difficulty
stringclasses
3 values
category
stringclasses
6 values
question
stringlengths
5
35
Moderate
Trigonometric Substitution
∫√6+9y2dy
Advanced
Trigonometric Substitution
∫(1−8z2)32dz
Moderate
Trigonometric Substitution
∫√9−16(3x−1)2dx
Moderate
Trigonometric Substitution
∫(11+(t2+1)2)52dt
Advanced
Trigonometric Substitution
∫√144(z+8)2−3dz
Moderate
Trigonometric Substitution
∫√4x2−24x+43dx
Moderate
Trigonometric Substitution
∫(2z2−24z+36)112dz
Moderate
Trigonometric Substitution
∫√−4−10t−5t2dt
Moderate
Trigonometric Substitution
∫√9sin2(4t)−1dt
Moderate
Trigonometric Substitution
∫√36−9e3zdz
Advanced
Trigonometric Substitution
∫√x+16dx
Moderate
Trigonometric Substitution
∫3x5√16−x2dx
Advanced
Trigonometric Substitution
∫t3(25+81t2)52dt
Advanced
Trigonometric Substitution
∫140w3√1−9w2dw
Advanced
Trigonometric Substitution
∫z5(9z2−25)32dz
Moderate
Trigonometric Substitution
∫−1−3y3√49y2−4dy
Moderate
Trigonometric Substitution
∫515x2√x2+4dx
Advanced
Trigonometric Substitution
∫√3−4t2t2dt
Moderate
Trigonometric Substitution
∫w5√8w2+1dw
Advanced
Trigonometric Substitution
∫√x2−15x3dx
Moderate
Trigonometric Substitution
∫2(x−3)6√−x2+6x−5dx
Moderate
Trigonometric Substitution
∫1(z+1)2(2z2+4z−34)32dz
Moderate
Trigonometric Substitution
∫√4y2−16y+19(y−2)6dy
Advanced
Trigonometric Substitution
∫129(t−4)3√t2−8t+7dt
Moderate
Trigonometric Substitution
∫60√5x2+10x+6dx
Moderate
Trigonometric Substitution
∫x7√9−x4dx
Advanced
Trigonometric Substitution
∫e12t√4e6t−1dt
Advanced
Trigonometric Substitution
∫sin(z)cos3(z)√16+cos2(z)dz
Advanced
Multiple Integrals
∫∞0(1+2x)e−xdx
Advanced
Multiple Integrals
∫0−∞(1+2x)e−xdx
Moderate
Multiple Integrals
∫1−5110+2zdz
Moderate
Multiple Integrals
∫214w3√w2−4dw
Moderate
Multiple Integrals
∫1−∞√6−ydy
Moderate
Multiple Integrals
∫∞29(1−3z)4dz
Basic
Multiple Integrals
∫40xx2−9dx
Basic
Multiple Integrals
∫∞−∞6w3(w4+1)2dw
Basic
Multiple Integrals
∫411x2+x−6dx
Moderate
Multiple Integrals
∫0−∞e1xx2dx
Advanced
Multiple Integrals
∫∞42−4x+6x2dx
Advanced
Multiple Integrals
∫5014w−20dw
Advanced
Multiple Integrals
∫2−136√4−2zdz
Moderate
Multiple Integrals
∫0−∞xe2+3xdx
Moderate
Multiple Integrals
∫∞0xe2+3xdx
Advanced
Multiple Integrals
∫∞21x2+1dx
Advanced
Multiple Integrals
∫301z2−4zdz
Moderate
Multiple Integrals
∫1−∞xx2+1dx
Advanced
Multiple Integrals
∫2−11y2−2y−3dy
Moderate
Multiple Integrals
∫0−∞cos(w)dw
Moderate
Multiple Integrals
∫∞101(5−2z)2dz
Moderate
Multiple Integrals
∫∞−∞z3z4+1dz
Moderate
Multiple Integrals
∫4112y−6dy
Moderate
Multiple Integrals
∫5113√w−2dw
Advanced
Multiple Integrals
∫1−2e1xx2dx
Advanced
Multiple Integrals
∫∞−∞x2ex3dx
Advanced
Multiple Integrals
∫∞−∞y(y2+1)3dy
Moderate
Multiple Integrals
∫30w3√9−w2dw
Advanced
Multiple Integrals
∫1−31w2+2wdw
Advanced
Multiple Integrals
∫∞0e1xx2dx
Moderate
Multiple Integrals
∫∞01z[ln(z)]2dz
Moderate
Multiple Integrals
∫∞01w−1dw
Basic
Partial Fractions
∫sin3(23x)cos4(23x)dx
Basic
Partial Fractions
∫sin8(3z)cos5(3z)dz
Moderate
Partial Fractions
∫cos4(2t)dt
Advanced
Partial Fractions
∫2ππcos3(12w)sin5(12w)dw
Basic
Partial Fractions
∫sec6(3y)tan2(3y)dy
Advanced
Partial Fractions
∫tan3(6x)sec10(6x)dx
Basic
Partial Fractions
∫π40tan7(z)sec3(z)dz
Basic
Partial Fractions
∫cos(3t)sin(8t)dt
Advanced
Partial Fractions
∫31sin(8x)sin(x)dx
Moderate
Partial Fractions
∫cot(10z)csc4(10z)dz
Moderate
Partial Fractions
∫csc6(14w)cot4(14w)dw
Moderate
Partial Fractions
∫sec4(2t)tan9(2t)dt
Basic
Partial Fractions
∫2+7sin3(z)cos2(z)dz
Basic
Partial Fractions
∫[9sin5(3x)−2cos3(3x)]csc4(3x)dx
Moderate
Trigonometric Substitution
∫cos5(2t)sin2(2t)dt
Advanced
Trigonometric Substitution
∫cos3(12x)dx
Advanced
Trigonometric Substitution
∫cos2(z)sin4(z)dz
Advanced
Trigonometric Substitution
∫ππ3sin5(34w)cos6(34w)dw
Advanced
Trigonometric Substitution
∫π0cos11(5z)sin3(5z)dz
Moderate
Trigonometric Substitution
∫sin2(7x)dx
Moderate
Trigonometric Substitution
∫π60tan3(8x)sec3(8x)dx
Moderate
Trigonometric Substitution
∫sec8(12t)tan5(12t)dt
Advanced
Trigonometric Substitution
∫sec2(9z)tan3(9z)dz
Advanced
Trigonometric Substitution
∫π3π4sec6(10t)tan4(10t)dt
Moderate
Trigonometric Substitution
∫tan12(2w)sec6(2w)dw
Moderate
Trigonometric Substitution
∫cot2(3x)csc6(3x)dx
Advanced
Trigonometric Substitution
∫2π3π3csc3(14w)cot3(14w)dw
Advanced
Trigonometric Substitution
∫csc4(6w)dw
Moderate
Trigonometric Substitution
∫csc12(x)cot5(x)dx
Moderate
Trigonometric Substitution
∫cot(x)dx
Moderate
Trigonometric Substitution
∫cot3(x)dx
Moderate
Trigonometric Substitution
∫csc(x)dx
Advanced
Trigonometric Substitution
∫csc3(x)dx
Moderate
Trigonometric Substitution
∫4−2sin(8x)cos(15x)dx
Advanced
Trigonometric Substitution
∫cos(2x)cos(24x)dx
Moderate
Trigonometric Substitution
∫sin(13z)sin(9z)dz
Moderate
Trigonometric Substitution
∫cos5(2t)sin3(2t)dt
Moderate
Trigonometric Substitution
∫sin3(2−x)cos2(2−x)dx
Moderate
Trigonometric Substitution
∫sec6(12z)tan8(12z)dz
Moderate
Trigonometric Substitution
∫tan5(x)sec2(x)dx