type
stringlengths 1
129k
| tactic
stringlengths 1
8.85k
| removals
listlengths 0
38
| name
stringlengths 1
85
| kind
stringclasses 3
values | goal
stringlengths 7
91.3k
|
|---|---|---|---|---|---|
a \ a β a \ a = β₯
|
rw [symmDiff, sup_idem, sdiff_self]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a : Ξ±
β’ a β a = β₯
|
a \ a = β₯
|
rw [symmDiff, sup_idem, sdiff_self]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a : Ξ±
rw : a \ a β a \ a = β₯
β’ a β a = β₯
|
β₯ = β₯
|
rw [symmDiff, sup_idem, sdiff_self]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a : Ξ±
rw : a \ a β a \ a = β₯
rwβ : a \ a = β₯
β’ a β a = β₯
|
β₯ = β₯
|
rw [symmDiff, sup_idem, sdiff_self]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a : Ξ±
rw : a \ a β a \ a = β₯
rwβ : a \ a = β₯
rwβ : β₯ = β₯
β’ a β a = β₯
|
a \ β₯ β β₯ \ a = a
|
rw [symmDiff, sdiff_bot, bot_sdiff, sup_bot_eq]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a : Ξ±
β’ a β β₯ = a
|
a β β₯ \ a = a
|
rw [symmDiff, sdiff_bot, bot_sdiff, sup_bot_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a : Ξ±
rw : a \ β₯ β β₯ \ a = a
β’ a β β₯ = a
|
a β β₯ = a
|
rw [symmDiff, sdiff_bot, bot_sdiff, sup_bot_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a : Ξ±
rw : a \ β₯ β β₯ \ a = a
rwβ : a β β₯ \ a = a
β’ a β β₯ = a
|
a = a
|
rw [symmDiff, sdiff_bot, bot_sdiff, sup_bot_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a : Ξ±
rw : a \ β₯ β β₯ \ a = a
rwβ : a β β₯ \ a = a
rwβ : a β β₯ = a
β’ a β β₯ = a
|
a = a
|
rw [symmDiff, sdiff_bot, bot_sdiff, sup_bot_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a : Ξ±
rw : a \ β₯ β β₯ \ a = a
rwβ : a β β₯ \ a = a
rwβ : a β β₯ = a
rwβ : a = a
β’ a β β₯ = a
|
a β β₯ = a
|
rw [symmDiff_comm, symmDiff_bot]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a : Ξ±
β’ β₯ β a = a
|
a = a
|
rw [symmDiff_comm, symmDiff_bot]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a : Ξ±
rw : a β β₯ = a
β’ β₯ β a = a
|
a = a
|
rw [symmDiff_comm, symmDiff_bot]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a : Ξ±
rw : a β β₯ = a
rwβ : a = a
β’ β₯ β a = a
|
a \ b β b \ a = β₯ β a = b
|
simp_rw [symmDiff, sup_eq_bot_iff, sdiff_eq_bot_iff, le_antisymm_iff]
|
[] |
simp_rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ a β b = β₯ β a = b
|
a \ b = β₯ β§ b \ a = β₯ β a = b
|
simp_rw [symmDiff, sup_eq_bot_iff, sdiff_eq_bot_iff, le_antisymm_iff]
|
[] |
simp_rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
simp_rw : a \ b β b \ a = β₯ β a = b
β’ a β b = β₯ β a = b
|
a β€ b β§ b β€ a β a = b
|
simp_rw [symmDiff, sup_eq_bot_iff, sdiff_eq_bot_iff, le_antisymm_iff]
|
[] |
simp_rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
simp_rw : a \ b β b \ a = β₯ β a = b
simp_rwβ : a \ b = β₯ β§ b \ a = β₯ β a = b
β’ a β b = β₯ β a = b
|
a \ b β b \ a = b \ a
|
rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : a β€ b
β’ a β b = b \ a
|
β₯ β b \ a = b \ a
|
rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : a β€ b
rw : a \ b β b \ a = b \ a
β’ a β b = b \ a
|
b \ a = b \ a
|
rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : a β€ b
rw : a \ b β b \ a = b \ a
rwβ : β₯ β b \ a = b \ a
β’ a β b = b \ a
|
b \ a = b \ a
|
rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : a β€ b
rw : a \ b β b \ a = b \ a
rwβ : β₯ β b \ a = b \ a
rwβ : b \ a = b \ a
β’ a β b = b \ a
|
a \ b β b \ a = a \ b
|
rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : b β€ a
β’ a β b = a \ b
|
a \ b β β₯ = a \ b
|
rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : b β€ a
rw : a \ b β b \ a = a \ b
β’ a β b = a \ b
|
a \ b = a \ b
|
rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : b β€ a
rw : a \ b β b \ a = a \ b
rwβ : a \ b β β₯ = a \ b
β’ a β b = a \ b
|
a \ b = a \ b
|
rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : b β€ a
rw : a \ b β b \ a = a \ b
rwβ : a \ b β β₯ = a \ b
rwβ : a \ b = a \ b
β’ a β b = a \ b
|
a \ b β b \ a β€ c β a β€ b β c β§ b β€ a β c
|
simp_rw [symmDiff, sup_le_iff, sdiff_le_iff]
|
[] |
simp_rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
β’ a β b β€ c β a β€ b β c β§ b β€ a β c
|
a \ b β€ c β§ b \ a β€ c β a β€ b β c β§ b β€ a β c
|
simp_rw [symmDiff, sup_le_iff, sdiff_le_iff]
|
[] |
simp_rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
simp_rw : a \ b β b \ a β€ c β a β€ b β c β§ b β€ a β c
β’ a β b β€ c β a β€ b β c β§ b β€ a β c
|
a \ b β b \ a = a β b
|
rw [symmDiff, h.sdiff_eq_left, h.sdiff_eq_right]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : Disjoint a b
β’ a β b = a β b
|
a β b \ a = a β b
|
rw [symmDiff, h.sdiff_eq_left, h.sdiff_eq_right]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : Disjoint a b
rw : a \ b β b \ a = a β b
β’ a β b = a β b
|
a β b = a β b
|
rw [symmDiff, h.sdiff_eq_left, h.sdiff_eq_right]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : Disjoint a b
rw : a \ b β b \ a = a β b
rwβ : a β b \ a = a β b
β’ a β b = a β b
|
a β b = a β b
|
rw [symmDiff, h.sdiff_eq_left, h.sdiff_eq_right]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : Disjoint a b
rw : a \ b β b \ a = a β b
rwβ : a β b \ a = a β b
rwβ : a β b = a β b
β’ a β b = a β b
|
(a \ b β b \ a) \ c = a \ (b β c) β b \ (a β c)
|
rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
β’ a β b \ c = a \ (b β c) β b \ (a β c)
|
(a \ b) \ c β (b \ a) \ c = a \ (b β c) β b \ (a β c)
|
rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
rw : (a \ b β b \ a) \ c = a \ (b β c) β b \ (a β c)
β’ a β b \ c = a \ (b β c) β b \ (a β c)
|
a \ (b β c) β (b \ a) \ c = a \ (b β c) β b \ (a β c)
|
rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
rw : (a \ b β b \ a) \ c = a \ (b β c) β b \ (a β c)
rwβ : (a \ b) \ c β (b \ a) \ c = a \ (b β c) β b \ (a β c)
β’ a β b \ c = a \ (b β c) β b \ (a β c)
|
a \ (b β c) β b \ (a β c) = a \ (b β c) β b \ (a β c)
|
rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
rw : (a \ b β b \ a) \ c = a \ (b β c) β b \ (a β c)
rwβ : (a \ b) \ c β (b \ a) \ c = a \ (b β c) β b \ (a β c)
rwβ : a \ (b β c) β (b \ a) \ c = a \ (b β c) β b \ (a β c)
β’ a β b \ c = a \ (b β c) β b \ (a β c)
|
a \ (b β c) β b \ (a β c) = a \ (b β c) β b \ (a β c)
|
rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
rw : (a \ b β b \ a) \ c = a \ (b β c) β b \ (a β c)
rwβ : (a \ b) \ c β (b \ a) \ c = a \ (b β c) β b \ (a β c)
rwβ : a \ (b β c) β (b \ a) \ c = a \ (b β c) β b \ (a β c)
rwβ : a \ (b β c) β b \ (a β c) = a \ (b β c) β b \ (a β c)
β’ a β b \ c = a \ (b β c) β b \ (a β c)
|
a \ (b β a β b) β b \ (a β a β b) = a β b
|
rw [symmDiff_sdiff]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ a β b \ (a β b) = a β b
|
a \ (b \ a) β b \ a = a β b
|
rw [symmDiff, sdiff_idem]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ a β (b \ a) = a β b
|
b β (a \ b) = a β b
|
rw [symmDiff_comm, symmDiff_sdiff_eq_sup, sup_comm]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ (a \ b) β b = a β b
|
b β a = a β b
|
rw [symmDiff_comm, symmDiff_sdiff_eq_sup, sup_comm]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
rw : b β (a \ b) = a β b
β’ (a \ b) β b = a β b
|
a β b = a β b
|
rw [symmDiff_comm, symmDiff_sdiff_eq_sup, sup_comm]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
rw : b β (a \ b) = a β b
rwβ : b β a = a β b
β’ (a \ b) β b = a β b
|
a β b = a β b
|
rw [symmDiff_comm, symmDiff_sdiff_eq_sup, sup_comm]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
rw : b β (a \ b) = a β b
rwβ : b β a = a β b
rwβ : a β b = a β b
β’ (a \ b) β b = a β b
|
a β b β€ a β b β a β b
|
refine le_antisymm (sup_le symmDiff_le_sup inf_le_sup) ?_
|
[] |
refine
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ a β b β a β b = a β b
|
a β b β€ (a \ b β b \ a β a) β (a \ b β b \ a β b)
|
rw [sup_inf_left, symmDiff]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ a β b β€ a β b β a β b
|
a β€ a \ b β b \ a β b
|
refine sup_le (le_inf le_sup_right ?_) (le_inf ?_ le_sup_right)
|
[] |
refine_1
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ a β b β€ (a \ b β b \ a β a) β (a \ b β b \ a β b)
|
b β€ a \ b β b \ a β a
|
refine sup_le (le_inf le_sup_right ?_) (le_inf ?_ le_sup_right)
|
[] |
refine_2
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
refine_1 : a β€ a \ b β b \ a β b
β’ a β b β€ (a \ b β b \ a β a) β (a \ b β b \ a β b)
|
a β€ a \ b β b β b \ a
|
rw [sup_right_comm]
|
[] |
refine_1
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ a β€ a \ b β b \ a β b
|
b β€ a \ b β (b \ a β a)
|
rw [sup_assoc]
|
[] |
refine_2
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ b β€ a \ b β b \ a β a
|
a β b β a β b = a β b
|
rw [sup_comm, symmDiff_sup_inf]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ a β b β a β b = a β b
|
a β b = a β b
|
rw [sup_comm, symmDiff_sup_inf]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
rw : a β b β a β b = a β b
β’ a β b β a β b = a β b
|
a β b = a β b
|
rw [sup_comm, symmDiff_sup_inf]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
rw : a β b β a β b = a β b
rwβ : a β b = a β b
β’ a β b β a β b = a β b
|
(a β b \ (a β b)) β (a β b) = a β b
|
rw [β symmDiff_sdiff_inf a, sdiff_symmDiff_eq_sup, symmDiff_sup_inf]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ a β b β (a β b) = a β b
|
a β b β a β b = a β b
|
rw [β symmDiff_sdiff_inf a, sdiff_symmDiff_eq_sup, symmDiff_sup_inf]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
rw : (a β b \ (a β b)) β (a β b) = a β b
β’ a β b β (a β b) = a β b
|
a β b = a β b
|
rw [β symmDiff_sdiff_inf a, sdiff_symmDiff_eq_sup, symmDiff_sup_inf]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
rw : (a β b \ (a β b)) β (a β b) = a β b
rwβ : a β b β a β b = a β b
β’ a β b β (a β b) = a β b
|
a β b = a β b
|
rw [β symmDiff_sdiff_inf a, sdiff_symmDiff_eq_sup, symmDiff_sup_inf]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
rw : (a β b \ (a β b)) β (a β b) = a β b
rwβ : a β b β a β b = a β b
rwβ : a β b = a β b
β’ a β b β (a β b) = a β b
|
a β b β (a β b) = a β b
|
rw [symmDiff_comm, symmDiff_symmDiff_inf]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ (a β b) β (a β b) = a β b
|
a β b = a β b
|
rw [symmDiff_comm, symmDiff_symmDiff_inf]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
rw : a β b β (a β b) = a β b
β’ (a β b) β (a β b) = a β b
|
a β b = a β b
|
rw [symmDiff_comm, symmDiff_symmDiff_inf]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
rw : a β b β (a β b) = a β b
rwβ : a β b = a β b
β’ (a β b) β (a β b) = a β b
|
a \ b β b \ c β (c \ b β b \ a) = a β b β b β c
|
refine (sup_le_sup (sdiff_triangle a b c) <| sdiff_triangle _ b _).trans_eq ?_
|
[] |
refine
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
β’ a β c β€ a β b β b β c
|
a \ b β b \ c β (b \ a β c \ b) = a β b β b β c
|
rw [sup_comm (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
β’ a \ b β b \ c β (c \ b β b \ a) = a β b β b β c
|
a \ b β b \ a β (b \ c β c \ b) = a β b β b β c
|
rw [sup_comm (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
rw : a \ b β b \ c β (b \ a β c \ b) = a β b β b β c
β’ a \ b β b \ c β (c \ b β b \ a) = a β b β b β c
|
a \ b β b \ a β (b \ c β c \ b) = a \ b β b \ a β b β c
|
rw [sup_comm (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
rw : a \ b β b \ c β (b \ a β c \ b) = a β b β b β c
rwβ : a \ b β b \ a β (b \ c β c \ b) = a β b β b β c
β’ a \ b β b \ c β (c \ b β b \ a) = a β b β b β c
|
a \ b β b \ a β (b \ c β c \ b) = a \ b β b \ a β (b \ c β c \ b)
|
rw [sup_comm (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
rw : a \ b β b \ c β (b \ a β c \ b) = a β b β b β c
rwβ : a \ b β b \ a β (b \ c β c \ b) = a β b β b β c
rwβ : a \ b β b \ a β (b \ c β c \ b) = a \ b β b \ a β b β c
β’ a \ b β b \ c β (c \ b β b \ a) = a β b β b β c
|
a \ b β b \ a β (b \ c β c \ b) = a \ b β b \ a β (b \ c β c \ b)
|
rw [sup_comm (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b c : Ξ±
rw : a \ b β b \ c β (b \ a β c \ b) = a β b β b β c
rwβ : a \ b β b \ a β (b \ c β c \ b) = a β b β b β c
rwβ : a \ b β b \ a β (b \ c β c \ b) = a \ b β b \ a β b β c
rwβ : a \ b β b \ a β (b \ c β c \ b) = a \ b β b \ a β (b \ c β c \ b)
β’ a \ b β b \ c β (c \ b β b \ a) = a β b β b β c
|
a = a β β₯
|
convert symmDiff_triangle a b β₯
|
[] |
h
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ a β€ a β b β b
|
b = b β β₯
|
convert symmDiff_triangle a b β₯
|
[] |
hβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : a = a β β₯
β’ a β€ a β b β b
|
a = a
|
rw [symmDiff_bot]
|
[] |
h
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ a = a β β₯
|
a = a
|
rw [symmDiff_bot]
|
[] |
hβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : a = a
β’ a = a β β₯
|
b = b
|
rw [symmDiff_bot]
|
[] |
h
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
β’ b = b β β₯
|
b = b
|
rw [symmDiff_bot]
|
[] |
hβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedCoheytingAlgebra Ξ±
a b : Ξ±
h : b = b
β’ b = b β β₯
|
(a β¨ a) β (a β¨ a) = β€
|
rw [bihimp, inf_idem, himp_self]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a : Ξ±
β’ a β a = β€
|
a β¨ a = β€
|
rw [bihimp, inf_idem, himp_self]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a : Ξ±
rw : (a β¨ a) β (a β¨ a) = β€
β’ a β a = β€
|
β€ = β€
|
rw [bihimp, inf_idem, himp_self]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a : Ξ±
rw : (a β¨ a) β (a β¨ a) = β€
rwβ : a β¨ a = β€
β’ a β a = β€
|
β€ = β€
|
rw [bihimp, inf_idem, himp_self]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a : Ξ±
rw : (a β¨ a) β (a β¨ a) = β€
rwβ : a β¨ a = β€
rwβ : β€ = β€
β’ a β a = β€
|
(β€ β¨ a) β (a β¨ β€) = a
|
rw [bihimp, himp_top, top_himp, inf_top_eq]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a : Ξ±
β’ a β β€ = a
|
(β€ β¨ a) β β€ = a
|
rw [bihimp, himp_top, top_himp, inf_top_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a : Ξ±
rw : (β€ β¨ a) β (a β¨ β€) = a
β’ a β β€ = a
|
a β β€ = a
|
rw [bihimp, himp_top, top_himp, inf_top_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a : Ξ±
rw : (β€ β¨ a) β (a β¨ β€) = a
rwβ : (β€ β¨ a) β β€ = a
β’ a β β€ = a
|
a = a
|
rw [bihimp, himp_top, top_himp, inf_top_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a : Ξ±
rw : (β€ β¨ a) β (a β¨ β€) = a
rwβ : (β€ β¨ a) β β€ = a
rwβ : a β β€ = a
β’ a β β€ = a
|
a = a
|
rw [bihimp, himp_top, top_himp, inf_top_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a : Ξ±
rw : (β€ β¨ a) β (a β¨ β€) = a
rwβ : (β€ β¨ a) β β€ = a
rwβ : a β β€ = a
rwβ : a = a
β’ a β β€ = a
|
a β β€ = a
|
rw [bihimp_comm, bihimp_top]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a : Ξ±
β’ β€ β a = a
|
a = a
|
rw [bihimp_comm, bihimp_top]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a : Ξ±
rw : a β β€ = a
β’ β€ β a = a
|
a = a
|
rw [bihimp_comm, bihimp_top]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a : Ξ±
rw : a β β€ = a
rwβ : a = a
β’ β€ β a = a
|
(b β¨ a) β (a β¨ b) = b β¨ a
|
rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b : Ξ±
h : a β€ b
β’ a β b = b β¨ a
|
(b β¨ a) β β€ = b β¨ a
|
rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b : Ξ±
h : a β€ b
rw : (b β¨ a) β (a β¨ b) = b β¨ a
β’ a β b = b β¨ a
|
b β¨ a = b β¨ a
|
rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b : Ξ±
h : a β€ b
rw : (b β¨ a) β (a β¨ b) = b β¨ a
rwβ : (b β¨ a) β β€ = b β¨ a
β’ a β b = b β¨ a
|
b β¨ a = b β¨ a
|
rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b : Ξ±
h : a β€ b
rw : (b β¨ a) β (a β¨ b) = b β¨ a
rwβ : (b β¨ a) β β€ = b β¨ a
rwβ : b β¨ a = b β¨ a
β’ a β b = b β¨ a
|
(b β¨ a) β (a β¨ b) = a β¨ b
|
rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b : Ξ±
h : b β€ a
β’ a β b = a β¨ b
|
β€ β (a β¨ b) = a β¨ b
|
rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b : Ξ±
h : b β€ a
rw : (b β¨ a) β (a β¨ b) = a β¨ b
β’ a β b = a β¨ b
|
a β¨ b = a β¨ b
|
rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b : Ξ±
h : b β€ a
rw : (b β¨ a) β (a β¨ b) = a β¨ b
rwβ : β€ β (a β¨ b) = a β¨ b
β’ a β b = a β¨ b
|
a β¨ b = a β¨ b
|
rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b : Ξ±
h : b β€ a
rw : (b β¨ a) β (a β¨ b) = a β¨ b
rwβ : β€ β (a β¨ b) = a β¨ b
rwβ : a β¨ b = a β¨ b
β’ a β b = a β¨ b
|
a β€ (c β¨ b) β (b β¨ c) β a β b β€ c β§ a β c β€ b
|
simp_rw [bihimp, le_inf_iff, le_himp_iff, and_comm]
|
[] |
simp_rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b c : Ξ±
β’ a β€ b β c β a β b β€ c β§ a β c β€ b
|
a β€ c β¨ b β§ a β€ b β¨ c β a β b β€ c β§ a β c β€ b
|
simp_rw [bihimp, le_inf_iff, le_himp_iff, and_comm]
|
[] |
simp_rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b c : Ξ±
simp_rw : a β€ (c β¨ b) β (b β¨ c) β a β b β€ c β§ a β c β€ b
β’ a β€ b β c β a β b β€ c β§ a β c β€ b
|
a β c β€ b β§ a β b β€ c β a β b β€ c β§ a β c β€ b
|
simp_rw [bihimp, le_inf_iff, le_himp_iff, and_comm]
|
[] |
simp_rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b c : Ξ±
simp_rw : a β€ (c β¨ b) β (b β¨ c) β a β b β€ c β§ a β c β€ b
simp_rwβ : a β€ c β¨ b β§ a β€ b β¨ c β a β b β€ c β§ a β c β€ b
β’ a β€ b β c β a β b β€ c β§ a β c β€ b
|
(b β¨ a) β (a β¨ b) = a β b
|
rw [bihimp, h.himp_eq_left, h.himp_eq_right]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b : Ξ±
h : Codisjoint a b
β’ a β b = a β b
|
(b β¨ a) β b = a β b
|
rw [bihimp, h.himp_eq_left, h.himp_eq_right]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b : Ξ±
h : Codisjoint a b
rw : (b β¨ a) β (a β¨ b) = a β b
β’ a β b = a β b
|
a β b = a β b
|
rw [bihimp, h.himp_eq_left, h.himp_eq_right]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b : Ξ±
h : Codisjoint a b
rw : (b β¨ a) β (a β¨ b) = a β b
rwβ : (b β¨ a) β b = a β b
β’ a β b = a β b
|
a β b = a β b
|
rw [bihimp, h.himp_eq_left, h.himp_eq_right]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b : Ξ±
h : Codisjoint a b
rw : (b β¨ a) β (a β¨ b) = a β b
rwβ : (b β¨ a) β b = a β b
rwβ : a β b = a β b
β’ a β b = a β b
|
a β¨ (c β¨ b) β (b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
|
rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
|
[] |
rw
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b c : Ξ±
β’ a β¨ b β c = (a β c β¨ b) β (a β b β¨ c)
|
(a β¨ c β¨ b) β (a β¨ b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
|
rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b c : Ξ±
rw : a β¨ (c β¨ b) β (b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
β’ a β¨ b β c = (a β c β¨ b) β (a β b β¨ c)
|
(a β c β¨ b) β (a β¨ b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
|
rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b c : Ξ±
rw : a β¨ (c β¨ b) β (b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
rwβ : (a β¨ c β¨ b) β (a β¨ b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
β’ a β¨ b β c = (a β c β¨ b) β (a β b β¨ c)
|
(a β c β¨ b) β (a β b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
|
rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b c : Ξ±
rw : a β¨ (c β¨ b) β (b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
rwβ : (a β¨ c β¨ b) β (a β¨ b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
rwβ : (a β c β¨ b) β (a β¨ b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
β’ a β¨ b β c = (a β c β¨ b) β (a β b β¨ c)
|
(a β c β¨ b) β (a β b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
|
rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
|
[] |
rwβ
|
goal
|
Ξ± : Type u_2
instβ : GeneralizedHeytingAlgebra Ξ±
a b c : Ξ±
rw : a β¨ (c β¨ b) β (b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
rwβ : (a β¨ c β¨ b) β (a β¨ b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
rwβ : (a β c β¨ b) β (a β¨ b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
rwβ : (a β c β¨ b) β (a β b β¨ c) = (a β c β¨ b) β (a β b β¨ c)
β’ a β¨ b β c = (a β c β¨ b) β (a β b β¨ c)
|
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 8