Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/__init__.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/attracting.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/biconnected.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/connected.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/semiconnected.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/strongly_connected.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/weakly_connected.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/biconnected.py +394 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/connected.py +216 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/strongly_connected.py +351 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__init__.py +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_attracting.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_biconnected.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_connected.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_semiconnected.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_strongly_connected.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_weakly_connected.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_attracting.py +70 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_biconnected.py +248 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_connected.py +138 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_semiconnected.py +55 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_strongly_connected.py +193 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py +96 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/__init__.py +4 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/__init__.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/all.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/binary.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/product.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/unary.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/all.py +321 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/binary.py +450 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/product.py +633 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__init__.py +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_all.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_binary.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_product.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_unary.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_all.py +328 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_binary.py +453 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_product.py +491 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_unary.py +55 -0
- minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/unary.py +77 -0
- minigpt2/lib/python3.10/site-packages/networkx/drawing/__init__.py +7 -0
- minigpt2/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_agraph.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_latex.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_pydot.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/drawing/layout.py +1630 -0
.gitattributes
CHANGED
|
@@ -1377,3 +1377,4 @@ minigpt2/lib/python3.10/site-packages/pillow.libs/liblcms2-e69eef39.so.2.0.16 fi
|
|
| 1377 |
minigpt2/lib/python3.10/site-packages/idna/__pycache__/idnadata.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1378 |
minigpt2/lib/python3.10/site-packages/idna/__pycache__/uts46data.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1379 |
minigpt2/lib/python3.10/site-packages/pillow.libs/libbrotlicommon-3ecfe81c.so.1 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 1377 |
minigpt2/lib/python3.10/site-packages/idna/__pycache__/idnadata.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1378 |
minigpt2/lib/python3.10/site-packages/idna/__pycache__/uts46data.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1379 |
minigpt2/lib/python3.10/site-packages/pillow.libs/libbrotlicommon-3ecfe81c.so.1 filter=lfs diff=lfs merge=lfs -text
|
| 1380 |
+
videochat2/lib/python3.10/site-packages/torch/lib/libtorch_python.so filter=lfs diff=lfs merge=lfs -text
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (338 Bytes). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/attracting.cpython-310.pyc
ADDED
|
Binary file (3.1 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/biconnected.cpython-310.pyc
ADDED
|
Binary file (11.3 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/connected.cpython-310.pyc
ADDED
|
Binary file (4.84 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/semiconnected.cpython-310.pyc
ADDED
|
Binary file (2.41 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/strongly_connected.cpython-310.pyc
ADDED
|
Binary file (9.36 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/weakly_connected.cpython-310.pyc
ADDED
|
Binary file (4.5 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/biconnected.py
ADDED
|
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Biconnected components and articulation points."""
|
| 2 |
+
|
| 3 |
+
from itertools import chain
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
from networkx.utils.decorators import not_implemented_for
|
| 7 |
+
|
| 8 |
+
__all__ = [
|
| 9 |
+
"biconnected_components",
|
| 10 |
+
"biconnected_component_edges",
|
| 11 |
+
"is_biconnected",
|
| 12 |
+
"articulation_points",
|
| 13 |
+
]
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@not_implemented_for("directed")
|
| 17 |
+
@nx._dispatchable
|
| 18 |
+
def is_biconnected(G):
|
| 19 |
+
"""Returns True if the graph is biconnected, False otherwise.
|
| 20 |
+
|
| 21 |
+
A graph is biconnected if, and only if, it cannot be disconnected by
|
| 22 |
+
removing only one node (and all edges incident on that node). If
|
| 23 |
+
removing a node increases the number of disconnected components
|
| 24 |
+
in the graph, that node is called an articulation point, or cut
|
| 25 |
+
vertex. A biconnected graph has no articulation points.
|
| 26 |
+
|
| 27 |
+
Parameters
|
| 28 |
+
----------
|
| 29 |
+
G : NetworkX Graph
|
| 30 |
+
An undirected graph.
|
| 31 |
+
|
| 32 |
+
Returns
|
| 33 |
+
-------
|
| 34 |
+
biconnected : bool
|
| 35 |
+
True if the graph is biconnected, False otherwise.
|
| 36 |
+
|
| 37 |
+
Raises
|
| 38 |
+
------
|
| 39 |
+
NetworkXNotImplemented
|
| 40 |
+
If the input graph is not undirected.
|
| 41 |
+
|
| 42 |
+
Examples
|
| 43 |
+
--------
|
| 44 |
+
>>> G = nx.path_graph(4)
|
| 45 |
+
>>> print(nx.is_biconnected(G))
|
| 46 |
+
False
|
| 47 |
+
>>> G.add_edge(0, 3)
|
| 48 |
+
>>> print(nx.is_biconnected(G))
|
| 49 |
+
True
|
| 50 |
+
|
| 51 |
+
See Also
|
| 52 |
+
--------
|
| 53 |
+
biconnected_components
|
| 54 |
+
articulation_points
|
| 55 |
+
biconnected_component_edges
|
| 56 |
+
is_strongly_connected
|
| 57 |
+
is_weakly_connected
|
| 58 |
+
is_connected
|
| 59 |
+
is_semiconnected
|
| 60 |
+
|
| 61 |
+
Notes
|
| 62 |
+
-----
|
| 63 |
+
The algorithm to find articulation points and biconnected
|
| 64 |
+
components is implemented using a non-recursive depth-first-search
|
| 65 |
+
(DFS) that keeps track of the highest level that back edges reach
|
| 66 |
+
in the DFS tree. A node `n` is an articulation point if, and only
|
| 67 |
+
if, there exists a subtree rooted at `n` such that there is no
|
| 68 |
+
back edge from any successor of `n` that links to a predecessor of
|
| 69 |
+
`n` in the DFS tree. By keeping track of all the edges traversed
|
| 70 |
+
by the DFS we can obtain the biconnected components because all
|
| 71 |
+
edges of a bicomponent will be traversed consecutively between
|
| 72 |
+
articulation points.
|
| 73 |
+
|
| 74 |
+
References
|
| 75 |
+
----------
|
| 76 |
+
.. [1] Hopcroft, J.; Tarjan, R. (1973).
|
| 77 |
+
"Efficient algorithms for graph manipulation".
|
| 78 |
+
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
|
| 79 |
+
|
| 80 |
+
"""
|
| 81 |
+
bccs = biconnected_components(G)
|
| 82 |
+
try:
|
| 83 |
+
bcc = next(bccs)
|
| 84 |
+
except StopIteration:
|
| 85 |
+
# No bicomponents (empty graph?)
|
| 86 |
+
return False
|
| 87 |
+
try:
|
| 88 |
+
next(bccs)
|
| 89 |
+
except StopIteration:
|
| 90 |
+
# Only one bicomponent
|
| 91 |
+
return len(bcc) == len(G)
|
| 92 |
+
else:
|
| 93 |
+
# Multiple bicomponents
|
| 94 |
+
return False
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
@not_implemented_for("directed")
|
| 98 |
+
@nx._dispatchable
|
| 99 |
+
def biconnected_component_edges(G):
|
| 100 |
+
"""Returns a generator of lists of edges, one list for each biconnected
|
| 101 |
+
component of the input graph.
|
| 102 |
+
|
| 103 |
+
Biconnected components are maximal subgraphs such that the removal of a
|
| 104 |
+
node (and all edges incident on that node) will not disconnect the
|
| 105 |
+
subgraph. Note that nodes may be part of more than one biconnected
|
| 106 |
+
component. Those nodes are articulation points, or cut vertices.
|
| 107 |
+
However, each edge belongs to one, and only one, biconnected component.
|
| 108 |
+
|
| 109 |
+
Notice that by convention a dyad is considered a biconnected component.
|
| 110 |
+
|
| 111 |
+
Parameters
|
| 112 |
+
----------
|
| 113 |
+
G : NetworkX Graph
|
| 114 |
+
An undirected graph.
|
| 115 |
+
|
| 116 |
+
Returns
|
| 117 |
+
-------
|
| 118 |
+
edges : generator of lists
|
| 119 |
+
Generator of lists of edges, one list for each bicomponent.
|
| 120 |
+
|
| 121 |
+
Raises
|
| 122 |
+
------
|
| 123 |
+
NetworkXNotImplemented
|
| 124 |
+
If the input graph is not undirected.
|
| 125 |
+
|
| 126 |
+
Examples
|
| 127 |
+
--------
|
| 128 |
+
>>> G = nx.barbell_graph(4, 2)
|
| 129 |
+
>>> print(nx.is_biconnected(G))
|
| 130 |
+
False
|
| 131 |
+
>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
|
| 132 |
+
>>> len(bicomponents_edges)
|
| 133 |
+
5
|
| 134 |
+
>>> G.add_edge(2, 8)
|
| 135 |
+
>>> print(nx.is_biconnected(G))
|
| 136 |
+
True
|
| 137 |
+
>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
|
| 138 |
+
>>> len(bicomponents_edges)
|
| 139 |
+
1
|
| 140 |
+
|
| 141 |
+
See Also
|
| 142 |
+
--------
|
| 143 |
+
is_biconnected,
|
| 144 |
+
biconnected_components,
|
| 145 |
+
articulation_points,
|
| 146 |
+
|
| 147 |
+
Notes
|
| 148 |
+
-----
|
| 149 |
+
The algorithm to find articulation points and biconnected
|
| 150 |
+
components is implemented using a non-recursive depth-first-search
|
| 151 |
+
(DFS) that keeps track of the highest level that back edges reach
|
| 152 |
+
in the DFS tree. A node `n` is an articulation point if, and only
|
| 153 |
+
if, there exists a subtree rooted at `n` such that there is no
|
| 154 |
+
back edge from any successor of `n` that links to a predecessor of
|
| 155 |
+
`n` in the DFS tree. By keeping track of all the edges traversed
|
| 156 |
+
by the DFS we can obtain the biconnected components because all
|
| 157 |
+
edges of a bicomponent will be traversed consecutively between
|
| 158 |
+
articulation points.
|
| 159 |
+
|
| 160 |
+
References
|
| 161 |
+
----------
|
| 162 |
+
.. [1] Hopcroft, J.; Tarjan, R. (1973).
|
| 163 |
+
"Efficient algorithms for graph manipulation".
|
| 164 |
+
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
|
| 165 |
+
|
| 166 |
+
"""
|
| 167 |
+
yield from _biconnected_dfs(G, components=True)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
@not_implemented_for("directed")
|
| 171 |
+
@nx._dispatchable
|
| 172 |
+
def biconnected_components(G):
|
| 173 |
+
"""Returns a generator of sets of nodes, one set for each biconnected
|
| 174 |
+
component of the graph
|
| 175 |
+
|
| 176 |
+
Biconnected components are maximal subgraphs such that the removal of a
|
| 177 |
+
node (and all edges incident on that node) will not disconnect the
|
| 178 |
+
subgraph. Note that nodes may be part of more than one biconnected
|
| 179 |
+
component. Those nodes are articulation points, or cut vertices. The
|
| 180 |
+
removal of articulation points will increase the number of connected
|
| 181 |
+
components of the graph.
|
| 182 |
+
|
| 183 |
+
Notice that by convention a dyad is considered a biconnected component.
|
| 184 |
+
|
| 185 |
+
Parameters
|
| 186 |
+
----------
|
| 187 |
+
G : NetworkX Graph
|
| 188 |
+
An undirected graph.
|
| 189 |
+
|
| 190 |
+
Returns
|
| 191 |
+
-------
|
| 192 |
+
nodes : generator
|
| 193 |
+
Generator of sets of nodes, one set for each biconnected component.
|
| 194 |
+
|
| 195 |
+
Raises
|
| 196 |
+
------
|
| 197 |
+
NetworkXNotImplemented
|
| 198 |
+
If the input graph is not undirected.
|
| 199 |
+
|
| 200 |
+
Examples
|
| 201 |
+
--------
|
| 202 |
+
>>> G = nx.lollipop_graph(5, 1)
|
| 203 |
+
>>> print(nx.is_biconnected(G))
|
| 204 |
+
False
|
| 205 |
+
>>> bicomponents = list(nx.biconnected_components(G))
|
| 206 |
+
>>> len(bicomponents)
|
| 207 |
+
2
|
| 208 |
+
>>> G.add_edge(0, 5)
|
| 209 |
+
>>> print(nx.is_biconnected(G))
|
| 210 |
+
True
|
| 211 |
+
>>> bicomponents = list(nx.biconnected_components(G))
|
| 212 |
+
>>> len(bicomponents)
|
| 213 |
+
1
|
| 214 |
+
|
| 215 |
+
You can generate a sorted list of biconnected components, largest
|
| 216 |
+
first, using sort.
|
| 217 |
+
|
| 218 |
+
>>> G.remove_edge(0, 5)
|
| 219 |
+
>>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)]
|
| 220 |
+
[5, 2]
|
| 221 |
+
|
| 222 |
+
If you only want the largest connected component, it's more
|
| 223 |
+
efficient to use max instead of sort.
|
| 224 |
+
|
| 225 |
+
>>> Gc = max(nx.biconnected_components(G), key=len)
|
| 226 |
+
|
| 227 |
+
To create the components as subgraphs use:
|
| 228 |
+
``(G.subgraph(c).copy() for c in biconnected_components(G))``
|
| 229 |
+
|
| 230 |
+
See Also
|
| 231 |
+
--------
|
| 232 |
+
is_biconnected
|
| 233 |
+
articulation_points
|
| 234 |
+
biconnected_component_edges
|
| 235 |
+
k_components : this function is a special case where k=2
|
| 236 |
+
bridge_components : similar to this function, but is defined using
|
| 237 |
+
2-edge-connectivity instead of 2-node-connectivity.
|
| 238 |
+
|
| 239 |
+
Notes
|
| 240 |
+
-----
|
| 241 |
+
The algorithm to find articulation points and biconnected
|
| 242 |
+
components is implemented using a non-recursive depth-first-search
|
| 243 |
+
(DFS) that keeps track of the highest level that back edges reach
|
| 244 |
+
in the DFS tree. A node `n` is an articulation point if, and only
|
| 245 |
+
if, there exists a subtree rooted at `n` such that there is no
|
| 246 |
+
back edge from any successor of `n` that links to a predecessor of
|
| 247 |
+
`n` in the DFS tree. By keeping track of all the edges traversed
|
| 248 |
+
by the DFS we can obtain the biconnected components because all
|
| 249 |
+
edges of a bicomponent will be traversed consecutively between
|
| 250 |
+
articulation points.
|
| 251 |
+
|
| 252 |
+
References
|
| 253 |
+
----------
|
| 254 |
+
.. [1] Hopcroft, J.; Tarjan, R. (1973).
|
| 255 |
+
"Efficient algorithms for graph manipulation".
|
| 256 |
+
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
|
| 257 |
+
|
| 258 |
+
"""
|
| 259 |
+
for comp in _biconnected_dfs(G, components=True):
|
| 260 |
+
yield set(chain.from_iterable(comp))
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
@not_implemented_for("directed")
|
| 264 |
+
@nx._dispatchable
|
| 265 |
+
def articulation_points(G):
|
| 266 |
+
"""Yield the articulation points, or cut vertices, of a graph.
|
| 267 |
+
|
| 268 |
+
An articulation point or cut vertex is any node whose removal (along with
|
| 269 |
+
all its incident edges) increases the number of connected components of
|
| 270 |
+
a graph. An undirected connected graph without articulation points is
|
| 271 |
+
biconnected. Articulation points belong to more than one biconnected
|
| 272 |
+
component of a graph.
|
| 273 |
+
|
| 274 |
+
Notice that by convention a dyad is considered a biconnected component.
|
| 275 |
+
|
| 276 |
+
Parameters
|
| 277 |
+
----------
|
| 278 |
+
G : NetworkX Graph
|
| 279 |
+
An undirected graph.
|
| 280 |
+
|
| 281 |
+
Yields
|
| 282 |
+
------
|
| 283 |
+
node
|
| 284 |
+
An articulation point in the graph.
|
| 285 |
+
|
| 286 |
+
Raises
|
| 287 |
+
------
|
| 288 |
+
NetworkXNotImplemented
|
| 289 |
+
If the input graph is not undirected.
|
| 290 |
+
|
| 291 |
+
Examples
|
| 292 |
+
--------
|
| 293 |
+
|
| 294 |
+
>>> G = nx.barbell_graph(4, 2)
|
| 295 |
+
>>> print(nx.is_biconnected(G))
|
| 296 |
+
False
|
| 297 |
+
>>> len(list(nx.articulation_points(G)))
|
| 298 |
+
4
|
| 299 |
+
>>> G.add_edge(2, 8)
|
| 300 |
+
>>> print(nx.is_biconnected(G))
|
| 301 |
+
True
|
| 302 |
+
>>> len(list(nx.articulation_points(G)))
|
| 303 |
+
0
|
| 304 |
+
|
| 305 |
+
See Also
|
| 306 |
+
--------
|
| 307 |
+
is_biconnected
|
| 308 |
+
biconnected_components
|
| 309 |
+
biconnected_component_edges
|
| 310 |
+
|
| 311 |
+
Notes
|
| 312 |
+
-----
|
| 313 |
+
The algorithm to find articulation points and biconnected
|
| 314 |
+
components is implemented using a non-recursive depth-first-search
|
| 315 |
+
(DFS) that keeps track of the highest level that back edges reach
|
| 316 |
+
in the DFS tree. A node `n` is an articulation point if, and only
|
| 317 |
+
if, there exists a subtree rooted at `n` such that there is no
|
| 318 |
+
back edge from any successor of `n` that links to a predecessor of
|
| 319 |
+
`n` in the DFS tree. By keeping track of all the edges traversed
|
| 320 |
+
by the DFS we can obtain the biconnected components because all
|
| 321 |
+
edges of a bicomponent will be traversed consecutively between
|
| 322 |
+
articulation points.
|
| 323 |
+
|
| 324 |
+
References
|
| 325 |
+
----------
|
| 326 |
+
.. [1] Hopcroft, J.; Tarjan, R. (1973).
|
| 327 |
+
"Efficient algorithms for graph manipulation".
|
| 328 |
+
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
|
| 329 |
+
|
| 330 |
+
"""
|
| 331 |
+
seen = set()
|
| 332 |
+
for articulation in _biconnected_dfs(G, components=False):
|
| 333 |
+
if articulation not in seen:
|
| 334 |
+
seen.add(articulation)
|
| 335 |
+
yield articulation
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
@not_implemented_for("directed")
|
| 339 |
+
def _biconnected_dfs(G, components=True):
|
| 340 |
+
# depth-first search algorithm to generate articulation points
|
| 341 |
+
# and biconnected components
|
| 342 |
+
visited = set()
|
| 343 |
+
for start in G:
|
| 344 |
+
if start in visited:
|
| 345 |
+
continue
|
| 346 |
+
discovery = {start: 0} # time of first discovery of node during search
|
| 347 |
+
low = {start: 0}
|
| 348 |
+
root_children = 0
|
| 349 |
+
visited.add(start)
|
| 350 |
+
edge_stack = []
|
| 351 |
+
stack = [(start, start, iter(G[start]))]
|
| 352 |
+
edge_index = {}
|
| 353 |
+
while stack:
|
| 354 |
+
grandparent, parent, children = stack[-1]
|
| 355 |
+
try:
|
| 356 |
+
child = next(children)
|
| 357 |
+
if grandparent == child:
|
| 358 |
+
continue
|
| 359 |
+
if child in visited:
|
| 360 |
+
if discovery[child] <= discovery[parent]: # back edge
|
| 361 |
+
low[parent] = min(low[parent], discovery[child])
|
| 362 |
+
if components:
|
| 363 |
+
edge_index[parent, child] = len(edge_stack)
|
| 364 |
+
edge_stack.append((parent, child))
|
| 365 |
+
else:
|
| 366 |
+
low[child] = discovery[child] = len(discovery)
|
| 367 |
+
visited.add(child)
|
| 368 |
+
stack.append((parent, child, iter(G[child])))
|
| 369 |
+
if components:
|
| 370 |
+
edge_index[parent, child] = len(edge_stack)
|
| 371 |
+
edge_stack.append((parent, child))
|
| 372 |
+
|
| 373 |
+
except StopIteration:
|
| 374 |
+
stack.pop()
|
| 375 |
+
if len(stack) > 1:
|
| 376 |
+
if low[parent] >= discovery[grandparent]:
|
| 377 |
+
if components:
|
| 378 |
+
ind = edge_index[grandparent, parent]
|
| 379 |
+
yield edge_stack[ind:]
|
| 380 |
+
del edge_stack[ind:]
|
| 381 |
+
|
| 382 |
+
else:
|
| 383 |
+
yield grandparent
|
| 384 |
+
low[grandparent] = min(low[parent], low[grandparent])
|
| 385 |
+
elif stack: # length 1 so grandparent is root
|
| 386 |
+
root_children += 1
|
| 387 |
+
if components:
|
| 388 |
+
ind = edge_index[grandparent, parent]
|
| 389 |
+
yield edge_stack[ind:]
|
| 390 |
+
del edge_stack[ind:]
|
| 391 |
+
if not components:
|
| 392 |
+
# root node is articulation point if it has more than 1 child
|
| 393 |
+
if root_children > 1:
|
| 394 |
+
yield start
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/connected.py
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Connected components."""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.utils.decorators import not_implemented_for
|
| 5 |
+
|
| 6 |
+
from ...utils import arbitrary_element
|
| 7 |
+
|
| 8 |
+
__all__ = [
|
| 9 |
+
"number_connected_components",
|
| 10 |
+
"connected_components",
|
| 11 |
+
"is_connected",
|
| 12 |
+
"node_connected_component",
|
| 13 |
+
]
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@not_implemented_for("directed")
|
| 17 |
+
@nx._dispatchable
|
| 18 |
+
def connected_components(G):
|
| 19 |
+
"""Generate connected components.
|
| 20 |
+
|
| 21 |
+
Parameters
|
| 22 |
+
----------
|
| 23 |
+
G : NetworkX graph
|
| 24 |
+
An undirected graph
|
| 25 |
+
|
| 26 |
+
Returns
|
| 27 |
+
-------
|
| 28 |
+
comp : generator of sets
|
| 29 |
+
A generator of sets of nodes, one for each component of G.
|
| 30 |
+
|
| 31 |
+
Raises
|
| 32 |
+
------
|
| 33 |
+
NetworkXNotImplemented
|
| 34 |
+
If G is directed.
|
| 35 |
+
|
| 36 |
+
Examples
|
| 37 |
+
--------
|
| 38 |
+
Generate a sorted list of connected components, largest first.
|
| 39 |
+
|
| 40 |
+
>>> G = nx.path_graph(4)
|
| 41 |
+
>>> nx.add_path(G, [10, 11, 12])
|
| 42 |
+
>>> [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)]
|
| 43 |
+
[4, 3]
|
| 44 |
+
|
| 45 |
+
If you only want the largest connected component, it's more
|
| 46 |
+
efficient to use max instead of sort.
|
| 47 |
+
|
| 48 |
+
>>> largest_cc = max(nx.connected_components(G), key=len)
|
| 49 |
+
|
| 50 |
+
To create the induced subgraph of each component use:
|
| 51 |
+
|
| 52 |
+
>>> S = [G.subgraph(c).copy() for c in nx.connected_components(G)]
|
| 53 |
+
|
| 54 |
+
See Also
|
| 55 |
+
--------
|
| 56 |
+
strongly_connected_components
|
| 57 |
+
weakly_connected_components
|
| 58 |
+
|
| 59 |
+
Notes
|
| 60 |
+
-----
|
| 61 |
+
For undirected graphs only.
|
| 62 |
+
|
| 63 |
+
"""
|
| 64 |
+
seen = set()
|
| 65 |
+
n = len(G)
|
| 66 |
+
for v in G:
|
| 67 |
+
if v not in seen:
|
| 68 |
+
c = _plain_bfs(G, n, v)
|
| 69 |
+
seen.update(c)
|
| 70 |
+
yield c
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@not_implemented_for("directed")
|
| 74 |
+
@nx._dispatchable
|
| 75 |
+
def number_connected_components(G):
|
| 76 |
+
"""Returns the number of connected components.
|
| 77 |
+
|
| 78 |
+
Parameters
|
| 79 |
+
----------
|
| 80 |
+
G : NetworkX graph
|
| 81 |
+
An undirected graph.
|
| 82 |
+
|
| 83 |
+
Returns
|
| 84 |
+
-------
|
| 85 |
+
n : integer
|
| 86 |
+
Number of connected components
|
| 87 |
+
|
| 88 |
+
Raises
|
| 89 |
+
------
|
| 90 |
+
NetworkXNotImplemented
|
| 91 |
+
If G is directed.
|
| 92 |
+
|
| 93 |
+
Examples
|
| 94 |
+
--------
|
| 95 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (5, 6), (3, 4)])
|
| 96 |
+
>>> nx.number_connected_components(G)
|
| 97 |
+
3
|
| 98 |
+
|
| 99 |
+
See Also
|
| 100 |
+
--------
|
| 101 |
+
connected_components
|
| 102 |
+
number_weakly_connected_components
|
| 103 |
+
number_strongly_connected_components
|
| 104 |
+
|
| 105 |
+
Notes
|
| 106 |
+
-----
|
| 107 |
+
For undirected graphs only.
|
| 108 |
+
|
| 109 |
+
"""
|
| 110 |
+
return sum(1 for cc in connected_components(G))
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
@not_implemented_for("directed")
|
| 114 |
+
@nx._dispatchable
|
| 115 |
+
def is_connected(G):
|
| 116 |
+
"""Returns True if the graph is connected, False otherwise.
|
| 117 |
+
|
| 118 |
+
Parameters
|
| 119 |
+
----------
|
| 120 |
+
G : NetworkX Graph
|
| 121 |
+
An undirected graph.
|
| 122 |
+
|
| 123 |
+
Returns
|
| 124 |
+
-------
|
| 125 |
+
connected : bool
|
| 126 |
+
True if the graph is connected, false otherwise.
|
| 127 |
+
|
| 128 |
+
Raises
|
| 129 |
+
------
|
| 130 |
+
NetworkXNotImplemented
|
| 131 |
+
If G is directed.
|
| 132 |
+
|
| 133 |
+
Examples
|
| 134 |
+
--------
|
| 135 |
+
>>> G = nx.path_graph(4)
|
| 136 |
+
>>> print(nx.is_connected(G))
|
| 137 |
+
True
|
| 138 |
+
|
| 139 |
+
See Also
|
| 140 |
+
--------
|
| 141 |
+
is_strongly_connected
|
| 142 |
+
is_weakly_connected
|
| 143 |
+
is_semiconnected
|
| 144 |
+
is_biconnected
|
| 145 |
+
connected_components
|
| 146 |
+
|
| 147 |
+
Notes
|
| 148 |
+
-----
|
| 149 |
+
For undirected graphs only.
|
| 150 |
+
|
| 151 |
+
"""
|
| 152 |
+
n = len(G)
|
| 153 |
+
if n == 0:
|
| 154 |
+
raise nx.NetworkXPointlessConcept(
|
| 155 |
+
"Connectivity is undefined for the null graph."
|
| 156 |
+
)
|
| 157 |
+
return sum(1 for node in _plain_bfs(G, n, arbitrary_element(G))) == len(G)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
@not_implemented_for("directed")
|
| 161 |
+
@nx._dispatchable
|
| 162 |
+
def node_connected_component(G, n):
|
| 163 |
+
"""Returns the set of nodes in the component of graph containing node n.
|
| 164 |
+
|
| 165 |
+
Parameters
|
| 166 |
+
----------
|
| 167 |
+
G : NetworkX Graph
|
| 168 |
+
An undirected graph.
|
| 169 |
+
|
| 170 |
+
n : node label
|
| 171 |
+
A node in G
|
| 172 |
+
|
| 173 |
+
Returns
|
| 174 |
+
-------
|
| 175 |
+
comp : set
|
| 176 |
+
A set of nodes in the component of G containing node n.
|
| 177 |
+
|
| 178 |
+
Raises
|
| 179 |
+
------
|
| 180 |
+
NetworkXNotImplemented
|
| 181 |
+
If G is directed.
|
| 182 |
+
|
| 183 |
+
Examples
|
| 184 |
+
--------
|
| 185 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (5, 6), (3, 4)])
|
| 186 |
+
>>> nx.node_connected_component(G, 0) # nodes of component that contains node 0
|
| 187 |
+
{0, 1, 2}
|
| 188 |
+
|
| 189 |
+
See Also
|
| 190 |
+
--------
|
| 191 |
+
connected_components
|
| 192 |
+
|
| 193 |
+
Notes
|
| 194 |
+
-----
|
| 195 |
+
For undirected graphs only.
|
| 196 |
+
|
| 197 |
+
"""
|
| 198 |
+
return _plain_bfs(G, len(G), n)
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def _plain_bfs(G, n, source):
|
| 202 |
+
"""A fast BFS node generator"""
|
| 203 |
+
adj = G._adj
|
| 204 |
+
seen = {source}
|
| 205 |
+
nextlevel = [source]
|
| 206 |
+
while nextlevel:
|
| 207 |
+
thislevel = nextlevel
|
| 208 |
+
nextlevel = []
|
| 209 |
+
for v in thislevel:
|
| 210 |
+
for w in adj[v]:
|
| 211 |
+
if w not in seen:
|
| 212 |
+
seen.add(w)
|
| 213 |
+
nextlevel.append(w)
|
| 214 |
+
if len(seen) == n:
|
| 215 |
+
return seen
|
| 216 |
+
return seen
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/strongly_connected.py
ADDED
|
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Strongly connected components."""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.utils.decorators import not_implemented_for
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
"number_strongly_connected_components",
|
| 8 |
+
"strongly_connected_components",
|
| 9 |
+
"is_strongly_connected",
|
| 10 |
+
"kosaraju_strongly_connected_components",
|
| 11 |
+
"condensation",
|
| 12 |
+
]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@not_implemented_for("undirected")
|
| 16 |
+
@nx._dispatchable
|
| 17 |
+
def strongly_connected_components(G):
|
| 18 |
+
"""Generate nodes in strongly connected components of graph.
|
| 19 |
+
|
| 20 |
+
Parameters
|
| 21 |
+
----------
|
| 22 |
+
G : NetworkX Graph
|
| 23 |
+
A directed graph.
|
| 24 |
+
|
| 25 |
+
Returns
|
| 26 |
+
-------
|
| 27 |
+
comp : generator of sets
|
| 28 |
+
A generator of sets of nodes, one for each strongly connected
|
| 29 |
+
component of G.
|
| 30 |
+
|
| 31 |
+
Raises
|
| 32 |
+
------
|
| 33 |
+
NetworkXNotImplemented
|
| 34 |
+
If G is undirected.
|
| 35 |
+
|
| 36 |
+
Examples
|
| 37 |
+
--------
|
| 38 |
+
Generate a sorted list of strongly connected components, largest first.
|
| 39 |
+
|
| 40 |
+
>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
|
| 41 |
+
>>> nx.add_cycle(G, [10, 11, 12])
|
| 42 |
+
>>> [
|
| 43 |
+
... len(c)
|
| 44 |
+
... for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True)
|
| 45 |
+
... ]
|
| 46 |
+
[4, 3]
|
| 47 |
+
|
| 48 |
+
If you only want the largest component, it's more efficient to
|
| 49 |
+
use max instead of sort.
|
| 50 |
+
|
| 51 |
+
>>> largest = max(nx.strongly_connected_components(G), key=len)
|
| 52 |
+
|
| 53 |
+
See Also
|
| 54 |
+
--------
|
| 55 |
+
connected_components
|
| 56 |
+
weakly_connected_components
|
| 57 |
+
kosaraju_strongly_connected_components
|
| 58 |
+
|
| 59 |
+
Notes
|
| 60 |
+
-----
|
| 61 |
+
Uses Tarjan's algorithm[1]_ with Nuutila's modifications[2]_.
|
| 62 |
+
Nonrecursive version of algorithm.
|
| 63 |
+
|
| 64 |
+
References
|
| 65 |
+
----------
|
| 66 |
+
.. [1] Depth-first search and linear graph algorithms, R. Tarjan
|
| 67 |
+
SIAM Journal of Computing 1(2):146-160, (1972).
|
| 68 |
+
|
| 69 |
+
.. [2] On finding the strongly connected components in a directed graph.
|
| 70 |
+
E. Nuutila and E. Soisalon-Soinen
|
| 71 |
+
Information Processing Letters 49(1): 9-14, (1994)..
|
| 72 |
+
|
| 73 |
+
"""
|
| 74 |
+
preorder = {}
|
| 75 |
+
lowlink = {}
|
| 76 |
+
scc_found = set()
|
| 77 |
+
scc_queue = []
|
| 78 |
+
i = 0 # Preorder counter
|
| 79 |
+
neighbors = {v: iter(G[v]) for v in G}
|
| 80 |
+
for source in G:
|
| 81 |
+
if source not in scc_found:
|
| 82 |
+
queue = [source]
|
| 83 |
+
while queue:
|
| 84 |
+
v = queue[-1]
|
| 85 |
+
if v not in preorder:
|
| 86 |
+
i = i + 1
|
| 87 |
+
preorder[v] = i
|
| 88 |
+
done = True
|
| 89 |
+
for w in neighbors[v]:
|
| 90 |
+
if w not in preorder:
|
| 91 |
+
queue.append(w)
|
| 92 |
+
done = False
|
| 93 |
+
break
|
| 94 |
+
if done:
|
| 95 |
+
lowlink[v] = preorder[v]
|
| 96 |
+
for w in G[v]:
|
| 97 |
+
if w not in scc_found:
|
| 98 |
+
if preorder[w] > preorder[v]:
|
| 99 |
+
lowlink[v] = min([lowlink[v], lowlink[w]])
|
| 100 |
+
else:
|
| 101 |
+
lowlink[v] = min([lowlink[v], preorder[w]])
|
| 102 |
+
queue.pop()
|
| 103 |
+
if lowlink[v] == preorder[v]:
|
| 104 |
+
scc = {v}
|
| 105 |
+
while scc_queue and preorder[scc_queue[-1]] > preorder[v]:
|
| 106 |
+
k = scc_queue.pop()
|
| 107 |
+
scc.add(k)
|
| 108 |
+
scc_found.update(scc)
|
| 109 |
+
yield scc
|
| 110 |
+
else:
|
| 111 |
+
scc_queue.append(v)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
@not_implemented_for("undirected")
|
| 115 |
+
@nx._dispatchable
|
| 116 |
+
def kosaraju_strongly_connected_components(G, source=None):
|
| 117 |
+
"""Generate nodes in strongly connected components of graph.
|
| 118 |
+
|
| 119 |
+
Parameters
|
| 120 |
+
----------
|
| 121 |
+
G : NetworkX Graph
|
| 122 |
+
A directed graph.
|
| 123 |
+
|
| 124 |
+
Returns
|
| 125 |
+
-------
|
| 126 |
+
comp : generator of sets
|
| 127 |
+
A generator of sets of nodes, one for each strongly connected
|
| 128 |
+
component of G.
|
| 129 |
+
|
| 130 |
+
Raises
|
| 131 |
+
------
|
| 132 |
+
NetworkXNotImplemented
|
| 133 |
+
If G is undirected.
|
| 134 |
+
|
| 135 |
+
Examples
|
| 136 |
+
--------
|
| 137 |
+
Generate a sorted list of strongly connected components, largest first.
|
| 138 |
+
|
| 139 |
+
>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
|
| 140 |
+
>>> nx.add_cycle(G, [10, 11, 12])
|
| 141 |
+
>>> [
|
| 142 |
+
... len(c)
|
| 143 |
+
... for c in sorted(
|
| 144 |
+
... nx.kosaraju_strongly_connected_components(G), key=len, reverse=True
|
| 145 |
+
... )
|
| 146 |
+
... ]
|
| 147 |
+
[4, 3]
|
| 148 |
+
|
| 149 |
+
If you only want the largest component, it's more efficient to
|
| 150 |
+
use max instead of sort.
|
| 151 |
+
|
| 152 |
+
>>> largest = max(nx.kosaraju_strongly_connected_components(G), key=len)
|
| 153 |
+
|
| 154 |
+
See Also
|
| 155 |
+
--------
|
| 156 |
+
strongly_connected_components
|
| 157 |
+
|
| 158 |
+
Notes
|
| 159 |
+
-----
|
| 160 |
+
Uses Kosaraju's algorithm.
|
| 161 |
+
|
| 162 |
+
"""
|
| 163 |
+
post = list(nx.dfs_postorder_nodes(G.reverse(copy=False), source=source))
|
| 164 |
+
|
| 165 |
+
seen = set()
|
| 166 |
+
while post:
|
| 167 |
+
r = post.pop()
|
| 168 |
+
if r in seen:
|
| 169 |
+
continue
|
| 170 |
+
c = nx.dfs_preorder_nodes(G, r)
|
| 171 |
+
new = {v for v in c if v not in seen}
|
| 172 |
+
seen.update(new)
|
| 173 |
+
yield new
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
@not_implemented_for("undirected")
|
| 177 |
+
@nx._dispatchable
|
| 178 |
+
def number_strongly_connected_components(G):
|
| 179 |
+
"""Returns number of strongly connected components in graph.
|
| 180 |
+
|
| 181 |
+
Parameters
|
| 182 |
+
----------
|
| 183 |
+
G : NetworkX graph
|
| 184 |
+
A directed graph.
|
| 185 |
+
|
| 186 |
+
Returns
|
| 187 |
+
-------
|
| 188 |
+
n : integer
|
| 189 |
+
Number of strongly connected components
|
| 190 |
+
|
| 191 |
+
Raises
|
| 192 |
+
------
|
| 193 |
+
NetworkXNotImplemented
|
| 194 |
+
If G is undirected.
|
| 195 |
+
|
| 196 |
+
Examples
|
| 197 |
+
--------
|
| 198 |
+
>>> G = nx.DiGraph(
|
| 199 |
+
... [(0, 1), (1, 2), (2, 0), (2, 3), (4, 5), (3, 4), (5, 6), (6, 3), (6, 7)]
|
| 200 |
+
... )
|
| 201 |
+
>>> nx.number_strongly_connected_components(G)
|
| 202 |
+
3
|
| 203 |
+
|
| 204 |
+
See Also
|
| 205 |
+
--------
|
| 206 |
+
strongly_connected_components
|
| 207 |
+
number_connected_components
|
| 208 |
+
number_weakly_connected_components
|
| 209 |
+
|
| 210 |
+
Notes
|
| 211 |
+
-----
|
| 212 |
+
For directed graphs only.
|
| 213 |
+
"""
|
| 214 |
+
return sum(1 for scc in strongly_connected_components(G))
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
@not_implemented_for("undirected")
|
| 218 |
+
@nx._dispatchable
|
| 219 |
+
def is_strongly_connected(G):
|
| 220 |
+
"""Test directed graph for strong connectivity.
|
| 221 |
+
|
| 222 |
+
A directed graph is strongly connected if and only if every vertex in
|
| 223 |
+
the graph is reachable from every other vertex.
|
| 224 |
+
|
| 225 |
+
Parameters
|
| 226 |
+
----------
|
| 227 |
+
G : NetworkX Graph
|
| 228 |
+
A directed graph.
|
| 229 |
+
|
| 230 |
+
Returns
|
| 231 |
+
-------
|
| 232 |
+
connected : bool
|
| 233 |
+
True if the graph is strongly connected, False otherwise.
|
| 234 |
+
|
| 235 |
+
Examples
|
| 236 |
+
--------
|
| 237 |
+
>>> G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 0), (2, 4), (4, 2)])
|
| 238 |
+
>>> nx.is_strongly_connected(G)
|
| 239 |
+
True
|
| 240 |
+
>>> G.remove_edge(2, 3)
|
| 241 |
+
>>> nx.is_strongly_connected(G)
|
| 242 |
+
False
|
| 243 |
+
|
| 244 |
+
Raises
|
| 245 |
+
------
|
| 246 |
+
NetworkXNotImplemented
|
| 247 |
+
If G is undirected.
|
| 248 |
+
|
| 249 |
+
See Also
|
| 250 |
+
--------
|
| 251 |
+
is_weakly_connected
|
| 252 |
+
is_semiconnected
|
| 253 |
+
is_connected
|
| 254 |
+
is_biconnected
|
| 255 |
+
strongly_connected_components
|
| 256 |
+
|
| 257 |
+
Notes
|
| 258 |
+
-----
|
| 259 |
+
For directed graphs only.
|
| 260 |
+
"""
|
| 261 |
+
if len(G) == 0:
|
| 262 |
+
raise nx.NetworkXPointlessConcept(
|
| 263 |
+
"""Connectivity is undefined for the null graph."""
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
return len(next(strongly_connected_components(G))) == len(G)
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
@not_implemented_for("undirected")
|
| 270 |
+
@nx._dispatchable(returns_graph=True)
|
| 271 |
+
def condensation(G, scc=None):
|
| 272 |
+
"""Returns the condensation of G.
|
| 273 |
+
|
| 274 |
+
The condensation of G is the graph with each of the strongly connected
|
| 275 |
+
components contracted into a single node.
|
| 276 |
+
|
| 277 |
+
Parameters
|
| 278 |
+
----------
|
| 279 |
+
G : NetworkX DiGraph
|
| 280 |
+
A directed graph.
|
| 281 |
+
|
| 282 |
+
scc: list or generator (optional, default=None)
|
| 283 |
+
Strongly connected components. If provided, the elements in
|
| 284 |
+
`scc` must partition the nodes in `G`. If not provided, it will be
|
| 285 |
+
calculated as scc=nx.strongly_connected_components(G).
|
| 286 |
+
|
| 287 |
+
Returns
|
| 288 |
+
-------
|
| 289 |
+
C : NetworkX DiGraph
|
| 290 |
+
The condensation graph C of G. The node labels are integers
|
| 291 |
+
corresponding to the index of the component in the list of
|
| 292 |
+
strongly connected components of G. C has a graph attribute named
|
| 293 |
+
'mapping' with a dictionary mapping the original nodes to the
|
| 294 |
+
nodes in C to which they belong. Each node in C also has a node
|
| 295 |
+
attribute 'members' with the set of original nodes in G that
|
| 296 |
+
form the SCC that the node in C represents.
|
| 297 |
+
|
| 298 |
+
Raises
|
| 299 |
+
------
|
| 300 |
+
NetworkXNotImplemented
|
| 301 |
+
If G is undirected.
|
| 302 |
+
|
| 303 |
+
Examples
|
| 304 |
+
--------
|
| 305 |
+
Contracting two sets of strongly connected nodes into two distinct SCC
|
| 306 |
+
using the barbell graph.
|
| 307 |
+
|
| 308 |
+
>>> G = nx.barbell_graph(4, 0)
|
| 309 |
+
>>> G.remove_edge(3, 4)
|
| 310 |
+
>>> G = nx.DiGraph(G)
|
| 311 |
+
>>> H = nx.condensation(G)
|
| 312 |
+
>>> H.nodes.data()
|
| 313 |
+
NodeDataView({0: {'members': {0, 1, 2, 3}}, 1: {'members': {4, 5, 6, 7}}})
|
| 314 |
+
>>> H.graph["mapping"]
|
| 315 |
+
{0: 0, 1: 0, 2: 0, 3: 0, 4: 1, 5: 1, 6: 1, 7: 1}
|
| 316 |
+
|
| 317 |
+
Contracting a complete graph into one single SCC.
|
| 318 |
+
|
| 319 |
+
>>> G = nx.complete_graph(7, create_using=nx.DiGraph)
|
| 320 |
+
>>> H = nx.condensation(G)
|
| 321 |
+
>>> H.nodes
|
| 322 |
+
NodeView((0,))
|
| 323 |
+
>>> H.nodes.data()
|
| 324 |
+
NodeDataView({0: {'members': {0, 1, 2, 3, 4, 5, 6}}})
|
| 325 |
+
|
| 326 |
+
Notes
|
| 327 |
+
-----
|
| 328 |
+
After contracting all strongly connected components to a single node,
|
| 329 |
+
the resulting graph is a directed acyclic graph.
|
| 330 |
+
|
| 331 |
+
"""
|
| 332 |
+
if scc is None:
|
| 333 |
+
scc = nx.strongly_connected_components(G)
|
| 334 |
+
mapping = {}
|
| 335 |
+
members = {}
|
| 336 |
+
C = nx.DiGraph()
|
| 337 |
+
# Add mapping dict as graph attribute
|
| 338 |
+
C.graph["mapping"] = mapping
|
| 339 |
+
if len(G) == 0:
|
| 340 |
+
return C
|
| 341 |
+
for i, component in enumerate(scc):
|
| 342 |
+
members[i] = component
|
| 343 |
+
mapping.update((n, i) for n in component)
|
| 344 |
+
number_of_components = i + 1
|
| 345 |
+
C.add_nodes_from(range(number_of_components))
|
| 346 |
+
C.add_edges_from(
|
| 347 |
+
(mapping[u], mapping[v]) for u, v in G.edges() if mapping[u] != mapping[v]
|
| 348 |
+
)
|
| 349 |
+
# Add a list of members (ie original nodes) to each node (ie scc) in C.
|
| 350 |
+
nx.set_node_attributes(C, members, "members")
|
| 351 |
+
return C
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__init__.py
ADDED
|
File without changes
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (190 Bytes). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_attracting.cpython-310.pyc
ADDED
|
Binary file (2.75 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_biconnected.cpython-310.pyc
ADDED
|
Binary file (6.71 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_connected.cpython-310.pyc
ADDED
|
Binary file (5.24 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_semiconnected.cpython-310.pyc
ADDED
|
Binary file (2.99 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_strongly_connected.cpython-310.pyc
ADDED
|
Binary file (6.58 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_weakly_connected.cpython-310.pyc
ADDED
|
Binary file (3.98 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_attracting.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx import NetworkXNotImplemented
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class TestAttractingComponents:
|
| 8 |
+
@classmethod
|
| 9 |
+
def setup_class(cls):
|
| 10 |
+
cls.G1 = nx.DiGraph()
|
| 11 |
+
cls.G1.add_edges_from(
|
| 12 |
+
[
|
| 13 |
+
(5, 11),
|
| 14 |
+
(11, 2),
|
| 15 |
+
(11, 9),
|
| 16 |
+
(11, 10),
|
| 17 |
+
(7, 11),
|
| 18 |
+
(7, 8),
|
| 19 |
+
(8, 9),
|
| 20 |
+
(3, 8),
|
| 21 |
+
(3, 10),
|
| 22 |
+
]
|
| 23 |
+
)
|
| 24 |
+
cls.G2 = nx.DiGraph()
|
| 25 |
+
cls.G2.add_edges_from([(0, 1), (0, 2), (1, 1), (1, 2), (2, 1)])
|
| 26 |
+
|
| 27 |
+
cls.G3 = nx.DiGraph()
|
| 28 |
+
cls.G3.add_edges_from([(0, 1), (1, 2), (2, 1), (0, 3), (3, 4), (4, 3)])
|
| 29 |
+
|
| 30 |
+
cls.G4 = nx.DiGraph()
|
| 31 |
+
|
| 32 |
+
def test_attracting_components(self):
|
| 33 |
+
ac = list(nx.attracting_components(self.G1))
|
| 34 |
+
assert {2} in ac
|
| 35 |
+
assert {9} in ac
|
| 36 |
+
assert {10} in ac
|
| 37 |
+
|
| 38 |
+
ac = list(nx.attracting_components(self.G2))
|
| 39 |
+
ac = [tuple(sorted(x)) for x in ac]
|
| 40 |
+
assert ac == [(1, 2)]
|
| 41 |
+
|
| 42 |
+
ac = list(nx.attracting_components(self.G3))
|
| 43 |
+
ac = [tuple(sorted(x)) for x in ac]
|
| 44 |
+
assert (1, 2) in ac
|
| 45 |
+
assert (3, 4) in ac
|
| 46 |
+
assert len(ac) == 2
|
| 47 |
+
|
| 48 |
+
ac = list(nx.attracting_components(self.G4))
|
| 49 |
+
assert ac == []
|
| 50 |
+
|
| 51 |
+
def test_number_attacting_components(self):
|
| 52 |
+
assert nx.number_attracting_components(self.G1) == 3
|
| 53 |
+
assert nx.number_attracting_components(self.G2) == 1
|
| 54 |
+
assert nx.number_attracting_components(self.G3) == 2
|
| 55 |
+
assert nx.number_attracting_components(self.G4) == 0
|
| 56 |
+
|
| 57 |
+
def test_is_attracting_component(self):
|
| 58 |
+
assert not nx.is_attracting_component(self.G1)
|
| 59 |
+
assert not nx.is_attracting_component(self.G2)
|
| 60 |
+
assert not nx.is_attracting_component(self.G3)
|
| 61 |
+
g2 = self.G3.subgraph([1, 2])
|
| 62 |
+
assert nx.is_attracting_component(g2)
|
| 63 |
+
assert not nx.is_attracting_component(self.G4)
|
| 64 |
+
|
| 65 |
+
def test_connected_raise(self):
|
| 66 |
+
G = nx.Graph()
|
| 67 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 68 |
+
next(nx.attracting_components(G))
|
| 69 |
+
pytest.raises(NetworkXNotImplemented, nx.number_attracting_components, G)
|
| 70 |
+
pytest.raises(NetworkXNotImplemented, nx.is_attracting_component, G)
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_biconnected.py
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx import NetworkXNotImplemented
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def assert_components_edges_equal(x, y):
|
| 8 |
+
sx = {frozenset(frozenset(e) for e in c) for c in x}
|
| 9 |
+
sy = {frozenset(frozenset(e) for e in c) for c in y}
|
| 10 |
+
assert sx == sy
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def assert_components_equal(x, y):
|
| 14 |
+
sx = {frozenset(c) for c in x}
|
| 15 |
+
sy = {frozenset(c) for c in y}
|
| 16 |
+
assert sx == sy
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def test_barbell():
|
| 20 |
+
G = nx.barbell_graph(8, 4)
|
| 21 |
+
nx.add_path(G, [7, 20, 21, 22])
|
| 22 |
+
nx.add_cycle(G, [22, 23, 24, 25])
|
| 23 |
+
pts = set(nx.articulation_points(G))
|
| 24 |
+
assert pts == {7, 8, 9, 10, 11, 12, 20, 21, 22}
|
| 25 |
+
|
| 26 |
+
answer = [
|
| 27 |
+
{12, 13, 14, 15, 16, 17, 18, 19},
|
| 28 |
+
{0, 1, 2, 3, 4, 5, 6, 7},
|
| 29 |
+
{22, 23, 24, 25},
|
| 30 |
+
{11, 12},
|
| 31 |
+
{10, 11},
|
| 32 |
+
{9, 10},
|
| 33 |
+
{8, 9},
|
| 34 |
+
{7, 8},
|
| 35 |
+
{21, 22},
|
| 36 |
+
{20, 21},
|
| 37 |
+
{7, 20},
|
| 38 |
+
]
|
| 39 |
+
assert_components_equal(list(nx.biconnected_components(G)), answer)
|
| 40 |
+
|
| 41 |
+
G.add_edge(2, 17)
|
| 42 |
+
pts = set(nx.articulation_points(G))
|
| 43 |
+
assert pts == {7, 20, 21, 22}
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def test_articulation_points_repetitions():
|
| 47 |
+
G = nx.Graph()
|
| 48 |
+
G.add_edges_from([(0, 1), (1, 2), (1, 3)])
|
| 49 |
+
assert list(nx.articulation_points(G)) == [1]
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def test_articulation_points_cycle():
|
| 53 |
+
G = nx.cycle_graph(3)
|
| 54 |
+
nx.add_cycle(G, [1, 3, 4])
|
| 55 |
+
pts = set(nx.articulation_points(G))
|
| 56 |
+
assert pts == {1}
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def test_is_biconnected():
|
| 60 |
+
G = nx.cycle_graph(3)
|
| 61 |
+
assert nx.is_biconnected(G)
|
| 62 |
+
nx.add_cycle(G, [1, 3, 4])
|
| 63 |
+
assert not nx.is_biconnected(G)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def test_empty_is_biconnected():
|
| 67 |
+
G = nx.empty_graph(5)
|
| 68 |
+
assert not nx.is_biconnected(G)
|
| 69 |
+
G.add_edge(0, 1)
|
| 70 |
+
assert not nx.is_biconnected(G)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def test_biconnected_components_cycle():
|
| 74 |
+
G = nx.cycle_graph(3)
|
| 75 |
+
nx.add_cycle(G, [1, 3, 4])
|
| 76 |
+
answer = [{0, 1, 2}, {1, 3, 4}]
|
| 77 |
+
assert_components_equal(list(nx.biconnected_components(G)), answer)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def test_biconnected_components1():
|
| 81 |
+
# graph example from
|
| 82 |
+
# https://web.archive.org/web/20121229123447/http://www.ibluemojo.com/school/articul_algorithm.html
|
| 83 |
+
edges = [
|
| 84 |
+
(0, 1),
|
| 85 |
+
(0, 5),
|
| 86 |
+
(0, 6),
|
| 87 |
+
(0, 14),
|
| 88 |
+
(1, 5),
|
| 89 |
+
(1, 6),
|
| 90 |
+
(1, 14),
|
| 91 |
+
(2, 4),
|
| 92 |
+
(2, 10),
|
| 93 |
+
(3, 4),
|
| 94 |
+
(3, 15),
|
| 95 |
+
(4, 6),
|
| 96 |
+
(4, 7),
|
| 97 |
+
(4, 10),
|
| 98 |
+
(5, 14),
|
| 99 |
+
(6, 14),
|
| 100 |
+
(7, 9),
|
| 101 |
+
(8, 9),
|
| 102 |
+
(8, 12),
|
| 103 |
+
(8, 13),
|
| 104 |
+
(10, 15),
|
| 105 |
+
(11, 12),
|
| 106 |
+
(11, 13),
|
| 107 |
+
(12, 13),
|
| 108 |
+
]
|
| 109 |
+
G = nx.Graph(edges)
|
| 110 |
+
pts = set(nx.articulation_points(G))
|
| 111 |
+
assert pts == {4, 6, 7, 8, 9}
|
| 112 |
+
comps = list(nx.biconnected_component_edges(G))
|
| 113 |
+
answer = [
|
| 114 |
+
[(3, 4), (15, 3), (10, 15), (10, 4), (2, 10), (4, 2)],
|
| 115 |
+
[(13, 12), (13, 8), (11, 13), (12, 11), (8, 12)],
|
| 116 |
+
[(9, 8)],
|
| 117 |
+
[(7, 9)],
|
| 118 |
+
[(4, 7)],
|
| 119 |
+
[(6, 4)],
|
| 120 |
+
[(14, 0), (5, 1), (5, 0), (14, 5), (14, 1), (6, 14), (6, 0), (1, 6), (0, 1)],
|
| 121 |
+
]
|
| 122 |
+
assert_components_edges_equal(comps, answer)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def test_biconnected_components2():
|
| 126 |
+
G = nx.Graph()
|
| 127 |
+
nx.add_cycle(G, "ABC")
|
| 128 |
+
nx.add_cycle(G, "CDE")
|
| 129 |
+
nx.add_cycle(G, "FIJHG")
|
| 130 |
+
nx.add_cycle(G, "GIJ")
|
| 131 |
+
G.add_edge("E", "G")
|
| 132 |
+
comps = list(nx.biconnected_component_edges(G))
|
| 133 |
+
answer = [
|
| 134 |
+
[
|
| 135 |
+
tuple("GF"),
|
| 136 |
+
tuple("FI"),
|
| 137 |
+
tuple("IG"),
|
| 138 |
+
tuple("IJ"),
|
| 139 |
+
tuple("JG"),
|
| 140 |
+
tuple("JH"),
|
| 141 |
+
tuple("HG"),
|
| 142 |
+
],
|
| 143 |
+
[tuple("EG")],
|
| 144 |
+
[tuple("CD"), tuple("DE"), tuple("CE")],
|
| 145 |
+
[tuple("AB"), tuple("BC"), tuple("AC")],
|
| 146 |
+
]
|
| 147 |
+
assert_components_edges_equal(comps, answer)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def test_biconnected_davis():
|
| 151 |
+
D = nx.davis_southern_women_graph()
|
| 152 |
+
bcc = list(nx.biconnected_components(D))[0]
|
| 153 |
+
assert set(D) == bcc # All nodes in a giant bicomponent
|
| 154 |
+
# So no articulation points
|
| 155 |
+
assert len(list(nx.articulation_points(D))) == 0
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def test_biconnected_karate():
|
| 159 |
+
K = nx.karate_club_graph()
|
| 160 |
+
answer = [
|
| 161 |
+
{
|
| 162 |
+
0,
|
| 163 |
+
1,
|
| 164 |
+
2,
|
| 165 |
+
3,
|
| 166 |
+
7,
|
| 167 |
+
8,
|
| 168 |
+
9,
|
| 169 |
+
12,
|
| 170 |
+
13,
|
| 171 |
+
14,
|
| 172 |
+
15,
|
| 173 |
+
17,
|
| 174 |
+
18,
|
| 175 |
+
19,
|
| 176 |
+
20,
|
| 177 |
+
21,
|
| 178 |
+
22,
|
| 179 |
+
23,
|
| 180 |
+
24,
|
| 181 |
+
25,
|
| 182 |
+
26,
|
| 183 |
+
27,
|
| 184 |
+
28,
|
| 185 |
+
29,
|
| 186 |
+
30,
|
| 187 |
+
31,
|
| 188 |
+
32,
|
| 189 |
+
33,
|
| 190 |
+
},
|
| 191 |
+
{0, 4, 5, 6, 10, 16},
|
| 192 |
+
{0, 11},
|
| 193 |
+
]
|
| 194 |
+
bcc = list(nx.biconnected_components(K))
|
| 195 |
+
assert_components_equal(bcc, answer)
|
| 196 |
+
assert set(nx.articulation_points(K)) == {0}
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def test_biconnected_eppstein():
|
| 200 |
+
# tests from http://www.ics.uci.edu/~eppstein/PADS/Biconnectivity.py
|
| 201 |
+
G1 = nx.Graph(
|
| 202 |
+
{
|
| 203 |
+
0: [1, 2, 5],
|
| 204 |
+
1: [0, 5],
|
| 205 |
+
2: [0, 3, 4],
|
| 206 |
+
3: [2, 4, 5, 6],
|
| 207 |
+
4: [2, 3, 5, 6],
|
| 208 |
+
5: [0, 1, 3, 4],
|
| 209 |
+
6: [3, 4],
|
| 210 |
+
}
|
| 211 |
+
)
|
| 212 |
+
G2 = nx.Graph(
|
| 213 |
+
{
|
| 214 |
+
0: [2, 5],
|
| 215 |
+
1: [3, 8],
|
| 216 |
+
2: [0, 3, 5],
|
| 217 |
+
3: [1, 2, 6, 8],
|
| 218 |
+
4: [7],
|
| 219 |
+
5: [0, 2],
|
| 220 |
+
6: [3, 8],
|
| 221 |
+
7: [4],
|
| 222 |
+
8: [1, 3, 6],
|
| 223 |
+
}
|
| 224 |
+
)
|
| 225 |
+
assert nx.is_biconnected(G1)
|
| 226 |
+
assert not nx.is_biconnected(G2)
|
| 227 |
+
answer_G2 = [{1, 3, 6, 8}, {0, 2, 5}, {2, 3}, {4, 7}]
|
| 228 |
+
bcc = list(nx.biconnected_components(G2))
|
| 229 |
+
assert_components_equal(bcc, answer_G2)
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def test_null_graph():
|
| 233 |
+
G = nx.Graph()
|
| 234 |
+
assert not nx.is_biconnected(G)
|
| 235 |
+
assert list(nx.biconnected_components(G)) == []
|
| 236 |
+
assert list(nx.biconnected_component_edges(G)) == []
|
| 237 |
+
assert list(nx.articulation_points(G)) == []
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def test_connected_raise():
|
| 241 |
+
DG = nx.DiGraph()
|
| 242 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 243 |
+
next(nx.biconnected_components(DG))
|
| 244 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 245 |
+
next(nx.biconnected_component_edges(DG))
|
| 246 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 247 |
+
next(nx.articulation_points(DG))
|
| 248 |
+
pytest.raises(NetworkXNotImplemented, nx.is_biconnected, DG)
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_connected.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx import NetworkXNotImplemented
|
| 5 |
+
from networkx import convert_node_labels_to_integers as cnlti
|
| 6 |
+
from networkx.classes.tests import dispatch_interface
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class TestConnected:
|
| 10 |
+
@classmethod
|
| 11 |
+
def setup_class(cls):
|
| 12 |
+
G1 = cnlti(nx.grid_2d_graph(2, 2), first_label=0, ordering="sorted")
|
| 13 |
+
G2 = cnlti(nx.lollipop_graph(3, 3), first_label=4, ordering="sorted")
|
| 14 |
+
G3 = cnlti(nx.house_graph(), first_label=10, ordering="sorted")
|
| 15 |
+
cls.G = nx.union(G1, G2)
|
| 16 |
+
cls.G = nx.union(cls.G, G3)
|
| 17 |
+
cls.DG = nx.DiGraph([(1, 2), (1, 3), (2, 3)])
|
| 18 |
+
cls.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1)
|
| 19 |
+
|
| 20 |
+
cls.gc = []
|
| 21 |
+
G = nx.DiGraph()
|
| 22 |
+
G.add_edges_from(
|
| 23 |
+
[
|
| 24 |
+
(1, 2),
|
| 25 |
+
(2, 3),
|
| 26 |
+
(2, 8),
|
| 27 |
+
(3, 4),
|
| 28 |
+
(3, 7),
|
| 29 |
+
(4, 5),
|
| 30 |
+
(5, 3),
|
| 31 |
+
(5, 6),
|
| 32 |
+
(7, 4),
|
| 33 |
+
(7, 6),
|
| 34 |
+
(8, 1),
|
| 35 |
+
(8, 7),
|
| 36 |
+
]
|
| 37 |
+
)
|
| 38 |
+
C = [[3, 4, 5, 7], [1, 2, 8], [6]]
|
| 39 |
+
cls.gc.append((G, C))
|
| 40 |
+
|
| 41 |
+
G = nx.DiGraph()
|
| 42 |
+
G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
|
| 43 |
+
C = [[2, 3, 4], [1]]
|
| 44 |
+
cls.gc.append((G, C))
|
| 45 |
+
|
| 46 |
+
G = nx.DiGraph()
|
| 47 |
+
G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
|
| 48 |
+
C = [[1, 2, 3]]
|
| 49 |
+
cls.gc.append((G, C))
|
| 50 |
+
|
| 51 |
+
# Eppstein's tests
|
| 52 |
+
G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []})
|
| 53 |
+
C = [[0], [1], [2], [3], [4], [5], [6]]
|
| 54 |
+
cls.gc.append((G, C))
|
| 55 |
+
|
| 56 |
+
G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]})
|
| 57 |
+
C = [[0, 1, 2], [3, 4]]
|
| 58 |
+
cls.gc.append((G, C))
|
| 59 |
+
|
| 60 |
+
G = nx.DiGraph()
|
| 61 |
+
C = []
|
| 62 |
+
cls.gc.append((G, C))
|
| 63 |
+
|
| 64 |
+
def test_connected_components(self):
|
| 65 |
+
# Test duplicated below
|
| 66 |
+
cc = nx.connected_components
|
| 67 |
+
G = self.G
|
| 68 |
+
C = {
|
| 69 |
+
frozenset([0, 1, 2, 3]),
|
| 70 |
+
frozenset([4, 5, 6, 7, 8, 9]),
|
| 71 |
+
frozenset([10, 11, 12, 13, 14]),
|
| 72 |
+
}
|
| 73 |
+
assert {frozenset(g) for g in cc(G)} == C
|
| 74 |
+
|
| 75 |
+
def test_connected_components_nx_loopback(self):
|
| 76 |
+
# This tests the @nx._dispatchable mechanism, treating nx.connected_components
|
| 77 |
+
# as if it were a re-implementation from another package.
|
| 78 |
+
# Test duplicated from above
|
| 79 |
+
cc = nx.connected_components
|
| 80 |
+
G = dispatch_interface.convert(self.G)
|
| 81 |
+
C = {
|
| 82 |
+
frozenset([0, 1, 2, 3]),
|
| 83 |
+
frozenset([4, 5, 6, 7, 8, 9]),
|
| 84 |
+
frozenset([10, 11, 12, 13, 14]),
|
| 85 |
+
}
|
| 86 |
+
if "nx_loopback" in nx.config.backends or not nx.config.backends:
|
| 87 |
+
# If `nx.config.backends` is empty, then `_dispatchable.__call__` takes a
|
| 88 |
+
# "fast path" and does not check graph inputs, so using an unknown backend
|
| 89 |
+
# here will still work.
|
| 90 |
+
assert {frozenset(g) for g in cc(G)} == C
|
| 91 |
+
else:
|
| 92 |
+
# This raises, because "nx_loopback" is not registered as a backend.
|
| 93 |
+
with pytest.raises(
|
| 94 |
+
ImportError, match="'nx_loopback' backend is not installed"
|
| 95 |
+
):
|
| 96 |
+
cc(G)
|
| 97 |
+
|
| 98 |
+
def test_number_connected_components(self):
|
| 99 |
+
ncc = nx.number_connected_components
|
| 100 |
+
assert ncc(self.G) == 3
|
| 101 |
+
|
| 102 |
+
def test_number_connected_components2(self):
|
| 103 |
+
ncc = nx.number_connected_components
|
| 104 |
+
assert ncc(self.grid) == 1
|
| 105 |
+
|
| 106 |
+
def test_connected_components2(self):
|
| 107 |
+
cc = nx.connected_components
|
| 108 |
+
G = self.grid
|
| 109 |
+
C = {frozenset([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])}
|
| 110 |
+
assert {frozenset(g) for g in cc(G)} == C
|
| 111 |
+
|
| 112 |
+
def test_node_connected_components(self):
|
| 113 |
+
ncc = nx.node_connected_component
|
| 114 |
+
G = self.grid
|
| 115 |
+
C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
|
| 116 |
+
assert ncc(G, 1) == C
|
| 117 |
+
|
| 118 |
+
def test_is_connected(self):
|
| 119 |
+
assert nx.is_connected(self.grid)
|
| 120 |
+
G = nx.Graph()
|
| 121 |
+
G.add_nodes_from([1, 2])
|
| 122 |
+
assert not nx.is_connected(G)
|
| 123 |
+
|
| 124 |
+
def test_connected_raise(self):
|
| 125 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 126 |
+
next(nx.connected_components(self.DG))
|
| 127 |
+
pytest.raises(NetworkXNotImplemented, nx.number_connected_components, self.DG)
|
| 128 |
+
pytest.raises(NetworkXNotImplemented, nx.node_connected_component, self.DG, 1)
|
| 129 |
+
pytest.raises(NetworkXNotImplemented, nx.is_connected, self.DG)
|
| 130 |
+
pytest.raises(nx.NetworkXPointlessConcept, nx.is_connected, nx.Graph())
|
| 131 |
+
|
| 132 |
+
def test_connected_mutability(self):
|
| 133 |
+
G = self.grid
|
| 134 |
+
seen = set()
|
| 135 |
+
for component in nx.connected_components(G):
|
| 136 |
+
assert len(seen & component) == 0
|
| 137 |
+
seen.update(component)
|
| 138 |
+
component.clear()
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_semiconnected.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from itertools import chain
|
| 2 |
+
|
| 3 |
+
import pytest
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class TestIsSemiconnected:
|
| 9 |
+
def test_undirected(self):
|
| 10 |
+
pytest.raises(nx.NetworkXNotImplemented, nx.is_semiconnected, nx.Graph())
|
| 11 |
+
pytest.raises(nx.NetworkXNotImplemented, nx.is_semiconnected, nx.MultiGraph())
|
| 12 |
+
|
| 13 |
+
def test_empty(self):
|
| 14 |
+
pytest.raises(nx.NetworkXPointlessConcept, nx.is_semiconnected, nx.DiGraph())
|
| 15 |
+
pytest.raises(
|
| 16 |
+
nx.NetworkXPointlessConcept, nx.is_semiconnected, nx.MultiDiGraph()
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
def test_single_node_graph(self):
|
| 20 |
+
G = nx.DiGraph()
|
| 21 |
+
G.add_node(0)
|
| 22 |
+
assert nx.is_semiconnected(G)
|
| 23 |
+
|
| 24 |
+
def test_path(self):
|
| 25 |
+
G = nx.path_graph(100, create_using=nx.DiGraph())
|
| 26 |
+
assert nx.is_semiconnected(G)
|
| 27 |
+
G.add_edge(100, 99)
|
| 28 |
+
assert not nx.is_semiconnected(G)
|
| 29 |
+
|
| 30 |
+
def test_cycle(self):
|
| 31 |
+
G = nx.cycle_graph(100, create_using=nx.DiGraph())
|
| 32 |
+
assert nx.is_semiconnected(G)
|
| 33 |
+
G = nx.path_graph(100, create_using=nx.DiGraph())
|
| 34 |
+
G.add_edge(0, 99)
|
| 35 |
+
assert nx.is_semiconnected(G)
|
| 36 |
+
|
| 37 |
+
def test_tree(self):
|
| 38 |
+
G = nx.DiGraph()
|
| 39 |
+
G.add_edges_from(
|
| 40 |
+
chain.from_iterable([(i, 2 * i + 1), (i, 2 * i + 2)] for i in range(100))
|
| 41 |
+
)
|
| 42 |
+
assert not nx.is_semiconnected(G)
|
| 43 |
+
|
| 44 |
+
def test_dumbbell(self):
|
| 45 |
+
G = nx.cycle_graph(100, create_using=nx.DiGraph())
|
| 46 |
+
G.add_edges_from((i + 100, (i + 1) % 100 + 100) for i in range(100))
|
| 47 |
+
assert not nx.is_semiconnected(G) # G is disconnected.
|
| 48 |
+
G.add_edge(100, 99)
|
| 49 |
+
assert nx.is_semiconnected(G)
|
| 50 |
+
|
| 51 |
+
def test_alternating_path(self):
|
| 52 |
+
G = nx.DiGraph(
|
| 53 |
+
chain.from_iterable([(i, i - 1), (i, i + 1)] for i in range(0, 100, 2))
|
| 54 |
+
)
|
| 55 |
+
assert not nx.is_semiconnected(G)
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_strongly_connected.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx import NetworkXNotImplemented
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class TestStronglyConnected:
|
| 8 |
+
@classmethod
|
| 9 |
+
def setup_class(cls):
|
| 10 |
+
cls.gc = []
|
| 11 |
+
G = nx.DiGraph()
|
| 12 |
+
G.add_edges_from(
|
| 13 |
+
[
|
| 14 |
+
(1, 2),
|
| 15 |
+
(2, 3),
|
| 16 |
+
(2, 8),
|
| 17 |
+
(3, 4),
|
| 18 |
+
(3, 7),
|
| 19 |
+
(4, 5),
|
| 20 |
+
(5, 3),
|
| 21 |
+
(5, 6),
|
| 22 |
+
(7, 4),
|
| 23 |
+
(7, 6),
|
| 24 |
+
(8, 1),
|
| 25 |
+
(8, 7),
|
| 26 |
+
]
|
| 27 |
+
)
|
| 28 |
+
C = {frozenset([3, 4, 5, 7]), frozenset([1, 2, 8]), frozenset([6])}
|
| 29 |
+
cls.gc.append((G, C))
|
| 30 |
+
|
| 31 |
+
G = nx.DiGraph()
|
| 32 |
+
G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
|
| 33 |
+
C = {frozenset([2, 3, 4]), frozenset([1])}
|
| 34 |
+
cls.gc.append((G, C))
|
| 35 |
+
|
| 36 |
+
G = nx.DiGraph()
|
| 37 |
+
G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
|
| 38 |
+
C = {frozenset([1, 2, 3])}
|
| 39 |
+
cls.gc.append((G, C))
|
| 40 |
+
|
| 41 |
+
# Eppstein's tests
|
| 42 |
+
G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []})
|
| 43 |
+
C = {
|
| 44 |
+
frozenset([0]),
|
| 45 |
+
frozenset([1]),
|
| 46 |
+
frozenset([2]),
|
| 47 |
+
frozenset([3]),
|
| 48 |
+
frozenset([4]),
|
| 49 |
+
frozenset([5]),
|
| 50 |
+
frozenset([6]),
|
| 51 |
+
}
|
| 52 |
+
cls.gc.append((G, C))
|
| 53 |
+
|
| 54 |
+
G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]})
|
| 55 |
+
C = {frozenset([0, 1, 2]), frozenset([3, 4])}
|
| 56 |
+
cls.gc.append((G, C))
|
| 57 |
+
|
| 58 |
+
def test_tarjan(self):
|
| 59 |
+
scc = nx.strongly_connected_components
|
| 60 |
+
for G, C in self.gc:
|
| 61 |
+
assert {frozenset(g) for g in scc(G)} == C
|
| 62 |
+
|
| 63 |
+
def test_kosaraju(self):
|
| 64 |
+
scc = nx.kosaraju_strongly_connected_components
|
| 65 |
+
for G, C in self.gc:
|
| 66 |
+
assert {frozenset(g) for g in scc(G)} == C
|
| 67 |
+
|
| 68 |
+
def test_number_strongly_connected_components(self):
|
| 69 |
+
ncc = nx.number_strongly_connected_components
|
| 70 |
+
for G, C in self.gc:
|
| 71 |
+
assert ncc(G) == len(C)
|
| 72 |
+
|
| 73 |
+
def test_is_strongly_connected(self):
|
| 74 |
+
for G, C in self.gc:
|
| 75 |
+
if len(C) == 1:
|
| 76 |
+
assert nx.is_strongly_connected(G)
|
| 77 |
+
else:
|
| 78 |
+
assert not nx.is_strongly_connected(G)
|
| 79 |
+
|
| 80 |
+
def test_contract_scc1(self):
|
| 81 |
+
G = nx.DiGraph()
|
| 82 |
+
G.add_edges_from(
|
| 83 |
+
[
|
| 84 |
+
(1, 2),
|
| 85 |
+
(2, 3),
|
| 86 |
+
(2, 11),
|
| 87 |
+
(2, 12),
|
| 88 |
+
(3, 4),
|
| 89 |
+
(4, 3),
|
| 90 |
+
(4, 5),
|
| 91 |
+
(5, 6),
|
| 92 |
+
(6, 5),
|
| 93 |
+
(6, 7),
|
| 94 |
+
(7, 8),
|
| 95 |
+
(7, 9),
|
| 96 |
+
(7, 10),
|
| 97 |
+
(8, 9),
|
| 98 |
+
(9, 7),
|
| 99 |
+
(10, 6),
|
| 100 |
+
(11, 2),
|
| 101 |
+
(11, 4),
|
| 102 |
+
(11, 6),
|
| 103 |
+
(12, 6),
|
| 104 |
+
(12, 11),
|
| 105 |
+
]
|
| 106 |
+
)
|
| 107 |
+
scc = list(nx.strongly_connected_components(G))
|
| 108 |
+
cG = nx.condensation(G, scc)
|
| 109 |
+
# DAG
|
| 110 |
+
assert nx.is_directed_acyclic_graph(cG)
|
| 111 |
+
# nodes
|
| 112 |
+
assert sorted(cG.nodes()) == [0, 1, 2, 3]
|
| 113 |
+
# edges
|
| 114 |
+
mapping = {}
|
| 115 |
+
for i, component in enumerate(scc):
|
| 116 |
+
for n in component:
|
| 117 |
+
mapping[n] = i
|
| 118 |
+
edge = (mapping[2], mapping[3])
|
| 119 |
+
assert cG.has_edge(*edge)
|
| 120 |
+
edge = (mapping[2], mapping[5])
|
| 121 |
+
assert cG.has_edge(*edge)
|
| 122 |
+
edge = (mapping[3], mapping[5])
|
| 123 |
+
assert cG.has_edge(*edge)
|
| 124 |
+
|
| 125 |
+
def test_contract_scc_isolate(self):
|
| 126 |
+
# Bug found and fixed in [1687].
|
| 127 |
+
G = nx.DiGraph()
|
| 128 |
+
G.add_edge(1, 2)
|
| 129 |
+
G.add_edge(2, 1)
|
| 130 |
+
scc = list(nx.strongly_connected_components(G))
|
| 131 |
+
cG = nx.condensation(G, scc)
|
| 132 |
+
assert list(cG.nodes()) == [0]
|
| 133 |
+
assert list(cG.edges()) == []
|
| 134 |
+
|
| 135 |
+
def test_contract_scc_edge(self):
|
| 136 |
+
G = nx.DiGraph()
|
| 137 |
+
G.add_edge(1, 2)
|
| 138 |
+
G.add_edge(2, 1)
|
| 139 |
+
G.add_edge(2, 3)
|
| 140 |
+
G.add_edge(3, 4)
|
| 141 |
+
G.add_edge(4, 3)
|
| 142 |
+
scc = list(nx.strongly_connected_components(G))
|
| 143 |
+
cG = nx.condensation(G, scc)
|
| 144 |
+
assert sorted(cG.nodes()) == [0, 1]
|
| 145 |
+
if 1 in scc[0]:
|
| 146 |
+
edge = (0, 1)
|
| 147 |
+
else:
|
| 148 |
+
edge = (1, 0)
|
| 149 |
+
assert list(cG.edges()) == [edge]
|
| 150 |
+
|
| 151 |
+
def test_condensation_mapping_and_members(self):
|
| 152 |
+
G, C = self.gc[1]
|
| 153 |
+
C = sorted(C, key=len, reverse=True)
|
| 154 |
+
cG = nx.condensation(G)
|
| 155 |
+
mapping = cG.graph["mapping"]
|
| 156 |
+
assert all(n in G for n in mapping)
|
| 157 |
+
assert all(0 == cN for n, cN in mapping.items() if n in C[0])
|
| 158 |
+
assert all(1 == cN for n, cN in mapping.items() if n in C[1])
|
| 159 |
+
for n, d in cG.nodes(data=True):
|
| 160 |
+
assert set(C[n]) == cG.nodes[n]["members"]
|
| 161 |
+
|
| 162 |
+
def test_null_graph(self):
|
| 163 |
+
G = nx.DiGraph()
|
| 164 |
+
assert list(nx.strongly_connected_components(G)) == []
|
| 165 |
+
assert list(nx.kosaraju_strongly_connected_components(G)) == []
|
| 166 |
+
assert len(nx.condensation(G)) == 0
|
| 167 |
+
pytest.raises(
|
| 168 |
+
nx.NetworkXPointlessConcept, nx.is_strongly_connected, nx.DiGraph()
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
def test_connected_raise(self):
|
| 172 |
+
G = nx.Graph()
|
| 173 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 174 |
+
next(nx.strongly_connected_components(G))
|
| 175 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 176 |
+
next(nx.kosaraju_strongly_connected_components(G))
|
| 177 |
+
pytest.raises(NetworkXNotImplemented, nx.is_strongly_connected, G)
|
| 178 |
+
pytest.raises(NetworkXNotImplemented, nx.condensation, G)
|
| 179 |
+
|
| 180 |
+
strong_cc_methods = (
|
| 181 |
+
nx.strongly_connected_components,
|
| 182 |
+
nx.kosaraju_strongly_connected_components,
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
@pytest.mark.parametrize("get_components", strong_cc_methods)
|
| 186 |
+
def test_connected_mutability(self, get_components):
|
| 187 |
+
DG = nx.path_graph(5, create_using=nx.DiGraph)
|
| 188 |
+
G = nx.disjoint_union(DG, DG)
|
| 189 |
+
seen = set()
|
| 190 |
+
for component in get_components(G):
|
| 191 |
+
assert len(seen & component) == 0
|
| 192 |
+
seen.update(component)
|
| 193 |
+
component.clear()
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx import NetworkXNotImplemented
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class TestWeaklyConnected:
|
| 8 |
+
@classmethod
|
| 9 |
+
def setup_class(cls):
|
| 10 |
+
cls.gc = []
|
| 11 |
+
G = nx.DiGraph()
|
| 12 |
+
G.add_edges_from(
|
| 13 |
+
[
|
| 14 |
+
(1, 2),
|
| 15 |
+
(2, 3),
|
| 16 |
+
(2, 8),
|
| 17 |
+
(3, 4),
|
| 18 |
+
(3, 7),
|
| 19 |
+
(4, 5),
|
| 20 |
+
(5, 3),
|
| 21 |
+
(5, 6),
|
| 22 |
+
(7, 4),
|
| 23 |
+
(7, 6),
|
| 24 |
+
(8, 1),
|
| 25 |
+
(8, 7),
|
| 26 |
+
]
|
| 27 |
+
)
|
| 28 |
+
C = [[3, 4, 5, 7], [1, 2, 8], [6]]
|
| 29 |
+
cls.gc.append((G, C))
|
| 30 |
+
|
| 31 |
+
G = nx.DiGraph()
|
| 32 |
+
G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
|
| 33 |
+
C = [[2, 3, 4], [1]]
|
| 34 |
+
cls.gc.append((G, C))
|
| 35 |
+
|
| 36 |
+
G = nx.DiGraph()
|
| 37 |
+
G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
|
| 38 |
+
C = [[1, 2, 3]]
|
| 39 |
+
cls.gc.append((G, C))
|
| 40 |
+
|
| 41 |
+
# Eppstein's tests
|
| 42 |
+
G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []})
|
| 43 |
+
C = [[0], [1], [2], [3], [4], [5], [6]]
|
| 44 |
+
cls.gc.append((G, C))
|
| 45 |
+
|
| 46 |
+
G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]})
|
| 47 |
+
C = [[0, 1, 2], [3, 4]]
|
| 48 |
+
cls.gc.append((G, C))
|
| 49 |
+
|
| 50 |
+
def test_weakly_connected_components(self):
|
| 51 |
+
for G, C in self.gc:
|
| 52 |
+
U = G.to_undirected()
|
| 53 |
+
w = {frozenset(g) for g in nx.weakly_connected_components(G)}
|
| 54 |
+
c = {frozenset(g) for g in nx.connected_components(U)}
|
| 55 |
+
assert w == c
|
| 56 |
+
|
| 57 |
+
def test_number_weakly_connected_components(self):
|
| 58 |
+
for G, C in self.gc:
|
| 59 |
+
U = G.to_undirected()
|
| 60 |
+
w = nx.number_weakly_connected_components(G)
|
| 61 |
+
c = nx.number_connected_components(U)
|
| 62 |
+
assert w == c
|
| 63 |
+
|
| 64 |
+
def test_is_weakly_connected(self):
|
| 65 |
+
for G, C in self.gc:
|
| 66 |
+
U = G.to_undirected()
|
| 67 |
+
assert nx.is_weakly_connected(G) == nx.is_connected(U)
|
| 68 |
+
|
| 69 |
+
def test_null_graph(self):
|
| 70 |
+
G = nx.DiGraph()
|
| 71 |
+
assert list(nx.weakly_connected_components(G)) == []
|
| 72 |
+
assert nx.number_weakly_connected_components(G) == 0
|
| 73 |
+
with pytest.raises(nx.NetworkXPointlessConcept):
|
| 74 |
+
next(nx.is_weakly_connected(G))
|
| 75 |
+
|
| 76 |
+
def test_connected_raise(self):
|
| 77 |
+
G = nx.Graph()
|
| 78 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 79 |
+
next(nx.weakly_connected_components(G))
|
| 80 |
+
pytest.raises(NetworkXNotImplemented, nx.number_weakly_connected_components, G)
|
| 81 |
+
pytest.raises(NetworkXNotImplemented, nx.is_weakly_connected, G)
|
| 82 |
+
|
| 83 |
+
def test_connected_mutability(self):
|
| 84 |
+
DG = nx.path_graph(5, create_using=nx.DiGraph)
|
| 85 |
+
G = nx.disjoint_union(DG, DG)
|
| 86 |
+
seen = set()
|
| 87 |
+
for component in nx.weakly_connected_components(G):
|
| 88 |
+
assert len(seen & component) == 0
|
| 89 |
+
seen.update(component)
|
| 90 |
+
component.clear()
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def test_is_weakly_connected_empty_graph_raises():
|
| 94 |
+
G = nx.DiGraph()
|
| 95 |
+
with pytest.raises(nx.NetworkXPointlessConcept, match="Connectivity is undefined"):
|
| 96 |
+
nx.is_weakly_connected(G)
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from networkx.algorithms.operators.all import *
|
| 2 |
+
from networkx.algorithms.operators.binary import *
|
| 3 |
+
from networkx.algorithms.operators.product import *
|
| 4 |
+
from networkx.algorithms.operators.unary import *
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (377 Bytes). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/all.cpython-310.pyc
ADDED
|
Binary file (9.13 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/binary.cpython-310.pyc
ADDED
|
Binary file (12.7 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/product.cpython-310.pyc
ADDED
|
Binary file (18.2 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/unary.cpython-310.pyc
ADDED
|
Binary file (2.19 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/all.py
ADDED
|
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Operations on many graphs."""
|
| 2 |
+
|
| 3 |
+
from itertools import chain, repeat
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
__all__ = ["union_all", "compose_all", "disjoint_union_all", "intersection_all"]
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@nx._dispatchable(graphs="[graphs]", preserve_all_attrs=True, returns_graph=True)
|
| 11 |
+
def union_all(graphs, rename=()):
|
| 12 |
+
"""Returns the union of all graphs.
|
| 13 |
+
|
| 14 |
+
The graphs must be disjoint, otherwise an exception is raised.
|
| 15 |
+
|
| 16 |
+
Parameters
|
| 17 |
+
----------
|
| 18 |
+
graphs : iterable
|
| 19 |
+
Iterable of NetworkX graphs
|
| 20 |
+
|
| 21 |
+
rename : iterable , optional
|
| 22 |
+
Node names of graphs can be changed by specifying the tuple
|
| 23 |
+
rename=('G-','H-') (for example). Node "u" in G is then renamed
|
| 24 |
+
"G-u" and "v" in H is renamed "H-v". Infinite generators (like itertools.count)
|
| 25 |
+
are also supported.
|
| 26 |
+
|
| 27 |
+
Returns
|
| 28 |
+
-------
|
| 29 |
+
U : a graph with the same type as the first graph in list
|
| 30 |
+
|
| 31 |
+
Raises
|
| 32 |
+
------
|
| 33 |
+
ValueError
|
| 34 |
+
If `graphs` is an empty list.
|
| 35 |
+
|
| 36 |
+
NetworkXError
|
| 37 |
+
In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs.
|
| 38 |
+
|
| 39 |
+
Notes
|
| 40 |
+
-----
|
| 41 |
+
For operating on mixed type graphs, they should be converted to the same type.
|
| 42 |
+
>>> G = nx.Graph()
|
| 43 |
+
>>> H = nx.DiGraph()
|
| 44 |
+
>>> GH = union_all([nx.DiGraph(G), H])
|
| 45 |
+
|
| 46 |
+
To force a disjoint union with node relabeling, use
|
| 47 |
+
disjoint_union_all(G,H) or convert_node_labels_to integers().
|
| 48 |
+
|
| 49 |
+
Graph, edge, and node attributes are propagated to the union graph.
|
| 50 |
+
If a graph attribute is present in multiple graphs, then the value
|
| 51 |
+
from the last graph in the list with that attribute is used.
|
| 52 |
+
|
| 53 |
+
Examples
|
| 54 |
+
--------
|
| 55 |
+
>>> G1 = nx.Graph([(1, 2), (2, 3)])
|
| 56 |
+
>>> G2 = nx.Graph([(4, 5), (5, 6)])
|
| 57 |
+
>>> result_graph = nx.union_all([G1, G2])
|
| 58 |
+
>>> result_graph.nodes()
|
| 59 |
+
NodeView((1, 2, 3, 4, 5, 6))
|
| 60 |
+
>>> result_graph.edges()
|
| 61 |
+
EdgeView([(1, 2), (2, 3), (4, 5), (5, 6)])
|
| 62 |
+
|
| 63 |
+
See Also
|
| 64 |
+
--------
|
| 65 |
+
union
|
| 66 |
+
disjoint_union_all
|
| 67 |
+
"""
|
| 68 |
+
R = None
|
| 69 |
+
seen_nodes = set()
|
| 70 |
+
|
| 71 |
+
# rename graph to obtain disjoint node labels
|
| 72 |
+
def add_prefix(graph, prefix):
|
| 73 |
+
if prefix is None:
|
| 74 |
+
return graph
|
| 75 |
+
|
| 76 |
+
def label(x):
|
| 77 |
+
return f"{prefix}{x}"
|
| 78 |
+
|
| 79 |
+
return nx.relabel_nodes(graph, label)
|
| 80 |
+
|
| 81 |
+
rename = chain(rename, repeat(None))
|
| 82 |
+
graphs = (add_prefix(G, name) for G, name in zip(graphs, rename))
|
| 83 |
+
|
| 84 |
+
for i, G in enumerate(graphs):
|
| 85 |
+
G_nodes_set = set(G.nodes)
|
| 86 |
+
if i == 0:
|
| 87 |
+
# Union is the same type as first graph
|
| 88 |
+
R = G.__class__()
|
| 89 |
+
elif G.is_directed() != R.is_directed():
|
| 90 |
+
raise nx.NetworkXError("All graphs must be directed or undirected.")
|
| 91 |
+
elif G.is_multigraph() != R.is_multigraph():
|
| 92 |
+
raise nx.NetworkXError("All graphs must be graphs or multigraphs.")
|
| 93 |
+
elif not seen_nodes.isdisjoint(G_nodes_set):
|
| 94 |
+
raise nx.NetworkXError(
|
| 95 |
+
"The node sets of the graphs are not disjoint.\n"
|
| 96 |
+
"Use `rename` to specify prefixes for the graphs or use\n"
|
| 97 |
+
"disjoint_union(G1, G2, ..., GN)."
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
seen_nodes |= G_nodes_set
|
| 101 |
+
R.graph.update(G.graph)
|
| 102 |
+
R.add_nodes_from(G.nodes(data=True))
|
| 103 |
+
R.add_edges_from(
|
| 104 |
+
G.edges(keys=True, data=True) if G.is_multigraph() else G.edges(data=True)
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
if R is None:
|
| 108 |
+
raise ValueError("cannot apply union_all to an empty list")
|
| 109 |
+
|
| 110 |
+
return R
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
@nx._dispatchable(graphs="[graphs]", preserve_all_attrs=True, returns_graph=True)
|
| 114 |
+
def disjoint_union_all(graphs):
|
| 115 |
+
"""Returns the disjoint union of all graphs.
|
| 116 |
+
|
| 117 |
+
This operation forces distinct integer node labels starting with 0
|
| 118 |
+
for the first graph in the list and numbering consecutively.
|
| 119 |
+
|
| 120 |
+
Parameters
|
| 121 |
+
----------
|
| 122 |
+
graphs : iterable
|
| 123 |
+
Iterable of NetworkX graphs
|
| 124 |
+
|
| 125 |
+
Returns
|
| 126 |
+
-------
|
| 127 |
+
U : A graph with the same type as the first graph in list
|
| 128 |
+
|
| 129 |
+
Raises
|
| 130 |
+
------
|
| 131 |
+
ValueError
|
| 132 |
+
If `graphs` is an empty list.
|
| 133 |
+
|
| 134 |
+
NetworkXError
|
| 135 |
+
In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs.
|
| 136 |
+
|
| 137 |
+
Examples
|
| 138 |
+
--------
|
| 139 |
+
>>> G1 = nx.Graph([(1, 2), (2, 3)])
|
| 140 |
+
>>> G2 = nx.Graph([(4, 5), (5, 6)])
|
| 141 |
+
>>> U = nx.disjoint_union_all([G1, G2])
|
| 142 |
+
>>> list(U.nodes())
|
| 143 |
+
[0, 1, 2, 3, 4, 5]
|
| 144 |
+
>>> list(U.edges())
|
| 145 |
+
[(0, 1), (1, 2), (3, 4), (4, 5)]
|
| 146 |
+
|
| 147 |
+
Notes
|
| 148 |
+
-----
|
| 149 |
+
For operating on mixed type graphs, they should be converted to the same type.
|
| 150 |
+
|
| 151 |
+
Graph, edge, and node attributes are propagated to the union graph.
|
| 152 |
+
If a graph attribute is present in multiple graphs, then the value
|
| 153 |
+
from the last graph in the list with that attribute is used.
|
| 154 |
+
"""
|
| 155 |
+
|
| 156 |
+
def yield_relabeled(graphs):
|
| 157 |
+
first_label = 0
|
| 158 |
+
for G in graphs:
|
| 159 |
+
yield nx.convert_node_labels_to_integers(G, first_label=first_label)
|
| 160 |
+
first_label += len(G)
|
| 161 |
+
|
| 162 |
+
R = union_all(yield_relabeled(graphs))
|
| 163 |
+
|
| 164 |
+
return R
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
@nx._dispatchable(graphs="[graphs]", preserve_all_attrs=True, returns_graph=True)
|
| 168 |
+
def compose_all(graphs):
|
| 169 |
+
"""Returns the composition of all graphs.
|
| 170 |
+
|
| 171 |
+
Composition is the simple union of the node sets and edge sets.
|
| 172 |
+
The node sets of the supplied graphs need not be disjoint.
|
| 173 |
+
|
| 174 |
+
Parameters
|
| 175 |
+
----------
|
| 176 |
+
graphs : iterable
|
| 177 |
+
Iterable of NetworkX graphs
|
| 178 |
+
|
| 179 |
+
Returns
|
| 180 |
+
-------
|
| 181 |
+
C : A graph with the same type as the first graph in list
|
| 182 |
+
|
| 183 |
+
Raises
|
| 184 |
+
------
|
| 185 |
+
ValueError
|
| 186 |
+
If `graphs` is an empty list.
|
| 187 |
+
|
| 188 |
+
NetworkXError
|
| 189 |
+
In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs.
|
| 190 |
+
|
| 191 |
+
Examples
|
| 192 |
+
--------
|
| 193 |
+
>>> G1 = nx.Graph([(1, 2), (2, 3)])
|
| 194 |
+
>>> G2 = nx.Graph([(3, 4), (5, 6)])
|
| 195 |
+
>>> C = nx.compose_all([G1, G2])
|
| 196 |
+
>>> list(C.nodes())
|
| 197 |
+
[1, 2, 3, 4, 5, 6]
|
| 198 |
+
>>> list(C.edges())
|
| 199 |
+
[(1, 2), (2, 3), (3, 4), (5, 6)]
|
| 200 |
+
|
| 201 |
+
Notes
|
| 202 |
+
-----
|
| 203 |
+
For operating on mixed type graphs, they should be converted to the same type.
|
| 204 |
+
|
| 205 |
+
Graph, edge, and node attributes are propagated to the union graph.
|
| 206 |
+
If a graph attribute is present in multiple graphs, then the value
|
| 207 |
+
from the last graph in the list with that attribute is used.
|
| 208 |
+
"""
|
| 209 |
+
R = None
|
| 210 |
+
|
| 211 |
+
# add graph attributes, H attributes take precedent over G attributes
|
| 212 |
+
for i, G in enumerate(graphs):
|
| 213 |
+
if i == 0:
|
| 214 |
+
# create new graph
|
| 215 |
+
R = G.__class__()
|
| 216 |
+
elif G.is_directed() != R.is_directed():
|
| 217 |
+
raise nx.NetworkXError("All graphs must be directed or undirected.")
|
| 218 |
+
elif G.is_multigraph() != R.is_multigraph():
|
| 219 |
+
raise nx.NetworkXError("All graphs must be graphs or multigraphs.")
|
| 220 |
+
|
| 221 |
+
R.graph.update(G.graph)
|
| 222 |
+
R.add_nodes_from(G.nodes(data=True))
|
| 223 |
+
R.add_edges_from(
|
| 224 |
+
G.edges(keys=True, data=True) if G.is_multigraph() else G.edges(data=True)
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
if R is None:
|
| 228 |
+
raise ValueError("cannot apply compose_all to an empty list")
|
| 229 |
+
|
| 230 |
+
return R
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
@nx._dispatchable(graphs="[graphs]", returns_graph=True)
|
| 234 |
+
def intersection_all(graphs):
|
| 235 |
+
"""Returns a new graph that contains only the nodes and the edges that exist in
|
| 236 |
+
all graphs.
|
| 237 |
+
|
| 238 |
+
Parameters
|
| 239 |
+
----------
|
| 240 |
+
graphs : iterable
|
| 241 |
+
Iterable of NetworkX graphs
|
| 242 |
+
|
| 243 |
+
Returns
|
| 244 |
+
-------
|
| 245 |
+
R : A new graph with the same type as the first graph in list
|
| 246 |
+
|
| 247 |
+
Raises
|
| 248 |
+
------
|
| 249 |
+
ValueError
|
| 250 |
+
If `graphs` is an empty list.
|
| 251 |
+
|
| 252 |
+
NetworkXError
|
| 253 |
+
In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs.
|
| 254 |
+
|
| 255 |
+
Notes
|
| 256 |
+
-----
|
| 257 |
+
For operating on mixed type graphs, they should be converted to the same type.
|
| 258 |
+
|
| 259 |
+
Attributes from the graph, nodes, and edges are not copied to the new
|
| 260 |
+
graph.
|
| 261 |
+
|
| 262 |
+
The resulting graph can be updated with attributes if desired. For example, code which adds the minimum attribute for each node across all graphs could work.
|
| 263 |
+
>>> g = nx.Graph()
|
| 264 |
+
>>> g.add_node(0, capacity=4)
|
| 265 |
+
>>> g.add_node(1, capacity=3)
|
| 266 |
+
>>> g.add_edge(0, 1)
|
| 267 |
+
|
| 268 |
+
>>> h = g.copy()
|
| 269 |
+
>>> h.nodes[0]["capacity"] = 2
|
| 270 |
+
|
| 271 |
+
>>> gh = nx.intersection_all([g, h])
|
| 272 |
+
|
| 273 |
+
>>> new_node_attr = {
|
| 274 |
+
... n: min(*(anyG.nodes[n].get("capacity", float("inf")) for anyG in [g, h]))
|
| 275 |
+
... for n in gh
|
| 276 |
+
... }
|
| 277 |
+
>>> nx.set_node_attributes(gh, new_node_attr, "new_capacity")
|
| 278 |
+
>>> gh.nodes(data=True)
|
| 279 |
+
NodeDataView({0: {'new_capacity': 2}, 1: {'new_capacity': 3}})
|
| 280 |
+
|
| 281 |
+
Examples
|
| 282 |
+
--------
|
| 283 |
+
>>> G1 = nx.Graph([(1, 2), (2, 3)])
|
| 284 |
+
>>> G2 = nx.Graph([(2, 3), (3, 4)])
|
| 285 |
+
>>> R = nx.intersection_all([G1, G2])
|
| 286 |
+
>>> list(R.nodes())
|
| 287 |
+
[2, 3]
|
| 288 |
+
>>> list(R.edges())
|
| 289 |
+
[(2, 3)]
|
| 290 |
+
|
| 291 |
+
"""
|
| 292 |
+
R = None
|
| 293 |
+
|
| 294 |
+
for i, G in enumerate(graphs):
|
| 295 |
+
G_nodes_set = set(G.nodes)
|
| 296 |
+
G_edges_set = set(G.edges)
|
| 297 |
+
if not G.is_directed():
|
| 298 |
+
if G.is_multigraph():
|
| 299 |
+
G_edges_set.update((v, u, k) for u, v, k in list(G_edges_set))
|
| 300 |
+
else:
|
| 301 |
+
G_edges_set.update((v, u) for u, v in list(G_edges_set))
|
| 302 |
+
if i == 0:
|
| 303 |
+
# create new graph
|
| 304 |
+
R = G.__class__()
|
| 305 |
+
node_intersection = G_nodes_set
|
| 306 |
+
edge_intersection = G_edges_set
|
| 307 |
+
elif G.is_directed() != R.is_directed():
|
| 308 |
+
raise nx.NetworkXError("All graphs must be directed or undirected.")
|
| 309 |
+
elif G.is_multigraph() != R.is_multigraph():
|
| 310 |
+
raise nx.NetworkXError("All graphs must be graphs or multigraphs.")
|
| 311 |
+
else:
|
| 312 |
+
node_intersection &= G_nodes_set
|
| 313 |
+
edge_intersection &= G_edges_set
|
| 314 |
+
|
| 315 |
+
if R is None:
|
| 316 |
+
raise ValueError("cannot apply intersection_all to an empty list")
|
| 317 |
+
|
| 318 |
+
R.add_nodes_from(node_intersection)
|
| 319 |
+
R.add_edges_from(edge_intersection)
|
| 320 |
+
|
| 321 |
+
return R
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/binary.py
ADDED
|
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Operations on graphs including union, intersection, difference.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
__all__ = [
|
| 8 |
+
"union",
|
| 9 |
+
"compose",
|
| 10 |
+
"disjoint_union",
|
| 11 |
+
"intersection",
|
| 12 |
+
"difference",
|
| 13 |
+
"symmetric_difference",
|
| 14 |
+
"full_join",
|
| 15 |
+
]
|
| 16 |
+
_G_H = {"G": 0, "H": 1}
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@nx._dispatchable(graphs=_G_H, preserve_all_attrs=True, returns_graph=True)
|
| 20 |
+
def union(G, H, rename=()):
|
| 21 |
+
"""Combine graphs G and H. The names of nodes must be unique.
|
| 22 |
+
|
| 23 |
+
A name collision between the graphs will raise an exception.
|
| 24 |
+
|
| 25 |
+
A renaming facility is provided to avoid name collisions.
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
Parameters
|
| 29 |
+
----------
|
| 30 |
+
G, H : graph
|
| 31 |
+
A NetworkX graph
|
| 32 |
+
|
| 33 |
+
rename : iterable , optional
|
| 34 |
+
Node names of G and H can be changed by specifying the tuple
|
| 35 |
+
rename=('G-','H-') (for example). Node "u" in G is then renamed
|
| 36 |
+
"G-u" and "v" in H is renamed "H-v".
|
| 37 |
+
|
| 38 |
+
Returns
|
| 39 |
+
-------
|
| 40 |
+
U : A union graph with the same type as G.
|
| 41 |
+
|
| 42 |
+
See Also
|
| 43 |
+
--------
|
| 44 |
+
compose
|
| 45 |
+
:func:`~networkx.Graph.update`
|
| 46 |
+
disjoint_union
|
| 47 |
+
|
| 48 |
+
Notes
|
| 49 |
+
-----
|
| 50 |
+
To combine graphs that have common nodes, consider compose(G, H)
|
| 51 |
+
or the method, Graph.update().
|
| 52 |
+
|
| 53 |
+
disjoint_union() is similar to union() except that it avoids name clashes
|
| 54 |
+
by relabeling the nodes with sequential integers.
|
| 55 |
+
|
| 56 |
+
Edge and node attributes are propagated from G and H to the union graph.
|
| 57 |
+
Graph attributes are also propagated, but if they are present in both G and H,
|
| 58 |
+
then the value from H is used.
|
| 59 |
+
|
| 60 |
+
Examples
|
| 61 |
+
--------
|
| 62 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
|
| 63 |
+
>>> H = nx.Graph([(0, 1), (0, 3), (1, 3), (1, 2)])
|
| 64 |
+
>>> U = nx.union(G, H, rename=("G", "H"))
|
| 65 |
+
>>> U.nodes
|
| 66 |
+
NodeView(('G0', 'G1', 'G2', 'H0', 'H1', 'H3', 'H2'))
|
| 67 |
+
>>> U.edges
|
| 68 |
+
EdgeView([('G0', 'G1'), ('G0', 'G2'), ('G1', 'G2'), ('H0', 'H1'), ('H0', 'H3'), ('H1', 'H3'), ('H1', 'H2')])
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
"""
|
| 72 |
+
return nx.union_all([G, H], rename)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
@nx._dispatchable(graphs=_G_H, preserve_all_attrs=True, returns_graph=True)
|
| 76 |
+
def disjoint_union(G, H):
|
| 77 |
+
"""Combine graphs G and H. The nodes are assumed to be unique (disjoint).
|
| 78 |
+
|
| 79 |
+
This algorithm automatically relabels nodes to avoid name collisions.
|
| 80 |
+
|
| 81 |
+
Parameters
|
| 82 |
+
----------
|
| 83 |
+
G,H : graph
|
| 84 |
+
A NetworkX graph
|
| 85 |
+
|
| 86 |
+
Returns
|
| 87 |
+
-------
|
| 88 |
+
U : A union graph with the same type as G.
|
| 89 |
+
|
| 90 |
+
See Also
|
| 91 |
+
--------
|
| 92 |
+
union
|
| 93 |
+
compose
|
| 94 |
+
:func:`~networkx.Graph.update`
|
| 95 |
+
|
| 96 |
+
Notes
|
| 97 |
+
-----
|
| 98 |
+
A new graph is created, of the same class as G. It is recommended
|
| 99 |
+
that G and H be either both directed or both undirected.
|
| 100 |
+
|
| 101 |
+
The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are
|
| 102 |
+
relabeled len(G) to len(G)+len(H)-1.
|
| 103 |
+
|
| 104 |
+
Renumbering forces G and H to be disjoint, so no exception is ever raised for a name collision.
|
| 105 |
+
To preserve the check for common nodes, use union().
|
| 106 |
+
|
| 107 |
+
Edge and node attributes are propagated from G and H to the union graph.
|
| 108 |
+
Graph attributes are also propagated, but if they are present in both G and H,
|
| 109 |
+
then the value from H is used.
|
| 110 |
+
|
| 111 |
+
To combine graphs that have common nodes, consider compose(G, H)
|
| 112 |
+
or the method, Graph.update().
|
| 113 |
+
|
| 114 |
+
Examples
|
| 115 |
+
--------
|
| 116 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
|
| 117 |
+
>>> H = nx.Graph([(0, 3), (1, 2), (2, 3)])
|
| 118 |
+
>>> G.nodes[0]["key1"] = 5
|
| 119 |
+
>>> H.nodes[0]["key2"] = 10
|
| 120 |
+
>>> U = nx.disjoint_union(G, H)
|
| 121 |
+
>>> U.nodes(data=True)
|
| 122 |
+
NodeDataView({0: {'key1': 5}, 1: {}, 2: {}, 3: {'key2': 10}, 4: {}, 5: {}, 6: {}})
|
| 123 |
+
>>> U.edges
|
| 124 |
+
EdgeView([(0, 1), (0, 2), (1, 2), (3, 4), (4, 6), (5, 6)])
|
| 125 |
+
"""
|
| 126 |
+
return nx.disjoint_union_all([G, H])
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
@nx._dispatchable(graphs=_G_H, returns_graph=True)
|
| 130 |
+
def intersection(G, H):
|
| 131 |
+
"""Returns a new graph that contains only the nodes and the edges that exist in
|
| 132 |
+
both G and H.
|
| 133 |
+
|
| 134 |
+
Parameters
|
| 135 |
+
----------
|
| 136 |
+
G,H : graph
|
| 137 |
+
A NetworkX graph. G and H can have different node sets but must be both graphs or both multigraphs.
|
| 138 |
+
|
| 139 |
+
Raises
|
| 140 |
+
------
|
| 141 |
+
NetworkXError
|
| 142 |
+
If one is a MultiGraph and the other one is a graph.
|
| 143 |
+
|
| 144 |
+
Returns
|
| 145 |
+
-------
|
| 146 |
+
GH : A new graph with the same type as G.
|
| 147 |
+
|
| 148 |
+
Notes
|
| 149 |
+
-----
|
| 150 |
+
Attributes from the graph, nodes, and edges are not copied to the new
|
| 151 |
+
graph. If you want a new graph of the intersection of G and H
|
| 152 |
+
with the attributes (including edge data) from G use remove_nodes_from()
|
| 153 |
+
as follows
|
| 154 |
+
|
| 155 |
+
>>> G = nx.path_graph(3)
|
| 156 |
+
>>> H = nx.path_graph(5)
|
| 157 |
+
>>> R = G.copy()
|
| 158 |
+
>>> R.remove_nodes_from(n for n in G if n not in H)
|
| 159 |
+
>>> R.remove_edges_from(e for e in G.edges if e not in H.edges)
|
| 160 |
+
|
| 161 |
+
Examples
|
| 162 |
+
--------
|
| 163 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
|
| 164 |
+
>>> H = nx.Graph([(0, 3), (1, 2), (2, 3)])
|
| 165 |
+
>>> R = nx.intersection(G, H)
|
| 166 |
+
>>> R.nodes
|
| 167 |
+
NodeView((0, 1, 2))
|
| 168 |
+
>>> R.edges
|
| 169 |
+
EdgeView([(1, 2)])
|
| 170 |
+
"""
|
| 171 |
+
return nx.intersection_all([G, H])
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
@nx._dispatchable(graphs=_G_H, returns_graph=True)
|
| 175 |
+
def difference(G, H):
|
| 176 |
+
"""Returns a new graph that contains the edges that exist in G but not in H.
|
| 177 |
+
|
| 178 |
+
The node sets of H and G must be the same.
|
| 179 |
+
|
| 180 |
+
Parameters
|
| 181 |
+
----------
|
| 182 |
+
G,H : graph
|
| 183 |
+
A NetworkX graph. G and H must have the same node sets.
|
| 184 |
+
|
| 185 |
+
Returns
|
| 186 |
+
-------
|
| 187 |
+
D : A new graph with the same type as G.
|
| 188 |
+
|
| 189 |
+
Notes
|
| 190 |
+
-----
|
| 191 |
+
Attributes from the graph, nodes, and edges are not copied to the new
|
| 192 |
+
graph. If you want a new graph of the difference of G and H with
|
| 193 |
+
the attributes (including edge data) from G use remove_nodes_from()
|
| 194 |
+
as follows:
|
| 195 |
+
|
| 196 |
+
>>> G = nx.path_graph(3)
|
| 197 |
+
>>> H = nx.path_graph(5)
|
| 198 |
+
>>> R = G.copy()
|
| 199 |
+
>>> R.remove_nodes_from(n for n in G if n in H)
|
| 200 |
+
|
| 201 |
+
Examples
|
| 202 |
+
--------
|
| 203 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3)])
|
| 204 |
+
>>> H = nx.Graph([(0, 1), (1, 2), (0, 3)])
|
| 205 |
+
>>> R = nx.difference(G, H)
|
| 206 |
+
>>> R.nodes
|
| 207 |
+
NodeView((0, 1, 2, 3))
|
| 208 |
+
>>> R.edges
|
| 209 |
+
EdgeView([(0, 2), (1, 3)])
|
| 210 |
+
"""
|
| 211 |
+
# create new graph
|
| 212 |
+
if not G.is_multigraph() == H.is_multigraph():
|
| 213 |
+
raise nx.NetworkXError("G and H must both be graphs or multigraphs.")
|
| 214 |
+
R = nx.create_empty_copy(G, with_data=False)
|
| 215 |
+
|
| 216 |
+
if set(G) != set(H):
|
| 217 |
+
raise nx.NetworkXError("Node sets of graphs not equal")
|
| 218 |
+
|
| 219 |
+
if G.is_multigraph():
|
| 220 |
+
edges = G.edges(keys=True)
|
| 221 |
+
else:
|
| 222 |
+
edges = G.edges()
|
| 223 |
+
for e in edges:
|
| 224 |
+
if not H.has_edge(*e):
|
| 225 |
+
R.add_edge(*e)
|
| 226 |
+
return R
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
@nx._dispatchable(graphs=_G_H, returns_graph=True)
|
| 230 |
+
def symmetric_difference(G, H):
|
| 231 |
+
"""Returns new graph with edges that exist in either G or H but not both.
|
| 232 |
+
|
| 233 |
+
The node sets of H and G must be the same.
|
| 234 |
+
|
| 235 |
+
Parameters
|
| 236 |
+
----------
|
| 237 |
+
G,H : graph
|
| 238 |
+
A NetworkX graph. G and H must have the same node sets.
|
| 239 |
+
|
| 240 |
+
Returns
|
| 241 |
+
-------
|
| 242 |
+
D : A new graph with the same type as G.
|
| 243 |
+
|
| 244 |
+
Notes
|
| 245 |
+
-----
|
| 246 |
+
Attributes from the graph, nodes, and edges are not copied to the new
|
| 247 |
+
graph.
|
| 248 |
+
|
| 249 |
+
Examples
|
| 250 |
+
--------
|
| 251 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3)])
|
| 252 |
+
>>> H = nx.Graph([(0, 1), (1, 2), (0, 3)])
|
| 253 |
+
>>> R = nx.symmetric_difference(G, H)
|
| 254 |
+
>>> R.nodes
|
| 255 |
+
NodeView((0, 1, 2, 3))
|
| 256 |
+
>>> R.edges
|
| 257 |
+
EdgeView([(0, 2), (0, 3), (1, 3)])
|
| 258 |
+
"""
|
| 259 |
+
# create new graph
|
| 260 |
+
if not G.is_multigraph() == H.is_multigraph():
|
| 261 |
+
raise nx.NetworkXError("G and H must both be graphs or multigraphs.")
|
| 262 |
+
R = nx.create_empty_copy(G, with_data=False)
|
| 263 |
+
|
| 264 |
+
if set(G) != set(H):
|
| 265 |
+
raise nx.NetworkXError("Node sets of graphs not equal")
|
| 266 |
+
|
| 267 |
+
gnodes = set(G) # set of nodes in G
|
| 268 |
+
hnodes = set(H) # set of nodes in H
|
| 269 |
+
nodes = gnodes.symmetric_difference(hnodes)
|
| 270 |
+
R.add_nodes_from(nodes)
|
| 271 |
+
|
| 272 |
+
if G.is_multigraph():
|
| 273 |
+
edges = G.edges(keys=True)
|
| 274 |
+
else:
|
| 275 |
+
edges = G.edges()
|
| 276 |
+
# we could copy the data here but then this function doesn't
|
| 277 |
+
# match intersection and difference
|
| 278 |
+
for e in edges:
|
| 279 |
+
if not H.has_edge(*e):
|
| 280 |
+
R.add_edge(*e)
|
| 281 |
+
|
| 282 |
+
if H.is_multigraph():
|
| 283 |
+
edges = H.edges(keys=True)
|
| 284 |
+
else:
|
| 285 |
+
edges = H.edges()
|
| 286 |
+
for e in edges:
|
| 287 |
+
if not G.has_edge(*e):
|
| 288 |
+
R.add_edge(*e)
|
| 289 |
+
return R
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
@nx._dispatchable(graphs=_G_H, preserve_all_attrs=True, returns_graph=True)
|
| 293 |
+
def compose(G, H):
|
| 294 |
+
"""Compose graph G with H by combining nodes and edges into a single graph.
|
| 295 |
+
|
| 296 |
+
The node sets and edges sets do not need to be disjoint.
|
| 297 |
+
|
| 298 |
+
Composing preserves the attributes of nodes and edges.
|
| 299 |
+
Attribute values from H take precedent over attribute values from G.
|
| 300 |
+
|
| 301 |
+
Parameters
|
| 302 |
+
----------
|
| 303 |
+
G, H : graph
|
| 304 |
+
A NetworkX graph
|
| 305 |
+
|
| 306 |
+
Returns
|
| 307 |
+
-------
|
| 308 |
+
C: A new graph with the same type as G
|
| 309 |
+
|
| 310 |
+
See Also
|
| 311 |
+
--------
|
| 312 |
+
:func:`~networkx.Graph.update`
|
| 313 |
+
union
|
| 314 |
+
disjoint_union
|
| 315 |
+
|
| 316 |
+
Notes
|
| 317 |
+
-----
|
| 318 |
+
It is recommended that G and H be either both directed or both undirected.
|
| 319 |
+
|
| 320 |
+
For MultiGraphs, the edges are identified by incident nodes AND edge-key.
|
| 321 |
+
This can cause surprises (i.e., edge `(1, 2)` may or may not be the same
|
| 322 |
+
in two graphs) if you use MultiGraph without keeping track of edge keys.
|
| 323 |
+
|
| 324 |
+
If combining the attributes of common nodes is not desired, consider union(),
|
| 325 |
+
which raises an exception for name collisions.
|
| 326 |
+
|
| 327 |
+
Examples
|
| 328 |
+
--------
|
| 329 |
+
>>> G = nx.Graph([(0, 1), (0, 2)])
|
| 330 |
+
>>> H = nx.Graph([(0, 1), (1, 2)])
|
| 331 |
+
>>> R = nx.compose(G, H)
|
| 332 |
+
>>> R.nodes
|
| 333 |
+
NodeView((0, 1, 2))
|
| 334 |
+
>>> R.edges
|
| 335 |
+
EdgeView([(0, 1), (0, 2), (1, 2)])
|
| 336 |
+
|
| 337 |
+
By default, the attributes from `H` take precedent over attributes from `G`.
|
| 338 |
+
If you prefer another way of combining attributes, you can update them after the compose operation:
|
| 339 |
+
|
| 340 |
+
>>> G = nx.Graph([(0, 1, {"weight": 2.0}), (3, 0, {"weight": 100.0})])
|
| 341 |
+
>>> H = nx.Graph([(0, 1, {"weight": 10.0}), (1, 2, {"weight": -1.0})])
|
| 342 |
+
>>> nx.set_node_attributes(G, {0: "dark", 1: "light", 3: "black"}, name="color")
|
| 343 |
+
>>> nx.set_node_attributes(H, {0: "green", 1: "orange", 2: "yellow"}, name="color")
|
| 344 |
+
>>> GcomposeH = nx.compose(G, H)
|
| 345 |
+
|
| 346 |
+
Normally, color attribute values of nodes of GcomposeH come from H. We can workaround this as follows:
|
| 347 |
+
|
| 348 |
+
>>> node_data = {
|
| 349 |
+
... n: G.nodes[n]["color"] + " " + H.nodes[n]["color"]
|
| 350 |
+
... for n in G.nodes & H.nodes
|
| 351 |
+
... }
|
| 352 |
+
>>> nx.set_node_attributes(GcomposeH, node_data, "color")
|
| 353 |
+
>>> print(GcomposeH.nodes[0]["color"])
|
| 354 |
+
dark green
|
| 355 |
+
|
| 356 |
+
>>> print(GcomposeH.nodes[3]["color"])
|
| 357 |
+
black
|
| 358 |
+
|
| 359 |
+
Similarly, we can update edge attributes after the compose operation in a way we prefer:
|
| 360 |
+
|
| 361 |
+
>>> edge_data = {
|
| 362 |
+
... e: G.edges[e]["weight"] * H.edges[e]["weight"] for e in G.edges & H.edges
|
| 363 |
+
... }
|
| 364 |
+
>>> nx.set_edge_attributes(GcomposeH, edge_data, "weight")
|
| 365 |
+
>>> print(GcomposeH.edges[(0, 1)]["weight"])
|
| 366 |
+
20.0
|
| 367 |
+
|
| 368 |
+
>>> print(GcomposeH.edges[(3, 0)]["weight"])
|
| 369 |
+
100.0
|
| 370 |
+
"""
|
| 371 |
+
return nx.compose_all([G, H])
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
@nx._dispatchable(graphs=_G_H, preserve_all_attrs=True, returns_graph=True)
|
| 375 |
+
def full_join(G, H, rename=(None, None)):
|
| 376 |
+
"""Returns the full join of graphs G and H.
|
| 377 |
+
|
| 378 |
+
Full join is the union of G and H in which all edges between
|
| 379 |
+
G and H are added.
|
| 380 |
+
The node sets of G and H must be disjoint,
|
| 381 |
+
otherwise an exception is raised.
|
| 382 |
+
|
| 383 |
+
Parameters
|
| 384 |
+
----------
|
| 385 |
+
G, H : graph
|
| 386 |
+
A NetworkX graph
|
| 387 |
+
|
| 388 |
+
rename : tuple , default=(None, None)
|
| 389 |
+
Node names of G and H can be changed by specifying the tuple
|
| 390 |
+
rename=('G-','H-') (for example). Node "u" in G is then renamed
|
| 391 |
+
"G-u" and "v" in H is renamed "H-v".
|
| 392 |
+
|
| 393 |
+
Returns
|
| 394 |
+
-------
|
| 395 |
+
U : The full join graph with the same type as G.
|
| 396 |
+
|
| 397 |
+
Notes
|
| 398 |
+
-----
|
| 399 |
+
It is recommended that G and H be either both directed or both undirected.
|
| 400 |
+
|
| 401 |
+
If G is directed, then edges from G to H are added as well as from H to G.
|
| 402 |
+
|
| 403 |
+
Note that full_join() does not produce parallel edges for MultiGraphs.
|
| 404 |
+
|
| 405 |
+
The full join operation of graphs G and H is the same as getting
|
| 406 |
+
their complement, performing a disjoint union, and finally getting
|
| 407 |
+
the complement of the resulting graph.
|
| 408 |
+
|
| 409 |
+
Graph, edge, and node attributes are propagated from G and H
|
| 410 |
+
to the union graph. If a graph attribute is present in both
|
| 411 |
+
G and H the value from H is used.
|
| 412 |
+
|
| 413 |
+
Examples
|
| 414 |
+
--------
|
| 415 |
+
>>> G = nx.Graph([(0, 1), (0, 2)])
|
| 416 |
+
>>> H = nx.Graph([(3, 4)])
|
| 417 |
+
>>> R = nx.full_join(G, H, rename=("G", "H"))
|
| 418 |
+
>>> R.nodes
|
| 419 |
+
NodeView(('G0', 'G1', 'G2', 'H3', 'H4'))
|
| 420 |
+
>>> R.edges
|
| 421 |
+
EdgeView([('G0', 'G1'), ('G0', 'G2'), ('G0', 'H3'), ('G0', 'H4'), ('G1', 'H3'), ('G1', 'H4'), ('G2', 'H3'), ('G2', 'H4'), ('H3', 'H4')])
|
| 422 |
+
|
| 423 |
+
See Also
|
| 424 |
+
--------
|
| 425 |
+
union
|
| 426 |
+
disjoint_union
|
| 427 |
+
"""
|
| 428 |
+
R = union(G, H, rename)
|
| 429 |
+
|
| 430 |
+
def add_prefix(graph, prefix):
|
| 431 |
+
if prefix is None:
|
| 432 |
+
return graph
|
| 433 |
+
|
| 434 |
+
def label(x):
|
| 435 |
+
return f"{prefix}{x}"
|
| 436 |
+
|
| 437 |
+
return nx.relabel_nodes(graph, label)
|
| 438 |
+
|
| 439 |
+
G = add_prefix(G, rename[0])
|
| 440 |
+
H = add_prefix(H, rename[1])
|
| 441 |
+
|
| 442 |
+
for i in G:
|
| 443 |
+
for j in H:
|
| 444 |
+
R.add_edge(i, j)
|
| 445 |
+
if R.is_directed():
|
| 446 |
+
for i in H:
|
| 447 |
+
for j in G:
|
| 448 |
+
R.add_edge(i, j)
|
| 449 |
+
|
| 450 |
+
return R
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/product.py
ADDED
|
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Graph products.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from itertools import product
|
| 6 |
+
|
| 7 |
+
import networkx as nx
|
| 8 |
+
from networkx.utils import not_implemented_for
|
| 9 |
+
|
| 10 |
+
__all__ = [
|
| 11 |
+
"tensor_product",
|
| 12 |
+
"cartesian_product",
|
| 13 |
+
"lexicographic_product",
|
| 14 |
+
"strong_product",
|
| 15 |
+
"power",
|
| 16 |
+
"rooted_product",
|
| 17 |
+
"corona_product",
|
| 18 |
+
"modular_product",
|
| 19 |
+
]
|
| 20 |
+
_G_H = {"G": 0, "H": 1}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def _dict_product(d1, d2):
|
| 24 |
+
return {k: (d1.get(k), d2.get(k)) for k in set(d1) | set(d2)}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Generators for producing graph products
|
| 28 |
+
def _node_product(G, H):
|
| 29 |
+
for u, v in product(G, H):
|
| 30 |
+
yield ((u, v), _dict_product(G.nodes[u], H.nodes[v]))
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def _directed_edges_cross_edges(G, H):
|
| 34 |
+
if not G.is_multigraph() and not H.is_multigraph():
|
| 35 |
+
for u, v, c in G.edges(data=True):
|
| 36 |
+
for x, y, d in H.edges(data=True):
|
| 37 |
+
yield (u, x), (v, y), _dict_product(c, d)
|
| 38 |
+
if not G.is_multigraph() and H.is_multigraph():
|
| 39 |
+
for u, v, c in G.edges(data=True):
|
| 40 |
+
for x, y, k, d in H.edges(data=True, keys=True):
|
| 41 |
+
yield (u, x), (v, y), k, _dict_product(c, d)
|
| 42 |
+
if G.is_multigraph() and not H.is_multigraph():
|
| 43 |
+
for u, v, k, c in G.edges(data=True, keys=True):
|
| 44 |
+
for x, y, d in H.edges(data=True):
|
| 45 |
+
yield (u, x), (v, y), k, _dict_product(c, d)
|
| 46 |
+
if G.is_multigraph() and H.is_multigraph():
|
| 47 |
+
for u, v, j, c in G.edges(data=True, keys=True):
|
| 48 |
+
for x, y, k, d in H.edges(data=True, keys=True):
|
| 49 |
+
yield (u, x), (v, y), (j, k), _dict_product(c, d)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def _undirected_edges_cross_edges(G, H):
|
| 53 |
+
if not G.is_multigraph() and not H.is_multigraph():
|
| 54 |
+
for u, v, c in G.edges(data=True):
|
| 55 |
+
for x, y, d in H.edges(data=True):
|
| 56 |
+
yield (v, x), (u, y), _dict_product(c, d)
|
| 57 |
+
if not G.is_multigraph() and H.is_multigraph():
|
| 58 |
+
for u, v, c in G.edges(data=True):
|
| 59 |
+
for x, y, k, d in H.edges(data=True, keys=True):
|
| 60 |
+
yield (v, x), (u, y), k, _dict_product(c, d)
|
| 61 |
+
if G.is_multigraph() and not H.is_multigraph():
|
| 62 |
+
for u, v, k, c in G.edges(data=True, keys=True):
|
| 63 |
+
for x, y, d in H.edges(data=True):
|
| 64 |
+
yield (v, x), (u, y), k, _dict_product(c, d)
|
| 65 |
+
if G.is_multigraph() and H.is_multigraph():
|
| 66 |
+
for u, v, j, c in G.edges(data=True, keys=True):
|
| 67 |
+
for x, y, k, d in H.edges(data=True, keys=True):
|
| 68 |
+
yield (v, x), (u, y), (j, k), _dict_product(c, d)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def _edges_cross_nodes(G, H):
|
| 72 |
+
if G.is_multigraph():
|
| 73 |
+
for u, v, k, d in G.edges(data=True, keys=True):
|
| 74 |
+
for x in H:
|
| 75 |
+
yield (u, x), (v, x), k, d
|
| 76 |
+
else:
|
| 77 |
+
for u, v, d in G.edges(data=True):
|
| 78 |
+
for x in H:
|
| 79 |
+
if H.is_multigraph():
|
| 80 |
+
yield (u, x), (v, x), None, d
|
| 81 |
+
else:
|
| 82 |
+
yield (u, x), (v, x), d
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def _nodes_cross_edges(G, H):
|
| 86 |
+
if H.is_multigraph():
|
| 87 |
+
for x in G:
|
| 88 |
+
for u, v, k, d in H.edges(data=True, keys=True):
|
| 89 |
+
yield (x, u), (x, v), k, d
|
| 90 |
+
else:
|
| 91 |
+
for x in G:
|
| 92 |
+
for u, v, d in H.edges(data=True):
|
| 93 |
+
if G.is_multigraph():
|
| 94 |
+
yield (x, u), (x, v), None, d
|
| 95 |
+
else:
|
| 96 |
+
yield (x, u), (x, v), d
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def _edges_cross_nodes_and_nodes(G, H):
|
| 100 |
+
if G.is_multigraph():
|
| 101 |
+
for u, v, k, d in G.edges(data=True, keys=True):
|
| 102 |
+
for x in H:
|
| 103 |
+
for y in H:
|
| 104 |
+
yield (u, x), (v, y), k, d
|
| 105 |
+
else:
|
| 106 |
+
for u, v, d in G.edges(data=True):
|
| 107 |
+
for x in H:
|
| 108 |
+
for y in H:
|
| 109 |
+
if H.is_multigraph():
|
| 110 |
+
yield (u, x), (v, y), None, d
|
| 111 |
+
else:
|
| 112 |
+
yield (u, x), (v, y), d
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def _init_product_graph(G, H):
|
| 116 |
+
if G.is_directed() != H.is_directed():
|
| 117 |
+
msg = "G and H must be both directed or both undirected"
|
| 118 |
+
raise nx.NetworkXError(msg)
|
| 119 |
+
if G.is_multigraph() or H.is_multigraph():
|
| 120 |
+
GH = nx.MultiGraph()
|
| 121 |
+
else:
|
| 122 |
+
GH = nx.Graph()
|
| 123 |
+
if G.is_directed():
|
| 124 |
+
GH = GH.to_directed()
|
| 125 |
+
return GH
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
@nx._dispatchable(graphs=_G_H, preserve_node_attrs=True, returns_graph=True)
|
| 129 |
+
def tensor_product(G, H):
|
| 130 |
+
r"""Returns the tensor product of G and H.
|
| 131 |
+
|
| 132 |
+
The tensor product $P$ of the graphs $G$ and $H$ has a node set that
|
| 133 |
+
is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$.
|
| 134 |
+
$P$ has an edge $((u,v), (x,y))$ if and only if $(u,x)$ is an edge in $G$
|
| 135 |
+
and $(v,y)$ is an edge in $H$.
|
| 136 |
+
|
| 137 |
+
Tensor product is sometimes also referred to as the categorical product,
|
| 138 |
+
direct product, cardinal product or conjunction.
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
Parameters
|
| 142 |
+
----------
|
| 143 |
+
G, H: graphs
|
| 144 |
+
Networkx graphs.
|
| 145 |
+
|
| 146 |
+
Returns
|
| 147 |
+
-------
|
| 148 |
+
P: NetworkX graph
|
| 149 |
+
The tensor product of G and H. P will be a multi-graph if either G
|
| 150 |
+
or H is a multi-graph, will be a directed if G and H are directed,
|
| 151 |
+
and undirected if G and H are undirected.
|
| 152 |
+
|
| 153 |
+
Raises
|
| 154 |
+
------
|
| 155 |
+
NetworkXError
|
| 156 |
+
If G and H are not both directed or both undirected.
|
| 157 |
+
|
| 158 |
+
Notes
|
| 159 |
+
-----
|
| 160 |
+
Node attributes in P are two-tuple of the G and H node attributes.
|
| 161 |
+
Missing attributes are assigned None.
|
| 162 |
+
|
| 163 |
+
Examples
|
| 164 |
+
--------
|
| 165 |
+
>>> G = nx.Graph()
|
| 166 |
+
>>> H = nx.Graph()
|
| 167 |
+
>>> G.add_node(0, a1=True)
|
| 168 |
+
>>> H.add_node("a", a2="Spam")
|
| 169 |
+
>>> P = nx.tensor_product(G, H)
|
| 170 |
+
>>> list(P)
|
| 171 |
+
[(0, 'a')]
|
| 172 |
+
|
| 173 |
+
Edge attributes and edge keys (for multigraphs) are also copied to the
|
| 174 |
+
new product graph
|
| 175 |
+
"""
|
| 176 |
+
GH = _init_product_graph(G, H)
|
| 177 |
+
GH.add_nodes_from(_node_product(G, H))
|
| 178 |
+
GH.add_edges_from(_directed_edges_cross_edges(G, H))
|
| 179 |
+
if not GH.is_directed():
|
| 180 |
+
GH.add_edges_from(_undirected_edges_cross_edges(G, H))
|
| 181 |
+
return GH
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
@nx._dispatchable(graphs=_G_H, preserve_node_attrs=True, returns_graph=True)
|
| 185 |
+
def cartesian_product(G, H):
|
| 186 |
+
r"""Returns the Cartesian product of G and H.
|
| 187 |
+
|
| 188 |
+
The Cartesian product $P$ of the graphs $G$ and $H$ has a node set that
|
| 189 |
+
is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$.
|
| 190 |
+
$P$ has an edge $((u,v),(x,y))$ if and only if either $u$ is equal to $x$
|
| 191 |
+
and both $v$ and $y$ are adjacent in $H$ or if $v$ is equal to $y$ and
|
| 192 |
+
both $u$ and $x$ are adjacent in $G$.
|
| 193 |
+
|
| 194 |
+
Parameters
|
| 195 |
+
----------
|
| 196 |
+
G, H: graphs
|
| 197 |
+
Networkx graphs.
|
| 198 |
+
|
| 199 |
+
Returns
|
| 200 |
+
-------
|
| 201 |
+
P: NetworkX graph
|
| 202 |
+
The Cartesian product of G and H. P will be a multi-graph if either G
|
| 203 |
+
or H is a multi-graph. Will be a directed if G and H are directed,
|
| 204 |
+
and undirected if G and H are undirected.
|
| 205 |
+
|
| 206 |
+
Raises
|
| 207 |
+
------
|
| 208 |
+
NetworkXError
|
| 209 |
+
If G and H are not both directed or both undirected.
|
| 210 |
+
|
| 211 |
+
Notes
|
| 212 |
+
-----
|
| 213 |
+
Node attributes in P are two-tuple of the G and H node attributes.
|
| 214 |
+
Missing attributes are assigned None.
|
| 215 |
+
|
| 216 |
+
Examples
|
| 217 |
+
--------
|
| 218 |
+
>>> G = nx.Graph()
|
| 219 |
+
>>> H = nx.Graph()
|
| 220 |
+
>>> G.add_node(0, a1=True)
|
| 221 |
+
>>> H.add_node("a", a2="Spam")
|
| 222 |
+
>>> P = nx.cartesian_product(G, H)
|
| 223 |
+
>>> list(P)
|
| 224 |
+
[(0, 'a')]
|
| 225 |
+
|
| 226 |
+
Edge attributes and edge keys (for multigraphs) are also copied to the
|
| 227 |
+
new product graph
|
| 228 |
+
"""
|
| 229 |
+
GH = _init_product_graph(G, H)
|
| 230 |
+
GH.add_nodes_from(_node_product(G, H))
|
| 231 |
+
GH.add_edges_from(_edges_cross_nodes(G, H))
|
| 232 |
+
GH.add_edges_from(_nodes_cross_edges(G, H))
|
| 233 |
+
return GH
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
@nx._dispatchable(graphs=_G_H, preserve_node_attrs=True, returns_graph=True)
|
| 237 |
+
def lexicographic_product(G, H):
|
| 238 |
+
r"""Returns the lexicographic product of G and H.
|
| 239 |
+
|
| 240 |
+
The lexicographical product $P$ of the graphs $G$ and $H$ has a node set
|
| 241 |
+
that is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$.
|
| 242 |
+
$P$ has an edge $((u,v), (x,y))$ if and only if $(u,v)$ is an edge in $G$
|
| 243 |
+
or $u==v$ and $(x,y)$ is an edge in $H$.
|
| 244 |
+
|
| 245 |
+
Parameters
|
| 246 |
+
----------
|
| 247 |
+
G, H: graphs
|
| 248 |
+
Networkx graphs.
|
| 249 |
+
|
| 250 |
+
Returns
|
| 251 |
+
-------
|
| 252 |
+
P: NetworkX graph
|
| 253 |
+
The Cartesian product of G and H. P will be a multi-graph if either G
|
| 254 |
+
or H is a multi-graph. Will be a directed if G and H are directed,
|
| 255 |
+
and undirected if G and H are undirected.
|
| 256 |
+
|
| 257 |
+
Raises
|
| 258 |
+
------
|
| 259 |
+
NetworkXError
|
| 260 |
+
If G and H are not both directed or both undirected.
|
| 261 |
+
|
| 262 |
+
Notes
|
| 263 |
+
-----
|
| 264 |
+
Node attributes in P are two-tuple of the G and H node attributes.
|
| 265 |
+
Missing attributes are assigned None.
|
| 266 |
+
|
| 267 |
+
Examples
|
| 268 |
+
--------
|
| 269 |
+
>>> G = nx.Graph()
|
| 270 |
+
>>> H = nx.Graph()
|
| 271 |
+
>>> G.add_node(0, a1=True)
|
| 272 |
+
>>> H.add_node("a", a2="Spam")
|
| 273 |
+
>>> P = nx.lexicographic_product(G, H)
|
| 274 |
+
>>> list(P)
|
| 275 |
+
[(0, 'a')]
|
| 276 |
+
|
| 277 |
+
Edge attributes and edge keys (for multigraphs) are also copied to the
|
| 278 |
+
new product graph
|
| 279 |
+
"""
|
| 280 |
+
GH = _init_product_graph(G, H)
|
| 281 |
+
GH.add_nodes_from(_node_product(G, H))
|
| 282 |
+
# Edges in G regardless of H designation
|
| 283 |
+
GH.add_edges_from(_edges_cross_nodes_and_nodes(G, H))
|
| 284 |
+
# For each x in G, only if there is an edge in H
|
| 285 |
+
GH.add_edges_from(_nodes_cross_edges(G, H))
|
| 286 |
+
return GH
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
@nx._dispatchable(graphs=_G_H, preserve_node_attrs=True, returns_graph=True)
|
| 290 |
+
def strong_product(G, H):
|
| 291 |
+
r"""Returns the strong product of G and H.
|
| 292 |
+
|
| 293 |
+
The strong product $P$ of the graphs $G$ and $H$ has a node set that
|
| 294 |
+
is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$.
|
| 295 |
+
$P$ has an edge $((u,x), (v,y))$ if any of the following conditions
|
| 296 |
+
are met:
|
| 297 |
+
|
| 298 |
+
- $u=v$ and $(x,y)$ is an edge in $H$
|
| 299 |
+
- $x=y$ and $(u,v)$ is an edge in $G$
|
| 300 |
+
- $(u,v)$ is an edge in $G$ and $(x,y)$ is an edge in $H$
|
| 301 |
+
|
| 302 |
+
Parameters
|
| 303 |
+
----------
|
| 304 |
+
G, H: graphs
|
| 305 |
+
Networkx graphs.
|
| 306 |
+
|
| 307 |
+
Returns
|
| 308 |
+
-------
|
| 309 |
+
P: NetworkX graph
|
| 310 |
+
The Cartesian product of G and H. P will be a multi-graph if either G
|
| 311 |
+
or H is a multi-graph. Will be a directed if G and H are directed,
|
| 312 |
+
and undirected if G and H are undirected.
|
| 313 |
+
|
| 314 |
+
Raises
|
| 315 |
+
------
|
| 316 |
+
NetworkXError
|
| 317 |
+
If G and H are not both directed or both undirected.
|
| 318 |
+
|
| 319 |
+
Notes
|
| 320 |
+
-----
|
| 321 |
+
Node attributes in P are two-tuple of the G and H node attributes.
|
| 322 |
+
Missing attributes are assigned None.
|
| 323 |
+
|
| 324 |
+
Examples
|
| 325 |
+
--------
|
| 326 |
+
>>> G = nx.Graph()
|
| 327 |
+
>>> H = nx.Graph()
|
| 328 |
+
>>> G.add_node(0, a1=True)
|
| 329 |
+
>>> H.add_node("a", a2="Spam")
|
| 330 |
+
>>> P = nx.strong_product(G, H)
|
| 331 |
+
>>> list(P)
|
| 332 |
+
[(0, 'a')]
|
| 333 |
+
|
| 334 |
+
Edge attributes and edge keys (for multigraphs) are also copied to the
|
| 335 |
+
new product graph
|
| 336 |
+
"""
|
| 337 |
+
GH = _init_product_graph(G, H)
|
| 338 |
+
GH.add_nodes_from(_node_product(G, H))
|
| 339 |
+
GH.add_edges_from(_nodes_cross_edges(G, H))
|
| 340 |
+
GH.add_edges_from(_edges_cross_nodes(G, H))
|
| 341 |
+
GH.add_edges_from(_directed_edges_cross_edges(G, H))
|
| 342 |
+
if not GH.is_directed():
|
| 343 |
+
GH.add_edges_from(_undirected_edges_cross_edges(G, H))
|
| 344 |
+
return GH
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
@not_implemented_for("directed")
|
| 348 |
+
@not_implemented_for("multigraph")
|
| 349 |
+
@nx._dispatchable(returns_graph=True)
|
| 350 |
+
def power(G, k):
|
| 351 |
+
"""Returns the specified power of a graph.
|
| 352 |
+
|
| 353 |
+
The $k$th power of a simple graph $G$, denoted $G^k$, is a
|
| 354 |
+
graph on the same set of nodes in which two distinct nodes $u$ and
|
| 355 |
+
$v$ are adjacent in $G^k$ if and only if the shortest path
|
| 356 |
+
distance between $u$ and $v$ in $G$ is at most $k$.
|
| 357 |
+
|
| 358 |
+
Parameters
|
| 359 |
+
----------
|
| 360 |
+
G : graph
|
| 361 |
+
A NetworkX simple graph object.
|
| 362 |
+
|
| 363 |
+
k : positive integer
|
| 364 |
+
The power to which to raise the graph `G`.
|
| 365 |
+
|
| 366 |
+
Returns
|
| 367 |
+
-------
|
| 368 |
+
NetworkX simple graph
|
| 369 |
+
`G` to the power `k`.
|
| 370 |
+
|
| 371 |
+
Raises
|
| 372 |
+
------
|
| 373 |
+
ValueError
|
| 374 |
+
If the exponent `k` is not positive.
|
| 375 |
+
|
| 376 |
+
NetworkXNotImplemented
|
| 377 |
+
If `G` is not a simple graph.
|
| 378 |
+
|
| 379 |
+
Examples
|
| 380 |
+
--------
|
| 381 |
+
The number of edges will never decrease when taking successive
|
| 382 |
+
powers:
|
| 383 |
+
|
| 384 |
+
>>> G = nx.path_graph(4)
|
| 385 |
+
>>> list(nx.power(G, 2).edges)
|
| 386 |
+
[(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)]
|
| 387 |
+
>>> list(nx.power(G, 3).edges)
|
| 388 |
+
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
|
| 389 |
+
|
| 390 |
+
The `k` th power of a cycle graph on *n* nodes is the complete graph
|
| 391 |
+
on *n* nodes, if `k` is at least ``n // 2``:
|
| 392 |
+
|
| 393 |
+
>>> G = nx.cycle_graph(5)
|
| 394 |
+
>>> H = nx.complete_graph(5)
|
| 395 |
+
>>> nx.is_isomorphic(nx.power(G, 2), H)
|
| 396 |
+
True
|
| 397 |
+
>>> G = nx.cycle_graph(8)
|
| 398 |
+
>>> H = nx.complete_graph(8)
|
| 399 |
+
>>> nx.is_isomorphic(nx.power(G, 4), H)
|
| 400 |
+
True
|
| 401 |
+
|
| 402 |
+
References
|
| 403 |
+
----------
|
| 404 |
+
.. [1] J. A. Bondy, U. S. R. Murty, *Graph Theory*. Springer, 2008.
|
| 405 |
+
|
| 406 |
+
Notes
|
| 407 |
+
-----
|
| 408 |
+
This definition of "power graph" comes from Exercise 3.1.6 of
|
| 409 |
+
*Graph Theory* by Bondy and Murty [1]_.
|
| 410 |
+
|
| 411 |
+
"""
|
| 412 |
+
if k <= 0:
|
| 413 |
+
raise ValueError("k must be a positive integer")
|
| 414 |
+
H = nx.Graph()
|
| 415 |
+
H.add_nodes_from(G)
|
| 416 |
+
# update BFS code to ignore self loops.
|
| 417 |
+
for n in G:
|
| 418 |
+
seen = {} # level (number of hops) when seen in BFS
|
| 419 |
+
level = 1 # the current level
|
| 420 |
+
nextlevel = G[n]
|
| 421 |
+
while nextlevel:
|
| 422 |
+
thislevel = nextlevel # advance to next level
|
| 423 |
+
nextlevel = {} # and start a new list (fringe)
|
| 424 |
+
for v in thislevel:
|
| 425 |
+
if v == n: # avoid self loop
|
| 426 |
+
continue
|
| 427 |
+
if v not in seen:
|
| 428 |
+
seen[v] = level # set the level of vertex v
|
| 429 |
+
nextlevel.update(G[v]) # add neighbors of v
|
| 430 |
+
if k <= level:
|
| 431 |
+
break
|
| 432 |
+
level += 1
|
| 433 |
+
H.add_edges_from((n, nbr) for nbr in seen)
|
| 434 |
+
return H
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
@not_implemented_for("multigraph")
|
| 438 |
+
@nx._dispatchable(graphs=_G_H, returns_graph=True)
|
| 439 |
+
def rooted_product(G, H, root):
|
| 440 |
+
"""Return the rooted product of graphs G and H rooted at root in H.
|
| 441 |
+
|
| 442 |
+
A new graph is constructed representing the rooted product of
|
| 443 |
+
the inputted graphs, G and H, with a root in H.
|
| 444 |
+
A rooted product duplicates H for each nodes in G with the root
|
| 445 |
+
of H corresponding to the node in G. Nodes are renamed as the direct
|
| 446 |
+
product of G and H. The result is a subgraph of the cartesian product.
|
| 447 |
+
|
| 448 |
+
Parameters
|
| 449 |
+
----------
|
| 450 |
+
G,H : graph
|
| 451 |
+
A NetworkX graph
|
| 452 |
+
root : node
|
| 453 |
+
A node in H
|
| 454 |
+
|
| 455 |
+
Returns
|
| 456 |
+
-------
|
| 457 |
+
R : The rooted product of G and H with a specified root in H
|
| 458 |
+
|
| 459 |
+
Notes
|
| 460 |
+
-----
|
| 461 |
+
The nodes of R are the Cartesian Product of the nodes of G and H.
|
| 462 |
+
The nodes of G and H are not relabeled.
|
| 463 |
+
"""
|
| 464 |
+
if root not in H:
|
| 465 |
+
raise nx.NodeNotFound("root must be a vertex in H")
|
| 466 |
+
|
| 467 |
+
R = nx.Graph()
|
| 468 |
+
R.add_nodes_from(product(G, H))
|
| 469 |
+
|
| 470 |
+
R.add_edges_from(((e[0], root), (e[1], root)) for e in G.edges())
|
| 471 |
+
R.add_edges_from(((g, e[0]), (g, e[1])) for g in G for e in H.edges())
|
| 472 |
+
|
| 473 |
+
return R
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
@not_implemented_for("directed")
|
| 477 |
+
@not_implemented_for("multigraph")
|
| 478 |
+
@nx._dispatchable(graphs=_G_H, returns_graph=True)
|
| 479 |
+
def corona_product(G, H):
|
| 480 |
+
r"""Returns the Corona product of G and H.
|
| 481 |
+
|
| 482 |
+
The corona product of $G$ and $H$ is the graph $C = G \circ H$ obtained by
|
| 483 |
+
taking one copy of $G$, called the center graph, $|V(G)|$ copies of $H$,
|
| 484 |
+
called the outer graph, and making the $i$-th vertex of $G$ adjacent to
|
| 485 |
+
every vertex of the $i$-th copy of $H$, where $1 ≤ i ≤ |V(G)|$.
|
| 486 |
+
|
| 487 |
+
Parameters
|
| 488 |
+
----------
|
| 489 |
+
G, H: NetworkX graphs
|
| 490 |
+
The graphs to take the carona product of.
|
| 491 |
+
`G` is the center graph and `H` is the outer graph
|
| 492 |
+
|
| 493 |
+
Returns
|
| 494 |
+
-------
|
| 495 |
+
C: NetworkX graph
|
| 496 |
+
The Corona product of G and H.
|
| 497 |
+
|
| 498 |
+
Raises
|
| 499 |
+
------
|
| 500 |
+
NetworkXError
|
| 501 |
+
If G and H are not both directed or both undirected.
|
| 502 |
+
|
| 503 |
+
Examples
|
| 504 |
+
--------
|
| 505 |
+
>>> G = nx.cycle_graph(4)
|
| 506 |
+
>>> H = nx.path_graph(2)
|
| 507 |
+
>>> C = nx.corona_product(G, H)
|
| 508 |
+
>>> list(C)
|
| 509 |
+
[0, 1, 2, 3, (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)]
|
| 510 |
+
>>> print(C)
|
| 511 |
+
Graph with 12 nodes and 16 edges
|
| 512 |
+
|
| 513 |
+
References
|
| 514 |
+
----------
|
| 515 |
+
[1] M. Tavakoli, F. Rahbarnia, and A. R. Ashrafi,
|
| 516 |
+
"Studying the corona product of graphs under some graph invariants,"
|
| 517 |
+
Transactions on Combinatorics, vol. 3, no. 3, pp. 43–49, Sep. 2014,
|
| 518 |
+
doi: 10.22108/toc.2014.5542.
|
| 519 |
+
[2] A. Faraji, "Corona Product in Graph Theory," Ali Faraji, May 11, 2021.
|
| 520 |
+
https://blog.alifaraji.ir/math/graph-theory/corona-product.html (accessed Dec. 07, 2021).
|
| 521 |
+
"""
|
| 522 |
+
GH = _init_product_graph(G, H)
|
| 523 |
+
GH.add_nodes_from(G)
|
| 524 |
+
GH.add_edges_from(G.edges)
|
| 525 |
+
|
| 526 |
+
for G_node in G:
|
| 527 |
+
# copy nodes of H in GH, call it H_i
|
| 528 |
+
GH.add_nodes_from((G_node, v) for v in H)
|
| 529 |
+
|
| 530 |
+
# copy edges of H_i based on H
|
| 531 |
+
GH.add_edges_from(
|
| 532 |
+
((G_node, e0), (G_node, e1), d) for e0, e1, d in H.edges.data()
|
| 533 |
+
)
|
| 534 |
+
|
| 535 |
+
# creating new edges between H_i and a G's node
|
| 536 |
+
GH.add_edges_from((G_node, (G_node, H_node)) for H_node in H)
|
| 537 |
+
|
| 538 |
+
return GH
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
@nx._dispatchable(
|
| 542 |
+
graphs=_G_H, preserve_edge_attrs=True, preserve_node_attrs=True, returns_graph=True
|
| 543 |
+
)
|
| 544 |
+
def modular_product(G, H):
|
| 545 |
+
r"""Returns the Modular product of G and H.
|
| 546 |
+
|
| 547 |
+
The modular product of `G` and `H` is the graph $M = G \nabla H$,
|
| 548 |
+
consisting of the node set $V(M) = V(G) \times V(H)$ that is the Cartesian
|
| 549 |
+
product of the node sets of `G` and `H`. Further, M contains an edge ((u, v), (x, y)):
|
| 550 |
+
|
| 551 |
+
- if u is adjacent to x in `G` and v is adjacent to y in `H`, or
|
| 552 |
+
- if u is not adjacent to x in `G` and v is not adjacent to y in `H`.
|
| 553 |
+
|
| 554 |
+
More formally::
|
| 555 |
+
|
| 556 |
+
E(M) = {((u, v), (x, y)) | ((u, x) in E(G) and (v, y) in E(H)) or
|
| 557 |
+
((u, x) not in E(G) and (v, y) not in E(H))}
|
| 558 |
+
|
| 559 |
+
Parameters
|
| 560 |
+
----------
|
| 561 |
+
G, H: NetworkX graphs
|
| 562 |
+
The graphs to take the modular product of.
|
| 563 |
+
|
| 564 |
+
Returns
|
| 565 |
+
-------
|
| 566 |
+
M: NetworkX graph
|
| 567 |
+
The Modular product of `G` and `H`.
|
| 568 |
+
|
| 569 |
+
Raises
|
| 570 |
+
------
|
| 571 |
+
NetworkXNotImplemented
|
| 572 |
+
If `G` is not a simple graph.
|
| 573 |
+
|
| 574 |
+
Examples
|
| 575 |
+
--------
|
| 576 |
+
>>> G = nx.cycle_graph(4)
|
| 577 |
+
>>> H = nx.path_graph(2)
|
| 578 |
+
>>> M = nx.modular_product(G, H)
|
| 579 |
+
>>> list(M)
|
| 580 |
+
[(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)]
|
| 581 |
+
>>> print(M)
|
| 582 |
+
Graph with 8 nodes and 8 edges
|
| 583 |
+
|
| 584 |
+
Notes
|
| 585 |
+
-----
|
| 586 |
+
The *modular product* is defined in [1]_ and was first
|
| 587 |
+
introduced as the *weak modular product*.
|
| 588 |
+
|
| 589 |
+
The modular product reduces the problem of counting isomorphic subgraphs
|
| 590 |
+
in `G` and `H` to the problem of counting cliques in M. The subgraphs of
|
| 591 |
+
`G` and `H` that are induced by the nodes of a clique in M are
|
| 592 |
+
isomorphic [2]_ [3]_.
|
| 593 |
+
|
| 594 |
+
References
|
| 595 |
+
----------
|
| 596 |
+
.. [1] R. Hammack, W. Imrich, and S. Klavžar,
|
| 597 |
+
"Handbook of Product Graphs", CRC Press, 2011.
|
| 598 |
+
|
| 599 |
+
.. [2] H. G. Barrow and R. M. Burstall,
|
| 600 |
+
"Subgraph isomorphism, matching relational structures and maximal
|
| 601 |
+
cliques", Information Processing Letters, vol. 4, issue 4, pp. 83-84,
|
| 602 |
+
1976, https://doi.org/10.1016/0020-0190(76)90049-1.
|
| 603 |
+
|
| 604 |
+
.. [3] V. G. Vizing, "Reduction of the problem of isomorphism and isomorphic
|
| 605 |
+
entrance to the task of finding the nondensity of a graph." Proc. Third
|
| 606 |
+
All-Union Conference on Problems of Theoretical Cybernetics. 1974.
|
| 607 |
+
"""
|
| 608 |
+
if G.is_directed() or H.is_directed():
|
| 609 |
+
raise nx.NetworkXNotImplemented(
|
| 610 |
+
"Modular product not implemented for directed graphs"
|
| 611 |
+
)
|
| 612 |
+
if G.is_multigraph() or H.is_multigraph():
|
| 613 |
+
raise nx.NetworkXNotImplemented(
|
| 614 |
+
"Modular product not implemented for multigraphs"
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
GH = _init_product_graph(G, H)
|
| 618 |
+
GH.add_nodes_from(_node_product(G, H))
|
| 619 |
+
|
| 620 |
+
for u, v, c in G.edges(data=True):
|
| 621 |
+
for x, y, d in H.edges(data=True):
|
| 622 |
+
GH.add_edge((u, x), (v, y), **_dict_product(c, d))
|
| 623 |
+
GH.add_edge((v, x), (u, y), **_dict_product(c, d))
|
| 624 |
+
|
| 625 |
+
G = nx.complement(G)
|
| 626 |
+
H = nx.complement(H)
|
| 627 |
+
|
| 628 |
+
for u, v, c in G.edges(data=True):
|
| 629 |
+
for x, y, d in H.edges(data=True):
|
| 630 |
+
GH.add_edge((u, x), (v, y), **_dict_product(c, d))
|
| 631 |
+
GH.add_edge((v, x), (u, y), **_dict_product(c, d))
|
| 632 |
+
|
| 633 |
+
return GH
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__init__.py
ADDED
|
File without changes
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (189 Bytes). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_all.cpython-310.pyc
ADDED
|
Binary file (7.85 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_binary.cpython-310.pyc
ADDED
|
Binary file (11.3 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_product.cpython-310.pyc
ADDED
|
Binary file (10.2 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_unary.cpython-310.pyc
ADDED
|
Binary file (1.4 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_all.py
ADDED
|
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.utils import edges_equal
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def test_union_all_attributes():
|
| 8 |
+
g = nx.Graph()
|
| 9 |
+
g.add_node(0, x=4)
|
| 10 |
+
g.add_node(1, x=5)
|
| 11 |
+
g.add_edge(0, 1, size=5)
|
| 12 |
+
g.graph["name"] = "g"
|
| 13 |
+
|
| 14 |
+
h = g.copy()
|
| 15 |
+
h.graph["name"] = "h"
|
| 16 |
+
h.graph["attr"] = "attr"
|
| 17 |
+
h.nodes[0]["x"] = 7
|
| 18 |
+
|
| 19 |
+
j = g.copy()
|
| 20 |
+
j.graph["name"] = "j"
|
| 21 |
+
j.graph["attr"] = "attr"
|
| 22 |
+
j.nodes[0]["x"] = 7
|
| 23 |
+
|
| 24 |
+
ghj = nx.union_all([g, h, j], rename=("g", "h", "j"))
|
| 25 |
+
assert set(ghj.nodes()) == {"h0", "h1", "g0", "g1", "j0", "j1"}
|
| 26 |
+
for n in ghj:
|
| 27 |
+
graph, node = n
|
| 28 |
+
assert ghj.nodes[n] == eval(graph).nodes[int(node)]
|
| 29 |
+
|
| 30 |
+
assert ghj.graph["attr"] == "attr"
|
| 31 |
+
assert ghj.graph["name"] == "j" # j graph attributes take precedent
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def test_intersection_all():
|
| 35 |
+
G = nx.Graph()
|
| 36 |
+
H = nx.Graph()
|
| 37 |
+
R = nx.Graph(awesome=True)
|
| 38 |
+
G.add_nodes_from([1, 2, 3, 4])
|
| 39 |
+
G.add_edge(1, 2)
|
| 40 |
+
G.add_edge(2, 3)
|
| 41 |
+
H.add_nodes_from([1, 2, 3, 4])
|
| 42 |
+
H.add_edge(2, 3)
|
| 43 |
+
H.add_edge(3, 4)
|
| 44 |
+
R.add_nodes_from([1, 2, 3, 4])
|
| 45 |
+
R.add_edge(2, 3)
|
| 46 |
+
R.add_edge(4, 1)
|
| 47 |
+
I = nx.intersection_all([G, H, R])
|
| 48 |
+
assert set(I.nodes()) == {1, 2, 3, 4}
|
| 49 |
+
assert sorted(I.edges()) == [(2, 3)]
|
| 50 |
+
assert I.graph == {}
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def test_intersection_all_different_node_sets():
|
| 54 |
+
G = nx.Graph()
|
| 55 |
+
H = nx.Graph()
|
| 56 |
+
R = nx.Graph()
|
| 57 |
+
G.add_nodes_from([1, 2, 3, 4, 6, 7])
|
| 58 |
+
G.add_edge(1, 2)
|
| 59 |
+
G.add_edge(2, 3)
|
| 60 |
+
G.add_edge(6, 7)
|
| 61 |
+
H.add_nodes_from([1, 2, 3, 4])
|
| 62 |
+
H.add_edge(2, 3)
|
| 63 |
+
H.add_edge(3, 4)
|
| 64 |
+
R.add_nodes_from([1, 2, 3, 4, 8, 9])
|
| 65 |
+
R.add_edge(2, 3)
|
| 66 |
+
R.add_edge(4, 1)
|
| 67 |
+
R.add_edge(8, 9)
|
| 68 |
+
I = nx.intersection_all([G, H, R])
|
| 69 |
+
assert set(I.nodes()) == {1, 2, 3, 4}
|
| 70 |
+
assert sorted(I.edges()) == [(2, 3)]
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def test_intersection_all_attributes():
|
| 74 |
+
g = nx.Graph()
|
| 75 |
+
g.add_node(0, x=4)
|
| 76 |
+
g.add_node(1, x=5)
|
| 77 |
+
g.add_edge(0, 1, size=5)
|
| 78 |
+
g.graph["name"] = "g"
|
| 79 |
+
|
| 80 |
+
h = g.copy()
|
| 81 |
+
h.graph["name"] = "h"
|
| 82 |
+
h.graph["attr"] = "attr"
|
| 83 |
+
h.nodes[0]["x"] = 7
|
| 84 |
+
|
| 85 |
+
gh = nx.intersection_all([g, h])
|
| 86 |
+
assert set(gh.nodes()) == set(g.nodes())
|
| 87 |
+
assert set(gh.nodes()) == set(h.nodes())
|
| 88 |
+
assert sorted(gh.edges()) == sorted(g.edges())
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def test_intersection_all_attributes_different_node_sets():
|
| 92 |
+
g = nx.Graph()
|
| 93 |
+
g.add_node(0, x=4)
|
| 94 |
+
g.add_node(1, x=5)
|
| 95 |
+
g.add_edge(0, 1, size=5)
|
| 96 |
+
g.graph["name"] = "g"
|
| 97 |
+
|
| 98 |
+
h = g.copy()
|
| 99 |
+
g.add_node(2)
|
| 100 |
+
h.graph["name"] = "h"
|
| 101 |
+
h.graph["attr"] = "attr"
|
| 102 |
+
h.nodes[0]["x"] = 7
|
| 103 |
+
|
| 104 |
+
gh = nx.intersection_all([g, h])
|
| 105 |
+
assert set(gh.nodes()) == set(h.nodes())
|
| 106 |
+
assert sorted(gh.edges()) == sorted(g.edges())
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def test_intersection_all_multigraph_attributes():
|
| 110 |
+
g = nx.MultiGraph()
|
| 111 |
+
g.add_edge(0, 1, key=0)
|
| 112 |
+
g.add_edge(0, 1, key=1)
|
| 113 |
+
g.add_edge(0, 1, key=2)
|
| 114 |
+
h = nx.MultiGraph()
|
| 115 |
+
h.add_edge(0, 1, key=0)
|
| 116 |
+
h.add_edge(0, 1, key=3)
|
| 117 |
+
gh = nx.intersection_all([g, h])
|
| 118 |
+
assert set(gh.nodes()) == set(g.nodes())
|
| 119 |
+
assert set(gh.nodes()) == set(h.nodes())
|
| 120 |
+
assert sorted(gh.edges()) == [(0, 1)]
|
| 121 |
+
assert sorted(gh.edges(keys=True)) == [(0, 1, 0)]
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def test_intersection_all_multigraph_attributes_different_node_sets():
|
| 125 |
+
g = nx.MultiGraph()
|
| 126 |
+
g.add_edge(0, 1, key=0)
|
| 127 |
+
g.add_edge(0, 1, key=1)
|
| 128 |
+
g.add_edge(0, 1, key=2)
|
| 129 |
+
g.add_edge(1, 2, key=1)
|
| 130 |
+
g.add_edge(1, 2, key=2)
|
| 131 |
+
h = nx.MultiGraph()
|
| 132 |
+
h.add_edge(0, 1, key=0)
|
| 133 |
+
h.add_edge(0, 1, key=2)
|
| 134 |
+
h.add_edge(0, 1, key=3)
|
| 135 |
+
gh = nx.intersection_all([g, h])
|
| 136 |
+
assert set(gh.nodes()) == set(h.nodes())
|
| 137 |
+
assert sorted(gh.edges()) == [(0, 1), (0, 1)]
|
| 138 |
+
assert sorted(gh.edges(keys=True)) == [(0, 1, 0), (0, 1, 2)]
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def test_intersection_all_digraph():
|
| 142 |
+
g = nx.DiGraph()
|
| 143 |
+
g.add_edges_from([(1, 2), (2, 3)])
|
| 144 |
+
h = nx.DiGraph()
|
| 145 |
+
h.add_edges_from([(2, 1), (2, 3)])
|
| 146 |
+
gh = nx.intersection_all([g, h])
|
| 147 |
+
assert sorted(gh.edges()) == [(2, 3)]
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def test_union_all_and_compose_all():
|
| 151 |
+
K3 = nx.complete_graph(3)
|
| 152 |
+
P3 = nx.path_graph(3)
|
| 153 |
+
|
| 154 |
+
G1 = nx.DiGraph()
|
| 155 |
+
G1.add_edge("A", "B")
|
| 156 |
+
G1.add_edge("A", "C")
|
| 157 |
+
G1.add_edge("A", "D")
|
| 158 |
+
G2 = nx.DiGraph()
|
| 159 |
+
G2.add_edge("1", "2")
|
| 160 |
+
G2.add_edge("1", "3")
|
| 161 |
+
G2.add_edge("1", "4")
|
| 162 |
+
|
| 163 |
+
G = nx.union_all([G1, G2])
|
| 164 |
+
H = nx.compose_all([G1, G2])
|
| 165 |
+
assert edges_equal(G.edges(), H.edges())
|
| 166 |
+
assert not G.has_edge("A", "1")
|
| 167 |
+
pytest.raises(nx.NetworkXError, nx.union, K3, P3)
|
| 168 |
+
H1 = nx.union_all([H, G1], rename=("H", "G1"))
|
| 169 |
+
assert sorted(H1.nodes()) == [
|
| 170 |
+
"G1A",
|
| 171 |
+
"G1B",
|
| 172 |
+
"G1C",
|
| 173 |
+
"G1D",
|
| 174 |
+
"H1",
|
| 175 |
+
"H2",
|
| 176 |
+
"H3",
|
| 177 |
+
"H4",
|
| 178 |
+
"HA",
|
| 179 |
+
"HB",
|
| 180 |
+
"HC",
|
| 181 |
+
"HD",
|
| 182 |
+
]
|
| 183 |
+
|
| 184 |
+
H2 = nx.union_all([H, G2], rename=("H", ""))
|
| 185 |
+
assert sorted(H2.nodes()) == [
|
| 186 |
+
"1",
|
| 187 |
+
"2",
|
| 188 |
+
"3",
|
| 189 |
+
"4",
|
| 190 |
+
"H1",
|
| 191 |
+
"H2",
|
| 192 |
+
"H3",
|
| 193 |
+
"H4",
|
| 194 |
+
"HA",
|
| 195 |
+
"HB",
|
| 196 |
+
"HC",
|
| 197 |
+
"HD",
|
| 198 |
+
]
|
| 199 |
+
|
| 200 |
+
assert not H1.has_edge("NB", "NA")
|
| 201 |
+
|
| 202 |
+
G = nx.compose_all([G, G])
|
| 203 |
+
assert edges_equal(G.edges(), H.edges())
|
| 204 |
+
|
| 205 |
+
G2 = nx.union_all([G2, G2], rename=("", "copy"))
|
| 206 |
+
assert sorted(G2.nodes()) == [
|
| 207 |
+
"1",
|
| 208 |
+
"2",
|
| 209 |
+
"3",
|
| 210 |
+
"4",
|
| 211 |
+
"copy1",
|
| 212 |
+
"copy2",
|
| 213 |
+
"copy3",
|
| 214 |
+
"copy4",
|
| 215 |
+
]
|
| 216 |
+
|
| 217 |
+
assert sorted(G2.neighbors("copy4")) == []
|
| 218 |
+
assert sorted(G2.neighbors("copy1")) == ["copy2", "copy3", "copy4"]
|
| 219 |
+
assert len(G) == 8
|
| 220 |
+
assert nx.number_of_edges(G) == 6
|
| 221 |
+
|
| 222 |
+
E = nx.disjoint_union_all([G, G])
|
| 223 |
+
assert len(E) == 16
|
| 224 |
+
assert nx.number_of_edges(E) == 12
|
| 225 |
+
|
| 226 |
+
E = nx.disjoint_union_all([G1, G2])
|
| 227 |
+
assert sorted(E.nodes()) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
| 228 |
+
|
| 229 |
+
G1 = nx.DiGraph()
|
| 230 |
+
G1.add_edge("A", "B")
|
| 231 |
+
G2 = nx.DiGraph()
|
| 232 |
+
G2.add_edge(1, 2)
|
| 233 |
+
G3 = nx.DiGraph()
|
| 234 |
+
G3.add_edge(11, 22)
|
| 235 |
+
G4 = nx.union_all([G1, G2, G3], rename=("G1", "G2", "G3"))
|
| 236 |
+
assert sorted(G4.nodes()) == ["G1A", "G1B", "G21", "G22", "G311", "G322"]
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def test_union_all_multigraph():
|
| 240 |
+
G = nx.MultiGraph()
|
| 241 |
+
G.add_edge(1, 2, key=0)
|
| 242 |
+
G.add_edge(1, 2, key=1)
|
| 243 |
+
H = nx.MultiGraph()
|
| 244 |
+
H.add_edge(3, 4, key=0)
|
| 245 |
+
H.add_edge(3, 4, key=1)
|
| 246 |
+
GH = nx.union_all([G, H])
|
| 247 |
+
assert set(GH) == set(G) | set(H)
|
| 248 |
+
assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True))
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def test_input_output():
|
| 252 |
+
l = [nx.Graph([(1, 2)]), nx.Graph([(3, 4)], awesome=True)]
|
| 253 |
+
U = nx.disjoint_union_all(l)
|
| 254 |
+
assert len(l) == 2
|
| 255 |
+
assert U.graph["awesome"]
|
| 256 |
+
C = nx.compose_all(l)
|
| 257 |
+
assert len(l) == 2
|
| 258 |
+
l = [nx.Graph([(1, 2)]), nx.Graph([(1, 2)])]
|
| 259 |
+
R = nx.intersection_all(l)
|
| 260 |
+
assert len(l) == 2
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
def test_mixed_type_union():
|
| 264 |
+
with pytest.raises(nx.NetworkXError):
|
| 265 |
+
G = nx.Graph()
|
| 266 |
+
H = nx.MultiGraph()
|
| 267 |
+
I = nx.Graph()
|
| 268 |
+
U = nx.union_all([G, H, I])
|
| 269 |
+
with pytest.raises(nx.NetworkXError):
|
| 270 |
+
X = nx.Graph()
|
| 271 |
+
Y = nx.DiGraph()
|
| 272 |
+
XY = nx.union_all([X, Y])
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
def test_mixed_type_disjoint_union():
|
| 276 |
+
with pytest.raises(nx.NetworkXError):
|
| 277 |
+
G = nx.Graph()
|
| 278 |
+
H = nx.MultiGraph()
|
| 279 |
+
I = nx.Graph()
|
| 280 |
+
U = nx.disjoint_union_all([G, H, I])
|
| 281 |
+
with pytest.raises(nx.NetworkXError):
|
| 282 |
+
X = nx.Graph()
|
| 283 |
+
Y = nx.DiGraph()
|
| 284 |
+
XY = nx.disjoint_union_all([X, Y])
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def test_mixed_type_intersection():
|
| 288 |
+
with pytest.raises(nx.NetworkXError):
|
| 289 |
+
G = nx.Graph()
|
| 290 |
+
H = nx.MultiGraph()
|
| 291 |
+
I = nx.Graph()
|
| 292 |
+
U = nx.intersection_all([G, H, I])
|
| 293 |
+
with pytest.raises(nx.NetworkXError):
|
| 294 |
+
X = nx.Graph()
|
| 295 |
+
Y = nx.DiGraph()
|
| 296 |
+
XY = nx.intersection_all([X, Y])
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def test_mixed_type_compose():
|
| 300 |
+
with pytest.raises(nx.NetworkXError):
|
| 301 |
+
G = nx.Graph()
|
| 302 |
+
H = nx.MultiGraph()
|
| 303 |
+
I = nx.Graph()
|
| 304 |
+
U = nx.compose_all([G, H, I])
|
| 305 |
+
with pytest.raises(nx.NetworkXError):
|
| 306 |
+
X = nx.Graph()
|
| 307 |
+
Y = nx.DiGraph()
|
| 308 |
+
XY = nx.compose_all([X, Y])
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def test_empty_union():
|
| 312 |
+
with pytest.raises(ValueError):
|
| 313 |
+
nx.union_all([])
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def test_empty_disjoint_union():
|
| 317 |
+
with pytest.raises(ValueError):
|
| 318 |
+
nx.disjoint_union_all([])
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
def test_empty_compose_all():
|
| 322 |
+
with pytest.raises(ValueError):
|
| 323 |
+
nx.compose_all([])
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
def test_empty_intersection_all():
|
| 327 |
+
with pytest.raises(ValueError):
|
| 328 |
+
nx.intersection_all([])
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_binary.py
ADDED
|
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import pytest
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
from networkx.utils import edges_equal
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def test_union_attributes():
|
| 10 |
+
g = nx.Graph()
|
| 11 |
+
g.add_node(0, x=4)
|
| 12 |
+
g.add_node(1, x=5)
|
| 13 |
+
g.add_edge(0, 1, size=5)
|
| 14 |
+
g.graph["name"] = "g"
|
| 15 |
+
|
| 16 |
+
h = g.copy()
|
| 17 |
+
h.graph["name"] = "h"
|
| 18 |
+
h.graph["attr"] = "attr"
|
| 19 |
+
h.nodes[0]["x"] = 7
|
| 20 |
+
|
| 21 |
+
gh = nx.union(g, h, rename=("g", "h"))
|
| 22 |
+
assert set(gh.nodes()) == {"h0", "h1", "g0", "g1"}
|
| 23 |
+
for n in gh:
|
| 24 |
+
graph, node = n
|
| 25 |
+
assert gh.nodes[n] == eval(graph).nodes[int(node)]
|
| 26 |
+
|
| 27 |
+
assert gh.graph["attr"] == "attr"
|
| 28 |
+
assert gh.graph["name"] == "h" # h graph attributes take precedent
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def test_intersection():
|
| 32 |
+
G = nx.Graph()
|
| 33 |
+
H = nx.Graph()
|
| 34 |
+
G.add_nodes_from([1, 2, 3, 4])
|
| 35 |
+
G.add_edge(1, 2)
|
| 36 |
+
G.add_edge(2, 3)
|
| 37 |
+
H.add_nodes_from([1, 2, 3, 4])
|
| 38 |
+
H.add_edge(2, 3)
|
| 39 |
+
H.add_edge(3, 4)
|
| 40 |
+
I = nx.intersection(G, H)
|
| 41 |
+
assert set(I.nodes()) == {1, 2, 3, 4}
|
| 42 |
+
assert sorted(I.edges()) == [(2, 3)]
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def test_intersection_node_sets_different():
|
| 46 |
+
G = nx.Graph()
|
| 47 |
+
H = nx.Graph()
|
| 48 |
+
G.add_nodes_from([1, 2, 3, 4, 7])
|
| 49 |
+
G.add_edge(1, 2)
|
| 50 |
+
G.add_edge(2, 3)
|
| 51 |
+
H.add_nodes_from([1, 2, 3, 4, 5, 6])
|
| 52 |
+
H.add_edge(2, 3)
|
| 53 |
+
H.add_edge(3, 4)
|
| 54 |
+
H.add_edge(5, 6)
|
| 55 |
+
I = nx.intersection(G, H)
|
| 56 |
+
assert set(I.nodes()) == {1, 2, 3, 4}
|
| 57 |
+
assert sorted(I.edges()) == [(2, 3)]
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def test_intersection_attributes():
|
| 61 |
+
g = nx.Graph()
|
| 62 |
+
g.add_node(0, x=4)
|
| 63 |
+
g.add_node(1, x=5)
|
| 64 |
+
g.add_edge(0, 1, size=5)
|
| 65 |
+
g.graph["name"] = "g"
|
| 66 |
+
|
| 67 |
+
h = g.copy()
|
| 68 |
+
h.graph["name"] = "h"
|
| 69 |
+
h.graph["attr"] = "attr"
|
| 70 |
+
h.nodes[0]["x"] = 7
|
| 71 |
+
gh = nx.intersection(g, h)
|
| 72 |
+
|
| 73 |
+
assert set(gh.nodes()) == set(g.nodes())
|
| 74 |
+
assert set(gh.nodes()) == set(h.nodes())
|
| 75 |
+
assert sorted(gh.edges()) == sorted(g.edges())
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def test_intersection_attributes_node_sets_different():
|
| 79 |
+
g = nx.Graph()
|
| 80 |
+
g.add_node(0, x=4)
|
| 81 |
+
g.add_node(1, x=5)
|
| 82 |
+
g.add_node(2, x=3)
|
| 83 |
+
g.add_edge(0, 1, size=5)
|
| 84 |
+
g.graph["name"] = "g"
|
| 85 |
+
|
| 86 |
+
h = g.copy()
|
| 87 |
+
h.graph["name"] = "h"
|
| 88 |
+
h.graph["attr"] = "attr"
|
| 89 |
+
h.nodes[0]["x"] = 7
|
| 90 |
+
h.remove_node(2)
|
| 91 |
+
|
| 92 |
+
gh = nx.intersection(g, h)
|
| 93 |
+
assert set(gh.nodes()) == set(h.nodes())
|
| 94 |
+
assert sorted(gh.edges()) == sorted(g.edges())
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def test_intersection_multigraph_attributes():
|
| 98 |
+
g = nx.MultiGraph()
|
| 99 |
+
g.add_edge(0, 1, key=0)
|
| 100 |
+
g.add_edge(0, 1, key=1)
|
| 101 |
+
g.add_edge(0, 1, key=2)
|
| 102 |
+
h = nx.MultiGraph()
|
| 103 |
+
h.add_edge(0, 1, key=0)
|
| 104 |
+
h.add_edge(0, 1, key=3)
|
| 105 |
+
gh = nx.intersection(g, h)
|
| 106 |
+
assert set(gh.nodes()) == set(g.nodes())
|
| 107 |
+
assert set(gh.nodes()) == set(h.nodes())
|
| 108 |
+
assert sorted(gh.edges()) == [(0, 1)]
|
| 109 |
+
assert sorted(gh.edges(keys=True)) == [(0, 1, 0)]
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def test_intersection_multigraph_attributes_node_set_different():
|
| 113 |
+
g = nx.MultiGraph()
|
| 114 |
+
g.add_edge(0, 1, key=0)
|
| 115 |
+
g.add_edge(0, 1, key=1)
|
| 116 |
+
g.add_edge(0, 1, key=2)
|
| 117 |
+
g.add_edge(0, 2, key=2)
|
| 118 |
+
g.add_edge(0, 2, key=1)
|
| 119 |
+
h = nx.MultiGraph()
|
| 120 |
+
h.add_edge(0, 1, key=0)
|
| 121 |
+
h.add_edge(0, 1, key=3)
|
| 122 |
+
gh = nx.intersection(g, h)
|
| 123 |
+
assert set(gh.nodes()) == set(h.nodes())
|
| 124 |
+
assert sorted(gh.edges()) == [(0, 1)]
|
| 125 |
+
assert sorted(gh.edges(keys=True)) == [(0, 1, 0)]
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def test_difference():
|
| 129 |
+
G = nx.Graph()
|
| 130 |
+
H = nx.Graph()
|
| 131 |
+
G.add_nodes_from([1, 2, 3, 4])
|
| 132 |
+
G.add_edge(1, 2)
|
| 133 |
+
G.add_edge(2, 3)
|
| 134 |
+
H.add_nodes_from([1, 2, 3, 4])
|
| 135 |
+
H.add_edge(2, 3)
|
| 136 |
+
H.add_edge(3, 4)
|
| 137 |
+
D = nx.difference(G, H)
|
| 138 |
+
assert set(D.nodes()) == {1, 2, 3, 4}
|
| 139 |
+
assert sorted(D.edges()) == [(1, 2)]
|
| 140 |
+
D = nx.difference(H, G)
|
| 141 |
+
assert set(D.nodes()) == {1, 2, 3, 4}
|
| 142 |
+
assert sorted(D.edges()) == [(3, 4)]
|
| 143 |
+
D = nx.symmetric_difference(G, H)
|
| 144 |
+
assert set(D.nodes()) == {1, 2, 3, 4}
|
| 145 |
+
assert sorted(D.edges()) == [(1, 2), (3, 4)]
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def test_difference2():
|
| 149 |
+
G = nx.Graph()
|
| 150 |
+
H = nx.Graph()
|
| 151 |
+
G.add_nodes_from([1, 2, 3, 4])
|
| 152 |
+
H.add_nodes_from([1, 2, 3, 4])
|
| 153 |
+
G.add_edge(1, 2)
|
| 154 |
+
H.add_edge(1, 2)
|
| 155 |
+
G.add_edge(2, 3)
|
| 156 |
+
D = nx.difference(G, H)
|
| 157 |
+
assert set(D.nodes()) == {1, 2, 3, 4}
|
| 158 |
+
assert sorted(D.edges()) == [(2, 3)]
|
| 159 |
+
D = nx.difference(H, G)
|
| 160 |
+
assert set(D.nodes()) == {1, 2, 3, 4}
|
| 161 |
+
assert sorted(D.edges()) == []
|
| 162 |
+
H.add_edge(3, 4)
|
| 163 |
+
D = nx.difference(H, G)
|
| 164 |
+
assert set(D.nodes()) == {1, 2, 3, 4}
|
| 165 |
+
assert sorted(D.edges()) == [(3, 4)]
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def test_difference_attributes():
|
| 169 |
+
g = nx.Graph()
|
| 170 |
+
g.add_node(0, x=4)
|
| 171 |
+
g.add_node(1, x=5)
|
| 172 |
+
g.add_edge(0, 1, size=5)
|
| 173 |
+
g.graph["name"] = "g"
|
| 174 |
+
|
| 175 |
+
h = g.copy()
|
| 176 |
+
h.graph["name"] = "h"
|
| 177 |
+
h.graph["attr"] = "attr"
|
| 178 |
+
h.nodes[0]["x"] = 7
|
| 179 |
+
|
| 180 |
+
gh = nx.difference(g, h)
|
| 181 |
+
assert set(gh.nodes()) == set(g.nodes())
|
| 182 |
+
assert set(gh.nodes()) == set(h.nodes())
|
| 183 |
+
assert sorted(gh.edges()) == []
|
| 184 |
+
# node and graph data should not be copied over
|
| 185 |
+
assert gh.nodes.data() != g.nodes.data()
|
| 186 |
+
assert gh.graph != g.graph
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def test_difference_multigraph_attributes():
|
| 190 |
+
g = nx.MultiGraph()
|
| 191 |
+
g.add_edge(0, 1, key=0)
|
| 192 |
+
g.add_edge(0, 1, key=1)
|
| 193 |
+
g.add_edge(0, 1, key=2)
|
| 194 |
+
h = nx.MultiGraph()
|
| 195 |
+
h.add_edge(0, 1, key=0)
|
| 196 |
+
h.add_edge(0, 1, key=3)
|
| 197 |
+
gh = nx.difference(g, h)
|
| 198 |
+
assert set(gh.nodes()) == set(g.nodes())
|
| 199 |
+
assert set(gh.nodes()) == set(h.nodes())
|
| 200 |
+
assert sorted(gh.edges()) == [(0, 1), (0, 1)]
|
| 201 |
+
assert sorted(gh.edges(keys=True)) == [(0, 1, 1), (0, 1, 2)]
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def test_difference_raise():
|
| 205 |
+
G = nx.path_graph(4)
|
| 206 |
+
H = nx.path_graph(3)
|
| 207 |
+
pytest.raises(nx.NetworkXError, nx.difference, G, H)
|
| 208 |
+
pytest.raises(nx.NetworkXError, nx.symmetric_difference, G, H)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def test_symmetric_difference_multigraph():
|
| 212 |
+
g = nx.MultiGraph()
|
| 213 |
+
g.add_edge(0, 1, key=0)
|
| 214 |
+
g.add_edge(0, 1, key=1)
|
| 215 |
+
g.add_edge(0, 1, key=2)
|
| 216 |
+
h = nx.MultiGraph()
|
| 217 |
+
h.add_edge(0, 1, key=0)
|
| 218 |
+
h.add_edge(0, 1, key=3)
|
| 219 |
+
gh = nx.symmetric_difference(g, h)
|
| 220 |
+
assert set(gh.nodes()) == set(g.nodes())
|
| 221 |
+
assert set(gh.nodes()) == set(h.nodes())
|
| 222 |
+
assert sorted(gh.edges()) == 3 * [(0, 1)]
|
| 223 |
+
assert sorted(sorted(e) for e in gh.edges(keys=True)) == [
|
| 224 |
+
[0, 1, 1],
|
| 225 |
+
[0, 1, 2],
|
| 226 |
+
[0, 1, 3],
|
| 227 |
+
]
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def test_union_and_compose():
|
| 231 |
+
K3 = nx.complete_graph(3)
|
| 232 |
+
P3 = nx.path_graph(3)
|
| 233 |
+
|
| 234 |
+
G1 = nx.DiGraph()
|
| 235 |
+
G1.add_edge("A", "B")
|
| 236 |
+
G1.add_edge("A", "C")
|
| 237 |
+
G1.add_edge("A", "D")
|
| 238 |
+
G2 = nx.DiGraph()
|
| 239 |
+
G2.add_edge("1", "2")
|
| 240 |
+
G2.add_edge("1", "3")
|
| 241 |
+
G2.add_edge("1", "4")
|
| 242 |
+
|
| 243 |
+
G = nx.union(G1, G2)
|
| 244 |
+
H = nx.compose(G1, G2)
|
| 245 |
+
assert edges_equal(G.edges(), H.edges())
|
| 246 |
+
assert not G.has_edge("A", 1)
|
| 247 |
+
pytest.raises(nx.NetworkXError, nx.union, K3, P3)
|
| 248 |
+
H1 = nx.union(H, G1, rename=("H", "G1"))
|
| 249 |
+
assert sorted(H1.nodes()) == [
|
| 250 |
+
"G1A",
|
| 251 |
+
"G1B",
|
| 252 |
+
"G1C",
|
| 253 |
+
"G1D",
|
| 254 |
+
"H1",
|
| 255 |
+
"H2",
|
| 256 |
+
"H3",
|
| 257 |
+
"H4",
|
| 258 |
+
"HA",
|
| 259 |
+
"HB",
|
| 260 |
+
"HC",
|
| 261 |
+
"HD",
|
| 262 |
+
]
|
| 263 |
+
|
| 264 |
+
H2 = nx.union(H, G2, rename=("H", ""))
|
| 265 |
+
assert sorted(H2.nodes()) == [
|
| 266 |
+
"1",
|
| 267 |
+
"2",
|
| 268 |
+
"3",
|
| 269 |
+
"4",
|
| 270 |
+
"H1",
|
| 271 |
+
"H2",
|
| 272 |
+
"H3",
|
| 273 |
+
"H4",
|
| 274 |
+
"HA",
|
| 275 |
+
"HB",
|
| 276 |
+
"HC",
|
| 277 |
+
"HD",
|
| 278 |
+
]
|
| 279 |
+
|
| 280 |
+
assert not H1.has_edge("NB", "NA")
|
| 281 |
+
|
| 282 |
+
G = nx.compose(G, G)
|
| 283 |
+
assert edges_equal(G.edges(), H.edges())
|
| 284 |
+
|
| 285 |
+
G2 = nx.union(G2, G2, rename=("", "copy"))
|
| 286 |
+
assert sorted(G2.nodes()) == [
|
| 287 |
+
"1",
|
| 288 |
+
"2",
|
| 289 |
+
"3",
|
| 290 |
+
"4",
|
| 291 |
+
"copy1",
|
| 292 |
+
"copy2",
|
| 293 |
+
"copy3",
|
| 294 |
+
"copy4",
|
| 295 |
+
]
|
| 296 |
+
|
| 297 |
+
assert sorted(G2.neighbors("copy4")) == []
|
| 298 |
+
assert sorted(G2.neighbors("copy1")) == ["copy2", "copy3", "copy4"]
|
| 299 |
+
assert len(G) == 8
|
| 300 |
+
assert nx.number_of_edges(G) == 6
|
| 301 |
+
|
| 302 |
+
E = nx.disjoint_union(G, G)
|
| 303 |
+
assert len(E) == 16
|
| 304 |
+
assert nx.number_of_edges(E) == 12
|
| 305 |
+
|
| 306 |
+
E = nx.disjoint_union(G1, G2)
|
| 307 |
+
assert sorted(E.nodes()) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
| 308 |
+
|
| 309 |
+
G = nx.Graph()
|
| 310 |
+
H = nx.Graph()
|
| 311 |
+
G.add_nodes_from([(1, {"a1": 1})])
|
| 312 |
+
H.add_nodes_from([(1, {"b1": 1})])
|
| 313 |
+
R = nx.compose(G, H)
|
| 314 |
+
assert R.nodes == {1: {"a1": 1, "b1": 1}}
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def test_union_multigraph():
|
| 318 |
+
G = nx.MultiGraph()
|
| 319 |
+
G.add_edge(1, 2, key=0)
|
| 320 |
+
G.add_edge(1, 2, key=1)
|
| 321 |
+
H = nx.MultiGraph()
|
| 322 |
+
H.add_edge(3, 4, key=0)
|
| 323 |
+
H.add_edge(3, 4, key=1)
|
| 324 |
+
GH = nx.union(G, H)
|
| 325 |
+
assert set(GH) == set(G) | set(H)
|
| 326 |
+
assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True))
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def test_disjoint_union_multigraph():
|
| 330 |
+
G = nx.MultiGraph()
|
| 331 |
+
G.add_edge(0, 1, key=0)
|
| 332 |
+
G.add_edge(0, 1, key=1)
|
| 333 |
+
H = nx.MultiGraph()
|
| 334 |
+
H.add_edge(2, 3, key=0)
|
| 335 |
+
H.add_edge(2, 3, key=1)
|
| 336 |
+
GH = nx.disjoint_union(G, H)
|
| 337 |
+
assert set(GH) == set(G) | set(H)
|
| 338 |
+
assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True))
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
def test_compose_multigraph():
|
| 342 |
+
G = nx.MultiGraph()
|
| 343 |
+
G.add_edge(1, 2, key=0)
|
| 344 |
+
G.add_edge(1, 2, key=1)
|
| 345 |
+
H = nx.MultiGraph()
|
| 346 |
+
H.add_edge(3, 4, key=0)
|
| 347 |
+
H.add_edge(3, 4, key=1)
|
| 348 |
+
GH = nx.compose(G, H)
|
| 349 |
+
assert set(GH) == set(G) | set(H)
|
| 350 |
+
assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True))
|
| 351 |
+
H.add_edge(1, 2, key=2)
|
| 352 |
+
GH = nx.compose(G, H)
|
| 353 |
+
assert set(GH) == set(G) | set(H)
|
| 354 |
+
assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True))
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def test_full_join_graph():
|
| 358 |
+
# Simple Graphs
|
| 359 |
+
G = nx.Graph()
|
| 360 |
+
G.add_node(0)
|
| 361 |
+
G.add_edge(1, 2)
|
| 362 |
+
H = nx.Graph()
|
| 363 |
+
H.add_edge(3, 4)
|
| 364 |
+
|
| 365 |
+
U = nx.full_join(G, H)
|
| 366 |
+
assert set(U) == set(G) | set(H)
|
| 367 |
+
assert len(U) == len(G) + len(H)
|
| 368 |
+
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H)
|
| 369 |
+
|
| 370 |
+
# Rename
|
| 371 |
+
U = nx.full_join(G, H, rename=("g", "h"))
|
| 372 |
+
assert set(U) == {"g0", "g1", "g2", "h3", "h4"}
|
| 373 |
+
assert len(U) == len(G) + len(H)
|
| 374 |
+
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H)
|
| 375 |
+
|
| 376 |
+
# Rename graphs with string-like nodes
|
| 377 |
+
G = nx.Graph()
|
| 378 |
+
G.add_node("a")
|
| 379 |
+
G.add_edge("b", "c")
|
| 380 |
+
H = nx.Graph()
|
| 381 |
+
H.add_edge("d", "e")
|
| 382 |
+
|
| 383 |
+
U = nx.full_join(G, H, rename=("g", "h"))
|
| 384 |
+
assert set(U) == {"ga", "gb", "gc", "hd", "he"}
|
| 385 |
+
assert len(U) == len(G) + len(H)
|
| 386 |
+
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H)
|
| 387 |
+
|
| 388 |
+
# DiGraphs
|
| 389 |
+
G = nx.DiGraph()
|
| 390 |
+
G.add_node(0)
|
| 391 |
+
G.add_edge(1, 2)
|
| 392 |
+
H = nx.DiGraph()
|
| 393 |
+
H.add_edge(3, 4)
|
| 394 |
+
|
| 395 |
+
U = nx.full_join(G, H)
|
| 396 |
+
assert set(U) == set(G) | set(H)
|
| 397 |
+
assert len(U) == len(G) + len(H)
|
| 398 |
+
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2
|
| 399 |
+
|
| 400 |
+
# DiGraphs Rename
|
| 401 |
+
U = nx.full_join(G, H, rename=("g", "h"))
|
| 402 |
+
assert set(U) == {"g0", "g1", "g2", "h3", "h4"}
|
| 403 |
+
assert len(U) == len(G) + len(H)
|
| 404 |
+
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
def test_full_join_multigraph():
|
| 408 |
+
# MultiGraphs
|
| 409 |
+
G = nx.MultiGraph()
|
| 410 |
+
G.add_node(0)
|
| 411 |
+
G.add_edge(1, 2)
|
| 412 |
+
H = nx.MultiGraph()
|
| 413 |
+
H.add_edge(3, 4)
|
| 414 |
+
|
| 415 |
+
U = nx.full_join(G, H)
|
| 416 |
+
assert set(U) == set(G) | set(H)
|
| 417 |
+
assert len(U) == len(G) + len(H)
|
| 418 |
+
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H)
|
| 419 |
+
|
| 420 |
+
# MultiGraphs rename
|
| 421 |
+
U = nx.full_join(G, H, rename=("g", "h"))
|
| 422 |
+
assert set(U) == {"g0", "g1", "g2", "h3", "h4"}
|
| 423 |
+
assert len(U) == len(G) + len(H)
|
| 424 |
+
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H)
|
| 425 |
+
|
| 426 |
+
# MultiDiGraphs
|
| 427 |
+
G = nx.MultiDiGraph()
|
| 428 |
+
G.add_node(0)
|
| 429 |
+
G.add_edge(1, 2)
|
| 430 |
+
H = nx.MultiDiGraph()
|
| 431 |
+
H.add_edge(3, 4)
|
| 432 |
+
|
| 433 |
+
U = nx.full_join(G, H)
|
| 434 |
+
assert set(U) == set(G) | set(H)
|
| 435 |
+
assert len(U) == len(G) + len(H)
|
| 436 |
+
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2
|
| 437 |
+
|
| 438 |
+
# MultiDiGraphs rename
|
| 439 |
+
U = nx.full_join(G, H, rename=("g", "h"))
|
| 440 |
+
assert set(U) == {"g0", "g1", "g2", "h3", "h4"}
|
| 441 |
+
assert len(U) == len(G) + len(H)
|
| 442 |
+
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def test_mixed_type_union():
|
| 446 |
+
G = nx.Graph()
|
| 447 |
+
H = nx.MultiGraph()
|
| 448 |
+
pytest.raises(nx.NetworkXError, nx.union, G, H)
|
| 449 |
+
pytest.raises(nx.NetworkXError, nx.disjoint_union, G, H)
|
| 450 |
+
pytest.raises(nx.NetworkXError, nx.intersection, G, H)
|
| 451 |
+
pytest.raises(nx.NetworkXError, nx.difference, G, H)
|
| 452 |
+
pytest.raises(nx.NetworkXError, nx.symmetric_difference, G, H)
|
| 453 |
+
pytest.raises(nx.NetworkXError, nx.compose, G, H)
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_product.py
ADDED
|
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.utils import edges_equal
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def test_tensor_product_raises():
|
| 8 |
+
with pytest.raises(nx.NetworkXError):
|
| 9 |
+
P = nx.tensor_product(nx.DiGraph(), nx.Graph())
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def test_tensor_product_null():
|
| 13 |
+
null = nx.null_graph()
|
| 14 |
+
empty10 = nx.empty_graph(10)
|
| 15 |
+
K3 = nx.complete_graph(3)
|
| 16 |
+
K10 = nx.complete_graph(10)
|
| 17 |
+
P3 = nx.path_graph(3)
|
| 18 |
+
P10 = nx.path_graph(10)
|
| 19 |
+
# null graph
|
| 20 |
+
G = nx.tensor_product(null, null)
|
| 21 |
+
assert nx.is_isomorphic(G, null)
|
| 22 |
+
# null_graph X anything = null_graph and v.v.
|
| 23 |
+
G = nx.tensor_product(null, empty10)
|
| 24 |
+
assert nx.is_isomorphic(G, null)
|
| 25 |
+
G = nx.tensor_product(null, K3)
|
| 26 |
+
assert nx.is_isomorphic(G, null)
|
| 27 |
+
G = nx.tensor_product(null, K10)
|
| 28 |
+
assert nx.is_isomorphic(G, null)
|
| 29 |
+
G = nx.tensor_product(null, P3)
|
| 30 |
+
assert nx.is_isomorphic(G, null)
|
| 31 |
+
G = nx.tensor_product(null, P10)
|
| 32 |
+
assert nx.is_isomorphic(G, null)
|
| 33 |
+
G = nx.tensor_product(empty10, null)
|
| 34 |
+
assert nx.is_isomorphic(G, null)
|
| 35 |
+
G = nx.tensor_product(K3, null)
|
| 36 |
+
assert nx.is_isomorphic(G, null)
|
| 37 |
+
G = nx.tensor_product(K10, null)
|
| 38 |
+
assert nx.is_isomorphic(G, null)
|
| 39 |
+
G = nx.tensor_product(P3, null)
|
| 40 |
+
assert nx.is_isomorphic(G, null)
|
| 41 |
+
G = nx.tensor_product(P10, null)
|
| 42 |
+
assert nx.is_isomorphic(G, null)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def test_tensor_product_size():
|
| 46 |
+
P5 = nx.path_graph(5)
|
| 47 |
+
K3 = nx.complete_graph(3)
|
| 48 |
+
K5 = nx.complete_graph(5)
|
| 49 |
+
|
| 50 |
+
G = nx.tensor_product(P5, K3)
|
| 51 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 52 |
+
G = nx.tensor_product(K3, K5)
|
| 53 |
+
assert nx.number_of_nodes(G) == 3 * 5
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def test_tensor_product_combinations():
|
| 57 |
+
# basic smoke test, more realistic tests would be useful
|
| 58 |
+
P5 = nx.path_graph(5)
|
| 59 |
+
K3 = nx.complete_graph(3)
|
| 60 |
+
G = nx.tensor_product(P5, K3)
|
| 61 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 62 |
+
G = nx.tensor_product(P5, nx.MultiGraph(K3))
|
| 63 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 64 |
+
G = nx.tensor_product(nx.MultiGraph(P5), K3)
|
| 65 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 66 |
+
G = nx.tensor_product(nx.MultiGraph(P5), nx.MultiGraph(K3))
|
| 67 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 68 |
+
|
| 69 |
+
G = nx.tensor_product(nx.DiGraph(P5), nx.DiGraph(K3))
|
| 70 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def test_tensor_product_classic_result():
|
| 74 |
+
K2 = nx.complete_graph(2)
|
| 75 |
+
G = nx.petersen_graph()
|
| 76 |
+
G = nx.tensor_product(G, K2)
|
| 77 |
+
assert nx.is_isomorphic(G, nx.desargues_graph())
|
| 78 |
+
|
| 79 |
+
G = nx.cycle_graph(5)
|
| 80 |
+
G = nx.tensor_product(G, K2)
|
| 81 |
+
assert nx.is_isomorphic(G, nx.cycle_graph(10))
|
| 82 |
+
|
| 83 |
+
G = nx.tetrahedral_graph()
|
| 84 |
+
G = nx.tensor_product(G, K2)
|
| 85 |
+
assert nx.is_isomorphic(G, nx.cubical_graph())
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def test_tensor_product_random():
|
| 89 |
+
G = nx.erdos_renyi_graph(10, 2 / 10.0)
|
| 90 |
+
H = nx.erdos_renyi_graph(10, 2 / 10.0)
|
| 91 |
+
GH = nx.tensor_product(G, H)
|
| 92 |
+
|
| 93 |
+
for u_G, u_H in GH.nodes():
|
| 94 |
+
for v_G, v_H in GH.nodes():
|
| 95 |
+
if H.has_edge(u_H, v_H) and G.has_edge(u_G, v_G):
|
| 96 |
+
assert GH.has_edge((u_G, u_H), (v_G, v_H))
|
| 97 |
+
else:
|
| 98 |
+
assert not GH.has_edge((u_G, u_H), (v_G, v_H))
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def test_cartesian_product_multigraph():
|
| 102 |
+
G = nx.MultiGraph()
|
| 103 |
+
G.add_edge(1, 2, key=0)
|
| 104 |
+
G.add_edge(1, 2, key=1)
|
| 105 |
+
H = nx.MultiGraph()
|
| 106 |
+
H.add_edge(3, 4, key=0)
|
| 107 |
+
H.add_edge(3, 4, key=1)
|
| 108 |
+
GH = nx.cartesian_product(G, H)
|
| 109 |
+
assert set(GH) == {(1, 3), (2, 3), (2, 4), (1, 4)}
|
| 110 |
+
assert {(frozenset([u, v]), k) for u, v, k in GH.edges(keys=True)} == {
|
| 111 |
+
(frozenset([u, v]), k)
|
| 112 |
+
for u, v, k in [
|
| 113 |
+
((1, 3), (2, 3), 0),
|
| 114 |
+
((1, 3), (2, 3), 1),
|
| 115 |
+
((1, 3), (1, 4), 0),
|
| 116 |
+
((1, 3), (1, 4), 1),
|
| 117 |
+
((2, 3), (2, 4), 0),
|
| 118 |
+
((2, 3), (2, 4), 1),
|
| 119 |
+
((2, 4), (1, 4), 0),
|
| 120 |
+
((2, 4), (1, 4), 1),
|
| 121 |
+
]
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def test_cartesian_product_raises():
|
| 126 |
+
with pytest.raises(nx.NetworkXError):
|
| 127 |
+
P = nx.cartesian_product(nx.DiGraph(), nx.Graph())
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def test_cartesian_product_null():
|
| 131 |
+
null = nx.null_graph()
|
| 132 |
+
empty10 = nx.empty_graph(10)
|
| 133 |
+
K3 = nx.complete_graph(3)
|
| 134 |
+
K10 = nx.complete_graph(10)
|
| 135 |
+
P3 = nx.path_graph(3)
|
| 136 |
+
P10 = nx.path_graph(10)
|
| 137 |
+
# null graph
|
| 138 |
+
G = nx.cartesian_product(null, null)
|
| 139 |
+
assert nx.is_isomorphic(G, null)
|
| 140 |
+
# null_graph X anything = null_graph and v.v.
|
| 141 |
+
G = nx.cartesian_product(null, empty10)
|
| 142 |
+
assert nx.is_isomorphic(G, null)
|
| 143 |
+
G = nx.cartesian_product(null, K3)
|
| 144 |
+
assert nx.is_isomorphic(G, null)
|
| 145 |
+
G = nx.cartesian_product(null, K10)
|
| 146 |
+
assert nx.is_isomorphic(G, null)
|
| 147 |
+
G = nx.cartesian_product(null, P3)
|
| 148 |
+
assert nx.is_isomorphic(G, null)
|
| 149 |
+
G = nx.cartesian_product(null, P10)
|
| 150 |
+
assert nx.is_isomorphic(G, null)
|
| 151 |
+
G = nx.cartesian_product(empty10, null)
|
| 152 |
+
assert nx.is_isomorphic(G, null)
|
| 153 |
+
G = nx.cartesian_product(K3, null)
|
| 154 |
+
assert nx.is_isomorphic(G, null)
|
| 155 |
+
G = nx.cartesian_product(K10, null)
|
| 156 |
+
assert nx.is_isomorphic(G, null)
|
| 157 |
+
G = nx.cartesian_product(P3, null)
|
| 158 |
+
assert nx.is_isomorphic(G, null)
|
| 159 |
+
G = nx.cartesian_product(P10, null)
|
| 160 |
+
assert nx.is_isomorphic(G, null)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def test_cartesian_product_size():
|
| 164 |
+
# order(GXH)=order(G)*order(H)
|
| 165 |
+
K5 = nx.complete_graph(5)
|
| 166 |
+
P5 = nx.path_graph(5)
|
| 167 |
+
K3 = nx.complete_graph(3)
|
| 168 |
+
G = nx.cartesian_product(P5, K3)
|
| 169 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 170 |
+
assert nx.number_of_edges(G) == nx.number_of_edges(P5) * nx.number_of_nodes(
|
| 171 |
+
K3
|
| 172 |
+
) + nx.number_of_edges(K3) * nx.number_of_nodes(P5)
|
| 173 |
+
G = nx.cartesian_product(K3, K5)
|
| 174 |
+
assert nx.number_of_nodes(G) == 3 * 5
|
| 175 |
+
assert nx.number_of_edges(G) == nx.number_of_edges(K5) * nx.number_of_nodes(
|
| 176 |
+
K3
|
| 177 |
+
) + nx.number_of_edges(K3) * nx.number_of_nodes(K5)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def test_cartesian_product_classic():
|
| 181 |
+
# test some classic product graphs
|
| 182 |
+
P2 = nx.path_graph(2)
|
| 183 |
+
P3 = nx.path_graph(3)
|
| 184 |
+
# cube = 2-path X 2-path
|
| 185 |
+
G = nx.cartesian_product(P2, P2)
|
| 186 |
+
G = nx.cartesian_product(P2, G)
|
| 187 |
+
assert nx.is_isomorphic(G, nx.cubical_graph())
|
| 188 |
+
|
| 189 |
+
# 3x3 grid
|
| 190 |
+
G = nx.cartesian_product(P3, P3)
|
| 191 |
+
assert nx.is_isomorphic(G, nx.grid_2d_graph(3, 3))
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def test_cartesian_product_random():
|
| 195 |
+
G = nx.erdos_renyi_graph(10, 2 / 10.0)
|
| 196 |
+
H = nx.erdos_renyi_graph(10, 2 / 10.0)
|
| 197 |
+
GH = nx.cartesian_product(G, H)
|
| 198 |
+
|
| 199 |
+
for u_G, u_H in GH.nodes():
|
| 200 |
+
for v_G, v_H in GH.nodes():
|
| 201 |
+
if (u_G == v_G and H.has_edge(u_H, v_H)) or (
|
| 202 |
+
u_H == v_H and G.has_edge(u_G, v_G)
|
| 203 |
+
):
|
| 204 |
+
assert GH.has_edge((u_G, u_H), (v_G, v_H))
|
| 205 |
+
else:
|
| 206 |
+
assert not GH.has_edge((u_G, u_H), (v_G, v_H))
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def test_lexicographic_product_raises():
|
| 210 |
+
with pytest.raises(nx.NetworkXError):
|
| 211 |
+
P = nx.lexicographic_product(nx.DiGraph(), nx.Graph())
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def test_lexicographic_product_null():
|
| 215 |
+
null = nx.null_graph()
|
| 216 |
+
empty10 = nx.empty_graph(10)
|
| 217 |
+
K3 = nx.complete_graph(3)
|
| 218 |
+
K10 = nx.complete_graph(10)
|
| 219 |
+
P3 = nx.path_graph(3)
|
| 220 |
+
P10 = nx.path_graph(10)
|
| 221 |
+
# null graph
|
| 222 |
+
G = nx.lexicographic_product(null, null)
|
| 223 |
+
assert nx.is_isomorphic(G, null)
|
| 224 |
+
# null_graph X anything = null_graph and v.v.
|
| 225 |
+
G = nx.lexicographic_product(null, empty10)
|
| 226 |
+
assert nx.is_isomorphic(G, null)
|
| 227 |
+
G = nx.lexicographic_product(null, K3)
|
| 228 |
+
assert nx.is_isomorphic(G, null)
|
| 229 |
+
G = nx.lexicographic_product(null, K10)
|
| 230 |
+
assert nx.is_isomorphic(G, null)
|
| 231 |
+
G = nx.lexicographic_product(null, P3)
|
| 232 |
+
assert nx.is_isomorphic(G, null)
|
| 233 |
+
G = nx.lexicographic_product(null, P10)
|
| 234 |
+
assert nx.is_isomorphic(G, null)
|
| 235 |
+
G = nx.lexicographic_product(empty10, null)
|
| 236 |
+
assert nx.is_isomorphic(G, null)
|
| 237 |
+
G = nx.lexicographic_product(K3, null)
|
| 238 |
+
assert nx.is_isomorphic(G, null)
|
| 239 |
+
G = nx.lexicographic_product(K10, null)
|
| 240 |
+
assert nx.is_isomorphic(G, null)
|
| 241 |
+
G = nx.lexicographic_product(P3, null)
|
| 242 |
+
assert nx.is_isomorphic(G, null)
|
| 243 |
+
G = nx.lexicographic_product(P10, null)
|
| 244 |
+
assert nx.is_isomorphic(G, null)
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def test_lexicographic_product_size():
|
| 248 |
+
K5 = nx.complete_graph(5)
|
| 249 |
+
P5 = nx.path_graph(5)
|
| 250 |
+
K3 = nx.complete_graph(3)
|
| 251 |
+
G = nx.lexicographic_product(P5, K3)
|
| 252 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 253 |
+
G = nx.lexicographic_product(K3, K5)
|
| 254 |
+
assert nx.number_of_nodes(G) == 3 * 5
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def test_lexicographic_product_combinations():
|
| 258 |
+
P5 = nx.path_graph(5)
|
| 259 |
+
K3 = nx.complete_graph(3)
|
| 260 |
+
G = nx.lexicographic_product(P5, K3)
|
| 261 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 262 |
+
G = nx.lexicographic_product(nx.MultiGraph(P5), K3)
|
| 263 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 264 |
+
G = nx.lexicographic_product(P5, nx.MultiGraph(K3))
|
| 265 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 266 |
+
G = nx.lexicographic_product(nx.MultiGraph(P5), nx.MultiGraph(K3))
|
| 267 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 268 |
+
|
| 269 |
+
# No classic easily found classic results for lexicographic product
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def test_lexicographic_product_random():
|
| 273 |
+
G = nx.erdos_renyi_graph(10, 2 / 10.0)
|
| 274 |
+
H = nx.erdos_renyi_graph(10, 2 / 10.0)
|
| 275 |
+
GH = nx.lexicographic_product(G, H)
|
| 276 |
+
|
| 277 |
+
for u_G, u_H in GH.nodes():
|
| 278 |
+
for v_G, v_H in GH.nodes():
|
| 279 |
+
if G.has_edge(u_G, v_G) or (u_G == v_G and H.has_edge(u_H, v_H)):
|
| 280 |
+
assert GH.has_edge((u_G, u_H), (v_G, v_H))
|
| 281 |
+
else:
|
| 282 |
+
assert not GH.has_edge((u_G, u_H), (v_G, v_H))
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
def test_strong_product_raises():
|
| 286 |
+
with pytest.raises(nx.NetworkXError):
|
| 287 |
+
P = nx.strong_product(nx.DiGraph(), nx.Graph())
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def test_strong_product_null():
|
| 291 |
+
null = nx.null_graph()
|
| 292 |
+
empty10 = nx.empty_graph(10)
|
| 293 |
+
K3 = nx.complete_graph(3)
|
| 294 |
+
K10 = nx.complete_graph(10)
|
| 295 |
+
P3 = nx.path_graph(3)
|
| 296 |
+
P10 = nx.path_graph(10)
|
| 297 |
+
# null graph
|
| 298 |
+
G = nx.strong_product(null, null)
|
| 299 |
+
assert nx.is_isomorphic(G, null)
|
| 300 |
+
# null_graph X anything = null_graph and v.v.
|
| 301 |
+
G = nx.strong_product(null, empty10)
|
| 302 |
+
assert nx.is_isomorphic(G, null)
|
| 303 |
+
G = nx.strong_product(null, K3)
|
| 304 |
+
assert nx.is_isomorphic(G, null)
|
| 305 |
+
G = nx.strong_product(null, K10)
|
| 306 |
+
assert nx.is_isomorphic(G, null)
|
| 307 |
+
G = nx.strong_product(null, P3)
|
| 308 |
+
assert nx.is_isomorphic(G, null)
|
| 309 |
+
G = nx.strong_product(null, P10)
|
| 310 |
+
assert nx.is_isomorphic(G, null)
|
| 311 |
+
G = nx.strong_product(empty10, null)
|
| 312 |
+
assert nx.is_isomorphic(G, null)
|
| 313 |
+
G = nx.strong_product(K3, null)
|
| 314 |
+
assert nx.is_isomorphic(G, null)
|
| 315 |
+
G = nx.strong_product(K10, null)
|
| 316 |
+
assert nx.is_isomorphic(G, null)
|
| 317 |
+
G = nx.strong_product(P3, null)
|
| 318 |
+
assert nx.is_isomorphic(G, null)
|
| 319 |
+
G = nx.strong_product(P10, null)
|
| 320 |
+
assert nx.is_isomorphic(G, null)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
def test_strong_product_size():
|
| 324 |
+
K5 = nx.complete_graph(5)
|
| 325 |
+
P5 = nx.path_graph(5)
|
| 326 |
+
K3 = nx.complete_graph(3)
|
| 327 |
+
G = nx.strong_product(P5, K3)
|
| 328 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 329 |
+
G = nx.strong_product(K3, K5)
|
| 330 |
+
assert nx.number_of_nodes(G) == 3 * 5
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
def test_strong_product_combinations():
|
| 334 |
+
P5 = nx.path_graph(5)
|
| 335 |
+
K3 = nx.complete_graph(3)
|
| 336 |
+
G = nx.strong_product(P5, K3)
|
| 337 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 338 |
+
G = nx.strong_product(nx.MultiGraph(P5), K3)
|
| 339 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 340 |
+
G = nx.strong_product(P5, nx.MultiGraph(K3))
|
| 341 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 342 |
+
G = nx.strong_product(nx.MultiGraph(P5), nx.MultiGraph(K3))
|
| 343 |
+
assert nx.number_of_nodes(G) == 5 * 3
|
| 344 |
+
|
| 345 |
+
# No classic easily found classic results for strong product
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def test_strong_product_random():
|
| 349 |
+
G = nx.erdos_renyi_graph(10, 2 / 10.0)
|
| 350 |
+
H = nx.erdos_renyi_graph(10, 2 / 10.0)
|
| 351 |
+
GH = nx.strong_product(G, H)
|
| 352 |
+
|
| 353 |
+
for u_G, u_H in GH.nodes():
|
| 354 |
+
for v_G, v_H in GH.nodes():
|
| 355 |
+
if (
|
| 356 |
+
(u_G == v_G and H.has_edge(u_H, v_H))
|
| 357 |
+
or (u_H == v_H and G.has_edge(u_G, v_G))
|
| 358 |
+
or (G.has_edge(u_G, v_G) and H.has_edge(u_H, v_H))
|
| 359 |
+
):
|
| 360 |
+
assert GH.has_edge((u_G, u_H), (v_G, v_H))
|
| 361 |
+
else:
|
| 362 |
+
assert not GH.has_edge((u_G, u_H), (v_G, v_H))
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def test_graph_power_raises():
|
| 366 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
| 367 |
+
nx.power(nx.MultiDiGraph(), 2)
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
def test_graph_power():
|
| 371 |
+
# wikipedia example for graph power
|
| 372 |
+
G = nx.cycle_graph(7)
|
| 373 |
+
G.add_edge(6, 7)
|
| 374 |
+
G.add_edge(7, 8)
|
| 375 |
+
G.add_edge(8, 9)
|
| 376 |
+
G.add_edge(9, 2)
|
| 377 |
+
H = nx.power(G, 2)
|
| 378 |
+
|
| 379 |
+
assert edges_equal(
|
| 380 |
+
list(H.edges()),
|
| 381 |
+
[
|
| 382 |
+
(0, 1),
|
| 383 |
+
(0, 2),
|
| 384 |
+
(0, 5),
|
| 385 |
+
(0, 6),
|
| 386 |
+
(0, 7),
|
| 387 |
+
(1, 9),
|
| 388 |
+
(1, 2),
|
| 389 |
+
(1, 3),
|
| 390 |
+
(1, 6),
|
| 391 |
+
(2, 3),
|
| 392 |
+
(2, 4),
|
| 393 |
+
(2, 8),
|
| 394 |
+
(2, 9),
|
| 395 |
+
(3, 4),
|
| 396 |
+
(3, 5),
|
| 397 |
+
(3, 9),
|
| 398 |
+
(4, 5),
|
| 399 |
+
(4, 6),
|
| 400 |
+
(5, 6),
|
| 401 |
+
(5, 7),
|
| 402 |
+
(6, 7),
|
| 403 |
+
(6, 8),
|
| 404 |
+
(7, 8),
|
| 405 |
+
(7, 9),
|
| 406 |
+
(8, 9),
|
| 407 |
+
],
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
def test_graph_power_negative():
|
| 412 |
+
with pytest.raises(ValueError):
|
| 413 |
+
nx.power(nx.Graph(), -1)
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
def test_rooted_product_raises():
|
| 417 |
+
with pytest.raises(nx.NodeNotFound):
|
| 418 |
+
nx.rooted_product(nx.Graph(), nx.path_graph(2), 10)
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
def test_rooted_product():
|
| 422 |
+
G = nx.cycle_graph(5)
|
| 423 |
+
H = nx.Graph()
|
| 424 |
+
H.add_edges_from([("a", "b"), ("b", "c"), ("b", "d")])
|
| 425 |
+
R = nx.rooted_product(G, H, "a")
|
| 426 |
+
assert len(R) == len(G) * len(H)
|
| 427 |
+
assert R.size() == G.size() + len(G) * H.size()
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
def test_corona_product():
|
| 431 |
+
G = nx.cycle_graph(3)
|
| 432 |
+
H = nx.path_graph(2)
|
| 433 |
+
C = nx.corona_product(G, H)
|
| 434 |
+
assert len(C) == (len(G) * len(H)) + len(G)
|
| 435 |
+
assert C.size() == G.size() + len(G) * H.size() + len(G) * len(H)
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
def test_modular_product():
|
| 439 |
+
G = nx.path_graph(3)
|
| 440 |
+
H = nx.path_graph(4)
|
| 441 |
+
M = nx.modular_product(G, H)
|
| 442 |
+
assert len(M) == len(G) * len(H)
|
| 443 |
+
|
| 444 |
+
assert edges_equal(
|
| 445 |
+
list(M.edges()),
|
| 446 |
+
[
|
| 447 |
+
((0, 0), (1, 1)),
|
| 448 |
+
((0, 0), (2, 2)),
|
| 449 |
+
((0, 0), (2, 3)),
|
| 450 |
+
((0, 1), (1, 0)),
|
| 451 |
+
((0, 1), (1, 2)),
|
| 452 |
+
((0, 1), (2, 3)),
|
| 453 |
+
((0, 2), (1, 1)),
|
| 454 |
+
((0, 2), (1, 3)),
|
| 455 |
+
((0, 2), (2, 0)),
|
| 456 |
+
((0, 3), (1, 2)),
|
| 457 |
+
((0, 3), (2, 0)),
|
| 458 |
+
((0, 3), (2, 1)),
|
| 459 |
+
((1, 0), (2, 1)),
|
| 460 |
+
((1, 1), (2, 0)),
|
| 461 |
+
((1, 1), (2, 2)),
|
| 462 |
+
((1, 2), (2, 1)),
|
| 463 |
+
((1, 2), (2, 3)),
|
| 464 |
+
((1, 3), (2, 2)),
|
| 465 |
+
],
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
def test_modular_product_raises():
|
| 470 |
+
G = nx.Graph([(0, 1), (1, 2), (2, 0)])
|
| 471 |
+
H = nx.Graph([(0, 1), (1, 2), (2, 0)])
|
| 472 |
+
DG = nx.DiGraph([(0, 1), (1, 2), (2, 0)])
|
| 473 |
+
DH = nx.DiGraph([(0, 1), (1, 2), (2, 0)])
|
| 474 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
| 475 |
+
nx.modular_product(G, DH)
|
| 476 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
| 477 |
+
nx.modular_product(DG, H)
|
| 478 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
| 479 |
+
nx.modular_product(DG, DH)
|
| 480 |
+
|
| 481 |
+
MG = nx.MultiGraph([(0, 1), (1, 2), (2, 0), (0, 1)])
|
| 482 |
+
MH = nx.MultiGraph([(0, 1), (1, 2), (2, 0), (0, 1)])
|
| 483 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
| 484 |
+
nx.modular_product(G, MH)
|
| 485 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
| 486 |
+
nx.modular_product(MG, H)
|
| 487 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
| 488 |
+
nx.modular_product(MG, MH)
|
| 489 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
| 490 |
+
# check multigraph with no multiedges
|
| 491 |
+
nx.modular_product(nx.MultiGraph(G), H)
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_unary.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def test_complement():
|
| 7 |
+
null = nx.null_graph()
|
| 8 |
+
empty1 = nx.empty_graph(1)
|
| 9 |
+
empty10 = nx.empty_graph(10)
|
| 10 |
+
K3 = nx.complete_graph(3)
|
| 11 |
+
K5 = nx.complete_graph(5)
|
| 12 |
+
K10 = nx.complete_graph(10)
|
| 13 |
+
P2 = nx.path_graph(2)
|
| 14 |
+
P3 = nx.path_graph(3)
|
| 15 |
+
P5 = nx.path_graph(5)
|
| 16 |
+
P10 = nx.path_graph(10)
|
| 17 |
+
# complement of the complete graph is empty
|
| 18 |
+
|
| 19 |
+
G = nx.complement(K3)
|
| 20 |
+
assert nx.is_isomorphic(G, nx.empty_graph(3))
|
| 21 |
+
G = nx.complement(K5)
|
| 22 |
+
assert nx.is_isomorphic(G, nx.empty_graph(5))
|
| 23 |
+
# for any G, G=complement(complement(G))
|
| 24 |
+
P3cc = nx.complement(nx.complement(P3))
|
| 25 |
+
assert nx.is_isomorphic(P3, P3cc)
|
| 26 |
+
nullcc = nx.complement(nx.complement(null))
|
| 27 |
+
assert nx.is_isomorphic(null, nullcc)
|
| 28 |
+
b = nx.bull_graph()
|
| 29 |
+
bcc = nx.complement(nx.complement(b))
|
| 30 |
+
assert nx.is_isomorphic(b, bcc)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def test_complement_2():
|
| 34 |
+
G1 = nx.DiGraph()
|
| 35 |
+
G1.add_edge("A", "B")
|
| 36 |
+
G1.add_edge("A", "C")
|
| 37 |
+
G1.add_edge("A", "D")
|
| 38 |
+
G1C = nx.complement(G1)
|
| 39 |
+
assert sorted(G1C.edges()) == [
|
| 40 |
+
("B", "A"),
|
| 41 |
+
("B", "C"),
|
| 42 |
+
("B", "D"),
|
| 43 |
+
("C", "A"),
|
| 44 |
+
("C", "B"),
|
| 45 |
+
("C", "D"),
|
| 46 |
+
("D", "A"),
|
| 47 |
+
("D", "B"),
|
| 48 |
+
("D", "C"),
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def test_reverse1():
|
| 53 |
+
# Other tests for reverse are done by the DiGraph and MultiDigraph.
|
| 54 |
+
G1 = nx.Graph()
|
| 55 |
+
pytest.raises(nx.NetworkXError, nx.reverse, G1)
|
minigpt2/lib/python3.10/site-packages/networkx/algorithms/operators/unary.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unary operations on graphs"""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
|
| 5 |
+
__all__ = ["complement", "reverse"]
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@nx._dispatchable(returns_graph=True)
|
| 9 |
+
def complement(G):
|
| 10 |
+
"""Returns the graph complement of G.
|
| 11 |
+
|
| 12 |
+
Parameters
|
| 13 |
+
----------
|
| 14 |
+
G : graph
|
| 15 |
+
A NetworkX graph
|
| 16 |
+
|
| 17 |
+
Returns
|
| 18 |
+
-------
|
| 19 |
+
GC : A new graph.
|
| 20 |
+
|
| 21 |
+
Notes
|
| 22 |
+
-----
|
| 23 |
+
Note that `complement` does not create self-loops and also
|
| 24 |
+
does not produce parallel edges for MultiGraphs.
|
| 25 |
+
|
| 26 |
+
Graph, node, and edge data are not propagated to the new graph.
|
| 27 |
+
|
| 28 |
+
Examples
|
| 29 |
+
--------
|
| 30 |
+
>>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5)])
|
| 31 |
+
>>> G_complement = nx.complement(G)
|
| 32 |
+
>>> G_complement.edges() # This shows the edges of the complemented graph
|
| 33 |
+
EdgeView([(1, 4), (1, 5), (2, 4), (2, 5), (4, 5)])
|
| 34 |
+
|
| 35 |
+
"""
|
| 36 |
+
R = G.__class__()
|
| 37 |
+
R.add_nodes_from(G)
|
| 38 |
+
R.add_edges_from(
|
| 39 |
+
((n, n2) for n, nbrs in G.adjacency() for n2 in G if n2 not in nbrs if n != n2)
|
| 40 |
+
)
|
| 41 |
+
return R
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@nx._dispatchable(returns_graph=True)
|
| 45 |
+
def reverse(G, copy=True):
|
| 46 |
+
"""Returns the reverse directed graph of G.
|
| 47 |
+
|
| 48 |
+
Parameters
|
| 49 |
+
----------
|
| 50 |
+
G : directed graph
|
| 51 |
+
A NetworkX directed graph
|
| 52 |
+
copy : bool
|
| 53 |
+
If True, then a new graph is returned. If False, then the graph is
|
| 54 |
+
reversed in place.
|
| 55 |
+
|
| 56 |
+
Returns
|
| 57 |
+
-------
|
| 58 |
+
H : directed graph
|
| 59 |
+
The reversed G.
|
| 60 |
+
|
| 61 |
+
Raises
|
| 62 |
+
------
|
| 63 |
+
NetworkXError
|
| 64 |
+
If graph is undirected.
|
| 65 |
+
|
| 66 |
+
Examples
|
| 67 |
+
--------
|
| 68 |
+
>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5)])
|
| 69 |
+
>>> G_reversed = nx.reverse(G)
|
| 70 |
+
>>> G_reversed.edges()
|
| 71 |
+
OutEdgeView([(2, 1), (3, 1), (3, 2), (4, 3), (5, 3)])
|
| 72 |
+
|
| 73 |
+
"""
|
| 74 |
+
if not G.is_directed():
|
| 75 |
+
raise nx.NetworkXError("Cannot reverse an undirected graph.")
|
| 76 |
+
else:
|
| 77 |
+
return G.reverse(copy=copy)
|
minigpt2/lib/python3.10/site-packages/networkx/drawing/__init__.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# graph drawing and interface to graphviz
|
| 2 |
+
|
| 3 |
+
from .layout import *
|
| 4 |
+
from .nx_latex import *
|
| 5 |
+
from .nx_pylab import *
|
| 6 |
+
from . import nx_agraph
|
| 7 |
+
from . import nx_pydot
|
minigpt2/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_agraph.cpython-310.pyc
ADDED
|
Binary file (12.4 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_latex.cpython-310.pyc
ADDED
|
Binary file (22.2 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_pydot.cpython-310.pyc
ADDED
|
Binary file (8.45 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/drawing/layout.py
ADDED
|
@@ -0,0 +1,1630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
******
|
| 3 |
+
Layout
|
| 4 |
+
******
|
| 5 |
+
|
| 6 |
+
Node positioning algorithms for graph drawing.
|
| 7 |
+
|
| 8 |
+
For `random_layout()` the possible resulting shape
|
| 9 |
+
is a square of side [0, scale] (default: [0, 1])
|
| 10 |
+
Changing `center` shifts the layout by that amount.
|
| 11 |
+
|
| 12 |
+
For the other layout routines, the extent is
|
| 13 |
+
[center - scale, center + scale] (default: [-1, 1]).
|
| 14 |
+
|
| 15 |
+
Warning: Most layout routines have only been tested in 2-dimensions.
|
| 16 |
+
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import networkx as nx
|
| 20 |
+
from networkx.utils import np_random_state
|
| 21 |
+
|
| 22 |
+
__all__ = [
|
| 23 |
+
"bipartite_layout",
|
| 24 |
+
"circular_layout",
|
| 25 |
+
"forceatlas2_layout",
|
| 26 |
+
"kamada_kawai_layout",
|
| 27 |
+
"random_layout",
|
| 28 |
+
"rescale_layout",
|
| 29 |
+
"rescale_layout_dict",
|
| 30 |
+
"shell_layout",
|
| 31 |
+
"spring_layout",
|
| 32 |
+
"spectral_layout",
|
| 33 |
+
"planar_layout",
|
| 34 |
+
"fruchterman_reingold_layout",
|
| 35 |
+
"spiral_layout",
|
| 36 |
+
"multipartite_layout",
|
| 37 |
+
"bfs_layout",
|
| 38 |
+
"arf_layout",
|
| 39 |
+
]
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def _process_params(G, center, dim):
|
| 43 |
+
# Some boilerplate code.
|
| 44 |
+
import numpy as np
|
| 45 |
+
|
| 46 |
+
if not isinstance(G, nx.Graph):
|
| 47 |
+
empty_graph = nx.Graph()
|
| 48 |
+
empty_graph.add_nodes_from(G)
|
| 49 |
+
G = empty_graph
|
| 50 |
+
|
| 51 |
+
if center is None:
|
| 52 |
+
center = np.zeros(dim)
|
| 53 |
+
else:
|
| 54 |
+
center = np.asarray(center)
|
| 55 |
+
|
| 56 |
+
if len(center) != dim:
|
| 57 |
+
msg = "length of center coordinates must match dimension of layout"
|
| 58 |
+
raise ValueError(msg)
|
| 59 |
+
|
| 60 |
+
return G, center
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@np_random_state(3)
|
| 64 |
+
def random_layout(G, center=None, dim=2, seed=None):
|
| 65 |
+
"""Position nodes uniformly at random in the unit square.
|
| 66 |
+
|
| 67 |
+
For every node, a position is generated by choosing each of dim
|
| 68 |
+
coordinates uniformly at random on the interval [0.0, 1.0).
|
| 69 |
+
|
| 70 |
+
NumPy (http://scipy.org) is required for this function.
|
| 71 |
+
|
| 72 |
+
Parameters
|
| 73 |
+
----------
|
| 74 |
+
G : NetworkX graph or list of nodes
|
| 75 |
+
A position will be assigned to every node in G.
|
| 76 |
+
|
| 77 |
+
center : array-like or None
|
| 78 |
+
Coordinate pair around which to center the layout.
|
| 79 |
+
|
| 80 |
+
dim : int
|
| 81 |
+
Dimension of layout.
|
| 82 |
+
|
| 83 |
+
seed : int, RandomState instance or None optional (default=None)
|
| 84 |
+
Set the random state for deterministic node layouts.
|
| 85 |
+
If int, `seed` is the seed used by the random number generator,
|
| 86 |
+
if numpy.random.RandomState instance, `seed` is the random
|
| 87 |
+
number generator,
|
| 88 |
+
if None, the random number generator is the RandomState instance used
|
| 89 |
+
by numpy.random.
|
| 90 |
+
|
| 91 |
+
Returns
|
| 92 |
+
-------
|
| 93 |
+
pos : dict
|
| 94 |
+
A dictionary of positions keyed by node
|
| 95 |
+
|
| 96 |
+
Examples
|
| 97 |
+
--------
|
| 98 |
+
>>> G = nx.lollipop_graph(4, 3)
|
| 99 |
+
>>> pos = nx.random_layout(G)
|
| 100 |
+
|
| 101 |
+
"""
|
| 102 |
+
import numpy as np
|
| 103 |
+
|
| 104 |
+
G, center = _process_params(G, center, dim)
|
| 105 |
+
pos = seed.rand(len(G), dim) + center
|
| 106 |
+
pos = pos.astype(np.float32)
|
| 107 |
+
pos = dict(zip(G, pos))
|
| 108 |
+
|
| 109 |
+
return pos
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def circular_layout(G, scale=1, center=None, dim=2):
|
| 113 |
+
# dim=2 only
|
| 114 |
+
"""Position nodes on a circle.
|
| 115 |
+
|
| 116 |
+
Parameters
|
| 117 |
+
----------
|
| 118 |
+
G : NetworkX graph or list of nodes
|
| 119 |
+
A position will be assigned to every node in G.
|
| 120 |
+
|
| 121 |
+
scale : number (default: 1)
|
| 122 |
+
Scale factor for positions.
|
| 123 |
+
|
| 124 |
+
center : array-like or None
|
| 125 |
+
Coordinate pair around which to center the layout.
|
| 126 |
+
|
| 127 |
+
dim : int
|
| 128 |
+
Dimension of layout.
|
| 129 |
+
If dim>2, the remaining dimensions are set to zero
|
| 130 |
+
in the returned positions.
|
| 131 |
+
If dim<2, a ValueError is raised.
|
| 132 |
+
|
| 133 |
+
Returns
|
| 134 |
+
-------
|
| 135 |
+
pos : dict
|
| 136 |
+
A dictionary of positions keyed by node
|
| 137 |
+
|
| 138 |
+
Raises
|
| 139 |
+
------
|
| 140 |
+
ValueError
|
| 141 |
+
If dim < 2
|
| 142 |
+
|
| 143 |
+
Examples
|
| 144 |
+
--------
|
| 145 |
+
>>> G = nx.path_graph(4)
|
| 146 |
+
>>> pos = nx.circular_layout(G)
|
| 147 |
+
|
| 148 |
+
Notes
|
| 149 |
+
-----
|
| 150 |
+
This algorithm currently only works in two dimensions and does not
|
| 151 |
+
try to minimize edge crossings.
|
| 152 |
+
|
| 153 |
+
"""
|
| 154 |
+
import numpy as np
|
| 155 |
+
|
| 156 |
+
if dim < 2:
|
| 157 |
+
raise ValueError("cannot handle dimensions < 2")
|
| 158 |
+
|
| 159 |
+
G, center = _process_params(G, center, dim)
|
| 160 |
+
|
| 161 |
+
paddims = max(0, (dim - 2))
|
| 162 |
+
|
| 163 |
+
if len(G) == 0:
|
| 164 |
+
pos = {}
|
| 165 |
+
elif len(G) == 1:
|
| 166 |
+
pos = {nx.utils.arbitrary_element(G): center}
|
| 167 |
+
else:
|
| 168 |
+
# Discard the extra angle since it matches 0 radians.
|
| 169 |
+
theta = np.linspace(0, 1, len(G) + 1)[:-1] * 2 * np.pi
|
| 170 |
+
theta = theta.astype(np.float32)
|
| 171 |
+
pos = np.column_stack(
|
| 172 |
+
[np.cos(theta), np.sin(theta), np.zeros((len(G), paddims))]
|
| 173 |
+
)
|
| 174 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 175 |
+
pos = dict(zip(G, pos))
|
| 176 |
+
|
| 177 |
+
return pos
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def shell_layout(G, nlist=None, rotate=None, scale=1, center=None, dim=2):
|
| 181 |
+
"""Position nodes in concentric circles.
|
| 182 |
+
|
| 183 |
+
Parameters
|
| 184 |
+
----------
|
| 185 |
+
G : NetworkX graph or list of nodes
|
| 186 |
+
A position will be assigned to every node in G.
|
| 187 |
+
|
| 188 |
+
nlist : list of lists
|
| 189 |
+
List of node lists for each shell.
|
| 190 |
+
|
| 191 |
+
rotate : angle in radians (default=pi/len(nlist))
|
| 192 |
+
Angle by which to rotate the starting position of each shell
|
| 193 |
+
relative to the starting position of the previous shell.
|
| 194 |
+
To recreate behavior before v2.5 use rotate=0.
|
| 195 |
+
|
| 196 |
+
scale : number (default: 1)
|
| 197 |
+
Scale factor for positions.
|
| 198 |
+
|
| 199 |
+
center : array-like or None
|
| 200 |
+
Coordinate pair around which to center the layout.
|
| 201 |
+
|
| 202 |
+
dim : int
|
| 203 |
+
Dimension of layout, currently only dim=2 is supported.
|
| 204 |
+
Other dimension values result in a ValueError.
|
| 205 |
+
|
| 206 |
+
Returns
|
| 207 |
+
-------
|
| 208 |
+
pos : dict
|
| 209 |
+
A dictionary of positions keyed by node
|
| 210 |
+
|
| 211 |
+
Raises
|
| 212 |
+
------
|
| 213 |
+
ValueError
|
| 214 |
+
If dim != 2
|
| 215 |
+
|
| 216 |
+
Examples
|
| 217 |
+
--------
|
| 218 |
+
>>> G = nx.path_graph(4)
|
| 219 |
+
>>> shells = [[0], [1, 2, 3]]
|
| 220 |
+
>>> pos = nx.shell_layout(G, shells)
|
| 221 |
+
|
| 222 |
+
Notes
|
| 223 |
+
-----
|
| 224 |
+
This algorithm currently only works in two dimensions and does not
|
| 225 |
+
try to minimize edge crossings.
|
| 226 |
+
|
| 227 |
+
"""
|
| 228 |
+
import numpy as np
|
| 229 |
+
|
| 230 |
+
if dim != 2:
|
| 231 |
+
raise ValueError("can only handle 2 dimensions")
|
| 232 |
+
|
| 233 |
+
G, center = _process_params(G, center, dim)
|
| 234 |
+
|
| 235 |
+
if len(G) == 0:
|
| 236 |
+
return {}
|
| 237 |
+
if len(G) == 1:
|
| 238 |
+
return {nx.utils.arbitrary_element(G): center}
|
| 239 |
+
|
| 240 |
+
if nlist is None:
|
| 241 |
+
# draw the whole graph in one shell
|
| 242 |
+
nlist = [list(G)]
|
| 243 |
+
|
| 244 |
+
radius_bump = scale / len(nlist)
|
| 245 |
+
|
| 246 |
+
if len(nlist[0]) == 1:
|
| 247 |
+
# single node at center
|
| 248 |
+
radius = 0.0
|
| 249 |
+
else:
|
| 250 |
+
# else start at r=1
|
| 251 |
+
radius = radius_bump
|
| 252 |
+
|
| 253 |
+
if rotate is None:
|
| 254 |
+
rotate = np.pi / len(nlist)
|
| 255 |
+
first_theta = rotate
|
| 256 |
+
npos = {}
|
| 257 |
+
for nodes in nlist:
|
| 258 |
+
# Discard the last angle (endpoint=False) since 2*pi matches 0 radians
|
| 259 |
+
theta = (
|
| 260 |
+
np.linspace(0, 2 * np.pi, len(nodes), endpoint=False, dtype=np.float32)
|
| 261 |
+
+ first_theta
|
| 262 |
+
)
|
| 263 |
+
pos = radius * np.column_stack([np.cos(theta), np.sin(theta)]) + center
|
| 264 |
+
npos.update(zip(nodes, pos))
|
| 265 |
+
radius += radius_bump
|
| 266 |
+
first_theta += rotate
|
| 267 |
+
|
| 268 |
+
return npos
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
def bipartite_layout(
|
| 272 |
+
G, nodes, align="vertical", scale=1, center=None, aspect_ratio=4 / 3
|
| 273 |
+
):
|
| 274 |
+
"""Position nodes in two straight lines.
|
| 275 |
+
|
| 276 |
+
Parameters
|
| 277 |
+
----------
|
| 278 |
+
G : NetworkX graph or list of nodes
|
| 279 |
+
A position will be assigned to every node in G.
|
| 280 |
+
|
| 281 |
+
nodes : list or container
|
| 282 |
+
Nodes in one node set of the bipartite graph.
|
| 283 |
+
This set will be placed on left or top.
|
| 284 |
+
|
| 285 |
+
align : string (default='vertical')
|
| 286 |
+
The alignment of nodes. Vertical or horizontal.
|
| 287 |
+
|
| 288 |
+
scale : number (default: 1)
|
| 289 |
+
Scale factor for positions.
|
| 290 |
+
|
| 291 |
+
center : array-like or None
|
| 292 |
+
Coordinate pair around which to center the layout.
|
| 293 |
+
|
| 294 |
+
aspect_ratio : number (default=4/3):
|
| 295 |
+
The ratio of the width to the height of the layout.
|
| 296 |
+
|
| 297 |
+
Returns
|
| 298 |
+
-------
|
| 299 |
+
pos : dict
|
| 300 |
+
A dictionary of positions keyed by node.
|
| 301 |
+
|
| 302 |
+
Examples
|
| 303 |
+
--------
|
| 304 |
+
>>> G = nx.bipartite.gnmk_random_graph(3, 5, 10, seed=123)
|
| 305 |
+
>>> top = nx.bipartite.sets(G)[0]
|
| 306 |
+
>>> pos = nx.bipartite_layout(G, top)
|
| 307 |
+
|
| 308 |
+
Notes
|
| 309 |
+
-----
|
| 310 |
+
This algorithm currently only works in two dimensions and does not
|
| 311 |
+
try to minimize edge crossings.
|
| 312 |
+
|
| 313 |
+
"""
|
| 314 |
+
|
| 315 |
+
import numpy as np
|
| 316 |
+
|
| 317 |
+
if align not in ("vertical", "horizontal"):
|
| 318 |
+
msg = "align must be either vertical or horizontal."
|
| 319 |
+
raise ValueError(msg)
|
| 320 |
+
|
| 321 |
+
G, center = _process_params(G, center=center, dim=2)
|
| 322 |
+
if len(G) == 0:
|
| 323 |
+
return {}
|
| 324 |
+
|
| 325 |
+
height = 1
|
| 326 |
+
width = aspect_ratio * height
|
| 327 |
+
offset = (width / 2, height / 2)
|
| 328 |
+
|
| 329 |
+
top = dict.fromkeys(nodes)
|
| 330 |
+
bottom = [v for v in G if v not in top]
|
| 331 |
+
nodes = list(top) + bottom
|
| 332 |
+
|
| 333 |
+
left_xs = np.repeat(0, len(top))
|
| 334 |
+
right_xs = np.repeat(width, len(bottom))
|
| 335 |
+
left_ys = np.linspace(0, height, len(top))
|
| 336 |
+
right_ys = np.linspace(0, height, len(bottom))
|
| 337 |
+
|
| 338 |
+
top_pos = np.column_stack([left_xs, left_ys]) - offset
|
| 339 |
+
bottom_pos = np.column_stack([right_xs, right_ys]) - offset
|
| 340 |
+
|
| 341 |
+
pos = np.concatenate([top_pos, bottom_pos])
|
| 342 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 343 |
+
if align == "horizontal":
|
| 344 |
+
pos = pos[:, ::-1] # swap x and y coords
|
| 345 |
+
pos = dict(zip(nodes, pos))
|
| 346 |
+
return pos
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
@np_random_state(10)
|
| 350 |
+
def spring_layout(
|
| 351 |
+
G,
|
| 352 |
+
k=None,
|
| 353 |
+
pos=None,
|
| 354 |
+
fixed=None,
|
| 355 |
+
iterations=50,
|
| 356 |
+
threshold=1e-4,
|
| 357 |
+
weight="weight",
|
| 358 |
+
scale=1,
|
| 359 |
+
center=None,
|
| 360 |
+
dim=2,
|
| 361 |
+
seed=None,
|
| 362 |
+
):
|
| 363 |
+
"""Position nodes using Fruchterman-Reingold force-directed algorithm.
|
| 364 |
+
|
| 365 |
+
The algorithm simulates a force-directed representation of the network
|
| 366 |
+
treating edges as springs holding nodes close, while treating nodes
|
| 367 |
+
as repelling objects, sometimes called an anti-gravity force.
|
| 368 |
+
Simulation continues until the positions are close to an equilibrium.
|
| 369 |
+
|
| 370 |
+
There are some hard-coded values: minimal distance between
|
| 371 |
+
nodes (0.01) and "temperature" of 0.1 to ensure nodes don't fly away.
|
| 372 |
+
During the simulation, `k` helps determine the distance between nodes,
|
| 373 |
+
though `scale` and `center` determine the size and place after
|
| 374 |
+
rescaling occurs at the end of the simulation.
|
| 375 |
+
|
| 376 |
+
Fixing some nodes doesn't allow them to move in the simulation.
|
| 377 |
+
It also turns off the rescaling feature at the simulation's end.
|
| 378 |
+
In addition, setting `scale` to `None` turns off rescaling.
|
| 379 |
+
|
| 380 |
+
Parameters
|
| 381 |
+
----------
|
| 382 |
+
G : NetworkX graph or list of nodes
|
| 383 |
+
A position will be assigned to every node in G.
|
| 384 |
+
|
| 385 |
+
k : float (default=None)
|
| 386 |
+
Optimal distance between nodes. If None the distance is set to
|
| 387 |
+
1/sqrt(n) where n is the number of nodes. Increase this value
|
| 388 |
+
to move nodes farther apart.
|
| 389 |
+
|
| 390 |
+
pos : dict or None optional (default=None)
|
| 391 |
+
Initial positions for nodes as a dictionary with node as keys
|
| 392 |
+
and values as a coordinate list or tuple. If None, then use
|
| 393 |
+
random initial positions.
|
| 394 |
+
|
| 395 |
+
fixed : list or None optional (default=None)
|
| 396 |
+
Nodes to keep fixed at initial position.
|
| 397 |
+
Nodes not in ``G.nodes`` are ignored.
|
| 398 |
+
ValueError raised if `fixed` specified and `pos` not.
|
| 399 |
+
|
| 400 |
+
iterations : int optional (default=50)
|
| 401 |
+
Maximum number of iterations taken
|
| 402 |
+
|
| 403 |
+
threshold: float optional (default = 1e-4)
|
| 404 |
+
Threshold for relative error in node position changes.
|
| 405 |
+
The iteration stops if the error is below this threshold.
|
| 406 |
+
|
| 407 |
+
weight : string or None optional (default='weight')
|
| 408 |
+
The edge attribute that holds the numerical value used for
|
| 409 |
+
the edge weight. Larger means a stronger attractive force.
|
| 410 |
+
If None, then all edge weights are 1.
|
| 411 |
+
|
| 412 |
+
scale : number or None (default: 1)
|
| 413 |
+
Scale factor for positions. Not used unless `fixed is None`.
|
| 414 |
+
If scale is None, no rescaling is performed.
|
| 415 |
+
|
| 416 |
+
center : array-like or None
|
| 417 |
+
Coordinate pair around which to center the layout.
|
| 418 |
+
Not used unless `fixed is None`.
|
| 419 |
+
|
| 420 |
+
dim : int
|
| 421 |
+
Dimension of layout.
|
| 422 |
+
|
| 423 |
+
seed : int, RandomState instance or None optional (default=None)
|
| 424 |
+
Used only for the initial positions in the algorithm.
|
| 425 |
+
Set the random state for deterministic node layouts.
|
| 426 |
+
If int, `seed` is the seed used by the random number generator,
|
| 427 |
+
if numpy.random.RandomState instance, `seed` is the random
|
| 428 |
+
number generator,
|
| 429 |
+
if None, the random number generator is the RandomState instance used
|
| 430 |
+
by numpy.random.
|
| 431 |
+
|
| 432 |
+
Returns
|
| 433 |
+
-------
|
| 434 |
+
pos : dict
|
| 435 |
+
A dictionary of positions keyed by node
|
| 436 |
+
|
| 437 |
+
Examples
|
| 438 |
+
--------
|
| 439 |
+
>>> G = nx.path_graph(4)
|
| 440 |
+
>>> pos = nx.spring_layout(G)
|
| 441 |
+
|
| 442 |
+
# The same using longer but equivalent function name
|
| 443 |
+
>>> pos = nx.fruchterman_reingold_layout(G)
|
| 444 |
+
"""
|
| 445 |
+
import numpy as np
|
| 446 |
+
|
| 447 |
+
G, center = _process_params(G, center, dim)
|
| 448 |
+
|
| 449 |
+
if fixed is not None:
|
| 450 |
+
if pos is None:
|
| 451 |
+
raise ValueError("nodes are fixed without positions given")
|
| 452 |
+
for node in fixed:
|
| 453 |
+
if node not in pos:
|
| 454 |
+
raise ValueError("nodes are fixed without positions given")
|
| 455 |
+
nfixed = {node: i for i, node in enumerate(G)}
|
| 456 |
+
fixed = np.asarray([nfixed[node] for node in fixed if node in nfixed])
|
| 457 |
+
|
| 458 |
+
if pos is not None:
|
| 459 |
+
# Determine size of existing domain to adjust initial positions
|
| 460 |
+
dom_size = max(coord for pos_tup in pos.values() for coord in pos_tup)
|
| 461 |
+
if dom_size == 0:
|
| 462 |
+
dom_size = 1
|
| 463 |
+
pos_arr = seed.rand(len(G), dim) * dom_size + center
|
| 464 |
+
|
| 465 |
+
for i, n in enumerate(G):
|
| 466 |
+
if n in pos:
|
| 467 |
+
pos_arr[i] = np.asarray(pos[n])
|
| 468 |
+
else:
|
| 469 |
+
pos_arr = None
|
| 470 |
+
dom_size = 1
|
| 471 |
+
|
| 472 |
+
if len(G) == 0:
|
| 473 |
+
return {}
|
| 474 |
+
if len(G) == 1:
|
| 475 |
+
return {nx.utils.arbitrary_element(G.nodes()): center}
|
| 476 |
+
|
| 477 |
+
try:
|
| 478 |
+
# Sparse matrix
|
| 479 |
+
if len(G) < 500: # sparse solver for large graphs
|
| 480 |
+
raise ValueError
|
| 481 |
+
A = nx.to_scipy_sparse_array(G, weight=weight, dtype="f")
|
| 482 |
+
if k is None and fixed is not None:
|
| 483 |
+
# We must adjust k by domain size for layouts not near 1x1
|
| 484 |
+
nnodes, _ = A.shape
|
| 485 |
+
k = dom_size / np.sqrt(nnodes)
|
| 486 |
+
pos = _sparse_fruchterman_reingold(
|
| 487 |
+
A, k, pos_arr, fixed, iterations, threshold, dim, seed
|
| 488 |
+
)
|
| 489 |
+
except ValueError:
|
| 490 |
+
A = nx.to_numpy_array(G, weight=weight)
|
| 491 |
+
if k is None and fixed is not None:
|
| 492 |
+
# We must adjust k by domain size for layouts not near 1x1
|
| 493 |
+
nnodes, _ = A.shape
|
| 494 |
+
k = dom_size / np.sqrt(nnodes)
|
| 495 |
+
pos = _fruchterman_reingold(
|
| 496 |
+
A, k, pos_arr, fixed, iterations, threshold, dim, seed
|
| 497 |
+
)
|
| 498 |
+
if fixed is None and scale is not None:
|
| 499 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 500 |
+
pos = dict(zip(G, pos))
|
| 501 |
+
return pos
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
fruchterman_reingold_layout = spring_layout
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
@np_random_state(7)
|
| 508 |
+
def _fruchterman_reingold(
|
| 509 |
+
A, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, dim=2, seed=None
|
| 510 |
+
):
|
| 511 |
+
# Position nodes in adjacency matrix A using Fruchterman-Reingold
|
| 512 |
+
# Entry point for NetworkX graph is fruchterman_reingold_layout()
|
| 513 |
+
import numpy as np
|
| 514 |
+
|
| 515 |
+
try:
|
| 516 |
+
nnodes, _ = A.shape
|
| 517 |
+
except AttributeError as err:
|
| 518 |
+
msg = "fruchterman_reingold() takes an adjacency matrix as input"
|
| 519 |
+
raise nx.NetworkXError(msg) from err
|
| 520 |
+
|
| 521 |
+
if pos is None:
|
| 522 |
+
# random initial positions
|
| 523 |
+
pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype)
|
| 524 |
+
else:
|
| 525 |
+
# make sure positions are of same type as matrix
|
| 526 |
+
pos = pos.astype(A.dtype)
|
| 527 |
+
|
| 528 |
+
# optimal distance between nodes
|
| 529 |
+
if k is None:
|
| 530 |
+
k = np.sqrt(1.0 / nnodes)
|
| 531 |
+
# the initial "temperature" is about .1 of domain area (=1x1)
|
| 532 |
+
# this is the largest step allowed in the dynamics.
|
| 533 |
+
# We need to calculate this in case our fixed positions force our domain
|
| 534 |
+
# to be much bigger than 1x1
|
| 535 |
+
t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1
|
| 536 |
+
# simple cooling scheme.
|
| 537 |
+
# linearly step down by dt on each iteration so last iteration is size dt.
|
| 538 |
+
dt = t / (iterations + 1)
|
| 539 |
+
delta = np.zeros((pos.shape[0], pos.shape[0], pos.shape[1]), dtype=A.dtype)
|
| 540 |
+
# the inscrutable (but fast) version
|
| 541 |
+
# this is still O(V^2)
|
| 542 |
+
# could use multilevel methods to speed this up significantly
|
| 543 |
+
for iteration in range(iterations):
|
| 544 |
+
# matrix of difference between points
|
| 545 |
+
delta = pos[:, np.newaxis, :] - pos[np.newaxis, :, :]
|
| 546 |
+
# distance between points
|
| 547 |
+
distance = np.linalg.norm(delta, axis=-1)
|
| 548 |
+
# enforce minimum distance of 0.01
|
| 549 |
+
np.clip(distance, 0.01, None, out=distance)
|
| 550 |
+
# displacement "force"
|
| 551 |
+
displacement = np.einsum(
|
| 552 |
+
"ijk,ij->ik", delta, (k * k / distance**2 - A * distance / k)
|
| 553 |
+
)
|
| 554 |
+
# update positions
|
| 555 |
+
length = np.linalg.norm(displacement, axis=-1)
|
| 556 |
+
length = np.where(length < 0.01, 0.1, length)
|
| 557 |
+
delta_pos = np.einsum("ij,i->ij", displacement, t / length)
|
| 558 |
+
if fixed is not None:
|
| 559 |
+
# don't change positions of fixed nodes
|
| 560 |
+
delta_pos[fixed] = 0.0
|
| 561 |
+
pos += delta_pos
|
| 562 |
+
# cool temperature
|
| 563 |
+
t -= dt
|
| 564 |
+
if (np.linalg.norm(delta_pos) / nnodes) < threshold:
|
| 565 |
+
break
|
| 566 |
+
return pos
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
@np_random_state(7)
|
| 570 |
+
def _sparse_fruchterman_reingold(
|
| 571 |
+
A, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, dim=2, seed=None
|
| 572 |
+
):
|
| 573 |
+
# Position nodes in adjacency matrix A using Fruchterman-Reingold
|
| 574 |
+
# Entry point for NetworkX graph is fruchterman_reingold_layout()
|
| 575 |
+
# Sparse version
|
| 576 |
+
import numpy as np
|
| 577 |
+
import scipy as sp
|
| 578 |
+
|
| 579 |
+
try:
|
| 580 |
+
nnodes, _ = A.shape
|
| 581 |
+
except AttributeError as err:
|
| 582 |
+
msg = "fruchterman_reingold() takes an adjacency matrix as input"
|
| 583 |
+
raise nx.NetworkXError(msg) from err
|
| 584 |
+
# make sure we have a LIst of Lists representation
|
| 585 |
+
try:
|
| 586 |
+
A = A.tolil()
|
| 587 |
+
except AttributeError:
|
| 588 |
+
A = (sp.sparse.coo_array(A)).tolil()
|
| 589 |
+
|
| 590 |
+
if pos is None:
|
| 591 |
+
# random initial positions
|
| 592 |
+
pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype)
|
| 593 |
+
else:
|
| 594 |
+
# make sure positions are of same type as matrix
|
| 595 |
+
pos = pos.astype(A.dtype)
|
| 596 |
+
|
| 597 |
+
# no fixed nodes
|
| 598 |
+
if fixed is None:
|
| 599 |
+
fixed = []
|
| 600 |
+
|
| 601 |
+
# optimal distance between nodes
|
| 602 |
+
if k is None:
|
| 603 |
+
k = np.sqrt(1.0 / nnodes)
|
| 604 |
+
# the initial "temperature" is about .1 of domain area (=1x1)
|
| 605 |
+
# this is the largest step allowed in the dynamics.
|
| 606 |
+
t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1
|
| 607 |
+
# simple cooling scheme.
|
| 608 |
+
# linearly step down by dt on each iteration so last iteration is size dt.
|
| 609 |
+
dt = t / (iterations + 1)
|
| 610 |
+
|
| 611 |
+
displacement = np.zeros((dim, nnodes))
|
| 612 |
+
for iteration in range(iterations):
|
| 613 |
+
displacement *= 0
|
| 614 |
+
# loop over rows
|
| 615 |
+
for i in range(A.shape[0]):
|
| 616 |
+
if i in fixed:
|
| 617 |
+
continue
|
| 618 |
+
# difference between this row's node position and all others
|
| 619 |
+
delta = (pos[i] - pos).T
|
| 620 |
+
# distance between points
|
| 621 |
+
distance = np.sqrt((delta**2).sum(axis=0))
|
| 622 |
+
# enforce minimum distance of 0.01
|
| 623 |
+
distance = np.where(distance < 0.01, 0.01, distance)
|
| 624 |
+
# the adjacency matrix row
|
| 625 |
+
Ai = A.getrowview(i).toarray() # TODO: revisit w/ sparse 1D container
|
| 626 |
+
# displacement "force"
|
| 627 |
+
displacement[:, i] += (
|
| 628 |
+
delta * (k * k / distance**2 - Ai * distance / k)
|
| 629 |
+
).sum(axis=1)
|
| 630 |
+
# update positions
|
| 631 |
+
length = np.sqrt((displacement**2).sum(axis=0))
|
| 632 |
+
length = np.where(length < 0.01, 0.1, length)
|
| 633 |
+
delta_pos = (displacement * t / length).T
|
| 634 |
+
pos += delta_pos
|
| 635 |
+
# cool temperature
|
| 636 |
+
t -= dt
|
| 637 |
+
if (np.linalg.norm(delta_pos) / nnodes) < threshold:
|
| 638 |
+
break
|
| 639 |
+
return pos
|
| 640 |
+
|
| 641 |
+
|
| 642 |
+
def kamada_kawai_layout(
|
| 643 |
+
G, dist=None, pos=None, weight="weight", scale=1, center=None, dim=2
|
| 644 |
+
):
|
| 645 |
+
"""Position nodes using Kamada-Kawai path-length cost-function.
|
| 646 |
+
|
| 647 |
+
Parameters
|
| 648 |
+
----------
|
| 649 |
+
G : NetworkX graph or list of nodes
|
| 650 |
+
A position will be assigned to every node in G.
|
| 651 |
+
|
| 652 |
+
dist : dict (default=None)
|
| 653 |
+
A two-level dictionary of optimal distances between nodes,
|
| 654 |
+
indexed by source and destination node.
|
| 655 |
+
If None, the distance is computed using shortest_path_length().
|
| 656 |
+
|
| 657 |
+
pos : dict or None optional (default=None)
|
| 658 |
+
Initial positions for nodes as a dictionary with node as keys
|
| 659 |
+
and values as a coordinate list or tuple. If None, then use
|
| 660 |
+
circular_layout() for dim >= 2 and a linear layout for dim == 1.
|
| 661 |
+
|
| 662 |
+
weight : string or None optional (default='weight')
|
| 663 |
+
The edge attribute that holds the numerical value used for
|
| 664 |
+
the edge weight. If None, then all edge weights are 1.
|
| 665 |
+
|
| 666 |
+
scale : number (default: 1)
|
| 667 |
+
Scale factor for positions.
|
| 668 |
+
|
| 669 |
+
center : array-like or None
|
| 670 |
+
Coordinate pair around which to center the layout.
|
| 671 |
+
|
| 672 |
+
dim : int
|
| 673 |
+
Dimension of layout.
|
| 674 |
+
|
| 675 |
+
Returns
|
| 676 |
+
-------
|
| 677 |
+
pos : dict
|
| 678 |
+
A dictionary of positions keyed by node
|
| 679 |
+
|
| 680 |
+
Examples
|
| 681 |
+
--------
|
| 682 |
+
>>> G = nx.path_graph(4)
|
| 683 |
+
>>> pos = nx.kamada_kawai_layout(G)
|
| 684 |
+
"""
|
| 685 |
+
import numpy as np
|
| 686 |
+
|
| 687 |
+
G, center = _process_params(G, center, dim)
|
| 688 |
+
nNodes = len(G)
|
| 689 |
+
if nNodes == 0:
|
| 690 |
+
return {}
|
| 691 |
+
|
| 692 |
+
if dist is None:
|
| 693 |
+
dist = dict(nx.shortest_path_length(G, weight=weight))
|
| 694 |
+
dist_mtx = 1e6 * np.ones((nNodes, nNodes))
|
| 695 |
+
for row, nr in enumerate(G):
|
| 696 |
+
if nr not in dist:
|
| 697 |
+
continue
|
| 698 |
+
rdist = dist[nr]
|
| 699 |
+
for col, nc in enumerate(G):
|
| 700 |
+
if nc not in rdist:
|
| 701 |
+
continue
|
| 702 |
+
dist_mtx[row][col] = rdist[nc]
|
| 703 |
+
|
| 704 |
+
if pos is None:
|
| 705 |
+
if dim >= 3:
|
| 706 |
+
pos = random_layout(G, dim=dim)
|
| 707 |
+
elif dim == 2:
|
| 708 |
+
pos = circular_layout(G, dim=dim)
|
| 709 |
+
else:
|
| 710 |
+
pos = dict(zip(G, np.linspace(0, 1, len(G))))
|
| 711 |
+
pos_arr = np.array([pos[n] for n in G])
|
| 712 |
+
|
| 713 |
+
pos = _kamada_kawai_solve(dist_mtx, pos_arr, dim)
|
| 714 |
+
|
| 715 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 716 |
+
return dict(zip(G, pos))
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
def _kamada_kawai_solve(dist_mtx, pos_arr, dim):
|
| 720 |
+
# Anneal node locations based on the Kamada-Kawai cost-function,
|
| 721 |
+
# using the supplied matrix of preferred inter-node distances,
|
| 722 |
+
# and starting locations.
|
| 723 |
+
|
| 724 |
+
import numpy as np
|
| 725 |
+
import scipy as sp
|
| 726 |
+
|
| 727 |
+
meanwt = 1e-3
|
| 728 |
+
costargs = (np, 1 / (dist_mtx + np.eye(dist_mtx.shape[0]) * 1e-3), meanwt, dim)
|
| 729 |
+
|
| 730 |
+
optresult = sp.optimize.minimize(
|
| 731 |
+
_kamada_kawai_costfn,
|
| 732 |
+
pos_arr.ravel(),
|
| 733 |
+
method="L-BFGS-B",
|
| 734 |
+
args=costargs,
|
| 735 |
+
jac=True,
|
| 736 |
+
)
|
| 737 |
+
|
| 738 |
+
return optresult.x.reshape((-1, dim))
|
| 739 |
+
|
| 740 |
+
|
| 741 |
+
def _kamada_kawai_costfn(pos_vec, np, invdist, meanweight, dim):
|
| 742 |
+
# Cost-function and gradient for Kamada-Kawai layout algorithm
|
| 743 |
+
nNodes = invdist.shape[0]
|
| 744 |
+
pos_arr = pos_vec.reshape((nNodes, dim))
|
| 745 |
+
|
| 746 |
+
delta = pos_arr[:, np.newaxis, :] - pos_arr[np.newaxis, :, :]
|
| 747 |
+
nodesep = np.linalg.norm(delta, axis=-1)
|
| 748 |
+
direction = np.einsum("ijk,ij->ijk", delta, 1 / (nodesep + np.eye(nNodes) * 1e-3))
|
| 749 |
+
|
| 750 |
+
offset = nodesep * invdist - 1.0
|
| 751 |
+
offset[np.diag_indices(nNodes)] = 0
|
| 752 |
+
|
| 753 |
+
cost = 0.5 * np.sum(offset**2)
|
| 754 |
+
grad = np.einsum("ij,ij,ijk->ik", invdist, offset, direction) - np.einsum(
|
| 755 |
+
"ij,ij,ijk->jk", invdist, offset, direction
|
| 756 |
+
)
|
| 757 |
+
|
| 758 |
+
# Additional parabolic term to encourage mean position to be near origin:
|
| 759 |
+
sumpos = np.sum(pos_arr, axis=0)
|
| 760 |
+
cost += 0.5 * meanweight * np.sum(sumpos**2)
|
| 761 |
+
grad += meanweight * sumpos
|
| 762 |
+
|
| 763 |
+
return (cost, grad.ravel())
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
def spectral_layout(G, weight="weight", scale=1, center=None, dim=2):
|
| 767 |
+
"""Position nodes using the eigenvectors of the graph Laplacian.
|
| 768 |
+
|
| 769 |
+
Using the unnormalized Laplacian, the layout shows possible clusters of
|
| 770 |
+
nodes which are an approximation of the ratio cut. If dim is the number of
|
| 771 |
+
dimensions then the positions are the entries of the dim eigenvectors
|
| 772 |
+
corresponding to the ascending eigenvalues starting from the second one.
|
| 773 |
+
|
| 774 |
+
Parameters
|
| 775 |
+
----------
|
| 776 |
+
G : NetworkX graph or list of nodes
|
| 777 |
+
A position will be assigned to every node in G.
|
| 778 |
+
|
| 779 |
+
weight : string or None optional (default='weight')
|
| 780 |
+
The edge attribute that holds the numerical value used for
|
| 781 |
+
the edge weight. If None, then all edge weights are 1.
|
| 782 |
+
|
| 783 |
+
scale : number (default: 1)
|
| 784 |
+
Scale factor for positions.
|
| 785 |
+
|
| 786 |
+
center : array-like or None
|
| 787 |
+
Coordinate pair around which to center the layout.
|
| 788 |
+
|
| 789 |
+
dim : int
|
| 790 |
+
Dimension of layout.
|
| 791 |
+
|
| 792 |
+
Returns
|
| 793 |
+
-------
|
| 794 |
+
pos : dict
|
| 795 |
+
A dictionary of positions keyed by node
|
| 796 |
+
|
| 797 |
+
Examples
|
| 798 |
+
--------
|
| 799 |
+
>>> G = nx.path_graph(4)
|
| 800 |
+
>>> pos = nx.spectral_layout(G)
|
| 801 |
+
|
| 802 |
+
Notes
|
| 803 |
+
-----
|
| 804 |
+
Directed graphs will be considered as undirected graphs when
|
| 805 |
+
positioning the nodes.
|
| 806 |
+
|
| 807 |
+
For larger graphs (>500 nodes) this will use the SciPy sparse
|
| 808 |
+
eigenvalue solver (ARPACK).
|
| 809 |
+
"""
|
| 810 |
+
# handle some special cases that break the eigensolvers
|
| 811 |
+
import numpy as np
|
| 812 |
+
|
| 813 |
+
G, center = _process_params(G, center, dim)
|
| 814 |
+
|
| 815 |
+
if len(G) <= 2:
|
| 816 |
+
if len(G) == 0:
|
| 817 |
+
pos = np.array([])
|
| 818 |
+
elif len(G) == 1:
|
| 819 |
+
pos = np.array([center])
|
| 820 |
+
else:
|
| 821 |
+
pos = np.array([np.zeros(dim), np.array(center) * 2.0])
|
| 822 |
+
return dict(zip(G, pos))
|
| 823 |
+
try:
|
| 824 |
+
# Sparse matrix
|
| 825 |
+
if len(G) < 500: # dense solver is faster for small graphs
|
| 826 |
+
raise ValueError
|
| 827 |
+
A = nx.to_scipy_sparse_array(G, weight=weight, dtype="d")
|
| 828 |
+
# Symmetrize directed graphs
|
| 829 |
+
if G.is_directed():
|
| 830 |
+
A = A + np.transpose(A)
|
| 831 |
+
pos = _sparse_spectral(A, dim)
|
| 832 |
+
except (ImportError, ValueError):
|
| 833 |
+
# Dense matrix
|
| 834 |
+
A = nx.to_numpy_array(G, weight=weight)
|
| 835 |
+
# Symmetrize directed graphs
|
| 836 |
+
if G.is_directed():
|
| 837 |
+
A += A.T
|
| 838 |
+
pos = _spectral(A, dim)
|
| 839 |
+
|
| 840 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 841 |
+
pos = dict(zip(G, pos))
|
| 842 |
+
return pos
|
| 843 |
+
|
| 844 |
+
|
| 845 |
+
def _spectral(A, dim=2):
|
| 846 |
+
# Input adjacency matrix A
|
| 847 |
+
# Uses dense eigenvalue solver from numpy
|
| 848 |
+
import numpy as np
|
| 849 |
+
|
| 850 |
+
try:
|
| 851 |
+
nnodes, _ = A.shape
|
| 852 |
+
except AttributeError as err:
|
| 853 |
+
msg = "spectral() takes an adjacency matrix as input"
|
| 854 |
+
raise nx.NetworkXError(msg) from err
|
| 855 |
+
|
| 856 |
+
# form Laplacian matrix where D is diagonal of degrees
|
| 857 |
+
D = np.identity(nnodes, dtype=A.dtype) * np.sum(A, axis=1)
|
| 858 |
+
L = D - A
|
| 859 |
+
|
| 860 |
+
eigenvalues, eigenvectors = np.linalg.eig(L)
|
| 861 |
+
# sort and keep smallest nonzero
|
| 862 |
+
index = np.argsort(eigenvalues)[1 : dim + 1] # 0 index is zero eigenvalue
|
| 863 |
+
return np.real(eigenvectors[:, index])
|
| 864 |
+
|
| 865 |
+
|
| 866 |
+
def _sparse_spectral(A, dim=2):
|
| 867 |
+
# Input adjacency matrix A
|
| 868 |
+
# Uses sparse eigenvalue solver from scipy
|
| 869 |
+
# Could use multilevel methods here, see Koren "On spectral graph drawing"
|
| 870 |
+
import numpy as np
|
| 871 |
+
import scipy as sp
|
| 872 |
+
|
| 873 |
+
try:
|
| 874 |
+
nnodes, _ = A.shape
|
| 875 |
+
except AttributeError as err:
|
| 876 |
+
msg = "sparse_spectral() takes an adjacency matrix as input"
|
| 877 |
+
raise nx.NetworkXError(msg) from err
|
| 878 |
+
|
| 879 |
+
# form Laplacian matrix
|
| 880 |
+
# TODO: Rm csr_array wrapper in favor of spdiags array constructor when available
|
| 881 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, nnodes, nnodes))
|
| 882 |
+
L = D - A
|
| 883 |
+
|
| 884 |
+
k = dim + 1
|
| 885 |
+
# number of Lanczos vectors for ARPACK solver.What is the right scaling?
|
| 886 |
+
ncv = max(2 * k + 1, int(np.sqrt(nnodes)))
|
| 887 |
+
# return smallest k eigenvalues and eigenvectors
|
| 888 |
+
eigenvalues, eigenvectors = sp.sparse.linalg.eigsh(L, k, which="SM", ncv=ncv)
|
| 889 |
+
index = np.argsort(eigenvalues)[1:k] # 0 index is zero eigenvalue
|
| 890 |
+
return np.real(eigenvectors[:, index])
|
| 891 |
+
|
| 892 |
+
|
| 893 |
+
def planar_layout(G, scale=1, center=None, dim=2):
|
| 894 |
+
"""Position nodes without edge intersections.
|
| 895 |
+
|
| 896 |
+
Parameters
|
| 897 |
+
----------
|
| 898 |
+
G : NetworkX graph or list of nodes
|
| 899 |
+
A position will be assigned to every node in G. If G is of type
|
| 900 |
+
nx.PlanarEmbedding, the positions are selected accordingly.
|
| 901 |
+
|
| 902 |
+
scale : number (default: 1)
|
| 903 |
+
Scale factor for positions.
|
| 904 |
+
|
| 905 |
+
center : array-like or None
|
| 906 |
+
Coordinate pair around which to center the layout.
|
| 907 |
+
|
| 908 |
+
dim : int
|
| 909 |
+
Dimension of layout.
|
| 910 |
+
|
| 911 |
+
Returns
|
| 912 |
+
-------
|
| 913 |
+
pos : dict
|
| 914 |
+
A dictionary of positions keyed by node
|
| 915 |
+
|
| 916 |
+
Raises
|
| 917 |
+
------
|
| 918 |
+
NetworkXException
|
| 919 |
+
If G is not planar
|
| 920 |
+
|
| 921 |
+
Examples
|
| 922 |
+
--------
|
| 923 |
+
>>> G = nx.path_graph(4)
|
| 924 |
+
>>> pos = nx.planar_layout(G)
|
| 925 |
+
"""
|
| 926 |
+
import numpy as np
|
| 927 |
+
|
| 928 |
+
if dim != 2:
|
| 929 |
+
raise ValueError("can only handle 2 dimensions")
|
| 930 |
+
|
| 931 |
+
G, center = _process_params(G, center, dim)
|
| 932 |
+
|
| 933 |
+
if len(G) == 0:
|
| 934 |
+
return {}
|
| 935 |
+
|
| 936 |
+
if isinstance(G, nx.PlanarEmbedding):
|
| 937 |
+
embedding = G
|
| 938 |
+
else:
|
| 939 |
+
is_planar, embedding = nx.check_planarity(G)
|
| 940 |
+
if not is_planar:
|
| 941 |
+
raise nx.NetworkXException("G is not planar.")
|
| 942 |
+
pos = nx.combinatorial_embedding_to_pos(embedding)
|
| 943 |
+
node_list = list(embedding)
|
| 944 |
+
pos = np.vstack([pos[x] for x in node_list])
|
| 945 |
+
pos = pos.astype(np.float64)
|
| 946 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 947 |
+
return dict(zip(node_list, pos))
|
| 948 |
+
|
| 949 |
+
|
| 950 |
+
def spiral_layout(G, scale=1, center=None, dim=2, resolution=0.35, equidistant=False):
|
| 951 |
+
"""Position nodes in a spiral layout.
|
| 952 |
+
|
| 953 |
+
Parameters
|
| 954 |
+
----------
|
| 955 |
+
G : NetworkX graph or list of nodes
|
| 956 |
+
A position will be assigned to every node in G.
|
| 957 |
+
scale : number (default: 1)
|
| 958 |
+
Scale factor for positions.
|
| 959 |
+
center : array-like or None
|
| 960 |
+
Coordinate pair around which to center the layout.
|
| 961 |
+
dim : int, default=2
|
| 962 |
+
Dimension of layout, currently only dim=2 is supported.
|
| 963 |
+
Other dimension values result in a ValueError.
|
| 964 |
+
resolution : float, default=0.35
|
| 965 |
+
The compactness of the spiral layout returned.
|
| 966 |
+
Lower values result in more compressed spiral layouts.
|
| 967 |
+
equidistant : bool, default=False
|
| 968 |
+
If True, nodes will be positioned equidistant from each other
|
| 969 |
+
by decreasing angle further from center.
|
| 970 |
+
If False, nodes will be positioned at equal angles
|
| 971 |
+
from each other by increasing separation further from center.
|
| 972 |
+
|
| 973 |
+
Returns
|
| 974 |
+
-------
|
| 975 |
+
pos : dict
|
| 976 |
+
A dictionary of positions keyed by node
|
| 977 |
+
|
| 978 |
+
Raises
|
| 979 |
+
------
|
| 980 |
+
ValueError
|
| 981 |
+
If dim != 2
|
| 982 |
+
|
| 983 |
+
Examples
|
| 984 |
+
--------
|
| 985 |
+
>>> G = nx.path_graph(4)
|
| 986 |
+
>>> pos = nx.spiral_layout(G)
|
| 987 |
+
>>> nx.draw(G, pos=pos)
|
| 988 |
+
|
| 989 |
+
Notes
|
| 990 |
+
-----
|
| 991 |
+
This algorithm currently only works in two dimensions.
|
| 992 |
+
|
| 993 |
+
"""
|
| 994 |
+
import numpy as np
|
| 995 |
+
|
| 996 |
+
if dim != 2:
|
| 997 |
+
raise ValueError("can only handle 2 dimensions")
|
| 998 |
+
|
| 999 |
+
G, center = _process_params(G, center, dim)
|
| 1000 |
+
|
| 1001 |
+
if len(G) == 0:
|
| 1002 |
+
return {}
|
| 1003 |
+
if len(G) == 1:
|
| 1004 |
+
return {nx.utils.arbitrary_element(G): center}
|
| 1005 |
+
|
| 1006 |
+
pos = []
|
| 1007 |
+
if equidistant:
|
| 1008 |
+
chord = 1
|
| 1009 |
+
step = 0.5
|
| 1010 |
+
theta = resolution
|
| 1011 |
+
theta += chord / (step * theta)
|
| 1012 |
+
for _ in range(len(G)):
|
| 1013 |
+
r = step * theta
|
| 1014 |
+
theta += chord / r
|
| 1015 |
+
pos.append([np.cos(theta) * r, np.sin(theta) * r])
|
| 1016 |
+
|
| 1017 |
+
else:
|
| 1018 |
+
dist = np.arange(len(G), dtype=float)
|
| 1019 |
+
angle = resolution * dist
|
| 1020 |
+
pos = np.transpose(dist * np.array([np.cos(angle), np.sin(angle)]))
|
| 1021 |
+
|
| 1022 |
+
pos = rescale_layout(np.array(pos), scale=scale) + center
|
| 1023 |
+
|
| 1024 |
+
pos = dict(zip(G, pos))
|
| 1025 |
+
|
| 1026 |
+
return pos
|
| 1027 |
+
|
| 1028 |
+
|
| 1029 |
+
def multipartite_layout(G, subset_key="subset", align="vertical", scale=1, center=None):
|
| 1030 |
+
"""Position nodes in layers of straight lines.
|
| 1031 |
+
|
| 1032 |
+
Parameters
|
| 1033 |
+
----------
|
| 1034 |
+
G : NetworkX graph or list of nodes
|
| 1035 |
+
A position will be assigned to every node in G.
|
| 1036 |
+
|
| 1037 |
+
subset_key : string or dict (default='subset')
|
| 1038 |
+
If a string, the key of node data in G that holds the node subset.
|
| 1039 |
+
If a dict, keyed by layer number to the nodes in that layer/subset.
|
| 1040 |
+
|
| 1041 |
+
align : string (default='vertical')
|
| 1042 |
+
The alignment of nodes. Vertical or horizontal.
|
| 1043 |
+
|
| 1044 |
+
scale : number (default: 1)
|
| 1045 |
+
Scale factor for positions.
|
| 1046 |
+
|
| 1047 |
+
center : array-like or None
|
| 1048 |
+
Coordinate pair around which to center the layout.
|
| 1049 |
+
|
| 1050 |
+
Returns
|
| 1051 |
+
-------
|
| 1052 |
+
pos : dict
|
| 1053 |
+
A dictionary of positions keyed by node.
|
| 1054 |
+
|
| 1055 |
+
Examples
|
| 1056 |
+
--------
|
| 1057 |
+
>>> G = nx.complete_multipartite_graph(28, 16, 10)
|
| 1058 |
+
>>> pos = nx.multipartite_layout(G)
|
| 1059 |
+
|
| 1060 |
+
or use a dict to provide the layers of the layout
|
| 1061 |
+
|
| 1062 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (1, 3), (3, 4)])
|
| 1063 |
+
>>> layers = {"a": [0], "b": [1], "c": [2, 3], "d": [4]}
|
| 1064 |
+
>>> pos = nx.multipartite_layout(G, subset_key=layers)
|
| 1065 |
+
|
| 1066 |
+
Notes
|
| 1067 |
+
-----
|
| 1068 |
+
This algorithm currently only works in two dimensions and does not
|
| 1069 |
+
try to minimize edge crossings.
|
| 1070 |
+
|
| 1071 |
+
Network does not need to be a complete multipartite graph. As long as nodes
|
| 1072 |
+
have subset_key data, they will be placed in the corresponding layers.
|
| 1073 |
+
|
| 1074 |
+
"""
|
| 1075 |
+
import numpy as np
|
| 1076 |
+
|
| 1077 |
+
if align not in ("vertical", "horizontal"):
|
| 1078 |
+
msg = "align must be either vertical or horizontal."
|
| 1079 |
+
raise ValueError(msg)
|
| 1080 |
+
|
| 1081 |
+
G, center = _process_params(G, center=center, dim=2)
|
| 1082 |
+
if len(G) == 0:
|
| 1083 |
+
return {}
|
| 1084 |
+
|
| 1085 |
+
try:
|
| 1086 |
+
# check if subset_key is dict-like
|
| 1087 |
+
if len(G) != sum(len(nodes) for nodes in subset_key.values()):
|
| 1088 |
+
raise nx.NetworkXError(
|
| 1089 |
+
"all nodes must be in one subset of `subset_key` dict"
|
| 1090 |
+
)
|
| 1091 |
+
except AttributeError:
|
| 1092 |
+
# subset_key is not a dict, hence a string
|
| 1093 |
+
node_to_subset = nx.get_node_attributes(G, subset_key)
|
| 1094 |
+
if len(node_to_subset) != len(G):
|
| 1095 |
+
raise nx.NetworkXError(
|
| 1096 |
+
f"all nodes need a subset_key attribute: {subset_key}"
|
| 1097 |
+
)
|
| 1098 |
+
subset_key = nx.utils.groups(node_to_subset)
|
| 1099 |
+
|
| 1100 |
+
# Sort by layer, if possible
|
| 1101 |
+
try:
|
| 1102 |
+
layers = dict(sorted(subset_key.items()))
|
| 1103 |
+
except TypeError:
|
| 1104 |
+
layers = subset_key
|
| 1105 |
+
|
| 1106 |
+
pos = None
|
| 1107 |
+
nodes = []
|
| 1108 |
+
width = len(layers)
|
| 1109 |
+
for i, layer in enumerate(layers.values()):
|
| 1110 |
+
height = len(layer)
|
| 1111 |
+
xs = np.repeat(i, height)
|
| 1112 |
+
ys = np.arange(0, height, dtype=float)
|
| 1113 |
+
offset = ((width - 1) / 2, (height - 1) / 2)
|
| 1114 |
+
layer_pos = np.column_stack([xs, ys]) - offset
|
| 1115 |
+
if pos is None:
|
| 1116 |
+
pos = layer_pos
|
| 1117 |
+
else:
|
| 1118 |
+
pos = np.concatenate([pos, layer_pos])
|
| 1119 |
+
nodes.extend(layer)
|
| 1120 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 1121 |
+
if align == "horizontal":
|
| 1122 |
+
pos = pos[:, ::-1] # swap x and y coords
|
| 1123 |
+
pos = dict(zip(nodes, pos))
|
| 1124 |
+
return pos
|
| 1125 |
+
|
| 1126 |
+
|
| 1127 |
+
@np_random_state("seed")
|
| 1128 |
+
def arf_layout(
|
| 1129 |
+
G,
|
| 1130 |
+
pos=None,
|
| 1131 |
+
scaling=1,
|
| 1132 |
+
a=1.1,
|
| 1133 |
+
etol=1e-6,
|
| 1134 |
+
dt=1e-3,
|
| 1135 |
+
max_iter=1000,
|
| 1136 |
+
*,
|
| 1137 |
+
seed=None,
|
| 1138 |
+
):
|
| 1139 |
+
"""Arf layout for networkx
|
| 1140 |
+
|
| 1141 |
+
The attractive and repulsive forces (arf) layout [1]
|
| 1142 |
+
improves the spring layout in three ways. First, it
|
| 1143 |
+
prevents congestion of highly connected nodes due to
|
| 1144 |
+
strong forcing between nodes. Second, it utilizes the
|
| 1145 |
+
layout space more effectively by preventing large gaps
|
| 1146 |
+
that spring layout tends to create. Lastly, the arf
|
| 1147 |
+
layout represents symmetries in the layout better than
|
| 1148 |
+
the default spring layout.
|
| 1149 |
+
|
| 1150 |
+
Parameters
|
| 1151 |
+
----------
|
| 1152 |
+
G : nx.Graph or nx.DiGraph
|
| 1153 |
+
Networkx graph.
|
| 1154 |
+
pos : dict
|
| 1155 |
+
Initial position of the nodes. If set to None a
|
| 1156 |
+
random layout will be used.
|
| 1157 |
+
scaling : float
|
| 1158 |
+
Scales the radius of the circular layout space.
|
| 1159 |
+
a : float
|
| 1160 |
+
Strength of springs between connected nodes. Should be larger than 1. The greater a, the clearer the separation ofunconnected sub clusters.
|
| 1161 |
+
etol : float
|
| 1162 |
+
Gradient sum of spring forces must be larger than `etol` before successful termination.
|
| 1163 |
+
dt : float
|
| 1164 |
+
Time step for force differential equation simulations.
|
| 1165 |
+
max_iter : int
|
| 1166 |
+
Max iterations before termination of the algorithm.
|
| 1167 |
+
seed : int, RandomState instance or None optional (default=None)
|
| 1168 |
+
Set the random state for deterministic node layouts.
|
| 1169 |
+
If int, `seed` is the seed used by the random number generator,
|
| 1170 |
+
if numpy.random.RandomState instance, `seed` is the random
|
| 1171 |
+
number generator,
|
| 1172 |
+
if None, the random number generator is the RandomState instance used
|
| 1173 |
+
by numpy.random.
|
| 1174 |
+
|
| 1175 |
+
References
|
| 1176 |
+
.. [1] "Self-Organization Applied to Dynamic Network Layout", M. Geipel,
|
| 1177 |
+
International Journal of Modern Physics C, 2007, Vol 18, No 10, pp. 1537-1549.
|
| 1178 |
+
https://doi.org/10.1142/S0129183107011558 https://arxiv.org/abs/0704.1748
|
| 1179 |
+
|
| 1180 |
+
Returns
|
| 1181 |
+
-------
|
| 1182 |
+
pos : dict
|
| 1183 |
+
A dictionary of positions keyed by node.
|
| 1184 |
+
|
| 1185 |
+
Examples
|
| 1186 |
+
--------
|
| 1187 |
+
>>> G = nx.grid_graph((5, 5))
|
| 1188 |
+
>>> pos = nx.arf_layout(G)
|
| 1189 |
+
|
| 1190 |
+
"""
|
| 1191 |
+
import warnings
|
| 1192 |
+
|
| 1193 |
+
import numpy as np
|
| 1194 |
+
|
| 1195 |
+
if a <= 1:
|
| 1196 |
+
msg = "The parameter a should be larger than 1"
|
| 1197 |
+
raise ValueError(msg)
|
| 1198 |
+
|
| 1199 |
+
pos_tmp = nx.random_layout(G, seed=seed)
|
| 1200 |
+
if pos is None:
|
| 1201 |
+
pos = pos_tmp
|
| 1202 |
+
else:
|
| 1203 |
+
for node in G.nodes():
|
| 1204 |
+
if node not in pos:
|
| 1205 |
+
pos[node] = pos_tmp[node].copy()
|
| 1206 |
+
|
| 1207 |
+
# Initialize spring constant matrix
|
| 1208 |
+
N = len(G)
|
| 1209 |
+
# No nodes no computation
|
| 1210 |
+
if N == 0:
|
| 1211 |
+
return pos
|
| 1212 |
+
|
| 1213 |
+
# init force of springs
|
| 1214 |
+
K = np.ones((N, N)) - np.eye(N)
|
| 1215 |
+
node_order = {node: i for i, node in enumerate(G)}
|
| 1216 |
+
for x, y in G.edges():
|
| 1217 |
+
if x != y:
|
| 1218 |
+
idx, jdx = (node_order[i] for i in (x, y))
|
| 1219 |
+
K[idx, jdx] = a
|
| 1220 |
+
|
| 1221 |
+
# vectorize values
|
| 1222 |
+
p = np.asarray(list(pos.values()))
|
| 1223 |
+
|
| 1224 |
+
# equation 10 in [1]
|
| 1225 |
+
rho = scaling * np.sqrt(N)
|
| 1226 |
+
|
| 1227 |
+
# looping variables
|
| 1228 |
+
error = etol + 1
|
| 1229 |
+
n_iter = 0
|
| 1230 |
+
while error > etol:
|
| 1231 |
+
diff = p[:, np.newaxis] - p[np.newaxis]
|
| 1232 |
+
A = np.linalg.norm(diff, axis=-1)[..., np.newaxis]
|
| 1233 |
+
# attraction_force - repulsions force
|
| 1234 |
+
# suppress nans due to division; caused by diagonal set to zero.
|
| 1235 |
+
# Does not affect the computation due to nansum
|
| 1236 |
+
with warnings.catch_warnings():
|
| 1237 |
+
warnings.simplefilter("ignore")
|
| 1238 |
+
change = K[..., np.newaxis] * diff - rho / A * diff
|
| 1239 |
+
change = np.nansum(change, axis=0)
|
| 1240 |
+
p += change * dt
|
| 1241 |
+
|
| 1242 |
+
error = np.linalg.norm(change, axis=-1).sum()
|
| 1243 |
+
if n_iter > max_iter:
|
| 1244 |
+
break
|
| 1245 |
+
n_iter += 1
|
| 1246 |
+
return dict(zip(G.nodes(), p))
|
| 1247 |
+
|
| 1248 |
+
|
| 1249 |
+
@np_random_state("seed")
|
| 1250 |
+
def forceatlas2_layout(
|
| 1251 |
+
G,
|
| 1252 |
+
pos=None,
|
| 1253 |
+
*,
|
| 1254 |
+
max_iter=100,
|
| 1255 |
+
jitter_tolerance=1.0,
|
| 1256 |
+
scaling_ratio=2.0,
|
| 1257 |
+
gravity=1.0,
|
| 1258 |
+
distributed_action=False,
|
| 1259 |
+
strong_gravity=False,
|
| 1260 |
+
node_mass=None,
|
| 1261 |
+
node_size=None,
|
| 1262 |
+
weight=None,
|
| 1263 |
+
dissuade_hubs=False,
|
| 1264 |
+
linlog=False,
|
| 1265 |
+
seed=None,
|
| 1266 |
+
dim=2,
|
| 1267 |
+
):
|
| 1268 |
+
"""Position nodes using the ForceAtlas2 force-directed layout algorithm.
|
| 1269 |
+
|
| 1270 |
+
This function applies the ForceAtlas2 layout algorithm [1]_ to a NetworkX graph,
|
| 1271 |
+
positioning the nodes in a way that visually represents the structure of the graph.
|
| 1272 |
+
The algorithm uses physical simulation to minimize the energy of the system,
|
| 1273 |
+
resulting in a more readable layout.
|
| 1274 |
+
|
| 1275 |
+
Parameters
|
| 1276 |
+
----------
|
| 1277 |
+
G : nx.Graph
|
| 1278 |
+
A NetworkX graph to be laid out.
|
| 1279 |
+
pos : dict or None, optional
|
| 1280 |
+
Initial positions of the nodes. If None, random initial positions are used.
|
| 1281 |
+
max_iter : int (default: 100)
|
| 1282 |
+
Number of iterations for the layout optimization.
|
| 1283 |
+
jitter_tolerance : float (default: 1.0)
|
| 1284 |
+
Controls the tolerance for adjusting the speed of layout generation.
|
| 1285 |
+
scaling_ratio : float (default: 2.0)
|
| 1286 |
+
Determines the scaling of attraction and repulsion forces.
|
| 1287 |
+
distributed_attraction : bool (default: False)
|
| 1288 |
+
Distributes the attraction force evenly among nodes.
|
| 1289 |
+
strong_gravity : bool (default: False)
|
| 1290 |
+
Applies a strong gravitational pull towards the center.
|
| 1291 |
+
node_mass : dict or None, optional
|
| 1292 |
+
Maps nodes to their masses, influencing the attraction to other nodes.
|
| 1293 |
+
node_size : dict or None, optional
|
| 1294 |
+
Maps nodes to their sizes, preventing crowding by creating a halo effect.
|
| 1295 |
+
dissuade_hubs : bool (default: False)
|
| 1296 |
+
Prevents the clustering of hub nodes.
|
| 1297 |
+
linlog : bool (default: False)
|
| 1298 |
+
Uses logarithmic attraction instead of linear.
|
| 1299 |
+
seed : int, RandomState instance or None optional (default=None)
|
| 1300 |
+
Used only for the initial positions in the algorithm.
|
| 1301 |
+
Set the random state for deterministic node layouts.
|
| 1302 |
+
If int, `seed` is the seed used by the random number generator,
|
| 1303 |
+
if numpy.random.RandomState instance, `seed` is the random
|
| 1304 |
+
number generator,
|
| 1305 |
+
if None, the random number generator is the RandomState instance used
|
| 1306 |
+
by numpy.random.
|
| 1307 |
+
dim : int (default: 2)
|
| 1308 |
+
Sets the dimensions for the layout. Ignored if `pos` is provided.
|
| 1309 |
+
|
| 1310 |
+
Examples
|
| 1311 |
+
--------
|
| 1312 |
+
>>> import networkx as nx
|
| 1313 |
+
>>> G = nx.florentine_families_graph()
|
| 1314 |
+
>>> pos = nx.forceatlas2_layout(G)
|
| 1315 |
+
>>> nx.draw(G, pos=pos)
|
| 1316 |
+
|
| 1317 |
+
References
|
| 1318 |
+
----------
|
| 1319 |
+
.. [1] Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014).
|
| 1320 |
+
ForceAtlas2, a continuous graph layout algorithm for handy network
|
| 1321 |
+
visualization designed for the Gephi software. PloS one, 9(6), e98679.
|
| 1322 |
+
https://doi.org/10.1371/journal.pone.0098679
|
| 1323 |
+
"""
|
| 1324 |
+
import numpy as np
|
| 1325 |
+
|
| 1326 |
+
if len(G) == 0:
|
| 1327 |
+
return {}
|
| 1328 |
+
# parse optional pos positions
|
| 1329 |
+
if pos is None:
|
| 1330 |
+
pos = nx.random_layout(G, dim=dim, seed=seed)
|
| 1331 |
+
pos_arr = np.array(list(pos.values()))
|
| 1332 |
+
else:
|
| 1333 |
+
# set default node interval within the initial pos values
|
| 1334 |
+
pos_init = np.array(list(pos.values()))
|
| 1335 |
+
max_pos = pos_init.max(axis=0)
|
| 1336 |
+
min_pos = pos_init.min(axis=0)
|
| 1337 |
+
dim = max_pos.size
|
| 1338 |
+
pos_arr = min_pos + seed.rand(len(G), dim) * (max_pos - min_pos)
|
| 1339 |
+
for idx, node in enumerate(G):
|
| 1340 |
+
if node in pos:
|
| 1341 |
+
pos_arr[idx] = pos[node].copy()
|
| 1342 |
+
|
| 1343 |
+
mass = np.zeros(len(G))
|
| 1344 |
+
size = np.zeros(len(G))
|
| 1345 |
+
|
| 1346 |
+
# Only adjust for size when the users specifies size other than default (1)
|
| 1347 |
+
adjust_sizes = False
|
| 1348 |
+
if node_size is None:
|
| 1349 |
+
node_size = {}
|
| 1350 |
+
else:
|
| 1351 |
+
adjust_sizes = True
|
| 1352 |
+
|
| 1353 |
+
if node_mass is None:
|
| 1354 |
+
node_mass = {}
|
| 1355 |
+
|
| 1356 |
+
for idx, node in enumerate(G):
|
| 1357 |
+
mass[idx] = node_mass.get(node, G.degree(node) + 1)
|
| 1358 |
+
size[idx] = node_size.get(node, 1)
|
| 1359 |
+
|
| 1360 |
+
n = len(G)
|
| 1361 |
+
gravities = np.zeros((n, dim))
|
| 1362 |
+
attraction = np.zeros((n, dim))
|
| 1363 |
+
repulsion = np.zeros((n, dim))
|
| 1364 |
+
A = nx.to_numpy_array(G, weight=weight)
|
| 1365 |
+
|
| 1366 |
+
def estimate_factor(n, swing, traction, speed, speed_efficiency, jitter_tolerance):
|
| 1367 |
+
"""Computes the scaling factor for the force in the ForceAtlas2 layout algorithm.
|
| 1368 |
+
|
| 1369 |
+
This helper function adjusts the speed and
|
| 1370 |
+
efficiency of the layout generation based on the
|
| 1371 |
+
current state of the system, such as the number of
|
| 1372 |
+
nodes, current swing, and traction forces.
|
| 1373 |
+
|
| 1374 |
+
Parameters
|
| 1375 |
+
----------
|
| 1376 |
+
n : int
|
| 1377 |
+
Number of nodes in the graph.
|
| 1378 |
+
swing : float
|
| 1379 |
+
The current swing, representing the oscillation of the nodes.
|
| 1380 |
+
traction : float
|
| 1381 |
+
The current traction force, representing the attraction between nodes.
|
| 1382 |
+
speed : float
|
| 1383 |
+
The current speed of the layout generation.
|
| 1384 |
+
speed_efficiency : float
|
| 1385 |
+
The efficiency of the current speed, influencing how fast the layout converges.
|
| 1386 |
+
jitter_tolerance : float
|
| 1387 |
+
The tolerance for jitter, affecting how much speed adjustment is allowed.
|
| 1388 |
+
|
| 1389 |
+
Returns
|
| 1390 |
+
-------
|
| 1391 |
+
tuple
|
| 1392 |
+
A tuple containing the updated speed and speed efficiency.
|
| 1393 |
+
|
| 1394 |
+
Notes
|
| 1395 |
+
-----
|
| 1396 |
+
This function is a part of the ForceAtlas2 layout algorithm and is used to dynamically adjust the
|
| 1397 |
+
layout parameters to achieve an optimal and stable visualization.
|
| 1398 |
+
|
| 1399 |
+
"""
|
| 1400 |
+
import numpy as np
|
| 1401 |
+
|
| 1402 |
+
# estimate jitter
|
| 1403 |
+
opt_jitter = 0.05 * np.sqrt(n)
|
| 1404 |
+
min_jitter = np.sqrt(opt_jitter)
|
| 1405 |
+
max_jitter = 10
|
| 1406 |
+
min_speed_efficiency = 0.05
|
| 1407 |
+
|
| 1408 |
+
other = min(max_jitter, opt_jitter * traction / n**2)
|
| 1409 |
+
jitter = jitter_tolerance * max(min_jitter, other)
|
| 1410 |
+
|
| 1411 |
+
if swing / traction > 2.0:
|
| 1412 |
+
if speed_efficiency > min_speed_efficiency:
|
| 1413 |
+
speed_efficiency *= 0.5
|
| 1414 |
+
jitter = max(jitter, jitter_tolerance)
|
| 1415 |
+
if swing == 0:
|
| 1416 |
+
target_speed = np.inf
|
| 1417 |
+
else:
|
| 1418 |
+
target_speed = jitter * speed_efficiency * traction / swing
|
| 1419 |
+
|
| 1420 |
+
if swing > jitter * traction:
|
| 1421 |
+
if speed_efficiency > min_speed_efficiency:
|
| 1422 |
+
speed_efficiency *= 0.7
|
| 1423 |
+
elif speed < 1000:
|
| 1424 |
+
speed_efficiency *= 1.3
|
| 1425 |
+
|
| 1426 |
+
max_rise = 0.5
|
| 1427 |
+
speed = speed + min(target_speed - speed, max_rise * speed)
|
| 1428 |
+
return speed, speed_efficiency
|
| 1429 |
+
|
| 1430 |
+
speed = 1
|
| 1431 |
+
speed_efficiency = 1
|
| 1432 |
+
swing = 1
|
| 1433 |
+
traction = 1
|
| 1434 |
+
for _ in range(max_iter):
|
| 1435 |
+
# compute pairwise difference
|
| 1436 |
+
diff = pos_arr[:, None] - pos_arr[None]
|
| 1437 |
+
# compute pairwise distance
|
| 1438 |
+
distance = np.linalg.norm(diff, axis=-1)
|
| 1439 |
+
|
| 1440 |
+
# linear attraction
|
| 1441 |
+
if linlog:
|
| 1442 |
+
attraction = -np.log(1 + distance) / distance
|
| 1443 |
+
np.fill_diagonal(attraction, 0)
|
| 1444 |
+
attraction = np.einsum("ij, ij -> ij", attraction, A)
|
| 1445 |
+
attraction = np.einsum("ijk, ij -> ik", diff, attraction)
|
| 1446 |
+
|
| 1447 |
+
else:
|
| 1448 |
+
attraction = -np.einsum("ijk, ij -> ik", diff, A)
|
| 1449 |
+
|
| 1450 |
+
if distributed_action:
|
| 1451 |
+
attraction /= mass[:, None]
|
| 1452 |
+
|
| 1453 |
+
# repulsion
|
| 1454 |
+
tmp = mass[:, None] @ mass[None]
|
| 1455 |
+
if adjust_sizes:
|
| 1456 |
+
distance += -size[:, None] - size[None]
|
| 1457 |
+
|
| 1458 |
+
d2 = distance**2
|
| 1459 |
+
# remove self-interaction
|
| 1460 |
+
np.fill_diagonal(tmp, 0)
|
| 1461 |
+
np.fill_diagonal(d2, 1)
|
| 1462 |
+
factor = (tmp / d2) * scaling_ratio
|
| 1463 |
+
repulsion = np.einsum("ijk, ij -> ik", diff, factor)
|
| 1464 |
+
|
| 1465 |
+
# gravity
|
| 1466 |
+
gravities = (
|
| 1467 |
+
-gravity
|
| 1468 |
+
* mass[:, None]
|
| 1469 |
+
* pos_arr
|
| 1470 |
+
/ np.linalg.norm(pos_arr, axis=-1)[:, None]
|
| 1471 |
+
)
|
| 1472 |
+
|
| 1473 |
+
if strong_gravity:
|
| 1474 |
+
gravities *= np.linalg.norm(pos_arr, axis=-1)[:, None]
|
| 1475 |
+
# total forces
|
| 1476 |
+
update = attraction + repulsion + gravities
|
| 1477 |
+
|
| 1478 |
+
# compute total swing and traction
|
| 1479 |
+
swing += (mass * np.linalg.norm(pos_arr - update, axis=-1)).sum()
|
| 1480 |
+
traction += (0.5 * mass * np.linalg.norm(pos_arr + update, axis=-1)).sum()
|
| 1481 |
+
|
| 1482 |
+
speed, speed_efficiency = estimate_factor(
|
| 1483 |
+
n,
|
| 1484 |
+
swing,
|
| 1485 |
+
traction,
|
| 1486 |
+
speed,
|
| 1487 |
+
speed_efficiency,
|
| 1488 |
+
jitter_tolerance,
|
| 1489 |
+
)
|
| 1490 |
+
|
| 1491 |
+
# update pos
|
| 1492 |
+
if adjust_sizes:
|
| 1493 |
+
swinging = mass * np.linalg.norm(update, axis=-1)
|
| 1494 |
+
factor = 0.1 * speed / (1 + np.sqrt(speed * swinging))
|
| 1495 |
+
df = np.linalg.norm(update, axis=-1)
|
| 1496 |
+
factor = np.minimum(factor * df, 10.0 * np.ones(df.shape)) / df
|
| 1497 |
+
else:
|
| 1498 |
+
swinging = mass * np.linalg.norm(update, axis=-1)
|
| 1499 |
+
factor = speed / (1 + np.sqrt(speed * swinging))
|
| 1500 |
+
|
| 1501 |
+
pos_arr += update * factor[:, None]
|
| 1502 |
+
if abs((update * factor[:, None]).sum()) < 1e-10:
|
| 1503 |
+
break
|
| 1504 |
+
|
| 1505 |
+
return dict(zip(G, pos_arr))
|
| 1506 |
+
|
| 1507 |
+
|
| 1508 |
+
def rescale_layout(pos, scale=1):
|
| 1509 |
+
"""Returns scaled position array to (-scale, scale) in all axes.
|
| 1510 |
+
|
| 1511 |
+
The function acts on NumPy arrays which hold position information.
|
| 1512 |
+
Each position is one row of the array. The dimension of the space
|
| 1513 |
+
equals the number of columns. Each coordinate in one column.
|
| 1514 |
+
|
| 1515 |
+
To rescale, the mean (center) is subtracted from each axis separately.
|
| 1516 |
+
Then all values are scaled so that the largest magnitude value
|
| 1517 |
+
from all axes equals `scale` (thus, the aspect ratio is preserved).
|
| 1518 |
+
The resulting NumPy Array is returned (order of rows unchanged).
|
| 1519 |
+
|
| 1520 |
+
Parameters
|
| 1521 |
+
----------
|
| 1522 |
+
pos : numpy array
|
| 1523 |
+
positions to be scaled. Each row is a position.
|
| 1524 |
+
|
| 1525 |
+
scale : number (default: 1)
|
| 1526 |
+
The size of the resulting extent in all directions.
|
| 1527 |
+
|
| 1528 |
+
Returns
|
| 1529 |
+
-------
|
| 1530 |
+
pos : numpy array
|
| 1531 |
+
scaled positions. Each row is a position.
|
| 1532 |
+
|
| 1533 |
+
See Also
|
| 1534 |
+
--------
|
| 1535 |
+
rescale_layout_dict
|
| 1536 |
+
"""
|
| 1537 |
+
import numpy as np
|
| 1538 |
+
|
| 1539 |
+
# Find max length over all dimensions
|
| 1540 |
+
pos -= pos.mean(axis=0)
|
| 1541 |
+
lim = np.abs(pos).max() # max coordinate for all axes
|
| 1542 |
+
# rescale to (-scale, scale) in all directions, preserves aspect
|
| 1543 |
+
if lim > 0:
|
| 1544 |
+
pos *= scale / lim
|
| 1545 |
+
return pos
|
| 1546 |
+
|
| 1547 |
+
|
| 1548 |
+
def rescale_layout_dict(pos, scale=1):
|
| 1549 |
+
"""Return a dictionary of scaled positions keyed by node
|
| 1550 |
+
|
| 1551 |
+
Parameters
|
| 1552 |
+
----------
|
| 1553 |
+
pos : A dictionary of positions keyed by node
|
| 1554 |
+
|
| 1555 |
+
scale : number (default: 1)
|
| 1556 |
+
The size of the resulting extent in all directions.
|
| 1557 |
+
|
| 1558 |
+
Returns
|
| 1559 |
+
-------
|
| 1560 |
+
pos : A dictionary of positions keyed by node
|
| 1561 |
+
|
| 1562 |
+
Examples
|
| 1563 |
+
--------
|
| 1564 |
+
>>> import numpy as np
|
| 1565 |
+
>>> pos = {0: np.array((0, 0)), 1: np.array((1, 1)), 2: np.array((0.5, 0.5))}
|
| 1566 |
+
>>> nx.rescale_layout_dict(pos)
|
| 1567 |
+
{0: array([-1., -1.]), 1: array([1., 1.]), 2: array([0., 0.])}
|
| 1568 |
+
|
| 1569 |
+
>>> pos = {0: np.array((0, 0)), 1: np.array((-1, 1)), 2: np.array((-0.5, 0.5))}
|
| 1570 |
+
>>> nx.rescale_layout_dict(pos, scale=2)
|
| 1571 |
+
{0: array([ 2., -2.]), 1: array([-2., 2.]), 2: array([0., 0.])}
|
| 1572 |
+
|
| 1573 |
+
See Also
|
| 1574 |
+
--------
|
| 1575 |
+
rescale_layout
|
| 1576 |
+
"""
|
| 1577 |
+
import numpy as np
|
| 1578 |
+
|
| 1579 |
+
if not pos: # empty_graph
|
| 1580 |
+
return {}
|
| 1581 |
+
pos_v = np.array(list(pos.values()))
|
| 1582 |
+
pos_v = rescale_layout(pos_v, scale=scale)
|
| 1583 |
+
return dict(zip(pos, pos_v))
|
| 1584 |
+
|
| 1585 |
+
|
| 1586 |
+
def bfs_layout(G, start, *, align="vertical", scale=1, center=None):
|
| 1587 |
+
"""Position nodes according to breadth-first search algorithm.
|
| 1588 |
+
|
| 1589 |
+
Parameters
|
| 1590 |
+
----------
|
| 1591 |
+
G : NetworkX graph
|
| 1592 |
+
A position will be assigned to every node in G.
|
| 1593 |
+
|
| 1594 |
+
start : node in `G`
|
| 1595 |
+
Starting node for bfs
|
| 1596 |
+
|
| 1597 |
+
center : array-like or None
|
| 1598 |
+
Coordinate pair around which to center the layout.
|
| 1599 |
+
|
| 1600 |
+
Returns
|
| 1601 |
+
-------
|
| 1602 |
+
pos : dict
|
| 1603 |
+
A dictionary of positions keyed by node.
|
| 1604 |
+
|
| 1605 |
+
Examples
|
| 1606 |
+
--------
|
| 1607 |
+
>>> G = nx.path_graph(4)
|
| 1608 |
+
>>> pos = nx.bfs_layout(G, 0)
|
| 1609 |
+
|
| 1610 |
+
Notes
|
| 1611 |
+
-----
|
| 1612 |
+
This algorithm currently only works in two dimensions and does not
|
| 1613 |
+
try to minimize edge crossings.
|
| 1614 |
+
|
| 1615 |
+
"""
|
| 1616 |
+
G, center = _process_params(G, center, 2)
|
| 1617 |
+
|
| 1618 |
+
# Compute layers with BFS
|
| 1619 |
+
layers = dict(enumerate(nx.bfs_layers(G, start)))
|
| 1620 |
+
|
| 1621 |
+
if len(G) != sum(len(nodes) for nodes in layers.values()):
|
| 1622 |
+
raise nx.NetworkXError(
|
| 1623 |
+
"bfs_layout didn't include all nodes. Perhaps use input graph:\n"
|
| 1624 |
+
" G.subgraph(nx.node_connected_component(G, start))"
|
| 1625 |
+
)
|
| 1626 |
+
|
| 1627 |
+
# Compute node positions with multipartite_layout
|
| 1628 |
+
return multipartite_layout(
|
| 1629 |
+
G, subset_key=layers, align=align, scale=scale, center=center
|
| 1630 |
+
)
|