Statement:
stringlengths 7
24.3k
|
|---|
lemma inheritedPropagateEq[rule_format]: assumes a: "inherited subs P"
and b: "fans subs"
and c: "~(terminal subs delta)"
shows "P(tree subs delta) = (!sigma:subs delta. P(tree subs sigma))"
|
lemma mono2mono2:
assumes f: "monotone (rel_prod ordb ordc) leq (\<lambda>(x, y). f x y)"
and t: "monotone orda ordb (\<lambda>x. t x)"
and t': "monotone orda ordc (\<lambda>x. t' x)"
shows "monotone orda leq (\<lambda>x. f (t x) (t' x))"
|
lemma inj_on_add'[simp]: "inj_on (\<lambda>b. b \<oplus>\<^sub>a a) A"
|
lemma tabulate_alt: "tabulate f x n = map f [x ..< x + n]"
|
lemma flush_all_until_volatile_write_append_Prog\<^sub>s\<^sub>b_commute:
"\<And>i m. \<lbrakk>i < length ts; ts!i=(p,is,\<theta>,sb,\<D>,\<O>,\<R>)\<rbrakk>
\<Longrightarrow> flush_all_until_volatile_write (ts[i := (p\<^sub>2,is@mis, \<theta>, sb@[Prog\<^sub>s\<^sub>b p\<^sub>1 p\<^sub>2 mis],\<D>', \<O>,\<R>')]) m
= flush_all_until_volatile_write ts m"
|
lemma butlast_take:
"n \<le> length xs \<Longrightarrow> butlast (take n xs) = take (n - 1) xs"
|
lemma circlepath_minus: "circlepath z (-r) x = circlepath z r (x + 1/2)"
|
lemma cons_lcop1: "[\<^bold>\<circ>b, a \<^bold>\<rightarrow> b \<^bold>\<turnstile> \<^bold>\<not>b \<^bold>\<rightarrow> \<^bold>\<not>a]"
|
lemma vec_times_mat_eqD[dest]:
assumes "[y \<^sub>v* A]=c"
shows "(\<forall>i < dim_vec c. (A\<^sup>T *\<^sub>v y)$i = c$i)" "(dim_col A\<^sup>T = dim_vec y)" "(dim_row A\<^sup>T = dim_vec c)"
|
lemma sup_le_union [simp]: "a \<le> b \<Longrightarrow> supremum (A \<union> {a, b}) = supremum (A \<union> {b})"
|
lemma base_in_grid: assumes p_grid: "p \<in> sparsegrid' dm" shows "base ds p \<in> grid (start dm) {0..<dm}"
|
lemma sq_mtx_zero_nth[simp]: "0 $$ i $ j = 0"
|
lemma word_mult_less_mono1:
fixes i :: "'a :: len word"
assumes ij: "i < j"
and knz: "0 < k"
and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)"
shows "i * k < j * k"
|
lemma transpose_nil: "ps = [] \<longleftrightarrow> transpose ps = []"
|
lemma fmdom'_notI: "fmlookup m x = None \<Longrightarrow> x \<notin> fmdom' m"
|
lemma "Fr_6 \<F> \<Longrightarrow> \<forall>A. Cl(A) \<longrightarrow> DNE\<^sup>A \<^bold>\<not>\<^sup>C"
|
lemma increasingD:
"increasing M f \<Longrightarrow> x \<subseteq> y \<Longrightarrow> x\<in>M \<Longrightarrow> y\<in>M \<Longrightarrow> f x \<le> f y"
|
lemma fps_mult_fps_X_deriv_shift: "fps_X* fps_deriv a = Abs_fps (\<lambda>n. of_nat n* a$n)"
|
lemma TSO_inv1_invariant:
"reach tso_TS \<subseteq> TSO_inv1"
|
lemma coeff_dvd_poly: "[:coeff a (degree a):] dvd (a::'a::{field} poly)"
|
lemma expectation_Y_\<Delta>: "expectation (\<lambda>x. (Y x)^2) = \<mu> + \<Delta>\<^sub>a"
|
lemma GuardStrip:
"\<lbrakk>P \<subseteq> R; \<Gamma>,\<Theta>\<turnstile>\<^sub>t\<^bsub>/F\<^esub> R c Q,A; f \<in> F\<rbrakk>
\<Longrightarrow> \<Gamma>,\<Theta>\<turnstile>\<^sub>t\<^bsub>/F\<^esub> P (Guard f g c) Q,A"
|
lemma closed_closedin: "closed S \<longleftrightarrow> closedin euclidean S"
|
lemma "i < j ==> nat (i - j) = 0"
|
lemma length_greater_Suc_0_conv: "Suc 0 < length xs \<longleftrightarrow> (\<exists>x x' xs'. xs = x # x' # xs')"
|
lemma unsat_farkas_coefficients: assumes "\<nexists> v. v \<Turnstile>\<^sub>c\<^sub>s cs"
and fin: "finite cs"
shows "\<exists> C. farkas_coefficients cs C"
|
lemma join_raw_Nil [simp]: "join_raw f xs [] = xs"
|
lemma imirror_eq_mirror_elem_image: "
imirror I = (\<lambda>x. mirror_elem x I) ` I"
|
lemma oppositeLiteralListIdempotency [simp]:
fixes literalList :: "Literal list"
shows "oppositeLiteralList (oppositeLiteralList literalList) = literalList"
|
lemma sum_distrib:
fixes SX :: "program \<Rightarrow> nat \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> nat"
and p :: program
assumes SX_simps: "\<And>h. SX p x h = (\<Sum>k = 0..length p-1. if g x k then h k else 0)"
shows "SX p x h1 + SX p x h2 = SX p x (\<lambda>k. h1 k + h2 k)"
|
lemma reachable_constraints_var_types_in_transactions:
fixes \<A>::"('fun,'atom,'sets,'lbl) prot_constr"
assumes \<A>: "\<A> \<in> reachable_constraints P"
and P: "\<forall>T \<in> set P. \<forall>x \<in> set (transaction_fresh T).
\<Gamma>\<^sub>v x = TAtom Value \<or> (\<exists>a. \<Gamma>\<^sub>v x = TAtom (Atom a))"
shows "\<Gamma>\<^sub>v ` fv\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<A> \<subseteq> (\<Union>T \<in> set P. \<Gamma>\<^sub>v ` fv_transaction T)" (is "?A \<A>")
and "\<Gamma>\<^sub>v ` bvars\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<A> \<subseteq> (\<Union>T \<in> set P. \<Gamma>\<^sub>v ` bvars_transaction T)" (is "?B \<A>")
and "\<Gamma>\<^sub>v ` vars\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<A> \<subseteq> (\<Union>T \<in> set P. \<Gamma>\<^sub>v ` vars_transaction T)" (is "?C \<A>")
|
lemma "attack\<langle>ln 0\<rangle> \<in> set (fst ATTACK_UNSET_fixpoint)"
|
lemma convolution_transfer :
assumes "f \<in> aezfun_set" "g \<in> aezfun_set"
shows "Abs_aezfun (convolution f g) = Abs_aezfun f * Abs_aezfun g"
|
lemma raw_analz_image_freshK:
"evs \<in> recur ==>
\<forall>K KK. KK \<subseteq> - (range shrK) \<longrightarrow>
(Key K \<in> analz (Key`KK \<union> (spies evs))) =
(K \<in> KK | Key K \<in> analz (spies evs))"
|
lemma step_eps_cong_SQ: "q \<in> nfa'.SQ \<Longrightarrow> step_eps bs q q' \<longleftrightarrow> nfa'.step_eps bs q q'"
|
lemma not_greater_Max: "\<lbrakk> finite A; Max A < k \<rbrakk> \<Longrightarrow> k \<notin> A"
|
lemma inc_of_zero:
"\<iota> \<zero>\<^bsub>Z\<^sub>p\<^esub> = \<zero>"
|
lemma processedD2:
assumes "processed (a, b) xs ps"
shows "b \<in> set xs"
|
lemma returns_to_outsideI:
assumes t: "t \<ge> 0" "t \<in> existence_ivl0 x" "flow0 x t \<in> P"
assumes ev: "x \<notin> P"
assumes "closed P"
shows "returns_to P x"
|
lemma mat_pow_ring_pow: assumes mat: "mat n n (m :: ('a :: semiring_1)mat)" shows "mat_pow n m k = m [^]\<^bsub>mat_ring n b\<^esub> k"
(is "_ = m [^]\<^bsub>?C\<^esub> k")
|
lemma restrict_spmf_UNIV [simp]: "p \<upharpoonleft> UNIV = p"
|
lemma set_sel_aux_1_if_notfin: "\<not>finite Y \<Longrightarrow> set_sel_aux f x Y = 1"
|
lemma dvd_lcm2 [iff]: "b dvd lcm a b"
|
lemma Nonce_req_notin_spies: "[| evs \<in> p2; req A r n I B \<in> set evs; A \<notin> bad |]
==> Nonce n \<notin> analz (spies evs)"
|
lemma hypnat_add_is_0 [iff]: "\<And>m n::hypnat. m + n = 0 \<longleftrightarrow> m = 0 \<and> n = 0"
|
lemma loc_srj_5: "\<lbrakk>nat_to_sch (sch_to_nat sch1) = sch1; nat_to_sch (sch_to_nat sch2) = sch2\<rbrakk>
\<Longrightarrow> nat_to_sch (c_pair 6 (c_pair (sch_to_nat sch1) (sch_to_nat sch2))) = Rec_op sch1 sch2"
|
lemma \<I>_trivial_\<I>_full [simp]: "\<I>_trivial \<I>_full"
|
lemma purgeIdle_Cons_iff:
"purgeIdle sl = s # sll
\<longleftrightarrow>
(\<exists> sl1 sl2. sl = sl1 @ s # sl2 \<and>
(\<forall>s1\<in>set sl1. \<not> isState s1) \<and> isState s \<and> purgeIdle sl2 = sll)"
|
lemma "q2 n"
|
lemma merge_split_supset_fst:
assumes "as@(r,e)#bs = (Sorting_Algorithms.merge cmp xs ys)"
shows "\<exists>as' bs'. set bs' \<subseteq> set bs \<and> (as'@(r,e)#bs' = xs \<or> as'@(r,e)#bs' = ys)"
|
lemma log_Suc_zero [simp]: "log (Suc 0) = 0"
|
lemma length_listsetD:
"vs \<in> listset VS \<Longrightarrow> length vs = length VS"
|
lemma frac_le_eq:
"y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> x / y \<le> w / z \<longleftrightarrow> (x * z - w * y) / (y * z) \<le> 0"
|
lemma varInFormulaVars:
fixes variable :: Variable and formula :: Formula
shows "variable \<in> vars formula = (\<exists> literal. literal el formula \<and> var literal = variable)" (is "?lhs formula = ?rhs formula")
|
lemma map_graph_countable [simp]: "countable (dom f) \<Longrightarrow> countable (map_graph f)"
|
lemma 22: \<open>\<turnstile> (q \<rightarrow> r) \<rightarrow> (p \<rightarrow> q) \<rightarrow> p \<rightarrow> r\<close>
|
lemma norm_notMT_manual: "DenyAll \<in> set (policy2list p) \<Longrightarrow> normalize_manual_order p l \<noteq> []"
|
lemma last_coeff_is_hd: "xs \<noteq> [] \<Longrightarrow> coeff (Poly xs) (length xs - 1) = hd (rev xs)"
|
lemma [sepref_fr_rules]:
\<open>((uncurry3 (\<lambda>x y. return oo (check_extension_l_side_cond_err_impl x y))),
uncurry3 (check_extension_l_side_cond_err)) \<in> string_assn\<^sup>k *\<^sub>a poly_assn\<^sup>k *\<^sub>a poly_assn\<^sup>k *\<^sub>a poly_assn\<^sup>k \<rightarrow>\<^sub>a raw_string_assn\<close>
|
lemma (in flowgraph) ntrp_mon_env_e_no_ctx:
"((s,c),ENV e,(s',c'))\<in>ntrp fg \<Longrightarrow> mon_w fg e \<inter> mon_s fg s = {}"
|
lemma sees_methods_compP:
"P \<turnstile> C sees_methods Mm \<Longrightarrow>
compP f P \<turnstile> C sees_methods (map_option (\<lambda>((Ts,T,m),D). ((Ts,T,f m),D)) \<circ> Mm)"
(*<*)(is "?P \<Longrightarrow> compP f P \<turnstile> C sees_methods (?map Mm)")
|
lemma basis_wf_snoc:
assumes "bs \<noteq> []"
assumes "basis_wf bs" "filterlim b at_top at_top"
assumes "(\<lambda>x. ln (b x)) \<in> o(\<lambda>x. ln (last bs x))"
shows "basis_wf (bs @ [b])"
|
lemma ocomplete_no_change [elim]:
assumes "((\<sigma>, s), a, (\<sigma>', s')) \<in> ocnet_sos T"
and "j \<notin> net_ips s"
shows "\<sigma>' j = \<sigma> j"
|
lemma to_fun_unit_is_unit:
assumes "f \<in> carrier (SA n)"
shows "to_fun_unit n f \<in> Units (SA n)"
|
lemma mset_le_add_iff2:
"i \<le> (j::nat) \<Longrightarrow> (repeat_mset i u + m \<le> repeat_mset j u + n) = (m \<le> repeat_mset (j-i) u + n)"
|
lemma countableI_bij: "bij_betw f (C::nat set) S \<Longrightarrow> countable S"
|
lemma items_crypt_1:
"items (insert (Crypt K X) H) \<subseteq> insert (Crypt K X) (items (insert X H))"
|
lemma conjuncts_list_nFAND:
"\<lbrakk>list_all (\<lambda>x. \<not> is_FAnd x) \<phi>s; \<phi>s \<noteq> []\<rbrakk> \<Longrightarrow> conjuncts_list (nFAND \<phi>s) = \<phi>s"
|
lemma S: assumes "H \<turnstile> A IMP (B IMP C)" "H' \<turnstile> A IMP B" shows "H \<union> H' \<turnstile> A IMP C"
|
lemma fun_comp_eq_conv: "f o g = fg \<longleftrightarrow> (\<forall>x. f (g x) = fg x)"
|
lemma iwlsFSwSTR_alphaAll_qInitAll:
assumes "iwlsFSwSTR MOD"
shows
"(\<forall> qX'. qX #= qX' \<longrightarrow> qInit MOD qX = qInit MOD qX') \<and>
(\<forall> qA'. qA $= qA' \<longrightarrow> qInitAbs MOD qA = qInitAbs MOD qA')"
|
lemma invertible_times_non_zero:
fixes M :: "real^'n^'n"
assumes "invertible M" and "v \<noteq> 0"
shows "M *v v \<noteq> 0"
|
lemma fls_inverse_subdegree_base_nonzero:
assumes "f \<noteq> 0" "inverse (f $$ fls_subdegree f) \<noteq> 0"
shows "inverse f $$ (fls_subdegree (inverse f)) = inverse (f $$ fls_subdegree f)"
|
lemma q1: "int q > 1"
|
lemma assumes "(IF b THEN SKIP ELSE SKIP, s) \<Rightarrow> x \<Down> t"
shows "t = s"
|
lemma simple_cg_insert'_invar :
"convergence_graph_insert_invar M1 M2 simple_cg_lookup simple_cg_insert'"
|
lemma NF_stepI [intro]:
"s \<notin> fst ` M \<Longrightarrow> (s, vs) \<in> NF (step M)"
|
lemma cis_minus_pi_half [simp]: "cis (- (pi / 2)) = -\<i>"
|
lemma size_lower_result': "size (lower_result C) = size C - (if x \<in># C \<or> y \<in># C then 1 else 0)"
|
lemma inner_loop_refine[refine]:
(*assumes NSS: "N \<subseteq> dom PRED"*)
assumes [simp]: "finite succ"
assumes [simplified, simp]:
"(succi,succ)\<in>Id" "(ui,u)\<in>Id" "(PREDi,PRED)\<in>Id" "(Ni,N)\<in>Id"
shows "inner_loop dst succi ui PREDi Ni
\<le> \<Down>Id (add_succ_spec dst succ u PRED N)"
|
lemma ultrametric_equal_eq:
assumes "x \<in> carrier Q\<^sub>p"
assumes "y \<in> carrier Q\<^sub>p"
assumes "val (y \<ominus> x) > val x"
shows "val x = val y"
|
lemma rename_Call:
"(rename h c = Call q) = (\<exists>p. c = Call p \<and> q=h p)"
|
lemma ran_empty [simp]: "ran empty = {}"
|
lemma power: "VARS (p::int) i
{ True }
p := 1;
i := 0;
WHILE i < n
INV { p = x^i \<and> i \<le> n }
DO p := p * x;
i := i + 1
OD
{ p = x^n }"
|
lemma distinct_ExcessTable:
"distinct vs \<Longrightarrow> distinct [fst p. p \<leftarrow> ExcessTable g vs]"
|
lemma set_enforce_spmf [simp]: "set_spmf (enforce_spmf P p) = {a \<in> set_spmf p. P a}"
|
lemma (in lbv) merge_mono:
assumes less: "ss2 \<le>|r| ss1"
assumes x: "x \<in> A"
assumes ss1: "snd`set ss1 \<subseteq> A"
assumes ss2: "snd`set ss2 \<subseteq> A"
shows "merge c pc ss2 x <=_r merge c pc ss1 x" (is "?s2 <=_r ?s1")
|
lemma W_fun_correct:
"W_fun i j = W i j"
|
theorem syn_sen_mult_same:
"\<sigma>, s, \<Delta> \<Turnstile> syn_mult \<pi> A \<longleftrightarrow> \<sigma>, s, \<Delta> \<Turnstile> Mult \<pi> A"
|
lemma Resid_by_members:
assumes "N.is_Cong_class \<T>" and "N.is_Cong_class \<U>" and "t \<in> \<T>" and "u \<in> \<U>" and "t \<frown> u"
shows "\<T> \<lbrace>\\\<rbrace> \<U> = \<lbrace>t \\ u\<rbrace>"
|
lemma fold_graph_fold:
assumes f: "finite B" and BA: "B\<subseteq>A" and z: "z \<in> A"
shows "fold_graph f z B (Finite_Set.fold f z B)"
|
lemma wf_trm_param:
assumes "wf\<^sub>t\<^sub>r\<^sub>m (Fun f T)" "t \<in> set T"
shows "wf\<^sub>t\<^sub>r\<^sub>m t"
|
lemma insert_ops_split:
assumes "insert_ops ops"
and "(oid, ref) \<in> set ops"
shows "\<exists>pre suf. ops = pre @ [(oid, ref)] @ suf \<and>
(\<forall>i \<in> set (map fst pre). i < oid) \<and>
(\<forall>i \<in> set (map fst suf). oid < i)"
|
lemma interval_integrable_abs_iff:
fixes f :: "real \<Rightarrow> real"
shows "f \<in> borel_measurable lborel \<Longrightarrow>
interval_lebesgue_integrable lborel a b (\<lambda>x. \<bar>f x\<bar>) = interval_lebesgue_integrable lborel a b f"
|
lemma doesnt_read_or_modify_subst:
assumes noread: "doesnt_read_or_modify c x"
assumes step: "\<langle>c, mds, mem\<rangle> \<leadsto> \<langle>c', mds', mem'\<rangle>"
assumes subset: "X \<subseteq> {x} \<union> \<C>_vars x"
shows "\<And> \<sigma>. dom \<sigma> = X \<Longrightarrow> \<langle>c, mds, mem[\<mapsto> \<sigma>]\<rangle> \<leadsto> \<langle>c', mds', mem'[\<mapsto> \<sigma>]\<rangle>"
|
lemma all_tuples_setD: "vs \<in> all_tuples xs n \<Longrightarrow> set vs \<subseteq> xs"
|
lemma append_rows_mat_mul:
assumes "dim_col A = dim_col B"
shows "(A @\<^sub>r B) * C = A * C @\<^sub>r B * C"
|
lemma LCons_mono [partial_function_mono, cont_intro]:
"mono_tllist A \<Longrightarrow> mono_tllist (\<lambda>f. TCons x (A f))"
|
lemma compute_higherPoly\<^sub>f[code]: "higherPoly\<^sub>f n i (fmap_of_list xs) =
fmap_of_list (filter (\<lambda>(mon, v). \<forall>j\<in>{n..<n+i}. lookup mon j = 0)
(map (\<lambda>(mon, c). (lowerPowers n i mon, c)) xs))"
|
lemma typ_ok_contained_tvars_typ_ok: "typ_ok thy ty \<Longrightarrow> (idn, S) \<in> tvsT ty \<Longrightarrow> typ_ok thy (Tv idn S)"
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.