text_prompt
stringlengths
168
30.3k
code_prompt
stringlengths
67
124k
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We are going to apply this technique to a database of wine samples. The inputs are 13 chemical descriptors, the output is the index of its class (cheap, ok, good). In principle we do not know the output. Step2: The transform had no idea about the output classes, and still three clusters of points can be seen. We can overlay the knowledge of correct classifaction to check if the clusters correspond to what we know Step3: Exercises Step4: Plot the t-SNE projection of MBTR output and see if you can see the two classes of structures accurately Step5: Plot the original MBTR descriptors and see if the structural differences are visible there Step6: Try changing the MBTR and t-SNE parameters and see how the projection changes
<ASSISTANT_TASK:> Python Code: from sklearn.manifold import TSNE import matplotlib.pyplot as plt import numpy import pickle from dscribe.descriptors import MBTR from visualise import view dataIn = numpy.genfromtxt('./data/wineInputs.txt', delimiter=',') dataOut = numpy.genfromtxt('./data/wineOutputs.txt', delimiter=',') # find indexes of wines for each class idx1 = numpy.where(dataOut==1) idx2 = numpy.where(dataOut==2) idx3 = numpy.where(dataOut==3) # compute the tSNE transformation of the inputs in 2 dimensions comp = TSNE(n_components=2).fit_transform(dataIn) # plot the resulting 2D points plt.plot(comp[:,0],comp[:,1],'ro') plt.xlabel('X1') plt.ylabel('X2') plt.show() plt.plot(comp[idx1,0],comp[idx1,1],'go') plt.plot(comp[idx2,0],comp[idx2,1],'ro') plt.plot(comp[idx3,0],comp[idx3,1],'bo') plt.xlabel('X1') plt.ylabel('X2') plt.show() import ase.io # load the database samples = ase.io.read("data/clusters.extxyz", index=':') # samples is now a list of ASE Atoms objects, ready to use! # the first 55 clusters are FCC, the last 55 are BCC # define MBTR setup mbtr = MBTR( species=["Fe"], periodic=False, k2={ "geometry": {"function": "distance"}, "grid": { "min": 0, "max": 2, "sigma": 0.01, "n": 200 }, "weighting": {"function": "exp", "scale": 0.4, "cutoff": 1e-2} }, k3={ "geometry": {"function": "cosine"}, "grid": { "min": -1.0, "max": 1.0, "sigma": 0.02, "n": 200 }, "weighting": {"function": "exp", "scale": 0.4, "cutoff": 1e-2} }, flatten=True, sparse=False, ) # calculate MBTR descriptor for each sample - takes a few secs mbtrs = mbtr.create(samples) print(mbtrs.shape) # ... # ... # ... <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Setup Step2: Directories Step3: Extract list of files Step4: Import raw data and perform preprocessing Step5: Example alignment Step6: Process remaining samples Step7: Wrapping up
<ASSISTANT_TASK:> Python Code: import deltascope.alignment as ut import numpy as np import pandas as pd import matplotlib.pyplot as plt import h5py import os import re import time import tqdm # -------------------------------- # -------- User input ------------ # -------------------------------- param = { 'gthresh':0.5, 'scale':[1,1,1], 'microns':[0.16,0.16,0.21], 'mthresh':0.5, 'radius':10, 'comp_order':[0,2,1], 'fit_dim':['x','z'], 'deg':2, # Don't forget to modify this with a specific sample name 'expname':'expname' } # -------------------------------- # -------- User input ------------ # -------------------------------- # Specify file paths to directories containing probability files # after processing by ilastik gfap = os.path.abspath('..\expname\GFAP\Prob') at = os.path.abspath('..\expname\AT\Prob') # Specify root directory where output will be saved root = os.path.abspath('..\expname') # Output directory with timestamp outname = 'Output_'+time.strftime("%m-%d-%H-%M", time.localtime()) # Create output directory outdir = os.path.join(root,outname) os.mkdir(outdir) Dat = {} for f in os.listdir(at): if 'h5' in f: num = re.findall(r'\d+',f.split('.')[0])[-1] Dat[num] = os.path.join(at,f) Dzrf = {} for f in os.listdir(gfap): if 'h5' in f: num = re.findall(r'\d+',f.split('.')[0])[-1] Dzrf[num] = os.path.join(gfap,f) # Extract list of filename keys klist = Dat.keys() # Create dictionaries to contain the deltascope brain object for each sample Dbat = {} Dbzrf = {} %%time for k in tqdm.tqdm(klist): if k not in list(Dbat.keys()): Dbat[k] = ut.preprocess(Dat[k],param) Dbzrf[k] = ut.preprocess(Dzrf[k],param,pca=Dbat[k].pcamed, mm=Dbat[k].mm,vertex=Dbat[k].vertex) else: print(k,'already processed') ''' Define wrapper functions for starting and saving to minimize the number of inputs that the user needs to type for each call of the function.''' def start(k): return(ut.start(k,Dbat,[Dbzrf],im=True)) def save_both(k,dfa,dfb): ut.save_both(k,dfa,dfb,outdir,param.expname) '''Save model parameters for each file to a dataframe that can be exported for later reference.''' model = pd.DataFrame({'a':[],'b':[],'c':[]}) def save_model(k,mm,model): row = pd.Series({'a':mm[0],'b':mm[1],'c':mm[2]},name=k) model = model.append(row) return(model) '''Define a function that can both fit a model and plot it on an existing plot''' def fit_model(axi,df,mm=None): if mm == None: mm = np.polyfit(df.x,df.z,2) p = np.poly1d(mm) xrange = np.arange(np.min(df.x),np.max(df.x)) axi.plot(xrange,p(xrange),c='m') return(mm) '''Take a set of points and transform to a dataframe format for ease of access.''' def pick_pts(x1,z1,vx,vz,x2,z2): pts = pd.DataFrame({'x':[x1,vx,x2],'z':[z1,vz,z2]}) return(pts) klist model.to_csv(os.path.join(outdir,'model.csv')) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Spearman correlation Step2: correlation Step3: OHVD3 Step4: OHV1D3 Step5: OHV24D3 Step6: ratio_activation Step7: ratio_catabolism Step8: Lasso Regression Step9: OHVD3 Step10: OHV1D3 Step11: OHV24D3 Step12: ratio_activation Step13: ratio_catabolism
<ASSISTANT_TASK:> Python Code: import warnings warnings.filterwarnings("ignore") import pandas as pd import numpy as np from scipy.stats import spearmanr, pearsonr from statsmodels.sandbox.stats.multicomp import multipletests from sklearn.model_selection import train_test_split from sklearn.linear_model import LassoLarsCV from sklearn.preprocessing import StandardScaler import matplotlib.pylab as plt import seaborn as sns %matplotlib inline mf = pd.read_csv('../data/mapping_cleaned_MrOS.txt', sep='\t', dtype=str, index_col='#SampleID') bt = pd.read_csv('../data/biomtable.txt', sep='\t', dtype=str, index_col='#OTU ID') bt = bt.transpose() print(mf.shape, bt.shape) # bt has an additional row of 'taxonomy' mf.head() bt.head() dat = pd.merge(mf, bt, left_index=True, right_index=True) dat.shape dat.head() vars_vd = np.array(['OHVD3', 'OHV1D3', 'OHV24D3', 'ratio_activation', 'ratio_catabolism']) dat[vars_vd] = dat[vars_vd].apply(pd.to_numeric, errors='coerce') dat[vars_vd].describe() otu_cols = dat.columns[mf.shape[1]:dat.shape[1]] len(otu_cols) results= [] i = 0 for j in range(len(otu_cols)): tmp = dat[[vars_vd[i], otu_cols[j]]].dropna(axis=0, how='any') rho, pval = spearmanr(tmp[vars_vd[i]], tmp[otu_cols[j]]) tax = bt.loc['taxonomy'][otu_cols[j]] results.append([vars_vd[i], otu_cols[j], tax, rho, pval]) # output table results = pd.DataFrame(results, columns=['vars', 'otu', 'taxonomy', 'rho', 'pval']).dropna(axis=0, how='any') results['fdr pval'] = multipletests(results['pval'], method = 'fdr_bh')[1] results = results.sort_values(['fdr pval'], ascending=True) # specific bacteria index = results.loc[results['fdr pval'] <= 0.05].index for i in range(len(index)): print(results.taxonomy[index[i]], results['fdr pval'][index[i]]) # check results.head(5) results_spearman_OHV1D3 = [] i = 1 for j in range(len(otu_cols)): tmp = dat[[vars_vd[i], otu_cols[j]]].dropna(axis=0, how='any') rho, pval = spearmanr(tmp[vars_vd[i]], tmp[otu_cols[j]]) tax = bt.loc['taxonomy'][otu_cols[j]] results_spearman_OHV1D3.append([vars_vd[i], otu_cols[j], tax, rho, pval]) # output table results_spearman_OHV1D3 = pd.DataFrame(results_spearman_OHV1D3, columns=['vars', 'otu', 'taxonomy', 'rho', 'pval']).dropna(axis=0, how='any') results_spearman_OHV1D3['fdr pval'] = multipletests(results_spearman_OHV1D3['pval'], method = 'fdr_bh')[1] results_spearman_OHV1D3 = results_spearman_OHV1D3.sort_values(['fdr pval'], ascending=True) # specific bacteria index_OHV1D3 = results_spearman_OHV1D3.loc[results_spearman_OHV1D3['fdr pval'] <= 0.05].index for i in range(len(index_OHV1D3)): print(results_spearman_OHV1D3.taxonomy[index_OHV1D3[i]], results_spearman_OHV1D3['rho'][index_OHV1D3[i]], results_spearman_OHV1D3['fdr pval'][index_OHV1D3[i]]) # check results_spearman_OHV1D3.head(10) results= [] i = 2 for j in range(len(otu_cols)): tmp = dat[[vars_vd[i], otu_cols[j]]].dropna(axis=0, how='any') rho, pval = spearmanr(tmp[vars_vd[i]], tmp[otu_cols[j]]) tax = bt.loc['taxonomy'][otu_cols[j]] results.append([vars_vd[i], otu_cols[j], tax, rho, pval]) # output table results = pd.DataFrame(results, columns=['vars', 'otu', 'taxonomy', 'rho', 'pval']).dropna(axis=0, how='any') results['fdr pval'] = multipletests(results['pval'], method = 'fdr_bh')[1] results = results.sort_values(['fdr pval'], ascending=True) # specific bacteria index = results.loc[results['fdr pval'] <= 0.05].index for i in range(len(index)): print(results.taxonomy[index[i]], results['rho'][index[i]], results['fdr pval'][index[i]]) # check results.head(3) results= [] i = 3 for j in range(len(otu_cols)): tmp = dat[[vars_vd[i], otu_cols[j]]].dropna(axis=0, how='any') rho, pval = spearmanr(tmp[vars_vd[i]], tmp[otu_cols[j]]) tax = bt.loc['taxonomy'][otu_cols[j]] results.append([vars_vd[i], otu_cols[j], tax, rho, pval]) # output table results = pd.DataFrame(results, columns=['vars', 'otu', 'taxonomy', 'rho', 'pval']).dropna(axis=0, how='any') results['fdr pval'] = multipletests(results['pval'], method = 'fdr_bh')[1] results = results.sort_values(['fdr pval'], ascending=True) # specific bacteria index = results.loc[results['fdr pval'] <= 0.05].index for i in range(len(index)): print(results.taxonomy[index[i]], results['rho'][index[i]], results['fdr pval'][index[i]]) # store result for future check with lasso results_spearman_activation = results # check results.head(10) results= [] i = 4 for j in range(len(otu_cols)): tmp = dat[[vars_vd[i], otu_cols[j]]].dropna(axis=0, how='any') rho, pval = spearmanr(tmp[vars_vd[i]], tmp[otu_cols[j]]) tax = bt.loc['taxonomy'][otu_cols[j]] results.append([vars_vd[i], otu_cols[j], tax, rho, pval]) # output table results = pd.DataFrame(results, columns=['vars', 'otu', 'taxonomy', 'rho', 'pval']).dropna(axis=0, how='any') results['fdr pval'] = multipletests(results['pval'], method = 'fdr_bh')[1] results = results.sort_values(['fdr pval'], ascending=True) # specific bacteria index = results.loc[results['fdr pval'] <= 0.05].index for i in range(len(index)): print(results.taxonomy[index[i]], results['fdr pval'][index[i]]) # check results.head(3) tmp = dat[np.append(vars_vd, otu_cols)].dropna() print(tmp.shape) tmp.head() X = tmp[otu_cols] y = tmp[vars_vd[0]] # split data into train and test sets pred_train, pred_test, tar_train, tar_test = train_test_split(X, y, test_size=.3, random_state=123) # specify the lasso regression model model=LassoLarsCV(cv=10, precompute=True).fit(pred_train,tar_train) np.sum(model.coef_) X = tmp[otu_cols] y = tmp[vars_vd[0]] # split data into train and test sets pred_train, pred_test, tar_train, tar_test = train_test_split(X, y, test_size=.3, random_state=123) # specify the lasso regression model model=LassoLarsCV(cv=10, precompute=True).fit(pred_train,tar_train) np.sum(model.coef_) X = tmp[otu_cols] y = tmp[vars_vd[0]] # split data into train and test sets pred_train, pred_test, tar_train, tar_test = train_test_split(X, y, test_size=.3, random_state=123) # specify the lasso regression model model=LassoLarsCV(cv=10, precompute=True).fit(pred_train,tar_train) np.sum(model.coef_) X = tmp[otu_cols] # split data into train and test sets pred_train, pred_test, tar_train, tar_test = train_test_split(X, y, test_size=.3, random_state=123) # specify the lasso regression model model=LassoLarsCV(cv=20, precompute=True).fit(pred_train,tar_train) np.sum(model.coef_) reg = dict(zip(X.columns, model.coef_)) reg = pd.DataFrame.from_dict(reg, orient='index').rename( columns={0: 'lasso coef'}) reg['taxonomy'] = bt.loc['taxonomy'][reg.index] subset = reg.loc[reg['lasso coef'] != 0] print(subset.shape) print(subset.taxonomy.values, subset['lasso coef'].values) # store result for future need subset_activation = subset subset_activation # check whether the same as in spearman result same = results_spearman_activation.loc[results_spearman_activation['otu'].isin (subset_activation.index)] print(same.taxonomy.values) print(same['fdr pval']) results_spearman_activation.loc[results['fdr pval'] <= 0.05].index # plot coefficient progression m_log_alphas = -np.log10(model.alphas_) ax = plt.gca() plt.plot(m_log_alphas, model.coef_path_.T) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha CV') plt.ylabel('Regression Coefficients') plt.xlabel('-log(alpha)') plt.title('Regression Coefficients Progression for Lasso Paths') #plt.savefig('../figures/lasso_coef.png', bbox_inches='tight') # plot mean square error for each fold m_log_alphascv = -np.log10(model.cv_alphas_) plt.figure() plt.plot(m_log_alphascv, model.cv_mse_path_, ':') plt.plot(m_log_alphascv, model.cv_mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha CV') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean squared error') plt.title('Mean squared error on each fold') #plt.savefig('../figures/lasso_mse.png', bbox_inches='tight') # MSE from training and test data from sklearn.metrics import mean_squared_error train_error = mean_squared_error(tar_train, model.predict(pred_train)) test_error = mean_squared_error(tar_test, model.predict(pred_test)) print ('training data MSE') print(train_error) print ('test data MSE') print(test_error) # R-square from training and test data rsquared_train=model.score(pred_train,tar_train) rsquared_test=model.score(pred_test,tar_test) print ('training data R-square') print(rsquared_train) print ('test data R-square') print(rsquared_test) X = tmp[otu_cols] y = tmp[vars_vd[4]] # split data into train and test sets pred_train, pred_test, tar_train, tar_test = train_test_split(X, y, test_size=.3, random_state=123) # specify the lasso regression model model=LassoLarsCV(cv=10, precompute=True).fit(pred_train,tar_train) np.sum(model.coef_) # check reg = dict(zip(X.columns, model.coef_)) reg = pd.DataFrame.from_dict(reg, orient='index').rename( columns={0: 'lasso coef'}) reg['taxonomy'] = bt.loc['taxonomy'][reg.index] subset = reg.loc[reg['lasso coef'] != 0] print(subset.shape) #### previous scratch on lasso from sklearn.linear_model import Lasso from sklearn.preprocessing import StandardScaler small= tmp[np.append(vars_vd[1], otu_cols)].dropna(axis=0, how='any') X = scaler.fit_transform(small[otu_cols]) Y = small[vars_vd[1]] # drop all missing values tmp = dat[np.append(vars_vd, otu_cols)] tmp.head() scaler = StandardScaler() small= tmp[np.append(vars_vd[0], otu_cols)].dropna(axis=0, how='any') X = scaler.fit_transform(small[otu_cols]) Y = small[vars_vd[0]] names = otu_cols # Create a function called lasso, def lasso(alphas): ''' Takes in a list of alphas. Outputs a dataframe containing the coefficients of lasso regressions from each alpha. ''' # Create an empty data frame df = pd.DataFrame() # Create a column of feature names df['OTU names'] = names # For each alpha value in the list of alpha values, for alpha in alphas: # Create a lasso regression with that alpha value, lasso = Lasso(alpha=alpha) # Fit the lasso regression lasso.fit(X, Y) # Create a column name for that alpha value column_name = 'Alpha = %f' % alpha # Create a column of coefficient values df[column_name] = lasso.coef_ # Return the datafram return df table = lasso([0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]) table.head() table.loc[table['Alpha = 0.500000'] != 0] list = np.array([63, 131, 188, 237, 384, 505, 2116, 2545, 3484, 3598]) for i in range(len(list)): print(bt.loc['taxonomy'][list[i]]) scaler = StandardScaler() small= tmp[np.append(vars_vd[1], otu_cols)].dropna(axis=0, how='any') X = scaler.fit_transform(small[otu_cols]) Y = small[vars_vd[1]] names = otu_cols table = lasso([0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]) table.loc[table['Alpha = 3.000000'] != 0] bt.loc['taxonomy'][3323] scaler = StandardScaler() small= tmp[np.append(vars_vd[2], otu_cols)].dropna(axis=0, how='any') X = scaler.fit_transform(small[otu_cols]) Y = small[vars_vd[2]] names = otu_cols table = lasso([0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]) table.loc[table['Alpha = 2.000000'] != 0] scaler = StandardScaler() small= tmp[np.append(vars_vd[3], otu_cols)].dropna(axis=0, how='any') X = scaler.fit_transform(small[otu_cols]) Y = small[vars_vd[3]] names = otu_cols table = lasso([0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]) table.loc[table['Alpha = 2.000000'] != 0] scaler = StandardScaler() small= tmp[np.append(vars_vd[3], otu_cols)].dropna(axis=0, how='any') X = scaler.fit_transform(small[otu_cols]) Y = small[vars_vd[3]] names = otu_cols table = lasso([0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]) table.loc[table['Alpha = 1.000000'] != 0] scaler = StandardScaler() small= tmp[np.append(vars_vd[4], otu_cols)].dropna(axis=0, how='any') X = scaler.fit_transform(small[otu_cols]) Y = small[vars_vd[4]] names = otu_cols table = lasso([0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]) table.loc[table['Alpha = 1.000000'] != 0] clf = Lasso(alpha=0.5) clf.fit(X, Y) Lasso(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) print(clf.coef_) sum(np.abs(clf.coef_)) print(clf.intercept_) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In the second line above, we imported also the linear_autonomous_pool_model module which contains most of the functions required for the examples in this notebook. Step2: Other useful system diagnostics are
<ASSISTANT_TASK:> Python Code: from sympy import * from LAPM import * from LAPM.linear_autonomous_pool_model import LinearAutonomousPoolModel B=Matrix([[-2.927714, 0, 0, 0, 0, 0, 0.000000], [0, -14.560, 0, 0, 0, 0, 0], [0, 0, -3.6211195, 0, 0, 0, 0], [0, 0, 0, -18.20, 0, 0, 0], [1.449218, 6.552, 1.4665534, 8.19, -3.731, 0.082992, 0.003042], [0.204940, 0, 0.2534784, 0, 2.193828, -0.1976, 0], [0, 0, 0, 0, 0.014924, 0.005928, -0.006760]]) u=Matrix(7,1,[3.58800, 18.97804, 4.68, 24.75396, 0, 0, 0]) M=LinearAutonomousPoolModel(u, B, True) M.A_expected_value M.A_quantile(0.5) # Median (50% quantile) of the system age distribution M.T_expected_value #Mean transit time M.T_quantile(0.95) # Median (50% quantile) of the transit time distribution M.a_expected_value # Mean age vector of individual pools M.a_quantile(0.95) # 95% quantile of individual pools M.a_quantile(0.05) # 5% quantiles of individual pools <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: L'algorithme optimal est exposé en dernier, la correction propose un cheminement jusqu'à cette solution en introduisant au fur et à mesure les idées qui aboutissent à cette solution. A partir de la première solution, on élague peu à peu Step2: Avant de passer à l'algorithme dichotomique, on va d'abord suivre un chemin plus facile et plus lent. Supposons qu'on connaît la meilleure séquence croissante de longueur $n Step3: Le coût de cet algorithme est en $O(n^2)$. L'énoncé de l'exercice suggère qu'on peut faire mieux en utilisant la dichotomie. En coupant l'ensemble $E$ en deux, $A=E (1 \rightarrow k)$ et $B=E(1 \rightarrow k+1)$, soit la plus grande séquence croissante est dans $A$, soit dans $B$, soit elle commence avant la position $k$ et se termine après. Les deux premiers cas sont très simples à traiter par récurrence. Le dernier l'est moins mais on sait deux choses Step4: On compare les coûts. La seconde fonction est un peu plus rapide à un facteur multiplicatif près. Le coût des deux fonctions est $O(n^2)$. Step5: Un peu plus près de la solution optimale Step6: On compare les coûts. La seconde fonction est un peu plus rapide à un facteur multiplicatif près. Le coût de la première fonction est en $O(n^2)$. La seconde est en $O(nL)$ où $L$ est la longueur de la plus longueur séquence. On majore ce coût par $O(n^2)$ mais dans les faits, c'est plus court. Step7: Solution optimale Step8: On compare avec la version précédente et on vérifie qu'elle est plus rapide.
<ASSISTANT_TASK:> Python Code: from jyquickhelper import add_notebook_menu add_notebook_menu() E = [10, 15, 7, 19, 2, 5, 7, 16, 3, 9, 15, 0, 1, 15, 6, 11, 0, 14, 7, 9] E def plus_grande_sequence_position_k(E, k=None): if k is None: k = len(E)-1 if k == 0: return [[0]] else : S = plus_grande_sequence_position_k(E, k-1) best = [] for j,s in enumerate(S): if len(s) > len(best) and E[k] >= E [s[-1]]: best = s best = best + [k] S.append(best) return S def plus_grande_sequence(E): if len(E) == 0: return E S = plus_grande_sequence_position_k(E) best = [] for s in S: if len(s) > len(best): best = s return best b = plus_grande_sequence(E) "E",E,"indice:",b, "valeurs:", [ E[i] for i in b ] def plus_grande_sequence_2(E): if len(E) == 0: return E precedent = [-1 for e in E] longueur = [0 for e in E] longueur[0] = 1 for k in range(1, len(E)): bestL = 1 bestP = -1 for j in range(0,k) : if E[k] >= E [ j ] and longueur[j]+1 > bestL: bestL = longueur [j]+1 bestP = j precedent[k] = bestP longueur[k] = bestL # on récupère la longueur de la plus grande séquence maxiL = 0 for i,l in enumerate(longueur): if l > longueur[maxiL]: maxiL = i # on récupère la plus grande séquence seq = [maxiL] while precedent[seq[-1]] != -1: p = precedent[seq[-1]] seq.append(p) seq.reverse() return seq E = [10, 15, 7, 19, 2, 5, 7, 16, 3, 9, 15, 0, 1, 15, 6, 11, 0, 14, 7, 9] b = plus_grande_sequence_2(E) "E",E,"indice:",b, "valeurs:", [ E[i] for i in b ] import random for n in (20,50,100,200) : E = [ random.randint(0,n) for i in range(n) ] print("n=",n) %timeit plus_grande_sequence(E) %timeit plus_grande_sequence_2(E) def plus_grande_sequence_2L(E): if len(E) == 0: return E dernier = [0] precedent = [-1 for e in E] for k in range(1,len(E)): if E[k] >= E [dernier [-1]]: # on ajoute à la dernière séquence precedent[k] = dernier[-1] dernier.append( k ) else : # on s'en sert pour améliorer une séquence existante for j in range(len(dernier)-1, -1, -1): if E[k] < E [dernier[j]]: if precedent[dernier[j]] == -1: dernier [j] = k elif E[k] >= E[dernier[j-1]]: if j == 0: break precedent[k] = dernier[j-1] # ce n'est pas exactement precedent[dernier[j]], # mais cette valeur est admissible par construction dernier[j] = k break # car il ne sert à rien d'aller plus loin # on récupère la plus grande séquence seq = [dernier[-1]] while precedent[seq[-1]] != -1: p = precedent[seq[-1]] seq.append(p) seq.reverse() return seq E = [10, 15, 7, 19, 2, 5, 7, 16, 3, 9, 15, 0, 1, 15, 6, 11, 0, 14, 7, 9] b = plus_grande_sequence_2L(E) "E",E,"indice:",b, "valeurs:", [ E[i] for i in b ] import random for n in (20,50,100,200) : E = [random.randint(0,n) for i in range(n)] %timeit plus_grande_sequence_2(E) %timeit plus_grande_sequence_2L(E) def plus_grande_sequence_wikipedia(E): P = [-1 for _ in E] M = [-1 for _ in E] L = 0 for i in range(0, len(E)): lo = 1 hi = L while lo <= hi: mid = (lo + hi) // 2 if E[M[mid]] < E[i]: lo = mid + 1 else: hi = mid - 1 newL = lo P[i] = M[newL - 1] if newL > L: M[newL] = i L = newL elif E[i] < E[M[newL]]: M[newL] = i S = [-1 for i in range(L)] k = M[L] for i in range(L-1, -1, -1) : S[i] = k k = P[k] return S E = [10, 15, 7, 19, 2, 5, 7, 16, 3, 9, 15, 0, 1, 15, 6, 11, 0, 14, 7, 9] b = plus_grande_sequence_wikipedia(E) "E",E,"...","indice:",b, "valeurs:", [ E[i] for i in b ] import random for n in (20,50,100,200) : E = [ random.randint(0,n) for i in range(n) ] print("n=",n) %timeit plus_grande_sequence_2L(E) %timeit plus_grande_sequence_wikipedia(E) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Input Parameters Step2: Run SYGMA Step3: Plot results Step4: 3. Multiple Decay Channels Step5: Example with U-238 Step6: In the case of U-238, there are many isotopes that are resulting from the multiple decay channels. Those new radioactive isotopes are added automatically in the list of isotopes in NuPyCEE.
<ASSISTANT_TASK:> Python Code: # Import python modules import matplotlib import matplotlib.pyplot as plt import numpy as np # Import the NuPyCEE codes from NuPyCEE import sygma from NuPyCEE import omega # Number of timesteps in the simulaton. # See https://github.com/NuGrid/NuPyCEE/blob/master/DOC/Capabilities/Timesteps_size_management.ipynb special_timesteps = -1 nb_dt = 100 tend = 2.0e6 dt = tend / float(nb_dt) # No star formation. no_sf = True # Dummy neutron star merger yields to activate the radioactive option. nsmerger_table_radio = 'yield_tables/extra_table_radio_dummy.txt' # Add 1 Msun of radioactive Al-26 in the gas. # The indexes of this array reflect the order seen in the yield_tables/decay_file.txt file # Index 0, 1, 2 --> Al-26, K-40, U-238 ism_ini_radio = [1.0, 0.0, 0.0] # Run SYGMA (or in this case, the decay process) s = sygma.sygma(iniZ=0.02, no_sf=no_sf, ism_ini_radio=ism_ini_radio,\ special_timesteps=special_timesteps, tend=tend, dt=dt,\ decay_file='yield_tables/decay_file.txt', nsmerger_table_radio=nsmerger_table_radio) # Get the Al-26 (radioactive) and Mg-26 (stable) indexes in the gas arrays i_Al_26 = s.radio_iso.index('Al-26') i_Mg_26 = s.history.isotopes.index('Mg-26') # Extract the evolution of these isotopes as a function of time Al_26 = np.zeros(s.nb_timesteps+1) Mg_26 = np.zeros(s.nb_timesteps+1) for i_t in range(s.nb_timesteps+1): Al_26[i_t] = s.ymgal_radio[i_t][i_Al_26] Mg_26[i_t] = s.ymgal[i_t][i_Mg_26] # Plot the evolution of Al-26 and Mg-26 %matplotlib nbagg plt.figure(figsize=(8,4.5)) plt.plot( np.array(s.history.age)/1e6, Al_26, '--b', label='Al-26' ) plt.plot( np.array(s.history.age)/1e6, Mg_26, '-r', label='Mg-26' ) plt.plot([0,2.0], [0.5,0.5], ':k') plt.plot([0.717,0.717], [0,1], ':k') # Labels and fontsizes plt.xlabel('Time [Myr]', fontsize=16) plt.ylabel('Mass of isotope [M$_\odot$]', fontsize=16) plt.legend(fontsize=14, loc='center left', bbox_to_anchor=(1, 0.5)) plt.subplots_adjust(top=0.96) plt.subplots_adjust(bottom=0.15) plt.subplots_adjust(right=0.75) matplotlib.rcParams.update({'font.size': 14.0}) # Add 1 Msun of radioactive K-40 in the gas. # The indexes of this array reflect the order seen in the yield_tables/decay_file.txt file # Index 0, 1, 2 --> Al-26, K-40, U-238 ism_ini_radio = [0.0, 1.0, 0.0] # Number of timesteps in the simulaton. # See https://github.com/NuGrid/NuPyCEE/blob/master/DOC/Capabilities/Timesteps_size_management.ipynb special_timesteps = -1 nb_dt = 100 tend = 5.0e9 dt = tend / float(nb_dt) # Run SYGMA (or in this case, the decay process) # with the decay module s = sygma.sygma(iniZ=0.0, sfr=sfr, starbursts=starbursts, ism_ini_radio=ism_ini_radio,\ special_timesteps=special_timesteps, tend=tend, dt=dt,\ decay_file='yield_tables/decay_file.txt', nsmerger_table_radio=nsmerger_table_radio,\ use_decay_module=True, radio_refinement=1) # Get the K-40 (radioactive) and Ca-40 and Ar-40 (stable) indexes in the gas arrays i_K_40 = s.radio_iso.index('K-40') i_Ca_40 = s.history.isotopes.index('Ca-40') i_Ar_40 = s.history.isotopes.index('Ar-40') # Extract the evolution of these isotopes as a function of time K_40 = np.zeros(s.nb_timesteps+1) Ca_40 = np.zeros(s.nb_timesteps+1) Ar_40 = np.zeros(s.nb_timesteps+1) for i_t in range(s.nb_timesteps+1): K_40[i_t] = s.ymgal_radio[i_t][i_K_40] Ca_40[i_t] = s.ymgal[i_t][i_Ca_40] Ar_40[i_t] = s.ymgal[i_t][i_Ar_40] # Plot the evolution of Al-26 and Mg-26 %matplotlib nbagg plt.figure(figsize=(8,4.5)) plt.plot( np.array(s.history.age)/1e6, K_40, '--b', label='K-40' ) plt.plot( np.array(s.history.age)/1e6, Ca_40, '-r', label='Ca-40' ) plt.plot( np.array(s.history.age)/1e6, Ar_40, '-g', label='Ar-40' ) # Labels and fontsizes plt.xlabel('Time [Myr]', fontsize=16) plt.ylabel('Mass of isotope [M$_\odot$]', fontsize=16) plt.legend(fontsize=14, loc='center left', bbox_to_anchor=(1, 0.5)) plt.subplots_adjust(top=0.96) plt.subplots_adjust(bottom=0.15) plt.subplots_adjust(right=0.75) matplotlib.rcParams.update({'font.size': 14.0}) # Add 1 Msun of radioactive U-238 in the gas. # The indexes of this array reflect the order seen in the yield_tables/decay_file.txt file # Index 0, 1, 2 --> Al-26, K-40, U-238 ism_ini_radio = [0.0, 0.0, 1.0] # Number of timesteps in the simulaton. # See https://github.com/NuGrid/NuPyCEE/blob/master/DOC/Capabilities/Timesteps_size_management.ipynb special_timesteps = -1 nb_dt = 100 tend = 5.0e9 dt = tend / float(nb_dt) # Run SYGMA (or in this case, the decay process) # with the decay module s = sygma.sygma(iniZ=0.0, sfr=sfr, starbursts=starbursts, ism_ini_radio=ism_ini_radio,\ special_timesteps=special_timesteps, tend=tend, dt=dt,\ decay_file='yield_tables/decay_file.txt', nsmerger_table_radio=nsmerger_table_radio,\ use_decay_module=True, radio_refinement=1) print(s.radio_iso) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Correct Zotero RDF Step2: Parse RDF Step3: Create a GraphML file Step4: The code-cell below will create a new GraphML file that we can import in Cytoscape.
<ASSISTANT_TASK:> Python Code: import rdflib import networkx as nx import os rdf_path = 'data/example.rdf' with open(rdf_path, 'r') as f: corrected = f.read().replace('rdf:resource rdf:resource', 'link:link rdf:resource') # The corrected graph will be saved to a file with `_corrected` # added to the name. E.g. if the original RDF document was # called `example.rdf`, the new file will be called # `example_corrected.rdf`. base, name = os.path.split(rdf_path) corrected_name = '%s_corrected_.%s' % tuple(name.split('.')) corrected_rdf_path = os.path.join(base, corrected_name) with open(corrected_rdf_path, 'w') as f: f.write(corrected) rdf_graph = rdflib.Graph() rdf_graph.load(corrected_rdf_path) graph = nx.DiGraph() # Metadata is `directed`. for s, p, o in rdf_graph.triples((None, None, None)): # The .toPython() method converts rdflib objects into objects # that any Python module can understand (e.g. str, int, float). graph.add_edge(s.toPython(), o.toPython(), attr_dict={'predicate': p.toPython()}) print 'Added %i nodes and %i edges to the graph' % (graph.order(), graph.size()) graphml_path = 'output/example.graphml' nx.write_graphml(graph, graphml_path) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <a href="https Step2: Optimization Through Dynamics Step3: Next we need to posit interactions between our model bubbles. We'll assume that we can model a pair of bubbles by defining an energy function for the pair. We use an energy that is zero if the bubbles are not touching and increases gradually as they get pushed together. Specifically, we will consider two bubbles, $i$ and $j$, with radii $\sigma_i$ and $\sigma_j$ respectively. If $r_{ij}$ is the distance between the bubbles, we'll posit a function that looks like Step4: Once we've assigned an energy, $U(r_{ij}, \sigma_{ij})$, to pairs of bubbles, we have to assign an energy to to the whole system, $\mathcal U$. As we will see, our simulation will make use of the forces, $\vec F_i = -\nabla_{\vec r_i}\mathcal U$. This is usually done by just summing up all the pairwise energies, Step5: To compute the energy of the whole bubble raft in JAX, M.D. we use the helper function energy_fun = energy.soft_sphere_pair which returns a function that computes the soft-sphere energy for our bubble raft in its periodic box. We will feed the species and sigma definitions into the energy.soft_sphere_pair function. Step6: Now let's run simulations with two different values of $D$ and draw them side-by-side. In one case we will use $D = 1$ so that both species are the same and this will result in the same hexagonal configuration as in the warm up. However, we will then run a simulation with $D = 0.8$ to see what happens when all the bubbles don't have the same size. Step7: The hexagonal structure when the bubbles have the same size has broken down in the two-species case. To get a bit more insight into this we will use JAX's automatic vectorization capabilities (via vmap) to see how the structure and energy of bubble rafts depends on diameter. Step8: At small values of the diameter, the energy is low and increases with increasing diameter until a maximum in the energy at which point it drops precipitously. We can visualize an example system at each of these diameter disparities to see what is happening. We will color the bubble rafts by their energy. Step9: When the diameter of the small bubbles is close to the diamater of the large bubbles the structure is close to hexagonal. Likewise, when the small bubble diameter is very small, the small bubbles fit into the interstices and regions retain the hexagonal order. However, when the diameter is in-between (where the energy is high) the bubbles end up looking like they are arranged randomly. This is an effect known as the Jamming transition. However, could we have found this optimally disordered region without brute force? Let's try to maximize the energy with respect to the diameter, $D$, directly. Step10: Next, let's take the derivative of the energy with respect to the particle diameters and vectorize it over the ensemble of initial positions. Step11: Now, we run the simulation for each diameter and record the gradients over each member of the ensemble. We then plot the average gradient against diameter and compare it with the energy that we found by directly simulating the bubble raft.
<ASSISTANT_TASK:> Python Code: #@title Imports & Utils !pip install -q git+https://www.github.com/google/jax-md import time from functools import partial import numpy as onp import jax.numpy as np from jax import jit from jax import grad from jax import vmap from jax import random from jax import lax from jax.experimental import stax from jax.experimental import optimizers from jax.config import config config.update('jax_enable_x64', True) from jax_md import space from jax_md import minimize from jax_md import simulate from jax_md import space from jax_md import energy from jax_md import quantity from jax_md.util import f32, f64 # Progress Bars. from IPython.display import HTML, display import time def ProgressIter(iter_fun, iter_len=0): if not iter_len: iter_len = len(iter_fun) out = display(progress(0, iter_len), display_id=True) for i, it in enumerate(iter_fun): yield it out.update(progress(i + 1, iter_len)) def progress(value, max): return HTML( <progress value='{value}' max='{max}', style='width: 45%' > {value} </progress> .format(value=value, max=max)) # Matplotlib settings. import matplotlib import matplotlib.pyplot as plt import seaborn as sns sns.set_style(style='white') sns.set(font_scale=1.6) def format_plot(x, y): plt.xlabel(x, fontsize=20) plt.ylabel(y, fontsize=20) def finalize_plot(shape=(1, 1)): plt.gcf().set_size_inches( shape[0] * 1.5 * plt.gcf().get_size_inches()[1], shape[1] * 1.5 * plt.gcf().get_size_inches()[1]) plt.tight_layout() def draw_system(R, box_size, marker_size, color=None): if color == None: color = [64 / 256] * 3 ms = marker_size / box_size R = onp.array(R) marker_style = dict( linestyle='none', markeredgewidth=3, marker='o', markersize=ms, color=color, fillstyle='none') plt.plot(R[:, 0], R[:, 1], **marker_style) plt.plot(R[:, 0] + box_size, R[:, 1], **marker_style) plt.plot(R[:, 0], R[:, 1] + box_size, **marker_style) plt.plot(R[:, 0] + box_size, R[:, 1] + box_size, **marker_style) plt.plot(R[:, 0] - box_size, R[:, 1], **marker_style) plt.plot(R[:, 0], R[:, 1] - box_size, **marker_style) plt.plot(R[:, 0] - box_size, R[:, 1] - box_size, **marker_style) plt.xlim([0, box_size]) plt.ylim([0, box_size]) plt.axis('off') plt.gca().set_facecolor([1, 1, 1]) # System property utilities. def box_size_at_number_density(particle_count, number_density): return f32((particle_count / number_density) ** 0.5) N = 128 N_2 = N // 2 simulation_steps = np.arange(300) dt = 1e-2 temperature = 1e-5 key = random.PRNGKey(0) packing_fraction = 0.98 markersize = 260 def box_size_at_packing_fraction(diameter): bubble_volume = N_2 * np.pi * (diameter ** 2 + 1) / 4 return np.sqrt(bubble_volume / packing_fraction) plt.gca().axhline(y=0, color='k') plt.xlim([0, 1.5]) plt.ylim([-0.2, 0.8]) dr = np.linspace(0, 3.0, num=80) plt.plot(dr, energy.soft_sphere(dr, sigma=1), 'b-', linewidth=3) plt.fill_between(dr, energy.soft_sphere(dr), alpha=0.4) format_plot('$r$', '$U(r)$') species = np.array([0] * (N_2) + [1] * (N_2), dtype=np.int32) def species_sigma(diameter): d_AA = diameter d_BB = 1 d_AB = 0.5 * (diameter + 1) return np.array( [[d_AA, d_AB], [d_AB, d_BB]] ) @jit def simulation(diameter, key): # Create the simulation environment. box_size = box_size_at_packing_fraction(diameter) displacement, shift = space.periodic(box_size) # Create the energy function. sigma = species_sigma(diameter) energy_fun = energy.soft_sphere_pair( displacement, species=species, sigma=sigma) # Randomly initialize the system. R = random.uniform(key, (N, 2), maxval=box_size) # Minimize to the nearest minimum. init_fn, apply_fn = minimize.fire_descent(energy_fun, shift) state = init_fn(R) do_step = lambda state, t: (apply_fn(state, t=t), ()) state, _ = lax.scan(do_step, state, simulation_steps) return box_size, energy_fun(state.position), state.position plt.subplot(1, 2, 1) box_size, raft_energy, bubble_positions = simulation(1.0, key) draw_system(bubble_positions, box_size, markersize) finalize_plot((0.5, 0.5)) plt.subplot(1, 2, 2) box_size, raft_energy, bubble_positions = simulation(0.8, key) draw_system(bubble_positions[:N_2], box_size, 0.8 * markersize) draw_system(bubble_positions[N_2:], box_size, markersize) finalize_plot((2.0, 1)) ensemble_size = 40 # Vectorize over both random keys and diameter. vec_simulation = vmap(vmap(simulation, (None, 0)), (0, None)) sim_keys = random.split(key, ensemble_size) diameter = np.linspace(0.4, 1.0, 10) box_size, raft_energy, bubble_positions = vec_simulation(diameter, sim_keys) E_mean = np.mean(raft_energy, axis=1) E_std = np.std(raft_energy, axis=1) plt.plot(diameter, E_mean, linewidth=3) plt.fill_between(diameter, E_mean + E_std, E_mean - E_std, alpha=0.4) plt.xlim([0.4, 1.0]) format_plot('$D$', '$\\langle E\\rangle$') ms = 185 for i, d in enumerate(diameter): plt.subplot(2, 5, i + 1) c = min(1, max(0, (E_mean[i] - 0.4) * 4)) color = [c, 0, 1 - c] draw_system(bubble_positions[i, 0, :N_2], box_size[i, 0], d * ms, color=color) draw_system(bubble_positions[i, 0, N_2:], box_size[i, 0], ms, color=color) finalize_plot((2.5, 1)) short_simulation_steps = np.arange(10) def short_simulation(diameter, positions, key): L = box_size_at_packing_fraction(diameter) displacement, shift = space.periodic_general(L * np.eye(2), fractional_coordinates=False) sigma = species_sigma(diameter) energy_fun = energy.soft_sphere_pair(displacement, species, sigma) init_fn, apply_fn = minimize.gradient_descent(energy_fun, shift, 1e-3) state = init_fn(positions) do_step = lambda state, t: (apply_fn(state), ()) state, _ = lax.scan(do_step, state, short_simulation_steps) return energy_fun(state) dE_dD_fun = grad(short_simulation) dE_dD_fun = jit(vmap(dE_dD_fun, (None, 0, 0))) dE_dD = [] for i, d in ProgressIter(enumerate(diameter), len(diameter)): key, split = random.split(key) split = random.split(split, ensemble_size) dE_dD += [dE_dD_fun(d, bubble_positions[i], split)] dE_dD = np.array(dE_dD) plt.subplot(2, 1, 1) dE_mean = np.mean(dE_dD, axis=1) dE_std = np.std(dE_dD, axis=1) plt.plot(diameter, dE_mean, linewidth=3) plt.fill_between(diameter, dE_mean + dE_std, dE_mean - dE_std, alpha=0.4) plt.xlim([0.4, 1.0]) format_plot('$D$', '$\\langle \\partial E/\\partial D\\rangle$') plt.subplot(2, 1, 2) plt.plot(diameter, E_mean, linewidth=3) plt.fill_between(diameter, E_mean + E_std, E_mean - E_std, alpha=0.4) plt.xlim([0.4, 1.0]) format_plot('$D$', '$\\langle E\\rangle$') finalize_plot((1.25, 1)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Numpy and Scipy Step2: Matplotlib Step3: Miscellaneous definitions Step4: 3 DOF System Step5: The plots Step6: Equation of Motion Step7: The left beam is constrained by a roller and by the right beam, the first requires that the Centre of Instantaneous Rotation (CIR) belongs to the vertical line in $A$, while the second requires that the CIR belongs to the line that connects the hinges Step8: Structural Matrices Step9: Compute the 3x3 flexibility using the Principle of Virtual Displacements and the 3x3 stiffness using inversion, while the mass matrix is directly assembled with the understanding that the lumped mass on $x_1$ is $2m$. Step10: The eigenvalues problem Step11: Numerical Integration Step12: The constants that we need in the linear acceleration algorithm — note that we have an undamped system or, in other words, $\boldsymbol C = \boldsymbol 0$ Step13: The integration loop Step14: Plotting Step15: Equation of Motion Step16: Substituting a particular integral $\xi_i=C_i\sin(\lambda_0 a)$ in the Step17: The modal response, taking into account that we start from rest conditions, is Step18: Free vibration phase, $a\ge 3\pi/2 = a_1$ Step19: Analytical expressions Step20: Stitching the two responses Step21: Plotting the Analytical Response Step22: next, the modal responses over the interval $0 \le a \le 16\pi$ Step23: Nodal responses Step24: Why x = q@Psi.T rather than x = Psi@q? Because for different reasons (mostly, ease of use with the plotting libraries) we have all the response arrays organized in the shape of (Nsteps × 3).
<ASSISTANT_TASK:> Python Code: from IPython.display import display, Latex, HTML display(HTML(open('01.css').read())) import numpy as np from numpy import array, cos, diag, eye, linspace, pi from numpy import poly1d, sign, sin, sqrt, where, zeros from scipy.linalg import eigh, inv, det %matplotlib inline import matplotlib.pyplot as plt plt.style.use('seaborn-paper') plt.rcParams['figure.dpi'] = 115 plt.rcParams['figure.figsize'] = (7.5, 2.5) plt.rcParams['axes.grid'] = True def ld(*items): display(Latex('$$' + ' '.join(items) + '$$')) def pmat(mat, env='bmatrix', fmt='%+f'): opener = '\\begin{'+env+'}\n ' closer = '\n\\end{'+env+'}' formatted = '\\\\\n '.join('&'.join(fmt%elt for elt in row) for row in mat) return opener+formatted+closer def rounder(mat): return mat+0.01*sign(mat) def p(*l): return poly1d(l) def vw(emme, chi, L): return sum(((m*c).integ()(l)-(m*c).integ()(0)) for (m, c, l) in zip(emme, chi, L)) def p0_p1(p): from itertools import tee a, b = tee(p) next(b, None) return zip(a, b) l0 = 4/3 # define a function to get back the time array and the 3 dependent vars def a_uA_vA_aA(t0, t1, npoints): a = linspace(t0, t1, npoints) uA = where(a<3*pi/2, (l0*a-sin(l0*a))/2/pi, 1) vA = where(a<3*pi/2, (1-cos(l0*a))/2/pi, 0) aA = where(a<3*pi/2, 16*sin(l0*a)/18/pi, 0) return a, uA, vA, aA # and use it a, uA, vA, aA = a_uA_vA_aA(0, 2*pi, 501) plt.plot(a/pi, uA) plt.xlabel(r'$\omega_0 t/\pi$') plt.ylabel(r'$u_A/\delta$') plt.title('Imposed support motion'); plt.plot(a/pi, vA) plt.xlabel(r'$\omega_0 t/\pi$') plt.ylabel(r'$\dot u_A/\delta\omega_0$') plt.title('Imposed support velocity'); plt.plot(a/pi, aA) plt.xlabel(r'$\omega_0 t/\pi$') plt.ylabel(r'$\ddot u_A/\delta\omega_0^2$') plt.title('Imposed support acceleration'); display(HTML(open('figures/trab1kin_conv.svg').read())) e = array((2.0, 2.0, 2.0)) display(HTML(open('figures/trab1_conv.svg').read())) l = [1, 2, 2, 1, 1, 1] h = 0.5 ; t = 3*h m = [[p(2,0),p(h,0),p(h,1),p(h,0),p(h,h),p(1,0)], [p(2,0),p(1,0),p(0,2),p(1,0),p(1,1),p(2,0)], [p(2,0),p(h,0),p(h,1),p(h,0),p(t,h),p(2,0)]] F = array([[vw(emme, chi, l) for emme in m] for chi in m]) K = inv(F) M = array(((2.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0))) iM = inv(M) ld('\\boldsymbol F = \\frac{L^3}{12EJ}\\,', pmat(rounder(F*12), fmt='%+d')) ld('\\boldsymbol K = \\frac{3 EJ}{1588L^3}\\,', pmat(rounder(K*1588/3), fmt='%+d'), '= \\frac{EJ}{L^3}\\;\\hat{\\boldsymbol K}.') ld('\\boldsymbol M = m\\,', pmat(M, fmt='%d'), '= m\\;\\hat{\\boldsymbol M}.') wn2, Psi = eigh(K, M) wn = sqrt(wn2) li = wn Lambda2 = diag(wn2) Lambda = diag(wn) # eigenvectors are normalized → M* is a unit matrix, as well as its inverse Mstar, iMstar = eye(3), eye(3) ld(r'\boldsymbol\Omega^2 = \omega_0^2\,', pmat(Lambda2), r'=\omega_0^2\,\boldsymbol\Lambda^2.') ld(r'\boldsymbol\Omega=\omega_0\,', pmat(Lambda), r'=\omega_0\,\boldsymbol\Lambda.') ld(r'\boldsymbol T_\text{n}=\frac{2\pi}{\omega_0}\,', pmat(inv(Lambda)), r'= t_0\,\boldsymbol\Theta.') ld(r'\Psi=', pmat(Psi), '.') nsppi = 200 a, _, _, aA = a_uA_vA_aA(0, 16*pi, nsppi*16+1) peff = (- M @ e) * aA[:,None] h = pi/nsppi K_ = K + 6*M/h**2 F_ = inv(K_) dp_v = 6*M/h dp_a = 3*M Xl, Vl = [zeros(3)], [zeros(3)] for p0, p1 in p0_p1(peff): x0, v0 = Xl[-1], Vl[-1] a0 = iM @ (p0 -K@x0) dp = (p1-p0) + dp_a@a0 + dp_v@v0 dx = F_@dp dv = 3*dx/h - 3*v0 - a0*h/2 Xl.append(x0+dx), Vl.append(v0+dv) Xl = array(Xl) ; Vl = array(Vl) for i, line in enumerate(plt.plot(a/pi, Xl), 1): line.set_label(r'$x_{%d}$'%i) plt.xlabel(r'$\omega_0 t/\pi$') plt.ylabel(r'$x_i/\delta$') plt.title('Response — numerical integration — lin.acc.') plt.legend(); G = - Psi.T @ M @ e C = G*l0**2/(li**2-l0**2)/2/pi for n in range(3): i = n+1 ld(r'q_%d=%+10f\left(\sin\frac43a-%10f\sin%1fa\right)' % (i,C[n],l0/li[n],li[n]), r'\qquad\text{for }0 \le a \le \frac32\pi') a1 = 3*pi/2 q_a1 = C*(sin(l0*a1)-l0*sin(li*a1)/li) v_a1 = C*l0*(cos(l0*a1)-cos(li*a1)) ABs = [] for i in range(3): b = array((q_a1[i], v_a1[i]/li[i])) A = array(((+cos(li[i]*a1), -sin(li[i]*a1)), (+sin(li[i]*a1), +cos(li[i]*a1)))) ABs.append(A@b) ABs = array(ABs) display(Latex(r'Modal responses for $a_1 \le a$.')) for n in range(3): i, l, A_, B_ = n+1, li[n], *ABs[n] display(Latex((r'$$q_{%d} = '+ r'%+6.3f\cos%6.3fa '+ r'%+6.3f\sin%6.3fa$$')%(i, A_, l, B_, l))) ac = a[:,None] q = where(ac<=a1, C*(sin(l0*ac)-l0*sin(li*ac)/li), ABs[:,0]*cos(li*ac) + ABs[:,1]*sin(li*ac)) # #### Plot zooming around a1 low, hi = int(0.8*a1*nsppi/pi), int(1.2*a1*nsppi/pi) for i, line in enumerate(plt.plot(a[low:hi]/pi, q[low:hi]), 1): line.set_label('$q_{%d}$'%i) plt.title('Modal Responses, zoom on transition zone') plt.xlabel(r'$\omega_0 t/\pi$') plt.legend(loc='best') plt.show() # #### Plot in 0 ≤ a ≤ 16 pi for i, line in enumerate(plt.plot(a/pi, q), 1): line.set_label('$q_{%d}$'%i) plt.title('Modal Responses') plt.xlabel(r'$\omega_0 t/\pi$') plt.legend(loc='best'); plt.xticks() plt.show(); x = q@Psi.T for i, line in enumerate(plt.plot(a/pi, x), 1): line.set_label('$x_{%d}/\delta$'%i) plt.title('Normalized Nodal Displacements — analytical solution') plt.xlabel(r'$\omega_0 t / \pi$') plt.legend(loc='best') plt.show(); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Preparing the Data Step2: Once we have the data ready, we need to put it into an iterator and specify parameters such as the 'batch_size', and 'shuffle' which will determine the size of data the iterator feeds during each pass, and whether or not the data will be shuffled respectively. Step3: In the above example, we have made use of NDArrayIter, which is used to iterate over numpy arrays. In general, there are many different types of iterators in MXNet based on the type of data you will be using. Their complete documentation can be found at Step4: The above network uses the following layers Step5: We can plot the network we have created in order to visualize it. Step6: Training the model Step7: Using a trained model Step8: We can also evaluate our model for some metric. In this example, we are evaulating our model's mean squared error on the evaluation data. Step9: Let us try to add some noise to the evaluation data and see how the MSE changes
<ASSISTANT_TASK:> Python Code: import mxnet as mx import numpy as np #Training data train_data = np.array([[1,2],[3,4],[5,6],[3,2],[7,1],[6,9]]) train_label = np.array([5,11,17,7,9,24]) batch_size = 1 #Evaluation Data eval_data = np.array([[7,2],[6,10],[12,2]]) eval_label = np.array([11,26,16]) train_iter = mx.io.NDArrayIter(train_data,train_label, batch_size, shuffle=True,label_name='lin_reg_label') eval_iter = mx.io.NDArrayIter(eval_data, eval_label, batch_size, shuffle=False) X = mx.sym.Variable('data') Y = mx.symbol.Variable('lin_reg_label') fully_connected_layer = mx.sym.FullyConnected(data=X, name='fc1', num_hidden = 1) lro = mx.sym.LinearRegressionOutput(data=fully_connected_layer, label=Y, name="lro") model = mx.mod.Module( symbol = lro , data_names=['data'], label_names = ['lin_reg_label']# network structure ) mx.viz.plot_network(symbol=lro) import logging logging.basicConfig(level=logging.INFO) model.fit(train_iter, eval_iter, optimizer_params={'learning_rate':0.00005, 'momentum': 0.9}, num_epoch=10, eval_metric='mse', batch_end_callback = mx.callback.Speedometer(batch_size, 2)) #Inference model.predict(eval_iter).asnumpy() #Evaluation metric = mx.metric.MSE() model.score(eval_iter, metric) #Evaluation Data eval_data = np.array([[7,2],[6,10],[12,2]]) eval_label = np.array([11.1,26.1,16.1]) #Adding 0.1 to each of the values eval_iter = mx.io.NDArrayIter(eval_data, eval_label, batch_size, shuffle=False) model.score(eval_iter, metric) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Read data Step2: Convert data to monthly time series Step3: Have a quick plot Step4: 3. Carry out SSA analysis Step5: We can view the contribution of each of the signals (corresponding to each singular value) as follows Step6: From the above we can see that most of the variation is contained in the first signal (corresponding to the first singular vector). The scale in the image above makes it difficult to see what's going on with the remaining singular values. Step7: Now that we have the signal components (there are 15 additive components to the signal) we can loop over that range and look at each one individually. We only look at the first 5 elements below Step8: Let's see the result if we reconstruct the signal from these 5 streams. We add the first 5 signals and pass the result to object.view_reconstruction. Step9: That looks very reasonable! We can get closer to the original series by adding additional signals from the remaining singular values. Let's use the first 15 singular values Step10: 4. Forecast
<ASSISTANT_TASK:> Python Code: %matplotlib inline import pandas as pd import numpy as np from mySSA import mySSA # private lib from matplotlib.pylab import rcParams rcParams['figure.figsize'] = 11, 4 df = pd.read_csv(r'data\NH.Ts.csv', parse_dates=True, index_col='Year', skiprows=1) df = df['1881':'2016'] df.drop(['SON', 'MAM', 'DJF', 'JJA', 'J-D', 'D-N'], axis=1, inplace=True) df1 = df.apply(pd.to_numeric, errors='coerce') df1.tail() tmp = df1.values.astype(np.float) tmp = tmp.reshape(tmp.shape[0]*12,1) print(tmp.shape) ds = pd.date_range(start='1/1/1881', end='12/1/2016', freq='MS') ts = pd.DataFrame(tmp, columns=['TEMP']) ts = ts.set_index(ds) ts.plot() ssa = mySSA(ts) K = 40 suspected_seasonality = 12 ssa.embed(embedding_dimension=40, suspected_frequency=suspected_seasonality, verbose=True) ssa.decompose(verbose=True) ssa.view_s_contributions() ssa.view_s_contributions(adjust_scale=True) rcParams['figure.figsize'] = 11, 2 for i in range(5): ssa.view_reconstruction(ssa.Xs[i], names=i, symmetric_plots=i!=0) rcParams['figure.figsize'] = 11, 4 streams5 = [i for i in range(5)] reconstructed5 = ssa.view_reconstruction(*[ssa.Xs[i] for i in streams5], names=streams5, return_df=True, plot=False) ts_copy5 = ssa.ts.copy() ts_copy5['Reconstruction'] = reconstructed5.Reconstruction.values ts_copy5.plot(title='Original vs. Reconstructed Time Series[First 5 RCs]'); streams15 = [i for i in range(15)] reconstructed15 = ssa.view_reconstruction(*[ssa.Xs[i] for i in streams15], names=streams15, return_df=True, plot=False) ts_copy15 = ssa.ts.copy() ts_copy15['Reconstruction'] = reconstructed15.Reconstruction.values ts_copy15.plot(title='Original vs. Reconstructed Time Series [First 15 RCs]'); ssa.forecast_recurrent(steps_ahead=120, singular_values=streams15, plot=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Každý řádek představuje cenu pro daný den a to nejvyšší (High), nejnižší (Low), otevírací (Open - začátek dne) a uzavírací (Close - konec dne). Volatilní pohyb pro daný den pak vidím v grafu na první pohled jako výrazné velké svíce (viz. graf 1). Abych je mohl automaticky v mém analytickém softwaru (python - pandas) označit, definuji volatilní svíce pomocí pravidla například jako Step2: Nyní znám přesnou změnu ceny každý den. Abych mohl porovnávat velikosti, aniž by mi záleželo na tom, zda se daný den cena propadla, nebo stoupla, aplikuji absolutní hodnotu. Step3: Identifikace volatilní úsečky Step4: Které svíce jsou volatilnější, než 4 předchozí, si zobrazím pomocí jednoduché selekce, kde ve sloupečku VolBar == 1.
<ASSISTANT_TASK:> Python Code: import pandas as pd import pandas_datareader.data as web import datetime start = datetime.datetime(2015, 1, 1) end = datetime.datetime(2018, 8, 31) spy_data = web.DataReader('SPY', 'yahoo', start, end) spy_data = spy_data.drop(['Volume', 'Adj Close'], axis=1) # sloupce 'Volume' a 'Adj Close' nebudu potřebovat spy_data.tail() spy_data['C-O'] = spy_data['Close'] - spy_data['Open'] spy_data.tail() spy_data['Abs(C-O)'] = spy_data['C-O'].abs() spy_data.tail() def is_bigger(rows): result = rows[-1] > rows[:-1].max() # rows[-1] - poslední hodnota je větší než maximum z předchozích return result spy_data['VolBar'] = spy_data['Abs(C-O)'].rolling(4).apply(is_bigger,raw=True) spy_data.tail(10) spy_data[spy_data['VolBar'] == 1].tail() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Fitting a decaying oscillation Step2: Now, using curve_fit to fit this model and determine the estimates and uncertainties for the parameters
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np import scipy.optimize as opt data = np.load('decay_osc.npz') tdata = data['tdata'] ydata = data['ydata'] dy = data['dy'] plt.errorbar(tdata, ydata, dy, fmt='.k', ecolor='grey') plt.xlabel('t') plt.ylabel('y'); assert True # leave this to grade the data import and raw data plot def model(t,a,lam,omega,delta): return a*np.exp(-lam*t)*np.cos(omega*t) + delta theta_best, theta_cov = opt.curve_fit(model, tdata, ydata, p0=[-5,0,-1,0],sigma=dy, absolute_sigma=True) Afit = theta_best[0] lamfit = theta_best[1] omegafit = theta_best[2] deltafit = theta_best[3] print('A = {0:.3f} +/- {1:.3f}'.format(Afit, theta_cov[0,0])) print('lambda = {0:.3f} +/- {1:.3f}'.format(lamfit, theta_cov[1,1])) print('omega = {0:.3f} +/- {1:.3f}'.format(omegafit, theta_cov[2,2])) print('delta = {0:.3f} +/- {1:.3f}'.format(deltafit, theta_cov[3,3])) tfit = np.linspace(0,20,61) yfit = model(tfit,Afit,lamfit,omegafit,deltafit) plt.errorbar(tdata, ydata, dy, fmt='.k', ecolor='grey') plt.plot(tfit, yfit, 'r-') plt.xlabel('t') plt.ylabel('y'); assert True # leave this cell for grading the fit; should include a plot and printout of the parameters+errors <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Once the database is retrieved, collections can be accessed as attributes of the database itself. Step2: Each inserted document will receive an ObjectId which is a uniquue identifier of the document, the ObjectId is based on some data like the current timestamp, server identifier process id and other data that guarantees it to be unique across multiple servers. Step3: Fetching back inserted document can be done using find and find_one methods of collections. Both methods accept a query expression that filters the returned documents. Omitting it means retrieving all the documents (or in case of find_one the first document). Step4: Filters in mongodb are described by Documents themselves, so in case of PyMongo they are dictionaries too. Step5: Updating Documents Step6: SubDocuments Step7: Indexing Step8: Checking which index MongoDB is using to perform a query can be done using the explain method, forcing an index into a query can be done using the hint method. Step9: Aggregation Pipeline Step10: MapReduce Step11: Exporting from MongoDB Step12: You will notice that the map_reduce command has now been properly split across the nodes of our cluster. Our shards should report in their logs something like Step13: When working on one value use map.
<ASSISTANT_TASK:> Python Code: from pymongo import MongoClient client = MongoClient('mongodb://localhost:27017/') db = client.phonebook print db.collection_names() data = {'name': 'Alessandro', 'phone': '+39123456789'} db.people.insert(data) print db.collection_names() db.people.insert({'name': 'Puria', 'phone': '+39123456788', 'other_phone': '+3933332323'}, w=0) try: db.people.insert({'name': 'Puria', 'phone': '+39123456789'}, w=2) except Exception as e: print e db.people.find_one({'name': 'Alessandro'}) from bson import ObjectId db.people.find_one({'_id': {'$gt': ObjectId('55893a1d7ab71c669f4c149e')}}) doc = db.people.find_one({'name': 'Alessandro'}) print '\nBefore Updated:', doc db.people.update({'name': 'Alessandro'}, {'name': 'John Doe'}) doc = db.people.find_one({'name': 'John Doe'}) print '\nAfter Update:', doc # Go back to previous state db.people.update({'name': 'John Doe'}, {'$set': {'phone': '+39123456789'}}) print '\nAfter $set phone:', db.people.find_one({'name': 'John Doe'}) db.people.update({'name': 'John Doe'}, {'$set': {'name': 'Alessandro'}}) print '\nAfter $set name:', db.people.find_one({'name': 'Alessandro'}) db.blog.insert({'title': 'MongoDB is great!', 'author': {'name': 'Alessandro', 'surname': 'Molina', 'avatar': 'http://www.gravatar.com/avatar/7a952cebb086d2114080b4b39ed83cad.png'}, 'tags': ['mongodb', 'web', 'scaling']}) db.blog.find_one({'title': 'MongoDB is great!'}) db.blog.find_one({'tags': 'mongodb'}) db.blog.find_one({'author.name': 'Alessandro'}) TAGS = ['mongodb', 'web', 'scaling', 'cooking'] import random for postnum in range(1, 5): db.blog.insert({'title': 'Post %s' % postnum, 'author': {'name': 'Alessandro', 'surname': 'Molina', 'avatar': 'http://www.gravatar.com/avatar/7a952cebb086d2114080b4b39ed83cad.png'}, 'tags': random.sample(TAGS, 2)}) for post in db.blog.find({'tags': {'$in': ['scaling', 'cooking']}}): print post['title'], '->', ', '.join(post['tags']) db.blog.ensure_index([('tags', 1)]) db.blog.find({'tags': 'mongodb'}).explain()['queryPlanner']['winningPlan'] db.blog.find({'tags': 'mongodb'}).hint([('_id', 1)]).explain()['queryPlanner']['winningPlan'] db.blog.find({'title': 'Post 1'}).explain()['queryPlanner']['winningPlan'] db.blog.ensure_index([('author.name', 1), ('title', 1)]) db.blog.find({'author.name': 'Alessandro'}, {'title': True, '_id': False}).explain()['queryPlanner']['winningPlan'] from pymongo import MongoClient client = MongoClient('mongodb://localhost:27017/') db = client.twitter # How many professors wrote a tweet? print len(list(db.tweets.aggregate([ {'$match': {'user.description': {'$regex': 'Professor'}}} ]))) # Count them using only the pipeline print db.tweets.aggregate([ {'$match': {'user.description': {'$regex': 'Professor'}}}, {'$group': {'_id': 'count', 'count': {'$sum': 1}}} ]).next()['count'] # Hashtags frequency print list(db.tweets.aggregate([ {'$project': {'tags': '$entities.hashtags.text', '_id': 0}}, {'$unwind': '$tags'}, {'$group': {'_id': '$tags', 'count': {'$sum': 1}}}, {'$match': {'count': {'$gt': 20}}} ])) freqs = db.tweets.map_reduce( map='''function() { var tags = this.entities.hashtags; for(var i=0; i<tags.length; i++) emit(tags[i].text, 1); }''', reduce='''function(key, values) { return Array.sum(values); }''', out='tagsfrequency' ) print(list( db.tagsfrequency.find({'value': {'$gt': 10}}).sort([('value', -1)]) )) print freqs db.tweets.find_one() freqs = db.tweets.map_reduce( map='''function() { var tags = this.user.screen_name; emit(tags, 1); }''', reduce='''function(key, values) { return Array.sum(values); }''', out='namefrequency' ) print(list( db.namefrequency.find().sort([('value', -1)]).limit(10) )) from pymongo import MongoClient client = MongoClient('mongodb://localhost:27017/') db = client.twitter db.tweets.map_reduce( map='''function() { var tags = this.entities.hashtags; for(var i=0; i<tags.length; i++) emit(tags[i].text, 1); }''', reduce='''function(key, values) { return Array.sum(values); }''', out='tagsfrequency' ) print(list( db.tagsfrequency.find({'value': {'$gt': 10}}) )) sc data = sc.parallelize([1,2,3,4,5,6]) data.first() def multiply(v): return v*2 multdata = data.map(multiply) print multdata multdata.collect() sc.defaultParallelism values = range(20) print values rddvalues = sc.parallelize(values) def sumall(i): yield list(i) # returns the list on each core (4 cores available) rddvalues.mapPartitions(sumall).collect() def summap(v): return v+1 rddvalues.map(summap).collect() def sumtwo(a, b): return a+b rddvalues.reduce(sumtwo) low = sc.parallelize(range(1,10)) high = sc.parallelize(range(5,15)) low.union(high).collect() low.intersection(high).collect() low.union(high).distinct().collect() text = sc.textFile('./Jungle_Book.txt') print text text.count() def splitlines(line): return line.split() words = text.flatMap(splitlines) words.count() words.take(15) def get_freq(word): return word, 1 def get_count(a, b): # this will be used with reduceByKey return a+b def switch_tuple(t): # this is needed to sort by Key (flips the passed tuple) return t[1], t[0] print text.flatMap(splitlines).map(get_freq).reduceByKey(get_count).map(switch_tuple).sortByKey(0, 1).collect()[:20] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The model depicts an economy with multiple periods and an infinite number of producers, all of whom are trying to set prices as close as possible to some target price. This target price is given by a linear combination of demand and average price Step2: What we have now is a pandas dataframe containing the randomly-generated demand shocks and the demand, which is the result of the accumulation of those shocks in each period. Every time the cell is run, a new demand series will be generated. Step3: The next step is to model the target price, which can be quite nasty. Step4: With the pattern of updating in the macroeconomy thus defined, we can evaluate the value of average price, which at each period is a weighted accumulation of the epsilon shocks. Each period's shock is weighed both by how important coordination is in the target price (value of r) and how many other people are up to date on demand (L), the idea being that one period's shock may not matter that much if, during that period, not many other people are aware of it. Step5: We can thus define target price as above. Step6: But tables can only tell us so much. Graphs are much more revealing. Step7: The shocks to cumulative demand are reflected in the variations of target price, but much less extremely, as would be expected from the formula for target price which weighs cumulative demand less than fully. Step8: It is this lag that ultimately makes up the most important result of Reis. It demonstrates that, in this economy, firms do not respond elastically to changes in demand -- a lot of the time it's better to just go with the flow. And, in the real world, a lot of the time this is the case. The average supermarket, for example, isn't looking so much at factors in the macroeconomy when setting prices, it's looking more at the prices of their competitor down the street. Those macro factors do play in, but in a muted way, and only after other people in the economy have started to get wind of them. Step9: The formula for expected loss -- that is, the possible disutility that one could get from not updating between tau_hat and t, is given by the following Step10: Whenever the agent updates, tau_hat resets to that period, and Loss for that period becomes 0 minus the cost c. Step11: With these updates cemented, we can determine what the agent's price is at that given time -- they just set it to the target price, which they can derive due to their observation of demand. Once they update, however, they don't change their target price at all. After all, without information, their expectation of epsilon, the change in demand each period, is 0.
<ASSISTANT_TASK:> Python Code: import numpy.random as rand import matplotlib.pyplot as plt import pandas as pd import sys %matplotlib inline print('Python version: ', sys.version) print('Pandas version: ', pd.__version__) plt.style.use('seaborn-dark-palette') variance = .25 #sets variance of epsilon pds = 100 #sets number of periods r = .7 #sets relative weight of average price on target price shocklist = [] cumulist = [] dum_variable = 0 for numba in range(pds): e = rand.normal(loc = 0.0, scale = variance, size = None) #each log epsilon shock is a normally distributed random variable centered at 0 shocklist.append(e) for elem in shocklist: dum_variable += elem #This accumulates every epsilon leading up to the period #makes up the random walk cumulist.append(dum_variable) demand = pd.DataFrame({'Period shocks': shocklist, 'Cumulative demand': cumulist}) demand.head() fig, ax = plt.subplots() ax.set_title('Demand') ax.set_xlabel('t (Period)') ax.set_ylabel('Demand (Natural Log, Normalized)') demand['Cumulative demand'].plot(kind = 'line', ax = ax, legend = False,) T = 10 #can adjust this def L(t, tau): if t >= T: if tau <= T: lam = 1 else: lam = (1-(1-T**-1)**(t-tau)) #derived from each period's update proportion being independent else: lam = 0 return lam def eps(t): #finds the float value of the period t shock return float(demand['Period shocks'][demand.index == t]) def p_avg(t): #average price return sum([((L(t,s)*(1-r))/(1-(r*L(t,s))))*eps(s) for s in range(t)]) #formula for average price was outlined in Veldkamp (2014) demand['Average price'] = [p_avg(t) for t in range(pds)] def p_target(t): m = float(demand['Cumulative demand'][demand.index == t]) tar = (1-r)*m + r*p_avg(t) #p_target as defined in the original problem; linear combination of demand and p_avg return tar demand['Target price'] = [p_target(t) for t in range(pds)] #Now the table for demand has four columns: #Cumulative demand, period shocks, average prices, target prices demand.head(2 * T) fig1, ax1 = plt.subplots() ax1.set_xlabel('Period') ax1.set_ylabel('Demand/Price (Natural Log, Normalized)') demand[["Cumulative demand", "Target price"]].plot(kind = 'line', ax = ax1) fig2, ax2 = plt.subplots() ax2.set_xlabel('Period') ax2.set_ylabel('Price (Natural Log)') ax2.set_ylim(ax1.get_ylim()) demand[["Target price", "Average price"]].plot(kind = 'line', ax = ax2) c = .5 def Loss(t, tau_hat): sm = 0 for k in range(tau_hat + 1, t): sm += (1-r)/(1-(r*L(t, k))) return sm * variance loss_list = [Loss(t, T) for t in range(pds)] loss_list1 = loss_list.copy() update_pds = [] for x in range(pds): if x == T: tau_hat = x #predetermined point at which everyone updates update_pds.append(x) elif loss_list1[x] > c: tau_hat = x #x becomes the new "last period updated" update_pds.append(x) loss_list1[x] = 0.0 for s in range(x+1, pds): #all future periods are affected by this new tau_hat loss_list1[s] = Loss(s, tau_hat) update_check = [] for x in range(pds): if x in update_pds: update_check.append("Yes") else: update_check.append("No") demand['Update?'] = update_check demand.tail(10) agent_price = [] curr_price = 0 for t in range(pds): if update_check[t] == "Yes": agent_price.append(p_target(t)) curr_price = p_target(t) else: agent_price.append(curr_price) demand["Agent price"] = agent_price demand.tail(10) fig4, ax4 = plt.subplots() ax4.set_xlabel('Period') ax4.set_ylabel('Price (Natural Log)') ax4.set_ylim(ax1.get_ylim()) fig3, ax3 = plt.subplots() ax3.set_xlabel('Period') ax3.set_ylabel('Price (Natural Log)') ax3.set_ylim(ax1.get_ylim()) demand[["Agent price", "Target price"]].plot(kind = 'line', ax = ax4) demand[["Agent price", "Average price"]].plot(kind = 'line', ax = ax3) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Gaussian Mixture Models and Expectation Maximisation in Shogun Step2: Set up the model in Shogun Step3: Sampling from mixture models Step4: Evaluating densities in mixture Models Step5: Density estimating with mixture models Step6: Imagine you did not know the true generating process of this data. What would you think just looking at it? There are clearly at least two components (or clusters) that might have generated this data, but three also looks reasonable. So let us try to learn a Gaussian mixture model on those. Step7: So far so good, now lets plot the density of this GMM using the code from above Step8: It is also possible to access the individual components of the mixture distribution. In our case, we can for example draw 95% ellipses for each of the Gaussians using the method from above. We will do this (and more) below. Step9: Clustering with mixture models Step10: These are clusterings obtained via the true mixture model and the one learned via EM. There is a slight subtlety here Step11: Note how the lower left and middle cluster are overlapping in the sense that points at their intersection have similar likelihoods. If you do not care at all about this and are just interested in a partitioning of the space, simply choose the maximum.
<ASSISTANT_TASK:> Python Code: %pylab inline %matplotlib inline import os SHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../data') # import all Shogun classes from shogun import * from matplotlib.patches import Ellipse # a tool for visualisation def get_gaussian_ellipse_artist(mean, cov, nstd=1.96, color="red", linewidth=3): Returns an ellipse artist for nstd times the standard deviation of this Gaussian, specified by mean and covariance # compute eigenvalues (ordered) vals, vecs = eigh(cov) order = vals.argsort()[::-1] vals, vecs = vals[order], vecs[:, order] theta = numpy.degrees(arctan2(*vecs[:, 0][::-1])) # width and height are "full" widths, not radius width, height = 2 * nstd * sqrt(vals) e = Ellipse(xy=mean, width=width, height=height, angle=theta, \ edgecolor=color, fill=False, linewidth=linewidth) return e # create mixture of three Gaussians num_components=3 num_max_samples=100 gmm=GMM(num_components) dimension=2 # set means (TODO interface should be to construct mixture from individuals with set parameters) means=zeros((num_components, dimension)) means[0]=[-5.0, -4.0] means[1]=[7.0, 3.0] means[2]=[0, 0.] [gmm.set_nth_mean(means[i], i) for i in range(num_components)] # set covariances covs=zeros((num_components, dimension, dimension)) covs[0]=array([[2, 1.3],[.6, 3]]) covs[1]=array([[1.3, -0.8],[-0.8, 1.3]]) covs[2]=array([[2.5, .8],[0.8, 2.5]]) [gmm.set_nth_cov(covs[i],i) for i in range(num_components)] # set mixture coefficients, these have to sum to one (TODO these should be initialised automatically) weights=array([0.5, 0.3, 0.2]) gmm.put('m_coefficients', weights) # now sample from each component seperately first, the from the joint model hold(True) colors=["red", "green", "blue"] for i in range(num_components): # draw a number of samples from current component and plot num_samples=int(rand()*num_max_samples)+1 # emulate sampling from one component (TODO fix interface of GMM to handle this) w=zeros(num_components) w[i]=1. gmm.put('m_coefficients', w) # sample and plot (TODO fix interface to have loop within) X=array([gmm.sample() for _ in range(num_samples)]) plot(X[:,0], X[:,1], "o", color=colors[i]) # draw 95% elipsoid for current component gca().add_artist(get_gaussian_ellipse_artist(means[i], covs[i], color=colors[i])) hold(False) _=title("%dD Gaussian Mixture Model with %d components" % (dimension, num_components)) # since we used a hack to sample from each component gmm.put('m_coefficients', weights) # generate a grid over the full space and evaluate components PDF resolution=100 Xs=linspace(-10,10, resolution) Ys=linspace(-8,6, resolution) pairs=asarray([(x,y) for x in Xs for y in Ys]) D=asarray([gmm.cluster(pairs[i])[3] for i in range(len(pairs))]).reshape(resolution,resolution) figure(figsize=(18,5)) subplot(1,2,1) pcolor(Xs,Ys,D) xlim([-10,10]) ylim([-8,6]) title("Log-Likelihood of GMM") subplot(1,2,2) pcolor(Xs,Ys,exp(D)) xlim([-10,10]) ylim([-8,6]) _=title("Likelihood of GMM") # sample and plot (TODO fix interface to have loop within) X=array([gmm.sample() for _ in range(num_max_samples)]) plot(X[:,0], X[:,1], "o") _=title("Samples from GMM") def estimate_gmm(X, num_components): # bring data into shogun representation (note that Shogun data is in column vector form, so transpose) feat=features(X.T) gmm_est=GMM(num_components) gmm_est.set_features(feat) # learn GMM gmm_est.train_em() return gmm_est component_numbers=[2,3] # plot true likelihood D_true=asarray([gmm.cluster(pairs[i])[num_components] for i in range(len(pairs))]).reshape(resolution,resolution) figure(figsize=(18,5)) subplot(1,len(component_numbers)+1,1) pcolor(Xs,Ys,exp(D_true)) xlim([-10,10]) ylim([-8,6]) title("True likelihood") for n in range(len(component_numbers)): # TODO get rid of these hacks and offer nice interface from Shogun # learn GMM with EM gmm_est=estimate_gmm(X, component_numbers[n]) # evaluate at a grid of points D_est=asarray([gmm_est.cluster(pairs[i])[component_numbers[n]] for i in range(len(pairs))]).reshape(resolution,resolution) # visualise densities subplot(1,len(component_numbers)+1,n+2) pcolor(Xs,Ys,exp(D_est)) xlim([-10,10]) ylim([-8,6]) _=title("Estimated likelihood for EM with %d components"%component_numbers[n]) # function to draw ellipses for all components of a GMM def visualise_gmm(gmm, color="blue"): for i in range(gmm.get_num_components()): component=Gaussian.obtain_from_generic(gmm.get_component(i)) gca().add_artist(get_gaussian_ellipse_artist(component.get_mean(), component.get_cov(), color=color)) # multiple runs to illustrate random initialisation matters for _ in range(3): figure(figsize=(18,5)) subplot(1, len(component_numbers)+1, 1) plot(X[:,0],X[:,1], 'o') visualise_gmm(gmm_est, color="blue") title("True components") for i in range(len(component_numbers)): gmm_est=estimate_gmm(X, component_numbers[i]) subplot(1, len(component_numbers)+1, i+2) plot(X[:,0],X[:,1], 'o') visualise_gmm(gmm_est, color=colors[i]) # TODO add a method to get likelihood of full model, retraining is inefficient likelihood=gmm_est.train_em() _=title("Estimated likelihood: %.2f (%d components)"%(likelihood,component_numbers[i])) def cluster_and_visualise(gmm_est): # obtain cluster index for each point of the training data # TODO another hack here: Shogun should allow to pass multiple points and only return the index # as the likelihood can be done via the individual components # In addition, argmax should be computed for us, although log-pdf for all components should also be possible clusters=asarray([argmax(gmm_est.cluster(x)[:gmm.get_num_components()]) for x in X]) # visualise points by cluster hold(True) for i in range(gmm.get_num_components()): indices=clusters==i plot(X[indices,0],X[indices,1], 'o', color=colors[i]) hold(False) # learn gmm again gmm_est=estimate_gmm(X, num_components) figure(figsize=(18,5)) subplot(121) cluster_and_visualise(gmm) title("Clustering under true GMM") subplot(122) cluster_and_visualise(gmm_est) _=title("Clustering under estimated GMM") figure(figsize=(18,5)) for comp_idx in range(num_components): subplot(1,num_components,comp_idx+1) # evaluated likelihood under current component # TODO Shogun should do the loop and allow to specify component indices to evaluate pdf for # TODO distribution interface should be the same everywhere component=Gaussian.obtain_from_generic(gmm.get_component(comp_idx)) cluster_likelihoods=asarray([component.compute_PDF(X[i]) for i in range(len(X))]) # normalise cluster_likelihoods-=cluster_likelihoods.min() cluster_likelihoods/=cluster_likelihoods.max() # plot, coloured by likelihood value cm=get_cmap("jet") hold(True) for j in range(len(X)): color = cm(cluster_likelihoods[j]) plot(X[j,0], X[j,1] ,"o", color=color) hold(False) title("Data coloured by likelihood for component %d" % comp_idx) # compute cluster index for every point in space D_est=asarray([gmm_est.cluster(pairs[i])[:num_components].argmax() for i in range(len(pairs))]).reshape(resolution,resolution) # visualise clustering cluster_and_visualise(gmm_est) # visualise space partitioning hold(True) pcolor(Xs,Ys,D_est) hold(False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: <h3> Create a simple machine learning model </h3> Step4: <h3> What is wrong with calculating RMSE on the training and test data as follows? </h3> Step6: Hint Step8: <h2> Using HASH of date to split the data </h2> Step10: We can now use the alpha to compute RMSE. Because the alpha value is repeatable, we don't need to worry that the alpha in the compute_rmse will be different from the alpha computed in the compute_alpha.
<ASSISTANT_TASK:> Python Code: from google.cloud import bigquery compute_alpha = #standardSQL SELECT SAFE_DIVIDE( SUM(arrival_delay * departure_delay), SUM(departure_delay * departure_delay)) AS alpha FROM ( SELECT RAND() AS splitfield, arrival_delay, departure_delay FROM `bigquery-samples.airline_ontime_data.flights` WHERE departure_airport = 'DEN' AND arrival_airport = 'LAX' ) WHERE splitfield < 0.8 results = bigquery.Client().query(compute_alpha).to_dataframe() alpha = results['alpha'][0] print(alpha) compute_rmse = #standardSQL SELECT dataset, SQRT( AVG( (arrival_delay - ALPHA * departure_delay) * (arrival_delay - ALPHA * departure_delay) ) ) AS rmse, COUNT(arrival_delay) AS num_flights FROM ( SELECT IF (RAND() < 0.8, 'train', 'eval') AS dataset, arrival_delay, departure_delay FROM `bigquery-samples.airline_ontime_data.flights` WHERE departure_airport = 'DEN' AND arrival_airport = 'LAX' ) GROUP BY dataset bigquery.Client().query(compute_rmse.replace('ALPHA', str(alpha))).to_dataframe() train_and_eval_rand = #standardSQL WITH alldata AS ( SELECT IF (RAND() < 0.8, 'train', 'eval') AS dataset, arrival_delay, departure_delay FROM `bigquery-samples.airline_ontime_data.flights` WHERE departure_airport = 'DEN' AND arrival_airport = 'LAX' ), training AS ( SELECT SAFE_DIVIDE( SUM(arrival_delay * departure_delay), SUM(departure_delay * departure_delay)) AS alpha FROM alldata WHERE dataset = 'train' ) SELECT MAX(alpha) AS alpha, dataset, SQRT( AVG( (arrival_delay - alpha * departure_delay) * (arrival_delay - alpha * departure_delay) ) ) AS rmse, COUNT(arrival_delay) AS num_flights FROM alldata, training GROUP BY dataset bigquery.Client().query(train_and_eval_rand).to_dataframe() compute_alpha = #standardSQL SELECT SAFE_DIVIDE( SUM(arrival_delay * departure_delay), SUM(departure_delay * departure_delay)) AS alpha FROM `bigquery-samples.airline_ontime_data.flights` WHERE departure_airport = 'DEN' AND arrival_airport = 'LAX' AND ABS(MOD(FARM_FINGERPRINT(date), 10)) < 8 results = bigquery.Client().query(compute_alpha).to_dataframe() alpha = results['alpha'][0] print(alpha) compute_rmse = #standardSQL SELECT IF(ABS(MOD(FARM_FINGERPRINT(date), 10)) < 8, 'train', 'eval') AS dataset, SQRT( AVG( (arrival_delay - ALPHA * departure_delay) * (arrival_delay - ALPHA * departure_delay) ) ) AS rmse, COUNT(arrival_delay) AS num_flights FROM `bigquery-samples.airline_ontime_data.flights` WHERE departure_airport = 'DEN' AND arrival_airport = 'LAX' GROUP BY dataset print(bigquery.Client().query(compute_rmse.replace('ALPHA', str(alpha))).to_dataframe().head()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: FMO dynamics simulated with Redfield theory Step2: Excited state dynamics Step3: The long-time evolution indeed approaches thermal equilibrium Step4: Gaussian pump pulse Step5: Absorption spectra Step6: Pump-probe spectra
<ASSISTANT_TASK:> Python Code: import qspectra as qs import numpy as np import matplotlib.pyplot as plt %matplotlib inline electronic_fmo = np.array(np.mat( 12400 -87.7 5.5 -5.9 6.7 -13.7 -9.9; -87.7 12520 30.8 8.2 0.7 11.8 4.3; 5.5 30.8 12200 -53.5 -2.2 -9.6 6.; -5.9 8.2 -53.5 12310 -70.7 -17. -63.3; 6.7 0.7 -2.2 -70.7 12470 81.1 -1.3; -13.7 11.8 -9.6 -17. 81.1 12620 39.7; -9.9 4.3 6. -63.3 -1.3 39.7 12430 )) dipoles_fmo = np.array([d / np.linalg.norm(d) for d in np.array([[3.019, 3.442, 0.797, 3.213, 2.969, 0.547, 1.983], [2.284, -2.023, -3.871, 2.145, -2.642, 3.562, 2.837], [1.506, 0.431, 0.853, 1.112, -0.661, -1.851, 2.015]]).T]) fmo_hamiltonian = qs.ElectronicHamiltonian(electronic_fmo, bath=qs.DebyeBath(qs.CM_K * 77, 35, 106), dipoles=dipoles_fmo, disorder=100) dynamical_model = qs.RedfieldModel(fmo_hamiltonian, hilbert_subspace='gef', unit_convert=qs.CM_FS) %time t, rho = qs.simulate_dynamics(dynamical_model, [1,0,0,0,0,0,0], 100000) plt.title('Excitation from site 1') plt.plot(t, np.einsum('tii->ti', rho.reshape(-1, 7, 7)).real) plt.xlim(0, 1000) plt.xlabel('Time (fs)') plt.ylabel('Population') plt.legend(['Site {}'.format(n) for n in xrange(1, 8)]); print np.diag(qs.ket_vec_to_matrix(rho[-1])).real print np.diag(fmo_hamiltonian.thermal_state('e')).real %%time pump = qs.GaussianPulse(12500, 50, scale=1e-3, freq_convert=qs.CM_FS) t, rho = qs.simulate_pump(dynamical_model, pump, 'x', 5000) plt.title('Laser excitation') plt.plot(t, 2 * pump(t, 12500).real, 'k--') plt.plot(t, np.einsum('tii->ti', rho.reshape(-1, 8, 8)[:, 1:, 1:]).real) plt.xlabel('Time (fs)') plt.ylabel('Population') plt.xlim(pump.t_init, 1000) plt.legend(np.concatenate([['Laser (arb. units)'], ['Site {}'.format(n) for n in xrange(1, 8)]])); %time f, X = qs.absorption_spectra(dynamical_model, 2000, exact_isotropic_average=True) %time f, X2 = qs.absorption_spectra(dynamical_model, 2000, exact_isotropic_average=True, ensemble_size=5) plt.plot(f, X) plt.plot(f, X2) plt.xlim(12000, 12800); %%time X = {} for signal in ['GSB', 'ESE', 'ESA']: f, X[signal] = qs.impulsive_probe(dynamical_model, rho[-1], 5000, 'xx', include_signal=signal) plt.plot(f, X['GSB'].real, 'b-') plt.plot(f, X['ESE'].real, 'g-') plt.plot(f, X['ESA'].real, 'r-') plt.plot(f, np.sum(X.values(), 0).real, 'k-') plt.legend(['GSB', 'ESE', 'ESA', 'Total']) plt.xlim(12000, 12800); %%time f, X = qs.impulsive_probe(dynamical_model, rho, 5000, 'xx', exact_isotropic_average=True, include_signal='ESE') plt.title('Pump-probe spectrum (ESE only)') plt.contourf(t, f, X.real.T, 20) plt.plot([pump.t_final, pump.t_final], [12000, 12600], 'k--') plt.ylim(12000, 12600) plt.xlabel('Population time (fs)') plt.ylabel('Emission frequency (cm$^{-1}$)'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Linear Regression Step2: Ridge Regression (L2 penalty) Step3: Lasso (L1 penalty) Step4: Linear models for classification Step5: Multi-Class linear classification
<ASSISTANT_TASK:> Python Code: from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split X, y, true_coefficient = make_regression(n_samples=80, n_features=30, n_informative=10, noise=100, coef=True, random_state=5) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=5) print(X_train.shape) print(y_train.shape) from sklearn.linear_model import LinearRegression linear_regression = LinearRegression().fit(X_train, y_train) print("R^2 on training set: %f" % linear_regression.score(X_train, y_train)) print("R^2 on test set: %f" % linear_regression.score(X_test, y_test)) from sklearn.metrics import r2_score print(r2_score(np.dot(X, true_coefficient), y)) plt.figure(figsize=(10, 5)) coefficient_sorting = np.argsort(true_coefficient)[::-1] plt.plot(true_coefficient[coefficient_sorting], "o", label="true") plt.plot(linear_regression.coef_[coefficient_sorting], "o", label="linear regression") plt.legend() from sklearn.linear_model import Ridge ridge_models = {} training_scores = [] test_scores = [] for alpha in [100, 10, 1, .01]: ridge = Ridge(alpha=alpha).fit(X_train, y_train) training_scores.append(ridge.score(X_train, y_train)) test_scores.append(ridge.score(X_test, y_test)) ridge_models[alpha] = ridge plt.figure() plt.plot(training_scores, label="training scores") plt.plot(test_scores, label="test scores") plt.xticks(range(4), [100, 10, 1, .01]) plt.legend(loc="best") plt.figure(figsize=(10, 5)) plt.plot(true_coefficient[coefficient_sorting], "o", label="true", c='b') for i, alpha in enumerate([100, 10, 1, .01]): plt.plot(ridge_models[alpha].coef_[coefficient_sorting], "o", label="alpha = %.2f" % alpha, c=plt.cm.summer(i / 3.)) plt.legend(loc="best") from sklearn.linear_model import Lasso lasso_models = {} training_scores = [] test_scores = [] for alpha in [30, 10, 1, .01]: lasso = Lasso(alpha=alpha).fit(X_train, y_train) training_scores.append(lasso.score(X_train, y_train)) test_scores.append(lasso.score(X_test, y_test)) lasso_models[alpha] = lasso plt.figure() plt.plot(training_scores, label="training scores") plt.plot(test_scores, label="test scores") plt.xticks(range(4), [30, 10, 1, .01]) plt.legend(loc="best") plt.figure(figsize=(10, 5)) plt.plot(true_coefficient[coefficient_sorting], "o", label="true", c='b') for i, alpha in enumerate([30, 10, 1, .01]): plt.plot(lasso_models[alpha].coef_[coefficient_sorting], "o", label="alpha = %.2f" % alpha, c=plt.cm.summer(i / 3.)) plt.legend(loc="best") from plots import plot_linear_svc_regularization plot_linear_svc_regularization() from sklearn.datasets import make_blobs plt.figure() X, y = make_blobs(random_state=42) plt.scatter(X[:, 0], X[:, 1], c=y) from sklearn.svm import LinearSVC linear_svm = LinearSVC().fit(X, y) print(linear_svm.coef_.shape) print(linear_svm.intercept_.shape) plt.scatter(X[:, 0], X[:, 1], c=y) line = np.linspace(-15, 15) for coef, intercept in zip(linear_svm.coef_, linear_svm.intercept_): plt.plot(line, -(line * coef[0] + intercept) / coef[1]) plt.ylim(-10, 15) plt.xlim(-10, 8) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Вытаскивание даных из файла!
<ASSISTANT_TASK:> Python Code: def mm(x, k): if x.shape[0] > 1: x=x.T r = np.random.rand(x.shape[1],k) print(r) #print(x.dot(r)) return(x.dot(r)) mm(np.array([[1,2, 1,132, 1,2]]), 5) from sklearn.preprocessing import scale X_train_draw = scale(X_train[::, 0:2]) X_test_draw = scale(X_test[::, 0:2]) clf = RandomForestClassifier(n_estimators=100, n_jobs=-1) clf.fit(X_train_draw, y_train) x_min, x_max = X_train_draw[:, 0].min() - 1, X_train_draw[:, 0].max() + 1 y_min, y_max = X_train_draw[:, 1].min() - 1, X_train_draw[:, 1].max() + 1 h = 0.02 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) pred = clf.predict(np.c_[xx.ravel(), yy.ravel()]) pred = pred.reshape(xx.shape) import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) plt.figure() plt.pcolormesh(xx, yy, pred, cmap=cmap_light) plt.scatter(X_train_draw[:, 0], X_train_draw[:, 1], c=y_train, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("Score: %.0f percents" % (clf.score(X_test_draw, y_test) * 100)) plt.show() x = np.eye(1, 18) x[0][12] = 5 print(x) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Präambel generieren (BPSK) Step2: IFFT Step3: Cyclic Prefix einfügen Step4: Kanal Step5: Synchronisation Step6: Entzerrung
<ASSISTANT_TASK:> Python Code: import numpy as np import random import matplotlib import matplotlib.pyplot as plt %matplotlib inline matplotlib.rcParams.update({'font.size': 14}) L = 1024 # Anzahl Punkte in der DFT K = 3*L//4 # Anzahl belegter Unterträger, muss gerade sein n_CP = L//4 # Länge des Cyclic Prefix threshold = 0.8 # Threshold for presence detection t_off = 1000 # Zeitoffset f_off = 11.3 # Frequenzoffset in Vielfachen des Unterträgerabstands h_awgn = [1.,] # Kanalimpulsantwort für AWGN h_multipath = np.linspace(1, 0, n_CP//2) * np.exp(1j*np.random.uniform(-np.pi, np.pi, n_CP//2)) # Mehrwegekanal h_multipath /= np.sqrt(np.mean(np.abs(h_multipath)**2)) # normieren h = h_awgn # Kanal wählen SNR = 10 # SNR in dB pn1 = np.random.choice([-np.sqrt(2), np.sqrt(2)], K//2) # erste PN Sequenz pn2 = np.random.choice([-1, 1], K) # zweite PN Sequenz c1 = np.zeros((L,)) c1[L//2-K//2:L//2+K//2:2] = pn1 # nur gerade Unterträger werden belegt s1 = np.fft.ifft(np.fft.fftshift(c1)) c2 = np.zeros((L,)) c2[L//2-K//2:L//2+K//2] = pn2 # alle Unterträger werden belegt s2 = np.fft.ifft(np.fft.fftshift(c2)) v = np.sqrt(2)*pn2[::2]/pn1 s = np.concatenate((s1[-n_CP:], s1, s2[-n_CP:], s2)) f = np.linspace(-0.5, 0.5, L, endpoint=False) S1 = np.abs(np.fft.fftshift(np.fft.fft(s[:L])))**2 plt.plot(f, np.abs(S1)) plt.title("|S1|"); plt.xlabel("Normalisierte Frequenz"); plt.xlim([-0.5, 0.5]) plt.show() S2 = np.abs(np.fft.fftshift(np.fft.fft(s[L+2*n_CP:])))**2 plt.plot(f, np.abs(S2)) plt.title("|S2|"); plt.xlabel("Normalisierte Frequenz"); plt.xlim([-0.5, 0.5]) plt.show() plt.plot(np.real(s[n_CP:n_CP+L])) plt.title("Erstes Synchronisationssymbol (ohne CP, nur Realteil)"); plt.ylabel("Amplitude"); plt.xlabel("Sample Index");plt.xlim([0, L]) plt.show() # Faltung mit Kanalimpulsantwort r = np.convolve(s, h, mode="full") filter_delay = (len(h)-1)//2 r = r[filter_delay:] # Einschwingzeit entfernen # Frequenzoffset r *= np.exp(1j*2*np.pi*f_off*np.arange(len(r))/L) # Zeitoffset r = np.concatenate((np.zeros((t_off,), dtype=complex), r)) # AWGN P_s = np.mean(np.abs(r[t_off:])**2) # mittlere Signalleistung sigma = 10**(-SNR/20) * np.sqrt(P_s) n = sigma * (np.sqrt(1/2) * np.random.randn(len(r)) + 1j * np.sqrt(1/2) * np.random.randn(len(r))) r += n # Fixed Lag Correlation Pd = np.asarray([np.sum(np.conj(r[i:i+L//2])*r[i+L//2:i+L]) for i in range(len(r)-L)]) Rd = np.asarray([np.sum(np.abs(r[i+L//2:i+L])**2) for i in range(len(r) - L)]) M = np.abs(Pd/Rd)**2 plt.plot(np.abs(M)); plt.title("M(d)"); plt.xlabel("Verschiebung"); plt.xlim([0, len(M)]); plt.ylim([0,1.1]); plt.show() plt.plot(np.angle(Pd)); plt.title("arg(P(d))"); plt.xlabel("Verschiebung"); plt.xlim([0, len(M)]); plt.show() # Signaldetektion signal_detected = any(M > threshold) print("Präambel erkannt!" if signal_detected else "Keine Präambel erkannt.") # Schätzung Zeitoffset if signal_detected: # t_est = np.argmax(M) # keine gute Idee wegen des Plateaus M_over_threshold = [idx for idx in range(len(M)) if M[idx] > threshold] t_est = M_over_threshold[0] + 3*n_CP//4 # "ad-hoc" Ansatz t_valid = [t_off+len(h), t_off+n_CP] # Im realen System ist t_off natürlich unbekannt! t_est_valid = t_valid[0] <= t_est < t_valid[1] print("Geschätzter Zeitoffset: " + str(t_est) + " Samples. Gültiger Bereich: " + str(t_valid) + ". Schätzung im gültigen Bereich: " + str(t_est_valid)) # Fractional Frequency Offset Schätzung und Korrektur if signal_detected: f_F = np.angle(Pd[t_est])/np.pi r *= np.exp(-1j*2*np.pi*f_F*np.arange(len(r))/L) print("Geschätzter Fractional Frequency Offset: " + str(f_F)) # Integer Frequency Offset Schätzung und Korrektur if signal_detected: # Präambelsymbole extrahieren, Cyclic Prefix wegschneiden s1_est = r[t_est:t_est+L] s2_est = r[t_est+L+n_CP:t_est+2*L+n_CP] # in den Frequenzbereich transformieren, in intuitive Lage bringen x1 = np.fft.fftshift(np.fft.fft(s1_est)) x2 = np.fft.fftshift(np.fft.fft(s2_est)) # B(g) berechnen k = np.concatenate((np.arange(-K//2, 0, 2), np.arange(2, K//2, 2))) + L//2 v_nodc = np.delete(v, K//2//2) E_x2 = np.sum(np.abs(x2[k])**2) possible_offsets = range(-(L-K)//2//2, (L-K)//2//2, 1) B = np.zeros((len(possible_offsets,)), dtype=np.complex) for i, g in enumerate(possible_offsets): B[i] = (np.abs(np.sum(np.conj(x1[k+2*g])*np.conj(v_nodc)*x2[k+2*g]))**2)/(2*E_x2**2) # Integer Frequency Offset berechnen g_est = np.argmax(B) f_I = 2*g_est - (L-K)//2 print("Geschätzter Integer Frequency Offset: " + str(f_I)) print("Geschätzter Frequenzoffset (integer + fractional): " + str(f_I + f_F)) plt.plot(possible_offsets, np.abs(B)); plt.title("|B(g)|"); plt.xlabel("g"); plt.xlim([possible_offsets[0], possible_offsets[-1]]); plt.show() plt.plot(f, np.abs(x1)); plt.title("|x1|"); plt.xlabel("Normalisierte Frequenz"); plt.xlim([f[0], f[-1]]); plt.show() plt.plot(f, np.abs(x2)); plt.title("|x2|"); plt.xlabel("Normalisierte Frequenz"); plt.xlim([f[0], f[-1]]); plt.show() if signal_detected: band_start_idx = L//2 - K//2 + f_I band_stop_idx = band_start_idx + K f_I_valid = band_start_idx >= 0 and band_stop_idx < L if(not f_I_valid): print("Ungültiger Frequenzoffset!") else: c1_est = x1[band_start_idx : band_stop_idx] c2_est = x2[band_start_idx : band_stop_idx] plt.scatter(c1_est.real, c1_est.imag); plt.title("c1 geschätzt, ohne Entzerrung"); plt.xlabel("I"); plt.ylabel("Q"); plt.show() plt.scatter(c2_est.real, c2_est.imag); plt.title("c2 geschätzt, ohne Entzerrung"); plt.xlabel("I"); plt.ylabel("Q"); plt.show() ZF_eq = 1 / (c2_est / pn2) # berechne Zero-Forcing Entzerrerkoeffizienten um den verbleibenden Phasenoffset zu korrigieren c1_est_eq = c1_est * ZF_eq c2_est_eq = c2_est * ZF_eq plt.scatter(ZF_eq.real, ZF_eq.imag); plt.title("Entzerrerkoeffizienten") plt.xlabel("I"); plt.ylabel("Q"); plt.show() plt.plot(np.abs(ZF_eq)); plt.title("Betrag der Entzerrerkoeffizienten") plt.xlabel("Index"); plt.show() plt.scatter(c1_est_eq.real, c1_est_eq.imag); plt.title("c1 geschätzt, mit Entzerrung") plt.xlabel("I"); plt.ylabel("Q"); plt.show() plt.scatter(c2_est_eq.real, c2_est_eq.imag); plt.title("c2 geschätzt, mit Entzerrung") plt.xlabel("I"); plt.ylabel("Q"); plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Lets see which files we have Step2: First step is to run the configure step (--bundle-path refers to where external dependencies are downloaded) Step3: You can see all the available options by running ./waf --help. Step4: Parsing a mp4 file Step5: To see the mp4 file content we can use the complete_parser example
<ASSISTANT_TASK:> Python Code: %%bash rm -rf petro git clone git@github.com:steinwurf/petro.git %%bash ls petro %%bash cd petro ./waf configure --bundle-path=~/dev/bundle_dependencies %%bash cd petro ./waf build %%bash wget http://download.blender.org/peach/bigbuckbunny_movies/BigBuckBunny_320x180.mp4 %%bash ./petro/build/linux/examples/complete_parser BigBuckBunny_320x180.mp4 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: All hypotheses discussed herein will be expressed with Gaussian / normal distributions. Let's look at the properties of this distribution. Step2: Now look at the cumulative distribution function of the standard normal, which integrates from negative infinity up to the function argument, on a unit-normalized distribution. Step3: The function also accepts a list. Step4: Now let's be more explicit about the parameters of the distribution. Step5: In addition to exploring properties of the exact function, we can sample points from it. Step6: We can also approximate the exact distribution by sampling a large number of points from it. Step7: Data samples Step8: Now let's generate a large number of data samples and plot the corresponding distribution of sample means. Step9: Note that by increasing the number of data points, the variation on the mean decreases. Step10: Let's numerically determine the sampling distribution under the hypothesis Step11: With this sampling distribution (which can be calculated exactly), we know exectly how likely a particular result $d(X_0)$ is. We also know how likely it is to observe a result that is even less probable than $d(X_0)$, $P(d(X) > d(X_0); \mu)$. Step12: Now, imagine that we observe $\bar X_0 = 0.4$. The probability of $\bar X > 0.4$ is less than $2\%$ under $H_0$, so let's say we've rejected $H_0$. Step13: Calculate the severity of an outcome that is rather unlike (is lower) than the lower bound of a range of alternate hypotheses ($\mu > \mu_1$). Step14: Calculate the severity for a set of observations.
<ASSISTANT_TASK:> Python Code: from scipy.stats import norm # properties of the distribution from numpy.random import normal # samples from the distribution import numpy as np import scipy from matplotlib import pyplot as plt %matplotlib inline x = np.arange(-10, 10, 0.001) plt.plot(x,norm.pdf(x,0,1)) # final arguments are mean and width norm.cdf(0) norm.cdf([-1., 0, 1]) mu = 0 sigma = 1 norm(loc=mu, scale=sigma) norm.cdf([-1., 0, 1]) sigma=2 mu = 0 n = norm(loc=mu, scale=sigma) n.cdf([-1., 0, 1]) [normal() for _ in range(5)] size = 1000000 num_bins = 300 plt.hist([normal() for _ in range(size)],num_bins) plt.xlim([-10,10]) n = 10 my_sample = [normal() for _ in range(n)] my_sample_mean = np.mean(my_sample) print(my_sample_mean) n = 10 means_10 = [] for _ in range(10000): my_sample = [normal() for _ in range(n)] my_sample_mean = np.mean(my_sample) means_10.append(my_sample_mean) plt.hist(means_10,100) plt.xlim([-1.5,1.5]) plt.xlabel("P(mean(X))") plt.show() n = 100 means_100 = [] for _ in range(10000): my_sample = [normal() for _ in range(n)] my_sample_mean = np.mean(my_sample) means_100.append(my_sample_mean) plt.hist(means_100,100) plt.xlim([-1.5,1.5]) plt.xlabel("P(mean(X))") plt.show() # show 1/sqrt(n) scaling of deviation n_s = [] std_100 = [] for i in range(1, 1000, 50): means_100 = [] for _ in range(5000): my_sample = [normal() for _ in range(i)] my_sample_mean = np.mean(my_sample) means_100.append(my_sample_mean) my_sample_std = np.std(means_100) std_100.append(1./(my_sample_std*my_sample_std)) n_s.append(i) plt.scatter(n_s,std_100) plt.xlim([0,1000]) plt.ylabel("std(mean(X;sample))") plt.xlabel("sample") plt.show() def d(X=[0], mu = 0, sigma = 1): X_bar = np.mean(X) return (X_bar - mu) / sigma * np.sqrt(len(X)) n = 10 my_sample = [normal() for _ in range(n)] d(my_sample) size = 100000 n = 10 d_sample = [] for _ in range(size): my_sample = [normal() for _ in range(n)] # get a sample of size n d_sample.append(d(my_sample)) # add test statistic for this sample to the list plt.hist(d_sample,100) plt.xlabel("P(d(X);H0)") # look at the distributions of sample means for two hypotheses def make_histograms(mu0=0,mu1=1,num_samples=10000,n=100,sigma=1): #d0_sample = [] #d1_sample = [] m0_sample = [] m1_sample = [] for _ in range(num_samples): H0_sample = [normal(loc=mu0,scale=sigma) for _ in range(n)] # get a sample of size n from H0 H1_sample = [normal(loc=mu1,scale=sigma) for _ in range(n)] # get a sample of size n from H1 m0_sample.append( np.mean(H0_sample) ) # add mean for this sample to the m0 list m1_sample.append( np.mean(H1_sample) ) # add mean for this sample to the m1 list # remember that the test statistic is unit-normal-distributed for Gaussian hypotheses, # so these distributions should be identical #d0_sample.append( d(H0_sample,mu0,sigma) ) # add test statistic for this sample to the d0 list #d1_sample.append( d(H1_sample,mu1,sigma) ) # add test statistic for this sample to the d1 list plt.hist(m0_sample,100,label="H0") plt.hist(m1_sample,100,label="H1") plt.xlabel(r"$\bar{X}$") plt.legend() num_samples = 10000 n = 100 mu0 = 0 mu1 = 1 sigma=2 make_histograms(mu0=mu0,mu1=mu1,num_samples=num_samples,n=n,sigma=sigma) # severity for the interval: mu > mu_1 # note that we calculate the probability in terms of the _lower bound_ of the interval, # since it will provide the _lowest_ severity def severity(mu_1=0, x=[0], mu0=0, sigma=sigma, n=100): # find the mean of the observed data x_bar = np.mean(x) # calculate the test statistic w.r.t. mu_1 dx = (x_bar - mu_1)/sigma*np.sqrt(n) # the test statistic is distributed as a unit normal n = norm() return n.cdf(dx) sigma = 2 mu_1 = 0.2 x = [0.4] severity(mu_1=mu_1,x=x,sigma=sigma) num_samples = 10000 n = 100 mu0 = 0 mu1 = 0.2 sigma=2 make_histograms(mu0=mu0,mu1=mu1,num_samples=num_samples,n=n,sigma=sigma) x_bar_values = [[0.4],[0.6],[1.]] color_indices = ["b","k","r"] for x,color_idx in zip(x_bar_values,color_indices): mu_values = scipy.linspace(0,1,100) sev = [severity(mu_1=mu_1,x=x,sigma=sigma) for mu_1 in mu_values] plt.plot(mu_values,sev,color_idx,label=x) plt.ylim(0,1.1) plt.ylabel("severity for $H: \mu > \mu_1$") plt.legend(loc="lower left") plt.xlabel(r"$\mu_1$") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: You can do a lot with the numpy module. Below is an example to jog your memory Step2: Do you remember the Fibonacci sequence from yesterday's Lecture 1? Let's define our own function that will help us to write the Fibonacci sequence. Step3: Remember loops too? Let's get the first 10 numbers in the Fibonacci sequence. Step4: There's your quick review of numpy and functions along with a while loop thrown in. Now we can move on to the content of Lecture 3. Step5: Let's generate a vector of length 5 populated with uniformly distributed random numbers. The function np.random.rand takes the array output size as an argument (in this case, 5). Step6: Additionally, you are not limited to one-dimensional arrays! Let's make a 5x5, two-dimensional array Step7: Great, so now you have a handle on generating uniform distributions. Let's quickly look at one more type of distribution. Step8: So these numbers probably don't mean that much to you. Don't worry; they don't mean much to me either! Step9: Now, let's plot a uniform distribution and take a look. Step10: Now, let's use plt.hist to see what X looks like. First, run the cell below. Then, vary bins -- doing so will either increase or decrease the apparent effect of noise in your distribution. Step11: Nice job! Do you see why the "uniform distribution" is referred to as such? Step12: Nice job! You just plotted a Gaussian distribution with mean of 0 and a standard deviation of 1. Step13: Before moving onto the next section, vary the values of mu and sigma in the above code to see how your histogram changes. You should find that changing mu (the mean) affects the center of the distribution while changing sigma (the standard deviation) affects the width of the distribution. Step14: For simplicity's sake, we've used plt.hist without generating any return variables. Remember that plt.hist takes in your data (X) and the number of bins, and it makes histograms from it. In the process, plt.hist generates variables that you can store; we just haven't thus far. Run the cell below to see -- it should replot the Gaussian from above while also generating the output variables. Step15: Something that might be useful to you is that you can make use of variables outputted by plt.hist -- particularly bins and N. Step16: The plot above (red stars) should look like it overlays the histogram plot above it. If that's what you see, nice job! If not, let your instructor and/or TAs know before moving onto the next section. Step17: So you've learned how to generate distributions of numbers, plot them, and generate statistics on them. This is a great starting point, but let's try working with some real data! Step18: Next, plot a histogram of this data set (play around with the number of bins, too). Step19: Now, calculate and print the mean and standard deviation of this distribution. Step20: Nice job! Now that you're used to working with real data, we're going to try to fit some more real data to known functions to gain a better understanding of that data. Step21: We will show you an example, and then you get to try it out for yourself! Step22: Next, we will define a function $f(x) = \frac 1 3x^2+3$ that will square the elements in x and add an offset. Call this function f, and implement it below. Step23: Now set y equal to f called with the numpy array x as the input. Step24: Now we will add some noise to the array y using the np.random.rand() function and store it in a new variable called y_noisy. Step25: Let's see what the y values look like now Step26: It seems like there's still a rough parabolic shape, so let's see if we can recover the original y values without any noise. Step27: Then, we want to find the optimal values of a, b, and c that will give a function that fits best to y_noisy. Step28: Now that we have the fitted parameters, let's use quadratic to plot the fitted parabola alongside the noisy y values. Step29: And we can also compare y_fitted to the original y values without any noise Step30: Not a bad job for your first fit function! Steps for using curve_fit Step31: So you've imported your data and plotted it. It should look similar to the figure below. Run the next cell to see. Step32: What type of function would you say this is? Think back to the distributions we've learned about today. Any ideas?
<ASSISTANT_TASK:> Python Code: import numpy as np np.linspace(0,10,11) def myFib(a,b): return a+b fibLength = 10 #the length we want for our Fibonacci sequence fibSeq = np.zeros(fibLength) #make a numpy array of 10 zeros # Let's define the first 2 elements of the Fibonacci sequence fibSeq[0] = 0 fibSeq[1] = 1 i = 2 #with the first 2 elements defined, we can calculate the rest of the sequence beginning with the 3rd element while i-1 < fibLength-1: nextFib = myFib(fibSeq[i-2],fibSeq[i-1]) fibSeq[i] = nextFib i = i + 1 print(fibSeq) import numpy as np np.random.rand(5) np.random.rand(5,5) np.random.randn(5) import matplotlib.pyplot as plt %matplotlib inline #your code here X = np.random.rand(5000) plt.hist(X, bins=20); #your code here X = np.random.randn(5000) plt.hist(X, bins=50); mu = 5 #the mean of the distribution sigma = 3 #the standard deviation Y = sigma * np.random.randn(5000) + mu plt.hist([X,Y],bins=50,histtype='step'); #write your observations here N,bins, = plt.hist(X, bins=50) _ bin_avg = (bins[1:]+bins[:-1])/2 plt.plot(bin_avg, N, 'r*') plt.show() mean = np.mean(X) std = np.std(X) print('mean: '+ repr(mean) ) print('standard deviation: ' + repr(std)) lifetimes = np.loadtxt('Data/LifetimeData.txt') #your code here N,bins,patches = plt.hist(lifetimes,bins=10) #your code here mean = np.mean(lifetimes) std = np.std(lifetimes) print("mean: "+repr(mean)) print("standard deviation: "+repr(std)) import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt %matplotlib inline # your code here x = np.linspace(-5,5,100) # your code here def f(x): return 1/3*x**2 + 3 y = f(x) # your code here y_noisy = y + np.random.rand(100) plt.plot(x,y_noisy) def quadratic(x,a,b,c): return a*x**2 + b*x + c optimal_values, _ = curve_fit(quadratic,x,y_noisy) a = optimal_values[0] b = optimal_values[1] c = optimal_values[2] print(a, b, c) y_fitted = quadratic(x,a,b,c) plt.plot(x,y_fitted) plt.plot(x,y_noisy) plt.plot(x,y_fitted) plt.plot(x,y) # Step 1: Import the data # Step 2: Plot the data to see what it looks like xData,yData = np.loadtxt('Data\photopeak.txt', usecols=(0,1), unpack=True) plt.plot(xData,yData,'*') plt.title('xData and yData') from IPython.display import display, Image display(Image(filename='Data\photopeak.png')) # Step 3: Define your function here def myGaussian(Xvals,A,mu,sigma): return (A/np.sqrt(2*np.pi*sigma**2))*np.exp(-((Xvals-mu)**2/(2*sigma**2))) # Step 3.5: SANITY CHECK! Use this step as a way to check that the function you defined above is mathematically correct. mu = 0.66 #the mean of the distribution sigma = 0.04 #the standard deviation A = 10; Xvals = np.linspace(0.50,0.80,100) Yvals = A*myGaussian(Xvals,A,mu,sigma) plt.plot(Xvals,Yvals) # Step 4: Use curve_fit to generate your output parameters popt, pcov = curve_fit(myGaussian, xData, yData, p0=[0.5, 0.1, 5]) #perr = np.sqrt(np.diag(pcov)) # Step 5: Generate your model fit xFit = np.linspace(min(xData),max(xData),100) #give this line_fit = myGaussian(xFit, *popt) # Step 6: Plot the best fit function and the scatter plot of data plt.plot(xData, yData, 'r*') plt.plot(xFit, line_fit) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <font color='red'>Please put your datahub API key into a file called APIKEY and place it to the notebook folder or assign your API key directly to the variable API_key!</font> Step2: At first, we need to define the dataset name and a variable we want to use. Step3: Then we define spatial range. We decided to analyze US, where unfortunately catastrofic wildfires are taking place at the moment and influeces air quality. Step4: Download the data with package API Step5: Work with the downloaded files Step6: Here we are making a Basemap of the US that we will use for showing the data. Step7: Now it is time to plot all the data. A great way to do it is to make an interactive widget, where you can choose time stamp by using a slider. Step8: Let's include an image from the last time-step as well, because GitHub Preview doesn't show the time slider images. Step9: With the function below we will save images you saw above to the local filesystem as a GIF, so it is easily shareable with others. Step10: As we are interested in California fires right now, it would make sense to make animation of only California area as well. So people can be prepared when smoke hits their area. The model has pretty good spatial resolution as well - 3 km, which makes tracking the smoke easier. Step11: Finally, we will remove the package we downloaded. Step12: Data about Burned Area from Cal Fire Step13: Here we convert incident_dateonly_created column to datetime, so it's easier to group data by year. Step14: Below you can see the data from acres_burned.csv file. It has information about each incident. This time we only compute total acres burned each year. Step15: Computing yearly sums. In some reason there's many years without much data, so we will filter it out. Also, reseting index, as we don't want dates to be as an index and making year column. Step16: We can see the computed data below. Step17: Finally we will make a bar chart of the data. We are using seaborn this time for plotting the data and to visualize it better, we added colormap to bar chart as well.
<ASSISTANT_TASK:> Python Code: %matplotlib notebook %matplotlib inline import numpy as np import dh_py_access.lib.datahub as datahub import xarray as xr import matplotlib.pyplot as plt import ipywidgets as widgets from mpl_toolkits.basemap import Basemap,shiftgrid import dh_py_access.package_api as package_api import matplotlib.colors as colors import warnings import datetime import shutil import imageio import seaborn as sns import pandas as pd import os import matplotlib as mpl import wget warnings.filterwarnings("ignore") server = 'api.planetos.com' API_key = open('APIKEY').readlines()[0].strip() #'<YOUR API KEY HERE>' version = 'v1' dh = datahub.datahub(server,version,API_key) dataset = 'noaa_hrrr_wrf_smoke' variable_name1 = 'Mass_density_concentration_height_above_ground' # reftime = datetime.datetime.strftime(datetime.datetime.today(), '%Y-%m-%d') + 'T00:00:00' area_name = 'usa' today_hr = datetime.datetime.strftime(datetime.datetime.today(),'%Y%m%dT%H') latitude_north = 49; longitude_west = -127 latitude_south = 26; longitude_east = -70.5 package_hrrr = package_api.package_api(dh,dataset,variable_name1,longitude_west,longitude_east,latitude_south,latitude_north,area_name=area_name+today_hr) package_hrrr.make_package() package_hrrr.download_package() dd1 = xr.open_dataset(package_hrrr.local_file_name) dd1['longitude'] = ((dd1.lon+180) % 360) - 180 dd1[variable_name1].data[dd1[variable_name1].data < 0] = 0 dd1[variable_name1].data[dd1[variable_name1].data == np.nan] = 0 m = Basemap(projection='merc', lat_0 = 55, lon_0 = -4, resolution = 'h', area_thresh = 0.05, llcrnrlon=longitude_west, llcrnrlat=latitude_south, urcrnrlon=longitude_east, urcrnrlat=latitude_north) lons,lats = np.meshgrid(dd1.longitude.data,dd1.lat.data) lonmap,latmap = m(lons,lats) vmax = np.nanmax(dd1[variable_name1].data) vmin = 2 cmap = mpl.cm.twilight.colors[:-100] tmap = mpl.colors.LinearSegmentedColormap.from_list('twilight_edited', cmap) def loadimg(k): fig=plt.figure(figsize=(10,7)) ax = fig.add_subplot(111) pcm = m.pcolormesh(lonmap,latmap,dd1[variable_name1].data[k][0], norm = colors.LogNorm(vmin=vmin, vmax=vmax),cmap = tmap) ilat,ilon = np.unravel_index(np.nanargmax(dd1[variable_name1].data[k][0]),dd1[variable_name1].data[k][0].shape) cbar = plt.colorbar(pcm,fraction=0.024, pad=0.040,ticks=[10**0, 10**1, 10**2,10**3]) cbar.ax.set_yticklabels([0,10,100,1000]) ttl = plt.title('Near Surface Smoke ' + str(dd1[variable_name1].time[k].data)[:-10],fontsize=20,fontweight = 'bold') ttl.set_position([.5, 1.05]) cbar.set_label(dd1[variable_name1].units) m.drawcountries() m.drawstates() m.drawcoastlines() print("Maximum: ","%.2f" % np.nanmax(dd1[variable_name1].data[k][0])) plt.show() widgets.interact(loadimg, k=widgets.IntSlider(min=0,max=len(dd1[variable_name1].data)-1,step=1,value=0, layout=widgets.Layout(width='100%'))) loadimg(9) def make_ani(m,lonmap,latmap,aniname,smaller_area=False): if smaller_area==True: fraction = 0.035 fontsize = 13 else: fraction = 0.024 fontsize = 20 folder = './anim/' for k in range(len(dd1[variable_name1])): filename = folder + 'ani_' + str(k).rjust(3,'0') + '.png' if not os.path.exists(filename): fig=plt.figure(figsize=(10,7)) ax = fig.add_subplot(111) pcm = m.pcolormesh(lonmap,latmap,dd1[variable_name1].data[k][0], norm = colors.LogNorm(vmin=vmin, vmax=vmax),cmap = tmap) m.drawcoastlines() m.drawcountries() m.drawstates() cbar = plt.colorbar(pcm,fraction=fraction, pad=0.040,ticks=[10**0, 10**1, 10**2,10**3]) cbar.ax.set_yticklabels([0,10,100,1000]) ttl = plt.title('Near Surface Smoke ' + str(dd1[variable_name1].time[k].data)[:-10],fontsize=fontsize,fontweight = 'bold') ttl.set_position([.5, 1.05]) cbar.set_label(dd1[variable_name1].units) ax.set_xlim() if not os.path.exists(folder): os.mkdir(folder) plt.savefig(filename,bbox_inches = 'tight',dpi=150) plt.close() files = sorted(os.listdir(folder)) images = [] for file in files: if not file.startswith('.'): filename = folder + file images.append(imageio.imread(filename)) kargs = { 'duration': 0.3,'quantizer':2,'fps':5.0} imageio.mimsave(aniname, images, **kargs) print ('GIF is saved as {0} under current working directory'.format(aniname)) shutil.rmtree(folder) make_ani(m,lonmap,latmap,'hrrr_smoke.gif') latitude_north_cal = 43; longitude_west_cal = -126. latitude_south_cal = 30.5; longitude_east_cal = -113 m2 = Basemap(projection='merc', lat_0 = 55, lon_0 = -4, resolution = 'h', area_thresh = 0.05, llcrnrlon=longitude_west_cal, llcrnrlat=latitude_south_cal, urcrnrlon=longitude_east_cal, urcrnrlat=latitude_north_cal) lons2,lats2 = np.meshgrid(dd1.longitude.data,dd1.lat.data) lonmap_cal,latmap_cal = m2(lons2,lats2) make_ani(m2,lonmap_cal,latmap_cal,'hrrr_smoke_california.gif',smaller_area=True) os.remove(package_hrrr.local_file_name) if not os.path.exists('acres_burned.csv'): wget.download('https://www.fire.ca.gov/imapdata/mapdataall.csv',out='acres_burned.csv') datain = pd.read_csv('acres_burned.csv') datain['incident_dateonly_created'] = pd.to_datetime(datain['incident_dateonly_created']) datain burned_acres_yearly = datain.resample('1AS', on='incident_dateonly_created')['incident_acres_burned'].sum() burned_acres_yearly = burned_acres_yearly[burned_acres_yearly.index > datetime.datetime(2012,1,1)] burned_acres_yearly = burned_acres_yearly.reset_index() burned_acres_yearly['year'] = pd.DatetimeIndex(burned_acres_yearly.incident_dateonly_created).year burned_acres_yearly fig,ax = plt.subplots(figsize=(10,6)) pal = sns.color_palette("YlOrRd_r", len(burned_acres_yearly)) rank = burned_acres_yearly['incident_acres_burned'].argsort().argsort() sns.barplot(x='year',y='incident_acres_burned',data=burned_acres_yearly,ci=95,ax=ax,palette=np.array(pal[::-1])[rank]) ax.set_xlabel('Year',fontsize=15) ax.set_ylabel('Burned Area [acres]',fontsize=15) ax.grid(color='#C3C8CE',alpha=1) ax.set_axisbelow(True) ax.spines['bottom'].set_color('#C3C8CE') ax.spines['top'].set_color('#C3C8CE') ax.spines['left'].set_color('#C3C8CE') ax.spines['right'].set_color('#C3C8CE') ttl = ax.set_title('Burned Area in California',fontsize=20,fontweight = 'bold') ttl.set_position([.5, 1.05]) ax.tick_params(labelsize=15,length=0) plt.savefig('acres_burned_cali.png',dpi=300) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load Data Step2: Recreate Input Step3: Recreate Style Step4: Style Transfer Step5: Different Approach (TOFIX)
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import time from PIL import Image import numpy as np import matplotlib import matplotlib.pyplot as plt %matplotlib inline import keras from keras import backend as K from keras.models import Model from keras import metrics from keras.applications.vgg16 import VGG16 import scipy from scipy.optimize import fmin_l_bfgs_b from scipy.misc import imsave #backend.set_image_data_format('channels_last') #keras.backend.set_image_dim_ordering('tf') import os import sys sys.path.append(os.path.join(os.getcwd(), os.pardir)) from utils.vgg_utils import preprocess, deprocess, gram_matrix from utils.vgg16_avg import VGG16_Avg RES_DIR = os.path.join('resources') %load_ext autoreload %autoreload 2 height = 256 width = 256 # load content image content_image = None with Image.open(os.path.join(RES_DIR, 'superman.jpg')) as img: img = img.resize((height, width)) content_image = np.asarray(img, dtype='float32') plt.imshow(img.convert(mode='RGB')) plt.show() # load style image style_image = None with Image.open(os.path.join(RES_DIR, 'comics_style.jpg')) as img: img = img.resize((height, width)) style_image = np.asarray(img, dtype='float32') plt.imshow(img.convert(mode='RGB')) plt.show() content_image.shape # define input image img_arr = preprocess(np.expand_dims(style_image, axis=0)) #img_arr = preproc(np.expand_dims(np.array(Image.open(os.path.join(RES_DIR, 'simpsons_style.jpg'))), axis=0)) shp = img_arr.shape print(shp) # get VGG model model = VGG16(include_top=False) # define layer model (VGG model input and intermediate layer output) layer = model.get_layer('block5_conv1').output layer_model = Model(model.input, layer) targ = K.variable(layer_model.predict(img_arr)) # define our loss and gradients loss = metrics.mse(layer, targ) grads = K.gradients(loss, model.input) fn = K.function([model.input], [loss]+grads) # utility function to hold loss and gradients class Evaluator(object): def __init__(self, f, shp): self.f, self.shp = f, shp def loss(self, x): loss_, self.grad_values = self.f([x.reshape(self.shp)]) return loss_.astype(np.float64) def grads(self, x): return self.grad_values.flatten().astype(np.float64) evaluator = Evaluator(fn, shp) # run optimization process and save result image at each iteration def solve_image(eval_obj, iterations, x, img_shape, dest_dir=''): for i in range(iterations): start_time = time.time() x, min_val, info = fmin_l_bfgs_b(eval_obj.loss, x.flatten(), fprime=eval_obj.grads, maxfun=20) x = np.clip(x, -127,127) print('Current loss value:', min_val) end_time = time.time() print('Iteration {} completed in {:.1f}s'.format(i, end_time - start_time)) img = deprocess(x.copy(), img_shape)[0] img_filepath = os.path.join(dest_dir, "res_at_iteration_{}.png".format(i)) imsave(img_filepath, img) return x x = np.random.uniform(-2.5, 2.5, shp) #x = np.random.uniform(0, 255, shp) - 128. plt.imshow(x[0]); x = solve_image(evaluator, 5, x, 'recreate_input') plt.imshow(deproc(x,shp)[0].astype('uint8')) # load and process input content style_arr = preprocess(np.expand_dims(style_image, axis=0)[:,:,:,:3]) shp = style_arr.shape print(shp) # get VGG model #model = VGG16(include_top=False, pooling='avg', input_shape=shp[1:]) #input_tensor=input_tensor model = VGG16_Avg(include_top=False, input_shape=shp[1:]) model.summary() model.summary() outputs = {l.name: l.output for l in model.layers} layers = [outputs['block{}_conv1'.format(o)] for o in range(1,3)] layers_model = Model(model.input, layers) targs = [K.variable(o) for o in layers_model.predict(style_arr)] def style_loss(x, targ): return metrics.mse(gram_matrix(x), gram_matrix(targ)) #S = gram_matrix(style) #C = gram_matrix(combination) #channels = 3 #size = height * width #return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2)) loss = sum(style_loss(l1[0], l2[0]) for l1,l2 in zip(layers, targs)) grads = K.gradients(loss, model.input) style_fn = K.function([model.input], [loss]+grads) evaluator = Evaluator(style_fn, shp) rand_img = lambda shape: np.random.uniform(-2.5, 2.5, shape)/1 x = rand_img(shp) #x = scipy.ndimage.filters.gaussian_filter(x, [0,2,2,0]) plt.imshow(x[0]); iterations=10 x = rand_img(shp) x = solve_image(evaluator, iterations, x, folder_name='recreate_style') # load and process input content content_arr = preprocess(np.expand_dims(content_image, axis=0)) style_arr = preprocess(np.expand_dims(style_image, axis=0)) shp = content_arr.shape print(content_arr.shape) print(style_arr.shape) # get VGG model # later versions of Keras use pooling='avg' model = VGG16(include_top=False, input_shape=shp[1:]) outputs = {l.name: l.output for l in model.layers} style_layers = [outputs['block{}_conv2'.format(o)] for o in range(1,6)] content_name = 'block4_conv2' content_layer = outputs[content_name] style_model = Model(model.input, style_layers) style_targs = [K.variable(o) for o in style_model.predict(style_arr)] content_model = Model(model.input, content_layer) content_targ = K.variable(content_model.predict(content_arr)) style_wgts = [0.05,0.2,0.2,0.25,0.3] loss = sum(style_loss(l1[0], l2[0])*w for l1,l2,w in zip(style_layers, style_targs, style_wgts)) loss += metrics.mse(content_layer, content_targ)/2 grads = K.gradients(loss, model.input) transfer_fn = K.function([model.input], [loss]+grads) evaluator = Evaluator(transfer_fn, shp) iterations=10 x = np.random.uniform(-2.5, 2.5, shp) plt.imshow(x[0]); x = solve_image(evaluator, iterations, x, shp, dest_dir=os.path.join('results', 'style_transfer')) feature_layers = ['block1_conv2', 'block2_conv2', 'block3_conv3', 'block4_conv3', 'block5_conv3'] for layer_name in feature_layers: layer_features = layers[layer_name] style_features = layer_features[1, :, :, :] combination_features = layer_features[2, :, :, :] sl = style_loss(style_features, combination_features) loss += (style_weight / len(feature_layers)) * sl content_image = backend.variable(content_array) style_image = backend.variable(style_array) combination_image = backend.placeholder((1, height, width, 3)) #if backend.image_data_format() == 'channels_first': # combination_image = backend.placeholder((1, 3, height, width)) #else: # combination_image = backend.placeholder((1, height, width, 3)) input_tensor = backend.concatenate([content_image, style_image, combination_image], axis=0) content_weight = 0.025 style_weight = 5.0 total_variation_weight = 1.0 loss = backend.variable(0.) layer_features = layers['block2_conv2'] content_image_features = layer_features[0, :, :, :] combination_features = layer_features[2, :, :, :] loss += content_weight * content_loss(content_image_features, combination_features) def total_variation_loss(x): a = backend.square(x[:, :height-1, :width-1, :] - x[:, 1:, :width-1, :]) b = backend.square(x[:, :height-1, :width-1, :] - x[:, :height-1, 1:, :]) return backend.sum(backend.pow(a + b, 1.25)) loss += total_variation_weight * total_variation_loss(combination_image) grads = backend.gradients(loss, combination_image) outputs = [loss] outputs += grads f_outputs = backend.function([combination_image], outputs) def eval_loss_and_grads(x): x = x.reshape((1, height, width, 3)) outs = f_outputs([x]) loss_value = outs[0] if len(outs[1:]) == 1: grad_values = outs[1].flatten().astype('float64') else: grad_values = np.array(outs[1:]).flatten().astype('float64') return loss_value, grad_values x = np.random.uniform(0, 255, (1, height, width, 3)) - 128. <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: ipynb 라는 확장자로 끝나는 파일들만 가지고 오려면 Step2: 파일에 대한 경로를 생성할 때 Step3: os.curdir #current directory Step4: 폴더를 만들 때, os.listdir()로 특정 폴더가 있는지 확인한 후에, 만약 있으면 삭제하고 새로운 폴더를 생성한다. Step5: 설정 파일 같은 것을 수정하거나 삭제할 때 Step6: os - low-level (저수준)으로 파일/폴더/운영체제를 관리했다면 Step7: 1. 국가명.csv 파일로 만들기 => world.tar.gz (world.zip) 압축하기 Step9: df.to_csv(os.path.join(, , ___.csv))
<ASSISTANT_TASK:> Python Code: import os #os 모듈을 통해서 #운영체제 레벨(서버는 ex.우분투)에서 다루는 파일 폴더 생성하고 삭제하기가 가능 #기존에는 ("../../~~") 이런 식으로 경로를 직접 입력 했으나 os.listdir() #현재 폴더 안에 있는 파일들을 리스트로 뽑는 것 os.listdir("../") for csv_file in os.listdir("../"): pass [ file_name for file_name in os.listdir("../01일차.수_입문/") if file_name.endswith(".ipynb") # csv 파일 가져오기, 엑셀 파일 가져오기로 사용 ] os.path.join("data", "data.csv") os.curdir os.path.join(os.curdir, "data", "data.csv") # 이렇게 하면 경로를 알려줘. 앞으로 만들 때는 무조건 이렇게 만들겠다. # os.path.join(os.curdir, "data", file_name) os.makedirs("data") #잠재적인 문제가 있다. os.listdir() #폴더 만들기는 쉽게 됩니다. os.rmdir("data") #잠재적인 문제가 있다. os.listdir() os.makedirs("data") # DATA라는 폴더 안에 간단한 텍스트 파일 만들기 os.listdir(os.path.join(os.curdir,"data")) os.rmdir("data") # 폴더 안에 파일이 있으면 삭제가 안 된다 # os.listdir()로 찾아본 다음에 폴더면 또 들어가서 다시 재귀적으로 찾아보고, # 파일이면 삭제하고 상위폴더로 올라와서 그리고 rmdir() ... import shutil os.listdir(os.path.join(os.curdir, "data")) shutil.rmtree(os.path.join(os.curdir, "data")) os.listdir(os.path.join(os.curdir, "data")) os.makedirs(os.path.join(os.curdir, "data")) shutil.rmtree(os.path.join(os.curdir, "data")) os.makedirs(os.path.join(os.curdir, "data")) os.makedirs(os.path.join(os.curdir, "data", "world")) # 만약 "data", "world"라는 폴더가 있으면, 삭제하는 기능 ... # 폴더의 유무를 확인하고, 있으면 삭제한다. if "data" in os.listdir(): print("./data/ 폴더를 삭제합니다.") shutil.rmtree(os.path.join(os.curdir, "data")) # "data"라는 폴더를 생성하고, 그 안에 "world"라는 폴더를 생성한다. print("./data/ 폴더를 생성합니다.") os.makedirs(os.path.join(os.curdir, "data")) os.makedirs(os.path.join(os.curdir, "data", "world")) import pymysql db = pymysql.connect( "db.fastcamp.us", "root", "dkstncks", "world", charset='utf8' ) country_df = pd.read_sql("SELECT * FROM Country;", db) city_df = pd.read_sql("SELECT * FROM City;", db) #Country.Code를 바탕으로, City.CountryCode와 매칭해서 찾아야 함 #Country.Name은 반드시 가지고 와야지 파일명으로 저장이 가능 city_groups = city_df.groupby("CountryCode") for index, row in country_df.iterrows(): country_code = row["Code"] country_name = row["Name"] city_df = city_groups.get_group(country_code) city_df.to_csv(os.path.join("data", "world", "{country_name},csv".format(country_name=country_name))) #"ATA"라는 애가 없다고 나오니까 테스트 SQL_QUERY = SELECT * FROM City WHERE CountryCode = "ATA" ; pd.read_sql(SQL_QUERY, db) city_groups.get_group("ATA") "ATA" in city_groups["CountryCode"].unique() #없는게 증명 됐으니 if문 첨가 for index, row in country_df.iterrows(): country_code = row["Code"] country_name = row["Name"] if country_code in city_df["CountryCode"].unique(): one_city_df = city_groups.get_group(country_code) one_city_df.to_csv(os.path.join(os.curdir, "data", "world", "{country_name}.csv".format(country_name=country_name))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Two indicator variables is equivalent to using single variable, so we Step2: That's about the same ratio of 0's and 1's. Step3: and in the original data set we had Step4: Least Squares Solution Step5: Which ones appear to be most important? Step6: What visualization would you use to check the results? Step7: Might also be revealing to add the continuously-valued output of the Step8: Shape of Boundary Step9: Let's include the row and column names as lists, and write a function to print the table. Step10: Calculate the sums of fruits in each jar by Step11: Now we can calculate the probability of drawing each type of fruit, given that we have already chosen a jar. Step12: We can do more if we code the probability of selecting a jar. Step13: Now we can calculate the joint probabilities, or the probabilities of each pair of a jar and a fruit occurring. Step14: The sum at the lower right had better be 1, because this table is all possible results. Step15: Now the probability of a jar given that you know which fruit was drawn, is Step16: Bayes Rule for Classification Step17: Now imagine we only have data and don't know how it was Step18: Start as before. Separate into input columns and target column. The Step19: Now we need a QDA discriminant function. Here is the math again. Step20: To use this, we must calculate the mean, covariance, and prior Step21: Now let's apply our discriminant function to some new data. Step23: and look at it. If data is more than one dimensional, let's just plot Step24: Since there are only 10 training samples per class, results will Step25: What happened? $\Sigma$ is very close to singular, meaning columns of $\Xv$ are Step26: Let's write a function to do this and run it multiple times (for different divisions into training and testing sets). Step27: Review. How would you get the values of
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt %matplotlib inline f = open("parkinsons.data","r") header = f.readline() names = header.strip().split(',')[1:] data = np.loadtxt(f ,delimiter=',', usecols=1 + np.arange(23)) data.shape names x=np.arange(10).reshape((2, 5)) x np.delete? np.delete(x, 2, 1) targetColumn = names.index("status") XColumns = np.arange(23) XColumns = np.delete(XColumns, targetColumn) X = data[:, XColumns] T = data[:, targetColumn].reshape((-1, 1)) # to keep 2-d matrix form names.remove("status") X.shape, T.shape print('{:20s} {:9s} {:9s}'.format(' ','mean','stdev')) for i in range(X.shape[1]): print('{:20s} {:9.3g} {:9.3g}'.format(names[i], np.mean(X[:,i]), np.std(X[:,i]))) uniq = np.unique(T) print(' Value Occurrences') for i in uniq: print('{:7.1g} {:10d}'.format(i, np.sum(T==i))) trainf = 0.8 healthyI,_ = np.where(T == 0) parkI,_ = np.where(T == 1) healthyI = np.random.permutation(healthyI) parkI = np.random.permutation(parkI) nHealthy = round(trainf * len(healthyI)) nPark = round(trainf * len(parkI)) rowsTrain = np.hstack((healthyI[:nHealthy], parkI[:nPark])) Xtrain = X[rowsTrain,:] Ttrain = T[rowsTrain,:] rowsTest = np.hstack((healthyI[nHealthy:], parkI[nPark:])) Xtest = X[rowsTest,:] Ttest = T[rowsTest,:] print print('Xtrain is {:d} by {:d}. Ttrain is {:d} by {:d}'.format(*(Xtrain.shape + Ttrain.shape))) uniq = np.unique(Ttrain) print(' Value Occurrences') for i in uniq: print('{:7.1g} {:10d}'.format(i, np.sum(Ttrain==i))) print('Xtest is {:d} by {:d}. Ttest is {:d} by {:d}'.format(*(Xtest.shape + Ttest.shape))) uniq = np.unique(Ttest) print(' Value Occurrences') for i in uniq: print('{:7.1g} {:10d}'.format(i, np.sum(Ttest==i))) 38/118, 10/29 48/147 def train(X, T, lamb=0): means = X.mean(0) stds = X.std(0) n,d = X.shape Xs = (X - means) / stds Xs1 = np.insert(Xs , 0, 1, axis=1) lambDiag = np.eye(d+1) * lamb lambDiag[0, 0] = 0 w = np.linalg.lstsq( Xs1.T @ Xs1 + lambDiag, Xs1.T @ T)[0] return {'w': w, 'means':means, 'stds':stds} def use(model, X): Xs = (X - model['means']) / model['stds'] Xs1 = np.insert(Xs , 0, 1, axis=1) return Xs1 @ model['w'] model = train(Xtrain, Ttrain) names.insert(0,'bias') for i in range(len(names)): print('{:2d} {:>20s} {:10.3g}'.format(i, names[i], model['w'][i][0])) def convertTo01(Y): distFromTarget = np.abs(Y - [0,1]) whichTargetClosest = np.argmin(distFromTarget, axis=1).reshape((-1, 1)) return whichTargetClosest # column index equivalent to 0 and 1 targets convertTo01(np.array([0.1, 1.1, -0.5, 0.56]).reshape((-1,1))) Ytrain = use(model, Xtrain) predictedTrain = convertTo01(Ytrain) percentCorrectTrain = np.sum(predictedTrain == Ttrain) / Ttrain.shape[0] * 100.0 Ytest = use(model, Xtest) predictedTest = convertTo01(Ytest) percentCorrectTest = np.sum(predictedTest == Ttest) / float(Ttest.shape[0]) * 100.0 print('Percent Correct: Training {:6.1f} Testing {:6.1f}'.format(percentCorrectTrain, percentCorrectTest)) plt.figure(figsize=(8, 8)) plt.subplot(2, 1 ,1) plt.plot(np.hstack((Ttrain, predictedTrain)), 'o-', alpha=0.5) plt.ylim(-0.1, 1.1) # so markers will show plt.xlabel('Sample Index') plt.ylabel('Class') plt.title('Training Data') plt.legend(('Actual', 'Predicted'), loc='center') plt.subplot(2, 1, 2) plt.plot(np.hstack((Ttest, predictedTest)), 'o-', alpha=0.5) plt.ylim(-0.1, 1.1) plt.xlabel('Sample Index') plt.ylabel('Class') plt.title('Testing Data') plt.legend(('Actual', 'Predicted'), loc='center'); plt.tight_layout() plt.figure(figsize=(8, 8)) plt.subplot(2, 1, 1) plt.plot(np.hstack((Ttrain, predictedTrain, Ytrain)),'o-', alpha=0.5) plt.ylim(-0.1, 1.1) # so markers will show plt.xlabel('Sample Index') plt.ylabel('Class') plt.title('Training Data') plt.legend(('Actual', 'Predicted', 'Cont. Val.'), loc='center') plt.subplot(2, 1, 2) plt.plot(np.hstack((Ttest, predictedTest, Ytest)), 'o-', alpha=0.5) plt.ylim(-0.1, 1.1) plt.xlabel('Sample Index') plt.ylabel('Class') plt.title('Testing Data') plt.legend(('Actual', 'Predicted', 'Cont. Val.'), loc='center'); counts = np.array([[2, 6, 4], [3, 1, 2]]) counts jarNames = ['red', 'blue'] fruitNames = ['apple', 'orange', 'strawberry'] def printTable(label, data): print print(label) print(' {:>9s} {:>7s} {:>9s}'.format(*fruitNames)) for i in [0, 1]: d = data[i, :].tolist() print('{:4s} {:7.3g} {:7.3g} {:7.3g} {:7.3g}'.format(*([jarNames[i]] + d + [sum(d)]))) colTotals = np.sum(data, axis=0).tolist() print(' {:7.3g} {:7.3g} {:7.3g} {:7.3g}'.format(*(colTotals + [sum(colTotals)]))) printTable('counts', counts) jarSums = np.sum(counts, axis=1).reshape((2, 1)) jarSums pFruitGivenJar = counts / jarSums printTable('Prob(Fruit|Jar)', pFruitGivenJar) pJar = np.array([[0.6], [0.4]]) pJar pFruitAndJar = pFruitGivenJar * pJar printTable('Prob(Fruit,Jar)', pFruitAndJar) pFruit = np.sum(pFruitAndJar, axis=0) pFruit pJarGivenFruit = pFruitAndJar / pFruit printTable('Prob(Jar|Fruit)', pJarGivenFruit) D = 1 # number of components in each sample N = 10 # number of samples in each class X1 = np.random.normal(0.0, 1.0, (N, D)) T1 = np.array([1]*N).reshape((N, 1)) X2 = np.random.normal(4.0, 1.5, (N, D)) # wider variance T2 = np.array([2]*N).reshape((N, 1)) data = np.hstack(( np.vstack((X1, X2)), np.vstack((T1, T2)))) data.shape data X = data[:, 0:D] T = data[:, -1:] means = np.mean(X, 0) stds = np.std(X, 0) Xs = (X - means) / stds Xs.mean(0), Xs.std(0) Sigma = np.array([[1, 2], [2, 1]]) Sigma @ np.linalg.inv(Sigma) Sigma @ np.linalg.pinv(Sigma) Sigma = np.array([[1, 2], [1, 2]]) Sigma np.linalg.inv(Sigma) np.linalg.pinv? Sigma @ np.linalg.pinv(Sigma) def discQDA(X, means, stds, mu, Sigma, prior): Xc = (X - means) / stds - mu if Sigma.size == 1: Sigma = np.asarray(Sigma).reshape((1,1)) det = np.linalg.det(Sigma) # if det == 0: # raise np.linalg.LinAlgError('discQDA(): Singular covariance matrix') SigmaInv = np.linalg.pinv(Sigma) # pinv in case Sigma is singular return -0.5 * np.log(det) \ - 0.5 * np.sum(np.dot(Xc, SigmaInv) * Xc, axis=1).reshape((-1,1)) \ + np.log(prior) (T==1).reshape((-1)) class1rows = (T==1).reshape((-1)) class2rows = (T==2).reshape((-1)) mu1 = np.mean(Xs[class1rows, :], axis=0) mu2 = np.mean(Xs[class2rows, :], axis=0) Sigma1 = np.cov(Xs[class1rows, :].T) Sigma2 = np.cov(Xs[class2rows, :].T) N1 = np.sum(class1rows) N2 = np.sum(class2rows) N = len(T) prior1 = N1 / float(N) prior2 = N2 / float(N) Sigma1 nNew = 100 newData = np.linspace(-5.0, 10.0, nNew).repeat(D).reshape((nNew, D)) d1 = discQDA(newData, means, stds, mu1, Sigma1, prior1) d2 = discQDA(newData, means, stds, mu2, Sigma2, prior2) d1.shape, d2.shape mu1, mu2, Sigma1, Sigma2 def normald(X, mu, sigma): normald: X contains samples, one per row, N x D. mu is mean vector, D x 1. sigma is covariance matrix, D x D. D = X.shape[1] detSigma = sigma if D == 1 else np.linalg.det(sigma) if detSigma == 0: raise np.linalg.LinAlgError('normald(): Singular covariance matrix') sigmaI = 1.0/sigma if D == 1 else np.linalg.inv(sigma) normConstant = 1.0 / np.sqrt((2*np.pi)**D * detSigma) diffv = X - mu.T # change column vector mu to be row vector return normConstant * np.exp(-0.5 * np.sum(np.dot(diffv, sigmaI) * diffv, axis=1))[:,np.newaxis] mu1, mu2 plt.figure(figsize=(10, 10)) plt.subplot(3, 1, 1) plt.plot(newData[:, 0],np.hstack((d1, d2))) plt.ylabel("QDA Discriminant Functions") # Plot generative distributions p(x | Class=k) starting with discriminant functions plt.subplot(3, 1, 2) probs = np.exp( np.hstack((d1, d2)) - 0.5 *D * np.log(2 * np.pi) - np.log(np.array([[prior1, prior2]]))) plt.plot(newData[:,0], probs) plt.ylabel("QDA P(x|Class=k)\n from disc funcs", multialignment="center") # Plot generative distributions p(x | Class=k) using normald ERROR HERE plt.subplot(3, 1 ,3) newDataS = (newData - means) / stds probs = np.hstack((normald(newDataS, mu1, Sigma1), normald(newDataS, mu2, Sigma2))) plt.plot(newData, probs) plt.ylabel("QDA P(x|Class=k)\n using normald", multialignment="center"); D = 20 # number of components in each sample N = 10 # number of samples in each class X1 = np.random.normal(0.0, 1.2, (N, D)) T1 = np.array([1]*N).reshape((N, 1)) X2 = np.random.normal(4.0, 1.8, (N, D)) # wider variance T2 = np.array([2]*N).reshape((N, 1)) data = np.hstack(( np.vstack((X1, X2)), np.vstack((T1, T2)))) X = data[:, 0:D] T = data[:, -1] means, stds = np.mean(X,0), np.std(X,0) Xs = (X-means)/stds class1rows = T==1 class2rows = T==2 mu1 = np.mean(Xs[class1rows,:],axis=0) mu2 = np.mean(Xs[class2rows,:],axis=0) Sigma1 = np.cov(Xs[class1rows,:].T) Sigma2 = np.cov(Xs[class2rows,:].T) N1 = np.sum(class1rows) N2 = np.sum(class2rows) N = len(T) prior1 = N1 / float(N) prior2 = N2 / float(N) nNew = 100 newData = np.linspace(-5.0,10.0,nNew).repeat(D).reshape((nNew,D)) d1 = discQDA(newData,means,stds,mu1,Sigma1,prior1) d2 = discQDA(newData,means,stds,mu2,Sigma2,prior2) plt.figure(figsize=(10,10)) plt.subplot(3,1,1) plt.plot(newData[:,0],np.hstack((d1,d2))) plt.ylabel("QDA Discriminant Functions") # Plot generative distributions p(x | Class=k) starting with discriminant functions plt.subplot(3,1,2) probs = np.exp( np.hstack((d1,d2)) - 0.5*D*np.log(2*np.pi) - np.log(np.array([[prior1,prior2]]))) plt.plot(newData[:,0],probs) plt.ylabel("QDA P(x|Class=k)\n from disc funcs", multialignment="center") # Plot generative distributions p(x | Class=k) using normald plt.subplot(3,1,3) newDataS = (newData-means)/stds probs = np.hstack((normald(newDataS,mu1,Sigma1), normald(newDataS,mu2,Sigma2))) plt.plot(newData[:,0],probs) plt.ylabel("QDA P(x|Class=k)\n using normald", multialignment="center"); Xtrain.shape, Ttrain.shape, Xtest.shape, Ttest.shape # Fit generative models (Normal distributions) to each class means,stds = np.mean(Xtrain, 0), np.std(Xtrain, 0) Xtrains = (Xtrain - means) / stds Ttr = (Ttrain==0).reshape((-1)) mu1 = np.mean(Xtrains[Ttr, :], axis=0) cov1 = np.cov(Xtrains[Ttr, :].T) Ttr = (Ttrain.ravel()==1).reshape((-1)) mu2 = np.mean(Xtrains[Ttr, :],axis=0) cov2 = np.cov(Xtrains[Ttr, :].T) d1 = discQDA(Xtrain, means, stds, mu1, cov1, float(nHealthy)/(nHealthy+nPark)) d2 = discQDA(Xtrain, means, stds, mu2, cov2, float(nPark)/(nHealthy+nPark)) predictedTrain = np.argmax(np.hstack((d1, d2)), axis=1) d1t = discQDA(Xtest, means, stds, mu1, cov1, float(nHealthy)/(nHealthy+nPark)) d2t = discQDA(Xtest, means, stds, mu2, cov2, float(nPark)/(nHealthy+nPark)) predictedTest = np.argmax(np.hstack((d1t, d2t)), axis=1) def percentCorrect(p, t): return np.sum(p.ravel()==t.ravel()) / float(len(t)) * 100 print('Percent correct: Train', percentCorrect(predictedTrain,Ttrain), 'Test', percentCorrect(predictedTest,Ttest)) def runPark(filename, trainFraction): f = open(filename,"r") header = f.readline() names = header.strip().split(',')[1:] data = np.loadtxt(f ,delimiter=',', usecols=1+np.arange(23)) targetColumn = names.index("status") XColumns = np.arange(23) XColumns = np.delete(XColumns, targetColumn) X = data[:, XColumns] T = data[:, targetColumn].reshape((-1,1)) # to keep 2-d matrix form names.remove("status") healthyI,_ = np.where(T == 0) parkI,_ = np.where(T == 1) healthyI = np.random.permutation(healthyI) parkI = np.random.permutation(parkI) nHealthy = round(trainFraction*len(healthyI)) nPark = round(trainf*len(parkI)) rowsTrain = np.hstack((healthyI[:nHealthy], parkI[:nPark])) Xtrain = X[rowsTrain, :] Ttrain = T[rowsTrain, :] rowsTest = np.hstack((healthyI[nHealthy:], parkI[nPark:])) Xtest = X[rowsTest, :] Ttest = T[rowsTest, :] means, stds = np.mean(Xtrain, 0), np.std(Xtrain, 0) Xtrains = (Xtrain-means)/stds Ttr = (Ttrain==0).reshape((-1)) mu1 = np.mean(Xtrains[Ttr, :], axis=0) cov1 = np.cov(Xtrains[Ttr, :].T) Ttr = (Ttrain.ravel()==1).reshape((-1)) mu2 = np.mean(Xtrains[Ttr, :],axis=0) cov2 = np.cov(Xtrains[Ttr, :].T) d1 = discQDA(Xtrain, means, stds, mu1, cov1, float(nHealthy)/(nHealthy+nPark)) d2 = discQDA(Xtrain, means, stds, mu2, cov2, float(nPark)/(nHealthy+nPark)) predictedTrain = np.argmax(np.hstack((d1, d2)), axis=1) d1t = discQDA(Xtest, means, stds, mu1, cov1, float(nHealthy)/(nHealthy+nPark)) d2t = discQDA(Xtest, means, stds, mu2, cov2, float(nPark)/(nHealthy+nPark)) predictedTest = np.argmax(np.hstack((d1t, d2t)), axis=1) print('Percent correct: Train', percentCorrect(predictedTrain, Ttrain), 'Test', percentCorrect(predictedTest,Ttest)) def percentCorrect(p, t): return np.sum(p.ravel()==t.ravel()) / float(len(t)) * 100 runPark('parkinsons.data', 0.8) runPark('parkinsons.data',0.8) runPark('parkinsons.data',0.8) runPark('parkinsons.data',0.8) import pdb def discLDA(X, means,stds, mu, Sigma, prior): X = (X-means)/stds if Sigma.size == 1: Sigma = np.asarray(Sigma).reshape((1,1)) det = np.linalg.det(Sigma) # if det == 0: # raise np.linalg.LinAlgError('discQDA(): Singular covariance matrix') SigmaInv = np.linalg.pinv(Sigma) # pinv in case Sigma is singular mu = mu.reshape((-1,1)) # make mu a column vector # pdb.set_trace() return np.dot(np.dot(X,SigmaInv), mu) - 0.5 * np.dot(np.dot(mu.T,SigmaInv), mu) + np.log(prior) def runPark(filename, trainFraction): f = open(filename,"r") header = f.readline() names = header.strip().split(',')[1:] data = np.loadtxt(f ,delimiter=',', usecols=1+np.arange(23)) targetColumn = names.index("status") XColumns = np.arange(23) XColumns = np.delete(XColumns, targetColumn) X = data[:, XColumns] T = data[:, targetColumn].reshape((-1,1)) # to keep 2-d matrix form names.remove("status") healthyI,_ = np.where(T == 0) parkI,_ = np.where(T == 1) healthyI = np.random.permutation(healthyI) parkI = np.random.permutation(parkI) nHealthy = round(trainFraction*len(healthyI)) nPark = round(trainf*len(parkI)) rowsTrain = np.hstack((healthyI[:nHealthy], parkI[:nPark])) Xtrain = X[rowsTrain, :] Ttrain = T[rowsTrain, :] rowsTest = np.hstack((healthyI[nHealthy:], parkI[nPark:])) Xtest = X[rowsTest, :] Ttest = T[rowsTest, :] means,stds = np.mean(Xtrain,0), np.std(Xtrain,0) Xtrains = (Xtrain-means)/stds Ttr = (Ttrain==0).reshape((-1)) mu1 = np.mean(Xtrains[Ttr, :],axis=0) cov1 = np.cov(Xtrains[Ttr, :].T) Ttr = (Ttrain.ravel()==1).reshape((-1)) mu2 = np.mean(Xtrains[Ttr, :],axis=0) cov2 = np.cov(Xtrains[Ttr, :].T) d1 = discQDA(Xtrain, means, stds, mu1, cov1, float(nHealthy)/(nHealthy+nPark)) d2 = discQDA(Xtrain, means, stds, mu2, cov2, float(nPark)/(nHealthy+nPark)) predictedTrain = np.argmax(np.hstack((d1, d2)),axis=1) d1t = discQDA(Xtest, means, stds, mu1, cov1, float(nHealthy)/(nHealthy+nPark)) d2t = discQDA(Xtest, means, stds, mu2, cov2, float(nPark)/(nHealthy+nPark)) predictedTest = np.argmax(np.hstack((d1t, d2t)), axis=1) print('QDA Percent correct: Train', percentCorrect(predictedTrain, Ttrain), 'Test', percentCorrect(predictedTest,Ttest)) covMean = (cov1 * nHealthy + cov2 * nPark) / (nHealthy+nPark) d1 = discLDA(Xtrain, means, stds, mu1, covMean, float(nHealthy)/(nHealthy+nPark)) d2 = discLDA(Xtrain, means, stds, mu2, covMean, float(nPark)/(nHealthy+nPark)) predictedTrain = np.argmax(np.hstack((d1, d2)), axis=1) d1t = discLDA(Xtest, means, stds, mu1, covMean, float(nHealthy)/(nHealthy+nPark)) d2t = discLDA(Xtest, means, stds, mu2, covMean, float(nPark)/(nHealthy+nPark)) predictedTest = np.argmax(np.hstack((d1t, d2t)), axis=1) print('LDA Percent correct: Train', percentCorrect(predictedTrain, Ttrain), 'Test', percentCorrect(predictedTest,Ttest)) def percentCorrect(p, t): return np.sum(p.ravel()==t.ravel()) / float(len(t)) * 100 runPark('parkinsons.data', 0.8) for i in range(5): runPark('parkinsons.data', 0.8) print() import sys sys.float_info.epsilon, np.log(sys.float_info.epsilon) %%writefile qdalda.py import numpy as np import sys # for sys.float_info.epsilon ###################################################################### ### class QDA ###################################################################### class QDA(object): def __init__(self): # Define all instance variables here. Not necessary self.means = None self.stds = None self.mu = None self.sigma = None self.sigmaInv = None self.prior = None self.determinant = None self.discriminantConstant = None def train(self, X, T): self.classes = np.unique(T) self.means, self.stds = np.mean(X,0), np.std(X,0) Xs = (X - self.means) / self.stds self.mu = [] self.sigma = [] self.sigmaInv = [] self.determinant = [] self.prior = [] nSamples = X.shape[0] for k in self.classes: rowsThisClass = (T == k).reshape((-1)) self.mu.append( np.mean(Xs[rowsThisClass, :], 0).reshape((-1,1)) ) self.sigma.append( np.cov(Xs[rowsThisClass, :], rowvar=0) ) if self.sigma[-1].size == 1: self.sigma[-1] = self.sigma[-1].reshape((1,1)) det = np.linalg.det(self.sigma[-1]) if det == 0: det = sys.float_info.epsilon self.determinant.append( det ) self.sigmaInv.append( np.linalg.pinv(self.sigma[-1]) ) # pinv in case Sigma is singular self.prior.append( np.sum(rowsThisClass) / float(nSamples) ) self._finishTrain() def _finishTrain(self): self.discriminantConstant = [] for ki in range(len(self.classes)): self.discriminantConstant.append( np.log(self.prior[ki]) - 0.5*np.log(self.determinant[ki]) ) def use(self,X): nSamples = X.shape[0] Xs = (X - self.means) / self.stds discriminants,probabilities = self._discriminantFunction(Xs) predictedClass = self.classes[np.argmax( discriminants, axis=1 )] predictedClass = predictedClass.reshape((-1, 1)) D = X.shape[1] return predictedClass, probabilities, discriminants def _discriminantFunction(self, Xs): nSamples = Xs.shape[0] discriminants = np.zeros((nSamples, len(self.classes))) for ki in range(len(self.classes)): Xc = Xs - self.mu[ki] discriminants[:,ki:ki+1] = self.discriminantConstant[ki] - 0.5 * \ np.sum(np.dot(Xc, self.sigmaInv[ki]) * Xc, axis=1).reshape((-1,1)) probabilities = np.exp( discriminants - 0.5*D*np.log(2*np.pi) ) return discriminants, probabilities def __repr__(self): if self.mu is None: return 'QDA not trained.' else: return 'QDA trained for classes {}'.format(self.classes) ###################################################################### ### class LDA ###################################################################### class LDA(QDA): def _finishTrain(self): self.sigmaMean = np.sum(np.stack(self.sigma) * np.array(self.prior)[:,np.newaxis,np.newaxis], axis=0) self.sigmaMeanInv = np.linalg.pinv(self.sigmaMean) # print(self.sigma) # print(self.sigmaMean) self.discriminantConstant = [] self.discriminantCoefficient = [] for ki in range(len(self.classes)): sigmaMu = np.dot(self.sigmaMeanInv, self.mu[ki]) self.discriminantConstant.append( -0.5 * np.dot(self.mu[ki].T, sigmaMu) ) self.discriminantCoefficient.append( sigmaMu ) def _discriminantFunction(self,Xs): nSamples = Xs.shape[0] discriminants = np.zeros((nSamples, len(self.classes))) for ki in range(len(self.classes)): discriminants[:,ki:ki+1] = self.discriminantConstant[ki] + \ np.dot(Xs, self.discriminantCoefficient[ki]) probabilities = np.exp( discriminants - 0.5*D*np.log(2*np.pi) - 0.5*np.log(self.determinant[ki]) \ - 0.5*np.sum(np.dot(Xs,self.sigmaMeanInv) * Xs, axis=1).reshape((-1,1))) return discriminants, probabilities ###################################################################### ### Example use ###################################################################### if __name__ == '__main__': D = 1 # number of components in each sample N = 10 # number of samples in each class X = np.vstack((np.random.normal(0.0, 1.0, (N, D)), np.random.normal(4.0, 1.5, (N, D)))) T = np.vstack((np.array([1]*N).reshape((N, 1)), np.array([2]*N).reshape((N, 1)))) qda = QDA() qda.train(X,T) c,prob,_ = qda.use(X) print('QDA', np.sum(c==T)/X.shape[0] * 100, '% correct') print('{:>3s} {:>4s} {:>14s}'.format('T','Pred','prob(C=k|x)')) for row in np.hstack((T,c,prob)): print('{:3.0f} {:3.0f} {:8.4f} {:8.4f}'.format(*row)) lda = LDA() lda.train(X,T) c,prob,d = lda.use(X) print('LDA', np.sum(c==T)/X.shape[0] * 100, '% correct') print('{:>3s} {:>4s} {:>14s}'.format('T','Pred','prob(C=k|x)')) for row in np.hstack((T,c,prob)): print('{:3.0f} {:3.0f} {:8.4f} {:8.4f}'.format(*row)) %run qdalda.py <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now we need some benchmarking code at various dataset sizes. Because some clustering algorithms have performance that can vary quite a lot depending on the exact nature of the dataset we'll also need to run several times on randomly generated datasets of each size so as to get a better idea of the average case performance. Step2: Comparison of all ten implementations Step3: Now it is just a matter of running all the clustering algorithms via our benchmark function to collect up all the requsite data. This could be prettier, rolled up into functions appropriately, but sometimes brute force is good enough. More importantly (for me) since this can take a significant amount of compute time, I wanted to be able to comment out algorithms that were slow or I was uninterested in easily. Which brings me to a warning for you the reader and potential user of the notebook Step4: Now we need to plot the results so we can see what is going on. The catch is that we have several datapoints for each dataset size and ultimately we would like to try and fit a curve through all of it to get the general scaling trend. Fortunately seaborn comes to the rescue here by providing regplot which plots a regression through a dataset, supports higher order regression (we should probably use order two as most algorithms are effectively quadratic) and handles multiple datapoints for each x-value cleanly (using the x_estimator keyword to put a point at the mean and draw an error bar to cover the range of data). Step5: A few features stand out. First of all there appear to be essentially two classes of implementation, with DeBaCl being an odd case that falls in the middle. The fast implementations tend to be implementations of single linkage agglomerative clustering, K-means, and DBSCAN. The slow cases are largely from sklearn and include agglomerative clustering (in this case using Ward instead of single linkage). Step6: Again we can use seaborn to do curve fitting and plotting, exactly as before. Step7: Clearly something has gone woefully wrong with the curve fitting for the scipy single linkage implementation, but what exactly? If we look at the raw data we can see. Step8: It seems that at around 44000 points we hit a wall and the runtimes spiked. A hint is that I'm running this on a laptop with 8GB of RAM. Both single linkage algorithms use scipy.spatial.pdist to compute pairwise distances between points, which returns an array of shape (n(n-1)/2, 1) of doubles. A quick computation shows that that array of distances is quite large once we nave 44000 points Step9: If we assume that my laptop is keeping much other than that distance array in RAM then clearly we are going to spend time paging out the distance array to disk and back and hence we will see the runtimes increase dramatically as we become disk IO bound. If we just leave off the last element we can get a better idea of the curve, but keep in mind that the scipy single linkage implementation does not scale past a limit set by your available RAM. Step10: If we're looking for scaling we can write off the scipy single linkage implementation -- if even we didn't hit the RAM limit the $O(n^2)$ scaling is going to quickly catch up with us. Fastcluster has the same asymptotic scaling, but is heavily optimized to being the constant down much lower -- at this point it is still keeping close to the faster algorithms. It's asymtotics will still catch up with it eventually however. Step11: Now the some differences become clear. The asymptotic complexity starts to kick in with fastcluster failing to keep up. In turn HDBSCAN and DBSCAN, while having sub-$O(n^2)$ complexity, can't achieve $O(n \log(n))$ at this dataset dimension, and start to curve upward precipitously. Finally it demonstrates again how much of a difference implementation can make Step12: Now we run that for each of our pre-existing datasets to extrapolate out predicted performance on the relevant dataset sizes. A little pandas wrangling later and we've produced a table of roughly how large a dataset you can tackle in each time frame with each implementation. I had to leave out the scipy KMeans timings because the noise in timing results caused the model to be unrealistic at larger data sizes. Note how the $O(n\log n)$ algorithms utterly dominate here. In the meantime, for medium sizes data sets you can still get quite a lot done with HDBSCAN.
<ASSISTANT_TASK:> Python Code: import hdbscan import debacl import fastcluster import sklearn.cluster import scipy.cluster import sklearn.datasets import numpy as np import pandas as pd import time import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline sns.set_context('poster') sns.set_palette('Paired', 10) sns.set_color_codes() def benchmark_algorithm(dataset_sizes, cluster_function, function_args, function_kwds, dataset_dimension=10, dataset_n_clusters=10, max_time=45, sample_size=2): # Initialize the result with NaNs so that any unfilled entries # will be considered NULL when we convert to a pandas dataframe at the end result = np.nan * np.ones((len(dataset_sizes), sample_size)) for index, size in enumerate(dataset_sizes): for s in range(sample_size): # Use sklearns make_blobs to generate a random dataset with specified size # dimension and number of clusters data, labels = sklearn.datasets.make_blobs(n_samples=size, n_features=dataset_dimension, centers=dataset_n_clusters) # Start the clustering with a timer start_time = time.time() cluster_function(data, *function_args, **function_kwds) time_taken = time.time() - start_time # If we are taking more than max_time then abort -- we don't # want to spend excessive time on slow algorithms if time_taken > max_time: result[index, s] = time_taken return pd.DataFrame(np.vstack([dataset_sizes.repeat(sample_size), result.flatten()]).T, columns=['x','y']) else: result[index, s] = time_taken # Return the result as a dataframe for easier handling with seaborn afterwards return pd.DataFrame(np.vstack([dataset_sizes.repeat(sample_size), result.flatten()]).T, columns=['x','y']) dataset_sizes = np.hstack([np.arange(1, 6) * 500, np.arange(3,7) * 1000, np.arange(4,17) * 2000]) k_means = sklearn.cluster.KMeans(10) k_means_data = benchmark_algorithm(dataset_sizes, k_means.fit, (), {}) dbscan = sklearn.cluster.DBSCAN(eps=1.25) dbscan_data = benchmark_algorithm(dataset_sizes, dbscan.fit, (), {}) scipy_k_means_data = benchmark_algorithm(dataset_sizes, scipy.cluster.vq.kmeans, (10,), {}) scipy_single_data = benchmark_algorithm(dataset_sizes, scipy.cluster.hierarchy.single, (), {}) fastclust_data = benchmark_algorithm(dataset_sizes, fastcluster.linkage_vector, (), {}) hdbscan_ = hdbscan.HDBSCAN() hdbscan_data = benchmark_algorithm(dataset_sizes, hdbscan_.fit, (), {}) debacl_data = benchmark_algorithm(dataset_sizes, debacl.geom_tree.geomTree, (5, 5), {'verbose':False}) agglomerative = sklearn.cluster.AgglomerativeClustering(10) agg_data = benchmark_algorithm(dataset_sizes, agglomerative.fit, (), {}, sample_size=4) spectral = sklearn.cluster.SpectralClustering(10) spectral_data = benchmark_algorithm(dataset_sizes, spectral.fit, (), {}, sample_size=6) affinity_prop = sklearn.cluster.AffinityPropagation() ap_data = benchmark_algorithm(dataset_sizes, affinity_prop.fit, (), {}, sample_size=3) sns.regplot(x='x', y='y', data=k_means_data, order=2, label='Sklearn K-Means', x_estimator=np.mean) sns.regplot(x='x', y='y', data=dbscan_data, order=2, label='Sklearn DBSCAN', x_estimator=np.mean) sns.regplot(x='x', y='y', data=scipy_k_means_data, order=2, label='Scipy K-Means', x_estimator=np.mean) sns.regplot(x='x', y='y', data=hdbscan_data, order=2, label='HDBSCAN', x_estimator=np.mean) sns.regplot(x='x', y='y', data=fastclust_data, order=2, label='Fastcluster Single Linkage', x_estimator=np.mean) sns.regplot(x='x', y='y', data=scipy_single_data, order=2, label='Scipy Single Linkage', x_estimator=np.mean) sns.regplot(x='x', y='y', data=debacl_data, order=2, label='DeBaCl Geom Tree', x_estimator=np.mean) sns.regplot(x='x', y='y', data=spectral_data, order=2, label='Sklearn Spectral', x_estimator=np.mean) sns.regplot(x='x', y='y', data=agg_data, order=2, label='Sklearn Agglomerative', x_estimator=np.mean) sns.regplot(x='x', y='y', data=ap_data, order=2, label='Sklearn Affinity Propagation', x_estimator=np.mean) plt.gca().axis([0, 34000, 0, 120]) plt.gca().set_xlabel('Number of data points') plt.gca().set_ylabel('Time taken to cluster (s)') plt.title('Performance Comparison of Clustering Implementations') plt.legend() large_dataset_sizes = np.arange(1,16) * 4000 hdbscan_boruvka = hdbscan.HDBSCAN(algorithm='boruvka_kdtree') large_hdbscan_boruvka_data = benchmark_algorithm(large_dataset_sizes, hdbscan_boruvka.fit, (), {}, max_time=90, sample_size=1) k_means = sklearn.cluster.KMeans(10) large_k_means_data = benchmark_algorithm(large_dataset_sizes, k_means.fit, (), {}, max_time=90, sample_size=1) dbscan = sklearn.cluster.DBSCAN(eps=1.25, min_samples=5) large_dbscan_data = benchmark_algorithm(large_dataset_sizes, dbscan.fit, (), {}, max_time=90, sample_size=1) large_fastclust_data = benchmark_algorithm(large_dataset_sizes, fastcluster.linkage_vector, (), {}, max_time=90, sample_size=1) large_scipy_k_means_data = benchmark_algorithm(large_dataset_sizes, scipy.cluster.vq.kmeans, (10,), {}, max_time=90, sample_size=1) large_scipy_single_data = benchmark_algorithm(large_dataset_sizes, scipy.cluster.hierarchy.single, (), {}, max_time=90, sample_size=1) sns.regplot(x='x', y='y', data=large_k_means_data, order=2, label='Sklearn K-Means', x_estimator=np.mean) sns.regplot(x='x', y='y', data=large_dbscan_data, order=2, label='Sklearn DBSCAN', x_estimator=np.mean) sns.regplot(x='x', y='y', data=large_scipy_k_means_data, order=2, label='Scipy K-Means', x_estimator=np.mean) sns.regplot(x='x', y='y', data=large_hdbscan_boruvka_data, order=2, label='HDBSCAN Boruvka', x_estimator=np.mean) sns.regplot(x='x', y='y', data=large_fastclust_data, order=2, label='Fastcluster Single Linkage', x_estimator=np.mean) sns.regplot(x='x', y='y', data=large_scipy_single_data, order=2, label='Scipy Single Linkage', x_estimator=np.mean) plt.gca().axis([0, 64000, 0, 150]) plt.gca().set_xlabel('Number of data points') plt.gca().set_ylabel('Time taken to cluster (s)') plt.title('Performance Comparison of Fastest Clustering Implementations') plt.legend() large_scipy_single_data.tail(10) size_of_array = 44000 * (44000 - 1) / 2 # from pdist documentation bytes_in_array = size_of_array * 8 # Since doubles use 8 bytes gigabytes_used = bytes_in_array / (1024.0 ** 3) # divide out to get the number of GB gigabytes_used sns.regplot(x='x', y='y', data=large_k_means_data, order=2, label='Sklearn K-Means', x_estimator=np.mean) sns.regplot(x='x', y='y', data=large_dbscan_data, order=2, label='Sklearn DBSCAN', x_estimator=np.mean) sns.regplot(x='x', y='y', data=large_scipy_k_means_data, order=2, label='Scipy K-Means', x_estimator=np.mean) sns.regplot(x='x', y='y', data=large_hdbscan_boruvka_data, order=2, label='HDBSCAN Boruvka', x_estimator=np.mean) sns.regplot(x='x', y='y', data=large_fastclust_data, order=2, label='Fastcluster Single Linkage', x_estimator=np.mean) sns.regplot(x='x', y='y', data=large_scipy_single_data[:8], order=2, label='Scipy Single Linkage', x_estimator=np.mean) plt.gca().axis([0, 64000, 0, 150]) plt.gca().set_xlabel('Number of data points') plt.gca().set_ylabel('Time taken to cluster (s)') plt.title('Performance Comparison of Fastest Clustering Implementations') plt.legend() huge_dataset_sizes = np.arange(1,11) * 20000 k_means = sklearn.cluster.KMeans(10) huge_k_means_data = benchmark_algorithm(huge_dataset_sizes, k_means.fit, (), {}, max_time=120, sample_size=2, dataset_dimension=10) dbscan = sklearn.cluster.DBSCAN(eps=1.5) huge_dbscan_data = benchmark_algorithm(huge_dataset_sizes, dbscan.fit, (), {}, max_time=120, sample_size=2, dataset_dimension=10) huge_scipy_k_means_data = benchmark_algorithm(huge_dataset_sizes, scipy.cluster.vq.kmeans, (10,), {}, max_time=120, sample_size=2, dataset_dimension=10) hdbscan_boruvka = hdbscan.HDBSCAN(algorithm='boruvka_kdtree') huge_hdbscan_data = benchmark_algorithm(huge_dataset_sizes, hdbscan_boruvka.fit, (), {}, max_time=240, sample_size=4, dataset_dimension=10) huge_fastcluster_data = benchmark_algorithm(huge_dataset_sizes, fastcluster.linkage_vector, (), {}, max_time=240, sample_size=2, dataset_dimension=10) sns.regplot(x='x', y='y', data=huge_k_means_data, order=2, label='Sklearn K-Means', x_estimator=np.mean) sns.regplot(x='x', y='y', data=huge_dbscan_data, order=2, label='Sklearn DBSCAN', x_estimator=np.mean) sns.regplot(x='x', y='y', data=huge_scipy_k_means_data, order=2, label='Scipy K-Means', x_estimator=np.mean) sns.regplot(x='x', y='y', data=huge_hdbscan_data, order=2, label='HDBSCAN', x_estimator=np.mean) sns.regplot(x='x', y='y', data=huge_fastcluster_data, order=2, label='Fastcluster', x_estimator=np.mean) plt.gca().axis([0, 200000, 0, 240]) plt.gca().set_xlabel('Number of data points') plt.gca().set_ylabel('Time taken to cluster (s)') plt.title('Performance Comparison of K-Means and DBSCAN') plt.legend() import statsmodels.formula.api as sm time_samples = [1000, 2000, 5000, 10000, 25000, 50000, 75000, 100000, 250000, 500000, 750000, 1000000, 2500000, 5000000, 10000000, 50000000, 100000000, 500000000, 1000000000] def get_timing_series(data, quadratic=True): if quadratic: data['x_squared'] = data.x**2 model = sm.ols('y ~ x + x_squared', data=data).fit() predictions = [model.params.dot([1.0, i, i**2]) for i in time_samples] return pd.Series(predictions, index=pd.Index(time_samples)) else: # assume n log(n) data['xlogx'] = data.x * np.log(data.x) model = sm.ols('y ~ x + xlogx', data=data).fit() predictions = [model.params.dot([1.0, i, i*np.log(i)]) for i in time_samples] return pd.Series(predictions, index=pd.Index(time_samples)) ap_timings = get_timing_series(ap_data) spectral_timings = get_timing_series(spectral_data) agg_timings = get_timing_series(agg_data) debacl_timings = get_timing_series(debacl_data) fastclust_timings = get_timing_series(large_fastclust_data.ix[:10,:].copy()) scipy_single_timings = get_timing_series(large_scipy_single_data.ix[:10,:].copy()) hdbscan_boruvka = get_timing_series(huge_hdbscan_data, quadratic=True) #scipy_k_means_timings = get_timing_series(huge_scipy_k_means_data, quadratic=False) dbscan_timings = get_timing_series(huge_dbscan_data, quadratic=True) k_means_timings = get_timing_series(huge_k_means_data, quadratic=False) timing_data = pd.concat([ap_timings, spectral_timings, agg_timings, debacl_timings, scipy_single_timings, fastclust_timings, hdbscan_boruvka, dbscan_timings, k_means_timings ], axis=1) timing_data.columns=['AffinityPropagation', 'Spectral', 'Agglomerative', 'DeBaCl', 'ScipySingleLinkage', 'Fastcluster', 'HDBSCAN', 'DBSCAN', 'SKLearn KMeans' ] def get_size(series, max_time): return series.index[series < max_time].max() datasize_table = pd.concat([ timing_data.apply(get_size, max_time=30), timing_data.apply(get_size, max_time=300), timing_data.apply(get_size, max_time=3600), timing_data.apply(get_size, max_time=8*3600) ], axis=1) datasize_table.columns=('Interactive', 'Get Coffee', 'Over Lunch', 'Overnight') datasize_table <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 特異値分解 Step2: 低ランク近似 Step3: 文書ベクトルの次元削減 Step4: 文書$d1$と$d2$の特徴空間上での類似度を計算してみよう. Step5: このように,次元削減された文書ベクトル${{\bf d}_i^{(k)}}$間のコサイン類似度が,低ランク近似された単語-文書行列$M_k$における文書ベクトル間のコサイン類似度と一致することが分かる. Step6: 単語ベクトルの次元削減 Step7: $T$の$i$行目と$j$行目がそれぞれ単語$i,j$の特徴空間上でのベクトル表現になる
<ASSISTANT_TASK:> Python Code: import numpy as np import scipy.linalg as lg from scipy.spatial.distance import cosine import matplotlib.pyplot as plt import pandas as pd np.set_printoptions(precision=2) pd.set_option('precision', 2) %matplotlib inline %precision 2 def sim(v1,v2): #コサイン類似度 return 1-cosine(v1,v2) # IIR exercise 18.4 の内容を用意 M = np.array( [[1,0,1,0,0,0], [0,1,0,0,0,0], [1,1,0,0,0,0], [1,0,0,1,1,0], [0,0,0,1,0,1]] ) print(M) print(M.shape) print("Rank(M) =", np.linalg.matrix_rank(M)) #行列Mのランクは5 doc_names = ["d1", "d2", "d3", "d4", "d5", "d6"] term_names = ["ship", "boat", "ocean", "voyge", "trip"] df = pd.DataFrame(M, columns=doc_names, index=term_names) df U, sigma, Vt = lg.svd(M) #SVD.なお,sigmaは行列ではなく特異値が降順に並んだ配列 Sigma = lg.diagsvd(sigma, M.shape[0], M.shape[1]) #確認のため truncateしていないSigmaを作成する.特異値集合からMxN対角行列を作成する. print(Sigma.shape) print(Sigma) M_r = np.dot(np.dot(U, Sigma), Vt) #分解した結果が本当にMと一致するのか確認 M = U x Sigma x V^T np.linalg.norm(M - M_r) # フロベニウスノルム k = 2 #次元数 U_k = U[:, :k] #m-k行列にカット Vt_k = Vt[:k,:] #k-n行列にカット Sigma_k = Sigma[:k,:k] #特異値上位k個のみを用いる print("U_k ="), print(U_k) print("Sigma_k=") print(Sigma_k) print("V_k^T ="), print(Vt_k) M_k = np.dot(np.dot(U_k, Sigma_k), Vt_k) #低ランク近似 print("M_k=") print(M_k) doc_names = ["d1", "d2", "d3", "d4", "d5", "d6"] term_names = ["ship", "boat", "ocean", "voyge", "trip"] df = pd.DataFrame(M_k, columns=doc_names, index=term_names) df print("|| M - M_k || =", lg.norm(M-M_k)) # フロベニウスノルム print("Rank(M_k) =", np.linalg.matrix_rank(M_k)) #ランク2の行列になっていることを確認 print(lg.norm(M-M_k)**2) # フロベニウスノルムの二乗が,k+1以降の特異値の平方和に等しいことを確認 print(sum(map(lambda x: x ** 2, sigma[k:]))) # k+1以降の特異値の平方和 D_k = np.dot(Sigma_k, Vt_k) D_k axis_names = ["z1", "z2"] doc_names = ["d1", "d2", "d3", "d4", "d5", "d6"] df = pd.DataFrame(D_k.T, columns=axis_names, index=doc_names) # np.r_ は行列同士の連結 print("D_k=") df.T fig, ax = plt.subplots() df.plot.scatter(x="z1", y="z2", ax=ax) ax.axvline(x=0, lw=2, color='red') #x軸とy軸に線を引く ax.axhline(y=0, lw=2, color='red') ax.set_xlim(-0.5, 2.0) ax.set_ylim(-1.0, 1.5) ax.grid(True) for k, v in df.iterrows(): ax.annotate(k, xy=(v[0]+0.05,v[1]+0.05),size=15) #データ点にラベル名を付与 # d1とd2の特徴空間上での類似度を計算する print("特徴空間上でのコサイン類似度 =",sim(D_k[:,0], D_k[:,1])) print("M_k上での文書ベクトルのコサイン類似度 =", sim(M_k[:,0], M_k[:,1])) print("なお,元の文書ベクトル上でのコサイン類似度 =", sim(M[:,0],M[:,1])) q = np.array([1,0,1,1,0]) #文書d1と同じものをクエリとして用いてみる q_k = np.dot(U_k.T, q) #k次元特徴空間へ射影 print(q_k) # d_j^{k} と一致していることを確認 print("sim(q, d) =",sim(q_k, D_k[:,0])) #文書d1との特徴空間上での類似度 T_k = np.dot(U_k, Sigma_k) axis_names = ["z1", "z2"] term_names = ["ship", "boat", "ocean", "voyge", "trip"] df = pd.DataFrame(T_k, columns=axis_names, index=term_names) # np.r_ は行列同士の連結 df # 特徴空間上の単語ベクトルをプロット fig, ax = plt.subplots() df.plot.scatter(x="z1", y="z2", ax=ax) ax.axvline(x=0, lw=2, color='red') #x軸とy軸に線を引く ax.axhline(y=0, lw=2, color='red') ax.set_xlim(-0.5, 2.0) ax.set_ylim(-1.0, 1.5) ax.grid(True) for k, v in df.iterrows(): ax.annotate(k, xy=(v[0]+0.05,v[1]+0.05),size=15) #データ点にラベル名を付与 t_1 = T_k[0,:] #ship t_2 = T_k[1,:] #boat print("k次元特徴空間での類似度") print("sim(ship, boat) =", sim(t_1, t_2)) print("元の空間での類似度") print("sim(ship, boat) =", sim(M[0,:], M[1,:])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: There are actually two different approaches you can take to using TensorFlow or PyTorch models with DeepChem. It depends on whether you want to use TensorFlow/PyTorch APIs or DeepChem APIs for training and evaluating your model. For the former case, DeepChem's Dataset class has methods for easily adapting it to use with other frameworks. make_tf_dataset() returns a tensorflow.data.Dataset object that iterates over the data. make_pytorch_dataset() returns a torch.utils.data.IterableDataset that iterates over the data. This lets you use DeepChem's datasets, loaders, featurizers, transformers, splitters, etc. and easily integrate them into your existing TensorFlow or PyTorch code. Step2: For this example, we used the Keras Sequential class. Our model consists of a dense layer with ReLU activation, 50% dropout to provide regularization, and a final layer that produces a scalar output. We also need to specify the loss function to use when training the model, in this case L<sub>2</sub> loss. We can now train and evaluate the model exactly as we would with any other DeepChem model. For example, let's load the Delaney solubility dataset. How does our model do at predicting the solubilities of molecules based on their extended-connectivity fingerprints (ECFPs)? Step3: TorchModel Step4: Computing Losses Step5: We can train our model on the BACE dataset. This is a binary classification task that tries to predict whether a molecule will inhibit the enzyme BACE-1. Step6: Other Features
<ASSISTANT_TASK:> Python Code: !pip install --pre deepchem import deepchem as dc import tensorflow as tf keras_model = tf.keras.Sequential([ tf.keras.layers.Dense(1000, activation='relu'), tf.keras.layers.Dropout(rate=0.5), tf.keras.layers.Dense(1) ]) model = dc.models.KerasModel(keras_model, dc.models.losses.L2Loss()) tasks, datasets, transformers = dc.molnet.load_delaney(featurizer='ECFP', splitter='random') train_dataset, valid_dataset, test_dataset = datasets model.fit(train_dataset, nb_epoch=50) metric = dc.metrics.Metric(dc.metrics.pearson_r2_score) print('training set score:', model.evaluate(train_dataset, [metric])) print('test set score:', model.evaluate(test_dataset, [metric])) import torch pytorch_model = torch.nn.Sequential( torch.nn.Linear(1024, 1000), torch.nn.ReLU(), torch.nn.Dropout(0.5), torch.nn.Linear(1000, 1) ) model = dc.models.TorchModel(pytorch_model, dc.models.losses.L2Loss()) model.fit(train_dataset, nb_epoch=50) print('training set score:', model.evaluate(train_dataset, [metric])) print('test set score:', model.evaluate(test_dataset, [metric])) class ClassificationModel(tf.keras.Model): def __init__(self): super(ClassificationModel, self).__init__() self.dense1 = tf.keras.layers.Dense(1000, activation='relu') self.dense2 = tf.keras.layers.Dense(1) def call(self, inputs, training=False): y = self.dense1(inputs) if training: y = tf.nn.dropout(y, 0.5) logits = self.dense2(y) output = tf.nn.sigmoid(logits) return output, logits keras_model = ClassificationModel() output_types = ['prediction', 'loss'] model = dc.models.KerasModel(keras_model, dc.models.losses.SigmoidCrossEntropy(), output_types=output_types) tasks, datasets, transformers = dc.molnet.load_bace_classification(feturizer='ECFP', split='scaffold') train_dataset, valid_dataset, test_dataset = datasets model.fit(train_dataset, nb_epoch=100) metric = dc.metrics.Metric(dc.metrics.roc_auc_score) print('training set score:', model.evaluate(train_dataset, [metric])) print('test set score:', model.evaluate(test_dataset, [metric])) @manual{Intro1, title={5}, organization={DeepChem}, author={Ramsundar, Bharath}, howpublished = {\url{https://github.com/deepchem/deepchem/blob/master/examples/tutorials/Creating_Models_with_TensorFlow_and_PyTorch.ipynb}}, year={2021}, } <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generate Input Files Step2: With our three materials, we can now create a materials file object that can be exported to an actual XML file. Step3: Now let's move on to the geometry. Our problem will have three regions for the fuel, the clad, and the surrounding coolant. The first step is to create the bounding surfaces -- in this case two cylinders and six reflective planes. Step4: With the surfaces defined, we can now create cells that are defined by intersections of half-spaces created by the surfaces. Step5: OpenMC requires that there is a "root" universe. Let us create a root cell that is filled by the pin cell universe and then assign it to the root universe. Step6: We now must create a geometry that is assigned a root universe, put the geometry into a geometry file, and export it to XML. Step7: With the geometry and materials finished, we now just need to define simulation parameters. In this case, we will use 10 inactive batches and 90 active batches each with 5000 particles. Step8: Let us also create a plot file that we can use to verify that our pin cell geometry was created successfully. Step9: As we can see from the plot, we have a nice pin cell with fuel, cladding, and water! Before we run our simulation, we need to tell the code what we want to tally. The following code shows how to create a 2D mesh tally. Step10: Now we a have a complete set of inputs, so we can go ahead and run our simulation. Step11: Tally Data Processing Step12: Next we need to get the tally, which can be done with the StatePoint.get_tally(...) method. Step13: The statepoint file actually stores the sum and sum-of-squares for each tally bin from which the mean and variance can be calculated as described here. The sum and sum-of-squares can be accessed using the sum and sum_sq properties Step14: However, the mean and standard deviation of the mean are usually what you are more interested in. The Tally class also has properties mean and std_dev which automatically calculate these statistics on-the-fly. Step15: The tally data has three dimensions Step16: To get the bins into a form that we can plot, we can simply change the shape of the array since it is a numpy array. Step17: Now let's say we want to look at the distribution of relative errors of our tally bins for flux. First we create a new variable called relative_error and set it to the ratio of the standard deviation and the mean, being careful not to divide by zero in case some bins were never scored to. Step18: Source Sites Step19: If we want, say, only the energies from the source sites, we can simply index the source array with the name of the field Step20: Now, we can look at things like the energy distribution of source sites. Note that we don't directly use the matplotlib.pyplot.hist method since our binning is logarithmic. Step21: Let's also look at the spatial distribution of the sites. To make the plot a little more interesting, we can also include the direction of the particle emitted from the source and color each source by the logarithm of its energy.
<ASSISTANT_TASK:> Python Code: %matplotlib inline from IPython.display import Image import numpy as np import matplotlib.pyplot as plt import openmc # 1.6 enriched fuel fuel = openmc.Material(name='1.6% Fuel') fuel.set_density('g/cm3', 10.31341) fuel.add_nuclide('U235', 3.7503e-4) fuel.add_nuclide('U238', 2.2625e-2) fuel.add_nuclide('O16', 4.6007e-2) # borated water water = openmc.Material(name='Borated Water') water.set_density('g/cm3', 0.740582) water.add_nuclide('H1', 4.9457e-2) water.add_nuclide('O16', 2.4732e-2) water.add_nuclide('B10', 8.0042e-6) # zircaloy zircaloy = openmc.Material(name='Zircaloy') zircaloy.set_density('g/cm3', 6.55) zircaloy.add_nuclide('Zr90', 7.2758e-3) # Instantiate a Materials collection materials = openmc.Materials([fuel, water, zircaloy]) # Export to "materials.xml" materials.export_to_xml() # Create cylinders for the fuel and clad fuel_outer_radius = openmc.ZCylinder(x0=0.0, y0=0.0, r=0.39218) clad_outer_radius = openmc.ZCylinder(x0=0.0, y0=0.0, r=0.45720) # Create boundary planes to surround the geometry min_x = openmc.XPlane(x0=-0.63, boundary_type='reflective') max_x = openmc.XPlane(x0=+0.63, boundary_type='reflective') min_y = openmc.YPlane(y0=-0.63, boundary_type='reflective') max_y = openmc.YPlane(y0=+0.63, boundary_type='reflective') min_z = openmc.ZPlane(z0=-0.63, boundary_type='reflective') max_z = openmc.ZPlane(z0=+0.63, boundary_type='reflective') # Create a Universe to encapsulate a fuel pin pin_cell_universe = openmc.Universe(name='1.6% Fuel Pin') # Create fuel Cell fuel_cell = openmc.Cell(name='1.6% Fuel') fuel_cell.fill = fuel fuel_cell.region = -fuel_outer_radius pin_cell_universe.add_cell(fuel_cell) # Create a clad Cell clad_cell = openmc.Cell(name='1.6% Clad') clad_cell.fill = zircaloy clad_cell.region = +fuel_outer_radius & -clad_outer_radius pin_cell_universe.add_cell(clad_cell) # Create a moderator Cell moderator_cell = openmc.Cell(name='1.6% Moderator') moderator_cell.fill = water moderator_cell.region = +clad_outer_radius pin_cell_universe.add_cell(moderator_cell) # Create root Cell root_cell = openmc.Cell(name='root cell') root_cell.fill = pin_cell_universe # Add boundary planes root_cell.region = +min_x & -max_x & +min_y & -max_y & +min_z & -max_z # Create root Universe root_universe = openmc.Universe(universe_id=0, name='root universe') root_universe.add_cell(root_cell) # Create Geometry and set root Universe geometry = openmc.Geometry(root_universe) # Export to "geometry.xml" geometry.export_to_xml() # OpenMC simulation parameters settings = openmc.Settings() settings.batches = 100 settings.inactive = 10 settings.particles = 5000 # Create an initial uniform spatial source distribution over fissionable zones bounds = [-0.63, -0.63, -0.63, 0.63, 0.63, 0.63] uniform_dist = openmc.stats.Box(bounds[:3], bounds[3:], only_fissionable=True) settings.source = openmc.Source(space=uniform_dist) # Export to "settings.xml" settings.export_to_xml() plot = openmc.Plot.from_geometry(geometry) plot.pixels = (250, 250) plot.to_ipython_image() # Instantiate an empty Tallies object tallies = openmc.Tallies() # Create mesh which will be used for tally mesh = openmc.RegularMesh() mesh.dimension = [100, 100] mesh.lower_left = [-0.63, -0.63] mesh.upper_right = [0.63, 0.63] # Create mesh filter for tally mesh_filter = openmc.MeshFilter(mesh) # Create mesh tally to score flux and fission rate tally = openmc.Tally(name='flux') tally.filters = [mesh_filter] tally.scores = ['flux', 'fission'] tallies.append(tally) # Export to "tallies.xml" tallies.export_to_xml() # Run OpenMC! openmc.run() # Load the statepoint file sp = openmc.StatePoint('statepoint.100.h5') tally = sp.get_tally(scores=['flux']) print(tally) tally.sum print(tally.mean.shape) (tally.mean, tally.std_dev) flux = tally.get_slice(scores=['flux']) fission = tally.get_slice(scores=['fission']) print(flux) flux.std_dev.shape = (100, 100) flux.mean.shape = (100, 100) fission.std_dev.shape = (100, 100) fission.mean.shape = (100, 100) fig = plt.subplot(121) fig.imshow(flux.mean) fig2 = plt.subplot(122) fig2.imshow(fission.mean) # Determine relative error relative_error = np.zeros_like(flux.std_dev) nonzero = flux.mean > 0 relative_error[nonzero] = flux.std_dev[nonzero] / flux.mean[nonzero] # distribution of relative errors ret = plt.hist(relative_error[nonzero], bins=50) sp.source sp.source['E'] # Create log-spaced energy bins from 1 keV to 10 MeV energy_bins = np.logspace(3,7) # Calculate pdf for source energies probability, bin_edges = np.histogram(sp.source['E'], energy_bins, density=True) # Make sure integrating the PDF gives us unity print(sum(probability*np.diff(energy_bins))) # Plot source energy PDF plt.semilogx(energy_bins[:-1], probability*np.diff(energy_bins), drawstyle='steps') plt.xlabel('Energy (eV)') plt.ylabel('Probability/eV') plt.quiver(sp.source['r']['x'], sp.source['r']['y'], sp.source['u']['x'], sp.source['u']['y'], np.log(sp.source['E']), cmap='jet', scale=20.0) plt.colorbar() plt.xlim((-0.5,0.5)) plt.ylim((-0.5,0.5)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Player ratings predict outcome Step2: A note about standard errors Step3: See how the change in player average rating changs the sharpness of the function - the intepretation is that absolute differences in rating between players become more predictive for more highly rated players. In other words, higher rated players make more advantage of small differences in ability (note also that the advantage to white at 0 rating difference also grows as the player average rating rises). Step4: Note - and this will be relevant later - if we had players who were over-rated (i.e. performing at a level below their numerical rating) then this would look like a shift up to the top left of this graph and a shift down to the bottom right. This is a flattening of the non-baselined curve (futher above). Step5: This comparison shows no stereotype threat effect. When the female/white player has a lower rating than her male opponent her chances of victory are greater than for a comparable match between two male players with an equal rating difference. The overall effect is a 'flattening' of the rating-difference vs outcome curve, as happens with overall lower-rated players compared to higher-rated players. Step6: And calculate the number of games we are analysing
<ASSISTANT_TASK:> Python Code: import pandas as pd #data munging import numpy as np #number functions import os #directory and file functions import pylab as plt #graphing functions import socket #machine id import seaborn as sns from matplotlib.font_manager import FontProperties print "working directory = " + os.getcwd() #----------------- load subset of data, which contains only variables used in this analysis" local=False gamedatloc='gamedat_tenpc.csv' #10% of the players in the full dataset if local: gamedatloc='../../../../Sonas92/gamedat2.csv' #full dataset not currently available, sorry #games=pd.read_csv(gamedatloc,index_col=0,nrows=30000) #if you only want a trivial subset of the data games=pd.read_csv(gamedatloc,index_col=0) print "N games in data = " + str(len(games)) #not all of these can be used because of missing data # Display the first 10 rows of the dataset games.ix[:10,:] #----------------- graph params" %matplotlib inline fsize=(12,10) binwidth=125 bins=np.arange(-625,627,binwidth) ylimit_diff=0.08 fmts=['-^','-s','-o','-d','-v'] #marker shapes lss=['--','-.','-','.',':'] # line styles colours=['darkred','orange','b','indigo','k'] #line colours lweight=2 sns.set(font_scale=2) #------------ graph difference in player rating (White - Black) against mean score # ----------- (White Win = 1, Black Wins = 0, draw = 0.5) #categorise games by the difference in rating of the two players (White-Black) games['diff']=games['wElo']-games['bElo'] games['rdiff_cat']=pd.cut(games['diff'],bins) #means yvals=games.groupby(pd.cut(games['diff'],bins)).mean()['WhiteScore'] #standard errors y_sem=games.groupby(pd.cut(games['diff'],bins)).sem()['WhiteScore'] fig, axes = plt.subplots(nrows=1, ncols=1, figsize=fsize) axes.errorbar(bins[:-1]+binwidth/2,yvals,yerr=y_sem*1.96,color='b',fmt='-o',lw=lweight) axes.set_xlabel('Difference in rating \n(White - Black, using bin size = ' + str(binwidth) + ')') axes.set_ylabel('Average score for White') axes.set_ylim([0,1]) axes.set_xlim([-650,650]) #plot rating difference - outcome function for different player average rating quintiles games['avElo']=(games.wElo+games.bElo)/2 #calculate average rating of the two players for each game games=games[~games.avElo.isnull()] #remove any missing data quintile_groups=["5th","4th","3rd","2nd","1st"] #labels for the top 20%, top 21-41%, etc games['quintile']=pd.qcut(games.avElo,5,labels=quintile_groups) #categorise according to quintile quintile_groups.reverse() #just so legend is easier to read plot_these=['5th','3rd','1st'] #it's a tidier plot with just middle, top and bottom 20% fig, axes = plt.subplots(nrows=1, ncols=1, figsize=fsize) for i,q in enumerate(quintile_groups): qn_mean=games[games.quintile==q].groupby('rdiff_cat').mean()['WhiteScore'] #mean qn_sem=games[games.quintile==q].groupby('rdiff_cat').sem()['WhiteScore'] #standard error if q in plot_these: axes.errorbar(bins[:-1]+binwidth/2,qn_mean,yerr=qn_sem*1.96,color=colours[i],fmt=fmts[i],ls=lss[i],lw=lweight,label=q) titletext= 'quintile by player average rating' axes.set_xlabel('Difference in rating \n(White - Black, using bin size = ' + str(binwidth) + ')') axes.set_ylabel('Average score for White') axes.set_xlim([-650,650]) fontP = FontProperties() fontP.set_size(16) legend = plt.legend(loc=0, ncol=3, bbox_to_anchor=(0, 0, 1, 1),prop = fontP,fancybox=True,shadow=False,title=titletext) plt.setp(legend.get_title(),fontsize=16) #calculate baseline baseline = games[games.quintile=='3rd'].groupby('rdiff_cat').mean()['WhiteScore'] #mean base_std = games[games.quintile=='3rd'].groupby('rdiff_cat').std()['WhiteScore'] #std baseli_n = games[games.quintile=='3rd'].groupby('rdiff_cat').agg(len)['WhiteScore'] #count #plot different groups fig, axes = plt.subplots(nrows=1, ncols=1, figsize=fsize) for i,q in enumerate(quintile_groups): qn_mean=games[games.quintile==q].groupby('rdiff_cat').mean()['WhiteScore'] #mean qn_sd=games[games.quintile==q].groupby('rdiff_cat').std()['WhiteScore'] #standard deviation qn_count=games[games.quintile==q].groupby('rdiff_cat').agg(len)['WhiteScore'] #count if q in plot_these: yvals=qn_mean-baseline #mean against baseline y_std=np.sqrt( ((qn_sd**2)/qn_count) + ((base_std**2)/baseli_n) ) #standard dev y_sem=y_std/np.sqrt(qn_count+baseli_n) if i ==2: y_sem=0 #all error is pushed into difference from baseline plt.errorbar(bins[:-1]+binwidth/2,yvals,yerr=y_sem*1.96,color=colours[i],fmt=fmts[i],ls=lss[i],lw=lweight,label=q) axes.set_xlabel('Difference in rating \n(White - Black, using bin size = ' + str(binwidth) + ')') axes.set_ylabel('Average score for White \ncompared to 3rd quintile baseline') axes.set_xlim([-650,650]) axes.set_ylim([-ylimit_diff,ylimit_diff]) fontP = FontProperties() fontP.set_size(16) legend = plt.legend(loc=0, ncol=3, bbox_to_anchor=(0, 0, 1, 1),prop = fontP,fancybox=True,shadow=False,title=titletext) plt.setp(legend.get_title(),fontsize=16) #our baseline: players are Male-Male yvalsMM=games[games.pair=='MM'].groupby('rdiff_cat').mean()['WhiteScore'] y_semMM=games[games.pair=='MM'].groupby('rdiff_cat').sem()['WhiteScore'] y_stdMM=games[games.pair=='MM'].groupby('rdiff_cat').std()['WhiteScore'] y_cntMM=games[games.pair=='MM'].groupby('rdiff_cat').agg(len)['WhiteScore'] #players are female-female yvalsFF=games[games.pair=='FF'].groupby('rdiff_cat').mean()['WhiteScore'] y_semFF=games[games.pair=='FF'].groupby('rdiff_cat').sem()['WhiteScore'] y_stdFF=games[games.pair=='FF'].groupby('rdiff_cat').std()['WhiteScore'] y_cntFF=games[games.pair=='FF'].groupby('rdiff_cat').agg(len)['WhiteScore'] #players are female-male yvalsFM=games[games.pair=='FM'].groupby('rdiff_cat').mean()['WhiteScore'] y_stdFM=games[games.pair=='FM'].groupby('rdiff_cat').std()['WhiteScore'] y_cntFM=games[games.pair=='FM'].groupby('rdiff_cat').agg(len)['WhiteScore'] #players are female-male yvalsMF=games[games.pair=='MF'].groupby('rdiff_cat').mean()['WhiteScore'] y_stdMF=games[games.pair=='MF'].groupby('rdiff_cat').std()['WhiteScore'] y_cntMF=games[games.pair=='MF'].groupby('rdiff_cat').agg(len)['WhiteScore'] #created weighted average of FM values with MF values by first comparing to appropriate baseline #(p(win|white) for MM and p(win|black) for MM respectively) yvalsFM_MF=(yvalsFM-yvalsMM)*(y_cntFM/(y_cntFM+y_cntMF))+(yvalsMF-yvalsMM)*(y_cntMF/(y_cntFM+y_cntMF)) y_cntFM_MF=y_cntFM+y_cntMF y_stdFM_MF=np.sqrt( ((y_stdFM**2)/y_cntFM) + ((y_stdMF**2)/y_cntMF) ) #calculate standard deviations of differences from baseline y_stdFFdiff=np.sqrt( ((y_stdFF**2)/y_cntFF) + ((y_stdMM**2)/y_cntMM) ) y_stdFMdiff=np.sqrt( ((y_stdFM**2)/y_cntFM) + ((y_stdMM**2)/y_cntMM) ) y_stdMFdiff=np.sqrt( ((y_stdMF**2)/y_cntMF) + ((y_stdMM**2)/y_cntMM) ) y_stdFM_MFdiff=np.sqrt( ((y_stdFM_MF**2)/y_cntFM_MF) + ((y_stdMM**2)/y_cntMM) ) #calculate standard errors #sem = std / sqrt(n) y_semFFdiff= y_stdFFdiff / np.sqrt(y_cntFF+y_cntMM) y_semFMdiff= y_stdFMdiff / np.sqrt(y_cntFM+y_cntMM) y_semMFdiff= y_stdMFdiff / np.sqrt(y_cntMF+y_cntMM) y_semFM_MFdiff = y_stdFM_MFdiff / np.sqrt(y_cntFM_MF+y_cntMM) #plot fig, axes = plt.subplots(nrows=1, ncols=1, figsize=fsize) axes.errorbar(bins[:-1]+binwidth/2,yvalsMM-yvalsMM,yerr=0,fmt=fmts[2],ls=lss[2],lw=lweight,label='MM') #axes.errorbar(bins[:-1]+binwidth/2,yvalsFM-yvalsMM,yerr=y_semFMdiff*1.96,fmt='-d',ls=lss[0],lw=lweight,label='FM') axes.errorbar(bins[:-1]+binwidth/2,yvalsFM_MF,yerr=y_semFM_MFdiff*1.96,fmt=fmts[0],ls=lss[0],lw=lweight,label='FM+MF') #axes.errorbar(bins[:-1]+binwidth/2,yvalsMF-yvalsMM,yerr=y_semMFdiff*1.96,fmt='-d',ls=lss[0],lw=lweight,label='MF') #axes.errorbar(bins[:-1]+binwidth/2,yvalsFF-yvalsMM,yerr=y_semFFdiff*1.96,fmt=fmts[4],ls=lss[4],lw=lweight,label='FF') axes.set_xlabel('Difference in rating \n(White - Black, using bin size = ' + str(binwidth) + ')') axes.set_ylabel('Average score for White \ncompared to MM pairing') axes.set_ylim([-ylimit_diff,ylimit_diff]) axes.set_xlim([-650,650]) titletext= 'game gender pairing' fontP = FontProperties() fontP.set_size(16) legend = plt.legend(loc=0, ncol=1, bbox_to_anchor=(0, 0, 1, 1),prop = fontP,fancybox=True,shadow=False,title=titletext) plt.setp(legend.get_title(),fontsize=16) fig, axes = plt.subplots(nrows=1, ncols=1, figsize=fsize) axes.errorbar(bins[:-1]+binwidth/2,yvalsMM-yvalsMM,yerr=0,fmt=fmts[2],ls=lss[2],lw=lweight,label='MM') #axes.errorbar(bins[:-1]+binwidth/2,yvalsFM-yvalsMM,yerr=y_semFMdiff*1.96,fmt='-d',ls=lss[0],lw=lweight,label='FM') axes.errorbar(bins[:-1]+binwidth/2,yvalsFM_MF,yerr=y_semFM_MFdiff*1.96,fmt=fmts[0],ls=lss[0],lw=lweight,label='FM+MF') #axes.errorbar(bins[:-1]+binwidth/2,yvalsMF-yvalsMM,yerr=y_semMFdiff*1.96,fmt='-d',ls=lss[0],lw=lweight,label='MF') axes.errorbar(bins[:-1]+binwidth/2,yvalsFF-yvalsMM,yerr=y_semFFdiff*1.96,fmt=fmts[4],ls=lss[4],lw=lweight,label='FF') axes.set_xlabel('Difference in rating \n(White - Black, using bin size = ' + str(binwidth) + ')') axes.set_ylabel('Average score for White \ncompared to MM pairing') axes.set_ylim([-ylimit_diff,ylimit_diff]) axes.set_xlim([-650,650]) fontP = FontProperties() fontP.set_size(16) legend = plt.legend(loc=0, ncol=1, bbox_to_anchor=(0, 0, 1, 1),prop = fontP,fancybox=True,shadow=False,title=titletext) plt.setp(legend.get_title(),fontsize=16) games.groupby('pair').count()['diff'] print "N of x-gender pairings = " + str(games.groupby('pair').count()['diff']['FM']+games.groupby('pair').count()['diff']['MF']) print "Total N of games = " + str(sum(games.groupby('pair').count()['diff'])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 自定义训练 Step2: 鸢尾花分类问题 Step3: 检查数据 Step4: 我们可以从该数据集视图中注意到以下信息: Step5: 每个标签都分别与一个字符串名称(例如 “setosa” )相关联,但机器学习通常依赖于数字值。标签编号会映射到一个指定的表示法,例如: Step6: 创建一个 tf.data.Dataset Step7: make_csv_dataset 返回一个(features, label) 对构建的 tf.data.Dataset ,其中 features 是一个字典 Step8: 注意到具有相似特征的样本会归为一组,即分为一批。更改 batch_size 可以设置存储在这些特征数组中的样本数。 Step10: 要简化模型构建步骤,请创建一个函数以将特征字典重新打包为形状为 (batch_size, num_features) 的单个数组。 Step11: 然后使用 tf.data.Dataset.map 方法将每个 (features,label) 对中的 features 打包到训练数据集中: Step12: Dataset 的特征元素被构成了形如 (batch_size, num_features) 的数组。我们来看看前几个样本 Step13: 选择模型类型 Step14: 激活函数可决定层中每个节点的输出形式。 这些非线性关系很重要,如果没有它们,模型将等同于单个层。激活函数有很多种,但隐藏层通常使用 ReLU。 Step15: 在此示例中,每个样本针对每个类别返回一个 logit。 Step16: 对每个类别执行 tf.argmax 运算可得出预测的类别索引。不过,该模型尚未接受训练,因此这些预测并不理想。 Step17: 训练模型 Step18: 使用 tf.GradientTape 的前后关系来计算梯度以优化你的模型 Step19: 创建优化器 Step20: 我们将使用它来计算单个优化步骤: Step21: 训练循环 Step22: 可视化损失函数随时间推移而变化的情况 Step23: 评估模型的效果 Step24: 根据测试数据集评估模型 Step25: 例如,我们可以看到对于最后一批数据,该模型通常预测正确: Step26: 使用经过训练的模型进行预测
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import matplotlib.pyplot as plt import tensorflow as tf print("TensorFlow version: {}".format(tf.__version__)) print("Eager execution: {}".format(tf.executing_eagerly())) train_dataset_url = "https://storage.googleapis.com/download.tensorflow.org/data/iris_training.csv" train_dataset_fp = tf.keras.utils.get_file(fname=os.path.basename(train_dataset_url), origin=train_dataset_url) print("Local copy of the dataset file: {}".format(train_dataset_fp)) !head -n5 {train_dataset_fp} # column order in CSV file column_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species'] feature_names = column_names[:-1] label_name = column_names[-1] print("Features: {}".format(feature_names)) print("Label: {}".format(label_name)) class_names = ['Iris setosa', 'Iris versicolor', 'Iris virginica'] batch_size = 32 train_dataset = tf.data.experimental.make_csv_dataset( train_dataset_fp, batch_size, column_names=column_names, label_name=label_name, num_epochs=1) features, labels = next(iter(train_dataset)) print(features) plt.scatter(features['petal_length'], features['sepal_length'], c=labels, cmap='viridis') plt.xlabel("Petal length") plt.ylabel("Sepal length") plt.show() def pack_features_vector(features, labels): Pack the features into a single array. features = tf.stack(list(features.values()), axis=1) return features, labels train_dataset = train_dataset.map(pack_features_vector) features, labels = next(iter(train_dataset)) print(features[:5]) model = tf.keras.Sequential([ tf.keras.layers.Dense(10, activation=tf.nn.relu, input_shape=(4,)), # input shape required tf.keras.layers.Dense(10, activation=tf.nn.relu), tf.keras.layers.Dense(3) ]) predictions = model(features) predictions[:5] tf.nn.softmax(predictions[:5]) print("Prediction: {}".format(tf.argmax(predictions, axis=1))) print(" Labels: {}".format(labels)) loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) def loss(model, x, y, training): # training=training is needed only if there are layers with different # behavior during training versus inference (e.g. Dropout). y_ = model(x, training=training) return loss_object(y_true=y, y_pred=y_) l = loss(model, features, labels, training=False) print("Loss test: {}".format(l)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets, training=True) return loss_value, tape.gradient(loss_value, model.trainable_variables) optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) loss_value, grads = grad(model, features, labels) print("Step: {}, Initial Loss: {}".format(optimizer.iterations.numpy(), loss_value.numpy())) optimizer.apply_gradients(zip(grads, model.trainable_variables)) print("Step: {}, Loss: {}".format(optimizer.iterations.numpy(), loss(model, features, labels, training=True).numpy())) ## Note: Rerunning this cell uses the same model variables # Keep results for plotting train_loss_results = [] train_accuracy_results = [] num_epochs = 201 for epoch in range(num_epochs): epoch_loss_avg = tf.keras.metrics.Mean() epoch_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() # Training loop - using batches of 32 for x, y in train_dataset: # Optimize the model loss_value, grads = grad(model, x, y) optimizer.apply_gradients(zip(grads, model.trainable_variables)) # Track progress epoch_loss_avg.update_state(loss_value) # Add current batch loss # Compare predicted label to actual label # training=True is needed only if there are layers with different # behavior during training versus inference (e.g. Dropout). epoch_accuracy.update_state(y, model(x, training=True)) # End epoch train_loss_results.append(epoch_loss_avg.result()) train_accuracy_results.append(epoch_accuracy.result()) if epoch % 50 == 0: print("Epoch {:03d}: Loss: {:.3f}, Accuracy: {:.3%}".format(epoch, epoch_loss_avg.result(), epoch_accuracy.result())) fig, axes = plt.subplots(2, sharex=True, figsize=(12, 8)) fig.suptitle('Training Metrics') axes[0].set_ylabel("Loss", fontsize=14) axes[0].plot(train_loss_results) axes[1].set_ylabel("Accuracy", fontsize=14) axes[1].set_xlabel("Epoch", fontsize=14) axes[1].plot(train_accuracy_results) plt.show() test_url = "https://storage.googleapis.com/download.tensorflow.org/data/iris_test.csv" test_fp = tf.keras.utils.get_file(fname=os.path.basename(test_url), origin=test_url) test_dataset = tf.data.experimental.make_csv_dataset( test_fp, batch_size, column_names=column_names, label_name='species', num_epochs=1, shuffle=False) test_dataset = test_dataset.map(pack_features_vector) test_accuracy = tf.keras.metrics.Accuracy() for (x, y) in test_dataset: # training=False is needed only if there are layers with different # behavior during training versus inference (e.g. Dropout). logits = model(x, training=False) prediction = tf.argmax(logits, axis=1, output_type=tf.int32) test_accuracy(prediction, y) print("Test set accuracy: {:.3%}".format(test_accuracy.result())) tf.stack([y,prediction],axis=1) predict_dataset = tf.convert_to_tensor([ [5.1, 3.3, 1.7, 0.5,], [5.9, 3.0, 4.2, 1.5,], [6.9, 3.1, 5.4, 2.1] ]) # training=False is needed only if there are layers with different # behavior during training versus inference (e.g. Dropout). predictions = model(predict_dataset, training=False) for i, logits in enumerate(predictions): class_idx = tf.argmax(logits).numpy() p = tf.nn.softmax(logits)[class_idx] name = class_names[class_idx] print("Example {} prediction: {} ({:4.1f}%)".format(i, name, 100*p)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: I want datetime printed as year-month-day-hour-min.
<ASSISTANT_TASK:> Python Code: import tarfile import time import os import getpass import paramiko import arrow curtime = time.strftime("%d-%b-%Y-%H", time.gmtime()) sshgetdrn = paramiko.SSHClient() sshgetdrn.set_missing_host_key_policy(paramiko.AutoAddPolicy()) usrg = getpass.getuser() sshgetdrn.connect('128.199.60.12', username='wcmckee') sup = sshgetdrn.exec_command('uptime') ouput = sshgetdrn.invoke_shell() ouput.recv(1000) ouput.send('uptime') ouput.send('chdir /getsdrawn') opftp = sshgetdrn.open_sftp() for i in opftp.listdir('/home/wcmckee/getsdrawndotcom/'): print i utc = arrow.utcnow() print utc utc.weekday() utc.date() utc.datetime backdir = ('/home/' + usrg + '/backup-motion/') if os.path.isdir(backdir) == True: print 'its true' else: print 'its false' os.mkdir(backdir) tar = tarfile.open(backdir + curtime + ".tar.gz", "w:gz") tar.add("/home/wcmckee/mot/", arcname="TarName") tar.close() #os.rmdir('/home/shared/cam') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define model Step2: Let's run the model and plot the results for some values. Step3: Setting up the model fitting Step4: Fit tolerances to simulation Step5: Run fitting Step6: Explore results Step7: Find point estimates of fit Step8: As you can see we've not done a bad job at fitting. True parameters are 10,0.5 and 1.0 which all over-lap with the 95% confidence intervals. We may now save the results using the save method.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import ABCPRC as prc import numpy as np import scipy.stats as stats import matplotlib.pyplot as plt def ibm(*ps): lbda,delta,gamma = ps[0],ps[1],ps[2] dt = 1.0 #time step n = 100 #population number T = 100 #total time simulation is run for. class Person(object): #define individual def __init__(self): self.br = stats.gamma.rvs(gamma) if gamma > 0 else 0 #risk of exposure for individual self.ps = 0 #number of parasites. This is zero initially. def update(self): births = stats.poisson.rvs(self.br * lbda * dt) if self.br * lbda * dt > 0 else 0 #imports of new worms in a time-step deaths = stats.poisson.rvs(self.ps * delta) if self.ps >0 else 0 #number of deaths of worms self.ps += (births-deaths) if (self.ps < 0): self.ps = 0 #check number doesn't become negative. people = [] for i in range(n): people.append(Person()) #initialise population. for t in range(T): for i in range(n): people[i].update() #run simulation for all individuals. par_dist = [] for i in range(n): par_dist.append(people[i].ps) #record final number of parasites for each individual. return np.array(par_dist) # ibm function needs to return a numpy array %time xs = ibm(10.0,0.5,1.0) plt.hist(xs); m = prc.ABC() priors = [stats.expon(scale=10.0).rvs,stats.expon(scale=0.5).rvs,stats.expon(scale=1.0).rvs] m.setup(modelFunc=ibm,xs=xs,priors=priors,method='Adaptive',toln=10) m.fit(sample_size=30) m.run(100) res = m.trace() plt.figure() print('Initial Distribution') m.trace(plot=True,tol=0) plt.figure() print('Middle Tolerance') m.trace(plot=True,tol=5) plt.figure() print('Final Distribution') m.trace(plot=True,tol=-1) ps = np.round(m.paramMAP(),decimals=2) print('MAP for infection rate is : {}, MAP for death rate is {} and MAP for heterogeneity is {}'.format(*ps)) res = m.fitSummary() m.save('parasite_model_example') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: How do we define direction of an earth magnetic field? Step2: Magnetic applet
<ASSISTANT_TASK:> Python Code: import numpy as np from geoscilabs.mag import Mag, Simulator %matplotlib inline #Input parameters fileName = 'https://github.com/geoscixyz/geosci-labs/raw/master/assets/mag/data/DO27_TMI.dat' xyzd = np.genfromtxt(fileName, skip_header=3) B = np.r_[60308, 83.8, 25.4] survey, dobj = Mag.createMagSurvey(xyzd, B) # View the data and chose a profile param = Simulator.ViewMagSurvey2D(survey, dobj) display(param) # Define the parametric model interactively model = Simulator.ViewPrism(param.result) display(model) plotwidget = Simulator.PFSimulator(model, param) display(plotwidget) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We will use the same list of all the Regional Associations as before, Step2: The function below is similar to the one we used before. Step3: Compare the results above with cell [6] from before. Note that now we got 192 records for PacIOOS and 74 for AOOS!
<ASSISTANT_TASK:> Python Code: from owslib.csw import CatalogueServiceWeb endpoint = 'http://www.ngdc.noaa.gov/geoportal/csw' csw = CatalogueServiceWeb(endpoint, timeout=30) import pandas as pd ioos_ras = ['AOOS', # Alaska 'CaRA', # Caribbean 'CeNCOOS', # Central and Northern California 'GCOOS', # Gulf of Mexico 'GLOS', # Great Lakes 'MARACOOS', # Mid-Atlantic 'NANOOS', # Pacific Northwest 'NERACOOS', # Northeast Atlantic 'PacIOOS', # Pacific Islands 'SCCOOS', # Southern California 'SECOORA'] # Southeast Atlantic url = 'https://raw.githubusercontent.com/ioos/registry/master/uuid.csv' df = pd.read_csv(url, index_col=0, header=0, names=['UUID']) df['UUID'] = df['UUID'].str.strip() from owslib.fes import PropertyIsEqualTo def query_ra(csw, uuid): q = PropertyIsEqualTo(propertyname='sys.siteuuid', literal='%s' % uuid) csw.getrecords2(constraints=[q], maxrecords=2000, esn='full') return csw for ra in ioos_ras: try: uuid = df.ix[ra]['UUID'] csw = query_ra(csw, uuid) ret = csw.results['returned'] word = 'records' if ret > 1 else 'record' print("{0:>8} has {1:>4} {2}".format(ra, ret, word)) csw.records.clear() except KeyError: pass HTML(html) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Preset based - using CoachInterface Step2: Running each training or inference iteration manually Step3: Sometimes we may want to track the agent's decisions, log or maybe even modify them. Step4: Non-preset - using GraphManager directly Step5: Advanced functionality - proprietary exploration policy, checkpoint evaluation Step6: Next, we'll override the exploration policy with our own policy defined in Resources/exploration.py. Step7: Last, we'll load the latest checkpoint from the checkpoint directory, and evaluate it.
<ASSISTANT_TASK:> Python Code: # Adding module path to sys path if not there, so rl_coach submodules can be imported import os import sys import tensorflow as tf module_path = os.path.abspath(os.path.join('..')) resources_path = os.path.abspath(os.path.join('Resources')) if module_path not in sys.path: sys.path.append(module_path) if resources_path not in sys.path: sys.path.append(resources_path) from rl_coach.coach import CoachInterface coach = CoachInterface(preset='CartPole_ClippedPPO', # The optional custom_parameter enables overriding preset settings custom_parameter='heatup_steps=EnvironmentSteps(5);improve_steps=TrainingSteps(3)', # Other optional parameters enable easy access to advanced functionalities num_workers=1, checkpoint_save_secs=10) coach.run() from rl_coach.environments.gym_environment import GymEnvironment, GymVectorEnvironment from rl_coach.base_parameters import VisualizationParameters from rl_coach.core_types import EnvironmentSteps tf.reset_default_graph() coach = CoachInterface(preset='CartPole_ClippedPPO') # registering an iteration signal before starting to run coach.graph_manager.log_signal('iteration', -1) coach.graph_manager.heatup(EnvironmentSteps(100)) # training for it in range(10): # logging the iteration signal during training coach.graph_manager.log_signal('iteration', it) # using the graph manager to train and act a given number of steps coach.graph_manager.train_and_act(EnvironmentSteps(100)) # reading signals during training training_reward = coach.graph_manager.get_signal_value('Training Reward') # inference env_params = GymVectorEnvironment(level='CartPole-v0') env = GymEnvironment(**env_params.__dict__, visualization_parameters=VisualizationParameters()) response = env.reset_internal_state() for _ in range(10): action_info = coach.graph_manager.get_agent().choose_action(response.next_state) print("State:{}, Action:{}".format(response.next_state,action_info.action)) response = env.step(action_info.action) print("Reward:{}".format(response.reward)) from rl_coach.agents.clipped_ppo_agent import ClippedPPOAgentParameters from rl_coach.environments.gym_environment import GymVectorEnvironment from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import SimpleSchedule from rl_coach.architectures.embedder_parameters import InputEmbedderParameters # Resetting tensorflow graph as the network has changed. tf.reset_default_graph() # define the environment parameters bit_length = 10 env_params = GymVectorEnvironment(level='rl_coach.environments.toy_problems.bit_flip:BitFlip') env_params.additional_simulator_parameters = {'bit_length': bit_length, 'mean_zero': True} # Clipped PPO agent_params = ClippedPPOAgentParameters() agent_params.network_wrappers['main'].input_embedders_parameters = { 'state': InputEmbedderParameters(scheme=[]), 'desired_goal': InputEmbedderParameters(scheme=[]) } graph_manager = BasicRLGraphManager( agent_params=agent_params, env_params=env_params, schedule_params=SimpleSchedule() ) graph_manager.improve() from rl_coach.agents.dqn_agent import DQNAgentParameters from rl_coach.base_parameters import VisualizationParameters, TaskParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.gym_environment import GymVectorEnvironment from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.memories.memory import MemoryGranularity #################### # Graph Scheduling # #################### # Resetting tensorflow graph as the network has changed. tf.reset_default_graph() schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(4000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(1000) ######### # Agent # ######### agent_params = DQNAgentParameters() # DQN params agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(100) agent_params.algorithm.discount = 0.99 agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1) # NN configuration agent_params.network_wrappers['main'].learning_rate = 0.00025 agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False # ER size agent_params.memory.max_size = (MemoryGranularity.Transitions, 40000) ################ # Environment # ################ env_params = GymVectorEnvironment(level='CartPole-v0') from exploration import MyExplorationParameters # Overriding the default DQN Agent exploration policy with my exploration policy agent_params.exploration = MyExplorationParameters() # Creating a graph manager to train a DQN agent to solve CartPole graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters()) # Resources path was defined at the top of this notebook my_checkpoint_dir = resources_path + '/checkpoints' # Checkpoints will be stored every 5 seconds to the given directory task_parameters1 = TaskParameters() task_parameters1.checkpoint_save_dir = my_checkpoint_dir task_parameters1.checkpoint_save_secs = 5 graph_manager.create_graph(task_parameters1) graph_manager.improve() import tensorflow as tf import shutil # Clearing the previous graph before creating the new one to avoid name conflicts tf.reset_default_graph() # Updating the graph manager's task parameters to restore the latest stored checkpoint from the checkpoints directory task_parameters2 = TaskParameters() task_parameters2.checkpoint_restore_path = my_checkpoint_dir graph_manager.create_graph(task_parameters2) graph_manager.evaluate(EnvironmentSteps(5)) # Clearning up shutil.rmtree(my_checkpoint_dir) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Objectives Step2: Open Notebook Step3: Basic Types Step5: strings Step6: slices Step7: ANSWERS Hidden Step8: Intro to numpy/scipy/matplotlib Step9: Which dimension is 2 long? 3 long? 4 long? 5 long? Step10: Which dimension is the input layer and which is the output layer? Step11: ozone[0, Step12: CHECK POINT Step13: ANSWERS Hidden Step14: XKCD, Jelly beans, and Type I Error?
<ASSISTANT_TASK:> Python Code: # Prepare my slides %pylab inline %cd working # ipython !curl -kLO http://github.com/barronh/GCandPython/archive/master.zip import zipfile zf = zipfile.ZipFile('master.zip') zf.extractall() %mv GCandPython-master GCandPython def foo(bar): return 'foo.' + bar print(foo('bar')) try: print(foo(1)) except Exception as e: print(e) 1 + 1 1 + 1. 1 / 2. 1 // 2 .encode() "a b c".split() ''.join(['h', 'ow', ' ', 'c', 'an', ' ', 'I ' 'su', 'bse', 't?']) teststr = 'this is not fun.' print(teststr[:8]) def foo(pieces): out = type(pieces[0])() for i, piece in enumerate(pieces): out += piece return out a = foo('12345') b = foo([1, 2, 3, 4, 5]) c = foo({0: 1, 1: 2, 2: 3, 3: 4, 4: 5}) print(a, b, c) %pylab tk np.random.seed(50) ozone = (np.random.normal(size = 2*3*4*5) + 40).reshape(2,3,4,5) print(ozone.ndim) print(ozone.shape, ozone[0, :, 2, 3].shape, ozone[0, :, 2, 3]) print(ozone.mean()) print(np.percentile(ozone, [5, 95])) averagekernel = np.array([[0.5, 0.35, 0.15], [0.25, 0.5, 0.25], [0.1, 0.4, 0.5]]) averagekernelm = np.matrix(averagekernel) print(averagekernel.shape) print(averagekernelm.shape) print(averagekernelm.T.shape) averagekernel = np.array([0.25, 0.5, 0.25]) averagekernelm = np.matrix(averagekernel) (ozone[0, :, 2, 3] * averagekernel).sum() ozone[0, :, 2, 3] * averagekernelm.T out = np.zeros_like(ozone[:, 0]) for t in range(ozone.shape[0]): for j in range(ozone.shape[2]): for i in range(ozone.shape[3]): out[t, j, i] = ozone[t, :, j, i] * averagekernelm.T out from scipy import constants ?constants from scipy import stats ?stats from scipy.stats import mstats ?mstats %%timeit -n 20 from scipy.stats import ttest_ind, mannwhitneyu mdifferent = [] tdifferent = [] n = 100 for i in range(n): a = np.exp(np.random.normal(size = 20)) b = np.exp(np.random.normal(size = 20)) tresult = ttest_ind(a, b) mresult = mannwhitneyu(a, b) if tresult.pvalue < 0.05: tdifferent.append(i); if mresult.pvalue < 0.05: mdifferent.append(i); print(len(mdifferent)/n, end = '/') print(len(tdifferent)/n, end = ', ') np.array([0.06, 0.06, 0.01, 0.04, 0.05, 0.02, 0.06, 0.07, 0.02, 0.07, 0.04, 0.05, 0.03, 0.08, 0.04, 0.03, 0.03, 0.02, 0.04, 0.01, 0.06, 0.04, 0.05, 0.01, 0.03, 0.04, 0.02, 0.04, 0.03, 0.02, 0.04, 0.03, 0.06, 0.03, 0.02, 0.07, 0.05, 0.02, 0.01, 0.05, 0.03, 0.04, 0.04, 0.03, 0.03, 0.04, 0.04, 0.06, 0.03, 0.05, 0.05, 0.03, 0.02, 0.0,\ 0.04, 0.05, 0.02, 0.07, 0.05, 0.05]).mean() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create forward bond future PV (Exposure) time profile Step2: Data input for the CouponBond portfolio Step3: Create Libor and portfolioScheduleOfCF. This datelist contains all dates
<ASSISTANT_TASK:> Python Code: %matplotlib inline from datetime import date import time import pandas as pd import numpy as np pd.options.display.max_colwidth = 60 from Curves.Corporates.CorporateDailyVasicek import CorporateRates from Boostrappers.CDSBootstrapper.CDSVasicekBootstrapper import BootstrapperCDSLadder from MonteCarloSimulators.Vasicek.vasicekMCSim import MC_Vasicek_Sim from Products.Rates.CouponBond import CouponBond from Products.Credit.CDS import CDS from Scheduler.Scheduler import Scheduler import quandl import matplotlib.pyplot as plt import pylab from parameters import WORKING_DIR import itertools marker = itertools.cycle((',', '+', '.', 'o', '*')) from IPython.core.pylabtools import figsize figsize(15, 4) from pandas import ExcelWriter import numpy.random as nprnd from pprint import pprint t_step = 1.0 / 365.0 simNumber = 10 trim_start = date(2005,3,10) trim_end = date(2010,12,31) # Last Date of the Portfolio start = date(2005, 3, 10) referenceDate = date(2005, 3, 10) myScheduler = Scheduler() ReferenceDateList = myScheduler.getSchedule(start=referenceDate,end=trim_end,freq="1M", referencedate=referenceDate) # Create Simulator xOIS = [ 3.0, 0.07536509, -0.208477, 0.07536509] myVasicek = MC_Vasicek_Sim(ReferenceDateList,xOIS,simNumber,1/365.0) myVasicek.setVasicek(x=xOIS,minDay=trim_start,maxDay=trim_end,simNumber=simNumber,t_step=1/365.0) myVasicek.getLibor() # Create Coupon Bond with several startDates. SixMonthDelay = myScheduler.extractDelay("6M") TwoYearsDelay = myScheduler.extractDelay("2Y") startDates = [referenceDate + nprnd.randint(0,3)*SixMonthDelay for r in range(10)] # For debugging uncomment this to choose a single date for the forward bond # print(startDates) startDates = [date(2005,3,10)+SixMonthDelay,date(2005,3,10)+TwoYearsDelay ] maturities = [(x+TwoYearsDelay) for x in startDates] myPortfolio = {} coupon = 0.07536509 for i in range(len(startDates)): notional=(-1.0)**i myPortfolio[i] = CouponBond(fee=1.0,start=startDates[i],coupon=coupon,notional=notional, maturity= maturities[i], freq="3M", referencedate=referenceDate,observationdate=trim_start ) # Create FullDateList portfolioScheduleOfCF = set(ReferenceDateList) for i in range(len(myPortfolio)): portfolioScheduleOfCF=portfolioScheduleOfCF.union(myPortfolio[i].getScheduleComplete()[0] ) portfolioScheduleOfCF = sorted(portfolioScheduleOfCF.union(ReferenceDateList)) OIS = myVasicek.getSmallLibor(datelist=portfolioScheduleOfCF) #print(OIS) # at this point OIS contains all dates for which the discount curve should be known. # If the OIS doesn't contain that date, it would not be able to discount the cashflows and the calcualtion would faill. pvs={} for t in portfolioScheduleOfCF: pvs[t] = np.zeros([1,simNumber]) #(pvs[t]) for i in range(len(myPortfolio)): myPortfolio[i].setLibor(OIS) pvs[t] = pvs[t] + myPortfolio[i].getExposure(referencedate=t).values # print(myPortfolio[i].getExposure(referencedate=t).values) #print(pvs) #print(OIS) #print(myPortfolio[i].getExposure(referencedate=t).value) pvsPlot = pd.DataFrame.from_dict(list(pvs.items())) pvsPlot.index= list(pvs.keys()) pvs1={} for i,t in zip(pvsPlot.values,pvsPlot.index): pvs1[t]=i[1][0] pvs = pd.DataFrame.from_dict(data=pvs1,orient="index") ax=pvs.plot(legend=False) ax.set_xlabel("Year") ax.set_ylabel("Coupon Bond Exposure") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: group the two print statements into a print_all function Step2: Rewrite welcome in the style of greet. It should substitute the user name and return the result. Step3: A function argument can also be optional. Therefore a default value has to be defined in the signature. You woould call this attribute an optinal attribute or more pythonic Step4: locals / globals Step5: Additionally one can declare and assign a variable, but it may only be valid in specific sections of your code. These sections of validity are called namespace. Any function defines its own namespace (the function body) and any variable declared within that scope is not valid outside this namespace. Nevertheless, namespaces can be nested. Then any outer namespace is also valid inside the inner namespaces. Step6: The running Python session also defines a namespace. This is called the global namespace. The built-in function <span style='color Step7: *args, **kwargs Step8: lambda Step9: Returning functions Step10: Recursive functions Step11: Now define the Fibonacci series into <span style="color Step12: Nested functions
<ASSISTANT_TASK:> Python Code: print('Hello, Wolrd!') print('This is Python.') def greet(): return 'Hello, World!' message = greet() print(message) def sum_a_and_b(a, b): return a + b print(sum_a_and_b(5, 3)) def print_arguments(arg1, arg2, arg3='Foo', arg4='Bar', g=9.81): print('arg1:\t', arg1) print('arg2:\t', arg2) print('arg3:\t', arg3) print('arg4:\t', arg4) print('g:\t', g) print('-' * 14) x = 5 print('x = 5\t\tmemory address:', hex(id(x))) x = 6 print('x = 6\t\tmemory address:', hex(id(x))) a = 5 def f(): b = 3 print('a: ', a, 'b: ', b) # call f() b a = 5 print('Global a: ', globals()['a'], '\t\tmemory address: ', hex(id(a))) def f(b): print('Local b:', locals()['b'], '\t\tmemory address: ', hex(id(b))) f(a) def get_attributes(*args, **kwargs): return args, kwargs a, b = get_attributes('foo', 'bar', g=9.81, version=2.7, idiot_president='Donald Trump') print('args:', a) print('kwargs:', b) list(map(lambda x:x**2, [1,2,3,4,5,6,7,8,9])) list(map(lambda x:len(x), 'This is a sentence with rather with rather short and extraordinary long words.'.split())) list(map(lambda x:(x,len(x)), 'This is a sentence with rather with rather short and extraordinary long words.'.split())) def mean(data): return sum(data) / len(data) def get_aggregator(variable_name): if variable_name.lower() == 'temperature': return mean elif variable_name.lower() == 'rainfall': return sum data = [2,4,7,9,2,3,5] # Temperature data agg = get_aggregator('Temperature') print('Temperature: ', agg(data), '°C') agg = get_aggregator('Rainfall') print('Rainfall: ', agg(data), 'mm') def factorial(n): return n*factorial(n-1) if n > 1 else 1 def fibonacci_iterative(n): a,b = 0, 1 for i in range(n): a,b = b, a + b return a def fibonacci_recursive(n): pass print('iterative:', fibonacci_iterative(10)) print('recursive:', fibonacci_recursive(10)) %time fibonacci_iterative(40) %time fibonacci_recursive(40) def get_model(arid=True): if arid: a = 1.2 else: a = 1.4 def _model(rain, evap, a=a): return (rain - evap)**a if rain > evap else 0 return _model rain_values = [3, 0, 0, 16, 4] evap_values = [1, 1, 5, 3, 2] print(list(map(get_model(arid=True), rain_values, evap_values))) print(list(map(get_model(arid=False), rain_values, evap_values))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Firstly let's check that the MCMC chains have converged and that the resulting posteriors are sensible. Step2: Okay so what is the Bayes factor? Note that this returns $\log_{10}(BF)$ along with an estimate of the error and the so-called Occam factor. Step3: In this instance the evidence is strongly in favour of bimodality, the errors are relatively small, and the Occam factor is small. The Occam factor provides information on how much the choice of prior (see the BayesBimodalTest implementation for details) effects the modal comparison. So in this case, we would need to change the prior by 60 orders of magnitude to change the conclusion of the model comparsion Step4: We now plot the Bayes factor for this varying $\sigma$-separation. The measured values are shown as blue dots, with error bars. A red band indicates the Occam factor. Step5: This shows that, only for means separated above $\approx 2\sigma$, can the Bayes factor unamiguously rule out the unimodal hypothesis. Below this it is difficult to rule out the Bimodal hypthesis, althrough in general the $\log_{10}(\textrm{BF})$ is generally negative (shown in a close-up below)
<ASSISTANT_TASK:> Python Code: def GenerateBimodalData(muA, muB, sigmaA, sigmaB, p, N=1000): dataA = np.random.normal(muA, sigmaA, int(p*N)) dataB = np.random.normal(muB, sigmaB, int((1-p)*N)) return np.concatenate([dataA, dataB]) data = GenerateBimodalData(-2, 2, 1, 1, 0.9) test = BayesBimodalTest(data, ntemps=30, nburn0=50, nburn=50, nprod=100, betamin=-8) test.diagnostic_plot() test.BayesFactor(print_result=True) sigma_seps = np.linspace(3, 0.01, 40) sigma = 1 p = 0.5 log10BF = [] log10BF_err = [] log10Occam = [] for ss in sigma_seps: muA = -0.5*ss muB = 0.5*ss data = GenerateBimodalData(muA, muB, sigma, sigma, p) test = BayesBimodalTest(data, ntemps=50, nburn0=50, nburn=50, nprod=50, betamin=-8) a, b, c, = test.BayesFactor(print_result=False) log10BF.append(a) log10BF_err.append(b) log10Occam.append(c) fig, ax = plt.subplots() ax.errorbar(sigma_seps, log10BF, yerr=log10BF_err, fmt=".") ax.set_xlabel("$\sigma$-separation of the means") ax.set_ylabel(r"$\log_{10}(\mathrm{BF})$") ax.fill_between(sigma_seps, log10Occam, -np.array(log10Occam), color="red", alpha=0.2) plt.show() fig, ax = plt.subplots() ax.errorbar(sigma_seps, log10BF, yerr=log10BF_err, fmt=".") ax.set_xlabel("$\sigma$-separation of the means") ax.set_ylabel(r"$\log_{10}(\mathrm{BF})$") ax.fill_between(sigma_seps, log10Occam, -np.array(log10Occam), color="red", alpha=0.2) ax.set_ylim(-2, 2) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set subset filters Step2: ######################################################################################################################### Step 2 Step3: ######################################################################################################################### Step 3
<ASSISTANT_TASK:> Python Code: root_directory = 'D:/github/w_vattenstatus/ekostat_calculator'#"../" #os.getcwd() workspace_directory = root_directory + '/workspaces' resource_directory = root_directory + '/resources' user_id = 'test_user' # ## Initiate EventHandler print(root_directory) paths = {'user_id': user_id, 'workspace_directory': root_directory + '/workspaces', 'resource_directory': root_directory + '/resources', 'log_directory': 'D:/github' + '/log', 'test_data_directory': 'D:/github' + '/test_data', 'cache_directory': 'D:/github/w_vattenstatus/cache'} t0 = time.time() ekos = EventHandler(**paths) #request = ekos.test_requests['request_workspace_list'] #response = ekos.request_workspace_list(request) #ekos.write_test_response('request_workspace_list', response) print('-'*50) print('Time for request: {}'.format(time.time()-t0)) ############################################################################################################################### # ### Make a new workspace # ekos.copy_workspace(source_uuid='default_workspace', target_alias='kustzonsmodellen_3daydata') # ### See existing workspaces and choose workspace name to load ekos.print_workspaces() #alias = 'lena' # workspace_alias = 'lena_indicator' # kustzonsmodellen_3daydata workspace_alias = 'waters_export' workspace_uuid = ekos.get_unique_id_for_alias(workspace_alias = workspace_alias) #'kuszonsmodellen' lena_indicator print(workspace_uuid) workspace_alias = ekos.get_alias_for_unique_id(workspace_uuid = workspace_uuid) ############################################################################################################################### # ### Load existing workspace ekos.load_workspace(unique_id = workspace_uuid) ############################################################################################################################### # ### import data # ekos.import_default_data(workspace_alias = workspace_alias) ############################################################################################################################### # ### Load all data in workspace # #### if there is old data that you want to remove #ekos.get_workspace(workspace_uuid = workspace_uuid).delete_alldata_export() #ekos.get_workspace(workspace_uuid = workspace_uuid).delete_all_export_data() ############################################################################################################################### # #### to just load existing data in workspace ekos.load_data(workspace_uuid = workspace_uuid) ############################################################################################################################### # ### check workspace data length w = ekos.get_workspace(workspace_uuid = workspace_uuid) len(w.data_handler.get_all_column_data_df()) ############################################################################################################################### # ### see subsets in data for subset_uuid in w.get_subset_list(): print('uuid {} alias {}'.format(subset_uuid, w.uuid_mapping.get_alias(unique_id=subset_uuid))) ############################################################################################################################### # # Step 0 print(w.data_handler.all_data.columns) ############################################################################################################################### # ### Apply first data filter w.apply_data_filter(step = 0) # This sets the first level of data filter in the IndexHandler ############################################################################################################################### # # Step 1 # ### make new subset # w.copy_subset(source_uuid='default_subset', target_alias='test_kustzon') ############################################################################################################################### # ### Choose subset name to load subset_alias = 'waters_export' # subset_alias = 'period_2007-2012_refvalues_2013' # subset_alias = 'test_subset' subset_uuid = ekos.get_unique_id_for_alias(workspace_alias = workspace_alias, subset_alias = subset_alias) print('subset_alias', subset_alias, 'subset_uuid', subset_uuid) # #### year filter w.set_data_filter(subset = subset_uuid, step=1, filter_type='include_list', filter_name='MYEAR', data=[2007,2008,2009,2010,2011,2012])#['2011', '2012', '2013']) #, 2014, 2015, 2016 ############################################################################################################################### # #### waterbody filter w.set_data_filter(subset = subset_uuid, step=1, filter_type='include_list', filter_name='viss_eu_cd', data = []) #'SE584340-174401', 'SE581700-113000', 'SE654470-222700', 'SE633000-195000', 'SE625180-181655' # data=['SE584340-174401', 'SE581700-113000', 'SE654470-222700', 'SE633000-195000', 'SE625180-181655']) # wb with no data for din 'SE591400-182320' f1 = w.get_data_filter_object(subset = subset_uuid, step=1) print(f1.include_list_filter) print('subset_alias:', subset_alias, '\nsubset uuid:', subset_uuid) f1 = w.get_data_filter_object(subset = subset_uuid, step=1) print(f1.include_list_filter) ############################################################################################################################### # ## Apply step 1 datafilter to subset w.apply_data_filter(subset = subset_uuid, step = 1) filtered_data = w.get_filtered_data(step = 1, subset = subset_uuid) print(filtered_data['VISS_EU_CD'].unique()) filtered_data[['AMON','NTRA','DIN','CPHL_INTEG_CALC','DEPH']].head() ### Load indicator settings filter w.get_step_object(step = 2, subset = subset_uuid).load_indicator_settings_filters() ############################################################################################################################### ### set available indicators w.get_available_indicators(subset= subset_uuid, step=2) ############################################################################################################################### # ### choose indicators #list(zip(typeA_list, df_step1.WATER_TYPE_AREA.unique())) # indicator_list = ['oxygen','din_winter','ntot_summer', 'ntot_winter', 'dip_winter', 'ptot_summer', 'ptot_winter','bqi', 'biov', 'chl', 'secchi'] # indicator_list = ['din_winter','ntot_summer', 'ntot_winter', 'dip_winter', 'ptot_summer', 'ptot_winter'] #indicator_list = ['biov', 'chl'] # indicator_list = ['bqi', 'biov', 'chl', 'secchi'] #indicator_list = ['bqi', 'secchi'] + ['biov', 'chl'] + ['din_winter'] # indicator_list = ['din_winter','ntot_summer'] # indicator_list = ['indicator_' + indicator for indicator in indicator_list] indicator_list = w.available_indicators ############################################################################################################################### # ### Apply indicator data filter print('apply indicator data filter to {}'.format(indicator_list)) for indicator in indicator_list: w.apply_indicator_data_filter(step = 2, subset = subset_uuid, indicator = indicator)#, # water_body_list = test_wb) #print(w.mapping_objects['water_body'][wb]) #print('*************************************') #df = w.get_filtered_data(subset = subset_uuid, step = 'step_2', water_body = 'SE625180-181655', indicator = 'indicator_din_winter').dropna(subset = ['DIN']) # ### Set up indicator objects print('indicator set up to {}'.format(indicator_list)) w.get_step_object(step = 3, subset = subset_uuid).indicator_setup(indicator_list = indicator_list) ############################################################################################################################### # ### CALCULATE STATUS print('CALCULATE STATUS to {}'.format(indicator_list)) w.get_step_object(step = 3, subset = subset_uuid).calculate_status(indicator_list = indicator_list) ############################################################################################################################### # ### CALCULATE QUALITY ELEMENTS w.get_step_object(step = 3, subset = subset_uuid).calculate_quality_element(quality_element = 'nutrients') # w.get_step_object(step = 3, subset = subset_uuid).calculate_quality_element(quality_element = 'phytoplankton') # w.get_step_object(step = 3, subset = subset_uuid).calculate_quality_element(quality_element = 'bottomfauna') # w.get_step_object(step = 3, subset = subset_uuid).calculate_quality_element(quality_element = 'oxygen') # w.get_step_object(step = 3, subset = subset_uuid).calculate_quality_element(quality_element = 'secchi') # w.get_step_object(step = 3, subset = subset_uuid).calculate_quality_element(subset_unique_id = subset_uuid, quality_element = 'Phytoplankton') w.get_data_for_waterstool(step = 3, subset = subset_uuid) ['a','b']+['c','d'] p = paths['workspace_directory']+'/6f85f2fc-dcce-4bd4-9fc4-26fc14f9ad0c/subsets/19ac8dc5-80be-4304-9ed2-3267bf59425b/step_3/output/results/' [re.search(f + r'-by_date.pkl', col) for f in os.listdir(p) if '-by_date.pkl' in f] paths['workspace_directory']+'/6f85f2fc-dcce-4bd4-9fc4-26fc14f9ad0c/subsets/19ac8dc5-80be-4304-9ed2-3267bf59425b/step_3/output/results/' <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Hard data Step2: Soft/uncertain data Step3: Example 1 Step4: Example 2 Step5: Example 3
<ASSISTANT_TASK:> Python Code: import mpslib as mps import numpy as np import matplotlib.pyplot as plt O=mps.mpslib(method='mps_snesim_tree', parameter_filename='mps_snesim.txt') #O=mps.mpslib(method='mps_genesim', parameter_filename='mps_genesim.txt') TI1, TI_filename1 = mps.trainingimages.strebelle(3, coarse3d=1) O.par['soft_data_categories']=np.array([0,1]) O.ti=TI1 #%% Set parameters for MPSlib O.par['rseed']=1 O.par['n_multiple_grids']=0; O.par['n_cond']=16 O.par['n_cond_soft']=1 O.par['n_real']=100 O.par['debug_level']=-1 O.par['simulation_grid_size'][0]=18 O.par['simulation_grid_size'][1]=13 O.par['simulation_grid_size'][2]=1 O.par['hard_data_fnam']='hard.dat' O.par['soft_data_fnam']='soft.dat' O.delete_local_files() O.par['n_max_cpdf_count']=100 # Set hard data d_hard = np.array([[ 15, 4, 0, 1], [ 15, 5, 0, 1]]) #O.d_hard = d_hard # Set soft data d_soft = np.array([[ 2, 2, 0, 0.7, 0.3], [ 5, 5, 0, 0.001, 0.999], [ 10, 8, 0, 0.999, 0.001]]) O.d_soft = d_soft # Only co-locational O.par['n_cond_soft']=0 gtxt=['unilateral','random','preferential'] shuffle_simulation_grid_arr = [0,1,2] fig = plt.figure(figsize=(15, 8)) for i in range(len(shuffle_simulation_grid_arr)): # Set preferential path O.par['shuffle_simulation_grid']=shuffle_simulation_grid_arr[i] O.delete_local_files() O.run_parallel() m_mean, m_std, m_mode=O.etype() plt.subplot(2,3,i+1) plt.imshow(m_mean.T, zorder=-1, vmin=0, vmax=1, cmap='hot') plt.colorbar(fraction=0.046, pad=0.04) plt.title('%s path' % gtxt[i]) plt.subplot(2,3,3+i+1) plt.imshow(m_std.T, zorder=-1, vmin=0, vmax=0.4, cmap='gray') plt.title('std') plt.colorbar(fraction=0.046, pad=0.04) # Only co-locational O.par['n_cond_soft']=1 shuffle_simulation_grid_arr = [0,1,2] fig = plt.figure(figsize=(15, 8)) for i in range(len(shuffle_simulation_grid_arr)): # Set preferential path O.par['shuffle_simulation_grid']=shuffle_simulation_grid_arr[i] O.delete_local_files() O.run_parallel() m_mean, m_std, m_mode=O.etype() plt.subplot(2,3,i+1) plt.imshow(m_mean.T, zorder=-1, vmin=0, vmax=1, cmap='hot') plt.colorbar(fraction=0.046, pad=0.04) plt.title('%s path' % gtxt[i]) plt.subplot(2,3,3+i+1) plt.imshow(m_std.T, zorder=-1, vmin=0, vmax=0.4, cmap='gray') plt.title('std') plt.colorbar(fraction=0.046, pad=0.04) # Only co-locational O.par['n_cond_soft']=3 shuffle_simulation_grid_arr = [0,1,2] fig = plt.figure(figsize=(15, 8)) for i in range(len(shuffle_simulation_grid_arr)): # Set preferential path O.par['shuffle_simulation_grid']=shuffle_simulation_grid_arr[i] O.delete_local_files() O.run_parallel() m_mean, m_std, m_mode=O.etype() plt.subplot(2,3,i+1) plt.imshow(m_mean.T, zorder=-1, vmin=0, vmax=1, cmap='hot') plt.colorbar(fraction=0.046, pad=0.04) plt.title('%s path' % gtxt[i]) plt.subplot(2,3,3+i+1) plt.imshow(m_std.T, zorder=-1, vmin=0, vmax=0.4, cmap='gray') plt.title('std') plt.colorbar(fraction=0.046, pad=0.04) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the dataset Step2: Create the model specification Step3: Estimate the various models to be used for prediction Step4: Estimate the MNL model Step5: Estimate the Asymmetric Logit Model Step6: Estimate the Uneven Logit Model Step7: Estimate the Scobit Model Step8: Estimate the Clog-Log Model Step9: Estimate a Nested Logit Model Step10: Estimate a Mixed Logit Model Step11: Predictions using 1 dataset and 1 set of parameters Step12: Predictions using 1 dataset and multiple parameters. Step13: In particular, we want to plot the log-likelihood in the range of -1 to 0 for the travel cost parameter for the car utility. To do so, we will generate 100 values of between -1 and 0, containing the true parameter value. Step14: Next, we'll create a 2D parameter array that contains all the sets of parameters. On the rows will be the particular parameters, and on the columns will be the sets of parameters. Step15: Finally, PyLogit requires users to be explicit about the sets of parameters being passed as nest, shape, outside intercept, and index parameters. Note that index parameters are also referred to as utility coefficients. This level of explicitness is intended to help prevent errors, and it facilitates internal testing of the passed values. Step16: With the parameter list created, we can finally perform the prediction. To facilitate easy calculation of the log-likelihoods, given each set of parameter values, we will only return the chosen probabilities of each choice situation.
<ASSISTANT_TASK:> Python Code: # For recording the model specification from collections import OrderedDict # For making plots pretty import seaborn # For file input/output import pandas as pd # For vectorized math operations import numpy as np # For plotting import matplotlib.pyplot as plt # For model estimation and prediction import pylogit as pl # To display plots inline %matplotlib inline # Load the dataset raw_data = pd.read_csv("../data/long_swiss_metro_data.csv") # Get a list of the choice situation ids that will be used # in estimation and in prediction all_situation_ids = np.sort(raw_data["custom_id"].unique()) # Set a random seed for reproducibility np.random.seed(61) # Shuffle and split the ids np.random.shuffle(all_situation_ids) prediction_ids = all_situation_ids[:2000] estimation_ids = all_situation_ids[2000:] # Create the estimation and prediction datasets estimation_df = raw_data.loc[raw_data["custom_id"].isin(estimation_ids)].copy() prediction_df = raw_data.loc[raw_data["custom_id"].isin(prediction_ids)].copy() # Look at the first 5 rows of the data # Note that for the mode_id, 1-Train, 2-SwissMetro, 3-Car estimation_df.head().T # NOTE: - Specification and variable names must be ordered dictionaries. # - Keys should be variables within the long format dataframe. # The sole exception to this is the "intercept" key. # - For the specification dictionary, the values should be lists # of integers or or lists of lists of integers. Within a list, # or within the inner-most list, the integers should be the # alternative ID's of the alternative whose utility specification # the explanatory variable is entering. Lists of lists denote # alternatives that will share a common coefficient for the variable # in question. basic_specification = OrderedDict() basic_names = OrderedDict() basic_specification["intercept"] = [1, 2] basic_names["intercept"] = ['ASC Train', 'ASC Swissmetro'] basic_specification["travel_time_hrs"] = [[1, 2,], 3] basic_names["travel_time_hrs"] = ['Travel Time, units:hrs (Train and Swissmetro)', 'Travel Time, units:hrs (Car)'] basic_specification["travel_cost_hundreth"] = [1, 2, 3] basic_names["travel_cost_hundreth"] = ['Travel Cost * (Annual Pass == 0), units: 0.01 CHF (Train)', 'Travel Cost * (Annual Pass == 0), units: 0.01 CHF (Swissmetro)', 'Travel Cost, units: 0.01 CHF (Car)'] basic_specification["headway_hrs"] = [1, 2] basic_names["headway_hrs"] = ["Headway, units:hrs, (Train)", "Headway, units:hrs, (Swissmetro)"] basic_specification["seat_configuration"] = [2] basic_names["seat_configuration"] = ['Airline Seat Configuration, base=No (Swissmetro)'] basic_specification["train_survey"] = [[1, 2]] basic_names["train_survey"] = ["Surveyed on a Train, base=No, (Train and Swissmetro)"] basic_specification["regular_class"] = [1] basic_names["regular_class"] = ["First Class == False, (Swissmetro)"] basic_specification["single_luggage_piece"] = [3] basic_names["single_luggage_piece"] = ["Number of Luggage Pieces == 1, (Car)"] basic_specification["multiple_luggage_pieces"] = [3] basic_names["multiple_luggage_pieces"] = ["Number of Luggage Pieces > 1, (Car)"] # The 'alt_id_column' is the name of a column to be created in the long-format data # It will identify the alternative associated with each row. alt_id_column = "mode_id" # The "obs_id_column" is a custom id column that ignores the fact that this is a # panel/repeated-observations dataset. This column denotes each individual choice # situation. obs_id_column = "custom_id" # The "choice_column" records the name of the column that denotes whether or not each # individual chose the alternative on a given row. choice_column = "CHOICE" # Estimate the multinomial logit model (MNL) swissmetro_mnl = pl.create_choice_model(data=estimation_df, alt_id_col=alt_id_column, obs_id_col=obs_id_column, choice_col=choice_column, specification=basic_specification, model_type="MNL", names=basic_names) # Specify the initial values and method for the optimization. swissmetro_mnl.fit_mle(np.zeros(14)) # Create the various specification and name dictionaries # for the asymmetric logit model. It is the same as for the MNL # except that it excludes the intercept from V_{i, alternative}. asym_specification = OrderedDict() asym_names = OrderedDict() for col in basic_specification: if col != "intercept": asym_specification[col] = basic_specification[col] asym_names[col] = basic_names[col] # Get the list of intercept names for the asymmetric logit model # This is used to tell PyLogit that we will be using 'outside' # intercept parameters. # See equation 2 of http://arxiv.org/abs/1606.05900 for more # details asym_intercept_names = basic_names["intercept"] # Specify what alternative is not having its intercept estimated asym_intercept_ref_pos = 2 # Give names to the shape parameters of the asymmetric logit model # Note that all of the shape parameters are not identifiable so we # need to restrict one of them. This accounts for why we do not have # a "shape_car" name. asym_shape_names = ["shape_train", "shape_swiss_metro"] # Note the index of the alternative whose shape parameter is constrained # (i.e. the Car alternative) asym_ref = 2 # Create the asymmetric logit's model object swissmetro_asym = pl.create_choice_model(data=estimation_df, alt_id_col=alt_id_column, obs_id_col=obs_id_column, choice_col=choice_column, specification=asym_specification, model_type="Asym", names=asym_names, shape_names=asym_shape_names, intercept_names=asym_intercept_names, shape_ref_pos=asym_ref, intercept_ref_pos=asym_intercept_ref_pos) # Note that, below, we use None for initial values and use kwargs to # specify our initial values for the optimization. This is not # necessary, but it is convenient and an option. # Note that dividing the index coefficients by log(J), where J is # the number of alternatives in the dataset, accounts for the fact # that when each shape parameter is 1/J, the value of the asymmetric # logit model's estimated index coefficients are equal to the logit # model's estimates, divided by log(J). # Again, see http://arxiv.org/abs/1606.05900 for more details. swissmetro_asym.fit_mle(None, init_shapes=np.zeros(2), init_intercepts=swissmetro_mnl.params.values[:2], init_coefs=swissmetro_mnl.params.values[2:] / np.log(3)) # Create the various specification and name dictionaries # for the uneven logit model. It is the same as for the MNL # except that it excludes the intercept from V_{i, alternative}. uneven_specification = OrderedDict() uneven_names = OrderedDict() for col in basic_specification: if col != "intercept": uneven_specification[col] = basic_specification[col] uneven_names[col] = basic_names[col] # Get the list of intercept names for the uneven logit model # This is used to tell PyLogit that we will be using 'outside' # intercept parameters. # See equation 2 of http://arxiv.org/abs/1606.05900 for more # details uneven_intercept_names = basic_names["intercept"] # Specify what alternative is not having its intercept estimated uneven_intercept_ref_pos = 2 # Specify the names of the uneven logit model's shape parameters # Note that we include "shape_car" because all of the uneven logit # model's shape parameters are identifiable. uneven_shape_names = ["shape_train", "shape_swiss_metro", "shape_car"] swissmetro_uneven = pl.create_choice_model(data=estimation_df, alt_id_col=alt_id_column, obs_id_col=obs_id_column, choice_col=choice_column, specification=uneven_specification, model_type="Uneven", names=uneven_names, shape_names=uneven_shape_names, intercept_names=uneven_intercept_names, intercept_ref_pos=uneven_intercept_ref_pos) # Also, note that we use None for initial values and use kwargs to # specify our initial values for the optimaztion. This is necessary # to use 'outside' intercept parameters with the model. swissmetro_uneven.fit_mle(None, init_shapes=np.zeros(3), init_intercepts=swissmetro_mnl.params.values[:2], init_coefs=swissmetro_mnl.params.values[2:]) # Create the various specification and name dictionaries # for the scobit model. It is the same as for the MNL # except that it excludes the intercept from V_{i, alternative}. scobit_specification = OrderedDict() scobit_names = OrderedDict() for col in basic_specification: if col != "intercept": scobit_specification[col] = basic_specification[col] scobit_names[col] = basic_names[col] # Get the list of intercept names for the scobit model # This is used to tell PyLogit that we will be using 'outside' # intercept parameters. # See equation 2 of http://arxiv.org/abs/1606.05900 for more # details scobit_intercept_names = basic_names["intercept"] # Create the names of the shape parameters that are needed for the scobit model scobit_shape_names = ["shape_train", "shape_swiss_metro", "shape_car"] # Specify which intercept/ASC is not being estimated (namely, the Car intercept) scobit_intercept_ref = 2 swissmetro_scobit = pl.create_choice_model(data=estimation_df, alt_id_col=alt_id_column, obs_id_col=obs_id_column, choice_col=choice_column, specification=scobit_specification, model_type="Scobit", names=scobit_names, shape_names=scobit_shape_names, intercept_ref_pos=scobit_intercept_ref, intercept_names=scobit_intercept_names) # Note that we are using 'outside' intercept parameters for this model swissmetro_scobit.fit_mle(None, init_shapes=np.zeros(3), init_intercepts=swissmetro_mnl.params.values[:2], init_coefs=swissmetro_mnl.params.values[2:]) # Create the specification and name dictionaries # for the clog-log model.It is the same as for the MNL # except that it excludes the intercept from V_{i, alternative}. clog_specification = OrderedDict() clog_names = OrderedDict() # Copy the specification dictionary from the logit # model, without the intercept parameters so we # can place the intercept parameters outside the # index for col in basic_specification: if col != "intercept": clog_specification[col] = basic_specification[col] clog_names[col] = basic_names[col] # Get the list of intercept names for the clog-log model # This is used to tell PyLogit that we will be using 'outside' # intercept parameters. # See equation 2 of http://arxiv.org/abs/1606.05900 for more # details clog_intercept_names = basic_names["intercept"] # Specify which intercept/ASC is not being estimated # (i.e, the Car intercept) clog_intercept_ref = 2 # Create the Clog-log model object swissmetro_clog = pl.create_choice_model(data=estimation_df, alt_id_col=alt_id_column, obs_id_col=obs_id_column, choice_col=choice_column, specification=clog_specification, model_type="Cloglog", intercept_ref_pos=clog_intercept_ref, names=clog_names, intercept_names=clog_intercept_names) # Estimate the clog log model. Note we don't pass one single array of # initial values but instead pass keyword arguments swissmetro_clog.fit_mle(None, init_intercepts=swissmetro_mnl.params.values[:2], init_coefs=swissmetro_mnl.params.values[2:]) # Specify the nesting specification. # I.e. specify the name of the various nests, # and which alternatives belong to which nests. nest_membership = OrderedDict() nest_membership["Future Modes"] = [2] nest_membership["Existing Modes"] = [1, 3] # Create the nested logit model object swissmetro_nested = pl.create_choice_model(data=estimation_df, alt_id_col=alt_id_column, obs_id_col=obs_id_column, choice_col=choice_column, specification=basic_specification, model_type="Nested Logit", names=basic_names, nest_spec=nest_membership) # Create the initial values for the nest parameters # Note: This should be in terms of the reparameterized values # (i.e. the logit of the inverse of the scale parameter) used # by PyLogit. # Also, note that 40 corresponds to a scale parameter that is # essentially equal to 1, and 5 corresponds to a scale # parameter just slightly greater than 1. init_nests = np.array([40, 5]) # Create the initial values for the estimation initial_values = np.concatenate([init_nests, swissmetro_mnl.params.values]) # Estimate the nested logit model # Note we constrain the nesting parameter for nest 1 since # the Future Modes nest only has 1 alternative in it. swissmetro_nested.fit_mle(initial_values, constrained_pos=[0]) swissmetro_nested.get_statsmodels_summary() # Specify the parameters, by name, that are being treated # as random variables mixing_variables = (basic_names["travel_time_hrs"] + basic_names["travel_cost_hundreth"]) # Create the mixed logit model object swissmetro_mixed = pl.create_choice_model(data=estimation_df, alt_id_col=alt_id_column, obs_id_col=obs_id_column, choice_col=choice_column, specification=basic_specification, model_type="Mixed Logit", names=basic_names, mixing_id_col="ID", mixing_vars=mixing_variables) # Create the initial values for estimation. # Note that we need one value for each beta # coefficient and for each of the standard deviations # that will now be estimated. initial_values = np.concatenate([swissmetro_mnl.params.values, np.zeros(len(mixing_variables))]) # Estimate the mixed logit model swissmetro_mixed.fit_mle(initial_values, seed=26, num_draws=400) swissmetro_mixed.get_statsmodels_summary() # Create an ordered dictionary mapping shortened model # names to estimated model objects. model_name_to_obj = OrderedDict() model_name_to_obj["Clog"] = swissmetro_clog model_name_to_obj["MNL"] = swissmetro_mnl model_name_to_obj["Nested"] = swissmetro_nested model_name_to_obj["Asym"] = swissmetro_asym model_name_to_obj["Uneven"] = swissmetro_uneven model_name_to_obj["Scobit"] = swissmetro_scobit model_name_to_obj["Mixed"] = swissmetro_mixed # Initialize a dictionary to store the log-likelihoods # on the prediction dataset. prediction_log_likelihoods = OrderedDict() for key in model_name_to_obj: prediction_log_likelihoods[key] = None # Calculate and store the predictions for all models besides # the mixed logit model. The predictions will be stored on # prediction_df for model_name in model_name_to_obj: if model_name == "Mixed": # Don't make predictions for the Mixed Logit Model # using the for-loop continue else: # Get the model object to be used in making predictions model_obj = model_name_to_obj[model_name] # Note that by default, the predict method returns the # predicted probabilities for each available alternative # for each choice situation. prediction_array = model_obj.predict(prediction_df) # We can use the "return_long_probs" and "choice_col" # keyword arguments to ensure that we only return the # probability of the chosen alternative for each # choice situation. chosen_predictions = model_obj.predict(prediction_df, choice_col=choice_column, return_long_probs=False) # Calculate the predicted log-likelihood in two ways and, # for demonstration, ensure that they agree. log_likelihood_calc_1 = np.log(chosen_predictions).sum() log_predictions = np.log(prediction_array) choice_array = prediction_df[choice_column].values log_likelihood_calc_2 = choice_array.dot(log_predictions) assert np.allclose(log_likelihood_calc_1, log_likelihood_calc_2) # Store the log-likelihood prediction_log_likelihoods[model_name] = log_likelihood_calc_1 # Create a column name for the predictions prediction_col = model_name + "_Predictions" # Store the predicted probabilities prediction_df[prediction_col] = prediction_array # Calculate and store the predictions for the mixed logit # model using both the predict and panel_predict functions. # Note that the panel_predict function will condition the # predictions on the estimation data of each person # (if there is any) for prediction_type in ["Mixed", "Mixed_Panel"]: if "Panel" not in prediction_type: # We set the random seed simply for reproducibility predictions = swissmetro_mixed.predict(prediction_df, seed=2, num_draws=400) else: # The arguments are ['data', 'num_draws'] args = [prediction_df, 400] kwargs = {"seed": 2} # Note that we can change the return type the same # way as with the predict function. Pass # return_long_probs = False and # choice_col = choice_column as keyword arguments predictions = swissmetro_mixed.panel_predict(*args, **kwargs) # Create the column name for the predictions prediction_col = prediction_type + "_Predictions" # Store the predicted probabilities prediction_df[prediction_col] = predictions # Calculate the log-likelihood actual_choices = prediction_df[choice_column].values log_predicted_probs = np.log(predictions) prediction_log_likelihoods[prediction_type] =\ actual_choices.dot(log_predicted_probs) # Look at the predicted log-likelihoods of the various models pd.Series(prediction_log_likelihoods, name="Log-likelihood of Predictions").sort(inplace=False) swissmetro_uneven.get_statsmodels_summary() # Create an array of 100 travel cost parameters between # Note that the travel cost parameter of interest is # the tenth parameter, and python is zero indexed so we # use 9 to access its value actual_travel_cost_param = swissmetro_uneven.params.iat[9] low_travel_cost_params = np.linspace(-1, actual_travel_cost_param, num=50, endpoint=False) high_travel_cost_params = np.linspace(actual_travel_cost_param, 0, num=50, endpoint=True) travel_cost_params = np.concatenate((low_travel_cost_params, high_travel_cost_params)) # Initialize the 2D parameter array param_array_2d = (swissmetro_uneven.params.values[:, None] * np.ones(travel_cost_params.size)[None, :]) # "Fill in" the row for the travel cost parameter for cars param_array_2d[9, :] = travel_cost_params # Let's look at the array to make sure we created it correctly param_array_2d[:, :4] # Since this is not a nested logit we have no nest parameters nest_2d = None # The uneven logit has 3 shape parameters so # we select the first 3 rows. shapes_2d = param_array_2d[:3, :] # The uneven logit has 2 outside intercept parameters # so we select the 4th and 5th rows intercepts_2d = param_array_2d[3:5, :] # Finally, the remaining parameters are the index coefficients index_coefs_2d = param_array_2d[5:, :] # Now, we pack all these arrays together in a list # Note that the order is intentional and it is a requirement # for the predict method. parameter_list = [index_coefs_2d, intercepts_2d, shapes_2d, nest_2d] # Pack the keyword arguments into a dictionary, simply for # line length considerations kwargs = {"param_list": parameter_list, "return_long_probs": False, "choice_col": choice_column} # Calculate the predictions for each set of parameter values # Note that the returned array will have one column per # set of parameter values and one row per choice situation multiple_predictions = swissmetro_uneven.predict(estimation_df, **kwargs) # Calculate and plot the resulting log-likelihood # Take the log of the probabilities of the chosen alternatives # for each choice situation and sum them. log_likelihoods # will be a 1D array of shape (travel_cost_params.size, ) log_likelihoods = np.log(multiple_predictions).sum(axis=0) plt.plot(travel_cost_params, log_likelihoods, label="Log-Likelihood") plt.vlines(actual_travel_cost_param, log_likelihoods.min(), swissmetro_uneven.log_likelihood, linestyle='dashed', label="Estimated Parameter Value") plt.xlabel("Travel Cost, units: 0.01 CHF (Car)") plt.ylabel("Log-Likelihood") plt.title("Log-likelihod vs. Travel Cost Parameter for Car Utility") plt.legend(loc='best') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Motivation Step2: The blocks below contain functions to parse and count all entries in each loaded database. Since XML files have a table structure we will have seperate functions to count through each.
<ASSISTANT_TASK:> Python Code: #import packages import pandas as pd import glob import csv from xml.etree.ElementTree import ElementTree import re #function to load a csv file #accepts folderpath and headerlist as parameter to load the data files def file_csv(folderpath,addheader,headerlist): #this reads all files under that folder filepaths = glob.glob(folderpath+"data/*.csv") #we prepare a list, that will contain all the tables that exist in these file paths dataframe = [] for filepath in filepaths: #if header is required to be added: as in NVD if addheader is True: dataframe.append(pd.read_csv(filepath,names=headerlist)) else: dataframe.append(pd.read_csv(filepath)) return pd.concat(dataframe); #function to load a xml file #accepts folderpath as parameter to load the data files def file_xml(folderpath): filepaths = glob.glob(folderpath+"data/*.xml") count = 0; #uses ElementTree to parse the tree structure for filepath in filepaths: CVE_tree = ElementTree() CVE_tree.parse(filepath) CVE_root= CVE_tree.getroot() count = count+ countrow_xml(CVE_root,'{http://www.icasi.org/CVRF/schema/vuln/1.1}') return count #counts number of rows under cve_id header def countrows_csv(dataframe): count = 0 entries = [] #consider only unique CVE entries for element in dataframe['cve_id']: if element not in entries: entries.append(element) count = count + 1 return count #counts number of rows in CVE tag def countrow_xml(CVE_root,root_string): cve_id =[] ; description=[]; cell=0 entries=[] for entry in CVE_root: for child in entry: if (child.tag == root_string+'CVE'): if child.tag not in entries: cve_id.append(child.text); cell+=1 return len(cve_id) #all entries added to a dictionary data={} #calling functions nvd_dataframe=file_csv('NVD/',True,['cve_id', 'cwe_id','timestamp']) details_dataframe=file_csv('CVE_Details/',False,None) data["nvd"] = countrows_csv(nvd_dataframe) data["cve_details"]= countrows_csv(details_dataframe) data['cve_mitre']=file_xml('CVE_Mitre/') #visualization of the count from bokeh.plotting import figure, show from bokeh.io import output_notebook output_notebook() plot_data={} plot_data['Entries'] = data #saving in dictionary for sorting and visualising df_data = pd.DataFrame(plot_data).sort_values(by='Entries', ascending=True) series = df_data.loc[:,'Entries'] p = figure(width=800, y_range=series.index.tolist(), title="Number of Vulnerabilities in each dataset") p.xaxis.axis_label = 'Number of vulnerabilities/rows' p.xaxis.axis_label_text_font_size = '10pt' p.xaxis.major_label_text_font_size = '10pt' p.yaxis.axis_label = 'Name of the dataset' p.yaxis.axis_label_text_font_size = '14pt' p.yaxis.major_label_text_font_size = '12pt' j = 1 for k,v in series.iteritems(): #Print fields, values, orders #print (k,v,j) p.rect(x=v/2, y=j, width=abs(v), height=0.4, width_units="data", height_units="data") j += 1 show(p) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create Trend signal over the last 12 months Step2: Compare EW and 1/vol
<ASSISTANT_TASK:> Python Code: rf = 0.04 np.random.seed(1) mus = np.random.normal(loc=0.05,scale=0.02,size=5) + rf sigmas = (mus - rf)/0.3 + np.random.normal(loc=0.,scale=0.01,size=5) num_years = 10 num_months_per_year = 12 num_days_per_month = 21 num_days_per_year = num_months_per_year*num_days_per_month rdf = pd.DataFrame( index = pd.date_range( start="2008-01-02", periods=num_years*num_months_per_year*num_days_per_month, freq="B" ), columns=['foo','bar','baz','fake1','fake2'] ) for i,mu in enumerate(mus): sigma = sigmas[i] rdf.iloc[:,i] = np.random.normal( loc=mu/num_days_per_year, scale=sigma/np.sqrt(num_days_per_year), size=rdf.shape[0] ) pdf = np.cumprod(1+rdf)*100 pdf.plot() sma = pdf.rolling(window=num_days_per_month*12,center=False).median().shift(1) plt.plot(pdf.index,pdf['foo']) plt.plot(sma.index,sma['foo']) plt.show() #sma with 1 day lag sma.tail() #sma with 0 day lag pdf.rolling(window=num_days_per_month*12,center=False).median().tail() # target weights trend = sma.copy() trend[pdf > sma] = True trend[pdf <= sma] = False trend[sma.isnull()] = False trend.tail() tsmom_invvol_strat = bt.Strategy( 'tsmom_invvol', [ bt.algos.RunDaily(), bt.algos.SelectWhere(trend), bt.algos.WeighInvVol(), bt.algos.LimitWeights(limit=0.4), bt.algos.Rebalance() ] ) tsmom_ew_strat = bt.Strategy( 'tsmom_ew', [ bt.algos.RunDaily(), bt.algos.SelectWhere(trend), bt.algos.WeighEqually(), bt.algos.LimitWeights(limit=0.4), bt.algos.Rebalance() ] ) # create and run tsmom_invvol_bt = bt.Backtest( tsmom_invvol_strat, pdf, initial_capital=50000000.0, commissions=lambda q, p: max(100, abs(q) * 0.0021), integer_positions=False, progress_bar=True ) tsmom_invvol_res = bt.run(tsmom_invvol_bt) tsmom_ew_bt = bt.Backtest( tsmom_ew_strat, pdf, initial_capital=50000000.0, commissions=lambda q, p: max(100, abs(q) * 0.0021), integer_positions=False, progress_bar=True ) tsmom_ew_res = bt.run(tsmom_ew_bt) ax = plt.subplot() ax.plot(tsmom_ew_res.prices.index,tsmom_ew_res.prices,label='EW') pdf.plot(ax=ax) ax.legend() plt.legend() plt.show() tsmom_ew_res.stats <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Loops Step2: We showed above how to use this code to print the angles $(n \pi)/ 12$ for $n = 1, 2, \dots, 6$. We did this by calling the degrees_to_radians function on the angles $15 n$ degrees for $n = 1, 2, \dots, 6$. So this is the formula we want to reproduce in code. To do that we write a loop. Step3: Let's examine this line by line. The first line defines the angle in degrees, theta_d. We start from $\theta_d=0$. Step4: Let's examine this code line by line. It first defines a set of numbers, steps, which contains the integers from 1 to 6 (we will make this more precise later when we discuss lists and tuples). We then define the loop using the for command. This looks at the set of numbers steps and picks an entry out one at a time, setting the variable n to be the value of that member of the set. So, the first time through the loop n=1. The next, n=2. Once it has iterated through all members of the set steps, it stops. Step5: The range function takes the input arguments &lt;start&gt; and &lt;end&gt;, and the optional input argument &lt;step&gt;, to produce the integers from the start up to, but not including, the end. If the &lt;start&gt; is not given it defaults to 0, and if the &lt;step&gt; is not given it defaults to 1. Step6: In some programming languages this is where the discussion of a for loop would end Step7: But we can get much more general than that. The different things in the set don't have to have the same type Step8: This can be used to write very efficient code, but is a feature that isn't always available in other programming languages. Step9: This could be done in a for loop, but not so straightforwardly. Step10: We see that the answer is $229^{\circ}$. Step11: The last example is particularly important, as this chained example (6 &lt; 7 &lt; 8) is equivalent to (6 &lt; 7) and (7 &lt; 8). This checks both inequalities - checking that $6 < x < 8$ when $x=7$, by checking that both $6 < x$ and $x < 8$ is true when $x=7$, which is true (and mathematically what you would expect). However, many programming languages would not interpret it this way, but would instead interpret it as (6 &lt; 7) &lt; 8, which is equivalent to True &lt; 8, which is nonsense. Chaining operations in this way is useful in Python, but don't expect it to always work in other languages. Step12: Lists are defined by square brackets, []. Objects in the list are separated by commas. A list can be empty (list5 above). A list can contain other lists (list4 above). The objects in the list don't have to have the same type (list3 and list4 above). Step13: Note Step14: Additional entries can be appended onto the end of a list Step15: Entries can be removed (popped) from the end of a list Step16: The length of a list can be found Step17: Lists are probably the most used container, but there's a closely related container that we've already used Step18: Tuples are defined by the commas separating the entries. The round brackets () surrounding the entries are conventional, useful for clarity, and for grouping. If you want to create an empty tuple (tuple5) the round brackets are necessary. A tuple containing a single entry (tuple6) must have a trailing comma. Step19: However, if a member of a tuple can itself be modified (for example, it's a list, as tuple4[1] is), then that entry can be modified Step20: Tuples appear a lot when using functions, either when passing in parameters, or when returning results. They can often be treated like lists, and there are functions that convert lists to tuples and vice versa Step21: Slicing Step22: The slicing notation [&lt;start&gt; Step23: By using a negative step we can reverse the order (as shown in the final example), but then we need to be careful with the &lt;start&gt; and &lt;end&gt;. Step24: Unpacking Step25: This is related to a very useful Python feature Step26: This can be used to directly swap two variables, for example Step27: The number of entries on both sides must match. Step28: Note that the order it prints out need not match the order we entered the values in. In fact, the order could change if we used a different machine, or entered the values again. This emphasizes the unordered nature of dictionaries. Step29: To find all the keys or values we can use dictionary methods Step30: Depending on the version of Python you are using, this might either give a list or an iterator. Step31: To explain Step32: So this does exactly the same thing as the previous loop, and most of the code is the same. However, rather than accessing the dictionary each time (using functions[name]), the value in the dictionary has been returned at the start. What is happening is that the items function is returning both the key and the value as a tuple on each iteration through the loop. The name, function notation then uses unpacking to appropriately set the variables. This form is "more pythonic" (ie, is shorter, clearer to many people, and faster). Step34: But it might be that the input is just wrong Step36: The control flow here uses the if statement. As with loops such as the for and while loops we have a condition which is checked which, if satisfied, leads to the indented code block after the colon being executed. The logical statements theta_d &gt; 360.0 and theta_d &lt; 0.0 are evaluated and return either True or False (which is how Python represents boolean values). If True, then the statement is executed. Step37: The elif statement allows another condition to be checked - it is how Python represents "else if", or "all previous checks have been false; let's check this statement as well". Multiple elif blocks can be included to check more conditions. The else statement contains no logical check Step38: We can nest statements as deep as we like, nesting loops and control flow statements as we go. We have to ensure that the indentation level is consistent. Here is a silly example. Step39: Debugging
<ASSISTANT_TASK:> Python Code: from math import pi def degrees_to_radians(theta_d): Convert an angle from degrees to radians. Parameters ---------- theta_d : float The angle in degrees. Returns ------- theta_r : float The angle in radians. theta_r = pi / 180.0 * theta_d return theta_r theta_d = 0.0 while theta_d <= 90.0: print(degrees_to_radians(theta_d)) theta_d = theta_d + 15.0 steps = 1, 2, 3, 4, 5, 6 for n in steps: print(degrees_to_radians(15*n)) for n in range(1,7): print(degrees_to_radians(15*n)) print(list(range(4))) print(list(range(-1,3))) print(list(range(1,10,2))) angles = 15.0, 30.0, 45.0, 60.0, 75.0, 90.0 for angle in angles: print(degrees_to_radians(angle)) things = 1, 2.3, True, degrees_to_radians for thing in things: print(thing) theta_d = 0.0 while degrees_to_radians(theta_d) < 4.0: theta_d = theta_d + 1.0 print(theta_d - 1.0) print(theta_d) print(degrees_to_radians(theta_d-1.0) / 4.0) print(degrees_to_radians(theta_d) / 4.0) print(True) print(6 < 7 and 10 > 9) print(1 < 2 or 1 < 0) print(not (6 < 7) and 10 > 9) print(6 < 7 < 8) list1 = [1, 2, 3, 4, 5, 6] list2 = [15.0, 30.0, 45.0, 60.0, 75.0, 90.0] list3 = [1, 2.3, True, degrees_to_radians] list4 = ["hello", list1, False] list5 = [] list1[0] list2[3] list4[1] = "goodbye" list4 list4.append('end') list4 entry = list4.pop() print(entry) list4 len(list4) tuple1 = 1, 2, 3, 4, 5, 6 tuple2 = (15.0, 30.0, 45.0, 60.0, 75.0, 90.0) tuple3 = (1, 2.3, True, degrees_to_radians) tuple4 = ("hello", list1, False) tuple5 = () tuple6 = (5,) tuple1[0] tuple4[1] = "goodbye" print(tuple4[1]) tuple4[1][1] = 33 print(tuple4[1]) converted_list1 = list(tuple1) converted_tuple1 = tuple(list1) list1 = [1, 2, 3, 4, 5, 6] print(list1[0]) print(list1[1:3]) print(list1[2:]) print(list1[:4]) print(list1[0:6:2]) print(list1[1::3]) print(list1[4:1:-1]) print(list1[-1]) print(list1[-2]) print(list1[2:-2]) print(list1[-4:-2]) list_slice = [0, 0, 0, 0, 0, 0, 0, 0] list_slice[1:4] = list1[3:] print(list_slice) a, b, c = list1[3:] print(a) print(b) print(c) a, b = b, a print(a) print(b) from math import sin, cos, exp, log functions = {"sine" : sin, "cosine" : cos, "exponential" : exp, "logarithm" : log} print(functions) print(functions["exponential"]) print(functions.keys()) print(functions.values()) for name in functions: print("The result of {}(1) is {}.".format(name, functions[name](1.0))) for name, function in functions.items(): print("The result of {}(1) is {}.".format(name, function(1.0))) theta_d = 5134.6 theta_d_normalized = theta_d % 360.0 print(theta_d_normalized) from math import pi def check_angle_normalized(theta_d): Check that an angle lies within [0, 360] degrees. Parameters ---------- theta_d : float The angle in degrees. Returns ------- normalized : Boolean Whether the angle lies within the range normalized = True if theta_d > 360.0: normalized = False print("Input angle greater than 360 degrees. Did you mean this?") if theta_d < 0.0: normalized = False print("Input angle less than 0 degrees. Did you mean this?") return normalized theta_d = 5134.6 print(check_angle_normalized(theta_d)) theta_d = -52.3 print(check_angle_normalized(theta_d)) from math import pi def check_angle_normalized(theta_d): Check that an angle lies within [0, 360] degrees. Parameters ---------- theta_d : float The angle in degrees. Returns ------- normalized : Boolean Whether the angle lies within the range normalized = True if theta_d > 360.0: normalized = False print("Input angle greater than 360 degrees. Did you mean this?") elif theta_d < 0.0: normalized = False print("Input angle less than 0 degrees. Did you mean this?") else: print("Input angle in range [0, 360] degrees. Good.") return normalized theta_d = 543.2 print(check_angle_normalized(theta_d)) theta_d = -123.4 print(check_angle_normalized(theta_d)) theta_d = 89.12 print(check_angle_normalized(theta_d)) angles = [-123.4, 543.2, 89.12, 0.67, 5143.6, 30.0, 270.0] # We run through all the angles, but only print those that are # - in the range [0, 360], and # - if sin^2(angle) < 0.5 from math import sin for angle in angles: print("Input angle in degrees:", angle) if (check_angle_normalized(angle)): angle_r = degrees_to_radians(angle) if (sin(angle_r)**2 < 0.5): print("Valid angle in radians:", angle_r) import breakpoints print(breakpoints.test_sequence(10)) print(breakpoints.test_sequence(100)) print(breakpoints.test_sequence(1000)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Setup Step3: Getting a set of molecules Step4: What if we just want "everything"? Let's use an empty spec. Step5: The above request might take some time, but hopefully not much more than a few seconds. Why do we allow this? Well, we don't return all the data for each molecule, and the total size of what we send right now is less than 10 MB.
<ASSISTANT_TASK:> Python Code: urlpattern = { "results": "https://materialsproject.org/molecules/results?query={spec}", "mol_json": "https://materialsproject.org/molecules/{mol_id}/json", "mol_svg": "https://materialsproject.org/molecules/{mol_id}/svg", "mol_xyz": "https://materialsproject.org/molecules/{mol_id}/xyz", } import json import os import sys if sys.version_info[0] == 2: from urllib import quote_plus else: from urllib.parse import quote_plus import requests # Ensure you have an API key, which is located on your dashboard # (https://materialsproject.org/dashboard). MAPI_KEY = "fAkEaP1K4y" # <-- replace with your api key # Please do NOT share a notebook with others with your API key hard-coded in it. # One alternative: Load API key from a set environment variable, e.g. # # MAPI_KEY = os.environ['PMG_MAPI_KEY'] # # Best alternative: Store and load API key using pymatgen, e.g. ### Do once, on command line (without "!" in front) or in notebook # !pmg config --add PMG_MAPI_KEY "your_api_key_goes_here" ### Then, in notebook/script: # from pymatgen import SETTINGS # MAPI_KEY = SETTINGS.get("PMG_MAPI_KEY") # Here is a function we'll use to get results. We'll walk though some examples that use it. def get_results(spec, fields=None): Take a specification document (a `dict`), and return a list of matching molecules. # Stringify `spec`, ensure the string uses double quotes, and percent-encode it... str_spec = quote_plus(str(spec).replace("'", '"')) # ...because the spec is the value of a "query" key in the final URL. url = urlpattern["results"].format(spec=str_spec) return (requests.get(url, headers={'X-API-KEY': MAPI_KEY})).json() # Find molecules containing oxygen and phosphorous, # and collect the ionization energies (relative to a lithium electrode) of the results. # Separate elements with a "-" spec = {"elements": "O-P"} results = get_results(spec) # Not all molecules have data for all available properties ionization_energies = [molecule["IE"] for molecule in results if "IE" in molecule] # Molecules with ionization energies ("IE") will have oxidation potentials relative to metallic electrodes, # available as "oxidation_<ELECTRODE>" keys. "IE" itself is relative to lithium. # There is an analogous relationship between the presence of electron affinity ("EA") values # and corresponding "reduction_<ELECTRODE>" keys for reduction potentials using a reference metal. # `task_id` is the molecule's identifier, which we'll use later in this notebook. # `MW` is molecular weight # `smiles`: https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system for key in results[0]: print(key) # A "silly" example specification that demonstrates many keys available to query, and # the expected format of their value specifications. # # The "$"-prefixed keys are MongoDB syntax (https://docs.mongodb.org/manual/reference/operator/query/). spec = { "elements": "C-H-O-F", "notelements": ["Al", "Br"], # a list (inconsistent for now with "elements" -- sorry) "charge": {"$in": [0, -1]}, # {0, 1, -1} "pointgroup": "C1", "functional_groups": {"$in": ["-COOH"]}, "base_molecule": {"$in": ["s3"]}, "nelements": 4, "EA": {"$gte": 0.4}, # >= 0.4 "IE": {"$lt": 5}, # < 5 "formula": "H11 C11 O4 F1", # "H11C11O4F" works too } results = get_results(spec) results = get_results({}) print("{} molecules in total right now".format(len(results))) def get_molecule(mol_id, fmt='json'): url = urlpattern["mol_" + fmt].format(mol_id=mol_id) response = requests.get(url, headers={'X-API-KEY': MAPI_KEY}) if fmt == 'json': return response.json() else: return response.content first_result = results[0] mol_id = first_result['task_id'] print("ID: {}".format(mol_id)) # Get all data by default molecule = get_molecule(mol_id) print("There are {} key/value pairs in molecule {}. Have a look around!".format(len(molecule), mol_id)) # The SVG format provides a two-dimensional "pretty picture" of the molecular structure. svg_of_molecule = get_molecule(mol_id, fmt='svg') with open('molecule.svg','w') as f: f.write(svg_of_molecule) print("scalable vector graphic saved") # The XYZ representation provided is the optimized geometry of the molecule in a charge-neutral state. xyz_of_molecule = get_molecule(mol_id, fmt='xyz') with open('molecule.xyz','w') as f: f.write(xyz_of_molecule) print("XYZ file saved. Can load into molecule-viewer software.") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load audio data Step2: Create a receptive field Step3: Simulate a neural response Step4: Fit a model to recover this receptive field Step5: Visualize the effects of regularization Step6: Using different regularization types Step7: Compare model performance Step8: Plot the original STRF, and the one that we recovered with modeling.
<ASSISTANT_TASK:> Python Code: # Authors: Chris Holdgraf <choldgraf@gmail.com> # Eric Larson <larson.eric.d@gmail.com> # # License: BSD-3-Clause import numpy as np import matplotlib.pyplot as plt import mne from mne.decoding import ReceptiveField, TimeDelayingRidge from scipy.stats import multivariate_normal from scipy.io import loadmat from sklearn.preprocessing import scale rng = np.random.RandomState(1337) # To make this example reproducible # Read in audio that's been recorded in epochs. path_audio = mne.datasets.mtrf.data_path() data = loadmat(path_audio + '/speech_data.mat') audio = data['spectrogram'].T sfreq = float(data['Fs'][0, 0]) n_decim = 2 audio = mne.filter.resample(audio, down=n_decim, npad='auto') sfreq /= n_decim n_freqs = 20 tmin, tmax = -0.1, 0.4 # To simulate the data we'll create explicit delays here delays_samp = np.arange(np.round(tmin * sfreq), np.round(tmax * sfreq) + 1).astype(int) delays_sec = delays_samp / sfreq freqs = np.linspace(50, 5000, n_freqs) grid = np.array(np.meshgrid(delays_sec, freqs)) # We need data to be shaped as n_epochs, n_features, n_times, so swap axes here grid = grid.swapaxes(0, -1).swapaxes(0, 1) # Simulate a temporal receptive field with a Gabor filter means_high = [.1, 500] means_low = [.2, 2500] cov = [[.001, 0], [0, 500000]] gauss_high = multivariate_normal.pdf(grid, means_high, cov) gauss_low = -1 * multivariate_normal.pdf(grid, means_low, cov) weights = gauss_high + gauss_low # Combine to create the "true" STRF kwargs = dict(vmax=np.abs(weights).max(), vmin=-np.abs(weights).max(), cmap='RdBu_r', shading='gouraud') fig, ax = plt.subplots() ax.pcolormesh(delays_sec, freqs, weights, **kwargs) ax.set(title='Simulated STRF', xlabel='Time Lags (s)', ylabel='Frequency (Hz)') plt.setp(ax.get_xticklabels(), rotation=45) plt.autoscale(tight=True) mne.viz.tight_layout() # Reshape audio to split into epochs, then make epochs the first dimension. n_epochs, n_seconds = 16, 5 audio = audio[:, :int(n_seconds * sfreq * n_epochs)] X = audio.reshape([n_freqs, n_epochs, -1]).swapaxes(0, 1) n_times = X.shape[-1] # Delay the spectrogram according to delays so it can be combined w/ the STRF # Lags will now be in axis 1, then we reshape to vectorize delays = np.arange(np.round(tmin * sfreq), np.round(tmax * sfreq) + 1).astype(int) # Iterate through indices and append X_del = np.zeros((len(delays),) + X.shape) for ii, ix_delay in enumerate(delays): # These arrays will take/put particular indices in the data take = [slice(None)] * X.ndim put = [slice(None)] * X.ndim if ix_delay > 0: take[-1] = slice(None, -ix_delay) put[-1] = slice(ix_delay, None) elif ix_delay < 0: take[-1] = slice(-ix_delay, None) put[-1] = slice(None, ix_delay) X_del[ii][tuple(put)] = X[tuple(take)] # Now set the delayed axis to the 2nd dimension X_del = np.rollaxis(X_del, 0, 3) X_del = X_del.reshape([n_epochs, -1, n_times]) n_features = X_del.shape[1] weights_sim = weights.ravel() # Simulate a neural response to the sound, given this STRF y = np.zeros((n_epochs, n_times)) for ii, iep in enumerate(X_del): # Simulate this epoch and add random noise noise_amp = .002 y[ii] = np.dot(weights_sim, iep) + noise_amp * rng.randn(n_times) # Plot the first 2 trials of audio and the simulated electrode activity X_plt = scale(np.hstack(X[:2]).T).T y_plt = scale(np.hstack(y[:2])) time = np.arange(X_plt.shape[-1]) / sfreq _, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 6), sharex=True) ax1.pcolormesh(time, freqs, X_plt, vmin=0, vmax=4, cmap='Reds', shading='gouraud') ax1.set_title('Input auditory features') ax1.set(ylim=[freqs.min(), freqs.max()], ylabel='Frequency (Hz)') ax2.plot(time, y_plt) ax2.set(xlim=[time.min(), time.max()], title='Simulated response', xlabel='Time (s)', ylabel='Activity (a.u.)') mne.viz.tight_layout() # Create training and testing data train, test = np.arange(n_epochs - 1), n_epochs - 1 X_train, X_test, y_train, y_test = X[train], X[test], y[train], y[test] X_train, X_test, y_train, y_test = [np.rollaxis(ii, -1, 0) for ii in (X_train, X_test, y_train, y_test)] # Model the simulated data as a function of the spectrogram input alphas = np.logspace(-3, 3, 7) scores = np.zeros_like(alphas) models = [] for ii, alpha in enumerate(alphas): rf = ReceptiveField(tmin, tmax, sfreq, freqs, estimator=alpha) rf.fit(X_train, y_train) # Now make predictions about the model output, given input stimuli. scores[ii] = rf.score(X_test, y_test) models.append(rf) times = rf.delays_ / float(rf.sfreq) # Choose the model that performed best on the held out data ix_best_alpha = np.argmax(scores) best_mod = models[ix_best_alpha] coefs = best_mod.coef_[0] best_pred = best_mod.predict(X_test)[:, 0] # Plot the original STRF, and the one that we recovered with modeling. _, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3), sharey=True, sharex=True) ax1.pcolormesh(delays_sec, freqs, weights, **kwargs) ax2.pcolormesh(times, rf.feature_names, coefs, **kwargs) ax1.set_title('Original STRF') ax2.set_title('Best Reconstructed STRF') plt.setp([iax.get_xticklabels() for iax in [ax1, ax2]], rotation=45) plt.autoscale(tight=True) mne.viz.tight_layout() # Plot the actual response and the predicted response on a held out stimulus time_pred = np.arange(best_pred.shape[0]) / sfreq fig, ax = plt.subplots() ax.plot(time_pred, y_test, color='k', alpha=.2, lw=4) ax.plot(time_pred, best_pred, color='r', lw=1) ax.set(title='Original and predicted activity', xlabel='Time (s)') ax.legend(['Original', 'Predicted']) plt.autoscale(tight=True) mne.viz.tight_layout() # Plot model score for each ridge parameter fig = plt.figure(figsize=(10, 4)) ax = plt.subplot2grid([2, len(alphas)], [1, 0], 1, len(alphas)) ax.plot(np.arange(len(alphas)), scores, marker='o', color='r') ax.annotate('Best parameter', (ix_best_alpha, scores[ix_best_alpha]), (ix_best_alpha, scores[ix_best_alpha] - .1), arrowprops={'arrowstyle': '->'}) plt.xticks(np.arange(len(alphas)), ["%.0e" % ii for ii in alphas]) ax.set(xlabel="Ridge regularization value", ylabel="Score ($R^2$)", xlim=[-.4, len(alphas) - .6]) mne.viz.tight_layout() # Plot the STRF of each ridge parameter for ii, (rf, i_alpha) in enumerate(zip(models, alphas)): ax = plt.subplot2grid([2, len(alphas)], [0, ii], 1, 1) ax.pcolormesh(times, rf.feature_names, rf.coef_[0], **kwargs) plt.xticks([], []) plt.yticks([], []) plt.autoscale(tight=True) fig.suptitle('Model coefficients / scores for many ridge parameters', y=1) mne.viz.tight_layout() scores_lap = np.zeros_like(alphas) models_lap = [] for ii, alpha in enumerate(alphas): estimator = TimeDelayingRidge(tmin, tmax, sfreq, reg_type='laplacian', alpha=alpha) rf = ReceptiveField(tmin, tmax, sfreq, freqs, estimator=estimator) rf.fit(X_train, y_train) # Now make predictions about the model output, given input stimuli. scores_lap[ii] = rf.score(X_test, y_test) models_lap.append(rf) ix_best_alpha_lap = np.argmax(scores_lap) fig = plt.figure(figsize=(10, 6)) ax = plt.subplot2grid([3, len(alphas)], [2, 0], 1, len(alphas)) ax.plot(np.arange(len(alphas)), scores_lap, marker='o', color='r') ax.plot(np.arange(len(alphas)), scores, marker='o', color='0.5', ls=':') ax.annotate('Best Laplacian', (ix_best_alpha_lap, scores_lap[ix_best_alpha_lap]), (ix_best_alpha_lap, scores_lap[ix_best_alpha_lap] - .1), arrowprops={'arrowstyle': '->'}) ax.annotate('Best Ridge', (ix_best_alpha, scores[ix_best_alpha]), (ix_best_alpha, scores[ix_best_alpha] - .1), arrowprops={'arrowstyle': '->'}) plt.xticks(np.arange(len(alphas)), ["%.0e" % ii for ii in alphas]) ax.set(xlabel="Laplacian regularization value", ylabel="Score ($R^2$)", xlim=[-.4, len(alphas) - .6]) mne.viz.tight_layout() # Plot the STRF of each ridge parameter xlim = times[[0, -1]] for ii, (rf_lap, rf, i_alpha) in enumerate(zip(models_lap, models, alphas)): ax = plt.subplot2grid([3, len(alphas)], [0, ii], 1, 1) ax.pcolormesh(times, rf_lap.feature_names, rf_lap.coef_[0], **kwargs) ax.set(xticks=[], yticks=[], xlim=xlim) if ii == 0: ax.set(ylabel='Laplacian') ax = plt.subplot2grid([3, len(alphas)], [1, ii], 1, 1) ax.pcolormesh(times, rf.feature_names, rf.coef_[0], **kwargs) ax.set(xticks=[], yticks=[], xlim=xlim) if ii == 0: ax.set(ylabel='Ridge') fig.suptitle('Model coefficients / scores for laplacian regularization', y=1) mne.viz.tight_layout() rf = models[ix_best_alpha] rf_lap = models_lap[ix_best_alpha_lap] _, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(9, 3), sharey=True, sharex=True) ax1.pcolormesh(delays_sec, freqs, weights, **kwargs) ax2.pcolormesh(times, rf.feature_names, rf.coef_[0], **kwargs) ax3.pcolormesh(times, rf_lap.feature_names, rf_lap.coef_[0], **kwargs) ax1.set_title('Original STRF') ax2.set_title('Best Ridge STRF') ax3.set_title('Best Laplacian STRF') plt.setp([iax.get_xticklabels() for iax in [ax1, ax2, ax3]], rotation=45) plt.autoscale(tight=True) mne.viz.tight_layout() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np np.random.seed(10) df = pd.DataFrame(np.random.randint(0, 20, (10, 10)).astype(float), columns=["c%d"%d for d in range(10)]) df.where(np.random.randint(0,2, df.shape).astype(bool), np.nan, inplace=True) def g(df): return df.columns[df.iloc[0,:].fillna('Nan') == df.iloc[8,:].fillna('Nan')] result = g(df.copy()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: code to read the CSV files. Step2: Read CSV data Step3: Add columns for year and month Step4: Add 5 day rolling mean to the timesereis. Step5: Want date back in the columns Step6: Use a groupby to compute the row locations that represent the minimum and Step7: create dictionaries of max and min values for each hemisphere and for daily and rolling-mean Step8: show that we have actually selected different data for daily and 5-average data Step9: add rank column for each month and hemsiphere's max and min Step10: It is also desired that we have Annual min/max rank data so revisit the north and south Step11: Write out the data frames in a nice format Step12: clean up your csv files
<ASSISTANT_TASK:> Python Code: !mkdir -p ../data !wget -P ../data -qN ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02135/north/daily/data/NH_seaice_extent_final.csv !wget -P ../data -qN ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02135/north/daily/data/NH_seaice_extent_nrt.csv !wget -P ../data -qN ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02135/south/daily/data/SH_seaice_extent_final.csv !wget -P ../data -qN ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02135/south/daily/data/SH_seaice_extent_nrt.csv import datetime as dt import numpy as np import os import pandas as pd from pandas import ExcelWriter def parse_the_date(year, mm, dd): return dt.date(int(year), int(mm), int(dd)) def slurp_csv(filename): data = pd.read_csv(filename, header = None, skiprows=2, names=["year", "mm", "dd", "extent", "missing", "source"], parse_dates={'date':['year', 'mm', 'dd']}, date_parser=parse_the_date, index_col='date') data = data.drop('missing', axis=1) return data def read_a_hemisphere(hemisphere): the_dir = '../data' final_prod_filename = os.path.join(the_dir, '{hemi}H_seaice_extent_final.csv'.format(hemi=hemisphere[0:1].upper())) nrt_prod_filename = os.path.join(the_dir, '{hemi}H_seaice_extent_nrt.csv'.format(hemi=hemisphere[0:1].upper())) final = slurp_csv(final_prod_filename) nrt = slurp_csv(nrt_prod_filename) all_data = pd.concat([final, nrt]) return all_data north = read_a_hemisphere('north') south = read_a_hemisphere('south') south.head() def add_year_month_columns(df): a = df.copy() a = a.drop('source',1) a = a.reset_index() a['year'] = pd.to_datetime(a.date).dt.year a['month'] = pd.to_datetime(a.date).dt.month a = a.set_index('date') return a north = add_year_month_columns(north) south = add_year_month_columns(south) north.head() south.head() def add_rolling_mean(df, window=5, min_periods=2): copy = df.copy() # create an empty ts to align our extent data with ts = pd.Series(np.nan, index=pd.date_range('1978-10-25', dt.date.today().strftime('%Y-%m-%d'))) copy.index = copy.index.to_datetime() copy = df.align(ts, axis=0, join='right')[0] df['5day-Avg'] = pd.rolling_mean(copy['extent'], window=5, min_periods=2) return df north = add_rolling_mean(north) south = add_rolling_mean(south) north.head(1) north = north.reset_index() south = south.reset_index() north.head(1) def select_min_and_max_variable_rows_by_year_and_month(df, variable): min_groups = df.loc[df.groupby(['year','month'])[variable].idxmin()][['date', variable, 'year', 'month']] max_groups = df.loc[df.groupby(['year','month'])[variable].idxmax()][['date', variable, 'year', 'month']] return {'min': min_groups, 'max': max_groups} n = select_min_and_max_variable_rows_by_year_and_month(north, 'extent') navg = select_min_and_max_variable_rows_by_year_and_month(north, '5day-Avg') s = select_min_and_max_variable_rows_by_year_and_month(south, 'extent') savg = select_min_and_max_variable_rows_by_year_and_month(south, '5day-Avg') n['max'][3:5] navg['max'][3:5] def add_rank(df, rank_by, ascending): df['rank'] = df.groupby('month')[rank_by].rank(ascending=ascending, method='first') return df n['max'] = add_rank(n['max'], 'extent', ascending=False) n['min'] = add_rank(n['min'], 'extent', ascending=True) s['max'] = add_rank(s['max'], 'extent', ascending=False) s['min'] = add_rank(s['min'], 'extent', ascending=True) navg['max'] = add_rank(navg['max'], '5day-Avg', ascending=False) navg['min'] = add_rank(navg['min'], '5day-Avg', ascending=True) savg['max'] = add_rank(savg['max'], '5day-Avg', ascending=False) savg['min'] = add_rank(savg['min'], '5day-Avg', ascending=True) def do_annual_min_max_ranking(df, field): min_index = df.groupby(['year'])[field].idxmin() max_index = df.groupby(['year'])[field].idxmax() mindata = df.loc[min_index][['date', field]] mindata['rank'] = mindata[field].rank(ascending=True, method='first') maxdata = df.loc[max_index][['date', field]] maxdata['rank'] = maxdata[field].rank(ascending=False, method='first') mindata = mindata.set_index(pd.to_datetime(mindata.date).dt.year) maxdata = maxdata.set_index(pd.to_datetime(maxdata.date).dt.year) maxdata = maxdata.add_prefix('max_') mindata = mindata.add_prefix('min_') data = pd.concat([mindata, maxdata], axis=1) return data north_annual_by_day = do_annual_min_max_ranking(north, 'extent') north_annual_averaged = do_annual_min_max_ranking(north, '5day-Avg') south_annual_by_day = do_annual_min_max_ranking(south, 'extent') south_annual_averaged = do_annual_min_max_ranking(south, '5day-Avg') south_annual_averaged.head(3) a = navg['min'].copy() a.columns a.set_index(['rank', 'month']).unstack('month').head(3) import calendar month_names = [calendar.month_name[x] for x in range(1,13)] def swap_column_level_and_sort(df): df.columns = df.columns.swaplevel(1,0) df = df.sortlevel(0, axis=1) return df # set index to year and month and then broadcast month back across the columns. # next swap and sort so that you have the data grouped under the month. def prepare_for_csv(df): df = df.set_index(['rank','month']).unstack('month') df = swap_column_level_and_sort(df) df.columns = df.columns.set_levels(month_names, level=0) return df def write_to_xls(df_list, writer, is_monthly=True): for df, sheet in df_list: if is_monthly: df = prepare_for_csv(df) df.to_excel(writer,'{sheet}'.format(sheet=sheet), float_format="%.3f") writer = ExcelWriter('../output/Sea_Ice_MinMax_Statistics.xls') monthly_dataframelist =[(navg['min'], 'Northern 5day Min'), (navg['max'], 'Northern 5day Max'), (savg['min'], 'Southern 5day Min'), (savg['max'], 'Southern 5day Max'), (n['min'], 'Northern Daily Min'), (n['max'], 'Northern Daily Max'), (s['min'], 'Southern Daily Min'), (s['max'], 'Southern Daily Max')] annual_dataframelist = [(north_annual_averaged, 'North Annual 5day-avg'), (north_annual_by_day, 'North Annual Daily'), (south_annual_averaged, 'South Annual 5day-avg'), (south_annual_by_day, 'South Annual Daily')] write_to_xls(monthly_dataframelist, writer, is_monthly=True) write_to_xls(annual_dataframelist, writer, is_monthly=False) writer.save() b = prepare_for_csv(a) b !cd ../data ; rm -f NH_seaice_extent_final.csv NH_seaice_extent_nrt.csv SH_seaice_extent_final.csv SH_seaice_extent_nrt.csv <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 1 Step2: Step 2 Step3: Step 3 Step4: Step 4
<ASSISTANT_TASK:> Python Code: !pip install tf-nightly import numpy as np import tensorflow as tf model = tf.keras.models.Sequential([ tf.keras.layers.Input(shape=(28, 28), name='input'), tf.keras.layers.LSTM(20, time_major=False, return_sequences=True), tf.keras.layers.Flatten(), tf.keras.layers.Dense(10, activation=tf.nn.softmax, name='output') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() # Load MNIST dataset. (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 x_train = x_train.astype(np.float32) x_test = x_test.astype(np.float32) # Change this to True if you want to test the flow rapidly. # Train with a small dataset and only 1 epoch. The model will work poorly # but this provides a fast way to test if the conversion works end to end. _FAST_TRAINING = False _EPOCHS = 5 if _FAST_TRAINING: _EPOCHS = 1 _TRAINING_DATA_COUNT = 1000 x_train = x_train[:_TRAINING_DATA_COUNT] y_train = y_train[:_TRAINING_DATA_COUNT] model.fit(x_train, y_train, epochs=_EPOCHS) model.evaluate(x_test, y_test, verbose=0) run_model = tf.function(lambda x: model(x)) # This is important, let's fix the input size. BATCH_SIZE = 1 STEPS = 28 INPUT_SIZE = 28 concrete_func = run_model.get_concrete_function( tf.TensorSpec([BATCH_SIZE, STEPS, INPUT_SIZE], model.inputs[0].dtype)) # model directory. MODEL_DIR = "keras_lstm" model.save(MODEL_DIR, save_format="tf", signatures=concrete_func) converter = tf.lite.TFLiteConverter.from_saved_model(MODEL_DIR) tflite_model = converter.convert() # Run the model with TensorFlow to get expected results. TEST_CASES = 10 # Run the model with TensorFlow Lite interpreter = tf.lite.Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() for i in range(TEST_CASES): expected = model.predict(x_test[i:i+1]) interpreter.set_tensor(input_details[0]["index"], x_test[i:i+1, :, :]) interpreter.invoke() result = interpreter.get_tensor(output_details[0]["index"]) # Assert if the result of TFLite model is consistent with the TF model. np.testing.assert_almost_equal(expected, result, decimal=5) print("Done. The result of TensorFlow matches the result of TensorFlow Lite.") # Please note: TfLite fused Lstm kernel is stateful, so we need to reset # the states. # Clean up internal states. interpreter.reset_all_variables() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Function that generates random trees and calculates SPR (and others) distances Step2: the figure above shows that the replug distance (from USPR) has a similar performance as dSPR, But at a very high computational price, as shown by the timings in the figure below.
<ASSISTANT_TASK:> Python Code: %reload_ext autoreload %autoreload 2 %matplotlib inline import matplotlib import matplotlib.pyplot as plt import sys, subprocess, time, dendropy import numpy as np bindir="/home/leo/local/bin/" localdir="/tmp/" def run_uspr (tree1, tree2, fast = False): localfile = localdir + "pair.tre" dendropy.TreeList([tree1,tree2]).write(path=localfile, schema="newick") if fast: command_line = bindir + "uspr --tbr --replug < " + localfile else: command_line = bindir + "uspr < " + localfile start_time = time.perf_counter() proc_run = subprocess.run(command_line, shell=True, stdout=subprocess.PIPE, universal_newlines=True) elapsed_time = time.perf_counter() - start_time dists = [-1,-1,-1] for line in proc_run.stdout.splitlines(): if "d_TBR =" in line: dists[0] = float(line.split(" ")[2].strip()) if "d_R =" in line: dists[1] = float(line.split(" ")[2].strip()) if "d_USPR =" in line: dists[2] = float(line.split(" ")[2].strip()) return elapsed_time, dists # TBR, replug, SPR, respectively def run_dspr (tree1, tree2): localfile = localdir + "pair.tre" dendropy.TreeList([tree1,tree2]).write(path=localfile, schema="nexus") start_time = time.perf_counter() proc_run = subprocess.run(bindir + "gf_spr_distance " + localfile, shell=True, stdout=subprocess.PIPE, universal_newlines=True) elapsed_time = time.perf_counter() - start_time line = proc_run.stdout.splitlines()[1].split()[1:4] # second line has dists as columns, we want 2nd~4th dists = [float(i) for i in line] # SPR, RF, Hdist, respectively return elapsed_time, dists def generate_spr_trees (n_leaves, n_trees, n_spr): start_time = time.perf_counter() proc_run = subprocess.run([bindir + "gf_generate_spr_trees", str(n_leaves), str(n_trees), str(n_spr)], stdout=subprocess.PIPE, universal_newlines=True) elapsed_time = time.perf_counter() - start_time return elapsed_time, dendropy.TreeList.get(data=proc_run.stdout, schema="nexus") def simulate_estimate_spr (ntrees = 10, min_leaves=6, max_leaves=9, min_spr = 1, max_spr_f = 0.5, fast = True): o_tbl = [] for nleaves in range(min_leaves, max_leaves+1): for nspr in range(1,int(max_spr_f * nleaves) + 1): _, trees = generate_spr_trees (nleaves,ntrees,nspr) ## remember that C function generates one extra tree! for i in range(1,ntrees): secs1, dists1 = run_uspr(trees[i-1],trees[i], fast) secs2, dists2 = run_dspr(trees[i-1],trees[i]) header = [nleaves,nspr,secs1,secs2] # [0,3] o_tbl.append(header + dists1 + dists2) # 4-6 [tbr, replug, spr], 7-9 [spr,rf, hdist] return np.array(o_tbl) X = simulate_estimate_spr (20, 10, 30, 1, 0.7, True) np.save ("performance_table", X) jit1 = np.random.normal(scale=0.1, size=X.shape[0]) jit2 = np.random.normal(scale=0.1, size=X.shape[0]) print (X.shape) fig, axes = plt.subplots(1); fig.set_size_inches(16, 8) axes.scatter(X[:,1]+0.8*jit1-0.2,X[:,5]+1.2*jit2, alpha=.3, s=15, edgecolor="none", c=plt.cm.spectral(0.2), label="Whidden's replug") axes.scatter(X[:,1]+0.8*jit2+0.2,X[:,7]+1.2*jit1, alpha=.3, s=15, edgecolor="none", c=plt.cm.spectral(0.9), label="Leo's dSPR") axes.legend(loc=2) axes.set_xlabel("applied (true) SPR distance",fontsize=12) axes.set_ylabel("estimated SPR distance",fontsize=12) axes.set_xlim(0,22); axes.set_ylim(0,18) fig, axes = plt.subplots(1,2); fig.set_size_inches(15, 6) axes[0].scatter(X[:,0]+0.5*jit1+0.1,np.log(X[:,2]), alpha=.4, s=20, edgecolor="none", c=plt.cm.spectral(0.4), label="USPR") axes[0].scatter(X[:,0]+0.5*jit2-0.1,np.log(X[:,3]), alpha=.4, s=20, edgecolor="none", c=plt.cm.spectral(0.95), label="dSPR") axes[0].legend(loc=2) axes[0].set_ylim(-6,6); axes[0].set_xlim(9,31) axes[0].set_xlabel("tree size",fontsize=12) axes[0].set_ylabel("log time (secs)",fontsize=12) from scipy.stats import gaussian_kde speedup = np.log(X[:,2]) - np.log(X[:,3]) density = gaussian_kde(speedup) density.covariance_factor = lambda : .09 # set the covariance_factor, lower means more detail density._compute_covariance() dx = np.linspace(np.percentile(speedup,q=0.01), np.percentile(speedup,q=99.99),100) dy = density(dx) axes[1].plot(dx, dy, linewidth=1.5, c=plt.cm.spectral(0.1)) axes[1].fill_between(dx, dy, alpha=.5, zorder=5, antialiased=True, color=plt.cm.spectral(0.1)) axes[1].set_title("dSPR speedup compared to USPR fast computations, in log scale") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: SystemML Build information Step2: Download model, proto files and convert them to SystemML format. Step3: PrintTopK Step4: Classify images Step5: Sample code to retrain the model and use it to classify image through two different way
<ASSISTANT_TASK:> Python Code: !pip show systemml from systemml import MLContext ml = MLContext(sc) print ("SystemML Built-Time:"+ ml.buildTime()) print(ml.info()) # Workaround for Python 2.7.13 to avoid certificate validation issue while downloading any file. import ssl try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: # Legacy Python that doesn't verify HTTPS certificates by default pass else: # Handle target environment that doesn't support HTTPS verification ssl._create_default_https_context = _create_unverified_https_context # Create label.txt file def createLabelFile(fileName): file = open(fileName, 'w') file.write('1,"Cat" \n') file.write('2,"Dog" \n') file.close() # Download caffemodel and proto files def downloadAndConvertModel(downloadDir='.', trained_vgg_weights='trained_vgg_weights'): # Step 1: Download the VGG-19 model and other files. import errno import os import urllib # Create directory, if exists don't error out try: os.makedirs(os.path.join(downloadDir,trained_vgg_weights)) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(trained_vgg_weights): pass else: raise # Download deployer, network, solver proto and label files. urllib.urlretrieve('https://raw.githubusercontent.com/apache/systemml/master/scripts/nn/examples/caffe2dml/models/imagenet/vgg19/VGG_ILSVRC_19_layers_deploy.proto', os.path.join(downloadDir,'VGG_ILSVRC_19_layers_deploy.proto')) urllib.urlretrieve('https://raw.githubusercontent.com/apache/systemml/master/scripts/nn/examples/caffe2dml/models/imagenet/vgg19/VGG_ILSVRC_19_layers_network.proto',os.path.join(downloadDir,'VGG_ILSVRC_19_layers_network.proto')) #TODO: After downloading network file (VGG_ILSVRC_19_layers_network.proto) , change num_output from 1000 to 2 urllib.urlretrieve('https://raw.githubusercontent.com/apache/systemml/master/scripts/nn/examples/caffe2dml/models/imagenet/vgg19/VGG_ILSVRC_19_layers_solver.proto',os.path.join(downloadDir,'VGG_ILSVRC_19_layers_solver.proto')) # TODO: set values as descrived below in VGG_ILSVRC_19_layers_solver.proto (Possibly through APIs whenever available) # test_iter: 100 # stepsize: 40 # max_iter: 200 # Create labels for data ### 1,"Cat" ### 2,"Dog" createLabelFile(os.path.join(downloadDir, trained_vgg_weights, 'labels.txt')) # TODO: Following line commented as its 500MG file, if u need to download it please uncomment it and run. # urllib.urlretrieve('http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel', os.path.join(downloadDir,'VGG_ILSVRC_19_layers.caffemodel')) # Step 2: Convert the caffemodel to trained_vgg_weights directory import systemml as sml sml.convert_caffemodel(sc, os.path.join(downloadDir,'VGG_ILSVRC_19_layers_deploy.proto'), os.path.join(downloadDir,'VGG_ILSVRC_19_layers.caffemodel'), os.path.join(downloadDir,trained_vgg_weights)) return # Print top K indices and probability def printTopK(prob, label, k): print(label, 'Top ', k, ' Index : ', np.argsort(-prob)[0, :k]) print(label, 'Top ', k, ' Probability : ', prob[0,np.argsort(-prob)[0, :k]]) import numpy as np import urllib from systemml.mllearn import Caffe2DML import systemml as sml def classifyImages(urls,img_shape=(3, 224, 224), printTokKData=False, topK=5, downloadDir='.', trained_vgg_weights='trained_vgg_weights'): size = (img_shape[1], img_shape[2]) vgg = Caffe2DML(sqlCtx, solver=os.path.join(downloadDir,'VGG_ILSVRC_19_layers_solver.proto'), input_shape=img_shape) vgg.load(trained_vgg_weights) for url in urls: outFile = 'inputTest.jpg' urllib.urlretrieve(url, outFile) from IPython.display import Image, display display(Image(filename=outFile)) print ("Prediction of above image to ImageNet Class using"); ## Do image classification through SystemML processing from PIL import Image input_image = sml.convertImageToNumPyArr(Image.open(outFile), img_shape=img_shape , color_mode='BGR', mean=sml.getDatasetMean('VGG_ILSVRC_19_2014')) print ("Image preprocessed through SystemML :: ", vgg.predict(input_image)[0]) if(printTopKData == True): sysml_proba = vgg.predict_proba(input_image) printTopK(sysml_proba, 'SystemML BGR', topK) from pyspark.ml.linalg import Vectors import os import systemml as sml def getLabelFeatures(filename, train_dir, img_shape): from PIL import Image vec = Vectors.dense(sml.convertImageToNumPyArr(Image.open(os.path.join(train_dir, filename)), img_shape=img_shape)[0,:]) if filename.lower().startswith('cat'): return (1, vec) elif filename.lower().startswith('dog'): return (2, vec) else: raise ValueError('Expected the filename to start with either cat or dog') from pyspark.sql.functions import rand import os def createTrainingDF(train_dir, train_data_file, img_shape): list_jpeg_files = os.listdir(train_dir) # 10 files per partition train_df = sc.parallelize(list_jpeg_files, int(len(list_jpeg_files)/10)).map(lambda filename : getLabelFeatures(filename, train_dir, img_shape)).toDF(['label', 'features']).orderBy(rand()) # Optional: but helps seperates conversion-related from training # train_df.write.parquet(train_data_file) # 'kaggle-cats-dogs.parquet' return train_df def readTrainingDF(train_dir, train_data_file): train_df = sqlContext.read.parquet(train_data_file) return train_df # downloadAndConvertModel(downloadDir, trained_vgg_weights) # TODO: Take "TODO" actions mentioned in the downloadAndConvertModel() function after calling downloadAndConvertModel() function. def retrainModel(img_shape, downloadDir, trained_vgg_weights, train_dir, train_data_file, vgg_new_model): # Let downloadAndConvertModel() functon be commented out, as it needs to be called separately (which is done in cell above) and manual action to be taken after calling it. # downloadAndConvertModel(downloadDir, trained_vgg_weights) # TODO: Take "TODO" actions mentioned in the downloadAndConvertModel() function after calling that function. train_df = createTrainingDF(train_dir, train_data_file, img_shape) ## Write from input files OR read if its already written/converted # train_df = readTrainingDF(train_dir, train_data_file) # Load the model vgg = Caffe2DML(sqlCtx, solver=os.path.join(downloadDir,'VGG_ILSVRC_19_layers_solver.proto'), input_shape=img_shape) vgg.load(weights=os.path.join(downloadDir,trained_vgg_weights), ignore_weights=['fc8']) vgg.set(debug=True).setExplain(True) # Train the model using new data vgg.fit(train_df) # Save the trained model vgg.save(vgg_new_model) return vgg import numpy as np import urllib from systemml.mllearn import Caffe2DML import systemml as sml def classifyImagesWTransfLearning(urls, model, img_shape=(3, 224, 224), printTokKData=False, topK=5): size = (img_shape[1], img_shape[2]) # vgg.load(trained_vgg_weights) for url in urls: outFile = 'inputTest.jpg' urllib.urlretrieve(url, outFile) from IPython.display import Image, display display(Image(filename=outFile)) print ("Prediction of above image to ImageNet Class using"); ## Do image classification through SystemML processing from PIL import Image input_image = sml.convertImageToNumPyArr(Image.open(outFile), img_shape=img_shape , color_mode='BGR', mean=sml.getDatasetMean('VGG_ILSVRC_19_2014')) print ("Image preprocessed through SystemML :: ", model.predict(input_image)[0]) if(printTopKData == True): sysml_proba = model.predict_proba(input_image) printTopK(sysml_proba, 'SystemML BGR', topK) # ImageNet specific parameters img_shape = (3, 224, 224) # Setting other than current directory causes "network file not found" issue, as network file # location is defined in solver file which does not have a path, so it searches in current dir. downloadDir = '.' # /home/asurve/caffe_models' trained_vgg_weights = 'trained_vgg_weights' train_dir = '/home/asurve/data/keggle/dogs_vs_cats_2/train' train_data_file = 'kaggle-cats-dogs.parquet' vgg_new_model = 'kaggle-cats-dogs-model_2' printTopKData=True topK=5 urls = ['http://cdn3-www.dogtime.com/assets/uploads/gallery/goldador-dog-breed-pictures/puppy-1.jpg','https://lh3.googleusercontent.com/-YdeAa1Ff4Ac/VkUnQ4vuZGI/AAAAAAAAAEg/nBiUn4pp6aE/w800-h800/images-6.jpeg','https://upload.wikimedia.org/wikipedia/commons/thumb/5/58/MountainLion.jpg/312px-MountainLion.jpg'] vgg = retrainModel(img_shape, downloadDir, trained_vgg_weights, train_dir, train_data_file, vgg_new_model) classifyImagesWTransfLearning(urls, vgg, img_shape, printTopKData, topK) img_shape = (3, 224, 224) printTopKData=True topK=5 # Setting other than current directory causes "network file not found" issue, as network file # location is defined in solver file which does not have a path, so it searches in current dir. downloadDir = '.' # /home/asurve/caffe_models' trained_vgg_weights = 'kaggle-cats-dogs-model_2' urls = ['http://cdn3-www.dogtime.com/assets/uploads/gallery/goldador-dog-breed-pictures/puppy-1.jpg','https://lh3.googleusercontent.com/-YdeAa1Ff4Ac/VkUnQ4vuZGI/AAAAAAAAAEg/nBiUn4pp6aE/w800-h800/images-6.jpeg','https://upload.wikimedia.org/wikipedia/commons/thumb/5/58/MountainLion.jpg/312px-MountainLion.jpg'] classifyImages(urls,img_shape, printTopKData, topK, downloadDir, trained_vgg_weights) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the data Step2: Quick full example Step3: The results table (tree table) Step4: Filter and examine the tree table Step5: The tree inference command Step6: Run tree inference jobs in parallel Step7: The tree table Step8: <h3><span style="color Step9: Draw cloud tree Step10: <h3><span style="color
<ASSISTANT_TASK:> Python Code: # conda install ipyrad -c bioconda # conda install raxml -c bioconda # conda install toytree -c eaton-lab import ipyrad.analysis as ipa import toytree # the path to your HDF5 formatted seqs file data = "/home/deren/Downloads/ref_pop2.seqs.hdf5" # check scaffold idx (row) against scaffold names ipa.treeslider(data).scaffold_table.head() # select a scaffold idx, start, and end positions ts = ipa.treeslider( name="test2", data="/home/deren/Downloads/ref_pop2.seqs.hdf5", workdir="analysis-treeslider", scaffold_idxs=2, window_size=250000, slide_size=250000, inference_method="raxml", inference_args={"N": 100, "T": 4}, minsnps=10, consensus_reduce=True, mincov=5, imap={ "reference": ["reference"], "virg": ["TXWV2", "LALC2", "SCCU3", "FLSF33", "FLBA140"], "mini": ["FLSF47", "FLMO62", "FLSA185", "FLCK216"], "gemi": ["FLCK18", "FLSF54", "FLWO6", "FLAB109"], "bran": ["BJSL25", "BJSB3", "BJVL19"], "fusi-N": ["TXGR3", "TXMD3"], "fusi-S": ["MXED8", "MXGT4"], "sagr": ["CUVN10", "CUCA4", "CUSV6"], "oleo": ["CRL0030", "HNDA09", "BZBB1", "MXSA3017"], }, ) ts.show_inference_command() ts.run(auto=True, force=True) ts.tree_table.head() # example: remove any rows where the tree is NaN df = ts.tree_table.loc[ts.tree_table.tree.notna()] mtre = toytree.mtree(df.tree) mtre.treelist = [i.root("reference") for i in mtre.treelist] mtre.draw_tree_grid( nrows=3, ncols=4, start=20, tip_labels_align=True, tip_labels_style={"font-size": "9px"}, ); # select a scaffold idx, start, and end positions ts = ipa.treeslider( name="test", data="/home/deren/Downloads/ref_pop2.seqs.hdf5", workdir="analysis-treeslider", scaffold_idxs=2, window_size=1000000, slide_size=1000000, inference_method="mb", inference_args={"N": 0, "T": 4}, minsnps=10, mincov=9, consensus_reduce=True, imap={ "reference": ["reference"], "virg": ["TXWV2", "LALC2", "SCCU3", "FLSF33", "FLBA140"], "mini": ["FLSF47", "FLMO62", "FLSA185", "FLCK216"], "gemi": ["FLCK18", "FLSF54", "FLWO6", "FLAB109"], "bran": ["BJSL25", "BJSB3", "BJVL19"], "fusi-N": ["TXGR3", "TXMD3"], "fusi-S": ["MXED8", "MXGT4"], "sagr": ["CUVN10", "CUCA4", "CUSV6"], "oleo": ["CRL0030", "HNDA09", "BZBB1", "MXSA3017"], }, ) # select a scaffold idx, start, and end positions ts = ipa.treeslider( name="test", data="/home/deren/Downloads/ref_pop2.seqs.hdf5", workdir="analysis-treeslider", scaffold_idxs=2, window_size=2000000, slide_size=2000000, inference_method="raxml", inference_args={"N": 100, "T": 4}, minsnps=10, mincov=9, imap={ "reference": ["reference"], "virg": ["TXWV2", "LALC2", "SCCU3", "FLSF33", "FLBA140"], "mini": ["FLSF47", "FLMO62", "FLSA185", "FLCK216"], "gemi": ["FLCK18", "FLSF54", "FLWO6", "FLAB109"], "bran": ["BJSL25", "BJSB3", "BJVL19"], "fusi-N": ["TXGR3", "TXMD3"], "fusi-S": ["MXED8", "MXGT4"], "sagr": ["CUVN10", "CUCA4", "CUSV6"], "oleo": ["CRL0030", "HNDA09", "BZBB1", "MXSA3017"], }, ) # this is the tree inference command that will be used ts.show_inference_command() ts.run(auto=True, force=True) # the tree table is automatically saved to disk as a CSV during .run() ts.tree_table.head() # filter to only windows with >50 SNPS trees = ts.tree_table[ts.tree_table.snps > 50].tree.tolist() # load all trees into a multitree object mtre = toytree.mtree(trees) # root trees and collapse nodes with <50 bootstrap support mtre.treelist = [ i.root("reference").collapse_nodes(min_support=50) for i in mtre.treelist ] # draw the first 12 trees in a grid mtre.draw_tree_grid( nrows=3, ncols=4, start=0, tip_labels_align=True, tip_labels_style={"font-size": "9px"}, ); # filter to only windows with >50 SNPS (this could have been done in run) trees = ts.tree_table[ts.tree_table.snps > 50].tree.tolist() # load all trees into a multitree object mtre = toytree.mtree(trees) # root trees mtre.treelist = [i.root("reference") for i in mtre.treelist] # infer a consensus tree to get best tip order ctre = mtre.get_consensus_tree() # draw the first 12 trees in a grid mtre.draw_cloud_tree( width=400, height=400, fixed_order=ctre.get_tip_labels(), use_edge_lengths=False, ); # select a scaffold idx, start, and end positions ts = ipa.treeslider( name="chr1_w500K_s100K", data=data, workdir="analysis-treeslider", scaffold_idxs=[0, 1, 2], window_size=500000, slide_size=100000, minsnps=10, inference_method="raxml", inference_args={"m": "GTRCAT", "N": 10, "f": "d", 'x': None}, ) # this is the tree inference command that will be used ts.show_inference_command() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 3. Affine decomposition Step2: 4. Main program Step3: 4.2. Create Finite Element space (Taylor-Hood P2-P1) Step4: 4.3. Allocate an object of the Stokes class Step5: 4.4. Prepare reduction with a POD-Galerkin method Step6: 4.5. Perform the offline phase Step7: 4.6. Perform an online solve Step8: 4.7. Perform an error analysis Step9: 4.8. Perform a speedup analysis
<ASSISTANT_TASK:> Python Code: from dolfin import * from rbnics import * from sampling import LinearlyDependentUniformDistribution @PullBackFormsToReferenceDomain() @AffineShapeParametrization("data/t_bypass_vertices_mapping.vmp") class Stokes(StokesProblem): # Default initialization of members def __init__(self, V, **kwargs): # Call the standard initialization StokesProblem.__init__(self, V, **kwargs) # ... and also store FEniCS data structures for assembly assert "subdomains" in kwargs assert "boundaries" in kwargs self.subdomains, self.boundaries = kwargs["subdomains"], kwargs["boundaries"] up = TrialFunction(V) (self.u, self.p) = split(up) vq = TestFunction(V) (self.v, self.q) = split(vq) self.dx = Measure("dx")(subdomain_data=self.subdomains) self.ds = Measure("ds")(subdomain_data=self.boundaries) # ... as well as forcing terms and inlet velocity self.inlet = Expression(("- 1./0.25*(x[1] - 1)*(2 - x[1])", "0."), degree=2) self.f = Constant((0.0, 0.0)) self.g = Constant(0.0) # Return custom problem name def name(self): return "Stokes2POD" # Return theta multiplicative terms of the affine expansion of the problem. @compute_theta_for_supremizers def compute_theta(self, term): if term == "a": theta_a0 = 1.0 return (theta_a0, ) elif term in ("b", "bt"): theta_b0 = 1.0 return (theta_b0, ) elif term == "f": theta_f0 = 1.0 return (theta_f0, ) elif term == "g": theta_g0 = 1.0 return (theta_g0, ) elif term == "dirichlet_bc_u": theta_bc0 = 1. return (theta_bc0, ) else: raise ValueError("Invalid term for compute_theta().") # Return forms resulting from the discretization of the affine expansion of the problem operators. @assemble_operator_for_supremizers def assemble_operator(self, term): dx = self.dx if term == "a": u = self.u v = self.v a0 = inner(grad(u), grad(v)) * dx return (a0, ) elif term == "b": u = self.u q = self.q b0 = - q * div(u) * dx return (b0, ) elif term == "bt": p = self.p v = self.v bt0 = - p * div(v) * dx return (bt0, ) elif term == "f": v = self.v f0 = inner(self.f, v) * dx return (f0, ) elif term == "g": q = self.q g0 = self.g * q * dx return (g0, ) elif term == "dirichlet_bc_u": bc0 = [DirichletBC(self.V.sub(0), self.inlet, self.boundaries, 1), DirichletBC(self.V.sub(0), Constant((0.0, 0.0)), self.boundaries, 3)] return (bc0, ) elif term == "inner_product_u": u = self.u v = self.v x0 = inner(grad(u), grad(v)) * dx return (x0, ) elif term == "inner_product_p": p = self.p q = self.q x0 = inner(p, q) * dx return (x0, ) else: raise ValueError("Invalid term for assemble_operator().") mesh = Mesh("data/t_bypass.xml") subdomains = MeshFunction("size_t", mesh, "data/t_bypass_physical_region.xml") boundaries = MeshFunction("size_t", mesh, "data/t_bypass_facet_region.xml") element_u = VectorElement("Lagrange", mesh.ufl_cell(), 2) element_p = FiniteElement("Lagrange", mesh.ufl_cell(), 1) element = MixedElement(element_u, element_p) V = FunctionSpace(mesh, element, components=[["u", "s"], "p"]) problem = Stokes(V, subdomains=subdomains, boundaries=boundaries) mu_range = [ (0.5, 1.5), (0.5, 1.5), (0.5, 1.5), (0.5, 1.5), (0.5, 1.5), (0., pi / 6.) ] problem.set_mu_range(mu_range) reduction_method = PODGalerkin(problem) reduction_method.set_Nmax(25) reduction_method.set_tolerance(1e-6) lifting_mu = (1.0, 1.0, 1.0, 1.0, 1.0, 0.0) problem.set_mu(lifting_mu) reduction_method.initialize_training_set(100, sampling=LinearlyDependentUniformDistribution()) reduced_problem = reduction_method.offline() online_mu = (1.0, 1.0, 1.0, 1.0, 1.0, pi / 6.) reduced_problem.set_mu(online_mu) reduced_solution = reduced_problem.solve() plot(reduced_solution, reduced_problem=reduced_problem, component="u") plot(reduced_solution, reduced_problem=reduced_problem, component="p") reduction_method.initialize_testing_set(100, sampling=LinearlyDependentUniformDistribution()) reduction_method.error_analysis() reduction_method.speedup_analysis() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Description Step2: SOLUTION Step3: The reluctances of the regions in core are Step4: And the reluctances are hence Step5: Then the total reluctance of the core is $\mathcal{R}_\text{TOT} = \mathcal{R}_1 + \frac{(\mathcal{R}_2 + \mathcal{R}_3)\mathcal{R}_4}{\mathcal{R}_2 + \mathcal{R}_3 + \mathcal{R}_4}$. Step6: and the magnetomotive force is $\mathcal{F} = \mathcal{N} \mathcal{I}$ Step7: The total flux in the core $\phi_\text{TOT}$ is equal to the flux in the left leg $\phi_\text{left} = \frac{\mathcal{F}}{\mathcal{R}_\text{TOT}}$ , which is Step8: The fluxes in the center and right legs can be found by the "flux divider rule", which is analogous to the current divider rule. Step9: The flux in the right leg $\phi_\text{right} = \frac{\mathcal{R}2 + \mathcal{R}_3}{\mathcal{R}_2 + \mathcal{R}_3 + \mathcal{R}_4}\phi\text{TOT}$ is Step10: The flux densities $B = \frac{\phi}{A}$ are
<ASSISTANT_TASK:> Python Code: %pylab notebook %precision 4 from scipy import constants as c # we like to use some constants mu_r = 2000 mu = mu_r * c.mu_0 l1 = 1.08 # [m] l2 = 0.34 # [m] l3 = 0.0005 # [m] l4 = 1.08 # [m] A1 = 0.09 * 0.05 # [m²] A2 = 0.15 * 0.05 # [m²] A3 = 0.15 * 0.05 * 1.05 # [m²] 5% fringing A4 = 0.09 * 0.05 # [m²] R1 = l1 / (mu * A1) # At /Wb = At/Vs R2 = l2 / (mu * A2) # At /Wb = At/Vs R3 = l3 / (c.mu_0 * A3) # At /Wb = At/Vs R4 = l4 / (mu * A4) # At /Wb = At/Vs print('R1 = {:.1f} kAt/Wb'.format(R1/1000) ) print('R2 = {:.1f} kAt/Wb'.format(R2/1000) ) print('R3 = {:.1f} kAt/Wb'.format(R3/1000) ) print('R4 = {:.1f} kAt/Wb'.format(R4/1000) ) Rtot = R1 + ((R2 + R3) * R4) / (R2 + R3 + R4) print('Rtot = {:.1f} kAt/Wb'.format(Rtot/1000)) N = 100 # t given in description I = 2.0 # A given in description F = N * I phi_left = F / Rtot print('phi_left = {:.3f} mWb'.format(phi_left*1000)) phi_center = R4 / (R2 + R3 + R4) * phi_left print('phi_center = {:.3f} mWb'.format(phi_center*1000)) phi_right = (R2 + R3) / (R2 + R3 + R4) * phi_left print('phi_right = {:.3f} mWb'.format(phi_right*1000)) B_left = phi_left / A1 B_center = phi_center / A2 B_right = phi_right / A4 print('B_left = {:.3f} T'.format(B_left)) print('B_center = {:.3f} T'.format(B_center)) print('B_right = {:.3f} T'.format(B_right)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Does the plot above look like a sine function? Why or why not? Step2: Question 3 Step3: How did your plot of sin(x) change appearance as you decreased the spacing of your x-array from dx = 4.0 to dx = 0.1? What does this tell you?
<ASSISTANT_TASK:> Python Code: # put your code here. %matplotlib inline import matplotlib.pyplot as plt import numpy as np x1 = np.arange(0.0,20.0,4.0) y1 = np.sin(x1) plt.plot(x1,y1,'r-') # put your code here. x2 = np.arange(0.0,20.0,1.0) y2 = np.sin(x2) plt.plot(x1,y1,'r-',x2,y2,'b-') # put your code here x3 = np.arange(0.0,20.0,0.1) y3 = np.sin(x3) plt.plot(x1,y1,'r-',x2,y2,'b-',x3,y3,'k--') # put your code here! import math for val in np.nditer(x2): v1 = math.sin(val) + math.cos(val) v2 = math.sin(val)**2 + math.cos(val)**2 print(val,v1,v2) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's look at the Marvin Results object. We can see how many results were returned with r.count and r.totalcount Step2: Queries returning more than 1000 results are paginated into chunks of 100. For anything less than 1000, the query will return everything. Totalcount shows the total result count, and count shows the returned count in just that page. Step3: You can access specific values of the results through tuple indexing or via the named attribute, but this is not recommended in general. Step4: But be careful Names using the full table.parameter syntax cannot be accessed via the named attribute. This syntax is returned when two parameters with non-unique names are returned, like ifu.name and bintype.name. Instead we recommend using the Marvin Results getListOf and getDictOf methods. Step5: To see what columns are available, use r.columns and r.coltoparam Step6: if you want to retrieve the results as a list of dictionaries or dictionary of lists, use getDictOf Step7: you can change the format returned using the format_type keyword. format_type='dictlist' returns a dictionary of lists getDictOf returns a list of dictionaries Step8: Retrieving More Results Step9: Sorting results Step10: Converting to Marvin Tool Objects Step11: Save your Results and restore them
<ASSISTANT_TASK:> Python Code: from marvin import config config.setRelease('MPL-4') from marvin.tools.query import Query, Results, doQuery # make a query myquery = 'nsa.sersic_logmass > 10.3 AND nsa.z < 0.1' q = Query(searchfilter=myquery) # run a query r = q.run() print(r) print('Total count', r.totalcount) print('Page count', r.count) r.results res = r.results[0] print('single row', res) print('mangaid', res[0]) print('mangaid', res.mangaid) # what are the columns print('columns', r.columns) print(res.sersic_logmass) # if you want a retrieve a list of a single parameter, use getListOf mangaid = r.getListOf('mangaid') print(mangaid) # these are the column names in the results print('columns', r.columns) # by default, getDictOf returns a list of dictionaries, that you can iterate over mylist = r.getDictOf() print(mylist) print('mangaid', mylist[0]['cube.mangaid'], mylist[1]['cube.mangaid']) mydict = r.getDictOf(format_type='dictlist') print(mydict) print('keys', mydict.keys()) print('mangaid', mydict['cube.mangaid']) # get the next set of results r.getNext() # get only the next 10 results r.getNext(chunk=10) # get the previous 20 results r.getPrevious(chunk=20) # get a subset of results giving the starting index and number limit # total results print('total', r.totalcount) # let's get a subset of 10 rows starting at 300 r.getSubset(300, limit=10) # let's sort by redshift. Default is in ascending order r.sort('z') # or in descending order r.sort('nsa.z', order='desc') # See some results r.results[0:3] # Let's convert our results to Marvin Cube objects r.columns r.convertToTool('cube') # Your new objects are stored as a list in your results called objects r.objects # We strongly recommend saving to a Marvin pickle file (.mpf), so that you can restore the Results object later r.save('results.mpf') restored = Results.restore('results.mpf') # Saving to CSV, JSON, xlsx, txt, or FITS df = r.toDataFrame() df.to_csv('results.csv') df.to_json('results.json') df.to_excel('results.xlsx') table = r.toTable() table.write('results.txt') r.toFits('results.fits') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Data was collected using this method. It uses the Twitter API to go some days back in time, and then continuously streaming forward in real-time. Step3: I had collected around 3 million metoo tweets, and they were in sqlite3 database format. We won't run the parsing process live here but the code below shows how it is done. Step4: For the continued analysis, I start from a csv-file that was created in this way. Step5: Now, let's clean the tweets, and add the clean version of the tweets as a column. Step6: We want to group the tweets by day, so add a column that says which day they were posted. Step7: Group the tweets (tweets) by day. Step8: View the grouping. Step9: Now groups is a list of tuples where element [0] is the group name, and element [1] is a pandas series of all text belonging to the group. Step10: The series is iterable. Step11: For topic modelling, we create one text document per group (day in this case). Step12: Now we have the topicmodelling documents.
<ASSISTANT_TASK:> Python Code: from IPython.display import HTML import os HTML( <video width="320" height="240" controls> <source src="btf.m4v" type="video/mp4"> </video> ) import sqlite3 import pandas as pd pd.set_option('display.max_colwidth', -1) ## Read sqlite query results into a pandas DataFrame # conn = sqlite3.connect("tweets.db") # tweets_df = pd.read_sql_query("SELECT * from tweets", conn) ## Do some cleanupb #tweets_df = tweets_df.replace({'\n': ' '}, regex=True) # remove linebreaks in the dataframe #tweets_df = tweets_df.replace({'\t': ' '}, regex=True) # remove tabs in the dataframe #tweets_df = tweets_df.replace({'\r': ' '}, regex=True) # remove carriage return in the dataframe # Read the csv into pandas metoo_df = pd.DataFrame.from_csv("backup_metoo_171221.csv") len(metoo_df) metoo_df.head() newlist = [] for tweet in metoo_df['text']: #print(tweet) tweet = [word.lower() for word in tweet.split() if not word.startswith('#')] tweet = [word for word in tweet if not word.startswith('htt')] tweet = [word for word in tweet if not word.startswith('@')] tweet = [word for word in tweet if not '/' in word] tweet = [word for word in tweet if word.isalpha()] tweet = [word for word in tweet if not word == "rt"] tweet = [word.strip(".") for word in tweet] tweet = [word.strip() for word in tweet] tweet = [word for word in tweet if not word == "…"] tweet = " ".join(tweet) newlist.append(tweet) tweets = pd.Series(newlist) tweets metoo_df = metoo_df.reset_index(drop=True) metoo_df['tweets'] = tweets metoo_df.head() daylist = [day[:10] for day in metoo_df.created_at] daylist days = pd.Series(daylist) metoo_df['day'] = days metoo_df.head() tweets_by_day = metoo_df['tweets'].groupby(metoo_df['day']) groups = list(tweets_by_day) groups[0][0] groups[0][1] for i in groups[41][1]: print(i) os.getcwd() try: os.mkdir("tmfiles") except: print("Directory already exists") os.chdir("tmfiles") # run once os.getcwd() for c,i in enumerate(groups): o = open(str(groups[c][0]) + ".txt", "w") for line in i[1]: o.write(line + "\n") os.chdir('..') os.getcwd() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In order to know the altitude and azimuth of a fixed target in the sky we will mainly need to know Step2: You can also search by its name if it is in CDS... Step3: Now we should specify where the observer will be on Earth Step4: But maybe we are picky and want the exact location (or specify a different location that is not present in the database...) Step5: Finally we need to set up the time, which by default is set in UTC. Step6: Let's ask python if we can see the Nebula tonight from la palma Step7: We assume that at 11.30 pm will be dark, but let's make sure... Step8: You might get an IERS warning (International Earth Rotation and Reference Systems Service) to update the Earth Location. Step9: Calculate rise/set/meridian transit times Step10: By default it set's the nearest sunset but you can specify also next or previous. Step11: Similarly, we can ask when the target will be raising or setting Step12: Calculate alt/az positions for targets and Airmass Step13: With the integrated sec function we can easily get the Airmass Step14: We can now aim to make an altitude plot scanning the altitude of our target every hour Step15: Fortunately, there is a function that does it (much faster) within the day around the date we provide Step16: We can also give a range of dates to focus on a specific region of time (dark time) Step17: Making sky charts Step18: Finder Chart Image
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import math import matplotlib.pyplot as plt import seaborn from astropy.io import fits from astropy import units as u from astropy.coordinates import SkyCoord plt.rcParams['figure.figsize'] = (12, 8) plt.rcParams['font.size'] = 14 plt.rcParams['lines.linewidth'] = 2 plt.rcParams['xtick.labelsize'] = 13 plt.rcParams['ytick.labelsize'] = 13 plt.rcParams['axes.titlesize'] = 14 plt.rcParams['legend.fontsize'] = 13 from astropy.coordinates import SkyCoord from astroplan import FixedTarget coordinates = SkyCoord('18h18m48.0s', '−13d49m0.0s', frame='icrs') eagle_nebula = FixedTarget(name='M16', coord=coordinates) print (eagle_nebula) eagle_nebula = FixedTarget.from_name('M16') print (eagle_nebula) from astroplan import Observer observer = Observer.at_site('lapalma') print (observer) import astropy.units as u from astropy.coordinates import EarthLocation #from pytz import timezone from astroplan import Observer longitude = '-17d52m54s' latitude = '28d45m38s' elevation = 2344 * u.m location = EarthLocation.from_geodetic(longitude, latitude, elevation) observer = Observer(name='WHT', location=location, pressure=0.615 * u.bar, relative_humidity=0.04, temperature=18 * u.deg_C, #timezone=timezone('US/Hawaii'), description="Our beloved William Herschel Telescope") print (observer) from astropy.time import Time time = Time('2017-09-15 23:30:00') observer.target_is_up(time, eagle_nebula) observer.is_night(time) from astroplan import download_IERS_A download_IERS_A() observer.sun_set_time(time, which='nearest').iso observer.sun_set_time(time, which='next').iso observer.twilight_evening_civil(time, which='nearest').iso observer.twilight_evening_nautical(time, which='nearest').iso observer.twilight_evening_astronomical(time, which='nearest').iso observer.target_rise_time(time, eagle_nebula).iso observer.target_set_time(time, eagle_nebula).iso altaz_eagle = observer.altaz(time, eagle_nebula) altaz_eagle.alt, altaz_eagle.az altaz_eagle.secz from astropy.time import TimeDelta time_list = [] airmass_list = [] current_time = observer.sun_set_time(time, which='nearest') while current_time < observer.sun_rise_time(time, which='nearest'): current_altaz = observer.altaz(current_time, eagle_nebula) if current_altaz.alt > 0: airmass_list.append(current_altaz.alt.value) else: airmass_list.append(0) time_list.append(current_time.datetime) current_time += TimeDelta(3600, format='sec') plt.plot(time_list, airmass_list) from astroplan.plots import plot_airmass middle_of_the_night = Time('2017-09-16 01:00:00') plot_airmass(targets=eagle_nebula, observer=observer, time=middle_of_the_night, #brightness_shading=True, #altitude_yaxis=True ) plt.legend() from astroplan.plots import dark_style_sheet start_time = observer.sun_set_time(time, which='nearest') end_time = observer.sun_rise_time(time, which='nearest') delta_t = end_time - start_time observe_time = start_time + delta_t*np.linspace(0, 1, 75) andromeda = FixedTarget.from_name('M31') pleiades = FixedTarget.from_name('M45') some_nice_stuff_to_look_tonight = [eagle_nebula, andromeda, pleiades] plot_airmass(targets=some_nice_stuff_to_look_tonight, observer=observer, time=observe_time, brightness_shading=True, altitude_yaxis=True, #style_sheet=dark_style_sheet ) plt.legend() from astroplan.plots import plot_sky plot_sky(eagle_nebula, observer, middle_of_the_night) plot_sky(pleiades, observer, middle_of_the_night) plot_sky(andromeda, observer, middle_of_the_night) plt.legend() observe_time = Time('2000-03-15 17:00:00') observe_time = observe_time + np.linspace(-4, 5, 10)*u.hour plot_sky(pleiades, observer, observe_time) plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5)) plt.show() from astroplan.plots import plot_finder_image plot_finder_image(eagle_nebula, survey='DSS', log=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Batch Normalization Step2: Batch normalization Step3: Batch Normalization Step4: Test on simple example - Remove the mean only Step5: The direct implementation is a bit trickier. Step6: Batch Normalization Step7: Fully Connected Nets with Batch Normalization Step8: Batchnorm for deep networks Step9: Run the following to visualize the results from two networks trained above. You should find that using batch normalization helps the network to converge much faster. Step10: Batch normalization and initialization
<ASSISTANT_TASK:> Python Code: # As usual, a bit of setup import time import numpy as np import matplotlib.pyplot as plt # from cs231n.classifiers.fc_net import * # from cs231n.classifiers.fc_net import * from cs231n.classifiers.fc_net import FullyConnectedNet from cs231n.data_utils import get_CIFAR10_data from cs231n.gradient_check import eval_numerical_gradient, eval_numerical_gradient_array from cs231n.solver import Solver %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading external modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 def rel_error(x, y): returns relative error return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y)))) import os os.getcwd() # Load the (preprocessed) CIFAR10 data. data = get_CIFAR10_data() for k, v in data.items(): print('%s: ' % k, v.shape) # Check the training-time forward pass by checking means and variances # of features both before and after batch normalization # Simulate the forward pass for a two-layer network from cs231n.layers import * N, D1, D2, D3 = 200, 50, 60, 3 X = np.random.randn(N, D1) W1 = np.random.randn(D1, D2) W2 = np.random.randn(D2, D3) a = np.maximum(0, X.dot(W1)).dot(W2) print('Before batch normalization:') print(' means: ', a.mean(axis=0)) print(' stds: ', a.std(axis=0)) # Means should be close to zero and stds close to one print('After batch normalization (gamma=1, beta=0)') a_norm, _ = batchnorm_forward(a, np.ones(D3), np.zeros(D3), {'mode': 'train'}) print(' mean: ', a_norm.mean(axis=0)) print(' std: ', a_norm.std(axis=0)) # Now means should be close to beta and stds close to gamma gamma = np.asarray([1.0, 2.0, 3.0]) beta = np.asarray([11.0, 12.0, 13.0]) a_norm, _ = batchnorm_forward(a, gamma, beta, {'mode': 'train'}) print('After batch normalization (nontrivial gamma, beta)') print(' means: ', a_norm.mean(axis=0)) print(' stds: ', a_norm.std(axis=0)) # Check the test-time forward pass by running the training-time # forward pass many times to warm up the running averages, and then # checking the means and variances of activations after a test-time # forward pass. N, D1, D2, D3 = 200, 50, 60, 3 W1 = np.random.randn(D1, D2) W2 = np.random.randn(D2, D3) bn_param = {'mode': 'train'} gamma = np.ones(D3) beta = np.zeros(D3) for t in xrange(200): X = np.random.randn(N, D1) a = np.maximum(0, X.dot(W1)).dot(W2) batchnorm_forward(a, gamma, beta, bn_param) bn_param['mode'] = 'test' X = np.random.randn(N, D1) a = np.maximum(0, X.dot(W1)).dot(W2) a_norm, _ = batchnorm_forward(a, gamma, beta, bn_param) # Means should be close to zero and stds close to one, but will be # noisier than training-time forward passes. print 'After batch normalization (test-time):' print ' means: ', a_norm.mean(axis=0) print ' stds: ', a_norm.std(axis=0) # Gradient check batchnorm backward pass N, D = 4, 5 x = 5 * np.random.randn(N, D) + 12 gamma = np.random.randn(D) beta = np.random.randn(D) dout = np.random.randn(N, D) bn_param = {'mode': 'train'} fx = lambda x: batchnorm_forward(x, gamma, beta, bn_param)[0] fg = lambda a: batchnorm_forward(x, gamma, beta, bn_param)[0] fb = lambda b: batchnorm_forward(x, gamma, beta, bn_param)[0] dx_num = eval_numerical_gradient_array(fx, x, dout) da_num = eval_numerical_gradient_array(fg, gamma, dout) db_num = eval_numerical_gradient_array(fb, beta, dout) _, cache = batchnorm_forward(x, gamma, beta, bn_param) dx, dgamma, dbeta = batchnorm_backward(dout, cache) print 'dx error: ', rel_error(dx_num, dx) print 'dgamma error: ', rel_error(da_num, dgamma) print 'dbeta error: ', rel_error(db_num, dbeta) N, D = 4, 5 x = 5 * np.random.randn(N, D) + 12 gamma = np.random.randn(D) beta = np.random.randn(D) dout = np.random.randn(N, D) #Forward pass def forward(x): #Step 1 N,D = x.shape mu = 1 / float(N) * np.sum(x, axis=0) #Step 2 xcenter = x - mu #Step 3 out = xcenter cache = (mu,xcenter) return out,cache #Backward pass def backward(dout,cache): mu,xcenter = cache #Backprop #Step 3 dxcenter = dout #Step2 dx = np.ones(x.shape)*dxcenter dmu = -np.sum(dxcenter,0) #Step1 dx += 1/float(N)*np.ones(x.shape)*dmu return dx # Test of the implementation with numerical gradient fx = lambda x: forward(x)[0] dx_num = eval_numerical_gradient_array(fx, x, dout) _, cache = forward(x) dx = backward(dout, cache) print 'dx error: ', rel_error(dx_num, dx) def backward_alt(dout,cache): mu,xcenter = cache #Backprop #Step 3 dx = dout-1./float(N)*np.sum(dout,axis=0) return dx dx2 = backward_alt(dout,cache) rel_error(dx2,dx) N, D = 100, 500 x = 5 * np.random.randn(N, D) + 12 gamma = np.random.randn(D) beta = np.random.randn(D) dout = np.random.randn(N, D) bn_param = {'mode': 'train'} out, cache = batchnorm_forward(x, gamma, beta, bn_param) t1 = time.time() dx1, dgamma1, dbeta1 = batchnorm_backward(dout, cache) t2 = time.time() dx2, dgamma2, dbeta2 = batchnorm_backward_alt(dout, cache) t3 = time.time() print 'dx difference: ', rel_error(dx1, dx2) print 'dgamma difference: ', rel_error(dgamma1, dgamma2) print 'dbeta difference: ', rel_error(dbeta1, dbeta2) print 'speedup: %.2fx' % ((t2 - t1) / (t3 - t2)) N, D, H1, H2, C = 2, 10, 20, 30, 10 X = np.random.randn(N, D) y = np.random.randint(C, size=(N,)) for reg in [0, 3.14]: print 'Running check with reg = ', reg model = FullyConnectedNet([H1, H2], input_dim=D, num_classes=C, reg=reg, weight_scale=5e-2, dtype=np.float64, use_batchnorm=True) loss, grads = model.loss(X, y) print 'Initial loss: ', loss for name in sorted(grads): f = lambda _: model.loss(X, y)[0] grad_num = eval_numerical_gradient(f, model.params[name], verbose=False, h=1e-5) print '%s relative error: %.2e' % (name, rel_error(grad_num, grads[name])) if reg == 0: print # Try training a very deep net with batchnorm hidden_dims = [100, 100, 100, 100 ,100] num_train = 1000 small_data = { 'X_train': data['X_train'][:num_train], 'y_train': data['y_train'][:num_train], 'X_val': data['X_val'], 'y_val': data['y_val'], } weight_scale = 2e-2 bn_model = FullyConnectedNet(hidden_dims, weight_scale=weight_scale, use_batchnorm=True) model = FullyConnectedNet(hidden_dims, weight_scale=weight_scale, use_batchnorm=False) bn_solver = Solver(bn_model, small_data, num_epochs=30, batch_size=50, update_rule='adam', optim_config={ 'learning_rate': 1e-3, }, verbose=True, print_every=200) bn_solver.train() solver = Solver(model, small_data, num_epochs=30, batch_size=50, update_rule='adam', optim_config={ 'learning_rate': 1e-3, }, verbose=True, print_every=200) solver.train() plt.subplot(3, 1, 1) plt.title('Training loss') plt.xlabel('Iteration') plt.subplot(3, 1, 2) plt.title('Training accuracy') plt.xlabel('Epoch') plt.subplot(3, 1, 3) plt.title('Validation accuracy') plt.xlabel('Epoch') plt.subplot(3, 1, 1) plt.plot(solver.loss_history, 'o', label='baseline') plt.plot(bn_solver.loss_history, 'o', label='batchnorm') plt.subplot(3, 1, 2) plt.plot(solver.train_acc_history, '-o', label='baseline') plt.plot(bn_solver.train_acc_history, '-o', label='batchnorm') plt.subplot(3, 1, 3) plt.plot(solver.val_acc_history, '-o', label='baseline') plt.plot(bn_solver.val_acc_history, '-o', label='batchnorm') for i in [1, 2, 3]: plt.subplot(3, 1, i) plt.legend(loc='upper center', ncol=4) plt.gcf().set_size_inches(15, 15) plt.show() # Try training a very deep net with batchnorm hidden_dims = [50, 50, 50, 50, 50, 50, 50] num_train = 1000 small_data = { 'X_train': data['X_train'][:num_train], 'y_train': data['y_train'][:num_train], 'X_val': data['X_val'], 'y_val': data['y_val'], } bn_solvers = {} solvers = {} weight_scales = np.logspace(-4, 0, num=20) for i, weight_scale in enumerate(weight_scales): print 'Running weight scale %d / %d' % (i + 1, len(weight_scales)) bn_model = FullyConnectedNet(hidden_dims, weight_scale=weight_scale, use_batchnorm=True) model = FullyConnectedNet(hidden_dims, weight_scale=weight_scale, use_batchnorm=False) bn_solver = Solver(bn_model, small_data, num_epochs=10, batch_size=50, update_rule='adam', optim_config={ 'learning_rate': 1e-3, }, verbose=False, print_every=200) bn_solver.train() bn_solvers[weight_scale] = bn_solver solver = Solver(model, small_data, num_epochs=10, batch_size=50, update_rule='adam', optim_config={ 'learning_rate': 1e-3, }, verbose=False, print_every=200) solver.train() solvers[weight_scale] = solver np.array(solvers[weight_scales[-2]].loss_history).mean() # Plot results of weight scale experiment best_train_accs, bn_best_train_accs = [], [] best_val_accs, bn_best_val_accs = [], [] final_train_loss, bn_final_train_loss = [], [] for ws in weight_scales: best_train_accs.append(max(solvers[ws].train_acc_history)) bn_best_train_accs.append(max(bn_solvers[ws].train_acc_history)) best_val_accs.append(max(solvers[ws].val_acc_history)) bn_best_val_accs.append(max(bn_solvers[ws].val_acc_history)) final_train_loss.append(np.mean(solvers[ws].loss_history)) bn_final_train_loss.append(np.mean(bn_solvers[ws].loss_history)) plt.subplot(3, 1, 1) plt.title('Best val accuracy vs weight initialization scale') plt.xlabel('Weight initialization scale') plt.ylabel('Best val accuracy') plt.semilogx(weight_scales, best_val_accs, '-o', label='baseline') plt.semilogx(weight_scales, bn_best_val_accs, '-o', label='batchnorm') plt.legend(ncol=2, loc='lower right') plt.subplot(3, 1, 2) plt.title('Best train accuracy vs weight initialization scale') plt.xlabel('Weight initialization scale') plt.ylabel('Best training accuracy') plt.semilogx(weight_scales, best_train_accs, '-o', label='baseline') plt.semilogx(weight_scales, bn_best_train_accs, '-o', label='batchnorm') plt.legend() plt.subplot(3, 1, 3) plt.title('Final training loss vs weight initialization scale') plt.xlabel('Weight initialization scale') plt.ylabel('Final training loss') plt.semilogx(weight_scales, final_train_loss, '-o', label='baseline') plt.semilogx(weight_scales, bn_final_train_loss, '-o', label='batchnorm') plt.legend() plt.gcf().set_size_inches(10, 15) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Connect to Spark Step2: Read a GeoTiff file Step3: Visualization Step4: Interactive visualization Step5: Histogram
<ASSISTANT_TASK:> Python Code: #Add all dependencies to PYTHON_PATH import sys sys.path.append("/usr/lib/spark/python") sys.path.append("/usr/lib/spark/python/lib/py4j-0.10.4-src.zip") sys.path.append("/usr/lib/python3/dist-packages") #Define environment variables import os os.environ["HADOOP_CONF_DIR"] = "/etc/hadoop/conf" os.environ["PYSPARK_PYTHON"] = "python3" os.environ["PYSPARK_DRIVER_PYTHON"] = "ipython" #Load PySpark to connect to a Spark cluster from pyspark import SparkConf, SparkContext #from osgeo import gdal #To read GeoTiffs as a ByteArray from io import BytesIO from rasterio.io import MemoryFile appName = "plot_GeoTiff" masterURL="spark://pheno0.phenovari-utwente.surf-hosted.nl:7077" #A context needs to be created if it does not already exist try: sc.stop() except NameError: print("A new Spark Context will be created.") sc = SparkContext(conf = SparkConf().setAppName(appName).setMaster(masterURL)) file_path = "hdfs:///user/pheno/modis/Onset_Greenness_Increase/clusters_10_35.tif" data = sc.binaryFiles(file_path).take(1) dataByteArray = bytearray(data[0][1]) #If it is needed to convert to a numpy array #import numpy as np #file_bytes = np.asarray(dataByteArray, dtype=np.uint8) #Lets check if the files was read correctly by printing its metadata with MemoryFile(dataByteArray) as memfile: with memfile.open() as dataset: print(dataset.profile) import matplotlib.pyplot as plt import rasterio from rasterio import plot %matplotlib notebook with MemoryFile(dataByteArray) as memfile: with memfile.open() as dataset: plot.show((dataset,1)) #Define variables so they can be re-used. memfile = MemoryFile(dataByteArray) dataset = memfile.open() %matplotlib notebook fig, (axr, axg, axb) = plt.subplots(1,3, figsize=(12, 4), sharex=True, sharey=True) plot.show((dataset, 1), title='band 1', ax=axr) #plot.show((dataset, 2), title='band 2', ax=axg) #plot.show((dataset, 3), title='band 3', ax=axb) %matplotlib inline plot.show_hist(dataset)#, bins=250) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Complete graph Laplacian Step3: The Laplacian Matrix is a matrix that is extremely important in graph theory and numerical analysis. It is defined as $L=D-A$. Where $D$ is the degree matrix and $A$ is the adjecency matrix. For the purpose of this problem you don't need to understand the details of these matrices, although their definitions are relatively simple. Step5: The adjacency matrix for $K_n$ is an $n \times n$ matrix with zeros along the diagonal and ones everywhere else. Write a function to compute the adjacency matrix for $K_n$ using NumPy. Step6: Use NumPy to explore the eigenvalues or spectrum of the Laplacian L of $K_n$. What patterns do you notice as $n$ changes? Create a conjecture about the general Laplace spectrum of $K_n$.
<ASSISTANT_TASK:> Python Code: import numpy as np %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns import networkx as nx K_5=nx.complete_graph(5) nx.draw(K_5) def complete_deg(n): Return the integer valued degree matrix D for the complete graph K_n. f=np.zeros((n,n), dtype=int) #creates integer matrix of size nxn t=np.diag(np.diag(f)+(n-1)) #makes the diagonal n-1 and zeros elsewhere return t D = complete_deg(5) assert D.shape==(5,5) assert D.dtype==np.dtype(int) assert np.all(D.diagonal()==4*np.ones(5)) assert np.all(D-np.diag(D.diagonal())==np.zeros((5,5),dtype=int)) def complete_adj(n): Return the integer valued adjacency matrix A for the complete graph K_n. x=np.zeros((n,n), dtype=int) #creates integer matrix of size nxn o=np.ones((n,n), dtype=int) #makes the diagonal 0 and ones elsewhere return o+np.diag(np.diag(x)+-1) A = complete_adj(5) assert A.shape==(5,5) assert A.dtype==np.dtype(int) assert np.all(A+np.eye(5,dtype=int)==np.ones((5,5),dtype=int)) d=complete_deg(5) #calling function a=complete_adj(5) #calling function L=d-a #finding difference np.linalg.eigvals(L) #eigenvalue answer <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Below is the outline of processing chain. Step2: The color code Step3: For any tables or relational expressions derived from them, you may see all the attributes using the heading attribute. Step4: Note that the attributes above the dividing line --- comprise the primary key, i.e. identifying information used for matching data across different tables. Step5: To fetch the contents of a table or a derived relational expression into a numpy record array, use the fetch method.
<ASSISTANT_TASK:> Python Code: %pylab inline import datajoint as dj from pipeline import mice, experiment, vis, preprocess, tuning pylab.rcParams['figure.figsize'] = (8, 8) # make figures bigger erd = dj.ERD(preprocess.Sync) - 2 erd += dj.ERD(preprocess.Spikes) - 3 erd += experiment.Session erd += dj.ERD(tuning.MonetRF.Map) - 1 erd.draw() experiment.Session().show_definition(); experiment.Session().heading experiment.Session() data = experiment.Session().fetch() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Before getting started with Step2: Adding events Step3: Adding ~mne.Epochs Step4: Adding ~mne.Evoked Step5: Adding ~mne.Covariance Step6: Adding ~mne.Projection vectors Step7: Adding ~mne.preprocessing.ICA Step8: Adding MRI with BEM Step9: Adding coregistration Step10: Adding a ~mne.Forward solution Step11: Adding an ~mne.minimum_norm.InverseOperator Step12: Adding a ~mne.SourceEstimate Step13: Adding source code (e.g., a Python script) Step14: Adding custom figures Step15: The Step16: Adding image files Step17: Working with tags Step18: Editing a saved report Step19: The saved report can be read back and modified or amended. This allows the Step20: To make this even easier, Step21: With the context manager, the updated report is also automatically saved Step22: By default, the power spectral density and SSP projectors of the Step23: This time we'll pass a specific subject and subjects_dir (even though Step24: Now let's look at how Step25: If you want to actually view the noise covariance in the report, make sure
<ASSISTANT_TASK:> Python Code: from pathlib import Path import tempfile import numpy as np import scipy.ndimage import matplotlib.pyplot as plt import mne data_path = Path(mne.datasets.sample.data_path(verbose=False)) sample_dir = data_path / 'MEG' / 'sample' subjects_dir = data_path / 'subjects' raw_path = sample_dir / 'sample_audvis_filt-0-40_raw.fif' raw = mne.io.read_raw(raw_path) raw.pick_types(eeg=True, eog=True).crop(tmax=60).load_data() report = mne.Report(title='Raw example') # This method also accepts a path, e.g., raw=raw_path report.add_raw(raw=raw, title='Raw', psd=False) # omit PSD plot report.save('report_raw.html', overwrite=True) events_path = sample_dir / 'sample_audvis_filt-0-40_raw-eve.fif' events = mne.read_events(events_path) sfreq = raw.info['sfreq'] report = mne.Report(title='Events example') report.add_events(events=events_path, title='Events from Path', sfreq=sfreq) report.add_events(events=events, title='Events from "events"', sfreq=sfreq) report.save('report_events.html', overwrite=True) epochs = mne.Epochs(raw=raw, events=events) report = mne.Report(title='Epochs example') report.add_epochs(epochs=epochs, title='Epochs from "epochs"') report.save('report_epochs.html', overwrite=True) evoked_path = sample_dir / 'sample_audvis-ave.fif' cov_path = sample_dir / 'sample_audvis-cov.fif' evokeds = mne.read_evokeds(evoked_path, baseline=(None, 0)) evokeds_subset = evokeds[:2] # The first two for evoked in evokeds_subset: evoked.pick('eeg') # just for speed of plotting report = mne.Report(title='Evoked example') report.add_evokeds( evokeds=evokeds_subset, titles=['evoked 1', # Manually specify titles 'evoked 2'], noise_cov=cov_path, n_time_points=5 ) report.save('report_evoked.html', overwrite=True) cov_path = sample_dir / 'sample_audvis-cov.fif' report = mne.Report(title='Covariance example') report.add_covariance(cov=cov_path, info=raw_path, title='Covariance') report.save('report_cov.html', overwrite=True) ecg_proj_path = sample_dir / 'sample_audvis_ecg-proj.fif' eog_proj_path = sample_dir / 'sample_audvis_eog-proj.fif' report = mne.Report(title='Projectors example') report.add_projs(info=raw_path, title='Projs from info') report.add_projs(info=raw_path, projs=ecg_proj_path, title='ECG projs from path') report.add_projs(info=raw_path, projs=eog_proj_path, title='EOG projs from path') report.save('report_projs.html', overwrite=True) ica = mne.preprocessing.ICA( n_components=5, # fit 5 ICA components fit_params=dict(tol=0.01) # assume very early on that ICA has converged ) ica.fit(inst=raw) # create epochs based on EOG events, find EOG artifacts in the data via pattern # matching, and exclude the EOG-related ICA components eog_epochs = mne.preprocessing.create_eog_epochs(raw=raw) eog_components, eog_scores = ica.find_bads_eog( inst=eog_epochs, ch_name='EEG 001', # a channel close to the eye threshold=1 # lower than the default threshold ) ica.exclude = eog_components report = mne.Report(title='ICA example') report.add_ica( ica=ica, title='ICA cleaning', picks=[0, 1], # only plot the first two components inst=raw, eog_evoked=eog_epochs.average(), eog_scores=eog_scores, n_jobs=1 # could be increased! ) report.save('report_ica.html', overwrite=True) report = mne.Report(title='BEM example') report.add_bem( subject='sample', subjects_dir=subjects_dir, title='MRI & BEM', decim=20 ) report.save('report_mri_and_bem.html', overwrite=True) trans_path = sample_dir / 'sample_audvis_raw-trans.fif' report = mne.Report(title='Coregistration example') report.add_trans( trans=trans_path, info=raw_path, subject='sample', subjects_dir=subjects_dir, title='Coregistration' ) report.save('report_coregistration.html', overwrite=True) fwd_path = sample_dir / 'sample_audvis-meg-oct-6-fwd.fif' report = mne.Report(title='Forward solution example') report.add_forward(forward=fwd_path, title='Forward solution') report.save('report_forward_sol.html', overwrite=True) inverse_op_path = sample_dir / 'sample_audvis-meg-oct-6-meg-inv.fif' report = mne.Report(title='Inverse operator example') report.add_inverse_operator( inverse_operator=inverse_op_path, title='Inverse operator' ) report.save('report_inverse_op.html', overwrite=True) stc_path = sample_dir / 'sample_audvis-meg' report = mne.Report(title='Source estimate example') report.add_stc( stc=stc_path, subject='sample', subjects_dir=subjects_dir, title='Source estimate', n_time_points=2 # few for speed ) report.save('report_inverse_sol.html', overwrite=True) mne_init_py_path = Path(mne.__file__) # __init__.py in the MNE-Python root mne_init_py_content = mne_init_py_path.read_text(encoding='utf-8') report = mne.Report(title='Code example') report.add_code( code=mne_init_py_path, title="Code from Path" ) report.add_code( code=mne_init_py_content, title="Code from string" ) report.save('report_code.html', overwrite=True) x = np.linspace(start=0, stop=10, num=100) y = x**2 fig, ax = plt.subplots() ax.plot(x, y, ls='--', lw=2, color='blue', label='my function') ax.set_xlabel('x') ax.set_ylabel('f(x)') ax.legend() report = mne.Report(title='Figure example') report.add_figure( fig=fig, title='A custom figure', caption='A blue dashed line reaches up into the sky …', image_format='PNG' ) report.save('report_custom_figure.html', overwrite=True) mne_logo_path = Path(mne.__file__).parent / 'icons' / 'mne_icon-cropped.png' fig_array = plt.imread(mne_logo_path) rotation_angles = np.linspace(start=0, stop=360, num=17) figs = [] captions = [] for angle in rotation_angles: # Rotate and remove some rounding errors to avoid Matplotlib warnings fig_array_rotated = scipy.ndimage.rotate(input=fig_array, angle=angle) fig_array_rotated = fig_array_rotated.clip(min=0, max=1) # Create the figure fig, ax = plt.subplots() ax.imshow(fig_array_rotated) ax.set_axis_off() # Store figure and caption figs.append(fig) captions.append(f'Rotation angle: {round(angle, 1)}°') report = mne.Report(title='Multiple figures example') report.add_figure(fig=figs, title='Fun with figures! 🥳', caption=captions) report.save('report_custom_figures.html', overwrite=True) report = mne.Report(title='Image example') report.add_image( image=mne_logo_path, title='MNE', caption='Powered by 🧠 🧠 🧠 around the world!' ) report.save('report_custom_image.html', overwrite=True) report = mne.Report(title='Tags example') report.add_image( image=mne_logo_path, title='MNE Logo', tags=('image', 'mne', 'logo', 'open-source') ) report.save('report_tags.html', overwrite=True) report = mne.Report(title='Saved report example', verbose=True) report.add_image(image=mne_logo_path, title='MNE 1') report.save('report_partial.hdf5', overwrite=True) report_from_disk = mne.open_report('report_partial.hdf5') report_from_disk.add_image(image=mne_logo_path, title='MNE 2') report_from_disk.save('report_partial.hdf5', overwrite=True) with mne.open_report('report_partial.hdf5') as report: report.add_image(image=mne_logo_path, title='MNE 3') report.save('report_final.html', overwrite=True) report = mne.Report(title='parse_folder example') report.parse_folder( data_path=data_path, pattern='*raw.fif', render_bem=False, raw_butterfly=False ) report.save('report_parse_folder_basic.html', overwrite=True) pattern = 'sample_audvis_filt-0-40_raw.fif' report = mne.Report(title='parse_folder example 2', raw_psd=True, projs=True) report.parse_folder( data_path=data_path, pattern=pattern, render_bem=False, raw_butterfly=False ) report.save('report_parse_folder_raw_psd_projs.html', overwrite=True) report = mne.Report( title='parse_folder example 3', subject='sample', subjects_dir=subjects_dir ) report.parse_folder(data_path=data_path, pattern='', mri_decim=25) report.save('report_parse_folder_mri_bem.html', overwrite=True) baseline = (None, 0) cov_fname = sample_dir / 'sample_audvis-cov.fif' pattern = 'sample_audvis-no-filter-ave.fif' evoked = mne.read_evokeds(sample_dir / pattern)[0] report = mne.Report( title='parse_folder example 4', baseline=baseline, cov_fname=cov_fname ) with tempfile.TemporaryDirectory() as path: evoked.save(Path(path) / pattern) report.parse_folder( path, pattern=pattern, render_bem=False, n_time_points_evokeds=5 ) report.save('report_parse_folder_evoked.html', overwrite=True) pattern = 'sample_audvis-cov.fif' info_fname = sample_dir / 'sample_audvis-ave.fif' report = mne.Report(title='parse_folder example 5', info_fname=info_fname) report.parse_folder( data_path, pattern=pattern, render_bem=False, n_time_points_evokeds=5 ) report.save('report_parse_folder_cov.html', overwrite=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <h3> Install Py-ART </h3> Step2: <h2> Plot into png </h2> Step3: <h2> Create animating PNG </h2>
<ASSISTANT_TASK:> Python Code: %bash rm -rf data mkdir data cd data RADAR=KIWA YEAR=2013 MONTH=07 DAY=23 HOUR=23 gsutil cp gs://gcp-public-data-nexrad-l2/$YEAR/$MONTH/$DAY/$RADAR/*_$RADAR_${YEAR}${MONTH}${DAY}${HOUR}0000_${YEAR}${MONTH}${DAY}${HOUR}5959.tar temp.tar tar xvf temp.tar rm *.tar ls # Based on # http://arm-doe.github.io/pyart/dev/auto_examples/plotting/plot_nexrad_multiple_moments.html # by Jonathan J. Helmus (jhelmus@anl.gov) import matplotlib.pyplot as plt import pyart def plot_data(filename): radar = pyart.io.read_nexrad_archive(infilename) display = pyart.graph.RadarDisplay(radar) fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(221) display.plot('velocity', 1, ax=ax, title='Doppler Velocity', colorbar_label='', axislabels=('', 'North South distance from radar (km)')) display.set_limits((-300, 300), (-300, 300), ax=ax) ax = fig.add_subplot(222) display.plot('reflectivity', 0, ax=ax, title='Reflectivity lowest', colorbar_label='', axislabels=('', '')) display.set_limits((-300, 300), (-300, 300), ax=ax) ax = fig.add_subplot(223) display.plot('reflectivity', 1, ax=ax, title='Reflectivity second', colorbar_label='') display.set_limits((-300, 300), (-300, 300), ax=ax) ax = fig.add_subplot(224) display.plot('cross_correlation_ratio', 0, ax=ax, title='Correlation Coefficient', colorbar_label='', axislabels=('East West distance from radar (km)', '')) display.set_limits((-300, 300), (-300, 300), ax=ax) plt.show() %writefile plot_pngs.py import matplotlib.pyplot as plt import pyart def plot_data(infilename, outpng): radar = pyart.io.read_nexrad_archive(infilename) display = pyart.graph.RadarDisplay(radar) fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(221) display.plot('velocity', 1, ax=ax, title='Doppler Velocity', colorbar_label='', axislabels=('', 'North South distance from radar (km)')) display.set_limits((-300, 300), (-300, 300), ax=ax) ax = fig.add_subplot(222) display.plot('reflectivity', 0, ax=ax, title='Reflectivity lowest', colorbar_label='', axislabels=('', '')) display.set_limits((-300, 300), (-300, 300), ax=ax) ax = fig.add_subplot(223) display.plot('reflectivity', 1, ax=ax, title='Reflectivity second', colorbar_label='') display.set_limits((-300, 300), (-300, 300), ax=ax) ax = fig.add_subplot(224) display.plot('cross_correlation_ratio', 0, ax=ax, title='Correlation Coefficient', colorbar_label='', axislabels=('East West distance from radar (km)', '')) display.set_limits((-300, 300), (-300, 300), ax=ax) fig.savefig(outpng) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='plot some radar data') parser.add_argument('nexrad', help="volume scan filename") parser.add_argument('png', help="output png filename") args = parser.parse_args() print "Plotting {} into {}".format(args.nexrad, args.png) plot_data(args.nexrad, args.png) %bash python plot_pngs.py data/KIWA20130723_235451_V06.gz radarplot.png %bash rm -rf images mkdir images for volumefile in $(ls data); do base=$(basename $volumefile) python plot_pngs.py data/$volumefile images/$base.png done <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create a smoothing Node with IsotropicSmooth Step2: Now, to use iterables and therefore smooth with different fwhm is as simple as that Step3: And to wrap it up. We need to create a workflow, connect the nodes and finally, can run the workflow in parallel. Step4: If we visualize the graph with exec, we can see where the parallelization actually takes place. Step5: If you look at the structure in the workflow directory, you can also see, that for each smoothing, a specific folder was created, i.e. _fwhm_16. Step6: Now, let's visualize the results! Step7: IdentityInterface (special use case of iterabels) Step8: Now, we can create the IdentityInterface Node Step9: That's it. Now, we can connect the output fields of this infosource node like any other node to wherever we want. Step10: For example, like
<ASSISTANT_TASK:> Python Code: from nipype import Node, Workflow from nipype.interfaces.fsl import BET, IsotropicSmooth # Initiate a skull stripping Node with BET skullstrip = Node(BET(mask=True, in_file='/data/ds102/sub-01/anat/sub-01_T1w.nii.gz'), name="skullstrip") isosmooth = Node(IsotropicSmooth(), name='iso_smooth') isosmooth.iterables = ("fwhm", [4, 8, 16]) # Create the workflow wf = Workflow(name="smoothflow") wf.base_dir = "/data" wf.connect(skullstrip, 'out_file', isosmooth, 'in_file') # Run it in parallel (one core for each smoothing kernel) wf.run('MultiProc', plugin_args={'n_procs': 3}) # Visualize the detailed graph from IPython.display import Image wf.write_graph(graph2use='exec', format='png', simple_form=True) Image(filename='/data/smoothflow/graph_detailed.dot.png') !tree /data/smoothflow -I '*txt|*pklz|report*|*.json|*js|*.dot|*.html' %pylab inline from nilearn import plotting plotting.plot_anat( '/data/ds102/sub-01/anat/sub-01_T1w.nii.gz', title='original', display_mode='z', cut_coords=(-20, -10, 0, 10, 20), annotate=False) plotting.plot_anat( '/data/smoothflow/skullstrip/sub-01_T1w_brain.nii.gz', title='skullstripped', display_mode='z', cut_coords=(-20, -10, 0, 10, 20), annotate=False) plotting.plot_anat( '/data/smoothflow/_fwhm_4/iso_smooth/sub-01_T1w_brain_smooth.nii.gz', title='FWHM=4', display_mode='z', cut_coords=(-20, -10, 0, 10, 20), annotate=False) plotting.plot_anat( '/data/smoothflow/_fwhm_8/iso_smooth/sub-01_T1w_brain_smooth.nii.gz', title='FWHM=8', display_mode='z', cut_coords=(-20, -10, 0, 10, 20), annotate=False) plotting.plot_anat( '/data/smoothflow/_fwhm_16/iso_smooth/sub-01_T1w_brain_smooth.nii.gz', title='FWHM=16', display_mode='z', cut_coords=(-20, -10, 0, 10, 20), annotate=False) # First, let's specify the list of input variables subject_list = ['sub-01', 'sub-02', 'sub-03', 'sub-04', 'sub-05'] session_list = ['run-1', 'run-2'] fwhm_widths = [4, 8] from nipype import IdentityInterface infosource = Node(IdentityInterface(fields=['subject_id', 'session_id', 'fwhm_id']), name="infosource") infosource.iterables = [('subject_id', subject_list), ('session_id', session_list), ('fwhm_id', fwhm_widths)] infosource.outputs workflow.connect([(infosource, selectfiles, [('subject_id', 'subject_id'), ('session_id', 'session_id')]), (infosource, smooth, [('fwhm_id', 'fwhm')]) ]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Overview Step2: This creates a new array of points that are the values of $\sin(x_i)$ at each point $x_i$ Step3: This plot shows that the points in this numerical array are an approximation to the actual function as they don't have the function's value at all possible points. In this case we know the actual function ($\sin(x)$). What if we only know the value of the function at a limited set of points, and don't know the analytical form of the function itself? This is common when the data points come from a set of measurements. Step4: Let's create the numerical data we will use to build our interpolation. Step5: To create our approximate function, we call interp1d as follows, with the numerical data. Options for the kind argument includes Step6: The sin_approx variabl that interp1d returns is a callable object that can be used to compute the approximate function at other points. Compute the approximate function on a fine grid Step7: Plot the original data points, along with the approximate interpolated values. It is quite amazing to see how the interpolation has done a good job of reconstructing the actual function with relatively few points. Step8: Let's look at the absolute error between the actual function and the approximate interpolated function Step9: 1d non-regular data Step10: Notice how the absolute error is larger in the intervals where there are no points. Step11: Here is the actual function we will use the generate our original dataset Step12: Build 1d arrays to use as the structured grid Step13: Build 2d arrays to use in computing the function on the grid points Step14: Here is a scatter plot of the points overlayed with the value of the function at those points Step15: You can see in this plot that the function is not smooth as we don't have its value on a fine grid. Step16: Compute the interpolated function on a fine grid Step17: Plot the original course grid of points, along with the interpolated function values on a fine grid Step18: Notice how the interpolated values (green points) are now smooth and continuous. The amazing thing is that the interpolation algorithm doesn't know anything about the actual function. It creates this nice approximation using only the original course grid (blue points). Step19: There is an important difference between griddata and the interp1d/interp2d Step20: Notice how we pass these 1d arrays to our function and don't use meshgrid Step21: It is clear that our grid is very unstructured Step22: To use griddata we need to compute the final (strcutured) grid we want to compute the interpolated function on
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np import seaborn as sns x = np.linspace(0,4*np.pi,10) x f = np.sin(x) print(f) c = np.cos(x) print (c) plt.plot(x, f, marker='o') plt.xlabel('x') plt.ylabel('f(x)'); from scipy.interpolate import interp1d x = np.linspace(0,4*np.pi,10) # only use 10 points to emphasize this is an approx f = np.sin(x) sin_approx = interp1d(x, f, kind='cubic') newx = np.linspace(0,4*np.pi,100) newf = sin_approx(newx) plt.plot(x, f, marker='o', linestyle='', label='original data') plt.plot(newx, newf, marker='.', label='interpolated'); plt.legend(); plt.xlabel('x') plt.ylabel('f(x)'); plt.plot(newx, np.abs(np.sin(newx)-sin_approx(newx))) plt.xlabel('x') plt.ylabel('Absolute error'); x = 4*np.pi*np.random.rand(15) f = np.sin(x) sin_approx = interp1d(x, f, kind='cubic') # We have to be careful about not interpolating outside the range newx = np.linspace(np.min(x), np.max(x),100) newf = sin_approx(newx) plt.plot(x, f, marker='o', linestyle='', label='original data') plt.plot(newx, newf, marker='.', label='interpolated'); plt.legend(); plt.xlabel('x') plt.ylabel('f(x)'); plt.plot(newx, np.abs(np.sin(newx)-sin_approx(newx))) plt.xlabel('x') plt.ylabel('Absolute error'); from scipy.interpolate import interp2d def wave2d(x, y): return np.sin(2*np.pi*x)*np.sin(3*np.pi*y) x = np.linspace(0.0, 1.0, 10) y = np.linspace(0.0, 1.0, 10) X, Y = np.meshgrid(x, y) Z = wave2d(X, Y) plt.pcolor(X, Y, Z) plt.colorbar(); plt.scatter(X, Y); plt.xlim(0,1) plt.ylim(0,1) plt.xlabel('x') plt.ylabel('y'); wave2d_approx = interp2d(X, Y, Z, kind='cubic') xnew = np.linspace(0.0, 1.0, 40) ynew = np.linspace(0.0, 1.0, 40) Xnew, Ynew = np.meshgrid(xnew, ynew) # We will use these in the scatter plot below Fnew = wave2d_approx(xnew, ynew) # The interpolating function automatically creates the meshgrid! Fnew.shape plt.pcolor(xnew, ynew, Fnew); plt.colorbar(); plt.scatter(X, Y, label='original points') plt.scatter(Xnew, Ynew, marker='.', color='green', label='interpolated points') plt.xlim(0,1) plt.ylim(0,1) plt.xlabel('x') plt.ylabel('y'); plt.legend(bbox_to_anchor=(1.2, 1), loc=2, borderaxespad=0.); from scipy.interpolate import griddata x = np.random.rand(100) y = np.random.rand(100) f = wave2d(x, y) plt.scatter(x, y); plt.xlim(0,1) plt.ylim(0,1) plt.xlabel('x') plt.ylabel('y'); xnew = np.linspace(x.min(), x.max(), 40) ynew = np.linspace(y.min(), y.max(), 40) Xnew, Ynew = np.meshgrid(xnew, ynew) Xnew.shape, Ynew.shape Fnew = griddata((x,y), f, (Xnew, Ynew), method='cubic', fill_value=0.0) Fnew.shape plt.pcolor(Xnew, Ynew, Fnew, label="points") plt.colorbar() plt.scatter(x, y, label='original points') plt.scatter(Xnew, Ynew, marker='.', color='green', label='interpolated points') plt.xlim(0,1) plt.ylim(0,1) plt.xlabel('x') plt.ylabel('y'); plt.legend(bbox_to_anchor=(1.2, 1), loc=2, borderaxespad=0.); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: import tensorflow as tf tf.compat.v1.disable_eager_execution() input = [10, 20, 30] def g(input): ds = tf.data.Dataset.from_tensor_slices(input) ds = ds.flat_map(lambda x: tf.data.Dataset.from_tensor_slices([x, x + 1, x + 2])) element = tf.compat.v1.data.make_one_shot_iterator(ds).get_next() result = [] with tf.compat.v1.Session() as sess: for _ in range(9): result.append(sess.run(element)) return result result = g(input) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: def modp(n: int, p: int): ret = 1 for i in range(n): ret = (2 * ret) % p return ret <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: And let´s load a data-set Step2: If you have holoviews installed, you can get an interactive figure Step3: Sometimes it is necessary to have a look at some statistics for each cycle and step. This can be done using the cycle_info_plot-method
<ASSISTANT_TASK:> Python Code: import cellpy from cellpy.utils import plotutils cell = cellpy.get("../testdata/hdf5/20160805_test001_45_cc.h5", mass=0.8) plotutils.raw_plot(cell) fig = plotutils.cycle_info_plot( cell, cycle=3, use_bokeh=False, ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Network Architecture Step2: Training Step3: Denoising Step4: Checking out the performance
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', validation_size=0) img = mnist.train.images[2] plt.imshow(img.reshape((28, 28)), cmap='Greys_r') learning_rate = 0.001 # Input and target placeholders inputs_ = tf.placeholder(tf.float32, shape=(None, 28, 28, 1), name="inputs") targets_ = tf.placeholder(tf.float32, shape=(None, 28, 28, 1), name="targets") ### Encoder conv1 = tf.layers.conv2d(inputs=inputs_, filters=16, kernel_size=(3, 3), padding='same', activation=tf.nn.relu) # Now 28x28x16 maxpool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=(2, 2), strides=(2, 2), padding='same') # Now 14x14x16 conv2 = tf.layers.conv2d(inputs=maxpool1, filters=8, kernel_size=(3, 3), padding='same', activation=tf.nn.relu) # Now 14x14x8 maxpool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=(2, 2), strides=(2, 2), padding='same') # Now 7x7x8 conv3 = tf.layers.conv2d(inputs=maxpool2, filters=8, kernel_size=(3, 3), padding='same', activation=tf.nn.relu) # Now 7x7x8 encoded = tf.layers.max_pooling2d(inputs=conv3, pool_size=(2, 2), strides=(2, 2), padding='same') # Now 4x4x8 ### Decoder upsample1 = tf.image.resize_nearest_neighbor(images=encoded, size=(7, 7)) # Now 7x7x8 conv4 = tf.layers.conv2d(inputs=upsample1, filters=8, kernel_size=(3, 3), padding='same', activation=tf.nn.relu) # Now 7x7x8 upsample2 = tf.image.resize_nearest_neighbor(images=conv4, size=(14, 14)) # Now 14x14x8 conv5 = tf.layers.conv2d(inputs=upsample2, filters=8, kernel_size=(3, 3), padding='same', activation=tf.nn.relu) # Now 14x14x8 upsample3 = tf.image.resize_nearest_neighbor(images=conv5, size=(28, 28)) # Now 28x28x8 conv6 = tf.layers.conv2d(inputs=upsample3, filters=16, kernel_size=(3, 3), padding='same', activation=tf.nn.relu) # Now 28x28x16 logits = tf.layers.conv2d(inputs=conv6, filters=1, kernel_size=(3, 3), padding='same', activation=None) #Now 28x28x1 # Pass logits through sigmoid to get reconstructed image decoded = tf.nn.sigmoid(logits, name="outputs") # Pass logits through sigmoid and calculate the cross-entropy loss loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=targets_, logits=logits) # Get cost and define the optimizer cost = tf.reduce_mean(loss) opt = tf.train.AdamOptimizer(learning_rate).minimize(cost) sess = tf.Session() epochs = 10 batch_size = 200 sess.run(tf.global_variables_initializer()) for e in range(epochs): for ii in range(mnist.train.num_examples//batch_size): batch = mnist.train.next_batch(batch_size) imgs = batch[0].reshape((-1, 28, 28, 1)) batch_cost, _ = sess.run([cost, opt], feed_dict={inputs_: imgs, targets_: imgs}) print("Epoch: {}/{}...".format(e+1, epochs), "Training loss: {:.4f}".format(batch_cost)) fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4)) in_imgs = mnist.test.images[:10] reconstructed = sess.run(decoded, feed_dict={inputs_: in_imgs.reshape((10, 28, 28, 1))}) for images, row in zip([in_imgs, reconstructed], axes): for img, ax in zip(images, row): ax.imshow(img.reshape((28, 28)), cmap='Greys_r') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) fig.tight_layout(pad=0.1) sess.close() learning_rate = 0.001 inputs_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='inputs') targets_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='targets') ### Encoder conv1 = tf.layers.conv2d(inputs=inputs_, filters=32, kernel_size=(3, 3), padding='same', activation=tf.nn.relu) # Now 28x28x32 maxpool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=(2, 2), strides=(2, 2), padding='same') # Now 14x14x32 conv2 = tf.layers.conv2d(inputs=maxpool1, filters=32, kernel_size=(3, 3), padding='same', activation=tf.nn.relu) # Now 14x14x32 maxpool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=(2, 2), strides=(2, 2), padding='same') # Now 7x7x32 conv3 = tf.layers.conv2d(inputs=maxpool2, filters=16, kernel_size=(3, 3), padding='same', activation=tf.nn.relu) # Now 7x7x16 encoded = tf.layers.max_pooling2d(inputs=conv3, pool_size=(2, 2), strides=(2, 2), padding='same') # Now 4x4x16 ### Decoder upsample1 = tf.image.resize_nearest_neighbor(images=encoded, size=(7, 7)) # Now 7x7x16 conv4 = tf.layers.conv2d(inputs=upsample1, filters=16, kernel_size=(3, 3), padding='same', activation=tf.nn.relu) # Now 7x7x16 upsample2 = tf.image.resize_nearest_neighbor(images=conv4, size=(14, 14)) # Now 14x14x16 conv5 = tf.layers.conv2d(inputs=upsample2, filters=32, kernel_size=(3, 3), padding='same', activation=tf.nn.relu) # Now 14x14x32 upsample3 = tf.image.resize_nearest_neighbor(images=conv5, size=(28, 28)) # Now 28x28x32 conv6 = tf.layers.conv2d(inputs=upsample3, filters=32, kernel_size=(3, 3), padding='same', activation=tf.nn.relu) # Now 28x28x32 logits = tf.layers.conv2d(inputs=conv6, filters=1, kernel_size=(3, 3), padding='same', activation=None) #Now 28x28x1 # Pass logits through sigmoid to get reconstructed image decoded = tf.nn.sigmoid(logits, name="outputs") # Pass logits through sigmoid and calculate the cross-entropy loss loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=targets_, logits=logits) # Get cost and define the optimizer cost = tf.reduce_mean(loss) opt = tf.train.AdamOptimizer(learning_rate).minimize(cost) sess = tf.Session() epochs = 10 batch_size = 500 # Set's how much noise we're adding to the MNIST images noise_factor = 0.5 sess.run(tf.global_variables_initializer()) for e in range(epochs): for ii in range(mnist.train.num_examples//batch_size): batch = mnist.train.next_batch(batch_size) # Get images from the batch imgs = batch[0].reshape((-1, 28, 28, 1)) # Add random noise to the input images noisy_imgs = imgs + noise_factor * np.random.randn(*imgs.shape) # Clip the images to be between 0 and 1 noisy_imgs = np.clip(noisy_imgs, 0., 1.) # Noisy images as inputs, original images as targets batch_cost, _ = sess.run([cost, opt], feed_dict={inputs_: noisy_imgs, targets_: imgs}) print("Epoch: {}/{}...".format(e+1, epochs), "Training loss: {:.4f}".format(batch_cost)) fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4)) in_imgs = mnist.test.images[:10] noisy_imgs = in_imgs + noise_factor * np.random.randn(*in_imgs.shape) noisy_imgs = np.clip(noisy_imgs, 0., 1.) reconstructed = sess.run(decoded, feed_dict={inputs_: noisy_imgs.reshape((10, 28, 28, 1))}) for images, row in zip([noisy_imgs, reconstructed], axes): for img, ax in zip(images, row): ax.imshow(img.reshape((28, 28)), cmap='Greys_r') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) fig.tight_layout(pad=0.1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the data Step2: Data exploration Step3: Helper functions Step4: Ridge regression model fitting Step5: Ridge regression on subsets Step6: Applying a higher L2 value Step7: Selecting an L2 penalty via cross-validation Step8: Minimize the l2 by using cross validation Step9: Use the best l2 to train the model on all the data
<ASSISTANT_TASK:> Python Code: import pandas as pd import matplotlib.pyplot as plt from sklearn import linear_model import numpy as np from math import ceil dtype_dict = {'bathrooms':float, 'waterfront':int, 'sqft_above':int, 'sqft_living15':float, 'grade':int, 'yr_renovated':int, 'price':float, 'bedrooms':float, 'zipcode':str, 'long':float, 'sqft_lot15':float, 'sqft_living':float, 'floors':float, 'condition':int, 'lat':float, 'date':str, 'sqft_basement':int, 'yr_built':int, 'id':str, 'sqft_lot':int, 'view':int} regressionDir = '/home/weenkus/workspace/Machine Learning - University of Washington/Regression/datasets/' sales = pd.read_csv(regressionDir + 'kc_house_data.csv', dtype = dtype_dict) sales = sales.sort(['sqft_living','price']) # dtype_dict same as above set_1 = pd.read_csv(regressionDir + 'wk3_kc_house_set_1_data.csv', dtype=dtype_dict) set_2 = pd.read_csv(regressionDir + 'wk3_kc_house_set_2_data.csv', dtype=dtype_dict) set_3 = pd.read_csv(regressionDir + 'wk3_kc_house_set_3_data.csv', dtype=dtype_dict) set_4 = pd.read_csv(regressionDir + 'wk3_kc_house_set_4_data.csv', dtype=dtype_dict) train_valid_shuffled = pd.read_csv(regressionDir + 'wk3_kc_house_train_valid_shuffled.csv', dtype=dtype_dict) test = pd.read_csv(regressionDir + 'wk3_kc_house_test_data.csv', dtype=dtype_dict) training = pd.read_csv(regressionDir + 'wk3_kc_house_train_data.csv', dtype=dtype_dict) # Show plots in jupyter %matplotlib inline sales.head() sales['price'].head() def polynomial_dataframe(feature, degree): # feature is pandas.Series type # assume that degree >= 1 # initialize the dataframe: poly_dataframe = pd.DataFrame() # and set poly_dataframe['power_1'] equal to the passed feature poly_dataframe['power_1'] = feature # first check if degree > 1 if degree > 1: # then loop over the remaining degrees: for power in range(2, degree+1): # first we'll give the column a name: name = 'power_' + str(power) # assign poly_dataframe[name] to be feature^power; use apply(*) poly_dataframe[name] = feature; poly_dataframe[name] = poly_dataframe[name].apply(lambda x: x**power) return poly_dataframe poly15_data = polynomial_dataframe(sales['sqft_living'], 15) # use equivalent of `polynomial_sframe` print(poly15_data) l2_small_penalty = 1.5e-5 model = linear_model.Ridge(alpha=l2_small_penalty, normalize=True) model.fit(poly15_data, sales['price']) model.coef_ plt.plot(poly15_data, model.predict(poly15_data), poly15_data, sales['price']) plt.show() l2_small_penalty=1e-9 poly15_data_set1 = polynomial_dataframe(set_1['sqft_living'], 15) # use equivalent of `polynomial_sframe` model1 = linear_model.Ridge(alpha=l2_small_penalty, normalize=True) model1.fit(poly15_data_set1, set_1['price']) poly15_data_set2 = polynomial_dataframe(set_2['sqft_living'], 15) # use equivalent of `polynomial_sframe` model2 = linear_model.Ridge(alpha=l2_small_penalty, normalize=True) model2.fit(poly15_data_set2, set_2['price']) poly15_data_set3 = polynomial_dataframe(set_3['sqft_living'], 15) # use equivalent of `polynomial_sframe` model3 = linear_model.Ridge(alpha=l2_small_penalty, normalize=True) model3.fit(poly15_data_set3, set_3['price']) poly15_data_set4 = polynomial_dataframe(set_4['sqft_living'], 15) # use equivalent of `polynomial_sframe` model4 = linear_model.Ridge(alpha=l2_small_penalty, normalize=True) model4.fit(poly15_data_set4, set_4['price']) plt.plot(poly15_data_set1, model1.predict(poly15_data_set1), poly15_data_set1, set_1['price']) plt.show() plt.plot(poly15_data_set2, model2.predict(poly15_data_set2), poly15_data_set2, set_2['price']) plt.show() plt.plot(poly15_data_set3, model3.predict(poly15_data_set3), poly15_data_set3, set_3['price']) plt.show() plt.plot(poly15_data_set4, model4.predict(poly15_data_set4), poly15_data_set4, set_4['price']) plt.show() print('Model 1 coefficients: ', model1.coef_) print('Model 2 coefficients: ', model2.coef_) print('Model 3 coefficients: ', model3.coef_) print('Model 4 coefficients: ', model4.coef_) l2_large_penalty=1.23e2 poly15_data_set1 = polynomial_dataframe(set_1['sqft_living'], 15) # use equivalent of `polynomial_sframe` model1 = linear_model.Ridge(alpha=l2_large_penalty, normalize=True) model1.fit(poly15_data_set1, set_1['price']) poly15_data_set2 = polynomial_dataframe(set_2['sqft_living'], 15) # use equivalent of `polynomial_sframe` model2 = linear_model.Ridge(alpha=l2_large_penalty, normalize=True) model2.fit(poly15_data_set2, set_2['price']) poly15_data_set3 = polynomial_dataframe(set_3['sqft_living'], 15) # use equivalent of `polynomial_sframe` model3 = linear_model.Ridge(alpha=l2_large_penalty, normalize=True) model3.fit(poly15_data_set3, set_3['price']) poly15_data_set4 = polynomial_dataframe(set_4['sqft_living'], 15) # use equivalent of `polynomial_sframe` model4 = linear_model.Ridge(alpha=l2_large_penalty, normalize=True) model4.fit(poly15_data_set4, set_4['price']) plt.plot(poly15_data_set1, model1.predict(poly15_data_set1), poly15_data_set1, set_1['price']) plt.show() plt.plot(poly15_data_set2, model2.predict(poly15_data_set2), poly15_data_set2, set_2['price']) plt.show() plt.plot(poly15_data_set3, model3.predict(poly15_data_set3), poly15_data_set3, set_3['price']) plt.show() plt.plot(poly15_data_set4, model4.predict(poly15_data_set4), poly15_data_set4, set_4['price']) plt.show() print('Model 1 coefficients: ', model1.coef_) print('Model 2 coefficients: ', model2.coef_) print('Model 3 coefficients: ', model3.coef_) print('Model 4 coefficients: ', model4.coef_) def k_fold_cross_validation(k, l2_penalty, data, output): n = len(data) sumRSS = 0 for i in range(k): # Get the validation/training interval start = (n*i)/k end = (n*(i+1))/k-1 #print (i, (ceil(start), ceil(end))) train_valid_shuffled[0:ceil(start)].append(train_valid_shuffled[ceil(end)+1:n]) # Train the model model = linear_model.Ridge(alpha=l2_penalty, normalize=True) model.fit(data, output) # Calculate RSS RSS = (abs(output - model.predict(data)) ** 2).sum() # Add the RSS to the sum for computing the average sumRSS += RSS return (sumRSS / k) print (k_fold_cross_validation(10, 1e-9, poly15_data_set2, set_2['price'])) import sys l2s = np.logspace(3, 9, num=13) train_valid_shuffled_poly15 = polynomial_dataframe(train_valid_shuffled['sqft_living'], 15) k = 10 minError = sys.maxsize for l2 in l2s: avgError = k_fold_cross_validation(k, l2, train_valid_shuffled_poly15, train_valid_shuffled['price']) print ('For l2:', l2, ' the CV is ', avgError) if avgError < minError: minError = avgError bestl2 = l2 print (minError) print (bestl2) model = linear_model.Ridge(alpha=1000, normalize=True) model.fit(training[['sqft_living']], training['price']) print("Residual sum of squares: %.2f" % ((model.predict(test[['sqft_living']]) - test['price']) ** 2).sum()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Contents Step2: <a id='section2'></a> Step3: Here we have created a dictionary called state with a single item called Ts Step4: This dictionary holds the state variables for our model -- which is this case is a single number! It is a temperature in degrees Celsius. Step5: It is also possible to see this state dictionary as an xarray.Dataset object Step6: The object called ebm here is the entire model -- including its current state (the temperature Ts) as well as all the methods needed to integrated forward in time! Step7: Here is some internal information about the timestep of the model Step8: This says the timestep is 2592000 seconds (30 days!), and the model has taken 0 steps forward so far. Step9: The model got colder! Step10: This is another dictionary, now with two items. They should make sense to you. Step11: So why did the model get colder in the first timestep? Step12: The parameter tau is a property of the OutgoingLongwave subprocess Step13: and the parameter albedo is a property of the AbsorbedShortwave subprocess Step14: Let's make an exact clone of our model and then change these two parameters Step15: Now our model is out of equilibrium and the climate will change! Step16: Shoud the model warm up or cool down? Step17: Automatic timestepping Step18: <a id='section5'></a>
<ASSISTANT_TASK:> Python Code: # Ensure compatibility with Python 2 and 3 from __future__ import print_function, division %matplotlib inline import numpy as np import matplotlib.pyplot as plt import climlab # create a zero-dimensional domain with a single surface temperature state = climlab.surface_state(num_lat=1, # a single point water_depth = 100., # 100 meters slab of water (sets the heat capacity) ) state state['Ts'] state.Ts climlab.to_xarray(state) # create the longwave radiation process olr = climlab.radiation.Boltzmann(name='OutgoingLongwave', state=state, tau = 0.612, eps = 1., timestep = 60*60*24*30.) # Look at what we just created print(olr) # create the shortwave radiation process asr = climlab.radiation.SimpleAbsorbedShortwave(name='AbsorbedShortwave', state=state, insolation=341.3, albedo=0.299, timestep = 60*60*24*30.) # Look at what we just created print(asr) # couple them together into a single model ebm = olr + asr # Give the parent process name ebm.name = 'EnergyBalanceModel' # Examine the model object print(ebm) ebm.state ebm.Ts print(ebm.time['timestep']) print(ebm.time['steps']) ebm.step_forward() ebm.Ts ebm.diagnostics ebm.OLR ebm.ASR for name, process in ebm.subprocess.items(): print(name) print(process) ebm.subprocess['OutgoingLongwave'].tau ebm.subprocess['AbsorbedShortwave'].albedo ebm2 = climlab.process_like(ebm) print(ebm2) ebm2.subprocess['OutgoingLongwave'].tau = 0.57 ebm2.subprocess['AbsorbedShortwave'].albedo = 0.32 # Computes diagnostics based on current state but does not change the state ebm2.compute_diagnostics() ebm2.ASR - ebm2.OLR ebm2.Ts ebm2.step_forward() ebm2.Ts ebm3 = climlab.process_like(ebm2) ebm3.integrate_years(50) # What is the current temperature? ebm3.Ts # How close are we to energy balance? ebm3.ASR - ebm3.OLR # We should be able to accomplish the exact same thing with explicit timestepping for n in range(608): ebm2.step_forward() ebm2.Ts ebm2.ASR - ebm2.OLR %load_ext version_information %version_information numpy, matplotlib, climlab <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Image Classification Step2: Explore the Data Step5: Implement Preprocess Functions Step8: One-hot encode Step10: Randomize Data Step12: Check Point Step17: Build the network Step20: Convolution and Max Pooling Layer Step23: Flatten Layer Step26: Fully-Connected Layer Step29: Output Layer Step32: Create Convolutional Model Step35: Train the Neural Network Step37: Show Stats Step38: Hyperparameters Step40: Train on a Single CIFAR-10 Batch Step42: Fully Train the Model Step45: Checkpoint
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE from urllib.request import urlretrieve from os.path import isfile, isdir from tqdm import tqdm import problem_unittests as tests import tarfile cifar10_dataset_folder_path = 'cifar-10-batches-py' class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile('cifar-10-python.tar.gz'): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar: urlretrieve( 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz', 'cifar-10-python.tar.gz', pbar.hook) if not isdir(cifar10_dataset_folder_path): with tarfile.open('cifar-10-python.tar.gz') as tar: tar.extractall() tar.close() tests.test_folder_path(cifar10_dataset_folder_path) %matplotlib inline %config InlineBackend.figure_format = 'retina' import helper import numpy as np # Explore the dataset batch_id = 2 sample_id = 1 helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id) def normalize(x): Normalize a list of sample image data in the range of 0 to 1 : x: List of image data. The image shape is (32, 32, 3) : return: Numpy array of normalize data return x/255.0 DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_normalize(normalize) from sklearn import preprocessing def one_hot_encode(x): One hot encode a list of sample labels. Return a one-hot encoded vector for each label. : x: List of sample Labels : return: Numpy array of one-hot encoded labels # TODO: Implement Function lb = preprocessing.LabelBinarizer() labels = list(range(0, 10)) lb.fit(labels) one_hot = lb.transform(x) return one_hot DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_one_hot_encode(one_hot_encode) DON'T MODIFY ANYTHING IN THIS CELL # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode) DON'T MODIFY ANYTHING IN THIS CELL import pickle import problem_unittests as tests import helper # Load the Preprocessed Validation data valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb')) import tensorflow as tf # There are tensorflow-gpu settings, but gpu can not work becourse of the net is too big. from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.3 set_session(tf.Session(config=config)) def neural_net_image_input(image_shape): Return a Tensor for a batch of image input : image_shape: Shape of the images : return: Tensor for image input. # TODO: Implement Function x = tf.placeholder(tf.float32, shape=(None, image_shape[0], image_shape[1], image_shape[2]), name='x') return x def neural_net_label_input(n_classes): Return a Tensor for a batch of label input : n_classes: Number of classes : return: Tensor for label input. # TODO: Implement Function y = tf.placeholder(tf.float32, shape=(None, n_classes), name='y') return y def neural_net_keep_prob_input(): Return a Tensor for keep probability : return: Tensor for keep probability. # TODO: Implement Function keep_prob = tf.placeholder(tf.float32, name='keep_prob') return keep_prob DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tf.reset_default_graph() tests.test_nn_image_inputs(neural_net_image_input) tests.test_nn_label_inputs(neural_net_label_input) tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input) def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides): Apply convolution then max pooling to x_tensor :param x_tensor: TensorFlow Tensor :param conv_num_outputs: Number of outputs for the convolutional layer :param conv_ksize: kernal size 2-D Tuple for the convolutional layer :param conv_strides: Stride 2-D Tuple for convolution :param pool_ksize: kernal size 2-D Tuple for pool :param pool_strides: Stride 2-D Tuple for pool : return: A tensor that represents convolution and max pooling of x_tensor #input = tf.placeholder(tf.float32, (None, 32, 32, 3)) x_tensor_shape = x_tensor.get_shape().as_list() print('x_tensor_shape:\t{0}'.format(x_tensor_shape)) print('conv_num_outputs:{0}'.format(conv_num_outputs)) print('conv_ksize:\t{0}'.format(conv_ksize)) print('conv_strides:\t{0}'.format(conv_strides)) print('pool_ksize:\t{0}'.format(pool_ksize)) print('pool_strides:\t{0}'.format(pool_strides)) filter_weights = tf.Variable(tf.truncated_normal((conv_ksize[0], conv_ksize[1], x_tensor_shape[3], conv_num_outputs), mean=0.0, stddev = 0.05)) # (height, width, input_depth, output_depth) filter_bias = tf.Variable(tf.zeros(conv_num_outputs)) strides = [1, conv_strides[0], conv_strides[1], 1] # (batch, height, width, depth) conv_layer = tf.nn.conv2d(x_tensor, filter_weights, strides=strides, padding='SAME') conv_layer = tf.nn.bias_add(conv_layer, filter_bias) # conv_layer = conv_layer + filter_bias conv_layer = tf.nn.relu(conv_layer) # Apply Max Pooling conv_layer = tf.nn.max_pool( conv_layer, ksize=[1, pool_ksize[0], pool_ksize[1], 1], strides=[1, pool_strides[0], pool_strides[1], 1], padding='SAME') return conv_layer DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_con_pool(conv2d_maxpool) def flatten(x_tensor): Flatten x_tensor to (Batch Size, Flattened Image Size) : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions. : return: A tensor of size (Batch Size, Flattened Image Size). # TODO: Implement Function return tf.contrib.layers.flatten(x_tensor) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_flatten(flatten) def fully_conn(x_tensor, num_outputs): Apply a fully connected layer to x_tensor using weight and bias : x_tensor: A 2-D tensor where the first dimension is batch size. : num_outputs: The number of output that the new tensor should be. : return: A 2-D tensor where the second dimension is num_outputs. # TODO: Implement Function return tf.contrib.layers.fully_connected(x_tensor, num_outputs) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_fully_conn(fully_conn) def output(x_tensor, num_outputs): Apply a output layer to x_tensor using weight and bias : x_tensor: A 2-D tensor where the first dimension is batch size. : num_outputs: The number of output that the new tensor should be. : return: A 2-D tensor where the second dimension is num_outputs. # TODO: Implement Function return tf.contrib.layers.fully_connected(x_tensor, num_outputs, activation_fn=None) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_output(output) def conv_net(x, keep_prob): Create a convolutional neural network model : x: Placeholder tensor that holds image data. : keep_prob: Placeholder tensor that hold dropout keep probability. : return: Tensor that represents logits # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers # Play around with different number of outputs, kernel size and stride # Function Definition from Above: # conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) conv_num_outputs1 = 32 conv_ksize1 = (4, 4) conv_strides1 = (1, 1) pool_ksize1 = (2, 2) pool_strides1 = (2, 2) conv_layer1 = conv2d_maxpool(x, conv_num_outputs1, conv_ksize1, conv_strides1, pool_ksize1, pool_strides1) conv_layer1 = tf.nn.dropout(conv_layer1, keep_prob) conv_num_outputs2 = 64 conv_ksize2 = (4, 4) conv_strides2 = (1, 1) pool_ksize2 = (2, 2) pool_strides2 = (2, 2) conv_layer2 = conv2d_maxpool(x, conv_num_outputs2, conv_ksize2, conv_strides2, pool_ksize2, pool_strides2) conv_layer2 = tf.nn.dropout(conv_layer2, keep_prob) conv_num_outputs3 = 128 conv_ksize3 = (4, 4) conv_strides3 = (1, 1) pool_ksize3 = (2, 2) pool_strides3 = (2, 2) conv_layer3 = conv2d_maxpool(x, conv_num_outputs3, conv_ksize3, conv_strides3, pool_ksize3, pool_strides3) conv_layer3 = tf.nn.dropout(conv_layer3, keep_prob) # TODO: Apply a Flatten Layer # Function Definition from Above: # flatten(x_tensor) conv_layer_flatten = flatten(conv_layer3) print('conv_layer_flatten.shape:%s' %conv_layer_flatten.shape) # TODO: Apply 1, 2, or 3 Fully Connected Layers # Play around with different number of outputs # Function Definition from Above: # fully_conn(x_tensor, num_outputs) fc_num_outputs1 = 1024 fc_layer1 = fully_conn(conv_layer_flatten, fc_num_outputs1) fc_layer1 = tf.nn.dropout(fc_layer1, keep_prob) fc_num_outputs2 = 512 fc_layer2 = fully_conn(fc_layer1, fc_num_outputs2) fc_layer2 = tf.nn.dropout(fc_layer2, keep_prob) # TODO: Apply an Output Layer # Set this to the number of classes # Function Definition from Above: # output(x_tensor, num_outputs) num_outputs = 10 nn_output = output(fc_layer2, num_outputs) print('fc_num_outputs1:\t{0}'.format(fc_num_outputs1)) print('fc_num_outputs2:\t{0}'.format(fc_num_outputs2)) print('num_outputs:\t\t{0}'.format(num_outputs)) print('') # TODO: return output return nn_output DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE ############################## ## Build the Neural Network ## ############################## # Remove previous weights, bias, inputs, etc.. tf.reset_default_graph() # Inputs x = neural_net_image_input((32, 32, 3)) y = neural_net_label_input(10) keep_prob = neural_net_keep_prob_input() # Model logits = conv_net(x, keep_prob) # Name logits Tensor, so that is can be loaded from disk after training logits = tf.identity(logits, name='logits') # Loss and Optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)) optimizer = tf.train.AdamOptimizer().minimize(cost) # Accuracy correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy') tests.test_conv_net(conv_net) def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch): Optimize the session on a batch of images and labels : session: Current TensorFlow session : optimizer: TensorFlow optimizer function : keep_probability: keep probability : feature_batch: Batch of Numpy image data : label_batch: Batch of Numpy label data # TODO: Implement Function session.run(optimizer, feed_dict={keep_prob: keep_probability, x: feature_batch, y: label_batch}) pass DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_train_nn(train_neural_network) def print_stats(session, feature_batch, label_batch, cost, accuracy): Print information about loss and validation accuracy : session: Current TensorFlow session : feature_batch: Batch of Numpy image data : label_batch: Batch of Numpy label data : cost: TensorFlow cost function : accuracy: TensorFlow accuracy function # TODO: Implement Function loss = session.run(cost, feed_dict={ x: feature_batch, y: label_batch, keep_prob: 1.0 }) valid_accuracy = session.run(accuracy, feed_dict={ x: valid_features[0:400], y: valid_labels[0:400], keep_prob: 1.0 }) print('Loss: %.6f' %loss, end=' ') print('Validation Accuracy: %.6f' %valid_accuracy) pass # TODO: Tune Parameters epochs = 20 batch_size = 256 keep_probability = 0.5 DON'T MODIFY ANYTHING IN THIS CELL print('Checking the Training on a Single Batch...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): batch_i = 1 for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size): train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels) print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy) DON'T MODIFY ANYTHING IN THIS CELL save_model_path = './image_classification' print('Training...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): # Loop over all batches n_batches = 5 for batch_i in range(1, n_batches + 1): for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size): train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels) print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy) # Save Model saver = tf.train.Saver() save_path = saver.save(sess, save_model_path) DON'T MODIFY ANYTHING IN THIS CELL %matplotlib inline %config InlineBackend.figure_format = 'retina' import tensorflow as tf import pickle import helper import random # Set batch size if not already set try: if batch_size: pass except NameError: batch_size = 64 save_model_path = './image_classification' n_samples = 4 top_n_predictions = 3 def test_model(): Test the saved model against the test dataset test_features, test_labels = pickle.load(open('preprocess_training.p', mode='rb')) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load model loader = tf.train.import_meta_graph(save_model_path + '.meta') loader.restore(sess, save_model_path) # Get Tensors from loaded model loaded_x = loaded_graph.get_tensor_by_name('x:0') loaded_y = loaded_graph.get_tensor_by_name('y:0') loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') loaded_logits = loaded_graph.get_tensor_by_name('logits:0') loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0') # Get accuracy in batches for memory limitations test_batch_acc_total = 0 test_batch_count = 0 for train_feature_batch, train_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size): test_batch_acc_total += sess.run( loaded_acc, feed_dict={loaded_x: train_feature_batch, loaded_y: train_label_batch, loaded_keep_prob: 1.0}) test_batch_count += 1 print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count)) # Print Random Samples random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples))) random_test_predictions = sess.run( tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions), feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0}) helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions) test_model() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: BQPlot Step2: ipyvolume
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import pandas as pd from pandas.tools.plotting import scatter_matrix from sklearn.datasets import load_boston import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns sns.set_context('poster') sns.set_style('whitegrid') plt.rcParams['figure.figsize'] = 12, 8 # plotsize import warnings warnings.filterwarnings('ignore') # mixed feelings about this import import bqplot.pyplot as plt import numpy as np x = np.linspace(0, 2, 50) y = x**2 fig = plt.figure() scatter = plt.scatter(x, y) plt.show() fig.animation_duration = 500 scatter.y = 2 * x**.5 scatter.selected_style = {'stroke':'red', 'fill': 'orange'} plt.brush_selector(); scatter.selected scatter.selected = [1,2,10,40] import ipyvolume as ipv N = 1000 x, y, z = np.random.random((3, N)) fig = ipv.figure() scatter = ipv.scatter(x, y, z, marker='box') ipv.show() scatter.x = scatter.x - 0.5 scatter.x = x scatter.color = "green" scatter.size = 5 scatter.color = np.random.random((N,3)) scatter.size = 2 ex = ipv.datasets.animated_stream.fetch().data ex.shape ex[:, ::, ::4].shape ipv.figure() ipv.style.use('dark') quiver = ipv.quiver(*ipv.datasets.animated_stream.fetch().data[:,::,::4], size=5) ipv.animation_control(quiver, interval=200) ipv.show() ipv.style.use('light') ipv.style.use('light') quiver.geo = "cat" N = 1000*1000 x, y, z = np.random.random((3, N)).astype('f4') ipv.figure() s = ipv.scatter(x, y, z, size=0.2) ipv.show() ipv.save("3d-example-plot.html") !open 3d-example-plot.html <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Transfer learning vs. nightlights Step2: Panel B Step3: Randomization tests Step4: Panel D
<ASSISTANT_TASK:> Python Code: from fig_utils import * import matplotlib.pyplot as plt import time %matplotlib inline country_path = '../data/output/LSMS/pooled/' percentiles = [0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00] survey = 'lsms' dimension = 10 k = 10 k_inner = 5 trials = 5 poverty_line = 1.90 multiples = [1, 2, 3] t0 = time.time() compare_models(country_path, survey, percentiles, dimension, k, k_inner, trials, poverty_line, multiples) t1 = time.time() print 'Finished in {} seconds'.format(t1-t0) country_path = '../data/output/DHS/pooled/' percentiles = [0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00] survey = 'dhs' dimension = 10 k = 5 k_inner = 3 trials = 3 t0 = time.time() compare_models(country_path, survey, percentiles, dimension, k, k_inner, trials, poverty_line, multiples) t1 = time.time() print 'Finished in {} seconds'.format(t1-t0) # Parameters country_names = ['nigeria', 'tanzania', 'uganda', 'malawi', 'pooled'] country_paths = ['../data/output/LSMS/nigeria/', '../data/output/LSMS/tanzania/', '../data/output/LSMS/uganda/', '../data/output/LSMS/malawi/', '../data/output/LSMS/pooled/'] survey = 'lsms' dimension = 100 k = 3 k_inner = 3 points = 10 alpha_low = 0 alpha_high = 3 trials = 100 run_randomization_test(country_names, country_paths, survey, dimension, k, k_inner, points, alpha_low, alpha_high, trials) # Parameters country_names = ['nigeria', 'tanzania', 'uganda', 'malawi', 'rwanda', 'pooled'] country_paths = ['../data/output/DHS/nigeria/', '../data/output/DHS/tanzania/', '../data/output/DHS/uganda/', '../data/output/DHS/malawi/', '../data/output/DHS/rwanda/', '../data/output/DHS/pooled/'] survey = 'dhs' dimension = 100 k = 3 k_inner = 3 points = 10 alpha_low = 0 alpha_high = 3 trials = 100 run_randomization_test(country_names, country_paths, survey, dimension, k, k_inner, points, alpha_low, alpha_high, trials) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Initial set-up Step2: Plot steady-state and tau functions Step3: Combine model and experiments to produce Step4: Set up prior ranges for each parameter in the model. Step5: Run ABC calibration Step6: Analysis of results
<ASSISTANT_TASK:> Python Code: import os, tempfile import logging import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import numpy as np from ionchannelABC import theoretical_population_size from ionchannelABC import IonChannelDistance, EfficientMultivariateNormalTransition, IonChannelAcceptor from ionchannelABC.experiment import setup from ionchannelABC.visualization import plot_sim_results, plot_kde_matrix_custom import myokit from pyabc import Distribution, RV, History, ABCSMC from pyabc.epsilon import MedianEpsilon from pyabc.sampler import MulticoreEvalParallelSampler, SingleCoreSampler from pyabc.populationstrategy import ConstantPopulationSize from experiments.isus_wang import wang_act_and_kin from experiments.isus_courtemanche import courtemanche_deact from experiments.isus_firek import (firek_inact) from experiments.isus_nygren import (nygren_inact_kin, nygren_rec) modelfile = 'models/standardised_isus.mmt' from ionchannelABC.visualization import plot_variables sns.set_context('poster') V = np.arange(-80, 40, 0.01) sta_par_map = {'ri': 'isus.r_ss', 'si': 'isus.s_ss', 'rt': 'isus.tau_r', 'st': 'isus.tau_s'} f, ax = plot_variables(V, sta_par_map, modelfile, figshape=(2,2)) observations, model, summary_statistics = setup(modelfile, wang_act_and_kin, courtemanche_deact, firek_inact, nygren_inact_kin, nygren_rec) assert len(observations)==len(summary_statistics(model({}))) g = plot_sim_results(modelfile, wang_act_and_kin, courtemanche_deact, firek_inact, nygren_inact_kin, nygren_rec) limits = {'log_isus.p_1': (-7, 3), 'isus.p_2': (1e-7, 0.4), 'log_isus.p_3': (-7, 3), 'isus.p_4': (1e-7, 0.4), 'log_isus.p_5': (-7, 3), 'isus.p_6': (1e-7, 0.4), 'log_isus.p_7': (-7, 3), 'isus.p_8': (1e-7, 0.4)} prior = Distribution(**{key: RV("uniform", a, b - a) for key, (a,b) in limits.items()}) # Test this works correctly with set-up functions assert len(observations) == len(summary_statistics(model(prior.rvs()))) db_path = ("sqlite:///" + os.path.join(tempfile.gettempdir(), "standardised_isus.db")) logging.basicConfig() abc_logger = logging.getLogger('ABC') abc_logger.setLevel(logging.DEBUG) eps_logger = logging.getLogger('Epsilon') eps_logger.setLevel(logging.DEBUG) pop_size = theoretical_population_size(2, len(limits)) print("Theoretical minimum population size is {} particles".format(pop_size)) abc = ABCSMC(models=model, parameter_priors=prior, distance_function=IonChannelDistance( exp_id=list(observations.exp_id), variance=list(observations.variance), delta=0.05), population_size=ConstantPopulationSize(1000), summary_statistics=summary_statistics, transitions=EfficientMultivariateNormalTransition(), eps=MedianEpsilon(initial_epsilon=100), sampler=MulticoreEvalParallelSampler(n_procs=16), acceptor=IonChannelAcceptor()) obs = observations.to_dict()['y'] obs = {str(k): v for k, v in obs.items()} abc_id = abc.new(db_path, obs) history = abc.run(minimum_epsilon=0., max_nr_populations=100, min_acceptance_rate=0.01) history = abc.run(minimum_epsilon=0., max_nr_populations=100, min_acceptance_rate=0.01) history = History('sqlite:///results/standardised/isus/standardised_isus.db') df, w = history.get_distribution(m=0) df.describe() sns.set_context('poster') mpl.rcParams['font.size'] = 14 mpl.rcParams['legend.fontsize'] = 14 g = plot_sim_results(modelfile, wang_act_and_kin, courtemanche_deact, firek_inact, nygren_inact_kin, nygren_rec, df=df, w=w) plt.tight_layout() import pandas as pd N = 100 sta_par_samples = df.sample(n=N, weights=w, replace=True) sta_par_samples = sta_par_samples.set_index([pd.Index(range(N))]) sta_par_samples = sta_par_samples.to_dict(orient='records') sns.set_context('poster') mpl.rcParams['font.size'] = 14 mpl.rcParams['legend.fontsize'] = 14 f, ax = plot_variables(V, sta_par_map, modelfile, [sta_par_samples], figshape=(2,2)) plt.tight_layout() m,_,_ = myokit.load(modelfile) sns.set_context('paper') g = plot_kde_matrix_custom(df, w, limits=limits) plt.tight_layout() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now that we have our Dask DataFrame, we can start to create the EntitySet. Inferring Woodwork logical types for the columns in a Dask dataframe can be computationally expensive. To avoid this expense, logical type inference can be skipped by supplying a dictionary of logical types using the logical_types parameter when calling es.add_dataframe(). Logical types can be specified as Woodwork LogicalType classes, or their equivalent string representation. For more information refer to the Woodwork Typing in Featuretools guide. Step2: Notice that when we print our EntitySet, the number of rows for the DataFrame named dask_input_df is returned as a Dask Delayed object. This is because obtaining the length of a Dask DataFrame may require an expensive compute operation to sum up the lengths of all the individual partitions that make up the DataFrame and that operation is not performed by default. Step3: This feature matrix can be saved to disk or computed and brought into memory, using the appropriate Dask DataFrame methods. Step4: While this is a simple example to illustrate the process of using Dask DataFrames with Featuretools, this process will also work with an EntitySet containing multiple dataframes, as well as with aggregation primitives. Step5: Primitive Limitations
<ASSISTANT_TASK:> Python Code: import featuretools as ft import pandas as pd import dask.dataframe as dd id = [0, 1, 2, 3, 4] values = [12, -35, 14, 103, -51] df = pd.DataFrame({"id": id, "values": values}) dask_df = dd.from_pandas(df, npartitions=2) dask_df from woodwork.logical_types import Double, Integer es = ft.EntitySet(id="dask_es") es = es.add_dataframe(dataframe_name="dask_input_df", dataframe=dask_df, index="id", logical_types={"id": Integer, "values": Double}) es feature_matrix, features = ft.dfs(entityset=es, target_dataframe_name="dask_input_df", trans_primitives=["negate"], max_depth=1) feature_matrix fm_computed = feature_matrix.compute() fm_computed primitives_df = ft.list_primitives() dask_compatible_df = primitives_df[primitives_df["dask_compatible"] == True] dask_compatible_df.head() dask_compatible_df.tail() values_dict = {'values': [12, 103]} es.add_interesting_values(dataframe_name='dask_input_df', values=values_dict) es['dask_input_df'].ww.columns['values'].metadata <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We typically need the following libraries
<ASSISTANT_TASK:> Python Code: model = LogisticRegression() model.fit(dataset.data, dataset.target) expected = dataset.target predicted = model.predict(dataset.data) # classification metrics report builds a text report showing the main classification metrics # In pattern recognition and information retrieval with binary classification, # precision (also called positive predictive value) is the fraction of retrieved instances that are relevant, # while recall (also known as sensitivity) is the fraction of relevant instances that are retrieved. # Both precision and recall are therefore based on an understanding and measure of relevance. # Suppose a computer program for recognizing dogs in scenes from a video identifies 7 dogs in a scene containing 9 dogs # and some cats. If 4 of the identifications are correct, but 3 are actually cats, the program's precision is 4/7 # while its recall is 4/9. # In statistical analysis of binary classification, the F1 score (also F-score or F-measure) is a measure of a test's accuracy. # It considers both the precision p and the recall r of the test to compute the score: # p is the number of correct positive results divided by the number of all positive results, # and r is the number of correct positive results divided by the number of positive results that should have been returned. # The F1 score can be interpreted as a weighted average of the precision and recall print(metrics.classification_report(expected, predicted)) # Confusion matrix # https://en.wikipedia.org/wiki/Confusion_matrix # In the field of machine learning, a confusion matrix is a table layout that allows visualization of the performance # of an algorithm, typically a supervised learning one. # Each column of the matrix represents the instances in a predicted class # while each row represents the instances in an actual class (or vice-versa) # If a classification system has been trained to distinguish between cats, dogs and rabbits, # a confusion matrix will summarize the results of testing the algorithm for further inspection. # Assuming a sample of 27 animals — 8 cats, 6 dogs, and 13 rabbits, the resulting confusion matrix # could look like the table below: Image("http://www.opengardensblog.futuretext.com/wp-content/uploads/2016/01/confusion-matrix.jpg") # In this confusion matrix, of the 8 actual cats, the system predicted that three were dogs, # and of the six dogs, it predicted that one was a rabbit and two were cats. # We can see from the matrix that the system in question has trouble distinguishing between cats and dogs, # but can make the distinction between rabbits and other types of animals pretty well. # All correct guesses are located in the diagonal of the table, so it's easy to visually # inspect the table for errors, as they will be represented by values outside the diagonal. print (metrics.confusion_matrix(expected, predicted)) import pandas as pd integers_list = [1,3,5,7,9] # lists are seperated by square brackets print(integers_list) tuple_integers = 1,3,5,7,9 #tuples are seperated by commas and are immutable print(tuple_integers) tuple_integers[0] = 11 #Python strings can be in single or double quotes string_ds = "Data Science" string_iot = "Internet of Things" string_dsiot = string_ds + " for " + string_iot print (string_dsiot) len(string_dsiot) # sets are unordered collections with no duplicate elements prog_languages = set(['Python', 'Java', 'Scala']) prog_languages # Dictionaies are comma seperated key value pairs seperated by braces dict_marks = {'John':95, 'Mark': 100, 'Anna': 99} dict_marks['John'] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Connecting to National Data Service Step2: Deterioration Curves of West United states Step3: Filtering Null Values, Converting JSON format to Dataframes, and Calculating Mean Condition Ratings of Deck, Superstructure, and Substucture Step4: The calculated Mean Condition Ratings of deck, superstructure, and substructure are now stored in seperate dataframe for the convience. Step5: Deterioration Curves - Deck Step6: Deterioration Curve - Superstructure Step7: Deterioration Curves - Substructure Step8: The mean deterioration curve can be a measure to evaluate the rate of deterioration. If the condition rating of a bridge lies above the deterioration curve then the bridge is deteriorating at a slower pace than mean deterioration of the bridges, and if the condition rating of the bridge lies below the deterioration curve of the bridges then it is deteriorating at a faster pace than the mean deterioration of the bridges. Step9: Classification of all the bridges in the West United States
<ASSISTANT_TASK:> Python Code: import pymongo from pymongo import MongoClient import time import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import csv Client = MongoClient("mongodb://bridges:readonly@nbi-mongo.admin/bridge") db = Client.bridge collection = db["bridges"] def getData(state): pipeline = [{"$match":{"$and":[{"year":{"$gt":1991, "$lt":2017}},{"stateCode":state}]}}, {"$project":{"_id":0, "structureNumber":1, "yearBuilt":1, "deck":1, ## rating of deck "year":1, ## survey year "substructure":1, ## rating of substructure "superstructure":1, ## rating of superstructure }}] dec = collection.aggregate(pipeline) conditionRatings = pd.DataFrame(list(dec)) conditionRatings['Age'] = conditionRatings['year'] - conditionRatings['yearBuilt'] return conditionRatings def getMeanRatings(state,startAge, endAge, startYear, endYear): conditionRatings = getData(state) conditionRatings = conditionRatings[['structureNumber','Age','superstructure','deck','substructure','year']] conditionRatings = conditionRatings.loc[~conditionRatings['superstructure'].isin(['N','NA'])] conditionRatings = conditionRatings.loc[~conditionRatings['substructure'].isin(['N','NA'])] conditionRatings = conditionRatings.loc[~conditionRatings['deck'].isin(['N','NA'])] #conditionRatings = conditionRatings.loc[~conditionRatings['Structure Type'].isin([19])] #conditionRatings = conditionRatings.loc[~conditionRatings['Type of Wearing Surface'].isin(['6'])] maxAge = conditionRatings['Age'].unique() tempConditionRatingsDataFrame = conditionRatings.loc[conditionRatings['year'].isin([i for i in range(startYear, endYear+1, 1)])] MeanDeck = [] StdDeck = [] MeanSubstructure = [] StdSubstructure = [] MeanSuperstructure = [] StdSuperstructure = [] ## start point of the age to be = 1 and ending point = 100 for age in range(startAge,endAge+1,1): ## Select all the bridges from with age = i tempAgeDf = tempConditionRatingsDataFrame.loc[tempConditionRatingsDataFrame['Age'] == age] ## type conversion deck rating into int listOfMeanDeckOfAge = list(tempAgeDf['deck']) listOfMeanDeckOfAge = [ int(deck) for deck in listOfMeanDeckOfAge ] ## takeing mean and standard deviation of deck rating at age i meanDeck = np.mean(listOfMeanDeckOfAge) stdDeck = np.std(listOfMeanDeckOfAge) ## type conversion substructure rating into int listOfMeanSubstructureOfAge = list(tempAgeDf['substructure']) listOfMeanSubstructureOfAge = [ int(substructure) for substructure in listOfMeanSubstructureOfAge ] meanSub = np.mean(listOfMeanSubstructureOfAge) stdSub = np.std(listOfMeanSubstructureOfAge) ## type conversion substructure rating into int listOfMeanSuperstructureOfAge = list(tempAgeDf['superstructure']) listOfMeanSuperstructureOfAge = [ int(superstructure) for superstructure in listOfMeanSuperstructureOfAge ] meanSup = np.mean(listOfMeanSuperstructureOfAge) stdSup = np.std(listOfMeanSuperstructureOfAge) #Append Deck MeanDeck.append(meanDeck) StdDeck.append(stdDeck) #Append Substructure MeanSubstructure.append(meanSub) StdSubstructure.append(stdSub) #Append Superstructure MeanSuperstructure.append(meanSup) StdSuperstructure.append(stdSup) return [MeanDeck, StdDeck ,MeanSubstructure, StdSubstructure, MeanSuperstructure, StdSuperstructure] states = ['08','56','30','16','53','41','49','32','06','02','15'] # state code to state abbreviation stateNameDict = {'25':'MA', '04':'AZ', '08':'CO', '38':'ND', '09':'CT', '19':'IA', '26':'MI', '48':'TX', '35':'NM', '17':'IL', '51':'VA', '23':'ME', '16':'ID', '36':'NY', '56':'WY', '29':'MO', '39':'OH', '28':'MS', '11':'DC', '21':'KY', '18':'IN', '06':'CA', '47':'TN', '12':'FL', '24':'MD', '34':'NJ', '46':'SD', '13':'GA', '55':'WI', '30':'MT', '54':'WV', '15':'HI', '32':'NV', '37':'NC', '10':'DE', '33':'NH', '44':'RI', '50':'VT', '42':'PA', '05':'AR', '20':'KS', '45':'SC', '22':'LA', '40':'OK', '72':'PR', '41':'OR', '27':'MN', '53':'WA', '01':'AL', '31':'NE', '02':'AK', '49':'UT' } def getBulkMeanRatings(states, stateNameDict): # Initializaing the dataframes for deck, superstructure and subtructure df_mean_deck = pd.DataFrame({'Age':range(1,61)}) df_mean_sup = pd.DataFrame({'Age':range(1,61)}) df_mean_sub = pd.DataFrame({'Age':range(1,61)}) df_std_deck = pd.DataFrame({'Age':range(1,61)}) df_std_sup = pd.DataFrame({'Age':range(1,61)}) df_std_sub = pd.DataFrame({'Age':range(1,61)}) for state in states: meanDeck, stdDeck, meanSub, stdSub, meanSup, stdSup = getMeanRatings(state,1,100,1992,2016) stateName = stateNameDict[state] df_mean_deck[stateName] = meanDeck[:60] df_mean_sup[stateName] = meanSup[:60] df_mean_sub[stateName] = meanSub[:60] df_std_deck[stateName] = stdDeck[:60] df_std_sup[stateName] = stdSup[:60] df_std_sub[stateName] = stdSub[:60] return df_mean_deck, df_mean_sup, df_mean_sub, df_std_deck, df_std_sup, df_std_sub df_mean_deck, df_mean_sup, df_mean_sub, df_std_deck, df_std_sup, df_std_sub = getBulkMeanRatings(states, stateNameDict) %matplotlib inline palette = [ 'blue', 'blue', 'green', 'magenta', 'cyan', 'brown', 'grey', 'red','silver','purple', 'gold', 'black','olive' ] plt.figure(figsize = (10,8)) index = 0 for state in states: index = index + 1 stateName = stateNameDict[state] plt.plot(df_mean_deck['Age'],df_mean_deck[stateName], color = palette[index]) plt.legend([stateNameDict[state] for state in states],loc='upper right', ncol = 2) plt.xlim(1,60) plt.ylim(1,9) plt.title('Mean Deck Rating Vs Age') plt.xlabel('Age') plt.ylabel('Mean Deck Rating') plt.figure(figsize = (16,12)) plt.xlabel('Age') plt.ylabel('Mean') # Initialize the figure plt.style.use('seaborn-darkgrid') # create a color palette #palette = plt.get_cmap('gist_ncar') palette = [ 'blue', 'blue', 'green','magenta','cyan','brown','grey','red','silver','purple','gold','black','olive' ] # multiple line plot num=1 for column in df_mean_deck.drop('Age', axis=1): # Find the right spot on the plot plt.subplot(4,3, num) # Plot the lineplot plt.plot(df_mean_deck['Age'], df_mean_deck[column], marker='', color=palette[num], linewidth=4, alpha=0.9, label=column) # Same limits for everybody! plt.xlim(1,60) plt.ylim(1,9) # Not ticks everywhere if num in range(10) : plt.tick_params(labelbottom='off') if num not in [1,4,7,10]: plt.tick_params(labelleft='off') # Add title plt.title(column, loc='left', fontsize=12, fontweight=0, color=palette[num]) plt.text(30, -1, 'Age', ha='center', va='center') plt.text(1, 4, 'Mean Deck Rating', ha='center', va='center', rotation='vertical') num = num + 1 # general title plt.suptitle("Mean Deck Rating vs Age \nIndividual State Deterioration Curves", fontsize=13, fontweight=0, color='black', style='italic', y=1.02) palette = [ 'blue', 'blue', 'green', 'magenta', 'cyan', 'brown', 'grey', 'red','silver','purple', 'gold', 'black','olive' ] plt.figure(figsize = (10,8)) index = 0 for state in states: index = index + 1 stateName = stateNameDict[state] plt.plot(df_mean_sup['Age'],df_mean_sup[stateName], color = palette[index]) plt.legend([stateNameDict[state] for state in states],loc='upper right', ncol = 2) plt.xlim(1,60) plt.ylim(1,9) plt.title('Mean Superstructure Rating Vs Age') plt.xlabel('Age') plt.ylabel('Mean Superstructure Rating') plt.figure(figsize = (16,12)) plt.xlabel('Age') plt.ylabel('Mean') # Initialize the figure plt.style.use('seaborn-darkgrid') # create a color palette #palette = plt.get_cmap('gist_ncar') palette = [ 'blue', 'blue', 'green', 'magenta', 'cyan', 'brown', 'grey', 'red', 'silver', 'purple', 'gold', 'black', 'olive' ] # multiple line plot num=1 for column in df_mean_sup.drop('Age', axis=1): # Find the right spot on the plot plt.subplot(4,3, num) # Plot the lineplot plt.plot(df_mean_sup['Age'], df_mean_sup[column], marker='', color=palette[num], linewidth=4, alpha=0.9, label=column) # Same limits for everybody! plt.xlim(1,60) plt.ylim(1,9) # Not ticks everywhere if num in range(10) : plt.tick_params(labelbottom='off') if num not in [1,4,7,10]: plt.tick_params(labelleft='off') # Add title plt.title(column, loc='left', fontsize=12, fontweight=0, color=palette[num]) plt.text(30, -1, 'Age', ha='center', va='center') plt.text(1, 4, 'Mean Superstructure Rating', ha='center', va='center', rotation='vertical') num = num + 1 # general title plt.suptitle("Mean Superstructure Rating vs Age \nIndividual State Deterioration Curves", fontsize=13, fontweight=0, color='black', style='italic', y=1.02) palette = [ 'blue', 'blue', 'green', 'magenta', 'cyan', 'brown', 'grey', 'red','silver','purple', 'gold', 'black','olive' ] plt.figure(figsize = (10,8)) index = 0 for state in states: index = index + 1 stateName = stateNameDict[state] plt.plot(df_mean_sup['Age'],df_mean_sup[stateName], color = palette[index]) plt.legend([stateNameDict[state] for state in states],loc='upper right', ncol = 2) plt.xlim(1,60) plt.ylim(1,9) plt.title('Mean Superstructure Rating Vs Age') plt.xlabel('Age') plt.ylabel('Mean Superstructure Rating') palette = [ 'blue', 'blue', 'green', 'magenta', 'cyan', 'brown', 'grey', 'red','silver','purple', 'gold', 'black','olive' ] plt.figure(figsize = (10,8)) index = 0 for state in states: index = index + 1 stateName = stateNameDict[state] plt.plot(df_mean_sub['Age'],df_mean_sub[stateName], color = palette[index], linewidth=4) plt.legend([stateNameDict[state] for state in states],loc='upper right', ncol = 2) plt.xlim(1,60) plt.ylim(1,9) plt.title('Mean Substructure Rating Vs Age') plt.xlabel('Age') plt.ylabel('Mean Substructure Rating') plt.figure(figsize = (16,12)) plt.xlabel('Age') plt.ylabel('Mean') # Initialize the figure plt.style.use('seaborn-darkgrid') # create a color palette palette = [ 'blue', 'blue', 'green', 'magenta', 'cyan', 'brown', 'grey', 'red', 'silver', 'purple', 'gold', 'black','olive' ] # multiple line plot num=1 for column in df_mean_sub.drop('Age', axis=1): # Find the right spot on the plot plt.subplot(4,3, num) # Plot the lineplot plt.plot(df_mean_sub['Age'], df_mean_sub[column], marker='', color=palette[num], linewidth=4, alpha=0.9, label=column) # Same limits for everybody! plt.xlim(1,60) plt.ylim(1,9) # Not ticks everywhere if num in range(7) : plt.tick_params(labelbottom='off') if num not in [1,4,7] : plt.tick_params(labelleft='off') # Add title plt.title(column, loc='left', fontsize=12, fontweight=0, color=palette[num]) plt.text(30, -1, 'Age', ha='center', va='center') plt.text(1, 4, 'Mean Substructure Rating', ha='center', va='center', rotation='vertical') num = num + 1 # general title plt.suptitle("Mean Substructure Rating vs Age \nIndividual State Deterioration Curves", fontsize=13, fontweight=0, color='black', style='italic', y=1.02) def getDataOneYear(state): pipeline = [{"$match":{"$and":[{"year":{"$gt":2015, "$lt":2017}},{"stateCode":state}]}}, {"$project":{"_id":0, "Structure Type":"$structureTypeMain.typeOfDesignConstruction", "Type of Wearing Surface":"$wearingSurface/ProtectiveSystem.typeOfWearingSurface", 'Structure Type':1, "structureNumber":1, "yearBuilt":1, "deck":1, ## rating of deck "year":1, ## survey year "substructure":1, ## rating of substructure "superstructure":1, ## rating of superstructure }}] dec = collection.aggregate(pipeline) conditionRatings = pd.DataFrame(list(dec)) conditionRatings['Age'] = conditionRatings['year'] - conditionRatings['yearBuilt'] conditionRatings = conditionRatings.loc[~conditionRatings['deck'].isin(['N','NA'])] conditionRatings = conditionRatings.loc[~conditionRatings['substructure'].isin(['N','NA'])] conditionRatings = conditionRatings.loc[~conditionRatings['superstructure'].isin(['N','NA'])] #conditionRatings = conditionRatings.loc[~conditionRatings['Type of Wearing Surface'].isin(['6'])] return conditionRatings df_mean_deck ## Condition ratings of all states concatenated into one single data frame ConditionRatings frames = [] for state in states: f = getDataOneYear(state) frames.append(f) df_nbi_w = pd.concat(frames) df_nbi_w = df_nbi_w.loc[~df_nbi_w['deck'].isin(['N','NA'])] df_nbi_w = df_nbi_w.loc[~df_nbi_w['substructure'].isin(['N','NA'])] df_nbi_w = df_nbi_w.loc[~df_nbi_w['superstructure'].isin(['N','NA'])] df_nbi_w = df_nbi_w.loc[~df_nbi_w['Type of Wearing Surface'].isin(['6'])] D = {'slow':,'fast':,'average':} def label_bridges(rating,mean_age_conditionRating,std_age_conditionRating): if (mean_age_conditionRating - std_age_conditionRating) < int(rating) <= (mean_age_conditionRating + std_age_conditionRating): # Append a label return ('Average Deterioration') # else, if more than a value, elif int(rating) > (mean_age_conditionRating + std_age_conditionRating): # Append a label return ('Slow Deterioration') # else, if more than a value, elif int(rating) < (mean_age_conditionRating - std_age_conditionRating): # Append a label return ('Fast Deterioration') else: return ('Null Value') stat = ['08','56','30','16','53','41','49','32','06','02','15'] num = 1 slow = [] fast = [] avg = [] for st in stat: data = getDataOneYear(st) print(st,len(data)) AgeList = list(data['Age']) deckList = list(data['deck']) stateName = stateNameDict[st] labels = [] for deckRating, Age in zip (deckList,AgeList): if Age < 60: mean_age_conditionRating = df_mean_deck[stateName][Age] std_age_conditionRating = df_std_deck[stateName][Age] # deck Rating #detScore = (int(deckRating) - mean_age_conditionRating) / std_age_conditionRating # Substructure Rating #Substructure_detScore = (int(deckRating) - mean_age_conditionRating) / std_age_conditionRating # Superstructure Rating #Superstructure_detScore = (int(deckRating) - mean_age_conditionRating) / std_age_conditionRating labels.append(label_bridges(deckRating,mean_age_conditionRating,std_age_conditionRating)) # empty list to initialize a list D = dict((x,labels.count(x)) for x in set(labels)) total = D['Fast Deterioration'] + D['Slow Deterioration'] + D['Average Deterioration'] slow_percent = (D['Slow Deterioration'] / total) * 100 fast_percent = (D['Fast Deterioration'] / total) * 100 avg_percent = (D['Average Deterioration'] / total) * 100 slow.append(slow_percent) fast.append(fast_percent) avg.append(avg_percent) #stateName = stateNameDict[st] plt.figure(figsize=(12,6)) plt.title(stateName) plt.bar(range(len(D)), list(D.values()), align='center') plt.xticks(range(len(D)), list(D.keys())) plt.xlabel('Categories') plt.ylabel('Number of Bridges') plt.show() num = num + 1 avg def label_bridges(rating,labels): if (mean_age_conditionRating - std_age_conditionRating) < int(rating) <= (mean_age_conditionRating + std_age_conditionRating): # Append a label labels.append('Average Deterioration') # else, if more than a value, elif int(rating) > (mean_age_conditionRating + std_age_conditionRating): # Append a label labels.append('Slow Deterioration') # else, if more than a value, elif int(rating) < (mean_age_conditionRating - std_age_conditionRating): # Append a label labels.append('Fast Deterioration') else: labels.append('Null Value') return labels rating = [9,2,32,32,1,3,4,5,6,7,8,9,0,32,3] for i in rating: stat = ['08','56','30','16','53','41','49','32','06','02','15'] AgeList = list(df_nbi_w['Age']) deckList = list(df_nbi_w['deck']) num = 1 label = [] for st in stat: deckR = [] deckR = getDataOneYear(st) deckR = deckR[['Age','deck']] deckR= deckR.loc[~deckR['deck'].isin(['N','NA'])] stateName = stateNameDict[st] for deckRating, Age in zip (deckList,AgeList): if Age < 60: mean_age_conditionRating = df_mean_deck[stateName][Age] std_age_conditionRating = df_std_deck[stateName][Age] detScore = (int(deckRating) - mean_age_conditionRating) / std_age_conditionRating if (mean_age_conditionRating - std_age_conditionRating) < int(deckRating) <= (mean_age_conditionRating + std_age_conditionRating): # Append a label labels.append('Average Deterioration') # else, if more than a value, elif int(deckRating) > (mean_age_conditionRating + std_age_conditionRating): # Append a label labels.append('Slow Deterioration') # else, if more than a value, elif int(deckRating) < (mean_age_conditionRating - std_age_conditionRating): # Append a label labels.append('Fast Deterioration') else: labels.append('Null Value') D = dict((x,labels.count(x)) for x in set(labels)) plt.figure(figsize=(12,6)) plt.title('Classification of Bridges in West United States') plt.bar(range(len(D)), list(D.values()), align='center') plt.xticks(range(len(D)), list(D.keys())) plt.xlabel('Categories of Bridges') plt.ylabel('Number of Bridges') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Scatter plots Step2: Histogram
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np a=np.random.randn(2,10) x=a[0,:] x y=a[1,:] y plt.scatter(x,y,color='red') plt.grid(True) plt.box(False) plt.xlabel('random x values') plt.ylabel('random y values') plt.title('TITLE') a=np.random.randn(1,10) x=a[0,:] plt.hist(x,bins=15,histtype='bar',color='green') plt.title('MY HISTOGRAM') plt.xlabel('RANDOM X VALUES') plt.ylabel('FREQUENCY') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Python Summary Step2: Variables Step3: Types Step4: Conditionals Step5: Loops Step6: Functions Step7: Numpy Step8: Exercises Step9: Print the variable a in all uppercase Step10: Print the items in people as comma seperated values Step11: Write a function that returns the first n prime numbers Step12: Print the standard deviation of each row in a numpy array
<ASSISTANT_TASK:> Python Code: import numpy as np print("Numpy:", np.__version__) dir(np) location = 'Bethesda' zip_code = 20892 elevation = 71.9 print("We're in", location, "zip code", zip_code, ", ", elevation, "m above sea level") print("We're in " + location + " zip code " + str(zip_code) + ", " + str(elevation) + "m above sea level") print("We're in {0} zip code {1}, {2}m above sea level".format(location, zip_code, elevation)) print("We're in {0} zip code {1}, {2:.2e}m above sea level".format(location, zip_code, elevation)) # Sequences # Lists l = [1,2,3,4,4] print("List:", l, len(l), 1 in l) # Tuples t = (1,2,3,4,4) print("Tuple:", t, len(t), 1 in t) # Sets s = set([1,2,3,4,4]) print("Set:", s, len(s), 1 in s) # Dictionaries # Dictionaries map hashable values to arbitrary objects d = {'a': 1, 'b': 2, 3: 's', 2.5: 't'} print("Dictionary:", d, len(d), 'a' in d) import random if random.random() < 0.5: print("Should be printed 50% of the time") elif random.random() < 0.5: print("Should be primted 25% of the time") else: print("Should be printed 25% of the time") for i in ['a', 'b', 'c', 'd']: print(i) else: print('Else') for i in ['a', 'b', 'c', 'd']: if i == 'b': continue elif i == 'd': break print(i) else: print('Else') def is_even(n): return not n % 2 print(is_even(1), is_even(2)) def first_n_squared_numbers(n=5): return [i**2 for i in range(1,n+1)] print(first_n_squared_numbers()) def next_fibonacci(status=[]): if len(status) < 2: status.append(1) return 1 status.append(status[-2] + status[-1]) return status[-1] print(next_fibonacci(), next_fibonacci(), next_fibonacci(), next_fibonacci(), next_fibonacci(), next_fibonacci()) def accepts_anything(*args, **kwargs): for a in args: print(a) print(type(args)) for k in kwargs: print(k, kwargs[k]) accepts_anything(1,2,3,4, a=1, b=2, c=3) # For quick and simple functions a lambda expression can be a useful approach. # Standard functions are always a valid alternative and often make code clearer. f = lambda x: x**2 print(f(5)) people = [{'name': 'Alice', 'age': 30}, {'name': 'Bob', 'age': 35}, {'name': 'Charlie', 'age': 35}, {'name': 'Dennis', 'age': 25}] print(people) people.sort(key=lambda x: x['age']) print(people) a = np.array([[1,2,3], [4,5,6], [7,8,9]]) print(a) print(a[1:,1:]) a = a + 2 print(a) a = a + np.array([1,2,3]) print(a) a = a + np.array([[10],[20],[30]]) print(a) print(a.mean(), a.mean(axis=0), a.mean(axis=1)) import matplotlib.pyplot as plt %matplotlib inline x = np.linspace(0, 3*2*np.pi, 500) plt.plot(x, np.sin(x)) plt.show() a = "The quick brown fox jumps over the lazy dog" b = 1234567890.0 print(a.upper()) upper = True soln = '' for i in a: if upper == True: soln += i.upper() else: soln += i if i != ' ': upper = not upper print(soln) def reverse_string(s): al = list(s) al.reverse() return ''.join(al) print(reverse_string(a)) words = a.split(' ') print(' '.join([reverse_string(i) for i in words])) print('{0:.4e}'.format(b)) people = [{'name': 'Charlie', 'age': 35}, {'name': 'Alice', 'age': 30}, {'name': 'Eve', 'age': 20}, {'name': 'Gail', 'age': 30}, {'name': 'Dennis', 'age': 25}, {'name': 'Bob', 'age': 35}, {'name': 'Fred', 'age': 25},] for i in people: print('{0},{1}'.format(i['name'], i['age'])) for i in people: print('{0:<10},{1}'.format(i['name'], i['age'])) def key_age(x): return x['age'] people.sort(key=key_age) print(people) people.sort(key=lambda x: x['name']) people.sort(key=key_age) print(people) coords = [(0,0), (10,5), (10,10), (5,10), (3,3), (3,7), (12,3), (10,11)] def first_n_primes(n): primes = [] i = 2 while len(primes) < n: for p in primes: if i % p == 0: break else: primes.append(i) i += 1 return primes print(first_n_primes(5)) def distance(coords): distance = 0 for p1, p2 in zip(coords[:-1], coords[1:]): distance += ((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) ** 0.5 return distance print(distance(coords)) assert distance([(0,0), (10,0)]) == 10 assert distance([(0,0), (-10, 0)]) == 10 assert distance([(0,0), (3,4)]) == 5 import itertools all_options = [] for option in itertools.permutations(coords, len(coords)): all_options.append((option, distance(option))) all_options.sort(key=lambda x: x[1]) print(all_options[0]) np.random.seed(0) a = np.random.randint(0, 100, size=(10,20)) print(a.std()) print(a) print(a.std(axis=1)) print(a[a>90]) import matplotlib.pyplot as plt %matplotlib inline fig, axes = plt.subplots(5, 2, figsize=(16,12)) for i, ax in zip(range(a.shape[0]), axes.flatten()): ax.plot(a[i]) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code:: import nltk nltk.download('stopwords') from nltk.corpus import stopwords stop_words = stopwords.words('english') df['tweet'] = df['tweet'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop_words)])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <h2> Erstes Neuronales Netz - Single Layer</h2> Step2: <h2> Initialisierung eines zweiten Neuronalen Netzes - Multi Layer</h2> Step3: <h2>Erzeugen von Varianten des Modells nn2</h2> Step4: <h2>Erzeugen von Varianten des Modells nn2</h2>
<ASSISTANT_TASK:> Python Code: #importieren sie die Bibliothek pandas import pandas as pd #importieren sie matplotlib.pyplot as plt import matplotlib.pyplot as plt %matplotlib inline #laden Sie die Datei "daten.csv" auf Ihren Hub #laden Sie die Datei "daten.csv" in einen Datframe df #Einlesen der Dateien mit pd.read_csv() df=pd.read_csv("daten.csv") #Betrachten Sie die ersten Daten des Dataframes df (default=5) df.head() #Betrachten Sie 20 Datensätze am Ende des DataFrames df.tail(20) #Erzeugen Sie eine Beschreibung der Statistischen Daten mit .describe() df.describe() #Erzeugen Sie einen einfachen Scatterplot plt.scatter(df.x1,df.x2, c=df.label) #importieren Sie tensorflow as tf # Laden der Bibliotheken import tensorflow as tf #importieren Sie das keras.model Sequential() from keras.models import Sequential #importieren Sie die Keras Layer Dense und Activation from keras.layers import Dense #Auslesen der Daten und Labels aus dem Dataframe in ein array x_input = df[['x1','x2']].values y_input = df[['label']].values #Ausgabe der Datenwerte print(x_input) #Ausgabe der labels print(y_input) #Initialisierung des Neuronalen Netzes nn nn=Sequential() #Hinzufügen eines Dense Layers mit einem Neuron (units = 1) #Im ersten Layer geben eivel Features übergeben werden (input_dim=2) #Als Aktivierungsfunktion verwenden wir die Sigmoid-Funktion nn.add(Dense(units=1,input_dim=2,activation = 'sigmoid')) # Compilieren des Modells. # Wir verwenden den optimizer 'adam'. # Es handelt sich um eine binäre Klassifikation, deshalb verwenden # wir 'binary_crossentropy' als Loss-Funktion und # betrachten als Qualitätsmaßstab die Accuracy nn.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy']) # Überprüfen der Konfiguration nn.summary() # Trainieren des Modells mit .fit # eventuell validation_split = 0.1 einfügen, d.h. 10% der Daten, werden zur Validierung verwendet. epoch_num = 1000 # batch_num = 56 eventuell als Beispiel ergänzen history = nn.fit(x_input, y_input, epochs=epoch_num,validation_split=0.1, verbose = 1) #Evaluierung der Ergebnisse nn.evaluate(x_input,y_input) #Test mit Daten x_test=[[2,3],[6,4],[5,5],[4.321,2.657],[2.6487,4.5192],[1.5438,2.4443],[1.8991,4.2409],[6.1676,3.6457],[7.567,3.6381],[6.4321,5.4453]] ergebnis = nn.predict(x_test) print(ergebnis) #Ausgabe der Anzahl der Werte in der Variablen ergebnis len(ergebnis) # Schleife zur Ausgabe der entsprechenden Labels i = 0 while i< len(ergebnis): print("Das Wertepaar : " +str(x_test[i]) + "hat das Ergebnis " + str(ergebnis[i,0])) if ergebnis[i,0]>0.5: print("und damit das Label 1") else: print("und damit das Label 0") i +=1 history_dict = history.history history_dict.keys() acc = history_dict['accuracy'] val_acc = history_dict['val_accuracy'] loss = history_dict['loss'] val_loss = history_dict['val_loss'] epochs = range(1, len(acc) + 1) # "bo" steht für "blue dot" plt.plot(epochs, loss, 'b', label='Training loss') plt.plot(epochs, acc, 'r', label='Training Accuracy') # b is for "solid blue line" plt.plot(epochs, val_loss, 'y', label='Validation loss') plt.plot(epochs, val_acc, 'g', label='Validation Accuracy') plt.title('Training/Validation loss und accuracy') plt.xlabel('Epochs') plt.ylabel('Loss / Accuracy') plt.legend() plt.show() #Initialisieren eine neuen Netzwerkes nn2 nn2=Sequential() #Hinzufügen der layer nn2.add(Dense(units=100,input_dim=2,activation='relu')) nn2.add(Dense(units=50,activation='relu')) nn2.add(Dense(units=1,activation='sigmoid')) # Kompilieren des neuen Modells nn2.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) #Ausgabe der Modellstruktur nn2.summary() #Trainieren des Modells epoch_num = 50 history = nn2.fit(x_input,y_input, epochs=epoch_num,validation_split=0.1, verbose=1) #Evaluierung der Ergebnisse nn2.evaluate(x_input, y_input) history_dict = history.history history_dict.keys() acc = history_dict['accuracy'] val_acc = history_dict['val_accuracy'] loss = history_dict['loss'] val_loss = history_dict['val_loss'] epochs = range(1, len(acc) + 1) # "bo" steht für "blue dot" plt.plot(epochs, loss, 'b', label='Training loss') plt.plot(epochs, acc, 'r', label='Training Accuracy') # b,r steht für "solid blue or red line" plt.plot(epochs, val_loss, 'y', label='Validation loss') plt.plot(epochs, val_acc, 'g', label='Validation Accuracy') plt.title('Training/Validation loss und accuracy') plt.xlabel('Epochs') plt.ylabel('Loss / Accuracy') plt.legend() plt.show() #Initialisieren eine neuen Netzwerkes nn3 nn3=Sequential() #Hinzufügen der layer mit geäderter Aktivierungsfunktion nn3.add(Dense(units=100,input_dim=2,activation='tanh')) nn3.add(Dense(units=50,activation='tanh')) nn3.add(Dense(units=1,activation='sigmoid')) # Kompilieren des neuen Modells nn3.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) #Ausgabe der Modellstruktur nn3.summary() #Trainieren des Modells nn3 epoch_num = 50 history = nn3.fit(x_input,y_input, epochs=epoch_num,validation_split=0.1, verbose=1) #Evaluierung der Ergebnisse nn2.evaluate(x_input, y_input) history_dict = history.history history_dict.keys() acc = history_dict['accuracy'] val_acc = history_dict['val_accuracy'] loss = history_dict['loss'] val_loss = history_dict['val_loss'] epochs = range(1, len(acc) + 1) # "bo" steht für "blue dot" plt.plot(epochs, loss, 'b', label='Training loss') plt.plot(epochs, acc, 'r', label='Training Accuracy') # b,r steht für "solid blue or red line" plt.plot(epochs, val_loss, 'y', label='Validation loss') plt.plot(epochs, val_acc, 'g', label='Validation Accuracy') plt.title('Training/Validation loss und accuracy') plt.xlabel('Epochs') plt.ylabel('Loss / Accuracy') plt.legend() plt.show() #Initialisieren eine neuen Netzwerkes nn4 nn4=Sequential() #Hinzufügen der layer mit der Aktivierungsfunktion tanh nn4.add(Dense(units=100,input_dim=2,activation='tanh')) nn4.add(Dense(units=50,activation='tanh')) nn4.add(Dense(units=1,activation='sigmoid')) # Kompilieren des neuen Modells nn4.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy']) #Ausgabe der Modellstruktur nn4.summary() #Trainieren des Modells nn4 epoch_num = 50 history = nn4.fit(x_input,y_input, epochs=epoch_num,validation_split=0.1, verbose=1) #Evaluierung der Ergebnisse nn2.evaluate(x_input, y_input) history_dict = history.history history_dict.keys() acc = history_dict['accuracy'] val_acc = history_dict['val_accuracy'] loss = history_dict['loss'] val_loss = history_dict['val_loss'] epochs = range(1, len(acc) + 1) # "bo" steht für "blue dot" plt.plot(epochs, loss, 'b', label='Training loss') plt.plot(epochs, acc, 'r', label='Training Accuracy') # b,r steht für "solid blue or red line" plt.plot(epochs, val_loss, 'y', label='Validation loss') plt.plot(epochs, val_acc, 'g', label='Validation Accuracy') plt.title('Training/Validation loss und accuracy') plt.xlabel('Epochs') plt.ylabel('Loss / Accuracy') plt.legend() plt.show() # Führen Sie weitere Veränderungen durch: # 1. # Verändern Sie in den Modellen nn2, nn3 und nn4 die Anzahl # der epochs von 50 auf 100, epochs_num=100 # 2. # Verändern Sie die Anzahl der Neuronen im ersten Layer auf 200 # und im zweiten Layer auf 100 # # Initialisieren Sie das Modell in der jeweiligen Zelle einfach neu # und führen dann im Modell die Veränderungen durch. # # Ergeben sich Ergebnisverbesserungen # # Wie sie sehen wurde mit der einfachen Anweisung validation_split=0.1 # ein Teil der Daten zur Validierung verwendet. Variieren Sie doch auch # einmal diesen Anteil auf 0.2 oder 0.3. # <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Scheme Scope Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Form Step9: 1.6. Number Of Tracers Step10: 1.7. Family Approach Step11: 2. Key Properties --&gt; Software Properties Step12: 2.2. Code Version Step13: 2.3. Code Languages Step14: 3. Key Properties --&gt; Timestep Framework Step15: 3.2. Split Operator Advection Timestep Step16: 3.3. Split Operator Physical Timestep Step17: 3.4. Integrated Timestep Step18: 3.5. Integrated Scheme Type Step19: 4. Key Properties --&gt; Meteorological Forcings Step20: 4.2. Variables 2D Step21: 4.3. Frequency Step22: 5. Key Properties --&gt; Resolution Step23: 5.2. Canonical Horizontal Resolution Step24: 5.3. Number Of Horizontal Gridpoints Step25: 5.4. Number Of Vertical Levels Step26: 5.5. Is Adaptive Grid Step27: 6. Key Properties --&gt; Tuning Applied Step28: 6.2. Global Mean Metrics Used Step29: 6.3. Regional Metrics Used Step30: 6.4. Trend Metrics Used Step31: 7. Transport Step32: 7.2. Scheme Step33: 7.3. Mass Conservation Scheme Step34: 7.4. Convention Step35: 8. Emissions Step36: 8.2. Method Step37: 8.3. Sources Step38: 8.4. Prescribed Climatology Step39: 8.5. Prescribed Climatology Emitted Species Step40: 8.6. Prescribed Spatially Uniform Emitted Species Step41: 8.7. Interactive Emitted Species Step42: 8.8. Other Emitted Species Step43: 8.9. Other Method Characteristics Step44: 9. Concentrations Step45: 9.2. Prescribed Lower Boundary Step46: 9.3. Prescribed Upper Boundary Step47: 9.4. Prescribed Fields Mmr Step48: 9.5. Prescribed Fields Mmr Step49: 10. Optical Radiative Properties Step50: 11. Optical Radiative Properties --&gt; Absorption Step51: 11.2. Dust Step52: 11.3. Organics Step53: 12. Optical Radiative Properties --&gt; Mixtures Step54: 12.2. Internal Step55: 12.3. Mixing Rule Step56: 13. Optical Radiative Properties --&gt; Impact Of H2o Step57: 13.2. Internal Mixture Step58: 14. Optical Radiative Properties --&gt; Radiative Scheme Step59: 14.2. Shortwave Bands Step60: 14.3. Longwave Bands Step61: 15. Optical Radiative Properties --&gt; Cloud Interactions Step62: 15.2. Twomey Step63: 15.3. Twomey Minimum Ccn Step64: 15.4. Drizzle Step65: 15.5. Cloud Lifetime Step66: 15.6. Longwave Bands Step67: 16. Model Step68: 16.2. Processes Step69: 16.3. Coupling Step70: 16.4. Gas Phase Precursors Step71: 16.5. Scheme Type Step72: 16.6. Bulk Scheme Species
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'mpi-m', 'mpi-esm-1-2-hr', 'aerosol') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.scheme_scope') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "troposhere" # "stratosphere" # "mesosphere" # "mesosphere" # "whole atmosphere" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.basic_approximations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.prognostic_variables_form') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "3D mass/volume ratio for aerosols" # "3D number concenttration for aerosols" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.number_of_tracers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.family_approach') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses atmospheric chemistry time stepping" # "Specific timestepping (operator splitting)" # "Specific timestepping (integrated)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_advection_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_physical_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Implicit" # "Semi-implicit" # "Semi-analytic" # "Impact solver" # "Back Euler" # "Newton Raphson" # "Rosenbrock" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_3D') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_2D') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Specific transport scheme (eulerian)" # "Specific transport scheme (semi-lagrangian)" # "Specific transport scheme (eulerian and semi-lagrangian)" # "Specific transport scheme (lagrangian)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.mass_conservation_scheme') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Mass adjustment" # "Concentrations positivity" # "Gradients monotonicity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.convention') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Convective fluxes connected to tracers" # "Vertical velocities connected to tracers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Prescribed (climatology)" # "Prescribed CMIP6" # "Prescribed above surface" # "Interactive" # "Interactive above surface" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Vegetation" # "Volcanos" # "Bare ground" # "Sea surface" # "Lightning" # "Fires" # "Aircraft" # "Anthropogenic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Interannual" # "Annual" # "Monthly" # "Daily" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.other_method_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_lower_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_upper_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.black_carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.dust') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.organics') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.external') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.internal') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.mixing_rule') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.size') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.internal_mixture') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.shortwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.longwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey_minimum_ccn') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.drizzle') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.cloud_lifetime') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.longwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Dry deposition" # "Sedimentation" # "Wet deposition (impaction scavenging)" # "Wet deposition (nucleation scavenging)" # "Coagulation" # "Oxidation (gas phase)" # "Oxidation (in cloud)" # "Condensation" # "Ageing" # "Advection (horizontal)" # "Advection (vertical)" # "Heterogeneous chemistry" # "Nucleation" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Radiation" # "Land surface" # "Heterogeneous chemistry" # "Clouds" # "Ocean" # "Cryosphere" # "Gas phase chemistry" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.gas_phase_precursors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "DMS" # "SO2" # "Ammonia" # "Iodine" # "Terpene" # "Isoprene" # "VOC" # "NOx" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Bulk" # "Modal" # "Bin" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.bulk_scheme_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Nitrate" # "Sea salt" # "Dust" # "Ice" # "Organic" # "Black carbon / soot" # "SOA (secondary organic aerosols)" # "POM (particulate organic matter)" # "Polar stratospheric ice" # "NAT (Nitric acid trihydrate)" # "NAD (Nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particule)" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Image as 'window' Step2: The sampler can be used as a numpy function, or a tensorflow operation. Step3: Use the sampler as a tensorflow op Step4: The location array ['MR_location'] represents the spatial coordinates of the window Step5: Grid sampler Step6: Visualisation of the window coordinates (change window_sizes and window_border to see different window allocations) Step7: Weighted sampler Step8: Balanced sampler Step9: Visualisation of the window coordinates (change data_param see different window allocations)
<ASSISTANT_TASK:> Python Code: import sys niftynet_path = '/Users/foo/Documents/Niftynet/' sys.path.insert(0, niftynet_path) from niftynet.utilities.download import download download('mr_ct_regression_model_zoo_data') !{sys.executable} -m pip install matplotlib from niftynet.io.image_reader import ImageReader from niftynet.engine.image_window_dataset import ImageWindowDataset # creating an image reader. data_param = \ {'CT': {'path_to_search': '~/niftynet/data/mr_ct_regression/CT_zero_mean', 'filename_contains': 'nii'}} reader = ImageReader().initialise(data_param) # creating a window sampler dataset from the reader sampler = ImageWindowDataset(reader) windows = sampler() print(windows.keys(), windows['CT_location'], windows['CT'].shape) import matplotlib.pyplot as plt plt.imshow(windows['CT'][0,:,:,0,0,0]) plt.show() import tensorflow as tf # adding the tensorflow tensors next_window = sampler.pop_batch_op() # run the tensors with tf.Session() as sess: sampler.run_threads(sess) #initialise the iterator windows = sess.run(next_window) print(windows.keys(), windows['CT_location'], windows['CT'].shape) from niftynet.io.image_reader import ImageReader from niftynet.engine.sampler_uniform_v2 import UniformSampler # creating an image reader. # creating an image reader. data_param = \ {'MR': {'path_to_search': '~/niftynet/data/mr_ct_regression/CT_zero_mean', 'filename_contains': 'nii', 'spatial_window_size': (80, 80, 1)}, 'CT': {'path_to_search': '~/niftynet/data/mr_ct_regression/T2_corrected', 'filename_contains': 'nii', 'spatial_window_size': (80, 80, 1)}, } window_sizes = {'MR': (80, 80, 1), 'CT': (80, 80, 1)} reader = ImageReader().initialise(data_param) # uniform sampler returns windows of 32^3-voxels uniform_sampler = UniformSampler( reader, window_sizes, batch_size=2, windows_per_image=5) import tensorflow as tf # adding the tensorflow tensors next_window = uniform_sampler.pop_batch_op() # run the tensors with tf.Session() as sess: uniform_sampler.run_threads(sess) #initialise the iterator windows = sess.run(next_window) print(windows['MR_location'], windows['MR'].shape) print(windows['CT_location'], windows['CT'].shape) import matplotlib.pyplot as plt plt.figure() plt.subplot(1,2,1) plt.imshow(windows['MR'][0,:,:,0]) plt.subplot(1,2,2) plt.imshow(windows['CT'][0,:,:,0]) plt.show() from niftynet.io.image_reader import ImageReader from niftynet.engine.sampler_grid_v2 import GridSampler # creating an image reader. data_param = \ {'CT': {'path_to_search': '~/niftynet/data/mr_ct_regression/CT_zero_mean', 'filename_contains': 'nii'}} reader = ImageReader().initialise(data_param) # uniform sampler returns windows of 32^3-voxels uniform_sampler = GridSampler(reader, window_sizes=(42, 42, 1), window_border=(8,8,1), batch_size=1) import tensorflow as tf # adding the tensorflow tensors next_window = uniform_sampler.pop_batch_op() # run the tensors with tf.Session() as sess: uniform_sampler.run_threads(sess) #initialise the iterator subject_id = 0 coords = [] while True: windows = sess.run(next_window) if not subject_id == windows['CT_location'][0,0]: break; #print(windows.keys(), windows['MR_location'], windows['MR'].shape) coords.append(windows['CT_location']) import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.collections import PatchCollection f, (ax1, ax) = plt.subplots(1,2) # show image _, img, _ = reader(idx=0) print(img['CT'].shape) plt.subplot(1,2,1) plt.imshow(img['CT'][:,:,0,0,0]) # show sampled windows all_patch = [] for win in np.concatenate(coords, axis=0): patch = patches.Rectangle( (win[1], win[2]), win[4]-win[1], win[5]-win[2], linewidth=1) all_patch.append(patch) all_pc = PatchCollection( all_patch, alpha=0.1, edgecolor='r', facecolor='r') ax.add_collection(all_pc) ax.set_xlim([0, np.max(coords, axis=0)[0,4]]) ax.set_ylim([0, np.max(coords, axis=0)[0,5]]) ax.set_aspect('equal', 'datalim') plt.show() from niftynet.io.image_reader import ImageReader from niftynet.engine.sampler_weighted_v2 import WeightedSampler # creating an image reader. data_param = \ {'CT': {'path_to_search': '~/niftynet/data/mr_ct_regression/CT_zero_mean', 'filename_contains': 'PAR.nii.gz'}, 'sampler': {'path_to_search': '~/niftynet/data/mr_ct_regression/T2_mask', 'filename_contains': 'nii'}} reader = ImageReader().initialise(data_param) weighted_sampler = WeightedSampler( reader, window_sizes=(12, 12, 1), batch_size=1, windows_per_image=100) import tensorflow as tf # adding the tensorflow tensors next_window = weighted_sampler.pop_batch_op() # run the tensors with tf.Session() as sess: weighted_sampler.run_threads(sess) #initialise the iterator coords = [] for _ in range(200): windows = sess.run(next_window) #print(windows.keys(), windows['CT_location'], windows['CT'].shape) coords.append(windows['CT_location']) import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.collections import PatchCollection f, (ax1, ax) = plt.subplots(1,2) # show image _, img, _ = reader(idx=0) print(img['CT'].shape) plt.subplot(1,2,1) plt.imshow(img['CT'][:,:,0,0,0]) #plt.subplot(1,2,2) ax.imshow(img['sampler'][:,:,0,0,0]) # show sampled windows all_patch = [] for win in np.concatenate(coords, axis=0): patch = patches.Rectangle( (win[2], win[1]), win[5]-win[2], win[4]-win[1], linewidth=1) all_patch.append(patch) all_pc = PatchCollection( all_patch, alpha=0.5, edgecolor='r', facecolor='r') ax.add_collection(all_pc) plt.show() from niftynet.io.image_reader import ImageReader from niftynet.engine.sampler_balanced_v2 import BalancedSampler # creating an image reader. data_param = \ {'CT': {'path_to_search': '~/niftynet/data/mr_ct_regression/CT_zero_mean', 'filename_contains': 'PAR.nii.gz'}, 'sampler': {'path_to_search': '~/niftynet/data/mr_ct_regression/T2_mask', 'filename_contains': 'nii'}} reader = ImageReader().initialise(data_param) balanced_sampler = BalancedSampler( reader, window_sizes=(12, 12, 1), windows_per_image=100) import tensorflow as tf # adding the tensorflow tensors next_window = balanced_sampler.pop_batch_op() # run the tensors with tf.Session() as sess: balanced_sampler.run_threads(sess) #initialise the iterator coords = [] for _ in range(200): windows = sess.run(next_window) #print(windows.keys(), windows['CT_location'], windows['CT'].shape) coords.append(windows['CT_location']) import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.collections import PatchCollection f, (ax1, ax) = plt.subplots(1,2) # show image _, img, _ = reader(idx=0) print(img['CT'].shape) plt.subplot(1,2,1) plt.imshow(img['CT'][:,:,0,0,0]) #plt.subplot(1,2,2) ax.imshow(img['sampler'][:,:,0,0,0]) # show sampled windows all_patch = [] for win in np.concatenate(coords, axis=0): patch = patches.Rectangle( (win[2], win[1]), win[5]-win[2], win[4]-win[1], linewidth=1) all_patch.append(patch) all_pc = PatchCollection( all_patch, alpha=0.5, edgecolor='r', facecolor='r') ax.add_collection(all_pc) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Сортировка в обратном порядке Step2: Сортировка по ключу Step3: В качестве параметра key можно указывать не только встроенные функции, но и самостоятельно определённые. Такая функция должна принимать один аргумент, элемент списка, и возращать значение, по которому надо сортировать.
<ASSISTANT_TASK:> Python Code: a = [5, 3, -2, 9, 1] # Метод sort меняет существующий список a.sort() print(a) a = [5, 3, -2, 9, 1] a.sort(reverse=True) print(a) # Обычно строки сортируются в алфавитном порядке a = ["bee", "all", "accessibility", "zen", "treasure"] a.sort() print(a) # А используя сортировку по ключу можно сортировать, например, по длине a = ["bee", "all", "accessibility", "zen", "treasure"] a.sort(key=len) print(a) # Сортируем по остатку от деления на 10 def mod(x): return x % 10 a = [1, 15, 143, 8, 0, 5, 17, 48] a.sort(key=mod) print(a) # Обычно списки сортируются сначала по первому элементу, потом по второму и так далее a = [[4, 3], [1, 5], [2, 15], [1, 6], [2, 9], [4, 1]] a.sort() print(a) # А так можно отсортировать сначала по первому по возрастанию, а при равенсте — по втором def my_key(x): return x[0], -x[1] a = [[4, 3], [1, 5], [2, 15], [1, 6], [2, 9], [4, 1]] a.sort(key=my_key) print(a) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load and prepare the data Step2: Checking out the data Step3: Dummy variables Step4: Scaling target variables Step5: Splitting the data into training, testing, and validation sets Step6: We'll split the data into two sets, one for training and one for validating as the network is being trained. Since this is time series data, we'll train on historical data, then try to predict on future data (the validation set). Step7: Time to build the network Step8: Unit tests Step9: Training the network Step10: Check out your predictions
<ASSISTANT_TASK:> Python Code: %matplotlib inline %config InlineBackend.figure_format = 'retina' import numpy as np import pandas as pd import matplotlib.pyplot as plt data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) rides.head() rides[:24*10].plot(x='dteday', y='cnt') dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides = pd.concat([rides, dummies], axis=1) fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 'weekday', 'atemp', 'mnth', 'workingday', 'hr'] data = rides.drop(fields_to_drop, axis=1) data.head() quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed'] # Store scalings in a dictionary so we can convert back later scaled_features = {} for each in quant_features: mean, std = data[each].mean(), data[each].std() scaled_features[each] = [mean, std] data.loc[:, each] = (data[each] - mean)/std # Save data for approximately the last 21 days test_data = data[-21*24:] # Now remove the test data from the data set data = data[:-21*24] # Separate the data into features and targets target_fields = ['cnt', 'casual', 'registered'] features, targets = data.drop(target_fields, axis=1), data[target_fields] test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields] print(features.shape) # Hold out the last 60 days or so of the remaining data as a validation set train_features, train_targets = features[:-60*24], targets[:-60*24] val_features, val_targets = features[-60*24:], targets[-60*24:] class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate #### TODO: Set self.activation_function to your implemented sigmoid function #### # # Note: in Python, you can define a function with a lambda expression, # as shown below. self.activation_function = lambda x : 1/(1+np.exp(-x)) ### If the lambda code above is not something you're familiar with, # You can uncomment out the following three lines and put your # implementation there instead. # #def sigmoid(x): # return 0 # Replace 0 with your sigmoid calculation here #self.activation_function = sigmoid def train(self, features, targets): ''' Train the network on batch of features and targets. Arguments --------- features: 2D array, each row is one data record, each column is a feature targets: 1D array of target values ''' n_records = features.shape[0] delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape) delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape) for X, y in zip(features, targets): #### Implement the forward pass here #### ### Forward pass ### # TODO: Hidden layer - Replace these values with your calculations. hidden_inputs = np.dot(X, self.weights_input_to_hidden) hidden_outputs = self.activation_function(hidden_inputs) # TODO: Output layer - Replace these values with your calculations. final_inputs = np.dot(hidden_outputs,self.weights_hidden_to_output) final_outputs = final_inputs #### Implement the backward pass here #### ### Backward pass ### # TODO: Output error - Replace this value with your calculations. error = y - final_outputs # Output layer error is the difference between desired target and actual output. output_error_term = error*1.0 # TODO: Calculate the hidden layer's contribution to the error hidden_error = np.dot(self.weights_hidden_to_output, output_error_term) # TODO: Backpropagated error terms - Replace these values with your calculations. hidden_error_term = hidden_error*hidden_outputs*(1-hidden_outputs) # Weight step (input to hidden) delta_weights_i_h += hidden_error_term*X[:,None] # Weight step (hidden to output) delta_weights_h_o += output_error_term*hidden_outputs[:,None] # TODO: Update the weights - Replace these values with your calculations. self.weights_hidden_to_output += self.lr*delta_weights_h_o / n_records # update hidden-to-output weights with gradient descent step self.weights_input_to_hidden += self.lr*delta_weights_i_h / n_records # update input-to-hidden weights with gradient descent step def run(self, features): ''' Run a forward pass through the network with input features Arguments --------- features: 1D array of feature values ''' #### Implement the forward pass here #### # TODO: Hidden layer - replace these values with the appropriate calculations. hidden_inputs = np.dot(features, self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with the appropriate calculations. final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer return final_outputs def MSE(y, Y): return np.mean((y-Y)**2) import unittest inputs = np.array([[0.5, -0.2, 0.1]]) targets = np.array([[0.4]]) test_w_i_h = np.array([[0.1, -0.2], [0.4, 0.5], [-0.3, 0.2]]) test_w_h_o = np.array([[0.3], [-0.1]]) class TestMethods(unittest.TestCase): ########## # Unit tests for data loading ########## def test_data_path(self): # Test that file path to dataset has been unaltered self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv') def test_data_loaded(self): # Test that data frame loaded self.assertTrue(isinstance(rides, pd.DataFrame)) ########## # Unit tests for network functionality ########## def test_activation(self): network = NeuralNetwork(3, 2, 1, 0.5) # Test that the activation function is a sigmoid self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5)))) def test_train(self): # Test that weights are updated correctly on training network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() network.train(inputs, targets) self.assertTrue(np.allclose(network.weights_hidden_to_output, np.array([[ 0.37275328], [-0.03172939]]))) self.assertTrue(np.allclose(network.weights_input_to_hidden, np.array([[ 0.10562014, -0.20185996], [0.39775194, 0.50074398], [-0.29887597, 0.19962801]]))) def test_run(self): # Test correctness of run method network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() self.assertTrue(np.allclose(network.run(inputs), 0.09998924)) suite = unittest.TestLoader().loadTestsFromModule(TestMethods()) unittest.TextTestRunner().run(suite) import sys ### Set the hyperparameters here ### iterations = 18000 learning_rate = 0.12 hidden_nodes = 14 output_nodes = 1 N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train':[], 'validation':[]} for ii in range(iterations): # Go through a random batch of 128 records from the training data set batch = np.random.choice(train_features.index, size=128) X, y = train_features.ix[batch].values, train_targets.ix[batch]['cnt'] network.train(X, y) # Printing out the training progress train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values) val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values) sys.stdout.write("\rProgress: {:2.1f}".format(100 * ii/float(iterations)) \ + "% ... Training loss: " + str(train_loss)[:5] \ + " ... Validation loss: " + str(val_loss)[:5]) sys.stdout.flush() losses['train'].append(train_loss) losses['validation'].append(val_loss) plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() _ = plt.ylim() fig, ax = plt.subplots(figsize=(8,4)) mean, std = scaled_features['cnt'] predictions = network.run(test_features).T*std + mean ax.plot(predictions[0], label='Prediction') ax.plot((test_targets['cnt']*std + mean).values, label='Data') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(rides.ix[test_data.index]['dteday']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))[12::24]) _ = ax.set_xticklabels(dates[12::24], rotation=45) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Download PTB dataset Step2: The dataset structure is numpy.ndarray. Step3: Word ID and word correspondence Step4: Convert to word sequences Step5: Validation data text Step6: Test data text
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import os import matplotlib.pyplot as plt %matplotlib inline import numpy as np import chainer train, val, test = chainer.datasets.get_ptb_words() print('train type: ', type(train), train.shape, train) print('val type: ', type(val), val.shape, val) print('test type: ', type(test), test.shape, test) ptb_dict = chainer.datasets.get_ptb_words_vocabulary() print('Number of vocabulary', len(ptb_dict)) print('ptb_dict', ptb_dict) ptb_word_id_dict = ptb_dict ptb_id_word_dict = dict((v, k) for k, v in ptb_word_id_dict.items()) print([ptb_id_word_dict[i] for i in train[:30]]) # ' '.join(text_list) will convert list representation more readable ' '.join([ptb_id_word_dict[i] for i in train[:300]]) print(' '.join([ptb_id_word_dict[i] for i in val[:300]])) print(' '.join([ptb_id_word_dict[i] for i in test[:300]])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: TV Script Generation Step3: Explore the Data Step6: Implement Preprocessing Functions Step9: Tokenize Punctuation Step11: Preprocess all the data and save it Step13: Check Point Step15: Build the Neural Network Step18: Input Step21: Build RNN Cell and Initialize Step24: Word Embedding Step27: Build RNN Step30: Build the Neural Network Step34: Batches Step36: Neural Network Training Step38: Build the Graph Step40: Train Step42: Save Parameters Step44: Checkpoint Step47: Implement Generate Functions Step50: Choose Word Step52: Generate TV Script
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] view_sentence_range = (0, 10) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) import numpy as np import problem_unittests as tests from collections import Counter def create_lookup_tables(text): Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) # TODO: Implement Function counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) # descending order vocab_to_int = {word: ii for ii, word in enumerate(vocab)} int_to_vocab = {ii: word for ii, word in enumerate(vocab)} return vocab_to_int, int_to_vocab DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_create_lookup_tables(create_lookup_tables) def token_lookup(): Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token # TODO: Implement Function return { '.':"||Period||", ',':"||Comma||", '"':"||Quotation_Mark||", ';':"||Semicolon||", '!':"||Exclamation_mark||", '?':"||Question_mark||", '(':"||Left_Parentheses||", ')':"||Right_Parentheses||", '--':"||Dash||", '\n':"||Return||" } DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_tokenize(token_lookup) DON'T MODIFY ANYTHING IN THIS CELL # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) DON'T MODIFY ANYTHING IN THIS CELL import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() DON'T MODIFY ANYTHING IN THIS CELL from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def get_inputs(): Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) # TODO: Implement Function input_ = tf.placeholder(shape=[None,None],name='input',dtype=tf.int32) # input shape = [batch_size, seq_size] targets = tf.placeholder(shape=[None,None],name='targets',dtype=tf.int32) learning_rate = tf.placeholder(dtype=tf.float32) return input_, targets, learning_rate DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_inputs(get_inputs) def get_init_cell(batch_size, rnn_size): Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) # TODO: Implement Function lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size) # Add dropout to the cell # drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob) # Stack up multiple LSTM layers, for deep learning lstm_layers = 5 cell = tf.contrib.rnn.MultiRNNCell([lstm] * lstm_layers) # Getting an initial state of all zeros initial_state = cell.zero_state(batch_size, tf.float32) return cell, tf.identity(initial_state,name='initial_state') DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_init_cell(get_init_cell) def get_embed(input_data, vocab_size, embed_dim): Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. # TODO: Implement Function embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1)) embed = tf.nn.embedding_lookup(embedding, input_data) return embed DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_embed(get_embed) def build_rnn(cell, inputs): Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) outputs, final_state = tf.nn.dynamic_rnn(cell, inputs,dtype=tf.float32) return outputs, tf.identity(final_state,name="final_state") DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_build_rnn(build_rnn) def build_nn(cell, rnn_size, input_data, vocab_size): Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :return: Tuple (Logits, FinalState) # TODO: Implement Function embed_dim = 300; embed = get_embed(input_data,vocab_size,embed_dim) outputs, final_state = build_rnn(cell,embed) # print(outputs) # Tensor("rnn/transpose:0", shape=(128, 5, 256), dtype=float32) # print(final_state) # Tensor("final_state:0", shape=(2, 2, ?, 256), dtype=float32) # !!! it is really import to have a good weigh init logits = tf.contrib.layers.fully_connected(outputs,vocab_size,activation_fn=None, #tf.nn.relu weights_initializer = tf.truncated_normal_initializer(stddev=0.1), biases_initializer=tf.zeros_initializer()) # print(logits) # Tensor("fully_connected/Relu:0", shape=(128, 5, 27), dtype=float32) return logits, final_state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_build_nn(build_nn) # 根据建议修改的方法,很赞! def get_batches(int_text, batch_size, seq_length): n_batches = int(len(int_text) / (batch_size * seq_length)) x_data = np.array(int_text[: n_batches * batch_size * seq_length]) y_data = np.array(int_text[1: n_batches * batch_size * seq_length + 1]) x = np.split(xdata.reshape(batch_size, -1), n_batches, 1) y = np.split(ydata.reshape(batch_size, -1), n_batches, 1) return np.array(list(zip(x, y))) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_batches(get_batches) # def get_batches(int_text, batch_size, seq_length): # # Return batches of input and target # :param int_text: Text with the words replaced by their ids # :param batch_size: The size of batch # :param seq_length: The length of sequence # :return: Batches as a Numpy array # # # TODO: Implement Function # batches = [] # n_batchs = (len(int_text)-1) // (batch_size * seq_length) # # int_text = int_text[:n_batchs*batch_size * seq_length+1] # for i in range(0,n_batchs*seq_length,seq_length): # x = [] # y = [] # for j in range(i,i+batch_size * seq_length,seq_length): # x.append(int_text[j:j+seq_length]) # y.append(int_text[j+1:j+1+seq_length]) # batches.append([x,y]) # return np.array(batches) # #print(get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2, 3)) # # DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE # # tests.test_get_batches(get_batches) # 4257 line ,average 11 words # Number of Epochs num_epochs = 50 # Batch Size batch_size = 200 # RNN Size rnn_size = 512 # Sequence Length seq_length = 10 # !!! when i increase the seq_length from 5 to 10,it really helps,如果继续增加会怎么样呢? # Learning Rate learning_rate = 0.01 # Show stats for every n number of batches show_every_n_batches = 40 DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE save_dir = './save' DON'T MODIFY ANYTHING IN THIS CELL from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) # input_data_shape[0] batch size cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients] train_op = optimizer.apply_gradients(capped_gradients) DON'T MODIFY ANYTHING IN THIS CELL batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') DON'T MODIFY ANYTHING IN THIS CELL # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) DON'T MODIFY ANYTHING IN THIS CELL import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() def get_tensors(loaded_graph): Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) # TODO: Implement Function return loaded_graph.get_tensor_by_name("input:0"), loaded_graph.get_tensor_by_name("initial_state:0"), loaded_graph.get_tensor_by_name("final_state:0"), loaded_graph.get_tensor_by_name("probs:0") DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_get_tensors(get_tensors) import random def pick_word(probabilities, int_to_vocab): Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word # TODO: Implement Function r = random.uniform(0,1) #store prediction char s = 0 #since length > indices starting at 0 char_id = len(probabilities) - 1 #for each char prediction probabilty for i in range(len(probabilities)): #assign it to S s += probabilities[i] #check if probability greater than our randomly generated one if s >= r: #if it is, thats the likely next char char_id = i break return int_to_vocab[char_id] # 另一种简单方法,对于为什么这么选择,可以参考一篇文章: # http://yanyiwu.com/work/2014/01/30/simhash-shi-xian-xiang-jie.html rand = np.sum(probabilities) * np.random.rand(1) pred_word = int_to_vocab[int(np.searchsorted(np.cumsum(probabilities), rand))] DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_pick_word(pick_word) gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Section 1 Step2: 3. Répétez les questions 1.1 et 1.2 avec un bruit dit blanc, généré ci dessous. Step3: 4. Bruit respiratoire. Step4: 5. Ligne de base. Step5: 6. Mélange de signaux. Step6: Section 2 Step7: 2.2 Répétez la question 2.1 avec un noyau plus gros. Step8: 2.3 Nous allons maintenant appliquer des filtres de Butterworth. Step9: 2.4. Application du filtre de Butterworth. Step10: 2.5. Optimisation du filtre de Butterworth. Step11: 2.6 Optionnel
<ASSISTANT_TASK:> Python Code: %matplotlib inline from pymatbridge import Octave octave = Octave() octave.start() %load_ext pymatbridge %%matlab %% Définition du signal d'intêret % fréquence du signal freq = 0.3; % on crée des blocs off/on de 15 secondes bloc = repmat([zeros(1,15*freq) ones(1,15*freq)],[1 10]); % les temps d'acquisition ech = (0:(1/freq):(length(bloc)/freq)-(1/freq)); % ce paramètre fixe le pic de la réponse hémodynamique pic = 5; % noyau de réponse hémodynamique noyau = [linspace(0,1,(pic*freq)+1) linspace(1,-0.3,(pic*freq)/2) linspace(-0.3,0,(pic*freq)/2)]; noyau = [zeros(1,length(noyau)-1) noyau]; % normalisation du noyau noyau = noyau/sum(abs(noyau)); % convolution du bloc avec le noyau signal = conv(bloc,noyau,'same'); % on fixe la moyenne de la réponse à zéro signal = signal - mean(signal); %% représentation en temps figure plot(ech,signal) xlim([-1 max(ech)+1]) ylim([-0.6 0.7]) xlabel('Temps (s)') ylabel('a.u') %% représentation en fréquences figure Analyse_Frequence_Puissance(signal,ech); ylim([10^(-10) 1]) %%matlab %% définition du bruit blanc bruit = 0.05*randn(size(signal)); %% représentation en temps figure plot(ech,bruit) ylim([-0.6 0.7]) xlabel('Temps (s)') ylabel('a.u') %% représentation en fréquences figure Analyse_Frequence_Puissance(bruit,ech); ylim([10^(-10) 1]) %%matlab %% définition du signal de respiration % fréquence de la respiration freq_resp = 0.3; % un modéle simple (cosinus) des fluctuations liées à la respiration resp = cos(2*pi*freq_resp*ech/freq); % fréquence de modulation lente de l'amplitude respiratoire freq_mod = 0.01; % modulation de l'amplitude du signal lié à la respiration resp = resp.*(ones(size(resp))-0.1*cos(2*pi*freq_mod*ech/freq)); % on force une moyenne nulle, et une amplitude max de 0.1 resp = 0.1*(resp-mean(resp)); %% représentation en temps figure plot(ech,resp) xlim([-1 max(ech)/2+1]) xlabel('Temps (s)') ylabel('a.u') %% représentation en fréquences figure [ech_f,signal_f,signal_af,signal_pu] = Analyse_Frequence_Puissance(resp,ech); set(gca,'yscale','log'); ylim([10^(-35) 1]) %%matlab %% définition de la ligne de base base = 0.1*(ech-mean(ech))/mean(ech); %% représentation en temps figure plot(ech,base) xlim([-1 max(ech)+1]) ylim([-0.6 0.7]) xlabel('Temps (s)') ylabel('a.u') %% représentation en fréquence figure [ech_f,base_f,base_af,base_pu] = Analyse_Frequence_Puissance(base,ech); ylim([10^(-10) 1]) %%matlab %% Mélanges de signaux y_sr = signal + resp; y_srb = signal + resp + bruit; y_srbb = signal + resp + bruit + base; %%matlab y = y_sr; % représentation en temps figure plot(ech,y) hold on plot(ech,signal,'r') xlim([-1 301]) ylim([-0.8 0.8]) xlabel('Temps (s)') ylabel('a.u') % représentation en fréquence figure [freq_f,y_f,y_af,y_pu] = Analyse_Frequence_Puissance(y,ech); ylim([10^(-10) 1]) %%matlab y = y_srb; % représentation en temps figure plot(ech,y) hold on plot(ech,signal,'r') xlim([-1 301]) ylim([-0.8 0.8]) xlabel('Temps (s)') ylabel('a.u') % représentation en fréquence figure [freq_f,y_f,y_af,y_pu] = Analyse_Frequence_Puissance(y,ech); ylim([10^(-10) 1]) %%matlab y = y_srbb; % représentation en temps figure plot(ech,y) hold on plot(ech,signal,'r') xlim([-1 301]) ylim([-0.8 0.8]) xlabel('Temps (s)') ylabel('a.u') % représentation en fréquence figure [freq_f,y_f,y_af,y_pu] = Analyse_Frequence_Puissance(y,ech); ylim([10^(-10) 1]) %%matlab %%définition d'un noyau de moyenne mobile % taille de la fenêtre pour la moyenne mobile, en nombre d'échantillons temporels taille = ceil(3*freq); % le noyau, défini sur une fenêtre identique aux signaux précédents noyau = [zeros(1,(length(signal)-taille)/2) ones(1,taille) zeros(1,(length(signal)-taille)/2)]; % normalisation du moyau noyau = noyau/sum(abs(noyau)); % convolution avec le noyau (filtrage) y_f = conv(y_sr,noyau,'same'); %% Représentation fréquentielle du filtre figure Analyse_Frequence_Puissance(noyau,ech); ylim([10^(-10) 1]) %% représentation du signal filtré figure plot(ech,y_f,'k') hold on plot(ech,signal,'r') %% erreur résiduelle err = sqrt(mean((signal-y_f).^2)) %%matlab %%définition d'un noyau de moyenne mobile % taille de la fenêtre pour la moyenne mobile, en nombre d'échantillons temporels taille = ceil(6*freq); % le noyau, défini sur une fenêtre identique aux signaux précédents noyau = [zeros(1,(length(signal)-taille)/2) ones(1,taille) zeros(1,(length(signal)-taille)/2)]; % normalisation du moyau noyau = noyau/sum(abs(noyau)); % convolution avec le noyau (filtrage) y_f = conv(y_sr,noyau,'same'); %% Représentation fréquentielle du filtre figure Analyse_Frequence_Puissance(noyau,ech); ylim([10^(-10) 1]) %% représentation du signal filtré figure plot(ech,y_f,'k') hold on plot(ech,signal,'r') %% erreur résiduelle err = sqrt(mean((signal-y_f).^2)) %%matlab %% Définition d'une implusion finie unitaire impulsion = zeros(size(signal)); impulsion(round(length(impulsion)/2))=1; noyau = FiltrePasseHaut(impulsion,freq,0.1); %% représentation temporelle figure plot(ech,noyau) xlabel('Temps (s)') ylabel('a.u') %% représentation fréquentielle figure Analyse_Frequence_Puissance(noyau,ech); set(gca,'yscale','log'); %%matlab y = y_sr; y_f = FiltrePasseBas(y,freq,0.1); %%représentation du signal filtré plot(ech,signal,'r') hold on plot(ech,y_f,'k') err = sqrt(mean((signal-y_f).^2)) %%matlab y = y_sr; %%définition d'un noyau de moyenne mobile % taille de la fenêtre pour la moyenne mobile, en nombre d'échantillons temporels taille = ceil(6*freq); % le noyau, défini sur une fenêtre identique aux signaux précédents noyau = [zeros(1,(length(signal)-taille)/2) ones(1,taille) zeros(1,(length(signal)-taille)/2)]; % normalisation du moyau noyau = noyau/sum(abs(noyau)); % convolution avec le noyau (filtrage) y_f = conv(y,noyau,'same'); %% représentation du signal brut figure plot(ech,signal,'r') hold on plot(ech,y,'k') %% représentation du signal filtré figure plot(ech,y_f,'k') hold on plot(ech,signal,'r') err = sqrt(mean((signal-y_f).^2)) %% filtre de Butterworth y_f = FiltrePasseHaut(y,freq,0.08); y_f = y_f+FiltrePasseBas(y,freq,0.12); %% représentation du signal filtré figure plot(ech,signal,'r') hold on plot(ech,y_f,'k') err = sqrt(mean((signal-y_f).^2)) %%matlab y = y_srb; %%définition d'un noyau de moyenne mobile % taille de la fenêtre pour la moyenne mobile, en nombre d'échantillons temporels taille = ceil(6*freq); % le noyau, défini sur une fenêtre identique aux signaux précédents noyau = [zeros(1,(length(signal)-taille)/2) ones(1,taille) zeros(1,(length(signal)-taille)/2)]; % normalisation du moyau noyau = noyau/sum(abs(noyau)); % convolution avec le noyau (filtrage) y_f = conv(y,noyau,'same'); %% représentation du signal brut figure plot(ech,signal,'r') hold on plot(ech,y,'k') %% représentation du signal filtré figure plot(ech,y_f,'k') hold on plot(ech,signal,'r') %% erreur résiduelle err = sqrt(mean((signal-y_f).^2)) %signal+base+resp+bruit y_f = FiltrePasseBas(y,freq,0.08); %% représentation du signal filtré figure plot(ech,signal,'r') hold on plot(ech,y_f,'k') err = sqrt(mean((signal-y_f).^2)) %%matlab y = y_srbb; %%définition d'un noyau de moyenne mobile % taille de la fenêtre pour la moyenne mobile, en nombre d'échantillons temporels taille = ceil(6*freq); % le noyau, défini sur une fenêtre identique aux signaux précédents noyau = [zeros(1,(length(signal)-taille)/2) ones(1,taille) zeros(1,(length(signal)-taille)/2)]; % normalisation du moyau noyau = noyau/sum(abs(noyau)); % convolution avec le noyau (filtrage) y_f = conv(y,noyau,'same'); %% représentation du signal brut figure plot(ech,signal,'r') hold on plot(ech,y,'k') %% représentation du signal filtré figure plot(ech,y_f,'k') hold on plot(ech,signal,'r') %% erreur résiduelle err = sqrt(mean((signal-y_f).^2)) %signal+base+resp+bruit y_f = FiltrePasseHaut(y,freq,0.02); y_f = FiltrePasseBas(y_f,freq,0.08); %% représentation du signal filtré figure plot(ech,signal,'r') hold on plot(ech,y_f,'k') err = sqrt(mean((signal-y_f).^2)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Message Receive Time Step2: IMU Noisy Acceleration Step3: State Tracking
<ASSISTANT_TASK:> Python Code: import psas_packet from psas_packet.io import BinFile import csv import matplotlib.pyplot as plt from matplotlib import gridspec %matplotlib inline FPS2M = 0.3048 LBF2N = 4.44822 LBS2KG = 0.453592 # Extend PSAS Packet to include our state message psas_packet.messages.MESSAGES["STAT"] = psas_packet.messages.Message({ 'name': "State Vector", 'fourcc': b'STAT', 'size': "Fixed", 'endianness': '!', 'members': [ {'key': "time", 'stype': "Q"}, {'key': "accel", 'stype': "d"}, {'key': "vel", 'stype': "d"}, {'key': "alt", 'stype': "d"}, {'key': "roll_rate", 'stype': "d"}, {'key': "roll_angle", 'stype': "d"}, ] }) # Read data from rust-fc logfile = BinFile('../logfile-000') max_acc = 0 rust_time = [] rust_accel_x = [] rust_accel_y = [] rust_accel_z = [] rust_state_time = [] rust_vel = [] rust_alt = [] for fourcc, data in logfile.read(): if fourcc == 'ADIS': if data['Acc_X'] > max_acc: max_acc = data['Acc_X'] rust_t = data['timestamp']/1.0e9 rust_time.append(data['timestamp']/1.0e9) rust_accel_x.append(data['Acc_X']) rust_accel_y.append(data['Acc_Y']) rust_accel_z.append(data['Acc_Z']) if fourcc == 'STAT': rust_state_time.append(data['timestamp']/1.0e9) rust_vel.append(data['vel']) rust_alt.append(data['alt']) # Read data from JSBSim max_accel = 0 sim_time = [] measured_accel_x = [] sim_vel_up = [] sim_alt = [] with open('../simulation/data.csv') as datafile: reader = csv.reader(datafile, delimiter=',') for row in reader: # ignore first line if row[0][0] == 'T': continue sim_time.append(float(row[0])) force_x = float(row[18]) * LBF2N weight = float(row[6]) * LBS2KG measured_accel_x.append(force_x/weight) if (force_x/weight) > max_accel: max_accel = force_x/weight sim_t = sim_time[-1] sim_vel_up.append(-float(row[10]) * FPS2M) sim_alt.append(float(row[2])) # line up time sim_offset = rust_t - sim_t sim_time = [t + sim_offset for t in sim_time] # Get the time difference between each ADIS message diff = [(rust_time[i+1] - t)*1000 for i, t in enumerate(rust_time[:-1])] fig, ax1 = plt.subplots(figsize=(18,7)) plt.title(r"rust-fc ADIS Message Interval") plt.ylabel(r"Time Since Last Sample [ms]") plt.xlabel(r"Sample Number [#]") plt.plot(range(len(diff)), diff, 'r.', alpha=1.0, ms=0.3, label="rust-fc Sample Interval") plt.plot((0, len(diff)), (1.2207, 1.2207), 'k-', lw=0.6, alpha=0.7, label="Expected Sample Interval") ax1.set_yscale("log", nonposy='clip') plt.ylim([0.1,100]) #plt.xlim() ax1.legend(loc=1) plt.show() fig, ax1 = plt.subplots(figsize=(18,7)) plt.title(r"rust-fc ADIS Message Interval") plt.ylabel(r"Number of Samples [#]") plt.xlabel(r"Time Since Last Sample [ms]") n, bins, patches = plt.hist(diff, 1000, histtype='step', normed=1, alpha=0.8, linewidth=1, fill=True) plt.plot((1.2207, 1.2207), (0, 1000), 'k-', lw=0.6, alpha=0.7, label="Expected Sample Interval") plt.ylim([0, 35]) #plt.xlim() ax1.legend(loc=1) plt.show() fig, ax1 = plt.subplots(figsize=(18,7)) plt.title(r"rust-fc Recorded IMU Acceleration") plt.ylabel(r"Acceleration [m/s${}^2$]") plt.xlabel(r"Run Time [s]") plt.plot(rust_time, rust_accel_x, alpha=0.8, lw=0.5, label="rust-fc IMU 'Up'") plt.plot(rust_time, rust_accel_y, alpha=0.8, lw=0.5, label="rust-fc IMU 'Y'") plt.plot(rust_time, rust_accel_z, alpha=0.6, lw=0.5, label="rust-fc IMU 'Z'") plt.plot(sim_time, measured_accel_x, 'k-', lw=1.3, alpha=0.6, label="JSBSim True Acceleration") #plt.ylim() #plt.xlim() ax1.legend(loc=1) plt.show() # Computer difference from FC State and simulation "real" numbers sim_idx = 0 vel = 0 alt = 0 i_count = 0 sim_matched_vel = [] vel_diff = [] alt_diff = [] for i, t in enumerate(rust_state_time): vel += rust_vel[i] alt += rust_alt[i] i_count += 1 if sim_time[sim_idx] < t: sim_matched_vel.append(vel/float(i_count)) vel_diff.append(sim_vel_up[sim_idx] - (vel/float(i_count))) alt_diff.append(sim_alt[sim_idx] - (alt/float(i_count))) vel = 0 alt = 0 i_count = 0 sim_idx += 1 if sim_idx > len(sim_time)-1: break fig = plt.figure(figsize=(18,9)) plt.subplots_adjust(hspace=0.001) # no space between vertical charts gs = gridspec.GridSpec(2, 1, height_ratios=[2, 1]) # stretch main chart to be most of the width ax1 = plt.subplot(gs[0]) plt.title(r"rust-fc State Tracking: Velocity And Velocity Integration Error") plt.ylabel(r"Velocity [m/s]") plt.plot(rust_state_time, rust_vel, alpha=0.8, lw=1.5, label="rust-fc State Vector Velocity") plt.plot(sim_time, sim_vel_up, 'k-', lw=1.3, alpha=0.6, label="JSBSim True Velocity") plt.ylim([-60,400]) ticklabels = ax1.get_xticklabels() plt.setp(ticklabels, visible=False) ax2 = plt.subplot(gs[1]) plt.xlabel(r"Run Time [s]") plt.ylabel(r"Integration Drift Error [m/s]") plt.plot(sim_time, vel_diff) ax1.legend(loc=1) plt.show() fig = plt.figure(figsize=(18,9)) plt.subplots_adjust(hspace=0.001) # no space between vertical charts gs = gridspec.GridSpec(2, 1, height_ratios=[2, 1]) # stretch main chart to be most of the width ax1 = plt.subplot(gs[0]) plt.title(r"rust-fc State Tracking: Altitude And ALtitude Integration Error") plt.ylabel(r"Altitude MSL [m]") plt.plot(rust_state_time, rust_alt, alpha=0.8, lw=1.5, label="rust-fc State Vector Altitude") plt.plot(sim_time, sim_alt, 'k-', lw=1.3, alpha=0.6, label="JSBSim True Velocity") plt.ylim([1390, 7500]) ticklabels = ax1.get_xticklabels() plt.setp(ticklabels, visible=False) ax2 = plt.subplot(gs[1]) plt.xlabel(r"Run Time [s]") plt.ylabel(r"Integration Drift Error [m]") plt.plot(sim_time, alt_diff) #plt.xlim() ax1.legend(loc=1) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: lang Step2: lang Step3: lang Step4: lang Step5: lang Step6: lang Step7: lang Step9: 5. Exercise Step11: 5.2. Returning the First Item that Matches a Predicate Step13: 5.3. Filtering Items in a List Step15: 5.4. map Step16: Aside Step17: lang Step18: lang Step19: lang Step21: 6. Exercise
<ASSISTANT_TASK:> Python Code: # A program that calculates the final grade for each student. # Scores for Assignment 1, Assignment 2, and Final Exam. sam_scores = [90, 80, 90] yuko_scores = [90, 100, 80] sam_weighted_score = 0.2 * sam_scores[0] + 0.2 * sam_scores[1] + 0.6 * sam_scores[2] sam_grade = 'PASS' if sam_weighted_score > 60 else 'FAIL' print('Sam\'s final score: {} => {}'.format(sam_weighted_score, sam_grade)) yuko_weighted_score = 0.2 * yuko_scores[0] + 0.2 * yuko_scores[1] + 0.6 * yuko_scores[2] yuko_grade = 'PASS' if yuko_weighted_score > 60 else 'FAIL' print('Yuko\'s final score: {} => {}'.format(yuko_weighted_score, yuko_grade)) def calculate_grade(student_name, scores): weighted_score = 0.2 * scores[0] + 0.2 * scores[1] + 0.6 * scores[2] grade = 'PASS' if weighted_score > 60 else 'FAIL' return '{}\'s final score: {} => {}'.format(student_name, weighted_score, grade) print(calculate_grade('Sam', sam_scores)) print(calculate_grade('Yuko', yuko_scores)) devon_scores = [60, 50, 60] print(calculate_grade('Devon', devon_scores)) print(calculate_grade('Sam', sam_scores)) print(calculate_grade('Sam', sam_scores)) # When we call the function again, the same message will be printed. print(calculate_grade('Sam', sam_scores)) # Impure version def calculate_grade_impure(student_name, scores): scores[0] *= 0.2 scores[1] *= 0.2 scores[2] *= 0.6 weighted_score = scores[0] + scores[1] + scores[2] grade = 'PASS' if weighted_score > 60 else 'FAIL' return '{}\'s final score: {} => {}'.format(student_name, weighted_score, grade) print(calculate_grade_impure('Sam', sam_scores)) print(calculate_grade_impure('Sam', sam_scores)) # When we call the function again, we get a different result! print(calculate_grade_impure('Sam', sam_scores)) def square(x): return x ** 2 # We can assign a function `square` to a variable `my_square` my_square = square # The variable can be called since it contains a function. print(my_square(3)) def square(x): return x ** 2 def cube(x): return x ** 3 # Creating a list of functions. power_functions = [ square, cube ] for power_function in power_functions: print(power_function(3)) student_ages = [('Sam', 18), ('Yuko', 20), ('Devon', 19)] # Sort by names in alphabetical order. def get_name(student): return student[0] sorted_by_name = sorted(student_ages, key=get_name) print('Sorted by name: {}'.format(sorted_by_name)) # Sort by age. (ascending order) ## You can use lambda to avoid defining a new function sorted_by_age = sorted(student_ages, key=lambda student:student[1]) print('Sorted by age (smallest to largest): {}'.format(sorted_by_age)) # You can use `reverse` to sort a list by descending order. sorted_by_age_desc = sorted(student_ages, key=lambda student:student[1], reverse=True) print('Sorted by age (largest to smallest): {}'.format(sorted_by_age_desc)) def create_adder(k): def adder(x): # k is captured from the outer function. return x + k return adder adder_5 = create_adder(5) print(adder_5(3)) %%solution def apply_n_times(f, x, n): # BEGIN PROMPT pass # END PROMPT # BEGIN SOLUTION result = x for _ in range(n): result = f(result) return result # END SOLUTION %%studenttest ApplyNTimesStudentTest def add2(x): return x + 2 assert apply_n_times(add2, 0, 5) == 10 # Note: the "lambda" syntax is a shorthand for creating a function with no name. # For more information, see: # https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions assert apply_n_times(lambda x: x * 2, 1, 10) == 1024 def fibonacci_step(x): return (x[1], x[0] + x[1]) assert apply_n_times(fibonacci_step, (1, 1), 10) == (89, 144) %%inlinetest ApplyNTimesInlineTest assert apply_n_times(lambda x: True, None, 1) is not None, 'Did you forget to return a value?' assert apply_n_times(lambda x: x + 1, 1, 2) == 3, 'Are you passing `x` and `y` to the function?' assert apply_n_times(lambda x: x * x, 0, 100) == 0, '`x` must be returned as is when `n == 0`.' %%solution def find_first_match(predicate, items): # BEGIN PROMPT pass # END PROMPT # BEGIN SOLUTION for x in items: if predicate(x): return x # END SOLUTION %%studenttest FindFirstMatchStudentTest assert find_first_match(lambda x: x > 5, [1, 2, 3, 8, 9]) == 8 assert find_first_match(lambda x: x, [False, False, True]) is True assert find_first_match(lambda x: x == 10, [11, 12, 8]) is None %%inlinetest FindFirstMatchInlineTest assert find_first_match(lambda x: True, []) is None, 'Do you have the correct return value when there are no items?' assert find_first_match(lambda x: x > 1, [2]) == 2, 'Are you checking if calling the predicate returns True?' assert find_first_match(lambda x: x > 1, [1, 2]) == 2, 'Are you checking all of the items?' %%solution def my_filter(predicate, items): # BEGIN PROMPT pass # END PROMPT # BEGIN SOLUTION filtered_items = [] for item in items: if predicate(item): filtered_items.append(item) return filtered_items # END SOLUTION %%studenttest MyFilterStudentTest assert(my_filter(lambda x : x > 3, [4, 2, 8, -3, 10, 3]) == [4, 8, 10]) assert (my_filter(lambda x: len(x) > 3, ['dog', 'elephant', 'cat', 'hippopotamus']) == ['elephant', 'hippopotamus']) assert my_filter(lambda x: x > 2, [2, 4, 5]) == [4, 5] assert my_filter(lambda x: x, [True, True, False]) == [True, True] assert (my_filter(lambda x: x[0] * x[1] < 1, [(1, 0.5), (0.8, 0.9), (2, 1)]) == [(1, 0.5), (0.8, 0.9)]) %%inlinetest MyFilterInlineTest assert len(my_filter(lambda x: True, [1, 2])) == 2, 'Are you returning all matching items?' assert my_filter(lambda x: x > 1, [1, 2]) == [2], 'Are you calling the predicate on each item?' assert my_filter(lambda x: True, [1, 2]) != [2, 1], 'Are you following the order of the provided items?' %%solution def my_map(function, items): # BEGIN PROMPT pass # END PROMPT # BEGIN SOLUTION transformed_items = [] for item in items: transformed_items.append(function(item)) return transformed_items # END SOLUTION %%studenttest MyMapStudentTest assert my_map(lambda x: x, [1, 2, 3]) == [1, 2, 3] assert my_map(lambda x: x[0], [(1, 2), (2, 3), (3, 4)]) == [1, 2, 3] assert my_map(lambda x: x > 3, [8, 2, 1]) == [True, False, False] %%inlinetest MyMapStudentTest assert len(my_map(lambda x: x, [1, 2])) == 2, 'Are you returning all of the mapped items?' assert my_map(lambda x: x, [1, 2]) != [2, 1], 'Are you following the order of the provided items?' assert my_map(lambda x: x + 1, [1, 2]) == [2, 3], 'Are you calling the function on each of the items?' filtered_list = list(filter(lambda x : x > 3, [4, 2, 8, -3, 10, 3])) assert(filtered_list == [4, 8, 10]) mapped_list = list(map(lambda x: x**2, [1, 2, 3])) assert(mapped_list == [1, 4, 9]) # Prints [1, 4, 9]. print([x ** 2 for x in [1, 2, 3]]) print([x for x in [4, 2, 8, -3, 10, 3] if x > 3]) # Prints [4, 9] since only x > 1 are transformed. print([x ** 2 for x in [1, 2, 3] if x > 1]) # Creates a list of squares for each number in [1, 2, 3] that is larger than 1. print([[x ** 2 for x in range(y)] for y in [1, 2, 3] if y > 1]) # Converts a list of number strings into numbers, then creates 3 x 3 matrices # containing each number. print([[[x] * 3] * 3 for x in [int(y) for y in ['1', '2', '3']]]) %%solution # [(city name, population, area)] test_data = [('Chiyoda', 64894, 11.66), ('Minato', 259042, 20.37), ('Shinjuku', 349844, 18.22), ('Bunkyo', 233926, 11.29), ('Taito', 207838, 10.11)] # BEGIN PROMPT class City: # Q 6.1. def __init__(self, data): pass # Q 6.2. def population_density(self): pass # Q6.3. def top_k_densest_city_names(city_list, k): pass # END PROMPT # BEGIN SOLUTION class City: # Q 6.1. def __init__(self, data): self.name = data[0] self.population = data[1] self.area = data[2] # Q 6.2. def population_density(self): return self.population / self.area # Q6.3. def top_k_densest_city_names(city_list, k): sorted_cities = list(sorted(city_list, key=lambda c: c.population_density(), reverse=True)) return list(map(lambda c: c.name, sorted_cities[:k])) # END SOLUTION %%studenttest FPAndOOPStudentTest1 # Q 6.1. ## Create a `City` instance for ('Chiyoda', 64894, 11.66) chiyoda_ku = City(test_data[0]) ## Each data must be accessed assert(chiyoda_ku.name == 'Chiyoda') assert(chiyoda_ku.population == 64894) assert(chiyoda_ku.area == 11.66) %%studenttest FPAndOOPStudentTest2 # Q 6.2. ## Population density is (population / area) assert(chiyoda_ku.population_density() == 64894 / 11.66) %%studenttest FPAndOOPStudentTest3 # Q 6.3. ## Create a list of `City` instances by using `map` function. city_list = list(map(City, test_data)) ## Get Top 5 cities top5_densest_cities = top_k_densest_city_names(city_list, 5) # Expected: ['Bunkyo', 'Taito', 'Shinjuku', 'Minato', 'Chiyoda'] print('Top 5 cities: {}'.format(top5_densest_cities)) assert(len(top5_densest_cities) == 5) expected = ['Bunkyo', 'Taito', 'Shinjuku', 'Minato', 'Chiyoda'] assert top5_densest_cities == expected, 'Expected: {}, Actual: {}'.format(expected, top5_densest_cities) %%studenttest FPAndOOPStudentTest3_2 # More tests: Change the value of `k` ## Get Top 2 cities top2_densest_cities = top_k_densest_city_names(city_list, 2) print('Top 2 cities: {}'.format(top2_densest_cities)) assert len(top2_densest_cities) == 2 assert top2_densest_cities == [ 'Bunkyo', 'Taito' ] ## What if `k` is 0? top0_densest_cities = top_k_densest_city_names(city_list, 0) print('Top 0 cities: {}'.format(top0_densest_cities)) assert(top0_densest_cities == []) %%inlinetest FPAndOOPStudentTest # Q 6.1. try: City(('A', 1, 1)) except NameError: assert False, 'class `City` is not implemented' except Exception: assert False, 'City((\'A\', 1, 1)) raised an exception' try: c = City(('A', 1, 1)) name = c.__class__.__name__ except Exception: assert False, "City(('A', 1, 1)) raised an exception" if name != 'City': assert False, 'The class name is not `City` but {}'.format(name) test_data = [('Chiyoda', 64894, 11.66), ('Minato', 259042, 20.37), ('Shinjuku', 349844, 18.22), ('Bunkyo', 233926, 11.29), ('Taito', 207838, 10.11)] city_a = City(test_data[0]) try: city_a.name city_a.population city_a.area except AttributeError: assert False, 'The class `City` must have fields `name`, `population` and `area`.' assert city_a.name == 'Chiyoda', '`name` field is not implemeted properly' if city_a.population == test_data[1] and city_a.area == test_data[0]: assert False, 'You may swap `population` and `area`?' assert city_a.population == test_data[0][1], '`population` field is not implemeted properly' assert city_a.area == test_data[0][2], '`area` field is not implemeted properly' # Q 6.2. try: city_a.population_density() except AttributeError: assert False, 'The class has no method like `city_a.population_density()`.' assert city_a.population_density() == city_a.population / city_a.area, 'population_density() must return `population` / `area`' # Q 6.3. try: top_k_densest_city_names except NameError: assert False, 'function \'top_k_densest_city_names\' is not defined' city_list = list(map(lambda data: City(data), test_data)) try: assert top_k_densest_city_names(city_list, 3) is not None, "You have not implemented top_k_densest_city_names" except Exception as e: assert False, 'Error when trying to run top_k_densest_city_names: %s' % e ans3 = top_k_densest_city_names(city_list, 3) assert len(ans3) == 3, 'top_k_densest_city_names(..., 3) must return list with 3 elements, but got %d' % len(ans3) dense_cities = top_k_densest_city_names(city_list, 5) assert dense_cities.__class__ == list, "top_k_densest_city_names() should return a list, but got %s" % dense_cities.__class__ assert len(dense_cities) == 5, "top_k_densest_city_names(city_list, 5) should return a list with 5 elements, but got %d" % len(dense_cities) assert dense_cities[0].__class__ == str, "top_k_densest_city_names() should return a list of strings, but got %s" % dense_cities[0].__class__ ans = ['Bunkyo', 'Taito', 'Shinjuku', 'Minato', 'Chiyoda'] assert dense_cities == ans, ('the population density ranking should be '+"['Bunkyo', 'Taito', 'Shinjuku', 'Chuo', 'Minato'], but your code returned %s" % dense_cities) result, logs = %autotest FPAndOOPStudentTest assert result.results['passed'] report(FPAndOOPStudentTest, results=result.results) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Modes Step2: This is a markdown cell, so even if something looks like code (as below), it won't get executed! Step3: Common gotcha Step4: Now we initialize Hail and set up Bokeh to display inline in the notebook. Step5: Download public 1000 Genomes data Step6: It is possible to call command-line utilities from Jupyter by prefixing a line with a ! Step7: Part 1 Step8: Read 1KG into Hail Step9: What is a MatrixTable? Step10: count Step11: show Step12: <font color="brightred"><strong>Exercise Step13: Most of Hail's functionality is totally general-purpose! Step14: Or if we had flight data Step15: By sorting the result in Python, we can recover an interesting bit of biology... Step16: <font color="brightred"><strong>Question Step17: Using our equation above, the mean value indicates about 99.9% confidence. But it's not generally a good idea to draw conclusions just based on a mean and standard deviation... Step18: To look at GQ at genotypes that are not heterozygous, we need add only one character (~) Step19: There are often many ways to accomplish something in Hail. We could have done these both together (and more efficiently!) using hl.agg.group_by Step20: Of course, the best way to understand a distribution is to look at it! Step21: <font color="brightred"><strong>Exercise Step22: We can import it as a Hail Table with hl.import_table. Step23: While we can see the names and types of fields in the logging messages, we can also describe and show this table Step24: Add sample metadata into our 1KG MatrixTable Step25: What's going on here? Step26: <font color="brightred"><strong>Exercise Step27: <font color="brightred"><strong>Exercise Step28: Entry QC Step29: Variant QC Step30: Remove rare sites Step31: Remove sites far from Hardy-Weinberg equilbrium Step32: Part 3 Step33: Two of the plots that analysts generally produce are a Manhattan plot and a Q-Q plot. Step34: Confounded! Step35: The eigenvalues reflect the amount of variance explained by each principal component Step36: The scores are the principal components themselves, computed per sample. Step37: The loadings are the contributions to each component for each variant. Step38: We can annotate the principal components back onto mt Step39: Principal components measure ancestry Step40: <font color="brightred"><strong>Question Step41: Part 4 Step42: Create an interval key Step43: Annotate variants using these intervals Step44: Aggregate genotypes per gene Step45: What is burden_mt? Step46: Sorry, no hl.plot.manhattan for genes!
<ASSISTANT_TASK:> Python Code: print('Hello, world') # This is a code cell my_variable = 5 print(my_variable) import hail as hl from bokeh.io import output_notebook, show hl.init() output_notebook() hl.utils.get_1kg('data/') ! ls -1 data/ hl.import_vcf('data/1kg.vcf.bgz').write('data/1kg.mt', overwrite=True) mt = hl.read_matrix_table('data/1kg.mt') mt.describe() mt.count() mt.s.show(5) mt.locus.show(5) hl.summarize_variants(mt) mt.aggregate_rows(hl.agg.count_where(mt.alleles == ['A', 'T'])) snp_counts = mt.aggregate_rows( hl.array(hl.agg.counter(mt.alleles))) snp_counts sorted(snp_counts, key=lambda x: x[1]) mt.aggregate_entries(hl.agg.stats(mt.GQ)) mt.aggregate_entries(hl.agg.filter(mt.GT.is_het(), hl.agg.stats(mt.GQ))) mt.aggregate_entries(hl.agg.filter(~mt.GT.is_het(), hl.agg.stats(mt.GQ))) mt.aggregate_entries(hl.agg.group_by(mt.GT, hl.agg.stats(mt.GQ))) p = hl.plot.histogram( mt.GQ, bins=100) show(p) ! head data/1kg_annotations.txt sa = hl.import_table('data/1kg_annotations.txt', impute=True, key='Sample') sa.describe() sa.show() mt = mt.annotate_cols(pheno = sa[mt.s]) mt.describe() mt = hl.sample_qc(mt) mt.sample_qc.describe() p = hl.plot.scatter(x=mt.sample_qc.r_het_hom_var, y=mt.sample_qc.call_rate) show(p) mt = mt.filter_cols(mt.sample_qc.dp_stats.mean >= 4) mt = mt.filter_cols(mt.sample_qc.call_rate >= 0.97) # call rate before filtering mt.aggregate_entries(hl.agg.fraction(hl.is_defined(mt.GT))) ab = mt.AD[1] / hl.sum(mt.AD) filter_condition_ab = ( hl.case() .when(mt.GT.is_hom_ref(), ab <= 0.1) .when(mt.GT.is_het(), (ab >= 0.25) & (ab <= 0.75)) .default(ab >= 0.9) # hom-var ) mt = mt.filter_entries(filter_condition_ab) # call rate after filtering mt.aggregate_entries(hl.agg.fraction(hl.is_defined(mt.GT))) mt = hl.variant_qc(mt) mt.variant_qc.describe() mt.variant_qc.AF.show() mt = mt.filter_rows(hl.min(mt.variant_qc.AF) > 1e-6) mt = mt.filter_rows(mt.variant_qc.p_value_hwe > 0.005) # final variant and sample count mt.count() gwas = hl.linear_regression_rows(y=mt.pheno.CaffeineConsumption, x=mt.GT.n_alt_alleles(), covariates=[1.0]) gwas.describe() p = hl.plot.manhattan(gwas.p_value) show(p) p = hl.plot.qq(gwas.p_value) show(p) pca_eigenvalues, pca_scores, pca_loadings = hl.hwe_normalized_pca(mt.GT, compute_loadings=True) pca_eigenvalues pca_scores.describe() pca_scores.show() pca_loadings.describe() mt = mt.annotate_cols(pca = pca_scores[mt.s]) p = hl.plot.scatter(mt.pca.scores[0], mt.pca.scores[1], label=mt.pheno.SuperPopulation) show(p) gwas = hl.linear_regression_rows( y=mt.pheno.CaffeineConsumption, x=mt.GT.n_alt_alleles(), covariates=[1.0, mt.pheno.isFemale, mt.pca.scores[0], mt.pca.scores[1], mt.pca.scores[2]]) p = hl.plot.qq(gwas.p_value) show(p) p = hl.plot.manhattan(gwas.p_value) show(p) ! wget https://storage.googleapis.com/hail-tutorial/ensembl_gene_annotations.txt -O data/ensembl_gene_annotations.txt gene_ht = hl.import_table('data/ensembl_gene_annotations.txt', impute=True) gene_ht.show() gene_ht.count() gene_ht = gene_ht.transmute(interval = hl.locus_interval(gene_ht['Chromosome'], gene_ht['Gene start'], gene_ht['Gene end'])) gene_ht = gene_ht.key_by('interval') mt = mt.annotate_rows(gene_info = gene_ht[mt.locus]) mt.gene_info.show() burden_mt = ( mt .group_rows_by(gene = mt.gene_info['Gene name']) .aggregate(n_variants = hl.agg.count_where(mt.GT.n_alt_alleles() > 0)) ) burden_mt.describe() burden_results = hl.linear_regression_rows( y=burden_mt.pheno.CaffeineConsumption, x=burden_mt.n_variants, covariates=[1.0, burden_mt.pheno.isFemale, burden_mt.pca.scores[0], burden_mt.pca.scores[1], burden_mt.pca.scores[2]]) burden_results.order_by(burden_results.p_value).show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Create CFNCluster Step2: After you verified the project information, you can execute the pipeline. When the job is done, you will see the log infomration returned from the cluster. Step3: Use case 2.1 Step4: Use case 2.2 Step5: Use case 2.3 Step6: Use case 3 Step7: Use case 4 Step8: To check the processing status Step9: To delete the cluster, you just need to set the cluster name and call the below function. Step10: TODO
<ASSISTANT_TASK:> Python Code: import os import sys sys.path.append(os.getcwd().replace("notebooks/awsCluster", "src/awsCluster")) from util import DesignFileLoader ## S3 input and output address. s3_input_files_address = "s3://path/to/s3_input_files_address" s3_output_files_address = "s3://path/to/s3_output_files_address" ## CFNCluster name your_cluster_name = "cluster_name" ## The private key pair for accessing cluster. private_key = "/path/to/aws_priate_key.pem" ## Project information project_name = "project_name" ## The use case number # use_case = 1: whole-genome sequencing pipeline # use_case = 2.1: the workflow "star_htseq_workflow" of the RNA sequencing pipeline # use_case = 2.2: the workflow "kallisto_deseq_workflow" of the RNA sequencing pipeline # use_case = 2.3: the workflow "star_gatk_workflow" of the RNA sequencing pipeline # use_case = 3: ChiP sequencing pipeline # use_case = 4: miRNA sequencing pipeline use_case = "1" ## If delete cfncluster after job is done. delete_cfncluster = False from cfnCluster import CFNClusterManager, ConnectionManager ## Create a new cluster master_ip_address = CFNClusterManager.create_cfn_cluster(cluster_name=your_cluster_name) ssh_client = ConnectionManager.connect_master(hostname=master_ip_address, username="ec2-user", private_key_file=private_key) from dnaSeq import WGSPipelineManager if use_case == "1": ## analysis steps include: "fastqc", "bwa-alignment", "post-alignment", "gatk-haplotype" analysis_steps = ["fastqc", "bwa-alignment"] ## load design file by calling a function load_design_file in GroupFileMaker. design_file = os.getcwd().replace("notebooks/awsCluster", "data/awsCluster/dnaseq_design_example.txt") sample_list, group_list = DesignFileLoader.load_design_file(design_file) WGSPipelineManager.execute(ssh_client, project_name, analysis_steps, s3_input_files_address, sample_list, group_list, s3_output_files_address) from rnaSeq import RNAPipelineManager if use_case == "2.1": ## star_htseq_workflow workflow = "star_htseq_workflow" ## "fastqc", "alignment", "counting" analysis_steps = ["fastqc", "alignment", "counting"] ## load design file by calling a function load_design_file in GroupFileMaker. design_file = os.getcwd().replace("notebooks/awsCluster", "data/awsCluster/rnaseq_design_example.txt") sample_list, group_list = DesignFileLoader.load_design_file(design_file) ## run the RNA sequencing pipeline RNAPipelineManager.run_analysis(ssh_client, workflow, project_name, analysis_steps, s3_input_files_address, sample_list, group_list, s3_output_files_address) from rnaSeq import RNAPipelineManager if use_case == "2.2": ## kallisto_deseq_workflow workflow = "kallisto_deseq_workflow" ## "fastqc", "alignment", "counting", "differential_calculation" analysis_steps = ["fastqc"] ## load design file by calling a function load_design_file in GroupFileMaker. design_file = os.getcwd().replace("notebooks/awsCluster", "data/awsCluster/rnaseq_design_example.txt") sample_list, group_list = DesignFileLoader.load_design_file(design_file) ## run the RNA sequencing pipeline RNAPipelineManager.run_analysis(ssh_client, workflow, project_name, analysis_steps, s3_input_files_address, sample_list, group_list, s3_output_files_address) from rnaSeq import RNAPipelineManager if use_case == "2.3": ## star_gatk_workflow workflow = "star_gatk_workflow" ## "fastqc", "alignment", "variant_calling" analysis_steps = ["fastqc"] ## load design file by calling a function load_design_file in GroupFileMaker. design_file = os.getcwd().replace("notebooks/awsCluster", "data/awsCluster/rnaseq_vc_design_example.txt") sample_list, group_list = DesignFileLoader.load_design_file(design_file) ## run the RNA sequencing pipeline RNAPipelineManager.run_analysis(ssh_client, workflow, project_name, analysis_steps, s3_input_files_address, sample_list, group_list, s3_output_files_address) from chipSeq import ChipPipelineManager if use_case == "3": ## "homer_workflow" workflow = "homer_workflow" ## "fastqc", "alignment", "make_tag_directory", "make_UCSC_file", "find_peaks", "annotate_peaks", "pos2bed", "find_motifs_genome" analysis_steps = ["annotate_peaks", "pos2bed", "find_motifs_genome"] ## the style option can be either "factor", "histone". style = "histone" ## current available genomes: hg18, hg19, mm9, mm10 genome = "hg19" ## load design file by calling a function load_design_file in GroupFileMaker. design_file = os.getcwd().replace("notebooks/awsCluster", "data/awsCluster/chipSeq_design_example.txt") sample_list, group_list = DesignFileLoader.load_chipseq_design_file(design_file) ## run the ChiP sequencing pipeline ChipPipelineManager.run_analysis(ssh_client, workflow, project_name, analysis_steps, s3_input_files_address, sample_list, group_list, style, genome, s3_output_files_address) from miRNASeq import SmallRNAPipelineManager if use_case == "4": ## "fastqc", "bowtie-alignment", "counting" analysis_steps = ["fastqc", "bowtie-alignment", "counting"] ## load design file by calling a function load_design_file in GroupFileMaker. design_file = os.getcwd().replace("notebooks/awsCluster", "data/awsCluster/smallrnaseq_design_example.txt") sample_list, group_list = DesignFileLoader.load_design_file(design_file) SmallRNAPipelineManager.execute(ssh_client, project_name, analysis_steps, s3_input_files_address, sample_list, group_list, s3_output_files_address) from miRNASeq import SmallRNAPipelineManager from chipSeq import ChipPipelineManager from dnaSeq import WGSPipelineManager from rnaSeq import RNAPipelineManager if use_case == "1": WGSPipelineManager.check_processing_status(ssh_client) if use_case.startswith("2"): RNAPipelineManager.check_processing_status(ssh_client) if use_case == "3": ChipPipelineManager.check_processing_status(ssh_client) if use_case == "4": SmallRNAPipelineManager.check_processing_status(ssh_client) from cfnCluster import CFNClusterManager if delete_cfncluster == True: CFNClusterManager.delete_cfn_cluster(cluster_name=your_cluster_name) from rnaSeq import ConfigureBuilder ## creating a list of options for configuration. ## configuring Star options star_option_list = [["runThreadN", "1"], ["clip3pNbases", "0"], ["outFileNamePrefix", "mysam"], ["outReadsUnmapped", "None"]] ConfigureBuilder.configure_star(star_option_list) ## configuring Kallisto options kallisto_option_list = [["fragment-length", "50"], ["bootstrap-samples", "0"], ["seed", "42"]] ConfigureBuilder.configure_kallisto(kallisto_option_list) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Cat vs. Dog Image Classification Step2: These are just a few of the options available (for more, see the Keras documentation. Let's quickly go over what we just wrote Step3: Next, let's apply the datagen transformations to a cat image from the training set to produce five random variants. Rerun the cell a few times to see fresh batches of random variants. Step4: Add Data Augmentation to the Preprocessing Step Step5: If we train a new network using this data augmentation configuration, our network will never see the same input twice. However the inputs that it sees are still heavily intercorrelated, so this might not be quite enough to completely get rid of overfitting. Step6: Retrain the Model Step7: Solution Step8: Note that with data augmentation in place, the 2,000 training images are randomly transformed each time a new training epoch runs, which means that the model will never see the same image twice during training. Step9: Much better! We are no longer overfitting, and we have gained ~3 validation accuracy percentage points (see the green line in the top chart). In fact, judging by our training profile, we could keep fitting our model for 30+ more epochs and we could probably get to ~80%!
<ASSISTANT_TASK:> Python Code: # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tensorflow.keras.preprocessing.image import ImageDataGenerator datagen = ImageDataGenerator( rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') !wget --no-check-certificate \ https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip -O \ /tmp/cats_and_dogs_filtered.zip import os import zipfile local_zip = '/tmp/cats_and_dogs_filtered.zip' zip_ref = zipfile.ZipFile(local_zip, 'r') zip_ref.extractall('/tmp') zip_ref.close() base_dir = '/tmp/cats_and_dogs_filtered' train_dir = os.path.join(base_dir, 'train') validation_dir = os.path.join(base_dir, 'validation') # Directory with our training cat pictures train_cats_dir = os.path.join(train_dir, 'cats') # Directory with our training dog pictures train_dogs_dir = os.path.join(train_dir, 'dogs') # Directory with our validation cat pictures validation_cats_dir = os.path.join(validation_dir, 'cats') # Directory with our validation dog pictures validation_dogs_dir = os.path.join(validation_dir, 'dogs') train_cat_fnames = os.listdir(train_cats_dir) train_dog_fnames = os.listdir(train_dogs_dir) %matplotlib inline import matplotlib.pyplot as plt import matplotlib.image as mpimg from tensorflow.keras.preprocessing.image import array_to_img, img_to_array, load_img img_path = os.path.join(train_cats_dir, train_cat_fnames[2]) img = load_img(img_path, target_size=(150, 150)) # this is a PIL image x = img_to_array(img) # Numpy array with shape (150, 150, 3) x = x.reshape((1,) + x.shape) # Numpy array with shape (1, 150, 150, 3) # The .flow() command below generates batches of randomly transformed images # It will loop indefinitely, so we need to `break` the loop at some point! i = 0 for batch in datagen.flow(x, batch_size=1): plt.figure(i) imgplot = plt.imshow(array_to_img(batch[0])) i += 1 if i % 5 == 0: break # Adding rescale, rotation_range, width_shift_range, height_shift_range, # shear_range, zoom_range, and horizontal flip to our ImageDataGenerator train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True,) # Note that the validation data should not be augmented! val_datagen = ImageDataGenerator(rescale=1./255) # Flow training images in batches of 32 using train_datagen generator train_generator = train_datagen.flow_from_directory( train_dir, # This is the source directory for training images target_size=(150, 150), # All images will be resized to 150x150 batch_size=20, # Since we use binary_crossentropy loss, we need binary labels class_mode='binary') # Flow validation images in batches of 32 using val_datagen generator validation_generator = val_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=20, class_mode='binary') from tensorflow.keras import layers from tensorflow.keras import Model from tensorflow.keras.optimizers import RMSprop # Our input feature map is 150x150x3: 150x150 for the image pixels, and 3 for # the three color channels: R, G, and B img_input = layers.Input(shape=(150, 150, 3)) # First convolution extracts 16 filters that are 3x3 # Convolution is followed by max-pooling layer with a 2x2 window x = layers.Conv2D(16, 3, activation='relu')(img_input) x = layers.MaxPooling2D(2)(x) # Second convolution extracts 32 filters that are 3x3 # Convolution is followed by max-pooling layer with a 2x2 window x = layers.Conv2D(32, 3, activation='relu')(x) x = layers.MaxPooling2D(2)(x) # Third convolution extracts 64 filters that are 3x3 # Convolution is followed by max-pooling layer with a 2x2 window x = layers.Convolution2D(64, 3, activation='relu')(x) x = layers.MaxPooling2D(2)(x) # Flatten feature map to a 1-dim tensor x = layers.Flatten()(x) # Create a fully connected layer with ReLU activation and 512 hidden units x = layers.Dense(512, activation='relu')(x) # Add a dropout rate of 0.5 x = layers.Dropout(0.5)(x) # Create output layer with a single node and sigmoid activation output = layers.Dense(1, activation='sigmoid')(x) # Configure and compile the model model = Model(img_input, output) model.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=0.001), metrics=['acc']) # WRITE CODE TO TRAIN THE MODEL ON ALL 2000 IMAGES FOR 30 EPOCHS, AND VALIDATE # ON ALL 1,000 VALIDATION IMAGES history = model.fit_generator( train_generator, steps_per_epoch=100, epochs=30, validation_data=validation_generator, validation_steps=50, verbose=2) # Retrieve a list of accuracy results on training and validation data # sets for each training epoch acc = history.history['acc'] val_acc = history.history['val_acc'] # Retrieve a list of list results on training and validation data # sets for each training epoch loss = history.history['loss'] val_loss = history.history['val_loss'] # Get number of epochs epochs = range(len(acc)) # Plot training and validation accuracy per epoch plt.plot(epochs, acc) plt.plot(epochs, val_acc) plt.title('Training and validation accuracy') plt.figure() # Plot training and validation loss per epoch plt.plot(epochs, loss) plt.plot(epochs, val_loss) plt.title('Training and validation loss') import os, signal os.kill(os.getpid(), signal.SIGKILL) <END_TASK>