Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pretraining/mathematica/geometry/solids/10506.txt +49 -0
- pretraining/mathematica/geometry/solids/10600.txt +19 -0
- pretraining/mathematica/geometry/solids/11332.txt +14 -0
- pretraining/mathematica/geometry/solids/11801.txt +13 -0
- pretraining/mathematica/geometry/solids/13999.txt +16 -0
- pretraining/mathematica/geometry/solids/14407.txt +13 -0
- pretraining/mathematica/geometry/solids/14737.txt +15 -0
- pretraining/mathematica/geometry/solids/16999.txt +52 -0
- pretraining/mathematica/geometry/solids/17262.txt +20 -0
- pretraining/mathematica/geometry/solids/17450.txt +13 -0
- pretraining/mathematica/geometry/solids/18810.txt +19 -0
- pretraining/mathematica/geometry/solids/20678.txt +16 -0
- pretraining/mathematica/geometry/solids/20902.txt +18 -0
- pretraining/mathematica/geometry/solids/23641.txt +17 -0
- pretraining/mathematica/geometry/solids/23942.txt +15 -0
- pretraining/mathematica/geometry/solids/26034.txt +17 -0
- pretraining/mathematica/geometry/solids/26209.txt +69 -0
- pretraining/mathematica/geometry/solids/27271.txt +17 -0
- pretraining/mathematica/geometry/solids/28998.txt +18 -0
- pretraining/mathematica/geometry/solids/31345.txt +18 -0
- pretraining/mathematica/geometry/solids/32281.txt +21 -0
- pretraining/mathematica/geometry/solids/36.txt +18 -0
- pretraining/mathematica/geometry/solids/3690.txt +15 -0
- pretraining/mathematica/geometry/solids/37631.txt +27 -0
- pretraining/mathematica/geometry/solids/3793.txt +13 -0
- pretraining/mathematica/geometry/solids/38435.txt +18 -0
- pretraining/mathematica/geometry/solids/38653.txt +17 -0
- pretraining/mathematica/geometry/solids/41348.txt +19 -0
- pretraining/mathematica/geometry/solids/41936.txt +14 -0
- pretraining/mathematica/geometry/solids/42118.txt +17 -0
- pretraining/mathematica/geometry/solids/42178.txt +17 -0
- pretraining/mathematica/geometry/solids/4351.txt +13 -0
- pretraining/mathematica/geometry/solids/48546.txt +16 -0
- pretraining/mathematica/geometry/solids/49275.txt +19 -0
- pretraining/mathematica/geometry/solids/49338.txt +16 -0
- pretraining/mathematica/geometry/solids/50676.txt +16 -0
- pretraining/mathematica/geometry/solids/53090.txt +14 -0
- pretraining/mathematica/geometry/solids/54383.txt +17 -0
- pretraining/mathematica/geometry/solids/54673.txt +19 -0
- pretraining/mathematica/geometry/solids/55540.txt +19 -0
- pretraining/mathematica/geometry/solids/5728.txt +20 -0
- pretraining/mathematica/geometry/solids/577.txt +20 -0
- pretraining/mathematica/geometry/solids/58367.txt +15 -0
- pretraining/mathematica/geometry/solids/58701.txt +18 -0
- pretraining/mathematica/geometry/solids/59209.txt +16 -0
- pretraining/mathematica/geometry/solids/6150.txt +21 -0
- pretraining/mathematica/geometry/solids/65133.txt +14 -0
- pretraining/mathematica/geometry/solids/6563.txt +19 -0
- pretraining/mathematica/geometry/solids/65895.txt +14 -0
- pretraining/mathematica/geometry/solids/66016.txt +13 -0
pretraining/mathematica/geometry/solids/10506.txt
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-1. & 0. & 0. \\
|
| 5 |
+
-0.707 & -0.707 & 0. \\
|
| 6 |
+
-0.707 & -0.5 & 0. \\
|
| 7 |
+
-0.707 & 0. & -0.707 \\
|
| 8 |
+
-0.707 & 0. & -0.5 \\
|
| 9 |
+
-0.707 & 0. & 0.5 \\
|
| 10 |
+
-0.707 & 0. & 0.707 \\
|
| 11 |
+
-0.707 & 0.5 & 0. \\
|
| 12 |
+
-0.707 & 0.707 & 0. \\
|
| 13 |
+
-0.5 & -0.707 & 0. \\
|
| 14 |
+
-0.5 & 0. & -0.707 \\
|
| 15 |
+
-0.5 & 0. & 0.707 \\
|
| 16 |
+
-0.5 & 0.707 & 0. \\
|
| 17 |
+
0. & -1. & 0. \\
|
| 18 |
+
0. & -0.707 & -0.707 \\
|
| 19 |
+
0. & -0.707 & -0.5 \\
|
| 20 |
+
0. & -0.707 & 0.5 \\
|
| 21 |
+
0. & -0.707 & 0.707 \\
|
| 22 |
+
0. & -0.5 & -0.707 \\
|
| 23 |
+
0. & -0.5 & 0.707 \\
|
| 24 |
+
0. & 0. & -1. \\
|
| 25 |
+
0. & 0. & 1. \\
|
| 26 |
+
0. & 0.5 & -0.707 \\
|
| 27 |
+
0. & 0.5 & 0.707 \\
|
| 28 |
+
0. & 0.707 & -0.707 \\
|
| 29 |
+
0. & 0.707 & -0.5 \\
|
| 30 |
+
0. & 0.707 & 0.5 \\
|
| 31 |
+
0. & 0.707 & 0.707 \\
|
| 32 |
+
0. & 1. & 0. \\
|
| 33 |
+
0.5 & -0.707 & 0. \\
|
| 34 |
+
0.5 & 0. & -0.707 \\
|
| 35 |
+
0.5 & 0. & 0.707 \\
|
| 36 |
+
0.5 & 0.707 & 0. \\
|
| 37 |
+
0.707 & -0.707 & 0. \\
|
| 38 |
+
0.707 & -0.5 & 0. \\
|
| 39 |
+
0.707 & 0. & -0.707 \\
|
| 40 |
+
0.707 & 0. & -0.5 \\
|
| 41 |
+
0.707 & 0. & 0.5 \\
|
| 42 |
+
0.707 & 0. & 0.707 \\
|
| 43 |
+
0.707 & 0.5 & 0. \\
|
| 44 |
+
0.707 & 0.707 & 0. \\
|
| 45 |
+
1. & 0. & 0. \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right)$. Determine the SurfaceArea.
|
| 48 |
+
Answer:
|
| 49 |
+
$38.78$
|
pretraining/mathematica/geometry/solids/10600.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.487 & 0.997 & 0.718 \\
|
| 5 |
+
0.632 & 0.109 & 0.751 \\
|
| 6 |
+
0.471 & 0.758 & 0.281 \\
|
| 7 |
+
0.044 & 0.403 & 0.418 \\
|
| 8 |
+
0.67 & 0.419 & 0.01 \\
|
| 9 |
+
0.13 & 0.742 & 0.593 \\
|
| 10 |
+
0.996 & 0.172 & 0.166 \\
|
| 11 |
+
0.033 & 0.209 & 0.436 \\
|
| 12 |
+
0.648 & 0.525 & 0.968 \\
|
| 13 |
+
0.041 & 0.558 & 0.352 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Volume: $0.2$
|
| 18 |
+
Surface Area: $2.03$
|
| 19 |
+
Solid Angle: $1.23$
|
pretraining/mathematica/geometry/solids/11332.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.188 & 0.36 & 0.691 \\
|
| 5 |
+
0.499 & 0.322 & 0.83 \\
|
| 6 |
+
0.808 & 0.5 & 0.369 \\
|
| 7 |
+
0.095 & 0.261 & 0.098 \\
|
| 8 |
+
0.586 & 0.856 & 0.607 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.05$
|
| 13 |
+
Surface Area: $0.93$
|
| 14 |
+
Solid Angle: $1.51$
|
pretraining/mathematica/geometry/solids/11801.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.038 & 0.375 & 0.58 \\
|
| 5 |
+
0.678 & 0.318 & 0.157 \\
|
| 6 |
+
0.119 & 0.46 & 0.395 \\
|
| 7 |
+
0.553 & 0.492 & 0.82 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.01$
|
| 12 |
+
Solid Angle: $0.42$
|
| 13 |
+
Surface Area: $0.49$
|
pretraining/mathematica/geometry/solids/13999.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.834 & 0.218 & 0.132 \\
|
| 5 |
+
0.589 & 0.263 & 0.794 \\
|
| 6 |
+
0.899 & 0.779 & 0.982 \\
|
| 7 |
+
0.723 & 0.209 & 0.725 \\
|
| 8 |
+
0.525 & 0.276 & 0.963 \\
|
| 9 |
+
0.424 & 0.938 & 0.905 \\
|
| 10 |
+
0.867 & 0.879 & 0.415 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.09$
|
| 15 |
+
Surface Area: $1.35$
|
| 16 |
+
Solid Angle: $0.34$
|
pretraining/mathematica/geometry/solids/14407.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.504 & 0.552 & 0.596 \\
|
| 5 |
+
0.084 & 0.34 & 0.409 \\
|
| 6 |
+
0.619 & 0.937 & 0.905 \\
|
| 7 |
+
0.254 & 0.557 & 0.297 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $1.4$
|
| 12 |
+
Surface Area: $0.34$
|
| 13 |
+
Volume: $0.01$
|
pretraining/mathematica/geometry/solids/14737.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.931 & 0.811 & 0.3 \\
|
| 5 |
+
0.85 & 0.989 & 0.939 \\
|
| 6 |
+
0.856 & 0.189 & 0.842 \\
|
| 7 |
+
0.513 & 0.034 & 0.245 \\
|
| 8 |
+
0.913 & 0.521 & 0.405 \\
|
| 9 |
+
0.301 & 0.91 & 0.685 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.12$
|
| 14 |
+
Solid Angle: $1.28$
|
| 15 |
+
Surface Area: $1.61$
|
pretraining/mathematica/geometry/solids/16999.txt
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-0.5 & 0.289 & -2.157 \\
|
| 5 |
+
-0.5 & -1.223 & 1.8 \\
|
| 6 |
+
-0.5 & 1.223 & -1.8 \\
|
| 7 |
+
-0.5 & -0.289 & 2.157 \\
|
| 8 |
+
-0.5 & -1.8 & -1.223 \\
|
| 9 |
+
-0.5 & 2.157 & 0.289 \\
|
| 10 |
+
-0.5 & 1.8 & 1.223 \\
|
| 11 |
+
0. & -0.577 & -2.157 \\
|
| 12 |
+
0. & 1.868 & -1.223 \\
|
| 13 |
+
0. & 0.577 & 2.157 \\
|
| 14 |
+
0.5 & 0.289 & -2.157 \\
|
| 15 |
+
0.5 & -1.223 & 1.8 \\
|
| 16 |
+
0.5 & 1.223 & -1.8 \\
|
| 17 |
+
0.5 & -0.289 & 2.157 \\
|
| 18 |
+
0.5 & -1.8 & -1.223 \\
|
| 19 |
+
0.5 & 2.157 & 0.289 \\
|
| 20 |
+
0.5 & 1.8 & 1.223 \\
|
| 21 |
+
-1.809 & 0.467 & -1.223 \\
|
| 22 |
+
-1.809 & -0.467 & 1.223 \\
|
| 23 |
+
-0.809 & -1.044 & -1.8 \\
|
| 24 |
+
-0.809 & 1.979 & -0.645 \\
|
| 25 |
+
-0.809 & 1.044 & 1.8 \\
|
| 26 |
+
-1.618 & -0.934 & -1.223 \\
|
| 27 |
+
-1.618 & -1.512 & 0.289 \\
|
| 28 |
+
-2.118 & -0.289 & -0.645 \\
|
| 29 |
+
-2.118 & -0.645 & 0.289 \\
|
| 30 |
+
-1.309 & -1.69 & -0.645 \\
|
| 31 |
+
-1.309 & -0.178 & -1.8 \\
|
| 32 |
+
-1.309 & -1.333 & 1.223 \\
|
| 33 |
+
-1.309 & 1.333 & -1.223 \\
|
| 34 |
+
-1.309 & 0.178 & 1.8 \\
|
| 35 |
+
0.809 & -1.044 & -1.8 \\
|
| 36 |
+
0.809 & 1.979 & -0.645 \\
|
| 37 |
+
0.809 & 1.044 & 1.8 \\
|
| 38 |
+
1.618 & -0.934 & -1.223 \\
|
| 39 |
+
1.618 & -1.512 & 0.289 \\
|
| 40 |
+
2.118 & -0.289 & -0.645 \\
|
| 41 |
+
2.118 & -0.645 & 0.289 \\
|
| 42 |
+
1.309 & -1.69 & -0.645 \\
|
| 43 |
+
1.309 & -0.178 & -1.8 \\
|
| 44 |
+
1.309 & -1.333 & 1.223 \\
|
| 45 |
+
1.309 & 1.333 & -1.223 \\
|
| 46 |
+
1.309 & 0.178 & 1.8 \\
|
| 47 |
+
1.809 & 0.467 & -1.223 \\
|
| 48 |
+
1.809 & -0.467 & 1.223 \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right)$. Determine the EdgeCount.
|
| 51 |
+
Answer:
|
| 52 |
+
$75.$
|
pretraining/mathematica/geometry/solids/17262.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-1. & 0. & -0.5 \\
|
| 5 |
+
-1. & 0. & 0.5 \\
|
| 6 |
+
-0.5 & -0.866 & -0.5 \\
|
| 7 |
+
-0.5 & -0.866 & 0.5 \\
|
| 8 |
+
-0.5 & 0.866 & -0.5 \\
|
| 9 |
+
-0.5 & 0.866 & 0.5 \\
|
| 10 |
+
0.5 & -0.866 & -0.5 \\
|
| 11 |
+
0.5 & -0.866 & 0.5 \\
|
| 12 |
+
0.5 & 0.866 & -0.5 \\
|
| 13 |
+
0.5 & 0.866 & 0.5 \\
|
| 14 |
+
1. & 0. & -0.5 \\
|
| 15 |
+
1. & 0. & 0.5 \\
|
| 16 |
+
1.362 & 0.787 & 0. \\
|
| 17 |
+
\end{array}
|
| 18 |
+
\right)$. Determine the SurfaceArea.
|
| 19 |
+
Answer:
|
| 20 |
+
$11.93$
|
pretraining/mathematica/geometry/solids/17450.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.884 & 0.577 & 0.074 \\
|
| 5 |
+
0.066 & 0.521 & 0.609 \\
|
| 6 |
+
0.167 & 0.099 & 0.324 \\
|
| 7 |
+
0.846 & 0.398 & 0.037 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Surface Area: $0.59$
|
| 12 |
+
Volume: $0.$
|
| 13 |
+
Solid Angle: $0.05$
|
pretraining/mathematica/geometry/solids/18810.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.419 & 0.305 & 0.093 \\
|
| 5 |
+
0.864 & 0.026 & 0.945 \\
|
| 6 |
+
0.448 & 0.521 & 0.088 \\
|
| 7 |
+
0.267 & 0.694 & 0.484 \\
|
| 8 |
+
0.303 & 0.098 & 0.991 \\
|
| 9 |
+
0.803 & 0.707 & 0.088 \\
|
| 10 |
+
0.674 & 0.036 & 0.421 \\
|
| 11 |
+
0.76 & 0.423 & 0.927 \\
|
| 12 |
+
0.272 & 0.039 & 0.97 \\
|
| 13 |
+
0.289 & 0.95 & 0.891 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $2.22$
|
| 18 |
+
Volume: $0.23$
|
| 19 |
+
Solid Angle: $2.07$
|
pretraining/mathematica/geometry/solids/20678.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.435 & 0.835 & 0.088 \\
|
| 5 |
+
0.284 & 0.19 & 0.106 \\
|
| 6 |
+
0.139 & 0.845 & 0.066 \\
|
| 7 |
+
0.489 & 0.856 & 0.494 \\
|
| 8 |
+
0.708 & 0.365 & 0.275 \\
|
| 9 |
+
0.308 & 0.103 & 0.52 \\
|
| 10 |
+
0.298 & 0.888 & 0.173 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.06$
|
| 15 |
+
Solid Angle: $2.43$
|
| 16 |
+
Surface Area: $1.01$
|
pretraining/mathematica/geometry/solids/20902.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.929 & 0.982 & 0.491 \\
|
| 5 |
+
0.026 & 0.478 & 0.919 \\
|
| 6 |
+
0.849 & 0.94 & 0.456 \\
|
| 7 |
+
0.459 & 0.351 & 0.411 \\
|
| 8 |
+
0.136 & 0.56 & 0.439 \\
|
| 9 |
+
0.642 & 0.322 & 0.243 \\
|
| 10 |
+
0.942 & 0.442 & 0.84 \\
|
| 11 |
+
0.041 & 0.64 & 0.966 \\
|
| 12 |
+
0.955 & 0.709 & 0.91 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.65$
|
| 17 |
+
Solid Angle: $1.09$
|
| 18 |
+
Volume: $0.14$
|
pretraining/mathematica/geometry/solids/23641.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.833 & 0.692 & 0.572 \\
|
| 5 |
+
0.363 & 0.469 & 0.165 \\
|
| 6 |
+
0.217 & 0.228 & 0.061 \\
|
| 7 |
+
0.237 & 0.673 & 0.381 \\
|
| 8 |
+
0.205 & 0.723 & 0.717 \\
|
| 9 |
+
0.84 & 0.228 & 0.366 \\
|
| 10 |
+
0.041 & 0.099 & 0.797 \\
|
| 11 |
+
0.981 & 0.661 & 0.713 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $3.35$
|
| 16 |
+
Surface Area: $1.65$
|
| 17 |
+
Volume: $0.14$
|
pretraining/mathematica/geometry/solids/23942.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.366 & 0.256 & 0.906 \\
|
| 5 |
+
0.822 & 0.895 & 0.148 \\
|
| 6 |
+
0.072 & 0.902 & 0.433 \\
|
| 7 |
+
0.703 & 0.235 & 0.144 \\
|
| 8 |
+
0.403 & 0.061 & 0.223 \\
|
| 9 |
+
0.235 & 0.403 & 0.019 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $1.65$
|
| 14 |
+
Solid Angle: $0.6$
|
| 15 |
+
Volume: $0.13$
|
pretraining/mathematica/geometry/solids/26034.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.024 & 0.799 & 0.562 \\
|
| 5 |
+
0.152 & 0.184 & 0.691 \\
|
| 6 |
+
0.829 & 0.3 & 0.347 \\
|
| 7 |
+
0.027 & 0.076 & 0.273 \\
|
| 8 |
+
0.222 & 0.312 & 0.888 \\
|
| 9 |
+
0.709 & 0.965 & 0.83 \\
|
| 10 |
+
0.617 & 0.102 & 0.356 \\
|
| 11 |
+
0.563 & 0.708 & 0.581 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $1.06$
|
| 16 |
+
Volume: $0.12$
|
| 17 |
+
Surface Area: $1.69$
|
pretraining/mathematica/geometry/solids/26209.txt
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0 & 0 & -\frac{5}{\sqrt{5+\sqrt{5}}} \\
|
| 5 |
+
0 & 0 & \frac{5}{\sqrt{5+\sqrt{5}}} \\
|
| 6 |
+
0 & -\frac{5+\sqrt{5}}{2 \sqrt{2}} & 0 \\
|
| 7 |
+
0 & \frac{5+\sqrt{5}}{2 \sqrt{2}} & 0 \\
|
| 8 |
+
-\sqrt{5-\sqrt{5}} & 0 & \frac{\sqrt{5-\sqrt{5}}}{2} \\
|
| 9 |
+
\sqrt{5-\sqrt{5}} & 0 & -\frac{1}{2} \sqrt{5-\sqrt{5}} \\
|
| 10 |
+
-\sqrt{\frac{5}{2}-\sqrt{5}} & -\sqrt{\frac{5}{2}} & \frac{\sqrt{5-\sqrt{5}}}{2} \\
|
| 11 |
+
-\sqrt{\frac{5}{2}-\sqrt{5}} & \sqrt{\frac{5}{2}} & \frac{\sqrt{5-\sqrt{5}}}{2} \\
|
| 12 |
+
\sqrt{\frac{5}{2}-\sqrt{5}} & -\sqrt{\frac{5}{2}} & -\frac{1}{2} \sqrt{5-\sqrt{5}} \\
|
| 13 |
+
\sqrt{\frac{5}{2}-\sqrt{5}} & \sqrt{\frac{5}{2}} & -\frac{1}{2} \sqrt{5-\sqrt{5}} \\
|
| 14 |
+
-\sqrt{\frac{5}{2}+\sqrt{5}} & 0 & -\frac{1}{2} \sqrt{5+\sqrt{5}} \\
|
| 15 |
+
-\frac{1}{2} \sqrt{5+\sqrt{5}} & 0 & \sqrt{\frac{5}{2}+\sqrt{5}} \\
|
| 16 |
+
-\frac{1}{2} \sqrt{5+\sqrt{5}} & \frac{\sqrt{5}-5}{2 \sqrt{2}} & -\frac{1}{2} \sqrt{5-\sqrt{5}} \\
|
| 17 |
+
-\frac{1}{2} \sqrt{5+\sqrt{5}} & -\frac{\sqrt{5}-5}{2 \sqrt{2}} & -\frac{1}{2} \sqrt{5-\sqrt{5}} \\
|
| 18 |
+
\frac{\sqrt{5+\sqrt{5}}}{2} & 0 & -\sqrt{\frac{5}{2}+\sqrt{5}} \\
|
| 19 |
+
\frac{\sqrt{5+\sqrt{5}}}{2} & \frac{\sqrt{5}-5}{2 \sqrt{2}} & \frac{\sqrt{5-\sqrt{5}}}{2} \\
|
| 20 |
+
\frac{\sqrt{5+\sqrt{5}}}{2} & -\frac{\sqrt{5}-5}{2 \sqrt{2}} & \frac{\sqrt{5-\sqrt{5}}}{2} \\
|
| 21 |
+
\sqrt{\frac{5}{2}+\sqrt{5}} & 0 & \frac{\sqrt{5+\sqrt{5}}}{2} \\
|
| 22 |
+
-\frac{1}{2} \sqrt{\frac{25}{2}+5 \sqrt{5}} & -\frac{\sqrt{\frac{5}{2}}}{2} & 0 \\
|
| 23 |
+
-\frac{1}{2} \sqrt{\frac{25}{2}+5 \sqrt{5}} & \frac{\sqrt{\frac{5}{2}}}{2} & 0 \\
|
| 24 |
+
-\frac{1}{4} \sqrt{5 \left(5+\sqrt{5}\right)} & -\frac{5+3 \sqrt{5}}{4 \sqrt{2}} & 0 \\
|
| 25 |
+
-\frac{1}{4} \sqrt{5 \left(5+\sqrt{5}\right)} & \frac{5+3 \sqrt{5}}{4 \sqrt{2}} & 0 \\
|
| 26 |
+
\frac{1}{4} \sqrt{5 \left(5+\sqrt{5}\right)} & -\frac{5+3 \sqrt{5}}{4 \sqrt{2}} & 0 \\
|
| 27 |
+
\frac{1}{4} \sqrt{5 \left(5+\sqrt{5}\right)} & \frac{5+3 \sqrt{5}}{4 \sqrt{2}} & 0 \\
|
| 28 |
+
\sqrt{\frac{25}{8}+\frac{5 \sqrt{5}}{4}} & -\frac{\sqrt{\frac{5}{2}}}{2} & 0 \\
|
| 29 |
+
\sqrt{\frac{25}{8}+\frac{5 \sqrt{5}}{4}} & \frac{\sqrt{\frac{5}{2}}}{2} & 0 \\
|
| 30 |
+
-\sqrt{2+\frac{4}{\sqrt{5}}} & 0 & -\frac{1}{2} \sqrt{1-\frac{1}{\sqrt{5}}} \\
|
| 31 |
+
-\sqrt{1+\frac{1}{\sqrt{5}}} & 0 & -\frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} \\
|
| 32 |
+
\sqrt{1+\frac{1}{\sqrt{5}}} & 0 & \frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} \\
|
| 33 |
+
\sqrt{2+\frac{4}{\sqrt{5}}} & 0 & \frac{1}{\sqrt{5+\sqrt{5}}} \\
|
| 34 |
+
-\frac{1}{4} \sqrt{25+11 \sqrt{5}} & -\frac{5+\sqrt{5}}{4 \sqrt{2}} & \frac{\sqrt{5+\sqrt{5}}}{2} \\
|
| 35 |
+
-\frac{1}{4} \sqrt{25+11 \sqrt{5}} & \frac{5+\sqrt{5}}{4 \sqrt{2}} & \frac{\sqrt{5+\sqrt{5}}}{2} \\
|
| 36 |
+
-\frac{1}{4} \sqrt{5-\sqrt{5}} & -\frac{5+\sqrt{5}}{4 \sqrt{2}} & \sqrt{\frac{5}{2}+\sqrt{5}} \\
|
| 37 |
+
-\frac{1}{4} \sqrt{5-\sqrt{5}} & \frac{5+\sqrt{5}}{4 \sqrt{2}} & \sqrt{\frac{5}{2}+\sqrt{5}} \\
|
| 38 |
+
\frac{\sqrt{5-\sqrt{5}}}{4} & -\frac{5+\sqrt{5}}{4 \sqrt{2}} & -\sqrt{\frac{5}{2}+\sqrt{5}} \\
|
| 39 |
+
\frac{\sqrt{5-\sqrt{5}}}{4} & \frac{5+\sqrt{5}}{4 \sqrt{2}} & -\sqrt{\frac{5}{2}+\sqrt{5}} \\
|
| 40 |
+
\frac{1}{4} \sqrt{25+11 \sqrt{5}} & -\frac{5+\sqrt{5}}{4 \sqrt{2}} & -\frac{1}{2} \sqrt{5+\sqrt{5}} \\
|
| 41 |
+
\frac{1}{4} \sqrt{25+11 \sqrt{5}} & \frac{5+\sqrt{5}}{4 \sqrt{2}} & -\frac{1}{2} \sqrt{5+\sqrt{5}} \\
|
| 42 |
+
-\frac{1}{2} \sqrt{\frac{5}{2}+\sqrt{5}} & -\frac{\sqrt{\frac{5}{2}}}{2} & -\sqrt{\frac{5}{2}+\sqrt{5}} \\
|
| 43 |
+
-\frac{1}{2} \sqrt{\frac{5}{2}+\sqrt{5}} & \frac{\sqrt{\frac{5}{2}}}{2} & -\sqrt{\frac{5}{2}+\sqrt{5}} \\
|
| 44 |
+
-\frac{1}{4} \sqrt{5+\sqrt{5}} & -\frac{5+3 \sqrt{5}}{4 \sqrt{2}} & -\frac{1}{2} \sqrt{5+\sqrt{5}} \\
|
| 45 |
+
-\frac{1}{4} \sqrt{5+\sqrt{5}} & \frac{5+3 \sqrt{5}}{4 \sqrt{2}} & -\frac{1}{2} \sqrt{5+\sqrt{5}} \\
|
| 46 |
+
\frac{\sqrt{5+\sqrt{5}}}{4} & -\frac{5+3 \sqrt{5}}{4 \sqrt{2}} & \frac{\sqrt{5+\sqrt{5}}}{2} \\
|
| 47 |
+
\frac{\sqrt{5+\sqrt{5}}}{4} & \frac{5+3 \sqrt{5}}{4 \sqrt{2}} & \frac{\sqrt{5+\sqrt{5}}}{2} \\
|
| 48 |
+
\frac{1}{2} \sqrt{\frac{5}{2}+\sqrt{5}} & -\frac{\sqrt{\frac{5}{2}}}{2} & \sqrt{\frac{5}{2}+\sqrt{5}} \\
|
| 49 |
+
\frac{1}{2} \sqrt{\frac{5}{2}+\sqrt{5}} & \frac{\sqrt{\frac{5}{2}}}{2} & \sqrt{\frac{5}{2}+\sqrt{5}} \\
|
| 50 |
+
-\frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} & -\frac{1}{2} \sqrt{3+\sqrt{5}} & \frac{1}{\sqrt{5+\sqrt{5}}} \\
|
| 51 |
+
-\frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} & \frac{\sqrt{3+\sqrt{5}}}{2} & \frac{1}{\sqrt{5+\sqrt{5}}} \\
|
| 52 |
+
-\frac{1}{2} \sqrt{1-\frac{1}{\sqrt{5}}} & -\frac{1}{2} \sqrt{3+\sqrt{5}} & -\frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} \\
|
| 53 |
+
-\frac{1}{2} \sqrt{1-\frac{1}{\sqrt{5}}} & \frac{\sqrt{3+\sqrt{5}}}{2} & -\frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} \\
|
| 54 |
+
\frac{1}{\sqrt{5+\sqrt{5}}} & -\frac{1}{2} \sqrt{3+\sqrt{5}} & \frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} \\
|
| 55 |
+
\frac{1}{\sqrt{5+\sqrt{5}}} & \frac{\sqrt{3+\sqrt{5}}}{2} & \frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} \\
|
| 56 |
+
\frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} & -\frac{1}{2} \sqrt{3+\sqrt{5}} & -\frac{1}{2} \sqrt{1-\frac{1}{\sqrt{5}}} \\
|
| 57 |
+
\frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} & \frac{\sqrt{3+\sqrt{5}}}{2} & -\frac{1}{2} \sqrt{1-\frac{1}{\sqrt{5}}} \\
|
| 58 |
+
-\sqrt{\frac{1}{2}+\frac{1}{\sqrt{5}}} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} \\
|
| 59 |
+
-\sqrt{\frac{1}{2}+\frac{1}{\sqrt{5}}} & \frac{1}{\sqrt{2}} & \frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} \\
|
| 60 |
+
-\frac{1}{2} \sqrt{1+\frac{1}{\sqrt{5}}} & -\frac{3+\sqrt{5}}{2 \sqrt{2}} & -\frac{1}{2} \sqrt{1-\frac{1}{\sqrt{5}}} \\
|
| 61 |
+
-\frac{1}{2} \sqrt{1+\frac{1}{\sqrt{5}}} & \frac{3+\sqrt{5}}{2 \sqrt{2}} & -\frac{1}{2} \sqrt{1-\frac{1}{\sqrt{5}}} \\
|
| 62 |
+
\frac{1}{\sqrt{5-\sqrt{5}}} & -\frac{3+\sqrt{5}}{2 \sqrt{2}} & \frac{1}{\sqrt{5+\sqrt{5}}} \\
|
| 63 |
+
\frac{1}{\sqrt{5-\sqrt{5}}} & \frac{3+\sqrt{5}}{2 \sqrt{2}} & \frac{1}{\sqrt{5+\sqrt{5}}} \\
|
| 64 |
+
\sqrt{\frac{1}{2}+\frac{1}{\sqrt{5}}} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} \\
|
| 65 |
+
\sqrt{\frac{1}{2}+\frac{1}{\sqrt{5}}} & \frac{1}{\sqrt{2}} & -\frac{1}{2} \sqrt{5+\frac{11}{\sqrt{5}}} \\
|
| 66 |
+
\end{array}
|
| 67 |
+
\right)$. Determine the FaceCount.
|
| 68 |
+
Answer:
|
| 69 |
+
$120$
|
pretraining/mathematica/geometry/solids/27271.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.846 & 0.464 & 0.947 \\
|
| 5 |
+
0.202 & 0.557 & 0.794 \\
|
| 6 |
+
0.235 & 0.373 & 0.609 \\
|
| 7 |
+
0.827 & 0.847 & 0.775 \\
|
| 8 |
+
0.617 & 0.637 & 0.08 \\
|
| 9 |
+
0.334 & 0.481 & 0.214 \\
|
| 10 |
+
0.328 & 0.115 & 0.279 \\
|
| 11 |
+
0.37 & 0.623 & 0.438 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $0.94$
|
| 16 |
+
Volume: $0.09$
|
| 17 |
+
Surface Area: $1.32$
|
pretraining/mathematica/geometry/solids/28998.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.963 & 0.241 & 0.791 \\
|
| 5 |
+
0.782 & 0.849 & 0.561 \\
|
| 6 |
+
0.939 & 0.257 & 0.37 \\
|
| 7 |
+
0.449 & 0.252 & 0.049 \\
|
| 8 |
+
0.967 & 0.479 & 0.439 \\
|
| 9 |
+
0.217 & 0.546 & 0.019 \\
|
| 10 |
+
0.645 & 0.877 & 0.125 \\
|
| 11 |
+
0.465 & 0.647 & 0.338 \\
|
| 12 |
+
0.803 & 0.983 & 0.193 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $0.58$
|
| 17 |
+
Volume: $0.09$
|
| 18 |
+
Surface Area: $1.34$
|
pretraining/mathematica/geometry/solids/31345.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.707 & 0.214 & 0.023 \\
|
| 5 |
+
0.819 & 0.44 & 0.486 \\
|
| 6 |
+
0.695 & 0.768 & 0.422 \\
|
| 7 |
+
0.818 & 0.139 & 0.463 \\
|
| 8 |
+
0.149 & 0.988 & 0.362 \\
|
| 9 |
+
0.358 & 0.668 & 0.128 \\
|
| 10 |
+
0.184 & 0.377 & 0.303 \\
|
| 11 |
+
0.171 & 0.651 & 0.888 \\
|
| 12 |
+
0.839 & 0.184 & 0.434 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.54$
|
| 17 |
+
Volume: $0.13$
|
| 18 |
+
Solid Angle: $1.04$
|
pretraining/mathematica/geometry/solids/32281.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
\sqrt{2} & 0 & -1 \\
|
| 5 |
+
\frac{1}{\sqrt{2}} & \sqrt{\frac{3}{2}} & -\frac{1}{2} \\
|
| 6 |
+
0 & 0 & -\frac{3}{2} \\
|
| 7 |
+
\frac{1}{\sqrt{2}} & -\sqrt{\frac{3}{2}} & -\frac{1}{2} \\
|
| 8 |
+
\sqrt{2} & 0 & 1 \\
|
| 9 |
+
\frac{1}{\sqrt{2}} & \sqrt{\frac{3}{2}} & \frac{1}{2} \\
|
| 10 |
+
\frac{1}{\sqrt{2}} & -\sqrt{\frac{3}{2}} & \frac{1}{2} \\
|
| 11 |
+
-\frac{1}{\sqrt{2}} & \sqrt{\frac{3}{2}} & -1 \\
|
| 12 |
+
-\frac{1}{\sqrt{2}} & -\sqrt{\frac{3}{2}} & -1 \\
|
| 13 |
+
0 & 0 & \frac{3}{2} \\
|
| 14 |
+
-\sqrt{2} & 0 & -\frac{1}{2} \\
|
| 15 |
+
-\frac{1}{\sqrt{2}} & \sqrt{\frac{3}{2}} & 1 \\
|
| 16 |
+
-\frac{1}{\sqrt{2}} & -\sqrt{\frac{3}{2}} & 1 \\
|
| 17 |
+
-\sqrt{2} & 0 & \frac{1}{2} \\
|
| 18 |
+
\end{array}
|
| 19 |
+
\right)$. Determine the Centroid.
|
| 20 |
+
Answer:
|
| 21 |
+
$\{0,0,0\}$
|
pretraining/mathematica/geometry/solids/36.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.737 & 0.604 & 0.183 \\
|
| 5 |
+
0.966 & 0.85 & 0.939 \\
|
| 6 |
+
0.894 & 0.537 & 0.087 \\
|
| 7 |
+
0.609 & 0.21 & 0.131 \\
|
| 8 |
+
0.803 & 0.989 & 0.531 \\
|
| 9 |
+
0.829 & 0.095 & 0.562 \\
|
| 10 |
+
0.947 & 0.188 & 0.266 \\
|
| 11 |
+
0.331 & 0.274 & 0.661 \\
|
| 12 |
+
0.494 & 0.563 & 0.685 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $4.21$
|
| 17 |
+
Surface Area: $1.54$
|
| 18 |
+
Volume: $0.13$
|
pretraining/mathematica/geometry/solids/3690.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.757 & 0.655 & 0.934 \\
|
| 5 |
+
0.259 & 0.795 & 0.778 \\
|
| 6 |
+
0.658 & 0.053 & 0.856 \\
|
| 7 |
+
0.173 & 0.055 & 0.562 \\
|
| 8 |
+
0.728 & 0.896 & 0.17 \\
|
| 9 |
+
0.25 & 0.942 & 0.16 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $1.75$
|
| 14 |
+
Volume: $0.13$
|
| 15 |
+
Solid Angle: $1.33$
|
pretraining/mathematica/geometry/solids/37631.txt
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0. & -1.618 & 0. \\
|
| 5 |
+
0. & 1.618 & 0. \\
|
| 6 |
+
0.851 & 0. & -0.526 \\
|
| 7 |
+
0.851 & 0. & 0.526 \\
|
| 8 |
+
0.263 & -0.809 & -0.526 \\
|
| 9 |
+
0.263 & -0.809 & 0.526 \\
|
| 10 |
+
0.263 & 0.809 & -0.526 \\
|
| 11 |
+
0.263 & 0.809 & 0.526 \\
|
| 12 |
+
-0.951 & -1.309 & 0. \\
|
| 13 |
+
-0.951 & 1.309 & 0. \\
|
| 14 |
+
0.951 & -1.309 & 0. \\
|
| 15 |
+
0.951 & 1.309 & 0. \\
|
| 16 |
+
-0.688 & -0.5 & -0.526 \\
|
| 17 |
+
-0.688 & -0.5 & 0.526 \\
|
| 18 |
+
-0.688 & 0.5 & -0.526 \\
|
| 19 |
+
-0.688 & 0.5 & 0.526 \\
|
| 20 |
+
-1.539 & -0.5 & 0. \\
|
| 21 |
+
-1.539 & 0.5 & 0. \\
|
| 22 |
+
1.539 & -0.5 & 0. \\
|
| 23 |
+
1.539 & 0.5 & 0. \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right)$. Determine the Volume.
|
| 26 |
+
Answer:
|
| 27 |
+
$4.65$
|
pretraining/mathematica/geometry/solids/3793.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.496 & 0.737 & 0.309 \\
|
| 5 |
+
0.284 & 0.167 & 0.477 \\
|
| 6 |
+
0.633 & 0.678 & 0.901 \\
|
| 7 |
+
0.715 & 0.947 & 0.534 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Surface Area: $0.55$
|
| 12 |
+
Volume: $0.$
|
| 13 |
+
Solid Angle: $0.2$
|
pretraining/mathematica/geometry/solids/38435.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.288 & 0.977 & 0.916 \\
|
| 5 |
+
0.869 & 0.047 & 0.938 \\
|
| 6 |
+
0.167 & 0.452 & 0.073 \\
|
| 7 |
+
0.851 & 0.737 & 0.845 \\
|
| 8 |
+
0.584 & 0.325 & 0.236 \\
|
| 9 |
+
0.934 & 0.174 & 0.837 \\
|
| 10 |
+
0.591 & 0.376 & 0.207 \\
|
| 11 |
+
0.916 & 0.528 & 0.909 \\
|
| 12 |
+
0.442 & 0.72 & 0.049 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.86$
|
| 17 |
+
Solid Angle: $0.72$
|
| 18 |
+
Volume: $0.15$
|
pretraining/mathematica/geometry/solids/38653.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
\frac{1}{2 \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & 0 & -\frac{1}{2} \\
|
| 5 |
+
\frac{1}{2 \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & 0 & \frac{1}{2} \\
|
| 6 |
+
\frac{-1-\sqrt{5}}{8 \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & -\frac{1}{2} & -\frac{1}{2} \\
|
| 7 |
+
\frac{-1-\sqrt{5}}{8 \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & -\frac{1}{2} & \frac{1}{2} \\
|
| 8 |
+
\frac{-1-\sqrt{5}}{8 \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & \frac{1}{2} & -\frac{1}{2} \\
|
| 9 |
+
\frac{-1-\sqrt{5}}{8 \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & \frac{1}{2} & \frac{1}{2} \\
|
| 10 |
+
\frac{\sqrt{5}-1}{8 \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & -\frac{1}{2} \sqrt{\frac{\frac{5}{8}+\frac{\sqrt{5}}{8}}{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & -\frac{1}{2} \\
|
| 11 |
+
\frac{\sqrt{5}-1}{8 \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & -\frac{1}{2} \sqrt{\frac{\frac{5}{8}+\frac{\sqrt{5}}{8}}{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & \frac{1}{2} \\
|
| 12 |
+
\frac{\sqrt{5}-1}{8 \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & \frac{1}{2} \sqrt{\frac{\frac{5}{8}+\frac{\sqrt{5}}{8}}{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & -\frac{1}{2} \\
|
| 13 |
+
\frac{\sqrt{5}-1}{8 \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & \frac{1}{2} \sqrt{\frac{\frac{5}{8}+\frac{\sqrt{5}}{8}}{\frac{5}{8}-\frac{\sqrt{5}}{8}}} & \frac{1}{2} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Determine the FaceCount.
|
| 16 |
+
Answer:
|
| 17 |
+
$7$
|
pretraining/mathematica/geometry/solids/41348.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.582 & 0.928 & 0.566 \\
|
| 5 |
+
0.309 & 0.599 & 0.939 \\
|
| 6 |
+
0.655 & 0.06 & 0.203 \\
|
| 7 |
+
0.832 & 0.836 & 0.235 \\
|
| 8 |
+
0.201 & 0.961 & 0.018 \\
|
| 9 |
+
0.919 & 0.619 & 0.687 \\
|
| 10 |
+
0.799 & 0.833 & 0.773 \\
|
| 11 |
+
0.794 & 0.217 & 0.016 \\
|
| 12 |
+
0.405 & 0.141 & 0.514 \\
|
| 13 |
+
0.928 & 0.204 & 0.708 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $2.27$
|
| 18 |
+
Solid Angle: $4.05$
|
| 19 |
+
Volume: $0.26$
|
pretraining/mathematica/geometry/solids/41936.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-1.225 & -1.225 & 0.408 \\
|
| 5 |
+
-1.225 & 1.225 & 0. \\
|
| 6 |
+
-0.408 & -0.816 & 0.816 \\
|
| 7 |
+
0. & 0. & 6.124 \\
|
| 8 |
+
0.408 & 0.816 & 0.816 \\
|
| 9 |
+
1.225 & -1.225 & 0. \\
|
| 10 |
+
1.225 & 1.225 & 0.408 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Determine the EdgeCount.
|
| 13 |
+
Answer:
|
| 14 |
+
$21.$
|
pretraining/mathematica/geometry/solids/42118.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.343 & 0.545 & 0.548 \\
|
| 5 |
+
0.187 & 0.149 & 0.592 \\
|
| 6 |
+
0.242 & 0.232 & 0.812 \\
|
| 7 |
+
0.006 & 0.281 & 0.615 \\
|
| 8 |
+
0.158 & 0.951 & 0.382 \\
|
| 9 |
+
0.24 & 0.747 & 0.09 \\
|
| 10 |
+
0.129 & 0.055 & 0.804 \\
|
| 11 |
+
0.194 & 0.234 & 0.906 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $0.77$
|
| 16 |
+
Volume: $0.03$
|
| 17 |
+
Solid Angle: $2.96$
|
pretraining/mathematica/geometry/solids/42178.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.181 & 0.15 & 0.782 \\
|
| 5 |
+
0.536 & 0.018 & 0.015 \\
|
| 6 |
+
0.528 & 0.088 & 0.038 \\
|
| 7 |
+
0.526 & 0.825 & 0.954 \\
|
| 8 |
+
0.071 & 0.266 & 0.012 \\
|
| 9 |
+
0.652 & 0.06 & 0.187 \\
|
| 10 |
+
0.94 & 0.5 & 0.459 \\
|
| 11 |
+
0.825 & 0.763 & 0.472 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.15$
|
| 16 |
+
Surface Area: $1.82$
|
| 17 |
+
Solid Angle: $1.08$
|
pretraining/mathematica/geometry/solids/4351.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.507 & 0.543 & 0.919 \\
|
| 5 |
+
0.535 & 0.24 & 0.32 \\
|
| 6 |
+
0.075 & 0.968 & 0.529 \\
|
| 7 |
+
0.626 & 0.929 & 0.465 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.03$
|
| 12 |
+
Surface Area: $0.79$
|
| 13 |
+
Solid Angle: $0.59$
|
pretraining/mathematica/geometry/solids/48546.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.503 & 0.481 & 0.153 \\
|
| 5 |
+
0.908 & 0.545 & 0.892 \\
|
| 6 |
+
0.892 & 0.068 & 0.379 \\
|
| 7 |
+
0.729 & 0.814 & 0.118 \\
|
| 8 |
+
0.266 & 0.272 & 0.794 \\
|
| 9 |
+
0.135 & 0.967 & 0.145 \\
|
| 10 |
+
0.458 & 0.256 & 0.382 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Solid Angle: $3.96$
|
| 15 |
+
Surface Area: $1.76$
|
| 16 |
+
Volume: $0.15$
|
pretraining/mathematica/geometry/solids/49275.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.336 & 0.004 & 0.879 \\
|
| 5 |
+
0.128 & 0.179 & 0.224 \\
|
| 6 |
+
0.392 & 0.203 & 0.089 \\
|
| 7 |
+
0.623 & 0.891 & 0.436 \\
|
| 8 |
+
0.223 & 0.367 & 0.196 \\
|
| 9 |
+
0.718 & 0.634 & 0.796 \\
|
| 10 |
+
0.067 & 0.942 & 0.626 \\
|
| 11 |
+
0.148 & 0.408 & 0.542 \\
|
| 12 |
+
0.222 & 0.936 & 0.96 \\
|
| 13 |
+
0.409 & 0.443 & 0.043 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $0.86$
|
| 18 |
+
Surface Area: $1.97$
|
| 19 |
+
Volume: $0.19$
|
pretraining/mathematica/geometry/solids/49338.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.914 & 0.365 & 0.09 \\
|
| 5 |
+
0.186 & 0.359 & 0.601 \\
|
| 6 |
+
0.617 & 0.989 & 0.314 \\
|
| 7 |
+
0.573 & 0.702 & 0.563 \\
|
| 8 |
+
0.824 & 0.483 & 0.003 \\
|
| 9 |
+
0.585 & 0.143 & 0.381 \\
|
| 10 |
+
0.68 & 0.341 & 0.516 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.05$
|
| 15 |
+
Solid Angle: $1.2$
|
| 16 |
+
Surface Area: $0.97$
|
pretraining/mathematica/geometry/solids/50676.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.876 & 0.207 & 0.152 \\
|
| 5 |
+
0.129 & 0.898 & 0.544 \\
|
| 6 |
+
0.444 & 0.377 & 0.933 \\
|
| 7 |
+
0.941 & 0.929 & 0.949 \\
|
| 8 |
+
0.106 & 0.193 & 0.158 \\
|
| 9 |
+
0.322 & 0.656 & 0.993 \\
|
| 10 |
+
0.116 & 0.348 & 0.792 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.19$
|
| 15 |
+
Surface Area: $2.15$
|
| 16 |
+
Solid Angle: $0.61$
|
pretraining/mathematica/geometry/solids/53090.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.48 & 0.696 & 0.497 \\
|
| 5 |
+
0.717 & 0.161 & 0.774 \\
|
| 6 |
+
0.174 & 0.089 & 0.661 \\
|
| 7 |
+
0.94 & 0.905 & 0.539 \\
|
| 8 |
+
0.792 & 0.08 & 0.947 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Solid Angle: $0.19$
|
| 13 |
+
Volume: $0.01$
|
| 14 |
+
Surface Area: $0.89$
|
pretraining/mathematica/geometry/solids/54383.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.652 & 0.615 & 0.272 \\
|
| 5 |
+
0.804 & 0.346 & 0.217 \\
|
| 6 |
+
0.159 & 0.967 & 0.652 \\
|
| 7 |
+
0.878 & 0.361 & 0.198 \\
|
| 8 |
+
0.865 & 0.396 & 0.836 \\
|
| 9 |
+
0.131 & 0.333 & 0.592 \\
|
| 10 |
+
0.029 & 0.026 & 0.68 \\
|
| 11 |
+
0.886 & 0.833 & 0.612 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $3.38$
|
| 16 |
+
Surface Area: $1.73$
|
| 17 |
+
Volume: $0.13$
|
pretraining/mathematica/geometry/solids/54673.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.12 & 0.549 & 0.99 \\
|
| 5 |
+
0.061 & 0.47 & 0.782 \\
|
| 6 |
+
0.127 & 0.186 & 0.769 \\
|
| 7 |
+
0.683 & 0.944 & 0.85 \\
|
| 8 |
+
0.547 & 0.586 & 0.134 \\
|
| 9 |
+
0.836 & 0.579 & 0.017 \\
|
| 10 |
+
0.225 & 0.148 & 0.136 \\
|
| 11 |
+
0.162 & 0.191 & 0.437 \\
|
| 12 |
+
0.039 & 0.434 & 0.481 \\
|
| 13 |
+
0.355 & 0.694 & 0.326 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $1.77$
|
| 18 |
+
Volume: $0.11$
|
| 19 |
+
Solid Angle: $1.05$
|
pretraining/mathematica/geometry/solids/55540.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.662 & 0.396 & 0.217 \\
|
| 5 |
+
0.77 & 0.617 & 0.63 \\
|
| 6 |
+
0.047 & 0.475 & 0.804 \\
|
| 7 |
+
0.935 & 0.344 & 0.9 \\
|
| 8 |
+
0.754 & 0.254 & 0.553 \\
|
| 9 |
+
0.286 & 0.836 & 0.489 \\
|
| 10 |
+
0.498 & 0.874 & 0.595 \\
|
| 11 |
+
0.348 & 0.953 & 0.821 \\
|
| 12 |
+
0.649 & 0.115 & 0.874 \\
|
| 13 |
+
0.271 & 0.167 & 0.725 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Volume: $0.13$
|
| 18 |
+
Surface Area: $1.54$
|
| 19 |
+
Solid Angle: $1.18$
|
pretraining/mathematica/geometry/solids/5728.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.153 & 0.614 & 0.955 \\
|
| 5 |
+
0.061 & 0.473 & 0.492 \\
|
| 6 |
+
0.297 & 0.558 & 0.958 \\
|
| 7 |
+
0.837 & 0.871 & 0.578 \\
|
| 8 |
+
0.966 & 0.337 & 0.538 \\
|
| 9 |
+
0.344 & 0.851 & 0.42 \\
|
| 10 |
+
0.567 & 0.847 & 0.194 \\
|
| 11 |
+
0.096 & 0.055 & 0.798 \\
|
| 12 |
+
0.447 & 0.498 & 0.88 \\
|
| 13 |
+
0.731 & 0.748 & 0.669 \\
|
| 14 |
+
0.835 & 0.015 & 0.298 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 17 |
+
Answer:
|
| 18 |
+
Surface Area: $2.04$
|
| 19 |
+
Solid Angle: $1.91$
|
| 20 |
+
Volume: $0.2$
|
pretraining/mathematica/geometry/solids/577.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.027 & 0.518 & 0.405 \\
|
| 5 |
+
0.815 & 0.259 & 0.305 \\
|
| 6 |
+
0.693 & 0.996 & 0.864 \\
|
| 7 |
+
0.532 & 0.584 & 0.835 \\
|
| 8 |
+
0.376 & 0.738 & 0.112 \\
|
| 9 |
+
0.372 & 0.222 & 0.496 \\
|
| 10 |
+
0.326 & 0.624 & 0.069 \\
|
| 11 |
+
0.12 & 0.423 & 0.499 \\
|
| 12 |
+
0.395 & 0.315 & 0.031 \\
|
| 13 |
+
0.287 & 0.013 & 0.254 \\
|
| 14 |
+
0.611 & 0.742 & 0.248 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 17 |
+
Answer:
|
| 18 |
+
Surface Area: $1.65$
|
| 19 |
+
Solid Angle: $1.99$
|
| 20 |
+
Volume: $0.15$
|
pretraining/mathematica/geometry/solids/58367.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.212 & 0.867 & 0.198 \\
|
| 5 |
+
0.751 & 0.09 & 0.661 \\
|
| 6 |
+
0.497 & 0.511 & 0.654 \\
|
| 7 |
+
0.526 & 0.134 & 0.7 \\
|
| 8 |
+
0.963 & 0.016 & 0.027 \\
|
| 9 |
+
0.356 & 0.458 & 0.259 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.04$
|
| 14 |
+
Solid Angle: $0.21$
|
| 15 |
+
Surface Area: $1.08$
|
pretraining/mathematica/geometry/solids/58701.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.297 & 0.419 & 0.065 \\
|
| 5 |
+
0.978 & 0.516 & 0.615 \\
|
| 6 |
+
0.566 & 0.85 & 0.551 \\
|
| 7 |
+
0.349 & 0.437 & 0.821 \\
|
| 8 |
+
0.175 & 0.132 & 0.763 \\
|
| 9 |
+
0.614 & 0.056 & 0.838 \\
|
| 10 |
+
0.12 & 0.584 & 0.321 \\
|
| 11 |
+
0.104 & 0.35 & 0.815 \\
|
| 12 |
+
0.874 & 0.151 & 0.118 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.18$
|
| 17 |
+
Surface Area: $1.86$
|
| 18 |
+
Solid Angle: $1.58$
|
pretraining/mathematica/geometry/solids/59209.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.866 & 0.395 & 0.635 \\
|
| 5 |
+
0.408 & 0.105 & 0.162 \\
|
| 6 |
+
0.531 & 0.905 & 0.786 \\
|
| 7 |
+
0.221 & 0.675 & 0.092 \\
|
| 8 |
+
0.014 & 0.233 & 0.406 \\
|
| 9 |
+
0.616 & 0.036 & 0.047 \\
|
| 10 |
+
0.284 & 0.814 & 0.76 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Solid Angle: $0.76$
|
| 15 |
+
Volume: $0.11$
|
| 16 |
+
Surface Area: $1.58$
|
pretraining/mathematica/geometry/solids/6150.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-0.707 & -0.408 & -0.289 \\
|
| 5 |
+
-0.707 & -0.408 & 0.289 \\
|
| 6 |
+
-0.707 & 0.408 & -0.289 \\
|
| 7 |
+
-0.707 & 0.408 & 0.289 \\
|
| 8 |
+
0. & -0.816 & -0.289 \\
|
| 9 |
+
0. & -0.816 & 0.289 \\
|
| 10 |
+
0. & 0. & -0.866 \\
|
| 11 |
+
0. & 0. & 0.866 \\
|
| 12 |
+
0. & 0.816 & -0.289 \\
|
| 13 |
+
0. & 0.816 & 0.289 \\
|
| 14 |
+
0.707 & -0.408 & -0.289 \\
|
| 15 |
+
0.707 & -0.408 & 0.289 \\
|
| 16 |
+
0.707 & 0.408 & -0.289 \\
|
| 17 |
+
0.707 & 0.408 & 0.289 \\
|
| 18 |
+
\end{array}
|
| 19 |
+
\right)$. Determine the EdgeCount.
|
| 20 |
+
Answer:
|
| 21 |
+
$24.$
|
pretraining/mathematica/geometry/solids/65133.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.313 & 0.997 & 0.118 \\
|
| 5 |
+
0.32 & 0.759 & 0.448 \\
|
| 6 |
+
0.22 & 0.701 & 0.683 \\
|
| 7 |
+
0.723 & 0.255 & 0.339 \\
|
| 8 |
+
0.597 & 0.491 & 0.391 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.49$
|
| 13 |
+
Volume: $0.$
|
| 14 |
+
Solid Angle: $0.04$
|
pretraining/mathematica/geometry/solids/6563.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.079 & 0.046 & 0.683 \\
|
| 5 |
+
0.729 & 0.71 & 0.54 \\
|
| 6 |
+
0.141 & 0.721 & 0.785 \\
|
| 7 |
+
0.153 & 0.588 & 0.041 \\
|
| 8 |
+
0.31 & 0.948 & 0.672 \\
|
| 9 |
+
0.392 & 0.816 & 0.322 \\
|
| 10 |
+
0.86 & 0.573 & 0.068 \\
|
| 11 |
+
0.786 & 0.158 & 0.048 \\
|
| 12 |
+
0.731 & 0.19 & 0.192 \\
|
| 13 |
+
0.04 & 0.279 & 0.864 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Volume: $0.19$
|
| 18 |
+
Surface Area: $2.02$
|
| 19 |
+
Solid Angle: $1.02$
|
pretraining/mathematica/geometry/solids/65895.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.7 & 0.98 & 0.356 \\
|
| 5 |
+
0.567 & 0.531 & 0.808 \\
|
| 6 |
+
0.798 & 0.297 & 0.394 \\
|
| 7 |
+
0.322 & 0.511 & 0.545 \\
|
| 8 |
+
0.677 & 0.333 & 0.812 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.03$
|
| 13 |
+
Solid Angle: $0.27$
|
| 14 |
+
Surface Area: $0.63$
|
pretraining/mathematica/geometry/solids/66016.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.723 & 0.925 & 0.281 \\
|
| 5 |
+
0.033 & 0.515 & 0.021 \\
|
| 6 |
+
0.499 & 0.398 & 0.232 \\
|
| 7 |
+
0.049 & 0.554 & 0.03 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.$
|
| 12 |
+
Surface Area: $0.32$
|
| 13 |
+
Solid Angle: $0.$
|