|
|
""" |
|
|
2D Poisson equation dataset with mixed boundary conditions. |
|
|
|
|
|
Solves the boundary value problem: |
|
|
∇²u = f(x,y) in Ω = [0, Lx] × [0, Ly] |
|
|
u(x,0) = g(x) on bottom boundary |
|
|
∂u/∂y(x,Ly) = h(x) on top boundary |
|
|
|
|
|
Uses Dedalus spectral methods with Fourier(x) × Chebyshev(y) discretization. |
|
|
The forcing function f(x,y) is randomly generated using Gaussian processes |
|
|
to create diverse training samples. |
|
|
|
|
|
Physical applications: electrostatic potential, steady-state heat conduction, |
|
|
fluid stream functions. |
|
|
""" |
|
|
|
|
|
import numpy as np |
|
|
from torch.utils.data import IterableDataset |
|
|
|
|
|
import dedalus.public as d3 |
|
|
from functools import partial |
|
|
from sklearn.metrics.pairwise import rbf_kernel |
|
|
import logging |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
def sample_gp_prior(kernel, X, n_samples=1): |
|
|
""" |
|
|
Sample from Gaussian Process prior for generating smooth random fields. |
|
|
""" |
|
|
if X.ndim == 1: |
|
|
X = X.reshape(-1, 1) |
|
|
|
|
|
K = kernel(X, X) |
|
|
|
|
|
prior = np.random.multivariate_normal( |
|
|
mean=np.zeros(X.shape[0]), |
|
|
cov=K, |
|
|
size=n_samples, |
|
|
) |
|
|
|
|
|
return prior |
|
|
|
|
|
|
|
|
def sample_gp_posterior(kernel, X, y, xt, n_samples=1): |
|
|
"""Sample from Gaussian Process posterior for boundary conditions.""" |
|
|
if X.ndim == 1: |
|
|
X = X.reshape(-1, 1) |
|
|
if y.ndim == 1: |
|
|
y = y.reshape(-1, 1) |
|
|
if xt.ndim == 1: |
|
|
xt = xt.reshape(-1, 1) |
|
|
|
|
|
K = kernel(X, X) |
|
|
Kt = kernel(X, xt) |
|
|
Ktt = kernel(xt, xt) |
|
|
|
|
|
K_inv = np.linalg.inv(K) |
|
|
|
|
|
mu = Kt.T @ K_inv @ y |
|
|
cov = Ktt - Kt.T @ K_inv @ Kt |
|
|
|
|
|
mu = mu.ravel() |
|
|
|
|
|
posterior = np.random.multivariate_normal( |
|
|
mean=mu, |
|
|
cov=cov, |
|
|
size=n_samples, |
|
|
) |
|
|
return posterior |
|
|
|
|
|
|
|
|
class PoissonDataset(IterableDataset): |
|
|
""" |
|
|
Dataset for 2D Poisson equation with mixed boundary conditions. |
|
|
|
|
|
Generates random smooth forcing functions using Gaussian processes |
|
|
and solves: ∇²u = f(x,y) with u(x,0) = g(x) and ∂u/∂y(x,Ly) = h(x). |
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
Lx=2*np.pi, |
|
|
Ly=np.pi, |
|
|
Nx=256, |
|
|
Ny=128, |
|
|
dtype=np.float64, |
|
|
): |
|
|
""" |
|
|
Initialize 2D Poisson equation dataset. |
|
|
|
|
|
Args: |
|
|
Lx: Domain length in x-direction |
|
|
Ly: Domain length in y-direction |
|
|
Nx: Number of grid points in x-direction |
|
|
Ny: Number of grid points in y-direction |
|
|
dtype: Data type for computations |
|
|
""" |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
self.Lx = Lx |
|
|
self.Ly = Ly |
|
|
self.Nx = Nx |
|
|
self.Ny = Ny |
|
|
self.dtype = dtype |
|
|
|
|
|
|
|
|
self.coords = d3.CartesianCoordinates('x', 'y') |
|
|
self.dist = d3.Distributor(self.coords, dtype=dtype) |
|
|
self.xbasis = d3.RealFourier(self.coords['x'], size=Nx, bounds=(0, Lx)) |
|
|
self.ybasis = d3.Chebyshev(self.coords['y'], size=Ny, bounds=(0, Ly)) |
|
|
|
|
|
|
|
|
self.x, self.y = self.dist.local_grids(self.xbasis, self.ybasis) |
|
|
|
|
|
|
|
|
self.u = self.dist.Field(name='u', bases=(self.xbasis, self.ybasis)) |
|
|
self.tau_1 = self.dist.Field(name='tau_1', bases=self.xbasis) |
|
|
self.tau_2 = self.dist.Field(name='tau_2', bases=self.xbasis) |
|
|
self.f = self.dist.Field(bases=(self.xbasis, self.ybasis)) |
|
|
self.g = self.dist.Field(bases=self.xbasis) |
|
|
self.h = self.dist.Field(bases=self.xbasis) |
|
|
|
|
|
|
|
|
dy = lambda A: d3.Differentiate(A, self.coords['y']) |
|
|
lift_basis = self.ybasis.derivative_basis(2) |
|
|
lift = lambda A, n: d3.Lift(A, lift_basis, n) |
|
|
f = self.f |
|
|
g = self.g |
|
|
h = self.h |
|
|
u = self.u |
|
|
tau_1 = self.tau_1 |
|
|
tau_2 = self.tau_2 |
|
|
Ly = self.Ly |
|
|
|
|
|
self.problem = d3.LBVP([self.u, self.tau_1, self.tau_2], namespace=locals()) |
|
|
self.problem.add_equation("lap(u) + lift(tau_1,-1) + lift(tau_2,-2) = f") |
|
|
self.problem.add_equation("u(y=0) = g") |
|
|
self.problem.add_equation("dy(u)(y=Ly) = h") |
|
|
|
|
|
def __iter__(self): |
|
|
"""Generate infinite samples from the dataset.""" |
|
|
while True: |
|
|
|
|
|
self.f.fill_random('g', seed=np.random.randint(0, 2**31)) |
|
|
filter_x = np.random.randint(32, 128) |
|
|
filter_y = np.random.randint(16, 64) |
|
|
self.f.low_pass_filter(shape=(filter_x, filter_y)) |
|
|
|
|
|
|
|
|
|
|
|
x_boundary = self.dist.local_grid(self.xbasis) |
|
|
sigma_g = 0.2 * self.Lx |
|
|
gamma_g = 1 / (2 * sigma_g**2) |
|
|
g_sample = sample_gp_posterior( |
|
|
kernel=partial(rbf_kernel, gamma=gamma_g), |
|
|
X=np.array([0, self.Lx]), |
|
|
y=np.array([0, 0]), |
|
|
xt=x_boundary.ravel(), |
|
|
n_samples=1 |
|
|
)[0] |
|
|
self.g['g'] = (np.random.uniform(0.01, 0.1) * g_sample).reshape(-1, 1) |
|
|
|
|
|
|
|
|
sigma_h = 0.3 * self.Lx |
|
|
gamma_h = 1 / (2 * sigma_h**2) |
|
|
h_sample = sample_gp_posterior( |
|
|
kernel=partial(rbf_kernel, gamma=gamma_h), |
|
|
X=np.array([0, self.Lx]), |
|
|
y=np.array([0, 0]), |
|
|
xt=x_boundary.ravel(), |
|
|
n_samples=1 |
|
|
)[0] |
|
|
self.h['g'] = (np.random.uniform(0.005, 0.05) * h_sample).reshape(-1, 1) |
|
|
|
|
|
yield self.solve() |
|
|
|
|
|
def solve(self): |
|
|
""" |
|
|
Solve the 2D Poisson boundary value problem. |
|
|
|
|
|
The forcing function and boundary conditions have already been set in __iter__. |
|
|
|
|
|
Returns: |
|
|
A dictionary containing the solution and related data. |
|
|
""" |
|
|
|
|
|
|
|
|
solver = self.problem.build_solver() |
|
|
solver.solve() |
|
|
|
|
|
|
|
|
x_global = self.xbasis.global_grid(self.dist, scale=1) |
|
|
y_global = self.ybasis.global_grid(self.dist, scale=1) |
|
|
u_global = self.u.allgather_data('g') |
|
|
f_global = self.f.allgather_data('g') |
|
|
g_global = self.g.allgather_data('g') |
|
|
h_global = self.h.allgather_data('g') |
|
|
|
|
|
|
|
|
X, Y = np.meshgrid(x_global.ravel(), y_global.ravel(), indexing='ij') |
|
|
|
|
|
return { |
|
|
|
|
|
"spatial_coordinates": np.array([X, Y]), |
|
|
|
|
|
|
|
|
"solution_field": u_global, |
|
|
|
|
|
|
|
|
"forcing_function": f_global, |
|
|
|
|
|
|
|
|
"boundary_condition_bottom": g_global, |
|
|
"boundary_condition_top_gradient": h_global, |
|
|
} |
|
|
|