Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pretraining/mathematica/geometry/solids/10403.txt +17 -0
- pretraining/mathematica/geometry/solids/10637.txt +15 -0
- pretraining/mathematica/geometry/solids/1125.txt +19 -0
- pretraining/mathematica/geometry/solids/13225.txt +19 -0
- pretraining/mathematica/geometry/solids/14573.txt +15 -0
- pretraining/mathematica/geometry/solids/15700.txt +15 -0
- pretraining/mathematica/geometry/solids/19583.txt +77 -0
- pretraining/mathematica/geometry/solids/19870.txt +15 -0
- pretraining/mathematica/geometry/solids/22420.txt +14 -0
- pretraining/mathematica/geometry/solids/22547.txt +14 -0
- pretraining/mathematica/geometry/solids/24321.txt +20 -0
- pretraining/mathematica/geometry/solids/26253.txt +20 -0
- pretraining/mathematica/geometry/solids/26276.txt +18 -0
- pretraining/mathematica/geometry/solids/2681.txt +16 -0
- pretraining/mathematica/geometry/solids/27848.txt +15 -0
- pretraining/mathematica/geometry/solids/28086.txt +17 -0
- pretraining/mathematica/geometry/solids/28570.txt +18 -0
- pretraining/mathematica/geometry/solids/30401.txt +17 -0
- pretraining/mathematica/geometry/solids/31232.txt +14 -0
- pretraining/mathematica/geometry/solids/32177.txt +15 -0
- pretraining/mathematica/geometry/solids/32186.txt +13 -0
- pretraining/mathematica/geometry/solids/32500.txt +15 -0
- pretraining/mathematica/geometry/solids/32778.txt +14 -0
- pretraining/mathematica/geometry/solids/33446.txt +16 -0
- pretraining/mathematica/geometry/solids/35631.txt +17 -0
- pretraining/mathematica/geometry/solids/36988.txt +15 -0
- pretraining/mathematica/geometry/solids/37187.txt +21 -0
- pretraining/mathematica/geometry/solids/37946.txt +20 -0
- pretraining/mathematica/geometry/solids/38952.txt +19 -0
- pretraining/mathematica/geometry/solids/41691.txt +20 -0
- pretraining/mathematica/geometry/solids/41966.txt +15 -0
- pretraining/mathematica/geometry/solids/42211.txt +19 -0
- pretraining/mathematica/geometry/solids/42352.txt +19 -0
- pretraining/mathematica/geometry/solids/42724.txt +18 -0
- pretraining/mathematica/geometry/solids/43559.txt +18 -0
- pretraining/mathematica/geometry/solids/47225.txt +13 -0
- pretraining/mathematica/geometry/solids/47674.txt +5 -0
- pretraining/mathematica/geometry/solids/48383.txt +15 -0
- pretraining/mathematica/geometry/solids/52500.txt +16 -0
- pretraining/mathematica/geometry/solids/52600.txt +6 -0
- pretraining/mathematica/geometry/solids/54182.txt +16 -0
- pretraining/mathematica/geometry/solids/5442.txt +19 -0
- pretraining/mathematica/geometry/solids/56677.txt +19 -0
- pretraining/mathematica/geometry/solids/56783.txt +13 -0
- pretraining/mathematica/geometry/solids/57100.txt +99 -0
- pretraining/mathematica/geometry/solids/57829.txt +15 -0
- pretraining/mathematica/geometry/solids/58247.txt +15 -0
- pretraining/mathematica/geometry/solids/60347.txt +14 -0
- pretraining/mathematica/geometry/solids/60963.txt +14 -0
- pretraining/mathematica/geometry/solids/61810.txt +16 -0
pretraining/mathematica/geometry/solids/10403.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.533 & 0.273 & 0.215 \\
|
| 5 |
+
0.176 & 0.838 & 0.849 \\
|
| 6 |
+
0.011 & 0.241 & 0.233 \\
|
| 7 |
+
0.311 & 0.249 & 0.12 \\
|
| 8 |
+
0.013 & 0.956 & 0.788 \\
|
| 9 |
+
0.543 & 0.441 & 0.753 \\
|
| 10 |
+
0.628 & 0.956 & 0.341 \\
|
| 11 |
+
0.038 & 0.559 & 0.745 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.11$
|
| 16 |
+
Solid Angle: $1.74$
|
| 17 |
+
Surface Area: $1.49$
|
pretraining/mathematica/geometry/solids/10637.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.326 & 0.731 & 0.387 \\
|
| 5 |
+
0.985 & 0.577 & 0.637 \\
|
| 6 |
+
0.163 & 0.766 & 0.823 \\
|
| 7 |
+
0.201 & 0.509 & 0.907 \\
|
| 8 |
+
0.364 & 0.243 & 0.492 \\
|
| 9 |
+
0.169 & 0.549 & 0.402 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.05$
|
| 14 |
+
Surface Area: $0.89$
|
| 15 |
+
Solid Angle: $1.81$
|
pretraining/mathematica/geometry/solids/1125.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-\frac{1}{4} \sqrt{2+\sqrt{3}} & \frac{1}{8} \left(\sqrt{2}-\sqrt{6}\right) & \frac{1}{2 \sqrt{2}} \\
|
| 5 |
+
-\frac{1}{4} \sqrt{2+\sqrt{3}} & \frac{\sqrt{2-\sqrt{3}}}{4} & -\frac{1}{2 \sqrt{2}} \\
|
| 6 |
+
-\frac{1}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} \\
|
| 7 |
+
-\frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} \\
|
| 8 |
+
\frac{1}{8} \left(\sqrt{2}-\sqrt{6}\right) & -\frac{1}{4} \sqrt{2+\sqrt{3}} & \frac{1}{2 \sqrt{2}} \\
|
| 9 |
+
\frac{1}{8} \left(\sqrt{2}-\sqrt{6}\right) & \frac{\sqrt{2+\sqrt{3}}}{4} & -\frac{1}{2 \sqrt{2}} \\
|
| 10 |
+
\frac{\sqrt{2-\sqrt{3}}}{4} & -\frac{1}{4} \sqrt{2+\sqrt{3}} & -\frac{1}{2 \sqrt{2}} \\
|
| 11 |
+
\frac{\sqrt{2-\sqrt{3}}}{4} & \frac{\sqrt{2+\sqrt{3}}}{4} & \frac{1}{2 \sqrt{2}} \\
|
| 12 |
+
\frac{1}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} \\
|
| 13 |
+
\frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} \\
|
| 14 |
+
\frac{\sqrt{2+\sqrt{3}}}{4} & \frac{1}{8} \left(\sqrt{2}-\sqrt{6}\right) & -\frac{1}{2 \sqrt{2}} \\
|
| 15 |
+
\frac{\sqrt{2+\sqrt{3}}}{4} & \frac{\sqrt{2-\sqrt{3}}}{4} & \frac{1}{2 \sqrt{2}} \\
|
| 16 |
+
\end{array}
|
| 17 |
+
\right)$. Determine the Centroid.
|
| 18 |
+
Answer:
|
| 19 |
+
$\{0,0,0\}$
|
pretraining/mathematica/geometry/solids/13225.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.953 & 0.843 & 0.735 \\
|
| 5 |
+
0.082 & 0.661 & 0.148 \\
|
| 6 |
+
0.01 & 0.05 & 0.314 \\
|
| 7 |
+
0.673 & 0.636 & 0.158 \\
|
| 8 |
+
0.417 & 0.901 & 0.832 \\
|
| 9 |
+
0.634 & 0.498 & 0.29 \\
|
| 10 |
+
0.316 & 0.893 & 0.945 \\
|
| 11 |
+
0.719 & 0.566 & 0.784 \\
|
| 12 |
+
0.048 & 0.453 & 0.111 \\
|
| 13 |
+
0.812 & 0.919 & 0.21 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $1.94$
|
| 18 |
+
Volume: $0.17$
|
| 19 |
+
Solid Angle: $1.18$
|
pretraining/mathematica/geometry/solids/14573.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.829 & 0.996 & 0.191 \\
|
| 5 |
+
0.885 & 0.411 & 0.785 \\
|
| 6 |
+
0.197 & 0.295 & 0.687 \\
|
| 7 |
+
0.955 & 0.742 & 0.28 \\
|
| 8 |
+
0.817 & 0.772 & 0.215 \\
|
| 9 |
+
0.386 & 0.582 & 0.421 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $0.82$
|
| 14 |
+
Solid Angle: $0.46$
|
| 15 |
+
Volume: $0.02$
|
pretraining/mathematica/geometry/solids/15700.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.424 & 0.826 & 0.876 \\
|
| 5 |
+
0.664 & 0.373 & 0.057 \\
|
| 6 |
+
0.789 & 0.416 & 0.182 \\
|
| 7 |
+
0.82 & 0.491 & 0.524 \\
|
| 8 |
+
0.923 & 0.352 & 0.587 \\
|
| 9 |
+
0.111 & 0.926 & 0.795 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.02$
|
| 14 |
+
Surface Area: $0.81$
|
| 15 |
+
Solid Angle: $0.44$
|
pretraining/mathematica/geometry/solids/19583.txt
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
\frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) \\
|
| 5 |
+
\frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \\
|
| 6 |
+
\frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \\
|
| 7 |
+
\frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} \\
|
| 8 |
+
-\frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\
|
| 9 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\
|
| 10 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(1+\sqrt{5}\right) \\
|
| 11 |
+
\frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \\
|
| 12 |
+
-1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\
|
| 13 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) \\
|
| 14 |
+
0 & \frac{1}{4} \left(5+3 \sqrt{5}\right) & \frac{1}{2} \\
|
| 15 |
+
\frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) \\
|
| 16 |
+
0 & \frac{1}{4} \left(5+3 \sqrt{5}\right) & -\frac{1}{2} \\
|
| 17 |
+
\frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \\
|
| 18 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\
|
| 19 |
+
0 & \frac{1}{4} \left(-5-3 \sqrt{5}\right) & \frac{1}{2} \\
|
| 20 |
+
\frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} \\
|
| 21 |
+
\frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\
|
| 22 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(-1-\sqrt{5}\right) \\
|
| 23 |
+
-\frac{1}{2} & 0 & \frac{1}{4} \left(-5-3 \sqrt{5}\right) \\
|
| 24 |
+
0 & \frac{1}{4} \left(-5-3 \sqrt{5}\right) & -\frac{1}{2} \\
|
| 25 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) \\
|
| 26 |
+
\frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \\
|
| 27 |
+
-\frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\
|
| 28 |
+
\frac{1}{2} & 0 & \frac{1}{4} \left(-5-3 \sqrt{5}\right) \\
|
| 29 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) \\
|
| 30 |
+
-\frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\
|
| 31 |
+
\frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\
|
| 32 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) \\
|
| 33 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(-1-\sqrt{5}\right) \\
|
| 34 |
+
\frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} \\
|
| 35 |
+
\frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) \\
|
| 36 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\
|
| 37 |
+
\frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\
|
| 38 |
+
-1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\
|
| 39 |
+
\frac{1}{4} \left(5+3 \sqrt{5}\right) & \frac{1}{2} & 0 \\
|
| 40 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) \\
|
| 41 |
+
\frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\
|
| 42 |
+
\frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\
|
| 43 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) \\
|
| 44 |
+
\frac{1}{4} \left(-5-3 \sqrt{5}\right) & -\frac{1}{2} & 0 \\
|
| 45 |
+
\frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\
|
| 46 |
+
-1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\
|
| 47 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) \\
|
| 48 |
+
\frac{1}{4} \left(-5-3 \sqrt{5}\right) & \frac{1}{2} & 0 \\
|
| 49 |
+
\frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) \\
|
| 50 |
+
\frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \\
|
| 51 |
+
\frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \\
|
| 52 |
+
\frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} \\
|
| 53 |
+
\frac{1}{4} \left(5+3 \sqrt{5}\right) & -\frac{1}{2} & 0 \\
|
| 54 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) \\
|
| 55 |
+
\frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \\
|
| 56 |
+
-\frac{1}{2} & 0 & \frac{1}{4} \left(5+3 \sqrt{5}\right) \\
|
| 57 |
+
\frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\
|
| 58 |
+
-1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\
|
| 59 |
+
-\frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\
|
| 60 |
+
\frac{1}{2} & 0 & \frac{1}{4} \left(5+3 \sqrt{5}\right) \\
|
| 61 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\
|
| 62 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(1+\sqrt{5}\right) \\
|
| 63 |
+
\frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\
|
| 64 |
+
\frac{3}{4}+\frac{13}{4 \sqrt{5}} & \frac{1}{2} & \frac{3}{10} \left(5+\sqrt{5}\right) \\
|
| 65 |
+
\frac{3}{4}+\frac{13}{4 \sqrt{5}} & -\frac{1}{2} & \frac{3}{10} \left(5+\sqrt{5}\right) \\
|
| 66 |
+
\frac{5}{4}+\frac{13}{4 \sqrt{5}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{20} \left(25+\sqrt{5}\right) \\
|
| 67 |
+
1+\frac{9}{2 \sqrt{5}} & 0 & \frac{1}{20} \left(15+\sqrt{5}\right) \\
|
| 68 |
+
\frac{5}{4}+\frac{13}{4 \sqrt{5}} & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{20} \left(25+\sqrt{5}\right) \\
|
| 69 |
+
-\frac{3}{4}-\frac{13}{4 \sqrt{5}} & \frac{1}{2} & \frac{3}{10} \left(5+\sqrt{5}\right) \\
|
| 70 |
+
-\frac{3}{4}-\frac{13}{4 \sqrt{5}} & -\frac{1}{2} & \frac{3}{10} \left(5+\sqrt{5}\right) \\
|
| 71 |
+
-\frac{5}{4}-\frac{13}{4 \sqrt{5}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{20} \left(25+\sqrt{5}\right) \\
|
| 72 |
+
-1-\frac{9}{2 \sqrt{5}} & 0 & \frac{1}{20} \left(15+\sqrt{5}\right) \\
|
| 73 |
+
-\frac{5}{4}-\frac{13}{4 \sqrt{5}} & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{20} \left(25+\sqrt{5}\right) \\
|
| 74 |
+
\end{array}
|
| 75 |
+
\right)$. Determine the SurfaceArea.
|
| 76 |
+
Answer:
|
| 77 |
+
$\frac{1}{2} \left(20+15 \sqrt{3}+50 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)$
|
pretraining/mathematica/geometry/solids/19870.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.682 & 0.384 & 0.234 \\
|
| 5 |
+
0.935 & 0.431 & 0.951 \\
|
| 6 |
+
0.851 & 0.177 & 0.746 \\
|
| 7 |
+
0.877 & 0.579 & 0.577 \\
|
| 8 |
+
0.028 & 0.474 & 0.714 \\
|
| 9 |
+
0.14 & 0.181 & 0.526 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $1.09$
|
| 14 |
+
Volume: $0.06$
|
| 15 |
+
Solid Angle: $1.02$
|
pretraining/mathematica/geometry/solids/22420.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.738 & 0.808 & 0.683 \\
|
| 5 |
+
0.777 & 0.329 & 0.728 \\
|
| 6 |
+
0.913 & 0.51 & 0.611 \\
|
| 7 |
+
0.407 & 0.9 & 0.938 \\
|
| 8 |
+
0.779 & 0.559 & 0.047 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.68$
|
| 13 |
+
Volume: $0.02$
|
| 14 |
+
Solid Angle: $2.55$
|
pretraining/mathematica/geometry/solids/22547.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.138 & 0.392 & 0.973 \\
|
| 5 |
+
0.808 & 0.238 & 0.18 \\
|
| 6 |
+
0.781 & 0.944 & 0.931 \\
|
| 7 |
+
0.789 & 0.5 & 0.52 \\
|
| 8 |
+
0.212 & 0.96 & 0.716 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.06$
|
| 13 |
+
Surface Area: $1.23$
|
| 14 |
+
Solid Angle: $0.55$
|
pretraining/mathematica/geometry/solids/24321.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.207 & 0.901 & 0.595 \\
|
| 5 |
+
0.976 & 0.894 & 0.99 \\
|
| 6 |
+
0.244 & 0.157 & 0.405 \\
|
| 7 |
+
0.989 & 0.635 & 0.494 \\
|
| 8 |
+
0.474 & 0.953 & 0.299 \\
|
| 9 |
+
0.419 & 0.759 & 0.285 \\
|
| 10 |
+
0.305 & 0.316 & 0.728 \\
|
| 11 |
+
0.722 & 0.034 & 0.351 \\
|
| 12 |
+
0.835 & 0.273 & 0.756 \\
|
| 13 |
+
0.51 & 0.972 & 0.892 \\
|
| 14 |
+
0.621 & 0.332 & 0.893 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 17 |
+
Answer:
|
| 18 |
+
Surface Area: $2.08$
|
| 19 |
+
Volume: $0.22$
|
| 20 |
+
Solid Angle: $2.12$
|
pretraining/mathematica/geometry/solids/26253.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.984 & 0.386 & 0.72 \\
|
| 5 |
+
0.269 & 0.492 & 0.843 \\
|
| 6 |
+
0.225 & 0.936 & 0.221 \\
|
| 7 |
+
0.755 & 0.315 & 0.816 \\
|
| 8 |
+
0.334 & 0.997 & 0.966 \\
|
| 9 |
+
0.248 & 0.333 & 0.198 \\
|
| 10 |
+
0.925 & 0.457 & 0.432 \\
|
| 11 |
+
0.734 & 0.862 & 0.461 \\
|
| 12 |
+
0.315 & 0.927 & 0.045 \\
|
| 13 |
+
0.474 & 0.214 & 0.082 \\
|
| 14 |
+
0.967 & 0.44 & 0.954 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 17 |
+
Answer:
|
| 18 |
+
Solid Angle: $2.55$
|
| 19 |
+
Surface Area: $2.2$
|
| 20 |
+
Volume: $0.23$
|
pretraining/mathematica/geometry/solids/26276.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.038 & 0.854 & 0.853 \\
|
| 5 |
+
0.567 & 0.032 & 0.75 \\
|
| 6 |
+
0.94 & 0.204 & 0.338 \\
|
| 7 |
+
0.158 & 0.667 & 0.207 \\
|
| 8 |
+
0.666 & 0.638 & 0.562 \\
|
| 9 |
+
0.016 & 0.764 & 0.827 \\
|
| 10 |
+
0.862 & 0.467 & 0.279 \\
|
| 11 |
+
0.271 & 0.2 & 0.449 \\
|
| 12 |
+
0.45 & 0.4 & 0.944 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.65$
|
| 17 |
+
Solid Angle: $1.04$
|
| 18 |
+
Volume: $0.14$
|
pretraining/mathematica/geometry/solids/2681.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.478 & 0.256 & 0.414 \\
|
| 5 |
+
0.496 & 0.722 & 0.023 \\
|
| 6 |
+
0.169 & 0.452 & 0.72 \\
|
| 7 |
+
0.709 & 0.346 & 0.047 \\
|
| 8 |
+
0.345 & 0.744 & 0.155 \\
|
| 9 |
+
0.871 & 0.724 & 0.014 \\
|
| 10 |
+
0.815 & 0.473 & 0.322 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Solid Angle: $1.65$
|
| 15 |
+
Surface Area: $0.88$
|
| 16 |
+
Volume: $0.04$
|
pretraining/mathematica/geometry/solids/27848.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.251 & 0.382 & 0.863 \\
|
| 5 |
+
0.619 & 0.288 & 0.291 \\
|
| 6 |
+
0.909 & 0.965 & 0.848 \\
|
| 7 |
+
0.677 & 0.37 & 0.809 \\
|
| 8 |
+
0.825 & 0.193 & 0.387 \\
|
| 9 |
+
0.335 & 0.289 & 0.596 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $0.91$
|
| 14 |
+
Volume: $0.04$
|
| 15 |
+
Solid Angle: $0.54$
|
pretraining/mathematica/geometry/solids/28086.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.248 & 0.749 & 0.539 \\
|
| 5 |
+
0.334 & 0. & 0.487 \\
|
| 6 |
+
0.127 & 0.216 & 0.882 \\
|
| 7 |
+
0.632 & 0.57 & 0.057 \\
|
| 8 |
+
0.671 & 0.913 & 0.278 \\
|
| 9 |
+
0.568 & 0.112 & 0.54 \\
|
| 10 |
+
0.721 & 0.458 & 0.864 \\
|
| 11 |
+
0.562 & 0.043 & 0.899 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $1.57$
|
| 16 |
+
Solid Angle: $1.69$
|
| 17 |
+
Volume: $0.12$
|
pretraining/mathematica/geometry/solids/28570.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.691 & 0.649 & 0.727 \\
|
| 5 |
+
0.808 & 0.123 & 0.345 \\
|
| 6 |
+
0.366 & 0.364 & 0.653 \\
|
| 7 |
+
0.88 & 0.14 & 0.983 \\
|
| 8 |
+
0.612 & 0.68 & 0.92 \\
|
| 9 |
+
0.433 & 0.39 & 0.81 \\
|
| 10 |
+
0.648 & 0.82 & 0.094 \\
|
| 11 |
+
0.664 & 0.398 & 0.961 \\
|
| 12 |
+
0.363 & 0.553 & 0.15 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.1$
|
| 17 |
+
Solid Angle: $5.17$
|
| 18 |
+
Surface Area: $1.38$
|
pretraining/mathematica/geometry/solids/30401.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.346 & 0.984 & 0.993 \\
|
| 5 |
+
0.943 & 0.364 & 0.754 \\
|
| 6 |
+
0.244 & 0.022 & 0.508 \\
|
| 7 |
+
0.403 & 0.797 & 0.13 \\
|
| 8 |
+
0.711 & 0.678 & 0.048 \\
|
| 9 |
+
0.836 & 0.419 & 0.554 \\
|
| 10 |
+
0.907 & 0.492 & 0.993 \\
|
| 11 |
+
0.233 & 0.038 & 0.761 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.18$
|
| 16 |
+
Surface Area: $2.05$
|
| 17 |
+
Solid Angle: $0.76$
|
pretraining/mathematica/geometry/solids/31232.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.63 & 0.464 & 0.652 \\
|
| 5 |
+
0.319 & 0.517 & 0.376 \\
|
| 6 |
+
0.844 & 0.592 & 0.732 \\
|
| 7 |
+
0.88 & 0.57 & 0.656 \\
|
| 8 |
+
0.004 & 0.729 & 0.2 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.$
|
| 13 |
+
Solid Angle: $1.1$
|
| 14 |
+
Surface Area: $0.3$
|
pretraining/mathematica/geometry/solids/32177.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.894 & 0.19 & 0.505 \\
|
| 5 |
+
0.071 & 0.899 & 0.56 \\
|
| 6 |
+
0.005 & 0.807 & 0.937 \\
|
| 7 |
+
0.963 & 0.292 & 0.051 \\
|
| 8 |
+
0.968 & 0.883 & 0.239 \\
|
| 9 |
+
0.247 & 0.563 & 0.9 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $0.88$
|
| 14 |
+
Surface Area: $1.61$
|
| 15 |
+
Volume: $0.09$
|
pretraining/mathematica/geometry/solids/32186.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.414 & 0.3 & 0.51 \\
|
| 5 |
+
0.951 & 0.128 & 0.502 \\
|
| 6 |
+
0.511 & 0.929 & 0.96 \\
|
| 7 |
+
0.837 & 0.223 & 0.471 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.15$
|
| 12 |
+
Surface Area: $0.46$
|
| 13 |
+
Volume: $0.$
|
pretraining/mathematica/geometry/solids/32500.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.007 & 0.121 & 0.156 \\
|
| 5 |
+
0.729 & 0.932 & 0.337 \\
|
| 6 |
+
0.927 & 0.755 & 0.795 \\
|
| 7 |
+
0.693 & 0.186 & 0.546 \\
|
| 8 |
+
0.268 & 0.091 & 0.393 \\
|
| 9 |
+
0.861 & 0.522 & 0.919 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $0.15$
|
| 14 |
+
Volume: $0.04$
|
| 15 |
+
Surface Area: $1.22$
|
pretraining/mathematica/geometry/solids/32778.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.242 & 0.209 & 0.964 \\
|
| 5 |
+
0.261 & 0.647 & 0.113 \\
|
| 6 |
+
0.079 & 0.511 & 0.812 \\
|
| 7 |
+
0.536 & 0.592 & 0.015 \\
|
| 8 |
+
0.987 & 0.108 & 0.211 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.02$
|
| 13 |
+
Surface Area: $1.22$
|
| 14 |
+
Solid Angle: $0.16$
|
pretraining/mathematica/geometry/solids/33446.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.866 & 0.262 & 0.368 \\
|
| 5 |
+
0.331 & 0.256 & 0.489 \\
|
| 6 |
+
0.223 & 0.172 & 0.913 \\
|
| 7 |
+
0.368 & 0.909 & 0.507 \\
|
| 8 |
+
0.253 & 0.493 & 0.073 \\
|
| 9 |
+
0.081 & 0.4 & 0.75 \\
|
| 10 |
+
0.756 & 0.635 & 0.137 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.09$
|
| 15 |
+
Surface Area: $1.36$
|
| 16 |
+
Solid Angle: $0.86$
|
pretraining/mathematica/geometry/solids/35631.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.687 & 0.546 & 0.353 \\
|
| 5 |
+
0.767 & 0.581 & 0.818 \\
|
| 6 |
+
0.093 & 0.136 & 0.563 \\
|
| 7 |
+
0.351 & 0.39 & 0.433 \\
|
| 8 |
+
0.414 & 0.12 & 0.482 \\
|
| 9 |
+
0.795 & 0.911 & 0.368 \\
|
| 10 |
+
0.463 & 0.182 & 0.539 \\
|
| 11 |
+
0.871 & 0.391 & 0.626 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.04$
|
| 16 |
+
Surface Area: $0.84$
|
| 17 |
+
Solid Angle: $3.47$
|
pretraining/mathematica/geometry/solids/36988.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.48 & 0.871 & 0.132 \\
|
| 5 |
+
0.823 & 0.176 & 0.774 \\
|
| 6 |
+
0.763 & 0.422 & 0.919 \\
|
| 7 |
+
0.941 & 0.515 & 0.244 \\
|
| 8 |
+
0.979 & 0.425 & 0.807 \\
|
| 9 |
+
0.146 & 0.16 & 0.041 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.09$
|
| 14 |
+
Solid Angle: $0.72$
|
| 15 |
+
Surface Area: $1.41$
|
pretraining/mathematica/geometry/solids/37187.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-1 & 0 & -\frac{1}{2} \\
|
| 5 |
+
-1 & 0 & \frac{1}{2} \\
|
| 6 |
+
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
|
| 7 |
+
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{2} \\
|
| 8 |
+
-\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\
|
| 9 |
+
-\frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
|
| 10 |
+
\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
|
| 11 |
+
\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{2} \\
|
| 12 |
+
\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\
|
| 13 |
+
\frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
|
| 14 |
+
1 & 0 & -\frac{1}{2} \\
|
| 15 |
+
1 & 0 & \frac{1}{2} \\
|
| 16 |
+
\frac{1}{4} \left(-3-\sqrt{6}\right) & \frac{1}{4} \sqrt{5+2 \sqrt{6}} & 0 \\
|
| 17 |
+
\frac{1}{4} \left(3+\sqrt{6}\right) & \frac{1}{4} \sqrt{5+2 \sqrt{6}} & 0 \\
|
| 18 |
+
\end{array}
|
| 19 |
+
\right)$. Determine the EdgeCount.
|
| 20 |
+
Answer:
|
| 21 |
+
$26$
|
pretraining/mathematica/geometry/solids/37946.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.864 & 0.643 & 0.707 \\
|
| 5 |
+
0.798 & 0.187 & 0.46 \\
|
| 6 |
+
0.234 & 0.205 & 0.109 \\
|
| 7 |
+
0.811 & 0.146 & 0.862 \\
|
| 8 |
+
0.138 & 0.039 & 0.418 \\
|
| 9 |
+
0.239 & 0.795 & 0.24 \\
|
| 10 |
+
0.985 & 0.482 & 0.852 \\
|
| 11 |
+
0.106 & 0.933 & 0.648 \\
|
| 12 |
+
0.866 & 0.241 & 0.326 \\
|
| 13 |
+
0.821 & 0.824 & 0.287 \\
|
| 14 |
+
0.209 & 0.341 & 0.113 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 17 |
+
Answer:
|
| 18 |
+
Solid Angle: $4.96$
|
| 19 |
+
Surface Area: $2.22$
|
| 20 |
+
Volume: $0.24$
|
pretraining/mathematica/geometry/solids/38952.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.915 & 0.736 & 0.564 \\
|
| 5 |
+
0.244 & 0.426 & 0.83 \\
|
| 6 |
+
0.14 & 0.188 & 0.033 \\
|
| 7 |
+
0.716 & 0.685 & 0.879 \\
|
| 8 |
+
0.312 & 0.883 & 0.047 \\
|
| 9 |
+
0.151 & 0.104 & 0.593 \\
|
| 10 |
+
0.202 & 0.522 & 0.024 \\
|
| 11 |
+
0.105 & 0.703 & 0.657 \\
|
| 12 |
+
0.357 & 0.999 & 0.52 \\
|
| 13 |
+
0.861 & 0.174 & 0.022 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Volume: $0.27$
|
| 18 |
+
Solid Angle: $2.01$
|
| 19 |
+
Surface Area: $2.39$
|
pretraining/mathematica/geometry/solids/41691.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.073 & 0.959 & 0.309 \\
|
| 5 |
+
0.026 & 0.947 & 0.271 \\
|
| 6 |
+
0.867 & 0.348 & 0.47 \\
|
| 7 |
+
0.226 & 0.43 & 0.866 \\
|
| 8 |
+
0.075 & 0.153 & 0.059 \\
|
| 9 |
+
0.235 & 0.509 & 0.019 \\
|
| 10 |
+
0.687 & 0.195 & 0.493 \\
|
| 11 |
+
0.196 & 0.983 & 0.628 \\
|
| 12 |
+
0.024 & 0.829 & 0.414 \\
|
| 13 |
+
0.773 & 0.662 & 0.872 \\
|
| 14 |
+
0.832 & 0.911 & 0.709 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 17 |
+
Answer:
|
| 18 |
+
Volume: $0.22$
|
| 19 |
+
Solid Angle: $4.03$
|
| 20 |
+
Surface Area: $2.15$
|
pretraining/mathematica/geometry/solids/41966.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.947 & 0.154 & 0.043 \\
|
| 5 |
+
0.593 & 0.374 & 0.313 \\
|
| 6 |
+
0.469 & 0.345 & 0.77 \\
|
| 7 |
+
0.238 & 0.894 & 0.61 \\
|
| 8 |
+
0.029 & 0.901 & 0.423 \\
|
| 9 |
+
0.262 & 0.852 & 0.991 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $1.13$
|
| 14 |
+
Volume: $0.04$
|
| 15 |
+
Solid Angle: $0.1$
|
pretraining/mathematica/geometry/solids/42211.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.763 & 0.511 & 0.768 \\
|
| 5 |
+
0.261 & 0.115 & 0.742 \\
|
| 6 |
+
0.216 & 0.37 & 0.172 \\
|
| 7 |
+
0.032 & 0.892 & 0.75 \\
|
| 8 |
+
0.537 & 0.926 & 0.002 \\
|
| 9 |
+
0.78 & 0.944 & 0.231 \\
|
| 10 |
+
0.126 & 0.078 & 0.974 \\
|
| 11 |
+
0.276 & 0.272 & 0.372 \\
|
| 12 |
+
0.229 & 0.852 & 0.954 \\
|
| 13 |
+
0.981 & 0.795 & 0.476 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $2.38$
|
| 18 |
+
Volume: $0.22$
|
| 19 |
+
Surface Area: $2.26$
|
pretraining/mathematica/geometry/solids/42352.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.657 & 0.622 & 0.113 \\
|
| 5 |
+
0.27 & 0.776 & 0.085 \\
|
| 6 |
+
0.901 & 0.623 & 0.954 \\
|
| 7 |
+
0.195 & 0.422 & 0.809 \\
|
| 8 |
+
0.327 & 0.618 & 0.846 \\
|
| 9 |
+
0.315 & 0.893 & 0.826 \\
|
| 10 |
+
0.286 & 0.813 & 0.074 \\
|
| 11 |
+
0.56 & 0.248 & 0.42 \\
|
| 12 |
+
0.081 & 0.633 & 0.462 \\
|
| 13 |
+
0.902 & 0.924 & 0.123 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $3.62$
|
| 18 |
+
Volume: $0.18$
|
| 19 |
+
Surface Area: $1.87$
|
pretraining/mathematica/geometry/solids/42724.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.879 & 0.199 & 0.1 \\
|
| 5 |
+
0.935 & 0.754 & 0.894 \\
|
| 6 |
+
0.824 & 0.686 & 0.244 \\
|
| 7 |
+
0.625 & 0.191 & 0.835 \\
|
| 8 |
+
0.144 & 0.754 & 0.575 \\
|
| 9 |
+
0.676 & 0.851 & 0.455 \\
|
| 10 |
+
0.424 & 0.185 & 0.58 \\
|
| 11 |
+
0.436 & 0.577 & 0.181 \\
|
| 12 |
+
0.584 & 0.523 & 0.952 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $0.93$
|
| 17 |
+
Surface Area: $1.7$
|
| 18 |
+
Volume: $0.17$
|
pretraining/mathematica/geometry/solids/43559.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.649 & 0.717 & 0.212 \\
|
| 5 |
+
0.025 & 0.268 & 0.372 \\
|
| 6 |
+
0.608 & 0.894 & 0.957 \\
|
| 7 |
+
0.25 & 0.735 & 0.006 \\
|
| 8 |
+
0.031 & 0.775 & 0.04 \\
|
| 9 |
+
0.723 & 0.588 & 0.844 \\
|
| 10 |
+
0.289 & 0.19 & 0.875 \\
|
| 11 |
+
0.304 & 0.736 & 0.782 \\
|
| 12 |
+
0.103 & 0.13 & 0.544 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $1.42$
|
| 17 |
+
Volume: $0.13$
|
| 18 |
+
Surface Area: $1.73$
|
pretraining/mathematica/geometry/solids/47225.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.482 & 0.827 & 0.444 \\
|
| 5 |
+
0.717 & 0.09 & 0.571 \\
|
| 6 |
+
0.422 & 0.168 & 0.335 \\
|
| 7 |
+
0.611 & 0.35 & 0.147 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Surface Area: $0.43$
|
| 12 |
+
Volume: $0.01$
|
| 13 |
+
Solid Angle: $0.13$
|
pretraining/mathematica/geometry/solids/47674.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
An ellipsoid centered at $\{-9.009,9.625,7.589\}$ has radii $\{5.837,9.789,0.137\}$. Estimate the ellipsoid's surface area and volume.
|
| 3 |
+
Answer:
|
| 4 |
+
Surface Area: $359.59$
|
| 5 |
+
Volume: $32.71$
|
pretraining/mathematica/geometry/solids/48383.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.098 & 0.215 & 0.079 \\
|
| 5 |
+
0.058 & 0.243 & 0.075 \\
|
| 6 |
+
0.113 & 0.525 & 0.941 \\
|
| 7 |
+
0.43 & 0.314 & 0.796 \\
|
| 8 |
+
0.057 & 0. & 0.121 \\
|
| 9 |
+
0.285 & 0.692 & 0.914 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $0.72$
|
| 14 |
+
Volume: $0.03$
|
| 15 |
+
Solid Angle: $2.83$
|
pretraining/mathematica/geometry/solids/52500.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.255 & 0.973 & 0.532 \\
|
| 5 |
+
0.882 & 0.463 & 0.099 \\
|
| 6 |
+
0.075 & 0.908 & 0.084 \\
|
| 7 |
+
0.727 & 0.489 & 0.875 \\
|
| 8 |
+
0.676 & 0.071 & 0.175 \\
|
| 9 |
+
0.366 & 0.683 & 0.812 \\
|
| 10 |
+
0.249 & 0.31 & 0.835 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Surface Area: $1.84$
|
| 15 |
+
Solid Angle: $1.64$
|
| 16 |
+
Volume: $0.16$
|
pretraining/mathematica/geometry/solids/52600.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A cone with radius $1.666$ has its base centered at$\{7.487,4.707,5.466\}$ and its tip is at $\{2.384,8.789,2.599\}$. Estimate the cone's surface area, volume, and centroid.
|
| 3 |
+
Answer:
|
| 4 |
+
Surface Area: $47.07$
|
| 5 |
+
Centroid: $\{6.21,5.73,4.75\}$
|
| 6 |
+
Volume: $20.74$
|
pretraining/mathematica/geometry/solids/54182.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.302 & 0.355 & 0.096 \\
|
| 5 |
+
0.121 & 0.847 & 0.418 \\
|
| 6 |
+
0.709 & 0.131 & 0.13 \\
|
| 7 |
+
0.047 & 0.259 & 0.921 \\
|
| 8 |
+
0.499 & 0.052 & 0.395 \\
|
| 9 |
+
0.159 & 0.553 & 0.089 \\
|
| 10 |
+
0.87 & 0.28 & 0.577 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Solid Angle: $3.26$
|
| 15 |
+
Surface Area: $1.49$
|
| 16 |
+
Volume: $0.1$
|
pretraining/mathematica/geometry/solids/5442.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.499 & 0.866 & 0.059 \\
|
| 5 |
+
0.823 & 0.843 & 0.148 \\
|
| 6 |
+
0.371 & 0.642 & 0.134 \\
|
| 7 |
+
0.827 & 0.205 & 0.124 \\
|
| 8 |
+
0.193 & 0.327 & 0.793 \\
|
| 9 |
+
0.693 & 0.276 & 0.329 \\
|
| 10 |
+
0.625 & 0.971 & 0.294 \\
|
| 11 |
+
0.301 & 0.236 & 0.814 \\
|
| 12 |
+
0.12 & 0.565 & 0.91 \\
|
| 13 |
+
0.058 & 0.643 & 0.357 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $2.34$
|
| 18 |
+
Surface Area: $1.61$
|
| 19 |
+
Volume: $0.11$
|
pretraining/mathematica/geometry/solids/56677.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.336 & 0.885 & 0.049 \\
|
| 5 |
+
0.753 & 0.61 & 0.959 \\
|
| 6 |
+
0.008 & 0.479 & 0.498 \\
|
| 7 |
+
0.942 & 0.393 & 0.521 \\
|
| 8 |
+
0.427 & 0.814 & 0.776 \\
|
| 9 |
+
0.428 & 0.751 & 0.832 \\
|
| 10 |
+
0.584 & 0.164 & 0.372 \\
|
| 11 |
+
0.509 & 0.965 & 0.115 \\
|
| 12 |
+
0.383 & 0.652 & 0.803 \\
|
| 13 |
+
0.591 & 0.412 & 0.019 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $1.8$
|
| 18 |
+
Volume: $0.16$
|
| 19 |
+
Surface Area: $1.75$
|
pretraining/mathematica/geometry/solids/56783.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.622 & 0.947 & 0.1 \\
|
| 5 |
+
0.34 & 0.029 & 0.712 \\
|
| 6 |
+
0.797 & 0.18 & 0.316 \\
|
| 7 |
+
0.437 & 0.733 & 0.475 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.01$
|
| 12 |
+
Surface Area: $0.72$
|
| 13 |
+
Solid Angle: $0.08$
|
pretraining/mathematica/geometry/solids/57100.txt
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-2.412 & 0. & -0.843 \\
|
| 5 |
+
-2.412 & 0. & 0.157 \\
|
| 6 |
+
-2.285 & -0.934 & -0.509 \\
|
| 7 |
+
-2.285 & -0.934 & 0.491 \\
|
| 8 |
+
-2.285 & 0.934 & -0.509 \\
|
| 9 |
+
-2.285 & 0.934 & 0.491 \\
|
| 10 |
+
-2.157 & 0. & 0.824 \\
|
| 11 |
+
-2.079 & -0.577 & -1.588 \\
|
| 12 |
+
-2.079 & 0.577 & -1.588 \\
|
| 13 |
+
-1.951 & -1.512 & -1.255 \\
|
| 14 |
+
-1.951 & -1.512 & -0.255 \\
|
| 15 |
+
-1.951 & 1.512 & -1.255 \\
|
| 16 |
+
-1.951 & 1.512 & -0.255 \\
|
| 17 |
+
-1.745 & 0. & -2.333 \\
|
| 18 |
+
-1.618 & -0.934 & -2. \\
|
| 19 |
+
-1.618 & -0.934 & 1.236 \\
|
| 20 |
+
-1.618 & 0.934 & -2. \\
|
| 21 |
+
-1.618 & 0.934 & 1.236 \\
|
| 22 |
+
-1.539 & -1.512 & 0.824 \\
|
| 23 |
+
-1.539 & 1.512 & 0.824 \\
|
| 24 |
+
-1.491 & 0. & 1.569 \\
|
| 25 |
+
-1.206 & -2.089 & -0.921 \\
|
| 26 |
+
-1.206 & -2.089 & 0.079 \\
|
| 27 |
+
-1.206 & 2.089 & -0.921 \\
|
| 28 |
+
-1.206 & 2.089 & 0.079 \\
|
| 29 |
+
-1.079 & -1.868 & -1.588 \\
|
| 30 |
+
-1.079 & 1.868 & -1.588 \\
|
| 31 |
+
-0.873 & -1.512 & 1.569 \\
|
| 32 |
+
-0.873 & -0.357 & -2.667 \\
|
| 33 |
+
-0.873 & 0.357 & -2.667 \\
|
| 34 |
+
-0.873 & 1.512 & 1.569 \\
|
| 35 |
+
-0.745 & -1.291 & -2.333 \\
|
| 36 |
+
-0.745 & -0.577 & 1.903 \\
|
| 37 |
+
-0.745 & 0.577 & 1.903 \\
|
| 38 |
+
-0.745 & 1.291 & -2.333 \\
|
| 39 |
+
-0.539 & -2.089 & 0.824 \\
|
| 40 |
+
-0.539 & 2.089 & 0.824 \\
|
| 41 |
+
-0.333 & -2.446 & -1.255 \\
|
| 42 |
+
-0.333 & -2.446 & -0.255 \\
|
| 43 |
+
-0.333 & 2.446 & -1.255 \\
|
| 44 |
+
-0.333 & 2.446 & -0.255 \\
|
| 45 |
+
-0.127 & -0.934 & 1.903 \\
|
| 46 |
+
-0.127 & 0.934 & 1.903 \\
|
| 47 |
+
0. & -1.868 & -2. \\
|
| 48 |
+
0. & -1.868 & 1.236 \\
|
| 49 |
+
0. & 0. & -3. \\
|
| 50 |
+
0. & 0. & 2.236 \\
|
| 51 |
+
0. & 1.868 & -2. \\
|
| 52 |
+
0. & 1.868 & 1.236 \\
|
| 53 |
+
0.127 & -0.934 & -2.667 \\
|
| 54 |
+
0.127 & 0.934 & -2.667 \\
|
| 55 |
+
0.333 & -2.446 & -0.509 \\
|
| 56 |
+
0.333 & -2.446 & 0.491 \\
|
| 57 |
+
0.333 & 2.446 & -0.509 \\
|
| 58 |
+
0.333 & 2.446 & 0.491 \\
|
| 59 |
+
0.539 & -2.089 & -1.588 \\
|
| 60 |
+
0.539 & 2.089 & -1.588 \\
|
| 61 |
+
0.745 & -1.291 & 1.569 \\
|
| 62 |
+
0.745 & -0.577 & -2.667 \\
|
| 63 |
+
0.745 & 0.577 & -2.667 \\
|
| 64 |
+
0.745 & 1.291 & 1.569 \\
|
| 65 |
+
0.873 & -1.512 & -2.333 \\
|
| 66 |
+
0.873 & -0.357 & 1.903 \\
|
| 67 |
+
0.873 & 0.357 & 1.903 \\
|
| 68 |
+
0.873 & 1.512 & -2.333 \\
|
| 69 |
+
1.079 & -1.868 & 0.824 \\
|
| 70 |
+
1.079 & 1.868 & 0.824 \\
|
| 71 |
+
1.206 & -2.089 & -0.843 \\
|
| 72 |
+
1.206 & -2.089 & 0.157 \\
|
| 73 |
+
1.206 & 2.089 & -0.843 \\
|
| 74 |
+
1.206 & 2.089 & 0.157 \\
|
| 75 |
+
1.491 & 0. & -2.333 \\
|
| 76 |
+
1.539 & -1.512 & -1.588 \\
|
| 77 |
+
1.539 & 1.512 & -1.588 \\
|
| 78 |
+
1.618 & -0.934 & -2. \\
|
| 79 |
+
1.618 & -0.934 & 1.236 \\
|
| 80 |
+
1.618 & 0.934 & -2. \\
|
| 81 |
+
1.618 & 0.934 & 1.236 \\
|
| 82 |
+
1.745 & 0. & 1.569 \\
|
| 83 |
+
1.951 & -1.512 & -0.509 \\
|
| 84 |
+
1.951 & -1.512 & 0.491 \\
|
| 85 |
+
1.951 & 1.512 & -0.509 \\
|
| 86 |
+
1.951 & 1.512 & 0.491 \\
|
| 87 |
+
2.079 & -0.577 & 0.824 \\
|
| 88 |
+
2.079 & 0.577 & 0.824 \\
|
| 89 |
+
2.157 & 0. & -1.588 \\
|
| 90 |
+
2.285 & -0.934 & -1.255 \\
|
| 91 |
+
2.285 & -0.934 & -0.255 \\
|
| 92 |
+
2.285 & 0.934 & -1.255 \\
|
| 93 |
+
2.285 & 0.934 & -0.255 \\
|
| 94 |
+
2.412 & 0. & -0.921 \\
|
| 95 |
+
2.412 & 0. & 0.079 \\
|
| 96 |
+
\end{array}
|
| 97 |
+
\right)$. Determine the EdgeCount.
|
| 98 |
+
Answer:
|
| 99 |
+
$180.$
|
pretraining/mathematica/geometry/solids/57829.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.618 & 0.681 & 0.011 \\
|
| 5 |
+
0.231 & 0.142 & 0.098 \\
|
| 6 |
+
0.545 & 0.928 & 0.645 \\
|
| 7 |
+
0.592 & 0.199 & 0.044 \\
|
| 8 |
+
0.806 & 0.685 & 0.606 \\
|
| 9 |
+
0.205 & 0.447 & 0.383 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.06$
|
| 14 |
+
Surface Area: $1.03$
|
| 15 |
+
Solid Angle: $1.3$
|
pretraining/mathematica/geometry/solids/58247.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.836 & 0.08 & 0.111 \\
|
| 5 |
+
0.551 & 0.149 & 0.582 \\
|
| 6 |
+
0.443 & 0.924 & 0.401 \\
|
| 7 |
+
0.213 & 0.885 & 0.461 \\
|
| 8 |
+
0.834 & 0.837 & 0.845 \\
|
| 9 |
+
0.463 & 0.242 & 0.691 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $0.35$
|
| 14 |
+
Surface Area: $1.24$
|
| 15 |
+
Volume: $0.08$
|
pretraining/mathematica/geometry/solids/60347.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.074 & 0.896 & 0.412 \\
|
| 5 |
+
0.057 & 0.026 & 0.731 \\
|
| 6 |
+
0.367 & 0.498 & 0.134 \\
|
| 7 |
+
0.08 & 0.098 & 0.387 \\
|
| 8 |
+
0.311 & 0.071 & 0.825 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.04$
|
| 13 |
+
Surface Area: $0.83$
|
| 14 |
+
Solid Angle: $0.28$
|
pretraining/mathematica/geometry/solids/60963.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.288 & 0.425 & 0.06 \\
|
| 5 |
+
0.417 & 0.673 & 0.696 \\
|
| 6 |
+
0.464 & 0.186 & 0.382 \\
|
| 7 |
+
0.374 & 0.067 & 0.563 \\
|
| 8 |
+
0.615 & 0.847 & 0.699 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.61$
|
| 13 |
+
Solid Angle: $0.3$
|
| 14 |
+
Volume: $0.02$
|
pretraining/mathematica/geometry/solids/61810.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.916 & 0.207 & 0.873 \\
|
| 5 |
+
0.766 & 0.053 & 0.573 \\
|
| 6 |
+
0.981 & 0.135 & 0.814 \\
|
| 7 |
+
0.115 & 0.69 & 0.991 \\
|
| 8 |
+
0.912 & 0.553 & 0.574 \\
|
| 9 |
+
0.072 & 0.65 & 0.319 \\
|
| 10 |
+
0.226 & 0.412 & 0.843 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.09$
|
| 15 |
+
Surface Area: $1.37$
|
| 16 |
+
Solid Angle: $2.32$
|