ZTWHHH's picture
Add files using upload-large-folder tool
3662621 verified
import cupy
import cupyx.scipy.fft
from cupy import _core
from cupy._core import _routines_math as _math
from cupy._core import fusion
from cupy.lib import stride_tricks
import numpy
_dot_kernel = _core.ReductionKernel(
'T x1, T x2',
'T y',
'x1 * x2',
'a + b',
'y = a',
'0',
'dot_product'
)
def _choose_conv_method(in1, in2, mode):
if in1.ndim != 1 or in2.ndim != 1:
raise NotImplementedError('Only 1d inputs are supported currently')
if in1.dtype.kind in 'bui' or in2.dtype.kind in 'bui':
return 'direct'
if _fftconv_faster(in1, in2, mode):
return 'fft'
return 'direct'
def _fftconv_faster(x, h, mode):
"""
.. seealso:: :func: `scipy.signal._signaltools._fftconv_faster`
"""
# TODO(Dahlia-Chehata): replace with GPU-based constants.
return True
def convolve(a, v, mode='full'):
"""Returns the discrete, linear convolution of two one-dimensional sequences.
Args:
a (cupy.ndarray): first 1-dimensional input.
v (cupy.ndarray): second 1-dimensional input.
mode (str, optional): `valid`, `same`, `full`
Returns:
cupy.ndarray: Discrete, linear convolution of a and v.
.. seealso:: :func:`numpy.convolve`
""" # NOQA
if a.size == 0:
raise ValueError('a cannot be empty')
if v.size == 0:
raise ValueError('v cannot be empty')
if v.ndim > 1:
raise ValueError('v cannot be multidimensional array')
if v.size > a.size:
a, v = v, a
a = a.ravel()
v = v.ravel()
method = _choose_conv_method(a, v, mode)
if method == 'direct':
out = _dot_convolve(a, v, mode)
elif method == 'fft':
out = _fft_convolve(a, v, mode)
else:
raise ValueError('Unsupported method')
return out
def _fft_convolve(a1, a2, mode):
offset = 0
if a1.shape[-1] < a2.shape[-1]:
a1, a2 = a2, a1
offset = 1 - a2.shape[-1] % 2
# if either of them is complex, the dtype after multiplication will also be
if a1.dtype.kind == 'c' or a2.dtype.kind == 'c':
fft, ifft = cupy.fft.fft, cupy.fft.ifft
else:
fft, ifft = cupy.fft.rfft, cupy.fft.irfft
dtype = cupy.result_type(a1, a2)
n1, n2 = a1.shape[-1], a2.shape[-1]
out_size = cupyx.scipy.fft.next_fast_len(n1 + n2 - 1)
fa1 = fft(a1, out_size)
fa2 = fft(a2, out_size)
out = ifft(fa1 * fa2, out_size)
if mode == 'full':
start, end = 0, n1 + n2 - 1
elif mode == 'same':
start = (n2 - 1) // 2 + offset
end = start + n1
elif mode == 'valid':
start, end = n2 - 1, n1
else:
raise ValueError(
'acceptable mode flags are `valid`, `same`, or `full`.')
out = out[..., start:end]
if dtype.kind in 'iu':
out = cupy.around(out)
return out.astype(dtype, copy=False)
def _dot_convolve(a1, a2, mode):
offset = 0
if a1.size < a2.size:
a1, a2 = a2, a1
offset = 1 - a2.size % 2
dtype = cupy.result_type(a1, a2)
n1, n2 = a1.size, a2.size
a1 = a1.astype(dtype, copy=False)
a2 = a2.astype(dtype, copy=False)
if mode == 'full':
out_size = n1 + n2 - 1
a1 = cupy.pad(a1, n2 - 1)
elif mode == 'same':
out_size = n1
pad_size = (n2 - 1) // 2 + offset
a1 = cupy.pad(a1, (n2 - 1 - pad_size, pad_size))
elif mode == 'valid':
out_size = n1 - n2 + 1
stride = a1.strides[0]
a1 = stride_tricks.as_strided(a1, (out_size, n2), (stride, stride))
output = _dot_kernel(a1, a2[::-1], axis=1)
return output
def clip(a, a_min, a_max, out=None):
"""Clips the values of an array to a given interval.
This is equivalent to ``maximum(minimum(a, a_max), a_min)``, while this
function is more efficient.
Args:
a (cupy.ndarray): The source array.
a_min (scalar, cupy.ndarray or None): The left side of the interval.
When it is ``None``, it is ignored.
a_max (scalar, cupy.ndarray or None): The right side of the interval.
When it is ``None``, it is ignored.
out (cupy.ndarray): Output array.
Returns:
cupy.ndarray: Clipped array.
.. seealso:: :func:`numpy.clip`
Notes
-----
When `a_min` is greater than `a_max`, `clip` returns an
array in which all values are equal to `a_max`.
"""
if fusion._is_fusing():
return fusion._call_ufunc(_math.clip,
a, a_min, a_max, out=out)
# TODO(okuta): check type
return a.clip(a_min, a_max, out=out)
# sqrt_fixed is deprecated.
# numpy.sqrt is fixed in numpy 1.11.2.
sqrt = sqrt_fixed = _core.sqrt
cbrt = _core.create_ufunc(
'cupy_cbrt',
('e->e', 'f->f', 'd->d'),
'out0 = cbrt(in0)',
doc='''Elementwise cube root function.
.. seealso:: :data:`numpy.cbrt`
''')
square = _core.create_ufunc(
'cupy_square',
('b->b', 'B->B', 'h->h', 'H->H', 'i->i', 'I->I', 'l->l', 'L->L', 'q->q',
'Q->Q', 'e->e', 'f->f', 'd->d', 'F->F', 'D->D'),
'out0 = in0 * in0',
doc='''Elementwise square function.
.. seealso:: :data:`numpy.square`
''')
absolute = _core.absolute
fabs = _core.create_ufunc(
'cupy_fabs',
('e->e', 'f->f', 'd->d'),
'out0 = abs(in0)',
doc='''Calculates absolute values element-wise.
Only real values are handled.
.. seealso:: :data:`numpy.fabs`
''')
_unsigned_sign = 'out0 = in0 > 0'
_complex_sign = '''
if (in0.real() == 0) {
out0 = (in0.imag() > 0) - (in0.imag() < 0);
} else {
out0 = (in0.real() > 0) - (in0.real() < 0);
}
'''
sign = _core.create_ufunc(
'cupy_sign',
('b->b', ('B->B', _unsigned_sign), 'h->h', ('H->H', _unsigned_sign),
'i->i', ('I->I', _unsigned_sign), 'l->l', ('L->L', _unsigned_sign),
'q->q', ('Q->Q', _unsigned_sign), 'e->e', 'f->f', 'd->d',
('F->F', _complex_sign), ('D->D', _complex_sign)),
'out0 = (in0 > 0) - (in0 < 0)',
doc='''Elementwise sign function.
It returns -1, 0, or 1 depending on the sign of the input.
.. seealso:: :data:`numpy.sign`
''')
heaviside = _core.create_ufunc(
'cupy_heaviside',
('ee->e', 'ff->f', 'dd->d'),
'''
if (isnan(in0)) {
out0 = in0;
} else if (in0 == 0) {
out0 = in1;
} else {
out0 = (in0 > 0);
}
''',
doc='''Compute the Heaviside step function.
.. seealso:: :data:`numpy.heaviside`
'''
)
_float_preamble = '''
#ifndef NAN
#define NAN __int_as_float(0x7fffffff)
#endif
'''
_float_maximum = ('out0 = (isnan(in0) | isnan(in1)) ? out0_type(NAN) : '
'out0_type(max(in0, in1))')
maximum = _core.create_ufunc(
'cupy_maximum',
('??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q',
('ee->e', _float_maximum),
('ff->f', _float_maximum),
('dd->d', _float_maximum),
('FF->F', _float_maximum),
('DD->D', _float_maximum)),
'out0 = max(in0, in1)',
preamble=_float_preamble,
doc='''Takes the maximum of two arrays elementwise.
If NaN appears, it returns the NaN.
.. seealso:: :data:`numpy.maximum`
''',
cutensor_op=('OP_MAX', 1, 1), scatter_op='max')
_float_minimum = ('out0 = (isnan(in0) | isnan(in1)) ? out0_type(NAN) : '
'out0_type(min(in0, in1))')
minimum = _core.create_ufunc(
'cupy_minimum',
('??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q',
('ee->e', _float_minimum),
('ff->f', _float_minimum),
('dd->d', _float_minimum),
('FF->F', _float_minimum),
('DD->D', _float_minimum)),
'out0 = min(in0, in1)',
preamble=_float_preamble,
doc='''Takes the minimum of two arrays elementwise.
If NaN appears, it returns the NaN.
.. seealso:: :data:`numpy.minimum`
''',
cutensor_op=('OP_MIN', 1, 1), scatter_op='min')
fmax = _core.create_ufunc(
'cupy_fmax',
('??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q',
('ee->e', 'out0 = fmax(in0, in1)'),
('ff->f', 'out0 = fmax(in0, in1)'),
('dd->d', 'out0 = fmax(in0, in1)'),
'FF->F', 'DD->D'),
'out0 = max(in0, in1)',
doc='''Takes the maximum of two arrays elementwise.
If NaN appears, it returns the other operand.
.. seealso:: :data:`numpy.fmax`
''')
fmin = _core.create_ufunc(
'cupy_fmin',
('??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q',
('ee->e', 'out0 = fmin(in0, in1)'),
('ff->f', 'out0 = fmin(in0, in1)'),
('dd->d', 'out0 = fmin(in0, in1)'),
'FF->F', 'DD->D'),
'out0 = min(in0, in1)',
doc='''Takes the minimum of two arrays elementwise.
If NaN appears, it returns the other operand.
.. seealso:: :data:`numpy.fmin`
''')
_nan_to_num_preamble = '''
template <class T>
__device__ T nan_to_num(T x, T nan, T posinf, T neginf) {
if (isnan(x))
return nan;
if (isinf(x))
return x > 0 ? posinf : neginf;
return x;
}
template <class T>
__device__ complex<T> nan_to_num(complex<T> x, T nan, T posinf, T neginf) {
T re = nan_to_num(x.real(), nan, posinf, neginf);
T im = nan_to_num(x.imag(), nan, posinf, neginf);
return complex<T>(re, im);
}
'''
_nan_to_num = _core.create_ufunc(
'cupy_nan_to_num_',
('????->?', 'bbbb->b', 'BBBB->B', 'hhhh->h', 'HHHH->H',
'iiii->i', 'IIII->I', 'llll->l', 'LLLL->L', 'qqqq->q', 'QQQQ->Q',
('eeee->e',
'out0 = nan_to_num(in0, in1, in2, in3)'),
('ffff->f',
'out0 = nan_to_num(in0, in1, in2, in3)'),
('dddd->d',
'out0 = nan_to_num(in0, in1, in2, in3)'),
('Ffff->F',
'out0 = nan_to_num(in0, in1, in2, in3)'),
('Dddd->D',
'out0 = nan_to_num(in0, in1, in2, in3)')),
'out0 = in0',
preamble=_nan_to_num_preamble,
doc='''Elementwise nan_to_num function.
.. seealso:: :func:`numpy.nan_to_num`
''')
def _check_nan_inf(x, dtype, neg=None):
if dtype.char in 'FD':
dtype = cupy.dtype(dtype.char.lower())
if dtype.char not in 'efd':
x = 0
elif x is None and neg is not None:
x = cupy.finfo(dtype).min if neg else cupy.finfo(dtype).max
elif cupy.isnan(x):
x = cupy.nan
elif cupy.isinf(x):
x = cupy.inf * (-1)**(x < 0)
return cupy.asanyarray(x, dtype)
def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None):
"""Replace NaN with zero and infinity with large finite numbers (default
behaviour) or with the numbers defined by the user using the `nan`,
`posinf` and/or `neginf` keywords.
.. seealso:: :func:`numpy.nan_to_num`
"""
if not isinstance(x, cupy.ndarray):
out = cupy.full((), x)
else:
out = cupy.empty_like(x) if copy else x
dtype = out.dtype
nan = _check_nan_inf(nan, dtype)
posinf = _check_nan_inf(posinf, dtype, False)
neginf = _check_nan_inf(neginf, dtype, True)
return _nan_to_num(x, nan, posinf, neginf, out=out)
def real_if_close(a, tol=100):
"""If input is complex with all imaginary parts close to zero, return real
parts.
"Close to zero" is defined as `tol` * (machine epsilon of the type for
`a`).
.. warning::
This function may synchronize the device.
.. seealso:: :func:`numpy.real_if_close`
"""
if not issubclass(a.dtype.type, cupy.complexfloating):
return a
if tol > 1:
f = numpy.finfo(a.dtype.type)
tol = f.eps * tol
if cupy.all(cupy.absolute(a.imag) < tol):
a = a.real
return a
@cupy._util.memoize(for_each_device=True)
def _get_interp_kernel(is_complex):
in_params = 'raw V x, raw U idx, '
in_params += 'raw W fx, raw Y fy, U len, raw Y left, raw Y right'
out_params = 'Z y' # output dtype follows NumPy's
if is_complex:
preamble = 'typedef double real_t;\n'
else:
preamble = 'typedef Z real_t;\n'
preamble += 'typedef Z value_t;\n'
preamble += cupy._sorting.search._preamble # for _isnan
code = r'''
U x_idx = idx[i] - 1;
if ( _isnan<V>(x[i]) ) { y = x[i]; }
else if (x_idx < 0) { y = left[0]; }
else if (x[i] == fx[len - 1]) {
// searchsorted cannot handle both of the boundary points,
// so we must detect and correct ourselves...
y = fy[len - 1];
}
else if (x_idx >= len - 1) { y = right[0]; }
else {
const Z slope = (value_t)(fy[x_idx+1] - fy[x_idx]) / \
((real_t)fx[x_idx+1] - (real_t)fx[x_idx]);
Z out = slope * ((real_t)x[i] - (real_t)fx[x_idx]) \
+ (value_t)fy[x_idx];
if (_isnan<Z>(out)) {
out = slope * ((real_t)x[i] - (real_t)fx[x_idx+1]) \
+ (value_t)fy[x_idx+1];
if (_isnan<Z>(out) && (fy[x_idx] == fy[x_idx+1])) {
out = fy[x_idx];
}
}
y = out;
}
'''
return cupy.ElementwiseKernel(
in_params, out_params, code, 'cupy_interp', preamble=preamble)
def interp(x, xp, fp, left=None, right=None, period=None):
""" One-dimensional linear interpolation.
Args:
x (cupy.ndarray): a 1D array of points on which the interpolation
is performed.
xp (cupy.ndarray): a 1D array of points on which the function values
(``fp``) are known.
fp (cupy.ndarray): a 1D array containing the function values at the
the points ``xp``.
left (float or complex): value to return if ``x < xp[0]``. Default is
``fp[0]``.
right (float or complex): value to return if ``x > xp[-1]``. Default is
``fp[-1]``.
period (None or float): a period for the x-coordinates. Parameters
``left`` and ``right`` are ignored if ``period`` is specified.
Default is ``None``.
Returns:
cupy.ndarray: The interpolated values, same shape as ``x``.
.. note::
This function may synchronize if ``left`` or ``right`` is not already
on the device.
.. seealso:: :func:`numpy.interp`
"""
if xp.ndim != 1 or fp.ndim != 1:
raise ValueError('xp and fp must be 1D arrays')
if xp.size != fp.size:
raise ValueError('fp and xp are not of the same length')
if xp.size == 0:
raise ValueError('array of sample points is empty')
if not x.flags.c_contiguous:
raise NotImplementedError('Non-C-contiguous x is currently not '
'supported')
x_dtype = cupy.common_type(x, xp)
if not cupy.can_cast(x_dtype, cupy.float64):
raise TypeError('Cannot cast array data from'
' {} to {} according to the rule \'safe\''
.format(x_dtype, cupy.float64))
if period is not None:
# The handling of "period" below is modified from NumPy's
if period == 0:
raise ValueError("period must be a non-zero value")
period = abs(period)
left = None
right = None
x = x.astype(cupy.float64)
xp = xp.astype(cupy.float64)
# normalizing periodic boundaries
x %= period
xp %= period
asort_xp = cupy.argsort(xp)
xp = xp[asort_xp]
fp = fp[asort_xp]
xp = cupy.concatenate((xp[-1:]-period, xp, xp[0:1]+period))
fp = cupy.concatenate((fp[-1:], fp, fp[0:1]))
assert xp.flags.c_contiguous
assert fp.flags.c_contiguous
# NumPy always returns float64 or complex128, so we upcast all values
# on the fly in the kernel
out_dtype = 'D' if fp.dtype.kind == 'c' else 'd'
output = cupy.empty(x.shape, dtype=out_dtype)
idx = cupy.searchsorted(xp, x, side='right')
left = fp[0] if left is None else cupy.array(left, fp.dtype)
right = fp[-1] if right is None else cupy.array(right, fp.dtype)
kern = _get_interp_kernel(out_dtype == 'D')
kern(x, idx, xp, fp, xp.size, left, right, output)
return output