|
|
""" |
|
|
A module providing some utility functions regarding Bézier path manipulation. |
|
|
""" |
|
|
|
|
|
from functools import lru_cache |
|
|
import math |
|
|
import warnings |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
from matplotlib import _api |
|
|
|
|
|
|
|
|
|
|
|
@np.vectorize |
|
|
@lru_cache(maxsize=128) |
|
|
def _comb(n, k): |
|
|
if k > n: |
|
|
return 0 |
|
|
k = min(k, n - k) |
|
|
i = np.arange(1, k + 1) |
|
|
return np.prod((n + 1 - i)/i).astype(int) |
|
|
|
|
|
|
|
|
class NonIntersectingPathException(ValueError): |
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_intersection(cx1, cy1, cos_t1, sin_t1, |
|
|
cx2, cy2, cos_t2, sin_t2): |
|
|
""" |
|
|
Return the intersection between the line through (*cx1*, *cy1*) at angle |
|
|
*t1* and the line through (*cx2*, *cy2*) at angle *t2*. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
line1_rhs = sin_t1 * cx1 - cos_t1 * cy1 |
|
|
line2_rhs = sin_t2 * cx2 - cos_t2 * cy2 |
|
|
|
|
|
|
|
|
a, b = sin_t1, -cos_t1 |
|
|
c, d = sin_t2, -cos_t2 |
|
|
|
|
|
ad_bc = a * d - b * c |
|
|
if abs(ad_bc) < 1e-12: |
|
|
raise ValueError("Given lines do not intersect. Please verify that " |
|
|
"the angles are not equal or differ by 180 degrees.") |
|
|
|
|
|
|
|
|
a_, b_ = d, -b |
|
|
c_, d_ = -c, a |
|
|
a_, b_, c_, d_ = (k / ad_bc for k in [a_, b_, c_, d_]) |
|
|
|
|
|
x = a_ * line1_rhs + b_ * line2_rhs |
|
|
y = c_ * line1_rhs + d_ * line2_rhs |
|
|
|
|
|
return x, y |
|
|
|
|
|
|
|
|
def get_normal_points(cx, cy, cos_t, sin_t, length): |
|
|
""" |
|
|
For a line passing through (*cx*, *cy*) and having an angle *t*, return |
|
|
locations of the two points located along its perpendicular line at the |
|
|
distance of *length*. |
|
|
""" |
|
|
|
|
|
if length == 0.: |
|
|
return cx, cy, cx, cy |
|
|
|
|
|
cos_t1, sin_t1 = sin_t, -cos_t |
|
|
cos_t2, sin_t2 = -sin_t, cos_t |
|
|
|
|
|
x1, y1 = length * cos_t1 + cx, length * sin_t1 + cy |
|
|
x2, y2 = length * cos_t2 + cx, length * sin_t2 + cy |
|
|
|
|
|
return x1, y1, x2, y2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _de_casteljau1(beta, t): |
|
|
next_beta = beta[:-1] * (1 - t) + beta[1:] * t |
|
|
return next_beta |
|
|
|
|
|
|
|
|
def split_de_casteljau(beta, t): |
|
|
""" |
|
|
Split a Bézier segment defined by its control points *beta* into two |
|
|
separate segments divided at *t* and return their control points. |
|
|
""" |
|
|
beta = np.asarray(beta) |
|
|
beta_list = [beta] |
|
|
while True: |
|
|
beta = _de_casteljau1(beta, t) |
|
|
beta_list.append(beta) |
|
|
if len(beta) == 1: |
|
|
break |
|
|
left_beta = [beta[0] for beta in beta_list] |
|
|
right_beta = [beta[-1] for beta in reversed(beta_list)] |
|
|
|
|
|
return left_beta, right_beta |
|
|
|
|
|
|
|
|
def find_bezier_t_intersecting_with_closedpath( |
|
|
bezier_point_at_t, inside_closedpath, t0=0., t1=1., tolerance=0.01): |
|
|
""" |
|
|
Find the intersection of the Bézier curve with a closed path. |
|
|
|
|
|
The intersection point *t* is approximated by two parameters *t0*, *t1* |
|
|
such that *t0* <= *t* <= *t1*. |
|
|
|
|
|
Search starts from *t0* and *t1* and uses a simple bisecting algorithm |
|
|
therefore one of the end points must be inside the path while the other |
|
|
doesn't. The search stops when the distance of the points parametrized by |
|
|
*t0* and *t1* gets smaller than the given *tolerance*. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
bezier_point_at_t : callable |
|
|
A function returning x, y coordinates of the Bézier at parameter *t*. |
|
|
It must have the signature:: |
|
|
|
|
|
bezier_point_at_t(t: float) -> tuple[float, float] |
|
|
|
|
|
inside_closedpath : callable |
|
|
A function returning True if a given point (x, y) is inside the |
|
|
closed path. It must have the signature:: |
|
|
|
|
|
inside_closedpath(point: tuple[float, float]) -> bool |
|
|
|
|
|
t0, t1 : float |
|
|
Start parameters for the search. |
|
|
|
|
|
tolerance : float |
|
|
Maximal allowed distance between the final points. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
t0, t1 : float |
|
|
The Bézier path parameters. |
|
|
""" |
|
|
start = bezier_point_at_t(t0) |
|
|
end = bezier_point_at_t(t1) |
|
|
|
|
|
start_inside = inside_closedpath(start) |
|
|
end_inside = inside_closedpath(end) |
|
|
|
|
|
if start_inside == end_inside and start != end: |
|
|
raise NonIntersectingPathException( |
|
|
"Both points are on the same side of the closed path") |
|
|
|
|
|
while True: |
|
|
|
|
|
|
|
|
if np.hypot(start[0] - end[0], start[1] - end[1]) < tolerance: |
|
|
return t0, t1 |
|
|
|
|
|
|
|
|
middle_t = 0.5 * (t0 + t1) |
|
|
middle = bezier_point_at_t(middle_t) |
|
|
middle_inside = inside_closedpath(middle) |
|
|
|
|
|
if start_inside ^ middle_inside: |
|
|
t1 = middle_t |
|
|
if end == middle: |
|
|
|
|
|
|
|
|
return t0, t1 |
|
|
end = middle |
|
|
else: |
|
|
t0 = middle_t |
|
|
if start == middle: |
|
|
|
|
|
|
|
|
return t0, t1 |
|
|
start = middle |
|
|
start_inside = middle_inside |
|
|
|
|
|
|
|
|
class BezierSegment: |
|
|
""" |
|
|
A d-dimensional Bézier segment. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
control_points : (N, d) array |
|
|
Location of the *N* control points. |
|
|
""" |
|
|
|
|
|
def __init__(self, control_points): |
|
|
self._cpoints = np.asarray(control_points) |
|
|
self._N, self._d = self._cpoints.shape |
|
|
self._orders = np.arange(self._N) |
|
|
coeff = [math.factorial(self._N - 1) |
|
|
// (math.factorial(i) * math.factorial(self._N - 1 - i)) |
|
|
for i in range(self._N)] |
|
|
self._px = (self._cpoints.T * coeff).T |
|
|
|
|
|
def __call__(self, t): |
|
|
""" |
|
|
Evaluate the Bézier curve at point(s) *t* in [0, 1]. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
t : (k,) array-like |
|
|
Points at which to evaluate the curve. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
(k, d) array |
|
|
Value of the curve for each point in *t*. |
|
|
""" |
|
|
t = np.asarray(t) |
|
|
return (np.power.outer(1 - t, self._orders[::-1]) |
|
|
* np.power.outer(t, self._orders)) @ self._px |
|
|
|
|
|
def point_at_t(self, t): |
|
|
""" |
|
|
Evaluate the curve at a single point, returning a tuple of *d* floats. |
|
|
""" |
|
|
return tuple(self(t)) |
|
|
|
|
|
@property |
|
|
def control_points(self): |
|
|
"""The control points of the curve.""" |
|
|
return self._cpoints |
|
|
|
|
|
@property |
|
|
def dimension(self): |
|
|
"""The dimension of the curve.""" |
|
|
return self._d |
|
|
|
|
|
@property |
|
|
def degree(self): |
|
|
"""Degree of the polynomial. One less the number of control points.""" |
|
|
return self._N - 1 |
|
|
|
|
|
@property |
|
|
def polynomial_coefficients(self): |
|
|
r""" |
|
|
The polynomial coefficients of the Bézier curve. |
|
|
|
|
|
.. warning:: Follows opposite convention from `numpy.polyval`. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
(n+1, d) array |
|
|
Coefficients after expanding in polynomial basis, where :math:`n` |
|
|
is the degree of the Bézier curve and :math:`d` its dimension. |
|
|
These are the numbers (:math:`C_j`) such that the curve can be |
|
|
written :math:`\sum_{j=0}^n C_j t^j`. |
|
|
|
|
|
Notes |
|
|
----- |
|
|
The coefficients are calculated as |
|
|
|
|
|
.. math:: |
|
|
|
|
|
{n \choose j} \sum_{i=0}^j (-1)^{i+j} {j \choose i} P_i |
|
|
|
|
|
where :math:`P_i` are the control points of the curve. |
|
|
""" |
|
|
n = self.degree |
|
|
|
|
|
if n > 10: |
|
|
warnings.warn("Polynomial coefficients formula unstable for high " |
|
|
"order Bezier curves!", RuntimeWarning) |
|
|
P = self.control_points |
|
|
j = np.arange(n+1)[:, None] |
|
|
i = np.arange(n+1)[None, :] |
|
|
prefactor = (-1)**(i + j) * _comb(j, i) |
|
|
return _comb(n, j) * prefactor @ P |
|
|
|
|
|
def axis_aligned_extrema(self): |
|
|
""" |
|
|
Return the dimension and location of the curve's interior extrema. |
|
|
|
|
|
The extrema are the points along the curve where one of its partial |
|
|
derivatives is zero. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
dims : array of int |
|
|
Index :math:`i` of the partial derivative which is zero at each |
|
|
interior extrema. |
|
|
dzeros : array of float |
|
|
Of same size as dims. The :math:`t` such that :math:`d/dx_i B(t) = |
|
|
0` |
|
|
""" |
|
|
n = self.degree |
|
|
if n <= 1: |
|
|
return np.array([]), np.array([]) |
|
|
Cj = self.polynomial_coefficients |
|
|
dCj = np.arange(1, n+1)[:, None] * Cj[1:] |
|
|
dims = [] |
|
|
roots = [] |
|
|
for i, pi in enumerate(dCj.T): |
|
|
r = np.roots(pi[::-1]) |
|
|
roots.append(r) |
|
|
dims.append(np.full_like(r, i)) |
|
|
roots = np.concatenate(roots) |
|
|
dims = np.concatenate(dims) |
|
|
in_range = np.isreal(roots) & (roots >= 0) & (roots <= 1) |
|
|
return dims[in_range], np.real(roots)[in_range] |
|
|
|
|
|
|
|
|
def split_bezier_intersecting_with_closedpath( |
|
|
bezier, inside_closedpath, tolerance=0.01): |
|
|
""" |
|
|
Split a Bézier curve into two at the intersection with a closed path. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
bezier : (N, 2) array-like |
|
|
Control points of the Bézier segment. See `.BezierSegment`. |
|
|
inside_closedpath : callable |
|
|
A function returning True if a given point (x, y) is inside the |
|
|
closed path. See also `.find_bezier_t_intersecting_with_closedpath`. |
|
|
tolerance : float |
|
|
The tolerance for the intersection. See also |
|
|
`.find_bezier_t_intersecting_with_closedpath`. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
left, right |
|
|
Lists of control points for the two Bézier segments. |
|
|
""" |
|
|
|
|
|
bz = BezierSegment(bezier) |
|
|
bezier_point_at_t = bz.point_at_t |
|
|
|
|
|
t0, t1 = find_bezier_t_intersecting_with_closedpath( |
|
|
bezier_point_at_t, inside_closedpath, tolerance=tolerance) |
|
|
|
|
|
_left, _right = split_de_casteljau(bezier, (t0 + t1) / 2.) |
|
|
return _left, _right |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def split_path_inout(path, inside, tolerance=0.01, reorder_inout=False): |
|
|
""" |
|
|
Divide a path into two segments at the point where ``inside(x, y)`` becomes |
|
|
False. |
|
|
""" |
|
|
from .path import Path |
|
|
path_iter = path.iter_segments() |
|
|
|
|
|
ctl_points, command = next(path_iter) |
|
|
begin_inside = inside(ctl_points[-2:]) |
|
|
|
|
|
ctl_points_old = ctl_points |
|
|
|
|
|
iold = 0 |
|
|
i = 1 |
|
|
|
|
|
for ctl_points, command in path_iter: |
|
|
iold = i |
|
|
i += len(ctl_points) // 2 |
|
|
if inside(ctl_points[-2:]) != begin_inside: |
|
|
bezier_path = np.concatenate([ctl_points_old[-2:], ctl_points]) |
|
|
break |
|
|
ctl_points_old = ctl_points |
|
|
else: |
|
|
raise ValueError("The path does not intersect with the patch") |
|
|
|
|
|
bp = bezier_path.reshape((-1, 2)) |
|
|
left, right = split_bezier_intersecting_with_closedpath( |
|
|
bp, inside, tolerance) |
|
|
if len(left) == 2: |
|
|
codes_left = [Path.LINETO] |
|
|
codes_right = [Path.MOVETO, Path.LINETO] |
|
|
elif len(left) == 3: |
|
|
codes_left = [Path.CURVE3, Path.CURVE3] |
|
|
codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3] |
|
|
elif len(left) == 4: |
|
|
codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4] |
|
|
codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] |
|
|
else: |
|
|
raise AssertionError("This should never be reached") |
|
|
|
|
|
verts_left = left[1:] |
|
|
verts_right = right[:] |
|
|
|
|
|
if path.codes is None: |
|
|
path_in = Path(np.concatenate([path.vertices[:i], verts_left])) |
|
|
path_out = Path(np.concatenate([verts_right, path.vertices[i:]])) |
|
|
|
|
|
else: |
|
|
path_in = Path(np.concatenate([path.vertices[:iold], verts_left]), |
|
|
np.concatenate([path.codes[:iold], codes_left])) |
|
|
|
|
|
path_out = Path(np.concatenate([verts_right, path.vertices[i:]]), |
|
|
np.concatenate([codes_right, path.codes[i:]])) |
|
|
|
|
|
if reorder_inout and not begin_inside: |
|
|
path_in, path_out = path_out, path_in |
|
|
|
|
|
return path_in, path_out |
|
|
|
|
|
|
|
|
def inside_circle(cx, cy, r): |
|
|
""" |
|
|
Return a function that checks whether a point is in a circle with center |
|
|
(*cx*, *cy*) and radius *r*. |
|
|
|
|
|
The returned function has the signature:: |
|
|
|
|
|
f(xy: tuple[float, float]) -> bool |
|
|
""" |
|
|
r2 = r ** 2 |
|
|
|
|
|
def _f(xy): |
|
|
x, y = xy |
|
|
return (x - cx) ** 2 + (y - cy) ** 2 < r2 |
|
|
return _f |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_cos_sin(x0, y0, x1, y1): |
|
|
dx, dy = x1 - x0, y1 - y0 |
|
|
d = (dx * dx + dy * dy) ** .5 |
|
|
|
|
|
if d == 0: |
|
|
return 0.0, 0.0 |
|
|
return dx / d, dy / d |
|
|
|
|
|
|
|
|
def check_if_parallel(dx1, dy1, dx2, dy2, tolerance=1.e-5): |
|
|
""" |
|
|
Check if two lines are parallel. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
dx1, dy1, dx2, dy2 : float |
|
|
The gradients *dy*/*dx* of the two lines. |
|
|
tolerance : float |
|
|
The angular tolerance in radians up to which the lines are considered |
|
|
parallel. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
is_parallel |
|
|
- 1 if two lines are parallel in same direction. |
|
|
- -1 if two lines are parallel in opposite direction. |
|
|
- False otherwise. |
|
|
""" |
|
|
theta1 = np.arctan2(dx1, dy1) |
|
|
theta2 = np.arctan2(dx2, dy2) |
|
|
dtheta = abs(theta1 - theta2) |
|
|
if dtheta < tolerance: |
|
|
return 1 |
|
|
elif abs(dtheta - np.pi) < tolerance: |
|
|
return -1 |
|
|
else: |
|
|
return False |
|
|
|
|
|
|
|
|
def get_parallels(bezier2, width): |
|
|
""" |
|
|
Given the quadratic Bézier control points *bezier2*, returns |
|
|
control points of quadratic Bézier lines roughly parallel to given |
|
|
one separated by *width*. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c1x, c1y = bezier2[0] |
|
|
cmx, cmy = bezier2[1] |
|
|
c2x, c2y = bezier2[2] |
|
|
|
|
|
parallel_test = check_if_parallel(c1x - cmx, c1y - cmy, |
|
|
cmx - c2x, cmy - c2y) |
|
|
|
|
|
if parallel_test == -1: |
|
|
_api.warn_external( |
|
|
"Lines do not intersect. A straight line is used instead.") |
|
|
cos_t1, sin_t1 = get_cos_sin(c1x, c1y, c2x, c2y) |
|
|
cos_t2, sin_t2 = cos_t1, sin_t1 |
|
|
else: |
|
|
|
|
|
|
|
|
cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) |
|
|
cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c1x_left, c1y_left, c1x_right, c1y_right = ( |
|
|
get_normal_points(c1x, c1y, cos_t1, sin_t1, width) |
|
|
) |
|
|
c2x_left, c2y_left, c2x_right, c2y_right = ( |
|
|
get_normal_points(c2x, c2y, cos_t2, sin_t2, width) |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
cmx_left, cmy_left = get_intersection(c1x_left, c1y_left, cos_t1, |
|
|
sin_t1, c2x_left, c2y_left, |
|
|
cos_t2, sin_t2) |
|
|
cmx_right, cmy_right = get_intersection(c1x_right, c1y_right, cos_t1, |
|
|
sin_t1, c2x_right, c2y_right, |
|
|
cos_t2, sin_t2) |
|
|
except ValueError: |
|
|
|
|
|
|
|
|
|
|
|
cmx_left, cmy_left = ( |
|
|
0.5 * (c1x_left + c2x_left), 0.5 * (c1y_left + c2y_left) |
|
|
) |
|
|
cmx_right, cmy_right = ( |
|
|
0.5 * (c1x_right + c2x_right), 0.5 * (c1y_right + c2y_right) |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
path_left = [(c1x_left, c1y_left), |
|
|
(cmx_left, cmy_left), |
|
|
(c2x_left, c2y_left)] |
|
|
path_right = [(c1x_right, c1y_right), |
|
|
(cmx_right, cmy_right), |
|
|
(c2x_right, c2y_right)] |
|
|
|
|
|
return path_left, path_right |
|
|
|
|
|
|
|
|
def find_control_points(c1x, c1y, mmx, mmy, c2x, c2y): |
|
|
""" |
|
|
Find control points of the Bézier curve passing through (*c1x*, *c1y*), |
|
|
(*mmx*, *mmy*), and (*c2x*, *c2y*), at parametric values 0, 0.5, and 1. |
|
|
""" |
|
|
cmx = .5 * (4 * mmx - (c1x + c2x)) |
|
|
cmy = .5 * (4 * mmy - (c1y + c2y)) |
|
|
return [(c1x, c1y), (cmx, cmy), (c2x, c2y)] |
|
|
|
|
|
|
|
|
def make_wedged_bezier2(bezier2, width, w1=1., wm=0.5, w2=0.): |
|
|
""" |
|
|
Being similar to `get_parallels`, returns control points of two quadratic |
|
|
Bézier lines having a width roughly parallel to given one separated by |
|
|
*width*. |
|
|
""" |
|
|
|
|
|
|
|
|
c1x, c1y = bezier2[0] |
|
|
cmx, cmy = bezier2[1] |
|
|
c3x, c3y = bezier2[2] |
|
|
|
|
|
|
|
|
|
|
|
cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) |
|
|
cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c1x_left, c1y_left, c1x_right, c1y_right = ( |
|
|
get_normal_points(c1x, c1y, cos_t1, sin_t1, width * w1) |
|
|
) |
|
|
c3x_left, c3y_left, c3x_right, c3y_right = ( |
|
|
get_normal_points(c3x, c3y, cos_t2, sin_t2, width * w2) |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
c12x, c12y = (c1x + cmx) * .5, (c1y + cmy) * .5 |
|
|
c23x, c23y = (cmx + c3x) * .5, (cmy + c3y) * .5 |
|
|
c123x, c123y = (c12x + c23x) * .5, (c12y + c23y) * .5 |
|
|
|
|
|
|
|
|
cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y) |
|
|
|
|
|
c123x_left, c123y_left, c123x_right, c123y_right = ( |
|
|
get_normal_points(c123x, c123y, cos_t123, sin_t123, width * wm) |
|
|
) |
|
|
|
|
|
path_left = find_control_points(c1x_left, c1y_left, |
|
|
c123x_left, c123y_left, |
|
|
c3x_left, c3y_left) |
|
|
path_right = find_control_points(c1x_right, c1y_right, |
|
|
c123x_right, c123y_right, |
|
|
c3x_right, c3y_right) |
|
|
|
|
|
return path_left, path_right |
|
|
|