Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
spatial_coordinates
listlengths
256
256
time_coordinates
listlengths
41
41
psi_r_initial
listlengths
256
256
psi_i_initial
listlengths
256
256
psi_r_trajectory
listlengths
41
41
psi_i_trajectory
listlengths
41
41
state_trajectory
listlengths
41
41
probability_density
listlengths
41
41
potential
listlengths
256
256
total_energy
listlengths
41
41
hbar
float64
1
1
mass
float64
1
1
omega
float64
1
1
[-10.0,-9.921875,-9.84375,-9.765625,-9.6875,-9.609375,-9.53125,-9.453125,-9.375,-9.296875,-9.21875,-(...TRUNCATED)
[0.0,0.05000000000000004,0.10000000000000007,0.1500000000000001,0.20000000000000015,0.25000000000000(...TRUNCATED)
[-0.000017864052329190403,-0.000021175541965790137,-0.000024921719666687206,-0.000029115097580123826(...TRUNCATED)
[-2.6089653295648467e-6,-4.6801158431480125e-6,-7.4374076934003145e-6,-0.0000110426709641168,-0.0000(...TRUNCATED)
[[-0.000017864052329190403,-0.000021175541965790137,-0.000024921719666687206,-0.00002911509758012382(...TRUNCATED)
[[-2.6089653295648467e-6,-4.6801158431480125e-6,-7.4374076934003145e-6,-0.0000110426709641168,-0.000(...TRUNCATED)
[[-0.000017864052329190403,-0.000021175541965790137,-0.000024921719666687206,-0.00002911509758012382(...TRUNCATED)
[[3.259310657109245e-10,4.703070618502243e-10,6.764071443427941e-10,9.696294891218805e-10,1.38539746(...TRUNCATED)
[49.99847412109489,49.223327636721514,48.44818115234996,47.685241699214394,46.92230224609615,46.1715(...TRUNCATED)
[2.210890566877057,2.211148193212987,2.2113341153689645,2.2114636952907754,2.211549686559863,2.21160(...TRUNCATED)
1
1
1
[-10.0,-9.921875,-9.84375,-9.765625,-9.6875,-9.609375,-9.53125,-9.453125,-9.375,-9.296875,-9.21875,-(...TRUNCATED)
[0.0,0.05000000000000004,0.10000000000000007,0.1500000000000001,0.20000000000000015,0.25000000000000(...TRUNCATED)
[1.5307996234697862e-18,2.612748679930108e-18,3.1429789357942577e-18,-1.068618296333323e-18,-2.49521(...TRUNCATED)
[-3.642027538173718e-18,-9.829597512199801e-18,-2.5698390778010216e-17,-6.515104860629548e-17,-1.602(...TRUNCATED)
[[1.5307996234697862e-18,2.612748679930108e-18,3.1429789357942577e-18,-1.068618296333323e-18,-2.4952(...TRUNCATED)
[[-3.642027538173718e-18,-9.829597512199801e-18,-2.5698390778010216e-17,-6.515104860629548e-17,-1.60(...TRUNCATED)
[[1.5307996234697862e-18,2.612748679930108e-18,3.1429789357942577e-18,-1.068618296333323e-18,-2.4952(...TRUNCATED)
[[1.5607712076030952e-35,1.0344744291632104e-34,6.7028560517016695e-34,4.245801079563135e-33,2.62917(...TRUNCATED)
[49.99847412109489,49.223327636721514,48.44818115234996,47.685241699214394,46.92230224609615,46.1715(...TRUNCATED)
[8.047194258820982,8.03936706171677,8.030332354875135,8.020088347457408,8.00866928971139,7.996147777(...TRUNCATED)
1
1
1
[-10.0,-9.921875,-9.84375,-9.765625,-9.6875,-9.609375,-9.53125,-9.453125,-9.375,-9.296875,-9.21875,-(...TRUNCATED)
[0.0,0.05000000000000004,0.10000000000000007,0.1500000000000001,0.20000000000000015,0.25000000000000(...TRUNCATED)
[9.242877636159198e-12,1.3650988644534204e-11,1.964864335676249e-11,2.7581810949692234e-11,3.7747868(...TRUNCATED)
[3.1356280718261873e-12,2.4452571752156373e-12,5.390899412605238e-13,-3.3926313025284413e-12,-1.0536(...TRUNCATED)
[[9.242877636159198e-12,1.3650988644534204e-11,1.964864335676249e-11,2.7581810949692234e-11,3.774786(...TRUNCATED)
[[3.1356280718261873e-12,2.4452571752156373e-12,5.390899412605238e-13,-3.3926313025284413e-12,-1.053(...TRUNCATED)
[[9.242877636159198e-12,1.3650988644534204e-11,1.964864335676249e-11,2.7581810949692234e-11,3.774786(...TRUNCATED)
[[9.526295040183625e-23,1.9232877362614533e-22,3.8635980372601504e-22,7.722662424194583e-22,1.535923(...TRUNCATED)
[49.99847412109489,49.223327636721514,48.44818115234996,47.685241699214394,46.92230224609615,46.1715(...TRUNCATED)
[3.0440206276215864,3.045661397458537,3.0472102613173524,3.0486584709732742,3.050001042370556,3.0512(...TRUNCATED)
1
1
1
[-10.0,-9.921875,-9.84375,-9.765625,-9.6875,-9.609375,-9.53125,-9.453125,-9.375,-9.296875,-9.21875,-(...TRUNCATED)
[0.0,0.05000000000000004,0.10000000000000007,0.1500000000000001,0.20000000000000015,0.25000000000000(...TRUNCATED)
[2.3385379540339084e-58,1.1132208815104686e-57,5.199299465151945e-57,2.3825651992099983e-56,1.071037(...TRUNCATED)
[3.78905469442557e-59,6.82154203787208e-59,-1.9885933244676052e-58,-3.300676511543799e-57,-2.5879753(...TRUNCATED)
[[2.3385379540339084e-58,1.1132208815104686e-57,5.199299465151945e-57,2.3825651992099983e-56,1.07103(...TRUNCATED)
[[3.78905469442557e-59,6.82154203787208e-59,-1.9885933244676052e-58,-3.300676511543799e-57,-2.587975(...TRUNCATED)
[[2.3385379540339084e-58,1.1132208815104686e-57,5.199299465151945e-57,2.3825651992099983e-56,1.07103(...TRUNCATED)
[[5.612329117230583e-116,1.2439140746083903e-114,2.707225996243048e-113,5.785561582825149e-112,1.214(...TRUNCATED)
[49.99847412109489,49.223327636721514,48.44818115234996,47.685241699214394,46.92230224609615,46.1715(...TRUNCATED)
[6.864755337720144,6.867716004788364,6.870053644017246,6.871845249514198,6.873166074107254,6.8740851(...TRUNCATED)
1
1
1
[-10.0,-9.921875,-9.84375,-9.765625,-9.6875,-9.609375,-9.53125,-9.453125,-9.375,-9.296875,-9.21875,-(...TRUNCATED)
[0.0,0.05000000000000004,0.10000000000000007,0.1500000000000001,0.20000000000000015,0.25000000000000(...TRUNCATED)
[-2.0127542124222566e-9,-2.9071121604884522e-9,-4.181120665193589e-9,-5.987954356467524e-9,-8.539132(...TRUNCATED)
[8.973767438507672e-10,1.3709585315597473e-9,2.081579440081273e-9,3.141750981561446e-9,4.71454470192(...TRUNCATED)
[[-2.0127542124222566e-9,-2.9071121604884522e-9,-4.181120665193589e-9,-5.987954356467524e-9,-8.53913(...TRUNCATED)
[[8.973767438507672e-10,1.3709585315597473e-9,2.081579440081273e-9,3.141750981561446e-9,4.7145447019(...TRUNCATED)
[[-2.0127542124222566e-9,-2.9071121604884522e-9,-4.181120665193589e-9,-5.987954356467524e-9,-8.53913(...TRUNCATED)
[[4.8564645400277444e-18,1.0330828408916295e-17,2.1814742982277948e-17,4.5726196605280716e-17,9.5143(...TRUNCATED)
[49.99847412109489,49.223327636721514,48.44818115234996,47.685241699214394,46.92230224609615,46.1715(...TRUNCATED)
[2.5177672479421664,2.517635268936942,2.5174446866798554,2.5171834657511956,2.5168373886904347,2.516(...TRUNCATED)
1
1
1
[-10.0,-9.921875,-9.84375,-9.765625,-9.6875,-9.609375,-9.53125,-9.453125,-9.375,-9.296875,-9.21875,-(...TRUNCATED)
[0.0,0.05000000000000004,0.10000000000000007,0.1500000000000001,0.20000000000000015,0.25000000000000(...TRUNCATED)
[-1.7069887017777904e-54,-8.270785015043877e-54,-3.846574169427898e-53,-1.6966064586209003e-52,-6.94(...TRUNCATED)
[3.4433263878350836e-54,1.9822714871621141e-53,1.1218243126055697e-52,6.242624988980742e-52,3.416415(...TRUNCATED)
[[-1.7069887017777904e-54,-8.270785015043877e-54,-3.846574169427898e-53,-1.6966064586209003e-52,-6.9(...TRUNCATED)
[[3.4433263878350836e-54,1.9822714871621141e-53,1.1218243126055697e-52,6.242624988980742e-52,3.41641(...TRUNCATED)
[[-1.7069887017777904e-54,-8.270785015043877e-54,-3.846574169427898e-53,-1.6966064586209003e-52,-6.9(...TRUNCATED)
[[1.477030704115843e-107,4.613459096466643e-106,1.406451116762058e-104,4.1848840228480964e-103,1.215(...TRUNCATED)
[49.99847412109489,49.223327636721514,48.44818115234996,47.685241699214394,46.92230224609615,46.1715(...TRUNCATED)
[1.5862841426956371,1.5869719902041388,1.5876484177531804,1.5883031120972824,1.5889268835173884,1.58(...TRUNCATED)
1
1
1
[-10.0,-9.921875,-9.84375,-9.765625,-9.6875,-9.609375,-9.53125,-9.453125,-9.375,-9.296875,-9.21875,-(...TRUNCATED)
[0.0,0.05000000000000004,0.10000000000000007,0.1500000000000001,0.20000000000000015,0.25000000000000(...TRUNCATED)
[4.383500517341657e-8,5.353773919799916e-8,6.434620829823816e-8,7.59241344979565e-8,8.76489969932585(...TRUNCATED)
[-2.7076231943656313e-8,-4.046138867905363e-8,-5.887499923799448e-8,-8.383542554412805e-8,-1.1721524(...TRUNCATED)
[[4.383500517341657e-8,5.353773919799916e-8,6.434620829823816e-8,7.59241344979565e-8,8.7648996993258(...TRUNCATED)
[[-2.7076231943656313e-8,-4.046138867905363e-8,-5.887499923799448e-8,-8.383542554412805e-8,-1.172152(...TRUNCATED)
[[4.383500517341657e-8,5.353773919799916e-8,6.434620829823816e-8,7.59241344979565e-8,8.7648996993258(...TRUNCATED)
[[2.654630014820132e-15,4.503413492270424e-15,7.606700057634103e-15,1.2792852775428828e-14,2.1421760(...TRUNCATED)
[49.99847412109489,49.223327636721514,48.44818115234996,47.685241699214394,46.92230224609615,46.1715(...TRUNCATED)
[1.6068247450384923,1.606592436126343,1.6063178811844852,1.6060010855428084,1.6056433726235169,1.605(...TRUNCATED)
1
1
1
[-10.0,-9.921875,-9.84375,-9.765625,-9.6875,-9.609375,-9.53125,-9.453125,-9.375,-9.296875,-9.21875,-(...TRUNCATED)
[0.0,0.05000000000000004,0.10000000000000007,0.1500000000000001,0.20000000000000015,0.25000000000000(...TRUNCATED)
[-5.613145860210222e-81,-8.304073430013553e-80,-1.198242827592449e-78,-1.687739602578384e-77,-2.3219(...TRUNCATED)
[1.2893745082550908e-80,1.7448286667429223e-79,2.313965053817909e-78,3.0072577626442194e-77,3.829758(...TRUNCATED)
[[-5.613145860210222e-81,-8.304073430013553e-80,-1.198242827592449e-78,-1.687739602578384e-77,-2.321(...TRUNCATED)
[[1.2893745082550908e-80,1.7448286667429223e-79,2.313965053817909e-78,3.0072577626442194e-77,3.82975(...TRUNCATED)
[[-5.613145860210222e-81,-8.304073430013553e-80,-1.198242827592449e-78,-1.687739602578384e-77,-2.321(...TRUNCATED)
[[1.9775606870180086e-160,3.734003431598454e-158,6.790220144167266e-156,1.1892064217095357e-153,2.00(...TRUNCATED)
[49.99847412109489,49.223327636721514,48.44818115234996,47.685241699214394,46.92230224609615,46.1715(...TRUNCATED)
[1.362069517102642,1.361703940444145,1.3613823606180837,1.3611119119449182,1.3608989045544162,1.3607(...TRUNCATED)
1
1
1
[-10.0,-9.921875,-9.84375,-9.765625,-9.6875,-9.609375,-9.53125,-9.453125,-9.375,-9.296875,-9.21875,-(...TRUNCATED)
[0.0,0.05000000000000004,0.10000000000000007,0.1500000000000001,0.20000000000000015,0.25000000000000(...TRUNCATED)
[0.007054087416679128,0.007595026797146803,0.00796653783301663,0.008110798659041997,0.00796598656755(...TRUNCATED)
[0.001609122665787656,0.0029439492609155534,0.004511694469399429,0.00630529438806887,0.0083063971436(...TRUNCATED)
[[0.007054087416679128,0.007595026797146803,0.00796653783301663,0.008110798659041997,0.0079659865675(...TRUNCATED)
[[0.001609122665787656,0.0029439492609155534,0.004511694469399429,0.00630529438806887,0.008306397143(...TRUNCATED)
[[0.007054087416679128,0.007595026797146803,0.00796653783301663,0.008110798659041997,0.0079659865675(...TRUNCATED)
[[0.00005234942503570239,0.00006635126930022326,0.00008382111203009471,0.00010554179220773024,0.0001(...TRUNCATED)
[49.99847412109489,49.223327636721514,48.44818115234996,47.685241699214394,46.92230224609615,46.1715(...TRUNCATED)
[12.17011047977553,12.175584722375158,12.179214383176149,12.18158702075284,12.183065270035828,12.183(...TRUNCATED)
1
1
1
[-10.0,-9.921875,-9.84375,-9.765625,-9.6875,-9.609375,-9.53125,-9.453125,-9.375,-9.296875,-9.21875,-(...TRUNCATED)
[0.0,0.05000000000000004,0.10000000000000007,0.1500000000000001,0.20000000000000015,0.25000000000000(...TRUNCATED)
[1.0104578010297687e-34,4.999082873545927e-34,2.407061947808034e-33,1.1303319748245279e-32,5.1845914(...TRUNCATED)
[-1.9190193207983373e-34,-8.297651843816941e-34,-3.519856161528392e-33,-1.4643241761558575e-32,-5.97(...TRUNCATED)
[[1.0104578010297687e-34,4.999082873545927e-34,2.407061947808034e-33,1.1303319748245279e-32,5.184591(...TRUNCATED)
[[-1.9190193207983373e-34,-8.297651843816941e-34,-3.519856161528392e-33,-1.4643241761558575e-32,-5.9(...TRUNCATED)
[[1.0104578010297687e-34,4.999082873545927e-34,2.407061947808034e-33,1.1303319748245279e-32,5.184591(...TRUNCATED)
[[4.703660121259227e-68,9.38418556977789e-67,1.8183334618434792e-65,3.4218956661852475e-64,6.2542651(...TRUNCATED)
[49.99847412109489,49.223327636721514,48.44818115234996,47.685241699214394,46.92230224609615,46.1715(...TRUNCATED)
[2.87436387496701,2.875499508430403,2.8765003415299106,2.8773607481571615,2.87807832995935,2.8786536(...TRUNCATED)
1
1
1
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Schrödinger Equation Dataset

Numerical solutions to the 1D time-dependent Schrödinger equation with harmonic oscillator potential.

Sample Plot

Equation

Time-dependent Schrödinger equation:

iℏ ∂ψ/∂t = Ĥψ

where the Hamiltonian is:

Ĥ = -ℏ²/2m ∇² + V(x)

Harmonic oscillator potential:

V(x) = ½mω²x²

The complex wavefunction ψ = ψᵣ + iψᵢ is split into real and imaginary parts:

  • Real part: ∂ψᵣ/∂t = (ℏ/2m)∇²ψᵢ - V(x)ψᵢ/ℏ
  • Imaginary part: ∂ψᵢ/∂t = -(ℏ/2m)∇²ψᵣ + V(x)ψᵣ/ℏ

Variables

The dataset returns a dictionary with the following fields:

Coordinates

  • spatial_coordinates: (Nx,) - 1D spatial grid points x ∈ [-Lx/2, Lx/2]
  • time_coordinates: (time_steps,) - Time evolution points

Solution Fields

  • psi_r_initial: (Nx,) - Real part of initial wavefunction
  • psi_i_initial: (Nx,) - Imaginary part of initial wavefunction
  • psi_r_trajectory: (time_steps, Nx) - Real part evolution
  • psi_i_trajectory: (time_steps, Nx) - Imaginary part evolution
  • state_trajectory: (time_steps, 2*Nx) - Concatenated [ψᵣ, ψᵢ] for ML
  • probability_density: (time_steps, Nx) - |ψ|² probability density

Physical Quantities

  • potential: (Nx,) - Harmonic oscillator potential V(x) = ½mω²x²
  • total_energy: (time_steps,) - Total energy over time (conservation check)

Physical Parameters

  • hbar: Reduced Planck constant
  • mass: Particle mass
  • omega: Harmonic oscillator frequency

Dataset Parameters

  • Domain: x ∈ [-10, 10] (symmetric around origin for harmonic oscillator)
  • Grid points: Nx = 256 (spectral resolution with Fourier basis)
  • Time range: [0, 2.0] (sufficient to see wave packet oscillations)
  • Spatial resolution: Δx ≈ 0.078 (domain length / grid points)
  • Temporal resolution: Δt = 1e-3 (RK4 time stepping)

Physical Parameters

  • Reduced Planck constant: ℏ = 1.0
  • Particle mass: m = 1.0
  • Harmonic oscillator frequency: ω = 1.0
  • Boundary conditions: Periodic (suitable for localized wave packets)

Initial Conditions

  • Wave packet type: Gaussian wave packets with random parameters
  • Center position: x₀ ∼ Uniform([-5, 5])
  • Wave packet width: σ ∼ Uniform([0.5, 2.0])
  • Initial momentum: k₀ ∼ Uniform([-2.0, 2.0])
  • Amplitude: A ∼ Uniform([0.5, 2.0]) (normalized after generation)

Physical Context

This dataset simulates quantum harmonic oscillator dynamics governed by the time-dependent Schrödinger equation. The equation models the quantum mechanical evolution of a particle in a harmonic potential well V(x) = ½mω²x².

Key Physical Phenomena:

  • Wave packet oscillation: Gaussian wave packets oscillate back and forth in the harmonic potential
  • Quantum tunneling: Wave function can extend into classically forbidden regions
  • Energy quantization: Total energy is conserved and quantized in bound states
  • Probability conservation: |ψ|² integrates to 1 at all times
  • Phase evolution: Real and imaginary parts evolve with quantum phase relationships

Applications:

  • Quantum mechanics education: Fundamental model system in quantum physics courses
  • Atomic physics: Models trapped atoms in harmonic potentials (laser cooling, optical traps)
  • Quantum optics: Describes coherent states and squeezed states of light
  • Neural operator learning: Provides rich training data for physics-informed machine learning
  • Bose-Einstein condensates: Mean-field dynamics in harmonic traps

Usage

from dataset import SchrodingerDataset

# Create dataset
dataset = SchrodingerDataset(
    Lx=20.0,                # Domain size
    Nx=256,                 # Grid resolution
    hbar=1.0, mass=1.0, omega=1.0,  # Physical parameters
    stop_sim_time=2.0,      # Simulation time
    timestep=1e-3
)

# Generate a sample
sample = next(iter(dataset))

# Access solution data
x = sample["spatial_coordinates"]           # Spatial grid
t = sample["time_coordinates"]             # Time points  
psi_r = sample["psi_r_trajectory"]         # Real part evolution
psi_i = sample["psi_i_trajectory"]         # Imaginary part evolution
state = sample["state_trajectory"]         # Combined [ψᵣ, ψᵢ] for ML
prob = sample["probability_density"]       # |ψ|² probability
energy = sample["total_energy"]            # Energy conservation

Visualization

Run the plotting scripts to visualize samples:

python plot_sample.py      # Static visualization
python plot_animation.py   # Animated evolution

Data Generation

Generate the full dataset:

python generate_data.py

This creates train/test splits saved as chunked parquet files in the data/ directory.

Downloads last month
2