|
|
import cupy |
|
|
import cupyx.scipy.fft |
|
|
|
|
|
from cupy import _core |
|
|
from cupy._core import _routines_math as _math |
|
|
from cupy._core import fusion |
|
|
from cupy.lib import stride_tricks |
|
|
|
|
|
import numpy |
|
|
|
|
|
|
|
|
_dot_kernel = _core.ReductionKernel( |
|
|
'T x1, T x2', |
|
|
'T y', |
|
|
'x1 * x2', |
|
|
'a + b', |
|
|
'y = a', |
|
|
'0', |
|
|
'dot_product' |
|
|
) |
|
|
|
|
|
|
|
|
def _choose_conv_method(in1, in2, mode): |
|
|
if in1.ndim != 1 or in2.ndim != 1: |
|
|
raise NotImplementedError('Only 1d inputs are supported currently') |
|
|
|
|
|
if in1.dtype.kind in 'bui' or in2.dtype.kind in 'bui': |
|
|
return 'direct' |
|
|
|
|
|
if _fftconv_faster(in1, in2, mode): |
|
|
return 'fft' |
|
|
|
|
|
return 'direct' |
|
|
|
|
|
|
|
|
def _fftconv_faster(x, h, mode): |
|
|
""" |
|
|
.. seealso:: :func: `scipy.signal._signaltools._fftconv_faster` |
|
|
|
|
|
""" |
|
|
|
|
|
return True |
|
|
|
|
|
|
|
|
def convolve(a, v, mode='full'): |
|
|
"""Returns the discrete, linear convolution of two one-dimensional sequences. |
|
|
|
|
|
Args: |
|
|
a (cupy.ndarray): first 1-dimensional input. |
|
|
v (cupy.ndarray): second 1-dimensional input. |
|
|
mode (str, optional): `valid`, `same`, `full` |
|
|
|
|
|
Returns: |
|
|
cupy.ndarray: Discrete, linear convolution of a and v. |
|
|
|
|
|
.. seealso:: :func:`numpy.convolve` |
|
|
|
|
|
""" |
|
|
if a.size == 0: |
|
|
raise ValueError('a cannot be empty') |
|
|
if v.size == 0: |
|
|
raise ValueError('v cannot be empty') |
|
|
if v.ndim > 1: |
|
|
raise ValueError('v cannot be multidimensional array') |
|
|
if v.size > a.size: |
|
|
a, v = v, a |
|
|
a = a.ravel() |
|
|
v = v.ravel() |
|
|
|
|
|
method = _choose_conv_method(a, v, mode) |
|
|
if method == 'direct': |
|
|
out = _dot_convolve(a, v, mode) |
|
|
elif method == 'fft': |
|
|
out = _fft_convolve(a, v, mode) |
|
|
else: |
|
|
raise ValueError('Unsupported method') |
|
|
return out |
|
|
|
|
|
|
|
|
def _fft_convolve(a1, a2, mode): |
|
|
|
|
|
offset = 0 |
|
|
if a1.shape[-1] < a2.shape[-1]: |
|
|
a1, a2 = a2, a1 |
|
|
offset = 1 - a2.shape[-1] % 2 |
|
|
|
|
|
|
|
|
if a1.dtype.kind == 'c' or a2.dtype.kind == 'c': |
|
|
fft, ifft = cupy.fft.fft, cupy.fft.ifft |
|
|
else: |
|
|
fft, ifft = cupy.fft.rfft, cupy.fft.irfft |
|
|
|
|
|
dtype = cupy.result_type(a1, a2) |
|
|
n1, n2 = a1.shape[-1], a2.shape[-1] |
|
|
out_size = cupyx.scipy.fft.next_fast_len(n1 + n2 - 1) |
|
|
fa1 = fft(a1, out_size) |
|
|
fa2 = fft(a2, out_size) |
|
|
out = ifft(fa1 * fa2, out_size) |
|
|
|
|
|
if mode == 'full': |
|
|
start, end = 0, n1 + n2 - 1 |
|
|
elif mode == 'same': |
|
|
start = (n2 - 1) // 2 + offset |
|
|
end = start + n1 |
|
|
elif mode == 'valid': |
|
|
start, end = n2 - 1, n1 |
|
|
else: |
|
|
raise ValueError( |
|
|
'acceptable mode flags are `valid`, `same`, or `full`.') |
|
|
|
|
|
out = out[..., start:end] |
|
|
|
|
|
if dtype.kind in 'iu': |
|
|
out = cupy.around(out) |
|
|
|
|
|
return out.astype(dtype, copy=False) |
|
|
|
|
|
|
|
|
def _dot_convolve(a1, a2, mode): |
|
|
|
|
|
offset = 0 |
|
|
if a1.size < a2.size: |
|
|
a1, a2 = a2, a1 |
|
|
offset = 1 - a2.size % 2 |
|
|
|
|
|
dtype = cupy.result_type(a1, a2) |
|
|
n1, n2 = a1.size, a2.size |
|
|
a1 = a1.astype(dtype, copy=False) |
|
|
a2 = a2.astype(dtype, copy=False) |
|
|
|
|
|
if mode == 'full': |
|
|
out_size = n1 + n2 - 1 |
|
|
a1 = cupy.pad(a1, n2 - 1) |
|
|
elif mode == 'same': |
|
|
out_size = n1 |
|
|
pad_size = (n2 - 1) // 2 + offset |
|
|
a1 = cupy.pad(a1, (n2 - 1 - pad_size, pad_size)) |
|
|
elif mode == 'valid': |
|
|
out_size = n1 - n2 + 1 |
|
|
|
|
|
stride = a1.strides[0] |
|
|
a1 = stride_tricks.as_strided(a1, (out_size, n2), (stride, stride)) |
|
|
output = _dot_kernel(a1, a2[::-1], axis=1) |
|
|
return output |
|
|
|
|
|
|
|
|
def clip(a, a_min, a_max, out=None): |
|
|
"""Clips the values of an array to a given interval. |
|
|
|
|
|
This is equivalent to ``maximum(minimum(a, a_max), a_min)``, while this |
|
|
function is more efficient. |
|
|
|
|
|
Args: |
|
|
a (cupy.ndarray): The source array. |
|
|
a_min (scalar, cupy.ndarray or None): The left side of the interval. |
|
|
When it is ``None``, it is ignored. |
|
|
a_max (scalar, cupy.ndarray or None): The right side of the interval. |
|
|
When it is ``None``, it is ignored. |
|
|
out (cupy.ndarray): Output array. |
|
|
|
|
|
Returns: |
|
|
cupy.ndarray: Clipped array. |
|
|
|
|
|
.. seealso:: :func:`numpy.clip` |
|
|
|
|
|
Notes |
|
|
----- |
|
|
When `a_min` is greater than `a_max`, `clip` returns an |
|
|
array in which all values are equal to `a_max`. |
|
|
""" |
|
|
if fusion._is_fusing(): |
|
|
return fusion._call_ufunc(_math.clip, |
|
|
a, a_min, a_max, out=out) |
|
|
|
|
|
|
|
|
return a.clip(a_min, a_max, out=out) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sqrt = sqrt_fixed = _core.sqrt |
|
|
|
|
|
|
|
|
cbrt = _core.create_ufunc( |
|
|
'cupy_cbrt', |
|
|
('e->e', 'f->f', 'd->d'), |
|
|
'out0 = cbrt(in0)', |
|
|
doc='''Elementwise cube root function. |
|
|
|
|
|
.. seealso:: :data:`numpy.cbrt` |
|
|
|
|
|
''') |
|
|
|
|
|
|
|
|
square = _core.create_ufunc( |
|
|
'cupy_square', |
|
|
('b->b', 'B->B', 'h->h', 'H->H', 'i->i', 'I->I', 'l->l', 'L->L', 'q->q', |
|
|
'Q->Q', 'e->e', 'f->f', 'd->d', 'F->F', 'D->D'), |
|
|
'out0 = in0 * in0', |
|
|
doc='''Elementwise square function. |
|
|
|
|
|
.. seealso:: :data:`numpy.square` |
|
|
|
|
|
''') |
|
|
|
|
|
|
|
|
absolute = _core.absolute |
|
|
|
|
|
|
|
|
fabs = _core.create_ufunc( |
|
|
'cupy_fabs', |
|
|
('e->e', 'f->f', 'd->d'), |
|
|
'out0 = abs(in0)', |
|
|
doc='''Calculates absolute values element-wise. |
|
|
Only real values are handled. |
|
|
|
|
|
.. seealso:: :data:`numpy.fabs` |
|
|
|
|
|
''') |
|
|
|
|
|
|
|
|
_unsigned_sign = 'out0 = in0 > 0' |
|
|
_complex_sign = ''' |
|
|
if (in0.real() == 0) { |
|
|
out0 = (in0.imag() > 0) - (in0.imag() < 0); |
|
|
} else { |
|
|
out0 = (in0.real() > 0) - (in0.real() < 0); |
|
|
} |
|
|
''' |
|
|
sign = _core.create_ufunc( |
|
|
'cupy_sign', |
|
|
('b->b', ('B->B', _unsigned_sign), 'h->h', ('H->H', _unsigned_sign), |
|
|
'i->i', ('I->I', _unsigned_sign), 'l->l', ('L->L', _unsigned_sign), |
|
|
'q->q', ('Q->Q', _unsigned_sign), 'e->e', 'f->f', 'd->d', |
|
|
('F->F', _complex_sign), ('D->D', _complex_sign)), |
|
|
'out0 = (in0 > 0) - (in0 < 0)', |
|
|
doc='''Elementwise sign function. |
|
|
|
|
|
It returns -1, 0, or 1 depending on the sign of the input. |
|
|
|
|
|
.. seealso:: :data:`numpy.sign` |
|
|
|
|
|
''') |
|
|
|
|
|
|
|
|
heaviside = _core.create_ufunc( |
|
|
'cupy_heaviside', |
|
|
('ee->e', 'ff->f', 'dd->d'), |
|
|
''' |
|
|
if (isnan(in0)) { |
|
|
out0 = in0; |
|
|
} else if (in0 == 0) { |
|
|
out0 = in1; |
|
|
} else { |
|
|
out0 = (in0 > 0); |
|
|
} |
|
|
''', |
|
|
doc='''Compute the Heaviside step function. |
|
|
|
|
|
.. seealso:: :data:`numpy.heaviside` |
|
|
|
|
|
''' |
|
|
) |
|
|
|
|
|
|
|
|
_float_preamble = ''' |
|
|
#ifndef NAN |
|
|
#define NAN __int_as_float(0x7fffffff) |
|
|
#endif |
|
|
''' |
|
|
_float_maximum = ('out0 = (isnan(in0) | isnan(in1)) ? out0_type(NAN) : ' |
|
|
'out0_type(max(in0, in1))') |
|
|
maximum = _core.create_ufunc( |
|
|
'cupy_maximum', |
|
|
('??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', |
|
|
'LL->L', 'qq->q', 'QQ->Q', |
|
|
('ee->e', _float_maximum), |
|
|
('ff->f', _float_maximum), |
|
|
('dd->d', _float_maximum), |
|
|
('FF->F', _float_maximum), |
|
|
('DD->D', _float_maximum)), |
|
|
'out0 = max(in0, in1)', |
|
|
preamble=_float_preamble, |
|
|
doc='''Takes the maximum of two arrays elementwise. |
|
|
|
|
|
If NaN appears, it returns the NaN. |
|
|
|
|
|
.. seealso:: :data:`numpy.maximum` |
|
|
|
|
|
''', |
|
|
cutensor_op=('OP_MAX', 1, 1), scatter_op='max') |
|
|
|
|
|
|
|
|
_float_minimum = ('out0 = (isnan(in0) | isnan(in1)) ? out0_type(NAN) : ' |
|
|
'out0_type(min(in0, in1))') |
|
|
minimum = _core.create_ufunc( |
|
|
'cupy_minimum', |
|
|
('??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', |
|
|
'LL->L', 'qq->q', 'QQ->Q', |
|
|
('ee->e', _float_minimum), |
|
|
('ff->f', _float_minimum), |
|
|
('dd->d', _float_minimum), |
|
|
('FF->F', _float_minimum), |
|
|
('DD->D', _float_minimum)), |
|
|
'out0 = min(in0, in1)', |
|
|
preamble=_float_preamble, |
|
|
doc='''Takes the minimum of two arrays elementwise. |
|
|
|
|
|
If NaN appears, it returns the NaN. |
|
|
|
|
|
.. seealso:: :data:`numpy.minimum` |
|
|
|
|
|
''', |
|
|
cutensor_op=('OP_MIN', 1, 1), scatter_op='min') |
|
|
|
|
|
|
|
|
fmax = _core.create_ufunc( |
|
|
'cupy_fmax', |
|
|
('??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', |
|
|
'LL->L', 'qq->q', 'QQ->Q', |
|
|
('ee->e', 'out0 = fmax(in0, in1)'), |
|
|
('ff->f', 'out0 = fmax(in0, in1)'), |
|
|
('dd->d', 'out0 = fmax(in0, in1)'), |
|
|
'FF->F', 'DD->D'), |
|
|
'out0 = max(in0, in1)', |
|
|
doc='''Takes the maximum of two arrays elementwise. |
|
|
|
|
|
If NaN appears, it returns the other operand. |
|
|
|
|
|
.. seealso:: :data:`numpy.fmax` |
|
|
|
|
|
''') |
|
|
|
|
|
|
|
|
fmin = _core.create_ufunc( |
|
|
'cupy_fmin', |
|
|
('??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', |
|
|
'LL->L', 'qq->q', 'QQ->Q', |
|
|
('ee->e', 'out0 = fmin(in0, in1)'), |
|
|
('ff->f', 'out0 = fmin(in0, in1)'), |
|
|
('dd->d', 'out0 = fmin(in0, in1)'), |
|
|
'FF->F', 'DD->D'), |
|
|
'out0 = min(in0, in1)', |
|
|
doc='''Takes the minimum of two arrays elementwise. |
|
|
|
|
|
If NaN appears, it returns the other operand. |
|
|
|
|
|
.. seealso:: :data:`numpy.fmin` |
|
|
|
|
|
''') |
|
|
|
|
|
|
|
|
_nan_to_num_preamble = ''' |
|
|
template <class T> |
|
|
__device__ T nan_to_num(T x, T nan, T posinf, T neginf) { |
|
|
if (isnan(x)) |
|
|
return nan; |
|
|
if (isinf(x)) |
|
|
return x > 0 ? posinf : neginf; |
|
|
return x; |
|
|
} |
|
|
|
|
|
template <class T> |
|
|
__device__ complex<T> nan_to_num(complex<T> x, T nan, T posinf, T neginf) { |
|
|
T re = nan_to_num(x.real(), nan, posinf, neginf); |
|
|
T im = nan_to_num(x.imag(), nan, posinf, neginf); |
|
|
return complex<T>(re, im); |
|
|
} |
|
|
''' |
|
|
|
|
|
|
|
|
_nan_to_num = _core.create_ufunc( |
|
|
'cupy_nan_to_num_', |
|
|
('????->?', 'bbbb->b', 'BBBB->B', 'hhhh->h', 'HHHH->H', |
|
|
'iiii->i', 'IIII->I', 'llll->l', 'LLLL->L', 'qqqq->q', 'QQQQ->Q', |
|
|
('eeee->e', |
|
|
'out0 = nan_to_num(in0, in1, in2, in3)'), |
|
|
('ffff->f', |
|
|
'out0 = nan_to_num(in0, in1, in2, in3)'), |
|
|
('dddd->d', |
|
|
'out0 = nan_to_num(in0, in1, in2, in3)'), |
|
|
('Ffff->F', |
|
|
'out0 = nan_to_num(in0, in1, in2, in3)'), |
|
|
('Dddd->D', |
|
|
'out0 = nan_to_num(in0, in1, in2, in3)')), |
|
|
'out0 = in0', |
|
|
preamble=_nan_to_num_preamble, |
|
|
doc='''Elementwise nan_to_num function. |
|
|
|
|
|
.. seealso:: :func:`numpy.nan_to_num` |
|
|
|
|
|
''') |
|
|
|
|
|
|
|
|
def _check_nan_inf(x, dtype, neg=None): |
|
|
if dtype.char in 'FD': |
|
|
dtype = cupy.dtype(dtype.char.lower()) |
|
|
if dtype.char not in 'efd': |
|
|
x = 0 |
|
|
elif x is None and neg is not None: |
|
|
x = cupy.finfo(dtype).min if neg else cupy.finfo(dtype).max |
|
|
elif cupy.isnan(x): |
|
|
x = cupy.nan |
|
|
elif cupy.isinf(x): |
|
|
x = cupy.inf * (-1)**(x < 0) |
|
|
return cupy.asanyarray(x, dtype) |
|
|
|
|
|
|
|
|
def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None): |
|
|
"""Replace NaN with zero and infinity with large finite numbers (default |
|
|
behaviour) or with the numbers defined by the user using the `nan`, |
|
|
`posinf` and/or `neginf` keywords. |
|
|
|
|
|
.. seealso:: :func:`numpy.nan_to_num` |
|
|
|
|
|
""" |
|
|
if not isinstance(x, cupy.ndarray): |
|
|
out = cupy.full((), x) |
|
|
else: |
|
|
out = cupy.empty_like(x) if copy else x |
|
|
dtype = out.dtype |
|
|
nan = _check_nan_inf(nan, dtype) |
|
|
posinf = _check_nan_inf(posinf, dtype, False) |
|
|
neginf = _check_nan_inf(neginf, dtype, True) |
|
|
return _nan_to_num(x, nan, posinf, neginf, out=out) |
|
|
|
|
|
|
|
|
def real_if_close(a, tol=100): |
|
|
"""If input is complex with all imaginary parts close to zero, return real |
|
|
parts. |
|
|
"Close to zero" is defined as `tol` * (machine epsilon of the type for |
|
|
`a`). |
|
|
|
|
|
.. warning:: |
|
|
|
|
|
This function may synchronize the device. |
|
|
|
|
|
.. seealso:: :func:`numpy.real_if_close` |
|
|
""" |
|
|
if not issubclass(a.dtype.type, cupy.complexfloating): |
|
|
return a |
|
|
if tol > 1: |
|
|
f = numpy.finfo(a.dtype.type) |
|
|
tol = f.eps * tol |
|
|
if cupy.all(cupy.absolute(a.imag) < tol): |
|
|
a = a.real |
|
|
return a |
|
|
|
|
|
|
|
|
@cupy._util.memoize(for_each_device=True) |
|
|
def _get_interp_kernel(is_complex): |
|
|
in_params = 'raw V x, raw U idx, ' |
|
|
in_params += 'raw W fx, raw Y fy, U len, raw Y left, raw Y right' |
|
|
out_params = 'Z y' |
|
|
|
|
|
if is_complex: |
|
|
preamble = 'typedef double real_t;\n' |
|
|
else: |
|
|
preamble = 'typedef Z real_t;\n' |
|
|
preamble += 'typedef Z value_t;\n' |
|
|
preamble += cupy._sorting.search._preamble |
|
|
|
|
|
code = r''' |
|
|
U x_idx = idx[i] - 1; |
|
|
|
|
|
if ( _isnan<V>(x[i]) ) { y = x[i]; } |
|
|
else if (x_idx < 0) { y = left[0]; } |
|
|
else if (x[i] == fx[len - 1]) { |
|
|
// searchsorted cannot handle both of the boundary points, |
|
|
// so we must detect and correct ourselves... |
|
|
y = fy[len - 1]; |
|
|
} |
|
|
else if (x_idx >= len - 1) { y = right[0]; } |
|
|
else { |
|
|
const Z slope = (value_t)(fy[x_idx+1] - fy[x_idx]) / \ |
|
|
((real_t)fx[x_idx+1] - (real_t)fx[x_idx]); |
|
|
Z out = slope * ((real_t)x[i] - (real_t)fx[x_idx]) \ |
|
|
+ (value_t)fy[x_idx]; |
|
|
if (_isnan<Z>(out)) { |
|
|
out = slope * ((real_t)x[i] - (real_t)fx[x_idx+1]) \ |
|
|
+ (value_t)fy[x_idx+1]; |
|
|
if (_isnan<Z>(out) && (fy[x_idx] == fy[x_idx+1])) { |
|
|
out = fy[x_idx]; |
|
|
} |
|
|
} |
|
|
y = out; |
|
|
} |
|
|
''' |
|
|
return cupy.ElementwiseKernel( |
|
|
in_params, out_params, code, 'cupy_interp', preamble=preamble) |
|
|
|
|
|
|
|
|
def interp(x, xp, fp, left=None, right=None, period=None): |
|
|
""" One-dimensional linear interpolation. |
|
|
|
|
|
Args: |
|
|
x (cupy.ndarray): a 1D array of points on which the interpolation |
|
|
is performed. |
|
|
xp (cupy.ndarray): a 1D array of points on which the function values |
|
|
(``fp``) are known. |
|
|
fp (cupy.ndarray): a 1D array containing the function values at the |
|
|
the points ``xp``. |
|
|
left (float or complex): value to return if ``x < xp[0]``. Default is |
|
|
``fp[0]``. |
|
|
right (float or complex): value to return if ``x > xp[-1]``. Default is |
|
|
``fp[-1]``. |
|
|
period (None or float): a period for the x-coordinates. Parameters |
|
|
``left`` and ``right`` are ignored if ``period`` is specified. |
|
|
Default is ``None``. |
|
|
|
|
|
Returns: |
|
|
cupy.ndarray: The interpolated values, same shape as ``x``. |
|
|
|
|
|
.. note:: |
|
|
This function may synchronize if ``left`` or ``right`` is not already |
|
|
on the device. |
|
|
|
|
|
.. seealso:: :func:`numpy.interp` |
|
|
|
|
|
""" |
|
|
|
|
|
if xp.ndim != 1 or fp.ndim != 1: |
|
|
raise ValueError('xp and fp must be 1D arrays') |
|
|
if xp.size != fp.size: |
|
|
raise ValueError('fp and xp are not of the same length') |
|
|
if xp.size == 0: |
|
|
raise ValueError('array of sample points is empty') |
|
|
if not x.flags.c_contiguous: |
|
|
raise NotImplementedError('Non-C-contiguous x is currently not ' |
|
|
'supported') |
|
|
x_dtype = cupy.common_type(x, xp) |
|
|
if not cupy.can_cast(x_dtype, cupy.float64): |
|
|
raise TypeError('Cannot cast array data from' |
|
|
' {} to {} according to the rule \'safe\'' |
|
|
.format(x_dtype, cupy.float64)) |
|
|
|
|
|
if period is not None: |
|
|
|
|
|
|
|
|
if period == 0: |
|
|
raise ValueError("period must be a non-zero value") |
|
|
period = abs(period) |
|
|
left = None |
|
|
right = None |
|
|
|
|
|
x = x.astype(cupy.float64) |
|
|
xp = xp.astype(cupy.float64) |
|
|
|
|
|
|
|
|
x %= period |
|
|
xp %= period |
|
|
asort_xp = cupy.argsort(xp) |
|
|
xp = xp[asort_xp] |
|
|
fp = fp[asort_xp] |
|
|
xp = cupy.concatenate((xp[-1:]-period, xp, xp[0:1]+period)) |
|
|
fp = cupy.concatenate((fp[-1:], fp, fp[0:1])) |
|
|
assert xp.flags.c_contiguous |
|
|
assert fp.flags.c_contiguous |
|
|
|
|
|
|
|
|
|
|
|
out_dtype = 'D' if fp.dtype.kind == 'c' else 'd' |
|
|
output = cupy.empty(x.shape, dtype=out_dtype) |
|
|
idx = cupy.searchsorted(xp, x, side='right') |
|
|
left = fp[0] if left is None else cupy.array(left, fp.dtype) |
|
|
right = fp[-1] if right is None else cupy.array(right, fp.dtype) |
|
|
kern = _get_interp_kernel(out_dtype == 'D') |
|
|
kern(x, idx, xp, fp, xp.size, left, right, output) |
|
|
return output |
|
|
|