FastRobustICP
/
include
/eigen
/unsupported
/Eigen
/src
/SpecialFunctions
/BesselFunctionsFunctors.h
| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com> | |
| // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
| namespace Eigen { | |
| namespace internal { | |
| /** \internal | |
| * \brief Template functor to compute the modified Bessel function of the first | |
| * kind of order zero. | |
| * \sa class CwiseUnaryOp, Cwise::bessel_i0() | |
| */ | |
| template <typename Scalar> | |
| struct scalar_bessel_i0_op { | |
| EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_i0_op) | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { | |
| using numext::bessel_i0; | |
| return bessel_i0(x); | |
| } | |
| typedef typename packet_traits<Scalar>::type Packet; | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { | |
| return internal::pbessel_i0(x); | |
| } | |
| }; | |
| template <typename Scalar> | |
| struct functor_traits<scalar_bessel_i0_op<Scalar> > { | |
| enum { | |
| // On average, a Chebyshev polynomial of order N=20 is computed. | |
| // The cost is N multiplications and 2N additions. We also add | |
| // the cost of an additional exp over i0e. | |
| Cost = 28 * NumTraits<Scalar>::MulCost + 48 * NumTraits<Scalar>::AddCost, | |
| PacketAccess = packet_traits<Scalar>::HasBessel | |
| }; | |
| }; | |
| /** \internal | |
| * \brief Template functor to compute the exponentially scaled modified Bessel | |
| * function of the first kind of order zero | |
| * \sa class CwiseUnaryOp, Cwise::bessel_i0e() | |
| */ | |
| template <typename Scalar> | |
| struct scalar_bessel_i0e_op { | |
| EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_i0e_op) | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { | |
| using numext::bessel_i0e; | |
| return bessel_i0e(x); | |
| } | |
| typedef typename packet_traits<Scalar>::type Packet; | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { | |
| return internal::pbessel_i0e(x); | |
| } | |
| }; | |
| template <typename Scalar> | |
| struct functor_traits<scalar_bessel_i0e_op<Scalar> > { | |
| enum { | |
| // On average, a Chebyshev polynomial of order N=20 is computed. | |
| // The cost is N multiplications and 2N additions. | |
| Cost = 20 * NumTraits<Scalar>::MulCost + 40 * NumTraits<Scalar>::AddCost, | |
| PacketAccess = packet_traits<Scalar>::HasBessel | |
| }; | |
| }; | |
| /** \internal | |
| * \brief Template functor to compute the modified Bessel function of the first | |
| * kind of order one | |
| * \sa class CwiseUnaryOp, Cwise::bessel_i1() | |
| */ | |
| template <typename Scalar> | |
| struct scalar_bessel_i1_op { | |
| EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_i1_op) | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { | |
| using numext::bessel_i1; | |
| return bessel_i1(x); | |
| } | |
| typedef typename packet_traits<Scalar>::type Packet; | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { | |
| return internal::pbessel_i1(x); | |
| } | |
| }; | |
| template <typename Scalar> | |
| struct functor_traits<scalar_bessel_i1_op<Scalar> > { | |
| enum { | |
| // On average, a Chebyshev polynomial of order N=20 is computed. | |
| // The cost is N multiplications and 2N additions. We also add | |
| // the cost of an additional exp over i1e. | |
| Cost = 28 * NumTraits<Scalar>::MulCost + 48 * NumTraits<Scalar>::AddCost, | |
| PacketAccess = packet_traits<Scalar>::HasBessel | |
| }; | |
| }; | |
| /** \internal | |
| * \brief Template functor to compute the exponentially scaled modified Bessel | |
| * function of the first kind of order zero | |
| * \sa class CwiseUnaryOp, Cwise::bessel_i1e() | |
| */ | |
| template <typename Scalar> | |
| struct scalar_bessel_i1e_op { | |
| EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_i1e_op) | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { | |
| using numext::bessel_i1e; | |
| return bessel_i1e(x); | |
| } | |
| typedef typename packet_traits<Scalar>::type Packet; | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { | |
| return internal::pbessel_i1e(x); | |
| } | |
| }; | |
| template <typename Scalar> | |
| struct functor_traits<scalar_bessel_i1e_op<Scalar> > { | |
| enum { | |
| // On average, a Chebyshev polynomial of order N=20 is computed. | |
| // The cost is N multiplications and 2N additions. | |
| Cost = 20 * NumTraits<Scalar>::MulCost + 40 * NumTraits<Scalar>::AddCost, | |
| PacketAccess = packet_traits<Scalar>::HasBessel | |
| }; | |
| }; | |
| /** \internal | |
| * \brief Template functor to compute the Bessel function of the second kind of | |
| * order zero | |
| * \sa class CwiseUnaryOp, Cwise::bessel_j0() | |
| */ | |
| template <typename Scalar> | |
| struct scalar_bessel_j0_op { | |
| EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_j0_op) | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { | |
| using numext::bessel_j0; | |
| return bessel_j0(x); | |
| } | |
| typedef typename packet_traits<Scalar>::type Packet; | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { | |
| return internal::pbessel_j0(x); | |
| } | |
| }; | |
| template <typename Scalar> | |
| struct functor_traits<scalar_bessel_j0_op<Scalar> > { | |
| enum { | |
| // 6 polynomial of order ~N=8 is computed. | |
| // The cost is N multiplications and N additions each, along with a | |
| // sine, cosine and rsqrt cost. | |
| Cost = 63 * NumTraits<Scalar>::MulCost + 48 * NumTraits<Scalar>::AddCost, | |
| PacketAccess = packet_traits<Scalar>::HasBessel | |
| }; | |
| }; | |
| /** \internal | |
| * \brief Template functor to compute the Bessel function of the second kind of | |
| * order zero | |
| * \sa class CwiseUnaryOp, Cwise::bessel_y0() | |
| */ | |
| template <typename Scalar> | |
| struct scalar_bessel_y0_op { | |
| EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_y0_op) | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { | |
| using numext::bessel_y0; | |
| return bessel_y0(x); | |
| } | |
| typedef typename packet_traits<Scalar>::type Packet; | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { | |
| return internal::pbessel_y0(x); | |
| } | |
| }; | |
| template <typename Scalar> | |
| struct functor_traits<scalar_bessel_y0_op<Scalar> > { | |
| enum { | |
| // 6 polynomial of order ~N=8 is computed. | |
| // The cost is N multiplications and N additions each, along with a | |
| // sine, cosine, rsqrt and j0 cost. | |
| Cost = 126 * NumTraits<Scalar>::MulCost + 96 * NumTraits<Scalar>::AddCost, | |
| PacketAccess = packet_traits<Scalar>::HasBessel | |
| }; | |
| }; | |
| /** \internal | |
| * \brief Template functor to compute the Bessel function of the first kind of | |
| * order one | |
| * \sa class CwiseUnaryOp, Cwise::bessel_j1() | |
| */ | |
| template <typename Scalar> | |
| struct scalar_bessel_j1_op { | |
| EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_j1_op) | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { | |
| using numext::bessel_j1; | |
| return bessel_j1(x); | |
| } | |
| typedef typename packet_traits<Scalar>::type Packet; | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { | |
| return internal::pbessel_j1(x); | |
| } | |
| }; | |
| template <typename Scalar> | |
| struct functor_traits<scalar_bessel_j1_op<Scalar> > { | |
| enum { | |
| // 6 polynomial of order ~N=8 is computed. | |
| // The cost is N multiplications and N additions each, along with a | |
| // sine, cosine and rsqrt cost. | |
| Cost = 63 * NumTraits<Scalar>::MulCost + 48 * NumTraits<Scalar>::AddCost, | |
| PacketAccess = packet_traits<Scalar>::HasBessel | |
| }; | |
| }; | |
| /** \internal | |
| * \brief Template functor to compute the Bessel function of the second kind of | |
| * order one | |
| * \sa class CwiseUnaryOp, Cwise::bessel_j1e() | |
| */ | |
| template <typename Scalar> | |
| struct scalar_bessel_y1_op { | |
| EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_y1_op) | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { | |
| using numext::bessel_y1; | |
| return bessel_y1(x); | |
| } | |
| typedef typename packet_traits<Scalar>::type Packet; | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { | |
| return internal::pbessel_y1(x); | |
| } | |
| }; | |
| template <typename Scalar> | |
| struct functor_traits<scalar_bessel_y1_op<Scalar> > { | |
| enum { | |
| // 6 polynomial of order ~N=8 is computed. | |
| // The cost is N multiplications and N additions each, along with a | |
| // sine, cosine, rsqrt and j1 cost. | |
| Cost = 126 * NumTraits<Scalar>::MulCost + 96 * NumTraits<Scalar>::AddCost, | |
| PacketAccess = packet_traits<Scalar>::HasBessel | |
| }; | |
| }; | |
| /** \internal | |
| * \brief Template functor to compute the modified Bessel function of the second | |
| * kind of order zero | |
| * \sa class CwiseUnaryOp, Cwise::bessel_k0() | |
| */ | |
| template <typename Scalar> | |
| struct scalar_bessel_k0_op { | |
| EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_k0_op) | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { | |
| using numext::bessel_k0; | |
| return bessel_k0(x); | |
| } | |
| typedef typename packet_traits<Scalar>::type Packet; | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { | |
| return internal::pbessel_k0(x); | |
| } | |
| }; | |
| template <typename Scalar> | |
| struct functor_traits<scalar_bessel_k0_op<Scalar> > { | |
| enum { | |
| // On average, a Chebyshev polynomial of order N=10 is computed. | |
| // The cost is N multiplications and 2N additions. In addition we compute | |
| // i0, a log, exp and prsqrt and sin and cos. | |
| Cost = 68 * NumTraits<Scalar>::MulCost + 88 * NumTraits<Scalar>::AddCost, | |
| PacketAccess = packet_traits<Scalar>::HasBessel | |
| }; | |
| }; | |
| /** \internal | |
| * \brief Template functor to compute the exponentially scaled modified Bessel | |
| * function of the second kind of order zero | |
| * \sa class CwiseUnaryOp, Cwise::bessel_k0e() | |
| */ | |
| template <typename Scalar> | |
| struct scalar_bessel_k0e_op { | |
| EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_k0e_op) | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { | |
| using numext::bessel_k0e; | |
| return bessel_k0e(x); | |
| } | |
| typedef typename packet_traits<Scalar>::type Packet; | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { | |
| return internal::pbessel_k0e(x); | |
| } | |
| }; | |
| template <typename Scalar> | |
| struct functor_traits<scalar_bessel_k0e_op<Scalar> > { | |
| enum { | |
| // On average, a Chebyshev polynomial of order N=10 is computed. | |
| // The cost is N multiplications and 2N additions. In addition we compute | |
| // i0, a log, exp and prsqrt and sin and cos. | |
| Cost = 68 * NumTraits<Scalar>::MulCost + 88 * NumTraits<Scalar>::AddCost, | |
| PacketAccess = packet_traits<Scalar>::HasBessel | |
| }; | |
| }; | |
| /** \internal | |
| * \brief Template functor to compute the modified Bessel function of the | |
| * second kind of order one | |
| * \sa class CwiseUnaryOp, Cwise::bessel_k1() | |
| */ | |
| template <typename Scalar> | |
| struct scalar_bessel_k1_op { | |
| EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_k1_op) | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { | |
| using numext::bessel_k1; | |
| return bessel_k1(x); | |
| } | |
| typedef typename packet_traits<Scalar>::type Packet; | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { | |
| return internal::pbessel_k1(x); | |
| } | |
| }; | |
| template <typename Scalar> | |
| struct functor_traits<scalar_bessel_k1_op<Scalar> > { | |
| enum { | |
| // On average, a Chebyshev polynomial of order N=10 is computed. | |
| // The cost is N multiplications and 2N additions. In addition we compute | |
| // i1, a log, exp and prsqrt and sin and cos. | |
| Cost = 68 * NumTraits<Scalar>::MulCost + 88 * NumTraits<Scalar>::AddCost, | |
| PacketAccess = packet_traits<Scalar>::HasBessel | |
| }; | |
| }; | |
| /** \internal | |
| * \brief Template functor to compute the exponentially scaled modified Bessel | |
| * function of the second kind of order one | |
| * \sa class CwiseUnaryOp, Cwise::bessel_k1e() | |
| */ | |
| template <typename Scalar> | |
| struct scalar_bessel_k1e_op { | |
| EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_k1e_op) | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { | |
| using numext::bessel_k1e; | |
| return bessel_k1e(x); | |
| } | |
| typedef typename packet_traits<Scalar>::type Packet; | |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { | |
| return internal::pbessel_k1e(x); | |
| } | |
| }; | |
| template <typename Scalar> | |
| struct functor_traits<scalar_bessel_k1e_op<Scalar> > { | |
| enum { | |
| // On average, a Chebyshev polynomial of order N=10 is computed. | |
| // The cost is N multiplications and 2N additions. In addition we compute | |
| // i1, a log, exp and prsqrt and sin and cos. | |
| Cost = 68 * NumTraits<Scalar>::MulCost + 88 * NumTraits<Scalar>::AddCost, | |
| PacketAccess = packet_traits<Scalar>::HasBessel | |
| }; | |
| }; | |
| } // end namespace internal | |
| } // end namespace Eigen | |