Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pretraining/mathematica/linear_algebra/multiply_w_steps/1024.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1056.txt +549 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1059.txt +166 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1179.txt +549 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1180.txt +166 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1228.txt +231 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/124.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1241.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/125.txt +390 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/127.txt +231 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/132.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1364.txt +264 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1405.txt +231 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1426.txt +362 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1484.txt +159 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1489.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/152.txt +166 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1628.txt +362 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1784.txt +375 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1787.txt +528 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1795.txt +549 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1831.txt +222 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1920.txt +390 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1989.txt +159 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2249.txt +166 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2282.txt +549 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/238.txt +222 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2581.txt +159 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2642.txt +159 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2649.txt +390 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2671.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2742.txt +159 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2757.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2774.txt +222 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2779.txt +166 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2807.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2883.txt +159 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/291.txt +253 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/298.txt +253 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2984.txt +390 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/302.txt +231 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3131.txt +264 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3214.txt +362 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3320.txt +362 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3336.txt +390 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3408.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3493.txt +375 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3646.txt +375 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3680.txt +390 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3709.txt +347 -0
pretraining/mathematica/linear_algebra/multiply_w_steps/1024.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
\frac{12}{7} & 2 \\
|
| 6 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 12 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
\frac{12}{7} & 2 \\
|
| 23 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 28 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
\frac{12}{7} & 2 \\
|
| 45 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 50 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
\frac{12}{7} & 2 \\
|
| 66 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 71 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{12\ 16}{7\ 7}+2 (-2)=-\frac{4}{49}. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
\frac{12}{7} & 2 \\
|
| 92 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 97 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$-\frac{4}{49}$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
\frac{12}{7} & 2 \\
|
| 113 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 118 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-\frac{4}{49} & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{12\ 3}{7\ 7}+\frac{2\ 3}{7}=\frac{78}{49}. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
\frac{12}{7} & 2 \\
|
| 139 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 144 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
-\frac{4}{49} & \fbox{$\frac{78}{49}$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
\frac{12}{7} & 2 \\
|
| 160 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 165 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
-\frac{4}{49} & \frac{78}{49} & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{12\ 15}{7\ 7}+\frac{2\ 9}{7}=\frac{306}{49}. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
\frac{12}{7} & 2 \\
|
| 186 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 191 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
-\frac{4}{49} & \frac{78}{49} & \fbox{$\frac{306}{49}$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
\frac{12}{7} & 2 \\
|
| 207 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 212 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
-\frac{4}{49} & \frac{78}{49} & \frac{306}{49} \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{7} \left(-\frac{16}{7}\right)+\left(-\frac{10}{7}\right)\, (-2)=\frac{124}{49}. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
\frac{12}{7} & 2 \\
|
| 233 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 238 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-\frac{4}{49} & \frac{78}{49} & \frac{306}{49} \\
|
| 243 |
+
\fbox{$\frac{124}{49}$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
\frac{12}{7} & 2 \\
|
| 254 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 259 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
-\frac{4}{49} & \frac{78}{49} & \frac{306}{49} \\
|
| 264 |
+
\frac{124}{49} & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{7} \left(-\frac{3}{7}\right)+\left(-\frac{10}{7}\right)\, \times \, \frac{3}{7}=-\frac{33}{49}. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
\frac{12}{7} & 2 \\
|
| 280 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 285 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
-\frac{4}{49} & \frac{78}{49} & \frac{306}{49} \\
|
| 290 |
+
\frac{124}{49} & \fbox{$-\frac{33}{49}$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
\frac{12}{7} & 2 \\
|
| 301 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 306 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
-\frac{4}{49} & \frac{78}{49} & \frac{306}{49} \\
|
| 311 |
+
\frac{124}{49} & -\frac{33}{49} & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{7} \left(-\frac{15}{7}\right)+\left(-\frac{10}{7}\right)\, \times \, \frac{9}{7}=-\frac{15}{7}. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
\frac{12}{7} & 2 \\
|
| 330 |
+
-\frac{1}{7} & -\frac{10}{7} \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
\frac{16}{7} & \frac{3}{7} & \frac{15}{7} \\
|
| 335 |
+
-2 & \frac{3}{7} & \frac{9}{7} \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
-\frac{4}{49} & \frac{78}{49} & \frac{306}{49} \\
|
| 340 |
+
\frac{124}{49} & -\frac{33}{49} & \fbox{$-\frac{15}{7}$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1056.txt
ADDED
|
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 6 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 7 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{ccc}
|
| 12 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 13 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 14 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 25 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 26 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{ccc}
|
| 30 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 31 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 32 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 49 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 50 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 55 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 56 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{ccc}
|
| 60 |
+
\_ & \_ & \_ \\
|
| 61 |
+
\_ & \_ & \_ \\
|
| 62 |
+
\_ & \_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 73 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 74 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{ccc}
|
| 78 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 79 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 80 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{ccc}
|
| 84 |
+
\_ & \_ & \_ \\
|
| 85 |
+
\_ & \_ & \_ \\
|
| 86 |
+
\_ & \_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{4} \left(-\frac{5}{2}\right)+\frac{1}{4} \left(-\frac{1}{4}\right)-\frac{7}{2\ 4}=-\frac{25}{16}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 102 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 103 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{ccc}
|
| 107 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 108 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 109 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{ccc}
|
| 113 |
+
\fbox{$-\frac{25}{16}$} & \_ & \_ \\
|
| 114 |
+
\_ & \_ & \_ \\
|
| 115 |
+
\_ & \_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 126 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 127 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{ccc}
|
| 131 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 132 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 133 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{ccc}
|
| 137 |
+
-\frac{25}{16} & \_ & \_ \\
|
| 138 |
+
\_ & \_ & \_ \\
|
| 139 |
+
\_ & \_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{4} (-1)+\frac{1}{4} \left(-\frac{1}{2}\right)-\frac{1}{2}=-\frac{7}{8}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 155 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 156 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{ccc}
|
| 160 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 161 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 162 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
-\frac{25}{16} & \fbox{$-\frac{7}{8}$} & \_ \\
|
| 167 |
+
\_ & \_ & \_ \\
|
| 168 |
+
\_ & \_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 179 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 180 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{ccc}
|
| 184 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 185 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 186 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
-\frac{25}{16} & -\frac{7}{8} & \_ \\
|
| 191 |
+
\_ & \_ & \_ \\
|
| 192 |
+
\_ & \_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{4} \left(-\frac{7}{4}\right)+\frac{2}{4}+\frac{3}{2}=\frac{25}{16}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 208 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 209 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{ccc}
|
| 213 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 214 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 215 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{ccc}
|
| 219 |
+
-\frac{25}{16} & -\frac{7}{8} & \fbox{$\frac{25}{16}$} \\
|
| 220 |
+
\_ & \_ & \_ \\
|
| 221 |
+
\_ & \_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 232 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 233 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 238 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 239 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{ccc}
|
| 243 |
+
-\frac{25}{16} & -\frac{7}{8} & \frac{25}{16} \\
|
| 244 |
+
\_ & \_ & \_ \\
|
| 245 |
+
\_ & \_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{3}{2}\right)\, \times \, \frac{5}{2}+\frac{1}{4\ 4}+\frac{9 (-7)}{4\ 4}=-\frac{61}{8}. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 261 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 262 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{ccc}
|
| 266 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 267 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 268 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{ccc}
|
| 272 |
+
-\frac{25}{16} & -\frac{7}{8} & \frac{25}{16} \\
|
| 273 |
+
\fbox{$-\frac{61}{8}$} & \_ & \_ \\
|
| 274 |
+
\_ & \_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 285 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 286 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{ccc}
|
| 290 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 291 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 292 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
-\frac{25}{16} & -\frac{7}{8} & \frac{25}{16} \\
|
| 297 |
+
-\frac{61}{8} & \_ & \_ \\
|
| 298 |
+
\_ & \_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{3}{2}\right)\, \times \, 1+\frac{1}{4\ 2}+\frac{9 (-1)}{4}=-\frac{29}{8}. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 314 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 315 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{ccc}
|
| 319 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 320 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 321 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{ccc}
|
| 325 |
+
-\frac{25}{16} & -\frac{7}{8} & \frac{25}{16} \\
|
| 326 |
+
-\frac{61}{8} & \fbox{$-\frac{29}{8}$} & \_ \\
|
| 327 |
+
\_ & \_ & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 338 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 339 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 344 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 345 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{ccc}
|
| 349 |
+
-\frac{25}{16} & -\frac{7}{8} & \frac{25}{16} \\
|
| 350 |
+
-\frac{61}{8} & -\frac{29}{8} & \_ \\
|
| 351 |
+
\_ & \_ & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{3}{2}\right)\, \times \, \frac{7}{4}-\frac{2}{4}+\frac{9\ 3}{4}=\frac{29}{8}. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\left(
|
| 365 |
+
\begin{array}{ccc}
|
| 366 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 367 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 368 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 369 |
+
\end{array}
|
| 370 |
+
\right).\left(
|
| 371 |
+
\begin{array}{ccc}
|
| 372 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 373 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 374 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 375 |
+
\end{array}
|
| 376 |
+
\right)=\left(
|
| 377 |
+
\begin{array}{ccc}
|
| 378 |
+
-\frac{25}{16} & -\frac{7}{8} & \frac{25}{16} \\
|
| 379 |
+
-\frac{61}{8} & -\frac{29}{8} & \fbox{$\frac{29}{8}$} \\
|
| 380 |
+
\_ & \_ & \_ \\
|
| 381 |
+
\end{array}
|
| 382 |
+
\right) \\
|
| 383 |
+
\end{array}
|
| 384 |
+
\\
|
| 385 |
+
|
| 386 |
+
\begin{array}{l}
|
| 387 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 388 |
+
\left(
|
| 389 |
+
\begin{array}{ccc}
|
| 390 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 391 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 392 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 393 |
+
\end{array}
|
| 394 |
+
\right).\left(
|
| 395 |
+
\begin{array}{ccc}
|
| 396 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 397 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 398 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 399 |
+
\end{array}
|
| 400 |
+
\right)=\left(
|
| 401 |
+
\begin{array}{ccc}
|
| 402 |
+
-\frac{25}{16} & -\frac{7}{8} & \frac{25}{16} \\
|
| 403 |
+
-\frac{61}{8} & -\frac{29}{8} & \frac{29}{8} \\
|
| 404 |
+
\_ & \_ & \_ \\
|
| 405 |
+
\end{array}
|
| 406 |
+
\right) \\
|
| 407 |
+
\end{array}
|
| 408 |
+
\\
|
| 409 |
+
|
| 410 |
+
\begin{array}{l}
|
| 411 |
+
|
| 412 |
+
\begin{array}{l}
|
| 413 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3\ 5}{2\ 2}+\left(-\frac{7}{4}\right)\, \times \, \frac{1}{4}+\frac{9 (-7)}{4\ 4}=-\frac{5}{8}. \\
|
| 414 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 415 |
+
\end{array}
|
| 416 |
+
\\
|
| 417 |
+
\left(
|
| 418 |
+
\begin{array}{ccc}
|
| 419 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 420 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 421 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 422 |
+
\end{array}
|
| 423 |
+
\right).\left(
|
| 424 |
+
\begin{array}{ccc}
|
| 425 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 426 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 427 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 428 |
+
\end{array}
|
| 429 |
+
\right)=\left(
|
| 430 |
+
\begin{array}{ccc}
|
| 431 |
+
-\frac{25}{16} & -\frac{7}{8} & \frac{25}{16} \\
|
| 432 |
+
-\frac{61}{8} & -\frac{29}{8} & \frac{29}{8} \\
|
| 433 |
+
\fbox{$-\frac{5}{8}$} & \_ & \_ \\
|
| 434 |
+
\end{array}
|
| 435 |
+
\right) \\
|
| 436 |
+
\end{array}
|
| 437 |
+
\\
|
| 438 |
+
|
| 439 |
+
\begin{array}{l}
|
| 440 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 441 |
+
\left(
|
| 442 |
+
\begin{array}{ccc}
|
| 443 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 444 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 445 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 446 |
+
\end{array}
|
| 447 |
+
\right).\left(
|
| 448 |
+
\begin{array}{ccc}
|
| 449 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 450 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 451 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 452 |
+
\end{array}
|
| 453 |
+
\right)=\left(
|
| 454 |
+
\begin{array}{ccc}
|
| 455 |
+
-\frac{25}{16} & -\frac{7}{8} & \frac{25}{16} \\
|
| 456 |
+
-\frac{61}{8} & -\frac{29}{8} & \frac{29}{8} \\
|
| 457 |
+
-\frac{5}{8} & \_ & \_ \\
|
| 458 |
+
\end{array}
|
| 459 |
+
\right) \\
|
| 460 |
+
\end{array}
|
| 461 |
+
\\
|
| 462 |
+
|
| 463 |
+
\begin{array}{l}
|
| 464 |
+
|
| 465 |
+
\begin{array}{l}
|
| 466 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3}{2}+\left(-\frac{7}{4}\right)\, \times \, \frac{1}{2}+\frac{9 (-1)}{4}=-\frac{13}{8}. \\
|
| 467 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 468 |
+
\end{array}
|
| 469 |
+
\\
|
| 470 |
+
\left(
|
| 471 |
+
\begin{array}{ccc}
|
| 472 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 473 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 474 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 475 |
+
\end{array}
|
| 476 |
+
\right).\left(
|
| 477 |
+
\begin{array}{ccc}
|
| 478 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 479 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 480 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 481 |
+
\end{array}
|
| 482 |
+
\right)=\left(
|
| 483 |
+
\begin{array}{ccc}
|
| 484 |
+
-\frac{25}{16} & -\frac{7}{8} & \frac{25}{16} \\
|
| 485 |
+
-\frac{61}{8} & -\frac{29}{8} & \frac{29}{8} \\
|
| 486 |
+
-\frac{5}{8} & \fbox{$-\frac{13}{8}$} & \_ \\
|
| 487 |
+
\end{array}
|
| 488 |
+
\right) \\
|
| 489 |
+
\end{array}
|
| 490 |
+
\\
|
| 491 |
+
|
| 492 |
+
\begin{array}{l}
|
| 493 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 494 |
+
\left(
|
| 495 |
+
\begin{array}{ccc}
|
| 496 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 497 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 498 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 499 |
+
\end{array}
|
| 500 |
+
\right).\left(
|
| 501 |
+
\begin{array}{ccc}
|
| 502 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 503 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 504 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 505 |
+
\end{array}
|
| 506 |
+
\right)=\left(
|
| 507 |
+
\begin{array}{ccc}
|
| 508 |
+
-\frac{25}{16} & -\frac{7}{8} & \frac{25}{16} \\
|
| 509 |
+
-\frac{61}{8} & -\frac{29}{8} & \frac{29}{8} \\
|
| 510 |
+
-\frac{5}{8} & -\frac{13}{8} & \_ \\
|
| 511 |
+
\end{array}
|
| 512 |
+
\right) \\
|
| 513 |
+
\end{array}
|
| 514 |
+
\\
|
| 515 |
+
|
| 516 |
+
\begin{array}{l}
|
| 517 |
+
|
| 518 |
+
\begin{array}{l}
|
| 519 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3\ 7}{2\ 4}+\left(-\frac{7}{4}\right)\, (-2)+\frac{9\ 3}{4}=\frac{103}{8}. \\
|
| 520 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 521 |
+
\end{array}
|
| 522 |
+
\\
|
| 523 |
+
\fbox{$
|
| 524 |
+
\begin{array}{ll}
|
| 525 |
+
\text{Answer:} & \\
|
| 526 |
+
\text{} & \left(
|
| 527 |
+
\begin{array}{ccc}
|
| 528 |
+
-\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \\
|
| 529 |
+
-\frac{3}{2} & \frac{1}{4} & \frac{9}{4} \\
|
| 530 |
+
\frac{3}{2} & -\frac{7}{4} & \frac{9}{4} \\
|
| 531 |
+
\end{array}
|
| 532 |
+
\right).\left(
|
| 533 |
+
\begin{array}{ccc}
|
| 534 |
+
\frac{5}{2} & 1 & \frac{7}{4} \\
|
| 535 |
+
\frac{1}{4} & \frac{1}{2} & -2 \\
|
| 536 |
+
-\frac{7}{4} & -1 & 3 \\
|
| 537 |
+
\end{array}
|
| 538 |
+
\right)=\left(
|
| 539 |
+
\begin{array}{ccc}
|
| 540 |
+
-\frac{25}{16} & -\frac{7}{8} & \frac{25}{16} \\
|
| 541 |
+
-\frac{61}{8} & -\frac{29}{8} & \frac{29}{8} \\
|
| 542 |
+
-\frac{5}{8} & -\frac{13}{8} & \fbox{$\frac{103}{8}$} \\
|
| 543 |
+
\end{array}
|
| 544 |
+
\right) \\
|
| 545 |
+
\end{array}
|
| 546 |
+
$} \\
|
| 547 |
+
\end{array}
|
| 548 |
+
\\
|
| 549 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1059.txt
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
\frac{7}{8} & -\frac{15}{8} & -\frac{5}{2} \\
|
| 6 |
+
2 & -1 & -\frac{13}{8} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
\frac{17}{8} \\
|
| 12 |
+
-\frac{11}{8} \\
|
| 13 |
+
-\frac{7}{8} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
\frac{7}{8} & -\frac{15}{8} & -\frac{5}{2} \\
|
| 24 |
+
2 & -1 & -\frac{13}{8} \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{c}
|
| 28 |
+
\frac{17}{8} \\
|
| 29 |
+
-\frac{11}{8} \\
|
| 30 |
+
-\frac{7}{8} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
\frac{7}{8} & -\frac{15}{8} & -\frac{5}{2} \\
|
| 47 |
+
2 & -1 & -\frac{13}{8} \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{c}
|
| 51 |
+
\frac{17}{8} \\
|
| 52 |
+
-\frac{11}{8} \\
|
| 53 |
+
-\frac{7}{8} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{c}
|
| 57 |
+
\_ \\
|
| 58 |
+
\_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
\frac{7}{8} & -\frac{15}{8} & -\frac{5}{2} \\
|
| 69 |
+
2 & -1 & -\frac{13}{8} \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{c}
|
| 73 |
+
\frac{17}{8} \\
|
| 74 |
+
-\frac{11}{8} \\
|
| 75 |
+
-\frac{7}{8} \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{c}
|
| 79 |
+
\_ \\
|
| 80 |
+
\_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7\ 17}{8\ 8}+\left(-\frac{15}{8}\right)\, \left(-\frac{11}{8}\right)+\left(-\frac{5}{2}\right)\, \left(-\frac{7}{8}\right)=\frac{53}{8}. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
\frac{7}{8} & -\frac{15}{8} & -\frac{5}{2} \\
|
| 96 |
+
2 & -1 & -\frac{13}{8} \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{c}
|
| 100 |
+
\frac{17}{8} \\
|
| 101 |
+
-\frac{11}{8} \\
|
| 102 |
+
-\frac{7}{8} \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{c}
|
| 106 |
+
\fbox{$\frac{53}{8}$} \\
|
| 107 |
+
\_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
\frac{7}{8} & -\frac{15}{8} & -\frac{5}{2} \\
|
| 118 |
+
2 & -1 & -\frac{13}{8} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
\frac{17}{8} \\
|
| 123 |
+
-\frac{11}{8} \\
|
| 124 |
+
-\frac{7}{8} \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{c}
|
| 128 |
+
\frac{53}{8} \\
|
| 129 |
+
\_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2\ 17}{8}+(-1)\, \left(-\frac{11}{8}\right)+\left(-\frac{13}{8}\right)\, \left(-\frac{7}{8}\right)=\frac{451}{64}. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\fbox{$
|
| 143 |
+
\begin{array}{ll}
|
| 144 |
+
\text{Answer:} & \\
|
| 145 |
+
\text{} & \left(
|
| 146 |
+
\begin{array}{ccc}
|
| 147 |
+
\frac{7}{8} & -\frac{15}{8} & -\frac{5}{2} \\
|
| 148 |
+
2 & -1 & -\frac{13}{8} \\
|
| 149 |
+
\end{array}
|
| 150 |
+
\right).\left(
|
| 151 |
+
\begin{array}{c}
|
| 152 |
+
\frac{17}{8} \\
|
| 153 |
+
-\frac{11}{8} \\
|
| 154 |
+
-\frac{7}{8} \\
|
| 155 |
+
\end{array}
|
| 156 |
+
\right)=\left(
|
| 157 |
+
\begin{array}{c}
|
| 158 |
+
\frac{53}{8} \\
|
| 159 |
+
\fbox{$\frac{451}{64}$} \\
|
| 160 |
+
\end{array}
|
| 161 |
+
\right) \\
|
| 162 |
+
\end{array}
|
| 163 |
+
$} \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1179.txt
ADDED
|
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 6 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 7 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{ccc}
|
| 12 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 13 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 14 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 25 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 26 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{ccc}
|
| 30 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 31 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 32 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 49 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 50 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 55 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 56 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{ccc}
|
| 60 |
+
\_ & \_ & \_ \\
|
| 61 |
+
\_ & \_ & \_ \\
|
| 62 |
+
\_ & \_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 73 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 74 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{ccc}
|
| 78 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 79 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 80 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{ccc}
|
| 84 |
+
\_ & \_ & \_ \\
|
| 85 |
+
\_ & \_ & \_ \\
|
| 86 |
+
\_ & \_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4 (-13)}{5\ 5}+\frac{9 (-13)}{5\ 5}+\frac{13 (-2)}{5\ 5}=-\frac{39}{5}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 102 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 103 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{ccc}
|
| 107 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 108 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 109 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{ccc}
|
| 113 |
+
\fbox{$-\frac{39}{5}$} & \_ & \_ \\
|
| 114 |
+
\_ & \_ & \_ \\
|
| 115 |
+
\_ & \_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 126 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 127 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{ccc}
|
| 131 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 132 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 133 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{ccc}
|
| 137 |
+
-\frac{39}{5} & \_ & \_ \\
|
| 138 |
+
\_ & \_ & \_ \\
|
| 139 |
+
\_ & \_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4\ 3}{5}+\frac{9 (-8)}{5\ 5}+\frac{13 (-2)}{5}=-\frac{142}{25}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 155 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 156 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{ccc}
|
| 160 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 161 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 162 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
-\frac{39}{5} & \fbox{$-\frac{142}{25}$} & \_ \\
|
| 167 |
+
\_ & \_ & \_ \\
|
| 168 |
+
\_ & \_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 179 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 180 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{ccc}
|
| 184 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 185 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 186 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
-\frac{39}{5} & -\frac{142}{25} & \_ \\
|
| 191 |
+
\_ & \_ & \_ \\
|
| 192 |
+
\_ & \_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4 (-11)}{5\ 5}+\frac{9}{5}+\frac{13 (-13)}{5\ 5}=-\frac{168}{25}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 208 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 209 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{ccc}
|
| 213 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 214 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 215 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{ccc}
|
| 219 |
+
-\frac{39}{5} & -\frac{142}{25} & \fbox{$-\frac{168}{25}$} \\
|
| 220 |
+
\_ & \_ & \_ \\
|
| 221 |
+
\_ & \_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 232 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 233 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 238 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 239 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{ccc}
|
| 243 |
+
-\frac{39}{5} & -\frac{142}{25} & -\frac{168}{25} \\
|
| 244 |
+
\_ & \_ & \_ \\
|
| 245 |
+
\_ & \_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7 (-13)}{5\ 5}-\frac{13}{5}+\left(-\frac{2}{5}\right)\, \left(-\frac{2}{5}\right)=-\frac{152}{25}. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 261 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 262 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{ccc}
|
| 266 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 267 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 268 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{ccc}
|
| 272 |
+
-\frac{39}{5} & -\frac{142}{25} & -\frac{168}{25} \\
|
| 273 |
+
\fbox{$-\frac{152}{25}$} & \_ & \_ \\
|
| 274 |
+
\_ & \_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 285 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 286 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{ccc}
|
| 290 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 291 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 292 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
-\frac{39}{5} & -\frac{142}{25} & -\frac{168}{25} \\
|
| 297 |
+
-\frac{152}{25} & \_ & \_ \\
|
| 298 |
+
\_ & \_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7\ 3}{5}-\frac{8}{5}+\left(-\frac{2}{5}\right)\, (-2)=\frac{17}{5}. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 314 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 315 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{ccc}
|
| 319 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 320 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 321 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{ccc}
|
| 325 |
+
-\frac{39}{5} & -\frac{142}{25} & -\frac{168}{25} \\
|
| 326 |
+
-\frac{152}{25} & \fbox{$\frac{17}{5}$} & \_ \\
|
| 327 |
+
\_ & \_ & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 338 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 339 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 344 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 345 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{ccc}
|
| 349 |
+
-\frac{39}{5} & -\frac{142}{25} & -\frac{168}{25} \\
|
| 350 |
+
-\frac{152}{25} & \frac{17}{5} & \_ \\
|
| 351 |
+
\_ & \_ & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7 (-11)}{5\ 5}+1\ 1+\left(-\frac{2}{5}\right)\, \left(-\frac{13}{5}\right)=-\frac{26}{25}. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\left(
|
| 365 |
+
\begin{array}{ccc}
|
| 366 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 367 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 368 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 369 |
+
\end{array}
|
| 370 |
+
\right).\left(
|
| 371 |
+
\begin{array}{ccc}
|
| 372 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 373 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 374 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 375 |
+
\end{array}
|
| 376 |
+
\right)=\left(
|
| 377 |
+
\begin{array}{ccc}
|
| 378 |
+
-\frac{39}{5} & -\frac{142}{25} & -\frac{168}{25} \\
|
| 379 |
+
-\frac{152}{25} & \frac{17}{5} & \fbox{$-\frac{26}{25}$} \\
|
| 380 |
+
\_ & \_ & \_ \\
|
| 381 |
+
\end{array}
|
| 382 |
+
\right) \\
|
| 383 |
+
\end{array}
|
| 384 |
+
\\
|
| 385 |
+
|
| 386 |
+
\begin{array}{l}
|
| 387 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 388 |
+
\left(
|
| 389 |
+
\begin{array}{ccc}
|
| 390 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 391 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 392 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 393 |
+
\end{array}
|
| 394 |
+
\right).\left(
|
| 395 |
+
\begin{array}{ccc}
|
| 396 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 397 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 398 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 399 |
+
\end{array}
|
| 400 |
+
\right)=\left(
|
| 401 |
+
\begin{array}{ccc}
|
| 402 |
+
-\frac{39}{5} & -\frac{142}{25} & -\frac{168}{25} \\
|
| 403 |
+
-\frac{152}{25} & \frac{17}{5} & -\frac{26}{25} \\
|
| 404 |
+
\_ & \_ & \_ \\
|
| 405 |
+
\end{array}
|
| 406 |
+
\right) \\
|
| 407 |
+
\end{array}
|
| 408 |
+
\\
|
| 409 |
+
|
| 410 |
+
\begin{array}{l}
|
| 411 |
+
|
| 412 |
+
\begin{array}{l}
|
| 413 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{13 (-13)}{5\ 5}+(-3)\, \left(-\frac{13}{5}\right)+\left(-\frac{13}{5}\right)\, \left(-\frac{2}{5}\right)=\frac{52}{25}. \\
|
| 414 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 415 |
+
\end{array}
|
| 416 |
+
\\
|
| 417 |
+
\left(
|
| 418 |
+
\begin{array}{ccc}
|
| 419 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 420 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 421 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 422 |
+
\end{array}
|
| 423 |
+
\right).\left(
|
| 424 |
+
\begin{array}{ccc}
|
| 425 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 426 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 427 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 428 |
+
\end{array}
|
| 429 |
+
\right)=\left(
|
| 430 |
+
\begin{array}{ccc}
|
| 431 |
+
-\frac{39}{5} & -\frac{142}{25} & -\frac{168}{25} \\
|
| 432 |
+
-\frac{152}{25} & \frac{17}{5} & -\frac{26}{25} \\
|
| 433 |
+
\fbox{$\frac{52}{25}$} & \_ & \_ \\
|
| 434 |
+
\end{array}
|
| 435 |
+
\right) \\
|
| 436 |
+
\end{array}
|
| 437 |
+
\\
|
| 438 |
+
|
| 439 |
+
\begin{array}{l}
|
| 440 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 441 |
+
\left(
|
| 442 |
+
\begin{array}{ccc}
|
| 443 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 444 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 445 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 446 |
+
\end{array}
|
| 447 |
+
\right).\left(
|
| 448 |
+
\begin{array}{ccc}
|
| 449 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 450 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 451 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 452 |
+
\end{array}
|
| 453 |
+
\right)=\left(
|
| 454 |
+
\begin{array}{ccc}
|
| 455 |
+
-\frac{39}{5} & -\frac{142}{25} & -\frac{168}{25} \\
|
| 456 |
+
-\frac{152}{25} & \frac{17}{5} & -\frac{26}{25} \\
|
| 457 |
+
\frac{52}{25} & \_ & \_ \\
|
| 458 |
+
\end{array}
|
| 459 |
+
\right) \\
|
| 460 |
+
\end{array}
|
| 461 |
+
\\
|
| 462 |
+
|
| 463 |
+
\begin{array}{l}
|
| 464 |
+
|
| 465 |
+
\begin{array}{l}
|
| 466 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{13\ 3}{5}+(-3)\, \left(-\frac{8}{5}\right)+\left(-\frac{13}{5}\right)\, (-2)=\frac{89}{5}. \\
|
| 467 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 468 |
+
\end{array}
|
| 469 |
+
\\
|
| 470 |
+
\left(
|
| 471 |
+
\begin{array}{ccc}
|
| 472 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 473 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 474 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 475 |
+
\end{array}
|
| 476 |
+
\right).\left(
|
| 477 |
+
\begin{array}{ccc}
|
| 478 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 479 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 480 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 481 |
+
\end{array}
|
| 482 |
+
\right)=\left(
|
| 483 |
+
\begin{array}{ccc}
|
| 484 |
+
-\frac{39}{5} & -\frac{142}{25} & -\frac{168}{25} \\
|
| 485 |
+
-\frac{152}{25} & \frac{17}{5} & -\frac{26}{25} \\
|
| 486 |
+
\frac{52}{25} & \fbox{$\frac{89}{5}$} & \_ \\
|
| 487 |
+
\end{array}
|
| 488 |
+
\right) \\
|
| 489 |
+
\end{array}
|
| 490 |
+
\\
|
| 491 |
+
|
| 492 |
+
\begin{array}{l}
|
| 493 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 494 |
+
\left(
|
| 495 |
+
\begin{array}{ccc}
|
| 496 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 497 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 498 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 499 |
+
\end{array}
|
| 500 |
+
\right).\left(
|
| 501 |
+
\begin{array}{ccc}
|
| 502 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 503 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 504 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 505 |
+
\end{array}
|
| 506 |
+
\right)=\left(
|
| 507 |
+
\begin{array}{ccc}
|
| 508 |
+
-\frac{39}{5} & -\frac{142}{25} & -\frac{168}{25} \\
|
| 509 |
+
-\frac{152}{25} & \frac{17}{5} & -\frac{26}{25} \\
|
| 510 |
+
\frac{52}{25} & \frac{89}{5} & \_ \\
|
| 511 |
+
\end{array}
|
| 512 |
+
\right) \\
|
| 513 |
+
\end{array}
|
| 514 |
+
\\
|
| 515 |
+
|
| 516 |
+
\begin{array}{l}
|
| 517 |
+
|
| 518 |
+
\begin{array}{l}
|
| 519 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{13 (-11)}{5\ 5}+(-3)\, \times \, 1+\left(-\frac{13}{5}\right)\, \left(-\frac{13}{5}\right)=-\frac{49}{25}. \\
|
| 520 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 521 |
+
\end{array}
|
| 522 |
+
\\
|
| 523 |
+
\fbox{$
|
| 524 |
+
\begin{array}{ll}
|
| 525 |
+
\text{Answer:} & \\
|
| 526 |
+
\text{} & \left(
|
| 527 |
+
\begin{array}{ccc}
|
| 528 |
+
\frac{4}{5} & \frac{9}{5} & \frac{13}{5} \\
|
| 529 |
+
\frac{7}{5} & 1 & -\frac{2}{5} \\
|
| 530 |
+
\frac{13}{5} & -3 & -\frac{13}{5} \\
|
| 531 |
+
\end{array}
|
| 532 |
+
\right).\left(
|
| 533 |
+
\begin{array}{ccc}
|
| 534 |
+
-\frac{13}{5} & 3 & -\frac{11}{5} \\
|
| 535 |
+
-\frac{13}{5} & -\frac{8}{5} & 1 \\
|
| 536 |
+
-\frac{2}{5} & -2 & -\frac{13}{5} \\
|
| 537 |
+
\end{array}
|
| 538 |
+
\right)=\left(
|
| 539 |
+
\begin{array}{ccc}
|
| 540 |
+
-\frac{39}{5} & -\frac{142}{25} & -\frac{168}{25} \\
|
| 541 |
+
-\frac{152}{25} & \frac{17}{5} & -\frac{26}{25} \\
|
| 542 |
+
\frac{52}{25} & \frac{89}{5} & \fbox{$-\frac{49}{25}$} \\
|
| 543 |
+
\end{array}
|
| 544 |
+
\right) \\
|
| 545 |
+
\end{array}
|
| 546 |
+
$} \\
|
| 547 |
+
\end{array}
|
| 548 |
+
\\
|
| 549 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1180.txt
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-3 & 0 & 0 \\
|
| 6 |
+
-1 & 1 & -1 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
-1 \\
|
| 12 |
+
0 \\
|
| 13 |
+
-2 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
-3 & 0 & 0 \\
|
| 24 |
+
-1 & 1 & -1 \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{c}
|
| 28 |
+
-1 \\
|
| 29 |
+
0 \\
|
| 30 |
+
-2 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
-3 & 0 & 0 \\
|
| 47 |
+
-1 & 1 & -1 \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{c}
|
| 51 |
+
-1 \\
|
| 52 |
+
0 \\
|
| 53 |
+
-2 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{c}
|
| 57 |
+
\_ \\
|
| 58 |
+
\_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
-3 & 0 & 0 \\
|
| 69 |
+
-1 & 1 & -1 \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{c}
|
| 73 |
+
-1 \\
|
| 74 |
+
0 \\
|
| 75 |
+
-2 \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{c}
|
| 79 |
+
\_ \\
|
| 80 |
+
\_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-1)+0\ 0+0 (-2)=3. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
-3 & 0 & 0 \\
|
| 96 |
+
-1 & 1 & -1 \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{c}
|
| 100 |
+
-1 \\
|
| 101 |
+
0 \\
|
| 102 |
+
-2 \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{c}
|
| 106 |
+
\fbox{$3$} \\
|
| 107 |
+
\_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-3 & 0 & 0 \\
|
| 118 |
+
-1 & 1 & -1 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
-1 \\
|
| 123 |
+
0 \\
|
| 124 |
+
-2 \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{c}
|
| 128 |
+
3 \\
|
| 129 |
+
\_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, (-1)+1\ 0+(-1)\, (-2)=3. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\fbox{$
|
| 143 |
+
\begin{array}{ll}
|
| 144 |
+
\text{Answer:} & \\
|
| 145 |
+
\text{} & \left(
|
| 146 |
+
\begin{array}{ccc}
|
| 147 |
+
-3 & 0 & 0 \\
|
| 148 |
+
-1 & 1 & -1 \\
|
| 149 |
+
\end{array}
|
| 150 |
+
\right).\left(
|
| 151 |
+
\begin{array}{c}
|
| 152 |
+
-1 \\
|
| 153 |
+
0 \\
|
| 154 |
+
-2 \\
|
| 155 |
+
\end{array}
|
| 156 |
+
\right)=\left(
|
| 157 |
+
\begin{array}{c}
|
| 158 |
+
3 \\
|
| 159 |
+
\fbox{$3$} \\
|
| 160 |
+
\end{array}
|
| 161 |
+
\right) \\
|
| 162 |
+
\end{array}
|
| 163 |
+
$} \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1228.txt
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{7}{5} & \frac{2}{5} & -\frac{14}{5} \\
|
| 6 |
+
-\frac{9}{5} & -\frac{11}{5} & -\frac{9}{5} \\
|
| 7 |
+
-\frac{7}{5} & \frac{3}{5} & \frac{9}{5} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{c}
|
| 12 |
+
-\frac{12}{5} \\
|
| 13 |
+
\frac{7}{5} \\
|
| 14 |
+
-\frac{6}{5} \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
-\frac{7}{5} & \frac{2}{5} & -\frac{14}{5} \\
|
| 25 |
+
-\frac{9}{5} & -\frac{11}{5} & -\frac{9}{5} \\
|
| 26 |
+
-\frac{7}{5} & \frac{3}{5} & \frac{9}{5} \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{c}
|
| 30 |
+
-\frac{12}{5} \\
|
| 31 |
+
\frac{7}{5} \\
|
| 32 |
+
-\frac{6}{5} \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
-\frac{7}{5} & \frac{2}{5} & -\frac{14}{5} \\
|
| 49 |
+
-\frac{9}{5} & -\frac{11}{5} & -\frac{9}{5} \\
|
| 50 |
+
-\frac{7}{5} & \frac{3}{5} & \frac{9}{5} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
-\frac{12}{5} \\
|
| 55 |
+
\frac{7}{5} \\
|
| 56 |
+
-\frac{6}{5} \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{c}
|
| 60 |
+
\_ \\
|
| 61 |
+
\_ \\
|
| 62 |
+
\_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
-\frac{7}{5} & \frac{2}{5} & -\frac{14}{5} \\
|
| 73 |
+
-\frac{9}{5} & -\frac{11}{5} & -\frac{9}{5} \\
|
| 74 |
+
-\frac{7}{5} & \frac{3}{5} & \frac{9}{5} \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{c}
|
| 78 |
+
-\frac{12}{5} \\
|
| 79 |
+
\frac{7}{5} \\
|
| 80 |
+
-\frac{6}{5} \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{c}
|
| 84 |
+
\_ \\
|
| 85 |
+
\_ \\
|
| 86 |
+
\_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{5}\right)\, \left(-\frac{12}{5}\right)+\frac{2\ 7}{5\ 5}+\left(-\frac{14}{5}\right)\, \left(-\frac{6}{5}\right)=\frac{182}{25}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
-\frac{7}{5} & \frac{2}{5} & -\frac{14}{5} \\
|
| 102 |
+
-\frac{9}{5} & -\frac{11}{5} & -\frac{9}{5} \\
|
| 103 |
+
-\frac{7}{5} & \frac{3}{5} & \frac{9}{5} \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{c}
|
| 107 |
+
-\frac{12}{5} \\
|
| 108 |
+
\frac{7}{5} \\
|
| 109 |
+
-\frac{6}{5} \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{c}
|
| 113 |
+
\fbox{$\frac{182}{25}$} \\
|
| 114 |
+
\_ \\
|
| 115 |
+
\_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
-\frac{7}{5} & \frac{2}{5} & -\frac{14}{5} \\
|
| 126 |
+
-\frac{9}{5} & -\frac{11}{5} & -\frac{9}{5} \\
|
| 127 |
+
-\frac{7}{5} & \frac{3}{5} & \frac{9}{5} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{c}
|
| 131 |
+
-\frac{12}{5} \\
|
| 132 |
+
\frac{7}{5} \\
|
| 133 |
+
-\frac{6}{5} \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{c}
|
| 137 |
+
\frac{182}{25} \\
|
| 138 |
+
\_ \\
|
| 139 |
+
\_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{9}{5}\right)\, \left(-\frac{12}{5}\right)+\left(-\frac{11}{5}\right)\, \times \, \frac{7}{5}+\left(-\frac{9}{5}\right)\, \left(-\frac{6}{5}\right)=\frac{17}{5}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-\frac{7}{5} & \frac{2}{5} & -\frac{14}{5} \\
|
| 155 |
+
-\frac{9}{5} & -\frac{11}{5} & -\frac{9}{5} \\
|
| 156 |
+
-\frac{7}{5} & \frac{3}{5} & \frac{9}{5} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{c}
|
| 160 |
+
-\frac{12}{5} \\
|
| 161 |
+
\frac{7}{5} \\
|
| 162 |
+
-\frac{6}{5} \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{c}
|
| 166 |
+
\frac{182}{25} \\
|
| 167 |
+
\fbox{$\frac{17}{5}$} \\
|
| 168 |
+
\_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
-\frac{7}{5} & \frac{2}{5} & -\frac{14}{5} \\
|
| 179 |
+
-\frac{9}{5} & -\frac{11}{5} & -\frac{9}{5} \\
|
| 180 |
+
-\frac{7}{5} & \frac{3}{5} & \frac{9}{5} \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{c}
|
| 184 |
+
-\frac{12}{5} \\
|
| 185 |
+
\frac{7}{5} \\
|
| 186 |
+
-\frac{6}{5} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{c}
|
| 190 |
+
\frac{182}{25} \\
|
| 191 |
+
\frac{17}{5} \\
|
| 192 |
+
\_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{5}\right)\, \left(-\frac{12}{5}\right)+\frac{3\ 7}{5\ 5}+\frac{9 (-6)}{5\ 5}=\frac{51}{25}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\fbox{$
|
| 206 |
+
\begin{array}{ll}
|
| 207 |
+
\text{Answer:} & \\
|
| 208 |
+
\text{} & \left(
|
| 209 |
+
\begin{array}{ccc}
|
| 210 |
+
-\frac{7}{5} & \frac{2}{5} & -\frac{14}{5} \\
|
| 211 |
+
-\frac{9}{5} & -\frac{11}{5} & -\frac{9}{5} \\
|
| 212 |
+
-\frac{7}{5} & \frac{3}{5} & \frac{9}{5} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right).\left(
|
| 215 |
+
\begin{array}{c}
|
| 216 |
+
-\frac{12}{5} \\
|
| 217 |
+
\frac{7}{5} \\
|
| 218 |
+
-\frac{6}{5} \\
|
| 219 |
+
\end{array}
|
| 220 |
+
\right)=\left(
|
| 221 |
+
\begin{array}{c}
|
| 222 |
+
\frac{182}{25} \\
|
| 223 |
+
\frac{17}{5} \\
|
| 224 |
+
\fbox{$\frac{51}{25}$} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right) \\
|
| 227 |
+
\end{array}
|
| 228 |
+
$} \\
|
| 229 |
+
\end{array}
|
| 230 |
+
\\
|
| 231 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/124.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-1 & -1 \\
|
| 6 |
+
2 & -1 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-2 & -2 & 0 \\
|
| 12 |
+
0 & 1 & 1 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-1 & -1 \\
|
| 23 |
+
2 & -1 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
-2 & -2 & 0 \\
|
| 28 |
+
0 & 1 & 1 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-1 & -1 \\
|
| 45 |
+
2 & -1 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
-2 & -2 & 0 \\
|
| 50 |
+
0 & 1 & 1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-1 & -1 \\
|
| 66 |
+
2 & -1 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
-2 & -2 & 0 \\
|
| 71 |
+
0 & 1 & 1 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, (-2)+(-1)\, \times \, 0=2. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-1 & -1 \\
|
| 92 |
+
2 & -1 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
-2 & -2 & 0 \\
|
| 97 |
+
0 & 1 & 1 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$2$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-1 & -1 \\
|
| 113 |
+
2 & -1 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-2 & -2 & 0 \\
|
| 118 |
+
0 & 1 & 1 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
2 & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, (-2)+(-1)\, \times \, 1=1. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
-1 & -1 \\
|
| 139 |
+
2 & -1 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
-2 & -2 & 0 \\
|
| 144 |
+
0 & 1 & 1 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
2 & \fbox{$1$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
-1 & -1 \\
|
| 160 |
+
2 & -1 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
-2 & -2 & 0 \\
|
| 165 |
+
0 & 1 & 1 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
2 & 1 & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 0+(-1)\, \times \, 1=-1. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
-1 & -1 \\
|
| 186 |
+
2 & -1 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
-2 & -2 & 0 \\
|
| 191 |
+
0 & 1 & 1 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
2 & 1 & \fbox{$-1$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
-1 & -1 \\
|
| 207 |
+
2 & -1 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
-2 & -2 & 0 \\
|
| 212 |
+
0 & 1 & 1 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
2 & 1 & -1 \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+(-1)\, \times \, 0=-4. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
-1 & -1 \\
|
| 233 |
+
2 & -1 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
-2 & -2 & 0 \\
|
| 238 |
+
0 & 1 & 1 \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
2 & 1 & -1 \\
|
| 243 |
+
\fbox{$-4$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
-1 & -1 \\
|
| 254 |
+
2 & -1 \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
-2 & -2 & 0 \\
|
| 259 |
+
0 & 1 & 1 \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
2 & 1 & -1 \\
|
| 264 |
+
-4 & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+(-1)\, \times \, 1=-5. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
-1 & -1 \\
|
| 280 |
+
2 & -1 \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-2 & -2 & 0 \\
|
| 285 |
+
0 & 1 & 1 \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
2 & 1 & -1 \\
|
| 290 |
+
-4 & \fbox{$-5$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
-1 & -1 \\
|
| 301 |
+
2 & -1 \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
-2 & -2 & 0 \\
|
| 306 |
+
0 & 1 & 1 \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
2 & 1 & -1 \\
|
| 311 |
+
-4 & -5 & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 0+(-1)\, \times \, 1=-1. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
-1 & -1 \\
|
| 330 |
+
2 & -1 \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
-2 & -2 & 0 \\
|
| 335 |
+
0 & 1 & 1 \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
2 & 1 & -1 \\
|
| 340 |
+
-4 & -5 & \fbox{$-1$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1241.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 6 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
\frac{12}{5} & -3 & -2 \\
|
| 12 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 23 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
\frac{12}{5} & -3 & -2 \\
|
| 28 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 45 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
\frac{12}{5} & -3 & -2 \\
|
| 50 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 66 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
\frac{12}{5} & -3 & -2 \\
|
| 71 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{12}{5}\right)\, \times \, \frac{12}{5}+\frac{13 (-3)}{5}=-\frac{339}{25}. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 92 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
\frac{12}{5} & -3 & -2 \\
|
| 97 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$-\frac{339}{25}$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 113 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
\frac{12}{5} & -3 & -2 \\
|
| 118 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-\frac{339}{25} & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{12}{5}\right)\, (-3)+\frac{13\ 3}{5}=15. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 139 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
\frac{12}{5} & -3 & -2 \\
|
| 144 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
-\frac{339}{25} & \fbox{$15$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 160 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
\frac{12}{5} & -3 & -2 \\
|
| 165 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
-\frac{339}{25} & 15 & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{12}{5}\right)\, (-2)+\frac{13 (-11)}{5\ 5}=-\frac{23}{25}. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 186 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
\frac{12}{5} & -3 & -2 \\
|
| 191 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
-\frac{339}{25} & 15 & \fbox{$-\frac{23}{25}$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 207 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
\frac{12}{5} & -3 & -2 \\
|
| 212 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
-\frac{339}{25} & 15 & -\frac{23}{25} \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{6}{5}\right)\, \times \, \frac{12}{5}+\left(-\frac{4}{5}\right)\, (-3)=-\frac{12}{25}. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 233 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
\frac{12}{5} & -3 & -2 \\
|
| 238 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-\frac{339}{25} & 15 & -\frac{23}{25} \\
|
| 243 |
+
\fbox{$-\frac{12}{25}$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 254 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
\frac{12}{5} & -3 & -2 \\
|
| 259 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
-\frac{339}{25} & 15 & -\frac{23}{25} \\
|
| 264 |
+
-\frac{12}{25} & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{6}{5}\right)\, (-3)+\left(-\frac{4}{5}\right)\, \times \, 3=\frac{6}{5}. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 280 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
\frac{12}{5} & -3 & -2 \\
|
| 285 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
-\frac{339}{25} & 15 & -\frac{23}{25} \\
|
| 290 |
+
-\frac{12}{25} & \fbox{$\frac{6}{5}$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 301 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
\frac{12}{5} & -3 & -2 \\
|
| 306 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
-\frac{339}{25} & 15 & -\frac{23}{25} \\
|
| 311 |
+
-\frac{12}{25} & \frac{6}{5} & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{6}{5}\right)\, (-2)+\left(-\frac{4}{5}\right)\, \left(-\frac{11}{5}\right)=\frac{104}{25}. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
-\frac{12}{5} & \frac{13}{5} \\
|
| 330 |
+
-\frac{6}{5} & -\frac{4}{5} \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
\frac{12}{5} & -3 & -2 \\
|
| 335 |
+
-3 & 3 & -\frac{11}{5} \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
-\frac{339}{25} & 15 & -\frac{23}{25} \\
|
| 340 |
+
-\frac{12}{25} & \frac{6}{5} & \fbox{$\frac{104}{25}$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/125.txt
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 6 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 7 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 13 |
+
1 & 1 \\
|
| 14 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 25 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 26 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{cc}
|
| 30 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 31 |
+
1 & 1 \\
|
| 32 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 49 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 50 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 55 |
+
1 & 1 \\
|
| 56 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{cc}
|
| 60 |
+
\_ & \_ \\
|
| 61 |
+
\_ & \_ \\
|
| 62 |
+
\_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 73 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 74 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{cc}
|
| 78 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 79 |
+
1 & 1 \\
|
| 80 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{cc}
|
| 84 |
+
\_ & \_ \\
|
| 85 |
+
\_ & \_ \\
|
| 86 |
+
\_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{13}{5}\right)\, \times \, \frac{14}{5}+\left(-\frac{8}{5}\right)\, \times \, 1+\frac{7 (-4)}{5\ 5}=-10. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 102 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 103 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{cc}
|
| 107 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 108 |
+
1 & 1 \\
|
| 109 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{cc}
|
| 113 |
+
\fbox{$-10$} & \_ \\
|
| 114 |
+
\_ & \_ \\
|
| 115 |
+
\_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 126 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 127 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 132 |
+
1 & 1 \\
|
| 133 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{cc}
|
| 137 |
+
-10 & \_ \\
|
| 138 |
+
\_ & \_ \\
|
| 139 |
+
\_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{13}{5}\right)\, \left(-\frac{7}{5}\right)+\left(-\frac{8}{5}\right)\, \times \, 1+\frac{7 (-11)}{5\ 5}=-\frac{26}{25}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 155 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 156 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{cc}
|
| 160 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 161 |
+
1 & 1 \\
|
| 162 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{cc}
|
| 166 |
+
-10 & \fbox{$-\frac{26}{25}$} \\
|
| 167 |
+
\_ & \_ \\
|
| 168 |
+
\_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 179 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 180 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{cc}
|
| 184 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 185 |
+
1 & 1 \\
|
| 186 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
-10 & -\frac{26}{25} \\
|
| 191 |
+
\_ & \_ \\
|
| 192 |
+
\_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{2}{5}\right)\, \times \, \frac{14}{5}+\frac{6}{5}+\frac{4}{5\ 5}=\frac{6}{25}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 208 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 209 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{cc}
|
| 213 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 214 |
+
1 & 1 \\
|
| 215 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{cc}
|
| 219 |
+
-10 & -\frac{26}{25} \\
|
| 220 |
+
\fbox{$\frac{6}{25}$} & \_ \\
|
| 221 |
+
\_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 232 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 233 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{cc}
|
| 237 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 238 |
+
1 & 1 \\
|
| 239 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{cc}
|
| 243 |
+
-10 & -\frac{26}{25} \\
|
| 244 |
+
\frac{6}{25} & \_ \\
|
| 245 |
+
\_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{2}{5}\right)\, \left(-\frac{7}{5}\right)+\frac{6}{5}+\frac{11}{5\ 5}=\frac{11}{5}. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 261 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 262 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{cc}
|
| 266 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 267 |
+
1 & 1 \\
|
| 268 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{cc}
|
| 272 |
+
-10 & -\frac{26}{25} \\
|
| 273 |
+
\frac{6}{25} & \fbox{$\frac{11}{5}$} \\
|
| 274 |
+
\_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 285 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 286 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{cc}
|
| 290 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 291 |
+
1 & 1 \\
|
| 292 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{cc}
|
| 296 |
+
-10 & -\frac{26}{25} \\
|
| 297 |
+
\frac{6}{25} & \frac{11}{5} \\
|
| 298 |
+
\_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{6}{5}\right)\, \times \, \frac{14}{5}+\frac{14}{5}+\left(-\frac{11}{5}\right)\, \left(-\frac{4}{5}\right)=\frac{6}{5}. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 314 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 315 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{cc}
|
| 319 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 320 |
+
1 & 1 \\
|
| 321 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{cc}
|
| 325 |
+
-10 & -\frac{26}{25} \\
|
| 326 |
+
\frac{6}{25} & \frac{11}{5} \\
|
| 327 |
+
\fbox{$\frac{6}{5}$} & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 338 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 339 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{cc}
|
| 343 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 344 |
+
1 & 1 \\
|
| 345 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{cc}
|
| 349 |
+
-10 & -\frac{26}{25} \\
|
| 350 |
+
\frac{6}{25} & \frac{11}{5} \\
|
| 351 |
+
\frac{6}{5} & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{6}{5}\right)\, \left(-\frac{7}{5}\right)+\frac{14}{5}+\left(-\frac{11}{5}\right)\, \left(-\frac{11}{5}\right)=\frac{233}{25}. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\fbox{$
|
| 365 |
+
\begin{array}{ll}
|
| 366 |
+
\text{Answer:} & \\
|
| 367 |
+
\text{} & \left(
|
| 368 |
+
\begin{array}{ccc}
|
| 369 |
+
-\frac{13}{5} & -\frac{8}{5} & \frac{7}{5} \\
|
| 370 |
+
-\frac{2}{5} & \frac{6}{5} & -\frac{1}{5} \\
|
| 371 |
+
-\frac{6}{5} & \frac{14}{5} & -\frac{11}{5} \\
|
| 372 |
+
\end{array}
|
| 373 |
+
\right).\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
\frac{14}{5} & -\frac{7}{5} \\
|
| 376 |
+
1 & 1 \\
|
| 377 |
+
-\frac{4}{5} & -\frac{11}{5} \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right)=\left(
|
| 380 |
+
\begin{array}{cc}
|
| 381 |
+
-10 & -\frac{26}{25} \\
|
| 382 |
+
\frac{6}{25} & \frac{11}{5} \\
|
| 383 |
+
\frac{6}{5} & \fbox{$\frac{233}{25}$} \\
|
| 384 |
+
\end{array}
|
| 385 |
+
\right) \\
|
| 386 |
+
\end{array}
|
| 387 |
+
$} \\
|
| 388 |
+
\end{array}
|
| 389 |
+
\\
|
| 390 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/127.txt
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
0 & -1 & -2 \\
|
| 6 |
+
-2 & 1 & 2 \\
|
| 7 |
+
-1 & -3 & 3 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{c}
|
| 12 |
+
-3 \\
|
| 13 |
+
1 \\
|
| 14 |
+
-1 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
0 & -1 & -2 \\
|
| 25 |
+
-2 & 1 & 2 \\
|
| 26 |
+
-1 & -3 & 3 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{c}
|
| 30 |
+
-3 \\
|
| 31 |
+
1 \\
|
| 32 |
+
-1 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
0 & -1 & -2 \\
|
| 49 |
+
-2 & 1 & 2 \\
|
| 50 |
+
-1 & -3 & 3 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
-3 \\
|
| 55 |
+
1 \\
|
| 56 |
+
-1 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{c}
|
| 60 |
+
\_ \\
|
| 61 |
+
\_ \\
|
| 62 |
+
\_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
0 & -1 & -2 \\
|
| 73 |
+
-2 & 1 & 2 \\
|
| 74 |
+
-1 & -3 & 3 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{c}
|
| 78 |
+
-3 \\
|
| 79 |
+
1 \\
|
| 80 |
+
-1 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{c}
|
| 84 |
+
\_ \\
|
| 85 |
+
\_ \\
|
| 86 |
+
\_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0 (-3)+(-1)\, \times \, 1+(-2)\, (-1)=1. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
0 & -1 & -2 \\
|
| 102 |
+
-2 & 1 & 2 \\
|
| 103 |
+
-1 & -3 & 3 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{c}
|
| 107 |
+
-3 \\
|
| 108 |
+
1 \\
|
| 109 |
+
-1 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{c}
|
| 113 |
+
\fbox{$1$} \\
|
| 114 |
+
\_ \\
|
| 115 |
+
\_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
0 & -1 & -2 \\
|
| 126 |
+
-2 & 1 & 2 \\
|
| 127 |
+
-1 & -3 & 3 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{c}
|
| 131 |
+
-3 \\
|
| 132 |
+
1 \\
|
| 133 |
+
-1 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{c}
|
| 137 |
+
1 \\
|
| 138 |
+
\_ \\
|
| 139 |
+
\_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-3)+1\ 1+2 (-1)=5. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
0 & -1 & -2 \\
|
| 155 |
+
-2 & 1 & 2 \\
|
| 156 |
+
-1 & -3 & 3 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{c}
|
| 160 |
+
-3 \\
|
| 161 |
+
1 \\
|
| 162 |
+
-1 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{c}
|
| 166 |
+
1 \\
|
| 167 |
+
\fbox{$5$} \\
|
| 168 |
+
\_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
0 & -1 & -2 \\
|
| 179 |
+
-2 & 1 & 2 \\
|
| 180 |
+
-1 & -3 & 3 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{c}
|
| 184 |
+
-3 \\
|
| 185 |
+
1 \\
|
| 186 |
+
-1 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{c}
|
| 190 |
+
1 \\
|
| 191 |
+
5 \\
|
| 192 |
+
\_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, (-3)+(-3)\, \times \, 1+3 (-1)=-3. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\fbox{$
|
| 206 |
+
\begin{array}{ll}
|
| 207 |
+
\text{Answer:} & \\
|
| 208 |
+
\text{} & \left(
|
| 209 |
+
\begin{array}{ccc}
|
| 210 |
+
0 & -1 & -2 \\
|
| 211 |
+
-2 & 1 & 2 \\
|
| 212 |
+
-1 & -3 & 3 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right).\left(
|
| 215 |
+
\begin{array}{c}
|
| 216 |
+
-3 \\
|
| 217 |
+
1 \\
|
| 218 |
+
-1 \\
|
| 219 |
+
\end{array}
|
| 220 |
+
\right)=\left(
|
| 221 |
+
\begin{array}{c}
|
| 222 |
+
1 \\
|
| 223 |
+
5 \\
|
| 224 |
+
\fbox{$-3$} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right) \\
|
| 227 |
+
\end{array}
|
| 228 |
+
$} \\
|
| 229 |
+
\end{array}
|
| 230 |
+
\\
|
| 231 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/132.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-2 & \frac{9}{4} \\
|
| 6 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 12 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-2 & \frac{9}{4} \\
|
| 23 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 28 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-2 & \frac{9}{4} \\
|
| 45 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 50 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-2 & \frac{9}{4} \\
|
| 66 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 71 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2}{2}+\frac{9 (-3)}{4\ 4}=-\frac{11}{16}. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-2 & \frac{9}{4} \\
|
| 92 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 97 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$-\frac{11}{16}$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-2 & \frac{9}{4} \\
|
| 113 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 118 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-\frac{11}{16} & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, \frac{1}{2}+\frac{9\ 2}{4}=\frac{7}{2}. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
-2 & \frac{9}{4} \\
|
| 139 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 144 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
-\frac{11}{16} & \fbox{$\frac{7}{2}$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
-2 & \frac{9}{4} \\
|
| 160 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 165 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
-\frac{11}{16} & \frac{7}{2} & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 0+\frac{9 (-3)}{4\ 2}=-\frac{27}{8}. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
-2 & \frac{9}{4} \\
|
| 186 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 191 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
-\frac{11}{16} & \frac{7}{2} & \fbox{$-\frac{27}{8}$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
-2 & \frac{9}{4} \\
|
| 207 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 212 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
-\frac{11}{16} & \frac{7}{2} & -\frac{27}{8} \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{2} \left(-\frac{3}{4}\right)+\frac{5 (-3)}{4\ 4}=-\frac{21}{16}. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
-2 & \frac{9}{4} \\
|
| 233 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 238 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-\frac{11}{16} & \frac{7}{2} & -\frac{27}{8} \\
|
| 243 |
+
\fbox{$-\frac{21}{16}$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
-2 & \frac{9}{4} \\
|
| 254 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 259 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
-\frac{11}{16} & \frac{7}{2} & -\frac{27}{8} \\
|
| 264 |
+
-\frac{21}{16} & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3}{4\ 2}+\frac{5\ 2}{4}=\frac{23}{8}. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
-2 & \frac{9}{4} \\
|
| 280 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 285 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
-\frac{11}{16} & \frac{7}{2} & -\frac{27}{8} \\
|
| 290 |
+
-\frac{21}{16} & \fbox{$\frac{23}{8}$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
-2 & \frac{9}{4} \\
|
| 301 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 306 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
-\frac{11}{16} & \frac{7}{2} & -\frac{27}{8} \\
|
| 311 |
+
-\frac{21}{16} & \frac{23}{8} & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3\ 0}{4}+\frac{5 (-3)}{4\ 2}=-\frac{15}{8}. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
-2 & \frac{9}{4} \\
|
| 330 |
+
\frac{3}{4} & \frac{5}{4} \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
-\frac{1}{2} & \frac{1}{2} & 0 \\
|
| 335 |
+
-\frac{3}{4} & 2 & -\frac{3}{2} \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
-\frac{11}{16} & \frac{7}{2} & -\frac{27}{8} \\
|
| 340 |
+
-\frac{21}{16} & \frac{23}{8} & \fbox{$-\frac{15}{8}$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1364.txt
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
3 & 2 & 3 \\
|
| 6 |
+
-3 & -2 & -2 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
1 & -2 \\
|
| 12 |
+
3 & -3 \\
|
| 13 |
+
3 & 1 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
3 & 2 & 3 \\
|
| 24 |
+
-3 & -2 & -2 \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{cc}
|
| 28 |
+
1 & -2 \\
|
| 29 |
+
3 & -3 \\
|
| 30 |
+
3 & 1 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
3 & 2 & 3 \\
|
| 47 |
+
-3 & -2 & -2 \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{cc}
|
| 51 |
+
1 & -2 \\
|
| 52 |
+
3 & -3 \\
|
| 53 |
+
3 & 1 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{cc}
|
| 57 |
+
\_ & \_ \\
|
| 58 |
+
\_ & \_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
3 & 2 & 3 \\
|
| 69 |
+
-3 & -2 & -2 \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{cc}
|
| 73 |
+
1 & -2 \\
|
| 74 |
+
3 & -3 \\
|
| 75 |
+
3 & 1 \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{cc}
|
| 79 |
+
\_ & \_ \\
|
| 80 |
+
\_ & \_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 1+2\ 3+3\ 3=18. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
3 & 2 & 3 \\
|
| 96 |
+
-3 & -2 & -2 \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{cc}
|
| 100 |
+
1 & -2 \\
|
| 101 |
+
3 & -3 \\
|
| 102 |
+
3 & 1 \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{cc}
|
| 106 |
+
\fbox{$18$} & \_ \\
|
| 107 |
+
\_ & \_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
3 & 2 & 3 \\
|
| 118 |
+
-3 & -2 & -2 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
1 & -2 \\
|
| 123 |
+
3 & -3 \\
|
| 124 |
+
3 & 1 \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{cc}
|
| 128 |
+
18 & \_ \\
|
| 129 |
+
\_ & \_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3 (-2)+2 (-3)+3\ 1=-9. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\left(
|
| 143 |
+
\begin{array}{ccc}
|
| 144 |
+
3 & 2 & 3 \\
|
| 145 |
+
-3 & -2 & -2 \\
|
| 146 |
+
\end{array}
|
| 147 |
+
\right).\left(
|
| 148 |
+
\begin{array}{cc}
|
| 149 |
+
1 & -2 \\
|
| 150 |
+
3 & -3 \\
|
| 151 |
+
3 & 1 \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\right)=\left(
|
| 154 |
+
\begin{array}{cc}
|
| 155 |
+
18 & \fbox{$-9$} \\
|
| 156 |
+
\_ & \_ \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right) \\
|
| 159 |
+
\end{array}
|
| 160 |
+
\\
|
| 161 |
+
|
| 162 |
+
\begin{array}{l}
|
| 163 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 164 |
+
\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
3 & 2 & 3 \\
|
| 167 |
+
-3 & -2 & -2 \\
|
| 168 |
+
\end{array}
|
| 169 |
+
\right).\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
1 & -2 \\
|
| 172 |
+
3 & -3 \\
|
| 173 |
+
3 & 1 \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right)=\left(
|
| 176 |
+
\begin{array}{cc}
|
| 177 |
+
18 & -9 \\
|
| 178 |
+
\_ & \_ \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right) \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
|
| 184 |
+
\begin{array}{l}
|
| 185 |
+
|
| 186 |
+
\begin{array}{l}
|
| 187 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 1+(-2)\, \times \, 3+(-2)\, \times \, 3=-15. \\
|
| 188 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 189 |
+
\end{array}
|
| 190 |
+
\\
|
| 191 |
+
\left(
|
| 192 |
+
\begin{array}{ccc}
|
| 193 |
+
3 & 2 & 3 \\
|
| 194 |
+
-3 & -2 & -2 \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\right).\left(
|
| 197 |
+
\begin{array}{cc}
|
| 198 |
+
1 & -2 \\
|
| 199 |
+
3 & -3 \\
|
| 200 |
+
3 & 1 \\
|
| 201 |
+
\end{array}
|
| 202 |
+
\right)=\left(
|
| 203 |
+
\begin{array}{cc}
|
| 204 |
+
18 & -9 \\
|
| 205 |
+
\fbox{$-15$} & \_ \\
|
| 206 |
+
\end{array}
|
| 207 |
+
\right) \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\\
|
| 210 |
+
|
| 211 |
+
\begin{array}{l}
|
| 212 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 213 |
+
\left(
|
| 214 |
+
\begin{array}{ccc}
|
| 215 |
+
3 & 2 & 3 \\
|
| 216 |
+
-3 & -2 & -2 \\
|
| 217 |
+
\end{array}
|
| 218 |
+
\right).\left(
|
| 219 |
+
\begin{array}{cc}
|
| 220 |
+
1 & -2 \\
|
| 221 |
+
3 & -3 \\
|
| 222 |
+
3 & 1 \\
|
| 223 |
+
\end{array}
|
| 224 |
+
\right)=\left(
|
| 225 |
+
\begin{array}{cc}
|
| 226 |
+
18 & -9 \\
|
| 227 |
+
-15 & \_ \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\right) \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\\
|
| 232 |
+
|
| 233 |
+
\begin{array}{l}
|
| 234 |
+
|
| 235 |
+
\begin{array}{l}
|
| 236 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-2)+(-2)\, (-3)+(-2)\, \times \, 1=10. \\
|
| 237 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
\fbox{$
|
| 241 |
+
\begin{array}{ll}
|
| 242 |
+
\text{Answer:} & \\
|
| 243 |
+
\text{} & \left(
|
| 244 |
+
\begin{array}{ccc}
|
| 245 |
+
3 & 2 & 3 \\
|
| 246 |
+
-3 & -2 & -2 \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right).\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
1 & -2 \\
|
| 251 |
+
3 & -3 \\
|
| 252 |
+
3 & 1 \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right)=\left(
|
| 255 |
+
\begin{array}{cc}
|
| 256 |
+
18 & -9 \\
|
| 257 |
+
-15 & \fbox{$10$} \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right) \\
|
| 260 |
+
\end{array}
|
| 261 |
+
$} \\
|
| 262 |
+
\end{array}
|
| 263 |
+
\\
|
| 264 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1405.txt
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
\frac{5}{4} & \frac{1}{8} & -\frac{1}{8} \\
|
| 6 |
+
-\frac{13}{8} & -\frac{1}{16} & -\frac{21}{16} \\
|
| 7 |
+
-\frac{31}{16} & -\frac{13}{16} & -\frac{33}{16} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{c}
|
| 12 |
+
\frac{1}{8} \\
|
| 13 |
+
\frac{11}{8} \\
|
| 14 |
+
\frac{43}{16} \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
\frac{5}{4} & \frac{1}{8} & -\frac{1}{8} \\
|
| 25 |
+
-\frac{13}{8} & -\frac{1}{16} & -\frac{21}{16} \\
|
| 26 |
+
-\frac{31}{16} & -\frac{13}{16} & -\frac{33}{16} \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{c}
|
| 30 |
+
\frac{1}{8} \\
|
| 31 |
+
\frac{11}{8} \\
|
| 32 |
+
\frac{43}{16} \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
\frac{5}{4} & \frac{1}{8} & -\frac{1}{8} \\
|
| 49 |
+
-\frac{13}{8} & -\frac{1}{16} & -\frac{21}{16} \\
|
| 50 |
+
-\frac{31}{16} & -\frac{13}{16} & -\frac{33}{16} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
\frac{1}{8} \\
|
| 55 |
+
\frac{11}{8} \\
|
| 56 |
+
\frac{43}{16} \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{c}
|
| 60 |
+
\_ \\
|
| 61 |
+
\_ \\
|
| 62 |
+
\_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
\frac{5}{4} & \frac{1}{8} & -\frac{1}{8} \\
|
| 73 |
+
-\frac{13}{8} & -\frac{1}{16} & -\frac{21}{16} \\
|
| 74 |
+
-\frac{31}{16} & -\frac{13}{16} & -\frac{33}{16} \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{c}
|
| 78 |
+
\frac{1}{8} \\
|
| 79 |
+
\frac{11}{8} \\
|
| 80 |
+
\frac{43}{16} \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{c}
|
| 84 |
+
\_ \\
|
| 85 |
+
\_ \\
|
| 86 |
+
\_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5}{4\ 8}+\frac{11}{8\ 8}+\frac{1}{8} \left(-\frac{43}{16}\right)=-\frac{1}{128}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\frac{5}{4} & \frac{1}{8} & -\frac{1}{8} \\
|
| 102 |
+
-\frac{13}{8} & -\frac{1}{16} & -\frac{21}{16} \\
|
| 103 |
+
-\frac{31}{16} & -\frac{13}{16} & -\frac{33}{16} \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{c}
|
| 107 |
+
\frac{1}{8} \\
|
| 108 |
+
\frac{11}{8} \\
|
| 109 |
+
\frac{43}{16} \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{c}
|
| 113 |
+
\fbox{$-\frac{1}{128}$} \\
|
| 114 |
+
\_ \\
|
| 115 |
+
\_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
\frac{5}{4} & \frac{1}{8} & -\frac{1}{8} \\
|
| 126 |
+
-\frac{13}{8} & -\frac{1}{16} & -\frac{21}{16} \\
|
| 127 |
+
-\frac{31}{16} & -\frac{13}{16} & -\frac{33}{16} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{c}
|
| 131 |
+
\frac{1}{8} \\
|
| 132 |
+
\frac{11}{8} \\
|
| 133 |
+
\frac{43}{16} \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{c}
|
| 137 |
+
-\frac{1}{128} \\
|
| 138 |
+
\_ \\
|
| 139 |
+
\_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{13}{8}\right)\, \times \, \frac{1}{8}+\frac{1}{16} \left(-\frac{11}{8}\right)+\left(-\frac{21}{16}\right)\, \times \, \frac{43}{16}=-\frac{977}{256}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
\frac{5}{4} & \frac{1}{8} & -\frac{1}{8} \\
|
| 155 |
+
-\frac{13}{8} & -\frac{1}{16} & -\frac{21}{16} \\
|
| 156 |
+
-\frac{31}{16} & -\frac{13}{16} & -\frac{33}{16} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{c}
|
| 160 |
+
\frac{1}{8} \\
|
| 161 |
+
\frac{11}{8} \\
|
| 162 |
+
\frac{43}{16} \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{c}
|
| 166 |
+
-\frac{1}{128} \\
|
| 167 |
+
\fbox{$-\frac{977}{256}$} \\
|
| 168 |
+
\_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
\frac{5}{4} & \frac{1}{8} & -\frac{1}{8} \\
|
| 179 |
+
-\frac{13}{8} & -\frac{1}{16} & -\frac{21}{16} \\
|
| 180 |
+
-\frac{31}{16} & -\frac{13}{16} & -\frac{33}{16} \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{c}
|
| 184 |
+
\frac{1}{8} \\
|
| 185 |
+
\frac{11}{8} \\
|
| 186 |
+
\frac{43}{16} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{c}
|
| 190 |
+
-\frac{1}{128} \\
|
| 191 |
+
-\frac{977}{256} \\
|
| 192 |
+
\_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{31}{16}\right)\, \times \, \frac{1}{8}+\left(-\frac{13}{16}\right)\, \times \, \frac{11}{8}+\left(-\frac{33}{16}\right)\, \times \, \frac{43}{16}=-\frac{1767}{256}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\fbox{$
|
| 206 |
+
\begin{array}{ll}
|
| 207 |
+
\text{Answer:} & \\
|
| 208 |
+
\text{} & \left(
|
| 209 |
+
\begin{array}{ccc}
|
| 210 |
+
\frac{5}{4} & \frac{1}{8} & -\frac{1}{8} \\
|
| 211 |
+
-\frac{13}{8} & -\frac{1}{16} & -\frac{21}{16} \\
|
| 212 |
+
-\frac{31}{16} & -\frac{13}{16} & -\frac{33}{16} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right).\left(
|
| 215 |
+
\begin{array}{c}
|
| 216 |
+
\frac{1}{8} \\
|
| 217 |
+
\frac{11}{8} \\
|
| 218 |
+
\frac{43}{16} \\
|
| 219 |
+
\end{array}
|
| 220 |
+
\right)=\left(
|
| 221 |
+
\begin{array}{c}
|
| 222 |
+
-\frac{1}{128} \\
|
| 223 |
+
-\frac{977}{256} \\
|
| 224 |
+
\fbox{$-\frac{1767}{256}$} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right) \\
|
| 227 |
+
\end{array}
|
| 228 |
+
$} \\
|
| 229 |
+
\end{array}
|
| 230 |
+
\\
|
| 231 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1426.txt
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 6 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 12 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 13 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 24 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{ccc}
|
| 28 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 29 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 30 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 47 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{ccc}
|
| 51 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 52 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 53 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{ccc}
|
| 57 |
+
\_ & \_ & \_ \\
|
| 58 |
+
\_ & \_ & \_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 69 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{ccc}
|
| 73 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 74 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 75 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{ccc}
|
| 79 |
+
\_ & \_ & \_ \\
|
| 80 |
+
\_ & \_ & \_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{19}{8}\right)\, \left(-\frac{7}{8}\right)+\frac{2 (-11)}{4}+\frac{3\ 0}{8}=-\frac{219}{64}. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 96 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{ccc}
|
| 100 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 101 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 102 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{ccc}
|
| 106 |
+
\fbox{$-\frac{219}{64}$} & \_ & \_ \\
|
| 107 |
+
\_ & \_ & \_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 118 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 123 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 124 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{ccc}
|
| 128 |
+
-\frac{219}{64} & \_ & \_ \\
|
| 129 |
+
\_ & \_ & \_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{19}{8}\right)\, \times \, \frac{7}{4}+\frac{2 (-11)}{16}+\frac{3 (-27)}{8\ 16}=-\frac{789}{128}. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\left(
|
| 143 |
+
\begin{array}{ccc}
|
| 144 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 145 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 146 |
+
\end{array}
|
| 147 |
+
\right).\left(
|
| 148 |
+
\begin{array}{ccc}
|
| 149 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 150 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 151 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\right)=\left(
|
| 154 |
+
\begin{array}{ccc}
|
| 155 |
+
-\frac{219}{64} & \fbox{$-\frac{789}{128}$} & \_ \\
|
| 156 |
+
\_ & \_ & \_ \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right) \\
|
| 159 |
+
\end{array}
|
| 160 |
+
\\
|
| 161 |
+
|
| 162 |
+
\begin{array}{l}
|
| 163 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 164 |
+
\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 167 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 168 |
+
\end{array}
|
| 169 |
+
\right).\left(
|
| 170 |
+
\begin{array}{ccc}
|
| 171 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 172 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 173 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right)=\left(
|
| 176 |
+
\begin{array}{ccc}
|
| 177 |
+
-\frac{219}{64} & -\frac{789}{128} & \_ \\
|
| 178 |
+
\_ & \_ & \_ \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right) \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
|
| 184 |
+
\begin{array}{l}
|
| 185 |
+
|
| 186 |
+
\begin{array}{l}
|
| 187 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{19}{8}\right)\, \times \, \frac{11}{16}+\frac{2\ 7}{4}+\frac{3\ 17}{8\ 8}=\frac{341}{128}. \\
|
| 188 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 189 |
+
\end{array}
|
| 190 |
+
\\
|
| 191 |
+
\left(
|
| 192 |
+
\begin{array}{ccc}
|
| 193 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 194 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\right).\left(
|
| 197 |
+
\begin{array}{ccc}
|
| 198 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 199 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 200 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 201 |
+
\end{array}
|
| 202 |
+
\right)=\left(
|
| 203 |
+
\begin{array}{ccc}
|
| 204 |
+
-\frac{219}{64} & -\frac{789}{128} & \fbox{$\frac{341}{128}$} \\
|
| 205 |
+
\_ & \_ & \_ \\
|
| 206 |
+
\end{array}
|
| 207 |
+
\right) \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\\
|
| 210 |
+
|
| 211 |
+
\begin{array}{l}
|
| 212 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 213 |
+
\left(
|
| 214 |
+
\begin{array}{ccc}
|
| 215 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 216 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 217 |
+
\end{array}
|
| 218 |
+
\right).\left(
|
| 219 |
+
\begin{array}{ccc}
|
| 220 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 221 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 222 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 223 |
+
\end{array}
|
| 224 |
+
\right)=\left(
|
| 225 |
+
\begin{array}{ccc}
|
| 226 |
+
-\frac{219}{64} & -\frac{789}{128} & \frac{341}{128} \\
|
| 227 |
+
\_ & \_ & \_ \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\right) \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\\
|
| 232 |
+
|
| 233 |
+
\begin{array}{l}
|
| 234 |
+
|
| 235 |
+
\begin{array}{l}
|
| 236 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7}{8\ 2}+\frac{37 (-11)}{16\ 4}+\left(-\frac{21}{16}\right)\, \times \, 0=-\frac{379}{64}. \\
|
| 237 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 243 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right).\left(
|
| 246 |
+
\begin{array}{ccc}
|
| 247 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 248 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 249 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 250 |
+
\end{array}
|
| 251 |
+
\right)=\left(
|
| 252 |
+
\begin{array}{ccc}
|
| 253 |
+
-\frac{219}{64} & -\frac{789}{128} & \frac{341}{128} \\
|
| 254 |
+
\fbox{$-\frac{379}{64}$} & \_ & \_ \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right) \\
|
| 257 |
+
\end{array}
|
| 258 |
+
\\
|
| 259 |
+
|
| 260 |
+
\begin{array}{l}
|
| 261 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 262 |
+
\left(
|
| 263 |
+
\begin{array}{ccc}
|
| 264 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 265 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\right).\left(
|
| 268 |
+
\begin{array}{ccc}
|
| 269 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 270 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 271 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 272 |
+
\end{array}
|
| 273 |
+
\right)=\left(
|
| 274 |
+
\begin{array}{ccc}
|
| 275 |
+
-\frac{219}{64} & -\frac{789}{128} & \frac{341}{128} \\
|
| 276 |
+
-\frac{379}{64} & \_ & \_ \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\right) \\
|
| 279 |
+
\end{array}
|
| 280 |
+
\\
|
| 281 |
+
|
| 282 |
+
\begin{array}{l}
|
| 283 |
+
|
| 284 |
+
\begin{array}{l}
|
| 285 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{2} \left(-\frac{7}{4}\right)+\frac{37 (-11)}{16\ 16}+\left(-\frac{21}{16}\right)\, \left(-\frac{27}{16}\right)=-\frac{1}{4}. \\
|
| 286 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\\
|
| 289 |
+
\left(
|
| 290 |
+
\begin{array}{ccc}
|
| 291 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 292 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right).\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 297 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 298 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right)=\left(
|
| 301 |
+
\begin{array}{ccc}
|
| 302 |
+
-\frac{219}{64} & -\frac{789}{128} & \frac{341}{128} \\
|
| 303 |
+
-\frac{379}{64} & \fbox{$-\frac{1}{4}$} & \_ \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right) \\
|
| 306 |
+
\end{array}
|
| 307 |
+
\\
|
| 308 |
+
|
| 309 |
+
\begin{array}{l}
|
| 310 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 314 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right).\left(
|
| 317 |
+
\begin{array}{ccc}
|
| 318 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 319 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 320 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 321 |
+
\end{array}
|
| 322 |
+
\right)=\left(
|
| 323 |
+
\begin{array}{ccc}
|
| 324 |
+
-\frac{219}{64} & -\frac{789}{128} & \frac{341}{128} \\
|
| 325 |
+
-\frac{379}{64} & -\frac{1}{4} & \_ \\
|
| 326 |
+
\end{array}
|
| 327 |
+
\right) \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\\
|
| 330 |
+
|
| 331 |
+
\begin{array}{l}
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{2} \left(-\frac{11}{16}\right)+\frac{37\ 7}{16\ 4}+\left(-\frac{21}{16}\right)\, \times \, \frac{17}{8}=\frac{117}{128}. \\
|
| 335 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\\
|
| 338 |
+
\fbox{$
|
| 339 |
+
\begin{array}{ll}
|
| 340 |
+
\text{Answer:} & \\
|
| 341 |
+
\text{} & \left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
-\frac{19}{8} & 2 & \frac{3}{8} \\
|
| 344 |
+
-\frac{1}{2} & \frac{37}{16} & -\frac{21}{16} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\right).\left(
|
| 347 |
+
\begin{array}{ccc}
|
| 348 |
+
-\frac{7}{8} & \frac{7}{4} & \frac{11}{16} \\
|
| 349 |
+
-\frac{11}{4} & -\frac{11}{16} & \frac{7}{4} \\
|
| 350 |
+
0 & -\frac{27}{16} & \frac{17}{8} \\
|
| 351 |
+
\end{array}
|
| 352 |
+
\right)=\left(
|
| 353 |
+
\begin{array}{ccc}
|
| 354 |
+
-\frac{219}{64} & -\frac{789}{128} & \frac{341}{128} \\
|
| 355 |
+
-\frac{379}{64} & -\frac{1}{4} & \fbox{$\frac{117}{128}$} \\
|
| 356 |
+
\end{array}
|
| 357 |
+
\right) \\
|
| 358 |
+
\end{array}
|
| 359 |
+
$} \\
|
| 360 |
+
\end{array}
|
| 361 |
+
\\
|
| 362 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1484.txt
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
0 & 1 \\
|
| 6 |
+
2 & 0 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
-2 \\
|
| 12 |
+
-1 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
0 & 1 \\
|
| 23 |
+
2 & 0 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{c}
|
| 27 |
+
-2 \\
|
| 28 |
+
-1 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
0 & 1 \\
|
| 45 |
+
2 & 0 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{c}
|
| 49 |
+
-2 \\
|
| 50 |
+
-1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
\_ \\
|
| 55 |
+
\_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
0 & 1 \\
|
| 66 |
+
2 & 0 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{c}
|
| 70 |
+
-2 \\
|
| 71 |
+
-1 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
\_ \\
|
| 76 |
+
\_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0 (-2)+1 (-1)=-1. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
0 & 1 \\
|
| 92 |
+
2 & 0 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{c}
|
| 96 |
+
-2 \\
|
| 97 |
+
-1 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{c}
|
| 101 |
+
\fbox{$-1$} \\
|
| 102 |
+
\_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
0 & 1 \\
|
| 113 |
+
2 & 0 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{c}
|
| 117 |
+
-2 \\
|
| 118 |
+
-1 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
-1 \\
|
| 123 |
+
\_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+0 (-1)=-4. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\fbox{$
|
| 137 |
+
\begin{array}{ll}
|
| 138 |
+
\text{Answer:} & \\
|
| 139 |
+
\text{} & \left(
|
| 140 |
+
\begin{array}{cc}
|
| 141 |
+
0 & 1 \\
|
| 142 |
+
2 & 0 \\
|
| 143 |
+
\end{array}
|
| 144 |
+
\right).\left(
|
| 145 |
+
\begin{array}{c}
|
| 146 |
+
-2 \\
|
| 147 |
+
-1 \\
|
| 148 |
+
\end{array}
|
| 149 |
+
\right)=\left(
|
| 150 |
+
\begin{array}{c}
|
| 151 |
+
-1 \\
|
| 152 |
+
\fbox{$-4$} \\
|
| 153 |
+
\end{array}
|
| 154 |
+
\right) \\
|
| 155 |
+
\end{array}
|
| 156 |
+
$} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\\
|
| 159 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1489.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-2 & 0 \\
|
| 6 |
+
2 & 2 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-1 & 1 & -2 \\
|
| 12 |
+
2 & 3 & 2 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-2 & 0 \\
|
| 23 |
+
2 & 2 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
-1 & 1 & -2 \\
|
| 28 |
+
2 & 3 & 2 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-2 & 0 \\
|
| 45 |
+
2 & 2 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
-1 & 1 & -2 \\
|
| 50 |
+
2 & 3 & 2 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-2 & 0 \\
|
| 66 |
+
2 & 2 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
-1 & 1 & -2 \\
|
| 71 |
+
2 & 3 & 2 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+0\ 2=2. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-2 & 0 \\
|
| 92 |
+
2 & 2 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
-1 & 1 & -2 \\
|
| 97 |
+
2 & 3 & 2 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$2$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-2 & 0 \\
|
| 113 |
+
2 & 2 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-1 & 1 & -2 \\
|
| 118 |
+
2 & 3 & 2 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
2 & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 1+0\ 3=-2. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
-2 & 0 \\
|
| 139 |
+
2 & 2 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
-1 & 1 & -2 \\
|
| 144 |
+
2 & 3 & 2 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
2 & \fbox{$-2$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
-2 & 0 \\
|
| 160 |
+
2 & 2 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
-1 & 1 & -2 \\
|
| 165 |
+
2 & 3 & 2 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
2 & -2 & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+0\ 2=4. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
-2 & 0 \\
|
| 186 |
+
2 & 2 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
-1 & 1 & -2 \\
|
| 191 |
+
2 & 3 & 2 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
2 & -2 & \fbox{$4$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
-2 & 0 \\
|
| 207 |
+
2 & 2 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
-1 & 1 & -2 \\
|
| 212 |
+
2 & 3 & 2 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
2 & -2 & 4 \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+2\ 2=2. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
-2 & 0 \\
|
| 233 |
+
2 & 2 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
-1 & 1 & -2 \\
|
| 238 |
+
2 & 3 & 2 \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
2 & -2 & 4 \\
|
| 243 |
+
\fbox{$2$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
-2 & 0 \\
|
| 254 |
+
2 & 2 \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
-1 & 1 & -2 \\
|
| 259 |
+
2 & 3 & 2 \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
2 & -2 & 4 \\
|
| 264 |
+
2 & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 1+2\ 3=8. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
-2 & 0 \\
|
| 280 |
+
2 & 2 \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-1 & 1 & -2 \\
|
| 285 |
+
2 & 3 & 2 \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
2 & -2 & 4 \\
|
| 290 |
+
2 & \fbox{$8$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
-2 & 0 \\
|
| 301 |
+
2 & 2 \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
-1 & 1 & -2 \\
|
| 306 |
+
2 & 3 & 2 \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
2 & -2 & 4 \\
|
| 311 |
+
2 & 8 & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+2\ 2=0. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
-2 & 0 \\
|
| 330 |
+
2 & 2 \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
-1 & 1 & -2 \\
|
| 335 |
+
2 & 3 & 2 \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
2 & -2 & 4 \\
|
| 340 |
+
2 & 8 & \fbox{$0$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/152.txt
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
\frac{21}{10} & -\frac{3}{5} & \frac{3}{5} \\
|
| 6 |
+
-\frac{19}{10} & \frac{17}{10} & -\frac{21}{10} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
\frac{12}{5} \\
|
| 12 |
+
-\frac{1}{5} \\
|
| 13 |
+
-\frac{12}{5} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
\frac{21}{10} & -\frac{3}{5} & \frac{3}{5} \\
|
| 24 |
+
-\frac{19}{10} & \frac{17}{10} & -\frac{21}{10} \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{c}
|
| 28 |
+
\frac{12}{5} \\
|
| 29 |
+
-\frac{1}{5} \\
|
| 30 |
+
-\frac{12}{5} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
\frac{21}{10} & -\frac{3}{5} & \frac{3}{5} \\
|
| 47 |
+
-\frac{19}{10} & \frac{17}{10} & -\frac{21}{10} \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{c}
|
| 51 |
+
\frac{12}{5} \\
|
| 52 |
+
-\frac{1}{5} \\
|
| 53 |
+
-\frac{12}{5} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{c}
|
| 57 |
+
\_ \\
|
| 58 |
+
\_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
\frac{21}{10} & -\frac{3}{5} & \frac{3}{5} \\
|
| 69 |
+
-\frac{19}{10} & \frac{17}{10} & -\frac{21}{10} \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{c}
|
| 73 |
+
\frac{12}{5} \\
|
| 74 |
+
-\frac{1}{5} \\
|
| 75 |
+
-\frac{12}{5} \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{c}
|
| 79 |
+
\_ \\
|
| 80 |
+
\_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{21\ 12}{10\ 5}+\frac{3}{5\ 5}+\frac{3 (-12)}{5\ 5}=\frac{93}{25}. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
\frac{21}{10} & -\frac{3}{5} & \frac{3}{5} \\
|
| 96 |
+
-\frac{19}{10} & \frac{17}{10} & -\frac{21}{10} \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{c}
|
| 100 |
+
\frac{12}{5} \\
|
| 101 |
+
-\frac{1}{5} \\
|
| 102 |
+
-\frac{12}{5} \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{c}
|
| 106 |
+
\fbox{$\frac{93}{25}$} \\
|
| 107 |
+
\_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
\frac{21}{10} & -\frac{3}{5} & \frac{3}{5} \\
|
| 118 |
+
-\frac{19}{10} & \frac{17}{10} & -\frac{21}{10} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
\frac{12}{5} \\
|
| 123 |
+
-\frac{1}{5} \\
|
| 124 |
+
-\frac{12}{5} \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{c}
|
| 128 |
+
\frac{93}{25} \\
|
| 129 |
+
\_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{19}{10}\right)\, \times \, \frac{12}{5}+\frac{1}{5} \left(-\frac{17}{10}\right)+\left(-\frac{21}{10}\right)\, \left(-\frac{12}{5}\right)=\frac{7}{50}. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\fbox{$
|
| 143 |
+
\begin{array}{ll}
|
| 144 |
+
\text{Answer:} & \\
|
| 145 |
+
\text{} & \left(
|
| 146 |
+
\begin{array}{ccc}
|
| 147 |
+
\frac{21}{10} & -\frac{3}{5} & \frac{3}{5} \\
|
| 148 |
+
-\frac{19}{10} & \frac{17}{10} & -\frac{21}{10} \\
|
| 149 |
+
\end{array}
|
| 150 |
+
\right).\left(
|
| 151 |
+
\begin{array}{c}
|
| 152 |
+
\frac{12}{5} \\
|
| 153 |
+
-\frac{1}{5} \\
|
| 154 |
+
-\frac{12}{5} \\
|
| 155 |
+
\end{array}
|
| 156 |
+
\right)=\left(
|
| 157 |
+
\begin{array}{c}
|
| 158 |
+
\frac{93}{25} \\
|
| 159 |
+
\fbox{$\frac{7}{50}$} \\
|
| 160 |
+
\end{array}
|
| 161 |
+
\right) \\
|
| 162 |
+
\end{array}
|
| 163 |
+
$} \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1628.txt
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 6 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 12 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 13 |
+
0 & 2 & -1 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 24 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{ccc}
|
| 28 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 29 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 30 |
+
0 & 2 & -1 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 47 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{ccc}
|
| 51 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 52 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 53 |
+
0 & 2 & -1 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{ccc}
|
| 57 |
+
\_ & \_ & \_ \\
|
| 58 |
+
\_ & \_ & \_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 69 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{ccc}
|
| 73 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 74 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 75 |
+
0 & 2 & -1 \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{ccc}
|
| 79 |
+
\_ & \_ & \_ \\
|
| 80 |
+
\_ & \_ & \_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \left(-\frac{5}{3}\right)+0\ 2+\left(-\frac{7}{3}\right)\, \times \, 0=5. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 96 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{ccc}
|
| 100 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 101 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 102 |
+
0 & 2 & -1 \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{ccc}
|
| 106 |
+
\fbox{$5$} & \_ & \_ \\
|
| 107 |
+
\_ & \_ & \_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 118 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 123 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 124 |
+
0 & 2 & -1 \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{ccc}
|
| 128 |
+
5 & \_ & \_ \\
|
| 129 |
+
\_ & \_ & \_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-2)+\frac{0 (-4)}{3}+\left(-\frac{7}{3}\right)\, \times \, 2=\frac{4}{3}. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\left(
|
| 143 |
+
\begin{array}{ccc}
|
| 144 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 145 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 146 |
+
\end{array}
|
| 147 |
+
\right).\left(
|
| 148 |
+
\begin{array}{ccc}
|
| 149 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 150 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 151 |
+
0 & 2 & -1 \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\right)=\left(
|
| 154 |
+
\begin{array}{ccc}
|
| 155 |
+
5 & \fbox{$\frac{4}{3}$} & \_ \\
|
| 156 |
+
\_ & \_ & \_ \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right) \\
|
| 159 |
+
\end{array}
|
| 160 |
+
\\
|
| 161 |
+
|
| 162 |
+
\begin{array}{l}
|
| 163 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 164 |
+
\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 167 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 168 |
+
\end{array}
|
| 169 |
+
\right).\left(
|
| 170 |
+
\begin{array}{ccc}
|
| 171 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 172 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 173 |
+
0 & 2 & -1 \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right)=\left(
|
| 176 |
+
\begin{array}{ccc}
|
| 177 |
+
5 & \frac{4}{3} & \_ \\
|
| 178 |
+
\_ & \_ & \_ \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right) \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
|
| 184 |
+
\begin{array}{l}
|
| 185 |
+
|
| 186 |
+
\begin{array}{l}
|
| 187 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, \frac{2}{3}+\frac{0 (-4)}{3}+\left(-\frac{7}{3}\right)\, (-1)=\frac{1}{3}. \\
|
| 188 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 189 |
+
\end{array}
|
| 190 |
+
\\
|
| 191 |
+
\left(
|
| 192 |
+
\begin{array}{ccc}
|
| 193 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 194 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\right).\left(
|
| 197 |
+
\begin{array}{ccc}
|
| 198 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 199 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 200 |
+
0 & 2 & -1 \\
|
| 201 |
+
\end{array}
|
| 202 |
+
\right)=\left(
|
| 203 |
+
\begin{array}{ccc}
|
| 204 |
+
5 & \frac{4}{3} & \fbox{$\frac{1}{3}$} \\
|
| 205 |
+
\_ & \_ & \_ \\
|
| 206 |
+
\end{array}
|
| 207 |
+
\right) \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\\
|
| 210 |
+
|
| 211 |
+
\begin{array}{l}
|
| 212 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 213 |
+
\left(
|
| 214 |
+
\begin{array}{ccc}
|
| 215 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 216 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 217 |
+
\end{array}
|
| 218 |
+
\right).\left(
|
| 219 |
+
\begin{array}{ccc}
|
| 220 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 221 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 222 |
+
0 & 2 & -1 \\
|
| 223 |
+
\end{array}
|
| 224 |
+
\right)=\left(
|
| 225 |
+
\begin{array}{ccc}
|
| 226 |
+
5 & \frac{4}{3} & \frac{1}{3} \\
|
| 227 |
+
\_ & \_ & \_ \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\right) \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\\
|
| 232 |
+
|
| 233 |
+
\begin{array}{l}
|
| 234 |
+
|
| 235 |
+
\begin{array}{l}
|
| 236 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5 (-5)}{3\ 3}+\frac{5\ 2}{3}+\left(-\frac{8}{3}\right)\, \times \, 0=\frac{5}{9}. \\
|
| 237 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 243 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right).\left(
|
| 246 |
+
\begin{array}{ccc}
|
| 247 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 248 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 249 |
+
0 & 2 & -1 \\
|
| 250 |
+
\end{array}
|
| 251 |
+
\right)=\left(
|
| 252 |
+
\begin{array}{ccc}
|
| 253 |
+
5 & \frac{4}{3} & \frac{1}{3} \\
|
| 254 |
+
\fbox{$\frac{5}{9}$} & \_ & \_ \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right) \\
|
| 257 |
+
\end{array}
|
| 258 |
+
\\
|
| 259 |
+
|
| 260 |
+
\begin{array}{l}
|
| 261 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 262 |
+
\left(
|
| 263 |
+
\begin{array}{ccc}
|
| 264 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 265 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\right).\left(
|
| 268 |
+
\begin{array}{ccc}
|
| 269 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 270 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 271 |
+
0 & 2 & -1 \\
|
| 272 |
+
\end{array}
|
| 273 |
+
\right)=\left(
|
| 274 |
+
\begin{array}{ccc}
|
| 275 |
+
5 & \frac{4}{3} & \frac{1}{3} \\
|
| 276 |
+
\frac{5}{9} & \_ & \_ \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\right) \\
|
| 279 |
+
\end{array}
|
| 280 |
+
\\
|
| 281 |
+
|
| 282 |
+
\begin{array}{l}
|
| 283 |
+
|
| 284 |
+
\begin{array}{l}
|
| 285 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5 (-2)}{3}+\frac{5 (-4)}{3\ 3}+\left(-\frac{8}{3}\right)\, \times \, 2=-\frac{98}{9}. \\
|
| 286 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\\
|
| 289 |
+
\left(
|
| 290 |
+
\begin{array}{ccc}
|
| 291 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 292 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right).\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 297 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 298 |
+
0 & 2 & -1 \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right)=\left(
|
| 301 |
+
\begin{array}{ccc}
|
| 302 |
+
5 & \frac{4}{3} & \frac{1}{3} \\
|
| 303 |
+
\frac{5}{9} & \fbox{$-\frac{98}{9}$} & \_ \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right) \\
|
| 306 |
+
\end{array}
|
| 307 |
+
\\
|
| 308 |
+
|
| 309 |
+
\begin{array}{l}
|
| 310 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 314 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right).\left(
|
| 317 |
+
\begin{array}{ccc}
|
| 318 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 319 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 320 |
+
0 & 2 & -1 \\
|
| 321 |
+
\end{array}
|
| 322 |
+
\right)=\left(
|
| 323 |
+
\begin{array}{ccc}
|
| 324 |
+
5 & \frac{4}{3} & \frac{1}{3} \\
|
| 325 |
+
\frac{5}{9} & -\frac{98}{9} & \_ \\
|
| 326 |
+
\end{array}
|
| 327 |
+
\right) \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\\
|
| 330 |
+
|
| 331 |
+
\begin{array}{l}
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5\ 2}{3\ 3}+\frac{5 (-4)}{3\ 3}+\left(-\frac{8}{3}\right)\, (-1)=\frac{14}{9}. \\
|
| 335 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\\
|
| 338 |
+
\fbox{$
|
| 339 |
+
\begin{array}{ll}
|
| 340 |
+
\text{Answer:} & \\
|
| 341 |
+
\text{} & \left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
-3 & 0 & -\frac{7}{3} \\
|
| 344 |
+
\frac{5}{3} & \frac{5}{3} & -\frac{8}{3} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\right).\left(
|
| 347 |
+
\begin{array}{ccc}
|
| 348 |
+
-\frac{5}{3} & -2 & \frac{2}{3} \\
|
| 349 |
+
2 & -\frac{4}{3} & -\frac{4}{3} \\
|
| 350 |
+
0 & 2 & -1 \\
|
| 351 |
+
\end{array}
|
| 352 |
+
\right)=\left(
|
| 353 |
+
\begin{array}{ccc}
|
| 354 |
+
5 & \frac{4}{3} & \frac{1}{3} \\
|
| 355 |
+
\frac{5}{9} & -\frac{98}{9} & \fbox{$\frac{14}{9}$} \\
|
| 356 |
+
\end{array}
|
| 357 |
+
\right) \\
|
| 358 |
+
\end{array}
|
| 359 |
+
$} \\
|
| 360 |
+
\end{array}
|
| 361 |
+
\\
|
| 362 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1784.txt
ADDED
|
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 6 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 7 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 13 |
+
-\frac{3}{5} & -2 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{cc}
|
| 23 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 24 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 25 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right).\left(
|
| 28 |
+
\begin{array}{cc}
|
| 29 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 30 |
+
-\frac{3}{5} & -2 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{cc}
|
| 46 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 47 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 48 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right).\left(
|
| 51 |
+
\begin{array}{cc}
|
| 52 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 53 |
+
-\frac{3}{5} & -2 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{cc}
|
| 57 |
+
\_ & \_ \\
|
| 58 |
+
\_ & \_ \\
|
| 59 |
+
\_ & \_ \\
|
| 60 |
+
\end{array}
|
| 61 |
+
\right) \\
|
| 62 |
+
\end{array}
|
| 63 |
+
\\
|
| 64 |
+
|
| 65 |
+
\begin{array}{l}
|
| 66 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 67 |
+
\left(
|
| 68 |
+
\begin{array}{cc}
|
| 69 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 70 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 71 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right).\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 76 |
+
-\frac{3}{5} & -2 \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right)=\left(
|
| 79 |
+
\begin{array}{cc}
|
| 80 |
+
\_ & \_ \\
|
| 81 |
+
\_ & \_ \\
|
| 82 |
+
\_ & \_ \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\right) \\
|
| 85 |
+
\end{array}
|
| 86 |
+
\\
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
|
| 90 |
+
\begin{array}{l}
|
| 91 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{9}{5}\right)\, \times \, \frac{2}{5}+\left(-\frac{14}{5}\right)\, \left(-\frac{3}{5}\right)=\frac{24}{25}. \\
|
| 92 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\\
|
| 95 |
+
\left(
|
| 96 |
+
\begin{array}{cc}
|
| 97 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 98 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 99 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 100 |
+
\end{array}
|
| 101 |
+
\right).\left(
|
| 102 |
+
\begin{array}{cc}
|
| 103 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 104 |
+
-\frac{3}{5} & -2 \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\right)=\left(
|
| 107 |
+
\begin{array}{cc}
|
| 108 |
+
\fbox{$\frac{24}{25}$} & \_ \\
|
| 109 |
+
\_ & \_ \\
|
| 110 |
+
\_ & \_ \\
|
| 111 |
+
\end{array}
|
| 112 |
+
\right) \\
|
| 113 |
+
\end{array}
|
| 114 |
+
\\
|
| 115 |
+
|
| 116 |
+
\begin{array}{l}
|
| 117 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 118 |
+
\left(
|
| 119 |
+
\begin{array}{cc}
|
| 120 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 121 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 122 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 123 |
+
\end{array}
|
| 124 |
+
\right).\left(
|
| 125 |
+
\begin{array}{cc}
|
| 126 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 127 |
+
-\frac{3}{5} & -2 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right)=\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
\frac{24}{25} & \_ \\
|
| 132 |
+
\_ & \_ \\
|
| 133 |
+
\_ & \_ \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right) \\
|
| 136 |
+
\end{array}
|
| 137 |
+
\\
|
| 138 |
+
|
| 139 |
+
\begin{array}{l}
|
| 140 |
+
|
| 141 |
+
\begin{array}{l}
|
| 142 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{9}{5}\right)\, \left(-\frac{11}{5}\right)+\left(-\frac{14}{5}\right)\, (-2)=\frac{239}{25}. \\
|
| 143 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 144 |
+
\end{array}
|
| 145 |
+
\\
|
| 146 |
+
\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 149 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 150 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 151 |
+
\end{array}
|
| 152 |
+
\right).\left(
|
| 153 |
+
\begin{array}{cc}
|
| 154 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 155 |
+
-\frac{3}{5} & -2 \\
|
| 156 |
+
\end{array}
|
| 157 |
+
\right)=\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
\frac{24}{25} & \fbox{$\frac{239}{25}$} \\
|
| 160 |
+
\_ & \_ \\
|
| 161 |
+
\_ & \_ \\
|
| 162 |
+
\end{array}
|
| 163 |
+
\right) \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
|
| 167 |
+
\begin{array}{l}
|
| 168 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 169 |
+
\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 172 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 173 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right).\left(
|
| 176 |
+
\begin{array}{cc}
|
| 177 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 178 |
+
-\frac{3}{5} & -2 \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right)=\left(
|
| 181 |
+
\begin{array}{cc}
|
| 182 |
+
\frac{24}{25} & \frac{239}{25} \\
|
| 183 |
+
\_ & \_ \\
|
| 184 |
+
\_ & \_ \\
|
| 185 |
+
\end{array}
|
| 186 |
+
\right) \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\\
|
| 189 |
+
|
| 190 |
+
\begin{array}{l}
|
| 191 |
+
|
| 192 |
+
\begin{array}{l}
|
| 193 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{14}{5}\right)\, \times \, \frac{2}{5}+\frac{6 (-3)}{5\ 5}=-\frac{46}{25}. \\
|
| 194 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
\left(
|
| 198 |
+
\begin{array}{cc}
|
| 199 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 200 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 201 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 202 |
+
\end{array}
|
| 203 |
+
\right).\left(
|
| 204 |
+
\begin{array}{cc}
|
| 205 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 206 |
+
-\frac{3}{5} & -2 \\
|
| 207 |
+
\end{array}
|
| 208 |
+
\right)=\left(
|
| 209 |
+
\begin{array}{cc}
|
| 210 |
+
\frac{24}{25} & \frac{239}{25} \\
|
| 211 |
+
\fbox{$-\frac{46}{25}$} & \_ \\
|
| 212 |
+
\_ & \_ \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right) \\
|
| 215 |
+
\end{array}
|
| 216 |
+
\\
|
| 217 |
+
|
| 218 |
+
\begin{array}{l}
|
| 219 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 220 |
+
\left(
|
| 221 |
+
\begin{array}{cc}
|
| 222 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 223 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 224 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right).\left(
|
| 227 |
+
\begin{array}{cc}
|
| 228 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 229 |
+
-\frac{3}{5} & -2 \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\right)=\left(
|
| 232 |
+
\begin{array}{cc}
|
| 233 |
+
\frac{24}{25} & \frac{239}{25} \\
|
| 234 |
+
-\frac{46}{25} & \_ \\
|
| 235 |
+
\_ & \_ \\
|
| 236 |
+
\end{array}
|
| 237 |
+
\right) \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
|
| 241 |
+
\begin{array}{l}
|
| 242 |
+
|
| 243 |
+
\begin{array}{l}
|
| 244 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{14}{5}\right)\, \left(-\frac{11}{5}\right)+\frac{6 (-2)}{5}=\frac{94}{25}. \\
|
| 245 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 251 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 252 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right).\left(
|
| 255 |
+
\begin{array}{cc}
|
| 256 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 257 |
+
-\frac{3}{5} & -2 \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right)=\left(
|
| 260 |
+
\begin{array}{cc}
|
| 261 |
+
\frac{24}{25} & \frac{239}{25} \\
|
| 262 |
+
-\frac{46}{25} & \fbox{$\frac{94}{25}$} \\
|
| 263 |
+
\_ & \_ \\
|
| 264 |
+
\end{array}
|
| 265 |
+
\right) \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\\
|
| 268 |
+
|
| 269 |
+
\begin{array}{l}
|
| 270 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 271 |
+
\left(
|
| 272 |
+
\begin{array}{cc}
|
| 273 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 274 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 275 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 276 |
+
\end{array}
|
| 277 |
+
\right).\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 280 |
+
-\frac{3}{5} & -2 \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right)=\left(
|
| 283 |
+
\begin{array}{cc}
|
| 284 |
+
\frac{24}{25} & \frac{239}{25} \\
|
| 285 |
+
-\frac{46}{25} & \frac{94}{25} \\
|
| 286 |
+
\_ & \_ \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right) \\
|
| 289 |
+
\end{array}
|
| 290 |
+
\\
|
| 291 |
+
|
| 292 |
+
\begin{array}{l}
|
| 293 |
+
|
| 294 |
+
\begin{array}{l}
|
| 295 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{3}{5}\right)\, \times \, \frac{2}{5}+\frac{8 (-3)}{5\ 5}=-\frac{6}{5}. \\
|
| 296 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 297 |
+
\end{array}
|
| 298 |
+
\\
|
| 299 |
+
\left(
|
| 300 |
+
\begin{array}{cc}
|
| 301 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 302 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 303 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right).\left(
|
| 306 |
+
\begin{array}{cc}
|
| 307 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 308 |
+
-\frac{3}{5} & -2 \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\right)=\left(
|
| 311 |
+
\begin{array}{cc}
|
| 312 |
+
\frac{24}{25} & \frac{239}{25} \\
|
| 313 |
+
-\frac{46}{25} & \frac{94}{25} \\
|
| 314 |
+
\fbox{$-\frac{6}{5}$} & \_ \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right) \\
|
| 317 |
+
\end{array}
|
| 318 |
+
\\
|
| 319 |
+
|
| 320 |
+
\begin{array}{l}
|
| 321 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 322 |
+
\left(
|
| 323 |
+
\begin{array}{cc}
|
| 324 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 325 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 326 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 327 |
+
\end{array}
|
| 328 |
+
\right).\left(
|
| 329 |
+
\begin{array}{cc}
|
| 330 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 331 |
+
-\frac{3}{5} & -2 \\
|
| 332 |
+
\end{array}
|
| 333 |
+
\right)=\left(
|
| 334 |
+
\begin{array}{cc}
|
| 335 |
+
\frac{24}{25} & \frac{239}{25} \\
|
| 336 |
+
-\frac{46}{25} & \frac{94}{25} \\
|
| 337 |
+
-\frac{6}{5} & \_ \\
|
| 338 |
+
\end{array}
|
| 339 |
+
\right) \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\\
|
| 342 |
+
|
| 343 |
+
\begin{array}{l}
|
| 344 |
+
|
| 345 |
+
\begin{array}{l}
|
| 346 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{3}{5}\right)\, \left(-\frac{11}{5}\right)+\frac{8 (-2)}{5}=-\frac{47}{25}. \\
|
| 347 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 348 |
+
\end{array}
|
| 349 |
+
\\
|
| 350 |
+
\fbox{$
|
| 351 |
+
\begin{array}{ll}
|
| 352 |
+
\text{Answer:} & \\
|
| 353 |
+
\text{} & \left(
|
| 354 |
+
\begin{array}{cc}
|
| 355 |
+
-\frac{9}{5} & -\frac{14}{5} \\
|
| 356 |
+
-\frac{14}{5} & \frac{6}{5} \\
|
| 357 |
+
-\frac{3}{5} & \frac{8}{5} \\
|
| 358 |
+
\end{array}
|
| 359 |
+
\right).\left(
|
| 360 |
+
\begin{array}{cc}
|
| 361 |
+
\frac{2}{5} & -\frac{11}{5} \\
|
| 362 |
+
-\frac{3}{5} & -2 \\
|
| 363 |
+
\end{array}
|
| 364 |
+
\right)=\left(
|
| 365 |
+
\begin{array}{cc}
|
| 366 |
+
\frac{24}{25} & \frac{239}{25} \\
|
| 367 |
+
-\frac{46}{25} & \frac{94}{25} \\
|
| 368 |
+
-\frac{6}{5} & \fbox{$-\frac{47}{25}$} \\
|
| 369 |
+
\end{array}
|
| 370 |
+
\right) \\
|
| 371 |
+
\end{array}
|
| 372 |
+
$} \\
|
| 373 |
+
\end{array}
|
| 374 |
+
\\
|
| 375 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1787.txt
ADDED
|
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 6 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 7 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{ccc}
|
| 12 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 13 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{cc}
|
| 23 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 24 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 25 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right).\left(
|
| 28 |
+
\begin{array}{ccc}
|
| 29 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 30 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{cc}
|
| 46 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 47 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 48 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right).\left(
|
| 51 |
+
\begin{array}{ccc}
|
| 52 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 53 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{ccc}
|
| 57 |
+
\_ & \_ & \_ \\
|
| 58 |
+
\_ & \_ & \_ \\
|
| 59 |
+
\_ & \_ & \_ \\
|
| 60 |
+
\end{array}
|
| 61 |
+
\right) \\
|
| 62 |
+
\end{array}
|
| 63 |
+
\\
|
| 64 |
+
|
| 65 |
+
\begin{array}{l}
|
| 66 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 67 |
+
\left(
|
| 68 |
+
\begin{array}{cc}
|
| 69 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 70 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 71 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right).\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 76 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right)=\left(
|
| 79 |
+
\begin{array}{ccc}
|
| 80 |
+
\_ & \_ & \_ \\
|
| 81 |
+
\_ & \_ & \_ \\
|
| 82 |
+
\_ & \_ & \_ \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\right) \\
|
| 85 |
+
\end{array}
|
| 86 |
+
\\
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
|
| 90 |
+
\begin{array}{l}
|
| 91 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{8}\right)\, \times \, \frac{11}{4}+\frac{23\ 19}{8\ 8}=\frac{283}{64}. \\
|
| 92 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\\
|
| 95 |
+
\left(
|
| 96 |
+
\begin{array}{cc}
|
| 97 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 98 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 99 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 100 |
+
\end{array}
|
| 101 |
+
\right).\left(
|
| 102 |
+
\begin{array}{ccc}
|
| 103 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 104 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\right)=\left(
|
| 107 |
+
\begin{array}{ccc}
|
| 108 |
+
\fbox{$\frac{283}{64}$} & \_ & \_ \\
|
| 109 |
+
\_ & \_ & \_ \\
|
| 110 |
+
\_ & \_ & \_ \\
|
| 111 |
+
\end{array}
|
| 112 |
+
\right) \\
|
| 113 |
+
\end{array}
|
| 114 |
+
\\
|
| 115 |
+
|
| 116 |
+
\begin{array}{l}
|
| 117 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 118 |
+
\left(
|
| 119 |
+
\begin{array}{cc}
|
| 120 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 121 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 122 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 123 |
+
\end{array}
|
| 124 |
+
\right).\left(
|
| 125 |
+
\begin{array}{ccc}
|
| 126 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 127 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right)=\left(
|
| 130 |
+
\begin{array}{ccc}
|
| 131 |
+
\frac{283}{64} & \_ & \_ \\
|
| 132 |
+
\_ & \_ & \_ \\
|
| 133 |
+
\_ & \_ & \_ \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right) \\
|
| 136 |
+
\end{array}
|
| 137 |
+
\\
|
| 138 |
+
|
| 139 |
+
\begin{array}{l}
|
| 140 |
+
|
| 141 |
+
\begin{array}{l}
|
| 142 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{8}\right)\, \times \, \frac{15}{8}+\frac{23 (-11)}{8\ 16}=-\frac{463}{128}. \\
|
| 143 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 144 |
+
\end{array}
|
| 145 |
+
\\
|
| 146 |
+
\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 149 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 150 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 151 |
+
\end{array}
|
| 152 |
+
\right).\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 155 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 156 |
+
\end{array}
|
| 157 |
+
\right)=\left(
|
| 158 |
+
\begin{array}{ccc}
|
| 159 |
+
\frac{283}{64} & \fbox{$-\frac{463}{128}$} & \_ \\
|
| 160 |
+
\_ & \_ & \_ \\
|
| 161 |
+
\_ & \_ & \_ \\
|
| 162 |
+
\end{array}
|
| 163 |
+
\right) \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
|
| 167 |
+
\begin{array}{l}
|
| 168 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 169 |
+
\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 172 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 173 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right).\left(
|
| 176 |
+
\begin{array}{ccc}
|
| 177 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 178 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right)=\left(
|
| 181 |
+
\begin{array}{ccc}
|
| 182 |
+
\frac{283}{64} & -\frac{463}{128} & \_ \\
|
| 183 |
+
\_ & \_ & \_ \\
|
| 184 |
+
\_ & \_ & \_ \\
|
| 185 |
+
\end{array}
|
| 186 |
+
\right) \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\\
|
| 189 |
+
|
| 190 |
+
\begin{array}{l}
|
| 191 |
+
|
| 192 |
+
\begin{array}{l}
|
| 193 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{8}\right)\, \times \, \frac{37}{16}+\frac{23 (-43)}{8\ 16}=-\frac{39}{4}. \\
|
| 194 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
\left(
|
| 198 |
+
\begin{array}{cc}
|
| 199 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 200 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 201 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 202 |
+
\end{array}
|
| 203 |
+
\right).\left(
|
| 204 |
+
\begin{array}{ccc}
|
| 205 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 206 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 207 |
+
\end{array}
|
| 208 |
+
\right)=\left(
|
| 209 |
+
\begin{array}{ccc}
|
| 210 |
+
\frac{283}{64} & -\frac{463}{128} & \fbox{$-\frac{39}{4}$} \\
|
| 211 |
+
\_ & \_ & \_ \\
|
| 212 |
+
\_ & \_ & \_ \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right) \\
|
| 215 |
+
\end{array}
|
| 216 |
+
\\
|
| 217 |
+
|
| 218 |
+
\begin{array}{l}
|
| 219 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 220 |
+
\left(
|
| 221 |
+
\begin{array}{cc}
|
| 222 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 223 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 224 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right).\left(
|
| 227 |
+
\begin{array}{ccc}
|
| 228 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 229 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\right)=\left(
|
| 232 |
+
\begin{array}{ccc}
|
| 233 |
+
\frac{283}{64} & -\frac{463}{128} & -\frac{39}{4} \\
|
| 234 |
+
\_ & \_ & \_ \\
|
| 235 |
+
\_ & \_ & \_ \\
|
| 236 |
+
\end{array}
|
| 237 |
+
\right) \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
|
| 241 |
+
\begin{array}{l}
|
| 242 |
+
|
| 243 |
+
\begin{array}{l}
|
| 244 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{5}{2}\right)\, \times \, \frac{11}{4}+\left(-\frac{31}{16}\right)\, \times \, \frac{19}{8}=-\frac{1469}{128}. \\
|
| 245 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 251 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 252 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right).\left(
|
| 255 |
+
\begin{array}{ccc}
|
| 256 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 257 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right)=\left(
|
| 260 |
+
\begin{array}{ccc}
|
| 261 |
+
\frac{283}{64} & -\frac{463}{128} & -\frac{39}{4} \\
|
| 262 |
+
\fbox{$-\frac{1469}{128}$} & \_ & \_ \\
|
| 263 |
+
\_ & \_ & \_ \\
|
| 264 |
+
\end{array}
|
| 265 |
+
\right) \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\\
|
| 268 |
+
|
| 269 |
+
\begin{array}{l}
|
| 270 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 271 |
+
\left(
|
| 272 |
+
\begin{array}{cc}
|
| 273 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 274 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 275 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 276 |
+
\end{array}
|
| 277 |
+
\right).\left(
|
| 278 |
+
\begin{array}{ccc}
|
| 279 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 280 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right)=\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
\frac{283}{64} & -\frac{463}{128} & -\frac{39}{4} \\
|
| 285 |
+
-\frac{1469}{128} & \_ & \_ \\
|
| 286 |
+
\_ & \_ & \_ \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right) \\
|
| 289 |
+
\end{array}
|
| 290 |
+
\\
|
| 291 |
+
|
| 292 |
+
\begin{array}{l}
|
| 293 |
+
|
| 294 |
+
\begin{array}{l}
|
| 295 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{5}{2}\right)\, \times \, \frac{15}{8}+\left(-\frac{31}{16}\right)\, \left(-\frac{11}{16}\right)=-\frac{859}{256}. \\
|
| 296 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 297 |
+
\end{array}
|
| 298 |
+
\\
|
| 299 |
+
\left(
|
| 300 |
+
\begin{array}{cc}
|
| 301 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 302 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 303 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right).\left(
|
| 306 |
+
\begin{array}{ccc}
|
| 307 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 308 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\right)=\left(
|
| 311 |
+
\begin{array}{ccc}
|
| 312 |
+
\frac{283}{64} & -\frac{463}{128} & -\frac{39}{4} \\
|
| 313 |
+
-\frac{1469}{128} & \fbox{$-\frac{859}{256}$} & \_ \\
|
| 314 |
+
\_ & \_ & \_ \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right) \\
|
| 317 |
+
\end{array}
|
| 318 |
+
\\
|
| 319 |
+
|
| 320 |
+
\begin{array}{l}
|
| 321 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 322 |
+
\left(
|
| 323 |
+
\begin{array}{cc}
|
| 324 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 325 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 326 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 327 |
+
\end{array}
|
| 328 |
+
\right).\left(
|
| 329 |
+
\begin{array}{ccc}
|
| 330 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 331 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 332 |
+
\end{array}
|
| 333 |
+
\right)=\left(
|
| 334 |
+
\begin{array}{ccc}
|
| 335 |
+
\frac{283}{64} & -\frac{463}{128} & -\frac{39}{4} \\
|
| 336 |
+
-\frac{1469}{128} & -\frac{859}{256} & \_ \\
|
| 337 |
+
\_ & \_ & \_ \\
|
| 338 |
+
\end{array}
|
| 339 |
+
\right) \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\\
|
| 342 |
+
|
| 343 |
+
\begin{array}{l}
|
| 344 |
+
|
| 345 |
+
\begin{array}{l}
|
| 346 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{5}{2}\right)\, \times \, \frac{37}{16}+\left(-\frac{31}{16}\right)\, \left(-\frac{43}{16}\right)=-\frac{147}{256}. \\
|
| 347 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 348 |
+
\end{array}
|
| 349 |
+
\\
|
| 350 |
+
\left(
|
| 351 |
+
\begin{array}{cc}
|
| 352 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 353 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 354 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 355 |
+
\end{array}
|
| 356 |
+
\right).\left(
|
| 357 |
+
\begin{array}{ccc}
|
| 358 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 359 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 360 |
+
\end{array}
|
| 361 |
+
\right)=\left(
|
| 362 |
+
\begin{array}{ccc}
|
| 363 |
+
\frac{283}{64} & -\frac{463}{128} & -\frac{39}{4} \\
|
| 364 |
+
-\frac{1469}{128} & -\frac{859}{256} & \fbox{$-\frac{147}{256}$} \\
|
| 365 |
+
\_ & \_ & \_ \\
|
| 366 |
+
\end{array}
|
| 367 |
+
\right) \\
|
| 368 |
+
\end{array}
|
| 369 |
+
\\
|
| 370 |
+
|
| 371 |
+
\begin{array}{l}
|
| 372 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 373 |
+
\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 376 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 377 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right).\left(
|
| 380 |
+
\begin{array}{ccc}
|
| 381 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 382 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 383 |
+
\end{array}
|
| 384 |
+
\right)=\left(
|
| 385 |
+
\begin{array}{ccc}
|
| 386 |
+
\frac{283}{64} & -\frac{463}{128} & -\frac{39}{4} \\
|
| 387 |
+
-\frac{1469}{128} & -\frac{859}{256} & -\frac{147}{256} \\
|
| 388 |
+
\_ & \_ & \_ \\
|
| 389 |
+
\end{array}
|
| 390 |
+
\right) \\
|
| 391 |
+
\end{array}
|
| 392 |
+
\\
|
| 393 |
+
|
| 394 |
+
\begin{array}{l}
|
| 395 |
+
|
| 396 |
+
\begin{array}{l}
|
| 397 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{8} \left(-\frac{11}{4}\right)+\left(-\frac{13}{8}\right)\, \times \, \frac{19}{8}=-\frac{269}{64}. \\
|
| 398 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 399 |
+
\end{array}
|
| 400 |
+
\\
|
| 401 |
+
\left(
|
| 402 |
+
\begin{array}{cc}
|
| 403 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 404 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 405 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 406 |
+
\end{array}
|
| 407 |
+
\right).\left(
|
| 408 |
+
\begin{array}{ccc}
|
| 409 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 410 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 411 |
+
\end{array}
|
| 412 |
+
\right)=\left(
|
| 413 |
+
\begin{array}{ccc}
|
| 414 |
+
\frac{283}{64} & -\frac{463}{128} & -\frac{39}{4} \\
|
| 415 |
+
-\frac{1469}{128} & -\frac{859}{256} & -\frac{147}{256} \\
|
| 416 |
+
\fbox{$-\frac{269}{64}$} & \_ & \_ \\
|
| 417 |
+
\end{array}
|
| 418 |
+
\right) \\
|
| 419 |
+
\end{array}
|
| 420 |
+
\\
|
| 421 |
+
|
| 422 |
+
\begin{array}{l}
|
| 423 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 424 |
+
\left(
|
| 425 |
+
\begin{array}{cc}
|
| 426 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 427 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 428 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 429 |
+
\end{array}
|
| 430 |
+
\right).\left(
|
| 431 |
+
\begin{array}{ccc}
|
| 432 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 433 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 434 |
+
\end{array}
|
| 435 |
+
\right)=\left(
|
| 436 |
+
\begin{array}{ccc}
|
| 437 |
+
\frac{283}{64} & -\frac{463}{128} & -\frac{39}{4} \\
|
| 438 |
+
-\frac{1469}{128} & -\frac{859}{256} & -\frac{147}{256} \\
|
| 439 |
+
-\frac{269}{64} & \_ & \_ \\
|
| 440 |
+
\end{array}
|
| 441 |
+
\right) \\
|
| 442 |
+
\end{array}
|
| 443 |
+
\\
|
| 444 |
+
|
| 445 |
+
\begin{array}{l}
|
| 446 |
+
|
| 447 |
+
\begin{array}{l}
|
| 448 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{8} \left(-\frac{15}{8}\right)+\left(-\frac{13}{8}\right)\, \left(-\frac{11}{16}\right)=\frac{113}{128}. \\
|
| 449 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 450 |
+
\end{array}
|
| 451 |
+
\\
|
| 452 |
+
\left(
|
| 453 |
+
\begin{array}{cc}
|
| 454 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 455 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 456 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 457 |
+
\end{array}
|
| 458 |
+
\right).\left(
|
| 459 |
+
\begin{array}{ccc}
|
| 460 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 461 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 462 |
+
\end{array}
|
| 463 |
+
\right)=\left(
|
| 464 |
+
\begin{array}{ccc}
|
| 465 |
+
\frac{283}{64} & -\frac{463}{128} & -\frac{39}{4} \\
|
| 466 |
+
-\frac{1469}{128} & -\frac{859}{256} & -\frac{147}{256} \\
|
| 467 |
+
-\frac{269}{64} & \fbox{$\frac{113}{128}$} & \_ \\
|
| 468 |
+
\end{array}
|
| 469 |
+
\right) \\
|
| 470 |
+
\end{array}
|
| 471 |
+
\\
|
| 472 |
+
|
| 473 |
+
\begin{array}{l}
|
| 474 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 475 |
+
\left(
|
| 476 |
+
\begin{array}{cc}
|
| 477 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 478 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 479 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 480 |
+
\end{array}
|
| 481 |
+
\right).\left(
|
| 482 |
+
\begin{array}{ccc}
|
| 483 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 484 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 485 |
+
\end{array}
|
| 486 |
+
\right)=\left(
|
| 487 |
+
\begin{array}{ccc}
|
| 488 |
+
\frac{283}{64} & -\frac{463}{128} & -\frac{39}{4} \\
|
| 489 |
+
-\frac{1469}{128} & -\frac{859}{256} & -\frac{147}{256} \\
|
| 490 |
+
-\frac{269}{64} & \frac{113}{128} & \_ \\
|
| 491 |
+
\end{array}
|
| 492 |
+
\right) \\
|
| 493 |
+
\end{array}
|
| 494 |
+
\\
|
| 495 |
+
|
| 496 |
+
\begin{array}{l}
|
| 497 |
+
|
| 498 |
+
\begin{array}{l}
|
| 499 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{8} \left(-\frac{37}{16}\right)+\left(-\frac{13}{8}\right)\, \left(-\frac{43}{16}\right)=\frac{261}{64}. \\
|
| 500 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 501 |
+
\end{array}
|
| 502 |
+
\\
|
| 503 |
+
\fbox{$
|
| 504 |
+
\begin{array}{ll}
|
| 505 |
+
\text{Answer:} & \\
|
| 506 |
+
\text{} & \left(
|
| 507 |
+
\begin{array}{cc}
|
| 508 |
+
-\frac{7}{8} & \frac{23}{8} \\
|
| 509 |
+
-\frac{5}{2} & -\frac{31}{16} \\
|
| 510 |
+
-\frac{1}{8} & -\frac{13}{8} \\
|
| 511 |
+
\end{array}
|
| 512 |
+
\right).\left(
|
| 513 |
+
\begin{array}{ccc}
|
| 514 |
+
\frac{11}{4} & \frac{15}{8} & \frac{37}{16} \\
|
| 515 |
+
\frac{19}{8} & -\frac{11}{16} & -\frac{43}{16} \\
|
| 516 |
+
\end{array}
|
| 517 |
+
\right)=\left(
|
| 518 |
+
\begin{array}{ccc}
|
| 519 |
+
\frac{283}{64} & -\frac{463}{128} & -\frac{39}{4} \\
|
| 520 |
+
-\frac{1469}{128} & -\frac{859}{256} & -\frac{147}{256} \\
|
| 521 |
+
-\frac{269}{64} & \frac{113}{128} & \fbox{$\frac{261}{64}$} \\
|
| 522 |
+
\end{array}
|
| 523 |
+
\right) \\
|
| 524 |
+
\end{array}
|
| 525 |
+
$} \\
|
| 526 |
+
\end{array}
|
| 527 |
+
\\
|
| 528 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1795.txt
ADDED
|
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
1 & \frac{1}{3} & -1 \\
|
| 6 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 7 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{ccc}
|
| 12 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 13 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 14 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
1 & \frac{1}{3} & -1 \\
|
| 25 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 26 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{ccc}
|
| 30 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 31 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 32 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
1 & \frac{1}{3} & -1 \\
|
| 49 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 50 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 55 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 56 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{ccc}
|
| 60 |
+
\_ & \_ & \_ \\
|
| 61 |
+
\_ & \_ & \_ \\
|
| 62 |
+
\_ & \_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
1 & \frac{1}{3} & -1 \\
|
| 73 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 74 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{ccc}
|
| 78 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 79 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 80 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{ccc}
|
| 84 |
+
\_ & \_ & \_ \\
|
| 85 |
+
\_ & \_ & \_ \\
|
| 86 |
+
\_ & \_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{6} (-1)+\frac{3}{3\ 2}+(-1)\, (-1)=\frac{4}{3}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
1 & \frac{1}{3} & -1 \\
|
| 102 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 103 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{ccc}
|
| 107 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 108 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 109 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{ccc}
|
| 113 |
+
\fbox{$\frac{4}{3}$} & \_ & \_ \\
|
| 114 |
+
\_ & \_ & \_ \\
|
| 115 |
+
\_ & \_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
1 & \frac{1}{3} & -1 \\
|
| 126 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 127 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{ccc}
|
| 131 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 132 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 133 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{ccc}
|
| 137 |
+
\frac{4}{3} & \_ & \_ \\
|
| 138 |
+
\_ & \_ & \_ \\
|
| 139 |
+
\_ & \_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }-\frac{5}{2}+\frac{0}{3}+(-1)\, (-2)=-\frac{1}{2}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
1 & \frac{1}{3} & -1 \\
|
| 155 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 156 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{ccc}
|
| 160 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 161 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 162 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
\frac{4}{3} & \fbox{$-\frac{1}{2}$} & \_ \\
|
| 167 |
+
\_ & \_ & \_ \\
|
| 168 |
+
\_ & \_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
1 & \frac{1}{3} & -1 \\
|
| 179 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 180 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{ccc}
|
| 184 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 185 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 186 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
\frac{4}{3} & -\frac{1}{2} & \_ \\
|
| 191 |
+
\_ & \_ & \_ \\
|
| 192 |
+
\_ & \_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-2)+\frac{5}{3\ 2}+(-1)\, \left(-\frac{11}{6}\right)=\frac{2}{3}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
1 & \frac{1}{3} & -1 \\
|
| 208 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 209 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{ccc}
|
| 213 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 214 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 215 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{ccc}
|
| 219 |
+
\frac{4}{3} & -\frac{1}{2} & \fbox{$\frac{2}{3}$} \\
|
| 220 |
+
\_ & \_ & \_ \\
|
| 221 |
+
\_ & \_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
1 & \frac{1}{3} & -1 \\
|
| 232 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 233 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 238 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 239 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{ccc}
|
| 243 |
+
\frac{4}{3} & -\frac{1}{2} & \frac{2}{3} \\
|
| 244 |
+
\_ & \_ & \_ \\
|
| 245 |
+
\_ & \_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2}{6}+\frac{0\ 3}{2}+\left(-\frac{5}{6}\right)\, (-1)=\frac{7}{6}. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
1 & \frac{1}{3} & -1 \\
|
| 261 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 262 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{ccc}
|
| 266 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 267 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 268 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{ccc}
|
| 272 |
+
\frac{4}{3} & -\frac{1}{2} & \frac{2}{3} \\
|
| 273 |
+
\fbox{$\frac{7}{6}$} & \_ & \_ \\
|
| 274 |
+
\_ & \_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
1 & \frac{1}{3} & -1 \\
|
| 285 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 286 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{ccc}
|
| 290 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 291 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 292 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
\frac{4}{3} & -\frac{1}{2} & \frac{2}{3} \\
|
| 297 |
+
\frac{7}{6} & \_ & \_ \\
|
| 298 |
+
\_ & \_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \left(-\frac{5}{2}\right)+0\ 0+\left(-\frac{5}{6}\right)\, (-2)=\frac{20}{3}. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
1 & \frac{1}{3} & -1 \\
|
| 314 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 315 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{ccc}
|
| 319 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 320 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 321 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{ccc}
|
| 325 |
+
\frac{4}{3} & -\frac{1}{2} & \frac{2}{3} \\
|
| 326 |
+
\frac{7}{6} & \fbox{$\frac{20}{3}$} & \_ \\
|
| 327 |
+
\_ & \_ & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
1 & \frac{1}{3} & -1 \\
|
| 338 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 339 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 344 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 345 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{ccc}
|
| 349 |
+
\frac{4}{3} & -\frac{1}{2} & \frac{2}{3} \\
|
| 350 |
+
\frac{7}{6} & \frac{20}{3} & \_ \\
|
| 351 |
+
\_ & \_ & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+\frac{0\ 5}{2}+\left(-\frac{5}{6}\right)\, \left(-\frac{11}{6}\right)=\frac{199}{36}. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\left(
|
| 365 |
+
\begin{array}{ccc}
|
| 366 |
+
1 & \frac{1}{3} & -1 \\
|
| 367 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 368 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 369 |
+
\end{array}
|
| 370 |
+
\right).\left(
|
| 371 |
+
\begin{array}{ccc}
|
| 372 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 373 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 374 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 375 |
+
\end{array}
|
| 376 |
+
\right)=\left(
|
| 377 |
+
\begin{array}{ccc}
|
| 378 |
+
\frac{4}{3} & -\frac{1}{2} & \frac{2}{3} \\
|
| 379 |
+
\frac{7}{6} & \frac{20}{3} & \fbox{$\frac{199}{36}$} \\
|
| 380 |
+
\_ & \_ & \_ \\
|
| 381 |
+
\end{array}
|
| 382 |
+
\right) \\
|
| 383 |
+
\end{array}
|
| 384 |
+
\\
|
| 385 |
+
|
| 386 |
+
\begin{array}{l}
|
| 387 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 388 |
+
\left(
|
| 389 |
+
\begin{array}{ccc}
|
| 390 |
+
1 & \frac{1}{3} & -1 \\
|
| 391 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 392 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 393 |
+
\end{array}
|
| 394 |
+
\right).\left(
|
| 395 |
+
\begin{array}{ccc}
|
| 396 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 397 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 398 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 399 |
+
\end{array}
|
| 400 |
+
\right)=\left(
|
| 401 |
+
\begin{array}{ccc}
|
| 402 |
+
\frac{4}{3} & -\frac{1}{2} & \frac{2}{3} \\
|
| 403 |
+
\frac{7}{6} & \frac{20}{3} & \frac{199}{36} \\
|
| 404 |
+
\_ & \_ & \_ \\
|
| 405 |
+
\end{array}
|
| 406 |
+
\right) \\
|
| 407 |
+
\end{array}
|
| 408 |
+
\\
|
| 409 |
+
|
| 410 |
+
\begin{array}{l}
|
| 411 |
+
|
| 412 |
+
\begin{array}{l}
|
| 413 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{6} \left(-\frac{5}{2}\right)+\frac{5\ 3}{6\ 2}+\frac{1}{6}=1. \\
|
| 414 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 415 |
+
\end{array}
|
| 416 |
+
\\
|
| 417 |
+
\left(
|
| 418 |
+
\begin{array}{ccc}
|
| 419 |
+
1 & \frac{1}{3} & -1 \\
|
| 420 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 421 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 422 |
+
\end{array}
|
| 423 |
+
\right).\left(
|
| 424 |
+
\begin{array}{ccc}
|
| 425 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 426 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 427 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 428 |
+
\end{array}
|
| 429 |
+
\right)=\left(
|
| 430 |
+
\begin{array}{ccc}
|
| 431 |
+
\frac{4}{3} & -\frac{1}{2} & \frac{2}{3} \\
|
| 432 |
+
\frac{7}{6} & \frac{20}{3} & \frac{199}{36} \\
|
| 433 |
+
\fbox{$1$} & \_ & \_ \\
|
| 434 |
+
\end{array}
|
| 435 |
+
\right) \\
|
| 436 |
+
\end{array}
|
| 437 |
+
\\
|
| 438 |
+
|
| 439 |
+
\begin{array}{l}
|
| 440 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 441 |
+
\left(
|
| 442 |
+
\begin{array}{ccc}
|
| 443 |
+
1 & \frac{1}{3} & -1 \\
|
| 444 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 445 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 446 |
+
\end{array}
|
| 447 |
+
\right).\left(
|
| 448 |
+
\begin{array}{ccc}
|
| 449 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 450 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 451 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 452 |
+
\end{array}
|
| 453 |
+
\right)=\left(
|
| 454 |
+
\begin{array}{ccc}
|
| 455 |
+
\frac{4}{3} & -\frac{1}{2} & \frac{2}{3} \\
|
| 456 |
+
\frac{7}{6} & \frac{20}{3} & \frac{199}{36} \\
|
| 457 |
+
1 & \_ & \_ \\
|
| 458 |
+
\end{array}
|
| 459 |
+
\right) \\
|
| 460 |
+
\end{array}
|
| 461 |
+
\\
|
| 462 |
+
|
| 463 |
+
\begin{array}{l}
|
| 464 |
+
|
| 465 |
+
\begin{array}{l}
|
| 466 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5 (-5)}{2\ 2}+\frac{5\ 0}{6}+\frac{2}{6}=-\frac{71}{12}. \\
|
| 467 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 468 |
+
\end{array}
|
| 469 |
+
\\
|
| 470 |
+
\left(
|
| 471 |
+
\begin{array}{ccc}
|
| 472 |
+
1 & \frac{1}{3} & -1 \\
|
| 473 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 474 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 475 |
+
\end{array}
|
| 476 |
+
\right).\left(
|
| 477 |
+
\begin{array}{ccc}
|
| 478 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 479 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 480 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 481 |
+
\end{array}
|
| 482 |
+
\right)=\left(
|
| 483 |
+
\begin{array}{ccc}
|
| 484 |
+
\frac{4}{3} & -\frac{1}{2} & \frac{2}{3} \\
|
| 485 |
+
\frac{7}{6} & \frac{20}{3} & \frac{199}{36} \\
|
| 486 |
+
1 & \fbox{$-\frac{71}{12}$} & \_ \\
|
| 487 |
+
\end{array}
|
| 488 |
+
\right) \\
|
| 489 |
+
\end{array}
|
| 490 |
+
\\
|
| 491 |
+
|
| 492 |
+
\begin{array}{l}
|
| 493 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 494 |
+
\left(
|
| 495 |
+
\begin{array}{ccc}
|
| 496 |
+
1 & \frac{1}{3} & -1 \\
|
| 497 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 498 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 499 |
+
\end{array}
|
| 500 |
+
\right).\left(
|
| 501 |
+
\begin{array}{ccc}
|
| 502 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 503 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 504 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 505 |
+
\end{array}
|
| 506 |
+
\right)=\left(
|
| 507 |
+
\begin{array}{ccc}
|
| 508 |
+
\frac{4}{3} & -\frac{1}{2} & \frac{2}{3} \\
|
| 509 |
+
\frac{7}{6} & \frac{20}{3} & \frac{199}{36} \\
|
| 510 |
+
1 & -\frac{71}{12} & \_ \\
|
| 511 |
+
\end{array}
|
| 512 |
+
\right) \\
|
| 513 |
+
\end{array}
|
| 514 |
+
\\
|
| 515 |
+
|
| 516 |
+
\begin{array}{l}
|
| 517 |
+
|
| 518 |
+
\begin{array}{l}
|
| 519 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5 (-2)}{2}+\frac{5\ 5}{6\ 2}+\frac{11}{6\ 6}=-\frac{47}{18}. \\
|
| 520 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 521 |
+
\end{array}
|
| 522 |
+
\\
|
| 523 |
+
\fbox{$
|
| 524 |
+
\begin{array}{ll}
|
| 525 |
+
\text{Answer:} & \\
|
| 526 |
+
\text{} & \left(
|
| 527 |
+
\begin{array}{ccc}
|
| 528 |
+
1 & \frac{1}{3} & -1 \\
|
| 529 |
+
-2 & 0 & -\frac{5}{6} \\
|
| 530 |
+
\frac{5}{2} & \frac{5}{6} & -\frac{1}{6} \\
|
| 531 |
+
\end{array}
|
| 532 |
+
\right).\left(
|
| 533 |
+
\begin{array}{ccc}
|
| 534 |
+
-\frac{1}{6} & -\frac{5}{2} & -2 \\
|
| 535 |
+
\frac{3}{2} & 0 & \frac{5}{2} \\
|
| 536 |
+
-1 & -2 & -\frac{11}{6} \\
|
| 537 |
+
\end{array}
|
| 538 |
+
\right)=\left(
|
| 539 |
+
\begin{array}{ccc}
|
| 540 |
+
\frac{4}{3} & -\frac{1}{2} & \frac{2}{3} \\
|
| 541 |
+
\frac{7}{6} & \frac{20}{3} & \frac{199}{36} \\
|
| 542 |
+
1 & -\frac{71}{12} & \fbox{$-\frac{47}{18}$} \\
|
| 543 |
+
\end{array}
|
| 544 |
+
\right) \\
|
| 545 |
+
\end{array}
|
| 546 |
+
$} \\
|
| 547 |
+
\end{array}
|
| 548 |
+
\\
|
| 549 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1831.txt
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
\frac{2}{9} & -\frac{10}{9} \\
|
| 6 |
+
\frac{2}{3} & -\frac{7}{9} \\
|
| 7 |
+
-\frac{8}{9} & -\frac{8}{9} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{c}
|
| 12 |
+
\frac{13}{9} \\
|
| 13 |
+
-\frac{8}{3} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{cc}
|
| 23 |
+
\frac{2}{9} & -\frac{10}{9} \\
|
| 24 |
+
\frac{2}{3} & -\frac{7}{9} \\
|
| 25 |
+
-\frac{8}{9} & -\frac{8}{9} \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right).\left(
|
| 28 |
+
\begin{array}{c}
|
| 29 |
+
\frac{13}{9} \\
|
| 30 |
+
-\frac{8}{3} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{cc}
|
| 46 |
+
\frac{2}{9} & -\frac{10}{9} \\
|
| 47 |
+
\frac{2}{3} & -\frac{7}{9} \\
|
| 48 |
+
-\frac{8}{9} & -\frac{8}{9} \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right).\left(
|
| 51 |
+
\begin{array}{c}
|
| 52 |
+
\frac{13}{9} \\
|
| 53 |
+
-\frac{8}{3} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{c}
|
| 57 |
+
\_ \\
|
| 58 |
+
\_ \\
|
| 59 |
+
\_ \\
|
| 60 |
+
\end{array}
|
| 61 |
+
\right) \\
|
| 62 |
+
\end{array}
|
| 63 |
+
\\
|
| 64 |
+
|
| 65 |
+
\begin{array}{l}
|
| 66 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 67 |
+
\left(
|
| 68 |
+
\begin{array}{cc}
|
| 69 |
+
\frac{2}{9} & -\frac{10}{9} \\
|
| 70 |
+
\frac{2}{3} & -\frac{7}{9} \\
|
| 71 |
+
-\frac{8}{9} & -\frac{8}{9} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right).\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
\frac{13}{9} \\
|
| 76 |
+
-\frac{8}{3} \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right)=\left(
|
| 79 |
+
\begin{array}{c}
|
| 80 |
+
\_ \\
|
| 81 |
+
\_ \\
|
| 82 |
+
\_ \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\right) \\
|
| 85 |
+
\end{array}
|
| 86 |
+
\\
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
|
| 90 |
+
\begin{array}{l}
|
| 91 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2\ 13}{9\ 9}+\left(-\frac{10}{9}\right)\, \left(-\frac{8}{3}\right)=\frac{266}{81}. \\
|
| 92 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\\
|
| 95 |
+
\left(
|
| 96 |
+
\begin{array}{cc}
|
| 97 |
+
\frac{2}{9} & -\frac{10}{9} \\
|
| 98 |
+
\frac{2}{3} & -\frac{7}{9} \\
|
| 99 |
+
-\frac{8}{9} & -\frac{8}{9} \\
|
| 100 |
+
\end{array}
|
| 101 |
+
\right).\left(
|
| 102 |
+
\begin{array}{c}
|
| 103 |
+
\frac{13}{9} \\
|
| 104 |
+
-\frac{8}{3} \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\right)=\left(
|
| 107 |
+
\begin{array}{c}
|
| 108 |
+
\fbox{$\frac{266}{81}$} \\
|
| 109 |
+
\_ \\
|
| 110 |
+
\_ \\
|
| 111 |
+
\end{array}
|
| 112 |
+
\right) \\
|
| 113 |
+
\end{array}
|
| 114 |
+
\\
|
| 115 |
+
|
| 116 |
+
\begin{array}{l}
|
| 117 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 118 |
+
\left(
|
| 119 |
+
\begin{array}{cc}
|
| 120 |
+
\frac{2}{9} & -\frac{10}{9} \\
|
| 121 |
+
\frac{2}{3} & -\frac{7}{9} \\
|
| 122 |
+
-\frac{8}{9} & -\frac{8}{9} \\
|
| 123 |
+
\end{array}
|
| 124 |
+
\right).\left(
|
| 125 |
+
\begin{array}{c}
|
| 126 |
+
\frac{13}{9} \\
|
| 127 |
+
-\frac{8}{3} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right)=\left(
|
| 130 |
+
\begin{array}{c}
|
| 131 |
+
\frac{266}{81} \\
|
| 132 |
+
\_ \\
|
| 133 |
+
\_ \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right) \\
|
| 136 |
+
\end{array}
|
| 137 |
+
\\
|
| 138 |
+
|
| 139 |
+
\begin{array}{l}
|
| 140 |
+
|
| 141 |
+
\begin{array}{l}
|
| 142 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2\ 13}{3\ 9}+\left(-\frac{7}{9}\right)\, \left(-\frac{8}{3}\right)=\frac{82}{27}. \\
|
| 143 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 144 |
+
\end{array}
|
| 145 |
+
\\
|
| 146 |
+
\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
\frac{2}{9} & -\frac{10}{9} \\
|
| 149 |
+
\frac{2}{3} & -\frac{7}{9} \\
|
| 150 |
+
-\frac{8}{9} & -\frac{8}{9} \\
|
| 151 |
+
\end{array}
|
| 152 |
+
\right).\left(
|
| 153 |
+
\begin{array}{c}
|
| 154 |
+
\frac{13}{9} \\
|
| 155 |
+
-\frac{8}{3} \\
|
| 156 |
+
\end{array}
|
| 157 |
+
\right)=\left(
|
| 158 |
+
\begin{array}{c}
|
| 159 |
+
\frac{266}{81} \\
|
| 160 |
+
\fbox{$\frac{82}{27}$} \\
|
| 161 |
+
\_ \\
|
| 162 |
+
\end{array}
|
| 163 |
+
\right) \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
|
| 167 |
+
\begin{array}{l}
|
| 168 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 169 |
+
\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
\frac{2}{9} & -\frac{10}{9} \\
|
| 172 |
+
\frac{2}{3} & -\frac{7}{9} \\
|
| 173 |
+
-\frac{8}{9} & -\frac{8}{9} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right).\left(
|
| 176 |
+
\begin{array}{c}
|
| 177 |
+
\frac{13}{9} \\
|
| 178 |
+
-\frac{8}{3} \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right)=\left(
|
| 181 |
+
\begin{array}{c}
|
| 182 |
+
\frac{266}{81} \\
|
| 183 |
+
\frac{82}{27} \\
|
| 184 |
+
\_ \\
|
| 185 |
+
\end{array}
|
| 186 |
+
\right) \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\\
|
| 189 |
+
|
| 190 |
+
\begin{array}{l}
|
| 191 |
+
|
| 192 |
+
\begin{array}{l}
|
| 193 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{8}{9}\right)\, \times \, \frac{13}{9}+\left(-\frac{8}{9}\right)\, \left(-\frac{8}{3}\right)=\frac{88}{81}. \\
|
| 194 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
\fbox{$
|
| 198 |
+
\begin{array}{ll}
|
| 199 |
+
\text{Answer:} & \\
|
| 200 |
+
\text{} & \left(
|
| 201 |
+
\begin{array}{cc}
|
| 202 |
+
\frac{2}{9} & -\frac{10}{9} \\
|
| 203 |
+
\frac{2}{3} & -\frac{7}{9} \\
|
| 204 |
+
-\frac{8}{9} & -\frac{8}{9} \\
|
| 205 |
+
\end{array}
|
| 206 |
+
\right).\left(
|
| 207 |
+
\begin{array}{c}
|
| 208 |
+
\frac{13}{9} \\
|
| 209 |
+
-\frac{8}{3} \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right)=\left(
|
| 212 |
+
\begin{array}{c}
|
| 213 |
+
\frac{266}{81} \\
|
| 214 |
+
\frac{82}{27} \\
|
| 215 |
+
\fbox{$\frac{88}{81}$} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right) \\
|
| 218 |
+
\end{array}
|
| 219 |
+
$} \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1920.txt
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
1 & 2 & -1 \\
|
| 6 |
+
-3 & -1 & 3 \\
|
| 7 |
+
2 & 1 & 0 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
1 & 2 \\
|
| 13 |
+
2 & 1 \\
|
| 14 |
+
1 & -3 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
1 & 2 & -1 \\
|
| 25 |
+
-3 & -1 & 3 \\
|
| 26 |
+
2 & 1 & 0 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{cc}
|
| 30 |
+
1 & 2 \\
|
| 31 |
+
2 & 1 \\
|
| 32 |
+
1 & -3 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
1 & 2 & -1 \\
|
| 49 |
+
-3 & -1 & 3 \\
|
| 50 |
+
2 & 1 & 0 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
1 & 2 \\
|
| 55 |
+
2 & 1 \\
|
| 56 |
+
1 & -3 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{cc}
|
| 60 |
+
\_ & \_ \\
|
| 61 |
+
\_ & \_ \\
|
| 62 |
+
\_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
1 & 2 & -1 \\
|
| 73 |
+
-3 & -1 & 3 \\
|
| 74 |
+
2 & 1 & 0 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{cc}
|
| 78 |
+
1 & 2 \\
|
| 79 |
+
2 & 1 \\
|
| 80 |
+
1 & -3 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{cc}
|
| 84 |
+
\_ & \_ \\
|
| 85 |
+
\_ & \_ \\
|
| 86 |
+
\_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 1+2\ 2+(-1)\, \times \, 1=4. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
1 & 2 & -1 \\
|
| 102 |
+
-3 & -1 & 3 \\
|
| 103 |
+
2 & 1 & 0 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{cc}
|
| 107 |
+
1 & 2 \\
|
| 108 |
+
2 & 1 \\
|
| 109 |
+
1 & -3 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{cc}
|
| 113 |
+
\fbox{$4$} & \_ \\
|
| 114 |
+
\_ & \_ \\
|
| 115 |
+
\_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
1 & 2 & -1 \\
|
| 126 |
+
-3 & -1 & 3 \\
|
| 127 |
+
2 & 1 & 0 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
1 & 2 \\
|
| 132 |
+
2 & 1 \\
|
| 133 |
+
1 & -3 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{cc}
|
| 137 |
+
4 & \_ \\
|
| 138 |
+
\_ & \_ \\
|
| 139 |
+
\_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 2+2\ 1+(-1)\, (-3)=7. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
1 & 2 & -1 \\
|
| 155 |
+
-3 & -1 & 3 \\
|
| 156 |
+
2 & 1 & 0 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{cc}
|
| 160 |
+
1 & 2 \\
|
| 161 |
+
2 & 1 \\
|
| 162 |
+
1 & -3 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{cc}
|
| 166 |
+
4 & \fbox{$7$} \\
|
| 167 |
+
\_ & \_ \\
|
| 168 |
+
\_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
1 & 2 & -1 \\
|
| 179 |
+
-3 & -1 & 3 \\
|
| 180 |
+
2 & 1 & 0 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{cc}
|
| 184 |
+
1 & 2 \\
|
| 185 |
+
2 & 1 \\
|
| 186 |
+
1 & -3 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
4 & 7 \\
|
| 191 |
+
\_ & \_ \\
|
| 192 |
+
\_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 1+(-1)\, \times \, 2+3\ 1=-2. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
1 & 2 & -1 \\
|
| 208 |
+
-3 & -1 & 3 \\
|
| 209 |
+
2 & 1 & 0 \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{cc}
|
| 213 |
+
1 & 2 \\
|
| 214 |
+
2 & 1 \\
|
| 215 |
+
1 & -3 \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{cc}
|
| 219 |
+
4 & 7 \\
|
| 220 |
+
\fbox{$-2$} & \_ \\
|
| 221 |
+
\_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
1 & 2 & -1 \\
|
| 232 |
+
-3 & -1 & 3 \\
|
| 233 |
+
2 & 1 & 0 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{cc}
|
| 237 |
+
1 & 2 \\
|
| 238 |
+
2 & 1 \\
|
| 239 |
+
1 & -3 \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{cc}
|
| 243 |
+
4 & 7 \\
|
| 244 |
+
-2 & \_ \\
|
| 245 |
+
\_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 2+(-1)\, \times \, 1+3 (-3)=-16. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
1 & 2 & -1 \\
|
| 261 |
+
-3 & -1 & 3 \\
|
| 262 |
+
2 & 1 & 0 \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{cc}
|
| 266 |
+
1 & 2 \\
|
| 267 |
+
2 & 1 \\
|
| 268 |
+
1 & -3 \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{cc}
|
| 272 |
+
4 & 7 \\
|
| 273 |
+
-2 & \fbox{$-16$} \\
|
| 274 |
+
\_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
1 & 2 & -1 \\
|
| 285 |
+
-3 & -1 & 3 \\
|
| 286 |
+
2 & 1 & 0 \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{cc}
|
| 290 |
+
1 & 2 \\
|
| 291 |
+
2 & 1 \\
|
| 292 |
+
1 & -3 \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{cc}
|
| 296 |
+
4 & 7 \\
|
| 297 |
+
-2 & -16 \\
|
| 298 |
+
\_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 1+1\ 2+0\ 1=4. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
1 & 2 & -1 \\
|
| 314 |
+
-3 & -1 & 3 \\
|
| 315 |
+
2 & 1 & 0 \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{cc}
|
| 319 |
+
1 & 2 \\
|
| 320 |
+
2 & 1 \\
|
| 321 |
+
1 & -3 \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{cc}
|
| 325 |
+
4 & 7 \\
|
| 326 |
+
-2 & -16 \\
|
| 327 |
+
\fbox{$4$} & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
1 & 2 & -1 \\
|
| 338 |
+
-3 & -1 & 3 \\
|
| 339 |
+
2 & 1 & 0 \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{cc}
|
| 343 |
+
1 & 2 \\
|
| 344 |
+
2 & 1 \\
|
| 345 |
+
1 & -3 \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{cc}
|
| 349 |
+
4 & 7 \\
|
| 350 |
+
-2 & -16 \\
|
| 351 |
+
4 & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 2+1\ 1+0 (-3)=5. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\fbox{$
|
| 365 |
+
\begin{array}{ll}
|
| 366 |
+
\text{Answer:} & \\
|
| 367 |
+
\text{} & \left(
|
| 368 |
+
\begin{array}{ccc}
|
| 369 |
+
1 & 2 & -1 \\
|
| 370 |
+
-3 & -1 & 3 \\
|
| 371 |
+
2 & 1 & 0 \\
|
| 372 |
+
\end{array}
|
| 373 |
+
\right).\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
1 & 2 \\
|
| 376 |
+
2 & 1 \\
|
| 377 |
+
1 & -3 \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right)=\left(
|
| 380 |
+
\begin{array}{cc}
|
| 381 |
+
4 & 7 \\
|
| 382 |
+
-2 & -16 \\
|
| 383 |
+
4 & \fbox{$5$} \\
|
| 384 |
+
\end{array}
|
| 385 |
+
\right) \\
|
| 386 |
+
\end{array}
|
| 387 |
+
$} \\
|
| 388 |
+
\end{array}
|
| 389 |
+
\\
|
| 390 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1989.txt
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-3 & 0 \\
|
| 6 |
+
1 & 0 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
-3 \\
|
| 12 |
+
3 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-3 & 0 \\
|
| 23 |
+
1 & 0 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{c}
|
| 27 |
+
-3 \\
|
| 28 |
+
3 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-3 & 0 \\
|
| 45 |
+
1 & 0 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{c}
|
| 49 |
+
-3 \\
|
| 50 |
+
3 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
\_ \\
|
| 55 |
+
\_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-3 & 0 \\
|
| 66 |
+
1 & 0 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{c}
|
| 70 |
+
-3 \\
|
| 71 |
+
3 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
\_ \\
|
| 76 |
+
\_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-3)+0\ 3=9. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-3 & 0 \\
|
| 92 |
+
1 & 0 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{c}
|
| 96 |
+
-3 \\
|
| 97 |
+
3 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{c}
|
| 101 |
+
\fbox{$9$} \\
|
| 102 |
+
\_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-3 & 0 \\
|
| 113 |
+
1 & 0 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{c}
|
| 117 |
+
-3 \\
|
| 118 |
+
3 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
9 \\
|
| 123 |
+
\_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-3)+0\ 3=-3. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\fbox{$
|
| 137 |
+
\begin{array}{ll}
|
| 138 |
+
\text{Answer:} & \\
|
| 139 |
+
\text{} & \left(
|
| 140 |
+
\begin{array}{cc}
|
| 141 |
+
-3 & 0 \\
|
| 142 |
+
1 & 0 \\
|
| 143 |
+
\end{array}
|
| 144 |
+
\right).\left(
|
| 145 |
+
\begin{array}{c}
|
| 146 |
+
-3 \\
|
| 147 |
+
3 \\
|
| 148 |
+
\end{array}
|
| 149 |
+
\right)=\left(
|
| 150 |
+
\begin{array}{c}
|
| 151 |
+
9 \\
|
| 152 |
+
\fbox{$-3$} \\
|
| 153 |
+
\end{array}
|
| 154 |
+
\right) \\
|
| 155 |
+
\end{array}
|
| 156 |
+
$} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\\
|
| 159 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2249.txt
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-2 & -2 & 3 \\
|
| 6 |
+
2 & 2 & -1 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
-3 \\
|
| 12 |
+
3 \\
|
| 13 |
+
3 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
-2 & -2 & 3 \\
|
| 24 |
+
2 & 2 & -1 \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{c}
|
| 28 |
+
-3 \\
|
| 29 |
+
3 \\
|
| 30 |
+
3 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
-2 & -2 & 3 \\
|
| 47 |
+
2 & 2 & -1 \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{c}
|
| 51 |
+
-3 \\
|
| 52 |
+
3 \\
|
| 53 |
+
3 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{c}
|
| 57 |
+
\_ \\
|
| 58 |
+
\_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
-2 & -2 & 3 \\
|
| 69 |
+
2 & 2 & -1 \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{c}
|
| 73 |
+
-3 \\
|
| 74 |
+
3 \\
|
| 75 |
+
3 \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{c}
|
| 79 |
+
\_ \\
|
| 80 |
+
\_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-3)+(-2)\, \times \, 3+3\ 3=9. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
-2 & -2 & 3 \\
|
| 96 |
+
2 & 2 & -1 \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{c}
|
| 100 |
+
-3 \\
|
| 101 |
+
3 \\
|
| 102 |
+
3 \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{c}
|
| 106 |
+
\fbox{$9$} \\
|
| 107 |
+
\_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-2 & -2 & 3 \\
|
| 118 |
+
2 & 2 & -1 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
-3 \\
|
| 123 |
+
3 \\
|
| 124 |
+
3 \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{c}
|
| 128 |
+
9 \\
|
| 129 |
+
\_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-3)+2\ 3+(-1)\, \times \, 3=-3. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\fbox{$
|
| 143 |
+
\begin{array}{ll}
|
| 144 |
+
\text{Answer:} & \\
|
| 145 |
+
\text{} & \left(
|
| 146 |
+
\begin{array}{ccc}
|
| 147 |
+
-2 & -2 & 3 \\
|
| 148 |
+
2 & 2 & -1 \\
|
| 149 |
+
\end{array}
|
| 150 |
+
\right).\left(
|
| 151 |
+
\begin{array}{c}
|
| 152 |
+
-3 \\
|
| 153 |
+
3 \\
|
| 154 |
+
3 \\
|
| 155 |
+
\end{array}
|
| 156 |
+
\right)=\left(
|
| 157 |
+
\begin{array}{c}
|
| 158 |
+
9 \\
|
| 159 |
+
\fbox{$-3$} \\
|
| 160 |
+
\end{array}
|
| 161 |
+
\right) \\
|
| 162 |
+
\end{array}
|
| 163 |
+
$} \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2282.txt
ADDED
|
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
\frac{1}{3} & -1 & 0 \\
|
| 6 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 7 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{ccc}
|
| 12 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 13 |
+
\frac{8}{3} & 3 & 0 \\
|
| 14 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
\frac{1}{3} & -1 & 0 \\
|
| 25 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 26 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{ccc}
|
| 30 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 31 |
+
\frac{8}{3} & 3 & 0 \\
|
| 32 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
\frac{1}{3} & -1 & 0 \\
|
| 49 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 50 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 55 |
+
\frac{8}{3} & 3 & 0 \\
|
| 56 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{ccc}
|
| 60 |
+
\_ & \_ & \_ \\
|
| 61 |
+
\_ & \_ & \_ \\
|
| 62 |
+
\_ & \_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
\frac{1}{3} & -1 & 0 \\
|
| 73 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 74 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{ccc}
|
| 78 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 79 |
+
\frac{8}{3} & 3 & 0 \\
|
| 80 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{ccc}
|
| 84 |
+
\_ & \_ & \_ \\
|
| 85 |
+
\_ & \_ & \_ \\
|
| 86 |
+
\_ & \_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{8}{3\ 3}+(-1)\, \times \, \frac{8}{3}+\frac{1}{3} (-0)=-\frac{16}{9}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\frac{1}{3} & -1 & 0 \\
|
| 102 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 103 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{ccc}
|
| 107 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 108 |
+
\frac{8}{3} & 3 & 0 \\
|
| 109 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{ccc}
|
| 113 |
+
\fbox{$-\frac{16}{9}$} & \_ & \_ \\
|
| 114 |
+
\_ & \_ & \_ \\
|
| 115 |
+
\_ & \_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
\frac{1}{3} & -1 & 0 \\
|
| 126 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 127 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{ccc}
|
| 131 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 132 |
+
\frac{8}{3} & 3 & 0 \\
|
| 133 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{ccc}
|
| 137 |
+
-\frac{16}{9} & \_ & \_ \\
|
| 138 |
+
\_ & \_ & \_ \\
|
| 139 |
+
\_ & \_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{3}+(-1)\, \times \, 3+\frac{0 (-8)}{3}=-\frac{8}{3}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
\frac{1}{3} & -1 & 0 \\
|
| 155 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 156 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{ccc}
|
| 160 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 161 |
+
\frac{8}{3} & 3 & 0 \\
|
| 162 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
-\frac{16}{9} & \fbox{$-\frac{8}{3}$} & \_ \\
|
| 167 |
+
\_ & \_ & \_ \\
|
| 168 |
+
\_ & \_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
\frac{1}{3} & -1 & 0 \\
|
| 179 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 180 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{ccc}
|
| 184 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 185 |
+
\frac{8}{3} & 3 & 0 \\
|
| 186 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
-\frac{16}{9} & -\frac{8}{3} & \_ \\
|
| 191 |
+
\_ & \_ & \_ \\
|
| 192 |
+
\_ & \_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }-\frac{7}{3\ 3}+(-1)\, \times \, 0+\frac{0\ 7}{3}=-\frac{7}{9}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
\frac{1}{3} & -1 & 0 \\
|
| 208 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 209 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{ccc}
|
| 213 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 214 |
+
\frac{8}{3} & 3 & 0 \\
|
| 215 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{ccc}
|
| 219 |
+
-\frac{16}{9} & -\frac{8}{3} & \fbox{$-\frac{7}{9}$} \\
|
| 220 |
+
\_ & \_ & \_ \\
|
| 221 |
+
\_ & \_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
\frac{1}{3} & -1 & 0 \\
|
| 232 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 233 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 238 |
+
\frac{8}{3} & 3 & 0 \\
|
| 239 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{ccc}
|
| 243 |
+
-\frac{16}{9} & -\frac{8}{3} & -\frac{7}{9} \\
|
| 244 |
+
\_ & \_ & \_ \\
|
| 245 |
+
\_ & \_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2\ 8}{3\ 3}+\left(-\frac{2}{3}\right)\, \times \, \frac{8}{3}+\frac{2}{3}=\frac{2}{3}. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
\frac{1}{3} & -1 & 0 \\
|
| 261 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 262 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{ccc}
|
| 266 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 267 |
+
\frac{8}{3} & 3 & 0 \\
|
| 268 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{ccc}
|
| 272 |
+
-\frac{16}{9} & -\frac{8}{3} & -\frac{7}{9} \\
|
| 273 |
+
\fbox{$\frac{2}{3}$} & \_ & \_ \\
|
| 274 |
+
\_ & \_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
\frac{1}{3} & -1 & 0 \\
|
| 285 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 286 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{ccc}
|
| 290 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 291 |
+
\frac{8}{3} & 3 & 0 \\
|
| 292 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
-\frac{16}{9} & -\frac{8}{3} & -\frac{7}{9} \\
|
| 297 |
+
\frac{2}{3} & \_ & \_ \\
|
| 298 |
+
\_ & \_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2}{3}+\left(-\frac{2}{3}\right)\, \times \, 3+(-2)\, \left(-\frac{8}{3}\right)=4. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
\frac{1}{3} & -1 & 0 \\
|
| 314 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 315 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{ccc}
|
| 319 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 320 |
+
\frac{8}{3} & 3 & 0 \\
|
| 321 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{ccc}
|
| 325 |
+
-\frac{16}{9} & -\frac{8}{3} & -\frac{7}{9} \\
|
| 326 |
+
\frac{2}{3} & \fbox{$4$} & \_ \\
|
| 327 |
+
\_ & \_ & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
\frac{1}{3} & -1 & 0 \\
|
| 338 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 339 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 344 |
+
\frac{8}{3} & 3 & 0 \\
|
| 345 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{ccc}
|
| 349 |
+
-\frac{16}{9} & -\frac{8}{3} & -\frac{7}{9} \\
|
| 350 |
+
\frac{2}{3} & 4 & \_ \\
|
| 351 |
+
\_ & \_ & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2 (-7)}{3\ 3}+\left(-\frac{2}{3}\right)\, \times \, 0+(-2)\, \times \, \frac{7}{3}=-\frac{56}{9}. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\left(
|
| 365 |
+
\begin{array}{ccc}
|
| 366 |
+
\frac{1}{3} & -1 & 0 \\
|
| 367 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 368 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 369 |
+
\end{array}
|
| 370 |
+
\right).\left(
|
| 371 |
+
\begin{array}{ccc}
|
| 372 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 373 |
+
\frac{8}{3} & 3 & 0 \\
|
| 374 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 375 |
+
\end{array}
|
| 376 |
+
\right)=\left(
|
| 377 |
+
\begin{array}{ccc}
|
| 378 |
+
-\frac{16}{9} & -\frac{8}{3} & -\frac{7}{9} \\
|
| 379 |
+
\frac{2}{3} & 4 & \fbox{$-\frac{56}{9}$} \\
|
| 380 |
+
\_ & \_ & \_ \\
|
| 381 |
+
\end{array}
|
| 382 |
+
\right) \\
|
| 383 |
+
\end{array}
|
| 384 |
+
\\
|
| 385 |
+
|
| 386 |
+
\begin{array}{l}
|
| 387 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 388 |
+
\left(
|
| 389 |
+
\begin{array}{ccc}
|
| 390 |
+
\frac{1}{3} & -1 & 0 \\
|
| 391 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 392 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 393 |
+
\end{array}
|
| 394 |
+
\right).\left(
|
| 395 |
+
\begin{array}{ccc}
|
| 396 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 397 |
+
\frac{8}{3} & 3 & 0 \\
|
| 398 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 399 |
+
\end{array}
|
| 400 |
+
\right)=\left(
|
| 401 |
+
\begin{array}{ccc}
|
| 402 |
+
-\frac{16}{9} & -\frac{8}{3} & -\frac{7}{9} \\
|
| 403 |
+
\frac{2}{3} & 4 & -\frac{56}{9} \\
|
| 404 |
+
\_ & \_ & \_ \\
|
| 405 |
+
\end{array}
|
| 406 |
+
\right) \\
|
| 407 |
+
\end{array}
|
| 408 |
+
\\
|
| 409 |
+
|
| 410 |
+
\begin{array}{l}
|
| 411 |
+
|
| 412 |
+
\begin{array}{l}
|
| 413 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4\ 8}{3\ 3}+\left(-\frac{2}{3}\right)\, \times \, \frac{8}{3}+\frac{1}{3} \left(-\frac{8}{3}\right)=\frac{8}{9}. \\
|
| 414 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 415 |
+
\end{array}
|
| 416 |
+
\\
|
| 417 |
+
\left(
|
| 418 |
+
\begin{array}{ccc}
|
| 419 |
+
\frac{1}{3} & -1 & 0 \\
|
| 420 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 421 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 422 |
+
\end{array}
|
| 423 |
+
\right).\left(
|
| 424 |
+
\begin{array}{ccc}
|
| 425 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 426 |
+
\frac{8}{3} & 3 & 0 \\
|
| 427 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 428 |
+
\end{array}
|
| 429 |
+
\right)=\left(
|
| 430 |
+
\begin{array}{ccc}
|
| 431 |
+
-\frac{16}{9} & -\frac{8}{3} & -\frac{7}{9} \\
|
| 432 |
+
\frac{2}{3} & 4 & -\frac{56}{9} \\
|
| 433 |
+
\fbox{$\frac{8}{9}$} & \_ & \_ \\
|
| 434 |
+
\end{array}
|
| 435 |
+
\right) \\
|
| 436 |
+
\end{array}
|
| 437 |
+
\\
|
| 438 |
+
|
| 439 |
+
\begin{array}{l}
|
| 440 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 441 |
+
\left(
|
| 442 |
+
\begin{array}{ccc}
|
| 443 |
+
\frac{1}{3} & -1 & 0 \\
|
| 444 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 445 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 446 |
+
\end{array}
|
| 447 |
+
\right).\left(
|
| 448 |
+
\begin{array}{ccc}
|
| 449 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 450 |
+
\frac{8}{3} & 3 & 0 \\
|
| 451 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 452 |
+
\end{array}
|
| 453 |
+
\right)=\left(
|
| 454 |
+
\begin{array}{ccc}
|
| 455 |
+
-\frac{16}{9} & -\frac{8}{3} & -\frac{7}{9} \\
|
| 456 |
+
\frac{2}{3} & 4 & -\frac{56}{9} \\
|
| 457 |
+
\frac{8}{9} & \_ & \_ \\
|
| 458 |
+
\end{array}
|
| 459 |
+
\right) \\
|
| 460 |
+
\end{array}
|
| 461 |
+
\\
|
| 462 |
+
|
| 463 |
+
\begin{array}{l}
|
| 464 |
+
|
| 465 |
+
\begin{array}{l}
|
| 466 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4}{3}+\left(-\frac{2}{3}\right)\, \times \, 3+\frac{8 (-8)}{3\ 3}=-\frac{70}{9}. \\
|
| 467 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 468 |
+
\end{array}
|
| 469 |
+
\\
|
| 470 |
+
\left(
|
| 471 |
+
\begin{array}{ccc}
|
| 472 |
+
\frac{1}{3} & -1 & 0 \\
|
| 473 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 474 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 475 |
+
\end{array}
|
| 476 |
+
\right).\left(
|
| 477 |
+
\begin{array}{ccc}
|
| 478 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 479 |
+
\frac{8}{3} & 3 & 0 \\
|
| 480 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 481 |
+
\end{array}
|
| 482 |
+
\right)=\left(
|
| 483 |
+
\begin{array}{ccc}
|
| 484 |
+
-\frac{16}{9} & -\frac{8}{3} & -\frac{7}{9} \\
|
| 485 |
+
\frac{2}{3} & 4 & -\frac{56}{9} \\
|
| 486 |
+
\frac{8}{9} & \fbox{$-\frac{70}{9}$} & \_ \\
|
| 487 |
+
\end{array}
|
| 488 |
+
\right) \\
|
| 489 |
+
\end{array}
|
| 490 |
+
\\
|
| 491 |
+
|
| 492 |
+
\begin{array}{l}
|
| 493 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 494 |
+
\left(
|
| 495 |
+
\begin{array}{ccc}
|
| 496 |
+
\frac{1}{3} & -1 & 0 \\
|
| 497 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 498 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 499 |
+
\end{array}
|
| 500 |
+
\right).\left(
|
| 501 |
+
\begin{array}{ccc}
|
| 502 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 503 |
+
\frac{8}{3} & 3 & 0 \\
|
| 504 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 505 |
+
\end{array}
|
| 506 |
+
\right)=\left(
|
| 507 |
+
\begin{array}{ccc}
|
| 508 |
+
-\frac{16}{9} & -\frac{8}{3} & -\frac{7}{9} \\
|
| 509 |
+
\frac{2}{3} & 4 & -\frac{56}{9} \\
|
| 510 |
+
\frac{8}{9} & -\frac{70}{9} & \_ \\
|
| 511 |
+
\end{array}
|
| 512 |
+
\right) \\
|
| 513 |
+
\end{array}
|
| 514 |
+
\\
|
| 515 |
+
|
| 516 |
+
\begin{array}{l}
|
| 517 |
+
|
| 518 |
+
\begin{array}{l}
|
| 519 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4 (-7)}{3\ 3}+\left(-\frac{2}{3}\right)\, \times \, 0+\frac{8\ 7}{3\ 3}=\frac{28}{9}. \\
|
| 520 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 521 |
+
\end{array}
|
| 522 |
+
\\
|
| 523 |
+
\fbox{$
|
| 524 |
+
\begin{array}{ll}
|
| 525 |
+
\text{Answer:} & \\
|
| 526 |
+
\text{} & \left(
|
| 527 |
+
\begin{array}{ccc}
|
| 528 |
+
\frac{1}{3} & -1 & 0 \\
|
| 529 |
+
\frac{2}{3} & -\frac{2}{3} & -2 \\
|
| 530 |
+
\frac{4}{3} & -\frac{2}{3} & \frac{8}{3} \\
|
| 531 |
+
\end{array}
|
| 532 |
+
\right).\left(
|
| 533 |
+
\begin{array}{ccc}
|
| 534 |
+
\frac{8}{3} & 1 & -\frac{7}{3} \\
|
| 535 |
+
\frac{8}{3} & 3 & 0 \\
|
| 536 |
+
-\frac{1}{3} & -\frac{8}{3} & \frac{7}{3} \\
|
| 537 |
+
\end{array}
|
| 538 |
+
\right)=\left(
|
| 539 |
+
\begin{array}{ccc}
|
| 540 |
+
-\frac{16}{9} & -\frac{8}{3} & -\frac{7}{9} \\
|
| 541 |
+
\frac{2}{3} & 4 & -\frac{56}{9} \\
|
| 542 |
+
\frac{8}{9} & -\frac{70}{9} & \fbox{$\frac{28}{9}$} \\
|
| 543 |
+
\end{array}
|
| 544 |
+
\right) \\
|
| 545 |
+
\end{array}
|
| 546 |
+
$} \\
|
| 547 |
+
\end{array}
|
| 548 |
+
\\
|
| 549 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/238.txt
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
2 & -1 \\
|
| 6 |
+
-2 & -2 \\
|
| 7 |
+
3 & 0 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{c}
|
| 12 |
+
-1 \\
|
| 13 |
+
-3 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{cc}
|
| 23 |
+
2 & -1 \\
|
| 24 |
+
-2 & -2 \\
|
| 25 |
+
3 & 0 \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right).\left(
|
| 28 |
+
\begin{array}{c}
|
| 29 |
+
-1 \\
|
| 30 |
+
-3 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{cc}
|
| 46 |
+
2 & -1 \\
|
| 47 |
+
-2 & -2 \\
|
| 48 |
+
3 & 0 \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right).\left(
|
| 51 |
+
\begin{array}{c}
|
| 52 |
+
-1 \\
|
| 53 |
+
-3 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{c}
|
| 57 |
+
\_ \\
|
| 58 |
+
\_ \\
|
| 59 |
+
\_ \\
|
| 60 |
+
\end{array}
|
| 61 |
+
\right) \\
|
| 62 |
+
\end{array}
|
| 63 |
+
\\
|
| 64 |
+
|
| 65 |
+
\begin{array}{l}
|
| 66 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 67 |
+
\left(
|
| 68 |
+
\begin{array}{cc}
|
| 69 |
+
2 & -1 \\
|
| 70 |
+
-2 & -2 \\
|
| 71 |
+
3 & 0 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right).\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
-1 \\
|
| 76 |
+
-3 \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right)=\left(
|
| 79 |
+
\begin{array}{c}
|
| 80 |
+
\_ \\
|
| 81 |
+
\_ \\
|
| 82 |
+
\_ \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\right) \\
|
| 85 |
+
\end{array}
|
| 86 |
+
\\
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
|
| 90 |
+
\begin{array}{l}
|
| 91 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+(-1)\, (-3)=1. \\
|
| 92 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\\
|
| 95 |
+
\left(
|
| 96 |
+
\begin{array}{cc}
|
| 97 |
+
2 & -1 \\
|
| 98 |
+
-2 & -2 \\
|
| 99 |
+
3 & 0 \\
|
| 100 |
+
\end{array}
|
| 101 |
+
\right).\left(
|
| 102 |
+
\begin{array}{c}
|
| 103 |
+
-1 \\
|
| 104 |
+
-3 \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\right)=\left(
|
| 107 |
+
\begin{array}{c}
|
| 108 |
+
\fbox{$1$} \\
|
| 109 |
+
\_ \\
|
| 110 |
+
\_ \\
|
| 111 |
+
\end{array}
|
| 112 |
+
\right) \\
|
| 113 |
+
\end{array}
|
| 114 |
+
\\
|
| 115 |
+
|
| 116 |
+
\begin{array}{l}
|
| 117 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 118 |
+
\left(
|
| 119 |
+
\begin{array}{cc}
|
| 120 |
+
2 & -1 \\
|
| 121 |
+
-2 & -2 \\
|
| 122 |
+
3 & 0 \\
|
| 123 |
+
\end{array}
|
| 124 |
+
\right).\left(
|
| 125 |
+
\begin{array}{c}
|
| 126 |
+
-1 \\
|
| 127 |
+
-3 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right)=\left(
|
| 130 |
+
\begin{array}{c}
|
| 131 |
+
1 \\
|
| 132 |
+
\_ \\
|
| 133 |
+
\_ \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right) \\
|
| 136 |
+
\end{array}
|
| 137 |
+
\\
|
| 138 |
+
|
| 139 |
+
\begin{array}{l}
|
| 140 |
+
|
| 141 |
+
\begin{array}{l}
|
| 142 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+(-2)\, (-3)=8. \\
|
| 143 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 144 |
+
\end{array}
|
| 145 |
+
\\
|
| 146 |
+
\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
2 & -1 \\
|
| 149 |
+
-2 & -2 \\
|
| 150 |
+
3 & 0 \\
|
| 151 |
+
\end{array}
|
| 152 |
+
\right).\left(
|
| 153 |
+
\begin{array}{c}
|
| 154 |
+
-1 \\
|
| 155 |
+
-3 \\
|
| 156 |
+
\end{array}
|
| 157 |
+
\right)=\left(
|
| 158 |
+
\begin{array}{c}
|
| 159 |
+
1 \\
|
| 160 |
+
\fbox{$8$} \\
|
| 161 |
+
\_ \\
|
| 162 |
+
\end{array}
|
| 163 |
+
\right) \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
|
| 167 |
+
\begin{array}{l}
|
| 168 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 169 |
+
\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
2 & -1 \\
|
| 172 |
+
-2 & -2 \\
|
| 173 |
+
3 & 0 \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right).\left(
|
| 176 |
+
\begin{array}{c}
|
| 177 |
+
-1 \\
|
| 178 |
+
-3 \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right)=\left(
|
| 181 |
+
\begin{array}{c}
|
| 182 |
+
1 \\
|
| 183 |
+
8 \\
|
| 184 |
+
\_ \\
|
| 185 |
+
\end{array}
|
| 186 |
+
\right) \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\\
|
| 189 |
+
|
| 190 |
+
\begin{array}{l}
|
| 191 |
+
|
| 192 |
+
\begin{array}{l}
|
| 193 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3 (-1)+0 (-3)=-3. \\
|
| 194 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
\fbox{$
|
| 198 |
+
\begin{array}{ll}
|
| 199 |
+
\text{Answer:} & \\
|
| 200 |
+
\text{} & \left(
|
| 201 |
+
\begin{array}{cc}
|
| 202 |
+
2 & -1 \\
|
| 203 |
+
-2 & -2 \\
|
| 204 |
+
3 & 0 \\
|
| 205 |
+
\end{array}
|
| 206 |
+
\right).\left(
|
| 207 |
+
\begin{array}{c}
|
| 208 |
+
-1 \\
|
| 209 |
+
-3 \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right)=\left(
|
| 212 |
+
\begin{array}{c}
|
| 213 |
+
1 \\
|
| 214 |
+
8 \\
|
| 215 |
+
\fbox{$-3$} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right) \\
|
| 218 |
+
\end{array}
|
| 219 |
+
$} \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2581.txt
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
1 & -\frac{13}{7} \\
|
| 6 |
+
\frac{20}{7} & -\frac{13}{7} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
3 \\
|
| 12 |
+
\frac{11}{7} \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
1 & -\frac{13}{7} \\
|
| 23 |
+
\frac{20}{7} & -\frac{13}{7} \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{c}
|
| 27 |
+
3 \\
|
| 28 |
+
\frac{11}{7} \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
1 & -\frac{13}{7} \\
|
| 45 |
+
\frac{20}{7} & -\frac{13}{7} \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{c}
|
| 49 |
+
3 \\
|
| 50 |
+
\frac{11}{7} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
\_ \\
|
| 55 |
+
\_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
1 & -\frac{13}{7} \\
|
| 66 |
+
\frac{20}{7} & -\frac{13}{7} \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{c}
|
| 70 |
+
3 \\
|
| 71 |
+
\frac{11}{7} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
\_ \\
|
| 76 |
+
\_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 3+\left(-\frac{13}{7}\right)\, \times \, \frac{11}{7}=\frac{4}{49}. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
1 & -\frac{13}{7} \\
|
| 92 |
+
\frac{20}{7} & -\frac{13}{7} \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{c}
|
| 96 |
+
3 \\
|
| 97 |
+
\frac{11}{7} \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{c}
|
| 101 |
+
\fbox{$\frac{4}{49}$} \\
|
| 102 |
+
\_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
1 & -\frac{13}{7} \\
|
| 113 |
+
\frac{20}{7} & -\frac{13}{7} \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{c}
|
| 117 |
+
3 \\
|
| 118 |
+
\frac{11}{7} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
\frac{4}{49} \\
|
| 123 |
+
\_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{20\ 3}{7}+\left(-\frac{13}{7}\right)\, \times \, \frac{11}{7}=\frac{277}{49}. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\fbox{$
|
| 137 |
+
\begin{array}{ll}
|
| 138 |
+
\text{Answer:} & \\
|
| 139 |
+
\text{} & \left(
|
| 140 |
+
\begin{array}{cc}
|
| 141 |
+
1 & -\frac{13}{7} \\
|
| 142 |
+
\frac{20}{7} & -\frac{13}{7} \\
|
| 143 |
+
\end{array}
|
| 144 |
+
\right).\left(
|
| 145 |
+
\begin{array}{c}
|
| 146 |
+
3 \\
|
| 147 |
+
\frac{11}{7} \\
|
| 148 |
+
\end{array}
|
| 149 |
+
\right)=\left(
|
| 150 |
+
\begin{array}{c}
|
| 151 |
+
\frac{4}{49} \\
|
| 152 |
+
\fbox{$\frac{277}{49}$} \\
|
| 153 |
+
\end{array}
|
| 154 |
+
\right) \\
|
| 155 |
+
\end{array}
|
| 156 |
+
$} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\\
|
| 159 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2642.txt
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-2 & -2 \\
|
| 6 |
+
-2 & -2 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
0 \\
|
| 12 |
+
-1 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-2 & -2 \\
|
| 23 |
+
-2 & -2 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{c}
|
| 27 |
+
0 \\
|
| 28 |
+
-1 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-2 & -2 \\
|
| 45 |
+
-2 & -2 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{c}
|
| 49 |
+
0 \\
|
| 50 |
+
-1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
\_ \\
|
| 55 |
+
\_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-2 & -2 \\
|
| 66 |
+
-2 & -2 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{c}
|
| 70 |
+
0 \\
|
| 71 |
+
-1 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
\_ \\
|
| 76 |
+
\_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 0+(-2)\, (-1)=2. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-2 & -2 \\
|
| 92 |
+
-2 & -2 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{c}
|
| 96 |
+
0 \\
|
| 97 |
+
-1 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{c}
|
| 101 |
+
\fbox{$2$} \\
|
| 102 |
+
\_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-2 & -2 \\
|
| 113 |
+
-2 & -2 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{c}
|
| 117 |
+
0 \\
|
| 118 |
+
-1 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
2 \\
|
| 123 |
+
\_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 0+(-2)\, (-1)=2. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\fbox{$
|
| 137 |
+
\begin{array}{ll}
|
| 138 |
+
\text{Answer:} & \\
|
| 139 |
+
\text{} & \left(
|
| 140 |
+
\begin{array}{cc}
|
| 141 |
+
-2 & -2 \\
|
| 142 |
+
-2 & -2 \\
|
| 143 |
+
\end{array}
|
| 144 |
+
\right).\left(
|
| 145 |
+
\begin{array}{c}
|
| 146 |
+
0 \\
|
| 147 |
+
-1 \\
|
| 148 |
+
\end{array}
|
| 149 |
+
\right)=\left(
|
| 150 |
+
\begin{array}{c}
|
| 151 |
+
2 \\
|
| 152 |
+
\fbox{$2$} \\
|
| 153 |
+
\end{array}
|
| 154 |
+
\right) \\
|
| 155 |
+
\end{array}
|
| 156 |
+
$} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\\
|
| 159 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2649.txt
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 6 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 7 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 13 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 14 |
+
2 & -\frac{2}{7} \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 25 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 26 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{cc}
|
| 30 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 31 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 32 |
+
2 & -\frac{2}{7} \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 49 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 50 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 55 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 56 |
+
2 & -\frac{2}{7} \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{cc}
|
| 60 |
+
\_ & \_ \\
|
| 61 |
+
\_ & \_ \\
|
| 62 |
+
\_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 73 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 74 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{cc}
|
| 78 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 79 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 80 |
+
2 & -\frac{2}{7} \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{cc}
|
| 84 |
+
\_ & \_ \\
|
| 85 |
+
\_ & \_ \\
|
| 86 |
+
\_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5 (-4)}{7\ 7}+\frac{2}{7}+\frac{15\ 2}{7}=\frac{204}{49}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 102 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 103 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{cc}
|
| 107 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 108 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 109 |
+
2 & -\frac{2}{7} \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{cc}
|
| 113 |
+
\fbox{$\frac{204}{49}$} & \_ \\
|
| 114 |
+
\_ & \_ \\
|
| 115 |
+
\_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 126 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 127 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 132 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 133 |
+
2 & -\frac{2}{7} \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{cc}
|
| 137 |
+
\frac{204}{49} & \_ \\
|
| 138 |
+
\_ & \_ \\
|
| 139 |
+
\_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5\ 5}{7\ 7}+\frac{8}{7}+\frac{15 (-2)}{7\ 7}=\frac{51}{49}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 155 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 156 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{cc}
|
| 160 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 161 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 162 |
+
2 & -\frac{2}{7} \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{cc}
|
| 166 |
+
\frac{204}{49} & \fbox{$\frac{51}{49}$} \\
|
| 167 |
+
\_ & \_ \\
|
| 168 |
+
\_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 179 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 180 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{cc}
|
| 184 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 185 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 186 |
+
2 & -\frac{2}{7} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
\frac{204}{49} & \frac{51}{49} \\
|
| 191 |
+
\_ & \_ \\
|
| 192 |
+
\_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{16 (-4)}{7\ 7}+\left(-\frac{5}{7}\right)\, \times \, \frac{2}{7}+\left(-\frac{6}{7}\right)\, \times \, 2=-\frac{158}{49}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 208 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 209 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{cc}
|
| 213 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 214 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 215 |
+
2 & -\frac{2}{7} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{cc}
|
| 219 |
+
\frac{204}{49} & \frac{51}{49} \\
|
| 220 |
+
\fbox{$-\frac{158}{49}$} & \_ \\
|
| 221 |
+
\_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 232 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 233 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{cc}
|
| 237 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 238 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 239 |
+
2 & -\frac{2}{7} \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{cc}
|
| 243 |
+
\frac{204}{49} & \frac{51}{49} \\
|
| 244 |
+
-\frac{158}{49} & \_ \\
|
| 245 |
+
\_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{16\ 5}{7\ 7}+\left(-\frac{5}{7}\right)\, \times \, \frac{8}{7}+\left(-\frac{6}{7}\right)\, \left(-\frac{2}{7}\right)=\frac{52}{49}. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 261 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 262 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{cc}
|
| 266 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 267 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 268 |
+
2 & -\frac{2}{7} \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{cc}
|
| 272 |
+
\frac{204}{49} & \frac{51}{49} \\
|
| 273 |
+
-\frac{158}{49} & \fbox{$\frac{52}{49}$} \\
|
| 274 |
+
\_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 285 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 286 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{cc}
|
| 290 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 291 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 292 |
+
2 & -\frac{2}{7} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{cc}
|
| 296 |
+
\frac{204}{49} & \frac{51}{49} \\
|
| 297 |
+
-\frac{158}{49} & \frac{52}{49} \\
|
| 298 |
+
\_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{20 (-4)}{7\ 7}+\left(-\frac{5}{7}\right)\, \times \, \frac{2}{7}+\frac{1}{7} (-2)=-\frac{104}{49}. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 314 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 315 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{cc}
|
| 319 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 320 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 321 |
+
2 & -\frac{2}{7} \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{cc}
|
| 325 |
+
\frac{204}{49} & \frac{51}{49} \\
|
| 326 |
+
-\frac{158}{49} & \frac{52}{49} \\
|
| 327 |
+
\fbox{$-\frac{104}{49}$} & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 338 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 339 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{cc}
|
| 343 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 344 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 345 |
+
2 & -\frac{2}{7} \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{cc}
|
| 349 |
+
\frac{204}{49} & \frac{51}{49} \\
|
| 350 |
+
-\frac{158}{49} & \frac{52}{49} \\
|
| 351 |
+
-\frac{104}{49} & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{20\ 5}{7\ 7}+\left(-\frac{5}{7}\right)\, \times \, \frac{8}{7}+\frac{2}{7\ 7}=\frac{62}{49}. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\fbox{$
|
| 365 |
+
\begin{array}{ll}
|
| 366 |
+
\text{Answer:} & \\
|
| 367 |
+
\text{} & \left(
|
| 368 |
+
\begin{array}{ccc}
|
| 369 |
+
\frac{5}{7} & 1 & \frac{15}{7} \\
|
| 370 |
+
\frac{16}{7} & -\frac{5}{7} & -\frac{6}{7} \\
|
| 371 |
+
\frac{20}{7} & -\frac{5}{7} & -\frac{1}{7} \\
|
| 372 |
+
\end{array}
|
| 373 |
+
\right).\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
-\frac{4}{7} & \frac{5}{7} \\
|
| 376 |
+
\frac{2}{7} & \frac{8}{7} \\
|
| 377 |
+
2 & -\frac{2}{7} \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right)=\left(
|
| 380 |
+
\begin{array}{cc}
|
| 381 |
+
\frac{204}{49} & \frac{51}{49} \\
|
| 382 |
+
-\frac{158}{49} & \frac{52}{49} \\
|
| 383 |
+
-\frac{104}{49} & \fbox{$\frac{62}{49}$} \\
|
| 384 |
+
\end{array}
|
| 385 |
+
\right) \\
|
| 386 |
+
\end{array}
|
| 387 |
+
$} \\
|
| 388 |
+
\end{array}
|
| 389 |
+
\\
|
| 390 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2671.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-3 & 0 \\
|
| 6 |
+
2 & 0 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
0 & 0 & -2 \\
|
| 12 |
+
2 & -2 & -3 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-3 & 0 \\
|
| 23 |
+
2 & 0 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
0 & 0 & -2 \\
|
| 28 |
+
2 & -2 & -3 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-3 & 0 \\
|
| 45 |
+
2 & 0 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
0 & 0 & -2 \\
|
| 50 |
+
2 & -2 & -3 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-3 & 0 \\
|
| 66 |
+
2 & 0 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
0 & 0 & -2 \\
|
| 71 |
+
2 & -2 & -3 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 0+0\ 2=0. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-3 & 0 \\
|
| 92 |
+
2 & 0 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
0 & 0 & -2 \\
|
| 97 |
+
2 & -2 & -3 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$0$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-3 & 0 \\
|
| 113 |
+
2 & 0 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
0 & 0 & -2 \\
|
| 118 |
+
2 & -2 & -3 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
0 & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 0+0 (-2)=0. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
-3 & 0 \\
|
| 139 |
+
2 & 0 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
0 & 0 & -2 \\
|
| 144 |
+
2 & -2 & -3 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
0 & \fbox{$0$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
-3 & 0 \\
|
| 160 |
+
2 & 0 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
0 & 0 & -2 \\
|
| 165 |
+
2 & -2 & -3 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
0 & 0 & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-2)+0 (-3)=6. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
-3 & 0 \\
|
| 186 |
+
2 & 0 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
0 & 0 & -2 \\
|
| 191 |
+
2 & -2 & -3 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
0 & 0 & \fbox{$6$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
-3 & 0 \\
|
| 207 |
+
2 & 0 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
0 & 0 & -2 \\
|
| 212 |
+
2 & -2 & -3 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
0 & 0 & 6 \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 0+0\ 2=0. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
-3 & 0 \\
|
| 233 |
+
2 & 0 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
0 & 0 & -2 \\
|
| 238 |
+
2 & -2 & -3 \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
0 & 0 & 6 \\
|
| 243 |
+
\fbox{$0$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
-3 & 0 \\
|
| 254 |
+
2 & 0 \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
0 & 0 & -2 \\
|
| 259 |
+
2 & -2 & -3 \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
0 & 0 & 6 \\
|
| 264 |
+
0 & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 0+0 (-2)=0. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
-3 & 0 \\
|
| 280 |
+
2 & 0 \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
0 & 0 & -2 \\
|
| 285 |
+
2 & -2 & -3 \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
0 & 0 & 6 \\
|
| 290 |
+
0 & \fbox{$0$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
-3 & 0 \\
|
| 301 |
+
2 & 0 \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
0 & 0 & -2 \\
|
| 306 |
+
2 & -2 & -3 \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
0 & 0 & 6 \\
|
| 311 |
+
0 & 0 & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+0 (-3)=-4. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
-3 & 0 \\
|
| 330 |
+
2 & 0 \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
0 & 0 & -2 \\
|
| 335 |
+
2 & -2 & -3 \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
0 & 0 & 6 \\
|
| 340 |
+
0 & 0 & \fbox{$-4$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2742.txt
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
0 & 0 \\
|
| 6 |
+
-2 & 1 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
-2 \\
|
| 12 |
+
-3 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
0 & 0 \\
|
| 23 |
+
-2 & 1 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{c}
|
| 27 |
+
-2 \\
|
| 28 |
+
-3 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
0 & 0 \\
|
| 45 |
+
-2 & 1 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{c}
|
| 49 |
+
-2 \\
|
| 50 |
+
-3 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
\_ \\
|
| 55 |
+
\_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
0 & 0 \\
|
| 66 |
+
-2 & 1 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{c}
|
| 70 |
+
-2 \\
|
| 71 |
+
-3 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
\_ \\
|
| 76 |
+
\_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0 (-2)+0 (-3)=0. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
0 & 0 \\
|
| 92 |
+
-2 & 1 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{c}
|
| 96 |
+
-2 \\
|
| 97 |
+
-3 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{c}
|
| 101 |
+
\fbox{$0$} \\
|
| 102 |
+
\_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
0 & 0 \\
|
| 113 |
+
-2 & 1 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{c}
|
| 117 |
+
-2 \\
|
| 118 |
+
-3 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
0 \\
|
| 123 |
+
\_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+1 (-3)=1. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\fbox{$
|
| 137 |
+
\begin{array}{ll}
|
| 138 |
+
\text{Answer:} & \\
|
| 139 |
+
\text{} & \left(
|
| 140 |
+
\begin{array}{cc}
|
| 141 |
+
0 & 0 \\
|
| 142 |
+
-2 & 1 \\
|
| 143 |
+
\end{array}
|
| 144 |
+
\right).\left(
|
| 145 |
+
\begin{array}{c}
|
| 146 |
+
-2 \\
|
| 147 |
+
-3 \\
|
| 148 |
+
\end{array}
|
| 149 |
+
\right)=\left(
|
| 150 |
+
\begin{array}{c}
|
| 151 |
+
0 \\
|
| 152 |
+
\fbox{$1$} \\
|
| 153 |
+
\end{array}
|
| 154 |
+
\right) \\
|
| 155 |
+
\end{array}
|
| 156 |
+
$} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\\
|
| 159 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2757.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
3 & 2 \\
|
| 6 |
+
-2 & 0 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-1 & -3 & 1 \\
|
| 12 |
+
-1 & 1 & 2 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
3 & 2 \\
|
| 23 |
+
-2 & 0 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
-1 & -3 & 1 \\
|
| 28 |
+
-1 & 1 & 2 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
3 & 2 \\
|
| 45 |
+
-2 & 0 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
-1 & -3 & 1 \\
|
| 50 |
+
-1 & 1 & 2 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
3 & 2 \\
|
| 66 |
+
-2 & 0 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
-1 & -3 & 1 \\
|
| 71 |
+
-1 & 1 & 2 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3 (-1)+2 (-1)=-5. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
3 & 2 \\
|
| 92 |
+
-2 & 0 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
-1 & -3 & 1 \\
|
| 97 |
+
-1 & 1 & 2 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$-5$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
3 & 2 \\
|
| 113 |
+
-2 & 0 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-1 & -3 & 1 \\
|
| 118 |
+
-1 & 1 & 2 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-5 & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3 (-3)+2\ 1=-7. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
3 & 2 \\
|
| 139 |
+
-2 & 0 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
-1 & -3 & 1 \\
|
| 144 |
+
-1 & 1 & 2 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
-5 & \fbox{$-7$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
3 & 2 \\
|
| 160 |
+
-2 & 0 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
-1 & -3 & 1 \\
|
| 165 |
+
-1 & 1 & 2 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
-5 & -7 & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 1+2\ 2=7. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
3 & 2 \\
|
| 186 |
+
-2 & 0 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
-1 & -3 & 1 \\
|
| 191 |
+
-1 & 1 & 2 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
-5 & -7 & \fbox{$7$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
3 & 2 \\
|
| 207 |
+
-2 & 0 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
-1 & -3 & 1 \\
|
| 212 |
+
-1 & 1 & 2 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
-5 & -7 & 7 \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+0 (-1)=2. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
3 & 2 \\
|
| 233 |
+
-2 & 0 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
-1 & -3 & 1 \\
|
| 238 |
+
-1 & 1 & 2 \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-5 & -7 & 7 \\
|
| 243 |
+
\fbox{$2$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
3 & 2 \\
|
| 254 |
+
-2 & 0 \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
-1 & -3 & 1 \\
|
| 259 |
+
-1 & 1 & 2 \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
-5 & -7 & 7 \\
|
| 264 |
+
2 & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-3)+0\ 1=6. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
3 & 2 \\
|
| 280 |
+
-2 & 0 \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-1 & -3 & 1 \\
|
| 285 |
+
-1 & 1 & 2 \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
-5 & -7 & 7 \\
|
| 290 |
+
2 & \fbox{$6$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
3 & 2 \\
|
| 301 |
+
-2 & 0 \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
-1 & -3 & 1 \\
|
| 306 |
+
-1 & 1 & 2 \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
-5 & -7 & 7 \\
|
| 311 |
+
2 & 6 & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 1+0\ 2=-2. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
3 & 2 \\
|
| 330 |
+
-2 & 0 \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
-1 & -3 & 1 \\
|
| 335 |
+
-1 & 1 & 2 \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
-5 & -7 & 7 \\
|
| 340 |
+
2 & 6 & \fbox{$-2$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2774.txt
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
1 & -2 \\
|
| 6 |
+
0 & 0 \\
|
| 7 |
+
-2 & 0 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{c}
|
| 12 |
+
3 \\
|
| 13 |
+
-2 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{cc}
|
| 23 |
+
1 & -2 \\
|
| 24 |
+
0 & 0 \\
|
| 25 |
+
-2 & 0 \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right).\left(
|
| 28 |
+
\begin{array}{c}
|
| 29 |
+
3 \\
|
| 30 |
+
-2 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{cc}
|
| 46 |
+
1 & -2 \\
|
| 47 |
+
0 & 0 \\
|
| 48 |
+
-2 & 0 \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right).\left(
|
| 51 |
+
\begin{array}{c}
|
| 52 |
+
3 \\
|
| 53 |
+
-2 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{c}
|
| 57 |
+
\_ \\
|
| 58 |
+
\_ \\
|
| 59 |
+
\_ \\
|
| 60 |
+
\end{array}
|
| 61 |
+
\right) \\
|
| 62 |
+
\end{array}
|
| 63 |
+
\\
|
| 64 |
+
|
| 65 |
+
\begin{array}{l}
|
| 66 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 67 |
+
\left(
|
| 68 |
+
\begin{array}{cc}
|
| 69 |
+
1 & -2 \\
|
| 70 |
+
0 & 0 \\
|
| 71 |
+
-2 & 0 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right).\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
3 \\
|
| 76 |
+
-2 \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right)=\left(
|
| 79 |
+
\begin{array}{c}
|
| 80 |
+
\_ \\
|
| 81 |
+
\_ \\
|
| 82 |
+
\_ \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\right) \\
|
| 85 |
+
\end{array}
|
| 86 |
+
\\
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
|
| 90 |
+
\begin{array}{l}
|
| 91 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 3+(-2)\, (-2)=7. \\
|
| 92 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\\
|
| 95 |
+
\left(
|
| 96 |
+
\begin{array}{cc}
|
| 97 |
+
1 & -2 \\
|
| 98 |
+
0 & 0 \\
|
| 99 |
+
-2 & 0 \\
|
| 100 |
+
\end{array}
|
| 101 |
+
\right).\left(
|
| 102 |
+
\begin{array}{c}
|
| 103 |
+
3 \\
|
| 104 |
+
-2 \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\right)=\left(
|
| 107 |
+
\begin{array}{c}
|
| 108 |
+
\fbox{$7$} \\
|
| 109 |
+
\_ \\
|
| 110 |
+
\_ \\
|
| 111 |
+
\end{array}
|
| 112 |
+
\right) \\
|
| 113 |
+
\end{array}
|
| 114 |
+
\\
|
| 115 |
+
|
| 116 |
+
\begin{array}{l}
|
| 117 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 118 |
+
\left(
|
| 119 |
+
\begin{array}{cc}
|
| 120 |
+
1 & -2 \\
|
| 121 |
+
0 & 0 \\
|
| 122 |
+
-2 & 0 \\
|
| 123 |
+
\end{array}
|
| 124 |
+
\right).\left(
|
| 125 |
+
\begin{array}{c}
|
| 126 |
+
3 \\
|
| 127 |
+
-2 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right)=\left(
|
| 130 |
+
\begin{array}{c}
|
| 131 |
+
7 \\
|
| 132 |
+
\_ \\
|
| 133 |
+
\_ \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right) \\
|
| 136 |
+
\end{array}
|
| 137 |
+
\\
|
| 138 |
+
|
| 139 |
+
\begin{array}{l}
|
| 140 |
+
|
| 141 |
+
\begin{array}{l}
|
| 142 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 3+0 (-2)=0. \\
|
| 143 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 144 |
+
\end{array}
|
| 145 |
+
\\
|
| 146 |
+
\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
1 & -2 \\
|
| 149 |
+
0 & 0 \\
|
| 150 |
+
-2 & 0 \\
|
| 151 |
+
\end{array}
|
| 152 |
+
\right).\left(
|
| 153 |
+
\begin{array}{c}
|
| 154 |
+
3 \\
|
| 155 |
+
-2 \\
|
| 156 |
+
\end{array}
|
| 157 |
+
\right)=\left(
|
| 158 |
+
\begin{array}{c}
|
| 159 |
+
7 \\
|
| 160 |
+
\fbox{$0$} \\
|
| 161 |
+
\_ \\
|
| 162 |
+
\end{array}
|
| 163 |
+
\right) \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
|
| 167 |
+
\begin{array}{l}
|
| 168 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 169 |
+
\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
1 & -2 \\
|
| 172 |
+
0 & 0 \\
|
| 173 |
+
-2 & 0 \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right).\left(
|
| 176 |
+
\begin{array}{c}
|
| 177 |
+
3 \\
|
| 178 |
+
-2 \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right)=\left(
|
| 181 |
+
\begin{array}{c}
|
| 182 |
+
7 \\
|
| 183 |
+
0 \\
|
| 184 |
+
\_ \\
|
| 185 |
+
\end{array}
|
| 186 |
+
\right) \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\\
|
| 189 |
+
|
| 190 |
+
\begin{array}{l}
|
| 191 |
+
|
| 192 |
+
\begin{array}{l}
|
| 193 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 3+0 (-2)=-6. \\
|
| 194 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
\fbox{$
|
| 198 |
+
\begin{array}{ll}
|
| 199 |
+
\text{Answer:} & \\
|
| 200 |
+
\text{} & \left(
|
| 201 |
+
\begin{array}{cc}
|
| 202 |
+
1 & -2 \\
|
| 203 |
+
0 & 0 \\
|
| 204 |
+
-2 & 0 \\
|
| 205 |
+
\end{array}
|
| 206 |
+
\right).\left(
|
| 207 |
+
\begin{array}{c}
|
| 208 |
+
3 \\
|
| 209 |
+
-2 \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right)=\left(
|
| 212 |
+
\begin{array}{c}
|
| 213 |
+
7 \\
|
| 214 |
+
0 \\
|
| 215 |
+
\fbox{$-6$} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right) \\
|
| 218 |
+
\end{array}
|
| 219 |
+
$} \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2779.txt
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{2}{7} & -\frac{4}{7} & \frac{17}{7} \\
|
| 6 |
+
\frac{4}{7} & \frac{8}{7} & \frac{19}{7} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
2 \\
|
| 12 |
+
1 \\
|
| 13 |
+
-\frac{8}{7} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
-\frac{2}{7} & -\frac{4}{7} & \frac{17}{7} \\
|
| 24 |
+
\frac{4}{7} & \frac{8}{7} & \frac{19}{7} \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{c}
|
| 28 |
+
2 \\
|
| 29 |
+
1 \\
|
| 30 |
+
-\frac{8}{7} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
-\frac{2}{7} & -\frac{4}{7} & \frac{17}{7} \\
|
| 47 |
+
\frac{4}{7} & \frac{8}{7} & \frac{19}{7} \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{c}
|
| 51 |
+
2 \\
|
| 52 |
+
1 \\
|
| 53 |
+
-\frac{8}{7} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{c}
|
| 57 |
+
\_ \\
|
| 58 |
+
\_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
-\frac{2}{7} & -\frac{4}{7} & \frac{17}{7} \\
|
| 69 |
+
\frac{4}{7} & \frac{8}{7} & \frac{19}{7} \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{c}
|
| 73 |
+
2 \\
|
| 74 |
+
1 \\
|
| 75 |
+
-\frac{8}{7} \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{c}
|
| 79 |
+
\_ \\
|
| 80 |
+
\_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{2}{7}\right)\, \times \, 2+\left(-\frac{4}{7}\right)\, \times \, 1+\frac{17 (-8)}{7\ 7}=-\frac{192}{49}. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
-\frac{2}{7} & -\frac{4}{7} & \frac{17}{7} \\
|
| 96 |
+
\frac{4}{7} & \frac{8}{7} & \frac{19}{7} \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{c}
|
| 100 |
+
2 \\
|
| 101 |
+
1 \\
|
| 102 |
+
-\frac{8}{7} \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{c}
|
| 106 |
+
\fbox{$-\frac{192}{49}$} \\
|
| 107 |
+
\_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-\frac{2}{7} & -\frac{4}{7} & \frac{17}{7} \\
|
| 118 |
+
\frac{4}{7} & \frac{8}{7} & \frac{19}{7} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
2 \\
|
| 123 |
+
1 \\
|
| 124 |
+
-\frac{8}{7} \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{c}
|
| 128 |
+
-\frac{192}{49} \\
|
| 129 |
+
\_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4\ 2}{7}+\frac{8}{7}+\frac{19 (-8)}{7\ 7}=-\frac{40}{49}. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\fbox{$
|
| 143 |
+
\begin{array}{ll}
|
| 144 |
+
\text{Answer:} & \\
|
| 145 |
+
\text{} & \left(
|
| 146 |
+
\begin{array}{ccc}
|
| 147 |
+
-\frac{2}{7} & -\frac{4}{7} & \frac{17}{7} \\
|
| 148 |
+
\frac{4}{7} & \frac{8}{7} & \frac{19}{7} \\
|
| 149 |
+
\end{array}
|
| 150 |
+
\right).\left(
|
| 151 |
+
\begin{array}{c}
|
| 152 |
+
2 \\
|
| 153 |
+
1 \\
|
| 154 |
+
-\frac{8}{7} \\
|
| 155 |
+
\end{array}
|
| 156 |
+
\right)=\left(
|
| 157 |
+
\begin{array}{c}
|
| 158 |
+
-\frac{192}{49} \\
|
| 159 |
+
\fbox{$-\frac{40}{49}$} \\
|
| 160 |
+
\end{array}
|
| 161 |
+
\right) \\
|
| 162 |
+
\end{array}
|
| 163 |
+
$} \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2807.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
2 & \frac{1}{4} \\
|
| 6 |
+
-\frac{1}{4} & 3 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
2 & \frac{11}{4} & -2 \\
|
| 12 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
2 & \frac{1}{4} \\
|
| 23 |
+
-\frac{1}{4} & 3 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
2 & \frac{11}{4} & -2 \\
|
| 28 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
2 & \frac{1}{4} \\
|
| 45 |
+
-\frac{1}{4} & 3 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
2 & \frac{11}{4} & -2 \\
|
| 50 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
2 & \frac{1}{4} \\
|
| 66 |
+
-\frac{1}{4} & 3 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
2 & \frac{11}{4} & -2 \\
|
| 71 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 2-\frac{7}{4\ 4}=\frac{57}{16}. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
2 & \frac{1}{4} \\
|
| 92 |
+
-\frac{1}{4} & 3 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
2 & \frac{11}{4} & -2 \\
|
| 97 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$\frac{57}{16}$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
2 & \frac{1}{4} \\
|
| 113 |
+
-\frac{1}{4} & 3 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
2 & \frac{11}{4} & -2 \\
|
| 118 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
\frac{57}{16} & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2\ 11}{4}+\frac{1}{4}=\frac{23}{4}. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
2 & \frac{1}{4} \\
|
| 139 |
+
-\frac{1}{4} & 3 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
2 & \frac{11}{4} & -2 \\
|
| 144 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
\frac{57}{16} & \fbox{$\frac{23}{4}$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
2 & \frac{1}{4} \\
|
| 160 |
+
-\frac{1}{4} & 3 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
2 & \frac{11}{4} & -2 \\
|
| 165 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
\frac{57}{16} & \frac{23}{4} & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+\frac{1}{4\ 2}=-\frac{31}{8}. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
2 & \frac{1}{4} \\
|
| 186 |
+
-\frac{1}{4} & 3 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
2 & \frac{11}{4} & -2 \\
|
| 191 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
\frac{57}{16} & \frac{23}{4} & \fbox{$-\frac{31}{8}$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
2 & \frac{1}{4} \\
|
| 207 |
+
-\frac{1}{4} & 3 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
2 & \frac{11}{4} & -2 \\
|
| 212 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
\frac{57}{16} & \frac{23}{4} & -\frac{31}{8} \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{4} (-2)+\frac{3 (-7)}{4}=-\frac{23}{4}. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
2 & \frac{1}{4} \\
|
| 233 |
+
-\frac{1}{4} & 3 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
2 & \frac{11}{4} & -2 \\
|
| 238 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
\frac{57}{16} & \frac{23}{4} & -\frac{31}{8} \\
|
| 243 |
+
\fbox{$-\frac{23}{4}$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
2 & \frac{1}{4} \\
|
| 254 |
+
-\frac{1}{4} & 3 \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
2 & \frac{11}{4} & -2 \\
|
| 259 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
\frac{57}{16} & \frac{23}{4} & -\frac{31}{8} \\
|
| 264 |
+
-\frac{23}{4} & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{4} \left(-\frac{11}{4}\right)+3\ 1=\frac{37}{16}. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
2 & \frac{1}{4} \\
|
| 280 |
+
-\frac{1}{4} & 3 \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
2 & \frac{11}{4} & -2 \\
|
| 285 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
\frac{57}{16} & \frac{23}{4} & -\frac{31}{8} \\
|
| 290 |
+
-\frac{23}{4} & \fbox{$\frac{37}{16}$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
2 & \frac{1}{4} \\
|
| 301 |
+
-\frac{1}{4} & 3 \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
2 & \frac{11}{4} & -2 \\
|
| 306 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
\frac{57}{16} & \frac{23}{4} & -\frac{31}{8} \\
|
| 311 |
+
-\frac{23}{4} & \frac{37}{16} & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2}{4}+\frac{3}{2}=2. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
2 & \frac{1}{4} \\
|
| 330 |
+
-\frac{1}{4} & 3 \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
2 & \frac{11}{4} & -2 \\
|
| 335 |
+
-\frac{7}{4} & 1 & \frac{1}{2} \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
\frac{57}{16} & \frac{23}{4} & -\frac{31}{8} \\
|
| 340 |
+
-\frac{23}{4} & \frac{37}{16} & \fbox{$2$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2883.txt
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
0 & 1 \\
|
| 6 |
+
-2 & 0 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
0 \\
|
| 12 |
+
2 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
0 & 1 \\
|
| 23 |
+
-2 & 0 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{c}
|
| 27 |
+
0 \\
|
| 28 |
+
2 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
0 & 1 \\
|
| 45 |
+
-2 & 0 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{c}
|
| 49 |
+
0 \\
|
| 50 |
+
2 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
\_ \\
|
| 55 |
+
\_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
0 & 1 \\
|
| 66 |
+
-2 & 0 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{c}
|
| 70 |
+
0 \\
|
| 71 |
+
2 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
\_ \\
|
| 76 |
+
\_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 0+1\ 2=2. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
0 & 1 \\
|
| 92 |
+
-2 & 0 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{c}
|
| 96 |
+
0 \\
|
| 97 |
+
2 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{c}
|
| 101 |
+
\fbox{$2$} \\
|
| 102 |
+
\_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
0 & 1 \\
|
| 113 |
+
-2 & 0 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{c}
|
| 117 |
+
0 \\
|
| 118 |
+
2 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
2 \\
|
| 123 |
+
\_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 0+0\ 2=0. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\fbox{$
|
| 137 |
+
\begin{array}{ll}
|
| 138 |
+
\text{Answer:} & \\
|
| 139 |
+
\text{} & \left(
|
| 140 |
+
\begin{array}{cc}
|
| 141 |
+
0 & 1 \\
|
| 142 |
+
-2 & 0 \\
|
| 143 |
+
\end{array}
|
| 144 |
+
\right).\left(
|
| 145 |
+
\begin{array}{c}
|
| 146 |
+
0 \\
|
| 147 |
+
2 \\
|
| 148 |
+
\end{array}
|
| 149 |
+
\right)=\left(
|
| 150 |
+
\begin{array}{c}
|
| 151 |
+
2 \\
|
| 152 |
+
\fbox{$0$} \\
|
| 153 |
+
\end{array}
|
| 154 |
+
\right) \\
|
| 155 |
+
\end{array}
|
| 156 |
+
$} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\\
|
| 159 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/291.txt
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
2 & 0 \\
|
| 6 |
+
-1 & -1 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
0 & -1 \\
|
| 12 |
+
-1 & 0 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
2 & 0 \\
|
| 23 |
+
-1 & -1 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{cc}
|
| 27 |
+
0 & -1 \\
|
| 28 |
+
-1 & 0 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
2 & 0 \\
|
| 45 |
+
-1 & -1 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{cc}
|
| 49 |
+
0 & -1 \\
|
| 50 |
+
-1 & 0 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\_ & \_ \\
|
| 55 |
+
\_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
2 & 0 \\
|
| 66 |
+
-1 & -1 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{cc}
|
| 70 |
+
0 & -1 \\
|
| 71 |
+
-1 & 0 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\_ & \_ \\
|
| 76 |
+
\_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 0+0 (-1)=0. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
2 & 0 \\
|
| 92 |
+
-1 & -1 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{cc}
|
| 96 |
+
0 & -1 \\
|
| 97 |
+
-1 & 0 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{cc}
|
| 101 |
+
\fbox{$0$} & \_ \\
|
| 102 |
+
\_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
2 & 0 \\
|
| 113 |
+
-1 & -1 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{cc}
|
| 117 |
+
0 & -1 \\
|
| 118 |
+
-1 & 0 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
0 & \_ \\
|
| 123 |
+
\_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+0\ 0=-2. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
2 & 0 \\
|
| 139 |
+
-1 & -1 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{cc}
|
| 143 |
+
0 & -1 \\
|
| 144 |
+
-1 & 0 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
0 & \fbox{$-2$} \\
|
| 149 |
+
\_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
2 & 0 \\
|
| 160 |
+
-1 & -1 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{cc}
|
| 164 |
+
0 & -1 \\
|
| 165 |
+
-1 & 0 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{cc}
|
| 169 |
+
0 & -2 \\
|
| 170 |
+
\_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 0+(-1)\, (-1)=1. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
2 & 0 \\
|
| 186 |
+
-1 & -1 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
0 & -1 \\
|
| 191 |
+
-1 & 0 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{cc}
|
| 195 |
+
0 & -2 \\
|
| 196 |
+
\fbox{$1$} & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
2 & 0 \\
|
| 207 |
+
-1 & -1 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{cc}
|
| 211 |
+
0 & -1 \\
|
| 212 |
+
-1 & 0 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{cc}
|
| 216 |
+
0 & -2 \\
|
| 217 |
+
1 & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, (-1)+(-1)\, \times \, 0=1. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\fbox{$
|
| 231 |
+
\begin{array}{ll}
|
| 232 |
+
\text{Answer:} & \\
|
| 233 |
+
\text{} & \left(
|
| 234 |
+
\begin{array}{cc}
|
| 235 |
+
2 & 0 \\
|
| 236 |
+
-1 & -1 \\
|
| 237 |
+
\end{array}
|
| 238 |
+
\right).\left(
|
| 239 |
+
\begin{array}{cc}
|
| 240 |
+
0 & -1 \\
|
| 241 |
+
-1 & 0 \\
|
| 242 |
+
\end{array}
|
| 243 |
+
\right)=\left(
|
| 244 |
+
\begin{array}{cc}
|
| 245 |
+
0 & -2 \\
|
| 246 |
+
1 & \fbox{$1$} \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right) \\
|
| 249 |
+
\end{array}
|
| 250 |
+
$} \\
|
| 251 |
+
\end{array}
|
| 252 |
+
\\
|
| 253 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/298.txt
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
1 & 2 \\
|
| 6 |
+
1 & -2 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
-2 & -2 \\
|
| 12 |
+
3 & -3 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
1 & 2 \\
|
| 23 |
+
1 & -2 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{cc}
|
| 27 |
+
-2 & -2 \\
|
| 28 |
+
3 & -3 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
1 & 2 \\
|
| 45 |
+
1 & -2 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{cc}
|
| 49 |
+
-2 & -2 \\
|
| 50 |
+
3 & -3 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\_ & \_ \\
|
| 55 |
+
\_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
1 & 2 \\
|
| 66 |
+
1 & -2 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{cc}
|
| 70 |
+
-2 & -2 \\
|
| 71 |
+
3 & -3 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\_ & \_ \\
|
| 76 |
+
\_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-2)+2\ 3=4. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
1 & 2 \\
|
| 92 |
+
1 & -2 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{cc}
|
| 96 |
+
-2 & -2 \\
|
| 97 |
+
3 & -3 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{cc}
|
| 101 |
+
\fbox{$4$} & \_ \\
|
| 102 |
+
\_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
1 & 2 \\
|
| 113 |
+
1 & -2 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{cc}
|
| 117 |
+
-2 & -2 \\
|
| 118 |
+
3 & -3 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
4 & \_ \\
|
| 123 |
+
\_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-2)+2 (-3)=-8. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
1 & 2 \\
|
| 139 |
+
1 & -2 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{cc}
|
| 143 |
+
-2 & -2 \\
|
| 144 |
+
3 & -3 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
4 & \fbox{$-8$} \\
|
| 149 |
+
\_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
1 & 2 \\
|
| 160 |
+
1 & -2 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{cc}
|
| 164 |
+
-2 & -2 \\
|
| 165 |
+
3 & -3 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{cc}
|
| 169 |
+
4 & -8 \\
|
| 170 |
+
\_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-2)+(-2)\, \times \, 3=-8. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
1 & 2 \\
|
| 186 |
+
1 & -2 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
-2 & -2 \\
|
| 191 |
+
3 & -3 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{cc}
|
| 195 |
+
4 & -8 \\
|
| 196 |
+
\fbox{$-8$} & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
1 & 2 \\
|
| 207 |
+
1 & -2 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{cc}
|
| 211 |
+
-2 & -2 \\
|
| 212 |
+
3 & -3 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{cc}
|
| 216 |
+
4 & -8 \\
|
| 217 |
+
-8 & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-2)+(-2)\, (-3)=4. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\fbox{$
|
| 231 |
+
\begin{array}{ll}
|
| 232 |
+
\text{Answer:} & \\
|
| 233 |
+
\text{} & \left(
|
| 234 |
+
\begin{array}{cc}
|
| 235 |
+
1 & 2 \\
|
| 236 |
+
1 & -2 \\
|
| 237 |
+
\end{array}
|
| 238 |
+
\right).\left(
|
| 239 |
+
\begin{array}{cc}
|
| 240 |
+
-2 & -2 \\
|
| 241 |
+
3 & -3 \\
|
| 242 |
+
\end{array}
|
| 243 |
+
\right)=\left(
|
| 244 |
+
\begin{array}{cc}
|
| 245 |
+
4 & -8 \\
|
| 246 |
+
-8 & \fbox{$4$} \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right) \\
|
| 249 |
+
\end{array}
|
| 250 |
+
$} \\
|
| 251 |
+
\end{array}
|
| 252 |
+
\\
|
| 253 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2984.txt
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-2 & 1 & -3 \\
|
| 6 |
+
0 & 3 & 2 \\
|
| 7 |
+
-1 & 1 & -1 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
3 & -3 \\
|
| 13 |
+
-1 & -1 \\
|
| 14 |
+
-2 & 0 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
-2 & 1 & -3 \\
|
| 25 |
+
0 & 3 & 2 \\
|
| 26 |
+
-1 & 1 & -1 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{cc}
|
| 30 |
+
3 & -3 \\
|
| 31 |
+
-1 & -1 \\
|
| 32 |
+
-2 & 0 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
-2 & 1 & -3 \\
|
| 49 |
+
0 & 3 & 2 \\
|
| 50 |
+
-1 & 1 & -1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
3 & -3 \\
|
| 55 |
+
-1 & -1 \\
|
| 56 |
+
-2 & 0 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{cc}
|
| 60 |
+
\_ & \_ \\
|
| 61 |
+
\_ & \_ \\
|
| 62 |
+
\_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
-2 & 1 & -3 \\
|
| 73 |
+
0 & 3 & 2 \\
|
| 74 |
+
-1 & 1 & -1 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{cc}
|
| 78 |
+
3 & -3 \\
|
| 79 |
+
-1 & -1 \\
|
| 80 |
+
-2 & 0 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{cc}
|
| 84 |
+
\_ & \_ \\
|
| 85 |
+
\_ & \_ \\
|
| 86 |
+
\_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 3+1 (-1)+(-3)\, (-2)=-1. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
-2 & 1 & -3 \\
|
| 102 |
+
0 & 3 & 2 \\
|
| 103 |
+
-1 & 1 & -1 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{cc}
|
| 107 |
+
3 & -3 \\
|
| 108 |
+
-1 & -1 \\
|
| 109 |
+
-2 & 0 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{cc}
|
| 113 |
+
\fbox{$-1$} & \_ \\
|
| 114 |
+
\_ & \_ \\
|
| 115 |
+
\_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
-2 & 1 & -3 \\
|
| 126 |
+
0 & 3 & 2 \\
|
| 127 |
+
-1 & 1 & -1 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
3 & -3 \\
|
| 132 |
+
-1 & -1 \\
|
| 133 |
+
-2 & 0 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{cc}
|
| 137 |
+
-1 & \_ \\
|
| 138 |
+
\_ & \_ \\
|
| 139 |
+
\_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-3)+1 (-1)+(-3)\, \times \, 0=5. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-2 & 1 & -3 \\
|
| 155 |
+
0 & 3 & 2 \\
|
| 156 |
+
-1 & 1 & -1 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{cc}
|
| 160 |
+
3 & -3 \\
|
| 161 |
+
-1 & -1 \\
|
| 162 |
+
-2 & 0 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{cc}
|
| 166 |
+
-1 & \fbox{$5$} \\
|
| 167 |
+
\_ & \_ \\
|
| 168 |
+
\_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
-2 & 1 & -3 \\
|
| 179 |
+
0 & 3 & 2 \\
|
| 180 |
+
-1 & 1 & -1 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{cc}
|
| 184 |
+
3 & -3 \\
|
| 185 |
+
-1 & -1 \\
|
| 186 |
+
-2 & 0 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
-1 & 5 \\
|
| 191 |
+
\_ & \_ \\
|
| 192 |
+
\_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 3+3 (-1)+2 (-2)=-7. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
-2 & 1 & -3 \\
|
| 208 |
+
0 & 3 & 2 \\
|
| 209 |
+
-1 & 1 & -1 \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{cc}
|
| 213 |
+
3 & -3 \\
|
| 214 |
+
-1 & -1 \\
|
| 215 |
+
-2 & 0 \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{cc}
|
| 219 |
+
-1 & 5 \\
|
| 220 |
+
\fbox{$-7$} & \_ \\
|
| 221 |
+
\_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
-2 & 1 & -3 \\
|
| 232 |
+
0 & 3 & 2 \\
|
| 233 |
+
-1 & 1 & -1 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{cc}
|
| 237 |
+
3 & -3 \\
|
| 238 |
+
-1 & -1 \\
|
| 239 |
+
-2 & 0 \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{cc}
|
| 243 |
+
-1 & 5 \\
|
| 244 |
+
-7 & \_ \\
|
| 245 |
+
\_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0 (-3)+3 (-1)+2\ 0=-3. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
-2 & 1 & -3 \\
|
| 261 |
+
0 & 3 & 2 \\
|
| 262 |
+
-1 & 1 & -1 \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{cc}
|
| 266 |
+
3 & -3 \\
|
| 267 |
+
-1 & -1 \\
|
| 268 |
+
-2 & 0 \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{cc}
|
| 272 |
+
-1 & 5 \\
|
| 273 |
+
-7 & \fbox{$-3$} \\
|
| 274 |
+
\_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-2 & 1 & -3 \\
|
| 285 |
+
0 & 3 & 2 \\
|
| 286 |
+
-1 & 1 & -1 \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{cc}
|
| 290 |
+
3 & -3 \\
|
| 291 |
+
-1 & -1 \\
|
| 292 |
+
-2 & 0 \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{cc}
|
| 296 |
+
-1 & 5 \\
|
| 297 |
+
-7 & -3 \\
|
| 298 |
+
\_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 3+1 (-1)+(-1)\, (-2)=-2. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-2 & 1 & -3 \\
|
| 314 |
+
0 & 3 & 2 \\
|
| 315 |
+
-1 & 1 & -1 \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{cc}
|
| 319 |
+
3 & -3 \\
|
| 320 |
+
-1 & -1 \\
|
| 321 |
+
-2 & 0 \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{cc}
|
| 325 |
+
-1 & 5 \\
|
| 326 |
+
-7 & -3 \\
|
| 327 |
+
\fbox{$-2$} & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
-2 & 1 & -3 \\
|
| 338 |
+
0 & 3 & 2 \\
|
| 339 |
+
-1 & 1 & -1 \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{cc}
|
| 343 |
+
3 & -3 \\
|
| 344 |
+
-1 & -1 \\
|
| 345 |
+
-2 & 0 \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{cc}
|
| 349 |
+
-1 & 5 \\
|
| 350 |
+
-7 & -3 \\
|
| 351 |
+
-2 & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, (-3)+1 (-1)+(-1)\, \times \, 0=2. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\fbox{$
|
| 365 |
+
\begin{array}{ll}
|
| 366 |
+
\text{Answer:} & \\
|
| 367 |
+
\text{} & \left(
|
| 368 |
+
\begin{array}{ccc}
|
| 369 |
+
-2 & 1 & -3 \\
|
| 370 |
+
0 & 3 & 2 \\
|
| 371 |
+
-1 & 1 & -1 \\
|
| 372 |
+
\end{array}
|
| 373 |
+
\right).\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
3 & -3 \\
|
| 376 |
+
-1 & -1 \\
|
| 377 |
+
-2 & 0 \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right)=\left(
|
| 380 |
+
\begin{array}{cc}
|
| 381 |
+
-1 & 5 \\
|
| 382 |
+
-7 & -3 \\
|
| 383 |
+
-2 & \fbox{$2$} \\
|
| 384 |
+
\end{array}
|
| 385 |
+
\right) \\
|
| 386 |
+
\end{array}
|
| 387 |
+
$} \\
|
| 388 |
+
\end{array}
|
| 389 |
+
\\
|
| 390 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/302.txt
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-2 & 0 & 2 \\
|
| 6 |
+
1 & 2 & -2 \\
|
| 7 |
+
-1 & 1 & 2 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{c}
|
| 12 |
+
0 \\
|
| 13 |
+
0 \\
|
| 14 |
+
2 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
-2 & 0 & 2 \\
|
| 25 |
+
1 & 2 & -2 \\
|
| 26 |
+
-1 & 1 & 2 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{c}
|
| 30 |
+
0 \\
|
| 31 |
+
0 \\
|
| 32 |
+
2 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
-2 & 0 & 2 \\
|
| 49 |
+
1 & 2 & -2 \\
|
| 50 |
+
-1 & 1 & 2 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
0 \\
|
| 55 |
+
0 \\
|
| 56 |
+
2 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{c}
|
| 60 |
+
\_ \\
|
| 61 |
+
\_ \\
|
| 62 |
+
\_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
-2 & 0 & 2 \\
|
| 73 |
+
1 & 2 & -2 \\
|
| 74 |
+
-1 & 1 & 2 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{c}
|
| 78 |
+
0 \\
|
| 79 |
+
0 \\
|
| 80 |
+
2 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{c}
|
| 84 |
+
\_ \\
|
| 85 |
+
\_ \\
|
| 86 |
+
\_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 0+0\ 0+2\ 2=4. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
-2 & 0 & 2 \\
|
| 102 |
+
1 & 2 & -2 \\
|
| 103 |
+
-1 & 1 & 2 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{c}
|
| 107 |
+
0 \\
|
| 108 |
+
0 \\
|
| 109 |
+
2 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{c}
|
| 113 |
+
\fbox{$4$} \\
|
| 114 |
+
\_ \\
|
| 115 |
+
\_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
-2 & 0 & 2 \\
|
| 126 |
+
1 & 2 & -2 \\
|
| 127 |
+
-1 & 1 & 2 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{c}
|
| 131 |
+
0 \\
|
| 132 |
+
0 \\
|
| 133 |
+
2 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{c}
|
| 137 |
+
4 \\
|
| 138 |
+
\_ \\
|
| 139 |
+
\_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 0+2\ 0+(-2)\, \times \, 2=-4. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-2 & 0 & 2 \\
|
| 155 |
+
1 & 2 & -2 \\
|
| 156 |
+
-1 & 1 & 2 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{c}
|
| 160 |
+
0 \\
|
| 161 |
+
0 \\
|
| 162 |
+
2 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{c}
|
| 166 |
+
4 \\
|
| 167 |
+
\fbox{$-4$} \\
|
| 168 |
+
\_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
-2 & 0 & 2 \\
|
| 179 |
+
1 & 2 & -2 \\
|
| 180 |
+
-1 & 1 & 2 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{c}
|
| 184 |
+
0 \\
|
| 185 |
+
0 \\
|
| 186 |
+
2 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{c}
|
| 190 |
+
4 \\
|
| 191 |
+
-4 \\
|
| 192 |
+
\_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 0+1\ 0+2\ 2=4. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\fbox{$
|
| 206 |
+
\begin{array}{ll}
|
| 207 |
+
\text{Answer:} & \\
|
| 208 |
+
\text{} & \left(
|
| 209 |
+
\begin{array}{ccc}
|
| 210 |
+
-2 & 0 & 2 \\
|
| 211 |
+
1 & 2 & -2 \\
|
| 212 |
+
-1 & 1 & 2 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right).\left(
|
| 215 |
+
\begin{array}{c}
|
| 216 |
+
0 \\
|
| 217 |
+
0 \\
|
| 218 |
+
2 \\
|
| 219 |
+
\end{array}
|
| 220 |
+
\right)=\left(
|
| 221 |
+
\begin{array}{c}
|
| 222 |
+
4 \\
|
| 223 |
+
-4 \\
|
| 224 |
+
\fbox{$4$} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right) \\
|
| 227 |
+
\end{array}
|
| 228 |
+
$} \\
|
| 229 |
+
\end{array}
|
| 230 |
+
\\
|
| 231 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3131.txt
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-2 & 0 & 0 \\
|
| 6 |
+
1 & 2 & -2 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
-1 & 3 \\
|
| 12 |
+
-1 & 2 \\
|
| 13 |
+
3 & -3 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
-2 & 0 & 0 \\
|
| 24 |
+
1 & 2 & -2 \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{cc}
|
| 28 |
+
-1 & 3 \\
|
| 29 |
+
-1 & 2 \\
|
| 30 |
+
3 & -3 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
-2 & 0 & 0 \\
|
| 47 |
+
1 & 2 & -2 \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{cc}
|
| 51 |
+
-1 & 3 \\
|
| 52 |
+
-1 & 2 \\
|
| 53 |
+
3 & -3 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{cc}
|
| 57 |
+
\_ & \_ \\
|
| 58 |
+
\_ & \_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
-2 & 0 & 0 \\
|
| 69 |
+
1 & 2 & -2 \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{cc}
|
| 73 |
+
-1 & 3 \\
|
| 74 |
+
-1 & 2 \\
|
| 75 |
+
3 & -3 \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{cc}
|
| 79 |
+
\_ & \_ \\
|
| 80 |
+
\_ & \_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+0 (-1)+0\ 3=2. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
-2 & 0 & 0 \\
|
| 96 |
+
1 & 2 & -2 \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{cc}
|
| 100 |
+
-1 & 3 \\
|
| 101 |
+
-1 & 2 \\
|
| 102 |
+
3 & -3 \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{cc}
|
| 106 |
+
\fbox{$2$} & \_ \\
|
| 107 |
+
\_ & \_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-2 & 0 & 0 \\
|
| 118 |
+
1 & 2 & -2 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
-1 & 3 \\
|
| 123 |
+
-1 & 2 \\
|
| 124 |
+
3 & -3 \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{cc}
|
| 128 |
+
2 & \_ \\
|
| 129 |
+
\_ & \_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 3+0\ 2+0 (-3)=-6. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\left(
|
| 143 |
+
\begin{array}{ccc}
|
| 144 |
+
-2 & 0 & 0 \\
|
| 145 |
+
1 & 2 & -2 \\
|
| 146 |
+
\end{array}
|
| 147 |
+
\right).\left(
|
| 148 |
+
\begin{array}{cc}
|
| 149 |
+
-1 & 3 \\
|
| 150 |
+
-1 & 2 \\
|
| 151 |
+
3 & -3 \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\right)=\left(
|
| 154 |
+
\begin{array}{cc}
|
| 155 |
+
2 & \fbox{$-6$} \\
|
| 156 |
+
\_ & \_ \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right) \\
|
| 159 |
+
\end{array}
|
| 160 |
+
\\
|
| 161 |
+
|
| 162 |
+
\begin{array}{l}
|
| 163 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 164 |
+
\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
-2 & 0 & 0 \\
|
| 167 |
+
1 & 2 & -2 \\
|
| 168 |
+
\end{array}
|
| 169 |
+
\right).\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
-1 & 3 \\
|
| 172 |
+
-1 & 2 \\
|
| 173 |
+
3 & -3 \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right)=\left(
|
| 176 |
+
\begin{array}{cc}
|
| 177 |
+
2 & -6 \\
|
| 178 |
+
\_ & \_ \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right) \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
|
| 184 |
+
\begin{array}{l}
|
| 185 |
+
|
| 186 |
+
\begin{array}{l}
|
| 187 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-1)+2 (-1)+(-2)\, \times \, 3=-9. \\
|
| 188 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 189 |
+
\end{array}
|
| 190 |
+
\\
|
| 191 |
+
\left(
|
| 192 |
+
\begin{array}{ccc}
|
| 193 |
+
-2 & 0 & 0 \\
|
| 194 |
+
1 & 2 & -2 \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\right).\left(
|
| 197 |
+
\begin{array}{cc}
|
| 198 |
+
-1 & 3 \\
|
| 199 |
+
-1 & 2 \\
|
| 200 |
+
3 & -3 \\
|
| 201 |
+
\end{array}
|
| 202 |
+
\right)=\left(
|
| 203 |
+
\begin{array}{cc}
|
| 204 |
+
2 & -6 \\
|
| 205 |
+
\fbox{$-9$} & \_ \\
|
| 206 |
+
\end{array}
|
| 207 |
+
\right) \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\\
|
| 210 |
+
|
| 211 |
+
\begin{array}{l}
|
| 212 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 213 |
+
\left(
|
| 214 |
+
\begin{array}{ccc}
|
| 215 |
+
-2 & 0 & 0 \\
|
| 216 |
+
1 & 2 & -2 \\
|
| 217 |
+
\end{array}
|
| 218 |
+
\right).\left(
|
| 219 |
+
\begin{array}{cc}
|
| 220 |
+
-1 & 3 \\
|
| 221 |
+
-1 & 2 \\
|
| 222 |
+
3 & -3 \\
|
| 223 |
+
\end{array}
|
| 224 |
+
\right)=\left(
|
| 225 |
+
\begin{array}{cc}
|
| 226 |
+
2 & -6 \\
|
| 227 |
+
-9 & \_ \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\right) \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\\
|
| 232 |
+
|
| 233 |
+
\begin{array}{l}
|
| 234 |
+
|
| 235 |
+
\begin{array}{l}
|
| 236 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 3+2\ 2+(-2)\, (-3)=13. \\
|
| 237 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
\fbox{$
|
| 241 |
+
\begin{array}{ll}
|
| 242 |
+
\text{Answer:} & \\
|
| 243 |
+
\text{} & \left(
|
| 244 |
+
\begin{array}{ccc}
|
| 245 |
+
-2 & 0 & 0 \\
|
| 246 |
+
1 & 2 & -2 \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right).\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
-1 & 3 \\
|
| 251 |
+
-1 & 2 \\
|
| 252 |
+
3 & -3 \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right)=\left(
|
| 255 |
+
\begin{array}{cc}
|
| 256 |
+
2 & -6 \\
|
| 257 |
+
-9 & \fbox{$13$} \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right) \\
|
| 260 |
+
\end{array}
|
| 261 |
+
$} \\
|
| 262 |
+
\end{array}
|
| 263 |
+
\\
|
| 264 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3214.txt
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 6 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 12 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 13 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 24 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{ccc}
|
| 28 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 29 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 30 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 47 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{ccc}
|
| 51 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 52 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 53 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{ccc}
|
| 57 |
+
\_ & \_ & \_ \\
|
| 58 |
+
\_ & \_ & \_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 69 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{ccc}
|
| 73 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 74 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 75 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{ccc}
|
| 79 |
+
\_ & \_ & \_ \\
|
| 80 |
+
\_ & \_ & \_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{35}{16}\right)\, \left(-\frac{21}{16}\right)+\left(-\frac{21}{16}\right)\, \left(-\frac{7}{16}\right)+\frac{33\ 33}{16\ 16}=\frac{1971}{256}. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 96 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{ccc}
|
| 100 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 101 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 102 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{ccc}
|
| 106 |
+
\fbox{$\frac{1971}{256}$} & \_ & \_ \\
|
| 107 |
+
\_ & \_ & \_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 118 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 123 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 124 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{ccc}
|
| 128 |
+
\frac{1971}{256} & \_ & \_ \\
|
| 129 |
+
\_ & \_ & \_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{35}{16}\right)\, \left(-\frac{9}{4}\right)+\left(-\frac{21}{16}\right)\, (-3)+\frac{33}{16\ 8}=\frac{1167}{128}. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\left(
|
| 143 |
+
\begin{array}{ccc}
|
| 144 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 145 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 146 |
+
\end{array}
|
| 147 |
+
\right).\left(
|
| 148 |
+
\begin{array}{ccc}
|
| 149 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 150 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 151 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\right)=\left(
|
| 154 |
+
\begin{array}{ccc}
|
| 155 |
+
\frac{1971}{256} & \fbox{$\frac{1167}{128}$} & \_ \\
|
| 156 |
+
\_ & \_ & \_ \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right) \\
|
| 159 |
+
\end{array}
|
| 160 |
+
\\
|
| 161 |
+
|
| 162 |
+
\begin{array}{l}
|
| 163 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 164 |
+
\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 167 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 168 |
+
\end{array}
|
| 169 |
+
\right).\left(
|
| 170 |
+
\begin{array}{ccc}
|
| 171 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 172 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 173 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right)=\left(
|
| 176 |
+
\begin{array}{ccc}
|
| 177 |
+
\frac{1971}{256} & \frac{1167}{128} & \_ \\
|
| 178 |
+
\_ & \_ & \_ \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right) \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
|
| 184 |
+
\begin{array}{l}
|
| 185 |
+
|
| 186 |
+
\begin{array}{l}
|
| 187 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{35}{16}\right)\, \left(-\frac{43}{16}\right)+\left(-\frac{21}{16}\right)\, \times \, \frac{37}{16}+\frac{33 (-17)}{16\ 16}=\frac{167}{256}. \\
|
| 188 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 189 |
+
\end{array}
|
| 190 |
+
\\
|
| 191 |
+
\left(
|
| 192 |
+
\begin{array}{ccc}
|
| 193 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 194 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\right).\left(
|
| 197 |
+
\begin{array}{ccc}
|
| 198 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 199 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 200 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 201 |
+
\end{array}
|
| 202 |
+
\right)=\left(
|
| 203 |
+
\begin{array}{ccc}
|
| 204 |
+
\frac{1971}{256} & \frac{1167}{128} & \fbox{$\frac{167}{256}$} \\
|
| 205 |
+
\_ & \_ & \_ \\
|
| 206 |
+
\end{array}
|
| 207 |
+
\right) \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\\
|
| 210 |
+
|
| 211 |
+
\begin{array}{l}
|
| 212 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 213 |
+
\left(
|
| 214 |
+
\begin{array}{ccc}
|
| 215 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 216 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 217 |
+
\end{array}
|
| 218 |
+
\right).\left(
|
| 219 |
+
\begin{array}{ccc}
|
| 220 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 221 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 222 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 223 |
+
\end{array}
|
| 224 |
+
\right)=\left(
|
| 225 |
+
\begin{array}{ccc}
|
| 226 |
+
\frac{1971}{256} & \frac{1167}{128} & \frac{167}{256} \\
|
| 227 |
+
\_ & \_ & \_ \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\right) \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\\
|
| 232 |
+
|
| 233 |
+
\begin{array}{l}
|
| 234 |
+
|
| 235 |
+
\begin{array}{l}
|
| 236 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-21)}{2\ 16}+\left(-\frac{7}{8}\right)\, \left(-\frac{7}{16}\right)+\left(-\frac{23}{16}\right)\, \times \, \frac{33}{16}=-\frac{1165}{256}. \\
|
| 237 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 243 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right).\left(
|
| 246 |
+
\begin{array}{ccc}
|
| 247 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 248 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 249 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 250 |
+
\end{array}
|
| 251 |
+
\right)=\left(
|
| 252 |
+
\begin{array}{ccc}
|
| 253 |
+
\frac{1971}{256} & \frac{1167}{128} & \frac{167}{256} \\
|
| 254 |
+
\fbox{$-\frac{1165}{256}$} & \_ & \_ \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right) \\
|
| 257 |
+
\end{array}
|
| 258 |
+
\\
|
| 259 |
+
|
| 260 |
+
\begin{array}{l}
|
| 261 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 262 |
+
\left(
|
| 263 |
+
\begin{array}{ccc}
|
| 264 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 265 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\right).\left(
|
| 268 |
+
\begin{array}{ccc}
|
| 269 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 270 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 271 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 272 |
+
\end{array}
|
| 273 |
+
\right)=\left(
|
| 274 |
+
\begin{array}{ccc}
|
| 275 |
+
\frac{1971}{256} & \frac{1167}{128} & \frac{167}{256} \\
|
| 276 |
+
-\frac{1165}{256} & \_ & \_ \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\right) \\
|
| 279 |
+
\end{array}
|
| 280 |
+
\\
|
| 281 |
+
|
| 282 |
+
\begin{array}{l}
|
| 283 |
+
|
| 284 |
+
\begin{array}{l}
|
| 285 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-9)}{2\ 4}+\left(-\frac{7}{8}\right)\, (-3)+\left(-\frac{23}{16}\right)\, \times \, \frac{1}{8}=-\frac{119}{128}. \\
|
| 286 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\\
|
| 289 |
+
\left(
|
| 290 |
+
\begin{array}{ccc}
|
| 291 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 292 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right).\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 297 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 298 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right)=\left(
|
| 301 |
+
\begin{array}{ccc}
|
| 302 |
+
\frac{1971}{256} & \frac{1167}{128} & \frac{167}{256} \\
|
| 303 |
+
-\frac{1165}{256} & \fbox{$-\frac{119}{128}$} & \_ \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right) \\
|
| 306 |
+
\end{array}
|
| 307 |
+
\\
|
| 308 |
+
|
| 309 |
+
\begin{array}{l}
|
| 310 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 314 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right).\left(
|
| 317 |
+
\begin{array}{ccc}
|
| 318 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 319 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 320 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 321 |
+
\end{array}
|
| 322 |
+
\right)=\left(
|
| 323 |
+
\begin{array}{ccc}
|
| 324 |
+
\frac{1971}{256} & \frac{1167}{128} & \frac{167}{256} \\
|
| 325 |
+
-\frac{1165}{256} & -\frac{119}{128} & \_ \\
|
| 326 |
+
\end{array}
|
| 327 |
+
\right) \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\\
|
| 330 |
+
|
| 331 |
+
\begin{array}{l}
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-43)}{2\ 16}+\left(-\frac{7}{8}\right)\, \times \, \frac{37}{16}+\left(-\frac{23}{16}\right)\, \left(-\frac{17}{16}\right)=-\frac{1159}{256}. \\
|
| 335 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\\
|
| 338 |
+
\fbox{$
|
| 339 |
+
\begin{array}{ll}
|
| 340 |
+
\text{Answer:} & \\
|
| 341 |
+
\text{} & \left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
-\frac{35}{16} & -\frac{21}{16} & \frac{33}{16} \\
|
| 344 |
+
\frac{3}{2} & -\frac{7}{8} & -\frac{23}{16} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\right).\left(
|
| 347 |
+
\begin{array}{ccc}
|
| 348 |
+
-\frac{21}{16} & -\frac{9}{4} & -\frac{43}{16} \\
|
| 349 |
+
-\frac{7}{16} & -3 & \frac{37}{16} \\
|
| 350 |
+
\frac{33}{16} & \frac{1}{8} & -\frac{17}{16} \\
|
| 351 |
+
\end{array}
|
| 352 |
+
\right)=\left(
|
| 353 |
+
\begin{array}{ccc}
|
| 354 |
+
\frac{1971}{256} & \frac{1167}{128} & \frac{167}{256} \\
|
| 355 |
+
-\frac{1165}{256} & -\frac{119}{128} & \fbox{$-\frac{1159}{256}$} \\
|
| 356 |
+
\end{array}
|
| 357 |
+
\right) \\
|
| 358 |
+
\end{array}
|
| 359 |
+
$} \\
|
| 360 |
+
\end{array}
|
| 361 |
+
\\
|
| 362 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3320.txt
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
0 & -\frac{5}{2} & 0 \\
|
| 6 |
+
\frac{3}{2} & 3 & 0 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 12 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 13 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
0 & -\frac{5}{2} & 0 \\
|
| 24 |
+
\frac{3}{2} & 3 & 0 \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{ccc}
|
| 28 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 29 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 30 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
0 & -\frac{5}{2} & 0 \\
|
| 47 |
+
\frac{3}{2} & 3 & 0 \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{ccc}
|
| 51 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 52 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 53 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{ccc}
|
| 57 |
+
\_ & \_ & \_ \\
|
| 58 |
+
\_ & \_ & \_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
0 & -\frac{5}{2} & 0 \\
|
| 69 |
+
\frac{3}{2} & 3 & 0 \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{ccc}
|
| 73 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 74 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 75 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{ccc}
|
| 79 |
+
\_ & \_ & \_ \\
|
| 80 |
+
\_ & \_ & \_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0 (-1)+\left(-\frac{5}{2}\right)\, \times \, 2+0 (-2)=-5. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
0 & -\frac{5}{2} & 0 \\
|
| 96 |
+
\frac{3}{2} & 3 & 0 \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{ccc}
|
| 100 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 101 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 102 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{ccc}
|
| 106 |
+
\fbox{$-5$} & \_ & \_ \\
|
| 107 |
+
\_ & \_ & \_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
0 & -\frac{5}{2} & 0 \\
|
| 118 |
+
\frac{3}{2} & 3 & 0 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 123 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 124 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{ccc}
|
| 128 |
+
-5 & \_ & \_ \\
|
| 129 |
+
\_ & \_ & \_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{0 (-3)}{2}+\left(-\frac{5}{2}\right)\, \times \, \frac{5}{2}+\frac{0 (-3)}{2}=-\frac{25}{4}. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\left(
|
| 143 |
+
\begin{array}{ccc}
|
| 144 |
+
0 & -\frac{5}{2} & 0 \\
|
| 145 |
+
\frac{3}{2} & 3 & 0 \\
|
| 146 |
+
\end{array}
|
| 147 |
+
\right).\left(
|
| 148 |
+
\begin{array}{ccc}
|
| 149 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 150 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 151 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\right)=\left(
|
| 154 |
+
\begin{array}{ccc}
|
| 155 |
+
-5 & \fbox{$-\frac{25}{4}$} & \_ \\
|
| 156 |
+
\_ & \_ & \_ \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right) \\
|
| 159 |
+
\end{array}
|
| 160 |
+
\\
|
| 161 |
+
|
| 162 |
+
\begin{array}{l}
|
| 163 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 164 |
+
\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
0 & -\frac{5}{2} & 0 \\
|
| 167 |
+
\frac{3}{2} & 3 & 0 \\
|
| 168 |
+
\end{array}
|
| 169 |
+
\right).\left(
|
| 170 |
+
\begin{array}{ccc}
|
| 171 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 172 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 173 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right)=\left(
|
| 176 |
+
\begin{array}{ccc}
|
| 177 |
+
-5 & -\frac{25}{4} & \_ \\
|
| 178 |
+
\_ & \_ & \_ \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right) \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
|
| 184 |
+
\begin{array}{l}
|
| 185 |
+
|
| 186 |
+
\begin{array}{l}
|
| 187 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0 (-1)+\frac{5}{2\ 2}+0 (-1)=\frac{5}{4}. \\
|
| 188 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 189 |
+
\end{array}
|
| 190 |
+
\\
|
| 191 |
+
\left(
|
| 192 |
+
\begin{array}{ccc}
|
| 193 |
+
0 & -\frac{5}{2} & 0 \\
|
| 194 |
+
\frac{3}{2} & 3 & 0 \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\right).\left(
|
| 197 |
+
\begin{array}{ccc}
|
| 198 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 199 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 200 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 201 |
+
\end{array}
|
| 202 |
+
\right)=\left(
|
| 203 |
+
\begin{array}{ccc}
|
| 204 |
+
-5 & -\frac{25}{4} & \fbox{$\frac{5}{4}$} \\
|
| 205 |
+
\_ & \_ & \_ \\
|
| 206 |
+
\end{array}
|
| 207 |
+
\right) \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\\
|
| 210 |
+
|
| 211 |
+
\begin{array}{l}
|
| 212 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 213 |
+
\left(
|
| 214 |
+
\begin{array}{ccc}
|
| 215 |
+
0 & -\frac{5}{2} & 0 \\
|
| 216 |
+
\frac{3}{2} & 3 & 0 \\
|
| 217 |
+
\end{array}
|
| 218 |
+
\right).\left(
|
| 219 |
+
\begin{array}{ccc}
|
| 220 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 221 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 222 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 223 |
+
\end{array}
|
| 224 |
+
\right)=\left(
|
| 225 |
+
\begin{array}{ccc}
|
| 226 |
+
-5 & -\frac{25}{4} & \frac{5}{4} \\
|
| 227 |
+
\_ & \_ & \_ \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\right) \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\\
|
| 232 |
+
|
| 233 |
+
\begin{array}{l}
|
| 234 |
+
|
| 235 |
+
\begin{array}{l}
|
| 236 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-1)}{2}+3\ 2+0 (-2)=\frac{9}{2}. \\
|
| 237 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
0 & -\frac{5}{2} & 0 \\
|
| 243 |
+
\frac{3}{2} & 3 & 0 \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right).\left(
|
| 246 |
+
\begin{array}{ccc}
|
| 247 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 248 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 249 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 250 |
+
\end{array}
|
| 251 |
+
\right)=\left(
|
| 252 |
+
\begin{array}{ccc}
|
| 253 |
+
-5 & -\frac{25}{4} & \frac{5}{4} \\
|
| 254 |
+
\fbox{$\frac{9}{2}$} & \_ & \_ \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right) \\
|
| 257 |
+
\end{array}
|
| 258 |
+
\\
|
| 259 |
+
|
| 260 |
+
\begin{array}{l}
|
| 261 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 262 |
+
\left(
|
| 263 |
+
\begin{array}{ccc}
|
| 264 |
+
0 & -\frac{5}{2} & 0 \\
|
| 265 |
+
\frac{3}{2} & 3 & 0 \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\right).\left(
|
| 268 |
+
\begin{array}{ccc}
|
| 269 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 270 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 271 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 272 |
+
\end{array}
|
| 273 |
+
\right)=\left(
|
| 274 |
+
\begin{array}{ccc}
|
| 275 |
+
-5 & -\frac{25}{4} & \frac{5}{4} \\
|
| 276 |
+
\frac{9}{2} & \_ & \_ \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\right) \\
|
| 279 |
+
\end{array}
|
| 280 |
+
\\
|
| 281 |
+
|
| 282 |
+
\begin{array}{l}
|
| 283 |
+
|
| 284 |
+
\begin{array}{l}
|
| 285 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-3)}{2\ 2}+\frac{3\ 5}{2}+\frac{0 (-3)}{2}=\frac{21}{4}. \\
|
| 286 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\\
|
| 289 |
+
\left(
|
| 290 |
+
\begin{array}{ccc}
|
| 291 |
+
0 & -\frac{5}{2} & 0 \\
|
| 292 |
+
\frac{3}{2} & 3 & 0 \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right).\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 297 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 298 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right)=\left(
|
| 301 |
+
\begin{array}{ccc}
|
| 302 |
+
-5 & -\frac{25}{4} & \frac{5}{4} \\
|
| 303 |
+
\frac{9}{2} & \fbox{$\frac{21}{4}$} & \_ \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right) \\
|
| 306 |
+
\end{array}
|
| 307 |
+
\\
|
| 308 |
+
|
| 309 |
+
\begin{array}{l}
|
| 310 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
0 & -\frac{5}{2} & 0 \\
|
| 314 |
+
\frac{3}{2} & 3 & 0 \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right).\left(
|
| 317 |
+
\begin{array}{ccc}
|
| 318 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 319 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 320 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 321 |
+
\end{array}
|
| 322 |
+
\right)=\left(
|
| 323 |
+
\begin{array}{ccc}
|
| 324 |
+
-5 & -\frac{25}{4} & \frac{5}{4} \\
|
| 325 |
+
\frac{9}{2} & \frac{21}{4} & \_ \\
|
| 326 |
+
\end{array}
|
| 327 |
+
\right) \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\\
|
| 330 |
+
|
| 331 |
+
\begin{array}{l}
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-1)}{2}+\frac{1}{2} (-3)+0 (-1)=-3. \\
|
| 335 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\\
|
| 338 |
+
\fbox{$
|
| 339 |
+
\begin{array}{ll}
|
| 340 |
+
\text{Answer:} & \\
|
| 341 |
+
\text{} & \left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
0 & -\frac{5}{2} & 0 \\
|
| 344 |
+
\frac{3}{2} & 3 & 0 \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\right).\left(
|
| 347 |
+
\begin{array}{ccc}
|
| 348 |
+
-1 & -\frac{3}{2} & -1 \\
|
| 349 |
+
2 & \frac{5}{2} & -\frac{1}{2} \\
|
| 350 |
+
-2 & -\frac{3}{2} & -1 \\
|
| 351 |
+
\end{array}
|
| 352 |
+
\right)=\left(
|
| 353 |
+
\begin{array}{ccc}
|
| 354 |
+
-5 & -\frac{25}{4} & \frac{5}{4} \\
|
| 355 |
+
\frac{9}{2} & \frac{21}{4} & \fbox{$-3$} \\
|
| 356 |
+
\end{array}
|
| 357 |
+
\right) \\
|
| 358 |
+
\end{array}
|
| 359 |
+
$} \\
|
| 360 |
+
\end{array}
|
| 361 |
+
\\
|
| 362 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3336.txt
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 6 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 7 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 13 |
+
2 & -\frac{7}{9} \\
|
| 14 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 25 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 26 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{cc}
|
| 30 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 31 |
+
2 & -\frac{7}{9} \\
|
| 32 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 49 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 50 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 55 |
+
2 & -\frac{7}{9} \\
|
| 56 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{cc}
|
| 60 |
+
\_ & \_ \\
|
| 61 |
+
\_ & \_ \\
|
| 62 |
+
\_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 73 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 74 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{cc}
|
| 78 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 79 |
+
2 & -\frac{7}{9} \\
|
| 80 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{cc}
|
| 84 |
+
\_ & \_ \\
|
| 85 |
+
\_ & \_ \\
|
| 86 |
+
\_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5\ 26}{9\ 9}+\left(-\frac{4}{3}\right)\, \times \, 2+\frac{2}{3\ 9}=-\frac{80}{81}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 102 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 103 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{cc}
|
| 107 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 108 |
+
2 & -\frac{7}{9} \\
|
| 109 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{cc}
|
| 113 |
+
\fbox{$-\frac{80}{81}$} & \_ \\
|
| 114 |
+
\_ & \_ \\
|
| 115 |
+
\_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 126 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 127 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 132 |
+
2 & -\frac{7}{9} \\
|
| 133 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{cc}
|
| 137 |
+
-\frac{80}{81} & \_ \\
|
| 138 |
+
\_ & \_ \\
|
| 139 |
+
\_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5 (-7)}{9\ 3}+\left(-\frac{4}{3}\right)\, \left(-\frac{7}{9}\right)+\left(-\frac{2}{3}\right)\, \times \, \frac{13}{9}=-\frac{11}{9}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 155 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 156 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{cc}
|
| 160 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 161 |
+
2 & -\frac{7}{9} \\
|
| 162 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{cc}
|
| 166 |
+
-\frac{80}{81} & \fbox{$-\frac{11}{9}$} \\
|
| 167 |
+
\_ & \_ \\
|
| 168 |
+
\_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 179 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 180 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{cc}
|
| 184 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 185 |
+
2 & -\frac{7}{9} \\
|
| 186 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
-\frac{80}{81} & -\frac{11}{9} \\
|
| 191 |
+
\_ & \_ \\
|
| 192 |
+
\_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{26}{3\ 9}+\left(-\frac{22}{9}\right)\, \times \, 2+\frac{1}{9} (-3)=-\frac{115}{27}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 208 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 209 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{cc}
|
| 213 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 214 |
+
2 & -\frac{7}{9} \\
|
| 215 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{cc}
|
| 219 |
+
-\frac{80}{81} & -\frac{11}{9} \\
|
| 220 |
+
\fbox{$-\frac{115}{27}$} & \_ \\
|
| 221 |
+
\_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 232 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 233 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{cc}
|
| 237 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 238 |
+
2 & -\frac{7}{9} \\
|
| 239 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{cc}
|
| 243 |
+
-\frac{80}{81} & -\frac{11}{9} \\
|
| 244 |
+
-\frac{115}{27} & \_ \\
|
| 245 |
+
\_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }-\frac{7}{3\ 3}+\left(-\frac{22}{9}\right)\, \left(-\frac{7}{9}\right)+\frac{3\ 13}{9}=\frac{442}{81}. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 261 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 262 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{cc}
|
| 266 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 267 |
+
2 & -\frac{7}{9} \\
|
| 268 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{cc}
|
| 272 |
+
-\frac{80}{81} & -\frac{11}{9} \\
|
| 273 |
+
-\frac{115}{27} & \fbox{$\frac{442}{81}$} \\
|
| 274 |
+
\_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 285 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 286 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{cc}
|
| 290 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 291 |
+
2 & -\frac{7}{9} \\
|
| 292 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{cc}
|
| 296 |
+
-\frac{80}{81} & -\frac{11}{9} \\
|
| 297 |
+
-\frac{115}{27} & \frac{442}{81} \\
|
| 298 |
+
\_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{3} \left(-\frac{26}{9}\right)+\frac{8\ 2}{3}+\frac{1}{9} \left(-\frac{20}{9}\right)=\frac{334}{81}. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 314 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 315 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{cc}
|
| 319 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 320 |
+
2 & -\frac{7}{9} \\
|
| 321 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{cc}
|
| 325 |
+
-\frac{80}{81} & -\frac{11}{9} \\
|
| 326 |
+
-\frac{115}{27} & \frac{442}{81} \\
|
| 327 |
+
\fbox{$\frac{334}{81}$} & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 338 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 339 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{cc}
|
| 343 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 344 |
+
2 & -\frac{7}{9} \\
|
| 345 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{cc}
|
| 349 |
+
-\frac{80}{81} & -\frac{11}{9} \\
|
| 350 |
+
-\frac{115}{27} & \frac{442}{81} \\
|
| 351 |
+
\frac{334}{81} & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7}{3\ 3}+\frac{8 (-7)}{3\ 9}+\frac{20\ 13}{9\ 9}=\frac{155}{81}. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\fbox{$
|
| 365 |
+
\begin{array}{ll}
|
| 366 |
+
\text{Answer:} & \\
|
| 367 |
+
\text{} & \left(
|
| 368 |
+
\begin{array}{ccc}
|
| 369 |
+
\frac{5}{9} & -\frac{4}{3} & -\frac{2}{3} \\
|
| 370 |
+
\frac{1}{3} & -\frac{22}{9} & 3 \\
|
| 371 |
+
-\frac{1}{3} & \frac{8}{3} & \frac{20}{9} \\
|
| 372 |
+
\end{array}
|
| 373 |
+
\right).\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
\frac{26}{9} & -\frac{7}{3} \\
|
| 376 |
+
2 & -\frac{7}{9} \\
|
| 377 |
+
-\frac{1}{9} & \frac{13}{9} \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right)=\left(
|
| 380 |
+
\begin{array}{cc}
|
| 381 |
+
-\frac{80}{81} & -\frac{11}{9} \\
|
| 382 |
+
-\frac{115}{27} & \frac{442}{81} \\
|
| 383 |
+
\frac{334}{81} & \fbox{$\frac{155}{81}$} \\
|
| 384 |
+
\end{array}
|
| 385 |
+
\right) \\
|
| 386 |
+
\end{array}
|
| 387 |
+
$} \\
|
| 388 |
+
\end{array}
|
| 389 |
+
\\
|
| 390 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3408.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 6 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 12 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 23 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 28 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 45 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 50 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 66 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 71 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{10} \left(-\frac{3}{2}\right)+\left(-\frac{11}{10}\right)\, \times \, \frac{9}{5}=-\frac{213}{100}. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 92 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 97 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$-\frac{213}{100}$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 113 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 118 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-\frac{213}{100} & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-2)}{2}+\left(-\frac{11}{10}\right)\, \times \, 3=-\frac{63}{10}. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 139 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 144 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
-\frac{213}{100} & \fbox{$-\frac{63}{10}$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 160 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 165 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
-\frac{213}{100} & -\frac{63}{10} & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-11)}{2\ 5}+\left(-\frac{11}{10}\right)\, \times \, \frac{21}{10}=-\frac{561}{100}. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 186 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 191 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
-\frac{213}{100} & -\frac{63}{10} & \fbox{$-\frac{561}{100}$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 207 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 212 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
-\frac{213}{100} & -\frac{63}{10} & -\frac{561}{100} \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{10} \left(-\frac{19}{10}\right)+\left(-\frac{2}{5}\right)\, \times \, \frac{9}{5}=-\frac{91}{100}. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 233 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 238 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-\frac{213}{100} & -\frac{63}{10} & -\frac{561}{100} \\
|
| 243 |
+
\fbox{$-\frac{91}{100}$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 254 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 259 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
-\frac{213}{100} & -\frac{63}{10} & -\frac{561}{100} \\
|
| 264 |
+
-\frac{91}{100} & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{19 (-2)}{10}+\left(-\frac{2}{5}\right)\, \times \, 3=-5. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 280 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 285 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
-\frac{213}{100} & -\frac{63}{10} & -\frac{561}{100} \\
|
| 290 |
+
-\frac{91}{100} & \fbox{$-5$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 301 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 306 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
-\frac{213}{100} & -\frac{63}{10} & -\frac{561}{100} \\
|
| 311 |
+
-\frac{91}{100} & -5 & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{19 (-11)}{10\ 5}+\left(-\frac{2}{5}\right)\, \times \, \frac{21}{10}=-\frac{251}{50}. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
\frac{3}{2} & -\frac{11}{10} \\
|
| 330 |
+
\frac{19}{10} & -\frac{2}{5} \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
-\frac{1}{10} & -2 & -\frac{11}{5} \\
|
| 335 |
+
\frac{9}{5} & 3 & \frac{21}{10} \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
-\frac{213}{100} & -\frac{63}{10} & -\frac{561}{100} \\
|
| 340 |
+
-\frac{91}{100} & -5 & \fbox{$-\frac{251}{50}$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3493.txt
ADDED
|
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
2 & \frac{9}{5} \\
|
| 6 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 7 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 13 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{cc}
|
| 23 |
+
2 & \frac{9}{5} \\
|
| 24 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 25 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right).\left(
|
| 28 |
+
\begin{array}{cc}
|
| 29 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 30 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{cc}
|
| 46 |
+
2 & \frac{9}{5} \\
|
| 47 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 48 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right).\left(
|
| 51 |
+
\begin{array}{cc}
|
| 52 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 53 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{cc}
|
| 57 |
+
\_ & \_ \\
|
| 58 |
+
\_ & \_ \\
|
| 59 |
+
\_ & \_ \\
|
| 60 |
+
\end{array}
|
| 61 |
+
\right) \\
|
| 62 |
+
\end{array}
|
| 63 |
+
\\
|
| 64 |
+
|
| 65 |
+
\begin{array}{l}
|
| 66 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 67 |
+
\left(
|
| 68 |
+
\begin{array}{cc}
|
| 69 |
+
2 & \frac{9}{5} \\
|
| 70 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 71 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right).\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 76 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right)=\left(
|
| 79 |
+
\begin{array}{cc}
|
| 80 |
+
\_ & \_ \\
|
| 81 |
+
\_ & \_ \\
|
| 82 |
+
\_ & \_ \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\right) \\
|
| 85 |
+
\end{array}
|
| 86 |
+
\\
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
|
| 90 |
+
\begin{array}{l}
|
| 91 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2}{5}+\frac{9 (-5)}{5\ 2}=-\frac{41}{10}. \\
|
| 92 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\\
|
| 95 |
+
\left(
|
| 96 |
+
\begin{array}{cc}
|
| 97 |
+
2 & \frac{9}{5} \\
|
| 98 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 99 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 100 |
+
\end{array}
|
| 101 |
+
\right).\left(
|
| 102 |
+
\begin{array}{cc}
|
| 103 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 104 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\right)=\left(
|
| 107 |
+
\begin{array}{cc}
|
| 108 |
+
\fbox{$-\frac{41}{10}$} & \_ \\
|
| 109 |
+
\_ & \_ \\
|
| 110 |
+
\_ & \_ \\
|
| 111 |
+
\end{array}
|
| 112 |
+
\right) \\
|
| 113 |
+
\end{array}
|
| 114 |
+
\\
|
| 115 |
+
|
| 116 |
+
\begin{array}{l}
|
| 117 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 118 |
+
\left(
|
| 119 |
+
\begin{array}{cc}
|
| 120 |
+
2 & \frac{9}{5} \\
|
| 121 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 122 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 123 |
+
\end{array}
|
| 124 |
+
\right).\left(
|
| 125 |
+
\begin{array}{cc}
|
| 126 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 127 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right)=\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
-\frac{41}{10} & \_ \\
|
| 132 |
+
\_ & \_ \\
|
| 133 |
+
\_ & \_ \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right) \\
|
| 136 |
+
\end{array}
|
| 137 |
+
\\
|
| 138 |
+
|
| 139 |
+
\begin{array}{l}
|
| 140 |
+
|
| 141 |
+
\begin{array}{l}
|
| 142 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2\ 3}{2}+\frac{9\ 9}{5\ 5}=\frac{156}{25}. \\
|
| 143 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 144 |
+
\end{array}
|
| 145 |
+
\\
|
| 146 |
+
\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
2 & \frac{9}{5} \\
|
| 149 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 150 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 151 |
+
\end{array}
|
| 152 |
+
\right).\left(
|
| 153 |
+
\begin{array}{cc}
|
| 154 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 155 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 156 |
+
\end{array}
|
| 157 |
+
\right)=\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
-\frac{41}{10} & \fbox{$\frac{156}{25}$} \\
|
| 160 |
+
\_ & \_ \\
|
| 161 |
+
\_ & \_ \\
|
| 162 |
+
\end{array}
|
| 163 |
+
\right) \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
|
| 167 |
+
\begin{array}{l}
|
| 168 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 169 |
+
\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
2 & \frac{9}{5} \\
|
| 172 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 173 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right).\left(
|
| 176 |
+
\begin{array}{cc}
|
| 177 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 178 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right)=\left(
|
| 181 |
+
\begin{array}{cc}
|
| 182 |
+
-\frac{41}{10} & \frac{156}{25} \\
|
| 183 |
+
\_ & \_ \\
|
| 184 |
+
\_ & \_ \\
|
| 185 |
+
\end{array}
|
| 186 |
+
\right) \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\\
|
| 189 |
+
|
| 190 |
+
\begin{array}{l}
|
| 191 |
+
|
| 192 |
+
\begin{array}{l}
|
| 193 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{17}{10}\right)\, \times \, \frac{1}{5}+\left(-\frac{12}{5}\right)\, \left(-\frac{5}{2}\right)=\frac{283}{50}. \\
|
| 194 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
\left(
|
| 198 |
+
\begin{array}{cc}
|
| 199 |
+
2 & \frac{9}{5} \\
|
| 200 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 201 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 202 |
+
\end{array}
|
| 203 |
+
\right).\left(
|
| 204 |
+
\begin{array}{cc}
|
| 205 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 206 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 207 |
+
\end{array}
|
| 208 |
+
\right)=\left(
|
| 209 |
+
\begin{array}{cc}
|
| 210 |
+
-\frac{41}{10} & \frac{156}{25} \\
|
| 211 |
+
\fbox{$\frac{283}{50}$} & \_ \\
|
| 212 |
+
\_ & \_ \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right) \\
|
| 215 |
+
\end{array}
|
| 216 |
+
\\
|
| 217 |
+
|
| 218 |
+
\begin{array}{l}
|
| 219 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 220 |
+
\left(
|
| 221 |
+
\begin{array}{cc}
|
| 222 |
+
2 & \frac{9}{5} \\
|
| 223 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 224 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right).\left(
|
| 227 |
+
\begin{array}{cc}
|
| 228 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 229 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\right)=\left(
|
| 232 |
+
\begin{array}{cc}
|
| 233 |
+
-\frac{41}{10} & \frac{156}{25} \\
|
| 234 |
+
\frac{283}{50} & \_ \\
|
| 235 |
+
\_ & \_ \\
|
| 236 |
+
\end{array}
|
| 237 |
+
\right) \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
|
| 241 |
+
\begin{array}{l}
|
| 242 |
+
|
| 243 |
+
\begin{array}{l}
|
| 244 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{17}{10}\right)\, \times \, \frac{3}{2}+\left(-\frac{12}{5}\right)\, \times \, \frac{9}{5}=-\frac{687}{100}. \\
|
| 245 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
2 & \frac{9}{5} \\
|
| 251 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 252 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right).\left(
|
| 255 |
+
\begin{array}{cc}
|
| 256 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 257 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right)=\left(
|
| 260 |
+
\begin{array}{cc}
|
| 261 |
+
-\frac{41}{10} & \frac{156}{25} \\
|
| 262 |
+
\frac{283}{50} & \fbox{$-\frac{687}{100}$} \\
|
| 263 |
+
\_ & \_ \\
|
| 264 |
+
\end{array}
|
| 265 |
+
\right) \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\\
|
| 268 |
+
|
| 269 |
+
\begin{array}{l}
|
| 270 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 271 |
+
\left(
|
| 272 |
+
\begin{array}{cc}
|
| 273 |
+
2 & \frac{9}{5} \\
|
| 274 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 275 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 276 |
+
\end{array}
|
| 277 |
+
\right).\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 280 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right)=\left(
|
| 283 |
+
\begin{array}{cc}
|
| 284 |
+
-\frac{41}{10} & \frac{156}{25} \\
|
| 285 |
+
\frac{283}{50} & -\frac{687}{100} \\
|
| 286 |
+
\_ & \_ \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right) \\
|
| 289 |
+
\end{array}
|
| 290 |
+
\\
|
| 291 |
+
|
| 292 |
+
\begin{array}{l}
|
| 293 |
+
|
| 294 |
+
\begin{array}{l}
|
| 295 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{3}{10}\right)\, \times \, \frac{1}{5}+\left(-\frac{9}{10}\right)\, \left(-\frac{5}{2}\right)=\frac{219}{100}. \\
|
| 296 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 297 |
+
\end{array}
|
| 298 |
+
\\
|
| 299 |
+
\left(
|
| 300 |
+
\begin{array}{cc}
|
| 301 |
+
2 & \frac{9}{5} \\
|
| 302 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 303 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right).\left(
|
| 306 |
+
\begin{array}{cc}
|
| 307 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 308 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\right)=\left(
|
| 311 |
+
\begin{array}{cc}
|
| 312 |
+
-\frac{41}{10} & \frac{156}{25} \\
|
| 313 |
+
\frac{283}{50} & -\frac{687}{100} \\
|
| 314 |
+
\fbox{$\frac{219}{100}$} & \_ \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right) \\
|
| 317 |
+
\end{array}
|
| 318 |
+
\\
|
| 319 |
+
|
| 320 |
+
\begin{array}{l}
|
| 321 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 322 |
+
\left(
|
| 323 |
+
\begin{array}{cc}
|
| 324 |
+
2 & \frac{9}{5} \\
|
| 325 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 326 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 327 |
+
\end{array}
|
| 328 |
+
\right).\left(
|
| 329 |
+
\begin{array}{cc}
|
| 330 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 331 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 332 |
+
\end{array}
|
| 333 |
+
\right)=\left(
|
| 334 |
+
\begin{array}{cc}
|
| 335 |
+
-\frac{41}{10} & \frac{156}{25} \\
|
| 336 |
+
\frac{283}{50} & -\frac{687}{100} \\
|
| 337 |
+
\frac{219}{100} & \_ \\
|
| 338 |
+
\end{array}
|
| 339 |
+
\right) \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\\
|
| 342 |
+
|
| 343 |
+
\begin{array}{l}
|
| 344 |
+
|
| 345 |
+
\begin{array}{l}
|
| 346 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{3}{10}\right)\, \times \, \frac{3}{2}+\left(-\frac{9}{10}\right)\, \times \, \frac{9}{5}=-\frac{207}{100}. \\
|
| 347 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 348 |
+
\end{array}
|
| 349 |
+
\\
|
| 350 |
+
\fbox{$
|
| 351 |
+
\begin{array}{ll}
|
| 352 |
+
\text{Answer:} & \\
|
| 353 |
+
\text{} & \left(
|
| 354 |
+
\begin{array}{cc}
|
| 355 |
+
2 & \frac{9}{5} \\
|
| 356 |
+
-\frac{17}{10} & -\frac{12}{5} \\
|
| 357 |
+
-\frac{3}{10} & -\frac{9}{10} \\
|
| 358 |
+
\end{array}
|
| 359 |
+
\right).\left(
|
| 360 |
+
\begin{array}{cc}
|
| 361 |
+
\frac{1}{5} & \frac{3}{2} \\
|
| 362 |
+
-\frac{5}{2} & \frac{9}{5} \\
|
| 363 |
+
\end{array}
|
| 364 |
+
\right)=\left(
|
| 365 |
+
\begin{array}{cc}
|
| 366 |
+
-\frac{41}{10} & \frac{156}{25} \\
|
| 367 |
+
\frac{283}{50} & -\frac{687}{100} \\
|
| 368 |
+
\frac{219}{100} & \fbox{$-\frac{207}{100}$} \\
|
| 369 |
+
\end{array}
|
| 370 |
+
\right) \\
|
| 371 |
+
\end{array}
|
| 372 |
+
$} \\
|
| 373 |
+
\end{array}
|
| 374 |
+
\\
|
| 375 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3646.txt
ADDED
|
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 6 |
+
3 & -\frac{13}{5} \\
|
| 7 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 13 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{cc}
|
| 23 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 24 |
+
3 & -\frac{13}{5} \\
|
| 25 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right).\left(
|
| 28 |
+
\begin{array}{cc}
|
| 29 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 30 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{cc}
|
| 46 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 47 |
+
3 & -\frac{13}{5} \\
|
| 48 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right).\left(
|
| 51 |
+
\begin{array}{cc}
|
| 52 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 53 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{cc}
|
| 57 |
+
\_ & \_ \\
|
| 58 |
+
\_ & \_ \\
|
| 59 |
+
\_ & \_ \\
|
| 60 |
+
\end{array}
|
| 61 |
+
\right) \\
|
| 62 |
+
\end{array}
|
| 63 |
+
\\
|
| 64 |
+
|
| 65 |
+
\begin{array}{l}
|
| 66 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 67 |
+
\left(
|
| 68 |
+
\begin{array}{cc}
|
| 69 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 70 |
+
3 & -\frac{13}{5} \\
|
| 71 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right).\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 76 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right)=\left(
|
| 79 |
+
\begin{array}{cc}
|
| 80 |
+
\_ & \_ \\
|
| 81 |
+
\_ & \_ \\
|
| 82 |
+
\_ & \_ \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\right) \\
|
| 85 |
+
\end{array}
|
| 86 |
+
\\
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
|
| 90 |
+
\begin{array}{l}
|
| 91 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-8)}{5\ 5}+\left(-\frac{6}{5}\right)\, \left(-\frac{14}{5}\right)=\frac{12}{5}. \\
|
| 92 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\\
|
| 95 |
+
\left(
|
| 96 |
+
\begin{array}{cc}
|
| 97 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 98 |
+
3 & -\frac{13}{5} \\
|
| 99 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 100 |
+
\end{array}
|
| 101 |
+
\right).\left(
|
| 102 |
+
\begin{array}{cc}
|
| 103 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 104 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\right)=\left(
|
| 107 |
+
\begin{array}{cc}
|
| 108 |
+
\fbox{$\frac{12}{5}$} & \_ \\
|
| 109 |
+
\_ & \_ \\
|
| 110 |
+
\_ & \_ \\
|
| 111 |
+
\end{array}
|
| 112 |
+
\right) \\
|
| 113 |
+
\end{array}
|
| 114 |
+
\\
|
| 115 |
+
|
| 116 |
+
\begin{array}{l}
|
| 117 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 118 |
+
\left(
|
| 119 |
+
\begin{array}{cc}
|
| 120 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 121 |
+
3 & -\frac{13}{5} \\
|
| 122 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 123 |
+
\end{array}
|
| 124 |
+
\right).\left(
|
| 125 |
+
\begin{array}{cc}
|
| 126 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 127 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right)=\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
\frac{12}{5} & \_ \\
|
| 132 |
+
\_ & \_ \\
|
| 133 |
+
\_ & \_ \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right) \\
|
| 136 |
+
\end{array}
|
| 137 |
+
\\
|
| 138 |
+
|
| 139 |
+
\begin{array}{l}
|
| 140 |
+
|
| 141 |
+
\begin{array}{l}
|
| 142 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-11)}{5\ 5}+\left(-\frac{6}{5}\right)\, \times \, \frac{14}{5}=-\frac{117}{25}. \\
|
| 143 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 144 |
+
\end{array}
|
| 145 |
+
\\
|
| 146 |
+
\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 149 |
+
3 & -\frac{13}{5} \\
|
| 150 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 151 |
+
\end{array}
|
| 152 |
+
\right).\left(
|
| 153 |
+
\begin{array}{cc}
|
| 154 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 155 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 156 |
+
\end{array}
|
| 157 |
+
\right)=\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
\frac{12}{5} & \fbox{$-\frac{117}{25}$} \\
|
| 160 |
+
\_ & \_ \\
|
| 161 |
+
\_ & \_ \\
|
| 162 |
+
\end{array}
|
| 163 |
+
\right) \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
|
| 167 |
+
\begin{array}{l}
|
| 168 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 169 |
+
\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 172 |
+
3 & -\frac{13}{5} \\
|
| 173 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right).\left(
|
| 176 |
+
\begin{array}{cc}
|
| 177 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 178 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right)=\left(
|
| 181 |
+
\begin{array}{cc}
|
| 182 |
+
\frac{12}{5} & -\frac{117}{25} \\
|
| 183 |
+
\_ & \_ \\
|
| 184 |
+
\_ & \_ \\
|
| 185 |
+
\end{array}
|
| 186 |
+
\right) \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\\
|
| 189 |
+
|
| 190 |
+
\begin{array}{l}
|
| 191 |
+
|
| 192 |
+
\begin{array}{l}
|
| 193 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-8)}{5}+\left(-\frac{13}{5}\right)\, \left(-\frac{14}{5}\right)=\frac{62}{25}. \\
|
| 194 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
\left(
|
| 198 |
+
\begin{array}{cc}
|
| 199 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 200 |
+
3 & -\frac{13}{5} \\
|
| 201 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 202 |
+
\end{array}
|
| 203 |
+
\right).\left(
|
| 204 |
+
\begin{array}{cc}
|
| 205 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 206 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 207 |
+
\end{array}
|
| 208 |
+
\right)=\left(
|
| 209 |
+
\begin{array}{cc}
|
| 210 |
+
\frac{12}{5} & -\frac{117}{25} \\
|
| 211 |
+
\fbox{$\frac{62}{25}$} & \_ \\
|
| 212 |
+
\_ & \_ \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right) \\
|
| 215 |
+
\end{array}
|
| 216 |
+
\\
|
| 217 |
+
|
| 218 |
+
\begin{array}{l}
|
| 219 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 220 |
+
\left(
|
| 221 |
+
\begin{array}{cc}
|
| 222 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 223 |
+
3 & -\frac{13}{5} \\
|
| 224 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right).\left(
|
| 227 |
+
\begin{array}{cc}
|
| 228 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 229 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\right)=\left(
|
| 232 |
+
\begin{array}{cc}
|
| 233 |
+
\frac{12}{5} & -\frac{117}{25} \\
|
| 234 |
+
\frac{62}{25} & \_ \\
|
| 235 |
+
\_ & \_ \\
|
| 236 |
+
\end{array}
|
| 237 |
+
\right) \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
|
| 241 |
+
\begin{array}{l}
|
| 242 |
+
|
| 243 |
+
\begin{array}{l}
|
| 244 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-11)}{5}+\left(-\frac{13}{5}\right)\, \times \, \frac{14}{5}=-\frac{347}{25}. \\
|
| 245 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 251 |
+
3 & -\frac{13}{5} \\
|
| 252 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right).\left(
|
| 255 |
+
\begin{array}{cc}
|
| 256 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 257 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right)=\left(
|
| 260 |
+
\begin{array}{cc}
|
| 261 |
+
\frac{12}{5} & -\frac{117}{25} \\
|
| 262 |
+
\frac{62}{25} & \fbox{$-\frac{347}{25}$} \\
|
| 263 |
+
\_ & \_ \\
|
| 264 |
+
\end{array}
|
| 265 |
+
\right) \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\\
|
| 268 |
+
|
| 269 |
+
\begin{array}{l}
|
| 270 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 271 |
+
\left(
|
| 272 |
+
\begin{array}{cc}
|
| 273 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 274 |
+
3 & -\frac{13}{5} \\
|
| 275 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 276 |
+
\end{array}
|
| 277 |
+
\right).\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 280 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right)=\left(
|
| 283 |
+
\begin{array}{cc}
|
| 284 |
+
\frac{12}{5} & -\frac{117}{25} \\
|
| 285 |
+
\frac{62}{25} & -\frac{347}{25} \\
|
| 286 |
+
\_ & \_ \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right) \\
|
| 289 |
+
\end{array}
|
| 290 |
+
\\
|
| 291 |
+
|
| 292 |
+
\begin{array}{l}
|
| 293 |
+
|
| 294 |
+
\begin{array}{l}
|
| 295 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{9}{5}\right)\, \left(-\frac{8}{5}\right)+\frac{7 (-14)}{5\ 5}=-\frac{26}{25}. \\
|
| 296 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 297 |
+
\end{array}
|
| 298 |
+
\\
|
| 299 |
+
\left(
|
| 300 |
+
\begin{array}{cc}
|
| 301 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 302 |
+
3 & -\frac{13}{5} \\
|
| 303 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right).\left(
|
| 306 |
+
\begin{array}{cc}
|
| 307 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 308 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\right)=\left(
|
| 311 |
+
\begin{array}{cc}
|
| 312 |
+
\frac{12}{5} & -\frac{117}{25} \\
|
| 313 |
+
\frac{62}{25} & -\frac{347}{25} \\
|
| 314 |
+
\fbox{$-\frac{26}{25}$} & \_ \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right) \\
|
| 317 |
+
\end{array}
|
| 318 |
+
\\
|
| 319 |
+
|
| 320 |
+
\begin{array}{l}
|
| 321 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 322 |
+
\left(
|
| 323 |
+
\begin{array}{cc}
|
| 324 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 325 |
+
3 & -\frac{13}{5} \\
|
| 326 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 327 |
+
\end{array}
|
| 328 |
+
\right).\left(
|
| 329 |
+
\begin{array}{cc}
|
| 330 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 331 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 332 |
+
\end{array}
|
| 333 |
+
\right)=\left(
|
| 334 |
+
\begin{array}{cc}
|
| 335 |
+
\frac{12}{5} & -\frac{117}{25} \\
|
| 336 |
+
\frac{62}{25} & -\frac{347}{25} \\
|
| 337 |
+
-\frac{26}{25} & \_ \\
|
| 338 |
+
\end{array}
|
| 339 |
+
\right) \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\\
|
| 342 |
+
|
| 343 |
+
\begin{array}{l}
|
| 344 |
+
|
| 345 |
+
\begin{array}{l}
|
| 346 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{9}{5}\right)\, \left(-\frac{11}{5}\right)+\frac{7\ 14}{5\ 5}=\frac{197}{25}. \\
|
| 347 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 348 |
+
\end{array}
|
| 349 |
+
\\
|
| 350 |
+
\fbox{$
|
| 351 |
+
\begin{array}{ll}
|
| 352 |
+
\text{Answer:} & \\
|
| 353 |
+
\text{} & \left(
|
| 354 |
+
\begin{array}{cc}
|
| 355 |
+
\frac{3}{5} & -\frac{6}{5} \\
|
| 356 |
+
3 & -\frac{13}{5} \\
|
| 357 |
+
-\frac{9}{5} & \frac{7}{5} \\
|
| 358 |
+
\end{array}
|
| 359 |
+
\right).\left(
|
| 360 |
+
\begin{array}{cc}
|
| 361 |
+
-\frac{8}{5} & -\frac{11}{5} \\
|
| 362 |
+
-\frac{14}{5} & \frac{14}{5} \\
|
| 363 |
+
\end{array}
|
| 364 |
+
\right)=\left(
|
| 365 |
+
\begin{array}{cc}
|
| 366 |
+
\frac{12}{5} & -\frac{117}{25} \\
|
| 367 |
+
\frac{62}{25} & -\frac{347}{25} \\
|
| 368 |
+
-\frac{26}{25} & \fbox{$\frac{197}{25}$} \\
|
| 369 |
+
\end{array}
|
| 370 |
+
\right) \\
|
| 371 |
+
\end{array}
|
| 372 |
+
$} \\
|
| 373 |
+
\end{array}
|
| 374 |
+
\\
|
| 375 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3680.txt
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 6 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 7 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
\frac{4}{3} & -1 \\
|
| 13 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 14 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 25 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 26 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{cc}
|
| 30 |
+
\frac{4}{3} & -1 \\
|
| 31 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 32 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 49 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 50 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\frac{4}{3} & -1 \\
|
| 55 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 56 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{cc}
|
| 60 |
+
\_ & \_ \\
|
| 61 |
+
\_ & \_ \\
|
| 62 |
+
\_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 73 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 74 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{cc}
|
| 78 |
+
\frac{4}{3} & -1 \\
|
| 79 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 80 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{cc}
|
| 84 |
+
\_ & \_ \\
|
| 85 |
+
\_ & \_ \\
|
| 86 |
+
\_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{6}\right)\, \times \, \frac{4}{3}+\frac{5 (-11)}{6\ 6}-\frac{2}{3\ 3}=-\frac{119}{36}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 102 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 103 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{cc}
|
| 107 |
+
\frac{4}{3} & -1 \\
|
| 108 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 109 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{cc}
|
| 113 |
+
\fbox{$-\frac{119}{36}$} & \_ \\
|
| 114 |
+
\_ & \_ \\
|
| 115 |
+
\_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 126 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 127 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
\frac{4}{3} & -1 \\
|
| 132 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 133 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{cc}
|
| 137 |
+
-\frac{119}{36} & \_ \\
|
| 138 |
+
\_ & \_ \\
|
| 139 |
+
\_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{6}\right)\, (-1)+\frac{5 (-5)}{6\ 6}+\frac{11}{3\ 6}=\frac{13}{12}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 155 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 156 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{cc}
|
| 160 |
+
\frac{4}{3} & -1 \\
|
| 161 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 162 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{cc}
|
| 166 |
+
-\frac{119}{36} & \fbox{$\frac{13}{12}$} \\
|
| 167 |
+
\_ & \_ \\
|
| 168 |
+
\_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 179 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 180 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{cc}
|
| 184 |
+
\frac{4}{3} & -1 \\
|
| 185 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 186 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
-\frac{119}{36} & \frac{13}{12} \\
|
| 191 |
+
\_ & \_ \\
|
| 192 |
+
\_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2\ 4}{3\ 3}+\left(-\frac{8}{3}\right)\, \left(-\frac{11}{6}\right)+\frac{2}{3\ 3}=6. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 208 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 209 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{cc}
|
| 213 |
+
\frac{4}{3} & -1 \\
|
| 214 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 215 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{cc}
|
| 219 |
+
-\frac{119}{36} & \frac{13}{12} \\
|
| 220 |
+
\fbox{$6$} & \_ \\
|
| 221 |
+
\_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 232 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 233 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{cc}
|
| 237 |
+
\frac{4}{3} & -1 \\
|
| 238 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 239 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{cc}
|
| 243 |
+
-\frac{119}{36} & \frac{13}{12} \\
|
| 244 |
+
6 & \_ \\
|
| 245 |
+
\_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2 (-1)}{3}+\left(-\frac{8}{3}\right)\, \left(-\frac{5}{6}\right)+\frac{1}{3} \left(-\frac{11}{6}\right)=\frac{17}{18}. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 261 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 262 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{cc}
|
| 266 |
+
\frac{4}{3} & -1 \\
|
| 267 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 268 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{cc}
|
| 272 |
+
-\frac{119}{36} & \frac{13}{12} \\
|
| 273 |
+
6 & \fbox{$\frac{17}{18}$} \\
|
| 274 |
+
\_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 285 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 286 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{cc}
|
| 290 |
+
\frac{4}{3} & -1 \\
|
| 291 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 292 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{cc}
|
| 296 |
+
-\frac{119}{36} & \frac{13}{12} \\
|
| 297 |
+
6 & \frac{17}{18} \\
|
| 298 |
+
\_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{8\ 4}{3\ 3}+\left(-\frac{13}{6}\right)\, \left(-\frac{11}{6}\right)-\frac{2}{3}=\frac{247}{36}. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 314 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 315 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{cc}
|
| 319 |
+
\frac{4}{3} & -1 \\
|
| 320 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 321 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{cc}
|
| 325 |
+
-\frac{119}{36} & \frac{13}{12} \\
|
| 326 |
+
6 & \frac{17}{18} \\
|
| 327 |
+
\fbox{$\frac{247}{36}$} & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 338 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 339 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{cc}
|
| 343 |
+
\frac{4}{3} & -1 \\
|
| 344 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 345 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{cc}
|
| 349 |
+
-\frac{119}{36} & \frac{13}{12} \\
|
| 350 |
+
6 & \frac{17}{18} \\
|
| 351 |
+
\frac{247}{36} & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{8 (-1)}{3}+\left(-\frac{13}{6}\right)\, \left(-\frac{5}{6}\right)+\frac{11}{6}=\frac{35}{36}. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\fbox{$
|
| 365 |
+
\begin{array}{ll}
|
| 366 |
+
\text{Answer:} & \\
|
| 367 |
+
\text{} & \left(
|
| 368 |
+
\begin{array}{ccc}
|
| 369 |
+
-\frac{7}{6} & \frac{5}{6} & \frac{1}{3} \\
|
| 370 |
+
\frac{2}{3} & -\frac{8}{3} & -\frac{1}{3} \\
|
| 371 |
+
\frac{8}{3} & -\frac{13}{6} & 1 \\
|
| 372 |
+
\end{array}
|
| 373 |
+
\right).\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
\frac{4}{3} & -1 \\
|
| 376 |
+
-\frac{11}{6} & -\frac{5}{6} \\
|
| 377 |
+
-\frac{2}{3} & \frac{11}{6} \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right)=\left(
|
| 380 |
+
\begin{array}{cc}
|
| 381 |
+
-\frac{119}{36} & \frac{13}{12} \\
|
| 382 |
+
6 & \frac{17}{18} \\
|
| 383 |
+
\frac{247}{36} & \fbox{$\frac{35}{36}$} \\
|
| 384 |
+
\end{array}
|
| 385 |
+
\right) \\
|
| 386 |
+
\end{array}
|
| 387 |
+
$} \\
|
| 388 |
+
\end{array}
|
| 389 |
+
\\
|
| 390 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3709.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 6 |
+
-2 & -\frac{5}{3} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
1 & -2 & \frac{7}{3} \\
|
| 12 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 23 |
+
-2 & -\frac{5}{3} \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
1 & -2 & \frac{7}{3} \\
|
| 28 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 45 |
+
-2 & -\frac{5}{3} \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
1 & -2 & \frac{7}{3} \\
|
| 50 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 66 |
+
-2 & -\frac{5}{3} \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
1 & -2 & \frac{7}{3} \\
|
| 71 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{3} (-1)+\frac{1}{3} \left(-\frac{1}{3}\right)=-\frac{4}{9}. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 92 |
+
-2 & -\frac{5}{3} \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
1 & -2 & \frac{7}{3} \\
|
| 97 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$-\frac{4}{9}$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 113 |
+
-2 & -\frac{5}{3} \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
1 & -2 & \frac{7}{3} \\
|
| 118 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-\frac{4}{9} & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2}{3}-\frac{3}{3}=-\frac{1}{3}. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 139 |
+
-2 & -\frac{5}{3} \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
1 & -2 & \frac{7}{3} \\
|
| 144 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
-\frac{4}{9} & \fbox{$-\frac{1}{3}$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 160 |
+
-2 & -\frac{5}{3} \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
1 & -2 & \frac{7}{3} \\
|
| 165 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
-\frac{4}{9} & -\frac{1}{3} & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{3} \left(-\frac{7}{3}\right)+\frac{1}{3\ 3}=-\frac{2}{3}. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 186 |
+
-2 & -\frac{5}{3} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
1 & -2 & \frac{7}{3} \\
|
| 191 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
-\frac{4}{9} & -\frac{1}{3} & \fbox{$-\frac{2}{3}$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 207 |
+
-2 & -\frac{5}{3} \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
1 & -2 & \frac{7}{3} \\
|
| 212 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
-\frac{4}{9} & -\frac{1}{3} & -\frac{2}{3} \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 1+\frac{5}{3\ 3}=-\frac{13}{9}. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 233 |
+
-2 & -\frac{5}{3} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
1 & -2 & \frac{7}{3} \\
|
| 238 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-\frac{4}{9} & -\frac{1}{3} & -\frac{2}{3} \\
|
| 243 |
+
\fbox{$-\frac{13}{9}$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 254 |
+
-2 & -\frac{5}{3} \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
1 & -2 & \frac{7}{3} \\
|
| 259 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
-\frac{4}{9} & -\frac{1}{3} & -\frac{2}{3} \\
|
| 264 |
+
-\frac{13}{9} & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+\left(-\frac{5}{3}\right)\, (-3)=9. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 280 |
+
-2 & -\frac{5}{3} \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
1 & -2 & \frac{7}{3} \\
|
| 285 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
-\frac{4}{9} & -\frac{1}{3} & -\frac{2}{3} \\
|
| 290 |
+
-\frac{13}{9} & \fbox{$9$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 301 |
+
-2 & -\frac{5}{3} \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
1 & -2 & \frac{7}{3} \\
|
| 306 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
-\frac{4}{9} & -\frac{1}{3} & -\frac{2}{3} \\
|
| 311 |
+
-\frac{13}{9} & 9 & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, \frac{7}{3}+\left(-\frac{5}{3}\right)\, \times \, \frac{1}{3}=-\frac{47}{9}. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
-\frac{1}{3} & \frac{1}{3} \\
|
| 330 |
+
-2 & -\frac{5}{3} \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
1 & -2 & \frac{7}{3} \\
|
| 335 |
+
-\frac{1}{3} & -3 & \frac{1}{3} \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
-\frac{4}{9} & -\frac{1}{3} & -\frac{2}{3} \\
|
| 340 |
+
-\frac{13}{9} & 9 & \fbox{$-\frac{47}{9}$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|