Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
|---|---|---|---|---|---|---|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long max(long long a, long long b) {
if (a > b)
return a;
else
return b;
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
long long t;
cin >> t;
while (t--) {
long long n;
cin >> n;
vector<long long> v(n);
for (long long i = 0; i < n; i++) cin >> v[i];
sort(v.begin(), v.end());
if (n < 3) {
cout << -1 << "\n";
continue;
}
long long mn1 = v[0];
long long mn2 = v[1];
long long mx = v[n - 1];
if (mn1 + mn2 > mx)
cout << -1 << "\n";
else
cout << 1 << " " << 2 << " " << n << "\n";
}
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
x=int(input())
for z in range(x):
n=int(input())
l=list(map(int,input().split()))
if l[0]+l[1]<=l[-1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 100007;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int t = 1;
cin >> t;
while (t--) {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int ind;
bool found = false;
if (a[0] + a[1] <= a[n - 1]) found = true;
if (found) {
cout << 1 << " " << 2 << " " << n << "\n";
} else
cout << "-1\n";
}
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
T = int(input())
for test in range(T):
n = int(input())
a = [int(x) for x in input().split()]
if a[0] + a[1] <= a[-1]:
print("1 2 {}".format(n))
else: print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
"""
pppppppppppppppppppp
ppppp ppppppppppppppppppp
ppppppp ppppppppppppppppppppp
pppppppp pppppppppppppppppppppp
pppppppppppppppppppppppppppppppp
pppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppp pppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppp ppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppp pppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppp pppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppp pppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppp ppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppp ppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppp ppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppp
pppppppppppppppppppppppppppppppp
pppppppppppppppppppppp pppppppp
ppppppppppppppppppppp ppppppp
ppppppppppppppppppp ppppp
pppppppppppppppppppp
"""
import sys
from functools import lru_cache, cmp_to_key
from heapq import merge, heapify, heappop, heappush, nsmallest
from math import ceil, floor, gcd, fabs, factorial, fmod, sqrt, inf
from collections import defaultdict as dd, deque, Counter as C
from itertools import combinations as comb, permutations as perm
from bisect import bisect_left as bl, bisect_right as br, bisect
from time import perf_counter
from fractions import Fraction
from decimal import Decimal
# sys.setrecursionlimit(2 * (10 ** 5))
# sys.stdin = open("input.txt", "r")
# sys.stdout = open("output.txt", "w")
mod = pow(10, 9) + 7
mod2 = 998244353
def data(): return sys.stdin.readline().strip()
def out(var): sys.stdout.write(str(var)+"\n")
def outa(*var, end="\n"): sys.stdout.write(' '.join(map(str, var)) + end)
def l(): return list(sp())
def sl(): return list(ssp())
def sp(): return map(int, data().split())
def ssp(): return map(str, data().split())
def l1d(n, val=0): return [val for i in range(n)]
def l2d(n, m, val=0): return [l1d(n, val) for j in range(m)]
for _ in range(int(data())):
n = int(data())
arr = l()
if arr[0] + arr[1] <= arr[-1]:
outa(1, 2, n)
continue
out(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for _ in range(t):
n=int(input())
l=list(map(int,input().split()))
f=0
for i in range(2,n):
if l[0]+l[1]<=l[i]:
f=1
print(1,2,i+1)
break
if f==0:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n=int(input())
k=list(map(int,input().split()))
if k[0]+k[1]<=k[n-1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import bisect
t = int(input())
ans = []
for _ in range(t):
n = int(input())
A = list(map(int, input().split()))
i = 0
j = 1
check_index = bisect.bisect_left(A, A[i] + A[j])
if check_index >= n:
ans.append([-1])
else:
k = check_index
ans.append([i+1, j+1, k+1])
for a in ans:
print(*a)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.Scanner;
public class Cf1398a {
private static void solve(int[] as) {
if (as[0] + as[1] > as[as.length - 1]) {
System.out.println("-1");
} else {
System.out.println(String.format("%d %d %d", 1, 2, as.length));
}
}
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
for (int test = input.nextInt(); test > 0; test--) {
int n = input.nextInt();
int[] as = new int[n];
for (int i = 0; i < n; i++) {
as[i] = input.nextInt();
}
solve(as);
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
for te in range(t):
n = int(input())
a = [int(x) for x in input().split()]
a.sort()
if (a[0] + a[1] <= a[n - 1]):
print(1, 2, n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
from collections import defaultdict as dd
import math
import sys
import string
input=sys.stdin.readline
def nn():
return int(input())
def li():
return list(input())
def mi():
return map(int, input().split())
def lm():
return list(map(int, input().split()))
def solve():
n = nn()
lens = lm()
if lens[0]+lens[1]<=lens[n-1]:
print(1,2,n)
return
print(-1)
return
q=nn()
for _ in range(q):
solve()
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
input = sys.stdin.readline
for nt in range(int(input())):
n = int(input())
a = list(map(int,input().split()))
if a[0]+a[1]<=a[-1]:
print (1,2,n)
else:
print (-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
from math import *
from collections import deque
from copy import deepcopy
import sys
def inp(): return sys.stdin.readline().rstrip("\r\n") #for fast input
def multi(): return map(int,input().split())
def strmulti(): return map(str, inp().split())
def lis(): return list(map(int, inp().split()))
def lcm(a,b): return (a*b)//gcd(a,b)
def ncr(n,r): return factorial(n) // (factorial(r) * factorial(max(n - r, 1)))
def stringlis(): return list(map(str, inp().split()))
def out(var): sys.stdout.write(str(var)) #for fast output, always take string
def printlist(a) :
print(' '.join(str(a[i]) for i in range(len(a))))
def isPrime(n) :
if (n <= 1) : return False
if (n <= 3) : return True
if (n % 2 == 0 or n % 3 == 0) : return False
i = 5
while(i * i <= n) :
if (n % i == 0 or n % (i + 2) == 0) :
return False
i = i + 6
return True
#copied functions end
#start coding
t=int(inp())
for _ in range(t):
n=int(input())
a=lis()
if(a[0]+a[1]>a[-1]):
print(-1)
continue
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
for (int i = 0; i < t; i++) {
long long int n;
cin >> n;
long long int a[n];
for (long long int j = 0; j < n; j++) {
cin >> a[j];
}
if (a[0] + a[1] <= a[n - 1])
cout << "1 2 " << n << endl;
else
cout << "-1" << endl;
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import math
def dtb(n):
return bin(n).replace("0b","")
def btd(n):
return int(n,2)
t=int(input())
for k in range(t):
n=int(input())
a=list(map(int,input().split()))[:n]
x,z=0,n-1
flag=0
for i in range(1,n-1):
if(a[i]+a[x]<=a[z] or a[i]+a[z]<=a[x] or a[x]+a[z]<=a[i]):
print(x+1,i+1,z+1)
flag=1
break
if flag==0:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
try:
for _ in range(int(input())):
a=int(input())
b=list(map(int,input().split()))
i=0
k=a-1
flag=True
j=a-2
while flag and i<j and j<k:
temp=b[k]-b[i]
if b[j]<=temp:
print(i+1,j+1,k+1)
flag=False
else:
j-=1
if flag:
print(-1)
except Exception as e:
print(e)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.*;
import static java.lang.Math.*;
public class Demo{
public static void main(String args[]){
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while(t-->0){
int n = in.nextInt();
long[] a = new long[n];
for (int i = 0; i < n; i++){
a[i] = in.nextInt();
}
for (int i = 2; i < n; i++){
if (a[0]+a[1]<=a[i]){
System.out.println("1 2 "+(i+1));
break;
} else if(i==n-1){
System.out.println(-1);
}
}
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long double EPS = 1e-10;
const long long INF = 1e18;
const long double PI = acos(-1.0L);
long long gcd(long long a, long long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
int main() {
int cnt = 1;
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
int a[n];
for (int i = 0; i < (n); i++) {
cin >> a[i];
}
if (a[0] + a[1] <= a[n - 1]) {
cout << "1 2 " << n << "\n";
} else {
cout << "-1\n";
}
}
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.Scanner;
public class BadTriangle {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt(), a[] = new int[n], i;
for (i = 0; i < n; i++) {
a[i] = in.nextInt();
}
System.out.println(a[0] + a[1] <= a[n - 1] ? "1 2 " + n : -1);
}
in.close();
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
for _ in range(t):
n = int(input())
a = list(map(int,input().split()))
if a[0] + a[1] <= a[-1]:
print(1,2,len(a))
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
r = ""
for i in range(t):
n = int(input())
a = []
a = input().split()
if int(a[0]) + int(a[1]) <= int(a[len(a) - 1]):
r += "1 2 " + str(len(a)) + "\n"
else:
r += "-1\n"
"""
for j in range(n):
b = int(a[j])
for j in range(n):
for k in range(n):
for z in range(n):
if (j != k) and (k != z) and (b[j] + b[k] <= b[z]):
r += str(i) + " " + str(j) + " " + str(k) + "\n"
break
"""
print(r)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
tests = int(input())
for test in range(tests):
num = int(input())
nums = list(map(int, input().split()))
if nums[0] + nums[1] <= nums[-1]:
print(1, 2, num)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
def input(): return sys.stdin.readline().strip()
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]
def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)]
def ceil(x, y=1): return int(-(-x // y))
def INT(): return int(input())
def MAP(): return map(int, input().split())
def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)]
def Yes(): print('Yes')
def No(): print('No')
def YES(): print('YES')
def NO(): print('NO')
INF = 10 ** 19
MOD = 10 ** 9 + 7
for _ in range(INT()):
N = INT()
A = LIST()
a, b, c = A[0], A[1], A[-1]
if a+b <= c:
print(1, 2, N)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
import random
from fractions import Fraction
from math import *
def input():
return sys.stdin.readline().strip()
def iinput():
return int(input())
def finput():
return float(input())
def tinput():
return input().split()
def linput():
return list(input())
def rinput():
return map(int, tinput())
def fiinput():
return map(float, tinput())
def flinput():
return list(fiinput())
def rlinput():
return list(map(int, input().split()))
def trinput():
return tuple(rinput())
def srlinput():
return sorted(list(map(int, input().split())))
def NOYES(fl):
if fl:
print("NO")
else:
print("YES")
def YESNO(fl):
if fl:
print("YES")
else:
print("NO")
def main():
n = iinput()
q = rlinput()
m2 = q.index(max(q))
mm2 = max(q)
m = q.index(min(q))
mm1 = min(q)
del q[m]
m1 = q.index(min(q))
if m1 >= m:
m1 += 1
q.sort()
if mm1 + min(q) <= mm2:
print(*sorted([m + 1, m1 + 1, m2 + 1]))
else:
print(-1)
for TESTING in range(iinput()):
main()
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int t, n, flag, j;
cin >> t;
int arr1[t];
for (int i = 0; i < t; i++) {
cin >> n;
int arr[n];
for (j = 0; j < n; j++) {
cin >> arr[j];
}
flag = 0;
for (j = 2; j < n; j++) {
if (arr[j] >= arr[0] + arr[1]) {
flag = 1;
break;
}
}
if (flag == 1)
arr1[i] = j + 1;
else
arr1[i] = -1;
}
for (int i = 0; i < t; i++) {
if (arr1[i] != -1)
cout << "1 2"
<< " " << arr1[i] << endl;
else
cout << "-1" << endl;
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for i in range(int(input())):
n=int(input())
arr=list(map(int,input().split()))
flag=0
for i in range(len(arr)-1):
for j in range(i+1,len(arr)-1):
if arr[i]+arr[j]<=arr[len(arr)-1]:
flag=1
print(i+1,j+1,len(arr))
m=len(arr)
arr.remove(arr[m-1])
break
break
if flag==0:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
def sieve():
n=10**5
s=[[] for i in range(n+1)]
for i in range(2,n+1,2):
s[i]=[2]
for i in range(3,n+1,2):
if(s[i]):
continue
else:
for j in range(i,n+1,i):
s[j].append(i)
return s
def prime():
n=10**5
s=[1 for i in range(n+1)]
for i in range(2,n+1):
if(s[i]==1):
for j in range(i*i,i<n+1,i):
s[j]=0
primes=[]
for i in range(2,n+1):
if(s[i]==1):
primes.append(i)
return primes
for cases in range(int(input())):
n=int(input())
l=list(map(int,input().split()))
a=l[0]
b=l[1]
c=l[-1]
if(c<a+b):
print(-1)
else:
print(1,2,len(l))
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for xyz in range(0,int(input())):
n=int(input())
l=list(map(int,input().split()))
if((l[0]+l[1])<=l[-1]):
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int t, n, i;
scanf("%d", &t);
while (t--) {
scanf("%d", &n);
vector<int> a(n);
for (i = 0; i < n; i++) scanf("%d", &a[i]);
if (a[0] + a[1] <= a[n - 1])
printf("1 2 %d\n", n);
else
printf("-1\n");
}
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
void solve() {
long long int n;
cin >> n;
vector<long long int> arr;
set<long long int> s;
for (int i = 0; i < n; i++) {
long long int val;
cin >> val;
arr.push_back(val);
}
bool temp = false;
long long int sum = arr[0] + arr[1];
for (int i = 2; i < n; i++) {
if (sum <= arr[i]) {
temp = true;
cout << 1 << " " << 2 << " " << i + 1 << '\n';
break;
}
}
if (!temp) {
cout << -1 << '\n';
}
}
int main() {
int t;
cin >> t;
while (t--) {
solve();
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
while(t):
t=t-1
n=int(input())
a=list(map(int,input().split()))
if(a[0]+a[1]<=a[-1]):
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.Scanner;
public class pb1 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
for (int ti = 0; ti < t; ti++) {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = in.nextInt();
int s1 = a[0]+a[1];
if (s1 <= a[n-1]) {
System.out.println("1 2 "+n);
} else {
System.out.println(-1);
}
}
in.close();
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
int arr[n];
for (int i = 0; i < n; i++) cin >> arr[i];
if (arr[0] + arr[1] > arr[n - 1])
cout << -1 << endl;
else
cout << "1"
<< " "
<< "2"
<< " " << n << endl;
}
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long n, a[100005], T, c;
int main() {
cin >> T;
for (long long j = 1; j <= T; j++) {
cin >> n;
long long op;
for (long long i = 1; i <= n; i++) {
cin >> a[i];
}
if (a[n] >= a[1] + a[2])
cout << "1 2 " << n << endl;
else
cout << "-1\n";
}
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
myList = []
for _ in range(t):
n = int(input())
a = list(map(int, input().split()))
if a[0] + a[1] > a[-1]:
myList.append([-1])
else:
elem = [1, 2, n]
myList.append(elem)
for thing in myList:
print(*thing)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
try:
for i1 in range(int(input())):
n=int(input())
a=list(map(int,input().split()))
t=0
if a[0]+a[1]<=a[-1] :
print(1,2,n)
else:
print(-1)
except:
pass
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for i in range(t):
n=int(input())
lista=list(map(int,input().split()))
if(lista[0]+lista[1]>lista[-1]):
print(-1)
else:
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
while(t):
n=int(input())
l=list(map(int,input().split()))
l.sort()
if(l[0]+l[1]<=l[-1]):
print(1,2,n)
else:
print(-1)
t=t-1
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
import math
import bisect
from sys import stdin, stdout
from math import gcd, floor, sqrt, log
from collections import defaultdict as dd
from bisect import bisect_left as bl, bisect_right as br
from collections import Counter
#sys.setrecursionlimit(100000000)
inp = lambda: int(input())
strng = lambda: input().strip()
jn = lambda x, l: x.join(map(str, l))
strl = lambda: list(input().strip())
mul = lambda: map(int, input().strip().split())
mulf = lambda: map(float, input().strip().split())
seq = lambda: list(map(int, input().strip().split()))
ceil = lambda x: int(x) if (x == int(x)) else int(x) + 1
ceildiv = lambda x, d: x // d if (x % d == 0) else x // d + 1
flush = lambda: stdout.flush()
stdstr = lambda: stdin.readline()
stdint = lambda: int(stdin.readline())
stdpr = lambda x: stdout.write(str(x))
stdarr = lambda: map(int, stdstr().split())
mod = 1000000007
for _ in range(stdint()):
n = stdint()
arr = list(stdarr())
a = arr[-1]
b = arr[1]
c = arr[0]
if(b+c > a):
print(-1)
else:
print(1, 2, n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
for i in range(t):
n = int(input())
a = list(map(int, input().split()))
found = False
for j in range(2, n):
if a[0] + a[1] <= a[j]:
print(1, 2, j + 1)
found = True
break
if not found:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
n = int(input())
a = []
b = []
for i in range(n):
s = input()
a.append(list(map(int, input().split())))
a[-1].sort()
if a[-1][0] + a[-1][1] > a[-1][-1]:
print(-1)
else:
print(1, 2, len(a[i]))
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
inp=sys.stdin.buffer.readline
inin=lambda typ=int: typ(inp())
inar=lambda typ=int: [typ(x) for x in inp().split()]
inst=lambda : inp().decode().strip()
_T_=inin()
for _t_ in range(_T_):
n=inin()
a=inar()
if a[0]+a[1]>a[n-1]:
print(-1)
else:
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
def calc(n,A):
f=A[0]
l=A[1]
bool=False
for i in range(2,n):
if A[i]>=f+l:
print(1,2,i+1)
bool =True
break
if bool is False:
print(-1)
for _ in range(int(input())):
n=int(input())
A=list(int(i)for i in input().split())
calc(n,A)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for i in range(t):
n=int(input())
arr=[int(item) for item in input().split()]
if(arr[0]+arr[1]<=arr[-1]):
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n = int(input())
a = list(map(int,input().split()))
s = a[0]+a[1]
t = a[-1]
if s <= t:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.*;
/**
__ __
( _) ( _)
/ / \\ / /\_\_
/ / \\ / / | \ \
/ / \\ / / |\ \ \
/ / , \ , / / /| \ \
/ / |\_ /| / / / \ \_\
/ / |\/ _ '_| \ / / / \ \\
| / |/ 0 \0\ / | | \ \\
| |\| \_\_ / / | \ \\
| | |/ \.\ o\o) / \ | \\
\ | /\\`v-v / | | \\
| \/ /_| \\_| / | | \ \\
| | /__/_ `-` / _____ | | \ \\
\| [__] \_/ |_________ \ | \ ()
/ [___] ( \ \ |\ | | //
| [___] |\| \| / |/
/| [____] \ |/\ / / ||
( \ [____ / ) _\ \ \ \| | ||
\ \ [_____| / / __/ \ / / //
| \ [_____/ / / \ | \/ //
| / '----| /=\____ _/ | / //
__ / / | / ___/ _/\ \ | ||
(/-(/-\) / \ (/\/\)/ | / | /
(/\/\) / / //
_________/ / /
\____________/ (
*/
public class Main {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-- >0) {
int n=sc.nextInt();
int[] arr=new int[n];
for(int i=0;i<n;i++) {
arr[i]=sc.nextInt();
}
solver(n,arr);
}
}
public static void solver(int n,int[] arr) {
for(int i=0;i<n-2;i++) {
if(arr[i]+arr[i+1]<=arr[n-1]) {
System.out.println((i+1)+" "+(i+2)+" "+n);
return;
}
}
System.out.println(-1);
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.Scanner;
public class BadTriangle {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int[] arr = new int[n];
for (int i = 0; i < arr.length; i++) {
arr[i] = sc.nextInt();
}
solve(arr, n);
}
}
private static void solve(int[] arr, int n) {
// TODO Auto-generated method stub
if (arr[0] + arr[1] > arr[n - 1]) System.out.println(-1);
else System.out.println(1 + " " + 2+ " " + n);
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
import math
import itertools
import functools
import collections
import operator
import fileinput
import copy
ORDA = 97 # a
def ii(): return int(input())
def mi(): return map(int, input().split())
def li(): return [int(i) for i in input().split()]
def lcm(a, b): return abs(a * b) // math.gcd(a, b)
def revn(n): return str(n)[::-1]
def dd(): return collections.defaultdict(int)
def ddl(): return collections.defaultdict(list)
def sieve(n):
if n < 2: return list()
prime = [True for _ in range(n + 1)]
p = 3
while p * p <= n:
if prime[p]:
for i in range(p * 2, n + 1, p):
prime[i] = False
p += 2
r = [2]
for p in range(3, n + 1, 2):
if prime[p]:
r.append(p)
return r
def divs(n, start=2):
r = []
for i in range(start, int(math.sqrt(n) + 1)):
if (n % i == 0):
if (n / i == i):
r.append(i)
else:
r.extend([i, n // i])
return r
def divn(n, primes):
divs_number = 1
for i in primes:
if n == 1:
return divs_number
t = 1
while n % i == 0:
t += 1
n //= i
divs_number *= t
def prime(n):
if n == 2: return True
if n % 2 == 0 or n <= 1: return False
sqr = int(math.sqrt(n)) + 1
for d in range(3, sqr, 2):
if n % d == 0: return False
return True
def convn(number, base):
new_number = 0
while number > 0:
new_number += number % base
number //= base
return new_number
def cdiv(n, k): return n // k + (n % k != 0)
def ispal(s):
for i in range(len(s) // 2 + 1):
if s[i] != s[-i - 1]:
return False
return True
for _ in range(ii()):
n = ii()
a = li()
if a[0] + a[1] <= a[-1]:
print(1, 2, n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
while(t>0):
t -= 1
n = int(input())
line = input().split(" ")
numbers = []
for i in line:
numbers.append(int(i))
found = False
# print(numbers)
aa = -1
bb = -1
cc = -1
i = 0
j = 1
k = n - 1
a = numbers[i]
b = numbers[j]
c = numbers[k]
if a+b>c and a+c>b and b+c>a:
found = True
else:
found = False
aa = i + 1
bb = j + 1
cc = k + 1
if found:
print("-1")
else:
print("{} {} {}".format(aa, bb, cc))
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for i in range(int(input())):
n = int(input())
L = list(map(int, input().split()))
if L[n - 1] >= L[0] + L[1]:
print(1, 2, n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
answer = [0]*t
for i in range(t):
s = int(input())
a = [int(i) for i in input().split()]
if a[0] + a[1] <= a[-1]:
answer[i] = '1 2 '+str(s)
else:
answer[i] = -1
for i in range(t):
print(answer[i])
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
T=int(input())
for t in range(T):
n=int(input())
A=list(map(int,input().split()))
if A[0]+A[1]<=A[-1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for _ in range(t):
n=int(input())
a=list(map(int,input().split()))
if a[-1]>=a[0]+a[1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for t in range(int(input())):
n=int(input())
arr=[int(k) for k in input().split()]
if arr[0]+arr[1]<=arr[-1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys,math
try:sys.stdin,sys.stdout=open('input.txt','r'),open('out.txt','w')
except:pass
from sys import stdin,stdout;mod=int(1e9 + 7);from statistics import mode
from collections import *;from math import ceil,floor,inf,factorial,gcd,log2,sqrt,log
ii1=lambda:int(stdin.readline().strip())
is1=lambda:stdin.readline().strip()
iia=lambda:list(map(int,stdin.readline().strip().split()))
isa=lambda:stdin.readline().strip().split()
# print('{:.3f}'.format(1),round(1.123456789,4))
# sys.setrecursionlimit(500000)
def lcm(a,b): return (a*b)//gcd(a,b)
def setbits(n):return bin(n).count('1')
def resetbits(n):return bin(n).count('0')
def modinv(n,p):return pow(n,p-2,p)
def ncr(n,r):
num,den=1,1;r=min(n,n-r)
for i in range(r):num*=(n-i);den*=(i+1)
return num//den
def ncr_p(n, r, p):
num,den=1,1;r=min(r,n-r)
for i in range(r):num = (num * (n - i)) % p ;den = (den * (i + 1)) % p
return (num * modinv(den,p)) % p
def isPrime(num) :
if num<=1:return False
if num==2 or n==3:return True
if (num % 2 == 0 or num % 3 == 0) :return False
m = int(num**0.5)+1
for i in range(5,m,6):
if (num % i == 0 or num % (i + 2) == 0) :return False
return True
def bin_search(arr, low, high, val):
while low <= high:
mid = low + (high - low) // 2;
if arr[mid] == val:return mid
elif arr[mid] < val:low = mid + 1
else:high = mid - 1
return -1
def sumofdigit(num):
count=0;
while num : count+=num % 10;num //= 10;
return count;
def inputmatrix():
r,c=iia();mat=[0]*r;
for i in range(r):mat[i]=iia();
return r,c,mat;
def prefix_sum(n,arr):
for i in range(1,n):arr[i]+=arr[i-1]
return arr;
def binomial(n, k):
if 0 <= k <= n:
ntok = 1;ktok = 1
for t in range(1, min(k, n - k) + 1):ntok *= n;ktok *= t;n -= 1
return ntok // ktok
else:return 0
def divisors(n):
res = [];
for i in range(1,ceil(sqrt(n))+1):
if n%i == 0:
if i==n//i:res.append(i)
else:res.append(i);res.append(n//i)
return res;
# code start from here-control and click on different places to change samethings to diff.
for _ in range(ii1()):
n = ii1()
arr = iia()
if arr[-1]>=arr[0]+arr[1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
input()
arr=[int(x) for x in input().split()]
print(*([1,2,len(arr)],[-1])[arr[0]+arr[1]>arr[-1]])
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
if ((long long)a[0] + a[1] > (long long)a[n - 1])
cout << -1 << '\n';
else {
cout << 1 << ' ' << 2 << ' ' << n << '\n';
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
def main():
t = int(input())
for _ in range(t):
n = int(input())
a = list(map(int, input().split()))
x, y = a[0], a[1]
z = x + y
ans = 0
for i in range(2, n):
if a[i] >= z:
ans = i+1
break
if ans == 0:
print(-1)
else:
print(1, 2, ans)
main()
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
while (t):
n = int(input())
a = input().split()
a = list(map(int,a))
if (a[0]+a[1] <= a[-1]):
print(1,2,n)
else:
print(-1)
t -= 1
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range((int(input()))):
n=int(input())
a=list(map(int,input().split()))
ok=False
for i in range(n-1):
#print(a[i]+a[i+1]-a[n-1-i])
if a[i]+a[i+1]<=a[n-1-i]:
ok=True
print(i+1,i+2,n-i)
break
if not ok:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in " "*int(input()):
n=int(input())
a=list(map(int,input().split()))
if a[0] + a[1] > a[-1]:
print(-1)
else:
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
//package faltu;
import java.util.Arrays;
import java.util.Scanner;
public class Atlassiantest {
public static Scanner scn = new Scanner(System.in);
public static void main(String[] args) {
// TODO Auto-generated method stub
int t=scn.nextInt();
for(int w=0;w<t;w++){
int n=scn.nextInt();
int arr[]=new int[n];
for(int i=0;i<n;i++){
arr[i]=scn.nextInt();
}
Arrays.sort(arr);
if(arr[0]+arr[1]>arr[n-1]){
System.out.println(-1);
}else{
System.out.println(1+" "+2+" "+n);
}
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for s in[*open(0)][2::2]:x,y,*a,z=map(int,s.split());print(*([1,2,len(a)+3],[-1])[x+y>z])
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
# for s in[*open(0)][2::2]:a=s;print(s)
for s in[*open(0)][2::2]:x,y,*a,z=map(int,s.split());print(*([1,2,len(a)+3],[-1])[x+y>z])
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range (int(input())):
n = int(input())
a = [int(i) for i in input().split()]
if a[0]+a[1]<=a[-1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n = int(input())
a = list(map(int, input().split()))
if a[0]+a[1] <= a[-1]:
print("1 2",n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n=int(input())
l=list(map(int,input().split()))[:n]
if l[0]+l[1]<=l[-1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for T in range(int(input())):
n = int(input())
l= list(map(int,input().split()))
a1 = l[0]
a2 = l[1]
a3 = l[-1]
if(a1+a2 <= a3):
print(str(1)+" "+str(2)+" "+str(n))
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n = int(input())
s = list(map(int,input().split()))
k = s[0] + s[1]
if k <= s[-1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
for _ in range(t):
n = int(input())
a = list(map(int,input().split()))
if a[0] + a[1] <= a[n - 1]:
print(1, 2, n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.StringTokenizer;
public class ProbA {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int T = Integer.parseInt(br.readLine());
for (int i = 0; i < T; i++) {
int N = Integer.parseInt(br.readLine());
String str = br.readLine();
String nums[]= str.split(" ");
if (Integer.parseInt(nums[0])+Integer.parseInt(nums[1]) > Integer.parseInt(nums[N-1])) {
System.out.println("-1");
} else {
System.out.println("1 2 " + N);
}
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
n1=int(input())
for test in range (n1):
n = int(input())
set1=[int(y) for y in input().split()]
m=set1[0]+set1[1]
booli = False
track=0
for i in range(2,n):
if(set1[i]>=m):
track=i+1
break
if(track!=0):
print("1 "+"2 "+str(track))
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for i in range(t):
n=int(input())
a=list(map(int,input().split()))
if a[0]+a[1]<=a[n-1]:
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t= int(input())
ans=[]
for i in range(t):
n= int(input())
d=[int(i) for i in input().split()]
q=1
x,y=d[0],d[1]
for j in range(2,n):
if (x+y)<=d[j]:
ans.append((1,2,j+1))
q=0
break
if q!=0:
ans.append(-1)
for i in ans:
if i!=-1:
print(i[0],i[1],i[2])
else:
print(i)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys,math
from collections import deque,defaultdict
import operator as op
from functools import reduce
sys.setrecursionlimit(10**6)
I=sys.stdin.readline
def ii():
return int(I().strip())
def li():
return list(map(int,I().strip().split()))
def mi():
return map(int,I().strip().split())
def ncr(n, r):
r = min(r, n-r)
numer = reduce(op.mul, range(n, n-r, -1), 1)
denom = reduce(op.mul, range(1, r+1), 1)
return numer // denom
def gcd(x, y):
while y:
x, y = y, x % y
return x
def main():
for _ in range(ii()):
n=ii()
arr=li()
if arr[0]+arr[1]<=arr[-1]:
print(1,2,n)
else:
print(-1)
if __name__ == '__main__':
main()
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python2
|
for i in xrange(int(raw_input())):
n = int(raw_input())
ar = map(int, raw_input().split())
deu = False
if (not abs(ar[0] - ar[1]) < ar[-1] < ar[0] + ar[1]) or (not abs(ar[0] - ar[-1]) < ar[1] < ar[0] + ar[-1]) or (not abs(ar[-1] - ar[1]) < ar[0] < ar[-1] + ar[1]):
deu = True
print 1, 2, n
if not deu:
print -1
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
for i in range(t):
n = int(input())
arr = list(map(int, input().split()))
if (arr[0] + arr[1] > arr[-1]):
print(-1)
else:
print(1, 2, n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
long long int a[50004];
int main() {
int t;
scanf("%d", &t);
while (t--) {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%lld", &a[i]);
if (a[1] + a[2] <= a[n]) {
printf("%d %d %d\n", 1, 2, n);
} else
printf("-1\n");
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n=int(input())
arr=list(map(int,input().split()))
if(arr[0]+arr[1]<=arr[-1]):
print(1,2,n)
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
int cas = 0;
while (t--) {
int n;
cin >> n;
int a[n], a1 = 0, a2 = 0, a3 = 0;
for (int i = 0; i < n; i++) cin >> a[i];
if (a[0] + a[1] <= a[n - 1])
cout << 1 << " " << 2 << " " << n << endl;
else
cout << -1 << endl;
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
import java.util.Scanner;
public class Main {
public static void main(String args[]) {
Scanner scanner = new Scanner(System.in);
int t = scanner.nextInt();
while (t-- > 0) {
int n = scanner.nextInt();
int x = 0;
int y = 0;
int z = 0;
for (int i=0; i<n; i++) {
if (i==0) {
x = scanner.nextInt();
} else if (i == n-1) {
z = scanner.nextInt();
} else if (i == 1) {
y = scanner.nextInt();
} else {
scanner.nextInt();
}
}
if (x+y > z && y+z > x && z+x > y)
System.out.println(-1);
else
System.out.println(1 + " " + 2 + " " + n);
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
import sys
import math
from collections import defaultdict,Counter
# input=sys.stdin.readline
# def print(x):
# sys.stdout.write(str(x)+"\n")
# sys.stdout=open("CP1/output.txt",'w')
# sys.stdin=open("CP1/input.txt",'r')
# m=pow(10,9)+7
t=int(input())
for i in range(t):
n=int(input())
a=list(map(int,input().split()))
if a[0]+a[1]>a[-1]:
print(-1)
else:
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for i in range(int(input())):
n = int(input())
A = list(map(int,input().split()))
ans = []
if (abs(A[0]-A[n-1])>=A[1]):
ans.append(1)
ans.append(2)
ans.append(n)
elif A[0] >= A[n-1]+A[n-2]:
ans.append(1)
ans.append(n-1)
ans.append(n)
else:ans.append(-1)
print(' '.join(map(str, ans)))
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
def process():
n=int(input())
li=list(map(int,input().split()))
li.sort()
hashi={}
c0=1
for i in li:
if i in hashi:
hashi[i].append(c0)
else:
hashi[i]=[c0]
c0+=1
a,b,c=li[0],li[1],li[-1]
if(a+b>c):
print("-1")
else:
ans=[hashi[a].pop(),hashi[b].pop(),hashi[c].pop()]
ans.sort()
print(ans[0],ans[1],ans[2])
tests=int(input())
for i in range(tests):
process()
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
from collections import defaultdict
import copy
def ii():return int(input())
def si():return input()
def li():return list(map(int,input().split()))
def mi():return map(int,input().split())
t=ii()
for _ in range(t):
n=ii()
arr=li()
flag=False
a=arr[0]
b=arr[1]
for i in range(n-1,1,-1):
if (a+b<=arr[i]):
print(1,2,i+1)
flag=True
break
if(flag==False):
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
def non_degenerate(t, N):
for k in range(2, N):
if t[0]+t[1] <= t[k]:
return str(1)+" "+ str(2)+" "+str(k+1)
return -1
I=input
for _ in range(int(I())):
I()
t= list(map(int,I().split()))
print(non_degenerate(t, len(t)))
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
res = ''
for _ in range(int(input())):
n = int(input())
a = list(map(int, input().split()))
if a[n-1] >= a[0] + a[1]: res += f'1 2 {n}\n'
else: res += '-1\n'
print(res)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int t;
scanf("%d", &t);
for (int i = 0; i < t; i++) {
int n;
scanf("%d", &n);
vector<int> a(n);
for (int j = 0; j < n; j++) scanf("%d", &a[j]);
if (a[0] + a[1] <= a[n - 1])
printf("%d %d %d\n", 1, 2, n);
else
printf("-1\n");
}
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
java
|
// "static void main" must be defined in a public class.
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner s =new Scanner(System.in);
int n=s.nextInt();
for(int i=0;i<n;i++)
{
int t=s.nextInt();
int[] arr= new int[t];
for(int j=0;j<t;j++)
{
arr[j]=s.nextInt();
}
int a = arr[0];
int b = arr[1];
int c = arr[t-1];
int x=a+b;
int y= b+c;
int z=c+a;
if(x<=c || y<=a || z<=b)
{
System.out.println(1+" "+2+" "+(t));
continue;
}
int a1 = arr[0];
int b1 = arr[t-2];
int c1 = arr[t-1];
int x1=a1+b1;
int y1= b1+c1;
int z1=c1+a1;
if(x1<=c1 || y1<=a1 || z1<=b1)
{
System.out.println(1+" "+(t-2)+" "+(t-1));
continue;
}
System.out.println("-1");
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
# for #!/usr/bin/env python
import os
import sys
from io import BytesIO, IOBase
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
class union_find:
def __init__(self, n):
self.n = n
self.rank = [0]*n
self.parent = [int(j) for j in range(n)]
def union(self,i,j):
i = self.find(i)
j = self.find(j)
if self.rank[i] == self.rank[j]:
self.parent[i] = j
self.rank[j] += 1
elif self.rank[i] > self.rank[j]:
self.parent[j] = i
else:
self.parent[i] = j
def find(self, i):
temp = i
if self.parent[temp] != temp:
self.parent[temp] = self.find(self.parent[temp])
return self.parent[temp]
from math import log2, ceil
from collections import deque, Counter as CC
def main():
# Enter your code here. Read input from STDIN. Print output to STDOUT
for t in range(int(input())):
n = int(input())
l = [int(j) for j in input().split()]
if(l[0]+l[1]<=l[-1]):
print(1,2,n)
else:
print(-1)
if __name__ == "__main__":
main()
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, a, c, d;
cin >> n;
while (n--) {
int i, j, k, w, q;
cin >> a;
long g, h, e[a], m = 0;
for (i = 1; i <= a; i++) cin >> e[i];
for (i = 2; i <= a - 1; i++) {
if (e[i] + e[i - 1] <= e[a - i + 2]) {
m++;
g = i - 1;
h = i;
k = a - i + 2;
break;
}
}
if (m > 0) {
cout << g << " " << h << " " << k << endl;
} else {
cout << "-1" << endl;
}
}
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
# cook your dish here
from sys import stdin,stdout
from collections import Counter
from itertools import permutations
import bisect
import math
I=lambda: map(int,stdin.readline().split())
I1=lambda: stdin.readline()
for _ in range(int(I1())):
n=int(I1())
l=list(I())
x,y,z=l[0],l[1],l[n-1]
if(x+y>z): print(-1)
else: print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n = int(input())
a = list(map(int, input().split()))
if a[n-1] >= a[0] + a[1]:
print("1 2 " + str(n))
else:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
long long int t;
cin >> t;
while (t--) {
long long int n;
cin >> n;
long long int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] + a[1] <= a[n - 1]) {
cout << 1 << " " << 2 << " " << n << endl;
} else {
cout << -1 << endl;
}
}
return 0;
}
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
t = int(input())
while t > 0:
n = int(input())
arr = list(map(int, input().split()))
if arr[0]+arr[1] <= arr[-1]:
print(1,2,n)
else:
print(-1)
t -= 1
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for i in range(int(input())):
n=int(input())
a=[int(x) for x in input().split()]
k=True
if (a[0]+a[1])<=a[-1]:
print(1,2,n)
k=False
if k:
print(-1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
def find(a):
result = []
i = a[0]
j = a[1]
if(i+j<= a[-1]):
result = [1,2,len(a)]
return result
return -1
t = int(input())
for i in range(t):
n = int(input())
a = list(map(int,input().split()))
answer = find(a)
if(answer!=-1):
print(*answer)
else:
print(answer)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n=int(input())
l=list(map(int, input().split()))
a=l[0]+l[1]
f=1
for i in range(2,n):
if(a<=l[i]):
f=0
break
if(f):
print(-1)
else:
print(1,2,i+1)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
from collections import deque
from math import *
import heapq
from random import *
import sys
from copy import deepcopy
t=int(input())
for i in range(t):
n=int(input())
l=list(map(int,input().split()))
a=l[0]
b=l[1]
c=l[-1]
if a==0 and b==0 and c==0:
print(1,2,n)
else:
if a+b>c:
print(-1)
else:
print(1,2,n)
|
1398_A. Bad Triangle
|
You are given an array a_1, a_2, ... , a_n, which is sorted in non-decreasing order (a_i β€ a_{i + 1}).
Find three indices i, j, k such that 1 β€ i < j < k β€ n and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to a_i, a_j and a_k (for example it is possible to construct a non-degenerate triangle with sides 3, 4 and 5 but impossible with sides 3, 4 and 7). If it is impossible to find such triple, report it.
Input
The first line contains one integer t (1 β€ t β€ 1000) β the number of test cases.
The first line of each test case contains one integer n (3 β€ n β€ 5 β
10^4) β the length of the array a.
The second line of each test case contains n integers a_1, a_2, ... , a_n (1 β€ a_i β€ 10^9; a_{i - 1} β€ a_i) β the array a.
It is guaranteed that the sum of n over all test cases does not exceed 10^5.
Output
For each test case print the answer to it in one line.
If there is a triple of indices i, j, k (i < j < k) such that it is impossible to construct a non-degenerate triangle having sides equal to a_i, a_j and a_k, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
Example
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
Note
In the first test case it is impossible with sides 6, 11 and 18. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n"
]
}
|
{
"input": [
"3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"1\n6\n1 1 1 2 2 3\n",
"1\n3\n21 78868 80000\n",
"1\n14\n1 2 2 2 2 2 2 2 2 2 2 2 2 4\n",
"1\n3\n78788 78788 157577\n",
"1\n3\n5623 5624 10000000\n",
"1\n10\n1 7 7 7 7 9 9 9 9 9\n",
"1\n3\n5739271 5739272 20000000\n",
"1\n3\n1 65535 10000000\n",
"1\n3\n78788 78788 100000\n",
"1\n15\n3 4 7 8 9 10 11 12 13 14 15 16 32 36 39\n"
],
"output": [
"1 2 7\n-1\n1 2 3\n",
"1 2 6\n",
"1 2 3\n",
"1 2 14\n",
"1 2 3\n",
"1 2 3\n",
"1 2 10\n",
"1 2 3\n",
"1 2 3\n",
"-1\n",
"1 2 15\n"
]
}
|
CORRECT
|
python3
|
#!/usr/bin/env python
import os
import sys
from io import BytesIO, IOBase
def main():
for _ in range(int(input())):
n = int(input())
a = list(map(int, input().split()))
# flag = 0
# for i in range(n):
# for j in range(i+1, n):
# for k in range(j+1, n):
# if a[i] + a[j] <= a[k] or a[j] + a[k] <= a[i] or a[k] + a[i] <= a[j]:
# flag = 1
# break
# if flag:
# break
# if flag:
# break
# if flag:
# print(i+1, j+1, k+1)
# else:
# print(-1)
if a[0] + a[1] <= a[n-1]:
print(1, 2, n)
else:
print(-1)
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
main()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.