ZTWHHH's picture
Add files using upload-large-folder tool
3662621 verified
import numpy
import cupy
from cupy import _core
_blackman_kernel = _core.ElementwiseKernel(
"float32 alpha",
"float64 out",
"""
out = 0.42 - 0.5 * cos(i * alpha) + 0.08 * cos(2 * alpha * i);
""", name="cupy_blackman")
_bartlett_kernel = _core.ElementwiseKernel(
"float32 alpha",
"T arr",
"""
if (i < alpha)
arr = i / alpha;
else
arr = 2.0 - i / alpha;
""", name="cupy_bartlett")
def bartlett(M):
"""Returns the Bartlett window.
The Bartlett window is defined as
.. math::
w(n) = \\frac{2}{M-1} \\left(
\\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right|
\\right)
Args:
M (int):
Number of points in the output window. If zero or less, an empty
array is returned.
Returns:
~cupy.ndarray: Output ndarray.
.. seealso:: :func:`numpy.bartlett`
"""
if M == 1:
return cupy.ones(1, dtype=cupy.float64)
if M <= 0:
return cupy.array([])
alpha = (M - 1) / 2.0
out = cupy.empty(M, dtype=cupy.float64)
return _bartlett_kernel(alpha, out)
def blackman(M):
"""Returns the Blackman window.
The Blackman window is defined as
.. math::
w(n) = 0.42 - 0.5 \\cos\\left(\\frac{2\\pi{n}}{M-1}\\right)
+ 0.08 \\cos\\left(\\frac{4\\pi{n}}{M-1}\\right)
\\qquad 0 \\leq n \\leq M-1
Args:
M (:class:`~int`):
Number of points in the output window. If zero or less, an empty
array is returned.
Returns:
~cupy.ndarray: Output ndarray.
.. seealso:: :func:`numpy.blackman`
"""
if M == 1:
return cupy.ones(1, dtype=cupy.float64)
if M <= 0:
return cupy.array([])
alpha = numpy.pi * 2 / (M - 1)
out = cupy.empty(M, dtype=cupy.float64)
return _blackman_kernel(alpha, out)
_hamming_kernel = _core.ElementwiseKernel(
"float32 alpha",
"float64 out",
"""
out = 0.54 - 0.46 * cos(i * alpha);
""", name="cupy_hamming")
def hamming(M):
"""Returns the Hamming window.
The Hamming window is defined as
.. math::
w(n) = 0.54 - 0.46\\cos\\left(\\frac{2\\pi{n}}{M-1}\\right)
\\qquad 0 \\leq n \\leq M-1
Args:
M (:class:`~int`):
Number of points in the output window. If zero or less, an empty
array is returned.
Returns:
~cupy.ndarray: Output ndarray.
.. seealso:: :func:`numpy.hamming`
"""
if M == 1:
return cupy.ones(1, dtype=cupy.float64)
if M <= 0:
return cupy.array([])
alpha = numpy.pi * 2 / (M - 1)
out = cupy.empty(M, dtype=cupy.float64)
return _hamming_kernel(alpha, out)
_hanning_kernel = _core.ElementwiseKernel(
"float32 alpha",
"float64 out",
"""
out = 0.5 - 0.5 * cos(i * alpha);
""", name="cupy_hanning")
def hanning(M):
"""Returns the Hanning window.
The Hanning window is defined as
.. math::
w(n) = 0.5 - 0.5\\cos\\left(\\frac{2\\pi{n}}{M-1}\\right)
\\qquad 0 \\leq n \\leq M-1
Args:
M (:class:`~int`):
Number of points in the output window. If zero or less, an empty
array is returned.
Returns:
~cupy.ndarray: Output ndarray.
.. seealso:: :func:`numpy.hanning`
"""
if M == 1:
return cupy.ones(1, dtype=cupy.float64)
if M <= 0:
return cupy.array([])
alpha = numpy.pi * 2 / (M - 1)
out = cupy.empty(M, dtype=cupy.float64)
return _hanning_kernel(alpha, out)
_kaiser_kernel = _core.ElementwiseKernel(
"float32 beta, float32 alpha",
"T arr",
"""
float temp = (i - alpha) / alpha;
arr = cyl_bessel_i0(beta * sqrt(1 - (temp * temp)));
arr /= cyl_bessel_i0(beta);
""", name="cupy_kaiser")
def kaiser(M, beta):
"""Return the Kaiser window.
The Kaiser window is a taper formed by using a Bessel function.
.. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}}
\\right)/I_0(\\beta)
with
.. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}
where :math:`I_0` is the modified zeroth-order Bessel function.
Args:
M (int):
Number of points in the output window. If zero or less, an empty
array is returned.
beta (float):
Shape parameter for window
Returns:
~cupy.ndarray: The window, with the maximum value normalized to one
(the value one appears only if the number of samples is odd).
.. seealso:: :func:`numpy.kaiser`
"""
if M == 1:
return cupy.array([1.])
if M <= 0:
return cupy.array([])
alpha = (M - 1) / 2.0
out = cupy.empty(M, dtype=cupy.float64)
return _kaiser_kernel(beta, alpha, out)