| import numpy | |
| import cupy | |
| from cupy import _core | |
| _blackman_kernel = _core.ElementwiseKernel( | |
| "float32 alpha", | |
| "float64 out", | |
| """ | |
| out = 0.42 - 0.5 * cos(i * alpha) + 0.08 * cos(2 * alpha * i); | |
| """, name="cupy_blackman") | |
| _bartlett_kernel = _core.ElementwiseKernel( | |
| "float32 alpha", | |
| "T arr", | |
| """ | |
| if (i < alpha) | |
| arr = i / alpha; | |
| else | |
| arr = 2.0 - i / alpha; | |
| """, name="cupy_bartlett") | |
| def bartlett(M): | |
| """Returns the Bartlett window. | |
| The Bartlett window is defined as | |
| .. math:: | |
| w(n) = \\frac{2}{M-1} \\left( | |
| \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| | |
| \\right) | |
| Args: | |
| M (int): | |
| Number of points in the output window. If zero or less, an empty | |
| array is returned. | |
| Returns: | |
| ~cupy.ndarray: Output ndarray. | |
| .. seealso:: :func:`numpy.bartlett` | |
| """ | |
| if M == 1: | |
| return cupy.ones(1, dtype=cupy.float64) | |
| if M <= 0: | |
| return cupy.array([]) | |
| alpha = (M - 1) / 2.0 | |
| out = cupy.empty(M, dtype=cupy.float64) | |
| return _bartlett_kernel(alpha, out) | |
| def blackman(M): | |
| """Returns the Blackman window. | |
| The Blackman window is defined as | |
| .. math:: | |
| w(n) = 0.42 - 0.5 \\cos\\left(\\frac{2\\pi{n}}{M-1}\\right) | |
| + 0.08 \\cos\\left(\\frac{4\\pi{n}}{M-1}\\right) | |
| \\qquad 0 \\leq n \\leq M-1 | |
| Args: | |
| M (:class:`~int`): | |
| Number of points in the output window. If zero or less, an empty | |
| array is returned. | |
| Returns: | |
| ~cupy.ndarray: Output ndarray. | |
| .. seealso:: :func:`numpy.blackman` | |
| """ | |
| if M == 1: | |
| return cupy.ones(1, dtype=cupy.float64) | |
| if M <= 0: | |
| return cupy.array([]) | |
| alpha = numpy.pi * 2 / (M - 1) | |
| out = cupy.empty(M, dtype=cupy.float64) | |
| return _blackman_kernel(alpha, out) | |
| _hamming_kernel = _core.ElementwiseKernel( | |
| "float32 alpha", | |
| "float64 out", | |
| """ | |
| out = 0.54 - 0.46 * cos(i * alpha); | |
| """, name="cupy_hamming") | |
| def hamming(M): | |
| """Returns the Hamming window. | |
| The Hamming window is defined as | |
| .. math:: | |
| w(n) = 0.54 - 0.46\\cos\\left(\\frac{2\\pi{n}}{M-1}\\right) | |
| \\qquad 0 \\leq n \\leq M-1 | |
| Args: | |
| M (:class:`~int`): | |
| Number of points in the output window. If zero or less, an empty | |
| array is returned. | |
| Returns: | |
| ~cupy.ndarray: Output ndarray. | |
| .. seealso:: :func:`numpy.hamming` | |
| """ | |
| if M == 1: | |
| return cupy.ones(1, dtype=cupy.float64) | |
| if M <= 0: | |
| return cupy.array([]) | |
| alpha = numpy.pi * 2 / (M - 1) | |
| out = cupy.empty(M, dtype=cupy.float64) | |
| return _hamming_kernel(alpha, out) | |
| _hanning_kernel = _core.ElementwiseKernel( | |
| "float32 alpha", | |
| "float64 out", | |
| """ | |
| out = 0.5 - 0.5 * cos(i * alpha); | |
| """, name="cupy_hanning") | |
| def hanning(M): | |
| """Returns the Hanning window. | |
| The Hanning window is defined as | |
| .. math:: | |
| w(n) = 0.5 - 0.5\\cos\\left(\\frac{2\\pi{n}}{M-1}\\right) | |
| \\qquad 0 \\leq n \\leq M-1 | |
| Args: | |
| M (:class:`~int`): | |
| Number of points in the output window. If zero or less, an empty | |
| array is returned. | |
| Returns: | |
| ~cupy.ndarray: Output ndarray. | |
| .. seealso:: :func:`numpy.hanning` | |
| """ | |
| if M == 1: | |
| return cupy.ones(1, dtype=cupy.float64) | |
| if M <= 0: | |
| return cupy.array([]) | |
| alpha = numpy.pi * 2 / (M - 1) | |
| out = cupy.empty(M, dtype=cupy.float64) | |
| return _hanning_kernel(alpha, out) | |
| _kaiser_kernel = _core.ElementwiseKernel( | |
| "float32 beta, float32 alpha", | |
| "T arr", | |
| """ | |
| float temp = (i - alpha) / alpha; | |
| arr = cyl_bessel_i0(beta * sqrt(1 - (temp * temp))); | |
| arr /= cyl_bessel_i0(beta); | |
| """, name="cupy_kaiser") | |
| def kaiser(M, beta): | |
| """Return the Kaiser window. | |
| The Kaiser window is a taper formed by using a Bessel function. | |
| .. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} | |
| \\right)/I_0(\\beta) | |
| with | |
| .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2} | |
| where :math:`I_0` is the modified zeroth-order Bessel function. | |
| Args: | |
| M (int): | |
| Number of points in the output window. If zero or less, an empty | |
| array is returned. | |
| beta (float): | |
| Shape parameter for window | |
| Returns: | |
| ~cupy.ndarray: The window, with the maximum value normalized to one | |
| (the value one appears only if the number of samples is odd). | |
| .. seealso:: :func:`numpy.kaiser` | |
| """ | |
| if M == 1: | |
| return cupy.array([1.]) | |
| if M <= 0: | |
| return cupy.array([]) | |
| alpha = (M - 1) / 2.0 | |
| out = cupy.empty(M, dtype=cupy.float64) | |
| return _kaiser_kernel(beta, alpha, out) | |