|
|
""" |
|
|
Batch Processor Module |
|
|
Processes geometry problems and generates visualizations. |
|
|
""" |
|
|
|
|
|
import torch |
|
|
import numpy as np |
|
|
import matplotlib.pyplot as plt |
|
|
from matplotlib.lines import Line2D |
|
|
import json |
|
|
import re |
|
|
from pathlib import Path |
|
|
from typing import Dict, List, Tuple, Optional |
|
|
from tqdm import tqdm |
|
|
|
|
|
from .primitives import ( |
|
|
CircleSDF, EllipseSDF, HyperbolaSDF, ParabolaSDF |
|
|
) |
|
|
from .constraints import GeometricConstraints |
|
|
from .parser import ProblemParser |
|
|
from .optimizer import GeometryOptimizer |
|
|
from .renderer import SDFRenderer |
|
|
|
|
|
|
|
|
class SDFBatchProcessor: |
|
|
""" |
|
|
Process problems using the SDF methodology. |
|
|
""" |
|
|
|
|
|
def __init__(self, output_dir: str = 'sdf_output'): |
|
|
self.output_dir = Path(output_dir) |
|
|
self.output_dir.mkdir(exist_ok=True, parents=True) |
|
|
|
|
|
self.parser = ProblemParser() |
|
|
self.optimizer = GeometryOptimizer() |
|
|
|
|
|
|
|
|
for subdir in ['ellipse', 'hyperbola', 'parabola', 'circle']: |
|
|
(self.output_dir / subdir).mkdir(exist_ok=True) |
|
|
|
|
|
def process_problem(self, problem: Dict, idx: int, verbose: bool = False) -> Dict: |
|
|
"""Process a single problem using SDF methodology.""" |
|
|
result = { |
|
|
'index': idx, |
|
|
'success': False, |
|
|
'error': None |
|
|
} |
|
|
|
|
|
try: |
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
text = problem.get('text', '') |
|
|
query_expr = problem.get('query_expressions', '') |
|
|
|
|
|
|
|
|
|
|
|
primary_shape = None |
|
|
query_match = re.search(r'Expression\((\w+)\)', query_expr) |
|
|
if query_match: |
|
|
shape_name = query_match.group(1) |
|
|
|
|
|
type_match = re.search(rf'{shape_name}:\s*(\w+)', fact_expr) |
|
|
if type_match: |
|
|
primary_shape = type_match.group(1).lower() |
|
|
|
|
|
|
|
|
main_hyperbola_name = self._detect_main_conic_name(fact_expr, 'hyperbola') |
|
|
main_ellipse_name = self._detect_main_conic_name(fact_expr, 'ellipse') |
|
|
main_parabola_name = self._detect_main_conic_name(fact_expr, 'parabola') |
|
|
main_circle_name = self._detect_main_conic_name(fact_expr, 'circle') |
|
|
|
|
|
|
|
|
ellipse_params = self.parser.parse_ellipse(fact_expr) |
|
|
hyperbola_params = self.parser.parse_hyperbola(fact_expr, main_hyperbola_name) |
|
|
parabola_params = self.parser.parse_parabola(fact_expr) |
|
|
circle_params = self.parser.parse_circle(fact_expr) |
|
|
|
|
|
|
|
|
coords = self.parser.parse_coordinates(fact_expr) |
|
|
eccentricity = self.parser.parse_eccentricity(fact_expr) |
|
|
asymptote = self.parser.parse_asymptote_slope(fact_expr) |
|
|
|
|
|
|
|
|
moving_circle = self._detect_moving_circle_locus(fact_expr, coords) |
|
|
if moving_circle: |
|
|
params_hyp = moving_circle |
|
|
return self._process_hyperbola(problem, idx, params_hyp, coords, eccentricity=None, asymptote=None, verbose=verbose) |
|
|
|
|
|
|
|
|
if primary_shape == 'hyperbola' and hyperbola_params: |
|
|
result = self._process_hyperbola(problem, idx, hyperbola_params, coords, eccentricity, asymptote, verbose) |
|
|
elif primary_shape == 'ellipse' and ellipse_params: |
|
|
result = self._process_ellipse(problem, idx, ellipse_params, coords, eccentricity, verbose) |
|
|
elif primary_shape == 'parabola' and parabola_params: |
|
|
result = self._process_parabola(problem, idx, parabola_params, coords, verbose) |
|
|
elif primary_shape == 'circle' and circle_params: |
|
|
result = self._process_circle(problem, idx, circle_params, coords, verbose) |
|
|
|
|
|
|
|
|
elif hyperbola_params: |
|
|
result = self._process_hyperbola(problem, idx, hyperbola_params, coords, eccentricity, asymptote, verbose) |
|
|
elif ellipse_params: |
|
|
result = self._process_ellipse(problem, idx, ellipse_params, coords, eccentricity, verbose) |
|
|
elif parabola_params: |
|
|
result = self._process_parabola(problem, idx, parabola_params, coords, verbose) |
|
|
elif circle_params: |
|
|
result = self._process_circle(problem, idx, circle_params, coords, verbose) |
|
|
else: |
|
|
result['error'] = 'Unsupported or unparseable expression' |
|
|
return result |
|
|
|
|
|
|
|
|
result = self._validate_result(result, problem) |
|
|
return result |
|
|
|
|
|
except Exception as e: |
|
|
result['error'] = str(e) |
|
|
return result |
|
|
|
|
|
def _validate_result(self, result: Dict, problem: Dict) -> Dict: |
|
|
""" |
|
|
Rigorous validation following paper-quality standards. |
|
|
Validates all explicit geometric constraints from the problem. |
|
|
|
|
|
Validation includes: |
|
|
- Parameter positivity (a, b, p, r > 0) |
|
|
- Eccentricity matching (e_calc vs e_target) |
|
|
- Asymptote slope matching (b/a vs target slope) |
|
|
- Focus position verification (c² = a² ± b²) |
|
|
- Point-on-curve verification for constrained points |
|
|
- Directrix position verification (parabola) |
|
|
""" |
|
|
if not result.get('success'): |
|
|
return result |
|
|
|
|
|
conic_type = result.get('conic_type') |
|
|
fact_expr = result.get('fact_expr', problem.get('fact_expressions', '')) |
|
|
coords = result.get('coords', {}) |
|
|
reasons = [] |
|
|
|
|
|
|
|
|
tol_point = 3e-2 |
|
|
tol_param = 0.05 |
|
|
tol_focus = 0.05 |
|
|
|
|
|
|
|
|
main_conic = self._detect_main_conic_name(fact_expr, conic_type) |
|
|
|
|
|
|
|
|
points_on_main = self._points_on_main_conic(fact_expr, coords, main_conic) |
|
|
|
|
|
|
|
|
def get_focus_coords() -> List[Tuple[float, float]]: |
|
|
"""Extract focus point coordinates.""" |
|
|
foci = [] |
|
|
for name, coord in coords.items(): |
|
|
|
|
|
if re.search(rf'Focus\s*\(\s*{main_conic}\s*\)\s*=\s*\{{\s*{name}', fact_expr) or \ |
|
|
re.search(rf'Focus\s*\(\s*{main_conic}\s*\)\s*=\s*{name}', fact_expr) or \ |
|
|
(name in ['F', 'F1', 'F2'] and re.search(rf'Focus\s*\(\s*{main_conic}\s*\)', fact_expr)): |
|
|
foci.append(coord) |
|
|
return foci |
|
|
|
|
|
|
|
|
def has_point_constraint(name: str) -> bool: |
|
|
return name in points_on_main |
|
|
|
|
|
if conic_type == 'ellipse': |
|
|
params = result.get('params', {}) |
|
|
if 'a' not in params or 'b' not in params: |
|
|
return result |
|
|
a = params['a'] |
|
|
b = params['b'] |
|
|
|
|
|
|
|
|
if a <= 0 or b <= 0: |
|
|
reasons.append('ellipse_nonpositive_axes') |
|
|
|
|
|
|
|
|
ecc_target = self.parser.parse_eccentricity(fact_expr) |
|
|
if ecc_target and 0 < ecc_target < 1: |
|
|
a_major, b_minor = max(a, b), min(a, b) |
|
|
ecc_calc = np.sqrt(1 - (b_minor / a_major)**2) |
|
|
if abs(ecc_calc - ecc_target) > tol_param: |
|
|
reasons.append('ellipse_ecc_mismatch') |
|
|
|
|
|
|
|
|
foci = get_focus_coords() |
|
|
if foci: |
|
|
a_major, b_minor = max(a, b), min(a, b) |
|
|
c_calc = np.sqrt(max(0, a_major**2 - b_minor**2)) |
|
|
for fx, fy in foci: |
|
|
|
|
|
c_given = np.sqrt(fx**2 + fy**2) |
|
|
if abs(c_calc - c_given) > tol_focus: |
|
|
reasons.append('ellipse_focus_mismatch') |
|
|
break |
|
|
|
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
if has_point_constraint(name): |
|
|
major_axis = params.get('major_axis', 'x') |
|
|
if major_axis == 'x': |
|
|
val = (px**2) / (a**2) + (py**2) / (b**2) - 1 |
|
|
else: |
|
|
val = (px**2) / (b**2) + (py**2) / (a**2) - 1 |
|
|
if abs(val) > tol_point: |
|
|
reasons.append('ellipse_point_off_curve') |
|
|
break |
|
|
|
|
|
elif conic_type == 'hyperbola': |
|
|
params = result.get('params', {}) |
|
|
if 'a' not in params or 'b' not in params: |
|
|
return result |
|
|
a = params['a'] |
|
|
b = params['b'] |
|
|
orientation = params.get('orientation', 'horizontal') |
|
|
|
|
|
|
|
|
if a <= 0 or b <= 0: |
|
|
reasons.append('hyperbola_nonpositive_axes') |
|
|
|
|
|
|
|
|
asym = self.parser.parse_asymptote_slope(fact_expr) |
|
|
if asym: |
|
|
slope_calc = b / a if orientation == 'horizontal' else a / b |
|
|
if abs(slope_calc - asym) > tol_param: |
|
|
reasons.append('hyperbola_asymptote_mismatch') |
|
|
|
|
|
|
|
|
ecc_target = self.parser.parse_eccentricity(fact_expr) |
|
|
if ecc_target and ecc_target > 1: |
|
|
ecc_calc = np.sqrt(1 + (b / a)**2) |
|
|
if abs(ecc_calc - ecc_target) > tol_param: |
|
|
reasons.append('hyperbola_ecc_mismatch') |
|
|
|
|
|
|
|
|
foci = get_focus_coords() |
|
|
if foci: |
|
|
c_calc = np.sqrt(a**2 + b**2) |
|
|
for fx, fy in foci: |
|
|
|
|
|
c_given = np.sqrt(fx**2 + fy**2) |
|
|
if abs(c_calc - c_given) > tol_focus: |
|
|
reasons.append('hyperbola_focus_mismatch') |
|
|
break |
|
|
|
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
if has_point_constraint(name): |
|
|
if orientation == 'vertical': |
|
|
val = (py**2) / (a**2) - (px**2) / (b**2) - 1 |
|
|
else: |
|
|
val = (px**2) / (a**2) - (py**2) / (b**2) - 1 |
|
|
if abs(val) > tol_point: |
|
|
reasons.append('hyperbola_point_off_curve') |
|
|
break |
|
|
|
|
|
elif conic_type == 'parabola': |
|
|
params = result.get('params', {}) |
|
|
p = params.get('p', 0) |
|
|
direction = params.get('direction', 'right') |
|
|
|
|
|
|
|
|
if p <= 0: |
|
|
reasons.append('parabola_nonpositive_p') |
|
|
|
|
|
|
|
|
|
|
|
foci = get_focus_coords() |
|
|
if foci: |
|
|
for fx, fy in foci: |
|
|
if direction == 'right': |
|
|
focus_expected = (p, 0) |
|
|
elif direction == 'left': |
|
|
focus_expected = (-p, 0) |
|
|
elif direction == 'up': |
|
|
focus_expected = (0, p) |
|
|
else: |
|
|
focus_expected = (0, -p) |
|
|
|
|
|
dist = np.sqrt((fx - focus_expected[0])**2 + (fy - focus_expected[1])**2) |
|
|
if dist > tol_focus: |
|
|
reasons.append('parabola_focus_mismatch') |
|
|
break |
|
|
|
|
|
|
|
|
|
|
|
directrix_match = re.search(r'Directrix\s*\(\s*\w+\s*\)\s*=\s*\(x\s*=\s*(-?\d+\.?\d*)\)', fact_expr) |
|
|
if directrix_match: |
|
|
directrix_given = float(directrix_match.group(1)) |
|
|
if direction == 'right': |
|
|
directrix_expected = -p |
|
|
elif direction == 'left': |
|
|
directrix_expected = p |
|
|
else: |
|
|
directrix_expected = None |
|
|
|
|
|
if directrix_expected is not None: |
|
|
if abs(directrix_given - directrix_expected) > tol_focus: |
|
|
reasons.append('parabola_directrix_mismatch') |
|
|
|
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
if has_point_constraint(name): |
|
|
if direction == 'right': |
|
|
val = py**2 - 4 * p * px |
|
|
elif direction == 'left': |
|
|
val = py**2 + 4 * p * px |
|
|
elif direction == 'up': |
|
|
val = px**2 - 4 * p * py |
|
|
else: |
|
|
val = px**2 + 4 * p * py |
|
|
if abs(val) > tol_point: |
|
|
reasons.append('parabola_point_off_curve') |
|
|
break |
|
|
|
|
|
elif conic_type == 'circle': |
|
|
params = result.get('params', {}) |
|
|
r = params.get('radius', 0) |
|
|
cx, cy = params.get('center', (0, 0)) |
|
|
|
|
|
|
|
|
if r <= 0: |
|
|
reasons.append('circle_nonpositive_radius') |
|
|
|
|
|
|
|
|
center_match = re.search(r'Center\s*\(\s*\w+\s*\)\s*=\s*\(([^,]+),\s*([^)]+)\)', fact_expr) |
|
|
if center_match: |
|
|
try: |
|
|
cx_given = float(center_match.group(1)) |
|
|
cy_given = float(center_match.group(2)) |
|
|
if abs(cx - cx_given) > tol_focus or abs(cy - cy_given) > tol_focus: |
|
|
reasons.append('circle_center_mismatch') |
|
|
except: |
|
|
pass |
|
|
|
|
|
|
|
|
radius_match = re.search(r'Radius\s*\(\s*\w+\s*\)\s*=\s*(\d+\.?\d*)', fact_expr) |
|
|
if radius_match: |
|
|
r_given = float(radius_match.group(1)) |
|
|
if abs(r - r_given) > tol_focus: |
|
|
reasons.append('circle_radius_mismatch') |
|
|
|
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
if has_point_constraint(name): |
|
|
val = (px - cx)**2 + (py - cy)**2 - r**2 |
|
|
if abs(val) > tol_point: |
|
|
reasons.append('circle_point_off_curve') |
|
|
break |
|
|
|
|
|
if reasons: |
|
|
result['success'] = False |
|
|
result['error'] = 'validation: ' + ';'.join(reasons) |
|
|
result['validation_reasons'] = reasons |
|
|
return result |
|
|
|
|
|
def _point_constraint_names(self, fact_expr: str, coords: Dict, conic_type: str = 'parabola') -> set: |
|
|
""" |
|
|
Collect point names that are explicitly constrained on the main curve. |
|
|
Uses _detect_main_conic_name to find the actual conic variable name. |
|
|
""" |
|
|
main_conic = self._detect_main_conic_name(fact_expr, conic_type) |
|
|
return self._points_on_main_conic(fact_expr, coords, main_conic) |
|
|
|
|
|
def _detect_main_conic_name(self, fact_expr: str, conic_type: str) -> str: |
|
|
""" |
|
|
Detect the actual name of the main conic from fact_expr. |
|
|
|
|
|
Patterns like 'G: Ellipse', 'C: Parabola', 'C: Hyperbola', etc. |
|
|
Returns the variable name (e.g., 'G' or 'C'). |
|
|
""" |
|
|
|
|
|
type_map = { |
|
|
'ellipse': 'Ellipse', |
|
|
'hyperbola': 'Hyperbola', |
|
|
'parabola': 'Parabola', |
|
|
'circle': 'Circle' |
|
|
} |
|
|
type_name = type_map.get(conic_type, '') |
|
|
|
|
|
if type_name: |
|
|
|
|
|
pattern = rf'(\w+)\s*:\s*{type_name}' |
|
|
match = re.search(pattern, fact_expr) |
|
|
if match: |
|
|
return match.group(1) |
|
|
|
|
|
|
|
|
return 'C' if conic_type == 'circle' else 'G' |
|
|
|
|
|
def _points_on_main_conic(self, fact_expr: str, coords: Dict, conic_name: str = 'G') -> set: |
|
|
""" |
|
|
Collect point names that are EXPLICITLY on the MAIN conic (e.g., G or C). |
|
|
|
|
|
Includes: |
|
|
- PointOnCurve(<name>, G) where G is the main conic |
|
|
- Intersection(*, G) = {A, B} where G is the main conic |
|
|
|
|
|
Excludes: |
|
|
- PointOnCurve(<name>, H) where H is a line |
|
|
- PointOnCurve(<name>, Asymptote(G)) - on asymptote, not curve |
|
|
- PointOnCurve(<name>, Directrix(G)) - on directrix, not curve |
|
|
- PointOnCurve(<name>, G1) where G1 is a different curve |
|
|
- MidPoint constraints (midpoints of chords are not on the curve) |
|
|
""" |
|
|
names = set() |
|
|
|
|
|
|
|
|
|
|
|
for name in coords.keys(): |
|
|
|
|
|
|
|
|
pattern = rf'PointOnCurve\(\s*{re.escape(name)}\s*,\s*{re.escape(conic_name)}\s*\)' |
|
|
if re.search(pattern, fact_expr): |
|
|
names.add(name) |
|
|
|
|
|
|
|
|
|
|
|
inter_pattern = r'Intersection\(\s*([^,)]+)\s*,\s*([^)]+)\s*\)\s*=\s*\{([^}]+)\}' |
|
|
for m in re.finditer(inter_pattern, fact_expr): |
|
|
arg1 = m.group(1).strip() |
|
|
arg2 = m.group(2).strip() |
|
|
points_str = m.group(3) |
|
|
|
|
|
|
|
|
if arg1 == conic_name or arg2 == conic_name: |
|
|
for p in points_str.split(','): |
|
|
p = p.strip() |
|
|
if p in coords: |
|
|
names.add(p) |
|
|
|
|
|
return names |
|
|
|
|
|
def _detect_moving_circle_locus(self, fact_expr: str, coords: Dict) -> Optional[Dict]: |
|
|
""" |
|
|
Detect pattern: moving circle through fixed point A, externally tangent to fixed circle C. |
|
|
If foci on x-axis, convert to hyperbola params: |PC| - |PA| = R -> 2a = R. |
|
|
Returns hyperbola params dict or None. |
|
|
""" |
|
|
if "IsOutTangent" not in fact_expr: |
|
|
return None |
|
|
|
|
|
patterns = [ |
|
|
r'Expression\(C\)\s*=\s*\(y\^2\s*\+\s*\(x\s*([+-])\s*(\d+\.?\d*)\)\^2\s*=\s*(\d+\.?\d*)\)', |
|
|
r'Expression\(C\)\s*=\s*\(\(x\s*([+-])\s*(\d+\.?\d*)\)\^2\s*\+\s*y\^2\s*=\s*(\d+\.?\d*)\)' |
|
|
] |
|
|
cx = cy = R = None |
|
|
for pat in patterns: |
|
|
m = re.search(pat, fact_expr) |
|
|
if m: |
|
|
sign = m.group(1) |
|
|
val = float(m.group(2)) |
|
|
cx = -val if sign == '+' else val |
|
|
cy = 0.0 |
|
|
R = np.sqrt(float(m.group(3))) |
|
|
break |
|
|
if R is None or R <= 0: |
|
|
return None |
|
|
|
|
|
if 'A' in coords: |
|
|
ax, ay = coords['A'] |
|
|
elif coords: |
|
|
ax, ay = next(iter(coords.values())) |
|
|
else: |
|
|
return None |
|
|
|
|
|
if abs(ay) > 1e-6 or abs(cy) > 1e-6: |
|
|
return None |
|
|
c = abs(cx - ax) / 2 |
|
|
if c <= 0: |
|
|
return None |
|
|
a = R / 2 |
|
|
if a <= 0 or c <= a: |
|
|
return None |
|
|
b_sq = c * c - a * a |
|
|
b = np.sqrt(b_sq) |
|
|
return {'a': a, 'b': b} |
|
|
|
|
|
def _process_ellipse(self, problem: Dict, idx: int, params: Dict, |
|
|
coords: Dict, eccentricity: Optional[float], verbose: bool) -> Dict: |
|
|
"""Process ellipse problem with SDF optimization.""" |
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
point_names = self._point_constraint_names(fact_expr, coords, 'ellipse') |
|
|
|
|
|
center = torch.tensor([0.0, 0.0]) |
|
|
|
|
|
if 'a' not in params or 'b' not in params: |
|
|
return { |
|
|
'index': idx, |
|
|
'success': False, |
|
|
'error': f"Ellipse params missing 'a' or 'b': {list(params.keys())}" |
|
|
} |
|
|
a = torch.tensor([params['a']]) |
|
|
b = torch.tensor([params['b']]) |
|
|
|
|
|
sdf = EllipseSDF(center, a, b) |
|
|
|
|
|
|
|
|
has_explicit_coeffs = not params.get('symbolic', False) and not params.get('from_constraints', False) |
|
|
|
|
|
|
|
|
|
|
|
should_optimize = False |
|
|
constraints = [] |
|
|
weights = [] |
|
|
|
|
|
if not has_explicit_coeffs: |
|
|
|
|
|
if eccentricity and eccentricity < 1: |
|
|
constraints.append(lambda: GeometricConstraints.eccentricity_ellipse( |
|
|
sdf.a, sdf.b, eccentricity |
|
|
)) |
|
|
weights.append(10.0) |
|
|
should_optimize = True |
|
|
|
|
|
|
|
|
all_positions = [sdf.center] |
|
|
|
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
if name in point_names and name not in ['F1', 'F2', 'F', 'O']: |
|
|
point = torch.tensor([px, py]) |
|
|
constraints.append(lambda p=point: GeometricConstraints.point_on_curve(sdf, p)) |
|
|
weights.append(5.0) |
|
|
should_optimize = True |
|
|
all_positions.append(point) |
|
|
|
|
|
|
|
|
|
|
|
if len(all_positions) > 1: |
|
|
constraints.append(lambda pos=all_positions: GeometricConstraints.crowd_penalty(pos, min_dist=0.5)) |
|
|
weights.append(3.0) |
|
|
|
|
|
|
|
|
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.a)) |
|
|
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.b)) |
|
|
weights.extend([1.0, 1.0]) |
|
|
|
|
|
|
|
|
if should_optimize and len(constraints) > 2: |
|
|
opt_result = self.optimizer.optimize(sdf, constraints, weights, verbose) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
a_opt = abs(sdf.a.item()) |
|
|
b_opt = abs(sdf.b.item()) |
|
|
|
|
|
|
|
|
if b_opt < 0.1 or a_opt < 0.1: |
|
|
sdf.a.data = torch.tensor([params['a']]) |
|
|
sdf.b.data = torch.tensor([params['b']]) |
|
|
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'reverted to explicit params'} |
|
|
else: |
|
|
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'using explicit params'} |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
a_final = abs(sdf.a.item()) |
|
|
b_final = abs(sdf.b.item()) |
|
|
|
|
|
|
|
|
major_axis = params.get('major_axis', 'x') |
|
|
|
|
|
|
|
|
output_path = self.output_dir / 'ellipse' / f'problem_{idx:04d}.png' |
|
|
self._visualize_ellipse(sdf, problem, params, output_path, major_axis) |
|
|
|
|
|
return { |
|
|
'index': idx, |
|
|
'success': True, |
|
|
'conic_type': 'ellipse', |
|
|
'error': None, |
|
|
'params': { |
|
|
'a': a_final, |
|
|
'b': b_final, |
|
|
'major_axis': major_axis, |
|
|
'x_coef': params['x_coef'], |
|
|
'y_coef': params['y_coef'] |
|
|
}, |
|
|
'optimization': opt_result, |
|
|
'output_path': str(output_path), |
|
|
'answer': problem.get('answer_expressions', ''), |
|
|
'fact_expr': fact_expr, |
|
|
'coords': coords |
|
|
} |
|
|
|
|
|
def _process_hyperbola(self, problem: Dict, idx: int, params: Dict, |
|
|
coords: Dict, eccentricity: Optional[float], |
|
|
asymptote: Optional[float], verbose: bool) -> Dict: |
|
|
"""Process hyperbola problem with SDF optimization.""" |
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
point_names = self._point_constraint_names(fact_expr, coords, 'hyperbola') |
|
|
|
|
|
|
|
|
c_from_ellipse = None |
|
|
if 'Focus(G) = Focus(H)' in fact_expr or 'Focus(H) = Focus(G)' in fact_expr: |
|
|
|
|
|
ellipse_match = re.search(r'Expression\(\w+\)\s*=\s*\(x\^2/(\d+)\s*\+\s*y\^2/(\d+)\s*=\s*1\)', fact_expr) |
|
|
if ellipse_match: |
|
|
x_coef = float(ellipse_match.group(1)) |
|
|
y_coef = float(ellipse_match.group(2)) |
|
|
a_ell = np.sqrt(max(x_coef, y_coef)) |
|
|
b_ell = np.sqrt(min(x_coef, y_coef)) |
|
|
c_from_ellipse = np.sqrt(a_ell**2 - b_ell**2) |
|
|
|
|
|
|
|
|
if eccentricity and eccentricity > 1 and c_from_ellipse: |
|
|
|
|
|
a_val = c_from_ellipse / eccentricity |
|
|
|
|
|
b_squared = c_from_ellipse**2 - a_val**2 |
|
|
if b_squared > 0: |
|
|
b_val = np.sqrt(b_squared) |
|
|
params['a'] = a_val |
|
|
params['b'] = b_val |
|
|
params['a_squared'] = a_val**2 |
|
|
params['b_squared'] = b_squared |
|
|
|
|
|
center = torch.tensor([0.0, 0.0]) |
|
|
|
|
|
if 'a' not in params or 'b' not in params: |
|
|
return { |
|
|
'index': idx, |
|
|
'success': False, |
|
|
'error': f"Hyperbola params missing 'a' or 'b': {list(params.keys())}" |
|
|
} |
|
|
a = torch.tensor([params['a']]) |
|
|
b = torch.tensor([params['b']]) |
|
|
|
|
|
sdf = HyperbolaSDF(center, a, b) |
|
|
|
|
|
|
|
|
has_explicit_params = c_from_ellipse is not None and eccentricity and eccentricity > 1 |
|
|
|
|
|
constraints = [] |
|
|
weights = [] |
|
|
|
|
|
if not has_explicit_params: |
|
|
|
|
|
all_positions = [sdf.center] |
|
|
|
|
|
|
|
|
if eccentricity and eccentricity > 1: |
|
|
constraints.append(lambda: GeometricConstraints.eccentricity_hyperbola( |
|
|
sdf.a, sdf.b, eccentricity |
|
|
)) |
|
|
weights.append(10.0) |
|
|
|
|
|
|
|
|
if asymptote: |
|
|
constraints.append(lambda: GeometricConstraints.asymptote_slope( |
|
|
sdf.a, sdf.b, asymptote |
|
|
)) |
|
|
weights.append(10.0) |
|
|
|
|
|
|
|
|
focus_coords = [(n, c) for n, c in coords.items() if 'F' in n] |
|
|
if len(focus_coords) >= 2: |
|
|
f1 = focus_coords[0][1] |
|
|
f2 = focus_coords[1][1] |
|
|
c_target = abs(f1[0] - f2[0]) / 2 if f1[1] == f2[1] == 0 else None |
|
|
if c_target: |
|
|
constraints.append(lambda ct=c_target: GeometricConstraints.focus_constraint_hyperbola( |
|
|
sdf.a, sdf.b, ct |
|
|
)) |
|
|
weights.append(10.0) |
|
|
|
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
if name in point_names and name not in ['F1', 'F2', 'F', 'O']: |
|
|
all_positions.append(torch.tensor([px, py])) |
|
|
|
|
|
|
|
|
if len(all_positions) > 1: |
|
|
constraints.append(lambda pos=all_positions: GeometricConstraints.crowd_penalty(pos, min_dist=0.5)) |
|
|
weights.append(3.0) |
|
|
|
|
|
|
|
|
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.a)) |
|
|
constraints.append(lambda: GeometricConstraints.positive_constraint(sdf.b)) |
|
|
weights.extend([1.0, 1.0]) |
|
|
|
|
|
if len(constraints) > 2: |
|
|
opt_result = self.optimizer.optimize(sdf, constraints, weights, verbose) |
|
|
else: |
|
|
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'using explicit params'} |
|
|
|
|
|
with torch.no_grad(): |
|
|
a_final = abs(sdf.a.item()) |
|
|
b_final = abs(sdf.b.item()) |
|
|
|
|
|
output_path = self.output_dir / 'hyperbola' / f'problem_{idx:04d}.png' |
|
|
self._visualize_hyperbola(sdf, problem, params, output_path) |
|
|
|
|
|
return { |
|
|
'index': idx, |
|
|
'success': True, |
|
|
'conic_type': 'hyperbola', |
|
|
'error': None, |
|
|
'params': { |
|
|
'a': a_final, |
|
|
'b': b_final, |
|
|
'orientation': params.get('orientation', 'horizontal') |
|
|
}, |
|
|
'optimization': opt_result, |
|
|
'output_path': str(output_path), |
|
|
'answer': problem.get('answer_expressions', ''), |
|
|
'fact_expr': fact_expr, |
|
|
'coords': coords |
|
|
} |
|
|
|
|
|
def _process_parabola(self, problem: Dict, idx: int, params: Dict, |
|
|
coords: Dict, verbose: bool) -> Dict: |
|
|
"""Process parabola problem with SDF optimization.""" |
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
point_names = self._point_constraint_names(fact_expr, coords, 'parabola') |
|
|
vertex = torch.tensor([0.0, 0.0]) |
|
|
p = torch.tensor([params['p']]) |
|
|
direction = params.get('direction', 'right') |
|
|
|
|
|
sdf = ParabolaSDF(vertex, p, direction) |
|
|
|
|
|
sdf.vertex.requires_grad_(False) |
|
|
|
|
|
|
|
|
has_explicit_params = not params.get('symbolic', False) and not params.get('from_constraints', False) |
|
|
|
|
|
if has_explicit_params: |
|
|
opt_result = {'final_loss': 0.0, 'converged': True, 'note': 'using explicit params'} |
|
|
else: |
|
|
|
|
|
all_positions = [sdf.vertex] |
|
|
|
|
|
constraints = [ |
|
|
lambda: GeometricConstraints.positive_constraint(sdf.p) |
|
|
] |
|
|
weights = [1.0] |
|
|
|
|
|
|
|
|
for name, (px, py) in coords.items(): |
|
|
if name in point_names and name not in ['F', 'O']: |
|
|
point = torch.tensor([px, py]) |
|
|
constraints.append(lambda pt=point: GeometricConstraints.point_on_curve(sdf, pt)) |
|
|
weights.append(5.0) |
|
|
all_positions.append(point) |
|
|
|
|
|
|
|
|
if len(all_positions) > 1: |
|
|
constraints.append(lambda pos=all_positions: GeometricConstraints.crowd_penalty(pos, min_dist=0.5)) |
|
|
weights.append(3.0) |
|
|
|
|
|
if len(constraints) > 1: |
|
|
opt_result = self.optimizer.optimize(sdf, constraints, weights, verbose) |
|
|
else: |
|
|
opt_result = {'final_loss': 0.0, 'converged': True} |
|
|
|
|
|
with torch.no_grad(): |
|
|
p_final = abs(sdf.p.item()) |
|
|
|
|
|
output_path = self.output_dir / 'parabola' / f'problem_{idx:04d}.png' |
|
|
self._visualize_parabola(sdf, problem, params, output_path) |
|
|
|
|
|
return { |
|
|
'index': idx, |
|
|
'success': True, |
|
|
'conic_type': 'parabola', |
|
|
'error': None, |
|
|
'params': {'p': p_final, 'direction': direction}, |
|
|
'optimization': opt_result, |
|
|
'output_path': str(output_path), |
|
|
'answer': problem.get('answer_expressions', ''), |
|
|
'fact_expr': fact_expr, |
|
|
'coords': coords |
|
|
} |
|
|
|
|
|
def _process_circle(self, problem: Dict, idx: int, params: Dict, |
|
|
coords: Dict, verbose: bool) -> Dict: |
|
|
"""Process circle problem with SDF.""" |
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
point_names = self._point_constraint_names(fact_expr, coords, 'circle') |
|
|
|
|
|
if params.get('from_diameter'): |
|
|
|
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
coords = self.parser.parse_coordinates(fact_expr) |
|
|
|
|
|
|
|
|
diameter_match = re.search(r'IsDiameter\(LineSegmentOf\((\w+),\s*(\w+)\)', fact_expr) |
|
|
if diameter_match: |
|
|
pt1_name = diameter_match.group(1) |
|
|
pt2_name = diameter_match.group(2) |
|
|
if pt1_name in coords and pt2_name in coords: |
|
|
x1, y1 = coords[pt1_name] |
|
|
x2, y2 = coords[pt2_name] |
|
|
|
|
|
params['center'] = ((x1 + x2) / 2, (y1 + y2) / 2) |
|
|
params['radius'] = np.sqrt((x2 - x1)**2 + (y2 - y1)**2) / 2 |
|
|
else: |
|
|
result = { |
|
|
'index': idx, |
|
|
'success': False, |
|
|
'error': 'Circle from diameter: missing point coordinates' |
|
|
} |
|
|
return result |
|
|
else: |
|
|
result = { |
|
|
'index': idx, |
|
|
'success': False, |
|
|
'error': 'Circle from diameter: cannot parse diameter pattern' |
|
|
} |
|
|
return result |
|
|
|
|
|
center = torch.tensor(list(params.get('center', (0.0, 0.0)))) |
|
|
radius = torch.tensor([params.get('radius', 1.0)]) |
|
|
|
|
|
sdf = CircleSDF(center, radius) |
|
|
|
|
|
|
|
|
opt_result = {'final_loss': 0.0, 'converged': True} |
|
|
|
|
|
with torch.no_grad(): |
|
|
cx = sdf.center[0].item() |
|
|
cy = sdf.center[1].item() |
|
|
r = abs(sdf.radius.item()) |
|
|
|
|
|
output_path = self.output_dir / 'circle' / f'problem_{idx:04d}.png' |
|
|
self._visualize_circle(sdf, problem, params, output_path) |
|
|
|
|
|
return { |
|
|
'index': idx, |
|
|
'success': True, |
|
|
'conic_type': 'circle', |
|
|
'error': None, |
|
|
'params': {'center': (cx, cy), 'radius': r}, |
|
|
'optimization': opt_result, |
|
|
'output_path': str(output_path), |
|
|
'answer': problem.get('answer_expressions', ''), |
|
|
'fact_expr': fact_expr, |
|
|
'coords': {k:v for k,v in coords.items() if k in point_names} |
|
|
} |
|
|
|
|
|
def _visualize_circle(self, sdf: CircleSDF, problem: Dict, params: Dict, |
|
|
output_path: Path): |
|
|
"""Visualize circle using SDF zero-level set.""" |
|
|
|
|
|
with torch.no_grad(): |
|
|
cx = sdf.center[0].item() |
|
|
cy = sdf.center[1].item() |
|
|
r = abs(sdf.radius.item()) |
|
|
|
|
|
|
|
|
margin = r + 2 |
|
|
xlim = (cx - margin, cx + margin) |
|
|
ylim = (cy - margin, cy + margin) |
|
|
|
|
|
|
|
|
renderer = SDFRenderer(resolution=400, xlim=xlim, ylim=ylim) |
|
|
|
|
|
|
|
|
fig, (ax, ax_info) = plt.subplots(2, 1, figsize=(10, 12), |
|
|
gridspec_kw={'height_ratios': [0.6, 0.4]}) |
|
|
|
|
|
|
|
|
renderer.render_sdf_field(sdf, ax, show_field=True, field_alpha=0.15) |
|
|
|
|
|
|
|
|
ax.plot(cx, cy, 'ro', markersize=10, label='Center') |
|
|
ax.annotate('C', (cx, cy), textcoords="offset points", xytext=(10, 10), fontsize=12) |
|
|
|
|
|
|
|
|
ax.plot([cx, cx + r], [cy, cy], 'g--', linewidth=2, label=f'r = {r:.2f}') |
|
|
|
|
|
|
|
|
for name, (px, py) in params.get('coords', {}).items(): |
|
|
ax.plot(px, py, 'go', markersize=8) |
|
|
ax.annotate(name, (px, py), textcoords="offset points", xytext=(5, 5), fontsize=10) |
|
|
|
|
|
ax.set_xlabel('x') |
|
|
ax.set_ylabel('y') |
|
|
ax.set_title('Circle - SDF Zero-Level Set') |
|
|
ax.legend(loc='upper right') |
|
|
ax.set_aspect('equal') |
|
|
ax.grid(True, alpha=0.3) |
|
|
|
|
|
|
|
|
ax_info.axis('off') |
|
|
|
|
|
text = problem.get('text', '') |
|
|
wrapped_text = self._wrap_text(text, width=60) |
|
|
|
|
|
info_text = f"""PROBLEM |
|
|
{'─' * 50} |
|
|
{wrapped_text} |
|
|
|
|
|
EQUATION (SDF Zero-Level Set) |
|
|
{'─' * 50} |
|
|
(x - {cx:.2f})² + (y - {cy:.2f})² = {r**2:.2f} |
|
|
|
|
|
SDF PARAMETERS |
|
|
{'─' * 50} |
|
|
center: ({cx:.4f}, {cy:.4f}) |
|
|
radius: {r:.4f} |
|
|
|
|
|
EXPECTED ANSWER: {problem.get('answer_expressions', 'N/A')} |
|
|
QUERY: {problem.get('query_expressions', 'N/A')}""" |
|
|
|
|
|
ax_info.text(0, 1, info_text, transform=ax_info.transAxes, |
|
|
fontsize=10, verticalalignment='top', fontfamily='monospace', |
|
|
wrap=True) |
|
|
|
|
|
plt.tight_layout() |
|
|
output_path.parent.mkdir(parents=True, exist_ok=True) |
|
|
plt.savefig(output_path, dpi=150, bbox_inches='tight', facecolor='white') |
|
|
plt.close() |
|
|
|
|
|
def _wrap_text(self, text: str, width: int = 50) -> str: |
|
|
"""Wrap text to specified width.""" |
|
|
words = text.split() |
|
|
lines = [] |
|
|
current_line = [] |
|
|
current_len = 0 |
|
|
|
|
|
for word in words: |
|
|
if current_len + len(word) + 1 <= width: |
|
|
current_line.append(word) |
|
|
current_len += len(word) + 1 |
|
|
else: |
|
|
if current_line: |
|
|
lines.append(' '.join(current_line)) |
|
|
current_line = [word] |
|
|
current_len = len(word) |
|
|
|
|
|
if current_line: |
|
|
lines.append(' '.join(current_line)) |
|
|
|
|
|
return '\n'.join(lines) |
|
|
|
|
|
def _visualize_ellipse(self, sdf: EllipseSDF, problem: Dict, params: Dict, |
|
|
output_path: Path, major_axis: str): |
|
|
"""Visualize ellipse using SDF zero-level set, including related shapes.""" |
|
|
|
|
|
with torch.no_grad(): |
|
|
a = abs(sdf.a.item()) |
|
|
b = abs(sdf.b.item()) |
|
|
|
|
|
|
|
|
b_viz = max(b, 0.1) |
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
|
|
|
|
|
|
hyperbola_params = self.parser.parse_hyperbola(fact_expr) |
|
|
has_hyperbola = hyperbola_params is not None and 'a' in hyperbola_params and 'b' in hyperbola_params |
|
|
|
|
|
|
|
|
if has_hyperbola: |
|
|
a_hyp = hyperbola_params['a'] |
|
|
b_hyp = hyperbola_params['b'] |
|
|
max_dim = max(a, b_viz, a_hyp, b_hyp) * 1.8 + 1 |
|
|
else: |
|
|
max_dim = max(a, b_viz) * 1.3 |
|
|
|
|
|
|
|
|
fig = plt.figure(figsize=(10, 14), dpi=120) |
|
|
|
|
|
|
|
|
ax_main = fig.add_axes([0.1, 0.4, 0.8, 0.55]) |
|
|
|
|
|
|
|
|
renderer = SDFRenderer( |
|
|
resolution=500, |
|
|
xlim=(-max_dim, max_dim), |
|
|
ylim=(-max_dim, max_dim) |
|
|
) |
|
|
|
|
|
|
|
|
renderer.render_sdf_field(sdf, ax_main, show_field=True) |
|
|
|
|
|
|
|
|
if has_hyperbola: |
|
|
center = torch.tensor([0.0, 0.0]) |
|
|
a_hyp_t = torch.tensor([hyperbola_params['a']]) |
|
|
b_hyp_t = torch.tensor([hyperbola_params['b']]) |
|
|
hyp_sdf = HyperbolaSDF(center, a_hyp_t, b_hyp_t) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
grid_flat = renderer.grid.reshape(-1, 2) |
|
|
hyp_distances = hyp_sdf(grid_flat).reshape(renderer.resolution, renderer.resolution) |
|
|
hyp_distances_np = hyp_distances.cpu().numpy() |
|
|
|
|
|
ax_main.contour(renderer.xx.numpy(), renderer.yy.numpy(), hyp_distances_np, |
|
|
levels=[0], colors=['#E74C3C'], linewidths=2.5, linestyles='-') |
|
|
|
|
|
|
|
|
slope_hyp = hyperbola_params['b'] / hyperbola_params['a'] |
|
|
x_asym = np.linspace(-max_dim, max_dim, 100) |
|
|
ax_main.plot(x_asym, slope_hyp * x_asym, '--', color='#C73E1D', linewidth=1.5, alpha=0.5) |
|
|
ax_main.plot(x_asym, -slope_hyp * x_asym, '--', color='#C73E1D', linewidth=1.5, alpha=0.5) |
|
|
|
|
|
|
|
|
ellipse_line = Line2D([0], [0], color='#2E86AB', linewidth=2.5, |
|
|
label=f'Ellipse (x²/{params["x_coef"]:.0f} + y²/{params["y_coef"]:.0f} = 1)') |
|
|
hyperbola_line = Line2D([0], [0], color='#E74C3C', linewidth=2.5, |
|
|
label=f'Hyperbola (x²/{hyperbola_params["a"]:.2f}² - y²/{hyperbola_params["b"]:.2f}² = 1)') |
|
|
|
|
|
|
|
|
c = np.sqrt(abs(a**2 - b**2)) if a > b else np.sqrt(abs(b**2 - a**2)) |
|
|
if major_axis == 'x': |
|
|
ax_main.plot([c, -c], [0, 0], 'ro', markersize=12, |
|
|
label='Shared Foci' if has_hyperbola else 'Foci', zorder=5) |
|
|
ax_main.annotate('$F_1$', (-c, 0), xytext=(-c-0.4, 0.4), fontsize=14, fontweight='bold') |
|
|
ax_main.annotate('$F_2$', (c, 0), xytext=(c+0.2, 0.4), fontsize=14, fontweight='bold') |
|
|
else: |
|
|
ax_main.plot([0, 0], [c, -c], 'ro', markersize=12, |
|
|
label='Shared Foci' if has_hyperbola else 'Foci', zorder=5) |
|
|
ax_main.annotate('$F_1$', (0, -c), xytext=(0.3, -c-0.4), fontsize=14, fontweight='bold') |
|
|
ax_main.annotate('$F_2$', (0, c), xytext=(0.3, c+0.2), fontsize=14, fontweight='bold') |
|
|
|
|
|
|
|
|
coords = self.parser.parse_coordinates(problem.get('fact_expressions', '')) |
|
|
for name, (px, py) in coords.items(): |
|
|
if name not in ['F1', 'F2', 'F', 'O']: |
|
|
ax_main.plot(px, py, 'go', markersize=10, zorder=6) |
|
|
ax_main.annotate(f'${name}$', (px, py), xytext=(px+0.3, py+0.3), fontsize=13, fontweight='bold') |
|
|
|
|
|
|
|
|
ax_main.axhline(y=0, color='black', linewidth=0.8, alpha=0.6) |
|
|
ax_main.axvline(x=0, color='black', linewidth=0.8, alpha=0.6) |
|
|
ax_main.grid(True, alpha=0.3, linestyle='--') |
|
|
ax_main.set_xlim(-max_dim, max_dim) |
|
|
ax_main.set_ylim(-max_dim, max_dim) |
|
|
ax_main.set_xlabel('x', fontsize=14) |
|
|
ax_main.set_ylabel('y', fontsize=14) |
|
|
|
|
|
if has_hyperbola: |
|
|
ax_main.set_title('Ellipse & Hyperbola - SDF Zero-Level Sets', fontsize=16, fontweight='bold', pad=10) |
|
|
handles, labels = ax_main.get_legend_handles_labels() |
|
|
handles.extend([ellipse_line, hyperbola_line]) |
|
|
ax_main.legend(handles=handles, loc='upper right', fontsize=10) |
|
|
else: |
|
|
ax_main.set_title('Ellipse - SDF Zero-Level Set', fontsize=16, fontweight='bold', pad=10) |
|
|
ax_main.legend(loc='upper right', fontsize=11) |
|
|
|
|
|
ax_main.set_aspect('equal') |
|
|
ax_main.tick_params(labelsize=11) |
|
|
|
|
|
|
|
|
ax_info = fig.add_axes([0.05, 0.02, 0.9, 0.35]) |
|
|
ax_info.axis('off') |
|
|
|
|
|
x_coef = params['x_coef'] |
|
|
y_coef = params['y_coef'] |
|
|
|
|
|
|
|
|
problem_text = self._wrap_text(problem.get('text', ''), width=70) |
|
|
|
|
|
if has_hyperbola: |
|
|
equations_text = f"""Ellipse: x²/{np.sqrt(x_coef):.2f}² + y²/{np.sqrt(y_coef):.2f}² = 1 (Blue) |
|
|
Hyperbola: x²/{hyperbola_params['a']:.2f}² - y²/{hyperbola_params['b']:.2f}² = 1 (Red)""" |
|
|
else: |
|
|
equations_text = f"x²/{np.sqrt(x_coef):.2f}² + y²/{np.sqrt(y_coef):.2f}² = 1" |
|
|
|
|
|
info_text = f"""PROBLEM |
|
|
{'─'*70} |
|
|
{problem_text} |
|
|
|
|
|
EQUATIONS (SDF Zero-Level Sets) |
|
|
{'─'*70} |
|
|
{equations_text} |
|
|
|
|
|
SDF PARAMETERS (Ellipse) |
|
|
{'─'*70} |
|
|
a (semi-major): {a:.4f} b (semi-minor): {b:.4f} c (focal dist): {c:.4f} |
|
|
eccentricity: {c/max(a,b):.4f} major_axis: {major_axis} |
|
|
|
|
|
EXPECTED ANSWER: {problem.get('answer_expressions', '')} |
|
|
QUERY: {problem.get('query_expressions', '')} |
|
|
""" |
|
|
|
|
|
ax_info.text(0.0, 1.0, info_text, transform=ax_info.transAxes, |
|
|
fontsize=10, verticalalignment='top', family='monospace', |
|
|
bbox=dict(boxstyle='round,pad=0.5', facecolor='#E8F4F8', alpha=0.9, edgecolor='#CCCCCC')) |
|
|
|
|
|
plt.savefig(output_path, bbox_inches='tight', dpi=120, facecolor='white') |
|
|
plt.close(fig) |
|
|
|
|
|
def _visualize_hyperbola(self, sdf: HyperbolaSDF, problem: Dict, params: Dict, |
|
|
output_path: Path): |
|
|
"""Visualize hyperbola using SDF zero-level set, including related shapes.""" |
|
|
|
|
|
with torch.no_grad(): |
|
|
a = abs(sdf.a.item()) |
|
|
b = abs(sdf.b.item()) |
|
|
|
|
|
fact_expr = problem.get('fact_expressions', '') |
|
|
|
|
|
|
|
|
ellipse_params = self.parser.parse_ellipse(fact_expr) |
|
|
line_params = self.parser.parse_line(fact_expr) |
|
|
has_ellipse = ellipse_params is not None and 'a' in ellipse_params and 'b' in ellipse_params |
|
|
has_line = line_params is not None and (line_params.get('a') is not None or line_params.get('slope') is not None) |
|
|
|
|
|
|
|
|
if has_line and line_params.get('slope') is not None and line_params.get('a') is None: |
|
|
|
|
|
slope = line_params['slope'] |
|
|
|
|
|
if 'LeftFocus' in fact_expr or 'RightFocus' in fact_expr: |
|
|
|
|
|
c_hyp = np.sqrt(a**2 + b**2) |
|
|
if 'LeftFocus' in fact_expr: |
|
|
focus_x = -c_hyp |
|
|
else: |
|
|
focus_x = c_hyp |
|
|
|
|
|
line_params['a'] = slope |
|
|
line_params['b'] = -1.0 |
|
|
line_params['c'] = -slope * focus_x |
|
|
line_params['equation'] = f'y = {slope:.2f}(x - {focus_x:.2f})' |
|
|
|
|
|
|
|
|
if has_ellipse: |
|
|
a_ell = ellipse_params['a'] |
|
|
b_ell = ellipse_params['b'] |
|
|
max_dim = max(a, b, a_ell, b_ell) * 1.5 + 1 |
|
|
else: |
|
|
max_dim = max(a, b) * 2.5 + 2 |
|
|
|
|
|
|
|
|
fig = plt.figure(figsize=(10, 14), dpi=120) |
|
|
ax_main = fig.add_axes([0.1, 0.4, 0.8, 0.55]) |
|
|
|
|
|
renderer = SDFRenderer( |
|
|
resolution=500, |
|
|
xlim=(-max_dim, max_dim), |
|
|
ylim=(-max_dim, max_dim) |
|
|
) |
|
|
|
|
|
|
|
|
renderer.render_sdf_field(sdf, ax_main, show_field=True) |
|
|
|
|
|
|
|
|
if has_ellipse: |
|
|
center = torch.tensor([0.0, 0.0]) |
|
|
a_ell_t = torch.tensor([ellipse_params['a']]) |
|
|
b_ell_t = torch.tensor([ellipse_params['b']]) |
|
|
ellipse_sdf = EllipseSDF(center, a_ell_t, b_ell_t) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
grid_flat = renderer.grid.reshape(-1, 2) |
|
|
ell_distances = ellipse_sdf(grid_flat).reshape(renderer.resolution, renderer.resolution) |
|
|
ell_distances_np = ell_distances.cpu().numpy() |
|
|
|
|
|
ax_main.contour(renderer.xx.numpy(), renderer.yy.numpy(), ell_distances_np, |
|
|
levels=[0], colors=['#27AE60'], linewidths=2.5, linestyles='-') |
|
|
|
|
|
|
|
|
ellipse_line = Line2D([0], [0], color='#27AE60', linewidth=2.5, label=f'Ellipse (x²/{ellipse_params["x_coef"]:.0f} + y²/{ellipse_params["y_coef"]:.0f} = 1)') |
|
|
hyperbola_line = Line2D([0], [0], color='#2E86AB', linewidth=2.5, label=f'Hyperbola (x²/{a:.2f}² - y²/{b:.2f}² = 1)') |
|
|
|
|
|
|
|
|
if has_line and line_params.get('a') is not None and line_params.get('b') is not None: |
|
|
line_a = line_params['a'] |
|
|
line_b = line_params['b'] |
|
|
line_c = line_params.get('c', 0) |
|
|
|
|
|
|
|
|
x_line = np.linspace(-max_dim, max_dim, 100) |
|
|
if abs(line_b) > 1e-6: |
|
|
y_line = (-line_a * x_line - line_c) / line_b |
|
|
ax_main.plot(x_line, y_line, '-', color='#9B59B6', linewidth=2.5, |
|
|
label=f'Line ({line_params["equation"]} = 0)', zorder=4) |
|
|
else: |
|
|
|
|
|
x_val = -line_c / line_a if abs(line_a) > 1e-6 else 0 |
|
|
ax_main.axvline(x=x_val, color='#9B59B6', linewidth=2.5, |
|
|
label=f'Line (x = {x_val:.2f})', zorder=4) |
|
|
|
|
|
|
|
|
c = np.sqrt(a**2 + b**2) |
|
|
ax_main.plot([c, -c], [0, 0], 'ro', markersize=12, label='Shared Foci' if has_ellipse else 'Foci', zorder=5) |
|
|
ax_main.annotate('$F_1$', (-c, 0), xytext=(-c-0.4, 0.6), fontsize=14, fontweight='bold') |
|
|
ax_main.annotate('$F_2$', (c, 0), xytext=(c+0.2, 0.6), fontsize=14, fontweight='bold') |
|
|
|
|
|
|
|
|
slope = b / a |
|
|
x_asym = np.linspace(-max_dim, max_dim, 100) |
|
|
ax_main.plot(x_asym, slope * x_asym, '--', color='#C73E1D', linewidth=2, |
|
|
alpha=0.7, label='Asymptotes') |
|
|
ax_main.plot(x_asym, -slope * x_asym, '--', color='#C73E1D', linewidth=2, alpha=0.7) |
|
|
|
|
|
|
|
|
coords = self.parser.parse_coordinates(problem.get('fact_expressions', '')) |
|
|
for name, (px, py) in coords.items(): |
|
|
if name not in ['F1', 'F2', 'F', 'O']: |
|
|
ax_main.plot(px, py, 'go', markersize=10, zorder=6) |
|
|
ax_main.annotate(f'${name}$', (px, py), xytext=(px+0.3, py+0.3), fontsize=13, fontweight='bold') |
|
|
|
|
|
ax_main.axhline(y=0, color='black', linewidth=0.8, alpha=0.6) |
|
|
ax_main.axvline(x=0, color='black', linewidth=0.8, alpha=0.6) |
|
|
ax_main.grid(True, alpha=0.3, linestyle='--') |
|
|
ax_main.set_xlim(-max_dim, max_dim) |
|
|
ax_main.set_ylim(-max_dim, max_dim) |
|
|
ax_main.set_xlabel('x', fontsize=14) |
|
|
ax_main.set_ylabel('y', fontsize=14) |
|
|
|
|
|
|
|
|
title_parts = ['Hyperbola'] |
|
|
if has_ellipse: |
|
|
title_parts.append('Ellipse') |
|
|
if has_line: |
|
|
title_parts.append('Line') |
|
|
|
|
|
if len(title_parts) > 1: |
|
|
ax_main.set_title(' & '.join(title_parts) + ' - SDF Zero-Level Sets', fontsize=16, fontweight='bold', pad=10) |
|
|
handles, labels = ax_main.get_legend_handles_labels() |
|
|
if has_ellipse: |
|
|
handles.extend([ellipse_line, hyperbola_line]) |
|
|
ax_main.legend(handles=handles, loc='upper right', fontsize=10) |
|
|
else: |
|
|
ax_main.set_title('Hyperbola - SDF Zero-Level Set', fontsize=16, fontweight='bold', pad=10) |
|
|
ax_main.legend(loc='upper right', fontsize=11) |
|
|
|
|
|
ax_main.set_aspect('equal') |
|
|
ax_main.tick_params(labelsize=11) |
|
|
|
|
|
|
|
|
ax_info = fig.add_axes([0.05, 0.02, 0.9, 0.35]) |
|
|
ax_info.axis('off') |
|
|
|
|
|
problem_text = self._wrap_text(problem.get('text', ''), width=70) |
|
|
|
|
|
equations_parts = [f"Hyperbola: x²/{a:.2f}² - y²/{b:.2f}² = 1 (Blue)"] |
|
|
if has_ellipse: |
|
|
equations_parts.append(f"Ellipse: x²/{ellipse_params['x_coef']:.0f} + y²/{ellipse_params['y_coef']:.0f} = 1 (Green)") |
|
|
if has_line: |
|
|
equations_parts.append(f"Line: {line_params.get('equation', 'slope defined')} = 0 (Purple)") |
|
|
|
|
|
equations_text = '\n'.join(equations_parts) |
|
|
|
|
|
info_text = f"""PROBLEM |
|
|
{'─'*70} |
|
|
{problem_text} |
|
|
|
|
|
EQUATIONS (SDF Zero-Level Sets) |
|
|
{'─'*70} |
|
|
{equations_text} |
|
|
|
|
|
SDF PARAMETERS (Hyperbola) |
|
|
{'─'*70} |
|
|
a: {a:.4f} b: {b:.4f} c: {c:.4f} |
|
|
eccentricity: {c/a:.4f} asymptote slope: ±{slope:.4f} |
|
|
|
|
|
EXPECTED ANSWER: {problem.get('answer_expressions', '')} |
|
|
QUERY: {problem.get('query_expressions', '')} |
|
|
""" |
|
|
|
|
|
ax_info.text(0.0, 1.0, info_text, transform=ax_info.transAxes, |
|
|
fontsize=10, verticalalignment='top', family='monospace', |
|
|
bbox=dict(boxstyle='round,pad=0.5', facecolor='#E8F4F8', alpha=0.9, edgecolor='#CCCCCC')) |
|
|
|
|
|
plt.savefig(output_path, bbox_inches='tight', dpi=120, facecolor='white') |
|
|
plt.close(fig) |
|
|
|
|
|
def _visualize_parabola(self, sdf: ParabolaSDF, problem: Dict, params: Dict, |
|
|
output_path: Path): |
|
|
"""Visualize parabola using SDF zero-level set.""" |
|
|
|
|
|
with torch.no_grad(): |
|
|
p = abs(sdf.p.item()) |
|
|
|
|
|
direction = params.get('direction', 'right') |
|
|
|
|
|
|
|
|
extent = max(p * 8, 6) |
|
|
if direction == 'right': |
|
|
xlim = (-p * 2, extent) |
|
|
ylim = (-extent * 0.8, extent * 0.8) |
|
|
elif direction == 'left': |
|
|
xlim = (-extent, p * 2) |
|
|
ylim = (-extent * 0.8, extent * 0.8) |
|
|
else: |
|
|
xlim = (-extent * 0.8, extent * 0.8) |
|
|
ylim = (-p * 2, extent) |
|
|
|
|
|
|
|
|
fig = plt.figure(figsize=(10, 14), dpi=120) |
|
|
ax_main = fig.add_axes([0.1, 0.4, 0.8, 0.55]) |
|
|
|
|
|
|
|
|
renderer = SDFRenderer(resolution=600, xlim=xlim, ylim=ylim) |
|
|
renderer.render_sdf_field(sdf, ax_main, show_field=True) |
|
|
|
|
|
|
|
|
if direction == 'right': |
|
|
focus = (p, 0) |
|
|
ax_main.plot(p, 0, 'ro', markersize=12, label='Focus', zorder=5) |
|
|
ax_main.annotate('$F$', (p, 0), xytext=(p+0.4, 0.4), fontsize=14, fontweight='bold') |
|
|
ax_main.axvline(x=-p, color='#2ECC71', linestyle='--', linewidth=2, |
|
|
alpha=0.8, label='Directrix') |
|
|
equation = f"y² = {4*p:.2f}x" |
|
|
elif direction == 'left': |
|
|
focus = (-p, 0) |
|
|
ax_main.plot(-p, 0, 'ro', markersize=12, label='Focus', zorder=5) |
|
|
ax_main.annotate('$F$', (-p, 0), xytext=(-p-0.6, 0.4), fontsize=14, fontweight='bold') |
|
|
ax_main.axvline(x=p, color='#2ECC71', linestyle='--', linewidth=2, |
|
|
alpha=0.8, label='Directrix') |
|
|
equation = f"y² = -{4*p:.2f}x" |
|
|
else: |
|
|
focus = (0, p) |
|
|
ax_main.plot(0, p, 'ro', markersize=12, label='Focus', zorder=5) |
|
|
ax_main.annotate('$F$', (0, p), xytext=(0.4, p+0.4), fontsize=14, fontweight='bold') |
|
|
ax_main.axhline(y=-p, color='#2ECC71', linestyle='--', linewidth=2, |
|
|
alpha=0.8, label='Directrix') |
|
|
equation = f"x² = {4*p:.2f}y" |
|
|
|
|
|
|
|
|
coords = self.parser.parse_coordinates(problem.get('fact_expressions', '')) |
|
|
for idx, (name, (px, py)) in enumerate(coords.items()): |
|
|
if name not in ['F', 'O']: |
|
|
ax_main.plot(px, py, 'go', markersize=10, zorder=6) |
|
|
offset_y = 0.3 + 0.25 * idx |
|
|
ax_main.annotate(f'${name}$', (px, py), xytext=(px + 0.3, py + offset_y), |
|
|
fontsize=13, fontweight='bold') |
|
|
|
|
|
ax_main.axhline(y=0, color='black', linewidth=0.8, alpha=0.6) |
|
|
ax_main.axvline(x=0, color='black', linewidth=0.8, alpha=0.6) |
|
|
ax_main.grid(True, alpha=0.3, linestyle='--') |
|
|
ax_main.set_xlim(xlim) |
|
|
ax_main.set_ylim(ylim) |
|
|
ax_main.set_xlabel('x', fontsize=14) |
|
|
ax_main.set_ylabel('y', fontsize=14) |
|
|
ax_main.set_title('Parabola - SDF Zero-Level Set', fontsize=16, fontweight='bold', pad=10) |
|
|
ax_main.set_aspect('equal') |
|
|
ax_main.legend(loc='upper right', fontsize=11) |
|
|
ax_main.tick_params(labelsize=11) |
|
|
|
|
|
|
|
|
ax_info = fig.add_axes([0.05, 0.02, 0.9, 0.35]) |
|
|
ax_info.axis('off') |
|
|
|
|
|
problem_text = self._wrap_text(problem.get('text', ''), width=70) |
|
|
|
|
|
info_text = f"""PROBLEM |
|
|
{'─'*70} |
|
|
{problem_text} |
|
|
|
|
|
EQUATION (SDF Zero-Level Set) |
|
|
{'─'*70} |
|
|
{equation} |
|
|
|
|
|
SDF PARAMETERS |
|
|
{'─'*70} |
|
|
p (focal param): {p:.4f} focus: {focus} |
|
|
directrix: {'x = ' + f'{-p:.2f}' if direction in ['right', 'left'] else 'y = ' + f'{-p:.2f}'} |
|
|
direction: {direction} |
|
|
|
|
|
EXPECTED ANSWER: {problem.get('answer_expressions', '')} |
|
|
QUERY: {problem.get('query_expressions', '')} |
|
|
""" |
|
|
|
|
|
ax_info.text(0.0, 1.0, info_text, transform=ax_info.transAxes, |
|
|
fontsize=10, verticalalignment='top', family='monospace', |
|
|
bbox=dict(boxstyle='round,pad=0.5', facecolor='#E8F4F8', alpha=0.9, edgecolor='#CCCCCC')) |
|
|
|
|
|
plt.savefig(output_path, bbox_inches='tight', dpi=120, facecolor='white') |
|
|
plt.close(fig) |
|
|
|
|
|
def process_batch(self, problems_input, max_problems: int = None, |
|
|
verbose: bool = False) -> List[Dict]: |
|
|
"""Process a batch of problems. |
|
|
|
|
|
Args: |
|
|
problems_input: Either a list of problem dicts or a path to JSON file |
|
|
max_problems: Maximum number of problems to process |
|
|
verbose: Whether to print verbose output |
|
|
""" |
|
|
|
|
|
if isinstance(problems_input, str): |
|
|
with open(problems_input, 'r', encoding='utf-8') as f: |
|
|
problems = json.load(f) |
|
|
else: |
|
|
problems = problems_input |
|
|
|
|
|
if max_problems: |
|
|
problems = problems[:max_problems] |
|
|
|
|
|
results = [] |
|
|
stats = {'total': len(problems), 'success': 0, 'failed': 0} |
|
|
type_stats = {'ellipse': 0, 'hyperbola': 0, 'parabola': 0, 'circle': 0} |
|
|
reason_counts: Dict[str, int] = {} |
|
|
|
|
|
print(f"\n{'='*60}") |
|
|
print(f"SDF-Based Processing: {len(problems)} problems") |
|
|
print(f"{'='*60}\n") |
|
|
|
|
|
for idx, problem in enumerate(tqdm(problems, desc="Processing")): |
|
|
result = self.process_problem(problem, idx, verbose) |
|
|
results.append(result) |
|
|
|
|
|
if result['success']: |
|
|
stats['success'] += 1 |
|
|
ctype = result.get('conic_type') |
|
|
if ctype in type_stats: |
|
|
type_stats[ctype] += 1 |
|
|
else: |
|
|
stats['failed'] += 1 |
|
|
for reason in result.get('validation_reasons', []): |
|
|
reason_counts[reason] = reason_counts.get(reason, 0) + 1 |
|
|
|
|
|
|
|
|
summary = { |
|
|
'stats': stats, |
|
|
'type_stats': type_stats, |
|
|
'reason_counts': reason_counts, |
|
|
'results': results |
|
|
} |
|
|
with open(self.output_dir / 'summary.json', 'w') as f: |
|
|
json.dump(summary, f, indent=2, default=str) |
|
|
|
|
|
print(f"\n{'='*60}") |
|
|
print("PROCESSING COMPLETE") |
|
|
print(f"{'='*60}") |
|
|
print(f"Success: {stats['success']} / {stats['total']} ({100*stats['success']/stats['total']:.1f}%)") |
|
|
print(f"By type: {type_stats}") |
|
|
print(f"Output: {self.output_dir}") |
|
|
|
|
|
return results |
|
|
|