Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
|---|---|---|---|---|---|---|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for _ in range(t):
n=int(input())
a=list(map(int,input().split()))
if a[-1]<a[0]+a[1]:
print(-1)
else:
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
if __name__=="__main__":
t=int(input())
while(t):
t-=1
n=int(input())
li=list(map(int,input().split()))
i=0
j=1
k=len(li)-1
flag=0
while(i<len(li)-2):
while(j<len(li)-1):
while(j<k):
if li[i]+li[j]>li[k] and li[j]+li[k]>li[i] and li[k]+li[i]>li[j]:
pass
else:
flag=1
print(i+1,j+1,k+1)
break
k-=1
j+=1
if flag==1:
break
i+=1
if flag==1:
break
if flag==0:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
ans = []
for t in range(int(input())):
n = int(input())
A = list(map(int, input().split()))
if A[0] + A[1] <= A[-1]: ans += [[1, 2, n]]
else: ans += [[-1]]
[print(*x) for x in ans]
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for i in range(int(input())):
n = int(input())
ar = list(map(int,input().split()))
if ar[0]+ar[1]>ar[-1]:
print("-1")
else:
print("1","2",n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
T = int(input())
for _ in range(T):
length = int(input())
a = list(map(int, input().split()))
x = a[0]
y = a[1]
z = a[-1]
if (x+y <= z):
print(1, 2, len(a))
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for p in range(int(input())):
n=int(input())
x=[int(x) for x in input().split()]
i,j,k=0,1,n-1
a,b,c=x[i],x[j],x[k]
if (a+b)>c:
print(-1)
else:
print(i+1,j+1,k+1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
z = (int(input()))
for i in range(z):
n = int(input())
arr = list(map(int,input().split()))
if arr[0] + arr[1] <= arr[n-1]:
print('1 2',n)
else:
print('-1')
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for i in range(t):
n=int(input())
b=list(map(int,input().split()))
if (b[0]+b[1])<=b[-1]:
print(1, 2, n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.*;
public class P1 {
public static void main(String[] args) {
Scanner reader = new Scanner(System.in);
int numTests = reader.nextInt();
for (int testNum = 0; testNum < numTests; testNum++) {
int length = reader.nextInt();
long first = Integer.MAX_VALUE, second = Integer.MAX_VALUE, last = Integer.MIN_VALUE, i = -1, j = -1, k = -1;
for (int a = 1; a <= length; a++) {
long curr = reader.nextLong();
if (curr < first) {
second = first;
j = i;
first = curr;
i = a;
}
else if (curr < second) {
second = curr;
j = a;
}
if (curr >= last) {
last = curr;
k = a;
}
}
if (first == 0) {
System.out.println(-1);
}
else if (first + second <= last) {
System.out.println(i + " " + j + " " + k);
}
else {
System.out.println(-1);
}
}
reader.close();
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.*;
public class solution{
private int t,n;
private int[] A = new int[50005];
public void Process()
{
Scanner scanner = new Scanner(System.in);
t = scanner.nextInt();
for (int ii = 1; ii <= t; ii++)
{
n = scanner.nextInt();
for (int i = 0; i < n; i++)
{
A[i] = scanner.nextInt();
}
if (A[0] + A[1] <= A[n-1])
{
System.out.println("1 2 "+n);
}
else System.out.println("-1");
}
}
public static void main(String args[])
{
solution s = new solution();
s.Process();
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for i in range(t):
n=int(input())
l=[int(i) for i in input().split()]
print(1,2,n) if l[0]+l[1]<=l[-1] else print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for i in range(0,t):
n = int(input())
l = list(map(int,input().split()))
a=l[0]
c=l[n-1]
b=False
for i in range(1,n-1):
if(a+l[i] <=c):
b=i+1
break
if(b):
print("1", b, n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
N=int(input())
A=list(map(int,input().split()))
t=A[0]+A[1]
temp=0
for i in range(2,N):
if(A[i]>=t):
temp=1
print(1,2,i+1)
break
if(temp==0):
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
def isTriangle(a, b, c):
if a+b <= c or a+c <= b or b+c <= a:
return False
return True
t = int(input())
while t != 0:
t -= 1
n = int(input())
arr = [int(x) for x in input().split()]
if not isTriangle(arr[0], arr[1], arr[-1]):
print ("1 2", n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for i in range(t):
n=int(input())
l=list(map(int,input().split()))
if l[0]+l[1]<=l[n-1]:
print('1','2',n)
else:
print('-1')
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
from collections import Counter
import sys
sys.setrecursionlimit(10 ** 6)
mod = 1000000007
inf = int(1e18)
dx = [0, 1, 0, -1]
dy = [1, 0, -1, 0]
def inverse(a):
return pow(a, -1, mod)
def solve():
n = int(input())
a = list(map(int, input().split()))
if a[0] + a[1] <= a[-1]:
print(1, 2, n)
else:
print(-1)
def main():
t = int(input())
for _ in range(t):
solve()
main()
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import os
import heapq
import sys
import math
import operator
from collections import defaultdict
from io import BytesIO, IOBase
"""def gcd(a,b):
if b==0:
return a
else:
return gcd(b,a%b)"""
# def pw(a,b):
# result=1
# while(b>0):
# if(b%2==1): result*=a
# a*=a
# b//=2
# return result
def inpt():
return [int(k) for k in input().split()]
def main():
for _ in range(int(input())):
n=int(input())
ar=inpt()
k=n-1
if(ar[0]+ar[1]<=ar[k]):
print(1,2,n)
else:
print(-1)
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
if __name__ == "__main__":
main()
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
public class Mamo {
static long mod=1000000007;
static Reader in=new Reader();
static List<Integer >G[];
static long a[],p[],xp[],xv[];
static StringBuilder Sd=new StringBuilder(),Sl=new StringBuilder();
public static void main(String [] args) {
//Dir by MohammedElkady
int t=in.nextInt();
while(t-->0) {
int n=in.nextInt(),p1=-1,p2=-1,p3=-1;
int a[]=in.arr(n);
if(a[0]+a[1]<=a[n-1]) {
p1=1;p2=2;p3=n;}
if(p1==-1) {out.append("-1\n");}
else {out.append(p1+" "+p2+" "+p3+ " \n");}
}
out.close();
}
static long ans=0L;
static boolean v[];
static ArrayList<Integer>res;
static Queue <Integer> pop;
static Stack <Integer>rem;
public static void Dfs(int o) {
v[o]=true;
for(int i:G[o]) {
Dfs(i);
if(a[i]>0) {
res.add(i+1);
a[o]+=a[i];}
else {
rem.add(i+1);
}
}
ans+=a[o];
}
public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static long gcd(long g,long x){if(x<1)return g;else return gcd(x,g%x);}
static class Reader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int nextInt(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(s()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
public int[] arr(int n){int[] ret = new int[n];for (int i = 0; i < n; i++) {ret[i] = nextInt();}return ret;}
}
}
class node implements Comparable<node>{
int a, b;
node(int tt,int ll){
a=tt;b=ll;
}
@Override
public int compareTo(node o) {
return b-o.b;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
class Sorting{
public static int[] bucketSort(int[] array, int bucketCount) {
if (bucketCount <= 0) throw new IllegalArgumentException("Invalid bucket count");
if (array.length <= 1) return array; //trivially sorted
int high = array[0];
int low = array[0];
for (int i = 1; i < array.length; i++) { //find the range of input elements
if (array[i] > high) high = array[i];
if (array[i] < low) low = array[i];
}
double interval = ((double)(high - low + 1))/bucketCount; //range of one bucket
ArrayList<Integer> buckets[] = new ArrayList[bucketCount];
for (int i = 0; i < bucketCount; i++) { //initialize buckets
buckets[i] = new ArrayList();
}
for (int i = 0; i < array.length; i++) { //partition the input array
buckets[(int)((array[i] - low)/interval)].add(array[i]);
}
int pointer = 0;
for (int i = 0; i < buckets.length; i++) {
Collections.sort(buckets[i]); //mergeSort
for (int j = 0; j < buckets[i].size(); j++) { //merge the buckets
array[pointer] = buckets[i].get(j);
pointer++;
}
}
return array;
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
i = 0
while i < t:
n = int(input())
a = list(map(int, input().split()))
if a[0] + a[1] <= a[len(a) - 1]:
print(1, 2, len(a))
else:
print(-1)
i += 1
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
test = int(input().strip())
for _ in range(test):
n = int(input().strip())
arr = list(map(int, input().strip().split(" ")))
i1, i2, i3 = 0, 1, n-1
if arr[i1] + arr[i2] <= arr[i3]:
print(i1 + 1, i2 + 1, i3 + 1)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
vector<int> ar[1000001];
int vis[1000001];
int freq1[26];
int freq2[26];
bool checkPrime(int n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0) return false;
return true;
}
long long power(long long a, long long b) {
if (b == 0) return 1;
if (b == 1) return a;
if (b % 2 == 1) return (power(a, b - 1) * a) % 1000000007;
long long q = power(a, b / 2);
return (q * q) % 1000000007;
}
bool CPT(long long n) { return !(n & (n - 1)); }
long long gcd(long long int a, long long int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
long long lcm(int a, int b) { return (a / gcd(a, b)) * b; }
bool isSubsetSum(int set[], int n, int sum) {
bool subset[n + 1][sum + 1];
for (int i = 0; i <= n; i++) subset[i][0] = true;
for (int i = 1; i <= sum; i++) subset[0][i] = false;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= sum; j++) {
if (j < set[i - 1]) subset[i][j] = subset[i - 1][j];
if (j >= set[i - 1])
subset[i][j] = subset[i - 1][j] || subset[i - 1][j - set[i - 1]];
}
}
return subset[n][sum];
}
bool compare(string a, string b) {
string ab = a + b;
string ba = b + a;
return ab > ba;
}
bool isSubSequence(string str1, string str2, int m, int n) {
if (m == 0) return true;
if (n == 0) return false;
if (str1[m - 1] == str2[n - 1])
return isSubSequence(str1, str2, m - 1, n - 1);
return isSubSequence(str1, str2, m, n - 1);
}
bool areEqual(int arr1[], int arr2[], int n, int m) {
if (n != m) return false;
int b1 = arr1[0];
int b2 = arr2[0];
for (int i = 1; i < n; i++) {
b1 ^= arr1[i];
}
for (int i = 1; i < m; i++) {
b2 ^= arr2[i];
}
int all_xor = b1 ^ b2;
if (all_xor == 0) return true;
return false;
}
bool isPrime(int n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0) return false;
return true;
}
int nextPrime(int N) {
if (N <= 1) return 2;
int prime = N;
bool found = false;
while (!found) {
prime++;
if (isPrime(prime)) found = true;
}
return prime;
}
void solve() {
long long n;
cin >> n;
vector<int> v(n);
for (int i = 0; i < n; i++) cin >> v[i];
if (v[0] + v[1] <= v[n - 1]) {
cout << 1 << " " << 2 << " " << n << "\n";
return;
}
cout << -1 << "\n";
}
int main() {
int tt;
cin >> tt;
while (tt--) solve();
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
for _ in range(t):
l = int(input())
a = list(map(int, input().strip().split()))
if l < 3:
print(-1)
continue
if a[0]+a[1] <= a[l-1]:
print("{0} {1} {2}".format(1, 2, l))
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class code
{
public static void check(int b[],int a)
{
for(int i=0;i<a-1;i++)
{
if(b[i]+b[i+1]<=b[a-1])
{
System.out.println(i+1+" "+(i+2)+" "+a);
return;
}
}
System.out.println(-1);
return;
}
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0)
{
int a=sc.nextInt();
int b[]=new int[a];
for(int i=0;i<a;i++)
{
b[i]=sc.nextInt();
}
check(b,a);
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
from sys import stdin
def readline():
return stdin.readline()
tests = int(readline())
def solve(n, a):
i = 0
j = 1
k = n - 1
if a[k] >= a[i] + a[j] or a[i] >= a[k] + a[j] or a[j] >= a[i] + a[k]:
return str(i + 1) + ' ' + str(j + 1) + ' ' + str(k + 1)
return -1
for t in range(0, tests):
n = int(readline().rstrip("\n"))
#n, d, m = list(map(int, readline().rstrip("\n").split(' ')))
a = list(map(int, readline().rstrip("\n").split(' ')))
print(solve(n, a))
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int t, n, a[100000];
cin >> t;
for (int i = 0; i < t; i++) {
cin >> n;
for (int j = 0; j < n; j++) {
cin >> a[j];
}
if (a[0] + a[1] <= a[n - 1])
cout << 1 << ' ' << 2 << ' ' << n << endl;
else
cout << -1 << endl;
}
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for _ in range(t):
n=int(input())
ar=[int(i) for i in input().strip().split(" ")]
a=ar[0]
b=ar[1]
c=ar[-1]
if a+b>c:
print(-1)
else:
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n = int(input())
lst = list(map(int, input().split()))
if lst[0]+lst[1]<=lst[-1]:
print("1 2 " + str(n))
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
def solve():
n = int(input())
a = list(map(int, input().split()))
if a[0] + a[1] <= a[-1]:
print(1, 2, n)
return
print(-1)
for i in range(int(input())):
solve()
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
#input=sys.stdin.buffer.readline
t=int(input())
while t:
t-=1
n=int(input())
a=list(map(int,input().split()))
k=a[0]+a[1]
c=0
for i in range(2,n):
if k<=a[i]:
c=1
break
if c==1:
print(1,2,i+1)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
while t>0:
t-=1
n=int(input())
a=list(map(int,input().split()))
if a[0]+a[1]<=a[-1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
/*Shabeg Singh Gill*/
//code
import java .util.Scanner ;
import java.util.*;
import java.io.*;
import java.nio.IntBuffer;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Iterator;
//import java.io.OutputStreamReader;
import java.io.PrintWriter;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.lang.Math;
import java.io.InputStream;
import java.util.InputMismatchException;
import java.awt.Point;
import java.util.HashMap;
import java.util.Collections;
import java.util.Arrays;
//import java.util.Collections.reverseOrder()
public class cf2{
public static int binarysearch(int[] arr,int num){
int n;
n=arr.length;
int ans;
ans=0;
int start;
start=0;
int end ;
end=n-1;
while(start<=end){
int mid;
mid=(start+end)/2;
if (arr[mid]>num){
end=mid-1;
}
else{
ans=mid+1;
start=mid+1;
}
}
return ans;
}
public static void merger(int startind,int midind,int endind, ArrayList<Integer> arr){
ArrayList<Integer> mergedSortedArray;
mergedSortedArray= new ArrayList<Integer>();
int rightIndex ;
rightIndex= midind+1;
int leftIndex ;
leftIndex= startind;
while(midind>=leftIndex && endind>=rightIndex){
if(arr.get(leftIndex)<=arr.get(rightIndex)){
mergedSortedArray.add(arr.get(leftIndex));
leftIndex++;
}else{
mergedSortedArray.add(arr.get(rightIndex));
rightIndex++;
}
}
while(midind>=leftIndex){
mergedSortedArray.add(arr.get(leftIndex));
leftIndex++;
}
while(endind>=rightIndex){
mergedSortedArray.add(arr.get(rightIndex));
rightIndex++;
}
int i ;
i= 0;
int j ;
j= startind;
while(i<mergedSortedArray.size()){
arr.set(j, mergedSortedArray.get(i++));
j++;
}
}
public static void divide(int startIndex,int endIndex, ArrayList<Integer> arr){
if(endIndex >startIndex&& (endIndex-startIndex)>=1){
int mid;
mid = (endIndex + startIndex)/2;
divide(startIndex, mid, arr);
divide(mid+1, endIndex, arr);
merger(startIndex,mid,endIndex,arr);
}
}
public static int gcd1(int a, int b){
return fact(Math.min(a, b));
}
public static long gcd2(long a, long b ){
if(b==0){
return a ;
}
else {
return gcd2(b, a%b);
}
}
public static int fact(int n){
int ans =1;
for(int i =1; i<=n; i++){
ans=ans*i;
}
return ans ;
}
public static long lcm(long a, long b){
return (a*b)/gcd2(a, b);
}
public static int[] removeTheElement(int[] arr,int index){
if (arr == null || index < 0 || index >= arr.length) {
return arr;
}
int[] anotherArray = new int[arr.length - 1];
for (int i = 0, k = 0; i < arr.length; i++) {
if (i == index) {
continue;
}
anotherArray[k++] = arr[i];
}
return anotherArray;
}
public static long arrsum(int[]arr, int n ){
long sum =0;
for(int i =0; i<n; i++){
sum=sum+arr[i];
}
return sum ;
}
public static boolean isPrime(int n) {
if (n%2==0){
return false;
}
for(int i=3;i<=Math.sqrt(n);i+=2) {
if(n%i==0){
return false;
}
}
return true;
}
public static int largest(int []arr,int n){
int max=Integer.MIN_VALUE;
for(int x=0; x<n; x++){
if(arr[x]>max){
max=arr[x];
}
}
return max;
//Arrays.sort(arr);
//return arr[n - 1];
}
public static void main(final String[] args) throws IOException {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter w = new PrintWriter(outputStream);
Scanner s =new Scanner(System.in);
int t =in.nextInt();
for(int i=0; i<t; i++){
int n =in.nextInt();
int[] arr =new int[n];
for(int j =0; j<n; j++){
arr[j]=in.nextInt();
}
//String ans=" ";
int ans=0;
int f1=0;
int f2=0;
int f3=0;
for(int x =2; x<n; x++ ){
if((arr[0]+arr[1])<=arr[x]){
//ans="-1";
//ans=1+" "+ 2+" "+(x);
ans=1;
f1=1;
f2=2;
f3=x+1;
break;
}
}
if(ans==1){
System.out.println(f1+" "+f2+" "+f3);
}
else {
System.out.println("-1");
}
}
}
}
class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
private final BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(final InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (final IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (final IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
final StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(final int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
from sys import stdin,stdout
from itertools import combinations
from collections import defaultdict,Counter
import math
def listIn():
return list((map(int,stdin.readline().strip().split())))
def stringListIn():
return([x for x in stdin.readline().split()])
def intIn():
return (int(stdin.readline()))
def stringIn():
return (stdin.readline().strip())
if __name__=="__main__":
t=intIn()
while(t>0):
t-=1
n=intIn()
a=listIn()
f=0
s=a[0]+a[1]
for i in range(2,n):
if s<=a[i]:
f=1
break
if f:
print(1,2,i+1)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
# begin FastIO
import os
inp=os.read(0,os.fstat(0).st_size).split(b"\n");_ii=-1
def rdln():
global _ii
_ii+=1
return inp[_ii]
inin=lambda typ=int: typ(rdln())
inar=lambda typ=int: [typ(x) for x in rdln().split()]
inst=lambda: rdln().strip().decode()
# end FastIO
# begin DEBUG
_DEBUG=0
def debug(*args):
if _DEBUG:
import inspect
frame = inspect.currentframe()
frame = inspect.getouterframes(frame)[1]
string = inspect.getframeinfo(frame[0]).code_context[0].strip()
arns = string[string.find('(') + 1:-1].split(',')
print('.#debug:',end=' ')
for i,j in zip(arns,args): print(i,' = ',j,end=', ')
print()
# end DEBUG
_T_=inin()
for _t_ in range(_T_):
debug(_t_)
n=inin()
a=inar()
if a[0]+a[1]>a[n-1]:
print(-1)
else:
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
# def checkKey(dict, key):
# if key in dict:
# return True
# return False
# def helper(s):
# l=len(s)
# if (l==1):
# l=[]
# l.append(s)
# return l
# ch=s[0]
# recresult=helper(s[1:])
# myresult=[]
# myresult.append(ch)
# for st in recresult:
# myresult.append(st)
# ts=ch+st
# myresult.append(ts)
# return myresult
# mod=1000000000+7
# def helper(s,n,open,close,i):
# if(i==2*n):
# for i in s:
# print(i,end='')
# print()
# return
# if(open<n):
# s[i]='('
# helper(s,n,open+1,close,i+1)
# if(close<open):
# s[i]=')'
# helper(s,n,open,close+1,i+1)
# def helper(arr,i,n):
# if(i==n-1):
# recresult=[arr[i]]
# return recresult
# digit=arr[i]
# recresult=helper(arr,i+1,n)
# myresult=[]
# for i in recresult:
# myresult.append(i)
# myresult.append(i+digit);
# myresult.append(digit)
# return myresult
# import copy
# n=int(input())
# arr=list(map(int,input().split()))
# ans=[]
# def helper(arr,i,n):
# if(i==n-1):
# # for a in arr:
# # print(a,end=" ")
# # print()
# l=copy.deepcopy(arr)
# ans.append(l)
# return
# for j in range(i,n):
# if(i!=j):
# if(arr[i]==arr[j]):
# continue
# else:
# arr[i],arr[j]=arr[j],arr[i]
# helper(arr,i+1,n)
# arr[j],arr[i]=arr[i],arr[j]
# else:
# arr[i],arr[j]=arr[j],arr[i]
# helper(arr,i+1,n)
# def helper(sol,n,m):
# for i in range(n+1):
# for j in range(m+1):
# print(sol[i][j],end=" ")
# print()
# def rat_in_a_maze(maze,sol,i,j,n,m):
# if(i==n and j==m):
# sol[i][j]=1
# helper(sol,n,m)
# return True
# if(i>n or j>m):
# return False
# if(maze[i][j]=='X'):
# sol[i][j]=0
# return False
# sol[i][j]=1
# if(rat_in_a_maze(maze,sol,i,j+1,n,m)):
# sol[i][j]=0
# return True
# elif(rat_in_a_maze(maze,sol,i+1,j,n,m)):
# sol[i][j]=0
# return True
# else:
# sol[i][j]=0
# return False
# n,m=map(int,input().split())
# l=[]
# sol=[[0]*m]*n
# for i in range(n):
# arr=list(input())
# l.append(arr)
# rat_in_a_maze(l,sol,0,0,n-1,m-1)
test=int(input())
for _t in range(test):
n=int(input())
arr=list(map(int , input().split()))
if ((arr[0]+arr[1])<=arr[-1]):
print(1,end=" ")
print(2,end=" ")
print(n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
while (t--) {
long long n;
cin >> n;
long long a[n + 1];
for (int i = 1; i <= n; i++) cin >> a[i];
if (a[1] + a[2] <= a[n]) {
cout << "1"
<< " "
<< "2"
<< " " << n << endl;
} else
cout << "-1" << endl;
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for u in range(int(input())):
n = int(input())
x = [int(w) for w in input().split()]
if x[0] + x[1] > x[-1]:
print(-1)
else:
print(1, 2, n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 100005;
const int oo = INT_MAX;
int t, n;
int a[N];
int main() {
cin >> t;
while (t--) {
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%d", a + i);
if (a[0] + a[1] <= a[n - 1])
printf("%d %d %d\n", 1, 2, n);
else
puts("-1");
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
cnt = 0
while (cnt < t):
cnt += 1
n = int(input())
flag = False
a = [int(i) for i in input().split()]
if a[0] + a[1] <= a[n - 1]:
print(1, 2, n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for t in range(int(input())):
n = int(input())
li = [int(x) for x in input().split()]
if li[0]+li[1]<=li[-1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
if (a[0] + a[1] <= a[n - 1]) {
cout << "1 2 " << n << endl;
} else
cout << -1 << endl;
}
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import math
t=int(input())
for _ in range(t):
n=int(input())
a=list(map(int,input().split()))
if a[0]+a[1]<=a[-1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int i, j, k, t, n;
cin >> t;
while (t--) {
cin >> n;
int arr[n];
for (i = 0; i < n; i++) {
cin >> arr[i];
}
if ((arr[0] + arr[1] <= arr[n - 1]) || (arr[1] + arr[n - 1] <= arr[0]) ||
(arr[0] + arr[n - 1] <= arr[1])) {
cout << "1"
<< " "
<< "2"
<< " " << n << endl;
} else {
cout << "-1" << endl;
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
for _ in range(t):
n = int(input())
a = [int(i) for i in input().split()]
if a[0] + a[1] > a[-1]:
print(-1)
else:
print("1 2", n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for i in range(int(input())):
n = int(input())
array = list(map(int, input().split()))
if(array[0] + array[1] <= array[-1]):
print(1, 2, n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for i in [0]*int(input()):
n = int(input())
l = list(map(int, input().split(' ')))
if l[0] + l[1] <= l[-1]:
print('1 2', n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
from sys import stdin
for _ in range(int(stdin.readline())):
n = int(stdin.readline())
a = list(map(int, stdin.readline().split()))
if a[0] + a[1] <= a[-1]:
print(1, 2, n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int s[50001];
signed main() {
int t;
scanf("%d", &t);
while (t--) {
int n;
scanf("%d", &n);
for (int i = 0; i < (n); i++) {
scanf("%d", &s[i]);
}
for (int i = 1; i < n - 1; i++) {
if (s[0] + s[i] <= s[n - 1]) {
printf("%d %d %d\n", 1, i + 1, n);
goto hell;
}
}
printf("-1\n");
hell : {}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
for i in range(t):
n = int(input())
a = [int(s) for s in input().split()]
sum = a[0] + a[1]
flag = 0
j = 2
while(flag == 0):
if(sum <= a[j]):
print(1, 2, j+1)
flag = 1
if(j == n-1 and flag == 0):
print(-1)
flag = 1
j += 1
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
for x in range(t):
n = int(input())
a = list(map(int, input().split()))
b = list(a)
max1 = max(a)
a.remove(max1)
min1 = min(a)
a.remove(min1)
min2 = min(a)
a.remove(min2)
if (max1 >= (min1 + min2)):
print(1, 2, len(b))
continue
a = b
max1 = max(a)
a.remove(max1)
min1 = min(a)
a.remove(min1)
max2 = max(a)
a.remove(min2)
if max1 >= (max2 + min1):
print(1, len(b) - 1, len(b))
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
for _ in range(t):
n = int(input())
num = list(map(int, input().split()))
if num[0] + num[1] > num[n-1]:
print("-1")
else:
print("{} {} {}".format(1, 2, n))
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n=int(input())
l=list(map(int,input().split()))
a=l[0]
b=l[1]
c=l[len(l)-1]
if (a+b>c and b+c>a and c+a>b)==False:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int a[50005];
int main() {
int t, n;
cin >> t;
while (t--) {
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
if (a[1] + a[2] <= a[n]) {
printf("1 2 %d\n", n);
} else {
puts("-1");
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
from collections import defaultdict as dd
from collections import deque
from functools import *
from fractions import Fraction as f
from copy import *
from bisect import *
from heapq import *
from math import *
from itertools import permutations
def eprint(*args):
print(*args, file=sys.stderr)
zz=1
#sys.setrecursionlimit(10**6)
if zz:
input=sys.stdin.readline
else:
sys.stdin=open('input.txt', 'r')
sys.stdout=open('all.txt','w')
def inc(d,c):
d[c]=d[c]+1 if c in d else 1
def li():
return [int(xx) for xx in input().split()]
def fli():
return [float(x) for x in input().split()]
def comp(a,b):
if(a>b):
return 2
return 2 if a==b else 0
def gi():
return [xx for xx in input().split()]
def fi():
return int(input())
def pro(a):
return reduce(lambda a,b:a*b,a)
def swap(a,i,j):
a[i],a[j]=a[j],a[i]
def si():
return list(input().rstrip())
def mi():
return map(int,input().split())
def gh():
sys.stdout.flush()
def isvalid(i,j):
return 0<=i<n and 0<=j<n
def graph(n,m):
for i in range(m):
x,y=mi()
a[x].append(y)
a[y].append(x)
t=fi()
while t>0:
t-=1
n=fi()
a=li()
if a[0]+a[1]<=a[n-1] :
print(1,2,n )
else :
print(-1 )
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
test=int(input())
for t in range(test):
n=int(input())
a=list(map(int,input().split()))
if a[0]+a[1]>a[n-1]:
print(-1)
else:
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
# sys.stdin = open('input.txt', 'r')
# sys.stdout = open('output.txt', 'w')
import math
import collections
from sys import stdin,stdout,setrecursionlimit
import bisect as bs
setrecursionlimit(2**20)
M = 10**9+7
T = int(stdin.readline())
# T = 1
for _ in range(T):
n = int(stdin.readline())
# n,d,m = list(map(int,stdin.readline().split()))
a = list(map(int,stdin.readline().split()))
# q = int(stdin.readline())
# a = list(map(int,stdin.readline().split()))
# b = list(map(int,stdin.readline().split()))
b = []
for i in range(n):
b.append((a[i],i+1))
b.sort()
if(b[-1][0] >= b[0][0]+b[1][0]):
fin = [b[-1][1], b[0][1], b[1][1]]
fin.sort()
for h in fin:
print(h,end=' ')
print('')
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
from sys import stdin,stdout
for _ in range(int(stdin.readline())):
n=int(stdin.readline())
# =map(int,stdin.readline().split())
a=list(map(int,stdin.readline().split()))
x=a[0];y=a[1];z=a[-1]
if x+y>z and y+z>x and x+z>y:
print(-1)
continue
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
while t:
t-=1
n = int(input())
l = list(map(int, input().split()))
if l[0]+l[1]<=l[-1]:
print(1, 2, n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class BadTriangle {
public static void main(String[] args) throws IOException {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
int test = Integer.parseInt(bf.readLine());
for (int i = 0; i < test; i++) {
int n = Integer.parseInt(bf.readLine());
StringTokenizer st = new StringTokenizer(bf.readLine());
long arr[]= new long[n];
for (int j = 0; j < n; j++) {
arr[j]=Integer.parseInt(st.nextToken());
}
if (arr[0]+arr[1]<=arr[n-1])
System.out.println("1 2 "+n);
else
System.out.println(-1);
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
T = int(input())
for _ in range(T):
input()
l = list(map(int,input().split()))
for i in range(len(l)):
l[i] = (l[i], i)
l.sort()
if l[0][0] + l[1][0] <= l[-1][0]:
print(l[0][1] + 1, l[1][1] + 1, l[-1][1] + 1)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
a=int(input())
for i in range(0,a):
b=int(input())
arr=list(map(int,input().split()))
if(arr[0]+arr[1]>arr[len(arr)-1]):
print(-1)
else:
print(1,2,len(arr))
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for castle in range(t):
n=int(input())
ls=list(map(int,input().split()))
a,b,c=ls[0],ls[1],ls[-1]
if a+b>c:
print(-1)
else:
print(*[1,2,n])
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.*;
public class Main {
static void rev(int []a)
{
int i=0,j=a.length-1;
while(i<j)
{
int t=a[i];
a[i]=a[j];
a[j]=t;
i++;j--;
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
while(T-->0) {
int N=sc.nextInt();
int[]a=new int[N];
for(int i=0;i<N;i++)
a[i]=sc.nextInt();
if(a[0]+a[1]<=a[N-1])
System.out.println(1+" "+2+" "+N);
else
System.out.println(-1);
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for s in[*open(0)][2::2]:
x,y,*a,z=map(int,s.split())
print(*([1,2,len(a)+3],[-1])[x+y>z])
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
def main():
t = int(input())
for case in range(t):
n = int(input())
A = [int(x) for x in input().split()]
flag = False
for i in range(n-2):
last = n-1
for rt in range(n-i-2):
last = n-1 - rt
if(A[i] + A[i+1] > A[last]):
break
else:
print(i+1, i+2, last+1)
flag = True
break
if(flag):
break
if(not flag):
print(-1)
""" flag = False
for a in range(n):
for b in range(a+1,n):
lhs = A[a]+A[b]
for c in range(b+1,n):
if(lhs <= A[c]):
print(a+1, b+1, c+1)
flag = True
break
if(flag):
break
if(flag):
break
if(not flag):
print(-1) """
if __name__ == '__main__':
main()
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
public class Task{
// taking inputs
static BufferedReader s1;
static BufferedWriter out;
static String read() throws IOException{String line="";while(line.length()==0){line=s1.readLine();continue;}return line;}
static int int_v (String s1){return Integer.parseInt(s1);}
static long long_v(String s1){return Long.parseLong(s1);}
static int[] int_arr() throws IOException{String[] a=read().split(" ");int[] b=new int[a.length];for(int i=0;i<a.length;i++){b[i]=int_v(a[i]);}return b;}
static long[] long_arr() throws IOException{String[] a=read().split(" ");long[] b=new long[a.length];for(int i=0;i<a.length;i++){b[i]=long_v(a[i]);}return b;}
static void assign(){s1=new BufferedReader(new InputStreamReader(System.in));out=new BufferedWriter(new OutputStreamWriter(System.out));}
static long gcd(long a,long b){if(b==0){return a;}return gcd(b,a%b);}
static long Modpow(long a,long p,long m){long res=1;while(p>0){if((p&1)!=0){res=(res*a)%m;}p >>=1;a=(a*a)%m;}return res;}
static long Modmul(long a,long b,long m){return ((a%m)*(b%m))%m;}
static long ModInv(long a,long m){return Modpow(a,m-2,m);}
static long nck(int n,int r,long m){if(r>n){return 0l;}return Modmul(f[n],ModInv(Modmul(f[n-r],f[r],m),m),m);}
//sort map w.r.t value use-> TreeSet of array? write comparator which depends on all the entries of array otherwise weired behavior you can prove it.
//......................................@uthor_Alx..............................................
// vikassingh@maths.iitd.ac.in
//Hod.Career.Services@admin.iitd.ac.in
//careerservices.iitd@gmail.com
//placement@admin.iitd.ac.in
static long[] f;
public static void main(String[] args) throws IOException{
assign();
int t=int_v(read()),cn=1;
while(t--!=0){
int n=int_v(read());
int[] a=int_arr();
int res=-1;boolean b=false;
if((a[0]+a[1])<=a[n-1]){
out.write((1)+" "+(2)+" "+(n)+"\n");
}
else{
out.write("-1\n");
}
}
out.flush();
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
case=int(input())
while case!=0:
n=int(input())
a=list(map(int,input().split()))
chk=False
i=0
for i in range(n-2):
if a[i]+a[i+1]<=a[n-1]:
print("1","2",n)
chk=True
break
if chk==False:
print("-1")
case-=1
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
## necessary imports
import sys
input = sys.stdin.readline
from bisect import bisect_left;
from bisect import bisect_right;
from math import ceil, factorial;
def ceil(x):
if x != int(x):
x = int(x) + 1;
return x;
# swap_array function
def swaparr(arr, a,b):
temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
## gcd function
def gcd(a,b):
if b == 0:
return a;
return gcd(b, a % b);
## nCr function efficient using Binomial Cofficient
def nCr(n, k):
if(k > n - k):
k = n - k;
res = 1;
for i in range(k):
res = res * (n - i);
res = res / (i + 1);
return int(res);
## prime factorization
def primefs(n):
## if n == 1 ## calculating primes
primes = {}
while(n%2 == 0 and n > 0):
primes[2] = primes.get(2, 0) + 1
n = n//2
for i in range(3, int(n**0.5)+2, 2):
while(n%i == 0 and n > 0):
primes[i] = primes.get(i, 0) + 1
n = n//i
if n > 2:
primes[n] = primes.get(n, 0) + 1
## prime factoriazation of n is stored in dictionary
## primes and can be accesed. O(sqrt n)
return primes
## MODULAR EXPONENTIATION FUNCTION
def power(x, y, p):
res = 1
x = x % p
if (x == 0) :
return 0
while (y > 0) :
if ((y & 1) == 1) :
res = (res * x) % p
y = y >> 1
x = (x * x) % p
return res
## DISJOINT SET UNINON FUNCTIONS
def swap(a,b):
temp = a
a = b
b = temp
return a,b;
# find function with path compression included (recursive)
# def find(x, link):
# if link[x] == x:
# return x
# link[x] = find(link[x], link);
# return link[x];
# find function with path compression (ITERATIVE)
def find(x, link):
p = x;
while( p != link[p]):
p = link[p];
while( x != p):
nex = link[x];
link[x] = p;
x = nex;
return p;
# the union function which makes union(x,y)
# of two nodes x and y
def union(x, y, link, size):
x = find(x, link)
y = find(y, link)
if size[x] < size[y]:
x,y = swap(x,y)
if x != y:
size[x] += size[y]
link[y] = x
## returns an array of boolean if primes or not USING SIEVE OF ERATOSTHANES
def sieve(n):
prime = [True for i in range(n+1)]
p = 2
while (p * p <= n):
if (prime[p] == True):
for i in range(p * p, n+1, p):
prime[i] = False
p += 1
return prime
#### PRIME FACTORIZATION IN O(log n) using Sieve ####
MAXN = int(1e5 + 5)
def spf_sieve():
spf[1] = 1;
for i in range(2, MAXN):
spf[i] = i;
for i in range(4, MAXN, 2):
spf[i] = 2;
for i in range(3, ceil(MAXN ** 0.5), 2):
if spf[i] == i:
for j in range(i*i, MAXN, i):
if spf[j] == j:
spf[j] = i;
## function for storing smallest prime factors (spf) in the array
################## un-comment below 2 lines when using factorization #################
# spf = [0 for i in range(MAXN)]
# spf_sieve();
def factoriazation(x):
ret = {};
while x != 1:
ret[spf[x]] = ret.get(spf[x], 0) + 1;
x = x//spf[x]
return ret;
## this function is useful for multiple queries only, o/w use
## primefs function above. complexity O(log n)
## taking integer array input
def int_array():
return list(map(int, input().strip().split()));
def float_array():
return list(map(float, input().strip().split()));
## taking string array input
def str_array():
return input().strip().split();
#defining a couple constants
MOD = int(1e9)+7;
CMOD = 998244353;
INF = float('inf'); NINF = -float('inf');
################### ---------------- TEMPLATE ENDS HERE ---------------- ###################
for _ in range(int(input())):
n = int(input()); a = int_array();
if a[0] + a[1] <= a[-1]:
print(*[1, 2, n]);
else:
print(-1);
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
from sys import stdin
input = lambda : stdin.readline().strip()
for _ in range(int(input())):
n = int(input())
a = list(map(int,input().split()))
r = range(1,n+1)
a.insert(0,n-1)
ans = False
x = a[1]
y = a[2]
for k in range(2,n+1):
if(x+y<=a[k]):
print(1,2,k)
ans = True
break
if(not ans):
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
for (int tc = 1; tc <= t; tc++) {
int n;
cin >> n;
vector<int> v(n);
for (int i = 0; i < n; i++) cin >> v[i];
int i = 0, j = 1, k = n - 1;
if (v[i] + v[j] > v[k])
cout << -1 << endl;
else {
cout << i + 1 << " " << j + 1 << " " << k + 1 << endl;
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
for (int p = 0; p < t; p++) {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int flag = 0;
int ans[3];
for (int i = 0; i < n - 2; i++) {
int temp;
temp = a[i] + a[i + 1];
if (temp <= a[n - 1]) {
flag = 1;
ans[0] = i + 1;
ans[1] = i + 2;
ans[2] = n;
}
if (flag == 1) break;
}
if (flag == 1)
cout << ans[0] << " " << ans[1] << " " << ans[2] << endl;
else
cout << "-1" << endl;
}
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for _ in range(t):
n=int(input())
a=list(map(int,input().split()))
flag=0
for i in range(n-1):
x=a[i]
y=a[i+1]
if(a[-1]>=x+y):
x=i+1
y=i+2
flag=1
break
if(flag==1):
print(x,y,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for count in range(t):
n=int(input())
a=list(map(int,input().split()))
if a[0]+a[1]>a[n-1]:
print(-1)
else:
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
for i in range(t):
n = int(input())
a = [int(x) for x in input().split()]
if a[0]+a[1] > a[n-1]:
print(-1)
else:
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
mt19937 gen(time(0));
void setIO(string name = "") {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
}
int main() {
setIO();
int t, n, x;
cin >> t;
for (int j = 0; j < t; j++) {
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[n - 1] >= a[0] + a[1]) {
cout << "1 2 " << n << "\n";
} else {
cout << "-1\n";
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input(""))
for i in range(t):
n = int(input(""))
arr = input().split(" ")
if int(arr[0])+int(arr[1])<=int(arr[-1]):
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
test_cases = int(input())
for tests in range(0, test_cases):
n = int(input())
l = list(map(int, input().split()))
if l[0] + l[1] <= l[n - 1]:
print(f"1 2 {n}")
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.math.*;
import java.util.*;
public class Main {
static final int INF = (int) (1e9 + 10);
static final int MOD = (int) (1e9 + 7);
static final int N = (int) (4e5 + 5);
// static ArrayList<Integer>[] graph;
// static boolean visited[];
// static long size[];
public static void main(String[] args) throws NumberFormatException, IOException {
FastReader sc = new FastReader();
PrintWriter pr = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
// Scanner scn = new Scanner(System.in);
//
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int arr[] = sc.nextIntArray(n);
if (arr[0] + arr[1] > arr[n - 1]) {
pr.println("-1");
} else
pr.println(1 + " " + 2 + " " +(n) );
}
//
// Coded to Perfection by Rohan Mukhija
pr.flush();
pr.close();
}
/*
* Template From Here
*/
static class Pair implements Comparable<Pair> {
int u;
int v;
Pair(int u, int v) {
this.u = u;
this.v = v;
}
public int compareTo(Pair compareEdge) {
return Long.compare(this.v, compareEdge.v);
}
};
private static boolean possible(long[] arr, double mid, long k) {
long c = 0;
for (int i = 0; i < arr.length; i++) {
c += ((arr[i]) / mid);
if (c % arr[i] == 0)
c--;
}
// System.out.println(mid+" "+c+" "+k);
if (c <= k)
return true;
return false;
}
static void sort(long[] a) {
ArrayList<Long> l = new ArrayList<>();
for (long i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
public static int lowerBound(ArrayList<Integer> array, int length, long value) {
int low = 0;
int high = length;
while (low < high) {
final int mid = (low + high) / 2;
if (value <= array.get(mid)) {
high = mid;
} else {
low = mid + 1;
}
}
return low;
}
public static long mul(long a, long b) {
return (a * b) % MOD;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
}
static long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
public static void sortbyColumn(int[][] att, int col) {
// Using built-in sort function Arrays.sort
Arrays.sort(att, new Comparator<int[]>() {
@Override
// Compare values according to columns
public int compare(final int[] entry1, final int[] entry2) {
// To sort in descending order revert
// the '>' Operator
// if (entry1[col] > entry2[col])
// return 1;
// else //(entry1[col] >= entry2[col])
// return -1;
return new Integer(entry1[col]).compareTo(entry2[col]);
// return entry1[col].
}
}); // End of function call sort().
}
public static void sortbyColumn(double[][] att, int col) {
// Using built-in sort function Arrays.sort
Arrays.sort(att, new Comparator<double[]>() {
@Override
// Compare values according to columns
public int compare(final double[] entry1, final double[] entry2) {
// To sort in descending order revert
// the '>' Operator
// if (entry1[col] > entry2[col])
// return 1;
// else //(entry1[col] >= entry2[col])
// return -1;
return new Double(entry1[col]).compareTo(entry2[col]);
// return entry1[col].
}
}); // End of function call sort().
}
static class pair {
int V, I;
pair(int v, int i) {
V = v;
I = i;
}
}
public static int[] swap(int data[], int left, int right) {
int temp = data[left];
data[left] = data[right];
data[right] = temp;
return data;
}
public static int[] reverse(int data[], int left, int right) {
while (left < right) {
int temp = data[left];
data[left++] = data[right];
data[right--] = temp;
}
return data;
}
public static boolean findNextPermutation(int data[]) {
if (data.length <= 1)
return false;
int last = data.length - 2;
while (last >= 0) {
if (data[last] < data[last + 1]) {
break;
}
last--;
}
if (last < 0)
return false;
int nextGreater = data.length - 1;
for (int i = data.length - 1; i > last; i--) {
if (data[i] > data[last]) {
nextGreater = i;
break;
}
}
data = swap(data, nextGreater, last);
data = reverse(data, last + 1, data.length - 1);
return true;
}
static long ncr(long a, long b) {
if (b > a - b)
return ncr(a, a - b);
long ansMul = 1;
long ansDiv = 1;
for (int i = 0; i < b; i++) {
ansMul *= (a - i);
ansDiv *= (i + 1);
ansMul %= MOD;
ansDiv %= MOD;
}
long ans = ansMul * power(ansDiv, MOD - 2, MOD) % MOD;
return ans;
}
static long __gcd(long n1, long n2) {
long gcd = 1;
for (int i = 1; i <= n1 && i <= n2; ++i) {
// Checks if i is factor of both integers
if (n1 % i == 0 && n2 % i == 0) {
gcd = i;
}
}
return gcd;
}
static long power(long prev, long n2, long mod2) {
long res = 1;
prev = prev % mod2;
if (prev == 0)
return 0;
while (n2 > 0) {
if ((n2 & 1) == 1)
res = (res * prev) % mod2;
n2 = n2 >> 1;
prev = (prev * prev) % mod2;
}
return res;
}
static long modInverse(long fac2, int p) {
return power(fac2, p - 2, p);
}
static boolean isPrime(int n) {
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
public static BigInteger lcmm(String a, String b) {
BigInteger s = new BigInteger(a);
BigInteger s1 = new BigInteger(b);
BigInteger mul = s.multiply(s1);
BigInteger gcd = s.gcd(s1);
BigInteger lcm = mul.divide(gcd);
return lcm;
}
/*
* static boolean prime[] = new boolean[10000007]; static int spf[] = new
* int[10000007];
*
* public static void sieveOfEratosthenes(int n) { for (int i = 2; i < n;
* i++) prime[i] = true; for (int p = 2; p * p <= n; p++) {
*
* if (prime[p] == true) {
*
* for (int i = p * p; i <= n; i += p) { prime[i] = false; spf[i] = p; } } }
* }
*/
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.math.*;
import java.util.*;
public class A {
public static void main(String[] agrs) {
FastScanner sc = new FastScanner();
int yo = sc.nextInt();
while(yo-->0) {
int n = sc.nextInt();
long[] a = new long[n];
for(int i = 0; i < n; i++) {
a[i] = sc.nextLong();
}
boolean is = false;
for(int i = 2; i < n; i++) {
if(a[i] >= a[0] + a[1]) {
System.out.println(1 + " " + 2 + " " + (i+1));
is = true;
break;
}
}
if(!is) {
System.out.println(-1);
}
}
}
static int mod = 1000000007;
static long pow(int a, int b) {
if(b == 0) {
return 1;
}
if(b == 1) {
return a;
}
if(b%2 == 0) {
long ans = pow(a,b/2);
return ans*ans;
}
else {
long ans = pow(a,(b-1)/2);
return a * ans * ans;
}
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for i in range(t):
n=int(input())
a=list(map(int,input().split()))
if(a[0]+a[1]<=a[-1]):
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <class T>
bool mini(T &a, T b) {
return a > b ? (a = b, true) : false;
}
template <class T>
bool maxi(T &a, T b) {
return a < b ? (a = b, true) : false;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.precision(10);
cout << fixed;
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
vector<long long> a(n + 3);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
if (a[0] + a[1] <= a[n - 1])
cout << 1 << " " << 2 << " " << n << "\n";
else
cout << -1 << "\n";
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n=int(input())
list1=[int(x) for x in input().split()]
val1=list1[0]+list1[1]
if val1<=list1[n-1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
max_int = 1000000001 # 10^9+1
min_int = -max_int
t = int(input())
for _t in range(t):
n = int(sys.stdin.readline())
a = list(map(int, sys.stdin.readline().split()))
if a[0] + a[1] <= a[-1]:
print(1, 2, n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
while t > 0:
n = int(input())
x = list(map(int, input().split()))
arr = list()
arr2 = list()
a = 0
arr = sorted(x)
for i in range(3, n+1):
if arr[i-1] >= (arr[0] + arr[1]):
print(1, 2, i)
a = a + 1
break
if a == 0:
print(-1)
t = t - 1
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
# cook your dish here
for x in range(int(input())):
n=int(input())
a=[int(x) for x in input().split()][:n]
c=a[0]+a[1]
d=0
for x in range(2,n):
if(c<=a[x] and n>=3):
print('1 2',x+1)
d=1
break
if(d==0):
print('-1')
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
# cook your dish here
def compute_lcm(num1, num2):
if(num1>num2):
num = num1
den = num2
else:
num = num2
den = num1
rem = num % den
while(rem != 0):
num = den
den = rem
rem = num % den
gcd = den
lcm = int(int(num1 * num2)/int(gcd))
return lcm
t = int(input())
import math
import collections
for i in range(t):
n = int(input())
a = list(map(int,input().split()))
s = a[0]+a[1]
for i in range(2,n):
if s>a[i]:
continue
else:
print(1,2,i+1)
break
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n = int(input())
x = list(map(int, input().split()))
a = x[0]
b = x[1]
c = x[n-1]
if a+b <= c:
print(1, 2, n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 14 20:10:59 2020
@author: Utkarsh
"""
n=int(input(''))
a=[]
while n>0:
l=int(input(''))
a=list(map(int, input().split(' ')[:l]))
for i in range(0,l):
if a[i]+a[i+1]<=a[l-i-1]:
print( i+1, i+2,l-i)
break
else:
print(-1)
break
n-=1
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
def sol(inp, n):
sm = []
ind = []
po = 0
for i in range(n):
sm.append(inp[i])
ind.append(i+1)
po += 1
if po==2 and sum(sm) <= inp[-1]:
print(*ind, end=" ")
print(n)
return
if sum(sm)>inp[-1]:
sm = []
ind = []
po = 0
continue
print(-1)
return
if __name__ == '__main__':
for _ in range(int(input())):
n = int(input())
inp = list(map(int, input().split()))
sol(inp, n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
for _ in range(t):
n = int(input())
l = list(map(int, input().split()))
if (l[0]+l[1])<=l[n-1]:
print('1 2 '+str(n))
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
from collections import Counter
from math import ceil,gcd,log
from bisect import bisect ,bisect_left,bisect_right
input = sys.stdin.readline
def check(a, b, c):
if (a + b <= c) or (a + c <= b) or (b + c <= a) :
return False
else:
return True
def solve(n,arr):
a = arr[0]
b = arr[1]
p = arr.index(a)
q = arr.index(b)
flag =False
arr = arr[2:]
for j,i in enumerate(arr):
c = i
if (not check(a,b,c)):
ans = (a,b,j)
flag = True
break
else:
continue
if(flag):
if(p==q):
q+=1
print(p+1,q+1,3+ans[-1])
else:
print(-1)
return
def main():
for _ in range(int(input())):
n = int(input())
arr = list(map(int,input().split()))
solve(n,arr)
return
if __name__ == '__main__':
main()
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
#print("out")
for _ in range(t):
n = int(input())
a = list(map(int,input().split()))
i = 0
k = n-1
f = False
while i+1<n and i+1<k:
j = i+1
while j<k and a[i]+a[j]>a[k]:
k-=1
if j<k and (not a[i]+a[j]>a[k]):
print(i+1,j+1,k+1)
break
i+=1
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
def solution(arr):
a,b,c = arr[0] , arr[1] ,arr[-1]
if a + b > c :
return -1
return 1
for _ in range(int(input())):
n = int(input())
arr = [int(x) for x in input().split()]
ans = solution(arr)
if ans == -1 :
print(-1)
else:
print(ans,ans+1,len(arr))
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.Scanner;
public class Main{
public static void main(String args[])
{
Scanner s = new Scanner(System.in);
int itr = s.nextInt();
int n,j;
int arr[];
for(int i=0;i<itr;i++)
{
n=s.nextInt();
arr=new int[n];
for(j=0;j<n;j++)
{
arr[j]=s.nextInt();
}
for(j=0;j<n-2;j++)
{
if( (arr[j]+arr[j+1]) > arr[n-1] )
{
continue;
}
else
{
System.out.println( (j+1)+" "+(j+2)+" "+ (n) );
break;
}
}
if(j==n-2)
{
System.out.println(-1);
}
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class er93a {
public static void main(String[] args) {
FastScanner scan=new FastScanner();
int t=scan.nextInt();
for(int tt=0;tt<t;tt++) {
int n=scan.nextInt();
int[] a=new int[n];
for(int i=0;i<n;i++) a[i]=scan.nextInt();
if(a[0]+a[1]<=a[n-1]) {
System.out.println(1+" "+2+" "+n);
}
else System.out.println(-1);
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;
void test() {
long long n;
cin >> n;
long long a[n];
for (long long i = 0; i < n; i++) cin >> a[i];
if (a[n - 1] >= a[0] + a[1])
cout << 1 << " " << 2 << " " << n << endl;
else
cout << -1 << endl;
}
int main() {
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
long long t = 1;
cin >> t;
while (t--) {
test();
}
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n=int(input())
a=list(map(int,input().split()))
for i in range(n-2):
for j in range(i+1,n-1):
for k in range(j+1,n):
if a[i]+a[j]>a[k] and a[i]+a[k]>a[j] and a[j]+a[k]>a[i]:
c=1
continue
else:
c=0
print("{} {} {}".format(i+1,j+1,k+1))
break
break
break
break
if c==1:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
from sys import stdin,stdout
import bisect
n=int(stdin.readline())
for i in range(n):
ans=0
a=int(stdin.readline())
x=[int(i) for i in stdin.readline().split()]
x.sort()
if x[0]+x[1]>x[-1]:
stdout.write('-1'+'\n')
continue
stdout.write(str(1)+' '+str(2)+' '+str(len(x))+'\n')
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
while t:
n = int(input())
arr = list(map(int, input().split()))
if arr[0] + arr[1] <= arr[-1]:
print(1, 2, n)
else:
print(-1)
t -= 1
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import copy
def get_output(array,length):
max=array[-1]
i=0
while(i!=length-2):
sum=array[i]+array[i+1]
if sum<=max:
return i+1,i+2,length
else:
i+=1
return -1
test_cases=int(input())
for i in range(test_cases):
length=int(input())
array=[int(i) for i in input().split()]
res=get_output(array,length)
if res!=-1:
for i in res:
print(i,end=" ")
print()
else:
print(res)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
input = sys.stdin.readline
T = int(input())
for testcase in range(T):
n = int(input())
a = list(map(int,input().split()))
if a[0] + a[1] > a[-1]:
print(-1)
else:
print(1,2,n)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.