Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pretraining/mathematica/geometry/solids/10358.txt +17 -0
- pretraining/mathematica/geometry/solids/13228.txt +14 -0
- pretraining/mathematica/geometry/solids/14965.txt +16 -0
- pretraining/mathematica/geometry/solids/16444.txt +62 -0
- pretraining/mathematica/geometry/solids/17904.txt +15 -0
- pretraining/mathematica/geometry/solids/18426.txt +20 -0
- pretraining/mathematica/geometry/solids/19813.txt +17 -0
- pretraining/mathematica/geometry/solids/20280.txt +15 -0
- pretraining/mathematica/geometry/solids/20369.txt +14 -0
- pretraining/mathematica/geometry/solids/23112.txt +27 -0
- pretraining/mathematica/geometry/solids/23170.txt +19 -0
- pretraining/mathematica/geometry/solids/23766.txt +19 -0
- pretraining/mathematica/geometry/solids/24700.txt +15 -0
- pretraining/mathematica/geometry/solids/25168.txt +19 -0
- pretraining/mathematica/geometry/solids/2613.txt +17 -0
- pretraining/mathematica/geometry/solids/26747.txt +17 -0
- pretraining/mathematica/geometry/solids/27191.txt +16 -0
- pretraining/mathematica/geometry/solids/27839.txt +14 -0
- pretraining/mathematica/geometry/solids/29641.txt +17 -0
- pretraining/mathematica/geometry/solids/29780.txt +13 -0
- pretraining/mathematica/geometry/solids/34068.txt +17 -0
- pretraining/mathematica/geometry/solids/34621.txt +17 -0
- pretraining/mathematica/geometry/solids/34626.txt +5 -0
- pretraining/mathematica/geometry/solids/34930.txt +17 -0
- pretraining/mathematica/geometry/solids/37107.txt +13 -0
- pretraining/mathematica/geometry/solids/43991.txt +17 -0
- pretraining/mathematica/geometry/solids/45621.txt +18 -0
- pretraining/mathematica/geometry/solids/46029.txt +17 -0
- pretraining/mathematica/geometry/solids/4659.txt +20 -0
- pretraining/mathematica/geometry/solids/4664.txt +17 -0
- pretraining/mathematica/geometry/solids/47560.txt +14 -0
- pretraining/mathematica/geometry/solids/48275.txt +16 -0
- pretraining/mathematica/geometry/solids/48397.txt +18 -0
- pretraining/mathematica/geometry/solids/51032.txt +13 -0
- pretraining/mathematica/geometry/solids/52299.txt +13 -0
- pretraining/mathematica/geometry/solids/5231.txt +14 -0
- pretraining/mathematica/geometry/solids/52629.txt +17 -0
- pretraining/mathematica/geometry/solids/53513.txt +16 -0
- pretraining/mathematica/geometry/solids/55617.txt +15 -0
- pretraining/mathematica/geometry/solids/56110.txt +17 -0
- pretraining/mathematica/geometry/solids/56371.txt +16 -0
- pretraining/mathematica/geometry/solids/56972.txt +5 -0
- pretraining/mathematica/geometry/solids/58630.txt +13 -0
- pretraining/mathematica/geometry/solids/64144.txt +16 -0
- pretraining/mathematica/geometry/solids/64789.txt +13 -0
- pretraining/mathematica/geometry/solids/66810.txt +6 -0
- pretraining/mathematica/geometry/solids/67661.txt +14 -0
- pretraining/mathematica/geometry/solids/7026.txt +15 -0
- pretraining/mathematica/geometry/solids/70330.txt +14 -0
- pretraining/mathematica/geometry/solids/70624.txt +16 -0
pretraining/mathematica/geometry/solids/10358.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0. & -0.5 & 0. \\
|
| 5 |
+
0. & 0.5 & 0. \\
|
| 6 |
+
-0.853 & 0.5 & 0.522 \\
|
| 7 |
+
-0.5 & 0. & 1.313 \\
|
| 8 |
+
-0.853 & -0.5 & 0.522 \\
|
| 9 |
+
0.853 & 0.5 & 0.522 \\
|
| 10 |
+
0.5 & 0. & 1.313 \\
|
| 11 |
+
0.853 & -0.5 & 0.522 \\
|
| 12 |
+
0. & 0.789 & 0.957 \\
|
| 13 |
+
0. & -0.789 & 0.957 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Determine the GeneralizedDiameter.
|
| 16 |
+
Answer:
|
| 17 |
+
$1.98$
|
pretraining/mathematica/geometry/solids/13228.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.117 & 0.041 & 0.403 \\
|
| 5 |
+
0.364 & 0.968 & 0.553 \\
|
| 6 |
+
0.254 & 0.597 & 0.828 \\
|
| 7 |
+
0.877 & 0.568 & 0.094 \\
|
| 8 |
+
0.268 & 0.731 & 0.934 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.04$
|
| 13 |
+
Surface Area: $1.13$
|
| 14 |
+
Solid Angle: $0.19$
|
pretraining/mathematica/geometry/solids/14965.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.394 & 0.806 & 0.616 \\
|
| 5 |
+
0.79 & 0.368 & 0.435 \\
|
| 6 |
+
0.475 & 0.979 & 0.201 \\
|
| 7 |
+
0.167 & 0.61 & 0.552 \\
|
| 8 |
+
0.671 & 0.928 & 0.099 \\
|
| 9 |
+
0.79 & 0.992 & 0.55 \\
|
| 10 |
+
0.09 & 0.056 & 0.873 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.08$
|
| 15 |
+
Solid Angle: $3.68$
|
| 16 |
+
Surface Area: $1.32$
|
pretraining/mathematica/geometry/solids/16444.txt
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
\sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{1}{2} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
|
| 5 |
+
0 & \frac{1}{2} \left(1+\sqrt{5}\right) & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 6 |
+
-\frac{1}{4} \sqrt{2-\frac{2}{\sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
|
| 7 |
+
-\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 8 |
+
\sqrt{\frac{61}{40}+\frac{131}{40 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{10} \sqrt{85+22 \sqrt{5}} \\
|
| 9 |
+
\sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 10 |
+
-\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 11 |
+
-\sqrt{\frac{5}{2}+\frac{11}{2 \sqrt{5}}} & 0 & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 12 |
+
\frac{1}{20} \sqrt{610+262 \sqrt{5}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{10} \sqrt{85+22 \sqrt{5}} \\
|
| 13 |
+
\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 14 |
+
-\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 15 |
+
-\frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 16 |
+
\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 17 |
+
0 & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 18 |
+
\frac{7}{10} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} & \frac{1}{10} \sqrt{5+2 \sqrt{5}} \\
|
| 19 |
+
\sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} & \frac{1}{2} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 20 |
+
-\sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 21 |
+
-\sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 22 |
+
-\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
|
| 23 |
+
-\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 24 |
+
\frac{1}{10} \sqrt{130+38 \sqrt{5}} & 0 & \frac{1}{10} \sqrt{145+62 \sqrt{5}} \\
|
| 25 |
+
\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(5+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 26 |
+
-\frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 27 |
+
-\sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 28 |
+
\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 29 |
+
\sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 30 |
+
-\frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 31 |
+
-\sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 32 |
+
0 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 33 |
+
-\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(2+\sqrt{5}\right) & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 34 |
+
-\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 35 |
+
-\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 36 |
+
\sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(1+\sqrt{5}\right) & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 37 |
+
\sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \frac{1}{2} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
|
| 38 |
+
\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 39 |
+
-\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & 0 & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
|
| 40 |
+
-\sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(1+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 41 |
+
-\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 42 |
+
\frac{7}{10} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} & \frac{1}{10} \sqrt{5+2 \sqrt{5}} \\
|
| 43 |
+
\frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 44 |
+
-\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(-5-\sqrt{5}\right) & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 45 |
+
-\frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 46 |
+
\sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{\sqrt{5}-3} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 47 |
+
\frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 48 |
+
-\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 49 |
+
-\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 50 |
+
\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(-5-\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 51 |
+
\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 52 |
+
\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 53 |
+
0 & \frac{1}{2} \left(-1-\sqrt{5}\right) & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 54 |
+
\sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} & -\frac{1}{2} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 55 |
+
\sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(-1-\sqrt{5}\right) & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 56 |
+
-\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & -1-\frac{\sqrt{5}}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 57 |
+
-\sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(-1-\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 58 |
+
\sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right)$. Determine the GeneralizedDiameter.
|
| 61 |
+
Answer:
|
| 62 |
+
$\sqrt{11+4 \sqrt{5}}$
|
pretraining/mathematica/geometry/solids/17904.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.816 & 0.918 & 0.929 \\
|
| 5 |
+
0.044 & 0.732 & 0.221 \\
|
| 6 |
+
0.314 & 0.891 & 0.275 \\
|
| 7 |
+
0.229 & 0.895 & 0.557 \\
|
| 8 |
+
0.773 & 0.29 & 0.318 \\
|
| 9 |
+
0.558 & 0.903 & 0.253 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $0.29$
|
| 14 |
+
Surface Area: $1.11$
|
| 15 |
+
Volume: $0.05$
|
pretraining/mathematica/geometry/solids/18426.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.592 & 0.977 & 0.349 \\
|
| 5 |
+
0.781 & 0.96 & 0.637 \\
|
| 6 |
+
0.351 & 0.784 & 0.956 \\
|
| 7 |
+
0.007 & 0.878 & 0.424 \\
|
| 8 |
+
0.09 & 0.526 & 0.981 \\
|
| 9 |
+
0.832 & 0.143 & 0.314 \\
|
| 10 |
+
0.3 & 0.24 & 0.396 \\
|
| 11 |
+
0.96 & 0.72 & 0.462 \\
|
| 12 |
+
0.7 & 0.638 & 0.278 \\
|
| 13 |
+
0.902 & 0.365 & 0.338 \\
|
| 14 |
+
0.786 & 0.382 & 0.844 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 17 |
+
Answer:
|
| 18 |
+
Volume: $0.22$
|
| 19 |
+
Solid Angle: $2.45$
|
| 20 |
+
Surface Area: $2.09$
|
pretraining/mathematica/geometry/solids/19813.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.606 & 0.728 & 0.128 \\
|
| 5 |
+
0.196 & 0.651 & 0.875 \\
|
| 6 |
+
0.389 & 0.84 & 0.955 \\
|
| 7 |
+
0.934 & 0.503 & 0.053 \\
|
| 8 |
+
0.3 & 0.522 & 0.837 \\
|
| 9 |
+
0.641 & 0.053 & 0.643 \\
|
| 10 |
+
0.863 & 0.491 & 0.901 \\
|
| 11 |
+
0.073 & 0.275 & 0.036 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.19$
|
| 16 |
+
Solid Angle: $2.47$
|
| 17 |
+
Surface Area: $2.06$
|
pretraining/mathematica/geometry/solids/20280.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.623 & 0.019 & 0.423 \\
|
| 5 |
+
0.769 & 0.542 & 0.009 \\
|
| 6 |
+
0.951 & 0.913 & 0.885 \\
|
| 7 |
+
0.478 & 0.986 & 0.105 \\
|
| 8 |
+
0.213 & 0.474 & 0.441 \\
|
| 9 |
+
0.658 & 0.078 & 0.659 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.12$
|
| 14 |
+
Solid Angle: $1.23$
|
| 15 |
+
Surface Area: $1.67$
|
pretraining/mathematica/geometry/solids/20369.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.764 & 0.972 & 0.91 \\
|
| 5 |
+
0.711 & 0.301 & 0.756 \\
|
| 6 |
+
0.134 & 0.324 & 0.674 \\
|
| 7 |
+
0.882 & 0.009 & 0.651 \\
|
| 8 |
+
0.725 & 0.003 & 0.217 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $1.14$
|
| 13 |
+
Volume: $0.05$
|
| 14 |
+
Solid Angle: $0.18$
|
pretraining/mathematica/geometry/solids/23112.txt
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
|
| 5 |
+
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
|
| 6 |
+
0 & -\sqrt{\frac{1}{2} \left(2+\sqrt{2}\right)} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\
|
| 7 |
+
0 & \sqrt{\frac{1}{2} \left(2+\sqrt{2}\right)} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\
|
| 8 |
+
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
|
| 9 |
+
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
|
| 10 |
+
\frac{1}{2} \left(-1-\sqrt{2}\right) & -\frac{1}{2} & 0 \\
|
| 11 |
+
-\sqrt{\frac{1}{2} \left(2+\sqrt{2}\right)} & 0 & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\
|
| 12 |
+
\sqrt{\frac{1}{2} \left(2+\sqrt{2}\right)} & 0 & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\
|
| 13 |
+
-\frac{1}{2} \sqrt{2+\sqrt{2}} & -\frac{1}{2} \sqrt{2+\sqrt{2}} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\
|
| 14 |
+
-\frac{1}{2} \sqrt{2+\sqrt{2}} & \frac{\sqrt{2+\sqrt{2}}}{2} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\
|
| 15 |
+
\frac{\sqrt{2+\sqrt{2}}}{2} & -\frac{1}{2} \sqrt{2+\sqrt{2}} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\
|
| 16 |
+
\frac{\sqrt{2+\sqrt{2}}}{2} & \frac{\sqrt{2+\sqrt{2}}}{2} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\
|
| 17 |
+
-\frac{1}{2} & \frac{1}{2} \left(-1-\sqrt{2}\right) & 0 \\
|
| 18 |
+
\frac{1}{2} & \frac{1}{2} \left(1+\sqrt{2}\right) & 0 \\
|
| 19 |
+
\frac{1}{2} & \frac{1}{2} \left(-1-\sqrt{2}\right) & 0 \\
|
| 20 |
+
-\frac{1}{2} & \frac{1}{2} \left(1+\sqrt{2}\right) & 0 \\
|
| 21 |
+
\frac{1}{2} \left(1+\sqrt{2}\right) & -\frac{1}{2} & 0 \\
|
| 22 |
+
\frac{1}{2} \left(-1-\sqrt{2}\right) & \frac{1}{2} & 0 \\
|
| 23 |
+
\frac{1}{2} \left(1+\sqrt{2}\right) & \frac{1}{2} & 0 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right)$. Determine the Volume.
|
| 26 |
+
Answer:
|
| 27 |
+
$\text{Root}\left[6561 \text{$\#$1}^8-52488 \text{$\#$1}^7+113724 \text{$\#$1}^6-9720 \text{$\#$1}^5-1616922 \text{$\#$1}^4+396360 \text{$\#$1}^3+1537020 \text{$\#$1}^2-178632 \text{$\#$1}-3391\&,6\right]$
|
pretraining/mathematica/geometry/solids/23170.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.965 & 0.141 & 0.074 \\
|
| 5 |
+
0.589 & 0.516 & 0.891 \\
|
| 6 |
+
0.316 & 0.189 & 0.289 \\
|
| 7 |
+
0.399 & 0.614 & 0.396 \\
|
| 8 |
+
0.59 & 0.917 & 0.453 \\
|
| 9 |
+
0.6 & 0.501 & 0.165 \\
|
| 10 |
+
0.008 & 0.468 & 0.975 \\
|
| 11 |
+
0.476 & 0.034 & 0.339 \\
|
| 12 |
+
0.419 & 0.087 & 0.283 \\
|
| 13 |
+
0.936 & 0.8 & 0.126 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $1.91$
|
| 18 |
+
Solid Angle: $0.78$
|
| 19 |
+
Volume: $0.16$
|
pretraining/mathematica/geometry/solids/23766.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.16 & 0.548 & 0.703 \\
|
| 5 |
+
0.108 & 0.804 & 0.302 \\
|
| 6 |
+
0.912 & 0.136 & 0.655 \\
|
| 7 |
+
0.583 & 0.536 & 0.011 \\
|
| 8 |
+
0.288 & 0.364 & 0.769 \\
|
| 9 |
+
0.826 & 0.176 & 0.362 \\
|
| 10 |
+
0.974 & 0.921 & 0.691 \\
|
| 11 |
+
0.459 & 0.593 & 0.836 \\
|
| 12 |
+
0.597 & 0.837 & 0.749 \\
|
| 13 |
+
0.157 & 0.404 & 0.746 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $3.89$
|
| 18 |
+
Volume: $0.17$
|
| 19 |
+
Surface Area: $1.83$
|
pretraining/mathematica/geometry/solids/24700.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.209 & 0.486 & 0.518 \\
|
| 5 |
+
0.141 & 0.457 & 0.815 \\
|
| 6 |
+
0.599 & 0.255 & 0.095 \\
|
| 7 |
+
0.028 & 0.998 & 0.379 \\
|
| 8 |
+
0.969 & 0.254 & 0.395 \\
|
| 9 |
+
0.684 & 0.941 & 0.783 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.11$
|
| 14 |
+
Solid Angle: $5.17$
|
| 15 |
+
Surface Area: $1.59$
|
pretraining/mathematica/geometry/solids/25168.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.417 & 0.069 & 0.112 \\
|
| 5 |
+
0.115 & 0.414 & 0.885 \\
|
| 6 |
+
0.094 & 0.638 & 0.382 \\
|
| 7 |
+
0.142 & 0.369 & 0.648 \\
|
| 8 |
+
0.292 & 0.115 & 0.949 \\
|
| 9 |
+
0.587 & 0.051 & 0.844 \\
|
| 10 |
+
0.4 & 0.775 & 0.354 \\
|
| 11 |
+
0.495 & 0.718 & 0.614 \\
|
| 12 |
+
0.575 & 0.682 & 0.036 \\
|
| 13 |
+
0.582 & 0.338 & 0.168 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $1.21$
|
| 18 |
+
Volume: $0.13$
|
| 19 |
+
Surface Area: $1.58$
|
pretraining/mathematica/geometry/solids/2613.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.06 & 0.863 & 0.229 \\
|
| 5 |
+
0.615 & 0.335 & 0.5 \\
|
| 6 |
+
0.012 & 0.763 & 0.28 \\
|
| 7 |
+
0.131 & 0.642 & 0.863 \\
|
| 8 |
+
0.289 & 0.417 & 0.113 \\
|
| 9 |
+
0.684 & 0.94 & 0.403 \\
|
| 10 |
+
0.968 & 0.58 & 0.394 \\
|
| 11 |
+
0.842 & 0.24 & 0.069 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $1.67$
|
| 16 |
+
Volume: $0.13$
|
| 17 |
+
Surface Area: $1.58$
|
pretraining/mathematica/geometry/solids/26747.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.584 & 0.666 & 0.013 \\
|
| 5 |
+
0.893 & 0.084 & 0.61 \\
|
| 6 |
+
0.701 & 0.562 & 0.045 \\
|
| 7 |
+
0.964 & 0.639 & 0.015 \\
|
| 8 |
+
0.24 & 0.9 & 0.005 \\
|
| 9 |
+
0.187 & 0.182 & 0.882 \\
|
| 10 |
+
0.807 & 0.639 & 0.468 \\
|
| 11 |
+
0.235 & 0.696 & 0.915 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $2.$
|
| 16 |
+
Solid Angle: $4.38$
|
| 17 |
+
Volume: $0.15$
|
pretraining/mathematica/geometry/solids/27191.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-\frac{1}{2 \sqrt{3}} & -\frac{1}{2} & -\frac{1}{2} \\
|
| 5 |
+
-\frac{1}{2 \sqrt{3}} & -\frac{1}{2} & \frac{1}{2} \\
|
| 6 |
+
-\frac{1}{2 \sqrt{3}} & \frac{1}{2} & -\frac{1}{2} \\
|
| 7 |
+
-\frac{1}{2 \sqrt{3}} & \frac{1}{2} & \frac{1}{2} \\
|
| 8 |
+
\frac{1}{\sqrt{3}} & 0 & -\frac{1}{2} \\
|
| 9 |
+
\frac{1}{\sqrt{3}} & 0 & \frac{1}{2} \\
|
| 10 |
+
-\sqrt{\frac{7}{12}+\frac{1}{\sqrt{6}}} & 0 & 0 \\
|
| 11 |
+
\sqrt{\frac{7}{48}+\frac{1}{4 \sqrt{6}}} & \frac{1}{4} \left(-1-\sqrt{6}\right) & 0 \\
|
| 12 |
+
\sqrt{\frac{7}{48}+\frac{1}{4 \sqrt{6}}} & \frac{1}{4} \left(1+\sqrt{6}\right) & 0 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Determine the SurfaceArea.
|
| 15 |
+
Answer:
|
| 16 |
+
$\frac{7 \sqrt{3}}{2}$
|
pretraining/mathematica/geometry/solids/27839.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.4 & 0.208 & 0.939 \\
|
| 5 |
+
0.844 & 0.444 & 0.944 \\
|
| 6 |
+
0.21 & 0.28 & 0.786 \\
|
| 7 |
+
0.793 & 0.031 & 0.973 \\
|
| 8 |
+
0.644 & 0.219 & 0.041 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.92$
|
| 13 |
+
Volume: $0.04$
|
| 14 |
+
Solid Angle: $2.14$
|
pretraining/mathematica/geometry/solids/29641.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.121 & 0.602 & 0.904 \\
|
| 5 |
+
0.146 & 0.49 & 0.771 \\
|
| 6 |
+
0.39 & 0.089 & 0.845 \\
|
| 7 |
+
0.099 & 0.94 & 0.239 \\
|
| 8 |
+
0.432 & 0.434 & 0.101 \\
|
| 9 |
+
0.957 & 0.471 & 0.509 \\
|
| 10 |
+
0.134 & 0.644 & 0.82 \\
|
| 11 |
+
0.457 & 0.688 & 0.236 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $1.1$
|
| 16 |
+
Surface Area: $1.47$
|
| 17 |
+
Volume: $0.1$
|
pretraining/mathematica/geometry/solids/29780.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.822 & 0.92 & 0.712 \\
|
| 5 |
+
0.608 & 0.083 & 0.367 \\
|
| 6 |
+
0.593 & 0.922 & 0.037 \\
|
| 7 |
+
0.104 & 0.738 & 0.854 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.83$
|
| 12 |
+
Surface Area: $1.28$
|
| 13 |
+
Volume: $0.07$
|
pretraining/mathematica/geometry/solids/34068.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.574 & 0.857 & 0.724 \\
|
| 5 |
+
0.779 & 0.221 & 0.125 \\
|
| 6 |
+
0.467 & 0.936 & 0.279 \\
|
| 7 |
+
0.064 & 0.753 & 0.741 \\
|
| 8 |
+
0.006 & 0.933 & 0.399 \\
|
| 9 |
+
0.028 & 0.978 & 0.682 \\
|
| 10 |
+
0.335 & 0.463 & 0.804 \\
|
| 11 |
+
0.801 & 0.102 & 0.564 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.11$
|
| 16 |
+
Surface Area: $1.57$
|
| 17 |
+
Solid Angle: $2.17$
|
pretraining/mathematica/geometry/solids/34621.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.133 & 0.482 & 0.234 \\
|
| 5 |
+
0.396 & 0.993 & 0.426 \\
|
| 6 |
+
0.888 & 0.849 & 0.928 \\
|
| 7 |
+
0.385 & 0.873 & 0.456 \\
|
| 8 |
+
0.135 & 0.436 & 0.263 \\
|
| 9 |
+
0.769 & 0.879 & 0.824 \\
|
| 10 |
+
0.784 & 0.539 & 0.407 \\
|
| 11 |
+
0.773 & 0.602 & 0.676 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.03$
|
| 16 |
+
Surface Area: $0.82$
|
| 17 |
+
Solid Angle: $0.93$
|
pretraining/mathematica/geometry/solids/34626.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
An ellipsoid centered at $\{3.66,2.09,0.68\}$ has radii $\{4.295,4.738,1.593\}$. Estimate the ellipsoid's surface area and volume.
|
| 3 |
+
Answer:
|
| 4 |
+
Surface Area: $156.94$
|
| 5 |
+
Volume: $135.79$
|
pretraining/mathematica/geometry/solids/34930.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.962 & 0.249 & 0.929 \\
|
| 5 |
+
0.785 & 0.089 & 0.926 \\
|
| 6 |
+
0.668 & 0.525 & 0.68 \\
|
| 7 |
+
0.348 & 0.565 & 0.354 \\
|
| 8 |
+
0.521 & 0.9 & 0.938 \\
|
| 9 |
+
0.056 & 0.46 & 0.658 \\
|
| 10 |
+
0.521 & 0.761 & 0.637 \\
|
| 11 |
+
0.041 & 0.055 & 0.554 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $0.73$
|
| 16 |
+
Surface Area: $1.41$
|
| 17 |
+
Volume: $0.09$
|
pretraining/mathematica/geometry/solids/37107.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.514 & 0.706 & 0.725 \\
|
| 5 |
+
0.653 & 0.216 & 0.347 \\
|
| 6 |
+
0.196 & 0.42 & 0.236 \\
|
| 7 |
+
0.715 & 0.739 & 0.013 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Surface Area: $0.69$
|
| 12 |
+
Solid Angle: $0.39$
|
| 13 |
+
Volume: $0.03$
|
pretraining/mathematica/geometry/solids/43991.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.431 & 0.808 & 0.203 \\
|
| 5 |
+
0.038 & 0.355 & 0.957 \\
|
| 6 |
+
0.565 & 0.413 & 0.206 \\
|
| 7 |
+
0.189 & 0.676 & 0.814 \\
|
| 8 |
+
0.053 & 0.571 & 0.099 \\
|
| 9 |
+
0.968 & 0.635 & 0.842 \\
|
| 10 |
+
0.722 & 0.779 & 0.956 \\
|
| 11 |
+
0.173 & 0.126 & 0.564 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $2.$
|
| 16 |
+
Volume: $0.17$
|
| 17 |
+
Surface Area: $1.83$
|
pretraining/mathematica/geometry/solids/45621.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.223 & 0.232 & 0.85 \\
|
| 5 |
+
0.111 & 0.752 & 0.804 \\
|
| 6 |
+
0.151 & 1. & 0.002 \\
|
| 7 |
+
0.215 & 0.088 & 0.728 \\
|
| 8 |
+
0.6 & 0.636 & 0.607 \\
|
| 9 |
+
0.061 & 0.755 & 0.83 \\
|
| 10 |
+
0.664 & 0.539 & 0.196 \\
|
| 11 |
+
0.078 & 0.943 & 0.367 \\
|
| 12 |
+
0.234 & 0.648 & 0.242 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $1.82$
|
| 17 |
+
Volume: $0.09$
|
| 18 |
+
Surface Area: $1.42$
|
pretraining/mathematica/geometry/solids/46029.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.6 & 0.08 & 0.746 \\
|
| 5 |
+
0.926 & 0.865 & 0.44 \\
|
| 6 |
+
0.097 & 0.984 & 0.154 \\
|
| 7 |
+
0.736 & 0.087 & 0.313 \\
|
| 8 |
+
0.92 & 0.252 & 0.708 \\
|
| 9 |
+
0.238 & 0.79 & 0.614 \\
|
| 10 |
+
0.535 & 0.298 & 0.818 \\
|
| 11 |
+
0.301 & 0.104 & 0.039 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.18$
|
| 16 |
+
Solid Angle: $2.09$
|
| 17 |
+
Surface Area: $2.06$
|
pretraining/mathematica/geometry/solids/4659.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.351 & 0.218 & 0.986 \\
|
| 5 |
+
0.977 & 0.562 & 0.548 \\
|
| 6 |
+
0.124 & 0.658 & 0.592 \\
|
| 7 |
+
0.548 & 0.082 & 0.017 \\
|
| 8 |
+
0.575 & 0.923 & 0.5 \\
|
| 9 |
+
0.755 & 0.365 & 0.764 \\
|
| 10 |
+
0.114 & 0.418 & 0.816 \\
|
| 11 |
+
0.112 & 0.107 & 0.195 \\
|
| 12 |
+
0.581 & 0.47 & 0.002 \\
|
| 13 |
+
0.417 & 0.622 & 0.026 \\
|
| 14 |
+
0.306 & 0.818 & 0.225 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 17 |
+
Answer:
|
| 18 |
+
Surface Area: $2.13$
|
| 19 |
+
Volume: $0.23$
|
| 20 |
+
Solid Angle: $1.26$
|
pretraining/mathematica/geometry/solids/4664.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.41 & 0.236 & 0.713 \\
|
| 5 |
+
0.106 & 0.478 & 0.888 \\
|
| 6 |
+
0.752 & 0.822 & 0.018 \\
|
| 7 |
+
0.934 & 0.48 & 0.98 \\
|
| 8 |
+
0.496 & 0.733 & 0.086 \\
|
| 9 |
+
0.082 & 0.374 & 0.067 \\
|
| 10 |
+
0.41 & 0.978 & 0.757 \\
|
| 11 |
+
0.906 & 0.232 & 0.044 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.27$
|
| 16 |
+
Solid Angle: $3.6$
|
| 17 |
+
Surface Area: $2.45$
|
pretraining/mathematica/geometry/solids/47560.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.134 & 0.986 & 0.814 \\
|
| 5 |
+
0.011 & 0.97 & 0.188 \\
|
| 6 |
+
0.257 & 0.163 & 0.543 \\
|
| 7 |
+
0.721 & 0.415 & 0.704 \\
|
| 8 |
+
0.379 & 0.657 & 0.338 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $1.06$
|
| 13 |
+
Volume: $0.05$
|
| 14 |
+
Solid Angle: $0.5$
|
pretraining/mathematica/geometry/solids/48275.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.964 & 0.97 & 0.882 \\
|
| 5 |
+
0.412 & 0.127 & 0.553 \\
|
| 6 |
+
0.914 & 0.675 & 0.42 \\
|
| 7 |
+
0.978 & 0.916 & 0.49 \\
|
| 8 |
+
0.612 & 0.035 & 0.83 \\
|
| 9 |
+
0.647 & 0.418 & 0.425 \\
|
| 10 |
+
0.359 & 0.908 & 0.583 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.08$
|
| 15 |
+
Surface Area: $1.29$
|
| 16 |
+
Solid Angle: $0.81$
|
pretraining/mathematica/geometry/solids/48397.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.46 & 0.648 & 0.328 \\
|
| 5 |
+
0.26 & 0.104 & 0.752 \\
|
| 6 |
+
0.203 & 0.98 & 0.729 \\
|
| 7 |
+
0.774 & 0.94 & 0.861 \\
|
| 8 |
+
0.891 & 0.999 & 0.992 \\
|
| 9 |
+
0.052 & 0.592 & 0.564 \\
|
| 10 |
+
0.868 & 0.39 & 0.398 \\
|
| 11 |
+
0.989 & 0.046 & 0.329 \\
|
| 12 |
+
0.667 & 0.06 & 0.956 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.21$
|
| 17 |
+
Solid Angle: $2.71$
|
| 18 |
+
Surface Area: $2.23$
|
pretraining/mathematica/geometry/solids/51032.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.808 & 0.941 & 0.566 \\
|
| 5 |
+
0.39 & 0.891 & 0.501 \\
|
| 6 |
+
0.956 & 0.602 & 0.518 \\
|
| 7 |
+
0.343 & 0.476 & 0.099 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.01$
|
| 12 |
+
Solid Angle: $0.4$
|
| 13 |
+
Surface Area: $0.51$
|
pretraining/mathematica/geometry/solids/52299.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.413 & 0.503 & 0.804 \\
|
| 5 |
+
0.347 & 0.251 & 0.623 \\
|
| 6 |
+
0.513 & 0.156 & 0.349 \\
|
| 7 |
+
0.134 & 0.516 & 0.951 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.22$
|
| 12 |
+
Volume: $0.$
|
| 13 |
+
Surface Area: $0.19$
|
pretraining/mathematica/geometry/solids/5231.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.494 & 0.3 & 0.166 \\
|
| 5 |
+
0.951 & 0.307 & 0.731 \\
|
| 6 |
+
0.314 & 0.051 & 0.838 \\
|
| 7 |
+
0.041 & 0.778 & 0.517 \\
|
| 8 |
+
0.213 & 0.47 & 0.151 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.06$
|
| 13 |
+
Solid Angle: $1.14$
|
| 14 |
+
Surface Area: $1.18$
|
pretraining/mathematica/geometry/solids/52629.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.783 & 0.138 & 0.728 \\
|
| 5 |
+
0.517 & 0.158 & 0.155 \\
|
| 6 |
+
0.079 & 0.501 & 0.165 \\
|
| 7 |
+
0.256 & 0.937 & 0.974 \\
|
| 8 |
+
0.382 & 0.938 & 0.886 \\
|
| 9 |
+
0.264 & 0.684 & 0.205 \\
|
| 10 |
+
0.298 & 0.15 & 0.015 \\
|
| 11 |
+
0.779 & 0.695 & 0.04 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.15$
|
| 16 |
+
Surface Area: $1.89$
|
| 17 |
+
Solid Angle: $0.78$
|
pretraining/mathematica/geometry/solids/53513.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.003 & 0.795 & 0.124 \\
|
| 5 |
+
0.677 & 0.429 & 0.79 \\
|
| 6 |
+
0.071 & 0.398 & 0.186 \\
|
| 7 |
+
0.515 & 0.229 & 0.602 \\
|
| 8 |
+
0.264 & 0.669 & 0.062 \\
|
| 9 |
+
0.119 & 0.43 & 0.098 \\
|
| 10 |
+
0.764 & 0.147 & 0.949 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.03$
|
| 15 |
+
Surface Area: $0.8$
|
| 16 |
+
Solid Angle: $0.57$
|
pretraining/mathematica/geometry/solids/55617.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.439 & 0.21 & 0.379 \\
|
| 5 |
+
0.364 & 0.635 & 0.529 \\
|
| 6 |
+
0.931 & 0.292 & 0.253 \\
|
| 7 |
+
0.58 & 0.228 & 0.142 \\
|
| 8 |
+
0.945 & 0.195 & 0.914 \\
|
| 9 |
+
0.527 & 0.612 & 0.44 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $0.82$
|
| 14 |
+
Volume: $0.04$
|
| 15 |
+
Solid Angle: $2.1$
|
pretraining/mathematica/geometry/solids/56110.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.88 & 0.133 & 0.015 \\
|
| 5 |
+
0.806 & 0.311 & 0.595 \\
|
| 6 |
+
0.78 & 0.636 & 0.557 \\
|
| 7 |
+
0.374 & 0.458 & 0.405 \\
|
| 8 |
+
0.634 & 0.883 & 0.448 \\
|
| 9 |
+
0.139 & 0.542 & 0.179 \\
|
| 10 |
+
0.252 & 0.613 & 0.878 \\
|
| 11 |
+
0.575 & 0.81 & 0.64 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $0.37$
|
| 16 |
+
Volume: $0.09$
|
| 17 |
+
Surface Area: $1.35$
|
pretraining/mathematica/geometry/solids/56371.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.247 & 0.175 & 0.191 \\
|
| 5 |
+
0.478 & 0.735 & 0.003 \\
|
| 6 |
+
0.431 & 0.024 & 0.923 \\
|
| 7 |
+
0.052 & 0.604 & 0.758 \\
|
| 8 |
+
0.288 & 0.907 & 0.395 \\
|
| 9 |
+
0.047 & 0.768 & 0.112 \\
|
| 10 |
+
0.697 & 0.855 & 0.448 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Surface Area: $1.7$
|
| 15 |
+
Volume: $0.13$
|
| 16 |
+
Solid Angle: $1.31$
|
pretraining/mathematica/geometry/solids/56972.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
An ellipsoid centered at $\{3.357,-9.861,-3.373\}$ has radii $\{3.997,3.673,3.524\}$. Estimate the ellipsoid's surface area and volume.
|
| 3 |
+
Answer:
|
| 4 |
+
Volume: $216.69$
|
| 5 |
+
Surface Area: $174.84$
|
pretraining/mathematica/geometry/solids/58630.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.436 & 0.473 & 0.028 \\
|
| 5 |
+
0.43 & 0.825 & 0.503 \\
|
| 6 |
+
0.196 & 0.607 & 0.307 \\
|
| 7 |
+
0.005 & 0.149 & 0.7 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.27$
|
| 12 |
+
Surface Area: $0.53$
|
| 13 |
+
Volume: $0.01$
|
pretraining/mathematica/geometry/solids/64144.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.637 & 0.346 & 0.376 \\
|
| 5 |
+
0.439 & 0.374 & 0.894 \\
|
| 6 |
+
0.067 & 0.743 & 0.522 \\
|
| 7 |
+
0.54 & 0.483 & 0.354 \\
|
| 8 |
+
0.565 & 0.365 & 0.321 \\
|
| 9 |
+
0.381 & 0.12 & 0.059 \\
|
| 10 |
+
0.309 & 0.061 & 0.905 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.06$
|
| 15 |
+
Surface Area: $1.03$
|
| 16 |
+
Solid Angle: $2.24$
|
pretraining/mathematica/geometry/solids/64789.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.355 & 0.337 & 0.468 \\
|
| 5 |
+
0.477 & 0.09 & 0.157 \\
|
| 6 |
+
0.441 & 0.132 & 0.787 \\
|
| 7 |
+
0.717 & 0.073 & 0.594 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.01$
|
| 12 |
+
Surface Area: $0.32$
|
| 13 |
+
Solid Angle: $0.5$
|
pretraining/mathematica/geometry/solids/66810.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A cylinder with radius $5.857$ is around the line from $\{8.658,-4.438,7.692\}$ to $\{5.723,-9.579,-0.16\}$. Estimate the cylinder's surface area, volume, and centroid.
|
| 3 |
+
Answer:
|
| 4 |
+
Centroid: $\{7.19,-7.01,3.77\}$
|
| 5 |
+
Surface Area: $577.38$
|
| 6 |
+
Volume: $1059.65$
|
pretraining/mathematica/geometry/solids/67661.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.088 & 0.202 & 0.015 \\
|
| 5 |
+
0.505 & 0.06 & 0.026 \\
|
| 6 |
+
0.7 & 0.398 & 0.939 \\
|
| 7 |
+
0.876 & 0.254 & 0.074 \\
|
| 8 |
+
0.611 & 0.447 & 0.226 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.04$
|
| 13 |
+
Surface Area: $0.91$
|
| 14 |
+
Solid Angle: $0.33$
|
pretraining/mathematica/geometry/solids/7026.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.052 & 0.676 & 0.411 \\
|
| 5 |
+
0.869 & 0.413 & 0.927 \\
|
| 6 |
+
0.849 & 0.326 & 0.265 \\
|
| 7 |
+
0.587 & 0.826 & 0.23 \\
|
| 8 |
+
0.023 & 0.666 & 0.016 \\
|
| 9 |
+
0.495 & 0.187 & 0.539 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $1.47$
|
| 14 |
+
Volume: $0.1$
|
| 15 |
+
Surface Area: $1.38$
|
pretraining/mathematica/geometry/solids/70330.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.172 & 0.392 & 0.32 \\
|
| 5 |
+
0.295 & 0.785 & 0.133 \\
|
| 6 |
+
0.734 & 0.894 & 0.926 \\
|
| 7 |
+
0.45 & 0.289 & 0.13 \\
|
| 8 |
+
0.031 & 0.519 & 0.562 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.04$
|
| 13 |
+
Surface Area: $0.93$
|
| 14 |
+
Solid Angle: $2.29$
|
pretraining/mathematica/geometry/solids/70624.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.208 & 0.345 & 0.279 \\
|
| 5 |
+
0.705 & 0.908 & 0.881 \\
|
| 6 |
+
0.272 & 0.086 & 0.082 \\
|
| 7 |
+
0.387 & 0.973 & 0.626 \\
|
| 8 |
+
0.697 & 0.888 & 0.153 \\
|
| 9 |
+
0.818 & 0.946 & 0.899 \\
|
| 10 |
+
0.022 & 0.353 & 0.489 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.08$
|
| 15 |
+
Solid Angle: $5.85$
|
| 16 |
+
Surface Area: $1.4$
|