ZTWHHH commited on
Commit
afeefb6
·
verified ·
1 Parent(s): 1a4db45

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. wemm/lib/python3.10/site-packages/botocore/data/forecastquery/2018-06-26/endpoint-rule-set-1.json.gz +3 -0
  2. wemm/lib/python3.10/site-packages/networkx/algorithms/flow/__pycache__/mincost.cpython-310.pyc +0 -0
  3. wemm/lib/python3.10/site-packages/networkx/algorithms/flow/capacityscaling.py +407 -0
  4. wemm/lib/python3.10/site-packages/networkx/algorithms/flow/tests/__pycache__/test_gomory_hu.cpython-310.pyc +0 -0
  5. wemm/lib/python3.10/site-packages/networkx/algorithms/traversal/edgebfs.py +178 -0
  6. wemm/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_pylab.cpython-310.pyc +0 -0
  7. wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/__init__.cpython-310.pyc +0 -0
  8. wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/atlas.cpython-310.pyc +0 -0
  9. wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/classic.cpython-310.pyc +0 -0
  10. wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/degree_seq.cpython-310.pyc +0 -0
  11. wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/geometric.cpython-310.pyc +0 -0
  12. wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/random_clustered.cpython-310.pyc +0 -0
  13. wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/random_graphs.cpython-310.pyc +0 -0
  14. wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/small.cpython-310.pyc +0 -0
  15. wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/spectral_graph_forge.cpython-310.pyc +0 -0
  16. wemm/lib/python3.10/site-packages/networkx/generators/cographs.py +68 -0
  17. wemm/lib/python3.10/site-packages/networkx/generators/duplication.py +174 -0
  18. wemm/lib/python3.10/site-packages/networkx/generators/ego.py +66 -0
  19. wemm/lib/python3.10/site-packages/networkx/generators/internet_as_graphs.py +441 -0
  20. wemm/lib/python3.10/site-packages/networkx/generators/interval_graph.py +70 -0
  21. wemm/lib/python3.10/site-packages/networkx/generators/lattice.py +367 -0
  22. wemm/lib/python3.10/site-packages/networkx/generators/nonisomorphic_trees.py +212 -0
  23. wemm/lib/python3.10/site-packages/networkx/generators/random_clustered.py +117 -0
  24. wemm/lib/python3.10/site-packages/networkx/generators/social.py +554 -0
  25. wemm/lib/python3.10/site-packages/networkx/generators/stochastic.py +54 -0
  26. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_atlas.cpython-310.pyc +0 -0
  27. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_cographs.cpython-310.pyc +0 -0
  28. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_degree_seq.cpython-310.pyc +0 -0
  29. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_duplication.cpython-310.pyc +0 -0
  30. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_expanders.cpython-310.pyc +0 -0
  31. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_geometric.cpython-310.pyc +0 -0
  32. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_harary_graph.cpython-310.pyc +0 -0
  33. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_internet_as_graphs.cpython-310.pyc +0 -0
  34. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_intersection.cpython-310.pyc +0 -0
  35. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_interval_graph.cpython-310.pyc +0 -0
  36. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_joint_degree_seq.cpython-310.pyc +0 -0
  37. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_lattice.cpython-310.pyc +0 -0
  38. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_line.cpython-310.pyc +0 -0
  39. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_mycielski.cpython-310.pyc +0 -0
  40. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_random_clustered.cpython-310.pyc +0 -0
  41. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_random_graphs.cpython-310.pyc +0 -0
  42. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_small.cpython-310.pyc +0 -0
  43. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_sudoku.cpython-310.pyc +0 -0
  44. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_time_series.cpython-310.pyc +0 -0
  45. wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_trees.cpython-310.pyc +0 -0
  46. wemm/lib/python3.10/site-packages/networkx/generators/tests/test_atlas.py +75 -0
  47. wemm/lib/python3.10/site-packages/networkx/generators/tests/test_classic.py +640 -0
  48. wemm/lib/python3.10/site-packages/networkx/generators/tests/test_ego.py +39 -0
  49. wemm/lib/python3.10/site-packages/networkx/generators/tests/test_expanders.py +162 -0
  50. wemm/lib/python3.10/site-packages/networkx/generators/tests/test_geometric.py +488 -0
wemm/lib/python3.10/site-packages/botocore/data/forecastquery/2018-06-26/endpoint-rule-set-1.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dc67e787a865b46d80969022aad9aaa54c4caac3e024949f04c45f4009fbfaf
3
+ size 1151
wemm/lib/python3.10/site-packages/networkx/algorithms/flow/__pycache__/mincost.cpython-310.pyc ADDED
Binary file (13.1 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/algorithms/flow/capacityscaling.py ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Capacity scaling minimum cost flow algorithm.
3
+ """
4
+
5
+ __all__ = ["capacity_scaling"]
6
+
7
+ from itertools import chain
8
+ from math import log
9
+
10
+ import networkx as nx
11
+
12
+ from ...utils import BinaryHeap, arbitrary_element, not_implemented_for
13
+
14
+
15
+ def _detect_unboundedness(R):
16
+ """Detect infinite-capacity negative cycles."""
17
+ G = nx.DiGraph()
18
+ G.add_nodes_from(R)
19
+
20
+ # Value simulating infinity.
21
+ inf = R.graph["inf"]
22
+ # True infinity.
23
+ f_inf = float("inf")
24
+ for u in R:
25
+ for v, e in R[u].items():
26
+ # Compute the minimum weight of infinite-capacity (u, v) edges.
27
+ w = f_inf
28
+ for k, e in e.items():
29
+ if e["capacity"] == inf:
30
+ w = min(w, e["weight"])
31
+ if w != f_inf:
32
+ G.add_edge(u, v, weight=w)
33
+
34
+ if nx.negative_edge_cycle(G):
35
+ raise nx.NetworkXUnbounded(
36
+ "Negative cost cycle of infinite capacity found. "
37
+ "Min cost flow may be unbounded below."
38
+ )
39
+
40
+
41
+ @not_implemented_for("undirected")
42
+ def _build_residual_network(G, demand, capacity, weight):
43
+ """Build a residual network and initialize a zero flow."""
44
+ if sum(G.nodes[u].get(demand, 0) for u in G) != 0:
45
+ raise nx.NetworkXUnfeasible("Sum of the demands should be 0.")
46
+
47
+ R = nx.MultiDiGraph()
48
+ R.add_nodes_from(
49
+ (u, {"excess": -G.nodes[u].get(demand, 0), "potential": 0}) for u in G
50
+ )
51
+
52
+ inf = float("inf")
53
+ # Detect selfloops with infinite capacities and negative weights.
54
+ for u, v, e in nx.selfloop_edges(G, data=True):
55
+ if e.get(weight, 0) < 0 and e.get(capacity, inf) == inf:
56
+ raise nx.NetworkXUnbounded(
57
+ "Negative cost cycle of infinite capacity found. "
58
+ "Min cost flow may be unbounded below."
59
+ )
60
+
61
+ # Extract edges with positive capacities. Self loops excluded.
62
+ if G.is_multigraph():
63
+ edge_list = [
64
+ (u, v, k, e)
65
+ for u, v, k, e in G.edges(data=True, keys=True)
66
+ if u != v and e.get(capacity, inf) > 0
67
+ ]
68
+ else:
69
+ edge_list = [
70
+ (u, v, 0, e)
71
+ for u, v, e in G.edges(data=True)
72
+ if u != v and e.get(capacity, inf) > 0
73
+ ]
74
+ # Simulate infinity with the larger of the sum of absolute node imbalances
75
+ # the sum of finite edge capacities or any positive value if both sums are
76
+ # zero. This allows the infinite-capacity edges to be distinguished for
77
+ # unboundedness detection and directly participate in residual capacity
78
+ # calculation.
79
+ inf = (
80
+ max(
81
+ sum(abs(R.nodes[u]["excess"]) for u in R),
82
+ 2
83
+ * sum(
84
+ e[capacity]
85
+ for u, v, k, e in edge_list
86
+ if capacity in e and e[capacity] != inf
87
+ ),
88
+ )
89
+ or 1
90
+ )
91
+ for u, v, k, e in edge_list:
92
+ r = min(e.get(capacity, inf), inf)
93
+ w = e.get(weight, 0)
94
+ # Add both (u, v) and (v, u) into the residual network marked with the
95
+ # original key. (key[1] == True) indicates the (u, v) is in the
96
+ # original network.
97
+ R.add_edge(u, v, key=(k, True), capacity=r, weight=w, flow=0)
98
+ R.add_edge(v, u, key=(k, False), capacity=0, weight=-w, flow=0)
99
+
100
+ # Record the value simulating infinity.
101
+ R.graph["inf"] = inf
102
+
103
+ _detect_unboundedness(R)
104
+
105
+ return R
106
+
107
+
108
+ def _build_flow_dict(G, R, capacity, weight):
109
+ """Build a flow dictionary from a residual network."""
110
+ inf = float("inf")
111
+ flow_dict = {}
112
+ if G.is_multigraph():
113
+ for u in G:
114
+ flow_dict[u] = {}
115
+ for v, es in G[u].items():
116
+ flow_dict[u][v] = {
117
+ # Always saturate negative selfloops.
118
+ k: (
119
+ 0
120
+ if (
121
+ u != v or e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0
122
+ )
123
+ else e[capacity]
124
+ )
125
+ for k, e in es.items()
126
+ }
127
+ for v, es in R[u].items():
128
+ if v in flow_dict[u]:
129
+ flow_dict[u][v].update(
130
+ (k[0], e["flow"]) for k, e in es.items() if e["flow"] > 0
131
+ )
132
+ else:
133
+ for u in G:
134
+ flow_dict[u] = {
135
+ # Always saturate negative selfloops.
136
+ v: (
137
+ 0
138
+ if (u != v or e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0)
139
+ else e[capacity]
140
+ )
141
+ for v, e in G[u].items()
142
+ }
143
+ flow_dict[u].update(
144
+ (v, e["flow"])
145
+ for v, es in R[u].items()
146
+ for e in es.values()
147
+ if e["flow"] > 0
148
+ )
149
+ return flow_dict
150
+
151
+
152
+ @nx._dispatchable(
153
+ node_attrs="demand", edge_attrs={"capacity": float("inf"), "weight": 0}
154
+ )
155
+ def capacity_scaling(
156
+ G, demand="demand", capacity="capacity", weight="weight", heap=BinaryHeap
157
+ ):
158
+ r"""Find a minimum cost flow satisfying all demands in digraph G.
159
+
160
+ This is a capacity scaling successive shortest augmenting path algorithm.
161
+
162
+ G is a digraph with edge costs and capacities and in which nodes
163
+ have demand, i.e., they want to send or receive some amount of
164
+ flow. A negative demand means that the node wants to send flow, a
165
+ positive demand means that the node want to receive flow. A flow on
166
+ the digraph G satisfies all demand if the net flow into each node
167
+ is equal to the demand of that node.
168
+
169
+ Parameters
170
+ ----------
171
+ G : NetworkX graph
172
+ DiGraph or MultiDiGraph on which a minimum cost flow satisfying all
173
+ demands is to be found.
174
+
175
+ demand : string
176
+ Nodes of the graph G are expected to have an attribute demand
177
+ that indicates how much flow a node wants to send (negative
178
+ demand) or receive (positive demand). Note that the sum of the
179
+ demands should be 0 otherwise the problem in not feasible. If
180
+ this attribute is not present, a node is considered to have 0
181
+ demand. Default value: 'demand'.
182
+
183
+ capacity : string
184
+ Edges of the graph G are expected to have an attribute capacity
185
+ that indicates how much flow the edge can support. If this
186
+ attribute is not present, the edge is considered to have
187
+ infinite capacity. Default value: 'capacity'.
188
+
189
+ weight : string
190
+ Edges of the graph G are expected to have an attribute weight
191
+ that indicates the cost incurred by sending one unit of flow on
192
+ that edge. If not present, the weight is considered to be 0.
193
+ Default value: 'weight'.
194
+
195
+ heap : class
196
+ Type of heap to be used in the algorithm. It should be a subclass of
197
+ :class:`MinHeap` or implement a compatible interface.
198
+
199
+ If a stock heap implementation is to be used, :class:`BinaryHeap` is
200
+ recommended over :class:`PairingHeap` for Python implementations without
201
+ optimized attribute accesses (e.g., CPython) despite a slower
202
+ asymptotic running time. For Python implementations with optimized
203
+ attribute accesses (e.g., PyPy), :class:`PairingHeap` provides better
204
+ performance. Default value: :class:`BinaryHeap`.
205
+
206
+ Returns
207
+ -------
208
+ flowCost : integer
209
+ Cost of a minimum cost flow satisfying all demands.
210
+
211
+ flowDict : dictionary
212
+ If G is a digraph, a dict-of-dicts keyed by nodes such that
213
+ flowDict[u][v] is the flow on edge (u, v).
214
+ If G is a MultiDiGraph, a dict-of-dicts-of-dicts keyed by nodes
215
+ so that flowDict[u][v][key] is the flow on edge (u, v, key).
216
+
217
+ Raises
218
+ ------
219
+ NetworkXError
220
+ This exception is raised if the input graph is not directed,
221
+ not connected.
222
+
223
+ NetworkXUnfeasible
224
+ This exception is raised in the following situations:
225
+
226
+ * The sum of the demands is not zero. Then, there is no
227
+ flow satisfying all demands.
228
+ * There is no flow satisfying all demand.
229
+
230
+ NetworkXUnbounded
231
+ This exception is raised if the digraph G has a cycle of
232
+ negative cost and infinite capacity. Then, the cost of a flow
233
+ satisfying all demands is unbounded below.
234
+
235
+ Notes
236
+ -----
237
+ This algorithm does not work if edge weights are floating-point numbers.
238
+
239
+ See also
240
+ --------
241
+ :meth:`network_simplex`
242
+
243
+ Examples
244
+ --------
245
+ A simple example of a min cost flow problem.
246
+
247
+ >>> G = nx.DiGraph()
248
+ >>> G.add_node("a", demand=-5)
249
+ >>> G.add_node("d", demand=5)
250
+ >>> G.add_edge("a", "b", weight=3, capacity=4)
251
+ >>> G.add_edge("a", "c", weight=6, capacity=10)
252
+ >>> G.add_edge("b", "d", weight=1, capacity=9)
253
+ >>> G.add_edge("c", "d", weight=2, capacity=5)
254
+ >>> flowCost, flowDict = nx.capacity_scaling(G)
255
+ >>> flowCost
256
+ 24
257
+ >>> flowDict
258
+ {'a': {'b': 4, 'c': 1}, 'd': {}, 'b': {'d': 4}, 'c': {'d': 1}}
259
+
260
+ It is possible to change the name of the attributes used for the
261
+ algorithm.
262
+
263
+ >>> G = nx.DiGraph()
264
+ >>> G.add_node("p", spam=-4)
265
+ >>> G.add_node("q", spam=2)
266
+ >>> G.add_node("a", spam=-2)
267
+ >>> G.add_node("d", spam=-1)
268
+ >>> G.add_node("t", spam=2)
269
+ >>> G.add_node("w", spam=3)
270
+ >>> G.add_edge("p", "q", cost=7, vacancies=5)
271
+ >>> G.add_edge("p", "a", cost=1, vacancies=4)
272
+ >>> G.add_edge("q", "d", cost=2, vacancies=3)
273
+ >>> G.add_edge("t", "q", cost=1, vacancies=2)
274
+ >>> G.add_edge("a", "t", cost=2, vacancies=4)
275
+ >>> G.add_edge("d", "w", cost=3, vacancies=4)
276
+ >>> G.add_edge("t", "w", cost=4, vacancies=1)
277
+ >>> flowCost, flowDict = nx.capacity_scaling(
278
+ ... G, demand="spam", capacity="vacancies", weight="cost"
279
+ ... )
280
+ >>> flowCost
281
+ 37
282
+ >>> flowDict
283
+ {'p': {'q': 2, 'a': 2}, 'q': {'d': 1}, 'a': {'t': 4}, 'd': {'w': 2}, 't': {'q': 1, 'w': 1}, 'w': {}}
284
+ """
285
+ R = _build_residual_network(G, demand, capacity, weight)
286
+
287
+ inf = float("inf")
288
+ # Account cost of negative selfloops.
289
+ flow_cost = sum(
290
+ 0
291
+ if e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0
292
+ else e[capacity] * e[weight]
293
+ for u, v, e in nx.selfloop_edges(G, data=True)
294
+ )
295
+
296
+ # Determine the maximum edge capacity.
297
+ wmax = max(chain([-inf], (e["capacity"] for u, v, e in R.edges(data=True))))
298
+ if wmax == -inf:
299
+ # Residual network has no edges.
300
+ return flow_cost, _build_flow_dict(G, R, capacity, weight)
301
+
302
+ R_nodes = R.nodes
303
+ R_succ = R.succ
304
+
305
+ delta = 2 ** int(log(wmax, 2))
306
+ while delta >= 1:
307
+ # Saturate Δ-residual edges with negative reduced costs to achieve
308
+ # Δ-optimality.
309
+ for u in R:
310
+ p_u = R_nodes[u]["potential"]
311
+ for v, es in R_succ[u].items():
312
+ for k, e in es.items():
313
+ flow = e["capacity"] - e["flow"]
314
+ if e["weight"] - p_u + R_nodes[v]["potential"] < 0:
315
+ flow = e["capacity"] - e["flow"]
316
+ if flow >= delta:
317
+ e["flow"] += flow
318
+ R_succ[v][u][(k[0], not k[1])]["flow"] -= flow
319
+ R_nodes[u]["excess"] -= flow
320
+ R_nodes[v]["excess"] += flow
321
+ # Determine the Δ-active nodes.
322
+ S = set()
323
+ T = set()
324
+ S_add = S.add
325
+ S_remove = S.remove
326
+ T_add = T.add
327
+ T_remove = T.remove
328
+ for u in R:
329
+ excess = R_nodes[u]["excess"]
330
+ if excess >= delta:
331
+ S_add(u)
332
+ elif excess <= -delta:
333
+ T_add(u)
334
+ # Repeatedly augment flow from S to T along shortest paths until
335
+ # Δ-feasibility is achieved.
336
+ while S and T:
337
+ s = arbitrary_element(S)
338
+ t = None
339
+ # Search for a shortest path in terms of reduce costs from s to
340
+ # any t in T in the Δ-residual network.
341
+ d = {}
342
+ pred = {s: None}
343
+ h = heap()
344
+ h_insert = h.insert
345
+ h_get = h.get
346
+ h_insert(s, 0)
347
+ while h:
348
+ u, d_u = h.pop()
349
+ d[u] = d_u
350
+ if u in T:
351
+ # Path found.
352
+ t = u
353
+ break
354
+ p_u = R_nodes[u]["potential"]
355
+ for v, es in R_succ[u].items():
356
+ if v in d:
357
+ continue
358
+ wmin = inf
359
+ # Find the minimum-weighted (u, v) Δ-residual edge.
360
+ for k, e in es.items():
361
+ if e["capacity"] - e["flow"] >= delta:
362
+ w = e["weight"]
363
+ if w < wmin:
364
+ wmin = w
365
+ kmin = k
366
+ emin = e
367
+ if wmin == inf:
368
+ continue
369
+ # Update the distance label of v.
370
+ d_v = d_u + wmin - p_u + R_nodes[v]["potential"]
371
+ if h_insert(v, d_v):
372
+ pred[v] = (u, kmin, emin)
373
+ if t is not None:
374
+ # Augment Δ units of flow from s to t.
375
+ while u != s:
376
+ v = u
377
+ u, k, e = pred[v]
378
+ e["flow"] += delta
379
+ R_succ[v][u][(k[0], not k[1])]["flow"] -= delta
380
+ # Account node excess and deficit.
381
+ R_nodes[s]["excess"] -= delta
382
+ R_nodes[t]["excess"] += delta
383
+ if R_nodes[s]["excess"] < delta:
384
+ S_remove(s)
385
+ if R_nodes[t]["excess"] > -delta:
386
+ T_remove(t)
387
+ # Update node potentials.
388
+ d_t = d[t]
389
+ for u, d_u in d.items():
390
+ R_nodes[u]["potential"] -= d_u - d_t
391
+ else:
392
+ # Path not found.
393
+ S_remove(s)
394
+ delta //= 2
395
+
396
+ if any(R.nodes[u]["excess"] != 0 for u in R):
397
+ raise nx.NetworkXUnfeasible("No flow satisfying all demands.")
398
+
399
+ # Calculate the flow cost.
400
+ for u in R:
401
+ for v, es in R_succ[u].items():
402
+ for e in es.values():
403
+ flow = e["flow"]
404
+ if flow > 0:
405
+ flow_cost += flow * e["weight"]
406
+
407
+ return flow_cost, _build_flow_dict(G, R, capacity, weight)
wemm/lib/python3.10/site-packages/networkx/algorithms/flow/tests/__pycache__/test_gomory_hu.cpython-310.pyc ADDED
Binary file (4.74 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/algorithms/traversal/edgebfs.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ =============================
3
+ Breadth First Search on Edges
4
+ =============================
5
+
6
+ Algorithms for a breadth-first traversal of edges in a graph.
7
+
8
+ """
9
+
10
+ from collections import deque
11
+
12
+ import networkx as nx
13
+
14
+ FORWARD = "forward"
15
+ REVERSE = "reverse"
16
+
17
+ __all__ = ["edge_bfs"]
18
+
19
+
20
+ @nx._dispatchable
21
+ def edge_bfs(G, source=None, orientation=None):
22
+ """A directed, breadth-first-search of edges in `G`, beginning at `source`.
23
+
24
+ Yield the edges of G in a breadth-first-search order continuing until
25
+ all edges are generated.
26
+
27
+ Parameters
28
+ ----------
29
+ G : graph
30
+ A directed/undirected graph/multigraph.
31
+
32
+ source : node, list of nodes
33
+ The node from which the traversal begins. If None, then a source
34
+ is chosen arbitrarily and repeatedly until all edges from each node in
35
+ the graph are searched.
36
+
37
+ orientation : None | 'original' | 'reverse' | 'ignore' (default: None)
38
+ For directed graphs and directed multigraphs, edge traversals need not
39
+ respect the original orientation of the edges.
40
+ When set to 'reverse' every edge is traversed in the reverse direction.
41
+ When set to 'ignore', every edge is treated as undirected.
42
+ When set to 'original', every edge is treated as directed.
43
+ In all three cases, the yielded edge tuples add a last entry to
44
+ indicate the direction in which that edge was traversed.
45
+ If orientation is None, the yielded edge has no direction indicated.
46
+ The direction is respected, but not reported.
47
+
48
+ Yields
49
+ ------
50
+ edge : directed edge
51
+ A directed edge indicating the path taken by the breadth-first-search.
52
+ For graphs, `edge` is of the form `(u, v)` where `u` and `v`
53
+ are the tail and head of the edge as determined by the traversal.
54
+ For multigraphs, `edge` is of the form `(u, v, key)`, where `key` is
55
+ the key of the edge. When the graph is directed, then `u` and `v`
56
+ are always in the order of the actual directed edge.
57
+ If orientation is not None then the edge tuple is extended to include
58
+ the direction of traversal ('forward' or 'reverse') on that edge.
59
+
60
+ Examples
61
+ --------
62
+ >>> nodes = [0, 1, 2, 3]
63
+ >>> edges = [(0, 1), (1, 0), (1, 0), (2, 0), (2, 1), (3, 1)]
64
+
65
+ >>> list(nx.edge_bfs(nx.Graph(edges), nodes))
66
+ [(0, 1), (0, 2), (1, 2), (1, 3)]
67
+
68
+ >>> list(nx.edge_bfs(nx.DiGraph(edges), nodes))
69
+ [(0, 1), (1, 0), (2, 0), (2, 1), (3, 1)]
70
+
71
+ >>> list(nx.edge_bfs(nx.MultiGraph(edges), nodes))
72
+ [(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (1, 2, 0), (1, 3, 0)]
73
+
74
+ >>> list(nx.edge_bfs(nx.MultiDiGraph(edges), nodes))
75
+ [(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 0, 0), (2, 1, 0), (3, 1, 0)]
76
+
77
+ >>> list(nx.edge_bfs(nx.DiGraph(edges), nodes, orientation="ignore"))
78
+ [(0, 1, 'forward'), (1, 0, 'reverse'), (2, 0, 'reverse'), (2, 1, 'reverse'), (3, 1, 'reverse')]
79
+
80
+ >>> list(nx.edge_bfs(nx.MultiDiGraph(edges), nodes, orientation="ignore"))
81
+ [(0, 1, 0, 'forward'), (1, 0, 0, 'reverse'), (1, 0, 1, 'reverse'), (2, 0, 0, 'reverse'), (2, 1, 0, 'reverse'), (3, 1, 0, 'reverse')]
82
+
83
+ Notes
84
+ -----
85
+ The goal of this function is to visit edges. It differs from the more
86
+ familiar breadth-first-search of nodes, as provided by
87
+ :func:`networkx.algorithms.traversal.breadth_first_search.bfs_edges`, in
88
+ that it does not stop once every node has been visited. In a directed graph
89
+ with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited
90
+ if not for the functionality provided by this function.
91
+
92
+ The naming of this function is very similar to bfs_edges. The difference
93
+ is that 'edge_bfs' yields edges even if they extend back to an already
94
+ explored node while 'bfs_edges' yields the edges of the tree that results
95
+ from a breadth-first-search (BFS) so no edges are reported if they extend
96
+ to already explored nodes. That means 'edge_bfs' reports all edges while
97
+ 'bfs_edges' only report those traversed by a node-based BFS. Yet another
98
+ description is that 'bfs_edges' reports the edges traversed during BFS
99
+ while 'edge_bfs' reports all edges in the order they are explored.
100
+
101
+ See Also
102
+ --------
103
+ bfs_edges
104
+ bfs_tree
105
+ edge_dfs
106
+
107
+ """
108
+ nodes = list(G.nbunch_iter(source))
109
+ if not nodes:
110
+ return
111
+
112
+ directed = G.is_directed()
113
+ kwds = {"data": False}
114
+ if G.is_multigraph() is True:
115
+ kwds["keys"] = True
116
+
117
+ # set up edge lookup
118
+ if orientation is None:
119
+
120
+ def edges_from(node):
121
+ return iter(G.edges(node, **kwds))
122
+
123
+ elif not directed or orientation == "original":
124
+
125
+ def edges_from(node):
126
+ for e in G.edges(node, **kwds):
127
+ yield e + (FORWARD,)
128
+
129
+ elif orientation == "reverse":
130
+
131
+ def edges_from(node):
132
+ for e in G.in_edges(node, **kwds):
133
+ yield e + (REVERSE,)
134
+
135
+ elif orientation == "ignore":
136
+
137
+ def edges_from(node):
138
+ for e in G.edges(node, **kwds):
139
+ yield e + (FORWARD,)
140
+ for e in G.in_edges(node, **kwds):
141
+ yield e + (REVERSE,)
142
+
143
+ else:
144
+ raise nx.NetworkXError("invalid orientation argument.")
145
+
146
+ if directed:
147
+ neighbors = G.successors
148
+
149
+ def edge_id(edge):
150
+ # remove direction indicator
151
+ return edge[:-1] if orientation is not None else edge
152
+
153
+ else:
154
+ neighbors = G.neighbors
155
+
156
+ def edge_id(edge):
157
+ return (frozenset(edge[:2]),) + edge[2:]
158
+
159
+ check_reverse = directed and orientation in ("reverse", "ignore")
160
+
161
+ # start BFS
162
+ visited_nodes = set(nodes)
163
+ visited_edges = set()
164
+ queue = deque([(n, edges_from(n)) for n in nodes])
165
+ while queue:
166
+ parent, children_edges = queue.popleft()
167
+ for edge in children_edges:
168
+ if check_reverse and edge[-1] == REVERSE:
169
+ child = edge[0]
170
+ else:
171
+ child = edge[1]
172
+ if child not in visited_nodes:
173
+ visited_nodes.add(child)
174
+ queue.append((child, edges_from(child)))
175
+ edgeid = edge_id(edge)
176
+ if edgeid not in visited_edges:
177
+ visited_edges.add(edgeid)
178
+ yield edge
wemm/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_pylab.cpython-310.pyc ADDED
Binary file (54.5 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.46 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/atlas.cpython-310.pyc ADDED
Binary file (4.31 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/classic.cpython-310.pyc ADDED
Binary file (29.8 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/degree_seq.cpython-310.pyc ADDED
Binary file (25.6 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/geometric.cpython-310.pyc ADDED
Binary file (38.9 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/random_clustered.cpython-310.pyc ADDED
Binary file (4.12 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/random_graphs.cpython-310.pyc ADDED
Binary file (40.2 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/small.cpython-310.pyc ADDED
Binary file (26.4 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/__pycache__/spectral_graph_forge.cpython-310.pyc ADDED
Binary file (4.22 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/cographs.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""Generators for cographs
2
+
3
+ A cograph is a graph containing no path on four vertices.
4
+ Cographs or $P_4$-free graphs can be obtained from a single vertex
5
+ by disjoint union and complementation operations.
6
+
7
+ References
8
+ ----------
9
+ .. [0] D.G. Corneil, H. Lerchs, L.Stewart Burlingham,
10
+ "Complement reducible graphs",
11
+ Discrete Applied Mathematics, Volume 3, Issue 3, 1981, Pages 163-174,
12
+ ISSN 0166-218X.
13
+ """
14
+
15
+ import networkx as nx
16
+ from networkx.utils import py_random_state
17
+
18
+ __all__ = ["random_cograph"]
19
+
20
+
21
+ @py_random_state(1)
22
+ @nx._dispatchable(graphs=None, returns_graph=True)
23
+ def random_cograph(n, seed=None):
24
+ r"""Returns a random cograph with $2 ^ n$ nodes.
25
+
26
+ A cograph is a graph containing no path on four vertices.
27
+ Cographs or $P_4$-free graphs can be obtained from a single vertex
28
+ by disjoint union and complementation operations.
29
+
30
+ This generator starts off from a single vertex and performs disjoint
31
+ union and full join operations on itself.
32
+ The decision on which operation will take place is random.
33
+
34
+ Parameters
35
+ ----------
36
+ n : int
37
+ The order of the cograph.
38
+ seed : integer, random_state, or None (default)
39
+ Indicator of random number generation state.
40
+ See :ref:`Randomness<randomness>`.
41
+
42
+ Returns
43
+ -------
44
+ G : A random graph containing no path on four vertices.
45
+
46
+ See Also
47
+ --------
48
+ full_join
49
+ union
50
+
51
+ References
52
+ ----------
53
+ .. [1] D.G. Corneil, H. Lerchs, L.Stewart Burlingham,
54
+ "Complement reducible graphs",
55
+ Discrete Applied Mathematics, Volume 3, Issue 3, 1981, Pages 163-174,
56
+ ISSN 0166-218X.
57
+ """
58
+ R = nx.empty_graph(1)
59
+
60
+ for i in range(n):
61
+ RR = nx.relabel_nodes(R.copy(), lambda x: x + len(R))
62
+
63
+ if seed.randint(0, 1) == 0:
64
+ R = nx.full_join(R, RR)
65
+ else:
66
+ R = nx.disjoint_union(R, RR)
67
+
68
+ return R
wemm/lib/python3.10/site-packages/networkx/generators/duplication.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for generating graphs based on the "duplication" method.
2
+
3
+ These graph generators start with a small initial graph then duplicate
4
+ nodes and (partially) duplicate their edges. These functions are
5
+ generally inspired by biological networks.
6
+
7
+ """
8
+
9
+ import networkx as nx
10
+ from networkx.exception import NetworkXError
11
+ from networkx.utils import py_random_state
12
+ from networkx.utils.misc import check_create_using
13
+
14
+ __all__ = ["partial_duplication_graph", "duplication_divergence_graph"]
15
+
16
+
17
+ @py_random_state(4)
18
+ @nx._dispatchable(graphs=None, returns_graph=True)
19
+ def partial_duplication_graph(N, n, p, q, seed=None, *, create_using=None):
20
+ """Returns a random graph using the partial duplication model.
21
+
22
+ Parameters
23
+ ----------
24
+ N : int
25
+ The total number of nodes in the final graph.
26
+
27
+ n : int
28
+ The number of nodes in the initial clique.
29
+
30
+ p : float
31
+ The probability of joining each neighbor of a node to the
32
+ duplicate node. Must be a number in the between zero and one,
33
+ inclusive.
34
+
35
+ q : float
36
+ The probability of joining the source node to the duplicate
37
+ node. Must be a number in the between zero and one, inclusive.
38
+
39
+ seed : integer, random_state, or None (default)
40
+ Indicator of random number generation state.
41
+ See :ref:`Randomness<randomness>`.
42
+
43
+ create_using : Graph constructor, optional (default=nx.Graph)
44
+ Graph type to create. If graph instance, then cleared before populated.
45
+ Multigraph and directed types are not supported and raise a ``NetworkXError``.
46
+
47
+ Notes
48
+ -----
49
+ A graph of nodes is grown by creating a fully connected graph
50
+ of size `n`. The following procedure is then repeated until
51
+ a total of `N` nodes have been reached.
52
+
53
+ 1. A random node, *u*, is picked and a new node, *v*, is created.
54
+ 2. For each neighbor of *u* an edge from the neighbor to *v* is created
55
+ with probability `p`.
56
+ 3. An edge from *u* to *v* is created with probability `q`.
57
+
58
+ This algorithm appears in [1].
59
+
60
+ This implementation allows the possibility of generating
61
+ disconnected graphs.
62
+
63
+ References
64
+ ----------
65
+ .. [1] Knudsen Michael, and Carsten Wiuf. "A Markov chain approach to
66
+ randomly grown graphs." Journal of Applied Mathematics 2008.
67
+ <https://doi.org/10.1155/2008/190836>
68
+
69
+ """
70
+ create_using = check_create_using(create_using, directed=False, multigraph=False)
71
+ if p < 0 or p > 1 or q < 0 or q > 1:
72
+ msg = "partial duplication graph must have 0 <= p, q <= 1."
73
+ raise NetworkXError(msg)
74
+ if n > N:
75
+ raise NetworkXError("partial duplication graph must have n <= N.")
76
+
77
+ G = nx.complete_graph(n, create_using)
78
+ for new_node in range(n, N):
79
+ # Pick a random vertex, u, already in the graph.
80
+ src_node = seed.randint(0, new_node - 1)
81
+
82
+ # Add a new vertex, v, to the graph.
83
+ G.add_node(new_node)
84
+
85
+ # For each neighbor of u...
86
+ for nbr_node in list(nx.all_neighbors(G, src_node)):
87
+ # Add the neighbor to v with probability p.
88
+ if seed.random() < p:
89
+ G.add_edge(new_node, nbr_node)
90
+
91
+ # Join v and u with probability q.
92
+ if seed.random() < q:
93
+ G.add_edge(new_node, src_node)
94
+ return G
95
+
96
+
97
+ @py_random_state(2)
98
+ @nx._dispatchable(graphs=None, returns_graph=True)
99
+ def duplication_divergence_graph(n, p, seed=None, *, create_using=None):
100
+ """Returns an undirected graph using the duplication-divergence model.
101
+
102
+ A graph of `n` nodes is created by duplicating the initial nodes
103
+ and retaining edges incident to the original nodes with a retention
104
+ probability `p`.
105
+
106
+ Parameters
107
+ ----------
108
+ n : int
109
+ The desired number of nodes in the graph.
110
+ p : float
111
+ The probability for retaining the edge of the replicated node.
112
+ seed : integer, random_state, or None (default)
113
+ Indicator of random number generation state.
114
+ See :ref:`Randomness<randomness>`.
115
+ create_using : Graph constructor, optional (default=nx.Graph)
116
+ Graph type to create. If graph instance, then cleared before populated.
117
+ Multigraph and directed types are not supported and raise a ``NetworkXError``.
118
+
119
+ Returns
120
+ -------
121
+ G : Graph
122
+
123
+ Raises
124
+ ------
125
+ NetworkXError
126
+ If `p` is not a valid probability.
127
+ If `n` is less than 2.
128
+
129
+ Notes
130
+ -----
131
+ This algorithm appears in [1].
132
+
133
+ This implementation disallows the possibility of generating
134
+ disconnected graphs.
135
+
136
+ References
137
+ ----------
138
+ .. [1] I. Ispolatov, P. L. Krapivsky, A. Yuryev,
139
+ "Duplication-divergence model of protein interaction network",
140
+ Phys. Rev. E, 71, 061911, 2005.
141
+
142
+ """
143
+ if p > 1 or p < 0:
144
+ msg = f"NetworkXError p={p} is not in [0,1]."
145
+ raise nx.NetworkXError(msg)
146
+ if n < 2:
147
+ msg = "n must be greater than or equal to 2"
148
+ raise nx.NetworkXError(msg)
149
+
150
+ create_using = check_create_using(create_using, directed=False, multigraph=False)
151
+ G = nx.empty_graph(create_using=create_using)
152
+
153
+ # Initialize the graph with two connected nodes.
154
+ G.add_edge(0, 1)
155
+ i = 2
156
+ while i < n:
157
+ # Choose a random node from current graph to duplicate.
158
+ random_node = seed.choice(list(G))
159
+ # Make the replica.
160
+ G.add_node(i)
161
+ # flag indicates whether at least one edge is connected on the replica.
162
+ flag = False
163
+ for nbr in G.neighbors(random_node):
164
+ if seed.random() < p:
165
+ # Link retention step.
166
+ G.add_edge(i, nbr)
167
+ flag = True
168
+ if not flag:
169
+ # Delete replica if no edges retained.
170
+ G.remove_node(i)
171
+ else:
172
+ # Successful duplication.
173
+ i += 1
174
+ return G
wemm/lib/python3.10/site-packages/networkx/generators/ego.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Ego graph.
3
+ """
4
+
5
+ __all__ = ["ego_graph"]
6
+
7
+ import networkx as nx
8
+
9
+
10
+ @nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
11
+ def ego_graph(G, n, radius=1, center=True, undirected=False, distance=None):
12
+ """Returns induced subgraph of neighbors centered at node n within
13
+ a given radius.
14
+
15
+ Parameters
16
+ ----------
17
+ G : graph
18
+ A NetworkX Graph or DiGraph
19
+
20
+ n : node
21
+ A single node
22
+
23
+ radius : number, optional
24
+ Include all neighbors of distance<=radius from n.
25
+
26
+ center : bool, optional
27
+ If False, do not include center node in graph
28
+
29
+ undirected : bool, optional
30
+ If True use both in- and out-neighbors of directed graphs.
31
+
32
+ distance : key, optional
33
+ Use specified edge data key as distance. For example, setting
34
+ distance='weight' will use the edge weight to measure the
35
+ distance from the node n.
36
+
37
+ Notes
38
+ -----
39
+ For directed graphs D this produces the "out" neighborhood
40
+ or successors. If you want the neighborhood of predecessors
41
+ first reverse the graph with D.reverse(). If you want both
42
+ directions use the keyword argument undirected=True.
43
+
44
+ Node, edge, and graph attributes are copied to the returned subgraph.
45
+ """
46
+ if undirected:
47
+ if distance is not None:
48
+ sp, _ = nx.single_source_dijkstra(
49
+ G.to_undirected(), n, cutoff=radius, weight=distance
50
+ )
51
+ else:
52
+ sp = dict(
53
+ nx.single_source_shortest_path_length(
54
+ G.to_undirected(), n, cutoff=radius
55
+ )
56
+ )
57
+ else:
58
+ if distance is not None:
59
+ sp, _ = nx.single_source_dijkstra(G, n, cutoff=radius, weight=distance)
60
+ else:
61
+ sp = dict(nx.single_source_shortest_path_length(G, n, cutoff=radius))
62
+
63
+ H = G.subgraph(sp).copy()
64
+ if not center:
65
+ H.remove_node(n)
66
+ return H
wemm/lib/python3.10/site-packages/networkx/generators/internet_as_graphs.py ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Generates graphs resembling the Internet Autonomous System network"""
2
+
3
+ import networkx as nx
4
+ from networkx.utils import py_random_state
5
+
6
+ __all__ = ["random_internet_as_graph"]
7
+
8
+
9
+ def uniform_int_from_avg(a, m, seed):
10
+ """Pick a random integer with uniform probability.
11
+
12
+ Returns a random integer uniformly taken from a distribution with
13
+ minimum value 'a' and average value 'm', X~U(a,b), E[X]=m, X in N where
14
+ b = 2*m - a.
15
+
16
+ Notes
17
+ -----
18
+ p = (b-floor(b))/2
19
+ X = X1 + X2; X1~U(a,floor(b)), X2~B(p)
20
+ E[X] = E[X1] + E[X2] = (floor(b)+a)/2 + (b-floor(b))/2 = (b+a)/2 = m
21
+ """
22
+
23
+ from math import floor
24
+
25
+ assert m >= a
26
+ b = 2 * m - a
27
+ p = (b - floor(b)) / 2
28
+ X1 = round(seed.random() * (floor(b) - a) + a)
29
+ if seed.random() < p:
30
+ X2 = 1
31
+ else:
32
+ X2 = 0
33
+ return X1 + X2
34
+
35
+
36
+ def choose_pref_attach(degs, seed):
37
+ """Pick a random value, with a probability given by its weight.
38
+
39
+ Returns a random choice among degs keys, each of which has a
40
+ probability proportional to the corresponding dictionary value.
41
+
42
+ Parameters
43
+ ----------
44
+ degs: dictionary
45
+ It contains the possible values (keys) and the corresponding
46
+ probabilities (values)
47
+ seed: random state
48
+
49
+ Returns
50
+ -------
51
+ v: object
52
+ A key of degs or None if degs is empty
53
+ """
54
+
55
+ if len(degs) == 0:
56
+ return None
57
+ s = sum(degs.values())
58
+ if s == 0:
59
+ return seed.choice(list(degs.keys()))
60
+ v = seed.random() * s
61
+
62
+ nodes = list(degs.keys())
63
+ i = 0
64
+ acc = degs[nodes[i]]
65
+ while v > acc:
66
+ i += 1
67
+ acc += degs[nodes[i]]
68
+ return nodes[i]
69
+
70
+
71
+ class AS_graph_generator:
72
+ """Generates random internet AS graphs."""
73
+
74
+ def __init__(self, n, seed):
75
+ """Initializes variables. Immediate numbers are taken from [1].
76
+
77
+ Parameters
78
+ ----------
79
+ n: integer
80
+ Number of graph nodes
81
+ seed: random state
82
+ Indicator of random number generation state.
83
+ See :ref:`Randomness<randomness>`.
84
+
85
+ Returns
86
+ -------
87
+ GG: AS_graph_generator object
88
+
89
+ References
90
+ ----------
91
+ [1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
92
+ BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
93
+ in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
94
+ """
95
+
96
+ self.seed = seed
97
+ self.n_t = min(n, round(self.seed.random() * 2 + 4)) # num of T nodes
98
+ self.n_m = round(0.15 * n) # number of M nodes
99
+ self.n_cp = round(0.05 * n) # number of CP nodes
100
+ self.n_c = max(0, n - self.n_t - self.n_m - self.n_cp) # number of C nodes
101
+
102
+ self.d_m = 2 + (2.5 * n) / 10000 # average multihoming degree for M nodes
103
+ self.d_cp = 2 + (1.5 * n) / 10000 # avg multihoming degree for CP nodes
104
+ self.d_c = 1 + (5 * n) / 100000 # average multihoming degree for C nodes
105
+
106
+ self.p_m_m = 1 + (2 * n) / 10000 # avg num of peer edges between M and M
107
+ self.p_cp_m = 0.2 + (2 * n) / 10000 # avg num of peer edges between CP, M
108
+ self.p_cp_cp = 0.05 + (2 * n) / 100000 # avg num of peer edges btwn CP, CP
109
+
110
+ self.t_m = 0.375 # probability M's provider is T
111
+ self.t_cp = 0.375 # probability CP's provider is T
112
+ self.t_c = 0.125 # probability C's provider is T
113
+
114
+ def t_graph(self):
115
+ """Generates the core mesh network of tier one nodes of a AS graph.
116
+
117
+ Returns
118
+ -------
119
+ G: Networkx Graph
120
+ Core network
121
+ """
122
+
123
+ self.G = nx.Graph()
124
+ for i in range(self.n_t):
125
+ self.G.add_node(i, type="T")
126
+ for r in self.regions:
127
+ self.regions[r].add(i)
128
+ for j in self.G.nodes():
129
+ if i != j:
130
+ self.add_edge(i, j, "peer")
131
+ self.customers[i] = set()
132
+ self.providers[i] = set()
133
+ return self.G
134
+
135
+ def add_edge(self, i, j, kind):
136
+ if kind == "transit":
137
+ customer = str(i)
138
+ else:
139
+ customer = "none"
140
+ self.G.add_edge(i, j, type=kind, customer=customer)
141
+
142
+ def choose_peer_pref_attach(self, node_list):
143
+ """Pick a node with a probability weighted by its peer degree.
144
+
145
+ Pick a node from node_list with preferential attachment
146
+ computed only on their peer degree
147
+ """
148
+
149
+ d = {}
150
+ for n in node_list:
151
+ d[n] = self.G.nodes[n]["peers"]
152
+ return choose_pref_attach(d, self.seed)
153
+
154
+ def choose_node_pref_attach(self, node_list):
155
+ """Pick a node with a probability weighted by its degree.
156
+
157
+ Pick a node from node_list with preferential attachment
158
+ computed on their degree
159
+ """
160
+
161
+ degs = dict(self.G.degree(node_list))
162
+ return choose_pref_attach(degs, self.seed)
163
+
164
+ def add_customer(self, i, j):
165
+ """Keep the dictionaries 'customers' and 'providers' consistent."""
166
+
167
+ self.customers[j].add(i)
168
+ self.providers[i].add(j)
169
+ for z in self.providers[j]:
170
+ self.customers[z].add(i)
171
+ self.providers[i].add(z)
172
+
173
+ def add_node(self, i, kind, reg2prob, avg_deg, t_edge_prob):
174
+ """Add a node and its customer transit edges to the graph.
175
+
176
+ Parameters
177
+ ----------
178
+ i: object
179
+ Identifier of the new node
180
+ kind: string
181
+ Type of the new node. Options are: 'M' for middle node, 'CP' for
182
+ content provider and 'C' for customer.
183
+ reg2prob: float
184
+ Probability the new node can be in two different regions.
185
+ avg_deg: float
186
+ Average number of transit nodes of which node i is customer.
187
+ t_edge_prob: float
188
+ Probability node i establish a customer transit edge with a tier
189
+ one (T) node
190
+
191
+ Returns
192
+ -------
193
+ i: object
194
+ Identifier of the new node
195
+ """
196
+
197
+ regs = 1 # regions in which node resides
198
+ if self.seed.random() < reg2prob: # node is in two regions
199
+ regs = 2
200
+ node_options = set()
201
+
202
+ self.G.add_node(i, type=kind, peers=0)
203
+ self.customers[i] = set()
204
+ self.providers[i] = set()
205
+ self.nodes[kind].add(i)
206
+ for r in self.seed.sample(list(self.regions), regs):
207
+ node_options = node_options.union(self.regions[r])
208
+ self.regions[r].add(i)
209
+
210
+ edge_num = uniform_int_from_avg(1, avg_deg, self.seed)
211
+
212
+ t_options = node_options.intersection(self.nodes["T"])
213
+ m_options = node_options.intersection(self.nodes["M"])
214
+ if i in m_options:
215
+ m_options.remove(i)
216
+ d = 0
217
+ while d < edge_num and (len(t_options) > 0 or len(m_options) > 0):
218
+ if len(m_options) == 0 or (
219
+ len(t_options) > 0 and self.seed.random() < t_edge_prob
220
+ ): # add edge to a T node
221
+ j = self.choose_node_pref_attach(t_options)
222
+ t_options.remove(j)
223
+ else:
224
+ j = self.choose_node_pref_attach(m_options)
225
+ m_options.remove(j)
226
+ self.add_edge(i, j, "transit")
227
+ self.add_customer(i, j)
228
+ d += 1
229
+
230
+ return i
231
+
232
+ def add_m_peering_link(self, m, to_kind):
233
+ """Add a peering link between two middle tier (M) nodes.
234
+
235
+ Target node j is drawn considering a preferential attachment based on
236
+ other M node peering degree.
237
+
238
+ Parameters
239
+ ----------
240
+ m: object
241
+ Node identifier
242
+ to_kind: string
243
+ type for target node j (must be always M)
244
+
245
+ Returns
246
+ -------
247
+ success: boolean
248
+ """
249
+
250
+ # candidates are of type 'M' and are not customers of m
251
+ node_options = self.nodes["M"].difference(self.customers[m])
252
+ # candidates are not providers of m
253
+ node_options = node_options.difference(self.providers[m])
254
+ # remove self
255
+ if m in node_options:
256
+ node_options.remove(m)
257
+
258
+ # remove candidates we are already connected to
259
+ for j in self.G.neighbors(m):
260
+ if j in node_options:
261
+ node_options.remove(j)
262
+
263
+ if len(node_options) > 0:
264
+ j = self.choose_peer_pref_attach(node_options)
265
+ self.add_edge(m, j, "peer")
266
+ self.G.nodes[m]["peers"] += 1
267
+ self.G.nodes[j]["peers"] += 1
268
+ return True
269
+ else:
270
+ return False
271
+
272
+ def add_cp_peering_link(self, cp, to_kind):
273
+ """Add a peering link to a content provider (CP) node.
274
+
275
+ Target node j can be CP or M and it is drawn uniformly among the nodes
276
+ belonging to the same region as cp.
277
+
278
+ Parameters
279
+ ----------
280
+ cp: object
281
+ Node identifier
282
+ to_kind: string
283
+ type for target node j (must be M or CP)
284
+
285
+ Returns
286
+ -------
287
+ success: boolean
288
+ """
289
+
290
+ node_options = set()
291
+ for r in self.regions: # options include nodes in the same region(s)
292
+ if cp in self.regions[r]:
293
+ node_options = node_options.union(self.regions[r])
294
+
295
+ # options are restricted to the indicated kind ('M' or 'CP')
296
+ node_options = self.nodes[to_kind].intersection(node_options)
297
+
298
+ # remove self
299
+ if cp in node_options:
300
+ node_options.remove(cp)
301
+
302
+ # remove nodes that are cp's providers
303
+ node_options = node_options.difference(self.providers[cp])
304
+
305
+ # remove nodes we are already connected to
306
+ for j in self.G.neighbors(cp):
307
+ if j in node_options:
308
+ node_options.remove(j)
309
+
310
+ if len(node_options) > 0:
311
+ j = self.seed.sample(list(node_options), 1)[0]
312
+ self.add_edge(cp, j, "peer")
313
+ self.G.nodes[cp]["peers"] += 1
314
+ self.G.nodes[j]["peers"] += 1
315
+ return True
316
+ else:
317
+ return False
318
+
319
+ def graph_regions(self, rn):
320
+ """Initializes AS network regions.
321
+
322
+ Parameters
323
+ ----------
324
+ rn: integer
325
+ Number of regions
326
+ """
327
+
328
+ self.regions = {}
329
+ for i in range(rn):
330
+ self.regions["REG" + str(i)] = set()
331
+
332
+ def add_peering_links(self, from_kind, to_kind):
333
+ """Utility function to add peering links among node groups."""
334
+ peer_link_method = None
335
+ if from_kind == "M":
336
+ peer_link_method = self.add_m_peering_link
337
+ m = self.p_m_m
338
+ if from_kind == "CP":
339
+ peer_link_method = self.add_cp_peering_link
340
+ if to_kind == "M":
341
+ m = self.p_cp_m
342
+ else:
343
+ m = self.p_cp_cp
344
+
345
+ for i in self.nodes[from_kind]:
346
+ num = uniform_int_from_avg(0, m, self.seed)
347
+ for _ in range(num):
348
+ peer_link_method(i, to_kind)
349
+
350
+ def generate(self):
351
+ """Generates a random AS network graph as described in [1].
352
+
353
+ Returns
354
+ -------
355
+ G: Graph object
356
+
357
+ Notes
358
+ -----
359
+ The process steps are the following: first we create the core network
360
+ of tier one nodes, then we add the middle tier (M), the content
361
+ provider (CP) and the customer (C) nodes along with their transit edges
362
+ (link i,j means i is customer of j). Finally we add peering links
363
+ between M nodes, between M and CP nodes and between CP node couples.
364
+ For a detailed description of the algorithm, please refer to [1].
365
+
366
+ References
367
+ ----------
368
+ [1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
369
+ BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
370
+ in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
371
+ """
372
+
373
+ self.graph_regions(5)
374
+ self.customers = {}
375
+ self.providers = {}
376
+ self.nodes = {"T": set(), "M": set(), "CP": set(), "C": set()}
377
+
378
+ self.t_graph()
379
+ self.nodes["T"] = set(self.G.nodes())
380
+
381
+ i = len(self.nodes["T"])
382
+ for _ in range(self.n_m):
383
+ self.nodes["M"].add(self.add_node(i, "M", 0.2, self.d_m, self.t_m))
384
+ i += 1
385
+ for _ in range(self.n_cp):
386
+ self.nodes["CP"].add(self.add_node(i, "CP", 0.05, self.d_cp, self.t_cp))
387
+ i += 1
388
+ for _ in range(self.n_c):
389
+ self.nodes["C"].add(self.add_node(i, "C", 0, self.d_c, self.t_c))
390
+ i += 1
391
+
392
+ self.add_peering_links("M", "M")
393
+ self.add_peering_links("CP", "M")
394
+ self.add_peering_links("CP", "CP")
395
+
396
+ return self.G
397
+
398
+
399
+ @py_random_state(1)
400
+ @nx._dispatchable(graphs=None, returns_graph=True)
401
+ def random_internet_as_graph(n, seed=None):
402
+ """Generates a random undirected graph resembling the Internet AS network
403
+
404
+ Parameters
405
+ ----------
406
+ n: integer in [1000, 10000]
407
+ Number of graph nodes
408
+ seed : integer, random_state, or None (default)
409
+ Indicator of random number generation state.
410
+ See :ref:`Randomness<randomness>`.
411
+
412
+ Returns
413
+ -------
414
+ G: Networkx Graph object
415
+ A randomly generated undirected graph
416
+
417
+ Notes
418
+ -----
419
+ This algorithm returns an undirected graph resembling the Internet
420
+ Autonomous System (AS) network, it uses the approach by Elmokashfi et al.
421
+ [1]_ and it grants the properties described in the related paper [1]_.
422
+
423
+ Each node models an autonomous system, with an attribute 'type' specifying
424
+ its kind; tier-1 (T), mid-level (M), customer (C) or content-provider (CP).
425
+ Each edge models an ADV communication link (hence, bidirectional) with
426
+ attributes:
427
+
428
+ - type: transit|peer, the kind of commercial agreement between nodes;
429
+ - customer: <node id>, the identifier of the node acting as customer
430
+ ('none' if type is peer).
431
+
432
+ References
433
+ ----------
434
+ .. [1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
435
+ BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
436
+ in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
437
+ """
438
+
439
+ GG = AS_graph_generator(n, seed)
440
+ G = GG.generate()
441
+ return G
wemm/lib/python3.10/site-packages/networkx/generators/interval_graph.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Generators for interval graph.
3
+ """
4
+
5
+ from collections.abc import Sequence
6
+
7
+ import networkx as nx
8
+
9
+ __all__ = ["interval_graph"]
10
+
11
+
12
+ @nx._dispatchable(graphs=None, returns_graph=True)
13
+ def interval_graph(intervals):
14
+ """Generates an interval graph for a list of intervals given.
15
+
16
+ In graph theory, an interval graph is an undirected graph formed from a set
17
+ of closed intervals on the real line, with a vertex for each interval
18
+ and an edge between vertices whose intervals intersect.
19
+ It is the intersection graph of the intervals.
20
+
21
+ More information can be found at:
22
+ https://en.wikipedia.org/wiki/Interval_graph
23
+
24
+ Parameters
25
+ ----------
26
+ intervals : a sequence of intervals, say (l, r) where l is the left end,
27
+ and r is the right end of the closed interval.
28
+
29
+ Returns
30
+ -------
31
+ G : networkx graph
32
+
33
+ Examples
34
+ --------
35
+ >>> intervals = [(-2, 3), [1, 4], (2, 3), (4, 6)]
36
+ >>> G = nx.interval_graph(intervals)
37
+ >>> sorted(G.edges)
38
+ [((-2, 3), (1, 4)), ((-2, 3), (2, 3)), ((1, 4), (2, 3)), ((1, 4), (4, 6))]
39
+
40
+ Raises
41
+ ------
42
+ :exc:`TypeError`
43
+ if `intervals` contains None or an element which is not
44
+ collections.abc.Sequence or not a length of 2.
45
+ :exc:`ValueError`
46
+ if `intervals` contains an interval such that min1 > max1
47
+ where min1,max1 = interval
48
+ """
49
+ intervals = list(intervals)
50
+ for interval in intervals:
51
+ if not (isinstance(interval, Sequence) and len(interval) == 2):
52
+ raise TypeError(
53
+ "Each interval must have length 2, and be a "
54
+ "collections.abc.Sequence such as tuple or list."
55
+ )
56
+ if interval[0] > interval[1]:
57
+ raise ValueError(f"Interval must have lower value first. Got {interval}")
58
+
59
+ graph = nx.Graph()
60
+
61
+ tupled_intervals = [tuple(interval) for interval in intervals]
62
+ graph.add_nodes_from(tupled_intervals)
63
+
64
+ while tupled_intervals:
65
+ min1, max1 = interval1 = tupled_intervals.pop()
66
+ for interval2 in tupled_intervals:
67
+ min2, max2 = interval2
68
+ if max1 >= min2 and max2 >= min1:
69
+ graph.add_edge(interval1, interval2)
70
+ return graph
wemm/lib/python3.10/site-packages/networkx/generators/lattice.py ADDED
@@ -0,0 +1,367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for generating grid graphs and lattices
2
+
3
+ The :func:`grid_2d_graph`, :func:`triangular_lattice_graph`, and
4
+ :func:`hexagonal_lattice_graph` functions correspond to the three
5
+ `regular tilings of the plane`_, the square, triangular, and hexagonal
6
+ tilings, respectively. :func:`grid_graph` and :func:`hypercube_graph`
7
+ are similar for arbitrary dimensions. Useful relevant discussion can
8
+ be found about `Triangular Tiling`_, and `Square, Hex and Triangle Grids`_
9
+
10
+ .. _regular tilings of the plane: https://en.wikipedia.org/wiki/List_of_regular_polytopes_and_compounds#Euclidean_tilings
11
+ .. _Square, Hex and Triangle Grids: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
12
+ .. _Triangular Tiling: https://en.wikipedia.org/wiki/Triangular_tiling
13
+
14
+ """
15
+
16
+ from itertools import repeat
17
+ from math import sqrt
18
+
19
+ import networkx as nx
20
+ from networkx.classes import set_node_attributes
21
+ from networkx.exception import NetworkXError
22
+ from networkx.generators.classic import cycle_graph, empty_graph, path_graph
23
+ from networkx.relabel import relabel_nodes
24
+ from networkx.utils import flatten, nodes_or_number, pairwise
25
+
26
+ __all__ = [
27
+ "grid_2d_graph",
28
+ "grid_graph",
29
+ "hypercube_graph",
30
+ "triangular_lattice_graph",
31
+ "hexagonal_lattice_graph",
32
+ ]
33
+
34
+
35
+ @nx._dispatchable(graphs=None, returns_graph=True)
36
+ @nodes_or_number([0, 1])
37
+ def grid_2d_graph(m, n, periodic=False, create_using=None):
38
+ """Returns the two-dimensional grid graph.
39
+
40
+ The grid graph has each node connected to its four nearest neighbors.
41
+
42
+ Parameters
43
+ ----------
44
+ m, n : int or iterable container of nodes
45
+ If an integer, nodes are from `range(n)`.
46
+ If a container, elements become the coordinate of the nodes.
47
+
48
+ periodic : bool or iterable
49
+ If `periodic` is True, both dimensions are periodic. If False, none
50
+ are periodic. If `periodic` is iterable, it should yield 2 bool
51
+ values indicating whether the 1st and 2nd axes, respectively, are
52
+ periodic.
53
+
54
+ create_using : NetworkX graph constructor, optional (default=nx.Graph)
55
+ Graph type to create. If graph instance, then cleared before populated.
56
+
57
+ Returns
58
+ -------
59
+ NetworkX graph
60
+ The (possibly periodic) grid graph of the specified dimensions.
61
+
62
+ """
63
+ G = empty_graph(0, create_using)
64
+ row_name, rows = m
65
+ col_name, cols = n
66
+ G.add_nodes_from((i, j) for i in rows for j in cols)
67
+ G.add_edges_from(((i, j), (pi, j)) for pi, i in pairwise(rows) for j in cols)
68
+ G.add_edges_from(((i, j), (i, pj)) for i in rows for pj, j in pairwise(cols))
69
+
70
+ try:
71
+ periodic_r, periodic_c = periodic
72
+ except TypeError:
73
+ periodic_r = periodic_c = periodic
74
+
75
+ if periodic_r and len(rows) > 2:
76
+ first = rows[0]
77
+ last = rows[-1]
78
+ G.add_edges_from(((first, j), (last, j)) for j in cols)
79
+ if periodic_c and len(cols) > 2:
80
+ first = cols[0]
81
+ last = cols[-1]
82
+ G.add_edges_from(((i, first), (i, last)) for i in rows)
83
+ # both directions for directed
84
+ if G.is_directed():
85
+ G.add_edges_from((v, u) for u, v in G.edges())
86
+ return G
87
+
88
+
89
+ @nx._dispatchable(graphs=None, returns_graph=True)
90
+ def grid_graph(dim, periodic=False):
91
+ """Returns the *n*-dimensional grid graph.
92
+
93
+ The dimension *n* is the length of the list `dim` and the size in
94
+ each dimension is the value of the corresponding list element.
95
+
96
+ Parameters
97
+ ----------
98
+ dim : list or tuple of numbers or iterables of nodes
99
+ 'dim' is a tuple or list with, for each dimension, either a number
100
+ that is the size of that dimension or an iterable of nodes for
101
+ that dimension. The dimension of the grid_graph is the length
102
+ of `dim`.
103
+
104
+ periodic : bool or iterable
105
+ If `periodic` is True, all dimensions are periodic. If False all
106
+ dimensions are not periodic. If `periodic` is iterable, it should
107
+ yield `dim` bool values each of which indicates whether the
108
+ corresponding axis is periodic.
109
+
110
+ Returns
111
+ -------
112
+ NetworkX graph
113
+ The (possibly periodic) grid graph of the specified dimensions.
114
+
115
+ Examples
116
+ --------
117
+ To produce a 2 by 3 by 4 grid graph, a graph on 24 nodes:
118
+
119
+ >>> from networkx import grid_graph
120
+ >>> G = grid_graph(dim=(2, 3, 4))
121
+ >>> len(G)
122
+ 24
123
+ >>> G = grid_graph(dim=(range(7, 9), range(3, 6)))
124
+ >>> len(G)
125
+ 6
126
+ """
127
+ from networkx.algorithms.operators.product import cartesian_product
128
+
129
+ if not dim:
130
+ return empty_graph(0)
131
+
132
+ try:
133
+ func = (cycle_graph if p else path_graph for p in periodic)
134
+ except TypeError:
135
+ func = repeat(cycle_graph if periodic else path_graph)
136
+
137
+ G = next(func)(dim[0])
138
+ for current_dim in dim[1:]:
139
+ Gnew = next(func)(current_dim)
140
+ G = cartesian_product(Gnew, G)
141
+ # graph G is done but has labels of the form (1, (2, (3, 1))) so relabel
142
+ H = relabel_nodes(G, flatten)
143
+ return H
144
+
145
+
146
+ @nx._dispatchable(graphs=None, returns_graph=True)
147
+ def hypercube_graph(n):
148
+ """Returns the *n*-dimensional hypercube graph.
149
+
150
+ The nodes are the integers between 0 and ``2 ** n - 1``, inclusive.
151
+
152
+ For more information on the hypercube graph, see the Wikipedia
153
+ article `Hypercube graph`_.
154
+
155
+ .. _Hypercube graph: https://en.wikipedia.org/wiki/Hypercube_graph
156
+
157
+ Parameters
158
+ ----------
159
+ n : int
160
+ The dimension of the hypercube.
161
+ The number of nodes in the graph will be ``2 ** n``.
162
+
163
+ Returns
164
+ -------
165
+ NetworkX graph
166
+ The hypercube graph of dimension *n*.
167
+ """
168
+ dim = n * [2]
169
+ G = grid_graph(dim)
170
+ return G
171
+
172
+
173
+ @nx._dispatchable(graphs=None, returns_graph=True)
174
+ def triangular_lattice_graph(
175
+ m, n, periodic=False, with_positions=True, create_using=None
176
+ ):
177
+ r"""Returns the $m$ by $n$ triangular lattice graph.
178
+
179
+ The `triangular lattice graph`_ is a two-dimensional `grid graph`_ in
180
+ which each square unit has a diagonal edge (each grid unit has a chord).
181
+
182
+ The returned graph has $m$ rows and $n$ columns of triangles. Rows and
183
+ columns include both triangles pointing up and down. Rows form a strip
184
+ of constant height. Columns form a series of diamond shapes, staggered
185
+ with the columns on either side. Another way to state the size is that
186
+ the nodes form a grid of `m+1` rows and `(n + 1) // 2` columns.
187
+ The odd row nodes are shifted horizontally relative to the even rows.
188
+
189
+ Directed graph types have edges pointed up or right.
190
+
191
+ Positions of nodes are computed by default or `with_positions is True`.
192
+ The position of each node (embedded in a euclidean plane) is stored in
193
+ the graph using equilateral triangles with sidelength 1.
194
+ The height between rows of nodes is thus $\sqrt(3)/2$.
195
+ Nodes lie in the first quadrant with the node $(0, 0)$ at the origin.
196
+
197
+ .. _triangular lattice graph: http://mathworld.wolfram.com/TriangularGrid.html
198
+ .. _grid graph: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
199
+ .. _Triangular Tiling: https://en.wikipedia.org/wiki/Triangular_tiling
200
+
201
+ Parameters
202
+ ----------
203
+ m : int
204
+ The number of rows in the lattice.
205
+
206
+ n : int
207
+ The number of columns in the lattice.
208
+
209
+ periodic : bool (default: False)
210
+ If True, join the boundary vertices of the grid using periodic
211
+ boundary conditions. The join between boundaries is the final row
212
+ and column of triangles. This means there is one row and one column
213
+ fewer nodes for the periodic lattice. Periodic lattices require
214
+ `m >= 3`, `n >= 5` and are allowed but misaligned if `m` or `n` are odd
215
+
216
+ with_positions : bool (default: True)
217
+ Store the coordinates of each node in the graph node attribute 'pos'.
218
+ The coordinates provide a lattice with equilateral triangles.
219
+ Periodic positions shift the nodes vertically in a nonlinear way so
220
+ the edges don't overlap so much.
221
+
222
+ create_using : NetworkX graph constructor, optional (default=nx.Graph)
223
+ Graph type to create. If graph instance, then cleared before populated.
224
+
225
+ Returns
226
+ -------
227
+ NetworkX graph
228
+ The *m* by *n* triangular lattice graph.
229
+ """
230
+ H = empty_graph(0, create_using)
231
+ if n == 0 or m == 0:
232
+ return H
233
+ if periodic:
234
+ if n < 5 or m < 3:
235
+ msg = f"m > 2 and n > 4 required for periodic. m={m}, n={n}"
236
+ raise NetworkXError(msg)
237
+
238
+ N = (n + 1) // 2 # number of nodes in row
239
+ rows = range(m + 1)
240
+ cols = range(N + 1)
241
+ # Make grid
242
+ H.add_edges_from(((i, j), (i + 1, j)) for j in rows for i in cols[:N])
243
+ H.add_edges_from(((i, j), (i, j + 1)) for j in rows[:m] for i in cols)
244
+ # add diagonals
245
+ H.add_edges_from(((i, j), (i + 1, j + 1)) for j in rows[1:m:2] for i in cols[:N])
246
+ H.add_edges_from(((i + 1, j), (i, j + 1)) for j in rows[:m:2] for i in cols[:N])
247
+ # identify boundary nodes if periodic
248
+ from networkx.algorithms.minors import contracted_nodes
249
+
250
+ if periodic is True:
251
+ for i in cols:
252
+ H = contracted_nodes(H, (i, 0), (i, m))
253
+ for j in rows[:m]:
254
+ H = contracted_nodes(H, (0, j), (N, j))
255
+ elif n % 2:
256
+ # remove extra nodes
257
+ H.remove_nodes_from((N, j) for j in rows[1::2])
258
+
259
+ # Add position node attributes
260
+ if with_positions:
261
+ ii = (i for i in cols for j in rows)
262
+ jj = (j for i in cols for j in rows)
263
+ xx = (0.5 * (j % 2) + i for i in cols for j in rows)
264
+ h = sqrt(3) / 2
265
+ if periodic:
266
+ yy = (h * j + 0.01 * i * i for i in cols for j in rows)
267
+ else:
268
+ yy = (h * j for i in cols for j in rows)
269
+ pos = {(i, j): (x, y) for i, j, x, y in zip(ii, jj, xx, yy) if (i, j) in H}
270
+ set_node_attributes(H, pos, "pos")
271
+ return H
272
+
273
+
274
+ @nx._dispatchable(graphs=None, returns_graph=True)
275
+ def hexagonal_lattice_graph(
276
+ m, n, periodic=False, with_positions=True, create_using=None
277
+ ):
278
+ """Returns an `m` by `n` hexagonal lattice graph.
279
+
280
+ The *hexagonal lattice graph* is a graph whose nodes and edges are
281
+ the `hexagonal tiling`_ of the plane.
282
+
283
+ The returned graph will have `m` rows and `n` columns of hexagons.
284
+ `Odd numbered columns`_ are shifted up relative to even numbered columns.
285
+
286
+ Positions of nodes are computed by default or `with_positions is True`.
287
+ Node positions creating the standard embedding in the plane
288
+ with sidelength 1 and are stored in the node attribute 'pos'.
289
+ `pos = nx.get_node_attributes(G, 'pos')` creates a dict ready for drawing.
290
+
291
+ .. _hexagonal tiling: https://en.wikipedia.org/wiki/Hexagonal_tiling
292
+ .. _Odd numbered columns: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
293
+
294
+ Parameters
295
+ ----------
296
+ m : int
297
+ The number of rows of hexagons in the lattice.
298
+
299
+ n : int
300
+ The number of columns of hexagons in the lattice.
301
+
302
+ periodic : bool
303
+ Whether to make a periodic grid by joining the boundary vertices.
304
+ For this to work `n` must be even and both `n > 1` and `m > 1`.
305
+ The periodic connections create another row and column of hexagons
306
+ so these graphs have fewer nodes as boundary nodes are identified.
307
+
308
+ with_positions : bool (default: True)
309
+ Store the coordinates of each node in the graph node attribute 'pos'.
310
+ The coordinates provide a lattice with vertical columns of hexagons
311
+ offset to interleave and cover the plane.
312
+ Periodic positions shift the nodes vertically in a nonlinear way so
313
+ the edges don't overlap so much.
314
+
315
+ create_using : NetworkX graph constructor, optional (default=nx.Graph)
316
+ Graph type to create. If graph instance, then cleared before populated.
317
+ If graph is directed, edges will point up or right.
318
+
319
+ Returns
320
+ -------
321
+ NetworkX graph
322
+ The *m* by *n* hexagonal lattice graph.
323
+ """
324
+ G = empty_graph(0, create_using)
325
+ if m == 0 or n == 0:
326
+ return G
327
+ if periodic and (n % 2 == 1 or m < 2 or n < 2):
328
+ msg = "periodic hexagonal lattice needs m > 1, n > 1 and even n"
329
+ raise NetworkXError(msg)
330
+
331
+ M = 2 * m # twice as many nodes as hexagons vertically
332
+ rows = range(M + 2)
333
+ cols = range(n + 1)
334
+ # make lattice
335
+ col_edges = (((i, j), (i, j + 1)) for i in cols for j in rows[: M + 1])
336
+ row_edges = (((i, j), (i + 1, j)) for i in cols[:n] for j in rows if i % 2 == j % 2)
337
+ G.add_edges_from(col_edges)
338
+ G.add_edges_from(row_edges)
339
+ # Remove corner nodes with one edge
340
+ G.remove_node((0, M + 1))
341
+ G.remove_node((n, (M + 1) * (n % 2)))
342
+
343
+ # identify boundary nodes if periodic
344
+ from networkx.algorithms.minors import contracted_nodes
345
+
346
+ if periodic:
347
+ for i in cols[:n]:
348
+ G = contracted_nodes(G, (i, 0), (i, M))
349
+ for i in cols[1:]:
350
+ G = contracted_nodes(G, (i, 1), (i, M + 1))
351
+ for j in rows[1:M]:
352
+ G = contracted_nodes(G, (0, j), (n, j))
353
+ G.remove_node((n, M))
354
+
355
+ # calc position in embedded space
356
+ ii = (i for i in cols for j in rows)
357
+ jj = (j for i in cols for j in rows)
358
+ xx = (0.5 + i + i // 2 + (j % 2) * ((i % 2) - 0.5) for i in cols for j in rows)
359
+ h = sqrt(3) / 2
360
+ if periodic:
361
+ yy = (h * j + 0.01 * i * i for i in cols for j in rows)
362
+ else:
363
+ yy = (h * j for i in cols for j in rows)
364
+ # exclude nodes not in G
365
+ pos = {(i, j): (x, y) for i, j, x, y in zip(ii, jj, xx, yy) if (i, j) in G}
366
+ set_node_attributes(G, pos, "pos")
367
+ return G
wemm/lib/python3.10/site-packages/networkx/generators/nonisomorphic_trees.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Implementation of the Wright, Richmond, Odlyzko and McKay (WROM)
3
+ algorithm for the enumeration of all non-isomorphic free trees of a
4
+ given order. Rooted trees are represented by level sequences, i.e.,
5
+ lists in which the i-th element specifies the distance of vertex i to
6
+ the root.
7
+
8
+ """
9
+
10
+ __all__ = ["nonisomorphic_trees", "number_of_nonisomorphic_trees"]
11
+
12
+ import networkx as nx
13
+
14
+
15
+ @nx._dispatchable(graphs=None, returns_graph=True)
16
+ def nonisomorphic_trees(order, create="graph"):
17
+ """Generates lists of nonisomorphic trees
18
+
19
+ Parameters
20
+ ----------
21
+ order : int
22
+ order of the desired tree(s)
23
+
24
+ create : one of {"graph", "matrix"} (default="graph")
25
+ If ``"graph"`` is selected a list of ``Graph`` instances will be returned,
26
+ if matrix is selected a list of adjacency matrices will be returned.
27
+
28
+ .. deprecated:: 3.3
29
+
30
+ The `create` argument is deprecated and will be removed in NetworkX
31
+ version 3.5. In the future, `nonisomorphic_trees` will yield graph
32
+ instances by default. To generate adjacency matrices, call
33
+ ``nx.to_numpy_array`` on the output, e.g.::
34
+
35
+ [nx.to_numpy_array(G) for G in nx.nonisomorphic_trees(N)]
36
+
37
+ Yields
38
+ ------
39
+ list
40
+ A list of nonisomorphic trees, in one of two formats depending on the
41
+ value of the `create` parameter:
42
+ - ``create="graph"``: yields a list of `networkx.Graph` instances
43
+ - ``create="matrix"``: yields a list of list-of-lists representing adjacency matrices
44
+ """
45
+
46
+ if order < 2:
47
+ raise ValueError
48
+ # start at the path graph rooted at its center
49
+ layout = list(range(order // 2 + 1)) + list(range(1, (order + 1) // 2))
50
+
51
+ while layout is not None:
52
+ layout = _next_tree(layout)
53
+ if layout is not None:
54
+ if create == "graph":
55
+ yield _layout_to_graph(layout)
56
+ elif create == "matrix":
57
+ import warnings
58
+
59
+ warnings.warn(
60
+ (
61
+ "\n\nThe 'create=matrix' argument of nonisomorphic_trees\n"
62
+ "is deprecated and will be removed in version 3.5.\n"
63
+ "Use ``nx.to_numpy_array`` to convert graphs to adjacency "
64
+ "matrices, e.g.::\n\n"
65
+ " [nx.to_numpy_array(G) for G in nx.nonisomorphic_trees(N)]"
66
+ ),
67
+ category=DeprecationWarning,
68
+ stacklevel=2,
69
+ )
70
+
71
+ yield _layout_to_matrix(layout)
72
+ layout = _next_rooted_tree(layout)
73
+
74
+
75
+ @nx._dispatchable(graphs=None)
76
+ def number_of_nonisomorphic_trees(order):
77
+ """Returns the number of nonisomorphic trees
78
+
79
+ Parameters
80
+ ----------
81
+ order : int
82
+ order of the desired tree(s)
83
+
84
+ Returns
85
+ -------
86
+ length : Number of nonisomorphic graphs for the given order
87
+
88
+ References
89
+ ----------
90
+
91
+ """
92
+ return sum(1 for _ in nonisomorphic_trees(order))
93
+
94
+
95
+ def _next_rooted_tree(predecessor, p=None):
96
+ """One iteration of the Beyer-Hedetniemi algorithm."""
97
+
98
+ if p is None:
99
+ p = len(predecessor) - 1
100
+ while predecessor[p] == 1:
101
+ p -= 1
102
+ if p == 0:
103
+ return None
104
+
105
+ q = p - 1
106
+ while predecessor[q] != predecessor[p] - 1:
107
+ q -= 1
108
+ result = list(predecessor)
109
+ for i in range(p, len(result)):
110
+ result[i] = result[i - p + q]
111
+ return result
112
+
113
+
114
+ def _next_tree(candidate):
115
+ """One iteration of the Wright, Richmond, Odlyzko and McKay
116
+ algorithm."""
117
+
118
+ # valid representation of a free tree if:
119
+ # there are at least two vertices at layer 1
120
+ # (this is always the case because we start at the path graph)
121
+ left, rest = _split_tree(candidate)
122
+
123
+ # and the left subtree of the root
124
+ # is less high than the tree with the left subtree removed
125
+ left_height = max(left)
126
+ rest_height = max(rest)
127
+ valid = rest_height >= left_height
128
+
129
+ if valid and rest_height == left_height:
130
+ # and, if left and rest are of the same height,
131
+ # if left does not encompass more vertices
132
+ if len(left) > len(rest):
133
+ valid = False
134
+ # and, if they have the same number or vertices,
135
+ # if left does not come after rest lexicographically
136
+ elif len(left) == len(rest) and left > rest:
137
+ valid = False
138
+
139
+ if valid:
140
+ return candidate
141
+ else:
142
+ # jump to the next valid free tree
143
+ p = len(left)
144
+ new_candidate = _next_rooted_tree(candidate, p)
145
+ if candidate[p] > 2:
146
+ new_left, new_rest = _split_tree(new_candidate)
147
+ new_left_height = max(new_left)
148
+ suffix = range(1, new_left_height + 2)
149
+ new_candidate[-len(suffix) :] = suffix
150
+ return new_candidate
151
+
152
+
153
+ def _split_tree(layout):
154
+ """Returns a tuple of two layouts, one containing the left
155
+ subtree of the root vertex, and one containing the original tree
156
+ with the left subtree removed."""
157
+
158
+ one_found = False
159
+ m = None
160
+ for i in range(len(layout)):
161
+ if layout[i] == 1:
162
+ if one_found:
163
+ m = i
164
+ break
165
+ else:
166
+ one_found = True
167
+
168
+ if m is None:
169
+ m = len(layout)
170
+
171
+ left = [layout[i] - 1 for i in range(1, m)]
172
+ rest = [0] + [layout[i] for i in range(m, len(layout))]
173
+ return (left, rest)
174
+
175
+
176
+ def _layout_to_matrix(layout):
177
+ """Create the adjacency matrix for the tree specified by the
178
+ given layout (level sequence)."""
179
+
180
+ result = [[0] * len(layout) for i in range(len(layout))]
181
+ stack = []
182
+ for i in range(len(layout)):
183
+ i_level = layout[i]
184
+ if stack:
185
+ j = stack[-1]
186
+ j_level = layout[j]
187
+ while j_level >= i_level:
188
+ stack.pop()
189
+ j = stack[-1]
190
+ j_level = layout[j]
191
+ result[i][j] = result[j][i] = 1
192
+ stack.append(i)
193
+ return result
194
+
195
+
196
+ def _layout_to_graph(layout):
197
+ """Create a NetworkX Graph for the tree specified by the
198
+ given layout(level sequence)"""
199
+ G = nx.Graph()
200
+ stack = []
201
+ for i in range(len(layout)):
202
+ i_level = layout[i]
203
+ if stack:
204
+ j = stack[-1]
205
+ j_level = layout[j]
206
+ while j_level >= i_level:
207
+ stack.pop()
208
+ j = stack[-1]
209
+ j_level = layout[j]
210
+ G.add_edge(i, j)
211
+ stack.append(i)
212
+ return G
wemm/lib/python3.10/site-packages/networkx/generators/random_clustered.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Generate graphs with given degree and triangle sequence."""
2
+
3
+ import networkx as nx
4
+ from networkx.utils import py_random_state
5
+
6
+ __all__ = ["random_clustered_graph"]
7
+
8
+
9
+ @py_random_state(2)
10
+ @nx._dispatchable(graphs=None, returns_graph=True)
11
+ def random_clustered_graph(joint_degree_sequence, create_using=None, seed=None):
12
+ r"""Generate a random graph with the given joint independent edge degree and
13
+ triangle degree sequence.
14
+
15
+ This uses a configuration model-like approach to generate a random graph
16
+ (with parallel edges and self-loops) by randomly assigning edges to match
17
+ the given joint degree sequence.
18
+
19
+ The joint degree sequence is a list of pairs of integers of the form
20
+ $[(d_{1,i}, d_{1,t}), \dotsc, (d_{n,i}, d_{n,t})]$. According to this list,
21
+ vertex $u$ is a member of $d_{u,t}$ triangles and has $d_{u, i}$ other
22
+ edges. The number $d_{u,t}$ is the *triangle degree* of $u$ and the number
23
+ $d_{u,i}$ is the *independent edge degree*.
24
+
25
+ Parameters
26
+ ----------
27
+ joint_degree_sequence : list of integer pairs
28
+ Each list entry corresponds to the independent edge degree and
29
+ triangle degree of a node.
30
+ create_using : NetworkX graph constructor, optional (default MultiGraph)
31
+ Graph type to create. If graph instance, then cleared before populated.
32
+ seed : integer, random_state, or None (default)
33
+ Indicator of random number generation state.
34
+ See :ref:`Randomness<randomness>`.
35
+
36
+ Returns
37
+ -------
38
+ G : MultiGraph
39
+ A graph with the specified degree sequence. Nodes are labeled
40
+ starting at 0 with an index corresponding to the position in
41
+ deg_sequence.
42
+
43
+ Raises
44
+ ------
45
+ NetworkXError
46
+ If the independent edge degree sequence sum is not even
47
+ or the triangle degree sequence sum is not divisible by 3.
48
+
49
+ Notes
50
+ -----
51
+ As described by Miller [1]_ (see also Newman [2]_ for an equivalent
52
+ description).
53
+
54
+ A non-graphical degree sequence (not realizable by some simple
55
+ graph) is allowed since this function returns graphs with self
56
+ loops and parallel edges. An exception is raised if the
57
+ independent degree sequence does not have an even sum or the
58
+ triangle degree sequence sum is not divisible by 3.
59
+
60
+ This configuration model-like construction process can lead to
61
+ duplicate edges and loops. You can remove the self-loops and
62
+ parallel edges (see below) which will likely result in a graph
63
+ that doesn't have the exact degree sequence specified. This
64
+ "finite-size effect" decreases as the size of the graph increases.
65
+
66
+ References
67
+ ----------
68
+ .. [1] Joel C. Miller. "Percolation and epidemics in random clustered
69
+ networks". In: Physical review. E, Statistical, nonlinear, and soft
70
+ matter physics 80 (2 Part 1 August 2009).
71
+ .. [2] M. E. J. Newman. "Random Graphs with Clustering".
72
+ In: Physical Review Letters 103 (5 July 2009)
73
+
74
+ Examples
75
+ --------
76
+ >>> deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)]
77
+ >>> G = nx.random_clustered_graph(deg)
78
+
79
+ To remove parallel edges:
80
+
81
+ >>> G = nx.Graph(G)
82
+
83
+ To remove self loops:
84
+
85
+ >>> G.remove_edges_from(nx.selfloop_edges(G))
86
+
87
+ """
88
+ # In Python 3, zip() returns an iterator. Make this into a list.
89
+ joint_degree_sequence = list(joint_degree_sequence)
90
+
91
+ N = len(joint_degree_sequence)
92
+ G = nx.empty_graph(N, create_using, default=nx.MultiGraph)
93
+ if G.is_directed():
94
+ raise nx.NetworkXError("Directed Graph not supported")
95
+
96
+ ilist = []
97
+ tlist = []
98
+ for n in G:
99
+ degrees = joint_degree_sequence[n]
100
+ for icount in range(degrees[0]):
101
+ ilist.append(n)
102
+ for tcount in range(degrees[1]):
103
+ tlist.append(n)
104
+
105
+ if len(ilist) % 2 != 0 or len(tlist) % 3 != 0:
106
+ raise nx.NetworkXError("Invalid degree sequence")
107
+
108
+ seed.shuffle(ilist)
109
+ seed.shuffle(tlist)
110
+ while ilist:
111
+ G.add_edge(ilist.pop(), ilist.pop())
112
+ while tlist:
113
+ n1 = tlist.pop()
114
+ n2 = tlist.pop()
115
+ n3 = tlist.pop()
116
+ G.add_edges_from([(n1, n2), (n1, n3), (n2, n3)])
117
+ return G
wemm/lib/python3.10/site-packages/networkx/generators/social.py ADDED
@@ -0,0 +1,554 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Famous social networks.
3
+ """
4
+
5
+ import networkx as nx
6
+
7
+ __all__ = [
8
+ "karate_club_graph",
9
+ "davis_southern_women_graph",
10
+ "florentine_families_graph",
11
+ "les_miserables_graph",
12
+ ]
13
+
14
+
15
+ @nx._dispatchable(graphs=None, returns_graph=True)
16
+ def karate_club_graph():
17
+ """Returns Zachary's Karate Club graph.
18
+
19
+ Each node in the returned graph has a node attribute 'club' that
20
+ indicates the name of the club to which the member represented by that node
21
+ belongs, either 'Mr. Hi' or 'Officer'. Each edge has a weight based on the
22
+ number of contexts in which that edge's incident node members interacted.
23
+
24
+ The dataset is derived from the 'Club After Split From Data' column of Table 3 in [1]_.
25
+ This was in turn derived from the 'Club After Fission' column of Table 1 in the
26
+ same paper. Note that the nodes are 0-indexed in NetworkX, but 1-indexed in the
27
+ paper (the 'Individual Number in Matrix C' column of Table 3 starts at 1). This
28
+ means, for example, that ``G.nodes[9]["club"]`` returns 'Officer', which
29
+ corresponds to row 10 of Table 3 in the paper.
30
+
31
+ Examples
32
+ --------
33
+ To get the name of the club to which a node belongs::
34
+
35
+ >>> G = nx.karate_club_graph()
36
+ >>> G.nodes[5]["club"]
37
+ 'Mr. Hi'
38
+ >>> G.nodes[9]["club"]
39
+ 'Officer'
40
+
41
+ References
42
+ ----------
43
+ .. [1] Zachary, Wayne W.
44
+ "An Information Flow Model for Conflict and Fission in Small Groups."
45
+ *Journal of Anthropological Research*, 33, 452--473, (1977).
46
+ """
47
+ # Create the set of all members, and the members of each club.
48
+ all_members = set(range(34))
49
+ club1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 17, 19, 21}
50
+ # club2 = all_members - club1
51
+
52
+ G = nx.Graph()
53
+ G.add_nodes_from(all_members)
54
+ G.name = "Zachary's Karate Club"
55
+
56
+ zacharydat = """\
57
+ 0 4 5 3 3 3 3 2 2 0 2 3 2 3 0 0 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 2 0 0
58
+ 4 0 6 3 0 0 0 4 0 0 0 0 0 5 0 0 0 1 0 2 0 2 0 0 0 0 0 0 0 0 2 0 0 0
59
+ 5 6 0 3 0 0 0 4 5 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 3 0
60
+ 3 3 3 0 0 0 0 3 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
61
+ 3 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
62
+ 3 0 0 0 0 0 5 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
63
+ 3 0 0 0 2 5 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
64
+ 2 4 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
65
+ 2 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 4 3
66
+ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
67
+ 2 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68
+ 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69
+ 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70
+ 3 5 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
71
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2
72
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4
73
+ 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74
+ 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
76
+ 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
77
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1
78
+ 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
79
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
80
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 4 0 2 0 0 5 4
81
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 2 0 0
82
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 0 0 0 0 0 0 7 0 0
83
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 2
84
+ 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0 0 0 0 0 0 4
85
+ 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2
86
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 4 0 0 0 0 0 3 2
87
+ 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3
88
+ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 7 0 0 2 0 0 0 4 4
89
+ 0 0 2 0 0 0 0 0 3 0 0 0 0 0 3 3 0 0 1 0 3 0 2 5 0 0 0 0 0 4 3 4 0 5
90
+ 0 0 0 0 0 0 0 0 4 2 0 0 0 3 2 4 0 0 2 1 1 0 3 4 0 0 2 4 2 2 3 4 5 0"""
91
+
92
+ for row, line in enumerate(zacharydat.split("\n")):
93
+ thisrow = [int(b) for b in line.split()]
94
+ for col, entry in enumerate(thisrow):
95
+ if entry >= 1:
96
+ G.add_edge(row, col, weight=entry)
97
+
98
+ # Add the name of each member's club as a node attribute.
99
+ for v in G:
100
+ G.nodes[v]["club"] = "Mr. Hi" if v in club1 else "Officer"
101
+ return G
102
+
103
+
104
+ @nx._dispatchable(graphs=None, returns_graph=True)
105
+ def davis_southern_women_graph():
106
+ """Returns Davis Southern women social network.
107
+
108
+ This is a bipartite graph.
109
+
110
+ References
111
+ ----------
112
+ .. [1] A. Davis, Gardner, B. B., Gardner, M. R., 1941. Deep South.
113
+ University of Chicago Press, Chicago, IL.
114
+ """
115
+ G = nx.Graph()
116
+ # Top nodes
117
+ women = [
118
+ "Evelyn Jefferson",
119
+ "Laura Mandeville",
120
+ "Theresa Anderson",
121
+ "Brenda Rogers",
122
+ "Charlotte McDowd",
123
+ "Frances Anderson",
124
+ "Eleanor Nye",
125
+ "Pearl Oglethorpe",
126
+ "Ruth DeSand",
127
+ "Verne Sanderson",
128
+ "Myra Liddel",
129
+ "Katherina Rogers",
130
+ "Sylvia Avondale",
131
+ "Nora Fayette",
132
+ "Helen Lloyd",
133
+ "Dorothy Murchison",
134
+ "Olivia Carleton",
135
+ "Flora Price",
136
+ ]
137
+ G.add_nodes_from(women, bipartite=0)
138
+ # Bottom nodes
139
+ events = [
140
+ "E1",
141
+ "E2",
142
+ "E3",
143
+ "E4",
144
+ "E5",
145
+ "E6",
146
+ "E7",
147
+ "E8",
148
+ "E9",
149
+ "E10",
150
+ "E11",
151
+ "E12",
152
+ "E13",
153
+ "E14",
154
+ ]
155
+ G.add_nodes_from(events, bipartite=1)
156
+
157
+ G.add_edges_from(
158
+ [
159
+ ("Evelyn Jefferson", "E1"),
160
+ ("Evelyn Jefferson", "E2"),
161
+ ("Evelyn Jefferson", "E3"),
162
+ ("Evelyn Jefferson", "E4"),
163
+ ("Evelyn Jefferson", "E5"),
164
+ ("Evelyn Jefferson", "E6"),
165
+ ("Evelyn Jefferson", "E8"),
166
+ ("Evelyn Jefferson", "E9"),
167
+ ("Laura Mandeville", "E1"),
168
+ ("Laura Mandeville", "E2"),
169
+ ("Laura Mandeville", "E3"),
170
+ ("Laura Mandeville", "E5"),
171
+ ("Laura Mandeville", "E6"),
172
+ ("Laura Mandeville", "E7"),
173
+ ("Laura Mandeville", "E8"),
174
+ ("Theresa Anderson", "E2"),
175
+ ("Theresa Anderson", "E3"),
176
+ ("Theresa Anderson", "E4"),
177
+ ("Theresa Anderson", "E5"),
178
+ ("Theresa Anderson", "E6"),
179
+ ("Theresa Anderson", "E7"),
180
+ ("Theresa Anderson", "E8"),
181
+ ("Theresa Anderson", "E9"),
182
+ ("Brenda Rogers", "E1"),
183
+ ("Brenda Rogers", "E3"),
184
+ ("Brenda Rogers", "E4"),
185
+ ("Brenda Rogers", "E5"),
186
+ ("Brenda Rogers", "E6"),
187
+ ("Brenda Rogers", "E7"),
188
+ ("Brenda Rogers", "E8"),
189
+ ("Charlotte McDowd", "E3"),
190
+ ("Charlotte McDowd", "E4"),
191
+ ("Charlotte McDowd", "E5"),
192
+ ("Charlotte McDowd", "E7"),
193
+ ("Frances Anderson", "E3"),
194
+ ("Frances Anderson", "E5"),
195
+ ("Frances Anderson", "E6"),
196
+ ("Frances Anderson", "E8"),
197
+ ("Eleanor Nye", "E5"),
198
+ ("Eleanor Nye", "E6"),
199
+ ("Eleanor Nye", "E7"),
200
+ ("Eleanor Nye", "E8"),
201
+ ("Pearl Oglethorpe", "E6"),
202
+ ("Pearl Oglethorpe", "E8"),
203
+ ("Pearl Oglethorpe", "E9"),
204
+ ("Ruth DeSand", "E5"),
205
+ ("Ruth DeSand", "E7"),
206
+ ("Ruth DeSand", "E8"),
207
+ ("Ruth DeSand", "E9"),
208
+ ("Verne Sanderson", "E7"),
209
+ ("Verne Sanderson", "E8"),
210
+ ("Verne Sanderson", "E9"),
211
+ ("Verne Sanderson", "E12"),
212
+ ("Myra Liddel", "E8"),
213
+ ("Myra Liddel", "E9"),
214
+ ("Myra Liddel", "E10"),
215
+ ("Myra Liddel", "E12"),
216
+ ("Katherina Rogers", "E8"),
217
+ ("Katherina Rogers", "E9"),
218
+ ("Katherina Rogers", "E10"),
219
+ ("Katherina Rogers", "E12"),
220
+ ("Katherina Rogers", "E13"),
221
+ ("Katherina Rogers", "E14"),
222
+ ("Sylvia Avondale", "E7"),
223
+ ("Sylvia Avondale", "E8"),
224
+ ("Sylvia Avondale", "E9"),
225
+ ("Sylvia Avondale", "E10"),
226
+ ("Sylvia Avondale", "E12"),
227
+ ("Sylvia Avondale", "E13"),
228
+ ("Sylvia Avondale", "E14"),
229
+ ("Nora Fayette", "E6"),
230
+ ("Nora Fayette", "E7"),
231
+ ("Nora Fayette", "E9"),
232
+ ("Nora Fayette", "E10"),
233
+ ("Nora Fayette", "E11"),
234
+ ("Nora Fayette", "E12"),
235
+ ("Nora Fayette", "E13"),
236
+ ("Nora Fayette", "E14"),
237
+ ("Helen Lloyd", "E7"),
238
+ ("Helen Lloyd", "E8"),
239
+ ("Helen Lloyd", "E10"),
240
+ ("Helen Lloyd", "E11"),
241
+ ("Helen Lloyd", "E12"),
242
+ ("Dorothy Murchison", "E8"),
243
+ ("Dorothy Murchison", "E9"),
244
+ ("Olivia Carleton", "E9"),
245
+ ("Olivia Carleton", "E11"),
246
+ ("Flora Price", "E9"),
247
+ ("Flora Price", "E11"),
248
+ ]
249
+ )
250
+ G.graph["top"] = women
251
+ G.graph["bottom"] = events
252
+ return G
253
+
254
+
255
+ @nx._dispatchable(graphs=None, returns_graph=True)
256
+ def florentine_families_graph():
257
+ """Returns Florentine families graph.
258
+
259
+ References
260
+ ----------
261
+ .. [1] Ronald L. Breiger and Philippa E. Pattison
262
+ Cumulated social roles: The duality of persons and their algebras,1
263
+ Social Networks, Volume 8, Issue 3, September 1986, Pages 215-256
264
+ """
265
+ G = nx.Graph()
266
+ G.add_edge("Acciaiuoli", "Medici")
267
+ G.add_edge("Castellani", "Peruzzi")
268
+ G.add_edge("Castellani", "Strozzi")
269
+ G.add_edge("Castellani", "Barbadori")
270
+ G.add_edge("Medici", "Barbadori")
271
+ G.add_edge("Medici", "Ridolfi")
272
+ G.add_edge("Medici", "Tornabuoni")
273
+ G.add_edge("Medici", "Albizzi")
274
+ G.add_edge("Medici", "Salviati")
275
+ G.add_edge("Salviati", "Pazzi")
276
+ G.add_edge("Peruzzi", "Strozzi")
277
+ G.add_edge("Peruzzi", "Bischeri")
278
+ G.add_edge("Strozzi", "Ridolfi")
279
+ G.add_edge("Strozzi", "Bischeri")
280
+ G.add_edge("Ridolfi", "Tornabuoni")
281
+ G.add_edge("Tornabuoni", "Guadagni")
282
+ G.add_edge("Albizzi", "Ginori")
283
+ G.add_edge("Albizzi", "Guadagni")
284
+ G.add_edge("Bischeri", "Guadagni")
285
+ G.add_edge("Guadagni", "Lamberteschi")
286
+ return G
287
+
288
+
289
+ @nx._dispatchable(graphs=None, returns_graph=True)
290
+ def les_miserables_graph():
291
+ """Returns coappearance network of characters in the novel Les Miserables.
292
+
293
+ References
294
+ ----------
295
+ .. [1] D. E. Knuth, 1993.
296
+ The Stanford GraphBase: a platform for combinatorial computing,
297
+ pp. 74-87. New York: AcM Press.
298
+ """
299
+ G = nx.Graph()
300
+ G.add_edge("Napoleon", "Myriel", weight=1)
301
+ G.add_edge("MlleBaptistine", "Myriel", weight=8)
302
+ G.add_edge("MmeMagloire", "Myriel", weight=10)
303
+ G.add_edge("MmeMagloire", "MlleBaptistine", weight=6)
304
+ G.add_edge("CountessDeLo", "Myriel", weight=1)
305
+ G.add_edge("Geborand", "Myriel", weight=1)
306
+ G.add_edge("Champtercier", "Myriel", weight=1)
307
+ G.add_edge("Cravatte", "Myriel", weight=1)
308
+ G.add_edge("Count", "Myriel", weight=2)
309
+ G.add_edge("OldMan", "Myriel", weight=1)
310
+ G.add_edge("Valjean", "Labarre", weight=1)
311
+ G.add_edge("Valjean", "MmeMagloire", weight=3)
312
+ G.add_edge("Valjean", "MlleBaptistine", weight=3)
313
+ G.add_edge("Valjean", "Myriel", weight=5)
314
+ G.add_edge("Marguerite", "Valjean", weight=1)
315
+ G.add_edge("MmeDeR", "Valjean", weight=1)
316
+ G.add_edge("Isabeau", "Valjean", weight=1)
317
+ G.add_edge("Gervais", "Valjean", weight=1)
318
+ G.add_edge("Listolier", "Tholomyes", weight=4)
319
+ G.add_edge("Fameuil", "Tholomyes", weight=4)
320
+ G.add_edge("Fameuil", "Listolier", weight=4)
321
+ G.add_edge("Blacheville", "Tholomyes", weight=4)
322
+ G.add_edge("Blacheville", "Listolier", weight=4)
323
+ G.add_edge("Blacheville", "Fameuil", weight=4)
324
+ G.add_edge("Favourite", "Tholomyes", weight=3)
325
+ G.add_edge("Favourite", "Listolier", weight=3)
326
+ G.add_edge("Favourite", "Fameuil", weight=3)
327
+ G.add_edge("Favourite", "Blacheville", weight=4)
328
+ G.add_edge("Dahlia", "Tholomyes", weight=3)
329
+ G.add_edge("Dahlia", "Listolier", weight=3)
330
+ G.add_edge("Dahlia", "Fameuil", weight=3)
331
+ G.add_edge("Dahlia", "Blacheville", weight=3)
332
+ G.add_edge("Dahlia", "Favourite", weight=5)
333
+ G.add_edge("Zephine", "Tholomyes", weight=3)
334
+ G.add_edge("Zephine", "Listolier", weight=3)
335
+ G.add_edge("Zephine", "Fameuil", weight=3)
336
+ G.add_edge("Zephine", "Blacheville", weight=3)
337
+ G.add_edge("Zephine", "Favourite", weight=4)
338
+ G.add_edge("Zephine", "Dahlia", weight=4)
339
+ G.add_edge("Fantine", "Tholomyes", weight=3)
340
+ G.add_edge("Fantine", "Listolier", weight=3)
341
+ G.add_edge("Fantine", "Fameuil", weight=3)
342
+ G.add_edge("Fantine", "Blacheville", weight=3)
343
+ G.add_edge("Fantine", "Favourite", weight=4)
344
+ G.add_edge("Fantine", "Dahlia", weight=4)
345
+ G.add_edge("Fantine", "Zephine", weight=4)
346
+ G.add_edge("Fantine", "Marguerite", weight=2)
347
+ G.add_edge("Fantine", "Valjean", weight=9)
348
+ G.add_edge("MmeThenardier", "Fantine", weight=2)
349
+ G.add_edge("MmeThenardier", "Valjean", weight=7)
350
+ G.add_edge("Thenardier", "MmeThenardier", weight=13)
351
+ G.add_edge("Thenardier", "Fantine", weight=1)
352
+ G.add_edge("Thenardier", "Valjean", weight=12)
353
+ G.add_edge("Cosette", "MmeThenardier", weight=4)
354
+ G.add_edge("Cosette", "Valjean", weight=31)
355
+ G.add_edge("Cosette", "Tholomyes", weight=1)
356
+ G.add_edge("Cosette", "Thenardier", weight=1)
357
+ G.add_edge("Javert", "Valjean", weight=17)
358
+ G.add_edge("Javert", "Fantine", weight=5)
359
+ G.add_edge("Javert", "Thenardier", weight=5)
360
+ G.add_edge("Javert", "MmeThenardier", weight=1)
361
+ G.add_edge("Javert", "Cosette", weight=1)
362
+ G.add_edge("Fauchelevent", "Valjean", weight=8)
363
+ G.add_edge("Fauchelevent", "Javert", weight=1)
364
+ G.add_edge("Bamatabois", "Fantine", weight=1)
365
+ G.add_edge("Bamatabois", "Javert", weight=1)
366
+ G.add_edge("Bamatabois", "Valjean", weight=2)
367
+ G.add_edge("Perpetue", "Fantine", weight=1)
368
+ G.add_edge("Simplice", "Perpetue", weight=2)
369
+ G.add_edge("Simplice", "Valjean", weight=3)
370
+ G.add_edge("Simplice", "Fantine", weight=2)
371
+ G.add_edge("Simplice", "Javert", weight=1)
372
+ G.add_edge("Scaufflaire", "Valjean", weight=1)
373
+ G.add_edge("Woman1", "Valjean", weight=2)
374
+ G.add_edge("Woman1", "Javert", weight=1)
375
+ G.add_edge("Judge", "Valjean", weight=3)
376
+ G.add_edge("Judge", "Bamatabois", weight=2)
377
+ G.add_edge("Champmathieu", "Valjean", weight=3)
378
+ G.add_edge("Champmathieu", "Judge", weight=3)
379
+ G.add_edge("Champmathieu", "Bamatabois", weight=2)
380
+ G.add_edge("Brevet", "Judge", weight=2)
381
+ G.add_edge("Brevet", "Champmathieu", weight=2)
382
+ G.add_edge("Brevet", "Valjean", weight=2)
383
+ G.add_edge("Brevet", "Bamatabois", weight=1)
384
+ G.add_edge("Chenildieu", "Judge", weight=2)
385
+ G.add_edge("Chenildieu", "Champmathieu", weight=2)
386
+ G.add_edge("Chenildieu", "Brevet", weight=2)
387
+ G.add_edge("Chenildieu", "Valjean", weight=2)
388
+ G.add_edge("Chenildieu", "Bamatabois", weight=1)
389
+ G.add_edge("Cochepaille", "Judge", weight=2)
390
+ G.add_edge("Cochepaille", "Champmathieu", weight=2)
391
+ G.add_edge("Cochepaille", "Brevet", weight=2)
392
+ G.add_edge("Cochepaille", "Chenildieu", weight=2)
393
+ G.add_edge("Cochepaille", "Valjean", weight=2)
394
+ G.add_edge("Cochepaille", "Bamatabois", weight=1)
395
+ G.add_edge("Pontmercy", "Thenardier", weight=1)
396
+ G.add_edge("Boulatruelle", "Thenardier", weight=1)
397
+ G.add_edge("Eponine", "MmeThenardier", weight=2)
398
+ G.add_edge("Eponine", "Thenardier", weight=3)
399
+ G.add_edge("Anzelma", "Eponine", weight=2)
400
+ G.add_edge("Anzelma", "Thenardier", weight=2)
401
+ G.add_edge("Anzelma", "MmeThenardier", weight=1)
402
+ G.add_edge("Woman2", "Valjean", weight=3)
403
+ G.add_edge("Woman2", "Cosette", weight=1)
404
+ G.add_edge("Woman2", "Javert", weight=1)
405
+ G.add_edge("MotherInnocent", "Fauchelevent", weight=3)
406
+ G.add_edge("MotherInnocent", "Valjean", weight=1)
407
+ G.add_edge("Gribier", "Fauchelevent", weight=2)
408
+ G.add_edge("MmeBurgon", "Jondrette", weight=1)
409
+ G.add_edge("Gavroche", "MmeBurgon", weight=2)
410
+ G.add_edge("Gavroche", "Thenardier", weight=1)
411
+ G.add_edge("Gavroche", "Javert", weight=1)
412
+ G.add_edge("Gavroche", "Valjean", weight=1)
413
+ G.add_edge("Gillenormand", "Cosette", weight=3)
414
+ G.add_edge("Gillenormand", "Valjean", weight=2)
415
+ G.add_edge("Magnon", "Gillenormand", weight=1)
416
+ G.add_edge("Magnon", "MmeThenardier", weight=1)
417
+ G.add_edge("MlleGillenormand", "Gillenormand", weight=9)
418
+ G.add_edge("MlleGillenormand", "Cosette", weight=2)
419
+ G.add_edge("MlleGillenormand", "Valjean", weight=2)
420
+ G.add_edge("MmePontmercy", "MlleGillenormand", weight=1)
421
+ G.add_edge("MmePontmercy", "Pontmercy", weight=1)
422
+ G.add_edge("MlleVaubois", "MlleGillenormand", weight=1)
423
+ G.add_edge("LtGillenormand", "MlleGillenormand", weight=2)
424
+ G.add_edge("LtGillenormand", "Gillenormand", weight=1)
425
+ G.add_edge("LtGillenormand", "Cosette", weight=1)
426
+ G.add_edge("Marius", "MlleGillenormand", weight=6)
427
+ G.add_edge("Marius", "Gillenormand", weight=12)
428
+ G.add_edge("Marius", "Pontmercy", weight=1)
429
+ G.add_edge("Marius", "LtGillenormand", weight=1)
430
+ G.add_edge("Marius", "Cosette", weight=21)
431
+ G.add_edge("Marius", "Valjean", weight=19)
432
+ G.add_edge("Marius", "Tholomyes", weight=1)
433
+ G.add_edge("Marius", "Thenardier", weight=2)
434
+ G.add_edge("Marius", "Eponine", weight=5)
435
+ G.add_edge("Marius", "Gavroche", weight=4)
436
+ G.add_edge("BaronessT", "Gillenormand", weight=1)
437
+ G.add_edge("BaronessT", "Marius", weight=1)
438
+ G.add_edge("Mabeuf", "Marius", weight=1)
439
+ G.add_edge("Mabeuf", "Eponine", weight=1)
440
+ G.add_edge("Mabeuf", "Gavroche", weight=1)
441
+ G.add_edge("Enjolras", "Marius", weight=7)
442
+ G.add_edge("Enjolras", "Gavroche", weight=7)
443
+ G.add_edge("Enjolras", "Javert", weight=6)
444
+ G.add_edge("Enjolras", "Mabeuf", weight=1)
445
+ G.add_edge("Enjolras", "Valjean", weight=4)
446
+ G.add_edge("Combeferre", "Enjolras", weight=15)
447
+ G.add_edge("Combeferre", "Marius", weight=5)
448
+ G.add_edge("Combeferre", "Gavroche", weight=6)
449
+ G.add_edge("Combeferre", "Mabeuf", weight=2)
450
+ G.add_edge("Prouvaire", "Gavroche", weight=1)
451
+ G.add_edge("Prouvaire", "Enjolras", weight=4)
452
+ G.add_edge("Prouvaire", "Combeferre", weight=2)
453
+ G.add_edge("Feuilly", "Gavroche", weight=2)
454
+ G.add_edge("Feuilly", "Enjolras", weight=6)
455
+ G.add_edge("Feuilly", "Prouvaire", weight=2)
456
+ G.add_edge("Feuilly", "Combeferre", weight=5)
457
+ G.add_edge("Feuilly", "Mabeuf", weight=1)
458
+ G.add_edge("Feuilly", "Marius", weight=1)
459
+ G.add_edge("Courfeyrac", "Marius", weight=9)
460
+ G.add_edge("Courfeyrac", "Enjolras", weight=17)
461
+ G.add_edge("Courfeyrac", "Combeferre", weight=13)
462
+ G.add_edge("Courfeyrac", "Gavroche", weight=7)
463
+ G.add_edge("Courfeyrac", "Mabeuf", weight=2)
464
+ G.add_edge("Courfeyrac", "Eponine", weight=1)
465
+ G.add_edge("Courfeyrac", "Feuilly", weight=6)
466
+ G.add_edge("Courfeyrac", "Prouvaire", weight=3)
467
+ G.add_edge("Bahorel", "Combeferre", weight=5)
468
+ G.add_edge("Bahorel", "Gavroche", weight=5)
469
+ G.add_edge("Bahorel", "Courfeyrac", weight=6)
470
+ G.add_edge("Bahorel", "Mabeuf", weight=2)
471
+ G.add_edge("Bahorel", "Enjolras", weight=4)
472
+ G.add_edge("Bahorel", "Feuilly", weight=3)
473
+ G.add_edge("Bahorel", "Prouvaire", weight=2)
474
+ G.add_edge("Bahorel", "Marius", weight=1)
475
+ G.add_edge("Bossuet", "Marius", weight=5)
476
+ G.add_edge("Bossuet", "Courfeyrac", weight=12)
477
+ G.add_edge("Bossuet", "Gavroche", weight=5)
478
+ G.add_edge("Bossuet", "Bahorel", weight=4)
479
+ G.add_edge("Bossuet", "Enjolras", weight=10)
480
+ G.add_edge("Bossuet", "Feuilly", weight=6)
481
+ G.add_edge("Bossuet", "Prouvaire", weight=2)
482
+ G.add_edge("Bossuet", "Combeferre", weight=9)
483
+ G.add_edge("Bossuet", "Mabeuf", weight=1)
484
+ G.add_edge("Bossuet", "Valjean", weight=1)
485
+ G.add_edge("Joly", "Bahorel", weight=5)
486
+ G.add_edge("Joly", "Bossuet", weight=7)
487
+ G.add_edge("Joly", "Gavroche", weight=3)
488
+ G.add_edge("Joly", "Courfeyrac", weight=5)
489
+ G.add_edge("Joly", "Enjolras", weight=5)
490
+ G.add_edge("Joly", "Feuilly", weight=5)
491
+ G.add_edge("Joly", "Prouvaire", weight=2)
492
+ G.add_edge("Joly", "Combeferre", weight=5)
493
+ G.add_edge("Joly", "Mabeuf", weight=1)
494
+ G.add_edge("Joly", "Marius", weight=2)
495
+ G.add_edge("Grantaire", "Bossuet", weight=3)
496
+ G.add_edge("Grantaire", "Enjolras", weight=3)
497
+ G.add_edge("Grantaire", "Combeferre", weight=1)
498
+ G.add_edge("Grantaire", "Courfeyrac", weight=2)
499
+ G.add_edge("Grantaire", "Joly", weight=2)
500
+ G.add_edge("Grantaire", "Gavroche", weight=1)
501
+ G.add_edge("Grantaire", "Bahorel", weight=1)
502
+ G.add_edge("Grantaire", "Feuilly", weight=1)
503
+ G.add_edge("Grantaire", "Prouvaire", weight=1)
504
+ G.add_edge("MotherPlutarch", "Mabeuf", weight=3)
505
+ G.add_edge("Gueulemer", "Thenardier", weight=5)
506
+ G.add_edge("Gueulemer", "Valjean", weight=1)
507
+ G.add_edge("Gueulemer", "MmeThenardier", weight=1)
508
+ G.add_edge("Gueulemer", "Javert", weight=1)
509
+ G.add_edge("Gueulemer", "Gavroche", weight=1)
510
+ G.add_edge("Gueulemer", "Eponine", weight=1)
511
+ G.add_edge("Babet", "Thenardier", weight=6)
512
+ G.add_edge("Babet", "Gueulemer", weight=6)
513
+ G.add_edge("Babet", "Valjean", weight=1)
514
+ G.add_edge("Babet", "MmeThenardier", weight=1)
515
+ G.add_edge("Babet", "Javert", weight=2)
516
+ G.add_edge("Babet", "Gavroche", weight=1)
517
+ G.add_edge("Babet", "Eponine", weight=1)
518
+ G.add_edge("Claquesous", "Thenardier", weight=4)
519
+ G.add_edge("Claquesous", "Babet", weight=4)
520
+ G.add_edge("Claquesous", "Gueulemer", weight=4)
521
+ G.add_edge("Claquesous", "Valjean", weight=1)
522
+ G.add_edge("Claquesous", "MmeThenardier", weight=1)
523
+ G.add_edge("Claquesous", "Javert", weight=1)
524
+ G.add_edge("Claquesous", "Eponine", weight=1)
525
+ G.add_edge("Claquesous", "Enjolras", weight=1)
526
+ G.add_edge("Montparnasse", "Javert", weight=1)
527
+ G.add_edge("Montparnasse", "Babet", weight=2)
528
+ G.add_edge("Montparnasse", "Gueulemer", weight=2)
529
+ G.add_edge("Montparnasse", "Claquesous", weight=2)
530
+ G.add_edge("Montparnasse", "Valjean", weight=1)
531
+ G.add_edge("Montparnasse", "Gavroche", weight=1)
532
+ G.add_edge("Montparnasse", "Eponine", weight=1)
533
+ G.add_edge("Montparnasse", "Thenardier", weight=1)
534
+ G.add_edge("Toussaint", "Cosette", weight=2)
535
+ G.add_edge("Toussaint", "Javert", weight=1)
536
+ G.add_edge("Toussaint", "Valjean", weight=1)
537
+ G.add_edge("Child1", "Gavroche", weight=2)
538
+ G.add_edge("Child2", "Gavroche", weight=2)
539
+ G.add_edge("Child2", "Child1", weight=3)
540
+ G.add_edge("Brujon", "Babet", weight=3)
541
+ G.add_edge("Brujon", "Gueulemer", weight=3)
542
+ G.add_edge("Brujon", "Thenardier", weight=3)
543
+ G.add_edge("Brujon", "Gavroche", weight=1)
544
+ G.add_edge("Brujon", "Eponine", weight=1)
545
+ G.add_edge("Brujon", "Claquesous", weight=1)
546
+ G.add_edge("Brujon", "Montparnasse", weight=1)
547
+ G.add_edge("MmeHucheloup", "Bossuet", weight=1)
548
+ G.add_edge("MmeHucheloup", "Joly", weight=1)
549
+ G.add_edge("MmeHucheloup", "Grantaire", weight=1)
550
+ G.add_edge("MmeHucheloup", "Bahorel", weight=1)
551
+ G.add_edge("MmeHucheloup", "Courfeyrac", weight=1)
552
+ G.add_edge("MmeHucheloup", "Gavroche", weight=1)
553
+ G.add_edge("MmeHucheloup", "Enjolras", weight=1)
554
+ return G
wemm/lib/python3.10/site-packages/networkx/generators/stochastic.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for generating stochastic graphs from a given weighted directed
2
+ graph.
3
+
4
+ """
5
+
6
+ import networkx as nx
7
+ from networkx.classes import DiGraph, MultiDiGraph
8
+ from networkx.utils import not_implemented_for
9
+
10
+ __all__ = ["stochastic_graph"]
11
+
12
+
13
+ @not_implemented_for("undirected")
14
+ @nx._dispatchable(
15
+ edge_attrs="weight", mutates_input={"not copy": 1}, returns_graph=True
16
+ )
17
+ def stochastic_graph(G, copy=True, weight="weight"):
18
+ """Returns a right-stochastic representation of directed graph `G`.
19
+
20
+ A right-stochastic graph is a weighted digraph in which for each
21
+ node, the sum of the weights of all the out-edges of that node is
22
+ 1. If the graph is already weighted (for example, via a 'weight'
23
+ edge attribute), the reweighting takes that into account.
24
+
25
+ Parameters
26
+ ----------
27
+ G : directed graph
28
+ A :class:`~networkx.DiGraph` or :class:`~networkx.MultiDiGraph`.
29
+
30
+ copy : boolean, optional
31
+ If this is True, then this function returns a new graph with
32
+ the stochastic reweighting. Otherwise, the original graph is
33
+ modified in-place (and also returned, for convenience).
34
+
35
+ weight : edge attribute key (optional, default='weight')
36
+ Edge attribute key used for reading the existing weight and
37
+ setting the new weight. If no attribute with this key is found
38
+ for an edge, then the edge weight is assumed to be 1. If an edge
39
+ has a weight, it must be a positive number.
40
+
41
+ """
42
+ if copy:
43
+ G = MultiDiGraph(G) if G.is_multigraph() else DiGraph(G)
44
+ # There is a tradeoff here: the dictionary of node degrees may
45
+ # require a lot of memory, whereas making a call to `G.out_degree`
46
+ # inside the loop may be costly in computation time.
47
+ degree = dict(G.out_degree(weight=weight))
48
+ for u, v, d in G.edges(data=True):
49
+ if degree[u] == 0:
50
+ d[weight] = 0
51
+ else:
52
+ d[weight] = d.get(weight, 1) / degree[u]
53
+ nx._clear_cache(G)
54
+ return G
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_atlas.cpython-310.pyc ADDED
Binary file (3.57 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_cographs.cpython-310.pyc ADDED
Binary file (638 Bytes). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_degree_seq.cpython-310.pyc ADDED
Binary file (8.63 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_duplication.cpython-310.pyc ADDED
Binary file (4.95 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_expanders.cpython-310.pyc ADDED
Binary file (5.83 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_geometric.cpython-310.pyc ADDED
Binary file (20.1 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_harary_graph.cpython-310.pyc ADDED
Binary file (2.82 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_internet_as_graphs.cpython-310.pyc ADDED
Binary file (4.81 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_intersection.cpython-310.pyc ADDED
Binary file (1.54 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_interval_graph.cpython-310.pyc ADDED
Binary file (4.17 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_joint_degree_seq.cpython-310.pyc ADDED
Binary file (2.5 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_lattice.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_line.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_mycielski.cpython-310.pyc ADDED
Binary file (1.47 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_random_clustered.cpython-310.pyc ADDED
Binary file (2.17 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_random_graphs.cpython-310.pyc ADDED
Binary file (17.1 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_small.cpython-310.pyc ADDED
Binary file (7.41 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_sudoku.cpython-310.pyc ADDED
Binary file (1.77 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_time_series.cpython-310.pyc ADDED
Binary file (2.63 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_trees.cpython-310.pyc ADDED
Binary file (5.69 kB). View file
 
wemm/lib/python3.10/site-packages/networkx/generators/tests/test_atlas.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import groupby
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+ from networkx import graph_atlas, graph_atlas_g
7
+ from networkx.generators.atlas import NUM_GRAPHS
8
+ from networkx.utils import edges_equal, nodes_equal, pairwise
9
+
10
+
11
+ class TestAtlasGraph:
12
+ """Unit tests for the :func:`~networkx.graph_atlas` function."""
13
+
14
+ def test_index_too_small(self):
15
+ with pytest.raises(ValueError):
16
+ graph_atlas(-1)
17
+
18
+ def test_index_too_large(self):
19
+ with pytest.raises(ValueError):
20
+ graph_atlas(NUM_GRAPHS)
21
+
22
+ def test_graph(self):
23
+ G = graph_atlas(6)
24
+ assert nodes_equal(G.nodes(), range(3))
25
+ assert edges_equal(G.edges(), [(0, 1), (0, 2)])
26
+
27
+
28
+ class TestAtlasGraphG:
29
+ """Unit tests for the :func:`~networkx.graph_atlas_g` function."""
30
+
31
+ @classmethod
32
+ def setup_class(cls):
33
+ cls.GAG = graph_atlas_g()
34
+
35
+ def test_sizes(self):
36
+ G = self.GAG[0]
37
+ assert G.number_of_nodes() == 0
38
+ assert G.number_of_edges() == 0
39
+
40
+ G = self.GAG[7]
41
+ assert G.number_of_nodes() == 3
42
+ assert G.number_of_edges() == 3
43
+
44
+ def test_names(self):
45
+ for i, G in enumerate(self.GAG):
46
+ assert int(G.name[1:]) == i
47
+
48
+ def test_nondecreasing_nodes(self):
49
+ # check for nondecreasing number of nodes
50
+ for n1, n2 in pairwise(map(len, self.GAG)):
51
+ assert n2 <= n1 + 1
52
+
53
+ def test_nondecreasing_edges(self):
54
+ # check for nondecreasing number of edges (for fixed number of
55
+ # nodes)
56
+ for n, group in groupby(self.GAG, key=nx.number_of_nodes):
57
+ for m1, m2 in pairwise(map(nx.number_of_edges, group)):
58
+ assert m2 <= m1 + 1
59
+
60
+ def test_nondecreasing_degree_sequence(self):
61
+ # Check for lexicographically nondecreasing degree sequences
62
+ # (for fixed number of nodes and edges).
63
+ #
64
+ # There are three exceptions to this rule in the order given in
65
+ # the "Atlas of Graphs" book, so we need to manually exclude
66
+ # those.
67
+ exceptions = [("G55", "G56"), ("G1007", "G1008"), ("G1012", "G1013")]
68
+ for n, group in groupby(self.GAG, key=nx.number_of_nodes):
69
+ for m, group in groupby(group, key=nx.number_of_edges):
70
+ for G1, G2 in pairwise(group):
71
+ if (G1.name, G2.name) in exceptions:
72
+ continue
73
+ d1 = sorted(d for v, d in G1.degree())
74
+ d2 = sorted(d for v, d in G2.degree())
75
+ assert d1 <= d2
wemm/lib/python3.10/site-packages/networkx/generators/tests/test_classic.py ADDED
@@ -0,0 +1,640 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ====================
3
+ Generators - Classic
4
+ ====================
5
+
6
+ Unit tests for various classic graph generators in generators/classic.py
7
+ """
8
+
9
+ import itertools
10
+ import typing
11
+
12
+ import pytest
13
+
14
+ import networkx as nx
15
+ from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic
16
+ from networkx.utils import edges_equal, nodes_equal
17
+
18
+ is_isomorphic = graph_could_be_isomorphic
19
+
20
+
21
+ class TestGeneratorClassic:
22
+ def test_balanced_tree(self):
23
+ # balanced_tree(r,h) is a tree with (r**(h+1)-1)/(r-1) edges
24
+ for r, h in [(2, 2), (3, 3), (6, 2)]:
25
+ t = nx.balanced_tree(r, h)
26
+ order = t.order()
27
+ assert order == (r ** (h + 1) - 1) / (r - 1)
28
+ assert nx.is_connected(t)
29
+ assert t.size() == order - 1
30
+ dh = nx.degree_histogram(t)
31
+ assert dh[0] == 0 # no nodes of 0
32
+ assert dh[1] == r**h # nodes of degree 1 are leaves
33
+ assert dh[r] == 1 # root is degree r
34
+ assert dh[r + 1] == order - r**h - 1 # everyone else is degree r+1
35
+ assert len(dh) == r + 2
36
+
37
+ def test_balanced_tree_star(self):
38
+ # balanced_tree(r,1) is the r-star
39
+ t = nx.balanced_tree(r=2, h=1)
40
+ assert is_isomorphic(t, nx.star_graph(2))
41
+ t = nx.balanced_tree(r=5, h=1)
42
+ assert is_isomorphic(t, nx.star_graph(5))
43
+ t = nx.balanced_tree(r=10, h=1)
44
+ assert is_isomorphic(t, nx.star_graph(10))
45
+
46
+ def test_balanced_tree_path(self):
47
+ """Tests that the balanced tree with branching factor one is the
48
+ path graph.
49
+
50
+ """
51
+ # A tree of height four has five levels.
52
+ T = nx.balanced_tree(1, 4)
53
+ P = nx.path_graph(5)
54
+ assert is_isomorphic(T, P)
55
+
56
+ def test_full_rary_tree(self):
57
+ r = 2
58
+ n = 9
59
+ t = nx.full_rary_tree(r, n)
60
+ assert t.order() == n
61
+ assert nx.is_connected(t)
62
+ dh = nx.degree_histogram(t)
63
+ assert dh[0] == 0 # no nodes of 0
64
+ assert dh[1] == 5 # nodes of degree 1 are leaves
65
+ assert dh[r] == 1 # root is degree r
66
+ assert dh[r + 1] == 9 - 5 - 1 # everyone else is degree r+1
67
+ assert len(dh) == r + 2
68
+
69
+ def test_full_rary_tree_balanced(self):
70
+ t = nx.full_rary_tree(2, 15)
71
+ th = nx.balanced_tree(2, 3)
72
+ assert is_isomorphic(t, th)
73
+
74
+ def test_full_rary_tree_path(self):
75
+ t = nx.full_rary_tree(1, 10)
76
+ assert is_isomorphic(t, nx.path_graph(10))
77
+
78
+ def test_full_rary_tree_empty(self):
79
+ t = nx.full_rary_tree(0, 10)
80
+ assert is_isomorphic(t, nx.empty_graph(10))
81
+ t = nx.full_rary_tree(3, 0)
82
+ assert is_isomorphic(t, nx.empty_graph(0))
83
+
84
+ def test_full_rary_tree_3_20(self):
85
+ t = nx.full_rary_tree(3, 20)
86
+ assert t.order() == 20
87
+
88
+ def test_barbell_graph(self):
89
+ # number of nodes = 2*m1 + m2 (2 m1-complete graphs + m2-path + 2 edges)
90
+ # number of edges = 2*(nx.number_of_edges(m1-complete graph) + m2 + 1
91
+ m1 = 3
92
+ m2 = 5
93
+ b = nx.barbell_graph(m1, m2)
94
+ assert nx.number_of_nodes(b) == 2 * m1 + m2
95
+ assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
96
+
97
+ m1 = 4
98
+ m2 = 10
99
+ b = nx.barbell_graph(m1, m2)
100
+ assert nx.number_of_nodes(b) == 2 * m1 + m2
101
+ assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
102
+
103
+ m1 = 3
104
+ m2 = 20
105
+ b = nx.barbell_graph(m1, m2)
106
+ assert nx.number_of_nodes(b) == 2 * m1 + m2
107
+ assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
108
+
109
+ # Raise NetworkXError if m1<2
110
+ m1 = 1
111
+ m2 = 20
112
+ pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
113
+
114
+ # Raise NetworkXError if m2<0
115
+ m1 = 5
116
+ m2 = -2
117
+ pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
118
+
119
+ # nx.barbell_graph(2,m) = nx.path_graph(m+4)
120
+ m1 = 2
121
+ m2 = 5
122
+ b = nx.barbell_graph(m1, m2)
123
+ assert is_isomorphic(b, nx.path_graph(m2 + 4))
124
+
125
+ m1 = 2
126
+ m2 = 10
127
+ b = nx.barbell_graph(m1, m2)
128
+ assert is_isomorphic(b, nx.path_graph(m2 + 4))
129
+
130
+ m1 = 2
131
+ m2 = 20
132
+ b = nx.barbell_graph(m1, m2)
133
+ assert is_isomorphic(b, nx.path_graph(m2 + 4))
134
+
135
+ pytest.raises(
136
+ nx.NetworkXError, nx.barbell_graph, m1, m2, create_using=nx.DiGraph()
137
+ )
138
+
139
+ mb = nx.barbell_graph(m1, m2, create_using=nx.MultiGraph())
140
+ assert edges_equal(mb.edges(), b.edges())
141
+
142
+ def test_binomial_tree(self):
143
+ graphs = (None, nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
144
+ for create_using in graphs:
145
+ for n in range(4):
146
+ b = nx.binomial_tree(n, create_using)
147
+ assert nx.number_of_nodes(b) == 2**n
148
+ assert nx.number_of_edges(b) == (2**n - 1)
149
+
150
+ def test_complete_graph(self):
151
+ # complete_graph(m) is a connected graph with
152
+ # m nodes and m*(m+1)/2 edges
153
+ for m in [0, 1, 3, 5]:
154
+ g = nx.complete_graph(m)
155
+ assert nx.number_of_nodes(g) == m
156
+ assert nx.number_of_edges(g) == m * (m - 1) // 2
157
+
158
+ mg = nx.complete_graph(m, create_using=nx.MultiGraph)
159
+ assert edges_equal(mg.edges(), g.edges())
160
+
161
+ g = nx.complete_graph("abc")
162
+ assert nodes_equal(g.nodes(), ["a", "b", "c"])
163
+ assert g.size() == 3
164
+
165
+ # creates a self-loop... should it? <backward compatible says yes>
166
+ g = nx.complete_graph("abcb")
167
+ assert nodes_equal(g.nodes(), ["a", "b", "c"])
168
+ assert g.size() == 4
169
+
170
+ g = nx.complete_graph("abcb", create_using=nx.MultiGraph)
171
+ assert nodes_equal(g.nodes(), ["a", "b", "c"])
172
+ assert g.size() == 6
173
+
174
+ def test_complete_digraph(self):
175
+ # complete_graph(m) is a connected graph with
176
+ # m nodes and m*(m+1)/2 edges
177
+ for m in [0, 1, 3, 5]:
178
+ g = nx.complete_graph(m, create_using=nx.DiGraph)
179
+ assert nx.number_of_nodes(g) == m
180
+ assert nx.number_of_edges(g) == m * (m - 1)
181
+
182
+ g = nx.complete_graph("abc", create_using=nx.DiGraph)
183
+ assert len(g) == 3
184
+ assert g.size() == 6
185
+ assert g.is_directed()
186
+
187
+ def test_circular_ladder_graph(self):
188
+ G = nx.circular_ladder_graph(5)
189
+ pytest.raises(
190
+ nx.NetworkXError, nx.circular_ladder_graph, 5, create_using=nx.DiGraph
191
+ )
192
+ mG = nx.circular_ladder_graph(5, create_using=nx.MultiGraph)
193
+ assert edges_equal(mG.edges(), G.edges())
194
+
195
+ def test_circulant_graph(self):
196
+ # Ci_n(1) is the cycle graph for all n
197
+ Ci6_1 = nx.circulant_graph(6, [1])
198
+ C6 = nx.cycle_graph(6)
199
+ assert edges_equal(Ci6_1.edges(), C6.edges())
200
+
201
+ # Ci_n(1, 2, ..., n div 2) is the complete graph for all n
202
+ Ci7 = nx.circulant_graph(7, [1, 2, 3])
203
+ K7 = nx.complete_graph(7)
204
+ assert edges_equal(Ci7.edges(), K7.edges())
205
+
206
+ # Ci_6(1, 3) is K_3,3 i.e. the utility graph
207
+ Ci6_1_3 = nx.circulant_graph(6, [1, 3])
208
+ K3_3 = nx.complete_bipartite_graph(3, 3)
209
+ assert is_isomorphic(Ci6_1_3, K3_3)
210
+
211
+ def test_cycle_graph(self):
212
+ G = nx.cycle_graph(4)
213
+ assert edges_equal(G.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
214
+ mG = nx.cycle_graph(4, create_using=nx.MultiGraph)
215
+ assert edges_equal(mG.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
216
+ G = nx.cycle_graph(4, create_using=nx.DiGraph)
217
+ assert not G.has_edge(2, 1)
218
+ assert G.has_edge(1, 2)
219
+ assert G.is_directed()
220
+
221
+ G = nx.cycle_graph("abc")
222
+ assert len(G) == 3
223
+ assert G.size() == 3
224
+ G = nx.cycle_graph("abcb")
225
+ assert len(G) == 3
226
+ assert G.size() == 2
227
+ g = nx.cycle_graph("abc", nx.DiGraph)
228
+ assert len(g) == 3
229
+ assert g.size() == 3
230
+ assert g.is_directed()
231
+ g = nx.cycle_graph("abcb", nx.DiGraph)
232
+ assert len(g) == 3
233
+ assert g.size() == 4
234
+
235
+ def test_dorogovtsev_goltsev_mendes_graph(self):
236
+ G = nx.dorogovtsev_goltsev_mendes_graph(0)
237
+ assert edges_equal(G.edges(), [(0, 1)])
238
+ assert nodes_equal(list(G), [0, 1])
239
+ G = nx.dorogovtsev_goltsev_mendes_graph(1)
240
+ assert edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)])
241
+ assert nx.average_clustering(G) == 1.0
242
+ assert nx.average_shortest_path_length(G) == 1.0
243
+ assert sorted(nx.triangles(G).values()) == [1, 1, 1]
244
+ assert nx.is_planar(G)
245
+ G = nx.dorogovtsev_goltsev_mendes_graph(2)
246
+ assert nx.number_of_nodes(G) == 6
247
+ assert nx.number_of_edges(G) == 9
248
+ assert nx.average_clustering(G) == 0.75
249
+ assert nx.average_shortest_path_length(G) == 1.4
250
+ assert nx.is_planar(G)
251
+ G = nx.dorogovtsev_goltsev_mendes_graph(10)
252
+ assert nx.number_of_nodes(G) == 29526
253
+ assert nx.number_of_edges(G) == 59049
254
+ assert G.degree(0) == 1024
255
+ assert G.degree(1) == 1024
256
+ assert G.degree(2) == 1024
257
+
258
+ with pytest.raises(nx.NetworkXError, match=r"n must be greater than"):
259
+ nx.dorogovtsev_goltsev_mendes_graph(-1)
260
+ with pytest.raises(nx.NetworkXError, match=r"directed graph not supported"):
261
+ nx.dorogovtsev_goltsev_mendes_graph(7, create_using=nx.DiGraph)
262
+ with pytest.raises(nx.NetworkXError, match=r"multigraph not supported"):
263
+ nx.dorogovtsev_goltsev_mendes_graph(7, create_using=nx.MultiGraph)
264
+ with pytest.raises(nx.NetworkXError):
265
+ nx.dorogovtsev_goltsev_mendes_graph(7, create_using=nx.MultiDiGraph)
266
+
267
+ def test_create_using(self):
268
+ G = nx.empty_graph()
269
+ assert isinstance(G, nx.Graph)
270
+ pytest.raises(TypeError, nx.empty_graph, create_using=0.0)
271
+ pytest.raises(TypeError, nx.empty_graph, create_using="Graph")
272
+
273
+ G = nx.empty_graph(create_using=nx.MultiGraph)
274
+ assert isinstance(G, nx.MultiGraph)
275
+ G = nx.empty_graph(create_using=nx.DiGraph)
276
+ assert isinstance(G, nx.DiGraph)
277
+
278
+ G = nx.empty_graph(create_using=nx.DiGraph, default=nx.MultiGraph)
279
+ assert isinstance(G, nx.DiGraph)
280
+ G = nx.empty_graph(create_using=None, default=nx.MultiGraph)
281
+ assert isinstance(G, nx.MultiGraph)
282
+ G = nx.empty_graph(default=nx.MultiGraph)
283
+ assert isinstance(G, nx.MultiGraph)
284
+
285
+ G = nx.path_graph(5)
286
+ H = nx.empty_graph(create_using=G)
287
+ assert not H.is_multigraph()
288
+ assert not H.is_directed()
289
+ assert len(H) == 0
290
+ assert G is H
291
+
292
+ H = nx.empty_graph(create_using=nx.MultiGraph())
293
+ assert H.is_multigraph()
294
+ assert not H.is_directed()
295
+ assert G is not H
296
+
297
+ # test for subclasses that also use typing.Protocol. See gh-6243
298
+ class Mixin(typing.Protocol):
299
+ pass
300
+
301
+ class MyGraph(Mixin, nx.DiGraph):
302
+ pass
303
+
304
+ G = nx.empty_graph(create_using=MyGraph)
305
+
306
+ def test_empty_graph(self):
307
+ G = nx.empty_graph()
308
+ assert nx.number_of_nodes(G) == 0
309
+ G = nx.empty_graph(42)
310
+ assert nx.number_of_nodes(G) == 42
311
+ assert nx.number_of_edges(G) == 0
312
+
313
+ G = nx.empty_graph("abc")
314
+ assert len(G) == 3
315
+ assert G.size() == 0
316
+
317
+ # create empty digraph
318
+ G = nx.empty_graph(42, create_using=nx.DiGraph(name="duh"))
319
+ assert nx.number_of_nodes(G) == 42
320
+ assert nx.number_of_edges(G) == 0
321
+ assert isinstance(G, nx.DiGraph)
322
+
323
+ # create empty multigraph
324
+ G = nx.empty_graph(42, create_using=nx.MultiGraph(name="duh"))
325
+ assert nx.number_of_nodes(G) == 42
326
+ assert nx.number_of_edges(G) == 0
327
+ assert isinstance(G, nx.MultiGraph)
328
+
329
+ # create empty graph from another
330
+ pete = nx.petersen_graph()
331
+ G = nx.empty_graph(42, create_using=pete)
332
+ assert nx.number_of_nodes(G) == 42
333
+ assert nx.number_of_edges(G) == 0
334
+ assert isinstance(G, nx.Graph)
335
+
336
+ def test_ladder_graph(self):
337
+ for i, G in [
338
+ (0, nx.empty_graph(0)),
339
+ (1, nx.path_graph(2)),
340
+ (2, nx.hypercube_graph(2)),
341
+ (10, nx.grid_graph([2, 10])),
342
+ ]:
343
+ assert is_isomorphic(nx.ladder_graph(i), G)
344
+
345
+ pytest.raises(nx.NetworkXError, nx.ladder_graph, 2, create_using=nx.DiGraph)
346
+
347
+ g = nx.ladder_graph(2)
348
+ mg = nx.ladder_graph(2, create_using=nx.MultiGraph)
349
+ assert edges_equal(mg.edges(), g.edges())
350
+
351
+ @pytest.mark.parametrize(("m", "n"), [(3, 5), (4, 10), (3, 20)])
352
+ def test_lollipop_graph_right_sizes(self, m, n):
353
+ G = nx.lollipop_graph(m, n)
354
+ assert nx.number_of_nodes(G) == m + n
355
+ assert nx.number_of_edges(G) == m * (m - 1) / 2 + n
356
+
357
+ @pytest.mark.parametrize(("m", "n"), [("ab", ""), ("abc", "defg")])
358
+ def test_lollipop_graph_size_node_sequence(self, m, n):
359
+ G = nx.lollipop_graph(m, n)
360
+ assert nx.number_of_nodes(G) == len(m) + len(n)
361
+ assert nx.number_of_edges(G) == len(m) * (len(m) - 1) / 2 + len(n)
362
+
363
+ def test_lollipop_graph_exceptions(self):
364
+ # Raise NetworkXError if m<2
365
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, -1, 2)
366
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, 1, 20)
367
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, "", 20)
368
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, "a", 20)
369
+
370
+ # Raise NetworkXError if n<0
371
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, 5, -2)
372
+
373
+ # raise NetworkXError if create_using is directed
374
+ with pytest.raises(nx.NetworkXError):
375
+ nx.lollipop_graph(2, 20, create_using=nx.DiGraph)
376
+ with pytest.raises(nx.NetworkXError):
377
+ nx.lollipop_graph(2, 20, create_using=nx.MultiDiGraph)
378
+
379
+ @pytest.mark.parametrize(("m", "n"), [(2, 0), (2, 5), (2, 10), ("ab", 20)])
380
+ def test_lollipop_graph_same_as_path_when_m1_is_2(self, m, n):
381
+ G = nx.lollipop_graph(m, n)
382
+ assert is_isomorphic(G, nx.path_graph(n + 2))
383
+
384
+ def test_lollipop_graph_for_multigraph(self):
385
+ G = nx.lollipop_graph(5, 20)
386
+ MG = nx.lollipop_graph(5, 20, create_using=nx.MultiGraph)
387
+ assert edges_equal(MG.edges(), G.edges())
388
+
389
+ @pytest.mark.parametrize(
390
+ ("m", "n"),
391
+ [(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])],
392
+ )
393
+ def test_lollipop_graph_mixing_input_types(self, m, n):
394
+ expected = nx.compose(nx.complete_graph(4), nx.path_graph(range(100, 103)))
395
+ expected.add_edge(0, 100) # Connect complete graph and path graph
396
+ assert is_isomorphic(nx.lollipop_graph(m, n), expected)
397
+
398
+ def test_lollipop_graph_non_builtin_ints(self):
399
+ np = pytest.importorskip("numpy")
400
+ G = nx.lollipop_graph(np.int32(4), np.int64(3))
401
+ expected = nx.compose(nx.complete_graph(4), nx.path_graph(range(100, 103)))
402
+ expected.add_edge(0, 100) # Connect complete graph and path graph
403
+ assert is_isomorphic(G, expected)
404
+
405
+ def test_null_graph(self):
406
+ assert nx.number_of_nodes(nx.null_graph()) == 0
407
+
408
+ def test_path_graph(self):
409
+ p = nx.path_graph(0)
410
+ assert is_isomorphic(p, nx.null_graph())
411
+
412
+ p = nx.path_graph(1)
413
+ assert is_isomorphic(p, nx.empty_graph(1))
414
+
415
+ p = nx.path_graph(10)
416
+ assert nx.is_connected(p)
417
+ assert sorted(d for n, d in p.degree()) == [1, 1, 2, 2, 2, 2, 2, 2, 2, 2]
418
+ assert p.order() - 1 == p.size()
419
+
420
+ dp = nx.path_graph(3, create_using=nx.DiGraph)
421
+ assert dp.has_edge(0, 1)
422
+ assert not dp.has_edge(1, 0)
423
+
424
+ mp = nx.path_graph(10, create_using=nx.MultiGraph)
425
+ assert edges_equal(mp.edges(), p.edges())
426
+
427
+ G = nx.path_graph("abc")
428
+ assert len(G) == 3
429
+ assert G.size() == 2
430
+ G = nx.path_graph("abcb")
431
+ assert len(G) == 3
432
+ assert G.size() == 2
433
+ g = nx.path_graph("abc", nx.DiGraph)
434
+ assert len(g) == 3
435
+ assert g.size() == 2
436
+ assert g.is_directed()
437
+ g = nx.path_graph("abcb", nx.DiGraph)
438
+ assert len(g) == 3
439
+ assert g.size() == 3
440
+
441
+ G = nx.path_graph((1, 2, 3, 2, 4))
442
+ assert G.has_edge(2, 4)
443
+
444
+ def test_star_graph(self):
445
+ assert is_isomorphic(nx.star_graph(""), nx.empty_graph(0))
446
+ assert is_isomorphic(nx.star_graph([]), nx.empty_graph(0))
447
+ assert is_isomorphic(nx.star_graph(0), nx.empty_graph(1))
448
+ assert is_isomorphic(nx.star_graph(1), nx.path_graph(2))
449
+ assert is_isomorphic(nx.star_graph(2), nx.path_graph(3))
450
+ assert is_isomorphic(nx.star_graph(5), nx.complete_bipartite_graph(1, 5))
451
+
452
+ s = nx.star_graph(10)
453
+ assert sorted(d for n, d in s.degree()) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10]
454
+
455
+ pytest.raises(nx.NetworkXError, nx.star_graph, 10, create_using=nx.DiGraph)
456
+
457
+ ms = nx.star_graph(10, create_using=nx.MultiGraph)
458
+ assert edges_equal(ms.edges(), s.edges())
459
+
460
+ G = nx.star_graph("abc")
461
+ assert len(G) == 3
462
+ assert G.size() == 2
463
+
464
+ G = nx.star_graph("abcb")
465
+ assert len(G) == 3
466
+ assert G.size() == 2
467
+ G = nx.star_graph("abcb", create_using=nx.MultiGraph)
468
+ assert len(G) == 3
469
+ assert G.size() == 3
470
+
471
+ G = nx.star_graph("abcdefg")
472
+ assert len(G) == 7
473
+ assert G.size() == 6
474
+
475
+ def test_non_int_integers_for_star_graph(self):
476
+ np = pytest.importorskip("numpy")
477
+ G = nx.star_graph(np.int32(3))
478
+ assert len(G) == 4
479
+ assert G.size() == 3
480
+
481
+ @pytest.mark.parametrize(("m", "n"), [(3, 0), (3, 5), (4, 10), (3, 20)])
482
+ def test_tadpole_graph_right_sizes(self, m, n):
483
+ G = nx.tadpole_graph(m, n)
484
+ assert nx.number_of_nodes(G) == m + n
485
+ assert nx.number_of_edges(G) == m + n - (m == 2)
486
+
487
+ @pytest.mark.parametrize(("m", "n"), [("ab", ""), ("ab", "c"), ("abc", "defg")])
488
+ def test_tadpole_graph_size_node_sequences(self, m, n):
489
+ G = nx.tadpole_graph(m, n)
490
+ assert nx.number_of_nodes(G) == len(m) + len(n)
491
+ assert nx.number_of_edges(G) == len(m) + len(n) - (len(m) == 2)
492
+
493
+ def test_tadpole_graph_exceptions(self):
494
+ # Raise NetworkXError if m<2
495
+ pytest.raises(nx.NetworkXError, nx.tadpole_graph, -1, 3)
496
+ pytest.raises(nx.NetworkXError, nx.tadpole_graph, 0, 3)
497
+ pytest.raises(nx.NetworkXError, nx.tadpole_graph, 1, 3)
498
+
499
+ # Raise NetworkXError if n<0
500
+ pytest.raises(nx.NetworkXError, nx.tadpole_graph, 5, -2)
501
+
502
+ # Raise NetworkXError for digraphs
503
+ with pytest.raises(nx.NetworkXError):
504
+ nx.tadpole_graph(2, 20, create_using=nx.DiGraph)
505
+ with pytest.raises(nx.NetworkXError):
506
+ nx.tadpole_graph(2, 20, create_using=nx.MultiDiGraph)
507
+
508
+ @pytest.mark.parametrize(("m", "n"), [(2, 0), (2, 5), (2, 10), ("ab", 20)])
509
+ def test_tadpole_graph_same_as_path_when_m_is_2(self, m, n):
510
+ G = nx.tadpole_graph(m, n)
511
+ assert is_isomorphic(G, nx.path_graph(n + 2))
512
+
513
+ @pytest.mark.parametrize("m", [4, 7])
514
+ def test_tadpole_graph_same_as_cycle_when_m2_is_0(self, m):
515
+ G = nx.tadpole_graph(m, 0)
516
+ assert is_isomorphic(G, nx.cycle_graph(m))
517
+
518
+ def test_tadpole_graph_for_multigraph(self):
519
+ G = nx.tadpole_graph(5, 20)
520
+ MG = nx.tadpole_graph(5, 20, create_using=nx.MultiGraph)
521
+ assert edges_equal(MG.edges(), G.edges())
522
+
523
+ @pytest.mark.parametrize(
524
+ ("m", "n"),
525
+ [(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])],
526
+ )
527
+ def test_tadpole_graph_mixing_input_types(self, m, n):
528
+ expected = nx.compose(nx.cycle_graph(4), nx.path_graph(range(100, 103)))
529
+ expected.add_edge(0, 100) # Connect cycle and path
530
+ assert is_isomorphic(nx.tadpole_graph(m, n), expected)
531
+
532
+ def test_tadpole_graph_non_builtin_integers(self):
533
+ np = pytest.importorskip("numpy")
534
+ G = nx.tadpole_graph(np.int32(4), np.int64(3))
535
+ expected = nx.compose(nx.cycle_graph(4), nx.path_graph(range(100, 103)))
536
+ expected.add_edge(0, 100) # Connect cycle and path
537
+ assert is_isomorphic(G, expected)
538
+
539
+ def test_trivial_graph(self):
540
+ assert nx.number_of_nodes(nx.trivial_graph()) == 1
541
+
542
+ def test_turan_graph(self):
543
+ assert nx.number_of_edges(nx.turan_graph(13, 4)) == 63
544
+ assert is_isomorphic(
545
+ nx.turan_graph(13, 4), nx.complete_multipartite_graph(3, 4, 3, 3)
546
+ )
547
+
548
+ def test_wheel_graph(self):
549
+ for n, G in [
550
+ ("", nx.null_graph()),
551
+ (0, nx.null_graph()),
552
+ (1, nx.empty_graph(1)),
553
+ (2, nx.path_graph(2)),
554
+ (3, nx.complete_graph(3)),
555
+ (4, nx.complete_graph(4)),
556
+ ]:
557
+ g = nx.wheel_graph(n)
558
+ assert is_isomorphic(g, G)
559
+
560
+ g = nx.wheel_graph(10)
561
+ assert sorted(d for n, d in g.degree()) == [3, 3, 3, 3, 3, 3, 3, 3, 3, 9]
562
+
563
+ pytest.raises(nx.NetworkXError, nx.wheel_graph, 10, create_using=nx.DiGraph)
564
+
565
+ mg = nx.wheel_graph(10, create_using=nx.MultiGraph())
566
+ assert edges_equal(mg.edges(), g.edges())
567
+
568
+ G = nx.wheel_graph("abc")
569
+ assert len(G) == 3
570
+ assert G.size() == 3
571
+
572
+ G = nx.wheel_graph("abcb")
573
+ assert len(G) == 3
574
+ assert G.size() == 4
575
+ G = nx.wheel_graph("abcb", nx.MultiGraph)
576
+ assert len(G) == 3
577
+ assert G.size() == 6
578
+
579
+ def test_non_int_integers_for_wheel_graph(self):
580
+ np = pytest.importorskip("numpy")
581
+ G = nx.wheel_graph(np.int32(3))
582
+ assert len(G) == 3
583
+ assert G.size() == 3
584
+
585
+ def test_complete_0_partite_graph(self):
586
+ """Tests that the complete 0-partite graph is the null graph."""
587
+ G = nx.complete_multipartite_graph()
588
+ H = nx.null_graph()
589
+ assert nodes_equal(G, H)
590
+ assert edges_equal(G.edges(), H.edges())
591
+
592
+ def test_complete_1_partite_graph(self):
593
+ """Tests that the complete 1-partite graph is the empty graph."""
594
+ G = nx.complete_multipartite_graph(3)
595
+ H = nx.empty_graph(3)
596
+ assert nodes_equal(G, H)
597
+ assert edges_equal(G.edges(), H.edges())
598
+
599
+ def test_complete_2_partite_graph(self):
600
+ """Tests that the complete 2-partite graph is the complete bipartite
601
+ graph.
602
+
603
+ """
604
+ G = nx.complete_multipartite_graph(2, 3)
605
+ H = nx.complete_bipartite_graph(2, 3)
606
+ assert nodes_equal(G, H)
607
+ assert edges_equal(G.edges(), H.edges())
608
+
609
+ def test_complete_multipartite_graph(self):
610
+ """Tests for generating the complete multipartite graph."""
611
+ G = nx.complete_multipartite_graph(2, 3, 4)
612
+ blocks = [(0, 1), (2, 3, 4), (5, 6, 7, 8)]
613
+ # Within each block, no two vertices should be adjacent.
614
+ for block in blocks:
615
+ for u, v in itertools.combinations_with_replacement(block, 2):
616
+ assert v not in G[u]
617
+ assert G.nodes[u] == G.nodes[v]
618
+ # Across blocks, all vertices should be adjacent.
619
+ for block1, block2 in itertools.combinations(blocks, 2):
620
+ for u, v in itertools.product(block1, block2):
621
+ assert v in G[u]
622
+ assert G.nodes[u] != G.nodes[v]
623
+ with pytest.raises(nx.NetworkXError, match="Negative number of nodes"):
624
+ nx.complete_multipartite_graph(2, -3, 4)
625
+
626
+ def test_kneser_graph(self):
627
+ # the petersen graph is a special case of the kneser graph when n=5 and k=2
628
+ assert is_isomorphic(nx.kneser_graph(5, 2), nx.petersen_graph())
629
+
630
+ # when k is 1, the kneser graph returns a complete graph with n vertices
631
+ for i in range(1, 7):
632
+ assert is_isomorphic(nx.kneser_graph(i, 1), nx.complete_graph(i))
633
+
634
+ # the kneser graph of n and n-1 is the empty graph with n vertices
635
+ for j in range(3, 7):
636
+ assert is_isomorphic(nx.kneser_graph(j, j - 1), nx.empty_graph(j))
637
+
638
+ # in general the number of edges of the kneser graph is equal to
639
+ # (n choose k) times (n-k choose k) divided by 2
640
+ assert nx.number_of_edges(nx.kneser_graph(8, 3)) == 280
wemm/lib/python3.10/site-packages/networkx/generators/tests/test_ego.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ego graph
3
+ ---------
4
+ """
5
+
6
+ import networkx as nx
7
+ from networkx.utils import edges_equal, nodes_equal
8
+
9
+
10
+ class TestGeneratorEgo:
11
+ def test_ego(self):
12
+ G = nx.star_graph(3)
13
+ H = nx.ego_graph(G, 0)
14
+ assert nx.is_isomorphic(G, H)
15
+ G.add_edge(1, 11)
16
+ G.add_edge(2, 22)
17
+ G.add_edge(3, 33)
18
+ H = nx.ego_graph(G, 0)
19
+ assert nx.is_isomorphic(nx.star_graph(3), H)
20
+ G = nx.path_graph(3)
21
+ H = nx.ego_graph(G, 0)
22
+ assert edges_equal(H.edges(), [(0, 1)])
23
+ H = nx.ego_graph(G, 0, undirected=True)
24
+ assert edges_equal(H.edges(), [(0, 1)])
25
+ H = nx.ego_graph(G, 0, center=False)
26
+ assert edges_equal(H.edges(), [])
27
+
28
+ def test_ego_distance(self):
29
+ G = nx.Graph()
30
+ G.add_edge(0, 1, weight=2, distance=1)
31
+ G.add_edge(1, 2, weight=2, distance=2)
32
+ G.add_edge(2, 3, weight=2, distance=1)
33
+ assert nodes_equal(nx.ego_graph(G, 0, radius=3).nodes(), [0, 1, 2, 3])
34
+ eg = nx.ego_graph(G, 0, radius=3, distance="weight")
35
+ assert nodes_equal(eg.nodes(), [0, 1])
36
+ eg = nx.ego_graph(G, 0, radius=3, distance="weight", undirected=True)
37
+ assert nodes_equal(eg.nodes(), [0, 1])
38
+ eg = nx.ego_graph(G, 0, radius=3, distance="distance")
39
+ assert nodes_equal(eg.nodes(), [0, 1, 2])
wemm/lib/python3.10/site-packages/networkx/generators/tests/test_expanders.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.generators.expanders` module."""
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+
7
+
8
+ @pytest.mark.parametrize("n", (2, 3, 5, 6, 10))
9
+ def test_margulis_gabber_galil_graph_properties(n):
10
+ g = nx.margulis_gabber_galil_graph(n)
11
+ assert g.number_of_nodes() == n * n
12
+ for node in g:
13
+ assert g.degree(node) == 8
14
+ assert len(node) == 2
15
+ for i in node:
16
+ assert int(i) == i
17
+ assert 0 <= i < n
18
+
19
+
20
+ @pytest.mark.parametrize("n", (2, 3, 5, 6, 10))
21
+ def test_margulis_gabber_galil_graph_eigvals(n):
22
+ np = pytest.importorskip("numpy")
23
+ sp = pytest.importorskip("scipy")
24
+
25
+ g = nx.margulis_gabber_galil_graph(n)
26
+ # Eigenvalues are already sorted using the scipy eigvalsh,
27
+ # but the implementation in numpy does not guarantee order.
28
+ w = sorted(sp.linalg.eigvalsh(nx.adjacency_matrix(g).toarray()))
29
+ assert w[-2] < 5 * np.sqrt(2)
30
+
31
+
32
+ @pytest.mark.parametrize("p", (3, 5, 7, 11)) # Primes
33
+ def test_chordal_cycle_graph(p):
34
+ """Test for the :func:`networkx.chordal_cycle_graph` function."""
35
+ G = nx.chordal_cycle_graph(p)
36
+ assert len(G) == p
37
+ # TODO The second largest eigenvalue should be smaller than a constant,
38
+ # independent of the number of nodes in the graph:
39
+ #
40
+ # eigs = sorted(sp.linalg.eigvalsh(nx.adjacency_matrix(G).toarray()))
41
+ # assert_less(eigs[-2], ...)
42
+ #
43
+
44
+
45
+ @pytest.mark.parametrize("p", (3, 5, 7, 11, 13)) # Primes
46
+ def test_paley_graph(p):
47
+ """Test for the :func:`networkx.paley_graph` function."""
48
+ G = nx.paley_graph(p)
49
+ # G has p nodes
50
+ assert len(G) == p
51
+ # G is (p-1)/2-regular
52
+ in_degrees = {G.in_degree(node) for node in G.nodes}
53
+ out_degrees = {G.out_degree(node) for node in G.nodes}
54
+ assert len(in_degrees) == 1 and in_degrees.pop() == (p - 1) // 2
55
+ assert len(out_degrees) == 1 and out_degrees.pop() == (p - 1) // 2
56
+
57
+ # If p = 1 mod 4, -1 is a square mod 4 and therefore the
58
+ # edge in the Paley graph are symmetric.
59
+ if p % 4 == 1:
60
+ for u, v in G.edges:
61
+ assert (v, u) in G.edges
62
+
63
+
64
+ @pytest.mark.parametrize("d, n", [(2, 7), (4, 10), (4, 16)])
65
+ def test_maybe_regular_expander(d, n):
66
+ pytest.importorskip("numpy")
67
+ G = nx.maybe_regular_expander(n, d)
68
+
69
+ assert len(G) == n, "Should have n nodes"
70
+ assert len(G.edges) == n * d / 2, "Should have n*d/2 edges"
71
+ assert nx.is_k_regular(G, d), "Should be d-regular"
72
+
73
+
74
+ @pytest.mark.parametrize("n", (3, 5, 6, 10))
75
+ def test_is_regular_expander(n):
76
+ pytest.importorskip("numpy")
77
+ pytest.importorskip("scipy")
78
+ G = nx.complete_graph(n)
79
+
80
+ assert nx.is_regular_expander(G) == True, "Should be a regular expander"
81
+
82
+
83
+ @pytest.mark.parametrize("d, n", [(2, 7), (4, 10), (4, 16)])
84
+ def test_random_regular_expander(d, n):
85
+ pytest.importorskip("numpy")
86
+ pytest.importorskip("scipy")
87
+ G = nx.random_regular_expander_graph(n, d)
88
+
89
+ assert len(G) == n, "Should have n nodes"
90
+ assert len(G.edges) == n * d / 2, "Should have n*d/2 edges"
91
+ assert nx.is_k_regular(G, d), "Should be d-regular"
92
+ assert nx.is_regular_expander(G) == True, "Should be a regular expander"
93
+
94
+
95
+ def test_random_regular_expander_explicit_construction():
96
+ pytest.importorskip("numpy")
97
+ pytest.importorskip("scipy")
98
+ G = nx.random_regular_expander_graph(d=4, n=5)
99
+
100
+ assert len(G) == 5 and len(G.edges) == 10, "Should be a complete graph"
101
+
102
+
103
+ @pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph, nx.MultiDiGraph))
104
+ def test_margulis_gabber_galil_graph_badinput(graph_type):
105
+ with pytest.raises(
106
+ nx.NetworkXError, match="`create_using` must be an undirected multigraph"
107
+ ):
108
+ nx.margulis_gabber_galil_graph(3, create_using=graph_type)
109
+
110
+
111
+ @pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph, nx.MultiDiGraph))
112
+ def test_chordal_cycle_graph_badinput(graph_type):
113
+ with pytest.raises(
114
+ nx.NetworkXError, match="`create_using` must be an undirected multigraph"
115
+ ):
116
+ nx.chordal_cycle_graph(3, create_using=graph_type)
117
+
118
+
119
+ def test_paley_graph_badinput():
120
+ with pytest.raises(
121
+ nx.NetworkXError, match="`create_using` cannot be a multigraph."
122
+ ):
123
+ nx.paley_graph(3, create_using=nx.MultiGraph)
124
+
125
+
126
+ def test_maybe_regular_expander_badinput():
127
+ pytest.importorskip("numpy")
128
+ pytest.importorskip("scipy")
129
+
130
+ with pytest.raises(nx.NetworkXError, match="n must be a positive integer"):
131
+ nx.maybe_regular_expander(n=-1, d=2)
132
+
133
+ with pytest.raises(nx.NetworkXError, match="d must be greater than or equal to 2"):
134
+ nx.maybe_regular_expander(n=10, d=0)
135
+
136
+ with pytest.raises(nx.NetworkXError, match="Need n-1>= d to have room"):
137
+ nx.maybe_regular_expander(n=5, d=6)
138
+
139
+
140
+ def test_is_regular_expander_badinput():
141
+ pytest.importorskip("numpy")
142
+ pytest.importorskip("scipy")
143
+
144
+ with pytest.raises(nx.NetworkXError, match="epsilon must be non negative"):
145
+ nx.is_regular_expander(nx.Graph(), epsilon=-1)
146
+
147
+
148
+ def test_random_regular_expander_badinput():
149
+ pytest.importorskip("numpy")
150
+ pytest.importorskip("scipy")
151
+
152
+ with pytest.raises(nx.NetworkXError, match="n must be a positive integer"):
153
+ nx.random_regular_expander_graph(n=-1, d=2)
154
+
155
+ with pytest.raises(nx.NetworkXError, match="d must be greater than or equal to 2"):
156
+ nx.random_regular_expander_graph(n=10, d=0)
157
+
158
+ with pytest.raises(nx.NetworkXError, match="Need n-1>= d to have room"):
159
+ nx.random_regular_expander_graph(n=5, d=6)
160
+
161
+ with pytest.raises(nx.NetworkXError, match="epsilon must be non negative"):
162
+ nx.random_regular_expander_graph(n=4, d=2, epsilon=-1)
wemm/lib/python3.10/site-packages/networkx/generators/tests/test_geometric.py ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ from itertools import combinations
4
+
5
+ import pytest
6
+
7
+ import networkx as nx
8
+
9
+
10
+ def l1dist(x, y):
11
+ return sum(abs(a - b) for a, b in zip(x, y))
12
+
13
+
14
+ class TestRandomGeometricGraph:
15
+ """Unit tests for :func:`~networkx.random_geometric_graph`"""
16
+
17
+ def test_number_of_nodes(self):
18
+ G = nx.random_geometric_graph(50, 0.25, seed=42)
19
+ assert len(G) == 50
20
+ G = nx.random_geometric_graph(range(50), 0.25, seed=42)
21
+ assert len(G) == 50
22
+
23
+ def test_distances(self):
24
+ """Tests that pairs of vertices adjacent if and only if they are
25
+ within the prescribed radius.
26
+ """
27
+ # Use the Euclidean metric, the default according to the
28
+ # documentation.
29
+ G = nx.random_geometric_graph(50, 0.25)
30
+ for u, v in combinations(G, 2):
31
+ # Adjacent vertices must be within the given distance.
32
+ if v in G[u]:
33
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
34
+ # Nonadjacent vertices must be at greater distance.
35
+ else:
36
+ assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
37
+
38
+ def test_p(self):
39
+ """Tests for providing an alternate distance metric to the generator."""
40
+ # Use the L1 metric.
41
+ G = nx.random_geometric_graph(50, 0.25, p=1)
42
+ for u, v in combinations(G, 2):
43
+ # Adjacent vertices must be within the given distance.
44
+ if v in G[u]:
45
+ assert l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
46
+ # Nonadjacent vertices must be at greater distance.
47
+ else:
48
+ assert not l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
49
+
50
+ def test_node_names(self):
51
+ """Tests using values other than sequential numbers as node IDs."""
52
+ import string
53
+
54
+ nodes = list(string.ascii_lowercase)
55
+ G = nx.random_geometric_graph(nodes, 0.25)
56
+ assert len(G) == len(nodes)
57
+
58
+ for u, v in combinations(G, 2):
59
+ # Adjacent vertices must be within the given distance.
60
+ if v in G[u]:
61
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
62
+ # Nonadjacent vertices must be at greater distance.
63
+ else:
64
+ assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
65
+
66
+ def test_pos_name(self):
67
+ G = nx.random_geometric_graph(50, 0.25, seed=42, pos_name="coords")
68
+ assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
69
+
70
+
71
+ class TestSoftRandomGeometricGraph:
72
+ """Unit tests for :func:`~networkx.soft_random_geometric_graph`"""
73
+
74
+ def test_number_of_nodes(self):
75
+ G = nx.soft_random_geometric_graph(50, 0.25, seed=42)
76
+ assert len(G) == 50
77
+ G = nx.soft_random_geometric_graph(range(50), 0.25, seed=42)
78
+ assert len(G) == 50
79
+
80
+ def test_distances(self):
81
+ """Tests that pairs of vertices adjacent if and only if they are
82
+ within the prescribed radius.
83
+ """
84
+ # Use the Euclidean metric, the default according to the
85
+ # documentation.
86
+ G = nx.soft_random_geometric_graph(50, 0.25)
87
+ for u, v in combinations(G, 2):
88
+ # Adjacent vertices must be within the given distance.
89
+ if v in G[u]:
90
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
91
+
92
+ def test_p(self):
93
+ """Tests for providing an alternate distance metric to the generator."""
94
+
95
+ # Use the L1 metric.
96
+ def dist(x, y):
97
+ return sum(abs(a - b) for a, b in zip(x, y))
98
+
99
+ G = nx.soft_random_geometric_graph(50, 0.25, p=1)
100
+ for u, v in combinations(G, 2):
101
+ # Adjacent vertices must be within the given distance.
102
+ if v in G[u]:
103
+ assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
104
+
105
+ def test_node_names(self):
106
+ """Tests using values other than sequential numbers as node IDs."""
107
+ import string
108
+
109
+ nodes = list(string.ascii_lowercase)
110
+ G = nx.soft_random_geometric_graph(nodes, 0.25)
111
+ assert len(G) == len(nodes)
112
+
113
+ for u, v in combinations(G, 2):
114
+ # Adjacent vertices must be within the given distance.
115
+ if v in G[u]:
116
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
117
+
118
+ def test_p_dist_default(self):
119
+ """Tests default p_dict = 0.5 returns graph with edge count <= RGG with
120
+ same n, radius, dim and positions
121
+ """
122
+ nodes = 50
123
+ dim = 2
124
+ pos = {v: [random.random() for i in range(dim)] for v in range(nodes)}
125
+ RGG = nx.random_geometric_graph(50, 0.25, pos=pos)
126
+ SRGG = nx.soft_random_geometric_graph(50, 0.25, pos=pos)
127
+ assert len(SRGG.edges()) <= len(RGG.edges())
128
+
129
+ def test_p_dist_zero(self):
130
+ """Tests if p_dict = 0 returns disconnected graph with 0 edges"""
131
+
132
+ def p_dist(dist):
133
+ return 0
134
+
135
+ G = nx.soft_random_geometric_graph(50, 0.25, p_dist=p_dist)
136
+ assert len(G.edges) == 0
137
+
138
+ def test_pos_name(self):
139
+ G = nx.soft_random_geometric_graph(50, 0.25, seed=42, pos_name="coords")
140
+ assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
141
+
142
+
143
+ def join(G, u, v, theta, alpha, metric):
144
+ """Returns ``True`` if and only if the nodes whose attributes are
145
+ ``du`` and ``dv`` should be joined, according to the threshold
146
+ condition for geographical threshold graphs.
147
+
148
+ ``G`` is an undirected NetworkX graph, and ``u`` and ``v`` are nodes
149
+ in that graph. The nodes must have node attributes ``'pos'`` and
150
+ ``'weight'``.
151
+
152
+ ``metric`` is a distance metric.
153
+ """
154
+ du, dv = G.nodes[u], G.nodes[v]
155
+ u_pos, v_pos = du["pos"], dv["pos"]
156
+ u_weight, v_weight = du["weight"], dv["weight"]
157
+ return (u_weight + v_weight) * metric(u_pos, v_pos) ** alpha >= theta
158
+
159
+
160
+ class TestGeographicalThresholdGraph:
161
+ """Unit tests for :func:`~networkx.geographical_threshold_graph`"""
162
+
163
+ def test_number_of_nodes(self):
164
+ G = nx.geographical_threshold_graph(50, 100, seed=42)
165
+ assert len(G) == 50
166
+ G = nx.geographical_threshold_graph(range(50), 100, seed=42)
167
+ assert len(G) == 50
168
+
169
+ def test_distances(self):
170
+ """Tests that pairs of vertices adjacent if and only if their
171
+ distances meet the given threshold.
172
+ """
173
+ # Use the Euclidean metric and alpha = -2
174
+ # the default according to the documentation.
175
+ G = nx.geographical_threshold_graph(50, 10)
176
+ for u, v in combinations(G, 2):
177
+ # Adjacent vertices must exceed the threshold.
178
+ if v in G[u]:
179
+ assert join(G, u, v, 10, -2, math.dist)
180
+ # Nonadjacent vertices must not exceed the threshold.
181
+ else:
182
+ assert not join(G, u, v, 10, -2, math.dist)
183
+
184
+ def test_metric(self):
185
+ """Tests for providing an alternate distance metric to the generator."""
186
+ # Use the L1 metric.
187
+ G = nx.geographical_threshold_graph(50, 10, metric=l1dist)
188
+ for u, v in combinations(G, 2):
189
+ # Adjacent vertices must exceed the threshold.
190
+ if v in G[u]:
191
+ assert join(G, u, v, 10, -2, l1dist)
192
+ # Nonadjacent vertices must not exceed the threshold.
193
+ else:
194
+ assert not join(G, u, v, 10, -2, l1dist)
195
+
196
+ def test_p_dist_zero(self):
197
+ """Tests if p_dict = 0 returns disconnected graph with 0 edges"""
198
+
199
+ def p_dist(dist):
200
+ return 0
201
+
202
+ G = nx.geographical_threshold_graph(50, 1, p_dist=p_dist)
203
+ assert len(G.edges) == 0
204
+
205
+ def test_pos_weight_name(self):
206
+ gtg = nx.geographical_threshold_graph
207
+ G = gtg(50, 100, seed=42, pos_name="coords", weight_name="wt")
208
+ assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
209
+ assert all(d["wt"] > 0 for n, d in G.nodes.items())
210
+
211
+
212
+ class TestWaxmanGraph:
213
+ """Unit tests for the :func:`~networkx.waxman_graph` function."""
214
+
215
+ def test_number_of_nodes_1(self):
216
+ G = nx.waxman_graph(50, 0.5, 0.1, seed=42)
217
+ assert len(G) == 50
218
+ G = nx.waxman_graph(range(50), 0.5, 0.1, seed=42)
219
+ assert len(G) == 50
220
+
221
+ def test_number_of_nodes_2(self):
222
+ G = nx.waxman_graph(50, 0.5, 0.1, L=1)
223
+ assert len(G) == 50
224
+ G = nx.waxman_graph(range(50), 0.5, 0.1, L=1)
225
+ assert len(G) == 50
226
+
227
+ def test_metric(self):
228
+ """Tests for providing an alternate distance metric to the generator."""
229
+ # Use the L1 metric.
230
+ G = nx.waxman_graph(50, 0.5, 0.1, metric=l1dist)
231
+ assert len(G) == 50
232
+
233
+ def test_pos_name(self):
234
+ G = nx.waxman_graph(50, 0.5, 0.1, seed=42, pos_name="coords")
235
+ assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
236
+
237
+
238
+ class TestNavigableSmallWorldGraph:
239
+ def test_navigable_small_world(self):
240
+ G = nx.navigable_small_world_graph(5, p=1, q=0, seed=42)
241
+ gg = nx.grid_2d_graph(5, 5).to_directed()
242
+ assert nx.is_isomorphic(G, gg)
243
+
244
+ G = nx.navigable_small_world_graph(5, p=1, q=0, dim=3)
245
+ gg = nx.grid_graph([5, 5, 5]).to_directed()
246
+ assert nx.is_isomorphic(G, gg)
247
+
248
+ G = nx.navigable_small_world_graph(5, p=1, q=0, dim=1)
249
+ gg = nx.grid_graph([5]).to_directed()
250
+ assert nx.is_isomorphic(G, gg)
251
+
252
+ def test_invalid_diameter_value(self):
253
+ with pytest.raises(nx.NetworkXException, match=".*p must be >= 1"):
254
+ nx.navigable_small_world_graph(5, p=0, q=0, dim=1)
255
+
256
+ def test_invalid_long_range_connections_value(self):
257
+ with pytest.raises(nx.NetworkXException, match=".*q must be >= 0"):
258
+ nx.navigable_small_world_graph(5, p=1, q=-1, dim=1)
259
+
260
+ def test_invalid_exponent_for_decaying_probability_value(self):
261
+ with pytest.raises(nx.NetworkXException, match=".*r must be >= 0"):
262
+ nx.navigable_small_world_graph(5, p=1, q=0, r=-1, dim=1)
263
+
264
+ def test_r_between_0_and_1(self):
265
+ """Smoke test for radius in range [0, 1]"""
266
+ # q=0 means no long-range connections
267
+ G = nx.navigable_small_world_graph(3, p=1, q=0, r=0.5, dim=2, seed=42)
268
+ expected = nx.grid_2d_graph(3, 3, create_using=nx.DiGraph)
269
+ assert nx.utils.graphs_equal(G, expected)
270
+
271
+ @pytest.mark.parametrize("seed", range(2478, 2578, 10))
272
+ def test_r_general_scaling(self, seed):
273
+ """The probability of adding a long-range edge scales with `1 / dist**r`,
274
+ so a navigable_small_world graph created with r < 1 should generally
275
+ result in more edges than a navigable_small_world graph with r >= 1
276
+ (for 0 < q << n).
277
+
278
+ N.B. this is probabilistic, so this test may not hold for all seeds."""
279
+ G1 = nx.navigable_small_world_graph(7, q=3, r=0.5, seed=seed)
280
+ G2 = nx.navigable_small_world_graph(7, q=3, r=1, seed=seed)
281
+ G3 = nx.navigable_small_world_graph(7, q=3, r=2, seed=seed)
282
+ assert G1.number_of_edges() > G2.number_of_edges()
283
+ assert G2.number_of_edges() > G3.number_of_edges()
284
+
285
+
286
+ class TestThresholdedRandomGeometricGraph:
287
+ """Unit tests for :func:`~networkx.thresholded_random_geometric_graph`"""
288
+
289
+ def test_number_of_nodes(self):
290
+ G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1, seed=42)
291
+ assert len(G) == 50
292
+ G = nx.thresholded_random_geometric_graph(range(50), 0.2, 0.1, seed=42)
293
+ assert len(G) == 50
294
+
295
+ def test_distances(self):
296
+ """Tests that pairs of vertices adjacent if and only if they are
297
+ within the prescribed radius.
298
+ """
299
+ # Use the Euclidean metric, the default according to the
300
+ # documentation.
301
+ G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42)
302
+ for u, v in combinations(G, 2):
303
+ # Adjacent vertices must be within the given distance.
304
+ if v in G[u]:
305
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
306
+
307
+ def test_p(self):
308
+ """Tests for providing an alternate distance metric to the generator."""
309
+
310
+ # Use the L1 metric.
311
+ def dist(x, y):
312
+ return sum(abs(a - b) for a, b in zip(x, y))
313
+
314
+ G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, p=1, seed=42)
315
+ for u, v in combinations(G, 2):
316
+ # Adjacent vertices must be within the given distance.
317
+ if v in G[u]:
318
+ assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
319
+
320
+ def test_node_names(self):
321
+ """Tests using values other than sequential numbers as node IDs."""
322
+ import string
323
+
324
+ nodes = list(string.ascii_lowercase)
325
+ G = nx.thresholded_random_geometric_graph(nodes, 0.25, 0.1, seed=42)
326
+ assert len(G) == len(nodes)
327
+
328
+ for u, v in combinations(G, 2):
329
+ # Adjacent vertices must be within the given distance.
330
+ if v in G[u]:
331
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
332
+
333
+ def test_theta(self):
334
+ """Tests that pairs of vertices adjacent if and only if their sum
335
+ weights exceeds the threshold parameter theta.
336
+ """
337
+ G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42)
338
+
339
+ for u, v in combinations(G, 2):
340
+ # Adjacent vertices must be within the given distance.
341
+ if v in G[u]:
342
+ assert (G.nodes[u]["weight"] + G.nodes[v]["weight"]) >= 0.1
343
+
344
+ def test_pos_name(self):
345
+ trgg = nx.thresholded_random_geometric_graph
346
+ G = trgg(50, 0.25, 0.1, seed=42, pos_name="p", weight_name="wt")
347
+ assert all(len(d["p"]) == 2 for n, d in G.nodes.items())
348
+ assert all(d["wt"] > 0 for n, d in G.nodes.items())
349
+
350
+
351
+ def test_geometric_edges_pos_attribute():
352
+ G = nx.Graph()
353
+ G.add_nodes_from(
354
+ [
355
+ (0, {"position": (0, 0)}),
356
+ (1, {"position": (0, 1)}),
357
+ (2, {"position": (1, 0)}),
358
+ ]
359
+ )
360
+ expected_edges = [(0, 1), (0, 2)]
361
+ assert expected_edges == nx.geometric_edges(G, radius=1, pos_name="position")
362
+
363
+
364
+ def test_geometric_edges_raises_no_pos():
365
+ G = nx.path_graph(3)
366
+ msg = "all nodes. must have a '"
367
+ with pytest.raises(nx.NetworkXError, match=msg):
368
+ nx.geometric_edges(G, radius=1)
369
+
370
+
371
+ def test_number_of_nodes_S1():
372
+ G = nx.geometric_soft_configuration_graph(
373
+ beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42
374
+ )
375
+ assert len(G) == 100
376
+
377
+
378
+ def test_set_attributes_S1():
379
+ G = nx.geometric_soft_configuration_graph(
380
+ beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42
381
+ )
382
+ kappas = nx.get_node_attributes(G, "kappa")
383
+ assert len(kappas) == 100
384
+ thetas = nx.get_node_attributes(G, "theta")
385
+ assert len(thetas) == 100
386
+ radii = nx.get_node_attributes(G, "radius")
387
+ assert len(radii) == 100
388
+
389
+
390
+ def test_mean_kappas_mean_degree_S1():
391
+ G = nx.geometric_soft_configuration_graph(
392
+ beta=2.5, n=50, gamma=2.7, mean_degree=10, seed=8023
393
+ )
394
+
395
+ kappas = nx.get_node_attributes(G, "kappa")
396
+ mean_kappas = sum(kappas.values()) / len(kappas)
397
+ assert math.fabs(mean_kappas - 10) < 0.5
398
+
399
+ degrees = dict(G.degree())
400
+ mean_degree = sum(degrees.values()) / len(degrees)
401
+ assert math.fabs(mean_degree - 10) < 1
402
+
403
+
404
+ def test_dict_kappas_S1():
405
+ kappas = {i: 10 for i in range(1000)}
406
+ G = nx.geometric_soft_configuration_graph(beta=1, kappas=kappas)
407
+ assert len(G) == 1000
408
+ kappas = nx.get_node_attributes(G, "kappa")
409
+ assert all(kappa == 10 for kappa in kappas.values())
410
+
411
+
412
+ def test_beta_clustering_S1():
413
+ G1 = nx.geometric_soft_configuration_graph(
414
+ beta=1.5, n=100, gamma=3.5, mean_degree=10, seed=42
415
+ )
416
+ G2 = nx.geometric_soft_configuration_graph(
417
+ beta=3.0, n=100, gamma=3.5, mean_degree=10, seed=42
418
+ )
419
+ assert nx.average_clustering(G1) < nx.average_clustering(G2)
420
+
421
+
422
+ def test_wrong_parameters_S1():
423
+ with pytest.raises(
424
+ nx.NetworkXError,
425
+ match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.",
426
+ ):
427
+ G = nx.geometric_soft_configuration_graph(
428
+ beta=1.5, gamma=3.5, mean_degree=10, seed=42
429
+ )
430
+
431
+ with pytest.raises(
432
+ nx.NetworkXError,
433
+ match="When kappas is input, n, gamma and mean_degree must not be.",
434
+ ):
435
+ kappas = {i: 10 for i in range(1000)}
436
+ G = nx.geometric_soft_configuration_graph(
437
+ beta=1.5, kappas=kappas, gamma=2.3, seed=42
438
+ )
439
+
440
+ with pytest.raises(
441
+ nx.NetworkXError,
442
+ match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.",
443
+ ):
444
+ G = nx.geometric_soft_configuration_graph(beta=1.5, seed=42)
445
+
446
+
447
+ def test_negative_beta_S1():
448
+ with pytest.raises(
449
+ nx.NetworkXError, match="The parameter beta cannot be smaller or equal to 0."
450
+ ):
451
+ G = nx.geometric_soft_configuration_graph(
452
+ beta=-1, n=100, gamma=2.3, mean_degree=10, seed=42
453
+ )
454
+
455
+
456
+ def test_non_zero_clustering_beta_lower_one_S1():
457
+ G = nx.geometric_soft_configuration_graph(
458
+ beta=0.5, n=100, gamma=3.5, mean_degree=10, seed=42
459
+ )
460
+ assert nx.average_clustering(G) > 0
461
+
462
+
463
+ def test_mean_degree_influence_on_connectivity_S1():
464
+ low_mean_degree = 2
465
+ high_mean_degree = 20
466
+ G_low = nx.geometric_soft_configuration_graph(
467
+ beta=1.2, n=100, gamma=2.7, mean_degree=low_mean_degree, seed=42
468
+ )
469
+ G_high = nx.geometric_soft_configuration_graph(
470
+ beta=1.2, n=100, gamma=2.7, mean_degree=high_mean_degree, seed=42
471
+ )
472
+ assert nx.number_connected_components(G_low) > nx.number_connected_components(
473
+ G_high
474
+ )
475
+
476
+
477
+ def test_compare_mean_kappas_different_gammas_S1():
478
+ G1 = nx.geometric_soft_configuration_graph(
479
+ beta=1.5, n=20, gamma=2.7, mean_degree=5, seed=42
480
+ )
481
+ G2 = nx.geometric_soft_configuration_graph(
482
+ beta=1.5, n=20, gamma=3.5, mean_degree=5, seed=42
483
+ )
484
+ kappas1 = nx.get_node_attributes(G1, "kappa")
485
+ mean_kappas1 = sum(kappas1.values()) / len(kappas1)
486
+ kappas2 = nx.get_node_attributes(G2, "kappa")
487
+ mean_kappas2 = sum(kappas2.values()) / len(kappas2)
488
+ assert math.fabs(mean_kappas1 - mean_kappas2) < 1