|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef EIGEN_MATRIX_FUNCTION_H |
|
|
#define EIGEN_MATRIX_FUNCTION_H |
|
|
|
|
|
#include "StemFunction.h" |
|
|
|
|
|
|
|
|
namespace Eigen { |
|
|
|
|
|
namespace internal { |
|
|
|
|
|
|
|
|
static const float matrix_function_separation = 0.1f; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename MatrixType> |
|
|
class MatrixFunctionAtomic |
|
|
{ |
|
|
public: |
|
|
|
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
typedef typename stem_function<Scalar>::type StemFunction; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MatrixFunctionAtomic(StemFunction f) : m_f(f) { } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MatrixType compute(const MatrixType& A); |
|
|
|
|
|
private: |
|
|
StemFunction* m_f; |
|
|
}; |
|
|
|
|
|
template <typename MatrixType> |
|
|
typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A) |
|
|
{ |
|
|
typedef typename plain_col_type<MatrixType>::type VectorType; |
|
|
Index rows = A.rows(); |
|
|
const MatrixType N = MatrixType::Identity(rows, rows) - A; |
|
|
VectorType e = VectorType::Ones(rows); |
|
|
N.template triangularView<Upper>().solveInPlace(e); |
|
|
return e.cwiseAbs().maxCoeff(); |
|
|
} |
|
|
|
|
|
template <typename MatrixType> |
|
|
MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A) |
|
|
{ |
|
|
|
|
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
|
Index rows = A.rows(); |
|
|
Scalar avgEival = A.trace() / Scalar(RealScalar(rows)); |
|
|
MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows); |
|
|
RealScalar mu = matrix_function_compute_mu(Ashifted); |
|
|
MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows); |
|
|
MatrixType P = Ashifted; |
|
|
MatrixType Fincr; |
|
|
for (Index s = 1; double(s) < 1.1 * double(rows) + 10.0; s++) { |
|
|
Fincr = m_f(avgEival, static_cast<int>(s)) * P; |
|
|
F += Fincr; |
|
|
P = Scalar(RealScalar(1)/RealScalar(s + 1)) * P * Ashifted; |
|
|
|
|
|
|
|
|
const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff(); |
|
|
const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff(); |
|
|
if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) { |
|
|
RealScalar delta = 0; |
|
|
RealScalar rfactorial = 1; |
|
|
for (Index r = 0; r < rows; r++) { |
|
|
RealScalar mx = 0; |
|
|
for (Index i = 0; i < rows; i++) |
|
|
mx = (std::max)(mx, std::abs(m_f(Ashifted(i, i) + avgEival, static_cast<int>(s+r)))); |
|
|
if (r != 0) |
|
|
rfactorial *= RealScalar(r); |
|
|
delta = (std::max)(delta, mx / rfactorial); |
|
|
} |
|
|
const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff(); |
|
|
if (mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) |
|
|
break; |
|
|
} |
|
|
} |
|
|
return F; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename Index, typename ListOfClusters> |
|
|
typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOfClusters& clusters) |
|
|
{ |
|
|
typename std::list<Index>::iterator j; |
|
|
for (typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) { |
|
|
j = std::find(i->begin(), i->end(), key); |
|
|
if (j != i->end()) |
|
|
return i; |
|
|
} |
|
|
return clusters.end(); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename EivalsType, typename Cluster> |
|
|
void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters) |
|
|
{ |
|
|
typedef typename EivalsType::RealScalar RealScalar; |
|
|
for (Index i=0; i<eivals.rows(); ++i) { |
|
|
|
|
|
typename std::list<Cluster>::iterator qi = matrix_function_find_cluster(i, clusters); |
|
|
if (qi == clusters.end()) { |
|
|
Cluster l; |
|
|
l.push_back(i); |
|
|
clusters.push_back(l); |
|
|
qi = clusters.end(); |
|
|
--qi; |
|
|
} |
|
|
|
|
|
|
|
|
for (Index j=i+1; j<eivals.rows(); ++j) { |
|
|
if (abs(eivals(j) - eivals(i)) <= RealScalar(matrix_function_separation) |
|
|
&& std::find(qi->begin(), qi->end(), j) == qi->end()) { |
|
|
typename std::list<Cluster>::iterator qj = matrix_function_find_cluster(j, clusters); |
|
|
if (qj == clusters.end()) { |
|
|
qi->push_back(j); |
|
|
} else { |
|
|
qi->insert(qi->end(), qj->begin(), qj->end()); |
|
|
clusters.erase(qj); |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
template <typename ListOfClusters, typename Index> |
|
|
void matrix_function_compute_cluster_size(const ListOfClusters& clusters, Matrix<Index, Dynamic, 1>& clusterSize) |
|
|
{ |
|
|
const Index numClusters = static_cast<Index>(clusters.size()); |
|
|
clusterSize.setZero(numClusters); |
|
|
Index clusterIndex = 0; |
|
|
for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) { |
|
|
clusterSize[clusterIndex] = cluster->size(); |
|
|
++clusterIndex; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
template <typename VectorType> |
|
|
void matrix_function_compute_block_start(const VectorType& clusterSize, VectorType& blockStart) |
|
|
{ |
|
|
blockStart.resize(clusterSize.rows()); |
|
|
blockStart(0) = 0; |
|
|
for (Index i = 1; i < clusterSize.rows(); i++) { |
|
|
blockStart(i) = blockStart(i-1) + clusterSize(i-1); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
template <typename EivalsType, typename ListOfClusters, typename VectorType> |
|
|
void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster) |
|
|
{ |
|
|
eivalToCluster.resize(eivals.rows()); |
|
|
Index clusterIndex = 0; |
|
|
for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) { |
|
|
for (Index i = 0; i < eivals.rows(); ++i) { |
|
|
if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) { |
|
|
eivalToCluster[i] = clusterIndex; |
|
|
} |
|
|
} |
|
|
++clusterIndex; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
template <typename DynVectorType, typename VectorType> |
|
|
void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation) |
|
|
{ |
|
|
DynVectorType indexNextEntry = blockStart; |
|
|
permutation.resize(eivalToCluster.rows()); |
|
|
for (Index i = 0; i < eivalToCluster.rows(); i++) { |
|
|
Index cluster = eivalToCluster[i]; |
|
|
permutation[i] = indexNextEntry[cluster]; |
|
|
++indexNextEntry[cluster]; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
template <typename VectorType, typename MatrixType> |
|
|
void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T) |
|
|
{ |
|
|
for (Index i = 0; i < permutation.rows() - 1; i++) { |
|
|
Index j; |
|
|
for (j = i; j < permutation.rows(); j++) { |
|
|
if (permutation(j) == i) break; |
|
|
} |
|
|
eigen_assert(permutation(j) == i); |
|
|
for (Index k = j-1; k >= i; k--) { |
|
|
JacobiRotation<typename MatrixType::Scalar> rotation; |
|
|
rotation.makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k)); |
|
|
T.applyOnTheLeft(k, k+1, rotation.adjoint()); |
|
|
T.applyOnTheRight(k, k+1, rotation); |
|
|
U.applyOnTheRight(k, k+1, rotation); |
|
|
std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1)); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename MatrixType, typename AtomicType, typename VectorType> |
|
|
void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT) |
|
|
{ |
|
|
fT.setZero(T.rows(), T.cols()); |
|
|
for (Index i = 0; i < clusterSize.rows(); ++i) { |
|
|
fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)) |
|
|
= atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename MatrixType> |
|
|
MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C) |
|
|
{ |
|
|
eigen_assert(A.rows() == A.cols()); |
|
|
eigen_assert(A.isUpperTriangular()); |
|
|
eigen_assert(B.rows() == B.cols()); |
|
|
eigen_assert(B.isUpperTriangular()); |
|
|
eigen_assert(C.rows() == A.rows()); |
|
|
eigen_assert(C.cols() == B.rows()); |
|
|
|
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
|
|
|
Index m = A.rows(); |
|
|
Index n = B.rows(); |
|
|
MatrixType X(m, n); |
|
|
|
|
|
for (Index i = m - 1; i >= 0; --i) { |
|
|
for (Index j = 0; j < n; ++j) { |
|
|
|
|
|
|
|
|
Scalar AX; |
|
|
if (i == m - 1) { |
|
|
AX = 0; |
|
|
} else { |
|
|
Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i); |
|
|
AX = AXmatrix(0,0); |
|
|
} |
|
|
|
|
|
|
|
|
Scalar XB; |
|
|
if (j == 0) { |
|
|
XB = 0; |
|
|
} else { |
|
|
Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j); |
|
|
XB = XBmatrix(0,0); |
|
|
} |
|
|
|
|
|
X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j)); |
|
|
} |
|
|
} |
|
|
return X; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename MatrixType, typename VectorType> |
|
|
void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT) |
|
|
{ |
|
|
typedef internal::traits<MatrixType> Traits; |
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
static const int Options = MatrixType::Options; |
|
|
typedef Matrix<Scalar, Dynamic, Dynamic, Options, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType; |
|
|
|
|
|
for (Index k = 1; k < clusterSize.rows(); k++) { |
|
|
for (Index i = 0; i < clusterSize.rows() - k; i++) { |
|
|
|
|
|
DynMatrixType A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)); |
|
|
DynMatrixType B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k)); |
|
|
DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)) |
|
|
* T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k)); |
|
|
C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k)) |
|
|
* fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k)); |
|
|
for (Index m = i + 1; m < i + k; m++) { |
|
|
C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m)) |
|
|
* T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k)); |
|
|
C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m)) |
|
|
* fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k)); |
|
|
} |
|
|
fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k)) |
|
|
= matrix_function_solve_triangular_sylvester(A, B, C); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> |
|
|
struct matrix_function_compute |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename AtomicType, typename ResultType> |
|
|
static void run(const MatrixType& A, AtomicType& atomic, ResultType &result); |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename MatrixType> |
|
|
struct matrix_function_compute<MatrixType, 0> |
|
|
{ |
|
|
template <typename MatA, typename AtomicType, typename ResultType> |
|
|
static void run(const MatA& A, AtomicType& atomic, ResultType &result) |
|
|
{ |
|
|
typedef internal::traits<MatrixType> Traits; |
|
|
typedef typename Traits::Scalar Scalar; |
|
|
static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime; |
|
|
static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime; |
|
|
|
|
|
typedef std::complex<Scalar> ComplexScalar; |
|
|
typedef Matrix<ComplexScalar, Rows, Cols, 0, MaxRows, MaxCols> ComplexMatrix; |
|
|
|
|
|
ComplexMatrix CA = A.template cast<ComplexScalar>(); |
|
|
ComplexMatrix Cresult; |
|
|
matrix_function_compute<ComplexMatrix>::run(CA, atomic, Cresult); |
|
|
result = Cresult.real(); |
|
|
} |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename MatrixType> |
|
|
struct matrix_function_compute<MatrixType, 1> |
|
|
{ |
|
|
template <typename MatA, typename AtomicType, typename ResultType> |
|
|
static void run(const MatA& A, AtomicType& atomic, ResultType &result) |
|
|
{ |
|
|
typedef internal::traits<MatrixType> Traits; |
|
|
|
|
|
|
|
|
const ComplexSchur<MatrixType> schurOfA(A); |
|
|
eigen_assert(schurOfA.info()==Success); |
|
|
MatrixType T = schurOfA.matrixT(); |
|
|
MatrixType U = schurOfA.matrixU(); |
|
|
|
|
|
|
|
|
std::list<std::list<Index> > clusters; |
|
|
matrix_function_partition_eigenvalues(T.diagonal(), clusters); |
|
|
|
|
|
|
|
|
Matrix<Index, Dynamic, 1> clusterSize; |
|
|
matrix_function_compute_cluster_size(clusters, clusterSize); |
|
|
|
|
|
|
|
|
Matrix<Index, Dynamic, 1> blockStart; |
|
|
matrix_function_compute_block_start(clusterSize, blockStart); |
|
|
|
|
|
|
|
|
Matrix<Index, Dynamic, 1> eivalToCluster; |
|
|
matrix_function_compute_map(T.diagonal(), clusters, eivalToCluster); |
|
|
|
|
|
|
|
|
Matrix<Index, Traits::RowsAtCompileTime, 1> permutation; |
|
|
matrix_function_compute_permutation(blockStart, eivalToCluster, permutation); |
|
|
|
|
|
|
|
|
matrix_function_permute_schur(permutation, U, T); |
|
|
|
|
|
|
|
|
MatrixType fT; |
|
|
matrix_function_compute_block_atomic(T, atomic, blockStart, clusterSize, fT); |
|
|
matrix_function_compute_above_diagonal(T, blockStart, clusterSize, fT); |
|
|
result = U * (fT.template triangularView<Upper>() * U.adjoint()); |
|
|
} |
|
|
}; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Derived> class MatrixFunctionReturnValue |
|
|
: public ReturnByValue<MatrixFunctionReturnValue<Derived> > |
|
|
{ |
|
|
public: |
|
|
typedef typename Derived::Scalar Scalar; |
|
|
typedef typename internal::stem_function<Scalar>::type StemFunction; |
|
|
|
|
|
protected: |
|
|
typedef typename internal::ref_selector<Derived>::type DerivedNested; |
|
|
|
|
|
public: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename ResultType> |
|
|
inline void evalTo(ResultType& result) const |
|
|
{ |
|
|
typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType; |
|
|
typedef typename internal::remove_all<NestedEvalType>::type NestedEvalTypeClean; |
|
|
typedef internal::traits<NestedEvalTypeClean> Traits; |
|
|
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; |
|
|
typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType; |
|
|
|
|
|
typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType; |
|
|
AtomicType atomic(m_f); |
|
|
|
|
|
internal::matrix_function_compute<typename NestedEvalTypeClean::PlainObject>::run(m_A, atomic, result); |
|
|
} |
|
|
|
|
|
Index rows() const { return m_A.rows(); } |
|
|
Index cols() const { return m_A.cols(); } |
|
|
|
|
|
private: |
|
|
const DerivedNested m_A; |
|
|
StemFunction *m_f; |
|
|
}; |
|
|
|
|
|
namespace internal { |
|
|
template<typename Derived> |
|
|
struct traits<MatrixFunctionReturnValue<Derived> > |
|
|
{ |
|
|
typedef typename Derived::PlainObject ReturnType; |
|
|
}; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename Derived> |
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const |
|
|
{ |
|
|
eigen_assert(rows() == cols()); |
|
|
return MatrixFunctionReturnValue<Derived>(derived(), f); |
|
|
} |
|
|
|
|
|
template <typename Derived> |
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const |
|
|
{ |
|
|
eigen_assert(rows() == cols()); |
|
|
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; |
|
|
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sin<ComplexScalar>); |
|
|
} |
|
|
|
|
|
template <typename Derived> |
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const |
|
|
{ |
|
|
eigen_assert(rows() == cols()); |
|
|
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; |
|
|
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>); |
|
|
} |
|
|
|
|
|
template <typename Derived> |
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const |
|
|
{ |
|
|
eigen_assert(rows() == cols()); |
|
|
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; |
|
|
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>); |
|
|
} |
|
|
|
|
|
template <typename Derived> |
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const |
|
|
{ |
|
|
eigen_assert(rows() == cols()); |
|
|
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; |
|
|
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>); |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|