|
|
|
|
|
|
|
|
|
|
|
from scipy.stats import t |
|
|
import numpy as np |
|
|
import pandas as pd |
|
|
|
|
|
class linear_regression(): |
|
|
def __init__(self, fit_intercept=True): |
|
|
self.const = fit_intercept |
|
|
|
|
|
def fit(self, x, y): |
|
|
|
|
|
if isinstance(x, pd.DataFrame): |
|
|
x_np = x.values |
|
|
x_cols = x.columns |
|
|
else: |
|
|
x_np = x |
|
|
x_cols = [f"x{i}" for i in range(x.shape[1])] |
|
|
|
|
|
|
|
|
if isinstance(y, (pd.Series, pd.DataFrame)): |
|
|
y_np = np.asarray(y).reshape(-1, 1) |
|
|
else: |
|
|
y_np = y.reshape(-1, 1) |
|
|
|
|
|
if self.const: |
|
|
ones = np.ones((x_np.shape[0], 1)) |
|
|
z = np.concatenate([ones, x_np], axis=1) |
|
|
self.index = ['const'] + list(x_cols) |
|
|
else: |
|
|
z = x_np |
|
|
self.index = list(x_cols) |
|
|
|
|
|
self.phi = np.linalg.inv(z.T @ z) @ (z.T @ y_np) |
|
|
if self.const: |
|
|
self.intercept_ = self.phi[0, 0] |
|
|
self.coef_ = self.phi[1:].flatten() |
|
|
else: |
|
|
self.intercept_ = 'NA' |
|
|
self.coef_ = self.phi.flatten() |
|
|
|
|
|
u = y_np - z @ self.phi |
|
|
RSS = np.sum(u**2) |
|
|
TSS = np.sum((y_np - np.mean(y_np))**2) |
|
|
self.R2 = 1 - RSS / TSS |
|
|
self.s2 = RSS / (z.shape[0] - z.shape[1]) |
|
|
self.SE = np.sqrt(self.s2 * np.diagonal(np.linalg.inv(z.T @ z))) |
|
|
self.t = self.phi.flatten() / self.SE |
|
|
self.p = (1 - t.cdf(np.abs(self.t), df=z.shape[0] - z.shape[1])) * 2 |
|
|
|
|
|
def predict(self, x): |
|
|
if isinstance(x, pd.DataFrame): |
|
|
x_np = x.values |
|
|
else: |
|
|
x_np = x |
|
|
|
|
|
if self.const: |
|
|
z = np.concatenate([np.ones((x_np.shape[0], 1)), x_np], axis=1) |
|
|
else: |
|
|
z = x_np |
|
|
|
|
|
fcst = z @ self.phi |
|
|
return fcst.squeeze() |
|
|
|
|
|
def summary(self): |
|
|
col_names = ["coef", "se", "t", "両側p値"] |
|
|
output = pd.DataFrame(np.c_[self.phi.flatten(), self.SE, self.t, self.p], |
|
|
index=self.index, |
|
|
columns=col_names) |
|
|
print(f'決定係数R^2: {self.R2}') |
|
|
return output |