/6aigCxLpnx0En7vWNO2/8AXutT2uj/ABob5p9YsfwQL+lev7RSFM96API5ND+MhmUprNjtzzkCvEvjH8PfFPjf9qLwro/i3WVS3CvKkdvwHVVY4OD7GvsnaduAfxrw7x0P+MwPCQz/AMu83bt5b8UAdZ8TND07w78B9V07SoFht4rN9qgf7J5qL9k8H/hT9gT3Lf8AoRrW/aAIj+EGtHsLZ+P+Amsv9lJxJ8G9OKj+9/6EaAPSqKKKABulNpzdKbQAq0tItLQAUUUUAFFFFABRRQxwuaACis3R9QuLu6mjltvLWM/K3rWjk+lAC0UmaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKY7bTmgB5IHU4oz2qGQ74zgA/WuN+Mnjax8CeBbzWJRJLNFE32eMctM+OMDvzigDtGb5iPSvn39u+3Nzp3hXafu6wvH4Vr/sU/EbxH8SvBN/rPiSFYZI7x0SPuq7m2/oBWR+3NcpZxeE5ZDtjXVBuJ6Dg0Ae6aGn/ABJbRc/diWtIYxXM6D4m0CbTbKKPWLMzSxrtjEyk5+ldBG/YnP4YoAmopq806gAooooAKKKKACjIoIyMVEchsUAOkGT+NfP8jq37d0K+miNg/wDbVa+gCMfd655rwi6aD/htm2CR4c6M3zY/6aCgD3rNFMw3979KPm/vfpQA9vu14V46P/GYXhL/AK9pv/Rcle4sTjk/kK8N+IckNr+1t4Wu5m8uGGzmaV3PQCKSgD0D9oAovwg1tpCAv2Z85/3TWV+yjJDJ8G9NaB1Zctypz/Ea8W/aU8Y+Lfi5o+t+Gvh5K0Gh6Yh/tG/GR5owdyoe/Q969o/ZR0+LTfgtotpFEqLHCQSOrNuOSffOaAPTKKKKABulNyD0okGYyKSFcLQA5aWiigAooprdaAHUU2nUAFI2dvFLRQA3AVeBgn0pB9afRQA2nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUco3cVJRgUAQlQsbAgkYr5D+M3xO8T23xm1SDWPAuo6ho2m27rZtFEGjJweTkj0FfYEg+Q1Q1DT7a+t5ILi3Q+dGUkXYPmBGOtAHyt/wTV8bSa3a+INM/sG8t0bUnm81lwq/M3y9e2f0rpv8AgoRptvrOi+G9L1CZ1tbrU1V/Lbaw47Ec17B8J/h9ofw/0+4ttDtWiS6uHlZTjILMSf1NeXftuW32ubwnAPlVdTUkevWgDT8Ffs1/D7S9U03xBay6obq2VXUvfzFWPupfFe1LCEVVUnCgAfSodFUDS4Ih/DEvNXVHFADY+OKfRgUUAFFFFABRRRQAUYHpRRQBHJkMMHuM18m/G3xD420v9sG3n8G+H49SvF00x+W7Ecbwc8V9ZS8sB+Oa8H8qT/ht/eJMxNo53Ljv5i0AZv8AwsP9oz/onVr/AN/G/wAKP+FhftGf9E6tf+/jf4V9GeWn90UeWn90UAfOY+IP7RZOG+Htmg/vNK+B+leU/ESz+LHxF/aR8OaP4ggi8OtJC+TZuXLptbP3h6Zr7hZEVSdteDeODJ/w2h4R+bOLOdf/ACFJQB0njbwjpvgX9n3UNN0WJYmgtW3zKPmlcqdzN65PNa37M3zfCTS2PVlYt7ncatfHhc/CPWFYY/0Zs/Xaar/sz8fCTSx/st/6EaAPQKKKKACiiigBm/DFcfdGTSGXC7sDb70Te7Y9MCvGf2nvjZa+A7E6L4eVdQ8TXq7LW2i+cq56bgOlAHs3mHOMdB1PSjfnnBr5n8OaR+0Nqek291qHi62tZbgea0J/gU9utWrzR/j2rbbXxnbs27oR2oA+jZHZUJAGe2f60vmH+6cAdq+b20j4/OoSy8YWzzj7ysDivNPjt8SPjR8PNLjsrXxdFquvzRlpLKFGYxDJ5IHTpQB9uK+VzxS7juAx2rw/9hHxX4l8Z/BmDXPFFyZr+SVlm9iAOP1r3BRnBHpQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAOe1Mcg8fN+FOcgLk1578bvGfiXw5ax2nhPw9Jq+pSgsIuQuB7igDv4+BjJ/GvD/2v03at4W/6/wAfyNan7MvxfufiGuo6brGkyabq+kz+VdQnoCckVm/tZNu1jwsXGAL4Zx9DQB7PpfGk24/2Fq2Kpae3+gQLxnYOKuKdwzjH1oAWiiigAooooAKKKKACiiigBDyceleHWr7v2ypB6aWf/Q1r3A5En1rwfTHVv2z7oBh+707aPf5lNAHvVFM8weop4IPIoAD0r578bTZ/bg8LRf8ATrN/6Lkr6CkbbGWxnHpXzd4ym/4zv8NyEEJDZTF2/hH7uSgD1z9oIkfCPWmH/Pu3/oJqp+zOQ3wj0oqyv8rZwenzGvFv2xPihr/iDRdR8HfDq1S/EMTf2ndox2wjByAR1I5/KvYP2UbBrD4JaJFJKzy+VmRm7kk5oA9LooooAKKKKAPFv2wvjjp3wg8Lp5cclzrWoHyrG2RSdzHAzj8RXifwN8T/AA40K9m8deN57m98W6j+8Ytbki0B52gnOD0rqf24re3m+O3w/E9vHL/pnIkUMPvR9jXr8+l+Hdqwf8I3pe07WYm1QknHuKze5pE4a6+PnwpucSHULoMv8O01DbftA/CwT7JLu9DgZjAiJGa6TXv+Fa+G1WXW9I0eBpz+7U20e4/hiqNrcfCjxLqUUGm2mkPdJnMaW6AgDpwBVFHK+Mv2hfDNtpP2fwnDNPrt6/l2ccsRAkc5wDS+APhZLoPh7xJ8QvGc4v8AxRqNg7ZPItkI+6OuP/r1nftO6dpOh6r4RvrDS7OFm1JAfKiUHqe4HFexeMpEfwJrZxiNtKJZSfvcDvUvcGcX/wAE6/8Akhf3t3+my8/gtfQA6j6V8/8A/BOrB+BbFRtX7dLtX0GF4r6AXt9K0jsZS3HUUUUCCiiigAooooAKKTNGaAFopM0tABRRRQAUUUUAFFFFABRRRQAUUUUAJJ90nj8axvF1veXOhXK6U+y+khYW0uOVOOP6VsuMrXDeN9D8YX3ia3vdE1g21iibXgzjn160AeJfsT6hr2h/FbxX4N8U2ytqLTtdPd4G5+eAcezCuh/bgtdQvj4bttHuxa3kl8DFKRwp5613vwr+GreHPF2oeJdUvPtWp6gfnkJ5wOB+gFcl+1UZG8W+EolXk3vzn2waANn4c+E/itY69Df674zt7vT9qj7OqMDj8q9bhG1MYxUFiP8AQol9FFWaACiiigAooooAKKKKACjI9aRs7Tiud8feK9L8H+G7jWtXnjgtoFOwOwDSN6D17UAb8hUsfm5Ar5O8cfEWPwb+2bdZ0a4uw1hz5KEnqtdBD+0P4w1Jml0n4d6hNZybjFMY2AkA6H7tc1+zn4r1bx3+1hqt14k8NrpcsFjhElTBb5k9QKAO4vP2k50dhbeBdWkx0zHWb/w09reTj4b6ueeoQf419Ff2fp//AD6w/wDfNJ9gsR0tIf8AvkUAfOj/ALTuulSF+G2r591H+NeM+MPGHjX4qftOaHY+G9CuNAufs7JK8wwXiIcMevoTX3gbCxPH2WH8FFfPXiSZIf28PD9tHEq5spen/XOSgDf8beA9N+Hn7N+vWmllftk9s7XN0w+aRmU5Ofrmus/Zjz/wqHRyzblEPU+uTR+1E2z4H667Ju22rFFHc7TXi/wg+IHxgtvh9p8GneCopbVFxGwX7w568UAfV2aM18hw/tLfE67+IT+CNP8ABRvNUt+ZzGuY0HuQMdq7H/hZnxyCEjwIo56bf/rUAfRZOOtGR6186x/Er45SKQfAifiv/wBaj/hZXxzXlvA8RbsAv/1qBX1ML9tbB+PfgAZ/5ev6x16nr+oQ6dY3V9M4CWtv5jc9AAK+afjF4o8beJv2hvA+m+LtEg0yRZ9yOmN/JTFe++PPD9xqmk6roi3AjurqzMcTZ+8SBjNTym8VdHgX7Mq3Xxs+MOvfEHxQzzaDpcjQWNqxwrEY5H/fVenab8MdE8P/ABRvPG+mRSRLcwBFtgflU/Nz+tcN+y3rulfC/wCEeteF/EFjc/21ptw8ixrGcS5xjHHvXo3wR8Ta34u8Fz6zqtjJZq0r/Z4ZFIITscGnYqxiftGrFLqHg7zGb95fo20jjqa9I8aXMs3hPxBDGMLHpRH6CvMv2lLiZ/FXgiwdGEL3iEsB05/+vXRfH3xzo3gHwzqiX8n2jUb/AE4pBZR/MzcdSB9KXKS0Wv8AgnKT/wAKFGev2yX+S19Ar/D9K+H/ANiXxn8WLX4Qj+wvC0M9nJO8iFl5UkD5T9OK9g/4WB8civzeDoFGOu3pVLQylufQVGR61873HxJ+N1tZTXd14StoVhQl2fAUKO+a534f/Hv4t+MWuDovglHt7aRovPK/LIy9SOOnIoEfVWR60Zr55b4i/HJYcjwXCz5wcLTf+FkfHT/oSIv++f8A61AH0RketGR6186t8SfjkrDPgONieOBjd7dK5O3/AGjPijL4+bwfaeBjdalH80rRrmOEehIGM/4UAfWj9OKalfPMnxQ+OY6eAl/75/8ArVVm+LXx0ik2/wDCvt3uF/8ArUAfSVOyPWvmhvi/8c1XL/Dxto64Q5/lWB4s/aR+KPhjWtP0vU/Aoa71GQBLeIZfB7kAZoA+tsjrmjNYvhC9vL/w7aXl7b+TcXEQeW3Y8x57Vr5wq8fSgB9FFFABRRRQAUUUUAFFFFADZDhc5ppGVOD+VOkJC8Yz71w/xG+LPgvwRdi11rU1jmP3lRWbZ7nAOKAO02jcD1Zema8T/acy3xC8JRA9bvnjrw1eq+BfFOieLdFj1XQb+O8tZc7ZUPf0rzL9oPZJ8U/CMLDLG6OP++WoA9ktxtt0/wB0DFSr92mKAG2jsBT1oAWiiigAooooAKZI+GCLjcecGn5HrWf4h1Kx0nTZtQ1G6S1toELSTucBBQBD4o8QafoOhz6rqM6Q20KElmPU+lfPWjaBr3x88dDX/EazWXg/T5s2dqGI+1EHIJ/8drN+IWi+Jv2mNTay0vULjQfCumy4S7j4N6R9QfU9u1bGm/s7eNrPTo7K0+LGoxWsKgW6oqjb9fkoA+hNN03T7Kyis7S3hSKBAiIEA2KBxXh3hZD/AMNpaoWh2qtgAhVQB1TnioIfgD8QlhZJPjFrA3EfdCYJ/wC/dcx+zn4W1Xwp+1trVhq+uza1J9iG2eXqOU9AKAPq/bRgelLRQAjAba+c/E1sH/bv0K57x2UnH1SQV9GnpXgesqP+G0NKlI6Wj/8AoL0Ad1+0sD/wp/WFClj5JwFGSeD2rzXXPH9xpHw80XwB4FeK+8RahbqrBGz9mVhks3pjI/Oj9sr4pQrp7/DLwvbNqfifWkMCRwfN9mDjAZj0HX9Ky/gb+yzH4a0y11zUfEmoDxE8WZ50YEoTztGRjjgfhQB6v8Bfhpp3gbR3nuZBc65qH7y9u5BlyT2B9K9DVlVcMVGOnzV5TJ8IdaaaQr8QNaUsOD+74/8AHaqyfBXV3X998RNYdgM5JTP/AKDQB7ArAqeVz7NXF/Gj4hab4G8LveOVkv7gbLK3B+aZz2FeY/EbwWngLwvcaxqHj7V53SMmODem6Q+gG2uF+CXwI174g+T40+IPiPWVELl9It2ZP3I7MRj3NA0jhfiZJqukfHbwX8R/idqyWP2yTItGb/UJlCvBxzz+le5ax8cvgmmqSX03jm1LbRgbxwMfWvPfjb8JNIb9pbwVbeIL+41uC6DBobkjGV288Aete63H7PHwiu/nl8FWIDKVKktz/wCPUFc1jz24+NH7Ot/fNqEniHTWuHGGchfm+tXLb47/AAUDCKLxfYxwhdqJGFAA+gNdb/wzN8FxwPA+nj6F/wD4qm/8MzfBgEn/AIQeyBA+8Gfn/wAeoHzHzr+1h8XfC+ral4cl+HerQ65qlrdr5VsuMFuw4zXoXgP4YatqfhXWviX8SbcS6xcae32O1kJKW4wORn8e3erXxg+EHw58C694Z1Hw14astPuTqKEsN5LdfUmvc/iSMfDDVGKDjTGwB0Hy0EuR5X/wTzyvwPYtgbtQmA57gLmveZpESEtLjCjnBr5G/Yh+Hd7rvwgkvV8XahZxm9lbyoSoVDhc9Vp/xG0DxT4h8cwfDvwF491VxkHU7wFSsScbuduM8/pQO1ztPiN4n8RfFfxs3gLwg4Gg2741XUYm5I/uDH4d69q8A+G9H8I+GrXRNIhEUNqgUEj5m9ye5ryX4cfs9r4R0cWeleLtUt5Jxvuz8pLt/ezt+lbjfCHXHyyfEXWVDfdxs/8AiKCD1pdmchwM0wygKGweTjGOa8hl+DniPP8AyUnWcd/9X/8AEV558ctB8R+ELOHTtF+IGpXviPUm8uytlZCV9yAvHQ0Aen/tBeO72xEfhHwg6z+Ir8hdqcm3Q8byPz/KtT4F/DyDwXpRub9/tms3v7y8u3GW3HkgH0yTXknwz/Zn1yz2eKdb8d6p/wAJNfQBb6UlDs6/KPl9zXaR/BnxKVUf8LG1eMqTjlOR6/coA9oyvqPzpMx7sZUnFePf8KX8Tf8ARS9a/wDIf/xFc78SPBN94J8OT6tqnxR1pflIjTMfzt2AGzJ5IoA9R+MvxB0nwJ4Zlvblo2u5FK2ltxulk/hGPrXm/wANPh5rGtfbfiN4gcya/fR/8SuCUZS2BxjAP09K579mD4X63q9+3xC+JurTaoVkLaXFd8LHGD8rkYHONte+6D4r0HUtSfTNJvI7iSHg7FOxcdgcYoA+fPjhoXxJ8F+BI9WTxtPJq17dRxJAEG1iXUED6A+lfQvw1j1OLwTpS6xKZb4Wqecx7ttGa8u+L1xbeKPj54c8J48yKxJvJsHjdg8H/vkV7ZGoXCgY2nAx6UATUUUUAFFFFABRRRQAUUUUANlAaMqe9eX+NvAvw/0nS/EHiDX7Nbl76FxdS3eGyuGwFyPc16hKcRk4J46CvlH9pX4gfFRviKuiab8MLjVvD9q2ZGVnP2jB6EbeOn60Adl+wZ4VuvDXgLVJjG0On3+oSS2EBGNke5sYH0Iqp+2Bq2t6J428L3/h/Sf7Uvo5CVtw4Qvww6npXa/s2eL/ABd4q0WSTxD4JXwrb2gEcFrvYkgeoKjHSsn43FU+OXg9MZDE5BPXh6AI/hH8Rfil4i8ZCw17wEdGsQgzO8ofP5AV7XC26POe/pSKuzjuMDOKkAxQAUUUUAFNlx5Zzn8KRn2k56Cmzyxxxs0jqqqu5iew9aAK1/PDZ2clzdyxwRxoxLscLGAOua+SvjB8a/AvxG+JR8DXfilbLw3p7Aak7NtW6PcAngj73rXb/EXxFqXxj+ID/DvwffSQaJZtv1bUYuVkGeURv+Anv3r0DQfgT8LNP0eOyHhPTZ9qgSS3FqjySHHJLEE/rQBg+Ffjb8E/Dvh+DR9K8UWNva2ihYQHU5HqcH61qW/7Q3wnlk2R+KreRv8AYH/160/+FJfC1W3J4M0kketqn+FS23wh+G8E++LwfpKEj5MWqDJ/75oAyU+Pnw0Nx5J12XccncIyVA+vSvCvDXxw+HkX7V2ra2upSyac9r5aSW8DP8+V64+hru/j4nguxuU+H3hDwzp114l1hdnlxwr/AKMh4LEgZHUdq6/4J/AXwJ4J8LxQ3Gh2V1fTjdcTSwKx3HkgZFAEY/aX+F5k2R3uoOfaxk/wqVf2ifh5JN5aPrDNjPyabKR+i129v4E8GQvvj8O6YD6/Zk/wqzF4a8NxXW6LRLEMRwVt0x/KgDgG/aE8Dbtgttdb3GlTH9NtfMH7Sn7Q/wDZvx2s9V8A6PqV9qMlkyCOWykEkW4ONwQrnvX1v8Y/FHhP4eeGH1C80+ya8mG2ytRAgeaTsBx9a4r9n34ZT6hr1z8TvGuj2kesagMWtoIV22sfUc4GTye1AHlf7MXizwB4Ohk8Z+Kh4i1LxbqmZby4bRbjMZbny+VJ+XJHWvZv+Glfh+LcSiz8Qjnlf7Fn/wDia9WXRtHUf8gyx55P+jJyfyo/sXRuo0mxPt9nT/CgDylf2mvh8y/LZeIv/BLcf/E1X1L9pz4ZWVqbu/OtWoHEZl0yZCx9ACtel+KZPDGg6Ncapf2GnQ21spMjG3T06DivEvDXhu2+OPjRPEeraHHY+G9Jk/0CERBftTA/ebAHoPXrQBwenfF3wp46+Ij+JfHGn+JIdO02XGm2KaXOyP6SEbfr+deyWf7Rvw8igEcFn4gSKJcKv9iz/wDxNepW/h7Q4IYraLSLLYiALm2Q4A98VMNF0UsWGl2PTHFun+FAHyt40+Jnhvx1+1J4Ih0SHUo5IyzOLq1eEY+TswHpX1uPvbgdwJ9elfNvx3tbG2/au8DxW1jDAW3ZkihVSR8nGRX0iqlZAo+71oAlpkvTHqDT6jkOHBbp2oA8O/asnx4w8HW/96+T+del/EwM3ws1RUbbINOY59tteYftXR7vH3g05Ofty8Ac9e1d38d/Emi+GPg7ql/rl6lrGbAoGc43EjGB70AfGfwx+PFr4e+B0ngnwvDqUuvX2oyJcz2sDuttGdoLfKOuN3ftXvPwP8f/AAw+H3hFY4LfXp7y4Kvf3J0admlmPJOdvqTWZ/wTZ8J+Gn+D83iKLSrSaXUruSQTyxK7MmAR1HHU19JLo+khCF0yz5HCiBQP5UAeaf8ADRXgD/n21/8A8E0//wATTf8AhobwHJIAltr2G4YnSpl2e/3a9NXR9JPTS7H/AL8L/hXK/FzXvCvgfwvLqt9pdo0mCtvCtqhaeTHCj8SPzoA85+JP7VXgHQPD90mnR6pda4IibPT30+XzZmxxxtz6du9cH8AfGfhCLVH+I3jSPXrzxNdMSgk0uYm0T+6MqfT9a7f4A/ClPEHio/FjxzpkP9r3TE6faGIKttDn5crjGcBe1e7DRNIHTS7Lng4tk5H5UAeaL+0F4FVQfs2tgMNwP9mTcj1+7SN+0N8P1++uuAd/+JXMf0216SNF0ZdsX9lWOAMKPs6/4Vm69beFNJ0mfVtRsNNtrW2UtJNLCgVcevFAHnetftL/AA00izM+qX1/anH7oTWUkaynsBkda5v4feH9V+NfjQeO/FO8eGbOXdo+mv8Axkch2B+o7dqwtN8L2Hx98fHU7zR7ODwZ4fm3WkkcS/6VIO5OOnLdz0rrNd+PukeHPGEHg/w94O1C5iikFu8sFtthQ9OCKAMX9uT4j6loUej+APDcVz9o1eRY7lLTPmJFwCFx7Guk/Zh8e/D0XH/CCaVbzabrNsq+dbXSFZZCQCW5Azyawvjlouq2/wAa/CXxNj0iW4sFjWC9TZuaENs7fgeaoW+kP4m/bG0zxVoOkvb2dpabbq58gJ5nI6kf54oA+gbXwj4fh8VTeJIdOhGpTja84Ayw/wAmtxeGw31ogRVXap4HFP2+lAC0UUUAFFFFABRRRQAUUUUANkBK4AH41AYINzEwx4Pfbk1Yk+6eT+FQSTRQw+dMVjjxlndgAPrmgB8MaoCFRQD6DFeKfHiQD48+CsD/AFjkfo9e0Ws8c8Ilt50mRjw6MGB/EV4v8eiB8fPBYI6k9Po9AHtjEbjz6VJXA/HD4l6H8NvDr3+o/v7qYiO2s4julmc8DgZOMkdq8hsdV/al8Q2a6vo+n6XZ2V0S9vDPIquiH7uQXHbHagD6coyPWvmCSx/a+dv9boqKe4mX/wCOVA+mftiO3Nzoi+jCZc/+jKAPqGYgSbjjao+b2r5n/au+J/i/Xlm8AfB/Tv7XvnJj1S6Q/Lbp1xnIGeg/GuT+Ll1+014W8B317rvinSbbdCyRBHBd2I4GBJkniqf/AASd1rWjZeLNN8SSJDPFd+dI0zBZJHITk5OcYNAGl8KNW+O/gTwbZ+GtA+EtoFiXfJcM/wC8dsDJY+Zz0rqbf4hftNSvsHw1slPfMh/+Lr6ON9ZLz9st+f8ApoP8aa19ZhxturY+v75RQB8//wDCY/tPH/mnlgM9/NP/AMXXE/Ez47fHzw1rNv4cf4f2VxqmqDyoBHIWMBPG4gPx1/Svfvjj8TtH8DeHci8jfUrobLKBJAxdzx0H4n8K5n9n3wYtlcP438baja3niHVBv3M4zEh6Dkn1NAHjPwg8H/tG+ENav9cufDem6lq2pv5v2qZiWiU5OwfNxjIH4V3snib9qQ8r4O0tNxxtZ2+Uev3q+iF1KwVfmv7X2/er0/OoptX0fad+qWI/3p1/xoA+crjW/wBrNnzF4a0cL6bm/wDiqwPiD8Rv2mfB2gNrGuaFpKwxtgRJIfMlPoBu5r6S8W+N/Dnh3w5davqOs2ohtIy8pSZWPTjaAa8R+HLQ/GPxdD4/8ZX9hHoWnTH+xbGaZVLAH/WMCe+FPQUDseb+G/DP7R/j3xZZ/EfXNK0+ONQHsdOuSxEXYNgH6/nXp1k37UEkrxy2+k26hcB13Yx6CvdIfEnhxAoTWdPVEGB/pKDA9OvSpP8AhKfDn/Qd0/8A8C0/xoEeJ2kH7SjxAyXenIegCg9Ox6U3WZP2g9M0qe/v9W0+G3gQvI57D8q9tbxT4eDAf29p3zAkf6UmAB1JOa8C8aeNj8ZPHsvg3Qdbsbbwzp8m3VbiS5VftIHVFyRkc+/SgDy+OX9oH48TPYRvDZaHpU+5LoAj7Uwx19e3avXLHS/2itL0y30/Tv7JEMMKoMKR0HtXrnhC/wDBPh3QYNM0nVdNgtIBtRRdRjcfzrSbxl4Vjba2v6aG7j7WnH60AeFTXH7U8bZjttJkXoAS1Ptm/agdCsyaTCOrHLV7uPFfht1+XXNOJbp/paf415H+0H8YIV1S1+H3gjWLN9c1ZdrXH2lQtrGc5bdnGcA96APBl8XeLtR/bc8LaP4xv7Iy2cLFzA/yDp1z34r7gh1XTdq7dQtTyesy/wCNfD/jD4MeCbT4/wDhHSV1ae41W+h36jqEFwGkuJCF3MWAPU5r6CP7NngqQq39q+Iz1UMNQA/TZQB7J/aem/8AQQtf+/y/401tS0wtzf2px285f8a8f/4Zm8Gf9BnxH/4Hj/4mmSfsz+ED8q6z4iwSORfjI/8AHaAOe/bQ8R6DoXiDwtrmpXyNDa3QdlhcM2AewFYVxo+u/F601rxd42sZrLwzp9k39m6dJx5x28OcH39e1Znxk+DPg/wt8TvB6R3eqajvvBuiv7sOD83TG0Zr6Q+JcYg+E2qxQRhNunlY0HQDFAHx3+y7eftFWvw5kj8A6Tpsmhi8kFt5hIIHy8dfTFek/wBqftfCQD+xtI+7/eb/ABrpv2DNS0uw+B6xXOqWML/bZd6tOqlTheuTXrviXxt4T0Lw/Nrmpa7YRW1rGWkkE6k7R1wM80AfMvjPxz+1J4U0K41jW9N0aOGAfu03nMh4GAM89a42Dw9+1H8RfEmjfEbUdNs5LeOINaaaxIjjOM7yCc5OR37V6l4Lji+NXjkeMvFeuW0XhjTJ/wDiVab56r5jD+NgT7ntX0Vb65oEEQhj1bT0WPgKtymB+tAHzWup/teibbHoGjJFjgZbj0A5p/8Aav7Xv/QG0f8A76P+NfSh1/QiMf21Yj3+0p/jUMmveHwgd9X03YmSQbuPCe/WgD5wm1v9rO3t5J7zS9FgigUyPIzkcAZI6+1Y/wANb34rfH7WJdH8b6fBpnhnT5cTy27Ni7IOCAcnrg13XjbxdffGXx5N8PfCEkkei2EgOr6goPlzrnlFPQ9OxPWu48aXen/CX4Vzab4Ust1zbwH7Daqu4GXHB2jrk9aAOu07w5pek+ER4f0q3WCzjgMKpDxgn+LPc18t+MPDHxI/Z51lfE+naxD4h8N6hqA+2wTxgvbb2A3A7R6juelek/s1eMviF4y+BF/q5aC58QC4dYYZB5axHJ4+Y1Drvhj4s/EXw/Z+HPF9nZ6faJMj30kUqsZQrBscN7UAe0eHL6213w7ZaiIlaG6tklG4Aj5lBHH41oQ28ERJSCKPj7yJg1D4dsLfStHtdNtl2w20KRR+4UYrRoAbCQYxtHHanUUUAFFFFABRRRQAUUUUAFFFFACMNy4NecftQWs83wR1w217Nayx2zbZI2ORhT716OxwK8+/aguRa/BPXDtLlrV8ADOflNAHP/sRS3kvwE017y6luJFeQF5GJZvnPc1x37bPjzR/hv4x8O+LdXVpI7VW2IoyWYhwP1NdZ+w1epefAXTyEaNopJA6sMH77Vwn7cGlaXrnxQ8DaNrFuJraa55T+9w9AHH/AAV+I/w4+IHjR/iB8QPEEX21JcWOmXLAJAM8EAnk9O3avof/AIXn8MLeLA8SWqonGA68D86ltfgv8NVhh2eE7BWjUfN8wP6GppPhH8OwjAeHLTYx+fJb/GgDOm+P3wzHyp4ggYsflwR09etUPEH7R3ww06xnuV11ZJQpWBVwd7/wjr3OKd8OdE+D/jBtQj8PaLp839lzm1nxuODgH19xXnf7cHgHwV4f+EtlcWHh+G3uP7VtVWWMn/nqnvQBsfDLwh4g+KXjKH4gePo2i0q3ydO0xifLYZGHZTwcgZ5HevJf2a/h+PHHx4+JTLrd5pcVreCNUtMjjbF6EV9jeAUX/hA9IBQYWwhwo4/5ZrXyX+yn450nwj8dPik2opJ81+NqxoTn5YqAPYpP2flZU/4rfXMH0kf/AOLrk/jN4G0X4eeE5Ly/8c6q144K2sHnMXlbtgb67LxL+0h4G0TS/tF0LmO4lBFtCycytjgD8SK8k+H/AI6TxX4+ufGvxD0C/AtpD/ZFg0eUCg/fxnvgHn1oAv8AwY/Zpn8R2MHij4geINTurwv52nwPI/8Ao4PAP3vTP516i37P+ns29vFOs9MYFw/A9PvUtn8dtDMa40jUI1XgBYhg+wqrqX7Q+m274h8O6pN/2zH+NAFhvgBo5/dv4k1tyRwPtsgz/wCPVl+LvgV8PdI0C51PWtc1yO1gTdLIdUmX8vmqDUv2mtKsbCe91LwzqkFtHjc5QDaMfWvHfHXxu1j4l+O7UP4U1hfBtsQ6hEH+lkdjz9fyoA0fhf8AAPRvif4wuNclu9fh8GxIYrW3m1Gb/Sjz8xy3uPXpXrkP7LPw4Sw+yQXGuQwKoURx6rMqrjjgBuK5yD9o5dHsobHTfhvqy2qLsRYolAT3PzUsn7UOuRzLCnwv1mTd0bYvze/36Cjov+GW/h4fnN9rxcjaT/a02CPTG6mt+y78OljMrXWuCMLu3f2pN+vzVkN+0n4m6p8K9XxjJJVeP/H6808b/tReM/iHpc3h/wABeAtWiuI5NmozqFxEvcD5vrQJieJvgx4X8ZfEaHwn8P8AUdaaxtJANXvhqUrKgzyind14b0r13Sv2S/hlY26RWv8Aa1swUCR4tRlXzT3Y4brXB/DT4vav4G8Mpp2mfB3WZC3N1NtXfM56sSX7nNdI37Sfi9J8f8Kj1zdt4XCfKP8AvugR0cn7K/w5Y/Nca4Qv3ANUmG0/99VXm/ZY+G6NveTWnxyx/tKYnP03Vjr+0t4vP/NI9b/JP/i65nxl+13r0N23hyx+GurR6/dRkWsRCHBI4J+f6UAZn7Qfwk8CaUYfBnha81qTxRqgCW0SalL/AKPn+Nju47du9dl8N/2P/A9h4YtG8R3uqXWtbQ016L6RZM+gYNnFef8Awa+IvjTwvcXmveKPhdq2peIbyY+ZcSKpKIeir83HQV6If2lPF+51Hwj1ngcEhf8A4ugDjNY+GPh/wL+2X4UXRrzUH3QEkXN682TgZ4YnFfYagBuRjnivjzw74/vPiJ+1xoTal4XudGuLWz3bbgfN068E+lfYsY567ulAD9opkyZXBJxkdDipKbKfl/EUAfPf7V/Hxa8EbtpH21cHbyOfWvWviZuHwt1RApZjYH8sV5N+1lu/4Wx4I2jLfbVwPxr1P4v3NrZ/CXVZbu6W1iWwJLk+3SgD5i/Zr+CvgDUfg7ceLPEmr6nbKLuU3Bj1OWGNQADjAYD1rG+HH7P2kfFn4j3GqWmpa0vgiykMSxS6nM4uWBx0LYKnBrjfh78RvEvif4f2Xg638GalN4Xt7xpr65txj7Svy8Z3f7P619CeGfjlb+F9Jt9I0j4banDaW8YWLZGB8oHf5uTQB0Nv+yn8OLW2SG1uddgVeNsOqzIv4KGwKST9lz4fB/8AkJeIV3dM6zPyf++qz4/2lr1t2z4faw2P9hf/AIqm2f7SGrXLMB8O9V+Un7yD/wCKoA0f+GW/h+3yjU/EW7HP/E4n4/8AH68U8ffCnwv4t+IUHw++G2sa0xsJc6/enUpWSJeuAd3J5X0rrtS/aD8SfFXW5vht4G8P6hpuqTHy7u+ZRttlPBbOT0zXvXwg+HWheBPCv9nWNsJJ503Xl03Mk8h6kn/PSgDg/Cfjj4RfCGxt/B1perb/AGdxBNcuoLPIcDLsTk5OOtZfizxD4q/4WBfa9J4YutT0qKyJ06WBC0ZyAQ2cY7Csb9uCHStF+H0WjW/hhprHUbyKTUNSjTLwoJFO7Ocjoa9v+Df9iXvwp0mLR5PtGmmzjiikfkuoUA5oA8d/4J4a/qOp+E9atrvR7q2VdSkbzZEK8knj9a+kFiDSM5Ldemaw/A/hTS/CumyWekQJGs8pll9ySa34Pu5456YoAQRkNu3fTjoKkoooAKKKKACiiigAooooAKKKKACiiigBG+7VLVtOtNS09ra9gWaM9VarzZxwaTbzk0AZ2g6Rp2jWYt9PtVgizwijpXzv+2DE0nx++HwVuBP0/B6+mG68185/tSxq37RngFX6eaf5PQB9EABdisMntXAfHTxla6Bo66Qt4ttqWp5jtj6f54rv2fbHuGdxzt4rxTw74b1jxh8VdW1TxlpSmwsMppe7nkdT09RQB55/wTHkhhuPHmneeJpI9ZL7sdQUj/qa7f8A4KFDPwh00f8AUbtP/RyVlfsd+AvEvgn4reMptQ0pbPTdTn8y2x3+4OuPatT/AIKDN/xanSgwwG120Gf+20dAHsnhIEeEtLXop0+Lcf8AgC18s/sv3uieHPGXxU8Ra4sJhi1AlQ5G4/LGAAOpya+kNS8UaP4O+F9rrmuXkVtZW9hFvkZhziMcAH6V8R/D34P/ABR+I/xA1zxvpdz9h8NalqH2i3t5GIFwAFAyvTGVz+FAHuvwo8E3nxb8aQ/EDxloqWmjWL/8SbTZFxtxyHIP/Ae3avodNK0xkAGnwgDgDbXhy+H/AI6RxxQW+oWEVvDGESJAFxj3Ap/9h/H4wkvrNjv6KBjp+VAHt/8AZWmhCPsMI/4DVe6sdGtLJp7u1to441LOxACjHvXhtx4a/aBEnmf8JFZqijLHAOB3ryTWr347/EfxrqHw80DXIDpFv/x+6kvOw5OQD36evegD1LxNPqHxq8bP4Y0Kzjg8I2coF/clOLgqcEA98fNXuvhvw1o2kaJbaZZWMK29ogRAUrwHwr8GPi14a8Jw6TonjC3hRfmchQpkJ6k4PetaH4b/ABvl+a58dRqduFCHGP1oA96XTrEci1j/AO+aZJa2ol4gXKjqF+79K8BuvhT8anmzF8SnVW+7kdf/AB6vO/i5B8ZvDetab4W0Hxy2ra9qD7WgU4EKkj5mIJ9aAPXPj3461qXXovh98OoY5tYvPlvbhVyttGerEjv07967X4H/AA60vwD4TjsYLeH7ZMfMvZQo+dz1/lXjvw4/Z68b+Hlk1RfHkzaxqK7ry4bLMGPJQHd0/wAK6eH4U/FKPKn4hzMpPOc//FUAe5eVD/dj55+7R5Uf8Kx5/wB2vE1+FvxKGFbx9cEnp1x/6FXKfGDSPGngPwrJqN78RJlupPltIM8yv2A+b2NAHrXxs8d2Xgjw2r26xz6tdHy9PttuXdjxkj0rA+BPw4uIL9/HXjNIpvEOpHzOV/1CnkL+Ga8f+HfwH+JXjWay8deOPFlxHq6tutrbcSkadjjPB5PavVG+FvxLfcD4/uAMnHB6f99UAeyMke7OI94PzNt6j0qRktxy8aHPT5a8Rm+FPxN2Yj+INwCOmc//ABVZup/D74iaLps+p6t8TpIrO2QvNK4wsYHvu5NAEHxNgmT9trw3NGF8v7CVfC+wr6K6N2644FfEnw1+G/xP+J/xEuPHFr40nj020zDp92wObhRnDYzx27nrXrU3wl+L7t8nxLmCtjoD2/4FQB9CZ9zUco3HCMFbjcSOor58/wCFP/GH/optx+v/AMVUcnwh+MKyBj8TZ9o+9weP/HqAH/tfXNtpvxK8G6tqV0tpYWtyDLKR0Ga4jxNr3ib9pD4gx+EvDkjWvgnT8fb7zadt0B/CD+IrzT4wfDT4ifFP4sWPw7h8cz6vZ2ZJvb6PO235GQcN15PftXsnw5/Zr8f+BPC6aJ4a8eyWltnLLtyWPrndQB9DfD/wZoHhHwnaaBo1jFDZ2iBUXaPTGf0rYaxtdv8AqIx/wGvAF+EfxlC/8lMmP4H/AOKpH+Enxkxj/hZc30Of/iqAPe/sVhHlRbqmeTtXrXk/xz+IEWn6tB4J8Gxx3PiLURtKouRaxnjef/Hvyrxj41W/xi8Ey6fpOi+P31TWtTkEaWhHzKOckjJwODzXu/wA+F48MafHr3iJlu/FV3GPtd058woccqpPYZP50Acx/wAK58VeFPCcel+DJ4YNf1eTztT1nHIY5JHUf3j+Vc/+z18R/iJp/wAatd+GXju4XU7vTYPOgnj53Lhfc92r3j4i+K9J8GeHZNS1O4jiGPkRsfvG9AK82+B/hTTrL4gal8QNZ1G3m1nxAR9liVwWSLAwP/HaAKPjLxP4t8beDdW8L3HhGS3munNqjSLx5bfLv/U/lXo/wJ8H/wDCBfDfTfC/nea9pGA7dhwOBXXpCrMXZV3E/N3/AAzT1iwMZP3s0ASUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN2+tfOH7VVxb2/7RXgCS4nSJFlOWZgAPlkr6NYjdjJya8t+PfwP8L/ABV1CzuddeRXsWyhjbDDr0496AO7k8QaGB5baxaZVh/y2X1pTr3h8BgNVs/mPaVa8Mvv2RvA8y5TU9SjO7OROOn5Vzuj/s+/B7UfFUvhux8Rak+qWp3zQ/aBkY/4D70DPpQ+ItADsBqlm2AM4lWvBf8Agoh4m0Cz+DtrdtqcFx9l1e2lMSSAkgSoe30q5afsl+BIpN7XmoNlcENMOefpS337Ivw31C0EOoJPcRA52u2f6UCPKvA/jK2/aH8Q211rmsW+j+B9BSKM2ckmDduqgNn2yrd+9fUGl+O/hzo1nb2Fnr+mwW8EYWII2FwO2K89t/2S/hHaaf8AZrbSpI4O6KRyfyrgPix4D/Z++Gd0sGtadfX14y/PFbqX8tfVsKcUAfQ0/wAW/h3F/rPFNgMf7Z/wqvJ8ZPhsq+YPFFi2P9o/4V5b8J/hP8APiB4ZGt+G9KW+t5DskjY/NGfQjHvXVj9mL4Rn73h2FgOAD6UAef8A7Qf7QXh3WNQtPBnhDxba2ovX2Xt4Cf3K8kkcew/Ouw+FPj/4LeBPDK6VYeL7CaZRunmOd87Hrk49q0f+GYPg0G3f8Ibalv72Bmsnxz8Cfgb4W0RtUv8AwjAyLwIlXJY+nSgDr1+O/wAKVjBbxnp5J5wSfl9ulOf47/Cg4x4x0/PoCf8ACvBvA+k/s7eIPiHD4Ju/h5/ZV9dDfbNNGVEo4xjI9xXr6/sy/BzcW/4RG2Vm7ADmgDB+OX7T3gHw74LMnh/X7W+vrtvKhC5/d5wM9O2axfgD4v8AhdoFu/ifXvG1pf8AiDU1Ek8soY+SDyEX5eMZx+FegD9m74QqqgeD7RtvTgVdt/gJ8LLcrs8KWSjHIKigCKP4+fCtR5g8T2ygH5kKt+fSnSftBfCnbn/hKLb8m/wrlfjhoPwW+FngmTxH4g8NWIVOEtwBul5xgVt/Dv4Z/C3xb4M0/wARWnhO1hh1K3E0alR0NABr37RvwvstDutRj16K6+zxlvLQNkkDgDivCPh38UvAXxI8dTePfiDr6xWthPjTdJcNtXHAYjHse/evpRfgr8NzGFPhazOBj7goPwU+Gqr/AMipZY9CgxQBjf8ADQ/wngTbH4hhARcYVG+UflUq/tEfCs26yDxHHgjj5W/wqn8RPA/wr8E+HJNaufCVrMq/dt12qXPoM1yvwgh8JeP9Ykt5vhH/AGNZxLuWW4QHzAehz6cUAdn/AMNGfCooQfEcf/fLf4V4V8U/jV4T+KvxEXwrdeIG0vwtpzCW6ZVYG6YH7p46dK+kR8Hfh30/4Riz29QuwcU1vgx8OGOf+EVs+f8AYFAHMeCPjZ8GdH0GLTdJ1y1s7S0QKItjDH6e1bI+PXwtRwn/AAlNrhl3A4bj9KluPgt8Nf8Alr4Ys40XB3YHP19q85nsvhRe+NX8M+GvAkOrNDKI7i8iTMcXqM9P17UAeh/8L8+Ff/Q12v5N/hXlf7R37SfhJ7W38K+E9fRb3V2CSXyBtsCZGT09Ce1erp8E/htLGHfwraAMvzIVHBprfAj4YOAW8K2jYGAdg4FAHDfBHxb8Ffh7o5t7PxZbS312BNeXMoYvK+Pm5x6k13X/AAvb4Wt08W2n5N/hTG+A3wwHzf8ACLWoI7kDFeS+OI/hd4e8UTaPZ/CK71H7KhMs1vH8mPyoA9ak+PfwrGQfFtmgx987v8KwfiF+0R4J0/w/IPDWpQ65qkqEWttEDmV+y9BXO/Bfwf8ABv4raHJeweAF0/yJDE0Uy/Nle/T3r0rwj8GPh14Y1VNS0jw5bRXEfKOFGVPqKAOb+APw9vBdn4geMlF34h1P5lEhJW1TsoHQHj9a5347a74p0T9pbwpZafqpi0vUn2yW4PUjr296+h1UKqhRhR2r5w/aovtOj/aD8Bh7y2inS6Od7gNg7QKAPWPjJ8NNG+I+n29pq88yR27hv3Zxk1i/DX4K+HvB3iRdXtL3ULmRRtjFxISqfQZr0yNi+3DbhkEMrDBFWKAGw/dIz35p1FFABRRRQAUZobpTaAHUUi0tABRRRQAUUUUAFFFFABRRRQAUUUUAIwz06+tNZB1P3vWn02QErgUARMDlVz+lfLnwmht4f28vEzxqFLWg4zxnanNfUrElhtHNfN3w18NeKbP9s3XPEFxpLHSrq22xXAHUgKD/ACoKPpFVOQScn1xUhWmLjzPqOlSUEkLfLNjJyw6dq8+8ZeFPB+hafrfibWraG7kvLdld7lQ/JwABnpzivQpFbLZ5DcD2FfOP7SXiD4w/8LAi03wx4GOreH7Ub2J6TN7/AOe1AE/7AXgDUPCfh/XNXu42tYdZvWlt7X+GNcgjH519ERpjoe9eT/s2+IPiTr8Nxc+NPDsOh2kYxBbqMf57V61H92gBW6Vm69pllqkEaX1qsyr8wVhkAitJxlSDXI/F6+8Xaf4RkuPB2ni/1JWG2A+mR/8AXoA+afHGq32n/tseH5vGfhiOy0dV+z6TdQj70mUC5OB6V9e253Rx4YEMuc+o9K8Ph8LeM/iX4l0PUfG2jLo8OjFZfLxlnlGD1+oNe32MQjjULnaAAAe2OKALCqB0qtql3a2FnLeXjhIYV3Mx7CrVVdSt4ryF7S4jWSGVSJEbuKAPjb9pD4g/Db4k+DNeudc16yZ9KlMVjamVclweuM896+hf2S9b0jWfgN4a/sq7hnFtZLE4RgdjDtx9a5H4xfsv/D7xP4J1DTtG0i3sb69fet1ub5Hz1/nXoXwL8Cab8Ofh3p/hyziSNrWFVnmQk75O55/CgDuFGBx60SgmMjrRH93oevelkG5CDQB5z+0F8MLf4oeGU046rdae8J3wywORhhyMgEZ5FeU/sw698QvB3xcvPhd44vF1C0jhzp94eXKjOAf0716d8aLf4pvq2n3XgK4tVt1bE8UvcevQ034Y+AdXs/GF14y8U3ENzqs8YjQRj5Yxz04HrQB6XGCZVYjHykVLj0qFdwkT5vlI/Wp6APOv2p9evvDXwO8Qatp3/H1FZSLG3oSh79q+ZfhRB8RvhF+zhD8Q9L1C1vLW7lN9qNtIgMjhizH95ye/pX1/8TPDlp4v8F6j4bveIL63eNm/u5UgH9a8S/4VP42h+Fg+GQuYZtJkcgysTuEOTx09xQB7T8LfEieLvAek+JIlCLqVqJsA57kY/SuiVSOhrG8BaDZ+GvB2n6Dp/wDx7WMIii+nX+ZNbS9KAEkBMZHBrh/jBqVl4S+H+r6vbRKlxJAUTjG9iQMfrXct92vPPjl4S1PxlpunabaSbbVbkSTn1A//AFCgCj+ybol1Y/Cm11DUoBDe6kTcOuOgYDH9a9QVQKr6Jax2OlQWcOPLhQImPQVaoATHPtXEeNvhN4L8WeKbfxBrelrcX1pt8iU9U2nIruKKAIrWBLeFYowAqKFAHoKloooAKDRQ3SgBM0oNNpVoAHOFJqJZCTjFTMMriotuGoAkWlpF+7S0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtUNkKM+uKKKAFooooAKTav90flRRQAAAcAAfhS0UUAFFFFABgelFFFABRRRQAYHpRgelFFABRRRQAUUUUAFFFFABRRRQAY9qKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q=="]
math
multiple-choice
76
A、B、C 都是非 0 自然数, $a \times \frac{13}{12}=\frac{14}{15} \times b=c \times \frac{8}{8}$, 下面排列顺序正确的是 ( )
$a>b>c$
$b>c>a$
$c>a>b$
null
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCABTALoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiikz70ALRQKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQ5zSc0r2AdRUckgQ8ntnFcHrnxKN5qlxofgDSZPFGrQtsmlikEVhZN6zXB444ykYZ/bnNa06U6nwoTdjsPEWraboumy6jq+o2mn2cC5mubqZYo4x6lmIAp2i6rp+sabDqOl6ha31nOu6K4tpVlikHqrqSpH0ri9H+Htzquq2uu/ETWm17U7Vt9vYw7oNLsn9Y7fP7xl5xJLuYc429A3WfhsdP1SbXvh1qf/CM6pcOZLi18rzdN1Bsc+dbZAVjgZkjKN3O7pWnsqK05te/T/P8AAlSdz0NaWvO9C+JhsNWt/DvxC05fC+szsI7aSSXzNP1B/S3uCBkn+44Vx6Hgn0GNyVyaxqU5U/iK5k2PopvNLzUjFooFFABRRRQAUUUUAFFFFABRRRQAUUc5pOfWlcBaKYzYbGa57xx428P+EbOGbW9QEc102y0tIYmkubt/7kMKgu59gOO5Aq4xlJ2irg9DoZM+vbsOa47xh8RdH0XVhoNjFca94gdd0ejaWqyTjnAaVidkKZB+aRlHBxk8VjXEPxE8fBRcvJ4H8PyDmBCsmsXqHszDMdqDnovmPweVzx2Hgfwl4e8J6UbDQdMitY2YvK+S8kz8AvJI2WdjgfMxJ4HpitvZ06WtTV9l/n/kRdt6HIt4R8VeM2Fx8Q9W/s/TXI2+G9HuWjiZey3NyAHmPJBVNiHA4PJPd6DpOlaNosOlaTptrYWNsuyG0toViijHXAReB1NXlApVVQMAYHoKzqVpzVtkv6/p7l2QgUYxz+dG1eflHPXjrTqKyAz/ABFpGma1pM2mavYW99ZXSbJre4jEkcg/2geP8K4BfC/jLwGok+H17/beiR8v4c1a6JeJR1FnctkrxgCOUlOOCua9OKg8/wAqGUHqK3p1pwXLuuxLimcl4B+IGi+KLiawgFxp2s2ihrzRtRj8q8tgeMlOcrno65U4ODxXWKdy5rm/iF4I8N+MYIU1qz/f2Z8yzvoHMV1Zv/filXDIfxwe4Ncour/ED4fNt8QQz+MfDkfH9qWNv/xM7Rf708CgCZQP4ohu65Q4yb9nTq/w9H2/yYtY7nqC0tY3hPxNofifR01Xw7q1pqNm5wJbeUMAe6tjJVh3BAI74rWQtt+br9MVzSTi7NFj6KBRQAUUUUAFFFFABRRRQA1j83WszxNruk+HtIuNW1vU7bT7G1XdNcXLiNEHuSe/YdSeBmq3xGuPE9t4VupfB9hYX2sKoNtBfzGOFznnJHX6ZH1ryHwtoHxA/tS38QeMfh8fFevwOZIbm+123jtbJif+XW3AZIyBxv8Avnu3Arrw+EVWLqSklbpdJ/i0ROVtDrn8TeNPHSoPBOnHQtFmx/xUGsQFZplPe1tGAY8YIaYKOeAe/QeAfh/oPhi4k1GMXWpazcLtutZ1KXzry4HXBbgIvJwiBVHPHJJyv+En+Ji8L8KomHqPEsP65Sl/4Sr4nj/mk8f/AIUkH/xFbTp10nCDjFeUo6+uuv5eRGz1PQFAGaAAOhrgP+Er+J/f4UR/+FHB/wDEUf8ACV/E/t8KI/8AwpIP/iK5/qdTvH/wKP8AmXzLsegrRXn3/CV/FD/olEf/AIUsH/xFH/CV/FD/AKJRH/4UsH/xFP6pU7x/8Cj/AJhzrseg0V59/wAJX8UP+iUR/wDhSwf/ABFH/CV/FD/olEf/AIUsH/xFH1Sp3j/4FH/MOddj0GivPv8AhK/ih/0SiP8A8KWD/wCIo/4Sv4of9Eoj/wDClg/+Io+qVO8f/Ao/5hzrsd+33uaTCnkjrXA/8JX8T/8AolEf/hSQf/EUn/CV/E//AKJQn4eJIP8A4ip+p1b6OP8A4FH/ADDnXYseMvhxY3uqNr/hnUrrwx4g6i9sD+6uSOi3EB+SZfqN3oRis+y+Iup+F7qPS/ihpkekl38uHX7QM2mXLHpuJy1ux/uyHHTDc4E58V/E7P8AySZD9fEkH/xFQ3viH4kXlrJaXXwft5oJ0KSRyeIbdkde6sCmCMV1RpVJLlq8sl/ijdfO/wCDJ5rbI9Etpo5oVlidXjkAZHU5VgehBHapFz1NfP8AYaT8WvC+rQz/AA98DJpWmliLvw/e63DNZMD/ABQNkPCR/dX5OemSa99t2dowzhQx+8FOQD35rmxWHVFq0lJPtbT1tf8AMqEnLdElFFFcxYUUUUAFFFFADWGWowKdijFTa4DVUY9frRtHoPyp1FPXqAm0e35UbR6D8qWimA3aPQflRtHoPyp1FADdo9B+VG0eg/KnUUAN2j0H5UbR6D8qdRQA3aPQflS7R6D8qWigBu0eg/KjYPQflTqKAGMgPBpVAHT1p2KTAHNK1gFooopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=="]
math
multiple-choice
77
如图所示:用黑白两种颜色的正五边形地砖按下图所示的规律,拼成若干个蝴蝶图案,则第7幅蝴蝶图案中白色地砖有()。
35块
27块
22块
7块
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCABOAY0DASIAAhEBAxEB/8QAGwABAAMAAwEAAAAAAAAAAAAAAAQFBgIDBwH/xAAUAQEAAAAAAAAAAAAAAAAAAAAA/9oADAMBAAIQAxAAAAHfgAAAAAAAKizOw4nJT3AAAAcaIv0SWEaoNA4cwAAAAAAAQyYzOjOZVloob4AAOukL/L6akJ2YscSWdl5tpz0ul5yi6AOk7mZuzO6isqCLmJuTPRtr5fqD7q6iQT2evjmAcTk6h2urkcwAMpq8+Xvk+mwhK9K8k25q/lTqjkADI6ekhlFFqK09O1HnmlMh6hnpJX62ivQBl9RUlr5neZYg7jzbbHoPnlzMNB5zZ5khbHzfaHouc6b4ngdXaInyYIfZIAADP6DrOmrj95H0lHHGnjSQACtjXWTLnJ2c0v8AL/bUswAAOnuGau6jiVm2p4hG0seeUFpU9ZR+g00ci6utsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD//EACcQAAIDAAAGAgICAwAAAAAAAAIEAQMFABESExQgEBUhMEBgFiQ0/9oACAEBAAEFAv6FdpLU2AY2DxMwMDpqlb7yUDBag9VDNTIcXX1rhGrXzEhMf5ztl1j1SS9QPT9QX+SXcJGexJKUFSnNlT/tpf8AcABWGz0p8Rsvxxj8n+CADFKOjT/gMNVLCOqQkBjYPDD1dM0aXUfqdg1j9sv1iUGOivbbFurK0a7FjV3GTfcoQadjFeaqa9XzbaFIFp3c12amQ0U/NXucfVjUpfu+M+p9MaHH26kFJVqYbpVENT8iUGPyRQA90OfcDp7gcxMTj1z6+bhiJCy6S7X2jkxmBVKmgFJKZvc8D0pHy9MqazraePOc+/b4yhB2q2mu2tRdazXGsACwPH1vRgerY5fjXvhZ/wCzc4wiG6kuXSnFBa3GzdCzf2rnGJFbQGAmGVE935srG0PGq6vGq7UK0idVIUR6srWC0LOgyTStyttNFjFlc6GXRNLb4jHSPo2rf5paTQXvVsAzEc5RN3Mpm11pe/OLxe5oclFrfJ9HlJZEr3O5o5zlZ11HcayWhnVB33qrsyCVJh3u6aDgHESUpq6SNVNzbtSa0KL/ALdgJJFfo8fW6ZUxgGmg+noxw/Hq/wBfg5ldQpvxR4mJRWN8xEwlXEaXvbElTiyHiMHFS+QM0M8LDF+xcMnTkcoSZsGpbKCKneBGL9z91gRZXUg7QFSFvlXI3y2amlZC9ML0esxzgVNFaTTfaJtO4ryDXKEVfEW/QeZ/sfWGcuIC1xOdfMKKinRweaXfLLst4bQi8fDe4TThSv8AuP8A/8QAFBEBAAAAAAAAAAAAAAAAAAAAYP/aAAgBAwEBPwF7/8QAFBEBAAAAAAAAAAAAAAAAAAAAYP/aAAgBAgEBPwF7/8QANRAAAgECBAQFAwEHBQAAAAAAAQIDABEEEhNBISIxURAgMjNhIzBCFCQ0QGBxgZFDUlOSov/aAAgBAQAGPwL+QsjPx+KDKbg+FybCsmf+/wBi5NhR0onkUdWFZo2v4ZpGsKu8bpGejkVmU3H8fHhA+nG/5DqayrEvzfelkw8nBj7R6V7KUzTvaNf9Jd60jEuSnwqyakKjf8fPh0mY/pm2HesqKAvxSy4c6cpP4717/wD5FPLijqyKeF9qysoK9qmjgY6C9V+f4G8jf23q8+GeOI9HrMpuD4ZBeSXZFrSxMZgk2v0PmzOwAqxWQJ/yFeFZlNxUckAvJGbgUuvhnW/zSyGJ0S3Lm8Gl0XeLe1ZoMK7duNO0vuyG58meRsorUTBu0H+7f/FZo2v8dqCqQHU3UmlUpA7dMqE3oYiaKy9l28DiY4bpup3rNEuHHwWNxRznNI5uxq7tx2UdTV58O8KHoxrMpuPJdjYUBnHN040Wziw3oDOLn5rlIP8ATzYgT80yNwJ7UQwuKkTCOViv0r3jSSoOZhxJqRpR6RwNR6nq8uITEknTtkStMoMvaniwx5Ox2r8a/UztqSg77UVkUFaMZB0rnL81kVQF7VCmHOUPxdfLEsvGIry9r1av2Xka3PaveNM7cZb8SaObpTSNFaJz9MnwH6fkktzWr3jTzS88wPU0VcArWJKn6GayjyFHF1NIcnFBYU0WXlbqKVwvFRYURGLA+b9XDKqcLNmpkh03TpqbVaZSCd+9ZIkLH4pYyi6d/V2pRJJFoXucm9ADbypisNlzWswO9CEQB3OynpTNiEKs3GrCmZsM2m3GvpIlm/INUIgtqxG969lP80+JxNtQ8ABsPKpR8jobg1pQzJK49Vh0ozyDPfqRWSNSzdhRkjsb9VoqmMXjwYW4ioY0fK0XpatKCZZm/Kw6UZ5ee/UjarAXJppY0HHqpohJo7/kNxQjBv3P3iR+JuRSaYAW21ZCgZ3NlvTwkASo3NRzeneppV4RM3Kvml0zZrbUjovMw5j3p2xChlApxLH9Xqt+1WPSpzAbQLwK7ZvsOB1IooFs6MQ9O56AU6yoFaUZl8JZ04InC43NOoNiRWSwzKbNUjsLgCg0ka/WGZPjwZ4uAiWzkbn77IehrTixtkHQFAaWbE4jVK+kZbU2Iw+J0ywseW9FGxoyHryCliXoo8xBpkw8iaV7jNSLinTSDXIXeo58KVEi8OO9Wzwj+grITdjxY9z9l5YcRJFn9QWhrYuV0BvlqMh2jdOjLX7/ADVpqSfk+Dyw4l4s/EgVlmxkjpuveo9N9Jo/SRX7+f8AoKIzFnY3Zjv/ADl//8QAJxABAAICAQQCAQUBAQAAAAAAAQARITFBIFFhcRCBMEBgkbHB8NH/2gAIAQEAAT8h/YQ/z21QC5rE+HJg2soXO6KYWCJZrrbmDaxPAHcEqC7jk+K5/wC6VvYgDDAE0n69wBs/wkscCZC32Y6OZWf6dp/zstaWtJ7Tw4AFVHs397rtfXZHnpxX5QxwkCZ+Z7Snkgn+v/CK+MO1HqKe8AxMDALMh4focHjwcr6nur6/k4gEesnxQlHcP32hWk6O/s6m5HysKqFgoSMCukhlB2NX4jktrQYHd1o38A9EqvUalHZJmUY6Px46FwB5YmivNpeY9rzl7RQNveIrpbF/SOBUYa/vKVoMyzcFbA9RFwh/rCVX0u1cc/aD6JUO6vH32hwL6ToWFPas5UizynvrWwQctJYcpYDTGXUBfvA8KgtlMjD/AMoWxfMWDZL6nda4JOleQeJm2qLz26T2gRqu8sK64S1OfWvE/wCZL0EStJqyrSRbdhfSOIQoCqEF3Ah1XTVFwBgAoCu0pCTyaLLpjdXyTOEY5uXmDCYWUVVYl/1LPnAYcoO5aIkEGRh0VLL/ADo5+YIDRfQSL1N19yEBzDxL6ot6n6DxE5pwHKNHhZwg8w8CLorZk95dpAiv0g6EKOkWHU5VIVXuV9u0YAfpEIFXQRmB9sVMLI8iiGr4guXmedzptTqwNKFY8dl7soVM8uoVSOC5hCuPKEeHFRrBc1eFSZtaPuwV6d7g+7AA5lcEL2v4gHtapjaMb7j+bVwHcEudCUNIsUYxp7ysHShl7TQxo5dplxT7YdWcc7jtDCHkKmak2TnxDWACrqEACtjGFYwcuX4N6QCUud9S3uHaOg8y4RC8Xr4NelJKkQBIR0H1bUeYTZdR5go1y136+CI88Fx+fSi0wGPjCH3E0e6AGUkMBFq9xisaoTU4bBffqLWkplyOYDUoWwZw4hHFsaiMsrCqu570/C/JmjCysZUDhim1GUyuYNbhzOLdi/Gdq8LcCLFtIs89Hxpogd7RTL95f//aAAwDAQACAAMAAAAQ888888888848884008888888844848800AQY8444so80840488IIcM88840wc8840AMgg8s88884sk08808c888sww8YYU8888888888888888888888888888888//EABQRAQAAAAAAAAAAAAAAAAAAAGD/2gAIAQMBAT8Qe//EABQRAQAAAAAAAAAAAAAAAAAAAGD/2gAIAQIBAT8Qe//EACgQAQACAgICAgEDBQEAAAAAAAEAESExQVFhcSCBEDCRoUBgscHR8P/aAAgBAQABPxD+wVAtwQGjemKe6Q+VErE/B4gtFBMQytadQYCQUWJz8yNnaqAgkz8YeO4ACenwJ+F/C1ufAOZYRNVXu6gq/tdif1921P2gLqL6xPbZMrHQW4fy8h9w5v3/APuUv7CvmO7TxGhNOVOxMj5g2j1LY4q39/NvOatD0Myi1Bm4oQKmpJkqcnAynCTyIPJIcejYaN3xHL4pG09Ssqc2346n9DlCMFs9Alt60zrwyDP612P415qGx8tDyy7jMMDitb8QRBGx5PiHpba0cu/Kl93dfULVtrsSY3tQE3aYceC7fGYTl2JRaq8bfxc5m7BpL3CBsgseReIpTWavxtzXw5+dG/AcyyoqQ9gbVAgwYbDdDiHFehql4a0Z/iVj2CDxdaEBUyI1QEsU1QZiALsa7BtiOnETR/IRfvTdlwXwQw+PIHRCpY1Xb1M/ygaptdifDijSwfctFbKCycncGAr1Vs8sVpqcWOyNmlZBB6+LprcYuqppfYMTvQDZU2glhRw8XHjWKamSTmc+drGjdBKej7qXZHlv0v6+NnFJFN3dOeP3jxzMoqoqEZeboQsIAuLkMPfYo9ZiFJkDB46lOSJUly55gsRgFVFEDzbHNcb+JW6nhq396gQIlAMVDuTU0rJjx/uJHl8zFq/PB1XUCqMJ465uDmo6CLoYFQDSgxMj6KotqzuaCYLNGnIMUcaZUgAEqoBPd6wTb4f9+AdNx5gDFT92yUyq+drv/JBIsyOOkPqyV3a/J5XJ4sChWPIEQ0FMg8vqLIUg5Mo8zshcKO3ol3Ly1l7GjEV9wA0byIOVEDwfEU1XWWCR4lGm/KmnuKbSLMjw8xIbUC1YMRCTZ1tOCu46KfhQm9czV6xF3byxqcTLXcAAGnsL/fx03q2PuNSIBYHegfEtF7Tn5OCa12qXv1L7kH3oA2kJyFoQcImyWZ0U3k2vuBvFpvdoGCmdd8eD0RzzU9q6CU3nSthp8ovnO4LsNiWRqpqzk2/rWGpUcE5HxGT5lAWXiNCuOKvDqogwShQgq+TcyZRgbKGb+pQTmBxnYcX8qXcEqAbr6uXAzJnmW7gW9KFfS3DczYrAUyJcBiFAsSNZ0zbGQaK/QUOkg7qY3Jg5a30h9RwQXgWglXxeAXd/Ia/AMbCFGhvuKSGCkUmCRFZIX5MOcQ1nhKVzocBYdfheFw1cBd/rhXb/AFMSCLel2rCxNiQKdzRi5Q8t1FqxhzLxCt8tghZiZNxGlW5X5DxbgemO7gdW/GYlHWAQrt2MrK6T0WBYpqws9XPeVpC1/RvaUe6GVeYQxTV4yRd+6IKqr+iJs0Wx19EK8ietW1/FqnaRfk1UonOoBThxqCqVga1VRgCxWf8AhC1/4qBRn9/7y//Z"]
math
multiple-choice
78
选一选。淘气周日想去的地方在 $(1, 6)$, 他想去的地方可能是( ) 。
运动场
公园
邮局
学校
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAEkAdEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+psn3evOeOadTJ/ufjQBFvbH384PU8c+lOWTPIb9a83/AGi/GF14Y0nw7psN/Hpq+JdZXSptTflrCMwSytKoPVv3W0c/xZHIFV/2b9M8Ow2usav4U8ea34n0nUpoRDHq93NcPZGNCrBTMd/zHnkDpxmgD1SM5XNOqO2KtFlc4z0Pam3lzb2sYkuZ4oUzjdI4UZ/GgCais1dd0k5xqdkdp+bFwvH607+3dHC5Oq2WP+vhf8aTA0KKof23o/bVbL/wIX/Ghtb0cNj+1bL/AMCE/wAaQF+iqH9taT21Sy/8CE/xpf7Y0rqNTsv/AAIX/GqAvUVR/tjTCMrqNmf+26/40i61pTcjUrPb2IuE/wAaAL9FUf7Y0r/oJWf/AIEJ/jS/2vpfH/Eys+emZ1/xoAu0VSXWNKP/ADE7P/v+v+NB1jSv+gnZ/wDf9f8AGgC7RVI6vpY66lZ/9/1/xpV1bS2HGo2n/f8AX/GgC5RVJtW04HH2+09szryfzpE1bTzjN9a5xyPPX/GgC9RVP+1dN/5/7X/v+v8AjS/2ppvQaha/9/l/xoAt0VUGpWHe+tfwmX/Gl/tKwzj7dbf9/l/xoAtUVVfUtPUZa+tx/wBtV/xpP7SsTyt5bn/tqv8AjQBboqtHqFiwH+mW+fTzRTvttn/z9wf9/BQBPRVf7dZ/8/UH/fwUfbbT/n6g/wC/goAsUVXF7ak4F1D/AN/BS/a7Y9J4v++xSuBPRUH2u3zgTxf99ikW8t24WaI4PPzii4FiioVuYSP9bH/32KDcw9po/wDvsUXAmoqFbmE/8to/wYUq3ELciWP/AL6FMCWio/OixkSJ/wB9CgTxHpIh/wCBCgCSio/Oi/56J/30Kb9oj5wynHowoAmoqNZo26Mv507zFPIZcfWgB1FNDr/eFG4diKAHUUhYeopJH284470AOoqIysCMqOTjg1LQAUUUUAFFFFABRRRQAUUUUAFNlUsuASPpTqKAPJv2ovCMviLS/DOqPo0esaf4Y1+PVtSsGQO9zEkUseERvlYqZFfBI4Q45xVf4d3MHjP47S+P/CMjf8Ir/Yz2V7c+U0C6reb4zG4QgF/KRJELOARuwuQSa9hbO3g496qwKAuAqjk5JUDJ7nj1oAnhGI8e/AxjHtXnX7SFtbX2neG7K7hEsNxrsaOp6EeVIefyr0ZPu1wfx2j83/hFx6a9Gf8AyFLQBqR/DrwOiuB4T0ht4A3NZoSfzFDfDfwGyBD4R0fA/wCnJP8ACunzyB70+gDlf+Fb+BBj/iktHx/15J/hUcvwv8ASSZbwlpP4Wif4V11FKwHIj4XeAB08J6UP+3VP8Kcvw08Cqu3/AIRjTf8AwGX/AArrKKYHJx/DjwVHlU8N6btK4I+zL/hXF/B/4e+DdQ0nVJbrQrOUx69fRrmBflVJ2AHTsK9f71xHwJXHh/WD/wBTHqX/AKUPQBYb4X+BGP8AyLNj/wB+V/wof4Y+CWKlvDtl8vTEY/wrsKKAOL/4VT4DLFj4dtOT2Qf4Uh+E/gMn/kXrX/vgV2tFAHFt8KPAbDB8PWv/AHwKQfCnwP8A9AOFfpXa0UAeNfFD4beE7TWPCsNtpwjF5rSwSAMeV8mVv/ZRXWj4T+BzIX/sZQTnPzetHxd/5GTwP/2Ma/8ApPPXbrQBxI+E/gheRpC/99Uw/CTwQ3P9luP+2pruqKAOHX4T+Cx/zDpP+/pob4T+DN3y2Eo+kzCu4ooA4eX4T+DnGDZT/wDgQ1Rt8JfBu7P2S6BPAxctxXeUjUAePfCX4deGtX0fUbq7S+aS31m8tUP2x/uRzMq9/QV1jfCvwo3BjvvwvHo+BP8AyLmr/wDYx6j/AOlDV21AHEf8Kp8Jf3NQ/wDA16P+FVeFP7l//wCBr/4129FJq4HDr8LPDCk7RqAB9L+T/GlX4WeGVGBJqvPpqMn+NdvRS5QOH/4VZ4aBJEurdP8AoIyf41yfxA8A6Zp2veFre0vNYSO+1ZbacLqko3L5Mjevqor2SuF+LAb/AISrwXjp/by/+iJqTVgHL8LPDmOLzXP/AAay/wCNKPhb4dH/AC963/4NJf8AGu2XpS0+UDi4/hloCdLzWf8AwZy/40SfDXQSuPtetD/d1OX/ABrtKKaVgOHX4YaH5Wwaj4gAP/UXmH9abB8K9AhB2aj4g56/8Tib/Gu6opgcBqnwz0SDTLmZNS8Qbo4XYf8AE4m6hSfWuV+B/gyx1/4fw6nqGq+IPOmlkj+XWJuQG+vtXr2vf8gK9/69pP8A0E1xn7N8Jg+E9gr9S7v+ZoAkh+FuiRDCax4nA9Brc/8A8VT/APhWOj7dv9teJ8Zz/wAhuf8A+KrtxRQBxafDXSVHGueJv/B3P/8AFU7/AIVvpYPGueJv/B1P/wDFV2VFAHHN8OdL3Z/tzxN/4O5//iqWT4fadj/kOeJeOn/E6n/xrsKbJ0oA850nTJdB+NVlpdrqmqXVldaJc3Ekd7evP+8WaIAjceOGavSK4m//AOS/aV/2L93/AOj4a7agAooooAKKKKACiiigAooooAKKKKACkwPSlooAAAOAK4T42ZN/4QUdG8QJuHqPImru64f4yYOreDVPRvEKf+iJqAO2UDaPWnU1TkDHcU6gAooooAKKKKAGyVxnwOAGgavj/oYtR/8AShq7NhnrXF/As7vD+sH/AKmPUR/5MPQB21FFFABRRRQAUUUUAcP8XQP+Ek8D8/8AMxr/AOk09duuOxriPi8B/wAJF4HP/UyL/wCk89dutAC0UUUAFFFFABTTTqafegDivgP/AMi3q/8A2Meo/wDpQ1dvXE/AkY8Oavg/8zHqP/pQ1dtQAUUUUAFFFFAAa4P4qyOvjHwXGFyv9tD/ANEy13lcJ8VD/wAVt4LGcf8AE5z/AOQZalgdzHwv406kT7tLVLYAooooAKKKKAKniDjQb05x/o0n/oJrkv2e2D/CnTW3rJ8p5HSur8SAHw7fg97WT/0A1xv7NkMcHwe0tIl2rsPfNAHfiiiigAooooAKbJ93inU1hnAoA4u/K/8AC/tLy3P/AAj91gf9t4a7auG1NV/4aF0ldvJ8O3Zz/wBt4a7mgAooooAKKKKACiiigAooooAKKKKAIr24htLOa7uZBHDBG0krnoqqMkn6AV5tp/7Q/wAGr54FtPG9vN9pKiEpaXBD7vu4Pl45zXd+NLea78G6taW0ZkmnsJ440HVmMbAAfia8O+BnjLxl4H+FXhe08deB20TwxpelWul3N9cXGbyzuo0WMyTxAFVgLghXVmY7kyoycAH0IpBXI6VwfxruIbbU/Bstw6og8Qpkn/rhNXc2+7yhuGD3rh/jbb29zeeEoriJJFOvpgOu4Z8mWgDsI7+yZVK3MeCOPmp/2+yHBuov++xVVtG0piAdOtzgH/lmKb/wj+ik5/smz/79D/CgC59us+n2qL/vsU43loFybmLH++Kpf2Foo/5hdp/36FK2h6Oy7Tpdpj/rkKALYvbMru+1Q4/3xQb2zHW6h/7+CqDeHtC27W0q1+nlCmt4Y8PH/mB2P/gOtAF976y25+1wcf8ATQVw3wK1CyXQ9YV7uFSfEWpEZkH/AD8NXUN4W8Oj/mB2Ocdfs61xfwX8L+HLnw/qwk0SwdV8Q6hwbZf+fhvagD0b7fY/8/lv/wB/V/xo/tCw/wCf23/7+isz/hEPCuP+Rf03/wABl/wpP+EP8K/9C/pv/gMv+FAGp/aFh1+22/8A39WmrqWnk4F9b/8Af0Vmnwf4VP8AzL2m/wDgMv8AhTf+EN8Jg8eHdN/8Bl/woA1TqFgOt9b/APf1f8aT+0tO/wCf+2/7+r/jWS/gvwiT83hzTf8AwGX/AApv/CE+D/8AoWdK/wDAVf8ACgDA+Lmo6e3iHwSVvrc7PEas2JV4H2efmu1j1TTG5XUbUj/rsv8AjXmnxV8G+FIfEng0weH9LhabxAqOVs0O4fZ5uDx7V2MXgPwSgwnhXSfm5JFmgBP0xUgbn9p6d/0ELX/v8v8AjQdT00ddQtf+/wAv+NYv/CC+DP8AoVdJ/wDANP8ACg+BPBh/5lbSf/ANP8KaA2f7V0z/AKCNr/3+X/Gj+1NM/wCgjaf9/wBf8axD4B8EHlvCuj597JP8KVfAHgdlwfCmjn/tyT/CmBtf2ppn/QRtP+/6/wCNMbVtLLbTqVpx/wBN1/xrIPw98DY/5FLR/wDwCT/Com+H3gVuvhPSM4wv+hJkfjigDJ+B2padH4f1ZXv7ZS3iHUGAaZRwbhsHrXa/2rpf/QStP+/6/wCNeafBnwJ4Nu9E1Sa58OaXcSLrt/HvkskzhZ2AH4V17fDzwKevhHRj7fYk/wAKkDbGraWempWn/f8AX/Gj+1tLxn+0rT/v+v8AjWGvw68BquR4P0Yf9uSf4USfDvwHIuH8I6M3/bkn+FAG4ur6Uemp2Z/7br/jQdW0oddSs/8Av+v+NYNv8N/AMS4TwfooGf8AnyT/AAom+G/gGQYbwfox/wC3JP8ACgDd/tjSe2qWf/f9f8a8++K+s6Y3xA8EbNStWVdXJciZcKPJk6nNb6/DH4fLyPB2j5/680/wrz34nfDzwZb/ABI8G2lv4W0xLW41BxcRrZptkyjsdw+ozQB7GusaTtB/tSzx2/fr/jStrGkL11SyH1uF/wAa5wfDP4flMDwdo2Oo/wBCT/Cobv4XfDiaZRP4R0XdjhTaJ/hVAdSdY0kddTs+en79f8aX+19K/wCgnZ/+BC/41zR+GHw/dfLbwlpBC9P9DT/CmN8Kfh8y4bwnpn4W6/4UAdP/AGzpA66pZcf9PC/403+29Gxn+1bLj/p4X/GuRn+FPwziOyTwxpSqeTvgT+oqGx+Efw3laZ4vDOlyQyEbNkCYz37UAdV4g1jSW8P3u3U7M7raTH79eflPvXIfs76tpcfwm0yOTUrVHVSCrTKCMH0JqXXPhN8PU0O6ZfCunq0Vu5VlgXIIU8jiua+Dvwm8B3nw00u7vvD1tcXEsAdpXhXzDuweT/8AXoA9b/tjSP8AoKWf/gQv+NKNX0k9NUs//Ahf8a5BvhD8OZIfKbwpp4XrxCuf5UyL4OfDmOPYvhezA/65L/hQB2X9r6T/ANBOz/8AAhf8aT+19J/6Cln/AOBC/wCNca3wb+HDcnwzaf8AfA/wo/4U38Of+hatP++B/hQB2f8Aa+kgZOp2eP8Ar4X/ABpp1jSMf8hSz/C4X/GuMuPgx8OZofLfw3bbf9kAf0qKH4J/DeAK8Xh2FWQ5UnHH+c0AWprq1uv2gdKe3uYZgvh26B8tw2P38PpXeV5T4b8HaB4U+PNmugaetotxoFwZcAHcRNDivVqACiiigAooooAKKKKACiiigAooooAr6tbyXek3VrFcPbyTwPGkyfeiJUgMPcZzXi+n+C/ib4j0C38AePJdLk8K2CxJNqsN/JNqGtCIrs85WQCJmKq7FXbBXHIOa9wIyMGojApXbuIx0xxQA+P7vWuN+LRH9t+DQeh8QLx/2wmrs0XauB61xnxZTfrng3r8viBTwP8AphNQB2XfNOpnbnin0AFGM0UUAFFFFADXzuBH41xXwXYL4f1XaR8/iG//APR712rDnP51xfwXdX8P6s6psC+IdQUgd8TsKAOok1C1j1BbJ58XDqWVMHkfyrHk8Z6MviZNDinkmu2YhlSMhY8dck4FV77U9Zi8aNpkjWNrZGwkniuBIXlUKygkptxgZ9a8x0vVrLWYdS8Ra3rmv6ppNvfxw2hsmaDYoyjSOgbBRm24IzwRxQB71GcoCWDZ6Ed6jmdRIqFgpJ4qvaqtlYx28KkeWm2MSMeTjoTXnHjnxt4o0rWjbXOm6ZbwQwfaJbuK6aUwqGVeVKjk7gR7A0AdvceIre38XWfh9o5ZLi8tZLlXQfKqIyqc+nLCtpj6HoOT6V4X4rGtarrWo+KrDxX5iaLpAijnhi2KTO8bqAAfmX5epwfavXPB8mpN4L06TUSkl+1lH55B+Vpdoz+Gc0AcP8SPEelah4t8K2ttcZl03xOiXKSKcrm3nwRXcaD4l0XWNVurDTb1Z57I7ZkCn5SODyfevnf4xXWu+HviFa61cazHcavJrMLR6RbZC/6iVVYt6gN6da63wR438S2GoWul2vhq1ZZ9TSyu7p7kiSa5dHkc429V2OGGeDwM9akD3TGen60/AqFXV5Nw6A4zU1NAGKQ8dKWkamAtNYdPrTj0phOenbmkwOM+BShfDusBRj/io9R6f9fD121cV8C+fDerH18Q6j/6UNXa00AY7UYzRRQAYHpSYHpS0UAJgV5n8W2I+L3gRQoI+3vz/wBs3r02vMviwXPxi8Cqq/KLxyT/ANs2oA9B1KaK0tnup5QkMQLOWOMD1ri/D1zeeLfDcl9LN5F9DeTy6aynaZIlYiMuvdSpH5iug8ZaTBq1sYtQSSexiHmyWigHz2XlcgnkcdD3xXK6PDrOpSat40Gm3UGrm3Fvptpe4VYoQQTjBOC+1WI7H1oA6DwD4ttvEFiYrlfs+qWshgvrUtjZKuQ23P3lJBwccj0q74utTd6T9nbULmz+cHfbSlJMf3QR/niodD0+w1WGx8R6lodpBrElum9zGGkiYgZQPjOB0rH+M51BYdD/ALOtbmZhqymXyOWVTFJyRkZ5xUtActp+qaRefEaXRoJ9W1xVQ7oJrZZEjKEI2ZGfJwTzx1rrvgfHHD4f1C3i3FIdZvUTjhVEzAAegxVKLw79mtY7rS4dQs7xY5UmnNqjNL5rB5CF3cEsAak/Z1tprXwTcwTmdpI9WvFLTn5yBMwBPPFCQHY+Jhu8N6gD/wA+kv8A6Aa5n4BRiL4Q6Eu4t/oUfJ/3RXT+Jf8AkXdQ/wCvSX/0A1zXwFKn4S6CBnH2KPn/AICKoDsFUDnHNOwKRTmloAKKKKADHemyAFeRTqRvu0AcTqCD/hf2lMBx/wAI/d5/7/w129cXff8AJeNLX/qAXX/o+Gu0oAKKKKACiiigAooooAKKKKACgkDrRTJjhQeOvJPagBVdD0agOp6GuX+KHiq08F+DL3X72Gaf7OqiKGJRvnldgqKvOerc47AntXC/s/6h40l+K3xC07xnqq3k9q2lyRWsA/0bTzLbM7xRnjcoIxvwC+ASBQB7GpBGRXH/ABUYLrng/JIzr6gY/wCuE1ddb/6sHJOe9ef/AB71Ky0nUPBd/qFzHb28PiRC7vnH/HvOOwoA7/cvHPUd6kyK48fEvwIJdn/CR2m4DkYbp+VOi+JXgQt8viS0/wDHv8KAOuBB6UZHSuUX4keCT08R2f8A49/hQPiP4Id9q+IrMsBkgbv8KAOrzRmuXT4g+DG6eILX9f8AChviD4KC5PiCzVexOf8ACgDpXb5gAa4f4HFZPDmr/Nx/wkepdP8Ar4esX4vfG7wj4Q8KyajaXkOp3DMI44IWIyxBxnjpxXkv7MX7Qdiury+HfENnHYwalqFxPFdLJlY5ncsyEY6Ak4PtQB9I3XhvTrrxBHrEzzi4S1e32rKVQoxBOV6c4Fcp4z8LePQi2XhLXdJh0slENhd6WhSNAOMNzuwQOoFdBD478HMTjxDaNtGCSx5/SpR458IFiv8AwkFrkermgC74bt9WtdHii1rUFvb4AeZLHCI1Y98KK57VPA+lw32oavb6cb/VdWcB5Lx/NWLgjjd91ACRge1aUfjnwnJN5cevWbP6eYcfyp//AAm/hQSGNtds96jJUSUAcZrnw41i20nTfDXhy4tLfSbmRP7blaICSRF+ZQgHCgMAAM4A4Fei31qlxYNatujQp1iba6H1U9vrVBfGfhZo939t2f8A38qu/i3wy12HXxFaBUjIMO/g8jnPtQB5/wDE7wZo+m+KvBsls1w09xr+y5nnmMrTAwTHLk8sRgYJ6Vs+HfCGpT+NreDUbCGLRfD05u9PkSYs9xcuCPNJxyQrOG9S2a8V+OP7Q9g3xE0waBaefZeHdR8ySR/+WzqrR5HsAx5r334Y/FHwj4t8I2+vQXsNoJyytFMwVlYH5h9M96kDt2DFsnnHQ4qTI9axJvF3hmNcnWrMf9tKjj8Z+F5G2rrtmWHrJTQHQZFI1Yn/AAlnhoJuGtWWM9pRTl8T+HmXcNZs8f8AXUUwNo1ExHKZxkcVlf8ACTeH/wDoMWX/AH+FEviHQTA4/ti0G4ZOJx+OKAMP4FRmHw1qqMc/8VBqB/8AJhq7XcM4zXm/wJ1nRU8L6iyalCiTa7fyIJJRkhp2IPXpXZTeI9DhkCvq1qGP/TVf8aQGvketGay117RGbH9q2f8A3+WlbXdEH/MWs/8Av8tMDTzSBge9Zi67oxbKanatn0mX/GpJdY0pWydTtBxyPOX/ABoA0MivNPijdAfGLwPCCDuupM/gjV2k/iLQY7eSdtWswkalm/er0A+tfMPxU/aE8OXHxg0G+sLOe4s9BnYyy8fPkEcfnSuB9XSLltxAZug47fWkCE+mVPHf8awfA3jbw94n8NW+tafqMIguFyBLIqsD3BGa2l1TSxz/AGja8/8ATZf8aYE2DuJxwOgpFUcMU3EnPC8g+tRHVtLAz/aNr/3+X/Gmf2tpjpvXUbXH/XZf8aALTbl+cLu9cdfwqKxtre03+TCkYdy7bRjczHJJ/GkXU9NK/wDIQtf+/wAv+NDalpoGft9r/wB/l/xoAj8Tkf8ACN6hg/8ALpLj/vg1zH7P7OPg/oIkPzGyj/8AQRWx4p1GyfQr9Rf25DWcoAEy8/IfesL4H6hp0fwl8PRi9ij8vTIVaOSRQwYIoPf1oA7lSvQGlyM4zVRdQ0//AJ/bfHr5y/40v9o2BOBf23t+9X/GgC1kUuRVP+0LDBP2+2wPvfvF/wAaP7Q0/bk39sV7fvV/xoAuZpHI21WF9ZYz9stx/wBtF/xpGvrE/dvrfPp5o5/WgDlb4j/hfmlc9fD91/6Phrta4O7nim+PWmPBNC6roFzuKYYg+dDXdn71K4C0UUUwCiiigAooooAKKKKACmzfc6E/TrTqbIu5cA49xQB578ePBV54x0/Rb7T/ABP/AMI7e+GNUGrw3ZsFuwNsMsZDRsygjbIT17V5P+yZ4ibWv2ivH7n4jweKEu7OwkVo9C+xi92RbTKuThfK3bCv8RbPavplowWyCV9h3oMYKbCcr3zzmgBYc+Xycnucda4f4z21veat4NtrqFJoZPEKh43XKsPs83UV3KjHfPNcV8XmK+IPBOB/zMa/+k89AG1H4R8Lgs40DTwx4J+zrS/8Id4V/wChe07/AMB1/wAK2V6fjTqAMT/hDvCvX/hHtO/8Bl/wpP8AhDPCe7d/wjmm59fsy/4VuUUAYY8G+FB08O6b/wCAy/4U2TwR4PkQI/hrS2UdAbVf8K3qKAPNfit8F/BPi/w5LpY0m306RiHjuLOIIysAQNxGMjnpXkX7Mf7PeipqV34i1+5/tA6bqM9lBb+XhX8lzGS/qMjgelfUcy56Eg+1cb8EADoOqgE4XX9QXGfSdhQBej8BeC9oU+F9JyrZx9kTgflUr/D/AMEPy3hTST9bRP8ACuhZAfx606gDm1+HvgZV2r4T0gD0Fon+FRt8OPATHLeD9GOfWzT/AArqKKAOXHw48AhcDwfow/7c0/wqB/hr4Bwy/wDCIaLlyS4FknzA/hXXnkYpqphcZ6dKAPkX45fs8WUPxT0k6NdC103xFd/ZfIx/qH2s/H+zhDx9K908A/B3wL4b8J2ukzaFZ3xtQd1xeQK7sx+8cntml+MChviR4EjJ/wCYuWU+h8mX8+tdn4nGzwzqBEhVvssvzenyGkBgyfD/AOH8saEeFtFZc4B+yoQT7cc1VtvA3wznvns4fC+hNdJzIv2Ndyj15HPavOdWv9fXwH4JOkXjMYdJhmt0hctLJN5ajzHBwNu1n75JI4rpfBfiLT9X+LWiWkGpPe3lv4YnS7aUFGMiywg716bs5zycUwOsPwz+H5XjwXowAPA+xpz79Kqy+CPhkmqx6K3hjQxdtAZ0hNmmSikKW6erD86668uYbO3MtxPFH6NKQoya8b8Vaxq8HxmjvZtZ03T500O5Fo9vH9p3DzYsIc49B+VAHeD4b/Dl3McfhTQ28o4kxaRtj2PHBqK8+GXw2t7OSV/CWixqucsbVFx244qv8E77w9fafc3djNbvrNysT635CFMz7fvYIGATuIqr8dpzqOkmxiuhb22nus+pTMcKFIwkee5LFD+FK4GH8Efh/wCBZ/CN5NeeGNNJh1q8iR54VkKoszBRkjpjArtJvhZ8O7iYmTwfpIZehFogz+leO/CHVdQTRL7Q/Ed47Q3M95crBZwK0h8uceaWdmXa28jAGc817R8J7KRNH/tJtW1G/h1JVuYI76Qs9ujDIXknsR9MUAV2+Efw3Y5PhHSyfe2X/ChvhL8OGYZ8H6V/4DJ/hXa7R6UhXK4oQHEw/CP4dI2R4S0sc8f6Ov8AhUn/AAqr4ebyf+ER0vJGCTbL0/KuzxxjNJsH+RTA4W4+Dvw3lhZD4T05VYEHZAo/Livm34rfs+rpfxg0nR9CvEj0/XJD5KzH5occkH1AGQK+zNo/yK8x+JiJ/wAL18EhlVmImCkryv09KmwE/hf4I/DnS9Dt7H/hH7e6MaAGadAzufUk1oN8Ivh2Rj/hF7EY9Il/wrt1UbeeT64oKjtVAcKfg/8ADz/oWbP/AL9L/hTl+EXw8Vdo8M2gHp5Y/wAK7naKTafWgDh/+FRfD/t4dtR/wAf4Uknwi8AMuD4ft/wQV3WPejFAHm3iH4SeAovD99IugxBo7aRlIA4IU1j/AAl+Evge7+GOg3tzpAeWfT4pGZpMn51BPOPWvVPEfHh6/J5xaycf8BNY/wAIRn4W+HmBwG02BgPQFBxQBjL8H/AgTy/7HGzPQyf/AFqI/g/4EjkDR6Mqkd1fH9K79elIwz3oA4R/hH4IZWUaVw33v3nX9Kavwh8ChQo0xto6DzT/AIV31HPrQBwrfCbwWy4Onyf9/jUMnwh8Dr+8Wwm3Dpic16Bz602RQw5H50AeVeGfCei+E/j3YxaPFNELjw/cs+9tw4mhH9a9Xrhr9SP2iNKIP3vDt0SP+28NdzU2AKKKKoAooooAKKKKACiiigApGIHU0tMmzswP5UALvXruoZ1AyWrD8W+ING8L6DNrOv6hFp2nWyjfPJkd/QZP4AGs74f/ABD8FeOo7mTwn4jttT+yYE4jDrsJ6cMAfxFAHXg56VxHxez/AMJB4IwP+ZjX/wBJ567O0UrCA3Xv9f61x3xa/wCRg8E/9jEv/pPPQB2ajPPvTqav3T9adQAUUUUAFFFFADeef0rivgTuPh/Vyf8AoYtS/wDShq7Y9a4r4E/8i7rH/Yx6l/6UPQB21FFFABRRRQAUUUUAeY/GaOQ/Ff4fspO3+1mz/wB+ZK7zxNHLN4dvoYUZ3kt5FCL1YlSABXD/ABkQt8UPAB3YxrB49f3MtejryzA+1AHj+mWPiM/CrTNDi8HyQXltZ2ySvJhNjxqvIxnPAI7YzR4c1SfVPj/bpf8AhybSbvT9HuPOkAzExeWIrhuNxIzkEda9hIG3FV5oRIpDHkj05HIOM0AZ3ibQtI16xSy1nTIbyL7ypLGGUY9Qa4qHwlpmn/Gaxl0TS7Kxjbw/cjZFEABIZoiCRjB716TzywByPX0pY0QyiUBchdoOOQPSgDjvhf4V1PSrjVtW8QTR3OrajcDzJ4k2K0UeVjIH8J2nkVlftAQ6o/w8uNM0jRzcT6hcqj+UoIVQS/mMT/ujPua9LJ4qpqG3+z5t27/Vs2T24osB80+ArW1u7zSrrVrY6g8cOqho205ZlMxuk5G48HOcfWvevhR/bg8LwDXojb3GW2W5jCeUgPyggdDjHFYv7Pojm8Cy3CIpb+07tQSOceac8/lXewk78YbAHVu9AEtFFFABRRRQAV5P8WJ1X9oPwEN3ykzg/lXrB4FeS/FKJpf2gPAq4xhZ2/lQB60DnpRSL0paACiiigAooooAo+Jv+Rb1D/r0l/8AQDWP8HSD8KfDeP8AoE2//ota2PE3/It6h/16S/8AoBrH+D+P+FV+G9v/AECbf/0WtAHTL0ooooAKKKKACiig0AcNqBH/AA0RpK55Hhu7/wDR8FdzXC6kv/GRWltn/mW7of8AkeCu6oAKKKKACiiigAooooAKKKKACkkOF6Z9hS02YkLx3NAHMeNPC9h4kk0fUJoDLd+HL86jpqeeY1FwsUka7yAcriRgR757VwXwxfUdQ+Oj6j8RrO20vxpbaNJDpum2M5mtPsDSRtNJFMVVpj5ixbtyLsJwNwOa7D4v6Z4uvdH03UfBt+sWqaTfC7+wTXLQQaoux0NtNIoYqmXD52tyg47jJ+G3hjxPqXjBfiD8QrSysdfhspNNs9O0y5ae2tLdnRnPmsqGRnaNG5UbeQM9aAPSYSSuTjqcYNcJ8cr6x0y88I6jqNwYYbbxArlgpOf3Ewxx9a7uFQqYGOvOO5ri/i9n+3/BIycHxGoIz1/0efrQBMvxN8DMcL4it8DqdknX6balk+JfghU3f8JBBz/sP/8AE11AVs7i5z+n5U/APWgDkv8AhZ3gYdfEMH/ft/8A4mmt8TvAv/QxQf8Aft//AImuv2ik2j0/SgDk1+JfgZuniKD/AL9v/wDE1LH8QvCEi7016Db/ALj/APxNdPt9DRtHqfzoA8Z/aH+Nth4S8ELe+Fb6G91C6uVt4lMbHZlWO7BAB+7jHvXkn7MPx81eDxodC8VXFvDY6hcz3EjLahVhlkYuWLA5Pf5cV9K/GTwHpXxB8Hz6DqrNGjsHikUZ2OAcHHfgn868h/ZR+CHh7w5eTeJLl1vb3T7+6s7SOSABIWSUr5q8nDEA/TJoA9gh+Ivg1o0ddftykgBjbY/zgj/d4qT/AIWF4O/6D8H/AHw//wATWh4m1mz0HRLnV72KdobfbvSFQzsCwUYBI7kd6vR3cXkpLKfKD9A7Afhz3oAw18feEGXI1uE++x/8KcvjzwkTxrUP/fD/AOFbGlahZalDJLZ3EcyxyNG5U52spwVPuDVPxR4h0jw7b28+sXaWsd1OIInccM5BIHHsDQBU/wCE78J/9BuH/vhv8KP+E58J/wDQZh/75f8AwpbXxbps/i5PDohuVupLY3MbtEBHJGCoJU5z1Ydq3g4LdtucA5oA8h+LHirw/P8AEjwLPDqKyRx6oxLKhIH7qT1rvrfxz4VmDMmswHacHCv1/KuX+MIRvil4C3x5P9qsBz0/dSV6UoJ5Y5oAwf8AhM/DH/QXh/75b/ClPizw2euqQ9c/cb/Ct7aKMUAYq+KvDzKHGpRH0O1v8KVvFXh8AMdTjHb7rf4Vs7aMUAZC+JNDflNRjb/gLf4V5r+098WrTwV4NEekzwT6nqDeWiSA4hUgkuRjkcAY/wBoV7AyA9z+def/ALQHw30/4ieCnsZpTbXVr+8t7hVztIB4I7g+n0oA8W/Y5+Mb/wBpt4N8RIsYu2e5t5I4gAkjnc0Rx65Jz/s19LjXNKR9rXkY4+UYPT8q8K/Y7+D2m+Ho38W3swub7zZYIY/LG2La2N+c8k4/DJr3jXdTtdG0qXULreYYcbii5PJA6fUigBP7e0n/AJ/E/I/4Uo1vTMf8fifkf8KyL/xna22pRWLWN2JnvlsyrRgfMyswYc8qQh5+ldIsmc4GQPSgCiuu6UzbPtibvof8KkOqWI5FyuPoajk1i1j8Rw6MyyfaZ7V7lWCjbtVlUgnPXLDtULa5ajxBLpDRTR3EcQlVpVxHIvGdpz2yBQBaj1SyfgXK/wDfJrzj4j3Vkfjt4OkadAVimxwfavUA3ouPTivO/Hyq/wAcvCQb+GCcj5evIqQO+TUbMr8sykewNK1/anpKv45qwqqBwNvtS7R3qgK4u7c/8tV/DNSRzxtwD+dSYHpSbV9B+VADXmjT7zULMjjKMDStEjfeUH8KTyYwMBRj0xQBQ8UTxjw1qO51H+iS9/8AYNYXwTu7ab4S+HfKnWTZpVuMg/8ATNa3PFNrA/hnUQYkObSXt/sGsP4J2Ftb/CPw2qW8a40q3zhev7taAOqaZEGTIAM0vmoefMXH1qJrGzl5kt4257rQ2m2R4+zRY9NgoAmLp/fX/vqjen99f++hUH9mWP8Az6w/98Cj+zLH/n1h/wC+BQBP5sQ4Mi/nTZJ4tvEi/wDfQqBtJ01jlrKEn/cFRz6LpTL82n27YOQDGDQByl5NE/7Qmm7HRseHrndg9P30Nd5Xnq6fZ2P7Q2n/AGO1jh8zw/clti4/5bQ16FQAUUUUAFFFFABRRRQAUUUUAFNkztwB3/KnUUAV/KO3GwDJ6Yzz60sURRdu0YHQAYGOwqeigBEzt5rivi4CfEHgnA6eI1/9J567auK+LTbfEHgn38RKP/JeagDsxTqavp706gAooooAKKKKAGS89j9a4f4Gc+G9VDHLf8JDqI/8mGruZPu1xXwOUp4d1Y4+94g1A/8AkdqAOa/aO1jXIbSbQ7C3jkt7vSjMwLlWWVbmBVwwB4wzVk62NQvvHFjoeryNdQ22t2ojS5maZFkeznZwCw+YBh7V7JdWNpdyeZPbRyOY9h3j+HIOPzAP4VgeObC8utX8OyWNsJI7bV1kuSvHlRiGQbvfkqPxoAq/BqLSbLSb7SbKER3dpdMdRRV2gyuSxZR2VjkgdhWd8Z5hd+IvDGlW4uJJrfUReTxQY3eQsbqT1H8TpXcWun2drdXFxb2sMUt0Q07IgBlIGAWPfrXMap4J/tC9GqnUdmqJfi7jnFsNq7FaNE255ARyM9+tAGFr974i0e3vfFWkaKl5NYxMj/2pqTLIkRIJCqEYDJAOM9q7zwbqja34P03WWt/JbULWO48vupdQcfrXEePfDWo2HgfUtP0Tzr7UdeuES4uM7No3ZJ77QBkfjXe+HNPh0jQ7LSYDlLSBY0PsoAoA4H4wSIPit8P0Jwx1ZsA9/wB1JXp69Pxry74zMv8AwuD4djb/AMxV/wD0VJXp8fX8TQA+iiigAooooADVXUiPsE/qYm4/A1aqrqXy6fcMOqwsfyBoA4f9nKXzPhzI7oVZdTu0I9MSkVraxH4hk8WS7jp76KLIrHbzS7WebcpBPHTg/pWT+zeZD8N3eQANJqV0/tzKTXVaro2j6rIsuoWNrd+X/HLEGwfoaAPP1g1TXPHr2moXs0FvpttvvDaag4+zzvjZsOOQVLemK9E0OzGnaLDZ/b7m4EcfE1xIZHbjqWPWuc8H6JPafEzxFqQtZLWzkit4bdCMLJtTBKj0GP1rrZo1kt/LkAKNwU9fagDynTdZm/4X08d7qMdzGNLni0yRLbylmO9GkTIJyVZQM1as9KvtR1zT5JNY1GS+m3X0lnJdtLZiIMAEwfut84wMdq6b+wbpPHLa3GYI0t9Oa0tFHVdzIWz6AFRx3rH1Lwn4o0bUjrvhLVVvdUupP+JjDqDlYrpR0wRu8vb0GAcA4oA9B6typ5/OvO/Hy5+PfhAAn/j1nJ/76Wu60WXUJdNQ6pb29teEAyQ28hlRD7MQM/kK4jxvGz/Hrws46LZXH/oa0rAejR9Pxp1IvSlpgFFFFABRRRQBS8S/8i5qH/XpL/6AaxvhCNvwp8ODP/MLt+f+2a1seKP+RZ1HnH+hy8/8ANYPwTZT8IvDeJGk/wCJVb8n/rmtAHWLRSLS0AFFFFABSN92lpGxt5oA4i+z/wANCaef+peuf/R0NdxXB3m//horT/7v/CPXP/o6Gu8oAKKKKACiiigAooooAKKKKACmyEhcgZPpTqjuf9ScNtPY+lADLiQrlidq4656epNVrXU7G7maO11CCZ1XJWGZXOPXANc38dNF17xB8LtV0bwzdLa6ndrGsMskpjUL5qGRWYAnBQOMY5zXmOpfD3wV4T+O/g7RPhb4W0vwzqolk1PWp9Ot1txPpaKUeBnQZJaWSBghGCEJzxQB7/ASYxn8DnORXH/FZQ3iDwXkdPEK/wDpPNXYQndHuyCG5GPSuG+N18NNuvCd6bS6uvJ15SIraMO7fuJugJFAHdL1/GnVxtt47kmh81fBfitV6/NYoCfp+8qf/hNpf+hL8V/+ACf/ABygDq6K5JvHMi9fBXiz/wAAE/8AjlQf8LCbzNg8EeLv/Ben/wAcoA7SiuN/4WA//QkeLf8AwAT/AOOVJ/wnUv8A0JXiv/wAT/45QB1Fwfvc87eBntXG/AZi/hnVM5x/b+oYDHJI+0NzXnv7Tvxf1fQfATroega1puoXEywie+t1jVEKkkghjzwK8n/ZL+Mmu6J4q/4R3UbXUNWt9QldlghjDTCRjuLqCcEHnv3oA+0Ni7s7RmjYuc7R0xXHf8LDBj3L4K8WMcZ2iwTd/wCjKrr8TozN5X/CD+MC2ASBpycfX95QB3RUHgijaPSuIi+JHmeZ5fgnxY2w9rBP/jlOb4kRrbtK3gzxYiqwX5rBOT/38oA7TYu7dtGfWl2r1xXCz/E+3il2N4N8W9M5Gnpj/wBGU1vipYq20+E/FWf+wen/AMcoAyfjH/yWn4fjHC30h/Hy35/WvUVrwP4n/ESyufi54KlPhzX4vJuXZUltFDyfIw+Ub+eteg/8LQtF3bvCfildmc5sE59x+8oA72iuCt/ipYTRlk8KeKsD1sE/+OUN8VNPH/MreKP/AAAX/wCLoA72iuBb4r6Yv3vDHicf9uC//F0xvi5pA/5lrxP/AOAC/wDxdAHoNVNW/wCQXcnH/LB//QTXGR/FbS3i3jw34l/8AV/+LqnqHxZ0mTT7mNfD3iNf3TDc9ioH3T/t0AWv2ay0nwxRpECsL65AHt5hrv8AAPUV4R8AfifpenfD+K2l0jXpy1zPIJI7NSOXJx9+u2T4u6ORHv0DxCN4z/x5Lx/4/QB6BsXdnaM0u0elcB/wtvRPM2/2F4i/8AV/+Lp0PxY0h9+dA8Qjaf8AnyXn/wAfoA7zYmc7RxShQOgrzu4+Mnh2B9s2ka+h9DZD/wCKpYfjJ4blk2ppeuYx1NkP/iqAPQ8D0rzzxa5/4Xz4bjV1AOn3LfN1J8xOlFx8ZPDUNrJM+na0BGCT/oY7f8Cr5d8fftEeIr/4vQa1pUMcVtp7utnHKnzPDnPJ7MQBx+tLmQH3JHkrTq8q8E/HXwxrXh6zvX0/VY5poFkljS1DKjEAkZ3c81pj4x+Fy5H2LWMDv9jH/wAVTuB6FRXn7fGHwuBk2esf+AY/+Kpi/GbwkzY8jVR9bT/69AHodFeft8YfCpfZHDqTH/r14/nUcnxm8Jx8SQamD7Wv/wBegDtvE3PhvUB/06S/+gGsX4Nrt+FHhtSOP7Jt/wD0Wtct4i+M/g6TQb2Jf7QV5LaRV3WuBkqRzzWV8K/i/wCFdP8AhzodleyXRmtdMiWQxQFl+VVHB70AeyqAOBS1wNt8YvBk1usonuxuHQ25pZPjB4KjXc1zdY/69zQB3tFeeN8afA4OPtV3/wCAxol+NPgePlru5x6/ZzQB6HSNyuK4Rvi94KWJX+2z/N0/cGib4v8AgiPbvv5huOB+4NADp2z+0NZIf4fD0/8A6Ohruq8k8J+K9I8T/tFLcaTOZIoNAmV96lTzLF2/CvW6ACiiigAooooAKKKKACiiigApswJXAXcc9KdRQByvxa1PXtB+Huqav4Y0O41jV7aIPbWFvy87Fgpx/ewGLY77ccV5d8LfEOt6Z4k02ztPhj44utU8QagP+Ej8R65YR2aqgjch8rJIdinCpF0VWxnive6KAGx7tvzDHNcX8Xtx17wUqgHPiJc5XPH2eau2rjfir/yMHgv/ALGFf/SeagDrQrFtwAB6ZqTB9aF6UtADTnNGD1x+lOooAbz/AJFLg0tFAHJ/FnwToXjvw4+jeIbP7RaK3nDD7SHCkA9Pc15x+y38LvCWi2kvia3sGbUob25to3dtyxKkhUFR/ewOT35r2rUcfZZsnGEOPyNef/s3u5+Hd1jJb+2r7B9P3zdakDd8UeKodI8TaToiRNLLqUxEhQcQxgHLse3O0fjVLXviBb2m2Ox0u+vf9PNnJJHGPLRgSDznPBHpXGQ2niiH47eWdQkhh1UG4nCQ7NkMZ2qFfPzZ3Lk4FY1wNdtJr3W2GmxQ2XieeSwdocr5m+RG86TqowzY4POBTQHv6ADPIz16YrA17XZbfxPpuj2NsJ3uJv8ATH4xFHtJz9c7av6XeQ3Wnx3UU0dxlDuaA8F8cgfrXD3Gi6jqvxC+33Qjsfs1n5umfLuMUjFd7uvGWGSPxNMDro/E+kzeIBo1vLJcXKhvM2L8kW0gHeT3zW5lTzjJ9cV5TrGm61e/Fq08N3/ifUDa3OjzXMgsbhrc7kljUHaM9dx716PoNidN0+KyeaaZYgAJJ5jI7Y9SaAPMfjNJMP2gPh4iRRsrXE2XKfMvynp7V62i7uXRc9wOa8n+MQY/tCfDtt3HnTcf8BNetx9/woAaseOAoC+mKVlPYfrUlFADQuBzTWGeifnUlFADNnGMVS8QKDod4GCsBbSHBHH3TWhVHXR/xI7z+I/Z5P8A0E0AcP8Asvr/AMWgs28tF3TSnCdPvV6EExxjp3riP2b4nh+E9ijoqN5khwP96u7oAZtPXH60bcetPooAjZfanbBu9qdRQBFcQRzQvDIpZJFKsPUGvmrxp8APBE3x007SkW8isdVtpr66gSX7zK6gAHsvznivpquB8RR7v2gdBk/u6Ldf+jYqnlA6TwfoGm+GtCh0rS7cQ21uu2NCc4UdKvwXVlLdy28csbSwhTIg6ruGRn6imapewafYyXlwWEcahmI5ryfwrr1xqnxf1Rri6v4bK8tvOgtZrJU89I8I22TeScFhxigD18TWxfZ5sW7oF3DP5U/aD7/WvIfBPhVIfHVq15e2s08Nzc38cqylrhoy+IUbI5UI/PPUCvR/FA1NbISabcxwSAkyNJH5n7sAnheMngd6ANIz263C27SKsjglVzycdcVKu0nA7eteLWus6x4t8XaRpjahffZ3jmuYrj+zFieJo3C7gRIccMRn36V3nwtjsbtr3VLHV9bvFS6ntJItQuzIqSRuVbap6cg0Ab3iqND4b1AmNf8Aj0l5x/sGsT4Mxn/hU3ho5J/4lduc9S37sda3vFf/ACLOo/8AXnL/AOgGsb4Kf8ki8M5/6BFv/wCi1qgOlVfl4UUoX/ZFPGO1FADdg9B+VMeNZFKugI7cVLRQBEI12YKZ9OKGRduGA+uKlpsnTBoA8/8AJRP2jkkVdrf2DKOOh/eRV6FXncJZv2kmy2Quhvx9Xir0SgAooooAKKKKACiiigAooooAKKKKACikdgqlmIAUZJPasjRfE2i6vqV9p2m6jbXV1ppjF3DFJuaHzFLJnHqoJFAGxXE/FxwniDwTk43eIlH/AJLz12qElcmuJ+Lxj/4SDwSHx83iNQufX7PPQB2YJ+UA9xT8H1qJThQeCAOTnvUmTxxQAuD60jZ29aXdSfe4P86ADdhlBNOqNowZA5PTtT8j1oAh1BQbOYn/AJ5t/KuD/ZzKN8P7gxgKBrF7kY/6bNXe3xH2WXJ48tv5VwX7N+1vAt4FUgDW74D3xO1AG54k8J2WseLNP1+a4u4rrTUZIlhmKpKrEEhh3GQDj2qp4Z8E2mnWepWuoXU19b6ld3M0ltIf3J82Qvjb6j1rrfLGfnAIH3eOlIY2JGJO/OR1FAGP4J8LaJ4T0trTQ7JLOGVzI8a9Nx5/rVttMthrP9qbpTOYjGPmyACQeB+Aq+yKDyBj3oVQOhGDQByln4avj8VJfFV3eJJDFZGztIlX7iuys5P/AAJBXX4HpUezC43HinZPcCgDyj4viIftAfD/AHtg+bNj67TXq6V5H8ZjH/w0F8PA/wB5ppgv/fJr1tWzyQaAH0Um72o3exoAWikzSZ56UAOrP1xtug3xPQW8v/oJq/mqHiDjw/qHHS2kOD/umpA5b9nJ0f4S6aydDuz9c13NcN+zqqp8I9K2rtDR7sA5xmu43e1UAtFJn5c0ZoAWikLAUm8de1ADq4HxBn/hoDQxvI/4kV1kD/rtFXeFsda4fWAG+P8Ao6lM/wDEgum3Z6fv4eKAOm1mW8hsW+w2/n3BYogLbVXPcnsAP6VweueAJNOurfWdLhh1a5tROzJcjEm6Y7pHjfnac9B2B616V5almLHv0oSIKchz+dAHjXhHxd4Csta0q01O01Ow1jSLc2kS3lvtCgkfMcE5PA5969hZIrq2JB/dyL26809oEJy21j7r39RT0CKoUEAAYwKAOBXwzFpvjrS7ayEsdp9hucyocMrvIh4PbvXUeDNDtPD2mmxsmnZHmknkedtzu7tuZifck1rMoJzxwOOKRRhs7sntmgCl4sYJ4X1JnP8Ay6S/+gGsf4JjHwj8MgNuH9kW/J/65rWr4xyfCeojAb/RZe/+yayvguy/8Km8M7cBf7It8f8AftakDqVpaappzHAzVAFFNyeOKXPsaAFpGpaRjgUAefxrEP2jSVcBzojZX/gcVeg153ZlZP2krg7Buh0TGc9ctGa9EoAKKKKACiiigAooooAKKKKACiiigCO8hhubSW2uI1khmQpIjDIZSMEH6ivF/wBnXwt4f8G/HL4o6F4W0az0jTI20hktrSIJGrNauSQo9T1r2i8adLOV7aNZJljYxI7bVZscAnnAJ714f8K7H406f8ate8R+JPBfhm10rxTJZ/bHtfETzy2It4GjyqmBfM3EjuuPegD3G34jxnOD6V55+0NqK6R/wiepm0ubp7XX1eOG3Tc7nyJhgD6E16HBny+c575NcZ8W8HxB4KBB/wCRiXp/17zUAZtj8UjcoGXwT4oUNzkWY/8Aiqsx/E4HcD4M8Ugjp/xL1/8Ai67lV7lRkdMCnD72cH8qAOFb4mw8BfB/iot3/wCJeuP/AEOmt8T4xNtHhDxOeOgsFz/6HXergfw/pRtXOQuD9KVgOEHxQtv4/CXigf8AcPX/AOLp3/C0bAcf8It4o/8ABev/AMXXcbU7pn8KXbnnA/KmB59qnxSsktJAfCvifa6EFm09cLx/v1yfwN+IOnaV4JdV8Oa9IkmpXbkxWYYhvNOQRur2e+2m1m3LkBDkY68Vw/7O+0+Cr0qSy/23fYyvT981K4CR/FnSpW2nwz4nB99PX/4up5Pifp6Rlv8AhG/EnH/Tgv8A8XXbhFHOwflQBnnjHoVpgcBb/FjTJVLf8I74jYDr/oA/+LqZfippLLuHh7xHgdf9AH/xddvHGAPlVR6/LS+WBwAPw4oA8+m+MegRttbQ/EYPvp4/+LpIvjJ4ceZozpGv/L62I/8Aiq9C2KP/AK9LsXrtGaAPnP4qfEfQ9Q+M3gjUodP1RRYzyny5bMB5PlIO35u1emW/xb8NuwAsNZXqMvZjp/31WT8XEUfHvwDjj95NkY+98pr1VYx0CgD6UAcJN8WfDattGn6yw9RZjH/oVOj+LfhsrzY6wv1s/wD7Ku62L6CjYp/hH5UAcH/wtzwupw1tqufe0/8AsqX/AIW74Uwf3Gpj62n/ANeu72IP4R+VG1P7q/lQBwH/AAuPwltIddSUj1tf/r1HrHxT8K3Oh3kYF9mS1kALW3X5D716CUi7xpz7VT8RpEfD94Co/wCPeQn2+U0rAeQfA/4qeEtK+GGl2Uz3weOEbgLXpkfWut/4XL4MJAMt8N3TNr/9etL4FQp/wqvSW2g+ZAr565yAa67yo+PkHHtTA8/X4xeC/N8vzrzd6fZf/r1YX4s+EWOBNdn/ALdv/r13Hlx/e2Ln6Unlxnkov5UAcHqHxc8K2qK267Yk8r5OMUQ/GDwY6KftVwpbqDEeK73y4z/CPyo8tOmxfyoA4ef4t+CY9v8AxMJiWOMeUa4zxB8TfBy/GzSbz7bII49KuYWbyDwTLGcfpXtTRxkYMQ/75ritUiP/AAvrScHMX9gXWY8dW8+H5v5/nQBXg+MfgZ5vLGoydevlGrsnxS8ExxiWTV9qHgEoa7BEjxxGo57LR5aE/cH5UAcZ/wALb8A/9Btf++DTP+Fu+Af+g1/44a7fyo/+ea/980vlRf8APNPyoA4qP4s+BX+7rK/ihoPxZ8BeZg67HuHbYa7Xy4+yJ+VN8tN3+rX67aAPPPE3xa8Ct4dv0TWlZpLaRVXYepU1m/CP4neBbb4X+HbSXXoklh0uBHUqchhGMg16R4sjjHhnUW2KCLOUg46fIawfgoin4Q+GnZQ+dJtmLMOWYxrk0rAV1+LXgBuB4gg+pDf4VI3xV8Ahdx8SW/X/AGv8K7Dyo+8aflRsTP3F/wC+aYHEt8XfAC5H/CRW/X/a/wAKsx/FPwA/3fEtqf8Avr/CusMMJ6xp/wB80qxRgY8tPyoA5T/haHgLv4lsx9d3+FNm+KXgFUyfE1mf++v8K61YYh/yzX8qbJDEcHy14PpQB5p4L1bSdd+PF9qOj3kd1B/Y6AyR5wM7COteo15zpKsn7RmpKkW1W0lCWDYHGzHFejUAFFFFABRRRQAUUUUAFFFFABRRRQAU3Yv90U6igBFAHQVxfxaDnXvBYRiv/FQrnH/XvNXa1xfxYfb4g8F/7XiFR/5LzUAdjGBtwaf0pqg06gAxSbR6UtFABgUUUUAQ3gzbyLjqpH6VxH7O8TQ+C75G5P8Abl9z/wBt2ruLokQyf7priP2e3Mng7UGPbXb8f+R2pAd5RgHtRRQgDAHSjAoopgGKKKKAPI/jJCH/AGhPh6+Puyzf+gmvW14NeT/F5iP2g/h+n96Sb/0E16uuT1oAdgelGB6UUUAFGB6UUUAGBVDxIo/4R+/HraSZP/ADV+qHiRv+Kfv/APr0l/8AQDQBz/wHRY/hLoaK24Czj/8AQRXX4zXH/AUf8Wj0Ij+KyjP/AI6K7CgBNo64pcAdqKKACjAoooAD0rh9Ujz8ftIccY8P3Q/Dzoa7iuK1TI+PukjPTw/dH/yPDQB2igAcDvS4HXFCjFFABRgUUUAGBTZCFHOfwp1Iwz2oAzfFoB8Majyf+POX/wBANY/wRA/4VD4Y46aRb4/79rW14rUt4Z1H/r0l7f7BrG+Co2/CTwyv/UIt/wD0WtAHUqBjpS0LRQAYFJgelLRQAYpGApaRuOaAPPNFcH9o7WIyx+XS4to9OEr0SvN9DUt+0trjDoNLh/klekUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcT8Xcf8JB4Iyf8AmY1/9J567auV+JWkXepal4Zu7VGcaVrC3coUZ+UQyp/NxQB1CsOxp1ZkeoyN97TrtSDz+77fnUn9of8ATle/9+//AK9AF+jIqgdQYcjT7xv+2f8A9eol1Z/MwdLvvqIs/wBaANTIoyKzf7Vb/oGah/34/wDr0h1Zv+gbqH/gP/8AXoAt3zYt5T22H+VcP+zewPgO8Oeut3xP/f8Aaul1DVJDbMselaizupA/cdPrzXL/AAhF74e8O3VjfaNqfmy6nd3C7LfjY8pYd/Q0Aeh5FGR61j/22f8AoD6t/wCAw/xqGTxAyyENoWsMB3FoP/iqAN7IozWDB4jLx7v7A1ocnraD/wCKpT4gIPGg6z/4CD/4qgDdzRkVg/8ACQt/0ANa/wDAQf8AxVH/AAkp/wChe13/AMAx/wDFUAeefGTzD+0d8OdmSu+fdjt8pr1+M9RnvXkfjqLV9X+LnhXX7TQNVFnpJl+1b7T5sMOMfNXd/wDCVFTj/hG9fwOh+xj/AOKoA6OkyPWue/4Sz/qXNf8A/AMf/FVHJ4rZX2/8Iz4iPv8AYh/8VQB02aM1zb+KmXgeGvERH/XiD/7NTP8AhLjn/kVPEn/gAP8A4qgDp8is3xOceG9QIOP9El6/7prJbxkV/wCZT8S/+AA/+Kqlrnix7nR7q2j8J+JfMmt3Vc6eOpU/7VAEnwBL/wDCn9B8w/N9hjzj/dFdjkV5r8LNevNF+Huk6XfeE/ExuLW0jR9unjqFA/vVtDx1+82f8Ih4q/8ABeP/AIqgDsCQOtGa5KXxuyDI8H+Km/7h4/8AiqY3jlv+hN8Wf+Cwf/F0AdhketGRXG/8J2wGP+EL8XH3Glj/AOLpR49YD/kSvF5/7hg/+LoA7HI9a4rVP+S+aW3YeHroE/8AbeGn/wDCfnBz4J8X/wDgsH/xdcre+K7iX4tafrsfhDxR9lg0a4glB04feaWIj+L0U0Aet5HrS5HrXDR/EaN2I/4Qzxb17aYD/wCz09viJEOvg7xYP+4YP/i6AO1yPWlzXEf8LFh/6FDxZ/4Lh/8AF01/iRAsip/wiHi07u/9mj/4ugDucijIri1+IMJ6eEvFn/guH/xdRTfEi2i+/wCEvFn/AILR/wDF0AdX4n/5FrUf+vSX/wBANYvwX/5JP4Z/7BFv/wCi1rn9d+JEN1ot5bxeE/FStLbyIM6aOpUj+/WZ8NfH1po3w90XTLjwv4ma4s9Phik8vTRwwQD+/wC1A7HrSsD0NLkVwf8Aws2xWMO/hbxSCRnnTR/8XUP/AAtrSw2P+Ea8U/8AgsH/AMXQI9CoyPWvPR8WdMI/5FnxT/4LB/8AF1M3xR00f8yz4o/8Fw/+KoA7sEHoaGNefv8AFTTVfjwx4q/8Fwx/6FT5/ijpMcAmbw74j5ONo08Z/wDQqAKPh/d/w05rxVvl/sqEY98JXpleW/DHUp9e+L2t66uk6hZ2dxZwpE1zDsYlQAe9epUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDLgjIpaKAE2r6UtFFABRRRQAUm0elLRQAm1fSgKAMAdKzfFus/wBhaDc6mNM1DUjbJu+yadB5txNyBhEyNx5z16A1znwF+IJ+JPg2519tFuNHMGrXlh9kuj++XyJmjy4/hY45XnB4yaAO2wKTaMYxS0UAFGBRRQAUYFFFACFVK7SOKXAHavMvGnxC8Znx5qPhf4eeDdO16fQkhOrPqOrmxETTJviEeIpPMBUHJ4wR3ro/hD40h8c+E21RbNrO6tLyfT7+33b0iuoHMcyo+BvQOpAbAyOcCgDqqKKKADAooooATA9KNo6Ypa8/+KHj7XtJ8UWPhPwZ4at9c1++tJb4Q3t8bO3W2jdUdjKEf598iYXbyCTnigDvwAOgpNinkrXE/CXxzqniS41jRvEeiW+ka9oEkS6hbWt59qt1Eql4yk21dx2jkbRg8c12kUofHGM9jQBJijA9KKKAE2j0owB2paKADA9KayIeqjmnE45Neb/Hz4v6T8NND837DNq2qP5bx2FueUhaVIzPK38EYLqN2DyyjHOaAPR9q9cUmxQ2dozRG4dSR2JFOoAMD0pu1eDtHHSnUUAJgDtRtU87RS02R9i5/IUABRTwQKPLQdFHPtXAfHf4ga34Jt/Dtv4c8OW2uar4k1hdLtra5vzaxq5ill3NIEfAxEe3epvhzr3xSv8AWpIfG3gXRNDsRAWjuLDXzeyNJkAKUMKYGCTnPbpQB3IRR/CPyo2L/dH5UqnIzS0AN2L/AHR+VLtX+6PypaKAG7EznaPyoMaHqi8e1Oprttx70AGxM52j8qdXlHjb4peLftl3J8N/Akfi7TtIuRa6pc/2gbdhN5gR0t0Ebec0fzb+V2lcc16mkoJweDjOO9AElFIpyufWloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAilLecNp7Zx6mvK/2QB/xRXicn/oeNc/8AS2SvQfGWlf21od1pQ1G+003ShTeafceTcQjIO5HwcHjH0Jrkvgv8J9J+HOoXk2keJfFl7FfSTTTWeq6n58Bmlk3yTbdo+dmyd3uaAPRaKKKACiiigAooooA86+Jmo2Wia1eab4T01J/GfiqFVKwfI5SNdi3E8gzsjjDYBweSo75G38HfC1v4N8D2ehx3CXd1GpfUL1U2m9ujzNOwyfnd9zNz1Nc/4w+EOl6x491HxXb+LvGGh3+qxwpdJo2r/Zo5REmxCV2nnHvXQfCHwTpvgHwxJoWl3moXiSXk15NPqFx588ksrl3ZnwM5Yk9KAOqooooAKKKKAEYZUj2rlfFx0fVJJPBk3iC40zU9QsnniOn3fk3kcCOis8TYOAGZAT/tV1TfdP0riviJ4B0vxbc22qTalqujarYo0Mep6PdfZ7ryGILQmTByjMFYjHVV9KAOd/Z9VtG1zxX4AxHMfDl7FOupbcPffalaUmUc7pV6M+fmYk4XOK9TgILEZyQSKwvAfhrSfCehrpujwyJHvaSeWY7pbiVjl5pW/idjksfUmt23HGQfrjoT60AS0UUUAFFFFAAelfHPxq8Qazp3w7+J9x4m+H3jD+2Na1mOIajDpedPNnbXiJasr7uC0QGT/ExFfYx6V5/8ZfhhpnxKs47HWfEPiSys0UrLbaVqX2eOfDhh5i7TuIKjBoA7Tw/etqWi2uoNZ3VmbqJZfs91HsmiyM7XX+Fh3HY1cqn4dsxp+h2tiLu6uxbwrH9ou5N80uBjdI38THqT3NXKACiiigApk4zGR60+mXBAT8eB60AeYftFeHU8RjwfDD4vt/DOpWXiJLjTJJoPN+0zfZ5kMKLuX5ijOwOeNucVB4GvNW8JfGCH4Y3Os6jr1hqGjzatbXup3Hn3Vp5UscbRSSY/eBjLuU4XaFxg5zXYfETwnpPjLS4bK/F3BNaXIns7yzm8q4sZgComifB2ttZhnHRjUPw68F6X4Pjuja31/qF9esrXep6nc/aLu4wPkV3wMhVyB6CgDrYRiNRnPHJ9adTYTlM06gAooooAKjuDhM4471JTZeFz6egoA+Yvgz4e8Sjwr438WWvji/01tG8W63cafpsK7bU4u5GcXUe79/vwdv3due9e7fCnxI3iz4Y6F4oex+xHWNOhvWti27yvMQNsJwMkZx0rK8Y/C3wtr/in+27s30azMh1GxguPLtNUKf6s3MeP3hTtyMV2kaqkSxgBUGMKV7eg9MUAT25zEOMe3p7U+mx/d5p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEAnJFAAByB1oooAWiiigAooooAKKKKAEZVbkihQB0FFFAC0UUUAFFFFABSbVOOOnSiigA2jdnHOMUbVBziiigBaKKKACiiigApoRQxIXk9aKKAFUAdBS0UUAFFFFABSMARgiiigA2rnOOcYpFRFUgKME5NFFADlAAwBRRRQAUUUUAFIQD1HSiigBFRAchRShVHQd80UUACgDoKWiigAooooAKKKKACiiigD//Z"]
math
multiple-choice
79
一堆正方体摆放在一起,从正面看、左面看如图,这堆小正方体最多有()块。
6
7
8
9
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCABxAOQDASIAAhEBAxEB/8QAGgABAQADAQEAAAAAAAAAAAAAAAUBBAYDAv/EABQBAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhADEAAAAe/AAec8qJdI+gAAAADBlJ9zfSawAAAABK29bfNLGzrFIAAAADGcGhQ5XYPS9y/UAAAAAEjW2qZBob+iUAAAAAMZwRbfKVzVvcvVKafvmQAARfjZpHKb/tWIWp1E01/arILAAAAGM4Ods6lQkUNSkQb0C+ZAAxkSfiyOb3LAkeN0TFMAAAAMZEj3oCV6URLp5wZAAMEz052mN2TaJu5zmwbnxG3Tsnz9AADGfIkbfMdGT9uX0BL3OT2yqg7h2jGQBq7QnfW+Oe2q4i/VgSfC6AAAGnuDQ8qg53dqjnPe4JWvdAAAAAAAAAAAAAAAAAH/xAAqEAABAwIFAwMFAQAAAAAAAAAEAQIDAAUTFBUwNBESIDE1UBAhIyQyRf/aAAgBAQABBQL4F72xt1EOtSDprkc3cZMTKv7dRkS57auPAy8KpOPBgAe37gn8Unvu1cOCjk6T8cD2/cHMkYxDy1oeR8t52rknW36OHS2cPoBwdy1r3A1/u7Vy9vb/AAvoFwty2mDQhaiHSGC6rqAdNOFc7yOxlkyZdGiktEQMzoohnQUYpwiCmUC+V0e1a4I3A5eGmwxZ/Bio1sbJvKfmVc+Anovpb+BQO3bm9oNR8+rhyfIuOdZcQ+iUPngxDqxDaGzUA2KTQccjG7UYPYzK0gMaPyjayMWL8HAS6UgSZxAspRkMUby1fMYVAxJC1ou5PFlFOmIl2EMfp+aZGGt5Gx23KCZXmlx02UxXFXFwrxTXz+URmFVqc9ByXPfBDFJGpUTMcOJuLclb3jsinMT7J5SPSOPFdpQMvcC6Yxrh8x2yMibNa0RJzmxq8fDmKROifWeJZosmzveKjp0tLOjQlbI+3NfPDb2wTGgsOYLbGCkec8OOiDJmckxZHWtz2wCPhk0r8gttaLOYE01Bra0Yj53/xAAUEQEAAAAAAAAAAAAAAAAAAABg/9oACAEDAQE/AXH/xAAUEQEAAAAAAAAAAAAAAAAAAABg/9oACAECAQE/AXH/xAA+EAACAQICBQUOBAcBAAAAAAABAgMAEQQSEyEwMZIQIjRBYRQgIzIzNUJRYnFygZOxUHN0wSVDUpGho9Hw/9oACAEBAAY/AvwEs7BVG8mukxcVdJi4qDA3B2smVIwqsVFzX8n/ADRw8gTyee6+/Zy15GPhqTwKeKfRqD4BtX/Mb78h/T/vs5f/AHXW8VJ8JqD4BtZBHhJZAJG1j315tk4hTNJCYjoNxPbs5R6/+14r8Zo81+M1D8O1v7bffkP6f99nNb1UPdRqL4dqEknRWDNqJ7a6VFxU0mnjtogL37a6THxUFWeMk7hfv8PHDLo87azavOD8ApycczdmQV5wb6Yo/wAQb6YqMjHkC27RivODfTFSCV87I5W9tmpaNCczbx215GPhqXwSeIvo++vJpw1g7IATN1Dv8L72+3JJ8vvyxe7kxH5x2cfz+/JP8K/vyYH87v4JIFVihNwTaujw8dGPQxC/t10aP6la8PH9SljMAJX1PXRf9gqQyqFLuWsDs8oxE/HXl5+OmcPLmbec9eVm46SRi7Mmtcz/AIJiUIFomsP7UsrCxNGRsMhAO4PXhIowvrDVdoIr3sBpKHgY+OmUwggC981Jd4gjejlN9jNiCFzJmt8qSeY5Qyg0qh+ZY5jlOqssDaSS2pbWvSZsGt2awGkoXwyAdZ0lNeIZR1331GWdFza8mQ/fvsVMUNpmvF2ndRhmGWWM6x76xq5m8dQOzdXPnaTV1gU8zKM3dAW7C+q1QyLvZ3ud1R6PDDKZLFm9I1oZMLELJmuuwZzuUXqSARFZpDqU9eakL80oMrD1WqTFxxRGNrBc172o90CMHq0dRysEuzyXL3qEqts8TEn51GUwy6IsdZ9I0IHwkQXLe4G6rDd3hjDlQd9vVUX9EQ5qdVGUMysVym1NmxE5zG551K/dM5t1Ft9NKZpQSbgKdxpXEsjWvqY9ZpFdiuU31VpRLIxtbnbBVLEJfnAddGZzmI1J7Iqa+uOXWU7aynG4jL6risxxU0nssdVF+6pRrJFuq9aTSu/NygN1UgZ2XKb82tMJpGNrc78e/8QAKRABAAIBAgMIAwEBAAAAAAAAAQARITFBMFFxECBhgZGhsfBQ0fHB4f/aAAgBAQABPyH8DlaAigmP/JP4yAiBYm/FuY2HtreXyeuE1cUI+Cs8MjcWAY8yAj7GegkHKEKNOKZOb9k9m4fyVHwjRTGzcX3tuNSnqBVTH6BpRYgAPD3ToAfRCs+15zwk/bMpWaBOLWPV+X2Dh8HD2G1ZnqRqrrSe2jvpuLeA6puufxM26t0by1g36URCVAcvfTlaBBwF7zkTw92LQXkgB2bjXxbEJUE6kttepYK4bVzkFdc/mZy4bTnH8pBIo0gbPf0vZfffBNDpNfpMOq+Xsxrv+nhMYT4vVdl3wT7H3vDvM2EshEqZXQ6/1M+sM22b5Q+w/wAmqUn62hJ+aj+pmr1wzXWkoxwmBji8Volf+mCj0ZuZirB1zKHMg0/hCDAIb6sw6FvB1ZRchqaur0hAomVqPpLliJcm9Nopal1rT7SvL3ve0YQC3BeenBycmo0yxKjUBBaUh7W0yC2jx1pvepWJTCGKV+IJXEotXtDluUv/AMRPopA5bIadx9ozMMRyEUPOBdR6OR8ysBW5wSOgKFnylhmiUNzBC6/4CENq5RLlrlXlcohNalM31gAAoNO+gNIXlKMwcrzakCmWKdWDcYEYkM1D6svy91Fx5wRbLkNOMEt+LEadusTuCvR6XKXKBOm+6EYUCjuY+CvVzEVTOBtnnMmfNqzn1lB6jd5ytndt0gFK6iVVcKNb2NxmMDdnYGGh4DkKtsvKYhFRVHgS4NoaIpvNZY5Q5bQaeCqT8JmhVKwLs1KBr2W9VwzvUdTNlB6HENPzv//aAAwDAQACAAMAAAAQ8wwwwwwww044w88oAEAAAAAAUEIA88oAoEAAAAAUkkE88okgUUAAAAQ0cc884AwQAAAAAAgg088ow8wYIAAQoAYoU88M8MsMMMcssM8c8888888888888888/8QAFBEBAAAAAAAAAAAAAAAAAAAAYP/aAAgBAwEBPxBx/8QAFBEBAAAAAAAAAAAAAAAAAAAAYP/aAAgBAgEBPxBx/8QAKBABAAICAQIGAwADAQAAAAAAAQARITFBUWEQIDBxgaGRwfBQsdHx/9oACAEBAAE/EP8AAlePBh1WFZc38bmXd/HWBCovYHSPqK59o0tFDbrQr/yZDF1z/qHJgbO6IFrPhcPOwmztp7XMa2rBp+oN2sfDdu0KTWAX29RM3GPsJ+3gv4OcCjxPORBQyV0GSJTEKBSfmHaU/flOme97eo/xLJqNFqXL3WJtU92fcKhGMpldmOU+PIec75i9ppBqUrCBVxCqusY6bFFwCx3QV+vUdMbJVFnV1fWNlYOTv8h50SNR7gxLALI31qcrqz8REp6k+/EafCcVqYezOdiWzforZR3VUAsc4r/pLP6onpHfwPKhKezZwPZHgR3ulNpkcsWzPMMqU3SE7a8X90PZhIh0tbg5afCIwElSBcKYMcvppzUWjDlTtOX+n2jiKahpXse0KXr/AMYmJaiRTOj2h+/3DyOtxZ+bT5t/1ggX1mRAtxMTeBf4gHuo+pUGWEudfmETti9+IPRQCrRUJuld/UfuLs7RWZVA2c9ENRFb3feEPJasRgD64V2GoHoOCrIE+/bUB/or5lQscFhygYIE0mmHcPrgIQ2rz3Rct050MPtCGfciALeuPSFicVMOenEAt0AagQCibdn1DQ4AtIUD+YHQI0TEw+ZfWpxAqHlqVXhRKJqUPB6deFHSceHPgeR3iXbX9sNjbv0nRHxzAGXsEPXTkSjg5Igp2oAaruhVighFW2Bq+kKbaWdTy1v8PEoYETw5K1YyHVcOlAeTqGt35244YsEqELc5qVlsrAnAC1cIzjBxVarTn8RxgyJAWr0t1YWhJsLeWsArKx5+IFBcobe0PcHCVYMMGxKubPKK/ZlcviKwnOfIwytDawm8LbaB1BXUuDAMutGuezY+JmwdaFtYcZbgw3BSeqwPHXmKJwSM3F1pzRuFiFgYYCnHQcSw7cKLYWHPauag53C9pSqFjMPsKgcHnDYq14CsH5KHoOi+1+1WwXu3MeXxfzGLwTAxoUXZ7RLHTiTTml3H0om4+JvZH+3fdBACwVpjziBqWuxZeXvUu/GJW1yxeoM4IDgNeSpSpWXAeFMXLamoMFKGG0NXre7tgj2PIsWNFaZRJCDSvSo3g/Ew+6N0QlQnkGDMArLXWCcFAfbHCwFliK1quZaN78c62H1AQzPifE+J8T4nxBKxxFWRvBdX1le2MeipByrdrxiKkTeIbgjzRZ2jVepAFDYDgUfiLlZZSzdAcTWi7qZAR2NQ5bsIA2VQbajwloBYVTY4j12SOKb2A4ltt/53/9k="]
math
multiple-choice
80
如图,以大圆的半径为直径画一小圆,大圆的面积是小圆面积的()倍。
2    
4    
8    
null
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAB2AHIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqK8ube0t2uLqZIYkGWd2wB+NUfFmvWHh3R31C/c7R8scSDLzP2VR3JrktK8Pax4xuBqvjP9xZH5rXRon+VV6gzHu3t0oAmuviDPqlzLZeB9Fm1yVODdlvKtEPvIev8AwHNB8OePtajWTWfGS6SCPntNHtlx/wB/ZMn8gK7WytreztUt7WCOGGMYWONQqgewFS0AchD8PrP7N5d54g8RXbEfM76m67vfC4FE/wAPrPydtn4h8RWjg5Vk1N2x/wABbIrr6KAOEXw58QNFjaTRvGUesAfdtdZtgOPaWPBz9QaW0+Ib6ZcR2PjbRbjQrlsD7R/rbOQ/7MwGPwbBruqh1Cztb+ze0vbeO4gkGHjkXcpH0oAdazw3Nus9vKksTjKujZBHsakrzu+0PV/AEr6p4UWS90cndd6O7EmJe7wHsR/drtPC+t6d4g0WHVNMnE0Ew4PdT3BHYigDQooooAKKKKACo7qaK2tZLid1jihQvI7dFUDJJ/CpK4X4yTtql1pPgeFpV/tyffetE2CLWPBcfRjtX6E0AV/A1vL431//AITbU0YabExXQ7Rxj93nid1P8TdR6A16FXE6p4vmTVH8L+B9FXVr6yQJNIZRFZ2WOAskgzlv9hRn6U2Hwx471CTz9Z8fPa7v+XbSbJI0Qem99zH60AdxRXD3fgvxQj79N+I+sxuF4W5hhmQn3G0Gq194s8V+DFWXxtpsN/pK4V9Y0mNv3Of4poTyo9WXIFAHoNFQabeWuoWEV7Y3EdxbzoHjljbcrg9wRU9ABRRRQAHng15z4lgl+H3iweKLIkeHdQkEes2qji2Y8LcKOwBxuHoc16NVTXNPttW0e5028jEkF1E0cinuCMUAWYnSWJZI2DI4DKw6EHoadXGfBO5u4tBuvDmpPuvPD90bU56mH70RP1Qj8q7OgAooooAK8T8aanqmt/tAXnhnRpRHP9gitnuQoLWUB+eV19GJIAPqPavbK8x+EenCT41fEDWpQDJ9uitYjnoixKSPzJoA7zwroWm+HdFh0vS7cRQwrjPVnPdmPUk1pUU2SRExvdVz0ycUAOpsyJLG0ciK6OMMrDII9DTfOhK7hLHj13CmteWgXJuoQAcEmQUAefafCPh18QrXS4A6+GvEkrJbqW/d2F5tLBF9FcKcD14r0cHPIrgv2hBp998JNWmF/AtxpUa6nasso3LNbMJkxz1JTH413NnLHPaxTRHMciBlPsRxQBJRRRQAUUUUAcLp4XTP2gr2Bc7Nc0Rbk+nmQSBD+ayj8q7quD8RDP7Qvhsp94aRe7/93MX9cV3lABRRRQAV5TY+EfDl58b/ABNa63pcdxLexwX1s7kjKldjAYPOCor1avJv2mxrXhybQ/iP4eh8+40O4+z3tv8A897aUgMPQYOOT0JFAHWf8Ky8Dd/D1ufqW/xpv/Cr/AW7J8N2hPvk/wBa0/AfivSfFmipqGmT5yMSwONssLd1dTyDW5QBycXwz8CR/d8NWfXOCpx/Ohvhj4BaMo3hbTyGbJ/d966yq2rX9npenTX+oXMdvbQKWklkbaqj6mgDyf49eB/BOl+A5IdN8LWA1TWbiHSrAJHz5k7hCwHqqF3/AOAV69bxpDAkUahURQqqOgA7VwXhGK48beNIfGl/ayW+laUHTQoZDgzM4KvcspHHynavsT616BQAUUUUAFFFVNe1G20nRrnUryQRwWsTSOx7ADNAHIaXJHqn7QGozKp/4kWjJals8b55A5/8djX867quM+CunXEfh+48QX6bb3xDctfOCuDHG3+rT14UD867OgAooooAKq63p9nq2j3OmahCs1rdxNFNGw4ZSMEVaoIz1FAHiug+FhpvixtBm1WfRtftVxpuqxcjU7cfcWZTw7KMA9+Otdlb3fxP0+Qx3Wl6Pq0ajiWC4MLt9VYH+dbXxC8KWPivRvslw729zC3mWl3EcSW8g6Mp/pXPeHfF994fvl0Lx6q28+RHa6qBi3ux2yf4G9jQBbk1X4jXkey08M6fYt3kurzeB/wFRk1FbeArnWbyO+8eap/bBjYNHpyKUsUYHIJj/wCWhB/vZHA4rt43SSMPGysrDIZTkEfWnUAIFUKFCjauMDHAxS0UUAFFFQ6hd2tjZvdXlxHBDGMvJIwVVHuTQBMSAMk8V5zr0r/ETxUug2RLeHNLmDarcq3y3Ui8rApHUZHzH8KNU1fWvH8zaX4Xaax0Njtu9XK7WlHdYQeufWu28L6Lp/h/RbfS9MgENvbrtUDue5PqSeaAL6KqIERQqqMAAYAFLRRQAUUUUAFFFFABVXWNNsdVsXs9RtYrm3kGGjkUMDVqigDz+TwR4j8Ov5ngTxI1vag5/srUlM9uPZG+8n4Eipo/GfizT7jyNd8BXzAH/j40yVZ4yPXBw34V3VFAHDXHxZ8K20/k3cGtW8n9x9Km/mFIp9t8UNBvVYaXpuu37r/BDpcgOf8AgQFdrtX+6PyoAA6AflQBwjeJ/HesZh0LwWdNyP8Aj71i4Cqv0jTLH9KfZ+AJ9Vvl1HxzrMutzLgx2Sr5VlCf9mMfePuxJruaKAI7WGG3gWCCJI40GFRBgAewqSiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k="]
math
multiple-choice
81
有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体表面积和原来的表面积相比较,( )
大了    
小了    
不变    
无法确定    
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABmAGADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+qmpahFpenT3swZkiUsVQZJ9hVusjxBon9uae8C3dzbSbGVGhl2AkjHzcHIpPbQa31NWNxLEki5wwDDPvVG5uZbidrKybEg/1s3URD+re1RB5Vhi0uzlZpYo1Sa4Y7vLAGMn1Y//AF6v2trFZwLDCuFHcnJJ7knuT60xGX/wj8n/AEHdX/7/ACf/ABFH/CPyf9B3V/8Av8n/AMRW1RQBi/8ACPyf9B3V/wDv8n/xFH/CPyf9B3V/+/yf/EVtVlWN5dy6/qlpO8bQQiJoQqYIDA5yc88igCL/AIR+T/oO6v8A9/k/+Io/4R+T/oO6v/3+T/4irOq63aaOsJufNd5pFjSOJC7EscDgdskD8ai/t0f9AvU//AY/40AR/wDCPyf9B3V/+/yf/EVzniaDULXR9UbSNe1P7TZW0kzzySIyRlVLBcbOScdO1dANWm1eeXT7CK5tJI8efNPFtMSnptB6se3YU3xHaQ2XgLW7eBNsa6dcd8kny2ySe5PrQBv1j6lrMEd2dOiu4objaGldj/qlPQ49T2/OtisLTYo5PEevF40Y+ZD1UH/lktAFm21DSLOAQw3cIUcnL5JPck9yfWpv7Z03/n9h/wC+qs/ZoP8AnjH/AN8ij7NB/wA8Y/8AvkUAVv7Z03/n9h/76o/tnTf+f2H/AL6qz9mg/wCeMf8A3yKPs0H/ADxj/wC+RQBW/tnTf+f2H/vqs5bnSbPULm/t7qS4u7sKggWYsHK5wFXoO/PpmtiSGCON3+zo20E4VASfpWDJdW+oS+GL63t2hWa+chXQK4H2afg4z6UAM1izeCwtJ7gh7ubUrMysOg/fJhR7Cuorn/FczfZbOKGCa5nW8t5zFAu5hGkqszY9MCpf+EkAGTo+r/8AgKf8aAJbD/kYtY+kH/oJpni7/kS9d/7B1x/6LaoPDt5/ad9qeoR21zDbytGkZnj2F9oIJA9M96n8Xf8AIl67/wBg64/9FtQBs1i6V/yMWvf9dYf/AEUtbVYulf8AIxa9/wBdYf8A0UtAG1RRRQAUUUUANkDGNguNxBxnpmuL1B5/DeleGzf+Q0sGoMpMb4jy0E4BLNjAywzXbUhAYYIBHoaAMCx1vQrZWkl1ywkuZeZZPPXn2HPAHamDU4vE95LY6fMX06DAurmP7srf88kb/wBCI9cetX7O7Fzq1/ZSWccYtdmx8g7wwznGOKZoQCyaqAAB9vfgf7qUAascaRRrHGoRFGFVRgAVkeLv+RL13/sHXH/otq2axvF3/Il67/2Drj/0W1AF651K2tb21tJWbzrokRgLnoMnPpVDSv8AkYte/wCusP8A6KWor/Qry48RWeoxahIsMcu6SEquAApGAcZ//XUulf8AIxa9/wBdYf8A0UtAG1RRRQAUUUUAFFFFAGba6dNb61fXz3CvHcqgWMJgptGOveo9D/1urf8AX+//AKCla1ZOh/63Vv8Ar/f/ANBSgDWrG8Xf8iXrv/YOuP8A0W1bNY3i7/kS9d/7B1x/6LagDZrF0r/kYte/66w/+ilrarF0r/kYte/66w/+iloA2qKKKACiiigAooooAKydD/1urf8AX+//AKCla1ZOh/63Vv8Ar/f/ANBSgDWrH8QD+0NOutFh5uL23eEntEjKVLn6Z6d6t3t68bi1tEWW7cZVW+6g/vN7e3fpT7KyWzjbLmWaQ7pZm+87evsPQdqALVYulf8AIx6//wBdYf8A0UtbVZ1zoOl3l09zPZo8zgBnyQWxwM4NAGjRWT/wjOj/APPkv/fbf40f8Izo/wDz5L/323+NAGtRWQfDWjAEmyQAdSXb/GobTRfD9/apc2tvHLC/3XV2wecetAG7RWT/AMIzo/8Az5L/AN9t/jR/wjOj/wDPkv8A323+NAGtXN2F80dxqtraKst6985VD91BtX5nPYD06noKvf8ACM6P/wA+S/8Afbf41bsNMstMSRLK2jhEjbn2jlj6k96AHWVmtpG2XMk0h3SysOXb+g9B2qzRRQAUUUUAFFFFAFTUbae7snht7gQSNj5ym7jPIxWb4Qjmi8N26TyrI4Z/mVNoxuPaiijqHQ3aKKKACiiigAooooA//9k="]
math
multiple-choice
82
12.如图,以长方形的边a作底面周长,边b作高,分别可以围成一个长方体、正方体和圆形纸筒,再分别给它们别故一个底面。这三个图形相比,容积最大的是()。
长方体 
正方体                   
圆柱
null
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAEAAe4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooADTVJ6GnU1h3FADqKRTkciloAKKKKAChjiig57UAFFFVr7ULGzYLd3cMJboJHC5oAs0Vn/27op/5ilp/wB/RR/bmj/9BO1/7+igDQorP/t3Rv8AoKWv/f0Uf25o3/QTtf8Av6KANCis/wDt3Rv+gpaf9/RR/bujf9BS0/7+igDQorP/ALe0X/oKWn/f4Uf29ov/AEFbT/v8KANCkbpVD+3tF/6Ctp/3+FNbXdFK/wDIVtP+/wAKANFaWs1dd0YddVtP+/wp39vaL/0FbT/v8KANCis/+3tF/wCgpaf9/hS/25o//QTtf+/ooAv0VQ/tvSP+gna/9/RR/bWkf9BO1/7+igC/RVEaxpJ6ala/9/RR/bGlH/mI2v8A39FAF6iqP9taQOP7Stf+/opf7X0r/oI2v/f0UAXaKpf2vpX/AEEbb/v6KP7Y0r/oI2v/AH9FAF2iqf8Aa2l/9BC2/wC/oo/tXTP+ghbf9/RQBcoqqupaeel7bn/tqKd/aFj/AM/kH/fwUAWKKr/brL/n7g/7+ClF5ZnpdQ/9/BQBPRUP2u1/5+Yf++xR9rtf+fmH/vsUATUVD9rtf+fmH/vsUfa7X/n5h/77FAE1FQ/a7T/n5h/77FSRyRyLujdWHqpzQAqnNLSLjtS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJjBzS0GgUAFFFFABRRQTjk0AFfMf7Q/hvQvGP7aXgnQfEtkL/Tn0m5drWR2CMwkiwSFI9TX04Dnmvnn4mqh/bz8EE53f2NdY/7+Q0Didmv7OHwSVtw+H2nZP/TSX/4upo/2evg1G2U8B6eCf+mkv/xdem0UCPL3/Z1+CztubwDpxP8A10l/+LpW/Z2+CxGD4B07/v5L/wDF16fRQB5av7OPwTVty/D/AE4H/rpL/wDF0kn7N/wRkbc/w+04n/rpL/8AF16nRQB5V/wzZ8D/APonum/9/Jf/AIukP7NXwOPJ+Hmm/wDfyX/4uvVqKAPKf+Gafgb/ANE703/v5L/8XSf8M1fA0c/8K803/v5L/wDF16vSN92gDyr/AIZq+Bp/5p5pv/fyX/4uj/hmn4G/9E703/v5L/8AF16qv3aWgDyn/hmr4HD/AJp5pv8A38l/+Lob9mv4IngeANPH0kl/+Lr1aigDydf2avgmP+ZEsf8Av7L/APF0p/Zr+CZ5/wCEDsf+/kv/AMXXq9FAXPJ/+GbPguF2jwRZr9JZf/iqav7NPwYVif8AhC7Xnt5snH/j1etUUDuzxpv2XPg0ZGc+Fo/m6DzpOPp81Msf2WfhBbzSu2gNMJOiyTPhPpzXtFFAczPFrn9ln4QS6YbRdBaJy+7z0mfzB7dcYqLSP2U/hDZTeZJo813/ALM87EfoRXt1FAjwmT9kv4TtIzizvVDH7ouDgUD9kv4VDpBff+BBr3aigDw+H9lf4ZxKFjXUFA6f6QalH7MHw6BBD6lkdP8ASK9rooA8Y/4Zm+H5OTNqX/f+pYv2bvAsX+rudUX/ALb17FRQB5Cf2dvBmP8Aj+1X/v8Aj/Cq95+zb4PnXC6zrcPvHcD/AAr2aigD5+l/ZO8MvNvHjrxcoz90XUeP/QKoXX7Hvh2Z9w+JfjmPnol5F/8AG6+kKKAPmmT9jjw+EJHxR8eZx/z+Rf8Axutj9gJdUsvBPiLQtR1e71RdH125tbea6YM/lrNIq5IA5wor32T/AFbfSvC/2Iypt/G5X/oZrv8A9Hy0Ae5x06iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGzjilooAahyKdSYwc0tABSN0paRulAC189/FyXy/24/AChQC+m3ALf9tIuK+hF6V87/Gtgv7cHw5JPWynH/kSKgaPoiiiigQUUUUAFFFFABRRRQAU2QZjIFOoNADYQQuCc06gUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACSfcb6V4d+xWAsPjUBdv/FS3fH/beWvcX+6fpXif7HZAu/HEaj7viCc/nLJQM9sU15hq3xgtrH9oyz+FD6PdvcXtn9qS7Vf3agBzgnPH3PSvTgcKx9K+Rda1vxNpXxz+JPxYhgsvsPh22SwtnuMnzSjuWVcHg4cfnQI+vKK5v4Q+KP8AhM/hro3icw+S2p2UU7R/3SyAkfrXSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV85fHaPP7bnw1fdj/RpuP+2kdfRtfO/wAf4cftk/DK4z/BKuP+2kdBUT6IooooJCiiigAooooAKKKKACg9KKKAEXOKWiigAooooAKKKDwKACivnXxV4+17xT8Q/HFhBqEmkaF4JsnJmQDdcXIB4J7AZU9a6X9hXxLr3i74E22u+I9VXULy5upSsgAGI8jaCB3waB2PZaKKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACP90/SvDP2OWdfEnxCtycrHrrsD/vSSmvc3+6fpXhP7Hkgbxr8R0H8Gtc/99S0Ae6yLujZf7wIrxXUPgVPqcWuaBqWtGTw3ruqnUri2VcSliVOzdnp8g7ete1qQehpaAKHhjR7DQPD9no2mQiGzsYVhhjH8KqAAPyFX6KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKbvG4igB1FFFAAeKFORmio5HxwBQBJXz5+0Rti/au+GdzNJHFEjPueRwoH7xO5r6CT7tcF8bPhF4R+KK2J8SRXSzabJ5ltPay+XJGfZsHiga0Ox/tjSP8AoKWX/gQn+NH9saR/0FLL/wACE/xrxv8A4Za8Bf8AQY8Tf+DQ/wDxNH/DLXgL/oMeJv8AwaH/AOJoEeyf2xpH/QVsv/AhP8aP7Y0j/oKWX/gQn+NeOf8ADLfgH/oLeJv/AAZn/wCJpP8AhlrwF/0GPE3/AIND/wDE0Aeyf2xpH/QUsv8AwIT/ABo/tjSP+grZf+BCf4145/wy34Bx/wAhfxN/4ND/APE06L9l3wChydV8SN/vamT/AOy0Aew/2zpH/QVsv/AhP8aP7Y0j/oK2X/gQn+NeQzfsw+AXhCf2h4hXH8S6jg/ntqKP9lzwErZOreJW9jqZ/wDiaAPY/wC2NI/6Cll/4EJ/jR/bGkf9BSy/8CE/xrxxv2W/ARbI1fxMPYaof/iaT/hlrwF/0GPE3/g0P/xNAHsn9saT/wBBSy/8CE/xo/tjSP8AoKWX/gQn+NeOD9lzwGOmseJx/wBxQ/8AxNJ/wy34C/6DHib/AMGh/wDiaAPZP7Y0n/oKWX/gQn+NA1jSScDVLIk/9PCf4143/wAMt+AyuP7Z8T4/7Ch/+JpY/wBlzwGkiums+JwynII1Q8f+O0AezSappseA+o2q56bp1Gf1ph1fSeh1Sz/8CF/xryTUP2avBt4yNda/4pkKDCltVPH/AI7UDfsu+BC24614nz/2FD/8TQB0PiL4ZfDzWZtfkmuLVF8SR7dRWO5UCU5zuPPXgflWr8E/Bvg/4aeDYvDXhu8t/ssRJ5nUkk/jXFr+zN4HRCn9u+KArdR/ap5/8dqWz/Zt8HWz74PEHilCfTVT/wDE0FHrw1PTmbauoWpI6gTL/jThfWZ6Xtuf+2q14/D+zh4OhuWmj8Q+KVkfqRqxyf8Ax2rcf7PvhpPu+JvFg/7ix/8AiaBWR6rJfWcabnvLdR6mUCnLd2rLuFzCQe4kFeU3vwA8N3tv5Fx4o8WSR5HynVj2/wCA1PD8C9FhgWGPxZ4tVFGABq7dP++aBHqIuLc9J4z/AMDFH2iD/ntH/wB9ivM4fgppUX3PF/i4f9xdv8KX/hS2l7s/8Jf4tz/2Fm/woA9L8+D/AJ7R/wDfQo+0Qf8APaP/AL6Feaf8KW0v/ocPF3/g3b/Cg/BXTCuD4v8AF2P+wu3+FAHpf2i3/wCe8f8A32KPtEH/AD2j/wC+xXmQ+CelAYHi/wAXf+Ddv8KbL8ENMcf8jn4xX/d1hh/SgD0/7RB/z2j/AO+xR9og/wCe0f8A32K8s/4UZpnbxt40H01lv/iab/wojTD08ceNR9Nab/4mgZ6r58P/AD2j/wC+hTvNj/56L/30K8lf4C6cT/yP3jofTXG/+Jp1x8C7SUxH/hYfjxfK6bddcZ+vy0BoertJHtPzr09a8G/Y/tZ7P4nfFCG4Chm1aKQAMGG1vNI6e1b0nwGtXkkY/Ej4gASHO0a++B9Plrovgn8KvD3wwt9SXRbvUruXVphNd3GoXXnSSMM4O4gf3jQB3SLtzinU1GB6GnUCDNFRrgNxUlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtHWlooAKKKKADrTSoNOooAAMUinPalooAKKKKACiiigAooqO6nhtbd7i4lSKKMZd3YBVHqSaAJKDntXI/DH4j+GvH82pf8IxcteW+mT+RLciNljZ8AkKSBnr1HpXXUANXO7pTqKKACkxS0UAAGKPeiigAIzVPXtQttI0e41K7LCC1jMkhAycCrlZvjCwi1TwxfafPOYI7iBkeUfwA96AKvw/8RaV418F6f4o0gyNY6lF5sBkXDbckcgfStrYK5H4B6Dpvhf4R6HoGkan/aVlYW3lw3eQfNG4nPAHrXYUAN8td+7vTiM0UUAMEajpTsA0tFACbRTfLXdu5p9FACYFGBjFLRQA3aBTqR22qWPYZrlfAPxH8I+MdU1HTNE1WOW+0uYw3ds6skiMCR91gCRweRxQB1LIG70qqAMClooAQqDQq4paKACmsgNOoyKAGooXpTqKKAGquKdRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABiiiigAooooAKKKKACiiigAooooAKKKgvrqO2hZm+ZtpKoPvOQM4A9eKAF1C5hsrGa7uH2QwRtJIx7KBkn8hXlngnxfb/G7TvEehz+GNQtfC/zWX264Jia86qxRGUHbkHDcg5BqD4Ran8VfGnxG1bWvEunDQfBcW+10/SLq2U3F8OR5sm4ZVSGXgEg4Net2VrbWdutvaW8UESfdjiQKo+gFAGf4N8N6J4U8P2+i+H9OgsLG2XbHDCgVR74Hckk/jWrRRQAUUUUAFFFFABRRRQAVR8TWsl74evbSHHmTQMi5OOSKvVn+Klmfw3fLb7vNa3cJs65xxigDkv2Y/CuqeCvghoPhnWVjW+0+2KTCNw6g7mPBHB6iu9rzn9k+2120+Afh238SLeLqiWxFyLxmaXdvb7xPOcYr0agAooooAKKKKACiiigAJxQDmiigArjb/wCGfhR/iVF8QrbTjb+IIYDC1xbsE+0Lx8snHzfdA612VFAHmnwf+L1n4w8Y6v4O1LRrzRNf0dsy2twCVljyAHjfADD5h0z3r0usvWtIhdbm/wBOtLOHV2gKQ3hgUyDuAWxnGe1cD+z/AOL/AB9qF5qnhv4j+G5bDUtIfaupRp/ot+hOA8bYAycEkAcZFAHqVFCkEZB4ooAKbxtp1BGaAEU5FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFcR8UPin4Z8D6ppuk37zXepapOsVvZWcZmmwSBvZVBKqM5yRjg0AdB4j8T6FoV5Z2mqalDb3GoTCG1iZvmlc9AAK880/wCGfiPXPjaPHfjDXxNY6VJu0HTLVmVIgVwXlyBlvmfuRgitib4VaBrPxZh+I2umfUby1iQaXbXLborA4GWRSOGJUHNehAYGBQAKABgCiiigAooooAKKM0A5oAKKKKACiiigAqh4onltvDt7cQHEkUDMh9wKv1T8Q3C2mh3d08XmLDCzlD/EAOlAHD/sq+IdX8U/AnQNc112k1C6ty07Mu0k7mHT6AV6JXA/sz+L7Hxx8INL8Q6dpcemQXCHFpGwIiwTxxXfUAFFFFABRRRQAUUUUAFFFFABRRRQAVleM9BtfEfhm+0a6Z4kvYGiMsRw8ZIIDA+ozmtWigDyr4Op4q+HHhPUNN+JWu211pumzrHpmqNuDSQHdtWTjGVAUZA9a9Qs7iC7tUuLaVZYpFDI6HII9qoeM/Duj+K/Dd1oOvWUd5p95GUmhkGQwIx3rza1msf2f/A0n9r6jq+r6K98EtMRPcPYRFfusVBwobPOABmgD12iqHhrWtL8QaPDqmj30F5aTrlJYJA6n8RV+gAooooAKKKKACikzS5oAKKbG4fkGnUAFFFFABRRRQAUUUUAFFFFABRRRQAY5zRR3pGoAWgkDrSLQQD1oAWiiigApOaWkzQAL0pao6hrOlWF9b2V5fQwXF0T5MTthnx1x+dcV8ftQ8cTeEY9M+G0UT6nqc4tzqBYFLBTkGU46kEDsfpQAz4+fEDWvCNrZ6Z4U0CfWde1SUJawKp8tBnlpGGdowG7HtWtoHgjSn8Vw+OdZ0yH/hJpLJLeaUNvWIDPCZHH3jyAM1qeBdFutL8M2FrrN8dU1G3iAmvZUXfI3JJ4Ax1rbYUAAPGaQNmjOBSKDQMcDSK2WxThTcd6BDqbIcLmnLnHNIwJoAh3huakjG0U1iF4xT1INAx1FFDdKBBRTVPHWnUAFcr8W/GnhPwV4a+1+MdSisNPu2MHmysFUkqTjJ9ga6qvG/29vC//AAlX7LvimyitfPuobMy2wA5VwRyPfBNAEX7L/wASPgvd+H9N8I/DjW7dvMDNDYGUNMg5JLDJPY17Tzmvz3/4Ix+BZW1zxF42vrbdFCgtLWRj92QHLY/4C1foRQAHpTVLbsGnUnfpQAtFFFABSNjHNLTZBlcUAIW44pFJFN5x05pyg9TQUPzxmgk9qTOF5qNvmOVpiJFyDzTqjjBFSCkIKqatY2upabNp9/BHPbXCFJY3UMrA+oNW6bkZoA8Z8YWep/ArwLZH4aeF5NU0OG/ebV7Qzs80MTbQWiGDkKATjIHFemfD/wAU6Z4y8J2viDR2ka1ulyokXaynuCM8EVsvGkkbI6KysMEMMgivKP2htG+IGl2+m+JvhhPmTRpC9xoKIqxaihILDpkNxgcjrQPQ9YB9adWL4V1qS/8ADFpf6ta/2XeTQeZPaTOu+E9DnBPFaWnXVve2kd1ZzRzwSjKSRtlWHsaBFikbpS0jcigCHexfHYUsblsg9fSm7HW4BU/L3p7ABi3Q07FDbaMxk4PBNT1HEc9akpCe4UUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrq15b6bptxqF5II4LaNpJGY4AUDJq1Xm/7SngLxH8SfCMXhXSPEsmh2F5LjVJYYg0ssPXYpyCuSByD0oA/OX9qb49+LPiR+08up+A7jV2sdIk+z6fHY7md1zh3UKONwx27V+kn7NNu8Pwf0l5tJutNuJ4Flnhu5A8pkYZZmOBySSce9ZvwJ+APw1+FWjxWnh3QLd7iM7je3MYlnLHqQ7ZIHtmvUAABgCgAAxRRRQAzad3tTwMUUUAFFFFABRRRQAxlLdaWNAowKdRQAUUUUAIFAoYZrP8Wa7pXhrw7d65rd5FZ2FjGZJ55W2qg9yfwrwbQfFHx5+Kl9ceIvA99ZeFPCbHbpZvtPSee9X/nqVcfKDnsT0oA+iqp+IrJdR0O7sWUEXELJg+4rxf8A4Rn9pnb/AMlQ0fPp/YEFM/4Rv9p7af8Ai5mi57f8SKCgDV/Yt+Etz8IPhxfaBeOjzXWoyXJZOhDBR/SvYq8HXw3+0/t5+Jmi5/7AUFOj8NftOlfm+J2ig/8AYBgoHY92orwo+Gv2nO3xO0X/AMEMFMbw3+0+D8vxM0U/9wKCgR7xRXha+Gf2msDPxP0b3/4kMFeWftKfED9pH4XWFtFp3jjS/EGs3Db/AOzLfQYPMEA+9KcZIUHaOnegD7HoPNcb+z34p1Dxt8GfD/inVoljvdStPNnRRgBtxB4/CuyoATbSODt4PNOooAYoby8NzSRqFGAKkooAavuKdzRUVzc29uMzzLH/ALxoAkGaZIDuyK4HUvjr8HdP1KXTr34k+HYLuFikkD3yB1YHBBFcf4h/az+D+maibK21DUdYk3YzpNqLhT75DDigEe4Lmlwd2c8eleI237UHg+7SM2Hg7x5cGYAxhNBJ3D1Hz1d/4aCsjnZ8M/iM3p/xTzc/+PUAeW/8FQrnxloXhaw13wLp+tf2hKrWtxeaYS2ITuYo6KpOMgHPSuA/4JW/tCl4V+EXjC5kS5hydLluGxwB/quemMfrX0TqX7QmjJbMNV+GfxBjt2GH87w6SuPfLV85/Ha4/Zv1vxLb+JodF8Z+CPEUcqPaahDo/kQqytu+aMSKpz3zQB97UV478P8A9oH4SjwbYjWPidoouo4FSaS7nSCSRgACxTJxmvQPBvjzwb4tszdeGfEum6rCpwZLScSKD9RQBu7ZDJnPy+lO25609SCMjpRQA1VxTqKKACiiigAooooAKKKKACiiigAooooAKKRjVTXNTsdH0qbUtTu4bW1t0LySyuFVQPc0AWppY4YWlldURRlmY4AHua+e/iJ+2B8PvDPia40ix0fXPEH2Zij3OmQBotw6gFsZwcj8Kr+IdU8ZftETHSfCF1deHvAaTmK/1XJSfU0Bw0cQ4KqRkZIIO6vbvAfg3w54O8M2ug6FpkFvaWqBVAUZY92PqSck/WgZ4Hb/ALbHgmWLe3gnxZGf7rWq5/nVe6/bh8GRSbV+H3jKX3S1T/4qvp0Wtp/zwi/75FH2W0/54Rf98igND5e/4bk8JHp8NfG3/gLH/wDFUL+3F4TJwPhp42/8BY//AIqvqPyLcf8ALGP/AL5FJ5Fvn/VR/wDfIoEfL/8Aw2/4V4/4tn4256f6LH/8VVtf2zNDNr9pHws8b+V/e+zxf/F19LCGD/nlH/3yKXyYP+ecf/fIoA+Xx+234YJwPhl424/6do//AIqpk/bT8PNHvX4X+Ntv/XvF/wDFV9NeRB/zyj/75FHkwf8APKP/AL5FAHzNH+2joEkojT4W+Nyx6D7PF/8AF1of8Na2pjDj4ReONrdD5MH/AMXX0T5UH/POP8hXD/Gz4m+GPhtokc+p/wCk6heN5dhp1sm+e5kPQBQCccHnGOKBnj3jT9tHw74S0+3vvEnw08Yabb3RIhknWAByMdMSe4r374Y+LNP8ceB9P8UaXHJHa6jCssaS43KCAcHHfmvAtV+EuufEbTdW+IfxljjmjtdMupdF8MEhrfT8xNhpOoaQccjHKjivSv2N5Y5fgDpAiVVSIyRqq9FCnGP0oEepUUjE9qFzt560ALRRRQAVR8S6zpnh/Q7nWNYvIrOytIzJNNIcKigZJqXWL+z0vS59Qv50gtraNpJZHbAVQMn+VfPsa6n+0f4qt7qa2uLL4b6TdNmCU4OtTI2ASp58sYPUchuDQAzQLPWP2jvF9t4k1m2utM+Hmjzk2GnyfKdadSR5rgfwfeGMjoOK+ibG2t7O0jtbWFIYYlCpGi4VR6AU3TLO10+whsrKBILeBAkcaDCqoGABU7UAFFFFABRRRQAUUVwP7QHxP034a+FPtbxNfateN5OnadDzLcSngcDJwM5J9AaAK/7QfxTs/h7okNtZWzap4j1RxBpWlwnMksjYAYjIwgJBJz06VyHgH4V3Phv4f+IfFni25fVfFet2zy3Ms3P2VW5EKDoAowP+A1Z/Z1+FupR65N8UfiPJ/aHjHVAWjD/MumQtyII+uMAkHnsK9U+IX/Ikap/16v8AyoA4n9jeZZv2aPCcu7cGtH5H/XaSvTq8n/Yc+b9lXweev+iSf+j5K9YoAKKKKACs/wAU61p3h3w7ea5q9yltY2EJmuJn6Ig6k1oV5b+2pz+y342Geujzf+g0AcC3iH4y/HXRUv8AwBdR+BfDbTnydQuFDXd7GCRuRcOm3IPXB4roPD/7NPhua4N/491/WvGGoMoH2i8umg249FhKD9K87+Afi/4wfCj4C6Pea14X/wCE08OpZCSGfTHEVzbKZCNroxZpDyT8o6H2r1r4fftGfDXxRN9kkv7rRLxYw8kGs2klntz2DSqobp2oA6Lwx8H/AIb+H1xpnhLT0OclpEMrE+pLkmuit/C/huBsw6DpsZ9VtEH9KTSfFXhnVP8AkG+INLu/aC8jf+RrVjljkXckisPUHNAFeLTdPi2+XY26bem2JRj9KnEUQ6RJ/wB8in5HrRQBHNbwSrtkhjYejIDVO70LRboAXOkWM2OnmW6N/MVoUZoA57U/Avg7UIWhu/DOlyI67WH2VBx+Arh9R/Zu+EdxZyw2/hk2bSktutr2ePa3rhXAr1eSWONdzyKo9ScVlat4q8NaUobUvEGl2gPTz7yNM/maAPGI/gp8RvBd1Bc/Db4m3htofvaTrAVrZx7uEMn610Hwr+K/iOXx6vw/+JPhtNF16VJJLK4t2JtL+NMZaMsS3GV6gdag+I37S/w98N3E+n6Z/aPiTUolBS20ezkuUfJxjzY1ZR+NeSeNPEvxC8SftDfDDxX4j8Np4e0m6kkSzsZpFkuFDtFzIyngnjjAIoA+wKKF+7RQAUUUUAFFFFABRRRQAUUUUAFFFFADJAd2a8C/bQ8J3nxH1Twx8Pv+EhudHsNTuXN01uCTKFQsFIBGRlRX0BXkPxkY/wDC/PAaAcefMc/9snoHczvCvwP8X+HPC9v4e0f4p3FtYWsQihjXS1yqgY67+tRw/BD4gRM2340aoVY8hrHP/tSvc6KB8zPBNa+BPxD1Foy/xs1aPyvu+VZbM/XEnNR/8M/eOTtJ+NuuZHX/AEc8/wDkSvf6O+aA5meBf8KD8eMux/jZrO3ti1IP5+ZUUn7O/jJ23H42eIM+0bf/AByvoE0tAczPnlv2cvFzSAn42+I8+yuB/wCjKkX9nXxh/F8bPEJx0+Rh/wC1K+gqKBczPnuT9nHxW6Mp+NXiT5hzjf8Ap+8qoP2X/EYbd/wu/wAWf9/5f/jtfR9FAXZ82XP7LPiGdsv8cPF4/wB25lH/ALVrA/Y1+HVrp/7Q3xCj8S6zf+Kb/wAJ36WGm3mqytMYUaGKUsgctsbMjDIPQmvrKvAv2ZVH/DTfxpfP/MwRDH/bpb0BdnsHxMX/AIt1r/8A2Crn/wBFNXnn7DDpJ+zxpxjOQLu5H4iQ16J8TP8AknOv/wDYKuf/AEU1eU/8E7yx/Zos93X+1L7/ANHtQFtLnuXvQKD0oHSgQUUUUAeD/ttaR4k8ZJ4W+HmheIG0WHxDey/bLhYg7FYkEgXGRwSMEdwcVL4c+GXxx0LRbbSdL+MGl29naRLHFGvhSAYUDA/j9q2vjg+343/DVf715e/+k9es4oA8Z/4Qn9oH/otGn/8AhLQf/F0f8IT+0D/0WjT/APwloP8A4uvZqKAPGf8AhCf2gf8AotGn/wDhLQf/ABdH/CE/tA/9Fo0//wAJaD/4uvZqKAPGf+EJ/aB/6LRp/wD4S0H/AMXR/wAIT+0F/wBFo07/AMJaD/4uvZqKAPGW8FftAhSf+F0afwP+hWg/+LriP2UvD2q+MPi14p8UfErV11/XfDOotp1mwgEUMShFbesQJUMfMIyK+nJP9W30rwX9kN/+LqfFiIdF8Tv/AOiYaAPelznFZPj5d3gvU19bV/5Vr85rN8YJ5nhe/Q/xW7fyoA83/YZGP2U/B49LSX/0fJXrVeUfsPjb+y14RX0tZf8A0fJXq9ABSMcUtBoAiknjVtjMMnoK83/bCha4/Zj8aRoNxOkTYH4V6PPCkmMjp3rh/wBqBM/s7+ME9dImHP0oGN/ZeYyfAHwySP8Aly6f8Caui8Q+CfB+vSeZrfhfR9Rf+9d2Ucp/Nga5j9k2QS/s9+GHBBzaHp/10avRaBHjHiT9l34V6r4im1qCHWtHuZlClNH1aWzhGBjiOMgCuU/4ZSvrPVJZ9G+MnjK0t3+5BLfzTBB6ZaTmvpKigLnj9j8Mvinpdrbw6T8YXAgXbm60VJ2Ye5Z+TVpvBnxtx8vxjs//AAl4P/i69WooHc8nPgv43bePjHZZ/wCxXg/+LqPUPhz8WdT02Sz1H4wjbKMM1toMcLD6Mr5FeuUUBc+a4f2T7q4vmm1f4xeNbyN2y8SalPEp9QMScV1Phv8AZa+Ful61b6rdprms3Fscqmr6vLdwk+8chINe10UCMXw34Q8K+H2J0Pw5pemlvvG0s0iJ+u0CvKf2yCLbUvh/qCqvmJ4ssYdxHIV5Rn+Ve4V4T+3QdugeC3H3l8Y6bg/9taBp2PdYzmNT7UtQ2BzYwn1jX+VTUCCiiigAooooAKKKKACiiigAooooAK8m+MDhfjp4HBH3p5h/5CevWa8i+My5+PHgM56XE3/op6Brc9dooooEFFFFABRRRQAUUUUAFFFFABXz9+zKf+MpvjSP+o7F/wCktvX0DXz3+zKx/wCGrPjSv/UbiP8A5K29AHtHxN/5Jv4g/wCwVc/+imryj/gnYSf2ZrIk5/4ml9/6PavWfiON3w911fXTLgf+QmryD/gnC4f9ma3x/DrOoL+VwwoH0PeaKKKBBRRQ3SgDxz9oBtvx2+Fn+1f33/pNXsdeN/tCD/i+HwqI/wCghf8A/pNXslABRRRQAUUUUAFFFFACN90/SvBv2UNq/Gj4txjr/wAJKx/8hQ17033TXg/7LC7fjh8W/wDsY2/9FRUAe8VS8SDOg3g/6YN/KrtVNeGdFuh/0xb+VAHl37Dcvmfsz+G0/wCecUq/+RpK9crxH/gn/OZv2d9OQ/8ALGaVP/IjH+te3UAFFFFABXA/tSf8m7+Mf+wRN/Ku+rkPj9Y/2l8F/E1gP+XjTZU/MUAct+xASf2X/ChY5P2V/wD0a9esV5h+xxbGy/Z08N2p/wCWMDr/AORXr0+gAooooAKKKKACiiigAooooAK8N/byRE+Hfhm8Jw0PjDTMH0zKf8K9yr5//wCCkkjQ/ALTpUJDJ4p04gj/AH2oA930dt2k2zf3oUP/AI6Ks1m+D2L+E9McnlrKIn/vgVpUAFFFFABRRRQAUUUUAFFFFABRRRQAhzXkHxrOPjt4A563M3/ol69grxr49MIvjp8OpM/fvp1x/wBsXoKjuey0UUUEhRRRQAUUUUAFFFFABRRRQAV83/sy3I/4bM+NNnnn+0opMf8AbC3FfSFfMX7NPy/t4fGZf70sTf8AkO3oA+ivGieb4P1WIfx2My/nG1eM/wDBOVdn7ObR/wDPPxHqq/lduK9v11Q2iXit0NvID/3ya8W/4J7qF+A96q9B4r1gD/wMkoA9zooooAKKKKAPI/j4gb41fC9sfd1C+/8ASavXK8q+Oig/GH4Zk9r+9/8ASevVaACiiigAooooAKKKKABvu185fsuXsn/DVPxc0/d+7Gp+bj3Kxj+lfRpr5t/ZohMX7Y3xb/2rpT/6BQB9JVV1znR7r/ri38qtVwvx6+JGi/Dzwn9ovke8vr5vs9hp0HzTXMjA4AUZIHB56UAcF/wTylST4Awov/LO8lU/99mvd68n/Y18Dax4E+DtvYa4dt5eTNdSQA8Qbjwn5Y/OvWKACiiigArD+JURm8BatEvV7VwPyrcrM8ZKX8K36L1MDYoA4n9kuVZfgXopU9FkH/kV69JryX9ieQyfADSSTyrzA5/67SV61QAUUUUAFFIo9aWgAyKQEHoaayk0IpDZoAfRRRQAV8+/8FK43k/Z5swnUeJtPP8A4+1fQVeM/t6QJJ+zvfTuoYWV3DcjPqm40AepeCf+RO0r/rxh/wDQBWpWP8PZfP8AAejTD/lpp8DfnGtbFABRRRQAUUUUAFFFFABRRRQAUUUUAFeKftEHHxy+Gp/6iM//AKIeva68Y/aIjz8Z/hvLjpqU/P8A2wagadj2eiigjNAgooooAKKKKACiiigAooooAK+bv2fbfyf25vizJtx5yxNn1+WAf0r6Rr5w8A6lpvhf9rb4oa3q11Hb2yWSzMztjOPJ4Hr0oA958daxpeg+EtQ1TWLyK0s4LdzJLKwVR8p7nvXj/wDwTtuoL79nye+tG3W914m1eaFv7yNdyFT+IIrF8N6Dr/7RPiS28Y+LFudO+H1u+/SNEYlH1DHKzy452n5SBnHByK+g/D+k6boelx6dpNlBZ2sX3IYIwij8BQBdooooAKKKKAPKfjwcfFz4af8AYQvf/ScV6tXkv7QRZfin8NnVSdupXece8Ar1pelA7BRRRQIKBnvRRQAUUUUAFfOn7PbY/bM+KiD/AJ6Kf1SvouvlHwH4x0XwV+1l8W9X1y9jt4YkVo1c8yuWQKqjuScD8aAPfvjZ8RdE+Gvg2TXNXLySO4hs7WJd0lzM3Coq9Tk4H41578B/hvrmueLj8WvifL9q1y6GdK08/wCp0uA4K4U8byApJwCDmo/hB4E1fx14y/4Wt8Qi0nnDdomjyD93ZRHlWZehfBGc5wRwa91UBVCqMADAAoAWiiigAooooAKq6xH52l3EX9+MirWR0plwm+FlHcYoA8n/AGKkaL4HWULYzHPMOP8Arq9et189fsvfEDSPC2paj8KvFKNo+saZdOYWuPljvFZtwZG7/e746GvoC2ube4Tfbzxyr6o4b+VAPclooooAKT+KjnHFN5oBDmJpFNKvI5pMfNQA6iiigAryP9uSPzP2Z/EnBO23ZuPZWr1wkAZJrxT9tzxf4fsvgjq/hxrlbrVtcgazsLG3IeWSRwVHHoCRn60Aem/C05+GugH/AKhdv/6KWt6sP4awS23w90O3nQxyxabArqeqkRqCK3KACiiigAooooAKKKKACiiigAooooAK8z/aA8C+KvFWp+HdX8I6pptjfaDdvP8A8TCF5I5AyFcYUg9/WvTKKAPJTa/tE7zjW/Au3t/xLrj/AOOUR2v7RGG3634G9sadcf8AxyvWqKB3PIo7b9o3zMPrXgXb6jTrj/45UrWn7RGeNb8DY/7B1x/8cr1iigLnk/2T9ojj/id+Bvf/AIl1x/8AHKb9k/aKzxrngXH/AGDrj/45XrVFAjyj7J+0N5R/4nfgff2/4l9xj/0ZTPsn7ReP+Q34F/8ABdcf/HK9aooA8k+yftF/9BzwL/4Lrj/45TWs/wBo/trvgP8A8Ftz/wDHK9dooA8hFn+0lu517wFj/sG3P/xyuD0v9mbW/E37QcvxJ+KWuabqEKqph0zTIZIoZHGP9aGJ3DvwRyBX01RQBHawxW9ukEEaxxxjCqowAPapKKKACiiigAooooA81/aU+HniDx9oem/8Ip4j/sDWNKuTNa3u0tt3ABhgeoBH4157H8Mv2mY4wo+Mumuccl7WX/GvoyigD5zb4Y/tMdV+M2n+4NrLigfDP9pvv8ZNM/8AAWX/ABr6MooA+cP+FYftOhs/8Ln036G1l/xp6fDX9p1QQfjFpTZ9bSXj9a+jKKAPnWP4b/tOJJuPxg0hvY2kuP50snw4/acafzB8X9HUf3BaS4/nX0TRQB89t8Pv2mm/5qzoY+lnN/jWJ8K/2WtYh+PFx8T/AIneKLXxBfMd8MFvEyRh+mWDdf8AGvp+igBEVUUKihVHQAUtFFABRRRQAUUUUAFFFFAHM/ET4e+DfHViLTxVoFpqUanKiVTlT6gjBrxXVP2a/FegXU8nwp+LGu+GreaXzBYPKHt0/wBlQFzj8a+kKKAPDb5f2mvD3h9DDc+EvEk1uFQRx2ssU0wA5Ys8gXPH61S1L40/F7w9o63PiH4EatIwOC9nqVs4J9lDE17/AEUAfKj/ALZWpW8pjuvgV40DKcHYoP8AJas6f+2RFPIBP8G/GtsPVoC2PySvqLAowKAPn6z/AGrfDsse6XwT4rhb+62mzH+SVBqP7WugwFxbfD/xbdFVyAunyrn25SvojApNq5zigD5i0L9rfW9f1mPS9F+BfjCS4lbannskSn6swAFdfF40/aA128+z6f8ADS18Nxk/8fOrXcVyoH+7E+a9vwKKAPA9a+Gnx68V60sniD4sQaLppQiS38OwvCzZz3k3Cuv+EnwL8DeBZl1KOzbVdcyxl1e/bzLiQtyckYH6V6bRQAAADAFFFFABRRRQAUUUUAFFFFABRRRQB//Z"]
math
multiple-choice
83
如图是两个厂男、女职工人数的统计图,甲厂和乙厂的女职工人数相比,()。
甲厂的多
乙厂的多
一样多
无法比较
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCABeAPQDASIAAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAQFAQMGAgf/xAAVAQEBAAAAAAAAAAAAAAAAAAAAAf/aAAwDAQACEAMQAAAB7/Tuqjfs5m/JEjEUmY1cmdk+ZSz6CpvJeI8gR5Ec1seSRv0DeqOWPoGPlvUnUqb0XDGQABjI0twQpnBkGNMtTn7yjvDt/PmoFjupS+jSRWzNw8c5cfOTHq7iFf3nB94W2nFYeL3RALcABgZYyR/mPf8ABEiZj2VV5W2R2VNKhF9C0WhGmU1yDByPN28M26Zfgre74jsifGjYL+mmwy6ABhkYZFb88+p/MjZjQJNnR3h1mudmK+Tvpa22vn0MZHD1XWcYTNOobd8PB9C3c12JAiXNIXgAAAHP9APlXrreSF5R3h27FYTK7F0AAefnf0aOfNFlVnoHnu+FmnYTdc4AAAAAR5A5zx0wpp8oAAAAYq7UctjqhSXPoMZAAH//xAAqEAACAgECBgEEAgMAAAAAAAACAwEEAAUREBITFCA0MBUiIzUxMiEkUP/aAAgBAQABBQLGMWoYuVik7KFEuwls/Ex6k4Fquwit1wJblN+a7PLnUKYX7mV2ExLGAoH6uZSb7DM0+ut9rsOXOrarYpy3L4MOFiI7TX/syZBSi5lW76quN1G03CkzyjRU2l2tlWBd5T8xXASC4DgZqp17D2W2cNI93g6sSmIeNhWMTDYmrJYtcKAoghv3e2iI246Z+uxiwcsCOiz4dTsde1XCDb0A4aR7pFyD3v5QLnE47O74W3xWrfdMpSBBYXArzTP1zG9PE3NwaoXqosLbzcfSSP8AVW3N1gYzNI90y5RFDIwZ3G6vq1KzetW46yzc8FoqW2RkM0z9dY5SWoHAzHfi1Lz1KdtOyFCeCCZwlbBpPuGwhsQ6x0wsTAfzGmehx1T9ghYlnRGCJapExkS00x+m92RSTbO4OEm3/gvB1KMfx1pjCbuUPKA0j3OluxdeFYysDBYXTTpw8tDjq47XVs5M7g8hkjjGS0qlntH9soshMQHbj17n3O85/wA41U138dI93jfLmAY5R46snnq+OlW+UuCv9jUPg1OnL1xO8cNI93g1oJXUUZn4TG8XKs03eExvmn3O6TaeW6EjXT8N3TOqRbgeaR7uOuqUS6zHM8nJB67VB1XImJ8KSrLX16w14+NqVuE9HROK0o0n2HNiq6kD8LtPrPktFDPosYrSqq8iNv8Ai//EABQRAQAAAAAAAAAAAAAAAAAAAGD/2gAIAQMBAT8BQf/EABQRAQAAAAAAAAAAAAAAAAAAAGD/2gAIAQIBAT8BQf/EADwQAAIAAwQFCQUGBwAAAAAAAAECAAMREiExQQQQUWFxEyAiIzAyQlJyM2KBgpEUc6HB0fBDUFNjseHx/9oACAEBAAY/AotTHVBtY0ig0iUScrYizMnS0OxmpFJc1HPutXsxyk1ErhaNIspPlMxyDCCr6RKUjIuI6uYr+k17aQQadZjZr4TDjlCevW7kSM1id6V/PUGaxW/uGogvMYKozMU0dKDzNHTnzDwNIdZloizXvGOp0mcnzVEdcgmy/PLxHwi3LYMuupxNwAzjlJpFrDhuid95DMKVAzwhGNKkV6Juiz3pnlEXNyQ2LHTmzG4uYlvWYGOYcx1OlFvdm3wJekpyTnA+E/HsGp4jUw1PEanUWoERcgItzMB3U2a39Gv7Rotz+NMngTE/5qF5UqagjKBb0iawBBoaZX7ICiCCKg5QNH0egemXgEbziTnrlcNRSYoZTkYEqYS2jtcjnw7j2XJD2cr8WihFbjCdUL8bm1P6IrQncImEpNsLQd3A/ukVoRuMCYvsp5o+5tvNeacsBtMFnNXY1YxLrLraBqaNtMIQtkknI7tuqVwjuM3pELaSaS1SOjiIaW4qrCH0eaazJJpXaMj2DzPKKxU4m8xeF+aOlLQJxOH11P6IrQnhAKA8mGtCW5v+v6wDSkTFzpURLmbV5kmV8x1ezQkjaf1hKABs6E/vbqlcI5Nkdg3lgPM6dbt66pEz+oCh7Cdw1JSzZzYVrAdgFqMCd8EgV37If0R0i6rlhRoU2iTMS3cO7wiXyrWTnXUnE/55nyCCznorFlkFpiRccIWx8b4oVs7oQ17uO6JgVlvZVXdWLKEtZalaC/jFm1wWJB/ujsJy+7AgWVC0vuzgdEUGAgrdfnD+iLTOxGS3UEXMcKL7ohRUimzOGbICJVcxXmI3mSD0QwORg1oTjXZApkaxWgGV0VN8p7nH5wzDx0NRFmpNb2O2OVqeGUaLL2zK/TsKRMknwm7hzH9HMXR17040+GcADLmcoBfLNfhzvssw/dn8tcyb4JQ5NeOfYibLHWp+I5j+jWZjmiiG0qcKO3dXyrzaRT+E3cOzdzdhyMUb2q3N+sfZ5Htnz8o2wstMB2RmyKLMzGTRYmKUfYdT+jVYWsybkiYwJ2lUqO7LGC88pMWqmKqDMlbRiIu5gfRujkZhw/3BvtOe85xPaWZiBhvjoM6fGC0vSnBpTAR1ukTpm6tIpKQLw7KrS6NtW6OjPcRfpD/SKlbZ9++KD+S//8QAKRABAAEDAwIHAAMBAQAAAAAAAREAITFBUWEQcSAwgZGhsfDB0eFQ8f/aAAgBAQABPyGrqZiAJ9aCviASPzVqEzBXzSYcJQIe3l9iSMvehuODy+lZsBCJQKlGUYe3laeBUyzAo8JmpiM3Ujk06NRVxMe5t6zsASlwtvz2K9hyH8VGlIt6e9TvT2fjNN/rII7lCSxqdbsFNUWxWajAvabh3Y71839FXBJScep2pbZtXMNHUpaUuWz+u1S8Oyy+70kg8Q9zv5puCtiPvmmwtEZXjq08CTTDLVt4D+KRSVlnV/8AIOjQuqyJ4Kxtbi59+v4+ejTQzsIf3zWKhsjlaj0mG0jyoTXhT1qF4IpVAxuCpi4N9VutCGFCiRKgVBFltC1XCqpKLrr+LnpliIFK5CQlWibc9NPIVFuX/GlWr80X24vQ7OL5vvbp+Pmpi26MrRCy1+9+6QN70YaxOgWmh6seEUJT9AVPdZAaWwmtQ4GNCgygWBmOTl6fi5qIN1yRWV5s1tvhKsRga1MAv2RRjxytq0k5Nw5b0w1oGp+ISi2KIlnh9un4+akrZoJa3pWWd9WuJelXISJhyVD/ANIlyuJpfAoLa/8AF0EFnLYed1Ll3wYRaMrfo/FzUiHYhp7pisKGTtFPBD3ooQNjkep5DQdY0YoqNNhGhMI1HzWmxaDzikQwMuxX7+aw2NoYWrn6qBA6AzeSbrOs0VHrwEuh33pBeSnPAPy8DnsterSZRuarUVnGER2/2pzE7JKRrzNM1auFWywGqflZsMYE/wA0SUnXGxhYzcilEIp3jerDXPFx0UDK6ctuVqdrJXczSNhwswfNXvr7sk5r8/NNrVdT6E09exdR2D/aUN9vCZZnvQYBbSksZPqz4NmYPZpY9UYfipLTFCynMViM9w80YcAgUb4pOke1IkNkwlO3OSInv/yps/23YmrdzJ7CjxgCiRrkJO7x4Px8+Bvp16ntQ4EIPA5Tv71VnGPBE1EWGU6rVvON/wARR5GwgT4qOY9tuv4+epqwVBWcfFd3XwgiJHJSMjPP2HhsIUGQyO9XjC270aHn+xKhisxO/NaeTdGLr+BoOIP3z0/Hz0vie69W3rTSu7+svjAIS5SrtHe+a0DKE6yF3FYCwi40iJXOS9NPK4e8KVnhyR80iVSOlW3HZfFRK/DPkxSgqcykNq2QaJcTYBSAstV9KEgAGh1P+F//2gAMAwEAAgADAAAAEELHECOCBKLAEMCFPAADEAFBAMPAAMEFPDCLPCNLIBBPFBHFPAAJMoGhAEPAJCPFPAAADACCAANDADEFPDDDDHHDDDDPDDHHPP/EABgRAAIDAAAAAAAAAAAAAAAAABFQASFA/9oACAEDAQE/EE0ZxZR//8QAFREBAQAAAAAAAAAAAAAAAAAAUAH/2gAIAQIBAT8QZg//xAAoEAEAAgIBAwUAAgMBAQAAAAABABEhMUFRYXEQIIGRobHBMNHhUPD/2gAIAQEAAT8QgllAeFxaC8P1Du0VkWgAyZjbrATrSGsMvf6PDqialnpYbalyyWSyrvHs5rXhurqxdWfcseNiWLaDbgX4iVKpxO4tkd/9FC6KmXLJZLOsslkEdJ6Ooaex0vaU4PW/puCA7ILnLK109O5NnNVjKl3iI8jnWjCuTRno2Qfp3UB/2cAaosdf9sdUZu3eGqx0ReDTDdlo9iIj9mPUVsRdeT4lmwafTyJwnR9OIAwgK69gdaF6AK4FmGe9oCAFeaC7VdAlqeY/XHbcCnQ6ngjZ87SQvmMPJmL3EKihwrh5iwW6BT3/AKiIKy8s/LqJPqt62nZ+SyJNHTtWh+xnaPDC0D2cy81HUNPZ8CPmltnLA7UI8wy9qAHwAOwXbay6bwJcVoKLVflgq5ZNxdRzXniXdt3CfgSRF9zM3vWGG7cdP2j+OYag6XCPHoUckPcJRM5QcLmkcwD+2EUvkRI1e2rUKO6q9M4qJnwaSKRHYkM3zECpVBi60doCznidQvM7E/1P2P5RyJCUnV4J/wDfMLGmxN5TgfCXcNPfcsS1Aa5L6ga8rGQgGxijTDFnghf2L0yMLXA58w6z8CdbofgRKP1Q5F0c3affOQ40WlMnxBNVh/Gzjk60e0qlS3Jj5GpYmozlc/BoNUEd9KzKAMkMYKv7lWs7kBGEd5DGe0/1P2P5QXBh7d16R/N/oLKf+2X2EPpfJ0TY8MHV0e5i/I0HuM0e86BX0xcREVrNqWfuJsStOiy20XtfLDQA0HrUaNOzLzPwJs8ZvPM8HMaO5RF2u4NpsStKAlb0unVhpOGUwu5fKPsJ1I82rP77NwSDrWP0s1XaDUHLhMy1pboB1xH7xdkplxLZHicfE/Y/lCmVNi6woo6VaqxxcdIouK0oQs7aArgQuI4xK64Vcgz/AEw16jLlzEaHTkPFoQUDtDk8ZQCSFF01R8y4E9bKCDeWwXu9zcv++gD9i9O0x61JJg139BKUJemdOYoSWdsQIYCVksvtKuTBga7TQimmnpCJyIOdkYbxPgA9WM4uKXRaMJ4wtkEUChYdaiEEU0UlNlvL1YgxRpZqDdXBpADHGI/g0VtHXxD4F6XYVRgodkESj6pbRxdELk07WzGqpsGh4WheSUIePPGdZ5mNOPHzY/jDXrxKx6KYSysAcoX/AFBJpAfuCEQKRUCDY8LgTcoTyjcp5s5b3x0lb6Ry1Vpus0cTQ7CbJDNiFVZQTl2u4m5pK6OPRjk4OIbnVmoaUj5JT3IknZPAEJxVB4W/t6umJRZV3rdX7A1BgZtTY5CV5lRCeyCVQNaApvUwS9hpxONuONc8wBSdtQWvOdrKYqihZfATtpOR7Qp7gRYrXNiDmy5f5PIN2UApKKBiIoEU1bAI0uwUq67Tk6hdEN/dTT3i6AiOk5hlNup3j+rPJ7PxJJRMR57MQdOU7ArykHuiB2D2ZmzTrSvzn4ghatZHqexARBEpJs22ts5fc2dvExGiO7dgC0s8YjT/AAHXQaDO98+Tv5mRRlFGUbHo+v4Enpd7QrteAOXtEb2X3uF9nwPaTIyIWJ0l5NFaS29KuO3j2sKJnaHkD2gLgCfoOz/NwjAqRk/rWjljHA9mV7U8q2sNP8JNOGfzV9n3NtCApe46Hchz2mF3RNhyYlZ8IO57tHvCl2sr7q/vo4hr3UfBJ/I8PeCMOSwPayO58wytcj6oFAG1ZgEXKWGgdrpK6bjsm7zqHodAwR1DT/CliTlW4Np7PEeWz/jrStgYMtr5IWd8K/5CWS6W7wvk7fmBR1/wNm5nlQot5rfzLRbr/tZGFQOrvycpHiL/AB+QqLUBQHY9HxNP/C//2Q=="]
math
multiple-choice
84
五(1)班45名同学一周参加体育锻炼时间统计如图,下面说法错误的是()
每周锻炼18小时的人最多
锻炼时间不低于9小时的有32人
每周锻炼7小时的人数是锻炼10小时人数的一半
null
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAB4AOIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+oopCwHU0ALQT700spGPUV5Z8WfEHj3Tfjd8P9K8Oack+g6ldXCa05kVSyiIkYzyduC3vjFAHaePfFuneFbS2mvxNJ9qnWFFhG5gSDgkdhxjPuKzPAHxG0TxdcGHTzNCvkQyI9yRGZXePzDGqk5LKpBbHTcKofF7wno94lx4m1DSYrmSw09lE0lxIpRFJfAVQe/fGTXn/wCzv4J1CPwnpXjfWNJ0u2vNWspLue6kmcyaWJIyFSCMx8DBG7JzxQB6VpPxQ8Mal4qtNGsrtpftdpcXIujhIkEEvluDnBHzZ+uK6XxNrVrovhe+164LSWthavdPsOdyIpY4P0FfMesaH4dtvjTpVnpl/wCGP7Pi8O3KfarnTGeMsZQT5vPLMMn6lq9j8fXlv4v+H6eDfDCreL4gskge4jiaOCC0fCyOT2JTcFX1xQB1UfivT2+Gv/CZy+ZFYNp324ruBdYym/HB5OD2rzj4f/tJ+BfFV9DbWUrIZtWm04vLMirGI0kczMSeExH19WA9an0u/n0nQdT+F2qxTaXLp1k/9lak0LNaXNmPu5ccKwHyMuc4GRXzd4a8LjT/AAbczz+HZodZs9SKzW1rpzr/AMS+dW+03QjywAw2UIOTsXOCaAPtm+8T6RappT/bBMmszrBYyQ/OsrFSwORxjCnmq/hLxbp/iLXNe0yxWcS+Hr1bK6Z1wrSGNZPl9flcVxWoavpT+PtJ1P8AfHRPD2iie3ZIG/ezTgLGqrjltitx2zWP4Z/tf4ZatdeMdd064fT/ABhevcauIFMsmlTFv3G5VGWXYQjEdCqmgD29eVpaZbustukiNuV1BU+oNPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqj4hurqz0i4uLKzkvLiNCYrdCAZG7DJq9Wd4oi1WfQ7yHRLi3t9QeFltprhC0cbkcMwHJA9KAPKtO+L2unVm8J6h4ZtrfxO2stp1tAt0xtLhEg855VlK/wqVBGM5Ip8Pj/QfECfD3xpfTrpcb317BLHKciGZIZY5EJHAw6GoPD/wt8b+XpGra9reh3GueH7+S5spba1kSOcSxlJzKWO4s3ykHHG3HStrwf4LtvAsPgjw7HOLqSG+vZ7i4ZMebcSxSyyuo/hBd2IHOM0AejWN5a6np8d1ZSpcW8y7kdeVcVMsYC7cDAGAMdBTkTafbGBxTqAIRbxBceVH6fdFKkQT7qqv0FS0UARSRb85Ctn+9TPs0asXEa7mHzHAyfqasU2T7tAETRgbcxrhcbfl6VCt5YyyzwC5gke2ANxGZAWiB6bxnjoeteHftOfED4qeFPjR4LsvBlpY3HhiXE3iaWWHcbaAyqhctn5VAYnOP5VoWb2r/ABH+LMEdlPN5+kWjuLZGU3GYZQQj4ALYxyM9RQB6/oesaVq0LPpl9BdJE2xzEwO0/wCenrV+vnz9iu21uwuNeg1pk1CQ2lgbbVIkaNTbiJhHbSIwGJIudzD72QeMV9B0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHJgct0HNSUyToeOx/GgDhr/AOKXhi18D6l4qc3hs9LvnsJEFv8AvnnV9hSNSRuJYjHPNNbWhr2reCNZFlfaal1c3DLbajD5M6j7O+A6Enae/X0rl9L8M3EHw/1rRvE/gRtes9W8SXEz2XmIdkMjkpMM9x7YIzUWm+BEt9B+H/hTxVLJfi31C8dENwzGJPKmaKIyA5bYhVd3fbmgD2mNw/KsGGMjFOqnomn2mladDp9jF5VvAm2NNxbaPTJ5q5QAUUUUAFQalPDa2Mt1cOEhgUySMegA5zUzZ28VwXxfvJtVutO8BWDP5+tyb790x/o9jH80rn03HbGP+ume1AC/DDTP7Y0vVfFGt2qzSeKGOIJVyEsgCsUJB9QWY/79N+Ftw2h6pc/D7ULhnn0yIS6ZLKcvdWROBz3ZDhW/4D613FjBFFapDGoWONQiqOgAGAB+AFcx8WNEuL3TYNb0hf8Aid6HJ9psSOPNGP3kJPdXXI+uD2oA6qONAMqoXPXAxUlZPhHW7TX/AA5aaxYvmG6jBAP3kboVYdiGyD9K1qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKOKKjuG2xs5xhQSc/SgCq2s6OLCS9Oq2ItoXMck5uE8tGBwVLZwCD2rnPE17Z3fjTwbPZ3tvNDNd3JjeJwyyD7M/3WHB/CvGdFtp5fDugT+SDpA+I11c6ugiJVEzMIyQR9zcVJ4x0qX4a+G9VfTvCts+oahobXvi7XL7TPKVS8Fq5nMagOpwrIQQMcZAoA+ksjpmiqOg2k9hpcFpc3819LEgVriYAPIfUhcD8hVxnRclmCgdSaAHVzPxQ8W2Xgrwnca/fozxxSxwhVOBukdUUs3RFywyx4AFdFDPDNHvikV1P8SnIrj/jl4c1Xxb8N77QdKa3Z7uSITw3BxHcwCRTLCTzjegZQexOaALvw98VW3iXwu+qlBarFNLBKWlDRgxnDMrjhlxyCOKyPgsJNcm1Lx9dQsja6wXT1kXDx2SEiMEdtx3OR/tVxHgHw5LoXgu3+EFvewiS+vZ55rKC787+x9OL7vs5bgnPKAkD7x9K9u0+2jtLWO3hRY4oUEcaKMAKOAMfhQBPTWAJ5Hb86dRQB53CkPgX4kNGMxaH4quDINzHy7W/25YD0EiqP+BL6mrnx51/WvDXwxvNb8PTW0d5bSwHdMnmKUMiq4x67T1qn+058MP8AhbvwlvvBn9tXOjPcSxyxXlvyVZDnBHcHJFYPg/w2NS+FifB3xJq11HqOjW8MU1ypBkvoUYbJkLZyDj5vQ8UAZ/xF+KHiXR9U8SalYSW40vwpe6Xa3FoYQzXf2lkWQlj8ylfNXGOu2vboTkZHTjFcPr/ww0DW9ce+u5Lhkumtn1C3BAjvntzmIyDHGDjp1wK7qMbeMUAOooooAKKKKACiiigAooooAKKKKACiub+Jln4ovdN05PCt7Hazx6tayXhf+O2D/OMZUsAdrMoZSyqy55wdTwxpn9kaOtmZ/Okaaa4mkCbVaWWV5X2rk7V3u2ASSBgEk8kA0KKKKACmsu6nUUAVWtbcRsgijVW6qEAB+tcl42dV+JfggJt2td3Y5A7Wr9PTpVn4zaXrGu/D3UNK0PXLXRb66CpFd3Ks0fXlSFIPPI4Oa8e8EX3iSXw38Pk0fQ7Gz1nT9Z1WxuLa5u5JLeSWFJo5JEkOWKMV3LnPBxmgD6NAzzXI/HLSG1/4a6poC+IY9CbVYfsy3sgUhd3VfmIBLAEde9dLobag2lwtqqQpebB5ywMSgb/ZJ5xWD8adF1DxB8MNa0nR4bGXVLiykGnC+jDwrcY/dsynsGxQBzf7Nt3Bp3wVtzqFjpmkx6dNPBK9p+7tZfLdgZk3HgNjPPfNX5PGuqeIZmg8B6SL2JTtbVr0mKz/AO2Y+9LxzlRtPrXG/s4/DDxanw70yb41al/bWvW27bYo4+xWqA5QCNQFdsYyWz7V7VDbRQwrDEoSNRgKowB+FAHj/wADPgDb+AfjD4i+Jd74pv8AWNZ8SJi5jcbIIiTuO1euAQAoJ4FezUUUAFFFFABXN+P/AAydZtYL+xkS21nS3M2n3XTa3dHx1RsYIrpKGGRigDnPAHiSPXbWeKeBrPVNOfyNSs5M7oJcZ4J+8jZyrdCCK6MHNcd8R9Iu7Nl8XeHx/wATTTUJlhLbVvoBy0Te+M7Seh470nwf+J3g/wCJnhu41zwhqyXttaTm2ucqVaCVQCUcHoQCOmR70AdlRXM/Dvxxo/jOTWl0cyOuh6k+nTu6bVeVUVjs9V+cc98Zrph0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKGv6JpGuWQs9Z063vrcSLIIriMOoYdGwe4rkfFdpZ2HxF8B2VnaQ28KXV4I44kCqn+iuTgDgd/wA671vumuA+LSa3b+JPC+t6PoN3rQ0u6nNxDayxpIBJAyKRvIGNxA60Ad/ikZQev868yaT4uJqdvdEae8WsIY5LVBhNDAOVkLEkzsQSCBgbgMcVb03xR4q0aGbRdY8OaprWo2jFYr6wijWK9j/hkO9gEbnBXnBB7UAehBQOKUDAwK8w8E+MPGtn4dhg1f4c+Jri7V5C0n2i1bILkrz5g6AgVq/8Jz4k6/8ACsfEuP8Arra//HaAO6orynT/ABZ45Xx3qN/N8OvEp0ya1ijtoftFsdsgJ3HHm8ZBFbn/AAsK8T5J/AniaOQfeT7OjY/EMQfzoA7qivMPE3j7WprnSxpvgvxOqJqCNd/6MgzFhsj73qVrVj+Ik7Ln/hCPE3/gKv8A8VQB3VFcDq3jPVdQ0C9g03wf4iju57WRbZpIo02yFCF538fNUvg/xD4itvDVjbar4S1p7yG3RZ3LwtvcDk530AdtOiSQtHIoZWGGBHBFcRZ/C3wvoXw81nwp4Js4/DEWtGSSafT0AYSyDBk+bOTj8K0m8UaltJPg/WeOvMX/AMXXMeFfF3jW0t7yLVPh14huH+3TtC63Fsw8ouSg5kGPlI4oAj/Z6+HPiHwDrHimbWfEz6xb6xqMdxaKbeOLy1WCOPcQigA/LjA44FepL92uG/4TjxH/ANEw8Sf9/bX/AOO0f8Jz4k/6Jj4k/wC/1r/8doA7qiuFbxz4k2n/AItj4k/7/W3/AMdrmPFHxd8ZaZ440DRbb4OeJbm01ZnW5uRNCWtcEYYhWZdvPdgeOlAHsNFMhOVyc5x3607I9RQAtFGaMj1oAKKMj1oyPWgAooooAKKKKACiiigAPSvGfjtf3t58RhoTaldafZWfhS/1aJ7eUoTcRlQjnHUKCTjvmvZTyMc1geMPB2geKBD/AG5psV01vny2JIIB+8uRyQeOOhoAr/BvV7/X/hT4c1rVAftuoaVb3FxkYy7RqWOPqc/jWh420dNf8NXWkTX15Yw3SbJZ7ObypVTPzbXHKnGeRWlawR21vHBBGscMSBEjQYCADAAHpS3ESzQtE65VxtYHuO9AHnH7MGliy8EX15Bf6ld2WoatcS2P2+6aeSO3DbFG5ucfIT+Nelj7v4VW0extdM02GwsoEgt4FCxxoMKo9BVk/SgD5y+C+u65cftJT2+q3N29hdTaiNL1KO4d4dXWNlDQvEeIjCc4IHzZOa+jJPu8Vg6T4N8O6b4ik1uz0qGK9kdmMgz8pYAMVHRc45x1rfbJ6fyoA+ev2xte8W+GZ9Q1iP8AtiHR7Xw80uj3WmKWWHVxMNnnAHlWG1QDkHJr3bwpLez+GdPn1FPLvJbSJ7lMY2yFAWGO3Oar+IPDWj63f2d3qlkt01jJ5kCSklFfjDFehIxxkcVqwgquD69qAPKfihr2t6X+0H4btbC/uTaS+H9UnksFYeXPLEsZQkdScsRXGfs5+KPEVx8QPBUV1qFzeR+L/CV3rGrLM+4R3Mc8Soyj+AESsuBx8vqK9z1Lwxo194psvEdzYpJqemxyR2lwSQ0SPjcB9cCq/hXwX4c8OalPfaPpcNrPcDa7oDwu4ttXP3VyScDjNAHNftY32paZ8B9Z1HSNRubC8tpLYxzW7Yb5riNCv0IYiodXvNTh/ac8N2aaldmwvfDd9LNZlv3O9JbcK2MdfnNdt408O6P4r8PTaJrtkt5YzsrSQOSFYqwZc49CAfwqvN4Q0GbxdZ+J5bANqlhbNa21xvbMcTEEqBnGDgfkKANnK7S2eBn9DzXgHiL9oXVYNQNlpnh6zlEt5exQXjzs8TpblBhlQFlZg/fgV9AbcAjJ/GvlXxJ8LfHSeOGtV8O27aTe32q3FtJDcSNNvdkMRmPCRKTjBHOAcigD0Kf45SWPwx0vX9U0yzh1SXxGmianp6TuTbMZGRipKgswVQ2AOhrR+E3xaufG+vatBaaHb/Y7O8aNHj1CMzRwKCplePO7BkRwMcVxmnfDbxbdfDXwtpV7pc1p4o0PV5NSutVeUXEbSIXc+Vk52SswRQcEKBmsv4X/AA18daN8XLq9itJRHaaXa21ys0hjtZC8lw7LE4+/5YlXqOSx9KAPS/D/AMbtC1LSdQv57OTT4rWwS7gkmnSRJ96uyp+7ztPyEnNOb4wWMvhnQNWtIYGj1WNprl55vJigiQoshDMOSDIuPXmuQ8J/CfW/BXwzuJ70r9qsdMtFFroMeZb2SKKRJEcEAMH8wdBn5a0PF/gnxD4nj8K6TDBJaxp4aaOaWdDst5t0DbHwcg4THHpQB2OhfEy11jxrpeiaXb213aag11FJeQXSt5EsKK+xlxnJVgfxpJviXbx+FNa1Z4baOW3u7y10eF5/+Qm0CM3y/wC9tbp6V59N4S8WaB8VdJi03T5Ly5jGrai97Ej/AGSBpbWOKFC7nJcuvTsK6PWPBM3h34eSX9xYXGqtofh6a10/TLNfMlaaVT578kAuzEgc9M8jNAHWRePrRPhSvi+7h8xorOKe5tYHG5HcL8mTjH3u9cn4q+O2k2Xw/wBU8QWNk32nSfEMeiTWk78lzdRwO6lcggbyR9Kh1r4Yapq3gS2utPu3tNSm8Nx6dd6XMcQXLBkZWlPUMm0jIGcMa5TxN8NPFGi/Dea2a1lutT1TxpHcpaaPlrWO1k1OC43yBsH5ERuaAPorSbuO+sY7uHd5cyhlDAg4PqD0qzUcJHK9xipKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADFNZFPUUUUAKFA6CkKKRjHX3oooANi+lLtHpRRQAmxc5xz60u0elFFAAVB//XSbF64/WiigBVUBsjuAOtLRRQAUUUUAf//Z"]
math
multiple-choice
85
在正方形铁皮上剪下一个圆和一个扇形,恰好围成一个圆锥模型(如右图)。如果圆的半径为r,扇形半径为R,那么R是r的( )
6倍    
3倍    
4倍    
null
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACtASgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5H4665qnhz4W6prGilVvbdYxEzrkKWkVckfjQB11Feb6RofxRudPt7qTxrZfvoUfb9k6ZAPp71NN4c+KJ/1fjexX62f/wBagD0KivMz4X+Lv2nf/wALAsfL/u/Yf/rU648MfFtpFMXj6wUdwbH/AOtQB6VRXmg8MfFzawPj+wyeh+w9P0qWPw18Vgih/HdixB5P2Lr+lAHo1Febt4Y+LO9ivj6xAJ4H2Lp+lEPhj4srLuk8e2LL6fYv/rUAekUV57/wjnxR4/4rey9/9E/+tUkmh/EaKEyTeNbFFQbmY2uAAPXigDvqK+c9W8dfE7WNYk0P4eavHrlwjMkmoCzxaQMP4WfGM/4V2Xgfw98czAJfE/jPSUkxzDb2uQD9cUAetUV5X4w8O/Go2rSeHvGul+cB8sc1pwT9cVxFr4x+LnhnUFsPiXqdvpkZ+7qlva7rU+xbHFAH0XRXivxB17xj4b8O299D45s7651IhdNt4bYM1wx6bcDkcjmrP7Jfi7x54jTxRpfxBe2bU9D1NYB9nTaArRK4B9+aAPYaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuA/agWM/BDWnm3eVCsUkm04OBKh7V39cf8AHnP/AAqvU/k3r+73qR1HmL/9agDnvCvxt8Ay6fZ2n9oTRlLVAWeBgAQoGM1v2/xV8BySRo3iC3hMhwpmOwfrW7oul6YdFtP+Jbac26ceQv8AdHtVTxP4H8IeIrZbfWvDmnXka9Fkt14/KgC9o/iHQ9VkKabq1ndMOoimDH9K0gQeQc15vefAz4ejzH0XTZ/D88q4a40i6e3f9Dj9Ky7j4efEvw1at/wg3xDmuI41AisdbiFwH/3pT835UAeuUV5LbfEzxv4Zhjh+Ifgdg28+ZqGjMZLcLxg7Wy2eveu48G+OfC/imDzNH1aGVgcNE52SKfQqeaAOhAwxPPPvS0UUAFeM+ML7Uvi146vPBOh3txZ+GdHcR65dwsUa6l6mBWH8IGM49a7r43eIh4X+GWqatllkWLy4iDyHbgUfBHw3D4Y+Gml2Crm4kh+0Xcp+9LNId7Mx7nLfpQBt+FNB0nw3ocOkaLYw2dnAMJHEgUZ9T6k461o0UUAFcd8aPFWh+HfC0kWrWkepS3o8q305lDm5Y8AbT2q98SPGeleDdFN5flpp5PltrSLmS4c9FUe5rkPhb4N1jVvEJ8f/ABEjhbWp/wDjwsF/1WnR9lAPVsdSaAPKfhj4K1b4SeOLbx14sh8/TNakEVrZ+YTH4dDHIRF6KDnkivRP2Z5Ul+KHxPeNgytrcLKwPBBt0wRXp3jjQ7XxH4VvNHu41eO5iKjI6N2P4GvBv2BItatdc+JOn6/815Y69HAH7vGsQCE++BQB9H0UUUAFFFFABRRVfVrtLDTLi9kKiO3iaRixwAACf6UAWKK8z/Zv+Jt18RNM1JtSso7K8sbplSJCfmhzhX59cV6ZQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyfxzO34U6u2M7UjP5SpXWVx3x/wB//CndeMf3hbAj/vtaAOj8MzC48O2MwHD26H/x0VerC+GTs/w/0d3+8bNM/lW7QAUUUUAJIqupV1DKeoIyDXD+NvhN4Q8RN9pW0k0vUFJaK90+QwyI397jg/iK7migDxubWPid8MLxRrdq3jHwvHw17aJtv7Zf7zR/dcDvgg8V6N4F8ZeHfF+mi80LUY51/iib5ZYz6Mh5FbrAMpVgCCMEHvXnXjz4V295qh8R+D74+H9fVt4nhH7mcj+GRB2NAFH9rf8AefD+ytZP9RcanCs3PGN3evTtPULp8Cr91YlA/IV88/E7xfq/iDwBqXgfxvpI0XxNZbZ7eYt/o1/sOd0L+pHY817l8O9Wg1zwLpOq27ZS5s43IznB2jIP0OaANquT+M/jK28EeA77VmdGvjEyafbdWuJyMIqgcn5iKvfEfxbpPgvwzLrGqy4VTsghXl7iQ/dRB3JNcP8ADPwfqvibXE8feP4ibotv0rS3OVsE7Fh0L/yoA5H9kKw8deNxN4++MOlNBrUMxj062dNscEfYhMnn3rsv2nLfX9Vs9B0Hw5qN1p93fakge4t+CsYxuGe1eoqAowoAHoBTZIonkWR41Zoz8pI5X6UAUvC+lroug22lrd3N39nTb59y+6SQ9SWP415V+zupi+OnxYhCbY/7UtHB9SYOf5CvYriVILd5pWCpGpZiT0ArwL9jHxFH4p+JHxW1aEOI21+KJNwxkJFtz9OKAPoCiiigAooooAK84/am1ZLH4VS6UHZLjxFdRaVbMjYZXlbr78Ka9Hrxf4kGTxh+1R4Y8HvbM+n+HLGTXbmQH5TLkRxqfcFiaAKum6Zb/DD43eFre3hf7J4h046bPJnC+cib1Yj/AICR+Ne5V5x+1J4fv9Y+FV1f6Myx6pocialayY5xEwd1H1QMPxrr/h/rMXiHwXpuswyJIt3bJISjAgEjkcUAbFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcr8bU3/CnXF9bX/wBmFdVXOfFzn4aa1xnFoxxQBN8Mcf8ACv8ASMHP+iJ/Kt2uf+FL+Z8OdHcD71otdBQAUUUUAFFFFABRRRQBznxK8E6D440CTS9atQ4Yfu5l4eI+qmvEfAeu6t+zlHd+EfHt3JqOg3U0k3hvUEUszFj/AMezf7WTkexr3T4ieLdI8G+G5dY1ecJGnEcY+9K56Ko7k15XZfDK9+LayeJ/ijGywyof7E0kHAsEPIlP/TQ8H8qANn4d+D9X8XeJYviF8QIv3qjOjaSTlLKM872HQucD6V6x04FfM8fxF+IPwZ+IFp4I8VaLceINBugV0fU4VzMQOTEfUgCvTrH47fDmS4htL3Wf7OvJBzbXcZjdT6HNAHpVFed6t8cvhjp0whn8TQNIxwEiBck/QVz9x8QPHfjySTTfAfhy70u0k+X+2dQjKAD+8inr7UAa3x58R3d5ND8O/DMu7W9XA88oc/ZIO7tjpkdM1yX7J2mQeHfjB8SvD1ooENpcWIBA6t5HzH6k816V8Kfh3pHgq1lnR5L/AFi9Pmahqlyd01y55JJPb0Fcv8H9PWy/aA+IUwUK11Lau2O/7rGaAPWaKKKACiiigBszrFC0jfdRSx+gry79ngXOseIPFfjG8QMt/qH2exlI+byYxgr9N1dF8fNdj8PfCjVr53KNJF9niIPO9ztGPzqf4K6CPDfwx0jSyd0i24klbP3nb5if1oA6a8giurOW2nXdFMhR19VIwR+Rryv9l+6Glr4g8AmJoh4d1B1tlf7zQscg/SvWK8l8XM3hP9pDRtZZ1h0/xJD9hm7K038JPvQB61RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXN/GKTyfhbr0p/gsJD+ldJXKfHPI+D3iTH/QMm/wDQaAF+CE32j4S6BN/fslP866quM/Z3Ofgj4ZP/AFD0/rXZ0AFFFFABRRRQAVh/EHxXpHg7w3NrOsT+XFGPlQfekbsqjuTTvHfinRvCGgSavrVyIoU4VRy8rdlUdya8/wDAvh3WfH/iWHx342t/Isovm0bRm5WAdpJAfvP39PagA8CeF9a8eeIbfx74+t/Ihi+bR9DblLdD0kkB4LkY+letKABgDAHShQAuAMAdAKbKm+MpkjPcHmgDn/ih4Q07xp4Vm0m9XbL/AKy0uV4ktpRyro3UHPp2zXF/Cm60/wARTT+EvHuk2F54k0IbC93bI7XEXRZFyPzr1ZRgYHavLP2hvDOqW8lj8R/CMeNc8Ov5txEvH2606yxMO5wMj3FAHd2PhLwtZXAntPDmlW8q9His41YfiBWxWT4F8Q2PinwrZ65p7hobuIPt7oe6n3Fa1ABXnPw/jSL46+MQvBaO2OP+AmvRq8s8E3JP7T3i217DT7Z//QhQB6nRRRQAUUUE45NAHk37REn9ueNPB3gQQedHf3rX92AekcOMZHuX/SvV4UWKJY0G1UUKo9AK8h+E8d54n/aI8YeMZtr6bpscOj6eDyFkTc8rL9d6D/gNewUAFecftSaLJqfwrudQtI2a/wBFkW/tGX7yuhzkfgK9HqK9t4rqzltp0DxzIUdT0II6UAUPBWsw+IvCGma9bjEWpWcdyg9A6hsfrWpXkv7MMt3okniH4fand+dcaBqUptQf4bV2LRKPYKQPwr1qgAooooAKKKKACiiigAooooAKKKKACuW+Nwz8IfEg/wCoZN/6Ca6mua+Mi7/hT4hU99Nm/wDQTQBQ/Z3GPgj4aH/UPT+ZrtK439nzH/ClfDeP+fFf5muyoAKKKKACsnxp4j0nwt4fn1jWLpYLeFe/3nbsqjuT6UeOPEel+FPDVzrer3AhtrZNx7sx7KoHJJrzXwP4b1T4l61B438bQyQ6bE3maPo79FGeJZB6nsO1AD/AvhvUviH4nh8e+NIXhsrWTfomkOPljA+7NIO7e1euqAFwBgDoBXCftHeL7r4ffBXXPFOmC3+1aXamS3im4SRh0Tj16VyPw3+J/iy7+JmjeE9etLG5fVtLF7M9gWIsyVztfI4oA9pooooAKRlVlKsoZWGCCOCKWigDyP4byf8ACBfGG/8AAkisum6uDe6ZIzfKHPLRj3r1yvMf2oNKvV8I2/jLRbR7jVvC8630EcYJaVUOWQAdcgGu98Jaxa+IPDdlrNk6vBeQrKhBz1GcUAaNeU+DYnT9qnxVIwwJNKttvvgtXq1ea+H0Zf2nNbZv49FgIHtvegD0qiiigArC+JmuW/hvwJqms3TbUtrZj7k4wAK3a8w/aYlnv9P0PwjbBGbXtSWOUFhxGuCT9KANL9mrQxonwj08s7PNqRe/nZhglpWLc/htH4V3tQ2FvFZ2MNpCoWOCNY0AHQAYFTUAFFFFAHk3jyeLwl+0RoOtpb/uvEcP2C6kHCoy/dJ9+a9ZyD0PTrXnn7TWh3GrfDOe7sQftmkyLeQEYByhyea6zwDq9tr/AIM0zWbSQSRXlqkgYHOTjn9c0Aa9FFFABRRRQAUUUUAFFFFABRRRQAVzvxd/5Jd4g/7Bs3/oBroq534uf8kv8Qf9g2b/ANANAGb+zsyt8E/De0g4sVBx9TXaVwf7M5z8D/D5/wCnX+prvKACsrxt4i0vwr4buNb1i5WC1t1yWY/ePZR6k0njLxDp3hjQ7jV9XuI4bWBM5J+Zj6D1rzXwfoWtfFDxBbeM/GVrJZ6Pavu0fSH43DtLKO5PUZoAb4R8Oa58TvEMHjLxqktrolu2/RtFfIz/ANNpR6njAPpXsEaLHGqIoVVGAAOAKVFVFCqAqqMADtS0AeSftaeHdZ8Y6DoPhax0a5v9NvdatW1d4CP3Vskis+fqBUXwP8J694S+L/iqGfSWXQ711l026yCEGOUz1r2CigAooooAKKKKAI7uCO5tZLeVd0cqFWHqDXk37L4k8O3niT4bzSSSf8I5fsbV36m3c7o/0Ir12vJdcmPh79qfTZYrfZB4ksPKnk7SSJwv44AoA9arz23aMftOXSIRuPhqIsB/13kr0KvMoJwf2uLm3HVfCULH3/0iWgD02iiigAryW1RvFP7VV1cJOstj4S05IGjDZAuJBvz9QGA/CvTtfv4tK0S71Kb/AFdrC0rc9gM14T+yz4lg1vwr4g1bw0YrjxB4gvZ9Tm3cx25diVjY+wxxQB9BVg6p428HabdPbaj4p0e0mj+/HPfRoy/UE1yvgvwV41fXl1zxj4yup2MTIdMtG2WyhuvT8Pyq9a/Bv4aQ6g98/hHT7i4kcu0tzEJWJPu1AG9qPjTwhYWsFzfeKNItobpd0Ek17Gqyj1Uk8/hWrpt7Z6jZR3lhdQ3VvKMxywuHRh6gjg1i6t4E8G6pZw2uoeGdLuYbZdsCSWysIh/s5HFZXjL4V+FfEGjWunGK509LEYtWsJ2h8n6BSKAOw1C2hvbGa0uFDRTxlHU9wRivKf2WZ20aTxN8OJ1kV/C+psLZX6/ZZf3kR/ImtHwt4T+IPhPXIlg8YTa9oi58yHUvmnRR0Ct3riIfHGit+0tYa5pkz2p1KNtI1axnyknnocxyFT22nAPtQB9BUUUUAFFFFABRRRQAUUUUAFFFFABXPfFr/kmOv/8AYNm/9ANdDWB8VBn4a66P+ofN/wCgGgDB/Zj/AOSG6B/17f1NdX4s17SvDeiT6trF2lta26FmZjycdgO59q4T4J65pfhv9nTStX1a7jt7W2tSzOx6nJwB6k+lZHhLRtV+KviqLxf4st3t/DljIJNF0lxgysDxLMP4vYdKAG+D9D1X4r+J7fxp4ws5rPQrJ9+j6RISBIR0mlHcnrg17KoCqFUYA6AUka7BtUKqjhVAxgU6gAooooAKKKKACiiigAooooAK8n/aimudKj8M+IrMKJrHV41LEdFYgGvWK89/ae0xNS+El4zyeX9jljuQ+emxs0AegRNuiVuPmAPHSvLYQf8Ahsy6P/Umwf8ApTNXo3hm5W98N6feIfluLSKUfRkB/rXn0K/8ZgXTf9ShAP8AyZmoA9PooooA8u/a4uNUl+E83h3RZWivfEUy6ejocMiyHaxH4E10nwV+Hvh/4Z/D/T/C3h6zSGGzhVJJMfPO4HLu3Ukmue/aNuU0aXw34mnLG307VIxONuQqsQNx+lemQSRzQpNE4eORQysOhB6GgB1FFDcrjOPegCvb39lPeSWsN1DJPF/rI1cFl+oqxXjHwg+BV54K+O+vfESfxtqWpR6wrKmnS/6uLJ6++O1ez0AFeKfte/DGz8RaPaePNMT7N4g8Lyrdwzx5BmRTyjY+9x617XXP/FXVLPR/h3q9/fhTDHavlW/iJGAKAJvh3ra+I/A+l62uP9NtlkYDs2OR+ea2q4f9nG0uLP4OaMtzH5bSxNME/uqzFgPyNdxQAUUUUAFFFFABRRRQAUUUUAFYnxJhluPh/rUMEbSSSWEoRFGSx2ngVt0deDQB8a/CDxVHqVlp0HxO8O+JLbT/AA7IVsdHi01njlkDHEshB+Yegr3NPj34OhhVI9A8UqqjAVdHICj0+9XqRtrc8m3i/wC+BR9ltv8An3i/74FAHli/tBeESxA0Dxbx/wBQc/8AxVL/AMNAeEv+hf8AFv8A4Jz/APFV6l9mtv8An3i/74FH2a3/AOeEX/fAoA8tH7QHhI/8y/4t/wDBOf8A4qnD4/eEyCf7A8Wcf9Qg/wDxVeofZrf/AJ4Rf98Cj7Nb/wDPCL/vgUAeXN8fvCYXP9geLP8AwUH/AOKoHx/8Id9E8VL9dIb/AOKr1H7Nb/8APvF/3wKT7LbHrbQ/98CgDzJPj54Pbpo/ij8dJb/Glk+PngxP9ZpviRc9M6U3+NemfZLX/n2h/wC/YoaztG62sJ+sYoA84g+O/giUMfs+uJt/v6a4q3B8afA8q7hPfr7NZODXdfYLE/8ALlb/APfpf8Kb/Zunf8+Fr/35X/CgDiR8ZvAucG8vB9bR65P47/E7wlrnwj13TNNurmW6uLN1ij+yv8zY6dK9i/szTf8AoH2v/fhf8KP7L03/AKB1r/34X/CgDy34Z/F/wfZfDjQbTU7u4gurfTLeKaP7K/yMsagj9Kr/AA/8T6V4v/agv9V0Np5rSDwxDA8rwsi7/PlOOfY16ydK0s9dNtP+/C/4VJa2VnaszW1pBCW6mOMLn64oAnooooAz/FOiad4h0G40jVbdZrW6Qo6n37j3ryTw34i174Q60vhTxitzqHhcn/iV6+FLGFSeIpgORjpur2uoNRs7W/s3tb23jnhkGGSRQwI/GgCLQ9W0zWbFbzSr+3vIHGQ8MgYfp0q5XluqfBTTLW6a78G61f8Ahyd33OtvIWiY+6Gqd5ofx70uSFNJ8SeHtWgj+8b1ZIpG+uFI/WgD16ivKJJP2hWXCWfg1DjqbmU8/wDfFM0/w38b9XtGi1/xbo2lBjz/AGdE8jEemWAAoA9E8VeJtB8NWJu9c1S3sowOPMf5m+g6mvKVGufGzxPDLPY3Gl+A9NmDqtwCk+rSA9dv8MY469c10Xhj4MaBa30epeI7688RX8Tb0kv33Kh9l6Yr0iJEjjEcaKiqMBVGAPwoAS2hit7dIII1jjjUKiqOFA6Cn0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k="]
math
multiple-choice
86
把一个圆柱体沿半径和高平均切成若干份以后, 重新拼插成一个近似长方体, 原来圆柱体的侧面积是 $81.64 \mathrm{~cm} 2$ 。长方体的表面积比圆柱体增加()
$24 \mathrm{~cm} 2$
$26 \mathrm{~cm} 2$
$32 \mathrm{~cm} 2$
$16 \mathrm{~cm} 2$
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACAAMwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooqvqt9Z6Zp01/f3EdvbW6F5ZZGwqqOpJoAsVHcXEFum+4njiX1dwo/Wvn7xd8XvH3j6G4tPg5Y2em6cu5R4k1eMyJMRx+4hBGR/tMce1eQ6f4dk8YaVq+geP8Axb4quPHNvE7i3utUaK1lPVZII4gilDjGDkjvQB9ptruiKyg6vYAscD/SU5/WrFpfWV0cWt5bzf8AXOUN/KvhZfCXgfVY/htLFoMcM13rsllq0a3M37xktLglW+fj5lVq2W8HeGpviZqdzoGt6v4R0Hw/bMl3e6bq8sQe4PTAcsvy88Y5oA+2K88+MXiHx1oXibQbbwwuiy2usXAs3jvYpPMjkPPmBlYAgDHGPxrwz4P/ABc+LujXFzcS2tz468EWrbINQuoFttTZB1ZQgCSAe6gmvVde1P4M/EPR9N8e61r00Mdj/qM6zcWbW8ikkhoo5FG8HIORmgD0vwR/wkY8NwjxW1g2qh5BM1grLCyiRthUMSRlNpPPXNa1eLv+0v8ADxdetdL0yDWL+zMgin1OK0b7NbDoCztye3NeyWs8NzbR3FvIskUqhkdTkMD0IoAkooooAKKKKAIZby0icpJdQow6hpACKb9usv8An8t/+/or4E/awS9n/ae8bwXepajHZXUUFvYywX80S2F2IFdW2qwUq/KnI6gYrjNSzffCfTvE2kLq0WueG7tG8RaU2t3RTUbUnY0iEyZGGKng8UAfpd9vsTwL2346/vV/xo+3WX/P5b/9/Vr84/FNtoGkeMfD/jbS5tcvPB2rKINT0ttZufNtJcclWD7sgZOCTnGK2PB+i+HJ/HuteAdV1TWWfU42ufC+tR63c4aNxlEI8zaSuQOlAH6CfbrL/n8t/wDv6tOiu7WSQJHcwux6KsgJr82dISLVPhTfRGDWbTxt4RuWj1K1OtXfl6mkTFXZQZOCcZOO/tTbDxxD4I+IOh+PPDN/q7aNq3lSQQXOoTTHT7hRia0kV2IKsCrgnn3xQB+l1FciviW88TfCX/hJfBV9p0N3cWYnt5b63e4gRhyyuiSIx4DDhhzg+1YnwP1z4o+JLex13xSvhePRr6ydvI0+3mW4jnDgKd7yMrIwDHG0EHHJoA9JooooAKKKKACvn/8Aaq8QadrHxA034b6xrMGnaO9ob3VBJciE3K5IWPJPQ45r6Ar5J/am1/wBov7UwX4g6fHJZTaBH5FxJbvKFcOfkAQEknsKAM0+F/D/AIeXzPhx8XbbQ9nMen3d3HdWf+7tLBlH0Ncn8RfiFJ9njj+ImnaatzYtusfFnhXUo7jyG9XhYrIFOOQN1bEP9l+Kjs+H3wOklt26alrkJsID7qrne3/fNcX8S/h0txq0Xhm+OnX3iK+TMeg+HYCFt4+8lxM3CJ9evagDyzxB8fbfQ/G0N1C0eofY7xtRimteIZZ/s08IYA8rkyoSCONprsvg34wn8Z6TCW0VtajSXzhp02pQ2Vk0zHJkuZpDuf8A3VQj61534w/Z6RryKLSLjcz6g1iHTmOWZLeWd0Q9wBEFz3LV6P8AAvwRf6aLLR7c6NJc30XmafDrEZFvqAHVElXpIP7pGaAGeLvjB8ata1SfTbKbwzoWl2Nw9tJa6bqcaudh2kJIwIxxwdtP8C+IbTRLhmT4Y6RrF5cSmWSS+8YrKZZD1bYIguT9K9SF94H8NzLbfEz4Ov4e5wdSt7Q3lkx9d8W4qP8AeArD/aKufhTb+HNAbwPZ6PeXWpahGY7jTHEhijB5ZtpO38cUAXtU+LHjubw3daSvwb0eC1mgZGSPXlAAx1wIe1fT37IGq32sfs+aBd6igS4WJ4igbdtCuQBnvgd6+Y7v/jzl/wCubfyr6U/Yv/5N70b/AH5v/RhoA9UooooAKKKKAPiL4/adDq3x8+IVhOPllmtcH+632dcEfQ15t8H9PvPEFx4g8DkpB4p0FDfaaJeE1K3YbJYGPdWBX1wwB7V6r8Xv+TlPHf8A18Wn/pOteeeNrDWtM8eeHfGPg1Ij4jhvksYYZW2x3azfJ5bnsMkHJ9KAM/Q7S61z4X6xLp1vPHe6JKYda07ZmeAKcx3Ua/xNGQCR/EoIrG1S7sG0Xw74vLNHoc90IZ57Vv3mkXBOHUf7IbLCvRV0L9pTR/iZD4pb4d6Dpuq6+ZNPFgdRiK37KjSbiQxUcIeWI61z3hz4X/Hm61rxN4Vl+H2gWS+IoDdyaJPqEe2Mk4MkbKSqnPPWgCzbwanefFrUPD+pG1tfE1xEJba5TIh1GVFAEq/7M0ewkc4YmuLvtJbXvDfiGysNNkXWPCtzvvtIYYlktj8yyKOheNjIue6bTXTXXgP4/wB18P7HUYtI0Ce8+HN1JYvqa3oE6GB9hRs43jgDjNdD4j8KftDWvxA8N+Of+EN8NR+INYt5LRbSC+TOpRBFf94fuD73GTmgDY/Yf8bwQXUnwi8VX9xN4b8Z25u9A1AStEyTKR51oWH3W4z16A+tfY/w98IaP4K0EaPoYuVtFbcqTztKV9gW6Cvz+bwR8fY4/EWnP4D0bTJNKkt/ECxf2jF5mlsxk+eIqxHzeU2VBr7/APhTf3+qfDfRNQ1Rka9uLGN5yn3S+OcUAdBRRRQAUUUUAFfLf7Vfhy18VfHO30W6keEXMdmFmj+/G3mcMDX1JXzr8bP+TntM/wC3L/0ZQBwHxq8X/Ej4Z3Vj4M8SpDDDqBZLfxRAhePyV4LMgGVcAjPapo9Q8H+GPhmE8Cata6zrniicWsd9HMslxdTMPmdj1AUZOO1e/fERVf47eCUdQytbXwII4IxFXnPxq+Bvwt1n9oTwasvhKytJNVtdTmu57Bfs0sskf2XY5ePByPMfn3oA5HxX4bi8M6h8K9FjTJj8QSee2P8AWSGyuSxP1OaqDw/4ct/EGu/DvxXNDa6exOqaRdPKIntsnLGNz0KnBrf+L37PHgbTvHXw8tIdQ8TGPUfEMlvNv124ZlUWF1INpL5U7o15HOMjvV2D9nj4V237RVjYajoB1yFtHlnI1qd735w6gH96W9TQBwvw8+KmvaxrMnw50O1t/GmprlLPVIyPsssY4LSseMgdcdayfFHw/Pgnw348i1VbKfWm1qwee4toQiJ5lvHIY0HZQXP1r6a17TdP0j42eDdP0uyt7O1gs51iggjCIgweABwK8i/ai/4+viJ/2GdL/wDSOCgDgbr/AI8pf+ubfyr6V/Yv/wCTe9G/35v/AEYa+arr/jyl/wCubfyr6V/Yv/5N70b/AH5v/RhoA9UooooAKK4jSvidoN18YNU+Hcpa31LT0jeNpOFuAyBsKfUZ6V29AHxd8Xv+TlPHf/Xxaf8ApOtc9f8A/I0+E/8AsZ9P/wDR610Pxe/5OU8d/wDXxaf+k61z1/8A8jT4T/7GfT//AEetAH1d8YP+Sk/Dz/sNS/8ApLNUa/8AJ0R/7AX/ALNUnxg/5KT8PP8AsNS/+ks1Rr/ydEf+wF/7NQBxWg/8kg+LH/Yyan/6UGul8Zf8jh8J/rL/AOiI65rQf+SQfFj/ALGTU/8A0oNdL4y/5HD4T/WX/wBER0AZ/jj/AJKF8T/+xPsv53leh/B3/klug/8AXjH/ACrzzxx/yUL4n/8AYn2X87yvQ/g7/wAkt0H/AK8Y/wCVAHS0UUUAFFFFABXzr8bP+TntM/7cv/RlfRVfOvxs/wCTntM/7cv/AEZQB6N8Qf8AkvXgf/r3vv5RVH8Rv+Tivh5/2D9Y/nZVJ8Qf+S9eB/8Ar3vv5RVH8Rv+Tivh5/2D9Y/nZUAR/HX/AJKR8Lf+xpl/9Nt7U1//AMnPad/2AJ//AENKh+Ov/JSPhb/2NMv/AKbb2pr/AP5Oe07/ALAE/wD6GlADvHH/ACX7wj/163H8jXjH7UX/AB9fET/sM6X/AOkcFez+OP8Akv3hH/r1uP5GvGP2ov8Aj6+In/YZ0v8A9I4KAOBuv+PKX/rm38q+lf2L/wDk3vRv9+b/ANGGvmq6/wCPKX/rm38q94/Z61668L/sfxeIbPTo9Ql02Oef7NLc/Z1kUSnd+82tghckfKckAcZyADZ/a2vNQh8M+HbCx8UX3huPVPEFva3eoWUixyxxMGJAZgQM4HauV/4V5pH/AEcr41/8HFr/APGq9TiufA/xO0BNPvY9N1ePy47iaydhJ5LEAj8QT1qp/wAKa+F3/Qk6X/37P+NAHEaf8JfCaeCdWvLHx7qGrawtwL5PEV9eJLPbSxqAvKgDbhQCMcivQPgP4uvvG3w1sdd1KxNrdO0kMuBhJjG5TzY/9h9u4exFeYSfB/WD8adU0bSbCLRfh7fQQTXn2eQhruRQMwqM/KpI5Ne9afa21jYw2dnAkFvAgSKJBhUUDAAFAHxp8Xv+TlPHf/Xxaf8ApOtc9f8A/I0+E/8AsZ9P/wDR610Pxe/5OU8d/wDXxaf+k61z1/8A8jT4T/7GfT//AEetAH1d8YP+Sk/Dz/sNS/8ApLNUa/8AJ0R/7AX/ALNUnxg/5KT8PP8AsNS/+ks1Rr/ydEf+wF/7NQBxWg/8kg+LH/Yyan/6UGul8Zf8jh8J/rL/AOiI65rQf+SQfFj/ALGTU/8A0oNdL4y/5HD4T/WX/wBER0AZ/jj/AJKF8T/+xPsv53leh/B3/klug/8AXjH/ACrzzxx/yUL4n/8AYn2X87yvQvg/kfCvQ8DJ+wJgZ9qAOmorh/hn8StN8Swta6p9h0nWVvprM6cl99oJaNtuVfYmc/7oruKACiiigAr51+Nn/Jz2mf8Abl/6Mr6Kr51+Nn/Jz2mf9uX/AKMoA9G+IP8AyXnwP/17338oqj+I3/Jxfw8/7B+sfzsqk+IP/JevA/8A17338oqj+I3/ACcV8PP+wfrH87KgCP46/wDJSPhb/wBjTL/6bb2pr/8A5Oe07/sAT/8AoaVD8df+SkfC3/saZf8A023tTX//ACc9p3/YAn/9DSgB3jfH/C/PCXr9luP5GvGf2oMfaviJnH/IZ0v/ANI4K9m8cf8AJfvCP/XrcfyNeMftRf8AH18RP+wzpf8A6RwUAcFd/wDHnL/1zP8AKvaPhHb6jefsOXFlpOj3Or3t1Z3MEFjbPGskzPIVwDI6IMZycsOAcZOBXi11/wAeUv8A1zb+VfSv7F//ACb3o3+/N/6MNAFTwXpOs6X8UvB72ngDUdN0uPw1NaajdrJaCK2nPlMqyhZi7n90wyqsMsOcZI9foooAKKKKAPi74vf8nKeO/wDr4tP/AEnWuev/APkafCf/AGM+n/8Ao9a6H4vf8nKeO/8Ar4tP/Sda56//AORp8J/9jPp//o9aAPq74wf8lJ+Hn/Yal/8ASWao1/5OiP8A2Av/AGapPjB/yUn4ef8AYal/9JZqjX/k6I/9gL/2agDitB/5JB8WP+xk1P8A9KDXS+Mv+Rw+E/1l/wDREdc1oP8AySD4sf8AYyan/wClBrpfGX/I4fCf6y/+iI6AM/xx/wAlC+J//Yn2X87yvQvg+SPhXoZAJxYJwO/Fee+OP+ShfE//ALE+y/neV6H8Hf8Aklug/wDXjH/KgDxldA8VWvw7uLy2+E+tjXJPGkepGFJ7D7S1st0spYObjaAUUjG4cnpX0XRRQAUUUUAFfOvxs/5Oe0z/ALcv/RlfRVfOvxs/5Oe0z/ty/wDRlAHo3xB/5L14H/6977+UVR/Eb/k4r4ef9g/WP52VSfEH/kvXgf8A6977+UVR/Eb/AJOK+Hn/AGD9Y/nZUAR/HX/kpHwt/wCxpl/9Nt7U1/8A8nPad/2AJ/8A0NKh+Ov/ACUj4W/9jTL/AOm29qa//wCTntO/7AE//oaUAO8cf8l+8I/9etx/I14x+1F/x9fET/sM6X/6RwV7P44/5L94R/69bj+Rrxj9qL/j6+In/YZ0v/0jgoA4G6/48pf+ubfyr6V/Yv8A+Te9G/35v/Rhr5qvMixl4/5Zt/KvpT9i05/Z50Y4/jm/9GNQB6rRRRQAUUUUAfF3xe/5OU8d/wDXxaf+k61z1/8A8jT4T/7GfT//AEetdF8drDVPD/7S/iEa0uIvEixXmlzhcJKkaCN0/wB5SAfowrnb/wD5Gnwn/wBjPp//AKPWgD6u+MH/ACUn4ef9hqX/ANJZqjX/AJOiP/YC/wDZqk+MH/JSfh5/2Gpf/SWao1/5OiP/AGAv/ZqAOK0H/kkHxY/7GTU//Sg10vjL/kcPhP8AWX/0RHXNaD/ySD4sf9jJqf8A6UGul8Zf8jh8J/rL/wCiI6AM/wAcf8lC+J//AGJ9l/O8r0P4O/8AJLdB/wCvGP8AlXnnjj/koXxP/wCxPsv53leh/B3/AJJboP8A14x/yoA6WiiigAooooAK+dPjo6QftQaKsrqrXX2TyVJ5fbJzj6V9F15j+0R8O5PEx0rxdolukniLwvN9psY3batyByYie2exoAtfEH/kvXgf/r3vv5RVH8Rv+Tivh5/2D9Y/nZVymm/Ebw946+Nngv7A81pqVrb3q3+l3iGO4s5P3YKsp68g4IyCK6v4jf8AJxXw8/7B+sfzsqAI/jr/AMlI+Fv/AGNMv/ptvamv/wDk57Tv+wBP/wChpUPx1/5KR8Lf+xpl/wDTbe1Nf/8AJz2nf9gCf/0NKAHeOP8Akv3hH/r1uP5GvJfj1oNr4p8aeNfDdxd3Vq+pa9pccclrKElU/YoMlcggke4Ir0T40+JdC8K/GTwrqviDUobG1jtbjLyHknB4AHJPsKxfg/4RvfGnxk1n4waxbXljpF/LC+g6XdLtkxHCkX2iRf4S2zIXPAIzzxQBi/8ADH2gFWU/Ff4iYbqPtdn/API1e0fCHwVYfD3wDZeFNMvr29trENtnvWVpnySSWKqo79gK6aigAooooAKKKKAPNP2qPh4vj/4ayLZrt1rRn+26VOB8yyAfMn0ccEfT0r5K02/Ooax4SkkjMVxH4osI7iI9Y5FnUMD+NfoBXx7+2F4Hu/APxY0T4iaVpV1c+F7vWrS61oWkJkawlilDmXYOSrKGB9CB60Ae/fGD/kpPw8/7DUv/AKSzVGv/ACdEf+wF/wCzV458Q/2pfhLq/jPwhqNjd63JBo2pSXF4w0eX93GYJEB6f3mWol/aj+E5+OTeJ/tWtf2aNL+zmX+yJfv5zjGKAOz0H/kkHxY/7GTU/wD0oNdL4y/5HD4T/WX/ANER14Vo/wAfPAcXw78caS0Ov/avFGtXt3pSDR5f9IikmLIRx6Vu+Iv2ivh3e+KPA89tH4gZfC/mHVf+JNNm2BiReRj1U0AekeOP+ShfE/8A7E+y/neV6H8Hf+SW6D/14x/yr5k8YftE/Dy48TeM9VtovEMlv4j8PWun6a39jSgTzo1zuUZ9PNT8zX038HQw+Fug70ZG+wR5V1IYcdCDQB0tFFFABRRRQAUUUUAcR8S/hV4T8aXkWpXdtJY6vbqRBqdi3lXCZ/2h1/GuA1T4T/FrT/Fmk+IND+Iljqz6FFcQ2NtrNowOyby9waRM5P7pecV7tRQB4L4w8MftD+INe8OapOngWN/DmotfRKLu4IlZreaDB/dcDExP4Cn3Pw9+OmveOovFGoeMPDnh+eC0e0VNOt5LklGIJOWC88Cvd6KAPMvCHwT8PWOtQ694nvbzxTrEJ3R3OpsGSI99idBXpiqFUKoAUDAAHSlooAKKKKACiiigAooooAKZcRRTwtDPEkkbDDI6hlP1Bp9FAGaPD+gDOND00Z6/6InP6Uf8I9oG3b/Yem49Psif4VpUUAURo2jjy8aVYjyv9X/oyfJ9OOKUaPpAaRhpdlmX/WH7Onz/AF45q7RQBROi6MURDpNiVjOUX7MmFPtxxV1VVVCqoVR0AHApaKACiiigAooooA//2Q=="]
math
multiple-choice
87
在比例尺是1:4000000的地图上,甲、乙两地相距5厘米,如果画在比例尺是$0\quad50100150$千米的地图上,那么应画()厘米。
3
4
5
null
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAA1AMYDASIAAhEBAxEB/8QAGgABAQEAAwEAAAAAAAAAAAAAAAUEAQIDBv/EABUBAQEAAAAAAAAAAAAAAAAAAAAB/9oADAMBAAIQAxAAAAH78AAAAAAAAAAzGk8z0dR2kV5sem7NpsBYT2Rv0eXrZxKqzJcfTX1ssY9uOXjBuz10tS6iZptvCvr879PPj3dVm+ZTLMUuSXxVEVaErmoJXFYfP7aYmKYmdqIAAAAAAAAAAAAAAAAA/8QAIhAAAgICAQQDAQAAAAAAAAAAAgMBBAAUEhAREyEiMFAx/9oACAEBAAEFAvzieoJyTGCiYnpMTYs02y6p1jgJfJ2IPyIyfcIMgrDJKAiKUDPIbfLWb7r+QUKjvXbhe8qes7mS/Ia7KAlcYS2A+urwI6yp7AlDRJYQteT/ACutnjCuyYmszjEdotCZomHSma5PIVMM+lYZGD5TGvAvSpqpy8Zrrb6c3lZvqzeDGW+SlW5FO7m5m5ObhTFawxVfbLNss2jzbLKQmKPp7fof/8QAFhEBAQEAAAAAAAAAAAAAAAAAAUAA/9oACAEDAQE/AZDF/wD/xAAWEQEBAQAAAAAAAAAAAAAAAAABQAD/2gAIAQIBAT8Bkc3/AP/EACwQAAEEAAQDCAIDAAAAAAAAAAEAAgMREiExQRA0UQQTIjJCYZGSIFAjUnH/2gAIAQEABj8C/XAOkbZ9+AbeZ0WR4StLnBrBlR3Ub3ebf8A+RkmZ82I0u0yYnDuzhZR0pMedxxlc5xcWk6rs02Il0jgH59VN2nEcTXeHPYIHqnlry0gbJuputFNga5sjRdONqDxOPeZOs8KMVqSofWV5NdiUyLXAD4idFhwgDrevB8kQBxjdMjGw/ARPzF2XqYR1glz/AMKawbCuGSkZKyg4ndQxvrBEbvr0UkIru3uu+ipOZG2yfdMrwuGo6qV0nhxMwAKIygDu+m/GSxq9U3L3UYDbbhNlFuMOj9N6jhiju7Gi9X1Wj/ovLL9FlHL9E4NilxV/VNDoZrrouXl+Fy8vwuWl+Fy0qax/Z5S5ctKuWlXLSrlpV/ICHEk0f3X/xAAmEAEAAgIBAwMEAwAAAAAAAAABABEhMVEQQWGB0fEgMFBxkbHh/9oACAEBAAE/IfxthuHUJQdCFG8cy1oaw10Esowsu83RivJGvoJ44bZF8XG1biFBRa+csXfDXoLQUvuTKMV8ImDIOD+niUd1U0s1U8bhlV21cWMm4vljSztng6dwVfNJbV30alB9KZh9IVN3VwZEozFmZe0p7e0srpTgwRVTzBdXueXv1dNR7wChMg3qEklyXtU/1NbBdCRot7EpKaYthmpkhe2POpnIdkAxoKgWD1mlTbXmQaHa4CZSE3W231h1A4tvz1tiLEguonu7S2SlbNrzOB1v4F9GuBupeLzKaLv+0+dTyXql236pnvsIRYIGSzGoi+NRQDTwQJMu2jmfAE+GPeVf5e8+EJt4EMhf2qcH5D//2gAMAwEAAgADAAAAEPPPPPPPPPPNPPK1+J/11xjH/Mv/AB1yxzyxxzzzzzzzzzzzzzzzzzz/xAAiEQABAwMDBQAAAAAAAAAAAAAAARFBECExMEDhUWGBofD/2gAIAQMBAT8Q1kpP3fgTAjWfqJD+ffBFzBBBSDFLbn//xAAiEQAAAwcFAAAAAAAAAAAAAAAAATEQESFBYeHwMEBRgaH/2gAIAQIBAT8Q1TBqyWUuDWAN8XcA1h15cTOCjYS5QT3n/8QAJxABAQACAgEEAQMFAAAAAAAAAREAITFBYRBRcYHRUMHwIDCh4fH/2gAIAQEAAT8Q/TUFQHlwerFiq8aykt1g/wAT2Qc4ei00WPt6A1D0kLx5mudYnArU7BP3L/Qkh0qDgHq+phTK7kCgOSnN0GFlJl7pv0dNRDkPJj29R9oFDXxiW+JJlScCpJgxF4oMCuDd85oWaX5LhQhDGs63kiKJQJN7NmL7xN1EColvHthgQEmHGB4b7ehsOwVX0OQ7eQgzxiFG4Ro+TNlK8CmhZ0mavTzgu116HWNbr0eR4xapkvY1far6hSUU0+2WEVNSAAI8GC+y41g87ECTu5QeYXuHpKTnJK+1w1vAO9Ka8ZSWWzWU06lr5Mh1salAYd1P84Y8MDwY3Gesa73hsx6JAR0IXFmVF5FENWjXjHpSuumadE6fXmQTdj3jvVV3T7h24AcdipKrtcfxJrvzuwdd+jRmss8T4ypVR0/7Zc0vx+HG0PiZ3T6axw+sYiPW8fe8tqhvdxQDb2n84tKfB/OCX+J94EmqjL981IBCcp5vs4OHL7f7MFcU8wfrIZn835xLzrQjQfr+ygkSmf8AGwAIE/T/AP/Z"]
math
multiple-choice
88
下面的3个立体图形,从()看到的形状是完全相同的。
上面
前面
后面
左面
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCABBAWsDASIAAhEBAxEB/8QAGgABAQEAAwEAAAAAAAAAAAAAAAUEAgMGAf/EABQBAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhADEAAAAffgfEc1fOP0UPL+mOYAAAPmD5xOXHlPNlWPYAAAPmDtynZx5zzh6ODUNSf8KKbyKCbyKCfpO8AB8xmzBx4lQHj/AEvlrRpMRo7vn06tkegUQT6E+gIdzz5y25NJyyzrBz6+yeaq8iuY9GbEWpKafaE71BOw35586LE86O+gInbm1FUAGLP20Cdiu4B8ojxPsvJetOeChPKAPO0ZN80Alce+gSMnop4+UR5H1XlPRmyHUiGyvl1GPv6NB2Sa0ky+g85SKM/5nLM9mLKcJ9DPYPoAJ9Drxm/A4FNPEO1t7Sf1VROURi2fQBM5UROw3xP+UR5q3qGbn3D59DNlpifiujo7wAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//xAArEAABBAECBQQCAgMAAAAAAAAEAAECAxQQExEkMzQ1BRIgMhUwITEjQGD/2gAIAQEAAQUC+DmDxfNHTnDN+t7LJy5tO5TRDInf+l5SuliqQ7RaiVmb/oWkcbWJhFsuKKnkiR+v6C3n7I0kRjtlKe7IkTr/ADK/gSsKjbw6USPXXOPe2EVVPmjrOGZmOHdZo6zhuOaOs0dVWwuh8x+vo3hp2eyO6Qt0hQJvsbdIUybq4UWb1GhP96WeRosau32ESW0QoRJtW0QpxurgFbbZoV2cOmjftba9RVd8K2yopiWvfKirDmZV3QrbLipkb69PZo1fGdk3lzaE93v097R9HpiVGPExTcq27iWuJajKV7g9joT/AHpfL2+oRB4yxEbX/igPJ4Y0k8XYwPrIvsoepBtD8kGijh7ZUxk3qOgXZKzvNG7oH6fAucoDwoIhHbJVDEtbza5tQhw9Jh9FHyGlH1B7DQ2uNr/jRV+NFVANGRh0rDpUfFQ6as8gH1kX2cOmjftHyGgXZKzvNOLRIDhKNXwM7bQfr6N4aH0UfIaVO6pr2adCOrpR3GkPEQvq29+pWWe71GmlqYors4dNG/bhZIznFziorMqq5tTrMe3m1zapEnvt8TO20H62gkMkJhVirCbcxVioceA8dS5NCWaOs0dUmUNfmjrNHQNL3CMPSzbFSjVCGt8HsHjYQ0d0hXsTfKqqNUP2zhG2GEOsIdfjxmlhDrBHVdcaq/8Alf/EABQRAQAAAAAAAAAAAAAAAAAAAGD/2gAIAQMBAT8BZ//EABQRAQAAAAAAAAAAAAAAAAAAAGD/2gAIAQIBAT8BZ//EAEQQAAECAgQGDgkCBgMAAAAAAAEAAgMREBIxMwQTIXFzoSIyNEFCQ1FykpOxwcLRICMwYYGCorLhFGJAUlNgY6N0hJH/2gAIAQEABj8C9AjGK81FTMWXw9mRADclrnWLidaJJgADfyqIHtAqnJ7/AGJZDMmjbPHYFfx+kiThEYAb9dM2cTFuByPP8C6CGxKrduWNJ+CkIMYDRFXUbqiokTi6hLB8LfZMZDdVL3VayDWx4YA3sV+VuhnVflGDFiBzWtDsjZcvksI+X2EYi2oU3I+z+o5cPrHeawerWyxMs3k8EnuUHM5Se+RV5qKvNRW3+kq81FSxn0lXmoq81FVobpj2GF6XwNpH/H8KaAKzzY1bm+sLc3+wKbcF2PLXW5vrCruweQ56ZElKsJypgaUd9MTRM7XLCCf2yA38injgyfBDZyW6foCm3CZQ951QbJbp/wBYRc7Csg/xhRRFO1OTJRH0Z7E3NRg2l8LlBLWlzpOsE+RXccuNpxZyq6jdUUHGHGxQ2oxZy+9Xcfqig1sKLXdZOGVdxyTa7FHKrqP1RRZDrMA25IkcyiAWCIfSqQQC4Wk2BcRrWFV5Vsbwea2lo3zAyD5VWqwS51prnyW0gdM+SMEshSDQ4iscur3K7g9M+S2kHpnyVeJKbXFoAsEjJQeYKYGlHfS/fJhsAA38rljXxHiIbajsgV/H6xRGQ40YkNm6b8g9yB/UxrPd5LdUfV5JzHRHvDWNcK29OfksIzjsoj6N3Yh69ti3Q1YOIT8Y4RLG80qC552TmuzCymFmogZnd1OFaQfY1RdIfRJYZOmBOVkyqrY7JaP8rdDOq/KwkB0J3rMpII4LVxGtcRrRccrjAt+VNzURNE3tdS/SxPvKg8wU4Ox+1MXl/aVtHdY7zW0d1jvNYRsXbFwaNmbJArh9Y7zXD6x3mp75gzP/AIm5qImiZ2uWEZx2UR9GexNzUYNpfC5QOa/uphZqIGZ3dThbiZAPt+RqcXCVZxcAfR+Zv3CnC9L4G0/9fwoZqImib2upcxgm8xYn3FMhznVEp04NpfC6nCtIPtFLdB4U31rLP5les6SeIUnuMJspH3uXK47Y8tEfRnsTc1GDaXwuUMwqs2tNafvXE61xOtCH6jY2WriNahxBiNjPlXE61xOtRIsctM3Vg1tlgHd6XzN+4U4XpR9jaYUIbTFgPd8LFfRukr+P0lXx8edh2Sv4/SV/G6SIbMkkkuNp9DB3O2oiZeiVeairzUVhM32vBs/aFeairzUVAxg9UGN2J4X4UhCZLmq6Z0UarGtnyCmIwWuaQgP031hbm+sKCBBqVXzLi6cshHeqrfieX2xY8TaVd6yrvWVWxeXnFXesq71psNgk1uQD+1v/xAAqEAEAAQIFAwMFAQEBAAAAAAABEQAhEDFBUfBhodEgMHGBkbHB4fFAYP/aAAgBAQABPyH0IUyWYFri8VAwAZqihEk9lp4qcMbtjfDmmqVMCkn0pE2Js+w0xR0ZieEumWeXJ/NDWCVZCrBaLmLEXdufH/De00X0QYJlZL9aOmFgLfangv4pUl+cND/R+8sj49m3jahMF8vtRcCgFhRoSApWXqovdmKd/wDh7CUCBxGEs0QgiMAH7rp1mwhgpDJK6iue6UXEhMRNcXipkGIXn+VBTP6+CubxUlqOGlcnirg8VQTTxJv69K7B6EEso7Wb4OuFvpaL0jyhv8dMLMob03oSUTk0x5zb0AMmbcZhaCg806D9xzpqyasPBOnXXulUiD1DQyjoIJN8OZ3V2jDvVTQYALDdBTG6Jedb5VPxe1P0JIPPdb7H1+AuT2qZLlYfVp2ZuaV75VwH9Uqn1CxWyazDn9qEIAQNPU7/AFQr1enG2jp3ToxlayYFJYLEv2Nh0wpZXTjpqA7Lra0aMOA8de4SET8sN9mN5x5zm2IQw5uZUnrC0XQPOtR/uqBD5FbE/Jedc2WNtH+pVOyUZci5Bp+WIzBG3kUAswDWua0RNFilyfylTxpsPoDz7M/AOb6ekPbBcrAmPrRMEdd3Vq0pYtG5DtH0wiVBdOctDQV2T2W2GgLLcAj7OIgRJrqC+WTPda6dZ0qy8rUG6zWu0Y8eP2YcTurtGHcPZnZ+iCBVZFDMdeAHfb49OdjnYMXJo7d6W0YiODka7sUZtjk19mqn2GnSi0V/iqBqQ5AzVdqYkzZ3X6MOZ3V2jDv1TO1mrAQjL4xayOLFN5hJuDFEnOMd7ENykEkM69n4yenO9WIVmJ9uFnX8VDYOOdK5P5rKzQQZwmNOuA8P81LLNsoq/v0TBEtRMU8Xiri8VN0MRdlBt0a5vFXN4qdnAgM0GZw55UaDGQCv81TacEKBOOUKX5SkxeAYXh4GGMGkpeRuma3feODnBrm81cnmoUClnqd65vNXE6HGaBoe3FRUYRUR/wCG/9oADAMBAAIAAwAAABChiQAAAABSygAABDywAgBTzwigADghAChChyiCQRDCQCTzxjgAjABgBDRAgAhACQhAxzzyCwjADBABDBACCDBAAAABTzzzzzzzzzzzzzzzzzzzzzzzzz//xAAUEQEAAAAAAAAAAAAAAAAAAABg/9oACAEDAQE/EGf/xAAUEQEAAAAAAAAAAAAAAAAAAABg/9oACAECAQE/EGf/xAApEAEBAAIBAwMEAwADAQAAAAABEQAhMUFRYRBx8CCBkaEw0eFQwfGx/9oACAEBAAE/EPRQKsxxiR9HiclBM8zIt4BHHupDCSUQT+EkqU9rnEc7YXcio6vBxzQN/PjDZxGAm1V0GHShhbQXYcWO4lBp/A4XEE2nKHKPX7HBycHxa4Vvw2AG1ZJ74L2uzKSXlo5m2WD1EePpPrT7ecKUUxkCbtQ1Qgi0NxIGAOIHDNOPkNkrrxpCXc3smnljrSaa/hKQ3ubCYpt0tpWR2CkU5ADgOnOj/MzaJmAPp6BQ4reQRA2ip4N/Wnf6VzqGQMInCOCIQgATgD00mQyhxwUSiBjEzqud/vP85AZIUpeUBhzzzHt6SOCCUgAOuIwXsX8PoErbWWCz3mn37Z3f2Ma6aS5Hwe30RyJ0Tt9L6KdR9F79RghpFYCSqug6rwFUEHqXz/V8uJlY6ngO/GEd4EPXV02pp4SJznHefy4zUKO6qUAAFVZA5YYY+CotFmvo9GPpWtdJlXqB1X/WAuc88TPhzLuwvQyYp7lL/vJPYNyurdOkI6k1MB82zb/phdIK0VWAF2qkDawME47qFQRq7rLFSsF9Iny3b1TwFLs0pbENe9muQv3V9GFaHEANABqTHUfu5gjTIBOoqg9ze2wMHRb2zbjwAgCUJUKaN1OOQ5Me00r9A1ACBi/H3MwVEnJQwSECxoTk0A2lGgTX0ps/FwBnC5LFEm1NmmtqUMFKmzvz/HbCbe83by74nq4KkBV0rwwLV7eUq5+B1SUAalYNcu1Vp7G2W8mw6zK0PIPgHSiYQI0DpPnpjovPuceWZ0vqI9dvYEgCrDqNqlnj5/n0Tjj0Hm6MM1H2FXoCuhx6drwEnDXUFb5aIEnZ0l4PbXjNHCqg2DQA4WA15DCSCjT0rx78imh5y8tJiq45kC8gxy5e3uvTc3Xz+8VSBlegYBVoBqIe2f8Amf0ygAjU1tMJsLxblVMF6TUvFatrvRAMM+R5fT53t/Csuck5lEuwqFHkzflTbKKotKrVzl7pzWW5RVToSMJ3PXPlP74k4XSa5+iiMgdAv3z5rtnR9Lp6mPlO3rvsbpYptDyDpw6j+cygn5szowrmnedNX384bskiiW8fEf5nUzq41A9VVXyufP8AYx+geaFwTdfze2T2yzWdiwd3/WK7rq95yynfLnyPL6fO9vVVCsAA2Pj5ziKAQI0SHa61sEHd+qZ0MeH6L36PCGL/AOGdHHr65p6LswdB3OcGt9dhtxyZgkYJZ09unr+69B9QtmcD4RgRSTV4ffL8fJ85HK6CxArAJeuybTDk6lJpmjocB0O6q+kT57t6mwXropzd3NT2cO73+WJ0frr+8YVFsHUrojVz5T++RQqsCSWx2BxrA3/6/wB8nXr7YIiSnARtkbBsq1ZiiH9E+rZ0x4x+vVrCf5iTpl7L/wDSYJhgAGuNhykFC0KOQfBf5w5/L+Mvu5AdZBFlYaq1/apevPq+yM6BiLB1UPdO+c2BbRzyagJ93kp0X8T29BGH9DEQKhZbu0dgm23QhVyAwDWiayvy/wBYFYCtBUGG5X8uBPSHW9eKAv5ytxY80J2z4f6sUTIAJdEVogde3JBCryPHW6rDwABAh/AfTMkG1GInHkHAiYEcAjXbE1AqaLAPtkiYChPh++FyTwAEOeffJ5yecnnJ5yecnnJ5yecnnJ6IzlcmRrw3ACGjJ5yecnnJ5yecnnJ5yecnnJ5yecnnJ5yecnnJ5yecnn/lP//Z"]
math
multiple-choice
89
图中直线m和n互相平行,线段AB和CD的关系是( )。
互相平行    
互相垂直    
相交    
null
A
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABfAIsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKx5teiTxTa6HHG7TSQyTSSc7UVdvHuxLL9B9aualc3FtabrW3eaZ2CKFGQuf4j7DrXNabpWoWPj/e5vLmxXTWT7TMF2+c8oZgMY7Afl1oA7GiiigArEPiNJrS5vLCzmu7O33ZmjIAk29fLz98cEZHBxxmpfFEN9c+FdVg0zP26S1kSHBwdxUjj3qPw/qGlyaNYW1ivlKkCItoVIeEAY2sp5GMd/SgDVtZ/tVpDOEeMSoH2OMEZGcGpaKKACiiigAoopk00VvE0s8qRRr953YKB9SaAH0VWk1CyiDmS8t02OI33SqNrHop54J9Ks0AMlRpIXRZGiZlIEiAblPqMgjI9wRWKNB1LP8AyNusn/tlZ/8Axit2igDE/sLUf+hr1j/v1af/ABimjw9ejOPFOtYPb/Rz+vk5rdooA58+GrojnxTrn/fcA/8AaVZmj6VqN/caks/ifWdttdtDGFMK/KAOv7vk+9dnWF4d/wCPnWv+wg/8hQAh8N3BAB8Sa0Rkf8tIh0IPaP2x9CaZ/wAIp85c6/rpJOT/AKZx+W3FdDRQBz3/AAia99d10/8Ab83+Fci9vpem+LtXsdU8X6vaxrFDJCs2pspO/dvwTzj5V6dOcYr0+uZ0+3hm8deITLCjkQWeCyg9pKAMPwr4UXVfCumX93r/AIkM88CyORq84BJ9t1bZ8EWpXH9t+I/r/a8//wAVXTABQAAABwAKWgDlv+EFtf8AoOeJP/BxP/8AFUsfgWzQktrPiSTPZtauBj8nFdRRQBzQ8E2A/wCYn4g/8Hd1/wDHKXxRokupeGodBtvOaG5nhinleVndIVYO5LNkkkLtye7CukooA84uPB9wj3UkNiSt7qlunl7v9VaxMDnOerFOT1wetej0UUAFFFFABRRRQAVheHf+PrWv+v8Af+QrdrC8O/8AH1rX/X+/8hQBu0UUUAFc/pv/ACO2v/8AXvafylroK57Sz/xXHiEf9O9n/KWgDoaKKKACiiigAooooAKKKKACiiigAooooAKw/D2PtOs/9f7/AMhW5WD4bIN1rmDkjUHz7cCgDeooooAK57S/+R48Q/8AXvZ/ylroa53S/wDkefEXP/LvZ/yloA6KiiigAooooAKKKKACiiigBCQoJJAA5JNQ/bLX/n5h/wC/gqSWJJonilRXjdSrKwyGB4INY58G+Gj10HTv/Adf8KANT7Za/wDPzD/32KPttr/z8w/9/BWZ/wAIf4bzn+wtPz/17r/hTf8AhDPDJz/xIdO5/wCndf8ACgDV+2Wv/PzD/wB9iuK03S9M1LU9cmn1CaI/b2wIrwoOFHOAa6Q+GPD8UeRoumKFU4LWqEAflXC6bdwznRJ5fDvh2ZdUvXthDb2arKIgHPnAknKgLk8fxD1oA7HwpewL4ZtFm1FJ2UuglklBZwHYAk9+AK2DqNiDg3tuD/11X/Gqg8NaCDkaJpoPr9lT/Cg+G9CPXRdO/wDAVP8ACgC1/aVj/wA/tt/39X/Gud0vULEeOPET/a7cKYLMZMoweJD/AFFbP/COaH/0BtO/8BU/wrl4rnTrjQr7WYvCWmS2VrPOg2eWWljidlaRcpgg7SQM/jQB1sus6XAjPLqNoiqASWmUAZ6d6gXxNoLHA1rT/wDwJT/Gm2uj6BeWdvcw6Tp7QyRq8RFsmNpGRjj3qwND0kdNLsh9LdP8KAI/+Ek0LOP7a07/AMCk/wAaRvEmhKpY6zp+AQM/aU/xqb+xNK/6Bll/4Dr/AIUDRtKHTTbP/vwv+FAFOTxf4bhYrJr2moQcc3SDn86l1PxFp2laKuryzebZMyKskJDBt7BVxzzyR0qx/ZGmAYGnWn/fhf8ACqmsaBDrB02KUotnaXK3DwbOJCoOwemA2D+FAEmla9aaxc3kFsswNqV3NIu0MGGQRznGPUCtSsjRNIk0yXUpp5Y5Zr27acuibSFwAqnnnAGK16ACiiigAooooAyvEv29vDt9HplvJPeyxGOJY2RSCRjOXIGB1rnNC8O3Nr4h0q6t9JGlWthYPazs7R77snZtBVCwAUqTknPNdxRQAUUUUAZviC8ubHQb24sreW4vFibyIokLMz4+Xge9c3bWVwfBEPhjSLSdG+xi1lu7iBoY0yuHba4DMTliABjJ6iu2ooArafZx6dptrYxZ8q2hSFM/3VAA/QVZoooAKKKKACiiigAooooA/9k="]
math
multiple-choice
90
下面三幅图的阴影部分的面积相比较,()的面积大.
图(1)大
图(2)大
图(3)大
同样大
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCABvAVEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKbIxWMkDJ7cZrz+++N3w0tL6Sym8UWfnwyNFKquDtdeCDz6igD0KivOv+F5/DD/oaLX/vof40f8Lz+GH/AENFr/30P8aAPRaK85b46fDDoPFNpknjLD/GoT8e/hYt0tu/i6wEjKWCbxuIBAz196APTKK86/4Xn8MP+hotf++h/jR/wvP4Yf8AQ0Wv/fQ/xoA9Forzlvjp8MP+hotf++h/jSN8dfhgBk+KbQfVh/jQB6PRUNvOJoVmjZWidcqwPUdqmFABRRSOwVckj8aAForg/E3xi+Huga7daRqviSzt7uyfZcRM4zG20Ng8+jCsex/aK+Dt9dfZrDx/ol5Nz+6t7pHc/QA9u9AHqlFeXr+0H8I3aFU8baSxuVLQ7blf3gGMlRnkc0kf7QnwlfYV8aaWyzA+UVnXLEegzzQB6jRXl8P7QnwjlWMJ440qQysUjKTKRIw6qvPJGDkexoj/AGhPhG+0p430txI5jj2zKdzjqo55IwePagD1CivMF/aE+EbeWR400zEkvlITOo3P6Dn14pYf2g/hFLkx+N9JbEpiyLlcbxj5OvXkce9AHp1FeV2f7Rvwau7r7La/EDRZ7jJHkR3SGTjr8uc11fgH4g+FPGc1zF4c1uz1CSzCm4SJwWTdnbkZ9jQB1NFIpyuRS0AFFDZ7DNQtKVUF9q84OeB+FAE1FRrLuzj+HkihnIP4elAElFRiQ78Ecdsf1oWUMu5WXHOSDwKAJKKYrllyFz6YPWmeax3EAbRznHbuKAJqKhjlZn+7x346fjR5rHAQbs89O3p9aAJqKjhl3tgY6HOOcVJQAUUUUAFFFFABRRRQAkg3LivKv2ZtPs5vBF80tnBIx1e93PJGrEn7RJ7elerV5n+y9/yIt9/2Gbz/ANHvQB6ANK00DH9n2n/fhf8ACj+ytN/6B9p/34X/AAq5RkUAUZtL0vZhtPtOTx+5X/CvHfF2ueGbf9rXw1oTWy+ZJpVxA6JaqYxM7JIgY9jtRq9qvpY4bSSWUgRxqWYnsBXy3r1yNXvtX+J1rPfG8sNTE2nFI+Ht438oMpz0MbnHsTQB9Of2dpm7H9nWv18hf8KcumaaRkafa/8Afhf8Kg8Nata63oNtqtm2YLqESJ+IzitKP7o+lAFRtK03/oHWn/fhf8K4X9pTTdPj+AvixksLVWGlS4ZYVBHHrXo3euD/AGmv+SCeLP8AsFS/yoA6vw+D/YNmdoI8lce3A7VoLkKAxye5qj4e/wCRds/+uCfyq/QAUjDK4paKAPK/g1Y2l346+Ixms7eRv+ElVS0sYclfsdtxk9O9a2qfCDwLdszw+H7OynZi63VpGI5Y2PcHB/lVL4F/8jz8R/8AsZV/9I7evS6APCNV+HfiPwPdLe2V1ceJNFiQxQ2PlIt3ZqeSVk2kOOBxtHTrS6DqOg+IrPTNV021uI4H27YoLZB5eFPCgj73Y17ddMySA+WGB4xnk+teYfE/wfe2Oqf8Jl4enkgihJl1TTUGPtCgZMi46SDke4Y80AZTDT7m8sZE0y5tduoSq8MNuh8n5X+ZOPvnuPc0TJp832GVbK4t8TTLJ5duhVcFsOvH+sPce5pula9Y65Z6RrFgbyG1vLgvEkA5jQoxDr0y5GNw9zVbxFrcqW+l2+iJKupXd1NBa20chRM7mBl4HLDlnzj+IZNAEHibU7EG1srHQri51NmHlWVuqIzgNxJu2nD55PFdFY/Ce48RKsvjC/CQO4mOlWMSRqG7GVyDvbgcgLXSfC3wXD4XSW9u5Ptus6gfMvLkR7VzgDCjnA4/PNdjajEj8HnknHU0Ac1ovw28E6Nex3el+GdNt541KiVYBuwev54Fc74Lt4bf9o7xdHbxLCp06wbZGoVSdsnPFenV5r4T/wCTlfFv/YMsP/QXoA9JX7tLQvSigBHBKkDvXiX7Xtt/aEnhnTJbu8t4bqefzDbT+WW2qhHY9ya9tb64rxn9qgga54Q4z+/uuv8AuJQBx2ofDPwWumz2saeLE+yQLNFcNfYLu2ch/l+UcDFZviTwV4B01o9AtrbxRc6mQXtIo77FzNJ/dY7TiPnriuy8Tapcarq3/CD+HpLj+2dStUP2y4jyBCM7t4/urkYGecn0r0jwB4L0/wAK2+6PddahKg+1XsvzzXB9WY0AeE6D+zVr2v6TZx6z4g1DwyiyebLDZ3xuLhwc/KZcKBjP92vSfC/7OvgfRtKFm93rupEHPnX+oeZJn/eCj+VesW5J7f4fhUtAHknif9nnwTrGjtYpdazYOxyLm1visqewJB/lXneqfsy3+gx3C6B4n1DW7eS5WSK21O9KXCYAyonAxyR/c719P1DMAxb5d3oD0zQB8seF/A/gl44ND1638UWmuyo/2+1e+3vG69PIbaNwOeuO1aem/C/wYukrFJD4pma+jTzpvt25omGcGI7Rk8nNe5+OvCOk+KbWGPUYNtxbktaXUX+utZP76N2PA/KvKdGu38N61F4F8QXE15qMdm8lnqSQ7d0ClQZIxk4Y7l3DPpyaALv7LOnx6F4+8W6JZXOoNYoltLHFe3HmsjFTnnA9a9wrxj9nXH/C2PGBRdimC1IGclvl6k+tez0AFFFFABRRRQAUUUUAFeZ/svf8iLff9hm8/wDR716W5AXJO33rzL9l4sPAt9uAwdYvNuDk/wCvfrQB6dUE4BmyxOMdOn5+tYHiDxx4X0SPztT8QWNuhk2KPPUszf3FUHczHPRQTXmXif4oa34yaXR/C2l6hpWmvdi0uNZubV1dVPVoEIyW9MigDW+PHii8vpl8DaLM1u18MapqKs2LKLuoK5PmHsPQNWVoaWOjaK+nQstxawwpEkM8BVJYwAokYAHDAEYU+tN8G2uneGtPeygv77UokuyokurdpHnbn97JJgsXXspP8R4rQhvoYI713vLi9EjKdktmV3HIxI2F4YdlPr0oAq/B7WT4K8UyeB7y5mutFubh5tLvpwVeKWUGVoJM8KMs2zB6BRx0r2yFt0YYd68Y1o6ffW+qwX93dX8dz5SbJLAxtISFXzN20FHXOVwQeBWXoPjvxF8No5NLvLbVPFHhy1lCW995LtfQqcErKpGTtJODySAOtAHvveuD/aa/5IJ4s/7BUv8AKtDwv8Q/CWvQ5s9fsvPChpLaV/Klhz0DI+GU/UVmftJypL8A/FbI6lDpMpDBgQeKAOw8Pf8AIu2f/XBP5Vfqh4eGNBtATx5Cfyq+OlABRRRQB5p8C/8AkefiP/2Mq/8ApHb16XXmnwL/AOR5+I//AGMq/wDpHb16XQAVFeLvh2f3uOen41LTZvu9aAPn68hn8KfHC40B9RuoNJ1CT+0dMTYZBa/IRKY/7mXY8DHBNb/wBt7nxD4m1rxZqNnHFa2ty9lo4X/VtGP9ZMF7M0m/P1NU/wBst5NJ8N6X4qS4a1g0u5eOaeD/AFmZ4ngRR6jzJUOD6Z7V6F8FdIl0X4WaHYXBVporGPznCgb2K5Yn3JJJ+tAHWR8Rge1OpF+6KWgArzXwn/ycr4t/7Blh/wCgvXpVea+E/wDk5Xxb/wBgyw/9BegD0pelFC9KKAGyYK9PpXhv7ZV/DpEfh/VJ1Ro7JL2Yqw+8RGhx+le5S52cV4P+2Rpd/rviT4c6LaWouYb/AF0w6jEcf8eh8sTLntlSeRyO1AHXfs46JeJ4VHinXJbibVtbAnf7Sfmto8fLCPYcn/gVelR/d6YqO1t4obWOFF2qiBQuegAqVRjpQAtFFFABRRRQBFc/w4HOeD71wnxy8LSa34Ua70u/k03VNKY3Vrdwg7wVBzEcfwN3HsK79lDLg1FdwRSwMsgO1hhsHtQB4V+x7rjeJPE2va41uLaS/wBPsZp7cJt8mQx5ZP8AgJJFe914P+y/pGpaB8dfido91CY7GG6t20tSc4gIbHPU/wAPJr3igAooooAKKKKACiiigBsgyuK+e/gd8MNP8ReH9T1KbXNat2m1e8Vo4Lsog/fuOAK+hW+7XmH7L+8eBb4A/wDMZvP/AEe9AHMw/BDVfDxkuNA1HT9YleTzE/tuHzmtmByrwkYAf3bI4FVND8XXemXsOneN7TVNI1C51QC3jkjRoGbgefG6rjPohJ+le+Zx1ZcVk+LdD0zX9MktdStY7hHGF3DlPdT1BoA8ztLxY3Y3V1f3CyXcjRRvbiME9puFGGH909cnjim2t7HHHePdXl5eLNhjG8ITe+R+8bCgqRydpxn0rP1eKT4ceKoNJ1uSfUNB1STNldXkoUxXR52u4ABOM7QAOjda0rS+tUa+a4uV1CKcgqmAhmOeJP8AgPXHegCWS9iS5vluNSvrxZpbchHgCfaDhcMSFG3acccZxWJqXi+KDxNqWn6bDqviLVPtEe7ToIQnmnC48xyuEVeDzgkDrzUU89/4q8fXHg7QNQ86FjC+tXqR5aFfKDIcj7jk7SM8c9DXr3gnwjpXhfTvs1hAzSSZ866mw805/vMwA5P0oA8jt/g14u8U3Fxf+J77TNJa8xIFsbcC6Q5+7LKvyvgAYxUfxu+D1jonwT8QXg8Ta9dSWemyOqTXX7tiB0KgcivfogqSc+mMk1xP7TTD/hQviwZ/5hUv8qAOs8Nrt8O2eOcW6dfpWhWf4fZR4dsxn/lgn8q0Ac8igAooooA80+Bf/I8/Ef8A7GVf/SO3r0uvNPgX/wAjz8R/+xlX/wBI7evS6ACmTkhQOeT1Ap9MmbavJxz2oA8P/b88x/2eb6ONV3HULL5dw3EC6i+6O59vTNeueDyW8J6WB/z5RZwc87BnmvIf2nrmPWfFWgeFbe6Edxi4upy0e6JV8iWNCT/e3uhA9Oe1dn+zrfi5+Fem2c00jXmmp9lvFk+9vT5d2PRsbh6gigD0CP7gp1ImdozS0AFea+E/+TlfFv8A2DLD/wBBevSq818J/wDJyvi3/sGWH/oL0AelL0ooXpRQA2QhUJPQV5r8Xyf+FrfD3G7Jvrnp3BSPk16VN9zrjn8/avA/2z9QvtE1r4ea9bXTW9vpetteai0fLNbR+W0ij6qDQB78KKis547izjnQ/LIgYZ9CM1L1oAKKKKACiiigApG+7zSMyr95gKZdyIlrJIxO1FJO3rxzQB594F3f8NEeNi27/jysMA/9czXo1eBfso6nqGtfG34naxdXLTWt/d27WAPWKJQwC/qPyr32gAooooAKKKKACiiigAbpXmP7L/8AyI97/wBhm8/9HvXp1eZ/svAf8ILff9hm8/8AR70AejsFJpHj44/Kn4HpS0AYPxC8PWvijwndaTeR/wCuT924HzI45Ug9uRXh+m+K7uz8F6zP4ghhn1iykNpNpgXH2q4SURiUN/CN3OMcivoq6BaEqDjPQkZFfPXjbw1rUv7VOn6RDLAnh7Wiup6jY4yLrylwXJ7bZHTjv1oA9V+DHhqTw54RjN4u/Ur9mvL+YLhmlkYuyfRSxUewFdnGcxg8/jRtUnOOaUccCgBp+90zXC/tMDb8BvFnGf8AiVS/yrvFHNcL+0zx8BPFn/YKl/lQB1Xh0Z8P2vy/8sF/lWkvSqHh0f8AFO2Z/wCmCfyq/QAUUUUAeafAv/kefiP/ANjKv/pHb16XXmnwL/5Hn4j/APYyr/6R29ejsSADnd+lAElUfEmo2ulaLcajey+Vb28ZeRx1AAzx71FrmsWWkWcl7qN5Fa28YJZ5GwD9PU8dK8V1vxJJ8RtYsL9tW+x+G4ZN8FpJbM323+7LKp6KRnavPXJxigCj4RuG1vxk/wAQpdahjOu3aG1heAlrK1WFgjEZ+8wC5HYkjnrWt8OdR0vwV8QrnyUWLTfFVwZJtp4S8U7A+T0VwoOOxatRtUtjeWEttqK2UMOoSlYXtizQMVfLsR94HJwO2R6VS8RJpOuaXb6dc3ka2LXEzSRvalmtzlv32e+W+YDtkelAHtkJBiBBHPpTq8d+GXj6fQ9QXw54r1CN7bOzStRYttkToqykj5Wz068EV6xa3Hmwo6sH3LkNn5T+VAFqvNfCf/Jyvi3/ALBlh/6C9ejKTuyTyfQ5Fec+E/8Ak5Xxb/2DLD/0F6APSl6UUL0ooAbJ93n1rw/9saxj1RvDWlS8R3ZvYifrGg/rXuL/AHa8Z/asAOueD8j/AJb3Z/8AHEoA1f2d9bzoJ8G3lz5l5oOIoZs4F3F2cA8nuK9QhOYxjP414N4ziE2vp4w0PVYP+Em0e1jFpcvblI7+M53WrAA7RwPm569K7/4X/EfSPF2nvD5g0/WLX5b7T5sh4ZO4BPDj3FAHeUVDBIZHzggY5DHkH6VNQAUUVDI7K5xnbzk0APkwWANcD8dfFEOj+HF0i3dWv9X/ANHiXPMSEHdKR6Dj86v/ABG+IGh+DbNX1O6827myLWzhUtLOw7BR06jkkV5j4Te4vfEn/CceJr6CLxBfWpihiETMujRMQfLU4/ehsDJ4+6KAJ/2QdIh8PeKNe0K2k8+Oy06xi+0DpLtjwG+p6mvea8a/Z7If4teMHD7v3NtgmPaTkda9loAKKKKACiiigAooooAbI21CfyryPwToXxW8G2d9pul2XhW7tJdRlnhkubu4SQrI5c5CxkDG4/lXrrDKkVEoIXAB/OgDg/t/xm/6AXg7/wAD7n/43R9v+M3/AEAvB3/gfc//ABuu/wCaOaAPPJ7/AOMvl5bQ/BwA6n7dcn/2nXNX2g/GG6+I2m+LF0/wfH/ZthLYi1+23OHDujbz+76DZj15r1vxLcS2eg3l3Ef3kEDuo65IUkV4p4X1nxZFb/DTXE1vdD4wvEk1qKUbvNaS2llCRHGEUMo4GOlAHa/2n8ZdxUaF4Ozt4zf3PLZ5HEf1NOXUPjMy5GheDv8AwPuf/jdVdY1G+0X486XpcFw7WniO3kaeB3JETxqcMnoCF/X1r0qMYUAdvegDgft/xm/6AXg7/wAD7n/43WJ8RtN+MHivwPqnhy40vwjbRanbNA80d7cFkDdwDHg161zSMMrjAP1oAq6UkltpUNtIAWhiVSV6MQO1Xqi2fNux82Me1PXhQPSgB1NkYquQufpS5pso3RkCgDwzw744j8CfETx5Bqvh/Wpvt2uLcQS2toZEdPssC8Ee6msh/wBo/wAR6tdfYdL+FPijSGdjm/1O3QxKB2VUZmLHtkY96+hgpz0wrdQOtMkidpASM7SdpPUe4oA+VbXxXqGt6tZ6l4xg8TaqbqJibWfQYzbaeQRjKdGc5OCAcY610R+Jtt5lg1n4Y8W2MHOYn07zDaEDHznJ37s8Yzj2r6MVWC4K9PQ9aq+IrxdN0W61Fw221haVtvUhQTxQB8/w/E2B7qxay8N+K7OFbyQssuniQwNhgZHJJLqx6DnG4cDFNX4lwB9PNp4f8V2oju5+JdO3eWW3gyucncrkkqvONw4GK6CL4q+LY7OLWJfD9s+n3UcN0pJKsYptrRxw85eTa4LAZwQewrtNP8W36fEi28Nala5t9ZsRd2DKpDwgL8ySe4IagDyLXfHmk6rYQ2EvgzxQ1lJPsubW70pZhkN/r/mJGzvtHPB4qta/EjW/DkJbwpZ+JJIPtYjOnajpWYnXA/eI4yyp7DB46V9OKjbQFbGOPqKc6N0HrwfSgDwfwn+0heXuqR2mrfCXxlpse0hro20bQgjvgOWwc8cdq6H4P6vJ4k+NHinxHb6Vf2ljNY2cUTXcBjLsqvuwD9a9V8o8ZBPPY/407adwbnGDxQBKvK0tIvC4ozQAkn3a8W/a8e8tl8M6vbaNqOpw2c1z50djGHkG5EA4JHoa9pY5H41HIpdsYK88MO1AHzxrPxLt5LbU1Tw74ruLhrSJBNFpoUXAG791GCRtZc8txnI5NZHjDxXomvfPJ4a8WpqlqiyW2pWmneUQO0SAEYxxnpnA619N+UW3E7vmHr/hTlRhnqW9SaAPmTQ/jl8QPDRt4L3wxqniiBrXzppzpn2a5V8qPKVVAQsck5Y4+U8133hH9oC11XTjcap8P/FuiyqcGC6s1duuP+WbMPfrXruw9cck5wOledaj8TwmsX0OkaBc6rb6fP8AZXkjZYv9IAyylnIVVChvmbAJGAckUAZXir4/2GmaJJe6d4H8VatMjKBa21jtkOWx1cqPfrXDX/x38da7qCQ2fgzV/C1nPEXN5PYC4ntiM4V4xuQlscFSevavVm+Jdo2l6Lrws2XRtTuRZyTv96C4aUwqmB94GTC7hkd845rvGiDqpUlcH0/pQB8x+DfFmn6WsWp3mheLrrXLy3kE+o3Omq3kt2Rlyc7s8YyBjnFaWi/EaKKztEfwx4u82OIxW4Nip+w+vmDdiQHAx1xj3r6J8kkKSTgfwnmlaNgSRyffjHtxQB4z+yrd3WseNPFWuyaTqdjb3KWyxHUIvLeQhTkgdhXt1Rw9cnAbHQHtUlABRRRQAUUUUAFFFFAA2ccU35vT9adRQA35vT9aPm9P1p1FAEN1CLi3eGVdySKVYE9QeDXn0Pwh8Ordaa9yb2aHRbs3GlQGdgtmxyPkCEcYJA3ZwDXo9FAHMW/hSyj8YzeI5XuLi8dPLhaQcWqdwnHc8/8A1q6OMOEAIOR3yOakooAb83p+tHzen606igBvzen60fN6frTqKAG/N6frR83p+tOooAb83p+tHzen606igBvzen61R8RWQ1HRbnT5d4S6iaJtozwRitCigDxLR/ht8RbTXtOMWs6OdM0OCOzsLa6tnk2ogC+bww+cqMc8fN0rsrXwrqt58Uo/FWsSRqunWptLKKEH59wyzt+JNd3RQBGm7aODTvm9P1p1FADfm9P1o+b0/WnUUAN+b0/Wj5vT9adRQA35vT9aPm9P1p1FADfm9P1o+b0/WnUUARSqWXDKcZ7GvIE8KeM/D934i0/R9GsdYttWvGvcXDtHGyueU3bhhgWzycYBwK9kooA8Zb4d+Im8BeHfBDdLfVItVu73I2WojuvtCwIP4s7Qnc4OfevYow4jA27fbNSUUAN+b0/WkbeFyFz7Zp9FAENsGVsMpG4FuR09s1NRRQAUUUUAFFFFAH//2Q=="]
math
multiple-choice
91
如图()点在$\frac{1}{2}$和$\frac{6}{8}$之间。
$A$
$B$
$C$
$D$
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAAzANsDASIAAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEFAgMEBwb/xAAUAQEAAAAAAAAAAAAAAAAAAAAA/9oADAMBAAIQAxAAAAH78gkBEggkglEhEggkBEhEggkAGPF3cJtz09Bx9OYwp7qoLavs6w29dXbHD2ZDCntqgude6Tn254FPcfP3xnydvGdOvfrNXnPpXjJ7hU20FXaSESODgvQq7WD5v6RIBWbO/EmYkjDYPnbPukiqtoEhHnXowAAAAAAAAAAAAAA//8QAJRAAAQQCAgEDBQAAAAAAAAAAAwACBBMBEQUSECA1UBQiJDI0/9oACAEBAAEFAvmM5xhGMOlhh9LhJ5h3XCVwtQ54DluEpkwIYseWEoLhIhR23CVwlF5COY9wkQw6xGHVcJSeQAKRcJXCTCjvuEiSgiYKWA6lcvOHM1tFyweROGXHRqrYujV0YoIouV0apzBfSjyMGejFW1dGolQhiAwOOjV0aq2pzW4a7AjsHWQfRqa5rpPRqIAZWDAIKne4KRjUqI3O/Mh3243HnrkP4st/K8zxONDHJY9vl/6xyYZx0MWQRUz3LzJ4GUaUterXjS16denXnXwP/8QAFBEBAAAAAAAAAAAAAAAAAAAAUP/aAAgBAwEBPwFj/8QAFBEBAAAAAAAAAAAAAAAAAAAAUP/aAAgBAgEBPwFj/8QALxAAAgECAwYEBgMBAAAAAAAAAQIAAxEyQZESISMxM1EEEBMgIkJQYXGBcnOx0f/aAAgBAQAGPwL6xvj2qLy7wcReXedRNZT4i55zqJrOomsqgPbf806iaxyXG8WFjEYOP2Z1E1lLiLrOoms6iayqFfPdedRNY3EXl3i8ReXedRNZSQvnlOoms6iayrxFyznUTWFmqLYfecOqrfuVkSvZVcgDZHfyVdgFn5CH4RcGxEwiYRMImESo9GnY7VjMIjF6Qde0pUfRCh8MwiYRMIhdwAo5w1qfhbbWWcwiYRMIhIURfFP4W+z2gdQLGYRHpenbZAN5hEKMgsZw6ar+J4n+1v8AfKhV+UXBlZ8ne49npjm+6C+GqN9hn5VBPDtSLMfmvkPY6JigOfb2H8TZsS/xWW33iU25jyq/wHsq1VqUbO5YXJ/59Z//xAAoEAACAQQBAwMEAwAAAAAAAAABEQAQITHxQSBRYUBxgTCRwdGhsfD/2gAIAQEAAT8h9aSoMUdQaOOjvUF1dCVV9IQkgAOTMgbcZ4LuM0WWmnK3xNFhERNrxnLKBgx4miwgdYnFmADwRxAzQZbSGWhmiwqeLxi3mWF2mqyx3txlyP7hmqx8olybwBcRw/Fmiy+ltLewmizki5NBXxQu+0v7F7QBLiEARuIG5EkQxgVksGa6aGayFV0+0RC42ayBCITw5huWMYveBX4JpJrIoyWSgnGUtAOH/BNZNJCgRA7QPYGyuge0bXEwVNZFz4Qy5rIWlzBQMvYE/wBnuof+i81+oOSF8A6LUiJesDmAcuR4Ac0uviSBj3EsIaAORyZx0XdCDA7+IJjB5W4MFSUww2JkFl+5hsr0zbopP36AyAkaRLoIGALoX0Apk4qroZOq9d//2gAMAwEAAgADAAAAENMOMMOMMMOMNMNNBHGADJEPFFDKPGNGMEMDBDIIAJMPPPPPPPPPPPPPPP/EABQRAQAAAAAAAAAAAAAAAAAAAFD/2gAIAQMBAT8QY//EABQRAQAAAAAAAAAAAAAAAAAAAFD/2gAIAQIBAT8QY//EACcQAQACAgAFBAIDAQAAAAAAAAEAESExQVFhcZEQsfDxocFAgdHh/9oACAEBAAE/EP5oBVAMqxWHnLiRCy3hBuXBWrLN1wlxqK0AZWFizPKXEgFLdHODFgpBLNnKXFoV0QtrJzJctApnAc2XLlbSyzfSCy5cNTY3ZKDzF3HCq6/MCbbkvdXefIv3GrSGKrVLzC7dj5Zh5ALfumA0LoOi7POYvheZdMwExIUDC63KBNcRbh8q949qbtkbzD5F7wiVAvlfmWjdExkAovUYWeD7ogNFVdp6wg4JeV7wQv4XeVbUz2AWnWAiUJZ90+RfuDUCyKulmFXwvMGuC0aDsZg5f5c8mZr+XGQLWtBtYwETYxSqazIFr2MeYzE7BYT6VFG83bKz9aFaKlqiF0eQZw4xwHc+nR7woKWQWP8AcIOmDGF09alJ7aKvL1jiH/PRvkbBgJiiSoQLeuG9Qptl5EXK/GmH9aKlo1ThFX+hFKxUbBFlYbhDUF/zS/ytAo214hn9tAgNT4MMAjFiPqaWgqpDDKF/H+yWFiFKUFXDHotFxlVvwif4uLYHYoDhVqwCDZjMx0DQKrKpMiin5HE7VDAHqSVRbq435VA53SzjBivKVjx6cIL1qlw6SlZhFZR7GEcks1OCt1+Z0ipJQUMKNoeiwXFwIWBBF082VBUcjAFGCVKlRvtzwxELbXiVEICwAb4VKlSo2Mb5yvX51CjvxKlRsVKGqHtAolSuDD0JUqIYFFfzf//Z"]
math
multiple-choice
92
如图: 把一个圆柱切拼成一个近似的长方体, 下面说法正确的是()
表面积不变, 体积也不变
表面积变小了, 体积不变
表面积变大了,体积不变
表面积变大了, 体积也变大了
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAB9AQADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKKACiijI9aACik3KOrDpnrSFhuxkdaAHUUgIPGaNy/3h+dAC0UZooAKKKKACiiigAooozQAUUZHrTXYBWOegoAdRVezMjKxlUK4OAAf4exPpVjIx1oAKKMjrnr0oyPWgAopMj1FLkevWgAozSbhjORj1pHPyn6GgB1FFFABRRRQAUUUUAFQ3VzFBGzyuqKoySxwAPWs3x14g0zwv4Xu9d1e7jt7WzQu7yOFB9Bk9zXlOm6Fd/F+ztPE3ivU5rPw9eoJrDRbefy/tEBJZZLhxzymDtHI70AbXjD49fDzRde/sCz1Q67rvlNKul6Ohup2UegXOK880H9pPxZ478US6F8O/hZfNc2eBf/23cCz8tiNwUKeS2PSukm/Zy+GNlcNqHhFrrwrqjcG/0u9KS59CDndnPOeua4/xt8GfiH/o9xp3iTTPEF1bNKYLuX/RNQiwrBMzoWEhXcgwV7UAbHhv4rfG7W/HGpeF7XwB4bgvtDEcl9DJqpG5ZCdkiZ5KkKefUH0pbj4n/GLxH488RaB4D8HaK0HhiQ2d7LfaljdOVD8L1HcZNeT+KPGXxn8ErY+I/HHhF4dU0ZxGniSwCzxXtpwXt54kGSWVSyuQBkYHWsfwb+0v4O0HWPiVrmi3Es2qeKdUV9Iggt2kk2iFQxwePYe9AHtl78bPi1B4ybwpa/DLT9U1eO2kuLiDTtWV1tdqghZHPCs2TgHr2rQh/ac0PRdds9I+InhHxB4PubxWMX2yDzI2KjccFByMntXng1r45eKNDntvhX4Hbw6upbrifxJ4gnCXF020ZCxqNydc4PStL4Xfs/fEYSpq/jb4iQR6rJO7XU9jGs9xMrDIQyy8KP8Ad60AfQnw++IXg3xtaC48MeI9P1REJEgguFLxn/aTO5foRmunjfeoI79x3rwux/Zs8A2k19qem32pW3iC+uDcHV4bkrMHYluFHykEnOK6L4c+KNY0DxYvw98eanb3epXBeXSL5Rj+0LcdQw/56jgnHXrQB6sORkGms21SxHSlU5UHOeKMZGDzmgCK0uIrjcYyfkO1vY1NTFQL8q8d8AU8HjmgBruB3FcD4v8AjT8L/C+qT6brvjfSbG9gB8yCWYblIGcbc5ye3rWl8a/FNh4P+Ges6/fXSW62ls/lyN/z0I+UAdzk18ADd4n8SfD28m/s+80m58Sos11Lbt9o1C5J3vljxsBJUdjjFAH2HoH7THw3v9Y+y3T6rpFrMGNtqep6bJbWc+0EkrKwAIwCRz0ob9pr4ZS6tLa6XJrmsW9sV8zUdN0iW4tIwxxnzQOcd8dMV51+374iOseEb74c+FJbVZdNt/7Q1ufyFZbS3XlI1OMI7sQNv90ntXoXxK8Uad8NvglpGh6BZ2/9u61aQ2Gi2SwD95MYwu9lUfdQZJoAl1L9pHwE1/JY+GLTWvGEluivM3h3TnvIo8+rqCM8Hg+lJdftNfDG1toUuLzURq0h2nQhprtqcZx/FAvzAe+MVwP7EN3pnw7/AGbfEnibxHqsN19n1zUJr27CoolZGKEIOvzbSQPVsVyn7Kl1qfin9tjxV4q8WaXDZXU+kRXFpaXMA861hcZGSRgELj3oA9zX9or4dWtvJ/wkF5qPhu4RN6Wut2EtnNcD0jSQKWP+7mqVp+0r4DDLLquneJtC015Cg1XVdGmgtBwTuaQrgD0JNeOftBeJb/x5+0f8PGs4YpPC9l4oFpA0tsP9KlCZeYcfMqkcdiOa679vPxP/AGl4I1D4d+G541vILA32ryKgZbK2AJUDAwHc5wPrigDr5/2jLG6uILvw14C8Wa94fkeMSaxa2DLDh3K7kBGZFGMkj8a1tU/aD8A21wltptzqGuzPExaLRLB7xoXU8pIIg2xvY81m+KvGMngX9njw9Z6LbLda9q1hbWWk2kMYJkmeMDcAP4UGWJ/Gud/Y5ksPBPwO8Ta54pvIBNb6/ey6neT4UsVYABmPBG704GaAOx/4aP8AhdHo322fVLuG8EnltpTWMv29Rn7xt8b9o/vYxxXoHgDxb4f8ZeH49a8N6vb6lZSEKJIZA21uu1sfdYAjKnkd6+T/AIQ+Jrm6/bA1LxX4yso7Yat4ZmvNKtp1H7qBGUq7cYBKDv613P8AwTjuJ7/R/iDqMsElsl/4pe4ggP8AyzjeJCpx/CTnd+NAH0tRRRQAUUUUAFFFFAHhP/BRzzG/ZP8AEMUSO7SNECqnBI3dAfWvmv4f2HwG/wCEJ8Ow+IPEXjCx1lLdYJ9Ej1e5a6t5wcOBAo3KpKjAxwCa+mP+CiS7v2WNbGW/19ufkba2PMFfNv7Mfw80bxz8SfHt9Neahp+u6bqUa6dqUF3teFSvRhghx2waAG3Xw6l1+WR/BvgP4k2tvHcqpuda8Qz2gO7OCsbAOw+Uds1m6t8CovCuoz/8Jr8Z9bsry9nSTSdA0i9nvLuUEngorb2yVA3YwD1rsfiB4k+O1z8UNR+FKa2dXg0vTv7QuryxjWzv7q1Y7REpPy7w3931qz4f8c+EfhF4Eu9UuPhJr+k+IHIhg1C+Vb6W+kZyV8ycZLck4RfpQB5p8TvhX401a60rwz4Y/wCEw07UNa37NKv9eluJbq1UAtNdpu2xRZyNrYJLnHSvOrz4Capovj7X7K08RpGnhS+SO81AJ5YtTsDJPIy5IAY7SB0GCa+nPgZ8XvBuh3Go3+u6X4lj8R6lIs19rF5o8ohmP8IVVXMcaA4Cj0GawPgb44+H03x0+MjeKNR+0aNrMhI82GSRruEp842gZHbBoA4vxZ8MtTsJrPR/FfxB8XeD7iYOtlqV7rU11pepkAKCJtw8rJ9fWt5fg54u8OWC3HiK18deKrG3svNk1Dw34qe4ErE/eWM5Y8Z4XNXfhx8avBXhvxBqvwm1/wAOXmueFJJWOi+Zpkss0yE/NG6OMuF4ww+prR17xL41+H2m6xrnwu8FeIdO8N6JD9rubHX5IxaMofcRAud8ZIyD25wKAHeH/C37Pmo6oLW9+Jfj/wAJ6gkf2h7DxBr0+mtET0GZ9uTVTwzpPgjS/wBs/wCH9r4F8Y634ut7SSb7de3Wrfb7eBmQ7VWXoDwflB7H0r0dfBPi74r+FDqPj7xHb6XY3lkl3/YuiWw3BShwsty48wgcZUcVzHwB09NK8E/BVbaPi113ULdtjbUuGR7hVZuNxwBxmgD7PtyTGCSCcckU+mwjC4yT7mnUAFNp1NoA+V/27ry/+Ivjnwv8DPDVxi6vrtdT1d4rgqYbaMOCrDtnK9euK5/9ta1tfhn4N+Gsug28r22ha0n2S3XMjTMEAX5ccnNbHxD8G33ir9sDxZdad4w1nwvqVhpFtFa6jprJuKuoJQhuo+leX/tifDrxHoLeAX174na54lnvtejhimuyqx2gP3Sij+Ie9AHrGq+GpNE/Zd8b+KddlV/EHiWxk1DU7ho/9VlP3UG08gKoya1P2dZdU8eXX/C0Ne0xlt7W2FloNu42hLdFCm4UN3bbkH0rlPjV8KfGmk/AvxVNr/xe8Razp2n6RMLeye2gRC4yUMku0secA4I4zXQ/Bj4XXkPwz0WKx+K3iyDRrjTURtO8yJlLNGDhJHQui5cgfMKAPMP2axrXj3xVd+ALxJl8LaL4pvdV1JzuAlmE7slv0wwBO4jvnHarnxIvfFS/tleKPC/gq28u/wDEOj28EtxDEzpp0GBuYsOBuXua6X9nT4ORx/Cu61Dwx438WaPfajdXkN063iXAWVZmTzCroeeOWDA1ydj8LfGPhr9o5U0LxtPfatq+lyzarrmrIZ2Qb8fuk3qAc5xkGgDW/a0ns/hjpvwqn0+3mk/4R2/jQQx8s7bAoLd9xOPc11Pibw1rFh+zL428R+Mrof8ACUeKLF7zUZogzeUrR/u7cYHyqiqo+u6uf/as8OXaal8JPDt94jv9T1FdaWCTVmWOKZzs5dUK4Bzyc/hW78fPBHjK0+AfiqPVvizqOr6XZaVNiMWUUUkr4JAkdVy2AcA/nQBo/AkXfxE1bR/ijeQS29hpWmpY+G7O4jbcR5Y824Cn++uFB7DmuO8Mz3XxE8Yar8LbWK9g0XQ/Ed5qfiO42lkuS0oMcII4+6ASK674R/CK7svh3o9pofxI8X6fp95YB7qzN2sm3cg4jkMZKDthSAO1cr+zf8L7qKz8Ut4W+IfifSLyHxLd2t/mVLgXgjKkO29MsxDEE55INAFX9sDQtQm+OnwzsfDx8mPVt2jnbwFgJQsSR2CZz6YNe3/so2UWl698QrC3hWKG216KNFVcdLSIcD8K4Gz8EPoX7XHgW+1TXtU1q9ngv4431EqVRltidyqgUA5yOvWvTf2dz/xX/wATFw2F8Rx43df+PWLr1oA9WooooAKKKKACiiigDxf9v1Q/7LviIfLwIzlj0wwrwf8A4J07rvx98RbyRmKpewqUHyqeOrA9TX0B+3VCs/7MviRWQtiJSOPu/MOa+f8A/gncgTxZ8RHIDFtRjXcevCdj2oA6XwWRN/wUS8VLs8tY/C0ShT91h9oHr0rqv2krXyvEvwztFlbZceMbdZ4wfl2Dd8uCOea5zwOjn/gob4xZlIP/AAi0IO7r/wAfA/Wux/aMs5LrXvh7dRnCWni2zx6nIb/A0Ad/NbWlxcRrcQKy7yX+TmQnsBn3FfPv7NtpYJ+1N8ZmezgSBNUCAMuCo2c4xnqf519IQQLC3nFd25iCA2FHK8kHvwa+dP2YWQftMfGSHcu1tYUqwGf4U/SgCf4vItx+2h4Chjmhi82xvGby4wVHyjsRgk/3utegftjGOD9ljxq8Cx25OkTBd2WI/vZY/eJrhPihEy/tz/D+QFG8zTrwEDp0612v7ZGU/ZY8XPtiLHS5Ml+oH0oA2/hda2Y+BViEE1qjaEGXe7bseVkgnsBXjfwJWJfAPwYijJaMeJNQ8tmblx5lxg5717H4fcyfABE8z5U8ONhgNp/1H/1q8Q/ZqMr/AAu+AwC/INVu23Hkt/rjmgD7Tj6USMETcTgDqTXIj4m+Akby38X6Ru3BT/pi8Me3XrWZ4z+JPgRvCupCPxfpG57SSMMt2mWJUgAc9eaAO9tbmK4jWSKVJEb7rIwIP0NSe9fNHwh1DxD8JfhzoWs3kt5rng/V7aOW58zdLcaPNJud2UDl4SWzt6jI7V9DeFdc03xBodvq2k3cdzZ3UYkilRgVdfXj9fSgDwfT4Lab9srxsssG6aPT7NkdcgYKD8Ca4f8A4KBZe++GkUjDyf8AhJ4s4PIweK9B0CzeT9sTxzeMW/5B9moUBePkHWvOv+CgUTS6v8M4ZWOz/hJ48445BoA9N/a7Se0/Zv8AFTQz5R9OZtpiQnHPX5elb/wh09F+GPh68WFHnl0+BmYgnA2LwoHAFYn7XRT/AIZy8VqQy40txhvqa6n4PN9n+Gfh/duO3TIfmA+5hF4xQByH7NNtPL8HI3QzI/228YfKvy5uG49/rWDdpdR/td2ME0srqPDT5bylAUiU9a6X9le4S4+D9tJuMnnT3RIPHPnselYjAXH7X0Cnb8vhYnHr+9/WgDm/2vNsfxc+E7+SC/8AwkYZpD/ESvPHavQf2qFuB+z74te2WNVXTXcZjXawK85Jrgf2vdj/ABn+EsatuY+IhtXDBsbex3Yruf2wrs2v7OHjJjExb+zygG7J68kkUAdb8M5Xb4a6I21RELCCIAja2Ng5/lXlv7NUsx0bxe0jTFW8W3uzch/vDjPpXp3w2SWPwHosZx5i2UJwfu42pXC/svrG+j+J5Zl/5mzUhtHYhx1oA0fEk5/4aa+HtviHc1vf/ejG5T9nPTPPNdJ+z6HHxB+JZkGM+IoimBjj7JF1Fcj4tkZv2yPhzCkEe2TTNRmJPqICP6iu0+A0bx+PviQWQAN4ij2kHOR9kioA9OooooAKKKKACiiigDyr9tSDz/2aPFI+b5LTdx/vCvnb/gnOTP4o8fJ5obOqqx288beDX0p+12C37O3ikbWb/QTkD03DrXzh/wAE3cJ4k+Izjb/yE41TB9M0AdL4KLP/AMFBvGk7KVWPw7AuXOd378dvpzXZ/H7MmseCYlk8tf8AhL7MYJyOPN7dq4f4a7r79uz4gNFlng0K3WJm4w2/5h7+1dn+0RLFF4g8B3JYkHxbbKs2MH7snBX+tAHpkbD7CgZ0kyTkAHg+lfO/7KyxL+018ZpkXCjU0x3GTtr6E3SR6epdlY787VHtzXzv+yjOkf7QXxkiRD5jayvzdcDK0Aa/xDZpf26fA0W7/VaXdsPl68df1rq/2x5Vf9l/xkroGT+yn+bPU1yPxIjL/t1eD5WuMBdHugu3tgp1+tdZ+2orT/ss+K/s4j3NZbSpGD97H86ANTQZFi/Z981N4iHhqVvlU53CBhgk+1eK/BO6so/gv8DxczbVOoXu127fJLxkV7jpqNa/s5XIUYdPDMmeMrj7MeRXh3wVUS/DH9n3YkbM2q3H34zgbfMByPegD079nG2+CI+EOivqY8LSagkZa9e+8rzfPLc7w3II5612kdj8AVBVIfBy7QHOPI+bPIzn612DfD/wPNmZ/CGiOzHJzYpz7kbeTWN8QvAnga08E6pcr4R0RTDYzMHXTo8jCfSgDq7Gz0W48Ox2VtDayaXNAESKFVMLR4wAAOMYx04rx+3MPw5+N1n4Z8DMb7TdblD6zoUJLnRgRkXaHny1PQq2AeorL+FniLxL4z+Gfhfwv8N4ZLHT4rCOHVvENzA0a2uAA0VuhH7yQ4P/AEzA6kHivYPhb4D0TwNo/wBl0uOSSeb5ru8nbzJ7pj1LsffnA4oA8l8JyO/7XPj/AATj7FZjC+uwVwf7ejxv4s+FtqQNx8SRsZM9OfSu88Gyof2uPiLGrli0FkFwv3MRjIrzr9vYbvHfwviEjbj4jiOCM4G88cUAelftlPIv7Ovi4pKJN+nkEjqeew/Gu1+FoZPhtobKjHbpkXGP+ma9a4r9sqEr+zB4qminVgtmAQBjq69K7/4dMy/DvRovKGBpkWGB6jylx+OKAOL/AGT1aX4I2hjKq0txOVwOn71sj+dZ8Npv/bHtnEsY2+FcmPHzZ889RWt+yCA3wB0l0JcI0xGRgqN7/n1FZ9oQn7bEczFSP+EWUCTP3R5x6igDj/2xBIfjn8IHbbj+3hgAY/g/+tXXftlHf+zP4vKxFj9icDBzn5gD+tcp+19NE/7QHwhhJVydd6ZwT+7fnFdN+2+fI/Za8XDzNqG225U85My4AoA77wZOP+EX0lI9zxx2MKnC8AhU4zXAfsnkS6T4ouUkVseL9Q5ICBBvGMkdT9a9F8DxGLRNLJkAiWwgMgA43bEz+teffsqsJvCXiIyvaiM+KtRMARnyTvH388f0oAl8XLN/w2f8P98B2R6XqW2QSNyfKAPb1rsfgMsw8dfEZpYyu7xGm0kn5h9li5Fee61d3kv7eHgizkYfZ4fD99IqIMNuKDP613/wAZj44+JQKsoXxGvVs5/0aLoaAPUaKKKACiiigAooooA4D9qFd3wB8VKYvNzpz/KOp5FfMn/BNNmXVviHI0Bj8zWBtBHTk5H4V9O/tOKW+BPiZV3bmsHCheueK+YP+Ca6XKzfEAOWVf7awMjqec89s0AdB8DT5v7cnxKmR8oul22T7lj0rrP2pGjbUvh5Csuxf+Erg3HHoj9a5H4ExJN+2b8T1hf92thaqVB5Vtx4/Q1137TgC33w/t2c7/8AhLF2tjev3H44oA9Nu1K2MEEUpUsxcPjOSe1fPn7JVs5/aM+ME9y+HGt4YdO46/lX0TKNzQggyIwH3VxzuPSvAv2UDG3x4+MZVpFc68oUnkEcjH8qALfjaeOb9uzw2QwCJodyxwOBynNdJ+2dO5/ZY8VLE+6ZrRAwQZIzMuOn61yni6HP7dGjsZl3f2Bc4Of9pO3euq/bSP8Axi74qRmeR2tYgPl4P71e46UAdFqoubX9nu8MrHB8NzLgL/F5DfpXhPw1nWx+GX7O5LbpDqMhKxDBy288/nXtHiyVIP2a9UzHkQeFJWUrkjP2fGAa8R+H/lL4D/ZzDOQp1Fh8wwBhX7mgD7ig+70pl1AlzG8UsavHIpUhhwR3BFSxfd6U6gCnpOn2mm2KWlhbR29vH/q4o0Cqn4CrVOptAHzt4Jbd+1t8SJC6MU+yDYDz/qRXA/t2uW+Jvwog8vPmeIVPTp8/TP4ivQfACqf2rviTNhR89sGJ7YiHWvO/27Bu+LXwlKfIza+mVzw3zryDQB6V+2Yf+MWfFYm+XZZx5Xpt/eL1ruvhpcRHwBoYUyRgadECqruyRCvJ9BXnv7bQiX9mPxMyhcrbRq5Jzj96uM+vUV6B4JBt/A2jgzKxjsYz8g6/ul7UAYv7Is2f2fdADyozNbOxIGNuXzt965tZ1P7bEnlqu0+Fk5dSBuMxrY/Y9vlvvgDoc5ZQogYGNoypzuPT1HBrB0cof23L19m1Y/C9uA+c9Zm+XHagDm/2qFZ/2ivg2AjKz6yxMgPBxG/T2rpf27JMfsmeKBlt2yPkkf8APda5b9qCOZf2jPg4DEoC6vJhTnI+R+K6L9vQtH+yt4ojZf8AWPAqbe/75cAUAem+D5XHhKyD7W22cJGDk52J1rgP2VXd/AetSMnleZ4n1AhY04Y+cMnNd34XgEXhexjEbKGtEZn2E8bVrhf2PLJJvh1q0wtztk8Q6iTuJ/efvuMj+HofrigCnfHf+3t4TWQqvleGbwqVYMxP4e9eg/s+kN4x+IzhWG7xKASRjOLeIZFeS+JtXh0j9va21W4kkt4bDwZdXM8hXasqjsc8Jgkc+4r1T9k/Tb2D4fXHiHUpppbvxPfyanIJW3FI2GI1GOnyhaAPVqKKKACiiigAooooA5/4oaEfE3gPVNCSRo3vbd40dTjD4yvXtnFfJn7DFpq/w78WeMvBvjx49P1y61cT2n2pgPtabeWjz1GfSvtJsHgmuO+LHwz8I/ETSRZeJtKhuGiO63uVytxbt2ZJByv0oA+f/wBnfEn7aXxY+4SkFpvKnOPv9fzrov2uLma18TfDZIhu/wCKtiyu3s0bisrS/wBnj4hfDn4gXfij4Y+NI79dSEaX1r4gZpHkjUnau8DnAxya574y2/xu1tfD97qnwqjmuvCviRdRmksbkNHcwouMovXJLE0AfSccSqysT+7DFVDcdCelfO37HcLD4w/F7adqf8JEm8N1J3A9fpzXUeHfjv8Aa54o9Z+HXjTSZkY5Y6XI6rkd2Q8/WvNvgL4wl8EfEj4ja1qnhXxZLaa9rBu9PEWkSMZQAcM3GR170Adh4gtlP7dWlyRosYh8Oy7mcHAy69T61v8A7b++P9mXxMrTxruhgCEDDj96o69gfevM9H8ZeKtb/ali8aaP8MfFV3YnS2tTDNZvblT1ySxGK7D4nWPxw+MPg3WfB0Pw/tPDOmX3lp9p1e6DOdrhshF69O5oA9A+IcDf8Mz67G8b7v8AhF58gjLZ8gnnHfAJrw39jeG1+LWn/Di3s7G4XTfhvCZ7y+eEBLi6bcFjQnhgBjOK9b8N/s+61rDRn4n+Or7WrIRKn9i2ObWx+VCnzKPvcHuea9s8N6LpWgaVFpui6db6faQjEcNrCsaIPZRQBpwgKuAMAdBTqRcBQKXI9aACm07I9abmgD55+HCI37UnxOYoVVri2UNnh2ES5A9+R+Yrh/25Iw3xu+D/AJKZc6+gUEfKfnXp74FeifFD4cfEjRfidqXj34X3Gm6hNrS7NQ0jVZGSMthQJEfoOEH0rmdc+BvxR+JU2jeJPG3iPT/DWteHpPO0mx0lDLDFLvPzSufv5HXFAHQ/t0RSn9mrxPlBzFD8wXgATRfnXonhGH/ijbB3WNh/ZqbyF5B8oc15P8Rfg78afiF4LufCfifxx4fg028mDXD2Vg4lKKAyKCeq7lXI61Ja6R+09a2i+EreHwiljHbpapr63EiyCMR4LCHqGwo9smgDoP2M4oU/Zt8MqCZN1nkhvfceAOe4/OsjSREn7ZuogAqD4Wt1KydFxLIOn5Vl+HPB37Rvw10u28LeEpdA8T6PApS1vLudrWa1UnA3p0kwMe5p198Jvjjonir/AIWLo/jLS9Y8ST2ZtL3TLiEw2flhiyiMryCM0AY/7TCsn7S/wb3RlX/tWXaD/EAj849eldR+2x5Mv7NOr7Cv727tvmX/AK7jFc74s+G/x58XX3h/x14gtvDlrr3hKfz7DSoLl5lu8jDiSQ8AnnFa/jrwz8X/AIweFrzwxq/hyy8GafIEeO5nulum8xCCqlE52lhnPYGgD1rS1H/CP20Eg+YWiHdn/YU/yrzn9kVDH8LL59j4PiC/wZsk/wCvf7uOgqoj/tFCzOkDwR4fWXm3TUo9SxFDCBsVxH1J24OKyfD/AIJ/aA+FmkjSfC9voHi+C5lluJLia5a3ktZZGLPgN95SSfwoA81/aesNS1z9ubw74b0pJt3iTSPsF8zAlVtm4kIx/sKT9a+3PDunwaRo1rptrCsVvaQrFGijhQOB+gFeNfCL4W+KZvitD8WPiM9jHr0WntY2um6evmQ2MTEMSJDyXJBHHrXuQz5fOM45wc0APooooAKKKKACiiigAooooATApNvv+dOooAjaGMrgouPTApv2aL+4v/fIqaigCOOCNG3KoBPcKKcEA6U6igAooooAKKKKACiiigBMClxRRQAUmBS0UAN2j1P507FFFACMobrSBQOKdRQAm0UbRS0UAAGKjlSQqQki/wDA13DrnsR7flUlFABRRRQAUUUUAf/Z"]
math
multiple-choice
93
8.观察如图的正方体展开图,与⑤号面相对的是(  )号面。
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCABxARQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+oopM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmmzSpFE0sjBERSzMxwAB1JNAD6K58eO/BRzjxbopwMnGoRH/wBmo/4TvwX/ANDZov8A4MIv/iqAOgorn/8AhOvBf/Q2aL/4MIv/AIqj/hOvBf8A0Nmi/wDgwi/+KoA6CiufPjvwWBn/AISzRf8AwYRf/FU2Px74JkUMni3Q2BzgjUYTnH/AqAOiorn/APhOvBf/AENmi/8Agwi/+Ko/4TrwX/0Nmi/+DCL/AOKoA6Ciuf8A+E68F/8AQ2aL/wCDCL/4qg+O/BYwP+Es0XJ6D+0Iv/iqAOgornV8e+CW3BfFuhko21gNRi4Pofmp3/CdeC/+hs0X/wAGEX/xVAHQUVz/APwnXgv/AKGzRf8AwYRf/FUf8J14L/6GzRf/AAYRf/FUAdBRXP8A/CdeCv8AobdDH11GL/4qr+g69o2tpI+j6naX6RECR7WdZVQkZAJUnnFAGjRRRQAUUUUAFFFFABRRRQAU2nU2gAooooAKKKKACiiigAooooAKy/HH/Il6xn/oHz/+i2rUrL8cf8iXrH/YPn/9FtQB51+z14I8H3nwZ8PXF34Y0qeaayVnlezQs59+K7JvAXgccv4S0QZ/6cY/8KzP2bf+SG+Gf+vBa2PGGsTWEkFjYw/aNQvHIgjK7lUDks3oox/KgCL/AIQHwN/0KWi/+ACf4Uv/AAgHgbp/wiOi/wDgCn+FcZ8UtfuPBehR694p8b3FibuaOCGCytVdN7HAVQV3H3LV1Wl63qun6hb2HiD7Oy3Qxa30Y27+M4kH8LYI9qAJbzwB4I+yS7fCOi52H/lxT0+lee/st+B/B138IbSe68MaTcTG7uVMklkhOPObHavYrhi1rKSvRG6j2PIrz39kv/kjVp/1+XP/AKOegDpT4C8ChsHwlomf+vFP8KUeAfAx6eEtF/8AAFP8Kn8T62NLtIhFE015czGK0gAOXfp/3yOp9q8k+J3xS/4RXxR/Y2v6j4oF55Cu1toGgS3UFtuwyEyJGcnAIwTigD1P/hAfAv8A0KWif+AKf4Un/CAeBmfavhHROOv+gpxx9KxfC/inVYbPTLvWo5ZtP1VAIb2W1ME0JPQTRkDZn6Cu9tyd/IxjjHpQB4/8E/BHg+41bxktz4Y0mQQ+JLhIt9knygHoOK77/hAvAv8A0KWif+ACf4Vg/A8A6r42Bx/yM911/wB6us8UarFpGltdzCRm3ARxISHmk7KooApf8ID4G/6FLReuP+PFP8KT/hAvAuQP+ES0Xnp/oCf4Vz3inU9S0uzhvvEfikaKszbIbGwiWWSUnooyC7v67c1Y0vWfEOjWMV5q/mXdhI4Esskey4gQ8KzIvAGSO2ecnpQBsN4A8Ekrs8I6L1zkWEf65Wsb4S6Tp2j/ABG8c2ul2FtZ2/22yIitoRGin7JHn5Rxz1rurRkeBGjcOrAFWBHIPPauU8B/8lQ8c/8AX5Y/+kcdAHaUUUUAFFFFABRRRQAUUUUAFNp1NoAKKKKACiiigAooooAKKKKACsvxx/yJesf9g+f/ANFtWpWX44/5EvWP+wfP/wCi2oA5n9m3/khvhn/rwWrluUPxN1OWYsXt7JPKX0Q43Mp9c4qn+zb/AMkN8M/9eC1o+MtL1GXUodX0aWJb21UrLE4wtzEefLY/w8gHPtQB4X+0/qNhrfwzutfv72185dUt4dOt3mBe2iEnzuV7MxA/ACvY/E1za6j4DhurF1mMcsBhYEEM6kYwfQ4rj/jL4dtPHXhIaFJ4bl0qd50nlaLTBM0jIwOEYFdw9cjnNdd4Y0rUdUax/tHTY9N0zTzvS1RdjXDj7sjKPuDp8vr3oA7OXP2CUsMM0Z4/CvPP2TP+SM2v/X3c/wDo569DmB+xSZ/55MT9cV55+yX/AMkatP8Ar8uf/Rz0AdDeRwy/FO1aYtuh04m3z3cuwb9KwPGmn+ILTUvEHiDwre6VPdGBGa0nTeXaJGwjOPuZGccGum8ZaVcagIb/AEueODULF8xSsCQVP3kI9xkV5vZ6FqulzeIXtLbVNMuPE8he+lFs90UcgjELFwq9TwVNAGn4D8ewfE/9nifxKLQ2Vxl7e5tyQfJnjYBlB7jpz716Z4daaTRbKW4GJXtkMg99ozXmvww8DvpPhWx8K6fZzaboNk7S3BuVH2jUJGYsxf8Au5OK9StQwbnAU42qOwx0oA4D4G4/tbxtn/oZ7r/0KtzxYFk8TaCsyjyxPIck/wAWF2/1rD+B3/IW8b/9jNdf+hV1XjDRjq+l7IJTDeQkS2sw/wCWcgzg46HrQB4dp95rHiv9tLxLZPdLaQeFtHgS086DzgokwXcAkcncfwrqfhD8QbzxefG/hXxFDH/afheeW2uJkj2xzoVbYwHOOAeM1LNpF9Z+Pn8XSaVdWWuTWq2l5Nb2xntbxF+6SuQQQAO/aovh74GudKtdVs9KtLy3bXLz7XrOq6gAJ7o5yY1QfdXGRnJ4J74IAPQvhnJcSeBdNe6GJPKx+AYgfoBWb4D/AOSoeOf+vyx/9I466nTYlhs0hRFSOMBY1XoqgcDPeuV8Bf8AJUPHP/X5Y/8ApHHQB2tFFFABRRRQAUUUUAFFFFABUbyBWIPGO5HH51JXmP7Vtt9p+FJtXJEV1q9hBIFYqSj3UatyPUE0AejLcwEf6+L/AL6FBuYP+e8X/fYrzGz/AGf/AIXG2QtoBJKg5Nw3PFSN+z/8LP8AoXj+Nw1AHpX2mD/nvD/32KPtMH/PeL/vsV5mfgB8LAuf+EeP/gQ1A+APwrK7h4eOD0/0h6APTDcxdBNFn0LUv2m3/wCe8X/fQrwr43fBH4c6P8I9e1XTtEaG7tbJpInE7cMOnetzw98A/hlPoVnNLoLSSSQKzObhssSOtAHrP2m3/wCfiL/vsUhuYP8AnvF/32K8z/4UD8LA2G8P49M3Dc/rQ3wC+FWM/wDCP/lcNQB6Z9pg/wCe8P8A32Ky/G1xCfBergTw86fP/GP+ebVw4+AHwrLbf+Ee5/6+Wqh4v+AXwwg8J6pNH4fw8djMyn7Q3BCEigDof2b7mIfA7w2PMT5bFQfmzmu3kkgb5XnjHI4LAEYOa8G+AfwK+G2p/CDw/e32g+bLPZKzsZ25P0rsP+Gf/hWq/wDIvcdOLh6APSN9uWLG5jyf9sU8TQK2RcR8nJy4rzT/AIUD8K8E/wDCP9Ov+kNSn9n/AOFnGPDxOR/z8NQB6LeXEIs5j58Z/dsThh0wa86/ZRuIo/g3ahpFGLy5B56HzWPX6Go7z9n74Wi1kb/hHclVJGbhuwrg/wBmj4H/AA61f4U21/faH5tw13cAN5zDaBKwwOfQUAfQxa224+0xjr0cd/X1p7TQMuPtEX/fY/lXm/8Awz78Lf8AoXT/AOBDUf8ADPvwt/6F0/8AgQ1AHoyvahcLPCPowx+VKs1tFlhPGcnqZM4rzgfs/fC3/oXj/wCBDUN+z78LSR/xTx/8CGoAm+Bd1F/bXjbLqB/wk1xgk4ByTz9K9C8+DoLmLr/eFeYwfs6/CmKR3TwyqNI2XKTsN5/vH3qb/hn34W/9C6f/AAIagD0fzLYNuFxGp9nAH5UGW3OM3EX4uDXnH/DPvwt/6F0/+BDUf8M+/C3/AKF0/wDgQ1AHpH2iIdJFbJ42ndn8q5H4eSB/ih46wyti9sgSp6H7JHxWG37Pnwu7eHRn1M7nH611Xw18B+G/Alvd2/hvTUso76YSzhXLF2A2gkn2AoA6qiiigAooooAKKKKACiiigArzn9qD/km1v/2HtM/9LIq9Grzn9qD/AJJtb/8AYe0z/wBLIqAO+t8C0jOf4B/KsLxV4iaymNjp9p9t1AJvMQfasS/3nOOB1/Kt22wbWLPZRn8q5v4fQLJJqmoyOHuLy8feTyUVQFCD2wuf+BUAcz4e8e3Ou+ILrRdJ8QeHb/VbOETz6TAjpKqe8hYjHPXbXY+GNeGqebazWclpf2wXz7aRs7Ac4IP8QODzXiPglY4/+Cjfi1VRVVfC0BwBtB5TpXsHiVBafETQr6JsSXKyW00a/wAYIDBj9Nn60AVf2jCB8C/FGe2nSE10vhcgeG7HPa2Qn8hXMftIf8kK8V/9guSul8Mn/in7LPX7PGPwIFAFPxbr8Wl3EVpb27XmoToXht0YDKggFmJB2gbh+dcdqfxBbTryO21DxL4bsryWTYlpJFIDu/ueZv2598V0OjWyXmv+IrmUbbl2Fmsin5o0AOMHt94/XFeJ/HTwHq5+BNx8LZdQHibxHr+pO2mM8exrWMv8sjnAICD+LvigD3nwnr51C+axv7FrLUI13vE0ocFegZWAG4cir3jhlHgvWAT/AMw+f/0W1chHoz+H9J8HpPK91f6YIrVp8cy5TY+T3ByT9RXWeNwD4L1gqeP7PnBz/wBczQBzv7Nv/JDfDP8A14LW/wCJtZt9HjV2iaa4nYpb28Z+aZsZxjt061gfs2/8kN8M/wDXgtXrVWufipdySspFlZqluCPubyCx/HGPxoA5vU/Hk1iJX1PW9A0hoXWOS1uUeYwsfuq7q6jJz3HFdR4Y8S3M95Hp+q2MdncyrugaOXfFcrjOUbHpzj9a8s/aH8OrYfD7xpBo/hSSG38RbZdW1ZJ0kCjjdIIsl+Ao6Dv7V0/hkaJL8BfCl1oOoNqNnp1pZmxuwxLzCNVXnPPO3BH4UAem3jA2kuevltx+Brzr9kv/AJI1af8AX5c/+jnr0CRmNpJkg7oWJYfTpXn/AOyX/wAkatP+vy5/9HPQB6ZRRRQAUUUUAFFFFABRRRQAUHt9aKD2+tADqKKKACiiigAooooAKKKKACvOf2oP+SbW/wD2HtM/9LIq9GrzX9p9v+Lc2+c/8h7TeM9T9siwPxNAHoEC5t4j38sAfp/hXJ3TXnhXX7y8jtJrrSdRbznMI3NbygAZ29SCAOnpXWWODaocgHaAQe3HSpGA/wBnmgD568O6feWn7TOrfFaXU9FOm6ppcWnmzimuGuoirLlvL8nOcA8dPevWvD8N7rHiJdevrZraC0iMdnEx+dw5G6Rl7fdGO/Wuih0+wju/tKWVqsx6yrCA5+rdTVnaucjbn2oA4r9pD/khXiv/ALBcldP4ZyfDth/eECflgVy/7R3/ACQ3xQJMrH/Zsm589BgV1Hhcn/hG7HdtB+zJn/vkUAc54oGreH9YutW0qNrq1u4CtxAq5aKUfckHqOTkdemK8O0S7+NdlcX2rJq/w+mu7yZg9zcT3n2lEydqrF9myuB2GRnvX1FtDddvX0qu2maebo3LWVqZicmTyhu/PrQBxPgODWdaXR5dWMy2ul2inzGXb9qn2bWOD8wHJIyBXWeNtv8Awherkd9Pnx/37atTA3bsrn6Vl+OOfBernK8afPj/AL9tQBzf7Nv/ACQ3wz/14LV7xha6jp+txeI9JhFxtTyby2X70qEggr7qQPwBqh+zdkfBDwyDnBsF5B6V25jQnLbc0AeFW1nd2/g3xN4di8Uw3J1u4k3z6rLKLi0Ei/cWMx/MBg4AOPet/wCEvhiPT/BHh/whpS3R0PQ41M15cJsN1Ipydq9QC2Tz616bdaXp1zcCeeytZZF6O8QLD8TVoIqjACAegGKAILgYt58DpG2PoRXnv7Jf/JGrT/r8uf8A0c9ei33NpINyjKHnpjivOP2TXz8GLMqQM310B3485qAPTqKKKACiiigAooooAKKKKACg9vrRQe31oAdRRRQAUUUUAFFFFABRRRQAVg/EDwnpnjDw++j6qZxbtPFODbymJ1eNw6kMpB4ZQa3qKAOHj+HEaIFHirxNgdP+JtN/8VTv+FdJ/wBDV4m/8G03/wAVXbUUAcR/wrpP+hq8Tf8Ag2m/+Kpf+FdJ/wBDV4m/8Gs3/wAVXbUUAee658JtO1jSbnTNS8ReI7i1vIjFNE2qy4ZfT71T2/w1ihhSGLxR4mVI1CqBq03A/wC+q7uigDiV+HSAc+KfE3/g2m/+Ko/4V0n/AENXib/wbTf/ABVdtRQBxP8AwrpP+hq8Tf8Ag2m/+KqO8+Gdvc2kttN4o8StHMhR1OrTcgjBH3veu6ooA880H4TWGjaPDpemeIvEVva26BI411WXCj2+aro+HSY/5GrxN/4Npv8A4qu2ooA4n/hXaf8AQ0+Jv/BtN/8AFUN8O07eKfE3/g2m/wDiq7aigDhpPhwjxsjeKfEpVgQR/a03Q/8AAq2fh74S03wb4Zh0PSDcG2hLMPPmMjEsck5Ynua6CigBuD6UYPpTqKAG4PpRg+lOooAbg+lGD6U6igBuD6UYPpTqKAG4PpTZGK7TtY/MBwM9TUlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k="]
math
multiple-choice
94
将如图长方体容器中注满水,把这些水全部倒入一个棱长为$5dm$的正方体容器中,水会溢出()$L$。
90
115
123
null
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCABlAMADASIAAhEBAxEB/8QAGwABAAMBAQEBAAAAAAAAAAAAAAEFBgQCAwf/xAAVAQEBAAAAAAAAAAAAAAAAAAAAAf/aAAwDAQACEAMQAAAB34ACBIBBLz5Po+HzOtxjsRIAAABDnz5Z1lpZmfnQij+tuKibaCpj7U5w/HacUd/35swbCOTM1s1V2nQBEwYC79aMzfrRCh93Yo/johnY0fzMvq83pRUW1IdeN23SZWl/RYMTa6MegIkZzR5vRkog9IEoE+PXkz2jxvUfdcfQ+nrm6QAABEjJdOjGdX3EVz1dFHPRcFA0ApboM34+lefO8o+o7r/Cbk9gAAAjMaWoKysv/sUHm4g9aKmugDzMjzMiEgAAAAAAAAAAAAAD/8QAKhAAAQQBAgUDBAMAAAAAAAAABAABAgMFFBUQERITMCAxNCEyNVAiIzP/2gAIAQEAAQUC/Q811Mu5Bd6plqh1qxlqx/KSdSMtOWetmFWzCrahU2NFZbaKttEW2hrbQlboXstxMBwqf8eHP13X1Dw7xZ7igUCeAoyoVuyVkVTRWPXkvx1HxjyrJEXX00tjLR6Itkg3VV1d8eL+1AV+SWhOWiPWiOTBlrRkrRkctttW1unxjNHD01zG4ZP8ZSzyx5Qxg4j86spKdbis0Y5DEP8Ax4v7YX4Hgn9mE+Dwys4wxonw3ZnXJnXTHg3pwvwfBL7cL9BH9rsg7zpx3VLxYX4Pgf2BLqDE7ReQemmsevrj1Ttrrfw148wdaTIOmBMWgLW3lrby1t5S0BS0BK2+5C4wcV1li5UQAsDrlkTKSYXZOmm2GWom/hlJoREMgZXPKNGVdkbaxS7LivSfTZqiaLDyb3usA/sfJ9FzY2L84+HDu/YxTR23HX3OPT34EwIyHIAi+RXHlw5eSTP0ghTDeWMdPjmio4uyL7VPoHAegv8AS//EABQRAQAAAAAAAAAAAAAAAAAAAGD/2gAIAQMBAT8BKf/EABQRAQAAAAAAAAAAAAAAAAAAAGD/2gAIAQIBAT8BKf/EADoQAAEDAQUEBgcHBQAAAAAAAAEAAgMRBBITITEiMDWSFDIzQVFzECA0U3FykSNDUFJhgZMFJEChsf/aAAgBAQAGPwL8C1XWH1XaM+q7eLmC9oi5wu3i5xvbpN6Q6MbqVW0OMMXu26n4r7znX3nOuq7mXZ/7XZBdi1dg1ezs+iwbJY2TyfoMgpZ5O112dAmfKN1fleGhUgbgw/ndqVsN2+9513G2auOjRqV/cEwwe7bq74oMiaGtU/yqL5QoGxZRCZrXOrqfBUleG18Va5L4bFjEArKdqvRPDm6VHq9KfaqEOIAuVouJH+ILiZ/iC4k7+ILiD+QL2+TlC9ul5QvbplnbLR9UT0q086E7hfmqQXuz9No+VRhpo4xCh/ZQsdJHQSihDe9MkteYw6NcBkCreyh2pLzBdVidhG6IRmGq0C6R9pXMU9U+Y7cn4I+YfTNeNKtoFB5Y/wCLMLNdUeufMduSn+YfRg2NmNJ49wQltjsaX9dBuz5jtyVLiOzxXbI1KrKTBZ/djrOQZE0Nart4XvBC+8NvaV3RbBamhla0IWdtp8GriD+VcSk5VxKXlXEpeVcSl5VxGXlXEZfos7fKf2V67ff+Z3oZFGTiSGmWqdG0ObK0bRlFCVAGB3bC64tyKdERIXtzoGplL915oH3cq7ouOgRfGDQGmaluQukZF13BB7DVpFQrRA9gaYj3d/rWe1MYX4Zo5o8E6SJrmtwbtXDUqzRdFlvxuaXbPgppujy3TDdGSgZ0WUvbJUiiB03Vo81ylJpm515WeyROwy686/Svev6ntjGAbtAKyuMzXY+VC3RWizzPv4ZydSn+EaGhT6zXw81pd71M2GfDZL1m3aqEwyYb4hdBpXJWhxtRLphmbis7elH7A1GypZ8e9iai7+Df/8QAKRABAAIBAgQGAwADAAAAAAAAAQARITFBUWFx8BAgMIGRobHB8UBQ4f/aAAgBAQABPyH/ADLl+Fy4gLdJy/zENT9kdYXUyuV3B+4K0Mwu/Tue6ML2Jgve/wDIge/zwtv88C3OqglZdVMv7vAnejWTHiXfu2V4uiYcsit+ypcuAdHzuQHjG8T42rkQBb1xK9/QGxfDOvdmLqIedbG/WG7o7nwjco4UzfT/AJDY7EN0c3B5VtGaW60XM/i6jyakzBdcGnK6hsn3cZ3d+4bkjce3Pi9/yl1Grt2lmv0wtyjkZpui+1RYl0NsOKvTx+5lFMCbMNppIXlhWHIncvGdLg3AcKzwqHMbRNDnX7l+C2NQPk1J3Tj6P20eHh4oGOqHVnaeCA0DvkiSgJzJ/IlHCANCvI5KnfOPo/XYac0CVomq40/ls5S2fTIFFHx6XZOPjfmz6U2p8ZUvYlHxZcHN2gxRsTgay2zDWwUFVvoukvpLHESg0wbn4sU2ehn8LP4Wfxk/lp/JwNx3QRaUuXMyph5MrYORLFHkBccywTtRAvNPxD8tZ7jj0lH85EciHnqvDSPbahfGlpvBycEpOEkN2KlaHTwPITi5gtuQlbWFuhLMo0hhrDDJ7Ot1mKA+FDcwQ2NHU9KgmaqnOyb9ylGlWgLAS8pLaTBw6SuUawBz431hKdoE/HkQyvBUr0kgWwpcpEUeCuq4Sx5MONZxBktxNzEIio2le85iB3/fdxurlI/P+m//2gAMAwEAAgADAAAAEPOPMNMMNPPPPOINIANPIuuBPKEIIMEICHMFPOCBDACCBKAAPONOBFBDMLNAPPADGMMAIIEAPPPPPPPPPPPPPP/EABQRAQAAAAAAAAAAAAAAAAAAAGD/2gAIAQMBAT8QKf/EABgRAAIDAAAAAAAAAAAAAAAAAAABMUBg/9oACAECAQE/EKbFGA//xAAoEAEAAgIBAwMEAwEBAAAAAAABABEhMUFRYXEQIIGRocHwMLHRQPH/2gAIAQEAAT8Q/wCq5crEhz9JcoylSxAdTEdidxPuzf6Q6yOz/MblhXUvz6OA6g0Al/eB0bOsuXLly/aoFuojJcXKiKl51hkMblbKMMCsrofioRt8xHcvs0zj1rIllVnXfmbyna3+xVPuXGbR4YsX52GV1lsEtXrD+phg+3t4DkIm+tM70gKlOs0a+GDZOfY4JQc7L28AcxI6lFXXcVnyTnzW3+W2r2hRcL16WelkuWEH0QmQ3Y+SZUQIUumyu3hxU1FTHK6ra94XRm38x2l23L1xipafWLabAW8XFsqcl346QtpRLn4/ECJxREprBWYxMGkwDZ9/Y0YqwvMHQzjJ0Uhp2gQADWk9Go42c8f6wZmvYfiWGb4gWn+wGELd8B/E8lAA/wBRpOqLGKIWWEBQlOwrvlhvXzOIp1WyIXYKZkiSqacsOXp88Sog7GD3M8lbgi50qrSFYMfErwMbpjQ3yvr3m1URRYpB8Ps+3f4pqtv6DLMKgleT0dMSzIRCmg6vo0cBRAWAmmVEriwhl4e2BFAOMEVaLbor2EVaZgPj/hCy6l9oAvB/cgAAyq1UShEWkO9h07TNqF+R1rx/cMgACgaIa9nPsden9sHc/CWx1PMtINw0uqPtCkK6uwBszT9Is828z7DPQ7neGAUoN912vmCssGDx61dkUdLeWLB9fvOPZz7MIt8Xqoq3RABdfH9YLN/oJ+Zl1XT/AFzF+r9Z+m/mAv6/1gW2/XrLzL/v1l16U/sRyRuxFto0RFdILIKw1qltdHdhgEiCl2eHaLTVC/RfAc0wy1/IcnKGqoWrrDMFL3O+ShnjGO8Vnpz7EuB0nEv4sULaC4yrekqVmvmWGwAh1aOaM+CEsKHSJZDVboOWpvsD8y2txWSoAajqFmKju5kOUgLc6LhaB6aYeKELI2OVlMTlBNw6fOvMqPAwUsH51LkqDXXYe/pz7nU3wV3iGbLPe/8AyKMtYVRBeXFXKl83sqEY+W/Eo3PDtajay8L7w+E8nnAoLQW6sMTEQNgXcAfaC8+omeJWU6v1lagRu24AFHpz7alREZNYHxc5VArjalmN4rpmHEe2kJKtplfSFyzXdUWF25u41MbEtgIdqlQIB2gOKmHxE8KPGrqgm+toFcypUqVKlSpUqVn/AK//2Q=="]
math
multiple-choice
95
22.填在如图各正方形中的四个数之间都有相同的规律,根据此规律,$m$的值是(  )
38
52
66
74
D
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCABUAcADASIAAhEBAxEB/8QAGgABAQEAAwEAAAAAAAAAAAAAAAUEAgMGAf/EABYBAQEBAAAAAAAAAAAAAAAAAAABAv/aAAwDAQACEAMQAAAB9/w5zTud46HfPNLt5HQ7/h2/Z1EAAm/VEnKImclEnKIz6J1EAAwcVEnKImclEnKIzaZ1EAAz5ftEmqQk8e7EdrpHZc8j64ATaU0pYd2A4cuvsN3z70GajJrJPozqKgATteTvjNTn0LJ3Z1/JVKTWsnUZ1FQAJ1GdqjLRgX7J2rLplm2oV3UnUZ1GUACdRnUSPRnaThh3YQDF63yXrQBLqTTk2/TDhuTjl92cjC3cTFRnUQACDu4UTC3CFv4UTC3CZVm0gACHs4UTC3CFv4UTC3CXWm0gACZw+5DZ8x/Tp5dXqTzb0g8d7GbSAE2lNKObVgj587+mzdg3yZdmrBQsn0Z1FQAJ2/B3x00Iluyd1dvTLz2T6dmOjOoqABOoT90QvQec9HZO05u+XFy6+6zlRnUVAAlZNeQAy+q8r6o85rpfDJSm0gBNpdZyYRun8hs5YRu+Yh8o8eQABMo4vhuYRwo4RuYRxpdPcAATKOTgbmEcKOEbmEcaXR3gAE2b6QebekHk7dETlEQbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf/xAApEAABBAEDAwQCAwEAAAAAAAAEAAECAxQRIDQSMTUFEBMyFSEiJDNg/9oACAEBAAEFAlKUYRyxlljLLGWWMssZZYyyxlljJnZ2251CzqFnULOoTHjus6hZ1CzqFVfXfukZTGedQs6hZ1Czx9c6hZ1CzqFVfXduutairKsWVYsqxTNlW2f+29Q1X5H9T9SauGw7jfHBfHBfHBHVw/HtXDp+OC+OCeuGgHjtoHB9w/r70cvaJ396eb708zadxvc7/B2/fdd0Y7YOw7jIq2VcKLJtef49vrOXREO2y2D9gPHbQODY03iLO35EH9SiGGpEse2Ko5e0TuqiXtJVXNulKFIl1lk1TzNp3GRhfwzp/dR3+H6j7d0W/wDT2HcZFVPZCiEpEH+Pb63VfKwNFlKfsB47aBwb7J11jO+iD+plUrKx65OUqOXtE72xlOoesiPqCq5tzTekSqUblTzNp3GV0JVlh0vQOd/gu3sZrh7PUHaImcIs4RZwiNMFkCxwmmcIs4RZwiA8dtDMGgJnCLOEWcIhTBYtnCLOEWcIhZwsI20E0VTzhFnCLOEVRgrGZwizhFnCIWyFpO0/9COZNllWa5djosqUqf7S0JZaEItr8PYdxtGWjLRkczfj2ZunRloydm0A8dtBZsLpZdLLpZCM3T0sull0sqOXtFZtell0sullUzZvSy6WXSyo5m31FtQmX1bsr9dnqHjth3GVsLJsHOyyk/x8fqTdKpx7JW1v2A8dtA4Lu0WFvlf7B/Ur54Qu+eVVE5WUUcvaJ3d9GHLyr1VzbZPGIlksEB5vXTzNvqPC7+3ZX9kRde1407pEeoeO2HcZEzti1Dv8Z/j2+p7dTBdTUP2A8dtA4N1c7IgV3Qmg/rdO57rrL3et3eFHL2id5R6oVj2vFVc24eu9Uen1wHDEYVqeZt9R4Xdd/a9v4r4oKNNcbPUPHbDuN1MtWWrI52/Hs7dOrLVk8m0A8dtBdsLqZdTLVkI7dOrLVl1MqOXtFdteplqy1ZVO2b1MtWWrKjmbT2lITqZ116rrV38mzIrMisyKLI+UPZOELIYIawQ1ghrBDWCGsENYIawQ00WjHbgiOsENYIawQ1ghrBDWCGsENV01UttkINOWCGsENYIawQ1ghrBDWCGq6aqW/wCJ/8QAFhEBAQEAAAAAAAAAAAAAAAAAAVAg/9oACAEDAQE/AZpptNv/xAAYEQADAQEAAAAAAAAAAAAAAAABIFAxQf/aAAgBAgEBPwGacYU+uLf/xABDEAABAgIFBwgHBgYDAQAAAAABAAIDEQQSITE0ICJBc5KTsRAyQ1FhcYLRExRCUmKRsiMzg6Hh8CRygaLB0mBjo8L/2gAIAQEABj8CVZxAHWViIW2FiIW2FiIW2FiIW2FiIW2FiIW2FiIW2FiIW2FMGYyrC890N3kuk3TvJdJuneS6TdO8lYXn8J3kuk3TvJdJuneS6TdO8kahNl8wRlFs3TFhkxxXSbp3kuk3TvJdJuneSIm+Y/6neS6TdO8l0m6d5LpN07yRqE2XzBGUXkE3CQWCpH9n+ywVI/s/2WCpH9n+ym6iUgCYHs+aA9Vj2iY5tv5pkqLHz7ub5qfqsfnVfZv+ae51FpADOdY2z88n8SH9YXMb8lzG/JcxvyVIzG/du0diGY35LmN+S5jfkuY35KjatvDKhd2RG1ruORSu9vDKpGtORSfDkUnw8Mrxs+oZDdbD+oJwLZaXNbo+Jq0OrCdl0QdY7V71awTuiDqPaoprECoWh3/yckayH9Y5GhnPe6qE+BEdWLQHB0lSdW7ggpqIYl4fLko2rbwyoXcpMNU9ajQojq9Q2OlfyRta7ii82m4BFxjiIeoCxvJSu9vDKpGtPJEh1c1oEj18lJ8Ke5om4CxN+19K1zJky5p5KT4eGV42fUORsJpDXOtLj7ITT6T0nxdabrYf1BaWBnzhfoiCJe0Wt0fE1H2q1pA6TtHaoxr2mGc73x29uSNZD+scjXNtcx1YBRKQ9pZWAaGlUnVu4IIfaPZL3ZKLXc8zfZWlyUbVt4ZULuU4cN0R3UER6F7NJL5Wnkja13FNLW1ix1ar1qLSCww6wAqm/kpXe3hlUjWlFrHBpOkiaiV3MLaguZL/ADyUnwp4h8+VirNhOhCrnhx5x5KT4eGV42fUOT07YRiAsqkC8INN8yZdSbrYf1BTBIlYHOvZ2O7FpZV0aYR/y399xBHxOa3R8bf3+sfmkmGSep/aO3JmTICIy3xhYqDthYqDthYqDthUhraRCJMN0gHjqQ/ioO2FioO2FioO2FiYO2FRtW3hlQ2upEIOAtBeFioO2FioO2FioO2FFnSIQ+1ceeFioO2FioO2FioO2FSXMcHNm20HsyqQ2JGhsd6U2OdJYqDthYqDthYqDthUg+sQpGrLPCxUHbCxUHbCxUHbCpLob2ubm2tM9GVMCeeyzxBOnRnirzs9ln5qXqr5ynz2+aEqK/OExnst/NQ/4dwrRWSz2253eifVXl2ibm5w6jas2ixM3mEub8r7lhHgXjPbmHstuUavRC1pYS7OEgesW5P4kP6wrgrlcFSLOjdwQsCuCuCuVG1beGVCs0K4K4K4KNZ0ruKuCuCuCpXe3hlUizpSrgrgrgqTZ7quCuCuCpPh4ZRFWtnMs684IEHsa52j4XLSwM/8v0RBEpWkD2PiHYmWgExWEjQ7OFoyKTq3cMkayH9Y5JMiGH2i9faWkOIn1qk6t3BBQ2MqgvMpuuCJeBMGVmnko2rbwyoXcplRKzatV8hyRta7inRWRatW5krCvSNi+ik2cgL+9Mc4ScQqV3t4ZVI1pU1P03o2+xDlzu88lJ8Kk3nG5NJJc8ki3TaoldxcfSFUnw8Mo2E5zLv5gtDp2TN0QdR7UCDdYHO0fC5aWhp/rCP+W/vuYKrfvWEt93OFreSPUiODGgaBf2IiI+5gm2WlUnVu4ZI1kP6xyAQoLnzvLSLPmrYRhyuBVJ1buCChtewmFPPqiZCkZ1Qc0uEjLko2rbwyoXcgGPDbdLZqkekdOcT3ZckbWu4qr6rEdDHUW2/mmt9ViOZe6qW/K9AuZUPUqV3t4ZVI1pRb1qBAdCqiCfvJiR5KT4VntmR2oQ4gnaTY4p/xOneqT4eGUbSM5l38wWh9bQLog7O1CRrVrAT7fYe1Ag/CHO0fC79/rDzObGZYb4ecPy5Obpn/AFTogbnOvKpOrdwyfxIf1hXhXhXhUm3o3cELQrwrwrwqNq28MqFboV4V4V4Ua3pXK8K8K8Kld7eGVSLelKvCvCvCpNvuq8K8K8Kk+HhlOqTnWabBP2grYcaRtcBCdYesLOhxTPn/AGJzu3vU6kYm62Ec5vamyhxzVe0t+zN0191H3RX3UfdFfdR90VGhsgx6zmED7I5Ja9oc06CFhYG7CwsDdhYWBuwsLA3YWFgbsLCwN2FhYG7CwsDdhBrQABcBlYWDuwsLA3YWFgbsLCwN2FhYG7CwsDdhYWBuwsLA3YUoUNjB8IllFz6PCc46SwLCwN2FhYG7CwsDdhYWBuwsLA3YWFgbsLCwN2FKFDYwH3RL/hX/xAApEAABAgQFBAMBAQEAAAAAAAABABEhMVHwIEFhwfEQcYGhkbHRMGDh/9oACAEBAAE/IUUBuZGAVybq5N1cm6uTdXJurk3Vybq5N0BhEDgjPEDxBVKHzgHHHOsCLFpuAcccIMx7AUHgjEXZSwMB7gYDjjgYAswScA446O49gKDwRiGHwYC5JIAnqVyCOQRyCAk8Amslh8ygRFMYQWhoZ03Jm7XNKTopMGZktBy+dKooY2Jz4B7a4YxBkh4wuMLjCEKAEZSpacKFxhcYTvQoVyoxWGv8BrFTisdBg9L6nB7/APOeNNEjDnSESIII9FxrkpgQQQufhQx96oCLBMxDjxiSMAAFIdnUAfgASC827K1VL1EEp5e0yg6AASEFN7K9UYrDVREyl2RUJKCEQdi3UYDUTUFPHpEYEpX56WKnFY6DoI4A5mOfp631Kjt4BOBIkDQh5+Onv/wnmTaYXFRFmgHhA9OjogDMQkJlRVSGzlVF7jvq8wEAhkwAfEMLZjswZwYgwYaOMSKViqNFn2QIAHm3dWqpeomaCTcH9gUFiyIZFYBTeyvVGKw1RjIgM7osjVE8RPUYa4OBeiADBrDmeJbv0sVOKx0Cv0EDhGdkMcDOUXT1vqUbkAptUFm9ghoLEMe8YdPf/hPSaFT7EKsAmKou3R07QKc0J7tXKgJDAOIRqBUuiEaDYHyEcjUkNvENORgZGKSRgAm9t1e26vbdBY8EBJctLN0Ve26vbdEgIBibpq9UYmuyAAiKvbdXtur23UcuAeIHV7bq9t1e26K/zToGHE73ExKQV7bq9t1e26KEYHoBgVe26vbdXtuiXEZAxDJCDDAZqBkyXd8zKiMzGDgkiqAgSDAYSo8wofBxdeALBtCIhBUCvqmnBkE5gZnmSOAAwdDntCpYIaKwnZGQ7xhlqeMWn+Fxyl92tS05UXHLjk7QSor1RiOhPDVcMuGXDKXHbThlwy4ZCAxcOIx4Dp6BcMuGXDKWEsuhXDLhlwyABkNHEQCOE/wETQlrgQQYDODCpU1UhhATz8vtRfzqiAAyVfrVcFqqxiQIQzED7AhFJMMzDNGatVS9BQ7DhkoBAGmZGZhTFeqMVhqjkzAIaYHQtGBj89RnhQyg92D/AAhLIk4LmdnCXZRAwEKxU4rHQIBikIpknJYiCpB6HT1vqV+ZdqgA9EZicmVyBz4Xv4phCQJRsTQQcgQSi0Ow9XCBZxGrftjXkywkrOg1LyQCGgxzm+CNNflBQV8xqYO005HEAIFvXuFaqsYnLqcDPII1gcmLBPeBKtVS9ROIcnEoICKCM5AeDWFN7K9UYrDVGQodIn2EQBARs6AjOXUbNAoLY/MieaIzEe4FA4E5dvhWKnFY6BPVkZRHNyCIBou51HT1vqUzFoMC4fSe8w8zB/EwLOQGIw8r38UwFIE4XIoKJkMQHJGqqBuqBcQTBnYD6xugByADVP10P/EgAJgXInsLK2T7wRf3ICIeaVqqwy1PKLnlzylp3tS04VXPLnk50qq9UYhoTy1XLLllzyEcDv6rnlzi5ZGCwX/LiEeAfmFyy55c8nwyWfQrllzy55ECyXjiA0BiFGQI7ZqEA8ETwsCswsbCyAykgmcp3PZ0ExGKKL88bLRJBhGSs3ZWbsrN2T3oJEMSO2Ganx8D4V07K6dldOyunZXTsrp2V07K6dkLCzAMAMRIJJSZk/grp2V07K6dldOyunZXTsrp2RiSi5A3fGKf1goT6V07K6dldOyunZXTsrp2V07IyiUIG74/xX//2gAMAwEAAgADAAAAEODDDCFPPJDJDFPPBDJDNPPNPBLNPPLKLI1PPF3R31PPBvRdFPPFCBNPPOOJGJFPPHPNPHPPPPFPHPPPGJDHPPO0z81PPFnw3VPPB1wylPPPDNNPPLPLPLHPPPPPPNPPPPPPPPPPPLDPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP/EACIRAAECBQQDAAAAAAAAAAAAAAEA8BEgITFBEFBxsUBR0f/aAAgBAwEBPxDzQsmDZ0Fzye5AgghmQLJVwihLdRs7EEEEJRc8nvT1IIRqsoXWBz9nqbZO9//EACIRAAIABQQDAQAAAAAAAAAAAAABESAhQfAQMVFxQFCx0f/aAAgBAgEBPxDzeyyjpZdL5I9GORljcgOFsrLsrlfz0TGMakZZdL4M5zmRxhQpCg9i7OJ6MzIe7//EACoQAQABAwMCBgMAAwEAAAAAAAERACExQVFhIPEQMHGBocGRsfBAYNHh/9oACAEBAAE/EKxO/wDuIutjyWjRo0aNGjQ1hl5A4RMnUPctB+9Ah9q5KDkoOSgKRzTSBkdxtXJQclByUCgwnapJInF8dSS/8CiWTfeuSg5KDkoIO8RoyxJhNclByUHJQBz4laJJIm51BUWGjaJBgynQgQIHZjBcnO2sD3pXWXSDKEfQMxepcEBMAMqbS5KGRIswBht9AyZM0WsmYYTdn8Q5qNyBES9JBAokcJR/PfVfz31X899Un4IQkfQrim/F6V/PfVfz31XNd/UVez1R8/8At/mDOhJ4nB03jRjpoVZs+Um6F+JtSCFi4CCGwEiQ40kitP7ECZk0UJvb0HGYa3pCLronWNYHqwQpBKHK8awFT3PNLiAAkVg1PBZ8T+quTmAZWhTM23IIQc5r5rrsfP8A7VFamGBHcGy+tqHtDzkWAAknQ1PEaeqCVE+D0p9DBmlQtLJdOLeS6EqBLgpmCXcgL6Wt+fGtOyODMpTQAjnzRGBtYynkCcHhd3PJpSLDKwx6VdiYlgOGAHx4Q0Bn0vJ/K7REaRatMqW5ZZtmVDVldVES/OIVEenlF2DaguLkhrUYCYfqR6sCQ5VItmflTdxei2lkQVwFsc+Cz4n9UuYQ0XmN8VedTCGBprv1gr5rrsfP/tSbDcgnLIIraHLFZQ2hlxBp4jQqGZgkzdab2p+vcyGkkmgLuPJdCTjtAwHsJ8lCmi09LBIEa50x41mItFjSRn9gIBpe0sklvIJweFhc1wQVEkEMw301pGyRpJ4PoPhDixeAZDJTf0l70i4PUTGr+FFtiKLDAQRutF2vq59qKwjRIK0zax1R0iY2OgCKrgDoTJkzcboiAAG60IkEHjkyYG8IAivWsIb0mCVkWToTJkwGpFdJMSW479CZMmjNTNtJLdWGDFIwsLMdCZMmmHmJQzQzeOhMmTGyTCIl5Ix1L5LQCyEFQl5YotYCCikzoIvepNJubdJGmzfin0wJCMTqDUNzepblTkutMrI4ywC0R/CTRBcmAS6xpScAXBO+DI1JjSUGTU1tZE5hlR80GgAxNiYyCYf8egCKSNiiJZiONdlVZ+hRFDbUCh+wNG1dkV2RVjzy0ddhrXV3RursCuwK7Ap0j2sKdgV2BXYFAoAxB1SolmZU9gV2BXYFPO2Q2VdgV2BXYFAoDCEdUnguMBK+m18e9Kl24hVTc8qbC6xrFQgQ0bt17to0iNIoAgbUpmH1wH/pGyDFqztygHN9PK8YIgZaYiJZ+aARG9vxRmDsQiCJYW+NShVgj0H6p9m0UAm4Iq6XKOS4abQVQviXFF9t67Hz/wC1RCnK1D9hJmIHl/N/D+Huq2aiBiSZqkzqNKQvkS90knCMHN8QR8seB8h0JY2BU8U7RSI4dpAXyKIZXxrPCEEniy64Kf0kkwMniD8FXWFXMEWGwdZJTUJYLGhEdmS+tKFN1GAnECWIe0XRi5Js74TwDZ1lZoIGUKbdsvhnp7UCML8kQpI10dGy54CFhEnd70lRTdEvsFhsICMiEsByjAGvXowA8lDFrQSmr3zB03RLs6+Cz4n9UMgfOAXgOU3BiCna4CQ0LQjMlwbYr5rrsfP/ALUdbzbQ0T7KZCQJz46q7EcN/EZ2o+MblBQelQMhThGibvEE09hLiLiqT8L5DoSTCB27SVDTGKAWCQBCwXm741gEEBR59RQZVkElEhkdBUEpsQ1sDuz1ksNRlgs4BV2Ib6NIgjeQV55g14kxmLEmSBjrJoMaJQuYGaCB1iLfUPdJlLm9EjgwKPtZ10ibxZu+BvrxTLcES9qidvcVh6tvbq8IFWAoOxK7QrtCngOsQCjjE0bV2hXaFcxGjrsFaKOyN1dgV2BXaFQwZYkYr2hXaldgUigMw9UKIYlinsCu0K7QoqBGFhersCu0K7QpFAZRnqi1YI8QG0CxxQbAgELjXSRNRFlqCloDADFvxUokbZPQHKaA+2oAu9lf+wBI1kNjo+fPgEFaBSF2y70xBqiozJKs3B9vJqVKlSpUqVCAGIBWACwG3U1epQq7+QqVKlSpUqQLBNVugJep0GS626snyKlSpUqVKinghKt0BP8ApX//2Q=="]
math
multiple-choice
96
三、2、右图A、B分别是长方形长和宽的中点,阴影部分面积是长方形的()。
$$\frac{3}{8}$$
$$\frac{1}{2}$$
$$\frac{5}{8}$$
$$\frac{3}{4}$$
B
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCABcAIMDASIAAhEBAxEB/8QAGgABAAMBAQEAAAAAAAAAAAAAAAQFBgcDAf/EABQBAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhADEAAAAd+AAB5esAnfYM4AAAAAFYWavFgr6A17kfSiyV4sFeLAAAgk6BLqC7p8JlDSZoGyxo7+xG3ECfAJ4AFZZjyrraAUOZ6mOER++0JyBucyV/WOSSDu8Dy9SeAABV2gr1gK9YCv+WIzWc6QORdJtAAAAAAAAAAAB//EACYQAAIBBAEEAQUBAAAAAAAAAAMEAQACBRQgBhATMzQSISQwQFD/2gAIAQEAAQUC5lJAQxMXR+9sd5QqDvEv/Yzb9ZtINaQa0g04ygnQsn+ZCYJjSDWkGtINJ/YPI3yqbySycO5phrvh8r4J7qergwxIJsvgg32RqXuZ056mZmeGGy3l7qerg2G80iskYWxWHKx0+qWj9Ptjkq5gcLL7h34rJ2vDpT1cjfK7XWxdaxhkjwx05fEmx7S80A1y50XhvAU9XJq+0Zt5at5at5at5at5at5ajW4timMWjdQfLjHEL/It/rf/xAAUEQEAAAAAAAAAAAAAAAAAAABQ/9oACAEDAQE/AVv/xAAUEQEAAAAAAAAAAAAAAAAAAABQ/9oACAECAQE/AVv/xAA2EAACAAMBCwsEAwAAAAAAAAABAgADERIEEBMgITEzQ1GT0SIjMkFCUmFxc7GyQHKBoVBjkf/aAAgBAQAGPwLHeY2ZBaMAg1B+gCS85danYK1gSpnY5KnaOr62QhLWSTWyxHVGt3zcY1u+bjGt3zcYK2psyZ3FnNxgNMD4A5LAmtk/cVBmEH+5uMa3fNxjW75uMa3fNxhhUmkxxlNe0ce5vM+17lvV+6IKqcFL2C+LnnHmj0T3cR/Vf5HFl83atmmenjCuuZhURImzOiGPtBWTzSfuKk1OKLmnnl9ltt9/Vf5HFlWUluFa0RMPhTZ4wiFrRVQK7YkS5ihlJOT8RWUWlH/RHNWZo86Rzsp0+4UxAymjDMYsPknrnG28/qv8jj3N5n2vkMKg9RjR4M7UyRW55oYbHijyW8xlvLNTpKYtpkbtLsh/Vf5HHud3NFBOX8RphGmEaYRphGmEaUQbeDqesRWRdVjwbLCzUOFWtDY6xFsVozucv3H+X//EACgQAQACAQIFAwQDAAAAAAAAAAEAESExYRBBUXHwIDDRQFCBoZGx4f/aAAgBAQABPyH12RXaNaC4RYFiOE+gxdIWaBTvppKvG7Y0dX8V9aRcp1jlzGbkLchbkI5Cdnc6ujJ32iup4txet6n9doDPFiVsbkLchbkI4VEXKgDL6/B9fB0dKzv+TJM4vym7NeDvyldR8ezUABXTRo082wy4CpYVhjDoDgvnla7efPESE1X0aShj+G/V39ipftdYDkObd+IgRBetDWX2z13zkDen9T8zWvuKCre5QZnBbbt6EHtsOUtAE7HqezU8H18QympCxIqo00abPTSZYRjEh3PidevQ0a7cF3MoshbEY5i9iplcT6M54rPFZ4rPFZ4rPHZfDSqqkmEaxqCEw2gT+aE5AaCmn7uf/9oADAMBAAIAAwAAABDzzyxTzzzzzzDTzDDzzyjzATSjzzxhyQzSDzzzwwxyzzzzzzzzzzzzz//EABQRAQAAAAAAAAAAAAAAAAAAAFD/2gAIAQMBAT8QW//EABQRAQAAAAAAAAAAAAAAAAAAAFD/2gAIAQIBAT8QW//EACYQAQABAwIGAwADAAAAAAAAAAERACExQVEgMGFx0fEQQJFQ4fD/2gAIAQEAAT8Q4zHZYZSlA6wUICh5RcRMj9CGRHRigRFEd01N8AoV0MAQ2k3F1+7K5yEgxImJJzwe/fs9NIINhFviJcSMqHhS9YUFzEgcIMSkLTRdBuIl5we/ftFGBiCBRWAC7pybxmAGXK3z3Gu+Kl6k5LSRnZGEIGMUqlVVyvxLzUbqOO500/eTKmX8AivFGfx9SsmwoUAkjhhxTLrE6VAIOtTSWEGR6umuKckEplXq8AqEUS4lNNgTmB6m/IlFNm0I4ALdScI3kzK9DQFXbsTlzRTmcd7Fx6lTyFALUM3Jl9KuslEb0IYE7C0lFmqYzMkvpjfgANBmFGpXTOjAf6TTtzJV5MkDCBCI5Eqwi8TESmNy3JRY7FJlQgLRdShvpCz0prFTIRK7MoO8fBThL4OiJslqcghrf7Q6PIlBxBMKSAmOtet8K9b4V63wr1vhXrfClRFxyJ4VP0DMmNkLU2qkAwmrMTNHKqKdhFsyTqU9/pcgEjiz/L//2Q=="]
math
multiple-choice
97
直角三角形$ABC$(如图),以直角边$AB$为轴旋转$360^{\circ}$后得到的是()
底面半径是$8\mathrm{~cm}$,高是$6\mathrm{~cm}$的圆雉
底面直径是$8\mathrm{~cm}$,高是$6\mathrm{~cm}$的圆雉
底面半径是$6\mathrm{~cm}$,高是$8\mathrm{~cm}$的圆雉
底面直径是$6\mathrm{~cm}$,高是$8\mathrm{~cm}$的圆雉
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCACJAIMDASIAAhEBAxEB/8QAGgABAAMBAQEAAAAAAAAAAAAAAAIEBQEDBv/EABQBAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhADEAAAAfvwIyzTSZmkdAAAAAAA8vUZljzgaSMgAAAAAAChdpXzM0qwtAAAAAFUtOCjfoXxmacCXc3SAAAAHyf1kTGo/UDC3qF8HCrKxmmm50AAAAAoX6F8AQmM7QqehYAAAAIFO9QmXO5GuAMzT8yfc+6Tc6AAPnfoqZn3bkzIsX6RFnWz2Vdkx+bNcja8vUAAAARkKnLgo3gAAA//xAAmEAABAwIGAQUBAAAAAAAAAAADAQIEABMQERIgMDQUBSIjJEAh/9oACAEBAAEFAsVVET8Ev3jgvV0Xn0N1nSxHAS6znl9U3wEzTnl9XLOg/CTml9WjCusCW6Pll9XAvwF4lkDRcJfVwVM0Atp/CTNaG5XGA9y1rUnpOJhKRgS3R8cvq7CfXLxy+rsVNSAVRu4pfV2nEr2iIhR8Mvq5pWe1/wBc/BqbnM/sXw49PAIRdjmo9oHKxVc1qbnMVZ4W3vSrkiieQ9bsirp6unq6erkii+Q+k9/qgGDYzasYSva1GNwlvUUS4kWiGOJGyiasHhYSmMaNvCrUcnjCyWMNyeIL9H//xAAUEQEAAAAAAAAAAAAAAAAAAABg/9oACAEDAQE/ASP/xAAUEQEAAAAAAAAAAAAAAAAAAABg/9oACAECAQE/ASP/xAA1EAACAAIFCAkEAwEAAAAAAAABAgARAxIhMTIQEyAiMFGBsQQUNEBBQmGRojNDcdFik6Hw/9oACAEBAAY/AssyZDuOZC1q94nKzxgK/wBSj1G4dwr1RW3xSNQhUc+MotEnFjDce4Pw5x1gYbqT8b+4Pw55OrnDfR/jdt34c8llji1TuMTlI3MNx2z8OeXPjAbKT97Mithv9MrcOeWRujq7eFqHeNl0titVg+rRyxyuh85SMrB8H8Y6PWp31q9bW9oVmMyQJnjoatlItqn1itKRuI3HaNw56Oe+21lJ+9o/DnokETBg9Hby2od42b8OelWSykW1TAYe27ZPw56ec+29j+h37HEIfhzj6Ke0UBSjCmv4D0OiVYTBvg0DmZXCd6xNiB+dPpIWiRzm1xcYQIxc1b28Y7P84oz1carTxx2f5x2f5x2cf2R2f5x2f5wrLQBXU2GvDik8tGKg5wVosNY++kzFbWsJnfFVRIDwy0zriVCRFqa2ask2L/pwJ0aWuFv3wKyLLO5q/wD3KK6zldFVFCj0GykbQYIKzmtW0zsgA1jIzxGPNjr4jf3j/8QAKRABAAECAgkEAwAAAAAAAAAAAREAITFhECAwQVFxgZHwobHB0UDh8f/aAAgBAQABPyHSqEBKu6p/AKaJYK55etYuwnnZ7Q1O3XCgWI3q2uXNmJaWWa5c+N/4HkZKtQ4A7Oj2oQkROO38jJTAiCO6nIuBR7uj22/kZNDQublyr1huRMTbeRk08hAZbunflyqR2TeNwPcnCdPrfY0gwCrI76R2UErs8z2jZQ0hYbCrnjPxQ6rwDZha3rNChIbvB6KOvMshqElDMv8ATc0B8YeO8NjGiK9T7GrhdkA4OB8X9bTyMmqYsCEd9OTKJHnJg9Nn5GTWDIL57hycKNpJsrFbzZeZkrMKhx1cFs52E+L0qdglBB4TQDJI3HRX8fTRtGYraoJwcB3lNWHKdJ5mD+6iROKihEtrNrltwTOWkh4AsqH9Vle36pHA4feycM6yPb9Vk+36r+M+qyfb9Vle36oPMmc9RtglWGES2F1lzwpuSEgOErmtaSxKWUIDZAwNPq1gRU+WYG4LgvnIvnU8hDRw8VKACSjeBf402krE3nWr+MmIjZMTgQjvrDjxNyL1ZlMrJJheoUYs+U6gR+J//9oADAMBAAIAAwAAABDjBTDDDDzygDwgAADzygCjQAADzygyhSgADzzzCARwgDzygCgABwDzygCggBSTzygTDABhDzzzzzwzzxzz/8QAFBEBAAAAAAAAAAAAAAAAAAAAYP/aAAgBAwEBPxAj/8QAFBEBAAAAAAAAAAAAAAAAAAAAYP/aAAgBAgEBPxAj/8QAKBABAAEDAwMDBQEBAAAAAAAAAREAITEgQVEQYZFxgaEwQLHB8NHx/9oACAEBAAE/EOr/AASUAMq0BJGRvJ9hO9qaAvBbE2PZVuGQEo0FjnyKhMfr6JqdjOUIDknMf21Dg+EJIACJz49qUARA94Hdg8J9E1/OqBRpAdkfLv7ngoS0EgZE5+ga/nVCEgRRInCbyUjoyOmQ3XmZHKOGpNZr+d0kaob+VD6NxNxeaAWLtb2ifnuIkjOs1/O6ycZELYMPOj/BQCRk51Giz+PEqQFgyek3qSpJib8Vh79UMCqBIEhk3y2qSWDriwt5WO6XOo0E6V2DCLM9mEiExVhh3o+AzPMSBq9Omgo7J4G5C7rSHVCEKMmiaEPYISHuFDcXegkpnAJhO4+bJk0mhUljakUv+bUdlGJNrp1L1NZJBBi37K3YhpI6DX87RIpYhDJA7R6UluUKWWC+9n3G9SdTX87VJnA1iBd9i7zkKfcyw7YXuInU1skkibptR/0qFiAzi+mIWzO1rshsnZbNAcdDVd0sSI0V5gyCUfzn6qdvWBuGxtMaWgBKsmTxQuaZJmJN7HoDS+C4gCfVqdKTk1PwnzpwrPNsFIHCtAUi3jIkk6XiMZMbS28HirkdPPocl1Ty8bKbkQ2iSZFuYdqsEeucDeoLwRzU3zISMkoxCttSJYoEhMDDcu+WilZCgHY62KEbgJGo++hyCJM942XFGYHEFYiykNr5pjAGysQHDEbr5t1TutlUlzAuYONqv1NCTOWDfvogqCoKgqCoKCyoNIGyNE7JQRE5ipgn8HBV8iNW/Mpt60EkqDmCbu+MdukFQVAj7T//2Q=="]
math
multiple-choice
98
如图中,甲的表面积()乙的表面积.
大于
小于
等于
不能确定
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACsATsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+ooooAKKKQfdoAWioJW2qT39Ky/E2s6XoemtqOr3K28a4ySaANuivNB8X/BxXzFvG2k4WrEPxd8IY5vnoA9Dorz/AP4W94Q/5/HP4Uf8Le8Hnrdv+VAHoFFeYav8bvAVgqre6n5Qfopxk1PD8ZPBbW6Ml05U8jjtQB6RRXnB+MvhANj7TJ+VH/C5vCH/AD8yflQB6PRXnH/C5vCH/PzJ+VVm+NfgePVoLKbURFLdELGhI6mgD1CiqVjOlzCk0bbkdcqfUVbWgB1FFFABRRRQAUUUUAFFQ3gUw4bvWF411/S/DGite6jOsaxr8qZ5Y9h+NAHR0V4bp/j74ma0JL/RfDiiy3YiD5+YevSp/wDhKPjL/wBC9B+Z/wAKAPa6K8TPij4x5yfDsB/P/CobrxV8Zt3yeHIRgc9f8KAPcqK+aPiX8YviL4G0cXOu6RDFLN/qoQTvk/Crfgbx58b/ABB4fXUDoVvCsn3QwOcUAfRlFeHrr3xu2jGk2x/Oj+3vjaOukWwH40Ae4UV4c3iL41j/AJhVr+Rrj/ih8YviX4F09ptS0y2kuWxsjUnc+M0AfUNFecfszeObv4h/Cu18TX0BguJZWSSM/wAJAH+NehQjlj60AS0UUUAFFFBOKAI5GYdKaJhtyae5WsPxZrtn4e0efVL+RY7eFSct/EfQetAEviPWbDRNMm1HVLhYYIULHPf2rxnQLe/+M/iiTUb0yQeG7OQiKLG0z46c9+a53xJ4Y8c/HS6e4/tObR9Dhm/cIAc3AHOSPSut0T4Y+PtKsIbHT/En2eCBdqqg/XrQB6HD8O/B8cKwrpUGFGCSoqyngDwkq4GkwfkK4D/hBfiaOB4sbH0P+NH/AAgvxN2qf+Esk+Y46Hj680Ad9J4F8Jpz/ZMGMc8Cua+JEfw88EeHZ9a1uytkhhXciBRulPYD6muB+KVv4x8EeG59V1fxltZBiNCeZT2AGeea888GfC/4jfGSOHxD4r1m4t9PifdaWzg/OAeCQTQBtfCn4cS/Frxo3jzxJoy6XoMMhOn2m3a0qjoT65r6GtvAXg6OJUTSINqjj5RXAWPw58f2tnHa2/iNkht12RBQQEX6Zpy/D/4irwnimU+5B/xoA9F/4QTweeRpFv8A98ihvAng8D/kEW4+qivPV+HnxDXr4ukXPrn/ABrlfi3b+MPA3h/7de+LZJZpCFt4AOZGJwO/rQB33xSPw+8D6BJe6jpdq0+P3MCgbpPpXzJ4s8LT6tq+nePNRtfsiS3irb26DbtXcMcfjVj4CyeJfH3xEv5/H908smntmCBiSqjGR1r0X4+Dbouj2y/LGLxAMDp8woA+i/BkePC+nhegt16/StgcVleDA48MWIHKi3Xk9+K1cd6AFooooAKKKRjigBahmlZOw56VIWA/CsXxTrumeHtFm1TUriOKOBCxLtigCPxz4q0jwl4fm1zX7qO2tLdSzMx5JHYV4N4O1i3+LPi9/EviDUIbTQLaQ/Y4Gkx5/ox+lX7bw/qPxw177friyR+GYXxDDnHnYPXHoeK7Jfgb4Fht/Lh06aGPGBGsmF/DjigDsbDxT4StLVba21WzSKNQAFcDFTf8Jl4Xx/yGbT/v4K423+B/gfywv2S4Hr+9/wDrU8fAzwGQP9GuOf8Apr/9agDq/wDhM/DPmKf7ZtNpPP7wce9cx8U/jF4S8HeGptTudTt5ZwpFvAjAtK3bFcp8UvAnws8B+GZdV1iOZVjz5cQlG+VvQDHNfMer/D+bxR8QNJ1TUoJ7HTbq4xZW7vnK5HUcY7UAe1/Bvw3efEXxI3xH+Jl8iwM//EssHk4VeoyD+FfR1tqOh21ukMGo2scaD5VVhivM9N+B2mLZwwrq10kfljCg8L9Ktt8DtO/6DF3+dAHo41jSDz/aVsf+Bij+2NJHK6hbnHX5xwK85X4H6dj/AJDN3+dKfghpy8nWLwjuM9aANj4ufEzQ/Bvht777XHc3M2RbQRsCXNeLeGfD1/4omm8Z+MB5k88b+TasMLH3GAfrXkXg2zc/t7ap4T1C8mvLHTIt1vBK2VU5P+Ar6dvk3WMwf5dsb429uKAHfsOkP8E+OP8AiYTjA7fdr2VRgACvHP2GyD8E1wMf8TCb8fu17J6UAOooooAKbJ9zrinUkmdvFAGJ4z16y8O+H7vVtSfyrW3TcWr5li+I+h/FfxT9o17xClj4fsJj5duD/rSp4zzXtn7TyLJ8L7uN03RuyhvzFQ/Df4b+Cm8DabIfD1qzSW6sxwOSR1oAm0X4tfC/TtPisrTX7WOGBQirkDAFWh8Zfhso48S2vP8AtCr3/CsvBB5/4RuzP1Ao/wCFY+CP+hZsvyoAo/8AC5/hx/0Mlr/30Kx/GXx4+HGiaDdauuvwO1tGSqbx85x0rpv+FY+CP+hZsvyrw79vfwN4Y0v4S2sljo1pC0mowqeOo3rQBynhXxH4a+LnjJPFHjrxBHFo9tJm0sd3Bwcgn8a+hdP+K3w3s7aO2ttctI4YVCRxqR8oFRfDP4b+DJPAekyyaBZs72cZYgDrtFb7fDfwWV2/8I9aY/3aAM4/GP4eRnB8QW/P+0KP+Fy/Dztr9v8A99CtBfhr4KH/ADL1p/3zTv8AhXHgz/oX7X/vmgDkPHvx/wDAGg6HLfx6xFPIi4ijUj5m7CvMvCOm6p4/8SR+MvFdxJLamQSafan7qrnrXJf8FWPDGi6D8J9Dn0fTYbWRtVjBKcfxLXrfwt/5J14b3fe/s+POKAPO/gztPx28WwcEK6lQP4V2iug+Pyj+z9Jx/wA/if8AoQrA+Df/ACXDxh/vj/0EVv8Ax4UjTdJ/6/E/9CFAH0b4O48L2P8A1wX+VadZXhL/AJFmx/64L/KtVelABRRRQAUjY70tI33aAIriQRQvI3avkXx94r8SfEj4mNaSadcnw5pc2NiA/vSDzu/KvrbVP+PKb/rnXj/7K1rHJoetGRVP+nSdR9KAG6d8StV0yxj06x8ITxW8CBECrgY/KrDfFjxEEAPhK6+XoQD/AIV6xFZ26NxEv5VN9nhLZ8lf++aAPH/+Fs+JD08KXn/fJ/wqnr3xl1vSNButSuPCtxFFaxGWR2zwAPp7V7b5EH/PJf8AvmuM/aEhhX4I+Kj5K/8AIIn7f7BoA+d/h3rMvx01M+LNdfGlWcuLe2Y8MynP+Fa/xMPl+NvDMXlGJY7kBUx0GVxiuN/4J5Ef8KQfA/5epP6V2vxUOfHnhz/r5H8xQB9N6eQdPhf/AGB/KrNVrD/kGQ/7gqzQAq0kn3R9aVaG+7QB8B+F/wDlJx4l/wCuB/ma+ltS/wCPO4/65v8Ayr5o8M/L/wAFNvEB/wCmB/8AQjX0pqXGlXr/AMX2dqAHfsM/8kRX/sIT/wDstezeleM/sO8fBX/uITf+y17JGcpQBJRRRQAUjHC0tI33aAPOf2m8/wDCtbjBx+8Xj8RXS/DED/hANMOP+XVP5VzX7TXPw0uP+ui/zFdN8Mefh/pn/Xqn8qAN+OnYFNjp1ABgV8+f8FEQD8HrMdcanBjP/XRa+g6+ff8AgocCPhDaZ/6CcP8A6MWgD1/4VjPw70cnj/Qo+n+6K6HFYHwtGPh3o3/XlH/6CK36AClwKSlzQB8g/wDBYDA+EXh7gc6xH/6EteifDMn/AIV/4cwP+YdHwK87/wCCwP8AySHw6f8AqMx/+hLXonwtw3gPwyB/FYRCgDzr4Nbj8bvFxC9ZBx+ArR/aL8QaPYf2Pp11dqLqW7QRxA853DrXndz4+sfAXxW8ZSykfbppQlrD/E7YGOKxbzwZr+uXVj478ZXLiaS7VraA9huGKAPvfwbk+FrAt/z7r0+laq1j+A2B8H6af+nda1x96gB1FFFABSN92lpG+7QBW1T/AI8pv+udeT/soj/iQ6x738n9K9Y1T/jym/6515P+yif+JDrH/X/J/SgD15acv1pq96cvWgB2PeuJ/aGyfgh4r5P/ACCZ/wD0A121cV+0Fz8EvFY/6hU//oBoA+WP+CeYx8EZBk/8fcn9K7X4pg/8J54cP/TyP5iuM/4J8g/8KWlPRVupMk/hXSfHnXNM0DxX4evNUuY4I1uRnecHqKAPquxz/ZsOB/AP5VY59P1ryyz+O/w3h0+HzNegB2gY3DP86sj47/DjH/Ici/MUAelqT6UMTjtXmf8Awvb4cnga7D+LCo4fjx8O5Lryl1uIse2R/jQB8reGVD/8FOPEYx0tyVH4mvTf2kfirpfw/wDDs0cKG+1i8hKW9nHyfxFfO3jD4jW/h39uLX/FemRG4+3wmKyC8l2JPb8RXr3wR+F99qWoXXj3x4TdalLEzQW8nKxDqMZoA9l/YJup7v8AZ3tL6eEwzT3EkjxHqhIXivbLUsevSvH/ANiPB+Dsny4xqMwx/wB817Iq4cmgCSiiigAob7tFI/3D9KAPN/2nWx8M58f31/mK6b4XN/xb7S/+vVP5Vyn7VdxHZ/CW7u5m+SMAkfiK4n4fftI/DOy8G6fZ3WpMs0NuFYY6EDBoA+gozTq8Xj/ac+FfP/E3b8hT/wDhpz4Wf9BdvyFAHstfPf8AwURJ/wCFQ2g/6icH/oxa3/8Ahpz4Wf8AQXb8hXin7bnx6+HviP4cWtvpupGVor6JpEx23qaAPq74VnPw70bn/lyj/wDQRXQV88/Dn9pj4X2fgjTLSS8kRobVFK49q3F/ah+Fuf8AkISf980Ae1UV4v8A8NQ/C3/oIy/98U1v2n/hdtb/AImUnT0oA8s/4K/gN8IPD4BG7+2I8f8AfS1b134gWng34T+GYYAJ9Um06MW8KnksSQK8u/4KYfGLwp4/+GOj6Z4ZuXluItQSQkj/AGhj9RXW/su/DjVLnTtM8W+OZTdXxhRbKMjhU6DigDhf2dvA83i/45a54r8cRF7wOGjt26R8DBwa9w+O0ONB0sRJhIrhAABxgMKwfhOqr8dPFkZ6qwBX22it/wCPTBfD+m44/wBLT/0IUAfQvgPc3hHTScf8e69K28jOKyvAv/In6d/17rWtQAUUUUAFI33aWkb7tAFbVP8Ajym/6515L+yi4/sHWP8Ar/k/pXrWqf8AHlN/1zr5a+EPij4jaPd6xa+GvBEmrWv25v37MfX2FAH1XGetOJxXhSfEb43Dd/xaaRtrYB80jP8A47Tl+JHxubr8JJf+/wCf/iaAPct3vXGftAuP+FJ+Kv8AsFT/APoBrgf+FjfGz/okkv8A3/P/AMTXM/GD4g/GC4+F3iCK8+F0lpamwmE0zzk4Xaefu0AeK/sneOtO8Hfs7XU0qma+lupBawD+NuP/AK1ew/AP4San428QL4++JsXnLMCbKwlHyxr64NfOn7CvgTxqLNvF9r4WbXLMzt5cRclUYHOOnuK+ubTxn8bEXy4/hysMagCNQTgD8qAPQf8AhWngX5SfC9gpU4GUqb/hW/gP/oVdP/78/wD168+/4TX44/8AQgJ+Z/wpP+Ez+OP/AEIMf/j3+FAHoI+HPgUNgeF9PX0/d4rgPjmvw08E6Q7nwvYz6g64ghQYJY9K5/4mfFf4w+EvA+peIdQ8DrFFYwmQkE9gfb2rh/2a3uPiZoi/FLxVI015qEpENtnKwge340AcFrXgW3tfGWi+KtY0+K3v7q7DxQY+4uRivpm+3mxkCJ920PC/SvL/AI+YPivw+p/5/AFX8RXqt8v/ABL5P+ubfyFADP2IM/8ACnZc/wDQRm6/8Br2X+I/QV41+w+MfBt/+whN/wCy17L/ABH6CgB9FFFABQ3K4ooPSgDzf9p+CK4+FV5FMgZGIBB+oqj8N/hP4BufA+nXE/h+2eSS1UsxUckitH9phgPhhdZ7uv8AMV0Pwtz/AMK90v8A69U/lQBkR/B/4eBePDdr/wB8inf8Kg+Hn/QuWv8A3yK7eOnUAcN/wqD4ef8AQuWv/fIrwj9vr4d+C9F+EtrdabocEEzajCpZV6jetfWFfPH/AAUaH/FmrTj/AJicP/oxaAOw+F/wr8Bz/D7R5pPD9szyWcbMxUcnbXQr8Jfh/wBf+Edtf++RWj8J+fhvovH/AC4x/wDoIrpFoA4z/hU/gH/oXrX/AL5FNPwl+H5BH/COWvP+wK7bIozQB8P/APBVTwR4Y8MfC7w/d6JpUNrM2rRqzIvUblr2X4Wsy/D3w42fmNjHXnf/AAWC/wCSReHT2GsR5/76WvRfhijN8P8Aw2qjn7BFQB538L+fjt4pPfeOe54Fb37QEf8AxTmnt6Xif+hCuf8AhW6t8ePFYB+ZZAMd+grZ/aCv7cW+laL5oa+nu0aOFeWYbh2oA+kfAuR4Q04H/n3X+Va1ZPggMvhWxjkUq6QKGU9Qcd61s0AFFFFABSP900tI/wB00AV74brOXPdK8m/ZVH7jWk/hF6xx+NetXxxZyZ/uV5J+yqw8vXD/AHb1gfzoA9djBznc3PvUm35uppkfBx6Cpe9ABj3riv2hBs+CHipgSdukXHX/AHDXa1xf7RH/ACQ3xX/2CJ//AEA0AeLf8EuyX/Z7YsSdt3J/SvpiNFC5UY+lfM//AAS3/wCTe3/6+5P6V9NR/d/GgBfxNLj3pMGnUAeS/twZX9mLxWwJyLF8f98mvDf+Cf6qv7NOluB8xuHBP5V7l+3F/wAmv+LP+vF//QTXhv7AhC/sy6WT0+0v/JaANL9oAb/FXh4jgLejkdeor1LUncabNhl+WJiWI46V5b+0HmHxZ4fQjrdB+PTIrp/ib4si0O1j0fS0N/qmoRCNbaMbipPrjp1oA6r9iMkfBp/+whN/7LXskbEsc+grzr9mTwnf+E/hbDp+oJsuJpWnkTP3S2OP0r0VAVYk0AS0UUUAFDfdopGwV5oA84/ac/5Jhcf76/zFdH8LG/4t/pf/AF6p/Kuc/aYVV+GF2f8AbX+YroPhY+74e6Xj/n1T+VAHRrncfwp3Ipq4PX2pcCgBd1fPn/BRr/kjNn/2E4P/AEYtfQlfPn/BRz/kjFn/ANhOD/0YtAHsHwmz/wAK30X/AK8o/wD0GuhYHFc78JMf8K20XP8Az5R/+giuj4oAbzSqadgUYoA+Qv8AgsB/yR/w/wD9hiP/ANCWvRvhmpb4f+HFG7nTohxXnX/BXoE/CHQcH/mLxcf8DWte58Zr4b+F/h+x0aP7XrdxpsYt415w2OD+FAHDaf4rt/DXxp8UqqLcX0jBbeNfvFsDFezfAL4XTNqzeP8Axuhutcm5gif/AFcK9sD15rO/Zn+Bh0XWJ/H3jST7Z4g1j968TD5Yx2GK+gYoF2hVAAA4A7UAJZ4UHAwWOTVr3qCOIpJU+PmzQAtFFFABSN92lpJPuH6UAV9Q/wCPSb/rnXkf7Kv+p8Qf9f7V67ef8ecn+5Xkf7KwdY9dJTK/bW6fWgD2Bf8AWGpO9QRghj8zHJ7ipMn1/SgB9cX+0R/yQ3xX/wBgif8A9ANdlzXF/tA5f4H+LFCsMaRPjPf5DQB4x/wS3/5N7f8A6+5P6V9Nxfd/GvmX/glwv/GPuSpz9tkz+lfSybs4xgZPWgCaio8H2o3f5xQB5T+3F/ya/wCLP+vF/wD0E14d+wCu79mXTFx1nf8Akte3/tuZb9mbxUMfKbB93/fJr5h/ZO8XS6d+zBo+haIhuNUu7iREVBkx5CjJx6UAdJ+05rEo8Y6Lpugf6dqwfiIc45Fe2/s8/DGfSpG8V+KgLjWrkDAYcQ/hU3wH+Dth4dVPEfiFftmvXHztK/Ij9q9ejTHGOKACH7mMf/Xpz/dpaKAHUUUUAFI33aWkbJXigDzn9ptJpPhTemC3kuGUZ2R9SRXDfDv466HpnhGw0+70TUhNDCsbDyz1A57V71cQRzRtFLErxt1DDOao/wDCPaN5it/Zlr8v/TMUAeYp+0H4cH/MF1L/AL9n/ClP7Qnhz/oC6n/37P8AhXp66DpGOdMtv+/Yo/sLR/8AoG23/fsUAeX/APDQnhz/AKAup/8Afs/4V4/+2X8UbXx18N7bSNG8O6pJcJexykCMnhXU+ntX1h/YWj/9A22/79imL4f0ZG3rpluT7xigDxj4d/HTS9N8EaZY3HhjWDLb2qI+2EnBAx/drXb9oTRAP+RY1v8A78N/8TXqsei6SgwLCDH+4KH0TSD10+3/AO+BQB5R/wANDaJ/0LOuf9+G/wDiad/w0Lov/Qsa3/34b/4mvUxoejn/AJh8H/fApf7D0n/oH2//AHwKAPif/goR4r1D4u/D/StA8J+FdXN4t+jhnhbC/MpzjHtXuf7LXwkk0LwfpOp+LgbnVhbKFRxxDgdMdq9nh0jTYpN0dhbqR0OwVaSPa2efz6UAQPHhWUHhuPoParEI2qAPSnbRQoPpQA6gcUUUAFFFFABSP93FLRQBDdLmAr/eGDXg+i/Dj4jeHdbv30XUY1trqUyYJz1P1r3zGetNEeOgFAHi40D4w5zHq0S+2P8A69KdA+M//QYg/L/69ez+XnqBRsx6UAeL/wBgfGf/AKC9v/3z/wDXrN8XeCvi94g8M6hotxqtusN7bvAxI52sMHvXvW2k2nGABx0oA+YvgP8ABT4m/Dbwn/YOm6zCYfNZ8n3/AB6127eFfi2G+XWoh/n617KqYHzYyT2p2wdVwDQB4x/wi/xf/wCg5H/n8ab/AMIv8Yf+g9H+X/169p2P6r+VHln/AGfyoA+efiV8Mfil4x8G3vhzU9bja1vozHKQOcEdjmtj9lX4B6X8JvD62k0gvLoksrS4YpnrivbWjPpn8aUIdy8DAFACIgK4I4PapaAMUUAJigjFLSNQAtFFFABRRRQAUUUUAFFI1MmbamfwoAGkApw5Ga4v46axe6B8LNZ1ixbFxZ27MlfJvgn4zftDan8LbrxrZWukyabamTmSTEm1CQeN3tQB9zU1nA5NfD2ifGv9onXvhXqHjfT7PRodOtoXdi0nzgLkHA3exr3X9iPx1r/xE+EMfiPX2DTyyMp29Mg4oA9ujcN0p1Q2vepqACiiigAooooAKKKKACiiigAooooAKKKKACiikb7tADGkApPMSmXH30rxv9p74ifEXwL9hHgXwgmvm5OX4Y4/KgD2ZplHAp8ZyM18NeP/ANsD4weC7NJtf+GNvaPcOQqPuDZ9hmvfP2M/ih4p+KHg2TV/Euitp0m792rIVyMds0Ae2UU2nUAFFFFABRRRQAUjUtI1AC0UUUAFFFFABRRRQAjUyT7vXHIp7CmyA7elAHAftNMV+CXiJgowLVslvpX5i+HfHnhWx+FuqaHe6hrUd88kwSKBv3PLH/Z6fjX6w+MNBtfEvh260bUwWt7uMpIAfWvGPi18IfAPgz9n/WoNO8M2M0kFnKyzNFuk3EE5H50Afn/4L8e+ELP4N6potzqOtrezQuqRxMfJOc9sf1r72/4JnIsf7M9jGuf9Yx6Y4Jrnv2DPh94Q1v4CxDWPCtjPLJNIjSTQ/Pjca+j/AAV4d0rw1pK6VotklvbRnhUGB+VAGzCNvSpaYqkU+gAooooAKKKKACiiigAooooAKKKKACiiigAoPNFFAEUqBmBJ6VyXxd8aaL4C8C33ifXmjW309Cx34yxxnC117da+Ov8AgqHaeJ9Rk8PW1nYXd1oKzhtSjhBIZcjPTrxmgDJ+D/hPXf2i/ikfH3idGj8MWswNhAV2iTBzk569q+uNQ1HQPBunW0Mj2+n22RHEu0KDXzb4H/aU8J+FvCVjoWl+D9Qjt7SNU2pbuOnfp1ri/wBob47XvxBtdL0/w54Y1E3MVypO6NlAGR7UAfcNrdLcQLNCyvHIRtYdxVnJrlvhTNdXfw/01721aGXyF3IeDnFdSOlADlopFpaACiiigApGpaRqAFooooAKKKKACiiigAoYZoooAbtqlrVja6jZy2V9CkttIpSRW7g1fowPSgDH8K6Dpfh6wFjpFolvbqSQqjjmtZeO3WnY9qKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGpaKAIXVieKo6jY2d/D5V7Yxzx9tw3CtSjp0oA59fB3hbb/yAbHPf9yKdH4U8NwSCWHQrNXXoREM1vUUAV4x5cYUR7VHRVHSpqdRQAi0tFFABRRRQAUjUtDDIxQAUUUUAf//Z"]
math
multiple-choice
99
如图中, 甲的表面积 ( ) 乙的表面积.
大于
小于
等于
不能确定
C
["/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCACXAQ0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+oopCR60ALkDmm7165okPyVSvbmK3ia4nkWOGIEuxPGKALYniP8AH+hpyyIejCvG7/4meJtc1+a38G6D9rsLc7XuWOAxHXHrzT4PFHxV3nPhmHP+/wD/AFqAPYtw9RRketeSf8JP8VT/AMy1AP8AgdH/AAlHxUB/5Fy3Pt5lAHrTSIqli3AoV1IBB69K+b/HXxt8faF4utfDEPhuG71W6YARRvu2fXHSuut/FHxbkhjJ8NW6kjkb+n6UAex5HrS5HrXjp8R/F3P/ACLkH/fdB8SfF0dfDsH/AH8oA9gZ1XkmjzE/vV4P44+JHxE8LeH59V1rRbeKGJSQvmfM59AK3P2XfifqHxN8Mz3+oaf9jlt3xt9RQB66CD0NLUcf3akoAKKKKACiiigAqPzo95XdyOvBp+QO9YPjbxDp3hjQbjVtUlVI0HyjPLfQUAbfnw7clwB6nil82L/non/fQrxHRdE8X/Ey/bXr3VLnRtLPFpbRdWH94/hWr/wpy9PJ8aaofx/+vQB6wZ4R/wAtV/OhriAcGVB9WryY/B28DY/4TXVPz/8Ar1Wv/g9cxo00/jvUo4413M7Nwo7k80Aew/abfr50fPTLUG5twcGePn/aFfHGpaZ4k8bfEUeFPAHinUrjS7N8X+psSFJ/uqRXstj8EpUtoo5/GGqPIiDzD5h60Aex/aLf/nvH/wB9ij7RB/z2j/76FeSf8KV/6m7V/wDvv/69I3wWYf8AM3ap+MlAHrTXVsGwZ48+m4U5J4X4SRWx1wc18yfGjw/b+C7FLaz8V6pdaxdHZb2ySZOTxk+lXv2FZ/FkOqeK9F8V6nLez2csLJ5hyYwwJ20AfR4dSxAPI606oof73rUtABUUyk5NSOcLVPUr2Gzs5bmeVUjhBLsTgAetAEepXtvZWMlzdTrHDCuXZjXzZ8XPi8PGfigeDtD+2Wujxv8A6dfxxZEqg8qprrte1XU/iz4m/wCEf8OxzweHLV/9OvhlfPP90HuK9U0Hwd4f0jRIdMstMthDAqqoMQ7DGfrQBwPhH4m+BPD+hwaZptpdQxwrgkQ/ePcn3Nai/GrwmvHl3h+kNdx/YOjjj+zrb/v0KZJoWkquU0y1Y4xgxigDin+NXhUrhYb0+v7o8V5/8Xv2ktKsdJk07whbT32uzApEqx7hCT0Zh7VufHjxvpujlPCvg/R7XUPEV0NiokQbyM9S30q7+z38HrLwfp76pr8MV54g1L97eSuNwjJ52rnpQB5/8ANQ8M+E7ebxH4jfUNW8UalmW7u548mAnnaor1GP41+G9uTb3w9vK613i6DoxYs2n224nOfLFH9gaKDlrC3J90FAHDr8bfDRXm1v/wDv0azPFX7QvgfRdMe71P7RBGo+XzF2lj6Cux8eaj4V8J6FPqmp21rHFEvyJ5a7pG9BXyz8ZrCf4h+FdY8aa3pgs9Ls4M6ZabMHgn5iPXNAHYWM+q/FvxFD4o153h0KPLWdjjCyDHDH8K7H9j1YY5PEUMSbIo7vCgdAMngVn/CQN/wrHSBkFfsS9P8AdrT/AGPVy3iEHkC9OB+JoA9wGNvFOoAA6CigAooooAKbMQF5GeaG659qyfGGt6f4e0GbV9UuVgtrZS7ux6UAQ+Ldd07w3o82q6tOI4YlLbc8tgdBXzjrU/xJ+I3jyDxJc+GXuPC9hLmxsNxXzD2Z/UVraB4msfi54uOs+IdThsvC+nyZtbZ2C/ayDwzDuPavZrPxf4JtbeO2g1exiihTEarKAB+FAHF2vjT4nRqIIPh/HHFEMKFc9Kk/4Tj4rdvAK/8Afw12cfjfwihz/bVrnv8AvRTv+E+8KAMx12zCj/pqM0AcM3jf4phRI/gSNdhzkyH9favCfjT8cfHPi/XY/hzo2jtZrdvsvriBizY7op7V6t8YviNe+OblvBnw7vsCUhb+/hb/AFSZ5AYdOK4/w74a0jwz8YfC9lp0Q/eMTPKeTM2OSx70Add8KteufAfhW10TQ/AdwqR8zyMCXlfHLE11H/C1vEuf+RJn/I16vFGFbd/eFSbV9BQB5R/wtfxH/wBCTcfka5D4yftH3ngDwt/auq+EZ4VuJBBbsxP+uY4H4ZNfRGB6V8m/8FcPl+BukMvDf25b8j/eoA1/hloV5e3B8a+J5ftuqapGJYo36W6kggCui/Zd3H4z/ENieDNbce+w1L4NA/4Q3R2xybCLn8BUP7LpJ+NXxEJOf39r/wCgGgD3j0p9M9KfQA2T7v8AhXkn7XENze+AYdHtr6Sz/tC8WKSWI4baeDz+NeuN92vLP2nv+QPo44wdSj/nQBz/AIS+BNxo+g29jp3jrVYIggJCZGSR3rUX4Qa2Bj/hZGufgT/jXq2ngDT7c+sa/wAqsL90c0AeQ/8ACoNb/wCika5+Z/xqvqvwm1y10u4ul+ImtSNBEzqCT1Ck+te0Y96z/FHHh2/54+yyf+gmgD5E/ZJ+Fl94wh1rxfe+MNVXU/7TltzMc/dUjGK9v/4VFrGD/wAXC1nJ9z/jXNf8E/8AJ+HetDJ41y45J9xXvwHrQB5N/wAKh1luW+Ies/gT/jS/8Kh1bv8AEDWv++jXrOBS4oA+Ef2k7bWfDP7VXgbwbdeIL3VNM1FfNmjnYnLbsf0r1349Qpb/AAf16GIBUjgKqF7DmvN/21sD9vT4cKckfZCev+2a9J/aAbHwn8QDH/LNsYHuaALfwhGz4X6LGvQWK9f92tb9kDhvEX/X4f5msn4TyLF8MNJkkKqqWClmY4A+X1rS/Y4u7a8PiKSzmWaL7YfnXpnJ4oA9zUk0tNXinUAFFFFACNXlH7XUKXHwvW3kXdHNexI6+o3V6u3b615d+1V/yTuD/r/i/wDQqAJfD/wk8HRaHawxaYqx+Sp2571pR/CfwV5fOmKT7tXV6IP+JVak/wDPBavUAcP/AMKj8D9f7KX/AL6qvrPwp8FRaPdMmmKpWByCG/2TXoODVLxBn+xLwf8ATs//AKCaAPib/gn27P4c8UO0hZ01e4jD99ocgDP0r0vWEQfHnwztUKNx4X6V5j/wT3BHhrxVz/zGrn/0Y1en6vkfHrwz9T/KgD6WH3Up9Mz9zg07PsaAH18m/wDBXQY+BWk4/wCg3bn/AMer6xz7Gvk//grh/wAkH0sn/oN24/8AHqAO98D/AD+DdEA/58Yc/l/9aq/7LZz8Z/iGfWe2/wDQTUFjq2neHfhfpuq6pdpb21pYRNI7dxsPAFYv7B3i2y8beMvHfiPTYJYrWa7iRBKMFtqnn6HNAH0zGcr+NSVWtXLduOtWaAEb7teW/tO/8gfR/wDsJJXqTfdNeVftQsRo+j4/6CUf86APTbD/AJB1v/uL/KrC/dFVdOcHT7cZ/wCWa/yq0v3RQAtZ3ioH/hHb7/r1k/8AQTWjWd4sOPDd9/16yf8AoJoA8R/4J/8A/JO9bP8A1HLj+Yr32vAP+CfrAfD3XEJ+Ya5cZH4ivfsj1oAWlzSUdKAPib9tggft6/Dc5/5c/wD2oa9M+Pwz8IfEr4z5cLHr05NeZftsFB+3f8OZGbaiWhLMR2DkmqH7SnjXWvGuk+IPDngvP9mwB01G9T7uMnIDdDxQBVt/GOteOfDOl+AfAsv7lLRF1G8Tog24IBr2j9gXQIvDGl63o0dw0xiny8jH7zZ5rE/Zj8HaJ4R+FumwaTbostxagzS4+aTK9Sa7P9kdGTVPEaZGPtHb6+tAHudOpq8Lg06gAooooARu31ry79qr/kntv/2EIf8A0KvUW7fWvLf2rCR8O7cgZ/4mEX/oVAHoeiH/AIlNr/1xX+Qq9WfoMitpNsQQf3KdPoK0M0AOqj4g/wCQPe/9ez/+gmrW6qevP/xJ7wAZ/wBGf/0E0AfFH/BP1ceHfFXYLrNxkn/roa7f4jeJdH8M/Grw1davdpAgJyCeRx6V4v8Asr+O4vC3g/xZZWVsb3WrrWLhbS0T5m3eY2CVHOK+l/2f/gxJNdSeNviRCmpa1qEeY4J13pbKSDgA9KAOzX46/DddqHXodxHQGpP+F6fDj/oOR10S+BPB4YMfC+lbscj7Ip/pT/8AhB/B3/Qq6T/4Bx/4UActP8dvh0ibhrkWPavnL/gpl8Q/DHjH4G6fDod6t08GqQzSbegRWyTX1V4g8PeA9G0S41LUdB0eG2gQs7vbIo/MivmL4oaXpvxK/tCax8PWeneGdOjdleOEKbogHBHHIoA5Lwfa+IPjvNo/2l5rLwfpsES+WPl+1Oo6H2r3j9kzTbHSPit440rTrZba1tfsyRxIMLjYf1rI/Z0ghtvhHp9paRLHDHMQigY4FdB+zECPjd4/3Hnfbd8/wmgD3WNcHOMcVLTPT6U+gBH+6fpXi/7aWoXGleAbHULO0e6mhvoyIl6t7V7SeleW/tQAHw7pYIyP7Sj6/WgDz6x/aC8bpZRKfhVqpCKo3AjnirC/tC+Nto/4tRq/5ivfdPht/wCzbf8Acx/cX+AelWVgg2/6mP8A74FAHz1/w0L42/6JTq/5iqXiL4/+NJ9DvIX+FerKskDqzZHy5U819J+RB/zxj/74FZ/imGJfDt9iGP8A49ZP4R/dNAHxR+yH8Z/Gmi+EdTt7D4dXt9G+pzMXjYcHI4Neuj9oD4g5/wCST6l/30Km/wCCe8cb/D3XS0SH/ie3HVR6ivoNYIf+eMf/AHyKAPnn/hf3xC/6JNqX/fwU2T4/eP8Ay2/4tRqf/fQr6J8iH/njH/3yKPIh/wCeMf8A3yKAPzT/AGpdY8SfFf8Aan8H2mo6Tc+Grh4PKj3t823dksMfWvobxj4P0vwj8BNZ0zTol3RWv76Y/enfuT9a4z9tZEX9vT4cBFVf9D5wMf8ALQ16l8dP+SX+IPaFv60AL8Hj/wAW30Yhcf6GvHp8tbH7IDbtU8Tf9fX9ayfg0Afh1pGf+fVP/Qa1v2RABrHijH/P5/U0Ae5UUUUAFFFFACN2+teTftfQ3E/wq8q0kSOdruPy3cHarZ4JxXrEnb615p+1MB/wrdOP+X2L+dAHLaR4S+PB0e2a3+IWjIpjQqDbvgLgcdOat/8ACI/tA9viNoeP+vN69X8MgHw5p+R/y7r/AOgitJANnSgDxn/hEf2gP+iiaH/4BvVTVvCfx8Gm3Xm/EHRDGIW3BLR9zcHivcxVLxAB/Yl4cf8ALu//AKCaAPz8/YH+E3iTW7zXvGejeILG21GHU545PtEJYFw5ywAz3r6pt/Bfxsbdu+Iun5PPFu4x7V5p/wAEsf8AkSPFh/6jdz/6Mavq9fu/jQB4/wD8IT8av+ii2P8A35ak/wCEH+NP/RRbL/vw1exU6gD4d+PupeP7T9pHwj8M/GHilL7RtWCyXMdujAv7fSvYPGlnbWHgG+tbK2WGCG3cLGg6AKeteWftff8AKQb4d/8AXBf51618QyT4R1Nc8GGTJ/4CaAMX9nvDfCmxYd2k/wDQhW5+zIMfG34gf79t/wCgGsD9nvb/AMKv0+McfvHBPbr/APWra/ZfIb4yePmT7pkt8HORwpHWgD3v0+lPqGH73/ARU1ACN0ryv9p8n/hHdJ5/5icX8zXqrdK8q/agx/wj2k89NTi/n/8AXoA9J03/AJB1v/1zX+VWVPyiqumuv9n24z/yzX+VWl+6KAFzVHxRg+G7/P8Az6yf+gmr1UPFH/Iu3/8A16yf+gmgDwr/AIJ6j/i3+vf9h24/mK+hOlfPn/BPX/knuuj/AKjtx/MV9BmgBdwpM0mKWgD4n/bUH/Gevw3PraH/ANDNenfHj/klfiFRlWaJsMeg5NeZftpAn9vL4bkDn7MwA9fnNdr+014kh03wPqHhu0ie813WswWVpAN7FiTyR2HNAFfQ/Ftt4Y+D+klIjdardWiJYWUPLSuV4wK9S/Zh8I614a8Py6nr4WPUdYk86a2UcQg8jPvXM/sv/CC90bRdM1/xqol1mK3URwNz9lIx0r3PYRJvxQBczlcilpi8Rin0AFFFFACMM4+teY/tUkj4ZqQf+XyP+demucY+teZftVD/AItmv/X5F/OgDu/DXHh2x9raP/0EVpJ9yszw23/FN2BA3Zto+nb5RWkrfLjBoAfVLxB/yA73/r3f/wBBNW93+cVT1850O9Hf7O//AKCaAPlv/glj/wAiP4s/7Ddz/wCjGr6wjGV/Gvk//gliD/whHirkYOuXI/8AIjV9XRv29zQA/FLTd3t+lG6gD4s/a+/5SDfDv/rgv869Y+JDFfBOsKQS32dyhHbivKP2uMP/AMFBvh0xOF8lQT6c12HxE1PW/GOrS+AfBEfmy3WUvLz/AJZwr359aAOX+GPiLUNR8C2HgfwgBcaleSsJp1G77Mnr7dTX0j8Efh5Y+BNBkt0me6vrpvMvLl2JaR8c/gKo/AH4UaN8NPDcdpaxLJfSDNzcFfmdj15r0VU2857UAG0KMipKawyMU6gBG+7Xkn7WlzBaeEdNubiVYo49RjZmb0zXrbdKx/F3hvR/E2lNpmtWK3VuTna9AGJpPj3wX/ZduW8SWO4RrkeZ7VcX4geCwoB8S2H/AH8rFT4L/D1WYjQUxgADe3+NSf8ACmvh9/0AY/8Avtv8aANj/hYHgr/oZLD/AL+VR8SfEHwUfD98v/CS2G5raQAeZ/smqn/Cmvh7/wBAGP8A77b/ABpk3wX+H0i4/sOPBGCNx5/WgDx79gzxn4V0vwPrkWoa7Z27NrU7qJGIyCRgjiveD8SPAo/5mnTv+/tZFj8FvhvaKVtvDNrErdVAPX1qZ/g78PWH/Iv2/wCVAGh/wsnwL/0NWm/9/aX/AIWT4E/6GnTv+/tZf/Cmvh6f+Zft/wAqX/hTnw//AOhet/yoA+Q/22/FMWo/tjeAr/wfKmsTwwFALfLbSW7mvpr4N/C06fqDeL/EwW71q4PmIknzC3z2FdZoXwr8B6Rq8eq2PhqyW+hGIp2jyyfSuwjQ4Oevc4oAhhUiTA6Y5z1zVgAFelN2Y5Ap69KAADt2paKKACiiigBsnOB7151+03YajqHw1ki0u1NzcR3EbiMdwDXo59ajkTdQB43ovxO8Q22i20T+DLzfHEqkYxnAxVofFnXwMf8ACDX/AOder+Sn/PIcewpfJUfwD8hQB5P/AMLc1/8A6EfUKr6j8Vdfns54U8E6h5kkTDhc9QRXsHlr/cX8hSeSmf8AVr9cCgD46/Ysk8d/DLQdbstU8GXTNqGpy3KbR2ZiR/Ovbf8AhaXilW/5Eq6P6V6wsY5JQD0HFO8sdQob64oA8lb4q+Kdv/Ij3h/H/wCtTf8Aha3in/oRbz/vr/61eueX/wBM1/Sk8of88x+lAHxP8cvB/wAS/ij+0v4Z8W6RoL6bb6UixyyTEgjnkjANfVXwj8B6Z4J0doLVTJdXHzXM7j5nY9TXXLEA2dvOOcDFPiQBBxj2oAWNMDk/SlIpaKAG4p1I1LQAUUUUAFFFNoAGIHWkVw3TtUchYsfQEfrXyJ8bfiN8TIP2r5PA/hjxNpmj2bWbT+bqL7YztIGP1oA+wKaXx1r4X8G/F743eIPiXrHhJfH/AIVtX0YAm7ll/dzZBPynHXivSv2AfiN418f6l4ri8WarDqDaNfvbLLAfkbBxkUAfUEbq3SnVDa96moAKKKKACiiigAooooAKKKKACiiigAooooAYzKtN8xDzmkuv9W31rz39oTUviJpPgsXPw1062vtVaXaYrkfLt+tAHoTSoOKkjOVzXwx8W/2h/wBpv4dW0P8AwkHhbQUurxwkUEbBnYngYAFfR37IPij4g+LfhuurfEPSDpuoSHKRlcfKaAPW6KbTqACiiigAooooARqWkaloAKKKKACm06kxQBG/8WOuR1r8+/2xbPxTL+2Ibvw/4NuPE3k2TboEyq4JXnNfoJImXySaptpVgt81+lnEt2ybDOqgOR6ZoA/KLwCvjYfGLXBZ/CWa+vlUGfThKQbXIODnvX1l/wAEufDniLQdN8VTeIPD1xo0l9qDyC3l/hyegrrvgb8PvFeiftTeNPFOpwGOw1RUFvLz8wA719CwWyxysUVUDcttH3j6mgCWMAdKkpqrjvTqACiiigAooooAKKKKACiiigAooooAKKKKAGyAEYIrjfjR450r4deA9Q8S6vOscNvCTEp6yPjhRXYyMB1rxr9tT4V6p8Xfhamg6RfG1nt7gTrkcOR2PtQB5N+zL4L1r4zeMR8ZPiRBIli8m/SdOkyVRQchsV9D+P8Ax9pHg3VtK027jfdqUoihEeAFHbNeEeH/AA1+0/o2h2mk6dNpcNtYxrHEEj4IUY6ZrL134R/tAeN/GOiXnirVre3ttKulmzAoG7HbmgD67t5S/ltu+V1yAfwqxmqWiW81rptvbzzeZJGgDNjqQKu0AOooooAKKKKAEalpGpaACiiigAooooAMU2RA64/OiigBoRsYY9OlPxRRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADWTPWo/I+YkOy+mD/AEoooAkVMLjNNaLd/FRRQALHjGG4Han4oooAWiiigAooooARvu5paKKAP//Z"]
math
multiple-choice